
VAX-11 BLISS-32
User's Guide
Order No. AA-H322C-TE

February 1982

This document describes the VAX-11 BLISS-32 compiler and its use, and
gives basic information about linking, executing, and debugging BLISS-32
programs. It also describes BLISS-32 machine-specific functions, BLISS
tools, and other topics relevant to BLISS-32 programming.

SUPERSESSION/UPOATE INFORMATION: This document supersedes Version 2 of the
BLISS-32 User's Guide, (Order No. AA-H3228-TE),
dated January 1980.

OPERATING SYSTEM AND VERSION: VAX/VMS V2.5

SOFTWARE VERSION: BLISS-32 V3.0

digital ·equipment corporation · maynard, massachusetts

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright © 1982 by Digital Equipment Corporation
~11 Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DEC/CMS
DECnet
DECsystem-lo
DECSYSTEM-20
DEC US
DECwriter

DIBOL
EduSystem
IAS
MAS SB US
PDP
PDT
RSTS

RSX
UNIBUS
VAX
VMS
VT

mamaama

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710

In New Hampshire, Alaska, and Hawaii call 603-884-6660

In Canada call 613-234-7726 (Ottawa-Hull)
800-267-6146 (all other Canadian)

DIRECT MAIL ORDERS (USA & PUERTO RICO)*

Digital Equipment Corpor~tio~
P.O. Box CS2008
Nashua. New Hampshire 03061

*Any prepaid order .from Puer~o RJco must be placed
with the local Digltat subsidiary (SQ.9-754-75!5)

DIRECT MAIL ORDERS (CANADA)

Digital Equipment of Canada Ltd.
940 Belfast Road
Ottawa, Ontario K1G 4C2
Attn: A&SG Business Manager

DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation
A&SG Business Manager
c/o Digital's local subsidiary or
approved distributor

Internal orders should be placed through the Software Distribution Center (SOC). Digital Equipment
Corporation, Northboro, Massachusetts 01532

ZK2203

CONTENTS

PREFACE

SUMMARY OF TECHNICAL CHANGES

CHAPTER

CHAPTER

1

1.1
1.1.1
1.1.2
1.2
1.3
1.3.1
1.3.1.l
1.3.1.2
1.3.1.3
1.3.2
1.3.2.1
1.3.2.2
1.3.2.3
1.3.2.4
1.3.3
1.3.3.1
1.3.3.2
1.3.3.3
1.3.4
1.3.4.1
1.3.4.2
1.3.4.3
1.3.S
1.3.S.l
1.3.S.2
1.3.S.3
1.3.6
1.3.6.1
1.3.6.2
1.3.6.3
1.3.7
1.3.8
1.3.9
1. 3.10

2

2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.3.l
2.2.3.2

OPERATING PROCEDURES

COMPILING A BLISS MODULE •
Command-Line Syntax
Command-Line Semantics •

FILE SPECIFICATIONS
COMMAND-LINE QUALIFIERS

Output Qualifiers
Syntax •
Defaults
Semantics

General Qualifiers •
Syntax •
Defaults •
Semantics
Discussion •

Terminal Qualifier •
Syntax •
Defaults •
Semantics

Optimize Qualifier •
Syntax •
Defaults •
Semantics

Source-List Qualifier
Syntax •
Defaults •
Semantics

Machine-Code-List Qualifier
Syntax •
Defaults •
Semantics

Qualifier Names vs. Switch Names •
Qualifiers and Default Settings

•,

Positive and Negative Forms of Qualifiers
Abbreviations of Qualifier and Value Names •

COMPILER OUTPUT

TERMINAL OUTPUT
OUTPUT LISTING •

Listing Header
Source Listing
Object Listing •

Default Object Listing •
Assembler Input Listing

iii

Page

ix

xiii

1-1
1-2
1-3
1-3
1-5
1-5
1-6
1-6
1-6
1-7
1-7
1-8
1-8
1-8
1-9
1-9
1-9

1-10
1-10
1-11
1-11
1-11
1-12
1-13
1-13
1-13
1-14
1-14
1-15
1-15
1-16
1-16
1-17
1-17

2-2
2-3

• 2-3
2-4
2-7
2-8

2-12

2.2.4
2.2.4.1
2.2.4.2
2.2.4.3
2.2.4.4
2.3
2.4

CHAPTER 3

3.1
3.1.1
3.1. 2
3.2
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.4.1
3.3.4.2
3.3.4.3
3.3.4.4
3.3.4.5
3.3.5
3.3.6
3.3.7
3.3.8
3.3.9
3.3.10
3.3.11

CHAPTER 4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29

CONTENTS

Source Part Options • • • • • • • • • • • • •
Default Source Listing •••••••••••
Listing with LIBRARY and REQUIRE Information
Listing with Macro Expansions •••••
Listing with Macro Tracing •

COMPILATION SUMMARY • • • • • •
ERROR MESSAGES • • • • • • • •

LINKING, EXECUTING, AND DEBUGGING

Page

2-12
2-16
2-17
2-17
2-17
2-17
2-21

LINKING • • • • • • • • • • • • • • • • 3-1
LINK Command Syntax • • • • • • • • • • • • 3-1
LINK Command Semantics • • • • • • • 3-2

EXECUTING A LINKED PROGRAM • • • • • • • • 3-2
DEBUGGING • • • • • • • • • • • • • • • • 3-2

Initialized Modes and Types ••• 3-3
Debug Commands and Expression Syntax • 3-4
Operators in Arithmetic Expressions • • • • 3-4
Special Characters in Address Expressions • 3-5

Current Location Symbol (.) • • •• 3-6
Last Value Displayed Symbol (\) • • • • • • • 3-7
Contents Operator·(.) •••••••••••• 3-7
Range Operator (:) • • •••••••••••• 3-7
Default Next-Location Value • • • • 3-8

Field References • • • • • • • • • • • 3-9
Structure References • • • • • • • 3-10
REF Structure References • • • • 3-12
Scope of Names • • • • • • • • • • • • 3-13
Source-Line Debugging • • • • • • • • • • 3-13
Effect of Compilation and Link-Time Qualifiers 3-14
Debugger Command Summary • • • • • • • • • • • 3-15

MACHINE-SPECIFIC FUNCTIONS

ADAWI - ADD ALIGNED WORD INTERLOCKED • • • 4-6
ADDO - ADD DOUBLE OPERANDS • • 4-6
ADDF - ADD FLOATING OPERANDS • • • • • • • • • • • 4-6
ADDG - ADD FLOAT-G OPERANDS • • • • • 4-7
ADDH - ADD FLOAT-H OPERANDS 4-7
ADDM - ADD MULTIWORD OPERANDS • • • • • 4-7
ASHQ - ARITHMETIC SHIFT QUAD • • • • • • 4-8
BICPSW - BIT CLEAR PSW • • • • • • 4-8
BISPSW - BIT SET PSW • • • • • • • 4-8
BPT - BREAK POINT TRAP • • • • • • 4-8
BUGL - BUGCHECK WITH LONG OPERAND • 4-9
BUGW - BUGCHECK WITH WORD OPERAND • • • • • • • • 4-9
CALLG - CALL WITH GENERAL PARAMETER LIST • • 4-9
CHMX - CHANGE MODE • • • • • • • • • • • 4-10
CMPD - COMPARE DOUBLE • • • • • • • • • • • • • 4-10
CMPF - COMPARE FLOATING • • • • • • • • 4-11
CMPP - COMPARE PACKED • • • • • • • • 4-11
CRC - CYCLIC REDUNDANCY CHECK 4-11
CVTDF - CONVERT DOUBLE TO FLOATING • • • • 4-12
CVTDI - CONVERT DOUBLE TO INTEGER 4-12
CVTDL - CONVERT DOUBLE TO LONG • • 4-12
CVTFD - CONVERT FLOATING TO DOUBLE • • • • • • • 4-13
CVTFG - CONVERT FLOATING TO FLOAT-G 4-13
CVTFH - CONVERT FLOATING TO FLOAT~H • • • • • • 4-13
CVTFI - CONVERT FLOATING TO INTEGER 4-13
CVTFL - CONVERT FLOATING TO LONG • • • • • • 4-14
CVTGF - CONVERT FLOAT-G TO FLOATING • • • • 4-14
CVTGL CONVERT FLOAT-G TO LONG • • • • • • 4-14
CVTHF - CONVERT FLOAT-H TO FLOATING • • • • • • 4-15

iv

4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38

4.39
4.40
4.41
4.42
4.43
4.44
4.45
4.46
4.47
4.48
4.49
4.50
4.51
4.52
4.53
4.54
4.55

4.56
4.57
4.58
4.59
4.60
4.61
4.62
4.63
4.64
4.65
4.66
4.67
4.68
4.69
4.70
4.71
4.72
4.73
4.74

4.75
4.76
4. 77
4.78
4.79
4.80
4.81
4.82
4.83
4.84
4.85
4.86

CHAPTER 5

CONTENTS

CVTHL - CONVERT FLOAT-H TO LONG
CVTID - CONVERT INTEGER TO DOUBLE
CVTIF - CONVERT INTEGER TO FLOATING • • • • • •
CVTLD - CONVERT LONG TO DOUBLE •
CVTLF - CONVERT LONG TO FLOATING
CVTLH - CONVERT LONG TO FLOAT-H • • • • •
CVTLP - CONVERT LONG TO PACKED •
CVTPL - CONVERT PACKED TO LONG •
CVTPS - CONVERT PACKED TO LEADING SEPARATE
NUMERIC . • • • • • • • • • • • • • • • • •
CVTPT - CONVERT PACKED TO TRAILING NUMERIC •
CVTRDH - CONVERT ROUNDED DOUBLE TO FLOAT-H •
CVTRDL - CONVERT ROUNDED DOUBLE TO LONG • • • •
CVTRFL - CONVERT ROUNDED FLOATING TO LONG
CVTSP - CONVERT LEADING SEPARATE TO PACKED •
VTTP - CONVERT TRAILING NUMERIC TO PACKED
DIVD - DIVIDE DOUBLE OPERANDS • • • • • • • • •
DIVF - DIVIDE FLOATING OPERANDS • • • • •
DIVG - DIVIDE FLOAT-G OPERANDS • • •
DIVH - DIVIDE FLOAT-H OPERANDS • •
EDITPC - EDIT PACKED TO CHARACTER
EDIV - EXTENDED-PRECISION DIVIDE •
EMUL - EXTENDED-PRECISION MULTIPLY •
FFC AND FFS - FIND AND MODIFY OPERATIONS •
HALT - HALT PROCESSOR • • • • • • • •
INDEX - INDEX CALCULATION • • • • • •
INSQHI AND INSQTI - INSERT ENTRY IN QUEUE,
INTERLOCKED • • • • • • • • • • • • • • • •
INSQUE - INSERT ENTRY IN QUEUE •
LOCC - LOCATE CHARACTER • • • •
MATCHC - MATCH CHARACTERS
MFPR - MOVE FROM PROCESSOR REGISTER • • • • • •
MOVC3 - MOVE CHARACTER 3 OPERAND • • • • • • • •
MOVC5 - MOVE CHARACTER 5 OPERAND • • • • • • • •
MOVP - MOVE PACKED • • • • • • • • • • • • • • •
MOVPSL - MOVE FROM PSL • • • • • • • • • • • • •
MOVTC - MOVE TRANSLATED CHARACTERS • •
MOVTUC - MOVE TRANSLATED UNTIL CHARACTER
MTPR - MOVE TO PROCESSOR REGISTER
MULD - MULTIPLY DOUBLE OPERANDS
MULF - MULTIPLY FLOATING OPERANDS • • • •
MULG - MULTIPLY FLOAT-G OPERANDS •
MULH - MULTIPLY FLOAT-H OPERANDS •
NOP - NO OPERATION • • • • • • • • •
PROBER - PROBE READ ACCESSIBILITY • • • •
PROBEW - PROBE WRITE ACCESSIBILITY • • • • •
REMQHI AND REMQTI - REMOVE ENTRY FROM QUEUE,
INTERLOCKED • • • • • • • • • • • • • • •
REMQUE - REMOVE ENTRY FROM QUEUE
ROT - ROTATE A VALUE • • •
SCANC - SCAN CHARACTERS • • • • •
SKPC - SKIP CHARACTER • • • •
SPANC - SPAN CHARACTERS
UBD - SUBTRACT DOUBLE OPERANDS • •
SUBF - SUBTRACT FLOATING OPERANDS • • • •
SUBG - SUBTRACT FLOAT-G OPERANDS • • • • • • • •
SUBH - SUBTRACT FLOAT-H OPERANDS • • • • • •
SUBM - SUBTRACT MULTIWORD OPERANDS
TESTBITX - TEST AND MODIFY OPERATIONS
XFC - EXTENDED FUNCTION CALL • • • • •

PROGRAMMING CONSIDERATIONS

Page

4-15
4-15
4-15
4-16
4-16
4-16
4-16
4-17

4-17
4-18
4-18
4-18
4-19
4-19
4-19
4-20
4-20
4-20
4-21
4-21
4-21
4-22
4-22
4-23
4-23

4-23
4-24
4-24
4-25
4-25
4-25
4-26
4-26
4-26
4-27
4-27
4-27
4-28
4-28
4-28
4-29
4-29
4-29
4-30

4-30
4-31
4-31
4-31
4-32
4-32
4-32
4-33
4-33
4-33
4-34
4-34
4-35

5.1 LIBRARY AND REQUIRE USAGE DIFFERENCES •••••• 5-1

v

5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.2.8
5.3
5.4
5.5

CHAPTER 6

6.1
6.2
6.2.1
6.2.2
6.3
6.3.1
6.3.1.l
6.3.1.2
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.4
6.4.1
6.4.1.1
6.4.1.2
6.4.2
6.4.2.1
6.4.2.2
6.4.2.3
6.4.3
6.4.3.1
6.4.3.2
6.4.4
6.4.4.1
6. 4 .• 4. 2
6.4.4.3
6.4.4.4
6.4.4.5
6.4.5
6.4.5.1
6.4.5.2
6.4.5.3
6.4.5.4
6.4.5.5

CHAPTER 7

7.1
7 .1.1
7 .1. 2
7.1.2.1
7.1.2.2
7 .1. 3
7 .1. 4
7 .1. 5
7 .1.6

CONTENTS

FREQUENT BLISS CODING ERRORS • • •
Missing Dots • • • • • • • • • •
Valued and Nonvalued Routines
Semicolons and Values of Blocks
Complex Expressions Using AND, OR,
Computed Routine Calls • • •
Signed and Unsigned Fields •
Complex Macros • • • • •
Missing Code • • • • • •

ERRORS FROM LINKER • • •
OBSCURE ERROR MESSAGES •
PIC CODE GENERATION • • • •

TRANSPORTABILITY GUIDELINES

INTRODUCTION • • •
GENERAL STRATEGIES • • • • •

Isolation •••••••
Simplicity ••••

TOOLS • • • • • • • • • • • • •

Page

• • • • • • 5-3
• • • 5-3

• • • • • • • 5-3

and NOT
• • 5-4

• 5-4
• • 5-4
• • 5-5

• 5-5
• • 5-5
• • 5-6

5-6
• • 5-6

• • • • • 6-1
• • 6-2
• • 6-2

6-3
• 6-4

Literals • • • • • ••••••• • • 6-4
Predeclared Literals •
User-Defined Literals •••••

Macros and Conditional Compilation
Module Switches •••••
Reserved Names • • • • • • •
REQUIRE and LIBRARY Files ••••

• • 6-4
• • 6-5

• • • 6-5
• • 6-6
• • 6-8

Routines • • • • • • • • •
6-9

6-11
6-11
6-12
6-12
6-13
6-14
6-14
6-16
6-17
6-18
6-18
6-19
6-19

TECHNIQUES FOR WRITING TRANSPORTABLE PROGRAMS
Data • • • • • • • • • • • • •

Problem Origin •••••••••••••
Transportable Declarations • • •

Data: Addresses and Address Calculations •
Addresses and Address Calculations • •
Relational Operators and Control Expressions
BLISS-10 Addresses Versus BLISS-36 Addresses

Data: Character Sequences ••••••••••
Quoted Strings Used as Numeric Values •
Quoted Strings Used as Character Strings

PLITs and Initialization
PLITs in General • • •
Scalar PLIT Items
String Literal PLIT Items

6-19
6-20
6-20

An Example of Initialization •
Initializing Packed Data ••

• • • • 6-22
6-25

Structures and Field Selectors •
Structures • • • • • • • •
FLEX VECTOR
Field Selectors
GEN VECTOR •
Summary

• • • • 6-29
6-29

• • • • 6-30
6-32
6-33
6-35

COMPILER OVERVIEW AND OPTIMIZATION SWITCHES

COMPILER PHASES • • • • • • • •
Lexical and Syntactic Analysis •
Flow Analysis • • • • • • • • •

Knowing When a Value Changes • •
Accounting for Changes •

Heuristic Phase

7-1
• • • • • • 7-2

7-3
• 7-3

• • 7-5
7-6
7-7 Temporary Name Binding •

Code Generation • • • •
Code Stream Optimization •

. • • . . • • . • 7-7
• • • • • • • • • 7-8

vi

7.1.7
7.2

CHAPTER 8

8.1
8.1. l
8.1. 2
8.1.3
8.1. 4
8.1. 5
8.2
8.2.l
8.2.2
8.2.3
8.3
8.3.l
8.3.2
8.3.3
8.3.4
8.3.4.l
8.3.4.2
8.3.4.3
8.3.4.4
8.4
8.5
8.5.l
8.5.2
8.6
8.6.l
8.6.2
8.7
8.7.l
8.7.2

APPENDIX A

A. l
A.2
A.3
A.4
A.5

APPENDIX B

APPENDIX C

c.1
C.2
C.3
C.4

APPENDIX D

D.l
D.2

CONTENTS

Output File Production ••
SUMMARY OF SWITCH EFFECTS • • • •

Page

• • 7-8
• • 7-8

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

TRANSPORTABLE PROGRAMMING TOOLS (XPORT) • • 8-1
XPORT Data Structures • • • • • • • • • • • • • 8-2
XPORT Input/Output • • • • • • • • • • • • • 8-2
XPORT Dynamic Memory Management • • • • • • 8-3
XPORT Host System Services • • • • • • 8-3
XPORT String Handling Facilities ••••• 8-3

BLISS CROSS REFERENCES (BLSCRF) • • • • • • 8-4
Command Line Format • • • • • • • • • • • • 8-4
Command Semantics • • • • • • • • 8-5
Command Qualifiers ••••••••••••••• 8-5

BLISS LANGUAGE FORMATTER (PRETTY) • • • • • • • • 8-6
Command Line Format • • 8-6
Command Semantics • • 8-6
Formatting Options • • • • 8-7
Hints on Using Pretty • • • • • • • • • • 8-10

Breaking Lines • • • • • • • • • 8-11
Comments • • • • • • • • • • • • • • 8-11
MACROS • • • • • • • • • • • • • • • • • 8-12
PLITs • • • • • • • • • • • • • • • • • 8-12

TUTORIAL TERMINAL INPUT/OUTPUT PACKAGE (TUTIO) • 8-12
VAX/VMS SYSTEM SERVICES INTERFACE 8-13

Sample Program Using VMS System Services 8-14
Common Errors in Using System Services • 8-15

RECORD MANAGEMENT SERVICES INTERFACE • • • • • • 8-15
Using RMS-32 Macros • • • • • • • • • • • • • 8-15
Sample Routine Using RMS-32 • • • • • • • • • 8-16

OTHER VAX/VMS INTERFACES • • • • • • • • 8-17
LIB • • • • • • • • • • • • • • 8-17
TPAMAC • • • • • • • • • • 8-17

SUMMARY OF COMMAND SYNTAX

COMMAND-LINE SYNTAX • • • •
FILE SPECIFICATION SUMMARY •
QUALIFIER SYNTAX • • • • • •
QUALIFIER DEFAULTS
ABBREVIATIONS

SUMMARY OF FORMATTING RULES

MODULE TEMPLATE

MODULE PREFACE • • • • • • •
DECLARATIVE PART OF MODULE •
EXECUTABLE PART OF MODULE
CLOSING FORMAT • • • •

IMPLEMENTATION LIMITS

BLISS-32 LANGUAGE
SYSTEM INTERFACES

vii

•• A-1
• • • • • • • A-1

• • • • • • A-2
•• A-3
•• A-3

C-2
• • C-3
•• C-4
•• C-4

• • • • • • D-1
• • • • • D-1

APPENDIX E

E.l

APPENDIX F

FIGURE 2-1
2-2
2-3
2-4
2-5
2-6

TABLE

2-7

2-8

2-9
8-1
F-1

1-1
2-1
3-1
3-2
4-1

CONTENTS
Page

ERROR MESSAGES

BLISS COMPILER FATAL ERRORS E-36

SAMPLE OUTPUT LISTING

FIGURES

Compiler Output Listing Sequence • • ••••• 2-3
Listing Header Format • • • • • • • • • • •• 2-4
Default Object Listing Example • • •••••• 2-9
Assembler Input Listing Example • • • • 2-13
Default Source Listing Example • • • • • 2-16
Output Listing Example Showing Library and
Require File Information • • • • • • • • • 2-18
Output Listing Example Showing Macro Expansion
Information • • • • • • • • • • • • • • • 2-19
Output Listing Example Showing Macro Expansion
and Tracing Information • • • •
Error Messages in Source Listing Example
Sample TPARSE Program • • • • • • • •
Sample Output Listing • • • • • • • • • •

TABLES

2-20
2-23
8-17

• • F-2

Correspondence Between Qualifier and Switch Names 1-16
Format of Preface String in Source Listing • • •• 2-5
Arithmetic Expression Operators •• 3-5
Address Representation Characters • • • 3-6
Machine-Specific Functions • • • • • • • ••• 4-2

viii

PREFACE

MANUAL OBJECTIVES

This manual is a user's guide for the VAX-11 BLISS-32 compiler running
under the VAX/VMS operating system. It is intended as a complement to
the BLISS Language Guide. It provides three kinds of information:
basic operating instructions, supplementary programming information,
and reference material.

INTENDED AUDIENCE

This guide is intended for users of the BLISS-32 programming language.
It presupposes some familiarity with the VAX/VMS operating system, its
command language, and file-system conventions.

STRUCTURE OF THIS DOCUMENT

Chapters 1 through 3 describe basic operating instructions.

• Chapter 1 gives procedures for compiling a BLISS program and
describes the command qualifiers.

• Chapter 2 considers output produced by the -compilation. The
format and meaning of each of the possible compiler outputs
are described and illustrated.

• Chapter 3 is concerned with linking, executing, and debugging.

Chapters 4 through 8 supply supplementary programming information.

• Chapter 4 defines the VAX-11 machine-specific functions.

• Chapter 5 discusses programming considerations, usch as the
use of LIBRARY and REQUIRE facilities.

• Chapter 6 gives guidelines for writing transportable BLISS
programs. Chapter 7 discusses the compiler

• Chapter 7 describes compiler architecture and the effects of
the command qualifiers related to optimization.

• Chapter 8 describes some tools related to BLISS programming.

ix

PREFACE

The appendixes contain reference material.

• Appendix A summarizes the command syntax, including the
command qualifiers, their defaults, and abbreviations.

• Appendix B provides formatting rules •

• Appendix c provides a module template.

• Appendix D lists current implementation limits.

• Appendix E describes the error messages produced by the
compiler.

• Appendix F is a sample output, listing.

ASSOCIATED DOCUMENTS

The VAX-11 Information Directory lists and describes all the documents
that you may need to refer to in the course of building and executing
a BLISS program.

Additional documentation that is either directly or
relevant to BLISS programming includes the following:

indirectly

• BLISS language usage:

• BLISS syntax summary:

• Program linking and
execution:

• Symbolic debugging:

• System services:

BLISS Language Guide

BLISS Pocket Guide

VAX-11 Linker Reference Manual

VAX/VMS Command Language
Use,r' s Guide

VAX-11 Symbolic Debugger
Reference Manual

VAX/VMS System Services
Reference Manual

VAX-11 Record Management
Services Reference Manual

VAX-11 Record Management
Services User's Guide

CONVENTIONS USED IN THIS DOCUMENT

Syntax notation and definitions used in BLISS-32 are explained
thoroughly in Chapter 2 of the BLISS Language Guide. The following is
a summary of syntax notation used in this manual:

{ i tem-1 item-2 item-3 }

{
~ tem-1 }
item-2
item-3

Select exactly one
separated by vertical
braces.

of the i terns
bars within the

Select exactly one of the items in
braces on separate but contiguous lines.

x

item •••

i tern, •••

i tern+ •••

PREFACE

The item directly preceding the 11 11

can be repeated zero or more times with
the items separated by spaces.

The item directly preceding the 11
, •••

11

can be repeated zero or more times with
the items separated by commas.

The item directly preceding the 11 + ••• "
can be repeated zero or more times with
the items separated by plus signs.

In addition, the red portions of a syntax line or system-user dialog
identify information keyed in by the user.

xi

SUMMARY OF TECHNICAL CHANGES

This manual describes Version 3.0 of the BLISS-32 compiler. This
section summarizes the technical changes in the use of the BLISS-32
since Version 2.0.

/ERROR LIMIT has been added
command line.

as a general-qualifier for the BLISS-32

The following machine-specific functions have been added.

Arithmetic:
ADDO ADDH DIVF MULD MULH SUBG
ADDF ADDM DIVG MULF SUBD SUBH
ADDG DIVD DIVH MULG SUBF SUBM

Arithmetic Conversion:
CVTDI CVTGF CVTHG CVTRGL
CVTFG CVTGH CVTHL CVTRGH
CVTFH CVTGL CVTLG
CVTFI CVTHF CVTLH

Arithmetic Comparison:
CMPM CMPG CMPH

String Functions:
MOVC3 CMPC3 MOVTC LOCC
MOVCS CMPCS MATCHC SKPC

Additional BUILTIN Functions:
ASHP XFC

The following machine-specific functions will
parameters.

The

CAL LG CRC
CMPC3 CVTLP
CM PCS CVTPL
CMPP CVTPS

following VAX/VMS

CANCEL SOURCE
SEARCH
SET MARGIN

CVTPT
CVTSP
CVTTP
EDIT PC

DEBUG

SET MAX SOURCE FILES

LOCC MOVP
MATCHC MOVTC
MOVC3 MOVTUC
MOVCS SCANC

V3 commands are

SET SEARCH
SET SOURCE
SET STEP LINE
SHOW MARGIN

xiii

SKPC
SPANC

supported.

accept output

SHOW SEARCH
SHOW SOURCE
STEP LINE
TYPE

SUMMARY OF TECHNICAL CHANGES

The /DEBUG command line qualifier now generates source-line number
information in the DEBUG symbol table when the compiler executes under
VAX/VMS Version 3.0.

The compilation summary is now generated as part of the statistics.

The BLISS-32 compiler accepts quoted strings up to 1000 characters in
length.

Appendix E includes changes in diagnostic messages. It has also been
expanded to describe corrective actions.

xiv

CHAPTER 1

OPERATING PROCEDURES

This chapter discusses the operating procedures used to compile a
BLISS module. The form of the command line is considered first.
Next, the file specifications for input to a BLISS-32 compilation are
described and illustrated. Finally, the command-line qualifiers
relevant to a BLISS-32 compilation are given.

The procedure for compiling, linking, and executing a BLISS-32 program
is uncomplicated. For example, to compile and execute a program
consisting of a single source module, enter the module in a file, for
example, ALPHA.B32, compile it with the BLISS-32 compiler, link it
using the VAX/VMS linker, and execute the linked image. The command
sequence to do this is:

$ BLISS ALPHA
$LINK ALPHA
$RUN ALPHA

The first command invokes the BLISS compiler to compile the module in
the file ALPHA.B32 . and to produce an object file ALPHA.OBJ. The
second command uses the object module in the file ALPHA.OBJ to produce
an executable image in the file ALPHA.EXE. The third command executes
the image in the file ALPHA.EXE.

However, the more usual case involves the compilation and linking of
several (and possibly a large number) of source modules into one
executable image.

You can use command-line qualifiers to control the compiler. These
qualifiers add a level of complexity to the compilation process.
However, they provide a means by which you can vary the performance of
the compiler, for example, in the production of output, in the
formatting of listings, and in the degree of optimization to be
performed.

1.1 COMPILING A BLISS MODULE

To compile a BLISS module, the programmer issues the BLISS system
command and a BLISS command line. The command line consists of one or
more source file names optionally preceded by command-line qualifiers.
(Refer to "Command Line Syntax" below.) Some BLISS command line
examples follow.

1-1

OPERATING PROCEDURES

• To compile a module, give the following command:

$ BLISS MYPROG

The BLISS compiler uses file MYPROG.B32 as input, compiles the
source in that file, and produces an object file, MYPROG.OBJ.

• To produce a listing file, use the /LIST output qualifier:

$ BLISS/LIST MYPROG

In addition to the object file, the BLISS compiler produces
the listing file, MYPROG.LIS.

• To produce an object file with a name different from the
source file, give the name in tha command as follows:

$ BLISS/OBJECT=GAMMA ALPHA

The BLISS compiler produces the object file, GAMMA.OBJ.

• To produce a BLISS library file instead of an object file, use
the /LIBRARY command qualifier:

$ BLISS/LIBRARY ALPHA

The BLISS compiler compiles the input file, ALPHA.R32, and
produces the library file, ALPHA.L32.

• To compile more than one module, include a list of input files
separated by commas:

$BLISS ALPHA,BETA,GAMMA

The compiler compiles ALPHA.B32, producing the object
ALPHA.OBJ, then BETA.B32, producing BETA.OBJ, and
GAMMA.B32, producing GAMMA.OBJ.

file
then

• To compile a module that consists of several pieces, each in a
separate file, use the concatenation indicator (+):

$ BLISS ALPHA+BETA+GAMMA

The BLISS compiler compiles the source module
concatenation of ALPHA.B32, BETA.B32, and
produces the single object file ALPHA.OBJ.

1.1.1 Command-Line Syntax

compilation-request $ BLISS bliss-command-line

formed by
GAMMA.B32,

bliss-command-line { qualifier, ••• } space input-spec, •••

input-spec file-spec { +. •.} {qualifier, ••• }

space { blank I tab } ...

{
output qualifier

}
general qualifier

qualifier terminal qualifier
optimization qualifier
source-list qualifier
machine-code-list qualifier

1-2

the
and

OPERATING PROCEDURES

The dollar sign ($) represents the VMS command-level prompt character.
As indicated in the syntax rule, a space must immediately precede the
first or only input-spec. Optional spaces may be used before or after
any delimiter character shown in this and subsequent syntax diagrams.
The applicable delimiters are the comma (,),plus sign (+), slash {/),
equal sign (=),and colon (:).

1.1.2 Command-Line Semantics

The BLISS-32 compiler uses command-line qualifiers given in
bliss-command-line to modify their default settings for
compilation. Then, each input-spec is compiled separately in
context of the initial default qualifier settings. Qualifiers
their initial default settings are described in Section 1.3.

the
each

the
and

Unless a qualifier to change the compiler's behavior is given, the
output from a compilation initiated from your terminal is the object
file and the terminal listing, and the output from a compilation given
in a batch file is an object file and listing file.

The compiler uses the contents of a file or of a series of files
joined (concatenated) by plus signs (+) as input to a BLISS
compilation. The compiler begins processing with the first file given
in an input-spec and continues until an end-of-file is reached. It
continues to read input until all files specified in the input-spec
have been read. Command-line switches can appear in two places in a
command line: before the first input-spec and after individual
input-specs. Those appearing before the first input-spec have a
global application to all input-specs in the command-line, for
example:

$ BLISS/LIBRARY ALPHA,BETA+THETA+ZETA,OMEGA

Those appearing at the end of an input-spec apply only to the
input-spec they follow, for example:

$ BLISS/LIBRARY ALPHA,BETA/OBJECT,IOTA

If no command-line switches exist in a command line, default switch
settings are assumed for all input-specs in the command line. All
switches have an assigned default setting or value.

The only required space in the command line separates the first
input-spec from preceding global command-line switches.

1.2 FILE SPECIFICATIONS

File specifications are used to name the source of program text to be
compiled and the destination of output from the compilation. More
precisely, file specifications can occur in three contexts:

• In the input-specs of a bliss-command-line

• As the values of the qualifiers /OBJECT, /LIBRARY, and /LIST

• In REQUIRE and LIBRARY declarations in the module being
compiled

1-3

OPERATING PROCEDURES

The file-spec is a standard VAX/VMS file specification, as described
in the VAX/VMS Command Language User's Guide. (See Appendix A.}

A file specification is interpreted as follows:

1. Logical name translation occurs.

2. If a file-type is not given, a default file type is used, as
described in the next section.

3. If the file-spec applies to an output file and a filename is
not given, then the name of the first or only input file in
the input-spec is used.

The compiler uses this same interpretation when it processes the file
specification given in a REQUIRE or LIBRARY declaration. (Refer to
Chapter 16 of the BLISS Language Manual The compiler has two ordered
lists of default file types to be tried for an input-spec that does
not include a file type. The default type the compiler applies
depends on the output to be produced by the compilation, as indicated
in the following list:

Input-spec used to Produce Default Type List

an object module .B32, .BL!

a 1 ibrary file .R32, .REQ, .B32, .BL!

If the program being compiled contains a REQUIRE or LIBRARY
declaration, the compiler uses the following lists to search for the
appropriate file type according to the type of declaration:

File Use

File given in a
REQUIRE declaration

File given in a
LIBRARY declaration

Default Type List

.R32, .REQ, .B32, .BL!

.L32

For example, suppose you have entered the following source text in the
file ALPHA. BL!:

MODULE MYTEST
BEGIN
REQUIRE 'CBLISS';
LIBRARY 'TBLISS';

END
ELUDOM

and you use the following command line to compile it:

$ BLISS ALPHA

Since the bliss-command-line contains no qualifier requesting that a
library file be produced, the output of the compilation is an object
module. Therefore, the compiler chooses the list of default types
associated with object module output and searches first for ALPHA.B32,
then, not finding that file, for ALPHA.BL!, which it finds and
compiles.

1-4

OPERATING PROCEDURES

In processing the module MYTEST in that file, the compiler encounters
the REQUIRE declaration for the file CBLISS. Since no file type for
CBLISS is given, the compiler uses the list of default types for files
in a REQUIRE declaration and searches for CBLISS.R32, then CBLISS.REQ,
then CBLISS.B32, then CBLISS.BLI. When the compiler processes the
LIBRARY declaration, it uses the default type list associated with
library declarations and searches for TBLISS.L32.

1.3 COMMAND-LINE QUALIFIERS

Command-line qualifiers provide control over many aspects of the
compilation. Valid command-line qualifiers and their functions are:

• output qualifier - defines the types of output to be produced

• general qualifier - sets a %VARIANT value and specifies code
and debug information

• terminal qualifier - controls output produced on a terminal

• optimize qualifier - supplies code optimization strategies and
directions

• source-list qualifier - provides output listing information
concerning the form of the source part

• machine-code-list qualifier - provides output listing
information concerning the form of the object part

1.3.1 Output Qualifiers

Output qualifiers are used to indicate the type of output to be
produced from a BLISS-32 compilation and to give names for the files
to be produced when you do not want to use the default names. Some
examples of output qualifiers are given in the following list:

• To suppress the production of an object file, use the
/NOOBJECT qualifier in the command line, as follows:

$ BLISS/NOOBJECT ALPHA

The BLISS-32 compiler reads the source in the file ALPHA.B32
and produces no output files. The only outputs are the error
messages and summary information produced at the terminal.

• To obtain a list file for a single source file, use the /LIST
qualifier, as follows:

$ BLISS/LIST ALPHA

The BLISS-32 compiler produces an object file ALPHA.OBJ and a
list file ALPHA.LIS. (The /LIST qualifier is assumed by
default in a batch command.)

• To use a different name for the object or list files, use the
following qualifiers:

$ BLISS/OBJECT=BETA/LIST=GAMMA ALPHA

The compiler reads the input file ALPHA.B32 and produces the
object file BETA.OBJ and the list file GAMMA.LIS.

1-5

OPERATING PROCEDURES

• To produce a library file rather than an object file, use the
/LIBRARY qualifier, as follows:

$ BLISS/LIBRARY ALPHA

The compiler reads the input file ALPHA.B32 and produces the
library file ALPHA.L32.

1.3.1.l Syntax - Output qualifier syntax is defined as follows:

{

/OBJECT {=file-spec} I /NOOBJECT }
/LIST {=file-spec} I /NOLIST
/LIBRARY {=file-spec} I /NOLIBRARY

output qualifier

The compiler can produce either a library or an object file, but not
both. Therefore, the file-designators /OBJECT and /LIBRARY are
mutually exclusive; they must not be given in the same command line.

1.3.1.2 Defaults - In the absence of an
qualifier, the following qualifiers
interactive mode:

explicit choice
are assumed by

of output
default in

/OBJECT /NOLI ST /NOLIBRARY

In batch mode, a list file is produced by default;
following qualifiers are assumed:

that is, the

/OBJECT /LIST /NOLIBRARY

If a file-spec is not given, the file name of the first file in the
input-spec is combined with the default file type to form the
file-spec. If a file-spec is given but the file-spec does not include
a file type, the following default file-types are applied, depending
on the file-designator:

File-Designator

/OBJECT

/LIST

/LIBRARY

Default Type

OBJ

LIS

L32

1.3.1.3 Semantics - The output
interpretation:

qualifiers have the following

/OBJECT=file-spec

/OBJECT

/NOOBJECT

/LIST=file-spec

Produce an object file in the file specified
by file-spec.

Produce an object file in the file specified
by 'input-file-name.OBJ'.

Do not produce an object file.

Produce a list file in the file specified by
file-spec.

l...;.6

OPERATING PROCEDURES

/LIST Produce a list file in the file specified by
'input-file-name.LIS'.

/NOLI ST Do not produce a list file.

/LIBRARY=file-spec Produce a library file in the file specified
by file-spec.

/LIBRARY Produce a library file in the file specified
by 'input-file-name.L32'.

/NOLIBRARY Do not produce a library file.

1.3.2 General Qualifiers

General qualifiers are used to specify code and debug information and
to set the value for the lexical function %VARIANT. Some examples of
the use of general qualifiers follow:

• To conserve object-file storage space, use the /NOTRACEBACK
qualifier in the command line, as follows:

$ BLISS/NOTRACEBACK ALPHA

The compiler
ALPHA.OBJ,
information.

produces the
by omitting

m1n1mum size object
all debugging and

module in
traceback

• To include the necessary debug information in the object
module so that you can symbolically address declarations other
than routine declarations, use the /DEBUG qualifier, as
follows:

$ BLISS/DEBUG ALPHA

The compiler reads the source from ALPHA.B32 and creates an
object file ALPHA.OBJ, which includes additional debug tables.

• To check the syntax of a program you do not intend to execute,
use the /NOCODE qualifier to save compilation time, as
follows:

$ BLISS/LIST/NOCODE ALPHA

• To set the value of the lexical function %VARIANT to 17, for
example, use the /VARIANT qualifier as follows:

$ BLISS/VARIANT=l7 ALPHA

1.3.2.1 Syntax - General qualifier syntax is defined as follows:

general qualifier !
/TRACEBACK I /NOTRACEBACK l
/DEBUG I /NODEBUG
/CODE I /NOCODE
/VARIANT { =value }
/ERROR_LIMIT { =value }

If the qualifier /NOTRACEBACK is given, then the qualifier /DEBUG is
meaningless and, therefore, should not be given.

1-7

OPERATING PROCEDURES

1.3.2.2 Defaults - In the absence of an explicit choice of general
qualifier, the following qualifiers are assumed by default:

/TRACEBACK /NODEBUG /CODE /VARIANT=O /ERROR_LIMIT=30

The compiler produces code, does not include the additional debugging
information in the object file, and sets the value of %VARIANT to O.

If the general qualifier /VARIANT is given without a specified value,
then a value of 1 is assumed.

1.3.2.3 Semantics - The interpretation of the command qualifiers is
given in the following list:

/TRACEBACK

/NOTRACEBACK

/DEBUG

/NODE BUG

/CODE

/NOC ODE

/VARIANT

/VARIANT=n

/ERROR_LIMIT

Generate information in the object module that can
be used by the VAX-11 Debugger to locate module,
routine, and program section (PSECT) names.

Produce the minimum size object module. Do not
include any information for debugging or tracing.

Generate information in the object module that can
be used by the VAX-11 Debugger to reference names
declared within the BLISS module.

Do not generate any additional debug information.
If this switch is applied either explicitly or by
default, the VAX-11 Debugger can only locate
module, routine, and PSECT names.

Generate object code for the BLISS source module.

Perform only a syntax check of the program.

Set %VARIANT to 1.

Set %VARIANT to n, where n is a decimal integer in
the range:

-(2**31) < n < (2**31)-1

Set limit to 1

/ERROR_LIMIT=n Terminates compilation after
diagnostics are encountered.

n error level

1.3.2.4 Discussion - An object module can be produced with the
following degrees of information for the linker, debugger, and the
operating system.

• No information (/NOTRACEBACK)

• Basic information about modules,
(/TRACEBACK and /NODEBUG)

1-8

routines, and PSECTs

OPERATING PROCEDURES

• Information about modules, routines, PSECTs, and data-segment
names (/TRACEBACK and /DEBUG)

The default object module contains the basic information. For
example, if a program fails because of an access violation, VMS can
display the state of the program when the violation occurred through
its traceback facility. Further, the VAX-11 Debugger can be used to
refer to modules, routines, and PSECTs symbolically and to call
routines.

The /NOTRACEBACK qualifier should be used only when object modules for
well-checked-out programs are being generated and when the space to be
occupied by these modules must be kept at a minimum. Use of the
/NOTRACEBACK qualifier reduces the size of the object module, and to a
lesser degree the size of the executable image, out deprives the
object module of information that could be valuable at execution time.

1.3.3 Terminal Qualifier

The terminal qualifier is used to control the output that is sent to
the terminal. You can have errors or statistics printed or suppressed
on the terminal during the compilation of a BLISS program. Some
examples of the use of the terminal qualifier are as follows:

• To see the statistics for each routine as they are produced
during the compilation, specify the terminal qualifier, as
follows:

$ BLISS/TERMINAL=STATISTICS ALPHA

• To suppress error messages and to get statistics, use the
following:

$ BLISS/TERMINAL=(NOERRORS,STATISTICS) ALPHA

1.3.3.1 Syntax - Terminal qualifier syntax is defined as follows:

{ (terminal-value , ...) } terminal qualifier /TERMINAL= terminal-value

{ ERRORS I NOERRORS }
terminal-value STATISTICS I NOSTATISTICS

1.3.3.2 Defaults - In the absence of an explicit choice of
terminal-value, the following values are assumed by default:

ERRORS NOSTATISTICS

Errors are reported on the terminal during the compilation, but
statistics are suppressed.

1-9

OPERATING PROCEDURES

1.3.3.3 Semantics - The /TERMINAL qualifier indicates that one or
more terminal-values follow. The terminal-values have the following
meanings:

Terminal-Value Meaning

ERRORS List each error on the terminal as it is
encountered in the compilation.

NO ERRORS Do not list errors on the terminal.

STATISTICS List the name and size of each routine on the
terminal after each routine is compiled.

NOSTATISTICS Do not list routine names and sizes.

1.3.4 Optimize Qualifier

The optimize qualifier is used to supply directions to the compiler
about the degree and type of optimization wanted and to make
assertions about the program so that the compiler can select the
appropriate optimization strategies. Some examples of the use of the
optimize qualifier are as follows:

• To increase the compilation speed by omitting some standard
optimizations, use the /OPTIMIZE qualifier with the value
QUICK in the command line, as follows:

$ BLISS/OPTIMIZE=QUICK ALPHA

Note that use of QUICK turns off flow analysis.
Section 7.1.2.)

(Refer to

• To get minimum optimization, use the /OPTIMIZE qualifier with
the value LEVEL:O, as follows:

$ BLISS/OPTIMIZE=LEVEL:O ALPHA

• To obtain maximum optimization, use the /OPTIMIZE qualifier
with the value LEVEL:3, as follows:

$ BLISS/OPTIMIZE=LEVEL:3 ALPHA

• To direct the compiler to use techniques that may generate a
larger program in order to increase its operating efficiency,
give the /OPTIMIZE qualifier with the value SPEED, as follows:

$ BLISS/OPTIMIZE=SPEED ALPHA

• To inform the compiler that the program uses pointers to
manipulate named data, use the /OPTIMIZE qualifier with the
value NOSAFE, as follows:

$ BLISS/OPTIMIZE=NOSAFE ALPHA

A detailed discussion of the optimizations resulting from the use of
the /OPTIMIZE qualifier is given in Chapter 7.

1-10

OPERATING PROCEDURES

1.3.4.1 Syntax - Optimize qualifier syntax is defined as follows:

{ (optimize-value ' ...) }
optimize qualifier /OPTIMIZE= optimize-value

l
QUICK I NOQUICK

}
SPEED I SPACE

optimize-value LEVEL : optimize-level
SAFE I NOSAFE

optimize-level { 0 I 1 I 2 I 3 }

The optimize-values SPEED and SPACE are mutually exclusive; they must
not be given in the same command line.

1.3.4.2 Defaults - In the absence of an explicit choice of
optimize-value, the following values are assumed by default:

NOQUICK SPACE LEVEL:2 SAFE

The compiler is directed:

• To perform normal optimization, biasing the
trade-off in favor of minimum program size

speed/space

• To assume that all variables are addressed by name only

• To perform optimization across mark points.
7.1.2.2.)

(See Section

1.3.4.3 Semantics - The /OPTIMIZE qualifier indicates that one or
more optimize-values are given. Optimize-values have the following
meanings.

Optimize-Value

QUICK

NOQUICK

SPEED

SPACE

Meaning

Omit some standard optimizations (for
example, turn off flow analysis) in order to
increase compilation speed.

Perform standard optimizations.

Increase the potential execution speed of the
program being compiled (if possible) by using
more space where necessary. For more
information on the effect of this value, see
Section 7.1.4. (Note: SPEED is equivalent
to the module-switch ZIP.)

Keep program size to a minimum at the
possible expense of operating speed. For
more information on the effect of this value,
see Section 7.1.4. (Note: SPACE is
equivalent to the module-switch NOZIP.)

1-11

LEVEL

SAFE

NOSAFE

OPERATING PROCEDURES

Optimize the program being compiled according
to the optimize-level given, as follows:

Optimize-Level

0
1
2
3

Meaning

Minimum optimization
Subnormal optimization
Normal optimization
Maximum optimization

LEVEL:3 optimizes speed at the expense of
space in the same way as SPEED. For more
information on the effect of this value, see
Section 7.2.

Assume that all named data-segments are
referenced by name only and not manipulated
indirectly in any way, and use optimization
techniques that exploit this fact. For more
information on the effect of this value, see
Section 7.1.2.1.

Assume that sometimes a named data-segment is
referenced by means of a computed expression
and, therefore, some optimization techniques
cannot be used.

1.3.5 Source-List Qualifier

The source-list qualifier is used to supply information about the form
of the source part of the output listing. Some examples of the use of
the source-list qualifier are as follows:

• To obtain a paged listing with 44 lines on each page, give the
following source-list qualifier:

$BLISS/LIST/SOURCE_LIST=PAGE SIZE:44 ALPHA

• To obtain an unpaged listing in which the macro expansions are
given, use the following source-value:

$ BLISS/LIST /SOURCE_LI ST= (NOHEADER, EXPAND MACROS) ALPHA

• To obtain a listing that contains the contents of the REQUIRE
files given in REQUIRE declarations, use the following
source-value:

$BLISS/LIST/SOURCE_LIST=REQUIRE ALPHA

1-12

OPERATING PROCEDURES

1.3.5.1 Syntax - Source-list qualifier syntax is defined as follows:

{ (source-value ' ...) } source-list qualifier /SOURCE_ LIST= source-value

/ HEADER I NOHEADER ' PAGE SIZE : number-of-lines I
source-value I LIBRARY I NOLIBRARY I

REQUIRE I NOREQUIRE >
I EXPAND MACROS I NOEXPAND MACROS

I
TRACE MACROS I NOTRACE MACROS

I

'
SOURCE I NOSOURCE)

number-of-lines { 20 I 21 I 22 I ... }

1.3.5.2 Defaults - In the absence of an explicit choice of
source-value, the following values are assumed by default:

HEADER PAGE SIZE:58 NOLIBRARY NOREQUIRE
NOEXPAND MACROS NOTRACE MACROS SOURCE

The compiler produces a paged listing with 58 lines on each page, in
which no expansion or tracing is included.

1.3.5.3 Semantics - The /SOURCE LIST qualifier indicates that one or
more source-values are given for the compilation. The source-values
have the following meanings:

Source-Value

HEADER

NO HEADER

PAGE SIZE:lines

LIBRARY

NO LIBRARY

REQUIRE

Meaning

Page the listing produced on the list file
and include a heading on each page.

Do not page the listing, do not include
headings, and do not produce statistics in
the compilation summary. Use this value if
the assembleable listing is to be assembled.

Use the number of lines
page of the list file.
must be greater than 19.

specified for each
The number of lines

Produce a trace in the listing file
identifying the library after a LIBRARY
declaration and the first use of each name
whose definition is obtained from a library
file. For an example of a library trace, see
Section 2.2.4.2.

Do not produce a trace identifying
libraries and their contributions.

any

Include source text obtained from require
files in listing.

1-13

NORE QUIRE

EXPAND MACROS

NOEXPAND MACROS

TRACE MACROS

NOTRACE MACROS

SOURCE

NOSOURCE

OPERATING PROCEDURES

Do not include require-file text.

Include the expansion of each macro call in
the listing file. For an example of a macro
expansion, see Section 2.2.4.3.

Do not include the expansion of macros.

Include a trace of each macro expansion.
That is, include the parameter binding and
any intermediate forms of expansion, as well
as the result of the expansion. For an
example of a macro trace, see Section
2.2.4.4.

Do not include a trace of macro expansions.

Increment the listing control counter.
Output is listed when the listing control
counter is positive and not listed when the
counter is zero or negative.

Decrement the listing control counter.

1.3.6 Machine-Code-List Qualifier

The machine-code-list qualifier is used to give the compiler
instructions about the form of the object part of the output listing.
Some examples of the use of the machine-code-list qualifier are as
follows:

• To obtain an output listing that can be subsequently edited
and then reassembled by the VAX-11 MACRO assembler, use the
ASSEMBLER code-value, as follows:

$ BLISS/LIST/MACHINE_CODE_LIST=ASSEMBLER ALPHA

• To obtain a listing that can be assembled and that does not
contain binary, include the NOBINARY code-value:

$ BLISS/LIST/MACHINE_CODE_LIST=(ASSEMBLER,NOBINARY) ALPHA

The form of the output listing is described in Section 2.2. The
object code part of that listing depends on the machine-code-list
qualifier.

1.3.6.1 Syntax - Machine-code-list qualifier syntax is defined as
follows:

machine-code- { (code-value , •••) }
1 ist qualifier /MACHINE_CODE_LIST= code-value

{
OBJECT I NOOBJECT

J
ASSEMBLER I NOASSEMBLER

code-value SYMBOLIC I NOSYMBOLIC
BINARY I NOBINARY
COMMENTARY I NOCOMMENTARY
UNIQUE_ NAMES I NOUNIQUE_NAMES

1-14

OPERATING PROCEDURES

1.3.6.2 Defaults - In the absence of an explicit choice of code­
value, the following values are assumed by default:

OBJECT NOASSEMBLER SYMBOLIC BINARY COMMENTARY NOUNIQUE_NAMES

The compiler produces a listing that resembles the output listing of
the VAX-11 MACRO assembler.

1.3.6.3 Semantics - The /MACHINE CODE LIST qualifier indicates that
one or more code-values follow~ The code-values have the following
meanings:

Code-Value

OBJECT

NOOBJECT

ASSEMBLER

NOASSEMBLER

SYMBOLIC

NOSYMBOLIC

COMMENTARY

NOCOMMENTARY

BINARY

NOBINARY

UNIQUE_NAMES

NOUNIQUE_NAMES

Meaning

Produce the object part of the output
listing.

Suppress the object part of the output
listing.

Produce a listing that can be assembled, by
listing the assembler instructions produced
as a result of compiling the BLISS program
and including all other information within
comments. must also be specified, if this
output is to be assembled. If this output is
to be assembled, the qualifiers
/SOURCE LIST:NOHEADER and
/MACHINE CODE LIST:UNIQUE NAMES must also be
specified. - -

Do not list the assembler instructions.

Include a machine code listing that uses
names from the BLISS source program.

Do not include a machine code listing that
uses source program names.

Include a machine-generated commentary in the
object code listing. At this time, the
machine-generated commentary is limited to a
cross-reference.x

Do not include a commentary field in the
object code listing.

Include a listing of the binary for each
instruction in the object code listing.

Do not include a listing of the binary.

Replace names by machine-generated names so
that all names are unique, independent of
scope so that the resulting listing can be
correctly assembled. (See ASSEMBLER above.)

Do not replace names by unique names.

Each of the code-values is described and illustrated in Section 2.2.3
in connection with the discussion of the output compilation.
Understanding the purpose of these code values requires knowledge of
the format and purpose of the output listing, as discussed in that
section.

1-15

OPERATING PROCEDURES

1.3.7 Qualifier Names vs. Switch Names

Some directions can be given to the compiler either by command line
qualifiers or by switch settings contained in the· module being
compiled. In some cases, the qualifier name is the same as the switch
name (module switches and SWITCHES declarations), and in other cases,
it similar but not identical. The names of the corresponding
qualifiers and switch items are given in Table 1-1.

Table 1-1: Correspondence Between Qualifier and Switch Names

/CODE
/DEBUG

Qualifier Name

/MACHINE CODE LIST=ASSEMBLER
/MACHINE-CODE-LIST=BINARY
/MACHINE-CODE-LIST=COMMENTARY
/MACHINE-CODE-LIST=OBJECT
/MACHINE-CODE-LIST=SYMBOLIC
/MACHINE-CODE-LIST=UNIQUE NAMES
/OPTIMIZE=LEVEL:n -
/OPTIMIZE=SAFE
/OPTIMIZE=SPACE
/OPTIMIZE=SPEED
/SOURCE LIST=EXPAND MACROS
/SOURCE-LIST=LIBRARY
/SOURCE-LIST=REQUIRE
/SOURCE-LIST=SOURCE
/SOURCE-LIST=TRACE MACROS
/TERMINAL=ERRORS -

Module-Head
Switch

CODE
DEBUG
LIST (ASSEMBLY)
LIST (BINARY)
LIST(COMMENTARY)
LIST (OBJECT)
LIST (SYMBOLIC)
UN AMES
OPTLEVEL=n
SAFE
NOZIP
ZIP
LIST(EXPAND)
LIST (LIBRARY)
LIST (REQUIRE)
LIST(SOURCE)
LIST(TRACE)
ERRS

SWITCHES-Deel.

n/a
n/a

Switch

LIST (ASSEMBLY)
LIST (BINARY)~
LIST (COMMENTARY)
LIST (OBJECT)
LIST (SYMBOLIC)
UNAMES
n/a
SAFE
NOZIP
ZIP
LIST (EXPAND)
LIST (LIBRARY)
LIST (REQUIRE)
LIST (SOURCE)
LIST (TRACE)
ERRS

n/a (not applicable) indicates that no corresponding switch exists.

1.3.8 Qualifiers and Default Settings

Qualifiers given in the command line alter the default settings
assumed for module-head switches. A switch setting given in the
module head overrides the corresponding qualifier given in the
command-line; any switch setting given in a SWITCHES-declaration
overrides the setting given in the module head.

Suppose you are compiling two modules. The first module ALPHA.832 has
a module switch CODE. The second module BETA.832 has no switches.
The bliss-command-line is as follows:

$BLISS/NOCODE ALPHA,BETA

The qualifier /NOCODE changes the initial default setting from /CODE
to /NOCODE. When the module ALPHA.B32 is compiled, code is produced,
because ALPHA.B32 has the module-head switch CODE, which overrides the
default setting. When the module BETA.B32 is compiled, no code is
produced because it takes its setting of that switch from the initial
default setting established in the command line.

1-16

OPERATING PROCEDURES

1.3.9 Positive and Negative Forms of Qualifiers

In general, two forms of a qualifier are allowed, namely: a positive
form and a negative form. For example, /CODE {the positive form)
directs the compiler to generate code, and /NOCODE {the negative form)
directs the compiler to suppress code generation. Generally, positive
and negative forms of a qualifier are mutually exclusive; however,
exceptions can occur such as in the following example:

$BLISS/LIST ALPHA,BETA/NOLIST,GAMMA

The qualifier /LIST creates ALPHA.LIS and GAMMA.LIS, while the /NOLIST
qualifier prevents the creation of a listing file for BETA.B32

1.3.10 Abbreviations of Qualifier and Value Names

Command qualifier names and value names can be abbreviated. A valid
abbreviation consists of the minimum number of characters required to
identify a given command keyword without ambiguity. A list of the
BLISS-32 command abbreviations and values are given in Appendix A.

1-17

CHAPTER 2

COMPILER OUTPUT

This chapter discusses compiler output, specifically as it appears in
terminal output, various list file formats, and error messages.

The input to a BLISS compilation is a BLISS module. As an example,
consider the following module: it contains two OWN declarations and
three ROUTINE declarations. The routine IFACT computes the factorial
of its argument by an iterative method. The routine RFACT computes
the factorial of its argument by a recursive method. The routine
MAINPROG provides some test calls on IFACT and RFACT. Factorial
routines are discussed in Chapter 12, 0 Routines," in the BLISS
Language Guide.

module testfact (main = mainprog)
begin

own
a,
b;

routine ifact (n)
begin
local

result;
result = l;
incr i from 2 to .n do

result = .reult*.i;
.result
end;

routine rfact (n) =
if .n gtr 1 then .n*rfact (.n - 1) else l;

routine mainprog : novalue =
begin
a = ifact (5);
b = rfact (5);
end;

end
eludom

This module is used in the following sections to illustrate various
BLISS compilation output listings. Two coding errors (missing equal
sign after the module-head and misspelled data-name) are included to
illustrate the error reporting facility of BLISS.

2-1

COMPILER OUTPUT

2.1 TERMINAL OUTPUT

The compiler produces two kinds of information on the terminal: error
messages and statistics. Each of these can be requested or suppressed
by the use of the terminal qualifier, as described in Section 1.3. By
default, error messages are reported during compilation, but
statistics are suppressed. A final compilation summary is evoked as
part of a statistics request.

Error messages show the source 'program line associated with the error
followed by a description of the error. The statistics show the name
of each routine declaration in the module and the number of bytes
associated with that declaration. The compilation statistics give the
number of warning and error messages, the number of code bytes and
data bytes used by the program, the run time and elapsed time required
for the compilation:, and the number of pages of VAX-11 memory required
for the compilation.

The last line of, the terminal output indicates whether the compilation
produced an object file or a library file. If an object file is
produced, the last fine is:

; Compilatiori Co~pl~te

If a library file is produced, the last line is:

; Library Precompilation Complete

Consider the terminal output for the sample module TESTFACT contained
in the file MYPROG.B32. To obtain both kinds of information, compile
the module by using the following bliss-command-line:

$BLISS/TERMINAL=STATISTICS MYPROG

The qualifier /TERMINAL=STATISTICS is used so that both types of
output are sent to the terminal. The terminal output is as follows:

; 0002 begin
% WARN#048 1 Ll:0002

Syntax error in module head
0014 result= .reult*.I;

% WARN#OOO •••••••••••••••••• 1 Ll:0014
; Undeclared name: REULT
!FACT 22
RFACT 26
MAINPROG 28

Warnings: 2
Errors: 0
Size: 76 code + 8 data bytes
Run time: 00:01.5
Elapsed time: 00:03.5
Memory used: 10 pages

; Compilation Complete
%BLS32-W-CMPWARN, Compilation with warnings

Terminal output for the ~ompilation of MYPROG includes two warnings,
which are described later. Statistics following the warnings show the
number of bytes required for each routine. The module TESTFACT
contains three routine declarations, namely, IFACT, RFACT, and
MAINPROG, and they use 22, 26, and 28 bytes, respectively. The
compilation summary shows that the compilation of TESTFACT required
1.5 seconds of processor time and that 3.5 seconds elapsed. The
compilation required nine pages of memory, excluding memory required
for the compiler itself.

2-2

COMPILER OUTPUT

2.2 OUTPUT LISTING

The output listing produced as a result of a BLISS compilation
consists of source listings, which include any error messages, object
listings, and a compilation summary.

When the compiler completes the processing of a routine declaration,
it produces the source and object listing for that declaration and any
nonroutine declarations that preceded it. In this way, the output
listing is divided into a sequence of segments. (See Figure 2-1.)

Source

Object

Source

Object

Source

Object

Source

Object

Object Summary

Compilation Statistics

} Segment 1

} Segment 2

} Segment n

Figure 2-1: Compiler Output Listing Sequence

Both the source and object parts of a routine segment can be
suppressed and the format of the object part can be changed by the
inclusion of switches in the module or qualifiers in the command line.
In the absence of any explicit instruction, both source and object
parts are produced. If the object part of the program is produced, an
object summary is given. The object summary contains a PSECT summary
and, if the compilation included any LIBRARY declarations, a summary
of library usage. The compilation summary contains the same
information as given in the compilation summary at the terminal.

The complete output listing for the module TESTFACT occupies several
pages. (Refer to "Default Object Listing" later in this chapter.) The
routine segment for the routine !FACT contains the module heading, the
OWN declaration, and the routine declarations for !FACT. The
following sections discuss each part of the output listing. !for that
routine segment in detail.

2.2.1 Listing Header

Listing headers consist of two lines; each line consists of three
fields separated by at least one space. The first field contains
information in print positions 1 through 15; the second extends from
17 through 63; the last extends from 65 through 132. The contents of
each field are left-justified within the field. Figure 2-2
illustrates the listing header format.

2-3

Print 1
Position

15 17

COMPILER OUTPUT

63 65 132

name title proc.essor identification

ident subtitle source identification

Figure 2-2: Listing Header Format

The name and ident
contained in the
generate the first
Thus, t include
If the module name
columns further to

fields contain the same information as that
object file module headers. Some processors must

page header before this information is available.
the information if it appears in the object module.
exceeds 15 characters, the title field begins eight
the right.

The title and subtitle fields contain user-supplied information; they
identify the purpose of the module and routine. User title and
subtitle entries that are too long are right-truncated at column 63.
If the language processor makes no provision for the user to supply
this information, the fields are ignored and the processor and source
identifications start in column 17. If the language processor allows
only one set of title information, the subtitle field is used for
standard identification of the portion of the listing represented.
When the user updates the title or subtitle information in the first
line of the source page, the listing for that page will include the
updated information.

The processor identification field contains the date
compilation (in the form dy-mon-year hh:mm:ss) and the
name of the language processor. This field includes
version number, with the edit number appended to it. The
number appears as the last entry in this field.
increments by one for each listing page produced from a
source file, that is, in the listing file.

and time of
full product
the release
page listing
This number
concatenated

The source identification field contains the data and time of creation
or last modification of the source file bei,,ng read at the start of
this page~ It also contains the resultant file name of this source
file. It is a fully qualified name, including the actual version
number. If the name is too long, the leftmost field is
right;...truncated. The source file page number appears last, in
parentheses, and is one greater than the number. of page marks (form
feeds) read from the source.

2.2.2 Source Listing

The source part of the output listing reproduces the input to the
BLISS compilation with annotation supplied by the compiler. The
compiler annotation includes a 14-character preface string that
precedes each line of input and error message lines that follow each
line on which one or more errors are detected.

2-4

COMPILER OUTPUT

The 14-character preface string consists of a semicolon (;), followed
by either the editor line sequence number for a sequenced file or five
blanks for an unsequenced file, two 1-column codes, a 4-digit line
number generated _by the compiler, and two blanks.

Thus, the preface string has the following general form:

;xxxxxyznnnnbb

Table 2-1 describes preface string components.

Item

xxxxx

y

z

nnnn

bb

Table 2-1: Format of Preface String in Source Listing

Column

1

2-6

7

8

Meaning

The comment character; used to comment out the
source line so that the output listing can be
assembled by the VAX-11 MACRO assembler.

The line number,
sequence numbers;

if the file contains line
otherwise, five blank columns.

A code that indicates the lexical processing level
of the compiler. The codes that can appear in
this column are described below:

Code Meaning

C Embedded comment, that is, text within
%(•••)%.

D Default lexeme stream for a keyword macro
· formal.

L Parameter list of a lexical function.
M Body of a macro definition.
P Parameter list of a macro call.
U Source text which is discarded by an

unsatisfied lexical condition.

If more than one such code applies (for example,
an embedded comment nested within a macro body),
the "innermost" code is printed.

If the line comes from a file
REQUIRE declaration, the code
blank.

specified in a
"R"; otherwise,

9-12 The BLISS line sequence number, beginning with
0001 and is increased by 1 each time a source line
is read. This line number is referenced by error
messages and by the commentary field of the object
code listing. It is always incremented for source
lines read from REQUIRE files, even though those
lines may not be listed.

13-14 Blank

2-5

COMPILER OUTPUT

For example, consider the following line of the source input:

RESULT = l;

If the above expression were the fourteenth line of the compilation,
for example, the output listing for that line would be:

0014 RESULT = l;

The line number 0014 is the line assigned by the BLISS compiler. If
the input line had an editor sequence number 2300, the output listing
for that line would be::

;02300 0014 RESULT = l;
If the input line comes from a REQUIRE file, the output listing
includes an R, as follows:

R0014 RESULT = l;

If the input line is part of a macro declaration, the output listing
includes an M, as follows:

M 0004 RESULT = l;

The y item in the preface string (column 7) is useful for detecting
lexical errors. For example, if you forget to terminate a macro
declaration, all the following lines in the program are then assumed
to be part of that macro declaration and the error is not detected
until the end of the program. However, you can find the beginning of
the. unterminated macro by finding the point at which the M code first
appears in the y field before the runaway.

An example of the source listing for the first $egment of the module
TESTFACT appears below:

• (header)

;00100 0001 module testfact (main =
;00200 0002 begin
; WARN 048 1 Ll:0002
; Syntax error in module head
;00300 0003
;00400 0004
;00500 0005
;00600 0006
;00700 0007

own
a,
b;

;00800 0008 routine ifact (n) =
;00900 0009 begin
;01000 0010 local
;01100 0011 result;
;01200 0012 result = l;

mainprog)

;01300 0013 incr i from 2 to .n do
;01400 0014 result = .reult*.i;
; WARN 000 ••••••••••••••••••! Ll:0014
; Undeclared name: REULT
;01500 0015 .result
;01600 0016 end;

2-6

COMPILER OUTPUT

Following three heading line.s, the source of the module TESTFACT is
reproduced. The preface string begins with a semicolon (;). If the
input file that contains the module TESTFACT does not have sequence
numbers, columns 2 through 6 of the source listing are blank. Columns
7 and 8 are blank, because the lexical processing level is normal and
the material is not from a REQUIRE file. Line numbers generated by
the compiler begin in column 9.

Two error messages are reported as part of the source listing.
Section 2.4 contains a discussion of error messages in general and of
the meaning of these errors in particular.

2.2.3 Object Listing

The object part of the listing has four possible fields, namely:
assembler input, assembler output, binary, and commentary. The parts
of the object listing that are produced depend on the choice of
machine-code-list code-values specified in the command line. Each
part of the object listing has associated with it a machine-code-list·
code-value that allows it to be eithe~ printed or suppressed.

However, although 32 different forms of listing are theoretically
possible, in practice only a few combinations of code-values are
meaningful. The basic distinction among object listings is whether
the listing replicates assembler input or assembler output. If the
ASSEMBLER code-value is given, the object part is formatted so that it
can be read by the assembler. If the NOASSEMBLER code-value is given,
the object part is formatted to resemble assembler output.

The following combinations of the machine-code-list code-values are
reasonable:

{
SYMBOLIC } { BINARY } { UNIQUE NAMES }

ASSEMBLER COMMENTARY
NOSYMBOLIC NOBINARY NOUNIQUE_NAMES

{
BINARY }

COMMENTARY NOUNIQUE_NAMES
NOBINARY

NOASSEMBLER SYMBOLIC

The commentary field
information so that
NOCOMMENTARY qualifier.

requires little space
the programmer has no

and provides useful
real need for the

The question of whether or not to have the binary appear on the
listing is a question of personal preference. However, it may at
times be useful for debugging purposes. If the binary field is
omitted, the listing is likely to be more compressed, since additional
operands can then be placed on the same line.

The compiler produces the following information for each field.

ASSEMBLER field

SYMBOLIC field

Instructions in assembler form, for example:

MOVL #1,RO

Instructions in assembler form, but
symbolic source names, for example:

MOVL U, RESULT

2-7

using

BINARY field

COMMENTARY field

COMPILER OUTPUT

Hexadecimal equivalent of instructions and data
to enable easier debugging. The hexadecimal
instructions appear in the same format as that
produced by the VAX-11 MACRO assembler as far as
possible. The rightmost numeric field in the
binary listing is the location counter, relative
to the starting routine's address. This
simplifies user interaction with VAX-11 DEBUG
when setting breakpoints or examining
instructions. {Refer to Section 3.3,
"Debugging.")

The following codes are included in the
hexadecimal information in the binary field to
provide information about relocation of
quantities:

Code

Blank

v

*

Meaning

Absolute quantity {no linker action)

Forward relocatable.

Complex

Relocated (relative to a program section
other than the code program section)

G either general addressing (Position
Independent) or globally relocatable

A cross-reference to the
generating the code.
generates more than one
commentary fields in the
first generated instruction

source program line
If a program line
instruction line,
lines following the

remain blank.

Some examples of the object part of the routine segment !FACT follow.

2.2.3.1 Default Object Listing - The listing in Figure
produced by the following command line:

$BLISS/LIST MYPROG

2-3 was

In the listing, the binary field appears first, followed by the
symbolic field, followed by the commentary field.

2-8

N
I
~

TESTFACT

00100 0001
00200 0002

WARNI048
Syntax error

00300 0003

module testfact (main • mainprog)
begin

00400 0004
00500 0005
00600 0006
00?00 0007
00800 0008
00900 0009
01000 0010
01100 0011
01200 0012
01300 0013
01400 0014

WARNIOOO
Undeclared

01500 0015
01600 0016

l Ll:0002
in module head

own
a,
b:

routine ifact (n) •
begin
local

result:
result • l:
incr i from 2 to .n do

result• .reult*.i:
•••••••••••••••••• 1 Ll:0014

name: REULT
.result
end:

50
FS

OOOOG

50
51

CF
Sl 04

01
01
06
Sl
AC

31-0ct-1979 10:34:06
31-0Ct-1979 10:28:35

VAX-11 Blisa-32 T2-619 Page
DBBl:[DIRECTORY]MYPROG.BLI:S (1)

00000 A:
00004 B:

0000 00000 IFACT:
DO 00002
DO 00005
11 00008
CS OOOOA 1$:
F3 00010 2$:
04 00015

.TITLE

.PSECT

.BLKB

.BLKB

.EXTRN

.PSECT

• l«)RD
MOVL
MOVL
BRB
MULL3
AOBLEQ
RET

TESTFACT

$0WN$,NOEXE,2

4
4

REULT

$CODE$,NOWRT,2

Save nothing
tl, RESULT
U, I
2$
I• REULT • RESULT
N, I, 1$

: Routine Size: 22 bytes, Routine Base: $CODE$ + 0000

:01700 0017
:01900 0018

routine rfact (n) =
if .n gtr l then .n*rfact (.n - l) else l:

0000 00000 RFACT: • l«>RD Save nothing
01 04 AC Dl 00002 CMPL N, tl

OE lS 00006 BLEQ 1$
7E 04 AC 01 CJ 00008 SUBL3 U, N, -(SP)

EF AP 01 FB OOOOD CALLS U, RFACT
so 04 AC C4 00011 MULL2 N, RO

04 OOOlS RET

Figure 2-3: Default Object Listing Example

1

0008
0012
0013

0014
0013
0008

0017
0018

0

i
'O
M
t"'
L'IJ ,,
0 c
t-i
'O' c
t-i

N
I

0

TESTFACT

so

31-0Ct-1979 10:34:06
31-0ct-1979 10:28:35

VAX-11 Bliss-32 T2-619
DBBl:[DIRECTORY]MYPROG.BLI:S (1)

01 DO 00016 1$:
04 00019

MOVL
RET

tl, RO

: Routine Size: 26 bytes, Routine Base: $CODE$ + 0016

02000 0019
02100 0020
02200 0021
02300 0022
02400 0023
02SOO 0024

: Routine Size:

02SSO 002S
02600 0026
02800 0027

routine mainprog : novalue a
begin
a• ifact (5):
b • rfact (5):
end:

25 bytes,

end
eludom

CB AF
0000' CF

D3 AF
0000' CF

Routine Base:

0000 00000

OS DD 00002
01 FB 00004
SO DO 00008
OS DD OOOOD
01 FB OOOOF
SO DO 00013

04 00018

$CODE$ + 0030

MAINPROG:
.l«>RD
PUSHL
CALLS
MOVL
PUSHL
CALLS
MOVL
R.ET

Save nothing
ts
tl, IFACT
RO, A
ts
tl, RFACT
RO, B

PSECT SUMMARY

Name

OWN
$CODE$

Warnings: 2
Errors: 0

BLISS /LIST MYPROG

Bytes

8
73

Attributes

, WRT, RD ,NOEXE,NOSHR, LCL, REL, CON,NOPIC,ALIGN(2)
,NOWRT, RD , EXE,NOSHR, LCL, REL, CON,NOPIC,ALIGN(2)

COMMAND QUALIFIERS

Figure 2-3 (Cont.): Default Object Listing Example

Page 2

0017

0020 n
0022 0

3 ..,
.... 0023
t"'
tSJ

0020 ~

0 c
toi
"G .c
toi

N
I
~
~

TESTFACT

Size: 73 code + 8 data bytes
Run Time: 00:01.5
Elapsed Time: 00:03.0
Memory Used: 9 pages
Compilation Complete

Figure 2-3

31-0ct-1979 10:34:06 VAX-11 Bliss-32 T2-619

(Cont.): Default Object Listing Example

Page 3

()

i ..,
H
t"'
ts.I
:xJ

0 c
~ ..,
c
~

COMPILER OUTPUT

2.2.3.2 Assembler Input Listing - The listing in Figure 2-4 was
produced by compiling module TESTFACT with the following code-options:

$ BLISS/LIST/MACHINE_CODE_LIST: (ASSEMBLER,NOBINARY) MYPROG

In the listing, the assembler field appears first, followed by the
symbolic field, followed by the commentary field. Observe that when
both the assembler and symbolic fields are present, only the operands
are given in the symbolic field to conserve space. Labels,
instruction names, and assembler directives are not repeated.

2.2.4 Source Part Options

The following sections contain more output listings to illustrate
different options for the source part of the list file. To illustrate
these different forms, the sample program TESTFACT has to be made more
interesting, along the lines given in the following paragraphs.

Suppose the testing of the same program TESTFACT is complete, source
code errors contained in the preceding examples have been corrected,
and the data on the relative performance of the two factorial routines
obtained. The next step is the production of a new module TEST that
uses the factorial routine to 'take combinations, according to the
following formula for obtaining the number of combinations of m things
taken n at a time:

l : l n!

(m-n) ! m!

where n! is the notation for the factorial of n.

First, enter the routine declarations for !FACT and RFACT into
separate REQUIRE files, named IFACT and RFACT, respectively. The
module TEST can then use either routine by including the appropriate
REQUIRE declaration.

Next, write a macro (COMBN.R32) for obtaining the combinations,
namely:

MACRO
COMBINATIONS(N,M)

(IF N LSS M
THEN ERROR ()
ELSE COMB(N,M)) %,

COMB(N,M) =
FACT(N)/(FACT(N-M)*FACT(M)) %;

Then, precompile the macro declaration into a LIBRARY file as follows
(include a LIBRARY declaration in the module TEST):

$BLISS/LIBRARY COMBN

Finally, include some test combinations.

The following sections illustrate the different output listings
obtained for that module by varying the command qualifiers.

2-12

(\.)

I
~
w

TESTFACT

;00100 0001
;00200 0002
; WARN#048
: Syntax error
;00300 0003
;00400 0004
;00500 0005
;00600 0006
;00700 0007

module testfact (main = mainprog)
begin
1 Ll:0002

in module head

own
a,
b;

;00800 0008 routine ifact (n)
;00900 0009 begin
;01000 0010 local
;01100 0011 result;
;01200 0012 result = l;
;01300 0013 incr i from 2 to .n do
;01400 0014 result= .reult*.i;
: WARNlfOOO ••••.•• , •••••••••• 1 Ll :0014
; Undeclared name: REULT
;01500 0015 .result
;01600 0016 end;

A:
B:

!FACT:

1$:
2$:

.TITLE

.PSECT

.bKB

.bKB

.EXTRN

.PSECT

.WORD
MOVL
MOVL
BRB
MULL3
AOBLEQ
RET

TESTFACT

OWN,NOEXE,2

4
4

REULT

$CODE$,NOWRT,2

AM<>
#1, RO
#1, Rl
2$
Rl, WAREULT, RO
4(AP), Rl, 1$

31-0ct-1979 10:45:47
31-0ct-1979 10:28:35

Save nothing
#1, RESULT
#1, I
2$
I I REULT , RESULT
N, I, 1$

: Routine Size: 22 bytes, Routine Base: $CODE$ + 0000

;01700 0017
;01900 0018

RFACT: .WORD
CMPL
BLEQ
SUBL3
CALLS
MULL2
RET

routine rfact (n) =
if .n gtr 1 then .n*rfact (.n - 1) else l;

AM<>
4(AP), U
1$
#1, 4(AP), -(SP)
u, BARFACT
4(AP), RO

;Save nothing
;N, #1
;1$
;U, N, -(SP)
;#1, RFACT
;N, RO

VAX-11 Bliss-32 T2-619
DBBl:[DIRECTORY]MYPROG.BLI;S (1)

Figure 2-4: Assembler Input Listing Example

Page 1

0008
0012
0013

0014
0013
0008

0017
0018

n
~
"O
t-t
t'"'
tzJ

" 0
c:
t-i
"O
c:
t-i

IV
I

fo-1
~

TESTFACT

1$: MOVL
RET

U, RO :11, RO

31-0ct-1979 10:4S:47
31-0ct-1979 10:28:3S

Routine Size: 26 bytes, Routine Base: $CODE$ + 0016

02000
02100
02200
02300
02400
02SOO

0019
0020
0021
0022
0023
0024

MAINPROG:
.~RD

PUSHL
CALLS
MOVL
PUSHL
CALLS
MOVL
RET

Routine Size:

02SSO 002S
02600 0026
02800 0027

Name

routine mainprog : novalue
begin
a= ifact (5):
b = rfact (S):
end:

AM<>
ts
fl, BAIFACT
RO, W"'A
ts
n, sARFAcT
RO, W"B

2S, bytes, Routine Base:

end
eludom

Save nothing
IS
tl, IFACT
RO, A
ts
U, RFACT
RO, B

$CODE$ + 0030

PSECT SUMMARY

Bytes Attributes

VAX-11 Bliss-32 T2-619
DBBl:[DIRECTORY]MYPROG.BLI:S (1)

OWN
$CODE$

8
73

, WRT, RD ,NOEXE,NOSHR, LCL, REL, CON,NOPIC,ALIGN(2)
,NOWRT, RD , EXE,NOSHR, LCL, REL, CON,NOPIC,ALIGN(2)

Warnings: 2
Errors: o

COMMAND QUALIFIERS

BLISS /LI-ST/MACHINE_CODE_LIST:(ASSEMBLER,JIOBilllARY) MYPROG

Figure 2-4 (Cont.): Assembler Input Listing Example

Page 2

0017

0020 n
0022

~
"' 0023
tot
tsJ

0020 ~

0 c
~

"' c
~

"' I
~
(Ji

TESTFACT

Size: 73 code + 8 data bytes
Run Time: 00 :01. 6
Elapsed Time: 00 :.04. 0
Memory Used: 10 pa9es
Compilation Complete

.END MAINPROG

Figure 2-4

31-0ct-1979 10:45:47 VAX-11 Bliss-32 T2-619 Page

(Cont.): Assembler Input Li-sting Example

3 0

i
ta
t""
·ts,i ,,
0 c
~ ;g
t-i

COMPILER OUTPUT

2.2.4.1 Default Source Listing - The following command line generated
the output listing in Figure 2-5 for the module TEST:

$ BLISS/LIST/NOCODE TEST

Observe that, although the contents of the REQUIRE file are
printed, the lines within the file are numbered by the compiler.
output listing shows that lines 0011 through 0016 are used for
purpose.

• (header)

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0017
0018
0019
0020
0021
0022
0023
0024
0025

module test (main
begin

own
a,
b;

external routine
error;

library 'combn'
require 'rfact'

routine mainprog =
begin

mainprog)

a= combinations (3, 2);
b =combinations (6, 4);
end;

end
eludom

LIBRARY STATISTICS

not
The

this

File
-------- Symbols -------­
Total Loaded Percent

Blocks
Read

DBBl: [DIRECTORY]COMBN.L32;3

BLISS /LIST/NOCODE TEST

Run Time: 00:00.7
Elapsed Time: 00:03.6
Memory Used: 8 pages
Compilation Complete

2 2 100

COMMAND QUALIFIERS

Figure 2-5: Default Source Listing Example

4

COMPILER OUTPUT

2.2.4.2 Listing with LIBRARY and REQUIRE Information - The
line:

$ BLISS/NOCODE/LIST/SOURCE_LIST: (LIBRARY,REQUIRE) TEST

command

generated the output listing in Figure 2-6, which contains information
from LIBRARY and REQUIRE files. The LIBRARY file is identified
following line 0009 and the first use of a name from that library is
noted following line 0020. The contents of the REQUIRE file are given
in lines 0011 through 0016.

2.2.4.3 Listing with Macro Expansions - The command line:

$ BLISS/NOCODE/LIST/SOURCE_LIST:EXPAND_MACROS TEST

generated the output listing in Figure 2-7 to illustrate macro
expansions, which follow lines 0020 and 0021. Observe that expansions
are listed in the order in which they occur. The innermost expansion
is printed first, followed by the outer expansion, which includes the
expanded form of the inner macro. Therefore, the last line of the
macro expansion is the fully expanded form.

2.2.4.4 Listing with Macro Tracing - The command line:

$ BLISS/NOCODE/LIST/SOURCE_LIST:TRACE_MACROS TEST

produced the output listing in Figure 2-8, which contains macro
tracing and macro expansion information. The macro trace gives
information about parameter binding in addition to the expansion
information.

2.3 COMPILATION SUMMARY

The compilation summary appears at the end of every compilation
listing and consists of six kinds of information:

• The routine size and
(following each routine)

psect-relative starting

• A program section summary (at the end of the module)

address

• Library usage statistics indicating the libraries used and the
number of names loaded from each library {omitted if no
libraries are used)

• The command line used to compile the module

• Number of warnings and errors (omitted if no warnings or
errors exist)

• Summary of statistics for the module, consisting of: size of
code and data {in bytes), run time, elapsed time, memory used,
and a statement that the compilation is complete.

N
I

I-'
00

TEST

0001 module test (main
0002 begin
0003
0004 own
0005 a,
0006 b:
0007 external routine
0008 error:
0009 library 'combn' :

mainprog)

31-0ct-1979 15:32:08
31-0ct-1979 12:37:24

VAX-11 Bliss-32 T2-619
DBBl:(DIRECTORY]TEST.BLI:5 (1)

,, Library file DBBl:[DIRECTORY]COMBN.L32;3 produced by VAX-11 Bliss-32 T2-619 on 31-0ct-1979 15:13:25
0010 require 'rfact' :

ROOll
R0012
R0013
R0014
R0015
R0016

0017
0018
0019
0020

, , Loaded symbol
: : Loaded symbol

0021
0022

0023
0024
0025

File

routine fact (n) =
if .n gtr 1
then

.n*fact (.n - 1)
else

1:

routine mainprog
begin
a= combinations (3, 2):

COMBINATIONS from library DBBl:(DIRECTORY]COMBN.L32:3
COMB from library DBBl:[DIRECTORY]COMBN.L32:3

b =combinations (6, 4):
end:

end
eludom

LIBRARY STATISTICS

-------- Symbols -------­
Total Loaded Percent

DBBl:(DIRECTORY]COMBN.L32;3 2 2 100

COMMAND QUALIFIERS

BLISS /NOCODE/LIST/SOURCE_LIST:(LIBRARY,REQUIRE) TEST

Run Time: 00:00.6
Elapsed Time: 00:02.5
Memory Used: 8 pages
Compilation Complete

Blocks
Read

4

Page

Figure 2-6: Output Listing Example Showing Library and Require File Information

()
0
3: .,,
t-1
c-e
tSl ,,
0 c:
~ .,,
c:
~

N
I

1--'
\.0

TEST 31-0ct-1979 15:41:30
31-0ct-1979 12:37:24

VAX-11 Bliss-32 T2-619
DBBl:[DIRECTORY]TEST.bI:S (1)

:

:
:

0001 module test (main • mainprog)
0002 begin
0003
0004 own
0005 ··· a,
0006 b:
0007 external routine
0008 error:
0009 library 'combn'
0010 require 'rfact'

0017
0018 routine mainprog =
0019 begin
0020 a= combinations (3, 2):
[COMB]= FACT (3) / (FACT (3 - 2) * FACT (2))

[COMBINATIONS]= (IF 3 LSS 2 THEN ERROR () ELSE FACT (3) / (FACT (3 - 2) * FACT (2
0021 b = combinations (6, 4):
[COMB]= FACT (6) / (FACT (6 - 4) * FACT (4))

[COMBINATIONS]= (IF 6 LSS 4 THEN ERROR () ELSE FACT (6) / (FACT (6 - 4) * FACT (4)
0022 end:

0023
0024 end
0025 eludom

File

DBBl:[DIRECTORY]COMBN.L32:3

LIBRARY STATISTICS

-------- Symbols --------
Total Loaded Percent

2 2 100

COMMAND QUALIFIERS

BLISS /NOCODE/LIST/SOURCE_LIST:EXPAND_MACROS TEST

Run Time: 00:00.6
Elapsed Time: 00:03.l
Memory Used: 8 pages
Compilation Complete

Blocks
Read

4

Page

Figure 2-7: Output Listing Example Showing Macro Expansion Information

l

0

i
"O
t1
tsJ

"
0
c:
~
"O
c:
~

N
I

N
0

TEST

0001 module test (main = mainprog)
0002 begin
0003
0004 own
0005 a,
0006 b:
0007 external routine
0008 error:
0009 library 'combn' :
0010 require 'rfact' :
0017
0018 routine mainprog =
0019 begin
0020 a= combinations (3, 2):

[COMBINATIONS]: Parameter binding
[COMBINATIONS](l)= 3
[COMBINATIONS](2)= 2
[COMBINATIONS]: Expansion

[COMB]: Parameter binding
[COMBJ(l)= 3
[COMB](2)= 2
[COMB]: Expansion

31-0ct-1979 15:59:16
31-0ct-1979 12:37:24

VAX-11 Bliss-32 T2-619
DBBl:[DIRECTORY]TEST.BLI:5 (1)

[COMB]= FACT (3) f (FACT (3 - 2) * FACT (2))
[COMBINATIONS]= (IF 3 LSS 2 THEN ER]:lOR () ELSE FACT (3) f (FACT (3 - 2) * FACT (2)))

0021 b = combinations (6, 4):
[COMBINATIONS]: Parameter binding
[COMBINATIONS](l)= 6
[COMBINATIONS](2)= 4
[COMBINATIONS]: Expansion

[COMB]: Parameter binding
[COMB](l)= 6
[COMBJ(2)= 4
[COMB]: Expansion
[COMB]= FACT (6) f (FACT (6 - 4) * FACT (4))

[COMBINATIONS]= (IF 6 LSS 4 THEN ERROR () ELSE FACT (6) f (FACT (6 - 4) * FACT (4)))
0022 end:
0023
0024 end
0025 eludom

File

DBBl:[DIRECTORY]COMBN.L32:3

Run Time: 00:00.7
Elapsed Time: 00:01.8
Memory Used: 8 pages
Compilation Complete

LIBRARY STATISTICS

-------- Symbols -------­
Total Loaded Percent

2 2 100

Blocks
Read

4

Page 1

Figure 2-8: Output Listing Example Showing Macro Expansion and Tracing Information

0
0
3:
'ti
t""
~ ,,
0 c
~
'ti c:·
~

COMPILER OUTPUT

2.4 ERROR MESSAGES

The BLISS compiler detects two types of errors, namely: fatal and
warning. A fatal error is one that the compiler cannot handle without
potentially skipping some source. A warning error is one for which
the compiler has an effective recovery technique that permits it to
generate an executable object module. Both the warning and the fatal
errors messages are listed separately in Appendix E. The warnings are
listed by number, and each warning includes an explanation of the
error and a recommended user action.

If a fatal error is detected, the compiler continues to check syntax
of the remainder of the program; any subsequent errors can be
detected, but neither an object module nor the object part of the
output listing is produced following the detection of the fatal error.

A warning error message begins with the identification WARN. For
example, the routine declaration for IFACT includes a coding mistake,
as follows:

RESULT = .REULT*.I;

The BLISS compiler detects this error and reports the following
warning message:

0014 RESULT = .REULT*.I;
WARN #000 •••••••••• 1 Ll:0014
Undeclared name: REULT

The message is not fatal, because the compiler can declare the
undeclared name REULT as EXTERNAL and continue processing without
omitting the compilation of any source.

Consider a different kind of coding error, as follows:

!NCR I FROM 2 TO .NDO
RESULT = .REULT*.I;

The BLISS compiler detects this error and reports the messages given
in the following segment from the output listing:

0013 !NCR I FROM 2 TO .NDO
WARN #000 •••••••••••••••••l Ll:0013
Undeclared name: NDO

0014 RESULT = .REULT*.I;
ERR #066 •••••••••••••! Ll:0014 L2:0014 L3:0014
Two consecutive operands with no intervening operator

Omitting the blank between the name N and the keyword DO caused one
warning and one fatal error. Because in the absence of a separator
the compiler sees NDO as a single name, it first identifies it as an
undefined name. When it fails to find the keyword DO, the compiler
cannot make syntactic sense out of the lines; therefore, it must
report a fatal error message and suppress the production of any object
output.

Observe that although the compiler continues to check the syntax of
the remainder of the module, it misses the error REULT, because some
text must be left unscanned to recover from the fatal error. The
recovery process sometimes causes genuine errors to be missed and
spurious errors to be reported. A module cannot be assumed to be
fully checked by the compiler until all error messages are eliminated.

2-21

COMPILER OUTPUT

THE BLISS compiler supplies a great deal of information in its error
messages. Each error message occupies two lines. The first line
classifies and pinpoints the error and the second line gives a short
description of the error. For example, consider the following error
message from the above example:

0013 INCR I FROM 2 TO .NDO
WARN #000 •••••••••••••••••l Ll:0013
Undeclared name: NDO

The first line classifies the error as a nonfatal by the string WARN
and gives the error number 000 followed by a pointer to the place in
the input line at which the error was detected and a line indicator.
The second line describes the error.

The first line of an error message lines up with the input column at
which the compiler detected the error. Under the preface for the
input line, the error message has a preface part that gives the type
of error (warning or fatal) and the error number. (Refer to
Appendix E.) Under the text part of the input line, the error message
can have up to three pointers and three line indicators. The pointers
are numbered from 1 to 3 and the meaning associated with each of the
pointers is given in the following list:

Pointer

1

2

3

Meaning

Indicates the point in the input text at which
the error was detected.

Indicates the beginning of the current control
scope.

Indicates the end of the last control scope that
was successfully closed prior to the detection
of the error.

The line indicators are closely related to the pointers in meaning,
but whereas the pointers indicate a position within a line, the line
indicators indicate a line within the program, as follows:

Line Indicator

Ll:nnnn

L2:nnnn

L3:nnnn

Meaning

Indicates the line nnnn in the input at which
the error was detected.

Indicates the line nnnn at which the current
control scope begins.

Indicates the line nnnn at which the last
control scope was successfully closed.

Line indicators are usually not too informative when the error is
confined within a program line, as in the examples given above, but
they are very useful for errors that span several lines. For example,
consider the full source listing for the module TESTFACT given in
Figure 2-9. This version of TESTFACT includes the coding error
illustrated in the ccove examples. The error message at the end of
the program identifies with line indicators the point at which tHe
errorwas detected (line 0032), the line at which the control scope
began (line 0013), and the line at which the control scope was closed
(line 0032).

With the information provided by the line indicators for error message
#012, the source of the error is identified as the typing error in
line 0013.

2-22

COMPILER OUTPUT

• (header)

0001
0002

WARN#048
Syntax error

0003
0004
0005
0006
0007

MODULE TESTFACT (MAIN =
BEGIN
1 Ll:0002

in module head

OWN
A,
B;

0008 ROUTINE !FACT (N) =
0009 BEGIN
0010 LOCAL
0011 RESULT;
0012 RESULT = l;

MAINPROG)

0013 !NCR I FROM 2 TO .NDO
WARN#OOO •••••••••••••••••••••l Ll:0013
Undeclared name: NDO

0014 RESULT = .REULT*.I;
ERR #066 ••••••••• 1 Ll:0014 L2:0014 L3:0014
Two consecutive operands with no intervening operator

0015 .RESULT
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032

END;

ROUTINE RFACT (N} =
IF .N GTR 1
THEN

.N*RFACT (.N - 1)
ELSE

l;

ROUTINE MAINPROG =
BEGIN
A= !FACT (5);
B = RFACT (5);
END;

END
ELUDOM

ERR #012 1 ••• 2 Ll:0032 L2:0013 L3:0032
Missing DO following !NCR or DECR

Warnings: 2
Errors: 2
Size: 0 code + 8 data bytes
Run Time: 00:02

; Elapsed Time: 00:03
Memory Used: 3K
Compilation Complete

Figure 2-9: Error Messages in Source Listing Example

2-23

CHAPTER 3

LINKING, EXECUTING, AND DEBUGGING

This chapter describes the process of linking, executing, and
debugging a BLISS program.

3.1 LINKING

Before you can execute your program, you must link the various pieces
together to form an executable image. The linking process makes the
connection between external variables referenced in one module and
global variables defined in another module.

Some examples of linking are:

• To link a single module, use the following command:

$ LINK ALPHA

In response to this command,
module in ALPHA.OBJ and
ALPHA.EXE.

the linker
creates the

reads the
executable

object
image

• To link the modules ALPHA, BETA, and GAMMA, use the following
command:

$ LINK ALPHA,BETA,GAMMA

In response to this command, the linker combines the object
module in the file ALPHA.OBJ with the object module in the
file BETA.OBJ and the object module in the file GAMMA.OBJ to
produce a single executable image ALPHA.EXE, which can then be
executed.

The link operation is described in detail in the VAX-11 Linker
Reference Manual.

3.1.1 LINK Command Syntax

Syntax of the LINK command is defined as follows:

link-command LINK
{/DEBUG }

nothing space object-file ' ...
object-file file-spec

3-1

LINKING, EXECUTING, AND DEBUGGING

3.1.2 LINK Command Semantics

The linker reads the object modules contained in each file named in
the link command to create a linked, executable image. The name of
the eX'ecutable image is taken from the name of the first object-file,
and the file type EXE is used. If no file type is included in the
file-spec, file type OBJ is assumed.

If the /DEBUG qualifier is used in the link-command, the VAX-11
Debugger is linked with the specified object-files.

The linker has many qualifiers, but only the /DEBUG qualifier is
discussed here. Other qualifiers are described in the VAX-11 Linker
Reference Manual.

Appearance of the following error message during the link operation:

%LINKER-W-TRUNC, Trunc. error in module <name>, P-section
<name>, offset %X <address>

generally implies that the program is larger than 32KB.
the module qualifier:

Specifying

ADDRESSING_MODE(EXTERNAL=LONG_RELATIVE, NONEXTERNAL=LONG_RELATIVE)

causes the compiler to generate long displacement
instruction operands.

3.2 EXECUTING A LINKED PROGRAM

values for

To run your program, use the executable image produced as a result of
the link operation, as follows:

$ RUN ALPHA

Your program, ALPHA, then executes. Any input or output in your
program takes place, and control then returns to the command
processor. The command processor then prompts for another command.

3.3 DEBUGGING

The VAX-11 Symbolic Debugger can be used to debug or test BLISS
programs. The following discussion of BLISS debugging assumes that
you are familiar with the use of the debugger for VAX-11 MACRO
programs, as described in the VAX-11 Symbolic Debu~ger Reference
Manual. This section describes BLISS debugging facil1t1es pr1mar1ly
in terms of differences from MACRO-level debugger usage.

The debugger recognizes BLISS as one of its "known" languages (as it
does MACRO and FORTRAN, for example), and provides a number of
features specifically designed for more convenient debugging of BLISS
programs. These BLISS-specific features are:

• Debug expression syntax that is consistent with BLISS language
syntax: radix control operators, arithmetic- and
address-expression operators, field selectors, and so on.

3-2

LINKING, EXECUTING, AND DEBUGGING

• Support of fetch operator in arithmetic expressions.

• Expression evaluation according to BLISS rules for operator
precedence and use of parentheses.

• BLISS-style references to elements and components of standard
(predeclared) data structures: VECTOR, BLOCK, BLOCKVECTOR,
and BITVECTOR; and support of REF data segments.

• Support of field-names in structure references.

• Support of BLISS field-references, as in: EXAMINE X<lS,3,0>.

In combination, the features just described provide a high-level,
BLISS-like facility for examining and modifying program data segments,
both scalar and structured.

Many of the procedural aspects of BLISS debugging, however, such as
setting breakpoints and program stepping, must necessarily be handled
at object-code level, that is, with reference to the assembly listing,
as in MACRO-level debugging. This is a consequence of two related
characteristics of BLISS: It is not a statement language (as is
FORTRAN, for example), and symbolic names for procedure addresses do
not exist in BLISS below the routine level. In general, the same
procedure-related debugging facilities are provided for BLISS usage as
for MACRO usage, and these facilities are exercised in very much the
same way.

3.3.1 Initialized Modes and Types

When you initiate a debugging session for a BLISS program, the
debugger provides the information message:

%DEBUG-I-INITIAL, language is BLISS, module set to 'ABC'

where ABC represents your main module name. For BLISS, the initial
entry/display modes are set to:

SYMBOLIC, HEXADECIMAL

These mode settings can be changed with the SET MODE command, and can
be restored to the initial settings with the CANCEL MODE or SET
LANGUAGE BLISS commands. The initialized modes are the same as for
MACRO.

The initial setting for default type is:

LONG INTEGER

(Refer to the SET TYPE command.)

The initial scope is PC scope.

3-3

LINKING, EXECUTING, AND DEBUGGING

3.3.2 Debug Commands and Expression Syntax

Debugger commands are used for BLISS debugging exactly as they are for
MACRO programs except for the syntax within expressions. The debugger
expression syntax is extended to allow use of a wide range of
BLISS-style expressions, including most BLISS arithmetic and Boolean
operators and the fetch operator, ordinary-structure-references (for
predeclared structures), and BLISS field-references for specification
of bit fields. (Debug commands are summarized at the end of this
chapter for convenient reference.)

Experienced VAX-11 Symbolic Debugger users should note in particular
that, in expressions, the BLISS dot symbol (.) is recognized instead
of the "@" character as the debugger "contents" or indirect operator,
and that the previous location symbol (A) is not recognized in BLISS
mode.

The next two subsections describe special characters and keywords
recognized by the debugger as operators and address symbols (or
"address representation characters") in BLISS mode debugging. In some
cases the characters are different from those recognized in MACRO mode
with the same meaning, and in other cases the characters or keywords
are additional to those recognized in MACRO mode. (The differences
are noted.) In all cases the operator usage is BLISS-like in that the
meanings assigned to special characters and symbols in debug commands
are consistent with BLISS operator semantics.

Note that the significance of special characters as delimiters in
debug commands is the same for both BLISS and MACRO debugging. Also
in order to maintain a reasonable correspondence with the VAX-11
Symbolic Debugger Reference . Manual, the informal categories
"arithmetic expression" and "address expression" are used below (on a
best-fit basis) rather than the more formal BLISS language-syntax
categories.

3.3.3 Operators in Arithmetic Expressions

Table 3-1 lists special characters and keyword symbols used in
arithmetic expressions. The semantics, priority, and relationship of
the operators listed in the Table are as defined in BLISS. That is,
the debugger evaluates expressions according to the language context.
In particular, the intermediate and final results of an expression
evaluation are calculated as longword (32-bit) values.

Restrictions: The following restrictions, relative to full BLISS
expression syntax, apply to expressions in debug commands:

• Routine or function calls are invalid as part
expression.

of an

• The assignment operator {=) is invalid within an expression.
(The equal-sign character may be used only as a separator in
DEPOSIT and DEFINE commands.)

• The BLISS relational operators (for example, EQL, NEQ, LSS)
are not supported.

• BLISS executable functions are not supported.

• Control expressions are not supported.

• Declarations are not supported.

3-4

LINKING, EXECUTING, AND DEBUGGING

Table 3-1: Arithmetic Expression Operators

Character Interpretation

+

*
I

MOD

NOT

AND

OR

XOR

EQV

(...)

%DECIMAL

%0 'string'

%X 'string'

%E 'string'

Fetch (pref ix) operator

Arithmetic addition (infix) operator or (prefix)
plus sign

Arithmetic subtraction (infix) operator, or (prefix)
minus sign

Arithmetic multiplication operator

Arithmetic division operator

Arithmetic shift operator (unlike MACRO syntax)

Arithmetic modulus operator

Boolean negation operator

Boolean 'and' operator

Boolean 'inclusive or' operator

Boolean 'exclusive or' operator

Boolean equivalence operator

Precedence operators; do (enclosed) first (unlike
MACRO syntax)

Decimal radix operator (either %DEC or %DECIMAL)

Octal radix operator

Hexadecimal radix operator

Single-precision floating-point operator

3.3.4 Special Characters in Address Expressions

Table 3-2 lists special characters that can be used to represent
locations in a debugger expression. (Later subsections describe
BLISS-style syntax extensions for structure references and field
references.)

3-5

LINKING, EXE.CUTING, AND DEBUGGING

Table 3-2: Address Representation Characters

Character Interpretation

\

When used alone or immediately before a delimiter,
represents the last location addressed by an EXAMINE,
DEPOSIT, SET BREAK, SET TRACE, or SET WATCH command.
This is called the current location.

Represents the last value displayed by EXAMINE or
EVALUATE. (The backslash is also used in forming
pathnames, as in MACRO syntax.)

"Contents of" or indirect operator, when used as a
prefix operator (unlike MACRO syntax)•

Range operator (low address:high address) for the
EXAMINE command.

3.3.4.1 Current Location Symbol (.) - Used either by itself or as an
operand in an expression, the dot represents the location most
recently referred to in an EXAMINE, DEPOSIT, SET BREAK, SET TRACE, or
SET WATCH command. The value represented by the current location
symbol remains unchanged until one of the above mentioned commands is
used to refer to another location.

The dot symbol is assigned different meanings depending upon the
context in which it occurs. In addition to its meaning as
current-location symbol, it is the debugger "contents" or indirect
operator (as described below) and, analogously, the BLISS fetch
operator in expressions. Thus, the sequence " •• " itself constitutes a
valid expression, meaning "contents of the current location." As a
simple example, suppose that, at a given step in the execution of a
program, the data-segment PTR contains the address of a longword
vector named INBUF, and that the location last referred to by a
debugger command is PTR. At this point the command:

EXAMINE • I Examine current location I

will display the address of INBUF (that is, the contents of location
PTR), and the command:

EXAMINE I Examine current location indirect I

will display the contents of location INBUF. Subsequently (since the
last command altered the current-location value to location INBUF),
the command:

EXAMINE .+4 / Examine current location plus 4 I

will display the contents of location INBUF+4. In contrast, note
particularly that the expression .(+4} would be interpreted (as in
BLISS) as "contents of location 00004" rather than as
"current-location value plus four bytes."

The previous-location symbol, A' recognized in MACRO debugging, is
invalid when 'language is BLISS'. The address expression .-1 or .-4
can be used, for example, to represent the location of the "previous"
byte or longword, respectively.

3-6

LINKING, EXECUTING, AND DEBUGGING

3.3.4.2 Last Value Displayed Symbol (\) - The backslash character (\)
can be used to represent the value most recently displayed. The value
remains unchanged until the debugger displays a new value.

For example (again assuming the data segments PTR and INBUF previously
described):

DBG>EXAMINE/DEC PTR
LISTER\LSTR\PTR: 1024
DBG>EXAMINE/ASCII \
LISTER\INBUF<0,32>: ABCD

The first EXAMINE command displays the contents of location PTR as the
value 1024. The display shows the scope of the symbol PTR to be
module LISTER and routine LSTR. The second EXAMINE command displays
the contents of location 1024, that is, at the last value displayed.
The display shows the location symbolized as INBUF with scope LISTER,
and shows the contents of INBUF<0,32> to be "ABCD", interpreted as an
ASCII string.

3.3.4.3 Contents Operator (.) - The 'dot' character (.) used as an
operator is the debugger "contents of" or indirect operator. It
requests that the debugger evaluate the expression following it and
then use the contents of the location addressed by the expression
value rather than use the expression value itself. (The contents
operator in MACRO debugging mode is the 'at' sign, @.)

Examples of the use of the dot as both the current-location symbol and
the contents operator, depending on its context, are given in the two
preceding subsections. A further example, based on the same
assumptions, is:

DBG>EXAMINE/ASCII .PTR
LISTER\INBUF: ABCD

Observe that this one EXAMINE command is equivalent to the sequence
EXAMINE PTR followed by either EXAMINE\ or EXAMINE •• {in terms of
the final location displayed) •.

Other examples, modified from those given in Chapter 4 of the VAX-11
Symbolic Debugger Reference Manual, follow. The command

DBG>DEPOSIT MASK = .MASKA4

shifts the current contents of the location MASK four bit positions to
the left.

The command

DBG>EXAMINE .R7 : .R7+%DEC'20'

displays the current contents of the 21 bytes beginning with the
location addressed by general register 7.

3.3.4.4 Range Operator (:) - A colon is used to separate elements in
an address range in an EXAMINE command (see the previous example) ,
just as in MACRO debugging.

Unlike MACRO usage, however, the colon is not used in the EVALUATE
command to express a bit-field specification. (In BLISS usage, the
standard BLISS field-selector notation is used instead, as described
in Section 3.3.5.)

3-7

LINKING, EXECUTING, AND DEBUGGING

Several examples of range-operator usage, modified from those given in
Chapter 4 of the VAX-11 Symbolic Debugger Reference Manual, follow:

DBG>EXAMINE/ASCII:l INBUF : INBUF+6
DBG>EXAMINE • : • + %DEC'200'
DBG>EXAMINE/INSTRUCTION .PC : .PC+lO

In the first command example, the address expression INBUF is
interpreted as a nonstructured data reference, since no access actuals
are specified, although INBUF is assumed to name a structured {vector)
data segment for the purposes of this discussion. This command simply
displays the contents of the sequence of locations requested in
storage units determined by the current length type, without reference
to declared structure. In this case, since the specified type is
ASCII:l, the first seven bytes beginning at location INBUF are
displayed as follows:

LISTER\INBUF<0,8>: A
LISTER\INBUF+l<0,8>: B

LISTER\INBUF+6<0,8>: G

If the type were ASCII:4, the first two longwords beginning at INBUF
would be displayed, as follows:

LISTER\INBUF<0,32>: ABCD
LISTER\INBUF+4<0,32>: EFGH

The use of structure references in EXAMINE commands and the format of
structured displays are described in Section 3.3.6.

3.3.4.5 Default Next-Location Value - The default next-location value
is the address implied by the "shorthand" form of the EXAMINE command,
that is, the EXAMINE verb {and possibly a type specification)
immediately followed by a carriage return. The next-location value is
always the address of the byte following the last byte of the previous
display item.

Continuing with the previous example involving INBUF, if subsequent to
the command

DBG>EXAMINE/ASCII:l INBUF : INBUF+6

and its resultant display, the "shorthand" command

DBG>EXAMINE/ASCII:l

is given, the display

LISTER\INBUF+7: H

would be produced, or the display

LISTER\INBUF+8: IJ

if type ASCII:2 was specified, or

LISTER\INBUF+OA: KLMN

if type ASCII:4 was specified.

3-8

LINKING, EXECUTING, AND DEBUGGING

3.3.5 Field References

A BLISS field reference, that is, an expression followed by a field
selector, is used to specify a field of storage in EXAMINE, EVALUATE,
and DEPOSIT commands. The form of a field reference (as in BLISS) is:

address<position,size,ext>

where ext is O for unsigned extension and 1 for signed extension; or

address<position,size>

where unsigned extension is assumed by default. The position and size
values are interpreted as decimal integers, regardless of current
radix mode, unless a radix operator is used (for example, %X'F'). The
size value may not exceed 32 in any case.

In the EXAMINE command, a field-selector has the same meaning as in
the BLISS fetch context, since indirection (that is, contents of) is
implied. That is, the EXAMINE command displays the contents of the
field of storage specified by position and size, relative to the
address given. (The field value is first extended to a longword, with
signed or unsigned extension as requested). There is no syntactic
restriction on the range of the position value except that it must be
a positive integer. As an example,

DBG>EXAMINE/ASCII INBUF+8
LISTER\INBUF+S<0,32>: IJKL
DBG>EXAMINE/ASCII:l INBUF<72,8>
LISTER\INBUF+9<0,8>: J

Note that the address expression INBUF+8 is equivalent to the field
reference INBUF<64,32>.

In an EVALUATE command, the meaning of a field selector
whether or not a contents operator is specified, that
not indirection is requested. If the contents operator
a field selector has the same meaning (and lack of
position) as in the BLISS fetch context. For example:

DBG>EVALUATE/DEC .INBUF<72,8>
74

depends upon
is, whether or
is specified,
restriction on

Observe that the effect of this field reference (with the contents
operator specified) is the same as that produced by an equivalent
EXAMINE command: the decimal value 74 is the ASCII code for the
character "J".

If indirection is not specified
selector has the same meaning
nonfetch, nonassignment content;

addr<p,s>

in an EVALUATE command, a field
and restrictions as in the BLISS

that is, the expression

simply calculates the value addr+(p/8), where p must be a multiple of
8 and s is ignored. The effect of a field selector in this case is
simply that of an address pffset, with the position value (p)
interpreted as p/8. For example, assuming (as above) that the symbol
INBUF has the value 1024:

DBG>EVALUATE/DEC INBUF<80,8>
1024

3-9

LINKING, EXECUTING, AND DEB,UGGING

Observe that the field reference INBUF<80,8> in the "nonfetch" context
is equivalent to the expression INBUF+lO (as also is INBUF<B0,16> or
INBUF<B0,23> or INBUF<B0,32>, for example).

In the DEPOSIT command, a field selector in the address expression on
the left side of the equal sign has the same meaning and effect as in
the BLISS assignment context. That is, it specifies a field of
storage, relative to the given address, into which a value is to be
stored. The stored value is truncated if necessary to fit the
receiving field.

If a field selector appears in a "data" (righthand) operand of a
DEPOSIT command, it has the same meaning and effect as described above
for the EVALUATE command, depending upon whether or not a contents
operator is specified.

3.3.6 Structure References

A BLISS-style structure reference may be used as a debugger
address-expression if the data-segment referred to has a standard
BLISS predeclared structure, that is, either VECTOR, BITVECTOR, BLOCK,
or BLOCKVECTOR. The debugger recognizes the following forms of
structure reference:

• For VECTOR-structured segments -

segname[actual_l] or segname[field-name]

• For BITVECTOR-structured segments -

segname[actual_l] or segname[field-name]

• For BLOCK-structured segments -

segname[actual l,actual 2,actual_3,actual_4] or
segname[field-name]

• For BLOCKVECTOR-structured segments -

segname[actual l,actual 2,---,actual 5] or
segname[actual-1,field-name] -

where

segname is a name declared with the appropriate
structure-attribute or appropriate REF structure-attribute.

actual i is an
representing
structure.

expression evaluated as a
a valid access-actual for

decimal integer
the given data

field-name is a name (declared in a source-program FIELD
declaration) that represents a valid field-definition for the
given data structure.

Note that access-actual values are interpreted in decimal unless a
radix operator is used, regardless of the current radix mode.

3-10

LINKING, EXECUTING, AND DEBUGGING

The following EXAMINE commands provide a simple example of structure
references and structured display format:

DBG>EXAMINE/ASCII INBUF[l]
LISTER\INBUF[ll: EFGH
DBG>EXAMINE/ASCII:l6 INBUF[O]
LISTER\INBUF[O]: ABCDEFGHIJKLMNOP
DBG>EXAMINE/ASCII INBUF[O]:INBUF[3]
LISTER\INBUF[O]: ABCD
LISTER\INBUF[l]: EFGH
LISTER\INBUF[2]: IJKL
LISTER\INBUF[3]: MNOP
DBG>EXAMINE INBUF[l]:INBUF[2]
LISTER\INBUF[l]: 48474645
LISTER\INBUF[2]: 4C4B4A49
DBG>EXAMINE
LISTER\INBUF+OC<0,32>: 504F4E4D

In response to a structure reference, the debugger ignores default
type and displays data in accordance with the allocation-unit declared
for the structure. For example, if you specify a range of data within
a BLOCKVECTOR segment in an EXAMINE command, in terms of
colon-separated structure references, and the segment is declared with
allocation-unit WORD, the debugger responds as follows:

1. Displays the content of the component specified by the first
structure reference.

2. Skips any remaining bits (up to seven) if the component does
not end on a byte boundary.

3. Displays any remaining data within the range in 2-byte units
beginning with the next location, and ending with the last
location occupied by any part of the component specified in
the second structure reference (plus an additional byte if
required to round up to a word-size display unit).

An appropriately defined field-name can be used in place of explicit
access-actual values as shown in the structure-reference formats given
above. No symbolic expression other than a field-name is valid in a
debugger structure reference.

In an EVALUATE command that specifies indirection, a structure
reference results in an evaluation of the content of the requested
element or component, in current radix mode. The display differs as
usual from EXAMINE in that the location of the evaluated item is not
reported, and context type is ignored. For example:

DBG>EVALUATE .INBUF[2]
4C4B4A49

In an EVALUATE command without indirection (no contents operator
specified), a structure reference results in an evaluation of the
address corresponding to the requested element or component. That is,
the address of the byte in which the data item begins. (In the case
of a BLOCK or BLOCKVECTOR structure, the access actuals representing
size and extension are ignored.) For a simple example, assume (as
above) that the symbol INBUF names a longword vector segment at
decimal location 1024:

DBG>EVALUATE INBUF
1024
DBG>EVALUATE INBUF[3]
1036

3-11

LINKING, EXECUTING, AND DEBUGGING

(This example assumes the current radix mode to be DECIMAL.)

For a somewhat more complex example, assume a block-structured segment
named BLK2 begins at location 648 (decimal) and is allocated in
longwords. Further, assume a set of declared field names Fl, F2, F3,
and F4. Also, for simplicity assume DECIMAL radix mode:

DBG>EVALUATE BLK2
648
DBG>EVALUATE F4
2, 4, 12, 0
DBG>EVALUATE BLK2[F4]
656

This example illustrates two facts:

• That the EVALUATE command evaluates a field name by reporting
the access-actual values defined for that name.
(Access-actual values, like field-selector parameters, are
always displayed in decimal regardless of current radix
mode.) The last-value-displayed (represented by \) following
this type of command is the last access-actual shown in the
list: in this case, the value O.

• That evaluation of the structure-reference BLK2[2,4,12,0]
results in the address value BLK2+8, since the component
identified by the reference begins in the first byte of the
third longword in segment BLK2. (More specifically, field F2
is defined as the 12 bits beginning with bit 4 of the third
allocation unit.) As stated previously, the size and
extension values are not involved in the evaluation.

In the DEPOSIT command, a structure reference used as the address
expression on the left side of the equal sign has the same meaning and
effect as in the BLISS assignment context. That is, it specifies an
element or component of a data structure into which a value is to be
stored. The stored value is truncated if necessary to fit the
receiving element or component.

If a structure reference appears in a "data" (righthand) operand of a
DEPOSIT command, it has the same meaning as described above for the
EVALUATE command, depending on whether or not a contents operator is
specified. That is, with indirection specified the structure
reference results in a fetch of the element or component indicated,
with or without sign extension as requested. Without indirection, a
structure reference results in the same kind of address evaluation as
is performed by the EVALUATE command.

3.3.7 REF Structure References

The debugger recognizes and treats REF data-segments in a manner
consistent with the BLISS language. (A REF data-segment is a longword
segment declared with the attribute "REF structure-name".) When a REF
segment name is used in a structure reference, the debugger
automatically supplies an extra level of indirection, treating the
name as the location of a pointer to a segment that has the same
structure as that declared for the REF segment.

As in BLISS, when a REF segment name is given in a debugger
without access actuals, the extra level of indirection
provided. In this case, the name is interpreted as an
address reference.

3-12

command
is not

ordinary

LINKING, EXECUTING, AND DEBUGGING

Note that the debugger recognizes and supports REF segments as just
described only if they are declared with one of the predefined
structure-names, that is, VECTOR, BITVECTOR, BLOCK, or BLOCKVECTOR.
(User-defined structures are not supported as such by the debugger.)

3.3.8 Scope of Names

Whereas BLISS determines the scope of a data-segment name on a block
basis, the debugger's smallest unit of scope is the routine. This
causes no problems if a given name is declared only once within a
routine. Ambiguities can arise, however, if a name declared at a
given level (for example, at the outer routine level) is redeclared
one or more times in contained blocks.

This includes the obscure case of redeclaring a routine formal-name in
a MAP declaration (in order to give it certain attributes, for
example), since a formal-name is effectively declared as a LOCAL
scalar, with default attributes LONG and UNSIGNED, in the implicit
block that surrounds every routine body. Redeclaration also includes,
of course, the common, more obvious case where a name explicitly
declared as a permanent data segment in a containing block is
redeclared as (for example, LOCAL, STACKLOCAL, or REGISTER) in one or
more contained blocks.

In all such cases, the debugger knows only of the (physically) last
declaration of a given name that occurs in the source code for a
routine, that is to say, the last declaration of the name encountered
by the compiler when processing the source code for a particular
routine. This means that the attributes of, and storage address
corresponding to, a given name as known by the debugger are determined
by that last declaration.

An entirely different and more subtle kind of problem can arise in
connection with references to temporary data segments by name; a
problem that is inherent in the compiler's optimization techniques.
As described in Section 7.1.4, the compiler may allocate two or more
temporary values to the same storage location or register at different
points within a routine, if their "useful lifetimes" do not overlap.
(The compiler does this for a number of reasons involving both space
and time optimization.)

The possible implication of this for debugging is that, at a given
point in the execution of a routine, a name declared as LOCAL,
STACKLOCAL, or REGISTER can point to a location occupied either by a
value corresponding to a different temporary data segment or by a
compiler-defined temporary value. The only way to resolve the
resultant ambiguity (if examination of such a value is in fact
necessary) is by careful interpretation of the object code and
examination of the program counter when stepping through the routine
in question.

3.3.9 Source-Line Debugging

When the BLISS-32 compiler is executed under VAX/VMS Version 3 (or
later versions), additional information is entered into the DEBUG
Symbol Table, which permits a limited form of source-line number
debugging (where the source-line numbers are defined as the numbers
printed in the leftmost margin of a listing).

3-13

LINKING, EXECUTING, AND DEBUGGING

For example, it is possible to set a break on the first instruction of
a source-line using a %LINE syntax:

DBG>SET BREAK %LINE 42

Note, however, that since BLISS-32 is an optimizing compiler for an
expression language,all source lines cannot be accessed with the %LINE
syntax.

However, using the TYPE command it is possible to display the source
text for any line, including comments.

DBG>TYPE 17:19
Module TESTER
17: J= .J+l;
18: T= IFACT(5);
19: RETURN .T+J

!Check out 5! 120

Note that the TYPE command shown displays source lines ranging from 17
through 19 using the module designated by the current scope setting.

It is also possible to examine the source code associated with a
current PC location, as follows:

DBG>EXAMINE/SOURCE .PC
18: T= IFACT(5);

3.3.10 Effect of Compilation and Link-Time Qualifiers

The use of the qualifier /DEBUG in the link operation tells the linker
to replace the user program's starting address with the debugger's
starting address. The executable image formed as a result causes the
debugger to be mapped into the user program's address space. When it
is executed, control first goes to the debug program instead of the
user program.

The debugger is a shareable image. When a shareable image is linked
into an executable image, it is unnecessary to copy the physical
content of the shareable image. When a program that uses a shareable
image is run, the copy from the shareable image file is run. In
reality, debugger modules are mapped into memory; they are not
physically there. (Refer to the VAX-11 Linker Reference Manual.)

The type of data you can access symbolically depends on the settings
for the /TRACEBACK and /DEBUG qualifiers for the compilation. If the
/NOTRACEBACK qualifier was given, no symbolic access is possible. If
the /TRACEBACK and /NODEBUG qualifiers are given, only the names of
globals, routines, modules and PSECTs are available to the DEBUG
program. If the /TRACEBACK and /DEBUG qualifiers are given, you can
examine BIND, GLOBAL, EXTERNAL, OWN, LOCAL, STACKLOCAL, and REGISTER
data names in addition to names already mentioned; moreover, you can
use field-names in structure accesses, reference literal names in
expressions, and use listing source line-numbers to set breaks and
examine BLISS source code.

3-14

LINKING, EXECUTING, AND DEBUGGING

Recall that, as described in Section 1.3.2.2, the qualifier /TRACEBACK
is compilation default, while /DEBUG is not.

3.3.11 Debugger Command Summary

This section summarizes commands that can be used to debug BLISS
programs. The summary presents the commands in alphabetical order.

As in BLISS notation, braces ({---}) enclose optional command
elements; they are not part of the syntax. The optional-repetition
symbols "···" and ", ••• " also have the same meaning as in BLISS syntax
definitions.

See SET MODE for entry/display mode keywords; see SET TYPE for data
type keywords.

With the exception of ASCII character input, the debugger
automatically converts lowercase input to uppercase. (That is, the
debugger is not sensitive to the case of an input character.)

"Address-expression" in the command syntax representations can be the
pathname (see SET SCOPE) of a symbol in your program, a numeric value,
a symbol that you defined during this debugging session, a debugger
special character, or an expression that combines any of these
elements. "Address-expression" also includes BLISS-style field
references and structure references.

The debugger supports command line continuation. A command line can
contain up to approximately 500 characters, including nonprinting
characters. You indicate continuation with the hyphen {-) as the last
character prior to the carriage return. The debugger indicates a
continued line by displaying an underline character as the first
character on the line rather than the DBG> prompt.

CTRL/"x" refers to the simultaneous typing of the CTRL key and the
respective character key, that is, C, Y, or Z {refer to the VAX/VMS
Command Language User's Guide for information on the complete list of
CTRL functions). CTRL/"x" echoes at the terminal as Ax.

All commands preceded by an asterisk (*) are only available with
VAX/VMS Version 3.

All command lines except CTRL functions must end with a carriage
return.

@f ilespec

In debug mode, the @filespec denotes an indirect command file.
It causes the debugger to begin taking debug commands from the
indicated file. An indirect command file can be invoked wherever
any other debug command can be given. An indirect command file
can contain any valid debug command, including another indirect
command. An EXIT command within an indirect command file cancels
one level of indirection; an EXIT command given at terminal
input level terminates the debug process.

CALL name {{argument , •••)}

Call routine by its symbolic name or by its virtual address
(address expression is invalid) with optional argument list. An
argument list must be enclosed by parentheses.

3-15

LINKING, EXECUTING, AND DEBUGGING

CANCEL ALL

Cancel all breakpoints, tracepoints, watchpoints, and user-set
entry/display modes. Type is set to its default value {long
integer), and scope is set to its default value, O. The initial
entry/display modes are restored. This command does not change
the current contents of the debugger's symbol table (that is,
those symbols acquired from program modules at debugger
initialization or through use of the SET MODULE command, or any
symbols that you defined during this debugging session). The
current language is not changed.

CANCEL BREAK address-expression
CANCEL BREAK/ALL

Cancel breakpoint set at specified address, or cancel all
breakpoints.

CANCEL EXCEPTION BREAK

Cancel the request that your program stop, as at a breakpoint,
for any exception condition.

CANCEL MODE

Restore initial entry/display modes.
SCOPE or current language.

CANCEL MODULE module-name-list
CANCEL MODULE/ALL

Command does not change

Purge symbolic information associated with the named modules from
the debugger's symbol table, or purge all module-related
information from the symbol table. The typical use is to make
space available for symbols associated with another module or
modules {see SET MODULE). Global symbols and any symbols defined
during this debugging session are not affected.

CANCEL SCOPE

Set scope to 0.

*CANCEL SOURCE{/module=modnam}

Cancels the current source directory search list established by
previous SET SOURCE commands. When the qualifier is used
(/module=modname), the command cancels the affect of any previous
command in which the same module name was specified; but does
not affect commands in which other module names are specified or
commands where the qualifier is not used.

CANCEL TRACE address-expression
CANCEL TRACE/CALL
CANCEL TRACE/BRANCH
CANCEL TRACE/ALL

Cancel tracepoint set at specified address, cancel all opcode
tracing at call-type instructions, cancel all opcode tracing at
branch-type instructions, or cancel all tracepoints and opcode
tracing.

CANCEL WATCH address-expression
CANCEL WATCH/ALL

Cancel watchpoint set at specified address, or cancel all
watchpoints.

3-16

LINKING, EXECUTING, AND DEBUGGING

CTRL/C

Has same effect, and echoes at terminal, as CTRL/Y (see below) if
your program does not include an exception condition handler for
CTRL/C.

CTRL/Y

Interrupt the debugger or executing program and transfer control
to the VAX/VMS command interpreter (signaled by the system prompt
$). Type DEBUG after the system prompt to return control to the
debugger. Type CONTINUE after the system prompt to return
control to the interrupted program. Typing any VAX/VMS command
other than DEBUG or CONTINUE will probably force the premature
exit of your program. You can use CTRL/Y to interrupt a looping
program. To determine the point at which you interrupted you'r
program, type

DBG>EXAMINE/INSTRUCTION .PC

CTRL/Z

Same result as EXIT; that is, terminate the debugging session
and transfer control to the VAX/VMS command interpreter.

DEFINE symbol-name=value {,symbol-name=value , ••• }

Equate name{s) of name=value list with associated value(s) for
use during this debugging session. The debugger searches these
symbols first whenever it requires a definition for a symbolic
entry, and whenever it requires a symbolic name to report a
location.

DEPOSIT{/modifier ••• } address-expression=data{,data , ••• }

Enter data specified in data list in sequence of locations
beginning with the specified address. Modifier can be any mode·
or type keyword. {Mode and type keywords can be mixed in any
meaningful way).

EVALUATE{/mode ••• } expression ' ...
Transform input (which can be field name, arithmetic expression,
ASCII string, VAX-11 MACRO instruction, symbol, structure- or
field-reference, or numeric value) to associated value{s) and
display result{s). Can be used as desk calculator, radix
converter, symbol verifier, and so on. The debugger displays
result(s) in the order in which you specified the input. The
displayed decimal value of the field name is a comma list of
field components.

EXAMINE{/modifier ••• } address{:address} {,address{:address} , ••• }

EXIT

Display current contents of specified address(es). The colon
signifies range; that is, display contents of addresses from low
address through high address. Modifier can be any mode or type
keyword. (Mode and type keywords can be mixed in any meaningful
way).

Terminate debugging session and transfer control to the VAX/VMS
command interpreter. An EXIT command within an indirect command
file cancels one level of indirection; an EXIT command given at
terminal input level terminates the debug process.

3-17

LINKING, EXECUTING, AND DEBUGGING

GO {address-expression}

Start or continue program execution. The first GO command
(without an address) starts the program at its transfer address.

GO commands thereafter continue execution from a stopped point
(as at a breakpoint or watchpoint, or because of an exception
condition).

An address entry replaces the current program counter (PC)
contents; execution starts or continues from the new location.

Once you have started a program, you should not try to attempt a
restart at the transfer address or any other address. Program
behavior is unpredictable when restarted.

*HELP topic {subtopic ••• }

Displays a description, format, qualifiers, and parameters of a
debugger command as specified by the topic parameter; and
describes qualifiers and/or parameters as specified by the
subtopic parameter.

*SEARCH{/qualifier{/qualifier} } range string

Limits the debugger's search (of a source file)
program regions for occurrences of the string.
are:

to specified
The qualifiers

/ALL

/NEXT

/IDENTIFIER

/STRING

Specifies search for all
string, and display of
specified range.

occurrences of
every line, in

the
the

Specifies search, and display, of only the first
occurrence of the string in the specified range.
(This is the default.)

Specifies search for an occurrence of the string
in the specified range. but the string is only
displayed if it is bounded (on either side) by a
character that is not part of an identifier in the
current language.

Specifies a search and display of an occurrence of
the string specified. (This is the default.)

The range parameter limits the search to a specified program
region as follows:

MODNAME

MODNAME\LINE-NUM

MODNAME\LINE-NUM:LINE-NUM

LINE-NUM

Search the specified module from line
number 0 to end of module.

Search the specified module from the
specified line number to the end of
the module.

Search the specified module from the
first line number given to the last.

Search the module designated by
current scope setting from
specified line number to the end
the module.

3-18

the
the
of

LINKING, EXECUTING, AND DEBUGGING

LINE-NUM:LINE-NUM

<nothing>

Search the module designated by the
current scope setting beginning at
the first line number and ending at
the last.

Search the same module from which a
source line was recently displayed
(via a TYPE or EXAMINE/SOURCE
command), beginning at the first line
following the line displayed and
continuing to the end of the module.

The string parameter specifies the string in the source code for which
the search is initiated.

SET BREAK address-expression {DO {command list)}

Establish breakpoint at specified address (the
your program before the instruction
"address-expression" is executed).

breakpoint
beginning

stops
with

The debugger executes commands in DO sequence command format
whenever your program stops because of the specified breakpoint.
Parentheses are required as command list delimiters. Multiple
commands must be separated by se.micolons. Any complete debugger
command can be used in this context, including GO, STEP, or CALL.
If GO, STEP, or CALL is specified, it must be the last command in
the sequence.

You can specify the aafter" option to defer a breakpoint:

SET BREAK/AFTER:decimal-integer address-expression {DO ---}

Your program does not stop because of the breakpoint (that is,
the breakpoint is ignored) until the "n"th pass through the
specified location, as in an iteration, where n is within the
range 1 through 32767. Thereafter, the breakpoint takes effect
each time the debugger encounters it. You can specify a
temporary (or one time) breakpoint by:

SET BREAK/AFTER:O address-expression

The debugger automatically cancels the breakpoint after it stops
your program the first time the breakpoint is encountered.

SET EXCEPTION BREAK

Stop the program and report the current program counter contents
if an exception condition occurs that was not initiated by a
debugger command.

SET LANGUAGE language-name

Let the debugger interpret input and display output in the syntax
defined for the specified language. The debugger rejects
commands that are invalid in the specified syntax. The debugger
initially recognizes the language of the first module in your
program that contains symbol information.

SET LOG file-name

Specify a name other than the default name (DEBUG.LOG) for the
debug log file. Can be used to generate multiple log files
during a single debug session.

3-19

*SET MARGIN rm
*SET MARGIN lm:rm
*SET MARGIN lm:
*SET MARGIN :rm

LINKING, EXECUTING, AND DEBUGGING

Specify the leftmost and/or rightmost source line character
position at which to begin and end a line of source code. The
default value for the left margin is l; while the default value
for the right margin is 255.

*SET MAX SOURCE FILES n

Specifies the maximum number of source files that the debugger
can keep open at any one time.

SET MODE mode-keyword{,mode-keyword , ••• }

Allow or inhibit the entry and display of data in specified
formats.

The following list describes the function of each keyword:

DECIMAL

HEXADECIMAL

NOSYMBOLIC

OCTAL

SYMBOLIC

Interpret/display data in decimal radix.

Interpret/display data in hexadecimal radix.

Inhibit display of symbolic addresses.

Interpret/display data in octal radix.

Display symbolic addresses.

The debugger's initial modes are: SYMBOLIC and HEXADECIMAL.

You can also enter the mode keywords with the commands DEPOSIT,
EVALUATE, and EXAMINE to override the current associated mode
{radix and symbolic/nosymbolic). A slash must precede each mode
keyword entered after these command verbs.

command-verb/keyword/keyword

SET MODULE module-name-list
SET MODULE/ALL

Enter nonglobal symbols and program section names associated with
the program-module list into the debugger's symbol table, or
enter information from all modules into the symbol table. The
debugger cannot interpret nonglobal symbols unless their
associated module names appear in the status report produced by
the SHOW MODULE command with a "yes" indication.

SET OUTPUT keyword{,keyword, ••• }

Turn the logging function on/off, display or inhibit the display
of DEBUG commands executed from indirect command files or
breakpoint actions, and permit or suppress DEBUG output, except
error messages, to the terminal. Valid keywords are:

LOG Copy all command
output, including
log file; copy
specified.

3-20

input (verbatim) and DEBUG
error messages, to the current

verified lines if VERIFY is

LINKING, EXECUTING, AND DEBUGGING

NO LOG Inhibit the creation of a debug log file.

TERMINAL Print all debug output on the terminal, including
command input, debug responses, comment lines, and
warning and error messages.

NOTERMINAL Print only error messages; suppress all debug
output, including verified lines.

VERIFY Echo command lines on the terminal as they are
executed from a breakpoint action or indirect
command file.

NOVERIFY Do not echo command lines from indirect command
file on the terminal.

The initial keyword settings are NOLOG, NOVERIFY, and TERMINAL.
If default settings are used, no log file is produced, the
printing of any command taken from an indirect command file and
breakpoint action is inhibited, and all DEBUG output is printed
on the terminal.

Specifying NOLOG and NOTERMINAL causes a warning message to be
printed; output is printed on the terminal.

The following symbols may appear on the log file and/or terminal:

Indicates a DEBUG response

! ! Indicates a comment line

To log all DEBUG command I/O on the log file, use the command:

SET OUTPUT LOG

SET SCOPE module-name{\routine-name ••• }

Establish an ordered list of pathnames for use with the
debugger's symbol search rules. A pathname completely and
unambiguously identifies a symbol. For BLISS, a pathname is one
of the following:

symbol-name
module-name{\routine-name ••• }\symbol-name

The debugger evaluates an expression in which a symbolic
appears only if a definition was located for the entry.
fails to locate a match for a pathname, the debugger reports
search failure and the symbol name.

NOTE

entry
If it

the

Special pathnames are available for use in the list of
pathnames of a SET SCOPE command:

• 0 - Indicates the pathname of the lexical entity, for
example, routine or block, that contains the current
program counter.

• 1, 2, 3, ••• - The pathname "l" indicates the caller of
the lexical entity containing the current PC;
pathname "2" indicates the caller of pathname "l", and
so on.

3-21

LINKING, EXECUTING, AND DEBUGGING

• \ - The pathname "\" preceding a symbolic name
indicates a global symbol of that name; for example:

EXAM \GLOBAL

causes a search for a
'GLOBAL'; nonglobal
ignored.

global
symbols

symbol whose name is
of the same name are

{Refer to the VAX;...11 Symbolic Debugger Reference Manual.)

*SET SEARCH parameter{,parameter}

Establishes search parameters whenever a SEARCH command qualifier
is not specified. The parameters determine the search for
occurrences of a string as follows: find all occurrences {ALL);
find only the next occurrence {NEXT); display all occurrences
found {STRING); display only the occurrences unbounded by a
current language identifier {IDENTIFIER).

*SET SOURCE{/module=modname} dirname{,dirname ••• }

Directs the search of specified directories for source files.
The command is used to locate source files that have been removed
from compile-time directories.

SET STEP keyword {,keyword , ••• }

Establish default conditions for the STEP command.
keywords are:

INSTRUCTION - Step increment in VAX-11 MACRO instructions.

INTO - Allow stepping through called routine.

LINE - Step increment by listing line numbers.

OVER - Step over called routine (make call transparent).

Valid

*SOURCE - Display the line of source code that corresponds to the
instruction{s) being executed.

*NOSOURCE - Inhibit the display of the line of source code
corresponding to the instruction being executed.

SYSTEM - Allow stepping in system space.

NOSYSTEM - Inhibit stepping in system space (make execution
therein transparent).

The initialized conditions for BLISS are: INSTRUCTION, NOSYSTEM,
and OVER.

SET TRACE address-expression
SET TRACE/CALL
SET TRACE/BRANCH

Set tracepoint at specified address, or specify tracing of all
call-type instructions, or all branch-type instructions. At a
tracepoint, the debugger reports the current program counter
contents and then continues program execution automatically.

3-22

LINKINGr EXECUTING, AND DEBUGGING

SET TYPE

Specify a data type to be associated to data when DEBUG cannot
infer a type from its input.

The following list describes the function of each keyword:

ASCII :n Interpret/display data as a string of n ASCII
characters, where n is an integer.

BYTE Interpret/display data in byte units.

INSTRUCTION Interpret/display VAX-11 MACRO instructions.

LONG Interpret/display data in longword units.

WORD Interpret/display data in word units.

The debugger's initial type setting is: LONG INTEGER. You can
also enter the type keywords with the commands DEPOSIT and
EXAMINE to override the current associated type. A slash must
precede each type entered after these command verbs.

command-verb/keyword/keyword

SET WATCH address-expression

Report if the contents of the specified location(s} are modified.
The locations watched can be individual addresses (including the
number of bytes specified by the length type in effect when the
watchpoint was set), or the number of bytes associated with the
symbol's data type (for example, double precision: eight bytes).

When the contents of a watched location changes, the debugger
stops the program (as at a breakpoint) and reports both the
previous contents and the current contents of the location.

SHOW BREAK

Report the locations of
information associated
and "after" options.

SHOW CALLS {n}

current breakpoints and any relevant
with them, such as DO command sequences

Report current call level and the hierarchy of call levels that
preceded it (that is, trace your program's call history). If "n"
(a decimal integer) is expressed, the debugger reports n call
levels back from the current level (n has the range O through
32767). If "n" is omitted, all preceding call levels are
reported.

SHOW LOG

Display the name and status of the log file (see SET LOG.) The
display appears as follows:

[not] logging to 'filename'

*SHOW MARGIN

Displays the current source line margin settings that are being
used for the display of sou~ce code. The margin settings are
established by the SET MARGIN command. The default margin
settings are: left margin 1 and right margin 255.

3-23

LINKING, EXECUTING, AND DEBUGGING

*SHOW MAX SOURCE FILES

Display the maximum number of source files the debugger can keep
open at one time.

SHOW MODE

Report the current entry/display modes (see SET MODE).

SHOW MODULE

List program modules by name, indicate whether or not their
associated symbol data exists in the debugger's symbol table (by
yes or no) , and indicate the approximate space required for the
entry of each module's symbol data. List also the amount of
space currently unused. The debugger has no knowledge of any
program module not reported in this status report.

SHOW OUTPUT

Display the current output attributes and the name and status of
the current log file. (See SET OUTPUT and SET LOG.) This command
generates the following status report:

output: [no]verify, [no]terminal, and [not] logging to 'filename'

*SHOW SEARCH

Displays the current search parameters established by the SET
SEARCH command or the default values of ALL and STRING.

SHOW SCOPE

Report the current contents of SCOPE.

*SHOW SOURCE

Displays the current source directory search list(s) established
by the SET SOURCE or SET SOURCE/module=modname command.

SHOW STEP

Report current default conditions for STEP (see SET STEP).

SHOW TRACE

Report the locations of current tracepoints, or that opcode
tracing is in effect.

SHOW TYPE

Report the current type setting.

SHOW WATCH

Report the locations of current watchpoints and the number of
bytes monitored by each watchpoint.

STEP{/keyword} {decimal-integer}

Begin program execution and then stop after executing the
specified number of instructions or listing-lines. (If you do
not specify a count, the value 1 is assumed; that is, single
stepping is the default.) The count is a decimal integer between
O through 32767.

3-24

LINKING, EXECUTING, AND DEBUGGING

The following keywords can either be used after the STEP command
verb (STEP/keyword) or be set with the SET STEP command to
establish the default conditions for STEP. The SHOW STEP command
displays the current defaults.

The keywords have the following relationships:

SYSTEM/NOSYSTEM - Count/do not count steps in system space.

INTO/OVER - Count/do not count steps within a called routine.

INSTRUCTION - Step by instructions.

LINE - Step by listing line numbers.

*SOURCE/NOSOURCE - Display/do not display line(s) of source code.

The initialized defaults for BLISS are:

INSTRUCTION, NOSYSTEM, OVER.

*TYPE { {modname\}line-number{:line-number} -
{,{modname\}line-number{:line-number} ••• } }

Displays the source language statement(s) corresponding to the
line number(s) specified.

In effect, all the source language statements in the program can
be read by specifying a starting line number of 1 and an ending
line number that is equal to or greater than the largest line
number in the program listing.

If a module name and line number(s), either a single number or a
range of numbers (separated by a colon), are not specified, the
default scope setting is used to determine which module to use.
The default scope is either the module designated by a SET SCOPE
command or the module containing the current PC.

3-25

CHAPTER 4

MACHINE-SPECIFIC FUNCTIONS

Machine-specific functions (also referenced as builtin functions)
allow you to perform specialized VAX-11 operations within the BLISS
language. A machine-specific function call is similar to a BLISS
routine call. It requires parameters and, in some cases, returns a
value. If a machine-specific function that does not return a value is
used in a context that requires a value, an error is reported, as in a
BLISS routine.

Compilation of a machine-specific function generates inline code,
often a single instruction, rather than a call to an external routine.
The compiler attempts to optimize the code it produces for a
machine-specific function call by choosing the most efficient
instruction sequence. In some cases, the optimization procedure
r~sults in a different machine instruction being generated than the
one specified in the call.

Machine-specific functions in BLISS-32 are divided into categories, as
illustrated in Table 4-1. A separate description of each function is
given in the following sections. For a detailed discussion, consult
the VAX-11/780 Architecture Handbook.·

The definitions of these functions consistently require addresses as
parameters, even where values could have been specified for what
VAX-11 terms "source operands" that are a longword or less in size.
For example, where a length is required as the second parameter of the
PROBER function, the call is written as in:

PROBER(••• ,UPLIT(S), •••)

or

PROBER(••• ,%REF(.A+2), •••)

{The %REF is preferred, as the compiler is free to create immediate or
short-literal addressing modes.)

Most functions also allow the name of a register to be used as the
parameter, even though register names do not have values in BLISS-32.
For example, the following code fragment:

REGISTER R;

IF PROBER { ••• ,R, •••) THEN •••

is equivalent to:

REGISTER R;

IF PROBER{ ••• ,%REF{.R), •••) THEN •••

4-1

MACHINE-SPECIFIC FUNCTIONS

The following provides general rules for the use of %REF and undotted
register names with the parameters:

Rule 1 - A %REF value cannot be used with a DESTINATION
address.

Rule 2 - An undotted register can only be used for operands
that are: BYTE, WORD, LONG, or
Single-precision-floating-point.

Rule 3 - A register name cannot be used as the address of a
character string or packed decimal string.

Table 4-1: Machine-Specific Functions

Processor Register Operations

MFPR Move From Processor Register
MTPR Move to Processor Register

Parameter Validation Operations

PROBER Probe Read Accessibility
PROBEW Probe Write Accessibility

Program Status Operations

BICPSW Bit Clear PSW
BISPSW Bit Set PSW
MOVPSL Move From PSL

Queue Operations

INS QUE. Insert Entry Into Queue
INSQxI Insert Entry Into Queue Interlocked
REM QUE Remove Entry From Queue
REMQxI Remove Entry From Queue Interlocked

Bit Operations

FFC Find First Clear Bit
FFS Find First Set Bit
TESTBITCC Test for Bit Clear; Clear Bit
TESTBITCCI Test for Bit Clear; Clear Bit Interlocked
TESTBITCS Test for Bit Clear; Set Bit
TESTBITSC Test for Bit Set; Clear Bit
TESTBITSS Test for Bit Set; Set Bit
TESTBITSSI Test for Bit .Set; Set Bit Interlocked

(continued on next page)

4-2

MACHINE-SPECIFIC FUNCTIONS

Table 4-1 (Cont.): Machine-Specific Functions

ADAWI
ADDO
ADDF
ADDG
ADDH
ADDM
ASHQ
DIVD
DIVF
DIVG
DIVH
EDIV
EMUL
MULD
MULF
MULG
MULH
SUBD
SUBF
SUBG
SUBH
SUBM

CMPD
CMPF
CMPG
CMPH
CMPM

CVTDF
CVTDI
CVTDL
CVTFD
CVTFG
CVTFH
CVTFI
CVTFL
CVTGF
CVTGL
CVTHF
CVTHL
CVTID
CVTIF
CVTLD
CVTLF
CVTLH
CVTRDH
CVTRDL
CVTRFL
CVTRGH
CVTRGL
CVTRHL

Arithmetic Operations

Add Aligned Word Interlocked
Add Double Operands
Add Float operands
Add Float-G Operands
Add Float-H Operands
Add Multiword Operands
Arithmetic Shift Quad
Divide Double Operands
Divide Float Operands
Divide Float-G Operands
Divide Float-H Operands
Extended-Precision Divide
Extended-Precision Multiply
Multiply Double Operands
Multiply Floating Operands
Multiply Float-G Operands
Multiply Float-H Operands
Subtract Double Operands
Subtract Floating Operands
Subtract Float-G Operands
Subtract Float-H Operands
Subtract Multiword Operands

Arithmetic Comparison Operations

Compare Double Operands
Compare Float Operands
Compare Float-G Operands
Compare Float-H Operands
Compare Multiword Operands

Arithmetic Conversion Operations

Convert Double to Float
Convert Double to Integer
Convert Double to Long
Convert Float to Double
Convert Float to Float-G
Convert Float to Float-H
Convert Float to Integer
Convert Float to Long
Convert Float-G to Float
Convert Float-G to Long
Convert Float-H to Float
Convert Float-H to Long
Convert Integer to Double
Convert Integer to Float
Convert Long to Double
Convert Long to Floating
Convert Long to Float-H
Convert Rounded Double to Float-H
Convert Rounded Double to Long
Convert Rounded Float to Long
Convert Rounded Float-G to Float-H
Convert Rounded Float-G to Long
Convert Rounded Float-H to long

(continued on next page)

4-3

MACHINE-SPECIFIC FUNCTIONS

Table 4-1 (Cont~): Machine-Specific Functions

CMPC3
CMPCS
CRC
LOCC
MATCHC
MOVC3
MOVCS
MOVTC
MOVTUC
SCANC
SKPC
SPANC

ASHP
CMPP
CVTLP
CVTPL
CVTPS
CVTPT
CVTSP
CVTTP
EDIT PC
MOVP

BPT
BUGL
BUGW
CAL LG
CHMx
HALT
INDEX
NOP
ROT
XFC

Character String Operations

Compare Characters 3 Operand
Compare Characters 5 Operand
Cyclic Redundancy Calculation
Locate Character
Match Characters
Move Character 3 Operand
Move Character 5 Operand
Move Translated Characters
Move Translated Until Character
Scan Characters
Skip Character
Span Characters

Decimal String Operations

Arithmetic Shift and Round Packed
Compare Packed
Convert Long to Packed
Convert Packed to Long
Convert Packed to Leading Separate Numeric
Convert Packed to Trailing Numeric
Convert Leading Separate Numeric to Packed
Convert Trailing Numeric to Packed
Edit Packed to Character
Move Packed

Miscellaneous Operations

Breakpoint
Bugcheck With Long Operand
Bugcheck With Word Operand
Call With General Argument List
Change Mode
Halt Processor
Index (Subscript) Calculation
No Operation
Rotate a Value
Extended Function Call

The compiler attempts to optimize the code which corresponds to a
machine-specific function call. It chooses instruction sequences
based on the type of result required of the function and the context
in which it is used. This is illustrated in the following examples:

BLISS Source

IF TESTBITSS(X<3,l>)
THEN

BEGIN
CONSEQUENCE

END

4-4

MACHINE-SPECIFIC· FUNCTIONS

Generated Code

BBCS #3,X,1$

1$:

;

.
I

CONSEQUENCE

Note that the compiler has chosen an instruction with the opposite
sense to the machine-specific function. If 1$ could not be reached by
a byte displacement, the coding would be:

1$:

2$:

BBSS
BRW

#3,X,1$
2$

;
CONSEQUENCE

In the above example, the TESTBITSS routine is used in a situation
where it is required to generate only a control flow result. If a
real result actually was needed, it might be generated as in this
example.

BLISS Source

Y = TESTBITSS(X<3,l>)

Generated Code

1$:

CLRL
BBCS
INCL

y
#3,X,1$
y

A machine-specific function differs from a routine call in that the
compiler can determine exactly how the parameters of the routine call
are going to be used, and so there are cases where %REF does not
really need to allocate a temporary. For example, the call:

BISPSW(%REF (%X'80')); ENABLE DECIMAL OVERFLOW

would be coded as:

BISPSW rxso ENABLE DECIMAL OVERFLOW

witho~t any temporary being allocated.

The compiler can make similar decisions when you use the undotted name
of a local as a parameter in a machine-specific function call. You
are syntactically specifying an address, but depending on the
parameter, that local might still be allocated in a register. For
example,

MOVPSL(ALOCAL)

might result in

MOVPSL R2

4-5

MACHINE-SPECIFIC FUNCTIONS

4.1 ADAWI - ADD ALIGNED WORD INTERLOCKED

ADAWI (SRCADDR, DSTADDR)

Parameters:

SRCADDR - Address of a word whose contents are added to the
destination

DSTADDR - Address of a word to which the,source is to be added
The address must be word-aligned (that is, the low
bit must be zero).

Result:

Contents of the PSL

4.2 ADDD - ADD DOUBLE OPERANDS

ADDO (SRClA, SRC2A, DSTA)

Parameters:

SRClA - Address of a double-precision floating-point
quadword used as the addend

SRC2A - Address of a double-precision floating-point
quadword used as the augend

DSTA - Address of a quadword where the sum is stored

Result:

NOVA LUE

4.3 ADDF - ADD FLOATING OPERANDS

ADDF (SRClA, SRC2A, DSTA)

Parameters:

SRClA - Address of a single-precision floating-point
longword used as the addend

SRC2A - Address of a single-precision floating-point
longword used as the augend

DSTA - Address of a longword where the sum is stored

Result:

NOVALUE

4-6

MACHI'NE-SPECIF'IC FUNCTIONS

4.4 ADDG - ADD FLOAT-G OPERANDS

ADDG (SRClA, SRC2A, DSTA)

Parameters:

SRClA - Address of an extended double-precision
floating-point quadword used as the addend

SRC2A - Address of an extended double-precision
floating-point quadword used as the augend

DSTA - Address of a quadword where the sum is stored

Result:

NOVA LUE

4.5 ADDH - ADD FLOAT-H OPERANDS

ADDH (SRClA, SRC2A, DSTA)

Parameters:

SRClA

SRC2A

DSTA

Results:

NOVA LUE

- Address of an extended-exponent double-precision
floating-point octaword used as the addend

- Address of an extended-exponent double-precision
floating-point octaword used as the augend

Address of an octaword where the sum is stored

4.6 ADDM - ADD MULTIWORD OPERANDS

ADDM (SIZE, SRClA, SRC2A, DSTA)

Parameters:

SIZE

SRClA

SRC2A

DSTA

Result:

NOVA LUE

Compile-time-constant expression indicating the size
of the operands in words (BLISS value units)

- Address of extended multi-precision integer used as
the addend

- Address of extended multi-precision integer used as
the augend

- Address of the sum of source one and source two

4-7

MACHINE-SPECIFIC FUNCTI.ONS

4.7 ASHQ - ARITHMETIC SHIFT QUAD

ASHQ (SHIFT, SRCADDR, DSTADDR)

Parameters:

SHIFT

SRCADDR

DSTADDR

Result:

- Address of a byte whose contents specify the shift
count

- Address of a quadword containing the quantity to be
shifted

- Address of-a quadword where the shifted result is to
be stored

Contents of the PSL

4.8 BICPSW - BIT CLEAR PSW

BICPSW (MASKADDR) ·

Parameter:

MASKADDR - Address of a word whose contents are to be ones
complemented and AND'ed into the PSW

Result:

NOVALUE

4.9 BISPSW - BIT SET PSW

BISPSW (MASKADDR)

Parameter:

MASKADDR - Address of a word whose contents are to be OR'ed
into the PSW

Result:

NOVA LUE

4.10 BPT - BREAK POINT TRAP

BPT ()

Parameters:

None

Result:

NOVA LUE

4-8

MACHINE-SPECIFIC FUNCTIONS

4.11 BUGL - BUGCHECK WITH LONG OPERAND

BUGL (ARG)

Parameters:

ARG

Result:

NOVA LUE

- Link-time constant expression (LTCE) to be
interpreted by the bugcheck exception handling code

The following example based on the DISPAT module in the FllACP:

buil tin
BUGW

external literal
BUG$_UNXSIGNAL;

BUGW(BUG$_UNXSIGNAL or 4);

generates the code sequence:

.EXTRN BUG$_UNXSIGNAL

BUGW
.WORD BUG$_UNXSIGNAL!4

The in-line generation of this code eliminates the need to create a
PLIT containing hand-assembled code.

4.12 BUGW - BUGCHECK WITH WORD OPERAND

BUGW (ARG)

Parameters:

ARG

Result:

NOVALUE

Link-time constant expression (LTCE) word value to
be interpreted by the bugcheck exception handling
code

4.13 CALLG - CALL WITH GENERAL PARAMETER LIST

CALLG (ARGLIST, RTN)

Parameters:

ARGLIST

RTN

- Address {of the parameter list) to be placed in the
parameter pointer (AP) register must not be a
register name or a %REF vlaue)

- Address of the routine to be called

4-9

MACHINE-SPECIFIC FUNCTIONS

Result:

Same as result of the routine that is called

Note:

This function does not interact with any linkage attribute information
that may be associated with the second parameter. It must be used
only to call a routine with a standard VAX/VMS linkage (BLISS and
FORTRAN in BLISS-32).

To pass a routine's argument list to another routine, use the
following sequence:

BUILT IN
AP,
CALLG;

CALLG(.AP,OTHERRTN);

4.14 CHMX - CHANGE MODE

CHME (ARG)
CHMK (ARG)
CHMS (ARG)
CHMU (ARG)

Parameters:

ARG

Result:

NOVALUE

- Address of a word whose contents are used as a
parameter code

4.15 CMPD - COMPARE DOUBLE

CMPD (SRClA, SRC2A)

Parameters:

SRClA

SRC2A

Result:

-1
0
l

- Address of a quadword containing a double-precision
floating-point value be the name of a register nor a
%REF value)

- Address of a quadword containing a double-precision
floating-point value

- SRClA less than SRC2A
- SRClA equal to SRC2A
- SRClA greater than SRC2A

4-10

MACHINE-SPECIFIC FUNCTIONS

4.16 CMPF - COMPARE FLOATING

CMPF (SRClA, SRC2A)

Parameters:

SRClA

SRC2A

Result:

-1
0
1

- Address of a longword containing a single-precision
floating-point value

- Address of a longword containing a single-precision
floating-point value

- SRClA less than SRC2A
- SRClA equal to SRC2A
- SRClA greater than SRC2A

4.17 CMPP - COMPARE PACKED

CMPP (SRClLENA, SRClADDR, SRC2LENA, SRC2ADDR)

Parameters:

SRClLENA

SRClADDR

SRC2LENA

SRC2ADDR

Result:

-1
0
1

- Address of a word containing the length of the
decimal string SRCl

- Address of the base of packed decimal string SRCl

- Address of a word containing the length of decimal
string SRC2

- Address of the base of packed decimal string SRC2

- SRCl less than SRC2
- SRCl equal to SRC2
- SRCl greater than SRC2

Note: CMPP3 or CMPP4 is generated depending on the operands provided.

4.18 CRC - CYCLIC REDUNDANCY CHECK

CRC (TABLEADDR, INICRCADDR, STRLENADDR, STREAMADDR, DSTADDR)

Parameters:

TABLEADDR - Address of a 16-longword table

INICRCADDR - Address of a longword which contains the initial CRC

STRLENADDR - Address of a word containing the unsigned length of
the data stream in bytes

STREAMADDR - Address of the first byte of the data stream

DSTADDR - Address of a longword where the resulting 32-bi t CRC
is to be stored

4-11

MACHINE~SPECIFIC FUNCTIONS

Result:

NOVA LUE

4.19 CVTDF - CONVERT DOUBLE TO FLOATING

CVTDF (SRCA, DSTA)

Parameters:

SRCA

DSTA

Result:

- Address of a quadword containing a double-precision
floating-point value

- Address of a longword where the single-precision
floating-point conversion is stored

1 - No floating-point overflow

0 - Floating-point overflow

4.20 CVTDI - CONVERT DOUBLE TO INTEGER

CVTDI (SRCA, DSTA)

Parameters:

SRCA

DSTA

Result:

- Address of a quadword containing a double-precision
floating-point value

- Address where the integer conversion is stored

1 - No integer overflow

0 - integer overflow

4.21 CVTDL - CONVERT DOUBLE TO LONG

CVTDL (SRCA, DSTA)

Parameters:

SRCA

DSTA

Result:

1

0

- Address of a quadword containing a double-precision
floating-point value

- Address of a longword where the integer conversion
is stored

- No integer overflow

- Integer overflow

4-12

MACHINE-SPECIFIC FUNCTIONS

4.22 CVTFD - CONVERT FLOATING TO DOUBLE

CVTFD (SRCA, DSTA)

Parameters:

SRCA

DSTA

Result:

NOVA LUE

- Address of a longword containing a single-precision
floating-point value

- Address of a quadword where the double-precision
floating-point conversion is stored

4.23 CVTFG - CONVERT FLOATING TO FLOAT-G

CVTFG (SRCA, DSTA)

Parameters:

SRCA - Address of a longword containing a single-precision

DSTA

Result:

NOVALUE

floating-point value

- Address of a quadword where the extended
double-precision floating-point conversion is stored

4.24 CVTFH - CONVERT FLOATING TO FLOAT-ff

CVTFH (SRCA, DSTA)

Parameters:

SRCA - Address of a longword containing a single-precision
floating-point value

DSTA - Address of an octaword where the extended-exponent
double-precision floating-point conversion is stored

Result:

NOVA LUE

4.25 CVTFI - CONVERT FLOATING TO INTEGER

CVTFI (SRCA, DSTA)

Parameters:

SRCA - Address of a longword containing a single-precision
floating-point value

DSTA - Address of a longword where the integer conversion
is stored

4-13

MACHINE-SPECIFIC FUNCTIONS

Result:

1 - No integer overflow

0 - Integer overflow

4.26 CVTFL - CONVERT FLOATING TO LONG

CVTFL (SRCA, DSTA)

Parameters:

SRCA - Address of a longword containing a single-precision
floating-point value

DSTA

Result:

- Address of a longword where the integer conversion
is stored

1 - No integer overflow

0 - Integer overflow

4.27 CVTGF - CONVERT FLOAT-G TO FLOATING

CVTGF (SRCA, DSTA)

Parameters:

SRCA - Address of a quadword containing an
double-precision floating-point value

extended

DSTA - Address of a longword where the single-precision
floating-point conversion is stored

Result:

NOVALUE·

4.28 CVTGL - CONVERT FLOAT-G TO LONG

CVTGL (SRCA, DSTA)

Parameters:

SRCA

DSTA

Result:

NOVALUE

- Address of a quadword containing an
double-precision floating-point value

extended

- Address of a longword where the integer conversion
is stored

4-14

MACHINE~SPECIFIC FUNCTIONS

4.29 CVTHF - CONVERT FLOAT-ft TO FLOATING

CVTHF (SRCA,DSTA)

SRCA

DSTA

Result:

NOVA LUE

- Address of an
extended-exponent
value

octaword containing an
double-precision floating-point

- Address of a longword where the single-precision
floating-point conversion is stored

4.30 CVTHL - CONVERT FLOAT-B TO LONG

CVTHL (SRCA, DSTA)

Parameters:

SRCA

DSTA

Result:

NOVA LUE

- Address of an
extended-exponent
value

octaword containing an
double-precision floating-point

- Address of a longword where the integer conversion
is stored

4.31 CVTID - CONVERT INTEGER TO DOUBLE

CVTID (SRCA, DSTA)

Parameters:

SRCA

DSTA

Result:

NOVA LUE

- Address of a longword containing an integer value

- Address of a quadword where the double-precision
floating-point conversion is stored

4.32 CVTIF - CONVERT INTEGER TO FLOATING

CVTIF (SRCA, DSTA)

Parameters:

SRCA

DSTA

- Address of a longword containing an integer value

- Address of a longword where the single-precision
floating point conversion is stored

4-15

MACHINE-SPECIFIC FUNCTIONS

Result:

NOVALUE

4.33 CVTLD - CONVERT LONG TO DOUBLE

CVTLD (SRCA, DSTA)

Parameters:

SRCA - Address of a longword containing an integer value

DSTA - Address of quadword where the double-precision
floating-point conversion is stored

Result:

NOVA LUE - No overflow can occur

4.34 CVTLF - CONVERT LONG TO FLOATING

CVTLF {SRCA, DSTA)

Parameters:

SRCA - Address of a longword containing an integer value

DSTA

Result:

NOVA LUE

- Address of a longword where the single-precision
floating-point conversion is stored

- No overflow can occur

4.35 CVTLH - CONVERT LONG TO FLOAT-ff

CVTLH {SRCA, DSTA)

Parameters:

SRCA

DSTA

Result:

NOVALUE

- Address of a longword containing an integer value

- Address of an octaword where the extended-exponent
double-precision floating point conversion is stored

4.36 CVTLP - CONVERT LONG TO PACKED

CVTLP (SRCA, DSTLENA, DSTADDR)

4-16

MACHINE-SPECIFIC FUNCTIONS

Parameters:

SRCA - Address of a longword containing an integer value

DST LENA

DSTADDR

Result:

- Address of a word containing the length of the
destination string

- Address of the base of the destination string

l - No decimal overflow

O - Decimal overflow

4.37 CVTPL - CONVERT PACKED TO LONG

CVTPL (SRCLENA, SRCADDR, DSTA)

Parameters:

SRCLENA

SRCADDR

- Address of a word containing the length of the
source string

- Address of the base of the source string

DSTA - Address of a longword where the integer conversion
is stored

Result:

1 - No integer overflow

0 - Integer overflow

4.38 CVTPS - CONVERT PACKED TO LEADING SEPARATE NUMERIC

CVTPS (SRCLENA, SRCADDR, DSTLENA, DSTADDR)

Parameters:

SRCLENA

SRCADDR

·DSTLENA·

DSTADDR

Result:

1

0

- Address of a word containing the length of the
source string

- Address of the base of the source string

- Address of a word containing the length of the
destination string

- Address of the base of the destination string

- No decimal overflow

- Decimal overflow

4-17

MACHINE-SPECIFIC FUNCTIONS

4.39 CVTPT - CONVERT PACKED TO TRAILING NUMERIC

CVTPT (SRCLENA, SRCADDR, TBLADDR, DSTLENA, DSTADDR)

Parameters:

SRCLENA - Address of a word containing the length of the
source string

SR CAD DR - Address of the base of the source string

TBLADDR - Address of the table used to convert the sign

DST LENA - Address of a word containing the length of the
destination string

DSTADDR - Address of the base of the destination string

Result:

1 - No decimal overflow

O - Decimal overflow

4.40 CVTRDH - CONVERT ROUNDED DOUBLE TO FLOAT-ff

CVTRDH (SRCA, DSTA)

Parameters:

SRCA - Address of a quadword containing a double-precision

DSTA

Result:

NOVALUE

floating-point value

- Address of an octaword where the extended-exponent
double-precision floating-point conversion is stored

4.41 CVTRDL - CONVERT ROUNDED DOUBLE TO LONG

CVTRDL (SRCA, DSTA)

Parameters:

SRCA - Address of a quadword containing a double-precision

DSTA

Result:

1

0

floating-point value

- Address of a longword where the integer conversion
is stored

- No integer overflow

- Integer overflow

4-18

MACHINE-SPECIFIC-' FUNCTIONS

4.42 CVTRFL - CONVERT ROUNDED FLOATING TO LONG

CVTRFL (SRCA, DSTA)

Parameters:

SRCA - Address of a longword containing a single-precision
floating-point value

DSTA Address of a longword where the integer conversion
is stored

Result:

1- - No iriteger overflow

0 - Integer overflow

4.43 CVTSP - CONVERT LEADING SEPARATE TO PACKED

CVTSP (SRCLENA, SRCADDR, DSTLENA, DSTADDR)

Parameters:

SRCLENA - Address of a word containing the length of the
source string

SR CAD DR - Address of the base of the source string

DSTLENA - Address of a word containing the length of the
destinatiOn string

DSTADDR - Address of the base of the destination string

Result:

1 - No decimal overflow

0 - Decimal overflow

4.44 VTTP - CONVERT TRAILING NUMERIC TO PACKED

CVTTP (SRCLENA, SRCADDR, TBLADDR, DSTLENA, DSTADDR)

Parameters:

SRCLENA - Address of a word containing the length of the
source string

SR CAD DR - Address of the base of the source string

TBLADDR - Address of the table used to convert the sign

DST LENA - Address of a word containing the length of the
destination string

DSTADDR - Address of the base of the destination string

4-19

MACHINE-SPECIFIC FUNCTIONS.

Result:

1 - No decimal overflow

O - Decimal overflow

4.45 DIVD - DIVIDE DOUBLE OPERANDS

DIVD {DIVSR, DIVID, QUOT)

Parameters:

DIVSR

DIVID

- Address of a double-precision
quadward used as the divisor

- Address of a double-precision
quadword used as the dividend

floating-point

floating-point

QUOT - Address of a quadword where the quotient is stored

Result:

NOVA LUE

4.46 DIVF - DIVIDE FLOATING OPERANDS

DIVF {DVISR DIVID, QUOT)

DVISR - Address of a single-precision floating-point
longword used as the divisor

DIVID - Address of a single-precision floating-point
longword used as the dividend

QUOT - Address of a longword where the quotient is stored

Result:

NOVALUE

4.47 DIVG - DIVIDE FLOAT-G OPERANDS

DIVG {DIVSR, DIVID, QUOT)

Parameters:

DIVSR

DIVID

- Address of an extended double-precision floating
point quadword used as the divisor

- Address of an extended double-precision floating
point quadword used as the dividend

QUOT - Address of a quadword where the quotient is stored

Result:

NOVA LUE

4-20

MACHINE-SPECIFIC FUNCTIONS

4.48 DIVH - DIVIDE FLOAT-H OPERANDS

DIVH (DIVSR, DIVID, QUOT)

Parameters:

DIVSR - Address of an extended-exponent double-precision
floating-point octaword that is used as the divisor

DIVID - Address -0f an extended-exponent doublw-precision
floating-point octaword that is used as the dividend

QUOT - Address of an octaword where the quotient is stored

Result:

NOVA LUE

4.49 EDITPC - EDIT PACKED TO CHARACTER

EDITPC (SRCLENA, SRCADDR, PATTERN, DSTADDR)

Parameters:

SRCLENA - Address of a word containing the length of the
source string

SR CAD DR - Address of the base of the source string

PATTERN - Address of the pattern-operator string

DSTADDR - Address of the base of the destination string

Result:

1 - No decimal overflow

0 - Decimal overflow

4.50 EDIV - EXTENDED-PRECISION DIVIDE

EDIV (DIVISOR, DIVIDEND, QUOTIENT, REMAINDER)

Parameters:

DIVISOR - Address of a longword whose contents are used as the
divisor

DIVIDEND - Address of a quadword whose contents are used as the
dividend

QUOTIENT - Address of a longword where the quotient is to be
stored

REMAINDER - Address of a longword where the remainder is to be
stored

Result:

Contents of the PSL

4-21

MACHINE,...SPECIFIC FUNCTIONS

4.51 EMUL - EXTENDED-PRECISION MULTIPLY

EMUL (MULR, MULD, ADD, PROD)

Parameters:

MULR

MULD

ADD

PROD

Result:

- Address of a longword whose contents are used as the
multiplier

- Address of a longword whose contents are used as the
multiplicand

- Address of a longword whose contents are
sign-extended to a quadword and added to the product
quadword

- Address of a quadword where the result is to be
stored a %REF value)

Contents of the PSL

4.52 FFC AND FFS - FIND AND MODIFY OPERATIONS

FFC (POSADDR, SIZADDR, BASEADDR, DSTADDR) Find first clear bit
FFS (POSADDR, SIZADDR, BASEADDR, DSTADDR) Find first set bit

Parameters:

POSADDR

SI ZADOR

BASEADDR

DSTADDR

Result:

1

0

- Address of a longword whose contents specify a bit
position relative to the low bit of the byte
addressed by BASEADDR. The low bit of that byte is
bit position zero.

- Address of a byte whose contents, when zero extended
to 32 bits, have a value less than or equal to 32.
This value specifies the size of the field to be
searched. The size of the field is measured in bits
and begins at the bit position specified by POSADDR
and extends toward increasing bit numbers.

- Address of a byte whose low bit is interpreted as
position zero

- Address of a longword
first bit found in
stored

where the position of the
the specified state is to be

No bit in the specified state is found in the field
searched.

- Otherwise

4-22

MACHINE-SPECIFIC FUNCTIONS

4.53 HALT - HALT PROCESSOR

HALT ()

Parameters:

NONE

Result:

NOVA LUE

Description:

This routine generates a HALT instruction.

4.54 INDEX - INDEX CALCULATION

INDEX (SUBSCRIPT, LOW, HIGH, SIZE, INDEXIN, INDEXOUT)

Parameters:

SUBSCRIPT

LOW

HIGH

SIZE

INDEXIN

INDEXOUT

Result:

NOVALUE

- Address of a longword containing the subscript

- Address of a longword containing the lower bound of
the subscript range

- Address of a longword containing the upper bound of
the subscript range

- Address of a longword containing the scale factor

- Address of a longword containing the initial index
value

- Address of a longword where the result is to be
stored

4.55 INSQHI AND INSQTI - INSERT ENTRY IN QUEUE, INTERLOCKED

INSQHI(ENTRY, HEADER)
INSQTI(ENTRY, HEADER)

Insert entry in queue at head, interlocked
Insert entry in queue at tail, interlocked

Parameters:

ENTRY

HEADER

- Address of an entry to be inserted in a queue
following the header

- Address of the queue header

4-23

Result:

0

1

2

MACHINE-SPECIFIC ·FUNCTIONS

- If ENTRY was not the first entry to be inserted in
the queue

- If the secondary interlock could not be acquired

- If ENTRY was the first entry to be inserted into the
queue

Note that, if a real result is needed, the instruction sequence
generated for these functions is:

1$:
2$:

CLRL
INSQxI
BCS
BNEQ
INCL
INCL

tmp
ENTRY,HEADER
1$
2$
tmp
tmp

If only a flow result is requested, the instruction sequence is:

INSQxI ENTRY,HEADER
BCC 1$ Success

Failure actions

Thus, the BLISS expression to set a software interlock realized with a
queue is:

WHILE INSQHI(ENTRY, HEADER) DO WAIT();

4.56 INSQUE - INSERT ENTRY IN QUEUE

INSQUE (ENTRY, PRED)

Parameters:

ENTRY

PRED

Result:

1

- Address of an entry to be inserted in the queue
after the entry specified by PRED

- Address of an entry in a queue

- ENTRY was the first entry to be inserted .into the
queue

0 - Otherwise

4.57 LOCC - LOCATE CHARACTER

LOCC (CHARA, LENA, ADDR)

Parameters:

CHARA - Address of a byte containing the character to be
located

4-24

LENA

ADDR

Result:

TRUE

FALSE

MACHINE-SPECIFIC FUNCTIONS

- Address of a word containing the search string
length

- Address of the string to be searched

- A byte was located which was the same as .CHARA<0,8>
(the Z condition code is clear)

- No byte was located (the Z condition code is set)

4.58 MATCHC - MATCH CHARACTERS

MATCHC (OBJLENA, OBJADDR, SRCLENA, SRCADDR)

Parameters:

OBJLENA

OBJ AD DR

SRCLENA

SR CAD DR

Result:

TRUE

FALSE

- Address of word containing the length of the pattern
string

- Address of the pattern string

- Address of a word containing the length of the
string to be searched

- Address of the string to be searched

- A match was found (the Z condition code is set)

- No match was found (the Z condition code is clear)

4.59 MFPR - MOVE FROM PROCESSOR REGISTER

MFPR (PROCREG, DSTADDR)

Parameters:

PROCREG

DSTADDR

Result:

NOVALUE

- Processor register number

- Address of a longword where the contents of the
processor register is to be stored

4.60 MOVC3 - MOVE CHARACTER 3 OPERAND

MOVC3 (LENA, SRCADDR, DSTADDR)

Parameters:

LENA - Address of a word containing the length of the
source string

4-25

MACHINE-SPECIFIC FUNCTIONS

SRCADDR - Address of the base of the source string

DSTADDR - Address of the destination string

Result:

NOVALUE

4.61 MOVCS ..;.MOVE CHARACTER 5 OPERAND

MOVCS (SRCLENA, SRCADDR, FILL,TBLADDR, DSTLENA, DSTADDR)

Parameters:

SRCLENA

SRCADDR

FILL

TBLADDR

DST LENA

DSTADDR

Result:

NOVA LUE

- Address of word containing the length of the source
string

- Address of the base of the source string

- Address of a byte containing the fill character

- Address of the translation table

- Address of word containing the destination-string
length

- Address of the destination string

4.62 MOVP - MOVE PACKED

MOVP {LENA, SRCADDR, DSTADDR)

Parameters:

LENA - Address of a word containing the length of the
source string

SR CAD DR - Address of the base of the source decimal string

DSTADDR - Address of the base of the destination

Result:

NOVA LUE

4.63 MOVPSL - MOVE FROM PSL

MOVPSL (DSTADDR)

Parameter:

DSTADDR - Address of a longword where the contents of the PSL
is to be stored

4-26

MACHINE-SPECIFIC FUNCTIONS

Result:

NOVA LUE

4.64 MOVTC - MOVE TRANSLATED CHARACTERS

MOVTC (SRCLENA, SRCADDR, FILL, TBLADDR, DSTLENA, DSTADDR)

Parameters:

SRCLENA - Address of a word containing the source length

SRCADDR - Address of source string

FILL - Address of a byte containing the fill character

TBLADDR - Address of the translation table

DST LENA - Address of a word containing the destination length

DSTADDR - Address of the destination string

Result:

NOVA LUE

4.65 MOVTUC - MOVE TRANSLATED UNTIL CHARACTER

MOVTUC (SRCLENA, SRCADDR, ESCA, TBLADDR, DSTLENA, DSTADDR)

Parameters:

SRCLENA

SRCADDR

ESCA

TBLADDR

DST LENA

DSTADDR

Result:

- Address of a word containing the length of the
source string

- Addiess of the base of the source string

- Address of a byte containing the escape character

- Address of the translation table (may be created
using CH$TRANSTABLE)

- Address of a word containing the length of the
destination string

- Address of the base of the destination string

If the string was successfully translated without escape, the
result is 0. Otherwise, the result is the address of the byte in
the source string which caused the escape.

4.66 MTPR - MOVE TO PROCESSOR REGISTER

MTPR (SRCADDR, PROCREG)

4-27

Parameters:

SRCADDR

PROCREG

Result:

NOVA LUE

MACHINE-SPECIFIC FUNCTIONS

- Address of a longword whose contents are to be
loaded into the designated processor register

- Processor register number

4.67 MULD - MULTIPLY DOUBLE OPERANDS

MULD (SRClA, SRC2A, DSTA)

Parameters:

SRClA - Address of a double-precision floating-point
quadword used as the multi plier

SRC2A - Address of a double-precision floating-point
quadword used as the multiplicand

DSTA - Address of a quadword where the product is stored

Result:

NOVA LUE

4.68 MULF - MULTIPLY FLOATING OPERANDS

MULF (SRClA, SRC2A, DSTA)

Parameters:

SRClA - Address of a single-precision floating-po int
longword used as the multi plier

SRC2A - Address of a single-precision floating-point
longword used as the multiplicand

DSTA - Address of a longword where the product is stored

Result:

NOVA LUE

4.69 MULG - MULTIPLY FLOAT-G OPERANDS

MULG (SRClA, SRC2A, DSTA)

Parameters:

SRClA - Address of an extended double-precision
floating-point quadword used as the multiplier

SRC2A - Address of an extended double-precision
floating-point quadword used as the multiplicand

DSTA - Address of a quadword where the product is stored

4-28

MACHINE-SPECIFIC FUNCTIONS

Result:

NOVALUE

4.70 MULH - MULTIPLY FLOAT-R OPERANDS

MULH (SRClA, SRC2A, DSTA)

Parameters:

SRClA

SRC2A

DSTA

Result:

NOVALUE

- Address of an extended-exponent double-precision
floating-point octaword used as a multiplier

- Address of an extended-exponent double-precision
floating-point octaword used as a multiplicand

- Address of an octaword where the product is stored

4.71 NOP - NO OPERATION

NOP ()

Parameters:

None

Result:

NOVA LUE

4.72 PROBER - PROBE READ ACCESSIBILITY

PROBER (MODEADDR, LENGTHADDR, BASEADDR)

Parameters:

MODEADDR - Address of a byte whose
protection mode

contents specify a

LENGTHADDR - Address of a word whose contents are zero-extended
and added to BASEADDR to specify the last byte of an
area in memory

BASEADDR

Result:

1

0

- Address of the first byte of an area in memory (must
not be the name of a register nor a %REF value)

- Both first and last bytes are read-accessible

- Otherwise

4-29

MACHINE-SPECIFIC FUNCTIONS

4.73 PROBEW - PROBE WRITE ACCESSIBILITY

PROBEW (MODEADDR, LENGTHADDR, BASEADDR)

Parameters:

MODEADDR - Address of a byte whose
protection mode

contents specify a

LENGTHADDR - Address of a word whose contents are zero-extended
and added to BASEADDR to specify the last byte of an
area in memory

BASEADDR

Result:

- Address of the first byte of an area in memory (must
not be the name of a register nor a %REF value)

1 - Both first and last bytes are write-accessible

O - Otherwise

4.74 REMQHI AND REMQTI - REMOVE ENTRY FROM QUEUE, INTERLOCKED

REMQHI (HEADER, ADDR)
REMQTI (HEADER, ADDR)

Remove from queue at head, interlocked
Remove from queue at tail, interlocked

Parameters:

HEADER

ADDR

Result:

0

1

2

3

- Address of the queue header

- Address of a longword where the address of the entry
removed is to be stored

- The queue is not empty; an entry was removed.

- The secondary interlock could not be acquired.

- The queue is now empty; the last entry was removed.

- The queue was already empty; no entry was removed.

The result of REMQxI is TRUE if no entry was removed, either because
the queue was empty or because the secondary interlock was not
acquired.

The instruction sequence generated in real-context is:

1$:
2$:

CLRL
REMQxI
BCS
BVS
BEQL
DECL
ADDL
INCL

tmp
HEADER,ADDR
2$
1$
3$
tmp
#2,tmp
tmp

Interlock failed
Remove failed
Removed an entry
Removed last entry

The instruction sequence generated in flow-context is:

REMQxI HEADER,ADDR
BVC 1$

4-30

Entry removed
Remove failed

MACHINE-SPECIFIC FUNCTIONS

4.75 REMQUE - REMOVE ENTRY FROM QUEUE

REMQUE (ENTRY, ADDR)

Parameters:

ENTRY - Address of an entry in a queue

ADDR - Address of a longword where the address of the entry

Result:

Value

0

2

3

removed is to be stored

Initial
State

not empty

not empty

empty

Final
State

not empty

empty

empty

Entry
Removed

yes

yes

no

Note that the value of REMQUE is true only if no entry was removed.

The value is computed from the condition codes as:

(Z-bit)Al OR (V-bit)

4.76 ROT - ROTATE A VALUE

ROT (VALUE, SHIFT)

Parameters:

VALUE - Value to be rotated

SHIFT - Number of bits to rotate

Result:

VALUE rotated the specified number of bits

4.77 SCANC - SCAN CHARACTERS

SCANC (LENA, ADDR, TBLADDR, MASKA)

Parameters:

LENA - Address of a word containing the length of
string to be scanned

ADDR - Address of the base of the string

TBLADDR - Address of the translation table

MAS KA - Address of a byte containing the mask to use
scanning

4-31

the

in

MACHINE~SPEClPIC FUNCTIONS

Result:

If the SCANC fails to find a match, the result is O. Otherwise,
the result is the address of the byte that produced a nonzero AND
with the MASK.

4.78 SKPC - SKI.P CHARACTER

SKPC (CHARA, LENA, ADDR)

Parameters:

CHARA

.LENA

ADDR

Result:

TRUE

FALSE

- Address of a byte containing the character to be
skipped

- Address of a word containing the search string
length

- Address of the string to be searched

- A byte was located which was not the same as
.CHARA<0,8> (the Z condition code is clear)

- No byte was located (the Z condition code is set)

4.79 SPANC - SPAN CHARACTERS

SPANC (LENA, ADDR, TBLADDR, MASKA)

Parameters:

LENA - Address of a word containing the length of the
string to be spanned

ADDR - Address of the base of the string

TBLADDR - Address of the translation table

MAS KA - Address of a byte containing the mask to use in
spanning

Result:

If the SPANC fails to find a match, the result is O. Otherwise,
the result is the address of the byte that produced a zero AND
with the MASK.

4.80 UBD - SUBTRACT DOUBLE·OPERANDS

SUBD (SRClA, SRC2A, DSTA)

Parameters:

SRClA - Address of a double-precision
quadword used as the subtrahend

4-32

floating-point

SRC2A

DSTA

Result:

NOVALUE

MACHINE-SPECIFIC FUNCTIONS

- Address of a double-precision
quadword used as the minuend

floating-point

- Address of the quadword where the difference is
stored

4.81 SUBF - SUBTRACT FLOATING OPERANDS

SUBF {SRClA, SRC2A, DSTA)

Parameters:

SRClA - Address of a single-precision floating-point
longword used as the subtrahend

SRC2A - Address of a single-precision floating-point
longword used as the minuend

DSTA - Address of a longword where the difference is stored

Result:

NOVA LUE

4.82 SUBG - SUBTRACT FLOAT-G OPERANDS

SUBG {SRClA, SRC2A, DSTA)

Parameters:

SRClA - Address of an extended double-precision
floating-point quadword used as the subtrahend

SRC2A - Address of an extended double-precision
floating-point quadword used as the minuend

DSTA - Address of a quadword where the difference is stored

Result

NOVA LUE

4.83 SUBH - SUBTRACT FLOAT-H OPERANDS

SUBH (SRClA, SRC2A, DSTA)

Parameters:

SRClA

SRC2A

DSTA

- Address of an extended-exponent double-precision
floating-point ocatword used as the subtrahend

- Address of an extended-exponent double-precision
floating-point octaword used as the minuend

- Address of an octaword where the difference is
stored

4-33

MACHINE-SPECIFIC FUNCTIONS·

Result:

NOVA LUE

4.84 SUBM - SUBTRACT MULTIWORD OPERANDS

SUBM {SIZE, SRClA, SRC2A, DSTA)

Parameters:

SIZE

SRClA

.SRC2A

DSTA

Result:

NOVA LUE

4.85 TESTBITX

TESTBITSS
TESTBITSC
TESTBITCS
TESTBITCC
TESTBITSSI

TESTBITCCI

Parameter:

FIELD

Result:

1

0

Compile-time-constant-expression indicating the size
of the operands in fullwords {BLISS value units)

- Address of an extended multi-precision integer used
as the subtrahend

- Address of an extended multi-precision integer used
as the minuend

- Address of the difference

- TEST AND MODIFY OPERATIONS

{FIELD) Test for bit set, then set bit
{FIELD) Test for bit set, then clear bit
{FIELD) Test for bit clear, then set bit
{FIELD) Test for bit clear, then clear bit

{FIELD) Test for bit set, then set bit
{interlocked)

{FIELD) Test for bit clear, then clear bit
(interlocked)

- Address with optional field selector which specifies
a field whose low bit will be tested for a
particular state. That bit will be set to the
specified state. The size parameter of the field
selector is ignored and a literal value one is
substituted

Note that these
machine-specific
field selector
address.

are
set

that

the only routines in the
which accept an address with
cannot be evaluated to an

Bit tested was in the specified state

- Otherwise

4-34

MACHINE-SPECIFIC FUNCTIONS

4.86 XFC - EXTENDED FUNCTION CALL

XFC (OPCODE)

Parameters:

OPCODE

Result:

NOVA LUE

- Link-time-constant-expression to be deposited in the
byte which follows the XFC opcode in the instruction
stream

4-35

CHAPTER 5

PROGRAMMING CONSIDERATIONS

This chapter provides practical help on writing BLISS programs.
First, usage differences between LIBRARY and REQUIRE files are
considered. Then, some common BLISS programming errors are discussed.

5.1 LIBRARY AND REQUIRE USAGE DIFFERENCES

BLISS library files are used like required files: declarations that
are common to more than one module are centralized in a single file,
which is automatically incorporated into other modules during
compilation by means of REQUIRE or LIBRARY declarations.

Library files are more efficient for doing this than required files
for two reasons. First, with files invoked by REQUIRE declarations,
the cost of processing the source occurs every time the file is used
in a compilation. However, with library files, the major compilation
cost occurs once when the library is compiled, and a much smaller cost
occurs each time the library file is used in a compilation. A library
file closely approximates the internal symbol table representation
used by the compiler; hence, costs of lexical processing (including
scanning, lexical conditionals, lexical functions, and macro
expansions) and declaration parsing and checking occur only during the
library compilation.

Second, with files invoked by REQUIRE declarations, all declarations
contained in the file are incorporated into the compiler symbol table.
With library files, the compiler does not incorporate declarations
into the normal symbol table until they are actually needed.
Declarations of names that are not used do not fill up the symbol
table.

The difference in cost depends on many factors, including the size of
the library, the size of the module being compiled, and the percentage
and kind of declarations used from a library. Experimental results
indicate that compiler time and space requirements can typically be
improved by a factor of four by using library files instead of source
files.

5-1

PROGRAMMING CONSIDERATIONS

Library files and the same declarations used from source files using
the REQUIRE declarations are similar. However, the differences are:

• Files invoked by REQUIRE declarations are source (text) files;
files invoked by LIBRARY declarations must be special files
created by the compiler in a previous library compilation.

• Files invoked by REQUIRE declarations can contain any source
text that is valid when that source text is substituted for
the REQUIRE declaration. Files invoked by LIBRARY
declarations must be compiled from sources that consist of a
sequence of (only} the following declarations:

COMPILETIME
EXTERNAL
EXTERNAL LITERAL
EXTERNAL ROUTINE
FIELD
KEYWORDMACRO
LIBRARY
LINKAGE
LITERAL
MACRO
REQUIRE
STRUCTURE
SWITCHES
UNDECLARE

• SWITCHES. declarations contained in files invoked by the
REQUIRE decla.ration can affect the module being compiled;
those contained in files used to produce library files affect
only the library compilation. Switch settings are not
incorporated into the compilation that uses the library file.

(The only switches that are useful in a library compilation
are LIST, LANGUAGE, and ERRS. The remaining switches may be
given, but are effectively ignored since none of them has any
effect on the declarations that are valid in a library
compilation.}

• Files invoked by REQUIRE declarations. can have effects that
depend on previous declarations or switch settings in the
module being compiled. This can occur in a lexical
conditional (%IF-%THEN-%ELSE-%FI) or macro expansion that
depends either on the lexical functions %SWITCHES, %DECLARED,
or %VARIANT, or on values of predeclared literals, such as
%BPVAL. (Refer to "Predeclared Literals" in Section 6. 3.1.1.}
Files invoked by LIBRARY declarations do not have effects that
depend on previous declarations or switch settings, because
SWITCijES declarations, REQUIRE declarations, lexical
conditionals or macro calls contained in sources used to
produce a library file are processed during the library
compilation.

• Appropriately written source files can be invoked by REQUIRE
declarations in BLISS compilers other than BLISS-32. Library
files can be invoked only in compilations by the same compiler
that created the library file.

5-2

PROGRAMMING CONSIDERATIONS

In most normal cases, the source files used to create a library can be
invoked by a REQUIRE declaration or the library can be invoked by a
LIBRARY declaration with identical effects in the module being
compiled. However, the differences presented above can lead to
problems that are difficult to identify. Therefore, one or the other
form should be used consistently for each set of declarations.

5.2 FREQUENT BLISS CODING ERRORS

Certain coding errors occur frequently, especially when new BLISS
users compile and debug a new module. The following check list may be
useful when you cannot seem to find the source of a problem.

S.2.1 Missing Dots

The most frequent error is to forget a dot. Except for the left side
of an assignment expression, the appearance of a data segment name
without a preceding fetch operator is the exception, ,and usually a
mistake. For example:

IF A THEN •••

should almost certainly be:

IF .A THEN •••

5.2.2 Valued and Nonvalued Routines

The BLISS compiler does not
contexts that do not use
routine:

ROUTINE R(A): NOVALUE =
BEGIN

RETURN 5;

END;

diagnose useless value expressions in
a value. For example, in the following

the apparent return value 5 is discarded, since the routine has the
NOVALUE attribute.

However, in the following case:

ROUTINE S(B) =
BEGIN

RETURN;

END;

an informational message is issued indicating that a value expression
is missing in a context that implies a value. (The compiler assumes a
value of zero for missing expressions.)

5-3

PROGRAMMING CONSIDERATIONS

S.2.3 Semicolons and Values of Blocks

It is common to think of a semicolon as a terminator of an expression,
but this is not true and can lead to errors. In the following
example:

IF .A
THEN

X=.Y;
ELSE

X=-5;

the first semicolon terminates the initial IF-THEN and the subsequent
ELSE is in error.

A more subtle error is to place a semicolon after the last expression
of a block when that expression is supposed to be the value of the
block. (This is very similar to Section 5.2.2 above concerning valued
and nonvalued routines.)

5.2.4 Complex Expressions Using AND, OR, and NOT

When writing complex tests involving the AND, OR, and NOT operators,
it is easy to confuse the relative precedence of the operators. Use
parentheses to make your intent explicit to the compiler, to. other
readers, and to yourself. For example, instead of:

IF .X EQL 0 AND .Y OR NOT .J THEN •••

use:

IF ((.X EQL 0) AND .Y) OR (NOT .J) THEN •••

5.2.5 Computed Routine Calls

When computing the address of a routine to be called, enclose the
expression that computes the address in parentheses followed by the
parameters. For example:

BEGIN
EXTERNAL ROUTINE

R;
LOCAL

L;
L = R;
{.L) (0)
END

calls the routine at address R with a parameter of zero. However:

• L {0)

calls the routine at address L (most likely an address on the stack)
and uses the returned value as the operand of the fetch. Since there
is no code at address L, an illegal instruction exception is likely at
execution.

5-4

PROGRAMMING CONSIDERATIONS

An alternative is to use a general routine call.
linkage is the default calling convention,
computed call as:

BLISS (. L, 0)

5.2.6 Signed and Unsigned Fields

Assuming the desired
you could write the

Be careful when using signed and unsigned fields that are smaller than
a fullword. Consistent use of the sign extension rules and signed
versus unsigned operations is important. For example, in the
following:

BEGIN
FIELD LOW9 = [0,0,9,0];
OWN

X : BLOCK[!] FIELD(LOW9);
IF .X[LOW9] EQL -5
THEN

END

the expression .X[LOW9] EQL -5 is always false because the (unsigned)
value fetched from X is necessarily in the range 0 to 511.

5.2.7 Complex Macros

The BLISS macro facility has many capabilities, but also has some very
subtle properties. Most problems arise when features that have
side-effects on the compilation are used, such as:

• Macro expansions that produce declarations of any kind,
particularly other macro declarations

• Use of compile-time names to control macro expansions using
%ASSIGN

• Use of %QUOTE, %UNQUOTE, and %EXPAND

Be particularly careful when trying to use these features;
you may not really need them in the first place.

5.2.8 Missing Code

indeed,

Many coding errors tend to tesult in code that can be optimized. If
you discover that some of your program seems to be missing from the
compiled code, you may possibly have made a coding error. Check the
compiled code carefully to ensure that the code is indeed missing,
rather than cleverly optimized.

For example, consider the following:

BEGIN
OWN

X: BYTE;

IF .X EQL -5 THEN X = O;

END

5-5

PROGRAMMING CONSIDERATIONS

In the above example, the value of the test expression, .index EQL -5,
is always false. (Refer to "Signed and Unsigned Fields" in
Section 5.2.6.) As a result, the compiler

• produces no code for the test expression, and

• produces no code for the alternative, X=O (it can never be
executed).

Consequently, the entire IF expression disappears from the compiled
code. The problem is not erroneous compiler optimization, but a
missing SIGNED attribute in the declaration of x.

A similar error occurs if the fact is overlooked that TRUE/FALSE is
based on the value of the low bit of an expression. Thus the
following fragment:

IF .x and 2
THEN

Y=O
ELSE

Y=l

will always assign the value "l" to Y, because the low bit of ".index
and 2" must, always be zero (false).

5.3 ERRORS FROM LINKER

The TRUNC or TRUNCDAT error message is typically caused by a module
compiled with the default addressing mode

ADDRESSING_MODE(WORD_RELATIVE)

being linked in an image that is larger than 32K. The problem can be
resolved by any of the following procedures:

• Edit the offending source module to use
ADDRESSING_MODE(LONG_RELATIVE) and recompile.

• Rearrange the placement of the object modules in such a manner
that EXTERNAL or inter-PSECT references are within 32k bytes
of their target.·

5.4 OBSCURE ERROR MESSAGES

Obscure error messages that appear after a program has been run are
typically caused by a program whose main routine fails to return a
valid VMS completion code.

5.5 PIC CODE GENERATION

The BLISS-32 compiler always generates position-independent code (PIC)
for expressions that involve relocatable quantities. This may cause
surprisingly complex code to be generated. However, it is the
programmer's responsibility to ensure that he/she has generated PIC
data, when necessary.

5-6

CHAPTER 6

TRANSPORTABILITY GUIDELINES

This chapter addresses the task of writing transportable programs. It
shows why writing such transportable code is much easier if considered
from the beginning of the project, explores properties that cause a
program to lose its transportability, and discusses techniques by
which a programmer can avoid these pitfalls.

After an introduction to the concept of transportability, the
transportability guidelines presented in this chapter are organized
into three sections. The section "General Strategies" discusses some
high-level approaches to writing transportable software in BLISS. The
section "Tools" describes various features of the BLISS language that
can be used in solving transportability problems. The section
"Techniques for Writing Transportable Programs" analyzes various
transportability problems and suggests solutions to them.

The dialects discussed in this chapter are the languages defined by
the following BLISS compilers:

BLISS-16 Vl
BLISS-32 V2
BLISS-36 V2

BLISS-36 and BLISS-16 are intended as generic names for language that
have BLISS compilers generating code for DEC-10/20's and PDP-ll's,
respectively.

6.1 INTRODUCTION

A transportable BLISS program is one that can be compiled to execute
on at least two, and preferably all, of the three major architectures:
PDP-10, PDP-11, and VAX-11. Various solutions to the problem of
transportability exist, each requiring different levels of effort.
Various kinds of solutions are recommended. For example, in some
cases, program text should be rewritten. However, large portions of
programs can be written in such a way that they will require no
modification and yet be functionally equivalent in differing
architectures. The levels of solutions in order of decreasing
desirability, are:

• No change is needed to program text
completely transportable.

6-1

The program is

TRANSPORTABILITY GUIDELINES

• Parameterization solves the transportability problem The
program makes use of some features that have an analog on all
the other architectures.

• Parallel definitions are required - Either the program makes
use of features of an architecture that do not have analogs
across all other architectures, or different, separately
transportable aspects of the program interact in
nontransportable ways.

The goal is to make transportability as simple as possible, which
means that the effort needed in transporting programs should be
minimized. Central to the ideas presented here is the notion that
transportability is more easily accomplished if considered from the
beginning. Transporting programs after they are running becomes a
much more complex task.

It is advantageous to run parallel compilations frequently. It is
fortunate therefore, that with the right tools and techniques,
transportability is not difficult to achieve. The first transportable
program is the hardest. Before undertaking a large programming
project, it may be useful to write and transport a less ambitious
program.

These guidelines are the result of a concentrated study of the
problems associated with transportability. No claim is made that
these guidelines are complete. Some of what is contained here will
not be obvious to programmers. An attempt is made to identify those
areas that can cause problems, if the programmer is not forewarned.
Solutions to all identified problems are suggested.

6.2 GENERAL STRATEGIES

This section presents certain gross or global considerations that are
important to the writing of transportable BLISS programs, namely:

• Isolation, and

• Simplicity

6.2.1 Isolation

Remember the following rule when you are designing or coding a program
that is to be transported:

• If a construct is NOT transportable, isolate it.

You will probably encounter situations for which it is desirable to
use machine-specific constructs in your BLISS program. In these
cases, simply isolating the constructs will facilitate any future
movement of the program to a different machine. In most cases, only a
small percentage of the program or system will be sensitive to the
machine on which it is running. By isolating those sections of a

6-2

TRANSPORTABILITY GUIDELINES

program or a system, the effort involved in transporting the program
will be confined mainly to these easily identifiable, machine-specific
sections. Specifically, follow these rules1

• If machine-specific data are to be allocated, place the
allocation in a separate module or in a REQUIRE file.

• If machine-specific data are to be accessed, place the
accessing code in a routine or in a macro and then place the
routine or macro in a separate module or in a REQUIRE file.

• If a machine-specific function or instruction is to be used,
isolate it by placing it in a REQUIRE file.

• If it is impossible or impractical to isolate this part of
your program from its module, comment it heavily. Make it
obvious to the reader that this code is nontransportable.

The above rules are applicable in the local context of a routine or
module. In a larger or more global context (for instance, in the
design of an entire system), isolation is implemented by the technique
of modularization• By separating those parts of the system that are
machine- or operating-system dependent from the rest of the system,
the task of transporting the entire system is simplified. It becomes
a matter of recoding a small section of the total system. The major
portion of the code (if written in a transportable manner) should be
easy to move to a new machine with a minimum of recoding. The BLISS
language facilitates both the design and programming of programs and
systems in a modular fashion. This feature should be used to
advantage when writing a transportable system.

6.2.2 Simplicity

A basic concept in writing transportable BLISS software is simplicity
in the use of the language. BLISS was originally developed for the
implementation of systems software. As a result of this, BLISS is one
of few high-level programming languages that allow ready access to the
machine on which the program will be running. The programmer is
allowed to have complete control over the allocation of data, for
example. Unfortunately, the same language features that allow access
to underlying features of the hardware are the very features that lead
to nontransportable code. In a system intended to be transportable,
these features should be used only where necessary to meet a specific
functional, performance, or economy objective.

It is often the case that BLISS language features that make a program
nontransportable also make the program more complex. Reducing the
complexity of data allocation, for example, results in a transportable
subset of the BLISS language. This reduction of complexity is one of
the basic themes that runs through these guidelines. In effect, the
coding of transportable programs is a simpler task because the number
of options available has been reduced. Simplicity in the coding
effort is one of the reasons for the development of higher-level
languages like BLISS. The use of the defaults in BLISS will result in
programs that are much more easily transported.

6-3

TRANSPORTABILITY GUIDELINES

6.3 TOOLS

This section on tools presents various language features that provide
a means for writing transportable programs. These features are either
normal features of BLISS or have been designed for transportability or
software engineering uses. The tools described here will be used
throughout the next section on techniques.

6.3.1 Literals

Literals provide a means for associating a name with a compile-time
constant expression. This section considers some built-in literals
that aid in writing transportable programs. In addition, it discusses
restrictions on user-defined literals.

6.3.1.1 Predeclared Literals - One of the key techniques in writing
transportable programs is parameterization. Literals are a primary
parameterization tool. The BLISS language has a set of predeclared,
machine-specific literals that can be useful. These literals
parameterize certain architectural values of the three machines. The
values of the literals are dependent on the machine for which the
program is currently being compiled. Here are their names and values:

Literal
Description Name 10/20 VAX-11 11

Bits per addressable unit %BPUNIT 36 8 8
Bits per address value %BPADDR 18 32 16
Bits per BLISS value %BPVAL 36 32 16

Units per BLISS value %UPVAL 1 4 2

The names beginning with '%'
without declaration. These
guidelines.

are literal names that can be used
literal names are used throughout these

Bits per value is the maximum number of bits in a BLISS value. Bits
per unit is the number of bits in the smallest unit of storage that
can have an address. Bits per ad0ress refers to the maximum number of
bits an address value can have. Units per value is the quotient
%BPVAL/%BPUNIT. It is the maximum number of addressable units
associated with a value.

We can derive other useful values from these built-in literals. For
example:

LITERAL
HALF VALUE = %BPVAL / 2;

defines the number of bits in half a word (half a longword on VAX-11).

6-4

TRANSPORTABILITY GUIDELINES

6.3.1.2 User-Defined Literals - Strictly speaking, a literal is not a
self-defining term. The value and restrictions associated with a
literal are arrived at by assigning certain semantics to its source
program representation. It is convenient to define the value of a
literal as a function of the characteristics of a particular
architecture, which means that there are certain architectural
dependencies inherent in the use of literals. Because the size of a
BLISS value determines the value and/or the representation of a
literal, there are some transportability considerations.

BLISS value {machine word) sizes are different on each of the three
machines. On VAX-11, the size is 32 bits; on the 10/20 systems, it
is 36; and the 11 value is 16.

There are two types of BLISS literals: numeric literals and string
literals. The values of numeric literals are constrained by the
machine word size. The ranges of values for a signed number, i , are:

VAX-11: -(2**31) < i < {2**31) - 1

10/20: -(2**35) < i < (2**35) - 1

11: -(2**15) < i < {2**15) - 1

ALL: - (2 ** { %BPVAL-l)) < i < {2**{%BPVAL-l))-l

A numeric literal, %C'single-character', has been implemented. Its
value is the ASCII code corresponding to the character in quotes and
when stored, it is right-justified in a BLISS value {word or
longword). A more thorough discussion of its usage can be found in
the section "Data: Character Sequences." There are two ways of using
string literals: as integer values and as character strings. When
string literals are used as values, they are not transportable. This
arises out of the representational differences and from differing word
sizes. The following table illustrates these potential differences
for an %ASCII type string literal:

VAX-11 10/20

Maximum number of 4 5
characters

Character placement right to left to
left right

This type of string-Ii teral usage and also its use
string are discussed in the section "Data: Character

6.3.2 Macros and Conditional Compilation

BLISS macros can be an essential tool in the
transportable programs. Because they evaluate
compilation, it is possible to use macros to tailor
specific machine.

6-5

11

2

right to
left

as a character
Sequences. II

development of
(expand) during

a program to a

TRANSPORTABILITY GUIDELINES

A good example can be found in the section "Structures." There, two
macros are developed whose functions are completely transportable.
The macros can determine the number of addressable units needed for a
vector of elements, ·where the element size is specified in terms of
bits. There are also predefined machine conditionalization macros
available. These macros can be used to select for compilation certaln
declarations or expressions depending on which compiler is being run.
There are three sets of definitions, each containing three macro
definitions.

The definitions for the BLISS-32 set are:

MACRO
% ,
% ,

%BLISS16[] =
%BLISS36 []
%BLISS32 [] = %REMAINING % ;

There are analogous definitions for the other machines. The net
effect is that in the BLISS-32 compiler, the arguments to %BLISS16 and
%BLISS36 will disappear, while arguments to %BLISS32 will be replaced
by the text given in the parameter list.

A very explicit way of tailoring a program to a specific architecture
uses the %BLISS lexical function in conjunction with the conditional
compilation facility in BLISS. The %BLISS lexical function takes
either BLISS36, BLISS32 or BLISS16 as a parameter, and returns 1 if
the parameter corresponds to the compiler currently executing, and O
otherwise. In the following example, INSQUE is an executable function
in BLISS-32, but is a routine for BLISS-36:

%IF %BLISS(BLISS32}
%THEN

BUILTIN
INSQUE;

%ELSE

%FI

%IF %BLISS(BLISS36}
%THEN

%FI

FORWARD ROUTINE
INSQUE;

6.3.3 Module Switches

A module switch and a corresponding special switch are provided to aid
in the writing of transportable programs. This switch, LANGUAGE, is
provided for two reasons:

• To indicate the intended transportability goals of a module
and

• To provide diagnostic checking of the use of certain language
features.

Using this switch, you can therefore indicate the target architectures
(environments} for which a program is intended.

6-6

TRANSPORTABILITY GUIDELINES

Transportability checking consists of the compiler determining
whether, in the module being compiled, certain language features
appear that fall into either of two categories:

• Features that are not commonly supported across the intended
target environments.

• Features that most often prove to be troublesome in
transporting a program from any one environment to another.

The syntax is:

LANGUAGE (language-name , •••)

where language-name is any combination of BLISS36, BLISS16, or
BLISS32.

Two other forms are possible:

LANGUAGE(COMMON
LANGUAGE()

If no LANGUAGE switch is specified, the default is the single language
name corresponding to the compiler used for the compilation, and no
transportability checking is performed. If more than one
language-name is specified, the compiler will assume that the program
is intended to run under each corresponding architecture.

If no language name is specified, no transportability checking will be
performed. A specification of COMMON is the equivalent of the
specification of all three.

Each compiler will give a warning diagnostic if its own language-name
is not included in the list of language-names.

Within the scope of a language switch, each compiler will give a
warning diagnostic for any nontransportable or problematic language
construct relative to the specified set of languages. This chapter
discusses most of the constructs that will be checked for.

NOTE

The precise set of language constructs
that are subject to transportability
checking is specified in Appendix C of
the BLISS Language Guide.

6-7

TRANSPORTABILITY GUIDELINES

Here is· an example of how ·the LANGUAGE switch can be used:

MODULE FOO(••• ,LANGUAGE(COMMON) , •••)
BEGIN
!+
! Full Transportability Checking is in effect.
!-

BEGIN
!+

... . . .

! BLISS36 no longer in effect: BLISS-16/32 Subset checking
! to be performed in this block.
!-
SWITCHES

END;
!+

LANGUAGE(BLISS16, BLISS32);

Within this block (that is, within the .scope
of the SWITCHES declaration) , a relaxed
form of full transportability checking
is performed. (This takes advantage of
the greater degree of commonality that
exists between the BLISS-16 and BLISS-32
target architectures.)

The compilation of this section
of code by a BLISS-36 compiler will
result in a diagnostic warning.

Full transportability checking is restored.
!-

6.3.4 Reserved Names

The following is a list of the BLISS reserved names. These names
cannot be declared by the user. While the same names are reserved in
all three BLISS dialects, some of them do not have a predefined
meaning in each dialect. For example, LONG is an allocation-unit
keyword in BLISS-32 and is a reserved but otherwise unsupported name
in BLISS-16 and BLISS-36 (due to basic architectural differences in
the target systems) • Any attempted use of this name in the latter two
dialects will result in a compiler diagnostic. As another example,
the name IOPAGE has no defined meaning in any BLISS dialect but is

6-8

TRANSPORTABILITY GUIDELINES

reserved for possible future use in all dialects. The reserved names
that are not supported in some or all dialects are marked with an
asterisk. See Appendix A of the BLISS Language Guide for a more
complete description.

*ADDRESSING MODE
*ALIGN

ALWAYS
AND
BEGIN
BIND

*BIT
BUILTIN
BY

*BYTE
CASE
CODECOMMENT
COMPILETIME
DECR
DEC RA
DECRU
DO
ELSE
ELUDOM
ENABLE
END
EQL
EQLA
EQLU
EQV
EXITLOOP
EXTERNAL
FIELD
FORWARD
FROM
GEQ
GEQA
GEQU
GLOBAL
GTR
GTRA

GTRU
IF
INCR
INC RA
INC RU
INITIAL
INRANGE

*IO PAGE
KEYWORDMACRO
LABEL
LEAVE
LEQ
LEQA
LEQU
LIBRARY
LINKAGE
LITERAL
LOCAL

*LONG
LSS
LSSA
LSSU
MACRO
MAP
MOD
MODULE
NEQ
NEQA
NEQU
NOT
NOVA LUE
OF
OR
OTHERWISE
OUTRAN GE
OWN

6.3.5 REQUIRE and LIBRARY Files

PLIT
PRESET
PSECT

*RECORD
REF
REGISTER
REP
REQUIRE
RETURN
ROUTINE
SELECT
SELECTA
SELECTONE
SELECTONEA
SELECTONEU
SELECTU
SET

*SHOW
*SIGNED

STACKLOCAL
STRUCTURE
SWITCHES
TES
THEN
TO
UN DECLARE

*UNSIGNED
UNTIL
UPLIT
VOLATILE

*WEAK
WHILE
WITH

*WORD
XOR

REQUIRE files are a way of gathering machine-specific declarations
and/or expressions together in one place. LIBRARY files are a form of
precompiled REQUIRE files.

In many cases, it will be either
particular BLISS construct
declarations) in a transportable
files, one for each machine,
transporting these constructs.

impossible or unnecessary to code a
(for example, routines and data
manner. Developing parallel REQUIRE

can often provide a solution to

For example, if a certain set of routines are very machine-specific,
then the-solution may be to code two or three functionally equivalent
routines, one for each machine type, and segregate them each in their
own REQUIRE file.

6-9

TRANSPORTABILITY GUIDELINES

Each BLISS compiler has a predefined search rule for REQUIRE file
names based on their file- types. Each compiler will search first for
a file with a specific file type, then it will search for a file with
the file type '.BLI'.

The search rules for each compiler are:

Compiler lST 2ND 3RD 4TH

BLISS-36 .R36 .REQ .B36 .BL!

BLISS-16 .Rl6 .REQ .Bl6 .BL!

BLISS-32 .R32 .REQ .B32 .BL!

Hence, the following REQUIRE declaration:

REQUIRE
I IOPACK'; ! I/O Package

will search for IOPACK.R36, IOPACK.Rl6 or IOPACK.R32, depending on
which compiler is being run. Failing that it will look for
IOPACK.REQ, and so on.

Inherent in these search rules is a naming convention for REQUIRE
files. If the file is transportable, give it the file type '.REQ' or
'.BLI'. If it is specific to a particular dialect, give it the
corresponding file type (for example, '.R36' or '.B36').

Each BLISS compiler, by the use of the /LIBRARY switch, is capable of
precompiling files containing declarations. However, not all
declarations can be processed in a library run; those that are
allowed are described elsewhere. The output of a library run is
called a 1 ibrary file; 1 ibrary files are processed by a compiler when
it encounters a LIBRARY declaration, for example:

LIBRARY
I IOPACK';

Each compiler checks to see that the library file it is using was
produced by itself in a previous run. Thus, to build a transportable
library from a single transportable source, you must build unique
LIBRARY files for each architecture of interest, using the appropriate
compilers of interest.

For example, let us assume that the file SYSDCL.BLI contains a set of
transportable declarations common to an application that is to run on
a DECSYSTEM-20 and a VAX. To precompile it requires that it be run on
the BLISS-32 compiler using the /LIBRARY switch, and the BLISS-36
compiler using the /LIBRARY switch. The object file produced by the
compiler is the library file, and if no extension is given for it in
the command line, a default extension is used (for example, .L32 and
.L36 respectively).

6-10

TRANSPORTABILITY GUIDELINES

6.3.6 Routines

The key to transportability is the ability to identify an abstraction
that can exist in several environments. This is done by naming the
abstraction and describing its external characteristics in a way that
permits implementation in any of the environments. The abstraction
may then be implemented separately in each environment. The closed
subroutine has long been regarded as the principal abstraction
mechanism in programming languages. With BLISS, other abstraction
mechanisms are also available, like structures, macros, literals,
require files, and so on, but the routine can still be easily used as
a transportability abstraction mechanism.

For instance, when designing a system of transportable modules which
uses the concept of floating-point numbers and associated operations,
there will be a need to perform floating-point arithmetic. The
question naturally arises as to the environment in which the
arithmetic should be done. If the floating-point arithmetic resides
entirely in a well-defined set of routines, and no knowledge of the
various representations of floating-point numbers is used except
through these well defined interface routines, then it becomes
possible to perform "cross-arithmetic", which is important when
writing cross-compilers, for instance. Even if the ability to perform
cross-arithmetic is not desired, isolating floating-point operations
in routines may be a good idea since these routines can then be reused
more easily in another project. A little thought will indicate that
the floating-point routines themselves have to be transportable if
they are going to perform cross-arithmetic (since the system under
construction is transportable), but need not be transportable if
cross-arithmetic is not a goal.

The principal objection to using routines as an abstraction mechanism
is that the cost of calling a procedure is significant, and that cost
is strictly program overhead. Composing this sort of abstraction in
the limit will produce serious performance degradation. For this
reason, a programmer should probably try not to use the routine as a
transportability mechanism if a small amount of forethought will be
sufficient to enable the writing of a single transportable module.

6.4 TECHNIQUES FOR WRITING TRANSPORTABLE PROGRAMS

This section on techniques shows you how to write
programs. The section is organized in dictionary
construct or concept. Each subsection contains:

• A discussion of the construct or concept.

transportable
form by BLISS

• Transportability problems that its use may engender.

• Specific guidelines and restrictions on the use of the
construct or concept.

• Examples - both transportable and nontransportable.

In all cases, the examples attempt to use the tbols described in the
previous section.

6-11

TRANSPORTABILITY GUIDELINES

6.4.1 Data

This section deals with the allocation of data in a BLISS program. In
this section we do not deal with character sequence (string) data or
the formation of address data. These types of data are discussed in
their own sections (See: "Data: Addresses and Address Calculation"
and "Data: Character Sequences"). Primarily, we discuss ~he
allocation of scalar data (for example, counters, integers, pointers,
addresses, and so on.) A presentation of more complex forms of data
can be found in the sections "Structures and Field-Selectors" and
"PLITs and Initialization." First there is a discussion of
transportability problems encountered due to differing machine
architectures. Next a discussion of the BLISS allocation-unit
attribute is presented. Finally, a discussion of other ·BLISS data
attributes that must be considered when writing transportable programs
is discussed.

6.4.1.1 Problem Origin - The allocation of data (via the OWN, LOCAL,
GLOBAL, and other declarations) tends to be one of the most sensitive
areas of a BLISS program in terms of transportability. This problem
of transporting data arises chiefly from two sources:

• The machine architectures and

• The flexibility of the BLISS language.

When we are considering writing a BLISS program that will be
transported to another machine, we are confronted with the problem of
allocating data on (at least two) architecturally different machines.

Although we have already discussed differing word sizes, there are
further differences. On the VAX-11 architecture, data may be
typically fetched in longwords (32 bits), in words (16 bits) and in
bytes (8 bits); on the 11, both words and bytes may be fetched. Only
18-bit halfwords and 36-bit words on the 10/20 systems may be fetched
without a byte pointer.

If we were writing our program in an assembly language we would not
consider these differences to be important - clearly, our assembly
language program was not intended to be transportable.

What decisions, however, must the BLISS programmer make in the
transportable allocation of data? Need he or she be concerned with
how many bits are going to be allocated?

These questions (and their answers) can be complicated by the other
chief source of data transportability problems, namely the BLISS
language itself.

BLISS is unlike many other higher-level languages in that it allows
ready access to machine-specific control, particularly in storage
allocation. This is fortunate for the programmer who is trying to
write efficient machine-specific software. This programmer needs much
more control over exactly how many bits of data will be used. This
feature of BLISS, however, can complicate the decisions that need to
be made by the BLISS programmer who is writing a transportable
program. Does he or she allocate scalars by bytes, or by words, or by
longwords?

6-12

TRANSPORTABILITY GUIDELINES

6.4.1.2 Transportable Declarations - Consider the following simple
example of a data declaration in BLISS-32:

LOCAL
PAGE COUNTER: BYTE; Page counter

The programmer has allocated one byte (8 bits) for a variable named
PAGE COUNTER. No matter what his or her intentions were in requesting
only-one byte of storage, this declaration is nontransportable. The
concept of BYTE (in this context) does not exist on the 10/20 systems.
In fact, in BLISS-36 the use of the word BYTE results in an error
message. In fact, since this storage is allocated on the stack or in
a register, there is even less motivation to make it a byte due to the
frequent use of these locations.

If this declaration had been originally coded as:

LOCAL
PAGE_COUNTER; Page counter

then this could have been transported to any of the three machines.
The functionality (in this case, storing the number of pages) has not
been lost. We allowed the BLISS compiler to allocate storage by
default by not specifying any allocation unit in the LOCAL
declaration. In all BLISS dialects the default size for allocation
unit consists of %BPVAL bits. Thus our first transportable guideline
is:

• Do not use the allocation-unit attribute in a scalar data
declaration.

In the case of scalar data, the use of the default allocation unit
will sometimes result in the allocation of more storage than is
strictly necessary. This gain in program data size (which, in most
instances, is small) should be weighed against a decrease in fetching
time for a particular scalar value, and the knowledge that because of
the default alignment rules, no storage savings may, in fact, be
realized.

In the BLISS language, the default size of %BPVAL bits was chosen
(among other reasons) because this is the largest, most efficiently
accessed unit of data for a particular machine. In other words, the
saving of bits does not necessarily mean a more efficient program.

Besides the allocation unit there
present transportability problems
allocating data:

are other
if used.

• Do not use the following attributes:

Extension (SIGNED and UNSIGNED),
Alignment,
Weak

attributes that may
In particular, when

which is to say: think twice before you write a declaration.
Do you really need to specify any data attributes other than
structure attributes?

The extension attribute specifies whether the sign bit is to be
extended in a fetch of a scalar (or equivalently, whether or not the
left most bit is to be interpreted as a sign bit). In any case, no
sign extension can be performed if the allocation unit is not
specified.

6-13

TRANSPORTABILITY GUIDELINES

The alignment attribute tells the compiler at what kind of address
boundary a data segment is to start. It is not supported in BLISS-36
or BLISS-16; h~nce, it is nontransportable. Suitable default
alignments are available dependent on the size of the scalar.

The weak attribute is a VAX/VMS-specific attribute and is not
supported by BLISS-36 or BLISS-16. It therefore can not be used in a
transportable program.

These guidelines are relatively simple, yet they should relieve the
BLISS programmer of needing to worry about how the program data will
actually be allocated by the compiler. There is often very little
reason to specify an allocation unit or any attributes. The default
values are almost always sufficient.

There will undoubtedly be cases where it is impossible to avoid the
use of one or more of the above attributes. In fact, it may be
desirable to take advantage of a specific machine feature. In these
cases follow this guideline:

• Conditionalize or heavily comment the use of declarations
which may be nontransportable.

This guideline is the "escape-hatch" in this set of guidelines. It
should only be used sparingly and where justified. To use it often
will only result in more code that will need to be rewritten when the
program has to be transported to another machine - and rewriting code
is not a goal.

6.4.2 Data: Addresses and Address Calculations

This section will discuss address values and calculations using
address values. First, there will be a presentation of the problems
that might occur when using an address or the result of an address
calculation as a value. A transportable solution to some of these
problems is then presented. Next, a discussion of the need for
address forms of the BLISS relational operators and control
expressions and how and when to use them will be presented. Finally,
some important differences in the interpretation of address values
between BLISS-10 and BLISS-36 are discussed.

6.4.2.1 Addresses and Address Calculations - The value of an undotted
variable name in BLISS is an address. In most cases, this address
value is used only for the simple fetching and storing of data. When
address values are used for other purposes, we must be concerned with
the portability of an address or an address calculation. The term
"address calculation" means any arithmetic operations performed on
address values.

The primary reason for this concern is the different sizes (in bits)
of addressable units, addresses, and BLISS values (machine words) on
the three machines. For convenience in writing transportable
programs, these size values have been parameterized and are now
predeclared literals. A table of their values can be found in the
section "Literals."

6-14

TRANSPORTABILITY GUIDELINES

To see how these size differences can have an effect on writing
transportable programs, consider a common type of address expression;
namely an expression that computes an address value from a base {a
pointer or an address) and an offset. That is, some expression of the
form:

base + index

Now consider the following BLISS assignment expression using this form
of address calculation:

OWN
ELEMENT_2;

ELEMENT_2 = .{INPUT_RECORD + l);

The intent {most likely) was to access the contents of the second
value in the data segment named INPUT RECORD and to place that value
in an area pointed to by ELEMENT 2. The effect, however, is different
on each machine as will be shown:-

By adding 1 to an address (in this case, INPUT RECORD) the address of
the next addressable unit on the machine- is being computed. In
BLISS-32 and BLISS-16 this would be the address of the next byte {8
bits), but in BLISS-36 this would be the address of the next word (36
bits). This is probably not a transportable expression because of the
different sizes of the addressable units and the resultant values.

Based on the above example, follow this guideline:

• When a complex address calculation is not an intrinsic part of
the algorithm being coded, do not write it outside of a
structure declaration.

There is a way, however, of making such an address calculation
transportable. It involves the use of the values of the predeclared
literals. In the last example, if the index had been 4 in BLISS-32 or
2 in BLISS-16 then in each case the next word would have been
accessed.

A multiplier that will have a value of 4 in BLISS-32, 2 in BLISS-16
and 1 in BLISS-36 is needed. Such a multiplier already exists as
another predeclared literal. Its definition is %BPVAL/%BPUNIT, and it
is called %UPVAL.

Using this literal in the example yields:

ELEMENT 2 =
.(INPUT_RECORD + 1 * %UPVAL);

The address expression is now tranportable.

6-15

TRANSPORTABILITY GU!oDELINES

This last example raises an interesting point. If an address
calculation of this form is used then it is very likely that the data
segment should have had a structure such as a VECTOR, BLOCK or
BLOCKVECTOR associated with it. The last example could have then been
coded as:

OWN
INPUT RECORD:

FLEX VECTOR [RECORD SIZE, %BPVAL],
ELEMENT_2; -

ELEMENT_2 = .INPUT_RECORD[l];

The transportable structure FLEX VECTOR and a more thorough discussion
of structures can be found Tn the section "Structures and Field
Selectors."

6.4.2.2 Relational Operators and Control Expressions - The previous
example illustrated the use of address values in the context of
computations. Other common uses of addresses are in comparisons (for
example~ testing for equality) and as indices in loop and select
expressions. The use of address values in these contexts points to
another set of differences found among the three machines.

In BLISS-32 and BLISS-16, addresses occupy a full word (%BPADDR equals
%BPVAL) and unsigned integer comparisons must be performed. However,
in BLISS-36, addresses are smaller than the machine word (18 versus 36
bits) and signed integer operations are performed for efficiency
reasons.

It can be seen that to perform a simple relational test of address
values:

ADDRESS l LSS ADDRESS 2 •••

requires two different interpretations. This expression would
evaluate correctly on the 10/20 systems. But, on VAX-11 and 11
machines, the following would have had to have been coded for the
comparison to have been made correctly:

••• ADDRESS 1 LSSU ADDRESS 2 •• ~

Another type of relational operator, designed specifically for address
values, is needed. Such operators exist and are referred to as
address-relational-operators. BLISS-36, BLISS-16, and BLISS-32 have a
full set (for example, LSSA, EQLA, and so on) which support address
comparisons.

In BLISS-16 and BLISS-32, the address-relationals are equivalent to
the unsigned-relationals. In BLISS-36, the address-relationals are
equivalent to the signed-relationals. For all practical cases, a user
need not be concerned with this, since this "equivalencing" permits

6-16

TRANSPORTABILITY GUIDELINES

address comparisons to be performed correctly across architectures.
In addition, there are address forms of the SELECT {SELECTA),
SELECTONE {SELECTONEA), !NCR {INCRA) and DECR {DECRA) control
expressions. The following guidelines establish a usage for these
operators and contol expressions:

• If address values are to be compared, use the address form of
the relational operators.

• If an address is used as an index in a SELECT, SELECTONE, !NCR
or DECR expression, use the address form of these control
expressions.

A violation of either of these guidelines can have unpredictable
results.

6.4.2.3 BLISS-10 Addresses Versus BLISS-36 Addresses - There is a
fundamental conceptual change from BLISS-10 to BLISS-36 in the defined
value of a name. BLISS-10 defines the value of a data segment name to
be a byte pointer consisting of the address value in the low half of a
word, and position and size values of 0 and 36 in the high half of the
word. BLISS-36, however, defines the value as simply the address in
the low half and zeros in the high half. This change was made solely
for reasons of transportability, since it allows BLISS to assign
uniform semantics to an address.

The fetch and assignment operators are redefined to use only the
address part of a value. Thus the expressions:

y .X;
Y F(.Y) + 2;

are the same in both BLISS-10 and BLISS-36, but

y = X;

assigns a different value to Y in BLISS-36 and in BLISS-10.

Field selectors are still available but must be thought of as extended
operands to the fetch and assignment operators, instead of as value
producing operators applied to a name. Thus the meaning of:

Y<0,18> = .X<3,7>;

is unchanged, but

Y = X<3,7>;

is invalid. Moreover,
never appear outside
size are apt to be
discussion can be
Selectors."

it is highly recommended that field selectors
of a structure declaration, since position and

highly machine dependent. A more thorough
found in the section "Structures and Field

6-17

TRANSPORTABILITY GUIDELINES'

6.4.3 Data: Character Sequences

This section will discuss the use of character sequences (strings} in
BLISS programs. Historically, there has been no consistent method for
transportably dealing with strings and the functions operating· upon
them. Ad hoc string functions have been the rule, having been
implemented by individuals or projects to suit their particular needs.
This section will begin by looking at quoted strings in two different
contexts. Transportability problems associated with quoted string,
and guidelines for their use will be discussed.

Quoted strings are used in two different contexts:

• as values (integers} and

• as character strings

6.4.3.1 Quoted Strings Used as Numeric Values - The use of quoted
strings as values (in assignments and comparisons} illustrates the
problem of differing representations on differing architectures.
Describing the natural translation of a string literal for each
architecture will illustrate the problem. For example, consider the
following code sequence:

OWN
CHAR_l; To hold a literal

CHAR_l = 'ONE';

A natural interpretation for BLISS-32 to use is that one longword
would be allocated and the three characters would be assigned to
increasing byte addresses within the longword. In memory, the value
of CHAR 1 would have the following representation:

CHAR 1: / 00 E N 0 / (32)

BLISS-16 would not allow this assignment because only two ASCII
characters are allowed per string literal. This restriction arises
from the fact that BLISS-16 works with a maximum of 16-bit values and
three 8-bit ASCII characters require 24 bits.

On the 10/20 systems a word would be allocated and the characters
would be positioned starting at the high-order end of the word. Thus
the string literal would have the following representation in memory:

CHAR 1: / 0 N E 00 00 0 / (36)

Even if the 10/20 string literal had been right-justified in the word,
it still would not equal the VAX-11 representation, numerically. So,
in fact, the following would not be transportable:

WRITE_INTEGER('ABC');

since 'ABC' is invalid syntax in BLISS-16, has the value -33543847936
in BLISS-36, and the value 4276803 in BLISS-32.

Based on these problems with representation our first guideline is:

• Do not use string literals as numeric values.

6-18

TRANSPORTABILITY GUIDELINES

In those cases where it is necessary to perform a numeric operation
(for example, a comparison) with a character as an argument, you must
use the %C form of numeric literal. This literal takes one character
as its argument and returns as a value the integer index in the
collating sequence of the ASCII character set, so that:

%C'B' = %X'42' = 66

The %C notation was introduced to standardize the interpretation of a
quoted character across all possible ASCII-based environments.
%C'quoted-character' can be thought of as "right-adjusting" the
character in a bit string containing %BPVAL bits.

6.4.3.2 Quoted Strings Used as Character Strings - The necessity of
using more than one character in a literal leads to the other
situation in which quoted strings are used: as character strings.

To facilitate the allocation, comparison and manipulation of character
sequences, a built-in character handling package has been constructed
as part of the BLISS language. It has been implemented in BLISS-32,
BLISS-36, and BLISS-16.

These built-in functions provide a very complete and powerful set of
operations on characters. The next guideline is:

• Use the built-in character handling package when allocating
and operating upon character sequences. This is the only way
one can guarantee the portability of strings and string
operations.

A more detailed description of these functions can be found in the
"Character Handling Functions" chapter of the BLISS Language Guide.

6.4.4 PLITs and Initialization

This section is primarily concerned with PLITs and their uses. First,
there is general discussion of PLITs and the contexts in which they
often appear. A presentation of how scalar PLIT items should be used
follows. Next, the problems involved in using string literals in
PLITs and suggested guidelines for their use are presented. Finally,
the use of PLITs to initialize data segments will be illustrated by
the development of a transportable table of values.

6.4.4.1 PLITs in General - Because BLISS values are a maximum of a
machine word in length, any literal that requires more than a word for
its value needs a separate mechanism, and that mechanism is the PLIT
(or UPLIT). Hence, PLITs are a means for defining references to
constants longer than one word. PLITs are often used to initialize
data segments (for example, tables) and are used to define the
arguments for routine calls.

PLITs themselves are
elements and their
transportable.

transportable; however, their
machine representation are

6-19

constituent
not always

TRANSPORTABILITY GUIDELINES

A PLIT consi~ts of one or more values (PLIT items) • PLIT items may be
strings, numeric constants, address constants, or any combination of
these last three, providing that the value of each is known prior to
execution time.

6.4.4.2 Scalar PLIT Items - The first transportability problem that
might be encountered with the use of PLITs is in the specification of
scalar PLIT items. As with any other declaration of scalar items
(pointers, integers, addresses, and so on) it is possible to define
them with an allocation-unit attribute. For example, in BLISS-32,
machine-specific sizes as BYTE and LONG can be specified. Thus the
following example is nontransportable and, in fact, will not compile
on BLISS-36 or BLISS-16:

BIND
Ql = PLIT BYTE(l, 2, 3, LONG (-4));

This last example provides the first PLIT guideline:

• Do not use allocation units in the specification of a PLIT or
PLIT item.

Thus, the BIND should have been coded as follows:

BIND
Ql = PLIT{l, 2, 3, -4);

This last guideline is necessary because of the differences in the
sizes of words on the three machines, a feature of the architectures.
A discussion of the role of machine architectures in the
transportability of data can be found in the section "Data." Further
guidelines are presented in the section "Initializing Packed Data."

6.4.4.3 String Literal PLIT Items - The next guideline is based on
the representation of PLITs in memory. Specifically the problem is
encountered when scalar and string PLIT items appear in the same PLIT.

The difficulty arises primarily from the representation of characters
on the different machines. A more thorough discussion of character
representation can be found in the section "Data: Character
Sequences""

Care must be exercised when strings are to be used as items in PLITs.
For example, it may be necessary to specify a PLIT that consists of
two elements: a 5-character string and an address of a routine. If
it is specified as:

CONABC: I D c B A I (32)

I E I (32)

I address I (32)

6-20

TRANSPORTABILITY GUIDELINES

on the 11, it is:

CONABC: I B A I (16)

I D c I (16)

I E I (16)

I address I (16)

and the 10/20 representation is:

CONABC: I A B C D E I (36)

I address I (36)

The three PLITs are not equivalent. Three longwords are required for
the BLISS-32 representation, four words are needed for BLISS-16, and
two words are needed for the BLISS-36 representation. There is a
problem if the second element of this PLIT is to be accessed by the
use of an address offset. For example, the second element (the
address) is accessed by the expression:

CONABC + 1

in the BLISS-36 version, but not in the BLISS-32 or BLISS-16 versions.
For the BLISS-32 version, the access expression is:

CONABC + 8

and for BLISS-16, it would have to be:

CONABC + 6

Taking a data segment's base address and adding to it an offset (as in
this case) is particularly sensitive to transportability. A
discussion on the use of addresses can be found in the section "Data:
Addresses and Address Calculations."

This section on addresses suggests the use of the literal, %UPVAL, to
ensure some degree of transportability. Its value is the number of
addressable units per BLISS value or machine word. As already
discussed, in BLISS-32, the literal equals 4; in BLISS-16, it is 2;
and in BLISS-36, its value is 1.

Multiplying an offset by this value can, in some cases, ensure an
address calculation that will be transportable. So to access the
second element in the above PLIT, one would write:

CONABC + 1*%UPVAL

But this will not work for the VAX-11 representation. An offset value
of 8 is needed because the string occupies two BLISS values. The
situation is similar for the 11 version, where the string occupies 3
words and would need a offset value of 6 not 2.

The problem with this particular example (and, in general, with
strings in PLITs) is not in the use of a string literal but in its
position within the PLIT. Because the number of characters that will
fit in a BLISS value differs on all three machines, the placement of a
string in a PLIT will very often result in different displacements for
the remaining PLIT items.

6-21

TRANSPORTABILITY GUIDELINES

There is a relatively simple solution to this problem:

• In a PLIT there can only be a maximum of one string literal,
and that literal must be the last item in a PLIT.

Following this guideline, the example should have been coded:

BIND
CONABC = PLIT(ABC_ROUT, 'ABCDE');

and this expression:

CONABC + 1*%UPVAL

would have resulted in the address of the second element in the PLIT
(in this case the string).

6.4.4.4 An Example of Initialization - As mentioned in the beginning
of this section, PLITs are often used to initialize data segments such
as tables. A data segment allocated by an OWN or GLOBAL declaration
can be initialized by using the INITIAL attribute. The INITIAL
attribute specifies the initial values and consists of a list of PLIT
items.

A good example which shows how relatively easy it is to initialize
data in a transportable way is to illustrate the process one might use
to build a table of employee data. Information on each employee will
consist of three elements: an employee number, a cost center number
and the employee's name. The employee's name will be a fixed length,
5-character field.

For example, a line of the table would contain the following
information:

345 201 SMITH

Converting this line into a list of PLIT items that conform to this
section's guidelines would result in the following:

(345, 201, 'SMITH')

Notice that no allocation units were specified and that the character
string was specified last. This line will now be used to initialize a
small table of only one line. The table will have the built-in
BLOCKVECTOR structure attribute. The table declaration would look
like:

OWN
TABLE:

BLOCKVECTOR[l,3]
INITIAL(

345,
201,
'SMITH'
) i

6-22

TRANSPORTABILITY GUIDELINES

However, a problem has developed. This definition would work well in
BLISS-36. That is, three words would have been allocated for TABLE.
The first word would have been initialized with the employee number;
the second word with the cost center; and the third with the name.
However, the declaration would be incorrect in BLISS-32 or BLISS-16,
simply because not enough storage would have been allocated for all
the initial values. BLISS-32 would have required four longwords, and
BLISS-16, five words.

The problem arises as a result of the way in which strings are
represented and allocated on the three machines. The solution is
simple. We only need to determine the number of BLISS values that
will be needed for the character string on each machine. There is a
function that will give this value. It is named CH$ALLOCATION and it
is part of the character handling package. It takes as an argument
the number of characters to be allocated and returns the number of
words needed to represent a string of this length. We can use this
value as an allocation actual in the table definition, as follows:

OWN
TABLE: BLOCKVECTOR[l,2 + CH$ALLOCATION(5)]

INITIAL(
345,
201,
'SMITH'

) ;

The declaration is now transportable. By using the CH$ALLOCATION
function we can be assured that enough words will be allocated on each
machine. No recoding will be necessary.

We are free to add other lines to the table and not be concerned with
the representation or allocation of the data~ Here is a l~rger
example of the same kind of table. We will not develop it step by
step, but point out and explain some of the highlights •

. . .

!+
Table Parameters

I-

LITERAL

!+

!-

NO EMPLOYEES = 2,
EMP NAME SIZE = 25,
EMP-REC SIZE = 2 +

-CH$ALLOCATION(EMP_NAME_SIZE);

Employee Name Padding Macro

MACRO
NAME PAD(NAME) =

%EXACTSTRING (EMP_NAME_SIZE, 0, NAME)%;

!+
Employee Information Table

Size: NO EMPLOYEES * EMP REC SIZE
!-

6-23

.OWN.

TRANSPORTABILITY GUIDELINES

EMP TABLE:
-BLOCKVECTOR[NO EMPLOYEES,. EMP_REC_SIZE]

INITIAL (-
345,
201,
NAME_PAD('SMITH PETER'),

207,
345,
NAME_PAD('JONES PENNY')

) ;

The literals serve to parameterize certain values that are subject to
change. The literal EMP REC SIZE has as its value the number of words
needed for a table entry~ The character sequence function,
CH$ALLOCATION, returns the number of words needed for EMP NAME SIZE
characters.

The macro will, based on the length of the employee name argument
(NAME), generate zero-filled words to pad out the name field. Thus,
we are assured of the same number of words being initialized for each
employee name, no matter what its size might be. This is important
because storage is allocated according to the fixed length of a
character field (employee name). The actual string length may, of
course, be less than that value.

This last example was developed with the specification that the
empl·oyee name field was fixed in length (EMP NAME SIZE). What if,
however, we wished to have the table hold variable length names? That
is, for certain reasons, we wished to allocate only enough storage to
hold the table data, not the maximum amount.

The table structure developed above won't work because it is
predicated upon the constant size of the name field. If we were to
use variable length character strings, either too much or not enough
storage would be allocated. And there would be no consistent way of
accessing the employee name (where would the next one start?). We
could, if we knew the length of every employee name, determine in
advance the number of words needed. But this is not a very practical
solution.

One transportable solution is to remove the character string from the
table and replace it with a pointer to the string. The character
package has a function, CH$PTR, which will construct a pointer to a
character sequence. As an added benefit, this pointer can be used as
an argument to the functions in the character package. The cost of
this technique is the addition of an extra word (the character
sequence pointer) for each table entry. The length of the name may
also be stored in the table. Here is a typical example, again based
on the employee table:

!+
Table Parameters

!-

6-24

TRANSPORTABILITY GUIDELINES

LITERAL

!+

!-

NO EMPLOYEES = 2,
EMP REC SIZE = 4;

Macro to construct a CS-pointer to employee name

MACRO

!+

!-

OWN

NAME PTR(NAME) =
CH$PTR(UPLIT(NAME)), %CHARCOUNT (NAME) %;

Employee Information Table

Size: NO EMPLOYEES * EMP REC SIZE

EMP TABLE:
-BLOCKVECTOR[NO EMPLOYEES, EMP_REC_SIZE]

INITIAL(-
345,
201,
NAME_PTR('SMITH PETER'),

207,
345,
NAME_PTR('JONES PENNY')

) ;

6.4.4.5 Initializing Packed Data - In this section we will discuss
some transportability considerations involved in the initialization of
packed data. By packed data, we mean that for data values vl, v2,
••• , vn with bit positions pl, p2, ••• , pn and bit sizes of sl, s2,
••• , sn, respectively, the value of the PLIT item would be represented
by the following expression:

where

max (pl, p2, ••• , pn) < %BPVAL

sl + s2 + + sn < %BPVAL

and for all i

-2**si <vi~ 2**(si - 1)

The OR operator could be replaced by the addition operator (+), but
the result would be different if, by accident, there were overlapping
values. Notice that the packing of data in a transportable manner is
dependent on the value of %BPVAL.

6-25

TRANSPORTABILITY GUIDELINES

The following is an illustration of the initialization of packed data
obtained by modifying the employee table example that was developed
above. When a field within a block is accessed, it is a common
practice to associate each field reference (that is, offset, position
and size) with a field name. So, for example, the field names for the
original employee table would look like:

FIELD EMP =
SET
EMP ID= [O,O,%BPVAL,O],
EMP-COST CEN [l,O,%BPVAL,O],
EMP-NAME-PTR = [2,0,%BPVAL,O];
TES;

These field names can be used in developing an initialization
by using parameiric values. This is another example
parameterization can be used as a key technique in
transportable code.

macro,
of how
writing

If the number of bits needed to represent the values of EMP ID and
EMP COST CEN were each known not to exceed 16, we could pack these two
fields into one BLISS value in BLISS-32 and BLISS-36. In BLISS-16 the
definition of the employee table, as it now stands, would allocate
only 16 bits for each field, since %BPVAL equals 16. In BLISS-36, an
18-bit size for these two fields would be chosen, since we know that
both DECsystem-10 and DECSYSTEM-20 hardware have instructions that
operate efficiently on halfwords.

If the interest is only in transporting BLISS-36 and BLISS-32, the
field declaration would look like:

FIELD EMP =
SET
EMP ID= [O,O,%BPVAL/2,0],
EMP-COST CEN = [O,%BPVAL/2,%BPVAL/2,0],
EMP-NAME-PTR = [l,O,%BPVAL,O];
TES; -

Based on these declarations, a macro can be designed that will take as
arguments the initial values and then do the proper packing:

MACRO

EMP INITIAL(ID,CC,NAME) [] =
-IDA%FIELDEXPAND(EMP ID,2) OR

CCA%FIELDEXPAND(EMP-COST CEN,2) ,
NAME_PTR (NAMEA%FIELDEXPAND(EMP_NAME_PTR, 2)) %;

The lexical function %FIELDEXPAND simply extracts the position
parameter of the field name. The initialization macro, EMP INITIAL,
makes use of this shift value in packing the words. The goal here is
to require the user to specify as arguments only the information
needed to initialize the table, and not to specify information that is
part of its representation. An example of using these macros to
initialize packed data follows:

!+
Employee Field Reference macros

!-

6-26

TRANSPORTABILITY GUIDELINES

FIELD EMP =
SET
EMP ID = [O,O,%BPVAL/2,0],
EMP-COST CEN = [O,%BPVAL/2,%BPVAL/2,0],
EMP-NAME-PTR = [l10,%BPVAL,O];
TES;

MACRO
!+

!-

!+

!-

!+

!-

Macro to create the shift value from the
position parameter of a field reference macro

SHIFT(X) = %FIELDEXPAND(X,2) %,

Employee table initializing macro
Three values are required

EMP INITIAL(ID,CC,NAME)[] =
- IDASHIFT(EMP ID) OR

CCASHIFT(EMP=COST_CEN), ! First value

NAMEASHIFT(EMP_NAME_PTR) %; ! Second value

Employee table definition and initialization

OWN
EMP TABLE:

-BLOCKVECTOR[NO EMPLOYEES, EMP_LINE_SIZE]
INITIAL(EMP INITIAL(

345,-
201,

'SMITH PETER',

207,
345,
'JONES PENNY'

)) ;

What has been illustrated in the previous example is the
parameterization of certain values such as field sizes. In
transporting this program, benefits can be derived from the
localization of certain machine values as in the field definitions.
This code is transportable between BLISS-32 and BLISS-36. To compile
this program with the BLISS-16 compiler, a change to the field
definitions is needed. The packing macros would no longer be needed,
though they could be used for consistency purposes. In that case,
they would also need to be changed.

As a final example of initializing packed data, consider the DCB (data
control block) BLOCK structure. (Details as to what DCB is and how it
accesses data are discussed under "FIELD Declarations" and "BLOCK
Structures" in the BLISS Language Guide. Here, we are concerned only
with initializing this type of structure.)

6-27

TRANSPORTABILITY GUIDELINES

The DCB BLOCK consists of five fields. Four fields are packed into
one word, their total combined size being 32 bits, and the fifth
field, which is 32 bits in length, occupies another word.

In this case it is possible to transport the DCB initialization very
easily between BLISS-32 and BLISS-36. The reason is that the total
number of bits required for each word does not exceed the value of
%BPVAL for each machine. Hence, in this case at least, we do not have
to modify the design of the BLOCK in any way. Typically, however, .one
would design the structure for each target machine. One method of
doing this is by placing its definition in a REQUIRE file. We prefer,
however, to again use the technique of parameterization. We will
again make use of the field reference macros as we did in the previous
example.

The next page contains the example describing a method in which it
could be initialized. Making it a BLOCKVECTOR has extended the
structure. Note that this structure could be transported to BLISS-16
by making suitable changes to the field definitions and the packing
macro. The only consideration might be whether the last field, DCB_E,
did require a full 32 bits.

!+
DCB size parameters

!-

LITERAL

!+

!-

DCB NO BLOCKS = total number of blocks,
DCB-SIZE = size of a block;

DCB Field Reference macros

FIELD DCB =
SET
DCB A
DCB-B =
DCB-C
DCB-D =
DCB-E =
TES7

MACRO

!+

[0,0,8,0]'
[0,8,3,0]'
[0,11,5,0]'
[O,%BPVAL/2,%BPVAL/2,0],
(1, 0, %BPVAL, 0];

! Macro to create the shift value from the
1 position parameter of a field reference macro
!-

SHIFT{X) = %FIELDEXPAND{X, 2) %,

!+
! DCB initializing macro.
! Five values are required.
!-

6-28

!+

!-

OWN

TRANSPORTABILITY GUIDELINES

DCB INITIALIZE(A,B,C,D,E) [] =
- AASHIFT(DCB A) OR

BASHIFT(DCB-B) OR
CASHIFT(DCB-C) OR
DASHIFT(DCB=D) '

EASHIFT(DCB_E) %;

first word

second word

DCB Blockvector definition and initialization

DCB AREA:
-BLOCKVECTOR[DCB NO BLOCKS, DCB_SIZE]

INITIAL(-
DCB INITIALIZE
1,2;3,4, first word
5, second word

6 , 7, 8 , 9, f i rs t word
10, second word

6.4.5 Structures and Field Selectors

Two BLISS constructs will be discussed in this section: structures
and field selectors. While the use of one does not necessarily imply
the use of the other, we will see that for transportability reasons
field selector usage will be confined to structure declarations.
Hence, these two constructs need to be discussed together.

We will begin with a general discussion of structures, in which it
will be shown that a certain machine-specific feature of structures
can be used in a transportable manner. The best way to illustrate the
process of writing transportable structures is to take the reader
through the intellectual considerations that contribute to its design,
so the development of a transportable structure - FLEX VECTOR - will
be presented. At this point field selectors will be discussed.
Finally, a more general structure, GEN_VECTOR, will be developed.

6.4.5.1 Structures - Structure declarations are sensitive to
transportability in that one can specify parameters corresponding to
characteristics of particular architectures. Also, in BLISS-32, the
reserved words BYTE, WORD, LONG, SIGNED, and UNSIGNED have values of
1, 2, 4, 1 and O respectively when used as structure actual
parameters.

The ability to specify architecture-dependent information can be an
advantage in developing transportable structure declarations. Later
in this section, a structure will be developed which will use the UNIT
parameter to gain a degree of transportability. The UNIT parameter
specifies the number of addressable allocation units in one element of
a homogeneous structure. This number will be used in determining the
amount of storage that is to be allocated for each element of the
structure.

6-29

TRANSPORTABILITY GUIDELINES

As mentioned repeatedly in these guidelines, the prime
transportability problem is differing machirie architectures. The key
to dealing with these differences is the parameterization by the size
of the machine word (%BPVAL) the number of bits needed to hold an
address (%BPADDR) and the number of bits occupied by the smallest
addressable unit (%BPUNIT).

6.4.5.2 FLEX VECTOR - An application of this is illustrated by
developing FLEX VECTOR, a structure that will, by default, allocate
and access a vector consisting of only the smallest addressable units.
If the default value given in the structure declaration is not used,
the vector element size will be specified in terms of the number of
bits. The existing VECTOR mechanism will not do this.

An example of its use would be to create a vector of 9-bit elements.
The first decision that has to be made in its design is whether or not
each element is to be exactly nine bits, or at least nine bits. For
this example, we chose the smallest natural unit whose size is greater
than or equal to nine bits. Since there are no 9-bit conveniently
addressable units on any of the machines, we have a choice of 8-, 16-,
32-, or 36-bit units.

We can see that 9 bits will fit in the only addressable unit on the
10/20 systems the word. On the 11 we will need two bytes or a
16-bit word and on the VAX-11 we will again need two bytes.

How then can a structure be developed that will do this allocation and
will also ·be transportable and usable on the three systems? Clearly
the structure will need some knowledge of the machine architecture.
This is where the role of parameterization comes in.

The predeclared literals have all the information we need. In fact
only one set of values is needed: bits per addressable unit
{ %BPUNIT) •

The minimum necessary size of a vector element will be one of the
allocation formals {UNIT). Other formals that will be needed are the
number of elements {N), the index parameter {I) for accessing the
vector, and an indication of whether or not the leftmost bit of an
element is to be interpreted as a sign bit {EXT).

The access and allocation formal list for FLEX VECTOR is:

STRUCTURE
FLEX_VECTOR[I; N, UNIT = %BPUNIT, EXT = 1] =

Notice that by setting UNIT equal to %BPUNIT the default {if UNIT is
not specified) will be %BPUNIT.

The next step is to develop the formula for the structure-size
expression. The expression will make use of the allocation formals
UNIT and N, and in addition, the value of %BPUNIT.

If UNIT were allowed to assume only values of integer multiples of
%BPUNIT {that is, 1*%BPUNIT, 2*%BPUNIT, and so on), only a
structure-size expression of the following form would be needed:

[N * (UNIT) I %BPUNIT]

6-30

TRANSPORTABILITY GUIDELINES

Dividing the element size (UNIT) by %BPUNIT would give the size of
each element in the vector in terms of an integer multiple. This
value would then be multiplied by the number of elements to give the
total size of the data to be allocated.

Suppose the structure needs to be more flexible in that it should be
possible to specify any size element (within certain limits). The
structure size must be slightly more complex:

[N * ((UNIT+ %BPUNIT - 1)) I %BPUNIT]

The structure-size expression now computes enough %BPUNIT's to hold
the entire vector. The reader should try some values of UNIT for
differing %BPUNIT in order to see howthls expression evaluates.

This subexpression:

(UNIT + %BPUNrT - 1) / %BPUNIT

that we will call NO OF UNITS is very important in effecting the
transportability and flexibility of this particular structure. The
key to transporting this structure is the knowledge that it has of the
value of a certain machine architectural parameter: bits per
addressable unit~ This particular expression makes use of this
knowledge; hence, it can adapt to any machine. This subexpression
will be used twice more in the structure-body expression.

The structure body is an address expression. This expression consists
of the name of the structure (the base address) plus an offset based
on the index I. In additiorir a field s~lector is needed to access the
proper number of bits at the calculated address.

The offset is simply the expression NO OF UNITS multiplied by the
index I. (Remember that indices start-at-0). The size parameter of
the field selector is the expression NO OF UNITS multiplied by the
size of an addressable unit, %BPUNIT. The structure body will look
like:

(FLEX VECTOR +
I-* ((UNIT+ %BPUNIT -·1} I %BPUNIT))

<O, ((UNIT + %BPUNIT - l) /%BPUNIT) *%BPUNIT, EXT>;

The value of the position parameter in the field selector is a
constant 0 since it always starts at an addressable boundary.

The following table shows the structure on the three machines for
different values of UNIT:

VAX-11

UNIT = 0 no storage
FLEX_VECTOR<O,O,l>

UNIT = 1 to 8 [N * l] Bytes
(FLEX_VECTOR + I)<0,8,1>

UNIT = 9 to 16 [N * 2] Bytes
(FLEX_VECTOR + I * 2)<0,16,1>

UNIT 17 to 32 [N * 4] Bytes
(FLEX_VECTOR + I * 4)<0,32,l>

6-:-31

TRANSPORTABILITY GUIDELINES

11

UNIT 0 to 16

10/20

UNIT = 0

UNIT = 1 to 36

same as VAX-11 . ·

no storage
(FLEX_VECTOR)<010,l>

[N] Words
(FLEX_VECTOR + I)<0,36,1>

The above table illustrates that if the default value for UNIT were
set to %BPVAL, this structure would be equivalent to a VECTOR of
longwords on VAX-11, and a VECTOR of words on the 10/20 and 11
systems.

Elements in a data segment that has this particular structure
attribute are accessed very efficiently because they are always on
addressable boundaries. Also, they are always some multiple of an
addressable unit in length.

If this structure were to access elements of exactly the size
specified, then only change needed would be the size parameter of the
field selector. This expression then becomes:

FLEX_VECTOR<O, UNIT>;

This is a less efficient means of accessing data (when UNIT is not a
multiple of %BPUNIT) because the compiler needs to generate field
selecting instructions in the case of the VAX-11 and 10/20 machines
and a series of masks and shifts for the 11.

6.4.~.3 Field Selectors - In the last structure declaration, it was
necessary to make use of a field selector. Now, the use of field
selectors in a more general context will be discussed.

The use of field selectors can be nontransportable because they make
use of the value of the machine word size. The unrestricted usage of
field selectors may cause problems in a program when it is moved to
another machine. These problems are best illustrated by the following
table of restrictions on position (p) and size (s) for the three
machines:

Machine: 10/20

0 < p
p + s < 36
0 < s < 36

11

0 < p
p + s < 16
0 < s < 16

From the table we can see that:

• The most restrictive is the 11.

VAX-11

0 < s < 32

• The moderate restrictions are those of the 10/20.

• The least restrictive is VAX-11.

6-32

TRANSPORTABILITY GUIDELINES

In order to ensure the transportable use of field selectors, we would
have to abide by the set of restrictions imposed in BLISS-16. These
are restrictions imposed by the values of p and s. There is also a
contextual restriction on the use of field selectors. The following
guideline should be followed:

• Field selectors can appear only in the
user-defined structures.

definition of

Restricting the domain of field selectors to structures isolates their
use. Field selectors should be isolated so that:

• Changes in data structure design are easier.

• Machine dependencies can easily be placed in REQUIRE files.

• Complex coding making heavy use of the predeclared literals is
limited to declarations.

Another transportable structure will be developed and will be affected
by the table of field selector value restrictions.

6.4.5.4 GEN VECTOR - Notice that FLEX VECTOR does not attempt to pack
data. Using the example of 9-bit elements, it is evident that there
will be some wasting of bits - from seven bits on the 11 and VAX-11 to
27 on the 10/20 systems.

A variation of FLEX VECTOR can be developed to provide a certain
degree of packing: For example, in the case of 9-bit elements it
would be possible to pack at least four of them into a 10/20 word and
three into a VAX-11 longword.

This structure, which will be named GEN VECTOR, will pack as many
elements as possible into a BLISS value and so will make use of the
machine-specific literal %BPVAL. However, since allocation is in
terms of %BPUNIT, a literal will be needed that has as a value the
number of allocation units in a BLISS value. This literal has been
predeclared for transportability reasons and has the name %UPVAL, and
is defined as %BPVAL/%BPUNIT.

Elements will not cross word boundaries. This constraint is because
of the restrictions placed on the value of the position parameter of a
10/20 and 11 field selector. For the same reason elements cannot be
longer than %BPVAL, as given in the table of field selector
restrictions above.

As in FLEX VECTOR, the allocation expression of GEN VECTOR will need
to calculate the number of allocation units needed by the entire
vector. This will again be based on the number of elements (N) and
the size of each element (S). But because the elements will be
packed, the expression will be slightly more complicated.

The first value is the number of elements that will fit in a BLISS
value. The expression:

(%BPVAL/S)

6-33

TRANSPORTABILITY GUIDELINES

will compute this value. Given this, to obtain the number of BLISS
values or words needed for the entire vector, divide this value into
N:

(N/(%BPVAL/S))

This is the total number of values needed. However, data are not
allocated by words on both of the machines. Multiplying this value by
%UPVAL will result in the number of allocation units needed by the
vector:

((N/(%BPVAL/S))*%UPVAL)

For clarity's sake and because this expression will be used again, it
will be expressed as a macro with N and S as parameters:

MACRO
WHOLE_VAL(N,S) =

((N/(%BPVAL/S))*%UPVAL)%;

The name of the macro suggests that it calculates the number of whole
words needed. If, in fact, N were an integral multiple of the number
of elements in a word then this macro would be sufficient for
allocation purposes.

Since this is not known in advance,· another expression to calculate
the number of allocation units needed for any remaining elements is
needed. The number of elements left over is the remainder of the last
division in this expression:

(N/ (%BPVAL/S))

The MOD function will calculate this value, as follows:

(N MOD (%BPVAL/S))

Multiplying this value by the size of each element gives the total
number of bits that remain to be allocated:

(N MOD (%BPVAL/S)) * S

This value will always be strictly less than %BPVAL. For the same
reasons outlined above this expression will be expressed as a macro
with N and S as parameters:

MACRO
PART_VAL(N,S) =

((N MOD (%BPVAL/S)) * S)%;

PART VAL computes the number of bits allocated in the last (partial)
word:-

Taking this value, adding a "fudge
%BPUNIT gives us the number of
remaining bits:

factor~ and then dividing by
allocation units needed for the

(PART_VAL(N,S) + %BPUNIT -l)/%BPUNIT

6-34

TRANSPORTABILITY GUIDELINES

The total number of allocation units has been ·calculated and the
structure allocation expression is:

[WHOLE VAL(N,S} +
(PART_VAL{N,S) + %BPUNIT - l)/%BPUNIT]

As it works out, the structure-body expression for GEN VECTOR will be
simple to write because of the expressions that have already been
written.

The accessing of an element in GEN VECTOR requires that an address
offset be computed which is then added to the name of the structure.
This offset is some number of addressable units and is a function of
the value of the index I. The expression which will calculate this
number of addressable units is the macro WHOLE VAL. Thus, the first
part of the accessing expression is:

GEN_VECTOR + WHOLE_VAL(I,S}

Note that the macro was called with the index parameter I.

This expression will result in the structure being aligned on some
addressable boundary. But since the element may not begin at this
point (that is, the element may be located somewhere within a unit
%BPVAL bits in length}, one more value is needed. That value is the
position parameter of a field selector. The macro PART VAL will
calculate this value based on the index I:

<PART_VAL(I,S},S,EXT>

The size parameter is the value s. The position parameter will be
calculated at runtime, based on the value of the index I.

This completes the definition of GEN VECTOR. The entire declaration
is:

STRUCTURE
GEN_VECTOR[I;N,S,EXT=l] =

[WHOLE VAL(N,S} +
(PART_VAL(N,S) + %BPUNIT - l}/%BPUNIT]

(GEN_VECTOR + WHOLE_VAL(I,S}}

<PART_VAL(I,S),S,EXT>;

The reader should compile this structure and see how it works in
BLISS-16, BLISS-32, and BLISS-36.

6.4.S.S Summary - No claim is made that either of these two
structures will solve all the problems associated with transporting
vectors. Many such problems will have interesting and unique
solutions. BLOCKS or BLOCKVECTORS have not been discussed, but it is
hoped that the reader will get from the examples a feeling for the
techniques involved in transporting structures.

There is no easy solution to transporting data structures. One should
consider, when developing data structures, the machines that the
program or system is targeted for and make full use of the predeclared
literals such as %BPUNIT.

6-35

TRANSPORTABILITY. GUIDELINES

This exercise .in the development of transportable structures has
illustrated two points:

• parameterization and

• field selector usage.

By parameterizing certain machine~specific values and by taking full
advantage of the powerful STRUCTURE mechanism, two transportable
structures have been developed.

The accessing of odd (not addressable) units of data is accomplished
by the use of field selectors. The field selector should be used only
in structure declarations.

6-36

CHAPTER 7

COMPILER OVERVIEW AND OPTIMIZATION SWITCHES

This chapter provides an overview of the BLISS compiler organization
and processing. The material presented here assumes that the reader
has a general understanding of compiler theory and practice. It need
not be understood for normal use of the BLISS language and compiler.

Some of the switches described in connection with "SWITCHES
declaration" in the BLISS Langua~e Guide provide specialized control
over the processing of the compiler, especially in the area of
optimization. This section provides the basis for a more detailed
understanding of these switches. The switches that are described are:

CODE and NOCODE
OPTIMIZE and NOOPTIMIZE
OPTLEVEL
SAFE and NOSAFE
ZIP and NOZIP

Table 1-1 shows command qualifier relationships to these switches.

7.1 COMPILER PHASES

The compiler is organized conceptually into seven major phases:

LEXSYN
FLOW
DELAY
TNBIND
CODE
FINAL
OUTPUT

- Lexical and syntactic analysis
- Flow analysis
- Heuristics
- Temporary name binding (register allocation)
- Code generation
- Code stream optimization
- Object and listing file production

This division of the compiler into conceptual phases corresponds only
approximately to the actual compiler. In some cases, a phase actually
consists of two or more subphases. In other cases, phases are
combined in the implementation. This level of detail is not important
in the following discussion of the phases. The term "phase" should
not be taken literally.

7-1

COMPILER OVERVIEW AND OPTIMIZATION SWITCHES

7.1.1 Lexical and Syntactic Analysis

The lexical and syntactic phase, LEXSYN, performs the following
functions:

• Reads the input files

• Divides the source character text into lexemes

• Identifies and performs lexical functions and macro expansions

• Parses the resulting input lexeme sequence and creates
appropriate symbol table entries for declarations and tree
representations for expressions

The BLISS compiler reads the source text once and uses it to create an
internal representation of the module. In this sense, the BLISS
compiler is a one-pass compiler. On the other hand, at the end of
each (ordinary or global) routine definition, the remaining phases of
the compiler are performed in turn to analyze and completely produce
and output code for that entire routine. In this sense, the BLISS
compiler is a multi-pass compiler.

If the NOCODE switch is specified, the compiler operates in a
"syntax-only" mode, in which the LEXSYN phase does not produce the
tree representations for expressions and the later ~hases are not
performed. If an error (as contrasted with a warning) is detected and
reported by the compiler, the compiler automatically enters
syntax-only mode as if NOCODE had been specified.

Syntax-only mode is useful for initial checking of a newly created
module. However, there are two important limitations to such use:

1. Some errors are detected and reported by later phases of the
compiler. Since the later phases are not performed in this
mode, some errors will not be detected.

2. Because the tree representation of expressions is not being
produced, the values of compile-time constant expressions
cannot be determined. The compiler assumes a value of 0 for
any expression that is not a simple literal. If the correct
parsing of the module depends on the correct values of
constant expressions, spurious error diagnostics can result.
Examples where this might be the case are lexical functions,
conditional compilation, and macro expansion.

The difference between an error and a warning diagnostic is based on
the seriousness of the effect of the. error ·upon the internal
representation of the program used by the compiler. (It is not a
value judgment upon the nature of the programmer's mistake.)

In most cases, the compiler can recover and proceed
compilation. This permits further errors, if any, to be
in some cases, may permit the resulting object module to
execution time debugging before the source module is
recompiled. Errors from which the compiler can continue
reported as warning diagnostics.

with normal
detected and,
be used for
corrected and
normally are

In some cases, the effect of a user error is to make the
internal representation of the module inconsistent or
unreliable for continued use. Such errors are reported
diagnostics.

compiler's
otherwise
as error

7-2

COMPILER OVERVIEW AND OPTIMIZATION SWITCHES

Depending on the circumstances, the same apparent user error (same
diagnostic information) may be reported as a warning in one case but
as an error in another.

7.1.2 Flow Analysis

The flow analysis
representation of
functions:

phase, FLOW, examines
a complete routine and

the internal tree
performs the following

• Identifies expressions that appear more than once in the
source, but that will produce the same value (common
subexpressions) • Such expressions need be evaluated only once
during execution and the result used several times, thereby
saving execution time and code space.

• Identifies expressions contained in loops whose values will be
the same on each iteration of the loop. Such expressions can
be evaluated once before starting the loop and the result used
during each iteration, thereby saving execution time.

• Identifies expressions that occur on all alternatives of the
IF, CASE, and SELECTONE expressions. Such expressions may be
evaluated once before or after the multiple alternatives,
thereby saving code space.

More generally, the FLOW phase identifies possible alternative ways of
evaluating a routine, which might be more efficient in time or space
or both. Note that the next phase determines which alternative is
actually used; the FLOW phase only identifies the possible choices.

If OPTLEVEL is specified with a value of 0 or 1, the flow analysis
phase is totally skipped. A consequence of skipping flow analysis is
that the OPTIMIZE and SAFE switches have no effect, because OPTIMIZE
and SAFE control aspects of how flow analysis is done. However, if
OPTLEVEL is specified with a value of 2 (the default) or 3, the flow
analysis phase is performed and the OPTIMIZE and SAFE switches have
the effects described below.

To understand the effects of the OPTIMIZE and
first necessary to understand more about
performed.

SAFE
how

switches, it
flow analysis

is
is

7.1.2.1 Knowing When a Value Changes - One operator
assignment operator, can change the contents of
However, routine calls can also change the contents of
because they can contain assignments.

in BLISS, the
a data segment.
data segments

For each assignment, the compiler examines the left operand expression
and attempts to determine the name of the data segment whose contents
will be changed by the assignment. (The case where no name can be
determined is considered below.) The same analysis is performed for
each actual parameter that appears in a routine call. In effect, the
compiler treats each actual parameter as though it did appear as the
left operand of an assignment. In addition to this, for each routine
call the compiler determines the names of all OWN and GLOBAL data
segments that the called routine might change and assumes that all of
them are changed.

7-3

COMPILER OVERVIEW AND OP,TIMIZATION SWITCHES

Machine-specific functions are treated as normal routine calls, except
that the compiler has more detailed infqrmation about which parameters
can cause changes and which cannot.

Several aspects of this analysis process are illustrated using
examples. In these examples the following declarations are assumed:.

OWN
X: VECTOR[lO],
Y,
Z;

EXTERNAL ROUTINE
F;

First, consider the following sequence of assignments:

I = 3;
Y = .X[.I];
X [7] = • X [. Y] ;
Z = .X[.I]+l;

In the third line, the assignment to X[7] is assumed to change all of
the data segment identified by X. As a consequence, the possible
common subexpression .X[.I] is not recognized by the compiler.
(However, note that the common subexpression X[.I], which computes the
address of the I'th element of X, is recognized since the assignment
to X cannot affect this value.)

In the above example, it may seem apparent exactly what part of X is
changed, but in most cases it is difficult or impossible for the
compiler to determine what part of a named data segment changes and
what part does not change.

Another aspect is illustrated with this example:

X[ll] = 11;
y = • z;

In the first line, the assignment to X[ll] actually modifies the
contents of z. (Recall that X was declared as a vector of 10 elements
numbered 0 through 9). The compiler analysis does not determine that
storage other than the storage for X is being changed because the
analysis is based completely on the names that occur in the
expression. As a consequence, the compiler may inappropriately use
the previous contents of Z in the assignment to Y. This would happen,
for example, if the expression .z were a common subexpression used
frequently enough to result in the contents of Z being copied into a
register for more efficient access.

Both of these examples emphasize the importance of the name used to
reference storage in the analysis performed by FLOW.

Now consider the case where a name cannot be identified for the
storage being changed. This is the case in the following example:

Z = F();
• z = 3;

7-4

COMPILER OVERVIEW AND OPTIMIZATION SWITCHES

In the second line, no name of a data segment can be determined. In
such a case, the compiler assumes (by default) that no named storage
has changed. This assumption is justified because it is always the
case that such indirect assignments are used to change the contents of

• dynamically created data structures that do not have names, or

• data segments passed as parameters of routine calls and that
cannot be referenced in the called routine by the name used to
allocate the storage

The NOSAFE value of the /OPTIMIZE qualifier can be used to override
the default assumption described above. (SAFE is the default). If
NOSAFE is specified, the compiler assumes that indirect assignments do
change some named data segment. Because it is nearly always
impossible to identify the data segment that is changed, this
assumption is guaranteed by making the even stronger assumption that
all named data segments are changed.

7.1.2.2 Accounting for Changes - The BLISS language definition
intentionally leaves unspecified the order of operand evaluation in
operator expressions in order to permit maximum optimization by the
BLISS compiler. For example, the expression

F(X) + .X

can be evaluated first, by calling F with the address X as a
parameter, second, by fetching the contents of X, and finally, by
performing the addition. It might also be evaluated first, by
fetching the contents of X, second, by calling F, and so on. The
compiler uses information about the entire routine in which the
expression is contained to choose alternatives. Since the routine
call F(X) may change the contents of X, the question becomes: When
does the compiler take the (potential) change into effect? It does
not make sense to take this into account within the expression without
also specifying precisely the order of evaluation. It makes sense to
account for changes only at points in the language where the order of
evaluation is specified. Points at which changes are taken into
account are called mark points. Mark points in BLISS are summarized
in the following diagram, where "!" is used to point to the mark point
within the language syntax on the subsequent line.

BEGIN exp , ... END

IF exp THEN exp ELSE exp

WHILE exp DO exp

DO exp WHILE exp

!NCR name FROM exp TO exp BY exp DO exp

CASE exp FROM ctce TO ctce OF SET [•••]: exp, ••• TES

SELECT exp OF SET [exp TO exp r•••]: exp; ••• TES

7-5

COMPILER OVERVIEW AND OPTIMIZATION SWITCHES

The most common mark point in most programs is the semicolon, which
separates expressions in a block or compound expression, for example:

BEGIN
Y = .X+2;
Z = .X+2+F(X);
W = .X+2
END

In the second line, the content of Y is changed. This change is taken
into account by the compiler when the semicolon is encountered. In
the third line, .X+2 computes the same value as .X+2 in the second
line; thus, .X+2 is a common subexpression of the second and third
lines. Also in the third line, the content of Z is changed and the
call F(X) is considered to change the content of X. As discussed
above, these changes are not taken into account until the semicolon is
encountered. In the fourth line, .X+2 must be recomputed because of
the change of the content of X in the third line - it is not a common
subexpression with the previous occurrences.

The effect of the OPTIMIZE switch is now easily stated. If OPTIMIZE
is specified (the default) full flow analysis is performed. If
NOOPTIMIZE is specified, at every mark point all data segments are
assumed to change. As a consequence, common subexpression values
computed by one expression are not reused in later expressions - the
value is computed again. Expressions that have a constant value
within a loop are not computed once before the loop is started; the
value is recomputed during each iteration of the loop. And similarly,
other kinds of "code motion" optimizations are not performed.

However, specifying NOOPTIMIZE is not equivalent to specifying that no
flow analysis is performed, since common subexpressions that occur
between mark points are still detected. For example, in the
expression

Y = (.X*2)+F(.X*2)

the subexpression .X*2 is computed once and the resulting value used
twice, even when NOOPTIMIZE is specified.

7.1.3 Heuristic Phase

The heuristic phase,
general information
used by DELAY itself
available for use
functions:

DELAY, further analyzes the routine to obtain
about the routine. Some of this information is

to make optimization decisions, and some is made
by later phases. DELAY performs the following

• Evaluates the effectiveness of the alternatives identified by
FLOW and chooses the best alternative. This analysis
considers, for example, the number of occurrences of a common
subexpression and the potential for using specialized
operations available in the address parts of instructions (for
example, indirection and indexing).

• Identifies sets of subexpressions that occur only once (that
is, are not common subexpressions) that should be computed in
the same temporary location (whether a register or memory),
thereby maximizing the use of 2-operand (as contrasted with
3-operand) instructions.

None of the switches affect the operation of the DELAY phase.

7-6

COMPILER OVERVIEW AND OPTIMIZATION SWITCHES

7.1.4 Temporary Name Binding

The temporary name binding phase, TNBIND, determines where each value
computed during the execution of a routine should be allocated. This
phase corresponds to what is sometimes called register allocation in
other compilers. It is somewhat more general in that it considers and
allocates user declared local variables together with compiler-needed
temporary locations in an integrated way.

TNBIND performs the following functions:

• Determines the lifetime (that is, the first and last uses) of
each temporary value in the routine.

• Estimates the difference in compiled code cost of allocating
each temporary value in a register versus in memory (on the
stack) •

• Uses cost information to rank temporary values to determine
the most important ones to be allocated in a register.

• Proceeding from most important to least important, allocates
the temporary values. More than one temporary value may be
allocated in the same location, provided their lifetimes do
not overlap. (Thus, it is possible for a less important
temporary to be allocated in a register even though a more
important one is not - its shorter lifetime could permit it to
"fit.")

The measure of importance used (normally) by TNBIND is based
completely on minimizing the overall size of the code generated for
the entire routine.

The ZIP switch modifies the importance measure. If ZIP is specified,
temporary values used within loops are given increased importance.
The greater the degree of loop nesting, the greater the importance.
Thus, temporary values used in loops become more likely to be
allocated in registers~ As a consequence, code within loops tends to
execute faster, even though the overall size of the routine can become
larger.

7.1.5 Code Generation

The code generator phase, CODE, processes the tree and generates
instructions. Since the allocation for each operand of a node and the
result location of each node have already been determined by TNBIND,
CODE selects the locally best code sequence consistent with those
requirements.

None of the compilation switches affect the operation of the CODE
phase.

7-7

COMPILEROVERVIEW AND OPTIMIZATION SWITCHES

7.1.6 Code Stream Optimization

The code stream optimization phase, FINAL, processes the code stream
produced by CODE and makes further optimizations at the machine code
level. The optimizations performed include:

• Peephole optimization. One sequence of instructions is
replaced with an equivalent shorter sequence.

• Test elimination. TST instructions used for conditional
branching may be deleted if the condition codes needed by the
branch instruction are appropriately set by the instruction(s)
that precede the TST. ·

• Jump/Branch resolution. Branch instructions are reduced to
their shortest size consistent with the actual range of the
needed branch displacement.

• Branch chaining. If a short branch instruction is not able to
reach the desired location but can reach another branch
instruction that goes to the desired location, a chain of
branches is used to minimize code size.

• Cross-jumping. Identical sequences of code that flow into a
common instruction are merged into a single sequence.

The OPTLEVEL switch may be used to eliminate some of these
optimizations. The result is code that more clearly follows the
organization of the source program. This may be helpful during
debugging or when the generated code must be understood in detail.

7.1.7 Output File Production

The output file production phase, OUTPUT, transforms the code stream
into object module format and outputs it to the object file. It also
formats and outputs the listing file information.

If the DEBUG switch is specified, symbol table information for use by
the DEBUG system utility is included in the object module. If NODEBUG
is specified (the default), no symbol table information is produced.

7.2 SUMMARY OF SWITCH EFFECTS

The previous sections have described the phases of the compiler and
the switches that affect each of those phases. This section
summarizes the effects of each switch throughout the compiler.

Switch Name Phase

CODE LEXSYN

OPTIMIZE FLOW

7-8

Effect

NOCODE specifies syntax-only
processing; the other phases are
not invoked.

If flow analysis is performed,
NOOPTIMIZE specifies do not
optimize across mark points.

COMPILER OVERVIEW AND OPTIMIZATION SWITCHES

Switch Name Phase

OPTLEVEL FLOW

FINAL

SAFE FLOW

ZIP TNBIND

Effect

At levels O and 1, flow analysis
is not performed.

At levels 0 and 1, cross-jumping
and branch chaining are not
performed. At level O, peephole
optimizations that are not
adjacent are not performed.

If flow analysis is performed,
SAFE specifies that indirect
changes are to assume all storage
is changed.

ZIP specifies that data segments
used in loops are to be given
increased importance in
determining register allocation.

The OPTLEVEL switch is a composite switch that includes appropriate
settings of the other switches in an ordered way. It can be specified
in either the command line or module head or both. The rule applied
to determine which switch setting has effect is that the most recent
switch setting specified has effect allowing the other switches (SAFE,
OPTIMIZE, and so on) to override OPTLEVEL at any time. In a
compilation of more than one module, each module begins with the
setting defined in the command line and OPTLEVEL=2 if OPTLEVEL has not
been specified in the command line.

Optimizations performed at each setting of the OPTLEVEL switch are:

Optimization OPT LEVEL

* 1. Common subexpression detection
* 2. Code motion out of loops, and so on

3. Targetting/preferencing to
temporaries

4. Cross jumping
5. Multiple RETs (instead of only one

return point)
6. Peepholes
7. TSTx elimination
8. Scans for ()+, -() forms
9. Scans for PUSHR, and so on

10. Scans for cheaper form of addressing
11. Branch chaining

*12. "SAFE" optimizations
*13. "OPTIMIZE" over mark points (for example, ;)
*14. "ZIP" speed/space tradeoff

(faster but possibly larger)

Key:

0 1

x x

x

- x
x x
x x
x x
x x

* - Another switch can control this optimization separately
X - Allowable optimization
+ - Allowed with increased freedom

Allowed -- with certain restrictions

7-9

2
x
x
x

x
x

x
x
x
x
x
x
x
x

3
x
x
+

x
x

x
x
x
x
x
x
x
x
x

CHAPTER 8

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

A number of programming tools, libraries, and system interfaces are
available for use by BLISS programmers. This chapter briefly
describes what is available for use with BLISS-32 V3. Note that the
BLISS tools (utility programs) and system interfaces described here
are not supported products at the time of writing.

The residence locations specified for the various BLISS-related
program and information files assume that these files have been
installed on your system in their standard, as-released locations.

8.1 TRANSPORTABLE PROGRAMMING TOOLS (XPORT)

XPORT is a collection of transportable source-level programming tools
for use with the BLISS langua~e. XPORT tools may be commonly applied
across all BLISS target systems to provide such thing~ as: extensive
input/output facilities; a uniform interface for obtaining operating
system services (such as dynamic memory); and aids to data
structuring and string handling.

The XPORT package consists of five components:

XPORT Data Structures
XPORT Input/Output Facilities
XPORT Dynamic Memory Management
XPORT Host System Services
XPORT String Handling Facilities

Each component provides tools which ease the task of interfacing a
BLISS program with the operating system under which it will run.
Therefore, the primary purpose of the XPORT package is to provide
tools and interfaces which behave exactly alike in all system
environments, and thus provide transportable operating system
interfaces.

Programs written in Common BLISS (which use XPORT services in the
manner prescribed) can be developed and debugged on one system and run
on any other BLISS-s~pported system without change.

An additional benefit of using the XPORT package for BLISS programs,
even if they do not require transportability, is the advantage in
using the simplified XPORT interface as opposed to more powerful and
complicated host system inter£aces.

A description of each XPORT component follows; however, for a more
detailed explanation of XPORT and its services refer to the XPORT
Programmer's Guide.

8-1

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

8.1.1 XPORT Data Structures

The XPORT structure-definition facility is a collection of macros that
allow a programmer to define efficient BLOCK structures in a manner
that is both convenient and primarily system-independent. The
facility primarily consists of a replacement for the standard BLISS
FIELD declaration, using the keyword $FIELD.

The structure-definition facility allows a programmer to name the kind
of field required for each block component, instead of specifying its
position and size. A field-type (such as, SHORT INTEGER, ADDRESS,
BYTE) implies not only the size but also the alignment and required
sign extension mode.

The XPORT data structure facility also provides the following support
features:

FIELD SET SIZE calculates the size of a block defined by
$FIELD.

ALIGN

OVERLAY

CONTINUE

forces a specified mode of alignment for a
subsequent field.

allows for overlayed field definitions.

terminates field overlaying.

LITERAL/DISTINCT

SHOW

creates a set of distinct integer literals.

controls the display of XPORT generated field
definitions, values, and messages.

SUB FIELD provides a means of referencin9 a field
within a substructure of a block.

8.1.2 XPORT Input/Output

XPORT input/output is a general-purpose, system-independent service
that supports sequential I/O operations in record, character stream,
and binary mode, and provides basic file functions. This facility
actually consists of several separate I/O packages, each being written
for a specific operating system and file system. However, the program
interface to each package is identical. Thus, a transportable I/O
interface is provided for programs written in common BLISS or any
other transportable language.

The XPORT I/O facility performs the following
manipulation functions:

I/O and file

OPEN

CLOSE

DELETE

RENAME

prepares a file for reading (input) or writing
(output). An output file may .be optionally created.

terminates the processing of an input or output
file, including the flushing of any I/O buffers.

deletes an existing file.

changes the name of an existing file.

8-2

BACKUP

PARSE

GET

PUT

TOOLS,. LIBRARIES, AND SYSTEM INTERFACES

provides a mechanism for preserving a copy of an
input file when a program creates a new version of
that file. This capability is typically used by
editor-type applications.

parses a host system file specification into its
component parts.

returns the length and address of the next
sequential logical record read from an input file.
Logical concatenation of several input files can be
automatically performed when an intermediate
end-of-file is reached.

writes a single logical record into an opened outpu~
file.

8.1.3 XPORT Dynamic Memory Management

The XPORT dynamic memory management facility provides the following
functions:

GET MEM allocates a specified amount of dynamic memory.

FREE MEM releases an allocated element of dynamic memory

8.1.4 XPORT Host System Services

The XPORT host system services are a set of routines that perform
commonly needed host system functions in a transportable manner. The
functions provided are as follows:

PUT ·MSG

TERMINATE

routes a message sequence to the standard output
and/or error devices, based on a message severity
code.

terminates program execution after sending the user
a termination message.

8.1.S XPORT String Handling Facilities

The XPORT string handling facility provides a programmer with the
ability to transportably manipulate character strings. Small control
structures {modeled after the VAX/VMS descriptor convention) are used
to facilitate the exchange of character data between procedures.

The following descriptor classes are provided:

FIXED

BOUNDED

DYNAMIC

DYNAMIC BOUNDED

describes a string with a fixed length and
location.

describes a buffer that contains a variable
length string.

describes a moveable string, the length of
which is subject to variance.

describes a moveable buffer that contains a
variable length string.

8-3

TOOLS, LIBRARIES 1 AN.D SYSTEM INTERFACES

The following functions· are used to manipulate a descriptor and its
associated string:

DESCRIPTOR

DESC INIT

COPY

APPEND

EQL,NEQ,LSS,
LEQ,GEQ,GTR

SCAN

CONCAT

FORMAT

ASCII

BINARY

creates and initializes a descriptor in OWN
storage, or creates a descriptor in LOCAL
storage.

dynamically initializes a descriptor in OWN
or LOCAL storage.

copies a source string to a target string
with appropriate truncation and padding.

appends a source string to a target string.

compares the values of two strings according
to the ASCII collating sequence.

locates a specific sequence of characters
(FIND mode), matches a stream of characters
(SPAN mode) , or searches for one character of
a set (STOP mode) •

concatenates two or more strings as a single
logical string.

centers, left justifies, right justifies, or
converts a string to upper case.

produces an ASCII string representation of a
binary field value.

converts an ASCII string value to a binary
value.

The XPORT string handling facility also extends the descriptor concept
to include binary data; whereby, the four descriptor classes (FIXED,
BOUNDED, DYNAMIC, and DYNAMIC BOUNDED) are used to describe a data
item instead of a string,-while two of the descriptor manipulation
functions (DESCRIPTOR, DESC !NIT) are used to create and intitialize
the binary data descriptors~

8.2 BLISS CROSS REFERENCES (BLSCRF)

The utility program BLSCRF cross-references BLISS source files and
provides a means of merging the cross-references of multiple files.

8.2.1 Command Line Format

BLSCRF is invoked by defining the string-symbol:

BLSCRF:==$BLSCRF
BLSCRF in-spec{/OUTPUT:outspec}{/MERGE:merge-spec}{qualifier ••• }

Wildcards are permitted in the directory, file name, file type, and
file version fields. A comma-list is not accepted by the current
implementation.

8-4

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

The default file types are:

in-spec
out-spec
merge-spec

B32 (BLI)
XRF
MRG

8.2.2 Command Semantics

BLSCRF accepts as input BLISS source text and produces a
cross-reference listing file (out-spec) and/or merge file (merge-spec)
suitable for combining with similar files to produce a master
cross-reference of multiple modules.

The cross-reference listing is a numbered listing of the input text,
followed by an alphabetical listing of symbols and line numbers on
which the symbols occur. This file is suitable for listing on a
132-column line printer.

The merge file contains cross-references by symbol and file name.
This can be appended to other merge files and sorted to create a
master cross-reference.

8.2.3 Command Qualifiers

A number of command-line qualifiers can be specified
flexibility in what is cross-referenced and how
(*=default).

to permit some
it is formatted

/FLAG: (ASSIGN,REQUIRE,ROUTINE)

Certain characters can be used to flag various symbol uses,
including:

ASSIGN*
NOASSIGN

REQUIRE*
NOREQUIRE

ROUTINE*
NOROUTINE

/KEYWORD
/NOKEYWORDS*

"#" indicates that symbol appeared on left side of
an equals sign and represents a probable
assignment

"+" indicates that symbol appeared in REQUIRE file

"*" indicates that symbol appeared as a routine­
name in a ROUTINE declaration (also FORWARD
ROUTINE, BIND ROUTINE, or EXTERNAL ROUTINE)

The use of BLISS language keywords is cross
referenced.

/MERGE:file-spec Create a merge file.

/ONCE
/NOONCE*

Cross reference only those symbols that appear
exactly once in the input file.

/OUTPUT:file-spec Specifies output file.

/REQUIRE
/NOREQUIRE*

/SOURCE*
/NOSOURCE

List source lines in REQUIRE files.

Include a line numbered listing of the source
with the cross-reference in the output file.

8-5

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

8.3 BLISS LANGUAGE FORMATTER (PRETTY)

PRETTY is a utility program that reformats BLISS source files and
require files so that they correspond to the formatting standards
described in the VAX-11 Software Engineering Manual. PRETTY is a
valuable tool in standardizing the appearance of BLISS code, for it
promotes readability while permitting flexibility in program
structure.

PRETTY is more than a reformatter. It also performs a cursory syntax
check of your program and reports obvious errors that should be fixed
prior to compilation, such as mismatched BEGIN and END statements.

8.3.1 Command Line Format

PRETTY is invoked by defining the string symbol:

PRETTY:==$PRETTY
PRETTY in-spec{/OUTPUT: out-spec}{/LISTING: list-spec}, •••

8.3.2 Command Semantics

The output file contains the reformatted source program or REQUIRE
file. Some of the operations performed by PRETTY are:

• To force routines to the top of a new page (if they are not
nested within other routines)

• To align BEGIN-END pairs

• To indent blocks

• Where possible, to align end-of-line comments (remarks) to a
standard column

• To align block comments with the enclosing blocks

• To realign control structures to one or more lines in a
standard way

Several options are available to enable a user to specify different
kinds of formatting; defaults for all options are described.

The listing file differs from the output file in three ways:

• Each line is appended with a slash (/), the SOS page number,
and the SOS line number, as in:

I 4. 200

• Each logical tab is preceded by a colon (:) , so that the
indentation level is obvious, as in:

IF .A I 1. 1200
THEN I 1. 1300

I 1. 1400
IF .B I 1. 1500
THEN I 1. 1600

8-6

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

IF .C
THEN

D=S;

I 1.
I 1.
I 1.
I 1.
I 1.

• There is a three line heading on each page:

1700
1800
1900
2000
2100

%TITLE information (which starts a new page)

%SBTTL information

Module and routine names and page number

The listing file cannot be used as input to the BLISS compiler.

On VAX, if no output or listing files are specified, only terminal
error messages are produced. Otherwise, an output file is created, if
specified, and a listing file is created, if specified. If no input
file extension is specified the extension defaults to .BLI.

Producing both an output file and listing file doubles the execution
time of PRETTY. However, PRETTY's typical execution time is only a
fraction of the BLISS compiler's.

8.3.3 Formatting Options

You can specify in the source input a number of options, which give
you flexibility in deciding how to format your code. You supply
formatting options by inserting directives as full-line comments in
the input source text. The format of the formatting option directive
is:

!<BLF/option>

The exclamation point that starts the command must begin in column 1.
Options may be typed in uppercase or lowercase characters. Commands
are passed to PRETTY in this fashion without modification to either
the output or the listing files. Since the directives begin with an
exclamation point, they are interpreted as comments by the BLISS
compiler.

Formatting option directives are described below.
identifies the default.

ERROR*

An asterisk (*)

This enables the insertion of error messages (that is, lines
beginning with "!!ERROR!!") into the output file. Error messages
are automatically deleted from source files on subsequent runs.

Example: !<BLF/ERROR>

NO ERROR

This disables the insertion of error messages into the output
file. Error messages are always output to the terminal.

Example: !<BLF/NOERROR>

8-7

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

FORMAT*

This causes resumption of formatting by PRETTY.

Example: !<BLF/FORMAT>

NOFORMAT

This inhibits formatting by PRETTY until the next !<BLF/PAGE> or
!<BLF/FORMAT> is encountered.

Example: !<BLF/NOFORMAT>

LOWERCASE

This causes all identifiers and keywords to be converted to
lowercase.

Example: !<BLF/LOWERCASE>

LOWERCASE KEY

This causes BLISS keywords, builtins, and predefined names to be
converted to lowercase.

Example: !<BLF/LOWERCASE_KEY>

LOWERCASE USER

MACRO

This causes user identifiers to be converted to lowercase.

Example: !<BLF/LOWERCASE_USER>

This causes macros to be formatted. Use of this option may cause
error messages that do not appear when formatting with macros is
disabled.

Example: !<BLF/MACRO>

NOMACRO*

This disables formatting of macros.

Example: ! <BLF /NOMACRO>

NOCASE*

This causes all identifiers and keywords to remain unchanged.

Example: !<BLF/NOCASE>

NOCASE KEY

This causes all BLISS keywords, builtins, and predefined names to
remain unchanged.

Example: !<BLF/NOCASE_KEY>

NOCASE USER

This causes all user identifiers to remain unchanged.

Example: !<BLF/NOCASE_USER>

8-8

PAGE

PLIT

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

A page break (formfeed) is generated.

Example: !<BLF/PAGE>

This causes formatting of PLIT bodies to occur. Since the
content of PLITs is difficult to analyze, PRETTY may format the
PLIT differently than you had intended.

Example: !<BLF/PLIT>

NOPLIT*

This inhibits formatting of PLIT bodies. Only the first line of
a PLIT body is formatted; the remaining lines remain unchanged.

Example: !<BLF/NOPLIT>

REMARK:n (Default = 6)

This causes subsequent comments to begin at column 8*n+l, where
2 < n < 16. The default comment starts at column 49•

Example: !<BLF/REMARK:S>

REQUIRE'file-spec'

The specified file is read for further formatting option
directives. Everything in the REQUIRE file other than legal
directives is ignored. Directives in the REQUIRE file are not
reproduced in the output or listing files. The REQUIRE file must
not contain another REQUIRE directive.

Example: !<BLF/REQUIRE'COMMAND.REQ'>

SYNONYM name = lexeme •••

This option describes to PRETTY macros that you have
substitute for keywords. SYNONYM causes subsequent
of "name" to be treated as a sequence of other
formatting purposes. The special token "*" can
indicate where to position "name" with regard to
position of the tokens that it replaces.

Example: !<BLF/SYNONYM ELIF = ELSE IF *>

permits the sequence:

IF expr THEN expr ELIF expr THEN expr;

defined to
occurrences
tokens for

be used to
the normal

to be formatted without error. Only the name ELIF is output, but
it is indented as though ELSE IF had occurred in the text.

In the above example, formatting would occur as follows:

IF expr
THEN

ex pr
ELIF expr
THEN

expr;

8-9

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

If !<BLF/SYNONYM ELIF = ELSE * IF> had been specified, formatting
would occur as:

UPPERCASE

IF expr
THEN

ex pr
ELIF

ex pr
THEN

expr;

This causes all identifiers and keywords to be converted to
uppercase.

Example: !<BLF/UPPERCASE>

UPPERCASE KEY

This causes all BLISS keywords, builtins, and predefined names to
be converted to uppercase.

Example: !<BLF/UPPERCASE_KEY>

UPPERCASE USER

This causes all user identifiers to be converted to uppercase.

Example: !<BLF/UPPERCASE_USER>

WIDTH:n (Default = 110)

This causes subsequent output lines to have a width of "n"
columns, where 71 < n <141.

Example: !<BLF/WIDTH:80>

8.3.4 Hints on Using PRETTY

Because of the great flexibility possible in the use of the BLISS
language, specification of fixed formatting rules for the language is
difficult. In order to construct a formatting tool like PRETTY, an
idealized model of a BLISS program must be used. This model may be
quite different from your particular style of manual formatting.

Several features of the language can be used in such a way as to make
formatting difficult without very extensive semantic analysis. In
order to meet its goals of executing many times faster than the
compiler, PRETTY does not perform this kind of extensive analysis, but
rather relies on hints from the programmer.

8-10

TOOLS, LIBRARIES, AND SYSTEM. INTERFACES

8.3.4.1 Breaking Lines - PRETTY attempts to break lines by certain
general rules. In a begin-block, every semicolon terminating a main
line expression causes a line break except if a remark follows.
Therefore, a remark can be used to force a line break.

Operator-expressions that are too long to fit on a single line will be
broken around an operator. A programmer can specify an alternate line
break strategy by using the exclamation point as a break character.
Consider a (visually) long expression of the form:

El OR ••• ANO EN

where Ei denotes an expression.

If the programmer wishes to control how this line is broken, the
following can be written:

El
E2

EN

OR
OR
AND

comment

PRETTY attempts to place an if-expression on a single line if it fits.
If it does not, PRETTY will automatically place the 'THEN' under the
'IF', and the 'ELSE' if present, under the 'THEN'.

8.3.4.2 Comments - While BLISS recognizes only two kinds of comments,
embedded comments (%(•••)%) and trailing comments (! •••) ,
PRETTY distinguishes several subtypes of trailing comments:

• Remarks:

••• ! comment

These are lined up in the remark column, but otherwise not
analyzed. They cause a line break.

• Full line comment:

! rest of line

This occurs in column 1. The entire line is passed to the
output file without further processing.

• Offset BLOCK comments:

...
!+
! comment
!-

These are preceded and followed by a blank line, and indented
to the current indentation level.

8-11

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

• Non-offset BLOCK comments:

! comment

These are similar to offset block comments in
similarly indented, but are not offset from
text by blank lines. They are recognized as
rather than remarks only if they appear more
the left of the remark column.

that they are
the surrounding
block comments
than one tab to

8.3.4.3 MACROS - Because it is possible to write macros in BLISS that
are not expressions or lists of expressions, PRETTY conservatively
makes no attempt to format macro bodies, and treats macro invocations
in the same way as routine calls. Thus, the macro body appears in the
output file the same way it appeared in the input file, and thus, may
be formatted quite differently from surrounding text in the output
file.

Experience has shown, however, that the great majority of macro bodies
can be successfully formatted by PRETTY. Because of this, you may
want to change the default to:

!<BLF/MACRO>

for your programs by preceding each source file with the above
command. Macro formatting can be turned off before any offending
macro declaration, and turned on after it, should there be any.

The SYNONYM facility allows users a limited way of telling PRETTY to
interpret certain macro invocations as other than routine calls, as in
the ELIF macro given above.

8.3.4.4 PLITs - PLITs are used to construct initialized tables in
BLISS, and in practice, the programmer-specified formatting of a table
gives a good indication to the reader of the structure and meaning of
the table.

Rather than try to guess the structure of a PLIT, PLIT formatting is
turned off by default.

The initial-attribute of a declaration is handled exactly as a PLIT.

8.4 TUTORIAL TERMINAL INPUT/OUTPUT PACKAGE (TUTIO)

TUTIO.R32 is a BLISS REQUIRE file that contains some simple terminal
I/O primitives. This package is normally used in conjuction with the
BLISS self-paced study course as outlined in the BLISS Primer, but can
be useful in writing quick and dirty programs, also. To gain access
to the elements of this package, insert the following line in your
BLISS program:

REQUIRE 'SYS$LIBRARY:TUTIO';

8-12

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

A list of these primitives and their functions 'appears below. The
following conventions are used in the descriptions:

char - a character

len - a length (in characters)

addr - a memory address

value - an integer

radix - an integer

• TTY_PUT_CHAR(char); - Writes a character to the terminal.

• char=TTY_GET_CHAR(): - Reads a character from the terminal.

• TTY PUT QUO('quoted string'); - Writes a quoted string to the
terminal.

• TTY PUT CRLF(); - Writes a carriage return/line feed sequence
to the terminal.

• TTY_PUT_ASCIZ(addr); - Writes an ASCIZ string to the terminal.

• TTY PUT MSG(addr,len); - Writes a string of ASCII characters
to the terminal.

• TTY PUT INTEGER(value,radix,len); - Writes an integer to the
terminal.

• n =TTY GET LINE{~ddr,len): - Reads a line from the terminal
into a Euff~r and returns the number of characters r~ad.

The TUTIO package will function only with a terminal.
work from a batch job or command-procedure file.

8.5 VAX/VMS SYSTEM SERVICES INTERFACE

It wi 11 not

System services are procedures used by the operating system to control
resources available to processes, to provide for communication among
processes, and to perform basic operating system functions, such as
the coordination of input/output operations. Although most system
services are used primarily by the operating system itself on behalf
of logged-on users, many are available for general use and provide
techniques that can be used in application programs.

The BLISS interface to the VAX/VMS System Services routines is in
SYS$LIBRARY:STARLET.REQ or SYS$LIBRARY:STARLET.L32. The primary
function of the interface is to guarantee the proper number and
sequence of arguments required for the System Service calls.

Using the BLISS interface macros, the syntax for invoking system
services in BLISS is almost identical to the VAX-11 MACRO keyword
syntax. The major difference (aside from the fact that BLISS
expressions appear in the parameter list) is that BLISS requires the
macro parameter list to be enclosed in parentheses. (See the example
of the BLISS-style usage below.)

8-13

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

To use the interface, include the declaration:

LIBRARY 'SYS$LIBRARY:STARLET'

System services act like routine calls and return a condition-value as
their result. The following code fragment checks for successful
completion of the system service:

IF STATUS=$WAITFR(EFN=l)
THEN

ELSE
SIGNAL (.STATUS);

!successful wait
!invalid event flag
!pass back failure

For detailed information on available services, see the VAX/VMS System
Services Reference Manual.

8.5.1 Sample Program Using VMS System Services

The program shown below prints the time of day at the user's terminal.
Although not very interesting as a practical program, it does show the
use of two system services, $GETTIM and $FAO, and of the common
run-time library routine LIB$PUT_OUTPUT.

MODULE SHOWTIME(IDENT='l-1' %TITLE'Print time', MAIN=TIMEOUT)=
BEGIN
LIBRARY 'SYS$LIBRARY:STARLET'; Defines System Services

OWN
TIMEBUF: VECTOR[2], 1 64-bit system time
MSGBUF: VECTOR[SO,BYTE], ! Output message buffer
MSGDESC: BLOCK[S,BYTE] PRESET([DSC$W LENGTH]=SO,

[DSC$A_POINTER]=M36BUF)
BIND

FMTDESC=%ASCID %STRING('At the tone, the time will be '
%CHAR (7) , I !l 5%T I) ;

EXTERNAL ROUTINE
LIB$PUT OUTPUT: ADDRESSING_MODE(GENERAL);

ROUTINE TIMEOUT=
BEGIN
LOCAL

RSLT: WORD;

$GETTIM(TIMADR=TIMEBUF);

$FAOL(CTRSTR=FMTDESC,
OUTLEN=RSLT,
OUTBUF=MSGDESC,
PRMLST= %REF(TIMEBUF));

MSGDESC[O] = .RSLT;
LIB$PUT OUTPUT(MSGDESC)
END; -

END ELUDOM

Resultant string length

Get time as 64-bit integer

Format Descriptor
Resultant length (only a word!)
Output buffer descriptor
Addr of 64-bit time block
Modify output descriptor
Return status

In the SHOWTIME example, LIB$PUT OUTPUT is part of the VMSRTL
shareable-image, as such it is referenced via GENERAL addressing. The
call on $FAOL uses %REF to make the PRMLST value the address of a
pointer to the TIMEBUF.

8-14

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

8.5.2 Common Errors in Using System Services

When the user invokes system services, he can encounter a number of
errors. Two of the more common errors occur when the $HIBER and $FAQ
services are invoked.

The $HIBER system service keyword macro has no arguments. Thus, it· is
invoked as:

$HI BER

Notice the absence of any parenthesized argument list.

The OUTLEN keyword parameter of the $FAQ and $FAOL system service is
the address of a WORD (16-bit) value. A common error is to provide
that parameter with the address of a fullword (32-bit) value, rather
than a WORD value. Thus, the 16 high-order bits always contain a
variable, indeterminate value. Consequently, when the full 32-bit
value is used rather than just the 16 low-order bits, unpredictable
results occur.

Users should guard against this problem in calls to other system
services.

8.6 RECORD MANAGEMENT SERVICES INTERFACE

VAX-11 Record Management Services (RMS-32) is a collection of file­
and record-level I/O routines that enable user programs to process and
manage data files. Also included as a part of RMS-32 is a set of
BLISS macro definitions that facilitate control-block initialization
and the calling of RMS control routines.

RMS definitions appear in SYS$LIBRARY:STARLET.REQ
SYS$LIBRARY:STARLET.L32. For a general description of
programming, see the VAX-11 Record Management Services User's
and VAX-11 Record Management Services Reference Manual.

8.6.l Using RMS-32 Macros

STARLET.REQ provides three types of RMS definitions:

or
RMS-32
Guide

a. Field definitions and constants used in RMS control blocks

b. Static and dynamic control-block initialization macros

c. RMS routine-call keyword macros.

The best way to understand these macros is to print a copy of
STARLET.REQ and study it.

8-15

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

Macros for defining FAB, RAB, and XAB blocks are provided. Each
control block has macros for static or dynamic initialization and for
uninitialized structures; for example:

$FAB A keyword macro for static definition.

$FAB INIT A keyword macro for run-time dynamic initialization.

$FAB DECL A simple macro for FABs that require no initialization.
Typically, this is used to map attributes onto a
routine's formal parameter.

Keywords for these macros are identical to those used by the VAX-11
M~CRO RMS-32 interface, except for those keywords that expect a 64-bit
value. These keywords are handled as "keyO" and "keyl", each of which
has a 32-bit value.

8.6.2 Sample Routine Using RMS-32

The following sample program illustrates the use.of the RMS macros.
The program opens a file named MYFILE.SRC and copies it to a file
named MYFILE.LIS.

MODULE RMSTEST(IDENT='l-1' %TITLE'BLISS-RMS Example' ,MAIN=COPYIT)=
BEGIN
!++
! Sample program showing use of BLISS/RMS-32 Inter.face Macros
!--
LIBRARY 'SYS$LIBRARY:STARLET'; ! All definitions are here

OWN
MYBUF: VECTOR[CH$ALLOCATION(l32)],

INFAB: $FAB(FNM='MYFILE.SRC',
FAC=GET),

OUTFAB: $FAB(FNM='MYFILE.LIS', RFM=VAR,
RAT=CR, FAC=PUT),

INRAB: $RAB(UBF=MYBUF, USZ=l32,
ROP=<LOC,RAH>, FAB=INFAB),

OUTRAB: $RAB(ROP=WBH, FAB=OUTFAB);

Input record buff er

Source FAB

Destination FAB

RAB def'n: Locate Read,
and Multibuffer I/O
on input and output.

ROUTINE COPYIT=
BEGIN
LOCAL

STS; ! RMS service-completion code

Open input file $OPEN(FAB=INFAB);
$CONNECT(RAB=INRAB);
$CREATE(FAB=OUTFAB);
$CONNECT(RAB=OUTRAB);
!+

and associate RAB.
Create a new output file
and associate a RAB.

! Copy loop. Read records from input until
! EOF or error encountered. Write each record
!-
WHILE (STS=$GET(RAB=INRAB)) DO

BEGIN
OUTRAB[RAB$L RBF] = .INRAB[RAB$L RBF];
OUTRAB[RAB$W-RSZ] = .INRAB[RAB$W=RSZ];
$PUT(RAB=OUTRAB)
END;

8-16

as it is read.

Copy record descr.
to output RAB and
write the record.

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

$CLOSE(FAB=INFAB);
$CLOSE(FAB=OUTFAB);

IF .STS EQL RMS$_EOF
THEN

SS$ NORMAL
ELSE -

• STS

Close the input
and output files.

Check for EOF on input

Tell System everything is OK, or

Return the RMS error status •
END;

END ELUDOM

8.7 OTHER VAX/VMS INTERFACES

8.7.1 LIB

LIB.L32 contains internal interfaces between BLISS-32 and the VAX/VMS
Operating System as well as everything in STARLET.L32. Much of LIB is
normally useful only to an operating-system programmer. Most users
should use SYS$LIBRARY:STARLET.L32, the user relevant subset of LIB.

8.7.2 TPAMAC

TPAMAC.REQ provides BLISS macros for LIB$TPARSE, a finite-state
transition parser. The sample program presented in Figure 8-1 closely
parallels the example in Chapter 8 of the VAX-11 Runtime Library
Reference Manual.

MODULE CREATE DIR(%TITLE 'Create Directory File' !DENT
MAIN=CREATE_DIR)

•xoooo•,

BEGIN

!-

This is a sample program that accepts and parses the command line
of the CREATE/DIRECTORY command.
This program contains the operating system
call to acquire the command line from the command interpreter
and parse it with TPARSE, leaving the necessary information
in its global data base. The command line has the following format:

CREATE/DIR DEVICE: [MARANTZ.ACCOUNT.OLD]
/OWNER UIC=[2437,25]
/ENTRIES=lOO
/PROTECTION=(SYSTEM:R,OWNER:RWED,GROUP:R,WORLD:R)

The three qualifiers are optional. Alternatively,_ the command
may take the form

CREATE/DIR DEVICE:J202,31]

using any of the optional qualifiers.

Figure 8-1: Sample TPARSE Program

8-17

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

LIBRARY 'SYS$LIBRARY STARLET';
LIBRARY 'SYS$LIBRARY CLIMAC';
LIBRARY 'SYS$LIBRARY TPAMAC';

FORWARD ROUTINE
BLANKS OFF,
CHECK UIC,
STORE-NAME,
MAKE UIC,
CREATE_DIR;

I

Define CLI off sets
and request blocks,
and TPARSE stuff too.

I Define parser flag bits for flags longword
I
LITERAL

I

UIC FLAG=
ENTRIES FLAG=
PROT FLAG=

1,
2,
4;

/UIC seen
/ENTRIES seen
/PROTECTION seen

I CLI request descriptor block to get the command line
I
OWN

REQ_COMMAND: $CLIREQDESC(RQTYPE=GETCMD);

I
I TPARSE parameter block
I
OWN

TPARSE BLOCK: BLOCK[TPA$C LENGTHO,BYTE]
PRESET ([TPA$L COUNT] =TPA$K COUNTO,

[TPA$L-OPTIONS]= TPA$M ABBREV
OR TPA$M_BLANKS)J

Longword count
Allow abbreviation
Process spaces explicitly

I
I Parser Data Base
I
OWN

PARSER FLAGS,
DEVICE-STRING: VECTOR[2],
ENTRY COUNT,
FILE PROTECT,
UIC GROUP,
UIC-MEMBER,
UIC-OWNER,
NAME COUNT,
DIRNAME: BLOCKVECTOR[S,2,LONG];

EXTERNAL ROUTINE
SYS$CLI: ADDRESSING MODE(GENERAL),
LIB$TPARSE: ADDRESSING=MODE(GENERAL);

Keyword flags
device string descriptor
space to preallocate
directory file protection
temp for UIC group
temp for UIC member
actual file owner UIC
number of directory names
name descriptors 0-7

Figure 8-1 (Cont.): Sample TPARSE Program

8-18

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

%SBTTL 'Parser State Table'

$INIT_STATE(UFD_STATE, UFO KEY);

Read over the command line to the first blank in the command.

$STATE(START,
(TPA$ BLANK, ,BLANKS OFF),
(TPA$=ANY, START)) ; -

Read device name string and trailing colon

$STATE (,
(TPA$ SYMBOL,

$STATE(;
(':'));

,DEVICE_STRING));

Read directory string, which is either a UIC string or a general
directory -string.

$STATE (,
((UIC) , ,MAKE_UIC),
((NAME)));

Scan for options until end of line is reached

$STATE(OPTIONS,
('/') ,
(TPA$ EOS, TPA$_EXIT));

$STATE (, -
('OWNER UIC', PARSE_UIC,
('ENTRIES', PARSE ENTRIES,
('PROTECTION',PARSE=PROT,

Get file owner UIC

$STATE(PARSE UIC,
(':'), -
('='));

$STATE(,
((UIC) , OPTIONS)) ;

Get number of directory entries

$STATE(PARSE ENTRIES,
(':'), -
('='));

$STATE (,

, UIC FLAG, PARSER FLAGS),
, ENTRIES FLAG, PARSER-FLAGS),
, PROT_FLAG, PARSER=FLAGS));

(TPA$_DECIMAL,OPTIONS, ENTRY_COUNT));

Figure 8-1 (Cont.): Sample TPARSE Program

8-19

TOOLS, L~BRARIES, AND SYSTEM INTERFACES

Get directory file protection. Note that the bit masks generate the
protection in complement form. It will be uncomplemented by the main
program

$STATE(PARSE PROT,
(' : ') ,
('='));

$STATE (,
('('));

$STATE(NEXT PRO,
('SYSTEM' , - SYPR) ,
('OWNER', OWPR),
('GROUP', GRPR),
('WORLD', WOPR)) ;

$STATE(SYPR,
(' : ') ,
('='));

$STATE(SYPRO,
('R'' SYPRO, ,
('W'' SYPRO, ,
('E'' SYPRO, ,
('D'' SYPRO, ,
(TPA$_LAMBDA, ENDPRO)) ;

$STATE(OWPR,
(' : ') ,
('='));

$STATE(OWPRO,
('R'' OWPRO, ,
('W'' OWPRO, ,
('E'' OWPRO, ,
('D'' OWPRO, ,
(TPA$_LAMBDA, ENDPRO)) ;

$STATE (GRPR,
(' : ') ,
('='));

$STATE(GRPRO,
('R'' GRPRO, ,
('W'' GRPRO, ,
('E'' GRPRO, ' ('D'' GRPRO, ,
(TPA$_LAMBDA, ENDPRO)) ;

$STATE(WOPR,
(' : ') ,
('='));

%X'l',
%X'2',
%X'4',
%X'8',

%X'0010',
%X'0020',
%X'0040',
%X'0080',

%X'0100',
%X'0200',
%X'0400',
%X'0800',

FILE PROTECT),
FILE-PROTECT),
FILE-PROTECT),
FILE:PROTECT),

FILE PROTECT),
FILE-PROTECT),
FILE-PROTECT),
FILE:PROTECT),

FILE PROTECT),
FILE-PROTECT),
FILE-PROTECT),
FILE:PROTECT),

Figure 8-1 (Cont.): Sample TPARSE Program

8-20

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

$STATE(WOPRO,
(IR I'

('W''
(IE I'
(ID I '
(TPA$_LAMBDA,

$STATE(ENDPRO,

WOPRO, , \X'lOOO',
WOPRO, , \X'2000',
WOPRO, , \X'4000',
WOPRO, , \X'8000',
ENDPRO));

(',', NEXT PRO),
(I) I ' 0 PT I ON s)) ;

Subexpressions to parse a UIC string.

$STATE(UIC,
('['));

$STATE(,
(TPA$ OCTAL,

$STATE(-;
(','));

$STATE (I
(TPA$ OCTAL,

$STATE(-;
{']', TPA$_EXIT, CHECK_UIC));

FILE PROTECT),
FILE-PROTECT),
FILE-PROTECT),
FILE=PROTECT),

UIC_GROUP)) 1

UIC_MEMBER)) ;

Subexpressions to parse a general directory string

$STATE(NAME,
('['));

$STATE(NAMEO,
(TPA$ STRING,

$STATE(-;
, STORE_NAME));

(I • I I

(I] I I

NAMEO),
TPA$_EXIT)) ;

Note absence of $END_STATE macro.

\SBTTL 'Parser Action Routines'

ROUTINE BLANKS OFF=
1
1 Shut off explicit blank processing after passing the command name.
1

BEGIN
BUILT IN

AP;
MAP

AP: REF BLOCK[,BYTE];

AP[TPA$V BLANKS] = O;
1 -
END;

1 Success always.

Figure 8-1 (Cont.): Sample TPARSE Program

8-21

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

ROUTINE CHECK UIC =
l
l Check the UIC for legal value range.
l

BEGIN
BUILTIN

AP;
MAP

AP: REF BLOCK[,BYTE];

IF .UIC GROUP<l6,16> NEQ 0 OR
.UIC-MEMBER<l6,16> NEQ 0

THEN -
RETURN O;

UIC OWNER<0,16> = .UIC MEMBER<0,16>;
UIC-OWNER<l6,16> .UIC GROUP<0,16>;
1 - -
ENO;

ROUTINE STORE NAME=
l
l Store a directory name component
l

BEGIN
BUILT IN

AP;
MAP

AP: REF BLOCK[,BYTE];

IF .NAME_COUNT GEQ 3 THEN RETURN O;

UIC components are 16 bits only

l Maximum of 3 components

OIRNAME[.NAME COUNT,0,0,32,0]
OIRNAME[.NAME-COUNT,l,0~32,0]
NAME_COUNT = 7NAME_COUNT + l;

.AP[TPA$L TOKENCNT];

.AP[TPA$L=TOKENPTR];
Store the
descriptor

Set to next
free slot

IF .AP[TPA$L_TOKENCNT] GTR 9 THEN RETURN 0; ! Name too long

1
ENO;

ROUTINE MAKE UIC=
BEGIN -
BUILT IN

AP;
MAP

AP: REF BLOCK[,BYTE];
OWN

UIC STRING: VECTOR[CH$ALLOCATION(6)];

IF .UIC GROUP<8,8> NEQ 0 OR
.UIC-MEMBER<8,8> NEQ 0

THEN -
RETURN O;

DIRNAME[O,l,0,32,0] = UIC STRING;
$FAOL(CTRSTR=UPLIT(6,'lOB!OB'),

OUTBUF=DIRNAME,
PRMLST=UIC_GROUP)

END;

Check UIC for byte values,
since UIC type directories
are restricted to this form

Point to string buffer
Convert UIC to octal string

Figure 8-1 (Cont.): Sample TPARSE Program

8-22

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

tSBTTL 'Main Program'

ROUTINE CREATE DIR=
1+
1
1 This is the main program of the CREATE/DIRECTORY utility. It gets
1 the command line from the command interpreter and parses it with TPARSE.
1
1-

BEGIN

1
l Call the command interpreter to obtain the command line
1
SYS$CLI(REQ_COMMAND, O, 0);

1
1 Copy the input string descriptor into the TPARSE control block
! and call LIB$~PARSE. Note that impure storage is assumed to be zero.
1
TPARSE BLOCK[TPA$L STRINGCNT] = .REQ COMMAND[CLI$W RQSIZE];
TPARSE:BLOCK[TPA$L:STRINGPTR] = .REQ:coMMAND[CLI$A=RQADDR];

IF NOT LI8$TPARSE(TPARSE BLOCK, UFD_STATE, UFD_KEY
THEN -

RETURN SS$_ABORT;

Parsing is complete

RETURN SS$_NORMAL
END1

Process the command to create
the appropriate directory.

! Return Success to command interpreter
END ELUDOM

Figure 8-1 (Cont.): Sample TPARSE Program

8-23

APPENDIX A

SUMMARY OF COMMAND SYNTAX

This appendix summarizes the command syntax, the qualifier defaults,
and their abbreviations.

A.l COMMAND-LINE SYNTAX

compilation-request $ BLISS bliss-command-line

bliss-command-line { qualifier, ••• } space input-spec, •••

{ output qualifier

}
general qualifier

qualifier terminal qualifier
optimization qualifier
source-list qualifier
machine-code-list qualifier

space { blank I tab } ...
input-spec file-spec+ ••• {qualifier, ••• }

A.2 FILE SPECIFICATION SUMMARY

file-spec { node:: } { dev: } { [di r] } file { .type } { ;ver }

node 1- to 6-character alphanumeric network node name and
optionally a 1- to 42-character access control string

dev any logical or physical device name; includes device
type, controller designation, and unit number

dir any valid directory or subdirectory name

file 1 to 9 alphanumeric characters

type 1 to 3 alphanumeric characters

ver version number from 1 to 32767

A-1

SUMMARY OF COMMAND SYNTAX

A.3 QUALIFIER SYNTAX

output qualifier

general qualifier

terminal qualifier

terminal-value

optimize qualifier

optimize-value

optimize-level

source-list qualifier

source-value

number-of-lines

machine-code-
1 ist qualifier

code-value

{

/OBJECT {=file-spec}
/LIST {=file-spec}
/LIBRARY {=file-spec}

/NOOBJECT }
/NO LIST
/NO LIBRARY

{

/TRACEBACK I /NOTRACEBACK).
/DEBUG I /NODEBUG (
/CODE I /NOCODE '
/VARIANT {:value} } J

{ (terminal-value , ...)
/TERMINAL= terminal-value

{ ERRORS I NOERRORS } STATISTICS I NOSTATISTICS

{ (optimize-value I • • •)
/OPTIMIZE= optimize-value

{
QUICK I NOQUICK

l SPEED I SPACE
LEVEL : optimize-level
SAFE I NOSAFE

{ 0 I 1 I 2 I 3 }

{ (source-value ' ...
/SOURCE_LIST= source-value

PAGE SIZE : number-of-lines
HEADER I NOHEADER
LIBRARY I NOLIBRARY
REQUIRE I NOREQUIRE
EXPAND MACROS I NOEXPAND MACROS
TRACE MACROS I NOTRACE MACROS

\ SOURCE I NOSOURCE

{ 20 I 21 I 22 I ... }

)

{ (code-value , ...
/MACHINE_CODE_LIST= code-value

{
OBJECT I NOOBJECT

}
ASSEMBLER I NOASSEMBLER
SYMBOLIC I NOSYMBOLIC
BINARY I NOBINARY
COMMENTARY I NOCOMMENTARY
UNIQUE_NAMES I NOUNIQUE_NAMES

A-2

}

}

}
\

f
) }

SUMMARY OF.COMMAND SYNTAX

A.4 QUALIFIER DEFAULTS

The following qualifiers are assumed by default:

/OBJECT=input-file-name.OBJ

/NOLIST (in interactive mode)
/LIST (in batch mode)

/NOLIBRARY

/TRACEBACK

/ERROR LIMIT=30

/NODEBUG

/CODE

/VARIANT:O

/TERMINAL={ERRORS,NOSTATISTICS)

/OPTIMIZE=(NOQUICK,SPACE,LEVEL:2,SAFE)

/SOURCE LIST={HEADER,PAGE SIZE:58,NOLIBRARY,NOREQUIRE,
- NOEXPAND_MACROS,NOTRACE_MACROS,SOURCE)

/MACHINE CODE LIST=(NOASSEMBLER,SYMBOLIC,BINARY,OBJECT
- - COMMENTARY,NOUNIQUE_NAMES)

A.5 ABBREVIATIONS

The abbreviations for the positive forms of the qualifiers
qualifier values are given below:

Qualifier Value Abbreviation

/OBJECT /OB
/LIST /LIS
/LIBRARY /LIB
/ERROR_LIMIT /E

/TRACEBACK /TR
/VARIANT /V
/CODE /C
/DEBUG /D
/TERMINAL /TE

ERRORS E
STATISTICS s

/OPTIMIZE /OP
QUICK Q
SPACE SPA
SPEED SPE
LEVEL L
SAFE SA

A-3

and

SUMMARY OF COMMAND SYNTAX

Qualifier

/SOURCE_LIST

/MACHINE_CODE_LIST

Value

HEADER
PAGE SIZE
LIBRARY
REQUIRE
EXPAND MACROS
TRACE MACROS
SOURCE

OBJECT
ASSEMBLER
SYMBOLIC
BINARY
COMMENTARY
UNIQUE_NAMES

Abbreviation

/S
H
p
L
R
E
T
s

/M
0
A
s
B
c
u

For the negative form of a qualifier or value (where applicable), its
positive-form abbreviation can be prefixed by "NO".

A-4

APPENDIX B

SUMMARY OF FORMATTING RULES

The basic rule of indentation is that a block is indented one logical
tab deeper than the current indentation level (one logical tab equals
four spaces; two logical tabs equal one physical tab}. ·The
declarations and expressions of a block are indented to the same level
as the BEGIN-END delimiters.

The format for a declaration is:

declaration-keyword
declaration-item,

declaration-item;

!comment

!comment

where the declaration-keyword starts at the current indentation level
and each declaration-item is further indented one logical tab.

Expressions generally have two formats: one for expressions that fit
on one line and one for expressions that are longer. If the
expression does not fit on one line, then keywords appear on separate
lines from subparts and subparts are indented one tab. For example,
IF expressions are written in either of two formats:

or

IF test THEN consequence ELSE alternative;

IF test
THEN

consequence
ELSE

alternative;

The examples used in Chapter 2 are indented correctly, although all
comments have been omitted in order to save space.

For further information, see the VAX-11 Software Engineering Manual.

B-1

APPENDIX C

MODULE TEMPLATE

This appendix contains a listing of the file MODULE.BL!, which is the
standard template for BLISS modules and routines. A module has four
parts: a preface, a declarative part, an executable part, and a
closing part.

The module's preface (Page C-2) appears first. It provides
documentation explaining the module's function, use, and history.

The module's declarative part appears next (Page C-3). This section
provides a table of contents for the module (FORWARD ROUTINE
declarations) and declarations of macros, equated symbols, OWN
storage, externals, and so on.

The module's executable part, consisting of zero or more routines,
comes next. The template for a routine is on Page C-4. A routine has
three parts: a preface, a declarative part, and code.

Finally, every module has a closing part (Page C-4), which completes
the syntax of a module.

The module template may be used either as a checklist for module
organization and content or as the starting point in creating a new
module. The template and its use are described in detail in the
VAX-11 Software Engineering Manual.

The file MODULE.BL! is supplied as part of the BLISS support package,
on logical device SYS$LIBRARY.

C-1

MODULE TEMPLATE

C.1 MODULE PREFACE

MODULE TEMPLATE (!

BEGIN

!DENT ' '
) =

COPYRIGHT (C) 1978, 1979, 1980 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
TRANSFERRED.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.

!++
FACILITY:

ABSTRACT:

ENVIRONMENT:

AUTHOR:

MODIFIED BY:

, CREATION DATE:

, : VERSION
01

!--

C-2

MODULE TEMPLATE

C.2 DECLARATIVE PART OF MODULE

TABLE OF CONTENTS:

FORWARD ROUTINE

INCLUDE FILES:

MACROS:

EQUATED SYMBOLS:

OWN STORAGE:

EXTERNAL REFERENCES:

EXTERNAL ROUTINE

C-3

MO.DOLE TEMPLATE

C.3 EXECUTABLE PART OP MODULE

ROUTINE TEMP EXAMPLE () :NOVALUE

!++
! FUNCTIONAL DESCRIPTION:
!
!
I FORMAL PARAMETERS:

NONE

IMPLICIT INPUTS:

NONE

IMPLICIT OUTPUTS:

NONE

ROUTINE VALUE:
COMPLETION CODES:

NONE

SIDE EFFECTS:

NONE

!--

BEGIN

LOCAL

END;

C.4 CLOSING FORMAT

END
ELUDOM

=

! END or· TEMP EXAMPLE

!END OF MODULE

C-4

APPENDIX D

IMPLEMENTATION LIMITS

Each BLISS-32 compiler implementation has limitations on the use of
certain language constructs or system interfaces. These values are
subject to change if experience indicates they are unsuitable.

D.l BLISS-32 LANGUAGE

The maximum number of

• Nested blocks containing declarations

• Characters in a quoted-string

• Actual parameters in a routine call

• Structure formal parameters

• Field components

• Parameters of a FIELD attribute

• Bytes initialized by a single PLIT
(i.e., the maximum byte count of a single PLIT)

D.2 SYSTEM INTERFACES

The maximum number of

• Characters in an input source line

• Simultaneously active (depth of nested)
REQUIRE files

D-1

is

64

1000

64

31

32

128

65,535

is

132

9

APPENDIX E

ERROR MESSAGES

Whether an error is fatal to the creation of an object module {ERR) or
a warning {WARN) is context-dependent. Informational messages {INFO)
have no effect on compilation. BLISS-32 creates an object module for
a program that has warnings,but no errors. However, such a program
may fail to link or may fail to execute in the intended manner. In
some of these error messages, the compiler provides variable
information that points to the possible source of error. {See the
example in Section 2.1 for an illustration.) In this appendix any
information enclosed in angle brackets {< >) describes the type of
such variable information given. Fatal error messages appear at the
end of the appendix.

000 Undeclared name: <name>

Explanation: The name shown has not previously been declared.

User Action: Declare the name.

001 Declaration following an expression in a block

Explanation: Declarations must precede expressions within a
block.

User Action: Reinsert the declaration properly or create a new
block.

002 Superfluous operand preceding "<operator-name>"

Explanation: An excess or unnecessary left-operand precedes the
operator named.

User Action: Remove the extra or unnecessary left-operand.

003 BEGIN paired with right parenthesis

Explanation: A closed parenthesis has been encountered when the
compiler expected an END.

User Action: Provide the appropriate pairing or insert a missing
END keyword.

E-1

ERROR MESSAGES

004 Missing operand preceding "<operator-name>"

Explanation: Required
infix-operator named.

left-operand

User Action: Insert missing left-operand.

005 Control expression must be parenthesized

is missing from

Explanation: Parerithesis is required to achieve intended result.

User Action: Insert missing parenthesis.

006 Superfluous operand following "<operator-name>"

Explanation: An extra or unecessary right-operand follows the
operator named.

User Action: Remove the excess or unecessary right-operand.

007 Missing operand following "<operator-name>"

Explanation: Required right-operand is missing from operator
named.

User Action: Insert missing right-operand.

008 Missing THEN following IF

Explanation: Conditional-expression is incomplete.

User Action: Insert required keyword THEN.

009 Missing DO following WHILE or UNTIL

Explanation: Pre-tested-loop-expression is incomplete.

User Action: Insert required keyword DO.

010 Missing WHILE or UNTIL following DO·

Explanation: Post-tested-loop-expression is incomplete.

User Action: Insert required keyword WHILE or UNTIL.

011 Name longer than 31 characters

Explanation: Maximum name length has been exceeded.

User Action: Reduce name length to 31 characters or less.

E-2

ERROR MESSAGES

012 Missing DO following INCR or DECR

Explanation: Indexed-loop-expression is incomplete.

User Action: Insert required keyword DO.

013 Missing comma or right parenthesis in routine actual parameter
list

Explanation: Each actual-parameter in a list must be separated
by a comma and the list must be ended by a close parenthesis.

User Action: Insert comma(s), as necessary,
parenthesis.

014 Missing FROM following CASE

Explanation: Case-expression is incomplete.

User Action: Inse-rt required keyword FROM.

015 Missing TO following FROM in CASE expression

Explanation: Case~expression is incomplete.

User Action: Insert required keyword TO.

016 Missing OF following TO in CASE expression

Explanation: Case-expression is incomplete.

User Action: Insert required keyword OF.

017 Missing OF following SELECT

Explanation: Select-expression is incomplete.

User Action: Insert required keyword OF.

018 Missing SET following OF in SELECT expression

Explanation: Select-expression is incomplete.

User Action: Insert required keyword SET.

and/or

019 Missing colon following right bracket in SELECT expression

close

Explanation: Select-line of select-expression is incomplete.

User Action: Insert colon between select-label expression's
close bracket and select-action expression.

E-3

ERROR MESSAGES

020 Missing semicolon or TES following a SELEC~ action

Explanation: Select-line of select-expression is incomplete.

User Action: Insert required semicolon or keyword TES following
select-action expression.

021 Address arithmetic involving REGISTER variable <variable-name>

Explanation: An attempt has·been made to use the value of a
register name in an expression.

User Action: Correct the expression.

022 Field reference used as an expression has no value

Explanation: The reference is invalid as a fetch or assignment
expression and cannot produce a value.

User Action: Evaluate and validate the expression.

023 Missing comma or right angle bracket in a field selector

Explanation: Field selector is incomplete.

User Action: Insert missing comma{s) or close bracket.

024 Value in field selector outside permitted range

Explanation: The value has exceeded
machine-word boundaries of the dialect.

the field size or

User Action: Correct the address, position~ size, or sign
expression value according to dialect restrictions.

025 Value of attribute outside permitted range

Explanation: The value used is larger than the legal range
permits, such as UNSIGNED{37).

User Action: Correct the attribute value.

026 ALIGN request negative or exceeds that of PSECT {or stack)

Explanation: The alignment-attribute boundary must be a positive
integer that does not exceed the psect-alignment-boundary.

User Action: Correct the boundary value.

027 Illegal character in source text

Explanation: One of the 30 illegal non-printing ASCII characters
has been used (as other than data) in a BLISS module.

User Action: Only four non-printing characters (blank, tab,
vertical-tab, and form-feed) may be used in coding.

E-4

ERROR MESSAGES

028 Illegal parameter in call to lexical function
<lexical-function-name>

Explanation: A parameter used with the named lexical-function is
invalid.

User Action: Check and correct parameter usage according to the
definition of the function.

029 Attribute illegal in this declaration

Explanation: Attributes are restricted in use
declarations.

to certain

User Action: Remove the illegal attribute from the declaration.

030 Access formals must not appear in structure size-expression

Explanation: An access-formal provides variable access to
elements of a structure and should not be included with the
expression defining structure size.

User Action: Remove the access-formal from the structure-size
expression.

031 Conflicting or multiple specified attributes

Expla·nation: Contradictory or superfluous attributes have been
used.

User Action: Check attribute usage in regard to
definitions.

specific

032 Two consecutive field selectors

Explanation: Irrational use of
field-reference.

f ield..:.selector portion of

User Action: Remove extra field-selector or insert parenthesis
to create a complete field-reference, such as: .(.x<0,16>)<0,8>.

033 Syntax error in ~ttribute

Explanation: An error has occurred in the coding
attribute.

of

User Action: Correct the error using the appropriate syntax.

034 INITIAL value <integer> too large for field

an

Explanation: The integer value shown is too large for the
designated field.

User Action: Decrease the value or increase the allocation-unit.

E-5

ERROR MESSAGES

035 The <attribute-name> attribute contradicts corresponding FORWARD
declaration

Explanation: The attributes of a name in an own- or
routine-declaration must be identical to those
associated forward-declaration.

global- or
used in the

User Action: Correct the syntax of the attribute named.

036 Literal value cannot be represented in the declared number of bits

Explanation: The literal-value of a literal-declaration is
larger than the field specified by the storage attribute.

User Actiort: Check sign or bit-count of range-attribute.

037 Lower bound of a range exceeds upper bound

Explanation: The value
case-expression must not
range.

of the low-bound range of a
exceed the value of the high-bound

User Action: Correct the low-bound value.

038 Number of routine actual parameters exceeds implementation limit
of 64

Explanation: The number of input-actual-parameters
routine-declaration must not exceed 64.

User Action: Decrease the number of parameters to 64.

039 Name used in an expression has no value: <name>

for a

Explanation: A name that cannot denote an arithmetic value has
been used in an expression.

User Action: Correct the expression.

040 LEAVE not within the block labelled by <label-name>

Explanation: The leave-expression is not within the block of the
label named.

User Action: Insert the expression in the appropriate block.

041 Missing comma or right parenthesis in parameter list to lexical
function <lexical-function-name>

Explanation:
separated by
parenthesis.

User Action:

Each lexical-actual-parameter in a list must be
a comma and the list must be ended by a close

Insert the missing comma(s) or close parenthesis.

E-6

ERROR MESSAGES

042 Missing label name following LEAVE

Explanation: The leave-expression is incomplete.

User Action: Insert the appropriate label name following the
keyword LEAVE.

043 Label <label-name> already labels another block

Explanation: The label name shown has been declared for another
labeled-block.

User Action: Change the name of one block or the other.

044 EXITLOOP not within a loop

Explanation: A~ exitloop-expression has been incorrectly used.

User Action: Insert the expression, within the (innermost) loop
to be exited.

045 Missing structure name following REF,

Explanation: The structure~attribute using keyword
incomplete.

REF is

User Action: Insert the missing structure-name following the
keyword.

046 Register <register-number> cannot be reserved

Explanation: The register defined by the number shown is not
locally usable.

User Action: Specify another register.

047 Module prematurely ended by extra close bracket or missing open
bracket

Explanation: The number of close brackets in a module must equal
the number of open brackets.

User Action: Remove the extra right bracket (s) (END, 11
)

11
,

11
] ",

11 > 11
) or add the missing left bracket(s) (BEGIN, 11

(
11

, "[
11

,
11 <11

).

048 Syntax error in module head

Explanation: The module-head is incorrectly ~oded.

User Action: Correct the module-name or the syntax of the
module-switch list.

E-7

ERROR MESSAGES

049 Invalid switch specified

Explanation: An invalid switches~declaration has been used with
the dialect.

User Action: Correct the use of the switches-declaration.

050 Name already declared in this block: <name>

Explanation: The name shown has been declared more than once in
the same block.

User Action: Remove all but one of the declarations within the
block.

051 Syntax error in switch specification

Explanation: An error has occurred in the coding of the
module-switches or switches-declaration.

User Action: Correct the coding of the switches.

052 Expression must be a compile-time constant

Explanation: The compiler requires a
compile-time-constant-expression and the expression used does not
meet the criteria.

User Action: Evaluate and correct the expression.

053 Invalid attribute in declaration

Explanation: An illegal attribute has been
declaration.

used in the

User Action: Check the legality of the attribute{s) used with
the declaration.

054 Name in attribute list not declared as a structure or linkage
name: <name>

Explanation: The name shown has not been used as a structure- or
linkage-name in a structure- or linkage-declaration.

User Action: Correct or declare the name appropriately.

055 Missing equal sign in BIND or LITERAL. dec.laration

Explanation: The name and value of a literal-, bind-data-, or
bind-routine-item must be separated by an equal sign.

User Action: Insert the missing equal sign.

E-8

ERROR MESSAGES

056 Missing comma or semicolon following a declaration

Explanation: Each decl~ration in a list must be separated by a
comma and the last must be followed by a semicolon.

User Action: Insert the missing comma(s) or semicolon.

057 Value of structure size-expression for REGISTER must not exceed 4

Explanation: Structure~size expression exceeds maximum allowed
value.

User Action: Correct the value of the register structure-size
expression.

058 Left parenthesis paired with END

Explanation: A pair of parenthesis must be used to replace a"("
-END pair.

User Action: Provide the appropriate pairing or insert a missing
BEGIN keyword.

059 Register <register-number> cannot be specifically declared

Explanation: Register number shown is beyond the allowable range
of the dialect or is illegally declared, such as REGISTER R = 50.

User Action: Insert a valid register-number.

060 Missing SET following OF in CASE expression

Explanation: Cas~-expression is incomplete.

User Action: Insert required keyword SET.

061 Missing left bracket preceding a CASE- or SELECT~label

Explanation: Case- or select-expression is incomplete.

User Action: Insert missing open bracket.

062 MODULE declaration inside module body

Explanation: A module-body cannot contain a module-declaration.

User Action: Correct the declaration coding.

063 More than one CASE-label matching the same CASE-index

Explanation: Only one case-label value can match a
case-index value.

User Action: Correct either the label or index value.

E-9

given

ERROR MESSAGES

064 Value in CASE--label outside the range given by FROM and TO

Explanation: Value of case-label is not within the
specified.

User Action: Correct the case-label or range values.

065 Missing equal sign in ROUTINE declaration

range

Explanation: An equal sign must precede the routine-body in a
routine-declaration.

User Action: Insert the missing equal sign.

066 Two consecutive operands with no intervening operator

Explanation: Operator-expression is incomplete or illegal.

User Action: The compiler will usually insert an appropriate
operator and continue.

067 Missing comma or right bracket following a CASE- or SELECT-label

Explanation: Each label in a list,
select-expression, must be separated by
ended with a close bracket.

for a case- or
a comma and the list

User Action: Insert missing comma(s) or close bracket.

068 Name to be declared is a reserved word: <name>

Explanation: Reserved words cannot be declared by the user.

User Action: Select another name for the declaration.

069 Size-expression required in STRUCTURE declaration when storage is
to be allocated

Explanation: When a structure is associated with a name in a
data-declaration an expression must be used to specify the amount
of storage allocated.

User Action: Insert structure-size expression.

070 Number of structure formal parameters exceeds implementation limit
of 31

Explanation: Number of access-formal parameters exceeds maximum
allowed.

User Action: Reduce the number of parameters.

E-10

ERROR MESSAGES

071 Missing comma or closing bracket in formal parameter list for
<routine-or-macro-name>

Explanation: Each formal parameter in a list must be separated
by a comma and the list ended with a right bracket.

User Action: Insert missing comma(s) or right bracket.

072 Missing control variable name in INCR or DECR expression

Explanation: Indexed-loop-expression is incomplete.

User Action: Insert missing loop-index name.

073 Missing equal sign in STRUCTURE or MACRO declaration

Explanation: An equal sign must precede the structure-size
expression or structure-body or the macro-body.

User Action: Insert the missing equal sign.

074 Missing actual parameter list for macro <macro-name>

Explanation: The actual-parameters are missing
macro-call associated with the macro named.

from the

User Action: Insert actual-parameters to correspond with the
formal-name parameters from the declaration.

075 Missing closing bracket or unbalanced brackets in actual parameter
list for macro <macro-name>

Explanation: There must be a right bracket for every left
bracket used in the actual-parameter list.

User Action: Correct the pairing of the open and close brackets.

076 Extra actual parameters for structure <name> referencing data
segment <name>

Explanation: Superfluous access-actual parameters in
structure-reference for structure and data-segment named.

User Action: Correct coding of structure-reference.

077 Missing colon following right bracket in CASE expression

Explanation: Case-expression is incomplete.

User Action: Insert colon following close bracket.

E-11

ERROR MESSAGES

078 Name to be mapped is undeclared or not mappable: <name>

Explanation: Name shown is undeclared or does not lie within the
scope of a data- or data-bind-declaration of the same name.

User Action: Declare name or correct
appropriate manner.

declaration in an

079 Missing comma or right bracket in structure actual parameter list

Explanation: A comma must separate each access-actual parameter
in a list and the list must be ended with a close bracket.

User Action: Insert missing comma(s) or close bracket.

080 Illegal characters in
<lexical-function-name>

quoted string parameter of

Explanation: The only valid ASCII characters for a quoted string
are: blanks, tabs, paired single quotes, and any printing
character except an apostrophe.

User Action: Remove illegal characters, or use %STRING for all
characters with %CHAR inserted before illegal ones.

081 Quoted string not terminated before end of line

Explanation: A quoted-string character sequence extends over a
line.

User Action: Using %STRING and open parenthesis, quote first
character sequence and before end-of-line conclude with a comma;
do the same with subsequent sequences and then conclude the last
line with a close parenthesis.

082 Missing comma or right parenthesis following a PLIT, INITIAL or
PRESET item

Explanation: Each item in the list must be separated by a comma
and the list must be ended with close parenthesis.

User Action: Insert missing comma(s) or close parenthesis.

083 Actual parameter list for macro <macro-name> not terminated before
end of program

Explanation: The actual-parameter list in the call for the macro
named must be ended by a close parenthesis or close bracket
(right square or right angle) even if the list is empty.

User Action: Insert the missing close parenthesis or bracket.

E-12

ERROR MESSAGES

084 Expression must be a link-time constant

Explanation: The compiler requires a link-time-constant­
expression and the expression used does not meet the criteria.

User Action: Evaluate and correct the expression.

085 String literal too long for use outside a PLIT

Explanation: The numeric value of a string-literal exceeds the
word length for the dialect.

User Action: Reduce the length of the string or
pl it-declaration.

086 Name declared FORWARD is not defined: <name>

use a

Explanation:
be declared
block.

A name declared in a forward-declaration must also
by an own- or global-declaration within the same

User Action: Make the proper declarations.

087 Size of initial value (<integer-value>) exceeds declared size
{<integer-value>)

Explanation: The initial value shown is greater than the memory
space reserved for it.

User Action: Decrease the initial value and/or increase the
declared size value.

088 Missing quoted string following <lexical-function-name>

Explanation: The
quoted-string.

lexical-function shown

User Action: Insert the required quoted-string.

089 Syntax error in PSECT declaration

requires

Explanation: The psect-declaration is improparly coded.

User Action: Check and correct the coding of the declaration.

090 Missing semicolon or TES following a CASE action

a

Explanation: Each case-action expression in a list must be
followed by a semicolon and the list must be concluded by TES.

User Action: Insert the missing semicolon(s) or the keyword TES.

E-13

ERROR MESSAGES

091 No CASE-label matches the CASE-index

Explanation: Based on its evaluations of the low- to high-bound
and case-label values, the compiler has determined that for the
values of the case-index no selector element will be matched.

User Action:
the values
labels.

Evaluate the case-index and its bounds relative to
of the case-labels, or include INRANGE and OUTRANGE

092 Some values in the range given by FROM and TO have no matching
CASE-label

Explanation: The compiler cannot match all of the low- to
high-bound values with the case-label values given.

User Action: Evaluate the case-label values relative to those of
the low- to high-bound values.

093 No structure attribute for variable <name> in structure reference

Explanation: The variable name shown has been declared but the
structure-attribute is missing.

User Action: Insert the appropriate
(structure-name and allocation-actuals)
the data-segment named.

structure-attribute
for the declaration of

094 Routine specified as MAIN is not defined

Explanation: The routine-name specified in the MAIN switch also
must be defined by a routine- or global-routine-declaration in
the same module.

User Action: Define
declaration.

the routine with the appropriate

095 %REF built-in function must be used only as a routine actual
parameter

Explanation: Builtin function has been used improperly.

User Action: Correct the use of the function.

096 Module body contains executable expression or
constant declaration

non-link-time

Explanation:
declaration
module-body.

An executable expression (such as .x) or a non-ltce
should not appear within the outer most level of the

User Action: Correct the use of expressions and declarations
within the outer most level of the module-body.

E-14

ERROR MESSAGES

097 Length of quoted string parameter of <lexical-function> must not
exceed <integer-value>

Explanation: The quoted-string of the function shown must not
contain more characters than the value shown.

User Action: Correct the length of the parameter.

098 Cannot satisfy REGISTER declarations

Explanation: Too many registers (in linkage, globals, built-in
or predeclared functions) simultaneously active.

User Action: Redistribute explicit register usage to prevent
overlaps as regards time.

099 Simultaneously allocated two quantities to Register
<integer-value>

Explanation: Two conflicting data segments have been allocated
at the same time for the register shown.

User Action: Correct the data segment allocations.

100 Division by zero

Explanation: An illegal arithmetic operation has been performed.

User Action: Correct the operation.

101 Name to be declared is missing

Explanation: A name has not been specified in the declaration.

User Action: Specify a name in the declaration.

102 Null structure actual parameter <name> has no default value

Explanation: A null reference has been made with an
access-actual expression for which no default value exists.

User Action: Specify a value in the access-actual expression.

103 Illegal up-level reference to <name>

Explanation: Reference has been illegally made from a nested
routine-declaration to a name in a higher level block.
References are not permitted to LOCAL, REGISTER, or STACKLOCAL
storage that is declared in a routine-declaration which contains
the routine-declaration currently being compiled.

User Action: Delete and relocate the reference or the name to an
appropriate block.

E-15

ERROR MESSAGES

104 Missing ELUDOM following module

Explanation: The end module keyword is missing.

User Action: Insert the ELUDOM keyword at the end of the module.

105 Language feature not
<feature-keyword-name>

yet implemented in <language>:

Explanation: Language feature shown is not yet supported in this
dialect.

User Action: Remove the language feature named from the program.

106 REQUIRE file nesting depth exceeds implementation limit of 9

Explanation: Require declarations or lexical functions have been
nested beyond allowable limit.

User Action: Reconfigure nesting within allowable limits.

107 Structure and allocation-unit or extension are mutually exclusive

Explanation: An allocation-unit attribute or an
extension-attribute cannot appear with a structure-attribute in
an allocation declaration.

User Action: Remove the contradictory attribute(s).

108 Allocation-unit must not follow INITIAL attribute

Explanation: The allocation-unit attribute must precede the
initial-attribute in a declaration.

User Action: Rearrange the order of the attributes.

109 Missing quoted string following REQUIRE or LIBRARY

Explanation: Quoted file-name not
library-declaration.

found in require-

User Action: Insert and/or quote file name in declaration.

110 Open failure for REQUIRE or LIBRARY file

or

Explanation: The file specified in a require- or
library~declaration cannot be accessed by the compiler.

User Action: Check validity of file name or make file available
to compiler.

E-16

ERROR MESSAGES

111 Comment not terminated before end of <source-file-name>

Explanation: An imbedded comment must end with a close
parenthesis and a percent sign; and the comment must end in the
same source file in which it began.

User Action: Correct the insertion of the imbedded comment.

112 Definition of macro <macro-name> not terminated before end of
program

Explanation: A macro-declaration must be terminated by a percent
sign followed by a semicolon.

User Action: Terminate the macro-name shown.

113 Missing semicolon, right parenthesis
subexpression of a block

or END following a

Explanation: Each subexpression must
semi-colon and the block must be
parenthesis or an END.

be concluded
concluded with

User Action: Insert the appropriate terminator(s).

114 Invalid REQUIRE or LIBRARY file specification

a
by a
close

Explanation: The specified require file must be a valid name to
the compiler and the system, and the library file must be a
binary file produced by the correct compiler dialect.

User Action: Check and correct the validity of the file.

115 Expression identified by a label must be a block

Explanation: A labelled expression must be contained within a
BEGIN-END or parenthesis pair.

User Action: Enclose the expression(s) within a block.

116 Value of structure size-expression must be a compile-time constant

Explanation: The size-expression must meet the criteria for a
compile-time-constant expression.

User Action: Evaluate and correct the size-expression.

117 Value of structure size-expression must not be negative

Explanation: A structure size-expression must not indicate a
neg'at i ve value.

User Action: Evaluate and correct the size-expression value.

E-17

ERROR MESSAGES

118 Missing left parenthesis in PLIT or INITIAL attribute

Explanation1 A plit-item or an initial-attribute
enclosed in parenthesis.

User Action: Insert the missing open parenthesis.

119 ALWAYS illegal in a SELECTONE expression

must be

Explanation: The select-label ALWAYS cannot be used with a
SELECTONE, SELECTONU, or SELECTONEA expression.

User Action: Correct the select-expression.

120 Case range spanned by FROM and TO exceeds implementation limit of
512

Explanation: Range of case-expression
high-bound limit of 512.

cannot

User Action: Evaluate and correct the range values.

121 Percent sign outside macro declaration

exceed the

Explanation: An improperly quoted (%QUOTE) percent sign is
contained in a nested macro-declaration, or an extra percent sign
has been found in the source file.

User Action: Evaluate and correct the use of the percent sign
for the macro-declaration.

122 Recursive invocation of non-recursive macro <macro-name>

Explanation: Only a conditional-macro
formal-names can be used recursively.

with one

User Action: Correct the definition of the macro named.

123 Recursive invocation of structure <structure-name>

or more

Explanation: A structure cannot invoke itself directly or
indirectly.

User Action: Correct the declaration of the structure named.

124 Expression nesting or size of a block exceeds implementation limit
of 300

Explanation: More expressions have been nested or a block
contains more lines than are allowed.

User Action: Decrease the number of nested expressions or the
number of lines in the block.

E-18

ERROR MESSAGES

125 Operand preceding left bracket in structure reference is not a
variable name

Explanation: The operand preceding the access-actual-parameter
must be a variable-name.

User Action: Evaluate and correct the operand.

126 Value of PLIT replicator must not be negative

Explanation: The REP replicator must
compile-time-constant-expression that does not
negative value.

be a
indicate a

User Action: Evaluate and correct the replicator value.

127 RETURN not within a routine

Explanation: To properly return control to the caller, the
return-expression must be enclosed within the BEGIN-END pair of
the called routine.

User Action: Correct the placement of the return-expression
within the outer most level of the routine, or check for the
exclusion of the END keyword from the routine.

128 BIND or LITERAL name <name> used in its own definition

Explanation: The data-name-value for a bind-declaration or the
literal-value for a literal-declaration must not contain a name
already declared bind or literal.

User Action: Evaluate name shown and correct coding.

129 Missing comma or right parenthesis in actual parameter list for
<routine-or-macro-name>

Explanation:
separated by
parenthesis.

Each actual-parameter in
a comma and the list

a call list must be
must be ended by a close

User Action: Insert the missing comma(s) or close parenthesis in
the call to the routine or macro named.

130 Omitted actual parameter in call to <keyword-macro-name> has no
default value

Explanation: In reference call to keyword-macro named, no
default value exists for the omitted actual-parameter.

User Action: Provide an appropriate value for the omitted
actual-parameter.

E-19

ERROR MESSAGES

131 Extra actual parameters in call to <builtin-function-name>

Explanation: The number of actual-parameters used in call to a
builtin-function must not exceed the number of formal-parameters
used in the builtin-routine.

User Action: Correct actual-parameter
builtin-function named.

usage in call to

132 Translation table entries in call to CH$TRANSTABLE must be
compile-time constants

Explanation: The translation-items do not meet the criteria for
compile-time-constant-expressions.

User Action: Evaluate and correct the translation-items in the
call.

133 Allocation unit (other than BYTE) in call to CH$TRANSTABLE

Explanation: Character-positions in a translation table are
restricted to the length of a byte.

User Action: If an allocation-unit attribute is necessary,
insert the keyword BYTE.

134 Length of table produced by CH$TRANSTABLE (<integer-value>) not an
even number between 0 and 256

Explanation: The number of translation-items used in the call
must be even.

User Action: Reduce or increase the length of the table by an
even number that is closest to the number of character positions
desired.

135 Length of destination shorter than sum of source lengths in
CH$COPY

Explanation: The sum of
(snl+sn2+ •••) must not be
destination-parameter (dn) •

the source-length parameters
greater than the value of the

User Action: Increase the value of the destination-parameter.

136 Character-size parameter of <character-function-name> must be
equal to 8

Explanation: The character-function named has illegally
specified a character-size other than eight bits in length; only
BLISS-36 supports character sizes other then eight.

User Action: Insert a character-size value of eight.

E-20

ERROR MESSAGES

137 Built-in routine has no value

Explanation: A machine-specific-function that cannot produce a
value has been used in a context where a value is required.

User Action: Evaluate the required use of the builtin-function
and correct the coding.

138 Missing equal sign in GLOBAL REGISTER declaration

Explanation: The global-register-declaration is incomplete.

User Action: Insert the missing equal sign following the
register-name.

139 Illegal use of %REF built-in function as actual
<integer-value> of call to <routine-name>

parameter

Explanation: The value of a %REF function is the address of a
temporary data segment which stores a copy of the value of the
actual-parameter; thus its use is often incompatible with the
storage requirements of a builtin-function.

User Action: Delete ~REF and provide a call to the routine named
that will provide permanent storage for the value returned.

140 Illegal use of register name as actual parameter <number> of call
to routine <routine-name>

Explanation: An undotted register name has been used as an
actual-parameter for the routine-call shown

User Action: Provide a legal register-name.

141 Routine <routine-name> has no value

Explanation: The mechanism for returning a value is suppressed.

User Action: Remove the novalue-attribute from the routine
named.

142 Missing quoted string following CODECOMMENT

Explanation: A quoted string is required for each comment.

User Action: Enclose the affected comment(s) in quotes.

143 Missing comma or colon following CODECOMMENT

Explanation: Each quoted-string in the list must be separated by
a comma and the list must be ended with a colon.

User Action: Insert the missing comma(s) and/or the colon.

E-21

ERROR MESSAGES

144 Expression following CODECOMMENT must be a block

Explanation: The-expression following the colon must be enclosed
with a parenthesis or BEGIN-END pair.

User Action: Enclose the expression appropriately.

145 Illegal OPTLEVEL value <value>

Explanation: The only valid optimization-level values are: zero
through three.

User Action: Replace the switch value shown with an appropriate
value.

146 ENABLE declaration must be in outermost block of a routine

Explanation: The enable-declaration must reside in the outer
most level of the establisher routine.

User Action: Correct the placement of the enable-declaration.

147 More than one ENABLE declaration in a routine

Explanation: An establisher routine must not enable more than
one handler routine.

User Action: Remove all but one of the enable-declarations.

148 Handler specified by ENABLE must be a routine name

Explanation: The name specified by an enable-declaration must be
the name of a routine.

User Action: Provide an appropriate routine-name
declaration.

149 Illegal actual parameter in ENABLE declaration

for the

Explanation: Actual-parameters for enable-declarations are
restricted in use to names declared as own-, global-, forward-,
or local-names.

User Action: Provide an appropriately declared name for the
actual-parameter~

150 Name used as ENABLE actual parameter must be VOLATILE: <name>

Explanation: A volatile-attribute must be used to warn
compiler that the declared actual-parameter is subject
unexpected change.

User Action: Provide a volatile-attribute for
actual-parameter named.

E-22

the
to

the

ERROR MESSAGES

151 Missing comma or right parenthesis in ENABLE actual parameter list

Explanation: Each actual-parameter in a list must be separated
by a comma and the list must be ended with a close parenthesis.

User Action: Insert
parenthesis.

the missing comma{s) and/or

152 LANGUAGE switch specification excludes <language-name>

Explanation: The language-name shown is missing
language-list in a switch-declaration.

User Action: Insert the missing language-name.

153 Missing OF following REP

from

close

the

Explanation: The replicator construct for the expression is
incomplete.

User Action: Insert the missing keyword OF following the
replicator.

154 Incorrect number of parameters in call to lexical function
<lexical-function-name>

Explanation: A lexical-function must conform to its syntactic
definition.

User Action: Evaluate
lexical-function named.

and correct parameter usage for

155 Number of parameters of ENTRY switch exceeds implementation limit
of 128

Explanation: The module-switch has been illegally coded.

User Action: Reduce the number of parameters used in the ENTRY
switch.

156 Unknown name in BUILTIN declaration: <name>

Explanation: Only a name predefined for BLISS can be declared as
builtin.

User Action: Correct the name shown or delete it or use another
form of declaration for it.

157 Conditional out of sequence: <name>

Explanation: The keyword named is improperly sequenced in the
lexical-conditional.

User Action: Evaluate and correct the order in which the
keywords are coded in the expression.

E-23

ERROR MESSAGES

158 <%PRINT, %INFORM, %WARN, %ERROR, or %ERRORMACRO>: <advisory-text>

Explanation: This is the form of the message number and text
that appears when one of the lexical-functions shown is used.

User Action: Example:
INFO il58,%INFORM:'user text specified by function'

159 Conditional not terminated
source-file-name>

before end of <macro or

Explanation: Lexical-conditional is not properly terminated in
the file named.

User Action: Insert the missing termination keyword %FI.

160 Missing formal parameter or equal sign in call to keyword macro
<macro-name>

Explanation: Each macro-actual-parameter in a keyword-macro-call
must be connected by an equal sign to a keyword-formal-name
previously declared in a keyword-macro.

User Action: Insert the missing formal-name or the missing equal
sign.

161 Formal parameter <parameter-name> multiply specified in call to
keyword macro <macro-name>

Explanation: In a keyword-macro-call to the macro named
multiplication of the keyword-formal-name shown has
illegally specified.

User Action: Evaluate and correct the coding of the call.

162 Missing %THEN following %IF

the
been

Explanation: The coding of a lexical-conditional is incomplete.

User Action: Insert the missing required keyword %THEN.

163 Actual parameter <parameter-name>
<routine-name> is illegal

of call to routine

Explanation: An invalid actual-parameter has been used in a call
to the routine named.

User Action: Evaluate and correct the use of actual-parameter
named in the call.

164 Language feature to be removed: <feature>

Explanation: Compiler reports that the use of feature named is
discontinued.

User Action: Evaluate and correct module.

E-24

ERROR MESSAGES

165 Language feature not present in <language>: <feature>

Explanation: The compiler reports that the feature named is not
available to the dialect named.

User Action: Remove the feature from the module-switch for the
dialect named.

166 Name declared STACK is not properly defined

Explanation: The name used as a stack data-segment has not been
declared.

User Action: Correct or define name with stacklocal-declaration.

167 Name declared ENTRY is not globally defined: <name>

Explanation: In BLISS-36, name shown has been designated for
entry in global-object-module-record and has not been declared as
global.

User Action: Define name shown with global-declaration.

169 Fetch or store applied to field of zero size

Explanation: Attempted fetch- or assignment-expression to an
invalid data-segment.

User Action: Correct range-attribute for data- or
structure-declaration.

170 Missing equal sign in FIELD declaration

Explanation: An equal sign must appear between the
field-set-name and the keyword SET and between each field-name
and the left-bracket of the field-component.

User Action: Insert missing equal sign(s).

171 Missing comma on right bracket in FIELD declaration

Explanation: Comma must appear after right-bracket of each
field-definition (except the last) in list.

User Action: Insert missing comma(s).

E-25

ERROR MESSAGES

172 Missing· left bracket in FIELD declaration

Explanation: A left bracket must appear before each list of
field-components in a list of field-definitions.

User Action: Insert missing left bracket(s).

173 Missing comma or TES in FIELD declaration

Explanation: A comma must appear between each field-component in
a list and the list must be ended with a TES.

User Action: Insert missing comma(s) or keyword TES.

174 Missing left bracket or SET in FIELD declaration

Explanation: The equal sign following the field-set-name must be
followed by a SET and each equal sign following a field-name must
be followed by a left bracket.

User Action: Insert keyword SET or left bracket(s).

175 Number of field components exceeds implementation limit of 32

Explanation: The number of components in a field-definition
exceeds the limits allowed for a structure.

User Action: Decrease the number of components or
separate structures.

create

176 Field name <name> invalid in structure reference to variable
<variable-name>

Explanation: The field-name shown as an access-actual-parameter
does not agree with the variable-name shown as a
field-declaration.

User Action: Evaluate and correct the uses of name.

177 Parameter of FIELD attribute must be a field or field-set name

Explanation: Invalid parameter has been used for a
field-attribute; the name used must be identified by a
field-declaration as a field- or field-set-name.

User Action: Replace parameter with a declared field- or
field-set-name.

178 Number of parameters of ,FIELD attribute exceeds implementation
limit of 128

Explanation: Excessive number of field-names have been specified
in field-attribute.

User Action: Decrease the number of field-names or declare a
field-set for the number in excess.

E-26

ERROR MESSAGES

179 Missing equal sign in LINKAGE declaration

Explanation: An equal sign must appear between a linkage-name
and a linkage-type.

User Action: Insert the missing equal sign.

180 Invalid linkage type specified

Explanation: The linkage-type specified for the dialect is
illegal.

User Action: Evaluate and correct the linkage-type word.

181 Illegal register number <integer> in LINKAGE declaration

Explanation: The register number shown is invalid.

User Action: Evaluate and correct the register number.

182 Multiple specification of register <register-number> in LINKAGE
declaration

Explanation: The register shown has been specified more than
once in the declaration.

User Action: Evaluate and correct register specifications.

183 Invalid parameter location specified

Explanation: The parameter-location specified is illegal.

User Action: Check the legal uses of parameter-locations and
correct the specifications.

184 Missing comma or right parenthesis in LINKAGE declaration

Explanation: Each parameter-location in a list must be separated
by a comma and the list must be ended by a close parenthesis.

User Action: Insert the missing comma(s) and/or the close
parenthesis.

185 Invalid linkage attribute in LINKAGE declaration

Explanation: A linkage-option has
linkage-declaration that is invalid.

been used in a

User Action: Use a valid modifier in the linkage-declaration.

185 Invalid linkage modifier in LINKAGE declaration

Explanation: An illegal
linkage-option.

modifier has been

User Action: Check and correct the use of
modifiers for the dialect.

E-27

used as a

linkage-option

ERROR MESSAGES

186 Missing left parenthesis in LINKAGE declaration

Explanation: A parameter-location list must be preceded by an
open parenthesis.

User Action: Insert the missing open parenthesis.

187 Missing global register name in LINKAGE declaration

Explanation: A global linkage-option has been used and the
global-register-name has not been specified.

User Action: Insert the missing global-register-name.

188 No match in linkage <name> for EXTERNAL REGISTER variable <name>

Explanation: The register named in the global
must be the same as the register named in
external-register~declaration.

linkage-option
the associated

User Action: Use the same register name in both the routine and
its linkage-declaration.

189 Global register <name> specified by linkage <linkage-name> not
declared at call

Explanation: The register named in the global linkage-option has
not been declared in a call to the routine.

User Action: Declare the register-name within the
routine via an external-register-declaration.

calling

190 WORD or Radix-SO item number <integer> allocated at odd byte
boundary

Explanation: Data structure is improperly allocated.

User Action: Correct data allocation to place WORD or RADSO 11
value shown at a word boundary.

191 Multiple GLOBAL declaration of name: <name>

Explanation: The global name shown has been declared more than
once in the same module.

User Action: Delete all
global-declaration.

the extra appearances

192 Multiple declaration of name in assembly source: <name>

of the

Explanation: The name shown has been declared more than once in
a module that was compiled with the assembleable-listing option.

User Action: If the intent is to run the listing through an
assembler, delete all extra appearances of the declared name;
or, use the switch-item UNAMES in a switches-declaration -to
obtain unique names.

E-28

ERROR MESSAGES

193 <declaration-name> declaration not available when OBJECT(ABSOLUTE)
in effect

Explanation: This message is reserved for BLISS-16
expansion.

future

User Action: No action is required.

194 Library source module must contain only declarations

Explanation: Executable expressions must not appear in a library
source file.

User Action: Remove all but declaration coding from the library
source file.

195 LIBRARY file has invalid format

Explanation: The internal formatting of the file is incorrect.

User Action: The specified file is probably
library file; change the file-spec and
problem persists submit an SPR.

not a precompiled
recompile. If the

196 LIBRARY file must be regenerated using current compiler release

Explanation: A library source file must be precompiled again
using the latest version of the compiler.

User Action: Use the latest version of the
regenerate the library file.

197 LIBRARY file must be generated using <language>

compiler to

Explanation: The library file must be precompiled by the
compiler associated with the dialect named.

User Action: Generate the library file with the
associated with the dialect named.

198 LIBRARY file contains internal consistency error

compiler

Explanation: A library file has been referenced that has been
precompiled with errors.

User Action: Recompile the library source file with a /LIBRARY
qualifier, and if the problem persists submit an SPR.

199 Warnings issued during LIBRARY precompilation: <number>

Explanation: The number shown is the number of warnings issued
during the precompilation of the file.

User Action: Evaluate and correct all warnings and recompile.

E-29

ERROR MESSAGES

200 Illegal declaration type in library source module

Explanation: Only certain types of declarations may be used in a
library source file.

User Action: Remove the invalid declaration(s) from the library
source file and regenerate the file.

201 Illegal occurrence of bound name <name> in library source module

Explanation: Bound names cannot be inserted in library source
file.

User Action: Remove the declaration for the name shown from the
file and regenerate the file.

202 Number of parameters of ARGTYPE linkage attribute modifier exceeds
implementation limit of 128

Explanation: Excessive number of parameters used with builtin
linkage-function ARGTYPE.

User Action: Reduce the parameters to an acceptable number.

203 <name> linkage modifier not available with this linkage type

Explanation: The linkage-option named cannot be used with the
linkage-type specified.

User Action: Evaluate and use an appropriate linkage-option.

204 Length of SYSLOCAL specification not in range 1 to 15

Explanation: This message reflects a future enhancement.

User Action: No action is required.

205 BUILTIN declaration of <name> invalid in this context

Explanation: Each name used in a builtin-declaration must be
predefined (but not predeclared); however, if a register-name or
linkage-function is used it must also be contained in a
routine-declaration.

User Action: Evaluate and correct the use of the name shown.

206 BUILTIN operation needs a register declared as NOTUSED

Explanation: A register required by a builtin-function is
unavailable for use due to a NOTUSED linkage modifier.

User Action: Delete or change the modifier in the associated
linkage-declaration to allow the register to be used.

E-30

ERROR MESSAGES

207 NOTUSED linkage modifier of caller is not a subset of that of
called routine

Explanation: The linkage-type and linkage-option of the caller
routine is incompatible with that of the called routine.

User Action: Evaluate and correct the linkage-declarations.

208 Called routine does not preserve register declared NOTUSED by
caller

Explanation: To preserve all the necessary registers, all of the
locally usable registers of the called routine must be declared
as locally usable registers in the caller routine.

User Action: Evaluate and correct the linkage-declarations.

209 Illegal character or field too large in VERSION

Explanation: The
conform to the
oooa(oooooo)-o;
alphabetic.

quoted-string in the VERSION switch must
TOPS-10/20 version-number format, which is:

where "o" is an octal digit .and "a" is an

User Action: Correct the string in regard to the version-number
format.

210 Stack pointers in different registers

Explanation: The number of the
assigned by default and depends
the default number of the register
the declared linkage-type (such
specify the LINKAGE_REGS option.

stack pointer register is
on the dialect used; however,
can be altered by a change in
as FlO) while neglecting to

User Action: Specify the desired stack pointer register number
by using a LINKAGE_REGS modifier for the altered linkage-type.

211 Use of uninitialized data-segment <name>

Explanation: An attempt has been made to use the data-segment
named without first initializing it.

User Action:
declaration,
from it.

Insert an initial-attribute in the data-segment
or assign a value to the segment before fetching

212 Null expression appears in value-required context

Explanation: A null expression has been used where a value is
required.

User Action: Evaluate and provide a value for the expression.

E-31

ERROR MESSAGES

213 Expression (s) eliminated following RETURN, LEAVE or EXITLOOP

Explanation: These expressions end the evaluation of a
routine-body (return), a block (leave), or an innermost loop
(exitloop); . therefore, they must be the last expressions
inserted before the affected block is ENDed, if not all
subsequent expressions will not be compiled.

User Action: Evaluate and correct the insertion of the return­
or exit-expression.

214 Language feature not transportable

Explanation: The feature specified for the dialect(s) defined by
the language-switch is not transportable.

User Action: Evaluate the feature and take appropriate action.

215 Language feature not transportable: <name>

Explanation: The feature specified by the name shown is not
transportable to the dialect(s) defined by the language switch.

User Action: Evaluate the feature named and take appropriate
action.

216 Language feature not transportable: <keyword>

Explanation: The feature specified by the keyword shown is not
transportable to the dialect(s) defined by the language switch.

User Action: Evaluate the feature shown and take appropriate
action.

217 GLOBAL or EXTERNAL name not unique in 6 characters: <name>

Explanation: In BLISS-16 and BLISS-36, at least six characters
in a global- or external-name must be unique.

User Action: Evaluate and correct the global- or external-name.

218 Implicit declaration of BUILTIN <linkage-name> to be withdrawn

Explanation: The compiler implicitly declares the function named
as builtin when a FORTRAN linkage-routine is being compiled.

User Action: Add an explicit builtin-declaration within the
proper scope.

219 Empty compound expression is illegal

Explanation:
declarations,
legal.

A compound-expression block does not contain any
but it must contain at least one expression to be

User Action: Insert an expression in the block or delete the
entire block form.

E-32

ERROR MESSAGES

220 PRESET items have overlapping initialization

Explanation: A preset-value must not occupy more storage than is
allocated for the data segment, and the field-names described in
the preset-items must not overlap.

User Action: Evaluate
preset-attribute.

and correct the

221 Missing left square-bracket in PRESET attribute

coding of the

Explanation: Each preset-item in a preset-attribute must be
preceded by an open bracket.

User Action: Insert the missing open bracket
preset-item.

222 Source line too long. Truncated to 132 characters.

Explanation: A line in the source
implementation limit of 132 characters.

file

User Action: Decrease the size of the source line.

before the

exceeds the

223 Name used in routine-call not declared as ROUTINE: <routine-name>

Explanation: The routine-designator used in a routine-call must
yield a value declared as a routine-name in a
routine-declaration.

User Action: Assure that the name used in the routine-call is
declared in a routine-declaration.

224 INTERRUPT general routine call is invalid

Explanation: A linkage-name defined by an INTERRUPT linkage-type
must not be used with this dialect in a general-routine-call.

User Action: With this dialect, use an ordinary-routine-call to
invoke the interupt routine.

225 Invalid linkage attribute specified <attribute-name> is assumed

Explanation: A linkage-attribute must be either a predeclared
linkage-name or one specified in a linkage-declaration.

User Action: Evaluate and correct the use of the linkage-name in
the linkage-attribute.

226 Value of a linkage name <name> is outside permitted range

Explanation: The value of the linkage-name shown exceeds the
compatible and transportable range of the dialect.

User Action: Provide a linkage-name that is within the
compatible and transportable range of the dialect.

E-33

ERROR MESSAGES

227 Effective position and size outside of permitted range

.Explanation: The values of the field-reference parameters have
exceeded the structure-allocation specified for the data-segment.

User Action: Evaluate and correct the value of the offset and
field size parameters.

228 Builtin machop <name> has no value

Explanation: The instruction named did not produce a value when
executed by the machine~specific-function MACHOP.

User Action: Select a machine instruction that will produce a
value when executed.

229 Parameter <parameter-name> of builtin <name> has value outside the
range

Explanation: The parameter named for the builtin-function named
indicates a value that exceeds the specified range.

User Action: Decrease the value of the parameter named to
conform with the specifications of the function named.

230 Parameter <parameter-name> of builtin <name> must be a link-time
constant expression

Explanation: The parameter named for the builtin-function named
is an invalid expression.

User Action: Replace the parameter named with an expression that
meets the criteria for a link-time-constant.

231 Invalid linkage attribute specified CLEARSTACK is added

Explanation: The CLEARSTACK linkage-option is illegal with this
dialect.

User Action: Delete
linkage-declaration.

the

232 OTS linkage specified twice

CLEARSTACK modifier from the

Explanation: The ots-option of the ENVIRONMENT switch specifies
the use of a standard OTS file and linkage; therefore the switch
must not appear in the same module with an OTS switch and an
OTS LINKAGE switch which specifies the use of a nonstandard file
and-linkage.

User Action: Evaluate and correct the coding for OTS.

E-34

ERROR MESSAGES

233 OTS linkage <name> not declared before first routine declaration

Explanation: The linkage-name specified by the OTS LINKAGE
switch must be predeclared or appear in a linkage~declaration
that precedes the first routine-declaration in the module.

User Action: Define
linkage-declaration that
in the module.

the linkage-name shown in a
precedes the first routine-declaration

234 OTS linkage <name> may not use global registers or pass parameters
by register

Explanation: The linkage-name
switch must not specify
parameter-locations.

specified
register

by the OTS LINKAGE
or global-register

User Action: Evaluate and correct the use
paramete-locations in the linkage-declaration named.

235 OTS linkage <name> not defined before it's used

of the

Explanation: The linkage-name shown has not been declared prior
to its use in an OTS LINKAGE switch.

User Action: Declare
linkage-declaration.

the linkage-name shown with a

236 First PSECT declaration appears after a declaration that allocates
storage

Explanation: In BLISS-36, the first psect-declaration in a
module must appear before the first declaration that causes
storage to be allocated or object code to be generated.

User Action: Reinsert the first psect-declaration before the
first data- or routine-declaration (external and forward types
excepted) and/or the first plit-expression in the module.

237 Exponent for floating or double floating literal out of range

Explanation: Exponent value is too large for floating literal.

User Action: Evaluate and correct the value of the exponent~

239 String exceeding implementation limits (<number> characters) was
truncated

Explanation: The string-function (such as %EXACTSTRING) exceeds
the implementation limit of 1000 characters for the length of a
sequence.

User Action: Decrease the size of the string.

E-35

ERROR MESSAGES

240 <reserved-word> declaration is illegal in STRUCTURE declaration

Explanation: The declaration defined by the reserved-word shown
(such as OWN) is illegal in a structure-declaration.

User Action: Remove the illegal declaration.

242 Output formal parameter <name> in routine declaration was not
described in linkage

Explanation: An output-parameter-location has not been specified
in the corresponding linkage-declaration for the
output-formal-parameter shown.

User Action: Specify the output-parameter-location for the
output-formal-parameter named in the routine-declaration.

243 Output actual parameter was not described in linkage

Explanation: An output-parameter-location has not been specified
in the corresponding linkage-declaration for an
output-actual-parameter specified in the caller routine.

User Action: Specify an output-parameter-location for the
output-actual-parameter specified in the caller routine.

244 Name declared UNDECLARE is not defined:<name>

Explanation: An undeclare-declaration has been used with a name
that has not been declared.

User Action: Declare the name shown.

E.l BLISS COMPILER FATAL ERRORS

The following fatal error messages indicate serious problems with the
environment and/or compiler. When such a condition is detected,
compilation terminates immediately.

INTERNAL COMPILER ERROR

The compiler has failed an internal consistency check. This
message may be followed by an error number. BLISS-32 then issues
a traceback printout. BLISS-36 is unable to issue a traceback.
Please submit an SPR and include a copy of the program that
generated this message.

INSUFFICIENT DYNAMIC MEMORY AVAILABLE

On the VAX, this error may indicate a bug in the compiler. On
the DECsystem-IO and -20, the user's program may be too large to
compile.

E-36

ERROR MESSAGES

I/O ERROR ON INPUT FILE

An error occurred while accessing an input file. This may be
preceded by other error messages which provide more specific
information about the error.

I/O ERROR ON OBJECT FILE

An error occurred while accessing the output object file. This
may be preceded by other error messages which provide more
specific information about the error.

I/O ERROR ON LISTING FILE

An error occurred while accessing the output listing file. This
may be preceded by other error messages which provide more
specific information about the error.

I/O ERROR ON LIBRARY FILE

An error occurred while accessing a BLISS precompiled library
file. This may be preceded by other error messages which provide
more specific information about the error.

LIBRARY PRE-COMPILATION EXCEEDS COMPILER LIMIT

A pre-compiled BLISS library cannot be larger than approximately
1024 (VAX) or 2048 (10/20) disk blocks; the library file will be
deleted.

MACRO OR STRUCTURE DECLARATION WITHIN STRUCTURE BODY

This is a permanent implementation restriction in the BLISS
language.

REQUIRE DECLARATION WITHIN MACRO BODY

This is a permanent implementation restriction in the BLISS
language.

FATAL ERROR IN COMMAND LINE

This message appears on VAX-VMS only, for BLISS-32 or BLISS-16.
The user's command line was improperly formed. A previous error
message provided additional information to describe what was
wrong.

E-37

ERROR MESSAGES

I/O ERROR DURING COMMAND LINE SCANNING

This message appears on TOPS-10 or TOPS-20 when a severe error is
encountered in parsing the command line.

NESTED EXPRESSION TOO DEEP. SIMPLIFY AND RECOMPILE

The source program contains more than 64 levels of nested blocks,
each containing declarations.

UNRECOVERABLE SOURCE ERRORS. CORRECT AND RECOMPILE

This message appears on VAX-VMS only, for BLISS-32 or BLISS-16.
Errors previously encountered by the compiler have confused it to
the point at which it cannot continue the compilation.

E-38

APPENDIX F

SAMPLE OUTPUT LISTING

The following pages contain the complete output listing for the module
TESTFACT. Chapter 2 examples use excerpts from this listing.

F-1

1-'rj
I

N

TESTFACT

0001 MODULE TESTFACT (MAIN = MAINPROG)=
0002 BEGIN
0003
0004 OWN
0005 A,
0006 B,
0007 C;
0008
0009 ROUTINE !FACT (N)
0010 BEGIN
OOll
0012 LOCAL
0013 RESULT;
0014 RESULT = l;
0015 !NCR I FROM 2 TO .N DO
0016 RESULT = .REULT*.I;

WARN#OOO 1 Ll: 0016
Undeclared name: REULT

0017 .RESULT
0018 END;

50
51

50 OOOOG CF
FS 51 04

01
01
06
51
AC

5-0ct-1979 10:37:06
5-0ct-1979 10:37:00

VAX-11 Bliss-32 T2-617 Page 1
DBBl:[LEHOTSKY.DOC.UGUIDE]TESTFACT.BLI;2 (1)

00000 A:
00004 B:
00008 C:

0000 00000 !FACT:
DO 00002
DO 00005
11 00008
CS OOOOA 1$:
F3 00010 2$:
04 00015

.TITLE TESTFACT

.PSECT OWN,NOEXE,2

.BLKB 4

.BLKB 4

.BLKB 4

.EXTRN REULT

.PSECT $CODE$,NOWRT,2

.w:>RD
MOVL
MOVL
BRB
MULL3
AOBLEQ
RET

Save nothing
#1, RESULT
#1, I

2$
I, REULT, RESULT
N, I, 1$

0009
0014
0015

0016
0015
0009

Routine Size: 22 bytes, Routine Base: $CODE$ + 0000

0019

Figure F-1: Sample Output Listing

00

~
"ti
t"'
tr.J

0 c
8
"ti
c
8

t"'
H
00
8
H z
Ci)

~
I

w

TESTFACT

0020
0021 ROUTINE RFACT (N) =
0022 IF .N GTR 1
0023 THEN
0024 .N * RFACT(.N - 1)
0025 ELSE
0026 l;

01 04 AC
OE

7E 04 AC 01
EF AF 01

50 04 AC

50 01

5-0ct-1979 10:37:06
5-0ct-1979 10:37:00

VAX-11 Bliss-32 T2-617 Page 2
DBBl:[LEHOTSKY.DOC.UGUIDE]TESTFACT.BLI;2 (2)

0000 00000 RFACT: .WORD Save nothing i 0021
Dl 00002 CMPL N, #1 i 0022
15 00006 BLEQ 1$ i
C3 00008 SUBL3 #1, N, -(SP) i 0024
FB OOOOD CALLS :fl:l, RF ACT i
C4 00011 MULL2 N, RO i
04 00015 RET i 0022
DO 00016 1$: MOVL #1, RO ;
04 00019 RET i 0021

Routine Size: 26 bytes, Routine Base: $CODE$ + 0016

Figure F-1 (Cont.) Sample Output Listing

(/)

~
ttj

t-t
l:rj

0 c::
1-3
"ti
c::
t-3

t-t
H
(/)

t-3
H z
G)

t'Xj
I

..i::.

TESTFACT

0027
0028
0029
0030
0031
0032
0033

ROUTINE MAINPROG =
BEGIN
A = IF ACT (5} :
B = RFACT(5}:

1
END:

CB
0000'

D3
0000'

AF
CF

AF
CF
50

Routine Size: 28 bytes, Routine Base:

0034 END ELUDOM

5-0ct-1979 10:37:06
5-0ct-1979 10:37:00

VAX-11 Bliss-32 T2-617 Page 3
DBBl:[LEHOTSKY.DOC.UGUIDE]TESTFACT.BLI:2 (3}

VMS wants a success return

0000 00000 MAINPROG:
.WORD

05 DD 00002 PUSHL
01 FB 00004 CALLS
so DO 00008 MOVL
05 DD OOOOD PUSHL
01 FB OOOOF CALLS
50 DO 00013 MOVL
01 DO 00018 MOVL

04 OOOlB RET

$CODE$ + 0030

Save nothing
#5
#1, IFACT
RO, A
#5
#1, RFACT
RO, B
#1, RO

0027
0029

0030

0027

Figure F-1 (Cont.): Sample Output Listing

l'.J)

~
"'O
t-t
t;rj

0
c:::
1-3
"'O
c:::
1-3

t-t
H
l'.J)

1-3
H z
Gl

t'rj
I

Ul

Name

OWN
$CODE$

Warnings: 1
Errors: 0

BLISS /LIS/NOOB TESTFACT

Bytes

Size: 76 code + 12 data bytes
Run Time: 00:01.2
Elapsed Time: 00:04.1
Memory Used: 10 pages
Compilation Complete

PSECT SUMMARY

12 WRT,
76 NOWRT,

Attributes

RD ,NOEXE,NOSHR, LCL,
RD , EXE,NOSHR, LCL,

COMMAND QUALIFIERS

REL, CON,NOPIC,ALIGN(2)
REL, CON,NOPIC,ALIGN(2)

Figure F-1 (Cont.) Sample Output Listing

00

~
t'I
l:rj

g
8
'U
c::
8

t'I
H
00
8
H z
G)

-A-

Abbreviations, summary, A-3
Abstraction mechanisms, 6-11
ADAWI, 4-6
ADDD, 4-6
ADDF, 4-6
ADDG, 4-7
ADDH, 4-7
ADDM, 4-7
Address calculations, 6-14

INDEX

CHME, 4-10
CHMK, 4-10
CHMS, 4-10
CHMU, 4-10
CMPD, 4-10
CMPF, 4-11
CMPP, 4-11
/CODE, 1-8
CODE, 7-7
Code generation, 7-7
Coding errors, 5-3

Address representation characters,
3-6

computed routine calls, 5-4
in complex tests, 5-4

Address-relational operators,
6-16

Addresses, 6-16
Alignment attribute, 6-14
Allocation of scalar data, 6-12
Allocation-unit attribute, 6-13,

6-20
%ASCII, 6-5
ASHQ, 4-8
ASSEMBLER, 1-15
At sign (@), 3-4, 3-7
Attributes, nontransportable,

6-13

BICPSW, 4-8
BINARY, 1-15

-B-

Binding of names, 7-7
BISPSW, 4-8
Bit functions, 4-34
%BLISS 16, 6-6
%BLISS32, 6-6
%BLISS 36, 6-6
BLSCRF, 8-4
%BPADDR, 6-4
BPT, 4-8
%BPUNIT, 6-4
%BPVAL, 5-2, 6-4, 6-13, 6-25
BUGL, 4-9
BUGW, 4-9

-c-

%C, 6-5
CALLG, 4-9
CH$ALLOCATION, 6-23
CH$PTR, 6-24
Character sequence functions,

6-19
Character sequences (strings),

6-18
Characters, address

representation, 3-6
Characters, delimiters, 1-3

missing dots, 5-3
missing expression, 5-4
missing/disappearing code, 5-5
parentheses, 5-4
semicolon, 5-4
signed/unsigned fields, 5-5
use of complex macros, 5-5
useless value expressions, 5-3
valued/nonvalued routines, 5-3

Command syntax, summary, A-1
Command-line semantics, 1-3
Command-line syntax, 1-2
COMMENTARY, 1-15
Compilation

conditional, 6-5
costs, 5-1
summary, 2-2, 2-17
use of debug qualifiers, 3-14

Compile-time constant expressions,
6-4

Compiler
organization and processing,

7-1
output, 2-1
overview, 7-1
phases, 7-1

CODE, 7-7
DELAY, 7-6
FINAL, 7-8
FLOW, 7-3
LEXSYN, 7-2
OUTPUT, 7-8
TNBIND, 7-7

Complexity, language, 6-3
Concatenation, 1-3
Conditional compilation, 6-5
Control expressions, 6-16
CRC, 4-11
Cross-referencer, BLSCRF, 8-4
CVTDF, 4-12
CVTDI, 4-12
CVTDL, 4-12
CVTFD, 4-13
CVTFG, 4-13
CVTFH, 4-13

Index-1

INDEX

CVTFI, 4-13
CVTFL, 4-14
CVTGF, 4-14
CVTGL, 4-14
CVTHF, 4-15
CVTHL, 4-15
CVTID, 4-15
CVTIF, 4-15
CVTLD, 4-16
CVTLF, 4-16
CVTLH, 4-16
CVTLP, 4-16
CVTPL, 4-17
CVTPS, 4-17
CVTPT, 4-18
CVTRDH, 4-18
CVTRDL, 4-18
CVTRFL, 4-19
CVTSP, 4-19
CVTTP, 4-19

-D-

Data segments
changing contents of, 7-3
scope of names, 3-13

Data-name examination, 3-14
DCB BLOCK structure, 6-27
/DEBUG, 1-8
Debugger

command-line continuation, 3-15
commands, 3-4
commands, summary of, 3-15
contents operator symbol, 3-7
current location symbol, 3-6
default next-location value,

3-8
expression syntax, 3-4
last value displayed symbol,

3-7
range operator, 3-7
symbolic access, 3-14

Debugging, 3-2
Declarations, common, 5-1
Defaults

file type, 1-4
qualifiers, 1-16

DELAY, 7-6
Delimiters, 1-3
DIVD, 4-20
DIVF, 4-20
DIVG, 4-20
DIVH, 4-21
Dots, missing, 5-3

-E-

EDITPC, 4-21
EDIV, 4-21
EMUL, 4-22
Equivalencing, 6-17

Error messages, E-1
form of, 2-22
line indicator, 2-22
pointer, 2-22

ERRORS, 1-10
Errors

detected in LEXSYN phase, 7-2
discussion of, 5-3
from linker, 5-6
obscure messages, 5-6
terminal output, 2-2
user coding, 5-3

Examples
EXPAND MACROS, 2-17
LIBRARY, 2-1 7
machine-specific functions, 4-4
output listing, 2-16

object part, 2-8, 2-12
source part, 2-6

REQUIRE, 2-17
TRACE MACROS, 2-17

EXPAND MACROS, 1-13
example, 2-17

Expression operators, arithmetic,
3-5

Expressions
missing, 5-4
tree representations, 7-2

Extended arithmetic functions,
4-8

Extension attribute, 6-13

FFC, 4-22
FFS, 4-22

-F-

Field references, 3-9
Field selectors, 6-17, 6-32
Fields, (un)signed, 5-5
Figures

assembler input listing, F-8
compiler O/P listing sequence,

2-3
default object listing, F-5
default source listing, 2-16
error messages in source

listing, 2-23
listing header format, 2-4
output listing example showing

library/require file, 2-18
sample output listing, F-2
sample TPARSE program, 8-17

File type, defaults, 1-4
File-designator, 1-6
FINAL, 7-8
FLEX VECTOR, 6-16, 6-30, 6-33
FLow-; 7-3
Flow analysis, 7-3
Format

error messages, 2-22
listing header, 2-3
preface string, 2-5

Index-2

Formatting
automated formatter, 8-6
PRETTY, 8-6

-G-

GEN VECTOR, 6-33

INDEX

LOCC, 4-24

-M-

Machine-code-list qualifier, 1-14,
2-7

General qualifier, 1-7
Guidelines, transportability, 6-1

Machine-specific functions, 6-3
conventions, 4-1
examples, 4-4

-H-

HALT, 4-23
HEADER, 1-13
Header format, 2-3
Heuristic phase of compiler, 7-6

-I-

Implementation limits
summary, D-1

INDEX, 4-23
Initial attribute, 6-22
Initial debug modes/types, 3-3
Initialization, 6-22
Input-spec, 1-2
Input/output support facility,

8-1
INSQHI, 4-23
INSQTI, 4-23
INS QUE, 4-24
Interface macros, 8-13
Isolation, 6-2

-L-

Language switch, 6-7
LEVEL, 1-11
Lexical analysis, 7-2
Lexical function

%BLISS, 6-6
LEXSYN, 7-2
Libraries

discussion of, 5-1
usage, 5-2

/LIBRARY, 1-6
LIBRARY, 1-13

example listing, 2-17
vs. REQUIRE, 5-2

Line indicator
in error message, 2-22

Link-command, 3-1
Linking, 3-1

errors from linker, 5-6
/LIST, 1-6
Listing header, 2-3
Literals, 6-4

numeric, 6-5
predeclared, 5-2, 6-4
string, 6-5
user-defined, 6-5
value definition, 6-5

names

Index-3

ADAWI, 4-6
ADDO, 4-6
ADDF, 4-6
ADDG, 4-7
ADDH, 4-7
ADDM, 4-7
ASHQ, 4-8
BICPSW, 4-8
BISPSW, 4-8
BPT, 4-8
BUGL, 4-9
BUGW, 4-9
CALLG, 4-9
CHME, 4-10
CHMK, 4-10
CHMS, 4-10
CHMU, 4-10
CMPD, 4-10
CMPF, 4-11
CMPP, 4-11
CRC, 4-11
CVTDF, 4-12
CVTDI, 4-12
CVTDL, 4-12
CVTFD, 4-13
CVTFG, 4-13
CVTFH, 4-13
CVTFI, 4-13
CVTFL, 4-14
CVTGF, 4-14
CVTGL, 4-14
CVTHF, 4-15
CVTHL, 4-15
CVTID, 4-15
CVTIF, 4-15
CVTLD, 4-16
CVTLF, 4-16
CVTLH, 4-16
CVTLP, 4-16
CVTPL, 4-17
CVTPS, 4-17
CVTPT, 4-18
CVTRDH, 4-18
CVTRDL, 4-18
CVTRFL, 4-19
CVTSP, 4-19
CVTTP, 4-19
DIVD, 4-20
DIVF, 4-20
DIVG, 4-20
DIVH, 4-21
EDITPC, 4-21

INDEX

Machine-specific functions
names (Cont.)

EDIV, 4-21
EMUL, 4-22
FFC, 4-22
FFS, 4-22
HALT, 4-23
INDEX, 4-23
INSQHI, 4-23
INSQTI, 4-23
INS QUE, 4-24
LOCC, 4-24
MATCHC, 4-25
MFPR, 4-25
MOVC3, 4-25
MOVC5, 4-26
MOVP, 4-26
MOVPSL, 4-26
MOVTC, 4-27
MOVTUC, 4-27
MTPR, 4-27
MULD, 4-28
MULF, 4-28
MULG, 4-28
MULH, 4-29
NOP, 4-29
PROBER, 4-29
PROBEW, 4-30
REMQHI, 4-30
REMQTI, 4-30
REMQUE, 4-31
ROT, 4-31
SCANC, 4-31
SKPC, 4-32
SPANC, 4-32
SUBD, 4-32
SUBF, 4-33
SUBG, 4-33
SUBH, 4-33
SUBM, 4-34
TESTBITCC, 4-34
TESTBITCCI, 4-34
TESTBITCS, 4-34
TESTBITSC, 4-34
TESTBITSS, 4-34
TESTBITSSI, 4-34
XFC, 4-35

optimization, 4-4
register name parameters, 4-1
table of, 4-2
treatment during FLOW analysis,

7-4
use of registers, 4-5

/MACHINE CODE LIST, 1-14
Macros, 5-5, 6-3

conditional compilation, 6-5
Mark points, 7-5
MATCHC, 4-25
MFPR, 4-25
Miscellaneous functions, 4-23
Missing code, 5-5
Modularization, 6-3

Module, 6-3
Module switches, 6-6
Module template, C-1
MODULE.BL!, C-1
MOVC3, 4-25
MOVC5, 4-26
MOVP, 4-26
MOVPSL, 4-26
MOVTC, 4-27
MOVTUC, 4-27
MTPR, 4-27
MULD, 4-28
MULF, 4-28
MULG I 4-28
MULH, 4-29

-N-

Name binding, 7-7
Name, defined value, 6-17
Nontransportable attributes, 6-13
NOP, 4-29
NOSAFE, effect of, 7-5
Number-of-lines, 1-13
Numeric literals, 6-5

-0-

/OBJECT, 1-6
Object part of output, 2-7
Object-file, 3-1
Offset addressing, 6-21
Operating procedures

compiling, 1-1
debugging, 3-2
linking, 3-1
program execution, 3-2

Operators, arithmetic expression,
3-4

Optimization
missing code, 5-5
of code stream, 7-8
of machine-specific functions,

4-4
switches, 7-1

/OPTIMIZE I 1-11
effect of, 7-6
effect of /OPTLEVEL value, 7-8
effect of NOSAFE value, 7-5

Optimize qualifier, 1-11
/OPTLEVEL, effect of, 7-8
OUTPUT, 7-8
Output file production, 7-8
Output listing

complete listing, F-1
examples, 2-16

object part, 2-8
source part, 2-6

fields, 2-7
listing header format, 2-4
object part, 2-7
preface format (table), 2-5

Index-4

INDEX

Output listing (Cont.)
segments, 2-3
source part, 2-4

Output qualifier, 1-6
Output, on terminal, 2-2

-P-

Packed data initialization, 6-25
PAGE SIZE:lines, 1-13
Parameter validation functions,

4-29
Parameterization, 6-1, 6-26
Parentheses, 5-4
PIC code generation, 5-6
PLIT, 6-19
Pointer in error message, 2-22
Predeclared literals, 5-2, 6-4
Preface string, 2-5
Preface string format, 2-5
PRETTY, 8-6

breaking lines, 8-10
command line format, 8-6
command semantics, 8-6
comments, 8-10
formatting options, 8-7
hints on use, 8-10
macros, 8-12
PLITs, 8-12

PROBER, 4-29
PROBEW, 4-30
Processor register functions,

4-27
Program execution, 3-2
Program status functions, 4-26
Programming considerations, 5-1

centralized common declarations,
5-1

compilation costs, 5-1, 5-2
efficiency of library files,

5-1
symbol tables, 5-1

-Q-

Qualifiers, 1-5
abb~eviations, A-3
/CODE, 1-8
correspondence to switch names,

1-16
/DEBUG, 1-8
default summary, A-3
defaults, 1-16
/LIBRARY, 1-6
/LIST, 1-6
/MACHINE CODE LIST, 1-14
/OBJECT,-1-6 -
/OPTIMIZE, 1-11
positive and negative, 1-17
/SOURCE LIST, 1-13
/TERMINAL, 1-9
/TRACEBACK, 1-8

Qualifiers (Cont.)
used for debugging, 3-14
/VARIANT, 1.:...8

Queue functions, 4-24
QUICK, 1-11
Quoted strings,·6~18

used as character strings, 6-19
used as numeric values, 6-18

-R-

Record Management Services, 8-lS
Register names

as mach-spec-func parameters,
4-1

Relational ~pera~ors, 6-16
REMQHI, 4-30
REMQTI, 4-30
REMQUE, 4-31
REQUIRE

example listing, 2~17
vs. LIBRARY, 5-2

REQUIRE declaration
files invoked by, 5-2

REQUIRE files, 6-3, 6-9
search rules, 6-10

Reserved names, 6-8
RMS-32, 8-15
ROT, 4-31
Routines, 6-11

computed calls, 5~4

-s-

SAFE, 1-11
Sample program, 8-14
Scalar PLIT ite~s~ 6~20·
SCANC, 4-31
Scope of names, 3-13
Search rules, 6-10
Segments of output listing, 2~3
Semicolon

used as expression terminator,
5-4

used as ~ark point, 7-6
Sign extension rules

consistent us~ of, 5-5
Simplicity, 6-3
SKPC, 4-32
SOURCE, 1-13
Source part of output, 2-4
Source reformatte~, a.:...6
Source-line debugglng~ 3-13
Source-list qualifier~ 1-13
/SOURCE LIST, 1-13
SPACE, T-11
SPANC, 4-32
Special characters

in address expressions, 3-5
SPEED, 1-11
STATISTICS, 1-10
String functions, 4-27

Index-5

INDEX

String literal in PLITs, 6-20
String literals~ 6-5
Strings (character sequences) ,

6-18
Structure references, 3-10

for REF data segments, 3~12
Structures, 6-29
SUBD, 4-32
SUBF, 4-33
SUBG, 4-33
SUBH, 4-33
SUBM, 4-34
Summaries

abbreviations, A-3
command syntax, A-1
compilation, 2-2, 2-17
debugger commands, 3-15
implementation limits, D-1
machine-specific functions, 4-2
qualifier defaults, A-3
qualifier vs. switch names,

1-16
switch effects, 7-8
user coding errors, 5-3

Switches
LANGUAGE, 6-6
module, 6-6
NOSAFE, effect of, 7-5
/OPTIMIZE, effect of, 7-6
/OPTLEVEL, effect of, 7-8
/ZIP1 effect of, 7-7

SWITCHES declaration, 5-2, 7-1
Symbol table, 5-1

entries for declarations, 7-2
SYMBOLIC, 1-15
Symbols

command-line continuation (-),
3-15

contents operator, 3-6
contents operator {.), 3-4, 3-7
current location (.), 3-6
current location contents (••),

3-6
debug indirect command file (@),

3-15
fetch operator (.), 3-6
indirect operator, 3-6
indirect operator (not@), 3-4
last value displayed (\), 3-7
previous location (A), 3-4, 3-6
range operator (:), 3-7

Symbols, as delimiters, 1-3
Syntactic analysis, 7-2
Syntax, command-line, 1-2
System services, 8-13

-T-

Tables
address representation

characters, 3-6

Tables (Cont.)
arithmetic expression operators,

3-5
correspondence between

qualifier
and switch names, 1-16

machine-specific functions, 4-2
source listing preface format,

2-5
/TERMINAL, 1-9
Terminal output, 2-2
Terminal qualifier, 1-9
TESTBITCC, 4-34
TESTBITCCI, 4-34
TESTBITCS, 4-34
TESTBITSC, 4-34
TESTBITSS, 4-34
TESTBITSSI, 4-34
TNBIND, 7-7
Tools

BLSCRF, 8-4
PRETTY, 8-6
transportability, 6-4
TUTIO, 8-12
XPORT, 8-1

TRACE MACROS, 1-13
example, 2-17

/TRACEBACK, 1-8
Transportability

key to, 6-11
techniques, 6-11
tools, 6-4

Transportability guidelines, 6-1
address calculation, 6-15
allocation attribute, 6-13
attributes, 6-13
character sequences, 6-19
checking, 6-7
control'~xpressions, 6-17
declarations, 6-14
field selectors, 6-33
isolation, 6-2
literals, 6-4
modularization, 6-3
module switches, 6-6
relational operators, 6-17
REQUIRE and LIBRARY files, 6-9
reserved names, 6-8
simplicity, 6-3
string literals, 6-18
string literals in PLITs, 6-22
strings, 6-19

Transportable
control expressions, 6-17
declarations, 6-13
expressions, 6-15
structures, 6-16, 6-29

Transportable tools, 8-1
TUTIO, 8-12
Tutorial terminal I/O package,

8-12

Index-6

-u-
UNIQUE NAMES, 1-15
UPLIT,-6-19
%UPVAL, 6-4, 6-15, 6-21

-v-
Values

abbreviations, A-3
changing of, 7-3
code

ASSEMBLER, 1-15, 2-7
BINARY, 1-15, 2-7
COMMENTARY, 1-15
NOASSEMBLER, 2-7
NOCOMMENTARY, 2-7
SYMBOLIC, 1-15
UNIQUE NAMES, 1-15

optimize_
LEVEL, 1-11
QUICK, 1-11
SAFE, 1-11
SPACE, 1-11
SPEED, 1-11

source

INDEX

Values (Cont.)

EXPAND MACROS, 1-13
HEADER-; 1-13
LIBRARY, 1-13
PAGE SIZE:lines, 1-13
SOURCE, 1-13
TRACE MACROS, 1-13

terminal
ERRORS, 1-10
STATISTICS, 1-10

/VARIANT, 1-8
VAX/VMS interfaces, 8-17
VAX/VMS System Services, 8-13

-w-

Weak attribute, 6-14

-x-
XFC, 4-35
XPORT, 8-1

-z-

/ZIP, effect of, 7-7

Index-7

READER'S COMMENTS

VAX-11 BLISS-32
User's Guide

AA-H322C-TE

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company's discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did youfind this manual understandable, usable, and well organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

D Assembly language programmer
D Higher-level language programmer
D Occasional programmer (experienced)
D User with little programming experience
D Student programmer
D Other (please specify)

Organization

Street

State ______ Zip Code -----­
or Country

Do Not Tear- Fold Here and Tape - - - - - - - - - -

mnmnomn 111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03061

·. ·"·

- - Do Not Tear - Fold Here - - - - -

No Postage
Necessary

if Mailed in the
United States

