
Programming with VAX BASIC Graphics
Order Number: Al-HY 14A-TE

This manual provides tutorial and reference material for VAX BASIC graphics.

Operating System and Version: VAX/VMS Version 4.5 or higher;
MicroVMS Version 4.5 or higher

Software Version:

digital equipment corporation
maynard, massachusetts

VAX BASIC Version 3.0;
VAX GKS Version 2.0

August 1986

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip­
ment that is not supplied by Digital Equipment Corporation or its affiliated
companies.

Copyright © 1986 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this doc­
ument requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS Edu System VAX
DEC/MMS IAS VAXcluster
DECnet MASS BUS VMS
DECsystem-IO PDP VT
DECSYSTEM-20 PDT
DECUS RSTS

~U~DD~D DECwriter RSX

ZK-2798

This document was prepared using an in-house documentation production
system. All page composition and make-up was performed by T~. the
typesetting system developed by Donald E. Knuth at Stanford University. TEX
is a trademark of the American Mathematical Society.

intents

PREFACE xv

SUMMARY OF NEW AND CHANGED FEATURES FOR VERSION 3.0 xix

~PTER 1 INTRODUCTION TO VAX BASIC GRAPHICS 1-1

1.1 OVERVIEW 1-1

1.2 BEFORE YOU BEGIN 1-2

1.3 VAX BASIC GRAPHICS STATEMENTS 1-3
1.3.1 Output Statements 1-5
1.3.2 Attribute Statements 1-6
1.3.3 Picture Statements 1-8
1.3.4 Input Statements 1-10
1.3.5 ASK Statements 1-10
1.3.6 Coordinate Statements 1-11
1.3.7 Control Statements 1-12

1.4 USING VAX BASIC DEFAULTS 1-12

1.5 PROGRAM DEVELOPMENT OPTIONS 1-14

1.6 GRAPHICS STANDARDS 1-14

iii

CHAPTER 2 DISPLAYING GRAPHICS OBJECTS

2.1 THE DEFAULT DRAWING BOARD

2.2 DISPLAYING POINTS

2.3 DISPLAYING LINES

2.4 CONTROLLING THE BEAM OF LIGHT

2.5 DISPLAYING AREAS

2.6 DISPLAYING TEXT

2.7 SUPPLYING COORDINATES IN ARRAYS

2.8 GRAPHICS SUBPROGRAMS

2.9 SUMMARY

CHAPTER 3 CHANGING THE APPEARANCE OF GRAPHICS OBJECTS

3.1 GRAPHICS ATTRIBUTES

3.2 SETTING THE COLOR
3.2.1 Changing the Color Index
3.2.2 Changing the Color Intensities
3.2.3 Asking About Color Attributes

3.3 SETTING POINT ATTRIBUTES
3.3.1 Changing the Point Style
3.3.2 Changing the Point Size
3.3.3 Asking About Point Attributes

iv

.

3.4 SETTING LINE ATTRIBUTES
3.4.1 Changing the line Style
3.4.2 Changing the line Width
3.4.3 Asking About Line Attributes

3.5 SETTING AREA ATTRIBUTES
3.5.1 Changing the Fill Style
3.5.2 Changing Pattern and Hatch Styles
3.5.3 Asking About Area Attributes

3.6 SUMMARY

,PTER 4 CHANGING TEXT ATTRIBUTES

4.1 SELECTING A FONT

4.2 SETTING THE CHARACTER HEIGHT

4.3 SETTING THE CHARACTER HEIGHT-TO-WIDTH RATIO

4.4 SETTING THE SPACING BETWEEN CHARACTERS

4.5 SETTING THE TEXT ANGLE

4.6 SETTING THE TEXT PATH

4.7 SETTING THE TEXT JUSTIFICATION

4.8 ASKING ABOUT TEXT DIMENSIONS

4.9 SUMMARY

3-17
3-18
3-19
3-22

3-23
3-24
3-25
3-29

3-30

4-1

4-1

4-6

4-8

4-9

4-11

4-13

4-15

4-20

4-22

v

CHAPTER 5 THE DRAWING SURFACE

5.1 SETIING THE WORLD WINDOW

5.2 DEFINING A TRANSFORMATION

5.3 SETIING THE WORLD VIEWPORT

5.4 MULTIPLE TRANSFORMATIONS

5.5 CLIPPING THE IMAGE

5.6 SUMMARY

CHAPTER 6 CREATING COMPLEX IMAGES

6.1 PICTURES
6.1.1 Simple Pictures
6.1 .2 Pictures Within Pictures
6.1.3 Recursive Pictures

6.2 INVOKING PICTURES WITH TRANSFORMATION FUNCTIONS
6.2.1 Shifting Pictures
6.2.2 Scaling Pictures
6.2.3 Rotating Pictures
6.2.4 Shearing Pictures
6.2.5 Combining Transformations

6.3 DEFINING YOUR OWN TRANSFORMATION MATRICES

6.4 SUMMARY

vi

E
E
E
E
E
6

6

6

PTER 7 GRAPHICS INPUT

7.1

7.2

7.3

7.4

7.5

7.6

7.7

INPUT TYPES
7 .1 .1 CHOICE Input
7 .1 .2 POINT Input
7 .1 .3 MUL Tl POINT Input
7.1.4 STRING Input
7.1.5 VALUE Input

CHOICE INPUT
7 .2.1 Setting the Initial Choice
7 .2.2 Accepting CHOICE Input

POINT AND MULTIPOINT INPUT
7.3.1 Accepting Points with the Default Transformation
7 .3.2 Accepting Points with Multiple Transformations

Defined
7 .3.2. 1 Accepting Points That Map to One Valid

Viewport • 7-14
7 .3.2.2 Accepting Points That Map to Overlapping

Viewports • 7-1 7
7 .3.3 Changing the Input Priority
7 .3.4 Setting the Initial Point
7.3.5 Setting an Initial Series of Points
7.3.6 Accepting Points Within Pictures

STRING INPUT
7.4.1 Accepting STRING Input
7 .4.2 Setting the Initial String

VALUE INPUT
7.5.1 Accepting VALUE Input
7 .5.2 Setting the Initial Value

CHANGING ECHO AREAS

SUMMARY

7-1

7-2
7-2
7-3
7-4
7-4
7-4

7-6
7-6
7-9

7-12
7-12

7-14

7-21
7-22
7-23
7-25

7-31
7-31
7-33

7-34
7-34
7-34

7-36

7-37

vii

CHAPTER 8 ADVANCED GRAPHICS PROGRAMMING TECHNIQUES

8.1 USING ALTERNATE OR MULTIPLE DEVICES
8.1 .1 The Device Identification Clause
8.1.2 Supported Device Types
8.1.3 Controlling Devices

8.2 METAFILES
8.2.1 Creating Metafiles
8.2.2 Displaying the Contents of a Metafile

8.3 DETERMINING DEVICE CAPABILITIES

8.4 DEVICE TRANSFORMATIONS

8.5 SUMMARY

REFERENCE SECTION

CHAPTER 9 VAX BASIC GRAPHICS STATEMENTS
ACTIVATE DEVICE 9-4

ASK AREA COLOR 9-6

ASK AREA STYLE 9-8

ASK AREA STYLE INDEX 9-10

ASK CHOICE ECHO AREA 9-12

ASK CLIP 9-14

ASK COLOR MIX 9-16

ASK DEVICE SIZE 9-18

ASK DEVICE TYPE 9-20

ASK DEVICE VIEWPORT 9-22

ASK DEVICE WINDOW 9-24

ASK LINE COLOR 9-26

viii

ASK LINE STYLE 9-28

ASK MAX COLOR 9-30

ASK MAX LINE SIZE 9-32

ASK MAX POINT SIZE 9-34

ASK POINT COLOR 9-36

ASK POI NT STYLE 9-38

ASK STRING ECHO AREA 9-40

ASK TEXT ANGLE 9-42

ASK TEXT COLOR 9-44

ASK TEXT EXPAND 9-46

ASK TEXT EXTENT 9-48

ASK TEXT FONT 9-51

ASK TEXT HEIGHT 9-53

ASK TEXT JUSTIFY 9-55

ASK TEXT PATH 9-57

ASK TEXT POINT 9-59

ASK TEXT SPACE 9-62

ASK TRANSFORMATION 9-64

ASK TRANSFORMATION LIST 9-66

ASK VALUE ECHO AREA 9-68

ASK VIEWPORT 9-70

ASK WINDOW 9-72

CLEAR 9-74

CLOSE DEVICE 9-76

DEACTIVATE DEVICE 9-78

DRAW 9-80

END PICTURE 9-91

EXIT PICTURE 9-92

GET POINT 9-93

GRAPH 9-96

GRAPH METAFILE 9-99

GRAPH TEXT 9-101

LOCATE CHOICE 9-104

ix

LOCATE POINT 9-107

LOCATE STRING 9-110

LOCATE VALUE 9-112

MAT GET POINTS 9-115

MAT GRAPH 9-120

MAT LOCATE POINTS 9-123

MAT PLOT 9-126

OPEN ... FOR GRAPHICS 9-129

PICTURE 9-133

PLOT 9-137

RESTORE GRAPHICS 9-140

ROTATE 9-142

SCALE 9-144

SET AREA COLOR 9-146

SET AREA STYLE 9-149

SET AREA STYLE INDEX 9-152

SET CHOICE ECHO AREA 9-154

SET CLIP 9-157

SET COLOR MIX 9-161

SET DEVICE VIEWPORT 9-164

SET DEVICE WINDOW 9-167

SET INITIAL CHOICE 9-170

SET INITIAL MULTIPOINT 9-174

SET INITIAL POINT 9-177

SET INITIAL STRING 9-179

SET INITIAL VALUE 9-182

SET INPUT PRIORITY 9-185

SET LINE COLOR 9-187

SET LINE SIZE 9-189

SET LINE STYLE 9-191

SET POI NT COLOR 9-193

SET POINT SIZE 9-196

SET POI NT STYLE 9-198

x

SET STRING ECHO AREA

SET TEXT ANGLE

SET TEXT COLOR

SET TEXT EXPAND

SET TEXT FONT

SET TEXT HEIGHT

SET TEXT JUSTIFY

SET TEXT PATH

SET TEXT SPACE

SET TRANSFORMATION

SET VALUE ECHO AREA

SET VIEWPORT

SET WINDOW

SHEAR

SHIFT

TRANSFORM

•ENDIX A CALLING VAX GKS DIRECTLY

A.1 INTRODUCTION

A.2 DECLARING VAX GKS ROUTINES

A.3 USEFUL VAX GKS ROUTINES
A.3.1 Changing the Echo Type
A.3.2 Using VAX GKS Cell Arrays
A.3.3 Accessing Attribute Bundles

9-200

9-203

9-205

9-208

9-210

9-213

9-215

9-218

9-220

9-222

9-224

9-226

9-229

9-231

9;.233

9-235

A-i

A-1

A-3

A-5
A-5
A-7
A-9

xi

APPENDIX B DEVICE SPECIFICATIONS

8.1 VT125 AND VT240 TERMINALS
8.1.1 Device Types
8.1.2 Text Fonts
8.1.3 Pattern Values
8.1.4 Hatch Values
8.1.5 Device Coordinates
8.1.6 Input Constructs

8.1.6.1 POINT Input • 8-4
8.1.6.2 MULTIPOINT Input • 8-4
8.1.6.3 CHOICE Input • 8-5
8.1.6.4 STRING Input• 8-5
8.1.6.5 VALUE Input • 8-6

8.1.7 Color Index Values

B.2 VAXSTATIONS
B.2.1 Device Types
B.2.2 Windowing Capabilities
B.2.3 Text Fonts
B.2.4 Pattern Values 13
B.2.5 Hatch Values 13
B.2.6 Device Coordinates 13
B.2.7 Input Constructs 13

8.2.7.1 POINT Input • 8-18
8.2.7.2 MULTIPOINT Input • 8-18
8.2.7.3 CHOICE Input • 8-18
8.2.7.4 STRING Input • 8-19
8.2.7.5 VALUE Input • 8-19

B.2.8 Color Index Values B

B.3 COLOR INTENSITIES B

xii

:x

IRES

1-1 Building Blocks of VAX BASIC Graphics 1-2

2-1 The Default Drawing Board on a VT125 Terminal 2-2

4-1 VAX BASIC Software Fonts 4-2

5-1 Transformations Let You Display Images on Many Supported
Devices 5-9

5-2 Creating a Composite Image 5-10

5-3 The Transformation of an Image Through NOC Space 5-11

5-4 Defining an Image in a World Window 5-12

5-5 Projecting an Image onto a World Viewport 5-13

6-1 Matrices for VAX BASIC Transformation Functions 6-31

7-1 Types of Graphics Input 7-2

7-2 The Default CHOICE Prompt on a VT240 7-3

7-3 The Default VALUE Prompt on a VT240 7-5

7-4 An Input Point is Mapped to the Underlying Viewport 7-15

7-5 Interpreting POINT Input When Viewports Overlap 7-19

7-6 Interpreting MULTIPOINT Input When Viewports Overlap 7-20

8-1 Normalization and Device Transformations 8-15

8-2 The Device Window in NOC Space 8-16

8-3 The Device Window Is Projected onto the Device Viewport 8-17

B-1 VAXstation Font Number 1 B-8

B-2 VAXstation Font Number -1 B-9

B-3 V AXstation Font Number -2 B-10

B-4 V AXstation Font Number -3 B-11

B-5 Intensity Values for VT125 and VT240 Terminals and
V AXstations B-22

xiii

TABLES

xiv

1-1 Categories of VAX BASIC Graphics Statements

3-1 Graphics Objects and Their Attributes

3-2

3-3

3-4
3-5

4-1

4-2

9-1

Default Colors for VT125 and VT240 Color Terminals

Point Styles

Line Styles

VT125 and VT240 Pattern and Hatch Style Index Values

Normal Text Alignment

Text Justification Values

Supported Device Types

, ..

,. ..
4

4

9-

eface

1nded Audience

This manual provides both tutorial and reference material on the graphics
capabilities of VAX BASIC. Readers are presumed to be familiar with VAX
BASIC programming techniques; however, no prior knowledge of graphics
programming is required. This manual should be used with the other two
manuals in the documentation set.

•ociated Documents

This manual is one of three manuals that form the VAX BASIC document
set. The other two manuals are

VAX BASIC Reference Manual

VAX BASIC User Manual

Provides reference material and syntax for
all VAX BASIC language elements except
graphics capabilities

Provides tutorial material for VAX BASIC
language constructs and information
pertaining to programming with VAX
BASIC on VAX/VMS systems

You may also be interested in the following supplementary manuals:

• VAX BASIC Syntax Summary

• Introduction to BASIC

• BASIC for Beginners
• More BASIC for Beginners

xv

Structure of This Document

xvi

This manual has nine chapters and two appendixes.

The first eight chapters explain how to use the graphics capabilities oj
VAX BASIC. The remaining chapter consists of alphabetically arrange<
reference descriptions of each VAX BASIC graphics statement.

Programmers who have little or no experience using graphics should b
with Chapter 1 and proceed with the chapters in sequence. Experienci
graphics programmers may prefer to use the reference section (Chapte
9) and the chapters concerned with more advanced graphics technique
(Chapters 6 through 8).

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Appendix A

Appendix B

Introduces you to VAX BASIC Graphics and the main
categories of graphics statements

Shows you how to put some simple graphics objects on y
screen

Shows you how to change the appearance of objects

Explains how to change text attributes

Explains the coordinate systems

Describes how to create complex images

Describes various ways of providing input for graphics

Explains how to use multiple devices and device transfom
tions

Lists the rules and syntax for all VAX BASIC graphics
statements

Describes how to call VAX GKS directly

Provides device-specific information

inventions Used in This Document

Convention

$ ASSIGN

UPPERCASE letters

lowercase letters

Meaning

In command-line examples, the user's response to
a prompt is printed in red; system prompts are
printed in black.

A vertical ellipsis indicates that code which would
normally be present is not shown.

Uppercase letters are used for VAX BASIC
keywords and must be coded exactly as shown.

Lowercase letters are used to indicate user­
supplied names or characters.

Conventions used in the syntax diagrams in Chapter 9 are listed at the
start of that chapter.

xvii

ummary of New and Changed Feat~res
1r Version 3.0

Version 3.0 of VAX BASIC includes extensive graphics capabilities, struc­
tured error handling techniques, enhancements to file I/O and other new
features. All of these features are documented in the VAX BASIC Reference
Manual and the VAX BASIC User Manual except for the graphics features,
which are documented in this manual. This section summarizes all of the
major changes for this release.

Graphics Capabilities

VAX BASIC supports extensive graphics capabilities based on VAX GKS.
The new graphics capabilities are available to you if you have the full or
run-time VAX GKS kit installed on your system (Version 2.0 or later) and
if you use supported graphics hardware. The main features of VAX BASIC
graphics are as follows:

• A short learning period

• Convenient default values for attributes

• Statements consisting of English words in simple constructs

• Window and viewport settings that are easy to alter

• Graphics subprograms that can be invoked with a variety of transfor-
mation functions

• Input statements for interactive graphics programs
• Programs that can run on multiple devices

• Programs that run on any hardware supported by VAX GKS

Structured Error Handling

VAX BASIC supports structured error handling with WHEN ERROR
constructs. When an error occurs during execution of statements in a
protected block of code, the error is handled by the associated attached or

xix

Summary of New and Changed Features for Version 3.0

xx

detached handler. The following new statements and functions enhanc
error-handling capabilities:

• WHEN ERROR

• RETRY

• CONTINUE
• HANDLER, EXIT HANDLER, and END HANDLER

• OPTION HANDLE

• CAUSE ERROR

• RMSSTATUS and VMSSTATUS

Although the new WHEN ERROR constructs are the preferred method
for error handling, ON ERROR statements are supported for compatibili
with previous versions of BASIC.

Optional Line Numbers

Line numbers are no longer required in VAX BASIC programs. A VAX
BASIC program can have no line numbers at all, or it can use the tradi­
tional line-numbered statements; both are valid. A program with a line
number on the first nonblank line is treated as a line-numbered prograr
by the compiler. In the BASIC environment, programs with no line nun
bers must be created with a text editor or copied into the environment
with the OLD command.

Array Bounds

You can now specify the lower bound for any or all dimensions of non­
virtual arrays. Previously, VAX BASIC arrays could only be zero-based.
In addition, two new functions, LBOUND and UBOUND, allow you to
retrieve the lower and upper bounds of array dimensions-.

Improvements for Procedure Invocations

This version of VAX BASIC includes additional flexibility for procedure
invocations:

• If an external function is called as a procedure, VAX BASIC perform
parameter validation exactly as if the declared function had been
invoked as a function.

• The new keywords ANY and OPTIONAL ease parameter passing tc
non-BASIC routines.

Summary of New.and Changed Features for Version 3.0

• Additional functionality has been added to the LOC function so that
the address of an external function can be accessed.

PRINT USING Format Strings

Constant PRINT USING format strings are precompiled at compile time.
Significant run-time performance gains can be achieved by recompiling
programs that use constant format strings.

Single Keystroke Input

The new function INKEY$ allows you to detect a single keystroke typed at
a terminal. Function and keypad keys return a descriptive text string, for
example, "Fl 7", and control characters return a single ASCII code.

1/0 Enhancements

The following features have been added to enhance I/O capabilities:

• STREAM files are accessible with the OPEN statement.

• A WAIT clause can be added to the GET and FIND statements. This
clause instructs VAX BASIC to wait on locked records rather than
immediately returning the error RECBUCLOC (ERR= 154).

• The new keywords NX (next) and NXEQ (next or equal to) are syn­
onyms for GT and GE respectively. These keywords make the GET
and FIND statements more meaningful if an indexed file is accessed
with descending keys.

Miscellaneous Features

• The new PROGRAM statement allows you to optionally name a main
program unit. This name becomes the module name of the compiled
source.

• You can return a procedure value or the status of an image upon
exiting with the following statements:

END /EXIT PROGRAM

- END/EXIT FUNCTION
- END /EXIT DEF

• By default, VAX BASIC calls VAX EDT from the environment. The
user or the system manager can select callable VAX EDT, the VAX
Text Processing Utility (VAXTPU), or the VAX Language Sensitive
Editor as the default editor. Start-up time for editing files within
the environment is shorter as it is no longer necessary to spawn a
subprocess to access editors that are callable.

xxi

Summary of New and Changed Features for Version 3.0

xx ii

• System managers can prevent users escaping to DCL level from the
environment by setting the user's subprocess limit (PRCLM) to zero.
A subprocess limit of 1 was previously required so that a user could
use an editor within the environment.

• New extensions to the OPTION statement include the following:

OPTION ANGLE = degrees-or-radians
OPTION HANDLE = severity-level
OPTION CONSTANT TYPE = data-type
OPTION OLD VERSION = COD

• The MID$ function can now be on the left side of an assignment
statement. This feature allows partial string replacement.

• VAX BASIC statements, compiler directives, labels, and comment line
can now start in column 1.

• You can include files from a text library with the %INCLUDE
directive.

• The suffixes $ (for strings) and % (for integers) are allowed on explk
itly declared variables and constants.

• Extensions to the REMAP and MAP DYNAMIC statements allow yot
to redefine the storage allocated to a previously declared static string
variable.

• New functions MAX and MIN are provided for the comparison of a
series of arguments.

• The new MOD function divides one numeric argument by another
and returns the remainder.

• The new compiler directive %PRINT allows you to print a message
during the compilation of a source program without aborting the
compilation.

• The new lexical directive %DECLARED allows you to determine
whether or not a lexical variable has been declared.

Chapter 1

Introduction to VAX BASIC Graphics

VAX BASIC graphics statements have been designed so that you can create
and manipulate pictures and incorporate graphics into your applications
programs .

. 1 Overview

With VAX BASIC graphics statements you can:

• Draw lines and geometric shapes

• Display points with various markers

• Display text in various fonts and sizes

• Fill a defined area with various patterns

• Alter window sizes

• Accept input interactively

• Create graphs and designs

• Create complex images with graphics subprograms

These graphics are applicable over a wide range of conventional graphics
hardware. A VAX BASIC program containing graphics statements can be
run on any system running VAX/VMS Version 4.5 or higher that has VAX
GKS Version 2.0 or higher installed.

VAX GKS provides extensive two-dimensional graphics capabilities; VAX
BASIC provides an interface between your program and VAX GKS. The
building blocks of this interface are illustrated in Figure 1-1. Single
language statements allow you to easily access the capabilities of VAX
GKS from within a VAX BASIC program.

Introduction to VAX BASIC Graphics 1-1

Figure 1-1 : Building Blocks of VAX BASIC Graphics

DISPLAY

USER PROGRAM

VAX BASIC

VAX GKS

VAX/VMS

ZK-4768-85

1.2 Before You Begin

The examples in this manual will run on any hardware supported by
VAX GKS (although some examples may require changes for a particula1
terminal). Devices supported by VAX GKS include VT125 and VT240
terminals, both monochrome and color, and VAXstations I, II, and II/GP
Each of these devices has a designated number that VAX GKS recognize!
and associates with the actual device.

Before writing VAX BASIC graphics programs, you should inform VAX
GKS of your terminal type by assigning the designated number for your
device to the logical name GKS$WSTYPE. You do this with the DCL
command ASSIGN. The following command informs VAX GKS that you
are using a VT240 terminal with color capabilities (device type 13).

$ ASSIGN 13 GKS$WSTYPE

1-2 Introduction to VAX BASIC Graphics

If you do not assign the appropriate value to GKS$WSTYPE, VAX BASIC
uses the system default device type (if one has been assigned). To find
out which device type has been assigned to GKS$WSTYPE, enter the
following command:

$ SHOW LOGICAL GKS$WSTYPE

If no translation is available for GKS$WSTYPE, VAX BASIC assumes
that you have a monochrome VT240 (device type 14). A complete list
of supported devices is provided in Chapter 9 under the OPEN ... FOR
GRAPHICS statement. Once you have established your terminal type,
you should assign this value to the logical name GKS$WSTYPE in your
login command procedure.

The quality of the generated image varies according to the display device
that you use. The larger the number of pixels, the higher the resolution of
the graphics image. Similarly, the quality of color in the images produced
by VAX BASIC graphics programs is limited by the quality of the display
device you use .

. 3 VAX BASIC Graphics Statements

VAX BASIC graphics statements consist of English words (such as SET,
ASK, and PLOT) in simple constructs. The statements are therefore easy
to remember and comprehend. For example, the following statement
accepts the coordinates of a single point from the keyboard:

LOCATE POINT x,y

The following statement increases the height of the text to a value of 0.05:

SET TEXT HEIGHT 0.06

VAX BASIC graphics statements can be grouped into the seven main
categories listed in Table 1-1.

Introduction to VAX BASIC Graphics 1-3

Table 1-1: Categories of VAX BASIC Graphics Statements
Statement Category

Output statements

Attribute statements

Picture statements

Input statements

ASK statements

Coordinate statements

Control statements

Purpose

Draw graphics images such as points, lines, an
areas, and also write text.

Specify the exact appearance of a graphics
object, for example, the style, size, thickness,
and color of a line.

Define an output display in a fashion similar
to VAX BASIC subprograms. When drawn,
pictures can be shifted, scaled, sheared, and
rotated.

Accept input from various hardware devices
such as a mouse or a keyboard.

Retrieve the current value of an attribute. The
current value is assigned to a variable you
supply.

Provide you with a means of expressing the
relative position of an object and how much
of a display should be shown, and allow you
to limit the display to a particular area on the
display surface. These statements ultimately
affect the visible output on the display screen.

Manage the opening and closing of VAX GKS,
the initialization and selection of devices, and
the clearing of display surfaces.

A typical VAX BASIC graphics program includes statements from several
of these groups. The following sections provide more information on ead
group of statements.

1-4 Introduction to VAX BASIC Graphics

.3.1 Output State•ents

VAX BASIC provides several statements for drawing objects, including
GRAPH POINTS, GRAPH LINES, GRAPH AREA, and GRAPH TEXT.
You must supply VAX BASIC with information about where to place
graphics objects on the display surface. You can do this with a simple
coordinate system. For details about coordinate systems, see Section 1.3.6
and Chapter 5.

You separate the coordinates of a single point with a comma. Pairs of
coordinates must be separated by a semicolon. Note that you cannot use
parentheses to enclose the coordinates of a point as is customary in other
representations of points; VAX BASIC signals an error if you do so.

The following statement marks a single point x, y with an asterisk on the
display surface:

Example

GRAPH POINTS x,y

Output

*

ZK-4862-85

Introduction to VAX BASIC Graphics 1-5

The following GRAPH statement draws a line from the first to the secorn
point, the second to the third point, and so on to complete a square:

Example

GRAPH LINES 0,0; 0,0.6; 0.6,0.6; 0.6,0; 0,0

Output

ZK-4861-85

PLOT statements provide additional capabilities for output. Chapters 2
and 6 discuss how to use the GRAPH and PLOT statements.

1.3.2 Attribute Statements

A graphics object has several attributes. For example, style, size, thickness
and color are all attributes of a line. Each attribute has an initial default
value; for instance, the style of a line is solid at the start of program
execution. You can change the default style to produce a line of dots or
dashes. Unless you explicitly change specific attributes, graphics objects
are displayed with the default values.

The SET statement allows you to assign the attributes of your choice to
a graphics object from within a program. For instance, in the previous
GRAPH POINTS example, the point displayed on the screen is of the
default style, an asterisk. Instead of an asterisk, you can specify that a

1-6 Introduction to VAX BASIC Graphics

point be displayed with one of several alternative marker styles. In the
following example, the value 5 as an argument to the SET POINT STYLE
statement produces a diagonal cross as the marker for the point.

Example

SET POINT STYLE 6
GRAPH POINTS x,y

Output

v
/' · ...

ZK-4860-85

Similarly, you can change the text font so that characters are displayed
with a hardware font rather than the default software font. To do this,
you can include the following statement before drawing text:

SET TEXT FONT -1, "CHAR"

Chapters 3 and 4 describe the possible attributes for graphics objects and
explain how to select them.

Introduction to VAX BASIC Graphics 1-7

1.3.3 Picture Statements

A routine for drawing a particular image can be defined in a picture, a
graphics subprogram. You can subsequently draw the picture and alter
the original image by shifting, scaling, rotating, or shearing. Pictures can
also be drawn recursively. You invoke a graphics picture with the DRA"'
statement. In the following example a triangle is defined in a picture and
later invoked with the DRAW statement:

Example

PICTURE Triangle(SINGLE x,y)
!+
!Draw triangle with varying third point
!-
GRAPH LINES 0.3,0.7; 0.6,0.7; x,y; 0.3,0.7

END PICTURE

PROGRAM Triangle_demo
EXTERNAL PICTURE triangle(SINGLE,SINGLE)
!+
! Invoke the picture naming a third point
!
DRAW Triangle(0.4,0.2)
!+
! Invoke the picture with a different third point
!-
DRAW Triangle(0.1,0.2)

END PROGRAM

1-8 Introduction to VAX BASIC Graphics

Output

ZK-5405-86

Chapter 6 discusses graphics pictures; it explains parameter passing,
picture definitions, and how to make changes in the picture image.

Two libraries of pictures are included with your VAX BASIC kit:
a text library (BASIC$GRAPHICS. TLB) and an object library
(BASIC$GRAPHICS.OLB). These libraries contain useful routines
that you can use in your own programs. Both of these libraries
reside in SYS$SYSROOT:[SYSHLP.EXAMPLES.BASIC]. Files from
the object library can be linked with main programs; source files
from the text library can be included in your programs with the
%INCLUDE directive.

Introduction to VAX BASIC Graphics 1-9

1.3.4 Input Statements

VAX BASIC graphics programs accept data from an input device in a
fashion similar to the INPUT and MAT INPUT statements. However,
graphics data is accepted by the LOCATE and MAT LOCATE statements.
In addition to entering the data as characters on a keyboard, a user can
supply the data by positioning a mouse, by positioning a cursor on a
menu selection, or by other means.

SET statements allow you to set up the screen display presented to a
user. For instance, the following example shows how to set up a list of
menu choices to be presented to a user. A subsequent LOCATE CHOICE
statement displays the menu and accepts the user's selection.

Example

SET INITIAL CHOICE
, LIST ("view"

LOCATE CHOICE to_do

, "update"
,"delete"
, "quit")
: 1

Chapter 7 shows you how to use the graphics input statements.

1.3.5 ASK Statements

At any point in your program you can ask for the current value of an
attribute. You request the value with an ASK statement, and the value
returned is assigned to a variable you supply. The ASK statement re­
trieves the current value of the attribute, that is, the value that would
apply if an output statement were performed at that time. Values for
common attributes are provided in the appropriate chapters. The follow­
ing statements are examples of ASK statements. Note that in graphics
programs, floating-point variables should be declared as SINGLE, and
integers should be declared as LONG.

1-10 Introduction to VAX BASIC Graphics

Example

DECLARE LONG what_color,which_style,point_size,
SINGLE how_tall

ASK TEXT COLOR what_color
ASK TEXT HEIGHT how_tall
ASK LINE STYLE which_style
ASK POINT SIZE point_size

Within a program, you can ask for current attribute values, change the
attribute values, and later use the stored values to restore the previous
settings. The ASK statements are also useful for determining the par­
ticular capabilities of the devices that you use and adapting your pro­
grams accordingly. The ASK statements are described in various chapters
throughout the manual.

3.6 Coordinate Statements

You must supply VAX BASIC with information about where to place the
graphics object on the display surface. To supply this information in terms
of pixels on the screen would be tedious. Instead, you can supply the
information by using a simple coordinate system. You express a point
in terms of its relative position from specified x- and y-axes on your
display surface. This way, any point on your screen can be described by
a pair of coordinates. VAX BASIC transforms your coordinates into the
actual coordinates for a supported device automatically so that you do not
have to write various versions of your program to accurately position the
display on a specific output device.

VAX BASIC provides statements that allow you to manipulate the display
of a graphics object. You can select just a section of the screen for a
display, you can overlay one image with another, or you can build up one
large image from several smaller images. Chapters 5, 6, and 8 discuss how
to control the positioning of images on an output device.

Introduction to VAX BASIC Graphics 1-11

1.3. 7 Cantrol Statements

Control statements add flexibility to your programs. They allow you to
use an alternate output device, or even use several devices at one time.
Statements such as the following allow you to control when and where
display from your program is activated.

Example

OPEN "VT70:" FOR GRAPHICS AS DEVICE #2

CLOSE DEVICE #2

When VAX BASIC opens a device for graphics, the screen is automaticall
cleared.

Unless you plan to use a device other than the terminal at which you
enter the program, you need not be concerned with these statements.
Chapter 8 provides details on how to use control statements.

1.4 Using VAX BASIC Defaults

For most purposes, VAX BASIC provides you with useful default values.
If you are programming a display to appear on your current terminal, fo1
instance, you need not supply a device identification number; unless you
state otherwise, VAX BASIC assumes that you are referring to your curre1
device. Similarly, a square region of your screen is used as the default
area for your display unless you specify a different section as your outpu
area. It follows that you can keep your graphics programs simple when
you wish to.

The following example shows a simple graphics program that uses only
the default values. The program draws a box on the terminal screen and
then places text inside the box. The built-in VAX BASIC defaults are use1
for the style and thickness of the line, the text font and size, the device,
and the amount of the screen used for the display.

1-12 Introduction to VAX BASIC Graphics

Example

PROGRAM Sample
OPTION TYPE = EXPLICIT
DECLARE SINGLE CONSTANT x = 0.1

.y = 0.1
!+
! Connect four points to form box
!-
PLOT LINES x,y; x,y+0.2; x+0.66,y+0.2; x+0.66,y; x,y
!+
! Place the text in the box
!-
GRAPH TEXT AT x, y + 0.08 : "These words fit in the box"

END PROGRAM

Output

ZK-4859-85

When you do require values other than the defaults, you can change the
defaults by supplying the appropriate values with the SET statement.

Introduction to VAX BASIC Graphics 1-13

1.5 Program Development Options

As with other VAX BASIC programs, you can develop a graphics prograr
within the BASIC environment as well as directly at DCL level. Executabl
graphics statements can be run in immediate mode. Statements that
conflict with compiler commands (such as the SET statement) can be
entered in immediate mode provided that each statement is preceded wit
a backslash(\).

VAX BASIC graphics capabilities are fully integrated with the VAX/VMS
program development tools. For instance, the optional VAX Language­
Sensitive Editor includes extensive language definitions for VAX BASIC
graphics statements. Similarly, you can locate run-time errors in a VAX
BASIC graphics program with the VAX/VMS Debugger.

Error messages related to graphics are listed in the VAX BASIC User
Manual along with all other error messages for VAX BASIC.

1.6 Graphics Standards

The Graphical Kernel System (GKS) has been adopted as the Internationc
Standard by the International Organization for Standardization (ISO) and
the American standards body, ANSI. The main objective of GKS is to
create and manipulate graphics images independently of the computer or
device being used.

The VAX BASIC graphics package is based on DIGITAL's implementatior
of GKS on VAX/VMS systems, VAX GKS. Many VAX BASIC graphics
statements correspond directly to one or more of the VAX GKS routines
described in the VAX GKS documentation. The VAX BASIC graphics
statements provide many of the capabilities described in VAX GKS and,
therefore, many of the capabilities prescribed by the ISO.

1-14 Introduction to VAX BASIC Graphics

Chapter 2

Displaying Graphics Objects

This chapter shows you how to use the graphics statements GRAPH,
PLOT, MAT GRAPH, and MAT PLOT to display points, lines, areas, and
text on your screen.1

1 The Default Drawing Board

Before you can direct VAX BASIC to display a point on your terminal
screen, you have to consider where the point should be and how you
can specify that position. To specify the position of a point, you use a
coordinate system. The coordinate system you use to specify a point to
VAX BASIC is the Cartesian system; it consists of a two-dimensional
coordinate plane (referred to here as the def a ult drawing board).

The default drawing board is usually a square region of your terminal
screen, although this is dependent on the particular device you use. For
instance, if you have a VT125 or VT240 terminal, the default drawing
board fills the largest square region that it can, starting with the lower left
comer of the screen. Figure 2-1 illustrates the default drawing board.

1 On VAXstations, output is displayed on a new window and the output display disappears when the new
window is closed. There are various ways to keep the output display active; for instance, you can include
SLEEP statements in your programs.

Displaying Graphics Objects 2-1

Figure 2-1: The Default Drawing Board on a VT125 Termin,

Point 0.5, 0.3

s

0,0 X-axis 1,0

ZK483185

The coordinate system consists of two perpendicular axes with an origin
zero. The x-axis extends to infinity, increasing positively to the right anc
negatively to the left. The x-axis is the horizontal axis in the coordinate
plane: the default x-axis extends along a section of the base of your
screen. The y-axis also extends to infinity, but increases positively upwa1
and negatively downward. The y-axis is the vertical axis: the default
y-axis bounds your screen on the extreme left.

With Cartesian coordinates, you define the position of a point by its dis­
tance from the x- and y-axes. The x-coordinate of a point is the horizontc
distance from the vertical axis to the point. The y-coordinate of a point i~
the vertical distance from the horizontal axis to the point. When a point
specified, the coordinates are separated by a comma, for instance x,y.

NOTE

Coordinates of a single point must be separated by a comma.
Pairs of coordinates must be separated by a semicolon. You
cannot use parentheses to enclose the coordinates of a point
as is customary in other representations of points; VAX BASIC
signals an error if you do so. However, parentheses are allowed

2-2 Displaying Graphics Objects

when expressions are supplied as coordinate values. The
following examples show valid syntax for the coordinates for a
single point:

• 0.5,0.8

• x,y

• 0.1,(0.1 + y)

• 1/5,(2/7)

Distance is the abstract measurement of the length of each axis. For the
default drawing board, the distance is specified on a scale of 0 to 1. Each
axis begins at 0 at the bottom left comer of your screen and extends to 1
at the end of each axis. (Note that the axes actually extend to infinity; the
limits of 0 through 1 are imposed only for the default drawing board.) For
the default drawing board, the coordinate pair 0,0 specifies the point of
intersection between the two axes at the lower left comer of your screen.
The coordinate pair 0.5,0.5 specifies a point in the center of the drawing
board. Figure 2-1 illustrates the specifications for the point 0.5,0.3 on the
default drawing board of a VT125 screen.

Throughout this manual the variables x and y represent the x- ~nd y­
coordinates of the point on your screen. Notice that any objects plotted
with negative coordinate values, or values greater than l, are beyond the
scope of the default drawing board and therefore are not displayed on
your screen. For instance, the points 5,7 and -2,3 are not displayed on the
default drawing board. You can supply a value from 0 through 1 with up
to six digits of precision; however, the precision in a display is dependent
on the quality of the graphics output device you use.

For more information about coordinates and how to change the default
drawing board with the SET WINDOW statement, see Chapter 5.
Chapter 5 shows you how to alter the drawing board so that the coor­
dinates of a point can have values of less than 0 and more than 1. The
examples in this chapter and Chapters 3 and 4 are limited to the default.

Displaying Graphics Objects 2-3

2.2 Displaying Points

The GRAPH POINTS statement displays one or more points on your
screen. To display points, GRAPH POINTS must be followed by one
coordinate pair for each point. To display a single point, supply one pail
of coordinates, for example:

GRAPH POINTS 0.1,0.6

GRAPH POINTS marks the point with the default point style, an asteris]
(*). To display several points, separate each coordinate pair with a
semicolon (;).

Example

GRAPH POINTS 0.1,0.6; Ir

Output

2-4 Displaying Graphics Objects

0.3,0.6; Ir
0.46,0.476; Ir
0.6,0.29; Ir
0.46,0.14; t
0.626,0.14; Ir
0.7,0.3

*
*

* *

I Displaying Lines

The GRAPH LINES statement displays one or more lines on your screen.
You must provide both a starting point and an ending point for the line.
Therefore, you must supply GRAPH LINES with the coordinates for at
least two points. To draw one line, supply GRAPH LINES with two
coordinate pairs separated by a semicolon (;).

GRAPH LINES 0.8,0.2; 0.7,0.8

GRAPH LINES connects these two points with the default line style, a
solid line.

When you supply several coordinate pairs as parameters, GRAPH LINES
draws a line from the first point to the second point, from the second
point to the third, from the third to the fourth, and so on.

Example

GRAPH LINES 0.1,0.6; k
0.3,0.6; k
0.46,0.476; k
0.6,0.29; k
0.46,0.14; k
0.625,0.14; k
0.7,0.3

Displaying Graphics Objects 2-5

Output

....------------------·· ,.,',-.•. ,_

\
/ ,/
L__j

You can also use GRAPH LINES to draw closed shapes. The next exam1
uses the same seven points and two GRAPH LINES statements to draw
quadrilateral and a triangle. In each case the first point must be supplie1
again as the last point so that the closing line is drawn.

2-6 Displaying Graphics Objects

Example

!+
!Supply three points and repeat the first
!to enclose a triangle.
!-
GRAPH LINES 0.1,0.6; t

0.3,0.6; t
0.46,0.476; t
0.1,0.6

!+
!Supply four points and repeat the first
!to enclose a quadrilateral
!-
GRAPH LINES 0.6,0.29; t

0.46,0.14; t
0. 626 • 0 . 14; t
0.7,0.3; t
0.6,0.29

Output

0

ZK·4890·86

The following example shows the GRAPH LINES statement used within
a FOR. .. NEXT loop to draw a 10 by 10 grid. When displayed on your
screen, this grid covers the default drawing board. You can use such a
grid to sketch drawings and to calculate the coordinates of points you
want to use in your programs.

Displaying Graphics Objects 2-7

Example

OPTION TYPE = EXPLICIT
DECLARE SINGLE counter
FOR Counter= 0 TO 1 STEP 0.1

!+
!Draw the horizontal lines
!-
GRAPH LINES Counter,0.0; Counter,1.0
!+
!Draw the vertical lines
!-
GRAPH LINES 0.0,Counter; 1.0,Counter

NEXT Counter
GRAPH LINES 0.0,1.0; 1.0,1.0; 1.0,0.0
END

Output

ZK-4869-85

You can display lines with the PLOT LINES statement as well as the
GRAPH LINES statement. However, PLOT LINES provides you with
additional control over the display, as described in the following section.

2-8 Displaying Graphics Objects

.4 Controlling the Beam of Light

When you write with a pencil on paper, you often raise the pencil to move
from one position to another. While the pencil is in the air, it leaves no
mark or trail on the paper. When you press the pencil onto the paper, the
pencil marks the paper with a trail or line.

A similar concept exists in computer graphics. In computer graphics you
have the ability to switch a beam of light on or off. When the beam of
light is switched off, it is possible to move a plotter from one position
to another without leaving a trail or a line. When the beam of light is
switched on, a plotter draws a line as it moves from one position to the
next. In the case of graphics printers, the beam of light is analogous to a
laser beam or ink jet.

The PLOT LINES statement gives you control over whether the beam of
light is left on after drawing the specified line. To leave the beam on, put
a semicolon at the end of the last point in a PLOT LINES statement. To
switch the beam off, use a PLOT LINES statement with no points, or with
no semicolon at the end of a point list. The following statement switches
the beam of light on because it ends with a semicolon.

PLOT LINES 0.66,0.2;

The beam of light is on, but no line is plotted because only a starting
point is specified. If another point is supplied in a further PLOT LINES
statement, as in the next example, the beam of light will leave a trail from
point 0.65,0.2 to the point in the next statement supplied, 0.3,0.75.

PLOT LINES 0.66,0.2;
PLOT LINES 0.3,0.76

After the point 0.3,0.75 has been reached, the beam is switched off
because there is no semicolon at the end of the statement. A further
PLOT LINES statement would not be connected to the point 0.3,0.75, as
the beam is off. The positioning of the semicolons controls the light beam.
Consider the output from the following example.

Displaying Graphics Objects 2-9

Example

PLOT LINES 0.66,0.2; !Leave the beam on
PLOT LINES 0.3,0.76 !Switch the beam off
PLOT LINES 0.1,0.6; !Leave the beam on
PLOT LINES 0.26,0.9; 0.76,0.76 !Switch the beam off and display output

Output

r---
·' ----

/ --------------
. ------/

/I
/I

The PLOT LINES statement can include coordinates for just one point
only when the statement ends with a semicolon, or when the beam was
already left on by a previous statement. This feature is useful when a
sequence of points can be calculated in a formula and each new point
supplied to the PLOT LINES statement in a program loop. The following
example shows how the PLOT LINES statement can be used within a
FOR. .. NEXT loop to draw an approximation of a sine curve. (Note that
adjustments to the standard formula have been made to accommodate the
default drawing board.)

2-1 0 Displaying Graphics Objects

Example

OPTION TYPE = EXPLICIT
DECLARE SINGLE turn,x,y
!+
!Plots an approximation of a sine curve
!-
FOR turn= 0 TO 2 * PI STEP 0.1

x = (turn/(2 * PI))
y = ((SIN(turn) * 0.6) + 0.6)
PLOT LINES x,y;

NEXT turn
!+
!Switch off the beam and display output
!-
PLOT LINES
END

Output

ZK-4894·86

Each pass through the loop leaves the light beam on because of the
semicolon at the end of the PLOT LINES statement. The final PLOT
LINES statement outside the FOR. .. NEXT loop switches off the light beam
as no points are supplied. You can also switch off the light beam with any
other graphics statement, except another PLOT LINES statement with a
semicolon.

Displaying Graphics Objects 2-11

Points connected with PLOT LINES statements that leave the beam on
are not actually displayed one at a time; the output is stored until a
graphics statement switches off the beam. When the beam is switched
off, the output is displayed. In the previous example, the sine curve is not
displayed until the PLOT LINES statement outside the loop is executed.
If the beam is not switched off during program execution, VAX BASIC
displays the output when the program terminates.

Note that the standard formula for a sine curve gives coordinate values
of greater than 1 and less than 0; the sine curve would therefore extend
beyond the boundaries of the default drawing board. Chapter 5 shows
how to change the default drawing board and provides an example of
displaying a full sine curve.

The following partial program uses the PLOT LINES statement to display
an oval.

Example

OPTION TYPE = EXPLICIT
DECLARE SINGLE turn, x, y,

LONG I
FOR I = 0 TO 40

Turn = 2 * PI * 1/40
x = (SIN(Turn) + 1)/2
y = (COS(Turn) + 1)/4
PLOT LINES x,y;

NEXT I
!+
!Switch off the beam
!-
PLOT LINES
END

2-12 Displaying Graphics Objects

Output

Use the PLOT LINES statement when you need to control the beam of
light in the display area or when you want to draw lines connecting points
that are supplied only one at a time. Use the GRAPH LINES statement
when you can supply at least two points at a time and when you do not
need to control the beam of light. The PLOT statement has additional
functions that this section has not addressed. For more information about
the PLOT statement, see Chapter 6.

Z.5 Displaying Areas

You can outline shapes with GRAPH LINES or PLOT LINES statements.
VAX BASIC also provides you with a method of displaying the area of
a shape. The GRAPH AREA statement allows you to fill the area of a
shape. The default fill style for GRAPH AREA is solid.

Displaying Graphics Objects 2-13

Example

GRAPH AREA 0.3,0.8; k
0.1,0.5; k
0.8,0.4

Output

ZK-4891-86

Notice that the first point does not need to be repeated for the GRAPH
AREA statement. The following two statements both produce a triangle:
the GRAPH LINES statement draws the outline using four points, and the
GRAPH AREA statement fills the area using three points.

2-14 Displaying Graphics Objects

Example

!+
!Only three points supplied for the area of a triangle
! - ,

GRAPH AREA 0.3,0.8; k

!+

0.1,0.5; k
0.8,0.4

!The first point must be repeated for the triangle outline
! -
GRAPH LINES 0.3,0.8; k

0.1,0.5; k
0.8,0.4; k
0.3,0.8

The following statement displays the area of the default drawing board on
your screen.

GRAPH AREA 0.0,0.0; 0.0,1.0; 1.0,1.0; 1.0,0.0

2.6 Displaying Text

You often need to position text on the screen as precisely as you position
diagrams. The GRAPH TEXT statement allows you to supply the text you
want displayed as well as the exact starting position. The starting position
must be a coordinate pair. The text can be any string expression following
a colon (:).

Displaying Graphics Objects 2-15

Example

DECLARE STRING CONSTANT
GRAPH TEXT AT 0.1,0.8
GRAPH TEXT AT 0.7,0.6
GRAPH TEXT AT 0.2,0.4
GRAPH TEXT AT 0.2,0.3
GRAPH TEXT AT 0.2,0.2
GRAPH TEXT AT 0.6,0.1

Output

or

HERE

or

2-16 Displaying Graphics Objects

selection = "or"
"You could place the words here"
selection + " here"
selection
"HERE"
"or"
"anywhere else"

ZK-4864-85

You can easily label a diagram with the GRAPH TEXT statement, as
shown here:

Example

GRAPH LINES 0.3,0.6; 0.7,0.6; 0.7,0.2; 0.3,0.2; 0.3,0.6
GRAPH LINES 0.46,0.2; 0.46,0.4; 0.66,0.4; 0.66,0.2
GRAPH AREA 0.3,0.6; 0.6,0.76; 0.7,0.6
GRAPH TEXT AT 0.3,0.8 : "Your BASIC House"

Output

Your BAS[C House

ZK-5505-86

Displaying Graphics Objects 2-17

You can use VAX BASIC built-in functions to format string or numeric
expressions. For example, you can format a numeric expression with
the function FORMAT$. Both of the following GRAPH TEXT statements
display the same output:

Example

DECLARE STRING format_string
GRAPH TEXT AT 0.1,0.5 : FORMAT$(100000,"$$##,###")

format_string = FORMAT$(100000,"$$##,###")
GRAPH TEXT AT 0.1,0.4 : format_string

Output

i-100, (.{:11.)

HOO .. 000

2-18 Displaying Graphics Objects

ZK-486J.85

!. 7 Supplying Coordin~tes in Arrays

When you have many points to supply to a graphics statement, it can be
more convenient to use arrays than to list each individual coordinate. VAX
BASIC provides two types of graphics statements that display coordinates
from arrays: MAT GRAPH and MAT PLOT. The MAT PLOT statements
are discussed in Chapter 6. The following sections discuss the MAT
GRAPH statements.

In a GRAPH statement, each point is represented by two coordinates:
an x- and a y-coordinate. Similarly, in a MAT GRAPH statement each
point is represented by two coordinates: an x-coordinate supplied in
a one-dimensional array, and a y-coordinate supplied in another one­
dimensional array. You supply the MAT GRAPH statement with two
whole arrays: one array of x-coordinates and one array of y-coordinates.
The first point is specified by the first element in the first array (x-array) as
the x-coordinate, and the first element in the second array (y-array) as the
y-coordinate, for example:

MAT GRAPH LINES x_array, y_array

The coordinates are taken,, one from each array, in sequence. Notice that
you only specify the name of the array; you do not specify the array
elements, nor do you specify the whole array with parentheses. Virtual
arrays and packed decimal arrays are invalid.

The following example displays a circle on the terminal screen using the
MAT GRAPH LINES statement.

Example

OPTION TYPE = EXPLICIT
DECLARE SINGLE CONSTANT radius = 0.4
DECLARE LONG CONSTANT npoints = 40
DECLARE SINGLE increment, &

x,y, turn, &
LONG Counter

DIM SINGLE x_array(npoints), y_array(npoints)

Displaying Graphics Objects 2-19

increment = 2 * PI/npoints
turn = 0
!+
!Fill the arrays
! -
FOR Counter = OY. TO npoints

x = COS(turn) * radius
y = SIN(turn) * radius
!+
!Adjust points for center of 0.5,0.5
!-
x_array(Counter) = x + 0.5
y_array(Counter) = y + 0.5
turn = turn + increment

NEXT Counter
!+
!Draw the lines connecting each point
! -
MAT GRAPH LINES x_array, y_array
END

Output

ZK-5525-86

The MAT GRAPH LINES statement in the circle example can be replaced
with a MAT GRAPH POINTS statement to display a circle of points.
Alternatively, a MAT GRAPH AREA statement in this example would
produce a solid circle.

2-20 Displaying Graphics Objects

The following program illustrates the use of the COUNT clause in a MAT
GRAPH LINES statement. The COUNT clause allows you to terminate
the display after the specified number of points has been processed,
ignoring any remaining array elements. In the example only half of the
points in the circle are specified by the index in the COUNT clause. There
are actually 41 points in the circle; the MAT GRAPH LINES statement
connects the first 21 points from the arrays and displays a semicircle.

Example

FOR Counter = OY. TO npoints
x = COS(turn) * radius
y = SIN(turn) * radius
x_array(Counter) = x + 0.5
y_array(Counter) = y + 0.5
turn = turn + increment

NEXT Counter
!+
!Draw the lines connecting the first half of the points
!
MAT GRAPH LINES , COUNT (npoints/2 + 1) : x_array, y_array
END

Output

ZK-5524-86

Points are frequently less structured than those created by the circle
program. Statistics from surveys, for example, could provide the data
for a line chart. The following program plots the data gathered from an

Displaying Graphics Objects 2-21

informal survey of supermarket employees and uses DATA and READ
statements to fill the coordinate arrays. When data is maintained in a file,
you can open the file in the usual manner within your graphics program.
The employees' salaries (divided by 100,000) provide the data for the
x-array. Employees rated their job satisfaction on a scale of 0 to 1; this
provides the data for they-array. The DATA statement provides the sala~
and work satisfaction rating for each of the fifteen employees surveyed.
The chart illustrates the relationship between salary earned and employee
job satisfaction.

Example

OPTION TYPE = EXPLICIT
DECLARE LONG Counter
DIM SINGLE x_array(14),y_array(14)

!+
!Draw the axes

GRAPH LINES 0.225,1.0; 0.225,0.2; 1.0,0.2
!+
!Read in the data
!-
DATA 0.43,0.5, 0.475,0.6, 0.5,0.4, 0.55,0.5, k

0.575,0.55, 0.585,0.5, 0.6,0.475, 0.625,0.575, k
0.65,0.575, 0.8,0.7, 0.825,0.575, 0.9,0.8, k
0.925,0.825, 0.95,0.85, 1.0,0.95

READ x_array(Counter), y_array(Counter) FOR Counter= 01. TO 141.
!+
!Draw the lines
!-
MAT GRAPH LINES x_array, y_array
!+
!Add the text
!-
GRAPH TEXT AT 0.225,0.15 : " 5 I 10 I 15 I 20 I 25 I 30 I 35 I"
GRAPH TEXT AT 0.3,0.1 : "Salary in thousands of $"
GRAPH TEXT AT 0.05,0.7 : "Work"
GRAPH TEXT AT 0.05,0.625 "Satis-"
GRAPH TEXT AT 0.05,0.575 : "faction"
END

2-22 Displaying Graphics Objects

Output

·;.~11::­

f.3·:t1•x1

... ··

ZK·4868·85

Chapter 4 illustrates how to change the text attributes such as the justifi­
cation and text path so that graphs can be accurately labeled.

~.8 Graphics Subprograms

Graphics images can be defined in separate blocks of code known as
pictures. A picture can be compiled separately and must be delimited by a
PICTURE and an END PICTURE statement, for example:

PICTURE unique_name

END PICTURE

As with other subprograms, pictures should be declared with an
EXTERNAL statement in the main program. To invoke a picture, you
use the DRAW statement, not the CALL statement, for example:

PROGRAM display
EXTERNAL PICTURE sample
DRAW sample

END PROGRAM

Displaying Graphics Objects 2-23

You can pass parameters to pictures as with any other subprogram. The
following example invokes the picture triangle several times with the
DRAW statement. The coordinates of the third point for the triangle are
passed as parameters with each invocation of the picture.

PROGRAM display
EXTERNAL PICTURE triangle(SINGLE,SINGLE)

DRAW triangle(0.2,0.8)
DRAW triangle(0.6,0.9)
DRAW triangle(0.8,0.8)
DRAW triangle(0.8,0.2)
DRAW triangle(0.6,0.1)
DRAW triangle(0.2,0.2)

END PROGRAM

PICTURE triangle (SINGLE x,y)
GRAPH LINES 0.4,0.6; 0.6,0.6; x,y; 0.4,0.5

END PICTURE

Output

The DRAW statement can include several useful options to invoke picture~
in a variety of ways. Chapter 6 discusses pictures in detail and illustrates
how to create complex images with the DRAW statement. Simple pictures
are used where appropriate in Chapters 3 through 5.

2-24 Displaying Graphics Objects

9 Summary

This chapter has explained how to use the following statements:

• GRAPH POINTS

• GRAPH LINES

• GRAPH AREA

• GRAPH TEXT

• PLOT LINES

• MAT GRAPH POINTS

• MAT GRAPH LINES

• MAT GRAPH AREA

This chapter has also introduced pictures and how to invoke them with
the DRAW statement. These concepts are illustrated throughout the
manual and expanded fully in Chapter 6.

The points, lines, areas, and text in this chapter all display the VAX BASIC
default attributes. VAX BASIC provides many statements to change
attributes from their default values. The following chapters show you how
to enhance your graphics displays by changing these attributes.

Displaying Graphics Objects 2-25

Chapter 3

Changing the Appearance of Graphics
Objects

You can control the exact appearance of points, lines, and areas by setting
attribute values. This chapter shows you how to change the color, size,
and style of these graphics objects. For each graphics object, this chapter
does the following:

• Illustrates the available attribute values

• Demonstrates how to select the attributes

• Shows how to ask about the attribute values

• Provides a table of available attributes and their values

Text attributes are discussed separately in Chapter 4.

1 Graphics Attributes

The examples in Chapter 2 illustrate the default values for the attributes of
each graphics object displayed. You can change these attributes with SET
statements, and you can inquire what the current values are with ASK
statements. The default attributes are displayed unless you have supplied
alternative values with a SET statement. Table 3-1 shows the attributes
you can select for each of the graphics objects. Note that SET statements
can be used in immediate mode in the environment if SET is preceded
with a backslash (\).

Changing the Appearance of Graphics Objects 3-1

Table 3-1: Graphics Objects and Their Attributes
Graphics Object

Point

Line

Area

Attributes

Style, color, and size of the marker

Style, color, and width of the line

Interior fill styles, and color of the fill

All attributes are not necessarily supported by each hardware device. Fo:
the most part, this chapter shows examples of the available attributes for
VT125 and VT240 terminals.

3.2 Setting the Color

The colors red, green, and blue are available by default on your color
monitor in addition to the background color. You can display these
four colors on your screen at the same time. Some devices, such as the
VAXstation 11/GPX, are more versatile; the examples in this section sho~
output displayed on a VT240 terminal.

Many factors affect the display and perception of foreground colors; the
colors displayed in this manual may not be the same as those displayed
on the device you use. The brightness and contrast controls change the
perceived color, as do the available room light and any previously define
terminal color setup. Note that if you have a monochrome monitor, the
color statements may affect the shading of graphics objects displayed on
your screen.

Each color has a numeric index value associated with it. Table 3-2 lists
the default color associated with each color index for VT125 and VT240
terminals. Color 0 represents the background color, or the color of a
display surface that is clear. Colors l, 2, and 3 represent foreground
colors. If you have a color terminal, make sure that you assign the corre<
device type number to GKS$WSTYPE, as described in Chapter 1. You
may have to reset your terminal color setup after executing a graphics
program.

3-2 Changing the Appearance of Graphics Objects

Table 3-2: Default Colors for VT125 and VT240 Color
Terminals

Index Color

0 Black

1 Green

2 Red

3 Blue

You use these numeric values to change the colors in your displays.

!.1 Changing the Color Index

When you supply a numeric value to one of the SET . . . COLOR state­
ments, the value is used to determine the color of any subsequent points,
lines, filled areas, or text. For instance, each of the following statements
sets the color of the objects specified to blue.

SET POINT COLOR 3

SET LINE COLOR 3

SET AREA COLOR 3

SET TEXT COLOR 3

You can set the color before executing a graphics output statement. The
color you set continues to be the foreground color for that graphics object
until you change it with another SET ... COLOR statement. (Note that
if you set the foreground color to the same color as the background, you
will not be able to distinguish the display from the background.) The
following example sets the color for the lines, area, and text in a simple
diagram.

Changing the Appearance of Graphics Objects 3-3

Example

!+
!Outline the book
!-
SET LINE COLOR 1
GRAPH LINES 0.26,0.8; 0.43,0.8; 0.43,0.26; 0.26,0.26; 0.26,0.8; t

0.36,0.88; 0.48,0.88; 0.48,0.33; 0.43,0.26 t
GRAPH LINES 0.43,0.8; 0.48,0.88
!+
!Fill spine
!-
SET AREA COLOR 3
GRAPH AREA: 0.43,0.8; 0.43,0.26; 0.48,0.33; 0.48,0.88

SET TEXT COLOR 2
GRAPH TEXT AT 0.266,0.66 : "Your"
GRAPH TEXT AT 0.26,0.6 : "BASIC"
GRAPH TEXT AT 0.266,0.66 : "book"

Output

The design displayed by the following example is achieved with a SET
LINE COLOR statement inside a loop to vary the color. The program
connects points on the perimeter of an oval.

3-4 Changing the Appearance of Graphics Objects

Example

OPTION TYPE = EXPLICIT
OPTION ANGLE = RADIANS
DECLARE LONG loop_count, inner, t

loop_index, counter, t
color_no, t

SINGLE turn
DIM SINGLE x_array(40),y_array(40), t

x2_array(1),y2_array(1)

turn = 0
!+
!Fill arrays with coordinates for points on perimeter
!-
FOR loop_count = 0 TO 40

turn = 2 • PI • loop_count/40
x_array(loop_count) • (SIN(turn) + 1)/2
y_array(loop_count) = (COS(turn) + 1)/4

NEXT loop_count
!+
!Draw the perimeter
!-
MAT GRAPH LINES x_array, y_array
color_no = 1
!+
!Select points on perimeter
!- •

FOR loop_index = 0 TO 40 STEP 4
x2_array(counter) = x_array(loop_index)
y2_array(counter) = y_array(loop_index)
!+
!Inner loop to connect other points to
!the point x2_array(counter),y2_array(counter)
!-
counter = counter + 1
FOR inner = 0 TO 40 STEP 4

x2_array(counter) = x_array(inner)
y2_array(counter) = y_array(inner)
!+
!Keep the color 1, 2, or 3
!-
IF color_no = 4

THEN color_no = 1
END IF

SET LINE COLOR color_no
color_no = color_no + 1
!+
!Draw all the lines connecting selected point to others
!-
MAT GRAPH LINES x2_array, y2_array

NEXT inner
NEXT loop_index
END

Changing the Appearance of Graphics Objects 3-5

Output

3.2.2 Changing the Color Intensities

The four index colors are each defined by the intensities of red, green, an
blue. The default intensity values for the color indices are as follows:

Color Red Green Blue
Index Color Intensity Intensity Intensity

0 Black 0.0 0.0 0.0

1 Green 0.0 1.0 0.0

2 Red 1.0 0.0 0.0

3 Blue 0.0 0.0 1.0

You can change the actual color displayed for each index by changing
the red, green, and blue intensities with the SET COLOR MIX statement.
When you use this statement, you alter the default color of the index
displayed on your screen. For instance, although the color index 3 displa)
blue by default, you can change the color that this index displays by
changing the intensity values for red, green, and blue while index 3 is

3-6 Changing the Appearance of Graphics Objects

selected. By supplying alternative values for the intensities, you can
greatly increase your choice of possible foreground colors. (The device
you use may not have the capability to display more than four of these
at the same time.) The values for these intensities can vary from 0
through 1.

The following statement changes the color index 3 to be raspberry instead
of the default blue.

Example

DECLARE SINGLE red_var, green_var, blue_var
red_var = 0.84
green_var = 0.0
blue_var = 0.66
SET COLOR MIX , INDEX 3 : red_var, green_var, blue_var

Remember that color index values are device dependent. Values for VTl 25
and VT240 terminals and for VAXstations can be found in Appendix B in
this manual. Values for other devices can be found in the VAX GKS
documentation and in the documentation for the particular device you
use.

The following program illustrates the use of the SET COLOR MIX state­
ment. Each time the graphics object (a wheel) is drawn, the color index is
set to 2; however, the default color of red is changed. Instead, the values
of the color intensities are changed for each display of the wheel, and in
each case the diagram is presented with a changed color. Only one screen
is illustrated after the example.

Example

OPTION TYPE = EXPLICIT
EXTERNAL PICTURE Wheel
DECLARE SINGLE green, blue, red
!+
!Set up the variations in color intensities
!-
SET LINE COLOR 2
red = 0.0
green = 0.0
blue = 0.66
!+
!Set index 2 to a violet shade
!-
SET COLOR MIX , INDEX 2 : red, green, blue
DRAW Wheel
SLEEP 6X
CLEAR

Changing the Appearance of Graphics Objects 3-7

!+
!Set up index 2 as orange
!-
red = 0.8638
green = 0.6646
blue = 0.2862
SET COLOR MIX INDEX 2 red, green, blue
DRAW Wheel
END

PICTURE Wheel
DECLARE SINGLE loop_count, loop_index, ~

turn,x_center, y_center,x,y
DIM SINGLE x_array{40),y_array{40)
!+
!Fill the arrays and draw the circle
!-
turn = 0
FOR loop_count = 0 TO 40

turn = 2 * PI * loop_count/40
x_array(loop_count) {SIN(turn) + 1)/2
y_array{loop_count) = (COS(turn) + 1)/2

NEXT loop_count
MAT GRAPH LINES x_array, y_array
Draw_spokes:
!+
!Select 8 points on circle for spokes
!-
FOR loop_index = 6 TO 40 STEP 6

x = x_array(loop_index)
y = y_array(loop_index)
x_center = 0.6
y_center = 0.6
GRAPH LINES x,y x_center,y_center

NEXT loop_index
END PICTURE

3-8 Changing the Appearance of Graphics Objects

Output

The following example illustrates many of the possible shades that you
can display on your terminal. The wheel is drawn within a set of three
loops that change the intensities of red, green, and blue for the current
color index. Some of the colors are close to the background color; there­
fore, if you run this program, you should turn up the brightness on your
terminal. (Be aware that this program runs for several minutes.)

Changing the Appearance of Graphics Objects 3-9

Example

DECLARE SINGLE green, blue, red
EXTERNAL PICTURE wheel
color_var = 1
!+
!Set up the variations in color intensities
!-
FOR green = 0.2 TO 1 STEP 0.2

FOR red = 0.2 TO 1 STEP 0.2
FOR blue = 0.2 TO 1 STEP 0.2

SET COLOR MIX , INDEX color_var : red, green, blue
SET LINE COLOR color_var
!+
!For every iteration of this loop draw the wheel
!-
DRAW wheel
SLEEP 2%
CLEAR

NEXT blue
NEXT red

NEXT green
END

Remember that if you do not change the values for the intensities, the
index values display the default index colors.

3.2.3 Asking About Color Attributes

ASK statements allow you to retrieve the current value of attributes.
VAX BASIC provides two ASK statements that allow you to retrieve the
information about the color attributes.

The ASK MAX COLOR statement allows you to retrieve the highest
valid color index value for the particular device you use. In the following
statement, the highest color index number available for that device is
assigned to the variable highest _poss.

ASK MAX COLOR highest_poss

For instance, if the value returned is 10, this means that the highest
index value you can set is 10. This does not necessarily mean that there
are 10 different indices on the device you are using because the color
indices need not be contiguous. (VAX BASIC signals a warning when you
open a device that does not have contiguous color indices.) Consult the
documentation for your particular device for details.

3-10 Changing the Appearance of Graphics Objects

The ASK COLOR MIX statement retrieves the current values for the
intensities of red, green, and blue, in that order, for the particular color
index that you specify. The following statement asks for the current
intensities for red, green, and blue when the color index is set to 2. The
values for the intensities are placed in the three variables you supply. The
assigned values are the defaults unless a SET COLOR MIX statement has
been executed.

ASK COLOR MIX , INDEX 2 : red_var, green_var, blue_var

.3 Setting Point Attributes

In addition to changing the color of points, you can change the style and
the size. When you display a point with the default attributes, the point is
an asterisk (•) of the smallest possible size your device can display .

. 3.1 Changing t"M Point Style

So far the examples have displayed an asterisk to mark a point on the
screen. As shown in Table 3-3, VAX BASIC provides five point markers,
each with a numeric value. At the start of program execution, the point
style value is 3. The number of available marker styles varies according to
the device you use.

Table 3-3: Point Styles
Value Point Style

1 Dot

2 Plus sign

3 Asterisk (default)

4 Circle

5 Diagonal cross

To display a point style other than the default, you use the SET POINT
STYLE statement. You must supply a numeric value for the point style
you want. For example, the following statements set the point style to be
a plus sign and a dot respectively:

SET POINT STYLE 2
SET POINT STYLE 1

Changing the Appearance of Graphics Objects 3-11

To change the point style, the SET POINT STYLE statement must preced
the output statement that displays the points. The point style you set
remains in effect until VAX BASIC executes another SET POINT STYLE
statement. To regain the default point style, you must set the point style
back to the value 3 for the asterisk.

Example

PROGRAM point_styles
!+
!Set the style to a dot
!-
SET POINT STYLE 1
GRAPH POINTS 0.1,0.2; 0.16,0.2
!+
!Set the style to a plus sign
!-
SET POINT STYLE 2
GRAPH POINTS 0.2,0.2; 0.26,0.2
!+
!Set the style to an asterisk
!-
SET POINT STYLE 3
GRAPH POINTS 0.3,0.2; 0.36,0.2
!+
!Set the style to a circle
!-
SET POINT STYLE 4
GRAPH POINTS 0.4,0.2; 0.46,0.2
!+
!Set the style to a diagonal cross
!-
SET POINT STYLE 6
GRAPH POINTS 0.5,0.2; 0.66,0.2

END PROGRAM

3-12 Changing the Appearance of Graphics Objects

Output

1.3.2 Changing the Point Size

You can increase the size of each point style except the dot. To do this,
supply the SET POINT SIZE statement with a numeric value for the
scale of the marker. Possible point size values depend on the device. For
example, valid values for VT125 and VT240 terminals are 1 (the default)
through 12. The new point size remains in effect until another SET
POINT SIZE statement is executed. Note that the dot is always displayed
in the smallest possible size, size 1. The following example shows a few
of the point sizes available on VT240 terminals.

Example

DECLARE LONG loop_count
FOR loop_count = 1 TO 6

SET POINT STYLE loop_count
SET POINT SIZE loop_count
GRAPH POINTS loop_count/6,0.3

NEXT loop_count
END

Changing the Appearance of Graphics Objects 3-13

Output

ZK-4896·86

The following example marks each of the vertices of a hexagon with a
size 1 diagonal cross and then marks the same points with size 7 circle
markers.

Example

OPTION TYPE = EXPLICIT
DECLARE SINGLE x,y,

LONG loop
!+
!Supply data for points of hexagon
!-
DATA 0.7,0.6, 0.6,0.3, 0.4,0.3, ~

0.3,0.6, 0.4,0.7, 0.6,0.7

3-14 Changing the Appearance of Graphics Objects

!+
!Procedure for each point
!-
FOR loop = 0 TO 6

READ x,y
!+
!Draw a size 1 diagonal cross at x,y
!-
SET POINT STYLE 6
SET POINT SIZE 1
SET POINT COLOR 2
GRAPH POINTS x,y
!+
!Draw a size 7 circle marker at x,y
!-
SET POINT STYLE 4
SET POINT SIZE 7
SET POINT COLOR 3
GRAPH POINTS x,y

NEXT loop
END

Output

Changing the Appearance of Graphics Objects 3-15

3.3.3 Asking About Point Attributes

You can retrieve information about the point style and color by supply­
ing integer variables with the ASK POINT statements. The following
statements retrieve the values for the point style and color respectively.

ASK POINT STYLE style_var
ASK POINT COLOR color_var

The values are returned in the variables you supply. For instance, after tht
ASK POINT STYLE statement in the following example is executed, the
current style value is stored in the variable style_var. The value returned
is the value used if an appropriate output statement were to be executed a
this time. This feature allows you to store attribute values, change them,
and reset them to the stored values at another point in your program.

Example

DECLARE LONG style_var, color_var
EXTERNAL PICTURE Multi_points(LONG,LONG)
GRAPH POINTS 0.1,0.86; 0.2,0.86; 0.3,0.86; 0.4,0.86
!+
!Ask for the value of the point style and color
!-
ASK POINT STYLE style_var
ASK POINT COLOR color_var
SET POINT STYLE 4
SET POINT COLOR 3

!+
!Invoke a picture using the new values
!-
DRAW Multi_points(style_var, color_var)
!+
!Reset the attributes to the stored values
!-
SET POINT STYLE style_var
SET POINT COLOR color_var

For more information about pictures, see Chapter 6.

The ASK MAX POINT SIZE statement allows you to retrieve the largest
possible value for the point size for your particular device. This value is
stored in a variable you supply. The example shows the largest value used
in a loop to draw concentric circles using point style 4.

3-16 Changing the Appearance of Graphics Objects

Example

DECLARE LONG maxfmum,loop_counter
ASK MAX POINT SIZE maximum
SET POINT STYLE 4
FOR loop_counter • 1 TO maximum

SET POINT SIZE loop_counter
GRAPH POINTS 0.6,0.6

NEXT loop_counter
END

Output

1.4 Setting Line Attributes

ZK-5507-86

As with points, you can change the style, size, and color of lines. The
effects of these changes vary depending on the type of device you use.

Changing the Appearance of Graphics Objects 3-17

3.4. 1 Changing the Line Style

VAX BASIC provides the four different line styles described in Table 3-4.
At the start of program execution, the line style is value 1, solid.

Table 3-4: Line Styles
Value Line Style

1 Solid (default)

2 Dashed

3 Dotted

4 Dashed-dotted

To change the line style, supply the selected value to the SET LINE STYLE
statement. This example displays each of the four line styles.

Example

DECLARE LONG loop_count,
SINGLE y

FOR loop_count = 1 TO 4
SET LINE STYLE loop_count
y = loop_count/10
GRAPH TEXT AT 0.1,(y + 0.06) "This is line style"+ STR$(loop_count)
GRAPH LINES 0.1,y; 0.46,y

NEXT loop_count
END

3-18 Changing the Appearance of Graphics Objects

Output

This is line st~le 4

This is line st~le 3

This is line st~le 2

This is lin2 st~le 1

ZK·4905·86

.4.2 Changing the Line Width

You can increase the width of lines just as you can increase the size of
points. To do this, use the SET LINE SIZE statement.

The output of the following example shows a solid line increased to sizes
10, 20, and 60 respectively. When the line width is increased to a large
size, the outer edges of closed figures no longer meet, as is the case when
the hexagon lines are increased to size 60. Open figures can be increased
without this apparent distortion. The amount of distortion that large sizes
produce depends on the capabilities of your terminal.

Changing the Appearance of Graphics Objects 3-19

Example

EXTERNAL PICTURE Hexagon(LONG)
DRAW Hexagon(10)
SLEEP 6X
CLEAR
DRAW Hexagon(20)
SLEEP 6X
CLEAR
DRAW Hexagon(60)
END

PICTURE Hexagon(LONG line_aize)
OPTION TYPE = EXPLICIT
DECLARE SINGLE x_array(6),y_array(6)
DECLARE LONG loop
DATA 0.7,0.6, 0.6,0.3, 0.4,0.3, ~

0.3,0.6, 0.4,0.7, 0.6,0.7, 0.7,0.6
READ x_array(loop),y_array(loop) FOR loop= 0 TO 6
SET LINE SIZE line_aize
MAT GRAPH LINES x_array, y_array

END PICTURE

Output Screen 1:

3-20 Changing the Appearance of Graphics Objects

ZK-4899-86

Output Screen 2:

ZK·4898·86

Output Screen 3:

ZK·4897·86

Changing the Appearance of Graphics Objects 3-21

By changing both the line size and the line style, you can achieve some
interesting results. Here, the line size is 10 and the line style is value 4,
dashed-dotted.

Example

OPTION TYPE = EXPLICIT
EXTERNAL PICTURE Hexagon(LONG)
SET LINE STYLE 4
DRAW Hexagon(10)
END

Output

3.4.3 Asking About Line Attributes

ZK-4906·86

You can retrieve the value of the current line style with the ASK LINE
STYLE statement. Here, GRAPH LINES draws a line with the style value
stored previously in the variable style_value.

3-22 Changing the Appearance of Graphics Objects

Example

ASK LINE STYLE style_value
SET LINE STYLE 3

SET LINE STYLE style_value
GRAPH LINES 0.6,0.8; 0.2,0.4; 0.3,0.3

You can also retrieve the current line color with the ASK LINE COLOR
statement.

Example

DECLARE LONG which_color
ASK LINE COLOR which_color
IF which_color = 1

THEN
SET LINE COLOR 3

ELSE
SET LINE COLOR 2

END IF

The largest possible line size for your device can be retrieved with the
ASK MAX LINE SIZE statement. You must supply a numeric variable.

ASK MAX LINE SIZE thickest

,5 Setting Area Attributes

Areas can be represented by four different interior fill styles. Two of
the interior fill styles, pattern and hatch, can produce a wide variety of
representations of an area. To make these changes, you use the SET
AREA STYLE and the SET AREA STYLE INDEX statements.

Changing the Appearance of Graphics Objects 3-23

3.5.1 Changing the Fill Style

VAX BASIC provides four different interior fill styles for areas:

• SOLID (the default)

• HOLLOW
• PATTERN

• HATCH

At the start of program execution, the interior fill style is solid.

Unlike other attributes, the interior fill styles do not have numerical
values. Instead, you supply the SET AREA STYLE statement with a strir
expression equivalent to one of the interior fill style names. You can
enter strings in either upper- or lowercase. Both of the SET AREA STYL
statements in the following example set the interior fill style to hollow.

Example

DECLARE STRING CONSTANT hollow_f ill = "HOLLOW"

SET AREA STYLE hollow_fill
MAT GRAPH AREA x_array, y_array
SET AREA STYLE "hollow"
MAT GRAPH AREA x_array, y_array

The following example displays each of the four interior fill styles. As
the pattern style mixes only colors, the difference between the solid and
pattern styles may not be discernible on a monochrome display.

Example

SET AREA STYLE "Hollow"
GRAPH AREA 0.0,0.6; 0.1,0.6; 0.1,0.0; 0.0,0.0

SET AREA STYLE "Solid"
GRAPH AREA 0.2,0.6; 0.3,0.6; 0.3,0.0; 0.2,0.0

SET AREA STYLE "Pattern"
GRAPH AREA 0.4,0.6; 0.6,0.6; 0.6,0.0; 0.4,0.0
SET AREA STYLE "Hatch"
GRAPH AREA 0.6,0.6; 0.7,0.6; 0.7,0.0; 0.6,0.0
END

3-24 Changing the Appearance of Graphics Objects

Output

,5.2 Changing Pattern and Hatch Styles

The interior fill styles for pattern and hatch can be changed with the SET
AREA STYLE INDEX statement. The pattern or hatch style displayed
depends on the setting of the area style index. Table 3-5 lists the various
styles you can display by changing the index.

Changing the Appearance of Graphics Objects 3-25

Table 3-5: VT125 and VT240 Pattern and Hatch Style lnde:

Fill Style

HATCH

PATTERN3

Values
Index Value

1 (default)

2

3

4

5

6

7

8

9

10-19

33-126

1 (default)

2

3

4

5

6

Display

Cross hatched

Hatching with lines at 45 degrees

Hatching with lines at -45 degrees

Hatching with horizontal lines

Hatching with vertical lines

Hatching with lines at 45 degrees
(sparse)

Hatching with lines at -45 degrees
(sparse)

Hatching with horizontal lines (sparse)

Hatching with vertical lines (sparse)

Varying density hatches1

Hatching with ASCII character2

Mixes colors 1 and 2

Mixes colors 2 and 3

Mixes colors 3 and 1

Mixes colors 0 and 1

Mixes colors 0 and 2

Mixes colors 0 and 3

1 A varying density hatch style is a mixture of pixels of a given color and white pixels, which gives
the appearance of different shades. For hatch styles 10 through 19, the hatches progress from lightE
to darker; 10 being the lightest and 19 bein~ the darkest.

2The style index values 33 through 126 generate hatching with the corresponding character from th1
ASCII table. For example, the ASCII value for the character A is 65; a hatched fill area with style
index 65 fills the area with a number of uppercase As.

3 Pattern style index values are appropriate only for color monitors.

The default style index value is 1 for both hatch and pattern. Samples of
the default pattern and hatch fill styles are shown in Section 3.5.1. The
available fill styles for pattern and hatch vary according to the device you
use; Appendix B lists the styles available for V AXstations. The following

3-26 Changing the Appearance of Graphics Objects

le displays three examp . als of the many hate VT125 and h styles available on
VT240 tenrun .

Example hatch(LONG)
CTURE Draw_ EXTERNAL PI "HATCH"

AREA STYLE
SET hatch(3) DRAW Draw_
SLEEP 3X
CLEAR hatch(66) DRAW Draw_
SLEEP 3X
CLEAR hatch(72) DRAW Draw_

END 1 index) (LONG sty e_ Draw hatch
PICTURE E = EXPLICIT) array(6) OPTION TYP array(6 ·Y-

SINGLE x_ ~
DECLARE LONG loop O 4 0.3,
DECLARE 0.6,0.3, . ' 7 _ o TO 6 DATA 0.7,0.6, 0 4 0.7, 0.6,0.) FOR loop -

0.3,0.6, · • array(loop
x array(loop),y_style_index

READ AW STYLE INDEX Y array
SET AREA x array• -MAT GRAPH -

END PICTURE

S reen 1: Output c

•

3-27 of Graphics Objects Changing the Appearance

Output Screen 2:

Output Screen 3:

.-lAAAAAAAAAAAAr
.-lAAAAAAAAAAAAAA

.-lAAAAAAAAAAAAAAAAl­
.-lAAAAAAAAAAAAAAAAAAI­

.-lAAAAAAAAAAAAAAAAAAAAf
.-lAAAAAAAAAAAAAAAAAAAAAAl­
iAAAAAAAAAAAAAAAAAAAAAAf

iAAAAAAAAAAAAAAAAAAAAf
iAAAAAAAAAAAAAAAAAAf

''<AAAAAAAAAAAAAAAAI
IAAAAAAAAAAAAAA'

IAAAAAAAAAAAAI

. 1HHHHHHHHHHHHt
. 1HHHHHHHHHHHHHH~

1HHHHHHHHHHHHHHHHt
. 1HHHHHHHHHHHHHHHHHHt

. 1HHHHHHHHHHHHHHHHHHHHt
. 1HHHHHHHHHHHHHHHHHHHHHH~
. 1HHHHHHHHHHHHHHHHHHHHHHf

1HHHHHHHHHHHHHHHHHHHHf
1HHHHHHHHHHHHHHHHHHf

lHHHHHHHHHHHHHHHHI
lHHHHHHHHHHHHHHI

lHHHHHHHHHHHl-I

3-28 Changing the Appearance of Graphics Objects

ZKA90J.86

ZK·4900·86

5.3 Asking About Area Attributes

The ASK AREA STYLE statement lets you retrieve the value of the current
style. This value is placed in a string variable you supply.

Example

DECLARE STRING which_style

ASK AREA STYLE which_style
GRAPH TEXT AT 0.1,0.6 : "The interior fill style is " + which_style

Similarly, the ASK AREA STYLE INDEX statement retrieves the current
index value of the pattern or hatch style. You can use this value to reset
the index after branching to another program module, as shown in the
following example. The example also stores the initial area color and fill
style. You must supply variables of the appropriate data type with each of
these statements.

Example

PROGRAM Welcome
EXTERNAL PICTURE Menu_setup
DECLARE LONG index_number, which_color
DECLARE STRING fill
ASK AREA STYLE fill
ASK AREA STYLE INDEX index_number
ASK AREA COLOR which_color
!+
!Branch to another module
! -
DRAW Menu_setup

!+
!Return to main program, reset the area attributes
!-
SET AREA STYLE fill
SET AREA STYLE INDEX index_number
SET AREA COLOR which_color

END PROGRAM

Changing the Appearance of Graphics Objects 3-29

3.6 Summary

This chapter has explained how to use the following statements:

• SET/ ASK ... COLOR

• SET/ ASK COLOR MIX
• SET/ ASK ... STYLE
• SET ... SIZE and ASK MAX ... SIZE

These statements allow you to set and inquire about the color, size, and
style attributes of points, lines, and areas. The following chapter shows
you how to change the attributes associated with graphics text.

3-30 Changing the Appearance of Graphics Objects

Chapter 4

Changing Text Attributes

You can change the direction, height, width, spacing, angle, and justifi­
cation of characters in different font designs. This chapter illustrates the
many text attributes that you can access with VAX BASIC statements .

. 1 Selecting a Font

VAX BASIC supports both hardware and software fonts. The number
of available hardware fonts depends on the device you use. VAXstations
support several hardware fonts, while VT125 and VT240 terminals support
one hardware font each. If no hardware fonts are available for a device,
software fonts are used by default. For illustrations of the VAXstation
hardware fonts, see Appendix B. In general, hardware fonts are displayed
faster than software fonts.

Software fonts provide a graphical representation of defined characters.
A font can be defined as a complete set of monospaced or proportionally
spaced characters of a particular printing type, size, and face.

The fonts displayed in this chapter are the fonts that are available on
VT125 and VT240 terminals. These fonts are proportionally spaced and
are known as the Hershey fonts, digitized by A.V. Hershey of the Naval
Surface Weapons Laboratory. The default font and the Hershey fonts are
illustrated in Figure 4-1. The values representing the fonts are -1 through
-23, as illustrated. The default font is software font number -1.

Changing Text Attributes 4-1

Figure 4-1: VAX BASIC Software Fonts

(Font ~~o. -1
Fo=:···r· 1'~0. -2

Font ~Jo. -3

Zofv :::o. -4

Font No. -6

Zofv Zo. -7

Font No. -8
Font No, -9

Zotv 2:0. -10

Fon.t No. -11

Fo1it No. -12

Sia..ni .A·~. - 1 3

EoHyHo. -14

Font N(). -15

Fon.:f; No. -16

Bont ~10. -17

.11.trnt Nu. -1.a
~ont D1l. -HJ

.,, > < (_,, >fi fj'tffi
$.. •'•* .. '1•"11~1,:

Note that none of the statements discussed in this chapter has any effect
on output from the VAX BASIC statements PRINT and PRINT USING.
In graphics programs, it is recommended that you use GRAPH TEXT
statements, not PRINT statements.

You can access the different fonts easily with the SET TEXT FONT
statement. This statement requires a number for the font you want to us1
In addition, you can optionally specify a string expression representing
the degree of precision with which you want the characters drawn. The
following example displays sample characters from the hardware font
and two of the software fonts available on VT125 and VT240 terminals.
Depending on the device you use, the hardware font may be displayed
faster.

4-2 Changing Text Attributes

Example

SET TEXT FONT -1, "CHAR"
GRAPH TEXT AT 0.0,0.7 : "This is hardware font -1"
SET TEXT FONT -8 , "STROKE"
GRAPH TEXT AT 0.1,0.6 : "This is software font -8"
SET TEXT FONT -12 , "STROKE"
GRAPH TEXT AT 0.1,0.3 : "This is software font -12"

Output

This is hardware font -1

Thi!!t is !!toft-wo,refont -B

This l!I 1ofh~ar• font -12

ZK-5510-86

There are three possible values for the precision string:

• STRING

• CHAR

• STROKE (the default)

String precision provides the least degree of accuracy, while stroke pro­
vides the most.

Software fonts can be drawn only with stroke precision. If you request a
software font and do not specify a precision string, VAX BASIC uses stroke
precision by default. Stroke precision displays text characters as accurately
as possible according to the specifications in the font design. Such features
as the text height and the way text is clipped are affected by the precision.
Attributes such as height, spacing, and the expansion factor are accurate
for stroke precision. Software fonts are always drawn accurately regardless

Changing Text Attributes 4-3

of the device; the accuracy with which hardware fonts are drawn is devic
dependent.

You can supply one of two possible values for the precision string when
you specify a hardware font: STRING and CHAR. Hardware fonts cannc
be drawn with stroke precision; if you specify stroke precision for a
hardware font, VAX BASIC displays the software font with the number
that is closest to the font you specified.

The most significant trade-off between hardware and software fonts is
speed; hardware fonts can be much faster than precise software fonts.
If you want a faster display of characters, you should specify CHAR
precision with the following statement:

SET TEXT FONT 1, "CHAR"

Character precision clips the text after the last complete character, while
stroke precision clips the text exactly at the edge of the boundary of
the display area, mid-character if necessary. With string precision, text
is clipped either by character or by stroke precision depending on the
capabilities of the device you use. The effect of each of these precision
values may not be discernible in all cases, as the precision of text clippin~
depends on the capabilities of the device you use. Clipping is discussed
fully in Chapter 5.

The following example illustrates the effect of the precision value on the
clipping of the text:

4-4 Changing Text Attributes

Example

SET TEXT HEIGHT 0.06
!+
!Select the hardware font for STRING precision
!-
SET TEXT FONT -1 , "STRING"
GRAPH TEXT AT 0.06,0.6 :

"Clipping for STRING precision varies with each device"
!+
!Select the hardware font with CHAR precision
!_
SET TEXT FONT -1 , "CHAR"
GRAPH TEXT AT 0.06,0.6 :

"CHARACTER precision clips text after complete characters"
!+
!Select software font -3 with STROKE precision
!-
SET TEXT FONT -3 , "STROKE"
GRAPH TEXT AT 0.06,0.4 :

"STROKE precision clips text mid-character if necessary"

Output

Clipping for STRING

CHARACTER precision

STROKE precision clips text mid-charac

ZK·5509·86

Note that if you request a software font with character or string precision,
VAX BASIC displays the text with the hardware font that is closest in
number to the font you requested. Similarly, if you request a software
font that the device does not support, VAX BASIC displays the text with
the hardware font that is closest in number to the font you requested.

Changing Text Attributes 4-5

You can retrieve the current value of the text font with the ASK TEXT
FONT statement. In addition, you can optionally retrieve the current
text precision value. The following statement retrieves the font number
and the precision string in the variables font_number and what_precisiori
respectively.

Example

DECLARE LONG which_font, ~

STRING what_precision
ASK TEXT FONT which_font, what_precision

4.2 Setting the Character Height

The SET TEXT HEIGHT statement lets you set the height with which
characters of text are drawn. The measurement for text height reflects
the height of the uppercase letters compared to the height of the default
drawing board: the height of the default drawing board is 1 unit, and th
default height of uppercase characters is 0.035 on the same scale. When
you change the height of the text characters, any subsequent GRAPH
TEXT statement writes the text in the new height. Lowercase characters
are drawn in proportion to the height of the uppercase characters ac­
cording to the specifications in the font design. The following statement
increases the height of the characters to a height of 0.05.

SET TEXT HEIGHT 0.06

The accuracy of the height in the display is affected by the precision use<
in a previous SET TEXT FONT statement. To achieve the exact height yo
specify, text should be drawn with software fonts with STROKE precisior
Hardware fonts with CHARACTER and STRING precision both map the
height you request to the closest character size your device supports.

The ASK TEXT HEIGHT statement retrieves the current value for the tex
height and stores the value in a real variable you supply. This value can
be used to reset the height of characters at another point in your progran

ASK TEXT HEIGHT height_var

The following example illustrates the use of the SET TEXT HEIGHT and
ASK TEXT HEIGHT statements.

4-6 Changing Text Attributes

Example

DECLARE SINGLE old_height
ASK TEXT HEIGHT old_height
SET TEXT FONT -3, "STROKE"
SET TEXT HEIGHT 0.08
GRAPH TEXT AT 0.06,0.7 : "This is height 0.08"

SET TEXT HEIGHT old_height
GRAPH TEXT AT 0.06,0.6 : "This is back to the last setting"

Output

This is heiqht 0.08

ZK-4909-86

When you change the window height with the SET WINDOW statement,
you may also have to change the text height. For more information about
changing the window height, see Chapter 5.

Changing Text Attributes 4-7

4.3 Setting the Character Height-to-Width Ratio

Each font has a specified width for each character directly related to
the height. Therefore, when you change the height of a character, you
automatically change the width proportionately. You can alter the normal
proportions of each character with the SET TEXT EXP AND statement. Tfo
initial value of the text width is 1.0, which displays characters with the
height-to-width ratio specified in the font design. The following example
demonstrates the use of the SET TEXT EXP AND statement by drawing th1
uppercase R and changing the height-to-width ratio. The ratio you suppl)
must be greater than zero.

Example

DECLARE STRING CONSTANT text_string = "RRR"
!+
!Set height but display normal proportions
!-
SET TEXT FONT -3 , "STROKE"
SET TEXT HEIGHT 0.05
GRAPH TEXT AT 0,0.8: text_string
!+
!Change the height-to-width value
!-
SET TEXT EXPAND 3
GRAPH TEXT AT 0,0.6 : text_string
!+
!Alter the height-to-width ratio, same height
!
SET TEXT EXPAND 6
GRAPH TEXT AT 0,0.4 : text_string
END

4-8 Changing Text Attributes

Output

RRR

RRR

The ASK TEXT EXP AND statement lets you retrieve the current height­
to-width ratio. You can use this value to reset the ratio later in your
program.

Example

DECLARE SINGLE how_wide
ASK TEXT EXPAND how_wide

SET TEXT EXPAND 2.0

SET TEXT EXPAND how_wide

.4 Setting the Spacing Between Characters

Just as each font has a specified height-to-width ratio, each font has a
specified amount of space between adjacent characters. The default space

Changing Text Attributes 4-9

value between characters is zero and is set by the font design. You can
change this value with the SET TEXT SPACE statement. Characters are
drawn further apart when you supply this statement with a positive valu
If you supply a negative value, the characters are drawn closer together.
The following example illustrates the effect of the SET TEXT SP ACE
statement.

Example

SET TEXT FONT -8 , "STROKE"
SET TEXT HEIGHT 0.04

SET TEXT SPACE -0.2
GRAPH TEXT AT 0.1,0.8 "These characters are tight"

SET TEXT SPACE 0
GRAPH TEXT AT 0.1,0.6 "This spacing is specified by the font"

SET TEXT SPACE 0.2
GRAPH TEXT AT 0.1,0.4 "These characters are spaced out"

Output

TMs spacir11s:1 t,s specified 0'1/ the font

Thr,;,i;;r,;, charactr:ir8 at''1 8pact1:1d CH.Lt

ZK·4911·86

You can retrieve the current value for the spacing between characters wi1
the ASK TEXT SP ACE statement, which assigns the value to the numeri~
variable you supply.

ASK TEXT SPACE spaced_out

4-10 Changing Text Attributes

,_5 Setting the Text Angle

Text is normally drawn with a horizontal orientation; that is, the first
character is placed on the left and subsequent characters are drawn to
the right along a horizontal base. This is the default angle value of zero.
Like other text attributes, the text angle can be changed. To do this, you
supply the SET TEXT ANGLE statement with a numerical value for the
text angle. The value can be in either radians or degrees, according to
the option you select with the OPTION statement. A nonzero text angle
value causes text to be rotated from the normal orientation by the number
of degrees or radians specified. Text rotation is in a counterclockwise
direction; angles that are integer multiples of 180° display strings of
characters horizontally and angles that are integer multiples of 90° display
text vertically. Negative values cause the text to be rotated in a clockwise
direction.

The following example illustrates the effect of the SET TEXT ANGLE
statement:

Example

!+
!Set angle option to degrees
! -
OPTION ANGLE = DEGREES
SET TEXT HEIGHT 0.05
SET TEXT FONT -16, "STROKE"
SET TEXT ANGLE 90
GRAPH TEXT AT 0.5,0.5 : "90 degrees"

Changing Text Attributes 4-11

SET TEXT ANGLE 180
GRAPH TEXT AT 0.46,0.6 "180 degrees"
SET TEXT ANGLE 270
GRAPH TEXT AT 0.6,0.46 "270 degrees"
!+
!Reset to the default angle
! -
SET TEXT ANGLE 0
GRAPH TEXT AT 0.66,0.6 : "0 degrees"
END

Output

ZKA914-86

The corresponding ASK TEXT ANGLE statement assigns the current value:
of the text angle to a numeric variable you supply, for example:

OPTION ANGLE = DEGREES
DECLARE SINGLE turn
ASK TEXT ANGLE turn

4-12 Changing Text Attributes

& Setting the Text Path

The normal text path places each character to the right of the previous
character. The text in this manual is printed with a normal, or RIGHT,
text path. Changing the text path is useful for labeling the axes in graphs.
You can change the text path of the individual characters with the SET
TEXT PATH statement. You supply a string expression for the path. You
can enter the string in upper- or lowercase characters. Valid values for the
string expression are

• RIGHT (the default)

• LEFT

• UP
• DOWN

Characters are placed according to the value specified in the SET TEXT
PATH statement as well as the current value of the text angle. The
following example illustrates the four possible text paths using the default
text angle:

Example

OPTION ANGLE = DEGREES
SET TEXT FONT -11 , "STROKE"
SET TEXT HEIGHT 0.06
!+
!Change the text path
!-
SET TEXT PATH "Up"
GRAPH TEXT AT 0.4,0.7 "Up"

SET TEXT PATH "Left"
GRAPH TEXT AT 0.4,0.6 "Left"

Changing Text Attributes 4-13

SET TEXT PATH "Down"
GRAPH TEXT AT 0.4,0.3 "Down"
!+
!Reset path to default
!-
SET TEXT PATH "Right"
GRAPH TEXT AT 0.1,0.1 "Right"
END

Output

p
[.T

tfeL

R·ight

D

'ti)

n

You can retrieve the current value of the text path with the correspondin!
ASK TEXT PATH statement. You supply this statement with a string
variable for the path.

DECLARE STRING which_way
ASK TEXT PATH which_way

4-14 Changing Text Attributes

1 Setting the Text Justification

Text on a printed page is usually justified flush against the left margin,
and is often justified on the right margin also. The text in this manual
is justified only on the left margin. In VAX BASIC, you can justify text
strings in a variety of ways.

The normal alignment of text strings varies with the direction of the text
path, as shown in Table 4-1. For example, each of the words in this
sentence follows a RIGHT text path with the horizontal justification at the
left of each word and the left of each page. The vertical justification is at
the base of each word.

Execution of a SET TEXT JUSTIFY statement allows you to alter the
normal alignment of the text relative to the starting point you specify.
This statement requires two arguments: string expressions for both the
horizontal and vertical components of justification. The valid values for
these string expressions are listed in Table 4-2. The values of NORMAL
refer to the normal alignment as specified in Table 4-1. Following is an
example of a SET TEXT JUSTIFY statement:

SET TEXT JUSTIFY "Left" , "Base"

Table 4-1: Normal Text Alignment

Text Path

RIGHT
LEFT
UP
DOWN

Normal Horizontal
Alignment

LEFT
RIGHT
CENTER
CENTER

Normal Vertical
Alignment

BASE

BASE

BASE

TOP

The text starting point refers to the x- and y-coordinates you supply with
the GRAPH TEXT statement. For instance, in the following statement, the
text starting point is 0.2,0.5.

GRAPH TEXT AT 0.2,0.6 :"Sample text"

Changing Text Attributes 4-15

Table 4-2: Text Justification Values
Component

Horizontal

Vertical

Values

NORMAL

LEFT

CENTER

RIGHT

NORMAL

TOP

CAP

HALF

BASE

BOTTOM

Explanation

Varies with the text path

Leftmost character placed at the text startin
point

Center of the text string placed at the text
starting point

Text string placed so that the rightmost
character in the text string ends at the text
starting point

Varies with the text path

Top of the text string aligned with the text
starting position

Capline of the text string (highest point of
the uppercase letters) aligned with the text
starting position

Starting point placed beginning an imaginar
horizontal line through the middle of the te:
string

Baseline of the text string aligned with the
starting point

Bottom of the text string (lowest point of
letters such as p and q) aligned with the
starting position

The following example illustrates many of the ways you can justify
text. For purposes of illustration, the starting point for each text string
is emphasized with a line beginning at the same point as the text string
starting point. The example uses the default text angle of 0°. The first
argument represents the value of the horizontal component of justificatior
and the second argument represents the vertical component. Note that th
values for NORMAL are dependent on the current text path, which in thi
case is the default, RIGHT.

4-16 Changing Text Attributes

Example

SET TEXT HEIGHT 0.04
SET TEXT FONT -3 , "STROKE"
SET LINE COLOR 2

SET TEXT JUSTIFY "NORMAL", "NORMAL"
GRAPH TEXT AT 0.4,0.96 : "Normal/normal"
GRAPH LINES 0.4,0.96; 0.6,0.96

SET TEXT JUSTIFY "NORMAL", "TOP"
GRAPH TEXT AT 0.4,0.86 : "Normal/top"
GRAPH LINES 0.4,0.86; 0.6,0.86

SET TEXT JUSTIFY "NORMAL" , "CAP"
GRAPH TEXT AT 0.4,0.76 : "Normal/cap"
GRAPH LINES 0.4,0.76; 0.6,0.76

SET TEXT JUSTIFY "NORMAL" , "HALF"
GRAPH TEXT AT 0.4,0.66 : "Normal/half"
GRAPH LINES 0.4,0.66; 0.6,0.66

SET TEXT JUSTIFY "NORMAL" , "BASE"
GRAPH TEXT AT 0.4,0.56 : "Normal/base"
GRAPH LINES 0.4,0.66; 0.6,0.66

SET TEXT JUSTIFY "NORMAL" , "BOTTOM"
GRAPH TEXT AT 0.4,0.46 : "Normal/bottom"
GRAPH LINES 0.4,0.46; 0.6,0.46

SET TEXT JUSTIFY "LEFT" , "NORMAL"
GRAPH TEXT AT 0.4,0.36 : "Left/normal"
GRAPH LINES 0.4,0.36; 0.6,0.36

SET TEXT JUSTIFY "CENTER", "NORMAL"
GRAPH TEXT AT 0.4,0.26 : "Center/normal"
GRAPH LINES 0.4,0.26; 0.6,0.26

Changing Text Attributes 4-17

SET TEXT JUSTIFY "RIGHT", "NORMAL"
GRAPH TEXT AT 0.4,0.15 : "Right/normal"
GRAPH LINES 0.4,0.15; 0.6,0.16
END

Output

The following example changes the justification, path, and height of the
text to label a simple bar chart. The chart shows the reported number
of cases of communicable diseases in children in a small community
during one year. The example includes the data within the program.
Alternatively, if data is stored in a file, the file can be opened and read in
the usual manner from within the program.

Example

OPTION TYPE = EXPLICIT
DECLARE SINGLE start_y
DECLARE LONG loop
RECORD medical_record

STRING disease
SINGLE patients

END RECORD medical_record
DECLARE medical_record statistics(4)

4-18 Changing Text Attributes

!+
!Get the data
!-
DATA "Mumps",0.07,"Measles",0.16, t

"Chicken Pox", 0.60,"Scarlet Fever",0.12, t
"Tuberculosis",0.02

FOR loop = 0 TO 4
READ statistics(loop)::disease
READ statistics(loop)::patients

NEXT loop
!+
!Draw the axes
!-
GRAPH LINES 0.01,1; 0.01,0.2; 1,0.2
!+
!Choose a new font
! -
SET TEXT FONT -3 , "STROKE"
SET TEXT HEIGHT 0.04
SET TEXT EXPAND 1.76
GRAPH TEXT AT 0.1,0.06: "Number of Cases"
SET TEXT JUSTIFY "CENTER" , "TOP"
SET TEXT EXPAND 1
GRAPH TEXT AT loop/10,0.2 "I" FOR loop= 1 TO 10
GRAPH TEXT AT loop/100,0.16 STR$(loop) FOR loop 10 TO 90 STEP 10
!+
!Reset the text attributes to label bars
! -
SET TEXT PATH "RIGHT"
SET TEXT JUSTIFY "LEFT", "HALF"
!+
!Plot the data
!-
SET AREA STYLE "HATCH"
FOR loop = 0 TO 4

start_y = 0.2 + (loop* 0.16)
SET AREA STYLE INDEX INTEGER(start_y * 14)
GRAPH AREA 0.01,start_y; t

!+

statistics(loop)::patients,start_y; t
statistics(loop)::patients,(start_y + 0.1); t
0.01,(start_y + 0.1)

!Label the bars
! -
GRAPH TEXT AT statistics(loop)::patients,(start_y + 0.06) t

statistics(loop)::disease
NEXT loop
END

Changing Text Attributes 4-19

Output

ut:11erculo1is

111111 Scorlet F•v•r

-ChickenP011

easies

I I I I I I I I I
10 20 JO 40 50 60 70 BO 90

N1..1,....,..,1:>ar of Coeee

ZK·5508·86

You can retrieve the values of both the horizontal and vertical justificatior
components by supplying string variables with the ASK TEXT JUSTIFY
statement.

ASK TEXT JUSTIFY which_horiz , which_vert

4.8 Asking About Text Dimensions

You can think of any graphics text string as being surrounded by an
imaginary box. Many characters extend beyond the box in one or more
directions, while other characters are defined within the perimeter of the
box. As you alter the height, width, and angle of characters, you also
alter the dimensions and positioning of the text box. Although you know
the starting position of the text string, it is often difficult to predict where
the text string will end. If you know where the text string ends, you
know where to start a subsequent text string (for instance, if you want to
concatenate strings).

You can retrieve the dimensions of this text box for any text string with
the ASK TEXT EXTENT statement. You supply the statement with the
text string and the starting point, as well as two arrays to retrieve the
coordinates of the comer points of the box.

4-20 Changing Text Attributes

If you want to attach an additional text string, you need to know the
coordinates of the nearest point where subsequent text can be added. The
coordinates for this concatenation point can be retrieved with the ASK
TEXT POINT statement. The following example illustrates both the ASK
TEXT EXTENT and the ASK TEXT POINT statements:

Example

OPTION TYPE = EXPLICIT
DECLARE SINGLE concat_x, concat_y
DECLARE STRING CONSTANT text_string =

"How much space does this text fill?"
DIM SINGLE x_coords(3), y_coords(3)

SET TEXT FONT -3 , "STROKE"
SET TEXT HEIGHT 0.04
ASK TEXT EXTENT , text_string

AT 0.0,0.6
: x_coords, y_coords

ASK TEXT POINT , text_string
AT 0.0,0.6

!+
!Display the text
!-

concat_x, concat_y

GRAPH TEXT AT 0.0,0.6 : text_string
!+
!Use the text box coords to draw the text box
!by graphing a hollow area
!-
SET AREA STYLE "Hollow"
MAT GRAPH AREA x_coords , y_coords
!+
!Use the concatenation point to add on a string
! -
GRAPH TEXT AT concat_x, concat_y : "VAX BASIC knows!"
END

I&
I&

Changing Text Attributes 4-21

Output

How much space does this text flllWAX BASIC knows!

ZK-4907-86

For another example using the ASK TEXT POINT statement, see the SET
TEXT COLOR statement in Chapter 9.

4.9 Summary

This chapter has explained how to use the following statements:

• SET/ ASK TEXT FONT

• SET/ASK TEXT HEIGHT

• SET/ASK TEXT ANGLE

• SET/ ASK TEXT SP ACE

• SET/ ASK TEXT EXP AND

• SET/ASK TEXT PATH

• SET TEXT JUSTIFY

• ASK TEXT EXTENT

• ASK TEXT POINT

4-22 Changing Text Attributes

The examples so far in this manual have all placed graphics objects in the
default drawing board, where 0,0 is a point in the bottom comer of the
terminal screen. It is often desirable to change the scale and orientation of
the coordinate plane. The following chapter shows you how to alter the
drawing board to suit your own needs.

Changing Text Attributes 4-23

Chapter 5

The Drawing Surface

Using the default drawing board allows you to create simple graphics on
your screen quickly and easily. At the same time, using the default limits
flexibility in programming techniques and the format of screen displays.
This chapter shows you how to define and extend the default drawing
board to suit your own application and describes how to:

• Change the window setting

• Define transformations

• Clip images

1 Setting the World Window

Whether you have plotted points on paper with a grid or plotted points
in your mind's eye, so far you have expressed the position of these points
within the boundaries of the default drawing board. The default drawing
board is also known as the world window. The coordinates that you use to
define the points in the world window are known as world coordinates.1

The boundaries of the default world window are 0,1,0,l for the left, right,
bottom, and top edges respectively. The world coordinates of the points
you have plotted have been contained within these same limits; that is,
the x- and y-coordinates of points in the default world window have
values ranging from 0 through 1. It is not always convenient or suitable
to restrict the coordinates of points to values from 0 through l, nor is it
necessary. You can change the boundaries of the world window and the
range of world coordinate values of points that can be displayed on your
screen.

Another common term for world coordinates is problem coordinates.

The Drawing Surface 5-1

You can set the boundaries of the world window to your own preferenct
For example, window boundaries of -20,20,-20,20 allow you to plot poir
with negative as well as positive coordinates and accommodate 0,0 as th
center point. Boundaries need not be symmetrical; you can define the
x-axis as being, for example, 0 to 50, with a y-axis of 40 to 240.

The boundaries you set merely reflect a scale. Whatever boundaries you
select, VAX BASIC still displays graphics images on the same area on yo
screen, unless you make further changes as described in later sections oi
this chapter.

To set new boundaries for your world window, use the SET WINDOW
statement. The following example sets the world window boundaries to
be 0,100,0,100. The program displays a hexagon; the coordinates of the
points of the hexagon can now range from 0 to 100 because of the new
window boundaries.

Example

DECLARE LONG loop, SINGLE x, y
!+
!Set the world window
! -
SET WINDOW 0,100,0,100
!+
!Express coordinates in range of 0 to 100
!-
DATA 70,50,60,30,40,30,30,60,40,70,60,70,70,50
!+
!Draw hexagon
!-
SET LINE SIZE 5
FOR loop = 0 TO 6

READ x,y
PLOT LINES x, y;

NEXT loop
END

5-2 The Drawing Surface

Output

In Chapter 2, an adjustment was made to the formula that produces
the coordinate points for the sine curve. The adjustment was necessary
because some values fall outside the default world window boundaries.
When world window boundaries are set to accommodate negative values,
this adjustment is no longer necessary. The following example sets the
world window boundaries to 0,2•Pl,-l,1. These boundaries accommodate
the coordinate values of all points on the sine curve. This example also
draws the axes.

The Drawing Surface 5-3

Example

OPTION TYPE = EXPLICIT
DECLARE SINGLE loop_index, x, y
!+
!Set the window boundaries
!-
SET WINDOW 0, 2•PI, -1, 1
!+
!Draw in the axes
!-
PLOT LINES 0,0; 2•PI,O !horizontal axis
PLOT LINES 0,-1; 0,1 !vertical axis
!+
!Plot the coordinates of points on sine curve
!-
SET LINE SIZE 3
SET LINE COLOR 2
FOR loop_index = 0 TO 2•PI STEP 0.1

PLOT LINES loop_index, SIN(loop_index);
NEXT loop_index
PLOT LINES (2•PI + 0.1), SIN(2•PI + 0.1)
END

Output

When you set the window, you may also need to change the height of th
text. The default text height is 0.035 world coordinate units. After you
set new boundaries with the SET WINDOW statement, the proportion

5-4 The Drawing Surface

of the text height in relation to the height of the world window changes.
To maintain a text height that is equivalent to the default height, use the
following formula:

new_text_height = max_height - min_height * 0.035

Example

SET WINDOW 0,10,500,800
new_text_height = (800 - 500) * 0.035
SET TEXT HEIGHT new_text_height

Notice the values passed to the SET TEXT HEIGHT statement in the
following example. The world window height is set from 0 to 2000;
therefore, the default text height of 0.035 is no longer appropriate. The
example alters the text height to a height suitable for the display.

When you plot values on a graph, you can use the axes as measures of the
values you are working with. You can set the world window to directly
correspond to the values you are plotting. The following example sets
the world window boundaries to correspond to the years 1979 through
1986, and to the wheat yield in millions of bushels. The graph shows
only the years under study. The axes are drawn well within the window
boundaries to leave room for explanatory text on the axes.

Example

OPTION TYPE = EXPLICIT
DECLARE LONG year
DIM LONG bushels(1980 TO 1986)
!+
!Set window boundaries to suit data
!-
SET WINDOW 1979,1986,0,2000
!+
!Initialize array with bushels per year data
!-
bushels(1980) = 1300
bushels(1981) = 1400
bushels(1982) = 1700
bushels(1983) = 1000
bushels(1984) = 1200
bushels(1985) = 1600

The Drawing Surface 5-5

!+
!Draw the axes
!-
GRAPH LINES 1980,2000; 1980,100; 1986,100
!+
!Plot the coordinates for bushels of wheat
!-
PLOT LINES : year,bushels(year); FOR year 1980 TO 1986
!+
!Set text font ~ height for headers
! -
SET TEXT FONT -1, "CHAR"
SET TEXT HEIGHT 60
GRAPH TEXT AT 1981,1900 : "WHEAT HARVEST"
!+
!Graph text for vertical axis
!-
SET TEXT PATH "DOWN"
GRAPH TEXT AT 1979.6,1960 : "Millions of Bushels"
!+
!Graph text for horizontal axis
! -
SET TEXT PATH "RIGHT"
SET TEXT JUSTIFY "LEFT" , "TOP"
GRAPH TEXT AT (year+ 0.26),120 "I" FOR year= 1980 TO 1986
!+
!Place markers on axis for years
!-
SET TEXT FONT -1, "STROKE"
SET TEXT JUSTIFY "CENTER" , "NORMAL"
GRAPH TEXT AT (year+ 0.26),6 : NUM$(year) FOR year 1980 TO 1986
END

5-6 The Drawing Surface

Output

WHEAT HARVEST

l9SO L9Sl l9S2 L9S3 l9S'+ L9S5

~-~~~~~~~-)

A complementary ASK WINDOW statement allows you to retrieve the
values of the world window boundaries. For example, the following
statement returns the implied boundary values in the variables left-1,
right_1, bottom, and top. These values can be used to reset the world
window at a later point in a program, or to calculate a suitable text height.

Example

DECLARE SINGLE left_1, right_1, bottom, top

ASK WINDOW left_1,right_1,bottom,top
!+
!Set text height to 1/10th of current window height
!-
SET TEXT HEIGHT ((top - bottom)/10)

Both the SET WINDOW and ASK WINDOW statements accept an optional
parameter for the transformation number. Transformations are explained
in the following section.

The Drawing Surface 5-7

5.2 Defining a Transformation

So far, the images you have plotted on your drawing surface seem to be
mapped directly onto the default drawing board on your screen. Howeve
your screen can be any supported graphics device. Considerable work is
done "behind the scenes" to make the image you plot portable to any
graphics output device. In fact, the image you define in the world windo'
must go through a transformation to be displayed as output on any one o
the devices supported by VAX GKS.

A transformation is the procedure VAX BASIC performs on an image
defined in a window so that the image can be displayed on one of the
supported devices. Figure 5-1 illustrates the concept of this internal
processing by showing how one image defined in world coordinates is
displayed on different output devices.

5-8 The Drawing Surface

igure 5-1 : Transformations Let You Display Images on
Many Supported Devices

NDC
Space

l

D ig:::J

J

ZK-4832-85

The transformation occurs in an abstract square coordinate plane known
as the Normalized Device Coordinate (NDC) space. VAX BASIC maps
the image you define onto NDC space; this is known as a normalization
transformation. The image is then mapped to the output device; this
is known as the device transformation. You can alter the internal pro­
cessing of images to define your own transformations and thereby gain
increased flexibility in your graphics displays. This chapter describes only
normalization transformations; device transformations are explained in
Chapter 8.

NDC space has boundaries that are always 0,1,0,l for the left, right,
bottom, and top boundaries respectively. You can select portions of NDC
space in which to position your image, you can position several images
onto NDC space, and you can select which portion of NDC space to map

The Drawing Surface 5-9

to your screen. Figure 5-2 illustrates how NDC space can be used to
build up a screen display. Separate images can be defined in windows
with different boundaries, projected onto different portions of NDC space
and displayed as one composite image on the screen. This figure also
illustrates the progression of any images from your drawing surface to
NDC space, and from NDC space to your screen.

Figure 5-2: Creating a Composite Image

NOC Space

ZK-4833-85

A transformation is defined using windows and viewports. A window is
where an image is defined. A viewport is where an image is displayed or
projected. The image defined in a window is projected onto a viewport.
The progression of a transformation can be seen as a two-part process:

1. An image is defined in the world window.

2. The image in the world window is projected onto the world viewport
in NDC space.

When you change the world window or world viewport defaults,
you are defining a new transformation. This process is illustrated in
Figures 5-3, 5-4, and 5-5.

5-10 The Drawing Surface

:igure 5-3: The Transformation of an Image Through NDC Space

NOC Space

World Window ---~ World Viewport t---~!' Screen Display

ZK-5105-86

You alter the boundaries of the world window with the SET WINDOW
statement, as shown in Section 5.1. The default world window bound­
aries are O,l,0,1. Figure 5-4 illustrates a world window of 0,100,0,100;
coordinate values of points in this window can range from 0 through 100.

The Drawing Surface 5-11

Figure 5-4: Defining an Image in a World Window

World Window

100,100

0,0

100,0

ZK-4835-85

The image defined in the world window or drawing surface is projected
onto the world viewport in NDC space, as shown in the following section

5.3 Setting the World Viewport

Each of the examples in Section 5 .1 changes the boundaries for the world
window without making any further changes. The images are still mappec
to the default viewport on NDC space. You can select portions of NDC
space and create more than one world viewport.

Using the wheat yield example, you can place the same graph in the lowe1
left comer of NDC space, rather than placing it in all of NDC space. The
default world viewport is all of NDC space, with boundaries of 0,1,0,l.
The SET VIEWPORT statement allows you to set new boundaries for
the world viewport. You can use either all of NDC space or a portion
of it: you cannot use boundary values beyond the range of 0 through 1.
Figure 5-5 illustrates a world viewport of 0,0.5,0,0.5.

5-12 The Drawing Surface

Figure 5-5: Projecting an Image onto a World Viewport

World Window World Viewport

100,0

I
I

--ic~5,0.5

I -
I
I
I

1,0

ZK-4834-85

The following statement limits the world viewport to the lower left corner
of NOC space. If no other changes are made, the addition of this one
statement prior to any graphics output statements in the program causes
the line chart to be displayed in the lower left corner of the display area.

The Drawing Surface 5-13

Example

SET VIEWPORT 0,0.7,0,0.7
!+
!Continue with output of wheat yield data
!-

Output

ll1'0 191'1 !9!12 !9~ !'ii1&'4 L!ll!~

~-~~~~~~---)
ZK·5512·86

Notice that a square diagram has been transformed to a square portion
of NDC space. When the window and viewport shapes do not match,
the proportions are distorted. The ratio of one scale to another is known
as the aspect ratio. When the aspect ratio is not 1:1, distortion will be
apparent to some degree.

The following display demonstrates the scaling problems that can occur.
In this case a square world window is transformed to a rectangular world
viewport. The mismatch of shapes results in a distortion of the scales.
The aspect ratio is discussed further in Chapter 8 in relation to device
transformations.

5-14 The Drawing Surface

Example

!+
!Change the viewport for the default transformation
!-
SET VIEWPORT 0,0.6,0,1
!+
!Continue with wheat/year data as before
!-

Output

(WHEAT HARVEST

l~ 1$1 li2 1'5 II~ 196~

~-~~~~~~~-)
ZK·5513·B6

You can retrieve the boundaries of the current viewport with the ASK
VIEWPORT statement. For example:

ASK VIEWPORT left_1,right_1,bottom,top

The Drawing Surface 5-15

5.4 Multiple Transformations

Several images can each be placed in different sections of NOC space,
and then all of NOC space displayed on the screen. Each image that
requires a different window or viewport requires a transformation; this
opens up the potential for confusion between one transformation and
another. To keep track of the window and viewport you select for a
particular display, you can identify each transformation with a number.
The transformation number must be an integer from 1 to 255. Once a
particular transformation has been defined, you can refer to it again by the
same number.

Transformations can be optionally specified in the SET WINDOW and SET
VIEWPORT statements explained earlier. The default transformation is 1.
At the start of program execution, transformation 1 consists of a window
and viewport with boundaries of 0,1,0,1. You can redefine transformation
1 to your choice of window and viewport boundaries.

If you do not specify a transformation number, VAX BASIC uses the
default transformation of 1. A statement such as the following sets up
the new window boundaries for transformation l, because no other
transformation is specified.

SET WINDOW 0,100,0,100

In the examples so far in this chapter, only one transformation has been
defined within a program. When several transformations are defined
in a program, you should specify the transformation number in SET
VIEWPORT and SET WINDOW statements.

SET VIEWPORT , TRAN 2 : 0.6,1,0.6,1

Only one transformation is current for displaying points at a given time
during execution. You can specify which transformation is the current one.
Otherwise, the last transformation you set in your program remains the
current transformation. The current transformation is explicitly established
with a SET TRANSFORMATION statement, for example:

SET TRANSFORMATION 2

You can implicitly establish the current transformation with a SET
WINDOW or SET VIEWPORT statement. For instance, the following
statement implicitly sets the current transformation to 7. The window
boundaries for any other transformations you may have defined remain
intact and unaffected by this SET VIEWPORT statement.

5-16 The Drawing Surface

SET VIEWPORT, TRAN 7 : 0,0.6,0,0.6

Subsequent graphics output statements use transformation 7 until VAX
BASIC executes another SET TRANSFORMATION, SET WINDOW, or
SET VIEWPORT statement. The ASK TRANSFORMATION statement
allows you to retrieve the number for the transformation that is current,
for example:

DECLARE LONG current
ASK TRANSFORMATION current

In the following example, transformation 1 is redefined and an additional
transformation, 2, is defined. A SET TRANSFORMATION statement sets
the current transformation to 1 for subsequent graphics output.

Example

!Tran 1 becomes the current transformation
SET WINDOW , TRAN 1 : 60,100,0,260

!Tran 2 now becomes the current transformation
SET WINDOW , TRAN 2 : -6,6,-6,6

!Tran 1 now becomes the current transformation
SET TRANSFORMATION 1
GRAPH AREA : 60,0; 60,260; 100,260; 100,0

The following example displays the image of a swan using the transforma­
tion identified as 1. Notice that the transformation number is also referred
to in the SET WINDOW and SET VIEWPORT statements. In this example,
only one transformation is defined. The data provided in this picture is
used in examples in later chapters of this manual. The image of the swan
is transformed to the top right comer of NDC space.

Example

PROGRAM Draw_swan
EXTERNAL PICTURE swan
SET WINDOW , TRAN 1 : 0,100,0,100
SET VIEWPORT , TRAN 1 : 0.6,1,0.6,1
DRAW swan

END PROGRAM

The Drawing Surface 5-17

PICTURE swan
OPTION TYPE = EXPLICIT
DECLARE LONG counter
DIM SINGLE x_array(98),y_array(98), &

mark_x(3),mark_y(3), &
eye_x(2),eye_y(2), &
wing_area_x(28),wing_area_y(28)

Outline_data:
DATA 82,80.6,80,80.6,76,81,72,81.6,70,83.6,68,84,66,84.6, &
63,83,61,82,60.6,80,60.66,78,62.6,76,64,70,66.6,67,70,62.6, &
72,60,76,67,78,64,80,60,82.6,46,84,40,86.6,30,87,24.6,87,20, &
86,17.6,83.6,13.6,82,12,80,11.6,77,10,70,9,66,9,60,9.2,63,10, &
60,10.6,40,12,36,14,30,18,27,20,20,27.6,14,36,12,40,8.6,60,8, &
69,10,62.6,14,48,20,46,17,60,16.76,67,20,60,18,61.6,20,67,27. &
76,27.6,72,37,86,36,80,34,76,32.26,70,32,66,32.26,60,32.36, &
68,34,63,36,60,38,46,40,41,43.6,38,48,34,62,32.6,60,31,63,32, &
69.6,36.6,70.6,37,72,40,70.6,43,69.6,47,68.6,60,66.6,66,62.6, &
60,60,66,67.6,70,66,76,64,80,64.26,83,64,84.6,66,87,69,90,60, &
91,63,92.26,66.6,93,68,92.76,70,92,71.6,91,73,89.6,74,87,76.6, &
86,78,84,80,82,82,82,80,80.6,82,80.6

Wing_area_data:
DATA 32.36,68,34,63,36,60,38,46,40,41,43.6,38,48,34,62,32.6, &
60,31,63,32,69.6,36.6,70.6,37,32.36,68,30.06,60,28,42,27.6, &
44.6,28.6,30,30,24,31.6,20,36,14,40,12,46,13,60,14,63,16, &
68.6,17.6,61,19,64.6,22,69,30,70.6,37

Head_mark_data:
DATA 73,87,70,86,73,86,73.16,86,67,89,69,88,70.6,90

READ x_array(counter),y_array(counter) FOR counter= OY. TO 98Y.
READ wing_area_x(counter),wing_area_y(counter) FOR counter= OY. TO 28Y.
READ mark_x(counter),mark_y(counter) FOR counter= OY. TO 3Y.
READ eye_x(counter), eye_y(counter) FOR counter= OY. TO 2Y.

Display_the_swan:
SET LINE COLOR 3Y.
SET LINE STYLE 1
MAT GRAPH LINES x_array,y_array

5-18 The Drawing Surface

SET AREA STYLE "PATTERN"
MAT GRAPH AREA wing_area_x,wing_area_y
SET LINE COLOR ·2%
MAT GRAPH LINES eye_x,eye_y
MAT GRAPH AREA mark_x,mark_y

END PICTURE

Output

(

ZK 4916·86

You can also specify a transformation in the ASK WINDOW and ASK
VIEWPORT statements, for instance:

ASK WINDOW , TRAN 4 : left_1,right_1,bottom,top

Use of these statements is further illustrated in the following example,
which transforms one face onto fourteen different portions of NDC space.
Adding some text makes a total of fifteen transformations. Without
changing the current transformations, all of the faces would have been
placed directly over the first in the top left section of NDC space. This
example uses a simple picture called face. Notice that the transformations
are defined before each picture invocation. Chapter 6 provides details
governing the use of pictures.

The Drawing Surface 5-19

Example

PROGRAM draw_crowd
EXTERNAL PICTURE face
!+
!Select the default world window for all transformations
!-
SET WINDOW , TRAN loop : 0,1,0,1 FOR loop = 1 TO 16
!+
!Set up fourteen different world viewports in NDC space
!-
SET VIEWPORT TRAN 1 o. 0.2, 0.8,
SET VIEWPORT TRAN 2 0.2, 0.4, 0.8,
SET VIEWPORT TRAN 3 0.4, 0.6, 0.8,
SET VIEWPORT TRAN 4 0.6, 0.8, 0.8,
SET VIEWPORT TRAN 6 0.8, 1, 0.8,
SET VIEWPORT TRAN 6 0.1, 0.3, 0.6,
SET VIEWPORT TRAN 7 0.3, 0.6, 0.6,
SET VIEWPORT TRAN 8 0.6, 0.7, 0.6,
SET VIEWPORT TRAN 9 0.7, 0.9, 0.6,
SET VIEWPORT TRAN 10 o. 0.2, 0.4,
SET VIEWPORT TRAN 11 0.2, 0.4, 0.4,
SET VIEWPORT TRAN 12 0.4, 0.6, 0.4,
SET VIEWPORT TRAN 13 0.6, 0.8, 0.4,
SET VIEWPORT TRAN 14 0.8, 1, 0.4,
!+
!Set up the world viewport for the text
!-
SET VIEWPORT , TRAN 16 : 0,1,0,1
!+
!Draw a face in each world viewport
!-
FOR tran_id = 1 TO 14

SET TRANSFORMATION tran_id
DRAW face

NEXT tran_id

Write_the_text:
SET TRANSFORMATION 16
SET TEXT HEIGHT 0.08

1
1
1
1
1
0.8
0.8
0.8
0.8
0.6
0.6
0.6
0.6
0.6

GRAPH TEXT AT 0,0.2 "Your BASIC Crowd"
END PROGRAM

5-20 The Drawing Surface

PICTURE face
!+
!Set up one image of the face on the world window
! -
OPTION TYPE = EXPLICIT
DECLARE SINGLE turn,increment,

head_x(40),head_y(40),
mouth_x(6),mouth_y(6),

LONG loop, counter,
tran_id

DECLARE SINGLE CONSTANT radius = 0.6
DECLARE LONG CONSTANT npoints = 40
Head:

increment = 2 * PI/npoints
turn = 0
FOR loop = 0 TO npoints -1

head_x(loop) = COS(turn) * radius + 0.6
head_y(loop) = SIN(turn) * radius + 0.6
turn = turn + increment

NEXT loop
head_x(40) = head_x(O)
head_y(40) = head_y(O)

Mouth:
DATA 0.26,0.46,0.34,0.36,0.4,0.326,0.6, t

0.324,0.6,0.326,0.66,0.366,0.76,0.426
READ mouth_x(loop),mouth_y(loop) FOR loop= OY. TO 6%

Draw_face:
MAT GRAPH LINES head_x,head_y
MAT GRAPH LINES mouth_x,mouth_y
!Eyes
SET POINT STYLE 4
GRAPH POINTS 0.36,0.66; 0.66,0.66

END PICTURE

The Drawing Surface 5-21

Output

Your BASIC Crowd

ZK-4920·86

5.5 Clipping the Image

The boundaries of the world window are also the limits of the world
coordinates that are displayed on your screen. If you plot points beyond
the limits of the world window you have defined, these points are also
beyond the limits of the world viewport and are not displayed by default.
This is known as clipping. Any points that are beyond the boundaries of
the world window are clipped by default. VAX BASIC clips images at the
boundaries of the world viewport. Clipping affects all graphics objects:
lines, points, areas, and text.

You can control the clipping feature with the SET CLIP statement. The
SET CLIP statement accepts string expressions equivalent to "ON" or
"OFF". The default clipping status is ON. When you tum clipping off,
VAX BASIC displays graphics objects that are beyond the boundaries of
the world window but are still within the boundaries of NOC space.2

2 The entire NOC space is also the default device window. When the device window is altered and clippin
is turned off, objects that are beyond the boundaries of the world window but are within the boundarie
of the device window are displayed. For more information about device transformations, see Chapter 8.

5-22 The Drawing Surface

The following example defines a kite and string. Only the string is plotted
within the world window; the points for the body of the kite are plotted
in coordinates that are beyond the extent of the world window. With
clipping on (the default), only the kite string is displayed.

Example

OPTION TYPE = EXPLICIT
DECLARE LONG loop
DIM SINGLE kite_x(19),kite_y(19)
SET WINDOW , TRAN 1 : 0,60,0,60
SET VIEWPORT , TRAN 1 : 0,0.6,0,0.6
!+
!Get the data for the kite
!Some points are beyond the world window
! -
DATA 80,90, 90,70, 60,60, 80,90, t

60,80, 90,70, 60,80, 60,60, t
60,60, 46,46, 46,40, 46,36, t
40,30, 34,28, 30,27, 26,20, t
32,20, 30,16, 10,20, 10,12

READ kite_x(loop),kite_y(loop) FOR loop= OY. TO 19Y.
!+
!Draw the kite
! -
MAT GRAPH LINES kite_x, kite_y
GRAPH POINTS 68,82; 77.6,79.6

The Drawing Surface 5-23

Output

......

.. r·
... ··

.--------..

r------~ --~·

To display the whole kite, you must change the clipping status with the
following statement:

SET CLIP "OFF"

Adding this statement to the previous example turns off the clipping and
displays both the kite and the string:

5-24 The Drawing Surface

Example

OPTION TYPE = EXPLICIT
DECLARE LONG loop
DIM SINGLE kite_x(19),kite_y(19)
SET WINDOW , TRAN 1 : 0,50,0,60
SET VIEWPORT , TRAN 1 : 0,0.6,0,0.5
DATA 80,90, 90,70, 50,60, 80,90, k

60,80, 90,70, 50,80, 50,60, k
60,60, 45,45, 45,40, 45,35, k
40,30, 34,28, 30,27, 25,20, k
32,20, 30,15, 10,20, 10,12

READ kite_x(loop),kite_y(loop) FOR loop= OY. TO 19%
!+
!Turn off clipping
!-
SET CLIP "OFF"
!+
!Draw the kite
!-
MAT GRAPH LINES kite_x, kite_y
GRAPH POINTS 68,82; 77.5,79.6
END

Output

(
....--:/\

[:
--::.*/~ \ -----;'--- \

I --~ I __....---/ _____

__..........-····

f ,.------

r
----- ~ -----i

ZK·4923-86

In the following example, the world window is set to 50,100,50,100.
However, the coordinates for the points of the swan range from 0 through
100. All points that extend beyond the world window are cut off, or

The Drawing Surface 5-25

clipped, in the first display because the clipping status is on by default.
Clipping is turned off for the second screen; therefore, all of the swan is
displayed.

Example

EXTERNAL PICTURE swan
!+
!Set up points for swan in world window
!Coordinates in picture are spread from 0 through 100
!Half of swan is out of the world window
!-
SET WINDOW , TRAN 1 : 50,100,50,100
SET VIEWPORT , TRAN 1 : 0.5,1,0.5,1
SET TEXT HEIGHT 2.5

!+
!Leave default clipping
!Display screen 1
! -
GRAPH TEXT AT 55,70 "CLIPPING IS ON"
DRAW swan
SLEEP 51.
CLEAR

!+
!Turn off clipping
! -
SET CLIP "OFF"
!+
!Display screen 2
! -
GRAPH TEXT AT 55,70 "CLIPPING IS OFF"
DRAW swan
END

5-26 The Drawing Surface

Output Screen 1:

(

Output Screen 2:

(~
\ \
~IP~G IS ON

\ \ \ '-.
\ "' \ \

ZK·4988·86

ZK-4985·86

The Drawing Surface 5-27

In the following example, two fuses are presented without the text labels
when clipping is on for the first screen. For the second screen, the dippir
is turned off; therefore, the labels are displayed.

Example

OPTION TYPE = EXPLICIT
EXTERNAL PICTURE fuse_shell,good_fuse,bad_fuse
SET WINDOW , TRAN 1 0,100,0,100
SET VIEWPORT , TRAN 1 : 0,0.6,0,0.6
SET TEXT COLOR 2
SET TEXT HEIGHT 6
!+
!Draw good fuse
!-
GRAPH TEXT AT 30,110 "GOOD FUSE"
DRAW fuse_shell
DRAW Good_fuse
!+
!Draw bad fuse
!-
SET WINDOW , TRAN 2 : 0,100,0,100
SET VIEWPORT , TRAN 2 : 0.6,1,0,0.6
GRAPH TEXT AT 30,110 : "BAD FUSE"
DRAW fuse_shell
DRAW Bad_f use
SLEEP 6%
CLEAR
!+
!Turn off clipping, re-draw with text labels
!-
SET CLIP "OFF"
SET TRANSFORMATION 1
GRAPH TEXT AT 30,110 "GOOD FUSE"
DRAW fuse_shell
DRAW Good_f use
SET TRANSFORMATION 2
GRAPH TEXT AT 30,110 "BAD FUSE"
DRAW fuse_shell
DRAW Bad_fuse
END

5-28 The Drawing Surface

PICTURE fuse_shell
DECLARE LONG loop
DIM SINGLE outer_x(8), outer_y(8), t

inner_x(3), inner_y(3), t
edge_x(3), edge_y(3)

DATA 20,90,80,90,80,70,76,70, t
76,60,26,60,26,70,20,70,20,90

READ outer_x(loop),outer_y(loop) FOR loop= 0% TO 8%
DATA 30,80,30,40,40,40,40,80
READ inner_x(loop),inner_y(loop) FOR loop= 0% TO 3%
DATA 70,80,70,40,60,40,60,80
READ edge_x(loop),edge_y(loop) FOR loop= 0% TO 3%
SET LINE SIZE 1
SET LINE COLOR 1
MAT GRAPH LINES outer_x,outer_y
MAT GRAPH LINES inner_x,inner_y
MAT GRAPH LINES edge_x,edge_y
GRAPH LINES 20,86; 80,86
SET POINT STYLE 1
SET POINT COLOR 2
GRAPH POINTS 36,62.6;66,62.6

END PICTURE

PICTURE Good_f use
DECLARE LONG loop
DIM SINGLE fuse_x(10),fuse_y(10)
DATA 40,66,46,70,43,70,46,72,48,78,60,79,62, t

78,66,72,67,70,66,70,60,66
READ fuse_x(loop),fuse_y(loop) FOR loop= 0% TO 10%
SET LINE SIZE 4
SET LINE COLOR 2
MAT GRAPH LINES fuse_x,fuse_y

END PICTURE

The Drawing Surface 5-29

PICTURE Bad_fuse
DECLARE LONG loop
DIM SINGLE left_x(2),left_y(2),right_x(2),right_y(2)
DATA 40,65,57,70,45,70,55,70,43,70,60,65
READ left_x(loop), left_y(loop), t

right_x(loop), right_y(loop) FOR loop= OY. TO 2Y.
SET LINE SIZE 4
SET LINE COLOR 2
MAT GRAPH LINES left_x,left_y
MAT GRAPH LINES right_x,right_y

END PICTURE

Output Screen 1 :

5-30 The Drawing Surface

Output Screen 2:

GODD FU'.::E

/K 4876 86

A complementary ASK CLIP statement allows you to retrieve the clipping
status in a string variable you supply. You can then reset the clipping
status with this variable later in your program.

ASK CLIP clip_stat

mmary

Creating a graphics image can involve each of the following steps:

• Setting world window boundaries with the SET WINDOW statement

• Setting world viewport boundaries with the SET VIEWPORT state­
ment

• Setting the current transformation explicitly with the SET
TRANSFORMATION statement, or implicitly with the SET WINDOW or
SET VIEWPORT statement

• Clipping the graphics image at the world viewport boundaries with
the SET CLIP statement

The Drawing Surface 5-31

None of these steps is required. VAX BASIC includes convenient defaulti
so that, if you choose to, you can safely ignore these options. However,
setting the world window boundaries alone provides you with a significat
increase in flexibility for minimum effort. Defining transformations allow
you to create multiple images and complex screens. Another kind of
transformation, known as a device transformation, is possible. Device
transformations are described in Chapter 8.

This chapter has introduced statements that can add a great deal of
flexibility to your programs. Graphics subprograms (pictures) take full
advantage of this additional flexibility. The next chapter shows you how
to use pictures to create complex images.

5-32 The Drawing Surface

Chapter 6

Creating Complex Images

When you invoke a graphics subprogram, or picture, you can easily
perform various transformations and create complex images. This chapter
explains how to define VAX BASIC graphics pictures of varying complexity
and invoke them with a variety of transformations.

i. 1 Pictures

A graphics picture is the definition of an image in a block of code. The
definition is delimited by the PICTURE and END PICTURE statements.
The picture must have a valid VAX BASIC identifier and the name must
not be the same as a SUB or FUNCTION subprogram, or a PROGRAM
unit.

PICTURE which_picture

END PICTURE

This block of code can be invoked in a fashion similar to a VAX BASIC
SUB or FUNCTION subprogram, and follows the standard VAX/VMS
calling procedures for passing parameters. Pictures should be declared
with the EXTERNAL statement in the program unit that invokes the
picture. You invoke a picture with the DRAW statement.

Creating Complex Images 6-1

PROGRAM calling
EXTERNAL PICTURE sample_name(SINGLE)
DRAW sample_name(val_ue)

END PROGRAM

PICTURE sample_name(SINGLE val_ue)

END PICTURE

VAX BASIC provides the END PICTURE and EXIT PICTURE statements
to terminate execution of a picture. Execution of a STOP statement withit
a picture definition terminates execution of the entire program.

8.1.1 Si•ple Pictures

You set up the definition of a graphics image in world coordinates within
the PICTURE and END PICTURE statements. As with other VAX BASIC
subprograms, you can pass parameters to a picture.

The following picture defines a rectangle in terms of the left, right, bottorr
and top boundaries. These boundaries are used to specify the world
coordinates of each comer of the rectangle.

Example

PICTURE box(SINGLE left_1,right_1,bottom,top)
PLOT LINES : left_1,top; t

END PICTURE

right_1, top; t
right_1, bottom; t
left_1, bottom; t
left_1,top

To invoke this picture, use the DRAW statement at an appropriate point
in your program. The DRAW statement passes parameters to the picture.
Parameters passed from the DRAW statement to the picture must agree ir
number and data type with the parameters listed in the picture definition.
The picture box requires values for the box boundaries in the order
specified. The DRAW statements in the following example invoke the
picture box to draw several rectangles on the display area. Note that no
parameter-passing mechanisms are required in the DRAW or PICTURE
statements because pictures are VAX BASIC subprograms and use the
default passing mechanisms. After compilation, the main program and

6-2 Creating Complex Images

any separately compiled programs should be linked together before
execution.

Example

PROGRAM draw_boxes
EXTERNAL PICTURE box(SINGLE,SINGLE,SINGLE,SINGLE)
SET WINDOW 0,100,0,100

DRAW box(0,30,60,90)
DRAW box(70,86,20,80)
DRAW box(26,60,16,40)
DRAW box(40,60,30,40)
DRAW box(26,96,26,76)

END PROGRAM

Output

,----

I J
'-----

ZK-4933-86

The following picture is an example that defines the image of an ellipse.
The ellipse requires values for the height and width to be passed with
the DRAW statement. This picture is based on the general formula of an
ellipse centered at the point 0,0:

Creating Complex Images 6-3

The variable a is one half of the major axis dimension of the ellipse, and
b is one half of the minor axis dimension. This formula yields an ellipse
whose major axis is on the y axis; later in the program a becomes Half_
height, and b becomes Half _width. Solving this equation for y yields the
alternate form:

or

y2 x2
-=l-­
b2 a2

x2
y2 = b2 * (1 - -)

a2

Because a2 and b2 are used in the calculation of each point, and because
they are constant during the execution of this picture, separate variables
are set aside for each, and calculated only once. A2 is called Half_heighL
squared and b2 is Half _width_squared.

Example

%TITLE "ELLIPSE - Draw an ellipse centered at 0,0"
XIDENT •x1.ooo•
PICTURE ellipse (SINGLE Width, Height_1)

OPTION TYPE = EXPLICIT
DECLARE LONG CONSTANT Number_of_steps = 60
DECLARE SINGLE Half_width, t

6-4 Creating Complex Images

Half_height, t
Half_width_squared, t
Half_height_squared, t
Increment, t
X_pos,Y_pos

Half_height = Height_!/ 2
Half_width = Width I 2
Half_height_squared • Half_height • Half_height
Half_width_squared = Half _width • Half_width
Increment = Width/Number_of_steps
!+
! Draw the top of the ellipse
! -
PLOT LINES -Half_width, O;
FOR X_pos = -Half_width + Increment TO Half_width STEP Increment

Y_pos = SQRT (ABS (Half_height_squared t
• (1-X_pos•X_pos/Half_width_squared)))

PLOT LINES X_pos, Y_pos;
NEXT X_pos
!+
! Because the FOR loop above may not exactly terminate
! at +Half_width due to the imprecision of floating point arithmetic,
! complete the top half of the ellipse:
!-
PLOT LINES Half_width, O;
!+
! Draw the bottom of the ellipse
!-
FOR X_pos = Half_width - Increment TO -Half_width STEP -Increment

Y_pos = - SQRT (ABS(Half_height_squared t
• (1-X_pos•X_pos/Half_width_squared)))

PLOT LINES X_pos, Y_pos;
NEXT X_pos
!+
! Because the FOR loop above may not exactly terminate
! at -Half_width because of the imprecision of floating point arithmetic,
! complete the bottom half of the ellipse:
!-
PLOT LINES -Half_width, 0

END PICTURE

You must supply values for the width and height of the ellipse with the
DRAW statement. The following example invokes the picture ellipse four
times.

Creating Complex Images 6-5

Example

PROGRAM call_ellipses
EXTERNAL PICTURE ellipse(SINGLE,SINGLE)
SET WINDOW -0.6,0.6,-0.6,0.6
DRAW ellipse(0.1,0.26)
DRAW ellipse(0.26,0.7)
DRAW ellipse(0.6,0.36)
DRAW ellipse(0.9,0.16)

END PROGRAM

Output

ZK-4931-86

Window and viewport boundaries are set in the main program before
pictures are invoked. You cannot set the boundaries of windows and
viewports or alter the clipping status within a picture definition. The
following statements are invalid when used within a picture definition:

SET WINDOW

SET VIEWPORT

SET CLIP

SET TRANSFORMATION

SET DEVICE WINDOW

6-6 Creating Complex Images

SET DEVICE VIEWPORT
SET INPUT PRIORITY

.1.2 Pictures Within Pictures

A picture definition can contain DRAW statements to invoke other pie-·
tures, as shown in the following example. Note that the picture room is
declared with the EXTERNAL statement in the picture house.

Example

PICTURE house
EXTERNAL PICTURE room

DRAW room
END PICTURE

PICTURE room

END PICTURE

The following picture, face, declares three other pictures with the
EXTERNAL statement, then invokes each of the pictures in tum.

Example

PICTURE face
EXTERNAL PICTURE head, eyes, mouth
DRAW head
DRAW eyes
DRAW mouth

END PICTURE

PICTURE head
DECLARE LONG CONSTANT npoints = 40
DECLARE SINGLE turn,increment,radius,

LONG loop_count
DIM SINGLE xs(40), ys(40)

Creating Complex Images 6-7

increment = 2 • Pl/npoints
turn = 0
radius = 0.6
FOR loop_count = 0% TO (npoints - 1%)

xs(loop_count) = COS (turn) • radius + 0.6
ys(loop_count) = SIN (turn) • radius + 0.6
turn = turn + increment

NEXT loop_count
xs(npoints) = xs(O)
ys(npoints) = ys(O)
MAT PLOT LINES xs,ys

END PICTURE

PICTURE EYES
SET POINT STYLE 4
PLOT POINTS 0.36,0.66; 0.66,0.66

END PICTURE

PICTURE MOUTH
DECLARE LONG counter
DIM SINGLE mouth_x(6),mouth_y(6)
DATA 0.26,0.34,0.4,0.6,0.6,0.66,0.76, t

0.426,0.36,0.326,0.324,0.326,0.366,0.426
READ mouth_x(counter) FOR counter = 0 TO 6
READ mouth_y(counter) FOR counter = 0 TO 6
MAT PLOT LINES mouth_x,mouth_y

END PICTURE

When invoked with the DRAW statement, this picture creates one face:

Example

EXTERNAL PICTURE face
SET WINDOW 0,1,0,1
DRAW face
END

6-8 Creating Complex Images

Output

r

0 0

......... /..,. .. ·
., _~-~·_,//'

ZKA928·86

1.3 Recursive Pictures

A picture definition can be recursive; that is, a picture definition can
include a DRAW statement that invokes the same picture again. For
recursive pictures, the picture must be declared with the EXTERNAL
statement within the picture definition as well as in the program unit that
first calls the picture. The following picture defines a tunnel made up of
concentric circles. The picture invokes itself with a smaller radius each
time. After the requested number of circles is drawn, the EXIT PICTURE
statement terminates execution of the picture.

Creating Complex Images 6-9

Example

OPTION ANGLE = DEGREES
EXTERN.AL PICTURE tunnel(SINGLE , ,LONG)
SET WINDOW -0.6,0.6,-0.6,0.6
DRAW tunnel(0.06,0.03,11)
END

PICTURE tunnel(SINGLE radius,variation,LONG counter)
OPTION TYPE = EXPLICIT
DECLARE LONG loop_count, .t

SINGLE turn,increment,x,y
DECLARE LONG CONSTANT npoints = 40
DIM SINGLE xs(npoints), ys(npoints)
EXTERN.AL PICTURE tunnel(SINGLE , ,LONG)

increment = 2•PI/npoints
turn = 0
FOR loop_count = OX TO npoints - 1X

xs(loop_count) = COS (turn) • radius
ys(loop_count) • SIN (turn) • radius
turn = turn + increment

NEXT loop_count
xs(npoints) = xs(O)
ys(npoints) = ys(O)
MAT PLOT LINES xs,ys

IF counter > 1
THEN DRAW tunnel(radius + variation,variation,(counter-1))

END IF
END PICTURE

6-10 Creating Complex Images

Output

The following example adds code to make the picture ellipse from
Section 6.1.1 recursive. The picture creates 18 ellipses. With each
invocation, the value of Height_1 is increased and the value of width
is decreased.

Example

PROGRAM pattern_ellipses
EXTERNAL PICTURE recursive_ellipse(SINGLE,SINGLE,LONG)
SET WINDOW -0.6,0.6,-0.6,0.6
DRAW recursive_ellipse(0.9,0.1,0)

END PROGRAM

Creating Complex Images 6-11

PICTURE recursive_ellipse(SINGLE width, Height_1,LONG counter)
OPTION TYPE = EXPLICIT
DECLARE LONG CONSTANT Number_of_steps = 60
DECLARE SINGLE Half_width, t

Half_height, t
Half_width_squared. t
Half_height_squared, t
Increment, t
X_pos,Y_pos

Half_height = Height_1/ 2
Half_width = width I 2
Half_height_squared = Half_height * Half_height
Balf_width_squared = Half_width * Balf_width
Increment = Width/Number_of_steps
PLOT LINES -Balf_width. O;
FOR X_pos = -Balf_width + Increment TO Half_width STEP Increment

Y_pos = SQRT (ABS (Balf_height_squared * t
(1-X_pos•X_pos/Half_width_squared)))

PLOT LINES X_pos, Y_pos;
NEXT X_pos
PLOT LINES Half_width, O;

FOR X_pos = Half_width - Increment TO -Half_width STEP -Increment
Y_pos = -SQRT (ABS (Half_height_squared * t

(1-X_pos•X_pos/Half_width_squared)))
PLOT LINES X_pos, Y_pos;

NEXT X_pos
PLOT LINES -Half_width, 0
!+
!Additional code for recursion
!-
IF counter < 17

THEN
width = width - 0.06
Height_1 = Height_1 + 0.06
IF counter > 12

THEN SET LINE COLOR 3
ELSE IF counter > 6

END IF

THEN SET LINE COLOR 2
END IF

DRAW recursive_ellipse(width,Height_1,(counter + 1))
ELSE
EXIT PICTURE

END IF
END PICTURE

6-12 Creating Complex Images

Output

1.2 Invoking Pictures with Transformation Functions

The examples so far have used a simple form of the DRAW statement
to invoke a picture. The DRAW statement can also include optional
transformation functions. These optional functions allow you to control
the positioning of the picture.

To change an image in size, shape, or position, you usually define trans­
formations as explained in Chapter 5. For instance, you can change
the position of an image by altering the window or viewport settings.
However, when the image is defined in a picture, you can transform the
image with VAX BASIC built-in functions. When you include a transfor­
mation function in the DRAW statement, the picture is transformed during
execution. The built-in transformation functions include:

• SHIFT
• SCALE
• ROTATE

Creating Complex Images 6-13

• SHEAR
• TRANSFORM

In addition, you can define your own transformation functions to use wit]
the DRAW statement. See Section 6.3 for more information.

Each transformation function has a unique effect on the points plotted
by output statements within the picture definition. These transformation
functions affect points only in PLOT and MAT PLOT statements; points
in GRAPH and MAT GRAPH statements within a picture definition are
not affected by the transformation functions included with the DRAW
statement. Therefore, when you want output statements to be affected
by the transformation functions, use PLOT and MAT PLOT statements in
subprograms. See Chapter 7 for information about accepting input durinE
execution of a picture.

When you know that transformation functions will not be used, it is morE
efficient to use GRAPH statements rather than PLOT statements inside
picture definitions.

Note that when text is drawn within a picture, text attributes, such as
the starting point and the height, are not affected by the transformation
functions in a DRAW statement; for more information on transforming te)
output, see the TRANSFORM function in Chapter 9.

The following sections describe the effects of each of these transformatior
functions.

6.2. 1 Shifting Pictures

You can move or shift pictures by including the transformation function
SHIFT with the DRAW statement. The amounts of shifting you want to
apply to each of the x- and y-coordinates in an image are supplied as
arguments to the SHIFT function. The x- and y-coordinates of the points
are moved or shifted by the amounts specified, as in this example:

DRAW boxes WITH SHIFT(move_x,move_y)

The value of move......x is added to each x-coordinate for output statements
specified in the picture so that the new value of the x-coordinate is
x + move......x. The value of move_y is added to each y-coordinate so
that the resulting value for they-coordinate is y + move_y.

6-14 Creating Complex Images

In the following example, the image of a triangle is first drawn in red
without any transformation function applied. The second invocation
shifts the triangle to the right and is displayed in blue. The value of the
y-coordinates is not altered in the blue triangle because the value for
move_y is zero. In the third DRAW statement, the color is changed to
green. Both the x- and y-coordinates are changed and the triangle is
shifted to the right and moved up. The program uses the default world
viewport, but sets the world window to 0,100,0,100 before the picture is
invoked.

Example

OPTION TYPE • EXPLICIT
EXTERN.AL PICTURE triangle
DECLARE LONG CONSTANT red• 2,blue = 3,green • 1
DECLARE SINGLE move_x,move_y

SET WINDOW 0,100,0,100
SET LINE COLOR red
DRAW triangle
move_x = 30
move_y • 0
SET LINE COLOR blue
DRAW triangle WITH SHIFT(move_x,move_y)
move_x • 60
move_y • 36
SET LINE COLOR green
DRAW triangle WITH SHIFT(move_x,move_y)
END

PICTURE triangle
PLOT LINES 10,10; 26,60; 36,10; 10,10

END PICTURE

Creating Complex Images 6-15

Output

In the following example, the image of a swan is defined in a picture. Th
picture is invoked seven times with the SHIFT function. Unlike the pictu1
swan in Chapter 5, this picture uses PLOT statements rather than GRAPl
statements. The window is set to -200,200,-200,200 before the picture is
invoked.

6-16 Creating Complex Images

Example

PICTURE swan
OPTION TYPE • EXPLICIT
DECLARE LONG counter
DIM SINGLE x_array(98),y_array(98), t

mark_x(3),mark_y(3), t
eye_x(2),eye_y(2), t
wing_area_x(28),wing_area_y(28)

Outline_data:
DATA 82,80.6,80,80.6,76,81,72,81.6,70,83.6,68,84,66,84.6, t
63,83,61,82,60.6,80,60.66,78,62.6,76,64,70,66.6,67,70,62.6, t
72,60,76,67,78,64,80,60,82.6,46,84,40,86.6,30,87,24.6,87,20, t
86,17.6,83.6,13.6,82,12,80,11.6,77,10,70,9,66,9,60,9.2,63,10, t
60,10.6,40,12,36,14,30,18,27,20,20,27.6,14,36,12,40,8.6,60,8, t
69,10,62.6,14,48,20,46,17,60,16.76,67,20,60,18,61.6,20,67,27, t
76,27.6,72,37,86,36,80,34,76,32.26,70,32,66,32.26,60,32.36, t
68,34,63,36,60,38,46,40,41,43.6,38,48,34,62,32.6,60,31,63,32, t
69.6,36.6,70.6,37,72,40,70.6,43,69.6,47,68.6,60,66.6,66,62.6, t
60,60,66,67.6,70,66,76,64,80,64.26,83,64,84.6,66,87,69,90,60, t
91,63,92.26,66.6,93,68,92.76,70,92,71.6,91,73,89.6,74,87,76.6, t
86,78,84,80,82,82,82,80,80.6,82,80.6

Wing_area_data:
DATA 32.36,68,34,63,36,60,38,46,40,41,43.6,38,48,34,62,32.6, t
60,31,63,32,69.6,36.6,70.6,37,32.36,68,30.06,60,28,42,27.6, t
44.6,28.6,30,30,24,31.6,20,36,14,40,12,46,13,60,14,63,16, t
68.6,17.6,61,19,64.6,22,69,30,70.6,37

Head_mark_data:
DATA 73,87,70,86,73,86,73.16,86,67,89,69,88,70.6,90

READ x_array(counter),y_array(counter) FOR counter• 0% TO 98%
READ wing_area_x(counter),wing_area_y(counter) FOR counter• OX TO 28X
READ mark_x(counter),mark_y(counter) FOR counter• OX TO 3%
READ eye_x(counter), eye_y(counter) FOR counter• OX TO 2%

Display_the_swan:
SET LINE COLOR 3X
SET LINE STYLE 1
MAT PLOT LINES x_array,y_array
SET AREA STYLE "PATTERN"
MAT PLOT AREA : wing_area_x,wing_area_y
MAT PLOT AREA mark_x,mark_y
SET LINE COLOR 2X
MAT PLOT LINES eye_x,eye_y

END PICTURE

PROGRAM swimming_swans
EXTERNAL PICTURE swan
SET WINDOW I TRAN 1 : -200,200,-200,200

DRAW swan WITH SHIFT(60,0)
DRAW swan WITH SHIFT(-26,0)
DRAW swan WITH SHIFT(-100,0)

Creating Complex Images 6-17

DRAW swan WITH SBIFT(-136,-100)
DRAW swan WITH SBIFT(-60,-100)
DRAW swan WITH SBIFT(16,-100)
DRAW swan WITH SBIFT(90,-100)
!+
!Adjust the text height for the new window
!-
SET TEXT HEIGHT 10X
GRAPH TEXT AT -60,-6 : "Seven Swans A-Swimming"

END PROGRAM

Output

If the picture swan had used MAT GRAPH statements instead of MAT
PLOT statements, the image of the swan would not have been shifted at
all. Instead, each swan would have been displayed in exactly the same
position as in the first invocation.

6-18 Creating Complex Images

2.2 Scaling Pictures

The SCALE function allows you to increase or decrease the size of the
image produced by a picture. You can scale the width and the height of
an image by a scale factor you supply. The following statement supplies
arguments for both the height and the width with SCALE.

DRAW picture_name WITH SCALE(2,3)

This DRAW statement multiplies each x-coordinate in the PLOT statement
of the picture by 2. Each y-coordinate is multiplied by 3. The effect of
this statement and other DRAW WITH SCALE statements are illustrated
in the following example. The picture triangle is invoked at first with no
transformation function. The second DRAW statement scales only the
x-coordinates (displayed in red). The third invocation of the triangle scales
only they-coordinates (displayed in blue). The final invocation of the
triangle scales both the x- and y-coordinates. Notice that the triangle is
not shifted. An example in Section 6.2.5 demonstrates how to combine
the SHIFT and SCALE functions.

Example

OPTION TYPE = EXPLICIT
EXTERNAL PICTURE triangle
DECLARE LONG CONSTANT red = 2,

blue = 3, green = 1
SET WINDOW 0,100,0,100
DRAW triangle
SET LINE COLOR red
DRAW triangle WITH SCALE(2,1)
SET LINE COLOR blue
DRAW triangle WITH SCALE(1,2)
SET LINE COLOR green
DRAW triangle WITH SCALE(2)
END

Creating Complex Images 6-19

Output

The following example illustrates the effect of reducing the y-coordinate~
while leaving the x-coordinates unchanged. The DRAW statement invok1
the picture face, multiplies each x-coordinate by 1 (leaving it unchanged)
and divides each y-coordinate by 2.

Example

EXTERNAL PICTURE face
SET WINDOW 0,1,0,1
DRAW face WITH SCALE(1,0.6)
END

6-20 Creating Complex Images

Output

(

8.2.3 Rotating Pictures

__ ----------------
•. ,

() o~,~.)1
·----------~~ ./

-......... ______________ _
~--

..... 1
/

_../ -------------

ZK-4930·86

Images defined in picture definitions can be rotated in a counterclockwise
direction about the point of origin (point 0,0). You specify the amount
of rotation as an argument to the ROTATE function. The amount of
rotation can be in radians or degrees, according to the OPTION ANGLE
statement for the program unit. Negative values cause rotation in a
clockwise direction. The following DRAW statement invokes a picture
with a rotation of 15° in a counterclockwise direction.

OPTION ANGLE = DEGREES
DRAW picture_name WITH ROTATE(16)

The following program draws the picture circle 24 times with an increasing
value for the rotation. The world window is set to place the point 0,0 in
the center of the window. The picture is rotated about the center point.

Creating Complex Images 6-21

Example

PROGRAM call_circles
OPTION ANGLE = DEGREES
OPTION TYPE = EXPLICIT
DECLARE LONG loop
EXTERNAL PICTURE circle(SINGLE)
SET WINDOW -1,1,-1,1

FOR loop = 1 TO 24
!+
!Draw circle with radius 0.2
!-
DRAW circle(0.2) WITH ROTATE(16 * loop)

NEXT loop
END PROGRAM

PICTURE circle(SINGLE radius)
OPTION TYPE = EXPLICIT
DECLARE SINGLE angle
DECLARE LONG CONSTANT npoints = 40
DECLARE SINGLE CONSTANT increment = 2•PI/npoints
DECLARE LONG loop_count
DIM SINGLE xs(40), ys(40)

angle = 0
FOR loop_count = OX TO npoints - 1X

xs(loop_count) = COS (angle) • radius + 0.6
ys(loop_count) = SIN (angle) * radius + 0.6
angle = angle + increment

NEXT loop_count
xs(npoints) = xs(O)
ys(npoints) = ys(O)
MAT PLOT LINES xs,ys

END PICTURE

6-22 Creating Complex Images

Output

(

ZK·4929·86

The point of origin need not be within the world window. For example,
an image in the window 25,50,25,50 can be rotated about the point 0,0
even though this point is not in the window.

Note that pictures can be rotated about any point you choose. The
following statement rotates the picture tryit about the point x, y.

DRAW tryit WITH SHIFT(-x,-y) * ROTATE(angle) * SHIFT(x,y)

The examples in this section rotate pictures about the point of origin. See
the DRAW statement in Chapter 9 for an example of rotating a picture
about other points.

Creating Complex Images 6-23

8.2.4 Shearing Pictures

The SHEAR function allows you to skew the coordinates of an image so
that the image appears to tilt or lean over. The exact placement depends
on the argument you supply with SHEAR and the relative position of the
point of origin (0,0). You can supply the argument in either degrees or
radians, depending on the option you specify with the OPTION ANGLE
statement. The following statement changes the coordinates of a point x, y
to the coordinates (x + y * TAN(25)),y.

OPTION ANGLE = DEGREES
DRAW picture_name WITH SHEAR(26)

The following example uses SHEAR to skew the picture ball (a circle)
several times to illustrate the effects of various arguments. Notice that
unlike the ROTATE function, SHEAR does not change the values of the
y-coordinates.

Example

PROGRAM Spring
OPTION ANGLE = DEGREES
EXTERNAL PICTURE coil(SINGLE)
DECLARE LONG loop_count

FOR loop_count = 0% to 6%
!Draw coil with radius of 0.16
DRAW coil(0.16) WITH SHEAR(10 * loop_count)

NEXT loop_count
END PROGRAM

6-24 Creating Complex Images

Output

ZK-4927-86

1.2.5 Combining Transformations

You can invoke a picture with more than one transformation function. To
use more than one transformation function with the DRAW statement,
separate the functions with an asterisk (•). For instance, the following
DRAW statements each use a combination of two transformation functions:

Example

DRAW face WITH SBEAR(30) * SCALE(1,2)
DRAW face WITH SHIFT(3.0.6) * SCALE (2)

Transformation functions are not associative; therefore, the order of
the functions on the DRAW statement is important when you combine
transformations. For instance, SHIFT • SCALE does not produce the same
new coordinates as SCALE • SHIFT. This is comparable to the importance
of the order of operations in a numeric expression.

Creating Complex Images 6-25

In Section 6.2.2, the scaled triangles are displayed without any shifting,
making the individual triangles difficult to differentiate. The following
example draws the picture triangle by combining the SHIFT and SCALE
functions.

In the following example, the picture triangle is invoked three times with
the DRAW statement as follows:

1. With no transformation

2. With SCALE(2) • SHIFT(20,0)

3. With SHIFT(20,0) • SCALE(2)

Example

PROGRAM draw_triangles
EXTERNAL PICTURE triangle
SET WINDOW, TRAN 1 : 0,100,0,100
SET TEXT HEIGHT 3
!+
!Triangle 1 in output
!-
DRAW triangle
GRAPH TEXT AT 16,10 : "1"
!+
!Triangle 2 in output
!-
DRAW triangle WITH SCALE(2) * SHIFT(20,0)
GRAPH TEXT AT 60,66 : "2"
!+
!Triangle 3 in output
!-
DRAW triangle WITH SHIFT(20,0) • SCALE(2)
GRAPH TEXT AT 70,66 : "3"

END PROGRAM

6-26 Creating Complex Images

Output

(

ZK-5514-86

The following example combines the ROTATE and SCALE transformation
functions. Each invocation of the picture square increases the size of the
square and turns the square by an additional 0.25 radians. The window is
set to -1,1,-1,1 so that the point of origin is in the center of the screen.

Example

PROGRAM call_square
OPTION TYPE = EXPLICIT
OPTION ANGLE = RADIANS
EXTERNAL PICTURE square
DECLARE SINGLE counter
SET WINDOW -1.1.-1.1

FOR counter = 1 TO 10 STEP 0.26
IF color_var < 3

THEN color_var = color_var + 1
ELSE color_var = 1

END IF
DRAW square WITH ROTATE(counter) * SCALE(counter.counter)

NEXT counter
END PROGRAM

Creating Complex Images 6-27

PICTURE square
PLOT LINES : -0.06, 0.06; t

0.06, 0.06; t
0.06,-0.06; t

-0.06,-0.06; t
-0.06,0.06

END PICTURE

Output

The following example shifts and rotates the picture swan counterclock­
wise about the center point of the world window. Each invocation of the
picture rotates the image of the swan 51 ° from the previous invocation.
The point of origin is at the center of the screen.

Example

OPTION TYPE = EXPLICIT
OPTION ANGLE = DEGREES
EXTERNAL PICTURE swan
DECLARE SINGLE CONSTANT turn = 61
DECLARE LONG loop

SET WINDOW , TRAN 1 : -200,200,-200,200

FOR loop = 1 TO 7
DRAW swan WITH SBIFT(21,21) * ROTATE(turn * loop)

NEXT loop

6-28 Creating Complex Images

SET TEXT HEIGHT 12%
GRAPH TEXT AT -40,0 : "Seven Swans"
GRAPH TEXT AT -38,-12 : "A-Spinning"
END

Output

Nested picture invocations can also have transformation functions. Such
nested picture definitions can lead to an accumulation of transformations.
There is no limit to the number of levels you can nest pictures; however,
nesting several levels deep makes your program extremely difficult to read
or debug.

When picture invocations are nested within other pictures, the original
transformation function applies throughout the execution of the picture
in addition to any other transformation function used. For instance, the
following picture definition includes invocations using transformation
functions as well as a recursive picture invocation.

Creating Complex Images 6-29

Example

PICTURE outside
EXTERNAL PICTURE inside1, inside2, outside
DECLARE SINGLE angle_var,move_x,move_y
DECLARE LONG counter

counter = 1
DRAW inside1
DRAW inside2 WITH SHEAR(angle_var)
IF counter > 10

THEN DRAW outside WITH SHIFT(move_x,move_y)
END IF
counter = counter + 1

END PICTURE

PROGRAM calling
EXTERNAL PICTURE outside
DRAW outside WITH SHIFT(1,0)

END PROGRAM

When the picture outside is invoked with the transformation function
SHIFT, picture inside1 and inside2 are invoked with an implicit SHIFT
function. Picture inside2 includes a SHEAR function, which is applied in
addition to the invocation with SHIFT.

The recursive call of picture outside also includes a transformation func­
tion. The original invocation with the transformation function SHIFT is
still applied in addition to the SHIFT function in the recursive call. Each
recursive invocation builds on the accumulated transformations up to tha
point.

The following section discusses how to define your own transformation
matrices. If you are content with the transformation functions VAX BASI1
provides, then move on now to Chapter 7, which discusses different way
of supplying graphics input to your programs.

6.3 Defining Your Own Transformation Matrices

When you use a transformation function, each point plotted in the pictur1
is transformed into a point with new coordinates. VAX BASIC translates
each point by multiplying it by a 4 by 4 matrix. The transformation
functions described in this chapter each represent a particular 4 by 4
matrix for the transformation of a point. The following chart displays thE
matrix represented by each VAX BASIC transformation function. Note
that these matrices actually have 5 rows and 5 columns; the elements in
row and column zero are used by VAX BASIC and are not shown here.
The matrices have lower bounds of zero and upper bounds of 4.

6-30 Creating Complex Images

Figure 6-1: Matrices for VAX BASIC Transformation
Functions

SHIFT(A,B)

1 0 0 0
0 1 0 0
0 0 1 0
A BO 1

ROTATE(A)

COS(A) SIN(A) 0 0
-SIN(A) COS(A) 0 0
0 0 1 0
0 0 0 1

SCALE(A,B)

AOOO

SCALE(A)

AOOO
OAOO
0 0 1 0
0001

0 BO 0
0 0 1 0
0001

SHEAR(A)

1 0 0 0
TAN(A) 1 0 0
0 0 1 0
0 0 0 1

ZK-5354-86

You can supply your own matrix with the DRAW statement in place of
any of the VAX BASIC transformation functions. To do this, first, you
can declare a two-dimensional array and initialize the elements to be
zero. The matrix must be zero-based and have upper bounds of 4 in both
directions. In addition, matrices cannot be record arrays. Next, assign the
values you want in the appropriate matrix elements. You should not use
elements in row and column zero because VAX BASIC uses these elements
during the multiplication of these matrices. The following code sets up a
matrix that is equivalent to a transformation of SHIFT(A,B):

DECLARE SINGLE A,B, ~

LONG row.col
DIM SINGLE shift_matrix(4,4)
FOR row = 1 TO 4

FOR col = 1 TO 4
shift_matrix(row,col) = 0
NEXT col

NEXT row

shift_matrix(1,1) = 1
shift_matrix(2,2) = 1
shift_matrix(3,3) = 1
shift_matrix(4,4) = 1
shift_matrix(4,1) = A
shift_matrix(4,2) = B

Creating Complex Images 6-31

The following two statements are now equivalent:

DRAW picture_name WITH shif t_matrix
DRAW picture_name WITH SHIFT(A,B)

You can define your own matrices and thereby create your own trans­
formation functions. For instance, for frequently used combinations of
transformations, you can define a new 4 by 4 matrix and use it in the
DRAW statement as an alternative to combining transformation functions.
To do this, use the MAT statement. The following example defines a
new matrix that combines the transformation functions SCALE(A) and
ROTATE(B):

Example

OPTION TYPE = EXPLICIT
OPTION ANGLE =,DEGREES
EXTERNAL PICTURE kite
DECLARE SINGLE A,B
DIM SINGLE new_matrix(4,4)
MAT new_matrix = SCALE(A) * ROTATE(B)
DRAW kite WITH new_matrix
END

Applying this matrix with the DRAW statement scales a set of x- and
y-coordinates by the value of A, and it also rotates the set of points by
B degrees.

The following example invokes the picture face with a variety of transfor­
mation functions. The MAT statement is used to create new matrices buil1
on the previous position of the face.

Example

!Invoking program
PROGRAM party_crowd

OPTION TYPE = EXPLICIT
OPTION ANGLE = DEGREES
EXTERNAL PICTURE face
DIM SINGLE next_face(4,4),temp_face(4,4)
SET WINDOW 0,6,0,6

6-32 Creating Complex Images

!+
!Draw the party crowd
!-
SET LINE COLOR 3
DRAW face WITH SCALE(1.26,3.26)
SET LINE COLOR 2
DRAW face WITH SHIFT(1.6,1.26)
MAT next_face • SHIFT(1.6,1.26) * SHEAR(16)
DRAW face WITH next_face
MAT temp_face • next_face • SHIFT(2,1)
MAT next_face = temp_face * SHEAR(-30)
SET LINE COLOR 3
DRAW face WITH next_face
MAT temp_face • next_face • SHIFT(-0.6,1.6)
MAT next_face = temp_face
DRAW face WITH next_f ace
MAT temp_f ace = next_face * SHEAR(30)
MAT next_face • temp_face • SCALE(0.76,0.76) • SHIFT(-0.6,1)
DRAW face WITH next_face
MAT temp_f ace • next_f ace
MAT next_face • temp_face • SHIFT(0,-3) • SCALE(1,0.76)
SET LINE COLOR 2
DRAW face WITH next_face
MAT temp_face = next_face
MAT next_face = temp_face • SHIFT(-2,2)
DRAW face WITH next_f ace
MAT temp_f ace = next_f ace
MAT next_face = temp_face • SHIFT(1,1) • SCALE(0.76,0.76)
DRAW face WITH next_face
MAT temp_f ace = next_face • SHEAR(26)
MAT next_face • temp_face • SHIFT(1.6,-2.6) • SCALE(1,1.26)
SET LINE COLOR 3
DRAW face WITH next_face
!+
!No cumulative matrix used for this one
!-
SET LINE COLOR 2
DRAW face WITH ROTATE(300) * SHEAR(60)

* SHIFT(1.26,0.76)

SET TEXT HEIGHT 0.26
GRAPH TEXT AT 0.26,3.4 : "Your BASIC Party Crowd"

END PROGRAM

PICTURE face
OPTION ANGLE = DEGREES
EXTERNAL PICTURE head,mouth,eyes
DRAW head
DRAW eyes
DRAW mouth

END PICTURE

Creating Complex Images 6-33

PICTURE head
OPTION TYPE = EXPLICIT
DECLARE LONG CONSTANT npoints = 40
DECLARE SINGLE CONSTANT increment = 2•PI/npoints, t

radius = 0.6
DECLARE SINGLE angle, t

LONG loop
DIM SINGLE xs(40), ys(40)

angle = 0
FOR loop_count = OX TO npoints - 1%

x = COS(angle) * radius + 0.6
y = SIN(angle) * radius + 0.6
xs(loop_count) = x
ys(loop_count) = y
angle = angle + increment

NEXT loop_count

xs(npoints) = xs(O)
ys(npoints) = ys(O)
MAT PLOT LINES xs,ys

END PICTURE

PICTURE mouth
DECLARE SINGLE mouth_x(6),mouth_y(6), t

LONG loop
DATA 0.26,0.426,0.34,0.36,0.4,0.326, t

0.6,0.324,0.6,0.326.0.66,0.366, t
0.76,0.426

READ mouth_x(loop),mouth_y(loop) FOR loop= 0% TO 6%
MAT PLOT LINES mouth~x.mouth_y

END PICTURE

PICTURE eyes
SET POINT STYLE 4
PLOT POINTS 0.36,0.66; 0.66,0.66

END PICTURE

6-34 Creating Complex Images

Output

VAX BASIC provides an additional transformation function, TRANSFORM.
When used within nested picture invocations, the TRANSFORM function
returns the cumulative matrix for all current transformations. Like the
other transformation functions, TRANSFORM can be used on the right­
hand side of a MAT statement or as a transformation function in the
DRAW statement.

A picture drawn from within a picture automatically inherits the transfor­
mations for the outer picture as well as the transformations specified in
the current invocation. Therefore, using the TRANSFORM function in a
DRAW statement causes the picture to be invoked with twice the current
transformation.

In the following example, the picture food is invoked with a transformation
of SCALE(2) • SCALE(2).

Creating Complex Images· 6-35

Example

PROGRAM call_tray
EXTERNAL PICTURE tray
DRAW tray WITH SCALE(2)

END PROGRAM

PICTURE tray
OPTION ANGLE = DEGREES
EXTERNAL PICTURE food
DRAW food WITH TRANSFORM

END PICTURE

In the following example, the picture three is invoked with the DRAW
statement using the TRANSFORM function. At the time of invocation,
TRANSFORM contains values equivalent to ROTATE(45) * SHIFT(l,0);
therefore, three will be invoked with the equivalent of ROTATE(45) *
SHIFT(l,O) * ROTATE(45) * SHIFT(l,O).

Example

OPTION ANGLE = DEGREES
OPTION TYPE = EXPLICIT
EXTERNAL PICTURE one, two, three
DRAW one WITH SHIFT(1,0)
END

PICTURE one
EXTERNAL two
DRAW two WITH ROTATE(46)

END PICTURE

PICTURE two
EXTERNAL three
DRAW three WITH TRANSFORM

END PICTURE

You can also use the TRANSFORM function to define your own matrices
for the DRAW statement. For more examples, see the DRAW statement
and the TRANSFORM function in the reference section of this manual.

When used outside of pictures, TRANSFORM returns the identity matrix,
which has no effect on a graphics display. Like other transformation
functions, TRANSFORM affects only objects drawn with PLOT statements
not GRAPH statements.

6-36 Creating Complex Images

.4 Summary

The statements and topics described in this chapter include:

• Pictures (PICTURE subprograms)

• Invoking pictures with DRAW
• Invoking pictures with the transformation functions SHIFT, SCALE,

ROTATE, SHEAR, and TRANSFORM

• Defining your own transformation matrices

So far, data for the examples has been supplied with DATA and READ
statements or supplied as constants. The following chapter describes
interactive means to supply graphics data.

Creating Complex Images 6-37

Chapter 7

Graphics Input

VAX BASIC provides input statements so that a user1 can interact with an
application program. These statements enable a user to supply input to an
application program at run time.

Many of the statements in this chapter can include an optional device
identification number as a parameter. The device identification number is
a number you supply to distinguish between devices when your program
uses several devices. If you use a VAXstation, device identification num­
bers can be used to address different workstation windows. The programs
in this chapter use only one device, or in the case of a V Ax.station II, one
workstation window; therefore, the statements do not include the optional
device identification. For more information about using multiple devices,
see Chapter 8.

The exact number and form of prompts, triggers, visual indicators, and
echoes supported by each type of input varies with each device and is
beyond the scope of this manual. Refer to the VAX GKS documentation
and the hardware documentation for information about a particular device.

In this chapter the term "user" is synonymous with a program operator; the word "you" refers to the
programmer.

Graphics Input 7-1

7.1 Input Types

There are five different types of graphics input described in the followin~
sections. For example, input could be a choice from a menu, the coordi­
nates of a point, a series of points, a string, or a numeric value; you mus
specify the type of input you want in your program. The five types of
input are known in VAX BASIC as:

• CHOICE

• POINT
• MULTIPOINT

• STRING

• VALUE

Figure 7-1 illustrates the form of the different input types.

Figure 7-1 : Types of Graphics Input

Point Multipoint Value Choice String - --
+

I
Up

+ + +
+ + Down

prompt> Yes +

+ + l Exit l

ZK-511

7 .1.1 CHOICE Input

7-2 Graphics Input

You request CHOICE data when you want a user to choose an item
from a menu you supply. When CHOICE input is requested, the user is
presented with a menu of items. The default response is emphasized in
some way, usually with highlighting. The user can choose any item on
the menu by moving the cursor in some manner. To select an item, the

user presses the RETURN key, or possibly a mouse button. Figure 7-2
illustrates the default screen on a VT240 that is presented to a user when
CHOICE input is requested.

Figure 7-2: The Default CHOICE Prompt on a VT240

.1.2 POINT Input

CHOICE2

CHOICE3
CHOICE4
CHOICE5

ZK-5406-86

You request POINT input when you want a user to supply the position
of a point. The user can supply a point in various ways, such as by
positioning a cursor on a display surface with the keyboard arrow keys.
The methods of entering points vary with each device.

When POINT input is requested, an initial point is displayed on the user's
screen. The initial point is marked by a cross or some other visual marker;
the actual marker varies with each device. On some devices it is possible
to modify the prompt to your own design.

A user can move the prompt freely within the display area until the
prompt marks the selected point. To enter the selected point as input, the
user presses RETURN or performs a similar activity (this feature is device
dependent).

Graphics Input 7-3

7 .1.3 MULTIPOINT Input

You request MULTIPOINT data when you want a user to supply a
sequence of points.

When MULTIPOINT input is requested, an initial point, or series of
points, is marked on the user's screen. The user can select this initial poi11
or choose other points. The ways to enter points vary with each device.
For instance, on a V AXstation, points are entered automatically as the use
moves the mouse. On a VT125, the user enters each point by pressing
the space bar, then indicates when the input is complete by pressing
RETURN. When the user moves the prompt to select a second point, a
line is drawn connecting the first selected point to the second. A line is
then drawn from the second point to the third, and so on until the series
of points is complete. All of the points the user selects are connected by
one continuous line on the screen.

7 .1.4 STRING Input

You request STRING input when you want a user to supply an individua:
character or an entire text string to your program.

When STRING input is requested, the user is usually presented with
an initial string. The user can accept the initial string, or enter a new
string, or perhaps enter a null string if your program includes a default
string response. Your program should include string handling functions tc
analyze the user's input.

7 .1.5 VALUE Input

7-4 Graphics Input

You request VALUE data when you want a user to supply numeric data
for your graphics program at run time.

When VALUE input is requested, the user is presented with a prompt
similar to that illustrated in Figure 7-3. Depending on the device, the
upper and lower limits of the acceptable range are displayed and an
arrow is positioned to indicate the initial response. Some devices display
the value that is currently selected. The user can select the initial value
indicated or move the arrow along the scale to select another value withir
the range presented. The user enters the selected value by pressing
RETURN.

Figure 7-3: The Default VALUE Prompt on a VT240

(
1.0000

0.0000

ZK·5228·86

The following sections discuss how your program accepts each of the
graphics input types. To accept all types of input from a user, you can use
the LOCATE statement. A single point can also be accepted with the GET
statement, while a series of points can be accepted by the MAT LOCATE
and MAT GET statements.

NOTE

An optional UNIT clause can be included with many of the
statements used in this chapter. This clause allows you to spec­
ify an alternative means of supplying the input. For instance,
the position of points can be entered with the keyboard arrow
keys or possibly with a mouse. Each of these methods of data
entry is a different unit. The default unit number for each input
class is 1. The default unit is used throughout this manual;
therefore, the UNIT clause is not included in the examples
in this chapter. For syntax rules related to the UNIT clause,
see the particular input statement in the reference section of
this manual. Some devices support more than one unit; for
information about the units available on a particular device,

Graphics Input 7-5

see the documentation for that device as well as the VAX GKS
documentation.

7 .2 CHOICE Input

Input statements for CHOICE allow you to:

• Set up an initial menu

• Set up an initial choice for the user
• Accept the user's actual choice

7 .2.1 Setting the Initial Choice

7-6 Graphics Input

The SET INITIAL CHOICE statement allows you to list the items you
want displayed on the menu and set an initial menu selection for the use:
The following statement sets up a menu with five possible selections and
sets the initial selection to the second item in the menu. The menu is no1
displayed until the LOCATE CHOICE statement is executed.

Example

DECLARE LONG task
SET INITIAL CHOICE

,LIST ("Add"

Select_menu:
LOCATE CHOICE task

• "Update"
,"Delete"
, "Read"
• "Quit")
: 2

ON task GOTO Add_rtn,Update_rtn,Delete_rtn,Read_rtn,Quit t
OTHERWISE Select_menu

Output

(

Add

llllltlil
Read
Quit

ZK-4944-86

The SET INITIAL CHOICE statement has an optional COUNT clause
that can be used when you specify an array of strings rather than string
expressions in the LIST clause. When you declare a string array, you need
not display all the array elements as items in the menu; you can select a
subset of the array elements starting with the first element in the array.
Only the subset of items indicated by the COUNT clause will be displayed
and the user cannot select an item in the menu that is not displayed on
the screen. The following example illustrates the use of the COUNT
clause and supplies an array of strings to the LIST clause.

Graphics Input 7-7

7-8 Graphics Input

Example

DECLARE LONG counter
DECLARE STRING which_letter
DIM STRING alphabet(66 TO 90)
alphabet(counter) = CHR$(counter) FOR counter = 66 TO 90

SET INITIAL CHOICE, LIST alphabet
, COUNT 6

5
LOCATE CHOICE which_letter

Output

(
A
B
c
D
la

\

ZK-4935-86

Subsequent requests for CHOICE input use the values specified in the SET
INITIAL CHOICE statement unless you specify otherwise with another
SET INITIAL CHOICE statement.

If you do not specify options in a LIST clause, VAX BASIC supplies the
device dependent defaults. For V AXstation II workstations the default
menu has two items: "Yes" and "No". VT125 and VT240 terminals
provide a five-item menu by default with the options "CHOICE l",
"CHOICE 2", "CHOICE 3", "CHOICE 4", and "CHOICE 5".

'.2.2 Accepting CHOICE Input

You accept CHOICE input with the LOCATE CHOICE statement. When
the user makes a selection from a menu, an integer representing that
item is assigned to a variable you supply with the LOCATE CHOICE
statement. You set up the menu that is presented to the user with the SET
INITIAL CHOICE statement; however, the menu is not displayed until the
LOCATE CHOICE statement is executed.

In the following example the SET INITIAL CHOICE statement sets up
a menu of two choices for the user: "Play again" or "Quit". When the
LOCATE CHOICE statement is executed, the menu is displayed. "Play
again" is highlighted as the initial choice; the user's actual choice is
assigned to the integer variable game__status in the LOCATE CHOICE
statement.

Graphics Input 7-9

Example

DECLARE LONG game_status
SET INITIAL CHOICE , LIST ("Play again", &

"Quit") &
: 1

LOCATE CHOICE game_status

Output

(

1a+e+EF"''
Quit

The initial choice presented to the user can be established in the SET
INITIAL CHOICE statement, as shown in the previous example. You
can override this initial choice with an optional INITIAL clause on the
LOCATE CHOICE statement, as shown in the following example. The
following example shows a longer menu and shows one method of dealing
with the user choice in the program.

7-1 0 Graphics Input

Example

PROGRAM psyche
DECLARE LONG behavior
Locate_choice:
SET INITIAL CHOICE

,LIST ("withdrawn"
,"secretive"
,"reserved"
,"well-adjusted"
,"exuberant"
,"aggressive"
,"combative"

t
t
t
t
t
t
t
t
t , "Quit program")

: 3
LOCATE CHOICE , INITIAL 4 : behavior

SELECT behavior
CASE • 1

GRAPH TEXT AT 0,0.8
GRAPH TEXT AT 0,0.7
GRAPH TEXT AT 0,0.6

CASE = 2
GRAPH TEXT AT 0,0.8
GRAPH TEXT AT 0,0.7
GRAPH TEXT AT 0,0.6

CASE = 3
GRAPH TEXT AT 0,0.8
GRAPH TEXT AT 0,0.7

CASE = 4
GRAPH TEXT AT 0,0.8
GRAPH TEXT AT 0,0.7

CASE = 6
GRAPH TEXT AT 0,0.8
GRAPH TEXT AT 0,0.7

CASE = 6
GRAPH TEXT AT 0,0.8
GRAPH TEXT AT 0,0.7

CASE = 7
GRAPH TEXT AT 0,0.8
GRAPH TEXT AT 0,0.7
GRAPH TEXT AT 0,0.6
GRAPH TEXT AT 0,0.6

CASE = 8
EXIT PROGRAM

END SELECT
END PROGRAM

"Do not leave this person alone - ever."
"Close curtains on rainy days. Recommend"
"constant care. Do NOT prescribe tranquilizers."

"Recommend intensive group therapy."
"Consider anti-depressant drugs."
"Confirm medical insurance."

"Recommend vigorous daily exercise."
"Continue group therapy."

"Make sure this person pays his/her bill,"
"then recommend ending therapy."

"Recommend relaxation techniques"
"and continue psychotherapy."

"Recommend intensive psychotherapy."
"Consider tranquilizers."

"Do not arm-wrestle with this person."
"Recommend sedation and hospitalization."
"Discontinue individual therapy unless"
"a guard is available at all times."

Graphics Input 7-11

7 .3 POINT and MUL Tl POINT Input

You accept POINT input with the LOCATE POINT and GET POINT
statements, and MULTIPOINT input with the MAT LOCATE POINTS
and MAT GET POINTS statements. The input statements for POINT and
MULTIPOINT allow you to:

• Set up an initial point or series of points for the user

• Accept the user's actual input

7 .3.1 Accepting Paints with the Default Transformation

This section describes how to accept input points from a user when
transformation l, the default transformation, is the only transformation
in your program. Transformation 1 is the only transformation when no
additional transformations are defined in your program, and when no
SET VIEWPORT or SET WINDOW statements are executed other than for
redefining the default transformation.

The LOCATE POINT statement accepts a point the user enters at the ter­
minal. After execution of the following statement, the world coordinates
of the user-supplied point are contained in x_coord and y_coord.

LOCATE POINT x_coord, y_coord

The MAT LOCATE POINTS statement accepts a series of points that
the user enters at the terminal into two arrays you have supplied with
the statement: one array of x-coordinates, and one of y-coordinates.
After execution of the following statement, the world coordinates of the
user-supplied points are contained in the arrays x_coords and y_coords.

DIM SINGLE x_coords(20), y_coords(20)

MAT LOCATE POINTS x_coords, y_coords

After the prompt is displayed, the user can accept the initial point or enter
other points. The methods of entering each point vary with each device.
For example, with a VT240, a user enters each point by pressing the
space bar, then indicates when the series of points is complete by pressing
RETURN.

7-12 Graphics Input

You can specify the world coordinates of an initial point with the optional
AT clause in both the LOCATE POINT and MAT LOCATE POINTS
statements. The following statement displays a prompt at the initial
position 0.2,0.5. The user can accept this initial point, or move the
prompt and enter the position of another point. After execution, the
world coordinates of the user-supplied point are assigned to x_coord
and y_coord.

LOCATE POINT , AT 0.2,0.6 : x_coord, y_coord

See Section 7.3.5 for details on how to present a series of points to the
user.

An optional COUNT clause in the MAT LOCATE POINTS statement
allows you to retrieve the number of points actually supplied by the user.
In the following example, the arrays are set up to hold 26 coordinate
values; the actual number of points supplied by the user is assigned to the
variable how_many.

If the user inputs fewer points than the number of elements in the coordi­
nate arrays and you plan to use these coordinates for output, you should
use the COUNT clause to specify the number of array elements to be used
for the display.

If a user supplies more points than the number of elements in the arrays,
the extra points are discarded by VAX BASIC. For instance, in the fol­
lowing example, if a user enters 30 points, the last four points will be
discarded. The following example checks whether the user has entered
extra points. If this is the case, the variable supplied with the COUNT
clause in the output statement is adjusted to avoid referencing array
elements that do not exist.

Example

DECLARE LONG CONSTANT max_points = 26
DECLARE LONG how_many
DIM SINGLE xs(1 TO max_points),ys(1 TO max_points)
GRAPH TEXT AT 0,0.9 : "Enter up to " + STR$(max_points) + " points"
MAT LOCATE POINTS , AT .10, . 16 .t

, COUNT how_many .t
: XS, ys

IF how_many > max_points
THEN how_many = max_points

GRAPH TEXT AT 0,0.76: "You have entered too many points."
GRAPH TEXT AT 0,0.66: "The extra points have been discarded."

END IF
SET POINT COLOR 2%
MAT GRAPH POINTS , COUNT how_many

: XS, ys
END

Graphics Input 7-13

7 .3:2 Accepting Points with Muhiple Transformati~ns Defined

When possible, VAX BASIC maps the coordinates of an input point
to world coordinates using the transformation that is defined for the
viewport the point falls into. The following sections describe how VAX
BASIC determines which transformation to use under the following
circumstances:

• When input points map to an area of NOC space where a single
viewport is valid

• When input points map to an area of NOC space where viewports
overlap

7 .3.2.1 Accepting Points That Map to One Valid Viewport

When a user enters a point as input, VAX BASIC determines the device
coordinates of the point entered, then maps the point to NOC space. If
the input point maps to an area of NOC space where a single viewport
is valid, the transformation associated with that viewport is used to
determine the world coordinates of the point.

In the following example, two transformations are established.
Transformation 1 redefines the default world viewport and sets the win­
dow to -100, 100, 1000 ,2000. Transformation 2 establishes an additional
viewport and sets the window to 0,200,-5,5. Notice that these view­
ports do not overlap and the two viewports together include all of NOC
space. When a point is input, the point falls into the viewport for either
transformation 1 or 2 and is interpreted according to the transformation
associated with the appropriate viewport. Figure 7-4 illustrates these two
transformations and shows an input point that is interpreted according to
the viewport for transformation 1. The resulting world coordinates held in
x and y would be 50,1500.

7-14 Graphics Input

Example

DECLARE SINGLE x,y
SET WINDOW , TRAN 1 : -100,100,1000,2000
SET VIEWPORT , TRAN 1 : 0,0.6,0,1
SET WINDOW , TRAN 2 : 0,200,-6,6
SET VIEWPORT , TRAN 2 : 0.6,1,0,1

LOCATE POINT x,y

igure 7-4: An Input Point is Mapped to the Underlying Viewport

100,2000

TRAN
1

Window

100,1000

0,5

TRAN
2

Window

100,2000

0

100,1000

TRAN
1

View port

NOC
Space

0.5

TRAN
2

Viewport

x

Screen

Points input
here are mapped
to TRAN 2

0,-5 200,-5

Points input
here are
mapped to
TRAN 1

ZK-4992-86

You can supply an optional integer variable with the LOCATE POINT
statement to retrieve the transformation number VAX BASIC has used
to interpret the user-supplied coordinates. For example, the following
statement instructs VAX BASIC to use the point 0.5,0.5 as the initial point.
When the user enters a point, the coordinates are assigned to x_coord and
y_coord. The transformation used to interpret these device coordinates
into world coordinates is assigned to which_tran. This is useful if you

Graphics Input 7-15

have multiple transformations defined and you want to confirm which
transformation was actually used.

Example

DECLARE SINGLE x_coord,y_coord,
LONG which_tran

SET VIEWPORT , TRAN 1 : 0,0.6,0,1
SET VIEWPORT , TRAN 2 : 0.6,1,0,1

LOCATE POINT , AT 0.6,0.6
: x_coord, y_coord , which_tran

Note that when transformation 1 has been redefined with a viewport
other than O,l,0,1 (all of NDC space), it is possible for points to be outsid
any defined viewport. When this happens, VAX BASIC signals an error.
In the following example, transformation 1 is redefined to be a portion
of NDC space. This leaves the remaining portion of NDC space with no
transformation defined, and it is possible for a user to supply a point that
falls beyond the boundaries of any defined transformation.

Example

SET VIEWPORT , TRAN 1 0.6,1,0.6,1

MAT LOCATE POINTS x_coord, y_coord

The optional USING TRAN clause on the LOCATE POINT statement
lets you specify the transformation VAX BASIC should use to display
the initial point. If you do not include a USING TRAN clause, the
current transformation is used. In the following example, transformation
2 is the current transformation when the LOCATE POINT statement is
executed. However, the USING TRAN clause specifies that transformatio1
1 should be used to display the initial point regardless of the fact that
transformation 2 is the current transformation. The USING TRAN clause
affects only the display of the initial point; the user-supplied coordinates
are transformed with the current transformation.

7-16 Graphics Input

Example

DECLARE SINGLE x,y
SET VIEWPORT , TRAN 1 : 0.6,1,0.6,1
SET VIEWPORT , TRAN 2 : 0,0.6,0,0.6
LOCATE POINT , AT 0.6,0.8 USING TRAN 1 : x,y

'.3.2.2 Accepting Points That Map to Overlapping Viewports

When you do not change the default viewport but do define other trans­
formations with the SET WINDOW statement, these transformations all
map onto the entire NOC space. For example, the following transforma­
tions all share the same viewport.

Example

SET WINDOW , TRAN 1
SET WINDOW , TRAN 2
SET WINDOW , TRAN 3

0,100,0,100
-1, 1, -1, 1
60, 200, o. 6

In this case, VAX BASIC cannot distinguish which transformation to
use on the basis of the viewport alone; therefore, it refers to a list of
established transformations and selects the transformation with the
highest input priority.

When more than one transformation is defined, VAX BASIC maintains
a prioritized list of transformations to use to translate POINT and
MULTIPOINT input when viewports overlap. At the start of program
execution, transformation 1 (defining the entire NDC space) is the only
transformation on the list; therefore, at the start of program execution,
transformation 1 is also the transformation with the highest input prior­
ity. Points input at the start of program execution are interpreted with
transformation 1.

When a subsequent transformation is set with a SET TRANSFORMATION,
SET WINDOW, or SET VIEWPORT statement, this new transformation
automatically becomes the transformation at the top of the list and,
therefore, acquires a higher input priority than transformation 1. The
transformation with the highest input priority is also the current trans­
formation for output unless a SET INPUT PRIORITY statement has been
executed (see Section 7.3.3).

Graphics Input 7-17

In the following example, the point 50,50 is the initial point and is
displayed on the screen using transformation 1 because it is the transfor­
mation specified in the USING TRAN clause. When the user enters each
point, the coordinates are assigned to the next elements in the arrays
x_coords and y_coords. Any point entered by the user falls into the de­
fault viewport. As no other viewports are defined, the default viewport is
the viewport for both transformation 1 and transformation 2. The trans­
formation used to interpret these coordinates into world coordinates is the
transformation with the highest input priority (in this case, transforma­
tion 2, because this is the transformation most recently set). The actual
transformation used to interpret the user-supplied points in the following
example is assigned to which_tran, the integer variable supplied with the
MAT LOCATE POINTS statement.

Example

DECLARE LONG which_tran
DIM SINGLE x_coords(12),y_coords(12)
SET WINDOW , TRAN 1 : 0,100,0,100
SET WINDOW , TRAN 2 : 0,26,0,26

MAT LOCATE POINTS , AT 60,60 USING TRAN 1
: x_coords, y_coords, which_tran

Overlapping viewports occur only when a transformation other than trans·
formation 1 is defined. When possible, VAX BASIC maps the coordinates
of an input point to world coordinates using the transformation that is
defined for the viewport the point falls into. When viewports overlap,
a point can fall into more than one viewport and VAX BASIC uses the
transformation with the highest input priority that also contains the point.
In Figure 7-5, a user-supplied point can fall into the area of intersection
of both viewports. As both viewports are valid, VAX BASIC selects the
viewport with the highest input priority to interpret the input.

7-18 Graphics Input

Figure 7-5: Interpreting POINT Input When Viewports
Overlap

0,1

0,0

NOC Space

l
I
I
I
I
I
I
I

Viewport A

1,1

'• • • • • • • • • • • • -~....;f---lnte:~~:ion
Viewport B

1,0
ZK-5109-86

When the user supplies a series of points (MULTIPOINT input), VAX
BASIC identifies the viewports that contain all of the points. If there is no
conflict and all of the points are contained within one viewport, then that
transformation is used. However, when all of the points are contained in
more than one viewport, the transformation with the highest input priority
is used. In Figure 7-6, the series of points shown is interpreted with the
transformation defined for Viewport B.

Graphics Input 7-19

Figure 7-6: Interpreting MULTIPOINT Input When Viewport
Overlap

NOC Space

T
I
I Viewport A
I
I
I
I

0 0 0 0 0 0 0 0 0 0

; :-~~-lnte:~;:tion
x x

x
)(. x

x x

x x

Viewport B x x
x

ZK-5106-86

Note that when transformation 1 has been redefined with a viewport othe
than O,l,O,l, it is possible for points to be outside any defined viewport.
When this happens, VAX BASIC signals an error. Similarly, VAX BASIC
signals an error when no single viewport contains all of a series of points

The following example defines several overlapping transformations.
The list of input priorities changes whenever a new transformation is
defined, when the SET TRANSFORMATION statement is executed,
or when the SET INPUT PRIORITY statement is executed. At various
points in the program POINT input is requested from a user. The actual
transformation used cannot be determined until the position of the input
point is indicated. Remember that VAX BASIC uses the priority list only
when viewports overlap; if no overlapping viewports are defined, the
viewport that contains the points is automatically used to transform
the input coordinates into world coordinates. The number of the actual
transformation VAX BASIC used is assigned to the variable which_tran.

7-20 Graphics Input

Example

DECLARE LONG which_tran,
SINGLE x1,y1,x2,y2,x3,y3,x4,y4

!+
!TRAN 1 has highest priority at start of program execution
!-
SET WINDOW , TRAN 2 : 0,10,0,10 !TRAN 2 now has highest input priority
SET WINDOW , TRAN 3 : -1,1,-1,1 !TRAN 3 now has highest input priority
SET TRANSFORMATION 2 !TRAN 2 now has highest input priority
!+
!Tran 2 has the highest priority
!VAX BASIC assigns the transformation it used to interpret the point
!x1,y1 to which_tran
!-
LOCATE POINT x1,y1 , which_tran
SET VIEWPORT , TRAN 3 : 0.6,1,0.8,1 !TRAN 3 now has highest input priority
!+
!Tran 3 has the highest priority
!VAX BASIC assigns the transformation it used to interpret the point
!x2,y2 to which_tran
!-
LOCATE POINT x2,y2 , which_tran
SET WINDOW , TRAN 4 : 0,0.6,0,0.6
!+
!Tran 4 has the highest priority

!TRAN 4 now has highest input priority

!VAX BASIC assigns the transformation it used to interpret the point
!x3,y3 to which_tran
!-
LOCATE POINT x3,y3 , which_tran
SET TRANSFORMATION 1
!+
!Tran 1 has the highest priority

!TRAN 1 now has highest input priority

!VAX BASIC assigns the transformation it used to interpret the point
!x4,y4 to which_tran
!-
LOCATE POINT x4,y4 , which_tran

'.3.3 Changing the Input Priority

The SET INPUT PRIORITY statement allows you to change the order of
the transformations on the input priority list. You use the greater than
(>) or less than (<) sign to reorder the priorities. For instance, in the
following example, the SET INPUT PRIORITY statement makes 3 the
transformation with the highest priority for input regardless of the SET
TRANSFORMATION 4 statement. Note that the SET INPUT PRIORITY
statement has no effect on the current transformation for displaying

Graphics Input 7-21

output; in this case, transformation 4 remains the current transformation
for displaying output.

Example

DECLARE SINGLE x.y.
LONG which_tran

SET TRANSFORMATION 4 !TRAN 4 now has the highest input priority
SET INPUT PRIORITY 3 > 4 !TRAN 3 now has a higher input priority than 4
!+
!Point x.y is interpreted with the transformation
!assigned to which_tran
!-
LOCATE POINT x.y • which_tran

If the point x, y is contained in the viewports for both transformation
3 and transformation 4, VAX BASIC uses the transformation with the
highest input priority-now transformation 3. Without this SET INPUT
PRIORITY statement, VAX BASIC would transform the point according to
the definition of transformation 4, assuming that the point was contained
in that viewport.

7 .3.4 Setting the Initial Point

You can select an initial point with the LOCATE POINT and MAT
LOCATE POINT statements, as shown in previous sections. Alternatively.
you can set the initial point with the SET INITIAL POINT statement. If
you have more than one transformation defined, you can specify which
one VAX BASIC should use to display this point by including an optional
USING TRAN clause. If you do not include a USING TRAN clause, VAX
BASIC uses the current transformation to display output.

The following example instructs VAX BASIC to display the world coordi­
nate point 850,150 using the transformation previously defined as 2 in the
program. This point is displayed as the initial prompt at the appropriate
position on the display surface when input is requested. Note that the
current transformation is 3 when the SET INITIAL POINT statement is
executed.

7-22 Graphics Input

Example

SET WINDOW , TRAN 2 : 0,1000,0,600
SET VIEWPORT , TRAN 2 : 0.0,0.76,0.0,0.6
SET WINDOW , TRAN 3 : -100,100,-100,100
SET VIEWPORT , TRAN 3 : 0.6,1,0.0,0.6
SET INITIAL POINT, USING TRAN 2 : 860,160

LOCATE POINT x_user,y_user

.3.5 Setting an Initial Series of Points

The MAT LOCATE POINTS and MAT GET POINTS statements allow
you to present the user with one initial point specified in the optional AT
clause; the SET INITIAL MULTIPOINT statement allows you to present
a user with a series of points. You supply initial MULTIPOINT data as
two arrays of world coordinates: an array of x-coordinates and an array
of y-coordinates. If you have more than one transformation defined, you
can specify in the optional USING TRAN clause which transformation
VAX BASIC should use to interpret these initial points. If you do not
supply an alternative transformation, VAX BASIC uses the current output
transformation to display the initial points on the screen.

An optional COUNT clause can be specified with this statement to indicate
the number of elements from each array to be used for the display. In
the following example, two arrays of coordinates are declared with 10
elements each. However, the SET INITIAL MULTIPOINT statement uses
a COUNT clause to limit the initial MULTIPOINT data to the first seven
elements of each array (elements 0 through 6). Without the COUNT
clause, all points in the arrays would be displayed. The output shows
how this initial set of points is displayed on a VT240. (On some devices,
the DELETE key can be used to delete the initial series of points.)

Graphics Input 7-23

Example

DECLARE LONG counter, how_many
DIM SINGLE x_stars(9),y_stars(9), ~

user_x(40), user_y(40)
DATA 10,60, 30,60, 46,47.6, 60,29, 46,14, ~

62.6,14, 70,30, 80,19, 82,22, 89,26
READ x_stars(counter),y_stars(counter) FOR counter= OX TO 9%

SET WINDOW , TRAN 1 : 0,100,0,100
!+
!Display only seven of the points
!-
SET INITIAL MULTIPOINT, COUNT 7

: x_stars,y_stars
MAT LOCATE POINTS , COUNT how_many : user_x, user_y

Output

/~"-

\ / 1<
L __ /

ZK·4946·86

Note that no USING TRAN clause is included in this statement; therefor
VAX BASIC transforms the seven points using the current transformatior
The user can select this initial diagram or move the prompt to select oth1
points. In this case, the user can supply up to 41 points.

7-24 Graphics Input

I.I Accepting Paints W'dhin Pictures

When points are accepted during the execution of a picture, the points
accepted by the LOCATE POINT and MAT LOCATE POINTS statements
are not affected by the picture transformations specified on the DRAW
statement that invoked the picture. If you want the input points to be
affected by these transformations, you should use the GET POINT and
MAT GET POINTS statements. The coordinates accepted by a GET
POINT or a MAT GET POINTS statement are transformed according
to the inverse of the transformations specified on a DRAW statement;
that is, the device coordinates of input points are transformed to world
coordinates and then transformed according to the applied transformation
functions. For instance, if a picture is invoked with SCALE(2) and points
are input during picture execution, the input points will be transformed
to world coordinates acwrding to the current transformation, and then
divided by two (the inverse of SCALE(2)).

The following example uses the GET POINT and LOCATE POINT state­
ments in a picture definition. The first screen shows the picture drawn
without any transformation functions. For the second screen, the picture
is drawn with the SHIFT function. Notice that the coordinates of the point
accepted with the LOCATE POINT statement are not shifted.

Example

PROGRAM get_the_point
OPTION TYPE = EXPLICIT
EXTERNAL PICTURE loc_get_point

Screen_1:
DRAW loc_get_point
SLEEP 6X
CLEAR

Screen_2:
DRAW loc_get_point WITH SHIFT(0.3,0)

END PROGRAM

Graphics Input 7-25

PICTURE loc_get_point
OPTION TYPE = EXPLICIT
DECLARE SINGLE x_coord,y_coord,lx_coord,ly_coord
PLOT LINES 0.1,0.2; 0.4,0.3; t

0.3,0.6; 0.1,0.2
GET POINT x_coord, y_coord
PLOT POINTS x_coord, y_coord
LOCATE POINT lx_coord, ly_coord
PLOT POINTS lx_coord, ly_coord

END PICTURE

Output Screen 1:

7-26 ·Graphics Input

/\
I \

/ \ I ,
I \

~ I

~

ZK-4939-86

Output Screen 2:

b * L-

ZK-4938-86

Similarly, when MULTIPOINT input is accepted within a picture defini­
tion, the points accepted by the MAT LOCATE POINTS statement are
not affected by the transformation functions specified on the DRAW state­
ment that invoked the picture, while points accepted by the MAT GET
POINTS statement are affected. The device coordinates of input points
are transformed to world coordinates and then transformed according to
the applied transformation functions. The following examples illustrate
the difference between the MAT GET POINTS statement and the MAT
LOCATE POINTS statement used within a picture. The first picture ac­
cepts user input with the MAT LOCATE POINTS statement while the
second picture uses the MAT GET POINTS statement. For purposes of
illustration, the examples assume the user input is the same for both
pictures.

Graphics Input 7-27

Example

PICTURE locate_doodle
DECLARE LONG CONSTANT max_pts = 26
DECLARE SINGLE x_array(1 TO max_pts),y_array(1 TO max_pts) t

• LONG how_many
MAT LOCATE POINTS t

• AT 0,0 t
, COUNT how_many t
: x_array, y_array

IF how_many > max_pts
THEN how_many = max_pts

END IF
MAT GRAPH LINES , COUNT how_many x_array.y_array

END PICTURE

PICTURE get_doodle
DECLARE LONG CONSTANT max_pts = 26
DECLARE SINGLE x_array(1 TO max_pts),y_array(1 TO max_pts) t

, LONG how_many
MAT GET POINTS t

, AT 0,0 t
, COUNT how_many t
: x_array, y_array

IF how_many > max_pts
THEN how_many = max_pts

END IF
MAT GRAPH LINES • COUNT how_many x_array,y_array

END PICTURE

7-28 Graphics Input

User Input:

ZK-5528-86

When the pictures are invoked, only the points retrieved by the MAT GET
POINTS statement are affected by the transformation functions in the
DRAW statement. Compare the output of the DRAW statements in the
following example.

Graphics Input 7-29

Example

PROGRAM compare
OPTION TYPE = EXPLICIT
OPTION ANGLE = DEGREES
EXTERNAL PICTURE locate_doodle,get_doodle
!+
!Set up point of origin at center for rotation
!-
SET WINDOW -60,60,-60,60
DRAW locate_doodle WITH ROTATE(90)
SLEEP 6%
CLEAR
DRAW get_doodle WITH ROTATE(90)

END PROGRAM

Output Screen 1 :

7-30 Graphics Input

!Set up screen 1

!Set up screen 2

ZK-5529-86

Output Screen 2:

ZK-5527-86

F.4 STRING Input

Input statements for STRING allow you to:

• Set up an initial string for the user

• Accept the user-supplied string

r .4.1 Accepting STRING Input

You accept STRING input with the LOCATE STRING statement.
Execution of the LOCATE STRING statement assigns the user-supplied
string to a string variable you supply. For example:

DECLARE STRING user_supplied_string

LOCATE STRING user_supplied_string

Graphics Input 7-31

The LOCATE STRING statement has an optional INITIAL clause. You
can use this clause to present an initial string to the user. Depending
on the device, the cursor is placed at the end of the initial string, and
the user can either press the RETURN key to accept the initial string or
enter another string. The user-supplied string is concatenated to the initial
string. However, depending on the device, the user may be able to delete
the initial string by pressing the DELETE key or CTRL/U. You can detect
the absence of the initial string in your program.

You can use various string handling functions to examine the user­
supplied string. Depending on the the contents of the examined string,
your program can branch accordingly. In this example, the user has
responded with the string "sweetn. After execution of the LOCATE
STRING statement, taste_choice contains the string "Savory?sweetn.

Example

DECLARE STRING taste_choice
LOCATE STRING, INITIAL "Savory?" taste_choice

Output

\..I._ _sa_v_or-~?_s_we_et _______________ _.I)

ZK-5235-86

You can use the null string to indicate a default response, as shown in the
following example. The following example sets the initial string to "Save

7-32 Graphics Input

drawing [yes]?" informing the user that pressing the RETURN key will
be interpreted as a positive response. In your program, you can branch
to different routines according to the user-supplied string. This example
presents the initial string as a prompt; unless the user has deleted all or
part of the initial string, the resulting string contains both the prompt and
the user-supplied response.

Example

EXTERNAL PICTURE save_it,menu
DECLARE STRING CONSTANT initial_prompt • "Save drawing [yes]? "
DECLARE STRING initial_prompt, whole_string
LOCATE STRING , INITIAL initial_prompt : whole_string
!+
! Check if user responded with a <CR>
!-
IF whole_string = initial_prompt

THEN DRAW save_it
ELSE DRAW menu

END IF

.4.2 Setting the Initial String

You can set the initial string with the SET INITIAL STRING statement
as an alternative to using the INITIAL clause with the LOCATE STRING
statement. The following statement sets the initial string to "Sooner or
later [sooner]?". This informs the user how a default response will be
interpreted.

SET INITIAL STRING "Sooner or later [sooner]? "

Subsequent requests for STRING input use the initial string specified in
the most recent SET INITIAL STRING statement unless this is overridden
by an INITIAL clause in a LOCATE STRING statement.

Note that unless you set an initial string in your program with a SET
INITIAL STRING statement or with an INITIAL clause on the LOCATE
STRING statement, no string is presented to the user.

Graphics Input 7-33

7 .5 VALUE Input

Input statements for VALUE allow you to:

• Set up an initial range of acceptable values
• Set up an initial value for the user

• Accept the user's actual input

7 .5.1 Accepting VALUE Input

You accept VALUE input with the LOCATE VALUE statement. With this
statement you can optionally declare an acceptable range of values and
indicate an initial selection. When you do not specify an initial value and
range, a default range of 0 through 1 and an initial value of 0.5 are used.
The following example changes the value prompt displayed to the user
with a LOCATE VALUE statement.

Example

DECLARE SINGLE real_value
LOCATE VALUE , RANGE 6 TO 10 t

, INITIAL 8.6 t
: real_value

7 .5.2 Setting the Initial Value

The SET INITIAL VALUE statement allows you to set the range of accept
able values and select an initial value to be presented to the user. You
can use this statement as an alternative to using the INITIAL clause on
the LOCATE VALUE statement. The initial default range of 0 through
1 is used when you do not specify an alternative range. The acceptable
range is displayed as the prompt to the user; the form of the display varie
with each device. On a VT240, the display is presented in the form of a
continuous line with the lowest acceptable value at the bottom and the
highest acceptable value at the top. This range and initial value are also
used for any subsequent requests for VALUE input. For example, the
following SET INITIAL VALUE statement declares that acceptable values
are within the range 50 through 100 and sets the initial value to 75.

7-34 Graphics Input

Example

DECLARE SINGLE CONSTANT first = 60,
last = 100

DECLARE SINGLE how_much

SET INITIAL VALUE, RANGE first TO last 76

LOCATE VALUE how_much

Output

(
100.00

60.00

~-~~~~~~---)
ZK-5231-86

An initial value specified in a LOCATE VALUE statement overrides the
initial value set in the SET INITIAL VALUE statement. However, if no
INITIAL clause is included in a LOCATE VALUE statement, subsequent
requests for VALUE input use the last initial value set with a SET INITIAL
VALUE statement.

The initial value must lie within the current range. When this is not the
case, VAX BASIC signals the run-time error ILLINIVAL, "illegal initial
value" (ERR= 284).

Graphics Input 7-35

7 .6 Changing Echo Areas

The echo area is the portion of your screen where the prompt appears
and where input can be accepted from a user. It can be all or part of the
screen. So far in this chapter, the default echo area has been displayed.
The default boundaries of the echo area for each type of input are device
dependent.

You can change the echo boundaries in your application to a preferred
area of your screen for the CHOICE, STRING, and VALUE echo areas.

Use the SET ... ECHO AREA statements to change the default echo arec
You must specify the boundaries of an echo area in device coordinates
in the order left, right, bottom, top. Because the echo boundaries must
be in device coordinates, VAX BASIC supplies statements that allow you
to retrieve the current echo area boundaries. You can retrieve the device
coordinates of a particular device with the ASK DEVICE SIZE statement.
This statement is discussed in Chapter 8. To retrieve the boundaries
of the current echo area on a particular device, use the appropriate
ASK ... ECHO AREA statement. Boundaries for VAXstations and VT125
and VT240 terminals are listed in Appendix B.

The following example retrieves the data for the default VALUE echo arec
on a VT125, then uses this data to reduce the echo area. You can alter
the default echo area for STRING and CHOICE input in a similar fashion
Further examples are given in the reference section of this manual.

7-36 Graphics Input

Example

DECLARE SINGLE xmin,xmax,ymin,ymax, user_val
ASK VALUE ECHO AREA xmin,xmax,ymin,ymax
SET VALUE ECHO AREA xmin,xmax,ymin,ymax/2
LOCATE VALUE user_val

Output

,.1 Summary

An interactive graphics program can:

1I00 0

0.000

• Set initial input data, such as the options in a menu

ZK-5229-86

• Accept input from a user, such as the world coordinates of points

• Define the input priority when viewports overlap

• Change defaults, such as the echo area

The following chapter shows how to use the input statements discussed
here when you use more than one device.

Graphics Input 7-37

Chapter 8

Advanced Graphics Programming
Techniques

A complex graphics application can open several different devices for
simultaneous input and output, store graphics data in files, and display
the stored data. This chapter shows you how to:

• Use alternate or multiple devices
• Send graphics output to a data file rather than an output device

• Display the contents of graphics data files

• Determine the capabilities of various supported devices

• Define device transformations

1.1 Using Alternate or Multiple Devices

To use more than one device, you must include the OPEN ... FOR
GRAPHICS statement in your program. For example, the following
statement opens a device and identifies it as device #2. The quoted string
must be a system name or logical name for an actual device. (The quoted
string can also be a file name, as discussed in Section 8.2.)

OPEN "VTA247:" FOR GRAPHICS AS DEVICE 12

Normally on VAX/VMS systems, all terminals other than your own are
protected from you. In order to open a terminal other than your own, you
must have SYSPRV privileges; without these privileges, you can access
another terminal only if a privileged user issues the DCL command SET
PROTECTION /DEVICE for that terminal. This command can be included
in the installation startup file to make such a terminal permanently

Advanced Graphics Programming Techniques 8-1

available to you. If you require changes to your privilege status, see yom
system manager.

The OPEN ... FOR GRAPHICS statement is optional. If you do not
explicitly open a device, VAX BASIC opens the default device for you. Th
default device is opened with the equivalent of the following statement:

OPEN "" FOR GRAPHICS AS DEVICE 10

When you do not identify a device with an OPEN ... FOR GRAPHICS
statement, VAX BASIC automatically uses the default identification of 0,
which is equivalent to both SYS$INPUT and SYS$0UTPUT. The default
identification is adequate when you are using only one device, such as
when you both create a program and display the image on a single video
display unit; however, you need device identification numbers when you
use more than one device in an application.

Note that multiple workstation windows on a VAX.station should be
identified as separate devices; otherwise, all output is displayed in the
same window.

8.1.1 The Device ldentificatian Clause

The device identification number is an integer that you assign to dis­
tinguish between different devices in your program. The number is
explicitly assigned to a device in the device identification clause in the
OPEN ... FOR GRAPHICS statement.1

Many VAX BASIC graphics statements allow you to optionally specify
this number for each device. Statements with an optional identification
clause include the control statements, many input statements, many ASK
statements, and the statements for device transformations.

When you do not specify the identification clause, the statement affects
only the default device (device #0). When you do specify this identifica­
tion clause, each statement's effect is limited only to the device identified.
any other devices identified in the application are not affected. For exam­
ple, the following SET statement changes the VALUE echo area only on
device #l.

1 Device identification numbers in OPEN ... FOR GRAPHICS statements are not related to the channel
numbers specified in OPEN statements. Channel numbers and device identification numbers are
independent of each other.

8-2 Advanced Graphics Programming Techniques

OPEN "TV38" FOR GRAPHICS AS DEVICE #1

SET VALUE ECHO AREA #1 : devx_min,devx_max,devy_min,devy_max

You can specify #0 in statements that include the optional device iden­
tification clause. However, you can include other devices in statements
only if the device has already been explicitly opened and identified.
When a statement specifies a device that has not been identified in an
OPEN ... FOR GRAPHICS statement, VAX BASIC signals an error.
Remember that when you do not identify a device, VAX BASIC uses the
default identification of 0.

The optional identification clause allows you to specify which device VAX
BASIC should request and accept input from. The following example sets
up a different menu for two devices:

Example

OPTION TYPE = EXPLICIT
DECLARE LONG work_choice, fun_choice
OPEN "office_term" FOR GRAPHICS AS DEVICE #1
OPEN "home_term" FOR GRAPHICS AS DEVICE #2
!+
!Set initial choice lists for each terminal with
!the device identification clause as first optional clause
!-
SET INITIAL CHOICE #1 , LIST ("Program" t

, "Write" t
,"Review" t
• "Edit" t
,"Quit") : 5

SET INITIAL CHOICE #2 , LIST ("Play more" t
,•Quit") : 1

!+
!Request input from device #1
!-
LOCATE CHOICE #1 : work_choice
!+
!Request input from device #2
!-
LOCATE CHOICE #2 : fun_choice

When several optional clauses are included in a statement, the optional
device identification clause must be the first clause listed in the statement.
The following statement includes a device identification clause followed
by an optional COUNT clause. The statement accepts points from a user

Advanced Graphics Programming Techniques 8-3

at the device identified as #2 and stores the number of points entered in
the variable How_many.

MAT GET POINTS 12 , COUNT How_many : x_coords, y_coords

For syntax details of particular statements, see the reference section of thi:
manual.

8. 1.2 Supported Device Types

Each hardware device supported by VAX GKS has an assigned number
that indicates the type of device you are using and whether the device is
to be used for input, output, or both. Device types that are supported by
VAX GKS are listed with the OPEN ... FOR GRAPHICS statement in th
reference section.

When you use the OPEN ... FOR GRAPHICS statement, you can
optionally specify a device type. For example, the following statement
opens uRT30", a system name for a color VT240, device type 13:

OPEN "RT30" FOR GRAPHICS AS DEVICE 12 , TYPE 13

When you do not specify a device type, VAX BASIC searches for an
assignment to the logical name GKS$WSTYPE. If you have made no
assignment, VAX BASIC searches for a system assignment. If the
search fails, VAX BASIC uses the default device type of 14, which is a
monochrome VT240. To find out if a system-wide assignment has been
made, issue the following DCL command:

$ SHOW LOGICAL GKS$WSTYPE

If no translation is available for GKS$WSTYPE, or if you need to overrid~
the system assignment, you can assign the device type for your own
device to GKS$WSTYPE in your startup procedures. For instance, in
the login command procedure for a graphics session on a VT240 color
terminal, include the following DCL command:

$ ASSIGN 13 GKS$WSTYPE

If you have already assigned your current device type with this commam
and do not specify another device type in your program, then VAX BASI1

uses this assigned value by default and output is displayed, in this case, j

the format for a VT240 color monitor.

8-4 Advanced Graphics Programming Techniques

You can have multiple devices of the default device type or any assigned
device type. You should specify the device type in each OPEN ... FOR
GRAPHICS statement only if you cannot assign a device type number
to GKS$WSTYPE, or when you use more than one device type. When
you specify a device type, your program is no longer portable to another
device.

The system name for the device must refer to an actual device of the type
you specify. In the following example, the device RT247: is opened as
device type 13, a VT240 with the color option. The system name RT247:
refers to an actual device that is a color VT240.

OPEN "RT247:" FOR GRAPHICS AS DEVICE #2 , TYPE 13

Note that your system configuration may require an alternative method
of specifying devices such as printers. For instance, to specify a queued
printer on a V AXcluster, you may have to include the name of the node in
the quoted string.

You cannot open a device with an incorrect device type. For instance, you
cannot open a video display unit as a printer. The following statement
opens an LA34 printer, device type 31, with a device identification of 1.
The quoted string my_printer must be translated to the actual LA34 you
are opening.

OPEN "my_printer" FOR GRAPHICS AS DEVICE #1, TYPE 31

Output is displayed on all active devices during program execution. The
following example opens a VT240 and an LASO; the picture ellipse is
displayed on the VT240 screen and printed on the LASO.

Example

OPTION TYPE = EXPLICIT
EXTERNAL PICTURE ellipse
OPEN "my_printer" FOR GRAPHICS AS DEVICE #1, TYPE 32
OPEN "VTA83" FOR GRAPHICS AS DEVICE 12, TYPE 13

DRAW ellipse

.1.3 Controlling Devices

Because output is displayed on all active output devices, VAX BASIC
provides the capability to explicitly inhibit the display of output on spec­
ified devices. For instance, you could open three devices for interactive

Advanced Graphics Programming Techniques 8-5

graphics, yet want the output displayed on only two of them. To inhibi1
a display on a device, use the DEACTIVATE DEVICE statement; to acti­
vate the device again, use the ACTIVATE DEVICE statement. The devio
identification number is required with each of these statements.

When VAX BASIC opens a device with the OPEN ... FOR GRAPHICS
statement, the device is also automatically activated. When no devices
are explicitly opened and graphics statements are executed, the default
device is automatically opened and activated. After all devices are opem
and identified, you can inhibit the display going to one device with the
DEACTIVATE DEVICE statement. For example:

DEACTIVATE DEVICE t5

When you want to display an image on this device later, use the
ACTIVATE DEVICE statement.

ACTIVATE DEVICE t6

You can explicitly deactivate the default device (#0); however, if no
devices are active and a graphics output statement is executed, VAX
BASIC reactivates the default device.

The CLEAR statement allows you to clear the display on a particular
device. VAX BASIC clears a device automatically when it is first opened.
When no device identification is included in the CLEAR statement, only
the display on the default device is cleared.

The following example uses these three statements to control the display
of pictures when several devices are active. Logical names are used to
represent the actual terminals.

Example

OPTION TYPE = EXPLICIT
EXTERNAL PICTURE chocolate_candy,salad,balanced_meal

OPEN "cafe_term" FOR GRAPHICS AS DEVICE ti, TYPE 13
OPEN "Marys_term" FOR GRAPHICS AS DEVICE t2, TYPE 12
OPEN "Evs_term" FOR GRAPHICS AS DEVICE t3, TYPE 12

8-6 Advanced Graphics Programming Techniques

DEACTIVATE DEVICE 13
DRAW chocolate_candy
ACTIVATE DEVICE 13
DEACTIVATE DEVICE 12
DRAW salad
ACTIVATE DEVICE 12
CLEAR 11
CLEAR 12
CLEAR 13
DRAW balanced_meal
SLEEP 101
END

Chocolate_candy is not displayed on the device Evs_term, and salad is not
displayed on Marys_term, while balanced_meal is displayed on all three
devices.

The RESTORE GRAPHICS statement allows you to restore all the graphics
defaults and attributes to the values at the start of program execution. This
statement does not accept a device identification; when you use RESTORE
GRAPHICS, all open devices are closed and all graphics attributes and
defaults are restored to the initial state at the start of program execution.

You can explicitly close a device with the CLOSE DEVICE statement.
This statement is optional; when a program is terminated, VAX BASIC
automatically doses all open devices. However, it is good programming
practice to explicitly close any devices that you explicitly open with an
OPEN ... FOR GRAPHICS statement. You can also use the CLOSE
DEVICE statement as a safeguard in error handlers, as shown in the
following example. This program displays the picture circle on devices #1
and #2. If an error is encountered while device #2 is being opened,
device #l is closed and circle is displayed on the default device.

Example

PROGRAM open_up

OPTION TYPE = EXPLICIT
EXTERNAL PICTURE circle
DECLARE LONG times

OPEN "RTA1" FOR GRAPHICS AS DEVICE 11, TYPE 12
WHEN ERROR IN

USE
OPEN "exper_term" FOR GRAPHICS AS DEVICE 12, TYPE 12

GRAPH TEXT AT 0.6,0.6: "Problems with experimental terminal"
CLOSE DEVICE 11
EXIT HANDLER

END WHEN

DRAW circle WITH SHEAR(10 * times) FOR times = 1X TO 61
END PROGRAM

Advanced Graphics Programming Techniques 8-7

8.2 Metafiles

When a program creates a graphics image, you can store this image in a
file known as a metafile. Metafiles provide you with a convenient methoc
of storing and reproducing graphics images. They allow you to recreate
an image without repeatedly processing the data. Metafiles are especially
useful for:

• Recreating complex images that are used frequently
• Recreating images from user-supplied input that could not easily be

reentered

8.2.1 Creating Metafiles

To send an image to a metafile, your application program must open
a metafile as an alternative device. The following OPEN ... FOR
GRAPHICS statement opens the file grad_swans.pic as device #l with
the device type 2, an output metafile.

device_type = 2
OPEN "grad_swans.pic" FOR GRAPHICS AS DEVICE #1, TYPE device_type

Graphics output statements executed after this OPEN ... FOR
GRAPHICS statement are now directed to device #l, the metafile
grad_swans.pic. You cannot open an existing metafile as device type 2;
VAX BASIC can open only a new file.

The following example opens two devices: a V Ax.station II and a metafile
The program uses the picture swan defined in Chapter 6. It displays the
image on device #2 (a VAXstation) and stores the image data in the file
grad_swans.pic, device #l. If no directory is specified, the metafile is
created in your current directory.

Example

OPTION TYPE = EXPLICIT
EXTERNAL PICTURE swan
DECLARE SINGLE grad_matrix(4,4)
DECLARE LONG counter

OPEN "grad_swans.pic" FOR GRAPHICS AS DEVICE #1, TYPE 2
OPEN "VTA72" FOR GRAPHICS AS DEVICE #2 , TYPE 41

8-8 Advanced Graphics Programming Techniques

SET WINDOW , TRAN 1 : 0,100,0,100
FOR counter • 1l TO 7l

MAT grad_matrix • SHIFT((counter •counter) + (counter• 30),0) t
• SCALE(1/26 • counter)

DRAW swan WITH grad_matrix
NEXT counter
SET TEXT HEIGHT 3
GRAPH TEXT AT 6,40 :"Seven Swans A-Graduating"

CLOSE DEVICE 11
CLOSE DEVICE t2
END

Output

The image created by this DRAW statement is now stored in the metafile
grad_swans.pic and displayed on the V AXstation II. The metafile
grad_swans.pic can now be displayed on any open output device, as
described in the following section.

Advanced Graphics Programming Techniques 8-9

8.2.2 Displaying the Contents of a Metafile

Metafiles contain data records identifying the VAX GKS functions requir
for an output display. Once a valid VAX GKS metafile has been created
you can display the contents of the metafile with the GRAPH METAFIL
statement. The contents of the metafile are displayed on all active devfo
The GRAPH METAFILE statement requires the file specification of a val
metafile or a logical name. For example:

GRAPH METAFILE "[HEINES.GRAPHICS]grad_swans.pic"

Images contained in metafiles are displayed with the window and view­
port specified when the metafile was created, unless you set alternatives
before the GRAPH METAFILE statement is executed. To display the
metafile created by the previous example, you must include the GRAPH
METAFILE statement in a program. This example opens an output devi4
and displays the metafile. If no output device is explicitly opened for th
display, VAX BASIC displays the metafile on the default device.

Example

OPEN "office_term" FOR GRAPHICS AS DEVICE 11, TYPE 13
SET WINDOW , TRAN 1 : 0,100,0,100
GRAPH METAFILE "[HEINES.GRAPHICS]grad_swans.pic"
END

The following program Childs_play stores a user's drawings in metafiles
and displays them when requested. The drawings can be saved from
one session to another. The example assumes that a user knows whethe
any previous metafiles have been created, and that the user knows the
names of the drawings. Only the current drawing is held in memory.
Two devices are used: an output metafile, and the default dev.ice type fc
the user's terminal.

Example

PROGRAM childs_play

OPTION TYPE = EXPLICIT
DECLARE LONG to_do,how_many, t

SINGLE x_array(160), y_array(160)
EXTERNAL SUB display, t

save_it(SINGLE DIM(), SINGLE DIM(), LONG)
OPEN "" FOR GRAPHICS AS DEVICE 11

8-1 0 Advanced Graphics Programming Techniques

UNTIL OX
!+

NEXT

!Main menu
!-
SET INITIAL CHOICE , LIST ("Draw a new picture" t

LOCATE CHOICE 11 to_do

SELECT to_do
CASE = 1

CLEAR

,"Save the current picture" t
,"View an old picture" t
,"Quit this program") t
: 1

MAT LOCATE POINTS , 11 t
, COUNT how_many t

x_array, y_array
IF how_many > 161

THEN how_many = 161
END IF

CASE = 2
CALL save_it(x_array(),y_array(),how_many)

CASE = 3
CALL display

CASE = 4
EXIT PROGRAM

END SELECT

END PROGRAM

SUB display

OPTION TYPE = EXPLICIT
DECLARE STRING CONSTANT present t

"Which drawing? (<CR> = back to menu) "
DECLARE STRING meta_file
SET INITIAL STRING 11 : present

UNTIL OX
WHEN ERROR IN

LOCATE STRING 11 , INITIAL present meta_file
IF meta_file = present

THEN EXIT SUB
ELSE

END IF

meta_file = MID$(meta_file,38,46)
GRAPH METAFILE meta_file + ".met"
SLEEP 16X
CLEAR

Advanced Graphics Programming Techniques 8-11

USE
IF ERR • 51

THEN GRAPH TEXT AT 0.05,0.95 "That drawing does not exist,"
GRAPH TEXT AT 0.05,0.85 "please try another."

END IF
END WHEN

NEXT
END SUB

RETRY

SUB save_it(SINGLE x_array(),y_array (),how_many)
OPTION TYPE = EXPLICIT
DECLARE STRING meta_file
LOCATE STRING , INITIAL "Give it a name> ": meta_file
meta_file = MID$(meta_file,17,46)

!+
!Inhibit display from user's terminal
!-
DEACTIVATE DEVICE 11
OPEN (meta_file + ".met" FOR GRAPHICS AS DEVICE 12, TYPE 2
MAT PLOT LINES , COUNT how_many : x_array, y_array

!+
!Reactivate user's terminal

ACTIVATE DEVICE t1
!+
!Close metafile
!-
CLOSE DEVICE 12

END SUB

8.3 Determining Device Capabilities

You may need to retrieve information about a device when your applicc
tion is being used on an unknown device; for instance, an application m
use the VAX BASIC default values and have no control over the hardwc
device on which a user might run the application. To retrieve informati1
about hardware devices in use, VAX BASIC provides two ASK statemen

• ASK DEVICE TYPE
• ASK DEVICE SIZE

The ASK DEVICE TYPE statement retrieves the device type for a devicE
previously specified in an OPEN ... FOR GRAPHICS statement, or a
device implicitly opened by VAX BASIC. For example, the following AS
statement retrieves information about the device identified as device # 1.

8-12 Advanced Graphics Programming Techniques

ASK DEVICE TYPE 11 : device_type

Once you know the device type, you can branch to alternative routines
in your program. The following example requests information about an
unknown device. The application proceeds depending on th~ values
retrieved by the ASK statements. VAX BASIC assigns a value for the
device type to the variable dev_type in the ASK DEVICE TYPE statement.

Example

OPTION TYPE = EXPLICIT

EXTERNAL PICTURE sine_curve
EXTERNAL SUB VS_start_up,color_rtn
DECLARE LONG dev_type
OPEN •user_term• FOR GRAPHICS AS DEVICE 11

ASK DEVICE TYPE 11 : dev_type

SELECT dev_type
CASE = 41

CALL VS_start_up
CASE = 13

CALL color_rtn
CASE ELSE

END SELECT

DRAW sine_curve
CLOSE DEVICE 11

The ASK DEVICE SIZE statement retrieves the size of the available display
surface of the device in use. For instance, the following ASK statement
requests the size of device opened as 41, a VAXstation II:

Example

DECLARE SINGLE horizontal_size,vertical_size,
STRING what_measure

OPEN •my_term• FOR GRAPHICS AS 11 , TYPE 41
ASK DEVICE SIZE 11 : horizontal_size, vertical_size, what_measure

For V Ax.stations, the value assigned to what _measure is "METERS". When
the units of measure are not meters, the string assigned is "OTHER". The
measurement of the available display surface in the horizontal direction is
assigned to horizontal_size; the measurement in the vertical direction is as­
signed to vertical_size. You can use these assigned values to change echo
area boundaries or device viewport boundaries as shown in Section 8.4.

Advanced Graphics Programming Techniques 8-13

Additional information can be retrieved about specific devices with the
following statements. Each of these statements can include an optional
device identification.

• ASK MAX LINE SIZE

• ASK MAX POINT SIZE

• ASK MAX COLOR
• ASK COLOR MIX

• ASK ... ECHO AREA

These statements each retrieve device-specific information that you ma)
not be able to predict before run time. When specified, the device ident
cation clause must be the first optional clause in the statement. For m01
details about each of these statements, see Chapters 3, 4, and 7 as well
the reference material in Chapter 9.

Appendix B provides device-specific information, such as device coordi­
nates, for VAXstations and VT125 and VT240 terminals.

8.4 Device Transformations

In addition to the normalization transformations described in Chapter 5
you can also transform an image from NOC space to your device. This
is known as a device transformation. Device transformations allow you t
make use of all the available display space on an output device. Howev
device transformations are dependent on the size of a particular device,
unlike normalization transformations, which are device independent.

To recap, the normalization transformation defines the projection of an
image in the world window onto a viewport in NOC space. Normalizati
transformations include:

• Setting world window boundaries with the SET WINDOW stateme11

• Setting world (NOC) viewport boundaries with the SET VIEWPOR1
statement

• Establishing the current transformation with the SET TRANSFORM}
statement

• Clipping the graphics image within the viewport boundaries with tli
SET CLIP statement

8-14 Advanced Graphics Programming Techniques

A device transformation defines the projection of a portion of NOC space
onto a device viewport. Device transformations include:

• Selecting a portion of NOC space as the device window with the SET
DEVICE WINDOW statement

• Selecting a portion of the device as a device viewport with the SET
DEVICE VIEWPORT statement

Figure 8-1 illustrates the progression of both of these kinds of transforma­
tions.

1ure 8-1: Normalization and Device Transformations

>rid Window

NOC Space

- World Viewport -

Device Window t----~~ Device Viewport

ZK-5110-86

The device window is the portion of NOC space to be projected onto your
screen. The default device window includes all of NOC space with left,
right, bottom, and top boundaries of 0,l,0,1 respectively. You can specify
that only a portion of NOC space is projected onto the screen with the
SET DEVICE WINDOW statement. You cannot select a window larger
than the NOC space limits. A complementary ASK DEVICE WINDOW
statement allows you to retrieve the current device window boundaries.

Advance~ Graphics Programming Techniques 8-15

The following example sets the device window to 0.65,0.85,0.3,0.5.
Figure 8-2 illustrates the device window specified.

Example

OPEN "VTA72" FOR GRAPHICS AS DEVICE 11, TYPE 12
SET DEVICE WINDOW 11 : 0.66,0.86,0.3,0.6

Figure 8-2: The Device Window in NDC Space

NOC Space

Device Window

ZK-4837-85

The image defined in the device window of NDC space is projected ont
the device viewport, which is a portion of your screen. The default size
and shape of the device viewport is device dependent; however, it is
commonly the largest square area your device can accommodate.

You can change the boundaries of the device viewport with the SET
DEVICE VIEWPORT statement. The following example identifies the
device as #l, retrieves the device coordinates with the ASK DEVICE
SIZE statement, and uses these coordinates to set a new device viewpor
Figure 8-3 illustrates the projection of the previous device window onto
square device viewport.

8-16 Advanced Graphics Programming Techniques

Example

DECLARE SINGLE screen_height,screen_width
OPEN "VTA101" FOR GRAPHICS AS DEVICE 11
SET DEVICE WINDOW 11 : 0.66,0.86,0.3,0.6
ASK DEVICE SIZE screen_width, screen_height
SET DEVICE VIEWPORT 11 0, screen_width/2,

0, screen_width/2

1gure 8-3: The Device Window Is Projected onto the
Device Viewport

NOC Space

Device Viewport

ZK5111·86

The actual boundaries of the device viewport are dependent on the device.
For instance, V AXstations can have multiple viewing windows, while
the full display area on VT125 and VT240 screens is rectangular. The
following example shows how to extend the default device viewport to
the available display surface of VTl 25 and VT240 terminals. If you do
not know the dimensions of the particular output device you are working
with, use the ASK DEVICE SIZE statement to retrieve the appropriate
values. You can also use the ASK DEVICE VIEWPORT statement to

Advanced Graphics Programming Techniques 8-17

retrieve the current boundaries of the device viewport. Once you know
the exact dimensions of your screen, you can change the boundaries of th
device viewport with the SET DEVICE VIEWPORT statement.

Example

OPTION TYPE = EXPLICIT
DECLARE SINGLE horiz_size, vert_size,

STRING what_measure

OPEN "VTA247" FOR GRAPHICS AS DEVICE #1
ASK DEVICE SIZE #1, horiz_size, vert_size, what_measure
!+
!Use these values to set the device viewport
!to the full extent of your screen
!-
SET DEVICE VIEWPORT #1 : 0, horiz_size, 0, vert_size

Note that both the default device window and the default device viewpm
are square in shape. Figure 8-3 illustrates a square device window that
is projected onto a square device viewport. When the aspect ratio is not
1:1, VAX BASIC overrides your specifications for a device viewport and
uses the largest possible device viewport that matches the shape of the
device window. To ensure that the aspect ratio is 1:1, you should set a
rectangular device window in direct proportion to a rectangular device
viewport.

You cannot alter the clipping status in terms of the output device. If
a graphics object extends beyond the actual boundaries of the device
window or viewport you specify, the excess of the image is not displayed

Note that device transformation information is ignored in metafiles and
metafile output is displayed using the current device window and view­
port.

The following subprogram uses the whole screen as the device viewport.
You can declare and call this subprogram from a graphics main program,
as shown here.

8-18 Advanced Graphics Programming Techniques

Example

SUB Full_screen(LONG trans)
OPTION TYPE = EXPLICIT
DECLARE STRING temp
DECLARE SINGLE aspect_ratio, dcx_max, dcy_max
SET TRANSFORMATION trans
SET CLIP "OFF"

ASK DEVICE SIZE dcx_max, dcy_max
aspect_ratio = dcy_max/dcx_max
!+
!Same ratio as device
!-
SET VIEWPORT 0,1,0,aspect_ratio
!+
!Full screen
!-
SET DEVICE VIEWPORT 0,dcx_max,0,dcy_max
SET DEVICE WINDOW 0,1,0,aspect_ratio

END SUB

PROGRAM Demo
EXTERNAL SUB Full_screen(LONG)
DECLARE SINGLE counter

CALL Full_screen(1)
GRAPH LINES 0,1; 1,1; 1,0; 0,0; 0,1
GRAPH LINES counter,O.O;counter,1.0 FOR counter = 0 TO 1 STEP 0.6

END PROGRAM

Advanced Graphics Programming Techniques 8-19

Output

ZK-5515·86

Although complex manipulations with device viewports are possible, it is
preferable to manipulate images in NDC space. Rather than divide the
device viewport into various portions, it is less cumbersome to build a
composite or complex display in NDC space using normalization transfor
mations. Once such a composite display is created in NDC space, all of
NDC space can be mapped to the default device viewport. It is more
reliable (and easier) to use normalization transformations rather than
device transformations to manipulate composite images because normali­
zation transformations are device independent.

8-20 Advanced Graphics Programming Techniques

8.5 Summary

This chapter has discussed how to:

• Specify different devices in graphics control and input statements,
such as CLOSE DEVICE and LOCATE CHOICE

• Use metafiles to store graphics output and display the files with the
GRAPH METAFILE statement

• Determine device capabilities with the ASK DEVICE TYPE and ASK
DEVICE SIZE statements, as well as other statements

• Define device transformations with the SET DEVICE WINDOW and
SET DEVICE VIEWPORT statements

Advanced Graphics Programming Techniques 8-21

~EFERENCE SECTION

Chapter 9

VAX BASIC Graphics Statements

This chapter provides reference material on each VAX BASIC graphics
statement. The descriptions are arranged in alphabetical order and include
the following sections:

Overview An overview of what the statement does.

Format The required syntax for the statement.

Syntax Rules Any rules governing the use of parameters, separators, or other
syntax items.

Remarks Explanatory remarks concerning the effect of the statement on
program execution and any restrictions governing its use.

Example One or more examples of the statement in a program. Where
appropriate, sample output is shown.

Explanation of Syntax Diagrams

The following tables explain the conventions used in the syntax diagrams
in this chapter. The syntax diagrams consist of VAX BASIC keywords,
mnemonics, and punctuation symbols.

The following symbols are used in the syntax diagrams.

VAX BASIC Graphics Statements 9-1

Symbol

UPPERCASE

lowercase

[]

{}

Meaning

Uppercase words are VAX BASIC keywords that must be
coded exactly as shown.

Lowercase words are elements that must be replaced by
an appropriate user-supplied value.

Brackets enclose an optional portion of a format. Brackets
around vertically stacked items indicate that you can
select one of the enclosed items. You mµst include all
punctuation as it appears in the brackets.

Braces enclose a mandatory portion of a format. Braces
around vertically stacked items indicate that you must
choose one of the enclosed items. You must include all
punctuation as it appears in the braces.

An ellipsis indicates that the immediately preceding item
can be repeated. An ellipsis following a format unit
enclosed in brackets or braces means that you can repeat
the entire unit. If repeated items or format units must be
separated by commas, the ellipsis is preceded by a comma
(' ...).

The following mnemonics are used in the syntax diagrams:

Mnemonic

angle

array

cond-exp

const

data-type

def

dev-id

dev-type

exp

9-2 VAX BASIC Graphics Statements

Meaning

An angle in radians or degrees

An array; syntax rules specify whether the bounds or dimen­
sions can be specified

Conditional expression; used to indicate that an expression
can be either logical or relational

A constant value

A data type keyword

Specific to a DEF function

An identification number for a particular graphics device;
always preceded by a number sign(#)

The number associated with the particular type of hardware
device (see Table 9-1)

An expression

Mnemonic

file-spec

int

int-exp

int-var

label

line

line-num

matrix

name

num

param-list

pass-mech

pie-name

real

real-exp

real-var

str

str-exp

str-var

target

tran-term

unsubs-var

var

x-array

x-coord

y-array

y-coord

Meaning

A file specification

An integer

An expression that represents an integer value

A variable that contains an integer value

An alphanumeric statement label

A statement line; may or may not be numbered

A statement line number

A two-dimensional array

A name or identifier; indicates the declaration of a name or
the name of a VAX BASIC structure, such as a PICTURE
subprogram

A numeric value

A parameter list, such as for a PICTURE subprogram

A valid VAX BASIC passing mechanism

The name of a PICTURE subprogram

A floating-point value

A floating-point expression

A floating-point variable

A character string

An expression that represents a character string

A variable that contains a character string

The target point of a branch statement; either a line number
or a label

A reserved keyword used for a transformation function

Unsubscripted variable; used to indicate a simple variable, as
opposed to an array element

A variable

An array of values for x-coordinates

A value for the x-coordinate of a point

An array of values for y-coordinates

A value for the y-coordinate of a point

VAX BASIC Graphics Statements 9-3

ACTIVATE DEVICE

ACTIVATE DEVICE

Format

The ACTIVATE DEVICE statement allows you to activate an output
device that has been explicitly deactivated. Subsequent graphics output is
displayed on the specified device.

ACTIVATE DEVICE #dev-id

Syntax Rules

Remarks

You must supply the number sign{#) with dev-id.

1. Dev-id specifies the device that should be activated. Unless you spec­
ify the default device, the device specified must have been identified
with an OPEN ... FOR GRAPHICS statement.

2. A device must be open and activated for graphics output to be dis­
played on that device. The OPEN ... FOR GRAPHICS statement
implicitly activates an output device.

3. After a device has been deactivated, graphics output is not displayed
on that device until an ACTIVATE DEVICE statement is executed.

4. If no devices are open and activated when an output statement is
executed, VAX BASIC implicitly opens and activates the default device
(device #0).

5. See also the DEACTIVATE DEVICE statement.

9-4 VAX BASIC Graphics Statements

Example

EXTERNAL PICTURE Basic_crowd,Basic_party_crowd
OPEN "VTA247" FOR GRAPHICS AS DEVICE 12
OPEN "RT1" FOR GRAPHICS AS DEVICE 13

!+
!Send output only to device #3
!-
DEACTIVATE DEVICE 12
DRAW Basic_crowd
!+
!Send output to device 12 and 13
!-
ACTIVATE DEVICE 12
DRAW Basic_party_crowd

ACTIVATE DEVICE

VAX BASIC Graphics Statements 9-5

ASK AREA COLOR

ASK AREA COLOR

Format

The ASK AREA COLOR statement allows you to retrieve the current color
index for areas.

ASK AREA COLOR int-var

Syntax Rules

Remarks

None.

1. The range of valid color indices is device dependent. Results are
unpredictable if you use the value assigned to int-var in a subsequent
SET AREA COLOR statement and the index is undefined for any
activated device.

2. On VT125 and VT240 terminals with the color option, the default
value assigned to int-var represents one of the following colors:

Index Color

0 Black

1 Green

2 Red

3 Blue

3. See also the SET AREA COLOR, SET/ ASK COLOR MIX, and ASK
MAX COLOR statements.

9-6 VAX BASIC Graphics Statements

Example

OPTION TYPE = EXPLICIT
DECLARE LONG color_var
ASK AREA COLOR color_var
SET AREA COLOR color_var + 1
GRAPH AREA 0.0,0.0; 1.0,1.0; 1.0,0.0
END

ASK AREA COLOR

VAX BASIC Graphics Statements 9-7

ASK AREA STYLE

ASK AREA STYLE

Format

The ASK AREA STYLE statement retrieves the value for the current area
style.

ASK AREA STYLE str-var

Syntax Rules

Remarks

None.

1. The value assigned to str-var is one of four possible values:

• HOLLOW

• SOLID

• PATTERN

• HATCH

2. The default area style is solid.

3. If the area style is HATCH or PATTERN, various index styles are
defined in the area style index. See the SET/ ASK AREA STYLE
INDEX statements.

9-8 VAX BASIC Graphics Statements

:xample

OPTION TYPE = EXPLICIT
EXTERNAL PICTURE strip
DECLARE STRING which_style
ASK AREA STYLE which_style
DRAW strip
IF which_style = "SOLID"

THEN SET AREA STYLE "HOLLOW"
END IF
DRAW strip WITH SHIFT(0.4,0)
END

PICTURE strip
DIM SINGLE x_strip(3),y_strip(3)

x_strip(O) = 0.1
x_strip(1) = 0.3
x_strip(2) = 0.3
x_strip(3) = 0.1
y_strip(O) = 0.7
y_strip(1) = 0.7
y_strip(2) = 0.1
y_strip(3) = 0.1
MAT PLOT AREA x_strip, y_strip

END PICTURE

Output

ASK AREA STYLE

ZKA948·86

VAX BASIC Graphics Statements 9-9

ASK AREA STYLE INDEX

ASK AREA STYLE INDEX

Format

The ASK AREA STYLE INDEX statement retrieves the value for the
current area style index. The index value specifies one of the various
hatch or pattern styles.

ASK AREA STYLE INDEX int-var

Syntax Rules

Remarks

None.

1. The area style index specifies one of the various hatch or pattern
styles. There is no index value for hollow or solid area styles.

2. Area index values are device dependent. If you use the value assigne<
to int-var in a subsequent SET AREA STYLE INDEX statement and th
index specified is not defined for the device, results are unpredictable
when an area is subsequently displayed. Appendix B lists possible
indices for VAXstations and VT125 and VT240 terminals.

3. Examples of possible indices are shown with the SET AREA STYLE
INDEX statement and also in Chapter 3 of this manual.

9-10 VAX BASIC Graphics Statements

Example

DECLARE LONG which_ind
ASK AREA STYLE INDEX which_ind
IF which_ind > 32%

THEN SET AREA STYLE INDEX (which_ind - 32%)
END IF

ASK AREA STYLE INDEX

VAX BASIC Graphics Statements 9-11

ASK CHOICE ECHO AREA

ASK CHOICE ECHO AREA

Format

The ASK CHOICE ECHO AREA statement allows you to retrieve the
boundaries of the current CHOICE echo area. The boundaries are assigned
in device coordinates.

ASK CHOICE ECHO AREA
[

#dev-id { : }]
, UNIT int-exp

real-var1, real-var2, real-var3, real-var4

Syntax Rules

Remarks

1. When specified, dev-id must be the first clause listed and must be
preceded by the number sign(#).

2. Real-varl must be preceded by a colon if one or more optional clause~
are included.

3. Real-varl, real-var2, real-var3, and real-var4 must be floating-point
variables to represent the left, right, bottom, and top boundaries
respective! y.

1. The echo area is the portion of your screen where the prompt appear~
and where input can be supplied by a user. The default boundaries
are device dependent.

2. VAX BASIC assigns the boundaries for this area in device coordinates

9-12 VAX BASIC Graphics Statements

xample

ASK CHOICE ECHO AREA

3. The optional dev-id identifies the device for which you want informa­
tion. If no identification clause is included, VAX BASIC uses a default
identification of #0. If an identification clause is included, the device
specified must have been opened explicitly, or opened by VAX BASIC
as the default device.

4. The optional UNIT clause allows you to specify an alternative means
of supplying the input. For instance, the selection from a menu can
be indicated with a mouse, or with the keyboard arrow keys. Each of
these methods of data entry is a different unit. The default unit value
for int-exp for each input type is 1; the default is used throughout
this manual. For information about the units available on a particular
device, see the hardware documentation for that device, as well as the
VAX GKS documentation.

5. See also the SET CHOICE ECHO AREA statement.

6. Note that you cannot retrieve or change the boundaries of the echo
area for POINT or MULTIPOINT input. These echo areas coincide
with the default for the device.

OPTION TYPE = EXPLICIT
DECLARE SINGLE xmin, xmax, ymin, ymax, ll

new_xmin,new_xmax,new_ymin,new_ymax, ll
LONG which

ASK CHOICE ECHO AREA xmin, xmax, ymin, ymax
!+
!Set new echo boundaries
!-
new_xmin = 0
new_xmax = xmax
new_ymin = ymin
new_ymax = ymax
SET CHOICE ECHO AREA new_xmin, new_xmax, new_ymin, new_ymax
SET INITIAL CHOICE , LIST ("Richer" ll

• "Poorer" ll
."Better" ll
,"Worse") ll
: 3

LOCATE CHOICE which

VAX BASIC Graphics Statements 9-13

ASK CLIP

ASK CLIP

Format

The ASK CLIP statement allows you to determine whether clipping is
currently on or off.

ASK CLIP str-var

Syntax Rules

Remarks

None.

1. The value assigned to str-var is either "ON" or "OFF".

2. Clipping is enabled at the start of program execution.

3. When clipping is enabled with the SET CLIP "ON" statement, graphic
images with world coordinate values exceeding the limits of the worl1
window are not displayed.

4. When clipping is disabled with the SET CLIP "OFF" statement, image
with world coordinate values that exceed the limits of the world
window are displayed, provided that the points are also within the
device window.

5. When clipping is enabled, STRING precision clips a text string at the
world viewport boundary. No text string starts beyond the world
viewport boundary.

6. When clipping is enabled, CHAR precision clips each text character
at the world viewport boundary. No character extends beyond the
world viewport boundary. Some devices display part of a character
that spans the world viewport boundary.

9-14 VAX BASIC Graphics Statements

xample

ASK CLIP

7. When clipping is enabled, STROKE precision clips text precisely at the
world viewport boundary. For example, if only half a character falls
inside the world viewport boundary, only this half is displayed on the
screen.

DECLARE STRING clipping
SET WINDOW , TRAN 2 : 0,1,0,0.6
SET TEXT HEIGHT 0.03
ASK CLIP clipping
!+
!Graph text - the top line is beyond the boundaries
!of the world window for TRAN 2
!-
GRAPH TEXT AT 0.2,0.7
GRAPH TEXT AT 0.2,0.3
GRAPH TEXT AT 0.2,0.2

Output

"This is the top line"
"This is the second line"
"Clipping is " + clipping

This is the second line

Clipping is ON

VAX BASIC Graphics Statements 9-15

ASK COLOR MIX

ASK COLOR MIX

Format

The ASK COLOR MIX statement retrieves values for the intensities of rec
green, and blue associated with the current color index.

ASK COLOR MIX [#dev-id], INDEX int-exp: real-var1, real-var2, real-var3

Syntax Rules

Remarks

1. When specified, dev-id must be preceded by the number sign (#).

2. You specify the color index with int-exp.
3. Real-varl retrieves the intensity associated with red.

4. Real-var2 retrieves the intensity associated with green.

5. Real-var3 retrieves the intensity associated with blue.

1. The optional dev-id identifies the device for which you want informa·
tion. If no identification clause is included, VAX BASIC uses a defaul
identification of #0. If an identification clause is included, the device
specified must have been opened explicitly, or opened by VAX BASIC
as the default device.

2. Values for the intensities of the colors red, green, and blue are greate:
than or equal to 0.0 and less than or equal to 1.0.

9-16 VAX BASIC Graphics Statements

lamp le

ASK COLOR MIX

3. The default intensity values for color indices 1, 2, and 3 are as follows:

Color
Index Color

0 Black

1 Green

2 Red

3 Blue

Red
Intensity

0.0

0.0

1.0

0.0

Green
Intensity

0.0

1.0

0.0

0.0

Blue
Intensity

0.0

0.0

0.0

1.0

4. See the SET COLOR MIX statement for more information. Possible
values for the intensities are listed in Appendix B.

5. The number of color indices is device dependent. If you use the
values retrieved with this statement to set colors on a device that does
not support the same indices, results are unpredictable.

DECLARE SINGLE red, green, blue
OPEN "color_term" FOR GRAPHICS AS DEVICE #1
!+
!Ask for the 3 default intensities associated with INDEX 2
!-
ASK COLOR MIX #1 , INDEX 2 : red, green, blue
GRAPH TEXT AT 0.06,0.8 "Red intensity = " + STR$(red)
GRAPH TEXT AT 0.06,0.7 "Green intensity=" + STR$(green)
GRAPH TEXT AT 0.06,0.6 : "Blue intensity = " + STR$(blue)

VAX BASIC Graphics Statements 9-17

ASK DEVICE SIZE

ASK DEVICE SIZE

Format

The ASK DEVICE SIZE statement lets you determine the actual size of tr
available display surface on a particular device.

ASK DEVICE SIZE [#dev-id:] real-var1, real-var2 [, str-var]

Syntax Rules

Remarks

1. The optional dev-id must be preceded by a number sign {#) and
followed by a colon (:).

2. The size in the horizontal direction is assigned to real-var1.
3. The size in the vertical direction is assigned to real-var2.
4. The unit of measure used is assigned to the optional str-var.

1. The optional dev-id identifies the device for which you want informa
tion. If no identification clause is included, VAX BASIC uses a defau]
identification of #0. If an identification clause is included, the device
specified must have been opened explicitly, or opened by VAX BASH
as the default device.

2. The value assigned to the optional str-var is the unit of measure usec
to interpret real-varl and real-var2. Str-var can be either "METERS"
or "OTHER", indicating that the unit of measure is either meters or
device coordinates.

3. See Chapter 8 for more examples.

9-18 VAX BASIC Graphics Statements

1ample

OPEN "VT101" FOR GRAPHICS AS DEVICE #1
DECLARE STRING measure
DECLARE SINGLE x_dev,y_dev

ASK DEVICE SIZE #1 : x_dev, y_dev
!+
!Use retrieved coords to set a new echo area
!-
SET CHOICE ECHO AREA #1 : O,x_dev,O,y_dev

END

ASK DEVICE SIZE

VAX BASIC Graphics Statements 9-19

ASK DEVICE TYPE

ASK DEVICE TYPE

Format

The ASK DEVICE TYPE statement retrieves the device type of the speci­
fied device.

ASK DEVICE TYPE [#dev-id :] int-var

Syntax Rules

Remarks

1. When specified, dev-id must be preceded by the number sign(#) and
followed by a colon (:).

2. The value assigned to int-var is a valid supported device type.

1. The optional dev-id identifies the device for which you want informa
tion. If no identification clause is included, VAX BASIC uses a defaul
identification of #0. If an identification clause is included, the device
specified must have been opened explicitly, or opened by VAX BASH
as the default device.

2. Valid device type values are shown in Table 9-1 with the OPEN ...
FOR GRAPHICS statement in this Chapter. This list is complete up
to the print date on this manual. For the most up-to-date informati01
consult the VAX GKS documentation.

9-20 VAX BASIC Graphics Statements

Example

OPTION TYPE = EXPLICIT
DECLARE LONG what_type
OPEN "RT13" FOR GRAPHICS AS DEVICE #2
!+
!Ask for device type of opened device
!-
ASK DEVICE TYPE #2 : what_type
IF what_type = 41

THEN CALL wkstation_proc
END IF

ASK DEVICE TYPE

VAX BASIC Graphics Statements 9-21

ASK DEVICE VIEWPORT

ASK DEVICE VIEWPORT

Format

The ASK DEVICE VIEWPORT statement retrieves the current values for
the boundaries of the device viewport rectangle.

ASK DEVICE VIEWPORT [#dev-id:] real-var1, real-var2, real-var3, real-var4

Syntax Rules

Remarks

1. When specified, dev-id must be preceded by the number sign (#) and
followed by a colon (:).

2. Real-var1,real-var2, real-var3, and real-var4 must be floating-point
variables to represent the left, right, bottom, and top boundaries
respective! y.

1. The optional dev-id identifies the device for which you want informa­
tion. If no identification clause is included, VAX BASIC uses a default
identification of #0. If an identification clause is included, the device
specified must have been opened explicitly, or opened by VAX BASIC
as the default device.

2. A device viewport is the display area on an output device.

3. If no previous SET DEVICE VIEWPORT statement has been exe­
cuted, the values assigned are the default viewport boundaries. If a
SET DEVICE VIEWPORT statement has been executed, the assigned
boundaries are equal to the boundaries last established in that state­
ment unless VAX BASIC overrides those values. When you do not
maintain an aspect ratio of 1:1, VAX BASIC overrides the viewport
values with values that maintain the correct ratio.

9-22 VAX BASIC Graphics Statements

:xample

ASK DEVICE VIEWPORT

OPTION TYPE = EXPLICIT
OPEN "VTA247" FOR GRAPHICS AS DEVICE #1
DECLARE SINGLE left_1,right_1,bottom,top
SET WINDOW 0,100,0,100
SET TEXT HEIGHT 4
ASK DEVICE VIEWPORT #1 : left_1, right_!, bottom, top
!+
!Draw the boundaries of the default viewport of the device
!-
GRAPH LINES 0,0; 100,0; 100,100; 0,100; 0,0
GRAPH TEXT AT 10,80 "Left boundary = " + STR$(left_1)
GRAPH TEXT AT 10,70 "Right boundary= " + STR$(right_1)
GRAPH TEXT AT 10,60 "Bottom boundary = " + STR$(bottom)
GRAPH TEXT AT 10,60 "Top boundary = " + STR$(top)
END

Output

Loft boundor~ = 0

Right boundor~ = ~79
Bottom boundor~ = 0

Top boundor~ = 479

ZK-5516-86

VAX BASIC Graphics Statements 9-23

ASK DEVICE WINDOW

ASK DEVICE WINDOW

Format

The ASK DEVICE WINDOW statement allows you to retrieve the current
values of the boundaries for the device window.

ASK DEVICE WINDOW [#dev-id:] real-var1, real-var2, real-var3, real-var4

Syntax Rules

Remarks

1. When specified, dev-id must be preceded by a number sign {#)and
followed by a colon (:).

2. Real-varl, real-var2, real-var3, and real-var4 must be floating-point
variables to represent the left, right, bottom, and top boundaries
respective! y.

1. The optional dev-id identifies the device for which you want informa­
tion. If no identification clause is included, VAX BASIC uses a default
identification of #0. If an identification clause is included, the device
specified must have been opened explicitly, or opened by VAX BASIC
as the default device.

2. A device window is the portion of NOC space you select for display.

3. The default device window boundaries specify the entire NOC space.
The boundaries of NOC space are 0,1,0,1 for the left, right, bottom,
and top boundaries respectively.

4. The values assigned are equal to the values last established with a SE1
DEVICE WINDOW statement. If no previous SET DEVICE WINDOV\
statement has been executed, the values assigned are the default
boundaries of the device window.

9-24 VAX BASIC Graphics Statements

:xample

ASK DEVICE WINDOW

OPTION TYPE = EXPLICIT
DECLARE SINGLE left_1,right_1,bottom,top
OPEN "RT31" FOR GRAPHICS AS DEVICE #1
SET WINDOW 0,100,0,100
SET TEXT HEIGHT 4

ASK DEVICE WINDOW 11 : left_1, right_1, bottom, top
GRAPH TEXT AT 10,80 "Left boundary = " + STR$(left_1)
GRAPH TEXT AT 10,70 "Right boundary= " + STR$(right_1)
GRAPH TEXT AT 10,60 "Bottom boundary = " + STR$(bottom)
GRAPH TEXT AT 10,60 "Top boundary = " + STR$(top)
END

Output

Lef't boi.tndar~ = 0

Right boundar~ = 1

Bot toM boundar~ = 0

Top boundar~ = 1

ZK4969-86

VAX BASIC Graphics Statements 9-25

ASK LINE COLOR

ASK LINE COLOR

Format

The ASK LINE COLOR statement allows you to retrieve the current color
index for lines.

ASK LINE COLOR int-var

Syntax Rules

Remarks

/

None.

1. The range of valid color indices is device dependent. Results are
unpredictable if you use the value assigned to int-var in a subsequent
SET LINE COLOR statement and the index is undefined for any
activated device.

2. On VT125 and VT240 terminals with the color option, the default
value assigned to int-var represents one of the following colors:

Index Color

0 Black

1 Green

2 Red

3 Blue

3. See also the SET LINE COLOR, SET/ ASK COLOR MIX, and ASK
MAX COLOR statements.

9-26 VAX BASIC Graphics Statements

:xample

OPTION TYPE = EXPLICIT
DECLARE LONG color_var
ASK LINE COLOR color_var
SET LINE COLOR color_var + 2
SET LINE SIZE 5
GRAPH LINES 0.0,0.5; 1.0,0.5
SET LINE COLOR color_var
GRAPH LINES 0.0,0.2; 1.0,0.2
END

ASK LINE COLOR

VAX BASIC Graphics Statements 9-27

ASK LINE STYLE

ASK LINE STYLE

Format

The ASK LINE STYLE statement allows you to determine the current styl•
of lines.

ASK LINE STYLE int-var

Syntax Rules

Remarks

None.

1. The numeric values retrieved for the line style represent the following
styles:

Value Line Style

1 Solid (default)

2 Dashed

3 Dotted

4 Dashed-dotted

Line styles greater than 4 are device dependent.

2. The default line style is 1, solid.
3. Line styles are device dependent. If you use the value assigned to

int-var in a subsequent SET LINE STYLE statement and this value is
not supported by any activated device, results are unpredictable.

4. For illustrations of the various line styles, see the SET LINE STYLE
statement.

9-28 VAX BASlC Graphics Statements

~xample

DECLARE LONG whats_my_line
!+
!Store the current line style
!-
ASK LINE STYLE whats_my_line
SET LINE STYLE 4
GRAPH LINES 0.4,0.8; 0.6,0.8
SET LINE STYLE 3
GRAPH LINES 0.4,0.7; 0.6,0.7
SET LINE STYLE 2
GRAPH LINES 0.4,0.6; 0.6,0.6
!+
!Regain the stored style value
!-
SET LINE STYLE whats_my_line
GRAPH LINES 0.6,0.6; 0.6,0.0
END

ASK LINE STYLE

VAX BASIC Graphics Statements 9-29

ASK MAX COLOR

ASK MAX COLOR

Format

The ASK MAX COLOR statement retrieves the maximum color index
value for the specified device.

ASK MAX COLOR [#dev-id :] num-var

Syntax Rules

Remarks

When specified, dev-id must be preceded by the number sign(#) and
followed by a colon (:).

1. The optional dev-id identifies the device for which you want informa­
tion. If no identification clause is included, VAX BASIC uses a default
identification of #0. If an identification clause is included, the device
specified must have been opened explicitly, or opened by VAX BASIC
as the default device.

2. Num-var retrieves the maximum color index. Colors from 0 to num­
var are defined for the device. This statement is valid only for devices
with contiguous color indices.

3. The range of color indices is device dependent. If you use the value
assigned to num-var in a subsequent SET ... COLOR statement and
the index value is undefined for any activated device, results are
unpredictable.

9-30 VAX BASIC Graphics Statements

:xample

OPTION TYPE = EXPLICIT
DECLARE LONG highest_color
ASK MAX COLOR highest_color
SET TEXT COLOR highest_color

ASK MAX COLOR

GRAPH TEXT AT 0,0.8 : t
"This device supports colors from 0 to " + STRt(highest_color)

END

VAX BASIC Graphics Statements 9-31

ASK MAX LINE SIZE

ASK MAX LINE SIZE

Format

The ASK MAX LINE SIZE statement retrieves the maximum scale factor
for the width of lines.

ASK MAX LINE SIZE [#dev-id :] num-var

Syntax Rules

Remarks

When specified, dev-id must be preceded by the number sign(#) and
followed by a colon (:).

1. The optional dev-id identifies the device for which you want informa­
tion. If no identification clause is included, VAX BASIC uses a default
identification of #0. If an identification clause is included, the device
specified must have been opened explicitly, or opened by VAX BASIC
as the default device.

2. Num-var retrieves the maximum line width scale factor.

3. The number of line sizes between 1 and num-var varies with each
device.

4. The default value for the line width scale factor is 1.

5. You can use the value retrieved in num-var to set the line size with a
SET LINE SIZE statement. However, if this value is undefined for a
particular device, results are unpredictable.

9-32 VAX BASIC Graphics Statements

:xample

OPTION TYPE = EXPLICIT
DECLARE LONG fattest
OPEN "TT55" FOR GRAPHICS AS DEVICE 11
ASK MAX LINE SIZE 11 : fattest
SET TEXT FONT -3. "STRING"
SET TEXT HEIGHT 0.03
GRAPH TEXT AT 0.1.0.5 :

"Fattest line width is " + STR$(fattest)
SET LINE SIZE fattest
GRAPH LINES 0.1,0.4; 0.9,0.4
END

Output

Fat test I ine width is 134

ASK MAX LINE SIZE

ZK·4956·86

VAX BASIC Graphics Statements 9-33

ASK MAX POINT SIZE

ASK MAX POINT SIZE

Format

The ASK MAX POINT SIZE statement retrieves the maximum scale factor
for POINT output.

ASK MAX POINT SIZE [#dev-id:] num-var

Syntax Rules

Remarks

1. When specified, dev-id must be preceded by a number sign(#) and
followed by a colon (:).

2. Num-var retrieves the largest possible scale factor for point sizes.

1. The optional dev-id identifies the device for which you want informa­
tion. If no identification clause is included, VAX BASIC uses a default
identification of #0. If an identification clause is included, the device
specified must have been opened explicitly, or opened by VAX BASIC
as the default device.

2. Scale factors from 1 to num-var are available on the device speci­
fied. The number of different point sizes within the range is device
dependent.

3. Points in the dot marker style are always drawn in the smallest
possible size.

4. You can use the value retrieved in num-var to set the point size with
a SET POINT SIZE statement. However, if the value is undefined for
any activated device, results are unpredictable.

9-34 VAX BASIC Graphics Statements

:xample

DECLARE LONG largest
ASK MAX POINT SIZE largest
SET POINT SIZE largest

ASK MAX POINT SIZE

GRAPH TEXT AT 0.1,0.9 : "The largest point size is "+ STR$(largest)
GRAPH POINTS 0.6,0.6

Output

The lorgest point sizo is 12

ZK-5517-86

VAX BASIC Graphics Statements 9-35

ASK POINT COLOR

ASK POINT COLOR

Format

The ASK POINT COLOR statement allows you to retrieve the current
color index used to display points.

ASK POINT COLOR int-var

Syntax Rules

Remarks

None.

1. The range of valid color indices is device dependent. Results are
unpredictable if you use the value assigned to int-var in a subsequent
SET POINT COLOR statement and the index is undefined for any
activated device.

2. On VT125 and VT240 terminals with the color option, the default
value assigned to int-var represents one of the following colors:

Index Color

0 Black

1 Green

2 Red

3 Blue

3. See also the SET POINT COLOR, SET/ ASK COLOR MIX, and ASK
MAX COLOR statements.

9-36 VAX BASIC Graphics Statements

:xample

OPTION TYPE = EXPLICIT
DECLARE LONG color_var
ASK POINT COLOR color_var
GRAPH POINTS 0.2,0.6
SET POINT COLOR (color_var + 1)
GRAPH POINTS 0.4,0.6
END

ASK POINT COLOR

VAX BASIC Graphics Statements 9-37

ASK POINT STYLE

ASK POINT STYLE

Format

The ASK POINT STYLE statement allows you to determine the current
style of points.

ASK POINT STYLE int-var

Syntax Rules

Remarks

None.

1. The numeric values retrieved for POINT represent the following
styles:

Value Point Style

1 Dot

2 Plus sign

3 Asterisk (default)

4 Circle

5 Diagonal cross

These five styles are illustrated with the SET POINT STYLE statemen
Values greater than 5 are device dependent.

2. The default point style is 3, an asterisk.

3. Point styles are device dependent. If you use the value assigned to
int-var in a subsequent SET POINT STYLE statement and this value :
not supported by any activated device, results are unpredictable.

9-38 VAX BASIC Graphics Statements

xample

EXTERNAL PICTURE big_dipper
DECLARE LONG whats_the_point
!+
!Store the current point style
!-
ASK POINT STYLE whats_the_point
SET POINT STYLE 4
DRAW big_dipper
!+
!Regain the stored style value
!-
SET POINT STYLE whats_the_point
DRAW big_dipper
END

ASK POINT STYLE

VAX BASIC Graphics Statements 9-39

ASK STRING ECHO AREA

ASK STRING ECHO AREA

Format

The ASK STRING ECHO AREA statement allows you to retrieve the
boundaries of the current STRING echo area. The boundaries are assigne
in device coordinates.

ASK STRING ECHO AREA
[

#dev-id { : }]
, UNIT int-exp

real-var1, real-var2, real-var3, real-var4

Syntax Rules

Remarks

1. When specified, dev-id must be the first clause listed and must be
preceded by the number sign{#).

2. Real-var1 must be preceded by a colon if one or more optional clause
are included.

3. Real-var1, real-var2, real-var3, and real-var4 must be floating-point
variables to represent the left, right, bottom, and top boundaries
respectively.

1. The echo area is the portion of your screen where the prompt appear:
and where input can be supplied by a user. The default boundaries
are device dependent. VAX BASIC assigns the boundaries for this are
in device coordinates.

9-40 VAX BASIC Graphics Statements

:xample

ASK STRING ECHO AREA

2. The optional dev-id identifies the device for which you want informa­
tion. If no identification clause is included, VAX BASIC uses a default
identification of #0. If an identification clause is included, the device
specified must have been opened explicitly, or opened by VAX BASIC
as the default device.

3. The optional UNIT clause allows you to specify an alternative means
of supplying the input. For instance, the selection from a menu can
be indicated with a mouse, or with the keyboard arrow keys. Each of
these methods of data entry is a different unit. The default unit value
for int-exp for each input type is 1; the default is used throughout
this manual. For information about the units available on a particular
device, see the hardware documentation for that device, as well as the
VAX GKS documentation.

4. See also the SET STRING ECHO AREA statement.

OPTION TYPE = EXPLICIT
DECLARE SINGLE xmin,xmax,ymin,ymax,new_ymax
DECLARE STRING what
ASK STRING ECHO AREA xmin, xmax, ymin, ymax
!+
!Select larger echo boundary
!-
new_ymax = ymax * 2
SET STRING ECHO AREA xmin, xmax, ymin, new_ymax
LOCATE STRING what

VAX BASIC Graphics Statements 9-41

ASK TEXT ANGLE

ASK TEXT ANGLE

Format

The ASK TEXT ANGLE statement allows you to retrieve the current angl4
of text rotation.

ASK TEXT ANGLE real-var

Syntax Rules

Remarks

None.

1. The default text angle is zero. The angle assigned to real-var is
in radians or degrees; you can select the unit of measure with the
OPTION ANGLE statement.

2. A positive nonzero value assigned to real-var indicates that subsequen
displays of text are rotated in a counterclockwise direction; negative
values indicate that subsequent displays of text are rotated in a
clockwise direction.

3. Text is rotated about the starting point indicated in the GRAPH TEXT
statement.

4. Angles that are integer multiples of 180° display text horizontally.

5. Angles that are integer multiples of 90° display text vertically.

6. For illustrations of various text angle settings, see the SET TEXT
ANGLE statement.

9-42 VAX BASIC Graphics Statements

xample

OPTION TYPE = EXPLICIT
OPTION ANGLE = DEGREES
DECLARE SINGLE turn
ASK TEXT ANGLE turn
SET TEXT ANGLE (turn + 46)
GRAPH TEXT AT 0.2,0.6 "Where are we now?"
SET TEXT ANGLE turn
GRAPH TEXT AT 0.2,0.4 : "Back to where we started."
END

ASK TEXT ANGLE

VAX BASIC Graphics Statements 9-43

ASK TEXT COLOR

ASK TEXT COLOR

Format

The ASK TEXT COLOR statements allow you to retrieve the current colo
index used to draw text characters.

ASK TEXT COLOR int-var

Syntax Rules

Remarks

None.

1. The range of valid color indices is device dependent. Results are
unpredictable if you use the value assigned to int-var in a subsequen1
SET TEXT COLOR statement and the index is undefined for any
activated device.

2. On VT125 and VT240 terminals with the color option, the default
value assigned to int-var represents one of the following colors:

Index Color

0 Black

1 Green

2 Red

3 Blue

3. See also the SET TEXT COLOR, SET/ ASK COLOR MIX, and ASK
MAX COLOR statements.

9-44 VAX BASIC Graphics Statements

:xample

OPTION TYPE • EXPLICIT
DECLARE LONG color_var
ASK TEXT COLOR color_var
GRAPH TEXT AT 0.0,0.6 : "This shows the default color."
SET TEXT COLOR color_var + 1
GRAPH TEXT AT 0.0,0.4 : "This is color index 2."
END

ASK TEXT COLOR

VAX BASIC Graphics Statements 9-45

ASK TEXT EXPAND

ASK TEXT EXPAND

Format

The ASK TEXT EXP AND statement allows you to retrieve the current rati4
of character width to height.

ASK TEXT EXPAND real-var

Syntax Rules

Remarks

None.

1. The value retrieved is the expansion factor used for current GRAPH
TEXT statements. This value can be set with the SET TEXT EXP AND
statement.

2. The default height-to-width ratio is 1.0, which specifies the expansion
factor defined in the font design.

3. For illustrations of various expansion settings, see the SET TEXT
EXP AND statement.

9-46 VAX BASIC Graphics Statements

xample

DECLARE SINGLE how_tat
!+
!Store current setting
!-
ASK TEXT EXPAND how_tat
SET TEXT EXPAND 2
GRAPH TEXT AT 0.1,0.9 "Thia might be hard to read"
!+
!Use stored setting
!-
SET TEXT EXPAND how_tat
END

ASK TEXT EXPAND

VAX BASIC Graphics Statements 9-47

ASK TEXT EXTENT

ASK TEXT EXTENT

Format

The ASK TEXT EXTENT statement allows you to retrieve values for the
boundaries of the text extent box for a given text string.

ASK TEXT EXTENT [#dev-id], str-exp AT x-coord, y-coord: x-array, y-array

Syntax Rules

Remarks

1. The optional dev-id must be preceded by the number sign{#}.

2. Str-exp contains the char~cters to be used for the text extent box.

3. X-coord and y-coord contain the world coordinates of the starting
position for the text string.

4. X-array and y-array must each be a one-dimensional array containing
at least four integer or real elements. Virtual arrays are not valid.

1. The optional dev-id identifies the device for which you want informa
tion. If no identification clause is included, VAX BASIC uses a defaul
identification of #0. If an identification clause is included, the device
specified must have been opened explicitly, or opened by VAX BASI<
as the default device.

2. The text extent box is an imaginary rectangle that exactly surrounds
the string expression when both the horizontal and vertical justifica­
tion aspects are normal.

3. The boundaries of the text extent box are retrieved in world coor­
dinates in x-array and y-array. This statement only retrieves the
boundaries of the text box. To draw the text string, you must use a
GRAPH TEXT statement, as shown in the example.

9-48 VAX BASIC Graphics Statements

Example

ASK TEXT EXTENT

4. Current values for the text height, path, angle, and other text attributes
are taken into consideration when VAX BASIC calculates the text
extent box.

5. See also the ASK TEXT POINT statement.

OPTION TYPE = EXPLICIT
DIM SINGLE x_coords(3), y_coords(3)
OPEN "my_term" FOR GRAPHICS AS DEVICE 11
SET WINDOW 0,100,0,100
SET TEXT HEIGHT 4
ASK TEXT EXTENT 11 t

, "A perfect fit." AT 6,60 t
: x_coords, y_coords

GRAPH TEXT AT 6,60 : "A perfect fit."
!+
!Set area style to hollow
!and draw the text extent box
!-
SET AREA STYLE "HOLLOW"
MAT GRAPH AREA x_coords,y_coords
END

VAX BASIC Graphics Statements 9-49

ASK TEXT EXTENT

Output

6 per""' feet fit. I

ZK-5234-86

9-50 VAX BASIC Graphics Statements

ASK TEXT FONT

"SK TEXT FONT

Format

The ASK TEXT FONT statement retrieves the number of the font and the
value of the text precision.

ASK TEXT FONT int-var [, str-var]

Syntax Rules

fie marks

1. The value assigned to int-var specifies the font number.

2. The optional str-var specifies the level of precision with which the
characters are drawn.

1. The default font is number -1, which is displayed with stroke preci­
sion.

2. Hardware fonts are device dependent. Most devices support at least
one hardware font; some support as many as six. When no hardware
fonts are available, software fonts are used. Software fonts are device
independent and provide a graphical representation of the defined
characters.

3. Possible values for the level of precision are: STRING, CHAR, or
STROKE. STRING provides the lowest precision, while STROKE
provides the greatest. The precision value affects the representation
of the text height and how text is clipped. For details and more
examples, see the SET TEXT FONT, SET TEXT HEIGHT, and SET
CLIP statements. Hardware fonts can be drawn with either STRING
or CHAR precision; software fonts can only be drawn with STROKE
precision.

VAX BASIC Graphics Statements 9-51

ASK TEXT FONT

Example

DECLARE LONG this_font, t
STRING precision

ASK TEXT FONT this_font, precision
GRAPH TEXT AT 0.1,0.8 "This is font number " + STR$(this_font)
GRAPH TEXT AT 0.1,0.7 : "Precision is " +precision
END

9-52 VAX BASIC Graphics Statements

ASK TEXT HEIGHT

'SK TEXT HEIGHT

Format

The ASK TEXT HEIGHT statement retrieves the current value of the text
height in world coordinates.

ASK TEXT HEIGHT real-var

Syntax Rules

llemarks

None.

1. Height refers to the height of the uppercase letters in world coordi­
nates.

2. The initial text height is 0.035. Adjustments to the world window
usually require adjustments to the text height.

3. For more information, see the SET TEXT HEIGHT statement.

VAX BASIC Graphics Statements 9-53

ASK TEXT HEIGHT

Example

OPTION TYPE = EXPLICIT
DECLARE SINGLE current_height
!+
!Ask for height in default scale
!-
ASK TEXT HEIGHT current_height
GRAPH TEXT AT 0.0,0.9 : "Current text height is " + STR$(current_height)
!+
!Change the world coordinate scale
!-
SET WINDOW 0,100,0,100
!+
!Set new height scale
!-
SET TEXT HEIGHT 6
GRAPH TEXT AT 0,60 :"Height is now 6/100 of"
GRAPH TEXT AT 0,40 :"the world window"
SET TEXT HEIGHT current_height
GRAPH TEXT AT 0,20 : "You won't be able to read this"
END

9-54 VAX BASIC Graphics Statements

ASK TEXT JUSTIFY

~SK TEXT JUSTIFY

Format

The ASK TEXT JUSTIFY statement retrieves the current values of the
horizontal and vertical components of text justification.

ASK TEXT JUSTIFY str-var1, str-var2

Syntax Rules

Remarks

1. The value for the horizontal component is assigned to str-var1.
2. The value for the vertical component is assigned to str-var2.

1. At the start of program execution, the value for both the horizontal
and vertical components is "NORMAL"; these are the default values
until a SET TEXT JUSTIFY statement is executed.

2. Possible values for the horizontal component in str-var1 are the
following:

Value Effect on Horizontal Component

LEFT Corresponds to the left side of the text box passing through the
text position

CENTER Corresponds to the text position lying midway between the left
and right sides of the text box

RIGHT Corresponds to the right side of the text box passing through
the text position

NORMAL Depends on the text path-see below

VAX BASIC Graphics Statements 9-55

ASK TEXT JUSTIFY

Example

3. Possible values for the vertical component in str-var2 are the follow­
ing:

Value

TOP

CAP

HALF

BASE

BOTTOM

NORMAL

Effect on Vertical Component

The top of the text box passes through the text position.

The text position passes through the capline of the whole string.

The text position passes through the half-line of the whole
string.

The text position lies on the baseline of the whole string.

The bottom of the text box passes through the text.

See below.

4. NORMAL can be assigned for both the horizontal and vertical com­
ponents. NORMAL provides a natural justification for each text path.
For each of the text paths the horizontal and vertical components are
as follows:

Text Path Normal Horizontal Normal Vertical

RIGHT LEFT BASE

LEFT RIGHT BASE

UP CENTER BASE

DOWN CENTER TOP

5. For more information and illustrations of various settings of text
justification, see the SET TEXT JUSTIFY statement.

DECLARE STRING horiz_justify, vert_justify
ASK TEXT JUSTIFY horiz_justify, vert_justify
IF horiz_justify = "NORMAL" AND vert_justify = "NORMAL"

THEN
SET TEXT JUSTIFY "LEFT" , "BOTTOM"

END IF

9-56 VAX BASIC Graphics Statements

ASK TEXT PATH

~SK TEXT PATH

ormat

The ASK TEXT PATH statement retrieves the current value for the direc­
tion of the text path.

ASK TEXT PATH str-var

;yntax Rules

:emarks

None.

1. Path refers to the direction in which the text is written relative to the
text angle.

2. The value assigned to str-var is one of the following values:

• RIGHT

• LEFT

• UP
• DOWN

3. The default value for str-exp is RIGHT.

4. For illustrations of various text paths, see the SET TEXT PATH state­
ment.

VAX BASIC Graphics Statements 9-57

ASK TEXT PATH

Example

OPTION TYPE = EXPLICIT
DECLARE STRING CONST.ANT my_way = "LEFT"
DECLARE STRING which_way

ASK TEXT PATH which_way
IF which_way = "RIGHT"

THEN SET TEXT PATH my_way
END IF

SET TEXT PATH which_way

9-58 VAX BASIC Graphics Statements

ASK TEXT POINT

~SK TEXT POINT

or mat

The ASK TEXT POINT statement allows you to retrieve the coordinates
for the concatenation point of a text string.

ASK TEXT POINT [#dev-id], str-exp AT x-coord1, y-coord1: x-coord2, y-coord2

:yntax Rules

:emarks

1. The optional dev-id must be preceded by the number sign{#}.

2. Str-exp contains the characters to be used for the text extent box.

3. X-coord1 and y-coord1 contain the world coordinates of the starting
position for the text string.

4. The world coordinates of the concatenation point for the supplied text
string are assigned to x-coord2 and y-coord2.

1. The concatenation point of a text string is the next appropriate point
where a subsequent text string can be started.

2. This statement only retrieves the concatenation point. To draw the
text string, you need to include a GRAPH TEXT statement.

3. The optional dev-id identifies the device for which you want informa­
tion. If no identification clause is included, VAX BASIC uses a default
identification of #0. If an identification clause is included, the device
specified must have been opened explicitly, or opened by VAX BASIC
as the default device.

VAX BASIC Graphics Statements 9-59

ASK TEXT POINT

Example

4. Current values for the text height, path, angle, and other text at­
tributes are taken into consideration when VAX BASIC calculates the
concatenation point.

5. See also the ASK TEXT EXTENT statement. For an additional exam­
ple, see the SET TEXT COLOR statement.

OPTION TYPE = EXPLICIT
DECLARE SINGLE concat_x, concat_y
DIM SINGLE x_coords(3), y_coords(3)
OPEN "VT21" FOR GRAPHICS AS DEVICE #1
SET WINDOW 0,100,0,100
SET TEXT HEIGHT 4
ASK TEXT EXTENT #1 , le

"A perfect fit." AT 6,60 le
: x_coords , y_coords

ASK TEXT POINT #1 , le
"A perfect fit." AT 6,60 le
: concat_x, concat_y

GRAPH TEXT AT 6,60 : "A perfect fit."
!+
!Set area style to hollow
!-
SET AREA STYLE "HOLLOW"
!+
!Draw the text box
! -
MAT GRAPH AREA x_coords,y_coords
!+
!Add more text at the concatenation point
! -
GRAPH TEXT AT concat_x, concat_y : "Seeing is believing!"
END

9-60 VAX BASIC Graphics Statements

ASK TEXT POINT

Output

b perfect fit.I Seein9 is believin9~

ZK-5237-86

VAX BASIC Graphics Statements 9-61

ASK TEXT SPACE

ASK TEXT SPACE

Format

The ASK TEXT SP ACE statement retrieves the value for the current
spacing between characters.

ASK TEXT SPACE real-var

Syntax Rules

Remarks

None.

1. Space refers to the distance between adjacent characters. The distano
is expressed as a fraction of the text height.

2. The default value for the spacing is 0, which produces adjacent
characters spaced according to the font design.

3. A positive real-var value inserts more space between characters.

4. A negative real-var value causes characters to be closer together.

5. Subsequent GRAPH TEXT statements use the spacing value indicated
by real-var until a SET TEXT SP ACE statement is executed.

9-62 VAX BASIC Graphics Statements

:xample

ASK TEXT SPACE

DECI,.ARE SINGLE spaced_out
ASK TEXT SPACE spaced_out
SET TEXT FONT -8, "STROKE"
SET TEXT HEIGHT 0.04
GRAPH TEXT AT 0.0,0.9 "This shows the standard text spacing"
GRAPH TEXT AT 0.0,0.8 "for font -8 with STROKE precision."
GRAPH TEXT AT 0.0,0.7 "Space value is " + STR$(spaced_out)

Output

GMs shows the standard text spacing

for font -e with STROKE precision.

Space vaiue is O

ZK-4880·86

VAX BASIC Graphics Statements 9-63

ASK TRANSFORMATION

ASK TRANSFORMATION

Format

The ASK TRANSFORMATION statement lets you determine which
transformation is currently being used to map world coordinate points
onto the world viewport in NOC space.

ASK TRANSFORMATION int-var

Syntax Rules

Remarks

The value assigned to int-var is an integer between 1 and 255.

1. The transformation assigned to int-var is the transformation currently
used to transform world coordinate points for display onto the world
viewport in NDC space.

2. All subsequent graphics output and input use this transfor­
mation number until a different number is specified in a SET
TRANSFORMATION, SET VIEWPORT, or SET WINDOW state­
ment. If none of these statements has been executed, the current
transformation is 1.

3. See also the SET INPUT PRIORITY statement.

9-64 VAX BASIC Graphics Statements

xample

DECLARE LONG which_tran

ASK TRANSFORMATION which_tran
IF which_tran = 1

THEN SET TRANSFORMATION 2
ELSE GOTO Set_up_screens

END IF

ASK TRANSFORMATION

VAX BASIC Graphics Statements 9-65

ASK TRANSFORMATION LIST

ASK TRANSFORMATION LIST

Format

The ASK TRANSFORMATION LIST statement retrieves the list of define
transformation numbers, starting with the transformation with the highes
priority for input.

ASK TRANSFORMATION LIST [, COUNT int-var:] int-array

Syntax Rules

Remarks

1. When specified, the COUNT clause must be followed by a colon (:).

2. Int-array must be a one-dimensional array containing integer or real
data types. Virtual arrays are invalid.

1. The values assigned to int-array are transformation numbers for all
defined transformations. The list is ordered by input priority, starting
with the transformation with the highest priority.

2. Int-array can be larger than the actual number of transformations. If
the number of defined transformations is larger than the size of int­
array, the actual number of defined transformations can be retrieved i
int-var with the optional COUNT clause.

3. For more information about input priorities, see the SET INPUT
PRIORITY statement.

9-66 VAX BASIC Graphics Statements

xample

DECLARE LONG how_many
DIM LONG xforms(16)

ASK TRANSFORMATION LIST

ASK TRANSFORMATION LIST , COUNT how_many : xf orms

VAX BASIC Graphics Statements 9-67

ASK VALUE ECHO AREA

ASK VALUE ECHO AREA

Format

The ASK VALUE ECHO AREA statement allows you to retrieve the
boundaries of the current VALUE echo area. The boundaries are assignee
in device coordinates.

ASK VALUE ECHO AREA
[

#dev-id { : }]
, UNIT int-exp

real-var 1, real-var2, real-var3, real-var4

Syntax Rules

Remarks

1. When specified, dev-id must be the first clause listed and must be
preceded by the number sign{#).

2. Real-var1 must be preceded by a colon if one or more optional clause
are included.

3. Real-var1, real-var2, real-var3, and real-var4 must be floating-point
variables to represent the left, right, bottom, and top boundaries
respectively.

1. The echo area is the portion of your screen where the prompt appear:
and where input can be supplied by a user. The default boundaries
are device dependent.

2. VAX BASIC assigns the boundaries for this area in device coordinates

9-68 VAX BASIC Graphics Statements

:xample

ASK VALUE ECHO AREA

3. The optional dev-id identifies the device for which you want informa­
tion. If no identification clause is included, VAX BASIC uses a default
identification of #0. If an identification clause is included, the device
specified must have been opened explicitly, or opened by VAX BASIC
as the default device.

4. The optional UNIT clause allows you to specify an alternative means
of supplying the input. For instance, the position of points can be
entered with a mouse, or with the keyboard arrow keys. Each of these
methods of data entry is a different unit. The default unit value for
int-exp for each input type is 1; the default is used throughout this
manual. For information about the units available on a particular
device, see the hardware documentation for that device, as well as the
VAX GKS documentation.

5. See also the SET VALUE ECHO AREA statement.

OPTION TYPE = EXPLICIT
DECLARE SINGLE xmin,xmax,ymin,ymax,

new_xmin,new_xmax,new_ymin,new_ymax,what
ASK VALUE ECHO AREA xmin, xmax, ymin, ymax
!+
!Select echo boundary on bottom right of screen
!-
new_xmin = 0
new_xmax = xmin/2
new_ymin = ymin
new_ymax = ymax/2
SET VALUE ECHO AREA new_xmin, new_xmax, new_ymin, new_ymax
LOCATE VALUE what

VAX BASIC Graphics Statements 9-69

ASK VIEWPORT

ASK VIEWPORT

Format

The ASK VIEWPORT statement retrieves the current values for the
boundaries of the world viewport.

ASK VIEWPORT [,TRAN int-exp:] real-var1, real-var2, real-var3, real-var4

Syntax Rules

Remarks

1. When included, the optional TRAN clause must be followed by a
colon (:).

2. Int-exp must be between 1 and 255.

3. Real-varl, real-var2, real-var3, and real-var4 must be floating-point
variables to represent the left, right, bottom, and top boundaries
respectively.

1. If more than one transformation is defined, you can use the optional
TRAN clause to specify the transformation you want information
about. If the TRAN clause is not specified, the viewport boundaries
for the default transformation are assigned.

2. If no SET VIEWPORT statement has been executed, the boundary
values assigned are for the default world viewport.

3. The default world viewport is the entire NDC space. The bound­
aries of NDC space are 0,l,0,1 for the left, right, bottom, and top
boundaries respectively.

4. See also the SET VIEWPORT statement.

9-70 VAX BASIC Graphics Statements

xample

DECLARE LONG left_1,right_1,bottom,top

ASK VIEWPORT , TRAN 2 : left_1,right_1,bottom,top
!+
!Use TRAN 2 boundaries to set a new viewport for TRAN 4
!-
SET VIEWPORT , TRAN 4 : left_1,right_1/2,bottom,top/2

ASK VIEWPORT

VAX BASIC Graphics Statements 9-71

ASK WINDOW

ASK WINDOW

Format

The ASK WINDOW statement retrieves the current values for the bound­
aries of the world window.

ASK WINDOW [,TRAN int-exp:] real-var1, real-var2, real-var3, real-var4

Syntax Rules

Remarks

1. When included, the optional TRAN clause must be followed by a
colon (:).

2. Int-exp must be between 1 and 255.

3. Real-var1, real-var2, real-var3, and real-var4 must be floating-point
variables to represent the left, right, bottom; and top boundaries
respectively.

1. If more than one transformation is defined, you can use the optional
TRAN clause to specify the window you want information about.
If the TRAN clause is not specified, the boundaries for the default
window (TRAN 1) are retrieved.

2. If no SET WINDOW statement has been executed, the boundary
values assigned are for the default world window.

3. The default world window boundaries are O,l,0,1 for the left, right,
bottom, and top boundaries respectively.

4. For more information about the world window, see the SET WINDOV
statement and Chapter 5 in this manual.

9-72 VAX BASIC Graphics Statements

Example

OPTION TYPE = EXPLICIT
EXTERNAL PICTURE sine_curve,fudge_it
DECLARE LONG left_1,right_1,bottom,top

ASK WINDOW, TRAN 2 : left_1, right_1, bottom, top
IF bottom <= -1 AND top >= 1

THEN
DRAW sine_curve

ELSE
DRAW fudge_it

END IF
END

ASK WINDOW

VAX BASIC Graphics Statements 9-73

CLEAR

CLEAR

The CLEAR statement clears graphics text and images from the screen.

Format

CLEAR [#dev-id]

Syntax Rules

Remarks

The optional dev-id must be preceded by a number sign(#).

1. The optional dev-id identifies the device for which you want informa­
tion. If no identification clause is included, VAX BASIC uses a default
identification of #0. If an identification clause is included, the device
specified must have been opened explicitly, or opened by VAX BASIC
as the default device.

2. Output devices are not implicitly cleared before graphics output
statements are executed. If you do not clear a display, subsequent
displays are overlaid on any previous output from the program.

3. Output devices are implicitly cleared when they are opened.

9-74 VAX BASIC Graphics Statements

Example

EXTERNAL PICTURE Select_menu, sub_menu
OPEN "term_name" FOR GRAPHICS AS DEVICE #1
OPEN "VT231" FOR GRAPHICS AS DEVICE #2
OPEN "rec_term" FOR GRAPHICS AS DEVICE #3
!+
!Select_menu displayed on all activated devices
!-
DRAW Select_menu
!+
!Clear the display on device 11 only
! -
CLEAR #1
!+
!Select-menu display still active on devices #2 and #3
!Select-menu overlaid with sub-menu on devices #2 and 13
!Sub-menu displayed by itself on device #1
!-
DRAW sub_menu

CLEAR

VAX BASIC Graphics Statements 9-75

CLOSE DEVICE

CLOSE DEVICE

Format

The CLOSE DEVICE statement allows you to explicitly close a specified
device. Subsequent graphics output will not be displayed on this device.

CLOSE DEVICE #dev-id

Syntax Rules

Remarks

You must supply the number sign(#) with dev-id.

1. When a device is closed, graphics output cannot be displayed on
that device. However, graphics output is displayed at all other active
devices.

2. VAX BASIC implicitly closes all open devices when a graphics pro­
gram terminates.

3. VAX BASIC implicitly deactivates the specified device if it is active
when the CLOSE DEVICE statement is executed.

4. If the default device is closed and no other device is open, VAX
BASIC reopens the default device when subsequent graphics output
statements are executed.

5. If you intend to open the same device later during program execution,
it is more efficient to deactivate the device rather than close it.

9-76 VAX BASIC Graphics Statements

Example

OPTION TYPE = EXPLICIT
EXTERNAL PICTURE US_political, US_relief
OPEN "RT47" FOR GRAPHICS AS DEVICE #1
OPEN "VTA247" FOR GRAPHICS AS DEVICE 12
OPEN "my_term" FOR GRAPHICS AS DEVICE 13
!+
!Display metafile on all devices
!-
GRAPH METAFILE "states_outline.pic"
!+
!Close device #1
!-
CLOSE DEVICE 11
!+
!Deactivate, rather than close, device #2
!-
DEACTIVATE DEVICE 12
!+
!Draw picture on device 13 only
!-
DRAW US_political
!+
!Reactivate device 12
ACTIVATE DEVICE 12
CLEAR 13
!+
!Display picture on devices 12 and 13
!-
DRAW US_relief
END

CLOSE DEVICE

VAX BASIC Graphics Statements 9-77

DEACTIVATE DEVICE

DEACTIVATE DEVICE

Format

The DEACTIVATE DEVICE statement deactivates the specified output
device. Subsequent graphics output will not be displayed on this device.

DEACTIVATE DEVICE #dev-id

Syntax Rules

Remarks

You must supply the number sign(#) with dev-id.

1. This statement deactivates, but does not close, the specified device.

2. This statement is ignored if the specified output device is not activated.

3. If the default device (#0) is deactivated and subsequent graphics
output statements are executed, VAX BASIC displays the output at
all other active devices. If no other devices are activated, VAX BASIC
reactivates the default device for output.

4. See also the ACTIVATE DEVICE statement.

9-78 VAX BASIC Graphics Statements

Example

DEACTIVATE DEVICE

OPTION TYPE = EXPLICIT
EXTERNAL PICTURE Sine_curve, ellipse
DIM SINGLE x_array(20),y_array(20), ~

x_curve(12),y_curve(12)
OPEN "BASIC_term" FOR GRAPHICS AS DEVICE 11
OPEN "my_vax" FOR GRAPHICS AS DEVICE 12 , TYPE 41
!+
!Display OD all active devices
!-
DRAW ellipse
DEACTIVATE DEVICE 12
!+
!Display OD all active devices except 12
!-
DRAW siDe_curve
ACTIVATE DEVICE 12
!+
!Display OD all devices
!-
GRAPH TEXT AT 0.6,0.6 :"Display OD all open devices"

VAX BASIC Graphics Statements 9-79

DRAW

DRAW

Format

The DRAW statement invokes the specified PICTURE subprogram.
Optional transformation functions allow you to invoke the picture with
altered world coordinates.

DRAW pie-name [(param-list)] [WITH tran-term [* tran-term] ...]

tran-term:

SCALE(real-exp [,real-exp])
SHEAR (angle)
SHIFT (real-exp, real-exp)
ROTATE(angle)
TRANSFORM
num-matrix

Syntax Rules

1. Pie-name must be a valid VAX BASIC picture name.

2. Parameters in the param-list must agree in number and data type with
the parameters in a PICTURE statement.

3. Tran-term must be one of the VAX BASIC transformation functions
listed or a valid user-supplied transformation matrix.

4. The value for angle supplied with the ROTATE and SHIFT functions
can be in radians or degrees, as specified in the OPTION ANGLE
statement.

9-80 VAX BASIC Graphics Statements

emarks

DRAW

5. When DRAW WITH num-matrix is used, num-matrix must be a two­
dimensional numeric matrix with lower bounds of zero and upper
bounds of 4 in both directions. VAX BASIC signals a compile-time
error when the compiler detects a nonzero-based matrix; otherwise, a
run-time error is signaled. Num-matrix cannot be a packed decimal or
a virtual array.

1. Pictures displayed with the DRAW statement should be declared with
the EXTERNAL statement.

2. DRAW statements can be included in a picture to invoke another
picture or to invoke the picture recursively.

3. Graphics objects displayed within a picture with PLOT are affected
by transformation functions included in the DRAW statement that
invokes the picture; objects displayed with GRAPH are not affected by
transformation functions.

4. When text is drawn in a picture with GRAPH TEXT , the text attributes
are not automatically adjusted according to the transformation func­
tions on the DRAW statement that invokes the picture. However,
the text height and text starting point can be adjusted with the
TRANSFORM function for SHIFT and positive SCALE transforma­
tions. For an example on how to do this, see the TRANSFORM
function in this chapter.

5. The order of the transformation functions can affect the results of
transformations when more than one function is included because
transformation functions are not associative. VAX BASIC transforms
points in the order of the transformation functions in the DRAW
statement; therefore SHIFT(2,l) • SCALE(3) does not result in the
same coordinate values as SCALE(3) • SHIFT(2,l).

6. SCALE

The SCALE function multiplies the coordinates of point x,y by the
arguments supplied. SCALE(A,B) changes the coordinates of the point
to A•x,B•y. SCALE(A) changes the coordinates of a point to A•x,A•y.
Arguments can be less than 1 to effect a decrease in size.

VAX BASIC Graphics Statements 9-81

DRAW

The resulting matrix for SCALE{A,B) is as follows:

A 0 0 0
0 B 0 0
0 0 1 0
0 0 0 1

When you supply just one argument with the SCALE function,
both the x- and y-coordinates of a point are multiplied by the same
argument. To affect a change in only one dimension, you can supply
1 as the second argument, for example SCALE(0.5,1), or SCALE{l,2).

See Example 1.
7. SHEAR

The SHEAR function changes the coordinates of point x, y so that the
resulting point leans forward by the angle specified. The resulting
point is (x+y * TAN(A)),y. Arguments can be negative.

The SHEAR function requires an argument in degrees or radians; yot
can select the unit of measure with the OPTION ANGLE statement.

The resulting matrix for SHEAR(A) is as follows:

See Example 2.

8. SHIFT

1 0 0 0
TAN(A) 1 0 0

0 0 1 0
0 0 0 1

The SHIFT function moves the point x, y to the resulting point
x+A,y+B. Arguments can be negative ..

The resulting matrix for SHIFT{A,B) is as follows:

1 0 0 0
0 1 0 0
0 0 1 0
A B 0 1

See Example 3.
9. ROTATE

Like SHEAR, the ROTATE function requires an argument in degrees
or radians. You select the unit of measure with the OPTION ANGLJ
statement; the default is radians. A positive argument rotates the
point x, y in a counterclockwise direction about the point of origin
of the world coordinates. A negative value rotates the point in a

9-82 VAX BASIC Graphics Statements

DRAW

clockwise direction. You can alter the point of origin by setting the
window such that the point 0,0 is at the center of the window.

The resulting matrix for ROTATE(A) is as follows:

See Example 4.

10. TRANSFORM

COS(A) SIN(A) 0 0
-SIN(A) COS(A) 0 0

0 0 1 0
0 0 0 1

The TRANSFORM function returns the cumulative transformations
for all transformations in current picture invocations. TRANSFORM
takes no arguments. Note that current transformations are passed to
pictures by default; therefore, when you invoke a picture with the
TRANSFORM function on the DRAW statement, the transformations
in the DRAW statement are applied twice.

See Example 5.

11. Num-matrix

You can specify your own two-dimensional matrix to substitute for
a predefined VAX BASIC transformation function. The matrix must
have lower bounds of zero and upper bounds of 4 in both directions.
Row and column zero should not be assigned values as VAX BASIC
uses these elements during matrix manipulation. For instance, rather
than use a combined transformation such as SHIFT• SHEAR, you can
assign the combination matrix to your own array:

MAT my_way = SHIFT(2,1) * SHEAR(26)

DRAW circle WITH my_way

Similarly, you can initialize an array with your own choice of values
and use this with the DRAW statement:

DRAW circle WITH evs_way

Note that when a transformation function consists of a numeric array
that is not a 4 by 4 matrix, a fatal error is signaled. VAX BASIC
signals a compile-time error when the compiler detects a nonzero
based matrix; otherwise, a run-time error is signaled.

VAX BASIC Graphics Statements 9-83

DRAW

Examples

A fatal error is signaled when VAX BASIC cannot compute the invers
of the num-matrix in a DRAW statement and points in a picture are
input using the GET or MAT GET statement. See Chapter 7 for
information about input within picture definitions.

See Example 6.

12. Transformation functions in DRAW statements within a picture are
cumulative. That is, when a second or subsequent picture is invoked
within a picture definition, the transformations from all of the relevan
DRAW statements are applied to the points generated by the second c
subsequent picture. For example, in the following picture, the picture
nest2 is invoked with a DRAW statement equivalent to DRAW WITH
SHIFT(SO,O) • SCALE{2,l).

Example

PICTURE nest 1
EXTERNAL PICTURE nest2

DRAW nest2 WITH SCALE(2,1)
END PICTURE
!+
!Invoke picture nest1
!-
DRAW nest1 WITH SHIFT(60,0)

See the TRANSFORM function for more information on accumulated
transformations.

Example 1

EXTERNAL PICTURE box(LONG)
DRAW box(3)
DRAW box(1) WITH SCALE(1.6,1.6)
END

9-84 VAX BASIC Graphics Statements

PICTURE box(LONG line_style)
SET LINE STYLE line_style
PLOT LINES 0.4,0.6; t

0.6,0.6; t
0.6,0.4; t
0.4,0.4; t
0.4,0.6

END PICTURE

Output 1

DRAW

VAX BASIC Graphics Statements 9-85

DRAW

Example 2

EXTERNAL PICTURE box(LONG)
DRAW box(3)
DRAW box(1) WITH SHEAR(0.26)
END

Output 2

r---n I I

I L_J I I

I I
1_ _ _ I

9-86 VAX BASIC Graphics Statements

ZKA957-86

Example 3

EXTERNAL PICTURE box(LONG)
DRAW box(3)
DRAW box(1) WITH SHIFT(-0.3,0)
END

Output 3

D
r-----,
I

DRAW

ZK-4963-86

VAX BASIC Graphics Statements 9-87

DRAW

Example 4

OPTION ANGLE = RADIANS
EXTERNAL PICTURE box(LONG)
DR.AW box(3)
DR.AW box(4) WITH ROTATE(0.26)
DR.AW box(1) WITH ROTATE(0.6)
END

Output 4

... ···.

Example 5

PROGRAM demo_transform
OPTION ANGLE = RADIANS
EXTERNAL PICTURE house
SET WINDOW -1,1,-1.1
DRAW house
DRAW house WITH ROTATE(1)

END PROGRAM

PICTURE house
EXTERNAL PICTURE look_out
PLOT LINES : 0.2,0.0; 0.8,0.0; t

0.8,0.6; 0.2,0.6; t
0.2,0.0

PLOT AREA 0.2,0.6; 0.6,0.8; 0.8,0.6
DR.AW look_out WITH TRANSFORM

END PICTURE

9-88 VAX BASIC Graphics Statements

ZK-4983·86

DRAW

PICTURE look_out
PLOT LINES : 0.4,0.3; 0.4,0.6; 0.6,0.6; it

0.6,0.3; 0.4,0.3
PLOT LINES 0.4,0.4; 0.6,0.4
PLOT LINES 0.6,0.3; 0.6,.0.6

E?lD PICTURE

Output 5

(

ZK-4974-86

VAX BASIC Graphics Statements 9-89

DRAW

Example 6

OPTION ANGLE = DEGREES
EXTERNAL PICTURE box(LONG)
DECLARE SINGLE prog_matrix(4,4)
MAT prog_matrix = ROTATE(16) * SCALE(1.6,1)
DRAW box(3)
DRAW box(1) WITH prog_matrix
END

Output 6

G
I I

9-90 VAX BASIC Graphics Statements

ZK-4966-86

END PICTURE

:ND PICTURE

The END PICTURE statement marks the end of a PICTURE subprogram.

ormat

END PICTURE

;yntax Rules

:emarks

xample

None.

1. When an END PICTURE statement is executed, execution of the
picture is terminated. Control is returned to the statement following
the DRAW statement that invoked the picture.

2. See also the EXIT PICTURE statement.

PICTURE sample
EXTERNAL PICTURE box(LONG)
DRAW box(3)
GRAPH TEXT AT 0.1,0.8 : "One Way Out"

END PICTURE

VAX BASIC Graphics Statements 9-91

EXIT PICTURE

EXIT PICTURE

Format

The EXIT PICTURE statement allows you to terminate execution of a
PICTURE subprogram.

EXIT PICTURE

Syntax Rules

Remarks

Example

None.

1. When an EXIT PICTURE statement is executed, execution of the
picture is terminated. Control is returned to the statement following
the DRAW statement that invoked the picture.

2. See also the END PICTURE statement.

PROGRAM draw_sample
EXTERNAL PICTURE sample(LONG)
DRAW sanlple(100)

END PROGRAM

PICTURE sample(LONG pass)
IF pass = 100%

THEN
GRAPH TEXT AT 0.1,0.7 : "Emergency exit"
EX!T PICTURE

END IF
GRAPH TEXT AT 0.1,0.6 : "Exit ahead"

END PICTURE

9-92 VAX BASIC Graphics Statements

GET POINT

liET POINT

A GET POINT statement accepts a single point of user input.

Format

GET POINT , UNIT int-exp
[

#dev-id { : } l , AT x-coord, y-coord [USING TRAN int-exp]

x-coord, y-coord [, int-var]

Syntax Rules

Remarks

1. When specified, dev-id must be the first clause listed and must be
preceded by the number sign(#).

2. Int-exp must be an integer between 1 and 255.

3. If one or more optional clauses are included, one colon (:)is required
before x-coord.

1. The optional dev-id identifies the device from which you want to
accept input. If no identification clause is included, VAX BASIC uses a
default identification of #0. If an identification clause is included, the
device specified must have been opened explicitly, or opened by VAX
BASIC as the default device.

2. The user-supplied input is interpreted using the transformation with
the highest priority that contains the point within its viewport. The
world coordinates of the point are assigned to x-coord and y-coord.
VAX BASIC assigns the number of the transformation actually used to
the optional int-var.

VAX BASIC Graphics Statements 9-93

GET POINT

3. An initial point can be specified with the optional AT clause. If an
initial point is specified in the GET POINT statement, this point
overrides an initial point previously set with the SET INITIAL POINT
statement.

4. The world coordinates you supply for the initial point are interpreted
with the transformation that is currently selected for output. You can
specify an alternative transformation for interpreting this point in the
optional USING TRAN clause.

5. The transformation with the highest priority is l, unless a SET
INPUT PRIORITY, SET WINDOW, SET VIEWPORT, or SET
TRANSFORMATION statement has been executed.

6. Points accepted with the GET POINT statement in a PICTURE sub­
program are transformed through the inverse of any transformation
functions on the DRAW statement that invoked the picture. For exam­
ple, if a picture is invoked with SCALE(2), device coordinates of input
points are transformed to world coordinates and then divided by two
(the inverse of SCALE(2)).

Points accepted by the LOCATE POINT statement, however, are not
affected by the transformation functions. See the example for the
MAT GET POINTS statement for an illustration of this difference.

Note that a fatal error is signaled when VAX BASIC cannot compute
the inverse of a user-supplied matrix in a DRAW statement and points
in a picture are input using the GET or MAT GET statement.

7. The optional UNIT clause allows you to' specify an alternative means
of supplying the input. For instance, the position of points can be
entered with a mouse, or with the keyboard arrow keys. Each of these
methods of data entry is a different unit. The default unit value for
int-exp for each input type is 1; the default is used throughout this
manual. For information about the units available on a particular
device, see the hardware documentation for that device, as well as the
VAX GKS documentation.

9-94 VAX BASIC Graphics Statements

Example

DECLARE LONG which_tran
,SINGLE user_x,user_y

OPEN "RT13" FOR GRAPHICS AS DEVICE 11
OPEN "VT101" FOR GRAPHICS AS DEVICE 13
SET WINDOW , TRAN 2 : 0,100,0,100
SET VIEWPORT , TRAN 2 : 0,0.6,0,0.6
!+
!Use TRAN 1 for initial point
!-

GET POINT

GET POINT 13 , AT 60,60 USING TRAN 1 : user_x, user_y ,which_tran
!+
!Use TRAN 2 (current) for initial point
!-
GET POINT 11 , AT 0.6,0.6 : user_x, user_y , which_tran
IF which_tran <> 2

THEN GOTO User_help
END IF

VAX BASIC Graphics Statements 9-95

GRAPH

GRAPH

Format

The GRAPH statement draws the specified object on all active devices.
The sequence is determined by the coordinates supplied in the point list.
Values for the attributes such as color and style use the current settings.

{
POINTS }

GRAPH UNES . [:] x-coord, y-coord[; x-coord, y-coord] ...
AREA

Syntax Rules

Remarks

1. A GRAPH POINTS statement must include the coordinates for at leasi
one point.

2. A GRAPH LINES statement requires the coordinates for a minimum
of two points.

3. A GRAPH AREA statement requires the coordinates for a minimum oJ
three points.

1. The sequence of the objects drawn is determined by the order of the
coordinate pairs in the GRAPH statement; the first coordinate pair
designates the first point, the second pair designates the second point,
and so on through the end of the coordinate pairs.

2. If GRAPH LINES is used to draw a closed figure, the coordinates
of the first point should be supplied again for the last point. For
example, to draw a square with GRAPH LINES, you must supply the
four points of the square. and then supply the first point again as the
fifth point.

9-96 VAX BASIC Graphics Statements

Example

GRAPH

3. To draw closed areas with the GRAPH AREA statement, you supply
the same number of points as there are vertices in the polygon.

4. The coordinates of points in GRAPH statements within a picture
definition are not affected by the transformations in the DRAW
statement that invokes the picture. To transform points within a
picture definition, you must use the PLOT statement. However, when
you know that transformation functions will not be used, use GRAPH
rather than PLOT statements, because they are more efficient.

PROGRAM Tick_tack

!+
!Set up game board
!-
SET LINE STYLE 1
SET LINE SIZE 2
SET LINE COLOR 3
GRAPH LINES 0,0.33; 1,0.33
GRAPH LINES 0,0.66; 1,0.66
GRAPH LINES 0.33,0; 0.33,1
GRAPH LINES 0.66,0; 0.66,1
!+
!Place X markers
!-
SET POINT COLOR 1
SET POINT STYLE 5
SET POINT SIZE 6
GRAPH POINTS 0.49,0.82; 0.82,0.82; 0.82,0.49
!+
!Place circle markers
!-
SET POINT COLOR 3
SET POINT .STYLE 4
GRAPH PO;rNTS 0.16,0.82; 0.49,0.49
!+
!Mark next position
!-
SET AREA COLOR·1
SET AREA STYLE "SOLID"
GRAPH AREA 0.66,0; 1,0; 1,0.33; 0.66,0.33
END PROGRAM

VAX. BASIC. Graphics Statements 9'."'"97

GRAPH

Output

(

9-98 VAX BASIC Graphics Statements

oxx
ox

ZK-5526-86

GRAPH METAFILE

GRAPH METAFILE

Format

The GRAPH METAFILE statement generates graphics output as specified
in the metafile records.

GRAPH METAFILE file-spec

Syntax Rules

Remarks

1. File-spec must be a string expression containing a valid metafile.

2. If a metafile is opened with an OPEN ... FOR GRAPHICS statement,
the file-spec in the OPEN ... FOR GRAPHICS statement must match
the file specification in the GRAPH METAFILE statement.

1. After a metafile has been created, it can be displayed with the GRAPH
METAFILE statement.

2. You can substitute a logical name for the full metafile specification.

3. A GRAPH METAFILE statement implicitly opens and activates the
metafile before generating the output.

4. To create a metafile, you send graphics output from your program to a
file. You must open the file as device type 2 with the OPEN ... FOR
GRAPHICS statement.

5. GRAPH METAFILE displays the output on all activated devices. It is
not necessary to open a metafile when you display it.

VAX BASIC Graphics Statements 9-99

GRAPH METAFILE

Examples

Example 1

PROGRAM create_file
!+
!Open and send output to an output metafile
!-
OPEN "[MCKAY]swan.pic" FOR GRAPHICS AS DEVICE 11 , TYPE 2
EXTERNAL PICTURE swan
DRAW swan
END PROGRAM

Example 2

PROGRAM draw_file
!+
!Display contents of metafile on default device
!-
GRAPH METAFILE "[MCKAY]swan.pic"
END PROGRAM

9-1 DO VAX BASIC Graphics Statements

GRAPH TEXT

GRAPH TEXT

Format

The GRAPH TEXT statement draws the specified characters. The display
is governed by the current values of the text attributes HEIGHT, JUSTIFY,
ANGLE, SPACE, EXPAND, FONT and PRECISION.

GRAPH TEXT [,] AT x-coord, y-coord : str-exp

Syntax Rules

Remarks

1. X-coord and y-coord specify the starting position of the text display.

2. Str-exp contains the characters to be drawn.

1. The text string instr-exp is not wrapped on the terminal screen; text
that extends beyond the device viewport is not visible. Text is also
clipped at the world viewport by default. For more information, see
the SET/ ASK CLIP statements.

2. The maximum length of the text string is dependent on the setting of
the various text attributes and the amount of display space available.
See the example.

3. Text attributes are not automatically adjusted according to the trans­
formation functions on a DRAW statement when text is drawn within
a picture. However, the text height and text starting point can be
adjusted with the TRANSFORM function. See the example for the
TRANSFORM function in this chapter.

4. You can format graphics text with the FORMAT$ function.

5. After execution of a SET WINDOW statement, you may need to
change the text height with the SET TEXT HEIGHT statement.

VAX BASIC Graphics Statements 9-101

GRAPH TEXT

Example

DECLARE STRING CONSTANT text_string = t
"How much of this will fit on the screen?"

DECLARE SINGLE def_font, def_height, t
STRING def _precision

!+
!Store default values
!-
ASK TEXT FONT def_font, def_precision
ASK TEXT HEIGHT def_height

SET TEXT FONT -81. , "STROKE"
SET TEXT HEIGHT 0.06
GRAPH TEXT AT 0.0,0.8 : text_string
!+
!Increase the text height
!-
SET TEXT HEIGHT 0.1
GRAPH TEXT AT 0.0,0.4 : text_string
!+
!Restore the default text attributes
!-
SET TEXT HEIGHT def _height
SET TEXT FONT def_font • def_precision
GRAPH TEXT AT 0.0,0.2 : text_string
END

9-1 02 VAX BASIC Graphics Statements

GRAPH TEXT

Output

flow much of this text will fit on t.

How much of thi~

~ow much of th!e text will flt o~ the ecree

VAX BASIC Graphics Statements 9-103

LOCATE CHOICE

LOCATE CHOICE

The LOCATE CHOICE statement accepts a user's selection from a menu.

Format

LOCATE CHOICE
[

#dev-id
, UNIT int-exp 1 { }] int-var
, INITIAL int-exp2

Syntax Rules

Remarks

1. When specified, dev-id must be the first clause listed and must be
preceded by a number sign{#).

2. If one or more optional clauses are included, one colon (:) is required
before int-var.

1. Execution of a LOCATE CHOICE statement displays the menu to the
user. The menu is displayed until the user inputs a menu selection.
Program control continues with the statement following the LOCATE
CHOICE statement.

2. The menu item input by the user is assigned to int-var.
3. The optional dev-id identifies the device from which you want to

accept input. If no identification clause is included, VAX BASIC uses a
default identification of #0. If an identification clause is included, the
device specified must have been opened explicitly, or opened by VAX
BASIC as the default device.

9-104 VAX BASIC Graphics Statements

1ample

LOCATE CHOICE

4. The optional INITIAL clause allows you to specify an initial response
for the user with int-exp2. This initial value is highlighted in the echo
area. The features of menu displays are device dependent.

5. The INITIAL clause in a LOCATE CHOICE statement overrides the
INITIAL clause on a previous SET INITIAL CHOICE statement.

6. When no INITIAL clause is included, the initial choice established
with the last SET INITIAL CHOICE statement is used. If no initial
choice has been set, the initial choice for the device is used.

7. The default number of menu items and the initial value vary with
each device.

8. The optional UNIT clause allows you to specify an alternative means
of supplying the input. For instance, the position of points can be
entered with a mouse, or with the keyboard arrow keys. Each of these
methods of data entry is a different unit. The default unit value for
int-exp for each input type is 1; the default is used throughout this
manual. For information about the units available on a particular
device, see the hardware documentation for that device, as well as the
VAX GKS documentation.

PROGRAM tax_data
EXTERNAL SUB More_questions
DECLARE LONG marital_status,

STRING form
OPEN "RT76" FOR GRAPHICS AS DEVICE #1
SET INITIAL CHOICE #1 , LIST

6

("Single",
"Divorced",
"Widowed",
"Married",
"Other")

VAX BASIC Graphics Statements 9-105

LOCATE CHOICE

!+
!Display menu, set a new initial choice ~ accept input
!-
LOCATE CHOICE 11 , INITIAL 6 : marital_status
SELECT marital_status

CASE = 1X ! Single
CALL More_questions

CASE • 4X !Married
Form = "joint"

CASE = 2X OR 3% !Divorced or widowed
Form = "long"

CASE ELSE
CALL More_questions

END SELECT

END PROGRAM

Output

(.------'\

9-106 VAX BASIC Graphics Statements

Single
Divorced
1 Jidowed
Married
IJther

ZK-4960-86

LOCATE POINT

LOCATE POINT

A LOCATE POINT statement accepts a single point input by a user.

Format

LOCATE POINT
[

#dev-id
, UNIT int-exp1 { : } l

. , AT x-coord1, y-coord1 [USING TRAN int-exp2]

x-coord2, y-coord2 [, int-var]

;yntax Rules

le marks

1. When specified, dev-id must be the first clause listed and must be
preceded by the number sign(#}.

2. lnt-exp2 must be an integer between 1 and 255.

3. If one or more optional clauses are included, one colon (:) is required
before x-coord2.

1. The world coordinates of the user-supplied input are assigned to the
variables x-coord2 and y-coord2.

2. The optional dev-id identifies the device from which you want to
accept input. If no identification clause is included, VAX BASIC uses a
default identification of #0. If an identification clause is included, the
device specified must have been opened explicitly, or opened by VAX
BASIC as the default device.

VAX BASIC Graphics Statements 9-107

LOCATE POINT

3. An initial point can be specified in the optional AT clause. VAX BASIC
uses the current transformation for output to interpret the world co­
ordinates of this point. You can specify an alternative transformation
for interpreting this initial point in the optional USING TRAN clause.
If an initial point is specified in the LOCATE POINT statement, this
point overrides an initial point previously set with the SET INITIAL
POINT statement.

4. The transformation with the highest priority is l, unless a SET
WINDOW, SET VIEWPORT, or SET TRANSFORMATION statement
has been executed. See also the SET INPUT PRIORITY statement.

5. If multiple transformations are defined, the user-supplied point is
evaluated using the transformation with the highest input priority
of all transformations that contain the input point in their viewport.
VAX BASIC assigns the actual number of the transformation used to
optional int-var.

6. The initial point is indicated to the user with a device dependent
prompt such as a tracking plus sign. The user can move the prompt
with the arrow keys or a mouse to indicate a new point. To enter a
selected point, the user presses RETURN or performs a similar activity
The actual actions required are device dependent.

7. The program waits until the user indicates that input is complete.
Program execution continues with the statement lexically after the
LOCATE POINT statement.

8. Unlike points accepted by the GET POINT statement, points accepted
by a LOCATE POINT statement within a picture are not affected by
any transformation functions in the DRAW statement that invoked th~
picture. See the example for the MAT GET POINTS statement for an
illustration of this difference.

9. The optional UNIT clause allows you to specify an alternative means
of supplying the input. For instance, the position of points can be
entered with a mouse, or with the keyboard arrow keys. Each of thes1
methods of data entry is a different unit. The default unit value for
int-exp1 for each input type is 1; the default is used throughout this
manual. For information about the units available on a particular
device, see the hardware documentation for that device, as well as th~
VAX GKS documentation.

9-108 VAX BASIC Graphics Statements

xample

OPTION TYPE = EXPLICIT
EXTERNAL PICTURE boat(SINGLE,)
DECLARE LONG alt_tran,which_tran,

SINGLE user_x, user_y
!+
!Specify alternative transformation for initial point
!-
alt_tran = 2
!+
!Request coordinate pair from user t set initial point
!-

LOCATE POINT

LOCATE POINT , AT 60,60 USING TRAN alt_tran : user_x, user_y , which_tran
!+
!Use input coordinates as starting point for a picture invocation
!-
DRAW boat(user_x,user_y)

END

VAX BASIC Graphics Statements 9-109

LOCATE STRING

LOCATE STRING

The LOCATE STRING statement accepts a user's string input.

Format

LOCATE STRING
[

#dev-id
, UNIT int-exp { }] str-var
, INITIAL str-exp

Syntax Rules

Remarks

1. When specified, dev-id must be the first clause listed and must be
preceded by the number sign(#).

2. If one or more optional clauses are included, one colon (:) is require1
before str-var.

1. The string supplied by the user is assigned to str-var.
2. The optional dev-id identifies the device from which you want to

accept input. If no identification clause is included, VAX BASIC uses
default identification of #0. If an identification clause is included, th
device specified must have been opened explicitly, or opened by VA
BASIC as the default device.

3. The optional INITIAL clause allows you to specify an initial string fc
the user. This initial string is displayed within the string echo area.
The user can enter this initial string, or an alternative. The initial
string specified in a LOCATE STRING statement overrides an initial
string specified in a SET INITIAL STRING statement.

9-110 VAX BASIC Graphics Statements

1ample

LOCATE STRING

4. When no INITIAL clause is included, the initial string in the last SET
INITIAL STRING statement is used. If no initial string has been set,
the default string for the device is used (usually the null string).

5. VAX BASIC appends the user-supplied string to the initial string you
specify in a LOCATE STRING or a SET INITIAL STRING statement.
If the user accepts the initial string with a null response, str-var
contains only the initial string. Depending on the device, it may be
possible for a user to delete the initial string by pressing CTRL/U or
the DELETE key. You can use the VAX BASIC string functions to
locate the exact user input.

6. The optional UNIT clause allows you to specify an alternative means
of supplying the input. For instance, the position of points can be
entered with a mouse, or with the keyboard arrow keys. Each of these
methods of data entry is a different unit. The default unit value for
int-exp for each input type is 1; the default is used throughout this
manual. For information about the units available on a particular
device, see the hardware documentation for that device, as well as the
VAX GKS documentation.

OPTION TYPE = EXPLICIT
DECLARE STRING init_string, user_string, response
init_string = "YES"
LOCATE STRING , INITIAL init_string : user_string
!+
!Check if user responded with a <CR>
!-
IF user_string = init_string

THEN response = init_string
GOTO print_it_out

ELSE GOTO extract_string
END IF
extract_string:

!+
!Check if all of init_string has been deleted or not
!-
IF LEFT$(user_string,3) = LEFT$(init_string,3)

THEN response = RIGHT$(user_string,4)
ELSE response = user_string

END IF
print_it_out:

PRINT "User entered '" +response+ "'"
END

VAX BASIC Graphics Statements 9-111

LOCATE VALUE

LOCATE VALUE

The LOCATE VALUE statement accepts a numeric value input by a user.

Format

#dev-id

LOCATE VALUE , UNIT int-exp
, RANGE real-exp1 TO real-exp2
, INITIAL real-exp3

{ }] rea/-wr

Syntax Rules

1. When specified, dev-id must be the first clause listed and must be
preceded by the number sign(#).

2. Real-exp1 must be less than real-exp2 in the optional RANGE clause.

3. Real-exp3 must be within the optional range when specified. If no
RANGE clause is included, real-exp3 must be within the default rangE

4. You can include one or more optional clauses.

5. A colon must precede real-var when one or more optional clauses are
present.

9-112 VAX BASIC Graphics Statements

le marks

LOCATE VALUE

1. The value input by the user is assigned to real-var.

2. The optional dev-id identifies the device from which you want to
accept input. If no identification clause is included, VAX BASIC uses a
default identification of #0. If an identification clause is included, the
device specified must have been opened explicitly, or opened by VAX
BASIC as the default device.

3. The optional RANGE clause allows you to specify the extent of accept­
able values to the user. Intermediate values are scaled proportionately.

4. The RANGE clause specifies the lowest and highest acceptable input.
The user-supplied value and the initial value must be within this
range. VAX BASIC signals the run-time error ILLINIVAL, "illegal
initial value" (ERR = 284), when the initial value is not within the
specified range.

5. When no RANGE clause is included, the range in the last SET
INITIAL VALUE statement is used. If no initial values have been
set, the default range is 0 to 1.

6. The optional INITIAL clause allows you to specify an initial value
for the user. This initial value is displayed within the specified range
in the echo area. The initial value and range specified in a LOCATE
VALUE statement override the value and range specified in a SET
INITIAL VALUE statement.

7. The program waits until the default response or an alternative value
is entered at the terminal. To enter a selected value, the user presses
RETURN or performs a similar activity. The actual actions are device
dependent.

8. The optional UNIT clause allows you to specify an alternative means
of supplying the input. For instance, the position of points can be
entered with a mouse, or with the keyboard arrow keys. Each of these
methods of data entry is a different unit. The default unit value for
int-exp for each input type is 1; the default is used throughout this
manual. For information about the units available on a particular
device, see the hardware documentation for that device, as well as the
VAX GKS documentation.

9. For an illustration of the VALUE echo and prompt, see the SET
INITIAL VALUE statement.

VAX BASIC Graphics Statements 9-113

LOCATE VALUE

Example

EXTERNAL SUB small_claims(SINGLE), &
night_court(SINGLE), &
probate

DECLARE SINGLE limitt, limit2, your_number
limit1 = 0
limit2 = 10
LOCATE VALUE , RANGE limit1 TO limit2 &

, INITIAL 2.6 &
your_number

SELECT your_number
CASE < 2.6

CALL small_claims(your_number)
CASE= 2.6

CALL night_court(your_number)
CASE > 2.6

CALL probate
END SELECT

9-114 VAX BASIC Graphics Statements

MAT GET POINTS

IAT GET POINTS

'ormat

The MAT GET POINTS statement accepts one or more points input by a
user.

#dev-id

MAT GET POINTS , UNIT int-exp1
, COUNT int-var1 ! l , AT x-coord, y-coord [USING TRAN int-exp2]

x-array, y-array [, int-var2]

~yntax Rules

1. When specified, dev-id must be the first clause listed and must be
preceded by the number sign{#}.

2. With the MAT statement, specify only the array name; do not use
parentheses to indicate the whole array.

3. X-array and y_array must be one-dimensional arrays that contain only
integer or real data types. Virtual arrays are not valid.

4. Int-exp2 must be an integer between 1 and 255.

5. If one or more optional clauses are included, one colon (:) is required
before x-array.

VAX BASIC Graphics Statements 9-115

MAT GET POINTS

Remarks

1. The optional dev-id identifies the device from which you want to
accept input. If no identification clause is included, VAX BASIC uses a
default identification of #0. If an identification clause is included, the
device specified must have been opened explicitly, or opened by VAX
BASIC as the default device.

2. When multiple transformations are defined, the user-supplied input
is interpreted with the transformation with the highest priority that
contains all the points input by the user. The world coordinates of thE
user-supplied points are assigned to x-array and y-array. VAX BASIC
assigns the number of the transformation used to int-var2. See also
the SET INPUT PRIORITY statement.

3. An initial point can be specified in the optional AT clause. VAX
BASIC uses the current output transformation to interpret the world
coordinates of this point for display on the user's screen. You can
specify an alternative transformation for interpreting this initial point
by including an optional USING TRAN clause. If an initial point is
specified in a MAT GET POINTS statement, this point overrides an
initial point previously set with a SET INITIAL MULTIPOINT or SET
INITIAL POINT statement.

4. The optional COUNT clause allows you to find out how many points
the user actually entered. If a user enters more points than the input
arrays can contain, VAX BASIC discards the extra points and the user
cannot retrieve these values; however, int-var1 still retains the actual
number entered. When an unknown number of points is input a11:d
you want to display these points, you need to examine int-var1 beforE
using this number in the MAT GRAPH or MAT PLOT statements 1

you use for related output. The following example shows one way of
ensuring that the COUNT clause is valid for the output statement.

9-116 VAX BASIC Graphics Statements

:xample

Example

DECLARE LONG CONSTANT in_max = 12
DECLARE LONG how_many
DIM SINGLE in_x(1 TO in_max),in_y(1 TO in_max)
MAT GET POINTS , COUNT how_many : in_x, in_y
IF how_many > in_max

THEN GRAPH TEXT AT 0,0.9: "You can only input"

MAT GET POINTS

GRAPH TEXT AT 0,0.8: STR$(in_max) + " points. Your"
GRAPH TEXT AT 0,0.7: "extra points have been discarded."
how_many = in_max

END IF
MAT GRAPH POINTS , COUNT how_many : in_x, in_y

5. The optional UNIT clause allows you to specify an alternative means
of supplying the input. For instance, the position of points can be
entered with a mouse, or with the keyboard arrow keys. Each of these
methods of data entry is a different unit. The default unit value for
int-exp1 for each input type is 1; the default is used throughout this
manual. For information about the units available on a particular
device, see the hardware documentation for that device, as well as the
VAX GKS documentation.

6. Points accepted with the MAT GET POINTS statement in a PICTURE
subprogram are transformed through the inverse of any transformation
functions on the DRAW statement that invoked the picture. Points
accepted by the MAT LOCATE POINTS statement, however, are not
affected by the transformation functions.

The following example illustrates the difference between the MAT GET
POINTS and MAT LOCATE POINTS statements. The points accepted
by the GET statement are scaled according to the transformation function
in the DRAW statement; therefore, these points are displayed within the
cheese outline. The points accepted by the LOCATE statement are not
scaled along with the cheese outline; therefore, the points are not all
displayed within the outline.

EXTERNAL PICTURE get_the_points
, locate_the_points

!Circles for the holes in the cheese
SET POINT STYLE 4
DRAW get_the_points WITH SCALE(1/2)
SLEEP 5Y.
CLEAR

VAX BASIC Graphics Statements 9-117

MAT GET POINTS

DRAW locate_the_points WITH SCALE(1/2)
END

PICTURE swiss_cheese
DECLARE LONG counter
DIM SINGLE outline_x(9),outline_y(9)
DATA 0.26,0.6, 0.26,0.126, 0.76,0.126, 0.76,0.6, 0.26,0.6, &

0.96,0.76, 0.76,0.6, 0.96,0.76, 0.96,0.276, 0.76,0.126
READ outline_x(counter),outline_y(counter) FOR counter= 0 TO 9
MAT PLOT LINES outline_x, outline_y

END PICTURE

PICTURE get_the_points
EXTERNAL PICTURE swiss_cheese
DECLARE LONG CONSTANT input_max = 12
DECLARE LONG how_many
DIM SINGLE get_xholes(input_max),get_yholes(input_max)
DRAW swiss_cheese
MAT GET POINTS ,COUNT how_many get_xholes, get_yholes
IF how_many > (input_max + 1)

THEN how_many = input_max + 1
END IF
MAT GRAPH POINTS , COUNT how_many get_xholes, get_yholes

END PICTURE

PICTURE locate_the_points
EXTERNAL PICTURE swiss_cheese
DECLARE LONG CONSTANT input_max = 12
DECLARE LONG how_many
DIM SINGLE locate_xholes(input_max),locate_yholes(input_max)
DRAW swiss_cheese
MAT LOCATE POINTS , COUNT how_many : locate_xholes, locate_yholes
IF how_many > (input_max + 1)

THEN how_many input_max + 1
END IF
MAT GRAPH POINTS COUNT how_many locate_xholes, locate_yholes

END PICTURE

9-118 VAX BASIC Graphics Statements

Output from Get_the_points:

~
~

Output from Locate-the_points:

0 0
0

CD

MAT GET POINTS

0
0

0

0

VAX BASIC Graphics Statements 9-119

MAT GRAPH

MAT GRAPH

Format

The MAT GRAPH statement draws graphics output specified by the worl1
coordinate points contained in arrays. The output is drawn on all active
devices. Values for graphics attributes such as color and style depend on
the current settings.

MAT GRAPH LINES [, COUNT int-exp:] x-array, y-array {
POINTS }

AREA

Syntax Rules

1. With the MAT statement, specify only the array name; do not use
parentheses to indicate the whole array.

2. Both x-array and y-array must be one-dimensional arrays containing
integer or real data types. Virtual arrays are not valid.

3. Int-exp cannot be greater than the number of elements in the coordi­
nate arrays.

4. A MAT GRAPH POINTS statement must include the coordinates for
at least one point with each coordinate in the appropriate array.

5. A MAT GRAPH LINES statement requires a minimum of two points.

6. A MAT GRAPH AREA statement requires a minimum of three coordi
nate pairs.

9-120 VAX BASIC Graphics Statements

Remarks

Example

MAT GRAPH

1. Points specified in arrays must begin in the element with the low-
est subscript. An optional COUNT clause allows you to display a
specified number of the points described in the array elements. If no
COUNT clause is included, all of the points specified in the arrays are
displayed.

2. The sequence of objects drawn is determined by the order of the
coordinates in the arrays in the MAT GRAPH statement; the first pair
of coordinates supplied in both arrays designates the first point, the
second pair designates the second point, and so on through the end of
the arrays.

3. If MAT GRAPH LINES is used to draw a closed figure, the coordinates
of the first point should be supplied again for the last point. For
example, to draw a square with MAT GRAPH LINES, you must
supply the four points of the square and then supply the first point
again as the fifth point.

4. To draw closed areas with the MAT GRAPH AREA statement, you
supply the same number of points as there are vertices in the polygon.

5. The coordinates of points in MAT GRAPH statements within a picture
definition are not affected by the transformations specified in the
DRAW statement that invoked the picture. To transform points
within a picture definition, you must use the MAT PLOT statement.
However, when you know that transformation functions will not be
used, ·use GRAPH rather than PLOT statements, because they are
more efficient.

PROGRAM letter_w
DECLARE LONG counter
DIM SINGLE x_coords(6),y_coords(6)
DATA 0.24,0.76, 0.3,0.46, 0.376,0.126, 0.6,0.66, t

0.626,0.126, 0.7,0.46, 0.76,0.76
READ x_coords(counter),y_coords(counter) FOR counter= OY. TO 61.

!For illustration, the same coords are used
!in each of the following MAT statements
SET VIEWPORT ,TRAN 1 :0,0.6,0,0.6
MAT GRAPH POINTS x_coords, y_coords

VAX BASIC Graphics Statements 9-121

MAT GRAPH

SET VIEWPORT ,TRAN 2 : 0,0.5,0.5,1
MAT GRAPH LINES x_coords, y_coords

SET VIEWPORT ,TRAN 3 : 0.5,1,0.5,1
MAT GRAPH AREA x_coords, y_coords

END PROGRAM

Output

\ I
\ /\. /
\\, i I I/ \ /

1/ \j

* * ~

9-122 VAX BASIC Graphics Statements

"

MAT LOCATE POINTS

MAT LOCATE POINTS

·format

The MAT LOCATE POINTS statement accepts one or more points input
by a user.

#dev-id

MAT LOCATE POINTS , UNIT int-exp 1
, COUNT int-var1 { }
, AT x-coord, y-coord [USING TRAN int-exp2]

x-array, y-array [, int-var2]

Syntax Rules

1. When specified, dev-id must be the first clause listed and must be
preceded by the number sign{#).

2. With the MAT statement, specify only the array name; do not use
parentheses to indicate the whole array.

3. X-array and y_array must be one-dimensional arrays that contain only
integer or real data types. Virtual arrays are not valid.

4. Int-exp2 must be an integer between 1 and 255.

5. If one or more optional clauses· are included, one colon (:) is required
before x-array.

VAX BASIC Graphics Statements 9-123

MAT LOCATE POINTS

Remarks

1. The optional dev-id identifies the device from which you want to
accept input. If no identification clause is included, VAX BASIC uses a
default identification of #0. If an identification clause is included, the
device specified must have been opened explicitly, or opened by VAX
BASIC as the default device.

2. When multiple transformations are defined, the user-supplied input
is interpreted with the transformation with the highest priority that
contains all the points input by the user. The world coordinates of the
user-supplied points are assigned to x-array and y-array. VAX BASIC
assigns the number of the transformation used to int-var2. See also
the SET INPUT PRIORITY statement.

3. An initial point can be specified in the optional AT clause. VAX
BASIC uses the current output transformation to interpret the world
coordinates of this point for display on the user's screen. You can
specify an alternative transformation for interpreting this initial point
by including an optional USING TRAN clause. If an initial point is
specified in a MAT LOCATE POINTS statement, this point overrides
an initial point previously set with a SET INITIAL MULTIPOINT or
SET INITIAL POINT statement.

4. The optional COUNT clause allows you to find out how many points
the user actually entered. If a user enters more points than the input
arrays can contain, VAX BASIC discards the extra points and the user
cannot retrieve these values; however, int-varl still retains the actual
number entered. When an unknown number of points are input and
you want to display these points, you need to examine int-varl before
using this number in the MAT GRAPH or MAT PLOT statements
you use for related output. The example at the end of this statement
shows one way of ensuring that the COUNT clause is valid for the
output statement.

5. The optional UNIT clause allows you to specify an alternative means
of supplying the input. For instance, the position of points can be
entered with a mouse, or with the keyboard arrow keys. Each of these
methods of data entry is a different unit. The default unit value for
int-expl for each input type is 1; the default is used throughout this
manual. For information about the units available on a particular
device, see the hardware documentation for that device, as well as the
VAX GKS documentation.

9-124 VAX BASIC Graphics Statements

Example

MAT LOCATE POINTS

6. Points accepted with the MAT LOCATE POINTS statement in a
PICTURE subprogram are not affected by any transformation functions
on the DRAW statement that invoked the picture. Points accepted by
the MAT GET POINTS statement, however, are transformed by the
inverse of the transformation functions. See the MAT GET POINTS
statement for an example illustrating this difference.

DECLARE LONG CONSTANT in_max = 12
DECLARE LONG how_many
DIM in_x(in_max),in_y(in_max)
MAT LOCATE POINTS , COUNT how_many in_x, in_y
IF how_many > in_max

THEN GRAPH TEXT AT 0,0.9: "You can only input"

END IF

GRAPH TEXT AT 0,0.8: STR$(in_max) + " points. Your"
GRAPH TEXT AT 0,0.7: "extra points have been discarded."
how_many = in_max

SET POINT COLOR 2
MAT GRAPH POINTS , COUNT how_many in_x, in_y

VAX BASIC Graphrcs Statements 9-125

MAT PLOT

MAT PLOT

Format

The MAT PLOT statement draws graphics output specified by the world
coordinate points contained in arrays. Points drawn with the MAT PLOT
statement within a picture are affected by the transformation functions
included in the DRAW statement that invokes the picture. The output is
drawn on an active devices. Values for graphics attributes such as color
and style depend on the current settings.

MAT PLOT { r~::s . } [I COUNT int-exp : 1 x-array, y-array
AREA

Syntax Rules

1. With the MAT statement, specify only the array name; do not use
parentheses to indicate the whole array.

2. Both x-array and y-array must be one-dimensional arrays containing
integer or real data types. Virtual arrays are not valid.

3. Int-exp cannot be greater than the number of elements in the coordi­
hate arrays.

4. A MAT PLOT POINTS statement must include the coordinates for at
least one point with each coordinate in the appropriate array.

5. A MAT PLOT LINES statement requires a minimum of two points.

6. A MAT PLOT AREA statement requires a minimum of three coordi­
nate pairs.

9-126 VAX BASIC Graphics Statements

Remarks

Example

MAT PLOT

1. Points specified in arrays must begin in the element with the lowest
subscript. An optional COUNT clause allows you to display a speci­
fied number of the points described in the arrays. If no COUNT clause
is included, all of the points specified in the arrays are displayed.

2. The sequence of objects drawn is determined by the order of the
coordinates in the arrays in the MAT PLOT statement; the first pair
of coordinates supplied in both arrays designates the first point, the
second pair designates the second point, and so on through the end of
the arrays. ·

3. If MAT PLOT LINES is used to draw a dosed figure, the coordinates
of the first point should be supplied again for the last point. For
example, to draw a square with MAT PLOT LlNES, you must supply
the four points of the square and then supply the first point again as
the fifth point.

4. To draw closed areas with the MAT PLOT AREA statement, you
supply the same number of points as there are vertices in the polygon.

5. The coordinates of points in MAT PLOT statements within a picture
definition are affected by the transformations in the DRAW statement
that invokes the picture. However, when you know that transfor- ·
mation functions will not be used, use GRAPH rather than PLOT
statements, because they are more efficient.

PROGRAM letter_w
EXTERNAL PICTURE area_w(SINGLE DIM(), SINGLE DIM()), &

lines_w(SINGLE DIM(), SINGLE DIM{)), &
points_w(SINGLE DIM(), SINGLE DIM{))

DECLARE LONG counter
DIM SINGLE x_coords(6),y_coords(6)
SET VIEWPORT ,TRAN 1 :0,0.6,0,0.6
SET VIEWPORT ,TRAN 2 : 0,0.6,0.6,1
SET VIEWPORT ,TRAN 3 : 0.6,1,0.5,1

DATA 0.24,0.75, 0.3,0.45, 0.375,0.125, 0.5,0.55, &
0.625,0.125, 0.7,0.46, 0.76,0.75

READ x_coords(counter),y_coords(counter) FOR counter= 0% TO 6%

SET TRANSFORMATION 1
DRAW points_w(x_coords(),y_coords()) WITH SCALE(0.5)

·vAX BASIC Graphics Statements 9-127

MAT PLOT

SET TRANSFORMATION 2
DRAW lines_w(x_coords() ,y_coords()) WITH SCALE(0.6)

SET TRANSFORMATION 3
SET AREA STYLE "SOLID"
DRAW area_w(x_coords() ,y_coords()) WITH SCALE(O. 5)

END PROGRAM

PICTURE points_w(SINGLE x_coords() ,y_coords())
MAT PLOT POINTS x_coords, y_coords

END PICTURE

PICTURE lines_w (SINGLE x_coords (), y _coords ())
MAT PLOT LINES x_coords, y_coords

END PICTURE

!+
!This picture uses MAT GRAPH rather than MAT PLOT
!See the output of area_w compared to points_w and linea_w
!-
PICTURE area_w(SINGLE x_coords().,y_coords())

MAT GRAPH AREA x_coords, y_coords
END PICTURE

Output

w
* * ***
**

"

9-128 VAX BAS.IC Graphics Statements

ZK-4968·86

OPEN .•• FOR GRAPHICS

1PEN • • • FOR GRAPHICS

nm at

The OPEN ... FOR GRAPHICS statement opens and activates the
specified device for graphics input or output.

OPEN { ~~v-name } FOR GRAPHICS AS l DEVICE] #dev-id [, TYPE dev-type]
me-spec

,ntax Rules

1marks

1. Dev-name can be a string expression or a quoted string representing a
logical name for a device.

2. File-spec must be a valid metafile.

3. You must supply the number sign (#) with dev-id.
4. Dev-type must be a valid integer expression representing a device

supported by VAX GKS and must correspond to the actual device (or
metafile) specified in dev-name. See Table 9-1 in this section for a list
of supported device types.

1. If only the default device is used, you need not use the OPEN ...
FOR GRAPHICS statement. When graphics output statements are
executed and no device has been opened, VAX BASIC opens the
default device. The default device is opened with the equivalent of
the following statement:

OPEN "" FOR GRAPHICS AS DEVICE #0

VAX BASIC Graphics Statements 9-129

OPEN . . . FOR GRAPHICS

VAX BASIC opens the default device as a monochrome VT240 (devic
type 14), unless an alternative device type has been assigned to the
logical name GKS$WSTYPE. To find out if GKS$WSTYPE has been
assigned system-wide, use the following command:

$ SHOW LOGICAL GKS$WSTYPE

If a device type has been assigned to GKS$WSTYPE, VAX BASIC use
this type as the default device; however, if no device type has been
assigned, VAX BASIC assumes the device is a monochrome VT240.

To assign a specific device type as your own default, use the DCL
command ASSIGN. The following command informs VAX GKS
that you are using a VT240 terminal with the color option (device
type 13). This assignment overrides any system value assigned to
GKS$WSTYPE.

$ ASSIGN 13 GKS$WSTYPE

2. An OPEN ... FOR GRAPHICS statement implicitly activates the
identified device.

3. Table 9-1 in this section lists the possible values for dev-type. This
list is complete up to the print date on this manual. For up-to-date
information, consult the VAX GKS documentation.

4. When an OPEN ... FOR GRAPHICS statement specifies a device
that is already open, VAX BASIC closes the device, then reopens it
with the specifications in the most recent OPEN ... FOR GRAPHIO
statement.

5. The dev-id specified in an OPEN ... FOR GRAPHICS statement is
not related to the channels specified in the OPEN statement for file
1/0. For example, you could open a file on channel #l and open a
graphics device as #1. Channel #l and device #l are independent o.
each other.

6. If you open a device that has color index values that are not contigu·
ous, VAX BASIC issues an error message. Results from the ASK MA
COLOR statement are unpredictable on such a device.

7. For information on opening a metafile, see the GRAPH METAFILE
statement.

8. Information that is specific to VAXstations and to VT125 and VT240
terminals is listed in Appendix B.

9-130 VAX BASIC Graphics Statements

Table 9-1:
Device Type

0

2

3

10

11

12

13

14

15

31

32

33

41

51

52

70

72

OPEN . . . FOR GRAPHICS

Supported Device Types
Supported Device1

Default device type

Output metafile

Input metafile

VT125 output only

VT125 with color

VTl 25 black and white

VT240 with color

VT240 black and white

LCPOl printer

LA34 with graphics option
LAlOO
LA210

LASO with 2: 1 aspect ratio

LA12

VAXstation I
VAXstation II monochrome
VAXstation 11/GPX color

LVP16 color plotter (8-1/2 by 11 paper)

LVP16 (11by17 paper)

Tektronix 4014 output only

Tektronix 4014

1
It is possible that the device you use is not on this list but has been adapted to take advantage of

VAX GKS. If this is the case, you should refer to both the hardware and the VAX GKS documentation
and use caution in all device-specific clauses in your applications. This list was complete when this
manual went to print; see the VAX GKS documentation for the latest information about supported
devices.

VAX BASIC Graphics Statements 9-131

OPEN . . . FOR GRAPHICS

Example

!+
fOpen a VAXstation II
!-
OPEN "VTA24:" FOR GRAPHICS AS DEVICE #1 , TYPE 41
~+

!Open a terminal as the default device type
!-
OPEN "my_term" FOR GRAPHICS AS DEVICE #2
!+
!Open an output metafile
!-
OPEN "meta.pie" FOR GRAPHICS AS DEVICE #3 , TYPE 2

9-132 VAX BASIC Graphics Statements

PICTURE

'ICTURE

=or mat

A PICTURE subprogram defines a graphics display and can be invoked
with the DRAW statement. The PICTURE statement marks the start of a
picture definition.

PICTURE pie-name [(param-list)]

statement
[statement]

END PICTURE

•yntax Rules

1. Pie-name must be a valid VAX BASIC identifier and must not be
the same as an identifier for a SUB or FUNCTION subprogram or a
PROGRAM unit.

2. Parameters in the param-list must agree in number and data type with
the parameters in a picture invocation (a DRAW statement).

VAX BASIC Graphics Statements 9-133

PICTURE

Remarks

1. A definition of a picture must be delimited by the PICTURE and END
PICTURE statements.

2. Statements within a picture can invoke other procedures.

3. Pictures can be recursive; a picture can include a DRAW statement
that invokes itself. These DRAW statements can be either within the
picture or within a called subprogram.

4. Statements that affect the boundaries of windows and viewports as
well as statements that affect the clipping status are not valid within
a picture. Errors are signaled if these statements are lexically within
a picture definition, or if the statements are executed in a subprogram
called from a picture. Invalid statements include the following:

• SET CLIP

• SET DEVICE VIEWPORT

• SET DEVICE WINDOW

• SET INPUT PRIORITY

• SET TRANSFORMATION

• SET VIEWPORT

• SET WINDOW

5. Pictures are invoked with the DRAW statement and can be rotated,
scaled, shifted, tilted, and otherwise modified by transformation
functions included in the DRAW statement. For more information
about invoking pictures, see the DRAW statement.

6. Transformation functions in DRAW statements within a picture are
cumulative. That is, when a second or subsequent picture is invoked
within a picture definition, the transformations from all of the relevan
DRAW statements are applied to the points generated by the second o
subsequent picture. For example, in the following picture, the picture
nest2 is invoked with a DRAW statement equivalent to DRAW WITH
SCALE(2,l) • SHIFT(SO,O).

9-134 VAX BASIC Graphics Statements

:xample

Example

PICTURE nest 1
EXTERNAL nest2

DRAW nest2 WITH SCALE(2,1)
END PICTURE
!+
!Invoke picture nest1
!-
DRAW nest1 WITH SHIFT(50,0)

PICTURE

7. When graphics output statements using GRAPH or MAT GRAPH are
contained within a picture, the points displayed are not affected by
the transformation functions in the DRAW statement that invokes the
picture. Output displayed with the PLOT and MAT PLOT statements,
on the other hand, is affected by the transformation functions. See the
GRAPH and PLOT statements for more information.

8. When graphics input statements using LOCATE are contained within a
picture, the points entered are not affected by the transformation func­
tions in the DRAW statement that invokes the picture. Input points
accepted by the GET statement are affected by the transformation
functions. For more information, see the LOCATE and GET POINTS
statements, as well as the MAT GET POINTS statement.

9. For more examples of pictures, see Chapter 6 in this manual. See
Chapter 7 for information about accepting input within picture defini­
tions.

EXTERNAL PICTURE square(LONG)
DECLARE LONG width
SET WINDOW 0,100,0,100
DRAW square(width) FOR width = 60 TO 10 STEP -10
END

VAX BASIC Graphics Statements 9-135

PICTURE

PICTURE square(LONG width)
DECLARE SINGLE x_top_left,y_top_left, &

x_top_right,y_top_right, &
x_bottom_right,y_bottom_right, &
x_bottom_left,y_bottom_left

x_top_left = 60 - width/2
y_top_left = 60 + width/2
x_top_right = y_top_left
y_top_right = y_top_left
x_bottom_right = x_top_right
y_bottom_right = x_top_left
x_bottom_left = x_top_left
y_bottom_left = y_bottom_right

PLOT LINES : x_top_left, y_top_left; k

END PICTURE

Output

x_top_right,y_top_right; &
x_bottom_right,y_bottom_right; &
x_bottom_left,y_bottom_left; &
x_top_left,y_top_left

9-136 VAX BASIC Graphics Statements

OT

PLOT

The PLOT statement draws the specified graphics object on all active
devices. Values for graphics attributes such as color and style use the
current settings. Graphics objects displayed with PLOT from within
a picture are affected by the transformation functions specified on the
DRAW statement that invokes the picture.

LOT { r.~::s } [: 1 x-coord I y-coord [; x-coord, y-coord] ...
AREA

1tax Rules

narks

1. A PLOT POINTS statement must include the coordinates for at least
one point.

2. A PLOT AREA statement must include the coordinates for at least
three points.

3. The last point specified in a PLOT LINES statement can be followed
by an optional semicolon (see the remarks below).

1. The sequence of drawing the objects is determined by the order of the
coordinate pairs presented in the PLOT statement; the first coordinate
pair designates the first point, the second pair designates the second
point, and so on through the end of the coordinate pairs.

VAX BASIC Graphics Statements 9-137

PLOT

2. A "beam of light" can be left on if you add a semicolon after the
last point specified in a PLOT LINES statement. When this beam c

light is left on, a line will be drawn from this point to the next poi
specified in a subsequent PLOT LINES statement. For instance, th
first PLOT LINES statement in the following example leaves the bE
of light on and a line is drawn between points 50,50 and 75,75. Tl
beam of light is then turned off because no semicolon is present af
the second PLOT LINES statement.

PLOT LINES 50.50; !beam is left on

PLOT LINES 75.75 !beam is turned off

3. The output from PLOT LINES statements that leave the beam on
is not actually displayed until the beam is switched off with the
execution of any graphics output statement other than PLOT LINE
with a semicolon. If no further graphics output statement is execut
the output is displayed when program execution terminates.

4. A PLOT LINES statement with no points supplied switches off th€
beam of light.

5. If PLOT LINES is used to draw a closed figure, the coordinates of 1

first point should be supplied again for the last point. For exampl€
to draw a square with PLOT LINES, you must supply the four poi1
of the square and then supply the first point again as the fifth poir
These points can be supplied one at a time (such as in a loop), or c
after the other in the same statement.

6. To draw closed areas with the PLOT AREA statement, you supply
same number of points as there are vertices in the polygon.

7. The coordinates of points in PLOT statements within a picture defi
tion are affected by the transformations in the DRAW statement th
invokes the picture. However, when you know that transformati01
functions will not be used, use GRAPH rather than PLOT statemer
because they are more efficient.

9-138 VAX BASIC Graphics Statements

1mple

OPTION TYPE = EXPLICIT
DECLARE SINGLE counter
SET WINDOW 0,2•PI,-1,1
SET LINE SIZE 6
FOR counter= 0 TO 2•PI STEP 0.1

!Supply points 1 at a time
!leave beam on to connect to next point
PLOT LINES counter, SIN(counter);

NEXT counter
!+
!Complete the curve
!-
PLOT LINES 2 * PI,SIN(2 * PI)
END

Output

PLOT

ZK-4894-86

VAX BASIC Graphics Statements 9-139

RESTORE GRAPHICS

RESTORE GRAPHICS

Format

The RESTORE GRAPHICS statement clears the current values for all
attributes and input types, and restores the default values as at the star
program execution.

RESTORE GRAPHICS

Syntax Rules

Remarks

Example

None.

1. Executing a RESTORE GRAPHICS statement closes all open device

2. When a RESTORE GRAPHICS statement is executed, all values
for output attributes, characteristics of input types, and any device
defaults are restored to their values at the start of program executic

Declarations:

trapper = CTRLC
WHEN ERROR USE cntrc_trap
Start_up:

OPEN "RT23" FOR GRAPHICS AS DEVICE #3

END WHEN

9-140 VAX BASIC Graphics Statements

HANDLER cntrc_trap
!Test if user entered CTRL/C
IF ERR = 28%

!Restore original attributes and defaults
THEN RESTORE GRAPHICS

CONTINUE
END IF

END HANDLER

RESTORE GRAPHICS

VAX BASIC Graphics Statements 9-141

ROTATE

ROTATE

Format

When used in a DRAW statement, the ROTATE function rotates point~
specified in a PICTURE subprogram. ROTATE can also be used in the
MAT statement to create a new matrix.

In the DRAW statement

DRAW pic-name[(param-list)] WITH ROTATE (angle) [• matrix2] ...

In the MAT statement

MAT matrix1 = ROTATE(angle) [• matrix2] ...

Syntax Rules

1. Angle can be in radians or degrees, depending on the option you
specify with the OPTION ANGLE statement. The default is radian

2. Matrixl and matrix2 must be two-dimensional numeric arrays that
zero based with upper bounds of 4 in both directions. VAX BASIC
signals a compile-time error when the compiler detects a nonzero­
based matrix; otherwise, a run-time error is signaled. Packed decin
arrays are invalid.

3. Matrix2 can also be one of the valid transformation functions from
DRAW statement, including the following:

• SCALE

• SHEAR

• SHIFT

• TRANSFORM

9-142 VAX BASIC Graphics Statements

marks

ROTATE

1. ROTATE can be used only on the right-hand side of a MAT statement
or as a transformation function in the WITH clause of the DRAW
statement.

2. Like other transformation functions, the ROTATE function affects
coordinates displayed with PLOT and MAT PLOT statements within
pictures. Similarly, input points accepted with GET and MAT GET
statements within a picture are affected by the inverse of a ROTATE
function specified on the DRAW statement that invokes the picture.

3. Points are rotated about the point of origin 0,0. A positive argument
rotates the point x,y in a counterclockwise direction about the point of
origin of the world coordinates. A negative value rotates the point in
a clockwise direction. You can alter the point of origin by setting the
window such that the point 0,0 is at the center of the window.

4. For an example and more information, see the DRAW statement in
this chapter.

VAX BASIC Graphics Statements 9-143

SCALE

SCALE

Format

When used in the DRAW statement, the SCALE function applies a seal
factor to the coordinates of points specified in a PICTURE subprogram.
SCALE can also be used in the MAT statement to create a new matrix.

In the DRAW Statement

DRAW pic-name[(param-list)]WITH SCALE(real-exp1 [, real-exp2]) [* matrix2].

In the MAT Statement

MAT matrix1 = SCALE(real-exp1 [, real-exp2]) [* matrix2] ...

Syntax Rules

1. Real-exp1 indicates the scale factor that is applied to the x-coordina

2. Real-exp2 indicates the scale factor that is applied to the y-coordina

3. Matrix1 and matrix2 must be two-dimensional numeric arrays that
zero-based with upper bounds of 4 in both directions. VAX BASIC
signals a compile-time error when the compiler detects a nonzero­
based matrix; otherwise, a run-time error is signaled. Packed decin
arrays are invalid.

4. Matrix2 can also be one of the valid transformation functions from
DRAW statement, including the following:

• ROTATE

• SHEAR

• SHIFT

• TRANSFORM

9-144 VAX BASIC Graphics Statements

:em arks

SCALE

1. SCALE can be used only on the right-hand side of a MAT statement
or as a transformation function in the WITH clause of the DRAW
statement.

2. When real-exp2 is not included, the scale factor for real-exp1 is applied
to both the x- and y-coordinates.

3. Like other transformation functions, the SCALE function affects
coordinates displayed with PLOT and MAT PLOT statements within
pictures. Similarly, input points accepted with GET and MAT GET
statements within a picture definition are affected by the inverse of a
SCALE function specified on the DRAW statement that invokes the
picture.

4. For an example and more information, see the DRAW statement in
this chapter.

VAX BASIC Graphics Statements 9-145

SET AREA COLOR

SET AREA COLOR

Format

The SET AREA COLOR statement allows you to specify the color of the
area fill.

SET AREA COLOR int-exp

Syntax Rules

Remarks

Int-exp must be a valid color value for the all devices in use, and must be
greater than zero.

1. Changing the area color affects the subsequent display of areas on all
active devices with color capabilities. You cannot specify a particular
device with this statement.

2. Changing color values may affect the shading on some black and
white devices.

3. The actual colors displayed are device dependent. If you set the color
to an index value that is undefined for a particular device, results are
unpredictable.

9-146 VAX BASIC Graphics Statements

:xample

SET AREA COLOR

4. On VT125 and VT240 terminals with the color option, the default
values for int-exp represent the following colors:

Index

0

1

2

3

Color

Black

Green

Red

Blue

5. See also the SET COLOR MIX statement for related information.

PROGRAM samples
DECLARE LONG CONSTANT green = 1 t

,red = 2 t
,blue = 3

SET LINE COLOR green
GRAPH LINES 0.06,1; 0.06,0
SET POINT COLOR blue
GRAPH POINTS 0.1,0.7; 0.1,0.3
SET AREA COLOR red
GRAPH AREA 0.1,0.6; 0.6,0.8; t

0.36,0.6; 0.6,0.2
SET TEXT COLOR green
GRAPH TEXT AT 0.6,0.6 : "Color me simple"

END PROGRAM

VAX BASIC Graphics Statements 9-14 7

SET AREA COLOR

Output

9-148 VAX BASIC Graphics Statements

SET AREA STYLE

;ET AREA STYLE

:armat

The SET AREA STYLE statement lets you specify your choice of fill style
for an area.

SET AREA STYLE str-exp

~yntax Rules

lemarks

The area style value can be one of the following four string values (in
lower- or uppercase):

• HOLLOW

• SOLID

• PATTERN

• HATCH

1. The initial area style value is solid.

2. When the area style is hollow, the following two output statements
produce the same results (a triangle with the outline displayed).

Example

SET AREA STYLE "Hollow"
GRAPH AREA : 0.2,0.2;

0.4,0.8;
0.6,0.4

GRAPH LINES : 0.2,0.2
0.4,0.8
0.6,0.4
0.2,0.2

VAX BASIC Graphics Statements 9-149

SET AREA STYLE

Example

3. The pattern and hatch styles both have indices that can be set with
the SET AREA STYLE INDEX statement.

OPTION TYPE = EXPLICIT
EXTERNAL PICTURE sample
SET .AREA STYLE "SOLID"
DRAW sample
SET .AREA STYLE "HOLLOW"
DRAW sample WITH SHIFT(0.26,0)
SET .AREA STYLE "PATTERN"
DRAW sample WITH SHIFT(0.6,0)
SET .AREA STYLE "HATCH"
DRAW sample WITH SHIFT(0.76,0)
END

PICTURE sample
DECLARE SINGLE x_sample(3), y_sample(3)
x_sample(O) = 0.0
x_sample(1) = 0.26
x_sample(2) = 0.26
x_sample(3) = 0.0
y_sample(O) = 1.0
y_sample(1) = 1.0
y_sample(2) = 0.0
y_sample(3) = 0.0
MAT PLOT .AREA x_sample, y_sample

END PICTURE

9-150 VAX BASIC Graphics Statements

SET AREA STYLE

Output

VAX BASIC Graphics Statements 9-151

SET AREA STYLE INDEX

SET AREA STYLE INDEX

The SET AREA STYLE INDEX statement lets you specify your choice of
index for hatch or pattern area fill styles. ,

Format

SET AREA STYLE INDEX int-exp

Syntax Rules

Remarks

Example

None.

1. The area style index value specifies one of the various hatch or patten
styles. The initial value for the index is 1. There are no indices for
hollow or solid area styles. The indices available for VTl 25 and
VT240 terminals are listed in Chapter 3.

2. Values for the AREA STYLE INDEX are device dependent. If you
set the index to a value that is undefined for a device, results are
unpredictable.

OPTION TYPE = EXPLICIT
DECLARE LONG variety
EXTERNAL PICTURE sample
SET AREA STYLE "hatch"
FOR variety = 1 TO 10 STEP 2

SET AREA STYLE INDEX variety
DRAW sample WITH SHIFT (0.1 * variety,O)

NEXT variety
END

9-152 VAX BASIC Graphics Statements

Output

11~11
111%11~ @, I •

~1~/ I/ I/ 0:~
w&

SET AREA STYLE INDEX

ZK-4955-86

VAX BASIC Graphics Statements 9-153

SET CHOICE ECHO AREA

SET CHOICE ECHO AREA

Format

The SET CHOICE ECHO AREA statement lets you specify the boundaries
of the CHOICE echo area.

SET CHOICE ECHO AREA
[

dev-id { : }]
, UNIT int-exp

real-exp 1, real-exp2, real-exp3, real-exp4

Syntax Rules

Remarks

1. Real-expl, real-exp2, real-exp3, and real-exp4 must be floating-point
expressions to represent the left, right, bottom, and top boundaries
respectively.

2. When specified, dev-id must be the first clause listed and must be
preceded by the number sign{#).

3. If one or more optional clauses are included, one colon (:) is required
before real-expl.

1. The echo area is the portion of your screen where the prompt appears
and where input can be supplied by a user.

2. The optional dev-id identifies the device for which you want to set the
echo area. If no identification clause is included, VAX BASIC uses a
default identification of #0. If an identification clause is included, the
device specified must have been opened explicitly or opened by VAX
BASIC as the default device.

9-154 VAX BASIC Graphics Statements

SET CHOICE ECHO AREA

3. Boundaries must be specified in device coordinates. To determine
the possible values on a particular device, use the ASK DEVICE
SIZE statement. To determine the current boundaries, use the ASK
CHOICE ECHO AREA statement. Appendix B lists the boundaries for
VAXstations and VT125 and VT240 terminals.

4. The default echo area for CHOICE input is device dependent. The
default area is in effect until a SET CHOICE ECHO AREA statement
is executed.

5. The optional UNIT clause allows you to specify an alternative means
of supplying the input. For instance, the position of points can be
entered with mouse, or with the keyboard arrow keys. Each of these
methods of data entry is a different unit. The default unit value for
int-exp for each input type is 1; the default is used throughout this
manual. For information about the units available on a particular
device, see the hardware documentation for that device, as well as the
VAX GKS documentation.

6. Be aware that the text height cannot be reduced lower than the
smallest text height available for the device. Therefore, you should
ensure that the CHOICE echo area is large enough to list the menu
items you specify.

7. Subsequent requests for CHOICE input use the echo boundaries
you supply until another SET CHOICE ECHO AREA statement is
executed.

VAX BASIC Graphics Statements 9-155

SET CHOICE ECHO AREA

Example

OPTION TYPE = EXPLICIT
DECLARE SINGLE left_1,right_1,bottom,top, &

LONG which_floor
OPEN "office-term" FOR GRAPHICS AS DEVICE #1
ASK CHOICE ECHO AREA #1 : left_1,right_1,bottom,top
!+
!Set the echo area to the full screen
!-
SET CHOICE ECHO AREA #1 : 0 &

,right_1 &
,bottom &
,top

SET INITIAL CHOICE , LIST ("upstairs", &
"downstairs", &
"attic", &
"loft", &
"basement") &

: 1
LOCATE CHOICE #1 which_floor

Output

upstairs
downstairs
attic:
loft
baseMent

9-156 VAX BASIC Graphics Statements

;ET CLIP

or mat

SET CLIP

The SET CLIP statement lets you change the status of the clipping rectan­
gle in the world viewport.

SET CLIP str-exp

,yntax Rules

:emarks

Values for str-exp can be equivalent to "ON" or "OFF" (in lower- or
uppercase).

1. Clipping is enabled at the start of program execution.

2. When clipping is enabled with the SET CLIP "ON" statement, graphics
objects with world coordinate values exceeding the limits of the world
window are not displayed.

3. When clipping is disabled with the SET CLIP "OFF" statement,
graphics objects with world coordinate values that exceed the limits
of the world window are displayed providing that the points are also
within the device window.

4. When clipping is enabled, STRING precision clips a text string at the
world viewport boundary. No text string starts beyond the world
viewport boundary.

5. When clipping is enabled, CHAR precision clips a text string by
character at the world viewport. No character extends beyond the
world viewport boundary. Some devices display part of a character
that spans the world viewport boundary.

VAX BASIC Graphics Statements 9-157

SET CLIP

Example

6. When clipping is enabled, STROKE precision clips text precisely at th
world viewport boundary. For example, if only half a character falls
inside the world viewport boundary, only this half is displayed on th4
screen.

7. The SET CLIP statement is invalid within a picture.

PROGRAM demo_clip
EXTERNAL PICTURE BASIC_people
SET WINDOW 0,1,0,0.74
SET VIEWPORT 0,1,0,0.74
Screen!:

SET CLIP "Off"
DRAW BASIC_people
SET TEXT FONT -1, "CHAR"
GRAPH TEXT AT 0,0.1 : "Clipping is OFF"
SLEEP 4Y.
CLEAR

Screen2:
SET CLIP "On"
DRAW BASIC_people
SET TEXT FONT -1, "CHAR"
GRAPH TEXT AT 0,0.1 : "Clipping is ON"

END PROGRAM

PICTURE BASIC_people
EXTERNAL PICTURE circle
DRAW circle WITH SCALE(0.125,0.125) * SHIFT(0.235,0.6)
GRAPH AREA 0.3,0.6; 0.5,0.3; 0.1,0.3
SET TEXT FONT -8, "STROKE"
SET TEXT HEIGHT 0.05
GRAPH TEXT AT 0.2,0.95 :"Your"
GRAPH TEXT AT 0.185,0.85 :"BASIC"
GRAPH TEXT AT 0.195,0.75 :"woman"
DRAW circle WITH SCALE(0.125,0.125) * SHIFT(0.675,0.6)
GRAPH AREA 0.55,0.6; 0.95,0.6; 0.75,0.3
GRAPH TEXT AT 0.655,0.95 :"Your"
GRAPH TEXT AT 0.628,0.85 :"BASIC"
GRAPH TEXT AT 0.665,0.75 :"man"

END PICTURE

9-158 VAX BASIC Graphics Statements

PICTURE circle
OPTION TYPE = EXPLICIT
DECLARE SINGLE-CONSTANT radius = 0.6
DECLARE LONG CONSTANT npoints = 40
DECLARE SINGLE angle,increment,x,y
DIM SINGLE xs(npoints), ys(npoints)
increment = 2•pi/npoints
angle = 0
FOR loop_count = 0 TO npoints - 1

x = COS(angle) • radius + 0.6
y = SIN(angle) * radius + 0.6
xs(loop_count) = x
ys(loop_count) = y
angle = angle + increment

NEXT loop_count
xs(npoints) = xs(O)
ys(npoints) = ys(O)
MAT PLOT LINES xs, ys

END PICTURE

Output Screen 1:

(Your

BASIC

woman

SET CLIP

Your

BASIC

man

Clipping is OFF

ZK-5519-86

VAX BASIC Graphics Statements 9-159

SET CLIP

Output Screen 2:

Clipping is ON

ZK-5520-86

9-160 VAX BASIC Graphics Statements

SET COLOR MIX

tET COLOR MIX

arm at

The SET COLOR MIX statement allows you to specify the intensities for
red, green, and blue for a particular color index.

SET COLOR MIX [#dev-id], INDEX int-exp: real-exp1, real-exp2, real-exp3

yntax Rules

emarks

1. The optional dev-id must be preceded by a number sign(#) .

2. You specify the color index with int-exp, which must be greater than
zero.

3. Real-exp1 sets the value associated with red.

4. Real-exp2 sets the value associated with green.

5. Real-exp3 sets the value associated with blue.

6. Values for the intensities of the colors red, green, and blue must be
greater than or equal to 0.0 and less than or equal to 1.0.

1. The optional dev-id identifies the device for which you want to set the
color mix. If no identification clause is included, VAX BASIC uses a
default identification of #0. If an identification clause is included, the
device specified must have been opened explicitly, or opened by VAX
BASIC as the default device.

VAX BASIC Graphics Statements 9-161

SET COLOR MIX

Example

2. The default intensity values for color indices 1, 2, and 3 are as follo"'

Color Red Green Blue
Index Color Intensity Intensity Intensity

0 Black 0.0 0.0 0.0

1 Green 0.0 1.0 0.0

2 Red 1.0 0.0 0.0

3 Blue 0.0 0.0 1.0

3. When you specify the intensities for red, green, and blue, you mix
the colors for the index value. The color mix is dependent on the
intensities you specify, not on the value of the index. For instance, t1
following three statements set the indices 1, 2, and 3, to be the samE
color:

SET COLOR MIX ,INDEX 1
SET COLOR MIX ,INDEX 2
SET COLOR MIX ,INDEX 3

0.4281, 0.7119, 0.7119
0.4281, 0.7119, 0.7119
0.4281, 0.7119, 0.7119

4. If a device does not support the requested intensity, it will approxi­
mate the requested color.

5. Possible color intensities for red, green, and blue on VAXstations anc
on VT125 and VT240 terminals are listed in Appendix B.

DECLARE LONG growing.loop
SET WINDOW 0,120,0,120
FOR growing = 1 TO 10

SET LINE SIZE growing
SELECT growing

CASE= 1,3,5,7,9
SET COLOR MIX , INDEX 1 1, 0.1400, 1
SET LINE COLOR 1

CASE= 2,4,6,8,10

END SELECT

SET COLOR MIX , INDEX 2 1, 1, 0.4200
SET LINE COLOR 2

GRAPH LINES growing-2,120; growing-2,0
NEXT growing
END

9-162 VAX BASIC Graphics Statements

SET COLOR MIX

Output

VAX BASIC Graphics Statements 9-163

SET DEVICE VIEWPORT

SET DEVICE VIEWPORT

Format

The SET DEVICE VIEWPORT statement lets you change the boundaries
of the device viewport.

SET DEVICE VIEWPORT [#dev-id:] real-exp1, real-exp2, real-exp3, real-exp4

Syntax Rules

Remarks

1. Real-expl, real-exp2, real-exp3, and real-exp4 must be floating-point
expressions to represent the left, right, bottom, and top boundaries
respectively.

2. The optional dev-id must be preceded by a number sign {#) and
followed by a colon (:).

1. The device viewport is the portion of the device selected for a graphic
display.

2. The optional dev-id identifies the device for which you want to set th
viewport. If no identification clause is included, VAX BASIC uses a
default identification of #0. If an identification clause is included, the
device specified must have been opened explicitly, or opened by VA)
BASIC as the default device.

3. The default device viewport is device dependent; however, it is usuall
the largest square region the device can accommodate.

4. If the device viewport is not already clear, the SET DEVICE
VIEWPORT statement clears the display surface.

9-164 VAX BASIC Graphics Statements

xample

SET DEVICE VIEWPORT

5. When the device window and device viewport do not match in
shape, VAX BASIC uses the largest possible device viewport that
matches the shape of the device window. For instance, if you select a
long thin device window and a square device viewport, VAX BASIC
overrides your selection of a device viewport and uses the largest
device viewport possible that is also long and thin, thus matching the
device window as closely as possible.

6. Boundaries must be supplied as device coordinates. To determine the
device coordinates for a particular device, use the ASK DEVICE SIZE
statement.

7. You cannot change the clipping status at the device viewport bound­
aries. If an object is not within the device window, it is not displayed
in the device viewport.

8. A SET DEVICE VIEWPORT statement is invalid in a picture definition.

OPTION TYPE = EXPLICIT
DECLARE SINGLE left_1,right_1,bottom,top
EXTERNAL PICTURE swan
!+
!Set the world window - one swan fills entire NDC space
!-
SET WINDOW 0,100,0,100
Screen1:

DRAW swan
SLEEP 5X
CLEAR
ASK DEVICE VIEWPORT left_1,right_1,bottom,top
!+
!Set the device window to half of NDC space
!-
SET DEVICE WINDOW 0,0.5,0,1
!+
!Set the device viewport to the left half of the default
!-
SET DEVICE VIEWPORT left_1,right_1/2,bottom,top

Screen2:
!+
!After device transformation, only part of swan displayed
!-
DRAW swan

END

VAX BASIC Graphics Statements 9-165

SET DEVICE VIEWPORT

Output Screen 1 :

ZK·4953·86

Output Screen 2:

(

ZK·496586

9-166 VAX BASIC Graphics Statements

SET DEVICE WINDOW

)ET DEVICE WINDOW

=ormat

The SET DEVICE WINDOW statement lets you change the boundaries of
the device window.

SET DEVICE WINDOW [#dev-id:] real-exp1, real-exp2, real-exp3, real-exp4

;yntax Rules

le marks

1. Real-expl, real-exp2, real-exp3, and real-exp4 must be floating-point
expressions to represent the left, right, bottom, and top boundaries
respectively. Values must be within the range 0.0 to 1.0.

2. The optional dev-id must be preceded by a number sign (#) and
followed by a colon (:).

1. The device window is a portion of NDC space you select to be
displayed on the device viewport of an active device.

2. The default device window is the entire NDC space with boundaries
of O,l,0,1.

3. The optional dev-id identifies the device for which you want to set
the window. If no identification clause is included, VAX BASIC uses a
default identification of #0. If an identification clause is included, the
device specified must have been opened explicitly, or opened by VAX
BASIC as the default device.

4. The boundaries you set must be within the range 0.0 to 1.0.

5. When the device window and device viewport do not match in
shape, VAX BASIC uses the largest possible device viewport that
matches the shape of the device window. For instance, if you select a
long thin device window and a square device viewport, VAX BASIC
overrides your selection of a device viewport and uses the largest

VAX BASIC Graphics Statements 9-167

SET DEVICE WINDOW

Example

device viewport possible that is also long and thin, thus matching the
device window as closely as possible.

6. Clipping of graphics objects outside the device window cannot be
disabled. If an object is not within the device window, it is not
displayed in the device viewport.

7. The SET DEVICE WINDOW statement clears the display surface if it
is not already cleared.

8. A SET DEVICE WINDOW statement is invalid in a picture definition.

OPTION TYPE = EXPLICIT
DECLARE SINGLE left_1,right_1,bottom,top
EXTERNAL PICTURE swan
!+
!Set world window so that swan fills NDC space
!-
SET WINDOW , TRAN 1 : 0,100,0,100
Screen1:

DRAW swan
SLEEP 61.
CLEAR

!+
!Select entire NDC space for world viewport
!-
SET VIEWPORT , TRAN 1 : 0,1,0,1
!+
!Select the top right square of NDC space as the device window
!but leave device viewport as default
!-
SET DEVICE WINDOW 0.6,1,0.6,1
Screen2:

DRAW swan
END

9-168 VAX BASIC Graphics Statements

Output Screen 1 :

(

Output Screen 2:

..... ·
... ··

\,,
\

SET DEVICE WINDOW

,..,./~-::.~\ \ c---~:z
'\ ... \\...

\\ .. ,
\ .,_\

\ \ , I
,// ________ /

·•
···

ZK 4959 86

VAX BASIC Graphics Statements 9-169

SET INITIAL CHOICE

SET INITIAL CHOICE

Format

The SET INITIAL CHOICE statement allows you to specify items to be
displayed in a menu as well as set up an initial selection for the user.

#dev-id
, UNIT int-exp 1

SET INITIAL CHOICE , COUNT int-exp2 int-exp3
LIST { str-array }

' (str-exp [, str-exp] ...)

Syntax Rules

1. Int-exp3 specifies the number of the menu item for the initial choice.

2. When specified, dev-id must be the first clause listed and must be
preceded by the number sign(#).

3. The optional LIST, COUNT, and UNIT clauses can be specified in an)
order.

4. If one or more optional clauses are included, one colon (:) is required
before int-exp3.

5. Str-array must be a one-dimensional array containing string data types
Virtual arrays are invalid.

6. Int-exp2 cannot be greater than the number of elements in str-array.

9-170 VAX BASIC Graphics Statements

lemarks

SET INITIAL CHOICE

1. The optional dev-id identifies the device for which you want to set
up a menu. If no identification clause is included, VAX BASIC uses a
default identification of #0. If an identification clause is included, the
device specified must have been opened explicitly, or opened by VAX
BASIC as the default device.

2. The LIST clause specifies strings to be displayed in a menu. You can
include a list of string expressions enclosed in parentheses, or an array
containing the strings. When an array is included, specify only the
array name; do not include parentheses to indicate the whole array.
If no LIST clause is included, the default menu is displayed unless
an alternative has been set with a previous SET INITIAL CHOICE
statement.

3. The COUNT clause specifies the number of items in the string array
to be displayed in the menu, starting with the lowest element in the
array. If no string array is specified in the LIST clause, the COUNT
clause is not valid and a compile-time error message is issued. The
user cannot move the cursor to an item that is not displayed. If no
COUNT clause is included, all of the menu items in the array elements
are displayed.

4. The initial choice specified in a LOCATE CHOICE statement overrides
the initial choice specified in a SET INITIAL CHOICE statement.

5. The optional UNIT clause allows you to specify an alternative means
of supplying the input. For instance, the position of points can be
entered with a mouse, or with the keyboard arrow keys. Each of these
methods of data entry is a different unit. The default unit value for
int-exp for each input type is 1; the default is used throughout this
manual. For information about the units available on a particular
device, see the hardware documentation for that device, as well as the
VAX GKS documentation.

6. Subsequent requests for CHOICE input use the items specified until
another SET INITIAL CHOICE statement sets an alternative menu.

VAX BASIC Graphics Statements 9-171

SET INITIAL CHOICE

Example

In the following example an array of 10 strings is supplied to the SET
INITIAL CHOICE statement. The COUNT clause specifies that only the
first five array elements (up to menu_items(4)) are to be displayed. The
user cannot select a language that is not among the first five listed.

OPTION TYPE = EXPLICIT
DECLARE LONG language
DIM STRING menu_items(9)
menu_items(O) = "BASIC"
menu_items(1) = "Pascal"
menu_items(2) = "C"
menu_items(3) = "COBOL"
menu_items(4) = "FORTRAN"
menu_items(6) = "LISP"
menu_items(6) = "PL/1"
menu_items(7) = "SCAN"
menu_items(8) = "RPG/II"
menu_items(9) = "LOGO"
SET INITIAL CHOICE , COUNT 6

, LIST menu_items
: 1

LOCATE CHOICE language

9-172 VAX BASIC Graphics Statements

Output

(

SET INITIAL CHOICE

c
COBOL
FORTRAN

VAX BASIC Graphics Statements 9-173

SET INITIAL MULTIPOINT

SET INITIAL MULTIPOINT

Format

The SET INITIAL MULTIPOINT statement allows you to specify a set of
initial points that a user can accept as the default input.

SET INITIAL MULTIPOINT , UNIT int-exp 1

[

#dev-id { }

, COUNT int-exp2 :
, USING TRAN int-exp3

x-array, y-array

Syntax Rules

1. When specified, dev-id must be the first clause listed and must be
preceded by the number sign(#).

2. The optional UNIT, COUNT, and USING TRAN clauses can be in an
order.

3. Int-exp3 must be an integer between 1 and 255.

4. If one or more optional clauses are included, one colon (:)is requirec
before x-array.

5. For MULTIPOINT, specify only the array name; do not use parenthe·
ses to indicate the whole array.

6. X-array and y_array must be one-dimensional arrays that contain onl
integer or real data types. Virtual arrays are not valid.

7. Int-exp2 cannot be greater than the number of elements in the coordi
nate arrays.

9-174 VAX BASIC Graphics Statements

emarks

SET INITIAL MULTIPOINT

1. The optional dev-id identifies the device for which you want to set
up the initial display. If no identification clause is included, VAX
BASIC uses a default identification of #0. If an identification clause
is included, the device specified must have been opened explicitly, or
opened by VAX BASIC as the default device.

2. The COUNT clause allows you to display a selected number of points
from the arrays starting with the first elements. If the COUNT clause
is not specified, all of the points specified in the arrays are displayed.

3. Depending on the device, a user can delete the initial points with the
DELETE key.

4. The USING TRAN clause allows you to specify an alternative trans­
formation to be used to interpret the world coordinates of the initial
points you specify. If no USING TRAN clause is included, the initial
points are displayed using the currently established transformation.

5. Subsequent calls for MULTIPOINT input use the points specified until
another SET INITIAL MULTIPOINT statement is executed or until
the initial point is overridden by an AT clause in a MAT LOCATE
POINTS or MAT GET POINTS statement.

6. If you do not include a SET INITIAL MULTIPOINT statement, VAX
BASIC uses the initial point specified in a MAT LOCATE POINTS or
MAT GET POINTS statement.

7. The optional UNIT clause allows you to specify an alternative means
of supplying the input. For instance, the position of points can be
entered with a mouse, or with the keyboard arrow keys. Each of these
methods of data entry is a different unit. The default unit value for
int-exp for each input type is 1; the default is used throughout this
manual. For information about the units available on a particular
device, see the hardware documentation for that device, as well as the
VAX GKS documentation.

8. Execution of a MAT LOCATE POINTS or MAT GET POINTS state­
ment causes the display of the initial points.

VAX BASIC Graphics Statements 9-175

SET INITIAL MULTIPOINT

Example

OPTION TYPE = EXPLICIT
DECLARE LONG CONSTANT max_points 13
DECLARE LONG loop,how_many
DIM SINGLE maze_x(8), maze_y(8), &

SINGLE input_xs(1 TO max_points), input_ys(1 TO max_points)
SET WINDOW , TRAN 1 : 0,100,0,100
DATA 0.1,0.8, 0.2,0.7, 0.3,0.8, 0.3,0.6, &

0.3,0.4, 0.2,0.6, 0.2,0.4, 0.1,0.4, &
0.1,0.2

READ maze_x(loop), maze_y(loop) FOR loop= 0 TO 8
SET INITIAL MULTIPOINT , COUNT 6 &

: maze_x, maze_y
MAT LOCATE POINTS , COUNT how_many : input_xs, input_ys
IF how_many > max_points

THEN how_many = max_points
END IF
SET POINT COLOR 2
MAT GRAPH POINTS , COUNT how_many input_xs, input_ys
END

Output

The output shows only the initial points presented to the user.

ZK-5522-86

9-176 VAX BASIC Graphics Statements

SET INITIAL POINT

:ET INITIAL POINT

1nmat

The SET INITIAL POINT statement allows you to specify an initial point
that a user can enter as the default input.

SET INITIAL POINT
[

#dev-id
, UNIT int-exp 1 { }] x-cooro, y-coord
, USING TRAN int-exp2

vntax Rules

emarks

1. When specified, dev-id must be the first clause listed and must be
preceded by the number sign(#).

2. The optional UNIT and USING TRAN clauses can be in any order.

3. If one or more optional clauses are included, one colon (:) is required
before x-coord.

4. Int-exp2 must be an integer between 1 and 255.

1. The optional dev-id identifies the device for which you want to set the
initial point. If no identification clause is included, VAX BASIC uses a
default identification of #0. If an identification clause is included, the
device specified must have been opened explicitly or opened by VAX
BASIC as the default device.

2. The USING TRAN clause allows you to specify a transformation to
interpret the world coordinates of the initial point you specify. If no
USING TRAN clause is included, the initial point is displayed using
the currently established transformation.

VAX BASIC Graphics Statements 9-17 7

SET INITIAL POINT

Example

3. Subsequent calls for POINT input use the initial point specified until
another initial point is set by a SET INITIAL POINT statement or a
LOCATE/GET POINT statement.

4. The optional UNIT clause allows you to specify an alternative meam
of supplying the input. For instance, the position of points can be
entered with a mouse, or with the keyboard arrow keys. Each of the:
methods of data entry is a different unit. The default unit value for
int-exp for each input type is 1; the default is used throughout this
manual. For information about the units available on a particular
device, see the hardware documentation for that device, as well as tt
VAX GKS documentation.

OPTION TYPE = EXPLICIT
DECLARE SINGLE center_x, center_y, radius
DECLARE LONG which_tran
SET WINDOW , TRAN 1 : 0,100,0,100
SET WINDOW , TRAN 2 : 10,40,0,6
SET TRANSFORMATION 1
SET INITIAL POINT , USING TRAN 2 &

: 20,3.6
LOCATE POINT center_x, center_y • which_tran
LOCATE VALUE , RANGE 0.1 TO 0.4 : radius

END

9-178 VAX BASIC Graphics Statements

SET INITIAL STRING

;ET INITIAL STRING

ormat

The SET INITIAL STRING statement allows you to specify an initial string
expression that is presented to a user when string input is requested. A
user can enter the initial string or enter another string.

SET INITIAL STRING
[

dev-id { : }] str-exp
, UNIT int-exp

•yntax Rules

lemarks

1. When specified, dev-id must be the first clause listed and must be
preceded by the number sign(#).

2. If one or more optional clauses are included, one colon (:) is required
before str-exp.

1. The optional dev-id identifies the device for which you want to set the
initial string. If no identification clause is included, VAX BASIC uses a
default identification of #0. If an identification clause is included, the
device specified must have been opened explicitly, or opened by VAX
BASIC as the default device.

2. Subsequent requests for STRING input use the item specified until an­
other SET INITIAL STRING statement or LOCATE STRING statement
specifies an alternative.

VAX BASIC Graphics Statements 9-17 9

SET INITIAL STRING

Example

3. VAX BASIC appends the user-supplied string to the initial string you
supply in a SET INITIAL STRING or a LOCATE STRING statement.
If the user accepts the initial string with a null response, str-var
contains only the initial string. Depending on the device, a user may
be able to delete the initial string by pressing CTRL/U or using the
DELETE key.

4. The optional UNIT clause allows you to specify an alternative means
of supplying the input. For instance, the position of points can be
entered with a mouse or with the keyboard arrow keys. Each of thes•
methods of data entry is a different unit. The default unit value for
int-exp for each input type is 1; the default is used throughout this
manual. For information about the units available on a particular
device, see the hardware documentation for that device, as well as th1
VAX GKS documentation.

PROGRAM select_an_item
DECLARE STRING CONSTANT init_string =

"YES or NO [yes]>"
DECLARE STRING user_string
EXTERNAL PICTURE Main_menu, Input_menu
OPEN "my_term" FOR GRAPHICS AS DEVICE #1

SET INITIAL STRING 11 : init_string
LOCATE STRING 11 : user_string
IF init_string = user_string

THEN
DRAW Main_menu
ELSE
DRAW Input_menu

END IF

9-180 VAX BASIC Graphics Statements

SET INITIAL STRING

Output

C"" NO ,,.,,,)

VAX BASIC Graphics Statements 9-181

SET INITIAL VALUE

SET INITIAL VALUE

Format

The SET INITIAL VALUE statement allows you to specify an initial
floating-point number within a specified range. A user can enter this
value or an alternative.

SET INITIAL VALUE
[

#dev-id
, UNIT int-exp { }] real-e~3
, RANGE real-exp1 TO real-exp2

Syntax Rules

1. When specified, dev-id must be the first clause listed and must be
preceded by the number sign{#).

2. The optional UNIT and RANGE clauses can be in any order.

3. Real-expl must be less than real-exp2 in the optional RANGE clause.

4. If one or more optional clauses are included, one colon (:)is required
before real-exp3.

5. You specify the initial value in real-exp3.

9-182 VAX BASIC Graphics Statements

~emarks

SET INITIAL VALUE

1. The optional dev-id identifies the device for which you want to set an
initial value. If no identification clause is included, VAX BASIC uses a
default identification of #0. If an identification clause is included, the
device specified must have been opened explicitly or opened by VAX
BASIC as the default device.

2. Subsequent requests for value input with the LOCATE VALUE state­
ment use the initial value and range specified until another INITIAL
VALUE or LOCATE VALUE statement specifies another value.

3. The RANGE clause specifies the lowest and highest acceptable input.
The user-supplied value and the initial value must be within this
range. VAX BASIC signals the run-time error ILLINIVAL, "Illegal
initial value" (ERR = 284), when the initial value is not within the
specified range.

4. When the LOCATE VALUE statement is executed, the user has the
option of entering the initial value specified in this statement or
another value as input.

5. The optional UNIT clause allows you to specify an alternative means
of supplying the input. For instance, the position of points can be
entered with a mouse, or with the keyboard arrow keys. Each of these
methods of data entry is a different unit. The default unit value for
int-exp for each input type is 1; the default is used throughout this
manual. For information about the units available on a particular
device, see the hardware documentation for that device, as well as the
VAX GKS documentation.

VAX BASIC Graphics Statements 9-183

SET INITIAL VALUE

Example

OPTION TYPE = EXPLICIT
EXTERNAL SUB Graphics_display(SINGLE)
DECLARE SINGLE which_val
OPEN "VT124" FOR GRAPHICS AS DEVICE #1

Input_rtn:
SET INITIAL VALUE #1

. RANGE 1 TO 30
: 16

LOCATE VALUE #1 : which_val
IF which_val =< 16

THEN GOTO Large_size
ELSE CALL Graphics_display(which_val)

END IF

Output

(

9-184 VAX BASIC Graphics Statements

30.00

ZK-5230-86

SET INPUT PRIORITY

tET INPUT PRIORITY

ormat

The SET INPUT PRIORITY statement allows you to modify the transfor­
mation priority list.

SET INPUT PRIORITY {
int-var1 } { <
int-canst 1 > } {

int-var2 }
int-const2

yntax Rules

emarks

The constant or variable values must be between 1 and 255. Expressions
are not allowed.

1. When points are input from a device, VAX BASIC maps these points to
world coordinates according to the specifications for the transformation
that the point or points fall in.

When more than one transformation is defined, world viewports can
overlap. The viewport with the highest priority that contains all of the
points is used to map the points back to world coordinates. For more
information, see Chapter 7.

2. Initially, the transformation with the highest priority is transformation
1. Transformation 1 is always defined and initially includes the entire
NOC space.

3. When other transformations are defined, the highest input priority
is the transformation that has been most recently established with
a SET INPUT PRIORITY, SET WINDOW, SET VIEWPORT, or SET
TRANSFORMATION statement.

VAX BASIC Graphics Statements 9-185

SET INPUT PRIORITY

Example

4. The less-than sign (<) sets the first value to be a lower priority than
the second. The greater-than sign (>) sets the first value to be a
higher priority than the second.

5. Changing the input priority does not change the transformation
currently in effect for displaying output.

6. When transformation 1 has been redefined with a viewport other
than 0,l,O,l, a point can be input beyond the limits of any defined
viewport. When this happens, VAX BASIC signals an error.

7. A SET INPUT PRIORITY statement is invalid within a picture defini­
tion.

DECLARE LONG how_many,counter
DIM LONG xforms(10)
SET WINDOW ,TRAN 1 : 1000,2000,0,100
SET VIEWPORT ,TRAN 1 : 0,1,0,1
SET WINDOW ,TRAN 2 : 0,100,0,100
SET VIEWPORT ,TRAN 2 : 0,1,0,0,0.5
SET WINDOW , TRAN 3 : -1,1,-1,1
SET VIEWPORT , TRAN 3 : 0.5,1,0.5,1
!+
!Show tran priority list
! -
ASK TRANSFORMATION LIST , COUNT how_many : xforms
PRINT xforms(counter) FOR counter = 0 TO (how_many - 1)
!+
!Set highest priority to TRAN 2 for input
! -
SET INPUT PRIORITY 2 > 3
!+
!Show new priority list
! -
ASK TRANSFORMATION LIST , COUNT how_many : xforms
PRINT xforms(counter) FOR counter = 0 TO (how_many - 1)
END

Output

3
2
1

2
3
1

9-186 VAX BASIC Graphics Statements

SET LINE COLOR

;ET LINE COLOR

The SET LINE COLOR statement allows you to specify a color for lines.

ormat

SET LINE COLOR int-exp

yntax Rules

emarks

Int-exp must be a valid color value for all active devices, and must be
greater than zero.

1. Changing the line color affects the display of lines on all active
devices. You cannot specify a particular device with this statement.

2. Changing color values may affect the shading on some black and
white devices.

3. The actual colors displayed are device dependent. If you set the color
to an index value that is undefined for a particular device, results are
unpredictable.

4. On VT125 and VT240 terminals with the color option, the default
values for int-exp represent the following colors:

Index Color

0 Black

1 Green

2 Red

3 Blue

5. See also the SET COLOR MIX statement for related information.

VAX BASIC Graphics Statements 9-187

SET LINE COLOR

Example

PICTURE line_display(LONG color_var)
DECLARE SINGLE loop
SET LINE COLOR color_var
SET LINE SIZE 3
PLOT LINES 0.06,loop; 0.96,loop FOR loop= 0.1 TO 1 STEP 0.1

END PICTURE

PROGRAM Show_lines
OPTION ANGLE = DEGREES
EXTERNAL PICTURE line_display(LONG)
SET WINDOW -1,1,-1,1
DRAW line_display(1)
DRAW line_display(2) WITH ROTATE(90)
DRAW line_display(1) WITH ROTATE(180)
DRAW line_display(2) WITH ROTATE(270)

END PROGRAM

Output

9-188 VAX BASIC Graphics Statements

SET LINE SIZE

SET LINE SIZE

Format

The SET LINE SIZE statement allows you to select the current width of
line.

SET LINE SIZE num-exp

Syntax Rules

~emarks

Num-exp must be greater than zero.

1. Num-exp is the scale factor that is multiplied by the smallest possible
width of a line.

2. Subsequent line output is d:rawn with the size you set until another
SET LINE SIZE statement is executed.

3. The default size for the line width is 1. This is the minimum size a
device can produce.

4. The range and number of possible line widths are device dependent.
To determine the maximum size for a particular device, use the ASK
MAX LINE SIZE statement. If you set the size to a value that is
undefined for the device, results are unpredictable.

VAX BASIC Graphics Statements 9-189

SET LINE SIZE

Example

DECLARE LONG growing.loop
SET WINDOW 0,120,0,120
FOR growing = 1 TO 10

SET LINE SIZE growing
GRAPH LINES growing-2,120; growing-2,0

NEXT growing
END

Output

(

9-190 VAX BASIC Graphics Statements

ZK-5521-86

SET LINE STYLE

SET LINE STYLE

Format

The SET LINE STYLE statement lets you specify the style with which lines
are drawn.

SET LINE STYLE int-exp

;yntax Rules

lemarks

None.

1. The numeric values for line styles represent the following styles:

Value Line Style

1 Solid (default)

2 Dashed

3 Dotted

4 Dashed-dotted

Line styles greater than 4 are device dependent. If you set the style to
a value that is not supported by the device, results are unpredictable.

2. The default line style is 1, solid.

3. Subsequent line output is displayed with the style you set until
another SET LINE STYLE statement is executed.

VAX BASIC Graphics Statements 9-191

SET LINE STYLE

Example

PROGRAM Demo
OPTION TYPE = EXPLICIT
EXTERNAL PICTURE line_demo(LONG)
DECLARE LONG line_style
DRAW line_demo(Line_style) FOR line_style 1 TO 4

END PROGRAM

PICTURE line_demo(LONG line_style)
SET LINE STYLE line_style
GRAPH LINES O,line_style/5;
GRAPH LINES 0,(line_style/5)
GRAPH LINES 0,(line_style/5)
GRAPH LINES 0,(line_style/5)
GRAPH LINES 0,(line_style/5)

END PICTURE

Output

1,line_style/5
+ 0.025; 1,(line_style/5) + 0.025
+ 0.055 1,(line_style/5) + 0.05
+ 0.075; 1,(line_style/5) + 0.075
+ 0.1; 1,(line_style/5) + 0.1

9-1 92 VAX BASIC Graphics Statements

SET POINT COLOR

SET POINT COLOR

Format

The SET POINT COLOR statement allows you to specify the color for
points.

SET POINT COLOR int-exp

Syntax Rules

Remarks

Int-exp must be a valid color value for all devices in use, and must be
greater than zero.

1. Changing color attributes affects the display of graphics objects on
all active devices. You cannot specify a particular device with this
statement.

2. Changing color values may affect the shading on some black and
white devices.

3. The actual colors displayed are device dependent. If you set the color
to an index value that is undefined for a particular device, results are
unpredictable.

VAX BASIC Graphics Statements 9-193

SET POINT COLOR

Example

4. On VT125 and VT240 terminals with the color option, the default
values for int-exp represent the following colors:

Index

0

2

3

Color

Black

Green

Red

Blue

5. See also the SET COLOR MIX statement for related information.

PROGRAM bubbles
OPTION TYPE = EXPLICIT
EXTERNAL PICTURE markers(LONG,LONG)
DECLARE LONG CONSTANT blue = 3, pink = 2
DRAW markers(blue,4)
SLEEP 4%
CLEAR
SET COLOR MIX , INDEX pink 0.6268, 0.2142, 0.2142
DRAW markers(pink,4)

END PROGRAM

PICTURE markers(LONG color_var, LONG style_var)
SET POINT COLOR color_var
SET POINT STYLE style_var
SET POINT SIZE 2
PLOT POINTS 0.1,0.9; 0.4,0.7; 0.9,0.86; 0.66,0.46
SET POINT SIZE 1
PLOT POINTS 0.6,0.8; 0.6,0.9; 0.1,0.7
SET POINT SIZE 5
PLOT POINTS 0.8,0.6; 0.3,0.75; 0.7,0.8; 0.726,0.46
SET POINT SIZE 3
PLOT POINTS 0.15,0.7; 0.74,0.6; 0.7,0.7; 0.276,0.6
SET POINT SIZE 1
PLOT POINTS 0.23,0.36; 0.4,0.4; .67,0.476

END PICTURE

9-194 VAX BASIC Graphics Statements

SET POINT COLOR

Output

VAX BASIC Graphics Statements 9-195

SET POINT SIZE

SET POINT SIZE

Format

The SET POINT SIZE statements allow you to select the current size of a
point.

SET POINT SIZE num-exp

Syntax Rules

Remarks

Num-exp must be greater than zero.

1. Num-exp is the scale factor that is multiplied by the smallest possible
size of a point.

2. Subsequent point output is drawn with the size you set until another
SET POINT SIZE statement is executed.

3. The default size for points is 1. This is the minimum size a device can
produce.

4. Regardless of what size you set for a point size, points set to the dot
marker are always drawn in the smallest possible size.

5. The range and number of possible point sizes are device dependent.
To determine the maximum size for a particular device, use the ASK
MAX POINT SIZE statements. If you set the size to a value that is
undefined for the device, results are unpredictable.

9-196 VAX BASIC Graphics Statements

Example

DECLARE LONG loop
SET WINDOW 0,10,0,10
FOR loop = 1 TO Q

SET POINT SIZE loop
GRAPH POINTS 5,(10 - loop)

NEXT loop
END

Output

SET POINT SIZE

*
*

ZK-5530-86

VAX BASIC Graphics Statements 9-197

SET POINT STYLE

SET POINT STYLE

Format

The SET POINT STYLE statement lets you specify your choice of style for
the marker for a point.

SET POINT STYLE int-exp

Syntax Rules

Remarks

None.

1. The numeric values for point styles represent the following markers:

Value Point Style

1 Dot

2 Plus sign

3 Asterisk (default)

4 Circle

5 Diagonal cross

Values greater than 5 are device dependent. If you set the style to a
value that is not supported by the device, results are unpredictable.

2. The default point style is 3, an asterisk.

3. Subsequent points are displayed with the style you set until another
SET POINT STYLE statement is executed.

9-198 VAX BASIC Graphics Statements

Example

PROGRAM Demo
OPTION TYPE = EXPLICIT
DECLARE LONG point_style
FOR point_style = 1 TO 6

SET POINT STYLE point_style
GRAPH POINTS point_style/10,0.8

NEXT point_style
END PROGRAM

Output

+ * 0 x

SET POINT STYLE

VAX BASIC Graphics Statements 9-199

SET STRING ECHO AREA

SET STRING ECHO AREA

Format

The SET STRING ECHO AREA statement lets you specify the boundaries
of the STRING echo area.

SET STRING ECHO AREA
[

#dev-id { : }]
, UNIT int-exp

real-exp 1, real-exp2, real-exp3, real-exp4

Syntax Rules

Remarks

1. Real-expl, real-exp2, real-exp3, and real-exp4 must be floating-point
expressions to represent the left, right, bottom, and top boundaries
respectively.

2. When specified, dev-id must be the first clause listed and must be
preceded by the number sign(#).

3. If one or more optional clauses are included, one colon (:) is required
before real-expl.

1. The echo area is the portion of your screen where the prompt appears
and where input can be supplied by a user.

2. The optional dev-id identifies the device for which you want to set the
echo area. If no identification clause is included, VAX BASIC uses a
default identification of #0. If an identification clause is included, the
device specified must have been opened explicitly or opened by VAX
BASIC as the default device.

9-200 VAX BASIC Graphics Statements

SET STRING ECHO AREA

3. Boundaries must be specified in device coordinates. To determine
the possible values on a particular device, use the ASK DEVICE
SIZE statement. To determine the current boundaries, use the ASK
STRING ECHO AREA statement. Appendix B lists the boundaries for
V AXstations and VTl 25 and VT240 terminals.

4. The default echo area for STRING input is device dependent. The
default area is in effect until a SET STRING ECHO AREA statement is
executed.

5. Subsequent requests for each input type use the echo boundaries you
supply until another SET STRING ECHO AREA statement is executed.

6. Be aware that the text height cannot be reduced lower than the small­
est text height available for the device. Therefore, you should ensure
that the STRING echo area is large enough for the text characters you
specify.

7. The optional UNIT clause allows you to specify an alternative means
of supplying the input. For instance, the position of points can be
entered with a mouse, or with the keyboard arrow keys. Each of these
methods of data entry is a different unit. The default unit value for
int-exp for each input type is 1; the default is used throughout this
manual. For information about the units available on a particular
device, see the hardware documentation for that device, as well as the
VAX GKS documentation.

VAX BASIC Graphics Statements 9-201

SET STRING ECHO AREA

Example

OPTION TYPE = EXPLICIT
DECLARE SINGLE left_1,right_1,bottom,top
DECLARE STRING user_string
OPEN "office-term" FOR GRAPHICS AS DEVICE #1

ASK STRING ECHO AREA #1 left_1,right_1,bottom,top
!+
!Set the new echo area
!-
SET STRING ECHO AREA #1 : left_1 &

,right_1 &
,bottom &
,top * 4

SET INITIAL STRING #1 : "Enter the answer here>"
LOCATE STRING #1 : user_string

Output

Enter the answer here>

9-202 VAX BASIC Graphics Statements

SET TEXT ANGLE

~ET TEXT ANGLE

=ormat

The SET TEXT ANGLE statement lets you change the angle with which a
text string is rotated.

SET TEXT ANGLE real-exp

;yntax Rules

~emarks

Real-exp must be an angle in radians or degrees, as specified in an
OPTION ANGLE statement; the default is radians.

1. The default text angle is zero. Characters drawn with the default text
angle are drawn horizontally across the screen.

2. Text is rotated about the starting point indicated in the GRAPH TEXT
statement.

3. When you set the angle to a positive value, the text is rotated in a
counterclockwise direction; supplying negative values rotates the text
in a clockwise direction.

4. Angles that are integer multiples of 180° display text horizontally.

5. Angles that are integer multiples of 90° display text vertically.

VAX BASIC Graphics Statements 9-203

SET TEXT ANGLE

Example

OPTION ANGLE = DEGREES
OPTION TYPE = EXPLICIT
SET TEXT FONT -3, "STROKE"
SET TEXT HEIGHT 0.05
SET TEXT ANGLE 90
GRAPH TEXT AT 0.7,0.55 : "90 degrees"
SET TEXT ANGLE 180
GRAPH TEXT AT 0.45,0.55 : "180 degrees"
SET TEXT ANGLE 270
GRAPH TEXT AT 0.5,0.55 "270 degrees"
SET TEXT ANGLE 0
GRAPH TEXT AT 0.0,0.05 "The default angle"

Output

s::<;iJD<"P IJ'2 l ~j
0
0..
([;

u:;:;,

~
ro
t•"}

(/J
cj)
<ll
I....
ry
!J.)

-0

0
•:::n

9-204 VAX BASIC Graphics Statements

ZK 497586

SET TEXT COLOR

;ET TEXT COLOR

ormat

The SET TEXT COLOR statement allows you to specify the color of text
characters.

SET TEXT COLOR int-exp

1yntax Rules

:emarks

Int-exp must be a valid color value for all devices in use, and must be
greater than zero.

1. Changing the text color affects the display of text on all active devices.
You cannot specify a particular device with this statement.

2. Changing color values may affect the shading on some black and
white devices.

3. The actual colors displayed are device dependent. If you set the color
to an index value that is undefined for a particular device, results are
unpredictable.

4. On VT125 and VT240 terminals with the color option, the default
values for int-exp represent the following colors:

Index Color

0 Black

1 Green

2 Red

3 Blue

5. See also the SET COLOR MIX statement for related information.

VAX BASIC Graphics Statements 9-205

SET TEXT COLOR

Example

PROGRAM colorful
DECLARE SINGLE concat_x,concat_y
SET TEXT HEIGHT 0.2
SET TEXT COLOR 2
GRAPH TEXT AT 0.0,0.5 "C"
ASK TEXT POINT , "C" AT 0.0,0.5 : concat_x, concat_y
SET TEXT COLOR 3
GRAPH TEXT AT concat_x, concat_y : 11 0 11

ASK TEXT POINT , "o" AT concat_x, concat_y: concat_x, concat_y
SET TEXT COLOR 1
GRAPH TEXT AT concat_x, concat_y : "l"
ASK TEXT POINT , "l" AT concat_x, concat_y concat_x, concat_y
SET TEXT COLOR 2
GRAPH TEXT AT concat_x, concat_y : 11 0 11

ASK TEXT POINT , "o" AT concat_x, concat_y concat_x, concat_y
SET TEXT COLOR 3
GRAPH TEXT AT concat_x, concat_y : "r"
ASK TEXT POINT , "r" AT concat_x, concat_y :concat_x, concat_y
SET TEXT COLOR 1
GRAPH TEXT AT concat_x, concat_y : "f"
ASK TEXT POINT , "f" AT concat_x, concat_y concat_x, concat_y
SET TEXT COLOR 2
GRAPH TEXT AT concat_x, concat_y : "u"
ASK TEXT POINT , "u" AT concat_x, concat_y concat_x, concat_y
SET TEXT COLOR 3
GRAPH TEXT AT concat_x, concat_y : "l"

END PROGRAM

9-206 VAX BASIC Graphics Statements

SET TEXT COLOR

Output

VAX BASIC Graphics Statements 9-207

SET TEXT EXPAND

SET TEXT EXPAND

Format

The SET TEXT EXP AND statement lets you change the ratio of character
width to height from the ratio defined in the original font design.

SET TEXT EXPAND real-exp

Syntax Rules

Remarks

Example

Real-exp must be greater than zero.

1. The default width to height ratio is 1.0, which specifies the expansior
ratio defined in the font design.

2. The value you assign to real-exp is the expansion factor used in
subsequent GRAPH TEXT statements and stays in effect until anothe1
SET TEXT EXP AND statement is executed.

SET TEXT FONT -3, "STROKE"
SET TEXT HEIGHT 0.05
SET TEXT EXPAND 3
GRAPH TEXT AT 0,0.8 "Fat"
SET TEXT EXPAND 1
GRAPH TEXT AT 0,0.6 "Normal"
SET TEXT EXPAND 0.5
GRAPH TEXT AT 0,0.4 "Thin"

9-208 VAX BASIC Graphics Statements

SET TEXT EXPAND

Output

~~ o rrno I

ZKA981 ·86

VAX BASIC Graphics Statements 9:-209

SET TEXT FONT

SET TEXT FONT

Format

The SET TEXT FONT statement lets you select a font and specify the lE
of precision with which the characters are drawn.

SET TEXT FONT int-exp [, str-exp]

Syntax Rules

Remarks

1. Int-exp specifies the font number.

2. The optional str-exp specifies the level of precision with which the
font characters are drawn.

1. The default font is font -1, which is displayed with STROKE precis:

2. Hardware fonts are device dependent. When no hardware fonts
are available, software fonts are used. Software fonts are device
independent and provide a graphical representation of the defined
characters. Depending on the device, hardware fonts are usually
displayed faster than software fonts.

3. If the precision string is not included, the specified software font i~
displayed with STROKE precision by default.

4. Hardware fonts can be displayed with either STRING or CHAR
precision. If a hardware font is requested with STROKE precision,
software font that is closest in number to the font you specify will
displayed.

5. Software fonts can be drawn only with STROKE precision which
provides an accurate representation of the text characters as specifi
in the font design. Software fonts can be displayed with only STRC
precision. If you specify an alternative precision string, a hardwarE
font will be displayed.

9-210 VAX BASIC Graphics Statements

SET TEXT FONT

6. The number of hardware and software fonts is device dependent.
If you specify that a font be displayed with a precision that is not
available on a particular device, an alternative font will be displayed
with the precision you specify. VT125 and VT240 fonts are dis­
played throughout this manual. VAXstation fonts are displayed in
Appendix B.

7. STRING Precision

STRING precision is available only for hardware fonts. STRING
precision uses the device-specific character style defined in the font
design. The starting position of the string is guaranteed to start at the
same point as is defined in the font design. However, attributes such
as the text path, alignment, angle, and spacing are not guaranteed to
match the specifications in the font design.

When clipping is enabled, STRING precision clips text on a string
basis at the world viewport boundary, This means that no text string
starts beyond the world viewport boundary.

8. CHAR Precision

CHAR precision is available only for hardware fonts. This preci­
sion value uses the device-specific character style defined in the font
design, as STRING precision does. However, this precision guaran­
tees the text height, character expansion factor, spacing, angle, and
alignment as much as is possible for a given device.

When clipping is enabled, CHAR precision clips text at least on a
character-by-character basis at the world viewport. This means that no
character extends beyond the world viewport boundary. Depending
on the capabilities of the device, character clipping is either partial or
complete.

9. STROKE Precision

STROKE precision is available only for software fonts. STROKE
precision displays characters with the most accuracy. In addition,
clipping is more precise with STROKE precision. When clipping is
enabled, STROKE precision clips text precisely at the world viewport
boundary. This means that if only half a character falls inside the
world viewport boundary, only this half is displayed on the screen.

VAX BASIC Graphics Statements 9-211

SET TEXT FONT

Example

OPTION TYPE = EXPLICIT
DECLARE LONG variety
SET WINDOW 0,100,0,100
SET TEXT HEIGHT 3
FOR variety = -1 TO -23 STEP -1

SET TEXT FONT variety , "STROKE"
IF variety > -13
THEN
GRAPH TEXT AT 0,100-(ABS(variety) * 8) : "Font No. " + STR$(variety)
ELSE
GRAPH TEXT AT 50,100-((ABS(variety) * 8) - 90) : "Font No. " + STR$(variet:
END IF

NEXT variety
END

Output

{Font t·.Jo. -1
FO=:'f 1·.10. -2

Font 1·.10. -3·

Font No. -6

Zofr ~o. -7

Pont l\'o. -8

Font No. -9

Zofv :So. -10

Ford 1Vo. -11

FoiitNo.-12

9a.ni .N~. - i 3

EoHy Ho. -14

Font No. -15

Font 1\ro. -16

D'ont [11o. -17

. .Dl"anf Ma. -18

?.:"nt Dll. -Hl

'"><(....,.>fi.!J\ffi
$;ic .. ., • .,l~l~Y

i-tw.~-::~ ... ,.:)··-·u. t

I '(I ~\I ""i 7 \,11_.1\!··: 1:· <:::
I I. I

ZK 4878 86

9-212 VAX BASIC Graphics Statements

SET TEXT HEIGHT

:T TEXT HEIGHT

·mat

The SET TEXT HEIGHT statement lets you change the height of the
characters in a font.

,ET TEXT HEIGHT real-exp

1tax Rules

marks

Real-exp must be greater than zero.

1. Height refers to the height of the uppercase letters in world coordi-
nates. Lowercase characters are sized proportionally.

2. The value of real-exp must be greater than zero.

3. At the start of program execution, the text height is 0.035.

4. When you change the boundaries of the world window, you may
need to adjust the text height to a value that is suitable for the new
window size. To regain a text height equivalent to the default height
after setting the window, use the following formula:

new_height = (max_height - min_height) * 0.035

For example:

SET WINDOW 0,100,1000,5000
new_height = (5000 - 1000) * 0.035
SET TEXT HEIGHT new_height

5. For CHAR and STRING precision, the text height is set to the nearest
possible value to your request. For STROKE precision, text size is
matched accurately.

VAX BASIC Graphics Statements 9-213

SET TEXT HEIGHT

Example

6. When you invoke a picture with transformation functions in the
DRAW statement, the text height and the text starting point are no
automatically adjusted. You account for these transformations by
using the TRANSFORM function, as shown in the example for the
TRANSFORM function in this chapter.

SET WINDOW 0,100,0,100
SET TEXT FONT -3, "STROKE"
SET TEXT HEIGHT 4
GRAPH TEXT AT 0,60 : "BIG ... "
SET TEXT HEIGHT 7
GRAPH TEXT AT 10,60 : "BIGGER ... "
SET TEXT HEIGHT 10
GRAPH TEXT AT 40,60 :"BIGGER ... "

Output

ZK·4986·86

9-214 VAX BASIC Graphics Statements

SET TEXT JUSTIFY

T TEXT JUSTIFY

mat

The SET TEXT JUSTIFY statement allows you to change the values of the
current horizontal and vertical components of text justification.

ET TEXT JUSTIFY str-exp1, str-exp2

1tax Rules

1. You specify the value for the horizontal component in str-expl and the
value for the vertical component in str-exp2.

2. Possible values for the horizontal component in str-expl are as follows:

Value

LEFT

CENTER

RIGHT

NORMAL

Effect on Horizontal Component

Corresponds to the left side of the text box passing through
the text position

Corresponds to the text position lying midway between the
left and right sides of the text box

Corresponds to the right side of the text box passing through
the text position

Depends on the text path-see remark #3

VAX BASIC Graphics Statements 9-215

SET TEXT JUSTIFY

Remarks

3. Possible values for the vertical component in str-exp2 are as follow

Value

TOP

CAP

HALF

BASE

BOTTOM

NORMAL

Effect on Vertical Component

The top of the text box passes through the text position.

The text position passes through the capline of the whol
string.

The text position passes through the half-line of the whc
string.

The text position lies on the baseline of the whole string

The bottom of the text box passes through the text.

See remark #3.

1. When a SET TEXT JUSTIFY statement is executed, the two string
variables are evaluated to establish an imaginary box surrounding
subsequent text output. The box is relative to the starting point
specified in a GRAPH TEXT statement. Text justification has two
components: horizontal and vertical.

2. The initial value for both the horizontal and the vertical componer
is NORMAL.

3. NORMAL can be specified for both the horizontal and vertical con
ponents. NORMAL provides a natural justification for each text pa
For each of the text paths the horizontal and vertical components '
as follows:

Normal Normal
Text Path Horizontal Vertical

RIGHT LEFT BASE

LEFT RIGHT BASE

UP CENTER BASE

DOWN CENTER TOP

9-216 VAX BASIC Graphics Statements

ample

SET TEXT FONT -3, "STROKE"
SET TEXT HEIGHT 0.04
SET TEXT COLOR 2
SET LINE COLOR 3
SET TEXT JUSTIFY "NORMAL" , "TOP"
GRAPH TEXT AT 0.4,0.9 : "Normal/top"
GRAPH LINES 0.4,0.9; 0.7,0.9

SET TEXT JUSTIFY "NORMAL" , "BOTTOM"
GRAPH TEXT AT 0.4,0.7 : "Normal/bottom"
GRAPH LINES 0.4,0.7; 0.7,0.7

SET TEXT JUSTIFY "LEFT" , "NORMAL"
GRAPH TEXT AT 0.4,0.6 : "Left/normal"
GRAPH LINES 0.4,0.6; 0.7,0.6

SET TEXT JUSTIFY "CENTER" . "NORMAL"
GRAPH TEXT AT 0.4,0.3 : "Center/normal"
GRAPH LINES 0.4,0.3; 0.7,0.3
SET TEXT JUSTIFY "RIGHT" , "NORMAL"
GRAPH TEXT AT 0.4,0.1 : "Right/normal"
GRAPH LINES 0.4,0.1; 0.7,0.1

Output

SET TEXT JUSTIFY

VAX BASIC Graphics Statements 9-217

SET TEXT PATH

SET TEXT PATH

Format

The SET TEXT PATH statement lets you specify the direction in which
characters are drawn.

SET TEXT PATH str-exp

Syntax Rules

Remarks

Str-exp can be one of the following values (in lower- or uppercase):

• RIGHT

• LEFT

• UP

• DOWN

1. Path refers to the direction in which the text is written relative to th
text angle.

2. The default value for str-exp is RIGHT.

9-218 VAX BASIC Graphics Statements

ample

SET TEXT FONT -3, "STROKE"
SET TEXT HEIGHT 0.05
SET TEXT PATH "UP"
GRAPH TEXT AT 0.1,0.1 : "UP PATH"
SET TEXT PATH "LEFT"
GRAPH TEXT AT 0.7,0.9 : "LEFT PATH"
SET TEXT PATH "DOWN"
GRAPH TEXT AT 0.2,0.9 "DOWN PATH"
SET TEXT PATH "RIGHT"
GRAPH TEXT AT 0.5,0.5 "RIGHT PATH"

Output

(HT/1F TFEL
D
D
\N
r'J

p

H '""'
F:IGHT p,LIJH

T T
,1.J., H

p

p
l_J

SET TEXT PATH

ZK 4964 86

VAX BASIC Graphics Statements 9-219

SET TEXT SPACE

SET TEXT SPACE

Format

The SET TEXT SP ACE statement lets you change the spacing between
characters drawn on an output device.

SET TEXT SPACE real-exp

Syntax Rules

Remarks

None.

1. Subsequent GRAPH TEXT statements use the spacing specified in
real-exp until another SET TEXT SP ACE statement is executed.

2. Space refers to the distance between adjacent characters. The distan
is expressed as a fraction of the text height.

3. The default value for the spacing is 0, which produces adjacent
characters as defined in the font design.

4. A positive value for real-exp inserts space between characters.

5. A negative value for real-exp causes characters to overlap.

9-220 VAX BASIC Graphics Statements

:xample

!+
!Set text height to 5/100 of the default window
! -
SET TEXT HEIGHT 0.05
SET TEXT FONT -16, "STROKE"
SET TEXT SPACE 0.09
GRAPH TEXT AT 0,0.8 "These characters are far out"
SET TEXT SPACE 0
GRAPH TEXT AT 0,0.6 "This is the normal spacing"
SET TEXT SPACE -0.09
GRAPH TEXT AT 0,0.4 "These characters are tight"

Output

These cho,racters <ir-e /(tr' out

These characters rere tight

SET TEXT SPACE

VAX BASIC Graphics Statements 9-221

SET TRANSFORMATION

SET TRANSFORMATION

Format

The SET TRANSFORMATION statement explicitly establishes the trans­
formation to be used for subsequent interpretations of world coordinate
points.

SET TRANSFORMATION int-exp

Syntax Rules

Remarks

Int-exp must be between 1 and 255.

1. The current transformation number is set to the number you specify i:
int-exp. The default transformation is 1.

2. An implicit SET TRANSFORMATION is performed when a SET
WINDOW or SET VIEWPORT statement is executed.

3. This transformation is used to display graphics output until a differen
transformation is established in a SET TRANSFORMATION, SET
WINDOW, or SET VIEWPORT statement.

4. A SET TRANSFORMATION statement is invalid within a picture
definition.

5. A SET TRANSFORMATION statement implicitly sets the highest
input priority to be the specified transformation. When conflicting
viewports are defined, the transformation with the highest input
priority is used to interpret input points. See also the SET INPUT
PRIORITY statement.

9-222 VAX BASIC Graphics Statements

:xample

SET WINDOW , TRAN 1 : 0,10,0,10
SET VIEWPORT , TRAN 1 : 0,0.5,0,0.5
SET WINDOW , TRAN 2 : 500,1000,1,10
SET VIEWPORT ,TRAN 2 : 0.5,1,0.5,1
SET TRANSFORMATION 1
GRAPH AREA 2,8; 7,6; 3,1
SET TRANSFORMATION 2
GRAPH POINTS 800,2; 450,8; 475,8.5

SET TRANSFORMATION

VAX BASIC Graphics Statements 9-223

SET VALUE ECHO AREA

SET VALUE ECHO AREA

Format

The SET VALUE ECHO AREA statement lets you specify the boundaries
of the VALUE echo area.

SET VALUE ECHO AREA
[

#dev-id
, UNIT int-exp

real-exp 1, real-exp2, real-exp3, real-exp4

Syntax Rules

Remarks

1. Real-expl, real-exp2, real-exp3, and real-exp4 must be floating-point
expressions to represent the left, right, bottom, and top boundaries
respectively.

2. When specified, dev-id must be the first clause listed and must be
preceded by the number sign (#).

3. If one or more optional clauses are included, one colon (:) is required
before real-exp1.

1. The echo area is the portion of your screen where the prompt appear!
and where input can be supplied by a user.

2. The optional dev-id identifies the device for which you want to set th
echo area. If no identification clause is included, VAX BASIC uses a
default identification of #0. If an identification clause is included, the
device specified must have been opened explicitly or opened by VAX
BASIC as the default device.

9-224 VAX BASIC Graphics Statements

,xample

SET VALUE ECHO AREA

3. Boundaries must be specified in device coordinates. To determine
the possible values on a particular device, use the ASK DEVICE
SIZE statement. To determine the current boundaries, use the ASK
VALUE ECHO AREA statement. Appendix B lists the boundaries for
VAXstations and VT125 and VT240 terminals.

4. The default echo area for VALUE input is device dependent. The
default area is in effect until a SET VALUE ECHO AREA statement is
executed.

5. The optional UNIT clause allows you to specify an alternative means
of supplying the input. For instance, the position of points can be
entered with mouse, or with the keyboard arrow keys. Each of these
methods of data entry is a different unit. The default unit value for
int-exp for each input type is 1; the default is used throughout this
manual. For information about the units available on a particular
device, see the hardware documentation for that device, as well as the
VAX GKS documentation.

6. On devices that display the VALUE range limits, the size and justifi­
cation of the characters cannot be altered. You should ensure that the
VALUE echo area is appropriate for the VALUE prompt for the device
you use.

7. Subsequent requests for each input type use the echo boundaries you
supply until another SET VALUE ECHO AREA statement is executed.

OPTION TYPE = EXPLICIT
DECLARE SINGLE left_1,right_1,bottom,top,input_value
OPEN "office-term" FOR GRAPHICS AS DEVICE #1

ASK VALUE ECHO AREA #1 : left_1,right_1,bottom,top
!+
!Set the echo area to the top corner of the default area
! -
SET VALUE ECHO AREA #1 : left_1

,right_1
,(top-bottom)/2
,top

LOCATE VALUE #1 input_value

VAX BASIC Graphics Statements 9-225

SET VIEWPORT

SET VIEWPORT

Format

The SET VIEWPORT statement allows you to change the section of NDC
space to which an image in the world window is mapped.

SET VIEWPORT [,TRAN int-exp:] real-exp1, real-exp2, real-exp3, real-exp4

Syntax Rules

Remarks

1. Real-expl, real-exp2, real-exp3, and real-exp4 must be floating-point
expressions to represent the left, right, bottom, and top boundaries
respectively. Values must be within the range 0.0 to 1.0.

2. Int-exp must be between 1 and 255.

1. The world viewport represents a portion of the abstract display
surface known as the Normalized Device Coordinate space (NDC
space). World coordinates are mapped to NDC space according to th€
specified boundaries in a SET VIEWPORT statement.

2. The default world viewport consists of the complete NDC space. Th€
boundaries at the start of program execution are O,l,0,1 for the left,
right, bottom, and top boundaries respectively.

3. Viewport boundaries must be within the range 0.0 to 1.0.

4. The SET VIEWPORT statement implicitly establishes the current
transformation.

5. You can set a different world viewport for separate parts of your
application, provided that you specify a different transformation
number for each. For instance, the following statements set up the
world viewport boundaries of 0,0.5,0.5,l for transformation 1, and
boundaries of 0.5,l,0.5,l for transformation 2.

9-226 VAX BASIC Graphics Statements

xample

SET VIEWPORT , TRAN 1 : 0,0.6,0.6,1
SET VIEWPORT , TRAN 2 : 0.6,1,0.6,1

SET VIEWPORT

6. If you do not specify a transformation with the optional TRAN clause,
the default transformation of 1 is assumed. At the start of program
execution, transformation 1 defines the default window (0,l,0,1) and
the default viewport (0,1,0,1).

7. All subsequent graphics output is interpreted using transformation
int-exp until an alternative transformation is established in a SET
TRANSFORMATION, SET WINDOW, or SET VIEWPORT statement.

8. A SET VIEWPORT statement implicitly sets the highest input priority
to be the specified transformation. When conflicting viewports are
defined, the transformation with the highest input priority is used to
interpret input points. See also the SET INPUT PRIORITY statement.

9. The specified viewport boundaries remain in effect for transformation
int-exp unless other boundaries are specified in a subsequent SET
VIEWPORT statement referring to the same transformation.

10. A SET VIEWPORT statement is invalid within a picture.

EXTERNAL PICTURE swan

SET WINDOW , TRAN 2 : 0,100,0,100
!Map all of window to top right corner of NDC space
SET VIEWPORT , TRAN 2 : 0.6,1,0.6,1

SET TRANSFORMATION 2
DRAW swan

VAX BASIC Graphics Statements 9-227

SET VIEWPORT

Output

(

9-228 VAX BASIC Graphics Statements

SET WINDOW

SET WINDOW

Format

The SET WINDOW statement lets you change the boundary values (and
therefore the coordinate measures) for the world window.

SET WINDOW [,TRAN int-exp:] real-exp1, real-exp2, real-exp3, real-exp4

Syntax Rules

Remarks

1. Real-expl, real-exp2, real-exp3, and real-exp4 must be floating-point
expressions to represent the left, right, bottom, and top boundaries
respectively.

2. Int-exp must be between 1 and 255.

1. The default world window boundaries are O,l,0,1 for the left, right,
bottom, and top boundaries respectively.

2. When no transformation is specified, the transformation is set to
transformation 1, the default.

3. The SET WINDOW statement implicitly establishes the current trans­
formation.

4. The specified window boundaries remain in effect for transformation
int-exp unless other boundaries are specified in a subsequent SET
WINDOW statement referring to the same transformation.

5. All subsequent graphics output is interpreted using transforma-
tion int-exp until another transformation is established in a SET
TRANSFORMATION, SET WINDOW, or SET VIEWPORT statement.

6. A SET WINDOW statement implicitly sets the highest input priority
to be the specified transformation. When conflicting viewports are
defined, the transformation with the highest input priority is used to
transform input points. See also the SET INPUT PRIORITY statement.

VAX BASIC Graphics Statements 9-229

SET WINDOW

Example

7. When clipping is enabled with the SET CLIP "ON" statement, graphics
images with world c;oordinate values exceeding the limits of the world
window are not displayed.

8. When clipping is disabled with the SET CLIP "OFF" statement, images
with world coordinate values that exceed the limits of the world
window are displayed, provided that the points are also within the
device window.

9. After a SET WINDOW statement, you may need to use the SET TEXT
HEIGHT statement to increase the text height.

10. A SET WINDOW statement is invalid within a picture.

!+
!Each of these output statements displays the center point
! -
GRAPH POINTS 0.5,0.5
CLEAR

SET WINDOW , TRAN 1: 0,100,0,100
GRAPH POINTS 50,50
CLEAR

SET WINDOW , TRAN 2 25,525,0,1000
GRAPH POINTS 275,500
CLEAR

SET WINDOW , TRAN 3 -1,1,-1,1
GRAPH POINTS 0,0
CLEAR
SET WINDOW , TRAN 4 -50,0,0,900
GRAPH POINTS -25,450

9-230 VAX BASIC Graphics Statements

SHEAR

Format

SHEAR

When used in a DRAW statement, the SHEAR function skews the x­
coordinates of points specified in a PICTURE subprogram. SHEAR can
also be used in the MAT statement to create a new matrix.

In the DRAW Statement

DRAW pic-name[(param-list)] WITH SHEAR(angle) [* matrix2] ...

In the MAT Statement

MAT matrix1 = SHEAR(angle) [* matrix2]. ..

Syntax Rules

1. Angle can be in radians or degrees, depending on the option you
specify with the OPTION ANGLE statement. The default is radians.

2. Matrixl and matrix2 must be two-dimensional numeric arrays that are
zero-based with upper bounds of 4 in both directions. VAX BASIC
signals a compile-time error when the compiler detects a nonzero­
based matrix; otherwise, a run-time error is signaled. Packed decimal
arrays are invalid.

3. Matrix2 can also be one of the valid transformation functions from the
DRAW statement, including the following:

• ROTATE

• SCALE

• SHIFT

• TRANSFORM

VAX BASIC Graphics Statements 9-231

SHEAR

Remarks

1. SHEAR can be used only on the right side of a MAT statement or as a
transformation function in the DRAW statement.

2. Like other transformation functions, the SHEAR function affects
coordinates displayed with PLOT and MAT PLOT statements within
pictures. Similarly, input points accepted with GET and MAT GET
statements within a picture definition are affected by the inverse of a
SHEAR function specified on the DRAW statement that invokes the
picture.

3. For an example and more information, see the DRAW statement in
this chapter.

9-232 VAX BASIC Graphics Statements

SHIFT

Format

SHIFT

When used in a DRAW statement, the SHIFT function moves the coordi­
nates of points specified in a PICTURE subprogram. SHIFT can also be
used in the MAT statement to create a new matrix.

In the DRAW Statement

DRAW pic-name[(param-list)] WITH SHIFT (real-exp 1, real-exp2) [* matrix2]. ..

In the MAT Statement

MAT matrixl = SHIFT(real-expl, real-exp2) [* matrix2]. ..

Syntax Rules

1. Real-expl is applied to the x-coordinate of a point.

2. Real-exp2 is applied to the y-coordinate of a point.

3. Matrixl and matrix2 must be two-dimensional numeric arrays that are
zero-based with upper bounds of 4 in both directions. VAX BASIC
signals a compile-time error when the compiler detects a nonzero­
based matrix; otherwise, a run-time error is signaled. Packed decimal
arrays are invalid.

4. Matrix2 can also be one of the valid transformation functions from the
DRAW statement, including the following:

• ROTATE

• SCALE

• SHEAR

• TRANSFORM

VAX BASIC Graphics Statements 9-233

SHIFT

Remarks

1. SHIFT can be used only on the right-hand side of a MAT statement or
as a transformation function in the DRAW statement.

2. Negative values for real-expl shift x-coordinates to the left; positive
values shift coordinates to the right.

3. Negative values for real-exp2 shifty-coordinates lower on the display
surface; positive values shift coordinates up.

4. Like other transformation functions, the SHIFT function affects co­
ordinates displayed with PLOT and MAT PLOT statements within
pictures. Similarly, input points accepted with GET and MAT GET
statements within a picture definition are affected by the inverse of
a SHIFT function specified on the DRAW statement that invokes the
picture.

5. For an example and more information, see the DRAW statement in
this chapter.

9-234 VAX BASIC Graphics Statements

TRANSFORM

TRANSFORM

Format

The TRANSFORM function returns the cumulative transformation for all
transformation clauses in current picture invocations.

In the DRAW Statement

DRAW pic-name[(param-list)] WITH TRANSFORM [* matrix2] ...

In the MAT Statement

MAT matrix1 =TRANSFORM [* matrix2] ...

Syntax Rules

1. Matrix1 and matrix2 must be two-dimensional numeric matrices that
are zero-based with upper bounds of 4 in both directions. VAX BASIC
signals a compile-time error when the compiler detects a nonzero­
based matrix; otherwise, a run-time error is signaled. Packed decimal
arrays are invalid.

2. Matrix2 can also be one of the valid transformation functions from the
DRAW statement, including the following:

• SHIFT

• SCALE

• ROTATE

• SHEAR

VAX BASIC Graphics Statements 9-235

TRANSFORM

Remarks

Example

1. TRANSFORM can be used only on the right-hand side of a MAT
statement or as a transformation function in the DRAW statement.

2. When used within picture invocations, TRANSFORM contains the
cumulative matrix for all current transformations.

3. The current transformation is passed to any pictures by default.
Therefore, if you use the TRANSFORM function inside a picture, the
transformation in the DRAW statement will be applied twice.

4. If no picture has been invoked with a DRAW statement, TRANSFORM
returns the identity matrix. The identity matrix has no effect on a
graphics display.

5. Like other transformation functions, the TRANSFORM function affects
coordinates displayed with PLOT and MAT PLOT statements within
pictures. Similarly, input points accepted with GET and MAT GET
statements within a picture definition are affected by the inverse of a
TRANSFORM function specified on the DRAW statement that invokes
the picture.

6. The TRANSFORM function can be used to adjust the text starting
point and text height when text is drawn within a picture. The
following example illustrates how to do this. Note that you cannot
make adjustments for the text attributes for the ROTATE, SHEAR, and
negative SCALE functions.

7. For an additional example and more information, see the DRAW
statement in this chapter.

PROGRAM transform_text
!+
!This program uses the TRANSFORM function to adjust the text height
!and text starting point for a GRAPH TEXT statement in a picture
!Tb.ese attributes would not otherwise be affected by the
!transformation functions on a DRAW statement.
! -
OPTION TYPE = EXPLICIT
EXTERNAL PICTURE box(STRING,SINGLE,SINGLE)
DRAW box("No. 1",0.5,0.375) WITH SCALE(0.5) *SHIFT(0.2, 0.1)
DRAW box("No. 2",0.5,0.375) WITH SCALE(0.25) * SHIFT(0.3, 0.6)
END PROGRAM

9-236 VAX BASIC Graphics Statements

PICTURE box(STRING box_name, SINGLE x,y)
OPTION TYPE = EXPLICIT
DECLARE SINGLE height, new_height(1,4), old_height(1,4), &

new_height_top, new_height_bottom, &
new_x(1,4), new_y(1,4), &
old_x(1,4), old_y(1,4), &

LONG counter
PLOT LINES 0,0; 0, .75; 1,.75; 1,0; 0,0
!+
!Set the height of the letter to be one quarter
!of the height of the box.
!Get the current transformation for this picture

TRANSFORM

!and transform the point. Take the y coordinate of the result
!and use it for the SET TEXT HEIGHT statement.
! -
old_height(1,counter) = 0.0 FOR counter = 0% TO 4%
old_height(1,2) = .75/4
old_height(1,4) = 1
MAT new_height = old_height * TRANSFORM
new_height_top = new_height(1,2)

old_height(1,counter) = 0.0 FOR counter 0% TO 4%
old_height(1,2) = 0.0
old_height(1,4) = 1
MAT new_height = old_height * TRANSFORM
new_height_bottom = new_height(1,2)

old_x(1,counter) = 0.0 FOR counter = 0% TO 4%
old_x(1,1) = x
old_x(1,4) = 1
MAT new_x = old_x * TRANSFORM

old_y(1,counter) = 0.0 FOR counter = 0% TO 4%
old_y(1,2) = y
old_y(1,4) = 1
MAT new_y = old_y * TRANSFORM

SET TEXT HEIGHT (new_height_top - new_height_bottom)
SET TEXT FONT 1%, "STROKE"
SET TEXT JUSTIFY "CENTER", "HALF"
GRAPH TEXT AT new_x(1,1), new_y(1,2) box_name

END PICTURE

VAX BASIC Graphics Statements 9-237

TRANSFORM

Output

E
I .Jc). l

/K487286

9-238 VAX BASIC Graphics Statements

Appendix A

Calling VAX GKS Directly

VAX BASIC statements provide most of the features you will need to
include graphics in your applications; however, you may choose to access
additional graphics functionality by calling VAX GKS routines directly.
In all instances, when VAX BASIC graphics statements are available, it is
recommended that you use them rather than make direct calls yourself.

l. 1 Introduction

VAX GKS operates in one of four states. The states are

• Closed

• Open

• At least one device open

• At least one device active

VAX BASIC controls the VAX GKS states for you by default. For instance,
if you try to display output on a device when none is open and active,
VAX BASIC opens and activates the default device for you. Similarly, if
you try to close a device that you have not opened, VAX BASIC ignores
your request to close it.

Calling VAX GKS Directly A-1

You must ensure that VAX GKS is in the correct operating state by using
VAX GKS control routines in either of the following situations:

• When a program includes no VAX BASIC graphics statements at all,
but does include direct calls to VAX GKS routines

• When a program makes direct calls to VAX GKS routines before
executing any VAX BASIC graphics statements

When VAX GKS is not in the correct state, an error is issued and pro­
gram execution terminates. Consult the VAX GKS documentation for
information about particular routines and the related error messages.

VAX BASIC sets up many preferred defaults that do not always agree witl
the VAX GKS defaults for a particular routine. The reference section in thi
manual lists the defaults for each VAX BASIC graphics statement. Most
of the VAX BASIC defaults that are device specific are set up when a VA)
BASIC graphics output statement is executed or when an OPEN ... FOR
GRAPHICS statement is executed. If you have already used VAX GKS
routines in your program, other defaults may be in place. The following
list includes items that you should be aware of when you make direct call
to VAX GKS.

• If you want VAX BASIC graphics defaults, be sure to use the
OPEN ... FOR GRAPHICS statement, or include a graphics output
statement before you make any direct calls to VAX GKS.

• If you want VAX GKS defaults, you should open a device with explic
calls to GKS$0PEN_WS and GKS$ACTIVATE_WS to override the
VAX BASIC defaults. Note that when you use VAX GKS control
statements, VAX GKS should be opened with an error file of "NLAO"
This is important for VAX GKS error handling. You should be aware
of the different defaults and use caution when mixing VAX BASIC
graphics statements with direct calls to VAX GKS because program
output can be unpredictable.

• In VAX BASIC, transformation 0 is reserved and any references to
transformation 0 in program statements are invalid. When you make
direct calls to VAX GKS routines, transformation 0 is accessible.
Nonetheless, you cannot change the priority of transformation 0 whe:
calling VAX GKS routines from VAX BASIC programs.

• The default text expansion factor of 1 is the height-to-width ratio
defined in the font design. VAX BASIC maintains this "normal" ratio
regardless of the current window boundaries. That is, whenever a
new transformation becomes current, VAX BASIC implicitly adjusts
the text expansion factor according to the ratio of the current windov

A-2 Calling VAX GKS Directly

width to the current window height. However, VAX GKS produces a
"normal" text expansion factor only when the world coordinate units
for the x- and y-axes are the same. When you make direct calls to VAX
GKS, you must make your own adjustments to the expansion factor when
necessary.

The following sections show you how to call VAX GKS routines directly
and provide examples of such calls. The VAX GKS routines are described
fully in the VAX GKS documentation.

Like other system routines, each VAX GKS routine has an entry point
(the routine name) and an argument list. It may also return values to
the program that calls it. To call VAX GKS routines directly, you should
follow these steps:

1. Declare the desired VAX GKS routines with the EXTERNAL statement

2. Declare all arguments with correct data types and passing mechanisms

3. Call the desired routines

4. Check the return status of the call

l.2 Declaring VAX GKS Routines

As with other system routines, you should declare VAX GKS routines
as external functions rather than subprograms. To do this, use the
EXTERNAL statement as shown in the following examples. Note that
if you call a VAX GKS routine as a subprogram, you cannot check the
status of the call. The following partial program illustrates how to make a
simple call to a VAX GKS routine.

Calling VAX GKS Directly A-3

Example

PROGRAM screen_makeup
OPTION TYPE = EXPLICIT
!+
!Declare the routine as a function
! -
EXTERNAL LONG FUNCTION GKS$UPDATE_WS(LONG BY REF.LONG BY REF)
EXTERNAL LONG CONSTANT STS$K_SUCCESS
EXTERNAL SUB LIB$SIGNAL(LONG BY VALUE)
!+
!Declare the arguments
! -
DECLARE LONG dev_id, flag_value ,return_status
dev_id = 17.

!+
!Call GKS$UPDATE_WS---this gives you control of the device
!viewport (VAX BASIC performs this function by default when you define more tl
!one device viewport and use VAX BASIC graphics statements)
! -
return_status = GKS$UPDATE_WS(dev_id,flag_value)
!+
!Check the status
! -
IF (return_status AND 17.) = STS$K_SUCCESS

THEN GOTO device_setup
ELSE CALL LIB$SIGNAL(return_status)

EXIT PROGRAM
END IF

Arguments that are passed to VAX GKS functions must be listed in the
order shown in the function descriptions in the VAX GKS documentation.
Arguments are listed in the VAX GKS documentation as being write or
modify, or read only. When VAX BASIC encounters arguments of the
wrong data type, an error is signaled at compile time. VAX GKS expects
the following data types and passing mechanisms:

• Integer arguments as 32-bit longwords passed by reference

• Real numbers in single-precision floating-point format passed by
reference

• Character strings passed by descriptor

• Arrays passed either by reference or by descriptor, depending on the
function

A-4 Calling VAX GKS Directly

See the VAX GKS documentation to determine the rules governing the
arguments you require for a particular function.

~.3 Useful VAX GKS Routines

Not all VAX GKS functionality is available with VAX BASIC statements.
It is beyond the scope of this manual to illustrate the full extent of the
additional functionality;. instead, three examples are provided here of
functionality you can access by making direct calls to VAX GKS. The first
example shows how to change the device echo type default (VAX BASIC
offers a fixed default echo type). The second example show you how to
use VAX GKS cell arrays. The third example illustrates the use of attribute
bundles.

~.3.1 Changing the Echo Type

The GKS$INIT_LOCATOR function allows you to take advantage of
additional echo types for POINT input on VT125 and VT240 terminals.
VAX BASIC supplies the VAX GKS default echo type, as illustrated in
Chapter 7. To change this default, you must supply the alternative echo
type as an argument to the GKS$INIT_LOCATOR routine.

This example changes the echo type to 6. On VT125 and VT240 terminals,
echo type 6 for POINT input consists of a display of the device coordinates
of the point selected by a user. (Echo types are device dependent; consult
the VAX GKS documentation for details.)

With echo type 6, the position of the point is not displayed, only the
coordinate values. The user can change the device coordinates with
the arrow keys. The VAX GKS routine returns the equivalent world
coordinates of this same point into two of the arguments you supply with
the function call. The example displays the device coordinates and the
world coordinates of the same point supplied by the user.

Calling VAX GKS Directly A-5

Example

OPTION TYPE = EXPLICIT
EXTERNAL LONG FUNCTION GKS$INIT_LOCATOR

(LONG,LONG,SINGLE,SINGLE,LONG,LONG,
SINGLE,ANY,LONG)

EXTERNAL LONG CONSTANT STS$K_SUCCESS
DECLARE SINGLE echo_area(3)
DECLARE LONG tran_id, dev_id, return_status

input_type_val,echo_type,data_size
DECLARE SINGLE loc_x,loc_y,user_x,user_y
!+
!This record is required but ignored by GKS
! -
RECORD LOC_DATA_REC

LONG loc_data
END RECORD

DECLARE LOC_DATA_REC rec1
OPEN "" FOR GRAPHICS AS DEVICE #1

= 1
240
767

dev_id = 1
input_ type_ val
echo_area(O)
echo_area(1)
echo_area(2)
echo_area(3)

= 0
479

!+
!Initial point in world coords
!User is presented with device coords of this point
! -
loc_x = 0.5
loc_y = 0.5
!+
!Set the new echo type
!-
echo_type = 61.
data_size = OY.

return_status = GKS$INIT_LOCATOR(dev_id,input_type_val t

A-6 Calling VAX GKS Directly

,loc_x,loc_y,tran_id,echo_type,echo_area() t
,rec1,data_size)

IF (return_status AND 1Y.) = STS$K_SUCCESS
THEN LOCATE POINT user_x,user_y
ELSE EXIT PROGRAM return_status

END IF
!+
!Display world coordinates of user_x, user_y
!-
GRAPH TEXT AT 0,0.96 : "World coordinates: " + STR$(user_x)
GRAPH TEXT AT 0,0.90 : STR$(user_y)
END PROGRAM return_status

Output

?71 ·-• .r
.... ~ .. ~ ..-· -._. ·- ·-

l.3.2 Using VAX GKS Cell Arrays

ZK 4987·86

The following example shows how to access the VAX GKS cell array
feature. The example divides a rectangular area into cells and displays
each cell in a specific color. To specify color, the example defines an array
and supplies color index values as data to the array.

Calling VAX GKS Directly A-7

Example

OPTION TYPE = EXPLICIT
EXTERNAL LONG FUNCTION GKS$CELL_ARRAY(SINGLE,SINGLE,SINGLE,SINGLE,

LONG,LONG,LONG,LONG,LONG DIM (,))
EXTERNAL LONG CONSTANT STS$K_SUCCESS
DECLARE SINGLE first_x, first_y, second_x, second_y
DECLARE LONG no_rows, no_cols, start_row, start_col,

counter, inner,return_status
DIM LONG colour(3,2)
OPEN "" FOR GRAPHICS AS DEVICE #1
!+
!Fill the array with color index values
!-
DATA 3,2,0, 1,3,2, 0,2,2, 3,1,1
FOR counter = 01. TO 31.

FOR inner = 01. TO 21.
READ colour(counter,inner)

NEXT inner
NEXT counter

first_x = 0.2
first_y = 0.3
second_x = 0.9
second_y = 0.7
start_row = OY.
start_col = OY.
no_rows = 41.
no_cols = 31.
return_status = GKS$CELL_ARRAY(first_x,first_y,second_x,second_y

,start_row,start_col,no_rows,no_cols,colour(,))
IF (return_status AND 11.) = STS$K_SUCCESS

THEN
CLOSE DEVICE #1

END IF
END

A-8 Calling VAX GKS Directly

Output

l.3.3 Accessing Attribute Bundles

When you call VAX GKS directly, you can change attributes in groups,
or bundles. VAX BASIC provides the capability to change each of the
attributes of graphics objects individually. For instance, you can change
the line style, the point color, and the text size. How to change the
attributes is discussed in Chapter 3. With direct calls to VAX GKS routines,
you can specify a set of predefined attribute values for an object.

VAX GKS stores predefined attribute values for each object in a construct
known as a bundle table. The bundle table consists of several sets of
predefined attribute values; you specify an index in the bundle table
to select a given set of attribute values for an object. Each hardware
device has its own set of bundle tables. You can select from several sets
of predefined values to achieve the image you want. For details of the
bundle tables for a particular device, see the VAX GKS documentation.

Calling VAX GKS Directly A-9

The attributes are governed by Attribute Source Flags (ASFs). Each ASF
can have a value of 0 for bundled, or 1 for individual. To specify an
index to the bundle tables, you must call the routine GKS$SET_ASF to
set selected ASFs to the value 0 for bundled. By default, each of the
ASFs is set to 1. You must pass an array of 13 values (0 or 1 each) to the
GKS$SET-ASF routine. The order of the flags in the bundle table is as
follows:

1. Line type

2. Line width scale factor

3. Line color index

4. Point type

5. Point size scale factor

6. Point color index

7. Text font and precision

8. Character expansion factor

9. Character spacing

10. Text color index

11. Fill area interior style

12. Fill area style index

13. Fill area color index

When program execution begins, all of these flags are set to indi­
vidual (1). If no flag values are changed, then graphics objects are
displayed with the individual VAX GKS default values.

Note that VAX BASIC attribute statements do not change the ASFs;
therefore, setting an ASF to bundled effectively disables some of the VAX
BASIC SET statements and invalidates the corresponding ASK statements.

The following example displays sample text using the initial text attri­
butes. The example then sets a selection of the flags to 0 and calls the
GKS$SET_ASF function specifying which bundle of attributes to use. The
text is displayed again showing the bundled text attributes.

A-10 Calling VAX GKS Directly

Example

OPTION TYPE = EXPLICIT
EXTERNAL LONG FUNCTION GKS$SET_ASF(LONG DIM () BY REF)
DECLARE LONG flags(1 TO 13)
DECLARE LONG counter, return_status
EXTERNAL LONG CONSTANT STS$K_SUCCESS
!+
!Initialize array to 1, for individual
!-
flags(counter) = 1 FOR counter = 1 TO 13
!+
!Display text with individual defaults
!-
GRAPH TEXT AT 0.0,0.8 : "Text attributes set to individual."
!+
!Change flags 7-10 to 0 for bundles
!-
flags(counter) = 0 FOR counter = 7Y. TO 101.
!+
!Set the ASFs with the new array
!-
return_status = GKS$SET_ASF(flags())
!+
!Check the return status
!If success, display text with bundled attributes
!-
IF (return_status AND 11.) = STS$K_SUCCESS

THEN GRAPH TEXT AT 0.0,0.6 "Attribut~s from a bundle table."
ELSE GRAPH TEXT AT 0.1,0.4 : "Error in GKS$SET_ASF"

END IF
END

Calling VAX GKS Directly A-11

Appendix B

Device Specifications

This appendix lists information specific to the following DIGITAL devices:

• VTl 25 and VT240 terminals

• VAXstations I, II, and 11/GPX

The initial and default values listed here refer to the selections available
with VAX BASIC graphics statements. These devices support additional
features (such as alternative echo styles) that are not available with VAX
BASIC graphics statements. For more information, see the VAX GKS
documentation. Information about other devices can also be found in
the VAX GKS documentation, as well as in the documentation for the
individual device.

Section B.3 of this appendix provides a chart that lists and illustrates
values for the color intensities of red, green, and blue that can be used on
VT125 and VT240 terminals and VAXstations.

B.1 VT125 and VT240 Terminals

This section describes the information needed to use VAX BASIC graphics
with monochrome and color VT125 and VT240 terminals.

Device Specifications B-1

B.1.1 Device Types

The following device types are valid:

GKS$WSTYPE

10

11

12

13

14

B.1.2 Text Fonts

Device

VT125 monochrome, output only

VT125 with color option

VTl 25 monochrome

VT240 with color option

VT240 monochrome

VT125 and VT240 terminals support one hardware font and 23 software
fonts. These fonts are illustrated in Chapter 4 of this manual.

B.1.3 Pattern Values

The following table lists the values for the area style index when the area
style is set to PATTERN. ·

Style Index

1

2

3

4

5

6

B.1.4 Hatch Values

Appearance

Mixes colors 1 and 2

Mixes colors 2 and 3

Mixes colors 3 and 1

Mixes colors 0 and 1

Mixes colors 0 and 2

Mixes colors 0 and 3

The following table lists the values for the area style index when the area
style is set to HATCH. Some of these indices are illustrated in Chapter 3.

8-2 Device Specifications

Style Index

1

2

3

4

5

6

7

8

9

10-19

33-126

Appearance

Cross hatches

Horizontal lines at 45 degrees

Horizontal lines at -45 degrees

Horizontal lines

Vertical lines

Horizontal lines at 45 degrees-sparse

Horizontal lines at -45 degrees-sparse

Horizontal lines-sparse

Vertical lines-sparse

Varying density hatches 1

Hatching with the corresponding ASCII character

1 A varying density hatch style is a mixture of pixels of a given color and white pixels, which gives
the appearance of different shades. For hatch styles 10 through 19, the hatches progress from lighter
to darker; 10 being the lightest and 19 being the darkest.

1.1.5 Device Coordinates

The VT125 device coordinates have the range ([0,767] x [0,479]); the
VT240 device coordinates have the range ([0,799] x [0,479]) .

. 1.6 Input Constructs

On VT125 and VT240 terminals, you press the RETURN key to indicate
the completion of input. You use the arrow keys to move the cursor. For
POINT, MULTIPOINT, and VALUE input, you can also use the PF3 key
to move the cursor a shorter distance and the PF4 key to move the cursor
a greater distance.

Device Specifications B-3

B.1.6.1 POINT Input

The default values for POINT input on VT125 and VT240 terminals are a~
follows:

Input Construct

Unit

Initial cursor position

Echo area

B.1.6.2 MULTIPOINT Input

Default Value

1

(0.5, 0.5) in world coordinates

[(0,479.0) x (0,479.0)] in device coordinates

When you enter MULTIPOINT input, press the space bar to enter each
point and press RETURN when the series of points is complete. A line is
displayed that joins successive points in the series of points entered. The
DELETE key eliminates the last point entered.

The default values for MULTIPOINT input on VTl 25 and VT240 terminal~
are as follows:

Input Construct

Unit

Initial number of points

Echo area

B-4 Device Specifications

Default Value

1

0

[(0,479.0) x (0,479.0)] in device coordinates

:.1.6.3 CHOICE Input

The default values for CHOICE input on VT125 and VT240 terminals are
as follows:

Input Construct

Unit

VTl 25 echo area

VT240 echo area

Initial number of choices

Initial choice

Default menu

:.1.6.4 STRING Input

Default Value

[(513.0,767.0) x (0,479.0)] in device coordinates

[(533.0,767.0) x (0,479.0)] in device coordinates

5

"CHOICE l", "CHOICE 2", and so on through
"CHOICE 5"

The default values for STRING input on VT125 and VT240 terminals are
as follows:

Input Construct

Unit

Initial string

VT125 echo area

VT240 echo area

Default Value

Null

[(513.0,767.0) x (0,479.0)] in device coordinates

[(533.0,767.0) x (0,479.0)] in device coordinates

Device Specifications B-5

B.1.6.5 VALUE Input

The default values for VALUE input on VT125 and VT240 terminals are a
follows:

Input Construct

Unit

Initial range

Initial value

VTl 25 echo area

VT240 echo area

B. 1. 7 Color Index Values

Default Value

1

0.0-1.0

0.5

[(513.0,767.0) x (0,479.0)] in device coordinates

[(533.0,767.0) x (0,479.0)] device coordinates

The default color index values for monochrome terminals are as follows:

Red Green Blue
Index Color Intensity Intensity Intensity

0 Background 0.0 0.0 0.0

1 Nonnal 0.0 1.0 0.0

2 Dark 1.0 0.0 0.0

3 Light 1.0 1.0 1.0

The default color index values for color terminals are as follows:

Red Green Blue
Index Color Intensity Intensity Intensity

0 Black 0.0 0.0 0.0

1 Green 0.0 1.0 0.0

2 Red 1.0 0.0 0.0

3 Blue 0.0 0.0 1.0

B-6 Device Specifications

:.2 VAXstations

This section describes the information needed to use VAX BASIC graphics
statements with VAXstations I, II, and 11/GPX .

. 2.1 Device Types

VAXstations I, II, and 11/GPX are all device type 41 .

. 2.2 Windowing Capabilities

VAX BASIC graphics does not support calls to the VAXstation windowing
software; therefore, you should not use VAX BASIC graphics statements
and calls to the window manager products in the same program.

Output on VAXstations is displayed on a new window and the output
display disappears when the new window is closed. There are various
ways to keep the output display active. For instance, you can include
SLEEP statements in your programs.

When performing input, VAX BASIC positions the display window as
defined by the input echo area (device coordinates). When generating
output, VAX BASIC positions the display window as defined by the
current device viewport.

.2.3 Text Fonts

VAXstations support the four hardware fonts illustrated in the following
figures.

Device Specifications B-7

Figure B-1: VAXstation Font Number 1

HIJKLMNtJPQR~3TUVWXYZ [

1 j .t'• ' .. a :.1 \ _ ·=" b c de t- ;~ h 1.J k. l mn (J

pqrstuv··1lXVZ t I} -

ZK-3062-84

B-8 Device Specifications

Figure B-2: VAXstation Font Number -1

456789:; (:)1@ABCOEFG

HIJKLf.1HOPQRSTUWXYZ[

a1qr"StUVWX!fZ {I.}....,

ZK-3063-84

Device Specifications B-9

Figure B-3: VAXstation Font Number -2

! $%&, () * +. /0 .12.3

496789:; <=>?~ABCDEFG

HZ~KLMNOPQRSTUVWXV2[

pqrstuv....,xyz -{I J-,.,.,

ZK-3064-84

B-10 Device Specifications

Figure 8-4: VAXstation Font Number -3

.. t:t $ %& ,. () * +, - . / () 1_ 2 3

456789:; < > ?@ABCDEFG

HI .3 KLMNOPORSTUVWXYZ (

".] - 'abcde :£gh_i_ ... i 1<.1_1nn.o

pqrst l..l'v'WX'YZ -(I)- -

ZK-3065-84

,2.4 Pattern Values

The following table lists the values for the area style index when the area
style is set to PATTERN. The default color index values are assumed;
however, you can change these with the SET COLOR MIX statement.

Device Specifications 8-11

Style Index

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

B-12 Device Specifications

Appearance

Black light diagonally woven pattern (25%)

Red light diagonally woven pattern (25%)

Green light diagonally woven pattern (25%)

Blue light diagonally woven pattern (25%)

Cyan light diagonally woven pattern (25%)

Magenta light diagonally woven pattern (25%)

Yellow light diagonally woven pattern (25%)

Black darker diagonally woven pattern (50%)

Red darker diagonally woven pattern (50%)

Green darker diagonally woven pattern (50%)

Blue darker diagonally woven pattern (50%)

Cyan darker diagonally woven pattern (50%)

Magenta darker diagonally woven pattern (50%)

Yellow darker diagonally woven pattern (50%)

Black darkest diagonally woven pattern (75%)

Red darkest diagonally woven pattern (75%)

Green darkest diagonally woven pattern (75%)

Blue darkest diagonally woven pattern (75%)

Cyan darkest diagonally woven pattern (75%)

Magenta darkest diagonally woven pattern (75%)

Yellow darkest diagonally woven pattern (75%)

Black horizontal brick pattern

Red horizontal brick pattern

Green horizontal brick pattern

Blue horizontal brick pattern

Cyan horizontal brick pattern

Magenta horizontal brick pattern

Yellow horizontal brick pattern

Black vertical brick pattern

Red vertical brick pattern

Style Index

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Appearance

Green vertical brick pattern

Blue vertical brick pattern

Cyan vertical brick pattern

Magenta vertical brick pattern

Yellow vertical brick pattern

Black brick pattern at -45 degrees

Red brick pattern at -45 degrees

Green brick pattern at -45 degrees

Blue brick pattern at -45 degrees

Cyan brick pattern at -45 degrees

Magenta brick pattern at -45 degrees

Yellow brick pattern at -45 degrees

Black brick pattern at 45 degrees

Red brick pattern at 45 degrees

Green brick pattern at 45 degrees

Blue brick pattern at 45 degrees

Cyan brick pattern at 45 degrees

Magenta brick pattern at 45 degrees

Yellow brick pattern at 45 degrees

Black finely· woven grid

Red finely woven grid

Green finely woven grid

Blue finely woven grid

Cyan finely woven grid

Magenta finely woven grid

Yellow finely woven grid

Black sparsely woven grid

Red sparsely woven grid

Green sparsely woven grid

Blue sparsely woven grid

Device Specifications B-13

Style Index

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

8-14 Device Specifications

Appearance

Cyan sparsely woven grid

Magenta sparsely woven grid

Yellow sparsely woven grid

Black downward scales (fish-like)

Red downward scales (fish-like)

Green downward scales (fish-like)

Blue downward scales (fish-like)

Cyan downward scales (fish-like)

Magenta downward scales (fish-like)

Yellow downward scales (fish-like)

Black upward scales

Red upward scales

Green upward scales

Blue upward scales

Cyan upward scales

Magenta upward scales

Yellow upward scales

Black rightward scales

Red rightward scales

Green rightward scales

Blue rightward scales

Cyan rightward scales

Magenta rightward scales

Yellow rightward scales

Style Index

85

86

87

88

89

90

91

91-203

.2.5 Hatch Values

Appearance

Black leftward scales

Red leftward scales

Green leftward scales

Blue leftward scales

Cyan leftward scales

Magenta leftward scales

Yell ow leftward scales

Increasing densities, incrementing first by color, starting at
1/16 density, incrementing by 1/16, up to 15/16 density

The following table lists the values for the area style index when the area
style is set to HATCH.

Style Index

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

-12

-13

-14

Appearance

Cross hatching

Diagonal lines at 45 degrees (50%)

Diagonal lines at -45 degrees (50%)

Horizontal lines (50%)

Vertical lines (50%)

Diagonal lines at 45 degrees-sparse (12.5%)

Diagonal lines at -45 degrees-sparse (12.5%)

Horizontal lines-sparse (12.5%)

Vertical lines-sparse (12.5%)

Diagonal lines at 45 degrees (25%)

Diagonal lines at -45 degrees (25%)

Horizontal lines (25%)

Vertical lines (25%)

Diagonal lines at 45 degrees-sparse (6.25%)

Device Specifications B-15

Style Index

-15

-16

-17

-18

-19

-20

-21

-22

-23

-24

-25

-26

-27

-28

-29

-30

-31

-32

-33

B.2.6 Device Coordinates

Appearance

Diagonal lines at -45 degrees-sparse (6.25%)

Horizontal lines-sparse (6.25%)

Vertical lines-sparse (6.25%)

Diagonal lines at 45 degrees (75%)

Diagonal lines at -45 degrees (75%)

Horizontal lines (75%)

Vertical lines (75%)

Diagonal lines at 45 degrees-sparse (50%)

Diagonal lines at -45 degrees-sparse (50%)

Horizontal lines-sparse (50%)

Vertical lines-sparse (50%)

Diagonal lines at 45 degrees-sparse (75%)

Diagonal lines at -45 degrees-sparse (75%)

Horizontal lines-sparse (75%)

Vertical lines-sparse (75%)

Horizontal lines-very fine (50%)

Vertical lines-very fine (50%)

Finely woven grid

Sparsely woven grid

The VAXstation device coordinates have the range ([0,0.3319027] x
[0,0.2738526]), in meters.

The VAXstation handler divides the device coordinate range into raster
units to establish the pixels actually used by the physical device. The
VAXstation raster unit range is ([0,1011] x [0,834]).

8-16 Device Specifications

t2. 7 Input Constructs

On a VAXstation, you can enter input with the keyboard or the mouse.
With the keyboard, you press the RETURN key to indicate the comple­
tion of input. You use the artow keys to move the cursor. For POINT,
MULTIPOINT, and VALUE input, you can use the PF3 key to move the
cursor a shorter distance and the PF4 key to move the cursor a greater
distance.

For all input types except STRING, pressing the leftmost mouse button
enters the input value. The middle button on the mouse causes the input
to be canceled. You cannot use the keyboard to enter or cancel input. For
STRING input, use the RETURN key to enter input and the CTRL/U key
to cancel input. To begin entering MULTIPOINT input, you press and
release the leftmost button on the mouse, and then move the mouse as
desired.

The input units for VAXstations are as follows:

Input Types Units

POINT 1

MULTIPOINT 1

VALUE

CHOICE 1

STRING 1, 2

For all input types, you specify the echo area in device coordinates. The
device coordinate system origin for VAXstations is in the lower left comer
of the display surface. By default, the VAXstation handler uses an echo
area whose lower left comer is located in the lower left comer of the
display surface (the origin of the device coordinate system).

If, during input, you move the mouse outside the echo area, mouse
tracking is disabled until the mouse is once again within the echo area.

When you request input, the VAXstation handler pops the worksta­
tion viewport to the top of any other overlapping viewports. Viewport
appearance before and after the input request is unchanged.

The sections that follow briefly describe each input type and show initial
values for each.

Device Specifications B-17

B.2.7.1 POINT Input

The default values for POINT input on VAXstations are as follows:

Input Construct

Unit

Initial position

Echo area

Default Value

(0.5, 0.5) in world coordinates

((0,0.3286231) x (0,0.2695890)] in device coordi­
nates (meters)

If the user attempts to enter a point outside of of the echo area, the
VAXstation handler ignores the entry.

8.2. 7 .2 MUL Tl POINT Input

The default values for MULTIPOINT input on VAXstations are as follows:

Input Construct

Unit

Initial number of points

Echo area

B.2. 7 .3 CHOICE Input

Default Value

1

0

((0,0.3286231) x (0,0.2695890)] in device coordi­
nates (meters)

The default values for CHOICE input on VAXstations are as follows:

Input Construct

Unit

Echo area

Initial number of choices

Default strings

8-18 Oevice Specifications

Default Value

1

{(0,0.02) x (0,0.02)] in device coordinates (meters)

2

"YES", "NO"

:.2. 7 .4 STRING Input

The default values for STRING input on VAXstations are as follows:

Input Construct

Unit

Initial string

Echo area

STRING Input Unit 1

Default Value

1

Null

[(0,0.2) x (0,0.01)] in device coordinates (meters)

STRING input unit 1 returns a DEC Multinational text string to the calling
program.

An underline cursor marks the current position within the string. The
DELETE key deletes the previous character from the string and erases
the character from the display. The left and right arrow keys change the
editing position within the string. Pressing CTRL/ A toggles between
insert and overlay mode.

You enter STRING input unit 1 by pressing the RETURN key, and you
cancel input by pressing CTRL/U.

STRING Input Unit 2

The string logical input unit 2 returns an SMG Encoded Key value. The
input request for this unit ends as soon as the user presses a key on the
keyboard. For more information on STRING input unit 2, refer to the
documentation for the SMG Run-:Time Library Routines.

:.2. 7 .5 VALUE Input

The echo area must be at least 0.03411 meters wide by 0.01476 meters
high, so that there is sufficient room to display the digital value repre­
sentation of the current value. If the echo area is too small, an error is
generated.

Device Specifications 8-19

The default values for VALUE input on VAXstations are as follows:

Input Construct

Unit

Initial range

Initial value

Echo area

B.2.8 Color Index Values

Default Value

1

0.0-1.0

0.5

[(0,0.127) x (0,0.0254)] in device coordinates
(meters)

The following table lists the default red, green, and blue intensity associ­
ated with each color index value on monochrome VAXstations. Note that
the VAXstation workstations use a white background by default.

Red Green Blue
Index Color Intensity Intensity Intensity

0 White 1.0 1.0 1.0

Black 0.0 0.0 0.0

If you request a shade that is above 50% on the gray scale, the VAXstatio:
handler uses the black representation; otherwise, it uses the white repre­
sentation.

The following table lists the default red, green, and blue intensity as­
sociated with each color index value. The number of default colors is
anywhere from 2 to 248, depending on the GPX bit planes. (For more
information about GPX bit planes, see the VAX GKS documentation.)
Be aware that these values can be redefined with the SET COLOR MIX
statement, and that a change to the color intensity associated with red,
green, or blue alters the color associated with the color index. The first
eight default colors and the equivalent intensity values are as follows:

B-20 Device Specifications

Red Green Blue Gray
Index Color Intensity Intensity Intensity Level

0 White 1.0 1.0 1.0 1.0

Black 0.0 0.0 0.0 0.0

2 Red 1.0 0.0 0.0 0.30

3 Green 0.0 1.0 0.0 0.59

4 Blue 0.0 0.0 1.0 0.11

5 Cyan 0.0 1.0 1.0 0.60

6 Magenta 1.0 0.0 1.0 0.41

7 Yellow 1.0 1.0 0.0 0.89

Color indices 8 through 32 are random colors defined so that you can
use any two colors side by side without having difficulty distinguishing
between colors. Indices 33 through 248 are defined such that first the blue
intensity value is incremented, then the green intensity, and finally the red
intensity .

. 3 Color Intensities

The following chart illustrates the possible colors that you can display
by supplying the indicated intensity values with the SET COLOR MIX
statement.

Figure B-5 presents a chart of 64 colors and their corresponding red,
green, and blue intensity values. If you are working with a color VT125,
a VT241, or a VAXstation 11/GPX, you can use this color chart as a guide
when using the SET COLOR MIX statement. The colors presented are the
64 colors supported by the VTl25 and the VT241.

You should use this color chart as a guide. You should not expect your
monitor to display the colors exactly as shown. Colors can vary from
monitor to monitor depending on the following factors:

• The current background color (affects lighter shades)

• The current brightness and contrast control settings

• The available room light

• The proximity of the primitive to other colors on the display

Device Specifications 8-21

Figure B-5: Intensity Values for VT125 and VT240 Terminali
and VAXstations

Red Green Blue

0.0000 0.0000 0.0000

0.1400 0.1400 1.0000

1.0000 1.0000 1.0000

1.0000 0.6133 0.4200

1.0000 0.5700 0.1400

0.8538 0.6646 0.2862

0.8400 0.5600 0.0000

1.0000 0.1400 0.1400

0.8400 0.0000 0.0000

0.8400 0.0000 0.5600

(Continued on next pag1

B-22 Device Specifications

Figure B-5 (Cont.): Intensity Values for VT125 and VT240
Terminals and VAXstations

Red Green Blue

1.0000 0.1400 0.5700

0.8538 0.2862 0.6646

1.0000 0.1400 1.0000

1.0000 0.4200 0.6133

0.0000 0.0000 0.5600

0.6133 0.4200 1.0000

0.4200 1.0000 1.0000

0.5600 0.0000 0.8400

0.7765 0.9235 0.9235

0.2862 0.6646 0.8538

(Continued on next page)

Device Specifications 8-23

Figure B-5 (Cont.): Intensity Values for VT125 and VT240
Terminals and VAXstations

Red Green Blue

0.2862 0.2862 0.8538

0.4200 0.6133 1.0000

0.1400 1.0000 1.0000

0.5700 0.1400 1.0000

0.0000 0.5600 0.8400

0.0000 0.0000 0.8400

0.1400 0.5700 1.0000

0.0000 0.8400 0.5600

0.0000 0.5600 0.0000

0.1400 1.0000 0.5700

(Continued on next page)

8-24 Device Specifications

Figure B-5 (Cont.): Intensity Values for VT125 and VT240
Terminals and VAXstations

Red Green Blue

0.5700 1.0000 0.1400

0.1400 1.0000 0.1400

0.0000 0.8400 0.0000

0.2862 0.8538 0.2862

0.5600 0.8400 0.0000

1.0000 1.0000 0.7000

0.6646 0.8538 0.2862

0.9235 0.9235 0.7765

0.7119 0.7119 0.4281

0.5600 0.5600 0.0000

(Continued on next page)

Device Specifications B-25

Figure B-5 (Cont.): Intensity Values for VT125 and VT240
Terminals and VAXstations

Red Green Blue

1.0000 1.0000 0.1400

0.6700 0.6700 0.6700

0.8521 0.5679 0.5679

0.3300 0.3300 0.3300

0.5600 0.0000 0.0000

0.8538 0.2862 0.2862

0.6258 0.2142 0.2142

0.5600 0.0000 0.5600

0.7119 0.4281 0.7119

1.0000 0.4200 1.0000

(Continued on next page

B-26 Device Specifications

Figure B-5 (Cont.): Intensity Values for VT125 and VT240
Terminals and VAXstations

Red Green Blue

1.0000 0.7000 1.0000

0.6646 0.2862 0.8538

0.9235 0.7765 0.9235

0.2142 0.2142 0.6258

0.7000 1.0000 1.0000

0.5679 0.5679 0.8521

0.0000 0.5600 0.5600

0.4281 0.7119 0.7119

0.2862 0.8538 0.6646

0.5679 0.8521 0.5679

(Continued on next page)

Device Specifications B-27

Figure B-5 (Cont.): Intensity Values for VT125 and VT240
Terminals and VAXstations

Red Green Blue

0.2142 0.6258 0.2142

0.4200 1.0000 0.6133

0.6133 1.0000 0.4200

1.0000 1.0000 0.4200

B-28 Device Specifications

' \CTIVATE DEVICE• 8-5, 9-4
\lignment of text• 4-15, 4-15T
\ngle

text• 4-11, 9-42, 9-203
\ngle measurement• 4-11
\NSI • 1-14
\rea

asking about attributes• 9-6, 9-8, 9-1 O
attributes• 3-23 to 3-29
changing the color• 3-3
changing the style• 9-149
changing the style index• 9-152
displaying• 2-13 to 2-15, 9-96, 9-120, 9-126

9-137 '
\rray

coordinates in• 2-19, 9-120
for a matrix • 6-30

\SK AREA COLOR• 3-29, 9-6
\SK AREA STYLE• 3-29, 9-8
\SK AREA STYLE INDEX•3-29, 9-10
\SK CHOICE ECHO AREA• 9-12
\SK CLIP• 5-31 , 9-14
\SK COLOR MIX• 3-11, 9-16
\SK DEVICE SIZE• 7-36, 8-13, 9-18
\SK DEVICE TYPE• 8-12, 9-20
\SK DEVICE VIEWPORT • 9-22
\SK DEVICE WINDOW• 8-15, 9-24
\SK LINE COLOR• 3-23, 9-26
\SK LINE STYLE• 3-22, 9-28
\SK MAX COLOR• 3-10, 9-30
\SK MAX LINE SIZE• 3-23, 9-32
\SK MAX POINT SIZE• 3-16, 9-34

INDEX

ASK POINT COLOR• 3-16, 9-36
ASK POINT STYLE• 3-16, 9-38
ASK statements• 1-3T, 1-1 O

device identification clause• 8-2
ASK STRING ECHO AREA• 9-40
ASK TEXT ANGLE• 4-12, 9-42
ASK TEXT COLOR• 9-44
ASK TEXT EXPAND•4-9, 9-46
ASK TEXT EXTENT• 4-20, 9-48
ASK TEXT FONT• 4-6, 9-51
ASK TEXT HEIGHT • 4-6, 9-53
ASK TEXT JUSTIFY• 4-20, 9-55
ASK TEXT PATH•4-14, 9-57
ASK TEXT POINT• 4-20, 9-59
ASK TEXT SPACE• 4-10, 9-62
ASK TRANSFORMATION• 9-64
ASK TRANSFORMATION LIST • 9-66
ASK VALUE ECHO AREA• 9-68
ASK VIEW PORT• 5-19, 9-70
ASK WINDOW• 5-7, 5-19, 9-72
Aspect ratio• 5-14, 8-18 to 8-20, 9-164, 9-167
ASSIGN command (DCL) • 1-2, 8-4
Attributes• 3-1 to 3-29

area• 3-23 to 3-29
color• 3-2 to 3-11, B-21 F
color on VAX station• B-20
initial values • 8-7
line• 3-17 to 3-23
point • 3-11 to 3-17
text• 4-1 to 4-22, 9-236
text in pictures• 9-235

Attribute statements• 1-3T, 1-6
Axis• 2-2

lndex-1

B
Beam of light• 2-9 to 2-13
Boundaries

c

world viewport • 5-1 2 to 5-15
world window• 5-1 to 5-7

Cartesian coordinate system• 2-1
CHAR precision • 4-3
CHOICE input•7-2F, 7-6 to 7-11, 9-104

echo area• 9-12, 9-154
on V AXstations • B-18
on VT125/240 terminals• B-5
setting the initial value• 7-6, 9-170

Clauses
order of optional • 8-3

CLEAR• 8-6, 9-74
Clipping• 5-22 to 5-31, 9-14, 9-15 7

in a device transformation• 8-18
in a picture • 6-6
of text• 4-4

CLOSE DEVICE• 8-7, 9-76
Closed shapes

displaying• 2-6
Color• 9-6, 9-26, 9-36, 9-44

asking about attributes•3-10, 9-6, 9-16, 9-26
9-30, 9-36, 9-44 '

changing the index• 3-3
changing the intensity• 3-6
default indices• 3-2, 3-2T
default intensities• 3-6T, 9-17T, 9-162T
index• 9-30
index values on VT125/240 terminals• B-6
intensities• B-21 F
mixing•3-7, 9-16
on monochrome V AXstation • B-20
setting•3-2 to 3-11, 9-146, 9-187, 9-193,

9-205
V AXstation 11/GPX • B-20

Color chart for V AXstations • B-21 F
Color mix• 9-161
Color terminals• 1-2
Concatenation point of text• 4-20
Control statements• 1-3T, 1-12

device identification clause• 8-2

2-lndex

Coordinates• 2-1 to 2-3
enclosing with parentheses• 1-5, 2-2
for VT 125 / 240 terminals• B-3
in arrays• 2-19
VAX stations• B-16

Coordinate statements• 1-3T, 1-11
Coordinate system• 2-1 to 2-3, 5-1
COUNT clause

D

in MAT GRAPH statement• 2-21
in MAT LOCATE POINTS statement• 7-13
in SET INITIAL CHOICE statement• 7-7
in SET INITIAL MULTIPOINT statement• 7-23

DEACTIVATE DEVICE• 8-6, 9-78
Declarations• 1-1 O
Default• 1-12 to 1-13

CHOICE value• 7-2F
clipping• 5-22
color indices• 3-2T
color intensities• 3-6T, 9-17T, 9-162T
device• 8-2, 9-129
device type• 8-2
drawing board• 2-1 to 2-3, 5-1
input unit• 7-5
transformation• 5-16
VALUE input• 7-4
VAX BASIC•A-1
VAX GKS• A-1
world viewport • 5-12
world window• 5-1

Device
activating• 8-5 to 8-7, 9-4
assigning a type• 8-4
boundaries• 8-13, 9-18
capabilities• 8-14
clearing the display• 9-7 4
closing• 8-7, 9-76
deactivating• 8-5 to 8-7, 9-78
default• 8-2, 8-6
default attributes• 9-140
default type• 8-4
display surface• 8-13
identification clauses• 8-2
identifying• 9-129
identifying multiple• 8-2 to 8-5

1evice (cont'd.)

input types• 7-2 to 7-5
logical name• 8-5, 9-129
measurements• 8-13
multiple• 8-1 to 8-14
multiple VAXstation windows• 7-1. 8-2
opening• 8-1, 8-5, 9-129
opening multiple• 8-1
protection • 8- 1
queued• 8-5
restoring initial state• 8-7
size• 9-18
supported types• 8-4, 9-130T
unspecified• 8-13
V AXstations • B-7
VT 125/240 • B-1

ievice identification
default• 8-2
for V AXstation windows• 7-1

ievice identification clause
in statements• 8-2

levice identification number• 7-1
levice transformation• 8-14 to 8-20, 9-22, 9-24
levice type• 8-2, 8-4, 8-12, 9-20, 9-129

for V AXstations • B-7
>evice types

assigning• 1-2
>evice viewport • 8-16 to 8-20, 9-22

setting • 9-164
>evice window• 8-15 to 8-20, 9-24, 9-167
>irection of text • 4-13
>RAW• 1-8, 2-24, 6-1 to 6-36, 9-80, 9-133

with a user matrix• 6-32
WITH ROT A TE• 6-21
WITH SCALE• 6-19
WITH SHEAR• 6-24
WITH SHIFT• 6-14
WITH TRANSFORM• 6-35
with transformation functions• 6-13 to 6-36

>rawing board
default• 2-1 to 2-3

:cho area• 7-36 to 7-37, 9-12, 9-40, 9-68,
9-154, 9-200, 9-224

:ND PICTURE• 6-2, 9-91

Error messages • 1-14
Example

libraries in kit• 1-9
EXIT PICTURE• 6-2, 9-92
Expansion factor of text• 4-8, 9-46, 9-208
EXTERNAL• 2-23, 6-1, 6-7

F
Fill style• 3-23 to 3-29
Floating-point declaration• 1-1 O
Font•4-1to4-6, 9-51, 9-210

default• 4-1
hardware• 4-1, 4-3, 4-4
precision• 4-3, 4-6
selection • 4-1 to 4-6
software • 4-1
speed of display• 4-1

Fonts
Hershey • 4-1
on VAX stations• 8-7
on VT 125 /240 terminals• B-2

FORMAT$ function
with GRAPH TEXT statement• 2-18

Function

G

See also Transformation function
FORMAT$•2-18
ROT A TE• 6-21, 9-82, 9-142
SCALE• 6-19, 9-81, 9-144
SHEAR• 6-24, 9-82, 9-231
SHIFT• 6-14, 9-82, 9-233
TRANSFORM• 6-35, 9-83, 9-235
user matrix• 9-83

GET POINT• 7-12, 9-93
GKS (Graphical Kernel System)• 1-14

See also VAX GKS
GKS$WSTYPE • 1-2, 3-2, 8-4
GRAPH AREA• 2-13 to 2-15, 9-96
Graphical Kernel System (GKS) • 1-14

See also VAX GKS
Graphics input• 7-1, 7-2F
Graphics standards• 1-14
GRAPH LINES• 2-5 to 2-8, 9-96

lndex-3

GRAPH METAFILE• 8-10, 9-99
GRAPH POINTS• 2-4, 9-96
GRAPH TEXT•2-15 to 2-18, 4-15T, 9-101

with FORMAT$ function• 2-18

H
Hatch index• 9-1 52

See also Area
changing the style• 3-25
on VT125/240 terminals•B-2
V AXstation • B-15

Height of text• 4-6, 5-4, 9-53, 9-213, 9-230,
9-236

Height-to-width ratio of text• 4-8
Hershey fonts• 4-1

Identification
of devices• 8-2

Input
CHOICE • 7-6 to 7- 11 , 9-104
echo area• 9-154, 9-200, 9-224
echo areas• 7-36 to 7-37
multiple points• 9-115, 9-123
MULTIPOINT• 7-12 to 7-31
on VT 125 /240 terminals• B-3
POINT• 7-12 to 7-31, 9-93, 9-107
priority of transformations• 9-185
STRING•7-31 to 7-33, 9-110
units• 7-5
VALUE• 7-34 to 7-35, 9-112
VAX station• B-17

Input priority of transformations• 7-17, 7-21,
9-185

Input statements• 1-3T, 1-10
device identification clause• 8-2

Input types• 7-2 to 7-5
on V AXstations • B-1 7

Integer declarations• 1-10
Intensity

changing color• 3-6
values• B-21 F

International Organization for Standards (ISO) •
1-14

4-lndex

ISO (International Organization for Standards) •
1-14

J
Justification of text• 4-15, 4-15T, 9-55, 9-215

L
Library

picture examples• 1-9
Light beam• 2-9 to 2-13
Line

asking about attributes• 3-22, 9-26, 9-28,
9-32

changing the color• 3-3
changing the style• 3-18 to 3-19, 9-28
changing the width• 3-19
curved•2-10 to 2-13
displaying• 2-5 to 2-13, 9-96, 9-120, 9-126,

9-137
style • 3-18T, 9-191
width• 9-189

LIST clause
in SET INITIAL CHOICE statement• 7-7

LOCATE CHOICE•7-9, 7-11, 9-104
LOCATE POINT• 7-12, 9-107
LOCATE STRING• 7-31, 7-33, 9-110
LOCATE VALUE• 7-34, 7-35, 9-112
Login procedures

GKS$WSTYPE • 8-4

M
MAT• 9-142, 9-144, 9-231, 9-233, 9-235

for defining matrices• 6-32
MAT GET POINTS•7-12, 9-115
MAT GRAPH• 2-19 to 2-23
MAT GRAPH AREA• 2-19 to 2-23, 9-120
MAT GRAPH LINES• 2-19 to 2-23, 9-120
MAT GRAPH POINTS•2-19 to 2-23, 9-120
MAT LOCATE POINTS•7-12, 9-123
MAT PLOT AREA• 9-126
MAT PLOT LINES• 9-126
MAT PLOT POINTS• 9-126

t1atrix

for transformation functions• 6-3Q
t1easurement of device• 8-13
t1enus•7-2F, 9-104
t1etafile • 8-8 to 8-12

creating• 8-8, 9-99
displaying • 8-10, 9-99

t1ultiple objects
displaying• 2-19 to 2-23

t1ultiple windows
on VAXstations•7-1, 8-2, B-7

t1ULTIPOINT input•7-4, 7-12 to 7-31, 9-115,

\I

9-123
accepting with default transformation • 7-1 2
accepting within pictures• 7-25
accepting with multiple transformation• 7-14
on V AXstations • B-18
on VT 125 / 240 terminals• B-4
setting the initial value• 7-23, 9-17 4

JDC (Normalized Device Coordinate) space• 5-9 to
5-10, 8-15

Jormalization transformation• 5-8 to 5-32, 8-14
Jormalized Device Coordinate space

See NOC space

)bjects
attributes of• 3-1 T
displaying multiple• 2-19 to 2-23

)PEN ... FOR GRAPHICS• 8-1 to 8-5, 8-7, 9-129
)PTION ANGLE• 4-11, 6-21, 6-24
)utput statements• 1-3T, 1-5

>arameters
in a picture• 2-24, 6-2 to 6-7, 9-133

>arentheses
enclosing coordinates• 2-2
for coordinates• 1-5

>ath of text•4-13, 9-57
>attern index• 9-152

Pattern index (cont'd.)

See also area
changing the style• 3-25
on VT 125/240 terminals• B-2
VAX station • B-11

PICTURE• 6-2
Picture

clipping in• 6-6
examples in kit• 1-9
exiting from• 6-2, 9-91, 9-92
GRAPH statements in• 6-14
identifiers• 2-23, 6-1
invalid statements in • 6-6
invoking• 1-8, 2-23, 6-2 to 6-7, 9-133
invoking with transformations• 6-13 to 6-36,

9-80
nested• 6-7 to 6-14, 6-29
parameters• 2-23, 6-2 to 6-7
PLOT statements in• 6-14
recursive• 6-9, 6-30
rotating• 6-21
scaling• 6-19
setting the world viewport • 6-6
setting the world window• 6-6
shearing• 6-24
shifting • 6-14
statements• 1-3T, 1-8, 9-133

PLOT
output • 6-14
with TRANSFORM function • 6-36

PLOT AREA• 9-137
PLOT LINES• 2-9 to 2-13, 9-137
PLOT POINTS• 9-137
Point

asking about attributes• 3-16, 9-34, 9-36,
9-38

changing the color• 3-3
changing the size• 3-13, 9-196
changing the style• 3-11, 9-38, 9-198
displaying•2-4, 9-96, 9-120, 9-126, 9-137

POINT input•7-3, 7-12 to 7-31, 9-93, 9-107,
9-115' 9-123

accepting with default transformation• 7-12
accepting within pictures• 7-25
accepting with multiple transformation• 7-14
on VAX stations• B-18
on VT125/240 terminals• B-4
setting the initial value• 7-22, 9-177

lndex-5

Portability of programs• 8-5
Precision of fonts• 4-3 to 4-6, 4-6
PRINT statements

in graphics • 4-2
Priority

of transformations• 9-66
of transformations for input• 7-1 7 to 7-22,

9-185
Privileges for opening terminals• 8-1
Protection for multiple devices• 8-1

R
RESTORE GRAPHICS• 8-7, 9-140
ROT A TE function• 6-21, 9-80, 9-82, 9-142

s
SCALE function•6-19, 9-80, 9-81, 9-144
SET AREA COLOR• 3-3, 9-146
SET AREA STYLE• 9-149
SET AREA STYLE INDEX• 3-25, 9-152
SET CHOICE ECHO AREA• 7-36, 9-154
SET CLIP•5-22, 9-157
SET COLOR MIX•3-6T, 9-161

intensity values• B-21 F
SET DEVICE VIEWPORT • 8-15, 9-164
SET DEVICE WINDOW• 8-15, 9-167
SET INITIAL CHOICE• 7-9, 9-170
SET INITIAL MULTIPOINT•7-23, 9-174
SET INITIAL POINT• 7-22, 9-177
SET INITIAL STRING• 7-33, 9-179
SET INITIAL VALUE• 7-34, 9-182
SET INPUT PRIORITY• 7-21, 9-185
SET LINE COLOR• 3-3, 9-187
SET LINE SIZE• 3-19, 9-189
SET LINE STYLE• 3-18T, 9-191
SET POINT COLOR• 3-3, 9-193
SET POINT SIZE• 9-196
SET POINT STYLE• 3-11, 9-198
SET PROTECTION/DEVICE command (DCL) • 8-1
SET STRING ECHO AREA• 7-36, 9-200
SET TEXT ANGLE• 4-11, 9-203
SET TEXT COLOR• 3-3, 9-205
SET TEXT EXPAND• 4-8, 9-208
SET TEXT FONT•4-2, 9-210
SET TEXT HEIGHT• 4-6, 5-4, 9-213

6-lndex

SET TEXT JUSTIFY• 4-15, 9-215
SET TEXT PATH•4-13, 9-218
SET TEXT SPACE• 4-9, 9-220
SET TRANSFORMATION• 5-16, 9-222
SET VALUE ECHO AREA•7-36, 9-224
SET VIEWPORT • 5-12, 5-17, 9-226
SET WINDOW• 5-2, 5-11, 5-17, 9-229
SHEAR function• 6-24, 9-80, 9-82, 9-231
SHIFT function• 6-14, 9-80, 9-82, 9-233
Size

changing for a line• 3-19
changing for a point• 3-13

Spacing of text• 4-9, 9-62, 9-220
Standards

graphics • 1-14
Starting point of text• 4-15T
Statements• 1-3T

ASK• 1-10
attribute• 1-6
control • 1-12
coordinate• 1-11
input• 1-10
output• 1-5
picture • 1-8

STRING
setting the initial value• 9-179

STRING input• 7-4, 7-31 to 7-33, 9-110
echo area• 9-40, 9-200
on V AXstations • B-19
on VT125/240 terminals• B-5
setting the initial value • 7-33

STRING precision• 4-3
STROKE precision • 4-3
Style

See also Hatch, Pattern
changing for a line• 3-18
changing for an area • 3-25
changing for a point• 3-11

Subprograms
linking• 6-2
PICTURE• 2-23, 6-1 to 6-37

SYSPRV privileges• 8-1

T
Terminal

color• 3-2

erminal (cont'd.)

monochrome• 3-2, 3-24
VAX station• B-7
VT 125/240 • B-1

erminal type
assigning• 1-2

erminal types
assigning

See also Device
ext

angle• 4-11 to 4-12, 9-42, 9-203
asking about attributes• 9-42 to 9-43
attributes in pictures• 9-236
box dimensions• 4-20, 9-48
changing the color• 3-3
changing the height• 5-4
clipping• 4-4
concatenation point• 4-20, 9-59
direction• 9-218
displaying• 2-15 to 2-18, 9-101
expansion factor• 9-46, 9-208
extent box • 9-48
extent rectangle• 4-20, 9-48
font•4-1 to 4-6, 9-51, 9-210
fonts on V AXstations • B-7
fonts on VT 125/240 terminals• B-2
height• 4-6 to 4-7, 9-53, 9-213
height for world window• 9-213, 9-229
height-to-width ratio• 4-8 to 4-9, 9-46, 9-208
justification• 4-15 to 4-20, 9-55, 9-215
path•4-13 to 4-14, 9-57, 9-218
precision• 4-3, 4-6
spacing• 4-4, 4-9 to 4-10, 9-62
speed of display • 4-4
transforming• 9-236

ext starting point• 4-15T
ransformation • 5-8 to 5-32

asking about attributes• 9-22, 9-24, 9-64,
9-66, 9-70, 9-72

current•5-16, 9-64, 9-70, 9-72, 9-222
defining • 5-8
device•8-14 to 8-20, 9-22, 9-24, 9-167
input priority• 7-17, 9-185
list• 9-66
matrix• 6-30 to 6-36
multiple• 5-16 to 5-22
normalization• 8-14, 8-20

Transformation (cont'd.)

priority list• 9-66
setting the current• 5-16, 9-222

Transformation function• 9-80
combining• 6-25
cumulative• 6-35
matrices for• 6-30
nested• 6-29
ROTATE• 6-21
SCALE• 6-19
SHEAR• 6-24
SHIFT• 6-14
TRANSFORM• 6-35
user matrix• 6-31

with MAT statement• 6-32
with TRANSFORM function• 6-35

TRANSFORM function• 6-35, 9-80, 9-83, 9-235

u
UNIT clause

default• 7-5
Units for input• 7-5
USING TRAN clause

with LOCATE POINT statement• 7-16
with SET INITIAL POINT statement• 7-22

v
VALUE input• 7-4, 7-34 to 7-35, 9-112

echo area• 9-68, 9-224
on VAX stations• B-19
on VT 125/240 terminals• B-6
setting the initial value• 7-34, 9-182

Variable declaration • 1-1 O
VAX GKS

declaring routines• A-3
direct calls• A-1 to A-11
routine arguments• A-4
states• A-1

VAXstation • B-7 to B-21
CHOICE input• B-18
color chart• B-21 F
default input values• B-17
device coordinates • B-16
environment characteristics• 8-7
hatches • B-15

lndex-7

VAXstation (cont'd.)

input types• B-1 7
multiple windows• 7-1, 8-2
MULTIPOINT input• B-18
output• 2-1
patterns• B-11
POINT input• B-18
STRING input• B-19
text fonts• B-7
VALUE input• B-19

Viewport • 5-10
boundaries• 9-18, 9-226
device• 8-16 to 8-20, 9-22, 9-164
setting• 9-70, 9-226
setting for a picture• 6-6
world• 5-10 to 5-15

Viewports
overlapping• 7-17 to 7-22

VT 125 terminal• B-1 to B-6
CHOICE input• B-5
color intensities• B-21 F
default input values• B-3
device coordinates• B-3
hatches• B-2
MULTIPOINT input• B-4
patterns• B-2
POINT input• B-4
STRING input• B-5
text fonts• B-2
VALUE input• B-6

VT240 terminal• B-1 to B-6
CHOICE input• B-5
color intensities• B-21 F
default input values• B-3
device coordinates• B-3
hatches• B-2
MULTIPOINT input• B-4
patterns• B-2
POINT input• B-4
STRING input• B-5
text fonts• B-2
VALUE input• B-6

w
Width

changing for a line• 3-19

8-lndex

Window• 5-10
boundaries• 9-229
device• 8-15 to 8-20, 9-24, 9-167
on VAX stations• 8-2
setting• 9-72, 9-229
setting for· a picture• 6-6
world• 5-1, 5-10, 5-11

Workstations
VAX stations• B-7
VT 125/240 terminals• B-1

World viewport • 5-10 to 5-15
setting• 5-12, 9-226
setting for a picture• 6-6

World window• 5-1 to 5-7

x

setting• 5-1, 9-229
setting for a picture• 6-6

X-axis• 2-2
X-coordinate • 2-2

y

Y-axis• 2-2
Y-coordinate • 2-2

Programming with
VAX BASIC Graphics

Al-HY 14A-TE

READER'S
COMMENTS

Note: This form is for document comments only.
DIGIT AL will use comments submitted on this form
at the company's discretion. If you require a written
reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your
comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make
suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user /reader that you most nearly represent:

D Assembly language programmer
D Higher-level language programmer
D Occasional programmer (experienced)
D User with little programming experience
D Student programmer
D Other (please specify)

Name -----------------Date __________ _

Organization ----------------------------

Street -------------------------------

City ________________ State ______ Zip Code ___ _

or Country

- - Do Not Tear. Fold Here and Tape -

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03062-2698

111 ••••• 11.11 •••• 11 1.11.1 •• 1.1 •• 1.1 •• 11 ••••• 1.11

- DoNotTear-FoldHere - - - - - - - - - - - - - -

No Postage
Necessary

if Mailed in the
United States

I
- - - - - - - -I

I

I

I

I

