VAX APL
Reference Manual

AA-GV09C-TE

June 1991

This reference manual describes the VAX APL functions, operators,
variables, and system commands.

Revision/Update Information: This revised document supersedes the

VAX APL Reference Manual Vols. 1&II
. . AR -PIH 2D TE
Operating System: VMS Version 5.4
P 9>y AA- SNPAB-TE

Software Version: VAX APL 4.0

Digital Equipment Corporation
Maynard, Massachusetts

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1982, 1983, 1985, 1987, 1991.
All Rights Reserved.

The Reader’s Comments form at the end of this document requests your critical evaluation to
assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: DEC, DECnet, DECwindows,
DECstation, VAX, VAXcluster, VMS, VT102, VT220, VT240, VT320, VT330, VT340, and the
DIGITAL logo.

HDSAVT, HDS201 and HDS221 are trademarks of Human Design Systems, Inc.
Tektronix is a trademark of Tektronix, Inc.

Contents

Preface e xi

1 VAX APL Primitive Functions and Operators

1.1 Primitive Scalar Functions. 1-2
1.11 Arithmetic Functions 1-10
1.1.1.1 +Conjugate 1-10
1.11.2 - Negative 1-11
1.1.1.3 * SIgNUIM 1-1
1.1.1.4 + Reciprocal 1-11
1.1.1.5 » Exponential 1-11
1.1.1.6 e Natural Logarithm 1-12
1117 o PiTimes e 1-12
1.1.1.8 LFloOr . ..ot e 1-12
1.1.1.9 T Ceilingt 1-13
1.1.1.10 | Magnitudettt tiinnnnn. 1-14
1.1.1.11 tFactorial e 1-14
1.1.1.12 2 ROl . . 1-14
1.1.1.13 +, -, x, and + Addition, Subtraction, Multiplication, and

DivVISION . . vttt e e e e e 1-16
1.1.1.14 x Power 1-16
1.1.1.15 e Logarithm 1-17
1.1.1.16 o Circle oo e e 1-17
1.1.1.17 L MINImum . ..ot it e e e e et e e e e e e 1-18
1.1.1.18 F Maximum . . .o e et e e e e e e et et et e 1-18
1.1.1.19 | Residue.o it e e e e e 1-18
1.1.1.20 1 Combinations ittt e 1-19
1.1.2 Logical Functions 1-21
1.1.3 Relational Functions0, 1-22

1.2

1

ECENIVAS ¥

U 1]

<«

n

- b b < < o o > [@E te m

~

]

[N 0o I o C]

U

o >IN © & & T H -«

and ; Catenate/Laminate.............................
Containst
Deal e
Depth

First . ..

Dyadic Format
Monadic Grade Down
Dyadic Grade Down
MonadicGrade Up
Dyadic Grade Up
Index Generator
Index Of e,

Pick ...
Ravel
Represent
Reshape
and e Reverse

1.3

1.3.1
1.3.2
1.3.3

& Dyadic Transpose
uUnion
vuUnique

~Without
APL Operators
/and # Slash
\and \ Backslash...................
. The Dot Operator
and # Compression and Replication

and # Reduction

N

and ¥ Expansion
and X Scan
. fOuter Product
f. gInner Product
[JAXIS
« Specification Function

~ -

o

Strand Assignment with the Specification Function
Selective Assignment with the Specification Function

2 VAX APL System Variables and Functions

2.1
2.1.1
2.1.2
2.2
2.21
222
2.3

System Variables

System Variable Names
System Variable Characteristics

System Functions.

System Function Names
Types of System Functions.
System Variables and Functions Reference . . .

OAI Accounting Information
OALPHA Alphabetic Characters
OALPHAL Lowercase Alphabetics
0ALPHAU Underscored Alphabetics
OARBOUT Arbitrary Output

04scII APL Approximation to the ASCII Character Set

04sSs Associating Files with Channels.
0AUS Automatic Save of the Workspace.
DAV AtomicVector
0B0oX Forming Character Matrices and Vectors

1-164
1-170
1-172
1-174
1-176
1-178
1-178
1-178
1-179
1-185
1-191
1-196
1-201
1-205
1-208
1-212
1-215
1-218
1-221

2-1
2-2
2-2
2-3
2-4
2-4
2-9
2-13
2-14
2-15
2-16
2-17
2-19
2-20
2-28
2-32
2-35

vi

OBREAK Suspending Execution
0CHANS Returning Channel Numbers
0cHS Returning File Organization and Open Status
0c¢IQ and 0¢0Q Packing and Unpacking Data...............
gcrsClosing Files
0CR Obtaining a Canonical Representation
gcT Comparison Tolerance cuuunn...
OCTRL Control Characters
ODAS Deassigning Files
ODc Display Control
ODL Delaying Execution.
0DpML Maximum Record Length
0DvC Returning Device Characteristics e
OEFR OEFS OEFC Event Flag System Functions
OERROR Exrror MeSsagecuuuuiimneenninnenennnns
O0EX Erasing a Named Object.

OEXP Expansion .

.....................................

OFI Converting Characters to Numerics
OFLS Returning File Information
OFMT The Report Formatter
OFx Establishing an Operation
OGAG Preventing Interruptions

010 Index Origin

.....................................

0L Monitoring Variable Changes

0Lc Line Counter

O0LXx Latent Expression00 iueenn...
OMAP Defining External Routinesto APL
OMBX Mailbox System Function
OMONITOR Gathering Data on Operations
O~c Returning a Name Classification
OFG Print High Minus 0ttt

ONL Constructing
OnNUM Digits

alistof Names........................

OoM Indexing a Boolean Vector
O0PACK Packing and Unpacking Data
OPP Print Precision e e

0PW Print Width

2-38
2-40
2-41
2-44
2-52
2-54
2-56
2-58
2-60
2-62
2-70
2-72
2-74
2-77
2-80
2-83
2-85
2-88
2-91
2-93
2-98
2-100
2-102
2-104
2-106
2-108
2-111
2-120
2-122
2-126
2-129
2-131
2-135
2-136
2—-138
2-142
2-144

0Qco Copying Objects from a Workspace

0QLD Loading a Workspace

gQPc Copying Objects with Protection
OR Monitoring Variable Changes
ORELEASE Unlocking Shared Records

OREP Replication
ORESET Resetting the State

Indicator

OREWIND Returning Next-Record Pointer to Start of File

ORL Link
0SF Quad Input Prompt ..
0SIGNAL Signaling Errors .
0SINK Discard Output. . . .
0SS String Search

0SToP Suspending Operation Execution
OTERSE Terse Error Messages

OTIMELIMIT User Response

Time Limit

OTIMEOUT Time Limit Report

OTLE Terminal Line Editing

Characteristics

0 TRACE Monitoring Operation Execution.

OTRAP Trap Expression . . .
07S Time Stamp
07T Terminal Type
gur User Load

0 VERSION Interpreter and Workspace Version

O vI Validating Input
O vPc Vector Process Control
[0 VR Visual Representation .
OwA Workspace Available . .

OWAIT Limiting Time on Read Functions
OWATCH Monitoring Variable Changes

0xqQ Executing Expressions

.............................

2-147
2-151
2-154
2-157
2-159
2-161
2-164
2-165
2-168
2-170
2-172
2-176
2-177
2-179
2-183
2-185
2-188
2-190
2-192
2-195
2-197
2-198
2-201
2-202
2-203
2-205
2-207
2-210
2-211
2-214
2-221

vii

3 VAX APL System Commands

viii

3.1
3.2
3.2.1
322
3.2.3
3.2.4
3.25
3.3

System Command Form.......
System Command Categories. . .
Query System Commands . .

Query/Change System Commands
APL Action System Commands
System Commands that Initiate System Action...........
Workspace Manipulation System Commands.............

System Command Reference . . .

YATTACH Interacting with Other Processes
) CHARGE Displaying Accounting Information................
) CLEAR Clearing the Active Workspace
) CONTINUE Saving the Workspace and Ending the Session.
) COPY Copying Objects from a Workspace

)DIGITS Output Precision
)DO Executing a DCL Command

YyDROP Deleting Stored Workspacesor Files.

yEDIT Editing with VAXTPU. . .
) ERASE Erasing Global Names .

)FNS Displaying a List of Functions
) GROUP Defining or Dispersinga Group
) GRP Displaying the Members of a Group
)GRPS Displaying a List of Groups
)HELP Obtaining Help on the VAX APL Language
) INPUT Diverting Input to Another Device

)LIB Listing Workspace Names .
) LOAD Retrieving a Workspace .

)MAXCORE Determining the Maximum Workspace Size
YMINCORE Determining the Minimum Workspace Size

) MON Returning to Operating System Command Level
)VMS Displaying Names in the Symbol Table
) OFF Terminating the APL Session
yOPS Displaying a List of Operators
YORIGIN Determining the Index Origin.
yoUTPUT Diverting Output to Another Device
) OWNER Displaying Information About Workspace Creation

) PASSWORD Workspace Password

3-2
3-2
3-3
3-3

3-5
3-5

3-8
3-10
3-11
3-13
3-15
3-17
3-19
3-21
3-22
3-28
3-31
3-33
3-35
3-36
3-38
3-45
3-47
3-50
3-53
3-54
3-56
3-57

3-62
3-64
3-65
3-68
3-70

) PcOPY Copying from a Workspace with Protection. 3-72

) PUSH Interacting with Operating System Programs.......... 3-74
) SAVE Saving a Copy of the Active Workspace 3-77
)SI Displaying the State Indicator 3-80
)SIC Clearing the State Indicator 3-82
)SINL Displaying the State Indicator and Local Symbols 3-83
) SIS Displaying the State Indicator and Executing Lines 3-84
) STEP Executing Lines of a Suspended Operation............ 3-85
) VARS Displaying a List of Variables 3-88
) VERSION Displaying the APL Version Number 3-90
YWIDTH Output Width 3-91
YWSID Workspace Identification 3-93
YXLOAD Retrieving a Workspace 3-95

A System Messages

Glossary

Index

Figures
1-1 Argument Corners Selected by Take Function 1-157

Tables
1 Documentation Conventions Table Xii
11 Arithmetic Scalar Functions 1-10
1-2 Trigonometric Functions Performed by o 1-17
1-3 Determining Result for Dyadic ! 1-20
1-4 Truth Table for Logical Functions 1-21
1-5 Primitive Mixed Functions........................... 1-23
1-6 Dyadic Transpose Definitions 1-167
1-7 APL Operatorso ittt e 1-177
2-1 System Variable Value Ranges 2-2
2-2 System Variables and Functions 2-9
2-3 File Organization Qualifiers.......................... 2-21

24
2-5
2-6

31

Elements of DAV(OIO0<0) «cve vt
Type Parameter Values
Device Characteristics Longword
Characteristics of External Data Types

System Commands

2-33
2-46
2-75
2-115
3-5

Preface

This manual describes the VAX APL interpreter, including VAX APL
language and programming elements, facilities for controlling the VAX APL
environment, the interaction between VAX APL and the VMS operating
system, and VAX APL’s I/O capabilities.

Intended Audience

This manual is intended for experienced APL programmers. This manual is
not a tutorial and is inappropriate for novice users. Programmers experienced
with other languages such as FORTRAN or BASIC can learn VAX APL from
this manual, but are advised to study it in conjunction with an APL language
primer.

Related Documents

The VAX APL User’s Guide describes the VAX APL interpreter and the
environment in which it operates. The VAX APL Installation Guide contains
instructions for installing VAX APL on the VMS operating system. The
VAX APL Installation Guide also explains how to install QAPL, the license-
free, execute only version of VAX APL.

To find out more about the VMS system, refer to the VMS system documents
listed in the Introduction to VMS or use the Help utility by entering HELP
at the system prompt ($). The VMS DCL Dictionary and the Introduction to
VMS System Management provide detailed information you may need to know
to use some of the features of VAX APL.

Product References
In this document, VAX APL is referred to as APL.

Xi

Conventions

The following conventions are used in this manual.

Xii

Table 1 Documentation Conventions Table

Conventions

Meaning

Default values used in
examples

Delimiting pairs

UPPERCASE

A B K

italics

Quotation mark (')

>

[l

[]

The default value for the index origin (010) is 1, unless
explicitly stated to be 0. Numeric print precision (0 PP)
is 10 digits. Enclosed arrays are displayed with boxes
around enclosed items and with all values in the top left
corner of the display areas. This is done using:

ODC+ (T17123) ++++]|[|--"

This manual uses n textr ; other delimiting pairs may be
any of the following pairs:

0o oo <> c>

Uppercase words and letters, used in format examples,
indicate that you should type the word or letter exactly
as shown.

The APL characters 4, B, and K are used in generic
descriptions of command formats. 4 represents a
left argument, B represents a right argument, and &
represents an axis argument.

Italicized lowercase words and letters, used in format
examples, indicate that you are to substitute a word or
value of your choice.

The term quotation mark refers to the APL single
quotation mark (').

The equivalence symbol means “is equivalent to”.

The double square brackets indicate that the item or
string of items inside the brackets is optional. Individual
items within a string of items are delimited by the .ab
character, which indicates that you may choose only one
item from the string.

Single square brackets that appear in the format
specification for a language element are required syntax
for the element being described.

(continued on next page)

Table 1 (Cont.) Documentation Conventions Table

Conventions Meaning

{} Braces are used to enclose lists from which one
item must be chosen. The items in such a list are
delimited by the | character. For some user-defined
operation headers, the braces are required syntax (this
requirement is described in Chapter 3 of the VAX APL
User’s Guide).

n/a and n/s These abbreviations indicate that something is Not
Applicable or Not Supported in the context being
discussed.

A horizontal ellipsis indicates that the preceding items
can be repeated one or more times. A comma preceding
the ellipsis indicates that successive items must be
separated by commas.

A vertical ellipsis indicates that not all of the statements
in an example or figure are shown.

Color Color in examples shows user input.

<CR><LF> The <CR><LF> symbol indicates the presence of a
control sequence representing a Carriage Return and a
Line Feed.

CtrI/X The Ctrl/X symbol indicates that you must press the key

labeled Ctrl while you simultaneously press another key,
for example, Ctrl/C, Ctrl/Y, Ctrl/O.

XXX A symbol such as @ indicates that you press a key on

the terminal. For example, the symbol represents
a single stroke of the Return key on a terminal.

Unless otherwise noted:
* All numeric values are represented in decimal notation.
* You terminate commands by pressing the Return key.

¢ All examples in the manual are executable, and comments beginning with
the lamp (a) symbol are part of the examples; comments surrounded by
parentheses are not part of the examples.

xiii

1

VAX APL Primitive Functions and
Operators

VAX APL provides functions that allow you to perform various operations with
arrays. These functions are termed primitive because they represent the basic
capabilities of the language. You do not have to write programs to perform
these operations; they are built in. That is, the APL interpreter already knows
how to perform them.

Primitive functions may be classified by the characteristics of their arguments
and results. One distinction is whether a function is scalar or mixed. The APL
primitive scalar functions perform scalar (or scalar-like) operations; the APL
primitive mixed functions perform mixed-rank operations.

Primitive functions are either monadic or dyadic. Monadic functions require
only one argument, which is placed immediately to the right of the function.
Dyadic functions require two arguments, one on either side of the function.

Primitive functions also have a domain and a range. The domain of a function
is the permissible type, shape, and values of its argument arrays; the range is
the permissible type, shape, and values of its result array.

In addition to describing the APL primitive functions, this chapter describes
the APL primitive operators (operations that produce functions as results), and
the specification function (a function used to associate values with identifiers).

APL also provides functions for system communication and for I/O. These are
explained in Chapter 2, Chapter 3, and in Chapter 5 of the VAX APL User’s
Guide.

APL Reference Manual 1-1

APL Primitive Functions
1.1 Primitive Scalar Functions

1.1 Primitive Scalar Functions

The primitive scalar functions include the arithmetic, relational, and logical
functions that almost everyone is familiar with—addition, subtraction, equality,
and, or, and so on—plus a few operations that are less familiar, such as residue
and roll. These functions are called scalar functions because they take scalar
arguments and return scalar results. For example:

'3 aFACTORIAL OF 3
6

2 + 2
n

The primitive scalar functions are extended on an item-by-item basis when
the argument array is not a scalar (the argument can be any shape, simple
or enclosed). In effect, APL operates on a sequence of scalar arguments and
returns one value for each argument. This process is known as scalar product.
For example:

345 AEACH ITEM IS TREATED AS A SCALAR
6 24 120

49 + 3 12 aEACH PAIR OF ITEMS IS ADDED
7 21

Here, APL applies the factorial (!) and addition (+) functions as if each item
were a scalar argument. For factorial, each of the three items in the argument
(a vector) returns a value. For addition, each corresponding pair of items is
added. The results are just as if five statements had been entered as follows:

24

15
120

4+ 3
7

9 + 12
21

Monadic scalar functions take only one argument, which is placed immediately
to the right of the function. The shape of the argument determines the shape
of the result. For example, a scalar argument returns a scalar result, and a
vector argument returns a vector result.

1-2 APL Reference Manual

APL Primitive Functions
1.1 Primitive Scalar Functions

Dyadic scalar functions have two arguments that must conform to each other.
They conform if one of the following is true:

¢ Their shapes match.
e At least one of the arguments is a singleton.

When the shapes match, the function is applied a number of times equal to the
number of items in the arguments, and the resulting array has the same shape
as the argument arrays.

Each item in the left argument array is associated with the item that has the
same position in the right argument array, and the result is placed in that
same position in the resulting array. For example:

123+123 aSHAPES OF BOTH ARGUMENTS CONFORM
2 46
ASHAPES DO NOT CONFORM
123+123%4
10 LENGTH ERROR
123+123%4
A

When one of the arguments is a singleton, the shape of the result is the same
as the shape of the nonsingleton argument. Again, the function is applied on
an item-by-item basis, but either the right or left argument (whichever is the
singleton) is the same each time the function is applied. For example:

1+123 aSINGLETON EXTENSION LEFT ARGUMENT
2 34
456 + 2 ASINGLETON EXTENSION RIGHT ARGUMENT
67 8
0«A <+ 10 (15 18 (8 u4) 21) 30
10 +-----------=--~ + 30
[15 18 +---+ 21|
| I8 sl |
! oot
R ittt +
5+ A
15 4----mmmmmmm——e- + 35
|20 23 +----+ 26|
| [13 9] |
I to-mmt
R it +

APL Reference Manual 1-3

APL Primitive Functions
1.1 Primitive Scalar Functions

When both arguments are singletons, the shape of the result is the same as
the shape of the argument with the higher rank. For example:

B«(1 11 p2) B IS A RANK 3 SINGLETON

C<(1 1 p3) aC IS A RANK 2 SINGLETON

D«B + C ASMALLER RANK WILL CONFORM TO LARGER
D ADISPLAY D, A SINGLETON OF SHAPE 1 1 1

5

The primitive scalar functions are pervasive functions; that is, their operations
extend pervasively throughout the depth of enclosed arrays:

ABOTH ARGUMENTS HAVE DEPTH = 3
0« A« 10 (15 18 (8 4) 21) 30

10 4m=mmmm o + 30
|15 18 +---+ 21|
I 8 4l |
l t---t |
fommmmmmm e +
0« B+«5 (12 11 (3 3) 2) 25
5 pommmmmmm e + 25
[12 11 +---+ 2|
| 1331 |
I -t
tommmmo - ——---t
4 - B
5 t----mmmmmm - + 5
[3 7 +---+ 19|
l s 1] |
| bt
ittt +

The conformance rules for the arguments of the primitive scalar functions are
also pervasive; APL does a conformance check at each level of enclosed arrays.
During the check, APL performs singleton extension when necessary. The
following example uses the dyadic minimum function (|), which returns the
smaller of two arguments:

4 (53) L (286) 1
t---t t---t
[2 4] |1 1]
to--t +---+

In the preceding example, APL first pairs the corresponding items (through the
process of scalar product). The pairs are 4| (2 6) and (5 3) | 1. Second, APL
pairs the singleton argument with each element inside the enclosed arguments
(through the process of singleton extension). These pairs are ((412) (416))
and ((50L1) (3L1)). Finally, APL evaluates each pair of scalar arguments.

1-4 APL Reference Manual

APL Primitive Functions
1.1 Primitive Scalar Functions

The following example shows two arguments that conform at the top level
of their nesting, but do not conform at a lower level. This example uses the
monadic enclose function (c), which encloses its argument, as well as the
dyadic minimum function (1).

4 (53) L2561
10 LENGTH ERROR

4 (53) Le261

A

In the preceding example, APL first pairs the corresponding items. The
pairs are 4| (2 6 1) and (5 3) L (2 6 1). Second, APL pairs the singleton
argument with each element inside the enclosed argument. These pairs are
((u12) (416) (ul1)). Third, APL recognizes the length error in the pair
of enclosed arguments (5 3 and 2 6 1) and signals the error. (If one of these
enclosed arguments had been a singleton, APL would have applied singleton
extension.)

Primitive scalar functions generally take numeric arguments. The argument
domain for relational functions (<, =, <, >, =, #), however, includes both
character and numeric arguments. The equal (=) and not equal (=) functions
can take both character and numeric arguments in the same expression. The
result domain for all primitive scalar functions is a scalar numeric array.

Primitive scalar functions return empty arrays when there is an empty
argument (provided that APL does not detect an error before evaluating the
result). For example:

1+2+3+4+10 a10 ALWAYS GENERATES AN EMPTY ARRAY
(APL outputs a blank line)
IAI(II
(APL outputs a blank line)
AARGUMENT SHAPES DO NOT CONFORM
(1 0 3p1) + 15
9 RANK ERROR
(1 0 3p1) + 15
A

You can specify an axis ([k]) with dyadic scalar functions. For example, this
allows you to apply a vector to each row or each column of a matrix. The
general form of axis is as follows: Af(K]1B, where 4 and B are the arguments
to f (a scalar function), and X is the axis argument. Note that X specifies the
axes of subarrays constructed from whichever argument has the larger rank.
The argument of smaller rank is combined with these subarrays.

APL Reference Manual 1-5

APL Primitive Functions
1.1 Primitive Scalar Functions

For example, if you specify axes [1 3], then the shape of the subarrays of the
larger rank argument is the lengths of that argument’s first and third axes,
and the smaller rank argument has the same shape as these subarrays. When
APL combines the two arguments, it does so along the second axis of the larger
rank argument of scalar extension. The length of the second axis in this case
is the number of subarrays involved.

In all cases, the axis argument must be near-integer in the vector domain. The
length of k¥ must be equal to the smaller of the ranks of the arguments, and
the values in ¥ must be between the index origin and the larger of the ranks
of the arguments (you cannot specify an axis that does not exist). The order
of the items in the axis argument makes no difference; however, ¥ may not
contain duplicates. The arguments to the function f must conform by having
their shapes match along the axes specified by k. The shape of the result is the
same as the argument with larger rank.

For an enclosed argument, the application of the axis does not pervade, but
works only at the top levels of nesting. See the following examples:

A < 10 100 1000 ACREATE 4
0« B« 3 4p112 aCREATE AND DISPLAY B
2 3 4
6 7 8
0 11 12
A +[1] B ad CONFORMS TO AXIS 1 OF B
11 12 13 1y
105 106 107 108
1009 1010 1011 1012
A « 1 10 100 1000 ACREATE NEW A
4 x[2] B a4 CONFORMS TO AXIS 2 OF B
1 20 300 4000
5 60 700 8000
9 100 1100 12000
0«4 <« 2 300.1x16 aCREATE NEW 4
3

1
5
91

o o

.2 0.
.5 0.6
0« B« 24 30124 aCREATE NEW B

O N F
= ;N

13 14 15
16 17 18
19 20 21
22 23 24

1-6 APL Reference Manual

T

-
o
& F F

o o
oo

oS N F e
.« e e e
= w N e

13.5
16.6
19.7
22.8

= O O o
~ F e

= o O O

O«Z«A+[3

2.
5.

8

11.

14,
17.
20.
23.

2 3.
2 6.
.29,
2 12,

o o1 o1 o

z[;15]

205251

Z[;3;]

AR

[

14,
17.
20.
23.

= oo N o N

15.
18.
21.
24,

3

3
3
3

o O Oy O

mn

= w N e

o =3 O O;

<«

APL Primitive Functions
1.1 Primitive Scalar Functions

AORDER OF AXIS ARGUMENT UNIMPORTANT
11B aA CONFORMS TO AXES 1 AND 3 OF B

aTHE FOLLOWING SUBSCRIPTS DEMONSTRATE
o SUBARRAY COMBINATIONS USED BY APL
aMATCH RETURNS 1 WHEN TRUE

A+ B[;1;]

A+ B[;2;]

A+ B[;3;]

A+ B[;u4;]

4p0.1x18 ACREATE NEW A

+[1 2] B A CONFORMS TO AXES 1 AND 2 OF B

oTHE FOLLOWING SUBSCRIPTS DEMONSTRATE
a SUBARRAY COMBINATIONS USED BY APL
A+ B[;;1]
A+ B[;;2]
A + B[;;3]

4 3p0,1x112 aCREATE NEW A

APL Reference Manual 1-7

APL Primitive Functions
1.1 Primitive Scalar Functions

0
2.
5.
8.
2.

=N E e
. e .
+=

1
13.1 14,
16.4 17,
19.7 20.
23 24,
(1531

AVERS

w W W
o e e
N WO O w

13.

15.
18.
21.
25,

«Z « A +[3 2] B wA CONFORMS TO AXES 2 AND 3 OF B

N O O w

ATHE FOLLOWING SUBSCRIPTS DEMONSTRATE
A SUBARRAY COMBINATIONS USED BY APL
= A + B[1;;]

= A + B[2;;]

PC«2 3p(13) (13) (13) (2 3p16) (2 3p16) (2 3p16)

PC

[2 3 4] |23
|56 7] |56

4] 12 3 4]
71 156 7]

23 4] [345] |45 6]
56 7] [678] |78 9]

t----- + ot
[«ER<«1
12 +----- +
12 3]
to---- +

1-8 APL Reference Manual

APL Primitive Functions
1.1 Primitive Scalar Functions

aAXIS IS NOT PERVASIVE SO PLUS (+)
a WITH AXIS APPLIES BETWEEN
a 4PC[2:;3] AND +ER(3] WHICH
a IS A RANK ERROR
PC+[2]ER
9 RANK ERROR
PC+[2]ER

A

The individual descriptions of the primitive scalar functions are presented
in three sections. Section 1.1.1 describes arithmetic functions, Section 1.1.2
describes logical functions, and Section 1.1.3 describes relational functions.
Most of the individual descriptions include examples of how the functions
work.

APL Reference Manual 1-9

APL Primitive Functions
Arithmetic Functions

1.1.1 Arithmetic Functions

The arithmetic functions, which are summarized in Table 1-1, perform well-
known mathematical operations. All of them take numeric scalar arguments
and return numeric scalar results.

Table 1-1 Arithmetic Scalar Functions

Monadic Dyadic
Function Meaning Function Meaning

+B B A+B Add 4 to B

-B Negative of B A-B Subtract B from 4

x B Sign of B AxB Multiply 4 and B

+B Reciprocal of B A+B Divide 4 by B

*B e to the B th power AxB A to the B th power

| B Magnitude of B A|B A residue of B

IB Ceiling of B ATB Maximum of 4 and B

LB Floor of B ALB Minimum of 4 and B

@B Natural logarithm of B Ae B Logarithm of B to the base 4

'B Factorial of B A!'B Binomial coefficient (number of
combinations of B things taken 4
at a time)

oB Pi times B AoB Trigonometric functions (B is in

radians; see Table 1-2)
?B Random integer from 1 B

1.1.1.1 + Conjugate

The monadic + function returns a result that is the same as its argument;
thus, +B is identical to B. For example:

+5

1-10 APL Reference Manual

APL Primitive Functions
Arithmetic Functions

1.1.1.2 - Negative

The monadic - function returns the negative of its argument; thus - B is the
. negative of B. Be careful not to confuse the negative function with the high
minus sign (7) used to denote a negative number. For example:

1.1.1.3 x Signum

The monadic x function identifies the sign of its argument; thus, x B is the sign
of B. The signum function returns ~ 1 if the argument is less than 0, 1 if the
argument is greater than 0, and o if the argument is equal to 0. For example:

x99
1

x0
0

x75

1

1.1.1.4 : Reciprocal

The monadic + function returns the reciprocal of its argument; thus, B is the
reciprocal of B. For example:

0

15 DOMAIN ERROR (DIVISION BY ZERO)
0
A

1.1.1.5 * Exponential

The monadic = function raises the value of e (2.71828182845904523536...)
to the power specified by its argument; thus, B is e to the B th power. For
example:

APL Reference Manual 1-11

APL Primitive Functions
Arithmetic Functions

*0
1
*1
2.718281828
*x10
22026.46579
*50
5.184705529E21

1.1.1.6 o Natural Logarithm

The monadic e function returns the natural logarithm of its argument; thus,
@B is the natural logarithm (base e) of B. For example:

®1
0

®2.718281828459
1

®22026,46579
10

®5,184705529E21
50

The @ symbol is formed with the o and * symbols.

1.1.1.7 o PiTimes

The monadic o function returns the product of its argument and the value of
m (3.14159265358979323846264...). For example:

o1l
3.141592654

03
9.424777961

1.1.1.8 | Floor

The monadic | function returns the greatest integer not greater than its
argument, within a tolerance defined by 0 ¢T. For example:

L72.5
[4.111

[4.999

1-12 APL Reference Manual

1.1.1.9

APL Primitive Functions
Arithmetic Functions

Note that the 0 CT setting may affect the result of . For example:

gcr«o
[4.9999999999

OCT«1E" 10
[4.9999999999
5

The following is a formal description of how the floor function is implemented:

VZ«FLOOR B ;0CT ;BXCT ;N
[1] BXCT+(CT ¢ [CT<«0
[2] N<«(xB)xl0.5 + |B
[3] Z«N-(N-B)>BXCT x *[|N
(4] v

[Ceiling
The monadic [function returns the smallest integer not less than its
argument, within a tolerance defined by 0 CT. For example:

[72.5

2
f4.111
5
[4,999
5

Note that the 0CT setting may affect the result of . For example:

[CT+0
[4.0000000001

0CT«1E" 10
[4.0000000001
y

The [and | functions are related in the following manner: [B<~- | - B. For
example:

f4.111

-(-4.111

APL Reference Manual 1-13

APL Primitive Functions
Arithmetic Functions

1.1.1.10

1.1.1.11

1.1.1.12

| Magnitude

The monadic | function returns the absolute value of its argument; thus, | B
is the absolute value of B (that is, B= | B, if B>0 and (-B) = | B, if B<0). For
example:

|9
9
|79
9
! Factorial
The ! of B (for integer arguments) is the product of the first B positive
integers. For example:

120

If the argument to the factorial function is 0, the result is 1. If the argument
is a negative integer, APL signals DOMATN ERROR. If the argument is not an
integer, ! B is defined in terms of the mathematical function GAMMA as follows:

!B <+ GAMMA(B+1)
The ! symbol is formed with the quote (') and period (.) symbols.

For more information on the Gamma function, see Milton Abramowitz and
Irene A. Stegun, eds., Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables (National Bureau of Standards, November
1964), pp. 255-293; or John F. Hart, et al., Computer Approximations (Robert
E. Krieger Publishing Company, 1978), pp. 130-136, 243-254.

? Roll
When applied to an argument B, the monadic ? function generates an integer
randomly selected from the integers 1 B (for a near-integer argument). For
example:

1-14 APL Reference Manual

APL Primitive Functions
Arithmetic Functions

75 10 15 20 25

4L 7 86 25
75 10 15 20 25

293210
A«<2 3p1 6
A

74

7A
111
336

At the completion of the roll function, the value of DRL changes:

ORL
695197565

?5
i

0JRL
71133752294

If the argument is not a near-integer, or if a near-integer argument is less than
the value of 010, APL signals DOMAIN ERROR:

0I0+1
20
15 DOMAIN ERROR
20
A
0I0+0
20
0

Note that the roll function is [70-dependent: ?B when 010 is 1, is equivalent
to (for the same value of ORL) 1+ ?B when 0I0is 0.

The roll function is analogous to the rolling of several dice. Roll may generate
duplicate values; thus, it differs from the dyadic deal function (?), which
generates a set of unique random numbers.

APL Reference Manual 1-15

APL Primitive Functions
Arithmetic Functions

1.1.1.13 +, -, x, and = Addition, Subtraction, Multiplication, and Division
The dyadic +, -, x, and + functions return the sum, difference, product, and
quotient of their arguments, respectively.

The right argument for the division function may not be 0 unless the left
argument is also 0. For example:

0+0
1

1.1.1.14 x Power

The dyadic = function raises the value of its left argument to the power
specified by its right argument. For example:

5%3

125
T5%3

125
3%2.5

15.588u45727
T3%2.5

15 DOMAIN ERROR

“3%2.5

A

The power function’s domain is restricted to the following combinations of

arguments:

Left Right
Any 0

0 20

>0 Any
<0 Integer

Note that 0x0 is 1.

If the right argument of the » function is exactly 0.5, APL returns the square
root of the left argument.

1-16 APL Reference Manual

1.1.1.15

1.1.1.16

APL Primitive Functions
Arithmetic Functions

e Logarithm

The dyadic e function returns the logarithm of its right argument in the base
of its left argument; thus, 4e B is the logarithm of B in base 4. For example:

1081
0

10810
1

5810
1.430676558

Both arguments must be greater than zero. The left argument may not be 1
unless the right argument is also 1. For example: 1e1is 1.

The © symbol is formed with the o and = symbols.

o Circle
You use the dyadic o function to perform trigonometric functions.

The left argument of o specifies which trigonometric function is to be
performed. Only certain combinations of arguments are valid for the circle
function. For arguments 4 and B, Table 1-2 lists the possible values of 4
(near-integer argument), and indicates the operation associated with each
value.

Table 1-2 Trigonometric Functions Performed by o

Function
al (z<AoB)? Domain Result Domain
7 arc tanhB 1> | B
6 arc cosh B B>1 Z>0
s arc sinhB
Ty (T1+Bx)*x0.5 1< | B Z>0
”3 arc tan B (|1Z2)<00.5
T2 arc cos B 1> | B (0sZ)nZso1
1 arc sin B 1> | B (12)<00.5
0 (1-B*x2)=*0.5 1> | B (Zz0)nrZ<1
1 sin B (1z2)=1

!The value of A must be a near-integer from ~ 7 through 7.

2The value of B is given in radians.

(continued on next page)

APL Reference Manual 1-17

APL Primitive Functions
Arithmetic Functions

1.1.1.17

1.1.1.18

1.1.1.19

Table 1-2 (Cont.) Trigonometric Functions Performed by o

Function
Al (z<AoB)? Domain Result Domain
2 cos B (1Z)<1
3 tanB B#2|B+00.5
y (1+B*x2)*0.5 Z>1
5 sinh B
6 cosh B Z>1
7 tanh B (12)s1

IThe value of 4 must be a near-integer from ~ 7 through 7.

2The value of B is given in radians.

L Minimum
The dyadic | function returns the smaller of its two arguments. For example:

L5
n

L5 30126
123

[Maximum
The dyadic [function returns the greater of its two arguments. For example:

4rs
5

453126
456

| Residue
The dyadic | function returns the residue of the right argument with respect to
the left argument. The residue is obtained by adding or subtracting multiples
of the left argument from the right argument. The result of a residue operation
takes the sign of the left argument.

If the left and right arguments are equal, the residue is 0. (Note that the
residue function is 0 CT-dependent.) If the left argument is 0, then the residue
equals the value of the right argument. If the left argument is not 0, then the
residue is in the range of the left argument through o ; it may equal 0 but may
not equal the value of the left argument. For example:

1-18 APL Reference Manual

1.1.1.20

APL Primitive Functions
Arithmetic Functions

5|8
3
5|7
~3
717
0
710
0
01]7
7
2]5.8
1.8
1]123.4567
0.4567
55(8 8
33
55 5|2
222
512 2 2
222
A«3 0 73
B«6 5 4 7372710123456
Ao.|B
0 1 2 0 1 20 1 20 1 20
6 5 4 7372710 1 23 L4 5686
07271 072 7107271072710

! Combinations
For arguments 4 and B, the dyadic ! function returns the number of
combinations of B elements taken 4 at a time. For example:

214
6

10110
1

For arguments 4 and B, the function’s domain is described as follows:
~(B<0)A(~ INTEGER B)~n~ INTEGER A

INTEGER is a function that returns 1 if all the items in its argument are
integers, and 0 otherwise.

APL determines the result of the dyadic ! function based on the algorithms
explained in Table 1-3. The value 1 in the table for 4, B, or B- 4 means that
the argument or the difference between the arguments is a negative integer;
the value 0 means that the argument or the difference between them is not a
negative integer.

APL Reference Manual 1-19

APL Primitive Functions
Arithmetic Functions

Table 1-3 Determining Result for Dyadic !

A B B-4 Result

0 0 0 (!B)Y+(!A)x!B-4

0 0 1 0

0 1 0 APL signals DOMAIN ERROR

0 1 1 (T1xA) xA!'A-B+1

1 0 0 0

1 0 1 Not a possible case

1 1 0 (T1%B-A)x(|B+1)! (| 4+1)
1 1 1 0

Note that the dyadic ! function is related to the mathematical function BETA
as follows:

BETA(A,B)<> =Bx (A-1)!A+B-1 «»> +Ax (B-1)!A+B-1
The ! symbol is formed with the ' and . symbols.

For more information on the Beta function, see Milton Abramowitz and Irene

A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables (National Bureau of Standards, November 1964), pp.
255-293; or John F. Hart, et al., Computer Approximations (Robert E. Krieger

Publishing Company, 1978), pp. 130-136, 243-254.

1-20 APL Reference Manual

APL Primitive Functions
Logical Functions

1.1.2 Logical Functions

The monadic ~ (Not) and the dyadic A, v, ~, and ~» functions (And, Or, Nand,
Nor, respectively) are commonly called logical functions. The domain and range
of logical functions are restricted to the Boolean values 0 and 1.

Table 1-4 is a truth table that shows the results of logical operations for
arguments 4 and B.

Table 1-4 Truth Table for Logical Functions

Arguments Functions
And Or Nand Nor Not
A B AANB AVB A~B AvB -B
A B AAB AVB A~B A% B -5
° 0 0 0 1 1 _
° ! ° 1 1 0 _
! 0 0 1 1 0 _
! ! 1 1 0 0 _
_ o B ~ ~ i)
- 1 3 ~ ~ ~ i

The ~ symbol is formed with the » and ~ symbols. The » symbol is formed
with the v and ~ symbols.

APL Reference Manual 1-21

APL Primitive Functions
Relational Functions

1.1.3 Relational Functions

The dyadic <, <, =, #, >, and > functions are commonly called relational
functions. The domain of relational functions is not restricted; they can take
both numeric and character arguments. However, only the equal and not
equal functions can have mismatched arguments, that is, one numeric and one
character argument simultaneously. For example:

1A41=5
0

151=5
0

The result domain of relational functions is restricted to the Boolean values
0 and 1. A relational function returns the result 1 if true and o if false. For
example:

9>6
1

i>6
0

TC1stAY
1

When <, <, >, or > have character arguments, the order of characters in JAV
is used as a collating sequence, and the evaluation is based on the respective
positions of the arguments. When the relational functions have numeric
arguments, the comparisons between the arguments are affected by the value
ofOCT.

When you use relational functions with Boolean arguments, the relational
functions can perform logical operations. For example, the not equal (=)
function performs an exclusive OR operation if its arguments are 0 s and 1 s:

(0#0),(021),(120),1=21
0110

1.2 Primitive Mixed Functions

The primitive mixed functions allow more extensive array manipulation

than the scalar functions. Scalar functions take scalar arguments, return
scalar results, and are extended to arrays on an item-by-item basis. Mixed
functions are not as predictable. For example, depending on the values of their
arguments, mixed functions may do the following:

1-22 APL Reference Manual

APL Primitive Functions
Relational Functions

e Take a scalar argument and return a vector result:

19
1234567839

* Take a vector argument and return a scalar result:

211234
1234

e Take a matrix argument and return a vector result:

(«B<«4 3p112 ACREATE AND DISPLAY B
1 2 3
4 5 6
7 8 9
10 11 12
B ARAVEL B (MAKE B A VECTOR)

1234567891011 12

Table 1-5 summarizes the primitive mixed functions, which are described in
this section.

Table 1-5 Primitive Mixed Functions

Function Name Meaning

ALB Base Bases the representation of B in number system 4.

+B Branch Modifies the standard order of execution in a user-
defined operation.

A,B Catenate Catenates 4 to B along the last axis of 4.

A,[K1B Catenate/ Catenates/laminates 4 to B along the X th axis of 4.

A5 [K1B Laminate

AsB Catenate Catenates 4 to B along the first axis of 4.

A>B Contain Determines whether all the items in array B are
also found in array 4.

A?B Deal Deals 4 integers selected randomly in the range 1 B.

>B Disclose Reduces the depth in an array.

>[K1B Disclose Discloses B and arranges the substructure axes (X).

AVB Drop For 4> 0, drops the first 4 items of B;for A<0, drops

the last | 4 items of B.

(continued on next page)

APL Reference Manual 1-23

APL Primitive Functions

Relational Functions

Table 1-5 (Cont.) Primitive Mixed Functions

Function Name Meaning

AV [K1B Drop For 4> 0, drops the first 4 items along the axes of
B specified by «; for A< o0, drops the last | 4 items
along the axes of B specified by k.

cB Enclose Builds enclosed arrays. Returns a scalar containing
B.

< [K1B Enclose Builds enclosed arrays; subarrays along axes K
become scalars.

€B Enlist Builds a simple vector with all of the simple scalars
in its argument.

¢B Execute Executes the character string B.

@B File Input Reads records from an external file into an APL

B[X1B workspace.

ABB File Output Writes information to an external file from an APL

AB[KI1B workspace.

B [(K1B

BB

B Format Formats array B.

A% B Format Formats character array B with width and precision
specified by 4.

VB Grade Down Generates an index vector that can be used to sort B
in descending order.

Vv [K1B Grade Down Generates an index vector that can be used to sort
B in descending order, row by row or column by
column.

AVYB Grade Down Generates an index vector that can be used to sort B
in descending order using collating sequence 4.

AB Grade Up Generates an index vector that can be used to sort B
in ascending order.

A[K]B Grade Up Generates an index vector that can be used to sort B
in ascending order, row by row or column by column.

AAB Grade Up Generates an index vector that can be used to sort B

. in ascending order using collating sequence 4.
1B Index Generates the first B consecutive integers from the
Generator current index origin.
ALB Index Of Finds the first occurrence of B in vector 4.

1-24 APL Reference Manual

(continued on next page)

APL Primitive Functions
Relational Functions

Table 1-5 (Cont.) Primitive Mixed Functions

Function Name Meaning

AnB Intersection Returns a vector of the common items in the arrays
A and B.

A=B Match Determines whether arrays A and B are identical in
rank, shape, and value.

ABB Matrix Divide Performs matrix division, solves linear equations,
and finds a least-squares solution.

BB Matrix Inverse Inverts the matrix B.

AeB Membership Determines if 4 is a member of array B.

A>B Pick Discloses an item from any depth of an array.

,B Ravel Returns the ravel of B (makes B a vector).

,[K1B s [K1B Ravel Merges or adds axes to the shape of B depending on
the value of k.

ATB Represent Represents B in number system 4.

ApB Reshape Reshapes B to the shape specified by 4.

¢B Reverse Reverses along the last axis of B.

¢ [KIB Reverse Reverses along the k th axis of B.

e [K1B

B Reverse Reverses along the first axis of B.

AbB Rotate Rotates by 4 along the last axis of B.

A [KIB Rotate Rotates by 4 along the k th axis of B.

Ae [K1B

Ae B Rotate Rotates by 4 along the first axis of B.

pB Shape Returns the shape of B.

AcB Subset Determines whether all the items in array 4 are
also found in array B.

A+B Take For 4> 0, takes the first A items of B; ford< 0, takes
the last | 4 items of B.

A+ [K]B Take For 4> 0, takes the first 4 items along the axes of
B specified by X ; for A< o0, takes the last | 4 items
along the axes of B specified by « .

8B Transpose Transposes the axes of B (for a matrix, exchanges

the rows and columns).

(continued on next page)

APL Reference Manual 1-25

APL Primitive Functions
Relational Functions

Table 1-5 (Cont.) Primitive Mixed Functions

Function Name Meaning

ARB Transpose Transposes the axes of array B according to 4.

AuB Union Returns a vector of the items in the arrays 4 and B.
uB Unique Removes the duplicate items of array B.

A~B Without Returns a vector of the items of array 4 that are not

found in array B.

1-26 APL Reference Manual

Primitive Mixed Functions
1 Base

1 Base

Form
A1 B

Left Argument Domain

Type Numeric
Shape Any
Depth 0 or 1 (simple)

Right Argument Domain

Type Numeric
Shape Any
Depth 0 or 1 (simple)

Result Domain

Type Numeric

Rank O 2+(ppA)+ppB
Shape (T1+p4) ,14p8B
Depth 0 or 1 (simple)

Implicit Arguments

None.

Description

The dyadic 1 function (known as base or decode) reduces a representation in
a number system to a value. More specifically, it converts to decimal those
vectors along the first axis of the right argument that are expressed in the
positional number bases of radices given by vectors along the last axis of the

left argument.

The base function is best explained as the converse of the represent function
(7). The following example shows the two functions operating on a quantity

expressed in yards, feet, and inches:

APL Reference Manual 1-27

Primitive Mixed Functions
1 Base

a1 YARD, 2 FEET, 3 INCHES IS 63 INCHES
1760 3 1211 2 3

63
1760 3 12763

123

The expressions AT B and 41 B differ only in the value included in B; 4 expresses
the number base in both cases.

The number of items in both arguments, for example 4 and B, must generally
be the same; the first item in A expresses the radix in which the first item in
B is decoded, and so on. However, if 4 is a singleton, it is extended so that its
length is the same as that of the first axis of B. For example, the following
expression has the effect of producing the base 10 value of the base 8 number
3777 (octal-to-decimal conversion):

8137 77
2047

For arguments A and B, the argument arrays for 1 must conform to one of the
following rules:

® 4 or B is a scalar.
e The results of "1+ p A and 1+ p B are equal.
e [Either " 1+p4 or 14p B equals 1.

If the argument arrays conform to the last rule, the axis that equals 1 is
extended to match the appropriate other axis. For example:

(2 3p5)L(3 U4p3)
93 93 93 93
93 93 93 93

(2 3p5)L(1 u4p3)
93 93 93 93
93 93 93 93

(2 1p5)L(3 4p3)
93 93 93 93
93 93 93 93

The following are some other uses of the base function:

1-28 APL Reference Manual

13

6

119

Primitive Mixed Functions
1 Base

ACONVERT 3 YDS. 2 FT. 4 IN. TO INCHES
13121324

RDETERMINE IF 2.5 IS A ZERO OF THE POLYNOMIAL
A ((6xX*2)-(7xX))-20
2.516 7 720

aYES
ABASE 10 EQUIVALENT OF BASE 5 NUMBER
514 3 4

You can use the base function to evaluate polynomials; the expression X1 C
evaluates a polynomial in X with coefficients given by the vector C.

For vectors 4 and B, the base function can be thought of as a form of the
inner product operator. The expression A1 B is equal to #+ . x B, where ¥ is the
weighting vector (W< ¢ x\ ~ 1+ 44, 1) given by the expression ¥[p 4] <> 1, and
WL(-N)+pA] isequal to AL (-N)+1p Al xW[(-N)+1+pA]l. The value of
A[1] isirrelevant. The following example shows two equivalent operations:

A«<1760 3 12
B«1 2 3
ALB
63
36 12 1+.xB
63
Note that if the right argument is empty, the type of the left argument is not
significant:
(3 2 1p'4")L !
00
00
00
(3 2 1p0)r 10

o

o

APL Reference Manual 1-29

Primitive Mixed Functions

1 Base

Possible Errors Generated

10

15

15

27

27

LENGTH ERROR (LENGTHS OF INNER AXES DO NOT MATCH)
DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
DOMAIN ERROR (INCORRECT TYPFE)

LIMIT ERROR (FLOATING OVERFLOW)

LIMIT ERROR (VOLUME TOO LARGE)

1-30 APL Reference Manual

Primitive Mixed Functions
-+ Branch

- Branch

Form

+B

Argument Domain

Type Near-Integer
Shape Any
Depth 0 or 1 (simple)

Result Domain

None.
Implicit Arguments

None.

Description

The monadic +~ function (known as branch) modifies the standard order of

execution in a user-defined operation.

Normally, APL lines in operations are executed in the order of their line
numbers; execution begins at the first line following the operation header
and ends with the last line in the operation. Branch changes the sequence of
execution by transferring control to another line in the operation.

There are two types of branches: unconditional and conditional. Unconditional
branches specify the next line to be executed. The result of an expression
evaluation determines the next statement in a conditional branch.

Unconditional branches consist of a branch symbol (-), followed by a
representation of the number of the operation line to which you want to
transfer control. The argument can be a label, a constant, a variable, or

an expression. Its value (or, if it is a vector, the value of its first item) is
equivalent to an integer line number within the current definition. Execution

continues at that line.

APL Reference Manual 1-31

Primitive Mixed Functions

- Branch

Conditional branches can be expressed in one of the following three forms:

~> line-number x1 logical-expression

Here APL evaluates the logical expression that is the right argument

of 1. The logical expression returns either a 1 (true) and the control
passes to the specified line or a 0 (false) and the control passes to the next
statement. (This form only works when 070+0.) In the following example
a simple counter controls the number of times the statements in a loop are
executed. The example branches to line number 0, an out-of-range number,
and forces an exit from the operation:

vV COUNTER
[1] O<«'NUMBER OF ENTRIES:' o N+l
[2] C+0
[3] LOOP: »0xiC=N
[u] C+C+1
[5] ~+LOOP
[6] v

~logical-expression / line-numbers

This type of conditional branch specifies several line numbers and
associated logical expressions as possible branch destinations. Control
passes to the line number corresponding to the first logical expression that
evaluates to 1 (true). For example:

VF A
[11 +(4>0)/3
[2] "WILL NOT ACCEPT NEGATIVE NUMBERS' o 0
[3] '"FUNCTION CONTINUING NORMALLY'

IR
F5

FUNCTION CONTINUING NORMALLY
F 2

WILL NOT ACCEPT NEGATIVE NUMBERS

1-32 APL Reference Manual

Primitive Mixed Functions
- Branch

+line-numbers [K]

Here the value of X is used as an index to select the corresponding line
number. For example:

vV labs
[1] K+«2
[2] +(LAB1,LAB2,LAB3) [X]
[3] LAB1: 'LAB1 IS EXECUTED' o ~»0
4] LAB2: 'LAB2 IS EXECUTED' o +0
[5] LAB3: 'LAB3 IS EXECUTED' ¢ =0
[6] v

LABS
LAB2 IS EXECUTED

Note that ~ is described in greater detail in Chapter 3 of the VAX APL User’s
Guide along with other information on user-defined operations.

Possible Errors Generated

7 SYNTAX ERROR (BRANCH NOT ALLOWED IN MIDDLE OF AN EXPRESSION)

11

15

15

15

27

VALUE ERROR (BRANCH HAS NO RESULT)

DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
DOMAIN ERROR (INCORRECT TYPE)

DOMAIN ERROR (NOT AN INTEGER)

LIMIT ERROR (INTEGER TOO LARGE)

APL Reference Manual 1-33

Primitive Mixed Functions
, and ; Catenate/Laminate

, and 5 Catenate/Laminate

Form

A,B A,[K]B A5 B A [K]B
5 1s formed with , and -

Left Argument Domain

Type Any
Shape -
Depth Any

Right Argument Domain

Type Any
Shape -
Depth Any

Result Domain

Type -

Rank 1T (ppA) [ppB (for catenate) or
1+ (ppA4) [pp B (for laminate)

Shape -

Depth (=4)T=B

Implicit Arguments

None.

Description

The dyadic APL function joins together the specified axis of two arrays. If, for
A,[K]B or A5 [K] B, K is a near-integer, the function is called catenation, and
A and B are joined along the ¥ th axis. If ¥ is not a near-integer, the function
is called lamination, and 4 and B are joined along a new axis lying between
the axes named by LX and 7 X. The forms 4,B and 45 B represent catenation
and join the arrays along their last or first axis, respectively.

1-34 APL Reference Manual

Primitive Mixed Functions
, and 5 Catenate/Laminate

If one of the arguments is a scalar, its length is extended to match the shape
of the other argument. If both arguments are scalars, the result is a two-item
vector. For example:

5,6 ACATENATE 2 SCALARS, RESULT IS A VECTOR
56

B«2 3p16

B,[117 ACATENATE SCALAR TO FIRST AXIS OF B
123
L 56
777

B,7 ACATENATE SCALAR TO LAST AXIS OF B
1237
4 56 7

For catenation, the arguments’ ranks must differ after scalar extension by at
most 1. Note that a singleton argument is not extended to conform to the other
argument:

ACATENATE SINGLETONS OF DIFFERENT RANKS
(1 1p7),1 1 1 1p8
9 RANK ERROR (RANKS DIFFER BY MORE THAN ONE)
(1 1p7),1 1 1 1p8
A
aTRY AGAIN
0<«R <« (1 1p7), 1 1 1p8
78
oR
112

In the following example, two arrays of equal rank are catenated. The shapes
of the arguments match except for the axis [(k)] along which the arrays are
being joined:

B«3 4 5p12
pB

3 45
C+3 6 5plk
pC

365
R<B,[2]C
oR

310 5

Note that B isequal to R[; 14;] and C toR[; 4+16;1].

APL Reference Manual 1-35

Primitive Mixed Functions
, and ; Catenate/Laminate

The next example shows the catenation of two arrays whose ranks differ by 1.
Again, the shapes of the arguments match except for the axis along which the
arrays are being joined:

B+3 4 5p12
0B AB IS RANK 3
3 45
C+4 5p33
pC AC IS RANK 2
4 5
R<B,[1]C ACATENATE ALONG FIRST AXIS OF B
oR
445
AATTEMPT TO CATENATE ALONG SECOND AXIS
B,[2]C
10 LENGTH ERROR (SHAPES OFF AXIS DO NOT MATCH)
B,[2]C

A
Here, B isequal to R[13; ;] and C to R[4; ;].

The following are more examples of catenation:

A<5 8 9
B«6 7
A,B ACATENATE TWO VECTORS
58967
10,4,B,12
10 58 96 7 12
'NAME' , ' XY!
NAMEXY
B«2 3p1 2 3 456 ACREATE B
C«2 3p7 8 9 10 11 12 ACREATE C
B

B,[11C ACATENATE ALONG FIRST AXIS

B,[2]¢ ACATENATE ALONG SECOND AXIS

1-36 APL Reference Manual

Primitive Mixed Functions
, and s Catenate/Laminate

B;C aUSE COLUMN CATENATE

-

o N F e

= OGN
O O W .

12

B,C ACATENATE ALONG SECOND AXIS
7 8 9

10 11 12

[«A+2 3 3p'ABCDEFGHIJKLMNOPQR'

123
4 56
ABC

DEF
GHI

JKL
MNO
PQR
[0+B«2 3 3p'SSSTTTUUUVVVNWHXXX'
S5S
TrT
uuu

244
WWW
0,04
A,B ACATENATE RANK 2 OBJECTS
ABCSSS
DEFTTT
GHIUUU

JKLVVV
MNOWWN
PQRXXX

Note that the catenation of scalars produces a vector:

pp4,5
1

For lamination (4, [X1 B and 45 [K] B where X is not a near-integer), the
arguments must have the same ranks and shapes after singleton extension.
The following are examples of lamination:

QCREATE NEW DIMENSION BEFORE THE FIRST
a DIMENSION WHEN [K]<1
O«X<«'ABC',[0.5]1'DEF' AADD A ROW
ABC
DEF
X
23

APL Reference Manual 1-37

Primitive Mixed Functions
, and 5 Catenate/Laminate

ACREATE NEW DIMENSION AFTER THE FIRST
A DIMENSION WHEN 1<[K]<2
O«X«'ABC',[1.3]'DEF' a ADD A COLUMN

aNOW TRY EXAMPLE WITH HIGHER RANK OBJECTS
aNOTE THAT APL RESHAPES EACH ARGUMENT
ABEFORE JOINING

(«E<3 2p'ABCDEF'

(«F<3 20" UVWXYZ'
uv
WX
YZ
ACREATE NEW DIMENSION BEFORE THE FIRST
A DIMENSION WHEN [K]<1
0«R<E,[.2]F AADD A PLANE
AB
CcD
EF

uv
WX
Yz
pR
2 32
ACREATE NEW DIMENSION AFTER THE FIRST
A DIMENSION WHEN 1<[K]<2
AADD A ROW, PREVIOUS ROWS BECOME PLANES
[O«R<E,[1.9]F
AB
uv

CD
WX

EF

oR
322

1-38 APL Reference Manual

Primitive Mixed Functions
, and ; Catenate/Laminate

AaCREATE NEW DIMENSION AFTER THE SECOND
a DIMENSION WHEN 2<[K]1<3
aADD A COLUMN, PREVIOUS COLUMNS BECOME ROWS
O«R<E,[2.3]F
AU
BV

CW
DX

EY

oR
322
aTRY EXAMPLE USING SINGLETON EXTENSION
O«R«E,[.51'2" aADD A PLANE
AB
CcD
EF

27

77
PR

aADD A ROW, PREVIOUS ROWS BECOME PLANES
[O«R<E,[1.5]1'X!
AB
XX

cD
XX

EF
XX

R
322

'Y, [2.5]E aADD A COLUMN
YA
YB

re
YD

YE
IF

Note that if 070 «~0, then ~ .5 is valid as the axis value for lamination. This
is the only case in which an axis may take a negative argument (range: ~ 1<X).

APL Reference Manual 1-39

Primitive Mixed Functions
, and s Catenate/Laminate

Further examples:

O«4«(0 ('4B"))
0 +--+
[AB|
+--+
0«B+c,u
+-+
[4]
+-+
O«Cet?
(APL outputs a blank line)
O«MAX+2 3 p A 1 0 '"4B' B C

[0 +--+]
| 14B]|
[+--+]

+--+ t---+ +
|4B] [+-+] |
+--t [lel] +
[+-+]
+---+
MAX,[11B ACATENATE ALONG FIRST AXIS

[0 +--+]
| 14B]|
|-+

+--+ t---t o+
|4B| [+-+] |
to-t [ul] +
[+-+]
+--=t
+-+ +-+ +-t
[u] (4] 4]
+-+ t-+ -+
0«D«0 'DP!
0 +--+
|DP|
+--+

1-40 APL Reference Manual

Primitive Mixed Functions
, and ; Catenate/Laminate

D, [2]MAX ACATENATE ALONG SECOND AXIS
0 t------ + 1 0
[0 +--+]
| 14B]|
| +--+]
pmmm—= +
+=-+ +--t t---+ t-+
|DP| |AB| [+=+] | |
+--+ +--+ [1a]] +-+
[+-+]
+--=t
aSHOW CATENATION OF TWO ARRAYS WHOSE RANKS DIFFER BY 1
pMAX
23
(«VIC+«B,D
+-+ 0 +--+
|| |DP|
+-+ +--t
pVIC
3
O«W«MAX, [1]VIC
to-m--- + 1 0
[0 +--+]|
| [4B]]
| +--t]
- +
+--+ +--=t +-+
|4B| [+-+] |
+--+ [lull +-+
[+-+]
R
-+ 0 +--+
[t |DP|
+-1 +--+
oW
3 3
ASHOW LAMINATION
OeX«d,c,1
4 +-+
[1]
+-+
pX
2
B
+-+
[u
+-+
pB

(APL outputs a blank line)

APL Reference Manual 1-41

Primitive Mixed Functions
, and ; Catenate/Laminate

0«Y«X,[0.5]B
+-+
[1]
+-+
-+
[4]
+-+
oY

0«Z«X,[1.91B
+-+
[4]
+-+
+-+
[4]
+-4
pZ

Possible Errors Generated

9 RANK ERROR

9 RANK ERROR (RANKS DIFFER BY MORE THAN ONE)

10

15

27

28

30

30

30

30

29

30

LENGTH ERROR (SHAPES OFF AXIS DO NOT MATC"H)

DOMAIN ERROR (INCORRECT TYPE)

LIMIT ERROR (INTEGER TOO LARGE)

AXIS RANK ERROR (NOT VECTOR DOMAIN)

AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)
AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

AXIS DOMAIN ERROR (INCORRECT TYPE)

AXIS LENGTH ERROR (NOT SINGLETON)

AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

142 APL Reference Manual

Primitive Mixed Functions
> Contains

> Contains

Form

A>B
> is formed with > and _

Left Argument Domain

Type Any

Shape Any

Depth Any
Type

Shape Any

Depth Any

Result Domain

Type Boolean

Rank 0

Shape 1 0 (scalar)
Depth 0 (simple scalar)

Implicit Arguments

gcr (determines comparison precision)

Description

The dyadic > function determines whether the left argument contains all the
items found in the right argument. The result is a Boolean scalar: true, if
the left argument is a superset of the right argument, and false if it is not.
Duplicate items in either argument do not affect the result. For example:

A«3 4p 23 54 98 34 98 47 98 32 78 65 12 23
A > B«1100

B> A

[

APL Reference Manual 143

Primitive Mixed Functions
> Contains

The > function compares items in terms of the match (=) function, which uses
the value of 0 CT. Because = allows mixed-type arguments, you can compare
characters with numbers. However, such a comparison is always false, so that
if you use mixed-type arguments for dyadic o, the result will be zero. For
example:

123 24 25' 2 22 23 24 25 26
0

Further examples:

O«WRL«0 'AB' (c,3)
0 +--+ +---+
|AB] |+-+]
+--+ ||3]]
[+-+]
t---+
0«POOL«2 2 p O 'AB' 'EB' (c,3)
0 +--+
|4B|
+--+
t-=t +---+
|EB] |+-+]|
+-—+ |]3]]
[+-+]
+---t
POOL > WRL
1
O«VAN«O "QTH' "1 (<,3)
0 +---+ 1 +---+
[QTW| [+-+]
===+ [13]]
[+-+]
t---t
0«VIC«(c,4),0,(c'DP")
+=+ 0 +--+
4] |DP|
+-+ +--+
VAN > VIC
0

Possible Errors Generated

None.

144 APL Reference Manual

Primitive Mixed Functions
? Deal

? Deal

Form
A?B

Left Argument Domain

Type Nonnegative near-integer
Shape Singleton
Depth 0 or 1 (simple)

Right Argument Domain

Type Nonnegative near-integer
Shape Singleton
Depth 0 or 1 (simple)

Result Domain

Type Nonnegative integer
Rank 1

Shape A

Depth 1 (simple)

Implicit Arguments
ORL OIO (4?8 when 0I0 « 1 isidentical to 1 + A?B when 0I0 « 0 for the
same (JRL)

Description

For 47 B, the dyadic ? function generates a vector of integers randomly selected
from 1 B; no number is selected more than once. The length of the result vector
is specified by 4. For example:

APL Reference Manual 1-45

Primitive Mixed Functions
? Deal

575

42315
571.0E7

2047059 8326627 1771140 853115 3809508
571.0E7

8895125 7387197 6272379 6940437 9062050
571.0E7

6693744 185074 2861354 853279 5088023

Unlike the roll function, dyadic ? is analogous to dealing a number of cards
from a deck with no two cards alike. Roll is analogous to rolling several dice
independently; roll may generate duplicates, but deal will not.

The value of the system variable 0 RL affects the result of the deal operation,
and the value of JRL changes each time a deal operation completes
successfully. For more details about ORL, see Chapter 2.

Possible Errors Generated

9 RANK ERROR (NOT SINGLETON)

10 LENGTH ERROR (NOT SINGLETON)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN ERROR (NOT AN INTEGER)

15 DOMAIN ERROR (NEGATIVE NUMBER NOT ALLOWED)

15 DOMAIN ERROR (RIGHT ARGUMENT IS LESS THAN LEFT)

27 LIMIT FRROR (INTEGER TOO LARGE)

146 APL Reference Manual

Primitive Mixed Functions
= Depth

= Depth

Form
=B

Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Integer (non-negative)
Rank 0

Shape 1 0 (scalar)

Depth 0 (simple scalar)

Implicit Arguments

None.

Description

The monadic = function (known as depth) indicates the maximum level of
nesting in an array. A simple array has 1 level of nesting (0 if the array is
scalar). An enclosed array has a depth of at least 2.

Examples:

[«B+9 ACREATE A SIMPLE SCALAR

B

ACREATE A SIMPLE ARRAY
0«C<+'WHERE ARE YOU GOING?'
WHERE ARE YOU GOING?
=C
1

APL Reference Manual 1-47

Primitive Mixed Functions

= Depth
0«D«1 (5 6 7) 11 12 ACREATE AN ENCLOSED ARRAY
1 +----- + 11 12
156 7]
$o-—-- +
=D
2
ACREATE AN ENCLOSED ARRAY WITH MORE NESTING
O<«E«1 (56 7 (8 9 10)) 11 12
1 pmmmmmmmmooooe + 11 12
|56 7 +------ +]|
| |8 9 10]]
I to----- +]
tmmmmmm o +
=F
3

Possible Errors Generated

None.

1-48 APL Reference Manual

Primitive Mixed Functions
> Disclose

> Disclose

Form

>B >[K]B

Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Same as constituent items in B
Rank (ppB)+4T /0o 0" (,B),c*B
Shape (pB),47/(p"(,B),c4B)~c10

(pZ)L,K1+>4T/(p"(,B)~c10
Depth 0l 1+=B

Implicit Arguments

None.

Description

The monadic > function reduces the depth of an array. It reverses the building
action of the monadic enclose (c) function. Disclose is the left inverse of enclose
(B«+»>cB and B«+>[K]1<c[K]B).

The rank of the items in B must be the same (singleton items are extended).
However, the lengths of the corresponding axes do not need to match. For
example, three enclosed items of shape 1 3 1, 2 6 2, and 4 2 4 match in rank,
but not in shape. When the shapes do not match, each item is padded along
each axis, and the length of each of the result’s axes is equal to the longest
corresponding axis among the items of B. In the preceding example, the
portion of the result that corresponds to the three items would have the shape
46 4:

APL Reference Manual 1-49

Primitive Mixed Functions

> Disclose
aALL ITEMS SAME RANK
F+(3 2p16) (2 3p'ABCDEF') (2 u4p10 ¢19) (5 1p'TUVXY')
oF
[
o F

to--t oot +o--t +--4
|3 2] [2 3] |2 4] |5 1]
to-—t +---t oot t---%

0«DD+>F ANOTE FILL ITEMS

1200
3400
5600
0000
0000
ABC
DEF

2 345
67 829
0000
0000
0000

T

U

4

X

Y

pDD

L5

Disclose only reduces one level of enclosure:

A+(c13) '"ABC' 3

A
tommmm- + +---+ 3
[+-----+| |ABC|
[11 2 3] +---+
[4----- +
I +

pA
3

=4

1-50 APL Reference Manual

Primitive Mixed Functions

> Disclose

o4
++ -+ 4+t
[1 131 11
++ -t 4t

X+24

X
tm-=- I L +
[1 23]]000] |[000]
to---- e I +
4 B c
3 0 0

oX

Disclose with axis (form > [k] B) allows you to specify the placement of the
disclosed item’s axes. The number of axes specified by ¥ must be equal to the
rank of the items of B (ignoring the singleton items), and the axis numbers
must be less than the sum of the rank of B plus the rank of the items of

B (G (ppB)++T\,p p B). The axis numbers must also be unique. The
following example shows various combinations of axis arguments and the
resulting arrays:

R « (3 3p19) (2 3p'ON' 'TI" '"MA' 'NO' '"IT' 'AM')

[1 2 3] |+--+ +--+ +--+]|
|v 5 6] |[ON] |TI| |MA]]
[7 8 9] |+--+ +--+ +--+]|

o= + o[+t -t -]
[INO| [IT] |AM]|
[+--+ +--+ +--+]
oo +
A<>R
=4
2

APL Reference Manual 1-51

Primitive Mixed Functions

> Disclose

te=t -t +--+

|MA|

|TI]
to=t oot -t
to-t 4ot -t

|ON|

[IT| |AM|

to—t t--t t--t

I§O|

i

to-t t--t t--t
to-t -t -t

B+>[1 2]R

B

1 +--+

|ON|
+-—+
2 +--+

ITI|
+--+
3 +--+

[MA|

+--+

bo4--4

|§O|

+--+
5 4--+

[T

+--+
6 +--+

| AM|
+--+

7 4--4

|
+--+
8 +--+

|
t--+
9 +--+

|
+e-t

1-52 APL Reference Manual

Primitive Mixed Functions
> Disclose

1l
=

i
e}

pA

pB
332
C+>[1 3]R
=C
2
oC
323
c
1 2 3
t--t+ +-—+ +--+
|ON| |TI| |MA|
t--+ +--+ +--+

t-=t +--+ t--+
[NO| |IT| |AM|
ottt +--t
7 8 9

t-=t +--+ t--+

t--t +--t+ -1

D+>[2 3]R
=D

2
oD

2 33

APL Reference Manual 1-53

d Functions

itive Mi

imi

Pr

ixe

> Disclose

==t +--t+ +--+

[MA|

I7I]
t-—+ -t -t

t--t +--+ +--+

[ON|
|No|

[4M]

[IT|

o=t +--t f--1
to=t t--t -4

I

o=t +--+ +--1

E+>[2 11R

E

1 +--+

|oN|
+--+
I

[§0|

+--+
7 +-—+

+--+

2 +--+

|71
+-=+
5 +--+

[IT]

-t
8 +--+

+-—+

3 +--+

|MA|

t--+
6 +--+

|AM|
==t
9 +--+

+--+

1-54 APL Reference Manual

> Disclose

Primitive Mixed Functions

oE
Fe>[{3 11R
=F
oF

2

3

32

F

7

n

1

t--t t--t -t

[oN|

|NO|

o=ttt -1

8

5

2

to-t to-t -t

|TI]

| IT|

-t +--t 4--1

6 9
to-t oot 4ot

3
|MA|

|

| AM|

G+o[3 2]
=G

e R

to-t -t -t
[voi |

|ON|

oot bt 4ot
o=+ +-—t+ +--+

ITI]

| IT]

to-t ot -t
t--t +--t -+

l

| AM]
to=t o=t -t

[MA|

1-55

APL Reference Manual

Primitive Mixed Functions
> Disclose

If all the items of B are scalars, then the axis, if specified, must be empty:

Tc™(13) (14) (15)

T
R + ot I +
|+----- H I R ity I *
[11 2 3] 11123 4|} [|123¢45]]
[+----- + o [4----m-- o4 +]
tommm - il I +
=T
3
oT
3
="
222
p T
++
I
++ ++ ++
J«S«o[10]1T
oo + tm-mm--- B +
[1 23] 1234 |12 3u45]
omm - I I +
=S
2
pS
3

The disclose of an array which contains only scalars and empty arrays as item
will be an empty array:

Ee2 "1 3

it
==}

tE

1-56 APL Reference Manual

30

0

Primitive Mixed Functions
> Disclose

X+oF

(APL outputs a blank line)

X

The following expression describes the formal relationship between disclose
and disclose with axis: oB «> > [(ppB)+1pp+BIlB

Possible Errors Generated

9 RANK ERROR (ITEMS NOT SINGLETON OR ALL THE SAME RANK)

27

28

29

30

30

30

30

30

30

30

LIMIT ERROR (INTEGER TOO LARGE)

AXIS RANK ERROR (NOT VECTOR DOMAIN)

AXIS LENGTH ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)
AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)
AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

AXIS DOMAIN ERROR (DUPLICATE AXIS NUMBER)

AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

AXIS DOMAIN ERROR (INCORRECT TYPE)

AXIS DOMAIN ERROR (NOT AN INTEGER)

AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

APL Reference Manual 1-57

Primitive Mixed Functions
+ Drop

v Drop

Form
AV B Ay [KIB

Left Argument Domain

Type Near-integer
Shape Vector domain
Depth 0 or 1 (simple)

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Same as right argument

Rank (p,4)TppB

Shape 0ol (pB) -4 (if no explicit axis)
Depth =B

Implicit Arguments

None.

Description

The dyadic + function builds an array by dropping a specified number of items
from an existing array. The left argument specifies how many items are to be
dropped from each axis in the right argument array. Thus, for 4+ B, item A[K]
is used to drop values along the k¥ th axis of B.

Unless the right argument is a scalar, the left argument must have a number
of values equal to the rank of the right argument (for arguments 4 and B,

o ,A must equal o p B). For instance, if the right argument is a vector, the left
argument must have just one value. If that value is positive, APL drops the

1-58 APL Reference Manual

Primitive Mixed Functions
+ Drop

specified number of items from the beginning of the vector; if the value is
negative, APL drops items from the end of the vector. For example:

2v15
345

2415
123

If the right argument is a scalar, it is reshaped to a singleton with a rank
equal to the length of the left argument.

If the rank of the right argument is greater than 1, the result array is said to

be a "corner” of the argument array. The origin of the corner is determined by
the signs of the items of the left argument. For example, if the right argument
is a matrix, there are four possible corners, as shown in Figure 1-1.

The drop function leaves a corner that is diagonally opposite to the origin
specified by the signs of the items of the left argument. In the following
example, note how the order of the signs determines the "corner" selected from
the matrix:

0«C<+3 3 p19
123
456
789

2 24(
9

T2 2 3¢
1

T2 2iC
3

2 2 40

Note that for arguments 4 and B, the dimension of the remaining corner is the
complement of 4 with respect to pB, or | (pB) - A.

If the value of an item in the left argument is greater than the length of the
corresponding axis, then, for arguments 4 and B, A+ B returns an empty array
with shape o7 (pB) - | 4.

If the left argument is empty, the right argument must be a scalar, and the
result is the right argument.

When you use + with an axis argument, X is a vector of axis numbers whose
lengths are determined by corresponding items of the left argument, 4.
Formally, + with an axis argument can be described by the following:

7z « 0>pB o Z[K] « A 0 Z < IVB

APL Reference Manual 1-59

Primitive Mixed Functions
+ Drop

The value for ¥ must be in the vector domain, and each item must be a near-
integer in the set 1 p o B. Therefore, the values of ¥ are 010 dependent. The
items may be in any order, but they may not be duplicated. The length of k¥
must be less than or equal to the rank of the right argument, and it must
match the length of the left argument.

The value for ¥ does not have to specify all the axes in B. APL regards the
lengths of any missing axes as zero. This means that you can drop rows or
columns of a matrix without specifying zero for the length of the other axis.
For example:

(J«A«8 5p140
1 2 3 4% 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35
36 37 38 39 40
34017 A ADROP 3 ROWS OF A
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35
36 37 38 39 40
"2 4[2] 4 ADROP THE LAST 2 COLUMNS OF A
1 2 3
6 7 8
11 12 13
16 17 18
21 22 23
26 27 28
31 32 33
36 37 38
34 y[2 1] 4 aDROP 4 ROWS, 3 COLUMNS OF A
24 25
29 30
34 35
39 40
0I0 « o
4 3 4[0 1] 4 ADROP 4 ROWS, 3 COLUMNS OF A
24 25
29 30
34 35
39 40

1-60 APL Reference Manual

Primitive Mixed Functions
+ Drop

Further examples:

0«P0L«2 3p0,(c'ABC'),1,0,(<c'4B"),"!
0 +---+ 1
|ABC|
te-=t
0 +--+ 0
|4B|
+--+
POL
0 +---+ 1
|ABC|
===t
0 +--+ O
|AB|
==+
2 y[11P0L
(APL outputs a blank line)
“1 +[1]1P0L
0 +---+ 1
| ABC|
t---1
2 +[2]P0L
1
0
O«MEW<4 3 p'XY' 1 3 (c,1) "2 '" "A" "' ' 01 40
+--+ 1 3
|XY|
+--+
t---+ 2 ++
P+-+] I
NEYR t+
[+-+]
===t

2 14 [2 1IMEW

APL Reference Manual 1-61

Primitive Mixed Functions
+ Drop

2 0 v MEW
A 0
1740

The following expression describes the formal relationship between drop and
drop with axis: 4+B <> A+ [1ppBI1B

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH ERROR (LEFT LENGTH NOT EQUAL TO RIGHT RANK)
15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN FRROR (NOT AN INTEGER)

27 LIMIT ERROR (INTEGER TOO LARGE)

28 AXIS RANK ERROR (NOT VECTOR DOMAIN)

29 AXIS LENGTH FRROR (LEFT ARGUMENT HAS WRONG LENGTH)
30 AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)
30 AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

30 AXIS DOMAIN FRROR (DUPLICATE AXIS NUMBER)

30 AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

30 AXIS DOMAIN ERROR (INCORRECT TYPE)

30 AXIS DOMAIN ERROR (NOT AN INTEGER)

30 AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

1-62 APL Reference Manual

Primitive Mixed Functions
c Enclose

c Enclose

Form

cB c[K]B

Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Same as constituent items
Rank (ppB)-p.K

Shape (pB)[(1ppB)~K]
Depth (02=B)+=B

Implicit Arguments

None.

Description

The monadic = function builds enclosed arrays. For a nonsimple scalar
argument, the result of the form < B is always an enclosed scalar item. If the
argument is a simple scalar, the depth remains the same: B<+cB when B is a
simple scalar. The result of the form < [kK] B is an array of enclosed scalars:

APL Reference Manual 1-63

Primitive Mixed Functions
= Enclose

B « 4
C « 15
D+ 2 2 p "ABCD!'
(J«B+cB RENCLOSE A SIMPLE SCALAR, NOTHING HAPPENS
y
[J+B+c,B AMAKE A SINGLETON
+-+
[4]
+-+
O«C«cC
oo +
|1 234 5]
- +
0«D<+cD
+--+
|AB|
|CD|
+--+

pB ¢ pC ¢ pD aTHE NEW B C AND D ARE SCALAR
(APL outputs 3 blank lines)

Each time you use monadic <, you increase the depth of the argument by one
(unless the argument is a simple scalar). For example:

0«D<+2 2p 'ABCD!

AB
CD
)
22
=D ADEPTH OF D SHOWS A SIMPLE ARRAY
1
[«D<cD
+--+
[AB|
|CD]
+--+
oD
(APL outputs a blank line)
=D aDEPTH OF D HAS INCREASED T0O 1

2

Using the catenate function (,) with ¢ allows you to create arrays with
multiple items. In such an expression, you must use parentheses to prevent
the scope of « from extending to the rightmost end of the expression. You can
also enclose arrays that are already enclosed. The only limit to the depth you
create is the memory available to the workspace.

1-64 APL Reference Manual

Primitive Mixed Functions

< Enclose
For example:
B<l
C+«15
(J«E<«B , (<B) , cC aNOTE USE OF PARENTHESES
T +
j1 2 3 4 5]
Hommmmmmom +
oF
3
=F
2
D+«2 2 p '"ABCD'
O«E<B , (<B) , (<C) , D aNOTE USE OF PARENTHESES
b op-mmmmmm - + -+
|12 3 4 5| |4B]
e + |CD|
t--+
pE
N
=F
2
[J<«E+«cE
o mmmmmmmmm e +
I + +--t]
| [1 2 34 5| [4B]]
| tommomo- + [CDI|
! +o-t]
o mmmmmmm e +
ok aSHAPE OF E SHOWS IT IS NOW A SCALAR
(APL outputs a blank line)
=F
3

The result of the form « [X] B is in an array of items formed by enclosing
subarrays along the axes given by k. The axis numbers in ¥ must be a unique
set of numbers in 1 p o B:

«5+2 3p16
=}

APL Reference Manual 1-65

Primitive Mixed Functions
< Enclose

1-66

c[1]S
tomot ot -4
[1 4] |2 5] 13 6]
to-ot tooot b---t
c[218

SCHILLER«'AGAINST'

(«SCHILLER<+3 2pSCHILLER,'CONTEND'

o PHRASES

APL Reference Manual

'STUPIDITY!

ACHANGING AXIS ORDER TRANSPOSES SHAPE

'"THE GODS' 'THEMSELVES'

VIN VAIN'

Primitive Mixed Functions
< Enclose

If ¥ is empty, than it has no effect if B is a simple array. If B is enclosed,
then each item in B becomes enclosed one level deeper (¢ [1 0] B <~ <" B). For
example:

[«S«2 3p6 aCREATE S, A SIMPLE ARRAY
23
56

=

c[10]S aEMPTY K, NO CHANGE

123

4L 56

SCHILLER<'AGAINST' 'STUPIDITY' 'THE GODS' 'THEMSELVES'
0«SCHILLER<3 2p SCHILLER, 'CONTEND' 'IN VAIN'

c[10]SCHILLER oEMPTY K, ITEMS NESTED DEEPER

[=-===-- S R +

[4+--mmmm-- I +]
|| THE GODS|| ||THEMSELVES||
[4=-m=---- +] 4= +]

| +--——--- 4o +

[4----——- IR +|

Further examples:

APL Reference Manual 1-67

Primitive Mixed Functions
< Enclose

[«POL<+2 3 p 'ABC' 0 (c,2) 99 'A' '0'
t---+ 0 +---+

| ABC| [+-+]
+---+ |2]]
[+-+]
t---t
99 40
cPOL
tommmmm e +
[+---+ 0 +---+]
[[ABC| [+-+]|
[+---+ |[2]]]
I [+-+11
| +---t]
199 40 |
e il +

The first two of the following expressions describe the relationship between <
and < [X]. The third expression describes the relationship between < [X¥] and
the disclose (= [k1) function:

cB «» c[1ppBIlB
c[K]B +> c(JK)8B (only true when K includes all axes of B)

B <> o[K] <[K] B
B <> ocB

Possible Errors Generated

27 LIMIT ERROR (INTEGER TOO LARGE)

28 AXIS RANK ERROR (NOT VECTOR DOMAIN)

30 AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)
30 AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

30 AXIS DOMAIN ERROR (DUPLICATE AXIS NUMBER)

30 AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

30 AXIS DOMAIN FRROR (INCORRECT TYPE)

30 AXIS DOMAIN ERROR (NOT AN INTEGER)

30 AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

1-68 APL Reference Manual

Primitive Mixed Functions
e Enlist

€ Enlist

Form

eB

Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Same as argument
Rank 1

Shape Vector

Depth 1 (simple vector)

Implicit Arguments

None.

Description

¢ builds a simple vector by recursively raveling each of the items in its
argument. For example:

O«A«e (2 (2 2p5 6 7 8)) 'ABC' 'A' 2 56 7 8 "ABC!
2567 8 ABCA 2 56 7 8 ABC

Possible Errors Generated

None.

APL Reference Manual 1-69

Primitive Mixed Functions
¢ Execute

¢ Execute

Form

¢ B
¢ is formed with 1 and o

Argument Domain

Type Any
Shape Any (Vector domain for characters)
Depth Any (0 or 1 for characters)

Result Domain

Type Any
Rank Any
Shape Any
Depth Any

Implicit Arguments

None.

Description

The monadic ¢ function executes the expression represented by its character-
string argument as if that expression were entered in immediate mode or
included in a user-defined operation. For example, the expressions 1 5 and

¢ ' 15" return the same result:

15
12345

e'15!
12345

B<15

¢ !'B!
2 345

1-70 APL Reference Manual

Primitive Mixed Functions
¢+ Execute

For a numeric argument B, ¢ B returns B. For example:

020
20

B«15

°B
12345

For an enclosed or heterogeneous array B, ¢ B returns B. For example:

¢ 12 'A 3
1243

0<POL<2 3p ('4BC') 0 (=,2) 99 'A' 0
t---+ 0 +---+

|4BC| [+-+]
t---+ ||2]]
[+-+]
to--t
99 A0
s 'POL
t-==+ 0 +---+
|ABC| [+-+]
to-mt o Ll2]]
[+-+]
t---t
99 40
e POL
t--=t 0 +---+
[ABC| |+-+]
temmt o Ll2]]
[+-+
t---+
99 40

The ¢ function is similar to the 0XQ system function; however, there are
several differences.

One difference is that the 0xQ system function always returns a value, but
the o function returns a value only if the evaluation of its argument returns
a value. Another difference is that the Jx¢ function cannot execute a branch
function (=), and the ¢ function can.

The ¢ and 0 x@ functions also handle errors differently. Errors resulting from
the evaluation of the 0x¢Q function’s argument cannot be trapped; if an error
occurs during the evaluation of its argument, 0 XQ returns an empty array
whose shape indicates the number of the error. With the ¢ function, however,
you can use [J TRAP to trap errors. If an error occurs in the character string
being executed by ¢, APL generates—in addition to the normal three-line error
message—an execute error message for the line on which the actual execute
error occurred.

APL Reference Manual 1-71

Primitive Mixed Functions
¢ Execute

For example:

V GRIFF A
[1] B+
(21 v

GRIFF '3,'

7 ¢ SYNTAX ERROR (RIGHT ARGUMENT TO FUNCTION MISSING)
3,
A

25 EXECUTE ERROR

GRIFF[1] B«gd
A
)SI
GRIFF[1]
B
11 VALUE ERROR
B
A
GRIFF' !
11 VALUE ERROR (REQUIRED VALUE NOT SUPPLIED BY EXECUTE)
GRIFF[1] B«2d

A

In the previous example, when the argument to the ¢ function was invalid
(v3, 1), APL generates six lines of error messages and suspends operation
execution. The blank argument is a valid one for the ¢« function, but ¢ ' ' does
not produce a value, so APL signals VALUE ERROR when the assignment is
made to B.

If you enter the attention signal while the « function is executing, APL stops
and signals ATTENTION SIGNALED.

Note that quiet functions are still quiet when executed, provided that the
execute is the leftmost function in the statement. When the argument is empty
and numeric, the result is an empty numeric vector (¢ 10 <> 1 0). When the
argument is empty and character, the result is an empty character vector (' '
<=+ ¢ ' ')if a value is required by the expression. For example:

1-72 APL Reference Manual

Primitive Mixed Functions
¢ Execute

IRWASE
VAR

¢ 10
e ! AQUIET, NO QUTPUT

Aes 1

A
(APL outputs a blank line.)

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

25 EXECUTE ERROR

APL Reference Manual 1-73

Primitive Mixed Functions
M and § File Input and Output

K and B File Input and Output

Form

8 [[mode | index]ll chan [data-typell
8 is formed with 0 and «

Argument Domain

Type Numeric
Shape Vector domain
Depth Any

Result Domain

Type Any
Rank Any
Shape Any
Depth Any

Form

[datal 8 [[mode | indexlll chan [data-typell
B is formed with 0 and ~

Left Argument Domain

Type Any
Shape Any
Depth Any

Right Argument Domain

Type Numeric
Shape Vector domain
Depth 0 or 1 (simple)

1-74 APL Reference Manual

Primitive Mixed Functions
@ and B File Input and Output

Result Domain

Type Same as left argument

Rank o p data-sent

Shape o data-sent

Depth = data-sent
Parameters

mode

Is an integer representing one of the modes listed in Table 5-3 in the VAX APL
User’s Guide. This parameter is used only when accessing files with ASCII
sequential organization. When you specify mode, it must be surrounded by
brackets.

index
Is the component number, record number, or key value in a direct-access,
relative, or keyed file, respectively. Index must be surrounded by brackets.

chan
Is a positive integer scalar whose value is a channel number in the range 1
through 999.

data-type

Specifies the data type of the record you want to read or write. When you
include a value for data-type, you imply that the record contains pure data;
that is, the beginning of the record does not contzin any header information. If
you do not specify data-type, or if you specify a value of 0, APL assumes that
there is a header at the beginning of the record

data
Is the data that is to be written to the file.

Description

The file input (8) and file output (8) functions are for reading and writing files.
M and B are described in greater detail in Chapter 4 of the VAX APL User’s
Guide along with other file I/O information.

The file output function (B) in its monadic form deletes a component or
record from a direct-access, relative or keyed file. APL signals DOMAIN ERROR
(DELETION NOT ALLOWED) if you use monadic Bl with a sequential file. When

APL Reference Manual 1-75

Primitive Mixed Functions
M and & File Input and Output

monadic B is not the leftmost function in the statement, it returns an empty
numeric matrix of shape 0 75.

The value of the @ function is the record read from the specified file. The B
function is quiet. It does not display a result if it is the leftmost function in a
statement. When it is not the leftmost function, B returns the value of its left
argument.

When a B or B function references a channel associated with a file that is not
open, APL opens the file and executes the function.

Possible Errors Generated

15 DOMAIN ERROR (DELETION NOT ALLOWED)

1-76 APL Reference Manual

Primitive Mixed Functions
+ First

4+ First

Form
+B

Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Same as selected item
Rank Same as selected item
Shape Same as selected item
Depth Same as selected item

Implicit Arguments

None.

Description

The monadic + function builds an array by disclosing the first item from an
existing array. If B is empty, then + returns the prototype of B:

B <y
C « 15
+C

D« 2 2p "ABCD'
+D

APL Reference Manual 1-77

Primitive Mixed Functions

+ First
U«E<«<B, (cC) , <D
4 oo + -4
|12 3 4 5| |4B]
e it + |CD]
+--+
+E AFIRST OF E
4
=tE aDEPTH SHOWS A SIMPLE SCALAR ARRAY
0
+E[2] AFIRST OF SECOND ITEM OF E
12345
=4+E[2] ADEPTH SHOWS A SIMPLE ARRAY
1
ptE[2] aSHAPE SHOWS A VECTOR
5
+E[3] AFIRST OF THIRD ITEM OF E
AB
cD
=4+F[3] ADEPTH SHOWS A SIMPLE ARRAY
1
ptE[3] ASHAPE SHOWS A MATRIX
22
+ 0 3p99 AEMPTY ARG RETURNS PROTOTYPE
0
P aPROTOTYPE IS A CHARACTER BLANK
+ 0p(1 2 3) '"4BC'
000

For simple arrays, the result of monadic + is the same as it would be with
the dyadic take function (+) when all the items of the left argument are 1.
Formally, this can be represented as follows: +B <> ((ppB)p 1) + B. However,
note that take does not disclose items of an array. First is also related to the
pick (=) function as follows: +B «~ (c (ppB)p1)>B

Possible Errors Generated

None.

1-78 APL Reference Manual

Primitive Mixed Functions
% Monadic Format

9 Monadic Format

Form

*B
7 is formed with T and -

Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Character

Rank 1[ppB for simple numeric or heterogeneous B
ppB for simple character B
2 for nonsimple B

Shape (T1+pB)<«> (" 1y presult) for simple B
Depth 1 (simple)

Implicit Arguments

0PP (Determines decimal precision)

NG (Determines minus sign placement)

Opc (Displays control of enclosed arrays)
Description

The monadic » function formats its argument array as a character array,
making it look as it would appear when displayed by APL.

Thus, if the argument array is already of type character, the result is identical
to the argument:

APL Reference Manual 1-79

Primitive Mixed Functions
¥ Monadic Format

(«A«3 5p'STAN SAM STEVE'
STAN
SAM
STEVE
34
STAN
SAM
STEVE
p¥4
35

If the argument array is of type numeric, the result appears to be identical to
the argument; however, the blank characters displayed along with the items
are actually part of the result array. For example:

A«2 4p18

B<34

A
1234
56 78

pA
2 4

B
1234
5678

poB
27

(" ",B)[;2xa4]
1234
5678

Note the difference between the shapes of the numeric array 4 and the
character array B.

Since it is not feasible to indicate both shape and depth in a two-dimension
display, the format of an enclosed array is always a matrix. Shape is indicated
by blank lines in the same manner as for simple arrays. Display of depth is
controlled by 0DC, the display control system variable.

Further examples:

0«P0L+«2 3p ('ABC') 0 (c,2) 99 'A' 0
t--—+ 0 +---+

|ABC| |+-+]
===+ |2]]
[+-+]
+---+
99 A0
pPOL
23

1-80 APL Reference Manual

Primitive Mixed Functions
7 Monadic Format

(0«B<3vP0L
+---+ 0 +---+
| ABC| | +-+]
t===t [12]]
[+-+]
+---+
99 A0
pB aTHE SHAPES OF B AND POL ARE DIFFERENT

O«XT+ 3 p (2 0 p 5) ('") (10) ACREATE AN EMPTY ARRAY

[T

++ ++
oXT
[0«B+3XT

++ o+ttt

o+t

4 8

Possible Errors Generated

None.

APL Reference Manual 1-81

Primitive Mixed Functions
7 Dyadic Format

7 Dyadic Format

Form

A% B
7 is formed with T and -

Left Argument Domain

Type Near-integer
Shape Vector domain
Depth 0 or 1 (simple)

Right Argument Domain

Type Numeric
Shape Any
Depth 0 or 1 (simple)

Result Domain

Type Character
Rank 1fppB
Shape (T14pB) ,+/104(2,T0.5xp,A) pA

(provided no widths are 0)
Depth 1 (simple)

Implicit Arguments

ONG (determines minus sign placement)

Description

The dyadic + function formats its right argument according to the width and
precision information supplied by its left argument.

The left argument generally contains one pair of numbers for each column (last
axis) in the right-argument array. The first number specifies the width of the
field; the second number controls the print precision. For example:

1-82 APL Reference Manual

Primitive Mixed Functions
7 Dyadic Format

[J«B+«2 up:18
1234
5678
A<5 2 4 1 4 0 6 3
R<A%B
R

1.00 2.0 3 4.000
5.00 6.0 7 8.000

pR
2 19
Because the right argument has four columns, the left argument (4) has four
pairs of numbers. The last axis of the formatted array (R) has a length of
19, the sum of the widths specified in 4 (5+ 4+ 4+6). The second number of
each pair in 4 specifies how many digits are to be displayed to the right of the
decimal point.

You do not have to specify more than one pair of numbers as the left argument.
If you specify only one pair, that pair is replicated a number of times equal to
the length of the last axis of the right argument.

The last axis of the formatted array ¥, below, has a length of 36 because the
format function specifies that each of the three columns should have a width of
12. The items are displayed with four digits to the right of the decimal point
because the second number of the left argument pair is .

Note the difference in the results when the array is formatted so that all
columns have a width of 9 and a print precision of 2, and then a width of 6
and a print precision of 0.

If a print-precision specification in the left argument is negative, the associated
item is formatted in scientific rather than decimal form, and the argument
represents the number of digits in the item’s mantissa.

O«X<2 3p 31.16 0 ~1.07 ~15.578 8 ~235.61
31.16 0 T1.07
T15.578 8 "235.61

pX
23
[J«Y«12 usX
31.1600 0.0000 71.0700
15,5780 8.0000 7235.6100
pY
2 36
A<9 23X
A
31.16 0.00 1,07
715,58 8.00 235.61
pA
2 27

APL Reference Manual 1-83

Primitive Mixed Functions
7 Dyadic Format

J«R«6 0%X
31 0 1
“16 8 7236
PR
2 18
0«B+9 ~23X
3.1E1 0.0E0 “1.1F0
“1.6E1 8.0F0 T2.4E2
0«C«7 ~13X
3F1 0E0 “1E0
T2F1 8E0 T2F2

The width specification in the left argument may be omitted or may be 0. If
it is omitted, the entire left argument must be a singleton and is extended to
(2x"14pB) 00,4, for arrays A and B. If the width specification is 0, then
APL uses the minimum width possible, allowing for one blank between the
formatted columns.

Two more examples of dyadic + follow. The first illustrates the formatting of a
rank 3 array; the second shows how you can use + to format tables.

(«A<«2 2 2p18

[S
= N

~N o

J+«C«5 234
1.00 2.00
3.00 4.00

5.00 6.00
7.00 8.00
pC
2 210
0«B«3 3p 100101111

[N SN
- o o
- o

10 B

101
111

1-84 APL Reference Manual

Primitive Mixed Functions
¥ Dyadic Format

Second example:

ATABLE FORMATTING
ROWS+«5 7p'APL FORTRANCOBOL BASIC PLI !
COLS«' USERS PROGS SYST
FORM+5 3pA
((74" ') ROWS),COLS57 0%FORM
USERS PROGS SYSTS

APL 1 2 3
FORTRAN 4 5 6
COBOL 7 8 1
BASIC 2 3 4
PLI 5 6 7

If the right argument to the dyadic format function is empty, the shape of the
result is determined by the following function:

VZ+«L EMPTY SHAPE R ;C;W;P
(11 L«(("1tpR),2)p((1=p,L)/0),L
[2] W<L[;1]
[31 P<L[;2]
[4] CeW,(P+3),2,6,[1.5]6-P
[5] Z+(W=0)x2+(-xP)+< 1
[61 C<(Z¢C)[;1]
[7] Z+<("14pR), (-W[1]=0)++/C
(8] v

For example:

p5 0 0 2%0 2p5
0 10

p0 2 5 0%0 2p5
09

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH ERROR

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN ERROR (NOT AN INTEGER)

15 DOMAIN ERROR (NEGATIVE NUMBER NOT ALLOWED)

APL Reference Manual 1-85

Primitive Mixed Functions
7 Dyadic Format

15 DOMAIN ERROR (WIDTH TOO SMALL)
27 LIMIT ERROR (INTEGER TOO LARGE)

27 LIMIT ERROR (PARAMETER OUT OF RANGE)

1-86 APL Reference Manual

Primitive Mixed Functions
¥ Monadic Grade Down

Y Monadic Grade Down

Form

VB YLK1B
¥ is formed with v and |

Argument Domain

Type Homogeneous
Shape Matrix, vector, or scalar (not singletons of rank >2)
Depth 0 or 1 (simple)

Result Domain

Type Nonnegative integer
Rank 1

Shape (¢oB) [K]

Depth 1 (simple)

Implicit Arguments

0710 (B when ,0710 <« 1 is identical to 1 + ¥B when ,0I0 <« 0)

Description

The monadic ¥ function returns a numeric vector whose items can be used to
sort the items of the argument in descending order. Thus, grade down does not
actually sort arrays. It creates a permutation vector of the index numbers of
the argument array’s items, and this vector can then be used to sort the array.

Sorting a vector requires two steps. First, the vector is the argument to the
grade down function, and then the result is used to index the vector:

A2 97 4 3 10 4
O«B<yA
6234751
A(B]
1097 4432

APL Reference Manual 1-87

Primitive Mixed Functions
Y Monadic Grade Down

If two or more items of a vector or matrix have the same value, the order of
the items is determined by their relative positions in the original array (this
is called a stable sort). For character arguments, the collating sequence is
determined by the value of 0AV. Note that for numeric arguments, the result is

not [¢T-dependent.

When you use the grade down function to sort a matrix, APL treats each row
or column as a string. Thus, you can use the function to sort row by row or
column by column, but not to sort individual items within a row or column.
When applied to a matrix, the grade down function produces a vector whose

length is equal to the number of rows or columns in the matrix.

The following sorts the matrix B by rows and then sorts the matrix by columns

O«B«3 5p 32150319703208¢0

32150
31970
32080

¥B
132

y(21B
132

B[YB;]
32150
32080
31970

Y(11B
41235

BL;¥[11B]
53210
73190
83200

In this example, the original first row remains the first row, the third row
becomes the second row, and the second row becomes the third row. Note that

¥ B and ¥ [2] B are equivalent.

You can also sort character arrays by rows or by columns. For example:

1-88 APL Reference Manual

Primitive Mixed Functions
¥ Monadic Grade Down

0«B«3 Sp'ALLENALAN ALLAN'

ALLEN

ALAN

ALLAN

BLYB;]

ALLEN
ALLAN
ALAN

B[;¥[11B]

NLLEA
LANA
NLLAA

If the argument to ¥ is a scalar, the ravel function is applied to extend it to a
one-item vector, and the result of the ¥ function is ,0I0:

1

1

R«y5
R

ppR

Note that [CT is not an implicit argument to the grade down function.

Possible Errors Generated

9 RANK ERROR (NOT A SCALAR, VECTOR, OR MATRIX)

15

27

28

29

30

30

30

30

30

30

DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

LIMIT ERROR (INTEGER TOO LARGE)

AXIS RANK ERROR (NOT VECTOR DOMAIN)

AXIS LENGTH ERROR (NOT SINGLETON)

AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)
AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

AXIS DOMAIN ERROR (INCORRECT TYPE)

AXIS DOMAIN ERROR (NOT AN INTEGER)

AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

APL Reference Manual 1-89

Primitive Mixed Functions
¥ Dyadic Grade Down

Y Dyadic Grade Down

Form

AV B
¥ is formed with v and |

Left Argument Domain

Type Character
Shape Any
Depth 0 or 1 (simple)

Right Argument Domain

Type Character
Shape Any
Depth 0 or 1 (simple)

Result Domain

Type Nonnegative integer
Rank 1

Shape 1tp35B

Depth 1 (simple)

Implicit Arguments

0I0 (AYB when ,01I0 « 1 isidentical to 1+4VB when ,0I0 < 0)

Description

The dyadic ¥ function returns a numeric vector whose items can be used to
sort the items along the first axis of the right argument in descending order.
(The sort is performed according to the collating sequence defined in 4.) Grade
down does not actually sort arrays; it creates a permutation vector of the index
numbers of the argument array’s items, and this vector can then be used to
sort the array. If either argument is empty, the result of the grade function is
1 1+ p B. If the length of the first axis of B is one, then the result is ,[0.

1-90 APL Reference Manual

Primitive Mixed Functions
¥ Dyadic Grade Down

If two or more items of the right argument have the same value, the order of
the items is determined by their relative positions in the original array (this is
known as a stable sort).

Sorting an array requires two steps. First, the array is the right argument
to the grade function, and then the result is used to index the array. The
left argument determines the order in which APL collates the items of the
right argument; APL evaluates the collating sequence from right to left. For
example:

ALPHA1«<'"IVXLCDM' ¢ N<«'CMXIVCILI®
X « [0 « ALPHA1YN
216835479
N[X]
MCCLXVIII
DATES+[IBOX 'MCCLXVIII
VIiI
MLXXIIT
DCCCXXIII
CLXVI
MDCLIII
CLXXI
XVIIT!
X « [0 « ALPHA1YDATES
61347582
DATES[X;]
MDCLIII
MCCLXVIII
MLXXIIT
DCCCXXIII
CLXXI
CLXVI
XVIII
VIiI
HEX<' 0123456789ABCDEF"!
HD<[IBOX '8E7
3DA
976
AE8
F8
3D5
4o

APL Reference Manual 1-91

Primitive Mixed Functions
¥ Dyadic Grade Down

X « [0 « HEXVHD

L 312657
HDIX;]

AES8

976

8E7

3DA

3D5

F8

40

To sort an array that contains more than one font, you can use sequences
similar to the following, depending on the desired result:

aZ SORTS AFTER Z AND BEFORE Y

WORDS+[BOX 'HOPE

NASAL

HEEL

HELM

HEEL

NEST

NEAR

PALM'
X « 0 « ALPHA2YWORDS

87263541
WORDSLX;]

PALM

NEAR

nZ SORTS AFTER A AND BEFORE Y

X « 0 « ALPHABYHORDS
72358641

WORDS(X;]
NEAR

1-92 APL Reference Manual

Primitive Mixed Functions
¥ Dyadic Grade Down

If any items appear in the right argument when they have not been specified
in the left argument, APL considers them equal and places them at the end of
the sort sequence. For example:

ALPHA4<'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
GAMES<(JBOX 'FREEZE TAG
MONOPOLY

HIDE AND SEEK
BACKGAMMON
FRISBEE'
X « 0 « ALPHA4YGAMES
234651
GAMES[X;]
MONOPOLY

HIDE AND SEEK
FRISBEE
BACKGAMMON
FREEZE TAG

When the left argument has a rank greater than one, each axis represents

a level of comparison and the last axis receives the highest priority. For
example, when the left argument has two rows, each containing an alphabet
in a different font, APL gives higher priority to the order specified by the
columns (last axis) than it gives to the fonts specified by the rows (first axis).
For this reason, the word HELM precedes the word #EEL in the end result of
the following example:

APL Reference Manual 1-93

Primitive Mixed Functions
¥ Dyadic Grade Down

ALPHAS+'ABCDEFGHIJKLMNOPQRSTUVNXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ'
WORDS+{]1BOX 'HOPE

X« 0 « ALPHASYHORDS
72358614
WORDS[X;]
NEAR

Duplicate items, such as character blanks, in the left argument (4) may yield
an unexpected collating sequence. APL compares the locations of a duplicate
item and bases its position in the final collating sequence on this comparison.
The final location of a duplicate item is the minimum value along each axis
for each occurrence. For example, if a duplicate ¥ appears at locations 1 1 3
and 2 1 2 in a three-dimensional array, then the position of the # in the final
collating sequence is 1 1 2. If the position 1 1 2 is occupied by a value other
than v, the two are treated as equivalents:

0«D<2 2 3p'ABCDEFGCIJKL'
ABC
DEF

GCI
JKL
0«B+«4 3p'ABFAAFACFABF'
ABF
AAF
ACF
ABF
B[DYB;] aNOTE THAT C AND B ARE EQUIVALENT
ABF
ACF
ABF
AAF

1-94 APL Reference Manual

Primitive Mixed Functions
y Dyadic Grade Down

In the following example, D appears at locations 1 2 and 2 1, and B appears
at locations 1 1 and 2 2. In the final collating sequence, both are positioned at
location 1 1 and are treated as equivalent values:

[1«L«2 2p'BDDB!'
BD

DB
{«R<«5 2p'DBBDBDDBBD'

LYR aD AND B ARE EQUIVALENT, NO CHANGE
123145

For more information about how the dyadic grade function is implemented, see
Smith, H.J., "Sorting - A New/Old Problem." APL Quote Quad 9 (June 1979)
ppl123-127.

Possible Errors Generated

10 LENGTH ERROR (ARGUMENT STRING IS TOO LONG)
15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
15 DOMAIN ERROR (INCORRECT TYPF)

30 AXIS DOMAIN ERROR (INCORRECT OPERATION)

APL Reference Manual 1-95

Primitive Mixed Functions
A Monadic Grade Up

A Monadic Grade Up

Form

AB ALKIB
4 is formed with o and |

Argument Domain

Type Homogeneous
Shape Matrix, vector, or scalar (not singletons of rank > 2)
Depth 0 or 1 (simple)

Result Domain

Type Nonnegative integer
Rank 1

Shape (¢pB) [K]

Depth 1 (simple)

Implicit Arguments
0Io (AB when IO « 1 isidentical to 1 + 4 B when 070 <« 0)

Description

The monadic 4 function returns a numeric ve¢tor whose items can be used to
sort the items of the argument in aseending order. Thus, grade up does not
actually sort arrays; it creates a permutation vector of the index numbers of
the argument array’s items, and this vector can then be used to sort the array.

Sorting a vector requires two steps. First, the vector is the argument to the
grade up function, and then the result is used to index the vector:

A«2 97 4 3 10 4

O«B+hA
1547326

A[B]
23447910

1-96 APL Reference Manual

Primitive Mixed Functions
A Monadic Grade Up

If two or more items of a vector or matrix have the same value, the order of the
items is determined by the relative positions of the items in the original array
(this is called a stable sort). For character arguments, the collating sequence is
determined by the value of 04V. Note that for numeric arguments, the result is
not 0 CT-dependent.

When you use the grade up function to sort a matrix, APL treats each row

or column as a string. Thus, you can use the function to sort row by row or
column by column, but not to sort individual items within a row or column.

'~ When applied to a matrix, the result of the grade up function is a vector whose
length is equal to the number of rows or columns in the matrix.

The following sorts the matrix B by rows and then by columns:

B«3 5p3 2 1503197032080
AB

231
40238

231

w
N
= o W

™

(= =
FR oo o
o ..
—

i
w
N

[;401]1B]
01
09
00

www™W e ;o uW
—

N =N
o« N o

In this example, the original second row becomes the first row, the third row
becomes the second row, and the first row becomes the third row. Note that A B
and 4 [2] B are equivalent. You can also sort character arrays by rows or by
columns. For example:

0«B<«3 Sp'ALLENALLINALLAN'
ALLEN
ALLIN
ALLAN
B[4B;]
ALLAN
ALLEN
ALLIN
B[;401]B]
AELLN
AILLN
AALLN

APL Reference Manual 1-97

Primitive Mixed Functions
A Monadic Grade Up

If the argument to 4 is a scalar, the ravel function is applied to extend it to a
one-item vector, and the result of the 4 function is ,010:

R<A5

R
1

ppR
1

Note that 0CT is not an implicit argument to the grade up function.

Possible Errors Generated

9 RANK ERROR (NOT A SCALAR, VECTOR, OR MATRIX)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

27 LIMIT ERROR (INTEGER TOO LARGE)

28 AXIS RANK ERROR (NOT VECTOR DOMAIN)

29 AXIS LENGTH ERROR (NOT SINGLETON)

30 AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)
30 AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

30 AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

30 AXIS DOMAIN ERROR (INCORRECT TYPE)

30 AXIS DOMAIN ERROR (NOT AN INTEGER)

30 AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

1-98 APL Reference Manual

Primitive Mixed Functions
A Dyadic Grade Up

A Dyadic Grade Up

Form

AMB
A is formed with A and |

Left Argument Domain

Type Character
Shape Any
Depth 0 or 1 (simple)

Right Argument Domain

Type Character
Shape Any
Depth 0 or 1 (simple)

Result Domain

Type Nonnegative integer
Rank 1

Shape 1tpsB

Depth 1 (simple)

Implicit Arguments

0710 (AAB when 0I0 « 1 isidentical to 1 + AAB when 010 < 0)

Description

The dyadic 4 function returns a numeric vector whose items can be used to
sort the items along the first axis of the right argument in ascending order.
(The sort is performed according to the collating sequence defined in 4.) Grade
up does not actually sort arrays; it creates a permutation vector of the index
numbers of the argument array’s items, and this vector can then be used to
sort the array. If either argument is empty, the result of the grade function is
1 1+ p B. If the length of the first axis of B is one, then the result is ,070.

APL Reference Manual 1-99

Primitive Mixed Functions
4 Dyadic Grade Up

If two or more items of the right argument have the same value, the order of
the items is determined by their relative positions in the original array (this is

known as a stable sort).

Sorting an array is accomplished in two steps. First, the array is the right
argument to the grade function, and then the result is used to index the array.
The left argument determines the order in which APL collates the items of the

right argument. For example:

ALPHA1«'IVXLCDM'
N«'"CMXIVCILI'
X « [0 « (QALPHAL)AN
216835479
N(X]
MCCLXVIII
DATES+[1BOX '"MCCLXVIII
VIII
MLXXIII
DCCCXXIII
CLXVI
MDCLIII
CLXXI
XVIII!
X « [0 « ALPHA1ADATES
28574316
DATES[X;]
VIII
XVIII
CLXVI
CLXXI
DCCCXXIII
MLXXIII
MCCLXVIII
MDCLIII
HEX<' 0123456789ABCDEF"!
HD<[1BOX '8E7
3DA
976
AE8
F8
3D5
4o

1-100 APL Reference Manual

Primitive Mixed Functions

X « (0 « HEXAHD

7562134
HD[X;]

40

F8

3D5

3DA

8E7

976

AFE8

A Dyadic Grade Up

To sort an array that contains more than one font, you can use sequences

similar to the following, depending on the desired result:

X « 0 « ALPHA24HORDS
41536278
WORDS[X;1
HELM
HOPE
HEEL
HEEL
NEST

X « 0 « ALPHA3AWORDS
L 1685327

APL Reference Manual 1-101

Primitive Mixed Functions
A Dyadic Grade Up

WORDS[X;]
HELM
HOPE
NEST
PALM
HEEL
HEEL

If any items appear in the right argument when they have not been specified
in the left argument, APL considers them equal and places them at the end of
the sort sequence. For example:

ALPHA4+"ABCDEFGHI JKLMNOPQRSTUVWNXYZ'
GAMES<[1BOX 'FREEZE TAG
MONOPOLY

HIDE AND SEEK
BACKGAMMON
FRISBEE'
X « [0 « ALPHA4AGAMES
516423
GAMES[X;]
BACKGAMMON
FREEZE TAG
FRISBEE
HIDE AND SEEK
MONOPOLY

When the left argument has a rank greater than one, each axis represents

a level of comparison and the last axis receives the highest priority. For
example, when the left argument has two rows, each containing an alphabet
in a different font, APL gives higher priority to the order specified by the
columns (last axis) than it gives to the fonts specified by the rows (first axis).
For this reason, the word #EEL precedes the word HELM in the end result of
the following example:

1-102 APL Reference Manual

ALPHAS+2 26p'ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUWXYZ'
WORDS+(1BOX 'HOPE

X « [« ALPHASAWORDS
53412768
HORDS[X;]
HEEL
HEEL
HELM
HOPE

Primitive Mixed Functions
A Dyadic Grade Up

Duplicate items, such as character blanks, in the left argument (4) may yield
an unexpected collating sequence. APL compares the locations of a duplicate
item and bases its position in the final collating sequence on this comparison.
The final location of a duplicate item is the minimum value along each axis for
each occurrence. For example, if a duplicate ¥ appears at locations 1 1 3 and
2 1 2 in a 3-dimensional array, then the position of the ¥ in the final collating
sequence is 1 1 2. If the position 1 1 2 is occupied by a value other than v, the

two are treated as equivalents.

0<«D+2 2 3p'ABCDEFGCIJKL'
ABC
DEF

GCI
JKIL
O«B+«4 3p'ABFAAFACFABF'
ABF
AAF
ACF
ABF
B[DAB;]
AAF
ABF
ACF
ABF

aNOTE THAT C AND B ARE EQUIVALENT

APL Reference Manual 1-103

Primitive Mixed Functions
4 Dyadic Grade Up

In the following example, D appears at locations 1 2 and 2 1, and B appears
at locations 1 1 and 2 2. In the final collating sequence, both are positioned at
location 1 1 and are treated as equivalent values.

(«L«2 2p'BDDB'

(«R+5 2p'DBBDBDDBBD'

LAR aD AND B ARE EQUIVALENT, NO CHANGE

12345

For more information about how the dyadic grade function is implemented, see
Smith, H.J., "Sorting - A New/Old Problem," APL Quote Quad 9 (June 1979)
ppl23-127.

Possible Errors Generated

10

15

15

30

30

LENGTH ERROR (ARGUMENT STRING IS TOO LONG)
DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
DOMAIN ERROR (INCORRECT TYPE)

AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWNED)

AXIS DOMAIN ERROR (INCORRECT OPERATION)

1-104 APL Reference Manual

Primitive Mixed Functions
1 Index Generator

1 Index Generator

Form
1B

Argument Domain

Type Nonnegative near-integer
Shape Singleton
Depth 0 or 1 (simple)

Result Domain

Type Nonnegative integer
Rank 1

Shape ,B

Depth 1 (simple)

Implicit Arguments
010 (1B when 0I0 <« 1 is identical to 1 + 1 B when 010 <« 0)

Description

For an argument B, the monadic 1 function generates a vector of B consecutive,
ascending integers starting with the value of the index origin. For example:

O«A«1l
12 3 4
pA
mn
2x112 APOWERS OF 2
2 4 8 16 32 64 128 256 512 1024 2048 4096
2 5p110
1234 5
7 8 9 10
X«7 1 3 4
1pX
1234

APL Reference Manual 1-105

Primitive Mixed Functions
1 Index Generator

If the index origin is 1, the integers have values 1 through B; if the 1ndex
origin is 0, the integers have values 0 through B - 1:

grIo
1
15
12345
Jro<o
15
01234

Regardless of the value of 110, 1 0 is the numeric empty vector:

10
(APL outputs a blank line)
010

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH ERROR (NOT SINGLETON)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN ERROR (NEGATIVE NUMBER NOT ALLOWED)
15 DOMAIN ERROR (NOT AN INTEGER)

27 LIMIT FRROR (INTEGER TOO LARGE)

1-106 APL Reference Manual

Primitive Mixed Functions
1 Index Of

1 Index Of

Form

A1 B

Left Argument Domain

Type Any
Shape Vector domain
Depth Any

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Nonnegative integer
Rank ppB

Shape pB

Depth 0 or 1 (simple)

Implicit Arguments

OCT (determines comparison precision)

010 (A1B when 010 « 1 isidentical to 1 + 41 B when JI0 <« 0)
Description

The dyadic 1 function returns the position of the first occurrence in the left
argument of the corresponding items in the right argument. For example:

4 96 8 16 4
31

The result indicates that 6 is the third item in the left argument and 4 is the
first item.

APL Reference Manual 1-107

Primitive Mixed Functions
1 Index Of

The result will always have the same shape as the right argument, so that an
index is returned for each of the values in the right argument. If a particular
value in the right argument does not appear in the left argument, APL
supplies a value equal to the last index value of the left argument plus one.
For example:

'ABCDEFGH' 1 'HEADER'
851459

The value R does not appear in the left argument, so APL returns the value 9
(there are eight values in the left argument) for the position corresponding to
R.

Note that the dyadic : function is 0 I0-dependent: when 0I0 is 0, each item
in the result is one less than when 0710 is 1:

0I0+0
"ABCDEFGH' 1 'HEADER'
740348

If the right argument of the dyadic 1 function is empty, the result is empty. If
the left argument is empty, the result is all 1s (D I0«~1):

10)12 5p110

(10
11111
11111
Note that comparisons of the items in the right and left arguments are defined
in terms of the match (=) function (and so are 0 CT-dependent). Because match
allows mixed-type arguments, you can compare characters with numbers.
However, such a comparison is always false, so that if you use mixed-type
arguments for dyadic 1, the items in the result will be equal to the last index

value of the left argument plus one.

Further examples:

[O«VIC«'ABC' 0
t--=+ 0
| ABC|
to--t
0«+VOOF+« 'AB' 0 ~3 'ABC' 99 1
+--+ 0 T3 +---+ 99 1
|AB| | ABC|
+--t tom—t

1-108 APL Reference Manual

Primitive Mixed Functions

1 Index Of
VOOF VIC
L2
ANOTE THAT DYADIC 1 IS (IO-DEPENDENT
0I0+0
VOOF 1 VIC
31
O«XIP+ 0 p (1 2 3) 'ABC'
(APL outputs a blank line)
O«V«(1 2 3) 'ABC'
to---- + +---+
|1 2 3| |ABC|
to---- + ---+
Vv XIP AEMPTY RIGHT ARGUMENT
(APL outputs a blank line)
p V1 XIP
0
XIP 1+ V REMPTY LEFT ARGUMENT
00

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

APL Reference Manual 1-109

Primitive Mixed Functions
n Intersection

N Intersection

Form
AnB

Left Argument Domain

Type Any
Shape Any
Depth Any

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type See explanation below
Rank 1

Shape pu((,4)eB)/ A
Depth -

Implicit Arguments

0c¢T (Determines comparison precision)

Description

The dyadic n function returns the common items found in both arguments.
The result is the intersection of the arguments with the duplicate items
removed. Note that the order of the items in the result is not predictable. For
example:

1-110 APL Reference Manual

Primitive Mixed Functions
n Intersection

'"CBEFGH' n 2 3p'ABCD'

CB
(2 3p "ABCD') n 'CBEFGH!'
BC
(16) n 57 34
3 45
57 34016
3 45

You can use the intersection function to remove duplicate items from an
argument. However, the unique function is the preferred method for this task.
For example:

A<1 212 345 1 65 34 67 1 34 AaDUPLICATES ARE 1 AND 34
AnA
1 212 345 65 34 67

u 4
1 212 3u45 65 34 67

The type of the result depends on the types of the arguments, as shown in the
following table:

Argument Resulting Type

Neither empty Same as left argument

One empty Same as nonempty argument
Both empty Same as left argument

The n function compares items in terms of the match (=) function, which uses
the value of O CT. Since match allows mixed-type arguments, you can compare
characters with numbers. However, such a comparison is always false, so that
if you use mixed-type arguments for dyadic n, the result will be empty.

Note that the following definition applies: 4nB «~> v ((,4) =B) / ,4, where
the order of the items may differ.

Further examples:

D“A“C,3
+-+
[3]
+-+

J«B«(1 2 5)
125

APL Reference Manual 1-111

Primitive Mixed Functions
n Intersection

O«WRL+(<,3) (1 2 5) 1

Homot fo---- + 1
[+-+] |1 2 5]
N +
[+-+]
-t
O«MIC«2 2 p A B 10
e i +
[+-4] |1 2 5]
[131] +-----+
[+-+]
+---4
1 0
MIC n WRL AZERO NOT IN INTERSECT
e + 1
[+-+] |1 2 5]
FI3I 4-mmm- *
[+-+]
+---4
MIC v c,3 aNO INTERSECTION BETWEEN TWO ARGUMENTS
o=t t----- + 710 +-+
[+-+] 112 5] 131
[13]] +--~-- + +-+
[4-+]
+---+
O«VAN«(1 2 3) 'ABC' (c,1 2 3) ACREATE VAX
bt i ettt +
|12 3| |ABC| |+----- +]
Fmmmm e + +---+ |1 2 3]]
[+=---- +
e +
A<(1 2 3) 'A ACREATE NEW 4
A n VAN
+
|12 3|
et +

Possible Errors Generated

None.

1-112 APL Reference Manual

Primitive Mixed Functions
= Match

= Match
Form

A=B
= is formed with = and _

Left Argument Domain

Type Any
Shape Any
Depth Any

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Boolean

Rank 0

Shape 1 0 (scalar)
Depth 0 (simple scalar)

Implicit Arguments

Ocr (determines comparison precision)

Description

The dyadic = function determines whether the two arguments are identical in
rank, shape, and value. The result is a Boolean scalar: true, if the arguments
are identical, and false if they are not. For example:

APL Reference Manual 1-113

Primitive Mixed Functions

= Maich

"ABCD' = '"ABCD!
1

'"ABCD' = 'ACBD'
0

'ABCD' = 2 2p'ABCD!'
0

AT = AT
0

123=123
1

123=12
0

123=1223
0

123="12%3"
0

' =10
0

The = function compares the simple items in terms of the equal (=) function
and identifies equal items based on the value of 0CT. For example:

acr
1E715

4 = 4-5F16
1

Further examples:

<A<l
Iy

[(«B<c,u
+-+
[4]
+-+

A=0B ANOTE DIFFERENCE BETWEEN = AND =
0

A =8B
+-+
Il
+-+

O«VIC«(1 2 3) (c,u4)
o + +---+
|12 3] |+-+]
to---- + [l

[+-+]
+---+

[«N<c,u
[u]
+-+

1-114 APL Reference Manual

Primitive Mixed Functions
= Match

0«RED«(1 2 3),N

123 +-+
[yl
+-+
RED = VIC
0
0«Q+c(1 2 3)
tommm- +
[12 3]
et +

Possible Errors Generated

None.

APL Reference Manual 1-115

Primitive Mixed Functions
B Matrix Divide

EH Matrix Divide

Form

ABB
B is formed with 0 and+

Left Argument Domain

Type Numeric
Shape Matrix, vector, or scalar (not singletons of rank < 2)
Depth 0 or 1 (simple)

Right Argument Domain

Type Numeric
Shape Matrix, vector, or scalar (not singletons of rank < 2)
Depth 0 or 1 (simple)

Result Domain

Type Numeric

Rank 0T " 2+(ppA)+ppB
Shape (1+pB) ,14pA4A
Depth 0 or 1 (simple)

Implicit Arguments
0CT (used in the test for singularity)

Description

For arguments 4 and B, the dyadic 8 function determines the generalized
solution R to the linear system A=B+ . x R. If B has more rows than columns,
then dyadic @ returns the least-squares solution to the linear system.

The matrix divide function treats scalars and vectors as one-column matrices
(except when it is determining the shape of the result).

1-116 APL Reference Manual

Primitive Mixed Functions
B Matrix Divide

The following example shows the use of the matrix division function in solving
the linear equations 3A+B=9 and 2A-B=1:

X«9 1
Y2 203 12 "1
XBY

2 3

In the expression XBY, ¥ is a matrix whose values are the coefficients of the
equations, and ¥ is a vector containing the constant terms 9 and 1.

The result is a vector in which the first item is the value of 4 in the linear
equations, and the second is the value of B. The following example shows other
uses of matrix divide, including a least-squares solution:

O«A<(,[1.5]2 5), 1

21
51
B«10 19
p(«X«BBHA
34
2
A+ xX
10 19

O«A«<(,[1.5]15), 1

OE W N e
[e

Opp

10
B+2.001 2.998 4,002 4.997 6.01
0«X+B@EA

1.0017 0.9965
B-A+.xX

0.0028 ~0.0019 0.0004 ~0.0063 0.005
D+X+BA

70.2 T0.1 T9.356402631E719 0.1 0.2

0.8 0.5 2.000000000E"1 ~0.1 0.4

X+.x4
1.000000000E0 ~1.040834086E 17
2.775557562E 17 1.000000000E0

For more information about how the matrix divide function is implemented,
see Jenkins, M. A., The Solution of Linear Systems of Equations and Linear
Least Squares Problems in APL. New York: IBM Scientific Center, Technical
Report No. pp320-2989, June 1970; and Businger, Peter, and Golub, Gene H.
"Linear Least Squares Solutions by Householder Transformations." Numerische
Mathematik 7 (1965) pp269-276.

APL Reference Manual 1-117

Primitive Mixed Functions
B Matrix Divide

Possible Errors Generated

9 RANK ERROR (NOT A SCALAR, VECTOR, OR MATRIX)

10

10

15

15

15

15

27

LENGTH ERROR (FEWER ROWS THAN COLUMNS)
LENGTH ERROR (NUMBER OF ROWS MUST MATCH)
DOMAIN ERROR (DIVISION BY ZERO)

DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
DOMAIN ERROR (INCORRECT TYPE)

DOMAIN ERROR (SINGULAR MATRIX)

LIMIT ERROR (FLOATING OVERFLOW)

1-118 APL Reference Manual

Primitive Mixed Functions
B Matrix Inverse

H Matrix Inverse

Form

BB
g is formed with 0 and +

Argument Domain

Type Numeric
Shape Matrix, vector, or scalar (not singletons of rank < 2)
Depth 0 or 1 (simple)

Result Domain

Type Numeric

Rank ppB

Shape $pB

Depth 0 or 1 (simple)

implicit Arguments
Oc¢T (used in the test for singularity)

Description

The monadic @ function inverts a matrix to facilitate matrix division and a
variety of other matrix operations.

If the argument is a matrix, its rows must be linearly independent.

If the argument is a scalar or vector, the result is a scalar or vector,
respectively, but the result’s items are obtained by treating the argument
as a one-column matrix. Formally expressed, for an argument B :

BB «>((I,I)p1,(I«]|4pB)p0)B (2¢ (pB),11))pB

Note that the matrix product of B and BB is the identity array. Formally
expressed, for an argument B:

B+ . xEHB<~>I

APL Reference Manual 1-119

Primitive Mixed Functions
B Matrix Inverse

For example:

O«A<+(13)o,+ 1+13

1 0.5 0.3333333333
0.5 0.3333333333 0.25
0.3333333333 0.25 0.2
_[eX<R4
9 736 30
36 192 7180
30 180 180
X+.x4

1.000000000F0 2.220446049F 16 1.665334537E 16
T4.440892099E715 1,000000000E0 T1.332267630E 15
4,440892099E 15 2.220446049E 15 1.000000000E0

For more information about how the matrix inverse function is implemented,
see Jenkins, M. A., The Solution of Linear Systems of Equations and Linear
Least Squares Problems in APL. New York: IBM Scientific Center, Technical
Report No. pp320-2989, June 1970; and Businger, Peter and Golub, Gene H.
"Linear Least Squares Solutions by Householder Transformations.” Numerische
Mathematik 7 (1965) pp269-276.

Possible Errors Generated

9 RANK FRROR (NOT A SCALAR, VECTOR, OR MATRIX)

10 LENGTH ERROR (THERE ARE FEWER ROWS THAN COLUMNS)
15 DOMAIN ERROR (DIVISION BY ZERO)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN ERROR (SINGULAR MATRIX)

27 LIMIT ERROR (FLOATING OVERFLOW)

1-120 APL Reference Manual

Primitive Mixed Functions
€ Membership

€ Membership

Form
AeB

Left Argument Domain

Type Any
Shape Any
Depth Any

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Boolean

Rank ppA

Shape pA

Depth 0 or 1 (simple)

Implicit Arguments

pgcr (determines comparison precision)

Description

The dyadic e function determines whether particular items of the left
argument array occur as items of the right argument array. The result is

a Boolean array whose shape is the same as that of the left argument: a 1
indicates that the corresponding item in the left array is present somewhere in
the right array; a 0 indicates that the item is not present. For example:

A<2 3p7 8 2 46 9
Ae1b

001
110

APL Reference Manual 1-121

Primitive Mixed Functions
e Membership

The result identifies the items in 4 that are also items in 1 6.

You can use the compression function (/) in conjunction with the membership
function (¢) to identify the particular items that are members of both
argument arrays:

[J«A«<'ABCDEFGH'e ' HEADED'
10011001

A/'ABCDEFGH'
ADEH

Note that comparisons of the items in the right and left arguments are defined
in terms of the match (=) function (and so are 0 cT-dependent). Since match
allows mixed-type arguments, you can compare characters with numbers.
However, such a comparison is always false, so that if you use mixed-type
arguments for dyadic ¢, the result will be all 0 s.

Further examples:

[0«ACT«(1 2 3) '"ABC' (c,4)
- + o4t -t
[1 2 3] [ABC| |+-+]
R + 4=+ 4]
[+-+]
t---t
0«B0Y«2 2 p (c,4) 'BC' (12 3) 0
+---t -4
[+-+] |BC|
Plell +--+
[+-+]
+---+

ACT ¢ BOY

Possible Errors Generated

None.

1-122 APL Reference Manual

Primitive Mixed Functions
> Pick

> Pick

Form
A>B

Left Argument Domain

Type Nonnegative near-integer
Shape Vector domain
Depth Less than or equal to 2

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Any
Rank Any
Shape Any
Depth (=B) -pA (provided 4 is along the deepest path)

Implicit Arguments

0I0 (4>B when 0I0+1 is identical to (>1+A) >B when 110+<0)

Description

The dyadic > function selects and discloses an item from an existing array.
The items in A specify the coordinates of items in B. For example:

V<21 22 23 24 25 26

2>V aSELECT SECOND ITEM IN V
22

V2] ANOTE SIMILARITY TO INDEXING
22

APL Reference Manual 1-123

Primitive Mixed Functions

> Pick

1-124

You can select an item from any depth in an enclosed array. The length of 4
determines the depth of the selected item: when 4 has one item, the selection
is from the top level of B; when 4 has two items, the selection is from the
second level; and so on. For example:

[«B«('1A' '1B') ('24' '2B') ('3A' '3B'")
tommm o oo oo +
[+--+ +-—+] |+--+ +--+] [+--+ +--+|
[11A] [1BI| [124] [2B[| |34l [3B]]
[+==+ +==+] [+==+ +-=+] [+--+ +-—+]
L L e oA +
=B
3
RLEFT ARG LENGTH IS 1, PICK FROM TOP LEVEL
[«Z+2>B
t--t +--1
[24] |2B]
o-t t--t
=7
2
pZ
2
0«X«2 2-B APICK FROM SECOND LEVEL
2B
=X
1
pX
2

The length of each item of 4 is equal to the rank of the corresponding array
in B. The first item in 4 has a length equal to the rank of B; the second item
has a length equal to the rank of the array selected by the first item in 4 ; the
third item has a length equal to the rank of the array selected by the second -
item in 4; and so on. In the following example, the rank of # is 2, and the
rank of item A[1; 27 is 3. To select an item from A[1; 2], the first item of 4
must contain two elements, and the second item must contain three elements.
When you pick from the top level of an array, 4 must have length 1, and if 4
is enclosed, the contents must be in the simple vector domain.

APL Reference Manual

Primitive Mixed Functions

> Pick
O«H+2 2 p (10x15) (2 3 Up12u) (2 2p100x14) 1000
fomm - + t--mmmm - +
[10 20 30 40 50| | 1 2 3 4]
fommmm e +] 5 6 7 8]
| 9 10 11 12]
I l
|13 14 15 16|
|17 18 19 20|
|21 22 23 2u]
pommmmm +
Fommm——— + 1000
100 200]
300 400}
tommm - +
=H
2
0«Z«((12) (2 2 3)) o H APICK FROM SECOND LEVEL
19
=7
0
(c1 2)2H
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24
1 2oH
10 LENGTH ERROR (LEFT ITEM LENGTH NOT EQUAL TO SELECTED ITEM RANK)
1 2oH

A

When B and all the items in B are in the vector domain, then 4 is in the
simple vector domain. When 4 is empty, then 4>B <+ B.

O«F«<'A"Y YAN' (VANT' ('ANTI' 'ANTIC'))

Y e T +
[AN] |+---+ 4+-------------- +|
+--+ | [ANT| [+----+ +----- +11

|+---+ | |ANTI| |ANTIC]|

| [+----+ +-—-—- +1
| e il +]
o +
=F

4

pF
3

APL Reference Manual 1-125

Primitive Mixed Functions

> Pick
ot F ASHAPE OF EACH OF F
++ -+ -+
[12] 121
++ -+ -+
J«P«3 o F aPICK 3RD ITEM OF F
-t e +
[ANT| [+----+ +----- +]
+---+ | |ANTI| |ANTIC]|
| 4=-=-4 +----- +]
e +
=P
3
pP
2
0«@«3 2 o F APICK 1 LEVEL DEEPER
+o--—t 4----- +
|ANTI| |ANTIC|
ommmt om--- +
2
pq
2
O«R«3 2 1L o F APICK ANOTHER LEVEL DEEPER
ANTI
=R
1
pR
[
0«S«3 2 13> F APICK FROM uTH LEVEL OF F
T
=S
0
pS
(APL outputs a blank line)
G+(10)>oF
G=F
1

When an item in B is a scalar, the corresponding item in 4 must be empty. For
example:

1-126 APL Reference Manual

Primitive Mixed Functions
> Pick

0«X<2 2p'"ABC' (<2 2p(1 2)(2 3)(3 u)(u4 5)) 'XYZ' (15)
tom—t tmmmmmmmmm— - +
|ABC| |+----------- +]
t-==t | [+---+ +---+]]|

(111 2] j2 3]

[[+---+ +---+]|

| J+---+ +---+||

[113 4] [5[]

[[+---+ +---+] |

tomt oo +
|XYz| |1 2 3 4 5|
tommt oo +

¢ aSHAPE OF EACH OF X

(c 1 2)2X aPICK X[1;2]

(1 2) '" X aUSE EMPTY TO PICK INTO SCALAR
to-=t -4
1 2] |2 3]
to--t t---4
t---t t---+
|3 4] |4 5]
to-=t oot
(1 2) '"" (2 1)>X aPICK DEEPER
3 4

To select more than one item from an array, use pick with the each (7)
operator. For example:

APL Reference Manual 1-127

Primitive Mixed Functions
> Pick

O«¥<2 3pc[2]1X«6 2p ,” "ABCDEFGNIJKL'

[+-+ +=+| [+-+ +-+] [+-+ +-+]
[TAL IBLL LICh DI [IEL IR
[+=+ +=+] [+=+ +=+] |+-+ +-+]|

[+-+ +=+| [+=+ +-+] |+-+ +-+|
FIGE INLE TEDE LI TIKL 1L
[+-+ +=+| |+-+ +-+] [+-+ +-+]

+-+
|4]
+-+

GETA+(1 1)
GETL+(2 3)
GETA - Y

GETL o Y

GETA GETL " cY AUSE EACH TO PICK MULTIPLE ITEMS
+-4
IL]
+-+)

GETA GETL >" Y Y aTHIS IS AN ALTERNATIVE FORM
+-+
[L]
+-4

The following relationship between the take (+) function and pick is true for
any nonempty B: +B +»> (c (ppB)p0IO)>B.

Possible Errors Generated

1-128

9 RANK ERROR (LEFT ITEM NOT VECTOR DOMAIN)

9 RANK ERROR (NOT VECTOR DOMAIN)

10

10

14

15

15

15

LENGTH ERROR (LEFT ARGUMENT LENGTH GREATER THAN RIGHT ARGUMENT
DEPTH)

LENGTH ERROR (LEFT ITEM LENGTH NOT EQUAL TO SELECTED ITEM RANK)
DEPTH ERROR (LEFT ARGUMENT DEPTH GREATER THAN 2)

DOMAIN ERROR (INCORRECT TYPE)

DOMAIN ERROR (INDEX LESS THAN INDEX ORIGIN)

DOMAIN ERROR (INDEX OUT OF RANGE)

APL Reference Manual

Primitive Mixed Functions
> Pick

15 DOMAIN ERROR (NOT AN INTEGER)

27 LIMIT ERROR (INTEGER TOO LARGE)

APL Reference Manual 1-129

Primitive Mixed Functions
, Ravel

, Ravel

Form
,B ,[KIB

Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Same as argument
Rank 1 (for ,B)

Shape x / p B (for , B)
Depth 17 =B

Implicit Arguments

None.

Description

The monadic APL, function returns a vector made up of the items of the
argument array, stored in row-major order (by increasing index position). For
example:

A«2 3p1 2 3 456
0«B+,A
12345686
oB
6

1-130 APL Reference Manual

Primitive Mixed Functions
, Ravel

[«A«2 3 3 p118

1 2 3
5 6
7 8 9
10 11 12
13 14 15
16 17 18
LA
123456789 10 11 12 13 14 15 16 17 18
p,A
18
pA
2 33

If the argument array is a scalar, APL returns a vector that contains one item.
Note the difference in the shape of a scalar and the shape of a scalar to which
the ravel function has been applied:

pu
(APL outputs a blank line)

p 3’ u
1
If the argument is a vector, APL returns a vector that is identical to the
argument:

A<16

A
123456

A
123456

If the argument is an empty array of any rank or shape, APL returns an empty
vector that is the same type as the argument.

When you use ravel with an axis argument, X is in the vector domain and its
items are numeric. The result depends on whether X is a noninteger singleton
or a near-integer vector. (If ¥ is a near-integer singleton, the shape of B is
unchanged.)

When the axis argument is a noninteger singleton, APL inserts a new axis (of
length one) in the indicated position. For example, if ¥ is a fraction between
1 and 2, APL will insert an axis between the first and second axes of B. Note
that ¥ must be between ~1+07I0 and 0I0+p p B. The rank of the result is
1+pp B:

APL Reference Manual 1-131

Primitive Mixed Functions

, Ravel

4«2 3p9 87 6 5 U4
,[1.5]4
987

65 4
p,[1.5]4
213

If you specify a noninteger singleton axis when B is a scalar, the result is a
one-item vector:

,[.5] 28
28

p,[.5] 28
1

When the axis argument is a near-integer vector, APL merges the specified
axes into a single axis. In this case, K must contain contiguous ascending axis
numbers between 0I0 and p p B. The rank of the result is 1+ (ppB) -p , k. If K
is empty, then the result is ((pB) , 1) p B. Note that , [1 p p B] B is the same
as ,B:

B«2 3 60'SARAH SELLS SHELLSBETH BUYS BOATS '
B

SARAH
SELLS
SHELLS

BETH
BUYS
BOATS
pB
236
,[2 31B
SARAH SELLS SHELLS
BETH BUYS BOATS
p,[2 3]B
2 18

If you want to add an axis to the end of the shape of an array, you can use 1 0
as the axis argument. If you want to add an axis to the beginning of the shape
of an array, you can use ~ .5+ I0 as the axis argument:

A+2 3p 97 6 5 4
,[10]4

~

1-132 APL Reference Manual

Primitive Mixed Functions
, Ravel

p,[10]A
231

,[7.5 + 01014

76
549
p,[".5 + 0I0]A

123

If you specify 070 or 1 0 as the axis argument when B is a scalar, the result is
a one-item vector:

,[1] 28
28

p,[1] 28
1

,[10] 6
6

p,[10] 6
1

Further examples:

(«A+c.3
0.3
0«B«'ABC!
ABC
QeCe'!
0«D«"2
"2
O0«E«2 2 p ABCD
0.3 +---+
|ABC|
t---1
++ 2
I
++
o E
22
B
0.3 +---+ ++ 2
[ABC| |
to--t 41
p LE
n
,[1.5]F
0.3 +---+
[ABC|
+---1

APL Reference Manual 1-133

Primitive Mixed Functions

, Ravel

++

+t

21

o ,[1.5]F
2
,[0.5]F

0.3 +---+

++

++

12

|ABC|
t---t
w2

o ,[0.5]F
2

Possible Errors Generated

27

28

29

29

30

30

30

30

30

30

LIMIT ERROR (INTEGER TOO LARGE)

AXIS RANK ERROR (NOT VECTOR DOMAIN)

AXIS LENGTH ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)
AXIS LENGTH ERROR (NOT SINGLETON)

AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)
AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

AXIS DOMAIN ERROR (AXES NOT IN CONTIGUOUS ASCENDING ORDER)
AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

AXIS DOMAIN ERROR (INCORRECT TYPE)

AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

1-134 APL Reference Manual

Primitive Mixed Functions
T Represent

T Represent

Form

ATB

Left Argument Domain

Type Numeric
Shape Any
Depth 0 or 1 (simple)

Right Argument Domain

Type Numeric
Shape Any
Depth 0 or 1 (simple)

Result Domain

Type Numeric
Rank (ppA)+ppB
Shape (pA),pB
Depth 0 or 1 (simple)

Implicit Arguments

None.

Description

The dyadic T function (known as represent or encode) represents an array in
any number system. The left argument specifies the number system; the right
argument specifies the array to be represented. For example, to represent the
decimal value 7 as a four-digit binary number, specify the following:

222 217
0111

APL Reference Manual 1-135

Primitive Mixed Functions
T Represent

In the expression AT B, A can be considered as the representation rule to

be applied to B. Each item of the vector 4 is defined in terms of the item
immediately to its left. You can specify mixed bases in the left argument.
For example, the represent function can express some number of inches in
miles, yards, feet, and inches, or some number of milliseconds in days, hours,
minutes, seconds, and milliseconds:

Thus, in representing a number as miles, yards, feet, and inches, the left
argument specifies, from right to left, 12 inches in 1 foot, 3 feet in 1 yard, and
1760 yards in 1 mile. In the following example, a miles specification is not
defined in terms of another quantity, so 0 is printed in the miles column.

AMILES, YARDS, FEET, INCHES
0 1760 3 127273125
4 546 2 5
ADAYS, HOURS, MINUTES, SECONDS, MILLISECONDS
0 24 60 60 10007T713732523
8 6 15 32 523

The following examples of base 3 conversions demonstrate the specification of
different numbers of columns in the left argument and illustrate the way in
which negative numbers are represented:

3 333117 APRODUCES 3'S COMPLEMENT OF 17
0122

33337117 aPRODUCES 3'S COMPLEMENT OF ~17
2101

Another useful application of 7 is to return the integer and fractional portions
of a number:

X+823.7513
0 17X
823 0.7513

The following are more examples of the use of the T function:

A<R®3 2p2 3
B«5 2
(«R+«ATB

e
o oo

1-136 APL Reference Manual

Primitive Mixed Functions
T Represent

N
N

0B
pA
oR

C+2 2p865 429 103 692
0« X« 10 10 107C

o N O

w

X

3128 %X

=
N
N ow w ;

(2]
w0 o

APRODUCES 2'S COMPLEMENT OF 13
222 2713
1

o N

aPRODUCES 2'S COMPLEMENT OF 13
2 222 21713
10011

If 4 is a scalar, A7 B is the same as 4| B with 0 ¢T+<0. Note that OCT is not an
implicit argument to the represent function.

Possible Errors Generated

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
15 DOMAIN ERROR (INCORRECT TYPE)

27 LIMIT ERROR (FLOATING OVERFLOW)

APL Reference Manual 1-137

Primitive Mixed Functions
p Reshape

o Reshape

Form
Ap B

Left Argument Domain

Type Nonnegative near-integer
Shape Vector domain
Depth 0 or 1 (simple)

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Same as right argument
Rank p,A

Shape A

Depth -

Implicit Arguments

None.

Description

The dyadic p function creates an array of items from the right argument taken
in row-major order and arranged in the shape specified by the left argument.
For example:

2 3p 16 A2 ROWS, 3 COLUMNS

123
456

1-138 APL Reference Manual

Primitive Mixed Functions
o Reshape

If the right argument does not contain enough items to fill an array that has
the shape specified by the left argument, the right argument is reused starting
at its beginning:

3 3 p 16

[
NG N
w o w

3p5
555

If the right argument has more items than are required for an array that has
the shape specified by the left argument, the extra items are ignored:

2 2p 16
12
3 4
Note that the right argument may be any type and shape (it is, in effect,
raveled before it is reshaped):

[0«B<3 5p'STAN SAM STEVE'
STAN
SAM
STEVE
20pB
STAN SAM STEVESTAN

For arguments 4 and B, if B is empty, 4 must contain at least one 0 value, and
the result is empty with the shape , 4. For example:

J«R<«2 0 p 10
(APL outputs a blank line)
oR
20

If 4 is empty, the result is a scalar whose value is the first item of B in
row-major order; formally expressed:

(10)pB «> ' 'pB «» (,B)[0I0]

For example:

(10)p5 7 9

APL Reference Manual 1-139

Primitive Mixed Functions
p Reshape

Further examples:

O«VAN<'ABC' (1 2 3 4) 1.2 (c,3)

4o—ot om—o—- + 1.2 +---+
|[ABC| |1 2 3 4] |+-+]
to--t H---—--- + [13]]
[+-+]
-t
p VAN
n
O«VAN<«2 2 p VAN
o=t to------ +
[ABC| |1 2 3 4]
o=t - +
+-——+
[+-+]
1311
[+-+]
+-——+
pVAN
22
0«<(10) p VAN AEMPTY LEFT ARGUMENT
+-—-+
|ABC|
+-—-+

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH ERROR

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN ERROR (NOT AN INTEGER)

15 DOMAIN ERROR (NEGATIVE NUMBER NOT ALLOWED)

27 LIMIT FERROR (INTEGER TOO LARGE)

1-140 APL Reference Manual

Primitive Mixed Functions
¢ and e Reverse

¢ and © Reverse

Form

$B $[KI1B eB e[K1B
¢ is formed with o and |
o is formed with o and -

Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Same as argument
Rank ppB

Shape pB

Depth =B

Implicit Arguments

None.

Description

The monadic ¢ function returns the items of the argument array in reverse
order along the relevant axis. You specify the axis to be reversed in square

brackets. For example:

0«A<«2 Lp18
1234
5678
e[1]4
8
1234
$[2]4
1
8765

o
o
~

=
w
N

APL Reference Manual 1-141

Primitive Mixed Functions
¢ and e Reverse

If you do not specify an axis, ¢ reverses the items along the last axis, and o
reverses the items along the first axis. For example:

J«G<«3 3p19
123

=
(o)
(o2l

oG

[ES
N ;g
w o

oG

U
7

o
@D N

The following reverses a matrix along both axes simultaneously:

0«X«2 3p16

o
[N
D w

poX

w O
N
[ar

For singleton, vector, or empty arguments, both ¢ and e return the same
value. For an empty array or singleton, they return the original argument; for
a vector, they return the items of the vector in reverse order. For example:

$5
e5

10

$1 1 1p6

(APL outputs a blank line)

6
15
54321
15
54321

1-142 APL Reference Manual

Primitive Mixed Functions
¢ and e Reverse

Note that reverse is not the same as transpose:

0J«X«2 3p1 2 3 456
123
56
X

25
36

Further examples:

O«MIZZ«2 4 p 'ABC' 0 "1 2 'XYZ' 4 (c,3) 100

o=t 0712

|ABC|
+--—1
+--=t b +---+ 100
[XYz| [+-+]
===+ [13]]
[+-+]
+---+
e[1IMIZZ
+--=+ 4 +---+ 100
|XYZ| [+-+]
t=-=+ |13]]
[+-+]
+---+
t---+ 0 "1 2
|ABC|
+---t
6[21MIZZ
2 1 0 +---+
| ABC|
+---+
100 +---+ 4 +---+
[+-+] |XYZ]
1811 +=-mt
[+-+1
-+
beMIZZ
100 +---+ 4 +---+
l4-+] |X1Z|
L3l +---+
[+-+]
-t
2 710 -4
|ABC]|
+---+

APL Reference Manual

1-143

Primitive Mixed Functions
¢ and e Reverse

Possible Errors Generated

27

28

29

30

30

30

30

30

30

LIMIT ERROR (INTEGER TOO LARGE)

AXIS RANK ERROR (NOT VECTOR DOMAIN)

AXIS LENGTH ERROR (NOT SINGLETON)

AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)
AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

AXIS DOMAIN ERROR (INCORRECT TYPE)

AXIS DOMAIN ERROR (NOT AN INTEGER)

AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

1-144 APL Reference Manual

Primitive Mixed Functions
¢ and e Rotate

¢ and © Rotate

Form

AdB Ab[KIB AeB Ae [K]B
¢ is formed with o and |
e 1is formed with o and -

Left Argument Domain

Type Near-integer
Shape Conforms to right argument (p4)=(pB)[1p pB)~)K]
Depth 0 or 1 (simple)

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Same as right argument
Rank peB

Shape pB

Depth =B

Implicit Arguments

None.

Description

The dyadic ¢ or e function rotates items along the relevant axis of the right
argument in a way specified by the left argument. The rotation is cyclical and,
for each axis, continues for the number of places specified by the corresponding
item in the left argument. If the left argument is positive, the shift is to the
left; if it is negative, the shift is to the right. For example:

APL Reference Manual 1-145

Primitive Mixed Functions
¢ and e Rotate

3615
45123

3915
34512

The axis to be rotated must be specified in square brackets, as in the following
example:

[«A«3 5p115
12 3 4 5
6 7 8 9 10
11 12 13 14 15
2 1 46[2]4
3 4 5 1 2
7 8 910 6
15 11 12 13 14
2102 3¢[114
11 7 3 14 5
112 8 4 10
6 213 9 15

If no axis is specified, ¢ rotates the items along the last axis, and e rotates the
items along the first axis:

0«G+2 up18
123
56 7
166G
3 u1
67 8
2 0 1eG

ok o o F

523
1674

Note that, in general, the shape of the left argument must be the same as the
shape of the relevant axis in the right argument. If the left argument is a
singleton, it is extended to conform to the relevant axis of the right argument.
For example:

262 5p110
34 512
8 9 10 6 7

1-146 APL Reference Manual

Primitive Mixed Functions
¢ and e Rotate

Further examples:

O«MIZZ+2 4% p 'ABC' 0 "1 1 'XYZ' 4 (c,3) 100

+---+ 071 1

|ABC|
o=t
+---+ 4 +---+ 100
|XYZ] | +-+|
to-=t 1311
l+-+1
-t
13 ¢ MIZZ
0 "1 1 +---+
|ABC|
+---+
100 +---+ 4 +---+
|XYZ] | +-+]
+---+]3]l
|+-+]
+---+

“10 11 ¢ [1IMIZZ
+---+ 0 +---+ 100

[XYZ| |+-+]

+---+ | 13]]
[+-+]
+---4

t---+ 4 71 1

|ABC|

+---+

101 1e MIZZ
+-—=+ 0 +---+ 100

[XYZ| [+-+]

I
[+-+1
-+

+---+ 4 71 1

|ABC|

-t

Possible Errors Generated

9 RANK ERROR (RANKS DIFFER BY MORE THAN ONE)
10 LENGTH ERROR (SHAPES OFF AXIS DO NOT MATCH)
15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

APL Reference Manual 1-147

Primitive Mixed Functions
¢ and e Rotate

15

27

28

29

30

30

30

30

30

30

DOMAIN ERROR (NOT AN INTEGER)

LIMIT FRROR (INTEGER TOO LARGE)

AXIS RANK ERROR (NOT VECTOR DOMAIN)

AXIS LENGTH FRROR (NOT SINGLETON)

AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)
AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
AXIS DOMAIN FRROR (INCORRECT TYPE)

AXIS DOMAIN ERROR (NOT AN INTEGER)

AXIS DOMAIN ERROR (RIGHT ARGUMENT HAS WRONG RANK)

AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

1-148 APL Reference Manual

Primitive Mixed Functions
o Shape

o Shape

Form

pB

Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Nonnegative integer
Rank 1

Shape ppB

Depth 1 (simple)

Implicit Arguments

None.

Description

The monadic p function returns a vector of nonnegative integers that represent
the lengths of each of the axes of the argument array.

If the argument is a vector, APL returns an integer vector that represents the
number of items in the vector:

A«2 4 6 8
p4

B+«'"ABCDEF'
pB

p’g

APL Reference Manual 1-149

Primitive Mixed Functions
p Shape

If the argument is a matrix, APL returns the number of rows and columns:

[J«A«2 3p16
123
4 56
p4
23

If the argument is a scalar, APL returns an empty numeric vector:

K+3
pkK
(APL outputs a blank line)

You can use the shape function to determine an array’s rank. Because the
shape function returns one item for each axis of the array, the shape of shape
is an integer vector that represents the number of axes in the array:

[J«A«5 6p130
1 2 3 4w 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
pd
56
ppA
2

Further examples:

O«Ve'Xxyr (1.2 3) ' !

Fo—t t-———o +
|XY] |1 2 3]
t--t F----- +
oV
3
0«B«(2 0 p5)(' ')(10)
++ 4+
[N
| ++
++
pB

1-150 APL Reference Manual

Primitive Mixed Functions
p Shape

O«M«2 3 p 1 ('') "4BC' 0 "2 4
1 ++ +---+
|l 1ABC|
++ +---+
024
oM
23

p oM
2

Note that for all B: pppB «~> ,1

Possible Errors Generated

None.

APL Reference Manual 1-151

Primitive Mixed Functions
< Subset

c Subset

Form

AcB
c is formed with < and _

Left Argument Domain

Type Any
Shape Any
Depth Any

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Boolean

Rank 0

Shape 1 0 (scalar)
Depth 0 (simple scalar)

Implicit Arguments

0¢T (determines comparison precision)

Description

The dyadic ¢ function determines whether the right argument contains all
the items in the left argument. The result is a Boolean scalar: true, if the left
argument is a subset of the right argument, and false if it is not. Duplicate
items in either argument do not affect the result. For example:

1-152 APL Reference Manual

Primitive Mixed Functions
< Subset

J«A«3 4 p 23 54 98 34 98 47 98 32 78 65 12 23
23 54 98 34
98 47 98 32
78 65 12 23
Ac 1100
1
Ac 190

0

The < function compares items in terms of the match (=) function, which
uses the value of [J CT. Because match allows mixed-type arguments, you can
compare characters with numbers. However, such a comparison is always
false, so that if you use mixed-type arguments for dyadic <, the result will be
zero. For example:

'23 24 25'c 22 23 24 25 26
0

Further examples:

QO«V«0 'AB' (1 2 3)

0 +--+ +----- +
|AB] |1 2 3|
+--t t----- +
(O«M«<2 2 p (1 2 3) '0" "AB' 'A'
tomm-- + 0
(12 3]
t----- +
t--+ A
|4B|
+--+
VeM AaNOTE CHARACTER AND NUMERIC ZEROS

Note that the following definition applies: AcB <+ A/ ,A¢B

Possible Errors Generated

None.

APL Reference Manual 1-153

Primitive Mixed Functions
+ Take

4+ Take

Form
A+ B A+ [K]B

Left Argument Domain

Type Near-integer
Shape Vector domain
Depth 0 or 1 (simple)

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Same as right argument
Rank (p,A)lppB

Shape | ,A (if no explicit axis)
Depth -

Implicit Arguments
Fill item

Description

The dyadic + function builds an array by taking a specified number of items
from an existing array. Each item in A corresponds to an axis in B. The value
of each item in 4 specifies how many items to take from the axis. Thus, for
At B, item A[K] is used to take values along the ¥ th axis of B.

If an item in 4 is a positive integer n, APL takes the first n items from the
appropriate axis of B. If an item in 4 is negative, APL takes the last n items

from the appropriate axis of B.

1-154 APL Reference Manual

Primitive Mixed Functions

+ Take
Rel1 2 3 4
24R aTAKE FIRST TWO ITEMS OF R
12
“24R aTAKE LAST TWO ITEMS OF R
34

Unless the right argument is a scalar, the number of items in 4 must equal
the rank of B (p ,4 must equal o p B). (When the right argument is a scalar, it
is extended to be a singleton of the appropriate rank.) If you use the axis form
(L X1), the number of items in 4 must equal the length of ¥. (Examples of axis
form are presented at the end of this section.) Thus, if the right argument is a
matrix, the left argument must have two values:

0«R«3 3p19
123
456
789
ALEFT ARG MUST BE LENGTH 2
24R
10 LENGTH ERROR (LEFT LENGTH NOT EQUAL TO RIGHT RANK)
24R
A
ATAKE TWO ITEMS ALONG EACH AXIS
2 2¢R
12
45

If the value of an item in 4 is greater than the length of the corresponding axis
of B, APL pads the result array with fill items. This operation is known as
overtake. For example:

NUM«1 2 3
CHA<'"ABC!
AOVERTAKE NUM, FILL ITEMS ARE ZEROS
StNUM
12300
AOVERTAKE CHA, FILL ITEMS ARE BLANKS
ACATENATE X TO SHOW END OF FILL ITEMS
(5+CHA),'X!
ABC X

The fill items are determined by the prototype of each vector along the relevant
axis. This is important for arrays of rank 2 or more because the fill item for

a given position depends on the prototype of that particular column, row, or
plane. The following expressions describe such an operation. Note where the
fill items are blanks and where they are zeros. (Because the array M is simple,
all the fill items are scalars. If ¥ were enclosed, some of the fill items might
also have been enclosed.)

APL Reference Manual 1-155

Primitive Mixed Functions

4+ Take
O«M«2 3p 1 'A' 2 'B' 4 5
142
B 45
oM
23
aOVERTAKE M ALONG FIRST AXIS
aPROTOTYPE BASED ON VECTORS ALONG FIRST AXIS
44 [11M
142
Bus
0 0
0 0
aFIRST AXIS IS CHANGED
put[1IM
b3
AOVERTAKE M ALONG 2ND AXIS
54[21M
14200
Bus
p5+[21M a2ND AXIS IS CHANGED
25
b 544 AOVERTAKE M ALONG BOTH AXIS
14200
Bus
0 000
0 000
ol 54M aBOTH AXIS ARE CHANGED
y 5

Note that if 4 is positive, any needed fill items are placed at the end of the
result array. If 4 is negative, any needed fill items precede the result array.
For example:

6t12 24 36 u48 AFILL ITEMS AT END OF RESULT
12 24 36 48 0 0

(104 'TEST"),'X! aCATENATE X TO SHOW END OF FILL ITEMS
TEST X

T6t12 24 36 48 AFILL ITEMS AT BEGINNING OF RESULT
00 12 24 36 48

104 'TEST! AaFILL ITEMS AT BEGINNING OF RESULT

TEST

If the rank of the right argument is greater than 1, the result array is called

a corner of the argument array. The origin of the corner is determined by the
signs of the items of the left argument. For example, if the right argument is a
matrix, there are four possible corners as shown in Figure 1-1.

1-156 APL Reference Manual

Primitive Mixed Functions
+ Take

Figure 1-1 Argument Corners Selected by Take Function

» Axis2 =«

» Axis2 <4

NU-2233A-RA

In the following example, note how the order of the signs in the left argument
determines the corner selected from the matrix right argument:

=

2
5

6

0«A«3 3p19

If the left argument contains a 0, then, for arguments 4 and B, A+ B returns
an empty array with shape , | 4. For example:

A«2 3 042 3 3p118
pA

230

If the left argument is empty, the right argument must be a scalar, and the
result is the right argument.

APL Reference Manual 1-157

Primitive Mixed Functions
+ Take

If the right argument is a scalar, it is extended to a singleton with a rank equal
to the length of the left argument. For example:

“231+5
000
500
Note that for any array 4, 0= 14 0p 4 is true if 4 is numeric and false if 4 is
character.

When you use + with an axis argument, X is a vector of axis numbers
whose lengths are determined by corresponding items of the left argument,
4. Formally, + with an axis argument can be described by the following:

Z<«pBo ZLK] « Ao Z+ Z+B

The value for ¥ must be in the vector domain, and each item must be a near-
integer in the set 1 p p B. Therefore, the values of K are (] 10-dependent. The
items may be in any order, but they may not be duplicated. The length of k¥
must be less than or equal to the rank of the right argument, and it must
match the length of 4.

The value for ¥ does not have to specify all the axes in B. APL determines the
lengths of any missing axes by the lengths of the corresponding axes of B. This
means that you can take rows or columns of a matrix without specifying the
length of the other axis. For example:

(«A«8 5p140
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35
36 37 38 39 40
3 +[11 4 aTAKE 3 ROWS OF A
1 2 3 4 5
6 7 8 910
11 12 13 14 15
T2 421 4 aTAKE THE LAST 2 COLUMNS OF A

1-158 APL Reference Manual

Primitive Mixed Functions
+ Take

34 +[2 1] 4 aTAKE 4 ROWS, 3 COLUMNS OF A
1 2 3
6 7 8
11 12 13
16 17 18
010 < o
4 3+[0 1] 4 aTAKE 4 ROWS, 3 COLUMNS OF A
1 2 3
6 7 8
11 12 13
16 17 18
O«WRL«(1 2 3) '"ABC' 0

[1 2 3| [ABC]|
to---- + t---t
5+WRL AOVERTAKE TO SHOW FILL ELEMENT
t----- + ===+ 0 +----- L +
|12 3| |ABC| [0 0 0] |00 O]
to---- + ===+ +----- + t----- +

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH ERROR (LEFT LENGTH NOT EQUAL TO RIGHT RANK)
15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPFE)

15 DOMAIN ERROR (NOT AN INTEGER)

27 LIMIT EFRROR (INTEGER TOO LARGE)

27 LIMIT ERROR (VOLUME TOO LARGE)

29 AXIS LENGTH ERROR (LEFT ARGUMENT HAS WRONG LENGTH)
30 AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)
30 AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

30 AXIS DOMAIN ERROR (DUPLICATE AXIS NUMBER)

30 AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

APL Reference Manual 1-159

Primitive Mixed Functions
+ Take

30 AXIS DOMAIN ERROR (INCORRECT TYPE)
30 AXIS DOMAIN ERROR (NOT AN INTEGER)
28 AXIS RANK ERROR (NOT VECTOR DOMAIN)

30 AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

1-160 APL Reference Manual

Primitive Mixed Functions
& Monadic Transpose

® Monadic Transpose

Form

& B
§ 1s formed with o and \

Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Same as argument
Rank ppB

Shape $pB

Depth =B

Implicit Arguments

None.

Description

The monadic & function transposes the axes of an array; thus, ¥ B is B with
the order of the axes reversed. For example, if the argument is a matrix, &
exchanges rows and columns:

J«A+«2 3p16
123
4 56
4
14
25
36
p &4
32

APL Reference Manual 1-161

Primitive Mixed Functions
& Monadic Transpose

If the rank of the argument is less than 2, the function has no effect:
A«1 2 3 45

34
12345

In the next example, a rank 3 array is transposed:

[«B«2 3 up18

SIS BRSNS, RSN
[o2) ol = o DN O N o

Nw N wNw

o ®FE ® £ o &

= o & w N w O N oo
(=2}

p&B
432

Further examples:

O«MIZZ+2 4 p 'ABC' 0 "1 1 'XYZ' 4 (c,3) 100
t---+ 0 "1 1

| ABC|

+--—t

+--=+ b +---+ 100

|XYZ] [+-+]

+---+ |13]]
[+-+]
+---+

1-162 APL Reference Manual

Primitive Mixed Functions
& Monadic Transpose

§MIZZ
+-==t+ t---+
|ABC| |XYZ|
t-——+ +t---+
0 4
"1 t---+

[+-+]

1311

[+-+]

+---+
1 100

o MIZZ
2 4

pRMIZZ
b2

Note that § B «> (¢pB)&B

Possible Errors Generated

None.

APL Reference Manual 1-163

Primitive Mixed Functions
& Dyadic Transpose

& Dyadic Transpose

Form

A{B
§ is formed with o and \

Left Argument Domain

Type Nonnegative near-integer
Shape Vector domain
Depth 0 or 1 (simple)

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Same as right argument

Rank RANK+~T /A +~01I0

Shape (1+pA)+L/((1RANK) o .=4) x (RANK,pA)ppB
Depth =B

Implicit Arguments

ARB when 170 < 1 is identical to (1 + 4) 8B when 170 « 0

Description

The dyadic & function permutes the axes of the right argument in a way
specified by the left argument.

The shape (length) of the left argument must equal the rank of the right
argument; thus, one item of the left argument is associated with each axis of
the right argument. In general, the item in the left argument specifies the
position to be assumed by the associated axis in the result array. For example:

1-164 APL Reference Manual

1 2
5 6
9 10

13 14
17 18
21 22

2 34

w N
@ 3 o o

13 17
14 18
15 19
16 20

2 43

2 43

[«4«2 3 4pr24

3 4

7 8

11 12

15 16

19 20

23 24

pd

O«B«1 3 284
9

10

11

12

21

22

23

24

pB

(pA)[1 3 2]

Primitive Mixed Functions
& Dyadic Transpose

Note that the shape of the result of the & function is equal to the shape of its

right argument subscripted by its left argument.

The values in the left argument must be less than or equal to the rank of the
right argument; thus, if the right argument’s rank is 3, then 1, 2, and 3 are
the only permissible values in the left argument (when 0 I0 is 1). However,
there is one exception: if the right argument is a scalar, then either 1 (or o if
0I0is 0) or 10 is permissible as the left argument; the value returned is the

value of the scalar right argument.

You may repeat values in the left argument. When you do, the result is a
diagonal slice of the right argument. For example:

APL Reference Manual 1-165

Primitive Mixed Functions
& Dyadic Transpose

X<[0+2 4 Uplo————k—-—k————x'!
I
k-
N
———%

,——m
- - -
—-_—% -
——=%
12 28X
*kkx
*Kkkx
2 1 18X
*%
* %
* %
*%
Y[J«2 4 Uplodkhkoommmmmmm oo
*kkk

*k k%

11 2%Y
XXk
XKk X

2 2 1§Y

Z+[0«2 4 Up'h-———k-———k-——x-==="

1-166 APL Reference Manual

2 1282

* %
* %
* %
* %

Primitive Mixed Functions
& Dyadic Transpose

When you repeat values in the left argument, they must form a dense
sequence; that is, in counting from 1 (or 0 if 0 I0 is 0) to the largest item
you specify, no number may be left out.

Note that dyadic & is sometimes the same as monadic &. Expressed formally,
this means &8 B <> (¢ p B) § B. For example:

[J«4<2 3p16

123
56
®A
14
25
36

2 184

14
25
36

Table 1-6 lists transpositions for a variety of arrays: V is a vector, M is a
matrix, and A is any array.

Table 1-6 Dyadic Transpose Definitions

Expression Shape of R Definition

R<1}V oV R<V

R<1 28/ M oM R<M

R<2 18M (pM)[2 1] RLI;J1<M[J; 1]

R<1 18M L/pM RLII<M[I;I]

R<1 2 384 pA R<A

R<1 3 284 (pA)[132] RLI;J;K1<A[I;K; J]
R<2 3 184 (pA)[312] RLI;J;K1«ALJ;K; I
R<3 1 284 (p4)[231] RLI; J;K1<ALK; I;J]
R«1 1284 (L/(pd)[12]1),(pA)L3] RLI;JI<ALI;I;J]

(continued on next page)

APL Reference Manual 1-167

Primitive Mixed Functions
& Dyadic Transpose

Table 1-6 (Cont.) Dyadic Transpose Definitions

Expression Shape of R Definition

R«12 184 (L/(pd)L131),(pA)L2] RLI;JI<ALI;J;1I]
R«<2 1 184 (L/(pA)[23]1),(pA)[1] RILI;J1«ALJ;I;1]
R<1 1 184 L/pA RLIT<«ALI;1I;1I]
Further examples:

O«MIZZ+2 4p('ABC') 0 "1 1 ('XYZ') 4 (<,3) 100
+---+ 0 "1 1

|ABC|
-t
+---+ 4 +---+ 100
| XYZ| [+-+]
t=—+ |13]]
[+-+]
==t
2 18§ MIZZ ATHIS IS THE SAME AS MONADIC §
R
|ABC| |XYZ|
te--t t---t
0 4
1 +---4
[+-+]
1311
[+-+]
-t
1 100
O«MIC«2 2 2 p'AB' (1 20) 1 "2 0 '' 'A' 'XY7!
B
[AB] |1 20|
o=t t----+
1 T2
0 ++
L
++
A t--=t
|XYZ]
t---+

1-168 APL Reference Manual

Primitive Mixed Functions
& Dyadic Transpose

12 28§ MIC
t--+ 72
|4B|

0 t---4

|XYZ|

t---1

2 1 1 /MIC
t--+ 0

2 +---+
[XYZ|
t---t

12 1 §MIC

t+ -1
I 1xrzy
I
212§ MIC
+t--t +t
[4B] ||
t--+ +t
1 to--t
|XYZ|
+---t

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH ERROR (LEFT LENGTH NOT EQUAL TO RIGHT RANK)
15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN ERROR (LEFT ARGUMENT NOT DENSE FROM QUAD 10)
15 DOMAIN ERROR (NOT AN INTEGER)

27 LIMIT ERROR (INTEGER TOO LARGE)

APL Reference Manual 1-169

Primitive Mixed Functions
u Union

U Union

Form

AuB

Left Argument Domain

Type Any
Shape Any
Depth Any

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Any

Rank 1

Shape pu(,4),,B
Depth 1=4,B

Implicit Arguments

0cT (determines comparison precision)

Description

The dyadic v function joins the two arguments and removes all duplicate
items. The result is a vector that includes all the items from both arguments.
For example:

"ABCB' v 2 3p'DDEDCC'
ABCDE

(23 p445433)uvu1l232
45312

The v function compares the items in terms of the match (=) function and
eliminates duplicate items based on the value of O CT.

1-170 APL Reference Manual

Primitive Mixed Functions
u Union

Further examples:

O«V«(c,100) 'TTY' '99!
Fomme- oAt et
[+---+| |TTY} |99]
[1100]] +---+ +--+

[+---+]
o= +
O«M«2 2 p 100 99 'TTY' 0
100 99
+---+ 0
| TTY|
+---+
VuM
Rt + +---+ +--+ 100 99 0

[+---+] |TTY| |99]
[1100]} +---+ +--+
[+---+]

Note that the following definition applies: AuB<«->u (,4),,B

Possible Errors Generated

None.

APL Reference Manual 1-171

Primitive Mixed Functions
u Unique

U Unique

Form
uB

Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Same as argument

Rank 1

Shape Equal to number of unique items
Depth 1=B

Implicit Arguments

0cT (determines comparison precision)

Description

The monadic v function removes duplicate items from an array. The result is a
vector of the unique items in the argument. For example:

0« 4A+«?234p7
2

6 54

726 2

1376
u A

6542713
B « 'DR.GRANT''S CHEWING GUM'
uB

DR.GANT'S CHEWIUM

1-172 APL Reference Manual

Primitive Mixed Functions
u Unique

The v function compares the items in terms of the match (=) function and
eliminates duplicate items based on the value of 0 CT. For example:
ger
1E715
ul 4-5E716
n

Note that the following definition applies: uB<~((B1B)=1pB) /B+«,B

Possible Errors Generated

None.

APL Reference Manual 1-173

Primitive Mixed Functions
~ Without

~ Without

Form
A~ B

Left Argument Domain

Type Any
Shape Any
Depth Any

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Any

Rank 1

Shape p(~(,4)eB)/,A
Depth -

Implicit Arguments

0cT (determines comparison precision)

Description

The dyadic ~ function returns all the items in the left argument that are not
found in the right argument. Duplicate items in the right argument do not
affect the result. Duplicates in the left argument are not removed unless they
are specified in the right argument. For example:

1-174 APL Reference Manual

Primitive Mixed Functions

~ Without
RAMBLE<+'RUN ON RUN ON RUN ON.'
SQUISH«"' ! ASQUISH CONTAINS A BLANK SPACE
RAMBLE ~ SQUISH eELIMINATE THE BLANKS FROM RAMBLE
RUNONRUNONRUNON .

[J«A«3 u4p 56 78 105 137 49 329 97 235 142 105 56 59
56 78 105 137
49 329 97 235
142 105 56 59
A ~ 1100
105 137 329 235 142 105

If your data represent sets, and you want to remove duplicates from your
result, you can use the unique function along with the ~ function:

A+3 4p 56 78 105 137 49 329 97 235 142 105 56 59
u 4~ 1100
105 137 329 235 142

If the left argument is a subset of the right argument, the result is an empty
vector. For example:

0«B« 3 2 p 2 6 25 65 9 34 76 13 43 21
2 6
25 65
9 34
u B~ 130
65 34

The ~ function compares items in terms of the match (=) function, which
uses the value of 0 CT. Because match allows mixed-type arguments, you can
compare characters with numbers. However, such a comparison is always
false, so that if you use mixed-type arguments for dyadic ~, the result will be
equal to the left argument. For example:

(A+'ABC') ~ B+'BA"

B~ 4
(APL outputs a blank line)

Note that the following definition applies: A~B<~ (~(,4)eB)/ .4

Possible Errors Generated

None.

APL Reference Manual 1-175

Primitive Mixed Functions
1.3 APL Operators

1.3 APL Operators

APL operators take either functions or arrays as operands, and produce results
called derived functions.

Operators are either monadic or dyadic, but not ambivalent. Monadic
operators bind to the left; that is, they take a left operand and not a right
operand. Dyadic operators take a left and a right operand. Derived functions
are either monadic, dyadic, or ambivalent (their classification depends on the
arguments to the derived function and not on the valence of the operator).

You can specify an axis when you use some of the operators. Because axis
binds to the left, it must appear to the right of the operator.

There are four APL primitive operators: slash (/ and #), backslash (\ and \),
each ("), and dot (.). The following table describes the valence of the operators,
the derived functions, and the valence of the derived functions. Note that 4, B,
f, and g are all operands where 4 and B are arrays, and f and g are functions.

Operator Valence Derived Function Valence
Slash Monadic Compress (4/ and 4+) Monadic
Replicate (4/ and 4+) Monadic
Reduce (£/ and f#) Monadic
Backslash Monadic Expand (4\ and 4%) Monadic
Scan £\ and f\ Monadic
Each Monadic Itemwise application (f) Ambivalent
Dot Dyadic Inner product (f.g) Dyadic
Outer product (o .f) Dyadic

Operators may accept functions or arrays for their operands. You can specify
any valid function, including primitive functions, system functions, user-
defined functions, and derived functions. (A derived function is a function
resulting from the use of an operator.)

Because derived functions may be operands for operators, it is possible to build
sequences of operators to form function expressions.

For example, you can use the inner product derived function (+ . x) as the

left operand to the slash operator (/). The result is the inner product reduce
derived function, which allows you to perform matrix multiplication along a
vector of matrices. Note that the left and right sides of the following expression
are equivalent. However, the left side is more concise. The arrays M1, M2, and
M3 represent matrix arrays:

1-176 APL Reference Manual

Primitive Mixed Functions
1.3 APL Operators

+.x /M1 M2 M3 <> M1 +.x M2 +.%x M3

The following example uses the outer product derived function (- . ,) as the
left operand to the slash operator. The result is the catenate outer product
reduce derived function, which in this case extends the monadic iota function
(1) to vector arguments to produce the odometer function:

V«1 2 3

Do o, /1 ¥
4o + ----- I +ot----- A + ----- +
f1 1 1) |11 2] J223] J122 1] |122] |12 3]
e + ----- S + ----- + o= A +

The following expression adds parentheses to show the binding action of the
operator sequence: ,> ((o.,) /) (1 ") V

Table 1-7 summarizes the operators and derived functions in greater detail,
including the forms with axis. The subsequent subsections describe all the
forms.

Table 1-7 APL Operators

Operator Name Meaning

A/B Slash A compression/replication along the last axis of B

A/[K1B Slash A compression/replication along the ¥ th axis of B

A/ [K1B

A+B Slash Afcompression/replication along the first axis of B first axis
of A

f/4 Slash The f reduction along the last axis of 4

f/[K]1A Slash The f reduction along the ¥ th axis of 4

fALK1A

f+4 Slash The f reduction along the first axis of 4

"B Each The application of monadic f on each item of B

Af"B Each The application of dyadic f on corresponding pairs of each
item of 4 and B

A\B Backslash A expansion along the last axis of B

A\[K1B Backslash 4 expansion along the x th axis of B

AX[K]B

(continued on next page)

APL Reference Manual 1-177

Primitive Mixed Functions
1.3 APL Operators

Table 1-7 (Cont.) APL Operators

Operator Name Meaning

AXB Backslash 4 expansion along the first axis of B
N4 Backslash The f scan along the last axis of 4
ALKIA Backslash The f scan along the X th axis of 4
ANLKIA

KA Backslash The f scan along the first axis of 4
Ao . fB Dot Outer product

Af.gB Dot Inner product

1.3.1 / and # Slash

The monadic slash (/ and #) operator takes a left operand and produces a
monadic derived function. When the operand is an array, the derived function
is either compression or replication. When the operand is a function, the
derived function is reduction.

1.3.2 \ and \ Backslash

The monadic backslash (\ and %) operator takes a left operand and produces a
monadic derived function. When the operand is an array, the resulting function
is expansion. When the operand is a function, the result is scan.

1.3.3 . The Dot Operator

The dyadic dot (.) operator takes a left and right operand and produces

a dyadic-derived function. When the left operand is a jot (o), the derived
function is an outer product. When the left operand is a function, the derived
function is an inner product. The right operand is always a dyadic function.

1-178 APL Reference Manual

Primitive Mixed Functions

/ and # Compression and Replication

/ and # Compression and Replication

Form

A/B A/ LK1B A+ B A+ [K1B
is formed with / and -

Left Operand Domain

Type Near-integer
Shape Vector domain
Depth 0 or 1 (simple)

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain (of derived function)

Type Same as right argument

Rank 1fppB

Shape ((K-1)+pB), (+/| A) ,K+oB (for 0I0+«1)
Depth -

Implicit Arguments

None.

Description

Compression and replication are monadic functions derived from the slash (/)
operator. They build arrays by specifying the items to be deleted, preserved,
or duplicated from an existing array, and by indicating where fill items are
to be added in the new array. When items only are preserved or deleted,
this is known as compression (the left operand is Boolean). When items are
d(uplicated, deleted, or filled, this is known as replication (the left operand is
integer). You can also use the JREP system function to perform the compress
and replicate operations (see Chapter 2 for more information).

APL Reference Manual 1-179

Primitive Mixed Functions
/ and # Compression and Replication

For compression, each Boolean item in 4 corresponds to the position of an item
in B. When 4 is 1, the item in B is preserved in the result array. When 4 is
0, the item in B is deleted from the result array.

11010/57 9 11 13 aTHIS IS COMPRESSION
57 11

For replication, each positive scalar and each zero in 4 correspond to the
position of an item in B. Negative integers, which specify fill items, are not
associated with explicit positions in B. When 4 is Boolean, the effects are the
same as for compression (items are either preserved or deleted in the result
array). When 1> 4, the item in B is repeated 4 times in the result array. When
A is negative, APL builds | 4 occurrences of the fill item into the new array:

42 72/5 7 9 11 13 aTHIS IS REPLICATION

1310
57779000013 1300
If A contains only 1 s, the result is B itself; if 4 contains only 0 s, the result is
an empty array. For example:

1111 1/15
12345
0000 0/15
(APL outputs a blank line)

In general, the length of the relevant axis of B must equal the number of
nonnegative items in 4 ((pB) [K]1<~>+/A>0). That is, you must specify an
operation (either copy, drop, or replicate) for each item in the right argument.
However, APL does perform singleton extension in certain conditions. If 4 is
a positive singleton, it is extended to the length of B. (Negative values are not
extended. When 4 is a negative singleton, B must be empty along the axis
being replicated.) If B is a singleton, it is extended to the length of 4.

G+«5 7 9 11 13

K«et 1010
2/G ASINGLETON EXTENSION ON LEFT ARGUMENT
557799 11 11 13 13
K/5 ASINGLETON EXTENSION ON RIGHT ARGUMENT
555
O«M<3 0 1p9
(APL outputs a blank line)
oM
301
2 3/M REXTENSION ON LAST (DEFAULT) AXIS
(APL outputs a blank line)
p (2 3/M) ATHIRD AXIS EXTENDED 2+3 TIMES
305

1-180 APL Reference Manual

Primitive Mixed Functions
/ and # Compression and Replication

aNEXT EXPRESSIONS USE NEGATIVE SINGLETON IN LEFT ARGUMENT
aTHE RIGHT ARGUMENTS MUST BE EMPTY ON APPLICABLE AXIS

“2/10
00
“2/3 0p9
00
00
0
“2/3 3 0p9
00
00
00
00
00
00
00
00
00
G
57 9 11 13
“2/G
10 LENGTH ERROR
T2/G
A
“2/0 3p9
10 LENGTH ERROR
“2/0 3p9

A

ALAST (DEFAULT) AXIS IS EMPTY

RAGAIN, LAST AXIS IS EMPTY

ARIGHT ARGUMENT NOT EMPTY
ARIGHT ARGUMENT NOT EMPTY
AaWRONG AXIS IS EMPTY

AWRONG AXIS IS EMPTY

If B is a vector, all four forms of the compression function have the same effect.
If the rank of B is greater than 1, the form used determines which axis of the

array is affected.

For the forms 4/ [k] B and A7 [K] B, the affected axis is axis K:

(«B«3 up112

12 3 &
5 6 7 8
9 10 11 12
10 1/[1]B
1 2 3 4
9 10 11 12

APL Reference Manual 1-181

Primitive Mixed Functions
/ and # Compression and Replication

10 14[1]B
12 3 4
9 10 11 12

101 0/[2]B
1 3
5 7
9 11

101 0/[2]B
1 3
5 7
9 11

The forms 4/ B and A+ B affect the last and first axis of B, respectively:

X+2 3p16
X
3
6

FoRNEN
o N

01 1/X

o N
D w

1 04X
123

If 4 is empty, then B (after extension, if necessary) must have length 0 along
the relevant axis.

If the left argument contains all negative numbers (indicating fill characters),
then the applicable axis in the right argument must be empty, and the result
will be the prototype of B repeated +/ | 4 times along the axis. If the applicable
axis is not empty, APL signals LENGTH ERROR. For example:

[J«B+3 0p5
(APL outputs a blank line)
"2 "3/B ACORRECT AXIS IS EMPTY
00000
00000
00000
J«C<«0 3p5
(APL outputs a blank line)
"2 "3/C AINCORRECT AXIS IS EMPTY
10 LENGTH ERROR
"2 73/¢C AINCORRECT AXIS IS EMPTY

A

APL inserts fill items that are determined by the prototype of each vector
along the relevant axis. This is important for arrays of rank 2 or more because
the fill item for a given position depends on the prototype of that particular
column, row, or plane. The following expressions describe such an operation.
Note where the fill items are blanks and where they are zeros. (Because the

1-182 APL Reference Manual

Primitive Mixed Functions
/ and # Compression and Replication

array M is simple, all the fill items are scalars. If ¥ were enclosed, some of the
fill items might also have been enclosed.)

ACREATE M, A HETEROGENEOUS ARRAY OF RANK 3
O«M«2 2 3p 1 'A" 2 3 45 "A" 345 'B" 6

142
345
A 34
5B 6
oM
223 -
COL«+1 111
aREPLICATE M ALONG LAST AXIS (DEFAULT)
aPROTOTYPE BASED ON VECTORS ALONG LAST AXIS
COL/M
1042
3045
A 34
508B6
pCOL/M aLAST AXIS IS CHANGED
224
COL«+1 "1 1
COL/[21M AREPLICATE M ALONG 2ND AXIS

=~ W O
=
oo FE o N

pCOL/[2]1M A2ND AXIS IS CHANGED

N
w
w

COL/T11M AEXPAND M ALONG 1ST AXIS

o o o N

US> OO wE
w o
=

pCOL/[11M a1ST AXIS IS CHANGED

w
N
w

APL Reference Manual 1-183

Primitive Mixed Functions
/ and # Compression and Replication

Further examples:

O«WRL<(1 2 3) '"ABC' 0

t----- + -1 0
[1 2 3] |ABC|
tomm - + -+
11 0/WRL ACOMPRESSION
t-—--- + -4
[1 2 3| |4BC]
to—m - + o+t
37220 "1/WRL AREPLICATION
to---- SR S + - + 4= + o---- R i +
[1 23] |1 23] [123] [oo00] |000| |ABC| |ABC| |0 0 0]
t----- + t----- + ----- I + - R +

Possible Errors Generated

1-184

7 SYNTAX ERROR (NO DYADIC FORM OF DERIVED FUNCTION)
9 RANK FRROR (NOT VECTOR DOMAIN)

10 LENGTH ERROR

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN ERROR (NOT AN INTEGER)

27 LIMIT ERROR (INTEGER TOO LARGE)

28 AXIS RANK ERROR (NOT VECTOR DOMAIN)

29 AXIS LENGTH ERROR (NOT SINGLETON)

30 AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)
30 AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
30 AXIS DOMAIN ERROR (INCORRECT TYPE)

30 AXIS DOMAIN ERROR (NOT AN INTEGER)

30 AXTIS DOMAIN ERROR (RIGHT ARGUMENT HAS WRONG RANK)

30 AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

APL Reference Manual

Primitive Mixed Functions
/ and # Reduction

/ and # Reduction

Form

f/B f/TKIB f+B f+[K1B
is formed with / and -

Left Operand Domain

Type Dyadic value-returning function

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain (of derived function)

Type Depends on f
Rank 0f"1+ppB
Shape (pB)[(1ppB)~K]
Depth Depends on f

Implicit Arguments

None.

Description

Reduction is a monadic function derived from the slash (/) operator. To derive
the reduction function, use any dyadic function as the operand (f in the form) to
slash. f can be a primitive dyadic function, a dyadic system function, a dyadic
user-defined function, or a dyadic-derived function. f cannot be a user-defined
operator. The result operates as if f were applied between successive items
along a specified axis of an array (B). For example:

APL Reference Manual 1-185

Primitive Mixed Functions
/ and # Reduction

O«X<«16
123456
1+2+3+4+5+6
21
+/X
21
1x2x3xUx5x6
720
x/X
720
</IAI
A
</IABI
1
</'ABC!
15 DOMAIN ERROR (INCORRECT TYPE)
</'ABC!

A

The reduction of a scalar always returns the scalar itself. Thus, the last
expression in the preceding example results in a DOMAIN ERROR because
"B'<'C' evaluatestol,and '4' <1 isinvalid because the data types do not
match.

Remember that APL evaluates expressions from right to left. For example:

</123
0

Here, APL evaluated 2< 3 and the result was 1. APL then evaluated 1< 1 and
returned 0.

The result of the derived function has a rank that is one less than the rank of
the original array (unless the original array is a scalar). Thus, the reduction of
a matrix yields a vector, the reduction of a vector yields a scalar, and so forth.

For the forms f/ [k] B and f# [K] B, the applicable axis is axis X:

[J«4<2 Up1b
12314
56 12
+/[2]4
10 14

+/[114
68 46

1-186 APL Reference Manual

Primitive Mixed Functions
/ and # Reduction

Further examples:

O«¥«(123) (732 72) (732 72) (10 1)

fom—— +op-—--—-- D + t---——- +
12 3] 1732 72 1732 72| |10 "1}
e I e et + f--—--- +
+/Y
Fomm +
|74 6 2]
R +
,/13 aSIMPLE ARG YIELDS NESTED RESULT
R +
|12 3]
tmmm—= +

If the length of the k¥ th axis is 1, the result of the derived function is the
original array with the ¥ th axis removed:

[0«A<5 1p15
1
2
3
n
5
+/[1]4
15
+/[214
12345

The forms f/ B and f+ B affect the last and first axes of B, respectively:

[«A<«2 4p16
1234
5612
+/A
10 14

14
6 8 46

If the length of the applicable axis is 0, and all other axes have nonzero
lengths, each result item is the identity function applied to the prototype of the
argument, if one exists. The identity function for all scalar dyadic functions is
p+f/ 10 where p is the prototype of the right argument (p<+ 0p B) and fis the
scalar dyadic function. The identity elements for the identity function of the
scalar dyadic functions are listed in the following table:

APL Reference Manual 1-187

Primitive Mixed Functions
/ and # Reduction

Identity ltems for the Scalar Dyadic Functions
Dyadic Function Symbol Identity item (f/ 1 0)

Plus + 0

Minus - 0

Times x 1

Divide + 1

Power * 1

Residue | 0

Maximum r Most negative representable number
(" 1.7E38 approx)

Minimum L Largest representable positive number
(1.7E38 approx)

Logarithm ® None

Combination ! 1

Circle o None

And A 1

Or v 0

Nand ~ None

Nor » None

Less < 0

Not Greater < 1

Equal to = 1

Not Less > 1

Greater > 0

Not Equal # 0

The identity functions for the nonscalar dyadic functions are listed in the
following table. Note that P is the prototype of the argument B (defined
formally as P+« + 0p B). Any functions not listed (including system functions,
user-defined operations, and derived functions from arbitrary operator
sequences) do not have identity functions.

1-188 APL Reference Manual

Primitive Mixed Functions
/ and # Reduction

Identity Functions for the Nonscalar Dyadic Functions

Dyadic Function Symbol Identity Function
Reshape P oP

Catenate , ((T14pP),0)pc((14pP),0)pP
Rotate ¢ (T1+pP)poO
Rotate e (1vypP)poO
Transpose & 1ppP

Pick > 10

Drop ¥ (ppP)pO

Take + pP

Without ~ 10

Matrix Divide B8 (14pP)o.=11pP

Possible Errors Generated

7 SYNTAX ERROR (NO DYADIC FORM OF DERIVED FUNCTION)

7 SYNTAX ERROR (NO DYADIC FORM OF FUNCTION)

11

15

15

15

15

15

27

28

29

30

30

VALUE ERROR

DOMAIN ERROR

DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

DOMAIN ERROR (FUNCTION HAS NO IDENTITY ITEM)

DOMAIN ERROR (INCORRECT TYPE)

DOMAIN ERROR (NOT A DYADIC FUNCTION)

LIMIT ERROR (INTEGER TOO LARGE)

AXIS RANK ERROR (NOT VECTOR DOMAIN)

AXIS LENGTH ERROR (NOT SINGLETON)

AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)

AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

APL Reference Manual 1-189

Primitive Mixed Functions
/ and # Reduction

30 AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
30 AXIS DOMAIN ERROR (INCORRECT TYPE)
30 AXIS DOMAIN ERROR (NOT AN INTEGER)

30 AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

1-190 APL Reference Manual

Primitive Mixed Functions
" Each

" Each

Form
B Af'B
Left Operand Domain

Type Any function

Left Argument Domain

Type Depends on the function f
Shape Depends on the function f
Depth Depends on the function f

Right Argument Domain

Type Depends on the function f
Shape Depends on the function f
Depth Depends on the function f

Result Domain (of derived function)

Type Depends on the function f
Rank o p B (after singleton extension)
Shape o B (after singleton extension)
Depth Depends on the function f

Implicit Arguments

None.

Description

The monadic = operator (known as each) takes a function (f) as the left
operand. The result is either a monadic or dyadic derived function (depending
on the valence of f). f can be a primitive function, a system function, a user-
defined operation, or a derived function from an arbitrary operator sequence.
The function f does not have to be a value-returning function.

APL Reference Manual 1-191

Primitive Mixed Functions
" Each

When you use ”, the action of a monadic f is applied to successive items

of an array (B in the form), and the action of a dyadic f is applied between
corresponding pairs of items (4 and B in the form). The action of f is only
applied to the top level of nesting in an enclosed array (" is not pervasive).

B <« 4

C < 15

D« 2 2 p "ABCD!

0 «E<«B, (cC), cD aNOTE USE OF PARENTHESES

pE ASHAPE OF E SHOWS A 3-ITEM VECTOR

0'E ASHAPE OF EACH OF E SHOWS SHAPE OF ALL ITEMS
-t -4

HoIsl 12 2]
oot Fo-—1
=E aDEPTH OF E SHOWS ONE NESTING LEVEL
2
="F ADEPTH OF EACH OF E SHOWS DEPTH OF ALL ITEMS
011
0« E « cE
L T +
[+ -t
| 11234 5] [AB]]
R + |cpl|
l +--+|
Fomm e +
0 0 E aRANK OF EACH ITEM OF E
+-+
[1]
+-+
0 «F «cEEE
A o +
R I ettt R e +]
[14 4= e I L I e I L +ot--1]
[l 11234 5] [4B]| | |1t 23 45| [AB]| | |12 34 5| [4B]]
[4= +ACDI] | e + 1CDH | e + 1CDI]
[-+ | -+ | -]
[4= Fodmm e L e et +]
LS +
pF ASHAPE OF F SHOWS IT IS NOW 4 SCALAR
(APL outputs a blank line)
=F ADEPTH OF F SHOWS ENCLOSED ARRAY, 3 NESTING LEVELS
u

1-192 APL Reference Manual

Primitive Mixed Functions
" Each

ASHAPE OF EACH OF F SHOWS 1 VECTOR OF SHAPE 3)

oF
-+
13
-1+
aSHAPE OF EACH/EACH OF F SHOWS 3 VECTORS OF SHAPE 3
b F
tomm oo +
[+-+ +-+ +-+]
131 (3] 13]]
[+-4+ +-+ +-+]
e +
ASHAPE OF EACH/EACH/EACH OF F
5
o oo +
[+==--=m- === T I +]
[[++ +=+ +--=+] |++ +=+ +-——+| [++ +-+ +-——+]]|
LI I8t 12 200 FIEIstf2 200 T1E 18] 12 2]
| [++ +=+ +=-=+] [++ +-+ +-—-+| [++ +-+ +---+]]|
[+-=-==-—=--~~ e R +]
o oo +
VZI«<SH X

[1] aTHIS USER-DEFINED FUNCTION RETURNS A RESULT
[2] ASH DETERMINES IF ARRAY X IS SIMPLE HOMOGENEOUS
3] 7<(2>=X)n (4Z2)A,=Z«+700", "X

[4] v

SH 'A' 2 3
0

SH 15
1

SH 2 2p'ABCD!
11

SH (1 2) 3
0

SH "ABC' 5
0

The following example shows the use of system functions with the each
operator. The example creates a vector of function definitions and then
displays the canonical representation of each of the list of functions:

X « 2 20'F 2!
X
F
2
Y « 2 3p'F001+2!
Y
FoO
1+2
VFNS

APL Reference Manual 1-193

Primitive Mixed Functions

" Each

oFx”™ x Y
t-t +---+
|F| [FOO|
t-t +---+
VFNS
F FOO
OCR ™ 'F' 'FO0'
t-t t---+
|F| |FOO|
[2] |1+2]
t-t +---+
0BOX™ OVR™ <[210NL 3

| VF| | VFOO|

[[11 2] [[1] 1+2]
| Vol v

The next example shows the use of each to derive a dyadic function:

X«<'WENDY' 'STAN' 'PETER'

X
o I e +
|WENDY| |STAN| |PETER|
tomm-- + otmm——t fmmmmm +
(cOALPHA) 4 X
R + pmm-m——- R +
42 315 |3412] 2415 3]
pommm e o R +
Y « (14) (16) (13)
Y
fommm +ommmm - e +
123 4] |123456]| |12 3]
tomm - R e + om-—-- +
213¢7 7
tmmmm tommmmmmmmm e + - +
3412 23456 1] |12 3]
fommm o I e R +

The next example shows each as part of a derived function:

+/7 (2 2p14)(9 8 7)
+---+ 24
[3 7]
t--=t

1-194 APL Reference Manual

Primitive Mixed Functions
* Each

Possible Errors Generated

9 RANK ERROR

10 LENGTH ERROR

40 OPERATOR DOMAIN ERROR (OPERAND TO EACH NOT A FUNCTION)

APL Reference Manual 1-195

Primitive Mixed Functions
\ and \ Expansion

\ and % Expansion

Form

A\ B A\ [K]B AX B AN[CK]B
\ is formed with \ and -

Left Operand Domain

Type Near-Boolean
Shape Vector domain
Depth 0 or 1 (simple)

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain (of derived function)

Type Same as argument

Rank 1lppB

Shape (pB)[(1ppB)~K] and p , 4 on axis X
Depth 1l=B

Implicit Arguments

None.

Description

Expansion is a monadic function derived from the backslash (\ operator. It
builds an array by combining the items of an existing array with fill items. You
can also use the JEXP system function to perform the expand operation (see
Chapter 2 for more information).

Each item in the operand (4 in the form) is a Boolean scalar that corresponds
to the position of an item in the right argument (8). When 4 is 1, APL inserts
the corresponding item along the relevant axis of B into the result array. When
4 is 0, APL inserts a fill item into that position in the result array. There

1-196 APL Reference Manual

Primitive Mixed Functions
\ and \ Expansion

must be a 1 for each item along the relevant axis in the right argument, so
that all the items in B appear in the result array. Any number of fill items
may be included:

O«LIS«12 13 15

12 13 15
V«1 0 10 1
aZEROS IN V DECIDE LOCATION OF FILL ITEMS
VN\LIS
12 0 13 0 15

A singleton right argument is extended along the axis to a length that matches
the number of 1 s in the left argument:

10 1\5
505

If the left argument is a singleton, APL signals an error:

IN§ 67 8
10 LENGTH ERROR

1\5 6 7 8

A

0\5 6 7 8
10 LENGTH ERROR

0\56 738

A

If the right argument is a vector, all four forms of the expansion function have
the same effect. If the rank of the right argument is greater than 1, the form
used determines which axes of the array are affected.

For the forms 4\ [k] B and A\ [X] B, the affected axis is axis X :

0«A«2 3p16

10 1\[1]4 AEXPAND ALONG 1ST AXIS

APL Reference Manual 1-197

Primitive Mixed Functions
\ and X Expansion

10 1%[1]4 AEXPAND ALONG 1ST AXIS
123
000

101 1\[2]4 AEXPAND ALONG 2ND AXIS
1023
4056

10 1 1x[2]4 AEXPAND ALONG 2ND AXIS
1023
L 056

The forms A\ B and 4\ B affect the last and first axis of B, respectively:

X«3 9p'«THISISANEXPANSIONEXAMPLE !
X
xTHISISAN
EXPANSION
EXAMPLE %%
pX
39
V«1 1111011011
\X AEXPAND X ALONG LAST AXIS
*THIS IS AN
EXPAN SI ON
EXAMP LE xx
101 15X aEXPAND X ALONG FIRST AXIS
*THISISAN

EXPANSION
EXAMPLE* x

When you expand an array, APL uses fill items that are determined by the
prototype of each vector along the relevant axis. This is important for arrays
of rank 2 or more because the fill item for a given position depends on the
prototype of that particular column, row, or plane. The following expressions
describe such an operation. Note where the fill items are blanks and where
they are zeros. (Because the array ¥ is simple, all the fill items are scalars. If
M were enclosed, some of the fill items might also have been enclosed.)

O«M«2 2 3p 1 '"A" 2 3 45 'A4' 345 'B' 6

=
N

1
3
A
5

oo w
o =

oM
2 23
B0O<«1 1 0 1

1-198 APL Reference Manual

Primitive Mixed Functions
\ and \ Expansion

AEXPAND M ALONG LAST AXIS (DEFAULT)
PROTOTYPE BASED ON VECTORS ALONG LAST AXIS

BOO\ M
1402
3405
A3 4
5B 06
pBOO\M ALAST AXIS IS CHANGED
224
B0O+1 0 1
BOO\ [2]M AEXPAND M ALONG 2ND AXIS
142
0 0
345
A3 4
00
5B 6
pBOO\ [21M A2ND AXIS IS CHANGED
23
BOO\ [11M AEXPAND M ALONG 1ST AXIS
142
345
0 0
000
A3 4
5B 6
pBOO\ [11M a1ST AXIS IS CHANGED
323

Note that the right argument may be empty:

0 0 0\10
000
0«4<0 0 O\ "'
(APL outputs a blank line)
pA
3

If the left argument is empty, the right argument (after extension, if necessary)
must have length 0 along the relevant axis.

For a simple, homogeneous array 4, the result of the expression 0=0\0p 4
is 1 if 4 is numeric, and 0 if 4 is character. For any array X, the result
of the expression (2>=X)Ar (+2Z)r.=2<+"0p", "X is 1if X is simple or
homogeneous, and 0 if X is either nonsimple or heterogeneous.

APL Reference Manual 1-199

Primitive Mixed Functions
\ and \ Expansion

Further examples:

O«WRL«(1 2 3) ('ABC') 0

==t 4---+ 0

[1 2 3| |ABC]

Possible Errors Generated

7 SYNTAX ERROR (NO DYADIC FORM OF DERIVED FUNCTION)

9 RANK ERROR (NOT VECTOR DOMAIN)

10

15

15

15

27

28

29

30

30

30

30

30

30

LENGTH ERROR

DOMAIN ERROR

DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
DOMAIN ERROR (INCORRECT TYPE)

LIMIT ERROR (INTEGER TOO LARGE)

AXIS RANK ERROR (NOT VECTOR DOMAIN)

AXIS LENGTH FRROR (NOT SINGLETON)

AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)
AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
AXIS DOMAIN ERROR (INCORRECT TYPE)

AXIS DOMAIN ERROR (NOT AN INTEGER)

AXIS DOMAIN ERROR (RIGHT ARGUMENT HAS WRONG RANK)

AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

1-200 APL Reference Manual

Primitive Mixed Functions
\ and % Scan

\ and \ Scan

Form

f<B flk1B f\B A LK]B
\ is formed with \ and -

Left Operand Domain

Type Dyadic value-returning function

Argument Domain

Array Any
Type Any
Shape Any
Depth Any

Result Domain (of derived function)

Type Depends on f
Rank ppB

Shape pB

Depth Depends on f

Implicit Arguments

None.

Description

Scan is a monadic function derived from the backslash (\ operator. To derive

the scan function, use any dyadic function as the

operand (f in the form) to

backslash. f can be a primitive dyadic function, a dyadic system function, a
dyadic user-defined function, or a dyadic-derived function from an arbitrary
operator sequence. The result operates as if f were applied between successive

items along a specified axis of an array (8). Thus,

same as a reduction, except that the scan returns
applied to each successive group of items.

a scan of an array works the
the results as the function is

APL Reference Manual 1-201

Primitive Mixed Functions
\ and % Scan

The result has the same shape as B. The first item of the result is always
identical to the first item of B, and the last item is equal to the f reduction of
B. For example:

+\3 45
37 12

As the function is applied to each successive group of items, APL evaluates the
resultant expressions from right to left:

~ —El 2 34
1 12 2
Here, APL returned the following:
* The first item in the argument array
¢ The result of the expression 1-2
¢ The result of the expression 1-2-3
® The result of the expression 1-2-3-u

Note that APL treated each expression in the example independently; for
example, the result of the expression 1-2 did not affect the evaluation of the
expression 1-2-3.

If B is an empty array, the result is an empty array.

For the forms A\ [k1 B and fA\ [k] B, the applicable axis for the scan is axis X :

[J«A<2 Lp16
1234
5612
+\[2]4
3 6 10
5 11 12 14

+\ [1]4

[

234
6 8 4 b

The forms f\ B and f\ B affect the last axis and first axis of B, respectively:

1-202 APL Reference Manual

Primitive Mixed Functions
\ and % Scan

O«A<2 4p16
2 34
5612
+\4
1 3 6 10
5 11 12 14
+54

1 4
6

23
6 8 U
Note that the scan operator is never applied if B has the length 1. Thus,
+\"A'«<>1 A", Also note that for =\ ' 4B' «»> '4', 0 is heterogeneous,
because the first item of the result would be a character (' 4'), and the second

item would be a number 0, the result of ' 4'="'B".

If the dyadic function specified with scan is one of the associative primitive
functions (+, x, |, [, <, and v for all arguments; = and # for Boolean
arguments), APL uses an optimization that changes the way scan is computed.
The definition of R<f\ B (for vectors R[K] =f/ K+ B0) is changed as follows:

R[1] = B[1]
R[K] = R[K-1] f BI[K] for Kelyi1pB

This optimized scan requires fewer operations than the traditional scan.

Note that the result of an associative operation may differ slightly from the
nonassociative approach, and you should use it carefully if your results require
a high degree of precision. For example:

A<1E6 “1E6 1E 16
A

1000000 1000000 1E 16
+\4

1000000 0 1E" 16
+/4

0

Further examples:

O«W«(2 2 3) (2 10)

APL Reference Manual 1-203

Primitive Mixed Functions

\ and % Scan
p\3 21 aSIMPLE ARG YIELDS NESTED RESULT
3 +----- + t----- +
2 2 2] |11 1]
te---- t+ t----- +

Possible Errors Generated

7

7

11

15

15

27

28

29

30

30

30

30

30

30

40

SYNTAX ERROR (NO DYADIC FORM OF DERIVED FUNCTION)
SYNTAX ERROR (NO DYADIC FORM OF FUNCTION)

VALUE ERROR

DOMAIN ERROR

DOMAIN ERROR (INCORRECT TYPE)

LIMIT ERROR (INTEGER TOO LARGE)

AXIS RANK ERROR (NOT VECTOR DOMAIN)

AXIS LENGTH ERROR (NOT SINGLETON)

AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)
AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)
AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
AXIS DOMAIN ERROR (INCORRECT TYPE)

AXIS DOMAIN ERROR (NOT AN INTEGER)

AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

OPERATOR DOMAIN ERROR (NOT A DYADIC FUNCTION)

1-204 APL Reference Manual

Primitive Mixed Functions
o . f Outer Product

o , fOuter Product

Form
Ao . fB

Left Operand Domain

Type Always jot (o)
Right Operand Domain

Type Dyadic function

Left Argument Domain

Type Any
Shape Any
Depth Any

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain (of derived function)

Type Depends on f
Rank (ppA)+poB
Shape (pA),pB

Depth Depends on f

Implicit Arguments

None.

APL Reference Manual 1-205

Primitive Mixed Functions
o , f Quter Product

Description

Outer product is a derived function that specifies an operation to be performed
between every item of one array and every item of another array. In the
expression R«A- . fB, R is an array that results from the application of the
function f to every pair of items of 4 and B. f can be a primitive dyadic
function, a dyadic system function, a dyadic user-defined function, or a dyadic-
derived function from an arbitrary operator sequence. The function f does not
have to be a value-returning function.

In the following example, note how the outer product operator affects the
operation of the primitive scalar function multiply:

12 3x2 34 ASCALAR PRODUCT APPLIES x TO EACH PAIR

2 6 12
AQUTER PRODUCT APPLIES x BETWEEN ALL ITEMS
12 30,2 3 4

D FE N
0 O w
N 0 &

1

In the next example, the outer product operator affects the operation of

the equal function so that each data item in the left argument is compared

to each item in the right argument. Then, the reduction function (derived
from the slash operator) is used to determine how many times each item

in the left argument appears in the right argument. Note that the left
argument determines the number of rows in the result, and the right argument
determines the number of columns:

G«1 23221
(13)0.= AFIND THE LOCATIONS OF 1S8,2S,AND 3S IN G
100001
010110
001000
+/(13)0.=G AUSE REDUCE TO TOTAL THE ROWS
231

ATHERE ARE TWO 1S THREE 2S AND ONE 3 IN G

Further examples:

O«X<(1 2 3) 'ABC' "2
S + +---+ 2

1-206 APL Reference Manual

Primitive Mixed Functions
o . f Outer Product

(12) o= X
+----- + 4----- + 0
[100] |00 0]
t----- + ----- +
t----- + 4----- + 0
{01 0] |00 O]
fo—mm - + t----- +

O«W<(2 2 3) (2 1 0)
t----- + t----- +
[2 23] |2 10]
o= + t----- +

W e.p W
t----= + p----- +

[2 2 3] |2 I
tmem—— + ----- +
++ ++
[[
N |l
[l I
++ ++

(13) o.p "1 2 0 aSIMPLE ARGS YIELD NESTED RESULT
+--+ +-+ +-t
|11 121 [0]
+-—+ +-+ +-t
t----- + to--t 4---t
[71 1] [2 2] |0 0]
t----- + +---+ -t
tommmooo- R A +
|71 71 1] |2 2 2] [0 0 0]
e S +ot----- +

Possible Errors Generated

7 SYNTAX ERROR (NO MONADIC FORM OF DERIVED FUNCTION)
15 DOMAIN ERROR
15 DOMAIN ERROR (INCORRECT TYPE)

40 OPERATOR DOMAIN ERROR (NOT A DYADIC FUNCTION)

APL Reference Manual 1-207

Primitive Mixed Functions
f. g Inner Product

f. gInner Product

Form
Af.gB

Left Operand Domain

Type Dyadic value-returning function
Right Operand Domain

Type Dyadic value-returning function

Left Argument Domain

Type Any
Shape Any, inner axes of 4 and B must conform
Depth Any

Right Argument Domain

Type Any
Shape Any, inner axes of 4 and B must conform
Depth Any

Result Domain (of derived function)

Type Depends on fand g
Rank Of " 2+(ppd)+ppB
Shape (T1vp4),1vpB

Depth Depends on fand g

Implicit Arguments

None.

1-208 APL Reference Manual

Primitive Mixed Functions
f. g Inner Product

Description

The derived function inner product produces the common algebraic matrix
product of two arrays. The name inner product comes from the application
of the function (g) along the inner axes of the two arguments. f and g can be
a primitive dyadic function, a dyadic system function, a dyadic user-defined
function, or a dyadic-derived function from an arbitrary operator sequence.
(The inner axes are the last axis of the left argument and the first axis of the
right argument.) For example:

O«A+«2 3p16
123
456
0«B+13
123
A+.xB
14 32
AINNER AXES DO NOT MATCH IN NEXT EXPRESSION
B+.x4
10 LENGTH ERROR (LENGTHS OF INNER AXES DO NOT MATCH)

B+.xA

A
In the preceding example, each item along the first axis of the right argument
(in this case, B has only one axis) is multiplied by the corresponding item along
the last axis of the right argument, and the products of each row are summed.
The lengths of these inner axes must conform (in this case they are both 3).

The shape of the result is the shape of 4 (2 3) catenated to the shape of B (3)
without their inner axes.

When each of the arguments has only one axis, the result is a scalar:

(13)+.%x13
14

When you want to perform the inner product with one object on itself, use
transpose:

J«A+2 3p16
23
56

A+.xRA

14 32
32 77

1
I

APL Reference Manual 1-209

Primitive Mixed Functions
f. g Inner Product

You can also specify an inner product in which an operation other than
multiplication is performed. Commonly, you might also use A . = (And Dot
Equals), v.# (Or Dot Not equals), or x.» (Times Dot Star). Using this method,
you can locate values containing specific characters or search for a row of one
array in which all the items are equal to those in a column of another array.
For example:

[0«B<2 316
3
ANEXT EXPRESSION COUNTS WHERE 2 AND 6
2 6+.<B an ARE < THE TWO ROWS OF EACH COLUMN IN B
1
O«X+u4 3p 'ONETWOSIXTEEN'
ONE
THO
SIX
TEE
pX
b3
pY«'SIX! aFIND WHERE Y OCCURS IN SIX

3

To be used in an inner product operation, the two arguments, denoted 4 and B,
must conform to at least one of the following rules:

® A or B is a singleton
e The inner axes (the results of “ 1+ p 4 and 1+ p B) are equal
e Either the last axis of 4 (T 1+ p 4) or the first axis of B (1+ 0 B) equals 1

If the first or third rule is true, then the corresponding argument is extended
(through the process of singleton extension) so that the arguments have equal
lengths along the matching axes.

If (0="14p4) ~0=14p B, but no other axes of 4 and B are equal to 0, then the
inner product operator returns an array of identity items for the function f, as
in reduction.

1-210 APL Reference Manual

Primitive Mixed Functions
f. g Inner Product

Further examples:

[«G«1 3 p (} 23)(201) 72

ASIMPLE ARGS YIELD NESTED RESULT

Possible Errors Generated

7 SYNTAX ERROR (NO MONADIC FORM OF DERIVED FUNCTION)

11

10

15

15

15

4o

VALUE ERROR

LENGTH ERROR (LENGTHS OF INNER AXES DO NOT MATCH)
DOMAIN ERROR

DOMAIN ERROR (FUNCTION HAS NO IDENTITY ELEMENT)
DOMAIN ERROR (INCORRECT TYPE)

OPERATOR DOMAIN ERROR (NOT A DYADIC FUNCTION)

APL Reference Manual 1-211

Primitive Mixed Functions
[1 Axis

[] Axis

Form
fLK1B AfLK1B

Left Argument Domain
Type Monadic or dyadic function

Right Argument Domain

Type Near-integer (floating for laminate and ravel, Any for user-
defined operations)

Shape Singleton (Vector for drop, enclose, disclose, ravel,
take and all dyadic scalar functions, Any for user-defined
operations)

Depth 0 or 1 (simple), Any for user-defined operations

Result Domain

Type Same as left argument

Implicit Arguments
0710 (fL k] when 0I0«1 is identical to fT K+ 1] when 010<0)

Description

Axis makes the function to its left apply to the axis specified by the value
surrounded by brackets. The following functions and operators may be affected
by axis:

* Catenate (, and ;)

* Derived compress/replicate (/ and #)
* Derived reduction (/ and #)

* Derived expand (\ and %)

* Derived scan (\ and %)

* Disclose ()

* Drop (+)

1-212 APL Reference Manual

Primitive Mixed Functions
[] Axis

* Enclose (<)

* Laminate (, and 5)

¢ Monadic grade up (4)

e Monadic grade down (V)
* Ravel (, and 5)

* Rotate (¢ and o)

e Reverse (¢ and o)

e Take (4)
e [EXP
®* [REP

e All dyadic scalar functions (see Table 1-1 in Section 1.1.1)
e User-defined operations

The use of axis with these functions (and operators) is described in the
individual explanations of the functions. For examples and further descriptions
of axis with scalar functions, see Section 1.1.

When you use axis with the 5, 7, \, and e functions, the functions are
equivalent to ,, /, \, and ¢ used with axis. The following list shows the
definitions and equivalences of these symbols. Note the following:

f represents either ,, /, \ or ¢

g represents 5, #, y,o0re

A and B represent any arrays

S is any scalar

K is any axis

0I0 is used to select the first axis of an array.

* gB<«~> flOIO] B

* fLk]l B <~ gl[k] B for allk

* fS <> flO0I0] S<~~gsS<«~gl0Iols

e AgB<«~Af[0OIO] B

e Affk) B+«~> Agl[k]l Bforall k

o AfsS <~ AfIOIO] S<«~ AgsS <~ AglOIO] S

Axis is 0 I0-dependent; thus, all the functions named are 0 I0-dependent when
they are affected by axis, except user-defined operations.

APL Reference Manual 1-213

Primitive Mixed Functions

[] Axis

Possible Errors Generated

28

29

30

30

30

30

30

30

30

30

30

30

30

AXIS RANK ERROR (NOT VECTOR DOMAIN)

AXIS LENGTH ERROR (NOT SINGLETON)

AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)
AXIS DOMAIN ERROR (AXES NOT IN CONTIGUOUS ASCENDING ORDER)
AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

AXIS DOMAIN ERROR (DUPLICATE AXIS NUMBER)

AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

AXIS DOMAIN ERROR (INCORRECT OPERATION)

AXIS DOMAIN ERROR (INCORRECT TYPE)

AXIS DOMAIN ERROR (LEFT ARGUMENT HAS WRONG LENGTH)

AXIS DOMAIN ERROR (NOT AN INTEGER)

AXIS DOMAIN ERROR (RIGHT ARGUMENT HAS WRONG RANK)

AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

1-214 APL Reference Manual

Primitive Mixed Functions
« Specification Function

<+ Specification Function

Form

A<B ACK]+B
Left Argument Domain

Type Variable name or undefined name
Shape Any

Right Argument Domain

Type Any
Shape Conforms to index argument &, if any
Depth Any

Result Domain

Type Same as right argument
Rank ppB

Shape o B

Depth =B

Implicit Arguments

None.

Description

The specification function («) stores values in identifiers. The left argument
(4) must be a variable name or undefined. When the function is executed, the
value of the right argument (B) becomes associated with the name 4.

In addition to the uses described below, specification can also be used for
strand and selective assignment statements.

Specification functions can be included in the construction of other statements.
For example, the following assigns the value 7 to C, 11 to B, and 14 to 4:

A+3+B<l4+(C+«7

APL Reference Manual 1-215

Primitive Mixed Functions
< Specification Function

For the form A[K] <B, axes of length 1 are dropped from B to allow B to
conform to ALX]. (For more details about the 4[k]<«B form of specification,
see the VAX APL User’s Guide.) For example:

J«A+2 3p16
123
L 56
B+3 1 1p7 8 9
A[2;7+«B
A
123
7 89
The specification function is a quiet function; it does not return a value if it is
the leftmost function in a statement.

A<2
A

(4+2)

[J«A<2
2
Note that the value returned by the specification function (when you require
that it returns a value) is the value of the right argument, even if the left
argument is indexed. For example:

A<5 4 3 21
O«Al1]<t

A
L4321

Possible Errors Generated

1-216

Specification not subscripted (form 4+B)

4 NOT A VALID SYSTEM IDENTIFIER

7 SYNTAX ERROR (MISSING LEFT ARGUMENT TO ASSIGNMENT)
11 VALUFE ERROR (NO VALUFE TO ASSIGN)

15 DOMAIN ERROR (ILLEGAL LEFT ARGUMENT TO ASSIGNMENT)

15 DOMAIN ERROR (NOT A SYSTEM VARIABLE)

APL Reference Manual

Primitive Mixed Functions
« Specification Function

Subscripted specification (form A[k] <B)

11

11

15

15

27

36

36

37

37

37

38

38

38

VALUE ERROR (NO VALUE TO ASSIGN)

VALUE ERROR (SUBSCRIPTED NAME IS UNDEFINED)
DOMAIN ERROR (INVALID OBJECT IN INDEXED ASSIGNMENT)
DOMAIN ERROR (NOT A SYSTEM VARIABLE)

LIMIT ERROR (INTEGER TOO LARGE)

INDEX RANK ERROR

INDEX RANK ERROR (CANNOT INDEX A SCALAR)

INDEX LENGTH ERROR

INDEX LENGTH ERROR (INDEX LESS THAN INDEX ORIGIN)
INDEX LENGTH ERROR (INDEX OUT OF RANGE)

INDEX DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
INDEX DOMAIN ERROR (INCORRECT TYPE)

INDEX DOMAIN ERROR (NOT AN INTEGER)

APL Reference Manual 1-217

Primitive Mixed Functions
Strand Assignment with the Specification Function

Strand Assignment with the Specification Function

Form
(A1...An)<«B

Left Argument Domain

Type List of variable or undefined names
Shape Any

Right Argument Domain

Type Any
Shape Vector domain
Depth Any

Result Domain

Type Same as right argument
Rank ppB

Shape o B

Depth =B

Implicit Arguments

None.

Description

Strand assignment (also known as vector assignment) allows you to assign a
list of values to a list of objects. APL applies the assignment along successive
pairs of items in the left (4) and right (B) arguments in a manner similar to
scalar extension. The objects in 4 may be undefined names, variable names,
or system variable names. The result of the strand assignment function is the
right argument.

The length of B must conform to the number of objects in 4, or B must be a
singleton, in which case APL performs singleton extension. For example:

1-218 APL Reference Manual

Primitive Mixed Functions
Strand Assignment with the Specification Function

BURR « 32 ¢ TEMP <« 0 ¢ COLD « 12
BURR o TEMP o COLD

32
0
T12
APARENTHESES REQUIRED
(BURR TEMP COLD) + 20 ~u ~15
BURR o TEMP o COLD
20
Ty
T15

RSINGLETON EXTENSION
(BURR TEMP COLD) <« "3
BURR o TEMP o COLD

You can use strand assignment to allow multiple arguments in user-defined
operations. For example, FRET is a monadic user-defined function containing
three local variables (X, ¥, and Z). The header definition of FRET is as follows:

VFRET B;X;Y;Z2 V

When FRET is called, the argument (B) contains three items. Inside FRET,
there is an expression that performs a strand assignment in which each item
in B is assigned to a local variable. For example:

BIP«23 41 'RUE' aBIP CONTAINS 3 ITEMS
FRET BIP ATHE CALL TO FRET IS STILL MONADIC

(X Y Z)«BIP aTHIS IS EXPRESSION INSIDE OF FRET

Note that the length (3) of the left argument to the specification function
conforms to the number of items in BIP. If BTP were a singleton, APL would
perform singleton extension.

Strand assignment is an atomic operation; if any of the assignments fail, no
change occurs to any of the names in the left argument list. However, If you
have set the display option on the JWATCH system function (see Chapter 2
if you have set the signal option, the signal is held until APL completes the
entire strand assignment and only the last watched name is signaled.

APL Reference Manual 1-219

Primitive Mixed Functions
Strand Assignment with the Specification Function

Possible Errors Generated

4 NOT A VALID SYSTEM IDENTIFIER

7 SYNTAX ERROR (MISSING LEFT ARGUMENT TO ASSIGNMENT)
9 RANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH ERROR

15 DOMAIN ERROR (INVALID OBJECT IN STRAND ASSIGNMENT)
11 VALUE ERROR (NO VALUE TO ASSIGN)

15 DOMAIN ERROR (NOT A SYSTEM VARIABLE)

1-220 APL Reference Manual

Primitive Mixed Functions
Selective Assignment with the Specification Function

Selective Assignment with the Specification Function

Form
(fA)<«B (Cfa)«B
Left Argument Domain
Type A 1is a variable name

f is a function (see list below)
C is any valid left argument to f

Shape Any

Right Argument Domain

Type Any
Shape Conforms to left argument
Depth Any

Result Domain

Type Same as right argument
Rawrite nk ppB

Shape pB

Depth =B

Implicit Arguments

None.

Description

Selective assignment allows you to assign values to specified items of an
array. The left argument (f4) contains an expression that selects items from
an array. The length of the right argument (B) either equals the number of
items selected or is 1 (B is a singleton), in which case APL performs singleton
extension. For example:

APL Reference Manual 1-221

Primitive Mixed Functions

Selective Assignment with the Specification Function

[0«GUT«15
12345

0« (34GUT)+«48 49 50 aASSIGN TO FIRST 3 ITEMS OF GUT

48 49 50 45

0« (34GUT)+«us8

48 48 u8 Uus

(3+GUT)«u8 49

10 LENGTH ERROR

(34+GUT)«u48 49

A

ASINGLETON EXTENSION

ASHAPES DO NOT MATCH

The following table describes the primitive functions you can use in the left
argument expression to select items from an array. The symbol I refers to an
expression that is a valid argument to the function in the form.

Assignment Form

Function Name

(,A4)+B
(,C[K]JA) « B
(¢4) <« B
(ed) «B

(¢ [KJA) « B
(e[KJA) « B
(84) <« B
(IvA) «B
(I+[K]1A) « B
(I+4) «B
(I+[KJA) « B
(I$A) <« B
(IeA) « B
(I$[KJA) « B
(Ie[K]JA) < B
(IRA) « B
(Ip4d) « B
(I\NA) « B
(INA) « B
(IN[KJA) « B

1-222 APL Reference Manual

Ravel
Ravel with axis
Reverse

Reverse with axis

Transpose
Drop

Drop with axis
Take

Take with axis
Rotate

Rotate with axis
Transpose
Reshape

Expand

Expand with axis

Primitive Mixed Functions
Selective Assignment with the Specification Function

Assignment Form Function Name

(IN[KJA) < B

(I/A) « B Replicate
(I+A) < B
(I/[K1A) « B Replicate with axis

(I#[K]JA) « B

You can use more than one of the eligible functions in the left argument
expression. For example:

1
"
7

0
n
7

2
5
8

2
0
8

[J«BOP+«3 3p19
3
6
9
(«(2+1 18§BOP)«0 0 wCHANGE FIRST 2 ITEMS ON THE DIAGONAL
3
6
9

You can use other primitive functions in the portion of the left argument
expression that evaluates the argument of one of the eligible functions. For
example:

=
ol

=

o

[«BOP+3 3p19
3
6
9
BE+«1
EP<2
0«((BE+EP)+1 18BOP)«0 0 0
3
6
0

Possible Errors Generated

4 NOT A VALID SYSTEM IDENTIFIER

11 VALUFE ERROR (NO VALUE TO ASSIGN)

15 DOMAIN ERROR (CANNOT MODIFY SELECTIVE ASSIGNMENT TARGET)

APL Reference Manual 1-223

Primitive Mixed Functions
Selective Assignment with the Specification Function

15 DOMAIN ERROR (INVALID FUNCTION IN SELECTIVE ASSIGNMENT)
15 DOMAIN ERROR (INVALID OBJECT IN SELECTIVE ASSIGNMENT)
15 DOMAIN ERROR (NOT A SYSTEM VARIABLFE)

36 INDEX RANK ERROR

37 INDEX LENGTH ERROR

1-224 APL Reference Manual

2

VAX APL System Variables and Functions

Conceptually, there are two parts to the VAX APL interpreter: the APL
language and the APL environment. The APL language comprises the lexical
and symbolic elements of APL, the parts of APL that are included when it is
used as a mathematical notation in a classroom. The APL environment is the
setting in which the APL language elements are applied.

The APL interpreter recognizes a set of system variables, functions, and
commands that allow you to control your APL sessions, as well as to facilitate
and preserve the work you do in those sessions. For example, the interpreter
allows you to:

* Determine or set the values of the index origin, print precision, comparison
tolerance, and other elements that affect the operation of functions.

* Get information about a workspace, such as its name and size, the
names of its user-defined operations and variables, the state of its active
operations, and so on.

* Manipulate workspaces; that is, load, save, or delete them, copy objects
from them, or change their size.

* Get the system time and date, or get accounting information for a session.

2.1 System Variables

VAX APL system variables, like ordinary variables, can be used in any
language expression or function. Unlike ordinary variables, system variables
have special meaning to the system, and they allow you to do the following:

* Set the index origin and comparison tolerance.
* Change the output precision and line width.
* Specify an operation to be performed when a workspace is activated.

* Automatically save an active workspace after function editing and data
input.

APL Reference Manual 2-1

VAX APL System Variables and Functions

2.1 System Variables

2.1.1 System Variable Names

The names of APL system variables begin with a quad character (0). The
names are considered to be distinguished names, meaning that they are

reserved for a specific purpose. You cannot use them as names for user-defined

operations or variables, and you cannot copy, erase, or collect them in a group.

2.1.2 System Variable Characteristics

System variables are similar to ordinary variables in the following ways:

* They retain their values until new ones are assigned.

® Their current values are saved with a workspace (except for 0GAG, OTT,
OTLE and O VPC).

* They can be localized in user-defined operation definitions.

Each of the system variables in APL can be assigned a value and can be

localized in user-defined operations.

Table 2-1 lists the system variables, the range of values you can specify for
them, and their default values.

Table 2—-1 System Variable Value Ranges

Variable Value Range Default

0AUs 0,1,2 0

gocr 0 to 2.328E™ 10 1IE7 15

gobpc Nested vector (C1102) '
0DML 512 to 2048 2048

OERROR Error message v

0GAG 0,1,2,3 Terminal dependent
0rIo 0,1 1

0oL Any 10

OorLx Expression v

OnG 0,1,2 1

Orp 1to 16 10

0 Pw 35 to 2044 Terminal width
ORr Any 10

2-2 APL Reference Manual

(continued on next page)

VAX APL System Variables and Functions
2.1 System Variables

Table 2-1 (Cont.) System Variable Value Ranges

Variable Value Range Default

ORL 2147483648 to 695197565
2147483647

Osr Prompt 0:<CR><LF> 6 spaces

OSINK Any Always 1 0

OTERSE 0,1 0

OTIMELIMIT ~1 to 255 0

OTIMEOUT 0,1 0

OTLE 0,1 Terminal dependent

OTRAP Expression U

grr 1to 19 Terminal dependent

gvec Non-negative integer 30

Note that JERROR, OLX, 0SF, and [J TRAP must have character values; 0DC
has a two-item heterogeneous value; all the other system variables must have
numeric values. The exceptions are 0L, OR, and 0 SINK, which may take any
type of value.

2.2 System Functions

APL system functions supplement the primitive functions by providing
additional processing capabilities. For instance, they allow you to do the
following:

e Express the canonical representation of a user-defined operation and store
the operation definition as data.

e Expunge a named object.

¢ (Construct a name list of labels, variables, or functions, and return the
classification of a named object.

¢ Delay execution of an operation for a specified period of time.

You access a system function by stating its name and arguments (if any), just
as you would access a primitive or user-defined operation.

For the system functions that take character arguments, white space (spaces
and tabs) is allowed before and after the name (workspace name, function
name, and so on) in the argument. For example, all of the following will load
the workspace MYWS:

APL Reference Manual 2-3

VAX APL System Variables and Functions
2.2 System Functions

0QLD ' MYWS '

0eLb ! MYWS !

0QLD 'MYWS'

0eLp ! MYWS !

Anything other than white space is not allowed before or after the name:

0QLD ' MYWS Al
22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)
0eLD ' MYWS a'

A

2.2.1 System Function Names

System functions, like system variables, are identified by unique names that
begin with a quad character (0); you cannot use these names for user-defined
operations or variables, and you cannot copy, erase, or collect them in a group.
APL assumes that any system functions in an expression are ambivalent,
even though most system functions have a specific valence. This means that
if an expression contains a left argument for a monadic system function, APL
signals an error. For example:

a(JARBOUT IS MONADIC
2 OARBOUT 3

7 SYNTAX ERROR (NO DYADIC FORM OF FUNCTION)
2 DJARBOUT 3

A

2.2.2 Types of System Functions

System functions can be categorized as follows:

* Niladic system functions—those that do not take arguments.

* Monadic system functions—those that take one argument.

* Dyadic system functions—those that take two arguments.

* Ambivalent system functions—those that take either one or two arguments.

The niladic system functions do not take arguments (you may not assign
a value to them), and they cannot be localized in user-defined operations.
The niladic system functions and their values (where applicable) in a clear
workspace may be summarized as follows:

2-4 APL Reference Manual

VAX APL System Variables and Functions
2.2 System Functions

Niladic System Functions

Function Description (value in clear workspace)

OAT Account information as 4-integer vector
OALPHA '"AABCDEFGHIJKLMNOPQRSTUVWXYZ'
OALPHAL '‘abcdefghijklmnop qrstuvwxyz'
OALPHAU '"AABCDEFGHIJKLMN OPQRSTUVWXYZ'
0ASCIT 0AV subset; approximates ASCII characters
gav Atomic vector

QOCHANS Assigned file channels (empty numeric vector)
OCTRL The first 32 ASCII characters and Delete
gLc Line numbers in state indicator (1 0)

ONUM 10123456789

ORESET Clears the state indicator (no value)

ors Time stamp as 7-integer vector

ouL Process identification number (PID)
OVERSION Interpreter and workspace versions

Owa Workspace available in bytes

The monadic system functions take one argument, which is placed immediately
to the right of the function. The following table of the monadic system
functions describes the type, shape, and, where applicable, the units associated
with each function’s argument. Note that there are two entries for 0ASS,
which has both action and query uses.

Monadic System Functions

Function Shape Type Units

OARBOUT Vector domain Integer Character codes
0ASS Vector domain Character File information
OA4ssS Vector domain Near-int Channel numbers
OBREAK Any Any N/A

JCHS Vector domain Near-int Channel numbers
gcrs Vector domain Near-int Channel numbers
Ocr Vector domain Character Operation name
ODAS Vector domain Near-int Channel numbers

APL Reference Manual 2-5

VAX APL System Variables and Functions

2.2 System Functions

Monadic System Functions

Function Shape Type Units

1}2) Singleton Floating Seconds

gbpve Vector domain Near-int Channel numbers

OEFC Vector domain Near-int Channel numbers

OEFR Vector domain Near-int Channel numbers

OEFS Vector domain Near-int Channel numbers

OEX Matrix domain Character Name list

OrFI Vector domain Character Numeric string

OrLs Vector domain Near-int Channel numbers

OrFx Matrix domain Character Operation definition

OMBX Vector domain Near-int Channel numbers

gnc Matrix domain Character Name list

OoM Vector domain Near-Bool N/A

geco Vector domain Character Workspace name, object names
O0QLD Vector domain Character Workspace name

0QecC Vector domain Character Workspace name, object names
ORELEASE Vector domain Near-int Channel numbers

ovr Vector domain Character Numeric string

Ovr Vector domain Any Value or object name

0xqQ Vector domain Any N/A

The dyadic system functions take both a left and a right argument. The dyadic
system functions and the type, shape, and units, if any, associated with their
arguments are as follows.

Dyadic System Functions

Function Shape Type Units
gcre Left: Vector domain Near-int Packed data
Right: Vector domain Near-int Control information
OcoqQ Left: Array Any Data to be packed
Right: Vector domain Near-int Control information
OExp Left: Vector domain Near-Bool Expand information

2-6 APL Reference Manual

VAX APL System Variables and Functions

2.2 System Functions

Dyadic System Functions

Function Shape Type Units

Right: Any Any Array to be expanded
OFMT Left: Vector domain Character Format string

Right: Any Any Data to be formatted
OREP Left: Vector domain Near-int Replicate information

Right: Any Any Array to be replicated
oss Left: Vector domain Character Pattern string

Right: Vector domain Character String

The ambivalent system functions may be monadic or dyadic; thus, they take
either a right argument only, or they take both a right and a left argument.
The following table of the ambivalent system functions describes the type,
shape, and, where applicable, the units associated with each function’s

arguments:
Ambivalent System Functions
Function Shape Type Units
0BoOX Left: Vector domain Character Delimiter
Right: Matrix domain Character Delimited lines
OMAP Left: Vector domain Character Function header
Right: Vector domain Character Shared image def/function
name
OMONITOR Left: Vector domain Numeric Line numbers
Right: Matrix domain Character Operation names
ONL Left: Vector domain Character Letter list
Right: Vector domain Near-int Name classes
OPACK Left: Vector domain Numeric Data packets
Right: Matrix domain Character Variable names
OREWIND Left: Singleton Near-int Key of reference
Right: Vector domain Near-int Channel numbers
OSIGNAL Left: Vector domain Character Error message
Right: Singleton Near-int Error number
OsTopP Left: Vector domain Near-int Line numbers

APL Reference Manual 2-7

VAX APL System Variables and Functions
2.2 System Functions

Ambivalent System Functions

Function Shape Type Units
Right: Matrix domain Character Operation names
OTRACE Left: Vector domain Near-int Line numbers
Right: Matrix domain Character Operation names
OWAIT Left: Singleton Near-int Time limit
Right: Vector domain Near-int Channel numbers
OWATCH Left: Singleton Near-int Watch mode
Right: Matrix domain Character Variable names

Another type of system function is the quiet function, a category that is
independent of the valence of the function. Quiet functions do not generally
cause APL to display a value when they are evaluated as the leftmost function
in a statement. The following table shows the quiet functions:

Quiet System Functions

Monadic Dyadic Ambivalent
OARBOUT « B

-~ (always) OWAIT OREWIND
gocLs 0XQ (sometimes)

DAS ¢ (sometimes)

geco

0QLp

gerc

ORELEASE

However, a quiet function displays a value if you enclose the function and its
arguments in parentheses (note that the branch function (+) is always quiet).
The 0xQ and « functions are quiet when the argument is quiet; otherwise 0x¢
and ¢« cause APL to display a value. For example:

2-8 APL Reference Manual

VAX APL System Variables and Functions
2.2 System Functions

A<5 aSPECIFICATION FUNCTION IS QUIET. NO DISPLAY
(A<5) AADD PARENTHESIS IF YOU WANT A DISPLAY
5
(B+'THIS WILL PRINT BECAUSE OF THE PARENTHESES')
THIS WILL PRINT BECAUSE OF THE PARENTHESES
0XQ 'A+10' a0XQ ARGUMENT IS NOT QUIET
15
0XxQ 'C«A+10' a[00XQ ARGUMENT IS QUIET. NO DISPLAY

2.3 System Variables and Functions Reference

The following sections describe the APL system variables and functions in
alphabetical order. Table 2-2 lists the system variables and functions and
gives a brief description of their uses. APL displays an alphabetical list of
these variables and functions when you enter the following expression:
X<[ONL "2 3 50¢ X[4X;]

Table 2-2 System Variables and Functions

Name Meaning

OAr Maintains account information on the current APL session. Includes
user identification, CPU time, and connect time.

OALPHA Vector of 27 characters: A and A through Z.

OALPHAL Vector of 26 lowercase characters: a through z.

OALPHAU Vector of 27 underscored characters.

OARBOUT Writes arbitrary output to the terminal.

OASCIT Subset of 04V approximates the ASCII character set.

0Aass Associates a file or mailbox with a channel.

QAUS Specifies periodic workspace backup.

OAv Vector of all APL characters.

0BoOX Returns a matrix from a character vector and vice versa. (The rows
of the matrix are delimited by a specified string.)

OBREAK Suspends operation execution and returns control to immediate
mode.

OCHANS Identifies channel numbers associated with files.

OcHS Returns file organization and open status on one or more channels.

gcre Unpacks data packed by 0¢0Q.

(continued on next page)

APL Reference Manual 2-9

VAX APL System Variables and Functions
2.3 System Variables and Functions Reference

Table 2-2 (Cont.)

System Variables and Functions

Name Meaning

0cLs Closes the files on one or more channels.

gcoq Packs data of different types for storage as one record.

OCRr Returns a canonical representation of a user-defined operation
whose name is the character string specified.

gcr Determines the degree of tolerance applied in numeric comparisons.

OCTRL Vector of ASCII control characters.

ODAS Disassociates files from one or more channels.

opc Controls the display of enclosed arrays.

aprL Delays execution by the number of seconds specified.

O0DML Controls default maximum record length used to save the workspace
or to create a file.

gpve Returns the device characteristics longword for one or more
channels.

OEFC Clears event flags associated with one or more channels.

OEFR Returns the setting for event flags on one or more channels.

OEFS Sets event flags associated with one or more channels.

OERROR Character vector that describes last error to occur.

0ExX Expunges existing use of a name in the workspace.

OEXP Expands an array by adding fill items in the same manner as the
expansion derived function.

OFI Converts character argument to numeric, placing Os in each position
not corresponding to a valid number.

gFLs Returns information about files on one or more channels.

OFMT Converts argument to character matrix in designated format.

OFx Establishes an operation from its canonical representation.

O0GAG Indicates whether to accept broadcast messages.

gro Sets index origin for arrays; must be 0 or 1.

0L Contains the name of a changed variable that is being watched by
OWATCH.

grLc Vector of line numbers in state indicator; most recently suspended

2-10 APL Reference Manual

operation appears first.

(continued on next page)

VAX APL System Variables and Functions
2.3 System Variables and Functions Reference

Table 2-2 (Cont.) System Variables and Functions

Name Meaning

OrLx Contains an expression to be executed automatically when
workspace is loaded.

OMAP Associates an external routine with a user-defined function.

OMBX Returns information about mailboxes on one or more channels.

OMONITOR Gathers information about operation execution counts and CPU
times.

gnc Returns the classification of one or more names.

OnNG Controls recognition and printing of negative sign.

OnL Constructs a list of named objects residing in the active workspace.

ONUM Vector of 10 numeric characters: 0 through 9.

ooM Returns the index of every occurrence of a 1 in a Boolean vector.

OPACK Packs and unpacks data for storage as one record.

gppP Controls precision of noninteger numeric output.

OPw Sets maximum number of characters in output line.

gQco Quietly copies a workspace.

0QLD Quietly loads a workspace.

gQpcC Quietly copies a workspace with certain protection.

OR Contains the previous value of a changed variable that is being
watched by OWATCH.

ORELEASE Releases all locked records in files on one or more channels.

OREP Compresses or replicates an array in the same manner as the
compression and replication derived functions.

ORESET Clears the state indicator.

OREWIND Repositions the next record pointer to the first record of a file on one
or more channels.

ORL Forms link in chain of random numbers used in roll and deal
functions.

OsF Prompt for evaluated input.

OSIGNAL _Passes an error up the stack one level to the caller of the operation
in error.

OSINK Discards unwanted output; always 1 0.

(continued on next page)

APL Reference Manual 2-11

VAX APL System Variables and Functions
2.3 System Variables and Functions Reference

Table 2-2 (Cont.)

System Variables and Functions

Name Meaning

gss Searches the right argument for every occurrence of a character
string specified in the left argument.

OSTOP Sets or clears stop bits associated with operation lines.

[0 TERSE Suppresses display of secondary error messages.

OTIMELIMIT Limits time to respond to quote quad and quad del input requests.

OTIMEOUT Equals 1 if time runs out during quote quad or quad del input
request; otherwise, equals 0.

OTLE Equals 1 when the terminal line editing attribute is on and 0 when
line editing is off.

OTRACE Sets or clears trace bits associated with operation lines.

OTRAP Contains an expression to be executed when an error occurs.

ors Current date and time in base 10 format.

Orr Determines the type of terminal being used for the current APL
session.

ouL Process identification number.

OVERSION Interpreter and workspace versions.

gvI Returns logical vector giving position of valid numbers in 0FI of
argument.

gvec Controls the use of vector processing hardware.

OVR Returns a visual representation of a value or user-defined operation
whose name is the argument specified.

OwWA Maximum amount in bytes by which the active workspace can be
increased.

OWAIT Determines how long a read function waits for control of a shared
record.

OWATCH Watches changes or references to the values of variables.

0xeQ Executes character strings with error handling.

2-12 APL Reference Manual

System Variables and Functions
0AI Accounting Information

[1 A I Accounting Information

Type
Niladic System Function

Form

uic/cpu-time [connect-time <~ 0AI

Result Domain

Type Integer

Rank 1 (vector)

Shape 4

Depth 1 (simple)
Description

OAI returns a vector of the user identification number (uic), computer time
(cpu-time) used during the current APL session, and time elapsed (connect-
time) since the beginning of the current APL session.

For the user identification code GROUP, MEMBER, the uic is
MEMBER+(GROUPx2x16). All times are expressed in milliseconds. The fourth
element is always 0. For example:

DAI
589825 390 1190 0

VMS expresses the GROUP and MEMBER numbers in JAI[1] in octal. The
following APL expression returns those numbers:

1018 8 87(0,2+16)TOAI[1]
11 1

Possible Errors Generated

None.

APL Reference Manual 2-13

System Variables and Functions
OALPHA Alphabetic Characters

[0 AL PHA Alphabetic Characters

Type

Niladic System Function

Form
'"ANABCDEFGHIJKLMNOPQRSTUVWXYZ' <« [JALPHA

Result Domain

Type Character

Rank 1 (vector)

Shape 27

Depth 1 (simple)
Description

OALPHA is a subset of JAV; it returns a vector of the 27 alphabetic characters
that may be used in identifiers. They are A and 4 through Z, or, expressed in
terms of ODAV:

DAVI(0I0+72),97+126]

For example:

[JALPHA

AABCDEFGHIJKLMNOPQRSTUVWXYZ
0I0+0 ¢ [PW<52
0AV + DALPHA

72 97 98 99 100 101 102 103 104 105 106 107 108 109
110 111 112 113 114 115 116 117 118 119 120
121 122

Possible Errors Generated

None.

2-14 APL Reference Manual

System Variables and Functions
OALPHAL Lowercase Alphabetics

[1ALPHAL Lowercase Alphabetics
Type

Niladic System Function

Form

'‘abcdefghijkimnopqrstuvwxyz' < [0 ALPHAL

Result Domain

Type Character

Rank 1 (vector)

Shape 26

Depth 1 (simple)
Description

OALPHAL is a subset of JAV; it returns a vector of the 26 lowercase alphabetic
characters. They are a through z, or, expressed in terms of 0AV:

JAV[129+126]

For example:

[JALPHAL
abcdefghijkimnopqrstuvvxyz

0I0«0 o [PW«52
04V « OALPHAL

129 130 131 132 133 134 135 136 137 138 139 140 141
142 143 144 145 146 147 148 149 150 151 152
153 154

Possible Errors Generated

None.

APL Reference Manual 2-15

System Variables and Functions
OALPHAU Underscored Alphabetics

[UALPHAU Underscored Alphabetics

Type
Niladic System Function

Form

Result Domain

Type Character

Rank 1 (vector)

Shape 27

Depth 1 (simple)
Description

OALPHAU is a subset of JAV; it returns a vector of the 27 underscored
alphabetic characters that may be used in identifiers. They are o and 4
through Z, or, expressed in terms of JAV:

JAV[160+127]

For example:

OALPHAU

AABCDEFGHIJKLMNOPQRSTUVNXYZ
0I0«0 o [OPW<52
0AV + DALPHAU

160 161 162 163 164 165 166 167 168 169 170 171 172
173 174 175 176 177 178 179 180 181 182 183
184 185 186

Possible Errors Generated

None.

2-16 APL Reference Manual

System Variables and Functions
OARBOUT Arbitrary Output

[1ARBOUT Arbitrary Output

Type

Monadic System Function (quiet)

Form
10 <« JARBOUT B

Argument Domain

Type Near-integer
Shape Vector domain
Depth 1 (simple)
Value 0 through 255

Result Domain

Type Numeric

Rank 1 (vector)

Shape 0 (empty)

Depth 1 (simple)
Description

OARBOUT allows you to send untranslated output to the terminal (actually, to
the default output device). JARBOUT outputs the argument’s items as if they
were character codes.

One use of JARBOUT is to write a file of ASCII characters, where each of the
integers corresponds to a character in the ASCII character set. You cannot
use the file system function B (see the VAX APL User’s Guide) with 0ARBOUT
to write the file because JARBOUT sends output only to your default output
device, usually your terminal. You can use the)0UTPUT system command (see
the VAX APL User’s Guide), however, to divert output from your terminal to a
file. For example:

APL Reference Manual 2-17

System Variables and Functions
OARBOUT Arbitrary Output

)JOUTPUT ASCFILE
(ARBOUT 35 37 38 42 64 94 95
JOUTPUT
ACHANGE TO ASCII CHARACTER SET
)PUSH

$TYPE ASCFILE.AAS

OARBOUT 35 37 38 42 64

#%8*@)JOUTPUT

APL does not append a <CR><LF> to 0ARBOUT output.

If you use 0ARBOUT immediately following [1 or @ output, DARBOUT resets the
bare output buffer. For details, see the VAX APL User’s Guide.

OARBOUT is a quiet function; that is, it does not return a result if it is the
leftmost function in a statement. If it is not the leftmost function, 0ARBOUT
returns 1 0 as its result.

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

15

15

15

27

15

DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
DOMAIN ERROR (INCORRECT TYPE)

DOMAIN EFRROR (NOT AN INTEGER)

LIMIT ERROR (INTEGER TOO LARGE)

DOMAIN ERROR

2-18 APL Reference Manual

System Variables and Functions
0ASCII APL Approximation to the ASCII Character Set

O ASCII APL Approximation to the ASCIl Character Set

Type

Niladic system function

Form
ASCII-characters <« QASCIT

Result Domain

Type Character

Rank 1 (vector)

Shape 128

Depth 1 (simple)
Description

OASCIT is a subset of 0AV; it returns a vector of 128 characters that
approximates the 7-bit ASCII character set. 1ASCII contains the ASCII
control characters (O CTRL) and the lowercase letters (JALPHAL). For example:

(3240ASCII) = 3240CTRL
1
(T140ASCII) = ~1+0CTRL
1
DASCII[33] = ' ! a33RD ITEM IS AN EMPTY SPACE

aDISPLAY ALL BUT THE CTRL CHARACTERS
2 47 p 9u433+0ASCII

VUHS%RY () x+,-./0123456789:;<=>?@ABCDEFGHIJKLMNO
PQRSTUVWXYZ[\1A_'abcdefghijklmnopqrstuvwxyz{|}~

Possible Errors Generated

None.

APL Reference Manual 2-19

System Variables and Functions
0 ASS Associating Files with Channels

[]ASS Associating Files with Channels

Type

Monadic System Function (action form)

Form

variable < 0ASS ' [channel]l filespec [/ fileorganization]'

Argument Domain

Type Character
Shape Vector domain
Depth 1 (simple)

Result Domain

Rank 0 (scalar)

Shape 1 0 (scalar)

Depth 0 (simple scalar)
Type

Monadic System Function (query form)
Form

current-assignments < [1ASS channel

Argument Domain

Type Near-Integer

Shape Vector domain

Depth 0 (simple scalar)

Value ~ 999 through 999 (but not 0)

2-20 APL Reference Manual

System Variables and Functions
0ASS Associating Files with Channels

Result Domain

Type Character

Rank 1o0r2

Shape Vector or matrix

Depth 1 (simple)
Parameters

variable

Is an optional variable used when writing to or reading from this file and
channel combination.

channel

Is an optional integer scalar whose absolute value represents a channel
number in the range 1 through 999. If you do not specify a channel number,
APL assigns one for you. APL picks the first available channel number,
beginning at 12 and counting down to 1; then APL begins at 13 and counts up
to 999.

filespec

Is the VMS file specification associated with the specified channel. If you do
not include the file extension, APL uses the default file extension for the file
organization qualifier specified. (See Table 2-3.)

/fileorganization
Identifies the file organization of the file specified by filespec. The possible
values of /fileorganization are listed in Table 2-3. The default value is /DA.

Table 2-3 File Organization Qualifiers

Kileorganization Default File

Qualifier Extension Type of File

/AS LAAS ASCII sequential; can open for either
read or write, or both (when you specify
/UPDATE).

/ASx LAAS ASCII sequential; file is positioned at

end-of-file to allow appending.

(continued on next page)

APL Reference Manual 2-21

System Variables and Functions
0A4SS Associating Files with Channels

Table 2-3 (Cont.) File Organization Qualifiers

Kileorganization Default File

Qualifier Extension Type of File

/IS LAIS Internal sequential; can open for either
read or write, or both (when you specify
/UPDATE).

/IS% LAIS Internal sequential; file is positioned at
end-of-file to allow appending.

/DA JATX Direct-access; can do read and write (this is
the default).

/RF .ARF Relative; can do read and write.

/KY LAKY Keyed; can do read and write.

current-assignments

A vector containing the current value of assignments.

Qualifiers

/BLOCKSIZE [:blocksize]

For input on nondisk devices, it specifies the minimum size memory buffer
for APL to make available. The default is 2044 bytes or the current /MAXLEN
value, whichever is smaller.

In all other cases, it is ignored. In addition, it is always ignored for ASCII
sequential files (the blocksize is always 2044 bytes.)

/BUFFERCOUNT [:n]

Specifies how many I/O buffers you want allocated to read and write to a file.
The acceptable values for n is 0 through 127. The default is 0, which means
that the number of allocated buffers will be the same as the current system
default value.

/CCONTROL [:keyword]

Specifies the carriage control attribute for a new, sequential file. (The qualifier
is ignored for nonsequential file organizations.) When you do not specify

/ CCONTROL, or when you do not specify a keyword, the carriage controls are set
according to the file type.

2-22 APL Reference Manual

System Variables and Functions
0ASS Associating Files with Channels

Valid keywords include the following:

Keyword Carriage control Attribute Default

FORTRAN The first character of each record
will contain the appropriate carriage
control information

LIST Implied carriage control (single Default for /45 files.
spacing between records)

NONE No carriage control information (any Default for /IS files.
carriage control information will be
placed in individual records)

/DEFAULTFILE :defaultspec

Specifies a default to be applied to any missing components of the filespec. The
defaultspec must be specified. APL first looks at the file specification named
in the argument. If any components are missing, APL looks for a default in
the /DEFAULTFILE qualifier. If you omit the defaulispec, APL specifies the
appropriate APL file type.

/DISPOSE [:keyword]

Specifies whether the file is temporary or permanent. /DISPOSE: KEEP, the
default, means the file is permanent. /DISPOSE: DELETE means the file will be
deleted when it is closed.

Other keywords send the file to a queue when the file is closed in accordance
with the following:

Keyword Definition

PRINT Sends the file to SYS$PRINT. The file is not deleted.

PRINTDELETE Sends the file to SYS$PRINT. The file is deleted when job is
finished.

SUBMIT Sends the file to SYS$BATCH. The file is not deleted.

SUBMITDELETE Sends the file to SYS$BATCH The file is deleted when job is
finished.

Note that you must have VMS delete privileges to use any of the delete
keywords. If you do not have delete privileges, APL signals FILE PROTECTION
VIOLATION when the file closes. As a result, APL closes the file, but does

not delete it. If you receive the file protection violation error when you press
Ctrl/Z, you can exit from APL by pressing Ctrl/Z a second time.

APL Reference Manual 2-23

System Variables and Functions
0ASS Associating Files with Channels

/EFN n
Associates an event flag with a channel number. For more information on
event flags see JEFR,QEFS, and OEFC.

/MAXLEN [:length]

Specifies the maximum record length (in bytes) for a new file. It is ignored for
existing files. The default length is the value of the DML system variable. The
maximum record length value is also used as the maximum segment size for
segmented records on output.

The maximum values are as follows:

e 32232 (for prolog 1 or 2)

e 32224 for /DA and / KY files (prolog 3)
e 32767 for / IS files

* 2048 for / A4S files

e 32253 for / RF files

When you write to an /4S5 file in quad output mode, the maximum record
length is determined by the current setting of 0 P¥. In all other output modes
for all file types, the maximum record length is determined by /MAXLEN.

/MBX
Indicates that an assigned file name actually refers to a mailbox.

/NFS

A non-file-structured qualifier that tells APL to read from the device without
trying to interpret the data. In other words, to return the data on the device
as a string of bits. This qualifier is useful when reading foreign devices.

/NOSHARE

/NOWRITERS
Allows you to write to a shareable file, but prevents other users from doing so.

/OPEN [:keyword]

Specifies that you want APL to open or create a file when the channel is
assigned. Using the /0PEN qualifier allows you to detect errors related to the
openning or creating of a file at the time of assignment instead of at the time
of the first I/O operation. Values for keyword include NEW, used to create a new
file, and 0LD, used to open an existing file.

2-24 APL Reference Manual

System Variables and Functions
0ASS Associating Files with Channels

/PROTECTION [[:protection]
Specifies the protection to be associated with a new file. It is ignored for
existing files.

/READONLY [:NoLOCKS]

Allows you to read the file but not write to it. The NOLOCKS argument specifies
that records should be read even if they have been locked by another user.
Using /READONLY : NOLOCKS avoids waiting for a locked record to become
unlocked. However, note that when OWAIT is set to any value but the default
(wait indefinitely), it overrides the NOLOCKS argument.

/RECORDTYPE [:keyword]

Specifies the record format used by VAX RMS for each record of the file. The
default is variable length records. APL ignores this qualifier if the file already
exists or if the file type is /D4, /RF, or /KY. You can use the following keywords
as values to /RECORDTYPE.

Keyword Record Format

VARIABLE Variable length

FIXED Fixed length

STREAM Stream format

STREAMCR Stream format delimited with <CR>s
STREAMLF Stream format delimited with <LF>s

Note that when you use fixed-length records, the record size is defined with the
/MAXLEN qualifier. The default value is 0DML.

Because APL adds a prefix containing system information to each record of
a /IS file, you may want to write data out to these files in pure data mode
when using fixed-length records. Otherwise you need to calculate the size of
the prefixed information before writing the data.

/SHARE

Specifies that several users may access the file simultaneously. All users
sharing the file must use the /SHARE qualifier when associating a given file
with a channel. Sequential file users are exempted from this rule.

/SIGNAL

Specifies that APL signal the end-of-file indicator when you perform a read
operation on a nonexistent record. For /4S and /IS files the indicator is EOF
ENCOUNTERED. For /DA, /RF, and /KY files the indicator is EOF ENCOUNTERED
for a sequential read and RECORD NOT FOUND for a random read. If you do not

APL Reference Manual 2-25

System Variables and Functions
0 ASS Associating Files with Channels

specify /SIGNAL, APL returns an empty numeric matrix with the shape of 0 75
as the end-of-file indicator. ‘

/UPDATE

Specifies that you want both read and write access to a sequential file and that
APL should change the rules slightly for sharing the file. /UPDATE is relevant
for /AS and /IS files only and is ignored for all other file types.

When you use /UPDATE you should consider how you want APL to deal with
locked records. See /READONLY : NOLOCKS and ORELEASE for more information.

/WRITEONLY

Allows you to write to a file, but not read it. A new file is created when APL
writes to the file. If the assignment specifies /OPEN:0LD, a new file is not
created. However, APL can write to an existing file only if the file is empty, or
if /15« was specified for appending. Subsequent assignments can gain read
access to the file.

Description

The action form of J4SS associates files with channels. 1455 does not create
or open a file (unless you use the /0PEN qualifier) or perform any input or
output. It establishes a connection between a file specification (and related file
information) and a specified channel.

When you perform I/O functions, you must refer to channel numbers rather
than to file specifications. The APL functions that perform file I/O (@ and 8)
require channel numbers—not file specifications—as part of their arguments.
So, to read or write a file, you must first associate it with a channel.

The query form of 0ASS returns the current value of assignments made
previously with the action form.

The result of the query form is a character vector or matrix that identifies the
parameters you associated with the channels specified.

Note that the action and query forms of 1455 are described in in the VAX APL
User’s Guide, along with other file I/O information.

2-26 APL Reference Manual

System Variables and Functions
0ASS Associating Files with Channels

Possible Errors Generated

Action Form

15

15

15

33

33

68

69

74

DOMAIN ERROR (ERROR PARSING ARGUMENT TO CCONTROL)
DOMAIN ERROR (REDUNDANT KEYWORD OR QUALIFIER)
DOMAIN ERROR (CONFLICTING QUALIFIERS SPECIFIED)
I0 ERROR (INVALID RECORD SIZE)

I0 ERROR (FILE CURRENTLY LOCKED BY ANOTHER USER)
END OF FILE ENCOUNTERED

RECORD NOT FOUND

BLOCK TOO BIG

Query Form

9 RANK ERROR (NOT VECTOR DOMAIN)

15

15

15

27

DOMAIN ERROR (ENCLOSED HETEROGENEOUS ARRAY NOT ALLOWED)
DOMAIN ERROR (INVALID CHANNEL NUMBER)
DOMAIN ERROR (NOT AN INTEGER)

LIMIT ERROR (INTEGER TOO LARGE)

APL Reference Manual 2-27

System Variables and Functions
0AUS Automatic Save of the Workspace

[1AUS Automatic Save of the Workspace

Type
System Variable

Form

OAUS « near-integer-singleton
integer-scalar < DAUS

Value Domain

Type Near-Integer
Shape Singleton
Depth 0 or 1 (simple)
Value 0,1,0r2
Default 0

Result Domain

Type Integer

Rank 0 #(scalar)
Shape 1 0 (scalar)

Depth 0 #(simple scalar)

Description

JAUS controls a feature that allows you to save the active workspace
automatically at periodic intervals.

Workspace backup is often critical when you are performing extensive
operation editing and debugging, or when you are using quad input to type a
large table of values. You could back up your work by periodically issuing a

) SAVE command. However, if you set JAUS to 1 or 2, APL automatically saves
the workspace every time you exit from function-definition mode, or every time
quad input is requested from the terminal. Then, if the system crashes, you<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>