
VAX APL

Reference Manual

AA-GV09C-TE

June 1991

This reference manual describes the VAX APL functions, operators,

variables, and system commands.

Revision/Update Information: This revised document supersedes the

VAX APL Reference Manual Vols. 1&I1

. : AR -PI4 2D TE
Operating System: VMS Version 5.4 7

9=y aA- GNPAB-TE
Software Version: VAX APL 4.0

Digital Equipment Corporation

Maynard, Massachusetts

The information in this document is subject to change without notice and should not be

construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation

assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied

only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not

supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to

restrictions as set forth in subparagraph (¢)(1)(ii) of the Rights in Technical Data and Computer

Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1982, 1983, 1985, 1987, 1991.

All Rights Reserved.

The Reader’s Comments form at the end of this document requests your critical evaluation to

assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: DEC, DECnet, DECwindows,

DECstation, VAX, VAXcluster, VMS, VT102, VT220, VT240, VT320, VT330, VT340, and the

DIGITAL logo.

HDSAVT, HDS201 and HDS221 are trademarks of Human Design Systems, Inc.

Tektronix is a trademark of Tektronix, Inc.

Preface

Contents

ooo

1 VAX APL Primitive Functions and Operators

1.1 Primitive Scalar Functions. i i i

1.1.1 Arithmetic Functions

1.1.1.1 + Conjugatee

1.1.1.2 - Negative e

1.1.1.3 X SIGNUMLt e e e e e

1.1.1.4 s Reciprocal e

1.1.1.5 » Exponential i i,

1.1.1.6 e Natural Logarithm

1.1.1.7 o PiTimes e

1.1.1.8 L Floor e e e e

1.1.1.9 [Ceilling

1.1.1.10 | Magnitudet

1.1.1.11 ' Factorial e e e

1.1.1.12 2 Roll . ..e

1.1.1.13 +, -, x, and + Addition, Subtraction, Multiplication, and

DIVISION ot e e e e

1.1.1.14 P OWET . . o e e e e e e e e e

1.1.1.15 e Logarithm

1.1.1.16 o Circle ee e e

1.1.1.17 L MINImMuIN . . .t ottt e e e e et e et et e et e e e

1.1.1.18 [Maximumlt ot o e e e e e e e e e e e e e

1.1.1.19 | Residue. i i i e e e e e et e e

1.1.1.20 P Combinations i e e

1.1.2 Logical Functions i,

1.1.3 Relational Functions @

Xi

1-2

1-10

1-10

1-11

1-11

1-11

1-11

1-12

1-12

1-12

1-13

1-14

1-14

1-14

1-16

1-16

1-17

1-17

1-18

1-18

1-18

1-19

1-21

1-22

1.2

1

¥
m

-
~

B

B

a

<

o

<
o

>

[[
X

e
—

-
m

3

I

o
W

U
£

>

I
n

o

6

e

v

o

-

oo

and ; Catenate/Laminate.

Contains o e e

Deal .

Depth

Drop .

oo

oo

oo

oo

Enclose

Enlist

First .

oo

oo

DyadicFormat

Monadic Grade Down

Dyadic Grade Down

Monadic Grade Up

Dyadic Grade Up

Index Generator

Index Of

Pick .

Ravel

ooooooooooooooooooooooooooooooooooooooo

oo

oo

oo

Represent e e

Reshape

and ¢ Reverse

and e Rotate

Shape

.....................................

oooooooooooooooooooooooooooooooooooooo

..

ooo

..

1-22

1-27

1-31

1-34

1-45

1-47

1-49

1-58

1-63

1-69

1-70

1-74

1-77

1-79

1-82

1-87

- 1-90

1-96

1-99

1-105

1-107

1-110

1-113

1-116

1-119

1-121

1-123

1-130

1-135

1-138

1-141

1-145

1-149

1-152

1-154

1-161

1.3

1.3.1

1.3.2

1.3.3

& Dyadic Transpose

U Union e

U UNIque e

~ Without

APL Operators

/and # Slash

\and X Backslash..............

. The Dot Operator

and # Compression and Replication

and # Reduction

T
~

\ and X Expansion

Vand N Scane

o. fOuter Product,

f. glnner Product

[AXIS . .

+< Specification Function

Strand Assignment with the Specification Function

Selective Assignment with the Specification Function

2 VAX APL System Variables and Functions

2.1

2.1.1

2.1.2

2.2

2.2.1

2.2.2

2.3

System Variables

System Variable Names

System Variable Characteristics e

System Functions.

System Function Names

Types of System Functions.

System Variables and Functions Reference

O0ATI Accounting Information

OALPHA Alphabetic Characters

OALPHAL Lowercase Alphabetics

OALPHAU Underscored Alphabetics

OARBOUT Arbitrary Output

04Sc1II APL Approximation to the ASCII Character Set

O0A4SS Associating Files with Channels

0AUS Automatic Save of the Workspace

OAV Atomic Vector i e

[1BOX Forming Character Matrices and Vectors

1-164

1-170

1-172

1-174

1-176

1-178

1-178

1-178

1-179

1-185

1-191

1-196

1-201

1-205

1-208

1-212

1-215

1-218

1-221

21

22

22

2-3

24

24

2-9

2-13

2-14

2-15

2-16

2-17

2-19

2-20

2-28

2-32

2-35

Vi

O0BREAK Suspending Execution

O0CHANS Returning Channel Numbers

[1CHS Returning File Organization and Open Status

0cIQ and [0coQ Packing and Unpacking Data.

OcLSClosing Files S

0 CR Obtaining a Canonical Representation

O0cT Comparison Tolerance00 ..u...

OCTRL Control Characters

ODAS Deassigning Files

ODcC Display Control

O0DL Delaying Execution.

O0DML Maximum Record Length

O0DVC Returning Device Characteristicse

OEFR OFEFS OEFC Event Flag System Functions

OFRROR Exror Messageo iiiie e

OFX Erasing a Named Object.

O0EXP Expansion . ooooooooooooooooooooooooooooooooooooo

O0FI Converting Characters to Numerics

O0FLS Returning File Information

OFMT The Report Formatter

OFx Establishing an Operation

O0GAG Preventing Interruptions

0I0 Index Origin ooooooooooooooooooooooooooooooooooooo

0L Monitoring Variable Changes

0LC Line Counter

OLX Latent Expression

O0MAP Defining External Routinesto APL

OMBX Mailbox System Function

OMONITOR Gathering Data on Operations

[0NC Returning a Name Classification

ONG Print High Minus

ONL Constructing

ONUM Digits

alastof Names u.....

oooooooooooooooooooooooooooooooooooooo

O0oM Indexing a Boolean Vector

0 PACK Packing and Unpacking Data e

OPP Print Precision e e e e e

0 PwW Print Width

2—-38

2—-40

2—41

2—-44

2-52

2—-54

2—56

2-58

2—60

2—62

2—-70

2—72

2—-74

2—77

2—-80

2—-83

2—-85

2—88

2-91

2-93

2-98

2-100

2—-102

2—-104

2—-106

2—-108

2-111

2-120

2—122

2—-126

2-129

2—-131

2-135

2—136

2-138

2—-142

2—-144

0Qco Copying Objects from a Workspace

0QLD Loading a Workspace ooooooooooooooooooooooooooooo

0Q@PC Copying Objects with Protection

OR Monitoring Variable Changes

ORELEASE Unlocking Shared Records e

OREP Replication

ORESET Resetting the State

ooooooooooooooooooooooooooooo

Indicator

OREWIND Returning Next-Record Pointer to Start of File

ORL Link

0SF Quad Input Prompt ..

O0SIGNAL Signaling Errors .

0SINK Discard Output. . ..

0SS String Search

ooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooo

0 STOP Suspending Operation Execution

O TERSE Terse Error Messages

OTIMELIMIT User Response Time Lomat

OTIMEOUT Time Limit Report

0 TLE Terminal Line Editing Characteristics

[0 TRACE Monitoring Operation Execution.

0 TRAP Trap Expression . ..

O07s Time Stamp

07T Terminal Type

OuL User Load

ooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooo

[0 VERSION Interpreter and Workspace Version

O VI Validating Input

0 VPC Vector Process Control

[1 VR Visual Representation.

OwA Workspace Available . .

oooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooo

OWAIT Limiting Time on Read Functions

OWATCH Monitoring Variable Changes,

0xQ Executing Expressions ooooooooooooooooooooooooooooo

2-147

2—-151

2—-154

2—-157

2—-159

2-161

2—-164

2—-165

2—-168

2—-170

2-172

2—-176

2-177

2—-179

2—183

2-185

2—-188

2-190

2—-192

2—-195

2-197

2—198

2—201

2—-202

2—203

2—-205

2—-207

2-210

2—211

2—-214

2-221

Vi

3 VAX APL System Commands

viii

3.1

3.2

3.2.1

3.2.2

3.2.3

3.2.4

3.2.5

3.3

System Command Form.......

System Command Categories. . .

Query System Commands . .

ooooooooooooooooooooooooo

ooooooooooooooooooooooooo

ooooooooooooooooooooooooo

Query/Change System Commands

APL Action System Commands

System Commands that Initiate System Action.

Workspace Manipulation System Commands

System Command Reference . ..

)ATTACH Interacting with Other Processes

) CHARGE Displaying Accounting Information................

) CLEAR Clearing the Active Workspace

) CONTINUE Saving the Workspace and Ending the Session

) COPY Copying Objects from a Workspace

)DIGITS Output Precision.

) D0 Executing a DCL Command

- . » L - - - - > - * * L) - . 9 # & & o 5 & + 2+ =

) DROP Deleting Stored Workspaces or Files

) EDIT Editing with VAXTPU . . .

) ERASE Erasing Global Names .

ooooooooooooooooooooooooo

) FNS Displaying a List of Functions

) GROUP Defining or Dispersinga Group

) GRP Displaying the Members of a Group [

) GRPS Displaying a List of Groups

) HELP Obtaining Help on the VAX APL Language

) INPUT Diverting Input to Another Device

) LIB Listing Workspace Names .

) LOAD Retrieving a Workspace .

¢ 4 & 4 s & 2 & s s e+ 2 s & e + e & s e e e v v 0w

.........................

)MAXCORE Determining the Maximum Workspace Size

)MINCORE Determining the Minimum Workspace Size

) MON Returning to Operating System Command Level

) NMS Displaying Names in the Symbol Table

) OFF Terminating the APL Session

)OPS Displaying a List of Operators

)ORIGIN Determining the Index Origin....................

)OUTPUT Diverting Output to Another Device

) OWNER Displaying Information About Workspace Creation

) PASSWORD Workspace Password ooooooooooooooooooooooooo

32

32

3-3

3-3

3—4

3—4

3-5

3-5

3-10

3—11

3-13

3-15

3—-17

3-19

3—21

3-22

3-28

3—31

3-33

3—-35

3—-36

3—-38

3—-45

3—-47

3-50

3-53

3-54

3—56

3-57

3—-60

3—-62

3-64

3—-65

3—-68

3—-70

) PCOPY Copying from a Workspace with Protection.

) PUSH Interacting with Operating System Programs..........

) SAVE Saving a Copy of the Active Workspace

) SI Displaying the State Indicator

) SIC Clearing the State Indicator

) SINL Displaying the State Indicator and Local Symbols

) SIS Displaying the State Indicator and Executing Lines

) STEP Executing Lines of a Suspended Operation............

) VARS Displaying a List of Variables

) VERSION Displaying the APL Version Number

YWIDTH Output Width

)WSID Workspace Identification

)XLOAD Retrieving a Workspace

A System Messages

Glossary

Index

Figures

1-1

Tables

L
[
\
)
[
\
)
[
\
)
.
A
_
L
_
I
L
_
L
_
L
_
L
_
L
_
L

R
O

T
)

W
O
N
=
2
N
O

O

b
W

Argument Corners Selected by Take Function

Documentation Conventions Table

Arithmetic Scalar Functions

Trigonometric Functions Performed by o

Determining Result for Dyadic !

Truth Table for Logical Functions

Primitive Mixed Functions

Dyadic Transpose Definitions

APL Operators e

System Variable Value Ranges

System Variables and Functions

File Organization Qualifiers.

3—72

3—74

377

3-80

3—-82

3—83

3—-84

3—-85

3—88

3-90

3-91

3-93

3—-95

2-4

2—6

2—7

3—1

Elements of DAV(OI0<0) .o v vttt it e e ettt e eee s

Type Parameter Values,

Device Characteristics Longword e e

Characteristics of External Data Types

System Commands ooooooooooooooooooooooooooooooooo

2-33

2-46

2—75

2-115

3—-5

Preface

This manual describes the VAX APL interpreter, including VAX APL

language and programming elements, facilities for controlling the VAX APL

environment, the interaction between VAX APL and the VMS operating

system, and VAX APL’s I/O capabilities.

Intended Audience

This manual is intended for experienced APL programmers. This manual is

not a tutorial and is inappropriate for novice users. Programmers experienced

with other languages such as FORTRAN or BASIC can learn VAX APL from

this manual, but are advised to study it in conjunction with an APL language

primer.

Related Documents

The VAX APL User’s Guide describes the VAX APL interpreter and the

environment in which it operates. The VAX APL Installation Guide contains

instructions for installing VAX APL on the VMS operating system. The

VAX APL Installation Guide also explains how to install QAPL, the license-

free, execute only version of VAX APL.

To find out more about the VMS system, refer to the VMS system documents

listed in the Introduction to VMS or use the Help utility by entering HELP

at the system prompt ($). The VMS DCL Dictionary and the Introduction to

VMS System Management provide detailed information you may need to know

to use some of the features of VAX APL.

Product References

In this document, VAX APL is referred to as APL.

Xi

Conventions

The following conventions are used in this manual.

Xii

Table 1 Documentation Conventions Table

Conventions Meaning

Default values used in
examples

Delimiting pairs

UPPERCASE

A BK

ttalics

Quotation mark (')

I

[]

The default value for the index origin (0I0)1s 1, unless

explicitly stated to be 0. Numeric print precision (0 PP)

is 10 digits. Enclosed arrays are displayed with boxes

around enclosed items and with all values in the top left

- corner of the display areas. This is done using:

ODC« (T17123) ' ++++]]--"

This manual uses ntextn ; other delimiting pairs may be

any of the following pairs:

o Ll - .

Uppercase words and letters, used in format examples,

indicate that you should type the word or letter exactly

as shown.

The APL characters 4, B, and X are used in generic

descriptions of command formats. A represents a

left argument, B represents a right argument, and x

represents an axis argument.

Italicized lowercase words and letters, used in format

examples, indicate that you are to substitute a word or

value of your choice.

The term quotation mark refers to the APL single

quotation mark (').

The equivalence symbol means “is equivalent to”.

The double square brackets indicate that the item or

string of items inside the brackets is optional. Individual

~ items within a string of items are delimited by the .ab

character, which indicates that you may choose only one

item from the string. |

Single square brackets that appear in the format
specification for a language elementare required syntax

for the element being described.

(continued on next page)

Table 1 (Cont.) Documentation Conventions Table

Conventions Meaning

{1 Braces are used to enclose lists from which one

item must be chosen. The items in such a list are

delimited by the | character. For some user-defined

operation headers, the braces are required syntax (this

requirement is described in Chapter 3 of the VAX APL

User’s Guide).

n/a and n/s These abbreviations indicate that something is Not

Applicable or Not Supported in the context being

discussed.

A horizontal ellipsis indicates that the preceding items

can be repeated one or more times. A comma preceding

the ellipsis indicates that successive items must be

separated by commas.

A vertical ellipsis indicates that not all of the statements

in an example or figure are shown.

Color Color 1in examples shows user input.

<CR><LF> The <CR><LF> symbol indicates the presence of a

control sequence representing a Carriage Return and a

Line Feed.

Ctrl/X The Ctrl/X symbol indicates that you must press the key

labeled Ctrl while you simultaneously press another key,

for example, Ctrl/C, Ctrl/Y, Ctrl/O.

XXX A symbol such as indicates that you press a key on

the terminal. For example, the symbol represents

a single stroke of the Return key on a terminal.

Unless otherwise noted:

* All numeric values are represented in decimal notation.

* You terminate commands by pressing the Return key.

* All examples in the manual are executable, and comments beginning with

the lamp (s) symbol are part of the examples; comments surrounded by

parentheses are not part of the examples.

Xiii

1

VAX APL Primitive Functions and

Operators

VAX APL provides functions that allow you to perform various operations with

arrays. These functions are termed primitive because they represent the basic

capabilities of the language. You do not have to write programs to perform

these operations; they are built in. That is, the APL interpreter already knows

how to perform them.

Primitive functions may be classified by the characteristics of their arguments

and results. One distinction is whether a function is scalar or mixed. The APL

primitive scalar functions perform scalar (or scalar-like) operations; the APL

primitive mixed functions perform mixed-rank operations.

Primitive functions are either monadic or dyadic. Monadic functions require

only one argument, which is placed immediately to the right of the function.

Dyadic functions require two arguments, one on either side of the function.

Primitive functions also have a domain and a range. The domain of a function

1s the permissible type, shape, and values of its argument arrays; the range is

the permissible type, shape, and values of its result array.

In addition to describing the APL primitive functions, this chapter describes

the APL primitive operators (operations that produce functions as results), and

the specification function (a function used to associate values with identifiers).

APL also provides functions for system communication and for I/0. These are

explained in Chapter 2, Chapter 3, and in Chapter 5 of the VAX APL User’s

Guide.

APL Reference Manual 1-1

APL Primitive Functions

1.1 Primitive Scalar Functions

1.1 Primitive Scalar Functions

The primitive scalar functions include the arithmetic, relational, and logical

functions that almost everyone is familiar with—addition, subtraction, equality,

and, or, and so on—plus a few operations that are less familiar, such as residue

and roll. These functions are called scalar functions because they take scalar

arguments and return scalar results. For example:

13 aFACTORIAL OF 3

The primitive scalar functions are extended on an item-by-item basis when

the argument array is not a scalar (the argument can be any shape, simple

or enclosed). In effect, APL operates on a sequence of scalar arguments and

returns one value for each argument. This process is known as scalar product.

For example:

'3 45 AEACH ITEM IS TREATED AS A SCALAR

6 24 120

4 9 + 3 12 AEACH PAIR OF ITEMS IS ADDED

7 21

Here, APL applies the factorial (!) and addition (+) functions as if each item

were a scalar argument. For factorial, each of the three items in the argument

(a vector) returns a value. For addition, each corresponding pair of items is

added. The results are just as if five statements had been entered as follows:

24

!5

120

4 + 3

7

9 + 12

21

Monadic scalar functions take only one argument, which is placed immediately

to the right of the function. The shape of the argument determines the shape

of the result. For example, a scalar argument returns a scalar result, and a

vector argument returns a vector result.

1—-2 APL Reference Manual

APL Primitive Functions

1.1 Primitive Scalar Functions

Dyadic scalar functions have two arguments that must conform to each other.

They conform if one of the following is true:

e Their shapes match.

e At least one of the arguments is a singleton.

When the shapes match, the function is applied a number of times equal to the

number of items in the arguments, and the resulting array has the same shape

as the argument arrays.

Each item in the left argument array is associated with the item that has the

same position in the right argument array, and the result is placed in that

same position in the resulting array. For example:

123+123 ASHAPES OF BOTH ARGUMENTS CONFORM

2 46

ASHAPES DO NOT CONFORM

123+123H4

10 LENGTH ERROR

123+123%4

A

When one of the arguments is a singleton, the shape of the result is the same

as the shape of the nonsingleton argument. Again, the function is applied on

an item-by-item basis, but either the right or left argument (whichever is the

singleton) is the same each time the function is applied. For example:

1+ 123 aSINGLETON EXTENSION LEFT ARGUMENT

2 3 4

4 5 6 + 2 aSINGLETON EXTENSION RIGHT ARGUMENT

6 7 8

[« 4 « 10 (15 18 (8 4) 21) 30

I + 30

|15 18 +---+ 21|

| |8 u| |

| poemt |
o m e +

5 + A

15 4--=====------o- + 35

120 23 +----+ 26|

| |13 9} |

| t----t |
fomm em e +

APL Reference Manual 1-3

APL Primitive Functions

1.1 Primitive Scalar Functions

When both arguments are singletons, the shape of the result is the same as

the shape of the argument with the higher rank. For example:

B<(1 1 1 p2) "B IS A RANK 3 SINGLETON

C«<(1 1 p3) nC IS A RANK 2 SINGLETON

D«B + C ASMALLER RANK WILL CONFORM TO LARGER

D - ADISPLAY D, A SINGLETON OF SHAPE 1 1 1

5

The primitive scalar functions are pervasive functions; that is, their operations

extend pervasively throughout the depth of enclosed arrays:

RBOTH ARGUMENTS HAVE DEPTH = 3

0« A« 10 (15 18 (8 u) 21) 30

10 4==---——mmmmmm- + 30

|15 18 +---+ 21|

| |8 vl |
| -t

fom e +

0« B <« 5 (12 11 (3 3) 2) 25

5 pommmmmm e + 25

|12 11 +---+ 2|

| 13 3] |
| pent |
fomm - ———m -4

A - B

5 4mmmmmmmmme + 5

|3 7 +---+ 19]

| 15 1 |

| et
Re +

The conformance rules for the arguments of the primitive scalar functions are

also pervasive; APL does a conformance check at each level of enclosed arrays.

During the check, APL performs singleton extension when necessary. The

following example uses the dyadic minimum function (L), which returns the

smaller of two arguments:

L (5 3) L (26) 1

o=t +---+

12 4] |1 1]

t-——+ +---+

In the preceding example, APL first pairs the corresponding items (through the

process of scalar product). The pairs are 4| (2 6) and (5 3) | 1. Second, APL

pairs the singleton argument with each element inside the enclosed arguments

(through the process of singleton extension). These pairs are ((412) (416))

and ((501) (3L1)). Finally, APL evaluates each pair of scalar arguments.

1-4 APL Reference Manual

APL Primitive Functions

1.1 Primitive Scalar Functions

The following example shows two arguments that conform at the top level

of their nesting, but do not conform at a lower level. This example uses the

monadic enclose function (<), which encloses its argument, as well as the

dyadic minimum function (L).

4 (5 3) L <261

10 LENGTH ERROR

4 (5 3) L <261

A

In the preceding example, APL first pairs the corresponding items. The

pairs are 4| (2 6 1) and (5 3) L (2 6 1). Second, APL pairs the singleton

argument with each element inside the enclosed argument. These pairs are

((ul2) (416) (uL1)). Third, APL recognizes the length error in the pair

of enclosed arguments (5 3 and 2 6 1) and signals the error. (If one of these

enclosed arguments had been a singleton, APL would have applied singleton

extension.)

Primitive scalar functions generally take numeric arguments. The argument

domain for relational functions (<, >, <, >, =, =), however, includes both

character and numeric arguments. The equal (=) and not equal (#) functions

can take both character and numeric arguments in the same expression. The

result domain for all primitive scalar functions is a scalar numeric array.

Primitive scalar functions return empty arrays when there 1s an empty

argument (provided that APL does not detect an error before evaluating the

result). For example:

142+3+4+10 a10 ALWAYS GENERATES AN EMPTY ARRAY

(APL outputs a blank line)
TAY <1

(APL outputs a blank line)

nARGUMENT SHAPES DO NOT CONFORM

(1 0 3p1) + 15

9 RANK ERROR

(1 0 3p1) + 15

A

You can specify an axis ([K]) with dyadic scalar functions. For example, this

allows you to apply a vector to each row or each column of a matrix. The

seneral form of axis is as follows: Af(X1B, where A and B are the arguments

to f (a scalar function), and X is the axis argument. Note that k¥ specifies the

axes of subarrays constructed from whichever argument has the larger rank.

The argument of smaller rank is combined with these subarrays.

APL Reference Manual 1-5

APL Primitive Functions

1.1 Primitive Scalar Functions

For example, if you specify axes [1 37, then the shape of the subarrays of the
larger rank argument is the lengths of that argument’s first and third axes,

and the smaller rank argument has the same shape as these subarrays. When
APL combines the two arguments, it does so along the second axis of the larger
rank argument of scalar extension. The length of the second axis in this case
1s the number of subarrays involved.

In all cases, the axis argument must be near-integer in the vector domain. The
length of ¥ must be equal to the smaller of the ranks of the arguments, and
the values in ¥ must be between the index origin and the larger of the ranks
of the arguments (you cannot specify an axis that does not exist). The order
of the items in the axis argument makes no difference; however, & may not

contain duplicates. The arguments to the function f must conform by having

their shapes match along the axes specified by x. The shape of the result is the

same as the argument with larger rank.

For an enclosed argument, the application of the axis does not pervade, but
works only at the top levels of nesting. See the following examples:

A < 10 100 1000 ACREATE A

0« B« 3 up112 ACREATE AND DISPLAY B
1 2 3 4

5 6 7 8

9 10 11 12

A +[1] B nd CONFORMS TO AXIS 1 OF B

11 12 13 14

105 106 107 108

1009 1010 1011 1012

A+ 1 10 100 1000 ~ACREATE NEW A

A x[2] B ad CONFORMS TO AXIS 2 OF B
1 20 300 4000

5 60 700 8000

9 100 1100 12000

0« A « 2 3p0.1x16 aCREATE NEW A

3

o = o

o .2 0,

.5 0.6

0« B« 2 4 30124 aCREATE NEW B

O

N

F

-

N

@
O

O

w

16 17 18

19 20 21

22 23 24

16 APL Reference Manual

O

N

F

T

16.

19.

=

&
£

&

F

o

O

S o

o

=

w

N

S

N

e

(
S

lo
p)

o

3

O

O

=

O

O

O

~
N

F

=

o
O

O

APL Primitive Functions

1.1 Primitive Scalar Functions

AORDER OF AXIS ARGUMENT UNIMPORTANT

O«Z«4A+[3 1]B ad CONFORMS TO AXES 1 AND 3 OF B

2.2 3.3

5.2 6.3

8.2 9.3

11.2 12.3

14,5 15.6

17.5 18.6

20.5 21.6

23.5 24,6

aTHE FOLLOWING SUBSCRIPTS DEMONSTRATE

a SUBARRAY COMBINATIONS USED BY APL

aMATCH RETURNS 1 WHEN TRUE

Z[;1;]1 = A + B[;1;]

Z20;2;1 = A + B[;2;5]

7203331 = A + B[;3;]

Z0;4;] = A+ BL;4;]

0« A4 <« 2 4p0.1x18 aCREATE NEW A

.2 0.3 0.4

.6 0,7 0.8

0« Z <« A +[1 2] B aA CONFORMS TO AXES 1 AND 2 OF B

2.1 3.1

5.2 6.2

8.3 9.3

11.4 12.4

14,5 15.5

17.6 18.6

20.7 21.7

23.8 2u4.8

aTHE FOLLOWING SUBSCRIPTS DEMONSTRATE

a SUBARRAY COMBINATIONS USED BY APL

203313 = A + Bl;;1]

7205321 = A + B[;;2]

Z0333] = A + B[;;3]

< U 3p0.1x112 aCREATE NEW A

APL Reference Manual 1-7

APL Primitive Functions

1.1 Primitive Scalar Functions

=

N

e
-

.1

Y

0

2.

5.

8.

2 =
=

0

U
1

N

W

W

D

W

N

O

O

w

1 1

14,

17.

20.

24,

15.

18,

21,

25,=

0
0

U
1

M

N

W
O

O

W

Z[1;;]

Z02;;]

PC«2 3p(13)

PC

3l |1 2 3]

|4 5 6]

4]

71

|3 4 5|

|6 7 8]

1-8 APL Reference Manual

«Z <+« A +[3 2] B

= A + B[1;;]

= A + B[2::]

(13)

|4 5

|7 8

(13)

A CONFORMS TO AXES 2 AND 3 OF B

aTHE FOLLOWING SUBSCRIPTS DEMONSTRATE

A SUBARRAY COMBINATIONS USED BY APL

(2 3p16) (2 3p16) (2 3p16)

APL Primitive Functions

1.1 Primitive Scalar Functions

RAXIS IS NOT PERVASIVE SO PLUS (+)

a WITH AXIS APPLIES BETWEEN

a 4PC[2:3] AND +ER[3] WHICH

n IS A RANK ERROR

PC+[2]ER

9 RANK ERROR

PC+[2]FER

A

The individual descriptions of the primitive scalar functions are presented

in three sections. Section 1.1.1 describes arithmetic functions, Section 1.1.2

describes logical functions, and Section 1.1.3 describes relational functions.

Most of the individual descriptions include examples of how the functions

work.

APL Reference Manual 1-9

APL Primitive Functions

Arithmetic Functions

1.1.1 Arithmetic Functions

The arithmetic functions, which are summarized in Table 1-1, perform well-

known mathematical operations. All of them take numeric scalar arguments

and return numeric scalar results.

Table 1-1 Arithmetic Scalar Functions

Monadic Dyadic

Function Meaning Function Meaning

+B B A+B Add 4 to B

- B Negative of B A-B Subtract B from 4

x B Sign of B AxB Multiply A and B

+B Reciprocal of B A+ B Divide 4 by B

* B e to the B th power A% B A to the B th power

| B Magnitude of B Al B A residue of B

[B Ceiling of B ATB Maximum of 4 and B

LB Floor of B ALB Minimum of 4 and B

® B Natural logarithm of B Ae B Logarithm of B to the base 4

! B Factorial of B A!B Binomial coefficient (number of

combinations of B things taken 4

at a time)

oB Pi times B AoB Trigonometric functions (B is in

radians; see Table 1-2)

?B Random integer from : B

1.1.1.1 + Conjugate

The monadic + function returns a result that is the same as its argument;

thus, + B is identical to B. For example:

+5

1-10 APL Reference Manual

APL Primitive Functions

Arithmetic Functions

1.1.1.2 - Negative

The monadic - function returns the negative of its argument; thus - B is the

- negative of B. Be careful not to confuse the negative function with the high

minus sign (7) used to denote a negative number. For example:

1.1.1.3 x Sighum

The monadic x function identifies the sign of its argument; thus, x B is the sign

of B. The signum function returns ~ 1 if the argument is less than 0, 1 if the

argument is greater than 0, and o if the argument is equal to 0. For example:

x99

1

xQ

0

X 5

1

1.1.1.4 : Reciprocal

The monadic = function returns the reciprocal of its argument; thus, + B 1is the

reciprocal of B. For example:

+0

15 DOMAIN ERROR (DIVISION BY ZERO)

0

A

1.1.1.5 * Exponential

The monadic = function raises the value of e (2.71828182845904523536...)

to the power specified by its argument; thus, B is e to the B th power. For

example:

APL Reference Manual 1-11

APL Primitive Functions

Arithmetic Functions

* 0

1

* 1

2.718281828

*10

22026.46579

*50

5.184705529F21

1.1.1.6 o« Natural Logarithm

The monadic e function returns the natural logarithm of its argument; thus,

¢ B is the natural logarithm (base e) of B. For example:

®1

0

®2.718281828459

1

®22026.,46579

10

®5,184705529F21

50

The e symbol is formed with the o and * symbols.

1.1.1.7 o Pi Times

The monadic o function returns the product of its argument and the value of

7 (3.14159265358979323846264...). For example:

01

3.141592654

03

9.424777961

1.1.1.8 | Floor

The monadic | function returns the greatest integer not greater than its

argument, within a tolerance defined by [0 ¢T. For example:

2.5
73

l4.111
u

L4.999
Ly

1-12 APL Reference Manual

1.1.1.9

APL Primitive Functions

Arithmetic Functions

Note that the 0 CT setting may affect the result of L. For example:

0CT+«0

|4.9999999999

OCT«1E10

[4.9999999999

5

The following is a formal description of how the floor function is implemented:

VZ«FLOOR B ;0CT ;BXCT ;N

(1] BXCT«{CT ¢ [CT<0

[2] N<(xB)x[0.5 + |B

[3] Z+«N-(N-B)>BXCT x 4T|N

(4] ¥

[Ceiling

The monadic | function returns the smallest integer not less than its

argument, within a tolerance defined by 0CT. For example:

[72.5

fu,111

5

[4,999

5

Note that the 0CT setting may affect the result of [. For example:

0CT+0

[4,0000000001

OCT<«1E10

[4.0000000001
4

The [and | functions are related in the following manner: [B«~>- | - B. For
example:

fu.111

-{-4,111

APL Reference Manual 1-13

APL Primitive Functions

Arithmetic Functions

1.1.1.10

1.1.1.11

1.1.1.12

| Magnitude

The monadic | function returns the absolute value of its argument; thus, | B
is the absolute value ofB (that is, B= | B, if B0 and (-B) = | B, if B<0). For

example:

|9

9 —
|9

9

! Factorial

The ! of B (for integer arguments) is the product of the first B positive

integers. For example:

120

If the argument to the factorial function is 0, the result is 1. If the argument

1s a negative integer, APL signals DOMAIN ERROR. If the argument is not an

integer, ! B is defined in terms of the mathematical function GAMMA as follows:

!B <> GAMMA(B+1)

The ! symbol is formed with the quote (') and period (.) symbols.

For more information on the Gamma function, see Milton Abramowitz and

Irene A. Stegun, eds., Handbook of Mathematical Functions with Formulas,

Graphs, and Mathematical Tables (National Bureau of Standards, November
1964), pp. 255-293; or John F. Hart, et al., Computer Approximations (Robert

E. Krieger Publishing Company, 1978), pp. 130-136, 243-254.

? Roll

When applied to an argument B, the monadic 7 function generates an integer

randomly selected from the integers : B (for a near-integer argument). For

example:

1-14 APL Reference Manual

APL Primitive Functions

Arithmetic Functions

75 10 15 20 25

4 7 8 6 25

75 10 15 20 25

2 9 3 2 10

A<2 3p1 b

A

7A

7A

111

3 36

At the completion of the roll function, the value of 0 RL changes:

ORL

695197565

?5

4

ORL

1133752294

If the argument is not a near-integer, or if a near-integer argument is less than

the value of 010, APL signals DOMAIN ERROR:

0I0<«1

20

15 DOMAIN ERROR

20

A

0I0+«0

20

0

Note that the roll function is JI0-dependent: ?B when 10 is 1, is equivalent

to (for the same value of DRL) 1+ ?B when 110 is 0.

The roll function is analogous to the rolling of several dice. Roll may generate

duplicate values; thus, it differs from the dyadic deal function (7), which

generates a set of unique random numbers.

APL Reference Manual 1-15

APL Primitive Functions

Arithmetic Functions

1.1.1.13

1.1.1.14

+, -, x, and + Addition, Subtraction, Multiplication, and Division

The dyadic +, -, x, and + functions return the sum, difference, product, and

quotient of their arguments, respectively.

The right argument for the division function may not be 0 unless the left

argument is also 0. For example:

0+0

1

+ Power

The dyadic * function raises the value of its left argument to the power

specified by its right argument. For example:

5%3

125

" 5%3

~125

3%x2.5

15.588u5727

"3%2.5

15 DOMAIN ERROR

“3%x2.5

A

The power function’s domain is restricted to the following combinations of

arguments:

Left Right

Any 0

0 20

>0 Any

<0 Integer

Note that 0x0 1s 1.

If the right argument of the * function is exactly 0.5, APL returns the square

root of the left argument.

1-16 APL Reference Manual

APL Primitive Functions

Arithmetic Functions

1.1.1.15 e Logarithm

1.1.1.16

The dyadic e function returns the logarithm of its right argument in the base

of its left argument; thus, Ae B is the logarithm of B in base 4. For example:

10®1

0

1010

1

510

1.430676558

Both arguments must be greater than zero. The left argument may not be 1

unless the right argument is also 1. For example: 11 1is 1.

The ® symbol is formed with the o and *» symbols.

o Circle

You use the dyadic o function to perform trigonometric functions.

The left argument of o specifies which trigonometric function is to be

performed. Only certain combinations of arguments are valid for the circle

function. For arguments 4 and B, Table 1-2 lists the possible values of 4

(near-integer argument), and indicates the operation associated with each

value.

Table 1-2 Trigonometric Functions Performed by o

Function

Al (Z<AoB)? Domain Result Domain

~7 arc tanhB 1> | B

"6 arc coshB B> 1 7>0

~5 arc sinhB

4 (T 1+4Bx)% 0.5 1< | B 2=0

3 arc tan B (|Z)<00.5

S 2 arc cos B 1> | B (0sZ)nrZs<so1

! arc sin B 1> | B (1Z2)<00.5

0 (1-Bx2)*0.5 1> | B (Z=20)A2Z<1

1 sin B (12)=<1

1The value of 4 must be a near-integer from ~ 7 through 7.

2The value of B is given in radians.

(continued on next page)

APL Reference Manual 1-17

APL Primitive Functions

Arithmetic Functions

1.1.1.17

1.1.1.18

1.1.1.19

Table 1-2 (Cont.) Trigonometric Functions Performed by o

Function

Al (Z<AoB)?2 Domain Result Domain

2 cos B (1Z)=<1

3 tanB Bz2|B+00.5

Y (1+B*x2)*x0.5 2>1

5 sinhB

6 cosh B Z>1

7 tanh B (1Z)s<1

1The value of 4 must be a near-integer from =~ 7 through 7.

2The value of B is given in radians.

L Minimum

The dyadic L function returns the smaller of its two arguments. For example:

415

I

45 301 26

12 3

[Maximum

The dyadic I function returns the greater of its two arguments. For example:

415

5

45 3[1 26

4 5 6

| Residue

The dyadic | function returns the residue of the right argument with respect to

the left argument. The residue is obtained by adding or subtracting multiples

of the left argument from the right argument. The result of a residue operation

takes the sign of the left argument.

If the left and right arguments are equal, the residue is 0. (Note that the

residue function is [CT-dependent.) If the left argument is 0, then the residue

equals the value of the right argument. If the left argument is not o, then the

residue is in the range of the left argument through o ; it may equal 0 but may

not equal the value of the left argument. For example:

1-18 APL Reference Manual

1.1.1.20

APL Primitive Functions

Arithmetic Functions

518

3

517

73

717

0

710

0

017

7

2]5.8

1.8

1]123.4567

0.4567

5 5(8 8

3 3

55 5|2

2 2 2

512 2 2

2 2 2

A<3 0 73

B«6 5 4 7372 7101231456

Ao, |B

0 1 2 0 1 20 1 20 1 20

6 5 4 73 72710 1 23 4 56

07271 072710 271072710

! Combinations

For arguments 4 and B, the dyadic ! function returns the number of
combinations of B elements taken 4 at a time. For example:

204

6

10110

1

For arguments 4 and B, the function’s domain is described as follows:

~(B<0)A(~ INTEGER B)An~ INTEGER A

INTEGER is a function that returns 1 if all the items in its argument are

integers, and 0 otherwise.

APL determines the result of the dyadic ! function based on the algorithms

explained in Table 1-3. The value 1 in the table for 4, B, or B- 4 means that

the argument or the difference between the arguments is a negative integer;

the value 0 means that the argument or the difference between them is not a

negative integer.

APL Reference Manual 1-19

APL Primitive Functions

Arithmetic Functions

Table 1-3 Determining Result for Dyadic !

A B B-4A Result

0 0 0 (!B)+(!'A)x!B-A

0 0 1 0

0 1 0 APL signals DOMAIN ERROR

0 1 1 (" 1xA)xA'A-B+1

1 0 0 0

1 0 1 Not a possible case

1 1 0 (" 1xB-A)x(|B+1)!(|4A+1)

1 1 1 0

Note that the dyadic ! function is related to the mathematical function BETA

as follows:

BETA(A,B)<~» +Bx (A-1)!A+B-1 «»> +Ax (B-1)'!'A+B-1

The ! symbol is formed with the ' and. symbols.

For more information on the Beta function, see Milton Abramowitz and Irene

A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs,

and Mathematical Tables (National Bureau of Standards, November 1964), pp.

255-293; or John F. Hart, et al., Computer Approximations (Robert E. Krieger

Publishing Company, 1978), pp. 130-136, 243-254.

1-20 APL Reference Manual

1.1.2 Logical Functions

APL Primitive Functions

Logical Functions

The monadic ~ (Not) and the dyadic »~, v, ~, and » functions (And, Or, Nand,

Nor, respectively) are commonly called logical functions. The domain and range

of logical functions are restricted to the Boolean values 0 and 1.

Table 14 is a truth table that shows the results of logical operations for

arguments 4 and B.

Table 1-4 Truth Table for Logical Functions

Arguments Functions

And Or Nand Nor Not

A B AAB AV B A~B A% B - B

A B AAB AV B A~ B A B -5

° ° 0 0 1 1 _

° ! 0 1 1 0 _

! 0 0 1 1 0 _

! ! 1 1 0 0 _
_ 0

B - ~ - 1

— 1
_ B ~ ~ i

The » symbol is formed with the A and ~ symbols

with the v and ~ symbols.

. The » symbol is formed

APL Reference Manual 1-21

APL Primitive Functions

Relational Functions

1.1.3 Relational Functions

The dyadic <, <, =, #, >, and > functions are commonly called relational

functions. The domain of relational functions is not restricted; they can take

both numeric and character arguments. However, only the equal and not

equal functions can have mismatched arguments, that is, one numeric and one

character argument simultaneously. For example:

1AV =5

0
5125

0

The result domain of relational functions is restricted to the Boolean values

0 and 1. A relational function returns the result 1 if true and o if false. For

example:

9>6

1

4>6

0
10>A

1

When <, <, >, or > have character arguments, the order of characters in JAV

is used as a collating sequence, and the evaluation is based on the respective

positions of the arguments. When the relational functions have numeric

- arguments, the comparisons between the arguments are affected by the value

of OCT.

When you use relational functions with Boolean arguments, the relational

functions can perform logical operations. For example, the not equal (»)

function performs an exclusive OR operation if its arguments are 0 s and 1 s:

(020),(0=21),(120),1=21

0110

1.2 Primitive Mixed Functions

The primitive mixed functions allow more extensive array manipulation

than the scalar functions. Scalar functions take scalar arguments, return

scalar results, and are extended to arrays on an item-by-item basis. Mixed

functions are not as predictable. For example, depending on the values of their

arguments, mixed functions may do the following:

1-22 APL Reference Manual

APL Primitive Functions

Relational Functions

Take a scalar argument and return a vector result:

19

123456789

Take a vector argument and return a scalar result:

2112347

1234

Take a matrix argument and return a vector result:

O«B<«l4 3p112 ACREATE AND DISPLAY B

2 3

5 b6

8 9

112

,B aRAVEL B (MAKE B A VECTOR)

123456789 10 11 12

1

M

7

010 1

Table 1-5 summarizes the primitive mixed functions, which are described in

this section.

Table 1—5 Primitive Mixed Functions

Function Name Meaning

ALB Base Bases the representation of B in number system 4.

+B Branch Modifies the standard order of execution in a user-

defined operation.

A,B Catenate Catenates 4 to B along the last axis of 4.

A,[K1B Catenate/ Cétenates/laminates A to B along the k¥ th axis of 4.
A5 [K]B Laminate

A+ B Catenate Catenates 4 to B along the first axis of 4.

A>B Contain Determines whether all the items in array B are

also found in array 4.

A?B . Deal Deals 4 integers selected randomly in the range 1 B.

>B Disclose Reduces the depth in an array.

> [K]1B Disclose Discloses B and arranges the substructure axes (X).

AV B Drop For A> 0, drops the first 4 items of B;for 4<0, drops
the last | 4 items of B.

(continued on next page)

APL Reference Manual 1-23

APL Primitive Functions

Relational Functions

Table 1-5 (Cont.) Primitive Mixed Functions

Function Name Meaning

Av [K]B Drop For A> 0, drops the first 4 items along the axes of

B specified by K ; for 4<0, drops the last | 4 items

along the axes of B specified by x.

B Enclose Builds enclosed arrays. Returns a scalar containing

B.

< [K1B Enclose Builds enclosed arrays; subarrays along axes X

become scalars.

€B Enlist Builds a simple vector with all of the simple scalars

1n its argument.

¢ B Execute Executes the character string B.

MB File Input Reads records from an external file into an APL

M [K1B workspace.

ABB File Output Writes information to an external file from an APL

AB[K]B workspace. |

B [K]1B

BB

B Format Formats array B.

AvB Format Formats character array B with width and precision

specified by 4.

VB Grade Down Generates an index vector that can be used to sort B

in descending order.

VY (K1B Grade Down Generates an index vector that can be used to sort

B in descending order, row by row or column by

column.

AV B Grade Down Generates an index vector that can be used to sort B

in descending order using collating sequence 4.

AB Grade Up Generates an index vector that can be used to sort B

in ascending order.

A[K]B Grade Up Generates an index vector that can be used to sort B

in ascending order, row by row or column by column.

AAB Grade Up Generates an index vector that can be used to sort B

‘ in ascending order using collating sequence 4.

1 B Index Generates the first B consecutive integers from the

Generator current index origin.

A1 B Index Of Finds the first occurrence of B in vector 4.

1-24 APL Reference Manual

(continued on next page)

APL Primitive Functions

Relational Functions

Table 1-5 (Cont.) Primitive Mixed Functions

Function Name Meaning |

AnB Intersection Returns a vector of the common items in the arrays

A and B.

A=B Match Determines whether arrays 4 and B are identical in

rank, shape, and value.

ABB Matrix Divide Performs matrix division, solves linear equations,

and finds a least-squares solution.

BB Matrix Inverse Inverts the matrix B.

Ae B Membership Determines if 4 is a member of array B.

A>B Pick Discloses an item from any depth of an array.

,B Ravel Returns the ravel of B (makes B a vector).

,[K1B s [K1B Ravel Merges or adds axes to the shape of B depending on

the value of X.

ATB Represent Represents B in number system 4.

Ap B Reshape Reshapes B to the shape specified by 4.

¢B Reverse Reverses along the last axis of B.

¢ [K1B Reverse Reverses along the k¥ th axis of B.

e [K]B

eB Reverse Reverses along the first axis of B.

A B Rotate Rotates by 4 along the last axis of B.

A$ [K1B Rotate Rotates by 4 along the ¥ th axis of B.

Ae [K]B

AeB Rotate Rotates by 4 along the first axis of B.

pB Shape Returns the shape of B.

AcB Subset Determines whether all the items in array 4 are

also found in array B.

A+ B Take For 4> 0, takes the first 4 items of B; ford< 0, takes

the last | A 1items of B.

A+ [K]B Take For 4> 0, takes the first 4 items along the axes of

B specified by X ; for 4<0, takes the last | 4 items

along the axes of B specified by X .

8 B Transpose Transposes the axes of B (for a matrix, exchanges

the rows and columns).

(continued on next page)

APL Reference Manual 1-25

APL Primitive Functions

Relational Functions

1-26

Table 1-5 (Cont.) Primitive Mixed Functions

MeaningFunction Name

A8 B Transpose

AuB Union

uB Unique

A~B Without

Transposes the axes of array B according to 4.

Returns a vector of the items in the arrays 4 and B.

Removes the duplicate items of array B.

Returns a vector of the items of array A that are not

found in array B.

APL Reference Manual

Primitive Mixed Functions

L Base

1 Base

Form

Al1B

Left Argument Domain

Type Numeric

Shape Any

Depth 0 or 1 (simple)

Right Argument Domain

Type Numeric

Shape Any

Depth 0 or 1 (simple)

Result Domain

Type Numeric

Rank Of 2+(ppA)+ppB

Shape (T1vp4),14+p0B

Depth 0 or 1 (simple)

Implicit Arguments

None.

Description

The dyadic 1 function (known as base or decode) reduces a representation in

a number system to a value. More specifically, it converts to decimal those

vectors along the first axis of the right argument that are expressed in the

positional number bases of radices given by vectors along the last axis of the

left argument.

The base function is best explained as the converse of the represent function

(t). The following example shows the two functions operating on a quantity

expressed in yards, feet, and inches:

APL Reference Manual 1-27

Primitive Mixed Functions

1 Base

a1 YARD, 2 FEET, 3 INCHES IS 63 INCHES

1760 3 1211 2 3

63

1760 3 12763

123

The expressions AT B and A1 B differ only in the value included in B; A expresses

the number base in both cases.

The number of items in both arguments, for example A4 and B, must generally

be the same; the first item in 4 expresses the radix in which the first item in

B is decoded, and so on. However, if 4 is a singleton, it is extended so that its

length is the same as that of the first axis of B. For example, the following

expression has the effect of producing the base 10 value of the base 8 number

3777 (octal-to-decimal conversion):

8137 7 7

2047

For arguments 4 and B, the argument arrays for 1 must conform to one of the

following rules:

e A or B is a scalar.

e The results of “14+p 4 and 1+ p B are equal.

e FEither " 14p A4 or 14 p B equals 1.

If the argument arrays conform to the last rule, the axis that equals 1 is

extended to match the appropriate other axis. For example:

(2 3p5)L(3 4p3)

93 93 93 93

93 93 93 93

(2 3p5)1(1 4p3)

93 93 93 93

93 93 93 93

(2 1p5)L(3 U4p3)

93 93 93 93

93 93 93 93

The following are some other uses of the base function:

1-28 APL Reference Manual

13 6

119

Primitive Mixed Functions

1 Base

ACONVERT 3 YDS. 2 FT. 4 IN. TO INCHES

1312 13 24 |

RDETERMINE IF 2.5 IS A ZERO OF THE POLYNOMIAL

A ((BxX*2)-(7%xX))-20

2.516 7 20

nYES

RBASE 10 EQUIVALENT OF BASE 5 NUMBER

514 3 4

You can use the base function to evaluate polynomials; the expression X1 C

evaluates a polynomial in X with coefficients given by the vector C.

For vectors 4 and B, the base function can be thought of as a form of the

inner product operator. The expression A1 B is equal to ¥+ . x B, where W is the

weighting vector (W<¢ x\ "1+ ¢4, 1) given by the expression ¥[p 4] «~> 1, and

WL(-N)+pd] isequal to AL (-N)+1p Al xW[(-N)+1+pA]. The value of

A[1] is irrelevant. The following example shows two equivalent operations:

A«1760 3 12

B«1 2 3

ALB

63

36 12 1+.xB

63

Note that if the right argument is empty, the type of the left argument is not

significant:

(3 2 1p'4r)L !

00

0 0

0 0

(3 2 1p0)1 10

O o

APL Reference Manual 1-29

Primitive Mixed Functions

1 Base

Possible Errors Generated

1-30

10

15

15

27

27

LENGTH ERROR (LENGTHS OF INNER AXES DO NOT MATCH)

DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED).

DOMAIN ERROR (INCORKRECT TYPE)

LIMIT ERROR (FLOATING OVERFLOW)

LIMIT FRROR (VOLUME TOO LARGE)

APL Reference Manual

Primitive Mixed Functions

-+ Branch

- Branch

Form

+B

Argument Domain

Type Near-Integer

Shape Any

Depth 0 or 1 (simple)

Result Domain

None.

Implicit Arguments

None.

Description

The monadic > function (known as branch) modifies the standard order of

execution in a user-defined operation.

Normally, APL lines in operations are executed in the order of their line

numbers; execution begins at the first line following the operation header

and ends with the last line in the operation. Branch changes the sequence of

execution by transferring control to another line in the operation.

There are two types of branches: unconditional and conditional. Unconditional

branches specify the next line to be executed. The result of an expression

evaluation determines the next statement in a conditional branch.

Unconditional branches consist of a branch symbol (-), followed by a

representation of the number of the operation line to which you want to

transfer control. The argument can be a label, a constant, a variable, or

an expression. Its value (or, if it is a vector, the value of its first item) is

equivalent to an integer line number within the current definition. Execution

continues at that line.

APL Reference Manual 1-31

Primitive Mixed Functions

~ Branch

Conditional branches can be expressed in one of the following three forms:

> line-number x1 logical-expression

Here APL evaluates the logical expression that is the right argument

of 1. The logical expression returns either a 1 (true) and the control

passes to the specified line or a 0 (false) and the control passes to the next

statement. (This form only works when (170+0.) In the following example

a simple counter controls the number of times the statements in a loop are

executed. The example branches to line number 0, an out-of-range number,

and forces an exit from the operation:

V COUNTER

[1] 0«'NUMBER OF ENTRIES:' o N+{]

[2] C+0

[3] LOOP: »0x1C=N

(4] C<«C+1

[5] +LO0OP

[6] v

~+logical-expression / line-numbers

This type of conditional branch specifies several line numbers and

associated logical expressions as possible branch destinations. Control

passes to the line number corresponding to the first logical expression that

evaluates to 1 (true). For example:

VF A

[13 ~+(4>0)/3
[2] '"WILL NOT ACCEPT NEGATIVE NUMBERS' ¢ =0

[3] '"FUNCTION CONTINUING NORMALLY'

[ul ¥

F 5

FUNCTION CONTINUING NORMALLY

F 2 |

WILL NOT ACCEPT NEGATIVE NUMBERS

1-32 APL Reference Manual

Primitive Mixed Functions

- Branch

e line-numbers [K]

Here the value of X is used as an index to select the corresponding line

number. For example:

V labs

[1] K+<2

[2] +~(LAB1,LAB?2 ,LAB3) [K]

[3] LAB1: '"LAB1 IS EXECUTED' o -0

[4] LAB2: 'LAB2 IS EXECUTED' ¢ =0

[5] LAB3: '"LAB3 IS EXECUTED' ¢ -0

[6] v

LABS

LAB? IS EXECUTED

Note that -~ is described in greater detail in Chapter 3 of the VAX APL User’s

Guide along with other information on user-defined operations.

Possible Errors Generated

7 SYNTAX ERROR (BRANCH NOT ALLOWED IN MIDDLE OF AN EXPRESSION)

11 VALUF ERROR (BRANCH HAS NO RESULT)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN ERROR (NOT AN INTEGER)

27 LIMIT ERROR (INTEGER TOO LARGE)

APL Reference Manual 1-33

Primitive Mixed Functions

., and ; Catenate/Laminate

, and ; Catenate/Laminate

Form

A,B A,LK]B A+ B A-[K]B

- 18 formed with , and -

Left Argument Domain

Type Any

Shape —

Depth Any

Right Argument Domain

Type Any

Shape —

Depth Any

Result Domain

Type =

Rank 1T (ppA) [ppB (for catenate) or

1+ (ppA) lpp B (for laminate)

Shape —

Depth (=4)T=B

Implicit Arguments

None.

Description

The dyadic APL function joins together the specified axis of two arrays. If, for

A,[K1Bor A; [K]B, K 1s a near-integer, the function is called catenation, and

A and B are joined along the K th axis. If ¥ is not a near-integer, the function

is called lamination, and 4 and B are joined along a new axis lying between

the axes named by | X and [X. The forms 4, B and 4; B represent catenation

and join the arrays along their last or first axis, respectively.

1-34 APL Reference Manual

Primitive Mixed Functions

, and ; Catenate/Laminate

If one of the arguments is a scalar, its length is extended to match the shape

of the other argument. If both arguments are scalars, the result is a two-item

vector. For example:

5,6 aCATENATE 2 SCALARS, RESULT IS A VECTOR

5 6

B«2 3p16

B,[1]17 AaCATENATE SCALAR TO FIRST AXIS OF B

12 3

4 5

7 7 7

B,7 ACATENATE SCALAR TO LAST AXIS OF B

12 37

L 5 6 7

For catenation, the arguments’ ranks must differ after scalar extension by at

most 1. Note that a singleton argument is not extended to conform to the other

argument:

AaCATENATE SINGLETONS OF DIFFERENT RANKS

(1 1p7),1 1 1 1p8

9 RANK ERROR (RANKS DIFFER BY MORE THAN ONE)

(1 1p7),1 1 1 1p8

A

ATRY AGAIN

0« R+« (1 1p7), 1 1 1p8

7 8

pR

112

In the following example, two arrays of equal rank are catenated. The shapes

of the arguments match except for the axis [(k)] along which the arrays are

being joined:

B<«3 4 5p17?

pB

3 4 5

C«3 6 5pik

pC

365

R«B,[2]C

pR

3 10 5

Note that B isequaltoR[; 1 4;] andC to R[; 4+16;].

APL Reference Manual 1-35

Primitive Mixed Functions

, and ; Catenate/Laminate

The next example shows the catenation of two arrays whose ranks differ by 1.

Again, the shapes of the arguments match except for the axis along which the

arrays are being joined:

B«3 4 5p12

pB

345

C+4 5p33

pC

4 5

R<B,[1]C

pR

B,[2]C

AB IS RANK 3

AC IS KANK 2

RCATENATE ALONG FIRST AXIS OF B

ARATTEMPT TO CATENATE ALONG SECOND AXIS

10 LENGTH ERROR (SHAPES OFF AXIS DO NOT MATCH)

B,[2]C
A

Here, B is equal to R[1 3; :] and C to R[u4; ;7.

The following are more examples of catenation:

A<5 8 9

B<b 7

A,B

58 967

10,4,B,12

10 58 96 7 12

'NAME', X1

NAMEXY

B«2 3p1 2 3 456

C«2 3p7 8 9 10 11 12

B

F o o

w

7 8 9

10 11 12

B,[1]C

3

6

9

12

B,[2]C

7 8 9

10 11 12

O
F
E

o

=

o

O
l

N

-
+ S

T
N

o

w

1-36 APL Reference Manual

ARCATENATE TWO VECTORS

ACREATE B

ACREATE C

ACATENATE ALONG FIRST AXIS

ARCATENATE ALONG SECOND AXIS

Primitive Mixed Functions

, and ; Catenate/Laminate

B;C aUSE COLUMN CATENATE

3

6

9

12

B,C aCATENATE ALONG SECOND AXIS

7 8 9

10 11 12

[«A+«2 3 3p'ABCDEFGHIJKLMNOP{R'

O

N

F

B

=

0
0

U
1

N

S
£ (
&
2

.

o

w

ABC

DEF

GHI

JKL

MNO

PQR

O«B<«2 3 3p'SSSTTTUUUVVVWWWXXX'

5SS

ITT

uuu

44/

WWW

XXX

A,B ACATENATE RANK 2 OBJECTS

ABCSSS

DEFTTT

GHIUUU

JKLVVV

MNOWWWN

PQRXXX

Note that the catenation of scalars produces a vector:

ppl,5

1

For lamination (4, [X1 B and 45 [K1 B where K is not a near-integer), the

arguments must have the same ranks and shapes after singleton extension.

The following are examples of lamination:

aCREATE NEW DIMENSION BEFORE THE FIRST

a DIMENSION WHEN [K]<1

O«X«'ABC',[0.5]'DEF! nADD A ROW

ABC

DEF

pX

2 3

APL Reference Manual 1-37

Primitive Mixed Functions

, and s Catenate/Laminate

ACREATE NEW DIMENSION AFTER THE FIRST

A DIMENSION WHEN 1<[K]<2

O«X<'ABC',[1.3]1'DEF' a ADD A COLUMN

pX

aNOW TRY EXAMPLE WITH HIGHER RANK OBJECTS

aNOTE THAT APL RESHAPES EACH ARGUMENT

ARBEFORE JOINING

(«E«3 2p'ABCDEF'

AB

CD

EF

O«F<«3 2p'UVNXYZ'

uv

WX

Yz

ACREATE NEW DIMENSION BEFORE THE FIRST

A DIMENSION WHEN [K]<1

O«R<E,[.2]F AADD A PLANE

oR

2 32

ACREATE NEW DIMENSION AFTER THE FIRST

A DIMENSION WHEN 1<[K]<2

nADD A ROW, PREVIQUS ROWS BECOME PLANES

U«R«F,[1.9]F

AB

v

CD

WX

EF

oR

322

1-38 APL Reference Manual

Primitive Mixed Functions

, and ; Catenate/Laminate

aCREATE NEW DIMENSION AFTER THE SECOND

A DIMENSION WHEN 2<[K]<3

aADD A COLUMN, PREVIOUS COLUMNS BECOME ROWS

[«R<«E,[2.31F

AU

BV

CW

DX

EY

pR

3 2 2

aTRY EXAMPLE USING SINGLETON EXTENSION

H«R«E,[.5]'Z" nADD A PLANE

AB

EF

Y

YA

77

pK

aADD A ROW, PREVIOUS ROWS BECOME PLANES

OeR«E,[1.5]"X"

AB

XX

CD

XX

EF

XX

pK

3 2 2

rY',[2.5]F aADD A COLUMN

YA

YB

Ye

YD

YE

YF

Note that if 070 <~ 0, then ~ .5 is valid as the axis value for lamination. This

is the only case in which an axis may take a negative argument (range: ~ 1<X).

APL Reference Manual 1-39

Primitive Mixed Functions

, and s Catenate/Laminate

Further examples:

U«A«(0 ('AB'))
0 +--+

| AB|
+--+

Q«B+c,4

Q«Ce!?

(APL outputs a blank line)

O«MAX+2 3 p A 1 0 '"AB' B C

|0 +--+]|

| [AB]]

|+t

+--+ t---+ +

|AB| | +-+] |

+--t |1al] +

| +-+]
+---+

MAX,[1]B ACATENATE ALONG FIRST AXIS

10 +--+]

| [AB]]

|+t

+--+ t---+ +

|AB| | +-+] |
t--+ T4l] +

| +-+]
+---+

+-+ +-+ -+t

| 4] LY
+-+ +-+ +-t

0«D«0 'DP'

0 +--+

| DP|
+--+

1-40 APL Reference Manual

Primitive Mixed Functions

. and ; Catenate/Laminate

D, [2]MAX ACATENATE ALONG SECOND AXIS

0 pommmm- + 1 0

|0 +--+|

| 14B]|

| 4]
R +

+--+ +--+ +---+ +-+

|DP| |AB| [+=+] | |
+--+ +--+ | lu]] +-+

| +-+]
+--—+

ASHOW CATENATION OF TWO ARRAYS WHOSE RANKS DIFFER BY 1

pMAX

2 3

O«VIC+B,D

+-+ 0 +--+

|l |DP]
+-+ +--1

pVIC

3

O«W<MAX,[1]1VIC

to--—-- + 1 0

|0 +--+]

| |AB]|
|-t
o +

+--+ +--—+ +-+

|AB| | +-+1 ||
+-—+ | jul] +-+

|+-+|
+--—+

+-+ 0 +--+

| 4] | DP|
+-+ +--+

oW

3 3

aSHOW LAMINATION

O«X«b4,c,1

4 +-+

|11
+-+

pX

2

B

+-+

|41
+-+

pB

(APL outputs a blank line)

APL Reference Manual 1-41

Primitive Mixed Functions

, and - Catenate/Laminate

0«Y<«X,[0.5]B

T

| 1]
+-+

+-+ +-+

LIy
+-+ +-+

pY

O«Z«X,[1.9]1B

+-+

| 4]
+-+

+-+

| 4]
+-+

pZ

Possible Errors Generated

9 RANK FRROR

9 RANK ERROR (RANKS DIFFER BY MORE THAN ONE)

10

15

27

28

30

30

30

30

29

30

LENGTH FRROR (SHAPES OFF AXIS DO NOT MATC"H)

DOMAIN EFRROR (INCORRECT TYPE)

LIMIT ERROR (INTEGER TOO LARGE)

AXIS RANK ERROR (NOT VECTOR DOMAIN)

AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)

AXIS DOMAIN FRROR (AXIS LESS THAN INDEX ORIGIN)

AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

AXIS DOMAIN ERROR (INCORRECT TYPE)

AXIS LENGTH ERROR (NOT SINGLETON)

AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

1-42 APL Reference Manual

Primitive Mixed Functions

> Contains

> Contains

Form

AoB

> 1s formed with > and _

Left Argument Domain

Type Any

Shape Any

Depth Any

Type

Shape Any

Depth Any

Result Domain

Type Boolean

Rank 0

Shape 1 0 (scalar)

Depth 0 (simple scalar)

Implicit Arguments

0CT (determines comparison precision)

Description

The dyadic > function determines whether the left argument contains all the

items found in the right argument. The result is a Boolean scalar: true, if

the left argument is a superset of the right argument, and false if it is not.

Duplicate items in either argument do not affect the result. For example:

A«3 4p 23 54 98 34 98 47 98 32 78 65 12 23

A > B+1100

B o> 4

=

APL Reference Manual 143

Primitive Mixed Functions

> Contains

The o> function compares items in terms of the match (=) function, which uses

the value of JCT. Because = allows mixed-type arguments, you can compare

characters with numbers. However, such a comparison is always false, so that

if you use mixed-type arguments for dyadic >, the result will be zero. For

example:

123 24 25' 5 22 23 24 25 26

0

Further examples:

O<WRL«0 'AB' (c,3)

0 +--+ +---+

|AB| [+-+]

+--+ | |3]]

[+-+1
+---+

0«POOL«2 2 p 0 'AB' 'EB' (c,3)

0 +--+

| AB|
+--+

t--+ +---+

|EB] |+-+]
+--+ [13]]

| +-+]
+---+

POOL > WRL

1

O«VAN«O 'QTH' ~

0 +---+ 1 +---+

| QTH | | +-+]
t---t 1311

| +-+]
t---+

O«VIC+(c,4),0,(c'DP')

t-+ 0 +--+

4| |DP]
+-+ +--+

VAN > VIC

1 (<,3)

0

Possible Errors Generated

None.

144 APL Reference Manual

Primitive Mixed Functions

? Deal

? Deal

Form

A?B

Left Argument Domain

Type Nonnegative near-integer

Shape Singleton

Depth 0 or 1 (simple)

Right Argument Domain

Type Nonnegative near-integer

Shape Singleton

Depth 0 or 1 (simple)

Result Domain

Type Nonnegative integer

Rank 1

Shape A

Depth 1 (simple)

Implicit Arguments

ORL 0I0 (47B when 0I0 « 1 isidentical to 1 + A?B when 010 < 0 for the

same [JRL)

Description

For 47 B, the dyadic 7 function generates a vector of integers randomly selected

from 1 B; no number is selected more than once. The length of the result vector

is specified by 4. For example:

APL Reference Manual 1-45

Primitive Mixed Functions

? Deal

575

4b 2 315

571.0E7

2047059 8326627 1771140 853115 3809508

571.0F7

8895125 7387197 6272379 6940437 9062050

571.0E7

6693744 185074 2861354 853279 5088023

Unlike the roll function, dyadic 7 is analogous to dealing a number of cards
from a deck with no two cards alike. Roll is analogous to rolling several dice

independently; roll may generate duplicates, but deal will not.

The value of the system variable O RL affects the result of the deal operation,
and the value of JRL changes each time a deal operation completes

successfully. For more details about 1 RL, see Chapter 2.

Possible Errors Generated

9 RANK FERROR (NOT SINGLETON)

10

15

15

15

15

15

27

LENGTH ERROR (NOT SINGLETON)

DOMAIN FRROR (ENCLOSED ARRAY NOT ALLOWED)

DOMAIN FRROR (INCORRECT TYPFE)

DOMAIN ERROR (NOT AN INTEGER)

DOMAIN ERROR (NEGATIVE NUMBER NOT ALLOWED)

DOMAIN ERROR (RIGHT ARGUMENT IS LESS THAN LEFT)

LIMIT ERROR (INTEGER TOO LARGE)

1-46 APL Reference Manual

Primitive Mixed Functions

= Depth

= Depth

Form

=B

Argument Domain

Type

Shape |

Depth

Result Domain

Type

Rank

Shape

Depth

Implicit Arguments

None.

Description

The monadic =

Integer (non-negative)

0

1 0 (scalar)

0 (simple scalar)

function (known as depth) indicates the maximum level of

nesting in an array. A simple array has 1 level of nesting (0 if the array is

scalar). An enclosed array has a depth of at least 2.

Examples:

U«B+9

=B

=C

1

aCREATE A SIMPLE SCALAR

aCREATE A SIMPLE ARRAY

J«C«'WHERE ARE YOU GOING?'

WHERE ARE YOU GOING?

APL Reference Manual 1-47

Primitive Mixed Functions

= Depth

O«D«1 (5 6 7) 11 12 ACREATE AN ENCLOSED ARRAY

1 +----- + 11 12

|5 6 7|

+----- +

=D

2

ACREATE AN ENCLOSED ARRAY WITH MORE NESTING

O0«E«1 (5 6 7 (8 9 10)) 11 12

1 t--mmmmmm oo + 11 12

|5 6 7 +------ + |

| |18 9 10]]
| toomoo +]

tomm e +

=k

3

Possible Errors Generated

None.

1-48 APL Reference Manual

Primitive Mixed Functions

> Disclose

> Disclose

Form

> B >[K]B

Argument Domain

Type Any

Shape Any

Depth Any

Result Domain

Type Same as constituent items in B

Rank (ppB)++T/pp (,B),c*B

Shape (pB),+T/(p" (,B),c4B)~c10

(pZ)[,K1«>4T/(p (,B)~c10

Depth 0 1+=B

Implicit Arguments

None.

Description

The monadic > function reduces the depth of an array. It reverses the building

action of the monadic enclose (¢) function. Disclose is the left inverse of enclose

(B«>>cBand B«>>[K]<[K]B).

The rank of the items in B must be the same (singleton items are extended).

However, the lengths of the corresponding axes do not need to match. For

example, three enclosed items of shape 1 3 1, 2 6 2, and 4 2 4 match in rank,

but not in shape. When the shapes do not match, each item is padded along

each axis, and the length of each of the result’s axes is equal to the longest

corresponding axis among the items of B. In the preceding example, the

portion of the result that corresponds to the three items would have the shape

46 4:

APL Reference Manual 1-49

Primitive Mixed Functions

> Disclose

aALL ITEMS SAME RANK

F«(3 2p16) (2 3p'ABCDEF') (2 4p10 ¢19) (5 1p'TUVXY'")

oF

4

7

fo--t +---4 +---4 --—%

13 2] |2 3] |2 4| |5 1|

t---t +---+ +---+ +--—%

U«DD«>F ANOTE FILL ITEMS

0

O

O

U
l

W

O

O

O

=
N

O

O

O

O

O

O

O

O
O

o =
y

&

i

P
!

O

O

O
O
N

O

O
O
N

W

O

O

O

o

F

S

O
O

W
w
w
,
m

~
o
h
e

<

3

pDD

L 5 4

Disclose only reduces one level of enclosure:

A«(c13) "ABC' 3

A

t-----—- + +---+ 3

| 4= +| |ABC|

|11 2 3| +---+

[+----- t
tomm- +

pA

3

=4

1-50 APL Reference Manual

Primitive Mixed Functions

> Disclose

oA

t+ -+ ++

IEIE
++ +-+ ++

X+2A

X

t----- + t----- + t----- +

1123] |00 0] [00 0]

t----- + - + t----- +

A B C

3 0 0

pX

Disclose with axis (form > [X¥] B) allows you to specify the placement of the

disclosed item’s axes. The number of axes specified by ¥ must be equal to the

rank of the items of B (ignoring the singleton items), and the axis numbers

must be less than the sum of the rank of B plus the rank of the items of

BG(ppB)++T\,p p B) The axis numbers must also be unique. The

following example shows various combinations of axis arguments and the

resulting arrays:

R « (3 3p19) (2 3p'ON" 'TI" '"MA' 'NO' "IT'" '"AM')

R

|11 2 3| |+--+ +--+ +--+]

|4 5 6] [[ON] |TI] [MA]]

|7 8 9] |+--+ +--+ +--+]
t-===- + [+t +--+ +--+]|

| INO| [IT] [AM]]
| +--+ +--+ +--+]|

fom e +

A<>R

2

APL Reference Manual 1-51

Primitive Mixed Functions

> Disclose

t--+ +--+ +--+

|ON| | MA|| TT|
t-—+ +--+ +--+

| IT| |AM|

t-—+ +--+ +--+

|NO|
+-—+ +--+ +--+

t--+ +--+ +--+

+-—+ +--+ +--+

B«>[1 2]R

B

1 4--+

| ON|
+--+

2 +--+

| TI|
+--+

J +--+

| MA|
+--+

bo+--+

|NO|
+--+

5 +--+

| IT|
+--+

6 +--+

| AM |
+--+

7 +--+

+--+

8 +--+

+-—+t

9 +--+

+-—+

1-52 APL Reference Manual

$--+

| ON |
+--+

+--+

|NO|
+--+

+--+

+--1

2 3

1
]

=
~

1] C
o

pAd

pB

C+«>[1 3]K

=(

pC

C

2

+--1

| I
+--+

5

+--+

| IT]
$--+

8

+--+

|
+--4

D«>[2 3]K

=D

pD

3

+--+

| MA|
+--+

6

+--+

| AM|
+--+

9

+--+

.
+--+

Primitive Mixed Functions

> Disclose

APL Reference Manual 1-53

Primitive Mixed Functions

> Disclose

t--+ +--+ +--+

| ON | | MA|| TT|
==+ t--+ +--+

==+ +--+ +--+

|NO| | AM |[IT]
+--+ +--+ +--+

==+ +--+ +--+

|
t--t -+ +--+

F«>[2 1]1R

1 +-—4

| OF |
+--+

bo+-—+

| NO|
+--+

7 +--+

+--+

2 +--+

| 71|
+-—1

5 +--+

| IT]
+-—+

8 +--+

+-—+

3 +--+

| MA |
+-—+

6 +--+

| AM|
+--+

9 4--+

+--+

APL Reference Manual1-54

Primitive Mixed Functions

> Disclose

Fes[3 1]R

f--+ -+ +--4

| ON| | NO|
t--t +--+ +--+

852

t-—+ +--1 +--+

| TT] | IT|
t-—+ +--1 +--+

963

t--t+ +-—+ +--+

| MA| || AM|
t-—+ +--+ +——+

G+>[3 2]K

t--+ +-—t+ +--+

|voj ||
+--t +-—+ +--1

t--+ +--+ +--+

| O |

| IT| |
+--+ +--+ +--+

| TT|

+--+ +-—t+ +--+

|| AM]
to=t =+ -—1

| MA |

1-55APL Reference Manual

Primitive Mixed Functions

> Disclose

If all the items of B are scalars, then the axis, if specified, must be empty:

Tec (13)(14)(15)

T

e T S 4

| +----- + [+-mmmm- I +|
1112 3] |122 3 4]] |]12 34 5]

| +----- 4= I R +|
o I S !

=7

3

pT

3
g

2 2 2
0T

++ ++ o+t

AR
++ ++ ++

O«S«>[10]7T

o + - + tmmmmm— +

|123] |12 3¢4] |12 34 5]

o= T T +

=5

2

pS

3

The disclose of an array which contains only scalars and empty arrays as item

will be an empty array:

E«2 "' 3

H =
y

+E

1-56 APL Reference Manual

3 0

0

Primitive Mixed Functions

> Disclose

X+oF

(APL outputs a blank line)

+X

The following expression describes the formal relationship between disclose

and disclose with axis: sB<«~> >[(ppB)+1pp+Bl]B

Possible Errors Generated

9 RANK ERROR (ITEMS NOT SINGLETON OR ALL THE SAME RANK)

27

28

29

30

30

30

30

30

30

30

LIMIT FRROR (INTEGER TOO LARGE)

AXIS RANK ERROR (NOT VECTOR DOMAIN)

AXIS LENGTH ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)

AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)

AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

AXIS DOMAIN ERROR (DUPLICATE AXIS NUMBER)

AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

AXIS DOMAIN ERROR (INCORRECT TYPE)

AXIS DOMAIN ERROR (NOT AN INTEGER)

AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

APL Reference Manual 1-57

Primitive Mixed Functions

+ Drop

+ Drop

Form

AV B AV [K]B

Left Argument Domain

Type Near-integer

Shape Vector domain

Depth 0 or 1 (simple)

Right Argument Domain

Type Any

Shape Any

Depth Any

Result Domain

Type Same as right argument

Rank (p,A)TppB

Shape 0l (pB) -4 (if no explicit axis)

Depth =B

Implicit Arguments

None.

Description

The dyadic + function builds an array by dropping a specified number of items

from an existing array. The left argument specifies how many items are to be

dropped from each axis in the right argument array. Thus, for 4+ B, item A[K]

1s used to drop values along the ¥ th axis of B.

Unless the right argument is a scalar, the left argument must have a number

of values equal to the rank of the right argument (for arguments 4 and B,

o ,A must equal p p B). For instance, if the right argument is a vector, the left

argument must have just one value. If that value is positive, APL drops the

1-58 APL Reference Manual

Primitive Mixed Functions

+ Drop

specified number of items from the beginning of the vector; if the value 1s

negative, APL drops items from the end of the vector. For example:

2v15

3 45

2415

12 3

If the right argument is a scalar, it is reshaped to a singleton with a rank

equal to the length of the left argument.

If the rank of the right argument is greater than 1, the result array is said to

be a "corner" of the argument array. The origin of the corner is determined by

the signs of the items of the left argument. For example, if the right argument

is a matrix, there are four possible corners, as shown in Figure 1-1.

The drop function leaves a corner that is diagonally opposite to the origin

specified by the signs of the items of the left argument. In the following

example, note how the order of the signs determines the "corner” selected from

the matrix:

H«C«3 3 p19

3

7

Note that for arguments 4 and B, the dimension of the remaining corner is the

complement of 4 with respect to p B, or | (p B) - A.

If the value of an item in the left argument is greater than the length of the

corresponding axis, then, for arguments 4 and B, A+ B returns an empty array

with shape o (pB) - | 4.

If the left argument is empty, the right argument must be a scalar, and the

result is the right argument.

When you use + with an axis argument, ¥ is a vector of axis numbers whose

lengths are determined by corresponding items of the left argument, 4.

Formally, + with an axis argument can be described by the following:

Z <« 0>pB O ZIK] « A % Z < ZVB

APL Reference Manual 1-59

Primitive Mixed Functions

v+ Drop

The value for ¥ must be in the vector domain, and each item must be a near-

integer in the set 1 p p B. Therefore, the values of ¥ are 0710 dependent. The

items may be in any order, but they may not be duplicated. The length of x

must be less than or equal to the rank of the right argument, and it must

match the length of the left argument.

The value for ¥ does not have to specify all the axes in B. APL regards the

lengths of any missing axes as zero. This means that you can drop rows or

columns of a matrix without specifying zero for the length of the other axis.

For example:

[«A«8 5p140

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

26 27 28 29 30

31 32 33 34 35

36 37 38 39 40

3 +[1] 4 RDROP 3 ROWS OF A

16 17 18 19 20

21 22 23 24 25

26 27 28 29 30

31 32 33 34 35

36 37 38 39 40

2 v[2] A ADROP THE LAST 2 COLUMNS OF 4

1 2 3

6 7 8

11 12 13

16 17 18

21 22 23

26 27 28

31 32 33

36 37 38

3 4 +[2 1] 4 ADROP 4 ROWS, 3 COLUMNS OF A

2425

29 30

34 35

39 40

0I0< 0

4 3 +[0 11 4 ARDROP 4 ROWS, 3 COLUMNS OF A

24 25

29 30

34 35

39 40

1-60 APL Reference Manual

Primitive Mixed Functions

v+ Drop

Further examples:

0«POL<2 3p0,(c'ABC'),1,0,(c'AB"),"!

0 +---+ 1

| ABC|

+--—+

0 +--+ 0

| AB|
+-—+

POL

0 +---+ 1

| ABC|

t~=—+

0 +--+ O

|AB|
+--+

2 v[1]POL

(APL outputs a blank line)

1 y[1]1P0L

0 +---+ 1

| ABC|

+--—+

2 +[2]P0L

1

0

O«MEW<4 3 p'XY' 1 3 (c,1) 2 '" "4V ' ' 01 40

+--+ 1 3

| XY |
+--1

t---+ 2 ++

| +-+] ||
111 t

[+-+1
+---+

2 1 4 [2 1]MEW

APL Reference Manual 1-61

Primitive Mixed Functions
+ Drop

2 0 v MEW

0

0

The following expression describes the formal relationship between drop and

drop with axis: 4+B «> Ay [1ppBlB

Possible Errors Generated

9

10

15

15

15

27

28

29

30

30

30

30

30

30

30

RANK FRROR (NOT VECTOR DOMAIN)

LENGTH FRROR (LEFT LENGTH NOT FQUAL TO RIGHT RANK)

DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

DOMAIN FRROR (INCORRECT TYPE)

DOMAIN FRROR (NOT AN INTEGER)

LIMIT EFERROR (INTEGER TOO LARGE)

AXIS RANK FRROR (NOT VECTOR DOMAIN)

AXIS LENGTH ERROR (LEFT ARGUMENT HAS WRONG LENGTH)

AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)

AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

AXIS DOMAIN ERROR (DUPLICATE AXIS NUMBER)

AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

AXIS DOMAIN ERROR (INCORRECT TYPF)

AXIS DOMAIN EFRROR (NOT AN INTEGER)

AXIS DOMAIN FRROR (SEMICOLON LIST NOT ALLOWED)

1-62 APL Reference Manual

Primitive Mixed Functions

c Enclose

c Enclose

Form

cB c[K]B

Argument Domain

Type Any

Shape Any

Depth Any

Result Domain

Type Same as constituent items

Rank (ppB)-p,.K

Shape (pB)L(1ppB)~K]

Depth (02=B)+=8

Implicit Arguments

None.

Description

The monadic = function builds enclosed arrays. For a nonsimple scalar

argument, the result of the form < B is always an enclosed scalar item. If the

argument is a simple scalar, the depth remains the same: B«~~+cB when B is a

simple scalar. The result of the form < [K] B is an array of enclosed scalars:

APL Reference Manual 1-63

Primitive Mixed Functions

= Enclose

B « 4

C « 15

D+ 2 2 p '"ABCD'

[J«B+«cH RENCLOSE A SIMPLE SCALAR, NOTHING HAPPENS
M

[J«B<c,B aMAKE A SINGLETON
+-+

| 4]
+-+

[J«C<c(

e datate +

|1 2 3 4 5]

t--—-—-———-- +

D+D+CD

+--+

| AB|

| CD|
+--+

pB o pC ¢ pD RTHE NEW B C AND D ARE SCALAR

(APL outputs 3 blank lines)

Each time you use monadic <, you increase the depth of the argument by one

(unless the argument is a simple scalar). For example:

[«D<«2 2p 'ABCD'

AB

CD

pD

2 2

=D aDEPTH OF D SHOWS A SIMPLE ARRAY

1

U«D+cD

+--+

| AB|

| CD|
+--+

oD

(APL outputs a blank line)

=J)) ADEPTH OF D HAS INCREASED TO 1

Using the catenate function (,) with < allows you to create arrays with

multiple items. In such an expression, you must use parentheses to prevent

the scope of « from extending to the rightmost end of the expression. You can

also enclose arrays that are already enclosed. The only limit to the depth you

create is the memory available to the workspace.

APL Reference Manual

Primitive Mixed Functions

< Enclose

For example:

B+l

C<15

O«E<B , (<B) , cC aNOTE USE OF PARENTHESES

h 4 ---mm——- +

|1 2 3 4 5]

to—mmmm——- +

0E

3

=F

2

D<2 2 p '"ABCD'

O«E<«B , (<B) , (<C) , D aNOTE USE OF PARENTHESES

b 4 - + +--+

|1 2 34 5| |AB]

tom e + |CD]

+--+

pE
n

=F

2

[«E<cE

i +

|4 4 - + +--+]

| |1 2 3 4 5| |AB]||

| 4 + lcl|
| t--+t|
o m e +

pE ASHAPE OF E SHOWS IT IS NOW A SCALAR

(APL outputs a blank line)

=F

3

The result of the form < [X¥] B is in an array of items formed by enclosing

subarrays along the axes given by ¥. The axis numbers in X must be a unique

set of numbers in 1 p p B:

«5+«2 3p16

cS

APL Reference Manual 1-65

Primitive Mixed Functions

c Enclose

c[1]S

fommt to-—t t--—t

|1 4] |2 5] |3 6]

t---+ t---+ +--—+

c[2]S

t----- + - +

1123] |45 6]

t-—--- + - +

cf1 218

t----- +

|1 2 3]

|4 5 6]

fomm-- +

c[2 1]§ ACHANGING AXIS ORDER TRANSPOSES SHAPE

==t

[1 4]

|2 5]

|3 6]
+---+

SCHILLER«'AGAINST' 'STUPIDITY' 'THE GODS' 'THEMSELVES'

O«SCHILLER<3 2pSCHILLER,'CONTEND' 'IN VAIN!

tommmm- S +

|AGAINST| |STUPIDITY|

tomm - S +

t--- - + - +

| THE GODS| |THEMSELVES|

tom - I +

tomm - + - +

|CONTEND| |IN VAIN|

tom t o mm———-- +

0«PHRASES<«5[1.5]c[21SCHILLER

o +

| +------- R + |

| |AGAINST| |STUPIDITY]|

| 4= + - + |

o e +

Fo +

|+~ t e + |

| |THE GODS| |THEMSELVES]||

| 4= L +|

o +

L L L L +

|+~ S + |

| |CONTEND| |IN VAIN||

| +--==--- t ot + |

fom +

o PHRASES

J 1

1-66 APL Reference Manual

Primitive Mixed Functions

c Enclose

If ¥ is empty, than it has no effect if B is a simple array. If B 1s enclosed,

then each item in B becomes enclosed one level deeper (c [1 01 B <~ < B). For

example:

[«S«2 3p6 aCREATE S, A SIMPLE ARRAY

123

4 5 b

c[10]S aEMPTY K, NO CHANGE

2 3

5 6=

SCHILLER«'AGAINST' 'STUPIDITY' 'THE GODS' 'THEMSELVES'

0<SCHILLER<3 2p SCHILLER, 'CONTEND' 'IN VAIN'

c[10]SCHILLER aEMPTY K, ITEMS NESTED DEEPER

T ot q
| | AGAINST|| | |STUPIDITY||

Further examples:

APL Reference Manual 1-67

Primitive Mixed Functions

c Enclose

[«POL«2 3 p 'ABC' 0 (c,2) 99 'A' '0'

+---+ 0 +---+

| ABC| | +-+]

-t]2]]
[+-+]
+---1

99 A0

cPOL

S etT +

| +-=--+ 0 +---+]|

[[4BC| |+-+]]

[+===+ [12]]]

| [+-+1]

| £t
|99 A0 l

tommm o +

The first two of the following expressions describe the relationship between c

and < [K] . The third expression describes the relationship between < [¥] and

the disclose (= [X]) function:

cB «> c[1ppB]B

c[K]B +> c(AK)¥B (only true when K includes all axes of B)

B <> o[K] <[K] B

B <> ocB

Possible Errors Generated

1-68

27 LIMIT FRROR (INTEGER TOO LARGE)

28 AXIS RANK ERROR (NOT VECTOR DOMAIN)

30 AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)

30 AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

30 AXIS DOMAIN FRROR (DUPLICATE AXIS NUMBER)

30 AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

30 AXIS DOMAIN ERROR (INCOKRRECT TYPFE)

30 AXIS DOMAIN ERROR (NOT AN INTEGER)

30 AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

APL Reference Manual

Primitive Mixed Functions

e Enlist

€ Enlist

Form

€ B

Argument Domain

Type Any

Shape Any

Depth Any

Result Domain

Type Same as argument

Rank 1

Shape Vector

Depth 1 (simple vector)

Implicit Arguments

None.

Description

¢ builds a simple vector by recursively raveling each of the items in its

argument. For example:

O«4d<«e (2 (2 2p5 6 7 8)) 'ABC' '"A' 2 5 6 7 8 '"AB(C'

2 56 7 8 ABCA 2 5 6 7 8 ABC

Possible Errors Generated

None.

APL Reference Manual 1-69

Primitive Mixed Functions

¢ Execute

¢ EXxecute

Form

¢ B

¢ 18 formed with 1 and o

Argument Domain

Type Any

Shape Any (Vector domain for characters)

Depth Any (0 or 1 for characters)

Result Domain

Type Any

Rank Any

Shape Any

Depth Any

Implicit Arguments

None.

Description

The monadic ¢ function executes the expression represented by its character-

string argument as if that expression were entered in immediate mode or

included in a user-defined operation. For example, the expressions 1 5 and

¢ ' 15" return the same result:

15

12345

¢"15!

12345

B<15

¢ 'B!

2 345

1-70 APL Reference Manual

Primitive Mixed Functions

¢ Execute

For a numeric argument B, ¢ B returns B. For example:

020

20

B<15

¢ B

12 345

For an enclosed or heterogeneous array B, ¢ B returns B. For example:

e 1 2 A 3

1 2 A 3

0«POL<2 3p ('ABC') 0 (c,2) 99 '4A' O

+---+ 0 +---+

|ABC| |+-+]

t---+ [[2]]

[+-+]
t--—1

99 40

¢ '"POL

t---+ 0 +---+

|ABC| | +-+]

t-—-+ [[2]]

| +-+1
t---+

99 A0

e POL

t---+ 0 +---+

|ABC| |+-+|

t---+ [[2]]
[+-+]
t---+

99 4 0

The ¢ function is similar to the 1 XQ system function; however, there are

several differences.

One difference is that the 1 xQ system function always returns a value, but

the ¢ function returns a value only if the evaluation of its argument returns

a value. Another difference is that the 0JXx¢@ function cannot execute a branch

function (=), and the ¢ function can.

The ¢ and 0 x¢ functions also handle errors differently. Errors resulting from

the evaluation of the 0XQ function’s argument cannot be trapped; if an error

occurs during the evaluation of its argument, [XQ returns an empty array

whose shape indicates the number of the error. With the ¢ function, however,

you can use [] TRAP to trap errors. If an error occurs in the character string

being executed by ¢, APL generates—in addition to the normal three-line error

message—an execute error message for the line on which the actual execute

error occurred.

APL Reference Manual 1-71

Primitive Mixed Functions

¢ Execute

For example:

V GRIFF A

[1] B+ed

[2] V

GRIFF '3,

7 ¢ SYNTAX FRROR (RIGHT ARGUMENT TO FUNCTION MISSING)

3,
A

25 EXECUTE ERROR

GRIFF[1] B+sA

A

)SI

GRIFF[1] =

B

11 VALUE ERROR

B

A

GRIFF' !

11 VALUE ERROR (REQUIRED VALUE NOT SUPPLIED BY EXECUTE)

GRIFF[1] B«<sA

A

In the previous example, when the argument to the ¢ function was invalid

('3, '), APL generates six lines of error messages and suspends operation

execution. The blank argument is a valid one for the ¢ function, but ¢ ' ' does

not produce a value, so APL signals VALUE ERROR when the assignment is

made to B.

If you enter the attention signal while the ¢ function is executing, APL stops

and signals ATTENTION SIGNALED.

Note that quiet functions are still quiet when executed, provided that the

execute is the leftmost function in the statement. When the argument is empty

and numeric, the result is an empty numeric vector (¢ 1 0 «»> 1 0). When the

argument is empty and character, the result is an empty character vector ('

<> o ' ') 1if a value is required by the expression. For example:

1-72 APL Reference Manual

Primitive Mixed Functions

¢ Execute

[RASR

RAASE

¢ 10

o M AQUIET, NO OQUTPUT

Ace !

A

(APL outputs a blank line.)

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

25 EXECUTE ERROR

APL Reference Manual 1-73

Primitive Mixed Functions

M and B File Input and Output

K and B File Input and Output

Form

B [[mode | index]ll chan [data-typel

d is formed with 0 and <«

Argument Domain

Type Numeric

Shape Vector domain

Depth Any

Result Domain

Type Any

Rank Any

Shape Any

Depth Any

Form

[datall 8 [[[mode | index]] chan [data-typel

B is formed with 0 and -~

Left Argument Domain

Type Any

Shape Any

Depth Any

Right Argument Domain

Type Numeric

Shape Vector domain

Depth 0 or 1 (simple)

1-74 APL Reference Manual

Primitive Mixed Functions

4 and B File Input and Output

Result Domain

Type Same as left argument

Rank o p data-sent

Shape o data-sent

Depth = data-sent

Parameters

mode |

Is an integer representing one of the modes listed in Table 5-3 in the VAX APL

User’s Guide. This parameter is used only when accessing files with ASCII

sequential organization. When you specify mode, it must be surrounded by

brackets.

index

Is the component number, record number, or key value in a direct-access,

relative, or keyed file, respectively. Index must be surrounded by brackets.

chan

Is a positive integer scalar whose value is a channel number in the range 1

through 999.

data-type

Specifies the data type of the record you want to read or write. When you

include a value for data-type, you imply that the record contains pure data;

that is, the beginning of the record does not contein any header information. If

you do not specify data-type, or if you specify a value of 0, APL assumes that

there is a header at the beginning of the record

data

Is the data that is to be written to the file.

Description

The file input () and file output (8) functions are for reading and writing files.

B and B are described in greater detail in Chapter 4 of the VAX APL User’s

Guide along with other file I/O information.

The file output function (8) in its monadic form deletes a component or

record from a direct-access, relative or keyed file. APL signals DOMAIN ERROR

(DELETION NOT ALLOWED) if you use monadic B with a sequential file. When

APL Reference Manual 1-75

Primitive Mixed Functions

d and B File Input and Output

monadic B is not the leftmost function in the statement, it returns an empty

numeric matrix of shape 0 75.

The value of the @ function is the record read from the specified file. The B

function is quiet. It does not display a result if it is the leftmost function in a

statement. When it is not the leftmost function, B returns the value of its left

argument.

When a B or B function references a channel associated with a file that is not

open, APL opens the file and executes the function.

Possible Errors Generated

15 DOMAIN ERROR (DELETION NOT ALLOWED)

1-76 APL Reference Manual

Primitive Mixed Functions

+ First

4 First

Form

+ B

Argument Domain

Type Any

Shape Any

Depth - Any

Result Domain

Type Same as selected item

Rank Same as selected item

Shape Same as selected item

Depth Same as selected item

Implicit Arguments

None.

Description

The monadic + function builds an array by disclosing the first item from an

existing array. If B is empty, then + returns the prototype of B:

B <« 4

C « 15

+C

D« 2 2 p "ABCD!

+D

APL Reference Manual 1-77

Primitive Mixed Functions

+ First

0« E <« B, (cC) , cD

et + -t

|12 34 5] |AB|

fom e + |CD|

+--+

+E aFIRST OF E

4

=1E "DEPTH SHOWS A SIMPLE SCALAR ARRAY

0

1E[2] AFIKRST OF SECOND ITEM OF E

12345

=4E[2] ADEPTH SHOWS A SIMPLE ARRAY

1

ptE[2] ASHAPE SHOWS A VECTOR

5

tE[3] AFIRST OF THIRD ITEM OF E

AB

CD

=+E[3] ADEPTH SHOWS A SIMPLE ARRAY

1

ptE[3] ASHAPE SHOWS A MATRIX

2 2

+ 0 3p99 REMPTY ARG RETURNS PROTOTYPE

0

(L aPROTOTYPE IS A CHARACTER BLANK

+ 0p(1 2 3) "ABC!

000

For simple arrays, the result of monadic + is the same as it would be with

the dyadic take function (+) when all the items of the left argument are 1.

Formally, this can be represented as follows: +B <+ ((ppB) p 1) + B. However,

note that take does not disclose items of an array. First is also related to the

pick (=) functionas follows: +B <~ (c(ppB)p1)>B

Possible Errors Generated

None.

1-78 APL Reference Manual

Primitive Mixed Functions

v Monadic Format

¢ Monadic Format

Form

7B

7 18 formed with T and -

Argument Domain

Type Any

Shape Any

Depth Any

Result Domain

Type Character

Rank 1[ppB for simple numeric or heterogeneous B

ppB for simple character B

2 for nonsimple B

Shape (T 14 pB)<+> (" 1y presult) for simple B

Depth 1 (simple)

Implicit Arguments

PP (Determines decimal precision)

[1NG (Determines minus sign placement)

O0DcC (Displays control of enclosed arrays)

Description

The monadic ¥ function formats its argument array as a character array,

making it look as it would appear when displayed by APL.

Thus, if the argument array is already of type character, the result is identical

to the argument:

APL Reference Manual 1-79

Primitive Mixed Functions

s Monadic Format

O«4+«3 S5p'STAN SAM STEVE'

STAN

SAM

STEVE

74

STAN

SAM

STEVE

p¥A

35

If the argument array is of type numeric, the result appears to be identical to

the argument; however, the blank characters displayed along with the items

are actually part of the result array. For example:

A«2 4p18

B«s4

A

12 34

56 7 8

pA

2 U

B

1234

56 78

pB

2 7

(" ",B)[;2x14]
1234

5678

Note the difference between the shapes of the numeric array 4 and the

character array B.

Since it is not feasible to indicate both shape and depth in a two-dimension

display, the format of an enclosed array is always a matrix. Shape is indicated

by blank lines in the same manner as for simple arrays. Display of depth is

controlled by O0DcC, the display control system variable.

Further examples:

O0<POL«2 3p ('ABC') 0 (c,2) 99 'A' 0

+---+ 0 +---+

|ABC| |+-+]

-t | 12]]

| +-+]
+--—+

99 A0

pPOL

2 3

1-80 APL Reference Manual

Primitive Mixed Functions

v Monadic Format

0«B«3P0L

t+---+ 0 +---+

| ABC| | +-+]

t=-=t []2]]
| +-+]
+--=1

99 A0

pB aTHE SHAPES OF B AND POL ARE DIFFERENT

0«XT« 3 p (2 0 p 5) ('") (10) aCREATE AN EMPTY ARRAY

pXT

O«B«3XT

++ ++ ++

REEEEEE
|| ++ ++

o B

Possible Errors Generated

None.

APL Reference Manual 1-81

Primitive Mixed Functions

7 Dyadic Format

¥ Dyadic Format

Form

As B

7 1s formed with T and -

Left Argument Domain

Type Near-integer

Shape Vector domain

Depth 0 or 1 (simple)

Right Argument Domain

Type Numeric

Shape Any

Depth 0 or 1 (simple)

Result Domain

Type Character

Rank 1l ppB

Shape (T14pB) ,+/104(2,70.5%p,A)pA

(provided no widths are 0)

Depth 1 (simple)

Implicit Arguments

ONG (determines minus sign placement)

Description

The dyadic # function formats its right argument according to the width and

precision information supplied by its left argument.

The left argument generally contains one pair of numbers for each column (last

axis) in the right-argument array. The first number specifies the width of the

field; the second number controls the print precision. For example:

1-82 APL Reference Manual

Primitive Mixed Functions

¢ Dyadic Format

J«B<«2 U4p18

12 3 4

56 7 8

A<5 2 4 1 4 06 3

R<A%B
R

1.00 2.0 3 4,000

5.00 6.0 7 8.000

pR

2 19

Because the right argument has four columns, the left argument (4) has four

pairs of numbers. The last axis of the formatted array () has a length of

19, the sum of the widths specified in 4 (5+ 4+ 4+6). The second number of

each pair in 4 specifies how many digits are to be displayed to the right of the

decimal point. | |

You do not have to specify more than one pair of numbers as the left argument.

If you specify only one pair, that pair is replicated a number of times equal to

the length of the last axis of the right argument.

The last axis of the formatted array Y, below, has a length of 36 because the

format function specifies that each of the three columns should have a width of

12. The items are displayed with four digits to the right of the decimal point

because the second number of the left argument pair is .

Note the difference in the results when the array is formatted so that all

columns have a width of 9 and a print precision of 2, and then a width of 6

and a print precision of 0.

If a print-precision specification in the left argument is negative, the associated

item is formatted in scientific rather than decimal form, and the argument

represents the number of digits in the item’s mantissa.

O«X<2 3p 31.16 0 ~1.07 15.578 8 235.61

31.16 0 ~1.07

~15.578 8 235.61

pX

2 3

O«Y<«12 UsX

31.1600 0.0000 ~1.0700

~15.5780 8.0000 ©235.6100

pY

2 36

A<9 23X

A

31.16 0.00 “1.07

- 15,58 8.00 235.61

pA

2 27

APL Reference Manual 1-83

Primitive Mixed Functions

¥ Dyadic Format

O«R<«6 0%X

31 0 1

" 16 8 236

pR

2 18

0«B«9 23X

3.1F1 0.0F0 “1.1F0

"1.6E1 8.0F0 “2.4F2

0«C«7 13X

361 0F0 “1E0

“2E1 8E0 .

The width specification in the left argument may be omitted or may be 0. If

it is omitted, the entire left argument must be a singleton and is extended to

(2x"14pB)p 0,4, for arrays 4 and B. If the width specification is 0, then

APL uses the minimum width possible, allowing for one blank between the

formatted columns.

Two more examples of dyadic # follow. The first illustrates the formatting of a

rank 3 array; the second shows how you can use s to format tables.

O«4«2 2 2p18

W =
N

~

O

o
o

O

J«C+«5 234

1.00 2.00

3.00 4,00

5.00 6.00

7.00 8.00

pC

2 2 10

O0«B«3 3p 1 00101111

o N =
O

1 0 ¥B

101

111

1-84 APL Reference Manual

Primitive Mixed Functions

Dyadic Format

Second example:

ATABLE FORMATTING

RONS<«5 7p'APL FORTRANCOBOL BASIC PLI !

COLS«"'" USERS PROGS GSYST

FORM+«5 3p4

((74" ') ROWS),COLS;7 O0%FORM

USERS PROGS SYSTS

APL 1 2 3

FORTRAN 4 5

COBOL 7 8 1

BASIC 2 3 4

PLI 5 6 7

If the right argument to the dyadic format function is empty, the shape of the

result is determined by the following function:

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Vi<l EMPTY SHAPEF R ;C;W;P

L«<((14pR),2)p((1=p,L)/0),L
W<L[;1]

P<L[;2]

CeW,(P+3),2,6,[1.5]6-P

Z«(W=0)x2+(-xP)+<1

C<(Z¢C) ;1]
Z<(1¥pR), (-W[1]=0)++/C

V

For example:

0 10

0 9

p5 0 0 290 2p5

p0 2 5 0%0 2p5

Possible Errors Generated

9 RANK EFRROR (NOT VECTOR DOMAIN)

10

15

15

15

15

LENGTH FRROR

DOMAIN FRROR (ENCLOSED ARRAY NOT ALLOWED)

DOMAIN ERROR (INCORRECT TYPF)

DOMAIN ERROR (NOT AN INTEGER)

DOMAIN FRROR (NEGATIVE NUMBER NOT ALLOWED)

APL Reference Manual 1-85

Primitive Mixed Functions

7+ Dyadic Format

15 DOMAIN ERROR (WIDTH TOO SMALL)

27 LIMIT FERROR (INTEGER TOO LARGE)

27 LIMIT FRROR (PARAMETER OUT OF RANGE)

1—86 APL Reference Manual

Primitive Mixed Functions

¥ Monadic Grade Down

Y Monadic Grade Down

Form

Y B VYVLK]B

¥ is formed with v and |

Argument Domain

Type Homogeneous

Shape Matrix, vector, or scalar (not singletons of rank >2)

Depth 0 or 1 (simple)

Result Domain

Type Nonnegative integer

Rank 1

Shape (¢pB) [K]

Depth 1 (simple)

Implicit Arguments

010 (YB when ,0I0 « 1 is identical to 1 + ¥B when ,0I0 « 0)

Description

The monadic ¥ function returns a numeric vector whose items can be used to

sort the items of the argument in descending order. Thus, grade down does not

actually sort arrays. It creates a permutation vector of the index numbers of

the argument array’s items, and this vector can then be used to sort the array.

Sorting a vector requires two steps. First, the vector is the argument to the

grade down function, and then the result is used to index the vector:

A<2 9 7 4 3 10 4

0«B+Y4
6234751

A(B]

10 97 4 4 32

APL Reference Manual 1-87

Primitive Mixed Functions
¥ Monadic Grade Down

If two or more items of a vector or matrix have the same value, the order of

the items is determined by their relative positions in the original array (this

is called a stable sort). For character arguments, the collating sequence is

determined by the value of 0 AV. Note that for numeric arguments, the result is

not [J CT-dependent.

When you use the grade down function to sort a matrix, APL treats each row

or column as a string. Thus, you can use the function to sort row by row or

column by column, but not to sort individual items within a row or column.

When applied to a matrix, the grade down function produces a vector whose

length is equal to the number of rows or columns in the matrix.

The following sorts the matrix B by rows and then sorts the matrix by columns

O«B«3 5p 32 1503197032080

w Y

O

O

x
R
~
e

<

O
O

5 3 2

7 3 1

8 3 2

In this example, the original first row remains the first row, the third row

becomes the second row, and the second row becomes the third row. Note that

¥B and ¥ [2] B are equivalent. |

You can also sort character arrays by rows or by columns. For example:

1-88 APL Reference Manual

Primitive Mixed Functions

¥ Monadic Grade Down

O«B<«3 5p'"ALLENALAN ALLAN'

ALLEN

ALAN

ALLAN

BLYB;]
ALLEN

ALLAN

ALAN

B[;V[1]B]

NLLEA

LANA

NLLAA

If the argument to V is a scalar, the ravel function is applied to extend it to a

one-item vector, and the result of the ¥ function is ,J7I0:

1

1

R«V5

R

ppR

Note that 0 CT is not an implicit argument to the grade down function.

Possible Errors Generated

9 RANK ERROR (NOT A SCALAR, VECTOR, OR MATRIX)

15

27

28

29

30

30

30

30

30

30

DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

LIMIT ERROR (INTEGER TOO LARGE)

AXIS RANK FRROR (NOT VECTOR DOMAIN)

AXIS LENGTH ERROR (NOT SINGLETON)

AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)

AXIS DOMAIN FRROR (ENCLOSED ARRAY NOT ALLOWED)

AXIS DOMAIN ERROR (INCORRECT TYPE)

AXIS DOMAIN ERROR (NOT AN INTEGER)

AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

APL Reference Manual 1-89

Primitive Mixed Functions

¥ Dyadic Grade Down

V¥ Dyadic Grade Down

Form

AV B

¥ is formed with v and |

Left Argument Domain

Type Character

Shape Any

Depth 0 or 1 (simple)

Right Argument Domain

Type Character

Shape | Any

Depth 0 or 1 (simple)

Result Domain

Type Nonnegative integer

Rank 1

Shape 14 p 5B

Depth 1 (simple)

Implicit Arguments

0710 (AVB when ,J7I0 <« 1 1s identical to 1+ A4Y¥B when ,JI0 « 0)

Description

The dyadic ¥ function returns a numeric vector whose items can be used to

sort the items along the first axis of the right argument in descending order.

(The sort is performed according to the collating sequence defined in 4.) Grade

down does not actually sort arrays; it creates a permutation vector of the index

numbers of the argument array’s items, and this vector can then be used to

sort the array. If either argument is empty, the result of the grade function is

1 14 p B. If the length of the first axis of B is one, then the result is ,[JI0.

1-90 APL Reference Manual

Primitive Mixed Functions

¥ Dyadic Grade Down

If two or more items of the right argument have the same value, the order of

the items is determined by their relative positions in the original array (this is

known as a stable sort).

Sorting an array requires two steps. First, the array is the right argument

to the grade function, and then the result is used to index the array. The

left argument determines the order in which APL collates the items of the

right argument; APL evaluates the collating sequence from right to left. For

example:

ALPHA1<"IVXLCDM' o N<'CMXIVCILI!

X <« [0 « ALPHA1VN

2168354749

N(X]

MCCLXVIII

DATES<[IBOX 'MCCLXVIII

VIl

MLXXIII

DCCCXXIIT

CLXVI

MDCLIII

CLXXI

AVIIL!

X < [« ALPHA1VDATES

6 1 3 4758 2

DATES[X;]

MDCLIII

MCCLXVIII

MLXXIII

DCCCXXIII

CLXXI

CLXVI

XVIII

VII

HEX+«' 0123456789ABCDEF"

HD<[IBOX '8E7

3DA

976

AE8

F8

3D5

4o

APL Reference Manual 1-91

Primitive Mixed Functions

v Dyadic Grade Down

X « 0 « HEXVHD

4 312657

HD[X;]

AE8

976

8E7

3DA

3D5

F8

40

To sort an array that contains more than one font, you can use sequences

similar to the following, depending on the desired result:

a7 SORTS AFTER 7 AND BEFORE Y

G T I T e T e e e e e mmhm e eaam dmie e e

X + [« ALPHA2YWORDS

87263511

WORDSLX;]

PALM

NEAR

nZ SORTS AFTER A AND BEFORE Y

ALPHA3+«'ABCDEFGHIJKLMNOPQRSTUVNXYZABCDEFGHIJKL

MNOPQRSTUVWXYZ'

X « [0 « ALPHA3VWORDS

72 358¢61H41

WORDSLX;]

NEAR

1-92 APL Reference Manual

Primitive Mixed Functions

¥ Dyadic Grade Down

If any items appear in the right argument when they have not been specified

in the left argument, APL considers them equal and places them at the end of

the sort sequence. For example:

ALPHA4«'"ABCDEFGHIJKLMNOPQRSTUVWNXYZ'

GAMES«[JBOX 'FREEIE TAG

MONOPOLY

HIDE AND SEEK

BACKGAMMON

FRISBEE'

X « [J « ALPHAUYGAMES

2 34651

GAMES[X;]

MONOPOLY

HIDE AND SEEK

FRISBEE

BACKGAMMON

FREEZE TAG

When the left argument has a rank greater than one, each axis represents

a level of comparison and the last axis receives the highest priority. For

example, when the left argument has two rows, each containing an alphabet

in a different font, APL gives higher priority to the order specified by the

columns (last axis) than it gives to the fonts specified by the rows (first axis).

For this reason, the word #ELM precedes the word HEEL in the end result of

the following example:

APL Reference Manual 1-93

Primitive Mixed Functions

¥ Dyadic Grade Down

» ALPHAS+'ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGHIJKLMNOPQRSTUVWXYZ'

WORDS«{1BOX 'HOPE

X+ 0 < ALPHASYWORDS

723586 11U

WORDS([X;]

NEAR

Duplicate items, such as character blanks, in the left argument (4) may yield

an unexpected collating sequence. APL compares the locations of a duplicate

item and bases its position in the final collating sequence on this comparison.

The final location of a duplicate item is the minimum value along each axis

for each occurrence. For example, if a duplicate ¥ appears at locations 1 1 3

and 2 1 2 in a three-dimensional array, then the position of the ¥ in the final

collating sequence is 1 1 2. If the position 1 1 2 is occupied by a value other

than v, the two are treated as equivalents:

(0«D+2 2 3p'ABCDEFGCIJKL'

ABC

DEF

GCI

JKL

(«B<«4 3p'ABFAAFACFABF'

ABF

AAF

ACF

ABF

B[DYB;] aNOTE THAT C AND B ARE EQUIVALENT

ABF

ACF

ABF

AAF

1-94 APL Reference Manual

Primitive Mixed Functions

¥ Dyadic Grade Down

In the following example, D appears at locations 1 2 and 2 1, and B appears

at locations 1 1 and 2 2. In the final collating sequence, both are positioned at

location 1 1 and are treated as equivalent values:

[l«L«2 2p'BDDB'

BD

DB

[«R<«5 2p'DBBDBDDBBD'

DB

BD

BD

DB

BD

LYR aD AND B ARE EQUIVALENT, NO CHANGE

12345

For more information about how the dyadic grade function is implemented, see

Smith, H.J., "Sorting - A New/Old Problem." APL Quote Quad 9 (June 1979)

ppl123-127.

Possible Errors Generated

10 LENGTH FRROR (ARGUMENT STRING IS TOO LONG)

15 DOMAIN EFRROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPFE)

30 AXIS DOMAIN ERROR (INCORRECT OPERATION)

APL Reference Manual 1-95

Primitive Mixed Functions

A Monadic Grade Up

A Monadic Grade Up

Form

A B A[LK]B

A is formed with Ao and |

Argument Domain

Type Homogeneous

Shape Matrix, vector, or scalar (not singletons of rank > 2)

Depth 0 or 1 (simple)

Result Domain

Type Nonnegative integer

Rank 1

Shape (¢pB) [K]

Depth 1 (simple)

Implicit Arguments

0710 (ABwhen[1I0 « 11s1dentical to 1 + AB when 070 « 0)

Description

The monadic 4 function returns a numeric vector whose items can be used to

sort the items of the argument in ascending order. Thus, grade up does not

actually sort arrays; it creates a permutation vector of the index numbers of

the argument array’s items, and this vector can then be used to sort the array.

Sorting a vector requires two steps. First, the vector is the argument to the

grade up function, and then the result is used to index the vector:

A€2 97 4 3 10 4

O«B<)A

1547326

A[B]

23447910

1-96 APL Reference Manual

Primitive Mixed Functions

A Monadic Grade Up

If two or more items of a vector or matrix have the same value, the order of the

items 1s determined by the relative positions of the items in the original array

(this is called a stable sort). For character arguments, the collating sequence is

determined by the value of 04V. Note that for numeric arguments, the result is

not 00 CT-dependent.

When you use the grade up function to sort a matrix, APL treats each row

or column as a string. Thus, you can use the function to sort row by row or

column by column, but not to sort individual items within a row or column.

- When applied to a matrix, the result of the grade up function is a vector whose

length is equal to the number of rows or columns in the matrix.

The following sorts the matrix B by rows and then by columns:

B+«3 503 2 1503197032080

AB

2 31

A[2]B

;4 [1]B]
012

091

00 2

In this example, the original second row becomes the first row, the third row

becomes the second row, and the first row becomes the third row. Note that A B

and 4 [2] B are equivalent. You can also sort character arrays by rows or by

columns. For example:

O«B<«3 Sp'ALLENALLINALLAN'

ALLEN

ALLIN

ALLAN

BLAB;]
ALLAN

ALLEN

ALLIN

B(;4[1]B]
AELLN

AILLN

AALLN

APL Reference Manual 1-97

Primitive Mixed Functions

A Monadic Grade Up

If the argument to 4 is a scalar, the ravel function is applied to extend it to a

one-item vector, and the result of the 4 function is ,010:

1

1

R<AS

R

ppR

Note that 0 CT is not an implicit argument to the grade up function.

Possible Errors Generated

9 RANK EFRROR (NOT A SCALAR, VECTOR, OR MATRIX)

15

27

28

29

30

30

30

30

30

30

DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

LIMIT ERROR (INTEGER TOO LARGE)

AXIS RANK ERROR (NOT VECTOR DOMAIN)

AXIS LENGTH ERROR (NOT SINGLETON)

AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)

AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

AXIS DOMAIN ERROR (INCORRECT TYPE) |

AXIS DOMAIN ERROR (NOT AN INTEGER)

AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

1-98 APL Reference Manual

Primitive Mixed Functions

A Dyadic Grade Up

A Dyadic Grade Up

Form

AAB

A is formed with A and |

Left Argument Domain

Type Character

Shape Any

Depth 0 or 1 (simple)

Right Argument Domain

Type Character

Shape Any

Depth 0 or 1 (simple)

Result Domain

Type Nonnegative integer

Rank 1

Shape 1+p 5B

Depth 1 (simple)

Implicit Arguments

[1I0 (AAB when 070 « 1 isidenticalto 1 + AAB when 110 <« 0)

Description

The dyadic A function returns a numeric vector whose items can be used to

sort the items along the first axis of the right argument in ascending order.

(The sort is performed according to the collating sequence defined in 4.) Grade

up does not actually sort arrays; it creates a permutation vector of the index

numbers of the argument array’s items, and this vector can then be used to

sort the array. If either argument is empty, the result of the grade function is

1 14 p B. If the length of the first axis of B is one, then the result is ,[0 0.

APL Reference Manual 1-99

Primitive Mixed Functions

A Dyadic Grade Up

If two or more items of the right argument have the same value, the order of

the items is determined by their relative positions in the original array (this is

known as a stable sort).

Sorting an array is accomplished in two steps. First, the array is the right

argument to the grade function, and then the result is used to index the array.

The left argument determines the order in which APL collates the items of the

right argument. For example:

ALPHA1<'"IVXLCDM'

N«'"CMXIVCILI'

X « [« (OALPHAL)AN

2168354749

N[X]

MCCLXVIII

DATES«[JBOX "MCCLXVIII

VIII

MLXXIII

DCCCXXIII

CLXVI

MDCLIII

CLXXI

XVIII!

X « [0 « ALPHA1ADATES

2 8574316

DATES[X;]

VIIT

XVIII

CLXVI

CLXXI

DCCCXXIII

MLXXIII

MCCLXVIII

MDCLIII

HEX«' 0123456789ABCDEF"

HD«<[]BOX '8E7

3DA

976

AES8

F8

3D5

40

1-100 APL Reference Manual

Primitive Mixed Functions

X « [0 « HEXAHD

756 2134

HD[X;]

40

F8

3D5

3DA

8E7

976

AF8

A Dyadic Grade Up

To sort an array that contains more than one font, you can use sequences

similar to the following, depending on the desired result:

e a— e mmm em— e e e e

T e e m— m— e e e e e e mven e e e

— v —t——

X « [0 « ALPHA2JWORDS

L' 1536278

WORDS[X;]

HELM

HOPE

HEEL

HEEL
NEST

ALPHA3+«[(+«'ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKL

MNOPQRSTUYNXYZ'

ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKL

MNOPQRSTUVWXYZ

X « [1 « ALPHA3AWORDS

416 853 27

APL Reference Manua! 1-101

Primitive Mixed Functions

A Dyadic Grade Up

WORDSL[X;]

If any items appear in the right argument when they have not been specified

in the left argument, APL considers them equal and places them at the end of

the sort sequence. For example:

ALPHA4<«'"ABCDEFGHIJKLMNOPQRSTUVNXYZ'

GAMES+[1BOX 'FREEZE TAG

MONOPOLY

HIDE AND SEEK

BACKGAMMON

FRISBEE'

X « [0 « ALPHAYAGAMES

5164 2 3

GAMES[X;]

BACKGAMMON

FREEZE TAG

FRISBEE

HIDE AND SEEK

MONOPOLY

When the left argument has a rank greater than one, each axis represents

a level of comparison and the last axis receives the highest priority. For

example, when the left argument has two rows, each containing an alphabet

in a different font, APL gives higher priority to the order specified by the

columns (last axis) than it gives to the fonts specified by the rows (first axis).

For this reason, the word #EEL precedes the word ZELM in the end result of

the following example:

1-102 APL Reference Manual

ALPHAS<2 26p'ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGHIJKLMNOPQRSTUWXYZ'

WORDS+[JBOX 'HOPE

e e i s i

X « [« ALPHASAWORDS

53412768

WORDSLX;]

HEEI

HEEL
HELM

HOPE

Primitive Mixed Functions

A Dyadic Grade Up

Duplicate items, such as character blanks, in the left argument (4) may yield

an unexpected collating sequence. APL compares the locations of a duplicate

item and bases its position in the final collating sequence on this comparison.

The final location of a duplicate item is the minimum value along each axis for

each occurrence. For example, if a duplicate ¥ appears at locations 1 1 3 and

2 1 2 in a 3-dimensional array, then the position of the ¥ in the final collating

sequence is 1 1 2. If the position 1 1 2 is occupied by a value other than ¥, the

two are treated as equivalents.

O«D<«2 2 3p'ABCDEFGCIJKL'

ABC

DEF

GCI

JKI,

(«B+u4 3p'ABFAAFACFABF'

ABF

AAF

ACF

ABF

B[DAB;]
AAF

ABF

ACF

ABF

ANOTE THAT C AND B ARE EQUIVALENT

APL Reference Manual 1-103

Primitive Mixed Functions

A Dyadic Grade Up

In the following example, D appears at locations 1 2 and 2 1, and B appears

at locations 1 1 and 2 2. In the final collating sequence, both are positioned at

location 1 1 and are treated as equivalent values.

O«L+«2 2p'BDDB'

(«R+5 2p'DBBDBDDBBD'

LAR aD AND B ARE FQUIVALENT, NO CHANGE

12345

For more information about how the dyadic grade function is implemented, see

Smith, H.J., "Sorting - A New/Old Problem," APL Quote Quad 9 (June 1979)

pp123-127.

Possible Errors Generated

10

15

15

30

30

LENGTH ERROR (ARGUMENT STRING IS TOO LONG)

DOMAIN FRROR (ENCLOSED ARRAY NOT ALLOWED)

DOMAIN ERROR (INCORRECT TYPFE)

AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

AXIS DOMAIN ERROR (INCORRECT OPERATION)

1-104 APL Reference Manual

Primitive Mixed Functions

1 Index Generator

1 Index Generator

Form

1 B

Argument Domain

Type Nonnegative near-integer

Shape Singleton

Depth 0 or 1 (simple)

Result Domain

Type Nonnegative integer

Rank 1

Shape , B

Depth 1 (simple)

Implicit Arguments

010 (1 Bwhen[JI0 « 1 is identicalto 1 + 1 B when JI0 « 0)

Description

For an argument B, the monadic : function generates a vector of B consecutive,

ascending integers starting with the value of the index origin. For example:

1 2

a
0

M
O

3

0
w

w

Jed« 1l

I

pA

2x112 APOWERS OF 2

16 32 64 128 256 512 1024 2048 4096

2 5p110

4 5

10

X<7 1 3 4

1pX

2 34

APL Reference Manual 1-105

Primitive Mixed Functions

1 Index Generator

If the index origin is 1, the integers have values 1 through B; if the mdex

origin is 0, the 1ntegers have values 0 through B - 1:

1

0io

15

12 345

0I10<0

15

012314

Regardless of the value of 010, 1 0 is the numeric empty vector:

10

(APL outputs a blank line)

p10

Possible Errors Generated

9 KRANK ERROR (NOT VECTOR DOMAIN)

10

15

15

15

15

27

LENGTH ERROR (NOT SINGLETON)

DOMAIN FRROR (ENCLOSED ARRAY NOT ALLOWED)

DOMAIN ERROR (INCORRECT TYPFE)

DOMAIN FRROR (NEGATIVE NUMBER NOT ALLOWED)

DOMAIN ERROR (NOT AN INTEGER)

LIMIT FRROR (INTEFGER TOO LARGE)

1-106 APL Reference Manual

Primitive Mixed Functions

1 Index Of

1 Index Of

Form

A1B

Left Argument Domain

Type Any

Shape Vector domain

Depth Any

Right Argument Domain

Type Any

Shape Any

Depth Any

Result Domain

Type Nonnegative integer

Rank oppB

Shape o B

Depth - 0 or 1 (simple)

Implicit Arguments

0CT (determines comparison precision)

0I0 (A1B when IO « 1 isidentical to 1 + 418 when[JI0 < 0)

Description

The dyadic : function returns the position of the first occurrence in the left

argument of the corresponding items in the right argument. For example:

49 6 8 1t 6 4

3 1

The result indicates that 6 is the third item in the left argument and 4 is the

first item.

APL Reference Manual 1-107

Primitive Mixed Functions

1 Index Of

The result will always have the same shape as the right argument, so that an

index is returned for each of the values in the right argument. If a particular

value in the right argument does not appear in the left argument, APL

supplies a value equal to the last index value of the left argument plus one.

For example:

"ABCDEFGH'1 "HEADER!

8514589

The value R does not appear in the left argument, so APL returns the value 9

(there are eight values in the left argument) for the position corresponding to

R.

Note that the dyadic : function is 0 70-dependent: when 0I0 is 0, each item

in the result is one less than when 010 is 1:

DI0+0

"ABCDEFGH'1'HEADER'

740 3048

If the right argument of the dyadic 1 function is empty, the result is empty. If

the left argument is empty, the result is all 1s (0 70«~>1):

10)12 5p110(10

11111

11111

Note that comparisons of the items in the right and left arguments are defined

in terms of the match (=) function (and so are (] cT-dependent). Because match

allows mixed-type arguments, you can compare characters with numbers.

However, such a comparison is always false, so that if you use mixed-type

arguments for dyadic 1, the items in the result will be equal to the last index

value of the left argument plus one.

Further examples:

O«VIC«'"ABC' 0

$--=+ 0

| ABC|

$---t

0«VOOF+ 'AB' 0 ~3 'ABC' 99 1

$--+ 0 "3 +---+ 99 1

| AB | | ABC|

+--1 $---4

1-108 APL Reference Manual

Primitive Mixed Functions

1 Index Of

VOOF VIC

4 2

aNOTE THAT DYADIC 1 IS (IO-DEPENDENT

OI0+0

VOOF 1 VIC

3 1

O«XIP« 0 p (1 2 3) 'ABC'

(APL outputs a blank line)

O«V«(1 2 3) 'ABC'

t----- + +---+

|1 2 3] |ABC|

t---=- + +---+

V v XIP aEMPTY RIGHT ARGUMENT

(APL outputs a blank line)

p V 1 XIP

0

XIP 1 ¥V aEMPTY LEFT ARGUMENT

00

Possible Errors Generated

9 RANK FRROR (NOT VECTOR DOMAIN)

APL Reference Manual 1-109

Primitive Mixed Functions

n Intersection

N Intersection

Form

AnB

Left Argument Domain

Type Any

Shape Any

Depth Any

Right Argument Domain

Type Any

Shape Any

Depth Any

Result Domain

Type See explanation below

Rank 1

Shape pu((,4)eB)/A

Depth —

Implicit Arguments

0cT (Determines comparison precision)

Description

The dyadic n function returns the common items found in both arguments.

The result is the intersection of the arguments with the duplicate items

removed. Note that the order of the items in the result is not predictable. For

example:

1-110 APL Reference Manual

Primitive Mixed Functions

n Intersection

"CBEFGH' n 2 3p'ABCD'

CB

(2 3p "ABCD') n 'CBEFGH!

BC

(16) n 57 3 4

3 45

57 3 4 n 16

3 45

You can use the intersection function to remove duplicate items from an

argument. However, the unique function is the preferred method for this task.

For example:

A«<1 212 345 1 65 34 67 1 34 ADUPLICATES ARE 1 AND 34

AnA

1 212 345 65 34 67

u 4

1 212 345 65 34 67

The type of the result depends on the types of the arguments, as shown in the

following table:

Argument Resulting Type

Neither empty Same as left argument

One empty Same as nonempty argument

Both empty Same as left argument

The n function compares items in terms of the match (=) function, which uses

the value of JCT. Since match allows mixed-type arguments, you can compare

characters with numbers. However, such a comparison is always false, so that

if you use mixed-type arguments for dyadic n, the result will be empty.

Note that the following definition applies: 4nB «> u ((,A) =B) / ,A, where

the order of the items may differ.

Further examples:

J«A<c,3

+-+

| 3]
+-+

O«B<(1 2 5)

125

APL Reference Manual 1-111

Primitive Mixed Functions

n Intersection

O«WRL+(<,3) (1 2 5) 1

t---+ +----- + 1

| +-+] |1 2 5|

3] 4=m--- +

| +-+1
+---+

O«MIC«2 2 p AB TM10

t---+ +----- +

|+-+] |1 2 5]

[131] +----- +
| +-+1
+---+

10

MIC n WRL AZERO NOT IN INTERSECT

+---+ +----- + 1

|+-+] |1 2 5]

13t +----- t

| +-+]
+---+

MIC u <,3 aNO INTERSECTION BETWEEN TWO ARGUMENTS

t--—+ +----- + 10 +-+

|+-+1 11 2 5] |31
|13 +----- + +-+

| +-+]
+---+

O«VAN«(1 2 3) 'ABC' (c,1 2 3) ACREATE VAX

+--==- I e s +

|1 2 3] |ABC| |+----- +|

+--— - + +---+ [|1 2 3]

| +----- t]
o= +

A«(1 2 3) A" ACREATE NEW A

A n VAN

t--——- +

112 3

t--=-- +

Possible Errors Generated

None.

1-112 APL Reference Manual

Primitive Mixed Functions

= Match

= Match

Form

A=B

= 1s formed with = and _

Left Argument Domain

Type Any

Shape Any

Depth Any

Right Argument Domain

Type Any

Shape Any

Depth Any

Result Domain

Type Boolean

Rank 0

Shape 1 0 (scalar)

Depth 0 (simple scalar)

Implicit Arguments

O0CT (determines comparison precision)

Description

The dyadic = function determines whether the two arguments are identical in

rank, shape, and value. The result is a Boolean scalar: true, if the arguments

are identical, and false if they are not. For example:

APL Reference Manual 1-113

Primitive Mixed Functions

= Match

YABCD' = '"ABCD'

1

YVABCD' = TACBD'

0

"ABCD' = 2 2p'ABCD'

0

TAY = 147

0

123=123

1

123=12

0

123=1223

0

123="1"12 3"

0

' = 10

0

The = function compares the simple items in terms of the equal (=) function

and identifies equal items based on the value of 0 CT. For example:

OcT

1E 15

4 = 4-5F 16

1

Further examples:

[l«A<Uu

n

[J«B<«c,i

+-+

| 4]
+-+

A =8B aNOTE DIFFERENCE BETWEEN = AND =

0

A =B

+-+

1]
+-+

O«VIC«(12 3) (c,b)

+---=- + +---+

|1 2 3] |+-+]|

pommmt |
| +-+]
+---+

[l«N<c,6u

+-+

| 4]
+-+

1-114 APL Reference Manual

Primitive Mixed Functions

= Maich

[J«RED«(1 2 3),N

12 3 +-+

|4
+-+

RED = VIC

He@ec(1 2 3)

Possible Errors Generated

None.

APL Reference Manual 1-115

Primitive Mixed Functions

H Matrix Divide

H Matrix Divide

Form

ABB

B is formed with 0 and=

Left Argument Domain

Type Numeric

Shape Matrix, vector, or scalar (not singletons of rank < 2)

Depth 0 or 1 (simple)

Right Argument Domain

Type Numeric

Shape Matrix, vector, or scalar (not singletons of rank < 2)

Depth 0 or 1 (simple)

Result Domain

Type Numeric

Rank Of " 2+(ppd)+ppB

Shape (1+pB) ,14vp4

Depth 0 or 1 (simple)

Implicit Arguments

O0CT (used in the test for singularity)

Description

For arguments 4 and B, the dyadic # function determines the generalized

solution R to the linear system A=B+ . = R. If B has more rows than columns,

then dyadic B returns the least-squares solution to the linear system.

The matrix divide function treats scalars and vectors as one-column matrices

(except when it is determining the shape of the result).

1-116 APL Reference Manual

Primitive Mixed Functions

H Matrix Divide

The following example shows the use of the matrix division function in solving

the linear equations 3A+B=9 and 2A-B=1:

X+9 1

Y«2 2p3 1 2 1

XgY

2 3

In the expression X@Y, Y is a matrix whose values are the coefficients of the

equations, and X is a vector containing the constant terms 9 and 1.

The result is a vector in which the first item is the value of 4 in the linear

equations, and the second is the value of B. The following example shows other

uses of matrix divide, including a least-squares solution:

O«d«(,[1.5]2 5), 1

2 1

51

B«10 19

oJ+«X«BBA

3 U

2

A+. xX

10 19

O«Ad«(,[1.5]15), 1 .

11

2 1

31

4 1

5 1

(PP

10

B«2.001 2.998 4.002 4,997 6.01

O«X+BHA

1.0017 0.9965

B-A+.xX

0.0028 ~0.0019 0.0004 0.0063 0.005

D+X+BA

0.2 "0.1 "9.356402631F19 0.1 0.2

0.8 0.5 2.000000000E"1 0.1 O.u

X+.x4

1.000000000E0 T1.04083u4086EF17

2.775557562E17 1.000000000E0

For more information about how the matrix divide function is implemented,

see Jenkins, M. A., The Solution of Linear Systems of Equations and Linear

Least Squares Problems in APL. New York: IBM Scientific Center, Technical

Report No. pp320-2989, June 1970; and Businger, Peter, and Golub, Gene H.

"Linear Least Squares Solutions by Householder Transformations." Numerische

Mathematik 7 (1965) pp269-276.

APL Reference Manual 1-117

Primitive Mixed Functions

H Matrix Divide

Possible Errors Generated

1-118

9 KANK ERROR (NOT A SCALAR, VECTOR, OR MATRIX)

10

10

15

15

15

15

27

LENGTH ERROR (FEWER ROWS THAN COLUMNS)

LENGTH ERROR (NUMBER OF ROWS MUST MATCH)

DOMAIN FRROR (DIVISION BY ZERO)

DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

DOMAIN ERROR (INCORRECT TYPE)

DOMAIN ERROR (SINGULAR MATRIX)

LIMIT ERROR (FLOATING OVERFLOW)

APL Reference Manual

Primitive Mixed Functions
B Matrix Inverse

EH Matrix Inverse

Form

BB

H is formed with 0 and =

Argument Domain

Type Numeric

Shape Matrix, vector, or scalar (not singletons of rank <2)

Depth 0 or 1 (simple)

Result Domain

Type Numeric

Rank ppB

Shape ¢oB

Depth 0 or 1 (simple)

Implicit Arguments

OCT (used in the test for singularity)

Description

The monadic B function inverts a matrix to facilitate matrix division and a

variety of other matrix operations.

If the argument is a matrix, its rows must be linearly independent.

If the argument is a scalar or vector, the result is a scalar or vector,

respectively, but the result’s items are obtained by treating the argument

as a one-column matrix. Formally expressed, for an argument B :

BB «>((I,I)p1,(I<]|+pB)p0)H (24 (pB),11))pB

Note that the matrix product of B and BB is the identity array. Formally

expressed, for an argument B:

B+ . xEHB<«~>1

APL Reference Manual 1-119

Primitive Mixed Functions

B Matrix Inverse

For example:

O«A«+(13)o.+1+13

1 0.5 0.3333333333

0.5 0.3333333333 0.25

0.3333333333 0.25 0.2

_[]+X<—E]A

9 36 30

36 192 180

30 180 180

X+.x4

1.000000000F0 2.220446049EF16 1.66533u4537E16

"4 ,440892099E15 1.000000000F0 71,332267630E15

4,440892099E15 2.220u446049F15 1.000000000E0

For more information about how the matrix inverse function is implemented,

see Jenkins, M. A., The Solution of Linear Systems of Equations and Linear

Least Squares Problems in APL. New York: IBM Scientific Center, Technical

Report No. pp320-2989, June 1970; and Businger, Peter and Golub, Gene H.

"Linear Least Squares Solutions by Householder Transformations.” Numerische

Mathematik 7 (1965) pp269-276.

Possible Errors Generated

1-120

9 RANK ERROR (NOT A SCALAR, VECTOR, OR MATRIX)

10 LENGTH ERROR (THERE ARE FEWER ROWS THAN COLUMNS)

15 DOMAIN ERROR (DIVISION BY ZERO)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN ERROR (SINGULAR MATRIX)

27 LIMIT FRROR (FLOATING OVERFLOW)

APL Reference Manual

Primitive Mixed Functions

e Membership

€ Membership

Form

AeB

Left Argument Domain

Type Any

Shape Any

Depth Any

Right Argument Domain

Type Any

Shape Any

Depth Any

Result Domain

Type Boolean

Rank ppA

Shape oA

Depth 0 or 1 (simple)

Implicit Arguments

0cT (determines comparison precision)

Description

The dyadic ¢ function determines whether particular items of the left

argument array occur as items of the right argument array. The result is

a Boolean array whose shape is the same as that of the left argument: a 1

indicates that the corresponding item in the left array is present somewhere in

the right array; a 0 indicates that the item is not present. For example:

A<2 3p7 8 2 46 9

Ae1b

001

110

APL Reference Manual 1-121

Primitive Mixed Functions

e Membership

The result identifies the items in 4 that are also items in 1 6.

You can use the compression function (/) in conjunction with the membership
function (¢) to identify the particular items that are members of both

argument arrays:

(«A«'ABCDEFGH'€' HEADED'

10011001

A/'ABCDEFGH'

ADFH

Note that comparisons of the items in the right and left arguments are defined
in terms of the match (=) function (and so are [1cT-dependent). Since match

allows mixed-type arguments, you can compare characters with numbers.
However, such a comparison is always false, so that if you use mixed-type
arguments for dyadic ¢, the result will be all 0 s. ‘

Further examples:

0«ACT«(1 2 3) '"ABC' (c,4)

t---—- L e i

|1 2 3] [ABC| |+-+]

t----- + +---+ ||U4]]

[+-+]
t--=4

[0«B0Y<«2 2 p (c,4) 'BC' (1 2 3) 0

t---+ -+

|+-+| |BC|
[Tul] 4
| +-+]
+---1

ACT € BOY

Possible Errors Generated

None.

1-122 APL Reference Manual

Primitive Mixed Functions
> Pick

> Pick

Form

AoB

Left Argument Domain

Type Nonnegative near-integer

Shape Vector domain

Depth Less than or equal to 2

Right Argument Domain

Type Any

Shape Any

Depth Any

Result Domain

Type Any

Rank Any

Shape Any |

Depth (=B) -p A (provided 4 is along the deepest path)

Implicit Arguments

0I0 (A>B when JI0+«1 is identical to ('1+,4) >B when J70<0)

Description

The dyadic > function selects and discloses an item from an existing array.

The items in A specify the coordinates of items in B. For example:

V<21 22 23 24 25 26

2>V aSELECT SECOND ITEM IN V

22

V2] aNOTE SIMILARITY TO INDEXING

22

APL Reference Manual 1-123

Primitive Mixed Functions

> Pick

1-124

You can select an item from any depth in an enclosed array. The length of 4

determines the depth of the selected item: when 4 has one item, the selection

is from the top level of B; when 4 has two items, the selection is from the

second level; and so on. For example:

O«B«('1A" '1B') ('24" '2B') ('3A' '3B')

tmmm - e I +

| +--+ +--+| |+--+ +--+] [+=-+ +--+]|

| 1141 11B{| []24] 12B[| |[3A| |3B]]
[+--+ +-=+| [+--+ +--+] [+--+ +--+]|

F--m— - S t oA +

=B

3 o

ALEFT ARG LENGTH IS 1, PICK FROM TOP LEVEL

0«Z+<25B

t--+ +--+

|24 |2B]|

t--+ +--1

=7

2

pZ

2

J«X«2 258 aPICK FROM SECOND LEVEL

2B

=4

1

pX

2

The length of each item of 4 is equal to the rank of the corresponding array

in B. The first item in 4 has a length equal to the rank of B; the second item

has a length equal to the rank of the array selected by the first item in 4 ; the

third item has a length equal to the rank of the array selected by the second -

item 1n 4; and so on. In the following example, the rank of # is 2, and the

rank of item H[1; 2] is 3. To select an item from A[1; 2], the first item of 4

must contain two elements, and the second item must contain three elements.

When you pick from the top level of an array, 4 must have length 1, and if 4

1s enclosed, the contents must be in the simple vector domain.

APL Reference Manual

Primitive Mixed Functions

> Pick

O«H+2 2 p (10x15) (2 3 4p124) (2 2p100x14) 1000

fommm + t------—--—- +

|10 20 30 40 50| | 1 2 3 4]

o m e +]1 5 6 7 8

| 9 10 11 12|

| |
|13 14 15 16/

|17 18 19 20|

|21 22 23 24|

pmmmmme — - +

t-————— + 1000

1100 200|

1300 400|

fo-mm— +

=f

?

O«Z«((1 2) (2 2 3)) o H APICK FROM SECOND LEVEL

19

=7

0

(c1 2)>2H

1 2 3 4

5 6 7 8

g 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

1 224

10 LENGTH ERROR (LEFT ITEM LENGTH NOT EQUAL TO SELECTED ITEM RANK)

1 2of

A

When B and all the items in B are in the vector domain, then 4 is in the

simple vector domain. When 4 is empty, then 4>B «~ B.

O«F<'A" UAN' (VANT' ('ANTI' '"ANTIC'))

A +--+ +-—--—-----mm +

|AN| |+---+ +-------—=—---- + |

+--+ | |ANT| |+----+ +----- +1|

|+---+ | |ANTI| |ANTIC]|]|

| | +-=--t +---—- +1]
] fom + |

fom e +

=F

L

pF

3

APL Reference Manual 1-125

Primitive Mixed Functions

> Pick

o F ASHAPE OF EFACH OF F

++ -+ -+

12 12|
++ +-+ +-t

J«P+3 > F aPICK 3RD ITEM OF F

fommt e +

|ANT| [+----+ +----~ +|

+---+ | |ANTI| |ANTIC|]

| +----4 +----- + |

fom e +

=P

3

pP

2

J«@«3 2 > F AnPICK 1 LEVEL DEEPER
fo-——t - +

|ANTI| |ANTIC]

to-m=t - +

2

¥
2

«R«3 2 1 o F APICK ANOTHER LEVEL DEEPER

ANTI

=R

1

0R

I

0«5«3 2 1 3 o F aPICK FROM 4TH LEVEL OF F

T

=5

0

pS

(APL outputs a blank line)

G<(10)>F

G=F

1

When an item in B is a scalar, the corresponding item in 4 must be empty. For

example:

1-126 APL Reference Manual

| ABC|

$--—+

+--—+

| XYZ]|

+-——+

To select more than one item from an array, use pick with the each ()

Primitive Mixed Functions

O«X«2 2p'"ABC" (<2 2p(1 2)(2 3)(3 4)(4 5)) '"XYZ' (15)

[T4t bt]

111 2] 12 3[]]

| [+--—+ +---+]]
[l4+---+ +---+]|

113 uf |% S]]
[[+---+ +---+]]

(1 2) ' (2 1)2X

operator. For example:

nSHAPE OF EACH OF X

RPICK X[1;2]

aUSE EMPTY TO PICK INTO SCALAR

RPICK DEEPER

APL Reference Manual

> Pick

1-127

Primitive Mixed Functions

> Pick

+-+

|4]
+-+

The

any

0«Y<«2 3pc[2]X«6 2p , 'ABCDEFGNIJKL'

t=+| |4+ +-+] [+-+ +-+]

|BI1 LICl IDI TIEL |FI|
t-+] |+=+ +-+| |+-+ +-+]|

+=+] |+-+ +-+| |+-+ +-+|

INEL LD 1T e 1L
=+ [+=+ +=+| |+-+ +-+]

GETA«(1 1) 1

GETL+(2 3) 2

GETA o Y

GETL o Y

GETA GETL >~ cY ARUSE FACH TO PICK MULTIPLE ITEMS

+-+

| L]
+-+

GETA GETL >~ Y Y aTHIS IS AN ALTERNATIVE FORM

+-+

| L]
+-+

following relationship between the take (+) function and pick is true for

nonempty B: +B <> (c(ppB)pUIO)>B.

Possible Errors Generated

1-128

9 RANK FRROR (LEFT ITEM NOT VECTOR DOMAIN)

9 RANK ERROR (NOT VECTOR DOMAIN)

10

10

14

15

15

15

LENGTH ERROR (LEFT ARGUMENT LENGTH GREATER THAN RIGHT ARGUMENT

DEPTH)

LENGTH ERROR (LEFT ITEM LENGTH NOT FQUAL TO SELECTED ITEM RANK)

DEPTH FRROR (LEFT ARGUMENT DEPTH GREATER THAN 2)

DOMAIN FRROR (INCORRECT TYPE)

DOMAIN ERROR (INDEX LESS THAN INDEX ORIGIN)

DOMAIN FRROR (INDEX OUT OF RANGFE)

APL Reference Manual

Primitive Mixed Functions

> Pick

15 DOMAIN ERROR (NOT AN INTEGER)

27 LIMIT ERROR (INTEGER TOO LARGE)

APL Reference Manual 1-129

Primitive Mixed Functions

, Ravel

, Ravel

Form

,B ,[K1B

Argument Domain

Type Any

Shape Any

Depth Any

Result Domain

Type Same as argument

Rank 1 (for ,B)

Shape x / p B (for ,B)

Depth 1[=B

Implicit Arguments

None.

Description

The monadic APL, function returns a vector made up of the items of the

argument array, stored in row-major order (by increasing index position). For

example:

A«?2 3p1 2 3 4 5 6

O«B+,A

123456

pB

b

1-130 APL Reference Manual

Primitive Mixed Functions

, Ravel

O«A«2 3 3 p118

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

123456789 10 11 12 13 14 15 16 17 18

0,4

18

pA

2 3 3

If the argument array is a scalar, APL returns a vector that contains one item.

Note the difference in the shape of a scalar and the shape of a scalar to which

the ravel function has been applied:

puU

(APL outputs a blank line)

P,k

1

If the argument is a vector, APL returns a vector that is identical to the

argument:

A<16

A

1234560

, A

12 3 456

If the argument is an empty array of any rank or shape, APL returns an empty

vector that is the same type as the argument.

When you use ravel with an axis argument, X is in the vector domain and its

items are numeric. The result depends on whether ¥ is a noninteger singleton

or a near-integer vector. (If ¥ is a near-integer singleton, the shape of B is

unchanged.)

When the axis argument is a noninteger singleton, APL inserts a new axis (of

length one) in the indicated position. For example, if X is a fraction between

1 and 2, APL will insert an axis between the first and second axes of B. Note

that ¥ must be between ~ 1+0710 and 010+ p ¢ B. The rank of the result is

1+ pp B:

APL Reference Manual 1-131

Primitive Mixed Functions

, Ravel

A<2 309 8 7 6 5 U4

,[1.5]4

0,[1.5]4

2 13

If you specify a noninteger singleton axis when B is a scalar, the result is a

one-item vector:

,[.5] 28

28

p,[.5] 28

1

When the axis argument is a near-integer vector, APL merges the specified

axes into a single axis. In this case, X must contain contiguous ascending axis

numbers between 070 and p p B. The rank of the resultis 1+ (ppB) -p , k. IfX

is empty, then the resultis ((pB), 1) p B. Note that , [1 p p B] B is the same

as , B:

B«2 3 6p'SARAH SELLS SHELLSBETH BUYS BOATS '

B

SARAH

SELLS

SHELLS

BETH

BUYS

BOATS

pB

2 36

,[2 31B

SARAH SELLS SHELLS

BETH BUYS BOATS

o,[2 3]B

2 18

If you want to add an axis to the end of the shape of an array, you can use 1 0

as the axis argument. If you want to add an axis to the beginning of the shape

of an array, you can use ~ .5+ I0 as the axis argument:

A«2 3p 9 76 5 4

,[10]4

1-132 APL Reference Manual

Primitive Mixed Functions

, Ravel

p,[10]4

2 31

.5 + 01014

7 6

54 9

o, .5 + 0I0]4

1 2 3

If you specify 010 or 1 0 as the axis argument when B is a scalar, the result is

a one-item vector:

,[1] 28

28

o,[1] 28

1

,[10] 6

6

p,[10] 6

1

Further examples:

[J«A<c.3

[J«B<«'ABC'

[J«C<'!

O«D<+"2

O«E«2 2 p ABCD

0.3 +---+

| ABC|

+---1

++ 2

p E

B

0.3 +--—-+ ++ 2

|ABC| ||
+---+ ++

p LE

,[1.5]F

0.3 +--——+

| ABC|

t+---+

APL Reference Manual 1-133

Primitive Mixed Functions

, Ravel

p ,[1.51F

,[0.5]F

0.3 +--~+

| ABC|

+--—+

o ,[0.5]F

Possible Errors Generated

27

28

29

29

30

30

30

30

30

30

LIMIT FRROR (INTFEGER TOO LARGE)

AXIS RANK FRROR (NOT VECTOR DOMAIN)

AXIS LENGTH FERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)

AXIS LENGTH ERROR (NOT SINGLETON)

AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)

AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

AXIS DOMAIN FRROR (AXES NOT IN CONTIGUOUS ASCENDING ORDER)

AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

AXIS DOMAIN FRROR (INCORRECT TYPF)

AXIS DOMAIN FRROR (SEMICOLON LIST NOT ALLOWED)

1-134 APL Reference Manual

Primitive Mixed Functions

T Represent

T Represent

Form

ATB

Left Argument Domain

Type Numeric

Shape Any

Depth 0 or 1 (simple)

Right Argument Domain

Type Numeric

Shape Any

Depth 0 or 1 (simple)

Result Domain

Type Numeric

Rank (ppA)+ppB

Shape (pA).,pB

Depth 0 or 1 (simple)

Implicit Arguments

None.

Description

The dyadic T function (known as represent or encode) represents an array in

any number system. The left argument specifies the number system; the right

argument specifies the array to be represented. For example, to represent the

decimal value 7 as a four-digit binary number, specify the following:

2 2 2 277

0111

APL Reference Manual 1-135

Primitive Mixed Functions

T Represent

In the expression AT B, A can be considered as the representation rule to

be applied to B. Each item of the vector 4 is defined in terms of the item

immediately to its left. You can specify mixed bases in the left argument.

For example, the represent function can express some number of inches in

miles, yards, feet, and inches, or some number of milliseconds in days, hours,

minutes, seconds, and milliseconds:

Thus, in representing a number as miles, yards, feet, and inches, the left

argument specifies, from right to left, 12 inches in 1 foot, 3 feet in 1 yard, and

1760 yards in 1 mile. In the following example, a miles specification is not

defined in terms of another quantity, so 0 is printed in the miles column.

AMILES, YARDS, FEET, INCHES

0 1760 3 127273125

4 546 2 5

aDAYS, HOURS, MINUTES, SECONDS, MILLISECONDS

0 24 60 60 10007713732523

8 6 15 32 523

The following examples of base 3 conversions demonstrate the specification of

different numbers of columns in the left argument and illustrate the way in

which negative numbers are represented:

3 3 3 37117 APRODUCES 3'S COMPLEMENT OF 17

0122

333 371 17 APRODUCES 3'S COMPLEMENT OF 17

2101

Another useful application of T is to return the integer and fractional portions

of a number:

X+823,.7513

0 17X

823 0.7513

The following are more examples of the use of the v function:

A<®Q3 2p2 3

B<«5 2

J«R+ATH

(
S
R
R
=

o

o

o

1-136 APL Reference Manual

Primitive Mixed Functions

T Represent

pB

pA

pR

C«2 2p865 429 103 692

0«X « 10 10 107C

R

0
w

N
N
O

w

U
t

o

O

w

pX

3 128X

= N W

n

o 0
w

o

N

w

aPRODUCES 2'S COMPLEMENT OF 13

2 2 2 2 2713

01101

aPRODUCES 2'S COMPLEMENT OF 13

W
O

N 2 2 2 27 13

1 00 1

If4 is a scalar, ATB is the same as A | B with JCT+0. Note that 0CT 1s not an

implicit argument to the represent function.

Possible Errors Generated

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPF)

27 LIMIT EFERROR (FLOATING OVERFLOW)

APL Reference Manual 1-137

Primitive Mixed Functions

o Reshape

0 Reshape

Form

Ap B

Left Argument Domain

Type Nonnegative near-integer

Shape Vector domain

Depth 0 or 1 (simple)

Right Argument Domain

Type Any

Shape Any

Depth Any

Result Domain

Type Same as right argument

Rank 0,A

Shape A

Depth —

Implicit Arguments

None.

Description

The dyadic p function creates an array of items from the right argument taken

in row-major order and arranged in the shape specified by the left argument.

For example:

2 3 p 16 R2 ROWS, 3 COLUMNS

123

4 5 b

1-138 APL Reference Manual

Primitive Mixed Functions

o Reshape

If the right argument does not contain enough items to fill an array that has

the shape specified by the left argument, the right argument is reused starting

at its beginning:

3 3 p 16

(
S
N

—

T
N

N

1
N

w

W

3p5

555

If the right argument has more items than are required for an array that has

the shape specified by the left argument, the extra items are ignored:

2 2 p 16

1 2

3 U

Note that the right argument may be any type and shape (it is, in effect,

raveled before it is reshaped):

[J«B+3 5p'STAN SAM STEVE'

STAN

SAM

STEVE

20pB

STAN SAM STEVESTAN

For arguments 4 and B, if B is empty, 4 must contain at least one 0 value, and

the result is empty with the shape , 4. For example:

J«R<«2 0 p 10

(APL outputs a blank line)

oR

2 0

If 4 is empty, the result is a scalar whose value is the first item of B in

row-major order; formally expressed:

(10)pB «» ' 'pB <> (,B)[0I0]

For example:

(10)p5 7 9

APL Reference Manual 1-139

Primitive Mixed Functions

o Reshape

Further examples:

O«VAN<'ABC' (1 2 3 u4) 1.2 (<,3)

t---t+ +-----—- + 1.2 +---+

|ABC| |1 2 3 4] | +-+|

t-=—t - + | 13]]

[+-+1
+---+

p VAN

n

(«VAN<2 2 p VAN

==t t-----—- +

|ABC| |1 2 3 u]

t-—=t $-—--—- +

+-——+

| +-+]

| 131]
| +-+]
+-==1

o VAN

2 2

0«(10) p VAN AEMPTY LEFT ARGUMENT

+-—-+

| ABC|

+-——+

Possible Errors Generated

9 RANK FRROR (NOT VECTOR DOMAIN)

10

15

15

15

15

27

LENGTH FRROR

DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

DOMAIN ERROR (INCORRECT TYPFE)

DOMAIN FRROR (NOT AN INTEGER)

DOMAIN ERROR (NEGATIVE NUMBER NOT ALLOWED)

LIMIT ERROR (INTEGER TOO LARGE)

1-140 APL Reference Manual

Primitive Mixed Functions

¢ and e Reverse

¢ and © Reverse

Form

¢ B ¢ [K]1B eB e[K]B

¢ 1s formed with o and |

o is formed with o and -

Argument Domain

Type Any

Shape Any

Depth Any

Result Domain

Type Same as argument

Rank ppB

Shape pB

Depth =B

Implicit Arguments

None.

Description

The monadic ¢ function returns the items of the argument array in reverse

order along the relevant axis. You specify the axis to be reversed in square

brackets. For example:

O«A+«2 U4p18

12 34

56 78

o[1]4

567 8

1 2 34

¢[2]4

L 3 2 1

8 7 6 5

APL Reference Manual 1-141

Primitive Mixed Functions
¢ and e Reverse

If you do not specify an axis, ¢ reverses the items along the last axis, and o

reverses the items along the first axis. For example:

0«G+3 3p19

= U jo
n}

e

=

N

N o

oG

Iy

7

lo
n]

o
o

O
O

The following reverses a matrix along both axes simultaneously:

J«X<2 3p16

= T
N

W

deX

L
W

O i

1N

O

For singleton, vector, or empty arguments, both ¢ and e return the same

value. For an empty array or singleton, they return the original argument; for

a vector, they return the items of the vector in reverse order. For example:

b5

e5

$10

¢1 1 1p6

(APL outputs a blank line)

6

15

54 321

815

54 321

1-142 APL Reference Manual

Primitive Mixed Functions

¢ and e Reverse

Note that reverse is not the same as transpose:

O«X<«2 3p1 2 3 4 56

12 3

5 6

0P¢

14

3 6

Further examples:

N«MIZZ«2 4 p "ABC' 0 1 2 'XYZI' 4 (c,3) 100

t---+ 0 1 2

| ABC|

+---+

fo-=+ b +---+ 100

| XYZ] | +-4]

Ik
| +-+]
+--—+

e[1]MIZZ

fo--+ 4 +---+ 100

| XYZ| | +-+]

ot | 13]]
| +-+]
+--—+

+---+ 0 1 2

| ABC|

+--=t

6[2]MIZZ

2 1 0 +---+

| ABC|

+--—+

100 +---+ 4 +---+

| +-+] | XYZ|

IEIN R

[+-+]
+-—-+

beMIZZ

100 +---+ 4 +---4

|+-+| | XYZ|

131 +---+

| +-+]
$---+

2 1 0 +---+

| ABC|

+--—+

APL Reference Manual 1-143

Primitive Mixed Functions

¢ and e Reverse

Possible Errors Generated

1-144

27

28

29

30

30

30

30

30

30

LIMIT FRROR (INTEGER TOO LARGE)

AXIS RANK FERROR (NOT VECTOR DOMAIN)

AXIS LENGTH ERROR (NOT SINGLETON)

AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)

AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

AXIS DOMAIN ERROR (INCORRECT TYPFE)

AXIS DOMAIN FRROR (NOT AN INTEGER)

AXIS DOMAIN FRROR (SEMICOLON LIST NOT ALLOWED)

APL Reference Manual

Primitive Mixed Functions

¢ and e Rotate

¢ and © Rotate

Form

AP B AP [K]1B Ae B Ae[K] B

¢ 1s formed with o and |

o 1s formed with o and -

Left Argument Domain

Type Near-integer

Shape Conforms to right argument (pA4)=(pB)[10 pB)~)K]

Depth 0 or 1 (simple)

Right Argument Domain

Type Any

Shape Any

Depth Any

Result Domain

Type Same as right argument

Rank ppB

Shape o B

Depth =B

Implicit Arguments

None.

Description

The dyadic ¢ or e function rotates items along the relevant axis of the right

argument in a way specified by the left argument. The rotation is cyclical and,

for each axis, continues for the number of places specified by the corresponding

item in the left argument. If the left argument is positive, the shift is to the

left; if it is negative, the shift is to the right. For example:

APL Reference Manual 1-145

Primitive Mixed Functions

¢ and e Rotate

3615

4 5 1 2 3

“3¢15

3 4512

The axis to be rotated must be specified in square brackets, as in the following

example:

J«A4+«3 5p115

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

2 1 4¢[2]4A

3 4 5 1 72

7 8 9 10 6

15 11 12 13 14

2 10 2 3¢6p[1]4

11 7 3 14 5

112 8 4 10

6 2 13 9 15

If no axis is specified, ¢ rotates the items along the last axis, and e rotates the

items along the first axis:

0«G+2 4p18

123

56 7

166G

3 41

6 7 8

2 0 1eG

o

o
o
T
Mo
o

5 2 3

1674

Note that, in general, the shape of the left argument must be the same as the

shape of the relevant axis in the right argument. If the left argument is a

singleton, it is extended to conform to the relevant axis of the right argument.

For example:

202 5p110

3 4 512

8 9 10 6 7

1-146 APL Reference Manual

Primitive Mixed Functions

¢ and e Rotate

Further examples:

O«MIZZ«2 4 p '"ABC' 0 1 1 'XYZ' 4 (c,3) 100

$---+ 0 1 1

| ABC|

+---+

+---+ b +---+ 100

| XYZ| | +-+|

t-—=+ |]3]]

| +-+]
t---+

13 ¢ MIZZ

VR | 1 +---+

| ABC|

t---+

100 +---+ 4 +--——+

| XYZ| | +-+]

t---+ [[3]]
| +-+]
===+

1011 ¢ [L1IMIZZ

t---+ 0 +---+ 100

|XYZ| | +-+]

t--=+ |]3]]
| +-+]
t--=4

+---+ 4 1 1

| ABC|

+---+

10 116e MIZZ

F-—-+ 0 +---+ 100

| XYZ| | +-+]|

p-o=t |13
| +-+1
+--—+

+--—+ 4 1 1

| ABC|

+---+

Possible Errors Generated

9 RANK ERROR (RANKS DIFFER BY MORE THAN ONE)

10 LENGTH ERROR (SHAPES OFF AXIS DO NOT MATCH)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPFE)

APL Reference Manual 1-147

Primitive Mixed Functions

¢ and e Rotate

15

27

28

29

30

30

30

30

30

30

DOMAIN ERROR (NOT AN INTEGER)

LIMIT FRROR (INTEGER TOO LARGE)

AXIS RANK ERROR (NOT VECTOR DOMAIN)

AXIS LENGTH FRROR (NOT SINGLETON)

AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

AXIS DOMAIN FRROR (INCORRECT TYPFE)

AXIS DOMAIN FRROR (NOT AN INTEGER)

AXIS DOMAIN ERROR (RIGHT ARGUMENT HAS WRONG RANK)

AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

1-148 APL Reference Manual

Primitive Mixed Functions

o Shape

o Shape

Form

p B

Argument Domain

Type

Shape

Depth

Result Domain

Type

Rank

Shape

Depth

Implicit Arguments

None.

Description

Nonnegative integer

1

ppB

1 (simple)

The monadic p function returns a vector of nonnegative integers that represent

the lengths of each of the axes of the argument array.

If the argument is a vector, APL returns an integer vector that represents the

number of items in the vector:

A«24 6 8

pA

B«'"ABCDEF'

pB

p,9

APL Reference Manual 1-149

Primitive Mixed Functions
o Shape

If the argument is a matrix, APL returns the number of rows and columns:

[«A«2 3p16

123

b 5 6

pd

2 3

If the argument is a scalar, APL returns an empty numeric vector:

K+3

pK

(APL outputs a blank line)

You can use the shape function to determine an array’s rank. Because the

shape function returns one item for each axis of the array, the shape of shape

is an integer vector that represents the number of axes in the array:

(«A«5 6p130

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

pd

56

ppA

2

Further examples:

O«V<«'XY' (1 2 3) ' !

+——+ +-—-—- +

| XY| |1 2 3|

+--+ +----- +

pV

3

O0«B«(2 0 p5)(" ")(10)
++ ++

R
|] ++

++

pB

3

1-150 APL Reference Manual

Primitive Mixed Functions

p Shape

O«M«2 3 p 1 ('') "ABC' 0 2 &

1 ++ +---+

|| |ABC|
++ +---+

0 24

oM

ppM
2

Note that for all B: pppB<~ ,1

Possible Errors Generated

None.

APL Reference Manual 1-151

Primitive Mixed Functions

< Subset

c Subset

Form

AcB

c is formed with < and _

Left Argument Domain

Type Any

Shape Any

Depth Any

Right Argument Domain

Type Any

Shape Any

Depth Any

Result Domain

Type Boolean

Rank 0

Shape 1 0 (scalar)

Depth 0 (simple scalar)

Implicit Arguments

O0CT (determines comparison precision)

Description

The dyadic < function determines whether the right argument contains all

the items in the left argument. The result is a Boolean scalar: true, if the left

argument is a subset of the right argument, and false if it is not. Duplicate

items in either argument do not affect the result. For example:

1-152 APL Reference Manual

Primitive Mixed Functions

c Subset

O«A<3 4 p 23 54 98 34 98 u7 98 32 78 65 12 23

23 54 98 34

98 47 98 32

78 65 12 23

Ac 1100

1

Ac 190

0

The < function compares items in terms of the match (=) function, which

uses the value of 1 ¢T. Because match allows mixed-type arguments, you can

compare characters with numbers. However, such a comparison is always

false, so that if you use mixed-type arguments for dyadic c, the result will be

zero. For example:

"23 24 25'c 22 23 24 25 26

0

Further examples:

O«V«0 'AB' (1 2 3)

O«M<2 2 p (1 2 3) '0'" '"AB'" 'A!

VecM aNOTE CHARACTER AND NUMERIC ZEROS

Note that the following definition applies: AcB «+ A/ ,4¢B

Possible Errors Generated

None.

APL Reference Manual 1-153

Primitive Mixed Functions

+ Take

4+ Take

Form

A+ B A+ [K]B

Left Argument Domain

Type Near-integer

Shape Vector domain

Depth 0 or 1 (simple)

Right Argument Domain

Type Any

Shape Any

Depth Any

Result Domain

Type Same as right argument

Rank (p,A)lppB

Shape | , A (af no explicit axis)

Depth —

Implicit Arguments

Fill item

Description

The dyadic + function builds an array by taking a specified number of items

from an existing array. Each item in 4 corresponds to an axis in B. The value

of each item in 4 specifies how many items to take from the axis. Thus, for

A+ B, item A[K] is used to take values along the ¥ th axis of B.

If an item in 4 is a positive integer n, APL takes the first n items from the

appropriate axis of B. If an item in 4 is negative, APL takes the last n items

from the appropriate axis of B.

1-154 APL Reference Manual

Primitive Mixed Functions

+ Take

R«12 3 4

24R aTAKE FIRST TWO ITEMS OF R

12

T24R aTAKE LAST TWO ITEMS OF R

3 4

Unless the right argument is a scalar, the number of items in 4 must equal

the rank of B (p , 4 must equal p p B). (When the right argument is a scalar, it

1s extended to be a singleton of the appropriate rank.) If you use the axis form

(CX]), the number of items in 4 must equal the length of ¥. (Examples of axis

form are presented at the end of this section.) Thus, if the right argument is a

matrix, the left argument must have two values:

+R«3 3p19

12 3

b 5 6

7 89

ALEFT ARG MUST BE LENGTH 2

2+R

10 LENGTH ERROR (LEFT LENGTH NOT EQUAL TO RIGHT RANK)

24K

A

aTAKE TWO ITEMS ALONG EACH AXIS

2 2+KR

12

4 5

If the value of an item in 4 is greater than the length of the corresponding axis

of B, APL pads the result array with fill items. This operation is known as

overtake. For example:

NUM«<1 2 3

CHA«<'ABC'

ROVERTAKE NUM, FILL ITEMS ARE ZEROS

S5tNUM

12300

ROVERTAKE CHA, FILL ITEMS ARE BLANKS

ACATENATE X TO SHOW END OF FILL ITEMS

(5¢+CHA),' X!

ABC X

The fill items are determined by the prototype of each vector along the relevant

axis. This is important for arrays of rank 2 or more because the fill item for

a given position depends on the prototype of that particular column, row, or

plane. The following expressions describe such an operation. Note where the

fill items are blanks and where they are zeros. (Because the array M is simple,

all the fill items are scalars. If ¥ were enclosed, some of the fill items might

also have been enclosed.)

APL Reference Manual 1-155

Primitive Mixed Functions

+ Take

[«M+2 3p 1 'A' 2 'B'" 4 5

1 4 2

B 45

oM

2 3

AQOVERTAKE M ALONG FIRST AXIS

aPROTOTYPE BASED ON VECTORS ALONG FIRST AXIS

4+[11M

1 4 2

B 45

0 0

0 0

aFIRST AXIS IS CHANGED

ot [1IM

4 3

aOVERTAKE M ALONG 2ND AXIS

5¢[21M

14200

B u5

pb5+[2]1M a2ND AXIS IS CHANGED

2 5

4 5+M AOVERTAKE M ALONG BOTH AXIS

14200

B us5

0 0 00

0 000

plh H4M ABOTH AXIS ARE CHANGED

4 5

Note that if 4 is positive, any needed fill items are placed at the end of the

result array. If 4 is negative, any needed fill items precede the result array.

For example:

6412 24 36 48 aFILL ITEMS AT END OF RESULT

12 24 36 48 0 0

(104 'TEST'),'X! aCATENATE X TO SHOW END OF FILL ITEMS

TEST X

6412 24 36 U8 aFILL ITEMS AT BEGINNING OF RESULT

0 0 1224 36 U8

104 'TEST! aFILL ITEMS AT BEGINNING OF RESULT

TEST

If the rank of the right argument is greater than 1, the result array is called

a corner of the argument array. The origin of the corner is determined by the

signs of the items of the left argument. For example, if the right argument is a

matrix, there are four possible corners as shown in Figure 1-1.

1-156 APL Reference Manual

Primitive Mixed Functions

+ Take

Figure 1-1 Argument Corners Selected by Take Function

> Axis2 <«

> Axis?2 <«

NU-2233A-RA

In the following example, note how the order of the signs in the left argument

determines the corner selected from the matrix right argument:

2

) b

J«A«3 3p19

If the left argument contains a 0, then, for arguments 4 and B, 4+ B returns

an empty array with shape , | 4. For example:

A+2 3 042 3 3p118

p4

2 30

If the left argument is empty, the right argument must be a scalar, and the

result is the right argument.

APL Reference Manual 1-157

Primitive Mixed Functions

+ Take

If the right argument is a scalar, it is extended to a singleton with a rank equal

to the length of the left argument. For example:

2 3 4+ 5

000

50 0

Note that for any array 4, 0= 1+ 0p A4 is true if 4 is numeric and false if 4 is

character.

When you use + with an axis argument, X is a vector of axis numbers

whose lengths are determined by corresponding items of the left argument,

A. Formally, + with an axis argument can be described by the following:

z <« pBo Z[LK] « Ao Z+« Z4+B

The value for ¥ must be in the vector domain, and each item must be a near-

integer in the set 1 p p B. Therefore, the values of K are 1 10-dependent. The

items may be in any order, but they may not be duplicated. The length of

must be less than or equal to the rank of the right argument, and it must

match the length of 4. |

The value for ¥ does not have to specify all the axes in B. APL determines the

lengths of any missing axes by the lengths of the corresponding axes of B. This

means that you can take rows or columns of a matrix without specifying the

length of the other axis. For example:

O«4«8 5p140

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

26 27 28 29 30

31 32 33 34 35

36 37 38 39 40

3 +[1] 4 aTAKE 3 ROWS OF A

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

2 +[2] A aTAKE THE LAST 2 COLUMNS OF A

1-158 APL Reference Manual

Primitive Mixed Functions

+ Take

34 +[2 1] A aTAKE 4 ROWS, 3 COLUMNS OF A

1 2 3

6 7 8

11 12 13

16 17 18

0I0 < 0

4 34[0 1] 4 aTAKE 4 ROWS, 3 COLUMNS OF A

1 2 3

6 7 8

11 12 13

16 17 18

O«WRL<(1 2 3) '"ABC' 0

5+WRL AOVERTAKE TO SHOW FILL ELEMENT

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH ERROR (LEFT LENGTH NOT EQUAL TO RIGHT RANK)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN ERROR (NOT AN INTEGER)

27 LIMIT FERROR (INTEGER TOO LARGE)

27 LIMIT FRROR (VOLUME TOO LARGE)

29 AXIS LENGTH FRROR (LEFT ARGUMENT HAS WRONG LENGTH)

30 AXIS DOMAIN FRROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)

30 AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

30 AXIS DOMAIN ERROR (DUPLICATE AXIS NUMBER)

30 AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

APL Reference Manual 1-159

Primitive Mixed Functions

+ Take

30 AXIS DOMAIN ERROR (INCORRECT TYPF)

30 AXIS DOMAIN ERROR (NOT AN INTFEGER)

28 AXIS RANK ERROR (NOT VECTOR DOMAIN)

30 AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

1-160 APL Reference Manual

Primitive Mixed Functions

& Monadic Transpose

® Monadic Transpose

Form

& B

§ 1s formed with o and \

Argument Domain

Type Any

Shape Any

Depth Any

Result Domain

Type Same as argument

Rank ppB

Shape ¢pB

Depth =B

Implicit Arguments

None.

Description

The monadic & function transposes the axes of an array; thus, § B is B with

the order of the axes reversed. For example, if the argument is a matrix, §

exchanges rows and columns:

O«A«2 3p16

12 3

L 5 6

YA

14

2 5

3 6

p R4

3 2

APL Reference Manual 1-161

Primitive Mixed Functions

§ Monadic Transpose

If the rank of the argument is less than 2, the function has no effect:

A1 2 3 45

Y4

12345

In the next example, a rank 3 array is transposed:

O«B+2 3 L4p18

12 34

56 7 8

12 34

56 7 8

12314

56 7 8

&8

15

5 1

15

2 6

6 2

2 6

37

7 3

3 7

4 8

8 4

4 8

p&B
4 3 2

Further examples:

O«MIZZ<2 4 p '"ABC' 0 1 1 'XYZ' 4 (<,3) 100

t--=+ 0 1 1

| ABC|

t+---+

t-==+ 4 +---+ 100

|XYZ| | +-+|

t---+ |]3]]

| +-+]
t---t

1-162 APL Reference Manual

Primitive Mixed Functions

§¥ Monadic Transpose

QMIZZ

t-—--+ t---+

|ABC| |XYZ|

t-—-+ t---+

0 4

1 +--—+

| +-+]

| 1311

| +-+]
+---+

1 100

o MIZZ

2 4

pRMIZZ

4 2

Note that 8 B <> (¢pB) 8B

Possible Errors Generated

None.

APL Reference Manual 1-163

Primitive Mixed Functions

& Dyadic Transpose

& Dyadic Transpose

Form

AR B

§ 1s formed with o and \

Left Argument Domain

Type

Shape

Depth

Nonnegative near-integer

Vector domain

0 or 1 (simple)

Right Argument Domain

Type

Shape

Depth

Result Domain

Type

Rank

Shape

Depth

Implicit Arguments

Same as right argument

RANK«<T[/A +~010

(1+pA)+L/((1vRANK) o.=4) x (RANK,pA)ppB

=B

A8B when 0I0 « 1 isidenticalto (1 + 4)§B when []I0 < 0

Description

The dyadic & function permutes the axes of the right argument in a way

specified by the left argument.

The shape (length) of the left argument must equal the rank of the right

argument; thus, one item of the left argument is associated with each axis of

the right argument. In general, the item in the left argument specifies the

position to be assumed by the associated axis in the result array. For example:

1-164 APL Reference Manual

Primitive Mixed Functions

& Dyadic Transpose

O«A<2 3 4p124

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

pA

2 3 4

O«B<«1 3 2§4

1 5 9

2 6 10

3 7 11

4 8 12

13 17 21

14 18 22

15 19 23

16 20 24

pB

2 43

(pA)[1 3 2]

2 4 3

Note that the shape of the result of the & function is equal to the shape of its

right argument subscripted by its left argument.

The values in the left argument must be less than or equal to the rank of the

right argument; thus, if the right argument’s rank is 3, then 1, 2, and 3 are

the only permissible values in the left argument (when 010 is 1). However,

there is one exception: if the right argument is a scalar, then either 1 (or 0 if

0I0is 0)or 10 is permissible as the left argument; the value returned is the

value of the scalar right argument.

You may repeat values in the left argument. When you do, the result is a

diagonal slice of the right argument. For example:

APL Reference Manual 1-165

Primitive Mixed Functions

§ Dyadic Transpose

X<[0«2 4 b4plbk-————k—-—-k-——-%"

K-

— -

——

-

*———

—4——

-

-———%

1 2 284X

* %k%

* % % %

2 1 18X

* %

* %

* %

* %

Y<[1«2 U4 UYp'okkkkmmmmm e

* %k%

* %k%

A

1 1 2§87

X X %

* % % X

2 2 1§Y

Z+«2 4 Yp'dh-———k-———k———k—===

1-166 APL Reference Manual

2 1 2827

* %

* %

* %

* %

Primitive Mixed Functions

§¥ Dyadic Transpose

When you repeat values in the left argument, they must form a dense

sequence; that is, in counting from 1 (or 0 if 0 I0 is 0) to the largest item

you specify, no number may be left out.

Note that dyadic & is sometimes the same as monadic &. Expressed formally,

this means § B <> (¢ p B) § B. For example:

H«A<2 3p16

2 3

4 5 6

84

14

2 5

36

2 184

14

2 5

3 6

Table 1-6 lists transpositions for a variety of arrays: V is a vector, M is a

matrix, and A 1s any array.

Table 1-6 Dyadic Transpose Definitions

Expression Shape of r Definition

R«1§QV pV R<«V

R<1 28M oM R<M

R<2 18M (oM)[2 1] RLI;J1<M[J;I]

R«<1 18M L/pM RLI1<M[I;I]

R+<1 2 384 p A R<A

R«<1 3 28 A (pA)[132] R[I;J;K1«A[I;K;J]

R«<2 3 184 (pA)[312] R[I;J;K1<ALJ;K;I

R«<3 1 284 (pA)[23 1] R[I;J;KI1<AL[K;I;J)]

R«1 1284 (L/(pA)[12]1),(pA)L3] RLI;JI<ALI;1;J]

(continued on next page)

APL Reference Manual 1-167

Primitive Mixed Functions

§ Dyadic Transpose

Table 1-6 (Cont.) Dyadic Transpose Definitions

Expression Shape of R Definition

R«1 2 1] A (L/(pd)[2131),(pA)L2] RILI;JI<ALI;J;1I]

R+2 1 184 (L/(pAd)[23]),(pA)[1] RLI;JI<ALJ;I;1I]

R«<1 1 184 L/ oA RLIJ<ALI;I;1I]

Further examples:

O«MIZZ+2 4p('ABC') 0 1 1 ('XYZ') 4 (<,3) 100

+---+ 0 1 1

| ABC|

t+---+

t---+ 4 +---+ 100

| XYZ] | +-+]

t---+ |[3]]

| +-+]
t+---1

2 1§ MIZZ ATHIS IS THE SAME AS MONADIC §

t---+ +---+

|ABC| |XYZ|

t---+ +---+

0 4

1 +-—=+

| +-+]
| 1311

| +-+]
t---+

1 100

O«MIC<«2 2 2 p'AB' (1 20) 1 "2 0 '' 'A' "Xy

+--+ +----+

|AB| |1 20|

+--+ +----+

1 72

0 ++

N
++

A +--=+

| XYZ|

+---+

1-168 APL Reference Manual

+--+

|AB|
+--+

+--+

|AB|
+--+

2

+--+

|AB|
+--+

++

++

+--+

|AB|
+--+

Primitive Mixed Functions

§ Dyadic Transpose

12 2% MIC

2

+--—+

| XY7Z|

+---+

2 1 1 QMIC

0

+--—+

| XYZ|

+---+

1 2 1 §MIC

+--—+

| XYZ|

$o==4

2 1 2§ MIC

++

||
++

$o--+

| XYZ|

+---+

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10

15

15

15

15

27

LENGTH ERROR (LEFT LENGTH NOT EQUAL TO RIGHT RANK)

DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

DOMAIN ERROR (INCORRECT TYPE)

DOMAIN ERROR (LEFT ARGUMENT NOT DENSE FROM QUAD 10)

DOMAIN ERROR (NOT AN INTEGER)

LIMIT ERROR (INTEGER TOO LARGE)

APL Reference Manual 1-169

Primitive Mixed Functions

u Union

U Union

Form

AUB

Left Argument Domain

Type Any

Shape Any

Depth Any

Right Argument Domain

Type Any

Shape Any

Depth Any

Result Domain

Type Any

Rank 1

Shape pu(,4),.B

Depth 1[=4,B

Implicit Arguments

O0CT (determines comparison precision)

Description

The dyadic v function joins the two arguments and removes all duplicate

items. The result is a vector that includes all the items from both arguments.

For example:

"ABCB' u 2 3p'DDEDCC'

ABCDE

(2 3 p 4 45433)u1l23?2

453 1 2

The v function compares the items in terms of the match (=) function and

eliminates duplicate items based on the value of [JCT.

1-170 APL Reference Manual

Primitive Mixed Functions
u Union

Further examples:

g«V<«(c,100) 'TTY' '99'

+----- + o4t -+

| +---+| |TTY| |99]|

| 1100] +---+ +--+

| +-=-+]
+----- +

O«M+2 2 p 100 99 'TTY' 0

100 99

+---+ 0

| TTY|

+--=1

VuM

Fom + +---+ +--+ 100 99 0

| +---+| |TTY| |99]

| 1100]} +---+ +--+

| +=--+]

Note that the following definition applies: AuB<-+u (,4),,B

Possible Errors Generated

None.

APL Reference Manual 1-171

Primitive Mixed Functions

u Unique

U Unique

Form

uB

Argument Domain

Type Any

Shape Any

Depth Any

Result Domain

Type Same as argument

Rank 1

Shape Equal to number of unique items

Depth 1 =B

Implicit Arguments

O0CT (determines comparison precision)

Description

The monadic v function removes duplicate items from an array. The result is a

vector of the unique items in the argument. For example:

O« 4 « 7 3 4 p 7

6 5 4 2

72 6 2

1376

u 4

6 542713

B « '"DR.GRANT''S CHEWING GUM'

uB

DR.GANT'S CHEWIUM

1-172 APL Reference Manual

Primitive Mixed Functions

u Unique

The v function compares the items in terms of the match (=) function and

eliminates duplicate items based on the value of 0 CT. For example:

OcT

1EF715

Ulh 4-5F 16
L

Note that the following definition applies: vB«~>((B1B)=10B) /B+,B

Possible Errors Generated

None.

APL Reference Manual 1-173

Primitive Mixed Functions

~ Without

~ Without

Form

A~ B

Left Argument Domain

Type Any

Shape Any

Depth Any

Right Argument Domain

Type Any

Shape Any

Depth Any

Result Domain

Type Any

Rank 1

Shape p(~(,4)eB)/,A

Depth —

Implicit Arguments

0CT (determines comparison precision)

Description

The dyadic ~ function returns all the items in the left argument that are not

found in the right argument. Duplicate items in the right argument do not

affect the result. Duplicates in the left argument are not removed unless they

are specified in the right argument. For example:

1-174 APL Reference Manual

Primitive Mixed Functions

~ Without

RAMBLE<'RUN ON RUN ON RUN ON.'

SQUISH+"' ! ASQUISH CONTAINS A BLANK SPACE

RAMBLE ~ SQUISH aELIMINATE THE BLANKS FROM RAMBLE

RUNONRUNONRUNON.

[J«A<«3 4p 56 78 105 137 49 329 97 235 142 105 56 59

56 78 105 137

49 329 97 235

142 105 56 59

4 ~ 1100

105 137 329 235 142 105

If your data represent sets, and you want to remove duplicates from your

result, you can use the unique function along with the ~ function:

A«3 up 56 78 105 137 49 329 97 235 142 105 56 59

u 4 ~ 1100

105 137 329 235 142

If the left argument is a subset of the right argument, the result is an empty

vector. For example:

J«B« 3 2 p 2 6 25 65 9 34 76 13 u3 21

2 b6

25 65

9 34

u B ~ 130

65 34

The ~ function compares items in terms of the match (=) function, which

uses the value of 00 ¢T. Because match allows mixed-type arguments, you can

compare characters with numbers. However, such a comparison is always

false, so that if you use mixed-type arguments for dyadic ~, the result will be

equal to the left argument. For example:

(A+'ABC') ~ B<'BA"

B~ A

(APL outputs a blank line)

Note that the following definition applies: 4A~B<«~(~(,4)eB)/ ,4A

Possible Errors Generated

None.

APL Reference Manual 1-175

Primitive Mixed Functions

1.3 APL Operators

1.3 APL Operators

APL operators take either functions or arrays as operands, and produce results

called derived functions.

Operators are either monadic or dyadic, but not ambivalent. Monadic

operators bind to the left; that is, they take a left operand and not a right

operand. Dyadic operators take a left and a right operand. Derived functions

are either monadic, dyadic, or ambivalent (their classification depends on the

arguments to the derived function and not on the valence of the operator).

You can specify an axis when you use some of the operators. Because axis

binds to the left, it must appear to the right of the operator.

There are four APL primitive operators: slash (/ and /), backslash (\ and %),

each ("), and dot (.). The following table describes the valence of the operators,

the derived functions, and the valence of the derived functions. Note that 4, B,

f, and g are all operands where 4 and B are arrays, and f and g are functions.

Operator Valence Derived Function Valence

Slash Monadic Compress (4/ and 4+) Monadic

Replicate (4/ and 4+#) Monadic

Reduce (f/ and f#) Monadic

Backslash Monadic Expand (4\ and 4%) Monadic

Scan f \ and f\ Monadic

Each Monadic Itemwise application (f) Ambivalent

Dot Dyadic Inner product (f.g) Dyadic

Outer product (- .f) Dyadic

Operators may accept functions or arrays for their operands. You can specify

any valid function, including primitive functions, system functions, user-

defined functions, and derived functions. (A derived function is a function

resulting from the use of an operator.)

Because derived functions may be operands for operators, it is possible to build

sequences of operators to form function expressions.

For example, you can use the inner product derived function (+ . x) as the

left operand to the slash operator (/). The result is the inner product reduce

derived function, which allows you to perform matrix multiplication along a

vector of matrices. Note that the left and right sides of the following expression

are equivalent. However, the left side is more concise. The arrays M1, M2, and

M3 represent matrix arrays:

1-176 APL Reference Manual

Primitive Mixed Functions

1.3 APL Operators

+ox /M1 M2 M3 <> M1 +.%x M2 +.,%x M3

The following example uses the outer product derived function (- . ,) as the

left operand to the slash operator. The result is the catenate outer product

reduce derived function, which in this case extends the monadic iota function

(1) to vector arguments to produce the odometer function:

V<12 3

,2 o,[1 ¥
+----- + +----- + +----- + +----- + 4----- + - +

|11 1) |12 2] |1 13 1122 1] |12 2| |12 3]

TR + f-——-- +ot-———- + ----- + 4-——-- + - +

The following expression adds parentheses to show the binding action of the

operator sequence: ,> ((o.,) /) (1 ") V¥

Table 1-7 summarizes the operators and derived functions in greater detail,

including the forms with axis. The subsequent subsections describe all the

forms.

Table 1-7 APL Operators

Operator Name Meaning

A/B Slash A compression/replication along the last axis of B

A/ [K]B Slash A compression/replication along the ¥ th axis of B

A+ LK]B

A+ B Slash A compression/replication along the first axis of B first axis

of 4

f/ A Slash The f reduction along the last axis of 4

[/ [K]A Slash The f reduction along the ¥ th axis of 4

f#LK]A

[t A Slash The f reduction along the first axis of 4

[B Each The application of monadic f on each item of B

Af "B Each The application of dyadic f on corresponding pairs of each

item of 4 and B

A\B Backslash 4 expansion along the last axis of B

A\N[K]1B Backslash 4 expansion along the k¥ th axis of B

AX[K]B

(continued on next page)

APL Reference Manual 1-177

Primitive Mixed Functions

1.3 APL Operators

Table 1-7 (Cont.) APL Operators

Operator Name Meaning

AXB Backslash 4 expansion along the first axis of B

A4 Backslash The f scan along the last axis of 4

ALKk]A Backslash The f scan along the ¥ th axis of 4

ANTKIA

A4 Backslash The f scan along the first axis of 4

Ao . fB Dot Outer product

Af.gB - Dot Inner product

1.3.1 / and # Slash

The monadic slash (/ and #) operator takes a left operand and produces a

monadic derived function. When the operand is an array, the derived function

is either compression or replication. When the operand is a function, the

derived function is reduction. |

1.3.2 \ and % Backslash

The monadic backslash (\ and \) operator takes a left operand and produces a

monadic derived function. When the operand is an array, the resulting function

1s expansion. When the operand is a function, the result is scan.

1.3.3 . The Dot Operator

The dyadic dot (.) operator takes a left and right operand and produces

a dyadic-derived function. When the left operand is a jot (-), the derived

function is an outer product. When the left operand is a function, the derived

function is an inner product. The right operand is always a dyadic function.

1-178 APL Reference Manual

Primitive Mixed Functions

/ and # Compression and Replication

/ and # Compression and Replication

Form

A/ B A/ [K1B A+ B A+ [K]B

4 is formed with / and -

Left Operand Domain

Type Near-integer

Shape Vector domain

Depth 0 or 1 (simple)

Right Argument Domain

Type Any

Shape Any

Depth Any

Result Domain (of derived function)

Type Same as right argument

Rank 1fppB

Shape ((K-1)4pB),(+/| A) ,K+ypB(for 010« 1)

Depth —

Implicit Arguments

None.

Description

Compression and replication are monadic functions derived from the slash (/)

operator. They build arrays by specifying the items to be deleted, preserved,

or duplicated from an existing array, and by indicating where fill items are

to be added in the new array. When items only are preserved or deleted,

this is known as compression (the left operand is Boolean). When items are

d(uplicated, deleted, or filled, this is known as replication (the left operand is

integer). You can also use the OREP system function to perform the compress

and replicate operations (see Chapter 2 for more information).

APL Reference Manual 1-179

Primitive Mixed Functions

/ and # Compression and Replication

For compression, each Boolean item in 4 corresponds to the position of an item
in B. When 4 is 1, the item in B is preserved in the result array. When 4 is

0, the item in B is deleted from the result array.

11010/57 9 11 13 ATHIS IS COMPRESSION

57 11

For replication, each positive scalar and each zero in 4 correspond to the
position of an item in B. Negative integers, which specify fill items, are not

associated with explicit positions in B. When 4 is Boolean, the effects are the

same as for compression (items are either preserved or deleted in the result

array). When 1> 4, the item in B is repeated 4 times in the result array. When

A 1is negative, APL builds | 4 occurrences of the fill item into the new array:

1 0O 4 2 2/57 9 11 13 aTHIS IS REPLICATION

7 0

3 1

5 7 7 90 0 0 13 13 0 0

If A contains only 1 s, the result is B itself; if 4 contains only 0 s, the result is

an empty array. For example:

1111 1/15

12345

0 00 0 0/15

(APL outputs a blank line)

In general, the length of the relevant axis of B must equal the number of
nonnegative items in 4 ((p B) [K1+~+/A20). That is, you must specify an

operation (either copy, drop, or replicate) for each item in the right argument.

However, APL does perform singleton extension in certain conditions. If 4 is
a positive singleton, it is extended to the length of B. (Negative values are not

extended. When 4 is a negative singleton, B must be empty along the axis

being replicated.) If B is a singleton, it is extended to the length of 4.

G«<5 7 9 11 13

K«1 10 10

2/G WSINGLETON EXTENSION ON LEFT ARGUMENT

S 577 99 11 11 13 13

K/5 ARSINGLETON EXTENSION ON RIGHT ARGUMENT

555

(O«M«3 0 1p9

(APL outputs a blank line)

oM

301

2 3/M REXTENSION ON LAST (DEFAULT) AXIS

(APL outputs a blank line)
o (2 3/M) ATHIRD AXIS EXTENDED 2+3 TIMES

305

1-180 APL Reference Manual

Primitive Mixed Functions

/ and £ Compression and Replication

aNEXT EXPRESSIONS USE NEGATIVE SINGLETON IN LEFT ARGUMENT

aTHE RIGHT ARGUMENTS MUST BE EMPTY ON APPLICABLE AXIS

"2/10

0 0

~2/3 0p9

0 0

0

0 0

"2/3 3 0p9

00

0 0

0 0

0 0

0 0

0 0

0 0

0 0

00

G

57 9 11 13

2/G

10 LENGTH ERROR

2/G

A

~2/0 3p9

10 LENGTH ERROR

~2/0 3p9

A

aLAST (DEFAULT) AXIS IS EMPTY

RAGAIN, LAST AXIS IS EMPTY

ARIGHT ARGUMENT NOT EMPTY

ARIGHT ARGUMENT NOT EMPTY

aWRONG AXIS IS EMPTY

AWRONG AXIS IS EMPTY

If B is a vector, all four forms of the compression function have the same effect.

If the rank of B is greater than 1, the form used determines which axis of the

array is affected.

For the forms 4/ [K] B and A/ [kK] B, the affected axis is axis X :

(«B<«3 U4p112

12 3 4

5 6 7 8

9 10 11 12

10 1/[1)B

1 2 3 4

9 10 11 12

APL Reference Manual 1-181

Primitive Mixed Functions

/ and # Compression and Replication

10 1/4[1]B

1 2 3 4

9 10 11 12

101 0/[2]B

3

> 7

9 11

10 1 0#[2]B

1 3

5 7

9 11

The forms 4/ B and 4# B affect the last and first axis of B, respectively:

X<«2 3p16

X

3

6

01 1/X

12

5

2 3

5 6

1 04X

123

If 4 1s empty, then B (after extension, if necessary) must have length 0 along

the relevant axis.

If the left argument contains all negative numbers (indicating fill characters),

then the applicable axis in the right argument must be empty, and the result

will be the prototype of B repeated + / | A times along the axis. If the applicable

axis 1s not empty, APL signals LENGTH ERROR. For example:

J«B+3 0p5

(APL outputs a blank line)

"2 "3/B aCORRECT AXIS IS EMPTY
00000

00000

00000

J«C<«0 3p5

(APL outputs a blank line)

2 " 3/C A INCORRECT AXIS IS EMPTY

10 LENGTH EFRROR

2 3/C AINCORRECT AXIS IS EMPTY
A

APL inserts fill items that are determined by the prototype of each vector

along the relevant axis. This is important for arrays of rank 2 or more because
the fill item for a given position depends on the prototype of that particular

column, row, or plane. The following expressions describe such an operation.

Note where the fill items are blanks and where they are zeros. (Because the

1-182 APL Reference Manual

Primitive Mixed Functions

/ and # Compression and Replication

array M is simple, all the fill items are scalars. If ¥ were enclosed, some of the

fill items might also have been enclosed.)

aCREATE M, A HETEROGENEOUS ARRAY OF RANK 3

O«M<2 2 3p 1 'A" 2 3 4 5 'A" 3 4 5 'B" 6

&
2
l

N
L
W

w

o

=

o

N
S

N w

COL«1 1 11

AREPLICATE M ALONG LAST AXIS (DEFAULT)

aPROTOTYPE BASED ON VECTORS ALONG LAST AXIS

&
 2
T

~N

w

=

W =

pCOL/M ALAST AXIS IS CHANGED

N N =

COL«1 1 1

COL/[2]1M AREPLICATE M ALONG 2ND AXIS

o

w

O

= a
n

pCOL/[2]M a2ND AXIS IS CHANGED

COL/[11M aEXPAND M ALONG 1ST AXIS

w =

o

O

a
r

O

O

o

O

w

o
y

=

pCOL/[11M alST AXIS IS CHANGED

w N w

APL Reference Manual 1-183

Primitive Mixed Functions

/ and # Compression and Replication

Further examples:

O«WRL<(1 2 3) '"ABC' 0

to—--- + +---+ 0

|1 2 3| |A4BC|

R + +---1

1 1 0/WRL aCOMPRESSION

tom— + -+

|1 2 3| |ABC|

po— - + +---+

3 220 1/WRL AREPLICATION
to—--- + +----- + t----- + o 4-—--- + t----- + -t -t +----- +

1123] |123] |12 3] |000] |oO0O] |ABC| |ABC| |0 0 0]

t----- + +----- + H----- t - + 4--—-- + -t -+ F----- +

Possible Errors Generated

7 SYNTAX FRROR (NO DYADIC FORM OF DERIVED FUNCTION)

9 RANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH FRROR

15 DOMAIN FRROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN FRROR (INCORRECT TYPE)

15 DOMAIN FRROR (NOT AN INTEGER)

27 LIMIT FRROR (INTEGER TOO LARGE)

28 AXIS RANK FRROR (NOT VECTOR DOMAIN)

29 AXIS LENGTH ERROR (NOT SINGLETON)

30 AXIS DOMAIN FRROR

30 AXIS DOMAIN FRROR

30 AXIS DOMAIN ERROR

30 AXIS DOMAIN FRROR

30 AXIS DOMAIN ERROR

30 AXIS DOMAIN ERROR

1-184 APL Reference Manual

(AXIS LESS THAN INDEX ORIGIN)

(ENCLOSED ARRAY NOT ALLOWED)

(INCORRECT TYPE)

(NOT AN INTEGER)

(RIGHT ARGUMENT HAS WRONG RANK)

(SEMICOLON LIST NOT ALLOWED)

Primitive Mixed Functions

/ and # Reduction

/ and # Reduction

Form

f/ B f/ LK1B f+B fA[K1B

4 is formed with / and -

Left Operand Domain

Type Dyadic value-returning function

Right Argument Domain

Type Any

Shape Any

Depth Any

Result Domain (of derived function)

Type Depends on f

Rank 0f "1+ ppB

Shape (pB)[(1ppB)~K]

Depth Depends on f

Implicit Arguments

None.

Description

Reduction is a monadic function derived from the slash (/) operator. To derive

the reduction function, use any dyadic function as the operand (f in the form) to

slash. f can be a primitive dyadic function, a dyadic system function, a dyadic

user-defined function, or a dyadic-derived function. f cannot be a user-defined

operator. The result operates as if f were applied between successive 1tems

along a specified axis of an array (B). For example:

APL Reference Manual 1-185

Primitive Mixed Functions

/ and # Reduction

H«X+16

12 3456

1+2+3+4+5+6

21

+/X

21

1Xx2x3xUx5x%6

720

x/X

720

</TAT

A
</'AB'

1

</VABC'

15 DOMAIN ERROR (INCORRECT TYPF)

</ VABC'

A

The reduction of a scalar always returns the scalar itself. Thus, the last

expression in the preceding example results in a DOMAIN ERROR because

'B'<'(C' evaluatesto 1, and '4' <1 is invalid because the data types do not

match. ’

Remember that APL evaluates expressions from right to left. For example:

</1 2 3

0

Here, APL evaluated 2< 3 and the result was 1. APL then evaluated 1< 1 and

returned 0.

The result of the derived function has a rank that is one less than the rank of

the original array (unless the original array is a scalar). Thus, the reduction of

a matrix yields a vector, the reduction of a vector yields a scalar, and so forth.

For the forms f/ [k] B and f# [K] B, the applicable axis is axis X:

U«4<2 L4p16

12 34

56 12

+/[2]4A

10 14

+/[1]4

6 8 4 6

1-186 APL Reference Manual

Primitive Mixed Functions

/ and # Reduction

Further examples:

O«Y«(1 2 3) (32 2) (32 2) (10 1)

t-—-=- + - + 4-----—- I +

1123] 17322] |322| |10 1]

t--==- + t-———-—- t e + t-—-=-- +

+/Y

t---— === +

|4 6 2]

e e +

, /13 anSIMPLE ARG YIFELDS NESTED RESULT

e +

|1 2 3]

t--—-—- +

If the length of the ¥ th axis is 1, the result of the derived function is the

original array with the ¥ th axis removed:

O«A<5 1p15

1

2

3

Iy

5

+/[114

15

+/[2]4

123 45

The forms f/ B and f# B affect the last and first axes of B, respectively:

[«A<«2 Up16

12 34

56 12

+/4A

10 14

+#4

6 8 4 b

If the length of the applicable axis is 0, and all other axes have nonzero

lengths, each result item is the identity function applied to the prototype of the

argument, if one exists. The identity function for all scalar dyadic functions 1s

p+f/ 10 where p is the prototype of the right argument (p<«+ 0p B) and f is the

scalar dyadic function. The identity elements for the identity function of the

scalar dyadic functions are listed in the following table:

APL Reference Manual 1-187

Primitive Mixed Functions

/ and # Reduction

Identity Items for the Scalar Dyadic Functions
Dyadic Function Symbol Identity Item (f/ 1 0)

Plus + 0

Minus - 0

Times x 1

Divide + 1

Power * 1

Residue | 0

Maximum [Most negative representable number

(" 1.7E38 approx)

Minimum L Largest representable positive number

(1.7E38 approx)

Logarithm ® None

Combination ! 1

Circle o None

And A 1

Or Y 0

Nand A None

Nor v None

Less < 0

Not Greater < 1

Equal to = 1

Not Less > 1

Greater > 0

Not Equal 2 0

The identity functions for the nonscalar dyadic functions are listed in the

following table. Note that P is the prototype of the argument B (defined

formally as P«+ 0p B). Any functions not listed (including system functions,

user-defined operations, and derived functions from arbitrary operator

sequences) do not have identity functions.

1-188 APL Reference Manual

Primitive Mixed Functions

/ and # Reduction

Identity Functions for the Nonscalar Dyadic Functions

Dyadic Function Symbol Identity Function

Reshape o o P

Catenate , ((" 1+pP),0)pcs((1¥pP),0)pP

Rotate d (T1+pP)pO

Rotate e (14pP)pO0

Transpose ® tpp P

Pick > 1 0

Drop ¥ (ppP)pO

Take 0 p P

Without ~ 1 0

Matrix Divide B (14pP)o.=14pP

Possible Errors Generated

7

7

11

15

15

15

15

15

27

28

29

30

30

SYNTAX ERROR (NO DYADIC FORM OF DERIVED FUNCTION)

SYNTAX FRROR (NO DYADIC FORM OF FUNCTION)

VALUE FRROR

DOMAIN FRROR

DOMAIN FRROR (ENCLOSED ARRAY NOT ALLOWED)

DOMAIN EFRROR (FUNCTION HAS NO IDENTITY ITEM)

DOMAIN ERROR (INCORRECT TYPE)

DOMAIN FRROR (NOT A DYADIC FUNCTION)

LIMIT FRROR (INTEGER TOO LARGE)

AXIS RANK ERROR (NOT VECTOR DOMAIN)

AXIS LENGTH ERROR (NOT SINGLETON)

AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)

AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

APL Reference Manual 1-189

Primitive Mixed Functions

/ and # Reduction

30 AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

30 AXIS DOMAIN FRROR (INCORRECT TYPE)

30 AXIS DOMAIN ERROR (NOT AN INTEGER)

30 AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

1-190 APL Reference Manual

Primitive Mixed Functions

" Each

" Each

Form

f B Af B

Left Operand Domain

Type Any function

Left Argument Domain

Type Depends on the function f

Shape Depends on the function [

Depth Depends on the function f

Right Argument Domain

Type Depends on the function f

Shape Depends on the function f

Depth Depends on the function [

Result Domain (of derived function)

Type Depends on the function f

Rank o p B (after singleton extension)

Shape o B (after singleton extension)

Depth Depends on the function f

Implicit Arguments

None.

Description

The monadic = operator (known as each) takes a function (f) as the left

operand. The result is either a monadic or dyadic derived function (depending

on the valence of f). f can be a primitive function, a system function, a user-

defined operation, or a derived function from an arbitrary operator sequence.

The function f does not have to be a value-returning tfunction.

APL Reference Manual 1-191

Primitive Mixed Functions

" Each

When you use ”, the action of a monadic f is applied to successive items
of an array (B in the form), and the action of a dyadic f is applied between
corresponding pairs of items (4 and B in the form). The action of f 1s only
applied to the top level of nesting in an enclosed array (" is not pervasive).

B <4

C « 15

D« 2 2 p "ABCD!

0« F <« B, (cC), <D aNOTE USE OF PARENTHESES
b - + +--+

|1 2 3 4 5| |AB]

-- + | CD|

+--+

pE ASHAPE OF F SHOWS A 3-ITEM VECTOR
3

0 E nSHAPE OF EACH OF E SHOWS SHAPE OF ALL ITEMS
++ +-+ +---+

15 (2 2|
++ +-+ +---+

=F aDEPTH OF F SHOWS ONE NESTING LEVEL
2

="F ADEPTH OF FACH OF E SHOWS DEPTH OF ALL ITEMS
0 11

[J « E « cF

S it R +

I + +--+]

| |1 2 3 4 5| |AB]||

|- + |cp]|
| t--+]
o +

0 p E ARANK OF EACH ITEM OF E
+-+

| 1]
+-+

0« F « cE,E,E

T T T e
+

| 4= t ot t ot + |
| |4 +---===- + +-—+| |4 - + ==+ |4 - + +--4]|
[l 11234 50 [ABl] | |1 23 45| [4B]] | |12 3¢ 5/ |AB|||

I + [CDI] | 4--mmmmmms t [CD]] | 4-mmmeeee- + [CD]]]
[t-—+] | t--+] | t--+]||
|+ I t ot +|
T e +

oF ASHAPE OF F SHOWS IT IS NOW A SCALAR

(APL outputs a blank line)

=F ADEPTH OF F SHOWS ENCLOSED ARRAY, 3 NESTING LEVELS
I

1-192 APL Reference Manual

Primitive Mixed Functions

"~ Each

ASHAPE OF EACH OF F SHOWS 1 VECTOR OF SHAPE 3)

aSHAPE OF EACH/EACH OF F SHOWS 3 VECTORS OF SHAPE 3

aSHAPE OF EACH/EACH/EACH OF F

| [++ 4=+ +---+] |++ +-+ +-—-+| [++ +-+ +-—-+]]|

EEE ISt f2 200 Fre stz 20p LI Ist 12 2]
| [4++ +-+ +--—+] [++ +-+ +---+| [++ +-+ +---+]|

VZ<«SH X

[1] aTHIS USER-DEFINED FUNCTION RETURNS A RESULT

[2] aSH DETERMINES IF ARRAY X IS SIMPLE HOMOGENEOUS

[3] 7 (25=X)n (AZ)n,=2«4+"00 , X

[4] v

SH 'A' 2 3

0

SH 15

1

SH 2 2p'ABCD!

11

SH (1 2) 3

0

SH "ABC' 5

0

The following example shows the use of system functions with the each

operator. The example creates a vector of function definitions and then

displays the canonical representation of each of the list of functions:

X « 2 2p'F 2

X

F

2

Y « 2 3p'F0O01+2"

Y

FOO

1+2

JENS

APL Reference Manual 1-193

Primitive Mixed Functions

" Each

OFxX" X Y
t+-+ +---+

|F| |FOO|
t-+ +---+

)FNS

F FOO

OCR TM '"F' 'FOO"

t-+ +---+

|F| |FOO|

2] |1+2]
t-+ +---+

0BOXTM OVRTM <[2]0ONL 3

| VF| | VFOO|

(11 2] [[1] 1+2]
| V| v oo

The next example shows the use of each to derive a dyadic function:

X<'WENDY' 'STAN' 'PETER'

X

+----- T e T +

|WENDY| |STAN| |PETER]|

tom-—- + t--——t - +

(cOALPHA) A X

e + tmm----- T es +

lu 2 315 |3 412 |24 15 3]

fommmm e + t-—----- I +

Y « (14) (16) (13)

Y

tommm - I R +

142 3 4] |1 23456 |12 3]

tommmmo b $ot---——1

2 1 3¢ Y

R EEEEE L I +

1341 2] |23 456 1] |12 3]

I s L e + ot----- +

The next example shows each as part of a derived function:

+/7 (2 2014)(9 8 7)

t--—+ 24

|13 7]
t---+

1-194 APL Reference Manual

Primitive Mixed Functions

"~ Each

Possible Errors Generated

9 RANK ERROR

10 LENGTH FRROR

40 OPERATOR DOMAIN ERROR (OPERAND TO EACH NOT A FUNCTION)

APL Reference Manual 1-195

Primitive Mixed Functions

\ and \ Expansion

\ and % Expansion

Form

A\ B A\ [LK]B Ax B AX[K]B

\ 1s formed with \ and -

Left Operand Domain

Type Near-Boolean

Shape Vector domain

Depth 0 or 1 (simple)

Right Argument Domain

Type Any

Shape Any

Depth Any

Result Domain (of derived function)

Type Same as argument

Rank 1TppB

Shape (pB)[(1ppB)~K] and p, 4 on axis X

Depth 1 =B

Implicit Arguments

None.

Description

Expansion is a monadic function derived from the backslash (\ operator. It

builds an array by combining the items of an existing array with fill items. You

can also use the JEXP system function to perform the expand operation (see

Chapter 2 for more information).

Each item in the operand (4 in the form) is a Boolean scalar that corresponds

to the position of an item in the right argument (8). When 4 is 1, APL inserts

the corresponding item along the relevant axis of B into the result array. When

A 1s 0, APL inserts a fill item into that position in the result array. There

1-196 APL Reference Manual

Primitive Mixed Functions

\ and \ Expansion

must be a 1 for each item along the relevant axis in the right argument, so

that all the items in B appear in the result array. Any number of fill items

may be included:

O«LIS<«12 13 15

12 13 15

V«1 0 1 0 1

AZEROS IN V DECIDE LOCATION OF FILL ITEMS

VNLIS

12 0 13 0 15

A singleton right argument is extended along the axis to a length that matches

the number of 1 s in the left argument:

1 0 1\5

5 0 5

If the left argument is a singleton, APL signals an error:

I1N\5 6 7 8

10 LENGTH ERROR

1\ 6 78

A

0\5 6 7 8

10 LENGTH ERROR

0\5 6 7 8

A

If the right argument is a vector, all four forms of the expansion function have

the same effect. If the rank of the right argument is greater than 1, the form

used determines which axes of the array are affected.

For the forms 4\ [X] B and 4\ [X] B, the affected axis is axis X:

O«A<2 3p16

10 1\[1]4 REXPAND ALONG 1ST AXIS

APL Reference Manual 1-197

Primitive Mixed Functions

\ and X Expansion

1 0 1%[1]A AEXPAND ALONG 15T AXIS

101 1\[2]4 AEXPAND ALONG 2ND AXIS

1023

4 0 5 6

10 1 1x[2]4 AEXPAND ALONG 2ND AXIS

102 3

4 0 5 6

The forms A\ B and 4\ B affect the last and first axis of B, respectively:

X«3 9p'"xTHISISANEXPANSIONEXAMPLE*%!

X

xTHISISAN

EXPANSION

EXAMPLE% x

pX

39

V«1 1111011011

V\ X AEXPAND X ALONG LAST AXIS

*xTHIS IS AN

EXPAN SI ON

EXAMP LE *x%

1 0 1 1XX AEXPAND X ALONG FIRST AXIS

*THISISAN

EXPANSION

EXAMPLE% %

When you expand an array, APL uses fill items that are determined by the

prototype of each vector along the relevant axis. This is important for arrays

of rank 2 or more because the fill item for a given position depends on the

prototype of that particular column, row, or plane. The following expressions

describe such an operation. Note where the fill items are blanks and where

they are zeros. (Because the array ¥ is simple, all the fill items are scalars. If

M were enclosed, some of the fill items might also have been enclosed.)

O«M«2 2 3p 1 "A'" 2 3 4 5 '4" 3 4 5 'B' 6

U
l

i

w

o

o

=

o

o
o

m

)

oM

BOO«1 1 0 1

1-198 APL Reference Manual

Primitive Mixed Functions

\ and X\ Expansion

aEXPAND M ALONG LAST AXIS (DEFAULT)

PROTOTYPE BASED ON VECTORS ALONG LAST AXIS
-

U
l

o

w

F

o

+

N

w

p0BOO\ M ALAST AXIS IS CHANGED

N N =

BOO«1 0 1

BOO\ [2]M REXPAND M ALONG 2ND AXIS

b

w

O

pBOO\ [2]M a2ND AXIS IS CHANGED

BOO\ [11M aEXPAND M ALONG 1ST AXIS

w = S
N

a
1
~

o
o

w

O

=

o

O

0BOO\ [11M alST AXIS IS CHANGED

3 23

Note that the right argument may be empty:

0 0 0\10

000

O«4«0 0 0O\'

(APL outputs a blank line)

pA

3

If the left argument is empty, the right argument (after extension, if necessary)

must have length 0 along the relevant axis.

For a simple, homogeneous array 4, the result of the expression 0=0\0p 4

is 1 if 4 is numeric, and 0 if 4 is character. For any array X, the result

of the expression (2>=X)A (+Z)Ar.=2«4+"0p , Xis 1if X is simple or

homogeneous, and 0 if X is either nonsimple or heterogeneous.

APL Reference Manual 1-199

Primitive Mixed Functions

\ and \ Expansion

Further examples:

O«WRL<(1 2 3) ('ABC') 0

---+ +---+ 0

|1 2 3| |ABC|

Possible Errors Generated

7 SYNTAX ERROR (NO DYADIC FORM OF DERIVED FUNCTION)

9 RANK ERROR (NOT VECTOR DOMAIN)

10

15

15

15

27

28

29

30

30

30

30

30

30

LENGTH FRROR

DOMAIN EFRROR

DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

DOMAIN ERROR (INCORRECT TYPF)

LIMIT ERROR (INTEGER TOO LARGE)

AXIS RANK ERROR (NOT VECTOR DOMAIN)

AXIS LENGTH ERROR (NOT SINGLETON)

AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

AXIS DOMAIN ERROR (INCORRECT TYPFE)

AXIS DOMAIN ERROR (NOT AN INTEGER)

AXIS DOMAIN FERROR (RIGHT ARGUMENT HAS WRONG RANK)

AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

1-200 APL Reference Manual

Primitive Mixed Functions

\ and X Scan

\ and % Scan

Form

f<B fLK1B f\B fXLCK1B

X 1s formed with \ and -

Left Operand Domain

Type Dyadic value-returning function

Argument Domain

Array Any

Type Any

Shape Any

Depth Any

Result Domain (of derived function)

Type Depends on f

Rank opB

Shape pB

Depth Depends on f

Implicit Arguments

None.

Description

Scan is a monadic function derived from the backslash (\ operator. To derive

the scan function, use any dyadic function as the operand (f in the form) to

backslash. f can be a primitive dyadic function, a dyadic system function, a

dyadic user-defined function, or a dyadic-derived function from an arbitrary

operator sequence. The result operates as if f were applied between successive

items along a specified axis of an array (B). Thus, a scan of an array works the

same as a reduction, except that the scan returns the results as the function is

applied to each successive group of items.

APL Reference Manual 1-201

Primitive Mixed Functions

\ and \ Scan

The result has the same shape as B. The first item of the result is always

1dentical to the first item of B, and the last item is equal to the f reduction of

B. For example:

+\3U4 5

3 7 12

As the function is applied to each successive group of items, APL evaluates the

resultant expressions from right to left:

-\12 34

1 71272

Here, APL returned the following:

®* The first item in the argument array

* The result of the expression 1-2

* The result of the expression 1-2-3

* The result of the expression 1-2-3-4

Note that APL treated each expression in the example independently; for

example, the result of the expression 1-2 did not affect the evaluation of the

expression 1-2-3.

If B is an empty array, the result is an empty array.

For the forms f\ [k1 B and f\ [¥] B, the applicable axis for the scan is axis X :

O«A4<2 Up16

12 34

56 12

+\ [2]4

1 3 6 10

5 11 12 14

+\ [1]4

12 3 4

6 8 4 6

The forms f\ B and f\ B affect the last axis and first axis of B, respectively:

1-202 APL Reference Manual

Primitive Mixed Functions

\ and\ Scan

[J«4«2 U4p1b

12 34

561 2

+\4

1 3 6 10

5 11 12 1t

+34

12 34

6 8 U 6

Note that the scan operator is never applied if B has the length 1. Thus,

+\"A'<«~>" A", Also note that for =\ '4B' «-»> ' 4', 0 is heterogeneous,

because the first item of the result would be a character (' 4'), and the second

item would be a number 0, the result of '4'="B".

If the dyadic function specified with scan is one of the associative primitive

functions (+, x, L, I, <, and v for all arguments; = and = for Boolean

arguments), APL uses an optimization that changes the way scan is computed.

The definition of R<A\ B (for vectors R[K] =f/ K+ B0) is changed as follows:

R(1] = B[1]

R[K] = R[K-1] f B[K] for KeliipBH

nu

This optimized scan requires fewer operations than the traditional scan.

Note that the result of an associative operation may differ slightly from the

nonassociative approach, and you should use it carefully if your results require

a high degree of precision. For example:

A«1FE6 ~1E6 1F 16

4

1000000 1000000 1F 16

+\4

1000000 0 1E 16

+/4

0

Further examples:

OeW<(2 2 3) (2 1 0)

APL Reference Manual 1-203

Primitive Mixed Functions

\ and\} Scan

o\3 2 1 aSIMPLE ARG YIELDS NESTED RESULT

J +----- + t----- +

122 2] |11 1]

t-=-=- + t----- +

Possible Errors Generated

7 SYNTAX ERROR (NO DYADIC FORM OF DERIVED FUNCTION)

7 SYNTAX ERROR (NO DYADIC FORM OF FUNCTION)

11 VALUF ERROR

15 DOMAIN FRROR

15 DOMAIN ERROR (INCORRECT TYPE)

27 LIMIT FRROR (INTEGER TOO LARGE)

28 AXIS RANK FRROR (NOT VECTOR DOMAIN)

29 AXIS LENGTH FRROR (NOT SINGLETON)

30 AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)

30 AXIS DOMAIN FRROR (AXIS LESS THAN INDEX ORIGIN)

30 AXIS DOMAIN FRROR (ENCLOSED ARRAY NOT ALLOWED)

30 AXIS DOMAIN ERROR (INCORRECT TYPE)

30 AXIS DOMAIN ERROR (NOT AN INTEGER)

30 AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

40 OPERATOR DOMAIN EFRROR (NOT A DYADIC FUNCTION)

1-204 APL Reference Manual

Primitive Mixed Functions

o . f Quter Product

o , fOuter Product

Form

Ao . fB

Left Operand Domain

Type Always jot (o)

Right Operand Domain

Type Dyadic function

Left Argument Domain

Type Any

Shape Any

Depth Any

Right Argument Domain

Type Any

Shape Any

Depth Any

Result Domain (of derived function)

Type Depends on f

Rank (ppA)+ppB

Shape (pA4),pB

Depth Depends on f

Implicit Arguments

None.

APL Reference Manual 1-205

Primitive Mixed Functions

o , f Quter Product

Description

Outer product is a derived function that specifies an operation to be performed

between every item of one array and every item of another array. In the

expression R<A4- . fB, R is an array that results from the application of the

function f to every pair of items of 4 and B. f can be a primitive dyadic

function, a dyadic system function, a dyadic user-defined function, or a dyadic-

derived function from an arbitrary operator sequence. The function f does not

have to be a value-returning function.

In the following example, note how the outer product operator affects the

operation of the primitive scalar function multiply:

1 2 3x2 3 4 anSCALAR PRODUCT APPLIES x TO EACH PAIR

2 6 12

AQUTER PRODUCT APPLIES x BETWEEN ALL ITEMS

1 2 30.%x2 3 4

=
N

O

O

w

[
N

S

 o
 Q
e

1

In the next example, the outer product operator affects the operation of

the equal function so that each data item in the left argument is compared

to each item in the right argument. Then, the reduction function (derived

from the slash operator) is used to determine how many times each item

in the left argument appears in the right argument. Note that the left

argument determines the number of rows in the result, and the right argument

determines the number of columns:

G¢1 2 3 2 2 1

(13)o.= aFIND THE LOCATIONS OF 1S5,25,AND 35 IN G

100001

010110

001000

+/(13)0.=CG anUSE REDUCE TO TOTAL THE ROWS

2 31

ATHERE ARE TWO 15 THREE 2S5 AND ONE 3 IN G

Further examples:

J«X<«(1 2 3) "4BC' 2

t----- + +---+ 2

|1 2 3| |ABC|

1-206 APL Reference Manual

Primitive Mixed Functions

o . f OQOuter Product

(12) o.= X

t----- + t----- + 0

|100] |0O O

t———— + == +

t----- + +----- + 0

101 0] |00 0]

e + +-—==- +

HeW<(2 2 3) (2 1 0)

e e + +----- +

|2 2 3| |2 1 0]

to—— + - +

W o.p0 W

t-———- + t--—=-- +

|22 3] |21 0]

12 2 3] |2 1 0]

| | |
|2 2 3| |2 0|

|2 2 3] |2 0|

e + t----- +

++ ++

| | | |

| | | |

| | | |
++ ++

(13) o.p 1 2 0 AaSIMPLE ARGS YIELD NESTED RESULT

+--+ +-+ +-+

| 1] |2] 0]
+--+ +-+ +-+

+--——- + +--—+ +--—+

|71 1] |2 2| |0 0]

t--—-- + +---+ +--—+

t-——m - + $----- + t---=- +

171 71 1] |22 2] 100 0]

tomm - I I +

Possible Errors Generated

7 SYNTAX FRROR (NO MONADIC FORM OF DERIVED FUNCTION)

15 DOMAIN ERROR

15 DOMAIN ERROR (INCORRECT TYPE)

40 OPERATOR DOMAIN FRROR (NOT A DYADIC FUNCTION)

APL Reference Manual 1-207

Primitive Mixed Functions

f. g Inner Product

f. glnner Product

Form

Af. gB

Left Operand Domain

Type Dyadic value-returning function

Right Operand Domain

Type Dyadic value-returning function

Left Argument Domain

Type Any

Shape Any, inner axes of 4 and B must conform

Depth Any

Right Argument Domain

Type Any

Shape Any, inner axes of 4 and B must conform

Depth Any

Result Domain (of derived function)

Type Depends on f and g

Rank Of 2+(ppAd)+ppB

Shape (T1vpA), 1+pB

Depth Depends on fand g

Implicit Arguments

None.

1-208 APL Reference Manual

Primitive Mixed Functions

f. g Inner Product

Description

The derived function inner product produces the common algebraic matrix

product of two arrays. The name inner product comes from the application

of the function (g) along the inner axes of the two arguments. f and g can be

a primitive dyadic function, a dyadic system function, a dyadic user-defined

function, or a dyadic-derived function from an arbitrary operator sequence.

(The inner axes are the last axis of the left argument and the first axis of the

right argument.) For example:

(«A«2 3p16

12 3

4L 5 6

H«B<13

12 3

A+, xB

14 32

RINNER AXES DO NOT MATCH IN NEXT EXPRESSION

B+.x4

10 LENGTH FRROR (LENGTHS OF INNER AXES DO NOT MATCH)

B+.x4

A

In the preceding example, each item along the first axis of the right argument

(in this case, B has only one axis) is multiplied by the corresponding item along

the last axis of the right argument, and the products of each row are summed.

The lengths of these inner axes must conform (in this case they are both 3).

The shape of the result is the shape of 4 (2 3) catenated to the shape of B (3)

without their inner axes.

When each of the arguments has only one axis, the result is a scalar:

(13)+.%x13

14

When you want to perform the inner product with one object on itself, use

transpose:

[«A<«2 3p16

12 3

L 5 6

A+, xQ4

14 32

32 77

APL Reference Manual 1-209

Primitive Mixed Functions

f. g Inner Product

You can also specify an inner product in which an operation other than

multiplication is performed. Commonly, you might also use » . = (And Dot

Equals), v.z (Or Dot Not equals), or x.x (Times Dot Star). Using this method,

you can locate values containing specific characters or search for a row of one

array in which all the items are equal to those in a column of another array.

For example:

O«B+«2 316

3

aNEXT EXPRESSION COUNTS WHERE 2 AND 6

2 6+.<B n ARE < THE TWO ROWS OF EACH COLUMN IN B

1

U«X<4 3p 'ONETWOSIXTEEN'

ONE

TWO

SIX

TFE

pX

4 3

pY«'SIX! aFIND WHERE Y OCCURS IN SIX

3

To be used in an inner product operation, the two arguments, denoted 4 and B,

must conform to at least one of the following rules:

® A or B is a singleton

e The inner axes (the results of “ 14 p 4 and 1+ p B) are equal

e Either the last axis of 4 (T 14 p 4) or the first axis of B (14 p B) equals 1

If the first or third rule is true, then the corresponding argument is extended
(through the process of singleton extension) so that the arguments have equal

lengths along the matching axes.

If (0="14+pA)Ar0=1%pB, but no other axes of4 and B are equal to 0, then the

inner product operator returns an array of identity items for the function /, as

in reduction.

1-210 APL Reference Manual

Primitive Mixed Functions

f. g Inner Product

Further examples:

0«G<1 3 p (123) (T2 01) 72

- + +--——-—- + 2

|12 3] | 2 0 1]

to---- + t------ +

G+ .xQ G

t—————- +

|9 8 14

t-————- +

ASIMPLE ARGS YIELD NESTED RESULT

(13) ,.p 13

pomm e mm - +

11 2 2 3 3 3]

t-—— - +

Possible Errors Generated

7 SYNTAX FRROR (NO MONADIC FORM OF DERIVED FUNCTION)

11 VALUE ERROR

10 LENGTH ERROR (LENGTHS OF INNER AXES DO NOT MATCH)

15 DOMAIN EFRROR

15 DOMAIN ERROR (FUNCTION HAS NO IDENTITY ELEMENT)

15 DOMAIN FRROR (INCORRECT TYPE)

L0 OPERATOR DOMAIN ERROR (NOT A DYADIC FUNCTION)

APL Reference Manual 1-211

Primitive Mixed Functions

[] Axis

[]Axis

Form

fLK]1B AfCK]1B

Left Argument Domain

Type Monadic or dyadic function

Right Argument Domain

Type Near-integer (floating for laminate and ravel, Any for user-

defined operations)

Shape Singleton (Vector for drop, enclose, disclose, ravel,

take and all dyadic scalar functions, Any for user-defined

operations)

Depth 0 or 1 (simple), Any for user-defined operations

Result Domain

Type Same as left argument

Implicit Arguments

0710 (fLK] when JI0<«1 1s identical to fTLK+ 1] when 0I0<«0)

Description

Axis makes the function to its left apply to the axis specified by the value

surrounded by brackets. The following functions and operators may be affected

by axis:

* C(Catenate (, and ;)

* Derived compress/replicate (/ and #)

* Derived reduction (/ and #)

* Derived expand (\ and \)

* Derived scan (\ and %)

* Disclose (o)

* Drop (+)

1-212 APL Reference Manual

Primitive Mixed Functions

[] Axis

Enclose (<)

Laminate (, and ;)

Monadic grade up (4)

Monadic grade down (V)

Ravel (, and 5)

Rotate (¢ and o)

Reverse (¢ and o)

Take (+)

OEXP

OREP

All dyadic scalar functions (see Table 1-1 in Section 1.1.1)

User-defined operations

The use of axis with these functions (and operators) is described in the

individual explanations of the functions. For examples and further descriptions

of axis with scalar functions, see Section 1.1.

When you use axis with the 5, #, \, and e functions, the functions are

equivalent to ,, /, \, and ¢ used with axis. The following list shows the

definitions and equivalences of these symbols. Note the following:

f represents either ,, /, \ or ¢

g represents 5, /, ¥, 0or e

A and B represent any arrays

S 1is any scalar

K is any axis

0I0 is used to select the first axis of an array.

gB <+~ flOI0] B

flk]l B <+ g[k] B for allx

fs «~ fIOI0]1 S <«~>g S <~ g[OIO0l S

Ag B+~~> Af[0IO0] B

AffK] B+~ AglK] Bforallx

AfS <+ A flOI0] S<«> AgsS <~ AglOIO] S

Axis is 0 I0-dependent; thus, all the functions named are 00 I0-dependent when

they are affected by axis, except user-defined operations.

APL Reference Manual 1-213

Primitive Mixed Functions

[] Axis

Possible Errors Generated

28

29

30

30

30

30

30

30

30

30

30

30

30

AXIS RANK FRROR (NOT VECTOR DOMAIN)

AXIS LENGTH ERROR (NOT SINGLETON)

AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)

AXIS DOMAIN ERROR (AXES NOT IN CONTIGUOUS ASCENDING ORDER)

AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

AXIS DOMAIN FRROR (DUPLICATE AXIS NUMBER)

AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

AXIS DOMAIN ERROR (INCORRECT OPERATION)

AXIS DOMAIN FRROR (INCORRECT TYPFE)

AXIS DOMAIN ERROR (LEFT ARGUMENT HAS WRONG LENGTH)

AXIS DOMAIN FRROR (NOT AN INTEGER)

AXIS DOMAIN ERROR (RIGHT ARGUMENT HAS WRONG RANK)

AXIS DOMAIN FRROR (SEMICOLON LIST NOT ALLOWED)

1-214 APL Reference Manual

Primitive Mixed Functions

« Specification Function

< Specification Function

Form

A<B ALK]<B

Left Argument Domain

Type Variable name or undefined name

Shape Any

Right Argument Domain

Type Any

Shape Conforms to index argument &, if any

Depth Any

Result Domain

Type Same as right argument

Rank oppB

Shape 0B

Depth =B

Implicit Arguments

None.

Description

The specification function (+) stores values in identifiers. The left argument

(4) must be a variable name or undefined. When the function is executed, the

value of the right argument (B) becomes associated with the name A.

In addition to the uses described below, specification can also be used for

strand and selective assignment statements.

Specification functions can be included in the construction of other statements.

For example, the following assigns the value 7 to ¢, 11 to B, and 14 to 4:

A«3+B<U4+(C+7

APL Reference Manual 1-215

Primitive Mixed Functions

< Specification Function

For the form A[K] «B, axes of length 1 are dropped from B to allow B to

conform to ALK] . (For more details about the A[Xk]<B form of specification,

see the VAX APL User’s Guide.) For example:

O«A«2 3p16

123

4 5 6

B«3 1 1p7 8 9

Al2;1+B

A

123

7 8 9

The specification function is a quiet function; it does not return a value if it is

the leftmost function in a statement.

A<2

A

2

(4«2)
2

[«A+2

2

Note that the value returned by the specification function (when you require

that it returns a value) is the value of the right argument, even if the left

argument is indexed. For example:

A<5 4 3 2 1

He«A[1]«4
M

A

b 4 321

Possible Errors Generated

Specification not subscripted (form 4+B)

4 NOT A VALID SYSTEM IDENTIFIFER

7 SYNTAX ERROR (MISSING LEFT ARGUMENT TO ASSIGNMENT)

11 VALUE ERROR (NO VALUE TO ASSIGN)

15 DOMAIN FRROR (ILLEGAL LEFT ARGUMENT TO ASSIGNMENT)

15 DOMAIN EFRROR (NOT A SYSTEM VARIABLE)

1-216 APL Reference Manual

Primitive Mixed Functions

« Specification Function

Subscripted specification (form A[K] «B)

11

11

15

15

27

36

36

37

37

37

38

38

38

VALUE ERROR (NO VALUE TO ASSIGN)

VALUE ERROR (SUBSCRIPTED NAME IS UNDEFINED)

DOMAIN ERROR (INVALID OBJECT IN INDEXED ASSIGNMENT)

DOMAIN ERROR (NOT A SYSTEM VARIABLE)

LIMIT FRROR (INTEGER TOO LARGE)

INDEX RANK FRROR

INDEX RANK FRROR (CANNOT INDEX A SCALAR)

INDEX LENGTH ERROR

INDEX LENGTH ERROR (INDEX LESS THAN INDEX ORIGIN)

INDEX LENGTH ERROR (INDEX OUT OF RANGE)

INDEX DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

INDEX DOMAIN ERROR (INCORRECT TYPE)

INDEX DOMAIN ERROR (NOT AN INTEGER)

APL Reference Manual 1-217

Primitive Mixed Functions

Strand Assignment with the Specification Function

Strand Assignment with the Specification Function

Form

(A1...An)<B

Left Argument Domain

Type List of variable or undefined names

Shape Any

Right Argument Domain

Type Any

Shape Vector domain

Depth Any

Result Domain

Type Same as right argument

Rank ppB

Shape p B

Depth =B

Implicit Arguments

None.

Description

Strand assignment (also known as vector assignment) allows you to assign a

list of values to a list of objects. APL applies the assignment along successive

pairs of items in the left (4) and right (B) arguments in a manner similar to

scalar extension. The objects in 4 may be undefined names, variable names,

or system variable names. The result of the strand assignment function is the

right argument.

The length of B must conform to the number of objects in 4, or B must be a

singleton, in which case APL performs singleton extension. For example:

1-218 APL Reference Manual

Primitive Mixed Functions

Strand Assignment with the Specification Function

BURR « 32 o TEMP « 0 o COLD « 12

BURR ¢ TEMP ¢ COLD

32

0

12

R PARENTHESES REQUIRED

(BURR TEMP COLD) <« 20 4 15

BURR ¢ TEMP ¢ COLD

20

4

15

RSINGLETON EXTENSION

(BURR TEMP COLD) <« 3

BURR ¢ TEMP ¢ COLD

You can use strand assignment to allow multiple arguments in user-defined

operations. For example, FRET is a monadic user-defined function containing

three local variables (X, Y, and Z). The header definition of FRET is as follows:

VFRET B;X;Y;72 ¥

When FRET is called, the argument (B) contains three items. Inside FRET,

there is an expression that performs a strand assignment in which each item

in B is assigned to a local variable. For example:

BIP«<23 41 'RUE! RBIP CONTAINS 3 ITEMS

FRET BIP ATHE CALL TO FRET IS STILL MONADIC

(X Y Z)<BIP aTHIS IS EXPRESSION INSIDE OF FRET

Note that the length (3) of the left argument to the specification function

conforms to the number of items in BIP. If BIP were a singleton, APL would

perform singleton extension.

Strand assignment is an atomic operation; if any of the assignments fail, no

change occurs to any of the names in the left argument list. However, If you

have set the display option on the J¥WATCH system function (see Chapter 2

if you have set the signal option, the signal is held until APL completes the

entire strand assignment and only the last watched name is signaled.

APL Reference Manual 1-219

Primitive Mixed Functions

Strand Assignment with the Specification Function

Possible Errors Generated

4 NOT A VALID SYSTEM IDENTIFIER

7 SYNTAX ERROR (MISSING LEFT ARGUMENT TO ASSIGNMENT)

9 RANK FRROR (NOT VECTOR DOMAIN)

10 LENGTH ERROR

15 DOMAIN ERROR (INVALID OBJECT IN STRAND ASSIGNMENT)

11 VALUE ERROR (NO VALUE TO ASSIGN)

15 DOMAIN FRROR (NOT A SYSTEM VARIABLE)

1-220 APL Reference Manual

Primitive Mixed Functions

Selective Assignment with the Specification Function

Selective Assignment with the Specification Function

Form

(fA) «B (CfA) «B

Left Argument Domain

Type A 1s a variable name

f is a function (see list below)

C is any valid left argument to f

Shape Any

Right Argument Domain

Type Any

Shape Conforms to left argument

Depth Any

Result Domain

Type Same as right argument

Rawrite nk opB

Shape o B

Depth =B

Implicit Arguments

None.

Description

Selective assignment allows you to assign values to specified items of an

array. The left argument (f4) contains an expression that selects items from

an array. The length of the right argument (B) either equals the number of

items selected or is 1 (B 1s a singleton), in which case APL performs singleton

extension. For example:

APL Reference Manual 1-221

Primitive Mixed Functions

Selective Assignment with the Specification Function

O«GUT+15

123145

O« (34GUT)+«u48 u9 50 RASSIGN TO FIRST 3 ITEMS OF GUT

48 49 50 U5

O« (34GUT)+u8 aSINGLETON EXTENSION

48 48 48 U5

ASHAPES DO NOT MATCH

(3t+GUT)«u8 49

10 LENGTH ERROR

(3+GUT)+«u8 49

A

The following table describes the primitive functions you can use in the left

argument expression to select items from an array. The symbol I refers to an

expression that is a valid argument to the function in the form.

Assignment Form Function Name

(,A4)<B Ravel

(,[KJA) « B Ravel with axis

(¢4) « B Reverse

(ed) <B

(¢ [KJA) « B Reverse with axis

(e[K]A) « B

(84) « B Transpose

(IVA) < B Drop

(I+[K14) < B Drop with axis

(I+4) « B Take

(I+[K]1A) <« B Take with axis

(IbA) « B Rotate

(IeAd) « B

(Ib[KJ1A) « B Rotate with axis

(Ie[K]A) <« B

(IRA) « B Transpose

(IpAd) « B Reshape

(INA) « B Expand

(IXA) « B

(IN[K]1A) < B Expand with axis

1-222 APL Reference Manual

Primitive Mixed Functions

Selective Assignment with the Specification Function

Assignment Form Function Name

(IX[K]JA) « B

(I/A) < B Replicate

(I+A) <« B

(I/[KJA) « B Replicate with axis

(I+#[K]A) <« B

You can use more than one of the eligible functions in the left argument

expression. For example:

=

0

I

7

(
@
3

2

0

8

(
@
]

3

b

9

0«BOP«3 3p19

O«(2t1 18BOP)<«0 0 ACHANGE FIRST 2 ITEMS ON THE DIAGONAL

You can use other primitive functions in the portion of the left argument

expression that evaluates the argument of one of the eligible functions. For

example:

=
=

(
)
]

o

3

b

9

3

b

0

0«BOP<+3 3p19

BE<1

EP<?2

O«((BE+EP)+1 18BOP)«0 0 0

Possible Errors Generated

4 NOT A VALID SYSTEM IDENTIFIER

11 VALUF FRROR (NO VALUFE TO ASSIGN)

15 DOMAIN ERROR (CANNOT MODIFY SELECTIVE ASSIGNMENT TARGET)

APL Reference Manual 1-223

Primitive Mixed Functions

Selective Assignment with the Specification Function

15 DOMAIN EFRROR (INVALID FUNCTION IN SELECTIVE ASSIGNMENT)

15 DOMAIN ERROR (INVALID OBJECT IN SELECTIVE ASSIGNMENT)

15 DOMAIN ERROR (NOT A SYSTEM VARIABLE)

36 INDEX RANK FRROR

37 INDEX LENGTH ERROR

1-224 APL Reference Manual

2
VAX APL System Variables and Functions

Conceptually, there are two parts to the VAX APL interpreter: the APL

language and the APL environment. The APL language comprises the lexical

and symbolic elements of APL, the parts of APL that are included when it is

used as a mathematical notation in a classroom. The APL environment is the

setting in which the APL language elements are applied.

The APL interpreter recognizes a set of system variables, functions, and

commands that allow you to control your APL sessions, as well as to facilitate

and preserve the work you do in those sessions. For example, the interpreter

allows you to:

* Determine or set the values of the index origin, print precision, comparison

tolerance, and other elements that affect the operation of functions.

e Get information about a workspace, such as its name and size, the

names of its user-defined operations and variables, the state of its active

operations, and so on.

e Manipulate workspaces; that is, load, save, or delete them, copy objects

from them, or change their size.

* Get the system time and date, or get accounting information for a session.

2.1 System Variables

VAX APL system variables, like ordinary variables, can be used in any

language expression or function. Unlike ordinary variables, system variables

have special meaning to the system, and they allow you to do the following:

e Set the index origin and comparison tolerance.

e (Change the output precision and line width.

* Specify an operation to be performed when a workspace is activated.

e Automatically save an active workspace after function editing and data

input.

APL Reference Manual 2-1

VAX APL System Variables and Functions

2.1 System Variables

2.1.1 System Variable Names

The names of APL system variables begin with a quad character (0). The

names are considered to be distinguished names, meaning that they are

reserved for a specific purpose. You cannot use them as names for user-defined

operations or variables, and you cannot copy, erase, or collect them in a group.

2.1.2 System Variable Characteristics

System variables are similar to ordinary variables in the following ways:

* They retain their values until new ones are assigned.

® Their current values are saved with a workspace (except for 0GAG, OTT,

OTLE and 0 VPC).

¢ They can be localized in user-defined operation definitions.

Each of the system variables in APL can be assigned a value and can be

localized in user-defined operations.

Table 2-1 lists the system variables, the range of values you can specify for
them, and their default values.

Table 2-1 System Variable Value Ranges

Variable Value Range Default

AUS 0,1,2 0

Ocr 0 to 2.328E 10 1E7 15

OoDcC Nested vector (C1102)

ODML 512 to 2048 2048

OERROR Error message tt

0GAG 0,1, 2,3 Terminal dependent

OrIo 0,1 1

0L Any 1 0

OLX Expression e

OnNG 0,1,2 1

OPP 1to 16 10

0 PW 35 to 2044 Terminal width

OR Any 1 0

(continued on next page)

2—2 APL Reference Manual

VAX APL System Variables and Functions

2.1 System Variables

Table 2-1 (Cont.) System Variable Value Ranges

Variable Value Range Default

ORL ~ 2147483648 to 695197565

2147483647

OSF Prompt 0:<CR><LF> 6 spaces

O0SINK Any Always 1 0

OTERSE 0,1 0

OTIMELIMIT ~ 1 to 255 0

UTIMEOUT 0,1 0

OTLE 0,1 Terminal dependent

OTRAP Expression e

OrT 1to 19 Terminal dependent

OVPC Non-negative integer 30

Note that 1ERROR, OLX, O0SF, and 1 TRAP must have character values;]DC

has a two-item heterogeneous value; all the other system variables must have

numeric values. The exceptions are 1L, OR, and 0 SINK, which may take any

type of value.

2.2 System Functions

APL system functions supplement the primitive functions by providing

additional processing capabilities. For instance, they allow you to do the

following:

e [Express the canonical representation of a user-defined operation and store

the operation definition as data.

e Expunge a named object.

e Construct a name list of labels, variables, or functions, and return the

classification of a named object.

* Delay execution of an operation for a specified period of time.

You access a system function by stating its name and arguments (if any), just

as you would access a primitive or user-defined operation.

For the system functions that take character arguments, white space (spaces

and tabs) is allowed before and after the name (workspace name, function

name, and so on) in the argument. For example, all of the following will load

the workspace MYWS:

APL Reference Manual 2-3

VAX APL System Variables and Functions

2.2 System Functions

OQLD ' MYWS !

0QLD ! MYWS '

O0QLD 'MYWS'

QLD MYWS !

Anything other than white space is not allowed before or after the name:

QLD ' MYWS A4’

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

OQLD ' MYNS A
A

2.2.1 System Function Names

System functions, like system variables, are identified by unique names that

begin with a quad character (01); you cannot use these names for user-defined

operations or variables, and you cannot copy, erase, or collect them in a group.

APL assumes that any system functions in an expression are ambivalent,

even though most system functions have a specific valence. This means that

if an expression contains a left argument for a monadic system function, APL

signals an error. For example:

AUARBOUT IS MONADIC

2 JARBOUT 3

7 SYNTAX ERROR (NO DYADIC FORM OF FUNCTION)

2 UARBOUT 3

A

2.2.2 Types of System Functions

System functions can be categorized as follows:

* Niladic system functions—those that do not take arguments.

* Monadic system functions—those that take one argument.

* Dyadic system functions—those that take two arguments.

* Ambivalent system functions—those that take either one or two arguments.

The niladic system functions do not take arguments (you may not assign

a value to them), and they cannot be localized in user-defined operations.

The niladic system functions and their values (where applicable) in a clear

workspace may be summarized as follows: |

2-4 APL Reference Manual

VAX APL System Variables and Functions

2.2 System Functions

Niladic System Functions

Function Description (value in clear workspace)

OAT Account information as 4-integer vector

HALPHA '"ANABCDEFGHI JKLMNOPQRSTUVNXYZ'

OALPHAL 'abcdefghljklmnop qrstuvwxyz'

UALPHAU 'AABCDEFGHIJKLMN OPQRSTUVWXYZ'

OASCIT 0 AV subset; approximates ASCII characters

04V Atomic vector

OCHANS Assigned file channels (empty numeric vector)

OCTRL The first 32 ASCII characters and Delete

OLC Line numbers in state indicator (1 0)

ONUM '0123456789"

ORESET Clears the state indicator (no value)

Or7s Time stamp as 7-integer vector

OUL Process identification number (PID)

OVERSION Interpreter and workspace versions

OwWA Workspace available in bytes

The monadic system functions take one argument, which is placed immediately

to the right of the function. The following table of the monadic system

functions describes the type, shape, and, where applicable, the units associated

with each function’s argument. Note that there are two entries for JASS,

which has both action and query uses.

Monadic System Functions

Function Shape Type Units

OARBOUT Vector domain Integer Character codes

04SS Vector domain Character File information

O0ASS Vector domain Near-int Channel numbers

[0BREAK Any Any N/A

[CHS Vector domain Near-int Channel numbers

O0CLS Vector domain Near-int Channel numbers

OCR Vector domain Character Operation name

[0DAS Vector domain Near-int Channel numbers

APL Reference Manual 2-5

VAX APL System Variables and Functions

2.2 System Functions

Monadic System Functions

Function Shape Type Units

[0DL Singleton Floating Seconds

apvce Vector domain Near-int Channel numbers

OEFC Vector domain Near-int Channel numbers

OEFR Vector domain Near-int Channel numbers

OEFS Vector domain Near-int Channel numbers

OEX Matrix domain Character Name list

OFI Vector domain Character Numeric string

OFLS Vector domain Near-int Channel numbers

OFX Matrix domain Character Operation definition

OMBX Vector domain Near-int Channel numbers

ONC Matrix domain Character Name list

[0OM Vector domain Near-Bool N/A

0eco Vector domain Character Workspace name, object names

O0QLD Vector domain Character Workspace name

OQEC Vector domain Character Workspace name, object names

ORELEASE Vector domain Near-int Channel numbers

OvI Vector domain Character Numeric string

OVR Vector domain Any Value or object name

0xQ Vector domain Any N/A

The dyadic system functions take both a left and a right argument. The dyadic

system functions and the type, shape, and units, if any, associated with their

arguments are as follows.

Dyadic System Functions

Function Shape Type Units

0cIiq Left: Vector domain Near-int Packed data

Right: Vector domain Near-int Control information

0CoQ Left: Array Any Data to be packed

Right: Vector domain Near-int Control information

OEXP Left: Vector domain Near-Bool Expand information

2-6 APL Reference Manual

VAX APL System Variables and Functions

2.2 System Functions

Dyadic System Functions

Function Shape Type Units

Right: Any Any Array to be expanded

OFMT Left: Vector domain Character Format string

Right: Any Any Data to be formatted

OREP Left: Vector domain Near-int Replicate information

Right: Any Any Array to be replicated

0ss Left: Vector domain Character Pattern string

Right: Vector domain Character String

The ambivalent system functions may be monadic or dyadic; thus, they take

either a right argument only, or they take both a right and a left argument.

The following table of the ambivalent system functions describes the type,

shape, and, where applicable, the units associated with each function’s

arguments:

Ambivalent System Functions

Function Shape Type Units

0BOX Left: Vector domain Character Delimiter

Right: Matrix domain Character Delimited lines

OMAP Left: Vector domain Character Function header

Right: Vector domain Character Shared image def/function

name

[OMONITOR Left: Vector domain Numeric Line numbers

Right: Matrix domain Character Operation names

ONL Left: Vector domain Character Letter list

Right: Vector domain Near-int Name classes

OPACK Left: Vector domain Numeric Data packets

Right: Matrix domain Character Variable names

OREWIND Left: Singleton Near-int Key of reference

Right: Vector domain Near-int Channel numbers

O0SIGNAL Left: Vector domain Character Error message

Right: Singleton Near-int Error number

O0STOP Left: Vector domain Near-int Line numbers

APL Reference Manual 2-7

VAX APL System Variables and Functions

2.2 System Functions

Ambivalent System Functions

Function Shape Type Units

Right: Matrix domain Character Operation names

O TRACE Left: Vector domain Near-int Line numbers

Right: Matrix domain Character Operation names

OWAIT Left: Singleton Near-int Time limit

Right: Vector domain Near-int Channel numbers

OWATCH Left: Singleton Near-int Watch mode

Right: Matrix domain Character Variable names

Another type of system function is the quiet function, a category that is

independent of the valence of the function. Quiet functions do not generally

cause APL to display a value when they are evaluated as the leftmost function

in a statement. The following table shows the quiet functions:

Quiet System Functions

Monadic Dyadic Ambivalent

OARBOUT « H

- (always) OWAIT OREWIND

OCLS 0XQ (sometimes)

[0DAS ¢ (sometimes)

0eco

U&LD

O0QPC

ORELEASE

However, a quiet function displays a value if you enclose the function and its

arguments in parentheses (note that the branch function (+) is always quiet).

The 0XQ and » functions are quiet when the argument is quiet; otherwise [x¢

and ¢ cause APL to display a value. For example:

2-8 APL Reference Manual

VAX APL System Variables and Functions

2.2 System Functions

A<5 aSPECIFICATION FUNCTION IS QUIET. NO DISPLAY

(A<5) aADD PARENTHESIS IF YOU WANT A DISPLAY

5

(B<'THIS WILL PRINT BECAUSE OF THE PARENTHESES')

THIS WILL PRINT BECAUSE OF THE PARENTHESES

0XQ "A+10' a0XQ ARGUMENT IS NOT QUIET

15

0XQ 'C«A+10' a[0XQ ARGUMENT IS QUIET. NO DISPLAY

2.3 System Variables and Functions Reference

The following sections describe the APL system variables and functions in

alphabetical order. Table 2-2 lists the system variables and functions and

gives a brief description of their uses. APL displays an alphabetical list of

these variables and functions when you enter the following expression:

X«<ONL 2 3 50 X[AX:]

Table 2-2 System Variables and Functions

Name Meaning

OAT Maintains account information on the current APL session. Includes
user identification, CPU time, and connect time.

OALPHA Vector of 27 characters: A and 4 through Z.

OALPHAL Vector of 26 lowercase characters: a through z.

OALPHAU Vector of 27 underscored characters.

OARBOUT Writes arbitrary output to the terminal.

OASCIT Subset of DAV approximates the ASCII character set.

O0ASS Associates a file or mailbox with a channel.

OAUS Specifies periodic workspace backup.

O0AV Vector of all APL characters.

O0BOX Returns a matrix from a character vector and vice versa. (The rows
of the matrix are delimited by a specified string.)

OBREAK Suspends operation execution and returns control to immediate
mode.

O0CHANS Identifies channel numbers associated with files.

O0CHS Returns file organization and open status on one or more channels.

O0CIQ Unpacks data packed by 0 C0q.

(continued on next page)

APL Reference Manual 2-9

VAX APL System Variables and Functions

2.3 System Variables and Functions Reference

Table 2-2 (Cont.) System Variables and Functions

Name Meaning

OCLS Closes the files on one or more channels.

0cog Packs data of different types for storage as one record.

OCR Returns a canonical representation of a user-defined operation

whose name is the character string specified.

gcr Determines the degree of tolerance applied in numeric comparisons.

[0CTRL Vector of ASCII control characters.

ODAS Disassociates files from one or more channels.

apc Controls the display of enclosed arrays.

ODL Delays execution by the number of seconds specified.

O0DML Controls default maximum record length used to save the workspace

or to create a file.

Opve Returns the device characteristics longword for one or more

channels.

OEFC Clears event flags associated with one or more channels.

OEFR Returns the setting for event flags on one or more channels.

OEFS Sets event flags associated with one or more channels.

OERROR Character vector that describes last error to occur.

OEX Expunges existing use of a name in the workspace.

OEXP Expands an array by adding fill items in the same manner as the

expansion derived function.

OFI Converts character argument to numeric, placing Os in each position

not corresponding to a valid number.

OFLS Returns information about files on one or more channels.

OFMT Converts argument to character matrix in designated format.

OFX Establishes an operation from its canonical representation.

O0GAG Indicates whether to accept broadcast messages.

0I0 Sets index origin for arrays; must be 0 or 1.

0L Contains the name of a changed variable that is being watched by

LOWATCH.

OLC Vector of line numbers in state indicator; most recently suspended

2-10 APL Reference Manual

operation appears first.

(continued on next page)

VAX APL System Variables and Functions

2.3 System Variables and Functions Reference

Table 2-2 (Cont.) System Variables and Functions

Name Meaning

OLX Contains an expression to be executed automatically when
workspace is loaded.

OMAP Associates an external routine with a user-defined function.

OMBX Returns information about mailboxes on one or more channels.

OMONITOR Gathers information about operation execution counts and CPU

times.

OncC Returns the classification of one or more names.

ONG Controls recognition and printing of negative sign.

[ONL Constructs a list of named objects residing in the active workspace.

ONUM Vector of 10 numeric characters: 0 through 9.

OoM Returns the index of every occurrence of a 1 in a Boolean vector.

O0PACK Packs and unpacks data for storage as one record.

OPP Controls precision of noninteger numeric output.

0 PW Sets maximum number of characters in output line.

0QCo Quietly copies a workspace.

O0QLD Quietly loads a workspace.

gQrcC Quietly copies a workspace with certain protection.

OR Contains the previous value of a changed variable that is being
watched by OWATCH.

ORELEASE Releases all locked records in files on one or more channels.

OREP Compresses or replicates an array in the same manner as the
compression and replication derived functions.

ORESET Clears the state indicator.

OREWIND Repositions the next record pointer to the first record of a file on one

or more channels.

ORL Forms link in chain of random numbers used in roll and deal

functions.

OSF Prompt for evaluated input.

OSIGNAL Passes an error up the stack one level to the caller of the operation

in error.

O0SINK Discards unwanted output; always 1 0.

(continued on next page)

APL Reference Manual 2-11

VAX APL System Variables and Functions

2.3 System Variables and Functions Reference

Table 2-2 (Cont.) System Variables and Functions

Name Meaning

0ss Searches the right argument for every occurrence of a character

string specified in the left argument.

O0STOP Sets or clears stop bits associated with operation lines.

0 TERSE Suppresses display of secondary error messages.

OTIMELIMIT Limits time to respond to quote quad and quad del input requests.

O0TIMEOUT Equals 1 if time runs out during quote quad or quad del input

request; otherwise, equals 0.

OTLE Equals 1 when the terminal line editing attribute is on and 0 when

line editing is off.

OTRACE Sets or clears trace bits associated with operation lines.

0 TRAP Contains an expression to be executed when an error occurs.

OTs Current date and time in base 10 format.

OrT Determines the type of terminal being used for the current APL

session.

OUL Process identification number.

OVERSION Interpreter and workspace versions.

OovI Returns logical vector giving position of valid numbers in OFI of

argument.

OveC Controls the use of vector processing hardware.

OVR Returns a visual representation of a value or user-defined operation

whose name is the argument specified.

OWA Maximum amount in bytes by which the active workspace can be

increased.

OWAIT Determines how long a read function waits for control of a shared

record.

OWATCH Watches changes or references to the values of variables.

0XxQ Executes character strings with error handling.

2-12 APL Reference Manual

System Variables and Functions

[0 AT Accounting Information

[1 A I Accounting Information

Type

Niladic System Function

Form

uic/cpu-time /connect-time <« QAT

Result Domain

Type Integer

Rank 1 (vector)

Shape i

Depth 1 (simple)

Description

O0AI returns a vector of the user identification number (uic), computer time

(cpu-time) used during the current APL session, and time elapsed (connect-

time) since the beginning of the current APL session.

For the user identification code GROUP, MEMBER, the uic is

MEMBER+ (GROUPx2x16). All times are expressed in milliseconds. The fourth

element is always 0. For example:

JAI
589825 390 1190 0

VMS expresses the GROUP and MEMBER numbers in J4I[1] in octal. The

following APL expression returns those numbers:

1018 8 87(0,2x16)THAI[1]

111

Possible Errors Generated

None.

APL Reference Manual 2-13

System Variables and Functions

O0ALPHA Alphabetic Characters

1AL PHA Alphabetic Characters

Type

Niladic System Function

Form

"AABCDEFGHIJKLMNOPQRSTUVWXYZ'<« [JALPHA

Result Domain

Type Character

Rank 1 (vector)

Shape 27

Depth 1 (simple)

Description

[0ALPHA is a subset of JAV; it returns a vector of the 27 alphabetic characters

that may be used in identifiers. They are A and 4 through Z, or, expressed in

terms of QAV:

OAVI(0I0+72),97+126]

For example:

HALPHA

AABCDEFGHI JKLMNOPQRSTUVWNXYZ

0I0«0 ¢ [JPW<«52

0OAV 1+ [JALPHA

72 97 98 99 100 101 102 103 104 105 106 107 108 109

110 111 112 113 114 115 116 117 118 119 120

121 122

Possible Errors Generated

None.

2-14 APL Reference Manual

System Variables and Functions

OALPHAL Lowercase Alphabetics

1AL PHAL Lowercase Alphabetics

Type

Niladic System Function

Form

'abcdefghijklmnopgrstuvwxyz' < [0 ALPHAL

Result Domain

Type Character

Rank 1 (vector)

Shape 26

Depth 1 (simple)

Description

OALPHAL is a subset of JAV; it returns a vector of the 26 lowercase alphabetic

characters. They are a through z, or, expressed in terms of JAV:

OAV[129+126]

For example:

OALPHAL

abcdefghijkimnopqrstuvwvxyz

0I0«0 o [JPW+52

OAV 1 OALPHAL
129 130 131 132 133 134 135 136 137 138 139 140 141

142 143 144 145 146 147 148 149 150 151 152

153 154

Possible Errors Generated

None.

APL Reference Manual 2-15

System Variables and Functions

0ALPHAU Underscored Alphabetics

UALPHAU Underscored Alphabetics

Type

Form

Niladic System Function

Result Domain

Type Character

Rank 1 (vector)

Shape 27

Depth 1 (simple)

Description

OALPHAU is a subset of JAV; it returns a vector of the 27 underscored

alphabetic characters that may be used in identifiers. They are o and 4

through Z, or, expressed in terms of JAV:

JAV[160+127]

For example:

OALPHAU
AABCDEFGHIJKLMNOPQRSTUVWXYZ

0I0«0 o [JPW<«52

OAV 1 OALPHAU

160 161 162 163 164 165 166 167 168 169 170 171 172

173 174 175 176 177 178 179 180 181 182 183

184 185 186

Possible Errors Generated

2-16

None.

APL Reference Manual

System Variables and Functions

0ARBOUT Arbitrary Output

HARBOUT Arbitrary Output

Type

Monadic System Function (quiet)

Form

10 <« JARBOUT B

Argument Domain

Type Near-integer

Shape Vector domain

Depth 1 (simple)

Value 0 through 255

Result Domain

Type Numeric

Rank 1 (vector)

Shape 0 (empty)

Depth 1 (simple)

Description

OARBOUT allows you to send untranslated output to the terminal (actually, to

the default output device). JARBOUT outputs the argument’s items as if they

were character codes.

One use of JARBOUT 1is to write a file of ASCII characters, where each of the

integers corresponds to a character in the ASCII character set. You cannot

use the file system function B (see the VAX APL User’s Guide) with JARBOUT

to write the file because J4ARB0OUT sends output only to your default output

device, usually your terminal. You can use the)0UTPUT system command (see

the VAX APL User’s Guide), however, to divert output from your terminal to a

file. For example:

APL Reference Manual 2-17

System Variables and Functions

[0ARBOUT Arbitrary Output

JOUTPUT ASCFILE

OARBOUT 35 37 38 42 64 94 95

JOUTPUT

RCHANGE TO ASCII CHARACTER SET

) PUSH

STYPE ASCFILE.AAS

OARBOUT 35 37 38 42 64

#%8*@)OUTPUT

APL does not append a <CR><LF> to JARBOUT output.

If you use JARBOUT immediately following M or M output, JARBOUT resets the

bare output buffer. For details, see the VAX APL User’s Guide.

OARBOUT is a quiet function; that is, it does not return a result if it is the

leftmost function in a statement. If it is not the leftmost function, DARBOUT

returns 1 0 as its result.

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

15

15

15

27

15

DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

DOMAIN ERROR (INCORRECT TYPF)

DOMAIN ERROR (NOT AN INTEGER)

LIMIT ERROR (INTEGER TOO LARGE)

DOMAIN ERROR

2-18 APL Reference Manual

System Variables and Functions

0ASCII APL Approximation to the ASCIl Character Set

[1ASCII APL Approximation to the ASCIl Character Set

Type

Niladic system function

Form

ASCII-characters « QASCII

Result Domain

Type Character

Rank 1 (vector)

Shape 128

Depth 1 (simple)

Description

DASCIT is a subset of 0 AV; it returns a vector of 128 characters that

approximates the 7-bit ASCII character set. 14SCII contains the ASCII

control characters (0 CTRL) and the lowercase letters (JALPHAL). For example:

(32+[ASCII) = 3240CTRL

(T1+0ASCII) = 140CTRL

DASCII[33] = ' ! a33RD ITEM IS AN EMPTY SPACE

aDISPLAY ALL BUT THE CTRL CHARACTERS

2 47 p 9u+33+4[ASCII

PUH#SYL8 () *x+,-./0123456789:;<=>?@ABCDEFGHIJKLMNO

PQRSTUVWXYZ[\]r_'abcdefghijklmnopqrstuvwxyz{|}~

Possible Errors Generated

None.

APL Reference Manual 2-19

System Variables and Functions

[0ASS Associating Files with Channels

[14SS Associating Files with Channels

Type

Monadic System Function (action form)

Form

vartable <« 0ASS ' [[channel] filespec [/ fileorganization]'

Argument Domain

Type Character

Shape Vector domain

Depth 1 (simple)

Result Domain

Rank 0 (scalar)

Shape 1 0 (scalar)

Depth 0 (simple scalar)

Type

Monadic System Function (query form)

Form

current-assignments < [1ASS channel

Argument Domain

Type Near-Integer

Shape Vector domain

Depth 0 (simple scalar)

Value 999 through 999 (but not 0)

2—-20 APL Reference Manual

System Variables and Functions

[0ASS Associating Files with Channels

Result Domain

Type Character

Rank 1 or 2

Shape Vector or matrix

Depth 1 (simple)

Parameters

variable

Is an optional variable used when writing to or reading from this file and

channel combination.

channel

Is an optional integer scalar whose absolute value represents a channel

number in the range 1 through 999. If you do not specify a channel number,

APL assigns one for you. APL picks the first available channel number,

beginning at 12 and counting down to 1; then APL begins at 13 and counts up

to 999.

filespec

Is the VMS file specification associated with the specified channel. If you do

not include the file extension, APL uses the default file extension for the file

organization qualifier specified. (See Table 2-3.)

/fileorganization

Identifies the file organization of the file specified by filespec. The possible

values of /fileorganization are listed in Table 2—-3. The default value 1s /DA.

Table 2-3 File Organization Qualifiers

[fileorganization Default File

Qualifier Extension Type of File

/AS .AAS ASCII sequential; can open for either

read or write, or both (when you specify

JUPDATE).

/AS* .AAS ASCII sequential; file is positioned at

end-of-file to allow appending.

(continued on next page)

APL Reference Manual 2-21

System Variables and Functions

0ASS Associating Files with Channels

Table 2-3 (Cont.) File Organization Qualifiers

ffileorganization Default File

Qualifier Extension Type of File

/IS LAIS Internal sequential; can open for either

read or write, or both (when you specify

/UPDATE).

/IS JAIS Internal sequential; file is positioned at

end-of-file to allow appending.

/DA ATX Direct-access; can do read and write (this is

the default).

/RF .ARF Relative; can do read and write.

/KY CAKY Keyed; can do read and write.

current-assignments

A vector containing the current value of assignments.

Qualifiers

/BLOCKSIZE [:blocksize]

For input on nondisk devices, it specifies the minimum size memory buffer

for APL to make available. The default is 2044 bytes or the current /MAXLEN

value, whichever is smaller.

In all other cases, it is ignored. In addition, it is always ignored for ASCII

sequential files (the blocksize is always 2044 bytes.)

/BUFFERCOUNT [:n]

Specifies how many I/0O buffers you want allocated to read and write to a file.

The acceptable values for n is 0 through 127. The default is 0, which means

that the number of allocated buffers will be the same as the current system

default value.

/CCONTROL [:keyword]

Specifies the carriage control attribute for a new, sequential file. (The qualifier
1s 1gnored for nonsequential file organizations.) When you do not specify

/ CCONTROL, or when you do not specify a keyword, the carriage controls are set

according to the file type.

2-22 APL Reference Manual

System Variables and Functions

0ASS Associating Files with Channels

Valid keywords include the following:

Keyword Carriage control Attribute Default

FORTRAN The first character of each record

will contain the appropriate carriage

control information

LIST Implied carriage control (single Default for /45 files.

spacing between records)

NONE No carriage control information (any Default for /IS files.

carriage control information will be

placed in individual records)

/DEFAULTFILE :defaultspec

Specifies a default to be applied to any missing components of the filespec. The

defaultspec must be specified. APL first looks at the file specification named

in the argument. If any components are missing, APL looks for a default in

the /DEFAULTFILE qualifier. If you omit the defaultspec, APL specifies the

appropriate APL file type.

/DISPOSE [:keyword]

Specifies whether the file is temporary or permanent. /DISPOSE:KEEP, the

default, means the file is permanent. /DISPOSE :DELETE means the file will be

deleted when it is closed.

Other keywords send the file to a queue when the file is closed in accordance

with the following:

Keyword Definition

PRINT Sends the file to SYS$PRINT. The file is not deleted.

PRINTDELETE Sends the file to SYS$PRINT. The file is deleted when job is

finished.

SUBMIT Sends the file to SYS$BATCH. The file is not deleted.

SUBMITDELETE Sends the file to SYS3BATCH The file is deleted when job is

finished.

Note that you must have VMS delete privileges to use any of the delete

keywords. If you do not have delete privileges, APL signals FILE PROTECTION

VIOLATION when the file closes. As a result, APL closes the file, but does

not delete it. If you receive the file protection violation error when you press

Ctrl/Z, you can exit from APL by pressing Ctrl/Z a second time.

APL Reference Manual 2-23

System Variables and Functions

[0ASS Associating Files with Channels

2-24

JEFNN

Associates an event flag with a channel number. For more information on

event flags see JEFR,0EFS, and JEFC.

/MAXLEN [:length]]

Specifies the maximum record length (in bytes) for a new file. It is ignored for

existing files. The default length is the value of the DML system variable. The

maximum record length value is also used as the maximum segment size for

segmented records on output.

The maximum values are as follows:

o 32232 (for prolog 1 or 2)

e 32224 for /DA and / KY files (prolog 3)

o 32767 for / IS files

o 2048 for / AS files

o 32253 for / RF files

When you write to an /A4S file in quad output mode, the maximum record

length is determined by the current setting of 0 P¥. In all other output modes

for all file types, the maximum record length is determined by /MAXLEN.

/MBX

Indicates that an assigned file name actually refers to a mailbox.

/NFS

A non-file-structured qualifier that tells APL to read from the device without

trying to interpret the data. In other words, to return the data on the device

as a string of bits. This qualifier is useful when reading foreign devices.

/NOSHARFE

/NOWRITERS

Allows you to write to a shareable file, but prevents other users from doing so.

/ OPEN [[:keyword]]

Specifies that you want APL to open or create a file when the channel is

assigned. Using the /0PEN qualifier allows you to detect errors related to the

openning or creating of a file at the time of assignment instead of at the time

of the first I/O operation. Values for keyword include NEW, used to create a new

file, and OLD, used to open an existing file.

APL Reference Manual

System Variables and Functions

0ASS Associating Files with Channels

/PROTECTION [[:protection]

Specifies the protection to be associated with a new file. It is ignored for

existing files.

/READONLY [[:NOLOC’KS]

Allows you to read the file but not write to it. The NOLOCKS argument specifies

that records should be read even if they have been locked by another user.

Using /READONLY : NOLOCKS avoids waiting for a locked record to become

unlocked. However, note that when OWAIT is set to any value but the default

(wait indefinitely), it overrides the NOLOCKS argument.

/RECORDTYPE [:keyword]

Specifies the record format used by VAX RMS for each record of the file. The

default is variable length records. APL ignores this qualifier if the file already

exists or if the file type is /D4, /RF, or /KY. You can use the following keywords

as values to /RECORDTYPE.

Keyword Record Format

VARIABLE Variable length

FIXED Fixed length

STREAM | - Stream format

STREAMCR Stream format delimited with <CR>s

STREAMLF Stream format delimited with <LF>s

Note that when you use fixed-length records, the record size is defined with the

/MAXLEN qualifier. The default value is 1 DML.

Because APL adds a prefix containing system information to each record of

a /IS file, you may want to write data out to these files in pure data mode

when using fixed-length records. Otherwise you need to calculate the size of

the prefixed information before writing the data.

/SHARE

Specifies that several users may access the file simultaneously. All users

sharing the file must use the /SHARE qualifier when associating a given file

with a channel. Sequential file users are exempted from this rule.

/SIGNAL

Specifies that APL signal the end-of-file indicator when you perform a read

operation on a nonexistent record. For /4S5 and /IS files the indicator is EOF

ENCOUNTERED. For /DA, /RF, and /KY files the indicator is EOF ENCOUNTERED

for a sequential read and RECORD NOT FOUND for a random read. If you do not

APL Reference Manual 2-25

System Variables and Functions

0 ASS Associating Files with Channels

specify /SIGNAL, APL returns an empty numeric matrix with the shape of 0 75

as the end-of-file indicator. |

/UPDATE

Specifies that you want both read and write access to a sequential file and that

APL should change the rules slightly for sharing the file. /UPDATE is relevant

for /45 and /IS files only and is ignored for all other file types.

When you use /UPDATE you should consider how you want APL to deal with

locked records. See /READONLY :NOLOCKS and ORELEASE for more information.

/WRITEONLY

Allows you to write to a file, but not read it. A new file is created when APL

writes to the file. If the assignment specifies /OPEN:0LD, a new file is not

created. However, APL can write to an existing file only if the file is empty, or

if /1.5« was specified for appending. Subsequent assignments can gain read

access to the file.

Description

The action form of 0 ASS associates files with channels. 0455 does not create

or open a file (unless you use the /0PEN qualifier) or perform any input or

output. It establishes a connection between a file specification (and related file

information) and a specified channel.

When you perform I/O functions, you must refer to channel numbers rather

than to file specifications. The APL functions that perform file I/O (8 and B)

require channel numbers—not file specifications—as part of their arguments.

So, to read or write a file, you must first associate it with a channel.

The query form of JASS returns the current value of assignments made

previously with the action form.

The result of the query form is a character vector or matrix that identifies the

parameters you associated with the channels specified.

Note that the action and query forms of 1455 are described in in the VAX APL

User’s Guide, along with other file I/O information.

2-26 APL Reference Manual

System Variables and Functions

0ASS Associating Files with Channels

Possible Errors Generated

Action Form

15

15

15

33

33

68

69

DOMAIN ERROR (ERROR PARSING ARGUMENT TO CCONTROL)

DOMAIN ERROR (REDUNDANT KEYWORD OR QUALIFIER)

DOMAIN ERROR (CONFLICTING QUALIFIERS SPECIFIED)

I0 ERROR (INVALID RECORD SIZFE)

I0 ERROR (FILE CURRENTLY LOCKED BY ANOTHER USER)

END OF FILE ENCOUNTERED

RECORD NOT FOUND

74 BLOCK TOO BIG

Query Form

9 RANK ERROR (NOT VECTOR DOMAIN)

15

15

15

27

DOMAIN ERROR (ENCLOSED HETEROGENEOUS ARRAY NOT ALLOWED)

DOMAIN ERROR (INVALID CHANNEL NUMBER)

DOMAIN ERROR (NOT AN INTEGER)

LIMIT ERROR (INTEGER TOO LARGE)

APL Reference Manual 2-27

System Variables and Functions

O0AUS Automatic Save of the Workspace

L] AUS Automatic Save of the Workspace

Type

System Variable

Form

[NAUS « near-integer-singleton

integer-scalar < JAUS

Value Domain

Type Near-Integer

Shape Singleton

Depth 0 or 1 (simple)

Value 0,1,0r?2

Default 0

Result Domain

Type Integer

Rank 0 #(scalar)

Shape 1 0 (scalar)

Depth 0 #(simple scalar)

Description

OAUS controls a feature that allows you to save the active workspace

automatically at periodic intervals.

Workspace backup is often critical when you are performing extensive

operation editing and debugging, or when you are using quad input to type a

large table of values. You could back up your work by periodically issuing a

) SAVE command. However, if you set JAUS to 1 or 2, APL automatically saves

the workspace every time you exit from function-definition mode, or every time

quad input is requested from the terminal. Then, if the system crashes, you

probably will have to reenter only a small amount of input. In addition, when

OAUS 18 set to 2, the) OFF command acts like the) CONTINUE command (see

Chapter 3).

2-28 APL Reference Manual

System Variables and Functions

0AUS Automatic Save of the Workspace

You can set JAUS to 0, 1, or 2; the default is 0. When 0A4US equals 0O, the

automatic save feature is not activated. When JAUS equals 1 or 2, the feature

is activated and the workspace is saved in your default directory as follows:

Value of J4US File Name of Saved Workspace

1 APLxxxxxxxx.TMP, where xxxxxxxx is the value of OUL,

represented in hexadecimal. (Note that 0 UL is an integer

that represents your process identification number.)

2 CONTINUF.APL

The name of the file saved when JAUS is 1 can be represented as the following

APL expression:

"APL', ('0123456789ABCDEF' [(JI0+(8p16)TUUL]),"' . TMP'

The value of 14US is saved when you save the active workspace and can be

localized in user-defined operations.

When 04US is 2, APL keeps all versions of CONTINUE .APL, even after the APL

session ends.

When 0AUS is 1, APL deletes all old versions of APLxxxxxxxx.TMP each time

a new version is created during the same APL session. When you successfully

execute a) SAVE,)OFF, or)CONTINUE system command, APL deletes all

APLxxxxxxxx.TMP files created during the session, including the one most

recently created. Note, however, that APL does not delete APLxxxxxxxx.TMP

files created in past APL sessions, unless such an APLxxxxxxxx.TMP file

has exactly the same name as a newly created APLxxxxxxxx.TMP file. For

example:

OAUS<«1

QUL

88

'0123456789ABCDEF' [[110+(8016)TOUL]

e

[2] v

aAPL WRITES .TMP FILE

YLIB %, TMP

Directory APLGRP: [USER]

APL00000058.TMP;1

APL Reference Manual 2-29

System Variables and Functions

[JAUS Automatic Save of the Workspace

Total of 1 file.

ASTART NEW APL SESSION WITH NEW (UL

040US+«1

OuL

92

'0123456789ABCDEF' [0I0+(8p16)TOUL]

0000005D

VG

[21 ¥

8APL WRITES .TMP FILE

Y)LIB %.TMP

Directory APLGRP:[USER]

APL0O0000058.TMP;1

APL0000005D,TMP;1

Total of 2 files.

)SAVE ABC

SAVED THURSDAY 15-NOV-1990 14:33:21.32 6 BLKS

YLIB *.TMP

Directory APLGRP:[USER]

APL00000058.TMP;1

Total of 1 file.

aAPL DELETED NEW .TMP FILE BUT NOT .TMP

o FILE CREATED IN FARLIER SESSION

Note

0UL has a value that changes each time you log in to VMS, and the

names of the 4PLxxxxxxxx .TMP files are probably different if they are

created during different VMS sessions. The names are the same if the

files are created during the same VMS session, even if they are not

created in the same APL session.

To recover the JAUS file after a system crash, execute APL and issue a)LIB

command to verify that the temporary file exists. Then use) L0OAD to load

the temporary file. APL prints the) LOAD message. The name of the active

workspace is now the name that the workspace had before the backup was

performed, not the name of the temporary file:

2-30 APL Reference Manual

System Variables and Functions

0AUS Automatic Save of the Workspace

)LIB *.TMP

Directory APLGRP:[USER]

APL0000005C.TMP;1

Total of 1 file,

YLOAD APL0000005C.TMP

SAVED THURSDAY 15-NOV-1990 12:30:05.04 53 BLKSx WAS ABC

YWSID

ABC

Possible Errors Generated

9 RANK FRROR (NOT VECTOR DOMAIN)

10 LENGTH ERROR (NOT SINGLETON)

15 DOMAIN ERROR (INCORRECT TYPF)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (NOT AN INTEGER)

15 DOMAIN ERROR (PARAMETER OUT OF RANGE)

27 LIMIT FRROR (INTEGER TOO LARGE)

APL Reference Manual 2-31

System Variables and Functions

1AV Atomic Vector

14V Atomic Vector

Type

Niladic System Function

Form

all-known-chars < JAV

Result Domain

Type Character

Rank 1 (vector)

Shape 256

Depth 1 (simple)

Description

AV contains a vector of the 256 characters known to APL. Table 2—4 shows

the characters and their positions in the vector. The positions are based on an

index origin of 0. The index of a character is the sum of its row and column

numbers.

Symbols with indexes 213 through 255 have no meaning to the APL user. They

are used only by the APL implementation and may not be used for input. On

output, they print as squish quads ([). If you include any of these characters

in a character array, the results are unpredictable.

The following is useful to display the APL characters in AV order.

6 32p032+[AV

T)<s=>]vaz:,+./0123U56789([;x:\

“olnle VAiro'[|TOo*?p[~Yyuwotcerr>-

OABCDEFGHIJKLMNOPQRSTUVWXYZ{-}$

‘abcdefghiljkimnopqrstuvwxyz@"#%.8&

AABCDEFGHIJKLMNOPQRSTUVWXYZ!p1e®

BEBNRAY¥»reoRes/5co=A00000000000

2-32 APL Reference Manual

System Variables and Functions

AV Atomic Vector

Table 2-4 Elements of JAV(0I0<«0)

dec 0 32 64 96 128 160 192 224

0 NUL SP - o ‘ A H 0

1 SOH - a A a A 3 0

2 STX) I B b B B 0

3 ETX < n C C c [0

4 EOT < L D d D I

5 ENQ - ¢ E e E A i

6 ACK > _ F f E y 0

7 BEL] v G g G ¥ 0

8 BS v A H A H » I

9 HT A 1 I i I ~ i

10 LF # 0 J Ji J ® 0

11 VT + ! K k K o) I

12 FF , 0 L 1 L § I

13 CR + | M m M o 0

14 SO . T N n N - 0

15 SI / 0 9, o) 0 # [

16 DLE 0 * P p P X I

17 DC1 1 ? Q q Q = 1

18 DC2 2 P R r R > I

19 DC3 3 [S s S = 0

20 DC4 4 ~ T t T A I

21 NAK 5 ¥ U u U 0 I

22 SYN 6 u 14 v)4 0 I

23 ETB 7 w W W W 0 0

24 CAN 8 =) X X X I I

25 EM 9 + Y y Y I I

(continued on next page)

APL Reference Manual 2-33

System Variables and Functions

AV Atomic Vector

Table 2—-4 (Cont.) Elements of 04V ([0I10<«0)

dec 0 32 64 96 128 160 192 224

26 SUB (c Z z Z 0 I

27 ESC C « { @ ! 1 [

28 FS ; - ~ " A 0 I

29 GS x > } # T [I

30 RS > $ % & 0 I

31 US \ - DEL 8 ¥ 0 0

The index of a character in 14V is the sum of its row and column numbers.

Possible Errors Generated

None.

2-34 APL Reference Manual

System Variables and Functions

0 B0OX Forming Character Matrices and Vectors

[] BOX Forming Character Matrices and Vectors

Type

Ambivalent System Function

Form

boxed-text « [[delimiter]] DBOX text

Left Argument Domain

Type Character

Shape Vector domain

Depth 0 or 1 (simple)

Right Argument Domain

Shape Matrix domain

Depth 0 or 1 (simple)

Result Domain

Rank 1 or 2

Shape Matrix or Vector

Depth 1 (simple)

Description

0BOX produces a character matrix from a character vector or vice versa.

When the right argument is in the vector domain, JB0X forms a matrix. When

the right argument is a matrix, JB0X forms a vector. If the right argument

1s an empty vector, the result is an empty character matrix with the shape 0

0. If the right argument is an empty matrix, the result is a vector containing

a number of delimiters equal to the number of rows in the right argument

matrix.

When producing a matrix, APL uses a delimiter to determine where to form

rows. The left argument optionally specifies a delimiting string. The default

delimiter is <CR> <LF> . The number of columns is equal to the longest string

APL Reference Manual 2-35

System Variables and Functions

[0 B0X Forming Character Matrices and Vectors

2—-36

contained between any pair of delimiters. Shorter strings are padded with

trailing blanks. ‘

When producing a vector with the monadic form, APL removes any trailing

blanks and inserts the <CR> <LF> delimiter at the end of each row.

When producing a vector with the dyadic form, APL does not remove trailing

blanks from the rows of the matrix argument. It does insert the specified

delimiter at the end of each row.

0BOX is particularly useful for forming a matrix from a vector consisting of

lines of data delimited by <CR> <LF> pairs. 1B0X removes the <CR> <LF>

and makes each line of data that was between <CR> <LF> s (or between a

<CR> <LF> and the end or beginning of the vector) a row in the result matrix.

Thus, the result matrix and right argument vector appear the same when

displayed by APL.

Examples:

B « '"FIRST LINK

SECOND LINE IS LONGER

LINE FOUR'

pB

70

(34 # JCTRL 1 B)/1pB AGENERATE INDEX OF <CR><LF>S

11 12 48 49 55 56

oJ«JBOX B

FIRST LINE

SECOND LINE IS LONGER

LINE FOUR

4 35

aNO <CR><LF> ADDED TO LAST ROW

o«BOX (0BOX B)

FIRST LINE

SECOND LINE IS LONGER

LINE FOUR

65

o«(BOX '4'

A

11

APL Reference Manual

System Variables and Functions

0 B0X Forming Character Matrices and Vectors

ATRAILING <CR><LF> IGNORED

o0«0BOX 'A', OCTRL [14 11]

A

11

p«Y<«'," OBOX 'ABC,DE,FGHI'

ABC

DE

FGHI

3 4

p«"!" [OBOX Y

ABC!DE!FGHI

11

o(«'AB'" [0BOX 'XXXABYYYABZZI'

XXX

YYy

777

3 3

p«'A" 0BOX 1 1 1 p 'B'

B

11

p«'A" 0BOX 1 1 1 p 'A'

(APL outputs a blank line.)

10

Possible Errors Generated

9 RANK ERROR (NOT MATRIX DOMAIN)

9 RANK ERROR (NOT VECTOR DOMAIN)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN FRROR (INCORRECT TYPE)

APL Reference Manual 2-37

System Variables and Functions

[0BREAK Suspending Execution

L[| BREAK Suspending Execution

Type

Monadic System Function

Form

[0BREAK apl-expression

Argument Domain

Type Any

Shape Any

Depth 0 or 1 (simple)

Result Domain

Type None

Shape None

Depth None

Description

[0 BREAKsuspends execution of the operation in which it is contained and

returns you to immediate mode. It takes any APL object as an argument and

prints the value of that argument before breaking to the terminal. However,

the function itself has no explicit result.

To return to execution after a break, you can either branch to a specific line

number (- 3), or you can use the system function JLC. Use of 0L would return

you to the breakpoint, that is, to the line where the 0BREAK executes. To

resume at the line after the breakpoint, specify 0LC+1. For example:

2-38 APL Reference Manual

System Variables and Functions

[0BREAK Suspending Execution

VFUNC

[1] 'FIRST LINE'

[2] [OBREAK 'BREAK AT LINE 2'

[3] "RESUME AT LINE 3

(4] Vv

FUNC

FIRST LINE

BREAK AT LINE 2

+~0LC+1

RESUME AT LINE 3

It is illegal to use 0BREAK in immediate mode or as part of the argument to

the execute (¢)function.

Possible Errors Generated

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

APL Reference Manual 2-39

System Variables and Functions

0 CHANS Returning Channel Numbers

[1 CHAN S Returning Channel Numbers

Type

Niladic System Function (query)

Form

current-channels < [1CHANS

Result Domain

Type Integer

Rank 1

Shape Vector

Depth 1 (simple)

Description

0CHANS displays all of the channel numbers currently associated with file

specifications. The result is a vector. In the following example, channels 1 and

5 are each associated with a file:

OASS '1 PLAN/AS' o [ASS '5 ANALYSIS/AS'

1

5

OCHANS

15

JCLEAR

CLEAR WS

OCHANS

(APL outputs a blank line)

If no channels are assigned, 0 CHANS returns an empty numeric vector.

OCHANS is also described in the VAX APL User’s Guide along with other file

I/0 information.

Possible Errors Generated

None.

2-40 APL Reference Manual

System Variables and Functions

0 CHS Returning File Organization and Open Status

[1 CHS Returning File Organization and Open Status

Type

Monadic System Function

Form

file-org[status < O CHS chans

Argument Domain

Type Near-integer

Shape Vector domain

Range ~999 to 999 (but not 0)

Depth 0 or 1 (simple)

Result Domain

Type Integer

Rank 1 or 2

Shape Vector or matrix

Depth 1 (simple)

Description

[0 CHS returns the file organization and status of the files associated with

the specified channels. The absolute value of chans represents the channels

associated with the files you want information on. The following table gives

the possible codes resulting from [0 CHS.

APL Reference Manual 2-41

System Variables and Functions

[0 CHS Returning File Organization and Open Status

First Element Second Element

Code File Organization Code Open Status

0 Not applicable 0 Channel free

1 /AS 1 Assigned but not open

2 /IS 2 Open for output

3 Not applicable 3 Open for input

4 /DA 4 Open for input and output

5 Not applicable

6 Not applicable

7 /RF

8 /KY

If the argument is a singleton, 0 CHS returns a two-item vector: the first item

1dentifies the file’s organization, and the second item identifies the file’s open

status. For example:

OCHS 1
13

This means that the file associated with channel 1 is an ASCII sequential file

that is assigned and open for input.

If the argument is a vector of n items, the result is an array of shape n by 2.

For example, the following expression returns a 3-by-2 array:

O«FILS«[CHS13

N N
F

o
W

pFILS

O CHS returns a result of 0 2p 0 if its argument is empty.

[1CHS is also described in the VAX APL User’s Guide along with other file I/O

information.

Possible Errors Generated

9 RANK FERROR (NOT VECTOR DOMAIN)

15 DOMAIN FRROR (ENCLOSED HETEROGENEOUS ARRAY NOT ALLOWED)

2-42 APL Reference Manual

System Variables and Functions

0 CHS Returning File Organization and Open Status

15 DOMAIN ERROR (INVALID CHANNEL NUMBER)

15 DOMAIN ERROR (NOT AN INTEGER)

27 LIMIT FRROR (INTEGER TOO LARGE)

APL Reference Manual 2-43

System Variables and Functions

0CIQ and [JCoQ Packing and Unpacking Data

[1 CI& and[] COQ Packing and Unpacking Data

Type

Dyadic System Function

Form

unpacked-data « packed-data 0CIQ header [typel]

Left Argument Domain

Type Near-integer

Shape Vector domain

Depth 0 or 1 (simple)

Right Argument Domain

Type Near-integer

Shape Vector domain

Depth 0 or 1 (simple)

Result Domain

Type Any

Rank Any

Shape Any

Depth Any

Type

Dyadic System Function

Form

packed-data < data 0C0Q header [typell

2-44 APL Reference Manual

System Variables and Functions

0CIQ and [JC0 Packing and Unpacking Data

Left Argument Domain

Type Any

Shape Any

Depth Any

Right Argument Domain

Type Near-integer

Shape Vector domain

Depth 0 or 1 (simple)

Result Domain

Type Integer

Rank 1

Shape Vector

Depth 1 (simple)

Parameters

unpacked-data

The variable associated with the unpacked data; it must be in the format of the

result of 0 C0Q, with or without a header. It may be empty only if header is O.

packed-data

Specifies the variable associated with the packed data.

data

Any array you want to pack into an integer vector.

header

0, 2, or 4. For 0CIQ, if a header exists, it is 2; if no header exists, it is 0. If you

specify 0 and a header does exist, the header is treated as part of the data to

be unpacked. With [1C0g, use 0 if you do not want a header; 2 if you do want a

header; and 4 if you want only a header.

type

If specified, it indicates whether the data is to be converted to another data

type before being packed. The possible values are listed in Table 2-5. The

APL Reference Manual 2-45

System Variables and Functions

0CIQ and [1C0Q Packing and Unpacking Data

possible effects of such a conversion are summarized in the VAX APL User’s

Guide. Omitting type has the same effect as using type 0.

Description

2-46

0CIQ and [JCcoq allow you to accumulate data of different types into variables.

You can then catenate the variables for storage as one logical record.

0coq takes an argument of any data type and packs it into an integer vector

by treating it as if it were a stream of bits. For example, you can put ASCII

characters in one variable and internal APL characters in another variable,

then catenate them, and write them to a file. Later, you can read the file and

use [JCIQ to change the variables from integer vectors back into ASCII and

APL characters.

The value of 0 C0Q i1s the packed data or, if the header parameter equals 4, the

header information associated with the left argument.

The value of 0CIQ is the unpacked data. 0CIQ converts the packed data

to the internal data type specified by the corresponding external data type

identified by the type parameter (the possible effects of such a conversion are

summarized in the VAX APL User’s Guide.)

Table 2-5 Type Parameter Values

Type External Data Type

No conversion; use type of "data"

Convert to 32-bit integer

Convert to 1-bit Boolean

Convert to F_floating single-precision floating-point

Convert to D_floating double-precision floating-point

Convert to 8-bit 2AV characters

Convert to 8-bit ASCII characters

Convert to 8-bit unsigned numeric bytes

Convert to G_floating double-precision floating-point

w
0

0
O

N

O

U

F

O
w

N

-
,

O

Convert to H_floating floating-point

[
N

(
&
) Convert to 16-bit integer

|— [Convert to 8-bit Digital Multinational Characters

(continued on next page)

APL Reference Manual

System Variables and Functions

0CIQ and [0C0Q Packing and Unpacking Data

Table 2-5 (Cont.) Type Parameter Values

Type External Data Type

12 Convert to 8-bit [4V characters in TTY mnemonics

13 Convert to 8-bit 04V characters in KEY-paired APL

14 Convert to 8-bit 0 AV characters in BIT-paired APL

15 Convert to 8-bit 04V characters in APL COMPOSITE

The header generated by [01Cc0qQ has the following format:

length

type

rank

(pdata)[1]

(pdata)[2]

(pdata)[rank]

NU-2234A-RA

Each large box represents a longword as described in the following list:

* [ength is the length of the integer vector result of 0C0Q 2

* type is one of the external types in Table 2-5

* rank is the rank of the data that was packed by 0c0qQ

The next n (n = rank) boxes contain the shape of the data that was packed.

APL Reference Manual 2-47

System Variables and Functions

0CIqQ and [JC0@ Packing and Unpacking Data

For example:

A+15

P<4 [JC0Q 2

P

911512345

B+3 Up1 0

;
—
»

o

e
e

O

o
5

o

o
W

«B [1C0Q 2

o N N w

o

1365

L[«(32p2)T71365

+ BOOL

1010101

CIQ 2

|
=

O

H
m
D
o
M
Q
:

O N

o — (
)

12 w

10

10

10 c
o
o
l
d

=
"
'

O

e

The first example uses [01¢0Q to pack the vector 1 5. The value of P shows that

when 1 5 was packed, the packed data had length 9 (including the header),

type 1 (integer), rank 1, and shape 5.

In the second example, the Boolean matrix B is packed into @. The value of @

indicates that the packed data with its header has length 6, type 2 (Boolean),

rank 2, and shape 3 4. Note that when @[6] is converted to Boolean, the value

is the same as that of ¢ , B (the Boolean data values are stored right to left).

Finally, 0 c1Q was used to unpack the data, to retrieve the data and translate

it back to the original data.

In the following example, the functions PACK and UNPACK use 1C0Q and 0 CIQ

to pack and unpack values of different types:

2-48 APL Reference Manual

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

System Variables and Functions

0CIQ and [C0Q Packing and Unpacking Data

VP«PACK LIST;I

RPACK USES [JC0Q TO PACK A SET OF VALUES

AINTO A SINGLE VARIABLE. THE VALUES CAN BE

aDIFFERENT TYPES OR SHAPES. THUS, YOU CAN

aUSE PACK WHEN CATENATE WON'T WORK.

aLIST IS A CHARACTER MATRIX, FACH ROW OF WHICH

RCONTAINS THE NAME OF A VARIABLE WHOSE VALUE

nlS TO BE PACKED.

aP IS THE RESULTANT PACKED VALUE: IT IS AN

RINTEGER ARRAY.

A

P<10

I+1

TEST:>(I>14p0LIST)/0

P<P, (e¢LIST[I;])0C0Q 2

I«I+1

+TEST

V

VP UNPACK LIST;DATA:I;J;LEN;ENTRY

aUNPACK USES [CIQ TO UNPACK A VARIABLE CREATED

aBY PACK INTO A SET OF VARIABLE NAMES,

aP IS THE PACKED VALUE, CREATED BY PACK.

aLIST IS A CHARACTER MATRIX, EACH ROW OF WHICH

aCONTAINS THE NAME OF A VARIABLE TO RECEIVE ONE

anOF THE PACKED VALUES. UNPACKED VALUES FROM P

AARE STORED INTO SUCCESSIVE VARIABLES IN LIST.

DATA<P

I<pDATA

J«1

TEST:»(I<0)/0

+(J>14pLIST)/0

LEN«DATA[1]

ENTRY<«DATA [LEN]

¢ LIST[J:], "«ENTRY 0OCIQ 2'

DATA<LEN + DATA

JJ+1

I<I-LEN

+>TEST

V

ADEFINE SOME NUMERIC VARIABLES:

A<l

A4« 1 1

AAA« 1 1 1

aDEFINE SOME CHARACTER VARIABLES:

B«'B"

BB<'BB'

APL Reference Manual 2-49

System Variables and Functions

0CIQ and [JC0Q Packing and Unpacking Data

AA

AAA

BB

4 2

XX

XXX

aMAKE A LIST OF INPUT VARIABLE NAMES:

L1+«5 3p 'A AA AAAB BB '

L1

aPACK THESE VARIABLES INTO ONE ITEM

ACATENATE WON'T WORK

P«PACK L1

P

0152123452137 4500985512 25186
AMAKE A LIST OF OUTPUT VARIABLE NAMES:

L2+5 3p'X XX XXXY 1YY !

L2

aUNPACK THE PREVIOUS DATA INTO NEW VARIABLES:

P UNPACK L2

aTHE RESTORED DATA IS THE SAME AS THE

n DATA THAT WAS PACKED.

X=4

XX=A4

XXX=AAA

1

Y=B

YY=BB

Possible Errors Generated

For(JCcIrq:

2-50

9 RANK FRROR (NOT VECTOR DOMAIN)

10

10

10

15

LENGTH ERROR (ARGUMENT MUST BE 1 OR 2 ELEMENTS)

LENGTH ERROR (DATA TYPEF MISSING)

LENGTH ERROR (DATA TYPF EXCEEDS DATA LENGTH)

DOMAIN ERROR

APL Reference Manual

15

15

15

15

15

15

15

27

DOMAIN FRROR

DOMAIN ERROR

DOMAIN EFRROR

DOMAIN ERROR

DOMAIN FRROR

DOMAIN ERROR

DOMAIN ERROR

System Variables and Functions

0cIQ and [1c0q Packing and Unpacking Data

(DATA TYPE MUST BE UNSPECIFIED OR ZERO)

(ENCLOSED ARRAY NOT ALLOWED)

(INCORRECT TYPE)

(INVALID CIQ HEADER)

(INVALID EXTERNAL DATA TYPE)

(INVALID HEADER TYPE)

(NOT AN INTEGER)

LIMIT ERROR (INTEGER TOO LARGE)

For 0C0Q:

9 RANK ERROR (NOT VECTOR DOMAIN)

10

15

15

15

15

15

15

27

LENGTH ERROR

DOMAIN ERROR

DOMAIN ERROR

DOMAIN ERROR

DOMAIN ERROR

DOMAIN ERROR

DOMAIN FRROR

(ARGUMENT MUST BE 1 OR 2 ELEMENTS)

(ENCLOSED ARRAY NOT ALLOWED)

(INCORRECT TYPFE)

(INVALID HEADER TYPE)

(INVALID EXTERNAL DATA TYPFE)

(NOT AN INTEGER)

LIMIT FRROR (INTEGER TOO LARGE)

APL Reference Manual 2-51

System Variablesand Functions

[1CLS Closing Files

L] CLS Closing Files

Type

Form

Monadic System Function (quiet)

10 « [JCLS chans

Argument Domain

Type Near-integer

Shape Vector domain

Depth 0 or 1 (simple)

Value ~ 999 through 999 (but not 0)

Result Domain

Type Numeric

Rank 1 (vector)

Shape 0 (empty)

Depth 1 (simple)

Description

[0CLS closes one or more files without deassigning their corresponding

channels. The absolute values of chans represent the channels associated

with the files you want to close.

0CLS is useful when you want to return to the beginning of a sequential file.
(You can also use the OREWIND system function, which does not close files.)

After you close a channel, a read function opens the file and reads the first

record, and a write function creates a new version of the file (except for /D4,

/RF, and /KY files, where a new file is created only if no version currently

exists). With 0 CLS, there is no need to reassign the file to the channel.

The following line closes the file associated with channel 2:

OCLS 2

Any unassigned channels in the argument are ignored.

2-52 APL Reference Manual

System Variables and Functions

0cCLS Closing Files

0CLS is a quiet function; it does not return a result if it is the leftmost function

in a statement. When 0CLS is not the leftmost function, it returns an empty

numeric vector. If its argument is empty, 0 CLS has no effect.

Note that when you use [JCLS, you activate whichever parameter has

been set for the /DISPOSE qualifier on 04SS. For example, if you specify

/DISPOSE :DELETE, APL deletes the file when you specify the [0 CLS function.

APL automatically closes and deassigns all open files when you press Ctrl/Z

or execute a)LOAD,)CLEAR, YOFF, or)CONTINUE system command (the)MON

and) PUSH system commands do not have this effect).

OcLsS is described in the VAX APL User’s Guide along with other file I/0

information.

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

15 DOMAIN ERROR (ENCLOSED HETEROGENEOUS ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INVALID CHANNEL NUMBER)

15 DOMAIN ERROR (NOT AN INTEGER)

27 LIMIT ERROR (INTEGER TOO LARGE)

APL Reference Manual 2-53

System Variables and Functions

[1 CR Obtaining a Canonical Representation

| CR Obtaining a Canonical Representation

Type

Monadic System Function

Form

canonical-rep < [1CR operation-name

Argument Domain

Type Character

Shape Vector domain

Depth 0 or 1 (simple)

Result Domain

Type Character

Rank 2

Shape Matrix

Depth 1 (simple)

Implicit Arguments

00 PP (controls precision of numeric constants)

Description

0 CR provides a canonical representation of a user-defined operation, which

enables you to treat the operation as data. A canonical representation is

a character matrix with rows that are the original lines of the operation

definition, but are reformatted so that they are the same length.

The canonical representation consists of exactly what you typed when you

defined the operation, minus the beginning and ending v s, plus blanks added

to the end of lines to make their lengths the same as that of the longest line

of the operation. Line numbers and brackets are removed from the definition.

White space at the beginning (but not at the end) of a line is preserved. Lines

that contain labels are not shifted.

2-54 APL Reference Manual

System Variables and Functions

[0 CR Obtaining a Canonical Representation

The argument of the [0 CR system function is a character array representing

the name of the operation. The shape of the argument must be in the vector

domain.

If the argument is empty or does not represent the name of an existing

unlocked operation, the resulting character matrix is an empty matrix, with

the shape 0 0. (APL considers primitive system functions and external

functions as locked.)

The display of numeric constants in an operation definition is 0 PP-dependent.

[0 cR does not work on operands to user-defined operators that contain derived

functions. Use 0 VR instead.

For example:

VMEANX<NSUBJ MEAN X

[1] aSUM VECTOR X

[2] SUMX<+/X

[3] MEANX<SUMX+NSUBJ

[4] v

0 « SHOWCRFX <« [CRK 'MEAN'

MEANX«NSUBJ MEAN X

aSUM VECTOR X

SUMX«++/X

MEANX<SUMX+NSUBJ

pSHOWNCRFX

4 21

X< 86 39542174

10 MEAN X

4.9

The OFX system function is the inverse of 0 CR.

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

APL Reference Manual 2-55

System Variables and Functions

0 CT Comparison Tolerance

[] CT Comparison Tolerance

Type

System Variable

Form

OCT <« tolerance-value

floating-scalar < OCT

Value Domain

Type Non-negative numeric

Shape Singleton

Depth 0 or 1 (simple)

Value 0 to 2.328E10

Default 1E~ 15

Result Domain

Type Numeric

Rank 0

Shape 1 0 (scalar)

Depth 0 (simple)

Description

0 CT specifies the degree of tolerance applied when two numbers are compared

for equality. If the difference between two numbers is less than or equal to the

value of J CT times the larger number, the numbers are considered equal.

The value of J CT affects the following primitive functions:

Function Function Name Function Function Name

€ Set membership I Residue

1 Index of) Ceiling

> Greater than L Floor

2-56 APL Reference Manual

System Variables and Functions

0 CcT Comparison Tolerance

Function Function Name Function Function Name

> Greater than or equal to U Set union and unique

= Equal to N Set intersection

2 Not equal to ~ Without

< Less than or equal to c Subset

< Less than > Contains

= Match B Matrix inverse and divide

The value of 0 CT is saved when you save the active workspace and can be

localized in user-defined operations.

For example:

0cT

1E 15

1 = 1.00000000009

0

NCT«1E10

1 = 1,00000000009

1

The following function is the APL metafunction. It describes an exact definition

of how 1 CT is applied.

Vz<A DFEQ B ;UCT;T aA=B WITHIN BXCT

[1] [0CT<«0

[2] T+<0<(xA)B

[3] A<AXT

[4] B<BxT

[5] Z«(|A-B)<OCTx(|A)T|B

[6] 7<ZxT ¥

Possible Errors Generated

9 RANK FRROR (NOT VECTOR DOMAIN)

10 LENGTH ERROR (NOT SINGLETON)

15 DOMAIN FRROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN FRROR (PARAMETER OUT OF RANGE)

APL Reference Manual 2-57

System Variables and Functions

[0 CTRL Control Characters

[1] CTRL Control Characters

Type

Niladic System Function

Form

control-chars < [CTRL

Result Domain

Type Character

Rank 1 (vector)

Shape 33

Depth 1 (simple)

Description

O CTRL 1is a subset of J4V. It returns a vector of the 32 ASCII control characters

and Delete, or, expressed in terms of JAV:

OAV[132,0I0+127]

The control characters are listed in the table below. Note that for any

formatting control character, the internal code that appears in 0CTRL is

the same as the internal code used by APL for that character. For example:

0I0<«0 o [UAV 1 "ABCDEF"

97 98 99 13 10 32 32 32 32 32 100 101 102

Index Name Description Octal Value Hex Value

0 NUL Null 000 00

1 SOH Start Of Heading 001 01

2 STX Start of TeXt 002 02

3 ETX End of TeXt 003 03

4 EOT End Of Transmission 004 04

5 ENQ ENQiry 005 05

2-58 APL Reference Manual

System Variables and Functions

0 CTRL Control Characters

Index Name Description Octal Value Hex Value

6 ACK ACKnowledge 006 06

7 BEL BELI 007 07

8 BS BackSpace 010 08

9 HT Horizontal Tabulation 011 09

10 LF <LF> 012 0A

11 VT Vertical Tabulation 013 OB

12 FF Form Feed 014 0C

13 CR <CR> 015 0D

14 SO Shift Out 016 OE

15 SI Shift In 017 OF

16 DLE Data Line Escape 020 10

17 DC1 Device Control 1 021 11

18 DC2 Device Control 2 022 12

19 DC3 Device Control 3 023 13

20 DCA4 Device Control 4 024 14

21 NAK Negative AcKnowledge 024 15

22 SYN SYNchronous Idle 026 16

23 ETB End-of-Transmission Block 027 17

24 CAN CANcel 030 18

25 EM End of Medium 031 19

26 SUB SUBstitute 032 1A

27 ESC ESCape 033 1B

28 FS File Separator 034 1C

29 GS Group Separator 035 1D

30 RS Record Separator 036 1E

31 US Unit Separator 037 1F

32 DEL DELete 177 7F

Possible Errors Generated

None.

APL Reference Manual 2-59

System Variables and Functions

[0DAS Deassigning Files

(0DAS DeaSsigning Files

Type

Monadic System Function (quiet)

Form

1 0 « ODAS chans

Argument Domain

Type Near-integer

Shape Vector domain

Depth 0 or 1 (simple)

Value - 7999 through 999 (but not 0)

Result Domain

Type Numeric

Rank 1 (vector)

Shape 0 (empty)

Depth 1 (simple)

Description

[1DAS dissociates or deassigns file specifications from channel numbers. The

absolute value of chans represents the channels associated with the files you

want to deassign. If any files associated with the specified channel numbers

have not been closed (by 0 CLS), 0DAS closes them, and then deassigns them.

In general, 0 DAS reverses the operations performed by the 2ASS system

function. The following line deassigns the files associated with channels 1, 3,

and 5:

ODAS 1 3 5

Any unassigned channels in the argument are ignored.

O0DAS is described in the VAX APL User’s Guide along with other file I/O

information.

2-60 APL Reference Manual

System Variables and Functions

[0 DAS Deassigning Files

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

15

15

15

27

DOMAIN ERROR (ENCLOSED HETEROGENEOUS ARRAY NOT ALLOWED)

DOMAIN ERROR (INVALID CHANNEL NUMBER)

DOMAIN ERROR (NOT AN INTEGER)

LIMIT FRROR (INTEGER TOO LARGFE)

APL Reference Manual 2-61

System Variables and Functions

[0 D¢ Display Control

[1 D C Display Control

Type

System Variable

Form

0DC « display-area box-characters

current-setting < 0 DC

Value Domain

Type Enclosed, heterogeneous (see below)

Shape 2 (vector)

Depth 2 or 3 (enclosed)

Default (T1102) "

Result Domain

Type Enclosed, heterogeneous

Rank 1

Shape 2 (vector)

Depth 2 or 3 (enclosed)

Description

0DcC specifies how APL displays enclosed arrays. You can set 0DC to draw

boxes around enclosed items of an array, and the resulting display makes the

nested structure of the array clearer. You can also increase the blank space

that APL uses to surround an enclosed item.

The value you assign to 0DC is a two-item enclosed vector.

The first item of the (D¢ value is a simple numeric vector of length 4. Data

elements 1 and 2 of this item specify where an item is displayed when its

display area is larger than the structure of the item itself. The first data

element controls the vertical placement; the item can be at the top, center, or

bottom of the display area. The second data element controls the horizontal

placement; the item can be at the left, center, or right of the display area. The

following table describes the meaning of the values you can specify for these

two data elements:

2-62 APL Reference Manual

System Variables and Functions

0 DC Display Control

Positioning Items in Display Areas

First Element Location Second Element Location

1 Top 1 Left

0 Center 0 Center

1 Bottom 1 Right

Data elements 3 and 4 of the first item of the 0DC value allow you to change

the size of the display areas. The third data element controls the vertical space

between rows of items; the integer you specify indicates how many blank rows

you want to add. The fourth element controls the horizontal space between

columns; the integer you specify indicates how many blank columns you want

to add. (Note that the rows and columns containing the characters that form

the boxes are included in the number you specify. When you display boxes, the

minimum value you can specify for the third and fourth elements is 2.) The

default for the third and fourth elements are 0 (no extra rows between rows of

items) and 2 (two extra columns between columns of items), respectively.

The second item is a character vector that is either empty (' '), if you do not

want boxes around enclosed items, or has length 8. The vector specifies the

characters for APL to use when it draws boxes around enclosed items. The

first four items specify the symbols for the corners of boxes (upper left, upper

right, lower left, lower right), the next two items specify the left and right

sides, and the last two specify the top and bottom.

The following table describes the order and meaning of the eight items in the

second item of the D¢ value:

Position in Portion of Box

Second Item Described Shape

1 Upper left corner Singleton

2 Upper right corner Singleton

3 Lower left corner Singleton

4 Lower right corner Singleton

5 Left side Vector

APL Reference Manual 2-63

System Variables and Functions

[0 D¢ Display Control

Position in Portion of Box

Second ltem Described Shape

6 Right side Vector

7 Top Vector

8 Bottom Vector

The default value of 0DC1s (71 1 0 2) ''. The four data elements of the

non-empty item have the following meanings: ~ 1 positions data at the top

of each display area, 1 justifies data to the right, 0 places no extra blank

lines between rows of data, and 2 places an extra blank between columns of

enclosed items. For example:

0«CSNY<3 3p'LONG' 9823 834 'TIME' 98 23 'COMIN' 2 'YO'

t+----+ 9823 834

| LONG|

+-—--+

t----+ 98 23

| TIME|

t----1

o + 2 -+

| COMIN | | YO |

Fomm- + +--+

O«MUSC+(1 2) (3 4 5) 6 (7 8 9 10)

t-——4 +----- + 6 +----—--- +

|1 2} |3 4 5] |7 8 9 10|

+-—-t+ +----- + t-------- +

AWITHOUT EXTRA BLANKS, MUSC WOULD APPEAR AS 110

110

123 456789 10

The displays that follow show CSNY and MUSC with the addition of the delta

(A) symbol to clarify the location of the blanks.

ALONGAAS823AA83L

ATIMEAAANAGBAAAZ3

COMINAAAD 2MMAYO

1A2A0A3A4A5AA6AA7A8A94010

The following examples describe the use of the second item of the 0D value,

which specifies the boxes for APL to draw. If you specify '++++| | = ="' as the

second item, APL draws boxes that look like the following:

2-64 APL Reference Manual

System Variables and Functions

[0DC Display Control

The items you specify for the corners of boxes must be singleton items.

However, the four sides may be character strings (vectors). (Note that the

depth increases from two to three when you specify a character string for one

or more of the four sides.) For example, if you specified '+' '"+' '+' 141 1\ /!

'\ /' '"PETER' 'PETER' as the second item of the 0DC value, APL would draw

boxes that look like the following:

+PETER+

\ \

/ /

+PETER+

If a dimension of the box requires fewer characters than the string you specify,

APL uses only the number required. If the box requires more characters, APL

reuses the string. For example, the boxes might look like the following:

+PET+

\ \

+PET+

+PETERPET+

\ \

/ /

\ \

/ /
+PETERPET+

When APL displays an array, it places each item of the array into a display

area. If all items have the same shape, the display areas are all the same size.

If the items vary in shape (as they often do), the display areas also vary in size.

For any given row, the vertical dimension of the display area is determined by

the maximum number of rows in any item in that row. For any given column,

the horizontal dimension of the display area is determined by the maximum

number of columns in any item in that column. For example:

APL Reference Manual 2-65

System Variables and Functions

0 D¢ Display Control

0DC

o + === +

|71 1 2 3| |++++]||--|

e + - +

BUMP«2 2p(110) 5 (3 u4p112) 'ABC!

BUMP

pom eoo + 5

|12 3 456 7 8 9 10]

T +

tomm e + +-——+

|1 2 3 4] | ABC|

|5 6 7 8] +---+

|9 10 11 12]

tommm - +

Note the dimensions of the display areas in the preceding example.

BUMP[1:1] (c110) determines the dimension for the first column because it

is wider than BUMP[2:;1](<c3 4p 1 12). BUMP[2;2] determines the dimension

for the second column because it 1s wider than BUMP[1;2] (5). BUMP[1; 1]

determines the dimension for the first row because it has more rows than

BUMP[1;2] (the rows of the box are part of the display size of BUMP[1;17]).

Finally, BUMP[2; 1] determines the dimension for the second row because it

has more rows than BUMP[2;2] (< '4ABC').

Note that this manual displays enclosed items as if the 0 DC default were the

following:

ODcC

o T +

|71 "1 2 3| |++++]||--]|

it + o fmmmm - +

The O0DC setting shown in the preceding example places items in the top left

corner of each display area, adds two extra rows between rows of items, adds

three extra columns between columns of items, and draws boxes using plus

signs, vertical bars, and hyphens.

Examples:

ODC+(71 71 2 3) '++++]]--"

e

BUMP<2 2p(110) 5 (3 u4p112) 'ABC!

ACHANGE POSITION IN DISPLAY ARFEA

2-66 APL Reference Manual

System Variables and Functions

[0 D¢ Display Control

ODC<(0 0 2 3) '++++||--"

e

|12 34567 89 10| 5

|1 2 3 4] +--=+

5 6 7 8 | ABC|

|9 10 11 12| t---+

aCHANGE SIZE OF DISPLAY AREAS

ODC<(0 0 4 5) '4+++4]]--"

0DcC

t----—- + pommm - +

|0 0 4 5| | ++++]| -]

o mm + t-——————- +

=0DC

2

BUMP

fom e +

|12 3456 7 89 10| 5

fmmmm e m e e +

e ittt +

11 2 3 4 +---+

|15 6 7 8] | ABC|

|9 10 11 12| +---+

tomm - +

aCHANGE BOX, REDUCE DISPLAY AREA USE E FOR ELEMENT 7

a OF SECOND ITEM, F FOR ELEMENT 8 OF SECOND ITEM
E+l ________________ !

F+-'—-g —————————————— ! ,
ODC<(0 0 2 3) ('+' "+' '+t 'V Vv V|V E F)

0pc aDISPLAY 0ODC VALUE

t-—p-—- P= e +

t--p-—--+ | f--p-mmmmmm—- + +--p-—-m + |

00 23] |++++ | | |--p-------------- | }--V- e | |
+--V----+ | t--Vmmm e - + 4=V- +]

fomVmm e Vommmmmmmmm e R +

=(1DC

3

APL Reference Manual 2-67

System Variables and Functions

[0DC Display Control

BUMP

P 0+

/11234567 89 10] 5

e v+

t-=p-=———-- +

|11 2 3 4] +--p+

|5 6 7 8] | ABC|

|9 10 11 12| +--V+

e T +

ASTOP DRAWING BOXES

ODC«(0 0 2 3) "'

BUMP

123456789 10 5

1 2 3 4

5 6 7 8 ABC

9 10 11 12

ODC<(1 "1 2 3) '"++++]]--"

B«4 o (C« 15 ¢ D«2 2p '"ABCD'

O«A«cA<«B, (c(C), <D

ATHE FOLLOWING WORKS WELL TO DISPLAY NESTS OF VECTORS

A IN A FORM SIMILAR TO STRAND NOTATION.
DDC*‘—(O —1 0 1)(v+t LR SRE N i ‘I(I l)!] ll)

A

(4 (1 2 3 4 5) (AB))

((CD))

ATHE FOLLOWING PUTS PARENTHESES AROUND ARRAYS
DDC*’(0023)('/' i\\lf\\ll/llll!lll!l!)

A

/ \

|/ \ /]
|4 |1 2 3 4 5| |AB]|

|\ / |CD]|
| \ /]

\ /

Possible Errors Generated

9 RANK ERROR (MUST BE VECTOR)

9 RANK ERROR (NOT SINGLETON)

2—-68 APL Reference Manual

Y

System Variables and Functions

O DcC Display Control

9 RANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH ERROR (DISPLAY CONTROL ITEM WRONG LENGTH)

10 LENGTH ERROR (DISPLAY CONTROL VECTOR MUST BE TWO ITEMS)

10 LENGTH ERROR (NOT SINGLETON)

15 DOMAIN ERROR

15 DOMAIN ERROR (ENCLOSED HETEROGENEOUS ARRAY NOT ALLOWED)

15 DOMAIN ERROR (ENCLOSED VALUE REQUIRED)

15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN ERROR (NEGATIVE INTEGER NOT ALLOWED)

15 DOMAIN ERROR (PARAMETER OUT OF RANGE)

APL Reference Manual 2-69

System Variables and Functions

[0 DL Delaying Execution

[l DL Delaying Execution

Type

Monadic System Function

Form

actual-delay <« DL seconds

Argument Domain

Type Numeric

Shape Singleton

Depth 0 or 1 (simple)

Value seconds <~ 1+2%18

Result Domain

Type Non-negative numeric

Rank 0

Shape 1 0 (scalar)

Depth 0 (simple)

Description

ODL delays execution for the number of seconds specified in the argument. If

the argument is less than 0.001, there is no delay. If the argument is negative,

there is no delay. |

Although DL specifies the desired duration of the delay, the actual delay may

be longer because of other demands on the system. The result returned is the

actual delay in seconds. For example:

0 « 0DL 8.5 ASET DELAY AND DISPLAY
9

0 « ODL 7u.36 ANEGATIVE ARG = NO DELAY
0

Here, the user instructed APL to wait 8.5 seconds before prompting for input;

the actual delay was 9 seconds.

2—-70 APL Reference Manual

System Variables and Functions

0 DL Delaying Execution

The O0DL function uses a negligible amount of computer time. Thus, you

can issue it freely when tests are required at periodic intervals to determine

whether an event has occurred as expected.

The delay resulting from the execution of 0DL may be canceled by the weak

attention signal. When the weak attention signal is thus used, APL stops 0DL

and returns the actual delay but does not signal attention.

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH ERROR (NOT SINGLETON)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

27 LIMIT ERROR (DELAY VALUE TOO LARGE)

DECLIT AA vAX GVOSC

VAX APL reference manual

APL Reference Manual 2-71

System Variables and Functions

DML Maximum Record Length

[l DML Maximum Record Length

Type

System Variable

Form

O0DML < default-length

integer-scalar < [JDML

Value Domain

Type Near-integer

Shape Singleton

Depth 0 or 1 (simple)

Value 512 through 20u8 (bytes)

Default 2044

Result Domain

Type Integer

Rank 0

Shape 1 0 (scalar)

Depth 0 (simple scalar)

Description

O0DML specifies the default maximum record length to be used when you save

a workspace or create an external file. The value of 0DML is saved with the

workspace and can be localized within user-defined operations.

If you do not want to use the default maximum record length, you can use the

/MAXLEN qualifier when you save a workspace or create an external file. If

you omit the /MAXLEN qualifier, APL uses the value of 0DML as the maximum

record length.

2-72 APL Reference Manual

System Variables and Functions

0 DML Maximum Record Length

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10

15

15

15

15

27

LENGTH ERROR (NOT SINGLETON)

DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

DOMAIN ERROR (INCORRECT TYPFE)

DOMAIN ERROR (NOT AN INTEGER)

DOMAIN ERROR (PARAMETER OUT OF RANGE)

LIMIT ERROR (INTEGER TOO LARGE)

APL Reference Manual 2-73

System Variables and Functions

(0 DVC Returning Device Characteristics

UDVC Reiurning Device Characteristics

Type

Monadic System Function (query)

Form

characteristics <~ [JDVC chans

Argument Domain

Type Near-integer

Shape Vector domain

Depth 0 or 1 (simple)

Value 999 through 999 (but not 0)

Result Domain

Type Integer

Rank 1 0or 2

Shape Vector or matrix (n by 2)

Depth 1 (simple)

Description

O0DvC displays device characteristics. The absolute value of chans represents

the channels associated with the files you want information on.

For each channel specified in the argument, 0DVC returns one row containing

two values. The first value is the VMS device-characteristics longword, and the

second value is always 0. For unassigned channels, 0DV returns 0 0.

ODVC returns a two-element vector if a single channel is specified. If more

than one channel is specified, the result is a matrix of shape n by 2, where n is
the length of the argument.

If its argument is empty, 0 DVC returns a result of 0 2p 0.

Note that to return a value for 1DVc, APL must open files that have been

associated with channels but have not yet been opened. Thus, unopened files

associated with channels identified by positive integers in the 0DVC argument

are opened for input; unopened files associated with channels identified in the

2-74 APL Reference Manual

System Variables and Functions

0DVC Returning Device Characteristics

argument by negative integers are opened for output. Note that when you open

a sequential file for output, APL makes a new copy of the file with a version

number that is one higher than that of the previous copy.

It is usually helpful to convert the device-characteristics longword to binary

format before examining it. For example:

UASS '15 DESIGN/DA!

15

PXXXYYY'H 15

A<[IDVC 15

A

474824712 0

(32p1)TA[1]

000111000100110101000000000010°0°0

(-0I0)+00M (32p2)TAL1]
3 459 12 13 15 17 28

You can compare the binary value of the longword with the device

characteristics in Table 2—6. The first element in the table 1s associated

with the rightmost bit in the longword, the second element is associated with

the next rightmost bit, and so forth. Thus, in the previous example, the three

rightmost Os indicate that the device is not record-orientated, is not a carriage-

control device, and is not a terminal; the 1 in the fourth position from the right

indicates that the device is directory-structured.

Table 2-6 Device Characteristics Longword

Bit Type or Condition of Device

0 Record-oriented

1 Carriage-control

2 Terminal

3 Directory-structured

4 Single directory-structured

5 Sequential, block-oriented

6 Being spooled

7 Operator console

8 RA50,RA81,RA82,RH60

9-12 (Bits reserved)

(continued on next page)

APL Reference Manual 2-75

System Variables and Functions

0 DVC Returning Device Characteristics

Table 2—6 (Cont.) Device Characteristics Longword

Bit Type or Condition of Device

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Network

File-oriented

(Bit reserved)

Shareable

Generic

Available for use

Mounted

Mailbox

Marked for dismount

Error logging enabled

Allocated

Non-file-structured

Software write-locked

Capable of providing input

Capable of providing output

Allows random access

Real-time

Read-checking enabled

Write-checking enabled

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

15

15

15

27

DOMAIN ERROR (ENCLUDES ARRAY NOT ALLOWED)

DOMAIN FRROR (NOT AN INTEGER)

DOMAIN EFRROR (INVALID CHANNEL NUMBER)

LIMIT FRROR (INTEGER TOO LARGE)

2-76 APL Reference Manual

System Variables and Functions

OFFR OEFS OEFC Event Flag System Functions

NEFRJEFS [FEFC Event Flag System Functions

Type

Monadic System Functions

Form

event-flag-values « JEFR chans (read)

previous-values <« EFS chans (set)

previous-values <« 1EFC chans (clear)

Argument Domain

Type Near-integer

Shape Vector domain

Depth 0 or 1 (simple)

Value ~999 to 999 (butnot 0)

Result Domain

Type Numeric

Rank 1 or 2

Shape Vector or matrix (n by 2)

Depth 1 (simple)

Description

There are three event-flag-system functions: JEFR to read event flag values,

OEFS to set event flags (make them equal 1), and JEFC to clear event flags

(make them equal 0).

The absolute values of chans represent the channels associated with the event

flags you want to manipulate.

The 0EFR function returns the values of the event flags associated with the

channel numbers in its argument. For channels not associated with an event

flag, DEFR returns ~ 1.

APL Reference Manual 2-77

System Variables and Functions

O0FFR OFEFS OEFC Event Flag System Functions

The result is a matrix (or vector, if the argument is a singleton) of shape n 1,

where n is the shape of the argument. In the example, the result indicates

that the event flags are associated with channels 1, 2, and 5. The event

flag associated with channel 2 is set, and then cleared, and no event flag is

associated with channel 4:

(ASS "1 MYFILE/RF/SHARE/EFN:77"

[ASS '2 PUBLIC/DA/SHARE/EFN:68'

0ASS '4 MINE/IS'

UASS '5 MAILBOX/AS/SHARE/MBX/EFN:65"

OEFS 2

0

OEFR15

0

1

1

1

0

OFFC 2

1

OEFR15

0

0

1

1

0

The OFFS and OEFC functions set and clear, respectively, the event flags

associated with the channel numbers in their arguments. They return a

matrix of shape n by 1, where n is the shape of the argument, and the values

are the previous values of the event flags. For channel numbers not associated

with event flags, 0 EFFS and O EFC return ~ 1.

If the argument to DEFR, OEFS, or JEFC is empty, APL returns 0 1p 0 as the

result.

OEFR, DEFS, and JEFC are described in the VAX APL User’s Guide along with

other file I/O information.

2-78 APL Reference Manual

System Variables and Functions

OFFR OEFS OEFC Event Flag System Functions

Possible Errors Generated

9 RANK FRROR (NOT VECTOR DOMAIN)

15

15

15

27

DOMAIN ERROR (ENCLOSED HETEROGENEOUS ARRAY NOT ALLOWED)

DOMAIN ERROR (NOT AN INTEGER)

DOMAIN ERROR (INVALID CHANNEL NUMBER)

LIMIT FRROR (INTEGER TOO LARGE)

APL Reference Manual 2-79

System Variables and Functions

(0ERROR Error Message

[| ERROR Error Message

Type

System Variable

Form

< QFRROR

OERROR <« error-text

Value Domain

Type Character

Shape Vector domain

Depth 0 or 1 (simple)

Default o

Result Domain

Type Character

Rank 1

Shape Vector

Depth 1 (simple)

Description

[0 ERROR contains either the text of the last error message that occurred or the

text that you assign to it. (JERROR is set implicitly by the system when an

error occurs, but can also be set by the user.) JERROR contains one error at a

time; when a new error occurs, the new message overwrites the old one. You

can, however, localize] FRROR within user-defined operations to save error

information within an operation’s own environment.

The text of DERROR is a character vector of variable-length lines and is

delimited by a <CR><LF>. The lines of text in 0 ERROR are the same as the

lines of the error message that APL displays on the terminal (except when

OTERSE is 1), including secondary error messages and execute error messages.

The error number is always contained in the first four characters of 0 ERROR,

so you can always extract the error number with the expression ¢ 44 JERROR.

OERROR always contains the entire error message text, even if some of the text

2-80 APL Reference Manual

System Variables and Functions

[0ERROR Error Message

was not displayed on the terminal because it was truncated to J P¥ characters.

For a description of the text of error messages, see Appendix A.

Note that like all the system variables, IERROR can be set by the user; that is,

you can use the specification function (V4) to assign a value to it.

It is possible that when a WORKSPACE FULL error occurs, there will not be

enough memory available to build 1 ERROR. In that case, 0 FRROR will equal ' '

(an empty character array). It is also possible that there will not be enough

room to display 0ERROR. In that case, APL signals WORKSPACE FULL with the

line in error being JERROR.

For example:

VABC;UTKAP;UERROR aLOCALIZE [JTRAP AND [ERROR

[1] OTRAP<«'> LAB'

[2] 5+

[3] aNEXT LINE PRINTS MESSAGE AND INTERRUPTS EXECUTION

[u] LAB:[IBREFAK 'CHECK ERROR MESSAGE'

[5] "RESUME AT LINE 5!

[6] v

aNOW GENERATE AN IMMEDIATE MODE ERROR

C+A aADD TWO UNDEFINED VARIABLES

11 VALUE ERROR

C+A aADD TWO UNDEFINED VARIABLES

A

aCHECK GLOBAL VALUE OF [JERROR

OERROR

11 VALUE ERROR

C+A aADD TWO UNDEFINED VARIABLES

A

aNOW EXECUTE ABC TO GENERATE LOCAL ERROR

ABC

CHECK ERROR MESSAGE

nABC HAS SUSPENDED

aNOW CHECK CONTENTS OF [JERROR

OERROR

7 SYNTAX ERROR (RIGHT ARGUMENT TO FUNCTION MISSING)

ABC[2] 5+

A

aNOW BRANCH TO CURRENT LINE + 1 TO CONTINUE EXECUTION

+(OLC+1

RESUME AT LINE 5

AFUNCTION HAS FINISHED EXECUTION

aAND LOCAL [QFRROR IS GONE

ACHECK GLOBAL VALUE OF [QFRROR

FRROR

11 VALUE ERROR

C+4 aADD TWO UNDEFINED VARIABLES

A

APL Reference Manual 2-81

System Variables and Functions

[0ERROR Error Message

Note that if an error occurs during an ¢ execute,] ERROR contains six lines of

text. For example:

¢ '[)BREAK 1!

79 ¢ SYSTEM FUNCTION ILLEGAL IN EXECUTE

OBREAK 1

A

25 EXECUTE ERROR

¢ '"[JBREAK 1

A

UERROR

79 ¢ SYSTEM FUNCTION ILLEGAL IN EXECUTE

UBREAK 1

A

25 EXECUTE ERROR

¢ 'OBREAK 1!

A

Note that OFRROR is set by 0FXx, 0ASS, and 0XQ, even though no message is

displayed when the error occurs.

The value of 0 ERROR is saved when you save the active workspace and can be

localized within user-defined operations. (See the VAX APL User’s Guide.) The

default value is ' ' .

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

15 DOMAIN FRROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN FRROR (INCORRECT TYPF)

2—-82 APL Reference Manual

System Variables and Functions

0 FX Erasing a Named Object

[1 £ X Erasing a Named Object

Type

Monadic System Function

Form

erased /not-erased < 1EX name-list

Argument Domain

Type Character

Shape Matrix domain

Depth 1 (simple)

Result Domain

Type Boolean

Rank 1

Shape o name-list

Depth 1 (simple)

Description

OEX erases the local APL objects named by the rows of its argument. You

cannot erase a named object that refers to a label, a group (a group name is

always global), or to a suspended or pendent operation.

The result of the JEX system function is a Boolean vector that indicates which

objects were erased: a 1 signifies that the object now has no value; a 0 signifies

that the object cannot be erased. Note that 0 EX returns O if you specify an

ill-formed identifier.

APL Reference Manual 2-83

System Variables and Functions

0 EX Erasing a Named Object

For example:

JENS

ABCD GROW TEST

)SI

TEST[2] «

A<3 4p'ABCDTESTGROW'

A

ABCD

TEST

GROW

OEXA
101

JENS

TEST

If the argument to JEX is empty, the result also is empty.

Note that the memory allocated from VMS remains allocated even if you

expunge an object from the workspace. If you want to release this memory,

follow the sequence of steps discussed in the section on space considerations in

Chapter 3 of the VAX APL User’s Guide.

Possible Errors Generated

9 RANK FRROR (NOT MATRIX DOMAIN)

15 DOMAIN FRROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPFE)

2-84 APL Reference Manual

System Variables and Functions

[] EXP Expansion

[1 £ X P Expansion

Type

Dyadic System Function

Form

AQOFXP B A UOFXP[K] B

Left Argument Domain

Array Simple, homogeneous

Type Near-Boolean

Shape Vector domain

Depth 0 or 1 (simple)

Right Argument Domain

Type Any

Shape Any

Depth Any

Result Domain

Type Same as argument

Rank 1fppB

Shape (K-1)+pB),(p,A),K+pB(for J10=1)

Depth 1 =B

implicit Arguments

None.

APL Reference Manual 2-85

System Variables and Functions

[JEXP Expansion

Description

OEXP builds an array by combining the items of an existing array with fill

items.

OEXP works the same as the expansion derived function. The examples

shown for the Expansion operator in Chapter 1a also apply to JEXP (you can

substitute 0 EXP for the backslash (\) operator). The difference between [] EXP

and the backslash operator is that you can use JEXP as an operand to an

operator. Operators cannot be used as operands to operators. NEXP applies

along the last axis of B unless modified by an explicit axis (¥) in brackets.

The shape of the result is the same as the original array B except along the

applicable axis (p B[X]) where the shape becomes the length of 4 (p , 4).

The following examples show OEXP with the each () operator. Although

the variables 4 and C are nested in the examples, they conform to the left

argument domain requirement that specifies a simple array. This is because

the each operator reduces the nesting by one level.

O«d«(1 01 1) (110 1)

to--mm- t ot +

|10 1 1] J110 1

tommmm- t - +

0«B«(2 3p16) (4 3p'ABCDEFGHIJKL')

fo---- + o4

|1 2 3| |ABC|

|4 5 6| |DEF|

to-—- + |GHI|

| JKL|

+---+

aATTEMPT TO USE OPERATOR AS ARG TO ~

A\ "B nAPL EVALUATES AS (A\)"B

15 DOMAIN ERROR (ENCLOSED/HETEROGENEOUS ARRAY NOT ALLOWED)

A\ "B anAPL EVALUATES AS (A\)'B
A

A OEXP" B

e + -t

|1 0 2 3| |AB C|

|4 0 5 6| |DE F|

fomm - + |GH I

| JK L

t----+

A OEXP[2]1"B AEXPAND ITEMS OF B USING THE ITEMS OF 4
- + +----t

|10 2 3| |4B C|

|4 0 5 6| |DE F|

2-86 APL Reference Manual

System Variables and Functions

[0 EXP Expansion

O«C«(1 0 1) (1101 1)

¢ OFXP[1]"B aUSE OFXP WITH AXIS ARGUMENT

|1 2 3] [ABC]

|0 0 0 |DEF|

v 560 [|

| JKL|

+---+

Possible Errors Generated

9 RANK FRROR (NOT VECTOR DOMAIN)

10

15

15

15

27

28

29

30

30

30

30

30

30

LENGTH FRROR

DOMAIN ERROR

DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

DOMAIN ERROR (INCORRECT TYPE)

LIMIT EFERROR (INTEGER TOO LARGE)

AXIS RANK FRROR (NOT VECTOR DOMAIN)

AXIS LENGTH FRROR (NOT SINGLETON)

AXIS DOMAIN FRROR (AXIS LESS THAN INDEX ORIGIN)

AXIS DOMAIN FRROR (ENCLOSED ARRAY NOT ALLOWED)

AXIS DOMAIN FERROR (INCORRECT TYPF)

AX1IS DOMAIN FRROR (NOT AN INTEGER)

AXIS DOMAIN ERROR (RIGHT ARGUMENT HAS WRONG RANK)

AXIS DOMAIN FRROR (SEMICOLON LIST NOT ALLOWED)

APL Reference Manual 2-87

System Variables and Functions

[0 FI Converting Characters to Numerics

[| £ 1 Converting Characters to Numerics

Type

Monadic System Function

Form

numeric-values <~ [0 FI numeric-character-string

Argument Domain

Type Character

Shape Vector domain

Depth 0 or 1 (simple)

Result Domain

Type Numeric

Rank 1

Shape Vector

Depth 1 (simple)

Implicit Arguments

[ONG (determines minus sign placement)

Description

[0FI converts a numeric character argument to a vector of numeric values,

placing a 0 in each position that does not correspond to a valid number. The

shape of the argument must be in the vector domain. If the argument is empty,

[FI returns an empty numeric vector.

OFI separates the argument into fields that are delimited by one or more

spaces, tabs, or a carriage return (optionally followed by a line feed); converts

each field that contains a valid number; and inserts a 0 to replace each field

containing an invalid number. For example:

2-88 APL Reference Manual

System Variables and Functions

(0 FTI Converting Characters to Numerics

A<(JFI '12 55¢ 4 (C 2951 8 +5'

A

12 0 "4 0 2951 8 0

pA

7

Note that a plus sign preceding a number is not part of the number but is

rather an operation to be performed on the number. However, in APL, the

negative sign in the expression ~ 5 is a valid part of the number.

OFT is often used in conjunction with VI and the compression derived

function (see the Section 1.3.2 section) to select the valid numbers from a

character string: 00 VI produces the left argument of the compression function,

and [FI produces the right argument. For example:

V Z<AVERAGE

[1] U«'ENTER A LIST OF NUMBERS' ¢ Z<,[

[2] 2«<(0VI Z)/0FI Z

[3] L<(+/72)+pZ

[4] v

AVERAGE

ENTER A LIST OF NUMBERS

1 3.540+2 .50,

2

In the previous example, VI of Z equals 1 1 0 1 0 1 1 0 and OFI of Z equals

13.5000 .560

Recognition of negative numbers in the JFI argument depends upon the value

of the system variable ONG. If NG equals 1 (the default), negative numbers in

the O FI argument must begin with the high minus sign (7) to be recognized.

If ONG equals 0, numbers preceded by a minus sign (-) are recognized as

negative numbers. If NG equals 2, negative numbers are preceded by an APL

"+" symbol. (APL "+" prints as an ASCII "-" so that NG+2 can be used to

handle negative numbers in strings that are read or written in ASCII.) For

example:

ONG<1 a MEANS NEGATIVE

X<'66 G 7 +9 4

OFI X

66 0 7 0 4

ONG+0 a- MEANS NEGATIVE

OFI X

66 0 0 0 O

ONG<2 n+ MEANS NEGATIVE

OFI X

66 0 0 +9 0

APL Reference Manual 2-89

System Variables and Functions

0 FI Converting Characters to Numerics

Note that when NG is 0, it may be useful for you to use APL to interpret data

created by other languages, specifically those that do not use the high minus

sign.

Possible Errors Generated

9 RANK ERROR (NOT MATRIX DOMAIN)

15 DOMAIN FRROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPFE)

2-90 APL Reference Manual

System Variables and Functions

0 FLS Returning File Information

[1 'L.S Returning File Information

Type

Monadic System Function (query)

Form

file-info ~ OFLS chans

Argument Domain

Type Near-integer

Shape Vector domain

Depth 0 or 1 (simple)

Value 7999 to 999 (butnot 0)

Result Domain

Type Integer

Rank 1 or 2

Shape Vector or matrix (n by 5)

Depth 1 (simple)

Description

0 FLS returns information about files. The absolute values of chans represent

the channels associated with the files you want to specify. The result contains

one row of five values for each channel specified in the argument. The

meanings of the values differ according to each file’s organization.

The values returned by 0FLS have the following meanings (from left to right):

First value Share bit: 1 means that you specified /SHARE in the

argument for the associated J45S function; 0 means

that you did not.

APL Reference Manual 2-91

System Variables and Functions

(0 FL.S Returning File Information

Second value For sequential files, the second value is the number of

records read or written since the file was opened. For

direct-access and relative files, it is the value of the

last record or component number used for a successful

read or write operation. For keyed files, it is the value

of the last key of reference used for a successful read,

write, or rewind.

Third value The maximum record length of the file (0 means there

is no user limit on record size).

Fourth value The /BLOCKSIZE setting for the file.

Fifth value The type of the most recent I/O operation

Value

Returned I/O Operation

0 None

1 Sequential read

2 Random read

3 Sequential write

4 Random write

5 Sequential delete

6 Random delete

O0FLS is described in the VAX APL User’s Guide along with other file 1/O

information.

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

15 DOMAIN ERROR (ENCLOSED HETEROGENEOQOUS ARRAY NOT ALLOWED)

15 DOMAIN ERROR (NOT AN INTEGER)

15 DOMAIN ERROR (INVALID CHANNEL NUMBER)

27 LIMIT FRROR (INTEGER TOO LARGE)

2-92 APL Reference Manual

System Variables and Functions

O FMT The Report Formatter

L1 FMT The Report Formatter

Type

Dyadic System Function

Form

report < format-phrases OFMT {array | (array ; array;...)}

Left Argument Domain

Type Character

Shape Vector domain

Depth 1 (simple)

Right Argument Domain

Type Any

Shape Any

Depth < 2 (vector of arrays or a simple array)

Result Domain

Type Character

Rank 2

Shape Matrix

Depth 1 (simple)

Implicit Arguments

ONG (determines minus sign placement)

Description

OFMT combines the data from all the arrays in the right argument and

arranges it as a single character matrix whose columns are then formatted

according to corresponding format phrases specified in the left argument. The

arrays in the right argument can be both character and numeric data.

APL Reference Manual 2-93

System Variables and Functions

[0FMT The Report Formatter

OFMT can edit the data as it is moved to an output field. For example, OFMT

fills or erases zeros in numeric fields; round numeric data; and inserts commas,

dollar signs, and other text where appropriate.

The right argument is a list of arrays of any type or rank. The list must be

surrounded by parentheses (unless there is only one array in the list), and the

arrays must be separated by semicolons. Alternatively, the right argument

may be a single nested vector of simple arrays, which are treated in the same

manner as a semicolon list.

The left argument is a character vector comprised of one or more format

phrases of the form described in Chapter 4 of the VAX APL User’s Guide. The

phrases must be separated by commas.

The following table summarizes the syntax of the format phrase in the left

argument. Note that rep (repetitions) refers to the number of consecutive

target columns to be affected by the format phrase; quals refers to one of

the qualifiers or decorators described in the following table; width refers to

the width in the result array of a value from a column of data in the right

argument; dig (digits) refers to the number of decimal places included in the

result array; and col (column) refers to either the leftmost column that a value

is to occupy in the result array (for type T), or the number of columns to be

shifted before the next value is output to the result array.

Phrase Type of Data

[repll [quals] A width Character

[rep] [quals]l E width.dig Floating-point with exponent

[repl [quals] ¥ width.dig Fixed-point

[repll [quals]l G « patterns Picture

[repl lquals] 1 width Integer

[repl lqualsl Y width Byte

lrepl T [coll Absolute tab

[repll X [col] Relative tab

[replla textn Literal

2-94 APL Reference Manual

System Variables and Functions

OFMT The Report Formatter

The following table summarizes the qualifiers and decorators used in the

format phrase:

Qualifiers Meaning

B For types I, E, F, G, and Y, if the value of the item in

the target column is zero, make the field in the target

column blank in the result array.

C For types I and F, insert commas between each group

of three digits in the integer part of the formatted

value.

L For types I, F, E, A, and Y, left-justify the fields in the

target column.

Kn For types I, F, G, and E, before formatting the fields

Sa symbol pairsa

in the target column, multiply the fields by the scale

factor 10xn.

For types I, E, F, G, and Y, replace, in the formatted

output, all occurrences of the first character in each

symbol pair with the corresponding second character

of the symbol pair.

Wn For type E, use n exponent digits in the formatted

output.

Z For types I, F, and Y, fill leading blanks in the

formatted output with zeros.

Decorator Meaning

Ma textn For types I, F, and G, replace the sign of negative-

formatted values with text placed to the left of the

value.

Na texta For types I, F, and G, place text to the right of

negative-formatted values.

Oan textn For types I, F, G, and Y, replace formatted zero values

with text.

Pa texta For types I, F, and G, place text to the left of positive-

formatted values.

APL Reference Manual 2-95

System Variables and Functions

O0FMT The Report Formatter

Decorator Meaning

Qn texta For types I, F, and G, place text to the right of

positive-formatted values.

Ra textn For types I, F, E, A, G, and Y, fill unused columns in

the formatted output with text.

Note that the delimiting pair s a may also be any of the following pairs:

00 00 < > c D

OFMT is also described in Chapter 4 of the VAX APL User’s Guide.

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10

14

15

15

15

15

27

15

15

15

15

15

15

15

LENGTH FRROR

DEPTH ERROR

DOMAIN ERROR (DUPLICATE FMT QUALIFIER)

DOMAIN ERROR (DUPLICATE FMT STANDARD SUBSTITUTION CHARACTER)

DOMAIN FRROR (EMPTY FMT STRING PARAMETER NOT ALLOWED)

DOMAIN FRROR (ENCLOSED ARRAY IS NOT ALLOWED)

LIMIT FRROR (FLOATING OVERFLOW)

DOMAIN FRROR (FMT DECORATION OR LITERAL STRING TOO LONG)

DOMAIN FRROR (FMT RIGHT ARGUMENT DOES NOT MATCH FORMAT PHRASE)

DOMAIN FRROR (ILL FORMED FMT PARAMETER)

DOMAIN FRROR (ILLEGAL CHARACTER IN FMT LEFT ARGUMENT)

DOMAIN FRROR (ILLEGAL FMT FORMAT PHRASE)

DOMAIN FRROR (ILLEGAL FMT G FORMAT PHRASE PATTERN CHARCTER)

DOMAIN FRROR (ILLEGAL FMT LITFRAL STRING DELIMITER)

2-96 APL Reference Manual

15

15

15

15

15

15

15

15

15

15

15

15

15

DOMAIN FRROR

DOMAIN ERROR

DOMAIN ERROR

DOMAIN ERROR

DOMAIN ERROR

DOMAIN ERROR

DOMAIN ERROR

DOMAIN ERROR

DOMAIN FRROR

DOMAIN ERROR

DOMAIN ERROR

DOMAIN ERROR

DOMAIN ERROR

System Variables and Functions

O0FMT The Report Formatter

(ILLEGAL FMT S QUALIFIFR SYMBOL)

(ILLEGAL USF OF FMT QUALIFIER)

(INCORRECT TYPE)

(MISSING FMT FORMAT PHRASE SEPARATOR)

(MISSING FMT FORMAT PHRASE/QUALIFIER)

(MISSING LITERAL STRING IN FMT LEFT ARGUMENT)

(NO DIGIT SELECTOR IN FMT G FORMAT PHRASE PATTERN)

(NO FMT FDITING FORMAT PHRASE)

(PARAMETER OUT OF RANGE)

(RIGHT ARG TOO DEFEPLY NESTED)

(UNBALANCED TEXT DELIMITER IN FMT LEFT ARGUMENT)

(UNBALANCED PARENS IN FMT LEFT ARGUMENT)

(UNPAIRED SYMBOL IN FMT S QUALIFIER)

APL Reference Manual 2-97

System Variables and Functions

[1 FX Establishing an Operation

[] F'X Establishing an Operation

Type

Monadic System Function

Form

operation-name< [FX operation-definition

Argument Domain

Type Character

Shape Matrix domain

Depth 1 (simple)

Result Domain

Type Character (Numeric if error is detected)

Rank 0 or 1

Shape Vector (Scalar if error is detected)

Depth 0 or 1 (simple)

Implicit Arguments

0 I0 (controls origin of line number in error)

Description

[0FX reverses the operation of the (1 CR system function; that is, it creates in

internal form the operation defined by its argument.

The argument is assumed to be a character matrix that contains the canonical

representation of an operation. The shape of the argument must be in the

matrix domain. Blank lines in the argument are removed in the operation

established by O FX.

O0FX fails if the operation’s name is the same as that of an existing label,

variable, or group, or if it is the same as that of an existing operation that is

pendent or suspended. If an operation already exists in your workspace with

the same name, [JFX replaces it and removes any trace, stop, or monitor bits

that were set on it.

2-98 APL Reference Manual

System Variables and Functions

(] FX Establishing an Operation

The O FX function executes properly if the matrix it references is identical to

a canonical representation. If 0FX fails, APL returns a scalar index (which is

[0 I0-sensitive) representing the row in the matrix where the error occurred,

and no change is made to any operation or array in your workspace. You can

check the value of D ERROR for a description of what was wrong with the line in

error.

If O FX is successful, its result is a character vector containing the name of the

operation defined. If the argument is empty, the result is empty.

The following example begins where the 0 CR example from the 01 CR section

ended. Here, the plus sign in SHOWCRFX is changed to a multiplication sign;

then, the O0FX system function is applied to SHOWCRFX to replace the function

MEAN with its new version:

SHOWCRFX[3:6]«"x!

NFX SHOWCRFX

MEAN

V MEANCO]V

VMEANX<NSUBJ MEAN X

[1] aSUM VECTOR X

[2] SUMX<x/X

[3] MEANX<SUMX+NSUBJ

v

X

8639542174

10 MEANX

145152

X<2 4p 'F X1234"

X[1:2 3]«0CTRL{14 11] wEMBED CRLF IN OPERATION HEADER

OFX X

1

UERROR

5 DEFN ERROR (EXTRANEOUS CHARACTERS AFTER COMMAND)

F

X

A

Possible Errors Generated

9 RANK ERROR (NOT MATRIX DOMAIN)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

APL Reference Manual 2-99

System Variables and Functions

[0 GAG Preventing Interruptions

| GAG Preventing Interruptions

Type

System Variable (session)

Form

0GAG < near-integer-singleton

integer-scalar ~ JGAG

Value Domain

Type

Shape

Depth

Value

Default

Result Domain

Type

Rank

Shape

Depth

Description

Integer

Singleton

0 or 1 (simple)

0,1,2,0r 3

Determined when APL is invoked

Integer

0

1 0 (scalar)

0 (simple scalar)

0GAG allows you to specify how APL handles messages that arrive at your

terminal from other users. You can set 0 GAG to the following values:

Value Meaning

0 Display messages

1 Refuse messages

2 Trap, translate, and display messages

3 Signal BROADCAST RECEIVED

Setting 0 GAG to 0 is equivalent to executing the DCL command set terminal

/broadcast, and setting JGAG to 1 has the same effect as the DCL command

2-100 APL Reference Manual

System Variables and Functions

[0 GAG Preventing Interruptions

set terminal/nobroadcast. When [JGAG is 1, messages from nonprivileged users

are suppressed (note that senders are not told that their messages were not

received). For more details, see the VMS DCL Dictionary. When you return to

DCL from APL, the original system value for [GAG is restored, unless the exit

from APL was a panic exit; in that case, the setting established in the APL

session remains in effect.

Setting [1GAG to 2 is equivalent to executing the DCL command SET

TERMINAL/BROADCAST, with the addition of instructing APL to display

the message in the character set that is currently set for the terminal. If you

use an APL terminal, the default setting is 2 when APL is invoked.

Setting 0GAG to 3 allows you to trap messages with [TRAP and to view them

at a later time. As messages arrive at the terminal, APL signals BROADCAST

RECETIVED followed by a secondary message of the broadcast text.

The default setting of JGAG is the current monitor setting. Note that 0GAG 1s

a session variable; that is, its value is not saved with the workspace, and 0 GAG

is not reset by the execution of a) CLEAR command (see Chapter 3). 0GAG can,

however, be localized in user-defined operations.

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH ERROR (NOT SINGLETON)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPFE)

15 DOMAIN ERROR (NOT AN INTEGER)

27 LIMIT ERROR (INTEGER TOO LARGE)

APL Reference Manual 2-101

System Variables and Functions

[0 70 Index Origin

[] 1O Index Origin

Type

System Variable

Form

[0 I0 <« near-integer-singleton

integer-scalar-current-value <« 0I0

Value Domain

Type Integer

Shape Singleton

Depth 0 or 1 (simple)

Value 0 or 1

Default 1

Result Domain

Type Integer

Rank 0

Shape 1 0 (scalar)

Depth 0 (simple scalar)

Description

010 specifies the setting of the index origin. This setting determines whether

the values of an array are indexed beginning with position 0 or 1. The default

position is 1.

010 also affects the operation of axis ([]), exceopt when axis is used with

user-defined operations. In addition, 010 affects the operation of the following

primitive and system functions:

14 A1B 7A A?B AA VA AQB [OM B OFX B

The value of 010 is saved when you save the active workspace and can be

localized in user-defined operations.

2—102 APL Reference Manual

System Variables and Functions

[1 10 Index Origin

Examples:

0I0+<1

1 3

123

A<2 Up16

+/[2]4
10 14

+/[1]4

8 4 b6

+/[0]A

30 AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

+/[0]A

A

0I0+0

13

0 1 2

+/02]4

30 AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)

+/[2]A4

A

+/[1]4

10 14

+/[0]A

b 8 4 6

010<«7

15 DOMAIN ERROR (SYSTEM VARIABLE VALUE MAY ONLY BE 0 OR 1)

O0I0«7

A

Possible Errors Generated

9 RANK FRROR (NOT VECTOR DOMAIN)

10 LENGTH FRROR (NOT SINGLETON)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN EFRROR (INCORRECT TYPE)

15 DOMAIN FERROR (NOT AN INTEGER)

15 DOMAIN ERROR (SYSTEM VARIABLE VALUE MAY ONLY BE 0 OR 1)

27 LIMIT ERROR (INTEGER TOO LARGE)

APL Reference Manual 2-103

System Variables and Functions

[0 L Monitoring Variable Changes

] L Monitoring Variable Changes

Type

System Variable

Form

0L < any-value

variable-name< L

Value Domain

Type Any

Shape Any

Depth Any

Result Domain

Type Character (any when set by user)

Rank 1 (any when set by user)

Shape Vector (any when set by user)

Depth 1 (simple) (any when set by user)

Default 10

Description

0L and (R are system variables that are implicitly used by OWATCH. (OL is set

implicitly by the system when a variable changes, but can also be set by the

user.) OWATCH i1s a system function that is used to monitor any changes in one

or more variables. When a change occurs in a monitored variable, APL assigns

information to JL and OR: 0L contains a character vector showing the name of

the variable that has changed; 1k contains the previous value of the changed

variable. APL assigns this information regardless of whether monitoring is set

for signal or display mode.

The default value for both 0L and 0 R is 1 0. Immediately after a OWATCH event

occurs, [JL and OR contain the new information that results from the event.

However, this information may change as an operation continues execution

(this is especially true if an error occurs during an assignment or reference of a

variable that is associated with a watchpoint).

2—-104 APL Reference Manual

System Variables and Functions

0 L Monitoring Variable Changes

Both 1L and OR can be localized, explicitly assigned values of any type, and

saved in the workspace.

Note that you cannot include 0L or OR in the right argument to dyadic

UWATCH.

Possible Errors Generated

None.

APL Reference Manual 2-105

System Variables and Functions

[0 LC Line Counter

[1 L C Line Counter

Type

Niladic System Function

Form

current-line-number < [1LC

Result Domain

Type Integer

Rank 1

Shape Vector

Depth 1 (simple)

Default Empty

Description

O0L¢ (line counter) allows you to obtain a partial report on operations that

are currently being executed. The function returns a vector of all the line

numbers contained in the state indicator; the numbers are arranged as they

would appear in the) SI system command display (see Chapter 3.) If the state

indicator is empty, [LC returns an empty numeric vector.

The 0LC system function is particularly useful in restarting suspended

operations. For more information, see the VAX APL User’s Guide. For

example:

VNEW

(1] »1 ¥

NEW aCALL FUNCTION, THEN SEND ATTENTION SIGNAL

18 ATTENTION SIGNALED

NEW[1] -1

A

OLC

2-106 APL Reference Manual

System Variables and Functions

[0 LC Line Counter

Possible Errors Generated

None.

APL Reference Manual 2-107

System Variables and Functions

[1LX Latent Expression

] L X Latent Expression

Type

System Variable

Form

O0LX < character-vector

current-value < [QLX

Value Domain

Type Character

Shape Vector domain

Depth 0 or 1 (simple)

Default H

Result Domain

Type Character

Rank 1

Shape Vector

Depth 1 (simple)

Description

[0 LX specifies an APL expression that is executed automatically when the

workspace is loaded.

The value you assign to 0 LX must be a character vector. The default value is

' 1. APL processes the expression as if you had specified « 0LX. Any error

messages you receive are produced by the execute function.

The OLX system variable is useful in restarting a suspended operation. For

example:

OLX<«"->[JLC"

0LX is also useful for invoking a particular user-defined operation (see the

VAX APL User’s Guide) when you load the workspace. For example:

OLX<«' STARTUP'

2—-108 APL Reference Manual

System Variables and Functions

[1LX Latent Expression

The 0 LX system variable is often used to display a message when the

workspace in which it is defined is loaded. For example:

OLX<'''NOTE NEW LINE PRINTER IN OPERATION'''

)SAVE MYWS

FRIDAY 16-NOV-1990 10:09:27:02 7 BLKS

)CLEAR

CLEAR WS

)LOAD MYWS

SAVED FRIDAY 10-NOV-1990 10:09:27.02 7 BLKS

NOTE NEW LINE PRINTER IN OPERATION

When you want to load a workspace without invoking 0 LX, you can use the

) XLOAD command (see Chapter 3) if you are the owner of the workspace.

APL executes [1LX only in immediate mode and only when the state indicator

stack is either empty or has a suspended operation on top. If the top of the

stack contains a [J input function, the latent expression is executed only after

the pendent [J input is removed from the stack. The latent expression is not

executed if the top of the stack contains an execute function, or if the loaded

workspace is in function-definition mode. For example:

)LOAD MYWS

SAVED THURSDAY 8-NOV-1990 19:42:58.52 15 BLKS

V F

[1] A+«1

(2] X«[XQ') SAVE MYWS'

(3] 'X IS ';X

(4] "END OF F' V

F

X IS THURSDAY 8-NOV-1990 17:01:59.54 16 BLKS

END OF F

)CLEAR

CLEAR WS

JLOAD MYWS

X IS SAVED THURSDAY 8-NOV-1990 17:01:59.54 16 BLKS

END OF F

In this example, the note about the new line printer is not displayed when the

workspace is loaded because the workspace was saved during the execution of

an [JXQ system function; thus, the 0x@ function is at the top of the stack when

the workspace is reloaded, and APL completes the 1 xQ function rather than

executing the latent expression.

APL Reference Manual 2-109

System Variables and Functions

[1LX Latent Expression

If you were to save the workspace after execution of the function F completed,

the latent expression would be executed the next time the workspace was

loaded:

)SAVE MYWS

FRIDAY 16-NOV-1990 10:43:59.54 8 BLKS

)CLEAR

CLEAR WS

YLOAD MYWS

SAVED FRIDAY 16-NOV-1990 10:43:59.54 8 BLKS

NOTE NEW LINE PRINTER IN OPERATION

Note that when the function F was executed, the value of X displayed by

operation line [3] was equivalent to the message displayed by the) S4VE

system command:

X IS MONDAY 27-SEP-1982 18:07:42,02 8 BLKS

However, when the execution of function ¥ was resumed because the saved

workspace was loaded by a) L0AD command, the value of X displayed by

operation line [3] was equivalent to the message displayed by the)L0o4D

command:

X IS SAVED MONDAY 27-SEP-1982 18:07:42.02 8 BLKS

Thus, as shown by this example, it is possible to determine whether the

workspace has just been saved or has just been loaded.

The value of JLX is saved when you save the active workspace and can be

localized in user-defined operations.

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

15 DOMAIN EFRROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN FRROR (INCORRECT TYPE)

2-110 APL Reference Manual

System Variables and Functions

OMAP Defining External Routines to APL

[1MA P Defining External Routines to APL

Type

System Function

Form

external-routine-definition < [IMAP function-name

function-name « function-header OMAP image-definition

Monadic Argument Domain

Type Character

Shape Vector domain

Depth 0 or 1 (simple)

Dyadic Left Argument Domain

Type Character

Shape Vector domain

Depth 0 or 1 (simple)

Dyadic Right Argument Domain

Type Character

Shape Vector domain

Depth 0 or 1 (simple)

Result Domain

Type Character

Rank 1

Shape Vector

Depth 1 (simple)

APL Reference Manual 2-111

System Variables and Functions

0 MAP Defining External Routines to APL

Parameters

external-routine-definition

The operation header returned by the monadic form of OMAP. This is the

same header that dyadic OMAP uses when you successfully define the external

routine to APL.

function-name

Specifies the name of the external routine. For dyadic OMAP, if both function-

header and image-definition are empty, and are in the vector domain, then

the result i1s an empty vector. For monadic OMAP, if function-name is empty,

the result is an empty character vector. If the value of function-name does

not name an external routine, APL signals DOMAIN ERROR (NOT AN EXTERNAL

FUNCTION).

function-header

Describes the external routine. function-header has the following form:

[result/att«<]| entry-point [arg1/att [arg2/atf] . . .]

result[att specifies that the external function returns a result. Note that the

result must be a scalar. (If you want to return data that has a rank greater

than 0, you can modify a formal parameter with the external routine.) The

/att qualifier specifies the type of the result. It has the form /7Y PE: vms-data-

type, and must be one of the external data types in the Table 2-7 (excluding

JTYPE:7).

Do not specify the /MECHANISM attribute for the result of an external routine;

APL determines the mechanism by the value specified for /TYPE. Table 2—7

describes these default mechanisms.

If the result type occupies 8 bytes or less, APL assumes the mechanism is

IMMEDIATE. If the result type occupies more than 8 bytes, APL assumes the

mechanism is DESCRIPTOR for strings and REFERENCE for all others. entry-

point is the name that you want APL to associate with the shared image

entry point specified in image-definition. After you define entry-point, you

can call the external routine as if it were a user-defined operation. Note that

entry-point has a name class value of 3.

Dyadic OMAP signals DOMAIN ERROR (NAME IN USE) if entry-point is the same

name as an existing label, variable, or group, or if it is the same name as an

existing operation that is pendent or suspended. If an operation already exists

in your workspace with the same name, and it is not pendent or suspended,

[OMAP replaces it.

2-112 APL Reference Manual

System Variables and Functions

[0MAP Defining External Routines to APL

argn specifies the names of the function’s formal parameters. These names

are similar to the dummy arguments of a user-defined operation; they are

placeholders only, and you specify the actual values for these parameters when

you invoke the function.

The maximum number of formal parameters you can specify is 255 (including

result). The names must be valid APL identifiers; they do not have to be

unique. An external function can only be monadic or niladic; all of the formal

parameters belong to the function’s right argument. /aft determines the

attributes for each of the formal parameters and for the external routine’s

result. For parameters, the attributes specify the kind of access that the

external routine has to the parameter (either read, write, or both), the data

type of the parameter, and the passing mechanism used to send the parameter

between APL and the external routine. Valid qualifiers for /att include

JACCESS, /TYPE and /MECHANISM.

image-definition

The name of a shared image (in the form of a VMS file name or logical name)

and its entry point. If you use a logical name you cannot change the name once

the shared image is mapped by APL. image-definition has the following form:

{vms-filename | vms-logical-name} [{/ENTRY | /VALUE} [[:symbol]]

vms-filename or vms-logical-name specifies the name of the VMS shared

image. If you do not use a logical name, you can only specify a file name,

not a complete file specification. The default directory for vms-filename is

SYS$SHARE:, and the default file type is .EXE. If you use vms-logical-name,

you should not redefine the logical name to point to a different file once the

shared image is mapped.

Note that you can use the equal sign delimiter (=) in place of the colon (:).

Spaces are allowed before and after the /ENTRY or /VALUE qualifier, the

delimiter, and the value for symbol.

Qualifiers

/ENTRY[[:symbol]

Used with dyadic OMAP, specifies the name of the entry point in the shared

image. An entry point is the starting address of executable code. If you

do not specify /ENTRY, or if you specify /ENTRY with no value for symbol,

APL assumes that the name of the entry point is the same as the value for

function-name.

APL Reference Manual 2-113

System Variables and Functions

[DMAP Defining External Routines to APL

/VALUE[[:symbol]

Used with dyadic OMAP, specifies the name of a global constant in the shared

image. A global constant is a 32-bit signed longword value. When you specify

/VALUE, then function-header must specify a niladic function that returns

a value with a return type of I (for example, 'Z/TYP:L«+ F'). If /VALUE is

specified when there is no value for symbol, APL assumes that the name of the

global constant is the same as the value for function-name.

JACCESS

Specifies whether the parameter is read only or modifiable. The value I¥

indicates that the external routine reads the parameter and does not modify

its value. The value INOUT indicates that the routine reads the parameter and

may modify it. The value O0UT indicates that the routine writes a value to the

parameter.

When you specify INOUT or 0UT, the actual parameter that you specify when

you invoke the function must be a character string that names the variable

that the routine will read (in the case of I¥0UT) and write. If the variable does

not have a value when you call the external routine, APL assumes the variable

is a scalar and will accept a scalar only when the value is returned.

If you do not specify a value for /ACCESS, APL uses the IN value as the

default. You cannot specify the /ACCESS attribute for the result of an external

routine; by definition the access is always 0UT.

Note that you can abbreviate the values for /ACCESS to their shortest unique

prefixes.

/TYPE

Specifies the attribute for both the formal parameters and the result (if any).

It is one of the external types shown in Table 6-1 in the VAX APL User’s Guide.

On a formal parameter, /TYPE specifies the VAX data type that the external

routine is expecting. On the result, /TYPE specifies the VAX data type that

will be returned. Data internal to APL has one of the following types:

* Character data in the APL character set (8-bits per value)

* Boolean data, a subset of numeric data (1-bit per value)

* Integer data, a subset of numeric data (32-bits, signed, per value)

* Floating-point, a subset of numeric data (64-bits, D_floating, per value)

Because VMS supports many more data types than APL, conversions will take

place as data leaves and returns to APL from the external routine. Tables 6-2

and 6-3 in the VAX APL User’s Guide summarize these possible conversions.

2-114 APL Reference Manual

System Variables and Functions

O MAP Defining External Routines to APL

The default data type is /TYPE: Z (unspecified), which indicates that data 1is

passed out of the workspace without conversion. Data that is passed out of

APL as /TYPE:Z cannot return to APL; for this reason, a formal parameter

with the attribute /TYPE: Z must also have the attribute /ACCESS: IN.

Note that you cannot abbreviate any of the values to the /TYPE qualifier.

Table 2-7 Characteristics of External Data Types

External Type DEFAULT result Length

Type Name /MECHANISM in Bytes

Z Unspecified N/S

BU Byte Logical IMM 1

wu Word Logical IMM 2

LU Longword Logical IMM 4

QU Quadword Logical N/S

Oou Octaword Logical N/S

B Byte Integer IMM 1

W Word Integer IMM 2

L Longword Integer IMM 4

Q Quadword Integer N/S

O Octaword Integer N/S

F F_floating IMM 4

D D_floating IMM 8

G G_floating IMM 8

H H_floating REF 16

FC F complex IMM 8

DC D complex REF 16

GC G complex REF 16

HC H complex REF 32

Key to Default result /MECHANISM

N/S—not supported

IMM—by value

REF—by reference
DES—by description

(continued on next page)

APL Reference Manual 2-115

System Variables and Functions

[0 MAP Defining External Routines to APL

Table 2—-7 (Cont.) Characteristics of External Data Types

External Type DEFAULT result Length

Type Name /MECHANISM in Bytes

CIT COBOL Temp N/S

T 8-bit Text DES 1

VT Varying Text REF 1

NU Numeric String DES 1

NL Left Sign String DES 1

NLO Left Overpunch DES 1

String

NR Right Sign String DES 1

NRO Right Overpunch DES 1

String

NZ Zoned Sign String DES 1

P Packed Decimal N/S

\% Bit IMM 1

vuU Bit Unaligned N/S

Z1 Instructions N/S

ZEM Entry Mask N/S

DSC Descriptor N/S

BPV Bound Procedure N/S

BLV Bound Label N/S

ADT Date/Time N/S

other DEC or user reserved N/S

Key to Default result /MECHANISM

N/S—not supported

IMM—by value

REF—Dby reference

DES—Dby description

/MECHANISM

Specifies one of the three techniques for passing formal parameters from APL

to the external routine. These techniques are IMMEDIATE, REFERENCE, and

DESCRIPTOR. IMMEDIATE specifies that the value of the parameter is the value

you want to pass. REFERENCE specifies that the value of the parameter is the

2-116 APL Reference Manual

System Variables and Functions

[0 MAP Defining External Routines to APL

address of the value you want to pass. DESCRIPTOR specifies that the value

is the address of a descriptor that contains the address and length of the data

as well as other attributes (if the descriptor requires them). Note that the

descriptor length field contains the length of the object.

If you do not specify the /MECHANISM attribute when you invoke

dyadic JM¥4P, APL uses a default when you call the external routine.

If the parameter i1s /TYPE: Z, APL assumes /MECHANISM:REFERENCE.

Otherwise, the default is based on the rank of the actual argument being

passed: /MECHANISM:REFERENCE is chosen for scalars and vectors, and

/MECHANISM:DESCRIPTOR is used for arrays of rank 2 or higher.

When you specify /MECHANISM: IMMEDIATE, the formal parameter must be

a scalar; if the internal length of the actual value that you specify when you

invoke the external function is greater than 4 bytes, APL signals LENGTH

FRROR.

When you specify /MECHANISM:DESCRIPTOR, APL uses string descriptors

(CLASS_S) for the vector domain, and array descriptors (CLASS_A with a

multipliers block) for arrays of rank 2 or greater. (The type of the value being

passed does not affect the choice of descriptor.) For more information on

descriptors, see the Introduction to VMS System Routines.

Note that you can abbreviate the values for /MECHANISM to their shortest

unique prefixes.

Description

Dyadic OMAP defines an external routine to APL. Once a routine is defined in

a workspace, the workspace can be saved, loaded, or copied, and the definition

for the routine remains intact.

The monadic O MAP system function returns an operation header that provides

information on the current definition associated with an external routine.

APL returns an operation header (external-routine-definition). This is the

same header that dyadic ¥4P uses when you successfully define the external

routine to APL. The header’s form is as follows:

[result/att < function-name/info [[arg1/att arg2/att ...]

function-name shows the name that APL currently associates with the external

routine.

/info shows the name and entry point of the shared image that contains the

external routine. The shared image name is preceded by /IMAGE:, and the

entry point name is preceded by /ENTRY:. If the external symbol defines a

APL Reference Manual 2-117

System Variables and Functions

[0 MAP Defining External Routines to APL

global constant instead of an entry point, then the symbol name is preceded by

/VALUE:.

argn/att ... shows the names and attributes of the external routine’s formal

parameters. The attributes describe the settings for /ACCESS, /TYPE, and

/MECHANISM that APL associates with each formal parameter. If you did not

specify a value for any of the attributes when you defined the external routine,

monadic [JMAP reports the following default selections: /ACCESS:IN, /TYPE: Z,

and /MECHANISM:UNSPECIFIED (APL does not choose a default mechanism

until you call the external routine).

result[att shows the name and attributes of the result that is returned by

the external routine if there is one. the attributes describe the settings for

the following: /TYPE, which you defined with dyadic OMAP; and /MECHANISM,

which APL determines based on the value for /TYPE. Monadic JM¥AP does

not report the /ACCESS attribute, which is assumed to be /ACCESS:0UT by

definition.

If the routine does not return a result, then monadic 0 M4P does not report a

value for result/att.

The result of monadic JM¥AP contains one blank before each formal parameter,

and one blank following the <« symbol (unless the function has no result).

Both monadic and dyadic OMXAP are described in Chapter 6 of the VAX APL

User’s Guide.

Possible Errors Generated

Dyadic Form

9 RANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH ERROR (ILLEGAL EMPTY ARGUMENT)

15 DOMAIN ERROR (ENCLOSED HETEROGENEOUS ARRAY NOT ALLOWED)

15 DOMAIN ERROR (EFRROR ACTIVATING IMAGE)

15 DOMAIN FRROR (EXTRANFEOUS CHARACTERS AFTER COMMAND)

15 DOMAIN ERROR (FUNCTION NAME MISSING)

15 DOMAIN ERROR (ILL FORMED NAME)

15 DOMAIN ERROR (INCORRECT TYPE)

2-118 APL Reference Manual

15

15

15

15

15

15

27

System Variables and Functions

[1MAP Defining External Routines to APL

DOMAIN EFRROR (INCORRECT PARAMFETER)

DOMAIN ERROR (INVALID FILFE SPECIFICATION)

DOMAIN ERROR (KEY NOT FOUND IN TREE)

DOMAIN ERROR (NAME IN USE)

DOMAIN ERROR (OPERATION SUSPENDED OR PENDENT)

DOMAIN ERROR (WILDCARDS NOT ALLOWED IN FILE SPEC)

LIMIT ERROR (ARGUMENT TOO LONG)

Monadic Form

9 RANK ERROR (NOT VECTOR DOMAIN)

15

15

15

15

DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

DOMAIN ERROR (EXTRANEOUS CHARACTERS AFTER COMMAND)

DOMAIN FRROR (INCORRECT TYPE)

DOMAIN ERROR (NOT AN EXTEFRNAL FUNCTION)

APL Reference Manual 2-119

System Variables and Functions

0 MBX Mailbox System Function

[1 MBX Mailbox System Function

Type

System Function

Form

mailbox-info < OMBX chans

Argument Domain

Type Near-integer

Shape Vector domain

Depth 0 or 1 (simple)

Value ~ 999 through 399 (but not 0)

Result Domain

Type Integer

Rank 1 or 2

Shape Vector or matrix (n by 3)

Depth 1 (simple)

Description

OMBX returns information on the status of mailboxes. For each channel

specified, O MBX returns a row of three elements denoting (from left to right):

* The physical device number assigned to the mailbox (or 0 if the mailbox is

remote, and ~ 1 if the channel is not associated with a mailbox).

* The Process IDentification number (PID, returned by OUL) of the last user

to receive a message you sent to the mailbox (or ~ 1 if no messages have

been sent).

* The PID of the last user from which you received a message in the mailbox

(or ~ 1 if no messages have been received).

The result is a matrix (or a vector if the argument is a singleton) with the

shape n by 3, where n is the length of the argument.

2-120 APL Reference Manual

System Variables and Functions

0 MBX Mailbox System Function

To return a value for JM¥BX, APL must open the mailbox if it is not already

open. (For a list of commands that open files, see the VAX APL User’s Guide.)

For channel numbers represented in the argument by positive integers, APL

opens the mailbox for input; for channel numbers represented by negative

integers, APL opens the mailbox for output. Note that whether a mailbox 1is

opened for input or output is not significant, because APL treats mailboxes like

terminals: it allows both input and output at the same time, even in sequential

modes. |

OMBX is described in the VAX APL User’s Guide along with other file I/0O

information.

Possible Errors Generated

9 RANK FRROR (NOT VECTOR DOMAIN)

15 DOMAIN FRROR (ENCLOSED HETEROGENEOUS ARRAY NOT ALLOWED)

15 DOMAIN ERROR (NOT AN INTEGER)

15 DOMAIN ERROR (INVALID CHANNEL NUMBER)

27 LIMIT ERROR (INTEGER TOO LARGE)

APL Reference Manual 2-121

System Variables and Functions

OMONITOR Gathering Data on Operations

LIMON I TOR Gathering Data on Operations

Type

System Function

Form

success [fatlure < line-numbers QMONITOR operation-names

monitor-database « [1MONITOR operation-name

Left Argument Domain

Type Near-integer

Shape Vector domain

Depth 0 or 1 (simple)

Right Argument Domain

Type Character

Rank 1 0r?2

Shape Matrix domain

Depth 0 or 1 (simple)

Result Domain

Type Integer (dyadic) or Boolean (monadic)

Shape Vector or matrix (n by 3)

Depth 1 (simple)

Description

OMONITOR 1s a debugging tool that allows you to gather statistics on an

operation. These include the following:

* The execution count, or the number of times an operation or operation line

1s invoked while JMONITOR is enabled. The possible range is 0 to ~ 1 +

2%31.

2-122 APL Reference Manual

System Variables and Functions

[0MONITOR Gathering Data on Operations

* The accumulated CPU time charged to an operation or operation line while

O0MONITOR is enabled. The possible range is 0 to ~ 1 + 2x31 milliseconds

(about 24.5 days).

If either of these statistics overflows its range, its value is reset to 0, and the

data collection continues.

Once JMONITOR is enabled, APL collects data from the moment the operation

(or operation line) receives control to the moment it relinquishes control. APL

increments the execution count each time the control is relinquished and

registers the accumulated CPU time from the beginning moment to the ending

moment. If the operation (or operation line) calls another operation, the result

includes the time required to execute this second operation.

You can view a monitored operation with the)EDIT command, but if you

modify the operation with YEDIT, O0FX, or OMAP, you will disable JMONITOR

and lose any collected data. If you view the operation with the Ao editor, you

can change the contents of individual lines without affecting the status of

OMONITOR. Note that you cannot add or delete lines or modify the header of a

monitored operation with the A editor.

The dyadic form of O¥ONITOR enables and disables monitoring of an operation.

The form used is as follows:

success/failure <line-numbers OMONITOR operation-names

The right argument identifies the user-defined operations you want to monitor.

It belongs to the character matrix domain, and each row specifies one operation

name. The operations must be user-defined, and they must be unlocked. You

can also monitor line O of external functions (this has the same meaning as

monitoring line 0 of a user-defined operation). When the same operation name

applies to more than one operation in the workspace, APL monitors the most

local one.

The left argument identifies the lines you want to monitor. It belongs to

the near-integer vector domain. The line numbers can be in any order. APL

1gnores negative line numbers, repeated line numbers, and line numbers that

do not appear in the operation. If the left argument contains a 0, APL monitors

the entire operation.

APL Reference Manual 2-123

System Variables and Functions

OMONITOR Gathering Data on Operations

2-124

The result of dyadic JMONITOR is a Boolean vector. Each position in the vector

corresponds to a row of the right argument. A 1 means that the attempt to

enable [MONITOR was successful, and a 0 means the attempt was unsuccessful.

If the right argument is empty, the result is also empty. For example:

PHASEONE < [BOX 'FOO

DOUBLE

MOVE

SPREAD

FINAL'

(150) [UMONITOR PHASEONE A PARENTHESES REQUIRED

0000¢0 -

To disable OMONITOR, use the dyadic form with an empty left argument, as

follows:

(10) OMONITOR '"DESIGN'

1

[JMONITOR on an operation that is already being monitored, APL reinitializes

any previously collected data. If you want to use this data before losing it, you

must retrieve it with the monadic form of OMONITOR before you reset it with

the dyadic form.

monitor-database +~ OMONITOR operation-name

The monadic form of DMONITOR queries for any collected data. The argument

must be in the character matrix domain, and must have at most one row; you

must query for JMONITOR information one operation at a time. Note that the

operation must be unlocked and user-defined.

Monadic I1MONITOR returns an n by 3 numeric matrix, where n is the number

of monitored lines. Each row of the matrix contains the current data for each

line since [IMONITOR was enabled. The result is formatted as follows:

line-number execution-count cpu-time-in-milliseconds

For example:

OMONITOR 'F0O'

1 1 20

2 5 104

3 5 96

4 1 20

APL Reference Manual

System Variables and Functions

O0MONITOR Gathering Data on Operations

The result is an empty 0 by 3 matrix in the following five instances:

* The right argument is empty

* The right argument does not specify an operation name

* The operation does not exist

* The operation is locked

* The operation is not being monitored

Possible Errors Generated

The Dyadic Form

9 RANK FRROR (NOT MATRIX DOMAIN)

9 RANK FRROR (NOT VECTOR DOMAIN)

15 DOMAIN FRROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN FRROR (INCORRECT TYPE)

15 DOMAIN FRROR (NOT AN INTEGER)

27 LIMIT FRROR (INTEGER TOO LARGE)

Monadic Form

9 RANK ERROR (NOT MATRIX DOMAIN)

10 LENGTH FRROR

15 DOMAIN ERROR (ENCLOSFED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

APL Reference Manual 2-125

System Variables and Functions

00 NC Returning a Name Classification

[1 N C Returning a Name Classification

Type

Monadic System Function

Form

name-class-list « ONC name-list

Argument Domain

Type Character

Shape Matrix domain

Depth 0 or 1 (simple)

Result Domain

Type Integer

Rank 1

Shape 1 4+ p name-list

Depth 1 (simple)

Description

ONC responds with the name class of each APL object that you specify in the

argument. APL objects include user-defined objects, system variables, and

system functions. Each row of the argument must contain the name of one

object.

The result has a length equal to the number of rows in the argument. If the

argument to O NC is empty, the result is 1 0.

2-126 APL Reference Manual

System Variables and Functions

0 NC Returning a Name Classification

The possible name classes and values returned by ONC are as follows:

ONC Name Classes and Values

Value Name Class

0 Derived function

Niladic system function

Group

System variable

Il1l-formed identifier

Name not in use

Label

Variable

User-defined function

2

5

Ly

3 Monadic, Dyadic, or Ambivalent system function

2

1

£

w

N

=

O

User-defined operator

Examples:

JFNS

AVER MEAN

) VARS

A B C TOT

ONC TAVER'

3

aNec 'c!

2

ONc 'ONc!

3

ONC 5 Lp'A ToT IO MEANB '

22 20 1

APL Reference Manual 2-127

System Variables and Functions

N C Returning a Name Classification

Note that ONC returns the current local rather than global name classification

of the object. For example:

RF IS A FUNCTION AND A VARIABLE

VF;F

[1] F«<1 o [BRFAK 'STOP F' ¥

ONC 'F' aTHIS QUERY RETURNS THAT F IS A FUNCTION

3

F REXECUTE F, WHICH GETS SUSPENDED

STOP F

ONC 'F! aNOW THE MOST LOCAL F IS A VARIABLE

2

Possible Errors Generated

2-128

9 RANK ERROR (NOT MATRIX DOMAIN)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN EFRROR (INCORRECT TYPE)

APL Reference Manual

System Variables and Functions

ONG Print High Minus

[] NG Print High Minus

Type

System Variable

Form

ONG <« near-integer-singleton

integer-scalar < NG

Value Domain

Type Near-Integer

Shape Singleton

Depth 0 or 1 (simple)

Value 0,1,0r?2

Default 1 (high minus sign)

Result Domain

Type Integer

Rank 0

Shape 1 0 (scalar)

Depth 0 (simple scalar)

Description

ONG controls the output representation of the APL negative sign, the high

minus (). ONG affects the primitive functions monadic and dyadic format and

the system functions O0F71, O0VI, and OFMT. The following table describes the

display of the minus sign for each of the possible values for ONG.

Value Meaning in APL Output

0 The minus sign (-) is used as the negative sign.

1 The higH minus sign =~ (NG in TTY mode) is used as the negative
sign.

2 The ASCII minus sign (-) is used as the negative sign.

APL Reference Manual 2-129

System Variables and Functions

O0NG Print High Minus

When [0NG = 2, negative numbers are preceded by an APL "+" symbol when

formatted by * and OFMT. Because APL "+" prints as an ASCII "-", you can use

[0NG = 2 to handle negative numbers in strings that will be read or written in

ASCII. Note that 0FI and (0 VI recognize negative numbers that are preceded

by an APL "+" symbol as negative numbers.

The value of NG is saved when you save the active workspace, and JNG can

be localized in user-defined operations.

Possible Errors Generated

9 RANK FRROR (NOT VECTOR DOMAIN)

10

15

15

15

15

27

LENGTH ERROR (NOT SINGLETON)

DOMAIN FRROR (ENCLOSED ARRAY NOT ALLOWED)

DOMAIN ERROR (INCORRECT TYPE)

DOMAIN ERROR (NOT AN INTEGER)

DOMAIN ERROR (PARAMETER OUT OF RANGE)

LIMIT FRROR (INTEGER TOO LARGE)

2-130 APL Reference Manual

System Variables and Functions

[0 NL Constructing a List of Names

[] NL Constructing a List of Names

Type

Ambivalent System Function

Form

name-list <« [I1NL name-classes

name-list < letter-list (1NL name-classes

Left Argument Domain

Type Character

Shape Vector domain

Depth 0 or 1 (simple)

Right Argument Domain

Type Near-integer

Shape Vector domain

Depth 0 or 1 (simple)

Result Domain

Type Character

Rank 2

Shape Matrix

Depth 1 (simple)

Description

NI lists the names of all existing APL objects belonging to the name classes

specified in the argument. APL objects include user-defined objects, system

variables, and system functions.

APL Reference Manual 2-131

System Variables and Functions

O NL Constructing a List of Names

The right argument specifies one or more name classes. The possible values for

the right argument and the classes those values represent are as follows:

Value Names Returned

-5 Niladic system functions

Ty Groups

~ 3 Monadic, dyadic, and ambivalent system functions

T2 System variables

Labels

User-defined variables

1

2

3 User-defined functions

L User-defined operators

Note that ONL returns the current local name of an object rather than the

global name. For example:

VE, F RF IS A FUNCTION (3) AND A VARIABLE (2)

[1] F<«1 o [BREAK 'STOP F' V

ONL 3 ATHIS QUERY RETURNS THAT F IS A FUNCTION

F

F REXECUTE F, WHICH GETS SUSPENDED

STOP F

ONL 2 aNOW THE MOST LOCAL F IS A VARIABLE

F

ONL 3 AaTHE FUNCTION F IS NO LONGER LISTED

(APL outputs a blank line.)

The result of ONL is a character matrix. If the right argument is empty, or if

there are no objects belonging to the specified name class, the result is 0 0 p

'+, Otherwise, each row contains the name of one object. All rows have the

same number of columns; NI pads the ends of the shorter names with blanks.

APL returns the objects of each name class in AV order. When the right

argument specifies more than one name class, APL catenates the alphabetical

lists without merging them together. The order of the lists is as follows:

* Niladic system functions

* DMonadic, dyadic, and ambivalent system functions

* System variables

® User-defined names

2-132 APL Reference Manual

System Variables and Functions

O NL Constructing a List of Names

The dyadic form of ONL allows you to restrict the name list to names beginning

with the characters in the left argument. For example, the following constructs

a name list of function names whose initial letters are 4 through F:

NLIST<« "ABCDEF' [INL 3

The left argument of ONL, if used, must be a character array whose shape

is in the vector domain. The order of the characters does not affect the DAV

order of the result. APL ignores the left argument if it is empty. Note that

the first character of a system function or system variable is the 0 symbol; if

you use the dyadic form of ONL and specify either 5, ~ 3, or ~ 2 in the right

argument, APL ignores the [as it searches for the names beginning with the

letters contained in the left argument.

The following example shows the construction of a matrix containing the

names of variables in the active workspace that begin with the letter V:

NLIST«'V' ONL 2

NLIST

VAR1

VAR?

VAR203

VBMAX

The ONL system function is useful for a variety of purposes. For example:

e [JNL can interact with (1 CR to create functions that automatically display

the definitions of some or all the functions in the workspace.

e With OFEX, ONL can dynamically erase all the named objects in a certain

category. You can also use ONL to design a function that will clear a

workspace of all but a preselected collection of named objects.

e In its dyadic form, ONL can guide you in choosing names while you develop

or interact with a workspace.

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN ERROR (NOT A LETTER)

15 DOMAIN ERROR (NOT AN INTEGER)

APL Reference Manual 2-133

System Variables and Functions

ONL Constructing a List of Names

15 DOMAIN ERROR (PARAMETER OUT OF RANGE)

27 LIMIT ERROR (INTEGER TOO LARGE)

2-134 APL Reference Manual

System Variables and Functions

[0 NUM Digits

[NUM Digits

Type

Niladic System Function

Form

'0123u456789"'< [QNUM

Result Domain

Type Character

Rank 1

Shape 10

Depth 1 (simple)

Description

[INUM is a subset of 1AV. ONUM returns a vector of the 10 digits 0123456789,

or, expressed in terms of JAV:

OAVIu48+110]

For example:

ONUM

0123456789

HI0+0

O0AVONUM

48 49 50 51 52 53 54 55 56 57

Possible Errors Generated

None.

APL Reference Manual 2-135

System Variables and Functions
[0 OM Indexing a Boolean Vector

[1 OM Indexing a Boolean Vector

Type

Monadic System Function

Form

indexes < [10M near-Boolean

Right Argument Domain

Type Near-Boolean

Shape Vector domain

Depth 0 or 1 (simple)

Result Domain

Type Integer

Rank 1

Shape +/near-Boolean

Depth 1 (simple)

Implicit Arguments

010 (0oM B when 010 « 1 is identical

to1+ JOMB when [JIO « 0

Description

0 oM produces indexes showing the locations of the 1s in a Boolean vector. If
the argument is empty, the result is 1 0. For example:

MERZ <« 00 0101110010

OM MERZ

46 7 8 11

A « '"THE QUICK BROWN FOX'

oM 4 = ' !

4 10 16

Note that the following definition applies: JOM 4 <~ A4/1p .4

2-136 APL Reference Manual

System Variables and Functions

[0 oM Indexing a Boolean Vector

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

15 DOMAIN ERROR

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

APL Reference Manual 2-137

System Variables and Functions

00 PACK Packing and Unpacking Data

L] PA CK Packing and Unpacking Data

Type

success [fail < data-packets 0 PACK variable-names

Monadic Argument Domain

Type Character

Shape Matrix domain

Depth 0 or 1 (simple)

Monadic Result Domain

Type Integer

Rank 1

Shape Vector

Depth 1 (simple)

Dyadic Left Argument Domain

Type Near-integer

Shape Vector

Depth 1 (simple)

Dyadic Right Argument Domain

Type Character

Shape Matrix domain

Depth 0 or 1 (simple)

Dyadic Result Domain

Type Boolean

Rank 1

Shape Vector

Depth 1 (simple)

2-138 APL Reference Manual

System Variables and Functions

0 PACK Packing and Unpacking Data

Description

0 PACK allows you to pack and unpack data of different types into a single

variable known as a packet. The monadic form packs data, and the dyadic

form unpacks it.

N PrAck differs from [coQ and 0CIQ because it allows you to pack and unpack

variables of different data types with only one invocation of the 1 PACK

function. (Otherwise, to pack variables you invoke [C0Q once for each data

type, and then catenate the results into a single variable; to unpack a variable

you undo the catenation and then invoke [0CIQ once for each data type.)

Unlike 00 ¢c0q, O0PACK does not convert data into different data types before

packing it.

Use monadic [JPACK to pack data. When you specify a single variable,] PACK

creates a []C0Q packet with a header; it does not perform any data type

conversion before creating the packet. When you specify more than one

variable, J PACK creates individual 0 C0¢Q packets for each variable and

combines them in a single logical record.

The argument to the monadic form contains the names of the user-defined

variables you want to pack. If the argument to monadic 0 PACK is empty, then

the result is 1 0.

Use dyadic 0 PACK to unpack data. The left argument must be a vector; it

identifies a packet that was created by monadic [J PACK.

The right argument contains the names you want to assign to the individual

packets as they are unpacked from the left argument. It must have one row

for each individual packet in the left argument. Each name can have a name

class of 0 or 2 (undefined name or user-defined variable). When the name class

is 0, the variable becomes defined. When the name class is 2, APL redefines

the variable. If the right argument contains a blank row, APL does not unpack

the individual packet associated with that row.

The result indicates whether the names contained in the right argument

have been successfully assigned the [¢IQ value of the individual packets. A

0 indicates an unsuccessful assignment (caused by a blank row in the right

argument), and a 1 indicates a successful assignment. Each position in the

result corresponds to a row in the right argument. If the left or right argument

is empty, then the result is 1 0. The header generated by 0 PACK has the

following format:

APL Reference Manual 2-139

System Variables and Functions

[0 PACK Packing and Unpacking Data

length =4 +n

type =1

rank =1

n

start of 0°°9 packets

end of 0°°9 packets

NU-2235A-RA

Each large box represents a longword. length is the length of the result (an

integer vector) of monadic 1 PACK. type always has a value of 1, indicating

32-bit integers. rank is always 1. n indicates the length of the data section of

the packet. The data section (elements 5 through 5 + n) contains the integer

representations of the individual packets.

The following example shows how the individual packets created by 0 P4ACK

relate to the packets created by 0C1q. Note the use of 1B0X in the right

argument to dyadic 0 PACK; it is used to facilitate the entry of the names of the

individual packets as a character matrix:

A+15

B«2 4 p '"ABCD'

0« 44 <« 4 [JC0qQ 2

911512345

[0 « BB <« B [JC0Q 2
52 2 4 1684234849 1684234849

D<+[JPACK [JBOX 'A
B !

D

201116 9115123457522 4 1684234849 1684234849

0 « N « (pdd) + pBB

16

D= ((N+4), 1 1, N),AA,BB

D [PACK [JBOX '"AAA

2—-140 APL Reference Manual

System Variables and Functions

00 PACK Packing and Unpacking Data

AAA

12345

AAA= 4

BBB

ABCD

ABCD

BBB i e

Possible Errors Generated

9 RANK ERROR (MUST BFE VECTOR)

9 RANK ERROR (NOT MATRIX DOMAIN)

10 LENGTH ERROR (ITEM COUNT MISMATCH)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (ILLEGAL NAME CLASS)

15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN ERROR (INVALID CIQ HEADER)

15 DOMAIN ERROR (INVALID LENGTH IN PACK HEADER)

15 DOMAIN ERROR (INVALID RANK IN PACK HEADER)

15 DOMAIN ERROR (INVALID RHO VECTOR IN PACK HEADER)

15 DOMAIN ERROR (INVALID TYPE IN PACK HEADER)

15 DOMAIN ERROR (NOT AN INTEGER)

27 LIMIT ERROR (INTEGER TOO BIG)

APL Reference Manual 2-141

System Variables and Functions

00 PP Print Precision

[] PP Print Precision

Type

System Variable

Form

00 PP <« digits-of-precision

integer-scalar < [PP

Value Domain

Type Near-integer

Shape Singleton

Depth 0 or 1 (simple)

Value 1 to 16

Default 10

Result Domain

Type Integer

Rank 0

Shape 10

Depth 0 (simple scalar)

Description

[1 PP determines how many significant digits are displayed in APL floating-

point output. It does not affect the display of integers or the precision of

internal calculations. It does affect the conversion of numbers to characters by

the dyadic format function or the display of floating-point constants in JCR and

0 VR.

Legal values for [1 PP are the integers 1 through 16. The default is 10. APL

rounds off numbers that contain more digits than the setting. For example:

2-142 APL Reference Manual

10

System Variables and Functions

[0 PP Print Precision

0PP

123456789.123456789

123456789.1

1.

[OPP<5

123456789.123456789

2346E8

OPP+15

123456789.123456789

123456789.123457

0.

0

OPP+«10

aLEADING ZEROS ARE NOT SIGNIFICANT

aNOTE THAT ROUNDING MAY MAKE RESULT

aHAVE FEWER THAN (PP DIGITS

ed<2 1p1 4 =+ 101

.009900990099

.0396039604

[JPP<«11

A

.009900990099

.039603960396

[JPP+«12

A

009390099009901

.039603960396

The value of 0 PP 1s saved when you save the active workspace and can be

localized in user-defined operations.

Possible Errors Generated

9 RANK FRROR (NOT VECTOR DOMAIN)

10 LENGTH ERROR (NOT SINGLETON)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN FRROR (INCORRECT TYPFE)

15 DOMAIN ERROR (NOT AN INTEGER)

15 DOMAIN ERROR (PARAMETER OUT OF RANGE)

27 LIMIT FRROR (INTEGER TOO LARGE)

APL Reference Manual 2-143

System Variables and Functions

00 PW Print Width

[1 PW Print Width

Type

System Variable

Form

[0 PW < print-posttions

integer-scalar < [PW

Value Domain

Type Near-integer

Shape Singleton

Depth 0 or 1 (simple)

Value 35 to 2048

Default Determined when APL is invoked

Result Domain

Type Integer

Rank 0

Shape 10

Depth 0 (simple scalar)

Description

00 PW specifies the maximum number of characters that can appear on a

terminal output line before a <CR><LF> is performed. [0 P¥ has no effect on

the length of input lines. The default uses the current VMS setting for set

terminal/width=n.

If an output line requires more than 0 PW character positions, printing

continues on succeeding indented lines. For example:

JPW<35

A<'THIS IS A TEST OF THE PRINT WIDTH VARIABLE'

A

THIS IS A TEST OF THE PRINT WIDTH V

ARIABLE

2-144 APL Reference Manual

System Variables and Functions

O PW Print Width

However, if a line in an error message is longer than [JP¥ characters, it is

truncated; it is not continued on the next line. If truncating the line prevents

APL from displaying the particular point in the line at which the error was

discovered, APL cuts off enough characters from the beginning of the line to

allow the part in error to be displayed.

The value of [0 P¥ is saved when you save the active workspace and can be

localized in user-defined operations. When you exit from APL, the original

terminal-width value is restored.

Actually, APL never changes your terminal width; in effect, it overrides the

width by preventing lines from wrapping and then by formatting any output

based on the value of 0 PWw.

Note that if you interrupt your APL session (for example, by executing a) PUSH

command) and then execute an operating system command to change the value

of the terminal width, the value of [J P¥ is not changed when you return to

APL. For example:

)CLEAR

CLEAR WS

[PW aRUPW INITIAL VALUE = SYSTEM TERM WIDTH

80

JPW<65 RCHANGE [JPW TO 65

AINTERRUPT APL SESSION

) PUSH

$SET TERMINAL/WIDTH = 72

$ LOGOUT

Process USER logged out at 16-NOV-1990 13:24:43.11

[PV aQPW NOT CHANGED TO 72

65

If you exit APL via a panic exit, your system terminal width takes effect, but

your terminal retains the APL setting that prevents lines from wrapping,

regardless of the way wrapping was handled before you began your APL

session. If you want lines to wrap, execute the DCL command set terminal

/wrap.

Possible Errors Generated

9 RANK FRROR (NOT VECTOR DOMAIN)

10 LENGTH FRROR (NOT SINGLETON)

15 DOMAIN FRROR (ENCLOSED ARRAY NOT ALLOWED)

APL Reference Manual 2-145

System Variables and Functions

[0 PW Print Width

15

15

15

27

DOMAIN ERROR (INCORRECT TYPF)

DOMAIN ERROR (NOT AN INTEGER)

DOMAIN ERROR (PARAMETER OUT OF RANGE)

LIMIT ERROR (INTEGER TOO LARGE)

2-146 APL Reference Manual

System Variables and Functions

0 Qco Copying Objects from a Workspace

[1 @ CO Copying Objects from a Workspace

Type

Monadic System Function (quiet)

Form

message <~ 1QC0 wsname [object-names]

Argument Domain

Type Character

Shape Vector domain

Depth 0 or 1 (simple)

Result Domain

Type Character

Rank 1

Shape Vector

Depth 1 (simple)

Qualifiers

/PASSWORD [[:pwj

If a workspace is saved with a password, you must specity the password to

copy objects from the workspace.

/CHECK

The optional /CHECK qualifier causes APL to examine the workspace for

possible corruption (damage to the internal structure of the workspace). If

damage is detected, a message is displayed and APL tries to recover as much

information as possible from the workspace and continues the copy. The

recovered workspace may be missing APL variables, user-defined operations,

and other APL objects that were damaged. The user must determine what

named objects have been removed from the workspace.

APL Reference Manual 2-147

System Variables and Functions
0QC0 Copying Objects from a Workspace

Description

0@co (quiet copy) retrieves global objects from a workspace and places them
into your active workspace.

The argument has four parts: the name of the workspace from which you want
to copy the objects, an optional password, an optional qualifier (/ CHECK), and
an optional list of objects to be copied.

Use the list of objects to identify the specific objects you want to copy. If you
omit the list, all global user-defined operations, global variables, and groups
are copied. When you specify the objects, you can use the * and + wildecards.
Note that 0QC0 does not transfer local values for variables, functions, and
operators, nor does it copy the state indicator or system variables like the print

width, index origin, or significant digits settings.

The 0@CO system function performs the same operation as the)copy system
command (see Chapter 3). 1QC0 returns as its result a character vector
containing the usual) COPY command message. However, because JQCO is a
quiet function, if it is the leftmost function in the statement, its result is not
displayed on the terminal unless there is an error (warnings are not displayed).
For example:

)COPY AB CALC

SAVED TUESDAY 6-NOV-1990 17:49:10.1Y4 16 BLKS

) CLEAR

CLEAR WS

0QCO 'AB CALC!

) CLEAR

CLEAR WS |

MSG<0QCO 'AB CALC TOT!

MSG

SAVED TUESSDAY 6-NOV-1990 17:49:10.14 13 BLKS

NOT FOUND: TOT

If your active workspace contains objects with the same names as those in
the copied workspace, 1QC0 replaces the global (but not the local) values in
your active workspace with the copied ones. For example, if B is a variable in

the active workspace with a global value of 10 and a local value of 9, and the
workspace being copied has a variable B with a global value of 20, the active
workspace after 1QC0 executes will have a variable B with a global value of 20
and a local value of 5. A pendent or suspended operation is not replaced, and
an operation being created in the workspace being copied is not copied.

2—-148 APL Reference Manual

System Variables and Functions

0QC0 Copying Objects from a Workspace

When you copy a group, all members of the group are copied along with their

values. However, if a member of a group is itself a group, APL copies only the

group name and not its values. For example, suppose the group GROUP1 has

as members the variables 4 and B, and the group GROUP2. Also suppose that

GROUP?2 has as members the variables ¢ and D. Then, if you copy GROUP1, you

copy the values of 4 and B, but only the name of GROUP2, not the values of C

and D.

If the object list contains objects that are not in the specified workspace, APL

returns the warning message NOT FOUND followed by the names (separated

by tabs) that were not found. The objects that were found are still copied,

however.

Examples:

)CLEAR

CLEAR WS

YCOPY T A B

SAVED TUESDAY 6-NOV-1990 17:51:20.88 13 BLKS

A

1

B

2

C

11 VALUE ERROR

C

A

)CLEAR

CLEAR WS

MSG+<[QCco 'T!

MSG

SAVED TUESDAY 6-NOV-1990 17:51:20.88 13 BLKS

)CLEAR

CLEAR WS

MSG«<QCO 'T A B'

11 VALUE ERROR

C

A

APL Reference Manual 2-149

System Variables and Functions

0 QC0 Copying Objects from a Workspace

)CLEAR

CLEAR WS

JCOPY T A D

SAVED TUESDAY 6-NOV-1990 17:51:20.88 13 BLKS

NOT FOUND: D

A

1

B

11 VALUE ERROR

B

A

)CLEAR

CLEAR WS

MSG«<J@CO 'T A D'

MSG

SAVED TUESDAY 6-NOV-1990 17:51:20.88 13 BLKS

NOT FOUND: D

pMSG

59

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH ERROR (ILLEGAL EMPTY ARGUMENT)

15 DOMAIN FRROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN FRROR (FILFE SPECIFICATION IS MISSING)

15 DOMAIN FRROR (INCORRECT TYPE)

2-150 APL Reference Manual

System Variables and Functions

0 QLD Loading a Workspace

] & LD Loading a Workspace

Type

Monadic System Function (quiet)

Form

QLD wsname

Argument Domain

Type Character

Shape Vector domain

Depth 0 or 1 (simple)

Result Domain

None.

Qualifiers

/ PASSWORD [:pwi]

Specifies the password used when the workspace was saved. If a workspace is

saved with a password, you must specify the password to copy objects from the

workspace.

/CHECK

The optional /CHECK qualifier causes APL to examine the workspace for

possible corruption (damage to the internal structure of the workspace). If

damage is detected, a message is displayed and APL tries to recover as much

information as possible from the workspace and continues the copy. The

recovered workspace may be missing APL variables, user-defined operations,

and other APL objects that were damaged. The user must determine what

named objects have been removed from the workspace. You must use the

) SAVE command if you want to maintain an undamaged version of the

recovered workspace.

APL Reference Manual 2-151

System Variables and Functions

0QLD Loading a Workspace

Description

0QLD (quiet load) makes the specified workspace the active workspace by

replacing the currently active workspace and destroying its contents.

The argument has three parts: the name of the workspace to be loaded,

an optional password, and an optional qualifier (/CHECK). For example, the

following loads a workspace named 4BC, which was saved with the password

JOHN:

OQLD '"ABC/PASSWORD:JOHN'

Note that the 0 QLD system function performs the same operation as the)L0AD

system command (see Chapter 3), but 0QLD does not print messages on the

terminal unless there is an error.

0QLD does not return a result in the usual sense or display a message when it

1s successful, because the context in which QLD was executed is replaced by

the loaded workspace.

If the 0 LX system variable has a value in a workspace, it executes when 0QLD

1s used to load the workspace, except if the top of the state indicator stack

contains an execute function (see the Execute function described in Chapter 1

for details), or if the workspace was saved in function-definition mode (if it was,

you remain in function-definition mode after the workspace is loaded). If the

workspace was saved inside [1 input, the JLX expression is executed only after

the pendent 0 input is removed from the state indicator stack. For example:

A

1

)CLEAR

CLEAR WS

0qQLp '1

YWSID

T

A

1

Possible Errors Generated

9 RANK FRROR (NOT VECTOR DOMAIN)

10 LENGTH FRROR (ILLFGAL EMPTY ARGUMENT)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

2-152 APL Reference Manual

System Yariables and Functions

0 QLD Loading a Workspace

15 DOMAIN ERROR (FILE SPECIFICATION IS MISSING)

15 DOMAIN ERROR (INCORRECT TYPFE)

APL Reference Manual 2-153

System Variables and Functions

0 QPC Copying Objects with Protection

[1 & PC Copying Objects with Protection

Type

Form

Monadic System Function (quiet)

message «~ [1QPC wsname [lobject-names]

Argument Domain

Type Character

Shape Vector domain

Depth 0 or 1 (simple)

Result Domain

Type Character

Rank 1

Shape Vector

Depth 1 (simple)

Qualifiers

/PASSWORD [:pwl

Specifies the password used when the workspace was saved. If a workspace is

saved with a password, you must specify the password to copy objects from the

workspace.

/CHECK

The optional /CHECK qualifier causes APL to examine the workspace for

possible corruption (damage to the internal structure of the workspace). If

damage is detected, a message is displayed and APL tries to recover as much

information as possible from the workspace and continues the copy. The

recovered workspace may be missing APL variables, user-defined operations,

and other APL objects that were damaged. The user must determine what

named objects have been removed from the workspace. You must use the

) SAVE command if you want to maintain an undamaged version of the

recovered workspace.

2—-154 APL Reference Manual

System Variables and Functions

[0 QPC Copying Objects with Protection

Description

0QPC (quiet copy with protection) is the same as the 0QC0O system function

except that 0QPC does not replace objects in the active workspace with objects

of the same name in the copy workspace. Instead, APL returns the warning

message NOT COPIED followed by the names of objects (separated by tabs) that

were not copied.

As with 01QcC0, the argument for [QPC represents the name of the workspace

from which you want to copy the objects, followed by three optional items: a

password, a qualifier (/CHECK), and a list of objects. When you specify the

objects, you can use the » and + wildcards.

When copying groups, 0 QPC does not copy any members of the group that have

the same name as a name already in the active workspace. If the group name

itself is the same as a group name in the active workspace, APL does not copy

the group name or any members of the group.

If the list to be copied contains an object that is not in the specified workspace,

APL returns the warning message NOT FOUND, followed by the names of the

objects (separated by tabs) that were not found. The objects that were found

are still copied, however.

The 0 QPC system function performs the same operation as the) PCOPY system

command (see Chapter 3). JQPC returns as its result a character vector that

contains the usual) PCOPY command message. However, because 1QCO0 1s a

quiet function, if it is the leftmost function in the statement, the result is not

displayed on the terminal unless there is an error (warning messages are not

displayed).

Examples:

)CLEAR

CLEAR WS

A<20

JPCOPY T

SAVED TUESDAY 6-NOV-1990 17:51:20.88 13 BLKS

NOT COPIED: A

A

20

B

2

¢

3

APL Reference Manual 2-155

System Variables and Functions

0QPC Copying Objects with Protection

)CLEAR

CLEAR WS

A<20

MSG+<JQPC 'T!

MSG

SAVED TUESDAY 6-NOV-1990 17:51:20.88 13 BLKS

NOT COPIED: A

A

20

B

2

C

3

MSG<[JQPC 'T A D'

MSG

SAVED TUESDAY 6-NOV-1990 17:51:20.88 13 BLKS

NOT FOUND: D

NOT COPIED: A

pMSG

74

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH FRROR (ILLFEGAL EMPTY ARGUMENT)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN FRROR (FILE SPECIFICATION IS MISSING)

15 DOMAIN ERROR (INCORRECT TYPE)

2-156 APL Reference Manual

System Variables and Functions

[0 R Monitoring Variable Changes

[] R Monitoring Variable Changes

Type

Form

System Variable

UR < any

old-value <« OR

Value Domain

Type Any

Shape Any

Depth Any

Default i

Result Domain

Type Any

Rank Any

Shape Any

Depth Any

Description

O0R and 0L are system variables that are implicitly used by OWATCH. DWATCH 18

a system function that is used to monitor any changes in one or more variables.

When a change occurs in a monitored variable, APL assigns information to OR

and [L: OR contains the previous value of the changed variable;] L contains

a character vector showing the name of the variable that has changed. APL

assigns this information regardless of whether monitoring is set for signal or

display mode.

Immediately after a OWATCH event occurs, JR and JL contain the new

information resulting from the event. However, this information may change

as an operation continues execution (this is especially true if an error occurs

during an assignment or reference of a variable that is associated with a

watchpoint).

APL Reference Manual 2-157

System Variables and Functions

[1R Monitoring Variable Changes

Both OR and 0L can be localized, explicitly assigned values of any type, and

saved in the workspace.

Note that you cannot include OR or 0L in the right argument to dyadic

OWATCH.

Possible Errors Generated

None.

2-158 APL Reference Manual

System Variables and Functions

ORELEASE Unlocking Shared Records

[JRELEASE Unlocking Shared Records

Type

Monadic System Function (quiet)

Form

10 <« QRELEASE chans

Argument Domain

Type Near-integer

Shape Vector domain

Depth 0 or 1 (simple)

Value ~ 999 through 999 (but not 0)

Result Domain

Type Numeric

Rank 1

Shape 0 (empty)

Depth -1 (simple)

Description

ORELEASE unlocks any locked records in files associated with the channel

numbers specified in the argument. The absolute values of chans represent the

channels associated with the files you want to unlock.

ORELEASE is quiet; it does not return a result if it is the leftmost function

in a statement. When it is not the leftmost function, RELEASE returns an

empty numeric vector. If its argument is empty, IRELEASE has no effect and

its result is an empty vector. Note that APL performs a DRELEASE on all open

files whenever a) MON command is executed.

If you read a record that you do not intend to rewrite, it is a good idea to

unlock it as soon as possible, because other users who try to retrieve it are put

in a wait state until the record becomes available.

NRELEASE is described the VAX APL User’s Guide along with other file I/0

information.

APL Reference Manual 2-159

System Variables and Functions

ORELEASE Unlocking Shared Records

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

15

15

15

27

DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

DOMAIN ERROR (NOT AN INTEGER)

DOMAIN ERROR (INVALID CHANNEL NUMBER)

LIMIT FRROR (INTEGER TOO LARGE)

2-160 APL Reference Manual

System Variables and Functions

[1REP Replication

[RE P Replication

Type

Dyadic System Function

Form

A[OREP B AUREPLK] B

Left Argument Domain

Type Near-integer

Shape domain

Depth or 1 (simple)

Right Argument Domain

Type Any

Shape Any

Depth Any

Result Domain

Type as right argument

Rank 1lfppB

Shape ((K-1)ApB) ,(+/14),K+vpB (for 010 1)

Depth 17 =B

Implicit Arguments

None.

Description

OREP builds arrays by specifying the items to be deleted, preserved, or

duplicated from an existing array, and by indicating where fill items are to be

added in the new array. When items are preserved or deleted, this is known

as compression (the left argument is Boolean). When items are duplicated,

deleted, or filled, this is known as replication (the left argument is integer).

APL Reference Manual 2-161

System Variables and Functions

[0 REP Replication

OREP works the same as the compress and replicate derived functions. The

difference between O REP and the slash operator is that you can use OREP as

an operand to an operator. Operators cannot be used as operands to operators.

OREP applies along the last axis of B unless modified by an explicit axis (X¥) in

brackets. The shape of the result is the same as the original array B except

along the applicable axis (p B) [X]. The shape of that axis becomes the sum of

the absolute value of the items in 4(+/] 4).

The following examples show JREP with the each (") operator. Although

the variables 4 and C are nested in the examples, they conform to the left

argument domain requirement that specifies a simple array. This is because

the each operator reduces the nesting by one level:

O«Ad«(1 0 1) (1 "1 0 2)

t+----- S +

110 1] |1 710 2|

t-—=-- L + .

O0«B<(2 3p16) (4 3p'ABCDEFGHIJKL')

t---=- + +---+

|1 2 3| |ABC|

|4 5 6| |DEF|

tme-- + |GHI|

| JKL|

+---+

aATTEMPT TO USE OPERATOR AS ARG TO

A/"B aAPL EVALUATES AS (4/)"B
15 DOMAIN ERROR (ENCLOSED/HETEROGENEOUS ARRAY NOT ALLOWED)

4/°B AAPL EVALUATES AS (A/)"B
A

A OREP"B AREPLICATE ITEMS OF B USING THE ITEMS OF 4
t---+ +----+

|1 3] |4 CC|

|4 6| |D FF|

t---+ |G II|

| J LL|

t----+

A OREP[2]" B aSECOND AXIS<«~ DEFAULT IN THIS CASE
t---+ +----+%

|1 3] |4 CC|

|4 6| |D FF|

t---+ |G II|

| J LL|

t----+

0«C<(2 "1 0) (1 10 1)
o= t t------- +

12 71 0] |1 10 1|

o= + t------- +

2-162 APL Reference Manual

System Variables and Functions

[] REP Replication

¢ OREP[1] B aUSE [JREP WITH AXIS ARGUMENT

|12 3] |ABC|

|12 3| |DEF|

|00 0| |JKL|

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10

15

15

15

27

28

29

30

30

30

30

30

30

LENGTH FRROR

DOMAIN FRROR (ENCLOSED ARRAY NOT ALLOWED)

DOMAIN ERROR (INCORRECT TYPFE)

DOMAIN ERROR (NOT AN INTEGER)

LIMIT FRROR (INTEGER TOO LARGE)

AXIS RANK ERROR (NOT VECTOR DOMAIN)

AXIS LENGTH ERROR (NOT SINGLETON)

AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

AXIS DOMAIN ERROR (INCORRECT TYPE)

AXIS DOMAIN ERROR (NOT AN INTEGER)

AXTS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

AXTS DOMAIN ERROR (RIGHT ARGUMENT HAS WRONG RANK)

APL Reference Manual 2-163

System Variables and Functions

O RESET Resetting the State Indicator

[l RE'SE T Resetting the State Indicator

Type

Niladic System Function

Form

[1RESET

Result Domain

None.

Description

ORESET clears the state indicator. When the state indicator is clear, no user-

defined operations are suspended, no quad input requests or execute functions
are pending, and the) SI system command (see Chapter 3) does not return a

value.

ORESET does not return a value.

Possible Errors Generated

None.

2-164 APL Reference Manual

System Variables and Functions

0 REWIND Returning Next-Record Pointer to Start of File

[l REWIND Returning Next-Record Pointer to Start of File

Type

Ambivalent System Function (quiet)

Form

10 « OREWIND chans

1 0 <+ key-of-reference QREWIND chans

Monadic Argument Domain

Type Near-integer

Shape Vector domain

Depth 0 or 1 (simple)

Value ~ 999 through 999 (but not 0)

Dyadic Left Argument Domain

Type Near-integer

Shape Singleton

Depth 0 or 1 (simple)

Value o through 255 inclusive

Dyadic Right Argument Domain

Type Near-integer

Shape Singleton

Depth 0 or 1 (simple)

Value ~ 999 through 999 (but not 0)

APL Reference Manual 2-165

System Variables and Functions

[REWIND Returning Next-Record Pointer to Start of File

Result Domain

Type Numeric

Rank 1

Shape 0 (empty)

Depth 1 (simple)

Description

OREWIND allows you to reposition the next record pointer to the first record

of a file without closing the file. The absolute values of chans represent the
channels associated with the files you want to rewind.

With the monadic form, you can specify a vector of channel numbers in the
right argument. This will rewind each of the files associated with the specified

channel numbers. If any of the files have a keyed organization, APL performs
the rewind on the primary key of reference.

Use the dyadic form for keyed files when you want APL to perform the rewind

on a key of reference other than the primary key. The right argument specifies
the channel number associated with the keyed file. The left argument specifies
the key of reference. Zero (0) indicates the primary key, one (1) indicates the
secondary key, and so on. You can specify only one file at a time when you

invoke dyadic QREWIND.

OREWIND is described in the VAX APL User’s Guide along with other file I/O

information.

Possible Errors Generated

Monadic Form

9 RANK ERROR (NOT VECTOR DOMAIN)

15

15

15

15

15

15

DOMAIN ERROR (INCORRECT TYPE)

DOMAIN ERROR (ENCLOSED HETEROGENEOUS ARRAY NOT ALLOWED)

DOMAIN ERROR (INTEGER TOO LARGE)

DOMAIN FRROR (NOT AN INTEGER)

DOMAIN ERROR (INVALID CHANNEL)

DOMAIN ERROR (CHANNEL NOT ASSIGNED)

2-166 APL Reference Manual

15

33

System Variables and Functions

0 REWIND Returning Next-Record Pointer to Start of File

DOMAIN ERROR (FILE IS ASSIGNED WRITE ONLY)

I0 ERROR (INVALID KEY OF REFERENCE FOR $GET/$FIND)

Dyadic Form

9 RANK ERROR (NOT A SINGLETON)

15

15

15

15

15

15

15

27

33

DOMAIN ERROR (CHANNEL NOT ASSIGNED)

DOMAIN ERROR (CHANNEL NOT ASSIGNED TO A KEYED FILE)

DOMAIN ERROR (ENCLOSED HETEROGENEQOUS ARRAY NOT ALLOWED)

DOMAIN ERROR (INCORRECT TYPE)

DOMAIN ERROR (INVALID CHANNEL)

DOMAIN FERROR (NOT AN INTEGER)

DOMAIN FRROR (PARAMETER OUT OF RANGE)

LIMIT ERROR (INTEGER TOO LARGE)

I0 ERROR (INVALID KEY OF REFERENCE FOR $GET/$FIND)

APL Reference Manual 2-167

System Variables and Functions

(0RL Link

[1 RL Link

Type

System Variable

Form

ORL <« random-seed

integer-scalar < [ORL

Value Domain

Type Near-integer

Shape Singleton

Depth 0 or 1 (simple)

Value ~ 2% 30 through = 1+2% 30

Default 695197565

Result Domain

Type Integer

Rank 0

Shape 1 0 (scalar)

Depth 0 (simple scalar)

Description

[O0RL sets the seed of the pseudo-random-number generator used with the roll

and deal functions (see Chapter 1). ORL can be set by the user, and is also set

implicitly by the system when roll and deal are executed.

Every time you execute a roll or deal function, the value of the random link

changes. The value of O RL is saved with a workspace and can be localized in

user-defined operations. For example:

2-168 APL Reference Manual

System Variables and Functions

ORL Link

ORL

695197565

5?5

4 2 3 1 5

ORL

47060346

575

4 1 2 3 5

ORL

1636171147

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH ERROR (NOT SINGLETON)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN FRROR (INC’ORREC’T.TYPE)

15 DOMAIN ERROR (NOT AN INTEGER)

27 LIMIT ERROR (INTEGER TOO LARGE)

APL Reference Manual 2-169

System Variables and Functions

[0SF Quad Input Prompt

[0 SF Quad Input Prompt

Type

System Variable

Form

O0SF « prompt

char-vector < [JSF

Value Domain

Type

Shape

Depth

Value

Default

Result Domain

Type

Rank

Shape

Depth

Description

Character

Vector domain

0 or 1 (simple)

prompt length< 255 keystrokes

'0: <CR><LF> 6-spaces’

Character

1

Vector

1 (simple)

0SF specifies the text to be used as the prompt for quad input (see the

VAX APL User’s Guide). You can use any printing characters in the prompt.

The prompt is printed each time a request is made for quad input (0). For

example:

2-170 APL Reference Manual

System Variables and Functions

0 SF Quad Input Prompt

A<3+[J+5

O:

5

A

13

B+<{]

O:

'INPUT!

B

INPUT

OSF«'"WHAT IS YOUR NAME?

C«({]

WHAT IS YOUR NAME? 'CARLA'
C

CARLA

Note that you must enclose character-type quad input in single quotation

marks.

The maximum length for 0 SF 1s 255 keystrokes (a keystroke occurs any time

you press a key on the keyboard, including the Space bar and the Backspace

key). The value of 0 SF is saved when you save the active workspace and can

be localized in user-defined operations.

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

27 LIMIT FRROR (ARGUMENT STRING IS TOO LONG)

APL Reference Manual 2-171

System Variables and Functions

O0SIGNAL Signaling Errors

U SIGNAL Signaling Errors

Type

Ambivalent System Function

Form

error-number

message-text 1 SIGNAL error-number

Monadic Argument Domain

Type Near-integer

Shape Singleton

Depth 0 or 1 (simple)

Value Any APL error number (except 75, 115 to 499 or greater

than 999)

Dyadic Left Argument Domain

Type Character

Shape Vector domain

Depth 0 or 1 (simple)

Dyadic Right Argument Domain

Type Near-integer

Shape Singleton

Depth 0 or 1 (simple)

Value Any APL error number (except 75, 115 to 499 or greater

than 999)

Result Domain

None.

2—-172 APL Reference Manual

System Variables and Functions

O0SIGNAL Signaling Errors

Description

0SIGNAL allows you to signal an error to the caller of the operation in error;

thus, the way a user-defined operation that executes 1 SIGNAL fails is similar

to the way a primitive function fails.

In both the monadic and dyadic forms, the right argument is the error number.

You can use an existing APL error number (except 75) as listed in Appendix A,

or you can define your own number (within the range 500 through 999).

The left argument (dyadic form), if used, is the text of the error message for

the error you are signaling. For example:

"WILL NOT ACCEPT NEGATIVE NUMBERS' JSIGNAL 501

This statement, if executed within a user-defined operation (0 SIGNAL generally

appears within a user-defined operation, but this is not a requirement), signals

the following error:

501 WILL NOT ACCEPT NEGATIVE NUMBERS

The message 1s followed by the rest of the APL standard three-line error

message; that is, the text of the line in error and a caret pointing to the part of

the line in error. The three-line error message generated by 0 SIGNAL becomes

the value of 0 ERROR.

If the error number you supply to 0 SIGNAL is the number of an APL error, the

message displayed (and stored in JEFRROR) is the error message that coincides

with that number (see Appendix A for a description of APL error messages),

and the left argument to 1 SIGNAL becomes the secondary error message

(displayed in parentheses following the primary error message). If you do not

use an existing APL error number, and you leave the left argument blank, APL

signals the following error:

ERROR SIGNALED

In the following example, notice that the error is signaled at the level of the

caller, function #, not at function 7:

APL Reference Manual 2-173

System Variables and Functions

O0SIGNAL Signaling Errors

2-174

RFUNCTION F HAS (SIGNAL

VF 4

[1] ~(4>0)/3

[2] '"WILL NOT ACCEPT NEGATIVE NUMBERS' [SIGNAL 15

[3] "FUNCTION CONTINUING NORMALLY'

[4] v

AFUNCTION H CALLS F

VH A

[1] F A

[2] v

H5

FUNCTION CONTINUING NORMALLY

H 7

15 DOMAIN ERROR (WILL NOT ACCEPT NEGATIVE NUMBERS)

H[1] F A

A

You can use error number 80 to signal a status condition to the DCL

interpreter. The right argument to 0 SIGNAL must be 80, and the left argument

is a character string representing a hexadecimal number that is the status code

you want to return to VMS. The status code returned is stored as the value of

the global symbol $STATUS. For example:

'123ABC1" [SIGNAL 80

(APL returns control to DCL)

S show symbol $status

SSTATUS == "%X0123ABC1"

The low-order three bits of $STATUS represent the severity level of the error

signaled and are contained by the global symbol $SEVERITY. For example:

S show symbol Sseverity

SSEVERITY == "1"

DCL command procedures interpret the $SEVERITY value 1 to mean success,

and the value 2 to mean error. (For details on command procedures, see the

Guide to Using VMS Command Procedures.) In the following command

procedure, the first line means branch to the label ERROR any time

$SEVERITY becomes equal to 2:

on error then goto error

S apl

(APL statements)

S write sysSoutput"No Error From APL"

APL Reference Manual

System Variables and Functions

0 SIGNAL Signaling Errors

S exit

$ error:

$ write sysSoutput"APL Returned Error"

If '2' OSIGNAL 80 is executed during the APL session, the command

procedure branches to ERROR and displays the message "APL Returned

Error". If '1' OSIGNAL 80 is executed, the command procedure displays "No

Error From APL" and then exits.

For more information on the use of 0 SIGNAL, see Chapter 3 in the VAX APL

User’s Guide.

Possible Errors Generated

15 DOMAIN ERROR (CANNOT SIGNAL EOF)

15 DOMAIN ERROR (NOT VECTOR DOMAIN)

10 LENGTH ERROR (NOT SINGLFETON)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRFECT TYPE)

15 DOMAIN ERROR (NOT AN INTEGER)

27 LIMIT FRROR (INTEGER TOO LARGE)

15 DOMAIN FRROR (PARAMETER OUT OF RANGE)

APL Reference Manual 2-175

System Variables and Functions

0 SINK Discard Output

[1.51NK Discard Output

Type

System Variable

Form

O0SINK <« any-value

10 « JSINK

Value Domain

Type Any

Shape Any

Depth Any

Result Domain

Type Numeric

Rank 1

Shape 0 (empty)

Depth 1 (simple)

Description

0SINK immediately discards any value that you assign to it. The value of

O0SINK is always 1 0.

0 SINK is useful inside a user-defined operation; it allows you to discard output

that you do not want stored or displayed.

[0 SINK can be localized and is saved with the workspace; however, neither

operation has any effect.

Possible Errors Generated

None.

2-176 APL Reference Manual

System Variables and Functions

[1.5S String Search

[1.S5.S String Search

Type

Dyadic System Function

Form

Boolean «~ pattern-string 0SS target-string

Left Argument Domain

Type Character

Shape Vector domain

Depth 0 or 1 (simple)

Right Argument Domain

Type Character

Shape Vector domain

Depth 0 or 1 (simple)

Result Domain

Type Boolean

Rank 1

Shape o ,target-string

Depth 1 (simple)

Description

1SS searches the right argument for every appearance of the character string

specified in the left argument. This allows you to determine where a substring

begins in the searched string.

The result is a Boolean vector equal to the length of the ravel of the right

argument. The function places a 1 in any position corresponding to the start of

the specified string. For example:

APL Reference Manual 2-177

System Variables and Functions

(1SS String Search

'ISSI' (0SS 'MISSISSIPPI!

01001000000

O«MONTHS«4 11p'JAN FEB MARAPR MAY JUNJUL AUG SEPOCT NOV DEC!

JAN FEB MAR

APR MAY JUN

JUL AUG SEP

0CT NOV DEC

4 11 p(rAUGY 0SS ,MONTHS)

000000O0O0O0CO0CO

000000O0O0O0CCO0CO

00001000000

000000O0O0OO0CO0CO

Possible Errors Generated

9 RANK EFRROR (NOT VECTOR DOMAIN)

15 DOMAIN FRROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN EFRROR (INCORRECT TYPE)

2-178 APL Reference Manual

System Variables and Functions

0.STOoP Suspending Operation Execution

[1.STOP Suspending Operation Execution

Type

Ambivalent System Function (monadic form is query)

Form

line-numbers <« 0 STOP function-names

success / fail < line-numbers 1 STOP function-name

Monadic Argument Domain

Type Character

Shape Vector domain or one-row matrix

Depth 0 or 1 (simple)

Dyadic Left Argument Domain

Type Near-integer

Shape Vector domain

Depth 0 or 1 (simple)

Dyadic Right Argument Domain

Type Character

Shape Matrix domain

Depth 0 or 1 (simple)

Result Domain

Type Boolean (dyadic) or integer (monadic)

Rank 1

Shape Vector

Depth 1 (simple)

APL Reference Manual 2-179

System Variables and Functions

[0.STOP Suspending Operation Execution

Description

0SToP allows you to suspend the execution of user-defined operations at

specified lines. J.STOP is a useful debugging tool; you can use it to execute

a portion of a user-defined operation, then to stop execution temporarily and

examine the operation’s environment, including the values of its local variables.

You can also stop execution at line 1 of an external routine.

The external image containing the external routine must be linked with

the /SHARE and /DEBUG qualifieres; APL causes VMS DEBUG to set a

breakpoint at line 1 (the routine entry point).

For dyadic 0STOP, the right argument identifies the operations you want to

suspend. Each row should be the name of a valid, unlocked, user-defined

operation or an external routine.

The left argument specifies where you want to suspend the operations by

naming the lines on which stop bits are to be set; the line numbers do not have

to be 1n order. Negative line numbers and line numbers that do not appear in

the operation are ignored.

Note that line [0] can be stopped; APL suspends execution immediately

before returning to the caller, thus enabling you to examine the operation’s

environment after it has finished executing.

The following example sets a stop bit at lines [5], [25], and [55] of the user-

defined operations CALC and AVER:

5 25 55 [JSTOP 2 Up '"CALCAVER!'

11

Thus, if you run CALC or AVER, execution is suspended before line [5], and APL

displays the operation name and the line number. Execution can be resumed if

you type a branch to line [5], but it is suspended again at line [25], and so on.

The result of dyadic 0.STOP is a Boolean vector that indicates whether stop bits

were set for the objects named. A 1 in the position corresponding to the name

in the right argument indicates that the stop bits were successfully set; a 0

indicates that stop bits were not set.

2—-180 APL Reference Manual

System Variables and Functions

[0.ST0P Suspending Operation Execution

To clear all the stop bits associated with an object or objects, use 0 STOP with

an empty left argument, as follows:

(10) OSTOP 2 4p 'CALCAVER'

11

If you modify an operation with YEDIT, OFX, or QMAP, you clear any stop bits

set with 0 sToP. (However, you can view an operation with)EDIT and not

clear the stop bits as long as you do not perform any modifications.) If you edit

an operation with the Ao editor, stop bits remain on existing lines (provided

they are not modified) even if the lines are renumbered when the operation is

closed.

When operation execution is suspended because a stop bit was set for the line,

APL signals STOPSET. Thus, you can trap stop bits with [TRAP.

In its monadic form, 0 STOP returns the line numbers (in ascending order) on

which stop bits have been set for a specified operation. The right argument

must contain only one row, which identifies the name of the operation. In the

case of a stop bit that is set on an external routine,] STOP returns a one-item

vector with a value of 1 (the only allowable line). For example:

OSTOP 'CALC!

5 25 55

If the argument is empty or contains a value other than the well-formed name

of an unlocked operation, APL returns an empty Boolean vector.

For more details about 05T0OP, see Chapter 3 in the VAX APL User’s Guide.

Possible Errors Generated

Dyadic Form

9 RANK FRROR (NOT MATRIX DOMAIN)

9 RANK ERROR (NOT VECTOR DOMAIN)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPFE)

15 DOMAIN ERROR (NOT AN INTEGER)

27 LIMIT EFERROR (INTEGER TOO LARGE)

APL Reference Manual 2-181

System Variables and Functions

0.5T0P Suspending Operation Execution

Monadic Form

9 KRANK FRROR (NOT MATRIX DOMAIN)

10 LENGTH FRROR

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

2-182 APL Reference Manual

System Variables and Functions

0 TERSE Terse Error Messages

[TERSE Terse Error Messages

Type

System Variable

Form

[0 TERSE <« terse-verbose

integer-scalar <« JTERSE

Value Domain

Type Near-integer

Shape Singleton

Depth 0 or 1 (simple)

Value 0 or1

Default 0

Result Domain

Type Integer

Rank 0

Shape 1 0 (scalar)

Depth 0 (simple scalar)

Description

Each APL error message (see Appendix A) consists of a primary error message

(for example, VALUE ERROR or DOMAIN ERROR) and perhaps a secondary error

message. The secondary message provides more information about why the

error occurred.

0 TERSE determines whether or not secondary error messages are output.

When OTERSE is 0, secondary error messages are printed; when it is 1, they

are not printed. The default is 0.

Note that APL always puts secondary error messages into JERROR, regardless

of the value of 0 TERSE.

The value of 0 TERSE is saved when you save the active workspace and can be

localized in user-defined operations.

APL Reference Manual 2-183

System Variables and Functions

[0 TEFRSF Terse Error Messages

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10

15

15

15

15

27

LENGTH ERROR (NOT SINGLETON)

DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

- DOMAIN ERROR (INCORRECT TYPE)

DOMAIN ERROR (NOT AN INTEGER)

DOMAIN ERROR (SYSTEM VARIABLE VALUE MAY ONLY BE 0 OR 1)

LIMIT ERROR (INTEGER TOO LARGE)

2-184 APL Reference Manual

System Variables and Functions

OTIMELIMIT User Response Time Limit

OTIMELIMIT User Response Time Limit

Type

System Variable

Form

OTIMELIMIT < seconds

integer-scalar < QTIMELIMIT

Value Domain

Type Near-integer

Shape Singleton |

Depth 0 or 1 (simple)

Value ~1t0 255

Default 0 (unlimited response time)

Result Domain

Type Integer

Rank 0

Shape 1 0 (scalar)

Depth 0 (simple scalar)

Description

OTIMELIMIT limits the amount of time allowed for responses to quote quad

(M) or quad del (@) input requests. Note that you cannot set JTIMELIMIT on a

VT220, VT240, VT320, VT330, VT340, or DECterm terminal designator.

If, in responding to input requests, you exceed 0 TTMELIMIT seconds between

characters, APL accepts only the characters you typed before you ran out of

time, and appends a <CR><LF> to them. You can use the TIMEOUT system

variable to check whether the time limit expired.

In the following example, the user sets the time limit to 5 seconds, and then

supplies a value for 4 before the time limit expires. However, the user does

not finish entering a value for B before time expires, so APL accepts what was

typed before time ran out. The six spaces after the last character (an angle

APL Reference Manual 2-185

System Variables and Functions

O0TIMELIMIT User Response Time Limit

bracket) are APL’s input prompt, and the comment (a6 SPACES IS PROMPT) is

terminal input.

OTIMELIMIT<5

A<l

YoU HAVE FIVE SECONDS

A

YOU HAVE FIVE SECONDS

B+<{1

NOW STOP TYPING BUT NO <RETURN>

ATIMELIMIT WAS EXCEEDED ON PREVIOUS LINE

B

NOW STOP TYPING BUT NO <RETURN>

A negative argument (T 1) makes APL check for type-ahead input, that is, data

that was placed in the input buffer before the quote quad or quad del input

request was made. You can use this feature to help you determine whether

anything was typed after the time limit expired. For example:

VIIME

(1] OTIMELIMIT+S

(21 O«'RESPOND WITHIN 5 SECONDS'

[3] A<l

[u] O«'TIMED 0UT' o QOSINK<ODL 5 aDL DELAYS EXECUTION

[s1 OTIMELIMIT«1

[6] B<[
(7] A,' BEFORE TIMED OUT AND ',B,' AFTER'

[8] v
TIME

RESPOND WITHIN 5 SECONDS

I STOPPED TYPING

TIMED 0OUT

THIS IS TYPFAHEAD

I STOPPED TYPING BEFORE TIMED OUT AND THIS IS TYPEAHEAD AFTER

Because 1 TIMELIMIT was set to ~ 1 on line [5], the quote quad request on line

[6] captured the input that was typed after time expired on the response to the

first quote quad input request (line [3]), but before the second input request

(line [6]) was made.

You may also want to set 0TIMELIMIT to ~ 1 if you have written a function

that checks periodically for a response to a poll or prompt. For example:

2-186 APL Reference Manual

System Variables and Functions

OTIMELIMIT User Response Time Limit

VPOLL; START

[1] OTIMELIMIT<+1

[2] [«'WHEN READY TYPE THE NUMBER 1 '

[3] [OSINK<«[ODL 5 a[JDL DELAYS EXECUTION 5 SECONDS

[4] START+[]

[5] >(START = '"1')/7

[6] +3

[7] aEXECUTION BEGINS HERFE

(8] v

POLL

WHEN READY TYPE THE NUMBER 1 14

The function POLL displays a message telling the user to respond with the

number 1 when ready. Until the user enters 1, POLL loops between operation

lines [3] and [6]; thus, POLL delays for 5 seconds, then checks whether the user

typed 1 during the delay and, if not, branches back for another 5-second delay.

When the user enters 1, control passes to line [7] and operation execution

continues.

The value of OTIMELIMIT is saved when you save the active workspace and

can be localized in user-defined operations.

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH FRROR (NOT SINGLETON)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN ERROR (NOT AN INTEGER)

15 DOMAIN ERROR (PARAMETER OUT OF RANGE)

15 DOMAIN ERROR (TIMEOUT READ UNSUPPORTED FOR CURRENT VALUE OF

QUAD TT)

27 LIMIT ERROR (INTEGER TOO LARGEF)

APL Reference Manual 2-187

System Variables and Functions

OTIMEOUT Time Limit Report

OTIMEOUT Time Limit Report

Type

System Variable

Form

OTIMEOUT <« 0-or-1

integer-scalar < JTIMEOUT

Value Domain

Type Near-integer

Shape Singleton

- Depth 0 or 1 (simple)

Value 0 or 1

Default 0

Result Domain

Type Integer

Rank 0

Shape 1 0 (scalar)

Depth 0 (simple scalar)

Description

OTIMEOUT queries the system to see whether response time expired for a

previously executed quote quad ([1) or quad del (1) input request. (QTIMEOUT

is set implicitly by the system when a timeout occurs, but can also be set by

the user.) Its value is a Boolean scalar\ 1 means that time ran out, 0 means

that it) did not. The amount of time the user has to respond to quote quad or

del quad input requests is determined by the OTIMELIMIT system variable.

For example:

2-188 APL Reference Manual

System Variables and Functions

O0TIMEOUT Time Limit Report

OTIMELIMIT<S

A<l

YOU HAVE FIVE SECONDS

OTIMEOUT aDID NOT RUN OUT OF TIME

0

A<

NOW STOP TYPING BUT NO <RETURN>

UTIMEOUT RTIMELIMIT EXCEEDED

1

You may set JTIMEOUT to 0 or 1. APL changes the value of 0 TIMEOUT only

when you type one of the following:

* Quote quad input from the terminal ([7)

* Quad del input from the terminal ()

The value of 0 TIMEOUT is saved when you save the active workspace and can

be localized in user-defined operations.

Possible Errors Generated

9 KRANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH ERROR (NOT SINGLETON)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN ERROR (NOT AN INTEGER)

15 DOMAIN ERROR (SYSTEM VARIABLE VALUE MAY ONLY BE 0 OR 1)

27 LIMIT FRROR (INTEGER TOO LARGE)

APL Reference Manual 2-189

System Variables and Functions

0 TLE Terminal Line Editing Characteristics

[1 T L E Terminal Line Editing Characteristics

Type

System Variable (session)

Form

OTLE « 0-or-1

current-value < 1 TLE

Value Domain

Type Near-Integer

Shape Singleton

Depth 0 or 1 (simple)

Value 0 or 1

Default Determined when APL is invoked

Result Domain

Type Integer

Rank 0

Shape 1 0 (scalar)

Depth 0 (simple scalar)

Description

0 TLE controls the terminal line editing attribute. You can assign a O or a 1 to

OTLE. By default, 0 TLFE inherits the line editing status that is in effect when

APL is started. Note that 0 TLF 1s a session variable; that is, its value 1s not

saved with the workspace and 00 TLE is not reset by the execution of a) CLEAR

command (see Chapter 3).

OTLE Equivalent DCL Command

0 $SET TERMINAL/NOLINE_EDITING

1 $SET TERMINAL/LINE_EDITING

APL determines the default value for 0 TLE depending on your terminal

designator. For LA, VT102, GIGI, KEY, BIT, HDS201, and HDS221 (terminals

2-190 APL Reference Manual

System Variables and Functions

[0 TLFE Terminal Line Editing Characteristics

that form overstruck characters with the Backspace key), the default is 0. For

VT220, VT240, VT320, VT330, VT340, DECterm and VS (terminals that form

overstruck characters with the Compose key or Ctrl/D), the default is 1. In

all other cases (TTY for example), the default is the same as the current VMS

setting when APL is invoked.

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10

15

15

15

15

27

LENGTH FERROR (NOT SINGLETON)

DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

DOMAIN ERROR (INCORRECT TYPF)

DOMAIN FRROR (NOT AN INTEGER)

DOMAIN ERROR (SYSTEM VARIABLE VALUE MAY ONLY BE 0 OR 1)

LIMIT ERROR (INTEGER TOO LARGE)

APL Reference Manual 2-191

System Variables and Functions

[1 TRACE Monitoring Operation Execution

[1 TRA CE Monitoring Operation Execution

Type

Ambivalent System Function

Form

line-numbers « [0 TRACE function-name

success [fail « line-numbers 0 TRACE function-name

Monadic Argument Domain

Type Character

Shape Vector domain or 1-row matrix

Depth 0 or 1 (simple)

Dyadic Left Argument Domain

Type Near-integer

Shape Vector domain

Depth 0 or 1 (simple)

Dyadic Right Argument Domain

Type Character

Shape Matrix domain

Depth 0 or 1 (simple)

Result Domain

Type Integer (dyadic) or Boolean (monadic)

Rank 1

Shape Vector

Depth 1 (simple)

2-192 APL Reference Manual

System Variables and Functions

[0 TRACEFE Monitoring Operation Execution

Description

[0 TRACE is a debugging tool that allows you to obtain intermediate results of

operation execution.

In the dyadic form, the right argument identifies the operations that you

want to trace. Each row should be the name of a valid, unlocked, user-defined

operation. You can also specify the name of an external routine.

The left argument specifies the line numbers you want to trace. The line

numbers do not have to be in order. Negative line numbers and line numbers

that do not appear in the operation are ignored. When you trace line 0 of

an operation, APL displays the result returned by the operation before the

operation exits. For external routines, you can specify only line O.

When you execute a line of an operation that has the trace bit set, APL

displays the following information:

® The name of the operation

* The line number being traced (always O for external routines)

* The final value returned by the statement, provided that the value is not

an enclosed array, in which case APL displays a message indicating an

enclosed value

When the statement traced is not the first statement on the line, APL also

displays the statement number.

The result of dyadic 0 TRACFE 1s a Boolean vector that indicates whether trace

bits were set for the operations named. A 1 in the position corresponding to

the name in the right argument indicates that the trace bits were successfully

set; a O indicates that trace bits were not set.

To clear all the trace bits associated with an object or objects, use] TRACE with

an empty left argument, as follows:

(10) OTRACE 2 u4p'CALCAVER'

11

If you modify an operation with YEDIT, OFX, or JMAP, you clear any trace

bits set with 1 TRACE. (However, you can view an operation with)EDIT and

not clear the trace bits as long as you do not perform any modifications.) If

you edit an operation with the A editor, trace bits remain on existing lines

(provided they are not modified), even if the lines are renumbered when the

operation is closed.

APL Reference Manual 2-193

System Variables and Functions

[1 TRACE Monitoring Operation Execution

In the monadic form, 0 TRACE returns the line numbers (in ascending order)

on which trace bits are set for a specified operation. The right argument must

contain only one row, which identifies the name of the operation. In the case of

a trace bit that is set on an external routine, 0 TRACE returns a one-item vector

with a value of O (the only allowable line). The result indicates the lines that

exist and have trace bits set on them. For example:

OTRACE '"CALC' aLINES 5, 25, AND 55 ARE TRACED

5 25 55

If the argument is empty or contains a value other than the well-formed name

of an unlocked operation, APL returns an empty Boolean vector.

For more details about 0 TRACE, see the VAX APL User’s Guide.

Possible Errors Generated

Dyadic Form

9 KRANK FERROR (NOT MATRIX DOMAIN)

9 RANK ERROR (NOT VECTOR DOMAIN)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPF)

15 DOMAIN ERROR (NOT AN INTEGER)

27 LIMIT ERROR (INTEGER TOO LARGE)

Monadic Form

9 RANK FRROR (NOT MATRIX DOMAIN)

10 LENGTH FRROR

15 DOMAIN EFRROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPFE)

2-194 APL Reference Manual

System Variables and Functions

[0TRAP Trap Expression

[1TRAP Trap Expression

Type

System Variable

Form

[0TRAP < terminal-type

current-value <« [JTRAP

Value Domain

Type Character

Shape Vector Domain

Depth 0 or 1 (simple)

Default vt

Result Domain

Type Character

Rank 1

Shape Vector

Depth 1 (simple)

Description

0 TRAP allows you to override a system response with a user-defined response.

The value of 0 TRAP is a character vector representing an APL expression.

This expression is executed (in ¥ fashion) when any of the events listed in

Appendix A are signaled during the execution of a user-defined operation. This

includes an attention signal, an abort input signal, or a stop bit (0ST0P). For

information on error handling, see the VAX APL User’s Guide.

You can set [JTRAP as a global variable or localize it in an operation. When an

error occurs during execution of a user-defined operation, APL searches for the

most local O TRAP. If 0 TRAP is set to anything other than the empty vector (the

default value), APL executes it in the envirnoment of the operation where the

error occurred. For example:

APL Reference Manual 2-195

System Variables and Functions

O TRAP Trap Expression

V R;[JTRAP

[1] [TRAP« '[!

[2] A<+5

[3] B+«0

[4] C+A+B

[5] aDIVISION BY 0 IS DOMAIN ERROR

[6] L: '"TRAPPED ERROR, THEN CONTINUED'

[7] "EXECUTED LAST LINE' ¥

R

TRAPPED ERROR, THEN CONTINUED

EXECUTED LAST LINE

)SI

OERROR

15 DOMAIN ERROR (DIVISION BY ZERO)

R[4] C<A+B

A

The following example shows what happens when [J TRAP is not set:

VG

[1] A<5

[2] B+0

[3] C<A+B V

G

15 DOMAIN FRROR (DIVISION BY ZERO)

GL[3] C<«A+B

A

)ST

GL3] =

If execution of an operation’s [TRAP expression does not transfer control to

a new statement, the operation becomes suspended. If such an operation is

a locked operation, APL cuts back the state indicator to the first unlocked

operation and then signals DOMAIN ERROR (UNSUCCESSFUL TRAP IN LOCKED

FUNCTION).

Because a [TRAP expression can call an operation, you may want to localize

OTRAP in the called operation and set 0 TRAP to ' ' to avoid unwanted loops.

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN ERROR (UNSUCCESSFUL TRAP IN LOCKED FUNCTION)

2-196 APL Reference Manual

System Variables and Functions

0TS Time Stamp

[1 TS Time Stamp

Type

Niladic System Function

Form

current-time/date <« 0TS

Result Domain

Type Integer

Rank 1

Shape 7

Depth 1 (simple)

Description

0TS (time stamp) returns a vector (in base 10 format) representing the current

time and date. This vector is known as a time stamp and contains the current

year, month, day, hour, minute, second, and millisecond.

For example:

ars A21-NOV-90 11:31:55.134

1990 11 21 11 31 55 134

Possible Errors Generated

None.

APL Reference Manual 2-197

System Variables and Functions
[0 TT Terminal Type

[] T T Terminal Type

Type

System Variable (session)

Form

OTT « terminal-type

integer-scalar <« (O TT

Value Domain

Type

Shape

Depth

Value

Default

Resuilt Domain

Type

Rank

Shape

Depth

Description

Near-integer

Singleton

0 or 1 (simple)

0 through 19

Determined when APL is invoked.

Integer

0

1 0 (scalar)

0 (simple scalar)

07T (terminal type) indicates the type of terminal being used for the current
APL session. When you invoke APL, you specify the terminal type in an
initialization stream or in response to the terminal designator prompt.

07T allows you to change the terminal type during an APL session. The
following table shows the possible values and meanings for O 77:

2-198 APL Reference Manual

System Variables and Functions

O0TT Terminal Type

OTT Values

Value Meaning

APL COMPOSITE terminal

TTY-type terminal

Digital VK100 (GIGI) terminal (key-paired)

Digital LA-type terminal (key-paired)

APL/ASCII key-paired terminal

API/ASCII bit-paired terminal

Digital VAXstation running VWS(composite)

Digital VT102 (key-paired)

Digital VT220 (key-paired)Q
©

0
0

O

O

ks
~
W

N

-

10 Digital VT240 (key-paired)

11 Tektronix 4013 terminal (key-paired)

12 Tektronix 4015 terminal (key-paired)

13 HDSAVT (key-paired)

14 HDS201 (key-paired)

15 HDS221 (key-paired)

16 Digital VT320 (key-paired)

17 Digital VT330 (key-paired)

18 Digital VT340 (key-paired)

19 Digital VAXstation running DECwindows (key-paired)

You can query for the current 0 TT value by entering 0] TT without assigning a

value. APL responds with the current value. For example:

Sapl/term=decterm /silent=all

Orr

19

If you specify APL as your terminal designator when you first invoke APL, OTT

is set to 5. You can change the value of 0 7T by assigning it a valid terminal

type. For example:

110 aTERMINAL DESIGNATOR IS APL

12345678910

OTT « 2

.1010 “The terminal type is now TTY

123456789 10

APL Reference Manual 2-199

System Variables and Functions

07T Terminal Type

If you change the value of 07T, APL may send an escape sequence to the
terminal to change its character set. This escape sequence is the same as the

one that is sent after you identify the terminal when invoking APL.

If the value of0 TT is currently 9, 10, 16, 17, 18 or 19 and you leave the APL
environment temporarily (with a)Do,)EDIT, or) PUSH command), you should

be careful about changing your terminal type while at the operating system
level. If you return to APL with a different terminal type, or if the font files for
the APL character set are not available, APL signals an error. (You also get an
error if you restricted access to those files while at the DCL level.)

Note that 07T is a session variable; that is, its value is not saved with the
workspace and 0 TT is not reset by the execution of a) CLEAR command (see
Chapter 3). However, it can be localized in user-defined operations.

Possible Errors Generated

9 RANK FRROR (NOT VECTOR DOMAIN)

10 LENGTH FRROR (NOT SINGLETON)

15 DOMAIN FRROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN FRROR (ERROR ACTIVATING IMAGE)

15 DOMAIN ERROR (FONT FILE COULD NOT BE OPENED)

15 DOMAIN FRROR (INCORRECT TYPE)

15 DOMAIN ERROR (NEGATIVE INTEGER NOT ALLOWED)

15 DOMAIN FRROR (NOT AN INTEGER)

15 DOMAIN ERROR (PARAMETER OUT OF RANGE)

27 LIMIT ERROR (INTEGER TOO LARGE)

2-200 APL Reference Manual

System Variables and Functions

0 UL User Load

[1UL User Load

Type

Niladic System Function

Form

pid <« OUL

Result Domain

Type Integer

Rank 0

Shape 1 0 (scalar)

Depth 0 (simple scalar)

Description

The result of 0 UL (user load) represents the user’s process identification

number (PID). VMS assigns you a unique PID each time you log in to the

system. If you log off and then log back in to VMS, your PID (and thus, your

0 UL value) probably will have changed. For example:

e

93

You can use the following expression to convert a PID from decimal, as it

appears in the APL environment, to hexadecimal, as it appears in the DCL

environment:

'01234567890ABCDEF"' [0I0+(8p16)THUL]

00000055

Possible Errors Generated

None.

APL Reference Manual 2-201

System Variables and Functions

[0 VERSION Interpreter and Workspace Version

[l VERSION Interpreter and Workspace Version

Type

Niladic System Function

Form

version-info <« (JVERSION

Result Domain

Type Character

Rank 1

Shape Vector

Depth 1 (simple)

Description

0 VERSION returns a two-row character vector, with each row followed by a

<CR><LF>. The first row identifies the version of the interpreter under which

the current workspace was saved; the second row identifies the version of the

interpreter that is currently running. The display is in the form lv.u-edit,

where [is the support letter, v is the version number, u is the update number,

and edit is the edit number. For example:

OVERSION
V3.2-834

¥3.2-834

Possible Errors Generated

None.

2-202 APL Reference Manual

System Variables and Functions

[0 VI Validating Input

[] VI Validating Input

Type

Monadic System Function

Form

valid /invalid-number « O VI character-vector

Argument Domain

Type Character

Shape Vector domain

Depth 1 (simple)

Result Domain

Type Boolean

Rank 1

Shape Vector

Depth 1 (simple)

Implicit Arguments

[1NG (controls negative number recognition)

Description

0 VI determines the valid numbers in a character argument. 0 VI examines

fields in the argument that are delimited by one or more spaces, tabs, or a

carriage return (optionally followed by a line feed), and returns a Boolean

vector that contains a 1 in each position corresponding to a field containing a

valid number, and a 0 in each position corresponding to an invalid number. If

the argument is empty, 0 VI returns an empty array.

O VI is often used in conjunction with JFI and the compression function

(see Section 1.3.1) to select the valid numbers from a character string; OVI

produces the left argument of the compression function, and 0 FI produces the

right argument. For example:

APL Reference Manual 2-203

System Variables and Functions

[VI Validating Input

A«'1.5 3 4 75 3.. 1.0F +1 "3

OvIA

11010001

OFIA

1.530 50003

(OVI A)/OFI A

1.53 5 3

Recognition of negative numbers in the (] VI argument depends upon the value

of the system variable ONG. If ONG equals 1 (the default), negative numbers in

the 0 VI argument must begin with the high minus sign (7) to be recognized.

If 0NG equals 0, numbers preceded by a minus sign (-) are recognized as

negative numbers. If ONG equals 2, negative numbers are preceded by an

APL "+" symbol. (APL "+" prints as an ASCII "-" so JNG_2 can be used to

handle negative numbers in strings that will be read or written ia ASCIL.) For

example:

ONG+1 o MEANS NEGATIVE

X«'66 G 7 +9 -u!

OvI X

10100

ONG+0 A- MEANS NEGATIVE

OVI X

10001

ONG<2 A+ MEANS NEGATIVE

OviX

10010

Note that the case where NG is 0 may be useful when you use APL to

interpret data created by other languages, specifically those that do not use the

high minus sign (7).

Possible Errors Generated

9 KRANK ERROR (NOT VECTOR DOMAIN)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

2-204 APL Reference Manual

System Variables and Functions

0 VPC Vector Process Control

[1] VPC Vector Process Control

Type

System Variable (session)

Form

N VPC <« session vartable

integer-scalar < [JVPC

Value Domain

Type Non-negative near-integer

Shape Singleton

Depth 0 or 1 (simple)

Default Determined when APL is invoked.

Result Domain

Type Integer

Rank 0

Shape 1 0 (scalar)

Depth 0 (simple scalar)

Description

[0 VPC determines the threshold at which vector processing is used. A value of

0 indicates that vector processing is not used; a value of 1 indicates that the

vector processing is always used.

When you invoke a session, APL determines whether a vector processor is

available. O VPC is set to 0 if no vector processor is available; it is set to the

non-negative, near-integer default if a vector processor is available. You can

also specify the value for 0 VPC when you invoke an APL session with the

qualifier /INOJVECTOR=n (see the section on initializaiton streams in the

VAX APL User’s Guide).

If a vector processor is not present, setting 0 VPC to a non-zero value results in

the use of the vector processer emulator. The vector processer emulator may

be useful for testing. The vector processer emulator should not be used for

APL Reference Manual 2-205

System Variables and Functions

[0 VPC Vector Process Control

applications because APL’s performance with the emulator is usually poorer

than APL’s performance with the scalar processor.

O VPC is a session variable; that is, its value is not saved with the workspace,

and 0 VPC is not reset by the execution of a) CLEAR command (see Chapter 3).

However, it can be localized in user-defined operations.

You can query for the current [J VPC value by entering [J VPC without assigning

a value. APL responds with the current value. For example:

gvec

30

Controlled testing can help you identify the threshold at which the increased

overhead of running the vector processer is compensated for by increased

performance.

Possible Errors Generated

9 RANK ERROR (NOT SINGLETON)

15 DOMAIN ERROR (NEGATIVE NUMBER NOT ALLOWED)

15 DOMAIN ERROR (NOT AN INTEGER)

15 DOMAIN FRROR (VECTOR PROCESSOR NOT AVAILABLE)

2-206 APL Reference Manual

System Variables and Functions

00 VR Visual Representation

[] VR Visual Representation

Type

Monadic System Function

Form

O0VR {value | object-name}

Argument Domain

Type Any

Shape Any

Depth Any

Result Domain

Type Character

Rank Any

Shape Any

Depth Any

Implicit Arguments

O0Dc¢ (Controls display of enclosed arrays)

[0 PP (Controls precision of numeric constants)

Description

00 VR returns a character array of the visual representation of an APL object.

The argument is either a numeric array of any rank or a character array with

its shape in the vector domain.

If the argument is numeric, [] VR works the same way as monadic 7: the

numeric array is formatted into a character array that looks as the numeric

array would appear when displayed by APL (which is dependent on the 0 PP

setting).

APL Reference Manual 2-207

System Variables and Functions

[0 VR Visual Representation

If the argument is type character, its value must represent the name of an APL

object. If the character argument represents a variable or label, the result is

the same as for numeric arguments: APL formats the variable or label value

as a character array, making it look as it would appear when displayed by

APL.

If the character argument represents a user-defined operation,] VR returns

a character vector that is similar to the canonical representation of the

operation. Specifically, the visual representation of a user-defined operation,

F, is the operation definition displayed by the editor command a1 A. The

result starts and ends with a A character, and each line begins with a line

number surrounded by square brackets and ends with a <CR><LF>.

If the character argument represents a derived function such as an operand

of a user-defined operator, 0 VR returns a character representation of it. For

example, if the operand is plus (+), then 0 VR returns the string '+ '; if the

operand is outer product (+. «), then [JVR returns '+. +'; and if the operand is

OCR, then O VR returns '[0CR"'.

If the argument to 0 VR is empty, the result is an empty character vector.

Examples:

ACREATE FUNCTION FRTH

VZ « A FRTH B; X

[1] L: Z « A + BV

JFNS

FRTH

U«V<«2 3p16 ACREATE AND DISPLAY V

12 3

4L 5 6

oV

2 3

J«A<JVR 'V

12 3

4L 5 6

pA

2 5

U«B<[JVR 'FRTH'

VZ « 4 FRTH B; X

[1] L: 7 « A4 + B

V

0B

54

2-208 APL Reference Manual

System Variables and Functions

0 VR Visual Representation

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

15 DOMAIN ERROR

15 DOMAIN FRROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (OPERATION LOCKED)

APL Reference Manual 2-209

System Variables and Functions

[0 WA Workspace Available

[1 WA Workspace Available

Type

Niladic System Function

Form

available-space +~ 1WA

Result Domain

Type Integer

Rank 0

Shape 1 0 (scalar)

Depth 0 (simple scalar)

Description

OWA (workspace available) returns an integer scalar representing an estimate

of the amount of available storage space, in bytes, in the active workspace.

This value allows you to determine the maximum amount by which your

workspace can increase. APL obtains the value by subtracting the current

data-segment size from the maximum data-segment size which is the current

) MAXCORE setting (see Chapter 3). Thus, the value returned by 0”4 may

be greater than the amount of available memory or the amount of memory

allocated by APL. For example:

OWA

516980

Possible Errors Generated

None.

2-210 APL Reference Manual

System Variables and Functions

OWAIT Limiting Time on Read Functions

WA IT Limiting Time on Read Functions

Type

Ambivalent System Function (dyadic form is quiet)

Form

current-timelimit < QWAIT chans

10 <« timelimit OWAIT chan

Monadic Argument Domain

Type Near-integer

Shape Vector domain

Depth 0 or 1 (simple)

Value ~ 999 through 999 (but not 0)

Dyadic Left Argument Domain

Type Near-integer

Shape Singleton

Depth 0 or 1 (simple)

Value ~ 1 through 255 (seconds)

Dyadic Right Argument Domain

Type * Near-integer

Shape Singleton

Depth 0 or 1 (simple)

Value ~ 999 through 999 (but not 0)

APL Reference Manual 2-211

System Variables and Functions

OWAIT Limiting Time on Read Functions

Result Domain

Type Integer

Rank 1

Shape Vector

Depth 1 (simple)

Description

Dyadic OWAIT specifies the amount of time you want APL to wait when it tries

to read a shared record that is locked by another user.

When you set a waiting period, APL waits even if you specified the

/READONLY : NOLOCKS qualifier when you assigned the file to a channel

with 0455 (NOLOCKS normally causes a read to happen without waiting).

The left argument (¢imelimit) determines the time limit; it has the following

meanings:

Value of Time Limit Meaning

1 Don’t wait, return immediately

Wait indefinitely (this is the default)

n Wait for n seconds

Monadic OWAIT queries the system for the current time limits associated with

individual channel numbers.

For each channel number in the argument, monadic JWAIT returns a value

between ~ 1 and 255 that can have the following meanings:

Value Returned Current Time Limit

1 Don’t wait

Wait indefinitely

n Wait for n seconds

OWAIT is described in the VAX APL User’s Guide along with other file I/O

information.

2-212 APL Reference Manual

System Variables and Functions

OWAIT Limiting Time on Read Functions

Possible Errors Generated

Monadic Form

1 FILE NOT FOUND (FILE NOT FOUND)

10

15

15

15

15

27

LENGTH ERROR (NOT VECTOR DOMAIN)

DOMAIN ERROR (ENCLOSED HETEROGENEQUS ARRAY NOT ALLOWED)

DOMAIN ERROR (INCORRECT TYPFE)

DOMAIN ERROR (INVALID CHANNEL NUMBER)

DOMAIN ERROR (NOT AN INTEGER)

LIMIT FRROR (INTEGFR TOO LARGE)

Dyadic Form

1 FILE NOT FOUND (FILF NOT FOUND)

10

15

15

15

15

15

15

27

33

LENGTH FRROR (NOT SINGLETON)

DOMAIN ERROR (INCORRECT TYPE)

DOMAIN ERROR (ENCLOSED HETEROGENEOUS ARRAY NOT ALLOWED)

DOMAIN ERROR (NOT AN INTEGER)

DOMAIN FRROR (PARAMETER OUT OF RANGE)

DOMAIN ERROR (INVALID CHANNEL NUMBER)

DOMAIN ERROR (CHANNEL NOT ASSIGNED)

LIMIT ERROR (INTEGER TOO LARGE)

I0 ERROR (TIMFOUT PERIOD EXPIRED)

APL Reference Manual 2-213

System Variables and Functions

0 WATCH Monitoring Variable Changes

[l WA T'CH Monitoring Variable Changes

Type

Ambivalent System Function

Form

currentmode <~ [OWATCH object-name

success [failure mode-number QWATCH object-names

Monadic Argument Domain

Type Character

Shape Vector domain or one-row matrix

Depth 0 or 1 (simple)

Dyadic Left Argument Domain

Type Near-integer

Shape Vector domain

Depth 0 or 1 (simple)

Dyadic Right Argument Domain

Type Character

Shape Matrix domain

Depth 0 or 1 (simple)

Result Domain

Type Integer

Rank 1 or 2

Shape Vector or matrix

Depth 1 (simple)

2-214 APL Reference Manual

System Variables and Functions

0 WATCH Monitoring Variable Changes

Description

OWATCH is a debugging tool that allows you to monitor changes in the value

of APL objects. APL either displays or signals information when a watched

object is referenced or modified. You can set watch modes on variable and label

names and most system variables and niladic system functions. You cannot set

watch modes on nonniladic system functions, ill-formed identifiers, user-defined

operations, or group names. A watch mode remains in effect when the watched

object occurs in a locked operation; the watch bit is not reset, as is the case

with 0 STOP and [0 TRACE.

A modification occurs any time a value is explicitly assigned to a variable

(niladic system functions and labels cannot be modified). A reference occurs

any time an object is referenced for its value.

In display mode, APL sends information to the current output and continues

execution of the operation where the reference or modification occurred. In

signal mode, APL signals an error (trappable with (] 7RAP) and suspends the

operation.

Implicit in the use of the OWATCH command are the 1L and OR system

variables. Each time a modification occurs on a watched object, APL reassigns

the values of these variables: 0L contains the name of the changed object; OR

contains the previous value of the changed object. The object contains the new

value.

Dyadic 0 WATCH enables watchpoints on one or more objects. The right

argument specifies the objects you want to watch. Each row contains the

name of one niladic system function or one variable (which can be a defined

or undefined variable), a system variable, or a label. You cannot watch the

following system variables: OR, 0L, or 0 ERROR. If the right argument 1s empty,

or if it contains the name of an object that cannot be watched, APL returns an

empty Boolean vector.

The left argument determines the watch mode: either display or signal

mode. In addition, you can specify the watch mode for either modifications or

references.

APL Reference Manual 2-215

System Variables and Functions

0 WATCH Monitoring Variable Changes

There are six watch modes:

Mode Meaning

Signal if modified

Display if modified

Signal if referenced

Display if referenced

Signal if modified or referenced

1

O

O
t

»

W

N

Display if modified or referenced

The result of dyadic OWATCH is a Boolean vector indicating whether the

watch mode was set for the specified variables. Each position in the vector

corresponds to a row of the right argument. A 1 indicates that the watch

mode was successfully set; a 0 indicates that the watch mode was not set. For

example:

B <« 3 5 p '"BABELSABLECABLE'!

B

BABEL

SABLE

CABLE

4w UWATCH B

111

To clear the watch mode associated with an object or objects, use dyadic

OWATCH with an empty left argument. The result is a Boolean vector

indicating whether the watch mode was turned off. Each position in the

vector corresponds to a row of the right argument. A 1 indicates the watch

mode was successfully turned off; a 0 indicates the watch mode was not turned

off. For example:

"' OWATCH 3 5 p '"BABELSABLECABLE'

111

In signal mode, you can trap a reference or modification with 0 7r4P. APL

signals a primary message and one of three secondary messages. The signals

have the following form:

113 WATCH POINT ACTIVATED (VARIABLE HAS BEEN REFERENCED)

113 WATCH POINT ACTIVATED (VARIABLE HAS BEEN MODIFIED)

2-216 APL Reference Manual

System Variables and Functions

OWATCH Monitoring Variable Changes

113 WATCH POINT ACTIVATED (VARIABLE HAS BEEN MODIFIED BY INDEX)

In display mode, APL displays information in different forms depending on

whether the event is a reference or a modification. For a reference, the display

form is as follows:

function-name [line ¢ statement] object-name

OLD NAME CLASS: nc SHAPE: rho-vector

value

For a modification, the display form is as follows:

function-name [line ¢ statement] object-name

OLD NAME CLASS: nc SHAPE: rho-vector

value

NEW NAME CLASS: nc SHAPE: rho-vector

value

Note that if value is an enclosed array, APL does not display the value.

Instead, APL displays a message indicating that value is enclosed.

If the operation that contains the reference or modification is locked, APL

displays the name of the object with a protected del (¥) symbol (there is no line

number). .

Monadic []WATCH returns information indicating the current watch mode for

the object specified in the right argument. The right argument must have at

most one row, which means you must query for the watch mode one object at a

time.

The result of monadic WATCH is a one-element integer vector (unless the

argument is empty, in which case APL returns 1 0). There are seven possible

values which indicate the following watch modes:

Mode Meaning

1 Object not being watched

2 Signal if modified

3 Display if modified

4 Signal if referenced

APL Reference Manual 2-217

System Variables and Functions

O0WATCH Monitoring Variable Changes

Mode Meaning

5 Display if referenced

6 Signal if modified or referenced

7 Display if modified or referenced

When OWATCH is set in mode 2 or 6 on a name that is the left argument

of a strand assignment, the signal is delayed until APL has completed

all the assignments. If there is more than one watched name in the left

argument, APL only signals information on the last (rightmost) one. (For more

information, see the strand assignment sections in Chapter 1.)

Some events do not activate a OWATCH signal or display (immediate mode

events, for example). In addition, a watchpoint is not activated when the

following occur:

* A variable is used as an output parameter in a call to an external function.

* An object becomes shadowed by an operation invocation.

* An object becomes unshadowed by an operation termination.

* A variable is included in the argument of any of the following commands:

OEX, YERASE,)COPY,)PCOPY, [1QC0, and JQPC.

When you enable O WATCH, the watchpoint is set on the most local version

of the specified objects. When a watched object becomes shadowed, APL

saves the current O¥ATCH definition and restores it when the object becomes

unshadowed. Labels are always local to an operation and are defined only

when the operation is being executed. To watch the referencing of a label,

you must enable OWATCH within the context of the operation (either inside the

operation or in immediate mode while the operation is suspended or pending).

(The VAX APL User’s Guide has more information on debugging operations.)

An example of this behavior follows:

X<5 ADEFINE GLOBAL X

3 UWATCH 'X! AENABLE WATCHPOINT ON X

1

VSHAGL; X RDEFINE LOCAL X

[1] [«X«1 ASIMPLE ASSIGNMENT

[2] 7V ,
SHAG1 ACALL TO SHAGL1, LOCAL X SHADOWS GLOBAL X

aNO OWATCH EVENT OCCURS

2-218 APL Reference Manual

System Variables and Functions

O0WATCH Monitoring Variable Changes

This same behavior occurs when a local variable becomes shadowed by a more

local variable:

VSHAG1; X RRE-WRITE SHAG1

[1] O«X«1

[2] 3 OWATCH X! AENABLE WATCHPOINT ON LOCAL X

[3] SHAG? aCALL SHAG?

[4] v

V SHAG?2:X RADD ANOTHER LOCAL X

[1] eX<«2 aSIMPLE ASSIGNMENT

[2] v

SHAG1 AEXECUTE SHAG1

1 (Value of local X In SHAG1)

2 (SHAG? local X shadows SHAG1 local X)

Examples:

F+<5 aDEFINE GLOBAL F

3 UWATCH '#"! aENABLE DISPLAY IF MODIFIED

1

VFOO eDEFINE FUNCTION FOO

[1] F < 19 aSIMPLE ASSIGNMENT MODIFIES F

[2] F ALINE 2 REFERENCES F

[3] v

FOO aEXECUTE FO0O

FOO[1] F

NAME CLASS: 2 SHAPE:

5

NEW NAME CLASS: 2 SHAPE: 9

12345678279

12345671839

5 OWATCH 'F'! aREPLACE PREVIOUS WATCHPOINT AND

1

aENABLE DISPLAY IF REFERENCED

FOO

FOO[2] F

OLD NAME CLASS: 2 SHAPE: 9

123 456789

12345067839

2 OWATCH 'F'

1

F <5

FOO

WREPLACE PREVIOUS WATCHPOINT AND

nENABLE SIGNAL IF MODIFIED

aNO SIGNAL FOR INTEKACTIVE ASSIGNMENT

113 WATCH POINT ACTIVATED (VARIABLE HAS BEEN MODIFIED)

FOO[1] F « 19

A

ASIMPLE ASSIGNMENT MODIFIES F

APL Reference Manual 2-219

System Variables and Functions

OWATCH Monitoring Variable Changes

)SI

FOO[1] =

F

0L

F

12345671879

5

OR

Possible Errors Generated

Monadic Form

9 RANK ERROR (NOT MATRIX DOMAIN)

10

15

15

LENGTH FRROR

DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

DOMAIN FRROR (INCORRECT TYPE)

Dyadic Form

9 RANK FRROR (NOT MATRIX DOMAIN)

9 RANK FRROR (NOT VECTOR DOMAIN)

10

15

15

15

15

27

LENGTH ERROR

DOMAIN FRROR (ENCLOSED ARRAY NOT ALLOWED)

DOMAIN EFRROR (INCORRECT TYPE)

DOMAIN ERROR (INVALID WATCH MODE)

DOMAIN ERROR (NOT AN INTEGER)

LIMIT FRROR (INTEGER TOO LARGE)

2-220 APL Reference Manual

System Variables and Functions

[0 XQ Executing Expressions

[] X @ Executing Expressions

Type

Form

Monadic System Function (sometimes quiet)

result « 0XQ apl-expression

Argument Domain

Type Any

Shape Any

Depth Any

Result Domain

Type Any

Rank Any

Shape Any

Depth Any

Description

[0 XQ executes the expression represented by its argument as if that expression

were entered in immediate mode or included in a user-defined operation. For

example, the expressions 1 5 and JXQ'15' return the same result:

15

123 45

HXQ' 15"

123 45

The argument can be a numeric (any shape) or a character array (vector

domain). If the argument to 0XQ is numeric, APL returns the value of the

argument):

0XQ 55

55

APL Reference Manual 2-221

System Variables and Functions

[0 XQ Executing Expressions

APL treats a <CR><LF> in the argument as a statement separator as if it

were input from the terminal, so multiple lines are allowed. The 0xQ function

always returns a value: either the value of the last statement evaluated in its

argument, or, if the last statement has no value, an empty array. For example:

D+[JXQ'5+4

3+2

6 !

9

5

6

The 0 xq function can execute system commands or invoke the function editor.

For example:

HXQTVR«FOO

A<?

B+<3

R<A+B

v

!

FOO0

5

OXQ')FNS!

FOO

0Xq') VARS'

A B .

0XQ')ERASE ' ,[0XQ")VARS' ARERASE ALL VARIABLES

11 VALUE FRROR

A

A

Pendent (1 XQ functions are indicated by the '0XQ' characters in the state

indicator. For example:

0xg ')SI

X4

Note that quiet functions are still quiet when executed, pr0V1ded that JxQ is

the leftmost functionin the statement:

0XQ' Z+1!

LUXQTZ+1!

2-222 APL Reference Manual

System Variables and Functions

[0 XQ Executing Expressions

When the argument is empty and numeric, the result is an empty numeric

vector (JXQ 10 <» 10). For example:

0XQ 10

When the argument is empty and character, the result is an empty character

vector ("' = 0xQ ') if a value is required by the expression. For example:

nxe ! RQUIET, NO OUTPUT
A.(__DXQ 11

If APL encounters an error while evaluating the 0XQ function’s argument, it

does not signal an error; instead, it stops evaluating the argument and returns

an empty array whose shape is 0 n, where n is a number indicating the error

that was encountered (see Appendix A for a complete description of all APL

errors). The complete text of the error message is placed in JERROR. For

example:

E<[0XQ'5+5

3+2,

41

10

F

(APL outputs a blank line)

oF

0 7

UERROR

7 0XQ SYNTAX ERROR (RIGHT ARGUMENT TO FUNCTION MISSING)

3+2,

A

If you enter the attention signal while the 0 X¢@ function is executing, APL stops

executing the argument to 0xQ, and 0 XQ returns an empty array whose shape

is 0 18. Then, the normal order of execution continues.

The 0 X9 function cannot execute a branch statement; if one 1s entered, the

branch is not taken, and the result of the [0 XQ function, if needed, is an empty

vector. Thus, 0XQ never alters the flow of control within an operation.

Possible Errors Generated

9 RANK FRROR (NOT VECTOR DOMAIN)

APL Reference Manual 2-223

3

VAX APL System Commands

VAX APL provides a wide variety of system commands that allow you to

examine or change the state of the system. For example, you can do the

following:

e (lear, save, or name the active workspace

e Load or copy a workspace from a secondary storage device

e List workspace, variable, and user-defined operation names

e Display the status of user-defined operations and local variables in the

workspace

e Set the index origin, the maximum number of significant digits, and the

output line width

e End an APL session

Unlike system functions and system variables, system commands are not

considered part of the APL language.

System commands are particularly useful in function-definition mode, because

they are executed immediately instead of being executed when the operation

is executed. Thus, you can change the APL environment without exiting from

the function editor. For example, if the terminal print width is set at 50, and

you display an operation line that is 60 characters long, you could use the

)WIDTH system command to change the print width so that the operation line

is displayed on one line.

Note that by giving system commands as arguments to the 0 XQ system

function, you can use the commands within user-defined operations, rather

than having them execute immediately.

APL Reference Manual 3-1

System Commands

3.1 System Command Form

3.1 System Command Form

APL system commands begin with a right parenthesis, as shown in the

following form:

Ywhite command-name [space white arguments]

The right parenthesis is a required part of the system command name. white is

optional white space; that is, zero or more spaces or tabs. Space is a required

blank space. Arguments may or may not be allowed. See the individual

descriptions of the system commands for more details.

You can abbreviate a command name to its shortest unique form. Some system

commands take required or optional parameters; when you include them,

you must separate the individual items of the parameter list with at least

one space or tab. If a system command that takes no arguments is followed

by nonwhite space, or if an argument is invalid, APL signals INCORRECT

PARAMETER.

The following examples show the form of several system commands:

JCONTINUE

)CONT

)CONTIN

)SAVE MYWORK

YWS4L0 A B C VARG N

The first three examples invoke the same system command,) CONTINUE; note

that the first four letters of each of the command names are the same. In the

fourth example, MYWORK is an argument to the) SAVE system command. The

fifth example shows a) COPY command that takes a series of arguments.

3.2 System Command Categories

There are two broad categories of system commands:

* Query commands obtain information

* Action commands that change the state of a workspace or the operating

environment

The action commands can be further categorized into the following logical
groups, which are described in the following sections:

* Query/change commands find out about or change the state of the

environment,

* APL action commands manipulate APL objects in a workspace

* System action commands terminate or interrupt an APL session

3-2 APL Reference Manual

System Commands

3.2 System Command Categories

- Workspace manipulation commands manipulate workspaces

There are some system commands that specifically affect APL I/O; they are

described in detail in the VAX APL User’s Guide. Table 3—1 summarizes the

system commands.

3.2.1 Query System Commands

The query system commands return information about the current state of the

session, the active workspace, or the APL system or environment. The query

system commands follow:

)ENS

) GRP

)GRPS

YNMS

YOPS

) VARS

)SIT

)SINL

)SIS

) VERSION

) CHARGE

) OWNER

)LIB

YHELP

- 3.2.2 Query/Change System Commands

The query/change system commands are both action and query commands;

that is, they can return information about the present state of the APL

environment, or they can be used with an optional parameter to change the

state of the environment. The)ORIGIN command, for instance, can either

return or change the index origin setting.

In the following example,)ORIGIN is used first as an action command; it

sets the index origin to 0 and reports that the previous setting was 1. Then,

)ORIGIN is used as a query command; it reports that the current setting of the

Index origin is 0 :

JORIGIN O

WAS1

JORIGIN

0

APL Reference Manual 3-3

System Commands

3.2 System Command Categories

Each of the query/change commands can be thought of as displaying, or

changing and displaying, a system variable. There are two types of system

variables: workspace and session.

Workspace variables are associated with a particular workspace; that is, they

are saved and loaded with the workspace. The system commands associated

with the workspace variables are as follows:

YWSID lwsnamel [/ PASSWORDI: Tpwlill

YPASSWORD [[l/PASSWORD [: [pwlll | pwl

YORIGIN [nl

)DIGITS [nl

YWIDTH [[n]

Session variables are associated with the current APL session; they do not

change when the current workspace is changed, and they cannot be saved

with a workspace. The system commands associated with the session variables

follow:

YMAXCORE [[n]

YMINCORE [[n]

Note that the system variables 1GAG, 0 TLE, 0TT and JVPC are also session

variables.

3.2.3 APL Action System Commands

The APL action system commands cause some action to take effect within the

current workspace. The APL action system commands are as follows:

) CLEAR

)EDIT object-name /qualifiers

YERASE [/FNST [/GrPS] [[/0PST [/ VARS] list

) GROUP group-name [group-member-list]

)SIC

)STEP [n] [/SILENT] [/INTO | /OVERI

3.2.4 System Commands that Initiate System Action

This section describes the system commands that terminate or interrupt an

APL session or initiate some other program.

You can exit from APL in a variety of ways:

e Returning to the DCL command level

e Terminating the APL session, optionally returning to the DCL command

level

e Terminating the session and saving the active workspace

3-4 APL Reference Manual

System Commands

3.2 System Command Categories

e Interrupting the session and running other programs while at the DCL

command level, eventually returning to APL

The following system commands are in this category of commands that initiate

system action:

YMON

)OFF

JCONTINUE

) PUSH

JATTACH

)DO

3.2.5 Workspace Manipulation System Commands

The workspace manipulation system commands preserve, make active, and

delete workspaces. They also copy objects from workspaces to the currently

active workspace. The workspace manipulation system commands are as

follows:

)LOAD

)XLOAD

)SAVE

) COPY

)PCOPY

YDROP

3.3 System Command Reference

The following sections describe the APL system commands in alphabetical

order. Each description indicates the general category of the command: query,

query/change, apl action, system action, or workspace manipulation.

Table 3—1 lists all the system commands and gives a brief description of their

uses.

Table 3—1 System Commands

Command Meaning

YATTACH Temporarily suspends the APL session and returns control to a
specified process

) CHARGE Displays a record of activity for the current APL session

(continued on next page)

APL Reference Manual 3-5

System Commands

3.3 System Command Reference

Table 3—-1 (Cont.) System Commands

Command Meaning

) CLEAR Replaces active workspace with clear workspace

YCONTINUE Saves active workspace and exits APL

) COPY Copies global objects from another workspace

YDIGITS Displays or changes the number of significant digits to be displayed

)DO Executes a VMS command; returns output to APL

)DROP Deletes workspaces or files from a directory-structured device

YEDIT Edits a global object with the VAXTPU editor

)ERASE Erases the named global object from the current workspace

YENS Displays an alphabetical list of global function names

)GROUP Collects named objects into a group

)GRP Lists members of a group

)GRPS Displays an alphabetical list of group names

YHELP Displays information about APL features

)INPUT Diverts input to a device other than your terminal

)LIB Displays names of workspaces or files on a directory-structured

device

YLOAD Retrieves a workspace from secondary storage

YMAXCORE Displays or changes the setting for maximum workspace size

YMINCORE Displays or changes the setting for minimum workspace size

YMON Returns you to operating system command level

YNMS Displays all names in the symbol table

)OFF Ends current APL session

)OPS Displays an alphabetical list of global operator names

YORIGIN Displays or changes index origin

YOUTPUT Diverts output from your terminal to another device

) OWNER Displays information about the creation of the current workspace

) PASSWORD Displays or changes the workspace password |

) PCOPY Same as) COPY but protects names already in use

3-6 APL Reference Manual

(continued on next page)

System Commands

3.3 System Command Reference

Table 3—1 (Cont.) System Commands

Command Meaning

) PUSH Temporarily suspends the APL session, returning control to the

operating system

)SAVE Saves a copy of the active workspace

) ST Displays workspace state indicator

)SIC Clears workspace state indicator

)SINL Displays workspace state indicator, local symbols for each user-

defined operation, and argument to pending execute functions

) SIS Displays workspace state indicator, currently executing line, and

argument to pending execute functions

)STEP Executes lines of a function one at a time

) VARS Displays an alphabetical list of global variables

) VERSION Displays the APL version numbers for the workspace and interpreter

YWIDTH Displays or changes the terminal line width

YWSID Displays or changes workspace name; optionally changes workspace

password

YXLOAD Retrieves a workspace from secondary storage without executing

OLX

APL Reference Manual 3-7

System Commands

YATTACH Interacting with Other Processes

) AT TACH Interacting with Other Processes

Type

Action System Command

Form

YATTACH {process-name}

Qualifiers

/PARENT

Specifies that you want to attach to the first process established in the current

job.

Description

Note that you must specify either /PARENT or the process-name, but you cannot

specify both.

YATTACH interrupts the APL session and attaches to a process that already

exists within your current job. The APL session is not terminated when you

use)ATTACH. To return to APL, you can use the DCL command ATTACH on

the process name of the APL process. When you return to the interrupted

APL session, program execution resumes at the point after the execution of the

YATTACH command.

Examples:

HGAG <« 2 ABROADCASTS WILL BE DISPLAYED IN APL CHARACTERS

aEXECUTE MAIL IN A SUBPROCESS NAMED MAILPROC

)PUSH/PROCESSNAME=MAILPROC MAIL

MAIL>ATTACH/PARENT

aWE ARE BACK IN APL

nGO READ THE NEW MAIL

YATTACH MAILPROC

You have 1 new message.

MAIL>read/new

#1 8-NOV-1999 15:15:15:41

From: APLVAX: :USERZ

To: USER1

CC: |

Subj: Pizza today?

Do you want to have pizza for lunch today?

3-8 APL Reference Manual

System Commands

YATTACH Interacting with Other Processes

MAIL>attach/parent

aWE ARE BACK IN APL

)DO SHOW PROCESS/SUBPROCESSES

8-NOV-1990 15:39:04.42 User: USER1 Process ID: 00000067

Node: APLVAX Process name: alUSER<2na

There are 2 processes in this job:

«~TWA2:

USER1+2 ()

aUSER1<1 IS THE PROCESS FOR DO)

YOFF

TWA?2: THURSDAY 8-NOV-1990 15:39:05.01

CONNECTED 00:00:39.53 CPU TIMF 00:00:01.09

6 STATEMENTS 1 OPERATIONS

306 PAGE FAULTS 410 BUFFERED I0 125 DIRECT I0

S show process/subprocesses

8-NOV-1990 15:47:58.25 User: USERI1 Process ID: 00000005A

Node: APLVAX Process name: " _TWA4:"

There are 3 processes in this job:

_TWA4: (%)

USER1_1

MAILPROC

Possible Errors Generated

22 INCORRECT PARAMETER (MISSING ARGUMENT)

22 INCORRECT PARAMETER (UNRECOGNIZED QUALIFIER KEYWORD)

114 ERROR PROCESSING ATTACH (ATTACH REQUEST REFUSED)

114 KERROR PROCESSING ATTACH (INVALID LOGICAL NAME)

114 ERROR PROCESSING ATTACH (NONEXISTENT PROCESS)

249 FEXTRANEQOUS CHARACTERS AFTER COMMAND

383 PARENT QUALIFIER REPEATED

APL Reference Manual 3-9

System Commands

) CHARGE Displaying Accounting Information

) CHA RGE Displaying Accounting Information

Type

Query System Command

Form

) CHARGE

Description

) CHARGE displays a record of activity during the current APL session and

includes the following:

* Your terminal identification

* Current time and date

* Length of time connected to APL

* Amount of computer CPU time used inside APL

* Number of APL operations executed

* Number of page faults while inside APL

* Number of buffered I/O and number of direct I/O while inside APL

For example:

)CHARGE

SYS$INPUT: WEDNESDAY 14-NOV-1990 16:03:22.16

CONNECTED 00:00:01.33 CPU TIME 00:00:00.40

0 STATEMENTS 0 OPERATIONS

160 PAGE FAULTS 20 BUFFERED I0 15 DIRECT IO

Possible Errors Generated

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

3-10 APL Reference Manual

System Commands

) CLEAR Clearing the Active Workspace

) CLEAR Clearing the Active Workspace

Type

APL Action System Command

Form

)CLEAR

Description

) CLEAR empties the active workspace by erasing all variables, groups, and

user-defined operations; resetting all workspace variables (but not session

variables) to their default values; closing all open files; and clearing the state

indicator.

The clear workspace has the following characteristics:

Contains no user-defined operations, groups, or variables

Has an index origin (01 10) of 1

Has an output line length (0 P¥) determined by the operating system width

specification

Has a comparison tolerance value (0CT) of 1ETM 15

Has a random link value (ORL) of 695197565

Has an empty character array as the value for 1LX, 0TRAP, DERROR, I,

and OR

Has the automatic save feature turned off (1AUS is 0)

Outputs the negative sign (T) in TTY mode as .NG (NG is 1)

Displays both primary and secondary error messages when an error occurs

(O0TERSE 1s 0)

Has a workspace and interpreter version that are the same (the lines

returned by [0 VERSION match)

Displays numbers with ten significant digits (0 PP)

Has a clear symbol table and state indicator

Has the name CLEAR WS

Has an empty password

APL Reference Manual 3-11

System Commands

) CLEAR Clearing the Active Workspace

* Requests quad input with the message [1: followed by a <CR><LF> and six

blanks (0 SF)

e Has a default 0DC valueof (71 1 0 2) '', which means that there are no

boxes around enclosed arrays

Note that APL gives you a clear workspace when you begin a work session,

unless you have a CONTINUE workspace in your default device and directory

area, or unless you use an initialization stream to specify a workspace to be

loaded. Also note that) CLEAR clears only the active workspace; it has no effect

on workspaces you have saved with the) SAVE system command.

When the) CLEAR command completes execution, APL displays the message

CLEAR WS. For example:

)JCLEAR

CLEAR WS

YMINC, YMAXC, 0GAG,OTLE, and OTT are not affected by) CLEAR.

Possible Errors Generated

22 INCORRECT PARAMETER (EXTRANEQUS CHARACTERS AFTER COMMAND)

3-12 APL Reference Manual

System Commands

) CONTINUE Saving the Workspace and Ending the Session

) CONTINUE Saving the Workspace and Ending the Session

Type

System Action System Command

Form

YCONTINUE [HOLD | LOGOUT]

Default in Clear Workspace

HOLD

Description

)yCONTINUE works the same way as the) 0OFF system command, except that

before ending the session) CONTINUE saves the active workspace in your

default device and directory area under the name CONTINUE .APL. If files

named CONTINUE .APL already exist in your directory, the new CONTINUE

workspace will have a version number that is one greater than the next most

recent version.

The H0LD parameter (the default) returns you to DCL command level after

ending the APL session. The LOGOUT parameter logs you off the system after

ending the APL session. The) CONTINUE command prints the same message

that the) SAVE command prints, followed by the same summary information

that) OFF displays. For example:

)CONTINUE HOLD

WEDNESDAY 28-NOV-1990 16:04:29.46 15 BLKS

SYS$INPUT: WEDNESDAY 28-NOV-1990 16:04:29.90

CONNECTED 00:00:01.62 CPU TIME 00:00:00.,42

0 STATEMENTS 0 OPERATIONS

191 PAGE FAULTS 24 BUFFERED I0 21 DIRECT I0

If a CONTINUE workspace exists in your default area when you begin an APL

session, it is loaded as your active workspace, unless you specify a different

workspace in an APL initialization stream, or unless the workspace had a

password when it was saved. If the CONTINUE workspace is saved with a

password, APL signals WORKSPACE LOCKED when the APL session begins.

You can still load the workspace by executing the command) LOAD CONTINUE

/PASSWORD : pw.

APL Reference Manual 3-13

System Commands

) CONTINUE Saving the Workspace and Ending the Session

Note that the name of a CONTINUE workspace that is loaded is not CONTINUE;

the name is the one the workspace had when it was saved. The load message

displayed when APL is invoked identifies what the name was when the

workspace was saved. For example:

)LOAD CONTINUE

SAVED WEDNESDAY 28-NOV-1990 16:04:29.46 15 BLKS WAS EXAMPLE

YJWSID

EXAMPLE

Note

APL does not delete your CONTINUE workspace after it is loaded. A

particular CONTINUE workspace in your default area may be loaded as

your active workspace each time you invoke APL, not just the first time

that you invoke APL after the workspace was created. If you do not

want the CONTINUE workspace to be loaded, you must explicitly delete

it from your default area, or specify a different workspace in an APL

initialization stream.

Possible Errors Generated

15 DOMAIN ERROR(EXTRANEOUS CHARACTERS AFTER COMMAND)

22 INCORRECT PARAMETER (UNRECOGNIZED QUALIFIER KEYWORD)

3-14 APL Reference Manual

System Commands

) COPY Copying Objects from a Workspace

) COPY Copying Objects from a Workspace

Type

Manipulation System Command

Form

) COPY wsname [[list]]

Qualifiers

/ PASSWORD[:[pwi]

Specifies the password associated with the stored workspace.

/CHECK

Causes APL to examine the workspace for possible corruption (damage to

the internal structure of the workspace). If damage is detected, a message

1s displayed and APL tries to recover as much information as possible from

the workspace and continue the copy. The recovered workspace may be

missing APL variables, user-defined operations, individual lines of user-

defined operations, and other APL objects that were damaged. The user must

determine what named objects have been removed from the workspace.

Description

) COPY retrieves global user-defined operations, global variables, and groups

from a stored workspace (wsname) and places them into your active workspace.

If there is a password associated with the stored workspace, you must include

it in the command string.

You can copy all the named objects in a workspace or a subset of them; list

identifies the specific objects to be copied. When you specify a list of objects,

you can use the » and :+ wildcards. If you omit the /ist parameter, all user-

defined operations, variables, and groups are copied.) COPY does not transfer

local values for variables and functions, nor does it copy the state indicator,

channel assignments, or any system variable such as the print width, index

origin, or print precision.

If your active workspace contains objects with the same name as those in the

copied workspace,) COPY replaces the global (but not the local) values in your

active workspace with the copied ones. For example, if B is a variable in the

active workspace with a global value of 10 and a local value of 5, and the

workspace being copied has a variable B with a global value of 20, after) cory

is executed the active workspace will have a variable B with a global value of

APL Reference Manual 3-15

System Commands

) COPY Copying Objects from a Workspace

20 and a local value of 5. A suspended or pendent operation, or an operation

still being defined in the active workspace is not replaced, and an operation

being created in the workspace being copied is not copied.

When you copy a group, all members of the group are copied along with their

values. However, if a member of a group is itself a group, APL copies only the

group name and not the value. Thus, for example, suppose the group GROUP1

has as members the variables 4 and B, and the group GROUP2. Also suppose

that GROUP2 has as members the variables ¢ and D. Then, if you copy GROUP1,

you copy the values of 4 and B, but only the name of GROUP2, not the values of

¢ and D.

The) CcOPY command displays the same message as the) L0AD command. Note

that the size printed in this message is the size (in disk pages) of the active

workspace after execution of the) COPY command completes. If the list to be

copied contains an object that is not in the specified workspace, APL returns

the message NOT FOUND:, followed by a list of the objects (separated by tabs)

that were not found. The objects that were found are still copied, however.

The) COPY command performs the same operation as the 0QC0 system function

(see Chapter 2), but 0@C0 does not display messages to confirm that the copy

was successful.

Examples:

)COPY AVER

SAVED WEDNESDAY 28-NOV-1990 16:20:42.14 24 BLKS

)COPY AVER B

SAVED WEDNESDAY 28-NOV-1990 16:20:42.14 24 BLKS

)COPY AVER G

SAVED WEDNESDAY 28-NOV-1990 16:20:42.14 24 BLKS

NOT FOUND: G

Possible Errors Generated

22 INCORRECT PARAMFETER

22 INCORRECT PARAMETER(ILL FORMED NAME)

27 LIMIT ERROR(ARGUMENT STRING IS5 TOO LONG)

83 DAMAGED WORKSPACE HAS BEEN CORRECTED (SOME SYMBOLS MAY HAVE

BEEN ERASED)

3-16 APL Reference Manual

System Commands

)YDIGITS Output Precision

)DIGITS Output Precision

Type

Query/Change System Command

Form

YDIGITS [[n]

Default in Clear Workspace

10

Description

)DIGITS displays or changes the value of the print precision system variable

(O PP).

The print precision (n in the form) is the number of significant digits displayed

in APL floating-point output; it can be an integer from 1 to 16. It does not

affect the precision of internal calculations or the display of integers. APL

rounds off any number that has more digits than the current setting.

Executing the) DIGITS command in change mode has the same effect as

assigning a value to the [PP system variable (see Chapter 2).

Examples:

YDIGITS

10

1.234567891234567889

1.234567891

)DIG 5

WAS 10

1.23456789123456789

1.23U46

)DIG 2

WAS 5

1.23456789123456789

1.2

APL Reference Manual 3-17

System Commands

YDIGITS Output Precision

Possible Errors Generated

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

22 INCORRECT PARAMETER (ILL FORMED NUMERIC CONSTANT)

22 INCORRECT PARAMETER (PARAMETFER OUT OF RANGE)

3-18 APL Reference Manual

System Commands

) DO Executing a DCL Command

) DO Executing a DCL Command

Type

System Action System Command

Form

)DO command-string

Qualifiers

/ LOWERCASE

Refers to how you want) D0 to translate any output from the execution of the

command string. Without this qualifier, the)D0 command converts any ASCII

lowercase letters to uppercase unless you are using V1102, VT220, VT240,

VT320, VT330, VT340, DECterm, VS, or TTY mnemonic mode, or unless the

output is the argument to execute (either 0XQ or ¢). Use the /LOWERCASE

qualifier if you do not want this conversion to occur.

/NOKEY PAD

Specifies that you do not want the keypad characteristics of the current process

to be available to the new subprocess. The default is that the characteristics

are available.

/NOLOGICALS

Specifies that you do not want the logical name table from the current process

to be available to the new subprocess. The default is that the table is available.

/NOSYMBOLS

Specifies that you do not want the global and local symbol table (defined at the

DCL level) from the current process to be available to the new subprocess. The

default is that the symbol table is available.

Description

) DO interrupts the APL session and creates a VMS subprocess, putting you

at the DCL command level without terminating the APL session. Unlike

the) PUSH command,) DO attempts to recover any output resulting from the

execution of the command string.

APL Reference Manual 3-19

System Commands

) DO Executing a DCL Command

With) D0, you must always include a command string (do not enclose the

string in quotation marks); VMS creates a subprocess, executes the command

specified, and then returns to APL when the execution completes. For example,

the following executes the DCL command SHOW TIME and returns its output

to APL:

DOTIME<[1XQ')DO SHOW TIME'

DOTIME

8-NOV-1990 16:25:21

The command string must be no longer than 132 characters (after translation

to ASCII), not including leading white space (spaces or tabs before the

argument begins), but including all other white space within the argument.

Any output written to SYSSOUTPUT or SYS$ERROR is retrieved by APL. See

the VMS DCL Dictionary for a description of SYS$OUTPUT and SYS$ERROR.

While you are at DCL command level, your terminal is in ASCII rather than

APL mode, and your terminal characteristics (such as output line width) revert

to the system settings. When you return to APL, the APL character set is

restored, and your [] PW setting is the same as it was before you executed the

)DO command (although the default for 0 Pw changes if you changed your

system terminal width). However, other terminal characteristics you may have

changed at command level (for example, the 0 GAG setting, or the ability to

input lowercase characters) remain changed.

Possible Errors Generated

3—-20

22 INCORRECT PARAMETER (LOWERCASE QUALIFIFER REPEATED)

22 INCORRECT PARAMETER (MISSING ARGUMENT)

22 INC'ORREVCT PARAMETER (NOLOGICALS QUALIFIFER REPEATED)

22 INCORRECT PARAMETER (NOSYMBOLS QUALIFIER REPFEATED)

22 INCORRECT PARAMETER (NOKEYPAD QUALIFIER REPEATED)

73 SUBPROCESS FRROR (COMMAND BUFFER OVERFLOW

SHORTEN EXPRESSION OR COMMAND LINE)

APL Reference Manual

System Commands

YyDROP Deleting Stored Workspaces or Files

) DROP Deleting Stored Workspaces or Files

Type

Workspace Manipulation System Command

Form

)DROP file-spec

Description

yDROP can delete any file for which you have the necessary protection

privileges. You can delete one, several, or all the files on a device and directory.

If you do not include a device and directory, your default device and directory

are assumed; however, you must always include a file name, file type, and

version number. You may use a wildcard designator to substitute for the

version number or for all or part of the file name or file type. In the following

example, all files on the default device and directory that begin with the letter

s are deleted. APL prints the file specification for each file dropped. For

example:

JDROP *.LIS;x

DELETE-I-FILDEL, DEV1:[APLGRPIDOC.LIS;1 deleted (3 blocks)

:DELETE-I-FILDEL, DEV1:[APLGRP}SAMPLE.LIS;2 deleted (3 blocks)

DELETE-I-FILDEL, DEV1:[APLGRP1SAMPLE.LIS;1 deleted (3 blocks)

:DELETE-I-TOTAL, 3 files deleted (9 blocks)

The maximum length of the) DROP command argument is 121 characters

(after translation to ASCII), not including leading white space (spaces and tabs

before the argument begins), but including all other white space within the

argument.

Executing the) DROP command is equivalent to executing the DCL command

DELETE/LOG. For more details about the DELETE command, see the VMS

DCL Dictionary.

Possible Errors Generated

22 INCORRECT PARAMETER (LINE TOO LONG TO TRANSLATE)

22 INCORRECT PARAMETER (MISSING ARGUMENT)

APL Reference Manual 3-21

System Commands

) EDIT Editing with VAXTPU

) EDI T Editing with VAXTPU

Type

APL Action System Command

Form

)EDIT objectname

Qualifiers

[vo]l/ cCOMMAND | |

Allows you to specify an initialization file to VAXTPU. The value for filespec

is a VMS file specification. If you omit the /COMMAND qualifier, or if you do

not specity a filespec value, VAXTPU uses the file specification assigned to the

logical name TPUINI as a default.

[voll/DISPLAY

Tells VAXTPU that you are using a support ANSI CRT terminal. This is the

default. You should specify /DISPLAY only during an interactive session.

/NODISPLAY tells VAXTPU that your are not using a supported terminal.

You should use this qualifier only when you run VAXTPU procedures in batch

mode.

/EXECUTE[:tpucommand]]

Allows you to specify a VAXTPU command string that you want to execute

after the editor finishes any command or section files. Note, however, that

VAXTPU does not execute the /EXECUTE qualifier when either the command or

section file contatins a QUIT or EXIT command.

The value for tpucommand is a character string containing one or more

VAXTPU statements that you want VAXTPU to execute. It should not contain

any non-ASCII APL characters or embedded <CR><LF>s. You do not have to

place quotation marks around the string, but if quotation marks are necessary

for the VAXTPU operation, they must be balanced. The maximum length of

the string is 100 characters, and it must be terminated by the end of the line

or by another qualifier. If you do not specify tpucommand, APL ignores the

/EXECUTE qualifier.

The /EXECUTE qualifier is particularly useful when you run APL and)EDIT

in batch mode. For example, you can set up an error-checking routine to

handle situations where the VAXTPU file is too large to return to the APL

environment. If you create a VAXTPU procedure called CHECKMESBUFFER

3-22 APL Reference Manual

System Commands

) EDIT Editing with VAXTPU

that checks the VAXTPU message buffer for a WORKSPACE FULL error, you can

call the procedure with the /EXECUTE qualifier:

YEDIT FOO/EXECUTE:CHECKMESBUFFER

When you first invoke VAXTPU, the section and command files run, and the

/EXECUTE qualifier calls the CHECKMESBUFFER procedure. The procedure

does nothing because there is currently no VORKSPACE FULL error message

in the VAXTPU message buffer. However, if the editing session ends and the

file is too large, APL reinvokes VAXTPU. This time the CHECKMESBUFFER

procedure detects the error message and handles it accordingly.

/LC

Determines whether the line numbers of a user-defined operation appear in

the VAXTPU editor. This qualifier is useful because it allows you to view the

current line numbers associated with the lines of the operation. APL ignores

the /LC qualifier for objects that are not operations.

Once the file is in the editor, the line numbers no longer determine the

organization of the lines in the operation. When the file returns to the APL

environment, APL assigns new line numbers based on the order that it reads

the records from the VAXTPU editor. If you add new lines to the operation,

you do not have to include any line numbers.

When you do not specify /Lc, APL generates the canonical representation of

the operation in the VAXTPU editor. (The canonical representation does not

include line numbers.)

/MODE[:mode]

Allows you to determine the input/output mode for the data moving between

the AP and VAXTPU environments. The value for mode is the integer 2 or 3,

and represents [1 and B, respectively. If you omit the /MODE qualifier, or if you

do not specify a mode value, APL uses /MODE: 2 as a default.

Note that you must specify MODE: 3 if you have embedded line feeds in an

object and want them to remain intact in the file that VAXTPU returns to

APL. However, be aware that @ turns off APL overstrike and TTY mnemonic

translation. |

/NC[[:nc]

Determines the name class of the object you are editing. This qualifier 1s

useful only when you intend to create a new object in the editor. The value for

nc is an integer that specifies the name class of the new object, which has the

following characteristics:

APL Reference Manual 3-23

System Commands

) EDIT Editing with VAXTPU

3-24

Name Class Data Type Shape

2 Character Vector

3 Function Not applicable

4 Operator Not applicable

When you omit the /NC qualifier, or when you specify /NC without a value,

APL uses the name class of the object named by objectname as the default. If

objectname specifies a currently undefined object, APL uses 2 as the default

value.

/NG :ng]

Determines how VAXTPU displays the APL high minus sign (*), which is used

to indicate a negative number. This qualifier only affects the representation of

numeric variables; numeric values within operations are not affected.

/NG 1s the equivalent of 0NG and accepts the same values (0, 1, or 2). When ng

1s 1, negative numbers are preceded by the high minus sign (7). When ng is 0,

negative numbers are preceded by the minus sign (-). When ng is 2, negative

numbers are preceded by the APL plus sign (+). (The setting 2 is used when

reading or writing ASCII files; the ASCII minus sign translates to the APL

plus sign. See the discussion of NG in the VAX APL Reference Manual for

more information.)

The default setting for /NG is the current setting for O NG.

/ PP[:pp]l
Determines the print precision of noninteger numeric values sent to VAXTPU.

/ PP 1s the equivalent of 0 PP and accepts the same values (1 to 16). If you omit

the /PP qualifier, APL uses the current value of 0 PP as the default. If you

specify /PP but do not include a value, APL uses the maximum allowable value

(16).

/ PW[[:pwl]

Determines how APL segments an object for output to the temporary file in the

VAXTPU editor. The value for pw specifies the maximum number of characters

in a single line of output. /Pw is the equivalent of 0 P¥ and accepts the same

values (35 to 2044). However, the greatest value that VAXTPU will accept from

APL is 900. If you specify a /P value greater than 900, APL selects 900 by

default. If you do not specify /Pw, or if you specify /Pw without a value, then

the default setting is 0 Pw or 900, whichever is smaller.

APL Reference Manual

System Commands

) EDIT Editing with VAXTPU

VAXTPU truncates any record that has a length greater than 900. To avoid

losing data, APL forms records in the following manner when creating the

temporary file:

Functions APL breaks records between each line

Matrices APL breaks records between each row

Vectors APL breaks records at each <CR> <LF>

When you enter VAXTPU, some line wrapping may occur, depending on the

setting used for /PW. This could cause unexpected changes in the edited object,

and may result in an error when you attempt to end the editing session. To

avoid confusion, APL places a warning message in the VAXTPU message buffer

as you enter the editing session: LINE WRAP HAS OCCURED. The semantics

for line wrapping are as follows:

e If /PW is not specified, APL wraps records with length > 900

e If /PW is specified, APL wraps records with length > 900 0PV

e If /PW=pw is specified, APL wraps records with length >9300 pw

[vol/sEcTIOoN]:filespec]

Allows you to specify a section file to VAXTPU. The value for filespec 1s a

VMS file specification. If you omit the /SECTION qualifier, or if you do not

specify a filespec, VAXTPU uses the file specification assigned to the logical

name TPUSECINI as a default. If you desire to use the EDT emulation mode,

specify /SECTION:EDTSECINI.

/ TERMINAL[:termtype]

Determines the terminal type you want to use during the)EDIT session. The

values for termtype, and the character sets that they represent are as follows:

Terminal Type Character Set

TTY Tr'TY

KEY KEY

BIT BIT

COMPOSITE COMPOSITE

Vri02 BIT

VTr220 COMPOSITE

Vvr2uo COMPOSITE

VTr320 COMPOSITE

APL Reference Manual 3-25

System Commands

) EDIT Editing with VAXTPU

Terminal Type Character Set

V7330 COMPOSITE

VTr3uo COMPOSITE

HDS201 COMPOSITE

HDS221 COMPOSITE

VS COMPOSITE

DECTERM COMPOSITE

If you omit the /TERMINAL qualifier, or if you do not specify the termtype value,

APL uses the current terminal type as the default.

Description

The)EDIT system command allows you to edit global APL objects with the

VAXTPU editor. You can edit user-defined operations and variables. You

cannot edit enclosed arrays, and you cannot modify an operation that is

suspended or pendent. (If you edit a suspended or pendent operation, APL

puts an appropriate message in the VAXTPU message buffer, and you must

end the VAXTPU session with a QUIT command.)

When you invoke) EDIT, APL creates a temporary file containing the object

you want to edit and then invokes VAXTPU. When you exit VAXTPU, APL

reads the edited file from VAXTPU into the workspace. Note that APL returns

you to the VAXTPU editor if an error occurs as the file reenters the workspace.

For more information about VAXTPU, see the VAX Text Processing Utility

Manual.

Note that YEDIT is also described in the VAX APL User’s Guide.

Possible Errors Generated

3—-26

5 DEFN ERROR (OPERATION SUSPENDED OR PENDENT)

15 DOMAIN ERROR (FRROR ACTIVATING IMAGE)

111 EDIT COMMAND FRROR (xx QUALIFIER REPEATED)

111 EDIT COMMAND ERROR (ARGUMENT TO xx IS OUT OF RANGE)

111 EDIT COMMAND FRROR (BAD ARGUMENT T0O xx)

APL Reference Manual

System Commands

) EDIT Editing with VAXTPU

111 EDIT COMMAND ERROR (EDIT COMMAND UNAVAILABLE DURING FUNCTION

111

111

111

111

111

111

111

111

111

111

DEFINITION)

EDIT COMMAND ERROR

EDIT COMMAND FRROR

EDIT COMMAND ERROR

EDIT COMMAND ERROR

EDIT COMMAND ERROR

EDIT COMMAND FRROR

EDIT COMMAND FRROR

EDIT COMMAND ERROR

EDIT COMMAND ERROR

EDIT COMMAND ERROR

(ENCLOSED ARRAY NOT ALLOWED)

(EXECUTE QUALIFIER ARGUMENT IS TOO LONG)

(L[LL FORMED NUMERIC CONSTANT)

(ILL FORMED NUMERIC MATRIX)

([LLEGAL NAME CLASS)

(INCORRECT PARAMFETER)

(MISSING ARGUMENT)

(OPERATION LOCKED)

(UNRECOGNIZED QUALIFIER KEYWORD)

(VOLUME TOO LARGE)

APL Reference Manual 3-27

System Commands

) ERASE Erasing Global Names

) ERASFE Erasing Global Names

Type

APL Action System Command

Form

YERASE list

Qualifiers

/FNS

Limits the name class of the objects to functions.

/VARS

Limits the name class of the objects to variables.

/GRPS

Limits the name class of the objects to groups.

/OPS

Limits the name class of the objects to operations.

Description

3-28

) ERASE deletes the APL objects named in the list; it undefines global user-

defined functions and operations, erases global variables, and disperses groups

and erases their members.

When you specify list, you can use the » and + wildcards. You can use the

/FNS, /GRPS, /OPS, and /VARS qualifiers in conjunction with wildcards to limit

the name class of the objects being erased.

You cannot erase pendent or suspended operations, nor can you erase labels or

other local names. If you are inside the A editor, you cannot erase the function

being edited.

If a member of the named group is itself a group, the group name is erased,

but the members of the subgroup remain intact. For example:

APL Reference Manual

System Commands

) FERASFE Erasing Global Names

)CLEAR

CLEAR WS

JLOAD TRIG_CIRCLE

SAVED THURSDAY 8-NOV-1990 15:08:07.52 12 BLKS

JFNS

ARC COS DIAM RADIUS SIN TAN

aTRIG CONTAINS THE GROUP CIRCLE

)GRP TRIG

SIN COS TAN CIRCLE

ASHOW MEMBERS OF GROUP CIRCLE

)GRP CIRCLE

ARC RADIUS DIAM

YERASE TRIG

)GRP TRIG

22 INCORRECT PARAMETER (NOT A GROUP)

) GRP TRIG

A

AERASING TRIG ERASED GROUPNAME CIRCLE

)JGRP CIRCLE

22 INCORRECT PARAMETER (NOT A GROUP)

) GRP CIRCLE

A

AMEMBERS OF CIRCLE NOT ERASED

YENS

ARC DIAM RADIUS

If a specified object cannot be erased, either because such an operation 1is

illegal or because the object is undefined, the following message is displayed:

NOT ERASED: list of objects

The objects are separated by tabs. There is no message when) ERASE is

successful.

Note that) ERASE leaves a slot in the symbol table for the erased name

(symbol). Although you erase a symbol, the slot in the symbol table still exists.

If you reuse a name that was in the symbol table, APL places it in the same

slot where it was before. If you do a) COPY of the workspace into a CLEAR WS,

APL rebuilds the workspace, thus erasing the slot as well as the symbol.

APL Reference Manual 3-29

System Commands

) ERASE Erasing Global Names

Examples:

0«B«2 3 4

2 3 4

JERASE B

B

11 VALUE ERROR

B

A

V R<F

[1] nF CANNOT BE FRASED

[2] JERASE F

NOT ERASED: F

[2] v

JENS Gx

G2 GI

JVARS Gx

G3 G4

fUSE QUALIFIER TO LIMIT WILDCARD

JERASE [FNS Gx

aFUNCTIONS G1 AND G2 ARE GONE

JENS

AVARIABLES G3 AND G4 STILL DEFINED

) VARS

G3 GH

Possible Errors Generated

22 INCORRECT PARAMETER (INVALID KEYWORD OR QUALIFIER)

22 INCORRECT PARAMETER (ILL FORMED NAME)

27 LIMIT FRROR (ARGUMENT STRING IS TOO LONG)

3-30 APL Reference Manual

System Commands

) FN.S Displaying a List of Functions

) FFN.S Displaying a List of Functions

Type

Query System Command

Form

)FNS [[start-stringllstop-stringli]l

Qualifiers

/WSID:wsname(l/PASSWORD : pw]

Allows you to specify a nonactive workspace. If the nonactive workspace was

saved with a password, you must also specify the /PASSWORD qualifier.

Description

)FNS displays a list of the global names used as user-defined function names

in a workspace. By default, APL displays the list from the currently active

workspace.

The optional string parameters identify starting and stopping points for

the list. When you specify the string parameters, you can use the x and =

wildcards. The objects are listed in 04V order, separated by tabs. Each output

line in the list begins in column one.

Note that the wildcard determines the start-string. There 1s no wildcard for

the stop-string.

If you use) FNS with no parameters, APL displays all the global function

names in the workspace:

)LOAD FNS

SAVED THURSDAY 8-NOV-1990 17:12:11.52 41 BLKS

JENS

ALPH HILB INVRS INVT LS4

If you include just one argument, APL uses Z as the default for the stop-string:

)LOAD OPERS

SAVED THURSDAY 8-NOV-1990 18:06:12.76 12 BLKS

JENS IN

INVRS INVT LS

JENS INV INV

INVRS INVT

APL Reference Manual 3-31

System Commands

) FNS Displaying a List of Functions

To obtain a list of all user-defined function names that begin with a given

prefix, use the prefix for both arguments or use a wildcard:

)LOAD OPERS

SAVED THURSDAY 8-NOV-1990 18:06:12.76 12 BLKS

JENS INV*

INVRS INVT

Possible Errors Generated

1 FILF NOT FOUND (FILF NOT FOUND)

22

22

22

22

57

INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

INCORRECT PARAMETER (FILE SPECIFICATION IS MISSING)

INCORRECT PARAMETER (INVALID KEYWORD OR QUALIFIER)

INCORRECT PARAMFETER (NOT A LETTER)

FILE DOES NOT CONTAIN A WORKSPACE

3-32 APL Reference Manual

System Commands

) GROU P Defining or Dispersing a Group

) GRO U P Defining or Dispersing a Group

Type

APL Action System Command

Form

) GROUP group-name l[group-member-list]]

Description

) GROUP collects APL objects together under a single name. The objects can be

variables, user-defined operations, and other group names. When you specify

the objects, you can use the » and + wildcards.

The) GROUP command is often used with the)CcoPrPY and) PCOPY commands.

After collecting a set of operations and variables under one group name, you

can specify the name in a) COPY or) PCOPY command to copy the entire

collection at one time.

In the following example, the functions and variables named INT, FUTVAL, and

PRESVAL are collected into a group named FINANCTIAL:

)GROUP FINANCIAL INT FUTVAL PRESVAL

To add a new member to an existing group, you must list the group name as an

item in the member list. Thus, the variable T4X is added to the group named

FINANCIAL as follows:

YGROUP FINANCIAL TAX FINANCIAL

To disperse a group, specify the group name without a group member list. The

group name will no longer be defined, but the individual members of the group

will still exist under their original names. The following command disperses

the group FINANCIAL:

JGROUP FINANCIAL

A group name is always global; you cannot localize it. For example:

APL Reference Manual 3-33

System Commands

) GROUP Defining or Dispersing a Group

[1]

[2]

C

A<1

B+2

VF:C

R«(JXQ 'GROUP C A B'")

v

F

)GRPS

Here, the) GROUP command executed inside the function F created a global

group name C, even though ¢ was included in the function’s local symbol list.

Possible Errors Generated

3-34

22

22

22

24

INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

INCORRECT PARAMETER (ILL FORMED NAME)

INCORRECT PARAMETER (MISSING ARGUMENT)

NOT GROUPED, NAME IN USE

APL Reference Manual

System Commands

) GRP Displaying the Members of a Group

) GRP Displaying the Members of a Group

Type

Query System Command

Form

) GRP group-name

Qualifiers

/WSID:wsname ([/PASSWORD: pw]

Specifies a nonactive workspace. If the nonactive workspace is saved with a

password, you must also specify the /PASSWORD qualifier.

Description

) GRP displays the names of the objects associated with the group name. The

names are listed in the order in which they are entered into the group and are

separated by tabs.

For example:

JGROUP APLGRP LEE PETER STAN DAVE ERIC CHIP CHRIS SHOTA

)JGRP APLGRP

LEE PETER STAN DAVE ERIC CHIP CHRIS SHOTA

Possible Errors Generated

1 FILE NOT FOUND (FILF NOT FOUND)

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

22 INCORRECT PARAMETER (ILL FORMED NAME')

22 INCORRECT PARAMETER (INVALID KEYWORD OR QUALIFIER)

22 INCORRECT PARAMETER (MISSING ARGUMENT)

22 INCORRECT PARAMETER (NOT A GROUP)

57 FILE DOES NOT CONTAIN A WORKSPACE]

APL Reference Manual 3-35

System Commands

) GRPS Displaying a List of Groups

) GRPS Displaying a List of Groups

Type

Query System Command

Form

) GRPS [[start-stringlstop-string]]

Qualifiers

/WSID:wsnamel[l /PASSWORD: pw] |

Specifies a nonactive workspace. If the nonactive workspace was saved with a

password, you must also specify the /PASSWORD qualifier.

Description

) GRPS displays a list of group names in a workspace. By default, APL displays

the list from the currently active workspace.

When you specify the string parameters, you can use the + and + wildcards.

The names are listed in JAV order, separated by tabs. Each output line in the

list begins in column 1.

Note that the wildcard determines the start-string. There is no wildcard for

the stop-string.

If you use)GRPS with no parameters, APL displays all the group names in the

workspace. For example:

)GRPS

ALPH HILB INVRS INVT LS5SQ

If you include just one argument, APL uses Z as the default for the second

string:

JGRPS IN

INVRS INVT LSQ

JGRPS INV INV

INVRS INVT

To get a list of all group names that begin with a given prefix, use the prefix

for both arguments or use a wildcard.

)JGRPS INV*

INVRS INVT

3-36 APL Reference Manual

System Commands

) GRPS Displaying a List of Groups

Possible Errors Generated

1 FILE NOT FOUND (FILE NOT FOUND)

22

22

22

57

INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

INCORRECT PARAMETER (INVALID KEYWORD OR QUALIFIER)

INCORRECT PARAMETER (NOT A LETTER)

FILE DOES NOT CONTAIN A NORKSPACE

APL Reference Manual 3-37

System Commands

) HELP Obtaining Help on the VAX APL Language

) HE'L P Obtaining Help on the VAX APL Language

Type

Query System Command

Form

YHELP [[string]l

Qualifiers

/LIBRARY : filespec

Specifies a Help library other than the default APL Help library. This feature

allows you to write your own Help libraries and reference them through the

APL)HELP facility. If you want to make your help library the default (and

thus avoid specifying the /LIBRARY qualifier each time you invoke) HELP), you

can define the logical name APL$HELP: as the value for filespec.

The /LIBRARY qualifier must follow directly after the) HELP command, and

you must specify the colon or equal sign and the VMS file specification. If

you specify a file that does not exist, APL signals FRROR PROCESSING HELP

(FRROR OPENING AS INPUT).

Description

) HELP provides controlled access to the APL Help facility via the VMS Help

librarian.

The APL Help library is a file associated with the VMS logical name

APL$SHELP:. You can define that logical name if you want your own help

library to be the default. If APLSHELP: is not defined, VAX APL looks for a

file named SYS$HELP:VAXAPL.HLB, which is placed on your system during

installation.

The APL Help Library contains the actual text of the help topics and is

organized into multiple levels. For example, JASS is a secondary level topic

under QUAD-NAMES, which is a primary level topic.

You can gain access to the primary level topics by entering the name of a

primary key as the string parameter. Each of these topics contains explanatory

text and a menu of secondary level topics. The primary keys include the

following.

3-38 APL Reference Manual

System Commands

) HELP Obtaining Help on the VAX APL Language

Primary Key Topic

Help General information and menus of other topics

Error-numbers Error messages beginning with a numeric string

Symbols AV characters

Qualifiers Qualifiers beginning with the slash (/) symbol

Quad-names System functions and variables beginning with

the quad () symbol

System-commands System commands beginning with the right

parenthesis ()) symbol

To gain access to a secondary level topic, you can enter the name of a primary

key followed by a space and the name of a secondary key. Use the following

form:

)HELP primary-key secondary-key

In many cases, you can omit the primary-key parameter and obtain help

directly from a secondary level; if you specify a system command, system

function, system variable, qualifier name, or error number, APL generates the

primary key for you and uses your string as the secondary key. (Note that APL

generates primary keys only when you use the default APL Help library.) For

example, you can enter) HELP OMBX and receive information on JMBX without

enterring) HELP QUAD-NAMES OMBX. The following table describes how APL

translates secondary key entries:

INPUT TRANSLATION

Secondary Key Primary Key

null-string Help

numeric-string Error-numbers

atomic-vector-character Symbols

string Qualifiers

Ostring Quad-names

) string System-commands

APL also performs translations in other instances where the first character

(not including blanks) following the) HELP command is a character from the

following table. (These translations do not occur when you have specified

JLIBRARY.)

APL Reference Manual 3-39

System Commands

) HE'LP Obtaining Help on the VAX APL Language

3—-40

INPUT TRANSLATION

Secondary Key Primary and Secondary Keys

. Symbols period

$ Symbols dollar

B Symbols divide

! Symbols shriek

' Symbols ’

@ Symbols at sign

A Symbols lamp

? Symbols question mark

(Symbols left parenthesis

Aside from the instances described above where APL recognizes a string and

generates the appropriate primary and secondary keys, APL assumes that the

string you enter is a primary key followed by optional subkeys separated by

blanks. For example,)HELP ARITHMETIC-FUNCTIONS provides a description

of arithmetic functions and a menu of subtopics on which you could obtain help.

Entering)HELP ARITHMETIC-FUNCTIONS FACTORIAL provides information on

the factorial function.

Once APL determines a primary key, it translates the key and all related

subkeys from 0AV characters to TTY mnemonics using [1 mode; this produces

keys in a format understood by the Help facility, which then locates the

appropriate text. This text is then translated from TTY mnemonics to JAV

characters, converted into uppercase, and then sent to the appropriate output

destination by APL. (The text is not converted into uppercase in two instances:

when your terminal is a VT102, VT220, VT240, VT320, VT330, VT340,

DECterm, VS, or is in TTY mode; and when you execute) HELP with 0XQ or

®.)

When you request information that currently exists within the APL Help

Library, the output appears in the following form:

keyl

key2

key3

help text

additional help text (if any)

APL Reference Manual

System Commands

) HELP Obtaining Help on the VAX APL Language

When you request information that currently does not exist within the APL

Help Library, the output appears in the following form:

SORRY, NO DOCUMENTATION ON xxx

ADDITIONAL INFORMATION AVAILABLE ON ...

Where xxx is the string you specified when you invoked)HELP, and . ..

indicates a menu of available help topics.

APL treats the string parameter as a prefix when it locates a topic in the

APL Help Library. For example,)#ELP OL finds the help file text for all

QUAD-NAMES beginning with 0 L.

The APL Help facility accepts wildcards in the form of the ellipsis (...) and

pairs of star characters (x »). (A single » character returns information on the

x symbol.) For example:

Command Meaning

YHELP * % Returns text on all primary key levels.

YHELP % x ... Returns all text on all levels.

YHELP key-name . . . Returns all text on the primary key (key-name

and all its subkeys).

Note that you cannot use the ellipsis on secondary (or lower) keys:

JHELP

HELP

The)HELP command provides you with controlled access to the VMS

HELP librarian to obtain help on various topics related to the

VAX APL language. APL looks for the file associated wilh the

logical name APL$HELP:. If that is not defined, it looks for

SYS$HELP:VAXAPL.HLB. This system command accepts terms familiar to

APL as keys into the APL help library and returns a character vector

(help text) with embedded Carriage Returns Line Feeds.

Additional Iinformation available:

APL-applications APL-command-1ine Arithmetic-Functions Axis

Comments Editor Error-Numbers Execute-only

File-System Function-Names Glossary Help Indexing

Logical-Functions Operators Quad-Names Qualifiers
Relational-Functions Specification-Function Statements Symbols

System-Commands Terminal-Input-Output Terminal-Support

JHELP +

SYMBOLS

+

Plus TTY mnemonic 1s +

APL Reference Manual 3—41

System Commands

) HE'LP Obtaining Help on the VAX APL Language

o obtain help on monadic + type)HELP ARITHMETIC-FUNCTIONS CONJUGATE

To obtain help on dyadic + type)HELP ARITHMETIC-FUNCTIONS ADD

JHELP ©

ERROR-NUMBERS

0006 LABEL ERROR

Improper use of a colon was detected, or an improper variable
name was entered as a label.

Secondary error messages:

(DUPLICATE LABEL)

(NAME IN USE)

An attempt was made to use the same identifier for both a label and
a local symbol or argument.

(OPERATION SUSPENDED, PENDENT, OR MONITORED)

An attempt was made to change a label definition in a suspended, pendent,
or monitored operation.

aNOTE THAT THE ARGUMENT TO)HELP IS TREATED AS A PREFIX
aTHERE IS MORE THAN ONE QUAD-NAME THAT STARTS WITH (L
JHELP (1L

QUAD-NAMES

0L

OL - Watched Variable Name

Type: System Variable

Forms: [L <« any-value

variable-name <« [1L

Value Domain:

Type: Any

Shape: Any

Depth: Any

Result Domain:

Type: Character (any when set Dby user)

Rank: 1 (vector) (any when set by user)

Shape: Vector (any when set by user)

Depth: 1 (simple vector) (any when set by user)
Default: !

A variable that is used implicitly by OWATCH. [L

contains a character vector showing the name of a watched
variable that has changed. [L is set implicitly by the
system when a variable changes, but can also be set by the user.

Additional Iinformation available:

Frrors

QUAD-NAMES

OLC

3-42 APL Reference Manual

System Commands

) HE'LP Obtaining Help on the VAX APL Language

OLC - Line Counter

Type: Niladic System Function

Form: current-line-number <« [LC

Result Domain:

Type: Integer

Rank: 1 (vector)

Shape: Vector

Depth: 1 (simple vector)

Default Value: Empty

Vector of line numbers in the state indicator;

most recently suspended operation appears first.

Typing ~0LC restarts the most recently suspended

operation at the beginning of the line where execution

was stopped.

Additional Information available:

Errors

QUAD-NAMES

0LX

OLX - Latent Expression

Type: System Variable

Forms: [ULX <« character-vector

current-value « [LX

Value Domain:

Type: Character

Shape: Vector domain

Depth: 0 or 1 (simple)

Default: !

Result Domain:

Type: Character

Rank: 1 (vector)

Shape: Vector

Depth: 1 (simple vector)

Causes expression to be executed automatically

when workspace is loaded.

The expression 1Is not executed when you load the

workspace with the)XLOAD system command.

Additional Information available:

EFrrors

nTHE NEXT EXAMPLE DEMONSTRATES THE /LIBRARY QUALIFIER

YHELP /LIBRARY=DEV1:[APLGRP.LIBRARY]TEMP.HLBE

HELP

This is a sample help file. You can modify the VAX APL HELP

function file or create additional help files.

For help building library files, see the VMS LIBRARIAN

REFERENCE MANUAL.

Additional Iinformation available:

APLHELP File Assigning Default_Library

Library Source_File Library Utility

APL Reference Manual 343

System Commands

) HE'LP Obtaining Help on the VAX APL Language

YHELP /LIBRARY=DEV1:[APLGRP.LIBRARYITEMP.HLB APLHELP

APLHELP File

Certain files may De modified after installation Iif desired.

VAXAPL .HLP, the source text of the VAX APL HELP function file,

is In SYSSLIBRARY. You can add new text to the HELP library.

Refer to)HELP HELP HOW-TO-BUILD while inside VAX APL for

Instructions on creating the help file,

Possible Errors Generated

112

112

112

112

ERROR PROCESSING HELP (ERROR OPENING AS INPUT)

ERROR PROCESSING HELP (FRROR PARSING ARGUMENT TO LIBRARY)

ERROR PROCESSING HELP (INVALID KEY)

ERROR PROCESSING HELP (TOO MANY HELP KEYS SPECIFIED)

3-44 APL Reference Manual

System Commands

) INPUT Diverting Input to Another Device

) INPUT Diverting Input to Another Device

Type

Query/Change System Command

Form

YINPUT [filespec I /character-set]]l

Qualifiers

/LIST

The query form of the) INPUT command. Use /LIST to list the names of the

currently nested input files.

/REVERT

Cancels all nested input files and returns to your terminal as the source of

input.

Description

YINPUT allows you to change the source of APL input from your terminal to

other devices. Typically, you would select a file (filespec) to be the new source.

character-set specifies that the file is to be read in a character set other than

the one you designated for your terminal when you invoked APL. The poss1ble

values are /TTY, /KEY, /BIT, /COMPOSITE and /APL.

If no arguments are used,) INPUT cancels the current input stream and

returns to the previous input stream on the list.

The) INPUT system command is also described in the VAX APL User’s Guide

along with other I/O information.

APL Reference Manual 3-45

System Commands

) INPUT Diverting Input to Another Device

Possible Errors Generated

1 FILE NOT FOUND (FILE NOT FOUND)

14 DEPTH FRROR (TOO MANY DIVERTED INPUTS)

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTER AFTER COMMAND)

22 INCORRECT PARAMETER (INVALID CHARACTER SET QUALIFIER)

35 INVALID FILE SPECIFICATION (WILDCARDS NOT ALLOWED IN FILE

SPECIFICATION)

3-46 APL Reference Manual

System Commands

) LIB Listing Workspace Names

) L I B Listing Workspace Names

Type

Query System Command

Form

) LIB llfile-specl]l

Description

) LIB displays a list of workspace or file names located in the area specified.

If you omit file-spec,) LIB lists all the files on your default device and directory

area that have the file type .APL (the default for workspace names). If you use

file-spec, APL lists the names of all selected files, not just workspaces, on the

selected device and directory.

You can identify a particular file, or use the wildcard characters » and +, to

substitute all or part of the file name or file type; for the version number, only

* 1s a valid wildcard character. In the following example, this command lists

all files on the default device and directory that have a file name beginning

with the letter w:

JLIB W, %%

The following command lists the names of all files on the default device in the

directory [USER.APL]:

)LIB [USER.APL]

The file names in the list begin in column 1 and are separated by a Carriage

Return Line Feed. The list of file names is preceded by a line identifying the

device and directory, and the list is followed by a line that tells how many files

were listed. For example:

)LIB

Directory DEV1:[APLGRP]

ALPHA.APL;1

CHAR.APL;1

GEORGE .APL ;1

PRIME.APL;1

APL Reference Manual 3-47

System Commands

) LIB Listing Workspace Names

Total of 4 files.

)SAVE WS40

THURSDAY 29-NOV-1990 16:5u4:45.31 3 BLKS

)LIB

DEV1:[APLGRP]

ALPHA.APL;1

CHAR.APL;1

GEORGE .APL ;1

PRIME.APL;1

WS40.APL;1

Total of 5 files.

YSAVE WS40.VAR

THURSDAY 29-NOV-1990 16:54:u45.84 3 BLKS

YLIB WS40.x

Directory DEV1:[APLGRP]

WS40,APL;1

WS40.VAR;1

Total of 2 files.

JLIB x.,x%

Directory DEV1:[APLGRP]

ALPHA.APL;1

CHAR.APL;1

GEORGE .APL ;1

LIS«WOR«1,4A45;1

LIS+«WOR«1EX.0QUT;1

LIS+«WOR«1TMP.AAS;1

PRIME.APL;1

WRITE<«EXAMPLE.COM;7

WS40 .,APL:1

WSu0.VAR;1

Total of 10 files.

Note that when you execute the) L7B command with no argument, APL passes

the following command string to VMS for execution:

DIRECTORY/COLUMNS=1/HEADING/TRAILING *.APL;*

3-48 APL Reference Manual

System Commands

) L I B Listing Workspace Names

If you include an argument with)LIB, that argument is substituted for

* .APL ; x 1n the command string passed to VMS. The argument may be no

more than 95 characters long (after translation to ASCII), not including leading

white space (spaces or tabs before the argument begins), but including all other

white space within the argument. For example:

)LIB/PROTECTION WS40.x

Directory DEV1:[APLGRP]

WS40.APL; 1 (RWED,RWED,RE)

WS40.VAR; 1 (RWED,RWED,RE,)

Total of 2 files.

The)LIB command uses the DCL command DIRECTORY. This is true even

if you have a symbol definition for DIRECTORY that has different qualifiers.

For more details about the DCL command DIRECTORY, see the VMS DCL

Dictionary.

Possible Errors Generated

22 INCORRECT PARAMETFER (LINE TOO LONG TO TRANSLATFE)

APL Reference Manual 3-49

System Commands

) LOAD Retrieving a Workspace

) LOAD Retrieving a Workspace

Type

Workspace Manipulation System Command

Form

)LOAD wsname

Qualifiers

/ PASSWORD [:Ipwill

If you use a password when the workspace is saved, you must specify it

when you perform a load operation or APL will not retrieve the workspace. A

/PASSWORD or /PASSWORD: specification that is not followed by a password 1s

ignored.

/CHECK

The optional /CHECK qualifier causes APL to examine the workspace for

possible corruption (damage to the internal structure of the workspace). If

damage is detected, a message is displayed and APL tries to recover as much

information as possible from the workspace and continues the load. The

recovered workspace may be missing APL variables, user-defined operations,

individual lines of user-defined operations, and other APL objects that were

damaged. The user must determine what named objects have been removed

from the workspace. You must use the)SAVE command if you want to

maintain an undamaged version of the recovered workspace.

Description

3-50

) LOAD makes wsname the active workspace by replacing, and thus destroying,

the contents of the currently active workspace. If the workspace named by

wsname is larger than the current)MAXCORE setting, APL increases the

setting and loads the workspace.

The file specification you give for wsname must include at least a file name.

APL will assume default values for the rest of the specification; that is, it

assumes the file type .4PL, the current user device and directory, and an

empty password.

APL Reference Manual

System Commands

YyLOAD Retrieving a Workspace

When you load a workspace, the) LOAD system command responds by

displaying the word SAVED, followed by the time and date when the workspace

was saved, followed by the size (in disk pages) of the newly active workspace.

If the newly active workspace contains a suspended operation, APL also prints

a star. If the newly active workspace is larger than the current setting for

MAXCORE, APL prints the message NEW MAXCORE IS nnnP, where nnn is the

new size of maxcore, and P indicates that the size is measured as pages of

memory. The)WSID value of the loaded workspace is the value you specified

for wsname.

The 0QLD system function (see Chapter 2) performs the same operation as the

) LOAD command, but does not display the verifying messages.

The verifying messages for the) L0AD and) SAVE system commands are very

similar. The only difference is that when you load a workspace, the message

includes the word SAVED. You can use this difference to distinguish between a

workspace that has just been loaded and a workspace that has just been saved.

For example:

VFRY

[1] M « [JXQ 'SAVE ROAR')

[2] '"MESSAGE IS ' 3 M

[3] v

YJWSID FRY

WAS CLEAR WS

FRY

MESSAGE IS THURSDAY 8-NOV-1990 17:12:33.14 16 BLKS

YLOAD ROAR

MESSAGE IS SAVED THURSDAY 8-NOV-1990 17:12:33.14 16 BLKS

M

SAVED THURSDAY 8-NOV-1990 17:12:33.14 16 BLKS

In this case, the user executes the) SAVE command from within the function

FRY. APL saves the workspace and assigns the verifying message of the

) SAVE command to the variable ¥. Next, the user loads the workspace. APL

immediately continues execution of the function and assigns the verifying

message of the) LOAD command to the variable M.

When you load a workspace that was saved inside 0 input, APL removes the

pendent [J input from the state indicator stack. If the 0 input was executed

from within an operation, APL suspends the operation after removing the

pendent 0 input from the stack.

If the 0LX system variable (see Chapter 2) has a value in the workspace, it is

executed when the workspace is loaded, unless the top of the state indicator

stack contains an execute function, or unless the workspace was saved in

function-definition mode (if it was, you remain in function-definition mode after

APL Reference Manual 3-51

System Commands

) LOAD Retrieving a Workspace

the workspace is loaded). If the workspace was saved inside [J input, the 0LX

expression is executed only after APL removes the pendent 0 input from the

state indicator stack.

Examples:

JLOAD WS35 _

SAVED THURSDAY 8-NOV-1990 17:12:11.52 41 BLKS

JLOAD SYS$SCRATCH:TICTAC

SAVED THURSDAY 8-NOV-1990 17:11:59.28 u1 BLKS

RJEN HAS A SUSPENDED OPERATION

)LOAD JEN

SAVED THURSDAY 8-NOV-1990 17:0u4:23.38 L2 BLKS~

)CLEAR

CLEAR WS

OLX < "' 'USE APL_LASER PRINTER'''

)JLOAD SQUARE

SAVED THURSDAY 8-NOV-1990 17:03:11.u46 11 BLKS

SQUARE

YWSID ROOT

WAS SQUARE

)SAVE ROOT

THURSDAY 8-NOV-1990 17:27:40.51 12 BLKS

)LOAD ROOT

SAVED THURSDAY 8-NOV-1990 17:27:40.51 12 BLKSx

Possible Errors Generated

22 INCORRECT PARAMETER

22 INCORRECT PARAMETER (INVALID KEYWORD OR QUALIFIER)

3-52 APL Reference Manual

System Commands

Y MAX CORE Determining the Maximum Workspace Size

) MAX CORE Determining the Maximum Workspace Size

Type

Query/Change System Command

Form

YMAXCORE [[nll

Default in Clear Workspace

1024P / 1048576P

Description

As an action command,)MAXCORE changes the current setting for the

maximum workspace size to the value specified (n) and displays the previous

YMAXCORE setting. As a query command,)MAXCORE returns the current

maximum workspace size and the system maximum workspace size.

You may not set the current maximum workspace size to a value smaller than

the amount currentlyin use, or to a value less than 40, whichis the minimum

value of n for all new workspaces. Also, you may not set the maximum size to a

value larger than the system maximum. Note that, depending on your system

resources, you may not have access to the maximum amount of memory.

Although the number of pages (P) appears in the display, you do not type P in

the command string. For example:

YMAXC

1024P/ 1048576P

YMAXC 2000

WAS 1024P/ 1048576P

YMAXC

2000P/ 1048576P

Possible Errors Generated

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

22 INCORRECT PARAMETER (ILL FORMED NUMERIC CONSTANT)

22 INCORRECT PARAMETER (PARAMETER OUT OF RANGE)

APL Reference Manual 3-53

System Commands
)MINCORE Determining the Minimum Workspace Size

) MINCORE Determining the Minimum Workspace Size

Type

Form

Query/Change System Command

YMINCORE [[n]

Default in Clear Workspace

40P

Description

3-54

)MINCORE displays or changes the current minimum workspace size (in
pages). As an action command, YMINCORE changes the current setting for
the minimum workspace size to the value specified (n) and displays the
previous setting. Legal values for the YMINCORE setting are 0 through the
current) MAXCORE value. As a query command,) MINCORE returns the current
minimum workspace size.

The YMINCORE system command is useful in dealing with large arrays or in
performing operations that require large amounts of intermediate storage.
Such operations can make the workspace continually expand, thus slowing
the processing and fragmenting of the workspace. You can improve system
efficiency by using) MINCORE to ensure that a reasonable amount of memory is
available at the beginning of the operation.

Generally, the)MINCORE setting does not change when you load a workspace.
However, depending on the characteristics of the loaded workspace, the
)JMINCORE setting may be greater than the amount of available memory. In
this case,)MINCORE is reset to the default when the)L0AD succeeds (no error
1s signaled).

Examples:

YMINC

32P

JMINC 100

WAS 32P

APL Reference Manual

System Commands

YyMINCORE Determining the Minimum Workspace Size

Possible Errors Generated

22 INCORRECT PARAMETER (EXTRANEQOUS CHARACTERS AFTER COMMAND)

22 INCORRECT PARAMETER (ILL FORMED NUMERIC CONSTANT)

22 INCORRECT PARAMETER (PARAMETER OUT OF RANGE)

APL Reference Manual 3-55

System Commands

) MON Returning to Operating System Command Level

) MO N Returning to Operating System Command Level

Type

Form

System Action System Command

YMON

Description

)MON returns control to operating system command level. It does not save

the active workspace, but if 14US is set (see Chapter 2), the workspace is

automatically saved. The)0V command does not close open files, but it does

flush the file buffers.

-When you use)MON to leave APL, you can return to APL by typing the DCL

command CONTINUE. If you intend to return to APL, be careful not to destroy

your memory image while you are at DCL level. This situation could occur if

you issue a command that runs a program.

The)#ON command has limited value because most DCL commands do run

a program and thus will destroy the APL image. If you want to return to

the DCL command level to run other programs, you should use the) PUSH or
)DO command. If you want to return to another process, you should use the

JATTACH command.

Possible Errors Generated

3-56

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

APL Reference Manual

System Commands

) NMS Displaying Names in the Symbol Table

) NMS Displaying Names in the Symbol Table

Type

Query System Command

Form

)NMS [[start-stringllstop-string]lll

Qualifiers

/WSID: wsname

Allows you to list the names in a nonactive workspace. wsname specifies the

workspace.

/PASSWORD: [pw]

Specifies the password used when the nonactive workspace was saved.

Description

)NMS displays all the names in the symbol table in 04V order. The result is a

combination of the same information obtained by the) VARS,)FNS,)OPS, and

)GRPS commands.

By default, APL displays the names from the currently active workspace. The

optional /WSID qualifier allows you to specify a nonactive workspace. If the

nonactive workspace was saved with a password, you must also specify the

/PASSWORD qualifier.

The optional string parameters identify starting and stopping points for

the list. When you specify the string parameters, you can use the » and -+

wildcards. The objects are listed in JAV order, separated by tabs. Each output

line in the list begins in column 1.

Note that the wildcard determines the start-string. There is no wildcard for

the stop-string.

APL Reference Manual 3-57

System Commands

) NM.S Displaying Names in the Symbol Table

3-58

The following name classes are possible:

Value Meaning

0 Name not in use

2 Variable name

3 Function name

i Operator name

Ty Group name

A symbol has a name class of 0 when it has no value. Such a symbol may be

listed in the symbol table because it is currently referenced in a user-defined

operation (either a function or operator) or was previously used and has since

been erased. For example:

)LOAD NAMES

SAVED THURSDAY 8-NOV-1990 17:44:43,63 15 BLKS

)GRPS

LAB1 RECAP REPLACE VERTICAL

) VARS

A B LAT VET

JENS

ADD

YNMS

A.2 ADD.3 B.2 DC.0 DONE.O DOWN.O LAB1.4 LAT.2

NEW.0 OLD.0 0UT.0 RECAP.4 REPLACE. 4 TEST.O

UP.0 VERTICAL.4 VET.2

If you use) NMS with no parameters, APL displays all the symbols in the

workspace. If you use the optional string parameters, you can specify a

particular section from the list of symbol names. For example, all the names

starting with B through those starting with L 4. If you include just one

argument, APL uses Z as the default for the second string. To get a list of all

symbol names that begin with a given prefix, use the prefix for both arguments

or use a wildcard. For example:

APL Reference Manual

System Commands

) NMS Displaying Names in the Symbol Table

YJLOAD NAMES

SAVED THURSDAY 8-NOV-1990 17:44:43.63 15 BLKS

YJNMS B LA -

B.2 DC.O DONE.O DOWN.0 LAB1.4 LAT.2

JNMS R

RECAP. 4 REPLACE. 4 TEST.0 UP.O VERTICAL. 4 VET .2

JNMS VE VE

VERTICAL.4 VET.?2

YNMS VEx*

VERTICAL.4 VET.2

Possible Errors Generated

1 FILE NOT FOUND (FILE NOT FOUND)

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

22 INCORRECT PARAMETER (FILE SPECIFICATION IS MISSING)

22 INCORRECT PARAMETER (INVALID KEYWORD OR QUALIFIER)

22 INCORRECT PARAMETER (NOT A LETTER)

57 FILE DOES NOT CONTAIN A WORKSPACE

APL Reference Manual 3-59

System Commands

) OFF Terminating the APL Session

) OFF Terminating the APL Session

Type

System Action System Command

Form

)OFF [HOLD | LOGOUT]

Default in Clear Workspace

HOLD

Description

)OFF terminates an APL session.

If you specify the #0LD parameter (HOLD is the default), APL terminates your

session and returns you to DCL command level. If you specify the LoGoUT

parameter, APL not only terminates your session, but logs you off the system.

The) 0OFF command destroys the currently active workspace, deletes the JAUS

file, closes all open files, and resets the terminal characteristics to the system
settings. When you use) OFF, you cannot return to APL by enterring the DCL

command CONTINUE.

The) 0FF command displays several lines of information before terminating
the session. The lines contain the following:

Your terminal identification

Current time

Current date

Length of time connected to APL

Amount of computer CPU time used inside APL

Number of APL statements executed

Number of APL operations executed

Number of page faults while inside APL

Number of buffered I0 and number of direct IO while inside APL

3-60 APL Reference Manual

System Commands

) OFF Terminating the APL Session

Examples:

JOFF LOGOUT

SYS$INPUT: THURSDAY 8-NOV-1990 17:48:59.32

CONNECTED 00:00:00.98 CPU TIME 00:00:00.37

0 STATEMENTS 0 OPERATIONS

170 PAGE FAULTS 21 BUFFERED IO 9 DIRECT IO

YOFF HOLD

SYS$INPUT: THURSDAY 8-NOV-1990 17:50:13.15

CONNECTED 00:00:00.98 CPU TIME 00:00:00.38

0 STATEMENTS 0 OPERATIONS

154 PAGE FAULTS 21 BUFFERED I0 9 DIRECT IO

9

Possible Errors Generated

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

22 INCORRECT PARAMETER (UNRECOGNIZED QUALIFIER KEYWOKD)

APL Reference Manual 3-61

System Commands

) OPS Displaying a List of Operators

) O P.S Displaying a List of Operators

Type

Form

Query System Command

)OPS [start-stringllstop-string]]l

Qualifiers

/WSID:wshame

Allows you to list the user-defined operators defined in a nonactive workspace.

wsname specifies the nonactive workspace name.

/ PASSWORD : pw

Specifies the password used when the nonactive workspace was saved.

Description

3-62

)OPS displays a list of the global names used as user-defined operator names

in a workspace. By default, APL displays the list from the currently active

workspace. The optional / ¥SID qualifier allows you to specify a nonactive

workspace. If the nonactive workspace was saved with a password, you must

also specify the / PASSWORD qualifier.

The optional string parameters identify starting and stopping points for

the list. When you specify the string parameters, you can use the * and -

wildcards. The objects are listed in 0AV order, separated by tabs. Each output

line in the list begins in column 1.

Note that the wildcard determines the start-string. There is no wildcard for

the stop-string.

It you use)0PS with no parameters, APL displays all the global operator

names in the workspace:

JOPS

ALPH HILB INVRS INVT LS5Q

APL Reference Manual

System Commands

) OPS Displaying a List of Operators

If you include just one argument, APL uses Z as the default for the second

string:

JOPS IN

INVRS INVT LSq

YOPS INV INV

INVRS INVT

To obtain a list of all user-defined operator names that begin with a given

prefix, use the prefix for both arguments or use a wildcard:

YOPS INVx

INVRS INVT

Possible Errors Generated

1 FILE NOT FOUND (FILE NOT FOUND)

29 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

29 INCORRECT PARAMETER (FILE SPECIFICATION IS MISSING)

20 INCORRECT PARAMETER (INVALID KEYWORD OR QUALIFIER)

22 INCORRECT PARAMETER (NOT A LETTER)

57 FILE DOES NOT CONTAIN A WORKSPACE

APL Reference Manual 3-63

System Commands

) ORIGIN Determining the Index Origin

) ORIGIN Determining the Index Origin

Type

Query/Change System Command

Form

YORIGIN [[n]

Default in Clear Workspace

1

Description

)ORIGIN displays or changes the setting of the index origin (0 10).

The index origin (n in the form) can be either 0 or 1; its setting determines

whether the values of an array are indexed beginning with position 0 or 1.

Executing the)ORIGIN in change mode has the same effect as assigning a
value to the 0 I0 system variable (see Chapter 2).

Examples:

15

12345

JORIGIN 0

WAS 1

15

01234

JORIGIN

0

Possible Errors Generated

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

22 INCORRECT PARAMETER (ILL FORMED NUMERIC CONSTANT)

22 INCORRECT PARAMETER (SYSTEM VARIABLE VALUE MAY ONLY BE 0 OR 1)

3-64 APL Reference Manual

System Commands

) 0UTPUT Diverting Output to Another Device

YOUTPUT Diverting Output to Another Device

Type

Query/Change System Command

Form

yoUTPUT lfilespec [/ character-set]l

Qualifiers

JAPPEND

Specifies that you want to add data to the end of an existing file. If you specify

filespec without the /APPEND qualifier, APL creates a new file.

/DISPOSE:{ KEEP| DELETE| PRINT| SUBMIT| PRINTDELETE |

SUBMITDELETE}

Specifies whether the value of filespec is a temporary or permanent file.

/DISPOSE : KEEP, which is the default, means the file is permanent;

/DISPOSE : DELETE means the file will be deleted when it is closed.

/DISPOSE: PRINT sends the file to a print queue (SYS$PRINT) when the file is

closed, and /DISPOSE:SUBMIT sends the file to a batch queue (SYS$BATCH)

when the file is closed. PRINTDELETE and SUBMITDELETE send the file to the

appropriate queue and then delete the file when the job is finished.

JLIST

This is the query form. Allows you to display the diverted output file on one

line and SYS$OUTPUT (the VMS name for your default output stream) on the

next line (or just SYS$OUTPUT, if output is not being diverted).

/REVERT

Causes the return of system output from the diverted destination to your

terminal. This is the same as using) OUTPUT with no qualifiers.

/SHADOW

Allows you to display the diverted output on your terminal as well as sending

it to a file. Otherwise, no system output is displayed except for system prompts

and echoed input.

If you want to begin shadowing output that is already diverted, you can reenter

the original)0UTPUT command and add the /SHADOW and /APPEND qualifiers.

If you want to discontinue shadowing while keeping the same diverted output

stream, you can reenter the original) 0UTPUT command with the omission

APL Reference Manual 3-65

System Commands

)OUTPUT Diverting Output to Another Device

of the /SHADOW qualifier and the addition of the /APPEND qualifier. (You can

change any of the original arguments or qualifiers at this time. If you omit

information that you specified in the original) 0UTPUT command, APL selects

any default values that may be applicable. For example, output diverted from

an APL terminal with the /TTY qualifier defaults to the APL character set if

you do not reenter the /TTY qualifier.)

Description

3-66

)OUTPUT allows you to change the destination of output to a device other than

your terminal. Typically, you send the output to a file or to another terminal. If

the output is sent to a file, you can specify that you want to write the diverted

output in a character set other than the one you designated for your terminal

when you invoked APL. The possible values for character-set are /TTY, /KEY,

/BIT, /COMPOSITE,and /APL.

)OUTPUT with no arguments or qualifiers causes the system output to return

from the diverted destination to your terminal. This is the same as using the

/REVERT qualifier.

When you use)0UTPUT, the output file has the appearance of a normal

terminal display containing input lines and the resulting output. However, at

your terminal the display is different. The only output that APL generates

at your terminal is echoed input and APL prompts. APL echoes any input,

whether it comes from your terminal or a file, and APL displays the usual

6-space prompt to signal the completion of a task. In fact, all APL-generated

prompts (such as the 0SF prompt and function editor prompts) are still

displayed at the terminal. If you want to see a normal display at your

terminal, use the /SHADOW qualifier (see below).

Note that)ouTPUT files cannot be nested.

If you enter either a weak or strong attention signal while output is being

diverted from your terminal, APL responds by displaying output on your

terminal as well as in the diverted stream, just as if you had specified

/SHADOW.

The)oUTPUT system command is also described in the VAX APL User’s Guide

along with other I/0 information.

APL Reference Manual

System Commands

)OUTPUT Diverting Output to Another Device

Possible Errors Generated

22

22

22

33

INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

INCORRECT PARAMETER (INVALID KEYWORD OR QUALIFIER)

INCORRECT PARAMETER (REDUNDANT KEYWORD OR QUALIFIER)

I0 ERROR (INVALID WILDCARD OPERATION)

APL Reference Manual 3-67

System Commands

) OWNER Displaying Information About Workspace Creation

) OWNER Displaying Information About Workspace Creation

Type

Form

Query System Command

)OWNER

Description

3-68

) OWNER displays information about the active workspace at the time it was

created. A workspace is created when it is saved. The clear workspace is

created when the) CLEAR system command is given.

The result of the) OWNER appears in the following form:

CREATED ON day dd-mmm-yyyy hh:mm:ss.ttBY name [uic] AT dev: WITH Iv.u-edit

day dd-mmm-yyyy hh:mm:ss.tt is the day, date and time of creation

name is the user name of the-creator

uic is the user identification code of the creator

dev: is the terminal device name used to create the workspace

lv.u-edit is the version of APL used to create the workspace (see the

description of 0 VERSION in Chapter 2)

Examples:

) CLEAR

CLEAR WS

)OWNER

CREATED ON THURSDAY 8-NOV-1990 18:11:49.32 BY

(APLGRP,USER] AT WITH V3.2-83H4

)SAVE USER1WS

THURSDAY 8-NOV-1990 18:11:49.51 3 BLKS

YLOAD USER1WS

SAVED THURSDAY 8-NOV-1990 18:11:49.51 3 BLKS

)OWNER

CREATED ON THURSDAY 8-NOV-1990 18:11:49.51 BY

[APLGRP,USER] AT WITH V3.2-834

APL Reference Manual

System Commands

) OWNER Displaying Information About Workspace Creation

Possible Errors Generated

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

APL Reference Manual 3-69

System Commands

) PASSWORD Workspace Password

) PASSWORD Workspace Password

Type

Query/Change System Command

Form

) PASSWORD [[pw]]

Default in Clear Workspace

Empty

Qualifiers

/PASSWORD :[[pw]

Specifies the password associated with the active workspace.

Description

) PASSWORD displays or changes the password associated with the active

workspace.

APL passwords are eight characters long, and the password you supply must

be a valid APL identifier. Passwords longer than eight characters are truncated

on the right; passwords with fewer than eight characters are padded on the

right with blanks.

If you do not change the password, the form of the) PASSWORD display is as

follows:

/ PASSWORD : pW

If you do change the password, the form of the) PASSWORD display is as follows:

WAS /|PASSWORD: pw

If the password is empty, the display is one of the following:

/PASSWORD: WAS /PASSWORD:

When you use) PASSWORD to change the password, you can specify the

new password directly after the) PASSWORD, or you can specify it following

/ PASSWORD. For example:

3-70 APL Reference Manual

System Commands

) PASSWORD Workspace Password

)JPASSWORD SESAME

WAS /PASSWORD:

aPASSWORD WILL BE TRUNCATED TO 8 CHARACTERS

)PASSWORD [PASSWORD:0PENSESAME

WAS [PASSWORD:SESAME

)PASSWORD [PASSWORD:

WAS [PASSWORD:0PENSESA

)PASSWORD

/PASSWORD:

To load or copy objects from a workspace with a nonblank password, you must

include the password for the workspace in the command string.

Possible Errors Generated

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

22 INCORRECT PARAMETER (ILL FORMED NAME)

APL Reference Manual 3-71

System Commands

) PCOPY Copying from a Workspace with Protection

) PCOPY Copying from a Workspace with Protection

Type

Workspace Manipulation System Command

Form

)y PCOPY wsname [list]l

Qualifiers

/CHECK

The optional /CHECK qualifier causes APL to examine the workspace for

possible corruption (damage to the internal structure of the workspace). If

damage is detected, a message is displayed and APL tries to recover as much

information as possible from the workspace and to continue the copy. The

recovered workspace may be missing APL variables, user-defined operations,

individual lines of user-defined operations, and other APL objects that were

damaged. The user must determine what named objects have been removed

from the workspace.

/PASSWORD [:Ipwil

Specifies the password used when wsname was saved.

Description

) PCOPY (protected copy) is the same as the) COPY system command, except

that) PcoPY does not replace objects in the active workspace with objects of

the same name in the copy workspace. Instead, APL returns the message NOT

COPIED: along with the names of the objects affected.

When copying groups, the) PCOPY command does not copy any members of the

group that have the same name in both workspaces. If the group name itself is

the same as a group name in the active workspace,) PCOPY does not copy the

group name, nor any members of the group.

The) PCcoPY system command performs the same operation as the 0QPC

system function (see Chapter 2), but JQPC does not display messages to verify

the success of the copy.

3-72 APL Reference Manual

System Commands

) PCOPY Copying from a Workspace with Protection

Example:

)JPCOPY VARS A T

SAVED TUESDAY 6-NOV-1990 18:21:58.41 13 BLKS

FOUND: T

NOT COPIED: A

Possible Errors Generated

22 INCORRECT PARAMFETER

22 INCORRECT PARAMETER (ILL FORMED NAME)

27 LIMIT FRROR (ARGUMENT STRING IS TOO LONG)

83 DAMAGED WORKSPACE HAS BEEN CORRECTED (SOME SYMBOLS MAY HAVE

BEEN FRASED)

APL Reference Manual 3-73

System Commands

) PUSH Interacting with Operating System Programs

) PUS H Interacting with Operating System Programs

Type

System Action System Command

Form

Y PUSH [command-string]

Qualifiers

3-74

/NOKEYPAD

Specifies that you do not want the keypad characteristics of the current process

to be available to the new subprocess. The default is that the characteristics

are available.

/NOLOGICALS

Specifies that you do not want the logical name table from the current process

to be available to the new subprocess. The default is that the table is available.

/NOSYMBOLS

Specifies that you do not want the global and local symbol table (defined at the

DCL level) from the current process to be available to the new subprocess. The

default is that the symbol table is available.

/NOTIFY

Determines whether VMS broadcasts a message to your current process when

the new subprocess completes or aborts. If you are executing the) PUSH

command from the batch mode, you cannot use the /NOTIFY qualifier. Note

that you can use /NOTIFY only when you specify the /nowait qualifier.

/ PROCESS : process-name

Specifies the name for the new subprocess. If you do not use /NOWAIT, and you

use the DCL command ATTACH rather than the LOGOUT command to return

to APL, you can later use the YATTACH command with the process name that

you specify.

/NOWAIT

Allows you to create a detached subprocess. When you specify /NOWAIT, control

returns to APL when the subprocess begins execution, and the subprocess

continues to execute in the background. Note that if the subprocess uses any

APL Reference Manual

System Commands

) PUSH Interacting with Operating System Programs

terminal I/0, it becomes mixed with any terminal I/O used by your current

process.

Description

) PUSH interrupts the APL session, creates a VMS subprocess, and puts you at

DCL command level without terminating the APL session. You can perform

any operation at the DCL command level; when you are finished, you can

return to APL at the point you left off.

Note that if you use an invalid qualifier when you specify) PUsH, APL sends

the unrecognized characters to the subprocess command level along with the

command string.

If you want to display the process name of any subprocess owned by the

current process, use the DCL command SHOW PROCESS/SUBPROCESSES

(for more details, see the VMS DCL Dictionary).

When you use) PUSH without a command string, you remain at DCL command

level until you enter LOGOUT to return to APL. When you use) PUSH with a

command string (do not enclose the string in quotation marks), VMS executes

the command string and then automatically returns control to APL. The

command string must be no longer than 132 characters (after translation to

ASCII), not including leading white space (spaces or tabs before the argument

begins), but including all other white space within the argument.

For example, entering) PUSH and the DCL command SHOW TIME, and then

LOGOUT has the same effect as entering) PUSH with the command string

SHOW TIME:

)PUSH

$SHOW TIME

23-NOV-1990 13:32:42

$LOGOUT

Process USER1 logged out at 23-NOV-1990 13:33:13

YPUSH SHOW TIME

23-NOV-1990 13:33:41

While you are at DCL command level, your terminal is in ASCII rather than

APL mode, and your terminal characteristics (such as output line width) revert

to the system settings. When you return to APL, the APL character set is

restored, and your [P¥ setting is the same as it was before you executed the

) PUSH command (although the default for 0 Pw changes if you changed your

system terminal width (see Chapter 2 for details). However, other terminal

characteristics you may have changed at DCL command level (for example, the

[0GAG setting, or the ability to input lowercase characters) remain changed.

APL Reference Manual 3-75

System Commands

) PUSH Interacting with Operating System Programs

APL makes no attempt to recover the output from any of the work you do at

DCL command level. For example:

TIME « ¢')PUSH SHOW TIME'

23-NOV-1990 13:40:34

11 VALUE ERROR (REQUIRED VALUE NOT SUPPLIED BY EXECUTE)

TIME <« ¢'")PUSH SHOW TIME'

A

Here, APL executes the) PUSH command, and VMS displays the result of the

SHOW TIME command. But APL does not recover the output and cannot

assign the value to the variable TIME.

For more details about VMS subprocesses, see the VMS DCL Dictionary.

Possible Errors Generated

22 INCORRECT PARAMETER (ILLEGAL ASCII CHARACTER)

22 INCORRECT PARAMETER (MISSING ARGUMENT)

22 INCORRECT PARAMETER (NOKEYPAD QUALIFIER REPEATED)

22 INCORRECT PARAMETER (NOLOGICALS QUALIFIER REPEATED)

22 INCORRECT PARAMETER (NOSYMBOLS QUALIFIER REPEATED)

22 INCORRECT PARAMETER (NOTIFY QUALIFIFER REPEATED)

22 INCORRECT PARAMETER (NOWAIT QUALIFIER REPEATED)

22 INCORRECT PARAMETER (PROCESS NAME QUALIFIER REPEATED)

73 SUBPROCESS ERROR (COMMAND BUFFER OVERFLOW---SHORTEN EXPRESSION

OR COMMAND LINE)

3-76 APL Reference Manual

System Commands

) SAVE Saving a Copy of the Active Workspace

) SAVE Saving a Copy of the Active Workspace

Type

Workspace Manipulation System Command

Form

YSAVE [[wsnamel

Qualifiers

/CHECK

The optional /CHECK qualifier causes APL to examine the workspace for

possible corruption (damage to the internal structure of the workspace). When

/ CHECK 1s specified on) SAVE, APL checks for possible damage before saving

the current workspace on disk. If there is damage, APL signals an error and

aborts the execution of) SAVE. If this occurs, use) SAVE without /CHECK to

save the damaged workspace; use) L0AD with /CHECK to recover as much as

possible from the damaged workspace and determine what APL objects have

been lost from the damaged workspace. You must use the)SAVE command if

you want to maintain an undamaged version of the recovered workspace.

/MAXLEN[:n]

The optional /MAXLEN qualifier allows you to specify the maximum record

length, n (in bytes), to be used to save the workspace. If you omit /MAXLEN (or

specify it without an argument), APL uses the value of 01 DML (see Chapter 2)

as the maximum record length.

/PASSWORD [:Ipwli]

The)SAVE system command allows you to specify a password for your

workspace. The default is an empty password (eight blanks). If you save a

workspace that has a password — either one you specify with) SAVE or one

specified earlier by the) PASSWORD or)WSID command—you have to specify

the password when you load or copy the workspace.

Description

) SAVE saves a copy of the active workspace in a file specified by wsname. If

you omit wsname, the file is saved with the name currently returned by) ¥SID.

APL Reference Manual 3-77

System Commands

) SAVE Saving a Copy of the Active Workspace

3-78

The) SAVE command displays the time and date the workspace is saved, the

number of disk blocks required to store the workspace, and the workspace

identification (either the name currently returned by) ¥SID, or the name you

specify as wsname).)SAVE appends a star (x) to the message if the saved

workspace contains a suspended operation.

When you save a workspace, you have the option of saving it under its current

name—the name returned by) ¥SID—or renaming it. However, APL does not

save a workspace under a name that already exists in your storage area, unless

the YWSID is that name. If you specify a new name with the) SAVE command,

you not only store your active workspace under that name, but you also change

the name of the currently active workspace to the new name specified.

If your current) ¥SID is the same as a workspace you have already saved, APL

creates a new version of the file. Both the old and new files are available on

the appropriate storage device; however, the new file is considered the current

version and has a version number one greater than that of the old file.

APL does not save a clear workspace. If your workspace is clear, you must first

give it a name with the)¥SID command, or you must use the) SAVE command

with a workspace name. |

If you specify a password using) PASSWORD or)WSID, but then save the

workspace using the wsname parameter, the workspace is saved with an empty

password (unless you specify a new one with) SAVE). For example:

YWSID MYWS/PASSWORD:SESAME

WAS EXAMPLE

ACHANGE THE WSID

JSAVE MYWS

THURSDAY 8-NOV-1990 19:42:58.52 15 BLKS

JWSID

MYWS

aPASSWORD CHANGED TO EMPTY

YPASSWORD

/ PASSWORD:

aNO NEED FOR A PASSWORD WHEN LOADING

YLOAD MYWS

SAVED THURSDAY 8-NOV-1990 19:42:58.52 15 BLKS

You can save a workspace while there is a suspended operation on the top of

the SI stack. When you load the workspace, the operation is still suspended; it

does not continue automatically. You can cause an automatic startup by using

the 0LX system variable (see Chapter 2).

APL Reference Manual

System Commands

) SAVE Saving a Copy of the Active Workspace

If you execute a) SAVE command within an operation, for example, with 0x¢

') SAVE', APL saves the workspace, displays the time and date, and continues

executing the operation. The next time you load that workspace, APL displays

a slightly different message (see) L0AD for details) and begins the session by

executing that particular operation after the 0xqQ ') S4VE'. It does not execute

O0LX, because 0 LX does not execute if the loaded workspace is in function-

definition mode, or if the operation at the top of the state indicator stack is

pendent.

Examples:

)CLEAR

CLEAR WS

YWSID

CLEAR WS

) SAVE

60 WS NOT SAVED, THIS WS IS CLEAR WS

) SAVE
A

JWSID WS30

WAS CLEAR WS

)SAVE

THURSDAY 8-NOV-1990 19:u46:08.95 3 BLKS WS30

YWSID WS10

WAS W530

)SAVE

THURSDAY 8-NOV-1990 19:u46:09.24 3 BLKS WS10

YJWSID WS30

WAS WS510

)SAVE WS10

60 WS NOT SAVED, THIS WS IS WS30

) SAVE WS10

A

JWSID WS35

WAS WS30

Possible Errors Generated

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

22 INCORRECT PARAMETER (INVALID KEYWORD OR QUALIFIER)

59 WS NOT SAVED, THIS WS IS CLEAR WS

APL Reference Manual 3-79

System Commands

) ST Displaying the State Indicator

) S I Displaying the State Indicator

Type

Query System Command

Form

)SI

Description

)SI displays the state indicator of the active workspace. The state indicator

contains the status of the execution of user-defined operations, quad input

requests, and execute functions.

For user-defined operations, APL displays the operation name followed by,

within brackets, the line and statement numbers at which the operation

stopped executing. No statement number is displayed if the statement at

which execution stopped is the first or only statement on the line. If a

statement number is displayed, it is separated from the line number by a

diamond (¢) character. A star following the bracketed line and statement

number indicates that the operation is currently suspended; no star indicates

that the operation is pendent. For example:

) ST

F[2] =

G[302]

In this example, the pendent operation ¢ stopped executing at statement 2 on

line [3] and is currently waiting for operation F, which was suspended at line

[2].

Pendent quad input requests are indicated by a 0 character. For example:

A<(]

U:

)SI

U

0:

First, the) SI display shows that the quad input request is pendent; then, APL

displays (1: to reprompt for quad input.

3-80 APL Reference Manual

System Commands

) SI Displaying the State Indicator

Pendent execute functions are indicated by the 0XQ or ¢ characters. For

example:

0xgQ ')SsI!

0xqQ

)ST

(There ig no output)

In this example, the) ST display indicates that an execute function is pendent.

This occurs because APL executes expressions from right to left, and the

output from) ST is displayed before the execute function is considered to have

completed. Afterwards, the state indicator is clear.

The order of display in the)SI list is significant; the operation or quad mput

request that was most recently active is listed first, the next most recent

request is listed second, and so on.

Locked operations in the state indicator are flagged with a ¥ character, and no

line number is displayed.

You can clear individual operations from the state indicator by using the

branch function (+) to restart or terminate suspended operations, or you can

use the system function ORESET or) SIC to clear the state indicator entirely.

When the state indicator is clear,) ST returns no result. For more information,

see the VAX APL User’s Guide

Possible Errors Generated

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

APL Reference Manual 3-81

System Commands

) SIC Clearing the State Indicator

) S I C Clearingthe State Indicator

Type

APL Action System Command

Form

)SIC

Description

)SIC clears the state indicator. Once cleared, the state indicator shows

no suspended operations and no pending quad input requests or execute

functions. After you use)SIC, the)SI,)SINL, and)SIS system commands

do not return a value. The)SIC system command behaves in the same

manner as the JRESET system function (see Chapter 2), and they can be used

interchangeably.

)SIC does not return a value.

Possible Errors Generated

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

3-82 APL Reference Manual

System Commands

) SINL Displaying the State Indicator and Local Symbols

) SINL Displaying the State Indicator and Local Symbols

Type

Query System Command

Form

YSINL

Description

) SINIL displays the same information as)SI. This includes the status of

the execution of user-defined operations, quad input requests, and execute

functions. In addition,) SINL lists the local symbols of each operation, and

displays the argument expression of any pending execute function. Local

symbols in locked operations (flagged with a ¥ character) are not displayed.

For example:

YSINL

F[2] ~ R A B

G[(302] ~ T C A D

Here, the pendent operation ¢ has the local symbols T, C, 4, and D. The

suspended operation F has the local symbols R, 4, and B.

When the state indicator is clear,) SINL returns no result.

Possible Errors Generated

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

APL Reference Manual 3-83

System Commands

) SIS Displaying the State Indicator and Executing Lines

) S 1.5 Displaying the State Indicator and Executing Lines

Type

Query System Command

Form

)SIS

Description

) SIS displays the same information as) SI. In addition, it displays the line

that is currently being executed and the argument expression of any pendent

execute functions.

For example:

) ST

F[2] *

0

G[302]

) SIS

F[2] « B+0

s F X

G[302] X«Ax2 ¢ Y«o 'F X!

Here, the function 7 is suspended at line [2] because of an invalid division

by zero. The execute function that called F is pending, and its argument is

displayed. Finally, the function G is pending, and its currently executing line,

containing the execute function that calls F, is displayed.

Note that) SIS does not display the executing line of a locked operation.

When the state indicator is clear,) SIS returns no result.

Possible Errors Generated

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

3-84 APL Reference Manual

System Commands

) STEP Executing Lines of a Suspended Operation

) STE P Executing Lines of a Suspended Operation

Type

APL Action System Command

Form

)STEPfln]

Qualifiers

/SILENT

Specifies that APL should not display the operation name and the current line

that are at the top of the state indicator after the execution of the lines of the

operation.

/INTO

Specifies that you want APL to step into any called operations.

/OVER

Specifies that you want APL to step over any called operations. This is the

default setting.

Description

) STEP is a debugging feature that allows you to execute one or more lines of a

suspended operation. The) STEP command is valid only when specified from

immediate mode, and when there is a suspended operation on the top of the

state indicator.

APL Reference Manual 3-85

System Commands

) STEP Executing Lines of a Suspended Operation

Examples:

- VFRILL

[1] "FRILL LINE 1

[2] "FRILL LINE 2!

[3] "FPRILL LINE 3'

[4] "PRILL LINE 4!

[5] "WRILL LINE 5'

[6] v

VT

[1] FRILL

[2]1 'T LINE 2

[31 'T LINE 3

[4] 'T LINE u

(51 'T LINE 5

61 v

| 1 JSTOP 'T!

1

T

77 STOPSET

T(1] FRILL

A

) SIS

T[] * FRILL

)STEP 4 JINTO

FRILL LINE 1

FRILL LINE 2

FRILL LINE 3

FRILL[4] 'FRILL LINE 4

)SIC

T

77 STOPSET

T1] FRILL

A

)SIS

T[1] = FRILL

)STEP 4 /OVER

FRILL LINE 1

FRILL LINE 2

FRILL LINE 3

FRILL LINE 4

FRILL LINE 5

T LINE 2

T LINE 3

T LINE 4

T{5] '"T LINE 5

3-86 APL Reference Manual

System Commands

) STEP Executing Lines of a Suspended Operation

)SIC

T

77 STOPSET

Tf1] FRILL

A

)SIS

I'f1] = FRILL

)STEP 4 JOVER/SILENT

FRILL LINE 1

FRILL LINE 2

FRILL LINE 3

FRILL LINE 4

FRILL LINE 5

T LINE 2

T LINE 3

T LINE 4

)SIS

T[5] = 'T LINE 5!

Possible Errors Generated

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

22 INCORRECT PARAMETER (INVALID KEYWORD OR QUALIFIER)

22 INCORRECT PARAMETER (PARAMETER OUT OF RANGE)

46 OPERATION INVALID IN THIS CONTEXT

APL Reference Manual 3-87

System Commands

) VARS Displaying a List of Variables

) VARS Displaying a List of Variables

Type

Query System Command

Form

) VARS [[start-stringlstop-string]l]

Qualifiers

/WSID: wshame

Allows you to specify the nonactive workspace APL uses to develop the list.

/PASSWORD : pW

Specifies the password used to save the nonactive workspace.

Description

) VARS displays a list of global names used as variable names in a workspace.

By default, APL displays the list from the currently active workspace. The

optional /WSID qualifier allows you to specify a nonactive workspace. If the

nonactive workspace is saved with a password, you must also specify the

/ PASSWORD qualifier.

The optional string parameters identify starting and stopping points for

the list. When you specify the string parameters, you can use the » and =

wildcards. The objects are listed in 0 AV order, separated by tabs. Each output

line in the list begins in column 1.

Note that the wildcard determines the start-string. There is no wildcard for

the stop-string.

If you use) VARS with no parameters, APL displays all the global variable

names in the workspace:

) VARS

A I J K N

If you include just one argument, APL uses Z as the second string:

)VARS K

K N

3-88 APL Reference Manual

System Commands

) VARS Displaying a List of Variables

To get a list of all variable names that begin with a given prefix, use the prefix

for both arguments or use a wildcard:

) VARS

PETER STAN STEVE STUART THOMAS WILLIAM

YVARS ST ST

STAN STEVE STUART

) VARS ST+

STAN STEVE STUART

Possible Errors Generated

1 FILE NOT FOUND (FILE NOT FOUND)

22

22

22

22

57

INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

INCORRECT PARAMETER (FILE SPECIFICATION IS MISSING)

INCORRECT PARAMETER (INVALID KEYWORD OR QUALIFIEK)

INCORRECT PARAMETER (NOT A LETTER)

FILE DOES NOT CONTAIN A WORKSPACE

APL Reference Manual 3-89

System Commands

) VERSTION Displaying the APL Version Number

) VERSION Displaying the APL Version Number

Type

Query System Command

Form

YVERSION

Description

) VERSTON displays the APL version number under which the currently active

workspace was last saved, followed by a Carriage Return Line Feed, followed

by the current version of the APL interpreter and a trailing <CR><LF>.

The display is in the following form:

Iv.u-edit |

[1s the support letter

v 18 the version number

u 1s the update number

edit 1s the edit number

For example:

) VERS

V3.2-834

V3.2-834

Possible Errors Generated

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

3-90 APL Reference Manual

System Commands

)WIDTH Output Width

) WIDTH Output Width

Type

Query/Change System Command

Form

YWIDTH [n]

Default in Clear Workspace

System setting

Description

YyWIDTH displays or changes the setting of the print width system variable

(0 PW) and toggles the video screen between 80- and 132-column mode on

some terminals (see below). The print width (n in the form) is the number of

characters that can appear in an output line. The legal values are the integers

from 35 through 2048.

The)WIDTH system command does not affect the allowable length of input

lines. However, it does affect the display of error messages. Lines in the

error message that are longer than the print width are truncated; they are

not wrapped to the next line. If truncating a line would prevent APL from

displaying the point in the line where the error was discovered, APL cuts part

of the beginning of the line from the display so that the error is visible.

Executing the) ¥IDTH system command in change mode has the same effect as

assigning a value to the 0 P¥ system variable (see Chapter 2).

When you use)WIDTH to set the print width to above or below 80 on some

terminals, APL toggles the video screen between 80- and 132-column mode.

For example, setting the width to 80 or less toggles the screen to 80-column

mode. Setting the width to 81 or more toggles the screen to 132-column mode.

The affected terminals are the VT220, VT240, VT320, VT330, VT340, VT102,

DECTERM, HDSAVT, HDS201, and HDS221. Setting [0 P¥ does not cause this

behavior.

Note that APL uses two font files for the VT240, VT320, VT330, and VT340

support: one for 80-column and the other for 132-column mode. If you suspend

the APL session and change the terminal width at DCL level, the screen will

be in the new mode and APL will be in the previous mode when you return to

APL. Use the appropriate value to)WIDTH to correct it.

APL Reference Manual 3-91

System Commands

)WIDTH Output Width

Examples:

YJWIDTH

132

A<'THIS IS A TEST OF THE PRINT WIDTH VARIABLE'

A

THIS IS A TEST OF THE PRINT WIDTH VARIABLE

JWIDTH 35

WAS 132

A

THIS IS A TEST OF THE PRINT WIDTH V

ARIABLE

Possible Errors Generated

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

22 INCORRECT PARAMETER (ILL FORMFED NUMERIC CONSTANT)

22 INCORRECT PARAMETER (PARAMETER OUT OF RANGE)

3-92 APL Reference Manual

System Commands

) WSID Workspace ldentification

) WS ID Workspace ldentification

Type

Query/Change System Command

Form

YWSID wsnamell

Default in Clear Workspace

CLEAR WS with a blank password

Qualifiers

/PASSWORD [:Ipwil

Specifies the password associated with the workspace.

Description

)yWSID displays or changes the name of the active workspace. When you use

)WSID to change the name of the active workspace, you must specify the

wsname parameter.

You can use the password qualifier of) WSID to change the password associated

with a workspace. When you use)¥SID as an action command, the password

is changed (but not displayed) either to the password you specify as the

argument to /PASSWORD or, if you do not specify a password, to the empty

password (eight blanks). The password is never changed when you use)WSID

as a query command () ¥SID with no argument). For example:

YWSID MYWS/PASSWORD:SESAME

WAS EXAMPLE

JWSID

MYWS

) PASSWORD

/ PASSWORD: SESAME

YWSID YOURWS

WAS MYWNS

) PASSWORD

/ PASSWORD:

APL Reference Manual 3-93

System Commands

) XLOAD Retrieving a Workspace

The file specification you give for wsname must include at least a file name.

APL assumes default values for the rest of the specification; that is, it assumes

the file type .APL, the current user device and directory, and an empty

password.

For more information on 0JLX, see Chapter 2.

Possible Errors Generated

22 INCORRECT PARAMETER

22 INCORRECT PARAMETER (INVALID KEYWORD OR QUALIFIER)

3-96 APL Reference Manual

A
System Messages

If an error is detected during the evaluation of an expression, APL displays the

following:

* An appropriate primary error message from the list included in this

appendix

e The text of the line in which the error occurred

* A caret (») approximately underneath the point in the line at which the

error was discovered

Often the primary error message is followed on the same line by a secondary

error message that offers a more specific explanation of what caused the error.

Secondary error messages are surrounded by parentheses. (If you do not want

to see secondary error messages, set 1TERSE to 1.)

When an expression that produces an error is executed by the 0xQ function,

the result returned is an empty array with the shape 0 n, where n is an ERROR

NUMBER. For example, the APL error number for VALUE ERROR is 11, so when

an expression that produces a VALUE ERROR is executed by the 0X¢Q function,

the value returned is an empty array with the shape 0 11:

C<[0XQ '"4+B'

pC

0 11

UERKOR

11 0XQ@ VALUE ERROR

A+B

A

The following pages list the primary error messages and, when appropriate,

explain what they mean and what you can do to correct the errors. Some of the

secondary error messages that APL may display with the primary messages

are also identified. In many cases, no explanation of secondary error messages

1S given, because the message is self-explanatory.

APL Reference Manual A-1

System Messages

1 FILE NOT FOUND

Explanation: The requested Workspace or file was not foundin the

specified disk area.

1 FILE NOT FOUND (FILE NOT FOUND)

2 SYSTEM ERROR

Explanation: An internal inconsistency was detected. Please report this

error to your Digital software specialist.

3 WORKSPACE FULL

Explanation: The active workspace could not retain all the information

requested, nor could it expand further. Erase unneeded objects, issue a

) MAXCORE command to enlarge the workspace, or do a) SAVE,) CLEAR,

and) COPY sequence on the needed information.

3 WORKSPACE FULL (FXCESSIVE FRAGMENTATION)

3 WORKSPACE FULL (MAXCORE EXCEEDED)

3 WORKSPACE FULL (VIRTUAL MEMORY FXHAUSTED)

4 NOT A VALID SYSTEM IDENTIFIER

Explanation: An attempt was made to use a system identifier that is not
supported by this APL implementation.

5 DEFN ERROR

Explanation: Invalid syntax was detected in a line or command entered

in function-definition mode.

5 DEFN ERKOR (CANNOT DELETE HEADER)

5 DEFN FRROR (EDIT COMMAND ILLEGAL IN QUAD FX ARGUMENT)

5 DEFN ERROR (EXPECTING A DOLLAR SIGN)

5 DEFN FRROR (EXPECTING A NUMBER)

5 DEFN FRROR (EXPECTING A NUMBER, OR RIGHT BRACKET)

5 DEFN ERROR (EXPECTING A NUMBER, QUAD, DELTA, OR JOT)

5 DEFN FRROR (EXPECTING A QUAD, OR RIGHT BRACKET)

A-2 APL Reference Manual

System Messages

DEFN ERROR (FXPECTING A QUAD)

DEFN FRROR (EXPECTING A.RIGHT BRACKET)

Explanation: An error was discovered while the function editor scanned

an edit command string.

DEFN ERROR (EXPECTING A STRING DELIMITER)

Explanation: Did not find a delimiter for one of the search or replace

strings for dollar sign editing.

DEFN ERROR (ILL FORMED LINE NUMBER)

DEFN FERROR (ILL FORMED NUMERIC CONSTANT)

DEFN ERROR (LEFT BRACKET FXPECTED)

DEFN FRROR (LINE NUMBER OUT OF RANGE)

Explanation: A line number greater than 9,999 was specified.

DEFN ERROR (LINE NUMBER TRUNCATED)

Explanation: More than five decimal digits were specified in a line

number. |

DEFN FRROR (LOCAL SYMBOL EXPECTED)

DEFN FRROR (NAME IN USE)

Explanation: An attempt was made to use the same identifier for both

arguments of an operation, or for both a label and a local symbol or

argument.

DEFN FRROR (NEGATIVE INTEGER NOT ALLOWED)

DEFN ERROR (NO PREVIOUS SEARCH STRING)

Explanation: The search string is empty and there was no previous use

of dollar sign editing during this activation of the Del editor.

DEFN ERROR (NO SYMBOL AFTER OPENING DEL)

Explanation: The operation name was missing from the line entered.

DEFN ERROR (NO SYMBOL AFTER RESULT ARROW)

DEFN ERROR (NOT A SYSTEM VARIABLE)

Explanation: An attempt was made to localize a system function.

APL Reference Manual A-3

System Messages

5 DEFN ERROR (NOT AN INTFEGER)

Explanation: A print position parameter that is not an integer was

entered in superedit mode.

5 DEFN FRROR (NOT IN FUNCTION DEFINITION MODE)

Explanation: An edit command was entered outside of function-definition

mode. Edit commands are illegal in immediate mode except when used to

display or edit the last executed input line.

5 DEFN FRROR (OPERATION LOCKED)

Explanation: An attempt was made to list or change a locked operation.

5 DEFN FRROR (OPERATION SUSPENDED, PENDENT, OR MONITORED)

Explanation: An attempt was made to edit a pendent or monitored

operation, or an attempt was made to change the number of lines in a

suspended operation or the definition of a local symbol in a suspended

operation. |

5 DEFN FRROR (OPERATION SUSPENDED OR PENDENT)

Explanation: For) EDIT, an attempt was made to end the VAXTPU

session with an EXIT command when you are not allowed to modify the

function.

5 DEFN KRROR (RIGHT BRACE FXPECTED)

Explanation: An error was discovered while the function editor scanned

an operation header and found a left brace that was not balanced with a

right brace.

5 DEFN FRROR (RIGHT PARENTHESIS EXPECTED)

5 DEFN FERROR (RIGHT PARENTHESIS OR SYMBOL EXPECTED)

5 DEFN FRROR (SEMICOLON EXPECTED)

5 DEFN EFRROR (SYMBOL EXPECTED)

5 DEFN FRROR (TOO MANY LINES IN OPERATION)

Explanation: An attempt was made to close an operation that has more

than 10,000 lines.

5 DEFN FRROR (UNEXPECTED CHARACTER IN HEADER)

A—-4 APL Reference Manual

System Messages

LABEL ERROR

Explanation: Improper use of a colon was detected, or an improper

variable name was entered as a label.

LABEL ERROR (DUPLICATE LABEL)

LABEL FERROR (NAME IN USE)

Explanation: An attempt was made to use the same identifier for both a

label and a local symbol or argument.

LABEL ERROR (OPERATION SUSPENDED, PENDENT, OR MONITORED)

Explanation: An attempt was made to change a label definition in a

suspended, pendent, or monitored operation.

SYNTAX FRROR

Explanation: Invalid syntax was detected, such as an operation call with

missing arguments, or an unmatched parenthesis.

SYNTAX ERROR (ILL FORMED NUMERIC CONSTANT)

SYNTAX ERROR (MISMATCHED DELIMITERS)

SYNTAX FERROR (MISSING ARGUMENT)

SYNTAX ERROR (MISSING LEFT ARGUMENT TO ASSIGNMENT)

Explanation: There is no left argument to the specification function (+).

For example: «2 is incorrect.

SYNTAX ERROR (MISSING OPERAND)

SYNTAX ERROR (NO DYADIC FORM OF FUNCTION)

SYNTAX ERROR (NO MONADIC FORM OF FUNCTION)

Explanation: Inner product and outer product are dyadic.

SYNTAX FRROR (OPERATOR HAS NO OPERANDS)

SYNTAX ERROR (UNBALANCED DELIMITER)

SYNTAX ERROR (BRANCH NOT ALLOWED IN MIDDLE OF AN EXPRESSION)

Explanation: The branch (-~) function was used when it was not the

principal function of a statement.

APL Reference Manual A-5

System Messages

7 SYNTAX ERROR (DEPTH ERROR)

Explanation: Either there are too many nested parentheses or brackets,

or the expression is too complex for APL to parse.

7 SYNTAX FRROR (ILLEGAL CHARACTER IN EXPRESSION)

Explanation: An internal 04V code appeared outside of a literal or

comment. -

7 SYNTAX ERROR (NO DYADIC FORM OF DERIVED FUNCTION)

Explanation: Scan, reduction, expansion, compression, and replication all

derive monadic functions.

7 SYNTAX ERROR (NO MONADIC FORM OF DERIVED FUNCTION)

Explanation: Inner and outer product both derive dyadic functions.

7 SYNTAX FERROR (NON-NILADIC FUNCTION HAS NO ARGUMENTS)

Explanation: An ambivalent, dyadic, or monadic user-defined operation

was invoked without any arguments.

7 SYNTAX ERROR (NOT IN FUNCTION DEFINITION MODE)

Explanation: An editing command was entered at the beginhing of a line
in immediate mode.

7 SYNTAX FRROR (SUBSCRIPT NOT ALLOWED)

Explanation: An attempt was made to index something that does not

have a value.

7 SYNTAX ERROR (WRONG NUMBER OF ARGUMENTS TO USER FUNCTION)

Explanation: A monadic user-defined operation was invoked with two

arguments.

8 FRROR RETURNING FROM EXTERNAL ROUTINE

8 FRROR RETURNING FROM EXTERNAL ROUTINE (DOMAIN FRROR)

Explanation: A conversion failed when data returned to the workspace.

8 ERROR RETURNING FROM EXTERNAL ROUTINE (ILLEGAL ASCII CHARACTER)

Explanation: A conversion to ASCII failed as character data returned to

the workspace.

A-6 APL Reference Manual

System Messages

FRROR RETURNING FROM EXTERNAL ROUTINE (LENGTH FRROR)

Explanation: A Varying string (/ TYPE: VT) returned to the WS is bigger

than it was when it was passed to the external routine. (It is allowed to be

smaller or the same size.)

RANK ERROR

Explanation: The ranks of two operands did not conform.

RANK ERROR (ITEMS NOT SCALAR OR ALL THE SAME RANK)

Explanation: The items of the right argument of disclose () are neither

scalars nor of matching rank. |

RANK ERROR (ITEMS NOT SINGLETON OR ALL THE SAME RANK)

Explanation: The items of B must be either singletons or of matching

rank.

RANK FRROR (LEFT ITEM NOT VECTOR DOMAIN)

Explanation: Either the left argument or an item in the left argument to

pick () is not a singleton and its rank is greater than 1.

RANK FRROR (MUST BE VECTOR)

Explanation: The value and each item in the value, must be vectors.

RANK ERROR (NOT A SCALAR, VECTOR, OR MATRIX)

Explanation: The rank of an argument to B, ¥ or 4 is greater than 2.

RANK FERROR (NOT MATRIX DOMAIN)

RANK ERROR (NOT SINGLETON)

Explanation: Deal, and the OWAIT and O0DL functions accept only single

numbers as an argument.

RANK ERROR (NOT VECTOR DOMAIN)

Explanation: An argument or value is not a singleton and its rank is

greater than 1.

RANK ERROR (NUMERIC PRIMARY KEY MUST BE SINGLETON)

Explanation: A numeric key for a keyed file must be a singleton.

RANK ERROR (RANKS DIFFER BY MORE THAN ONFE)

Explanation: The arguments, after singleton extension to catenate or

rotate differ in rank by more than one.

APL Reference Manual A-7

System Messages

10 LENGTH FRROR

Explanation: The shapes of two operands did not conform.

10 LENGTH ERROR (ARGUMENT MUST BE 1 OR 2 ELEMENTS)

Explanation: 8, 8, 0CI9, and 0 c0Q may have at most two items in their

right argument.

10 LENGTH ERROR (ARGUMENT STRING IS TOO LONG)

Explanation: The left argument to dyadic 4 or v is greater than 256

characters along any one axis.

10 LENGTH ERROR (DATA TYPE EXCEEDS DATA LENGTH)

Explanation: The data type specified for @ file input or the 0¢7¢ function

1s incompatible with the length of the left argument.

10 LENGTH ERROR (DATA TYPE MISSING)

Explanation: The data type parameter in the right argument to JcIq is

required in this case.

10 LENGTH FRROR (DISPLAY CONTROL ITEM WRONG LENGTH)

Explanation: The first item must have length 4. The second item can

either be empty or have length 8.

10 LENGTH FRROR (DISPLAY CONTROL VECTOR MUST BE TWO ITEMS)

Explanation: The value must have length 2.

10 LENGTH ERROR (ILLEGAL EMPTY ARGUMENT)

Explanation: An empty argument was used with 0FMT, OMAP, 0QCO,

O0QLD, 0QPC, or 1SIGNAL.

10 LENGTH ERROR (INDEX LESS THAN INDEX ORIGIN)

Explanation: An index is less than the current setting of [70.

10 LENGTH FRROR (INDEX OUT OF RANGE)

Explanation: For pick (), an element of the left argument exceeds the

length of the corresponding axis of an item of the right argument.

10 LENGTH ERROR (ITEM COUNT MISMATCH)

Explanation: If the number of variable names specified in the right

argument to [PACK, 1s not equal to the number of packets contained in the

left argument.

A-8 APL Reference Manual

10

10

10

10

10

10

10

10

10

System Messages

LENGTH FRROR (KEY VALUFE TOO LARGE FOR KFY SIZFE)

Explanation: For /XY files.

LENGTH ERROR (LEFT ARGUMENT LENGTH GREATER THAN RIGHT ARGUMENT

DEPTH)

Explanation: For pick (=), the length of the left argument is greater than

the depth of the right argument.

LENGTH ERROR (LEFT ITEM LENGTH NOT EQUAL TO SELECTED ITEM RANK)

Explanation: For pick (=), the length of an item of the left argument does

not match the rank of the selected item at the corresponding depth of the

right argument.

LENGTH ERROR (LEFT LENGTH NOT EQUAL TO RIGHT RANK)

Explanation: For +, +, or dyadic &, where no axis has been specified and

the right argument B is not a scalar and its rank is not equal to the length

of the left argument 4.

LENGTH FRROR (LENGTHS OF INNER AXES DO NOT MATCH)

Explanation: For Base, the length of the last axis of the left argument

A 1is not equal to the length of the first axis of the right argument B, and

neither axis is 1. For Inner product, after singleton extension, the left

argument last axis length must equal the right argument first axis length.

LENGTH ERROR (NOT SINGLETON)

Explanation: The value is not a single item. Dyadic 8 (for /45 files), 7,

and the numeric system variables require a single item for their argument

or value. For example, the following is incorrect: 070+« 1 3

LENGTH FRROR (NUMBER OF ROWS MUST MATCH)

Explanation: The number of rows in the arguments to dyadic § must

match.

LENGTH FRROR (SHAPES OFF AXIS DO NOT MATCH)

Explanation: For Catenate and Rotate, after singleton extension, the

shape of the left argument must match the shape of the right argument

except along the specified axis.

LENGTH ERROR (THERE ARE FEWER ROWS THAN COLUMNS)

Explanation: The number of rows in the right argument to # must be

greater than or equal to the number of columns.

APL Reference Manual A-9

System Messages

10

11

11

11

11

11

11

11

14

14

14

15

15

LENGTH ERROR (TOO MANY ELEMENTS IN KEY SPECIFICATION)

Explanation: An attempt was made to include elements other than

value, key-num, tech, and key-type between the brackets of your file output

expression.

VALUE ERROR

Explanation: A variable name was used and has not been assigned a

value, or a user-defined operation that should return a value was executed

and it did not return a value.

VALUE FRROR (BRANCH HAS NO RESULT)

Explanation: A branch (+) expression was used as a response to [J input.

VALUE FRROR (FUNCTION DOES NOT RETURN A RESULT)

VALUE FRROR (FUNCTION RESULT UNDEFINED)

VALUE ERROR (NO VALUE TO ASSIGN)

Explanation: There is no right argument to the specification function (<).

For example: T« is incorrect.

VALUE ERROR (REQUIRED VALUE NOT SUPPLIED)

VALUE ERROR (SUBSCRIPTED NAME IS UNDEFINED)

Explanation: In the form A[X]1+B, 4 is not a defined name.

DEPTH FRROR

Explanation: For JFMT there are more than eight nested parentheses in

A.

DEPTH ERROR (LEFT ARGUMENT DEPTH GREATER THAN 2)

Explanation: The items in 4 must be simple (vectors or singletons).

DEPTH ERROR (TOO MANY DIVERTED INPUTS)

Explanation: Files were nested to a depth greater than 10 with) INPUT.

DOMAIN FRROR

Explanation: The values given for the arguments were outside of the

function domain. For 0¥, the argument is not Boolean and is nonempty.

DOMAIN ERROR (BUFFER OVERFLOW)

A-10 APL Reference Manual

15

15

15

15

15

15

15

15

15

15

15

System Messages

DOMAIN ERROR (CANNOT MODIFY SEFLECTIVE ASSIGNMENT TARGET)

Explanation: The variable being assigned to cannot be modified by the

expression forming the left argument of the selective assignment. For

example: ((pA<+12)¢$A)<«"'AB' is incorrect.

DOMAIN ERROR (CANNOT SIGNAL FOF)

Explanation: An attempt was made to use 75 as the right argument to

O0SIGNAL. OSIGNAL does not accept 756 as a right argument.

DOMAIN ERROR (CHANNEL NOT ASSIGNED)

Explanation: The value in the right argument does not refer to an

assigned channel. An attempt was made to use OWAIT or JREWIND on an

unassigned channel.

DOMAIN ERROR (CHANNEL NOT ASSIGNED TO A KEFYED FILE)

Explanation: The file associated with the channel number is not a /KXY

file.

DOMAIN ERROR (CHARACTER KEY TOO LONG OR NOT IN VECTOR DOMAIN)

Explanation: For /K7 files.

DOMAIN ERROR (CONFLICTING QUALIFIERS SPECIFIED)

Explanation: More than one of the following qualifiers was specified in

the argument to JASS:/READONLY, /WRITEONLY, or /UPDATE.

DOMAIN ERROR (DATA TYPE MUST BE UNSPECIFIFED OR ZFRO)

Explanation: For 0CIQ.

DOMAIN FRROR (DELETION NOT ALLOWED)

Explanation: A sequential delete was attempted for a /XY or /A4S file.

DOMAIN ERROR (DIVISION BY ZERO)

Explanation: Division by zero is attempted.

DOMAIN ERROR (DUPLICATE FMT QUALIFIER)

Explanation: A qualifier is used more than once with a particular format

phrase.

DOMAIN ERROR (DUPLICATE FMT STANDARD SUBSTITUTION CHARACTER)

Explanation: A substitute for a standard symbol character was specified

more than once.

APL Reference Manual A-11

System Messages

15 DOMAIN ERROR (EMPTY FMT STRING PARAMETER NOT ALLOWED)

Explanation: The O, R, or S qualifier string is empty.

15 DOMAIN ERROR (ENCLOSED/HETEROGENEOUS ARRAY NOT ALLOWED)

Explanation: The argument is not a simple, homogeneous array. For

0Dc, the first item must be a simple homogeneous array. The second item,

if not empty, must be simple.

15 DOMAIN FRROR (ENCLOSED VALUE REQUIRED)

Explanation: The value must be an enclosed array.

15 DOMAIN ERROR (FRROR ACTIVATING IMAGE)

Explanation: For J¥4P, the shared image named by B does not exist.

For 0TT,) EDIT, or the initialization stream, there is an attempt to

enter V1220, VT240, VT320, VT330, VT340 or DECterm mode when

SYS$SYSTEM:APLSHR is not accessible. APL can signal this error when

you invoke APL with the /TERMINAL qualifier, when you use) EDIT with

the /TERMINAL qualifier, when you use) EDIT with an HDS201 or HDS221

terminal, or when you set O TT.

15 DOMAIN ERROR (ERROR PARSING ARGUMENT TO BLOCK SIZE)

Explanation: An error was discovered when parsing the /BLOCKSIZE

qualifier in the argument to JASS.

15 DOMAIN ERROR (ERROR PARSING ARGUMENT TO BUFFER COUNT)

Explanation: An error was discovered when parsing the /BUFFERCOUNT

qualifier in the argument to JA4S5.

| 15 DOMAIN ERROR (ERROR PARSING ARGUMENT TO CCONTROL)

Explanation: An invalid value was specified for the /CCONTROL qualifier

in the argument to 0 ASS.

15 DOMAIN ERROR (ERROR PARSING ARGUMENT TO DEFAULT FILE SPEC)

Explanation: An error was discovered when parsing the /DEFAULTFILE

qualifier in the argument to 0455.

15 DOMAIN ERROR (ERROR PARSING ARGUMENT TO DISPOSE)

Explanation: An error was discovered when parsing the /DISPOSE

qualifier in the argument to 04S5.

A-12 APL Reference Manual

15

15

15

15

15

15

15

15

15

15

System Messages

DOMAIN ERROR (ERROR PARSING ARGUMENT TO EVENT FLAG)

Explanation: An error was discovered when parsing the /EFN qualifier in

the argument to JA4SS.

DOMAIN ERROR (ERROR PARSING ARGUMENT TO KEY SPECIFICATION)

Explanation: An error was discovered when parsing the /kY qualifier in

the argument to JASS.

DOMAIN FRROR (ERROR PARSING ARGUMENT TO MAXLEN)

Explanation: An error was discovered when parsing the /MAXLEN

qualifier in the argument to 0ASS.

DOMAIN ERROR (ERROR PARSING ARGUMENT TO PROTECTION)

Explanation: An error was discovered when parsing the /PROTECTION

qualifier in the argument to 0ASS.

DOMAIN ERROR (ERROR PARSING ARGUMENT TO RECORD TYPE)

Explanation: An error was discovered when parsing the /RECORDTYPE

qualifier in the argument to 0ASS.

DOMAIN ERROR (EXTRANEOUS CHARACTERS AFTER COMMAND)

Explanation: There are characters other than spaces following the

command.

DOMAIN ERROR (FILE IS ASSIGNED WRITE ONLY)

Explanation: The file associated with the channel number cannot be

rewound because it was assigned with the /WRITEONLY qualifier.

DOMAIN FRROR (FILFE SPECIFICATION IS MISSING)

Explanation: There is no file specification or default file specification in

the argument to JASS.

DOMAIN ERROR (FMT DECORATION OR LITERAL STRING T0OO LONG)

Explanation: A text string in the left argument consists of more than 255

characters.

DOMAIN ERROR (FMT RIGHT ARGUMENT DOES NOT MATCH FORMAT PHRASE)

Explanation: The data type of a value in the right argument does not

match the type called for by a format phrase specification in the left

argument.

APL Reference Manual A-13

System Messages

15 DOMAIN FRROR (FONT FILFE COULD NOT BE OPENED)

Explanation: For 077 or the initialization stream, there is an attempt to

enter VT220, VT240, VT320, VT330 or VT340 mode when the APL font

file is not accessible. Possibly, the file does not exist or is associated with a

protection code that does not allow access.

15 DOMAIN FRROR (FUNCTION HAS NO FILL ITEM)

Explanation: Either each () or outer product (- .r) was applied with a

user-defined function to an empty argument.

15 DOMAIN ERROR (FUNCTION HAS NO IDENTITY ELEMENT)

Explanation: The inner axes of an inner product or the reduction axis is

empty and there is no identity element for the left operand function.

15 DOMAIN FRROR (FUNCTION MISSING)

Explanation: For 1MAP, if function-name is not present or if it is followed

by any attributes.

15 DOMAIN ERROR (ILL FORMED FMT PARAMETER)

Explanation: An invalid numeric parameter (such as a negative sign with

no number) was found.

15 DOMAIN FRROR (ILL FORMED NAME)

Explanation: For OMAP, if the left argument has a formal parameter that

contains illegal characters, or if the right argument has a value for the

/ENTRY or /VALUE qualifier that contains illegal characters.

15 DOMAIN FRROR (ILLEGAL ASCII CHARACTER)

15 DOMAIN FRROR (ILLEGAL CHARACTER IN FMT LEFT ARGUMENT)

Explanation: An invalid character appears in the left argument of 0 FuT.

15 DOMAIN ERROR (ILLEGAL COMPOSITE CHARACTER)

15 DOMAIN ERROR (ILLEGAL DATA TYPE CONVERSION)

15 DOMAIN FRROR (ILLEGAL DEC MULTINATIONAL CHARACTER)

15 DOMAIN FRROR (ILLEGAL FMPTY ARGUMENT)

15 DOMAIN FRROR (ILLEGAL FMT FORMAT PHRASE)

Explanation: A letter in the left argument of 0 FMT does not represent a

valid format phrase or qualifier.

A-14 APL Reference Manual

15

15

15

15

15

15

15

15

15

15

15

15

System Messages

DOMAIN ERROR (ILLEGAL FMT G FORMAT PHRASE PATTERN CHARACTER)

Explanation: An invalid character was found in a type G format phrase

pattern string.

DOMAIN ERROR (ILLEGAL FMT LITEFRAL STRING DELIMITER)

Explanation: A decorator or literal string delimiter was invalid.

DOMAIN ERROR (ILLEGAL FMT S QUALIFIER SYMBOL)

Explanation: The first symbol of a substitution pair is not x, ., ,, 0, 9,

7,0r@.

DOMAIN ERROR (ILLEGAL IS0 8BIT CHARACTER)

DOMAIN FRROR (ILLEGAL LEFT ARGUMENT TO ASSIGNMENT)

Explanation: An element of 4 is not an undefined or variable name.

DOMAIN ERROR (ILLFEGAL MODE)

DOMAIN EFRROR (ILLEGAL NAME CLASS)

Explanation: For [PACK, the right argument is not a variable. For

assignment (<), the left argument is neither a variable nor an undefined

name.

DOMAIN ERROR (ILLEGAL SELECTIVE ASSIGNMENT FUNCTION)

Explanation: The function fis not one of the allowed selection functions.

DOMAIN ERROR (ILLEGAL USE OF FMT QUALIFIER)

Explanation: The specified qualifier and format phrase are incompatible.

DOMAIN ERROR (INCORRECT PARAMETER)

Explanation: A parameter in the left argument to JMAP 1s incorrect.

DOMAIN FRROR (INCORRECT TYPFE)

Explanation: An argument is non-empty and is either numeric, when it

should be character, or character when it should be numeric. For example,

the following is incorrect: 070« 'G'

DOMAIN ERROR (INDEX LESS THAN INDEX ORIGIN)

Explanation: An element of an argument is less than the current setting

of 0 I0.

APL Reference Manual A-15

System Messages

15

15

15

15

15

15

15

15

15

15

15

15

15

DOMAIN FRROR (INDEX OUT OF RANGE)

Explanation: An element of the left argument exceeds the length of the

corresponding axis of an item of the right argument.

DOMAIN ERROR (INTEGER OVERFLOW)

DOMAIN FRROR (INVALID CHANNEL NUMBER)

Explanation: A channel number is not between =~ 999 and 999 or is 0.

DOMAIN ERROR (INVALID CIQ HEADER)

DOMAIN ERROR (INVALID EXTERNAL DATA TYPE)

DOMAIN FRROR (INVALID FILE SPECIFICATION)

Explanation: There is an error in the shared image file specification in

the right argument of OMAP.

DOMAIN FRROR (INVALID FUNCTION IN SELECTIVE ASSIGNMENT)

Explanation: The principal function or functions in the left argument

is ineligible for use with selective assignment. For example: (A4+B) «3 is

incorrect.

DOMAIN KFRROR (INVALID HEADER TYPE)

Explanation: An incorrect header type was specified for 0C0qQ or 0CIQ.

DOMAIN FRROR (INVALID KEYED FILE PURFE DATA TYPE)

Explanation: For /x7Y files.

DOMAIN ERROR (INVALID LENGTH IN PACK HEADER)

Explanation: The first item of the value in the left argument to O PACK

must equal the length of the left argument.

DOMAIN ERROR (INVALID OBJECT IN INDEXED ASSIGNMENT)

DOMAIN FRROR (INVALID OBJECT IN SELECTIVE ASSIGNMENT)

Explanation: The first object inside the paréntheses of selective
assignment must be a variable name. For example: (14 2) « 3 is incorrect.

DOMAIN ERROR (INVALID OBJECT IN STRAND ASSIGNMENT)

A-16 APL Reference Manual

15

15

15

15

15

15

15

15

15

15

System Messages

DOMAIN ERROR (INVALID PACK HEADER)

Explanation: The length of the left argument to 0 PACK must be greater

than or equal to 8. The shortest possible packed data has four elements for

the 0 PACK header and 4 elements for the shortest 0 C0Q header.

DOMAIN ERROR (INVALID RANK IN PACK HEADER)

Explanation: The value of the third element in the left argument to

0 PACK must equal 1 (1 means the packed data is a vector).

DOMAIN ERROR (INVALID RHO VECTOR IN PACK HEADER)

Explanation: The length of the left argument to 0 PACK must equal the

value of the fourth element in the left argument plus 4.

DOMAIN ERROR (INVALID TYPE IN PACK HEADER)

Explanation: The value of the second element in the left argument to

0 PACK must equal 1 (1 means the type is integer).

DOMAIN ERROR (INVALID WATCH MODE)

Explanation: An incorrect mode was specified for OVATCH.

DOMAIN ERROR (KEY OF REFERENCE OUT OF RANGE OR NOT A NUMERIC

SINGLETON)

Explanation: An attempt was made to specify a key of reference that

is not a numeric singleton or that is less than O or greater than 254

(inclusive).

DOMAIN FRROR (KEY NOT FOUND IN TREFE)

Explanation: For JMAP, if the left argument specifies an entry point that

does not exist in the shared image.

DOMAIN ERROR (LEFT ARGUMENT NOT DENSE FROM INDEX ORIGIN)

Explanation: For dyadic &, the left argument is not a dense sequence

beginning at 0 I0.

DOMAIN ERROR (MISSING FMT FORMAT PHRASE SEPARATOR)

Explanation: A format phrase separator (such as a comma or parenthesis)

was expected but not supplied.

DOMAIN ERROR (MISSING FMT FORMAT PHRASE/QUALIFIER CHARACTER)

Explanation: A format phrase or qualifier was expected but not supplied.

APL Reference Manual A-17

System Messages

15

15

15

15

15

15

15

15

15

15

15

15

DOMAIN EFERROR (MISSING FMT FORMAT PHRASE/QUALIFIER PARAMETER)

Explanation: No string was included with a decorator or an S format

phrase; no number was included where a width or decimal parameter was

required; or no number was included with a K or W qualifier.

DOMAIN FRROR (MISSING LITERAL STRING IN FMT LEFT ARGUMENT)

Explanation: The text string parameter was missing from a decorator.

DOMAIN FRROR (NAME IN USE)

Explanation: For 1¥AP, if the name specified for function-name is already

defined as an object other than a function.

DOMAIN FRROR (NEGATIVE INTEGER NOT ALLOWED)

DOMAIN FERROR (NEGATIVE NUMBER NOT ALLOWED)

Explanation: The value of the argument is less than 0.

DOMAIN ERROR (NO DIGIT SELECTOR IN FMT G FORMAT PHRASE PATTERN)

Explanation: A type G format phrase pattern does not contain at least

one 9 or one Z, or a character that is substituted for a 9 or a Z.

DOMAIN FRROR (NO FMT EDITING FORMAT PHRASE)

Explanation: The left argument of] FMT does not contain at least one

value editing format phrase, that is, at least one of type A, I, E, F, G, or Y.

DOMAIN FRROR (NOT A LETTFR)

Explanation: A nonletter was used as the left argument to ONL.

DOMAIN FRROR (NOT A SYSTEM VARTABLE)

Explanation: The argument is a quad name but not a system variable.

DOMAIN ERROR (NOT A VALID SYSTEM IDENTIFIER)

DOMAIN ERROR (NOT AN EXTERNAL FUNCTION)

Explanation: For (MA4P, if the argument names an illegal identifier, a

system identifier, a name with no value, or a name that is not an external

function.

DOMAIN FRROR (NOT AN INTEGER)

Explanation: An argument is not a near-integer. For example, the

following is incorrect: 0 I0<«2.5

A-18 APL Reference Manual

System Messages

15 DOMAIN ERROR (OPERATION SUSPENDED, PENDENT, OR MONITORED)

15 DOMAIN ERROR (PARAMETER OUT OF RANGE)

Explanation: An attempt was made to use an unavailable value as the

argument. For 0DC, Elements 1 and 2 of the first item can only be = 1, 0,

or 1. For OFMT, the repetition count, field width, number of decimal places

or significant digits, column position, scale factor, or exponent size is out of

range.

15 DOMAIN FRROR (REDUNDANT KEYWORD OR QUALIFIER)

Explanation: A keyword or qualifier was repeated in the argument to

OASS.

15 DOMAIN ERROR (RIGHT ARGUMENT IS LESS THAN LEFT)

Explanation: For dyadic 7.

15 DOMAIN ERROR (RIGHT ARG TOO DEFEPLY NESTED)

Explanation: The right argument to JFMT is not a vector domain of

simple arrays.

15 DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

Explanation: A semicolon list was used as an argument to a primitive

function.

15 DOMAIN ERROR (SINGULAR MATRIX)

Explanation: For B, division by 0 is attempted.

15 DOMAIN ERROR (SYSTEM VARIABLFE MUST BE 0 OR 1 OR 2 OR 3)

Explanation: The value of 0GAG must be 0, 1, 2, or 3.

15 DOMAIN ERROR (SYSTEM VARIABLFE VALUE MAY ONLY BE 0 OR 1)

Explanation: 010, 0NG, OTERSE, JTIMEOUT, or O TLE accept only O or 1.

15 DOMAIN ERROR (TIMEOUT READ UNSUPPORTED FOR CURRENT VALUE OF

QUAD TT)

Explanation: An attempt was made to set J TIMELIMIT while the current

value of 0 TT indicates a VT220, VT240, VT320, VT330, VT340 or DECterm

terminal.

15 DOMAIN ERROR (UNBALANCED PARENS IN FMT LEFT ARGUMENT)

Explanation: The parentheses in the left argument of 0 FMT are not

nested properly.

APL Reference Manual A-19

System Messages

A-20

15

15

15

15

15

15

16

17

17

17

17

DOMAIN ERROR (UNBALANCED TEXT DELIMITFER IN FMT LEFT ARGUMENT)

Explanation: The closing delimiter for a text string was not compatible

with the opening delimiter.

DOMAIN ERROR (UNPAIRED SYMBOL IN FMT S QUALIFIER)

Explanation: The length of the standard symbol substitution string is not

even.

DOMAIN ERROR (UNRECOGNIZED SEARCH MODE)

Explanation: For /k7Y files.

DOMAIN ERROR (UNSUCCESSFUL TRAP IN LOCKED FUNCTION)

Explanation: An error occurred while executing the trap expression in a

locked function.

DOMAIN ERROR (WIDTH TOO SMALL)

Explanation: The width parameter for dyadic + is too small to

accommodate the data.

DOMAIN ERROR (WILDCARDS NOT ALLOWED IN FILE SPECIFICATION)

Explanation: Wildcards are not allowed in the right argument to QM4P.

UNBALANCED DELIMITER

Explanation: An input line has unbalanced parentheses, or the argument

to the execute function contains unbalanced quotation marks or A

characters.

EDIT FRROR

Explanation: An improper character editing request was entered.

EDIT FRROR (COLUMN POSITION OUT OF RANGE)

Explanation: The print position number that was entered for superedit

was greater than the page width, or was negative.

EDIT ERROR (EXPECTING A RIGHT BRACKET)

Explanation: An attempt was made to delete the line number during line

editing.

EDIT ERROR (ILL FORMED LINF NUMBER)

APL Reference Manual

17

17

17

17

17

17

18

19

20

21

21

21

21

22

System Messages

EDIT ERROR (ILLEGAL CHARACTER IN LINE EDIT COMMAND)

Explanation: The command that was entered included a character other

than a letter, digit, /, space, or backspace.

EDIT FRROR (LEFT BRACKET MISSING)

EDIT ERROR (LINE FDITING NOT ALLOWED IN EXECUTE)

EDIT FRROR (NONEXISTENT LINE)

EDIT ERROR (PREVIOUS INPUT LINE EMPTY)

EDIT ERROR (OPERATION SUSPENDED, PENDENT, OR MONITORED)

Explanation: An attempt was made to make an illegal change to a

suspended, pendent, or monitored operation.

ATTENTION SIGNALED

Explanation: The attention signal was detected during operation

execution.

DEVICE DOES NOT EXIST

Explanation: An invalid device specification was entered.

DEVICE NOT AVAILABLE

Explanation: The requested device has already been assigned to another

process.

INCORRECT COMMAND

Explanation: A system command was entered improperly.

INCORRECT COMMAND (AMBIGUOUS ABBREVIATION)

Explanation: Not enough characters of a system command were entered

to distinguish it from other commands.

INCORRECT COMMAND (MISSING SYSTEM COMMAND)

Explanation: A right parenthesis was entered at the beginning of a line

and was not followed by a known system command.

INCORRECT COMMAND (NO SUCH SYSTEM COMMAND)

INCORRECT PARAMETER

Explanation: Invalid syntax was specified for a recognized system

command.

APL Reference Manual A-21

System Messages

22 INCORRECT PARAMETER (ARGUMENT STRING IS TOO LONG)

Explanation: The argument entered for) DO or) PUSH was more than

2096 keystrokes.

22 INCORRECT PARAMETER (CURRENT WORKSPACE CLEARED)

Explanation: APL failed to load the requested workspace.

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

Explanation: Extra characters were entered after all the required

parameters for a system command.

22 INCORRECT PARAMETER (ILL FORMED NAME)

Explanation: In the argument to) ERASE or) GROUP.

22 INCORRECT PARAMETER (ILL FORMED NUMERIC CONSTANT)

Explanation: A numeric argument to a system command was entered

improperly.

22 INCORRECT PARAMFETER (ILLEFGAL ASCII CHARACTER)

Explanation: An illegal character was used in the argument to) PUSH.

22 INCORRECT PARAMETER (ILLEGAL NAME CLASS)

Explanation: A label or system object was used in the argument to

) GROUP.

22 INCORRECT PARAMETER (INVALID CHARACTER SET QUALIFIER)

Explanation: An invalid qualifier was used in the argument to) INPUT or

) OUTPUT.

22 INCORRECT PARAMETER (INVALID KEYWORD OR QUALIFIER)

Explanation: An invalid keyword or qualifier was used in the argument

to) INPUT,) OUTPUT,) SAVE, or) STEP.

22 INCORRECT PARAMFETER (LINFE TOO LONG TO TRANSLATE)

Explanation: The argument entered for) DROP or) LIB was greater than

approximately 2048 keystrokes.

22 INCORRECT PARAMETER (LOWNERCASE QUALIFIER REPEATED)

Explanation: An invalid repetition of /LOWVERCASE was used in the

argument to) DO or) PUSH.

A-22 APL Reference Manual

22

22

22

22

22

22

22

22

22

System Messages

INCORRECT PARAMETER (MISSING ARGUMENT)

Explanation: An argument was not supplied for a system command that

should have one.

INCORRECT PARAMETER (NOKEYPAD QUALIFIER REPEATED)

Explanation: An invalid repetition of /NOKEYPAD was used in the

argument to) DO or) PUSH.

INCORRECT PARAMETER (NOLOGICALS QUALIFIER REPEATED)

Explanation: An invalid repetition of /NOLOGICALS was used in the

argument to) DO or) PUSH.

INCORRECT PARAMETER (NOSYMBOLS QUALIFIER REPEATED)

Explanation: An invalid repetition of /NOSYMBOLS was used in the

argument to) DO or) PUSH.

INCORRECT PARAMETER (NOT A GROUP)

Explanation: An attempt was made to display the contents of a nongroup.

INCORRECT PARAMETER (NOT A LETTFER)

Explanation: The argument to) NMS,) VARS,) FNS, or) GRPS was not a

letter.

INCORRECT PARAMETER (NOTIFY QUALIFIER REPEATED)

Explanation: An invalid repetition of /NOTIFY was used in the argument

to the) PUSH command.

INCORRECT PARAMETER (NOWAIT QUALIFIER REPEATED)

Explanation: An invalid repetition of /NOWAIT was used in the argument

to the) PUSH command.

INCORRECT PARAMETER (PARAMETER OUT OF RANGE)

Explanation: The numeric argument entered for a system command was

outside the legal range of values for the command. The ranges are:

For)DIGITS, 1 to 16

For) wIDTH, 35 to 2048

For) MAXCORE, the) MINCORE value to 1048576

For yMINCORE, O to the) MAXCORE value

For) SAVE/MAXLEN, 512 to 2048

APL Reference Manual A-23

System Messages

A-24

22

22

22

22

22

22

23

23

23

24

25

27

27

27

INCORRECT PARAMETER (PARENT QUALIFIER REPEATED)

Explanation: In the) ATTACH command.

INCORRECT PARAMETER (PROCESS NAME QUALIFIER REPEATED)

Explanation: In the) PUSH command.

INCORRECT PARAMETER (REDUNDANT KEYWORD OR QUALIFIER)

Explanation: A keyword or qualifier was repeated in the argument to

) OUTPUT,) STEP, or 1ASS. |

INCORRECT PARAMETER (SYSTEM VARIABLE VALUE MAY ONLY BE 0 OR 1)

Explanation: In the) ORIGIN command.

INCORRECT PARAMETER (UNRECOGNIZED QUALIFIFR KEYWORD)

INCORRECT PARAMETER (WILDCARDS NOT ALLOWED IN FILFE SPEC)

Explanation: A wildcard was used in the name of a workspace identifier.

WORKSPACE LOCKED

WORKSPACE LOCKED (INCORRECT PASSWORD)

WORKSPACE LOCKED (WORKSPACE HAS NO PASSWORD)

Explanation: An incorrect password (or none at all) was given to access a

workspace that was saved with a password.

NOT GROUPED, NAME IN USE

EXECUTE ERROR

Explanation: APL signaled an error while executing the argument to the

¢ execute function.

LIMIT ERROR

Explanation: The resultof the operation exceeded some implementation

limit; for example, if the argument array to (07X has more than 65535

columns.

LIMIT ERROR (ARGUMENT STRING IS5 TOO LONG)

Explanation: The length of an argument cannot be greater than 255

keystrokes.

LIMIT EFERROR (ARGUMENT TOO LARGE)

Explanation: The argument to [SF was greater than 255 keystrokes.

APL Reference Manual

27

27

27

27

27

27

27

27

27

28

29

29

29

System Messages

LIMIT FERROR (ARGUMENT TOO LONG)

Explanation: For ([(MAP, if 4 contains more than 255 formal parameters

(including the result).

LIMIT FRROR (AXIS TOO LONG)

LIMIT ERROR (DELAY VALUE TOO LARGE)

Explanation: The delay specified for (ODL was larger than approximately

3.4E11 milliseconds.

LIMIT ERROR (FLOATING OVERFLOW)

Explanation: Arithmetic overflow has occurred.

LIMIT EFERROR (INPUT LINE TOO LONG)

LIMIT FRROR (INTEGER TOO LARGE)

Explanation: A value is greater than thec largest allowable integer.

LIMIT ERROR (PARAMETER OUT OF RANGE)

Explanation: One of the parameters in the left argument of dyadic s is

less than ~ 127 or greater than 127.

LIMIT FRROR (RANK TOO LARGE)

LIMIT FRROR (VOLUME TOO LARGE)

Explanation: The result of a primitive function has more elements than

the implementation can accomodate.

AXIS RANK ERROR (NOT VECTOR DOMAIN)

Explanation: The specified axis number argument ([X]) is not a

singleton and its rank is greater than 1.

AXIS LENGTH FRROR

Explanation: The specified axis number argument has more than one

1tem.

AXIS LENGTH ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)

AXIS LENGTH ERROR (NOT SINGLETON)

Explanation: The axis argument is not a singleton.

APL Reference Manual A-25

System Messages

29

30

30

30

30

30

30

30

30

30

30

AXIS LENGTH ERROR (LEFT ARGUMENT HAS WRONG LENGTH)

Explanation: The length of the axis argument to + or + does not match

the length of the left argument.

AXIS DOMAIN FRROR

Explanation: The specified axis argument value was not a nonnegative

integer (except in the case of laminate, which accepts floating-point

numbers greater than ~ 1), or the specified function was not in the domain

of the axis operator.

AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)

Explanation: The axis argument or an element of the axis argument is

greater than the rank of the argument with the largest rank.

AXIS DOMAIN FRROR (AXIS LESS THAN INDEX ORIGIN)

Explanation: The axis argument is less than [70.

AXIS DOMAIN FRROR (INCORRECT TYPFE)

Explanation: The axis argument is not a number.

AXIS DOMAIN ERROR (NOT AN INTEGER)

Explanation: The axis argument is not a near-integer.

AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

Explanation: There is a semicolon inside the brackets that surround the

axis argument .

AXIS DOMAIN ERROR (AXES NOT IN CONTIGUOUS ASCENDING ORDER)

Explanation: The axis argument elements must be in contiguous

ascending order for Ravel.

AXIS DOMAIN ERROR (DUPLICATE AXIS NUMBER)

Explanation: An axis argument element was specified more than once.

AXIS DOMAIN FRROR (ENCLOSED ARRAY NOT ALLOWED)

Explanation: The axis argument must be a simple homogeneous array.

AXIS DOMAIN ERROR (INCORRECT OPERATION)

Explanation: An operation was specified that was not one of the

following: Ravel, Catenate/Laminate, Reverse, Rotate, Expand, Scan,

Replicate/Compress, Reduce, Monadic Grade up/down, Take, Drop.

A-26 APL Reference Manual

System Messages

30 AX1S5 DOMAIN ERROR (RIGHT ARGUMENT HAS WRONG RANK)

31

31

32

32

33

33

33

33

34

34

34

34

35

Explanation: An axis argument value was specified that is greater than

the rank of the right argument.

PROTECTION VIOLATION

Explanation: The protection assigned to the workspace you specified

prohibits the access you requested.

PROTECTION VIOLATION (INSUFFICIENT PRIVILEGE OR FILE PROTECTION

VIOLATION)

INVALID SIMULTANEOUS ACCESS

Explanation: More than one user tried to save the same workspace

simultaneously, or a user tried to access a nonshared file that is already in

use.

INVALID SIMULTANEOUS ACCESS (FILE CURRENTLY LOCKED BY ANOTHER

USER)

10 ERROR

10 FRROR (INVALID WILDCARD OPERATION)

Explanation: For) oUTPUT, a wildcard was specified in place of a value

for filespec.

I0 ERROR (NULL PRIMARY KFY)

Explanation: An attempt was made to specify an empty key value.

10 ERROR (SEQUENTIAL DELETE OPERATION IS NOT ALLOWED FOR KY

FILES)

Explanation: An attempt was made to omit the entire key specification.

COMPONENT ERROR

Explanation: An attempt was made to read a component that cannot be

read.

COMPONENT FRROR (COMPONENT CROSSES CELL BOUNDARY)

COMPONENT ERROR (COMPONENT IS DAMAGED)

COMPONENT ERROR (RECORD NOT A COMPONENT)

INVALID FILE SPECIFICATION

APL Reference Manual A-27

System Messages

A-28

35

36

36

37

37

38

38

38

38

39

40

41

42

INVALID FILE SPECIFICATION (WILDCARDS NOT ALLOWED IN FILE

SPECIFICATIONS) |

Explanation: Wildcards are invalid in the file specifications for) INPUT

and) OUTPUT.

INDEX RANK FRROR

Explanation: The rank of the index and the argument are not compatible.

INDEX RANK ERROR (CANNOT INDEX A SCALAR)

INDEX LENGTH ERROR

Explanation: In the form A[X]+B B is not a singleton and its shape does

not conform to the shape of the selected items of 4.

INDEX LENGTH ERROR (INDEX OUT OF RANGE)

INDEX DOMAIN FRROR

INDEX DOMAIN ERROR (INCORRECT TYPE)

Explanation: An attempt was made to enter an index array that does not

consist of nonnegative integers.

INDEX DOMAIN ERROR (INDEX LESS THAN INDEX ORIGIN)

INDEX DOMAIN ERROR (NOT AN INTEGER)

Explanation: A value of the axis argument is not a near-integer.

NO SUCH DIRECTORY

OPERATOR DOMAIN ERROR (ARRAY OPERAND NOT ALLOWED)

Explanation: An array was specified as an operand to an each (") or dot

(.) operator. |

NO ROOM ON FILE STRUCTURE OR QUOTA EXCEEDED

Explanation: The specified file structure was full, or the disk allocation

was exceeded. In the latter case, files must be deleted from the user’s disk

area before more files can be added.

DEVICE IS WRITE-LOCKED

Explanation: The specified device (usually a magnetic tape) was

physically write-protected.

APL Reference Manual

System Messages

43 SYSTEM RESOURCES EXHAUSTED

Explanation: The system ran out of space to perform certain functions for

the user. See the system manager at your installation.

4y ERROR INVOKING EXTERNAL ROUTINE

Explanation: An error occurred while trying to map an external routine

or process the actual arguments before executing the external routine.

44y ERROR INVOKING EXTERNAL ROUTINE (DOMAIN FRROR)

Explanation: One of the following situations has occurred:

* The data leaving the workspace cannot be converted to the data type

expected by the external routine (for example, numbers could not be

converted to /TYPE:T).

A conversion failed as data passed from the workspace to the external

routine.

by ERROR INVOKING EXTERNAL ROUTINE (EXTRANEOUS CHARACTERS AFTER

COMMAND)

Explanation: Unrecognized input, such as an undefined or repeated

qualifier, appeared at the end of the command.

44 KFRROR INVOKING EXTERNAL ROUTINE (ILL FORMED NAME)

Explanation: The actual parameter specified for either the /ACCESS:0UT

or /ACCESS:INOUT qualifier is not a valid APL name.

4y FRROR INVOKING EXTERNAL ROUTINFE (ILLEGAL ASCII CHARACTER)

Explanation: A conversion to ASCII failed as character data (/TYPE:T or

/TYPE: VT left the workspace.

44 ERROR INVOKING EXTERNAL ROUTINE (ILLEGAL NAME CLASS)

Explanation: The actual parameter specified for either the /ACCESS:0UT

or /ACCESS:INOUT qualifier is defined, but is not a variable.

Uy FRROR INVOKING EXTERNAL ROUTINE (INCORRECT PARAMETER)

Explanation: One of the following situations has occured:

The actual parameter specified for either the /ACCESS:0UT or

JACCESS :INOUT qualifier is currently undefined and is /TYPE: Z. The

parameter must either be defined so an unconverted value can be

passed or undefined with a known data type, not /TYPE: Z

APL Reference Manual A-29

System Messages

e The actual argument is missing when the formal paramter is specified

with the /MECHANISM: IMMEDIATE qualifier.

Ly ERROR INVOKING EXTERNAL ROUTINE (INCORRECT TYPE)

Explanation: The actual paramter specified for either the /ACCESS:0UT

or /ACCESS:INOUT qualifier is not a character.

4y FRROR INVOKING EXTERNAL ROUTINE (LENGTH FRROR)

Explanation: One of the following situations has occurred:

e The actual argument has a length greater than 4 bytes when JMAP was

specified with the /MECHANISM: IMMEDIATE qualifier.

* The actual argument has a length greater than 2+ 2« 16 when dyadic

[1MAP was specified with the /MECHANISM:DESCRIPTOR qualifier.

e A complex data type is being passed an odd number of items (APL

requires two numbers to form each complex number).

e The length of a Varying sTring (/TYPE:VT) is greater than ~ 1+ 2* 16.

4y ERROR INVOKING EXTERNAL ROUTINE (NOT VECTOR DOMAIN)

Explanation: The actual parameter specified for either the /ACCESS:0UT

or /ACCESS:INOUT qualifier is not in the vector domain.

L4 FERROR INVOKING EXTERNAL ROUTINE (NOT SINGLETON)

Explanation: The actual argument is not a singleton (as it should

be) when dyadic (OMAP is specified with the /MECHANISM: IMMEDIATE

qualifier.

44 ERROR INVOKING EXTERNAL ROUTINE (WRONG NUMBER OF ARGUMENTS TO

USER FUNCTION)

Explanation: More actual arguments were specified than there are formal

parameters defined in the formal parameters of the external routine.

45 SIGNAL FROM FXTERNAL ROUTINE

Explanation: An external routine signaled the error that is the secondary

error message.

U6 OPERATION INVALID IN THIS CONTEXT

Explanation: An attempt was made to use) STEP when there was no

suspended operation.

47 OUTPUT LINE TOO LONG

A-30 APL Reference Manual

47

47

48

48

49

49

50

50

50

51

52

53

System Messages

OUTPUT LINFE TOO LONG (BUFFER OVERFLOW)

Explanation: A line editing sequence created a line that was too long to

fit in the I/0 buffer.

OUTPUT LINF TOO LONG (PAGE WIDTH EXCEFEDED)

Explanation: A line editing sequence created a line longer than the page

width limit.

INPUT LINE TOO LONG

INPUT LINE TOO LONG (ARGUMENT STRING IS TOO LONG)

Explanation: The argument to) IELP was longer than APL’s input buffer.

FILE CONTAINS A DAMAGED WORKSPACE

Explanation: The file specified by) LOAD,) COPY, or) PCOPY contains a

damaged workspace.

FILE CONTAINS A DAMAGED WORKSPACE (CURRENT WORKSPACE CLEARED)

Explanation: An attempt was made to load a file that contains a damaged

workspace. The current workspace is cleared.

CHARACTER ERROR

Explanation: The user entered an illegal overstruck character.

CHARACTER ERROR (ILLEGAL CHARACTER IN EXPRESSION)

Explanation: An internal (J4V code was included outside of a literal or

comment.

CHARACTER ERROR (ILLEGAL OVERSTRIKEF)

INPUT ABORTED

Explanation: The user entered the abort signal to escape from quad,

quote quad, or quad del input.

FUNCTION EDITING ABORTED

Explanation: The user entered the abort signal to escape from the

function editor.

LINE EDITING ABORTED

Explanation: The user entered the abort signal to escape from character

editing mode.

APL Reference Manual A-31

System Messages

54 INTERNAL ERROR SAVING WORKSPACE

Explanation: An internal inconsistency was detected. Please notify your

Digital software specialist.

55 NOT A RANDOM ACCESS DEVICE

56 INCORRECT MODF FOR DEVICE

Explanation: The I/O mode for the operation requested was improper for

the chosen device.

57 FILE DOES NOT CONTAIN A WORKSPACE

Explanation: An attempt was made to load or copy a file that does not

contain an APL workspace.

57 FILE DOES NOT CONTAIN A WORKSPACE (CURRENT WORKSPACE CLEARED)

58 DATA TRANSMISSION ERROR

Explanation: A data transmission error was detected during input or

output. This message is usually associated with a nonrecoverable device

error.

59 FILF ALREADY EXISTS WITH GIVEN NAME

Explanation: An attempt was made to save a workspace with the same

file name as an existing file that is not a workspace.

60 WS NOT SAVED, THIS WS 1S5 wsname

Explanation: An attempt was made to save a workspace with the same

file name as an existing workspace, without first making that same name

the workspace identification (returned by) ¥SID) . This error message is

to prevent inadvertent overwriting of previously saved workspaces.

62 NOT A DIRECTORY STRUCTURED DEVICE

63 FILE ASSIGNED READ ONLY

64 CHANNEL NOT ASSIGNED

Explanation: The channel specified in a file operation was not previously

associated with a file via a 0 4SS system function.

65 CHANNEL CANNOT DO BOTH INPUT AND OUTPUT

Explanation: An attempt was made to do both input and output to a

channel assigned to a sequentially organized file.

A-32 APL Reference Manual

66

67

68

69

71

72

73

73

74

75

76

77

System Messages

NOT AN INPUT DEVICE

Explanation: The user tried to perform input from an output-only device,

such as a line printer.

NOT AN OUTPUT DEVICE

Explanation: The user tried to perform output from an input-only device,

such as a card reader.

END OF FILE ENCOUNTERED

Explanation: A sequential read operation was attempted when there was

no next record or component and when the channel was assigned with

/SIGNAL.

RECORD NOT FOUND

Explanation: A random read operation was attempted on a nonexistent

record or component when the channel was assigned with /SIGNAL.

DEVICE ERROR

Explanation: A file operation attempted to use a mode that is improper

for the device specified in the associated 455 function.)

SYSTEM SERVICE FAILURE

SUBPROCESS FRROR

SUBPROCESS ERROR (COMMAND BUFFER OVERFLOW - SHORTEN EXPRESSION

OR COMMAND LINE)

BLOCK TOO BIG

Explanation: A data-transfer error occurred during I/0. Specifically, the

last read attempted to read a block of data that was too large.

Explanation: The end of the file was reached when /SIGNAL was not

being used. No message is printed and execution continues.

RESULT FRROR (BRANCH HAS NO RESULT)

Explanation: Branch was used with [] input.

STOPSET

Explanation: The operation was suspended because a stop bit was set for

the current line.

APL Reference Manual A-33

System Messages

A-34

78 END OF TAPE

Explanation: The end of a reel of magnetic tape was reached.

79 SYSTEM FUNCTION ILLEGAL IN EXECUTE

Explanation: The ([BREAK system function was used in the argument to

the execute function.

80 RETURN TO CALLER OF THIS IMAGE

Explanation: The right argument to (0 SIGNAL was 80.

81 BROADCAST RECEIVED

Explanation: A broadcast was received when ([JGAG was set to 3.

82 CHANNEL NUMBER IS NOT AVAILABLE

83 DAMAGED WORKSPACE HAS BEEN CORRECTED

83 DAMAGED WORKSPACE HAS BEEN CORRECTED (SOME SYMBOLS MAY HAVE

BEEN ERASED)

Explanation: A workspace, which previously contained corrupted data,

was loaded with the /CHECK qualifier.

86 FILE IS ASSIGNED WRITE ONLY

100 HI FILFE READ EFRROR

Explanation: An error occurred while reading the file specified by the /HI

qualifier on an APL command line or in an initialization file.

101 INITIAL WORKSPACE NOT FOUND

Explanation: The workspace that was specified on the APL command line

or in the initialization file was not found by APL.

102 VECTOR PROCESSOR NOT AVAILABLE

103 FRROR IN INITIALIZATION FILE

Explanation: APL detected an error while processing the parameters in

the initialization file identified by the logical name APL$INIT.

104 NEGATIVE THRESHOLD WITH VECTOR QUALIFIER NOT ALLOWED

105 ERROR INITIALIZING CONSOLE CHANNEL

106 FRROR INITIALIZING WORKSPACE ENVIRONMENT

APL Reference Manual

System Messages

108 FATAL INITIALIZATION ERROR

109 FATAL ERROR SETTING UP CLEAR WORKSPACE

110 ERROR READING INPUT FILE

111 EDIT COMMAND ERROR

111 EDIT COMMAND ERROR (xx QUALIFIER REPEATED)

Explanation: For) EDIT, the same qualifier was specified more than

once. xx is the name of the repeated qualifier.

111 EDIT COMMAND ERROR (ARGUMENT TO xx IS OUT OF RANGE)

Explanation: For) EDIT, a numeric value that is outside the acceptable

range was specified for a qualifier. xx is the name of the qualifier.

111 EDIT COMMAND ERROR (BAD ARGUMENT TO xx)

Explanation: For) EDIT, an invalid value was specified for a qualifier. xx

is the name of the qualifier.

111 EDIT COMMAND ERROR (CANNOT EDIT SYSTEM SYMBOL)

111 EDIT COMMAND ERROR (EDIT COMMAND UNAVAILABLE DURING FUNCTION

DEFINITION) |

111 EDIT COMMAND ERROR (ENCLOSED ARRAY NOT ALLOWED)

Explanation: An attempt was made to edit an enclosed array.

111 EDIT COMMAND FRROR (EXECUTE QUALIFIER ARGUMENT IS TOO LONG)

Explanation: For /EXECUTE, the string specified for tpucommand is too

long.

111 EDIT COMMAND FRROR (ILL FORMED NUMERIC CONSTANT)

Explanation: For) EDIT, there is nonnumeric data (data unacceptable to

0 vI) inside a numeric array that is returning from VAXTPU.

111 EDIT COMMAND ERROR (ILL FORMED NUMERIC MATRIX)

Explanation: For) EDIT, a record or records in the matrix returning from

VAXTPU have either more or fewer values than the number of values in

the first record.

111 EDIT COMMAND ERROR (ILLEGAL ASCII CHARACTFER)

APL Reference Manual A-35

System Messages

A-36

111 EDIT COMMAND ERROR (ILLFEGAL NAME CLASS)

Explanation: For /NC, either a value other than 2, 3, or 4 was specified,

or the specified value does not match the current name class value for

objectname.

111 EDIT COMMAND ERROR (INCORRECT PARAMETER)

Explanation: For) EDIT, an unknown parameter was specified.

111 EDIT COMMAND ERROR (MISSING ARGUMENT)

Explanation: For) EDIT, an attempt was made to edit a system function

or variable.

111 EDIT COMMAND ERROR (OPFRATION LOCKED)

Explanation: For) EDIT, an attempt was made to edit a locked function.

111 EDIT COMMAND ERROR (OPERATION SUSPENDED, PENDENT, OR

MONITORED)

111 EDIT COMMAND FRROR (UNBALANCED DELIMITER)

111 EDIT COMMAND FRROR (UNRECOGNIZED QUALIFIER KEYWORD)

111 EDIT COMMAND FRROR (UNSUPPORTED TERMINAL TYPE)

111 EDIT COMMAND FRROR (VOLUME TOO LARGEF)

112 ERROR PROCESSING HELP

112 FRROR PROCESSING HELP (INVALID KEY)

112 FRROR PROCESSING HELP (TOO MANY HELP KEYS SPEC'IF‘IED)

112 ERROR PROCESSING HELP (ERROR OPENING AS INPUT)

Explanation: The file that was specified as the argument to the) HELP

command did not exist.

112 FRROR PROCESSING HELP (ERROR PARSING ARGUMENT TO LIBRARY)

Explanation: The value for filespec on the /LIBRARY qualifier was either

not specified or specified incorrectly.

113 WATCH POINT ACTIVATED

113 WATCH POINT ACTIVATED (VARIABLE HAS BEEN MODIFIED)

APL Reference Manual

System Messages

113 WATCH POINT ACTIVATED (VARIABLFE HAS BEEN MODIFIED BY INDEX)

113 WATCH POINT ACTIVATED (VARIABLFE HAS BEEN REFERENCED)

114 ERROR PROCESSING ATTACH

Explanation: An error occurred when APL attempted to process the

) ATTACH command.

114 ERROR PROCESSING ATTACH (ATTACH REQUEST REFUSED)

Explanation: The value specified for process-name is the name of a

nonexistent process.

114 FRROR PROCESSING ATTACH (NONEXISTENT PROCESS)

114 FRROR PROCESSING ATTACH (INVALID LOGICAL NAME)

115—499 are reserved for VAX APL

500—999 are for user-defined error messages.

Explanation: For more information, see [SIGNAL.

APL Reference Manual A-37

Glossary

abort input signal

A technique for escaping to immediate mode when APL is waiting for input.

Different terminals form the abort input signal differently. Consult the index

to find more information on this subject.

ambivalent function

A function that may be monadic or dyadic, depending on how many arguments

are supplied when it is invoked.

APL terminal

A terminal that has an APL keyboard, that is, a terminal that can be set

up to use the APL key-paired (typewriter-paired), APL bit-paired, or APL

COMPOSITE character set.

argument

An array that is manipulated by a function. APL functions take zero, one, or

two arguments.

array

Any number (including O or 1) of items treated as a unit.

assignment

A method for associating a name with an array.

atomic vector

An array, returned by the system function JAV, that contains all the characters

in the APL character set.

Glossary-1

attention signal

A technique for suspending the execution of an operation and escaping to

immediate mode. The weak attention signal (formed by pressing (Ctrl/C) once)

means suspend execution of the current operation after executing the current

statement, and return control to immediate mode. The strong attention signal

(formed by pressing (Ctrl/C)) twice, means suspend the current operation as

soon as possible, even in the middle of the statement, and return control to

immediate mode.

axis

A dimension along which items in an array are arranged.

Boolean

A numeric item that has the value 0 or 1.

branch

Within a user-defined operation, a change in the normal order of statement

execution.

canonical representation

A character matrix with rows consisting of the original lines of a user-defined

operation.

channel L

The logical path through which the APL file system interacts with external

files and mailboxes.

character-editing mode

While in function-definition mode, a mode of editing in which you can edit

individual characters in a line. \

command line

The line that contains the DCL command APL. You enter the command line in

response to the DCL prompt ($).

comment

Ignored characters appearing to the right of (and on the same line as) the

a symbol; you can place a comment at the end of a line containing APL

statements or on a separate line.

Glossary-2

comparison tolerance

An amount used by APL when it calculates how much two numbers can

differ and still be considered equal. The system variable 0 CT contains the

comparison tolerance used by APL.

component

In an external file, a record that contains an APL object.

constant

An item whose value is literally the constant itself.

dense sequence

For some functions, APL requires that an argument of nonnegative integers

must form a dense sequence, beginning at 1 70. This means that the smallest

element in the argument must be 070, and that an integer N from the

argument domain may be included only if ¥-1 is also included. For example, if

the argument domain is the integers from 1 to 3, the arguments 21 3, 1 2 2,

and 1 1 1 form dense sequences, but the arguments 1 3 1 and 3 2 3 do not.

depth

The degree of nesting of an array.

derived function

A function that results from the combination of an operator and its operand or

operands.

domain

The permissible type, shape, and values of a function’s argument arrays or the

permissible objects of an operator’s operands.

dummy argument

In the header of a user-defined operation, an identifier that serves as a

placeholder for the actual argument, operand, or result that is supplied when

the operation is called.

dyadic function

A function that takes both a left and a right argument.

enclosed array

An array that includes one or more arrays.

Glossary-3

empty array

An array that has a type and shape but no items. The length of the array

along at least one axis is O.

error trapping

Techniques to find and react to errors that occur during the execution of

user-defined operations.

event flag

A shareable indicator, accessible through the APL file system, intended to aid

1n synchronizing access to shared files or mailboxes.

execute-only APL

The DCL command APL/EXECUTE_ONLY [parameters] invokes the run-time

support version of VAX APL called QAPL. QAPL can execute applications

written in VAX APL but does not contain the features to develop applications.

QAPL can be copied to any valid VMS system free of charge.

expression

An identifier or constant standing alone, a function or operator and its

arguments, or an expression enclosed in parentheses.

external data

Data created outside of APL.

external routine

A routine (not written in APL) that exists outside the APL environment. APL

can call library routines and other external routines that support the VAX

Procedure Calling and Condition Handling Standard. APL cannot call VMS

system services routines.

fill element

A scalar data element (either a space or a 0) inside a fill item.

fill item

An array (consisting of spaces, zeros, or a combination of both) that APL

inserts into another array. The shape and contents of a fill item are based on

the prototype of the array that APL is using as a model for the array being

built. Fill items are used by Take, Replicate, Expand, Disclose, and]B0OX.

Glossary—4

function

An operation that applies to arrays and produces an array as a result.

function-definition mode

An operating mode in which the lines of APL you enter are not executed

immediately but rather are stored for later execution. Function-definition

mode begins when you type a v and ends when you type a second v or #. This

mode is used when creating user-defined functions and operators.

global symbol

A symbol that has the same value inside and outside a user-defined operation.

header

The initial line of a user-defined operation. See operation header for more

information.

heterogeneous array

An array that contains both character and numeric data.

high minus

The symbol (T) used to represent the negative sign in APL.

homogeneous array

An array that contains either character or numeric data, but not both.

identifier

A variable name, label name, group name, or user-defined operation name. See

also system identifier.

identity element

A value (if one exists) to a dyadic function which, when used as one argument

to the function, does not change the value of the other argument. For example,

for any identity element i applied to a dyadic function f and an argument a, a

does not change: i fa<—~>a

identity function

A function that APL applies to the prototype of an array when performing the

reduction (f/B) of an axis that has length zero. Note that the inner product

(f.g) derived functions imply the use of reduction. The identity function

is applied to the prototype of the argument array in place of the specified

function.

Glossary-5

immediate mode

An APL operating mode in which lines are executed immediately after they are

entered.

index

A notation used to specify the position of items within an array that you want

to reference. The index appears immediately to the right of an array and

consists of two brackets enclosing values that correspond to axes in the array.

Index is synonymous with subscript.

indexed assignment

The assignment of values to selected items of a variable. The indexed variable

1s positioned to the left of the assignment arrow (+), and the index specifies

the items in the array where the assignment is applied. Indexed assignment is

synonomous with subscripted assignment or indexed specification.

index origin

The starting point for the index values of an array. The index origin may be 0

or 1. The system variable 0 I0 contains the current index origin value.

indexing

The use of an index to access particular items from an array.

initialization file

A file, referenced by the VMS logical name APLS$INIT, that contains

parameters that are processed when APL is initialized.

initialization stream

Either the DCL command line that invokes APL, or the initialization file

referenced by the VMS logical name APL$INIT. Either or both of these streams

may contain parameters to be processed when APL is initialized.

integer

Any of the positive and negative integers, or zero.

internal data

Data stored in one of the four APL internal data type formats.

Glossary—6

key

A field defined by its location and length within each record and used to sort

the records. At least one key, called the primary key, must be defined for a

keyed file. Optionally, additional keys, called alternate keys, may be defined.

key of reference

The specific key used in a sequential or random read of a keyed file.

keyed file

A file in which records are organized by fields, called keys, inside the records.

The VAX RMS term is indexed sequential file organization (ISAM). The keys

of the file define the order in which the records are retrieved; you can retrieve

records sequentially by one of the sorted orders or randomly by one of the

record’s key values. A keyed file must contain at least one key.

label

An identifier associated with a line in a user-defined operation.

latent expression

A character vector representing an APL expression; the expression 1s

associated with a workspace and is automatically executed when the

workspace is loaded. The system variable 0LX contains the value of the

workspace’s latent expression.

line

The statement or statements you enter beginning after an APL input prompt

and ending when you press Return to enter the line.

local symbol

A symbol that has significance only during the execution of a particular

user-defined operation.

locked operation

An operation definition that cannot be changed or displayed.

logical name

A symbolic name for any portion or all of a file specification.

mailbox

A virtual device useful for sending messages to other processes.

Glossary—7

matrix

An array consisting of any number of items arranged along two axes,

commonly called rows and columns.

matrix domain

A matrix, vector, or singleton.

monadic function

A function that takes one argument.

monitored operation

A user-defined operation that has some of its lines being monitored via

[IMONITOR.

multikey file

A file in which records are organized by fields, called keys, inside the records.

The RMS term is indexed sequential file organization (ISAM). The keys of

the file define the order in which the records are retrieved: you can retrieve

records sequentially by one of the sorted orders or randomly by one of the

record’s sort values. A multikey file must contain at least one key.

near-integer

A numeric item whose floor is equal to its ceiling; this includes all numbers

sufficiently close to an integer as determined by the APL comparison tolerance.

nested array

A synonym for enclosed array.

next record pointer

An internal mechanism that keeps track of the next record to be processed by

a sequential input function.

niladic function

A function that takes no arguments.

non-APL terminal

A terminal that does not have an APL keyboard. On such a terminal, APL

characters must be represented by ASCII mnemonics.

nonnegative integer

Any of the positive integers or zero.

Glossary-8

operation

Either a function or an operator. Occasionally, operation refers to a

mathematical action (such as the addition operation) or to an action taken by

the APL interpreter.

operation body

The executable lines of APL that appear in a user-defined operation definition.

operation header

The first line you enter when you define an operation. It names the operator;

indicates whether the operation returns a value; indicates whether the

operator i1s monadic or dyadic; indicates the use of an axis argument; and

identifies the operation’s local symbols.

operator

An operation that is applied to either arrays, or functions, or both and

produces a derived function as a result. In VAX APL, there are user-defined

operators and primitive operators.

operator sequence

A sequence of functions and operators whose result is a derived function.

overstruck character

An APL character formed by combining two other APL characters. For

example, the § symbol is formed with the 0 and < symbols. Different terminal

types form overstrikes in different ways. Some terminals allow you to enter

the first character, use Backspace, and then enter the second character on top

of the first. Other terminals allow you to use a Compose Character key (or

Ctrl/D) and then to enter the two characters. On these terminals, only the

resulting overstrike character is displayed.

panic exit

A technique for immediately suspending the execution of an operation and

giving control to the operating system. The panic exit is formed by pressing

Ctrl/Y once. After a panic exit, you can return to where you left off by

executing the DCL command CONTINUE. If you enter the panic exit while

an operation is executing, the operation is suspended; if you then enter

CONTINUE, the operation resumes execution at the point where it was

interrupted.

Glossary-9

pendent operation

A user-defined operation that has called another operation and is waiting for

that operation to return.

pervasive operation

An operation that acts at all depths (levels of nesting) of an array.

PID

Process Identification, an integer value that uniquely identifies a VMS process.

positive integer

The integers greater than zero.

print precision

The maximum number of significant digits displayed in floating-point output.

The system variable [PP contains the current print precision value.

print width

The maximum number of characters that APL can display on a terminal

output line. The system variable [J P/ contains the current print width value.

process

The basic entity scheduled by VMS software that provides the context in which
an image executes.

process identification

An integer value that uniquely identifies a VMS process.

prototype

An array that APL uses to determine the shape and contents of fill items.

The prototype of an array B has the same shape as the first item of B and

has character blanks and zeros in positions corresponding to characters and

numbers, respectively, in the first item of B.

pure data record

A record that is a vector of values, with none of the embedded format

information that APL includes within component data records.

quiet function

A function that does not return a value unless one is needed; that is, a value is

returned only if it is not the leftmost function.

Glossary-10

random link

The current value used by the APL random number generator. The system

variable JRL contains the current random link value.

range

The permissible type, shape, and values of a function’s result array.

rank

The number of axes along which an array’s items are arranged.

recursive operation

A user-defined operation that calls itself.

reshape

A function used to change the number of an array’s axes or to change the

length of one or more of its axes.

row-major order

An ordering of the items of an array so that the last subscript value varies

most rapidly. For example, the row-major order of a 2 by 3 matrix would be

[1;1], [1;21, [1;3], [2;1], [2;2], [2;3].

scalar

A rank 0 array (an array with no axes) containing a single numeric or

character or enclosed item.

scalar extension

An implicit operation that reshapes a scalar argument to match the shape of a

non-scalar argument.

scalar product

An implicit operator that applies a dyadic scalar function over each

corresponding pair of items in the two arguments.

selective assignment

A method for replacing selected items of an array.

Glossary-11

shadow

The act of localizing a name when a user-defined operation is activated so

that the old value of the name is saved and the name becomes undefined

in the context of the newly activated user-defined operation. The old value

of the name is restored when the user-defined operation exits to its calling

environment.

shape

The way an array’s items are arranged; specifically, a numeric vector that

describes the length of each of the array’s axes.

signal

A term often used in the description of what APL does when it detects an

error; APL signals an error.

simple array

An non-enclosed array whose depth is less than 2.

simple scalar

A scalar that contains only a single character or number.

singleton

A one-item array of any rank (includes scalars).

singleton extension

An implicit operation that is applied to a dyadic scalar function when one

or both of the function’s arguments are singletons. This implicit operator

reshapes the singleton argument to match the shape of the nonsingleton

argument, allowing the single value from the singleton to be applied to

each item of the other argument. When both arguments are singletons, the

argument with the smaller rank is reshaped to match the rank of the other

singleton.

specification

A method for associating a name with an array.

state indicator

A vector that reports the status of user-defined operations, quad input

requests, and execute functions.

Glossary—12

statement

One or more expressions executed as a unit.

stop bit

A setting associated with a line in an operation definition that causes the

operation to be suspended before the line is executed.

strand

Two or more juxtaposed arrays (including scalars) which form a vector. Also

known as vector notation.

strand assignment

The process of associating a strand of values with a set of names.

subprocess

A process created by and subordinate to another process. The subprocess

shares the resources of the creating process.

subscript

A notation used to specify the position of items within an array that you want

to reference. The subscript appears immediately to the right of an array and

consists of two brackets enclosing values that correspond to axes in the array.

Subscript is synonymous with index.

subscripted assignment

An assignment that modifies only the items that are specified by an index list.

Subscripted assignment is synonymous with indexed assignment or subscripted

specification.

suspended operation

A user-defined operation that has stopped executing but still has lines of APL

to be processed.

symbol table

A data structure inside the APL interpreter. The symbol table keeps track of

the names of all objects in a workspace.

system identifier

Any system-provided name that always begins with the quad (0) symbol.

System identifier refers to system variables and functions.

Glossary-13

A

Abbreviations for system commands, 3-2

Absolute value, 1-14

Accounting information system function,

2—13

Accumulating data system function, 2-44

Addition function, 1-16

Alphabetic characters

vector of, 2-14

Alphabetics

lowercase, 2-15

system function, 2-14

underscored, 2-16

Ambivalent system functions, 2-7

And function, 1-21

APL character set, 247

APL session

exiting from, 34, 3-13, 3-60

interrupting, 34

Arbitrary output, 2-17

Arguments

multiple

in user-defined ops, 1-219

scalar function, 1-2

Arithmetic functions, 1-10

Array corner, 1-59, 1-156

Arrays

displaying, 2-62

joining, 1-34

matrix product of, 1-209

rank of, 1-150

shape of, 1-138

sorting, 1-87, 1-90, 1-96, 1-99

Index

ASCII

character set system variable, 2-19

control characters, 2-58

output, 2-17

Assigning files system function, 2-20

Assignment

selective, 1-221

strand, 1-218

Associative argument with scan, 1-203

Atomic vector system function, 2-32

Automatic save system variable, 2-28

Axis, 1-212

B

Backslash operator, 1-178

Bare output

resetting buffer, 2—-18

Base function, 1-27

BETA function, 1-20

Bit-paired character set, 2-47

Box system function, 2-35

Branch function, 1-31

Break system function, 2-38

Breakpoint, 2-38

Brief error messages, 2-183

Buffer

resetting bare output, 2-18

Index-1

C

Canonical representation, 2-98

system function, 2-54

Catenate function, 1-34

Channels

assigning files to, 2—-20

listing active, 2-40

status of, 241

system function, 2-40

Character arrays

converting to, 1-79

Character matrix

from character vector, 2-35

Character set

APL, 2-47

atomic vector table, 2-32

bit-paired, 2-47

composite, 2-47

key-paired, 2-47

TTY, 2-47

Character string

executing, 1-70, 2-221

selecting numbers from, 2-89, 2-203

Character vector

from character matrix, 2-35

Characters

ASCII control, 2-58

converting to numbers, 2-88

digits, 2-135

fill, 1-179, 1-196, 2-86, 2-161

nonprintable, 2-32

vector of alphabetic, 2-14

Circle function, 1-17

Clear event flag system function, 2-77

Clear workspace

characteristics, 3-11

Closing files system function, 2-52

Combinations function, 1-19

Comparing numbers, 2-56

Comparison tolerance, 1-12, 1-13

system variable, 2-56

Composite character set, 2-47

Index-2

Compresssion function, 1-179

Conditional branching, 1-32

Conjugate function, 1-10

Connect time, 2-13

Contains function, 1-43

CONTINUE workspace, 3-13

Control characters

ASCII, 2-58

Control characters system function, 2-58

Controlling output, 1-82

Convert characters system function, 2-88

Copy
protected, 3-72

Corner of an array, 1-569, 1-156

CPU time, 2-13

Current date, 2-197

Current time, 2-197

D

Data

packing, 2-46, 2—-138

reformatting, 2-93

treating a function as, 2-54

unpacking, 2-46, 2-138

Date, 2-197

DCL

command execution, 3-19, 3-74

Deal function, 1-45

Debugging

stepping through operations, 3-85

Decode function, 1-27

Defaults

in clear workspace, 3-11

of system variables, 2-2

Delay system function, 2-70

DELETE command

VMS, 3-21

Depth function, 1-47

Derived functions

compression, 1-179

expansion, 1-196

inner product, 1-208

outer product, 1-205

reduction, 1-185

Derived functions (cont’d)

replication, 1-179

scan, 1-201

Device

displaying characteristics of, 2-74

mailbox number of, 2-120

Diagonal slice, 1-165

Difference (subtraction), 1-16

Digits, 2-135

significant, 2-142

DIRECTORY, DCL command, 3-49

Disclose function, 1-49

Display control system variable, 2-62

Display format, 1-79

Displaying enclosed arrays, 2-62

Displaying workspace information system

command, 3-68

Distinguished names, 2-2, 2-4

Division

by zero, 1-16

matrix, 1-116, 1-119

Division function, 1-16

Domain of functions, 1-1

Domino, 1-120

Dot operator, 1-178

Drop function, 1-58

Dyadic format function, 1-82

Dyadic functions, 1-1

scalar, 1-3

Dyadic grade down function, 1-90

Dyadic grade up function, 1-99

Dyadic transpose function, 1-164

E

Each operator, 1-191

Editing with VAXTPU, 3-22

Enclose function, 1-63

Encode function, 1-135

Enlist function, 1-69

/ENTRY qualifier, 2-118

Equal to function, 1-22

Erasing global names, 3-28

Erasing named objects system function,

2-83

Error messages, A-1

brief, 2-183

secondary, 2-183, A-1

text of, 2-80

Error number, 2-173

Errors

signaling, 2-172

Exclusive OR operation, 1-22

Execute function, 1-70

Executing expressions system function,

2-221

Execution

monitoring, 2-192

of DCL commands, 3-19, 3-74

of VMS commands, 3-74

status of, 3-84

Expansion function, 1-196

Expansion system function, 2-85

Exponential function, 1-11

Expressions

automatic execution of, 2-108

executing, 2-221

External routines

defining to APL, 2-111

querying APL definition, 2-111

F

Factorial function, 1-14

File assignments, listing, 2-20

File organization qualifiers, 2-21

File status, 241

Files

closing, 2-52

deassigning, 2-60

deleting, 3-21

organization of, 2-41

sharing, 2-91

Fill character, 1-179, 1-196, 2-86, 2—-161

Fill items, 1-155

First function, 1-77

Fix function system function, 2-98

Floor function, 1-12

Index-3

Form character matrix system function,

2-35

Form character vector system function, 2-35

Format

of output display, 1-79

Format function

dyadic, 1-82

monadic, 1-79

Format system function, 2-7

Function characteristics

domain, 1-1

range, 1-1

Function names

displaying, 3-31

list of, 2-131

Functions, APL

quotient, 1-16

Functions, APL primitives

addition, 1-16

and, 1-21

base, 1-27

BETA, 1-20

branch, 1-31

catenate, 1-34

ceiling, 1-13

circle, 1-17

combinations, 1-19

compression (derived), 1-179

conjugate, 1-10

contains, 1-43

deal, 1-45

decode, 1-27

depth, 1-47

disclose, 1-49

division, 1-16

drop, 1-58

dyadic format, 1-82

dyadic grade down, 1-90

dyadic grade up, 1-99

dyadic transpose, 1-164

enclose, 1-63

encode, 1-135

enlist, 1-69

equal to, 1-22

execute, 1-70

Index—4

Functions, APL primitives (cont’d)

expansion (derived), 1-196

exponential, 1-11

factorial, 1-14

first, 1-77

floor, 1-12

GAMMA, 1-14

greater than, 1-22

greater than or equal, 1-22

index generator, 1-105

index of, 1-107

inner product (derived), 1-208

intersection, 1-110

laminate, 1-34

less than, 1-22

less than or equal, 1-22

logarithm, 1-12, 1-17

magnitude, 1-14

match, 1-113

matrix divide, 1-116

matrix inverse, 1-119

maximum, 1-18

membership, 1-121

minumum, 1-18

monadic format, 1-79

monadic grade down, 1-87

monadic grade up, 1-96

monadic transpose, 1-161

multiplication, 1-16

nand, 1-21

natural logarithm, 1-12

negative, 1-11

nor, 1-21

not, 1-21

not equal, 1-22

or, 1-21

outer product (derived), 1-205

overtake, 1-154

pi times, 1-12

pick, 1-123

power, 1-16

ravel, 1-130

reciprocal, 1-11

reduction (derived), 1-185

replicate (derived), 1-179

Functions, APL primitives (cont’d)

replication (derived), 1-179

represent, 1-135

reshape, 1-138

residue, 1-18

reverse, 1-141

roll, 1-14

rotate, 1-145

scan (derived), 1-201

shape, 1-149

signum, 1-11

specification, 1-215

subset, 1-152

subtraction, 1-16

take, 1-154

union, 1-170

unique, 1-172

without, 1-174

Functions, system

see System functions

Functions, types of

arithmetic, 1-10

dyadic, 1-1

dyadic scalar, 1-3

locked, 3-81

logical, 1-21

mixed, 1-1

monadic, 1-1

monadic scalar, 1-2

pendent, 3-80

primitive mixed, 1-22

quiet, 2-8

relational, 1-22

scalar, 1-1, 1-2

suspended, 3-80

Grade up function

dyadic, 1-99

monadic, 1-96

Greater than function, 1-22

Greater than or equal function, 1-22

Group members

displaying, 3-35

Group names

displaying, 3-36

erasing, 328

Groups

adding to, 3-33

copying, 3-16, 3—72

defining, 3-33

dispersing, 3-33

H

High minus sign

printing, 2—-129

/O

mode, 1-75

Identification

of users, 2-13

of workspace, 3-93

Identification number, VMS

process, 2—120

Identifier

assigning a value to, 1-215

Identity items, 1-187

/IMAGE qualifier, 2-118

Index generator function, 1-105

Index Of function, 1-107

Index of records, 1-75

G Index origin, 364
Index origin system variable, 2-102

Inner product function, 1-208

Global names, erasing, 3-28 Inner product operator, 1-29

Grade down function Input prompt, 2-170

dyadic, 1-90 Input prompt system variable, 2-170

monadic, 1-87 Input time limit, 2-188

Gag system variable, 2-100

GAMMA function, 1-14

Index-5

Integer

random, 1-14, 1-45, 2-168

Interpreter, APL

version of, 2-202

Interruptions

preventing, 2-100

Intersection function, 1-110

J

Job number, user, 2-201

K

Key-paired character set, 2-47

L

Labels

list of, 2-131

Laminate function, 1-34

Latent expression system variable, 2-108,

3-51

Left context system variable, 2-104, 2-215

Length

of output lines, 2-144

Less than function, 1-22

Less than or equal function, 1-22

Limit

time, 2-185

Line

length of output, 2-144, 3-91

wrapping output, 2-145

Line counter, 2-106

Line counter system function, 2-106

Local symbols

status of, 3-83

Logarithm function

dyadic, 1-17

monadic, 1-12

Logical functions, 1-21

Logical operations, 1-22

Lowercase alphabetics system function,

2—-15

Index—6

Magnitude function, 1-14

Mailbox system function, 2-120

Map system function, 2-111

Match function, 1-113

Matrix divide function, 1-116

Matrix division, 1-116, 1-119

Matrix inverse function, 1-119

Matrix operations, 1-116, 1-119

Matrix product of arrays, 1-209

Maximum function, 1-18

Membership function, 1-121

Messages

displaying during load, 2-109

error, A-1

preventing, 2-100

secondary error, 2-183, A-1

shorter error, 2-183

signaling a, 2-172

text of last error, 2—80

Minumum function, 1-18

Minus sign, 1-11

Mixed functions, 1-1

primitive, 1-22

Monadic ceiling function, 1-13

Monadic format function, 1-79

Monadic functions, 1-1

scalar, 1-2

system, 2-5 |

Monadic grade down function, 1-87

Monadic grade up function, 1-96

Monadic transpose function, 1-161

Multiple arguments in user-defined ops,

1-219

Multiplication function, 1-16

N

Name classification system function, 2-126

Name list system function, 2-131

Names

classifying, 2-126

directory of workspace, 3-47

Names (cont’d)

displaying functions, 3-31

displaying operators, 3—62

distinguished, 2-2, 24

erasing global, 3-28

lists of, 2-131

of group members, 3-35

types of, 2-127

workspaces, 3-93

Nand function, 1-21

Natural logarithm function, 1-12

Negative function, 1-11

Negative numbers

recognition of, 2-89, 2-129, 2-204

Negative sign

output representation, 2-129

Next-record pointer, 2-165

Niladic system functions, 2—4

Nonprintable characters, 2-32

Nor function, 1-21

Not equal function, 1-22

Not function, 1-21

Null password, 3-71

Numbers

comparing, 2-56

converting characters to, 2-88

selecting from character string, 2-89

Numbers system function, 2-135

Numbers, types of

error, 2—173

user job, 2-201

Numeric empty vector, 1-106

Numeric input

validating, 2-203

O

Objects

erasing named, 2-83

Om system function, 2-136

Operating system

interacting with, 3-19, 3-74

returning to command level, 3-56

Operation execution

delaying, 2-70

gathering data, 2-122

Operation execution (cont’d)

interrupting, 2-179

monitoring, 2-192

stopping, 2-179

suspending, 2-38, 2-179

tracing, 2-192

Operations, types of

logical, 1-22

Operations, user-defined

debugging, 2-122, 2-179, 2-192

displaying names, 3—62

establishing, 2-98

listing names, 2-131

monitoring, 2-122

restarting suspended, 2-108

stopping, 2-179

tracing, 2-192

treating as data, 2-54

Operators

APL operators, 1-176

backslash, 1-178

dot, 1-178

each, 1-191

inner product, 1-29

slash, 1-178

Operators, types of

locked, 3-81

pendent, 3-80

suspended, 3-80

Or function, 1-21

OR operation, 1-22

Origin

index, 3-64

Outer product function, 1-205

Output

arbitrary, 2-17

ASCII, 2-17

controlling, 1-82

formatting, 2-7

untranslated, 2-17

Output lines

length of, 2-144

wrapping, 2-145

Output precision, 3-17

Index—7

Overtake function, 1-154

P

Pack system function, 2-138

Password

null, 3-71

workspace, 2-147, 2-151, 2-154, 3-50,

3-70, 3-77, 3-93, 3-94, 3-95

Pervasive functions, 1-4

Physical device number, mailbox, 2-120

Pi times function, 1-12

Pick function, 1-123

PID, 2-29, 2-201

Pointer, next-record, 2-165

Polynomials, evaluating, 1-29

Power function

dyadic, 1-16

monadic, 1-11

Precision of output, 3-17

Primitive mixed functions, 1-22

Print high minus system variable, 2-129

Print precision, 3-17

system variable, 2-142

Print width, 3-91

Print width system variable, 2-144

Process identification number, 2-120

Product (multiplication), 1-16

Product, of array matrix, 1-209

Prompts

quad input, 2-170

terminal type, 2-198

Protected copy, quiet, 2-154

Pseudo-terminal, 2-185

Q

Quad input prompt, 2-170

Qualifiers, APL

/ACCESS, 2-114

/CHECK, 2-147, 2-151, 2-154, 3-15,

3-50, 3-72, 3-77, 3-95

/ENTRY, 2-113, 2-118

/IMAGE, 2-118

/INTO, 3-85

Index-8

Qualifiers, APL (cont’d)

/LOWERCASE, 3-19

/MAXLEN, 3-77

/MECHANISM, 2-116

/NOKEYPAD, 3-19, 3-74

/NOLOGICALS, 3-19, 3-74

/NOSYMBOLS, 3-19, 3-74

/NOTIFY, 3-74

/NOWAIT, 3-74

/OVER, 3-85

/PARENT, 3-8

/PASSWORD, 3-15, 3-50, 3-95

/TYPE, 2-114

/VALUE, 2-113, 2-118

qualifiers, file organization, 2-21

Query system commands, 3-3

Query/Change system commands, 3-3

Quiet copy

system function, 2-147

with protection, 2-154

Quiet functions

definition, 2-8

list of, 2-8

Quiet load system function, 2-151

Quotient function (division), 1-16

R

Random integer, 1-14, 1-45, 2-168

Random link system variable, 1-46, 2—168

Range of functions, 1-1

Rank of arrays, 1-150

Ravel function, 1-130

Read event flag system function, 2-77

Reciprocal function, 1-11

Records

index for, 1-75

releasing locked, 2-159

Reduction function, 1-185

Relational functions, 1-22

Release system function, 2-159

Remainder, 1-18

Renaming a workspace, 3-78

Replication function, 1-179

Replication system function, 2-161

Report formatter system function, 2-93

Represent function, 1-135

Representation

of an object, 2-207

of canonical form, 2-98

of negative sign, 2-129

Reset system function, 2-164

Reshape function, 1-138

Residue function, 1-18

Reverse function, 1-141

Rewind system function, 2-165

Right context system variable, 2-157, 2-215

Roll function, 1-14

Rotate function, 1-145

Row-major order, 1-130, 1-138

S

Saving workspace system function, 2-28

Scalar functions, 1-1, 1-2

arguments to, 1-5

dyadic, 1-3

monadic, 1-2

Scalar product, definition of, 1-2

Scan function, 1-201

with associative argument, 1-203

Secondary error messages, 2-183, A-1

Selective assignment, 1-221

Session variables, 3—4

gag, 2-100

tle, 2-190

tt, 2-198

vpe, 2-205

Set event flag system function, 2-77

$SEVERITY, global symbol, 2-174

Shape

array, 1-138, 1-149

function, 1-149

Shift

left, 1-145

right, 1-145

Short error messages, 2-183

Sign, high minus

printing, 2-129

Signal system function, 2-172

Significant digits, 2-142, 3—-17

Signum function, 1-11

Singleton, 1-3

Sink output system variable, 2-176

Size, workspace, 2-210

maximum, 3-53

minimum, 3-54

Slash operator, 1-178

Specification function, 1-215

Squish quad, 2-32

State indicator

clearing, 3-82

displaying, 3-80

resetting, 2-164

Status

channel, 2-41

file, 241

function, 3-80

local symbol, 3-83

of executing lines, 3-84

$STATUS, global symbol, 2-174

Stop system function, 2-179

Stopping programs, 2-179

Storage available in workspace, 2-210

Strand assignment, 1-218

String search system function, 2-177

Subprocess, VMS, 3-19, 3-74

Subscripted assignment

See Arrays Indexing

Subset function, 1-152

Subtraction function, 1-16

Sum (addition), 1-16

Suspended operations, 3-80

executing, 3-85

restarting, 2-106, 2-108

Symbols

status of local, 3-83

System commands, 3-1, 3-5

abbreviations for, 3—2

form of, 3-2

query, 3-3

query/change, 3-3

types of, 3-2

Index-9

System commands, APL

attach, 3-8

charge, 3-10

clear, 3-11

clearing the state indicator, 3—82

continue, 3-13

copy, 3-15

digits, 3-17

displaying function names, 3-31

displaying group members, 3—395

displaying group names, 3-36

displaying information about workspace

creation, 3—68

displaying operator names, 3—62

displaying state indicator, 3-80

displaying state indicator and executing

lines, 3-84

displaying state indicator and local

symbols, 3-83

displaying symbol table, 3-57

displaying variables, 3—88

displaying version number, 3-90

do, 3-19

drop, 3-21

edit, 3-22

erase, 3-28

group, 3-33

help, 3-38

Input, 3-45

listing workspace names, 3—47

load, 3-50

maximum workspace size, 3-53

minimum workspace size, 3—54

mon, 3-56

off, 3-60

origin, 3-64

output, 3-65

output width, 3-91

owner, 3—68

protected copy, 3-72

push, 3-74

save, 3—77

step, 3-85

workspace identification, 3-93

workspace password, 3-70

Index—-10

System commands, APL (cont’d)

xload, 3-95

System functions, APL

accounting information, 2-13

alphabetics, 2-14

arbitrary output, 2-17

assigning files, 2-20

atomic vector, 2-32

canonical representation, 2-54

channel status, 2-41

clear event flag, 2-77

closing files, 2-52

control characters, 2-58

convert input, 2-88

deassigning files, 2-60

delay, 2-70 |

device characteristics, 2-74

erasing named objects, 2-83

executing expressions, 2-221

expansion, 2-85

file sharing, 2-91

fix function, 2-98

form character matrix, 2-35

form character vector, 2-35

format, 2-7

indexing Booleans, 2-136

mailbox, 2-120

map external routine, 2-111

name classification, 2-126

name list, 2-131

numbers, 2-135

packing data, 2-46, 2-138

quiet copy, 2-147

quiet load, 2-151

quiet protected copy, 2-154

read event flag, 2-77

release, 2-159

replication, 2-161

report formatter, 2-93

reset, 2—-164

saving workspaces, 2-28

set event flag, 2-77

string search, 2-177

time stamp, 2-197

underscored alphabetics, 2-16

System functions, APL (cont’d)

unpacking data, 2-46, 2-138

user load, 2-201

validating input, 2-203

visual representation, 2—-207

workspace available, 2-210

System functions, types of, 2-3, 2—4, 2-9

ambivalent, 2-7

dyadic, 2-6

form, 2-4

monadic, 2-5

niladic, 24

System variables, 2-1, 2-9

ASCII character set, 2-19

form of, 2-2

list of, 2-2

maximum record length, 2-72

types of, 2-2

System variables, APL

automatic save, 2-28

comparison tolerance, 2-56

display control, 2-62

error message, 2-80

index origin, 2-102

input prompt, 2-170

latent expression, 2-108

print high minus, 2-129

print precision, 2-142

print width, 2-144

random link, 2-168

sink output, 2-176

terminal line edit, 2—-190

terminal type, 2-198

terse error messages, 2—183

trap expression, 2—-195

vector process control, 2-205

watched variables, 2-104, 2-157, 2-215

System variables, APL primitives

random link, 1-46

T

Take function, 1-154

Terminal

width, 2-145

Terminal line edit system variable, 2—-190

Terminal type system variable, 2-198

Terse error messages system variable, 2-183

Time

connect, 2—-13

CPU, 2-13

current, 2-197

Time limit, 2-185

input, 2-188

Time limit system variable, 2-185

Time out system variable, 2-188

Time stamp system function, 2-197

TPU editor, 3-22

Tracing programs, 2-192

Transpose function

dyadic, 1-164

monadic, 1-161

Trap system variable, 2-195

Trigonometric functions, 1-17

Truth table, 1-21

TTY

character set, 247

output of high minus, 2-129

U

Unconditional branching, 1-31

Underscored alphabetics system function,

2-16

Union function, 1-170

Unique function, 1-172

Untranslated output, 2-17

User identification, 2-13

User load system function, 2-201

Index-11

V

Validating input system function, 2-203

/VALUE qualifier, 2-118

Variables

catenating different types of, 2—44, 2-138

displaying, 3-88

list of, 2-131

session, 3—4

system, 2-1, 2-9, 2-102

see also System variables

workspace, 3—4

VAXTPU editor

syntax form, 3-22 .

Vector process control system variable,

2-205

Version number

displaying, 3-90

Version of APL interpreter, 2-202

Version system command, 3-90

Version system function, 2-202

Visual representation system function,

2-207

VMS

command execution, 3-19, 3-74

signaling to, 2-174

subprocess, 3-19

VMS subprocess, 3-74

W

Wait system function, 2-211

Watch modes, 2-216

Watch system function, 2-214

Watchpoints, 2-215

White space, 3-2

Width, output, 2-145, 3-91

Wildcards, 3-47

Without function, 1-174

Workspace

APL CONTINUE, 3-13

Automatic saving, 2-28

automatically saving, 2-28

backup, 2-28

Index—12

Workspace (cont’d)

clearing, 3-11

copying objects from, 3-15, 3-72

copying objects to, 2-147

deleting, 3-21

displaying information about creation,

3—68

expression executed when loading, 2-108

loading, 2-151, 3-50, 3-95

owner, 3-68

password, 3-50, 3-70, 3-77, 3-93, 3-94,

3-95

renaming, 3—78

saving, 3-13, 3-77

size, 2-210

maximum, 3—53

minimum, 3-54

storage available in, 2-210

variables, 3—4

version saved under, 2-202, 3-90

Workspace available system function, 2-210

Workspace names

directory of, 3-47

displaying, 3-47

Z

Zero

as argument in division, 1-16

How to Order Additional Documentation

Technical Support

If you need help deciding which documentation best meets your needs, call 800-343-4040

before placing your electronic, telephone, or direct mail order.

Electronic Orders

To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using

a 1200- or 2400-baud modem. If you need assistance using the Electronic Store,

call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location Call

Continental USA, 800-DIGITAL

Alaska, or Hawaii

809-754-7575

800-267-6215

Puerto Rico

Canada

International

Internal!

Contact

Digital Equipment Corporation

P.O. Box CS2008

Nashua, New Hampshire 03061

Local Digital subsidiary

Digital Equipment of Canada

Attn: DECdirect Operations KAO2/2

P.O. Box 13000

100 Herzberg Road

Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or

approved distributor

USASSB Order Processing - WMO/E15

or

U.S. Area Software Supply Business

Digital Equipment Corporation

Westminster, Massachusetts 01473

1For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Do Not Tear - Fold Here and Tape ————————————"/——"—"——"—"———"—————————————

i)l I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION

Corporate User Information Products

PK03-1/D30

129 PARKER STREET

MAYNARD, MA 01754-9975

DoNotTear - Fold Here ——————— — — ee

No Postage

Necessary

If Mailed

in the

United States

