
t/-c 0 l! -- ~D
KA660 CPU Module Technical Manual
Order Number' EK-KA660-TM-001

Digital Equipment Corporation

March!99!

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in
-~"-'accOhianCe with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by
Digital Equipment Corporation or its affiliated companies.

'T'''' Restricted Rights: Use, duplication, or disclosure by the U. S. Government is subject to restrictions as set
forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013.

Copyright e Digital Equipment Corporation March 1991

All Rights Reserved.
Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation: CI, DEC, DECnet, DEQNA, DBSI, KDA,
KLESI, LPVn-SA, MicroVAX, Q22.bus, RA, RQDX3, ThinWire, ULTRIX. VAX, VAX MACRO, VAXELN, VMS,
al~d the DIGITAL logo.

This document was prepared and published by Educational Services Development and Publishing, Digital
Equipment Corporation.

Contents

.. . .,"
'., ~ ~ ,r' ~~: .. :n.j:

About This Manual

1 Overview
1.1

1.2

1.3

1.4

{ ", >- .' ')!' ~ ' •.

The KA660 Subsystem

KA660 Processor Module

MS650 Memory Module

H3602 Console Module

2 Installation and Configuration

1-1

1-2

1-7

1-8

2.1 Introduction ; 2-1

2.2 Installing the KA660 and MS650 Memory Modules 2-1

2.3 Module Configuration and Naming. 2-3

2.4 Mass Storage Configuration 2-4
2.4.1 Changing the Node Name. 2-4
2.4.2 Changing the DSSI Unit Number. 2-5
2.4.3 Access to RF -series Firmware in VMS Through DUP 2-6
2.4.3.1 Allocation Class 2-7

2.5 DSSI Cabling, Device Identity, and Bus Termination 2-7

2.6 KA660 Connectors. .. 2-7

3 Central Processor
3.1 Processor State. 3-1

3.2 General Purpose Registers (GPRs) 3-1

3.3 Processor Status Longword (PSL) .. 3-2

3.4 Internal Processor Registers (lPRs) 3-3

3.5 Process Structure 3-7

3.6 Data '!Ypes .. 3-7

3.7 Instruction Set ... 3-7

3.8 Memory Management. 3-8

iii

iv Contents

.- .. ~ ,

3.8.1 Translation Buffer. .. 3-8
3.8.2 Memory Management Control Registers . 3-9

3.9 Interrupts and Exceptions. .. 3-10
3.9.1 Interrupts ... " 3-10
3.9.2
3.9.3
3.9.3.1
3.9.3.2
3;9.3.3
3.9.3.4
3.9.3.5
3.9.3.6
3.9.3.7
3.9.4
3.9.5
3.9.6

Exceptions. .. 3-12
Infonnation Saved on a Machine Check Exception. 3-14

Byte Count .. 3-15
Machine Check Code Parameter. .. 3-15
Most Recent Virtual Address Parameter. 3-17
Internal State Infonnation 1 Parameter. 3-17
Internal State Infonnation 2 Parameter. 3-18
PC ... 3-18
PSL .. 3-18

System Control Block (SCB) .. 3-18
Hardware Detected Errors. .. 3-21
The Hardware Halt Procedure 3-22

3.10 System Identification 3-24
3.10.1 System Identification Register 3-24
3.10.2 System Identification Extension Register (SIE) (20040004) 3-25

3.11 CPU References .. 3-26
3.11.1 Request Instruction-Stream Read References. 3-26
3.11.2 Demand Data-Stream Read References. .. 3-26
3.11.3 Write References .. 3-26

4 KA660 Cache Memory
4.1 Cacheable References. .. 4-1

Cache Organization 4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.7.1

4-1
4-3
4-4
4-5
4-5
4-7
4-8

Cache Address Translation
Cache Data Block Allocation
Cache Behavior on Writes
Cache Control Register (CCR, IPR 37)
Bank EnablelHit Miss Register (BEHR)
Memory System Error Register (MSER, IPR 39)
Cache Error Detection. 4-9

Use of the C-Chip Registers " .. 4-10

5 KA660 Main Memory System
5.1 KA660 Timing. 5-1

5.2 Main Memory Organization 5-3

5.3 Main Memory Addressing .. 5-3

5.4 Main Memory Behavior on Writes 5-3

5.5 Main Memory Error Status Register (MEMCSR16) 5-4

Contents v

5.6 Main Memory Control and Diagnostic Status Register (MEMCSR17).. 5-6

5.7 Main Memory Error Detection and Correction

6 KA660 Console Serial Line
6.1
6.1.1
6.1.2
6.1.3
6.1.4

6.2

6.3

6.4

Console Registers .. .
Console Receiver Control/Status Register - (IPR 32)
Console Receiver Data Buffer - (lPR 33)
Console Transmitter Control/Status Register - (IPR 34) ... '.' . : .'; .
Console Transmitter Data Buffer - (IPR 35)

Break Response .. .

Baud Rate ... < .
Console Interrupt Specifications

7 KA66~ Clock and Timer Registers
7.1

7.2

7.3
7.3.1
7.3.2
7.3.3
7.3.4

Time-of-Year Clock (TOY) - EPR 27

Interval Timer (ICCS) - EPR 24

Programmable Timers
Timer Control Registers (TCRO and TCR1)
Timer Interval Registers (TIRO and TIR1)
Timer Next Interval Registers (TNIRO and TNIR1)
Timer Interrupt Vector Registers (TIVRO and TIVR1)

8 KA660 Boot and Diagnostic Facility

5-9

6-1
6-1
6-2
6-3
6-4

6-5

6-5

6-6

7-1

7-1

7-2
7-2
7-4
7-5
7-5

8.1 Boot and Diagnostic Register (BDR) .. 8-1

8.2 Diagnostic LED Register (DLEDR) . 8-3

8.3 EPROM Memory. 8-4
8.3.1 EPROM Address Space. .. 8-4
8.3.2 KA660 Resident Firmware Operation. 8-4
8.3.2.1 Power-Up Modes. 8-5

8.4 Battery Backed-Up RAM 8-5

8.5 KA660 Initialization . 8-5
8.5.1 Power-Up Initialization. .. 8-5
8.5.2 I/O Bus Initialization 8-6
8.5.3
8.5.3.1
8.5.4
8.5.5
8.5.6
8.5.7

Processor Initialization .
Configuring the Local 110 Page .

SSC Base Address Register (SSCBR)
BDR Address Decode Match Register (BDMTR)
BDR Address Decode Mask Register (BDMKR)
SSC Configuration Register (SSCCR) .. .

8-6
8-6
8-6
8-7
8-7
8-8

8.6 CDAL Bus Timeout Control Register (CBTCR) 8-10

vi Contents

9 KA660 Q22-bus Interface
9.1
9.1.1
9.1.2
9.1.3

9.2

9.3
9.3.1
9.3.2

9.4

9.5
9.5.1

9.6

9.7
9.7.1
9.7.2
9.7.3

9.S

Q22-bus to Main Memory Address Translation
Q22-bus Map Registers (QMRs)
Accessing the Q22-bus Map Registers
The Q22-bus Map Cache

CDAL to Q22-bus Address Translation

Interprocessor Communications Facility
Interprocessor Communication Register (lPCR)
Interprocessor Doorbell Interrupts

_Q22-bus Interrupt Handling

Configuring the Q22-bus Map
Q22-bus Map Base ,Address Register (QBMBR)

System Configuration Register (SCR)

9-2
9-3
9-4
9-5

9-6

9-6
9-6
9-8

9-S

9-S
9-9

9-9

Error Reporting Registers. .. 9-10
DMA System Error Register (DSER) 9-11
Q22-bus Error Address Register (QBEAR) 9-12
DMA Error Address Register (DEAR) .. 9-13

Q22-bus Interface Error Handling 9-14

10 KA660 Network Interface
10.1 Ethernet Overview. .. 10-1

10.2 NI Station Address ROM (NISA ROM) .. 10-3

10.3 Programming the SGEC .. 10-3
10.3.1 Command and Status Registers 10-4
10.3.2 Host Access to NICSRs .. 10-4
10.3.2.1 Physical NICSRs .. 10-4
10.3.2.2 Virtual NICSRs .. 10-4
10.3.3 Vector Address, IPL, Sync/Asynch (NICSRO). 10-5
10.3.4 Transmit Polling Demand (NICSR1) .. 10-6
10.3.5 Receive Polling Demand (NICSR2) .. 10-7
10.3.6 Descriptor List Addresses (NICSR3, NICSR4) 10-8
10.3.7 Status Register (NICSR5) 10-10
10.3.7.1 NICSR5 Status Report 10-14
10.3.S Command and Mode Register (NICSR6) 10-15
10.3.9 System Base Register (NICSR7) 10-19
10.3.10 Reserved Register (NICSRS) 10-20
10.3.11 Watchdog Timers (NICSR9) 10-20
10.3.12 Revision Number and Missed Frame Count (NICSRI0) 10-21
10.3.13 Boot Message (NICSRll, 12, 13) 10-22
10.3.14 Diagnostic Registers (NICSRI4, 15) 10-23
10.3.14.1 Diagnostic Breakpoint Address Register (NICSRI4) 10-23
10.3.14.2 Monitor Command Register (NICSRI5) 10-24

Contents vii

10.3.15 Descriptors and Buffers Format . 10-25
10.3.16 Receive Descriptors. 10-26
10.3.16.1 RDESO Word ... 10-26
10.3.16.2 RDES1 Word ... 10-28
10.3.16.3 RDES2 Word ... 10-29
10.3.16.4 RDES3 Word. 10-30
10.3.16.5 Receive Descriptor Status Validity ... 10-30
10.3.17 Transmit Descriptors 10-31
10.3.17.1 TDESO Word . 10-31
10.3.17.2 TDES1 Word ... 10-33
10.3.17.3 TDES2 Word ... 10-34
10.3.17.4 TDES3 Word . 10-34
10.3.17.5 Transmit Descriptor Status Validity . 10-35
10.3.18 Setup Frame . 10-35
10.3.18.1 First Setup Frame 10-36
10.3.18.2 Subsequent Setup Frame .. 10-36
10.3.18.3 Setup Frame Descriptor .. 10-36
10.3.18.4 Perfect Filtering Setup Frame Buffer 10-37
10.3.18.5 Imperfect Filtering Setup Frame Buffer . 10-39
10.3.19 SGEC Operation . 10-43
10.3.19.1 Hardware and Software Reset 10-43
10.3.19.2 Interrupts... 10-44
10.3.19.3 Startup Procedure. 10-44
10.3.19.4 Reception Process 10-45
10.3.19.5 Transmission Process 10-46
10.3.19.6 Loopback Operations 10-48
10.3.19.7 DNA CSMAlCD Counters and Events Support 10-49

11 KASSO Mass Storage Interface
11.1 Single Host Adapter Chip Introduction. .. 11-1

11.2 CI-DSSI Overview .. 11-3

11.3 SHAC Registers .. 11-5
11.3.1 CI Port Registers 11-5
11.3.1.1 Port Queue Block Base Register (PQBBR) 11-5
11.3.1.2 Port Status Register (PSR) .. 11-6
11.3.1.3 Port Error Status Register (PESR) 11-8
11.3.1.4 Port Failing Address Register (PFAR). .. 11-9
11.3.1.5 Port Parameter Register (PPR) 11-10
11.3.1.6 Port Control Registers 11-10
11.3.2 SHAC Specific Registers 11-14
11.3.2.1 SHAC Software Chip Reset Register (SSWCR) 11-14
11.3.2.2 SHAC Shared Host Memory Address (SSHMA) 11-15

viii Contents

12 KASSO Firmware
12.1 General Description 12-2

12.2 Halt Code .. 12-3
12.2.1 Halt Entry - Saving Processor State .. 12-3
12.2.2 Halt Dispatch .. 12-4
12.2.2.1 External Halts 12-7
12.2.3 Halt Exit - Restoring Processor State. .. 12-7

12.3 Power-Up... 12-8
12.3.1 Identifying the Console Device .. 12-8
12.3.1.1 Mode Switch Set to "Test" .. 12-9
12.3.1.2 Mode Switch Set to "Query" 12-9
12.3.1.3 Mode Switch Set to "Normal" 12-10
12.3.2 LED Codes .. 12-11

12.4 Operating System Bootstrap . 12-12
12.4.1 Preparing for the Bootstrap 12-12
12.4.1.1 Boot Devices ... 12-14
12.4.1.2 Boot Flags ... 12-16
12.4.2 Primary Bootstrap, VMB 12-16
12.4.3 Device Dependent Bootstrap Procedures 12-19
12.4.3.1 Disk and Tape Bootstrap Procedure 12-19
12.4.3.2 PROM Bootstrap Procedure 12-20
12.4.3.3 Network Bootstrap Procedure 12-20

12.5 Operating System Restart 12-21
12.5.1 Locating the Restart Parameter Block (RPB) 12-22

12.6 Console Service ... 12-22
12.6.1 Console Control Characters 12-23
12.6.2 Console Command Syntax 12-24
12.6.3 Console Command Keywords 12-25
12.6.4 Console Command Qualifiers 12-26
12.6.5 Console Numeric Expression Radix Specifiers 12-26
12.6.6 Command Address Specifiers 12-27
12.6.7 References to Processor Registers and Memory 12-29

12.7 Console Commands . 12-31
BOOT .. 12-32
CONFIGURE. 12-34
CONTINUE ... 12-36
DEPOSIT ... 12-37
EXAMINE . 12-39
FIND ~ . 12-42
HALT .. 12-43
HELP. 12--44
INITIALIZE. 12--46
MOVE ... 12--47
NEXT. 12--49

Contents ix

REPEAT ... 12-51
SEARCH ... 12-52
SET ... " .. 12-55
SHOW ... 12-59
START ... 12-64
TEST .. 12-65
UNJAM . 12-68
X - Binary Load and Unload 12-69
! - Comment. 12-71

12.8 Diagnostics.. 12-74
12.8.1 Error Reporting ... 12-75
12.8.2 Diagnostic Interdependencies . 12-77
12.8.3 Areas Not Covered 12-77
12.8.4 Diagnostic Scripts . 12-78

A Q22-bus Specification
A.l
A.I.l

A2

A3
A3.1
A3.2

A.4
A.4.1
A4.2

Introduction .. .
Master/Slave Relationship

Q22-bus Signal Assignments

Data Transfer Bus Cycles
Bus Cycle Protocol
Device Addressing

Direct Memory Access
DMA Protocol
Block Mode DMA

A4.2.1 DATBI Bus Cycle
A4.2.2 DATBO Bus Cycle

A-I
A-2

A-2

A-5
A-6
A-6

A-16
A-16
A-17
A-22
A-23

A4.3 DMA Guidelines .. A-24

A.5 Interrupts ... A-25
A5.1 Device Priority ... A-26
A5.2 Interrupt Protocol A-26
A5.3 Q22-bus Four-Level Interrupt Configurations A-30

A6 Control Functions. .. A-31
A6.1 Halt .. A-31
A.6.2 Initialization ... A-32
A6.3 Power Status. .. A-32

A 7 Q22-bus Electrical Characteristics A-32
A 7.1 Signal Level Specifications .. A-32
A 7.2 Load Definition .. A-32
A 7.3 120-0hm Q22-bus .. A-32
A 7.4 Bus Drivers. .. A-33
A 7.5 Bus Receivers .. A-33
A 7.6 Bus Termination .. A-34

x Contents

A.7.7 Bus Interconnecting Wiring A-35
A. 7.7.1 Backplane Wiring .. A-35
A. 7.7.2 Intrabackplane Bus Wiring. .. A-35
A. 7.7.3 Power and Ground A-35

A.B System Configurations A-36
A.B.1 Power Supply Loading A-39

A9 Module Contact Finger Identification 0 •••••••••••••••••• A-39

B Specifications
B.1

B.2
B.2.1
B.2.2
B.2.3
B.2.4

B.3

B.4

B.5

B.6

B.7

B.B

Dimensions

KA660-AA Connectors
KA660-AA AlB Row Fingers
KA660-AA C/D Row
KA660-AA Configuration and Display Connector (J1)

. KA660 DSSI and Private Memory Interconnect Connectors

DC Power Consumption

Bus Loads .. .

Battery Backup Specifications

Operating Conditions

Nonoperating Conditions (Less than 60 days)

Nonoperating Conditions (Greater than 60 days)

C Address Assignments

B-1

B-1
B-1
B-1
B-2
B-3

B-6

B-6

B-6

B-6

B-7

B-7

C.1 KA660 Physical Address Space. .. C-1

C.2 KA660 Detailed Physical Address Map .. C-2

C.3 External, Internal Processor Registers .. C-6

C.4 Global Q22-bus Physical Address Space .. C-6

D VAX Instruction Set

E Machine State on Power-Up
E.1 Main Memory Layout and State
E.1.1
E.1.l.1
E.1.l.2
E.1.l.3

Reserved Main Memory
PFN Bitmap .. .
Scatter/Gather Map
Firmware Scratch Memory 0 ••••••••••••••••••

E.l.2 Contents of Main Memory 0 •••••••••••••••••••

E.2 Memory Controller Registers 0 ••••••••••••••••••••••••

E.2.1 On-Chip Cache 0 •••••••••••••

E-1
E-2
E-2
E-2
E-2
E-3

E-3
E-3

E.2.2 Translation Buffer. .. E-3

Contents xi

E.2.3 Halt Protected Space. .. E-3

F Maintenance Operations Protocol (MOP) Support
F.l Network Listening .. F-l

F.2 MOP Counters ... F-5

G ROM Partitioning
G.l Firmware EPROM Layout. .. G-l
G.l.l Call-Back Entry Points. .. G-2
G.1.l.l CP$GET_CHAR_R4. .. G-2
G.l.l.2 CP$MSG_OUT_NOLF_R4. .. G-3
G.l.1.3 CP$READ_WTH_PRMPT_R4 .. G-3
G.1.2 Boot Information Pointers. .. G-4

H Battery Backed-up RAM Partitioning
H.l ssc RAM Layout , '" H-l
H.1.l Public Data Structures Area. .. H-l
H.1.2 Console Program Mailbox (CPMBX) .. H-2
H.1.3 Firmware Stack Area .. H-3
H.1.4 Diagnostic State Area .. H-3
H.1.5 USER Area .. H-3

Data Structures
1.1 Halt Dispatch State Machine 1-1

1.2 Restart Parameter Block. 1-4

1.3 VMB Argument List . 1-6

J Error Messages
J.l Machine Check Register Dump 000000 •••••••••• 0 J-l

J.2 Halt Code Messages 0 •• J-l

Jo3 VMB Error Messages. .. J-2

J.4 Console Error Messages 0 0 ••••••••••• 0 •• 0 • • • • • • • • • • •• J-3

Glossary

Index

xii Contents

Examples
2-1 Changing a DSSI Node Name .. 2-5
2-2 Changing a DSSI Unit Number 2-6
10-1 Perfect Filtering Buffer 10-39
10-2 Imperfect Filtering Buffer 10-40
10-3 Imperfect Filtering Setup Frame Buffer Creation C Program 10-41

Figures
1-1
1-2
1-3
1-4
1-5
1-6
1-7
2-1
2-2
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
5-1
6-1
6-2
6-3
6-4
7-1
7-2

KA660 Module in a System
The KA660 Processor Module
KA660 CPU Module Component Side
KA660 Processor Module Major Functional Blocks
MS650 Memory Module (16 MB)
MS650 Memory Module (8 MB)
H3602 Console Module
Backplane Slots
Processor and Memory Module Connection
GPR Format .. .
PSL Format .. .
Internal Processor Register (lPR) Format
Interrupt Priority Level Register (lPLR) - (lPR 1810 1216)
'Software Interrupt Request Register (SIRR) - (lPL 2010 1416)
Software Interrupt Summary Register (SISR) - (lPL 2110 1516)
The Processor Stack After a Machine Check Exception
System Control Block Base Register (SCBB)
Console Saved PC (SAVPC) - (lPR 4210 2AI6)'
Console Saved PSL (SAVPSL) - (lPR 4310 2B16)
System Identification Register (SID) - (lPR 6210 3E16)
System Identification Extension Register (SIE)
Logical Organization of Cache
Cache Entry .. .
Cache Tag Entry
Cache Data Entry .. .
Cache Address Translation
Cache Control Register
Tag Diagnostic Write Data Format
Tag Diagnostic Read Data Format
Bank EnablelHit Miss Register
Memory System Error Register (MSER, IPR 39)
Main Memory Control and Diagnostic Status Register (MEMCSR17) ..
Console Receiver Control/Status Register - (lPR 3210 2016)
Console Receiver Data Buffer - (IPR 3310 2116)
Console Transmitter Control/Status Register - (lPR 3410 2216)
Console Transmitter Data Buffer - (lPR 3510 2316)
Time-of-Year Clock (TOY) - (EPR 2710 1B16)
Interval Timer (ICCS) - (EPR 2410 1816)

1-1
1-2
1-3
1-4
1-7
1-8
1-9
2-2
2-3
3-1
3-2
3-4

3-12
3-12
3-12
3-14
3-19
3-22
3-22
3-24
3-25
4-2
4-2
4-2
4-2
4-4
4-5
4-7
4-7
4-7
4-8
5-7
6-1
6-2
6-3
6-4
7-1
7-2

Contents xiii

7-3 Timer Control Registers (TCRO and TCRl). .. 7-3
7-4 Timer Interval Registers (TIRO and TIRl) 7-5
7-5 Timer Next Interval Registers (TNIRO and TNIRl) 7-5
7-6 Timer Interrupt Vector Registers (TIVRO and TIVRl) 7-6
8-1 Boot and Diagnostic Register 8-1
8-2 Diagnostic LED Register (DLEDR) .. 8-3
8-3 SSC Base Address Register (SSCBR) 8-7
8-4 BDR Address Decode Match Register (BDMTR) 8-7
8-5 BDR Address Decode Mask Register (BDMKR) 8-7
8-6 SSC Configuration Register (SSCCR) . 8-8
8-7 CP Bus Timeout Control Register (CBTCR) 8-10
9-1 Q22-bus Address Translation 9-2
9-2 Q22-bus Map Register Format . 9-4
9-3 Q22-bus Map Cache Entry Format. .. 9-5
9-4 Interprocessor Communication Register (lPCR) 9-7
9-5 Q22-bus Map Base Address Register (QBMBR) 9-9
9-6 System Configuration Register (SCR) .. 9-9
9-7 DMA System Error Register (DSER) 9-11
9-8 Q22-bus Error Address Register (QBEAR) .. 9-13
9-9 DMA Error Address Register (DBEAR). .. 9-13
10-1 Ethernet Packet Format. .. 10-1
10-2 Vector Address, IPL, Sync/Asynch (NICSRO). 10-5
10-3 Polling Demand (NICSRl) 10-7
10-4 NICSR2 Format 10-7
10-5 Descriptor List Addresses Format. .. 10-9
10-6 NICSR5 Bits ... 10-10
10-7 NICSR6 Format .. 10-15
10-8 NICSR7 Format .. 10-19
10-9 NICSR9 Format 10-20
10-10 Revision Number and Missed Frame Count (VIRTUAL NICSRI0) 10-21
10-11 Boot Message .. 10-22
10-12 NICSR14 Format ... 10-23
10-13 NICSR15 Format ... 10-24
10-14 Receive Descriptor Format 10-26
10-15 Transmit Descriptor Format 10-31
10-16 Setup Frame Descriptor Format 10-36
10-17 Perfect Filtering Setup Frame- Buffer format 10-38
10-18 Imperfect Filtering Setup Frame Format 10-40
11-1 Relationship of the DSSI to SCA and CI. .. 11-2
11-2 Port Queue Block Base Register (PQBBR) 11-5
11-3 Port Queue Block Base Register (PQBBR) After RESET 11-6
11-4 Port Status Register (PSR) .. 11-7
11-5 Port Error Status Register (PESR) .. 11-9
11-6 Port Failing Address Register (PFAR). .. 11-9
11-7 Port Parameter Register (PPR) 11-10
11-8 Port Control Registers 11-11

xiv Contents

11-9 Port Maintenance Control and Status Register (PMCSR) 11-13
11-10 SHAC Software Chip Reset (SSWCR) 11-14
11-11 SHAC Shared Host Memory Address (SSHMA) 11-15
12-1 KA660 Firmware Structural Components. .. 12-3
12-2 Console Banner. .. 12-8
12-3 Language Selection Menu .. 12-9
12-4 Normal Diagnostic Countdown 12-10
12-5 Abnormal Diagnostic Countdown 12-10
12-6 Console Prompt ... 12-10
12-7 Console Boot Display with No Default Boot Device 12-11
12-8 Memory Layout Prior to VMB Entry 12-14
12-9 VMB Boot Flags (1R5:) 12-16
12-10 Successful Automatic Bootstrap 12-18
12-11 Memory Layout at VMB Exit 12-18
12-12 Boot Block Format .. 12-19
12-13 Locating the Restart Parameter Block 12-22
12-14 Diagnostic Register Dump 12-76
A-I DATI Bus Cycle. .. A-8
A-2 DATI Bus Cycle Timing A-I0
A-3 DATO or DATOB Bus Cycle .. A-II
A-4 DATO or DATOB Bus Cycle Timing .. A-13
A-5 DATIO or DATIOB Bus Cycle. .. A-14
A-6 DATIO or DATIOB Bus Cycle Timing A-15
A-7 DMA Protocol .. A-18
A-8 DMA Request/Grant Timing A-19
A-9 DATBI Bus Cycle Timing .. A-20
A-I0 DATBO Bus Cycle Timing A-21
A-II Interrupt Request/Acknowledge Sequence. .. A-27
A-12 Interrupt Protocol Timing A-29
A-13 Position-Independent Configuration A-30
A-14 Position-Dependent Configuration A-31
A-15 Bus Line Terminations A-34
A-16 Single-Backplane Configuration A-37
A-17 Multiple Backplane Configuration A-38
A-18 Typical Pin Identification System A-39
A-19 Quad-Height Module Contact Finger Identification A-40
A-20 Typical Q22-bus Module Dimensions. .. A-41
E-l Memory Layout after Power-up Diagnostics. E-l
G-l KA660 EPROM Layout. .. G-l
G-2 Boot Information Pointers. .. G-4
H-l KA660 SSC BBD RAM Layout .. H-l
H-2 NVRO (20140400) : Console Program Mailbox (CPMBX) H-2
H-3 NVRI (20140401) H-2
H-4 NVR2 (20140402) H-3

Contents xv

Tables
1 Conventions. XXI

3-1 Special GPRs .. 3-2
3-2 Processor Status Longword Format 3-2
3-3 KA660 Internal Processor Registers .. 3-4
3-4 Interrupt Priority Levels. .. 3-10
3-5 Exception Classes. .. 3-13
3-6 Floating Point Error Machine Checks. .. 3-15
3-7 Memory Management Error Machine Checks. 3-15
3-8 Interrupt Error Machine Checks. .. 3-16
3-9 Microcode Error Machine Checks. .. 3-16
3-10 Read Error Machine Checks. .. 3-17
3-11 Write Error Machine Checks. .. 3-17
3-12 Internal State Information 1 Field Description. 3-18
3-13 Internal State Information 2 Field Description. 3-18
3-14 The System Control Block Format. .. 3-19
3-15 CPU State After a HALT 3-22
3-16 HALT Codes. .. 3-23
3-17 System Identification Register (SID) Bits. .. 3-25
3-18 System Identification Extension Register (SIE) Bits. 3-25
4-1 Cache Control Register Bits. .. 4-5
4-2 Cache Diagnostic Mode Addresses 4-6
4-3 Bank Enable/Hit Miss Register (BEHR) .. 4-8
4-4 Memory System Error Register (MSER, IPR 39) 4-9
5-1 KA660 Reference Timing 5-1
5-2 Uncorrectable Error Actions. .. 5-10
6-1 Console Registers 6-1
6-2 Console Receiver Control/Status Register .. 6-2
6-3 Console Receiver Data Buffer . 6-2
6-4 Console Transmitter Control/Status Buffer. 6-4
6-5 Console Transmitter Data Buffer 6-5
6-6 Baud Rate Selection 6-5
7-1 Interval Timer Bit Descriptions 7-2
7-2 Timer Control Register Bit Descriptions. 7-4
8-3 Diagnostic LED Register Bit Descriptions 8-3
8-4 Power-Up Modes . 8-5
8-5 SSC Configuration Register Bit Descriptions 8-8
8-6 CP Bus Timeout Control Register Bit Descriptions. 8-10
9-1 Q22-bus Map Register Addresses . 9-3
9-2 Q22-bus Map Register Bit Description 9-4
9-3 Q22-bus Map Cache Entry Bit Description . 9-6
9-4 Interprocessor Communication Register Bit Description. 9-7
9-5 System Configuration Register Bit Description. 9-10
9-6 DMA System Error Register Bit Description 9-11
10-1 Bit Access Modes ... 10-4
10-2 NICSRO Bits .. 10-6

xvi Contents

10-3 NICSRO Access .. 10-6
10-4 NICSRI Bits , , .. 10-7
10-5 NICSRI Access , .. 10-7
10-6 NICSR2 Bits .. 10-8
10-7 NICSR2 Access ... " 10-8
10-8 Descriptor Lists Addresses Bits 10-9
10-9 NICSR3 Access .. 10-9
10-10 NICSR4 Access. .. 10-9
10-11 NICSR5 Bits ... 10-10
10-13 NICSR5 Access ... 10-14
10-14 NICSR6 Bits ... 10-15
10-15 NICSR6 Access ... 10-18
10-16 NICSR7 Bits ... 10-19
10-17 NICSR7 Access ... 10-20
10-18 NICSR9 Bits ... 10-20
10-19 NICSR9 Access ... 10-21
10-20 NICSRI0 Bits .. 10-22
10-21 NICSRI0 Access .. 10-22
10-22 NICSRll, NICSRI2, NICSR13 Bits 10-23
10-23 NICSRll, NICSRI2, NICSR13 Access 10-23
10-24 NICSR14 Bits .. 10-23
10-25 NICSR14 Access .. 10-24
10-26 NICSR15 Bits . 10-24
10-27 NICSR15 Access . 10-25
10-28 RDESO Bits. 10-26
10-29 RDESI Bits .. 10-29
10-30 RDES2 Bits .. 10-29
10-31 RDES3 Bits , .. 10-30
10-32 Receive Descriptor Status Validity 10-30
10-33 TDESO Bits. 10-31
10-34 TDES 1 Bits .. 10-33
10-35 TDES2 Bits .. 10-34
10-36 TDES3 Bits .. 10-35
10-37 Transmit Descriptor Status Validity 10-35
10-38 Setup Frame Descriptor Bits. 10-36
10-39 NICSR Fields Not Set to Zero After Reset 10-43
10-40 Reception Process State Transitions . 10-46
10-41 Transmission Process State Transitions 10-47
10-42 CSMA/CD Counters 10-49
11-1 Port Queue Block Base Address Register (PQBBR) 11-6
11-2 Port Queue BLock Base Address Register Bits Mter RESET. 11-6
11-3 Port Status Register Bit Descriptions. .. 11-7
11-4 Port Error Status Register Bit Definitions 11-9
11-5 Port Parameter Register Bit Descriptions (PPR) 11-10
11-6 Port Maintenance Control and Status Register (PMCSR) Bits 11-13
12-1 Halt Action Summary. .. 12-5

Contents xvii

12-2 LED Codes .. , . 12-11
12-3 KA660 Supported Boot Devices. 12-15
12-4 VMB Boot Flags '.' 12-16
12-5 Console Control Characters , 12-23
12-6 Command, Parameter, and Qualifier Keywords 12-25
12-7 Console Radix Specifiers . 12-26
12-8 Console Symbolic Addresses . 12-27
12-9 Syntax Conventions 12--31
12-10 Overriding the Default Radix 12--31
12-11 Console Command Summary 12-72
12-12 Console Qualifier Summary 12-73
12-13 Diagnostic Scripts ... 12-78
A-I Data and Address Signal Assignments. .. A-2
A-2 Control Signal Assignments .. A-3
A--3 Power and Ground Signal Assignments A-4
A-4 Spare Signal Assignments , A-5
A-5 Data Transfer Operations , A-5
A-6 Bus Signals for Data Transfers , A-6
A-7 Bus Pin Identifiers .. A-41
B-1 H3602 Connector Pinout , B-2
B-2 DSSI and PMI Connector Pinout B-3
C-l General Local Address Space Map , C-l
C-2 Detailed Local Address Space Map .. C-2
C--3 External, Internal Processor Registers , C-6
C-4 Global Q22-bus Physical Address Map , C-6
F-l KA660 Network Maintenance Operations Summary , F-l
F-2 Supported MOP Messages F--3
F--3 Ethernet and IEEE 802.3 Packet Headers , F-5
F-4 MOP Multicast Addresses and Protocol Specifiers F-5
F-5 MOP Counter Block F-6
G-l Call-Back Entry Points , G-2
1-1 Firmware State Transition Table 1-2
1-2 Restart Parameter Block fields . 1-4
1--3 VMB Argument List . 1-7
J-l HALT Messages. .. J-2
J-2 VMB Error Messages J--3
J--3 Console Error Messages J--3

About This Manual

The KA660-AA CPU Module Technical Manual contains the functional, physical, and
environmental characteristics of both variations of the KA660 CPU module, and includes
information on the MS650 memory expansion modules. The KA660-AA is for a multiuser
environment. The KA660-BA is for a single user environment and does not support
multiuser VMS or ULTRIX operating system licenses.

This manual is intended for a design engineer or applications programmer who is familiar
with Digital's -extended LSI-II bus (Q22-bus) and the VAX instruction set. This manual
should be used along with the VAX Architecture Reference Manual as a programmer's
reference to the module.

The manual is divided into twelve chapters, ten appendices, and a glossary:

Chapter 1, Overview, describes the KA660 Subsystem including the KA660-AA CPU
module, the MS650 memory module, and the-H3602 console module.

Chapter 2, Installation and ConfiglJation, describes procedures for installing and
configuring the CPU, the memory, and the console modules in the Q22-bus backplanes
and system enclosures.

Chapter 3, Central Processor, provides information about the Systom-on-a-Chip central
processor and basic VAX computer architecture. This chapter lists all the internal
processor registers used in the KA660 processor design. Some information on error
handling is given also.

Chapter 4, KA660 Cache Memory, describes the organization of the KA660 cache. It
shows the format of cache entries and provides information on cache address translation.

Chapter 5, KA660 Main Memory System, provides information about the main
memory organization, including the registers associated with main memory error
checking and status and also includes information on cycle access times.

Chapter 6, KA660 Console Serial Line, describes the serial line interface and its
associated registers.

Chapter 7, KA660 Clock and Timer Registers, provides information about the VAX
standard Time-of-Year clock and timers.

Chapter 8, KA660 Boot and Diagnostic Facility, describes the KA660 initialization
process and provides information about boot and diagnostic registers and the EPROM
memory resident firmware.

Chapter 9, KA660 Q22-bus Interface, describes the Q22-bus interface which is
implemented with the CQBIC. Information on Q22-bus address translation is provided
along with descriptions of all Q22-bus interface registers. Some information on CQBIC
error handling is also included.

xix

xx About This Manual

Chapter 10, KA660 Network Interface, provides information on the second generation
Ethernet Controller chip and the logic that supports the Ethernet network interface. An
overview of Ethernet principles with descriptions of packet format and programming
instructions is provided. The transmission and reception processes are described also.

Chapter 11, KA660 Mass Storage Interface, describes how the Single Host Adapter
Chip provides a Digital storage system interconnect mass storage interface for the
KA660. An overview is provided as well as descriptions of all the registers associated
with the DSSI interface.

Chapter 12, KA660 Firmware, describes the functional firmware located in the
EPROMS. The services provided by the firmware are described.

Appendix A, Q22-bus Specification, describes the low-end member of Digital's bus
family. All of Digital's microcomputers, such as the MicroVAX I, MicroVAX II, MicroVAX
3500, MicroVAX 3600, MicroPDP-11, use the Q22-bus.

Appendix B, Specifications, describe the physical, electrical, and environmental
characteristics of the KA660-AA CPU module.

Appendix C, Address Assignments, provides a map of VAX computet memory space.

Appendix D, VAX Instruction Set, is a list of the VAX computer instructions.

Appendix E, Machine State on Power-Up, describes the state of the KA660 after a
power-up halt.

Appendix F, Maintenance Operations Protocol (MOP) Support, describes the
Maintenance Operation Protocol (MOP) support features in the KA660 firmware.

Appendix G, ROM Partitioning, describes the ROM partitioning and subroutine entry
points that are public and guaranteed to be compatible with future versions of the KA660
firmware.

Appendix H, Battery Backed-up RAM Partitioning, describes how the KA660
firmware partitions the 1 Kbyte of battery-backed-up RAM.

Appendix I, Data Structures, describes the global data structures that are used by the
KA660 firmware.

Appendix J, ;Error Messages , lists the firmware error messages detected by the KA660.

The Glossary provides a list of the acronyms and terms used in this manual.

Conventions

The following conventions are used in this manual:

Table 1 Conventions

Convention

Note

Caution

Meaning

Contains general information.

Contains information to prevent damage to equipment.

About This Manual xxi

Represents a bit field, a set of lines, or signals, ranging from x through y. For
example, RO <7:4> indicates bits 7 through 4 in a general purpose register RO.

[x:y] Represents a range of bits, from y through x.

I Return I A label enclosed in a box represents a key (usually a control or a special
character key) on the keyboard (in this case, the return key).

CONFIGURE Words in all capital letters are system commands you must enter to initiate a
desired function.

n

o
[]

PN

A small n in bold type indicates a variable.

Represents a console command element.

Represents an optional console command element.

Represents a list of command elements.

Part number.

Related Documents

The following documents are related to the KA660 CPU:

• Microcomputer Interfaces Handbook (EB-20175-20)

• Microcomputers and Memories Handbook (EB-18451-20)

• VAX Architecture Handbook (EB-19580-20)

• VAX-ll Architecture Reference Manual (EK-VAXAR-RM)

You can order these documents from Digital Equipment Corporation at the following
address:

Digital Equipment Corporation
Accessories and Supplies Group
P.O. Box CS2008
Nashua, NH 03061

Attention: Documentation Products

1
Overview

This chapter provides a brief description of the KA660 CPUlMemory Subsystem.

1.1 The KA660 Subsystem
The KA660 processor module combines with the MS650 memory module and the H3602
console module to form the CPUIMemory subsystem for the VAX 4000-200 product. The
subsystem is available in two enclosures: The BA430 or the BA215. It uses the Digital
storage system interconnect bus to communicate with mass storage devices and the
Q22-bus to communicate with I/O devices. A single KA660 CPU module can support a
maximum of four MS650 memory modules.

Figure 1-1 is a block diagram of the CPUIMemory subsystem's major functions.

H3602 Ribbon
Console Cable

~=~ Module

KA660
Processor
Module

Figure 1-1 KA660 Module in a System

BackplaneInterconneGt
.- - - - - - - - - - - - - - - - - - - --I
• I
• 1

I

: Memory
I

~--- ----------------~

MS650
Memory
Module/s

The KA660 and the MS650 designs are implemented in standard quad-height sized
modules. Both modules mount in standard Q22-bus backplane slots which implement the
Q22-bus in the AB rows and the CD interconnect in the CD rows.

The KA660 Processor Module communicates with the memory modules across a memory
interconnect routed through a 50-pin ribbon cable and the CD interconnect on the
backplane. The DSSI connects through a 50-pin ribbon cable located on top of the
memory interconnect cable. The backplane connector also connects the subsystem with
the Q22-bus. There are no jumpers or switches to configure on the processor module. The

1-1

1-2 Overview

KA660 connects to the H3602 console module and the Ethernet controller with a 40-pin
ribbon cable. The console module contains configuration switches, Ethernet and DSSI
connectors, fuses, and an LED display.

1.2 KA660 Processor Module
The KA660 processor can be configured only as an arbiter on the Q22-bus. An arbiter
is the single entity responsible for controlling the Q22-bus. It must reside in the first
backplane slot where it arbitrates bus mastership and fields bus interrupt requests and
anyon-board interrupt requests. This processor module is designed for use in high-speed,
real-time applications and for multiuser, multitasking environments. There are two
variants: The KA660-AA, which runs multiuser software; and the KA660-BA, which runs
single-user software.

Figure 1-2 is a photograph of the KA660 Processor Module.

Figure 1-2 The KA660 Processor Module

The major hardware components of the KA660 CPU module are listed below. The chip
identification numbers are shown in Figure 1-3:
• System-on-a-Chip (SOC) CPU DC222

• A main memory controller (CMCTL) DC557

• Q22-Bus interface (CQBIC) DC527

• System support chip (SSC) DC511

• Second generation Ethernet controller (SGEC) DC541

• Single host adapter chip to interface DSSI (SHAC) DC542

• Two firmware EPROMs

• A boot and diagnostic facility

• Console connection

• VAX compatible console port

• Backplane connection

Figure 1-3 shows the positions of the major chips on the KA660.

J2
DSSI / MEMORY

DC542
SHAC

E35

DC557
CMCfL

E32

J1
CONSOLE

DC541
SGEC

EI8

[!J SOC

E23

Figure 1-3 KA660 CPU Module Component Side

~ SSC

E2

DC527
CQBIC

Ell

Overview 1-3

The KA660 Processor Module is divided into several major functional subsystems as
listed next and shown in Figure 1-4.

• The central processing subsystem • The DSSI subsystem

• The memory control subsystem • The system support subsystem

• The Q22-bus subsystem • The Ethernet subsystem

1-4 Overview

CPU Subsystem

Memory
Control
Subsystem

System Support
Subsystem

Q22-bus
Subsystem

DSSI
Subsystem

Figure 1-4 KA660 Processor Module Major Functional Blocks

The rest of Section 1.1 describes the subsystems.

The Central Processing Subsystem

The central processing subsystem features the system-on-a-Chip (SOC) CPU and its
accompanying support logic. The SOC chip is a unique design that contains several
system components on a single substrate contained in a 132-pin surface mount,
CERQUAD chip package. The SOC contains the central processing unit (CPU),
the floating point accelerator unit (FPA), and 8 Kbytes of cache to optimize system
performance.

The central processor in the SOC supports the following Micro V AX computer instruction
set with the following string instructions:
• CMPC3 (compare • CMPC5 (compare • LOCC (locate character)
character - 3 operand) character - 5 operand)

• SKPC (skip character) • SPANC (span character) • SCANC (scan character)

The following subset of the VAX data types are provided:

• Byte • Word • Longword

• Quadword • Character string • Variable-length bit field

• Absolute queues • Self-relative queues • F -floating

• G-floating • D-floating

Overview 1-5

Support for the remaining VAX data types can be provided through macrocode emulation.
The processor also supports full VAX memory management with demand paging and a 4
Gbyte virtual address space.

The floating point accelerator unit (FPU) in the SOC executes the VAX f_, d_, and g_
floating point instructions. It executes 61 floating point instructions and 2 longword­
length integer multiply instructions in the VAX base instruction group. It supports the
Micro VAX chip subset of the VAX floating point instruction set and data types.

The Memory Control Subsystem

The memory control subsystem contains the memory controller chip (CMCTL) and its
associated termination logic. This subsystem provides an interface between the Data and
Address Lines (CDAL) lines from the KA660 CDAL bus and the data and address lines
on the MS650 MDATA bus.

The CMCTL chip contains approximately 25,000 transistors in a 132-pin CERQUAD
surface mount package. It supports up to 64 Kbytes of ECC memory, with a 450
nanosecond cycle time for longword transfers and a 720 nanosecond cycle time for
quad word transfers,

The memory resides on one to four MS650 memory modules, depending on' the
system configuration. The MS650 communicates with the KA660 through the memory
interconnect, which uses the CD interconnect and a 50-pin ribbon cable.

The Q22-bus Subsystem

The Q22-bus subsystem contains the Q22-bus interface and asociated termination logic.
This subsystem provides an interface between the Q22-bus and the central processor's
CDAL bus. The interface is implemented with the CQBIC. The CQBIC contains
approximatley 40,870 transistors in a 132-pin CERQUAD surface mount package. The
CQBIC is a 32-bit to 16 bit adapter which provides physical memory address translation
for direct memory access (DMA) devices on the Q22-bus. It supports as many as 16-word,
block mode transfers between a Q22-bus DMA device and main memory, and as many
as 2-word, block mode transfers between the CPU and Q22-bus devices. The Q22-bus
interface contains the following:

• A 16-entry map cache for the 8192-entry, main memory-resident scatter-gather-map,
used for translating 22-bit Q22-bus addresses into 26-bit main memory addresses.

• Interrupt arbitration logic that recognizes Q22-bus interrupt requests BR7-BR4

• Q22-bus termination (240 n)

The DSSI Subsystem

This subsystem provides an interface between the DSSI bus and the KA660 CDAL bus.
It contains the single host adapter chip (SHAC), the DSSI jumpers, 16 MHz Oscillator,
and associated termination and control logic. The SHAC is in a 164-pin CERQUAD
package. It facilitates scatter and gather mapping along with internal FIFO buffering.

The DSSI interface allows the DSSI bus on the KA660 to transmit packets of data to, and
receive packets from, as many as seven other DSSI devices. These devices include the
RF -series integrated storage elements (lSEs), a KFQSA module, a second KA660 module,
or a KA640 module.

1-6 Overview

The DSSI bus improves system performance with its higher transfer rate than the Q22-
bus and relieves the Q22-bus of disk traffic. The DSSI bus has eight data lines, one
parity line, and eight control1ines. Controllers are built into the ISEs, enabling many
functions to be handled without host or adapter intervention.

The System Support Subsystem

The system support subsystem handles the basic functions required to support the
console in a system environment. This subsystem contains the system support chip
(SSC), the firmware ROMs, the boot and diagnostic register, and the station address
ROM.

The SSC chip is implemented in an 84-pin CERQUAD surface mount package. It
provides console and boot code support functions, operating system support functions,
timers, and the following features:
• Word-wide ROM • 1 Kbyte battery backed-up RAM
unpacking

• Halt-arbitration logic

• Interval timer with
lOms interrupts

• IORESET register

• Two programmable
timers

• Console serial line

• VAX-standard time-of-year clock with battery backup

• Programmable CDAL bus timeout

• Register controlling the diagnostic LEDs

Resident firmware Read Only Memory is located on two chips, each 128 KByte by 8-bit
EPROMS. The firmware gains control when the CPU halts. This code contains programs
that provide the following services:

• Board initialization

• Power-up self-testing of the KA660 and MS650 modules

• Emulation of a subset of the VAX. standard console (auto or manual bootstrap, auto or
manual restart, and a simple command language for examining or altering the state
of the processor)

• Booting from supported Q22-bus devices

• Multilingual translation of key system messages

The boot and diagnostic register (BDR) allows the firmware and the operating system
to read KA660 configuration bits. The station address ROM contains the network
address of the system. It is implemented in a 32-byte by 8-bit ROM (6331).

The Ethernet Subsystem

The Ethernet subsystem handles communications between the CPU module and other
nodes on the Ethernet. It is implemented with the second generation Ethernet controller
chip (SGEC, DC541) on-board network interface. Used in connection with the H3602
console module, the SGEC allows the KA660 to connect to either a thin wire or standard
Ethernet. It supports the Ethernet data link layer and the CP bus parity protection.
The SGEC chip is in an 84-pin package. The chip facilitates scatter and gather mapping
along with dual internal FIFO buffering.

Overview 1-7

1.3 MS650 Memory Module
The MS650 memory module for the KA660 CPU is available in two variations. The
MS650-BA contains 16 Mbytes of memory and the MS650-BB contains 8 Mbytes. The
memory is arranged in 39-bit wide arrays implemented with 1 Mbyte, 120 nanosecond,
dynamic RAMs in surface mount packages. Of the 39 bits, 32 bits are data and 7 bits are
error checking and correction (ECC) bits. The MS650 modules are single, quad-height,
Q22-bus modules as shown in Figure 1-5 and Figure 1-6.

Figure 1-5 MS650 Memory Module (16 MB)

1-8 Overview

~·~"'~"'?r57"'''

&J

Figure 1-6 MS650 Memory Module (8 MB)

1.4 H3602 Console Module
The H3602 console module (Figure 1-7) is a unique I/O panel that is used in BA213 and
BA215 enclosures. A one-piece ribbon cable on the H3602 plugs into J1 (system support
connector) on the KA660. The H3602 fits over backplane slots one and two, covering both
the KA660 processor module and the first of four possible MS650 memory modules. The
H3602 allows the KA660 CPU module to interface to a serial line console device, a DSSI
bus, and to the Ethernet. Adhesive tags are included for the user to name the modules in
the respective slots.

CPU Cover Panel

Break I 0 ~I LED Display
Enablel __ ~ t Power-Up
Dis~ble ~ ~-I- Mode Switch
SWitch ~_ Modified

i1
~ 1 ;1::::1 Jack

Standard H· '''''--1 Connector Switch
Ethernet __ ~ 0'#1
Connector 1'-~L ThinWire Ethernet VJ Connector

Figure 1-7 H3602 Console Module

The exterior H3602 console panel has the following features:

• Modified modular jack (MMU) SLU connector

• Power-up mode switch

• Hexadecimal LED display

• Break enable switch

• Standardfrhin Wire Ethernet connectors

• Standardfrhin Wire Ethernet selector switch

• Indicator LEDs

The interior console panel has the following features:

• Baud rate rotary switch

• Battery backup unit (BBU) for TOY clock

• 40-pin cable connector

• List of baud rate switch settings

Overview 1-9

MLO-005504

2
Installation and Configuration

2.1 Introduction
This chapter describes how to install the KA660 in a system. It incudes the following
topics:

• Installing the KA660 and MS650 modules

• Configuring the KA660

• The KA660 connectors

2.2 Installing the KA660 and MS650 Memory Modules
The KA660 and MS650 (BB or BA models only) modules must be installed in system
enclosures having Q22/CD slots. These modules are not compatible with Q/Q backplane
slots and therefore should only be installed in Q221CD backplane slots.

The KA660 CPU module and the MS650 memory modules must be installed in the five
right-most backplane slots. The KA660 CPU module must be installed in slot 1 of the
Q221CD backplane. MS650 memory modules must be installed in slots immediately
adjacent to the CPU module. Figure 2-1 shows the positions of the module slots in the
backplane.

2-1

2-2 Installation and Configuration

Q22-bUS{~ ...
Blocks B

MS650noA

I
MS650no.3

MS650no.2
MS650no.1

KA660CPU

~~rconnect {.~ .. - : .. ; -

Blocks D ..
12 1110 9 8 7 6 5 4 3 2 1.-r---- Slot Number

Figure 2-1 Backplane Slots

As many as four MS650 memory modules can be installed, occupying slots 2, 3, 4, and 5
respectively. A 50-pin ribbon cable is used to connect the KA660 processor module and
the MS650 memory modules as shown in Figure 2-2.

The KA660 module is installed in backplane slot 1 and the memory modules are installed
in slots 2 through 5. Use the following procedure to install the KA660 and MS650
modules:

1. Install the KA660 CPU in slot 1 of the Q22-buS/CD backplane.

2. Install the MS650 memory module in slots 2, immediately adjacent to the KA660
CPU. When installing additional memory use slots 3 through 5. Do not leave a gap
between memory modules.

3. Install a 50-pin ribbon cable between the KA660 CPU and the MS650 memory
modules (see Figure 2-2.)

Installation and Configuration 2-3

CPU/Memory
Interconnect
Cable (50-pin)

Figure 2-2 Processor and Memory Module Connection

2.3 Module Configuration and Naming
Each module in a system must use a unique device address and interrupt vector. The
device address is also known as the control and status register (CSR) address. Most
modules have switches or jumpers for setting the CSR address and interrupt vector
values. The value of a floating address depends on what other modules are housed in the
system.

Set CSR addresses and interrupt vectors for a module as follows:

1. Determine the correct values for the module with the CONFIGURE command at the
console 110 prompt (»». The CONFIG utility eliminates the need to boot the VMS
operating system to determine CSRs and interrupt vectors. Enter the CONFIGURE
command, then enter HELP for the list of supported devices:

»> config
Enter device configuration, HELP, or EXIT
Device, Number? help
Devices:

LPVII KXJII DLVIIJ DZQII DZVII DFAOI
RLV2I TSV05 RXV2I DRVIIW DRVIIB DPVII
DMVII DELQA DEQNA RQDX3 KDA50 RRD50
RQC25 KXXXX-DISK TQK50 TQK70 TU8IE RV20
KXXXX-TAPE KMVII IEQII DHQII DHVII CXA16
CXB16 CXY08 VCB02 QDSS DRVIIJ DRQ3B
VSV2I IBQOI IDVIIA IDVIIB IDVIIC IDVIID
IAVIIA IAVIIB MIRA ADQ32 DTC04 DESQA
IGQII

The LPVl1-SA has two sets of CSR address and interrupt vectors. To determine
the correct values for an LPVll-SA, enter LPVll,2 at the DEVICE prompt for one
LPVll-SA, or enter LPVll,4 for two LPVll-SA modules.

2-4 Installation and Configuration

2. See the KA660 CPU System Maintenance Manual for switch and CSR and interrupt
vector jumper settings for supported options.

2.4 Mass Storage Configuration
In a BA213 enclosure there is space for four mass storage devices, and three integrated
storage elements (lSE) and one TK70 (or four ISEs). The ISEs are part of the Digital
Storage System Interconnect (DSSI) bus.

The DSSI bus is part of the backplane. The ISEs are of the RF-series and plug into the
backplane to become part of the bus. Each ISE must have its own unique DSSI node ID.
The ISE receives its node ID from a plug on the operator control panel (OCP) on the front
panel.

The VMS operating system creates DSSI disk device names according to the following
scheme:

(nodename $ OIA unit number.)

For example,

(SUSAN$OIA3)

You can use the device name for booting, as follows:

»> BOOT SUSAN$OIA3

You can access local programs in the RF-series ISE through the MicroVAX Diagnostic
Monitor (MDM) or through the VMS operating system (version 5.0) and console 110
mode SET HOSTIDUP command. This command creates a virtual terminal connection
to the storage device and the designated local program using the diagnostic and utilities
protocol (DUP) standard dialog. Section 2.4.3 describes the procedure for accessing DUP
through the VMS operating system.

2.4.1 Changing the Node Name

Each ISE has a node name that is maintained in EPROM on board the controller module.
This node name is determined in manufacturing from an algorithm based on the drive
serial number. You can change the node name of the DSSI device to something more
meaningful by following the procedure in Example 2-1. In the example, the node name
for the ISE at DSSI node address 1 is changed from R3YBNE to DATADISK.

»> sho dssi
DSSI Node 0 (MDC)
-DIAO (RF71)

Installation and Configuration 2-5

DSSI Node 1 (R3YBNE)
-DIAl (RF71)

!The node name for this drive will be
!changed from R3YBNE to DATADISK.

DSSI Node 7 (*)
»>
»> set host/dup/dssi 1
Starting DUP server ...
Copyright 1988 Digital Equipment Corporation
DRVEXR V1.0 D 5-NOV-1988 15:33:06
DRVTST V1.0 D 5-NOV-1988 15:33:06
HISTRY V1.0 D 5-NOV-1988 15:33:06
ERASE V1.0 D 5-NOV-1988 15:33:06
PARAMS V1.0 D 5-NOV-1988 15:33:06
DIRECT V1.0 D 5-NOV-1988 15:33:06
End of directory
Task Name? params
Copyright 1988 Digital Equipment Corporation

PARAMS> sho nodename

Parameter Current Default

NODENAME R3YBNE RF71

PARAMS> set nodename datadisk

Type Radix

String Ascii B

PARAMS> write !This command writes the change
!to EPROM.

Changes require controller initialization, ok? [Y/(N}] y

Stopping DUP server ...
»> sho dssi
DSSI Node 0 (MDC)
-DIAO (RF71)

DSSI Node 1 (DATADISK)
-DIAl (RF71)

DSSI Node 7 (*)

!The node name has changed from
!R3YBNE to DATADISK.

Example 2-1 Changing a DSSI Node Name

2.4.2 Changing the DSSI Unit Number

By default, the ISE drive assigns the disk's unit number to the same value as the DSSI
node address for that drive.

Example 2-2 shows how to change the unit number of a DSSI device. This example
changes the unit number for the RF71 drive at DSSI node address 2 from 1 to 50
(decimal). You must change two parameters: UNITNUM and FORCEUNI. Changing
these parameters overrides the default, which assigns the unit number the same value as
the node address.

2-6 Installation and Configuration

»> sho dssi
DSSI Node 0 (MDC)
-DIAO (RF71)

DSSI Node 1 (R3QJNE)
-DIAl (RF71)

!The unit number for this drive will be
!changed from 1 to 50 (DIAl to DIA50).

DSSI Node 7 (*)
»>
»> set host/dup/dssi 1
Starting DUP server ...
Copyright 1988 Digital Equipment Corporation
DRVEXR V1.0 D 5-NOV-1988 15:33:06
DRVTST V1.0 D 5-NOV-1988 15:33:06
HISTRY V1.0 D 5-NOV-1988 15:33:06
ERASE V1.0 D 5-NOV-1988 15:33:06
PARAMS V1.0 D 5-NOV-1988 15:33:06
DIRECT V1.0 D 5-NOV-1988 15:33:06
End of directory

Task Name? params
Copyright 1~88 Digital Equipment Corporation

PARAMS> sho unitnum

Parameter Current Default

UNITNUM o 0

PARAMS> sho forceuni

Parameter Current Default

Type

Word

Type

FORCEUNI 1 1 Boolean

PARAMS> set unitnum 50

PARAMS> set forceuni 0

Radix

Dec U

Radix

0/1 U

PARAMS> write !This command writes the changes to EPROM.

PARAMS> ex
Exiting ...

Task Name?

Stopping DUP server ...
»>
»>sho dssi
DSSI Node 0 (MDC)
-DIAO (RF71)

DSSI Node 1 (R3QJNE)
-DIA50 (RF71)

DSSI Node 7 (*)

!The unit number has changed
!and the node ID remains at 1.

Example 2-2 Changing a DSSI UnH Number

2.4.3 Access to RF-series Firmware in VMS Through DUP

You can also access the RF -series ISE firmware utilities from the VMS operating system
as well as through the console commands.

Access the ISE firmware through the VMS operating system to find or to view parameter
settings, but not to change them. To change ISE parameter settings, enter the ISE
firmware through the console I/O mode SET HOSTIDUP command.

Installation and Configuration 2-7

Load the FYDRIVER using the following commands in SYSGEN:

$ MCR SYSGEN
SYSGEN> LOAD FYDRIVER/NOADAPTER
SYSGEN> CONNECT FYAO/NOADAPTER
SYSGEN> EXIT
$

You can then access the ISE firmware utilities using the following VMS command:

$ SET HOST/DUP/SERVER=MSCP$DUP/TASK=PARAMS nodename

2.4.3.1 Allocation Class
When a KA660 system containing ISEs is configured in a cluster, either as a boot node or
a satellite node, you must assign the allocation class in VMS SYSGEN and for the ISE
matching non-zero values. To change the allocation class of the ISE, use the following
commands:

»> SET HOST/DUP/DSSI <DSSI node number> PARAMS
Starting DUP server ..

PARAMS> SET ALLCLASS <allocation class value>

PARAMS> WRITE
Changes require controller initialization, ok? [YIN] Y

Stopping DUP server ..
»>

2.5 DSSI Cabling, Device Identity, and Bus Termination
The ISEs in one particular BA430 enclosure are connected to the system backplane
and communicate internally over the backplane. There are no internal nSSI cables.
Externally, a 50-pin ribbon cable connects the nSSI bus to other devices, either hosts or
expanders.

All nSSI devices on the same bus must have unique identifiers.

The In plug provides an identity for the nSSI bus.

2.6 KA660 Connectors
The KA660 uses two connectors, J1 and J2. J1 (system support connector) is the
connector for the 40-pin ribbon cable that goes to the console module. Users configure
the KA660 through the H3602 console module. Figure 1-3 shows the location of the
connectors on the KA660 module. J2 is a dual connector. The upper half contains 50
pins for the nSSI connection and the lower half contains 50 pins for the memory module
connection.

3
Central Processor

This section provides an overview of the user-visible features of the SOC/C (CPU) chip
and MicroVAX computer architecture.

The central processor of the KA660 supports the MicroVAX chip subset (plus six
additional string instructions) of the VAX instruction set and data types plus full VAX
memory management. It is implemented as part of the SOC/C chip.

3.1 Processor State
The processor state is the part of a process which is stored in process registers rather
than in memory. The processor state is composed of sixteen general purpose registers
(GPRs), the processor status longword (PSL), and the internal processor registers (lPRs).

Non-privileged software can access the GPRs and the processor status word (bits <15:00>
of the PSL.)

The IPRs and non-privileged bits <31:16> of the PSL can only be accessed by privileged
. software. The IPRs are explicitly accessible only by the move-to-processor register
(MTPR) and move-from-processor register (MFPR) instructions which can be executed
only while running in kernel mode.

3.2 General Purpose Registers (GPRs)
The KA660 implements 16 general purpose registers as implemented per the VAX
Architecture Reference Manual. These registers are used for temporary storage,
accumulators, and base and index registers for addressing. These registers are denoted
RO - R15. The bits of a register are numbered from right to left, <0> through <31>.
Figure 3-1 shows the general purpose register format. Table 3-1 describes the registers.

3
1 0

IxlxIxlxlxlxl

Figure 3-1 GPR Format

Table 3-1 lists certain registers that have been assigned special meaning by the VAX-11
computer architecture standard.

3-1

3-2 Central Processor

Table 3-1 Special GPRs

Register Register Name

R15 Program counter

R14 Stack pointer

RI3 Frame pointer

R12 Argument pointer

Mnemonic Description

PC The PC contains the address of the next
instruction byte of the program.

SP The SP contains the address of the top of
the processor defined stack.

FP The VAX-ll procedure call convention
builds a data structure on the stack
called a stack frame. The FP contains
the address of the base of this data
structure.

AP The VAX-ll procedure call convention
uses a data structure termed an
argument list. The AP contains
the address of the base of this data
structure.

Consult the VAX Architecture Reference Manual for more information on the operation
and use of these registers.

3.3 Processor Status Longword (PSL)
The KA660 processor status longword (PSL) is implemented per the VAX Architecture
Reference Manual. The PSL is saved on the stack when an exception or interrupt occurs
and is saved in the process control block (PCB) on a process context switch. Bits <15:00>
may be accessed by non-privileged software, while bits <31:16> may only be accessed by
privileged software. Processor initialization sets the PSL to 041F 000016. Figure 3-2
shows the PSL format. Table 3-2 lists the bits and definitions.

3322222 2 2 2 2 2
109 8 7 6 5 4 3 2 1 0

1 1
6 5 876 543 2 1 0

F M
C T P I CUR PRV B D F I
M P MBZ D S MOD MOD Z IPL MBZ V U V T N Z V C

ESB90P0002

Figure 3-2 PSL Format

Table 3-2 Processor Status Longword Format

PSL
Data
Bit

<31>

<30>

<29:28>

<27>

Name

CM

TP

MBZ

FPD

Definition

Compatibility mode. This bit always reads as zero. Loading a 1 into this
bit is an NOP.

Trace pending.

Must be written as zero.

First part done.

•

Central Processor 3-3

Table 3-2 (Cont.) Processor Status Longword Format

PSL
Data
Bit

<26>

<25:24>

<23:22>

<21>

<20:16>

<15:8>

<7>

<6>

<5>

<4>

<3>

<2>

<1>

<0>

NOTE

Name

IS

CUR

PRV

MBZ

IPL

MBZ

DV

FU

IV

T

N

Z

V

C

Definition

Interrupt stack.

Current mode.

Previous mode.

Must be written as zero.

Interrupt priority level.

Must be written as zero.

Decimal overflow trap enable. This read/write bit has no effect on KA660
hardware; it can be used by macrocode which emulates VAX decimal
instructions.

Floating underflow fault enable.

Integer overflow trap enable.

Trace trap enable.

Negative condition code.

Zero condition code.

Overflow condition code.

Carry condition code.

VAX compatibility mode instructions can be emulated by macrocode, but the
emulation software runs in native mode, so the eM bit is never set.

3.4 Internal Processor Registers (IPRs)
The privileged internal processor register (lPR) space provides access to many types of
CPU control and status registers such as the memory management base registers, parts
of the PSL, and the multiple stack pointers. These registers are explicitly accessible only
by the move-to-processor register (MTPR) and the move-from-processor register (MFPR)
instructions which require kernel privileges. The addresses of the KA660 internal
processor registers are given in Table C-2. Internal processor registers are longword size,
as shown in Figure 3-3.

3-4 Central Processor

MS650no.4
MS650no.3

MS650no.2
MS650no.l

,KA660CPU
~------------~+-~-+~

j ~

~~rconnect {.~ ... I·· • .

Blocks D I: L... ..
12 1110 9 8 7 6 5 4 3 2 1 +-- Slot Number

Figure 3-3 Internal Processor Register (IPR) Fonnat

IPRcategorles

Each IPR falls into one of the following categories:

(1) VAX standard IPRs implemented by KA660 in the SOCIC chip.
(2) VAX standard IPRs implemented by KA660 in the SSC chip.
(3) Unique KA660 IPRs implemented by all designs that use the SOC / C chip.
(4) Unique KA660 IPRs implemented by all designs that use the SSC chip.
(5) Not implemented, timed out by the eDAL Bus Timer (in the sse chip) after 4
microseconds. Read as zero. NOP on write.
(6) Access not allowed; accesses result in a reserved operand fault.
(7) Accessible, but not fully implemented; accesses yield unpredictable results.

Table 3-3 explains each IPR.

Table 3-3 KA660 Internal Processor Registers

Implemented IPRNumber

Decimal Hex Register Name Mnemonic Type Scope Where Init? Category

o o Kernel stack pointer KSP RW PROC SOCIC 1

Table Beading Key

IPR Number Decimal: The decimal number of the processor register; Hex: The hex number of the processor
register.
Type R: read-only register; W: write-only register; RW: read/write register.
Scope CPU: CPU wide register; PROC: per the processor register.
Implemented Where? saclc: Implemented in the SOC CPU Chip; SSC: Implemented in the MicroVAX
system support chip
!nit?: Is this register initialized on Module RESET? (Power-up, Negation of DCOK) yes or no.
Category: The processor register category as previously defined in Table 3-3.

Central Processor 3-5

Table 3-3 (Cont.) KA660 Internal Processor Registers

IPRNumber Implemented

Decimal Hex Register Name Mnemonic Type Scope Where Init? Category

1 1 Executive stack ESP RW PROC SOC/C 1
pointer

2 2 Supervisor stack SSP RW PROC SOC/C 1
pointer

3 3 User stack pointer USP RW PROC SOC/C 1

4 4 Interrupt stack ISP RW CPU SOC/C 1
pointer

5-7 5-7 Reserved 5

8 8 PO Base register POBR RW PROC SOC/C 1

9 9 PO Length register POLR RW PROC SOC/C 1

10 A PI Base register PIBR RW PROC SOC/C 1

11 B PI Length register PILR RW PROC SOC/C 1

12 C System base register SBR RW CPU SOC/C 1

13 D System length register SLR RW CPU SOC/C 1

14-15 E-F Reserved 5

16 10 Process control block PCBB RW PROC SOC/C 1
base

17 11 System control block SCBB RW CPU SOC/C 1
base

18 12 Interrupt priority IPL RW CPU SOC/C Yes 1
level

19 13 AST Level ASTLVL RW PROC SOC/C Yes 1

20 14 Software interrupt SIRR W CPU SOC/C 1
request register

21 15 Software interrupt SISR RW CPU SOCIC Yes 1
summary register

22-23 16-17 Reserved 5

24 18 Interval counter ICCS RW CPU SOC/C Yes 3
control status

25 19 Next interval count NICR 5

26 lA Interval count ICR 5

27 IB Time-of-Year register TODR RW CPU SOCIC 2

Table Heading Key

IPR Number Decimal: The decimal number of the processor register; Hex: The hex number of the processor
register.
Type R: read-only register; W: write-only register; RW: read/write register.
Scope CPU: CPU wide register; PROC: per the processor register.
Implemented Where? SOC IC: Implemented in the SOC CPU Chip; SSC: Implemented in the MicroVAX
system support chip
!nit?: Is this register initialized on Module RESET? (Power-up, Negation of DCOK) yes or no.
Category: The processor register category as previously defined in Table 3-3.

3-6 Central Processor

Table 3-3 (Cont.) KA660 Internal Processor Registers

IPRNumber Implemented

Decimal Hex Register Name Mnemonic Type Scope Where Init? Category

28 lC Console storage CSRS RW CPU SOC/C Yes 7
receiver status

29 ID Console storage CSRD R CPU SOC/C Yes 7
receiver data

30 IE Console storage CSTS RW CPU SOC/C Yes 7
transmitter status

31 IF Console storage CSTD W CPU SOC/C Yes 7
transmitter data

32 20 Console receiver RXCS RW CPU SOC/C Yes 4
control/status

33 21 Console receiver data RXDB R CPU SOC/C Yes 4
buffer

34 22 Console transr control TXCS RW CPU SOC/C Yes 4
Istatus

35 23 Console transr data TXDB W CPU SOC/C Yes 4
buffer

36 24 Translation buffer TBDR 5
disable

37 25 Cache control CCR RW SOC/C Yes 3

39 27 Memory system error MSER RW CPU SOC/C YES 3

40 28 Reserved 5

41 29 Reserved 5

42 2A Console saved PC SAVPC R CPU SOC/C 3

43 2B Console saved PSL SAVPSL R CPU SOC/C 3

44-54 2C-36 Reserved 5

55 37 110 System reset 10RESET W CPU SOC/C 4
register

56 38 Memory management MAPEN RW CPU SOC/C Yes 1
enable

57 39 Translation buffer TBIA W CPU SOC/C 1
invalidate all

58 3A Translation buffer TBIS W CPU SOC/C 1
invalidate single

59-61 3B-3D Reserved 5

62 3E System identification SID R CPU SOC/C 1

Table Heading Key

IPR Number Decimal: The decimal number of the processor register; Hex: The hex number of the processor
register.
Type R: read-only register; W: write-only register; RW: read/write register.
Scope CPU: CPU wide register; PROC: per the processor register.
Implemented Where? SOC IC: Implemented in the SOC CPU Chip; SSC: Implemented in the MicroVAX
system support chip
Init?: Is this register initialized on Module RESET? (Power-up, Negation of DCOK) yes or no.
Category: The processor register category as previously defined in Table 3-3.

Central Processor 3-7

Table 3-3 (Cont.) KA660 Internal Processor Registers

IPR Number Implemented

Decimal Hex

63 3F

64-127 40-7F

Table Heading Key

Register Name

Translation buffer
check

Reserved

Mnemonic Type Scope

TBCHK w CPU

Where

SOC/C

Init? Category

1

6

IPR Number Decimal: The decimal number of the processor register; Hex: The hex number of the processor
register.
Type R: read-only register; W: write-only register; RW: read/write register.
Scope CPU: CPU wide register; PROC: per the processor register.
Implemented Where? SOC IC: Implemented in the SOC CPU Chip; SSC: Implemented in the MicroVAX
system support chip
Init?: Is this register initialized on Module RESET? (Power-up, Negation of DCOK) yes or no.
Category: The processor register category as previously defined in Table 3-3.

3'.5 Process Structure
A process is a single thread of execution. The context of the current process is contained
in the process control block (PCB), pointed to by the process control block base register
(PCBB).) The KA660 implements these structures as defined in the VAX Architecture
Reference Manual, which should be referenced for a description of the PCB and the
PCBB.

3.6 Data Types
The central processor provides the following subset of the VAX data types:

• Byte • Word • Longword

• Quadword • Character string • Variable-length bit field

• F -floating • G-floating • D-floating

Support for the remaining data types can be provided by macrocode emulation.

3.7 Instruction Set
The KA660 CPU implements the following subset of the VAX instruction set types in
microcode:

• Integer arithmetic and
logical

• Variable length bit field

• Procedure call

• Operating system support

• G_floating

• Address

• Control

• Miscellaneous

• F _floating

• D _floating

3-8 Central Processor

• Queue • Character string

MOVC3

MOVCS

CMPC31

CMPCS1

LOCC1

SCANC1

SKPC1

SPANC l

lThese instructions were in the microcode assisted category on the KA630-A (MicroVAX II) and therefore had
to be emulated.

The KA660 SOC CPU provides special microcode assistance to aid the macrocode
emulation of the following instruction groups:

• Character string (except MOVC3, MOVC5, CMPC3, CMPC5, LOCC, SCANC, SKPC,
SPANC)

• Decimal string

• CRC

• EDITPC

The following instruction groups are not implemented, but can be emulated by macrocode:

• Octaword

• Compatibility mode instructions

Appendix D lists the entire KA660 instruction set, indicating which instructions are
implemented in the floating point accelerator (FPA), and which instructions have
microcode assists to speed up macrocode emulation.

3.8 Memory Management
The KA660 implements full VAX memory management as defined in the VAX Architecture
Reference Manual. System space addresses are virtually mapped through single-level
page tables, and process space addresses are virtually mapped through two-level page
tables. See the VAX Architecture Reference Manual for descriptions of the virtual-to­
physical address translation process, and the format for VAX page table entries (PrEs).

3.8.1 Translation Buffer

To reduce the overhead associated with translating virtual addresses to physical
addresses, the KA660 employs a 28-entry, fully associative, translation buffer for caching
VAX PTEs in modified form. Each entry can store a modified PrE for translating virtual
addresses in either the VAX process space, or VAX system space. The translation buffer
is flushed whenever the following actions are performed:

• Memory management is enabled or disabled (for example, by writes to IPR 56).

• Any page table base or length registers are modified (for example, by writes to IPRs
13:8).

Central Processor 3-9

• IPR 57 (TBIA) or IPR 58 (TBIS) are written to.

Each entry is divided into two parts: a 23-bit tag register and a 32-bit PTE register. The
tag register is used to store the virtual page number (VPN) of the virtual page that the
corresponding PTE register maps. The PTE register stores the 21-bit page frame number
field, the PTE.V bit, the PTE.M bit, and an 8-bit partially decoded representation of the
4-bit VAX. PTE PROT field, from the corresponding VAX. PTE, as well as a translation
buffer valid (TB.V) bit.

During virtual-to-physical address translation, the contents of the 28 Tag Registers are
compared with the virtual page number field (bits <31:9» of the virtual address of the
reference. If there is a match with one of the tag registers then a translation buffer
''hit'' has occurred, and the contents of the corresponding PTE register are used for the
translation.

If there is no match, the translation buffer does not contain the necessary VAX. PTE
information to translate the address of the reference, and the PTE must be fetched from
memory. Upon fetching the PTE, the translation buffer is updated by replacing the
entry that is selected by the replacement pointer. Since this pointer is moved to the next
sequential translation buffer entry whenever it is pointing to an entry that is accessed,
the replacement algorithm is not last used (NLU). This pointer is called the NLU pointer.

3.8.2 Memory Management Control Registers

There are four IPRs that control the memory management unit (MMU):

IPR 56 (MAPEN)
IPR 57 (TBIA)
IPR 58 (TBIS)
IPR 63 (TBCHK)

Memory management can be enabled/disabled using IPR 56 (MAPEN). Writing 0 to this
register with an MTPR instruction disables memory management and writing a 1 to
this register with an MTPR instruction enables memory management. Writes to this
register flush the translation buffer. To determine whether or not memory management
is enabled, IPR 56 is read using the MFPR instruction.

Translation buffer entries that map a particular virtual address can be invalidated by
writing the virtual address to IPR 58 (TBIS) using the MTPR instruction.

NOTE
Whenever software changes a valid page table entry for the system or current
process region, or a system page table entry that maps any part of the current
process page table, all process pages mapped by the page table entry must be
invalidated in the translation buffer.

The entire translation buffer can be invalidated by writing a 0 to IPR 57 (TBIA) using
the MTPR instruction.

The translation buffer can be checked to see if it contains a valid translation for a
particular virtual page by writing a virtual address within that page to IPR 63 (TBCHK)
using the MTPR instruction. If the translation buffer contains a valid translation for the
page, the condition code V bit (bit<l> of the PSL) is set.

NOTE
The TBIS, TBIA, and TBCHK IPRs are write only. The operation of an MFPR
instruction from any of these registers is UNDEFINED.

3-10 Central Processor

3.9 Interrupts and Exceptions
Both interrupts and exceptions divert execution from the normal flow of control.

An interrupt is caused by some activity outside the current process and typically
transfers control outside the process (for example, an interrupt from an external
hardware device). An exception is caused by the execution of the current instruction
and is typically handled by the current process (for example, an arithmetic overflow).

3.9.1 Interrupts
Interrupts can be divided into two classes: Non-Maskable and maskable.

Non-maskable interrupts cause a halt with the hardware halt procedure. The hardware
halt procedure does the following:

• Saves the PC, PSL, MAPEN <0> and a halt code in IPRs.

• Raises the processor IPL to IF.

• Passes control to the resident firmware.

The firmware dispatches the interrupt to the appropriate service routine based on the
halt code and hardware event indicators. Non-maskable interrupts cannot be blocked
by raising the processor IPL, but can be blocked by running out of the halt protected
address space (except those non-maskable interrupts that generate a halt code of 3).
Non-maskable interrupts with a halt code of3 cannot be blocked because this halt code is
generated after a hardware reset).

Maskable interrupts cause the following:

• The PC and PSL is saved.

• The processor IPL is raised to the priority level of the interrupt (except for Q22-bus,
mass storage and network interface interrupts where the processor IPL is set to 17
independent of the level at which the interrupt was received.)

• The interrupt is dispatched to the appropriate service routine through the SCB.

The various interrupt conditions for the KA660 are listed in Table 3-4 along with their
associated priority levels and SCB offsets.

Table 3-4 Interrupt Priority Levels

Priority Level

Non-maskable

Interrupt Condition

BDCOK and BPOK negated then asserted on
Q22-bus (Power Up)

BDCOK negated then asserted while BPOK
asserted on Q22-bus (SCR<7> clear) .

BDCOK negated then asserted while BPOK
asserted on Q22-bus (SCR<7> set).

BINIT asserted on Q22-bus when configured as an
auxiliary

SCB Offset

*

*

**

*

• -These conditions generate a hardware halt procedure with a halt code of 3 (hardware reset).
··-These conditions generate a hardware halt procedure with a halt code of 2 (external halt).

Central Processor 3-11

Table 3-4 (Cont.) Interrupt Priority Levels

Priority Level Interrupt Condition SCB Offset

BHALT asserted on Q22-bus **
BREAK generated by the console device **

IF Unused

IE BPOK negated on Q22-bus OC

ID CDAL Bus parity error 60

Q22-bus NXM on a write 60

Uncorrectable main memory errors 60

CDAL Bus timeout during DMA 60

Main memory NXM errors 60

lC:IB Unused

lA Correctable main memory errors 54

19:18 Unused

17 BR7 L asserted Q22-bus Vector plus
20016

16 Interval Timer Interrupt CO

BR6 L asserted Q22-bus Vector plus
20016

15 BR5 L asserted Q22-bus Vector plus
20016

14 Console Terminal F8,F6

Programmable Timers 78,7C

SHAC Mass Storage Interface (DSSI port 104
1)(External)

SGEC Network Interface 10C

Interprocessor Doorbell 204

BR4 L asserted Q22-bus Vector plus
20016

13:10 Unused

OF:Ol Software interrupt requests 84-BC

* -These conditions generate a hardware halt procedure with a halt code of 3 (hardware reset).
**-These conditions generate a hardware halt procedure with a halt code of 2 (external halt).

NOTE
Because the Q22-bus does not allow differentiation between the four bus grant
levels (for example, a level 7 device could respond to a level 4 bus grant), the
KA660 CPU raises the IPL to 17 after responding to interrupts generated by the
assertion of either BR7 L, BR6 L, BR5 L, or BR4 L. The KA660 maintains the IPL
at the priority of the interrupt for all other interrupts.

3-12 Central Processor

The interrupt system is controlled by following three IPRs:

• IPR 18, the interrupt priority level register (lPLR) (Figure 3-4), is used for loading
the processor priority field in the PSL (bits<20:1S».

• IPR 20, the software interrupt request register (SIRR) (Figure 3-5), is used for
creating software interrupt requests.

• IPR 21, the software interrupt summary register (SISR) (Figure 3-6), records pending
software interrupt requests at levels 1 through 15.

The format of these registers is presented in Figure 3-4, Figure 3-5, and Figure 3-S.
Refer to the VAX Architecture Reference Manual for more information on these registers.

3
1

Ignored, Returns 0

5 4 o

Figure 3-4 Interrupt Priority Level Register (IPLR) - (IPR 1810 1216)

3
1 4 3 o

:IPLR

Ignored I Request I :SI RR

Figure 3-5 Software Interrupt Request Register (SIRR) - (IPL 2010 1416)

3
1

1 1
6 5

Pending Software Interrupts

FEDCBA9 8 7 6 5 4 3 2

o

M
B

1 Z
:SISR

ESB90P0005

Figure 3-6 Software Interrupt Summary Register (SISR) - (IPL 21 10 1516)

3.9.2 Exceptions
Exceptions can be divided into three types: trap, fault, and abort.

A trap is an exception that occurs at the end of the instruction that caused the exception.
After an instruction traps, the PC saved on the stack is the address of the next
instruction that would have normally been executed and the instruction can be restarted.

Central Processor 3-13

A fault is an exception that occurs during an instruction. It leaves the registers and
memory in a consistent state, such that the elimination of the fault condition and
restarting the instruction will give correct results. After an instruction faults, the PC
saved on the stack points to the instruction that faulted.

An abort is an exception that occurs during an instruction, leaving the value of registers
and memory unpredictable, such that the instruction cannot necessarily be correctly
restarted, completed, simulated or undone. After an instruction aborts, the PC saved
on the stack points to the instruction that was aborted (which mayor may not be the
instruction that caused the abort) and the instruction mayor may not be restarted
depending on the class of the exception and the contents of the parameters that were
saved.

Exceptions can be divided into six classes. A list of exceptions, grouped by class, is given
in the next table. The exceptions listed in Table 3-5 (except machine check) are described
in greater detail in the VAX Architecture Reference Manual. The machine check exception
is described in greater detail in section Section 3.9.3.2.

Table 3-5 Exception Classes

Exception Class Type SCB Offset

Arithmetic Exceptions

Integer overflow Trap 34

Integer divide by zero Trap 34

SUbscript range Trap 34

Floating overflow Fault 34

Floating divide by zero Fault 34

Floating underflow Fault 34

Memory Management Exceptions

Access control violation Fault 20

Translation not valid Fault 24

Operand Reference Exceptions

Reserved addressing mode Fault lC

Reserved operand 18

Instruction Execution Exceptions

ReservedlPrivileged instruction Fault 10

Emulated instruction Fault C8,CC

Change mode Trap 40-4C

Breakpoint Fault 2C

Tracing Exception

Trace Fault 28

System Failure Exceptions

Interrupt stack not valid Abort 2

Kernel stack not valid Abort 08

2Dispatched by resident firmware rather than through the SCB.

3-14 Central Processor

Table 3-5 (Cont.) Exception Classes

Exception Class Type SCB Offset

Machine check including the following: Abort 04

• CDAL bus parity errors

• Cache parity errors

• Q22-bus NXM Errors

• Q22-bus device parity errors

• Q22-bus NO GRANT errors

• CDAL bus timeout errors

• Main memory NXM errors

• Main memory uncorrectable errors

3.9.3 Information Saved on a Machine Check Exception

In response to a machine check exception, the following infonnation is pushed onto the
stack as shown in Figure 3-7:

• Contents of the processor status longword

• Contents of the program counter

• Four parameters

• A byte count

3
1

Byte Count (00000010) hex

Machine Check Code

Most Recent Memory Address

Internal State Information 1

Internal State Information 2

PC

PSL

o

Figure 3-7 The Processor Stack After a Machine Check Exception

The diagram of the stack pointer is explained in the following paragraphs.

Central Processor 3-15

3.9.3.1 Byte Count
Byte Count<31:0> 0000001016, 1610. This value indicates the number of bytes of
information that follow on the stack (not including the PC and PSL).

3.9.3.2 Machine Check Code Parameter
Machine check code <31:0> is a code value that indicates the type of machine check that
occurred. A list of the possible machine check codes (in hex) and their associated causes
are as follows:

Floating Point Errors - These codes indicate that the floating point accelerator (FPA)
detected an error while communicating with the CPU during the execution of a floating
point instruction. The most likely cause of these types of machine checks is a problem
internal to the SOC CPU chip. Machine checks due to floating point errors may be
recoverable, depending on the state of the VAX CAN'T RESTART flag (captured in
internal state information 2 <15> and the FIRST PART DONE flag (captured in PSL
<27». If the FIRST PART DONE flag is set, the error is recoverable. If the FIRST PART
DONE FLAG is cleared, then the VAX CAN'T RESTART flag must also be cleared for
the error to be recoverable. Otherwise, the error is unrecoverable and, depending on the
current mode, either the current process or the operating system should be terminated.
The information pushed on the stack by this type of machine check is from the instruction
that caused the machine check.

Table 3-6 Floating Point Error Machine Checks

Hex Code

01

02

03

04

Error Description

A protocol error was detected by the FPA while attempting to execute a floating
point instruction.

A reserved instruction was detected by the FPA while attempting to execute a
floating point instruction.

An illegal status code was returned by the FPA while attempting to execute a
floating point instruction. ?CPSTA<l:O>=lO

An illegal status code was returned by the FPA while attempting to execute a
floating point instruction. ?CPSTA<l:O>=Ol

Memory Management Errors - These codes indicate that the microcode in the SOC
CPU chip detected an impossible situation while performing functions associated with
memory management. The most likely cause of this type of a machine check is a problem
internal to the SOC chip. Machine checks due to memory management errors are NON­
RECOVERABLE. Depending on the current mode, either the current process or the
operating system should be terminated. The state of the POBR, POLR, PIBR, PILR, SBR
and SLR should be logged.

Table 3-7 Memory Management Error Machine Checks

Hex Code

05

06

Error Description

The calculated virtual address for a process PTE was in the PO space instead of the
system space when the CPU attempted to access a process PTE after a translation
buffer "miss."

The calculated virtual address for a process PTE was in the PI space instead of the
system space when the CPU attempted to access a process PTE after a translation
buffer "miss. II

3-16 Central Processor

Table 3-7,(Cont.) Memory Management Error Machine Checks

Hex Code

07

08

Error Description

The calculated virtual address for a process PTE was in the PO space instead of
the system space when the CPU attempted to access a process PTE to change the
PTE<M> bit before writing to a previously unmodified page.

The calculated virtual address for a process PTE was in the PI space instead of
the system space when the CPU attempted to access a process PTE to change the
PTE<M> bit before writing to a previously unmodified page.

Interrupt Errors - This code indicates that the interrupt controller in the SOC CPU
requested a hardware interrupt at an unused hardware IPL. The most likely cause of
this type of a machine check is a problem internal to the SOC CPU chip. Machine checks
due to unused IPL errors are non-recoverable. A non-vectored interrupt generated by a
serious error condition (memory error, power fail, or processor halt) has probably been
lost. The operating system should be terminated.

Table 3-8 Interrupt Error Machine Checks

Hex Code Error Description

09 A hardware interrupt was requested at an unused interrupt Priority level (IPL).

Microcode Errors - This code indicates that an impossible situation was detected by
the microcode during instruction execution. Note that most erroneous branches in the
SOC CPU microcode will cause random microinstructions to be executed. The most likely
cause of this type of machine check is a problem internal to the SOC CPU chip. Machine
checks due to microcode errors are non-recoverable. Depending on the current mode,
either the current process or the operating system should be terminated.

Table 3-9 Microcode Error Machine Checks

Hex Code

OA

Error Description

An impossible state was detected during an MOVCa or MOVC5 instruction (not
move forward, move backward, or fill).

Read Errors - These codes indicate that an error was detected while the SOC CPU
was attempting to read from either the cache, main memory, or the Q22-bus. The most
likely cause of this type of machine check must be determined from the state of the
MSER, DSER, MEMCSRI6, MEAR, and SEAR. Machine checks due to read errors may
be recoverable, depending on the state of the VAX CAN'T RESTART flag (captured in
Internal State Information 2 <15> and the FIRST PART DONE flag (captured in PSL
<27». If the FIRST PART DONE flag is set, the error is recoverable. If the FIRST PART
DONE FLAG is cleared, then the VAX CAN'T RESTART FLAG must also be cleared for
the error to be recoverable. Otherwise, the error is unrecoverable and depending on the
current mode, either the current process or the operating system should be terminated.
The information pushed on the stack by this type of machine check is from the instruction
that caused the machine check.

Central Processor 3-17

Table 3-10 Read Error Machine Checks

Hex Code

80

81

Error Description

.An error occurred while reading an operand, a process page table entry during
address translation, or on any read generated as part of an interlocked instruction .

.An error occurred while reading a system page table entry (8PTE), during address
translation, a process control block (PCB) entry during a context switch, or a system
control block (8CB) entry while processing an interrupt.

Write Errors - These codes indicate that an error was detected while the SOC CPU was
attempting to write to either the cache, main memory, or the q22-bus. The most likely
cause of this type of machine check must be determined from the state of the MSER,
DSER, MEMCSR16, MEAR, SEAR, and CBTCR. Machine checks due to write errors are
non-recoverable because the CPU is capable of performing many read operations out of
the cache before a write operation completes. For this reason, the information that is
pushed onto the stack by this type of machine check cannot be guaranteed to be from the
instruction that caused the machine check.

Table 3-11 Write Error Machine Checks

Hex Code

82

83

Error Description

.An error occurred while writing an operand, or a process page table entry to change
the PTEM bit before writing a previously unmodified page .

.An error occurred while writing a system page table entry (8PTE) to change the
PTEM bit before writing a previously unmodified page, or a process control block
(PCB) entry during a context switch or during the execution of instructions that
modify any stack pointers stored in the PCB.

3.9.3.3 Most Recent Virtual Address Parameter
Most recent virtual address <31:0> captures the contents of the virtual address pointer
register at the time of the machine check. If a machine check other than a machine check
81 occurred on a read operation, this field represents the virtual address of the location
that was being read when the error occurred, plus four. If a machine check 81 occurred,
this field represents the physical address of the location that was being read when the
error occurred, plus four. If a machine check other than a machine check 83 occurred on
a write operation, this field represents the virtual address of a location that was being
referenced either when the error occurred, or sometime after the error occurred, plus
four. If a machine check 83 occurred, this field represents the physical address of the
location that was being referenced either when the error occurred, or sometime after the
error occurred, plus four; if the machine check occurred on a write operation, the contents
of this field cannot be used for error recovery.

3.9.3.4 Internal State Information 1 Parameter
Internal state information 1 is divided into five fields as described in the following table.

3-18 Central Processor

Table 3-12 Internal State Information 1 Field Description

Bit Field

<31:24>

<23:20>

<19:16>

<15:8>

Description

This field captures the opcode of the instruction that was being read or executed
at the time of the machine check.

This field is read as <1111>.

This field captures the current contents of HSIR<3:0>.

This field captures the state of CCR<7:0> at the time of the machine check. See
section 5.2.5 for interpretation of the contents of this register.

This field captures the state of MSER<7:0> at the time of the machine check.
See section 5.2.6 for interpretation of the contents of this register.

3.9.3.5 Internal State Information 2 Parameter
Internal state information 2 is divided into seven fields as described in the following
table:

Table 3-13 Internal State Information 2 Field Description

Bit Field

<31:24>

<23:22>

<21:16>

<15>

<14:12>

<11:8>

<7:0>

3.9.3.6 PC

Description

This field captures internal state of the SOC CPU chip at the time of the
machine check. This field contains the SC register <7:0>.

This field is read as <11>.

This field contains the state flags <5:0>.

This field captures the state of the VAX. CAN'T RESTART flag at the time of the
machine check.

This field is read as <111>.

These bits contain the arithmetic logic unit (ALU) condition codes.

This field captures the offset between the virtual address of the start of the
instruction being executed at the time of the machine check (saved PC) and the
virtual address of the location being accessed (PC) at time of the machine check.

PC<31:0> captures the virtual address of the start of the instruction being executed at
the time of the machine check.

3.9.3.7 PSL
PSL<31:0> captures the contents of the PSL at the time of the machine check.

3.9.4 System Control Block (SCB)

The system control block (SCB) consists of two pages in main memory that contain
the vectors by which interrupts and exceptions are dispatched to the appropriate service
routines. The SCB is pointed to by IPR 17, the system control block base register (SCBB).
The format of the system control block base register is shown in Figure 3-8.

System Control Block
Base Register

Physical Longword Address of
System Control Block MBZ

IOC

Figure 3-8 System Control Block Base Register (SCBB)

The description of the format is listed in Table 3-14.

Table 3-14 The System Control Block Format

SCB Interrupt/Exception 4#

Central Processor 3-19

System Control Block

Offset Name Type Params Notes

00 Unused IRQ passive release on other
VAX computers.

04 Machine check Abort 4 Parameters depend on error
type.

08 Kernel stack not valid Abort 0 Must be serviced on interrupt
stack.

OC Power fail Interrupt 0 IPL is raised to IE.

10 ReservedlPrivileged Fault 0
instruction

14 Customer reserved Fault 0 XFC instruction.
instruction

18 Reserved operand Fault 0 Not always recoverable.
IAbort

lC Reserved addressing mode Fault 0

20 Access control violation Fault 2 Parameters are virtual
address, status code.

24 Translation not valid Fault 2 Parameters are virtual
address, status code.

28 Trace pending (TP) Fault 0

2C Breakpoint instruction Fault 0

3-20 Central Processor

Table 3-14 (Cont.) The System Control Block Format

SCB Interrupt/Exception ##
Offset Name Type Params Notes

SCB Interrupt/Exception ##
Offset Name Type Params Notes

30 Unused Compatibility mode in other
VAX. computers

34 Arithmetic TraplFault 1 Parameter is type code.

38-3C Unused

40 CHMK Trap 1 Parameter is sign-extended
operand word.

44 CHME Trap 1 Parameter is sign-extended
operand word

48 CHMS Trap 1 Parameter is sign-extended
operand word.

4C CHMU Trap 1 Parameter is sign-extended
operand word.

50 Unused

54 Correctable main memory Interrupt 0 IPL is lA (CRD_L).
errors

58-5C Unused

60 Memory error Interrupt 0 IPL is ID (MEMERR_L)

64-74 Unused

78 Programmable timer 0 Interrupt 0 IPL is 14

7C Programmable timer 1 Interrupt 0 IPL is 14

80 Unused

84 Software level 1 Interrupt 0

88 Software level 2 Interrupt 0 Ordinarily used for AST
delivery.

8C Software level 3 Interrupt 0 Ordinarily used for process
scheduling.

Central Processor 3-21

Table 3-14 (Cont.) The System Control Block Format

8CB InterruptiException #
Offset Name Type Params Notes

90-BC Software levels 4-15 Interrupt 0

CO Interval timer Interrupt 0 IPL is 16(INTI'IM_L).

C4 Unused

C8 Emulation start Fault 10 Same mode exception,FPD =
0; parameters are opcode, PC,
specifiers.

CC Emulation continue Fault 0 Same mode exception,FPD =
1: no parameters.

DO-DC Unused

EO-EC Unused

FO-F4 Unused

F8 Con~le receiver Interrupt 0 IPL is 14

FC Console transmitter Interrupt 0 IPL is 14

104 Mass storage interface Interrupt 0 IPL is 14
(DSSI PORT)

10C Network interface Interrupt 0 IPL is 14

3.9.5 Hardware Detected Errors

The KA660 is capable of detecting the following types of error conditions during program
execution:

• CDAL bus parity errors indicated by MSER<6> (on a read) or MEMCSR16<7> (on a
write) being set.

• Cache tag parity errors indicated by MSER<O> being set.

• Cache data parity errors indicated by MSER<l> being set.

• Q22-bus NXM errors indicated by DSER<7> being set.

• Q22-bus NO SACK errors (no indicator).

• Q22-bus NO GRANT errors indicated by DSER<2> being set.

• Q22-bus device parity errors indicated by DSER<5> being set.

• CDAL-Bus timeout errors indicated by DSER<4>(only on DMA) being set.

• Main memory NXM errors indicated by DSER<O> (only on DMA) being set.

• Main memory correctable errors indicated by MEMCSR16<29> being set.

• Main memory uncorrectable errors indicated by MEMCSR16<31> and DSER<4>
(only on DMA) being set.

These errors will cause either a machine check exception, a memory error interrupt, or
a corrected read data interrupt depending on the severity of the error and the reference
type that caused the error.

3-22 Central Processor

3.9.6 The Hardware Halt Procedure

The hardware halt procedure is the mechanism by which the hardware assists the
firmware in emulating a processor halt. The hardware halt procedure saves the current
value of the PC in IPR 42 (SAVPC), and the current value of the PSL, MAPEN<O>, a halt
code and VALID bit in IPR 43 (SAVPSL). The formats for (SAVPC) and (SAVPSL) are
shown in Figure 3-9 and Figure 3-10 respectively.

3
1 o

_________________ sa_v_e_d_p_C ___ {_Re_a_d_°_n_IY_> ___________________ I:sAVPC

Figure 3-9 Console Saved PC (SAVPC) - (IPR 4210 2A16)

3
1

1 1 1 1
6 543 870

~ ________ PS_L_<_3_1:_16_> _________ I~I~I_H_AL_T_C_O_D_E~1 ___ P_S_L<_7_:0_> __ ~I:SAVPSL

MAPEN<O>
Valid Bit (Valid if ZERO)

ESB90P0009

Figure 3-10 Console Saved PSL (SAVPSL) - (IPR 4310 2816)

The current stack pointer is saved in the appropriate internal register. The PSL is set
to 041F 0000 16 (lPL=lF, kernel mode, using the interrupt stack) and the current stack
pointer is loaded from the interrupt stack pointer. Control is then passed to the resident
firmware at physical address 2004 0000 16. Table 3-15 shows the state of the CPU.

Table 3-15 CPU State After a HALT

Register

SAVPC

SAVPSL<31:16,7:0>

SAVPSL<15>

SAVPSL<14>

SAVPSL<13:S>

SP

PSL

PC

MAPEN

New Contents

Saved PC

Saved PSL <31:16,7:0>

Saved MAPEN<O>

Valid PSL flag (unknown for halt code of 3)

Saved restart code

Current interrupt stack (IPR 4)

041F 000016

2004000016

o

Central Processor 3-23

Table 3-15 (Cont.) CPU State After a HALT

Register New Contents

ICCS o (for a halt code of 3)

MSER o (for a halt code of 3)

CCR o (for a halt code of 3)

SISR o (for a halt code of 3)

ASTLVL o (for a halt code of 3)

All else Undefined

The firmware uses the halt code in combination with hardware event indicators to
dispatch the interrupt or exception that caused the halt, to the appropriate firmware
routine (either console emulation, power-up, reboot, or restart). The halt codes and their
event indicators are listed in Table 3-16. Complete halt code descriptions are given in
Table J-l.

Table 3-16 HALT Codes

Halt Code

2

3

6

Interrupt Condition

HALT Codes for unmaskable interrupts

External halt (SOC/C HALT_L pin asserted)

Event Indicator

BHALT asserted on the Q22-bus nSER<15>

Remote boot serviced by SGEC NICSR5<7>

BnCOK negated and asserted on the Q22-bus while DSER<14>
BPOK stays asserted (Q22-bus REBOOTIRESTART) and
SCR<7> is set

BREAK generated by the console

Hardware reset (SOC/C RESET pin asserted)

BDCOK and BPOK negated then asserted on the Q22-
bus (Power-Up)

BDCOK negated and asserted on the Q22-bus while
BPOK stays asserted (Q22-bus REBOOTIRESTART) and
SCR<7> is clear.

HALT Codes for Exceptions

HALT instruction executed in Kernel Mode

RXDB<ll>

3-24 tontral Processor

Table 3-16 (Cont.) HALT Codes

Halt Code Interrupt Condition Event Indicator

HALT Codes for Exceptions that occurred while Serving an Interrupt or Exception

4 Interrupt stack not valid during exception

5 Machine check during normal exception

7 SCB vector bits<1:0>= 11

8 SCB vector bits<1:0>= 10

A CHMx executed while on interrupt stack

10 Access control violation (ACV) or translation not valid
(TNV) during machine check exception

11 ACV or TNV during kernel stack not valid exception

12 Machine check during machine check exception

13 Machine check during kernel stack not valid exception

19 PSL<26:24>= 101 during interrupt or exception

1A PSL<26:24>= 110 during interrupt or exception

1B PSL<26:24>= 111 during interrupt or exception

1D PSL<26:24>= 101 during REI

IE PSL<26:24>= 110 during REI

IF PSL<26:24>= 111 during REI

3.10 System Identification
The firmware and operating system software references two registers to determine the
processor on which they are running. The first, the system identification register (SID),
is an internal processor register. The second, the system identification extension register
(SIE), is a firmware register located in the on board EPROM.

3.10.1 System Identification Register
The system identification register (SID), IPR 62, is a read-only register implemented
in the SOC CPU chip. This 32-bit, read-only register is used to identify the processor
type and its microcode revision level. The SID longword is read from IPR 62 using the
MFPR instruction. This longword value is processor specific. The format is shown in
Figure 3-11. Bit definitions are listed in Table 3-17.

322
143

CPU_TYPE RESERVED

8 7 0

I MICROCODE REV. I

Figure 3-11 System Identification Register (SID) - (IPR 6210 3E1S)

Central Processor 3-25

Table 3-17 System Identification Register (SID) Bits

Field Name RW Description

<31:24> CPU_ ro CPU type is the processor specific identification code. This field
TYPE always reads as 2010 indicating the processor is implemented with

an SOC CPU chip.

<23:8> RESERVED ro Reserved for future use.

<7:0> VERSION ro Version of the microcode.

3.10.2 System Identification Extension Register (SIE) (20040004)

The system identification extension register is an extension of the SID register and
is used to further differentiate between hardware configurations. The SID register
identifies which CPU and microcode is executing, and the SIE register identifies what
module and firmware revision are present. Note that the fields in this register are
dependent on SID<31:24>(CPU_TYPE).

By convention, all MicroVAX systems implement a longword at physical location
20040004 in the firmware EPROM for the SIE register. This 32-bit Read-Only register
is implemented in the KA660 ROM. Figure 3-12 shows the format of this register.
Table 3-18 lists the definitions of the register bits.

3
1

SYS_TYPE

2 2
4 3

REV LEVEL

1 1
6 5 8 7 o

RESERVED

ESB90P0011

Figure 3-12 System Identification Extension Register (SIE)

Table 3-18 System Identification Extension Register (SIE) Bits

Field Name

23:16 VERSION

15:8

7:0 RESERVED

RW Description

ro This field identifies the type of system for a specific processor.

01 : Q22-bus single processor system.

ro

ro

This eight bit field contains two hexadecimal digits that reflect
the version of the resident firmware (EPROM). For example, if the
firmware version is V5.0, the banner displays V5.0 and this field
encodes as a 5016.

This field reflects the particular system sub-type.

01 : KA650
02: KA640
03: KA655
04: KA670

This field is reserved.

3-26 Central Processor

3.11 CPU References
All references by the CPU can be classified into one of three groups:

• Request instruction -stream read references

• Demand data-stream read references

• Write references

3.11.1 Request Instruction-Stream Read References
The CPU has an instruction prefetcher for prefetching program instructions from either
cache or main memory. The prefetcher uses a 12-byte (3 longword) instruction prefetch
queue (lPQ). Whenever there is an empty longword in the IPQ, and the prefetcher is
not halted due to an error, the instruction prefetcher will generate an aligned longword
request instruction-stream (I-Stream) read reference.

3.11.2 Demand Data-Stream Read References
Whenever data is immediately needed by the CPU to continue processing, a demand
data-stream (D-Stream) read reference is generated. More specifically, demand D-Stream
references are generated on the following references:

• Operand

• Page table entry (PrE)

• System control block (SCB)

• Process control block (PCB)

When interlocked instructions, such as branch on bit set and set interlock (BBSSI) are
executed, a demand D-Stream read-lock reference is generated.

Because the CPU' does not impose any restrictions on data alignment (other than
the aligned operands of the ADAWI and interlocked queue instructions) and because
memory can only be accessed one aligned longword at a time, all data read references are
translated into an appropriate combination of masked and unmasked, aligned longword
read references.

If the required data is a byte, a word within a longword , or an aligned longword then a
single, aligned longword Demand D-Stream read reference is generated. If the required
data is a word that crosses a longword boundary, or an unaligned longword then two
successive aligned longword demand D-Stream read references are generated. Data
larger than a longword is divided into a number of successive aligned longword demand
D-Stream reads, with no optimization.

3.11.3 Write References
Whenever data is stored or moved, a write reference is generated. Because the CPU
does not impose any restrictions on data alignment (other than the aligned operands
of the ADAWI and interlocked queue instructions), and because memory can only be
accessed one aligned longword at a time, all data write references are translated into an
appropriate combination of masked and unmasked aligned longword write references.

Central Processor 3-27

If the required data is a byte, a word within a longword, or an aligned longword, then
a single, aligned longword write reference is generated. If the required data is a word
that crosses a longword boundary or an unaligned longword, then two successive aligned
longword write references are generated. Data larger than a longword is divided into a
number of successive aligned longword writes.

4
KA660 Cache Memory

To maximize CPU performance, the SOC CPU provides a 6 Kbyte, 6-way associative
write-through cache with an 8 byte block and fill size.

4.1 Cacheable References
Any reference that is stored by the cache is called a cacheable reference. The cache stores
CPU read references to the VAX Memory Space (bit <29> of the physical address equals
(0)) only. It does not store references to the VAX I/O space, or DMA references by the
Q22-bus Interface, the DSSI interface, or the Ethernet interface.

Both I-Stream and D-Stream references are cached in the enabled banks of the cache.

Whenever the CPU generates a non-cacheable reference, a single longword reference of
the same type is generated on the CDAL Bus.

Whenever the CPU generates a cacheable reference that is stored in the cache, no
reference is generated on the CDAL Bus.

"Whenever the CPU generates a cacheable READ reference that is not stored in the cache,
a quad word READ is generated on the CDAL Bus. If the CPU reference was a request
I-stream read, then the quadword transfer consists of two indivisible longword transfers.
The first transfer is a request I-stream read (prefetch) and the second transfer is a
request I-stream read (fill). If the CPU reference was a demand D-stream read, then the
quadword transfer consists of two indivisible longword transfers. The first is a demand
D-stream read and the second is a request D-stream read (fill).

If the CPU is retried on the second (fill) longword then the first longword is delivered
to the CPU but not cached. The request will not be retried if the need for the data is
resolved (for example, it was a prefetch but a branch was taken).

4.2 Cache Organization
The cache is logically organized as 6, 1 Kbyte banks, shown next. It is a read-allocate,
no-write-allocate, and write-through cache. A single parity bit is generated, stored and
checked for each byte of data and each tag. The cache is enabled/disabled via a bit in the
cache control register (CCR).

Other bits in these two registers allow the data and tags to be addressed directly, to
check the parity generating/checking logic and to provide the hit/miss status of each bank
for the most recent D-stream read or write cycle.

4-1

4-2 KA660 Cache Memory

Set 0 Set 4 Set 5

Row 1 128x21-bit 128x72-bit
Row 2 Tag Array Data Array

Row 128

92 72 71 o

Figure 4-1 Logical Organization of cache

Each row within a set corresponds to a cache entry, and there are 128 entries in each set.
Each entry contains a 21-bit tag block and a 72-bit (eight-byte) data block. A cache entry
is logically organized as shown in Figure 4-2:

9
3

77
2 1

Tag Block Data Block

Figure 4-2 cache Entry

Figure 4-3 shows the format of a cache tag entry.

20 19 18

Tag

I I"---__ L-._

Figure 4-3 cache Tag Entry

Tag
Valid
Parity

o

o

The parity bit stores odd parity over the tag field only. The valid bit is not included in
the parity calculation.

The valid bit indicates whether or not the corresponding entry in the cache refers to a
useable data/address pair.

The tag consists of bits <28:10> of the physical address.

Figure 4-4 shows the format of a cache data entry.

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

Figure 4-4 cache Data Entry

KA660 Cache Memory 4-3

Each data entry consists of eight bytes of data, each with an associated parity bit. Odd
parity is generated for the odd data bytes and even parity is generated for the even data
bytes.

4.2.1 Cache Address Translation

Whenever the CPU requires an instruction or data, the contents of the cache is checked
to determine if the referenced location is stored there. The cache contents is checked by
translating the physical address as follows:

On non-cacheable references, the reference is never stored in the cache, so a cache "miss"
occurs and a single longword reference is generated on the CDAL Bus.

On cacheable references, the physical address must be translated to determine if the
contents of the referenced location is resident in the cache. The cache Index Field, bits
<9:3> of the physical address, is used to select one of the 128 rows of the cache, with each
row containing a single entry from each set. The label field, bits <28: 10> of the physical
address, is then compared to the tag block of the entry from all six sets in the selected
row.

If a match occurs with the tag block of one of the set entries, and the valid bit within the
entry is set, the contents of the referenced location is contained in the cache and a cache
"hit" occurs. On a cache hit, the set match signals generated by the compare operation
select the data block from the appropriate set. The cache displacement field, bits <2:0>
of the physical address, is used to select the byte(s) within the block. No CDAL bus
transfers are initiated on CPU references that hit the cache.

If no match occurs, then the contents of the referenced location is not contained in the
cache and a cache "miss" occurs. In this case, the data must be obtained from the main
memory controller, so a quadword transfer is initiated on the CDAL bus.

Figure 4-5 shows how cache addresses are translated.

4-4 KA660 Cache Memory

2 2
9 8

1/0 Space

Label

10 9 320

Cache Index

Cache Displacement

Valid Bit
I
I
V

21-
Bit
Tag

SetO

72-Bit
Data Block

...
I
I

1------1 < ... >

Set o Match?

I
I
V

Valid Bit
I
I
V Set 5

21- 72-Bit
Bit Data Block
Tag

--------1

Set 1-5 Match?

V

V

Data

Figure 4-5 cache Address Translation

4.2.2 Cache Data Block Allocation

Physical
Address

Cacheable references that miss the cache, cause a quad word read to be initiated on the
CDAL bus. When the requested quadword is supplied by the main memory controller, the
requested longword is passed on to the CPU, and a data block is allocated in the cache to
store the entire quadword.

Because the cache is six-way associative, there are six data blocks (one in each set)
that can be allocated to a given quadword. The cache index field determines which row
of 6 data blocks is to be used while set selection is determined by a not most recently
used (NMRU) algorithm. The bank to be selected is pointed to by a three bit counter.
The counter is set to 000 when the cache is disabled (CCR ENABLE_CACHE=O); it is
advanced:

• Every time a block is allocated.

KA660 Cache Memory 4-5

• Every time a read or write hits in the bank to which the counter is currently pointing.

The counter counts modulo 6 with no missing counts regardless of which banks are
enabled. The contents of the counter is driven out on pins TEST<2:0> (test mode is in
observe miscellaneous state), which enables external logic to track which addresses are
cached internally.

4.2.3 Cache Behavior on Writes

On CPU generated write references, the cache is "write through." All CPU write
references that hit the cache cause the contents of the referenced location in main
memory to be updated as well as the copy in the cache.

When a DMA write references hits the cache, the cache entry containing the copy of the
referenced location is invalidated.

4.2.4 Cache Control Register (CCR, IPR 37)

The cache control register (CCR), internal processor register 37, controls cache operating
mode and flushes the cache. It is unique to CPU designs that use the SOC CPU chip.
Figure 4-6 shows the register format and Table 4-1 describes the bits.

3
1

MBZ

Figure 4-6 Cache Control Register

Table 4-1 Cache Control Register BHs

Data Bit Name

<31:5> Unused

<4> Unused

WWP

Description

These bits always read as zeros. Writes
have no effect.

This bit is always read as a one. Writes
have no effect.

Write wrong parity. For diagnostic use.
When set, it inverts the data parity bits
accessed from the cache. This causes a
parity error when they are compared to
parity computed from the accessed data,
and is used to test the parity generation
Ichecking logic. When clear data parity
bits are not affected. This bit does not
affect tag parity bits. Cleared when
RESET_L is asserted.

43210

ESB90P0017

Type

Read/Write

4-6 KA660 Cache Memory

Table 4-1 (Cont.) cache Control Register Bits

Data Bit Name Description

<2> ENA Enable cache. It enables or disables
normal operation of the cache. When set,
both I-stream and D-stream references are
cached in the enabled banks of the cache,
and cache tag and data parity errors are
reported. When clear, all references (read
and write) result in a miss and no cache
parity is checked. When enable cache is
set the cache should be flushed by writing
a one to the flush cache bit. Enable cache
is cleared when RESET_L is asserted.

NOTE
The cache may be operated with both
the Diagnostic bit set and the Enable
Cache bit set.

<1> FLU Flush cache. Always read as zero. Writing
a one to this bit clears all valid bits in the
cache tag array. Writing a zero has no
effect.

<0> DIA Diagnostic. When this bit is set, the
cache entries and BEHR register may be
accessed via a region in I/O space. When
clear, references to the same region of I/O
space result in bus cycles.

Table 4-2 Cache Diagnostic Mode Addresses

Information

Cache Tag

Cache Data

BEHR

Address Range

20150000 - 201503FF

20150400 - 201507FF

20150800 - 20150FFF

Note the BEHR register may be accessed at multiple addresses.

Type

Read/Write

Write only

Read/Write

When the diagnostic bit is set, writes to cache data addresses will write to the cache data
longword indexed by bits <9:2> of the address. All banks which have the corresponding
BEHR ENABLE_BANK bit set will be written, and correct data parity will also be
written. Byte and word writes as well as longword are possible.

Reads from cache data addresses read the cache data longword addressed; if more than
one ENABLE_BANK bit is set then the highest priority bank enabled will return the
data (bank 0 is highest priority, bank 7 is lowest).

Writes to cache tag addresses write to the cache tag indexed by bits <9:3> of the address.
All banks which have the corresponding BEHR ENABLE_BANK bit set will be written.
The write data format is shown in Figure 4-7.

332 2
109 8

P v x

I Valid Bit -

- Tag Panty

TAG

Figure 4-7 Tag Diagnostic Write Data Format

/

KA660 Cache Memory 4-7

1
o 9 o

x

Reads from cache tag addresses read the cache tag addressed, plus the data parity from
the data longword addressed by bits <9:2> of the address as shown in the next figure.
If more than one ENABLE_BANK bit is set then the highest priority bank enabled will
return the tag.

The read data. format is shown in Figure 4-8.

1 332 2
109 8 o 9 4 3 0

L Valid Bit

Tag Parity

TAG

Figure 4-8 Tag Diagnostic Read Data Format

4.2.5 Bank Enable/Hit Miss Register (BEHR)

L Data Parity
of Associated
Longword

The bank enablelhit mis (BEHR) register allows individual sets of the cache to be enabled
ldisabled and also provides bits which indicate the hit/miss status for each set of the
cache. The format is shown in Figure 4-9.

3
1

1 1
65

Figure 4-9 Bank Enable/Hit Miss Register

Bank
Hit/Miss

87

Bank
Enable

o

4-8 KA660 Cache Memory

Table 4-3 Bank Enable/Hit Miss Register (BEHR)

Data Bit Name

<15:8> Bank hit

<7:0> Enable Bank

Description Type

These bits are provided for use in testing Read only
the cache. They represent the hit/miss
status of each bank of the cache for the
most recent D-stream read or write cycle.
A 1 indicates that there was a hit in the
corresponding bank, a 0 indicates a miss.
Bank hit<7:0> are cleared when RESET_L
is asserted.

These bits are written to by the power- Read Only
up diagnostics. The diagnostics are
responsible for determining and enabling
good cache banks. When set to one, these
bits enable banks <7:0> of the cache,
respectively. Note that for any bank to
be enabled, CCR enable cache or CCR
diagnostic must be set. When cleared
to zero, the corresponding banks are
disabled. Enable Bank <7:0> are cleared
when RESET_L is asserted. Whenever
a bank is either enabled or disabled,
software should also flush the cache by
writing a one to CCR Flush.

For any reference there should be a hit in
only one bank. If, due to a hardware
malfunction (corrupted tag bit), the
reference hits in more than one bank,
only the bank with the higher priority
drives the data. The banks are numbered
in decreasing order of priority. Bank 0 has
the highest priority and bank 5 has the
lowest priority. Normally, the corrupted
tag would be reported via the MSER.

4.2.6 Memory System Error Register (MSER, IPR 39)

The memory system error register (MSER) , internal processor register 39, reports
information about DAL bus and cache errors. The two basic classes of errors reported
are:

• Errors that don't immediately affect operation of the SOC CPU and therefore post an
interrupt but not change instruction flow.

• Errors that do affect operation and will cause a machine check (trap through SCB
vector 4.

The format is shown in Figure 4-10.

3
1

ZERO

Figure 4-10 Memory System Error Register (MSER, IPR 39)

7 6 543 2 1 0

KA660 Cache Memory 4-9

Table 4-4 Memory System Error Register (MSER, IPR 39)

Data Bit

<31:7>

<6>

<4>

<3:2>

<1:0>

NOTE

Name

DPE

MCADPE

MCACPE

Description

Al ways read as zero.

DAL Parity error. This bit is set when
a DAL parity error is detected on either
a demand or request read cycle which
receives a normal termination response
(RDY_L asserted, ERR_L deasserted).

Machine check abort. DAL parity error.
This bit is set whenever a machine check
is caused by a DAL parity Error. A DAL
parity error will only cause a machine
check on a demand read cycle.

Machine check abort cache parity error.
This bit is set whenever a machine check
is caused by a cache parity error (tag or
data). A cache parity error only causes
a machine check on a demand read cycle
that hits the cache.

Always read as zero.

These bits are set independandtly to show
the scope of a cache parity error on either
a demand or request cycle. MSER<O> is
set to indicate that the cache parity error
was caused by a tag error; MSER<l> by
a data error. Note that a simultaneuos
cache tag and data parity error will only
log the fact that a cache tag parity error
occured.

Type

Sticky

Sticky

Sticky

Sticky

MSER bits <6:4, 1:0> are "sticky" in the sense that once set, they remain set until
MSER is explicitly cleared by writing the MSER (with a MTPR instruction)
irrespective of the data. Parity errors occuring while an eITor condition is
posted in MSER can only set an additional bit (for example, MSER <6:4, 1:0>
cannot be cleared through subsequent eITors).

4.2.7 Cache Error Detection

Both the tag and data arrays in the cache are protected by parity. Each 8-bit byte of data
and the 19-bit tag is stored with an associated parity bit. The valid bit in the tag is not
covered by parity. Odd data bytes are stored with odd parity and even data bytes are
stored with even parity. The tag is stored with odd parity. The stored parity is valid only
when the valid bit associated with the cache entry is set. Tag and data parity (on the
entire longword) are checked on read references that hit the cache, while only tag parity
is checked on CPU and DMA write references that hit the cache.

The action taken following the detection of a cache parity error depends on the reference
type. The following are the different reference types:

• During a demand D-stream read reference, the entire cache is flushed, and the CCR
is cleared (which disables the cache.) The cause of the error is logged in MSER<4,1:0>
and a machine check abort is initiated.

4-10 KA660 Cache Memory

• During a request I-stream read reference, the entire cache is flushed (unless CCR<O>
is set), the cause of the error is logged in MSER<I:0>, the prefetch is halted, but no
machine check abort occurs and the cache remains enabled.

• During a masked or unmasked write reference, the entire cache is flushed (unless
CCR<O> is set), the cause of the error is logged in MSER<O> (only tag parity is
checked on CPU writes that hit the cache) there is no effect on CPU execution, and
the cache remains enabled.

• During a DMA write reference the cause of the error is logged in MSER<O> (only
tag parity is checked on DMA writes that hit the cache), there is no effect on CPU
execution, both caches remain enabled, and no invalidate operation occurs.

4.2.7.1 Use of the C-Chip Registers
The 10 registers implemented by the C-chip provide full control over the backup cache
tag store and the primary tag store in the C-chip. Access to these registers is with the
MTPR and MFPR instructions, which require kernel-mode privilege.

4.2.7.1.1 Control of the Cache
Normal operational control of the backup cache and primary tag store in the C-chip is
provided through writes to BCCTL. Bits in this register enable the use of backup cache
and primary tag store.

The backup cache and primary tag store may be flushed during normal operation by
writing a 0 to BCFBTS and BCFPTS, respectively.

4.2.7.1.2 Error Recovery
When an error is detected by the C-chip, it latches error information. This information is
available by reading BCSTS and BCERR. STATUS_LOCK (BCSTS<O» may be written
to tell the C-chip that the error information has been read, and to enable it to detect
subsequent errors.

If the error was a tag parity error in one of the tag stores, the error may be corrected by
creating a new tag entry with a write to BCIDX, followed by a write to BCBTS, BCPITS,
or BCP2TS.

4.2.7.1.3 cache Initialization
At power-up, the backup cache tag store and primary tag store must be initialized by
writing each entry with an invalid tag with good parity. Each entry may be written with
a write to BCIDX, followed by a write to BCBTS, BCPl TS, or BCP2TS.

As part of cache initialization, cache refresh must be enabled, and the cache RAM speed
must be specified by writing to BCCTL. The Console macrocode will set the RAM speed
for 1 Cycle.

4.2.7.1.4 Diagnostics
The tag stores and the backup cache data RAMs may be tested by reading and writing
cache tags with BCIDX, BCBTS, BCPITS, and BCP2TS. Cache refresh may be tested by
reading and writing BCRFR. Error detection may be tested by constructing an error and
then reading the state from BCSTS and BCERR.

5
KA660 Main Memory System

The KA660-AA includes a main memory controller implemented by a single VLSI chip
called the CMCTL. The KA660 main memory controller communicates with the MS650
memory boards over the MS650 memory interconnect, which uses the CD interconnect
for the address and control lines and a 50-pin, ribbon cable for the data lines. It supports
up to four MS650 memory boards, for a maximum of 64 Mbytes of ECC memory.

NOTE
The KA660 supports only MS650_Bx variations and does not support MS650-AA
variations.

The memory controller supports synchronous longword read references, and masked or
unmasked synchronous write references generated by the CPU as well as synchronous,
quad word read references generated by cacheable CPU references that miss the cache.

5.1 KA660 Timing
The system clock for the VAX 4000-200 computer operates at 114.285 MHz creating a
cycle time of 70 nanoseconds. Table 5-1 lists the reference times for CPU reads and
writes and Q22-bus interface reads and writes. This table also provides information
about error handling times.

Table 5-1 KA660 Reference Timing

CPU Read Reference

Longword

Quadword

First longword

Second longword

Aborted reference

Longword Oocked)

Aborted reference

Retry Oocked)

CPU Write Reference

Longword

280 ns

420 ns

280 ns

140 ns

280 ns

630 ns min

280 ns

350 ns

140 ns

5-1

5-2 KASSO Main Memory System

Table 5-1 (Cont.) KA660 Reference Timing

Longword (masked) 350 ns

The controller also supports asynchronous longword and quadword DMA read
references and masked and unmasked asynchronous longword, quadword,

hexword, and octaword DMA write references from the Q22-bus Bus Interface.

Q22-bus Interface Read
Reference

Longword

Quadword

First longword

Second longword

Longword (locked)

Q22-bus Interface Write
Reference

Longword

Longword (masked)

Quadword

First longword

Second longword

Quadword (masked)

First longword

Second longword

Hexword

First longword

Second longword

Third longword

Hexword (masked)

First longword

Second longword

Third longword

Octaword

First longword

Second longword

Third longword

Fourth longword

Octaword (masked)

First longword

Second longword

Third longword

Fourth longword

420 ns

560 ns

350 ns

210 ns

420 ns

280 ns

420 ns

490 ns

2800 ns

210 ns

770 ns

280 ns

490 ns

700 ns

280 ns

210 ns

210 ns

980 ns

280 DS

210 ns

4900 DS

910 DS

280 ns

210 DS

210 DS

2100 ns

1190 ns

280 ns

210 ns

210 DS

490 ns

KA660 Main Memory System 5-3

Table 5-1 (Cont.) KA660 Reference Timing

The above timing assumes no exception conditions are encountered during the reference. Exception
conditions will add the following amount of time if they are encountered during a reference.

Error Handling

Correctable error

Uncorrectable error

Uncorrectable error

CDAL parity error

Refresh collision

70 ns

140 ns-read

70 ns-write

70 ns-write

280 ns

5.2 Main Memory Organization
Main memory is logically and physically divided into four boards which correspond to the
four possible MS650 memory expansion modules that can be attached to a KA660-AA.
Each memory board can contain zero (no memory module present) or four (MS650-BA
present) memory banks. Each bank contains 1,048,576 (lM) aligned longwords. Each
aligned longword is divided into four data bytes and is stored with seven ECC check bits,
resulting in a memory array width of 39 bits.

5.3 Main Memory Addressing
The KA660-AA main memory controller is capable of controlling up to 16 banks of
RAM, each bank containing 4 Mbytes of storage. Each bank of main memory has a
programmable base address, determined by the state of bits <25:22> of the main memory
configuration register associated with the bank.

A 4 Mbyte bank is accessed when bit <29> of the physical address is equal to zero,
indicating a VAX memory space read/write reference, bits <28:26> of the physical address
are equal to zero, indicating a reference within the range of the main memory controller,
and the bank number of the bank matches bits <25:22> of the physical address. The
remainder of the physical address (bits <21:2» are used to determine the row and
column of the desired longword within the bank. The byte mask lines are ignored on
read operations, but are used to select the proper byte(s) within a longword during
masked longword write references.

5.4 Main Memory Behavior on Writes
On unmasked CPU write references, the main memory controller operates in "dump and
run" mode, terminating the CDAL Bus transaction after latching the data, but before
checking CDAL Bus parity, calculating the ECC check bits, and transferring the data to
main memory.

On unmasked DMA write references by the Q22-bus Bus Interface, the data is latched,
CDAL Bus parity is not checked, the CDAL bus transaction is terminated, the ECC check
bits are calculated, and the data is transferred to main memory.

On single masked CPU or DMA write references, CDAL bus parity is checked (for CPU
writes only), the referenced longword is read from main memory, the ECC code checked,
the check bits recalculated to account for the new data byte(s), the CDAL transaction is
terminated, and the longword is rewritten.

On multiple transfer masked DMA writes, each longword write is acknowledged then the
CDAL transaction is terminated.

5-4 KA660 Main Memory System

5.5 Main Memory Error Status Register (MEMCSR16)
The main memory error status register, address 2008 014016, is used to capture main
memory error data. This register is unique to CPU designs that use the CMCTL memory
controller chip.

Data Bit

<31>

<29>

<28:9>

Name

RDSERROR

RDS HIGH
ERROR
RATE

CRDERROR

PAGE
ADDRESS
OF ERROR

Description Type

When set, an uncorrectable ECC error Read/Write to clear
occurred during a memory read or masked
write reference. Cleared by writing a
one to it. Writing a zero has no effect.
Undefined if MEMCSR16<7> (CDAL BUS
ERROR) is set. Cleared on power-up and
the negation of DCOK when SCR<7> is
clear.

When set, an uncorrectable ECC error Read/Write to clear
occurred while the RDS ERROR LOG
REQUEST bit was set, indicating multiple
uncorrectable memory errors. Cleared by
writing a one to it. Writing a zero has
no effect. Undefined if MEMCSR16<7>
(CDAL BUS ERROR) is set. Cleared on
power-up and the negation of DCOK when
SCR<7> is clear.

When set, a correctable (single bit) error Read/Write to clear
occurred during a memory read or masked
write reference. Cleared by writing a
one to it. Writing a zero has no effect.
Undefined if MEMCSR16<7> (CDAL BUS
ERROR) is set. Cleared by writing one, on
power-up and the negation of DCOK when
SCR<7> is clear.

This field identifies the page (512 byte Read only
block) containing the location that caused
the memory error. In the event of multiple
memory errors, the types of errors are
prioritized and the page address of the
error with the highest priority is captured.
Errors with equal priority do not overwrite
previous contents. Writes have no effect.
Cleared on power-up and the negation of
DCOK when SCR<7> is clear.

The types of error conditions follow in
order of priori ty:

Data Bit

<6:0>

Name

DMAERROR

CDALBUS
ERROR

ERROR
SYNDROME

KA660 Main Memory System 5-5

Description

• CDAL bus parity errors during a
CPU write reference, as logged by the
CDAL BUS ERROR bit.

• Uncorrectable ECC errors during a
CPU or DMA read or masked write
reference, as logged by the RDS
ERROR LOG bit.

• Correctable ECC errors during a
CPU or DMA read or masked write
reference, as logged by CRD ERROR
bit.

When set, an error occured during a
DMA read or write reference. Cleared by
writing a one to it. Writing a zero has
no effect. Cleared on power-up and the
negation of DCOK when SCR<7> is clear.

When set, a CDAL bus parity error
occurred on a CPU write reference.
Cleared by writing a one to it. Writing
a zero has no effect. Cleared on power-up
and the negation of DCOK when SCR<7>
is clear.

This field stores the error syndrome. A
non-zero syndrome indicates a detectable
error has occured. A unique syndrome
is generated for each possible single-
bit (correctable) error. A list of the
these syndromes and their associated
single-bit errors appears on the next
page. Any non-zero syndrome that is not
contained on this list indicates a multiple
bit (uncorrectable) error has occured. This
field handles multiple errors in the same
manner as MEMCSR16<28:9>. Cleared
on power-up and the negation of DCOK
when SCR<7> is clear.

Type

ReadlWri te to clear

ReadlWrite to clear

Read only

The following is a list of the syndromes and their associated single-bit errors:

SYNDROME<6 : 0> BIT POSITION IN ERROR

0000000 no error detected

5-6 KA660 Main Memory System

Data Bits (0-31 decimal)
1011000 0 I
0011100 1 I
0011010 2 V
1011110 3
0011111 4
1011011 5
1011101 6
0011001 7
1101000 8
0101100 9
0101010 10
1101110 11
0101111 12
1101011 13
1101101 14
0101001 15
1110000 16
0110100 17
0110010 18
1110110 19
0110111 20
1110011 21
1110101 22
0110001 23
0111000 24
1111100 25
1111010 26
0111110 27
1111111 28
0111011 29
0111101 30
1111001 31

Check Bits (32-38 decimal)
0000001 32 I
0000010 33 I
0000100 34 V
0001000 35
0010000 36
0100000 37
1000000 38

0000111 Result of incorrect check
bits written on detection of
a COAL parity error.

All others Multi-bit errors

5.6 Main Memory Control and Diagnostic Status Register
(MEMCSR17)

The main memory control and diagnostic status register, address 2008 0144 16, is used to
control the operating mode of the main memory controller as well as to store diagnostic
status information. This register is unique to CPU designs that use the CMCTL memory
controller chip. Figure 5-1 shows the format of this register.

3
1

MBZ

KA660 Main Memory System 5-7

1 1 1 1 1 1
5432109 8 7 6 5 432 1 0

I I I I I I I I I
MAIN MEMORY CYCLE SELECT

ENABLE LOCK BIT I I III
CRD INTERRUPT ENABLE

FORCE REFRESH REQUEST .
ERROR DETECT DISABLE
FAST DIAGNOSTIC TEST -------'

CLEAR LOCK BIT
DIAGNOSTIC CHECK MODE ----------'

CHECK BITS

Figure 5-1 Main Memory Control and Diagnostic Status Register (MEMCSR17)

Data Bit

<31:15>

<14>

<13>

Name

Unused

ENABLE
LOCK BIT

MAIN
MEMORY
CYCLE
SELECT

Description

This field reads as zero, must be written
as zero.

Type

When cleared, the main memory locking ReadlWrite
function (reflected by the LOCK BIT
in MEMCSRI5-0<6» is disabled.
When set, the main memory locking
function (reflected by the LOCK BIT in
MEMCSRI5-0<6» is enabled. Writing
this bit has no effect on MEMCSRI5-
0<6>. This bit should always be clear,
because the KA660-AA implements the
main memory locking function in the Q22-
bus Interface chip (CQBIC). Cleared on
power-up and the negation of DCOK when
SCR<7> is clear.

When set, longword reads and the first ReadlWrite
longword in quadword reads occur in
four CPU cycles (320 ns) and the second
longword in a quadword read occurs in
two CPU cycles (160 ns). When cleared,
longword reads and the first longword in
quadword reads occur in five CPU cycles
(450 ns) and the second longword in a
quadword read occurs in three CPU cycles
(240 ns).

NOTE
With the KA660-AA this bit must be
cleared by the firmware memory
configuration routine thus using the
5/3 timing. Cleared on power-up and
the negation of DCOK when SCR<7>
is clear.

5-8 KA660 Main Memory System

Data Bit Name Description Type

<12> CRD When cleared, single-bit errors are ReacLWrite
INTERRUPT corrected by the ECC logic, but no
ENABLE interrupt is generated. When set, single-

bit errors are corrected by the ECC
logic and they cause an interrupt to be
generated at IPL 1A with a vector of 5416,
. This bit has no effect on the capturing
of error information in MEMCSR16, or
on the reporting of uncorrectable errors.
Cleared on power-up and the negation of
DCOK when SCR<7> is clear.

<11> FORCE When cleared, the refresh control logic ReacLWrite
REFRESH operates in normal mode (refresh every
REQUEST 9.1 p.s for 80 ns cycles and 1 wait state).

When set, one memory refresh operation
occurs immediately after the MEMCSR
write reference that set this bit. Setting
this bit provides a mechanism for speeding
up the testing of the refresh logic during
manufacturing test of the controller
chip. This bit is cleared by the memory
controller upon completion of the refresh
operation. Cleared on power-up and the
negation of DCOK when SCR<7> is clear.

<10> MEMORY When set, error detection and correction ReacLWrite
ERROR (ECC) is disabled, so all memory errors go
DETECT undetected. When cleared, error detection,
DISABLE correction, state capture, and reporting

(through MEMCSR16) is enabled. Cleared
on power-up and the negation of DCOK
when SCR<7> is clear.

<9> FAST This bit provides a mechanism for ReacLWrite
DIAGNOSTIC speeding up the diagnostic testing of main
TEST memory. When set, all main memory

banks are read and written in paranel.
When cleared, this bit has no effect on
memory reads or writes. Cleared on
power-up and the negation of DCOK when
SCR<7> is clear.

NOTE
Due to excess power consumption do
not use MOVe instructions in fast
diagnostic test mode.

<8> CLEAR Writing a one to this bit clears Write Only
LOCK BIT MEMCSR15-0<6> and "unlocks" main

memory. Always read as zero. This bit is
used to unlock memory that was locked
by an interlocked instruction that was
aborted, due to an error condition, before
it could unlock memory. This bit should
never be needed, because the KA660-AA
implements the main memory locking
function in the Q22-bus Interface chip
(CQBIC). Cleared on power-up and the
negation of DCOK when SCR<7> is clear.

KA660 Main Memory System 5-9

Data Bit Name Description Type

<7> DIAGNOSTIC When set, the contents of ReadlWrite
CHECK MEMCSR17 <6:0> are written into the
MODE 7 ECC check bits of the location (even if

a CDAL parity error is detected) during
a memory write reference. When cleared,
the 7 check bits calculated by the ECC
generation logic are loaded into the 7 ECC
check bits of the location during a write
reference and a memory read reference
will load the state of the 7 ECC check
bits of the location that was read into
MEMCSR17 <6:0>. Cleared on power-up
and the negation of DCOK when SCR<7>
is clear.

NOTE
DIAGNOSTIC CHECK MODE is
restricted to unmasked memory
write references. No masked
write references are allowed when
DIAGNOSTIC CHECK MODE is
enabled.

<6:0> CHECK BITS When the DIAGNOSTIC CHECK MODE ReadlWrite.
bit is set, these bits are substituted for
the check bits that are generated by the
ECC generation logic during a write
reference. When the DIAGNOSTIC
CHECK MODE bit is cleared, memory
read references load the state of the 7
ECC check bits of the location that was
read into MEMCSR16<6:0>. Cleared on
power-up and the negation of DCOK when
SCR<7> is clear.

5.7 Main Memory Error Detection and Correction
The KA660-AA main memory controller generates CDAL bus parity on CPU read
references, and checks CDAL bus parity on CPU write references.

The actions taken following the detection of a CDAL Bus parity error depend on the type
of write reference.

For unmasked CPU write references, incorrect check bits are written to main memory
(potentially masking an as-yet undetected memory error) along with the data and an
interrupt is generated at IPL lD through vector 6016, on the next cycle and MCSRl6<7>
is set. The incorrect check bits are determined by calculating the seven "correct" check
bits, and complementing the three least significant bits.

For masked CPU write references, incorrect check bits are written to main memory
(potentially masking an as-yet undetected memory error) along with the data, unless
an uncorrectable error is detected during the read portion, MEMCSRl6<7> is set, and a
machine check abort is initiated. If an uncorrectable error is detected on the read portion,
no write operation takes place. The incorrect check bits are determined by calculating
the seven "correct" check bits, and complementing the three least significant bits.

5-10 KA660 Main Memory System

The memory controller protects main memory by using a 32-bit modified hamming code
to "encode" the 32-bit data longword with seven check bits. This allows the controller to
detect and correct single-bit errors in the data field and detect single bit errors in the
check bit field and double-bit errors in the data field. The most likely causes of these
errors are failures in either the memory array or the 50-pin ribbon cable.

Upon detecting a correctable error on a read reference or the read portion of a masked
write reference, the data is corrected (if it is in the data field), before placing it on the
CDAL bus, or back in main memory, an interrupt is generated at IPL lA through vector
5416, , bit <29> of MEMCSR16 is set, bits <28:9> of MEMCSR16 are loaded with the
address of the page containing the location that caused the error, and bits <6:0> are
loaded with the error syndrome which indicates which bit was in error. If the error was
detected on a DMA reference, MEMCSR16<8> is also set.

NOTE
The corrected data is not rewritten to main memory, so the single bit error will
remain there until rewritten by software.

Upon detecting an uncorrectable error, the action depends on the type of reference being
performed. Table 5-2 lists the actions performed on uncorrectable errors.

Table 5-2 Uncorrectable Error Actions

Error Action Performed

On a demand read reference The affected row of the cache is invalidated.

On a request read reference

prefetch or

On the read portion of
masked write reference

Bit <31> of MEMCSR16 is set.

Bits <28:9> of MEMCSR16 are loaded with the address of the page
containing the location that caused the error.

Bits <6:0> are loaded with the error syndrome which indicates
that the error was uncorrectable.

A machine check abort is initiated.

If the read was a local-miss, global-hit read, or a read of the Q22-
bus bus map, MEMCSR16<8> and DSER<4> are also set, and
DEAR<12:0> are loaded with the address of the page containing
the location that caused the error.

The fill cycle is aborted, but no machine check occurs.

Bit <31> of MEMCSR16 is set.

Bits <28:9> of MEMCSR16 are loaded with the address of the page
containing the location that caused the error.

Bits <6:0> are loaded with the error syndrome which indicates
that the error was uncorrectable.

Bit <31> of MEMCSR16 is set.

Bits <28:9> ofMEMCSR16 are loaded with the address of the page
containing the location that caused the error.

Bits <6:0> are loaded with the error syndrome which indicates
that the error was uncorrectable.

A machine check abort is initiated.

KA660 Main Memory System 5-11

Table 5-2 (Cont.) Uncorrectable Error Actions

Error

On a DMA read reference

On a DMA masked write
reference

Action Performed

Bit <31> and bit <8> of MEMCSR16 are set, bits <28:9> of
MEMCSR16 are loaded with the address of the page containing
the location that caused the error.

Bits <6:0> are loaded with the error syndrome which indicates
that the error was uncorrectable, DSER<4> is set, DEAR<12:0>
are loaded with the address of the page containing the location
that caused the error.

BDAL<17:16> are asserted on the Q22-bus along with the data
to notify the receiving device (unless it was a map read by the
Q22-bus interface during translation).

An interrupt is generated at IPL 1D through. vector 6016

Bit<31> and bit <8> of MEMCSR16 are set.

Bits <28:9> of MEMCSR16 are loaded with the address of the page
containing the location that caused the error.

Bits <6:0> are loaded with the error syndrome which indicates
that the error was uncorrectable.

DSER<4> is set. DEAR<12:0> are loaded with the address of the
page containing the location that caused the error.

ICR<15> is set to notify the initiating device.

An interrupt is generated at IPL ID through vector 6016 .

6
KASSO Console Serial Line

The console serial line provides the KA660 processor with a full duplex, RS-423 EIA,
serial line interface, which is also RS-232C compatible. The only data format supported
is 8-bit data with no parity and one stop bit. The four internal processor registers (IPRs)
that control the operation of the console serial line are a superset of the VAX console
serial line registers described in

6.1 Console Registers
There are four registers associated with the console serial line unit. They are
implemented in the SSC chip and are accessed as IPRs 32-35. Refer to Table 6-1.

Table 6-1 Console Registers

IPR Number Register Name Mnemonic

Dec Hex

32 20 Console receiver control/status RXCS

33 21 Console receiver data buffer RXDB

34 22 Console transmit control/status TXCS

35 23 Console transmit data buffer TXDB

6.1.1 Console Receiver Control/Status Register - (IPR 32)

The console receiver contro1Jstatus register (RXeS), IPR 32, is used to control and report
the status of incoming data on the console serial line. The format is shown in Figure 6-1.
Table 6-2 lists the bit descriptions.

3
1 8765 0

MBZ III MBZ

RX DONE 'I RXIE

Figure 6-1 Console Receiver Control/Status Register. (IPR 3210 2016)

6-1

6-2 KA660 Console Serial Line

Table 6-2 Console Receiver Control/Status Register

Data Bit

<31:8>

<7>

Name

MBZ
RXDONE

RXIE

Unused

Description

These bits read as zero. Writes have no effect.

Receiver done. Read only. Writes have no effect.
This bit is set when an entire character has
been received and is ready to be read from the
RXDB register. This bit is automatically cleared
when the RXDB register is read. It is also
cleared on power-up and the negation of DCOK.

Receiver interrupt enable. ReadlWrite. When
set, this bit causes an interrupt to be requested
at IPL 14 with an SCB offset of F8 If RX
DONE is set. When cleared, interrupts from the
console receiver are disabled. This bit is cleared
on power-up and the negation of DCOK when
CSR<7> is clear.

These bits read as zero. Writes have no effect.

6.1.2 Console Receiver Data Buffer - (IPR 33)

The console receiver data buffer (RXDB), internal processor register 33, is used to buffer
incoming data on the serial line and capture error information. The format is shown in
Figure 6-2. Bit descriptions are listed in Table 6-3.

3
1

MBZ

ERR
OVR ERR
FRM ERR
MBZ
RCV BRK

1111111
6 5 4 3 2 1 0 8 7

RECEIVED DATA BITS

o

Figure 6-2 Console Receiver Data Buffer· (IPR 3310 2116)

Table 6-3 Console Receiver Data Buffer

Data Bit Name

<31:16> MBZ

<15> ERR

Description

These bits always read as zero. Writes have no
effect.

Error. Read only. Writes have no effect. This
bit is set if RBUF <14> or <13> is set. It is
clear if these two bits are clear. This bit cannot
generate a program interrupt. Cleared on
power-up and the negation of DC OK.

KA660 Console Serial Line 6-3

Table 6-3 (Cont.) Console Receiver Data Buffer

Data Bit Name

<14> OVRERR

<13> FRMERR

<12> MBZ

<11> RCVBRK

<10:8> MBZ

<7:0> Received Data Bits.

Description

Overrun error. Read only. Writes have no effect.
This bit is set if a previously received character
was not read before being overwritten by the
present character. Cleared by reading the
RXDB, on power-up and the negation of DCOK.

Framing Error. Read only. Writes have no
effect. This bit is set if the present character did
not have a valid stop bit. Cleared by reading
the RXDB, on power-up and the negation of
DCOK. Error conditions are updated when
the character is received and it remains
present until the character is read, at
which point, the error bits are cleared.

This bit always reads as zero. Writes have no
effect.

Received break. Read only. Writes have no
effect. This bit is set at the end of a received
character for which the serial data input
remained in the SPACE condition for 20 bit
times. Cleared by reading the RXDB, on power­
up, and the negation of DCOK.

These bits always read as zero. Writes have no
effect.

Read only. Writes have no effect. These bits
contain the last received character.

6.1.3 Console Transmitter Control/Status Register - (IPR 34)

The console transmitter control/status register (TXCS), IPR 34, is used to control and
report the status of outgoing data on the console serial line. The format is shown in
Figure 6-3. Bit descriptions are listed in Table 6-4.

3
1 876 5 321 0

MBZ

~~~~y I III 
XMITBRK--------------------------· 

Figure 6-3 Console Transmitter Control/Status Register - (IPR 3410 2216) 



6-4 KA660 Console Serial Line 

Table 6-4 Console Transmitter Control/Status Buffer 

Data Bit 

<31:8> 

<7> 

<5:3> 

<2> 

Name 

MBZ 
TXROY 

TXIE 

MBZ 
MAINT 

Unused 

XMITBRK 

Description 

These bits read as zero. Writes have no effect. 

Transmitter ready. Read only. Writes have 
no effect. This bit is cleared when TXDB is 
loaded and set when TXDB can receive another 
character. This bit is set on power-up and the 
negation of DCOK. 

Transmitter interrupt enable. Read/Write. 
When set, this bit causes an interrupt to be 
requested at IPL 14 with an SCB offset of FC if 
TX ROY is set. When cleared, interrupts from 
the Console receiver are disabled. This bit is 
cleared on power-up and the negation of DCOK. 

Read as zeros. Writes have no effect. 

Maintenance. Read/Write. This bit is used to 
facilitate a maintenance self-test. When MAINT 
is set, the external serial output is set to MARK 
and the serial output is used as the serial input. 
This bit is cleared on power-up and the negation 
of DCOK. 

This bit reads as zero. Writes have no effect. 

Transmit break. Read/Write. When this bit is 
set, the serial output is forced to the SPACE 
condition after the character in TXDB<7:0> is 
sent. While XMIT BRK is set, the transmitter 
will operate nonnally, but the output line 
will remain low. Thus, software can transmit 
dummy characters to time the break. This bit is 
cleared on power-up. 

6.1.4 Console Transmitter Data Buffer - (IPR 35) 

The console transmitter data buffer (TXDB), IPR 35, is used to buffer outgoing data on 
the serial line. The format is shown in Figure 6-4. Table 6-5 lists the bit descriptions. 

3 
1 

MBZ 

87 

Transmitted Data Bits~ 

Figure 6-4 Console Transmitter Data Buffer· (IPR 3510 2316) 

o 



Table 6-5 Console Transmitter Data Buffer 

Data Bit 

<31:8> 

<7:0> 

Name 

MBZ 
Transmitted Data Bits 

6.2 Break Response 

KA660 Console Serial Line 6-5 

Description 

Read as zero. Writes have no effect. 

Write only. These bits are used to load the 
character to be transmitted on the console serial 
line. 

The console serial line unit recognizes a BREAK condition which consists of 20 
consecutively received SPACE bits. If the console detects a valid break condition, the 
RCV BRK bit is set in the RXDB register. If the break was the result of 20 consecutively 
received SPACE bits, the FRM ERR bit is also set. If halts are enabled the KA660 
will halt and transfer program control to EPROM location 2004 000016 when the RCV 
BRK bit is set. RCV BRK is cleared by reading RXDB. Another MARK followed by 20 
consecutive SPACE bits must be received to set RCV BRK again. 

6.3 Baud Rate 
The receive and transmit baud rates are always identical and are controlled by the SSC 
configuration register bits <14:12>. 

The user selects the desired baud rate through the baud rate select signals which are 
received from an external 8-position switch mounted on the console module (H3602). 
The KA660 firmware reads this code from boot and diagnostic register bits <6:4> and 
compliments and then loads it into SSC configuration register bits <14:12>. 

Table 6-6 shows the baud rate selection, the corresponding code as read in the boot and 
diagnostic register bits <6:4>, and the INVERTED code that should be loaded into SSC 
configuration register bits <14:12>: 

Table 6-6 Baud Rate Selection 

Baud Rate BDR<6:4> SSC<14:12> 

300 111 000 

600 110 001 

1200 101 010 

2400 100 011 

4800 011 100 

9600 010 101 

19200 001 110 

38400 000 111 



6-6 KASSO Console Serial Line 

6.4 Console Interrupt Specifications 
The console serial line receiver and transmitter both generate interrupts at IPL 14. The 
receiver interrupts with a vector of F816, while the transmitter interrupts with a vector 
of FC16. 



7 
KASSO Clock and Timer Registers 

The KA660 clocks include the time-of-year clock (TOY), a subset interval clock (subset 
ICCS), as defined in and two additional programmable timers modeled after the VAX 
Standard Interval Clock. 

7.1 Time-of-Year Clock (TOY) - EPR 27 
The KA660 time-of-year clock (TOY) forms an unsigned 32-bit binary counter that is 
driven from a 100 Hz oscillator, so that the least significant bit of the clock represents a 
resolution of 10 milliseconds, with less than .0025% error. The register counts only when 
it contains a non-zero value. This register is implemented in the SSC chip. The format is 
shown in Figure 7-1. 

3 
1 

Time of Year Since Setting 

Figure 7-1 Time-of-Year Clock (TOY) - (EPR 2710 1816) 

o 

The time-of-year clock is maintained during power failure by battery backup circuitry 
which interfaces, via the external connector, to a set of batteries mounted on the CPU 
console module. The (TOY) remains valid for greater than 162 hours when using the 
NiCad battery pack (three batteries in a series) mounted on the H3602 cover panel. 

The SSC configuration register contains a battery low (BLO) bit which, if set after 
initialization, the TOY is cleared, and will remain at zero until software writes a non-zero 
value into it. 

NOTE 
After writing a non-zero value into the TOY, software should clear the BLO bit 
by writing a one to it. 

7.2 Interval Timer (ICCS) - EPR 24 
The KA660 interval timer (lCCS), IPR 24, is implemented according to The interval clock 
control/status register (lCCS), is implemented as the standard subset of the Standard 
VAX ICCS in the CPU chip; while NICR and ICR are not implemented. Figure 7-2 shows 
the format and Table 7-1 describes the bits. 

7-1 



7-2 KA660 Clock and Timer Registers 

3 
1 

MBZ 

Figure 7-2 Interval Timer (lCCS) • (EPR 2410 1816) 

Table 7-1 Interval Timer Bit Descriptions 

Data 
Bit Name Description 

MBZ Read as zero. Must be written as zero. 

765 0 

II MBZ 

<31:7> 

<6> IE Interrupt enable. Read/Write. This bit enables and disables the interval timer 
interrupts. When the bit is set, an interval timer interrupt is requested every 
10 msec with an error of less than .01%. When the bit is clear, interval timer 
interrupts are disabled. This bit is cleared on power-up. 

<5:0> MBZ Read as zeros, must be written as zeros. 

Interval timer requests are posted at IPL 16 with a vector of CO. The interval timer is 
the highest priority device at this IPL. 

7.3 Programmable Timers 
The KA660 features two programmable timers. Although they are modeled after the VAX 
standard interval clock, they are accessed as I/O space registers (rather than as IPRs) 
and a control bit has been added which stops the timer upon overflow. If so enabled, the 
timers interrupt at IPL 14 upon overflow. The interrupt vectors are programmable and 
are set to 78 and 7C by the firmware. 

Each timer is composed of four registers: 

A timer n control register 
A timer n interval register 
A timer n next interval register 
A timer n interrupt vector register 

n represents the timer number (0 or 1). 

7.3.1 Timer Control Registers (TCRO and TCR1) 

The KA660 has two timer control registers, one for controlling timer 0 (TCRO), and one 
for controlling timer 1 (TCR1). TCRO is accessible at address 2014 010016, and TCR1 is 
accessible at 2014 011016. These registers are implemented in the SSC chip. Figure 7-3 
shows the format. Table 7-2 lists the bit descriptions. 



KA660 Clock and Timer Registers 7-3 

3 3 
1 0 

I I 
L ERR 

MBZ 

Figure 7-3 Timer Control Registers (TCRO and TCR1) 

876 543 2 1 0 

I I I I I I I I I 

~~~¥z ~XFR 
SGL

""'------- IE
~-----INT

7-4 KA660 Clock and Timer Registers

Table 7-2 Timer Control Register Bit Descriptions

Date Bit

<31>

<30:8>

<7>

<4>

Name

ERR

MBZ

INT

IE

SGL

XFR

MBZ
STP

MBZ

RUN

Description

Error. ReadIWrite to clear. This bit is set whenever the timer
interval register overflows and the INT bit is already set. Thus,
the ERR bit indicates a missed overflow. Writing a one to this bit
clears it. Cleared on power-up.

Read as zero. Must be written as zero.

ReadIWrite to clear. This bit is set whenever the timer interval
register overflows. If IE is set when INT is set, an interrupt is
posted at IPL 14. Writing a one to this bit clears it. Cleared on
power-up.

ReadIWrite. When this bit is set, the timer will interrupt at IPL
14 when the INT bit is set. Cleared on power-up.

ReadIWrite. Setting this bit causes the timer interval register to
be incremented by one if the RUN bit is cleared. If the RUN bit
is set, then writes to the SGL bit are ignored. This bit is always
read as zero. Cleared on power-up.

ReadIWrite. Setting this bit causes the timer next interval register
to be copied into the timer interval register. This bit is always
read as zero. Cleared on power-up.

Read as zeros, must be written as zeros.

ReadIWrite. This bit determines whether the timer stops after an
overflow when the RUN bit is set. If the STP bit is set at overflow,
the RUN bit is cleared by the hardware at overflow and counting
stops. Cleared on power-up.

Read as zero. Must be written as zero.

ReadIWrite. When set, the timer interval register is incremented
once every microsecond. The INT bit is set when the timer
overflows. If the STP bit is set at overflow, the RUN bit is
cleared by the hardware at overflow and counting stops. When
the RUN bit is clear, the timer interval register is not incremented
automatically. Cleared on power-up.

7.3.2 Timer Interval Registers (TIRO and TIR1)

The KA660 has two timer interval registers, one for timer zero (TIRO) and one for timer
one (TIR1). TIRO is accessible at address 2014 010416, and TIR1 is accessible at 2014
011416'
The timer interval register is a read only register containing the interval count. When
the RUN bit is 0, writing a 1 increments the register. When the RUN bit is 1, the
register is incremented once every microsecond. When the counter overflows, the INT
bit is set, and an interrupt is posted at IPL14 if the IE bit is set. Then, if the RUN and
STP bits are both set, the RUN bit is cleared and counting stops. Otherwise, the counter
is reloaded. The maximum delay that can be specified is approximately 1.2 hours. This
register is cleared on power-up. Figure 7-4 shows the format.

KA660 Clock and limer Registers 7-5

3
1

Timer Interval Register

Figure 7-4 Timer Interval Registers (TIRO and TIR1)

7.3.3 Timer Next Interval Registers (TNIRO and TNIR1)

o

The KA660 has two timer next interval registers, one for timer zero (TNIRO), and one for
timer one (TNIR1). TNIRO is accessible at address 2014 010816, and TNIR1 is accessible
at 2014 011816' These registers are implemented in the SSC chip. The format is shown
in Figure 7-5.

The read/write register contains the value which is written into the timer interval
register after overflow, or in response to a one written to the XFR bit. This register is
cleared on power-up.

3
1

Timer Next Interval Register

Figure 7-5 Timer Next Interval Registers (TNIRO and TNIR1)

o

7.3.4 Timer Interrupt Vector Registers (TIVRO and TIVR1)

The KA660 has two timer interrupt vector registers, one for timer zero (TIVRO), and
one for timer one (TIVR1). TIVRO is accessible at address 2014 010C16, and TIVR1 is
accessible at 2014 011C16. These registers are implemented in the SSC chip and are
set to 7816 and 7C16 respectively by the resident firmware. The format is shown in
Figure 7-6.

The read/write register contains the timer's interrupt vector. Bits <31:10> and <1:0>
are read as zero and must be written as zero. When TCRn<6> (IE) and TCRn<7>
(INT) transition to one, an interrupt is posted at IPL 14. When a timer's interrupt is
acknowledged, the content of the interrupt vector register is passed to the CPU, and the
INT bit is cleared. Interrupt requests can also be cleared by clearing either the IE or INT
bit. This register is cleared on power-up.

7-6 KA660 Clock and Timer Registers

3
1

MBZ

10 9 2 1 0

Interrupt Vector I MBZ I
ESB90P0033

Figure 7-6 Timer Interrupt Vector Registers (TIVRO and TIVR1)

NOTE
Both timers interrupt at the same IPL (IPL 14) as the console serial line unit.
When multiple interrupts are pending, the console serial line has priority over
the timers, and timer 0 has priority over timer 1.

8
KASSO Boot and Diagnostic Facility

The KA660 Boot and Diagnostic Facility features two registers, 256 Kbytes of erasable
programmable ROM (EPROM) and 1 Kbyte of battery backed up RAM. The EPROM and
battery backed up RAM may be accessed with longword, word, or byte references.

The 256 Kbytes of EPROM contain the resident firmware. If this EPROM is
reprogrammed for special applications, the new code must initialize and configure
the board, pr.ovide HALT and console emulation, as well as provide boot diagnostic
functionality.

8.1 Boot and Diagnostic Register (BDR)
The boot and diagnostic register (BDR) is a byte-wide register repeated in the VAX. I/O
page at physical addresses 2008 4004 - 2008 407C16. It is implemented uniquely on
the KA660. It can be accessed by KA660 software, but not by external Q22-bus devices.
The BDR allows the boot and diagnostic EPROM programs to read various KA660
configuration bits.

3 222 211111 1 1 1
1 432 09876 5 3 2 1 0

NI ROM II I I I I READ AS ONES

I I
I~ RBE

DSSI 10<2:0>
BDG CD<1 :0>
CPU CD<1 :0>
BRS CD<2:0>
HLT ENB

Figure ~1 Boot and Diagnostic Register

Data Bit Name

<31:24> NIROM

Description

NI Station Address. This byte delivers
the NI Station address in the next 32
longwords.

Type

Read only

8-1

8-2 KA660 Boot and Diagnostic Facility

Data Bit Name Description Type

<23> HLTENB Halt enable. This bit reflects the state Read only. Writes
of pin 35 (ENBHALT L) of the 40-pin have no effect.
connector. The assertion of this signal
enables the halting of the CPU upon
detection of a console BREAK condition.
On a power-up, the KA660 resident
finn ware reads the HLT ENB bit to decide
whether to enter the console emulation
program (HLT ENB set) or to boot the
operating system (HLT ENB clear). On
the execution of of a HALT instruction
while in kernal mode, the KA660 resident
finn ware reads the HLT ENB bit to decide
whether to enter the console emulation
program (HLT ENB set) or to restart the
operating system (HLT ENB clear).

<22:20> BRSCD Baud rate select. Writes have no effect. Read only
These three bits originate from pins
<20:28> (BRS<2:0» of the 40-pin
connector. They reflect the setting of
the the baud rate select switch on the
CPU cover panel.

BDR<6:4> Baud Rate

000 300

001 600

010 1200

011 2400

100 4800

101 9600

110 19200

111 38400

<19:18> CPU CD CPU code. Writes have no effect. These Read Only
two bits always read as zero because
the KA660 cannot be configured as an
auxiliary CPU.

CPU CD
<1:0> Configuration

00 KA660-AA Arbiter

KA660 Boot and Diagnostic Facility 8-3

Data Bit Name Description Type

<17:16> BOO CD Boot and diagnostic code. This 2-bit code Read only. Writes
reflects the status of configuration and have no effect.
display connector pins <37:36> (BOO
CD<1:0». The KA660 EPROM programs
use BOO CD <1:0> to determine the
power up mode as follows:

BDR<1:0> Power-up Mode

00 Run

01 Language Inquiry

10 '.lest

11 Manufacturing

<15:13> BOO DSSIID DSSI ID. Writes have no effect. This 3-bit Read only
code reflects the setting of the DSSI ID
jumpers. This code must be decoded and
written to the SHAC PPR register.

<12> RBE Remote boot enable.

<11:0> Unused Read as one

8.2 Diagnostic LED Register (DLEDR)
The diagnostic LED register (DLEDR), address 2014 002016, is implemented in the SSC
chip and contains four read/write bits that control the external LED display. A zero in a
bit lights the corresponding LED; all four bits are cleared on power-up and the negation
of DCOK when SCR<7> is clear to provide a power-up lamp test. Figure 8-2 shows the
register format. Table 8-3 lists the bit descriptions.

3
1

MBZ

4 3 o

I DSPL I

Figure 8-2 Diagnostic LED Register (DLEDR)

Table 8-3 Diagnostic LED Register Bit Descriptions

Data
Bit

<31:4>

<3:0>

Name

MBZ

DSPL

Description

Read as zeros, must be written as zeros.

Display. Read/Write. These four bits update an external LED display.
Writing a zero to a bit lights the corresponding LED. Writing a one to a
bit turns the LED off. The display bits are cleared (all LEDs are lit) on
power-up and the negation of DCOK.

8-4 KA660 Boot and Diagnostic Facility

8.3 EPROM Memory
The KA660 has 256 Kbyte of EPROM memory for storing code for board initialization,
VAX standard console emulation, board self tests, and boot code. The EPROM memory
may be accessed with byte, word and longword references. EPROM read accesses take
250 nanoseconds. The EPROM is organized as a I28K x 8-bit array. CDAL bus parity is
neither checked nor generated on EPROM references.

NOTE
The EPROM size must be set in the sse configuration register before
attempting to reference outside the first 8 Kbyte block of the Local EPROM
Space. (2004 0000 - 2004 IFFF 16

8.3.1 EPROM Address Space

The entire 256 Kbyte boot and diagnostic EPROM can only be read in the 256 Kbyte halt
protect EPROM space (2004 0000 - 2007 FFFF16).

Any I-stream read from the EPROM space places the KA660 in halt mode. The Q22-bus
SRUN signal is deasserted causing the front panel RUN light to extinguish and the CPU
is protected from further halts.

Writes and D-stream reads to any address space have no effect on run modelhalt mode
status. The KA660 logic that controls halt mode / run mode cannot detect I-stream read
references that hit the cache; therefore halt mode / run mode is unaffected by these cache
hits.

8.3.2 KA660 Resident Firmware Operation

The KA660 CPU module's 256 Kbytes of EPROM contain the resident firmware, which
can be entered by transferring program control to location 2004 000016.

lists the various halt conditions which cause the KA660 to transfer program control to
location 2004 000016.

When running, the resident firmware provides the services expected of a VAX-II console
system. In particular, the following services are available:

• Automatic restart or bootstrap following processor halts or initial power-up.

• An interactive command language allowing the user to examine and alter the state of
the processor.

• Diagnostic tests executed on power-up that check out the CPU, the memory system,
and the Q22-bus map.

• Support of video or hardcopy terminals as the console terminal.

Refer to the KA660 console program specification for a complete description of these
features.

KA660 Boot and Diagnostic Facility 8-5

8.3.2.1 Power-Up Modes
The boot and diagnostic EPROM programs use boot and diagnostic code <1:0> to
determine the power-up modes shown in Table 8-4.)

Table 8-4 Power-Up Modes

Code Power-up Mode

00 Run (factory setting). If the console terminal supports the Multi-National character
set (MeS), the user will be prompted for a language if the time-of-year clock battery
backup has failed, or if the sse RAM is corrupted or uninitialized (1st power-up). Full
startup diagnostics are run.

01 Language inquiry. If the console terminal supports MeS, the user is prompted for
language on every power up and restart. Full startup diagnostics are run.

10 Test. UVROM programs run wrap-around serial line unit (SLU) tests.

11 Manufacturing. To provide for rapid startup during certain manufacturing test
procedures, the EPROM programs omit the power-up memory diagnostics and set
up the memory bit map on the assumption that all available memory is functional.

8.4 Battery Backed-Up RAM
The KA660 contains 1 Kbyte of battery backed-up static RAM found in the SSC,for use
as a console "scratchpad." The power for the RAM is provided on pins 38 (VBAT H)
and 20, 18, 16-13, 10-8, 6-3 (GND) of the 40-pin connector. This RAM supports byte,
word, and longword references. Read operations take 700 nanoseconds to complete while
write operations require 600 nanoseconds. The RAM is organized as a 256 X 32-bit (one
longword) array. The array appears in a 1 Kbyte block of the VAX 110 page at addresses
2014 0400- 2014 07FF16. This array is not protected by parity, and CDAL bus parity is
neither checked nor generated on reads or writes to this RAM.

8.5 KA660 Initialization
The VAX Architecture defines three kinds of hardware initialization:

• Power-up initialization

• 110 bus initialization

• Processor initialization

8.5.1 Power-Up Initialization

Power-up initialization is the result of the restoration of power and includes a hardware
reset, a processor initialization an 110 bus initialization, as well as the initialization of
several registers defined in

Hardware Reset

A KA660 hardware reset occurs on power-up or the negation of DCOK A hardware reset
causes the hardware halt procedure (see Section 3.9.6) to be initiated with a halt code of
03. It also initializes some IPR's and most I/O Page registers to a known state. Those
IPR's affected by a hardware reset are noted in Section 3.4. The effect a hardware reset
has on I/O space registers is documented in the description of the register.

8-6 KA660 Boot and Diagnostic Facility

8.5.2 1/0 Bus Initialization

An 110 bus initialization occurs on power-up, the negation of DCOK, or as the result of a
MTPR to IPR 55 (I0RESET). If the KA660 is an arbiter, an 110 bus initialization clears
the IPCR and DSER, and causes the Q22-bus interface to acquire both the CDAL bus
and Q22-bus, then assert the Q22-bus BINIT signal.

1/0 Bus Reset Register (IPR 55)

The 110 bus reset register (I0RESET), IPR 5510 is implemented in the SSC chip. If the
KA660 is configured as an arbiter, an MTPR of any value to IORESET causes an 110 bus
initialization.

8.5.3 Processor Initialization

A processor initialization occurs on power-up, the negation of DCOK, and after a halt
caused by an error condition.

In addition to initializing those registers defined in the KA660 firmware must also
configure main memory, the local 110 page, and the Q22~bus map during a processor
initialization ..

8.5.3.1 Configuring the Local 1/0 Page
The following registers control the configuration of the local 110 page. They are unique to
CPU designs that use the SSC system support chip and they must be configured by the
firmware during a processor initialization:

• SSC base address register

• BDR address decode match register

• BDR address decode mask register

• SSC configuration register

• CDAL bus timeout register

8.5.4 SSC Base Address Register (SSCBR)
The SSC base address register, address 2014000016, controls the base addresses of a 2
Kbyte block of the local 110 space which includes the the following:

• Battery backed-up RAM

• The registers for the programmable timers

• The BDR address decode match and mask registers

• The diagnostic LED register

• The CDAL bus timeout register

• A set of diagnostic registers that allow several EPRs to be accessed via 110 page
addresses

This read/write register is set to 2014 000016 on power-up and the negation of DCOK
when SCR <7> is clear. Bits SSCBR<31:30,10:0> are unused. They read as zero and
must be written as zero. SSCBR<29> is read as one and must be written as one. This
register should also be set to 2014 000016 by firmware during processor initialization.
The SSCBR has the format shown in Figure 8-3.

KA660 Boot and Diagnostic Facility 8-7

332 2
109 8

BASE ADDRESS BITS <28:11 >

Figure 8-3 SSC Base Address Register (SSCBR)

1 1
1 0

8.5.5 BDR Address Decode Match Register (BDMTR)

o

MBZ

ESB90P0036

The local I/O device address decode match register, address 2014 013016, controls the
base address of the boot and diagnostic register. This read/write register is cleared on
power-up and the negation of DCOK BDMTR<31:30,1:0> are unused. They read as zero
and must be written as zerio. This register should be set to 2008 400016 by firmware
during processor initialization. The BDMTR has the format shown in Figure 8-4.

332
109

IMBZI BASE ADDRESS MATCH BITS<29:2>

Figure 8-4 BDR Address Decode Match Register (BDMTR)

8.5.6 BDR Address Decode Mask Register (BDMKR)

210

ESB90P0037

The BDR address decode mask register, address 2014 013416, controls the range of
addresses to which the BDR responds to. (An example is the number of copies of the
BDR that appear in the physical address space.) This read/write register is cleared on
power-up and the negation of DCOK Bits BDMKR<31:30,1:0> are unused. They read
as zero and must be written as zero. This register should should be set to 0000 007F 16
(32 copies of the BDR) by firmware during processor initialization . The BDMKR has the
format shown in Figure 8-5.

332
109

BASE ADDRESS MASK BITS<29:2>

Figure 8-5 BDR Address Decode Mask Register (BDMKR)

210

ESB90P0038

8-8 KA660 Boot and Diagnostic Facility

NOTE
The KA660 uses only one of the sse's address strobes. The other strobe's control
registers located at 2014 013016 and 2014 013416 are reserved and should not be
accessed as they could cause unpredictable behavior.

8.S.7 SSC Configuration Register (SSCCR)

The SSC configuration register, address 2014 001016, controls the set-up parameters for
the console serial line, programmable timers, EPROM, TOY Clock and BDR. The format
is shown in Figure 8-6. Table 8-5 contains a list of the bit descriptions.

3 3
1 0

B
L
0

MBZ

2222222
8765432

211
098

1 1 1
654

I M IPL R EPROM M HALT C CT
V B LVL S SIZE B PROT T BAUD
0 Z SEL P SEL Z SPACE P SEL

1
2

MBZ

7 6 5 4 3 2 1 0

BoR
EN MBZ

ESB90P0039

Figure 8-6 SSC Configuration Register (SSCCR)

Table 8-5 SSC Configuration Register Bit Descriptions

Data Bit

<31>

<30:28>

<27>

<26>

<25:24>

<23>

Name

BLO

MBZ

IVD

RSP

Description

Battery low. Read/Write. If the battery voltage goes below threshold
while the module is powered down, this bit is set on power-up, after
the assertion of DCOK after the assertion of POK. Once set, this bit
can only be cleared by software writing it as one. If this bit is set, then
the TOY clock is cleared by power-up and by the negation of DCOK.

Read as zero. must be written as zero.

Interrupt vector disable. ReadIWrite. When set, the console serial line
and programmable timers will not respond to interrupt acknowledge
cycles. Cleared on power-up, by the negation of DCOK, and by a
processor initialization.

Read as zero. Must be written as zero

IPL Level select. ReadlWrite. These bits are used to specify the
IPL ievel of interrupt acknowledge cycle that the console serial
line and programmable timers respond to. These bits must be
cleared (programmed to 00 (binary» for the console serial line and
programmable timers to respond to interrupt acknowledge cycles that
they generated (lPL 14). These bits are cleared on power-up, by the
negation of DCOK and by a processor initialization.

ROM Speed. Read/Write. This bit is used to select the EPROM access
time. This bit must be set for the KA660 EPROMs to run at maximum
speed. This bit is cleared on power-up and by the negation of DCOK.
It must be set to ONE by a processor initialization.

KA660 Boot and Diagnostic Facility 8-9

Table 8-5 (Cont.) SSC Configuration Register Bit Descriptions

Data Bit Name Description

<22:20> ROM - EPROM Address space size select. Read/Write. These bits control the
SIZE - size of the range of addresses to which the EPROM responds. These
SEL bits must be set to 101 (binary) because the KA660 contains 256KB

of EPROM, yielding an address range of 256 Kbyte (2004 0000 - 2007
FFFF16). These bits are cleared on power-up and by the negation
of DCOK, yielding an address range of 8 Kbyte (2004 0000 - 2004
1FFF16). These bits must be set to the proper value by a processor
ini tialization.

<18:16> HALT EPROM Halt protect address space size select. ReadIWrite. These bits
PROT control the size of the halt mode address range. These bits must be
SPACE set to 101 (binary) because the KA660 contains 256 Kbyte of EPROM,

yielding a halt mode address range of 256 Kbyte (2004 0000 - 2007
FFFF16). These bits are cleared on power-up and by the negation
of DCOK yielding a halt mode address range of 8 Kbyte (2004 0000
- 2004 1FFF16). These bits must be set to the proper value by a
processor initialization. Note, any instruction fetch from the EPROM
puts the KA660 in HALT protect mode.

<15> CTP Control P enable. ReadIWrite. When this bit is set, a CTRUP typed at
the console causes the CPU to be halted, if halts are enabled (BDR<7>
set). When this bit is cleared, a BREAK typed at the console causes
the CPU to be halted, if halts are enabled (BDR<7> set). This bit is
cleared on power-up and by the negation of DCOK.

<14:12> CT Console terminal baud rate select. ReadIWrite. These bits are used
BAUD to select the baud rate of the console terminal serial line. They are
SELECT cleared on power-up and by the negation of DCOK. They should be

loaded from compliment of BDR<6:4> by the processor initialization
code. The bit encodings correspond to selected baud rates as shown in
the following table.

SSCCR<14:12> Baud Rate

000 300

001 600

010 1200

011 2400

100 4800

101 9600

110 19200

111 38400

<11:7> MBZ Read as zero. Must be written as zero.

<6:4> BDREN' ReadIWrite. These bits are used to enable the boot and diagnostic
register. They are cleared on power-up and by the negation of DCOK.
These bits must be set to 111 (binary) by a processor initialization to
enable the BDR.

<3:0> MBZ Read as zero. Must be written as zero.

8-10 KA660 Boot and Diagnostic Facility

NOTE
The sse baud clock runs about 1.7% fast, which is within the SRM mandated
accuracy. This is due to the accuracy of the crystal oscillator.

8.6 COAL Bus Timeout Control Register (CBTCR)
The CDAL bus timeout register, address 2014 0020 16, controls the amount of time
allowed to elapse before a CDAL bus cycle is aborted. The effect of this timer is blocked
by the KA660 logic on all Q22-bus references, because the Q22-bus interface has its own
timers for Q22-bus references. This timer prevents unanswered CDAL bus cycles (other
than those that go to the Q22-bus interface) from hanging the system any longer than
the timeout interval. Even though the effect of the timer is blocked on all Q22-bus
references, bits<31:30> are still set on Q22-bus references that take longer than
the programmmed value (4us), so these bits are not useful as error indicators.
Figure 8-7 shows the format. Table 8-6 lists the bit descriptions.

3 3
1 0

I I I MBZ

RWT
BTO

2 2
4 3

BUS TIMEOUT INTERVAL

o

Figure 8-7 CP Bus Timeout Control Register (CBTCR)

Table 8-6 CP Bus Timeout Control Register Bit Descriptions

Data Bit

<31>

<29:22>

<23:0>

Name

BTO

RWT

MBZ
BUS
TIMEOUT
INTERVAL

Description

CP Bus timeout. Read/Write to clear. This bit is set when the BUS
TIMEOUT INTERVAL set in bits <23:0> has expired during any
CP bus cycle. This bit is cleared by writing a one, on power-up,
and the negation of DCOK.

CP Bus read/write timeout. Read/Write to clear. This bit is set
when the BUS TIMEOUT INTERVAL set in bits <23:0> has
expired during a CPU or DMA read or write cycle on the CP bus.
This bit is cleared by writing a one, on power-up, and the negation
of DCOK.

Read as zero. Must be written as zero.

Read/Write. These bits are used to program the desired timeout
period. The available range of 1 to FFFFFF16 corresponds to a
selectable timeout range of IJlS to 16.77 seconds in IJlS increments.
Writing a zero to this field disables the bus timeout function.
The BTO bit is used to signify that a bus timeout has occurred.
This field is cleared on power-up and the negation of DCOK.
This register should be loaded with 0000 400016 on a processor
initialization for a timeout value of 15 milliseconds.

9
KASSO Q22-bus Interface

The KA660 includes a Q22-bus interface implemented via a single VLSI chip called the
CQBIC. It contains a CDAL bus to Q22-bus interface that supports the following:

• A programmable mapping function (scatter-gather map) for translating 22-bit, Q22-
bus addresses into 29-bit COAL addresses that allows any page in the Q22-bus
memory space to be mapped to any page in main memory.

• A direct mapping function for translating 29-bit COAL addresses in the local Q22-bus
address space and local Q22-bus 110 page into 22-bit, Q22-bus addresses.

• Masked and unmasked longword reads and writes from the CPU to the Q22-bus
memory and 110 space and the Q22-bus interface registers. Longword reads and
writes of the local Q22-bus memory space are buffered and translated into two-word,
block mode transfers on the Q22-bus. Longword reads and writes of the local Q22-bus
I/O space are buffered and translated into two, single-word transfers on the Q22-bus.

• Up to sixteen-word, block mode writes from the Q22-bus to main memory. These
words are buffered then transferred to main memory using two asynchronous DMA
octaword transfers. For block mode writes of less than sixteen words, the words are
buffered and transferred to main memory using the most efficient combination of
octaword, quadword, and longword asynchronous OMA transfers. The maximum
write bandwidth for block mode references is 3.3 Mbytes per sec. Block mode
reads of main memory from the Q22-bus cause the Q22-bus interface to perform
an asynchronous DMA quad word read of main memory and buffer all four words,
so that on block mode reads, the next three words of the block mode read can be
delivered without any additional COAL cycles. The maximum read bandwidth for
Q22-bus block mode references is 2.4 Mbytes per sec. Q22-bus burst mode OMA
transfers result in single-word reads and writes of main memory.

• Transfers from the CPU to the local Q22-bus memory space that result in the Q22-
bus map translating the address back into main memory (local-miss, global-hit
transactions).

The Q22-bus interface contains several registers for Q22-bus control and configuration,
interprocessor communication, and error reporting.

The interface also contains Q22-bus interrupt arbitration logic that recognizes Q22-bus
interrupt requests BR7-BR4 and translates them into CPU interrupts at levels 17-14.

The Q22-bus interface detects Q22-bus "NO SACK" timeouts, Q22-bus interrupt
acknowledge timeouts, Q22-bus non-existent memory timeouts, main memory errors
on OMA accesses from the Q22-bus and Q22-bus, device parity errors.

9-1

9-2 KA660 Q22-bus Interface

9.1 Q22-bus to Main Memory Address Translation
On DMA references to main memory, the 22-bit, Q22-bus address must be translated
into a 29-bit main memory address (Figure 9-1.) This translation process is performed
by the Q22-bus interface by using the Q22-bus map. This map contains 8192 mapping
registers, (one for each page in the Q22-bus memory space), each of which can map a
page (512 bytes) of the Q22-bus memory address space into any of the 1024K pages in
main memory. Since local 110 space addresses cannot be mapped to Q22-bus pages, the
local 110 page is unaccessible to devices on the Q22-bus. Figure 9-1 shows how Q22-bus
addresses are translated into main memory addresses.

L..+o

vi
3
1

I
I

2
1

CACHE TAGS

Q22-bus Address

I

~ I
--- ---

V ~MATCH

-
I

MAPPING CACHE

I
I

Mapping Register

1
9

2
8

9 8

0

0

0

9 8

Physical Address of Main Memory

Figure 9-1 Q22-bus Address Translation

o

0

At power up time, the Q22-bus map registers, including the valid bits, are undefined.
External access to main memory is disabled so long as the interprocessor communication
register LM EAE bit is cleared. The Q22-bus interface monitors each Q22-bus cycle and
responds if the following three conditions are met:

KA660 Q22-bus Interface 9-3

• The interprocessor communication register LM EAE bit is set.

• The valid bit of the selected mapping register is set.

• During read operations, the mapping register must map into existent main memory,
or a Q22-bus timeout occurs. (During write operations, the Q22-bus interface returns
Q22-bus BRPLY before checking for existent local memory. The response depends
only on thhe two previous conditions.

NOTE
In the case of local-miss, global-hit, the state of the LM EAE bit is ignored.

If the map cache does not contain the needed Q22-bus map register, then the Q22-bus
interface will perform an asynchronous DMA read of the Q22-bus map register before
proceeding with the Q22-bus DMA transfer.

9.1.1 Q22-bus Map Registers (QMRs)

The Q22-bus map contains 8192 registers that control the mapping of Q22-bus addresses
into main memory. Each register maps a page of the Q22-bus memory space into a page
of main memory. These registers are implemented in a 32 Kbyte block of main memory,
but are accessed through the CQBIC chip via a block of addresses in the 1/0 Page.

The local 110 space address of each register was chosen so that register address bits
<14:2> are identical to Q22-bus address bits <21:9> of the Q22-bus page which the
register maps. Table 9-1 lists the register addresses.

Table 9-1 Q22-bus Map Register Addresses

Register Address

20088000

20088004

20088008

2008800C

20088010

20088014

20088018

2008801C

2008 FFFO

2008 FFF4

2008 FFF8

2008 FFFC

Q22-bus Addresses
Mapped (Hex)

00 0000 - 0001FF

00 0200 - 00 03FF

00 0400 - 00 05FF

00 0600 - 00 07FF

00 0800 - 00 09FF

00 OAOO - 00 OBFF

00 OCOO - 00 ODFF

00 OEOO - 00 OFFF

3F F800 - 3F F9FF

3F FAOO - 3F FBFF

3F FCOO - 3F FDFF

3F FAOO - 3F FFFF

Q22-bus Addresses
Mapped (Octal)

00 000 000 - 00 000 777

00 001 000 - 00 001 777

00 002 000 - 00 002 777

00 003 000 - 00 003 777

00 004 000 - 00 004 777

00 005 000 - 00 005 777

00 006 000 - 00 006 777

00 007 000 - 00 007 777

17774000 - 17774777

17775000 - 17 775777

17776000 - 17 776 777

17 776 000 - 17 777 777

9-4 KA660 Q22-bus Interface

The Q22-bus map registers (QMR) have the format shown in Figure 9-2.

3 3
1 0

Ivl MBZ

2 1
o 9

Figure 9-2 Q22-bus Map Register Format

o

A28 - A9

Table 9-2 describes the bits in the Q22-bus map register.

Table 9-2 Q22-bus Map Register Bit Description

Data Bit Name

<31> v

<30:20> Unused

<19:0> A28-A9

Description

Valid. ReadIWrite. When a Q22-bus map
register is selected by bits <21:9> of the Q22-
bus address, the valid bit determines whether
mapping is enabled for that Q22-bus page. If
the valid bit is set, the mapping is enabled, and
Q22-bus addresses within the page controlled by
the register are mapped into the main memory
page determined by bits <28:9>. If the valid
bit is clear, the mapping register is disabled,
and the Q22-bus interface does not respond
to addresses within that page. This bit is
UNDEFINED on power-up and the negation of
DC OK.

These bits always read as zero and must be
wri tten as zero.

Address Bits <28:9> ReadIWrite. When a Q22-
bus map register is selected by a Q22-bus
address, and if that register's Valid bit is set,
then these 20 bits are used as main memory
address bits. Q22-bus address bits <8:0> are
used as main memory address bits <8:0>. These
bits are UNDEFINED on power-up and the
negation of DCOK.

9.1.2 Accessing the Q22-bus Map Registers

Although the CPU accesses the Q22-bus map registers with aligned longword references
to the local 110 page (addresses 2008 8000 - 2008 FFFC 16), the map actually resides in
a 32 KByte block of main memory. The starting address of this block is controlled by
the contents of the Q22-bus map base register. The Q22-bus interface also contains a
16-entry, fully associative, Q22-bus map cache to reduce the number of main memory
accesses required for address translation.

NOTE
The system software must protect the pages of memory that contain the Q22-bus
map from direct accesses that will corrupt the map or cause the entries in the
Q22-bus map cache to become stale. Either of these conditions will result in the
incorrect operation of the mapping function.

KA660 Q22-bus Interface 9-5

When the CPU accesses the Q22-bus map through the local 110 page addresses, the
Q22-bus interface reads or writes the map in main memory. The Q22-bus interface does
not have to gain Q22-bus mastership when accessing the Q22-bus map. Because these
addresses are in the local 110 space, they are not accessible from the Q22-bus.

On a Q22-bus map read by the CPU, the Q22-bus interface decodes the local 110 space
address (2008 8000 - 2008 FFFC16). If the register is in the Q22-bus map cache, the Q22-
bus interface will internally resolve any conflicts between CPU and Q22-bus transactions
(if both are attempting to access the Q22-bus map cache entries at the same time), then
return the data. If the map register is not in the map cache, the Q22-bus interface will
force the CPU to retry, acquire the CDAL bus and perform an asynchronous DMA read of
the map register. On completion of the read, the CPU is provided with the data when its
read operation is retried. A map read by the CPU does not cause the register that was
read to be stored in the map cache.

On a Q22-bus map write by the CPU, the Q22-bus interface latches the data, then on
the completion of the CPU write, acquires the CDAL bus and performs an asynchronous
DMA write to the map register. If the map register is in the Q22-bus map cache, then
the CAM Valid bit for that entry will be cleared to prevent the entry from becoming stale.
A Q22-bus map write by the CPU does not update any cached copies of the Q22-bus map
register. .

9.1.3 The Q22-bus Map Cache

To speed up the process of translating Q22-bus address to main memory addresses, the
Q22-bus interface utilizes a fully associative, sixteen entry, Q22-bus map cache which is
implemented in the CQBIC chip.

If a DMA transfer ends on a page boundary, the Q22-bus interface will prefetch the
mapping register required to translate the next page and load it into the cache before
starting a new DMA transfer. This allows Q22-bus block mode DMA transfers that cross
page boundaries to proceed without delay. The replacement algorithm for updating the
Q22-bus map cache is FIFO.

The cached copy of the Q22-bus map register is used for the address translation process.
If the required map entry for a Q22-bus address (as determined by bits <21:9> of the
Q22-bus address), is not in the map cache, then the Q22-bus interface uses the contents
of the map base register to access main memory and retrieve the required entry. Mer
obtaining the entry from main memory, the valid bit is checked. If it is set, the entry
is stored in the cache and the Q22-bus cycle continues. Figure 9-3 shows the format.
Table 9-3 contains a description of the Q22-bus map cache entry bits.

3 3
3 2

levi Q22-bus ADR <21 :9>

2 1
o 9

Figure 9-3 Q22·bus Map cache Entry Format

o

A28 - A9

9-6 KA660 Q22-bus Interface

Table 9-3 Q22-bus Map cache Entry Bit Description

Data Bit

<33>

<32:20>

<19:0>

Name

CAM Valid

QBUSADR

Address bits
A28-A9

Description

When a mapping register is selected by a Q22-bus address, the
CAMValid bit determines whether the cached copy of the mapping
register for that address is valid. If the CAMValid bit is set, the
mapping register is enabled, and addresses within that page can
be mapped. If the CAMValid bit is clear, the Q22-bus interface
must read the map in local memory to determine if the mapping
register is enabled. This bit is cleared on power-up, the negation
of DCOK, by setting the QMCIA (Q22-bus map cache invalidate
all) bit in the interprocessor communication register, on writes to
IPR 55 (IORESET), by a write to the Q22-bus map base register,
or by writing to the QMR that is being cached.

These bits contain the Q22-bus address bits <21:9> of the page
that this entry maps. This is the content addressable field of the
16 entry cache for determining if the map register for a particular
Q22-bus address is in the map cache. These bits are undefined on
power-up.

When a mapping register is selected by a Q22-bus address, and
if that register's CAMValid bit is set, then these 20 bits are used
as main memory address bits 28 through 9. Q22-bus address bits
8 through 0 are used as local memory address bits 8 through O.
These bits are undefined on power-up.

9.2 COAL to Q22-bus Address Translation
CDAL bus addresses within the CDAL Translation local Q22-bus 110 space, addresses
2000 0000 - 2000 IFFF16, are translated into Q22-bus 110 space addresses by using bits
<12:0> of the CDAL bus address as bits <12:0> of the Q22-bus address and asserting
BBS7. Q22-bus address bits <21:13> are driven as zeros.

CDAL bus addresses within the Local Q22-bus Memory Space, addresses 3000 0000 -
303F FFFF 16, are translated into Q22-bus memory space addresses by using bits <21:0>
of the CDAL bus address as bits <21:0> of the Q22-bus address.

9.3 Interprocessor Communications Facility
The KA660 can only be configured as a Q22-bus arbiter.

The KA660 interprocessor communication facility allows other processors on the system
to request program interrupts from the KA660 without using the Q22-bus interrupt
request lines. It also controls external access to local memory (via the Q22-bus map).

9.3.1 Interprocessor Communication Register (IPCR)

The interprocessor communication register (IPCR) is is a 16-bit register which resides
in the Q22-bus 110 page address space and can be accessed by any device which can
become Q22-bus master (including the KA660 itself). The IPCR is implemented in the
CQBIC chip and is byte accessible, meaning that a write byte instruction can write to
either the low or high byte without affecting the other byte. The 110 page address of the
IPCR is constant with the KA660 because it only supports arbiter mode and not auxiliary
mode. The hex 32-bit address is 2000 IF40 and the octal 22-bit address is 17 777 500.
Figure 9-4 shows the format. Table 9-4 describes the bits.

KA660 Q22-bus Interface 9-7

1 1 1 1 1
5 4 3 2 0 9 8 7 6 5 4 3 2 0

III MBZ II~III MBZ II
DMA OME ~ I

I
OMCIA
AUX HLT

DBIIE

LM EAE
DBIRO

Figure 9-4 Interprocessor Communication Register (I peR)

Table 9-4 Interprocessor Communication Register Bit Description

Data Bit

<15>

<14>

<13:09>

<8>

Name

DMAQME

QMCIA

Unused

AUXHLT

Unused

DBI IE

Description

DMA Q22-bus address space memory error. ReadlWrite to clear.
This bit indicates that an error occurred when a Q22-bus device
was attempting to read main memory. It is set if DMA system
error register bit DSER<4> (MAIN MEMORY ERROR) is set,
or the CDAL timer expires. The MAIN MEMORY ERROR bit
indicates that an uncorrectable error occurred when an external
device (or CPU) was accessing the KA660 local memory. The
CDAL timer expiring indicates that the memory controller did
not respond when the Q22-bus interface initiated a DMA transfer.
This bit is cleared by writing a one to it on power-up, by the
negation of DCOK, by writes to IPR 55 (IORESET), and whenever

. DSER<4> is cleared.

Q22-bus map cache invalidate all. Write only. Writing a one to
this bit clears the CAMValid bits in the cached copy of the MAP.
This bit always reads as zero. Writing a zero has no effect.

Read as zeros. Must be written as zeros.

Auxiliary halt. Read only. When this bit is set it has no effect on
the operation of the on-board CPU. This bit is cleared on power-up,
by the negation of DCOK, by writes to IPR 55 (IORESET). Note:
This bit should never be set because the processor does not
support auxiliary mode.

Read as zero. Must be written as zero.

Doorbell interrupt enable. ReadlWrite when the KA660 is Q22-bus
master. Read only when another device is Q22-bus master. When
set, this bit enables interprocessor doorbell interrupt requests via
IPCR<O>. Cleared on power-up, by the negation of DCOK, and
writes to IPR 55 (IORESET).

9-8 KA660 Q22-bus Interface

Table 9-4 (Cont.) Interprocessor Communication Register Bit Description

Data Bit

<4:1>

<0>

Name

LMEAE

Unused

DBIRQ

Description

Local Memory External Access Enable. Read/Write when the
KA660 is Q22-bus master. Read only when another device is Q22-
bus master. When set, this bit enables external access to local
memory (via the Q22-bus map). Cleared on power-up and by the
negation of DCOK.

Read as zeros. Must be written as zeros.

Doorbell interrupt request. Read/Write. If IPCR<6> (DBI IE)
is set, setting this bit generates a doorbell interrupt request. If
IPCR<6> is clear, setting this bit has no effect. Clearing this
bit has no effect. DBI RQ is cleared when the CPU grants the
doorbell interrupt request. DBI RQ is held clear whenever DBI
IE is clear. This bit is cleared on power-up and the negation of
DCOK.

9.3.2 Interprocessor Doorbell Interrupts
If the interprocessor communication register DBI IE bit is set, any Q22-bus master can
request an interprocessor doorbell interrupt by writing a one into IPCR bit <0>.

The interrupt vector is 20416 and the interrupt priority is 1416. This IPL is the same
as BR4 on the Q22-bus. The interprocessor doorbell is the third highest priority IPL 14
device, directly after the console serial line unit and the programmable timers.

NOTE
Following an interprocessor doorbell interrupt, the KA660 CPU sets the IPL to
14. The IPL is set to 17 for external Q22-bus BR4 interrupts.

9.4 Q22-bus Interrupt Handling
The KA660 responds to interrupt requests BR7-4 with the standard Q22-bus interrupt
acknowledge protocol (DIN followed by IAK). The console serial line unit, the
programmable timers, and the interprocessor doorbell request interrupt at IPL 14 and
have priority over all Q22-bus BR4 interrupt requests. After responding to any interrupt
request BR7-4, the CPU sets the processor priority to IPL 17. All BR7-4 interrupt
requests are disabled unless software lowers the interrupt priority level.

Interrupt requests from the KA660 interval timer are handled directly by the CPU.
Interval timer interrupt requests have a higher priority than BR6 interrupt requests.
After responding to an interval timer interrupt request, the CPU sets the processor
priority to IPL 16. Thus, BR7 interrupt requests remain enabled.

9.5 Configuring the Q22-bus Map
The KA660 implements the Q22-bus map in an 8K longword (32 Kbyte) block of main
memory. This map must be configured by the KA660 firmware during a processor
initialization by writing the base address of the uppermost 32 Kbyte block of good main
memory into the Q22-bus map base register. The base of this map must be located on a
32 Kbyte boundary.

KA660 Q22-bus Interface 9-9

NOTE
This 32 Kbyte block of main memory must be protected by the system software.
The only access to the map should be through local 110 page addresses 2008
8000 - 2008 FFFC 16-

9.5.1 Q22-bus Map Base Address Register (QBMBR)

The Q22-bus map base address register, address 2008 0010 16 controls the main memory
location of the 32 Kbyte block of Q22-bus map registers. This read/write register is
accessible by the CPU on a longword boundary only. Bits <31:29,14:0> are unused and
should be written as zero and will return zero when read. Figure 9-5 shows the format.

A write to the map base register will flush the Q22-bus map cache by clearing the
CAMValid bits in all the entries.

The contents of this register are undefined on power-up and the negation of DCOK when
SCR<7> is clear and is not affected by BINIT being asserted on the Q22-bus.

322
198

MAP BASE

1 1
5 4

Figure 9-5 Q22-bus Map Base Address Register (QBMBR)

9.6 System Configuration Register (SCR)

o

MBZ

The system configuration register (SCR), address 2008 000016, contains the processor
number which determines the address of the IPCR register, a BHALT enable bit, a power
OK flag and an AUX flag. Figure 9-6 shows the format. Table 9-5 describes the bits in
the system configuration register.

The SCR is longword, word, and byte accessible. Programmable option fields are cleared
on power-up and by the negation of DCOK when SCR<7> is clear.

3
1

POK
BHALT ENB

AUX

MBZ

ACTION ON DCOK NEGATION
DOORBELL OFFSET SELECT

MUST BE ZERO

1 1 1 1 1 1
54321 098 7 654 3 2 1 0

-1--11
ESB90P0047

Figure 9-6 System Configuration Register (SCR)

9-10 KA660 Q22-bus Interface

Table 9-5 System Configuration Register Bit Description

Data Bit

<31:16>

<15>

<14>

<13:11>

<10>

<9:8>

<7>

Name

Unused

POK

BHALTEN

Unused

AUX

Unused

ACTION
ON DCOK
NEGATION

Unused

Unused

Description

Read as zero. Must be written as zero.

Power OK. Read only. Writes have no effect. This bit is set if the
Q22-bus BPOK signal is asserted and clear if it is negated. This
bit is cleared on power-up and by the negation of DCOK.

BHALT Enable. ReadlWrite. This bit controls the effect the
Q22-bus BHALT signal has on the CPU. When set, asserting the
Q22-bus BHALT signal will halt the CPU and assert DSER<15>.
When cleared, The Q22-bus BHALT signal will have no effect.
This bit is cleared on power-up and by the negation of DCOK.

Read as zero. Must be written as zero.

Auxiliary. Read only. Writes have no effect. This bit defines
auxiliary and arbiter mode of operation of the KA660 When
read as a zero, Arbiter mode is selected, and when read as a
one, auxiliary mode is selected. Because the KA660 can only be
configured as an arbiter this bit should always read as zero.

Read as zero. Must be written as zero.

ReadlWrite. When cleared, the Q22-bus interface asserts
SYSRESET (causing a hardware reset of the board and control
to be passed to the resident firmware via the hardware halt
procedure with a halt code of 3) when DC OK is negated on the
Q22-bus. When set, the Q22-bus interface asserts HALCYON
(causing control to be passed to the resident firmware via the
hardware halt procedure with a halt code of 2) when DCOK is
negated on the Q22-bus. Cleared on power-up and the negation of
DCOK.

Read as zero. Must be written as zero.

Read as zero. Must be written as zero.

9.7 Error Reporting Registers
There are three registers associated with Q22-bus interface error reporting:

• The DMA System error register (DSER)

• The Q22-bus error address register (QBEAR)

• The DMA Error address register (DEAR)

These registers are located in the local VAX I/O address space and can only be accessed
by the local processor. The DSER is implemented in the CQBIC chip and it logs main
memory errors on DMA transfers, Q22-bus parity errors, Q22-bus non-existent memory
errors, and Q22-bus no-grant. The QBEAR contains the address of the page in Q22-bus
space which caused a parity error during an access by the local processor. The DEAR
contains the address of the page in local memory which caused a memory error during an
access by an external device or the processor during a local-misslglobal-hit transaction.
An access by the local processor which the Q22-bus interface maps into main memory
provides error status to the processor when the processor does a RETRY for a READ local
miss/global hit, or by an interrupt in the case of a local-miss/global-hit write.

KA660 Q22-bus Interface 9-11

9.7.1 DMA System Error Register (DSER)

The DMA System Error Register (DSER) (address 2008 000416) is a longword, word,
or byte accessible read/write register available to the local processor. The bits in this
register are cleared to zero on power-up, by the negation of DCOK when SCR <7> is
clear, and by writes to IPR 55 (IORESET). All bits are set to one to record the occurrence
of an event. They are cleared by writing a 1; writing zeros has no effect.
The format of the DSER is shown in Figure 9-7. Table 9-6 describes the bits in the
system error register.

3
1

MBZ

1 1 1 1
654 3 8 765 4 3 2 1 0

I I I MBZ I I 0 I I I I I 0 I I
Q22-bus BHAL T Detected ____ -1 I I
Q22-bus DeOK NEGATION Detected =..J

Master DMA NXM ---------------".
Must be Zero

Q22-bus PE
Main Memory Error
Lost Error biT -----------------.....

No Grant
Must be Zero
DMANXM--~

Flgure9-7 DMA System Error Register (DSER)

Table 9-6 DMA System Error Register Bit Description

Data Bit

<31:16>

<15>

<14>

<13:8>

<7>

Name Description

Unused Read as zero. Must be written as zero.

Q22-bus BHALT ReadlWrite to clear. This bit is set when the Q22-
DETECTED bus interface detects that the Q22-bus BHALT line

was asserted and SCR<14> (BHALT ENABLE)
is set. Cleared by writing a one, writes to IPR
55 (lORESET), on power-up, and the negation of
DCOK.

Q22-bus DCOK NEGATION Read/Write to clear. This bit is set when the Q22-
DETECTED bus interface detects the negation of DCOK on

the Q22-bus and SCR<7> (ACTION ON DC OK
NEGATION) is set. Cleared by writing a one,
writes to IPR 55 (lORESET), on power-up, and the
negation of DCOK.

Unused Read as zero. Must be written as zero.

MASTER DMA NXM ReadlWrite to clear. This bit is set when the CPU
perfonns a demand Q22-bus read cycle or write cycle
that does not reply after 10us. During interrupt
acknowledge cycles, or request read cycles, this bit
is not set. Cleared by writing a one, on power-up,
by the negation of DCOK, and by writes to IPR 55
(IORESET).

Unused Read as zero. Must be written as zero.

9-12 KA660 Q22-bus Interface

Table 9-6 (Cont.) DMA System Error Register Bit Description

Data Bit

<4>

<2>

Name

Q22-bus PARITY ERROR

MAIN MEMORY ERROR

LOST ERROR

NO GRANT TIMEOUT

Unused

DMANXM

Description

ReadlWrite to clear. This bit is set when the
CPU perfonns a Q22-bus demand read cycle
which returns a parity error. During interrupt
acknowledge cycles or request read cycles this bit
is not set. Cleared by writing a one, on power-up,
by the negation of DCOK, and by writes to IPR 55
(lORESET).

ReadlWrite to clear. This bit is set if an external
Q22-bus device or local misslglobal hit receives a
memory error while reading local memory. The
IPCR<15> reports the memory error to the external
Q22-bus device. Cleared by writing a one, on power­
up, by the negation of DCOK, and by writes to IPR
55 (lORESET).

ReadlWrite to clear. This bit indicates that an error
address has been lost because of DSER<7,5,4,0>
having been previously set and a subsequent error
of either type occurs which would have nonna1ly
captured an address and set either DSER<7,5,4,0>
flag. Cleared by writing a one, on power-up, by
the negation of DCOK, and by writes to IPR 55
(IORESET).

ReadlWrite to clear. This bit is set if the Q22-bus
does not return a bus grant within 10 milliseconds
of the bus request from a CPU demand read cycle
or write cycle. During interrupt acknowledge or
request read cycles this bit is not set. Cleared
by writing a one, on power-up, by the negation of
DCOK, and by writes to IPR 55 (lORE SET).

Read as zero. Must be written as zero.

ReadlWrite to clear. This bit is set on a DMA
transfer to a non-existent main memory location.

, This includes local-missl global-hit cycles and map
accesses to non-existent memory. Cleared by writing
a one, on power-up, by the negation of DCOK
when SCR<7> is clear, and by writes to IPR 55
(lORESET).

9.7.2 Q22-bus Error Address Register (QBEAR)

The Q22-bus Error Address Register (QBEAR), address 2008 0008 16, is a read only,
longword accessible register which is implemented in the CQBIC chip. Its contents are
valid only if DSER<5> (Q22-bus PARITY ERROR) is set, or if DSER<7> (MASTER DMA
NXM) is set.

Reading this register when DSER<5> and DSER<7> are clear returns undefined results.
Additional Q22-bus parity errors that could have set DSER<5> or Q22-bus timeout errors
that could have caused DSER<7> to set, causes, DSER<3> to set.

The QBEAR contains the address of the page in Q22-bus space which caused a parity
error during an access by the on-board CPU which set DSER<5> or a master timeout
which set DSER<7>.

KA660 Q22-bus Interface 9-13

Q22-bus address bits <21:9> are loaded into QBEAR bits <12:0>. QBEAR bits <31:13>
always read as zeros.

3
1

MBZ

1 1
32

Q22-bus
Address Bits <21 :9>

Figure 9-8 Q22·bus Error Address Register (QBEAR)

NOTE

o

This is a read only register. If a write is attempted a hard error (IPL ID) is
generated.

9.7.3 DMA Error Address Register (DEAR)

The DMA error address register (DEAR) address 2008 OOOC 16 is a read only, longword
accessible register which is implemented in the CQBIC chip. It contains valid
information only when DSER<4> (MAIN MEMORY ERROR) is set or when DSER<O>
(DMA NXM) is set . Reading this register when DSER<4> and DSER <0> are clear will
return UNDEFINED data. Figure 9-9 shows the format.

The DBEAR contains the map translated address of the page in local memory which
caused a memory error or non existent memory error during an access by an external
device or the Q22-bus interface for the CPU during a local-misslglobal-hit transaction or
.Q22-bus map access.

The contents of this register are latched when DSER<4> or DSER<O > are set. Additional
main memory errors or non-existent memory errors have no effect on the DBEAR until
software clears DSER<4> and DSER<O> .

Mapped Q22-bus address bits <28:9> are loaded into DBEAR bits <19:0>. DBEAR bits
<31:20> always read as zeros.

3
1

MBZ

2 1
09

Mapped Q22-bus
Address Bits <28:9>

Figure 9-9 DMA Error Address Register (DBEAR)

NOTE

o

This is a read only register. If a write is attempted a hard error (IPL ID) is
generated.

9-14 KA660 Q22-bus Interface

9.8 Q22-bus Interface Error Handling
The Q22-bus interface does not generate or check CDAL parity.

The Q22-bus interface checks all CPU references to Q22-bus memory and 110 spaces to
insure that nothing but masked and un-masked longword accesses are attempted. Any
other type of reference causes a machine check abort to be initiated. .

The Q22-bus interface maintains several timers to prevent incomplete accesses from
hanging the system indefinitely. They include: a 10 microsecond non-existent memory
timer for accesses to the Q22-bus memory and 110 spaces, a lOllS "NO SACK" timer for
acknowledgment of Q22-bus DMA grants, and a 10 millisecond "NO GRANT" timer for
acquiring the Q22-bus.

If there is a non-existent memory (NXM) error (10 microsecond timeout) while accessing
the Q22-bus on a demand read reference, the associated row in the cache is invalidated,
bit DSER<7> is set, the address of the Q22-bus page being accessed is captured in
QBEAR<12:0>, and a machine check abort is initiated.

If there is an NXM error on a prefetch read or an interrupt acknowledge vector read,
then the prefetch or interrupt acknowledge reference is aborted but no information is
captured and no machine check occurs.

If there is an NXM error on a masked write reference, then DSER<7> is set, the address
of the Q22-bus page being accessed is captured in QBEAR<12:0>, and an interrupt is
generated at IPL 1D through vector 6016.

If the Q22-bus interface does not receive an acknowledgment within 10 microseconds
after it has granted the Q22-bus, the grant is withdrawn, no errors are reported, and the
Q22-bus interface waits 500 nanoseconds to clear the Q22-bus grant daisy chain befora
beginning arbitration again.

If the Q22-bus interface tries to obtain Q22-bus mastership on a CPU demand read
reference and does not obtain it within the 10 milliseconds, associated row in the cache is
invalidated, DSER<2> is set, and a machine check abort is initiated.

The Q22-bus interface also monitors Q22-bus signals BDAL<17:16> while reading
information over the Q22-bus so that parity errors detected by the device which is
being read are recognized.

If a parity error is detected by another Q22-bus device on a CPU demand read reference
to Q22-bus memory or 110 space, then the associated row in the cache is invalidated,
DSER<5> is set, the address of the Q22-bus page being accessed is captured in
QBEAR<12:0>, and a machine check abort is initiated.

If a parity error is detected by another Q22-bus device on a prefetch request read by the
CPU, the prefetch is aborted, the associated row in the cache is invalidated, DSER<5> is
set, the address of the Q22-bus page being accessed is captured in QBEAR<12:0>, but no
machine check is generated.

The Q22-bus interface also monitors the backplane BPOK signal to detect power failures.
If BPOK is negated on the Q22-bus, a power fail trap is generated, and the CPU traps
through vector OC16. The state of the Q22-bus BPOK signal can be read from SCR<15>.
The Q22-bus interface continues to operate after generating the powerfail trap, until
DCOK is negated.

10
KASSO Network Interface

The KA660 includes a network interface that is implemented using the second generation
ethemet controller chip (SGEC). When used in conjunction with the H3602 cover panel,
this interface allows the KA660 to be connected to either a Thin Wire or standard
Ethernet network. It supports the Ethernet data link layer as specified in the VAX
Architecture Reference Manual. The SGEC also supports CP bus parity protection.

10.1 Ethernet Overview
Ethernet is a serial bus that can support up to 1,024 nodes with a maximum separation
of 2.8 kilometers (1.7 miles). Data is passed over the Ethernet in Manchester encoded
format at a rate of 10 million bits per second in variable-length packets. Each packet has
the format shown in Figure 10-1.

6 Bytes Destination Address
~ -
~ -

6 Bytes Source Address
~ -
~ -

2 Bytes Type

46 .. 1500 Bytes Data

4 bytes CRC Check Code
r- -

Figure 10-1 Ethernet Packet Format

10-1

1 0-2 KA660 Network Interface

The minimum size of a packet is 64 bytes, which implies a minimum data length of 46
bytes. Packets shorter than this are called runt packets and are treated as erroneous
when received by the network controller.

All nodes on the Ethernet have equal priority. The technique used to control access to
the bus is carrier sense, multiple access, with collision detection (CSMAlCD). To access
the bus, devices must first wait for the bus to clear (no carrier sensed). Once the bus is
clear, all devices that want to access the bus have equal priority (multi-access), so they
all attempt to transmit. After starting transmission, devices must monitor the bus for
collisions (collision detection). If no collision is detected, the device may continue with
transmission. If a collision is detected, then the device waits for a random amount of
time and repeats the access sequence.

Ethernet allows point-to-point communication between two devices, as well as
simultaneous communication between multiple devices. 1b support these two modes
of communication, there are two types of network addresses: Physical and multicast.
These two types of addresses are both 48 bits (6 bytes) long and are described next.

• Physical address:

This is a unique address associated with a particular station on the Ethernet. It
should be distinct from the physical address of any other station on any other
Ethernet.

• Multicast address:

This is a multi-destination address associated with one or more stations on a given
Ethernet (sometimes called a logical address). There are two kinds of multicast
addresses:

Multicast-group address:

An address associated by higher-level convention with a group of logically related
stations.

Broadcast address:

A predefined multicast address which denotes the set of all the stations on the
Ethernet.

Bit 0 (the least significant bit of the first byte) of an address denotes the type: It is 0 for
physical addresses and 1 for multicast addresses. In either case the remaining 47 bits
form the address value. A value of 48 ones is always treated as the broadcast address.

The hardware address of the KA660 module is determined at the time of manufacture
and is stored in the network interface station address ROM. Because every device that
is intended to connect to an Ethernet network must have a unique physical address, the
bit pattern blasted into the network interface station address ROM must be unique for
each KA660. The multicast addresses to which the KA660 responds are determined by
the multicast address filter Mask in the network interface initialization block.

KA660 Network Interface 10-3

10.2 NI Station Address ROM (NISA ROM)
The network interface includes a byte-wide, 32-byte, socketted ROM called the Network
Interface Station Address ROM (NISA ROM). One byte of this ROM appears in the
second byte of each of 32 consecutive longwords in the address range 200S 4000 - 200S
407C16. Bytes one, three and four of each longword are defined in the boot diagnostic
register section 9.1. The second byte of the first six longwords contain the 4S-bit network
physical address (NPA) of the KA660 . The low-order byte in the remaining 26 longwords
are used for testing. This address range is read only. Writes to this address range results
in a CP bus timeout and a machine check.

10.3 Programming the SGEC
The operation of the SGEC is controlled by a program in host memory called the port
driver. The SGEC and the port driver communicate through two data structures:
Network Interface Command and Status Registers (NICSRs) located in the SGEC and
mapped in the host 110 address space, and through descriptor lists and data buffers,
collectively called the host communication area , in host memory.

The NICSRs are used for initialization, global pointers, commands, and global error
reporting, while the host memory resident structures handle the actions and statuses
related to buffer management.

The SGEC can be viewed as two independent, concurrently executing processes:
Reception and transmission. After the SGEC completes its initialization sequence, these
two processes alternate between three states: stopped, running or suspended. State
transitions occur as a result of port driver commands (writing to a NICSR) or various
external event occurrences. Some of the port driver commands require the referenced
process to be in a specific state.

A simple programming sequence of the chip may be summarized as follows:

1. After power on (or reset), verifying that the self-test completed successfully.

2. Writing NICSRs to set major parameters such as system base register, interrupt
vector, address filtering mode and so on.

3. Creating the transmit and receive lists in memory and writing the NICSRs to identify
them to the SGEC.

4. Placing a setup frame in the transmit list to load the internal reception address
filtering table.

5. Starting the reception and transmission processes placing them in the running state.

6. Waiting for SGEC interrupts. NICSR5 contains all the global interrupt status bits.

7. Remedying the suspension cause, if the reception or transmission processes enter the
suspended state.

S. Issuing a Tx Poll Demand command, to return the transmission process to the
running state. In addition to remedy the reception process suspension cause, a Rx
poll demand could be issued to return the Reception process to the running state.

If the Rx poll demand is not issued, the reception process returns to the running state
when the SGEC receives the next recognized incoming frame.

The following sections contain detailed programming and state transitions information.

10-4 KA660 Network Interface

10.3.1 Command and Status Registers

The SGEC contains 16 command and status registers which may be accessed by the host.

10.3.2 Host Access to NICSRs

The SGEC's NICSRs are located in VAX 110 address space.

The NICSRs must be longword aligned and can only be accessed using longword
instructions. The address of NICSRx is the base address plus 4x bytes. For example,
if the base address is 2000 8000, then the address of NICSR2 is 2000 8008. In the
following paragraphs, NICSRs bits are specified with several access modes. The different
access modes for bits are as follows:

Table 10-1 Bit Access Modes

Bit Marked

o
1

R

RJW

W

RJWl

Meaning

Reserved for future expansion. Ignored on write. Read as O.

Reserved for future expansion. Ignored on write. Read as 1.

Read only. Ignored on write.

Read or write.

Write only. Unpredictable on read.

Read or clear by writing a 1. Writing a 0 has no effect.

In order to save chip real estate yet not tie up the host bus for extended periods of time,
the 16 NICSRs are subdivided into two groups:

1. PhysicalNICSRs - 0 through 7, 15.

2. Virtual NICSRs - 8 through 14.

The group, of which the NICSR is part detennines the way the host accesses NILSR.

10.3.2.1 Physical NICSRs
These registers are physically present in the chip. Host access to these NICSRs is by
a single instruction (for example, MOVL). There is no host perceivable delay and the
instruction completes immediately. Most commonly used SGEC features are contained in
the physical NICSRs.

10.3.2.2 Vinual NICSRs
These registers are not physically present in the SGEC and are incarnated by the on­
chip processor. Accesses to SGEC functions implied by these registers can take up to 20
JIseconds. To avoid tying up the host bus, virtual NICSR access requires several steps by
the host.

NICSR5<DN> is used to synchronize access to the virtual NICSRs; after the first virtual
NICSR access, the SGEC de-asserts NICSR5<DN> until it completes the action.

NOTE
Accessing the virtual NICSRs without polling first on the NICSR5<DN>
reassertion causes unpredictable results.

KA660 Network Interface 10-5

10.3.2.2.1 NICSR Write
To write to a virtual NICSR the host takes the following actions:

1. Issue a write NICSR instruction. The instruction completes immediately, but the
data is not yet copied by the SGEC.

2. Wait for NICSR5<DN>. No SGEC virtual NICSR may be accessed before
NICSR5<DN> asserts.

10.3.2.2.2 NICSR Read
To read a virtual NICSR the host takes the following actions:

1. Issue a read NICSR instruction. The instruction completes immediately, but no valid
data is sent to the host.

2. Wait for NICSR5<DN>. No SGEC virtual NICSR may be accessed before
NICSR5<DN> asserts.

3. Reissue a read NICSR instruction, to the same NICSR as in step 1. The host receives
valid data.

10.3.3 Vector Address, IPL, Sync! Asynch (NICSRO)

Because the SGEC could generate an interrupt on parity errors, during host writes to
NICSR's this register must be the first one written by the host. The format is shown in
Figure 10-2 and the bit description is given in Table 10-2.

3 3 2 2 22 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1 098 7 6 5 4 3 2 1 0 9 876 5 4 3 2 1 098 7 6 5 4 3 2 1 0

liP II Must Be One

L SA

1/0 Address: 2000 8000
(16)

Longword ReadlWrite Access

IV - Interrupt Vector

Figure 10-2 Vector Address, IPL, Sync/Asynch (NICSRO)

NOTE
A parity error during NICSRO host write may cause a host system crash due to
an erroneous interrupt vector. To protect against this NICSRO must be written
as follows while the IPL to which the SGEC is assigned is disabled:

1. Write NICSRO.

2. Read NICSRO.

3. Compare value read to value written. If the values mismatch, repeat from
step 1.

4. Read NICSR5 and examine NICSR5<ME> for pending parity interrupt. If an
interrupt be pending, write NICSR5 to clear it.

10-6 KA660 Network Interface

Table 10-2 NICSRO BHs

Bit Name

<31:30> IP

<29> SA

<15:00> IV

Table 10-3 NICSRO Access

Value after RESET:

Read access rules:

Write access rules:

Access

R/W

R/W

R/W

Description

Interrupt priority is the VAX interrupt
priority level that the SGEC respond to.

IP IPL (hex)

00 14

01 15

10 16

11 17

Although the SGEC has only one interrupt
request pin, that pin might be wired to any
of the four IRQ pins on the host. The value
in IP should be 1416 for the KA690.

Sync/Asynch - This bit detennines the
SGEC operating mode when it is the bus
master. When set, the SGEC operates as
a synchronous device and when clear, the
SGEC operates as an asynchronous device.

Interrupt Vector. During an interrupt
acknowledge cycle for an SGEC interrupt,
this is the value that the SGEC drives on
the host bus CDAL<31:0> pins (COAL pins
<1:0> and <31:16> are set to 0). Bits <1:0>
are ignored when NICSRO is written, and
set to 1 when read.

IFFF0003 hex

None

The IPL to which the SGEC is assigned must be
DISABLED

10.3.4 Transmit Polling Demand (NICSR1)

The polling demand NICSR (NICSR1) is used by the port driver to tell the SGEC that it
put a packet on the transmit or receive list. The format is shown in Figure 10-3 and the
bit description is in Table 10-4.

KA660 Network Interface 10-7

3 3 2 2 222 2 222 2 1 1 1 111 1 1 1 1
109 8 7 6 5 4 3 2 1 098 7 6 543 2 1 0 9 876 543 2 1 0

110 Address: 2000 8004
(16)

Longword Write Only Access

Must Be One II
L PO

Figure 10-3 Polling Demand (NICSR1)

Table 10-4 NICSR1 Bits

Bit Name Access Description

<31:01> MBZ

PD

Table 10-5 NICSR1 Access

Value after RESET:

Read access rules:

Write access rules:

W

Must be 1. This field is reserved for future
expansion. Write as 1.

Tx polling demand. Checks the transmit
list for frames to be transmitted.

The PD value is meaningless.

Not applicable

None

Tx process SUSPENDED

10.3.5 Receive Polling Demand (NICSR2)

3 3 2 2 2 2 2 2 222 2 1 1 1 1 1 1 1 111
1 098 7 6 5 4 3 2 1 0 9 8 7 6 543 2 1 0 9 8 7 6 5 4 3 2 1 0

110 Address: 2000 8008
(16)

Figure 10-4 NICSR2 Format

Must Be One II
L PO

10-8 KA660 Network Interface

Table 1~ NICSR2 Bits

Bit Name

<31:01> MBO

PD

Table 10-7 NICSR2 Access

Value after RESET:

Read access rules:

Write access rules:

Access

W

Description

Must be 1. This field is reserved for future
expansion. Write as 1.

Rx polling demand. Checks the receive list
for receive descriptors to be acquired. The
PD value is meaningless.

Not applicable

None

Rx process SUSPENDED

10.3.6 Descriptor List Addresses (NICSR3, NICSR4)

The two descriptor list address registers are identical in function, one being used for the
transmit buffer descriptors and one being used for the receive buffer descriptors. In both
cases, the registers are used to point the SGEC to the start of the appropriate buffer
descriptor list.

The descriptor lists reside in VAX physical memory space and must be longword aligned.

NOTE
For best performance, the descriptor lists be OCTAWORD should be
OCTAWORD aligned.

TRANSMIT LIST
If the Transmit descriptor list is built as a ring (the chain descriptor points at
the first descriptor of the list), the ring must contain at least two descriptors in
addition to the chain descriptor.

Initially, these registers must be written before the respective start command is
given (see Section 10.3.8), else the respective process remains in the stopped state. New
list head addresses are only acceptable while the respective process is in the stopped or
suspended states. Addresses written while the respective process is in the running state,
are ignored and discarded.

If the host attempts to read any of these registers before ever writing to them, the SGEC
responds with unpredictable values.

KA660 Network Interface 10-9

3 3
1 0 2 1 0

'~M_B_Z_I~ ____ S_t_a_rt_o_f_R_e_ce_iv_e __ Li_st_-__ R_BA ________________________________ I~M_B_Z~I NICSR3

I/O Address: 2000 800C
(16)

Longword Read/Write Access

3 3
1 0 2 1 0

I~M_B_Z_I~ _____ S_ta_rt_o_f_T_ra_n_s_m_it_L_is_t_-_T_B_A ______________________________ ~I_M_B_Z~I NICSR4

I/O Address: 2000 8010
(16)

Longword Read/Write Access

ESB90P0055

Figure 10-5 Descriptor List Addresses Format

Table 10-8 Descriptor Lists Addresses Bits

Bit Name

<31:30> MBZ

<29:00> RBAorTBA

NOTE

Access

RJW

Description

Must be zero. Ignored on writes. Read as
zero

Address of the start of the receive list
(NICSR3) or transmit list (NICSR4). This
is a 30-bit VAX physical address.

The descriptor lists must be longword aligned.

Table 10-9 NICSR3 Access

Value after RESET:

Read access rules:

Write access rules:

Table 10-10 NICSR4 Access

Value after RESET:

Read access rules:

Write access rules:

Unpredictable

None

Rx process stopped or suspended

unpredictable

None

Tx process STOPPED or SUSPENDED

10-10 KA660 Network Interface

After either of NICSR3 or NICSR4 are written, the new address is readable from the
written NICSR. However, if the SGEC status did not match the related write access
rules, the new address does not take effect and the written information is lost, EVEN if
the SGEC matches later the right condition.

10.3.7 Status Register (NICSR5)

This register contains all the status bits the SGEC reports to the host. Figure 10-6
shows the register format and Table 10-11 describes the register bits.

332
109

222 2 2 2 1 111 1
654321 98765

I/O Address: 2000 8014
(16)

Longword Access with:
Bits <31 :16> Aead Only

Bits <16:0> Aead/Write One to Clear

Figure 10-6 NICSR5 Bits

Table 10-11 NICSR5 Bits

Bit Name Access

<31> ID R

SF R

7 6 5 4 3 2 1 0

MUST BE ONE

IS
TI
AI
AU
ME
AW
TW

BO
ON
SF
10

ESB90P0056

Description

Initialization done. When set, indicates
the SGEC has completed the initialization
(reset and self test) sequences, and is
ready for further commands. When
clear, indicates the SGEC is performing
the initialization sequence and ignoring
all commands. After the initialization
sequence completes, the transmission and
reception processes are in the stopped state.

Self test failed - When set, indicates the
SGEC self test has failed. The self test
completion code bits indicate the failure
type.

Table 10-11 (Cent.) NICSR5 Bits

Bit Name Access

<29:26> SS R

<25:24> TS R

<23:22> RS R

KA660 Network Interface 10-11

Description

Self test status. The self test completion
code is listed in the following table. Only
valid if SF is set.

Value Meaning

0001 ROM error

0010 RAM error

0011 Address filter RAM error

0100 Transmit FIFO error

0101 Receive FIFO error

0110 SelCtest loopback error

INFO
Self test takes 25ms to complete after
hardware or software reset.

Transmission process state. Indicates the
current state of the transmission process as
follows:

Value

00

01

10

Meaning

STOPPED

RUNNING

SUSPENDED

Section 10.3.19.5 explains the transmission
process operation and state transitions.

Reception process state. Indicates the
current state of the reception process, as
follows:

Value

00

01

10

Meaning

STOPPED

RUNNING

SUSPENDED

Section 10.3.19.4 explains the reception
process operation and state transitions.

10-12 KA660 Network Interface

Table 10-11 (Cont.) NICSR5 Bits

Bit Name Access

<18:17> OM R

These bits indicate the current SGEC

<16> DN R

<15:8> MBO

BO RlW1

TW RlW1

Description

Operating mode. Ethernet Controller
operating mode as in the following table:

Value

00

01

10

11

Meaning

Normal operating mode.

Internal loopback. Indicates
the SGEC is disengaged
from the Ethernet wire.
Frames from the transmit
list are looped back to the
receive list, subject to address
filtering. Section 10.3.19.6
explains this mode of
operation.

External loopback. Indicates
the SGEC is working in
full duplex mode. Frames
from the transmit list
are transmitted on the
Ethernet wire and also looped
back to the receive list,
subject to address filtering.
Section 10.3.19.6 explains
this mode of operation.

Reserved for diagnostics.

Done. When set, indicates the SGEC has
completed a requested virtual NICSR
access. Mter a reset, this bit is set.

Must be one. This field is reserved. Writes
are ignored, read as 1.

Boot_Message. When set, indicates that
the SGEC has detected a boot_message on
the serial line and has set the external pin
BOOT_L.

Transmit watchdog timer interrupt. When
set, indicates the transmit watchdog
timer has timed out, indicating the
SGEC transmitter was babbling. The
Transmission process is aborted and placed
in the stopped state. (Also reported into the
Tx descriptor status TDESO<TO> flag.)

KA660 Network Interface 10-13

Table 10-11 (Cont.) NICSR5 Bits

Bit Name Access Description

<5> RW RlW1 Receive watchdog timer interrupt. When
set, indicates the receive watchdog timer
has timed out, indicating that some other
node is babbling on the network. Current
frame reception is aborted and RDESO<LE>
and RDESO<LS> are set. Bit NICSR5<RI>
also set. The reception process remains in
the running state.

<4> ME RiW1 Memory error. Is set when any of the
following occur:

• SGEC is the CP-BUS master and the
ERR_L pin is asserted by external
logic (generally indicative of a memory
problem).

• Parity error detected on an host to
SGEC NICSR write or SGEC read from
memory.

When a memory error is set, the reception
and tl'ansmission processes are aborted and
placed in the STOPPED state.

NOTE
At this point, it is mandatory that the
port driver issue a Reset command and
rewrite all NICSRs.

<3> RU RiW1 Receive buffer unavailable. When set,
indicates that the next descriptor on the
receive list is owned by the host and could
not be acquired by the SGEC. The reception
process is placed in the suspended state.
Section 10.3.19.4 explains the reception
process state transitions. Once set by
the SGEC, this bit is not set again until
the SGEC encounters a descriptor it
can not acquire. Th resume processing
receive descriptors, the host must flip the
ownership bit of the descriptor and can
issue the Rx poll demand command. If no
Rx poll demand is issued, the Reception
process resumes when the next recognized
incoming frame is received.

<2> RI RlWl Receive interrupt. When set, indicates that
a frame has been placed on the receive
list. Frame specific status information was
posted in the descriptor. The Reception
process remains in the RUNNING state.

10-14 KA660 Network Interface

Table 10-11 (Cont.) NICSR5 Bits

Bit Name Access

<1> TI RlWI

IS RlWI

Table 10-13 NICSR5 Access

Value after RESET:

Read access rules:

Write access rules:

10.3.7.1 NICSR5 Status Repon

Description

Transmit Interrupt - When set, indicates
one of the following:

• Either all the frames in the transmit
list have been transmitted (next
descriptor owned by the host), or a
frame transmission was aborted due to
a locally induced error. The port driver
must scan down the list of descriptors
to determine the exact cause. The
transmission process is placed in the
SUSPENDED state. Section 10.3.19.5
explains the transmission process state
transitions. 'lb resume processing
transmit descriptors, the port driver
must issue the poll demand command.

• A frame transmission completed and
TDESl<IC> was set. The transmission
process remains in the RUNNING
state, unless the next descriptor
is owned by the host or the frame
transmission aborted due to an error.
In the latter cases, the transmission
process is placed in the SUSPENDED
state.

Interrupt summary. The logical OR of
NICSR5 bits 1 through 6.

0039FFOO hex

None

NICSR5<07:01> bits cleared by 1, others bits not
writeable

The status register NICSR5 is split into two words as follows:

The high word which contains the global status of the SGEC, as the initialization status,
the DMA and operation mode and the receive and transmit process states.

The low word which contains the status related to the receive and transmit frames.

Any change of the NICSR5 bits <ID>, <SF>, <OM> or <DN> which is always the result
of a host command is reported without an interrupt.

Any process state change initiated by a host command) NICSR6<ST> or NICSR6<SR>, is
reported without an interrupt.

In the previous two cases, the driver must poll on NICSR5 to get the acknowledge of
its command (For example, polling on <ID, SF> after reset or polling on <TS> after a
START_TX command).

KA660 Network Interface 10-15

Any process state change initiated by the SGEC activity is immediately followed by at
least one of the NICSR5<6:1> interrupts and the interrupt_summary NICSR5<IS>.

The SGEC 16 bit internal processor updates the 32 bits NICSR5 register in two phases:
the high word is modified first, then the low word is written, which generates an
interrupt to the host. In this case, the driver must scan first the NICSR5 low word
to get the interrupt status, then the NICSR high word to get the related process state.
(For example, <TI> interrupt with <TS>= SUSPENDED reports an end of transmission
due to a Tx descriptor unavailable.)

If the host polls on the process state change, it may detect a change without interrupt
due to the small time window separating the NICSR5 high word and low word updates.

Maximum time window is 4 *Tcycles of the host clock.)

10.3.8 Command and Mode Register (NICSR6)

This register is used to· establish operating modes and for port driver commands.

3 3 222 2 2 2 2 2 221 111 1 1 1 1
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2

1
o 9 8 765 432 1 0

110 Address: 2000 8018
(16)

Longword Read/Write Access

r = reserved

Figure 10-7 NICSR6 Fonnat

Table 10-14 NICSR6 Bits

ESB90P0057

Bit Name Access Description

<31> RE R/W Reset command. Upon being set, the SGEC aborts all processes
and starts the reset sequence. After completing the reset and
self test sequence, the SGEC sets bit NICSR5<ID>. Clearing
this bit has no effect.

IE R/W

<29> r

NOTE
The NICSR6<RE> value is unpredictable on read after
HARDWARE reset.

Interrupt enable mode. When set, setting of NICSR5 bits 1
through 6 will cause an interrupt to be generated.

Reserved

10-16 KA660 Network Interface

Table 10-14 (Cont.) NICSR6 Bits

Bit

<28:25>

<24:21>

<20>

<19>

<18:12>

<11>

Name Access Description

BL RIW Burst limit mode. Specifies the maximum number oflongwords
to be transferred in a single DMA burst on the host bus.

MBO

BE RIW

SE RIW

MBO

ST RIW

When NICSR6<SE> is cleared, permissible values are 1,2,4,8
. When SE is set, the only permissible values are 1 and 4: a
value of 2 or 8 is respectively forced to 1 or 4.

After initialization, the burst limit is set to 1.

This field is reserved. Writes are ignored. Read as one.

Boot_message enable mode. When set, enables the boot_
message recognition. When the SGEC recognizes an incoming
boot message on the serial line, NICSR5<BO> is set and the
external pin BOOT_L is asserted for a duration of 6*Tcycles (of
the host clock).

Single_cycle enable mode. When set, the SGEC transfers only
a single longword or an octaword in a single DMA burst on the
host bus.

Must Be One. This field is reserved. Writes are ignored. Read
as ONE.

StartlStop transmission command. When set, the transmission
process is placed in the RUNNING state, the SGEC checks the
transmit list at the current position for a frame to transmit the
address set by NICSR4 or the position retained when the Tx
process was previously stopped. If it does not find a frame to
transmit, the transmission process enters the SUSPENDED
state. The start transmission command is honored only when
the transmission process is in the STOPPED state. The first
time this command is issued, an additional requirement is that
NICSR4 has already been written to, or else the Transmission
process remains in the STOPPED state.

When cleared, the transmission process is placed in the
STOPPED state after completing transmission of the current
frame. The next descriptor position in the transmit list is
saved and becomes the current position after transmission is
restarted.

The stop transmission command is honored only when the
transmission process is in the RUNNING or SUSPENDED
states.

Refer to Section 10.3.19.5 for more information.

KA660 Network Interface 10-17

Table 10-14 (Cont.) NICSR6 Bits

Bit Name Access Description

<10> SR R/W Start/Stop reception command. When set, the reception process
is placed in the RUNNING state, the SGEC attempts to acquire
a descriptor from the receive list and process incoming frames.
Descriptor acquisition is attempted from the current position in
the list - the address set by NICSR3 or the position retained
when the Rx process was previously stopped. If no descriptor
can be acquired, the reception process enters the SUSPENDED
state.

The start reception command is honored only when the
reception process is in the STOPPED state. The first time this
command is issued, an additional requirement is that NICSR3
has already been written to, or else the reception process remains
in the STOPPED state.

When cleared, the reception process is placed in the STOPPED
state after completing reception of the current frame. The next
descriptor position in the receive list is saved, and becomes the
current position after reception is restarted. The stop reception
command is honored only when the Reception process is in the
RUNNING or SUSPENDED states.

Refer to Section 10.3.19.4 for more information.

<9:8> OM R/W Operating Mode - These bits determine the SGEC main
operating mode.

Value Meaning

00 Normal operating mode.

01 Internal Loopback. The SGEC loopbacks buffers
from the transmit list. The data is passed from
the transmit logic back to the receive logic. The
receive logic treats the looped frame as it would
any other frame, and subjects it to the address
filtering and validity check process.

10 External Loopback. The SGEC transmits
normally and, enables its receive logic to its
own transmissions. The receive logic treats the
looped frame as it would any other frame, and
subjects it to the address filtering and validity
check process.

11 Reserved for diagnostic.

<7> DC RIW Disable data chaining mode. When set, no data chaining occurs
in reception; frames, longer than the current receive buffer,
truncated. RDESO<FS,LS> is always set. The frame length
returned in RDESO<FL>is the true length of the non-truncated
frame while RDESO<BO> indicates that the frame has been
truncated due to buffer overflow.

When clear, frames too long for the current receive buffers are
transferred to the next buffer(s) in the receive list.

10-18 KA660 Network Interface

Table 10-14 (Cont.) NICSR6 Bits

Bit Name Access

<6> FC RJW

<5:4> MBO

<3> PB RJW

<2:1> AF RIW

MBO

Table 10-15 NICSR6 Access

Value after RESET:

Read access rules:

Write access rules:

* <RE, IE, BE>

* <BL, SE, OM>

Description

Force Collision mode. This bit allows the collision logic to be
tested. The chip must be in internalloopback mode for FC
to be valid. If FC is set, a collision is forced during the next
transmission attempt. This results in 16 transmission attempts
with excessive collision reported in the transmit descriptor.

Must Be 1. This field is reserved. Writes are ignored. Read as
1.

Pass bad frames mode. When this bit is set, the SGEC pass
frames that have been damaged by collisions or are too short
due to premature reception termination. Both events should
have occurred within the collision window (64 bytes), or else
other errors are reported.

When clear, these frames will be discarded and never show up
in the host receive buffers.

NOTE
Pass bad frames is subject to the address filtering mode.
For example, to monitor the network, this mode must
be set together with the promiscuous address filtering
mode.

Address filtering mode. These bits define the way incoming
frames are address filtered:

Value

00

01

10

11

Meaning

Normal. Incoming frames are filtered according
to the values of the <HP> and <IF> bits of the
setup frame descriptor.

Promiscuous. All incoming frames are passed to
the host, regardless of the <liP> bit value.

All multicast. All incoming frames with
Multicast address destinations are passed to
the host. Incoming frames with physical address
destinations are filtered according to the <HP>
bit value.

Unused. Reserved.

Must Be 1. This field is reserved. Writes are ignored. Read as
1.

83EOFOOO hex or 03EOFOOO hex

None

Unconditional

Rx and Tx processes STOPPED

Table 10-15 (Cont.) NICSR6 Access

* <DC, PB, AF>

* Start_Receive <SR>=l

* Start_Transmit <ST>=l

* Stop_Receive <SR>=O

* Stop_Transmit <ST>=O

KA660 Network Interface 10-19

Rx and Tx processes STOPPED, Internal_Loopback
mode

RxSTOPPED

Rx STOPPED and NICSR3 Initialized

Tx STOPPED and NICSR4 Initialized

Rx RUNNING or SUSPENDED

Tx RUNNING or SUSPENDED

After NICSR6 is written, the new value is readable from NICSR6. However, if the SGEC
status does not match the related write access rules, the new mode setting and command
do not take effect and the written information is lost, EVEN if the SGEC matches
later the right condition.

10.3.9 System Base Register (NICSR7)

This NICSR contains the physical starting address of the VAX system page table. This
register must be loaded by host software before any address translation occurs so that
memory is not be corrupted.

332
109

System Base Address

1/0 Address: 2000 801 C
(16)

Longword Read/Write Access

Figure 10-8 NICSR7 Fonnat

Table 10-16 NICSR7 Bits

Bit Name Access

<31:30> MBZ

<29:00> SB RJW

210

ESB90P0058

Description

Must Be zero. Read as zero. Writes are
ignored.

System base address. The physical starting
address of the VAX system page table. Not
used if VA (virtual addressing) is cleared in
all descriptors.

This register should be loaded only
once after a reset. Subsequent
modifications of this register at any
other time can cause unpredictable
results.

10-20 KA660 Network Interface

Table 10-17 NICSR7 Access

Value after RESET:

Read access rules:

Write access rules:

Unpredictable

None

Writing once after initialization

10.3.10 Reserved Register (NICSR8)

This entire register is reserved.

10.3.11 Watchdog Timers (NICSR9)

The SGEC has two timers that restrict the length of time in which the chip can receive
or transmit.

3
1

RECEIVE TIME-OUT - RT

1/0 Address: 2000 8024
(16)

Longword ReadlWrite Access

Figure 10-9 NICSR9 Format

Table 10-18 NICSR9 Bits

Bit Name Access

<31:16> RT RJW

1 1
6 5 o

TRANSMiT TIME-OUT - TT

Description

Receive watchdog time-out.

The receive watchdog timer protects the
host CPU against babbling transmitters
on the network. If the receiver stays on
for RT * 16 cycles of the serial clock,
the SGEC cuts off reception and sets
the NICSR5<RW> bit. If the timer is
set to zero, never times-out. The value
of RT is an unsigned integer. With a 10
MHz serial clock, this provides a range of
72JlS to lOOms. The default value is 1250
corresponding to 2ms.

The Rx watchdog timer is programmed
only while the reception process is in the
STOPPED state.

NOTE
A Rx watchdog value between 1 and
44 is forced to the minimum time_out
value of 45 (72)1s).

Table 10-18 (Cont.) NICSR9 Bits

Bit Name

<15:00> TT

Table 10-19 NICSR9 Access

Value after RESET:

Read access rules:

Write access rules:

* Rx Watchdog timer

* Tx Watchdog timer

Access

RIW

KA660 Network Interface 10-21

Description

Transmit watchdog time-out.

The transmit watchdog timer protects
the network against babbling SGEC
transmissions, on top of any such circuitry
present in tranceivers. If the transmitter
stays on for TT * 16 cycles of the serial
clock, the SGEC cuts off the transmitter
and sets the NICSR5<TW> bit. If the timer
is set to zero, never times-out. The value
of TT is an unsigned integer. With a 10
MHz serial clock, this provides a range of
72JlS to lOOms. The default value is 1250
corresponding to 2ms.

The Tx watchdog timer is programmed only
while the transmission process is in the
STOPPED state.

NOTE
A Tx watchdog value between 1 and
44 is forced to the minimum time_out
value of 45 (72J1s).

00000000 hex

None

Rx process STOPPED

Tx process STOPPED

The watchdog timers are enabled by default. The timers assume the default values after
hardware or software resets.

10.3.12 Revision Number and Missed Frame Count (NICSR10)

This register contains a missed frame counter and SGEC identification information.

3
1

211111
o 9 8 765

MBZ

1/0 Address: 2000 802C
(16)

Longword Read Only Access

RN

o

MFC

Figure 10-10 Revision Number and Missed Frame Count (VIRTUAL NICSR10)

10-22 KA660 Network Interface

Table 10-20 NICSR10 Bits

Bit Name

<31:21> MBZ

<20:16> RN

<15:00> MFC

Table 10-21 NICSR10 Access

Access

R

R

Description

Must BE zero. Read as zero. Writes are
ignored.

Chip Revision Number. This stores the
revision number.

Missed frame count. This is the counter for
the number of frames that were discarded
and lost because host receive buffers were
unavailable. The counter is cleared when
read by the host.

Value after RESET: 00030000 hex

Read access rules:

Write access rules:

Missed_frame counter cleared by read

Not applicable

10.3.13 Boot Message (NICSR11, 12, 13)

These registers contain the boot message VERIFICATION and PROCESSOR fields. The
format is shown in Figure 10-11 and the bit descriptions are in Table 10-22.

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 0 9 8 7 6 5 432 1 0

NICSR11
20000802C

VERIFICATION VRF <31 :00> 16

3 3 2 2 2 2 2 222221111111 1 1
1 0 9 8 7 6 5 432 1 098 7 6 5 4 3 2 0 9 8 7 6 543 2 1 0

NICSR12
20008030

VERIFICATION VRF <63:32> 16

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1
1 o 9 8 7 6 5 4 3 2 1 098 7 6 5 4 3 2 0 9 8 7 6 5 4 3 2 1 0

0 000 o 0 000 o 0 0 0 0 000 PROCESSOR PRC NICSR13
20008034

16

Longword Read/Write Access

Figure 10-11 Boot Message

KA660 Network Interface 10-23

Table 10-22 NICSR11, NICSR12, NICSR13 Bits

Bit Name Access Description

NICSRll VRF<31:00> RJW Boot message VERIFICATION field
<31:00> <31:00>

NICSR12 VRF<63:32> RJW Boot message VERIFICATION field
<31:00> <63:32>

NICSR13 PRC RJW Boot message PROCESSOR field
<07:00>

NOTE
The least significant bit of the verification field (VRF<O» corresponds to the
first incoming bit of the verification field in the serial boot message.

Table 10-23 NICSR11, NICSR12, NICSR13 Access

Value after RESET:

Read access rules:

Write access rules:

00000000 hex for each of
NICSRll,NICSR12,NICSR13

None

Boot message DISABLED «NICSR6<BE> = 0)

1 0.3.14 Diagnostic Registers (NICSR14, 15)

These registers are reserved for diagnostic features.

10.3.14.1 Diagnostic Breakpoint Address Register (NICSR14)
This register is virtual CSR. It contains the breakpoint address that causes the internal
CPU to jump to a patch address. Figure 10-12 shows the format of the register.
Table 10-24 lists the bits and descriptions. This register can be loaded only in diagnostic
mode (NICSR6 <OM>=<ll».

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

CODE RESTART ADDRESS
(CRA)

Figure 10-12 NICSR14 Format

Table 10-24 NICSR14 Bits

Bit

<31>

<30:16>

Name

BE

CRA

Type

RJW

RJW

BREAKPOINT ADDRESS
(BPA)

Description

When set, breakpoint enabled.

Code restart address. This is the first
address in the internal RAM to where
the internal processor will jump after a
breakpoint occurred.

10-24 KASSO Network Interface

Table 10-24 (Cont.) NICSR14 Bits

Bit Name Type

<15:0> BPA RJW

NOTE

Description

Breakpoint address. This is the internal
processor address at which the program
will halt and jump to the RAM loaded code.

This registers in conjunction with the diagnostic descriptors's allows software patches.

Table 10-25 NICSR14 Access

Value after RESET:

Read access rules:

Write access rules:

0000000016

None

DIAGNOSTIC mode

Violation: Addressing NICSR14 while NICSR5<DN> is deasserted

10.3.14.2 Monitor Command Register (NICSR15)
This register is a physical CSR. It contains the bits which select the internal test block
operation mode. Figure 10-13 shows the format of the register. Table 10-26 lists the bits
and descriptions.

3 3 2 2 2 2 222 2 2 2 1 1 1 1 1 1 1 111
109 8 7 6 543 2 1 098 765 432 1 098 765 4 3 2 1 0

ADDRESS/DATA

Figure 10-13 NICSR15 Format

Table 10-26 NICSR15 Bits

Bit Name

<31:16> ADDRIDATA

<15> ST

Type

RJW

w

MBZ

Description

Before the "Examine" cycle, it points to the
location to be read. Three cycles after the
assertion of <ST>, it contains the READ
data.

Start read. When set, this starts the
"Examine" cycle. The data addressed by
CSR<31:16> is fetched and stored into the
same register field. Reset by hardware at
the end of operation.

Table 10-26 (Cont.) NICSR15 Bits .

Bit Name Type

<14:13> QAD w

<12> BS w

<11:0> MBZ

Table 10-27 NICSR15 Access

Value after RESET:

Read access rules:

Write access rules:

Violation:

KA660 Network Interface 10-25

Description

Quad selects bits. These bits define the
specific four bits of the internal Data_bus
or Address_bus which are monitored on
the external test pins BM_LtrEST<3:0>.
Meaningful only in test mode (TSM=I).

The 2 bit code is interpreted as follows:

QAD Data Address

00 <03:00> <03:00>

01 <07:04> <07:04>

10 <11:08> <11:08>

11 <15:12> O,IOP_WR_
L,<13:12>

Bus select. When resets the internal
Data_bus is monitored on the external
test pins BM_UTEST<3:0>. When set,
the monitoring is applied on the internal
Address_bus. Meaningful only in test mode
(TSM=l).

Must be zero.

00000FFF16

None

Reserved for DEBUGGING

Setting <ST> with "random" SGEC internal address

10.3.15 Descriptors and Buffers Format

The SGEC transfers frame data to and from the receive and transmit buffers in host
memory. These buffers are pointed to by descriptors which are also resident in host
memory.

There are two descriptor lists: One for receive and one for transmit. The starting address
of each list is written into NICSRs 3 and 4 respectively. A descriptor list is a forward­
linked (either implicitly or explicitly) list of descriptors, the last of which may point back
to the first entry, thus creating a ring structure. Explicit chaining of descriptors, through
setting xDESl<CA>s is called Descriptor Chaining. The descriptor lists reside in VAX
physical memory address space.

NOTE
The SGEC first reads the descriptors, ignoring all unused bits regardless of
their state. The only word the SGEC writes back is the first word (xDESO) of

10-26 KA660 Network Interface

each descriptor. Unused bits in xDESO are written as zero. Unused bits in
xDESt - xDES3 can be used by the port driver and the SGEC never disturbs
them.

A data buffer can contain an entire frame or part of a frame, but it cannot contain
more than a single frame. Buffers contain only data; buffer status is contained in the
descriptor. The term Data Chaining is used to refer to frames spanning multiple data
buffers. Data Chaining can be enabled or disabled, in reception, through NICSR6<DC>.
Data buffers reside in either VAX physical or virtual memory space.

NOTE
The virtual-to-physical address translation is based on the assumption that
PTEs are locked in the host memory at the time the SGEC owns the related
buffer.

NOTE
For best performance in virtual addressing mode, PPTE vectors must not cross
a page of the PPTE table.

10.3.16 Receive Descriptors
The receive descriptor format is shown in Figure 10-14, and described in the following
paragraphs.

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 , , 1 1 1 1
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 098 765 432 1 0

0 o ROESO
W Frame length F

C V ROES'
A A u

ROES2
u Buffer Size u Page Offset

u ROES3
u u BUFFER SVAPTEfPhysical Address

o - SGEC writes as 0
u - Ignored by the SGEC on read, never written

Figure 10-14 Receive Descriptor Format

10.3.16.1 RDESO Word
RDESO word contains received frame status, lengths and descriptor ownership
information.

Table 10-28 RDESO Bits

Bit Name

<31> ow

<30:16> FL

Description

Own bit. When set, this bit indicates the descriptor is owned
by the SGEC. When cleared, indicates the descriptor is owned
by the host. The SGEC clears this bit when processing of the
descriptor and its associated buffer is complete.

Frame Length. The length in bytes of the received frame.
Meaningless if RDESO<LE> is set.

KA660 Network Interface 10-27

Table 10-28 (Cont.) ROESO Bits

Bit Name

<15> ES

<14> LE

<13:12> DT

<11> RF

<10> BO

<09> FS

<08> LS

<07> TL

<06> CS

Description

Error Summary. The logical "OR" of RDESO bits
OF,CE,TN,CS,TL,LE,RF.

Length Error. When set, indicates a frame truncation caused
by one of the following:

• The frame segment does not fit within the current buffer
and the SGEC does not own the next descriptor. The
frame is truncated.

• The receive watchdog timer expired. NICSR5<RW> is
also set.

Data Type. Indicates the type of frame the buffer contains,
according to the following table:

Value

00

01

10

Meaning

Serial received frame

Internally looped back frame

Externally looped back frame, serial received
frame 2

Runt Frame. When set, indicates this frame was damaged
by a collision or premature termination before the collision
window had passed. Runt frames are only passed on to the
host if (NICSR6<PB» is set. Meaningless if (RDESO<OF» is
set.

Buffer overflow. When set, indicates that the frame has been
truncated due to a buffer too small to fit the frame size. This
bit may only be set if data chaining is disabled (NICSR6<DC>
= 1).

First segment. When set, indicates this buffer contains the
first segment of a frame.

Last segment. When set, indicates this buffer contains the
last segment of a frame and status information is valid.

Frame too long. When set, indicates the frame length exceeds
the maximum Ethernet specified size of 1518 bytes.

NOTE
Frame too long is only a frame length indication and
does not cause any frame truncation.

Collision seen. When set, indicates the frame was damaged by
a collision that occurred after the 64 bytes following the SFD.

10-28 KA660 Network Interface

Table 10-28 (Cont.) ROESO Bits

Bit

<04>

<03>

<01>

Name

FT

o
TN

DB

CE

OF

10.3.16.2 RDES1 Word

Description

Frame type. When set, indicates the frame is an Ethernet
type frame (frame length_field> 1500). When clear, indicates
the frame is an IEEE 802.3 type frame. Meaningless for runt
frames < 14 bytes.

Zero. SGEC writes as zero.

Translation not valid. When set, indicates that a translation
error occurred when the SGEC was translating a VAX virtual
buffer address. It will only set if RDES1<VA> was set.
The reception process remains in the RUNNING state and
attempts to acquire the next descriptor.

Dribbling Bits. When set, indicates the frame contained a
non-integer multiple of eight bits. This error is reported only
if the number of dribbling bits in the last byte is greater than
two. Meaningless if RDESO<CS> or RDESO<RF> are set.

The CRC check is performed independent of this error,
however, only whole bytes are run through the CRC logic.
Consequently, received frames with up to six dribbling
bits have this bit set, but if <CE> (or another error
indicator) is not set, these frames should be considered
valid:

CE

o
o
1

1

DB

o
1

o
1

Error

None

None

CRC error

Alignment error

CRC Error. When set, indicates that a CRC error has occurred
on the received frame.

Overflow. When set, indicates received data in this
descriptor's buffer was corrupted due to internal FIFO
overflow. This generally occurs if SGEC DMA requests are
not granted before the internal receive FIFO fills up.

Table 10-29 RDES1 Bits

Bit Name

<S1> CA

VA

<29> VT

<28:0> u

10.3.16.3 RDES2 Word

Table 10-30 RDES2 Bits

Bit

<31>

<30:16>

<15:9>

Name

u

BS

u

KA660 Network Interface 10-29

Descriptor

Chain address. When set, RDESS is interpreted as another
descriptor's VAX physical address. This allows the SGEC
to process multiple, non-contiguous descriptor lists and
explicitly "chain" the lists. Note that contiguous descriptors
are implicitly chained.

In contrast to what is done for a Rx buffer descriptor, the
SGEC clears neither the ownership bit RDESO<OW> nor
one of the other bits of RDESO of the chain descriptor after
processing.

Th protect against an infinite loop, a chain descriptor pointing
back to itself is seen as owned by the host, regardless of the
ownership bit state.

Virtual addressing. When set, RDESS is interpreted as a
virtual address. The type of virtual address translation is
determined by the RDES1<VT> bit. The SGEC uses RDES3
and RDES2<Page Offset> to perform a VAX virtual address
translation process to obtain the physical address of the buffer.
When clear, RDESS is interpreted as the actual physical
address of the buffer:

VA VI' Addressing Mode

0 x Physical

1 0 Virtual - SVAPTE

1 1 Virtual - PAPTE

Virtual type. In case of virtual addressing (RDES1<VA> = 1),
indicates the type of virtual address translation. When set,
the buffer address RDESS is interpreted as a SVAPTE (system
virtual address of the page table entry). When clear, the
buffer address is interpreted as a PAPTE (Physical Address of
the Page Table Entry). Meaningful only if RDES1<VA> is set.

Unused. Ignored by the SGEC on reads. Never written.

Descriptor

Unused. Ignored by the SGEC on reads. Never written.

Buffer size. The size, in bytes, of the data buffer.

NOTE
Receive buffer size must be an EVEN number of bytes.

Unused. Ignored by the SGEC on reads. Never written.

10-30 KA660 Network Interface

Table 10-30 (Cont.) RDES2 BHs

Bit Name

<08:00> PO

10.3.16.4 RDES3 Word

Table 10-31 RDES3 Bits

Bit Name

<31:00> SVIPVIPA

Descriptor

Page offset. The byte offset of the buffer within the page.
Only meaningful if RDES1<VA> is set.

NOTE
Receive buffers must be word aligned.

Descriptor

SVAPTEIPAPTEIPhysical address. When RDES1<VA> is
set, RDES3 is interpreted as the address of the page table
entry and used in the virtual address translation process.
The type of the address system virtual address (SV APTE)
or physical address (PAPTE) is determined by RDES1<VT>.
When RDES1<VA> is clear, RDES3 is interpreted as the
physical address of the buffer. When RDES1 <CA> is set,
RDES3 is interpreted as the VAX physical address of another
descriptor.

NOTE
Receive buffers must be word aligned.

10.3.16.5 Receive Descriptor Status ValldHy
The following table summarizes the validity of the receive descriptor status bits regarding
the reception completion status:

Table 10-32 Receive Descriptor Status ValldHy

Reception Rx Status Report

(ES,LE,BOJ)T,FS,LS,FL,TN,
Status RF TL CS Fr DB CE OF)

Overflow X V X V X X V

Collision after 512 bits V V V V X X V

Runt frame V V V V X X V

Runt frame < 14 bytes V V V X X X V

Watchdog timeout V V X V X X V

V - Valid
X - Meaningless

KA660 Network Interface 10-31

10.3.17 Transmit Descriptors

The transmit descriptor format is shown in Figure 10-15 and described in the following
paragraphs.

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3

0
W TOR

C V
A A u

u Buffer Size

u u BUFFER SVAPTE/Physical Address

o - SGEC writes as 0
u - Ignored by the SGEC on read, never written

ESB90POO65

Figure 10-15 TransmH Descriptor Format

10.3.17.1 TDESO Word

1
2

u

1
098 765 4 3 2 1 0

Page Offset

o TOESO
E

TOES1

TOES2

TOES3

TDESO word contains transmitted frame status and descriptor ownership information .

. Table 10-33 TDESO Bits

Bit Name Description

<31> OW Own bit. When set, indicates the descriptor is owned by the SGEC. When
cleared, indicates the descriptor is owned by the host. The SGEC clears this bit
when processing of the descriptor and its associated buffer is complete.

<29:16> TDR Time domain reflectorneter. This is a count of bit time and is useful for locating
a fault on the cable using the velocity of propagation on the cable. Only valid if
TDESO<EC> is also set. Two excessive collisions in a row and with the same or
similar (within 20) TDR values indicate a possible cable open.

<15> ES Error summary. The logical "OR" of UF, TN, EC, LC, NC, LO, LE and TO.

<14> TO Transmit watchdog timeout. When set, indicates the transmit watchdog timer
has timed out, indicating the SGEC transmitter was babbling. The interrupt
NICSR5<TW> is set and the transmission process is aborted and placed in the
STOPPED state.

<13> MBZ Must be ZERO. SGEC writes as zero.

10-32 KA660 Network Interface

Table 10-33 (Cont.) TDESO Bits

Bit Name Description

<12> LE

<11> LO

<10> NC

<09> LC

<08> EC

<07> HF

<06:03> CC

<02> TN

<01> UF

<00> DE

Length error. When set, indicates one of the following:

• Descriptor unavailable (owned by the host) in the middle of data chained
descri ptors.

• Zero length buffer in the middle of data chained descriptors.

• Setup or diagnostic descriptors (data type TDESl<DT><> 0) in the middle
of data chained descriptors.

• Incorrect order of first_segment TDESl<FS> and last_segment
TDESl<LS> descriptors in the descriptor list.

The transmission process enters the SUSPENDED state and sets NICSR5<Tl>.

Loss of carrier. When set, indicates loss of carrier during transmission (possible
short circuit in the Ethernet cable). Meaningless in internal loopback mode
(NICSR5<OM>=I).

No carrier. When set, indicates the carrier signal from the transceiver was not
present during transmission (possible problem in the transceiver or transceiver
cable). Meaningless in internalloopback mode (NICSR5<OM>=l).

Late collision. When set, indicates frame transmission was aborted due to a
late collision. Meaningless if TDESO<UF>.

Excessive collisions. When set, indicates that the transmission was aborted
because 16 successive collisions occurred while attempting to transmit the
current frame.

Heartbeat fail. When set, indicates heartbeat collision check failure (the
transceiver failed to return a collision pulse as a check after the transmission.
Some tranceivers do not generate heartbeat, and so will always have this
bit set. If the transceiver does support it, it indicates transceiver failure.)
Meaningless if TDESO<UF>.

Collision count. A four bit counter indicating the number of collisions that
occurred before the transmission attempt succeeded or failed. Meaningless
when TDESO<EC> is also set.

Translation not valid. When set, indicates that a translation error occurred
when the SGEC was translating a VAX. virtual buffer address. It may only set
if TDESl<VA> was set. The transmission process enters the SUSPENDED
state and sets NICSR5<TI>.

Underflow error. When set, indicates that the transmitter has truncated
a message due to data late from memory. UF indicates that the SGEC
encountered an empty transmit FIFO while in the midst of transmitting a
frame. The transmission process enters the SUSPENDED state and sets
NICSR5<TI>.

Deferred. When set, indicates that the SGEC had to defer while trying to
transmit a frame. This condition occurs if the channel is busy when the SGEC
is ready to transmit.

10.3.17.2 TDES1 Word

Table 10-34 TDES1 Bits

Bit Name

<31> CA

VA

<29:28> DT

<27> AC

<26> FS

KA660 Network Interface 10-33

Descriptor

Chain address. When set, TDES3 is interpreted as another
descriptor's VAX physical address. This allows the SGEC
to process multiple, non-contiguous descriptor lists and
explicitly "chain" the lists. Note that contiguous descriptors
are implicitly chained.

In contrast to what is done for a Rx buffer descriptor, the
SGEC clears neither the ownership bit TDESO<OW> nor
one of the other bits of TDESO of the chain descriptor after
processing.

1b protect against infinite loop, a chain descriptor pointing
back to itself, is seen as owned by the an host, regardless of
the ownership bit state.

Virtual addressing. When set, TDES3 is interpreted as a
virtual address. The type of virtual address translation is
determined by the TDES1<VT> bit. The SGEC uses TDES3
and TDES2<Page Offset> to perform a VAX virtual address
translation process to obtain the physical address of the buffer.
When clear, TDES3 is interpreted as the actual physical
address of the buffer:

VA

o
1

1

VT

x

o
1

Addressing Mode

Physical

Virtual - SVAPTE

Virtual - PAPTE

Data type. Indicates the type of data the buffer contains,
according to the following table:

Value

00

10

11

Meaning

Normal transmit frame data

Setup frame explained in Section 10.3.18

Diagnostic frame

Add CRC disable. When set, the SGEC does not append the
CRC to the end of the transmitted frame. 1b take effect, this
bit must be set in the descriptor where FS is set.

NOTE
If the transmitted frame is shorter than 64 bytes, the
SGEC adds the padding field and the CRC regardless of
the <AC> flag.

First segment. When set, indicates the buffer contains the
first segment of a frame.

10-34 KA660 Network Interiace

Table 10-34 (Cont.) TDES1 Bits

Bit Name

<25> L8

<24> IC

<23> VT

<22:0> u

10.3.17.3 TDES2 Word

Table 10-35 TDES2 Bits

Bit

<31>

<30:16>

<08:00>

Name

u

BS

PO

10.3.17.4 TDES3 Word

Descriptor

Last segment. When set, indicates the buffer contains the last
segment of a frame.

Interrupt on completion. When set, the SGEC sets
NICSR5<TI> after this frame has been transmitted. To take
effect, this bit must be set in the descriptor where LS is set.

Virtual type. In case of virtual addressing (TDES1<VA> = 1),
indicates the type of virtual address translation. When set,
the buffer address TDES3 is interpreted as a SVAPTE (system
virtual address of the page table entry). When clear, the
buffer address is interpreted as a PAPTE (physical address of
the page table entry). Meaningful only ifTDES1<VA> is set.

Unused. Ignored by the SGEC on reads. Never written.

Descriptor

Unused. Ignored by the SGEC on reads. Never written.

Buffer size. The size, in bytes, of the data buffer. If this field
is 0, the SGEC skips over this buffer and ignores it. The
frame size is the sum of all BS fields of the frame segments
(between and including the descriptors having TDE81<FS>
and TDES1<LS> set).

NOTE
If the port driver wishes to suppress transmission of a
frame, this field must be set to zero in all descriptors
comprising the frame and prior to the SGEC acquiring
them. If this rule is not adhered to, corrupted frames
might be transmitted.

Page offset. The byte offset of the buffer within the page.
Only meaningful if TDES1<VA> is set.

NOTE
Transmit buffers can start on arbitrary byte
boundaries.

Table 10-36 TDES3 Bits

Bit Name

<31:00> SVIPVIPA

KA660 Network Interface 10-35

Descriptor

SVAPTEIPAPTElPhysical address. When DES1<VA> is set,
TDES3 is interpreted as the address of the page table entry
and used in the virtual address translation process. The
type of the address system Vivtual address (SVAPTE) or
physical address (PAPTE) is determined by TDES1<VT>.
When TDES1<VA> is clear, TDES3 is interpreted as the
physical address of the buffer. When TDESI <CA> is set,
TDES3 is interpreted as the VAX physical address of another
descriptor.

NOTE
Transmit buffers can start on arbitrary byte
boundaries.

10.3.17.5 Transmit Descriptor Status Validity
Table 10-37 summarizes the validity of the transmit descriptor status bits regarding the
transmission completion status:

Table 10-37 Transmit Descriptor Status Validity

Transmission Tx Status Report

Status LO NC LC EC HF CC (ES,TO,LE,TN,UF,DE)

Underflow X X V V X V V

Excessive collisions V V V V V X V

Watchdog timeout X V X X X V V

Internal loopback X X V V X V V

V - Valid
X - Meaningless

10.3.18 Setup Frame

A setup frame defines SGEC Ethernet destination addresses. These addresses are used
to filter all incoming frames. The setup frame is never transmitted over the Ethernet,
nor looped back to the receive list. While the setup frame is being processed, the receiver
logic temporarily disengages from the Ethernet wire. The setup frame size is always 128
bytes and must be wholly contained in a single transmit buffer. There are two types of
setup frames:

1. Perfect filtering addresses (16) list

2. Imperfect filtering hash bucket (512) heads plus one physical address

10-36 KA660 Network Interface

10.3.18.1 First Setup Frame
A setup frame must be queued (placed in the transmit list with SGEC ownership) to
the SGEC before the reception process is started, except for when the SGEC operates in
promiscuous reception mode.

NOTE
The self test completes with the SGEC address filtering table fully set to zero.
A reception process which starts without loading a setup frame rejects all the
incoming frames except those with a destination physical address of OOOOOOh .

10.3.18.2 Subsequent Setup Frame
Subsequent setup frames may be queued to the SGEC regardless of the reception process
state. The only requirement for the setup frame to be processed is that the transmission
process be in the RUNNING state. The setup frame is processed after all preceding
frames have been transmitted and after the current frame reception, if any, is completed.

The setup frame does not affect the reception process state but during the setup frame
processing, the SGEC is disengaged from the Ethernet wire.

10.3.18.3 Setup Frame Descriptor
The setup frame descriptor format is shown in Figure 10-16 and described in the
following paragraphs.

3 3 2 2 2 222 222 2 1 1 1 1 1 111
1 0 9 8 7 654 32' 098 765 432

,
o 9 876 5 4 32' 0

0 I ~ I 0 I ~ I W MBZ MBZ
SOESO

o u I OT I u I ~ I ~ 161 u
SOES,

u Buffer Size I u
SOES2

SOES3

u 1 Setup Buffer Physical Address I u

o - SGEC writes as 0
u - Ignored by the SGEC on read, never written

Figure 10-16 Setup Frame Descriptor Fonnat

Table 10-38 Setup Frame Descriptor Bits

Word

SDESO

Bit

<13>

<15>

<31>

Name

SE

ES

OW

Description

Setup error. When set, indicates the setup
frame buffer size in not 128 bytes.

Error summary. Set when SE is set.

Own bit. When set, indicates the descriptor
is owned by the SGEC. When cleared,
indicates the descriptor is owned by the
host. The SGEC clears this bit when
processing of the descriptor and its
associated buffer is complete.

KA660 Network Interface 10-37

Table 10-38 (Cont.) Setup Frame Descriptor Bits

Word

SDESI

SDES2

SDES3

Bit

<24>

<25>

<26>

<29:28>

<30:16>

<29:1>

Name

IC

HP

IF

DT

BS

PA

10.3.18.4 Perfect Filtering Setup Frame Buffer

Description

Interrupt on completion. When set, the
SGEC sets NICSR5<TI> after this setup
frame has been processed.

HashlPerfect filtering mode. When set,
the SGEC interprets the setup frame as a
hash table, and does an imperfect address
filtering. The imperfect mode is useful
when there are more than 16 multicast
addresses to listen to.

When clear, the SGEC does a perfect
address filter of incoming frames according
to the addresses specified in the setup
frame.

Inverse filtering. When set, the SGEC does
an inverse filtering: The SGEC receives the
incoming frames with destination address
not matching the perfect addresses and will
reject the frames with a destination address
matching one of the perfect addresses.

Meaningful only for perfect_filtering
(SDESl<HP>=O), while promiscuous
and all_multicast modes are not selected
(NICSR6<AF>=0).

Data type. Must be 2 to indicate setup
frame.

Buffer size. Must be 128.

Physical address. Physical address of setup
buffer.

NOTE
The setup buffer must be word aligned.

This section describes how the SGEC interprets a setup frame buffer when SDESl<HP>
is clear.

The SGEC can store 16 (full 48 bits Ethernet) destination addresses. It compares the
addresses of any incoming frame to these, and regarding the status of Inverse_Filtering
flag SDESl<IF>, rejects the following:

• Those which do not match, if (SDESl<IF> = 0)

• Those which match, if (SDESl<IF> = 1)

The setup frame must always supply all 16 addresses. Any mix of physical and multicast
addresses can be used. Unused addresses should be duplicates of one of the valid
addresses. The addresses are formatted as shown in Figure 10-17.

10-38 KA660 Network Interface

31 16 1S o bit

Bytes <3:0> PERFECT ADDRESS_00 Physical/Multicast Bit
<7:4> xxxxxxxxxxxxxxx

PERFECT ADDRESS_01
xxxxxxxxxxxxxxx

PERFECT ADDRESS_02
xxxxxxxxxxxxxxx

PERFECT ADDRESS_03
xxxxxxxxxxxxxxx

PERFECT ADDRESS_04
xxxxxxxxxxxxxxx

PERFECT ADDRESS_OS

PERFECT ADDRESS_13
xxxxxxxxxxxxxxx

PERFECT ADDRESS_14
xxxxxxxxxxxxxxx

<123:120> PERFECT ADDRESS_1S
< 127: 124> xxxxxxxxxxxxxxx

xxxxxx = Don't Care

Figure 10-17 Perfect Filtering Setup Frame Buffer format

The low-order bit of the low-order bytes is the address's multicast bit.

Example 10-1 illustrates a perfect filtering setup buffer (fragment).

Ethernet addresses to be filtered:
• A8-09-65-12-34-76

09-BC-87-DE-03-15

Setup frame buffer fragment:
• 126509A8

00007634
DE87BC09
00001503

KA660 N etwo rk I nte rf ace 1 0-39

• Two Ethernet addresses written according to the DEC STD 134 specification for
address display.

• Those two addresses as they would appear in the buffer.

Example 10-1 Perfect Filtering Buffer

10.3.18.5 Imperfect Filtering Setup Frame Buffer
This section describes how the SGEC interprets a setup frame buffer when SDES1<HP>
is set.

The SGEC can store 512 bits, serving as hash bucket heads, and one physical 48 bit
Ethernet address. Incoming frames with multicast destination addresses are subjected to
the imperfect filtering. Frames with physical destination addresses are checked against
the single physical address.

For any incoming frame with a multicast destination address, the SGEC applies the
standard Ethernet CRC function to the first six bytes containing the destination address,
then uses the most significant nine bits of the result, as a bit index into the table. If the
indexed bit is set, the frame is accepted. If it is cleared, the frame is rejected.

This filtering mode is called imperfect because multicast frames not addressed to this
station may slip through, but it still decreases the number of frames the host is presented
with.

The format for the hash table and the physical address is shown in Figure 10-18.

10-40 KA660 Network Interface

31

bytes <3 :0> I
<7:4>

<63:60>

16 15

HASH FILTER 00
HASH=FIL TER=Ol

HASH FILTER 14
HASH=FILTER= 15

<67:64> PHYSICAL ADDRESS
<71 :6S> xxxxxxxxxxxxxxxx

<75:72> xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

<127:120> xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxx xxx = don't care

o

Figure 10-18 Imperfect Filtering Setup Frame Format

bit

Physical/Multicast bit

Bits are sequentially numbered from right to left and down the table. For example, if
CRC(destination address)<8:0> = 33, the SGEC examines bit #1 in the second longword.

Example 10-2 illustrates an imperfect filtering setup frame buffer.

Ethernet addresses to be filtered:
• 25-00-25-00-27-00

A3-C5-62-3F-25-S7
D9-C2-CO-99-0B-82
7D-4S-4D-FD-CC-OA
E7-Cl-96-36-89-DD
61-CC-28-55-D3-C7
6B-46-0A-55-2D-7E

• A8-12-34-35-76-08

Setup frame buffer:

• 00000000
10000000
00000000
00000000
00000000
40000000
OOOOOOSO
00100000

Example 10-2 (Cont.) Imperfect Filtering Buffer

e

KA660 Network Interface 10-41

00000000
10000000
00000000
00000000
00000000
00010000
00000000
00400000
353412A8
00000876

o Ethernet multicast addresses written for address display

• An Ethernet physical address

6) The first part of an imperfect filter setup frame buffer with set bits for the ..
multicast addresses

e The second part of the buffer with the. physical address

Example 10-2 Imperfect Filtering Buffer
Example 10-3 shows a C program to compute the hash bucket heads and create the
resultant setup frame buffer.

#include <stdio>

unsigned int imperfect_setup_frame[128/4],
/* bytes */

address [2] ,
crc[33]; /* CRC residue vector */

main ()
{

/*
int i, hash;

*/

/* The setup buffer - 128 */

./* This program accepts 48 bits Ethernet addresses and builds a Setup frame */
/* buffer for imperfect filtering. */
/* * /
/*
/*
/*
/*
/*
/*
/*

Addresses must be entered in hexadecimal. The multicast bit is the least */
significant bit of the least significant digit of the first 32 bits. */
Non-multicast addresses are ignored. */

*/
Input is terminated by keying CTRL/Z after which the program prints out
the buffer. */

*/
main_loop:

/* Prompt user for the Ethernet address */
printf("\n\n Enter the first 32 bits (HEX) - ");
if (scanf("%x", &address[O]) == EOF)

printf("\n\n Imperfect Setup buffer printout\n");
for (i=O; i < 128/4; i++)

printf("%08X\n", imperfect_setup_frame[i]);
exit(l);

Example 10-3 (Cont.) Imperfect Filtering Setup Frame Buffer Creation C Program

*/

10-42 KA660 Network Interface

printf("\n Enter the remal.nl.ng 16 bits (HEX) - ");
scanf("%x",&address[l]);

/* Ignore non multicast addresses
if «address [0] & I) == O}

goto main_loop:

/* Compute the hash function */

*/

hash = address_crc(address[O],address[l]};

/* Set the appropriate bit in the Setup buffer */
imperfect setup frame [hash/32] =

imperfect_setup_frame[hash/32] I 1 « hash%32:

goto main_loop:

int address_crc(unsigned int Isb32 , unsigned int msb16)
{

int j,hash = 0;

/* Set CRC to all 1's

for (j=O; j < 33; j++)
crc[j] = 1;

/* Compute the address CRC by

for (j=O; j < 32; j++)
next state (lsb32 & 1«j ? 1 :

for (j=O; j < 16; j++)
nextstate(msb16 & 1«j ? 1 :

*/

running the CRC 48 steps

O} ;

O} ;

*/

/* Extract 9 most significant bits from the CRC residue */

for (j=24; j < 33; j++)
hash = hash«l I crc[j];

return hash;

next state (dat)
int dati
{

int i,mean;
mean = crc[32] ~ dati
for(i=32;i>=2;i--} crc[i]=crc[i-l];
crc[27] == crc[27] ~ mean;
crc[24] = crc[24] ~ mean;
crc[23] crc[23] ~ mean;
crc[17] crc[17] ~ mean;
crc[13] crc[13] ~ mean;
crc[12] crc[12] ... mean;
crc[11] crc[11] ~ mean;
crc[9] crc[9] ... mean;
crc[8] crc[8] ~ mean;
crc[6] crc[6] ... mean;
crc[5] crc[5] ... mean;
crc[3] crc[3] ... mean;
crc[2] crc[2] ... mean;
crc[l] = mean;

Example 10-3 Imperfect Filtering Setup Frame Buffer Creation C Program

KA660 Network Interface 10-43

10.3.19 SGEC Operation

10.3.19.1 Hardware and Software Reset
The SGEC responds to two types of reset commands: A hardware reset through the
RESET_L pin, and a software reset command triggered by setting NICSR6<RE>. In
both cases, the SGEC aborts all ongoing processing and starts the reset sequence. The
SGEC restarts and reinitializes all internal states and registers. No internal states are
retained, no descriptors are owned, and all the host visible registers are set to zero, except
where otherwise noted.

NOTE
The SGEC does not explicitly disown any owned descriptor; so descriptors
OWNED bits can be left in a state indicating SGEC ownership.

Table 10-39 indicates the NICSR fields which are not set to zero after reset:

Table 10-39 NICSR Fields Not Set to Zero After Reset

Field

NICSR3

NICSR4

NICSR5<DN>

NICSR6<BL>

NICSR6<RE>

NICSR7

NICSR9

Value

Unpredictable

Unpredictable

1

1

Unpredictable after HARDWARE reset

1 after SOFTWARE reset

Unpredictable

RT = TT = 1250

After the reset sequence completes, the SGEC executes the self test procedure to do basic
checking.

If the self test completes successfully, the SGEC initializes the SGEC, and sets the
initialization done flag NICSR5<ID>.

At the first failure detected in one of the basic tests executed in the self_test routine, the
test is aborted and the self_test failure NICSR5<SF> is set together with the self_test
error status NICSR5<SS>which indicates the failure reason.

INFO
The self test takes 25 milliseconds to complete after a hardware or software
RESET.

If the initialization completes successfully, the SGEC is ready to accept further host
commands. Both the reception and transmission processes are placed in the STOPPED
state.

Successive reset commands (either hardware or software) could be issued. The only
restriction is that SGEC NICSRs should not be accessed during a one millisecond period
following the reset. Access during this period results in a CP-BUS timeout error. Access
to SGEC NICSRs during the self test is permitted; however, only NICSR5 reads should
be performed.

10-44 KA660 Network Interface

10.3.19.2 Interrupts
Interrupts are generated as a result of various events. NICSR5 contains all the status
bits which could cause an interrupt, provided NICSR6<IE> is set. The port driver must
clear the interrupt bits (by writing a one to the bit position), to enable further interrupts
from the same source.

Interrupts are not queued, and if the interrupting event reoccurs before the port driver
has responded to it, no additional interrupts are generated. For example, NICSR5<RI>
indicates one or more frames were delivered to host memory. The port driver should scan
all descriptors, from its last recorded position up to the first SGEC owned one.

An interrupt is only generated once for simultaneous, multiple interrupting events. It is
the port driver responsibility to scan NICSR5 for the interrupt cause(s). The interrupt
is not regenerated, unless a new interrupting event occurs after the host acknowledged
the previous one, and provided the port driver cleared the appropriate NICSR5 bites).
For example, NICSR5<TI> and NICSR5<RI> could both set, the host acknowledges the
interrupt and the port driver begins executing by reading NICSR5. Now NICSR5<RU>
sets. The port driver writes back its copy of NICSR5, clearing NICSR5<TI> and
NICSR5<RI>. After the host IPL is lowered below the SGEC level, another interrupt
is delivered with the NICSR5<RU> bit set.

If the port driver clear all NICSR5 set interrupt bits before the interrupt has been
acknowledged, the interrupt is suppressed.

10.3.19.3 Stanup Procedure
The following sequence of checks and commands must be performed by the port driver to
prepare the SGEC for operation:

1. Wait for the SGEC to complete its initialization sequence by polling on NICSR5<ID>
and NICSR5<SF> (refer to Section 10.3.7 for details).

2. Examine NICSR5<SF> to find out whether the SGEC passes its self test. If it does
not, it should be replaced (refer to Section 10.3.7 for details).

3. Write NICSRO to establish system configuration dependent parameters (refer to
Section 10.3.3 for details).

4. If the port driver intends to use VAX virtual addresses, NICSR7 must be written to
identify the system page table to the SGEC (refer to Section 10.3.9 for details).

5. If the port driver changes the default settings of the watchdog timers, it must write
to NICSR9 (refer to Section 10.3.11 for details).

6. The port driver must create the transmit and receive descriptor lists, then write to
NICSR3 and NICSR4 to provide the SGEC with the starting address of each list.
The first descriptor on the transmit list usually contains a setup frame (refer to
Section 10.3.6 for details).

7. Write NICSR6 to set global operating parameters and start the transmission and
reception processes. Theses processes enter the RUNNING state and attempt
to acquire descriptors from the respective descriptor lists and begin processing
incoming and outgoing frames (refer to Section 10.3.8 for details). The processes
are independent of each other and can be started and stopped separately.

CAUTION
If address filtering (either perfect or imperfect) is desired, the reception
process should only be started after the setup frame has been processed.

KA660 Network Interface 10-45

8. The port driver now waits for any SGEC interrupts. If either the reception or
transmission processes were SUSPENDED, the port driver must issue the poll
demand command after it has rectified the suspension cause.

10.3.19.4 Reception Process
While in the RUNNING state, the reception process polls the receive descriptor list,
attempting to acquire free descriptors. Incoming frames are processed and placed in
acquired descriptors' data buffers, while status information is written to the descriptor
RDESO words. The SGEC always tries to acquire an extra descriptor in anticipation of
incoming frames. Descriptor acquisition is attempted under the following conditions:

• Immediately after being placed in the RUNNING state through setting of
NICSR6<SR>

• The SGEC begins writing frame data to a data buffer pointed to by the current
descriptor.

• The last acquired descriptor chained (RDES1<CA> = 1) to another descriptor.

• A virtual translation error was encountered RDESO<TN> while the SGEC was
translating the buffer base address of the acquired descriptor.

As incoming frames arrive, the SGEC strips the preamble bits and stores the frame data
in the receive FIFO. Concurrently, it performs address filtering according to NICSR6
fields AF, HP, and its internal filtering table. If the frame fails the address filtering, it
is ignored and purged from the FIFO. Frames which are shorter than 64 bytes, due to
collision or premature termination, are also ignored and purged from the FIFO, unless
NICSR6<PB> is set.

After 64 bytes have been received, the SGEC begins transferring the frame data to the
buffer pointed to by the current descriptor. If data chaining is enabled (NICSR6<DC>
clear(, the SGEC writes frame data overflowing the current data buffer into successive
buffer(s). The SGEC sets the (RDESO<FS> and RDESO<LS» in the first and last
descriptors, respectively, to delimit the frame. Descriptors are released (RDESOOW» bit
cleared) as their data buffers fill up or the last segment of a frame has been transferred
to a buffer.

The SGEC sets RDESO<LS> and the RDESO status bits in the last descriptor it releases
for a frame. After the last descriptor of a frame is released, the SGEC sets NICSR5<RI>.

This process is repeated until the SGEC encounters a descriptor flagged as owned by the
host. After filling up all previously acquired buffers, the reception sets NICSR5<RU> and
enters the SUSPENDED state. The position in the receive list is retained.

Any incoming frames while in this state causes the SGEC to fetch the current descriptor
in the host memory. If the descriptor is now owned by the SGEC, the reception re-enters
the RUNNING state and starts the frame reception.

If the descriptor is still owned by the host, the SGEC increments the Missed Frames
Counter (NICSR10<MFC» and ,discards the frame.

Table 1040 summarizes the reception process state transitions and resulting actions:

10-46 KA660 Network Interface

Table 10-40 Reception Process State Transitions

From State Event To State Action

STOPPED Start reception command RUNNING Receive polling begins from
last list position or from
the list head if this is the
first start command issued,
or if the receive descriptor
list address (NICSR3) was
modified by the port driver.

RUNNING SGEC attempts acquisition SUSPENDED NICSR5<RU> is set when
of a descriptor owned by the the last acquired descriptor
host buffer is consumed. Position

in list is retained.

RUNNING Stop reception command STOPPED Reception process is
STOPPED after the current
frame, if any, is completely
transferred to data buffer(s).
Position in list is retained.

RUNNING Memory or host bus parity STOPPED Reception is cut off and
error encountered NICSR5<ME> is set.

RUNNING Reset command STOPPED Reception is cut off.

SUSPENDED Rx Poll demand or Incoming RUNNING Receive polling resumes from
frame and available last list position or from the
descriptor list head if NICSR3 was

modified by the port driver.

SUSPENDED Stop reception command STOPPED None.

SUSPENDED Reset command STOPPED None.

10.3.19.5 Transmission Process
While in the RUNNING state, the transmission process polls the transmit descriptor
list for any frames to transmit. Frames are built and transmitted on the Ethernet wire.
Upon completing frame transmission (or giving up), status information is written to
the TDESO words. Once polling starts, it continues (in sequential or descriptor chained
order) until the SGEC encounters a descriptor flagged as owned by the host, or an error
condition. At this point, the transmission process is placed in the SUSPENDED state
and NICSR5<TI> is set.

NICSR5<TI> is also set after completing transmission of a frame which has TDESl<IC>
set in its last descriptor. In this case, the transmission process remains in the RUNNING
state.

Frames may be data chained and span several buffers. Frames must be delimited by
TDESl<FS> and TDESl<LS> in the first and last descriptors, respectively, containing
the frame. While in the RUNNING state, as the transmission process starts, it first
expects a descriptor with TDESl<FS> set. Frame data transfer from the host buffer to
the internal FIFO is initiated. Concurrently, if the current frame had TDESl<LS> clear,
the transmission process attempts to acquire the next descriptor, expecting TDESl<FS>
and TDESl<LS> to be clear indicating an intermediary buffer, or TDESl<LS> to be set,
indicating the end of the frame. After the last buffer of the frame has been transmitted,
the SGEC writes back final status information to the TDESO word of the descriptor
having TDESl<LS> set, optionally sets NICSR5<TI> ifTDESl<IC> was set, and repeats
the process with the next descriptor(s). Actual frame transmission begins after at least
72 bytes have been transferred to the internal FIFO, or a full frame is contained in the

KA660 Network Interface 10-47

FIFO. Descriptors are released (TDESO<OW> bit cleared) as soon as the SGEC is through
processing a descriptor.

Transmit polling suspends under the following conditions:

• The SGEC reaches a descriptor with TDESO<OW> clear. To resume, the port driver
must give descriptor ownership to the SGEC and issue a poll demand command.

• The TDESl<FS> and TDESl<LS> are incorrectly paired or out of order. TDESO<LE>
is set.

• A frame transmission is given up due to a locally induced error. The appropriate
TDESO bit is set.

The transmission process enters the SUSPENDED state and sets NICSR5<TI>. Status
information is written to the TDESO word of the descriptor causing the suspension. The
position in the transmit list, in all of these cases, is retained. The retained position is
that of the descriptor following the last descriptor closed (set to host ownership) by the
SGEC."

NOTE
The SGEC does not automatically poll the Tx descriptor list and the port driver
must explicitly issue a Tx poll demand command after rectifying the suspension
cause.

The following table summarizes the transmission process state transitions:

Table 10-41 Transmission Process State Transitions

From State Event To State

STOPPED Start transmission command. RUNNING

RUNNING SGEC attempts acquisition of a SUSPENDED
descriptor owned by the host.

RUNNING Out-of-order delimiting flag SUSPENDED
(TDESO <FS> or TDESO<LS»
encountered.

RUNNING Frame transmission aborts due to SUSPENDED
a locally induced error.

RUNNING. Stop transmission command. STOPPED

Action

Transmit polling
begins from the last
list position or from
the head of the list if
this is the first start
command issued, or if
the transmit descriptor
list address (NICSR4)
was modified by the
port driver.

NICSR5<TI> is set.
Position in list is
retained.

TDESO<LE> and
NICSR5<TI> are
set. Position in list
is retained.

Appropriate TDESO
and NICSR5<TI> bits
are set. Position in list
retained.

Transmission process
is STOPPED after the
current frame, if any, is
transmitted. Position in
list is retained.

10-48 KA660 Network Interface

Table 10-41 (Cont.) Transmission Process State Transitions

From State

RUNNING

RUNNING

RUNNING

SUSPENDED

SUSPENDED

SUSPENDED

Event

Transmit watchdog expires.

Memory or host bus parity error
encountered.

Reset command.

Tx Poll demand command.

Stop transmission command.

Reset command.

10.3.19.6 Loopback Operations
The SGEC supports two loopback modes:

• Internal loopback

To State

STOPPED

STOPPED

STOPPED

RUNNING

STOPPED

STOPPED

Action

Transmission is cut
off and NICSR5<TW>
, TDESO<TO> are
set. Position in list is
retained.

Transmission is cut off
and NICSR5<ME> is
set.

Transmission is cut off.

Transmit polling
resumes from last
list position or from the
list head ifNICSR4 was
modified by the port
driver.

None.

None.

This mode is generally used to verify correct operations of the SGEC internal logic.
While in this mode, the SGEC takes frames from the transmit list and loops them
back, internally, to the receive list. The SGEC is disengaged from the Ethernet wire
while in this mode.

• External loopback

This mode is generally used to verify correct operations up to the Ethernet cable.
While in this mode, the SGEC takes frames from the transmit list and transmits
them on the Ethernet wire. Concurrently, the SGEC listens to the line which carries
its own transmissions and places incoming frames in the receive list.

NOTE
Caution should be exercised in this mode as transmitted frames are placed
on the Ethernet wire. Furthermore, the SGEC does not check the origin of
any incoming frames, consequently, frames not necessarily originating from
the SGEC might make it to the receive buffers.

In either of these modes, all the address filtering and validity checking rules apply. The
port driver needs to take the following actions:

1. Place the reception and transmission processes in the STOPPED state. The port
driver must wait for any previously scheduled frame activity to cease. This is done
by polling the TS and RS fields in NICSR5.

2. Prepare appropriate transmit and receive descriptor lists in host memory. These may
follow the existing lists at the point of suspension, or may be new lists which will
have to be identified to the SGEC by appropriately writing NICSR3 and NICSR4.

KA660 Network Interface 10-49

3. Write to NICSR6<OM> according to the desired loopback mode and place the
transmission and reception processes in the RUNNING state through Start
commands.

4. Respond and process any SGEC interrupts, as in normal processing.

To restore normal operations, the port driver must execute above step one, then write the
OM field in NICSR6 with 00.

10.3.19.7 DNA CSMAlCD Counters and Events Support
This section describes the SGEC features that support the port driver in implementing
and reporting the specified counters and events.

Table 10-42 CSMAlCD Counters

Counter SGEC feature

Time since counter creation

Bytes received

Bytes sent

Frames received

Frames sent

Multicast bytes received

Multicast frames received

Frames sent, initially deferred

Frames sent, single collision

Frames sent, multiple collisions

Send failure - excessive collisions

Send failure - carrier check failed

Send failure - short circuit

Send failure - open circuit

Send failure - Remote Failure to Defer

Receive failure - Block Check Error

Supported by the host driver.

Port driver must add up the RDESO<FL> fields of
all successfully received frames.

Port driver must add up the TDES2<BS> fields of
all successfully transmitted buffers.

Port driver must count the successfully received
frames in the receive descriptor list.

Port driver must count the successfully transmitted
frames in the transmit descriptor list.

Port driver must add up the RDESO<FL> fields
of all successfully received frames with multicast
address destinations.

Port driver must count the successfully received
frames with multicast address destinations.

Port driver must count the successfully transmitted
frames with TDESO<DE> set.

Port driver must count the successfully transmitted
frames with TDESO<CC> equal to 1.

Port driver must count the successfully transmitted
frames with TDESO<CC> greater than 1.

Port driver must count the transmit descriptors
having TDESO<EC> set.

Port driver must count the transmit descriptors
having TDESO<LC> set.

'I'wo successive transmit descriptors with the No_
carrier flag TDESO<NC> set indicate a short circuit.

'I'wo successive transmit descriptors with the
Excessive_collisions flag TDESO<EC> set with
the same time domain reflectometer value
TDESO<TDR> indicate an open circuit.

Flagged as a late collision TDESO<LC> in the
transmit descriptors.

Port driver must count the receive descriptors
having RDESO<CE> set with RDESO<DB> cleared.

10-50 KA660 Network Interface

Table 10-42 (Cont.) CSMA/CD Counters

Counter

Receive failure - Framing Error

Receive failure - Frame too long

Unrecognized frame destination

Data overrun

System buffer unavailable

User buffer unavailable

Collision detect check failed

SGEC feature

Port driver must count the receive descriptors
having both RDESO<CE> and RDESO<DB> set.

Port driver must count the receive descriptors
having RDESO<TL> set.

Not applicable.

Port driver must count the receive descriptors
having RDESO<OF> set.

Reported in the Missed_frame counter
NICSR10<MFC> (refer to Table 10-20).

Not applicable.

Port driver must count the transmit descriptors
having TDESO<HF> set.

CSMAlCD specified events can be reported by the port driver based on the above table.
The initialization failed event is reported through NICSR5<SF>.

11
KA660 Mass Storage Interface

The KA660 contains a nSSI bus interface which is implemented with the single host
adapter chip (SHAC). This interface allows the KA660 to transmit packets of data to,
and receive packets of data from, as many as seven other nSSI devices (typically RF type
disk drives and TF type streaming tape drives). It should also be noted that the SHAC
supports CP bus parity protection.

11.1 Single Host Adapter Chip Introduction
A single host adapter chip (SHAC) is a single-chip, VLSI version of an SCA port that
uses a nSSI bus as the physical interconnect. Another SCA realization, CI, has defined
a port-driver/port interface which has been used to connect VAX computers in clusters.
nSSI has adopted the same interface, so the same VMS operating system port driver can
drive either a CI-port or SHAC. The SHAC can be used to connect a host to any other
device that can communicate through the CI-nSSI protocol. In particular, it provides a
solution to the following:

• The problem of interfacing a group of mass-storage device controllers (MSnCs) to a
VAX.

• The problem of interfacing several VAX computers to a common group of MSnCs and,
if higher level protocols support this option, to one another.

Where two or more VAX computers connect to a group of MSnCs (or to one another)
through nSSI, each has a SHAC or another nSSI port. When a group of MSnCs connect
to the nSSI bus, the controllers provide both the bus interface and the intelligent control
required to respond to the CI commands received over the nss!.

On the I-byte wide nSSI bus both the MSnCs and the several VAX computers
communicate at high-speed, with a 4 to 5 Megabyte burst transfer rate. The SHAC
handles the problem of providing the interface between this nSSI bus and the SOC CPU
having direct host memory access (nMA) over the host's 32-bit wide, 16 Megabyte CP
bus. All communications between those connected to the nSSI follow the CI protocol with
the nSSI protocols providing handshaking in the transactions.

Structural parameters limit the number of possible combinations that can be realized
with nSSI and SHAC.

• A single nSSI bus has room for eight nodes which may be partitioned among host
adapters (for example, SHACs) and MSDCs.

• As many as four SHACs can be installed on a single host bus.

• Because there must be a host, there can be as many as enen MSnCs on a single
nSSI.

11-1

11-2 KA660 Mass Storage Interface

The SHAC provides a small amount of buffering (1.2 KByte) on chip to improve bus
utilization on both sides, but the SHAC is designed to pass data from one bus to the
other as rapidly as the two busses permit. DMA services to and from the main memory
reside in the SHAC, which responds to requests for transfers between the host and the
remote nodes.

The SHAC is operated by an on-chip RISC that obtains its code and internal data from
on-chip RAM and ROM. The RAM is loaded from main memory both during initialization
and as circumstances require during normal run time. With this capability, it can
read in new code and data from the main memory and thus adapt its behavior to new
circumstances. This permits inexpensive upgrades of SHACs after they are installed in
the field. Furthermore, it allows the SHAC to store infrequently accessed code in main
memory, providing more capability than could be included in on-chip ROM.

The overall communication architecture under which the SHAC works is Digita1's
Systems Communications Architecture (SCA). In this general architecture, four layers are
defined, as shown in Figure 11-1. The architecture can be realized in a variety of ways.
Two particularizations of the lowest two levels in the diagram are Computer Interconnect
(CI) and DSSI. They share the same lowest host layer (CI port driver) but have distinctly
different physical interconnects. The layers between the port driver and the DSSI bus
itself can be realized at both board and chip level. The SHAC is a chip-level product
which connects the host-bus to the DSSI bus, controlled by the SOC CPU through a CI
port driver and accepts and delivers CI-defined packets over the DSSI bus. Layers above
the port driver are invisible to SHAC.

SCA

3. 1/0 Applications
(SYSAP)

2. System Communications
(SCS) CI DSSI

1. Port/Port Driver 1b. CI Port Driver
(PDP)

1a. CI Port 1 a. DSSI Port

O. Physical Interconnect Ob. CI Data Link Ob. DSSI Data Link
(PI)

Oa. CI Bus Oa. DSSI Bus

Figure 11-1 Relationship of the DSSI to SeA and CI

S
H
A
C

The port driver maintains a set of seven queues in its system space. Four of these
contain commands for the SHAC to execute. The priority of the command is determined
by the queue it is on; order is determined by the position in the queue. Another queue
contains all of the responses for the host (from the SHAC or the remote nodes). Finally,
there are two queues of "empty envelopes" for the host and the SHAC to use to stuff with
commands and responses and then to queue them on the other queues.

These envelopes are simply standard-sized "queuable" blocks of host memory. All
commands and responses are copied into one of these standard-sized blocks. Included
in the header on each block are a pair of queue pointers (for a doubly linked queue) and
various standard identifiers which specify what is contained in the block and how much
of the block represents the actual command or response. To be visible, a block must be
on a queue, where pointers from other elements or the queue header show its presence.
Once a block is removed from a queue, it is visible only to the entity which removed it.

KA660 Mass Storage Interface 11-3

The SHAC's principal task is in accepting and delivering "mail" to other nodes.
Externally (for example, on DSSI) the SHAC deals only in standard CI formats.
Internally, the SHAC deals with the envelopes just described and with blocks of data.
Because DSSI deals with bytes and the CP bus deals in longwords, the SHAC must
frequently do byte alignment tasks during transcription.

The SHAC deals with the port driver in the virtual-address mode, unloading from the
SOC CPU the obligation to do virtual-to-physical address translation and to be aware
of page crossings in virtually-contiguous blocks of information. The SHAC supports full
virtual address translation including the use of global I/O pages (to a depth of one).

The rest of this SHAC overview section describes a typical set of steps that the SHAC
goes through in serving its role as the CI Port, with mail in both directions.

11.2 CI-DSSI Overview
At start-up, the host provides the SHAC with a number of pointers to internal host
structures. One of the structures, the port queue block (PQB), contains pointers and data
on all the queues that the host maintains for CI. The SHAC uses this data to carry on its
normal business in the following way:

If traffic is not coming in on the DSSI bus, the SHAC goes to the highest comnland queue
which has something enqueued. Choices are CMDQO .. CMDQ3, with 3 being most urgent.
It dequeues an element from the queue and examines its header to see what it must do
with the queue entry. It could be a command for the SHAC or an item to be delivered to
one of the nodes on the DSSI. A command might be an order to deliver a block of data to
a remote node. An item to be delivered would be either a datagram or a message.

A datagram is a "one-sided" communication-that is, one which will be sent without any
assurance of either receipt or reply. An obvious application for such a communication is
a request for the party at the other node to identify itself. If the host does not know if
anything at all is out there, it must transmit its request without expectation. For this or
any similar purpose, it employs a datagram. Datagrams lengths are guaranteed to fit in
a datagram envelope.

A message is a "two-sided" communication used when a virtual circuit (an established
formal relationship) between members of the bus exist. Once such a virtual circuit is
established, the host(s) understand how to make requests of the other side. Such a
request could be an order for a data transfer in either direction. The message itself
(move data) is contained in a command (deliver this message to ...). Message lengths are
guaranteed to fit in a message envelope. Messages are always delivered sequentially to
a given node-that is, in the order in which they were enqueued on a particular queue.
While the SHAC supports retries if a message fails to get through, once the retry limit is
reached without successful delivery, SHAC returns the command to the host, marking it
as undeliverable, and then breaks the virtual circuit to that node.

An example of full transaction would occur as follows:
,

1. The host queues a message for node 3 (for example, a disk controller) to copy a block
of 16 Kbyte from host memory, starting at location X and to be stored in location Y on
disk. The queues are doubly-linked, so at the top of every envelope there is a forward
link FLINK and a backward link BLINK. Enqueuing involves putting link values
into the new element's FLINK and BLINK and making the previous last-element's
FLINK and the queue header's BLINK point to the new element.

11-4 KA660 Mass Storage Interface

2. When this message gets to the head of the queue, the SHAC dequeues it 1, reads the
header and finds that it should "dial up" node 3. To do this, the SHAC goes through
the DSSI protocols, contending for the DSSI bus and then, if successful in getting the
bus, specifying node 3 as the target. These steps are called arbitration and selection.

3. Node 3 responds by asking for the DSSI-command (command-out phase). In
this phase, the SHAC tells node 3 how many bytes are coming and repeats the
identification information to confirm a proper selection. Node 3 then tells the SHAC
to switch to the data-out phase. The SHAC sends a pair of CI header bytes to identify
what type of message this is, and then proceeds to transmit the actual message read
from the message block in host memory. The step-by-step details of the transfer are
handled by hardware in the SHAC which permits simultaneous, buffered reading and
writing on the two busses to which the SHAC is connected. Upon proper completion
of the transmission, node 3 responds with a I-byte acknowledgment of success (parity
and check-sum proper and no other errors).

4. The SHAC is still holding the only pointer to the message block in host memory.
It returns this to the host in one of two ways. If the host has requested a "return
receipt," the SHAC puts the block on the response queue RSPQ to indicate proper
delivery. This is where the port-driver software in the host looks for responses.

Alternatively, the SHAC simply puts it back on the MFREEQ which holds the
standard envelopes for messages. At this point the single message has been delivered
and the message envelope is back in circulation.

5. After whatever delay node 3 needed to process the message, it contends for the bus
and upon winning it, selects the SHAC as its target. It then sends a standard CI
message as described telling the SHAC to transmit the required data. In general, the
SHAC does not do this immediately, because it is obliged to handle traffic according
to position in the queue and according to queue priority. Instead, it takes an empty
envelope from MFREEQ, writes into it the message it is receiving, and puts it on the
proper CMDQ as specified in the message it just received.

6. When that message gets to the head of its queue, the SHAC dequeues it once more,
carries out its command (in transmissions of 4 Kbyte whenever possible (a 4 Kbyte
transmission takes about 1 millisecond on the DSSI), possibly interleaving ot~er
transmissions of higher priority to this node or any priority to other nodes, until
the last byte is sent. Once the SHAC has completed this operation, it returns the
message block to the MFREEQ.

7. Node 3 has put its data on the disk and must report to the host the successful
completion of the transaction. Again it contends for the bus and upon winning
specifies the SHAC as its target. Then it sends a message to the port-driver through
the SHAC confirming the successful transaction. The SHAC dequeues another
free envelope and writes this message into that block. Then it queues it on the
host's RSPQ. Except for higher level responses in the host, that concludes a whole
transaction.

The enqueue/dequeue operations represent a considerable fraction of the effort in
delivering a message or datagram. To minimize this effort, the SHAC caches a small
number of the envelopes (that is, it hangs onto the pointers to the memory blocks) as
they become free in its normal activity. It only fetches an envelope from the free queues
when its own supply has disappeared, and it only returns them to the free queues when
it has a full supply (four of a type). By this and other attention to effort reduction and
traffic conservation, the SHAC attempts to optimize its rate of doing useful work.

1 Note that the SHAe ends up holding the only pointer to the dequeued block of memory that
constitutes the queue element. The port driver no longer "knows" where it is.

KA660 Mass Storage Interface 11-5

11.3 SHAC Registers
The CPU communicates directly with the SHAC chip through a set of device registers
in each SHAC. These registers occupy a one-page (512-byte) region in I/O address-space,
aligned on a page boundary.

All of the registers are longword registers. They may be accessed only through longword
operations.

In addition to the access restrictions listed for specific registers, no register other
than SHAC software chip reset (SSWCR) may be read or written while certain chip
intialization functions are being executed. The results of such an access during the
100 milliseconds following a reset (power-up or a write to SSWCR), or during the 50
microseconds following a MIN-bit (PMCSR<O» reset are UNPREDICTABLE.

The registers can be divided into two categories:

• The CI port registers

• The SHAC specific registers

11.3.1 CI Port Registers

11.3.1.1 Port Queue Block Base Register (PQBBR)
SHAe IJO Address: 2000 424816

This port queue block base register (PQBBR) contains the uppermost bits of the physical
address of the base of the port queue block (PQB). After a RESET the PQBBR is loaded
by the SHAC with configuration information. This information remains in the PQBBR
until the PQBBR is written with the address of the port queue block. Figure 11-2 shows
the format. Table 11-1 lists the bit descriptions.

PQBBR is writeable only when the port is in the disabled or disabled/maintenance state
and readable anytime (except during chip intialization).

3
1

MBZ

2 2
1 0

Longword Read/Write Access.

PCB Base <29:9>

Figure 11-2 Port Queue Block Base Register (PQBBR)

o

11-6 KA660 Mass Storage Interface

Table 11-1 Port Queue Block Base Address Register (PQBBR)

Data Bit

<31:21>

<20:0>

Name

MBZ

PQB Base
<29:9>

Description

Read as zero. Must be written as zero.

This field contains the uppermost bits of the physical address of
the base of the PQB. Note, the PQB must be page-aligned, so the
remaining bits of the address are assumed to be zero.

Following chip reset, PQBBR contains the configuration shown in Figure 11-3. The bit
descriptions are listed in Table 11-2.

3
1

HW Ver.

22
43

FW Ver.

1 1
65 87 o

SHM Ver. Maint 10

Figure 11-3 Port Queue Block Base Register (PQBBR) After RESET

Table 11-2 Port Queue BLock Base Address Register Bits After RESET

Data Bit

<31:24>

<23:16>

<15:8>

<7:0>

Name

HWVer.

FWVer.

SHWVer.

Maint ID

Description

Hardware version. The hardware version of the SHAC which is
greater than zero.

Firmware version. The Firmware version of the SHAC which is
greater than zero.

Shared host memory version. The shared host memory version of
the SHAC which is zero until the shared host memory data area
has been read in; thereafter, greater than zero.

Cl port maintenance ID. The Cl port maintenance ID which
should always be 22 16.

11.3.1.2 Port Status Register (PSR)
SHAC I/O Address: 2000 424C16

The port status register (PSR) contains a status report. If interrupts are enabled, for
example (PMCSR<2» set, the port interrupts the SOC CPU each time that it writes to
this register. Once an interrupt is requested by the port, the value of PSR is fixed and
is not changed until the SOC CPU releases it by writing the port status release control
register (PSRCR). The port status register format is shown in Figure 11--4 and the bit
descriptions are in Table 11-3.

PSR is read only and may be read anytime by the port driver, except during chip
initialization. Its value following a write to it is UNPREDICTABLE.

3 3
1 0

I I
22211111
2 1 098 765

I I I I I I I MBZ

KA660 Mass Storage Interface 11-7

876 5 4 3 2 1 0

I I I I I I I I I
ROA
MFOE
poe
Pie
DSE
MSE
MTE
Mise
SHME
SMPE
ISN
DE
ODE
II
ME

Longword Read Only Access.

ESB90P0071

Figure 11-4 pon Status Register (PSR)

Table 11-3 pon Status Reg Ister Bit Descriptions

Data Bit

<31>

<30:22>

<21>

<19>

<18>

Name

MTE

MBZ

II

QDE

DE

ISN

Description

Maintenance error. When set, the port has detected an implementation
specific error (or hardware status condition). The source of the error may
be more accurately determined from the other bits in the upper word of
this register (PSR) and the contents of other registers. Also when set the
port is in the uninitialized state (port is non-functional). Maintenance
errors normally indicate a severe SHAC hardware or software failure.

Read as zero, writes have no effect.

TIlegal interrupt. When set, this bit indicates a SHAC internal error,
detected when the SHAC's microprocessor received an interrupt from a
invalid source. This causes ME (PSR<31» to set and the port to enter
the uninitialized state (port is non-functional).

QUIP detected error. When set this bit indicates a SHAC internal error
detected when the SHAC's microprocessor (QUIP) was given an invalid
instruction. This causes ME (PSR<31» to set and the port to enter the
uninitialized state (port is non-functional).

Diagnostic error. When set an error was detected while the SHAC was
running its internal self-test. This causes ME (PSR<31» to set and the
port to enter the uninitialized state (port is non-functional).

TIlegal segment number. When set this indicates a SHAC internal error
in which it attempted to load a non-existent external segment from the
SHAC shared host memory. This causes ME (PSR<31» to set and the
port to enter the uninitialized state (port is non-functional).

11-8 KA660 Mass Storage Interface

Table 11-3 (Cont.) pon Status Register Bit Descriptions

Data Bit

<17>

<16>

<15:8>

<7>

<4>

<2>

<1>

Name

SMPE

SHME

MBZ

MISC

ME

MSE

DSE

PIC

PDC

MFQE

RQA

Description

Slave mode parity error. This bit is set by the occurrence of a parity error
during a SOC CPU access of a SHAC device register. The causes ME
(PSR<31» to set and the port to enter the uninitialized state (port is
non-functional).

Share host memory error. This bit is set by the occurrence of an error
involving the SHAC shared host memory. The causes ME (PSR<31» to
set and the port to enter the uninitialized state (port is non-functional).

Read as zero. Writes have on effect.

Miscellaneous. When set this bit indicates that the port microcode has
detected one of the miscellaneous errors and the port is about to enter the
disabled I maintenance state. The actual error code is stored in the port
error status register.

Maintenance timer expiration. When set the maintenance timer has
expired. The port is in the uninitialized I maintenance state.

Memory system error. When set the port has encountered an
uncorrectable data or non-existent memory error in referencing memory.
Port is in the disabled or disabled I maintenance state. See the port failing
address register (PFAR) for further information.

Data structure error. When set, the port has encountered an error in a
port data structure (for example, queue entry, PQB, BDT, or page table).
Port is in the disabled or disabled I maintenance state. See the port
error status register (PESR) and the port failing address register (PFAR)
for further information. Note that errors in queue structures leave the
queues locked.

Port initialization complete. When set, the port has completed internal
initialization. The port is in the disabled or disabled/ maintenance state.

Port disable complete. When set, the port is in the disabled or disabled
I maintenance state.

Message free queue empty. When set, the port attempted to remove an
entry from the message free queue (MFREEQ) and found it empty. Port
processing of commands continues and, thus, the MFREEQ may not be
empty at the time the port driver gets control.

Response queue available. When set this bit indicates port has inserted
an entry on an empty Response Queue.

11.3.1.3 pon Error Status Register (PESR)
SHAe I/O Address: 2000 425016

The port error status register (PESR) indicates the type of error which resulted in a DSE
(PSR<4» or an MISC (PSR<7» error. Figure 11-5 shows the format. Table 11-4 lists
the bit descriptions.

PESR is read only by the SOC CPU and valid only after either a DSE or MISC error, or
after certain ME (PSR<31» and DE (PSR<19» errors. Its value at any other time, or
following a write to it, is UNPREDICTABLE.

KA660 Mass Storage Interface 11-9

3
1

MEC

Longword Read Only Access

1 1
6 5

Figure 11-5 pon Error Status Register (PESR)

Table 11-4 pon Error Status Register Bit Definitions

Data Bit Name Description

o

DEC

<31:16> MEC Miscellaneous error code. This code comprises two fields: bits
<31:24> define the module within the SHAC code where the error
occurred, and bits <23:16> contain the specific error that occurred.
These codes are implementation specific.

<15:0> DEC Data structure error code.

11.3.1.4 pon Failing Address Register (PFAR)
SHAe I/O Address: 2000 425416

The format for the port failing address register is shown in Figure 11-6.

After an DSE, MSE, and ME or DE error (as indicated by PSR), or after a response with
buffer memory system error status, the port failing address register (PFAR) contains
the memory address at which the failure occurred. The address may be the exact failing
address, an address in the same page as the exact failing address or, in the case of DSE,
an address in some part of the data structure. For DSE, PFAR contains a virtual address
or offset, while for MSE interrupts and buffer memory system errors the PFAR contains
a physical address. For ME, the interpretation of the address is error-dependent.

Because the port continues command execution and packet processing after buffer
memory system errors, the PFAR is overwritten if subsequent errors occur. For DSE,
MSE, and ME errors the PFAR is effectively fixed because the port enters the disabled,
disabled / maintenance, or uninitialized state.

PFAR is read only by the SOC CPU and readable after a DSE, MSE, or ME or DE errors,
or after a response with buffer memory system error status. Its value at any other time,
or following a write to it, is UNPREDICTABLE.

3
1

Longword Read Only Access

Failing Address

Figure 11-6 pon Failing Address Register (PFAR)

o

11-10 KA660 Mass Storage Interface

11.3.1.5 Port Parameter Register (PPR)
SHAC I/O Address: 2000 425816

The port parameter register (PPR) contains port implementation parameters and the
port number. The value of the PPR is set by the port during initialization and valid
after a PIC (PSR <3» interrupt. Its value at any other time, or following a write to it,
is UNPREDICTABLE. PPR is read only by the SOC CPU The PPR format is shown in
Figure 11-7. The bit descriptions are listed in Table 11-5.

322
198

I csz I IBUF _LEN

Longword Read Only Access

1 1 1
654 8 7 o

ISO I PORT_NO

Figure 11-7 Port Parameter Register (PPR)

Table 11-5 Port Parameter Register Bit Descriptions (PPR)

Data Bit Name Description

<31:29> CSZ Cluster size. For SHAC, this value always is zero, indicating
a maximum of 16 ports on the DSSI bus. (Note that the DSSI
architecture only allows up to 8 ports on the bus, but 16 is the
smallest size defined for the CSZ field.)

<28:16> mUF_LEN Internal buffer length. This field indicates the size of internal
buffers available for message and data transfers. Maximum data
packet = mUF _LEN - 16 bytes. Maximum message or datagram
length = mUF _LEN. For SHAC, the value is 4112 101016.

<15> MBZ Read as zero. Writes have an UNPREDICTABLE effect.

<14:8> ISDI Implementation specific diagnostic information. The bits in this
field contain information about the local adapter's link layer
configuration. For SHAC, the definitions of these bits are read as
zero.

<7:0> Port_NO Port number. This is the same as the SHAC's DSSI ID.

11.3.1.6 Port Control Registers
The port control registers are 32-bit registers which are write-only by the SOC CPU To
invoke the function provided by any of the control registers, the SOC CPU writes a one
to the register.

The result of writing any other value to any of these registers is UNPREDICTABLE. The
value read from any of them is also UNPREDICTABLE. The format for the port control
registers is shown in Figure 11-8.

KA660 Mass Storage Interface 11-11

3
1

Longword Write Only Access

MBZ

Figure 11-8 pon Control Registers

11.3.1.6.1 pon Command Queue 0 Control Register (PCQOCR)
SHAC 110 Address: 2000 428016

1 0

I I
L MBO

ESB90P0075

When the port driver inserts an entry in an empty CMDQO, the port driver writes
PCQOCR to initiate port execution of the command queue. PCQOCR can be written only
when the port is in the enabled or enabled / maintenance state. Writing to PCQOCR when
the port is in any other state has no effect. The SHAC 110 address is 2000428016.

11.3.1.6.2 pon Command Queue 1 Control Register (PCQ1CR)
SHAC 110 Address: 2000 428416
Same as PCQOCR except refers to CMDQ1. The SHAC 110 address is 2000 428416.

11.3.1.6.3 pon Command Queue 2 Control Register (PCQ2CR)
SHAC 110 address: 2000 428816 .

. Same as PCQOCR except refers to CMDQ2. The SHAC 110 address is 2000 428816.

11.3.1.6.4 pon Command Queue 3 Control Reg ister (PCQ3CR)
SHAC 110 Address: 2000 428C16
Same as PCQOCR except refers to CMDQ3. The SHAC 110 Address is 2000 428C16.

11.3.1.6.5 pon Datagram Free Queue Control Register (PDFQCR)
SHAC 110 Address: 2000 429016
When the port driver inserts an entry on the DFREEQ and the latter was previously
empty, the port driver writes PDFQCR to indicate the availability of DFREEQ entries.
PDFQCR can be written only if the port is in the enabled or enabled / maintenance state.
Writing to PDFQCR when the port is in any other state has no effect. The SHAC 110
Address is 2000 429016

11.3.1.6.6 pon Message Free Queue Control Register (PMFQCR)
SHAC 110 Address: 2000 429416
Same as PDFQCR except refers to MFREEQ. The SHAC 110 address is 2000 429416

11-12 KA660 Mass Storage Interface

11.3.1.6.7 pon Status Release Control Register (PSRCR)
SHAC I/O Address: 2000 429816
After the port driver has received an interrupt and read the PSR, it returns the PSR to
the port by writing PSRCR. The SHAC liD address is 2000429816.

11.3.1.6.8 pon Enable Control Register (PECR)
SHAC I/O Address: 2000 429C16
The port driver enables the port by writing PECR. PECR is ignored if the port is in the
un initialized , uninitialized / maintenance, enabled, or enabled / maintenance state. The
SHAC I/O address is 2000 429C16.

11.3.1.6.9 pon Disable Control Reg Ister (PDCR)
SHAC I/O Address: 2000 42A016
The port driver disables the port by writing PDCR. When the port is disabled, the
port sets PDC (PSR <2» and if interrupts are enabled requests an interrupt. PDCR
is ignored if the port is in the uninitialized, uninitialized / maintenance, disabled, or
disabled / maintenance state. The SHAC I/O address is 2000 42A016.

11.3.1.6.10 pon Initialize Control Register (PICR)
SHAC I/O Address: 2000 42A416
The port driver initializes the port by writing PICR. When the initialization is complete
the port sets PDC (PSR <2» and requests an interrupt if interrupts are enabled. As part
of the initialization, the maintenance timer is set to expire in 100 seconds. The SHAC
I/O address is 2000 42A416.

11.3.1.6.11 pon Maintenance Timer Control Register (PMTCR)
SHAC I/O Address: 2000 42A816
The port driver forces the maintenance timer to reset its expiration time by writing the
PMTCR. If the PMTCR is not written again before the expiration time, the port will enter
the uninitialized / maintenance state setting MTE (PSR <6» and request an interrupt if
interrupts are enabled. PMTCR is ignored if the maintenance timer is not running. The
SHAC I/O address is 2000 42A816.

11.3.1.6.12 pon Maintenance Timer Expiration Control Register (PMTECR)
SHAC I/O Address: 2000 42AC16
The port driver forces a maintenance-timer-expiration interrupt by writing the PMTECR.
This register may be written only when the port is in the enabled, enabled / maintenance,
disabled, and disabled/maintenance states and only while the maintenance timer is not
disabled. The SHAC I/O address is 2000 42AC16.

KA660 Mass Storage Interface 11-13

11.3.1.6.13 Port Maintenance Control and Status Register (PMCSR)
SHAC I/O Address: 2000 425C16
The port maintenance control and status register (PMCSR) is used for maintenance
level control and status reporting. The CI port specification defines all but the two least
significant bits. The format is shown in Figure 11-9 and the bit descriptions are listed in
Table 11-6

The bits can be divided into the following categories:

• Status bits. These are set by the port to report various conditions. They are cleared
by maintenance initialization or clearing the condition in another register. PMCSR
does not include any status bits at this time.

• Function control bits are read/write by the port driver only. They are clear on a
RESET.

3
1

There are two classes of these bits:

1. Init: This type of bit invokes a function (for example, initialization) by setting it.
It always reads as zero, except while the function is active.

2. Enable/disable: This type of bit causes an activity or state to exist while the bit is
set. Clearing the bit stops the activity or changes the state. The bit always reads
the most recently written value. The bit is never changed by the port.

RESERVED

Longword Read/Write Access

54321 0

I I I I II
MIN
MTD
IE
SIMP
HAC

ESB90P0076

Figure 11-9 Port Maintenance Control and Status Register (PMCSR)

Table 11-6 Port Maintenance Control and Status Register (PMCSR) Bits

Data Bit Name

<31:5> RESERVED

<4> HAC

<3> . SIMP

Description

This bits are reserved. They should not be written; reads return
UNPREDICTABLE results.

Host access feature. This bit must be zero, except for diagnostic
purposes. This is an enable/disable class control bit.

Simple SHAC Mode. Must be zero, except for diagnostic purposes.
This is an enable/disable class control bit.

11-14 KA660 Mass Storage Interface

Table 11-6 (Cont.) pon Maintenance Control and Status Register (PMCSR) Bits

Data Bit Name

IE

<1> MTD

MIN

Description

Interrupt enable. When set, interrupts from the port to the SOC
CPU are enabled. Power-up state is clear (interrupts disabled).
This is an enable/disable class control bit.

Maintenance timer disable. ReadlWrite by SOC CPU. If set, the
maintenance timer is turned off. Timer is set to the initial value
and suspended. If clear, timer functions normally. Power-up state
is clear (timer enabled). This is an enable/disable class control bit.

Maintenance init. Writing a one to this bit resets the port. Upon
completion, the port is in the uninitialized state and MIN is clear.
Wri ting a zero to this bit has no effect. It always reads as zero,
except while the reset function is active.

Although maintenance init resets the port, it is not equivalent to a
write to the SRAC software chip reset register. In particular, the
SRAC shared host memory address is not reset by maintenance
init.

11.3.2 SHAC Specific Registers

These registers, which are not defined in the CI port architecture, are used for additional
maintenance level control.

11.3.2.1 SHAC Software Chip Reset Register (SSWCR)
SBAe 110 Address: 2000 423016
When the SOC CPU writes FFFF FFFF16 to the SHAC software chip reset register
(SSWCR), a chip reset is performed. The result is equivalent to that of the hardware chip
reset that occurs following system power-up. On completion, all device registers are reset
to their power-up state, and the port is in the uninitialized state. The format is shown
in Figure 11-10.

SSWCR is write only by the SOC CPU and may be written to at any time. Its value when
read is UNPREDICTABLE. The result if other than FFFF FFFF 16 is written to SSWCR
is UNDEFINED.

3
1

MUST BE ONE

Longword Write Only Access

Figure 11-10 SHAC Software Chip Reset (SSWCR)

o

KA660 Mass Storage Interface 11-15

11.3.2.2 SHAC Shared Host Memory Address (SSHMA)
SHAC 110 Address: 2000 424416
The format for the SHAC shared host memory address is shown in Figure 11-11.

332
1 0 9

IMBzl

Longword Read/Write Access

4 3 0

SSHMA<29:4> MBZ

Figure 11-11 SHAC Shared Host Memory Address (SSHMA)

Following chip reset, the SOC CPU writes into the SHAC shared memory address
register (SSHMA) the physical address of the shared host memory header. The area
must be octaword aligned and contiguous in physical memory.

SSHMA is read/write by the SOC CPU, but may be written only when the port is
in the uninitialized state. Writing when the port is in any other state can produce
unpredictable results.

12
KA660 Firmware

This chapter describes the KA660 functional firmware. The firmware is written in
VAX-II code which resides in the EPROM on the KA660 module. Typically KA660
firmware gains control whenever the onboard CPU halts, or more precisely, performs a
processor restart operation. However, portions of the firmware can also be invoked by
applications through a public subroutine linkage.

When the KA660 firmware is running, it provides services expected of a standard VAX
console subsystem. In particular, the following services are available:

• Automatic restart or bootstrap of customer application images at power-up, on reset,
or conditionally after processor halts

• Diagnostic tests executed both at power-up and by request, which verify the correct
operation of the CPU and memory modules

• Operator interface providing complete examination or modification of the processor
state

Conventions and Terminology

The following conventions and terminology are used in this chapter:

Convention

<x:y>

x:y

20140030

45610, 1216

Meaning

Represents a bit field or position within a register or data structure.
The bit field or position follows the structure name; the associated field
name (if defined) typically follows the field definition and appears in
parentheses.

For example, PSL<20:16>(IPL) represents the five-bit field for the
interrupt priority level (IPL) in the processor status longword (PSL).

Represents a range of integers from x through y.

Eight-digit numbers in this chapter are hexadecimal longwords, typically
representing VAX-32 bit addresses or data.

In sections where octal, decimal, and hexadecimal numbers may appear,
the radix of a number is included to avoid confusion.

12-1

12-2 KA660 Firmware

Terminology

Firmware

Meaning

Firmware is a generic term describing all program code located in the
KA660 EPROM. It is sometimes referred to as the boot ROM, diagnostics
ROM, or console ROM depending on the context.

Each major element of the firmware is .referred to by other terms. For example:

VMB, The boot program
primary bootstrap

Diagnostic,
self-test

Console,
console program

The ROM-based diagnostic program

The operator interface

12.1 General Description
The KA660 firmware provides the following services:

• Diagnostics that test all components on the board and verify that the module is
working correctly

• Automatic/manual bootstrap of an operating system following processor halts

• Autoinatic/manual restart of an operating system following processor halts

• An interactive command language that allows the user to examine and alter the state
of the processor

• Support of various terminals and devices as the system console

• Multilanguage support for displaying critical system messages and handling LK201
country-specific keyboards

The remainder of this section describes in detail the functions and external
characteristics of the KA660 firmware.

The KA660 firmware is comprised of several major functional blocks of code. The halt
entry code is invoked following system halts, resets, or severe errors. This code is
responsible for saving the machine state and transferring control to the halt dispatcher
code. The halt dispatcher code determines the nature of the halt, then transfers control
to the appropriate subcode. The halt exit code is invoked whenever a transition is
desired from a halted state to the running state. This code performs a restoration of
the saved context prior to the transition. Figure 12-1 illustrates the KA660 firmware
structural components and the functions are .discussed in detail in Section 12.2.

Halt
Entry
Code

Halt
Dispatch
Code

Halt
Exit
Code

Figure 12-1 KA660 Firmware Structural Components

KA660 Firmware 12-3

The ROM-based diagnostics consist of an initial power-up test and a series of functional
component diagnostics invoked by a diagnostic executive. Section 12.3 describes the
power-up and Section 12.8 describes the diagnostics.

Depending on the nature of the halt and the hardware context, the firmware attempts an
operating system restart (Section 12.5), a bootstrap operation (Section 12.4), or transitions
to console I/O mode (Section 12.6).

12.2 Halt Code
The main purpose of the halt code is to save the state of the machine on halt entry,
invoke the dispatcher, and restore the state of the machine on exit to program 110 mode.
Halt code is comprised of halt entry, halt dispat~h, and halt exit codes.

12.2.1 Halt Entry - Saving Processor State

The entry code, residing at physical address 20040000, is executed whenever the KA660
halts. The value that the program counter contained when the processor was halted
is saved in IPR 42 (PR$_SAVPC). On a power-up, the PR$_SAVPC register value is
undefined.

The processor will halt for a variety of reasons. The reason for the halt is stored in PR$_
SAVPSL<13:8>(RESTART_CODE), IPR 43. A complete list of the halt reasons and the
associated console messages can be found in Table J-1 in Appendix J.

12-4 KA660 Firmware

After a halt, the firmware first saves the current LED code then writes an "E" to the
diagnostic LEDs. This action occurs within several instructions after the firmware has
been invoked. The LED code is saved to let the user know that at least some instructions
have been successfully executed.

The KA660 firmware unconditionally saves the contents of the following registers on any
halt:

• RO through R15, the general purpose registers

• PR$_SAVPSL, the saved PSL register

• PR$_SCBB, the system control block base register

• DLEDR, the diagnostic LED register

NOTE
The sse programmable timer registers are not saved. In some cases, such as
bootstrap, the timers are used by the firmware and previous "time" context is
lost.

Several registers are unconditionally set to predetermined values by the firmware on any
halt, processor init, or bootstrap. This action ensures that the firmware itself can run
and it protects the board from physical damage.

The following is a list of such registers:

• The SSC configuration register (SSCCR)

• The SSC address match and mask registers (ADxMCH & ADxMSK)

• The CDAL bus timeout control register (CBTCR)

• The SSC timer interrupt vector registers (TIVRx)

Whenever the halt entry code is invoked, the firmware sets the console serial line baud
rate based on the value read from the BDR and extends the halt protection from 8 Kbyte
to 256 Kbyte to include all of the EPROM.

12.2.2 Halt Dispatch

The action taken by the firmware on a halt is depends primarily on the following
information:

• The state of the BREAK enable switch, BDR<23>(HALT_ENABLE)

• The state of the console program mailbox, CPMBX<1:0>(HALT_ACTION)

• The user defined halt action (SET HALT)

• The halt code, PR$_SAVPSL<13:8>(RESTART_CODE)

In general, the BREAK enable switch governs whether or not a BREAK condition from
the console serial line is recognized by the KA660. This switch also determines the
default action taken on a power-up or other internal halt condition. By default, if
BREAKs are enabled, the firmware invokes the console emulation code. If BREAKs
are disabled, the firmware attempts a recovery operation.

However, the console program mailbox, CPMBX<1:0>(HALT_ACTION) (see Figure H-2)
is used by operating systems to override the BREAK enable switch and instruct the
firmware to invoke the console service, attempt to restart the operating system, or reboot
the system following a halt, regardless of the setting of the BREAK enable switch.

KA660 Firmware 12-5

The user-defined halt action invoked by using the SET HALT console command (see the
description of the SET command in Section 12.7 is an alternative way to specify a default
halt action. This feature allows users to specify auto-booting on power-ups, even when
BREAKs are enabled.

For HALT instructions and error halt conditions, it is similar in function to the console
program mailbox but has lower precedence and is only used when the console program
mailbox is O. This provides the user with a mechanism by which to specify what action
should be taken, in the event that the operating system or user application does not set
the console program mailbox.

The halt (or restart) code is automatically deposited in
PR$_SAVPSL<13:8>(RESTART_CODE) on any halt condition. This field indicates the
cause of the halt, and for the purpose of dispatching is divided into three categories:

02: External halts
03: ResetJ'power-up
xx: (All other values) HALT instruction and all error halts

Table 12-1 summarizes the action taken on all halt conditions, except external halts
which are described in Section 12.2.2.1. The actual halt dispatch state machine is
described in detail in Section 1.1 of Appendix I.

Table 12-1 Halt Action Summary

Halt
Code
=3

T

T

T

F

F

F

Break
Enable
Switch

1

1

o

1

o

x

User­
Selected
Halt Action
(Number or
Keyword)

o (DEFAULT)
1 (RESTART)
3 (HALT)

2 (REBOOT)
4 (RESTART_
REBOOT)

x

o (DEFAULT)

o (DEFAULT)

1 (RESTART)

Console
Program
Mailbox

x

x

x

o

o

o

Actions Performed by Firmware

• Run diagnostics
• Invoke console code

• Run diagnostics
• If successful, perform boot
• If either fail, invoke console code

• Run diagnostics
• If successful, perform boot
• If either fail, invoke console code

• Invoke console code

• Perform restart
• If restart fails, perform boot
• If boot fails, invoke console code

• Perform restart
• If restart fails, invoke console code

12-6 KA660 Firmware

Table 12-1 (Cont.) Halt Action Summary

User-
Selected

Halt Break Halt Action Console
Code Enable (Number or Program
=3 Switch Keyword) Mailbox Actions Performed by Firmware

F

F

F

F

F

F

x 2 (REBOOT) 0 • PerfonTI boot
• If boot fails, invoke console code

x 3 (HALT) 0 • Invoke console code

x 4 (RESTART_ 0 • PerfonTI restart
REBOOT) • If restart fails, perfonTI boot

• If boot fails, invoke console code

x x 1 • PerfonTI restart
• If restart fails, invoke console code

x x 2 • PerfonTI boot
• If boot fails, invoke console code

x x 3 • Invoke console code

Halt Code == 3

T (true) indicates a reset or power-up condition.
F (false) indicates a HALT instruction or error halt condition.
x (don't care) indicates that the condition is "don't care".

Break Enable Switch

o (off) indicates breaks are disabled.
1 (on) indicates breaks are enabled.
x (don't care) indicates that the condition is "don't care".

User Selected Halt Action

Numbers and keywords listed in this column can be used interchangeably.

Console Program Mailbox

This column reflects the value of the Console Program Mailbox. Refer to Section H.1.2 to interpret bit
values.

Actions Performed by Firmware

These are the directions taken by the firmware after a halt.

Because the KA660 does not support battery backed up main memory, an operating
system restart operation is not attempted on a power-up.

KA660 Firmware 12-7

12.2.2.1 External Halts
Several conditions can trigger an external halt and different actions are taken depending
on the condition.

An external halt can be caused by one of the following conditions:

1. A BREAK condition on the system console serial line, if the BREAK enable switch is
set to "enabled". In this case BDR<23>(HALT_ENABLE) = 1 and the console code is
invoked. CtrllP may be established as the BREAK condition by using the SET
CONTROLP ENABLE console command.

2. The assertion of the BHALT line on the Q22-bus, causes an external halt if the
SCR<14>(BHALT_ENABLE) bit in the CQBIC is set. As a result, the console code is
invoked.

3. The negation of DCOK on the Q22-bus, if the SCR<7>(DCOK_ACTION) bit is set
causes an external halt. (By default this bit is clear.) As a result, the console code is
invoked.

4. Recognition of a valid MOP BOOT message by an appropriately initialized SGEC,
if the REMOTE_BOOT_ENABLE jumper is in place (BDR<12>(REMOTE_BOOT_
ENABLE) = 1). As a result, a bootstrap is attempted and if that fails, the console is
entered.

NOTE
The firmware does not initialize the SGEC for this operation. The operating
system must set up the SGEC to support this feature.

NOTE
The RESTART switch negates DCOK. The DCOK bit may also be negated by the
DEQNA sanity timer, or any other Q22-bus module that chooses to implement
the Q22-bus restart/reboot protocol. Because the SCR<7>(DCOK_ACTION) bit
is cleared on power-up, the default consequence to deasserting DCOK is to
generate a processor restart. Hence, pushing the RESTART button typically
initiates a power-up sequence and destroys system state.

12.2.3 Halt Exit - Restoring Processor State

When the firmware exits, it uses the currently defined saved context. This context is
initially determined by what was saved when the firmware code was invoked. However
this context may be modified by console commands, or automatic operations such as an
automatic bootstrap on power-up.

When restoring the context, the firmware will flush the CPU internal cache if enabled,
and invalidate all translation buffer entries using the internal processor register PR$_
TBIA, IPR 57.

In restoring the context, the console pushes the user's PSL and PC onto the user's
interrupt stack, then executes a return from exception or interrupt instruction (REI) from
that stack. This implies that the user's interrupt stack pointer (ISP) is valid before the
firmware can exit. This is done automatically on a bootstrap. However, it is suggested
that the stack pointer (SP) be set to a valid memory location before issuing the START or
CONTINUE command. Furthermore, the user should validate the system control block
base register (SCBB or PR$_SCBB) prior to executing a NEXT command, because the
firmware uses the trace trap vector for this function. At power-up, the user ISP is set to
200 (hex) and the system control block base register is undefined.

12-8 KA660 Firmware

12.3 Power-Up
At power-up, the KA660 firmware performs actions that are unique to this condition.
Among these actions are the following:

• locating and identifying a console device

• language query

• diagnostic count-down

Certain actions depend on the state of the mode switch on the H3602-SA "test", "query",
and "normal". This section describes the sequence of events which occur on power-up.

12.3.1 Identifying the Console Device

After power-up, the firmware attempts to determine what type of console device is
present, so the device may be used to display further diagnostic progress. Normally, this
is the device attached to the console serial line cable and the firmware sends the device
attributes escape sequence «ESC>[c) across the cable. This action determines the type
of terminal attached and the functions it supports. Terminals that do not respond to the
device attributes request correctly are assumed to be hard-copy devices.

Once a console device has been identified, the firmware displays the KA660 banner
message (Figure 12-2) which contains the processor name, the version of the firmware,
and the version of the VMB code.

KA660-A V 4.0, VMB 2.12

II ~ minor reI."." number of VMB code
major release number of VMB code

minor release number of Firmware code
minor release number of Firmware code

~----- type of firmware code release

Figure 12-2 Console Banner

X - pre-field test release

T - field test release

V - official release

Processor variation
Processor type

If the designated console device supports DEC 'Multinational Character Set (MCS) and
either the battery failed during power failure or the mode switch is set to query, the
firmware prompts for the console language. The firmware first displays the language
selection menu shown in Figure 12-3, Section 12.3.1.2.

After the language query, the firmware invokes the ROM-based diagnostics and
eventually displays the console prompt.

KA660 Firmware 12-9

12.3.1.1 Mode Switch Set to "Test"
If the mode switch is set to "test", the console serial line external loopback test is
executed at the end of the IPI'. An external loop back connector should be inserted
in the serial line connector on the H3602-SA panel prior to cycling power
to invoke this test. The purpose of this test is to verify that the console serial line
connections from the KA660 through the H3602-SA panel are intact.

During this test the firmware toggles between two states, active and passive, each state
is a few seconds long and each displays a different number on the LEDs.

During the active state (about 3 seconds long), the LEDs are set to "6". In this state the
firmware reads the baud rate and mode switch, then transmits and receives a character
sequence. If the mode switch has been moved from the test position, the firmware exits
the test and continues as if on a normal power-up.

During the passive state (about 7 seconds long), the LEDs are set to "3".

If the firmware detects an error (parity, framing, overflow, or no characters), the firmware
hangs with a "6" on the LEDs.

12.3.1.2 Mode Switch Set to "Query"
If the mode switch is set to "query" (or the firmware detects that the battery failed during
a power loss), the firmware queries the user for a language which is used for displaying
critical system messages.

Figure 12-3 shows the language selection menu.

1) Dansk
2) Deutsch (Deutschland/Osterreich)
3) Deutsch (Schweiz)
4) English (United Kingdom)
5) English (United States/Canada)
6) Espafiol
7) FranQais (Canada)
8) FranQais (France/Belgique)
9) FranQais (Suisse)

10) Italiano
11) Nederlands
12) Norsk
13) Portugues
14) Suomi
15) Svenska

(1. .15) :

Figure 12-3 Language Selection Menu

The user may select from one of the 15 supported languages. If no response is received
within 30 seconds, the language defaults to English (United States/Canada). For those
languages which do not have a unique keyboard, Figure 12-3 displays supported country
specific keyboard variants in parentheses. Language inquiry is performed only if
the console device supports DEC MCS. Any console device that does not support
DEC MCS, such as a VT100, defaults to English (United States/Canada).

After completing language inquiry, the firmware proceeds as if the mode switch were set
to "normal", as described in Section 12.3.1.3.

12-10 KA660 Firmware

12.3.1.3 Mode Switch Set to "Normal"
If the mode selected is "normal", then the next step in the power-up sequence is to
execute the bulk of ROM-based diagnostics. In addition to the message text, a countdown
is displayed to indicated diagnostic test progress. Figure 12-4 shows a successful
diagnostic countdown.

Performing normal system tests.
95 ... 94 .. 93 .. 92 .. 91. .90 .. 89 .. 88 .. 87 .. 86 .. 85 .. 84 .. 83 .. 82 .. 81 .. 80 ..
79 .. 78 .. 77 .. 76 .. 75 .. 74 .. 73 .. 72 .. 71 .. 70 .. 69 .. 68 .. 67 .. 66 .. 65 .. 64 ..
63 .. 62 .. 61 .. 60 .. 59 .. 58 .. 57 .. 56 .. 55 .. 54 .. 53 .. 52 .. 51 .. 50 .. 49 .. 48 ..
47 .. 46 .. 45 .. 44 .. 43 .. 42 .. 41. .40 .. 39 .. 38 .. 37 .. 36 .. 35 .. 34 .. 33 .. 32 ..
31. .30 .. 29 .. 28 .. 27 .. 26 .. 25 .. 24 .. 23 .. 22 .. 21 .. 20 .. 19 .. 18 .. 17 .. 16 ..
15 .. 14 .. 13 .. 12 .. 11 .. 10 .. 09 .. 08 .. 07 .. 06 .. 05 .. 04 .. 03 ..
Tests completed.

Figure 12-4 Normal Diagnostic Countdown

In the case of diagnostic failures, a diagnostic register dump is performed similar to the
example shown in Figure 12-5. The remaining diagnostics execute and the countdown
continues. For a detailed description of the register dump see Section 12.8.

95 .. 94 .. 93 .. 92 .. 91 .. 90 .. 89 .. 88 .. 87 .. 86 .. 85 .. 84 .. 83 .. 82 .. 81 .. 80 ..
79 .. 78 .. 77 .. 76 .. 75 .. 74 .. 73 .. 72 .. 71 .. 70 .. 69 .. 68 .. 67 .. 66 .. 65 .. 64 ..
63 .. 62 .. 61 .. 60 .. 59 .. 58 .. 57 .. 56 .. 55 .. 54 .. 53 .. 52 .. 51 .. 50 .. 49 .. 48 ..
47 .. 46 .. 45 .. 44 .. 43 .. 42 .. 41 .. 40 .. 39 .. 38 .. 37 .. 36 .. 35 .. 34 .. 33 .. 32 ..
31 .. 30 .. 29 .. 28 .. 27 .. 26 .. 25 .. 24 .. 23 .. 22 .. 21. .20 .. 19 .. 18 .. 17 .. 16 ..
15 .. 14 .. 13 .. 12 .. 11 .. 10 .. 09 .. 08 .. 07 .. 06 .. 05 .. 04 ..
?99 2 02 FF 0000 0000 00 ; SUBTEST_99_02, DE_Flush_Ena_Caches.IS
P1=00000003 P2=0000001F P3=00000000 P4=00000000 P5=00000000
P6=00000000 P7=00000000 P8=00000000 P9=00000000 P10=00000000
rO=20063AC7 r1=0000002E r2=00000099 r3=2014078C r4=200629F5
r5=20062A26 r6=20063ADO r7=00000000 r8=00000008 EPC=OOOOOOOO
03 ..
Normal operation not possible.

Figure 12-5 Abnormal Diag nostic Countdown

If the diagnostics have successfully completed and halts are enabled, the firmware
displays the console prompt (Figure 12-6) and enters console I/O mode.

»>

»>

Figure 12-6 Console Prompt

If the diagnostics have successfully completed and halts are disabled, the firmware
attempts to boot an operating system (Figure 12-7).

Loading system software.
No default boot device has been specified.
Devices:
-DIAO (RF70)
-DIA 1 (RF70)
-MUAO (TK70)
-EZAO(OB-OO-2B-03-B2-7B)
Device? [EZAO]:

(BOOT/R5:0 EZAO)

2 ..
-EZAO

KA660 Firmware 12-11

Figure 12-7 Console Boot Display with No Default Boot Device

12.3.2 LED Codes

In addition to the console diagnostic countdown, a hexadecimal value is displayed on the
diagnostic LEDs on the module and the H3602-SA panel. The purpose of the LED display
is to improve fault isolation when there is no console terminal or when the hardware is
incapable of communicating with the console terminal. Table 12-2 lists all LED codes
and the associated actions which are performed at power-up. The LED code is changed
before the corresponding test or action is performed.

Table 12-2 LED Codes

LED
Value

F

E

D

C

B

A

9

8

7

6

5

4

3

2

1

o

Actions

Initial state on power-up, no code has executed

Entered ROM space, some instructions have executed

Waiting for power to stabilize (POK)

SSC RAM, SSC registers, and ROM checksum tests

Cache, interval timer, and virtual mode tests

FPA tests

Memory tests

CMCTL Memory, and I/O interaction tests

CQBIC (Q22-bus) tests

Console loopback tests

DSSI subsystem tests

Ethernet subsystem tests

Console I/O mode

Control passed to VMB

Control passed to secondary bootstrap

Program I/O mode, control passed to operating system

12-12 KA660 Firmware

12.4 Operating System Bootstrap
Bootstrapping is the process by which an operating system loads and assumes control
of the system. The KA660 supports bootstrap of the following operating systems: VMS,
ULTRIX-32, and VAXELN. Additionally, the KA660 will boot MDM diagnostics and any
user application image which conforms to the boot formats described in this section.

On the KA660 a bootstrap occurs whenever a BOOT command is issued at the console or
whenever the processor halts and the conditions specified in the Table 12-1 for automatic
bootstrap are satisfied.

12.4.1 Preparing for the Bootstrap

Prior to dispatching to the primary bootstrap (VMB), the firmware initializes the system
to a known state. The following initialization sequence occurs:

1. Check the console program mailbox "bootstrap in progress" bit (CPMBX<2>(BIP». If
it is set, bootstrap fails.

2. If this is an automatic bootstrap, print the message "Loading system software. tI on
the console terminal.

3. Validate the boot device name. If none exists, supply a list of available devices and
prompt user for a device. If no device is entered within 30 seconds, use EZAO.

4. Write a form of this BOOT request including the active boot flags and boot device on
the console, for example "(BOOT/R5:0 DUAO)".

5. Set CPMBX<2>(BIP).

6. Initialize the Q22-bus Scatter/Gather map.

a. Set IPCR<8>(AUX_HLT).

b. Clear IPCR<5>(LMEAE).

c. Perform an UNJAM.

d. If an arbiter, map all vacant Q22-bus pages to the corresponding page in local
memory and validate each entry if that page is "good".

e. Perform an INIT.

f. Set IPCR<5>(LMEAE).

7. Validate the PFN bit map. If invalid, rebuild it.

8. Search for a 128 Kbyte contiguous block of good memory as defined by the PFN bit
map. If 128 Kbyte cannot be found, the bootstrap fails.

KA660 Firmware 12-13

9. Initialize the general purpose registers.

RO = address of descriptor of the boot device name or 0 if none specified

R2 = length of PFN bit map in bytes

R3 = address of PFN bit map

R4 = time of day from PR$_TODR at power-up

R5 = boot flags

RlO = halt PC value

Rll = halt PSL value (without halt code and map enable)

AP = halt code

SP = base of 128 Kbyte good memory block + 512

PC = base of 128 Kbyte good memory block + 512

Rl, R6, R7, RS, R9, FP = 0

10. Copy the VMB image from EPROM to local memory beginning at the base of the 128
Kbyte good memory block + 512.

11. Exit from the firmware to memory resident VMB.

On entry to VMB the processor is running at IPL 31 on the interrupt stack with memory
management disabled. Local memory is partitioned as shown in Figure 12-8.

12-14 KA660 Firmware

o

Potential "bad" memory

Base
Reserved for RPB, initial stack

Base+512(SP ,PC)I-----------------i

PFN bitmap

QMR base

Top of Memory

VMB image

Balance of 128KB block
to be used for SCB, stack,
and the secondary bootstrap.

Unused memory

PFN bitmap
(always on page boundary and

size in pages n = (# of MB)/2)

Firmware "scratch memory"
(always 16KB)

Q22-Bus Scatter/Gather Map
(always on 32KB boundary)

Potential "bad" memory

Figure 12-8 Memory Layout Prior to VMB Entry

12.4.1.1 Boot Devices

l
256 pages for VMS
128KS block of
"good" memory
(page aligned)

J
n pages

~
32 pages

~
64 pages

...-J

The KA660 firmware passes the address of a descriptor of the boot device name to VMB
through RO. This device name used for the bootstrap operation is one of the following:

• the local Ethernet device, EZAO, if no default boot device has been specified

• the default boot device specified at initial power-up or via a SET BOOT command

• the boot device name explicitly specified in a BOOT command line

KA660 Firmware 12-15

The device name may be any arbitrary character string, with a maximum length of 17
characters. Longer strings cause an error message to be issued to the console. Otherwise
the console makes no attempt to interpret or validate the device name. The console
converts the string to all upper case, and passes VMB the address of a string descriptor
for the device name in RO.

Table 12-3 correlates the boot device names expected in a BOOT command with the
corresponding supported devices.

Table 12-3 KASSO Supported Boot Devices

Disk:

Tape:

Boot Name l

[node$]DIAn

DUcn

DLcn

[node$lMIAn

MUcn

Network:

EZAO

XQcn

PROM:

PRAO

PRBO

Controller Type

On-board DSSI

RQDX3 MSCP

KDA50 MSCP

KFQSAMSCP

KLESI

RLV12

On-board DSSI

TQK50 MSCP

TQK70 MSCP

KLESI

On-board Ethernet

DEQNA

DELQA

DESQA

MRVll

On-board EPROM

Device Types

RF30, RF71

RD52, RD53, RD54, RX33, RX50

RA70, RA80, RA81, RA82, ~O

RF30, RF71

RC25

RLOl, RL02

TF70

TK50

TK70

TU81E

1 Boot device names consist of at least a two-letter device code, followed by a single character controller letter
(A. .. Z), and terminating in a device unit number (0 ... 65535). DSSI device names may optionally include a node
prefix, consisting of either a node number (0 ... 7) or a node name (a string of up to 8 characters), terminating
in a dollar sign ($).

Table 12-3 presents a definitive list of boot devices which the KA660 supports.
However, the KA660 could boot other devices which adhere to the MSCP
standards.

12-16 KA660 Firmware

12.4.1.2 Boot Flags
The action of VMB is qualified by the value passed to it in R5. R5 contains boot flags
that specify conditions of the bootstrap. The firmware passes to VMB either the R5
value specified in the BOOT command or the default boot flag value specified with a SET
BFLAG command.

Figure 12-9 shows the location of the boot flags used by VMB in the boot flag longword
and describes each flag's function.

3 2
1 8 9 8 654 3 o

I TOPSYS I lei
Figure 12-9 VMB Boot Flags (/R5:)

Table 12-4 VMB Boot Flags

Field

<31:28>

<9>

<8>

<6>

<5>

<4>

<3>

Name

RPB$V_
TOPSYS

RPB$V_
HALT

RPB$V_
SOLICT

RPB$V_
HEADER

RPB$V_
BOOBPI'

RPB$V_DIAG

RPB$V_
BBLOCK

RPB$V
CONV-

Description

This field can be any value from 0 through F. This flag changes the
top level directory name for the system disks with multiple operating
systems. For example, if TOPSYS is 1, the top level directory name is
[SYSl. ..]. This does not apply to network bootstraps.

Halt before transfer. When this bit is set, VMB halts before
transferring control to the application image.

File name solicit. When this bit is set, VMB prompts the operator for
the name of the application image file. A maximum of a 39-character
file specification is permitted.

Image header. If this bit is set, VMB transfers control to the address
specified by the file's image header. If this bit is not set, VMB transfers
control to the first location of the load image.

Bootstrap breakpoint.

Diagnostic bootstrap. When this bit is set, the load image requested
over the network is [SYSO.SYSMAINT]DIAGBOOT.EXE.

Secondary bootstrap from bootblack. When this bit is set, VMB reads
logical block number 0 of the boot device and tests it for conformance
with the bootblack format. If it conforms, the block is executed to
continue the bootstrap. No attempt to perform a Files-ll bootstrap is
made.

Conversational bootstrap.

12.4.2 Primary Bootstrap, VMB
Virtual Memory Boot (VMB) is the primary bootstrap for booting VAX. processors. On the
KA660, VMB is resident in the firmware and is copied into main memory before control
is transferred to it. VMB then loads the secondary bootstrap image and transfers control
to it.

In certain cases, such as in VAXELN, VMB actually loads the operating system
directly. However, for the purpose of this discussion "secondary bootstrap"
refers to any VMB loadable image.

KA660 Firmware 12-17

VMB inherits a well-defined environment and is responsible for further initialization.
The following sequence summarizes the operation of VMB:

1. Initialize a two-page SCB on the first page boundary above VMB.

2. Allocate a three-page stack above the SCB.

3. Initialize the Restart Parameter Block (RPB). Refer to Table 1-2.

4. Initialize the secondary bootstrap argument list. Refer to Table 1-3 in Appendix E.

5. If not a PROM boot, locate a minimum of 3 consecutive valid QMRs.

6. Write "2" to the diagnostic LEDs and display "2 .. " on the console to indicate that VMB
is searching for the device.

7. Optionally, solicit from the console a "Bootfile: "name.

8. Write the name of the boot device from which VMB will attempt to boot on the
console, for example, "-DUAO".

9. Copy the secondary bootstrap from the boot device into local memory above the stack.
If this fails, the bootstrap fails.

10. Write "1" to the diagnostic LEDs and display "1.." on the console to indicate that VMB
has found the secondary bootstrap image on the boot device and has loaded the image
into local memory.

11. Clear CPMBX<2>(BIP) and CPMBX<3>(RIP).

12. Write "0" to the diagnostic LEDs and display "0 .. " on the console to indicate that VMB
is now transferring control to the loaded image.

13. Transfer control to the loaded image with the following register usage:

R5 = transfer address in secondary bootstrap image
RIO = base address of secondary bootstrap memory
Rll = base address of RPB
AP = base address of secondary boot parameter block
SP = current stack pointer

If the bootstrap operation fails, VMB relinquishes control to the console by halting with
a HALT instruction. VMB makes no assumptions about the location of Q22-bus
memory. However, VMB searches through the Q22-bus map registers (QMRs) for
the first QMR marked "valid". VMB requires a minimum of 3 and a maximum
of 129 contiguous valid maps to complete a bootstrap operation. If the search
exhausts all map registers or there are fewer than the required number of valid
maps, a bootstrap cannot be performed. It is recommended that a suitable block
of Q22-bus memory address space be available (unmapped to other devices) for
proper operation.

Figure 12-10 shows a sample console display of a successful automatic bootstrap.

12-18 KA660 Firmware

Loading system software.
(BOOT/R5: 0 DUAO)

2 ••
-DUAO
1.. 0 ••

Figure 12-10 Successful Automatic Bootstrap

After a successful bootstrap operation, control is passed to the secondary bootstrap image
with the memory layout as shown in Figure 12-1l.

o

Base

Base+512(SP ,PC)

Next page

Next page+ 1024

Next page+2560

PFN bitmap

OMR base

Top of Memory

Potential "bad" memory

Reserved for RPB, initial stack

VMB image

SCB (2 pages)

Stack (3 pages)

Secondary bootstrap image
(potentially exceeds block)

Unused memory

PFN bitmap
(always on page boundary and

size in pages n = (# of MB)/2)

Firmware "scratch memory"
(always 16KB)

022-Bus Scatter/Gather Map
(always on 32KB boundary)

Potential "bad" memory

Figure 12-11 Memory Layout at VMB Exit

l
256 pages for VMB
128KB block of
"good" memory
(page aligned)

J
n pages

~
32 pages

~
64 pages

~

In the event that an operating system has an extraordinarily large secondary bootstrap
which overflows the 128 Kbyte of "good" memory, VMB loads the remainder of the image
in memory above the "good" block. However, if there are not enough contiguous "good"
pages above the block to load the remainder of the image, the bootstrap fails.

KA660 Firmware 12-19

12.4.3 Device Dependent Bootstrap Procedures

As mentioned earlier, the KA660 supports bootstrapping from a variety of boot devices.
The following sections describe the various device-dependent boot procedures.

12.4.3.1 Disk and Tape Bootstrap Procedure
The disk and tape bootstrap supports Files-II lookup (supporting only the ODS level 2
file structure) or the boot block mechanism (used in PROM boot also). VMS and ELN
are the two standard operating systems that use the Files-II bootstrap procedure and
ULTRIX-32 uses the boot block mechanism.

VMB first attempts a Files-II lookup, unless the RPB$V _BBLOCK boot flag is set.
If VMB determines that the designated boot disk is a Files-II volume, it searches
the volume for the designated boot program, usually [SYSO.SYSEXE]SYSBOOT.EXE.
However, VMB can request a diagnostic image or prompt the user for an alternate file
specification (Section 12.4.1.2). If the boot image can't be found, VMB fails.

If the volume is not a Files-II volume or the RPB$V _BBLOCK boot flag was set, the boot
block mechanism proceeds as follows:

1. Read logical block 0 of the selected boot device. (This is the boot block.)

2. Validate that the contents of the boot block conform to the boot block format
(Figure 12-12).

3. Use the boot block to find and read in the secondary bootstrap.

4. Transfer control to the secondary bootstrap image, just as for a Files-II boot.

The format of the boot block must conform to that shown in Figure 12-12. \

BB+O:

BB+(2*n)+0:

BB+(2*n)+8:

BB+(2*n)+12

BB+(2*n)+16

BB+(2*n)+20

3
1

3
1

Where:

2 2 1 1
4 3 6 5

n any value

low LBN high LBN

(The next segment is also used as a PROM "signature block".)

2 2 1 1
4 3 6 5

CHK I k I 18(Hex)

any value, most likely 0

size in blocks of the image

load offset

offset into image to start

sum of the previous three longwords

1) the 18(hex) indicates this is a VAX instruction set
2) 18(hex) + "k" = the one's complement of "CHK"

Figure 12-12 Boot Block Format

0

0

12-20 KA660 Firmware

12.4.3.2 PROM Bootstrap Procedure
The PROM bootstrap uses a variant of the boot block mechanism. VMB searches for
a valid PROM signature block, the second segment of the boot block defined in Figure
12-12. If PRAO is the selected "device", then VMB searches through Q22-bus memory
on 16 Kbyte boundaries. If the selected "device" is PRBO, VMB checks the top 4096 byte
block of the EPROM.

At each boundary, VMB:

1. Validates the readability of that Q22-bus memory page

2. If readable, checks to see if it contains a valid PROM signature block

If verification passes, the PROM image will be copied into main memory and VMB will
transfer control to that image at the offset specified in the PROM bootblack. If not, the
next page will be tested.

Note that it is not necessary that the boot image actually reside in PROM. Any
boot image in Q22-bus memory space with a valid signature block on a 16 Kbyte
boundary is a candidate. Indeed, auxiliary bootstrap assumes that the image is
in shared memory.

The PROM image is copied into main memory in 127 page "chunks" until the entire
PROM is moved. All destination pages beyond the primary 128 Kbyte block are verified
to make sure they are marked "good" in the PFN bit map. The PROM must be copied
contiguously and if all required pages cannot fit into the memory immediately following
the VMB image, the boot fails.

12.4.3.3 Network Bootstrap Procedure
Whenever a network bootstrap is selected on a KA660, the VMB code makes continuous
attempts to boot from the network. VMB uses the DNA Maintenance Operations Protocol
(MOP) as the transport protocol for network bootstraps and other network operations.
(Refer to Appendix F for a complete description of supported MOP functions during
bootstrap.) Once a network boot has been invoked, VMB turns on the designated network
link and repeats load attempts, until either a successful boot occurs, a fatal controller
error occurs, or VMB is halted from the operator console.

The KA660 uses network bootstraps to support the load of a standard operating system,
a diagnostic image, or a user-designated program. The default image is the standard
operating system; however, a user may select an alternate image by setting either the
RPB$V _DIAG bit or the RPB$V _SOLICT bit in the boot flag longword R5. Note, that the
RPB$V _SOLICT bit has precedence over the RPB$V _DIAG bit. Hence, if both bits are
set, then the solicited file is requested. (See Figure 12-9 for a description of these bits.)

VMB accepts a maximum of 39 characters 'for a file specification for solicited
boots. If the network server is running VMS, the following defaults apply to the
file specification: the directory MOM$LOAD:, and an extension .SYS. Therefore,
the 39-character file specification need only consist of the filename if the default
directory and extension attributes are used.

The KA660 VMB uses the MOP program load sequence for bootstrapping the module
and the MOP "dumplload" protocol type for load related message exchanges. The types of
MOP message used in the exchange are listed in Table F-l and Table F-2 in Appendix F.

• VMB, the requester, starts by sending a RE~PROGRAM message in the
appropriate envelope (Table F-3 in Appendix F) to the MOP "dumplload" multicast
address (Table F -4 in Appendix F). It then waits for a response in the form of a

KA660 Firmware 12-21

VOLUNTEER message from another node on the network, the MOP load server. If
a response is received, then the destination address is changed from the multicast
address to the node address of the server. The same RE(LPROGRAM message is
retransmitted to the server as an acknowledge which initiates the load.

• Next, VMB begins sending RE(LMEM_LOAD messages in response to any of the
following:

a MEM_LOAD message, while there is still more to load

a MEM_LOAD _ w _XFER, if it is the end of the image

a PARAM_LOAD _ w _XFER, if it is the end of the image and operating system
parameters are required

• The load number field in the load messages is used to synchronize the load sequence.
At the beginning of the exchange, both the requester and server initialize the load
number. The requester only increments the load number if a load packet has been
successfully received and loaded. This forms the acknowledge to each exchange. The
server will resend a packet with a specific load number, until it sees a request with
the load number incremented. The final acknowledge is sent by the requester and
has a load number equivalent to the load number of the appropriate LOAD_w_XFER
message plus one.

• Because the request for load assistance is a MOP "must transact" operation, the
network bootstrap continues indefinitely until a volunteer is found. The RE(L
PROGRAM message is sent out in bursts of eight at four-second intervals; the
first four in MOP Version 4 IEEE 802.3 format and the last four in MOP Version
3 Ethernet format. The backoff period between bursts doubles each cycle from an
initial value of four seconds, to eight seconds, and so on, up to a maximum of five
minutes. However, to reduce the likelihood of many nodes posting requests in lock­
step, a random "jitter" is applied to the backoff period. The actual backoff time is
computed as (.75+(.5*RND(x»)*BACKOFF, where O$x<1.

12.5 Operating System Restart
An operating system restart is the process of bringing up the operating system from
a known initialization state following a processor halt. This procedure is often called
restart or warmstart, and should not be confused with a processor restart which results
in firmware entry.

On the KA660 a restart occurs, if the conditions specified in Table 12-1 are satisfied.

To restart a halted operating system, the firmware searches system memory for the
restart parameter block (RPB), a data structure constructed for this purpose by VMB.
(Refer to Table 1-2 in Appendix E for a detailed description of this data structure.) If a
valid RPB is found, the firmware passes control to the operating system at an address
specified in the RPB.

The firmware keeps a restart in progress (RIP) flag in CPMBX which it uses to avoid
repeated attempts to restart a failing operating system. An additional restart in progress
flag is maintained by the operating system in the RPB .

The firmware uses the following algorithm to restart the operating system:

1. Check CPMBX<3>(RIP). If it is set, restart fails.

12-22 KA660 Firmware

2. Print the message "Restarting system software." on the console terminal.

3. Set CPMBX<3>(RIP).

4. Search for a valid RPB. If none is found, restart fails.

5. Check the operating system RPB$L_RSTRTFLG<O>(RIP) flag. If it is set, restart
fails.

6. Write "0" on the diagnostic LEDs.

7. Dispatch to the restart address, RPB $ L_RE START, with:

SP = the physical address of the RPB plus 512
AP = the halt code
PSL = 041FOOOO
PR$_MAPEN = O.

If the restart is successful, the operating system must clear CPMBX<3>(RIP).

If restart fails, the firmware prints "Restart failure." on the system console.

12.5.1 Locating the Restart Parameter Block (RPB)

The restart parameter block (RPB) is a page-aligned control block which can be identified
by the first three longwords. Figure 12-13 shows the format of the RPB signature. (See
Table 1-2 in Appendix E for a complete description of the RPB.)

APB: +00 physical address of the APB

+04 physical address of the restart routine

+08 checksum of first 31 longwords of restart routine

Figure 12-13 Locating the Restart Parameter Block

The firmware uses the following algorithm to find a valid RPB:

1. Search for a page of memory that contains its address in the first longword. If none
is found, the search for a valid RPB has failed.

2. Read the second longword in the page (the physical address of the restart routine). If
it is not a valid physical address, or if it is zero, return to step 1. The check for zero
is necessary to ensure that a page of zeros does not pass the test for a valid RPB.

3. Calculate the 32-bit twos-complement sum (ignoring overflows) of the first 31
longwords of the restart routine. If the sum does not match the third longword of
the RPB, return to step 1.

4. A valid RPB has been found.

12.6 Console Service
The KA660 is by definition "halted", whenever the console program is running and the
triple angle prompt (»» is displayed on the console terminal. When the processor is
halted, the firmware provides most of the services of a standard VAX console through the
device that is designated as the system console. The firmware also implements several
commands which are not defined in the VAX Architecture Reference Manual. For a
summary of the console commands see Table 12-11.

KA660 Firmware 12-23

12.6.1 Console Control Characters
In console 110 mode, several characters have special meanings. Table 12-5 lists the
characters and their meanings.

Table 12-5 Console Control Characters

Keyboard
Key

I Return I

I CtrllD I

I CtrllE I
ICtrllFI

ICtr11H1

Control
Character

Return

Delete

CtrllA or F14

CtrllB or up arrow
(or down arrow)

CtrllC

CtrllD or left arrow

CtrllE

CtrllF or right
arrow

CtrllH,
BACKSPACE or
F12

Meaning

This character ends a command line. No action is taken
on a command until after it is terminated by a Return. A
null1ine terminated by a Return is treated as a valid, null
command. No action is taken, and the console reprompts for
input. Return is echoed as return, line feed.

When the operator presses the delete key, the console deletes
the character that the operator previously typed. What
appears on the console terminal depends on whether the
terminal is a video terminal or a hard copy terminal.

For hard copy terminals, when the delete key is pressed,
the console echoes with a backslash (\), followed by the
character being deleted. If the operator deletes additional
characters, the deleted characters are echoed. When the
operator types a non-delete character, the console echoes
another backslash, followed by the character typed. The
result is to echo the characters deleted, surrounding them
with backslashes.

For video terminals, when the delete key is pressed, the
previous character is erased from the screen and the cursor
is restored to its previous position.

The console does not delete characters past the beginning of
a command line. If the operator presses the delete key more
times than there are characters on the line, the extra deletes
are ignored. If the delete key is pressed on a blank line, it is
ignored.

Toggle insertion/overstrike mode for command line editing.
By default, the console powers up to overstrike mode.

Recall previous command(s). Command recall is only
operable if sufficient memory is available. This function
may then be enabled and disabled using the SET RECALL
command.

This character causes the console to echo "C and to abort
processing of's command. Ctrl/C has no effect as part of a
binary load data stream. Ctrl/C clears CtrllS, and reenables
output stopped by CtrllO.

This character moves the cursor left one position.

Move the cursor to the end of the line.

Moves the cursor one position to the right.

Moves the cursor to the beginning of the line.

12-24 KA660 Firmware

Table 12-5 (Cont.) Console Control Characters

Keyboard Control
Key Character

I Ctri/O I CtrllO

I CtrVQ I CtrllQ

I Ctri/S I CtrllS

I CtrllU I CtrllU

I CtrllR I CtrllR

I Break I BREAK

NOTE

Meaning

This character causes the console to throwaway
transmissions to the console terminal until the next Ctrl
10 is entered. CtrllO is echoed as "O<CR> when it disables
output, but is not echoed when it reenables output. Output
is reenabled if the console prints an error message, or if it
prompts for a command from the terminal. Displaying a
REPEAT command does not reenable output. When output
is reenabled for reading a command, the console prompt is
displayed. Output is also enabled by CtrIlQ.

This character causes the output to the console terminal to
resume. Additional CtrllQs are ignored. CtrllS and CtrllQ
are not echoed.

Stops output to the console terminal until CtrllQ is typed.
CtrllS and CtrllQ are not echoed.

The console echoes I\U<CR>, and deletes the entire line.
If CtrllU is typed on an empty line, it is echoed, and the
console prompts for another command.

Causes the console to echo <CR><LF> followed by the
current command line. This function can be used to improve
the readability of a command line that has been heavily
edited. When CtrllC is typed as part of a command line, the
console deletes the line as it does with CtrllU.

If the console is in console I/O mode, BREAK is equivalent to
CtrllC and is echoed as "I\C".

If the local console is in program 110 mode and halts are disabled, BREAK is ignored. If
the console is in program 110 mode and halts are enabled, BREAK causes the processor
to halt and enter console 110 mode.

Control characters are typed by pressing the character key while holding down the
control key.

If an unrecognized control character (ASCII code less than 32 decimal or between 128
and 159 decimal) is typed it is echoed as an up arrow followed by the character with
ASCII code 64 or greater. For example, BEL,(ASCII code 7) is echoed as "AG", because
capital G is ASCII code 7+64=71. When a control character is deleted using the delete
key, it is echoed the same way. After echoing the control character, the console processes
it like a normal character. Commands with control characters are invalid, unless they
are part of a comment, and the console will respond with an error message.

12.6.2 Console Command Syntax

The console accepts commands of lengths up to 80 characters. It responds to longer
commands with an error message. The count does not include deletes, deleted characters,
or the terminating Return.

Commands may be abbreviated. Abbreviations are formed by dropping characters from
the end of a keyword, as long as the resulting keyword is still unique. Most commands
can be uniquely expressed with their first character.

KA660 Firmware 12-25

Multiple adjacent spaces and tabs are treated as a single space by the console. Leading
and trailing spaces and tabs are ignored. Tabs are echoed as spaces.

Command Qualifiers can appear after the command keyword, or after any symbol or
number in the command. A Qualifier is any contiguous set of nonwhite-space characters
that is started with a slash (ASCII code 47 decimal).

All numbers (addresses, data, counts) are in hexadecimal. Note, though, that symbolic
register names number the registers in decimal. The console does not distinguish
between upper and lower case either in numbers or in commands; both are accepted.

12.6.3 Console Command Keywords

The KA660· firmware implements a variant of the VAX SRM console command set.
The only commands defined in the VAX SRM and not supported by the KA660 are
MICROSTEP, LOAD, and @. The CONFIGURE, HELP, MOVE, SEARCH and SHOW
command have been added to the command set to facilitate system debugging and access
to system parameters. In general, however, the KA660 console is similar to other VAX
consoles.

Table 12-6 lists command, parameter, and Qualifier keywords.

Table 12-6 Command, Parameter, and Qualifier Keywords

Command Keywords

Processor Control Data Transfer Console Control

B*OOT D*EPOSIT CONF*IGURE

C*ONTINUE E*XAMINE F*IND

H*ALT M*OVE R*EPEAT

I*NITIALIZE SEA*RCH SET

N*EXT X SH*OW

S*TART T*EST

U*NJAM

SET and SHOW Parameter Keywords

BO*OT BF*L(A)G DE*VICE

DS*SI ET*HERNET HA*LT

H*OST L*ANGUAGE M*EMORY

Q*BUS R*ECALL RL*V12

U*QSSP VERS*ION T*RANSLATION

12-26 KA660 Firmware

Table 12-6 (Cont.) Command, Parameter, and QualHier Keywords

Qualifier Keywords

Data Control Address Space Control Command Specific

IB /G IIN*STRUCTION

IW /I INO*T

IL IP 1R5: or /

/Q N IRP*B or IME*M

IN: 1M IF*ULL

IST*EP: IU IDU*P or IMA*INTENANCE

IWR*ONG IDS*SI or IU*QSSP

IDI*SK or IT* APE

ISE*RVICE

The characters before the asterisk (*) indicate the minimal number of characters that are required to uniquely
identify the keyword.

Table 12-11 provides a complete summary of the console commands, and Section 12.7
describes the console commands.

12.6.4 Console Command Qualifiers

All qualifiers in the console command syntax are global. That is, they may appear in any
place on the command line after the command keyword.

All qualifiers have unique meanings throughout the console, regardless of the command.
For example, the IB qualifier always means byte.

Table 12-12 summarizes the qualifiers recognized by the KA660 console.

12.6.5 Console Numeric Expression Radix Specifiers

By default, the console treats any numeric expression, used as an address or a datum,
as a hexadecimal integer. The user may override the default radix by using one of the
specifiers listed in Table 12-7.

Table 12-7 Console Radix Specifiers

Form 1 Form 2 Radix

%b Ab Binary

%0 1\0 Octal

%d Ad Decimal

%x AX Hexadecimal, default

For instance, the value 19 is by default hexadecimal, but it may also be represented as
%b11001, %031, %d25, and %x19 (or in the alternate form as "bl1001, "031, I\d25, and
"x19).

KA660 Firmware 12-27

12.6.6 Command Address Specifiers
Several commands take an address or addresses as arguments. In the context of the
console, an address has two components: the address space, and the offset into that
space. The console supports 6 address spaces: physical memory (lP qualifier), virtual
memory (N qualifier), general purpose registers UG qualifier), internal processor registers
(II qualifier), protected memory (IU qualifier), and the PSL (1M qualifier).

The address space that the console references is inherited from the previous console
reference, unless explicitly specified. The initial address space reference is PHYSICAL.

The KA660 console supports symbolic references to addresses. A symbolic reference
simultaneously defines the address space for a given symbol. Table 12-8 lists the
symbolic addresses supported by the console. They are grouped according to address
space.

Table 12-8 Console Symbolic Addresses

Symbol Address Symbol Address Symbol Address Symbol Address

IG • General Purpose Registers

RO 00 R4 04 R8 08 R12 OC
(AP)

Rl 01 R5 05 R9 09 R13 on
(FP)

R2 02 R6 06 RIO OA R14 OE
(SP)

R3 03 R7 07 R11 OB R15 OF
(PC)

1M. • Processor Status Longword

PSL

II . Internal Processor Registers

pr$_ksp 00 pr$_ 10 pr$_rxcs 20 30
pcbb

pr$_esp 01 pr$_ 11 pr$_ 21 31
scbb rxdb

pr$_ssp 02 pr$_ipl 12 pr$_txcs 22 32

pr$_usp 03 pr$_ 13 pr$_ 23 33
astlv txdb

pr$_isp 04 pr$_sirr 14 24 34

05 pr$_sisr 15 pr$_ccr 25 35

06 16 26 36

07 17 pr$_ 27 pr$_ 37
mser ioreset

Note: All symbolic values in this table are in hexadecimal.

12-28 KA660 Firmware

Table 12-8 (Cont.) Console Symbolic Addresses

Symbol Address Symbol Address Symbol Address Symbol Address

II . Internal Processor Registers

pr$_ 08 pr$_iccr 18 28 pr$_ 38
pObr mapen

pr$_pOlr 09 19 29 pr$_tbia 39

pr$_ OA pr$_icr 1A pr$_ 2A pr$_tbis 3A
p1br savpc

pr$_p1Ir OB pr$_todr 1B pr$_ 2B 3B
savpsl

pr$_sbr OC 1C 2C 3C

pr$_slr OD 1D 2D 3D

OE IE 2E pr$_sid 3E

OF IF 2F pr$_ 3F
tbchk

IP • Physical (VAX 110 Space)

qbio 20000000 qbmem 30000000 qbmbr 20080010

rom 20040000 cacr 20084000 bdr 20084004

dscr 20080000 dser 20080004 dmear 20080008 dsear 2008000C

ipcrO 20001f40 ipcr1 20001f42 ipcr2 20001f44 ipcr3 20001f46

ssc_ram 20140400 ssc_cr 20140010 ssc_cdal 20140020 sse 20140030
dledr

ssc 20140130 ssc 20140134 sse 20140140 ssc 20140144
adOinat adOmsk ad1mat adlmsk

ssc_tcrO 20140100 ssc_tirO 20140104 ssc 20140108 ssc 2014010c
tnirO tivrO

ssc_tcr1 20140110 ssc_tir1 20140114 ssc 20140118 ssc 2014011c
tnir1 tivr1

memcsrO 20080100 memcsr1 20080104 memcsr2 20080108 memcsr3 2008010c

memcsr4 20080110 memcsr5 20080114 memcsrG 20080118 memcsr7 2008011c

memcsr8 20080120 memcsr9 20080124 memcsr10 20080128 memcsr11 2oo8012c

memcsr12 20080130 memcsr13 20080134 memcsr14 20080138 memcsr15 2008013c

memcsr16 20080140 memcsr17 20080144

nicsrO 20008000 nicsrl 20008004 20008008 nicsr3 2000800C

nicsr4 20008010 nicsr5 20008014 nicsr6 20008018 nicsr7 2000801C

20008020 nicsr9 20008024 nicsr10 20008028 nicsrll 2000802C

nicsr12 20008030 nicsr13 20008034 nicsr14 20008038 nicsr15 2000803C

KA660 Firmware 12-29

Table 12-8 (Cont.) Console Symbolic Addresses

Symbol

sgec_
setup

sgec_tba

sgec_
verhi

shac_
sswcr

shac_
pesr

shac_
pcqOcr

shac_
pdfqcr

shac_
pdcr

*
+

@

Address Symbol Address Symbol Address Symbol Address

IP· Physical (VAX IJO Space)

20008000 sgec_ 20008004 20008008 sgec_rba 2000800C
poll

20008010 sgec_ 20008014 sgec_ 20008018 sgec_sbr 2000801C
status mode

20008020 sgec_ 20008024 sgec_ 20008028 sgec_ 2000802C
wdt mfc verlo

20008030 sgec_ 20008034 sgec_bpt 20008038 sgec_ 2000803C
proc cmd

20004230 shac 20004244 shac_ 20004048 shac_ 2000404c
sshma pqbbr psr

20004250 shac_ 20004254 shac_ 20004058 shac_ 2000405C
pfar ppr pmcsr

20004280 shac_ 20004284 shac_ 20004088 shac_ 2000408C
pcq1cr pcq2er pcq3er

20004290 shac 20004294 shac_ 20004098 shac_ 2000409C
pmfqcr psrcr pecr

200042AO shac_ 200042A4 shac_ 200040A8 shac_ 200040AC
pier pmter pmtecr

Any Address Space

The last location successfully referenced in an EXAMINE or DEPOSIT command.

The location immediately following the last location successfully referenced in an
EXAMINE or DEPOSIT command. For references to physical or virtual memory
spaces, the location referenced is the last address, plus the size of the last reference
(1 for byte, 2 for word, 4 for longword, 8 for quadword). For other address spaces, the
address is the last address referenced plus one.

The location immediately preceding the last location successfully referenced in an
EXAMINE or DEPOSIT command. For references to physical or virtual memory
spaces, the location referenced is the last address minus the size of this reference (1
for byte, 2 for word, 4 for longword, 8 for quadword). For other address spaces, the
address is the last addressed referenc~d minus one.

The location addressed by the last location successfully referenced in an EXAMINE or
DEPOSIT command.

12.6.7 References to Processor Registers and Memory

The KA660 console is implemented in VAX MACRO code executing from EPROM. Actual
processor registers cannot be modified by the console command interpreter. When the
console is entered, the console saves the processor registers in console memory and all
command references to them are directed to the corresponding saved values, not to the
registers themselves.

12-30 KA660 Firmware

When the console reenters program I/O mode, the saved registers are restored and only
then do any changes become operative. References to processor memory are handled
normally. The binary load and unload command cannot reference the console memory
pages.

The following registers are saved by the console, and any direct reference to these
registers will be intercepted by the console and the access will be to the saved copies:

• RO through R15 - the general purpose registers (GPRs)

• PR$_IPL - the interrupt priority level register (lPLR)

• PR$_SCBB - the system control block base register (SCBB)

• PR$_ISP - the interrupt stack pointer (lSP)

• PR$MAPEN - the memory management enable register (MAPEN)

The following registers are also saved, yet may be accessed directly using console
commands. Writing values to these registers may make the console inoperative.

• PR$_SAVPC - the halt PC (SAVPC)

• PR$_SAVPSL - the halt PSL (PSL)

• ADxMCHlADxMSK - the SSC address decode and match registers (BDMTR, BDMKR)

• SSCCR - the SSC configuration register

• DLEDR - the SSC diagnostic LED register

KA660 Firmware 12-31

12.7 Console Commands
The following section defines the conventions use to describe command syntax, and the
commands accepted by the console when the KA660 is in console I/O mode.

Syntax Conventions

The following conventions are used to describe command syntax:

Table 12-9 Syntax Conventions

[]

{ }

Enclose an optional command elements.

Enclose a required command element.

Indicates a series of command elements.

The console allows you to override the default radix by using the following commands:

Table 12-10 Overriding the Default Radix

%d

%x

%b

%0

Decimal (For example, %d1234)

Hexadecimal (For example, %xFEEBFCEA)

Binary (For example, %b1001)

Octal (For example, %01070)

The following example shows a console EXAMINE command that specifies a decimal
value for the IN qualifier:

»>EX/L/P/N:%dl023 0

12-32 Console Commands
BOOT

BOOT

Format
BOOT [qualifier] [booCdevice[:]]

Qualifiers
/R5:{boot_flags}
Boot flags is a 32-bit hex value, that is passed to VMB in R5. No interpretation of this
value is performed by the console. Refer to Figure 12-9 for the bit assignments of R5.
A default boot flags longword may be specified using the SET BFLAG command and
displayed with the SHOW BFLAG command.

/{boot_flags}
Equivalent to the form above.

Arguments
[boot_device]
The boot device name may be any arbitrary character string, with a maximum length
of 17 characters. Longer strings cause a ''VAL TOO BIG" error message to be issued
from the console. Otherwise the console makes no attempt at interpreting or validating
the device name. The console converts the string to all upper case, and passes VMB a
string descriptor to this device name in RO. A default boot device may be specified using
the SET BOOT command and displayed with the SHOW BOOT command. The factory
default is the Ethernet device, EZAO.

Description

The console initializes the processor and transfers execution to VMB. VMB attempts to
boot the operating system from the specified device or the default boot device if none is
specified.

If a list of devices is specified, VMB attempts to boot from each device in tum and then
transfers control to the first successfully booted image. In a list, network devices should
always be placed last, because network bootstraps only terminate if a fatal hardware
error occurs or an image is successfully loaded.

The console qualifies the bootstrap operation by passing a boot flags to VMB in R5. A
more detailed description of the bootstrap process and how the default bootstrap device is
determined is described in Section 12.4.

In the case where either the qualifiers or the device name is absent, then the
corresponding default value is used. Explicitly stating the boot flags or the boot device
overrides the current default value for the current boot request, but does not change the
corresponding default value in BBURAM.

There are three mechanisms by which the default boot device and and boot flags may be
set.

1. The operating system may write a default boot device and flags into the appropriate
locations in BBURAM (refer to Appendix H).

Console Commands 12-33
BOOT

2. The user may explicitly set the default boot device and boot flags with the console
SET BOOT and SET BFLAG commands respectively.

3. The console will prompt the user for the default boot device, if any of the following
conditions are met:

• The power-up mode switch is set to query mode.

• The console detects that the battery failed, and therefore the contents of
BBURAM are no longer valid.

• The console detects that the default boot device has not been explicitly set by the
user. Either a previous device query timed out and defaulted to EZAO or neither
(1) nor (2) has been performed. Simply stated, the console will prompt the user
on each and every power-up for a default boot device, until such a request has
been satisfied.

On power-up if no default boot device is specified in BBURAM, the console issues a list of
potential bootable devices and then queries the user for a device name. If no device name
is entered within 30 seconds, EZAO is used. However, EZAO does not become the default
boot device.

Examples
»>show boot
DUAO
»>show bflag
o
»>b
(BOOT/RS: 0 DUAO)

2 ••
-DUAO

»>bo EZAO
(BOOT /RS : 0 EZAO)

2 ••
-EZAO

»>boot/10
(BOOT/RS:IO DUAO)

2 ••
-DUAO

»>boot /rS:220 EZAO
(BOOT/RS:220 EZAO)

2 ••
-EZAO

»>boot diaO,muaO,ezaO
(BOOT/RS:O DIAO,MUAO,EZAO)

2 ••

Boot using default boot flags and device.

Boot using default boot flags and specified device.

Boot using specified boot flags and default device.

Boot using specified boot flags and device.

12-34 Console Commands
CONFIGURE

CONFIGURE

Format
CONFIGURE

Qualifiers
None.

Arguments
None.

Description
CONFIGURE is similar to the VMS SYSGEN CONFIG utility. This feature simplifies
system configuration by providing information that is typically available only with a
running operating system.

The CONFIGURE command invokes an interactive mode that permits the user to enter
Q22-bus device names, then generates a table of Q22-bus 110 page device CSR addresses
and device vectors.

Examples

»>configure
Enter device configuration, HELP, or EXIT
Device,Number? help
Devices:

LPVll KXJll
RLVl2 TSV05
DMVll DELQA
RRD50 RQC25
RV20 KFQSA-TAPE
CXAl6 CXBl6
LNV2l QPSS
KWVllC ADVllD
DRQ3B VSV2l
IDVllD IAVllA
DESNA IGQll
KWV32 KZQSA

Numbers:
1 to 255, default is 1

Device,Number? kda50
Device,Number? kfqsa
Device is ambiguo~s
Device,Number? kfqsa-disk
Device,Number? kfqsa-tape
Device,Number? cxy08
Device,Number? cxal6
Device,Number? exit

DLVllJ DZQll
RXV2l DRVllW
DEQNA DESQA
KFQSA-DISK TQK50
KMVll IEQll
CXY08 VCBOl
DSVll ADVllC
AAVllD VCB02
IBQOl IDVllA
IAVllB MIRA
DIV32 KIV32

DZVll DFAOl
DRVllB DPVll
RQDX3 KDA50
TQK70 TU8lE
DHQll DHVll
QVSS LNVll
AAVllC AXVllC
QDSS DRVllJ
IDVllB IDVllC
ADQ32 DTC04
DTCN5 DTC05

Address/Vector Assignments
-772150/154 KDA50
-760334/300 KFQSA-DISK
-774500/260 KFQSA-TAPE
-760500/310 CXY08
-760520/320 CXA16
»>

Console Commands 12-35
CONFIGURE

12-36 Console Commands
CONTINUE

CONTINUE

Format
CONTINUE

Qualifiers
None.

Arguments
None.

Description
The processor begins instruction execution at the address currently contained in the
program counter. Processor initialization is not performed. The console enters program
110 mode. Internally, the continue command pushes the user's PC and PSL onto the
user's ISP, and then executes an REI instruction. This implies that the user's ISP is
pointing to some valid memory.

Examples
»>continue
»>

DEPOSIT

Format
DEPOSIT [qualifie,-Iistj {address} '[data} [data ... j

Qualifiers
18
The data size is byte.

/W
The data size is word.

IL
The data size is longword.

10
The data size is quadword.

IG

Console Commands 12-37
DEPOSIT

The address space is the general purpose register set, RO through R15. The data size is
always long.

1/
The address space is internal processor registers (lPRs). These are the registers
accessible only by the MTPR and MTPR instructions. The data size is always long.

1M
The address space is the Processor Status Longword (PSL).

IP
The address space is physical memory.

IV
The address space is virtual memory. All access and protection checking occur. If the
access would not be allowed to a program running with the current PSL, the console
issues an error message. Virtual space DEPOSITs cause the PTE<M> bit to be set. If
memory mapping is not enabled, virtual addresses are equal to physical addresses.

IU
Access to console private memory is allowed. This qualifier also disables virtual address
protection checks. On virtual address writes, the PrE<M> bit will not be set if the IU
qualifier is present. This qualifier is not inherited, and must be respecified on each
command.

IN:{countJ
The address is the first of a range. The console deposits to the first address, then to the
specified number of succeeding addresses. Even if the address is the symbolic address
"_", the succeeding addresses are at larger addresses. The symbolic address specifies only
the starting address, not the direction of succession. For repeated references to preceding
addresses, use "REPEAT DEPOSIT - <DATA>".

12-38 Console Commands
DEPOSIT

ISTEP:{slze}
The number to add to the current address. Normally this defaults to the data size, but is
overriden by the presence of this qualifier. This qualifier is not inherited.

/WRONG
The ECC bits for this data are forced to the value of 3 (ECC bits of 3 will always generate
a double-bit error).

Arguments
{address}
A longword address that specifies the first location into which data is deposited. The
address can be any legal address specifier as defined in Section 12.6.6 and Table 1~.

{data}
The data to be deposited. If the specified data is larger than the deposit data size,
the console ignores the command and issues an error response. If the specified data is
smaller than the deposit data size, it is extended on the left with zeros.

[datal
Additional data to be deposited (up to a maximum of 6 values).

Description

Deposits the data into the address specified. If no address space or data size qualifiers
are specified, the defaults are the last address space and data size used in a DEPOSIT,
EXAMINE, MOVE, or SEARCH command. After processor initialization, the default
address space is physical memory, the default data size is a long word and the default
address is zero. If conflicting address space or data sizes are specified, the console ignores
the command and issues an error response.

Examples
»>d/p/b/n:1FF 0 0

»>d/v/l/n:3 1234 5

»>d/n:8 RO FFFFFFFF

»>d/n:200 -

Clear first 512 bytes of physical memory.

Deposit 5 into four longwords starting at
virtual memory address 1234.
Loads GPRs RO through R8 with -1.

o ! Starting at previous address, clear 513 bytes.

»>d/l/p/n:10/s:200 0 8

»>

Deposit 8 in the first longword of
the first 17 pages in physical memory.

EXAMINE

Format
EXAMINE {qualifier_list] {address].

Qualifiers
18
The data size is byte.

/W
The data size is word.

IL
The data size is longword.

IQ

The data size is quadword.

IG

Console Commands 12-39
EXAMINE

The address space is the general purpose register set, RO through R15. The data size is
always long.

II
The address space is internal processor registers (IPRs). These are the registers
accessible only by the MTPR and MTPR instructions. The data size is always long.

1M
The address space is the Processor Status Longword (PSL).

IP
The address space is physical memory. Note that when virtual memory is examined, the
address space and address iri the response are the translated physical address.

IV
The address space is virtual memory. All access and protection checking occur. If the
access would not be allowed to a program running with the current PSL, the console
issues an error message. If memory mapping is not enabled, virtual addresses are equal
to physical addresses.

1M
The address space and display are the PSL. The data size is always long.

IU
Access to console private memory is allowed. This qualifier also disables virtual address
protection checks. This qualifier is not inherited, and must be respecified with each
command.

IN:{countJ
The address is the first of a range. The console deposits to the first address, then to the
specified number of succeeding addresses. Even if the address is the symbolic address
"_", the succeeding addresses are at larger addresses. The symbolic address specifies only

12-40 Console Commands
EXAMINE

the starting address, not the direction of succession. For repeated references to preceding
addresses, use "REPEAT EXAMINE - <DATA>".

ISTEP:{sJze}
The number to add to the current address. Normally this defaults to the data size, but is
overriden by the presence of this qualifier. This qualifier is not inherited.

/WRONG
ECC errors on this read access to main memory are ignored. Also, if specified, the
ECC bits actually read are displayed in parenthesis following the datum. In the case of
quadword and octaword data, the ECC bits shown apply to the most significant longword
only.

IINSTRUCTION
Disassemble and display the VAX MACRO-32 instruction at the specified address.

Arguments
[address}
A longword address that specifies the first location to be examined. The address can be
any legal address specifier as defined in Section 12.6.6 and Table 12-8. If no address is
specified, "+" is assumed.

Description

Examines the contents of the memory location or register specified by the address. If
no address is specified, "+" is assumed. The display line consists of a single character
address specifier, the hexadecimal physical address to be examined, and the examined
data also in hexadecimal.

EXAMINE uses the same qualifiers as DEPOSIT. However, the "!WRONG" qualifier will
cause the EXAMINE command to ignore ECC errors on reads from physical memory.
Additionally, the EXAMINE command supports a /INSTRUCTION qualifier, which will
disassemble the instructions at the current address.

Examples

»>ex pc
G OOOOOOOF FFFFFFFC

»>ex sp
G OOOOOOOE 00000200

»>ex psI
M 00000000 041FOOOO

»>e/m
M 00000000 041FOOOO

»>e r4/n:5
G 00000004 00000000
G 00000005 00000000
G 00000006 00000000
G 00000007 00000000
G 00000008 00000000
G 00000009 801D9000

»>ex pr$ scbb
I 00000011 2004AOOO

»>e/p 0
P 00000000 00000000

»>ex lins 20040000
P 20040000 11 BRB

»>ex lins/n:5 20040019
P 20040019 DO MOVL
P 20040024 D2 MCOML
P 2004002F D2 MCOML
P 20040036 7D MOVQ
P 2004003D DO MOVL
P 20040044 DB MTPR

»>e/ins
P 20040048 DB MTPR

»>

20040019

I A#20140000,@#20140000
@#20140030,@#20140502
SA#OE,@#20140030
RO,@#201404B2
I A#201404B2,R1
SA#2A,BA44 (R1)

SA#2B,BA48(R1)

Console Commands 12-41
EXAMINE

Examine the pc.

Examine the SP.

Examine the PSL.

Examine PSL another way.

Examine R4 through R9.

Examine the SCBB, IPR 17.

Examine local memory O.

Examine 1st byte of EPROM.

Disassemble from branch.

Look at next instruction.

12-42 Console Commands
FIND

FIND

Format
FIND [qualifier-list]

Qualifiers
IMEMORY
Search memory for a page-aligned block of good memory, 128 Kbyte in length. The search
looks only at memory that is deemed usable by the bit map. This command leaves the
contents of memory unchanged.

IRPB
Search all of physical memory for a restart parameter block. The search does not use
the bit map to qualify which pages are looked at. The command leaves the contents of
memory unchanged.

Arguments
None.

Description

The console searches main memory starting at address zero for a page-aligned 128 Kbyte
segment of good memory, or a restart parameter block (RPB). If the segment or block is
found, its address plus 512 is left in SP (R14). If the segment or block is not found, an
error message is issued, and the contents of SP are preserved. If no qualifier is specified,
IRPB is assumed.

Examples
»>ex sp

G OOOOOOOE 00000000
»>find /rnern
»>ex sp

G OOOOOOOE 00000200
»>find /rpb
?2C FND ERR 00C00004
»>

Check the SP.

Look for a valid 128Kb.
Note where it was found.

Check for valid RPB.
None to be found here.

HALT

Format
HALT

Qualifiers
None.

Arguments
None.

Description

Console Commands 12-43
HALT

This command has no effect and is included for compatibility with other consoles.

Examples
»>halt
»>

Pretend to halt.

12-44 Console Commands
HELP

HELP

Format
HELP

Qualifiers
None.

Arguments
None.

Description

This command has been included to help the console operator answer simple questions
about command syntax and usage.

Examples
»>help

Following is a brief summary of all the commands supported by the console:

UPPERCASE
I
[]
<>

Valid qualifiers:

denotes a keyword that you must type in
denotes an OR condition
denotes optional parameters
denotes a field specifying a syntactically correct value
denotes one of an inclusive range of integers
denotes that the previous item may be repeated

IB IW IL IQ IINSTRUCTION
IG II IV IP 1M
ISTEP: IN: INOT
IWRONG IU

Console Commands 12-45
HELP

Valid commands:

»>

BOOT [/RS:<boot_flags> I /<boot_flags>] [<boot_device>[:]]
CONFIGURE
CONTINUE
DEPOSIT [<qualifiers>] <address> [<datum> [<datum>]]
EXAMINE [<qualifiers>] [<address>]
FIND [/MEMORY I /RPB]
HALT
HELP
INITIALIZE
MOVE [<qualifiers>] <address> <address>
NEXT [count]
REPEAT <command>
SEARCH [<qualifiers>] <address> <pattern> [<mask>]
SET BFL(A}G <boot_flags>
SET BOOT <boot device>
SET CONTROLP <0 .. 1 I DISABLED I ENABLED>
SET HALT <0 .. 4 I DEFAULT I RESTART I REBOOT I HALT I RESTART_REBOOT>
SET HOST/DUP/DSSI <node number> [<task>]
SET HOST/DUP/UQSSP </DISK I /TAPE> <controller number> [<task>]
SET HOST/DUP/UQSSP <physical CSR address> [<task>]
SET HOST/MAINTENANCE/UQSSP/SERVICE <controller number>
SET HOST/MAINTENANCE/UQSSP <physical_CSR_address>
SET LANGUAGE <1 .. 15>
SET RECALL <0 .. 1 I DISABLED I ENABLED>
SHOW BFL(A)G
SHOW BOOT
SHOW DEVICE
SHOW DSSI
SHOW ETHERNET
SHOW HALT
SHOW LANGUAGE
SHOW MEMORY [/FULL]
SHOW RECALL
SHOW RLV12
SHOW QBUS
SHOW UQSSP
SHOW SCSI
SHOW TRANSLATION <physical_address>
SHOW VERSION
START <address>
TEST [<test_code> [<parameters>]]
UNJAM
X <address> <count>

12-46 Console Commands
INITIALIZE

INITIALIZE

Format
INITIALIZE

Qualifiers
None.

Arguments
None.

Description

A processor initialization is performed. The following registers are initialized, as specified
in The VAX Architecture Standard.

PSL - 041FOOOO
IPL-1F
ASTLVL-4
SISR-O
ICCS - bits <6> and <0> are clear, the rest are UNPREDICTABLE
RXCS-O
TXCS-BO
MAPEN-O
CPU cache - flushed and enabled
instruction buffer - unaffected
console previous reference - longword, physical, address 0
TODR - unaffected
main memory - unaffected
general registers - unaffected
halt code - unaffected
bootstrap in progress flag - unaffected
internal restart in progress flag - unaffected

The KA660 firmware performs the following additional initialization:

The CDAL bus timer is initialized.
The address decode and match registers are initialized.
The programmable timer interrupt vectors are initialized.
The BDR registers are read to determine the baud rate, and then the SSCCR is
configured accordingly.
All error status bits are cleared.

Examples

»>init
»>

MOVE

Format
MOVE [qualifier-list] {src_address} {desCaddress}

Qualifiers
18
The data size is byte.

/W
The data size is word.

IL
The data size is longword.

IQ
The data size is quadword.

IP
The address space is physical memory.

IV

Console Commands 12-47
MOVE

The address space is virtual memory. All access and protection checking occur. If the
access would not be allowed to a program running with the current PSL, the console
issues an error message. Virtual space MOVEs cause the destination PTE<M> bit to be
set. If memory mapping is not enabled, virtual addresses are equal to physical addresses.

IU
Access to console private memory is allowed. This qualifier also disables virtual address
protection checks. On virtual address writes, the PTE<M> bit will not be set if the /U
qualifier is present. This qualifier is not inherited, and must be respecified on each
command.

IN:(count}
The address is the first of a range. The console deposits to the first address, then to the
specified number of succeeding addresses. Even if the address is the symbolic address "_",
the succeeding addresses are at larger address~s. The symbolic address specifies only the
starting address, not the direction of succession.

ISTEP:(slze}
The number to add to the current address. Normally this defaults to the data size, but is
overriden by the presence of this qualifier. This qualifier is not inherited.

/WRONG
On reads, ECC errors on the access of data in main memory are ignored. On writes, the
ECC bits for this data are forced to the value of 3 (ECC bits of 3 will always generate a
double-bit error).

12-48 Console Commands
MOVE

Arguments
{src_address}
A longword address that specifies the first location of the source data to be copied.

{dest_address}
A longword address that specifies the destination of the first byte of data. These
addresses may be any legal address specifier as defined in Section 12.6.6 and Table 12-8.
If no address is specified, u+u is assumed.

Description

The console copies the block of memory starting at the source address to a block
beginning at the destination address. Typically, this command is used with the IN:
qualifier to transfer large blocks of data. The destination will correctly reflect the
contents of the source, regardless of the overlap between the source and the data.

The MOVE command actually performs byte, word, longword, and quad word reads and
writes as needed in the process of moving the data. Moves are only supported for the
physical and virtual address spaces.

Examples
»>ex In: 4 0

P 00000000 00000000
P 00000004 00000000
P 00000008 00000000
P OOOOOOOC 00000000
P 00000010 00000000

»>ex In:4 200
P 00000200 58000520
P 00000204 585E04C1
P 00000208 00FF8FBB
P 0000020C 5208A800
P 00000210 540CA80E

»>move In:4 200 0
»>ex In:4 0

P 00000000 58000520
P 00000004 585E04Cl
P 00000008 00FF8FBB
P OOOOOOOC 5208A800
P 00000010 540CA80E

»>

Observe destination.

Observe source data.

Move the data.
Observe the destination.

NEXT

Format
NEXT [count]

Qualifiers
None.

Arguments
[count}

Console Commands 12-49
NEXT

A value representing the number of macro instructions to execute.

Description

The NEXT command causes the processor to "step" the specified number of macro
instructions. If no count is specified, "single-step" is assumed. The console then enters
spacebar step mode as described in DEC STD 032. In this mode, subsequent spacebar
strokes initiate single steps and pressing Return forces a return to the console prompt.

The console uses the trace and trace pending bits in the PSL, and the SCB trace pending
vector to implement the NEXT function. This creates the following restrictions on the
usage of the NEXT command:

• If memory management is enabled, the NEXT command works if, and only if, the
first page in SSC RAM is mapped somewhere in SO (system) space.

• The NEXT command, due to the instructions executed in implementation, does not
work where time critical code is being executed.

• The NEXT command elevates the IPL to 31 for long periods of time (milliseconds)
while single stepping over several commands.

• UNPREDICTABLE results occur if the macro instruction being stepped over modifies
the SCBB, or the trace trap entry. This means that the NEXT command cannot be
used in conjunction with other debuggers. This also implies that the user should
validate PR$_SCCB before using the NEXT command.

Examples

12-50 Console Commands
NEXT

»>dep 1000 50065004 Create a simple program.
»>dep 1004 12500501
»>dep 1008 00FE11F9
»>ex linstruction In:5 1000 List it.

P 00001000 04 CLRL RO
P 00001002 06 INCL RO
P 00001004 01 CMPL S"#05,RO
P 00001007 12 BNEQ 00001002
P 00001009 11 BRB 00001009
P 0000100B 00 HALT

»>dep pr$_scbb 200 Set up a user SCBB ...
»>dep pc 1000 .. . and the PC .
»>
»>n Single step ...

P 00001002 06 INCL RO SPACEBAR
P 00001004 01 CMPL S"#05,RO SPACEBAR
P 00001007 12 BNEQ 00001002 SPACEBAR
P 00001002 06 INCL RO CR

»>n 5 ... or multiple step the program.
P 00001004 01 CMPL S"#05,RO
P 00001007 12 BNEQ 00001002
P 00001002 06 INCL RO
P 00001"004 01 CMPL S"#05,RO
P 00001007 12 BNEQ 00001002

»>n 7
P 00001002 06 INCL RO
P 00001004 01 CMPL S"#05,RO
P 00001007 12 BNEQ 00001002
P 00001002 06 INCL RO
P 00001004 01 CMPL S"#05,RO
P 00001007 12 BNEQ 00001002
P 00001009 11 BRB 00001009

»>n
P 00001009 11 BRB 00001009

»>

REPEAT

Format
REPEAT {command}

Qualifiers
None.

Arguments
{command}

Description

Console Commands 12-51
REPEAT

The console repeatedly displays and executes the specified command. The repeating is
stopped when the operator presses Ctrl/C. Any valid console command can be specified
for the command with the exception of the REPEAT command.

Examples

»>repeat ex pr$_todr
I OOOOOOlB SAFE78CE
I OOOOOOlB SAFE78Dl
I OOOOOOlB SAFE78FD
I OOOOOOlB SAFE7900
I OOOOOOlB SAFE7903
I OOOOOOlB SAFE7907
I OOOOOOlB SAFE790A
I OOOOOOlB SAFE790D
I OOOOOOlB SAFE7910
I OOOOOOlB SAFE793C
I OOOOOOlB SAFE793F
I OOOOOOlB SAFE7942
I OOOOOOlB SAFE7946
I OOOOOOlB SAFE7949
I OOOOOOlB SAFE794C
I OOOOOOlB SAFE794F
I OOOOOOlB S"'C

»>

Watch the clock.

12-52 Console Commands
SEARCH

SEARCH

Format
SEARCH [qualifier_list] {address} {pattern} [mask]

Qualifiers
18
The data size is byte.

!W
The data size is word.

IL
The data size is longword.

IQ

The data size is quadword.

IP
The address space is physical memory. Note that when virtual memory is examined, the
address space and address in the response are the translated physical address.

IV
The address space is virtual memory. All access and protection checking occur. If the
access would not be allowed to a program running with the current PSL, the console
issues an error message. If memory mapping is not enabled, virtual addresses are equal
to physical addresses.

IU
Access to console private memory is allowed. This qualifier also disables virtual address
protection checks. This qualifier is not inherited, and must be respecified with each
command.

IN:{count}
The address is the first of a range. The first access is to the address specified, then
subsequent accesses are made to succeeding addresses. Even if the address is the
symbolic address "_", the succeeding addresses are at larger addresses. The symbolic
address specifies only the starting address, not the direction of succession.

ISTEP:{slze}
The number to add to the current address. Normally this defaults to the data size, but is
overriden by the presence of this qualifier. This qualifier is not inherited.

!WRONG
ECC errors on read accesses to main memory are ignored.

INOT
Inverts the sense of the match.

Arguments
{stan_address}

Console Commands 12-53
SEARCH

A longword address that specifies the first location subject to the search. This address
can be any legal address specifier as defined in Section 12.6.6 and Table 12-8. If no
address is specified, "+" is assumed.

{pattern}
The target data.

[mask}
A longword containing the bits in the target which are to be "masked" out.

Description

The search command finds all occurrences of a pattern, and reports the addresses where
the pattern was found. If the /NOT qualifier is present, all addresses where the pattern
didn't match are reported.

The command accepts an optional mask that indicates don't care bits. For example, to
ignore bit 0 in the comparison, specify a mask of 1. The mask, if not present, defaults to
o.
Conceptually, a match condition occurs if the following condition is true:

(pattern AND NOT mask) EQUALS (data AND NOT mask)

where: pattern
mask
data

is the target data.
-- is the optional don't care bit mask (which defaults to 0).
-- is the data (byte, word, long, quad) at the current address.

The command reports the address if the match condition is true, and there is no
/NOT qualifier, or if the match condition is false and there is a /NOT qualifier. This
is summarized in the following table:

/NOT Qualifier

absent
absent
present
present

Match Condition

true
false
true
false

Action

report address
no report
no report
report address

The address is advanced by the size of the pattern (byte, word, long or quad), unless
overriden by the /STEP qualifier.

12-54 Console Commands
SEARCH

Examples
»>dep Ip/l/n:1000 0 0 ! Clear some memory.
»>
»>dep 300 12345678 Deposit some "search" data.
»>dep 401 12345678
»>dep 502 87654321
»>
»>search In:1000 Ist:1 0 12345678 ! Search for all occurrences ...

P 00000300 12345678 ! ... of 12345678 on any byte ...
P 00000401 12345678 ! ... boundary.

»>search In:1000 0 12345678 ! Then tryon longword ...
P 00000300 12345678 ... boundaries.

»>search In:1000 Inot 0 0
P 00000300 12345678
P 00000400 34567800
P 00000404 00000012
P 00000500 43210000
P 00000504 00008765

! Search for all nonzero ...
... longwords.

»>search In:1000 Ist:1 0 1 FFFFFFFE ! Search for "odd" longwords ...
P 00000502 87654321 ! ... on any boundary.
P 00000503 00876543
P 00000504 00008765
P 00000505 00000087

»>search In:1000 Ib 0 12 ! Search for all occurrences ...
P 00000303 12 ! ... of the byte 12.
P 00000404 12

»>search In:1000 Ist:1 Iw 0 FEll
»>
»>
»> Note, none found.

Search for all words which ...
... could be interpreted as ...

! ... a "spin" (10$: brb 10$).

SET

Format
SET {parameter} {value}

Qualifiers

Depends on the parameters used.

Arguments
None.

Description

Console Commands 12-55
SET

Sets the indicated console parameter to the indicated value. The following list describes
the console parameters and their acceptable values:

Parameters
BFL(A}G
Set the default R5 boot flags. The argument to this parameter is (bitmap). The value
assigned to (bitmap) must be a hexadecimal number of up to 8 hex digits.

BOOT
Set the default boot device. The arguments to this qualifier are {device_name} and
{device_list}. The value assigned to these arguments must be either a valid device name
or device list as specified in Section 12.7, Console Commands on the BOOT command.

CONTROLP
Sets CtrllP as the console halt condition, instead of a BREAK. The arguments to this
qualifier can be either a {value) or a {keyword}. The value assigned to this qualifier
argument must be a 1 (or the keyword ENABLED) to set CtrllP recognition. The value
must be a 0 (or the keyword DISABLE) to set BREAK recognition. In either case, the
setting of the BREAK enable switch will determine whether or not a halt will occur.

HALT
Sets the user-defined halt action. The argument to this qualifier can be either a {value}
or a (keyword). Acceptable values are 0 through 4 or their corresponding keywords
DEFAULT, RESTART, REBOOT, HALT, and RESTART_REBOOT. Refer to Table 12-1 for
usage.

HOST
Invoke the DUP or MAINTENANCE driver on the selected node. Only SET HOST IDUP
accepts a {value} parameter. Acceptable numbers that can be assigned to the {value}
parameter are 0 (for bus 0) and 1 (for bus 1). The hierarchy of the SET HOST qualifiers
listed next suggests the appropriate usage. Each qualifier supports only the additional
qualifiers at levels below it.

12-56 Console Commands
SET

IDUP
Use the DUP protocol to examine/modify parameters of a device on either the DSSI bus
or the Q22-bus. The optional value for SET HOST IDUP is a task name for the selected
DUP driver to execute.

NOTE
The KA660 DUP driver supports only SEND DATA IMMEDIATE messages
and those devices which support the SEND DATA messages.

IDSSI node
Select the DSSI node, where "node" is a number from 0 to 7.

IUQSSP
Select the Q22-bus device using one of the following three methods.

!DISK n - Specify the disk controller number, where "n" is from 0 to 255. (The
resulting fixed address for n=O is 20001468 and the floating rank for n>O is 26.)
trAPE n - Specify the tape controller number, where "n" is from 0 to 255. (The

resulting fixed address for n=O is 20001940 and the floating rank for n>O is 30.)
csr_address - Specify the Q22-bus 110 page CSR address for the device.

lMAINTENANCE
Use the MAINTENANCE protocol to examine/modify KFQSA EEPROM configuration
parameters. Note that SET HOST !MAINTENANCE does not accept a "task" value.

IUQSSP -

ISERVICE n - Specify the KFQSA controller number tin" of a KFQSA in
service mode, where "n" is from 0 to 3. (The resulting fixed address of a KFQSA
in service mode is 20001910+4*n.)
esr _address - Specify the Q22-bus 110 page CSR address for the KFQSA

LANGUAGE
Set console language and keyboard type. The argument to this qualifier is (value). If
the current console terminal does not support the Digital Multinational Character Set
(MCS), then this command has no effect and the console remains in English message
mode. Acceptable values assigned to this qualifier argument are 1 through 15 and have
the following meaning:

1) Dansk
2) Deutsch (DeutschlandiOsterreich)
3) Deutsch (Schweiz)
4) English (United Kingdom)
5) English (United States/Canada)
6) Espaiiol
7) Francais (Canada)
8) Francais (FranceiBelgique)
9) Francais (Suisse)
10) Italiano
11) Nederlands
12) Norsk
13) Portugues
14) Suomi
15) Svenska

RECALL

Console Commands 12-57
SET

This command allows you to enable or disable the recal function. The argument to this
Qualifier is {value}. Acceptable values to be assigned to this Qualifier argument are 1 or
the keyword ENABLE and 0 or the key word DISABLED. When recal is set, you can
scroll through the recal buffer using the up arrow and down arrow keys.

Arguments
None.

Examples
»>
»>set bflag 220
»>
»>set boot EZAO
»>
»>set controlp disabled
»>
»>set halt reboot
»>
»>set host /dup Idssi 0
Starting DUP server ...

DSSI Node 0 (SUSAN)
Copyright e 1990 Digital Equipment Corporation
DRVEXR V1.0 D 5-JUL-1990 15:33:06
DRVTST V1.0 D 5-JUL-1990 15:33:06
HISTRY V1.0 D 5-JUL-1990 15:33:06
ERASE V1.0 D 5-JUL-1990 15:33:06
PARAMS V1.0 D 5-JUL-1990 15:33:06
DIRECT V1.0 D 5-JUL-1990 15:33:06
End of directory

Task Name? params
Copyright e 1990 Digital Equipment Corporation

PARAMS> stat path

ID Path Block Remote Node DGS S DGS R MSGS S MSGS R

0 PB FF811ECC
6 PB FF811FDO
1 PB FF8120D4
4 PB FF8121D8
5 PB FF8122DC
2 PB FF8123EO
3 PB FF8124E4

PARAMS> exit
Exiting ...

Task Name?

Internal Path

KFQSA KFX Vl. 0
KAREN RFX V101
WILMA RFX V101
BETTY RFX V101
DSSI1 VMS V5.0
3 VMB BOOT

Stopping DUP server ...
»>
»>set host /dup/dssi 0 params
Starting DUP server ...

DSSI Node 0 (SUSAN)

0
0
0
0
0
0
0

Copyright e 1990 Digital Equipment Corporation

PARAMS> show node

---------- ----------

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 14328 14328
0 61 61

12-58 Console Commands
SET

Parameter Current

NODENAME SUSAN

PARAMS> show allclass

Parameter

ALLCLASS

PARAMS> exit
Exiting ...

Current

Stopping DUP server ...
»>

Default

RF30

Default

1

»>set host /maint/uqssp 20001468
UQSSP Controller (772150)

Type Radix

String Ascii B

Type Radix

o Byte Dec B

Enter
Node

o

SET, CLEAR, SHOW, HELP, EXIT, or QUIT
CSR Address Model

772150 21
1 760334 21
4 760340 21
5 760344 21
7 ------ KFQSA ------

? help
Commands:

SET <node> /KFQSA
SET <node> <CSR address> <model>
CLEAR <node>
SHOW
HELP
EXIT
QUIT

Parameters:
<node>
<CSR address>
<model>

? set 6 /kfqsa
? show
Node
o
1
4
5
6

? exit

CSR Address
772150
760334
760340
760344

------ KFQSA

Model
21
21
21
21

Programming the KFQSA ...
»>
»>set language 5
»>
»>set recall 1
»>

set KFQSA DSSI node number
enable a DSSI device
disable a DSSI device
show current configuration
print this text
program the KFQSA
don't program the KFQSA

o to 7
760010 to 777774
21 (disk) or 22 (tape)

SHOW

Format
SHOW {parameter}

Qualifiers

Depends on the parameters used.

Parameters
BFL(A)G
Show the default R5 boot flags.

BOOT
Show the default boot device.

CONTROLP

Console Commands 12-59
SHOW

Show the current state of CtrlJP halt recognition, either ENABLED or DISABLED.

DEVICE
Show a list of all devices in the system.

DSSI
Show the status of all nodes that can be found on the DSSI bus. For each node on the
DSSI bus, the console displays the node number, the node name, and the boot name and
type of the device, if available. The command does not indicate the "bootability" of the
device.

The node that issues the command reports a node name of "*".

The device information is obtained from the media type field of the MSCP command GET
UNIT STATUS. In the case where the node is not running, or is not capable of running,
an MSCP server, then no device information is displayed.

ETHERNET
Show the hardware Ethernet address for all Ethernet adapters that can be found.
Displays as blank, if no Ethernet adapter is present.

HALT
Show the user defined halt action. One of the following keywords are displayed:
DEFAULT, RESTART, REBOOT, HALT, or RESTART_REBOOT. See Table 12-1 for
usage.

LANGUAGE
Show the console language and keyboard type. Refer to the corresponding SET
LANGUAGE command for the meaning.

MEMORY
Show main memory configuration on a board-by-board basis. Also report the addresses of
bad pages, as defined by the bit map.

/FULL

12-60 Console Commands
SHOW

Additionally show the normally inaccessible areas of memory, such as, the PFN bit
map pages, the console scratch memory pages, and the Q22-bus scatter/gather map
pages.

QBUS
Show all Q22-bus YO addresses that respond to an aligned word read. For each address,
the console displays the address in the VAX YO space in hex, the address as it would
appear in the Q22-bus YO space in octal, and the word data that was read in hex.

This command may take several minutes to complete, so the user may want to issue a
CtrllC to terminate the command. The command disables the scatter/gather map for the
duration of the command.

RECALL
Show the current state of command recall, either ENABLED or DISABLED.

RLV12
Show all RLOI and RL02 disks which appear on the Q22-bus.

SCSI
Show any SCSI devices in the system.

TRANSLATION
Show any virtual addresses which map to the specified physical address. The firmware
uses the current values of page table base and length registers to perform its search; it is
assumed that page tables have been properly built.

UQSSP
Show the status of all disks and tapes that can be found on the Q22-bus which support
the UQSSP protocol. For each such disk or tape on the Q22-bus, the console displays
the controller number, the controller CSR address, and the boot name and type of each
device connected to the controller. The command does not indicate the "bootability" of the
device.

The device information is obtained irom the media type field of the MSCP command GET
UNIT STATUS. In the case where the node is not running, or is not capable of running
an MSCP server, then no device information is displayed.

VERSION
Show the current version of the firmware.

Qualifiers

Depends on the parameter used.

Arguments
None.

Description

Displays the console parameter indicated.

Examples
»>
»>show bflag
00000220
»>
»>show boot

EZAO
»>
»>show device
DSSI Node 0 (SUSAN)
-DIAO (RF30)

DSSI Node 1 (KAREN)
-DIAl (RF30)

DSSI Node 3 (*)

DSSI Node 4 (WILMA)
-DIA4 (RF30)

DSSI Node 5 (BETTY)
-DIA5 (RF30)

DSSI Node 6 (KFQSA)

SCSI Adapter 0 (761300), SCSI ID
-DKA100 (DEC RZ31 (C) DEC)
-DKA300 (MAXTOR XT-8000S)

UQSSP Disk Controller 0 (772150)
-DUAO (RF30)

UQSSP Disk Controller 1 (760334)
-DUB1 (RF30)

UQSSP Disk Controller 2 (760340)
-DUC3 (RF30)

UQSSP Disk Controller 3 (760344)
-DUD4 (RF30)

Ethernet Adapter
-EZAO (08-00-2B-03-82-78)
»>
»>show dssi
DSSI Node 0 (SUSAN)
-DIAO (RF30)

DSSI Node 1 (KAREN)
-DIAl (RF30)

DSSI Node 3 (*)

DSSI Node 4 (WILMA)
-DIA4 (RF30)

7

Console Commands 12-61
SHOW

12-62 Console Commands
SHOW

DSSI Node S (BETTY)
-DIA5 (RF30)

DSSI Node 6 (KFQSA)
»>
<»>show ethernet
Ethernet Adapter
-EZAO (08-00-2B-03-82-78)
»>
»>show halt
Reboot
»>show language
English (United States/Canada)
»>
»>show memory
Memory 0: 00000000 to 003FFFFF, 4MB, 0 bad pages

Total of 4MB, 0 bad pages, 98 reserved pages
»>
»>show memory /full
Memory 0: 00000000 to o 03FFFFF , 4MB, 0 bad pages

Total of 4MB, 0 bad pages, 98 reserved pages

Memory bit map
-003F3COO to 003F3FFF, 2 pages

Console Scratch Area
-003F4000 to 003F7FFF, 32 pages

Qbus Map
-003F8000 to 003FFFFF, 64 pages

Scan of Bad Pages
»>
»>show qbus
Scan of Qbus I/O Space
-200000DC (760334) 0000
-200000DE (760336) OAAO
-200000EO (760340) 0000
-200000E2 (760342) OAAO
-200000E4 (760344) 0000
-200000E6 (760346) OAAO
-20001468 (7721S0) 0000
-2000146A (7721S2) OAAO
-20001F40 (777 SOO) = 0020

Scan of Qbus Memory Space
»>
»>show rlv12
»>
»>show scsi

(300)

(304)

(310)

(lS4)

(004)

RQDX3/KDASO/RRDSO/RQC2S/KFQSA-DISK

RQDX3/KDASO/RRDSO/RQC2S/KFQSA-DISK

RQr~~3/KDASO/RRDSO/RQC2S/KFQSA-DISK

RQDX3/KDASO/RRDSO/RQC2S/KFQSA-DISK

IPCR

SCSI Adapter 0 (761300), SCSI ID 7
-DKA100 (DEC RZ31 (C) DEC)
-DKA300 (MAXTOR XT-8000S)
»>
»>show translation 1000

V 80001000
»>
»>show uqssp
UQSSP Disk Controller 0 (7721S0)
-DUAO (RF30)

UQSSP Disk Controller 1 (760334)
-DUB1 (RF30)

UQSSP Disk Controller 2 (760340)
-DUC4 (RF30)

UQSSP Disk Controller 3 (760344)
-DUDS (RF30)
»>
»>show version
KA660-A V4.0, VMB 2.12
»>

Console Commands 12-63
SHOW

12-64 Console Commands
START

START

Format
START [address]

Qualifiers
None.

Arguments
[address}
The address at which to begin execution. This is loaded in the user's PC.

Description

The console starts instruction execution at the specified address. If no address is given,
the current PC is used. If memory mapping is enabled, macro instructions are executed
from virtual memory, and the address is treated as a virtual address. The START
command is equivalent to a DEPOSIT to PC, followed by a CONTINUE. No INITIALIZE
is performed.

Examples
»>start 1000

TEST

Format

Console Commands 12-65
TEST

TEST [tescnumber [tesLarguments]]

Qualifiers
None.

Arguments
{test_number}
A two-digit hexadecimal number specifying the test to be executed.

{test_arguments}
Up to five additional test arguments. These arguments are accepted but no meaning is
attached to them by the console. For the interpretation of these arguments, consult the
test specification for each individual test.

Description

The console invokes a diagnostic test program specified by the test number. If a test
number of 0 is specified, the power-up script is executed. The console accepts an optional
list of up to five additional hexadecimal arguments.

A more detailed explanation of the diagnostics may be found in Section 12.8.

Examples
»>
»>
»>
»>test 0

Execute the power-up diagnostic script
Warning ... this has the same affect as a power-up!

95 .. 94 .. 93 •. 92 .. 91 .. 90 .. 89 •• 88 .. 87 .. 86 .. 85 .. 84 .. 83 .. 82 .. 81 .. 80 ..
79 .. 78 .. 77 .. 76 .. 75 •. 74 •• 73 .. 72 •. 71..70 .. 69 .. 68 .. 67 .• 66 .. 65 .• 64 ..
63 .. 62 .. 61 .. 60 .. 59 .• 58 .. 57 .• 56 .. 55 .. 54 .. 53 .• 52 .. 51 •• 50 .. 49 •. 48 ..
47 .. 46 .. 45 .• 44 .. 43 .• 42 .• 41. .40 .• 39 •. 38. '. 37 .. 36 .• 35 .. 34 .. 33 •. 32 ..
31 .. 30 .. 29 .. 28 .. 27 .. 26 .. 25 .. 24 .• 23 .. 22 .. 21. .20 .. 19 •. 18 .. 17 .. 16 ..
15 .. 14 .. 13 .. 12 .• 11 .. 10 .• 09 .. 08 .. 07 .. 06 .. 05 .. 04 .. 03 ..
»>
»>
»>
»>t ge

! List all of the diagnostic tests.

12-66 Console Commands
TEST

Test
Address

30
31
32
33
34
3E

3F
40
41
42
43
44
45

20052400
2005331C
2005D474
2005D234
2005CD7C
2005CD38
20054A04
2005B323

2005F298
200SFA80
20062BAO
20054AC4
200SAEOO
2005A600
200SA1FC

46 2005B670
47 200SF810

48 2005EEDO
49 200SE928
4A 200SE680
4B 2005E440
4C 200SDEE4
4D 2005DDS4
4E 2005DB60
4F 200SD8B4
51 20062C75
52 20055070
53 20055340
54 20054B99
55 200554F2
58 20061748
59 200608AO
SA 2005A100
5C 20060E08
5F 2005FC54
60 200S9D31
62 20055930
63 2005SAAC
80 20059711
81 20055594
82 20055759
83 200S69AA
84 20058050
85 20055C08
86 200560C4
87 20059290
90 200S4FEE
91 20054F84
99 20062E83
9A 20061D88
9B 20062A60
9C 2005BF3F
9D 200SCC1B
9E 20055566
9F 20062F2S
C1 200546BO
C2 20054886
C5 20059561
C6 200545F4

Name

SCB
De executive
MS650 Init bit map
MS650_Setup_CSRs
CMCTL regs
CMCTLyowerup
SSC ROM

Parameters

*** mark Hard SBEs ****** - -

MEMCSRO addr *********
*
*

MS650 FDM Addr shorts *** cont on err ****** - - -
MS650_count_pages First board Last bd Soft_errs_allowed *******
Board Reset *
Chk for Interrupts *****
SOC=DI_Cache_w_mem cache_config start_add end_add add_incr ******
SOC D Cache w Mem cache config start add end add add incr ******
sqC=Ciche_mem=CQBIC cache_config start_add end_add add_incr

SOC_Cache1_diag_mode cache_config addr_incr ********
MS650 Refresh start a end incr cont on err time seconds - - - - -

MS650 Addr shorts - -
MS650 FDM

start_add end_add * cont_on_err pat2 pat3 ****
*** cont on err ******

MS650 ECC SBEs
MS650_Byte_Errors
MS6S0_ECC_Logic
MS650 Address
MS650_Byte
MS650 Data

start add end add add incr cont on err ******
start-add end-add add-incr cont on err ******
start add end add add incr cont on err ******
start add end-add add incr cont on err ******
start add end add add incr cont on err ******
start-add end-add add incr cont on err ******

FPA
SSC_Prog_timers
SSC TOY Clock
Virtual-Mode

which timer wait time us *** - --
repeat_test_2S0ms_ea Tolerance

Interval Timer *
SHAC RESET dssi_bus port_number time secs
SGEC LPBCK ASSIST time secs ** - -

SOC CMCTL dont_report_memory_bad repeat_count *
SHAC shac number *******
SGEC loopback_type no_ram_tests ******
SSC Console SLU start BAUD end BAUD ****** - - - -
console_QDSS mark not present self test rO self test r1 *****
QDSS_any input_cs~ selftest_rO self test r1 ******
CQBIC_memory_LMGH **********
Qbus_MSCP IP csr ******
Qbus_DELQA device num addr ****
QZA_LPBCK1 controller number ********
QZA_LPBCK2 controller number *********
QZA_memory incr testyattern controller number *******
QZA_DMA Controller number main mem buf ********
QZA_EXTLPBCK controller number ****
CQBIC_registers *
CQBICyowerup **
Flush_Ena_Caches dis flush cache
INTERACTION pass_count disable device ****
Init memory 4MB *
List=CPU_registers *
Utility Expnd_err_msg get_mode init LEDs clr_ps_cnt
List_diagnostics *
Create_AO_Script **********
SSC RAM Data *
SSC RAM Data Addr
ssc=regIsters
SSC_powerup

*
*

AC

Console Commands 12-67
TEST

C7 2005965C SSC_CBTCR_timeout

Scripts
41: Description

AO User defined scripts

Al Powerup tests, Functional'Verify, continue on error, numeric countdown
A3 Functional Verify, stop on error, test 41: announcements
A4 Loop on A3 Functional Verify
A5 Address shorts test, run fastest way possible
A6 Memory tests, mark only multiple bit errors
A7 Memory tests
A8 Memory acceptance tests, mark single and multi-bit errors, call A7
A9 Memory tests, stop on error
B5 SOC Cache debug script
»>
»>
»>
»>t fe

! Show the diagnostic state.

bit map=00FF3000, Length=00001000, Checksum=807F, Busmap=00FF8000
Test_number=41, Subtest=OO, Loop_Subtest=OO, Error_type=OO
Error_vector=OOOO, Last_exception_PC=OOOOOOOO, Severity=02
Total_error_count=OOOO, Led_display=OC, Console_display=03, save_mchk code=80
parameter_l=OOOOOOOO 2=00000000 3=00000000 4=00000000 5=00000000
parameter_6=00000000 7=00000000 8=00000000 9=00000000 10=00000000
previous_error=OOOOOOOO, 00000000, 00000000, 00000000
Flags=03FFFC10440E Set_mask=FF
Return_stack=201406D4, Subtest-pc=20062BB8, Timeout=00030D40

»>
»>
»>
»>t 9c

SBR=00FB8000
POBR=80000000
TODR=00AD7BC6
TCRO=00000005
TCRl=OOOOOOOl
RXCS=OOOOOOOO

SCR=OOOODOOO
BDR=08DOEFFF

! Display the CPU registers.

SLR=00002021
POLR=00100A80
ICCS=OOOOOOOO
TIRO=109890DE
TIR1=109DD93A
RXDB=OOOOOOOD
DSER=OOOOOOOO

DLEDR=OOOOOOOC

SAVPC=200449C9
PIBR=OAOAOA08

TNIRO=OOOOOOOO
TNIR1=0000000F

TXCS=OOOOOOOO
QBEAR=OOOOOOOF
SSCCR=00D55537

SAVPSL=04190304
PILR=OOOBOBOB

MAPEN=OOOOOOOO
TIVRO=00000078
TIVRl=0000007C

TXDB=00000030
DEAR=OOOOOOOO

CBTCR=00000004

DSSI 0=00 (BUS_O)
PSR 0=00000000

PQBBR_0=03060022
PESR 0=00000000

PMCSR 0=00000000
PFAR 0=00000000

SCBB=20052400
SID=14000006

BDMTR=20084000
BDMKR=0000007C

QBMBR=00FF8000
IPCRO=OOOO

SSHMA 0=0000CA20
PPR 0=00000000

NICSRO=lFFF0003 3=00004030 4=00004050 5=8039FFOO
NICSR9=04E204E2 10=00040000 11=00000000 12=00000000
NISA=08-00-2B-12-BC-

6=83EOFOOO 7=00000000
13=00000000 15=0000FFFF

RDESO=00441300 1=00000000 2=05EEOOOO 3=000046FO
TDESO=00008C80 1=07000000 2=00400000 3=000040FA

MEM FRU 1 MCSR 0=80000017 1=80400017 2=80800017
MEM FRU 2 MCSR 4=00000000 5=00000000 6=00000000
MEM FRU 3 MCSR 8=00000000 9=00000000 10=00000000
MEM FRU 4 MCSR12=00000000 13=00000000 14=00000000
MEMCSR17=00000013 MEMCSR16=00000044 CSR16-page_address=00000000
MSER=OOOOOOOO CCR=00000010
»>

3=80C00017
7=00000000

11=00000000
15=00000000

12-68 Console Commands
UNJAM

UNJAM

Format
UNJAM

Qualifiers
None.

Arguments
None.

Description

An 110 bus reset is performed. This is implemented by writing 1 to IPR 55. Additionally,
the SGEC and SHAC chips are explicitly software reset, because PR$_IORESET has no
affect on them.

Examples
»>unjam
»>

x -Binary Load and Unload

Format

Console Commands 12-69
X - Binary Load and Unload

x {address} {count} <CR> {line_checksum} {data} {data_checksum}

Qualifiers
None.

Arguments
None.

Description

The X command is for use by automatic systems communicating with the console. It is
not intended for use by operators.

The console loads or unloads (that is, writes to memory, or reads from memory) the
specified number of data bytes, starting at the specified address through the console
serial line, regardless of which device is serving as the system console.

If bit 31 of the count is clear, data is to be received by the console, and deposited into
memory. If bit 31 of the count is set, data is ,to be read from memory and sent by the
console. The remaining bits in the count are a positive number indicating the number of
bytes to load or unload.

The console accepts the command upon receiving the carriage return. The next byte
the console receives is the command checksum, which is not echoed. The command
checksum is verified by adding all command characters, including the checksum and
separating whitespace, (but not including the terminating carriage return or rubouts
or characters deleted by rubout), into an 8-bit register initially set to zero. If no errors
occur, the result is zero. If the command checksum is correct, the console responds with
the input prompt and either sends data to the requester or prepares to receive data. If
the command checksum is in error, the console responds with an error message. The
intent is to prevent inadvertent operator entry into a mode where the console is accepting
characters from the keyboard as data, with no escape mechanism possible.

If the command is a load (bit 31 of the count is clear), the console responds with the input
prompt, then accepts the specified number of bytes of data for depositing to memory, and
an additional byte of received data checksum. The data is verified by adding all data
characters and the checksum character into an 8-bit register initially set to zero. If
the final contents of the register is nonzero, the data or checksum are in error, and the
console responds with an error message.

If the command is a binary unload (bit 31 of the count is set), the console responds with
the input prompt, followed by the specified number of bytes of binary data. As each
byte is sent it is added to a checksum register initially set to zero. At the end of the
transmission, the 2's complement of the low byte of the register is sent.

12-70 Console Commands
X - Binary Load and Unload

If the data checksum is incorrect on a load, or if memory errors or line errors occur
during the transmission of data, the entire transmission is completed, and then the
console issues an error message. If an error occurs during loading, the contents of the
memory being loaded are UNPREDICTABLE.

Echo is suppressed during the receiving of the data string and checksums.

To avoid treating flow control characters from the terminal as valid command line
checksums, all flow control is terminated when the Return key command is received.

It is possible to control the console serial line through the use of the control characters
(CtrIlC, CtrllS, CtrllO, and so on) during a binary unload. It is not possible during a
binary load, as all received characters are valid binary data.

Data being loaded with a binary load command must be received by the console at a
rate of at least one byte every 60 seconds. The command checksum that precedes the
data must be received by the console within 60 seconds of the carriage return that
terminates the command line. The data checksum must be received within 60 seconds of
the last data byte. If any of these timing requirements are not met, the console aborts
the transmission by issuing an error message and prompting for input.

The entire command, including the checksum, can be sent to the console as a single burst
of characters at the console serial lines' specified character rate. The console is able to
receive at least 4 Kbyte of data in a single X command.

! - Comment

Format

Qualifiers
None.

Arguments
None.

Description

Console Commands 12-71
! - Comment

The comment (D command is used to include optional text which you can use to identify
a command line or add descriptions. It can appear anywhere on the command line. All
characters following the comment character are ignored.

Examples
»>! The console ignores this line.
»>

12-72 KA660 Firmware

Table 12-11 provides a summary of the console commands.

Table 12-11 Console Command Summary

Command

BOOT

CONFIGURE

CONTINUE

DEPOSIT

EXAMINE

FIND

HALT

HELP

INITIALIZE

MOVE

NEXT

REPEAT

SEARCH

SETBFL(A)G

SET BOOT

SET CONTROLP

SET HALT

SET HOST

SET HOST

SET HOST

SET LANGUAGE

SET RECALL

SHOW BFL(A)G

SHOW BOOT

SHOW
CONTROLP

SHOW DEVICE

SHOW DSSI

SHOW
ETHERNET

SHOW HALT

Qualifier Elements

[IB IW IL IQ -/G II N IP fM IU
1N:{count} ISTEP:{size} !WRONG]

[IB IW IL IQ -/G II N IP fM IU
1N:{count} ISTEP:{size} !WRONG
/INSTRUCTION]

[IMEM IRPB]

Argument Elements

[boot_device]

{address} {data} [data]

[address]

[IB IW IL IQ - NIP IU 1N:{count} {src_address} [dest_address]
ISTEP:{size} !WRONG]

[count]

{command}

[IB IW IL IQ - N IP IU 1N:{count} [start_address] {pattern} [mask]
ISTEP:{size} !WRONGINOT]

IDUP IDSSI IBUS:{value}

IDUP IUQSSP {IDISK! trAPE }
IDUPIUQSSP

!MAINTENANCE IUQSSP
ISERVICE !MAINTENANCE
IUQSSP

{bit map}

{device_name} or {deviceJist}

{value} or {keyword}

{hal t_action}

{node_number} [task]

{controller_number} {csr _address}
[task][task]

{controller_number} {csr _address}

Uanguage_type}

{value}

KA660 Firmware 12-73

Table 12-11 (Cont.) Console Command Summary

Command

SHOW
LANGUAGE

SHOW MEMORY

SHOWQBUS

SHOW RECALL

SHOWRLV12

SHOW SCSI

SHOW
TRANSLATION

SHOWUQSSP

SHOW VERSION

START

TEST

UNJAM

X

Qualifier Elements

!FULL

Argument Elements

{phys_address}

[address]

{test_number} [parameters]

{address} {count} <CR>{line_
checksum} {data} <{data_checksum}

Table 12-12 provides a summary of the console qualifiers.

table 12-12 Console Qualifier Summary

Data Control

IB

IW

IL

IQ
IN: {count}

ISTEP:{size}

!WRONG

Byte, legal for memory references only.

Word, legal for memory references only.

Longword, the default for GPR and IPR references.

Quadword, legal for memory references only.

Specify number of additional operations.

Override the default step incrementing size with the value specified for the
current reference.

On writes, use the value of 3, which always generates double-bit errors.
Ignore ECC errors on reads of main memory.

12-74 KA660 Firmware

Table 12-12 (Cont.) Console Qualifier Summary

Address Space Control

/G

/I

N

IP

IU

/M

Command Specific

/INSTRUCTION

!NOT

/R5:{boot_flags} ,
/{boot_flags}

IRPB,
/MEMORY

!DUP, IDSSI,
IUQSSP,
!DISK, II'APE,
/MAINTENANCE,

/SERVICE

General purpose registers

Internal processor registers

Virtual memory

Physical memory, both VAX memory and I/O spaces

Protected memory (ROMs, SSC RAM, PFN bit map, and so on)

Machine state (PSL)

EXAMINE command only. Disassemble the instruction at address specified.

SEARCH command only. Invert the sense of the match.

BOOT command only. Specify a function bit map to pass to VMB through R5.
Refer to Figure 12-9 for a bit description of R5. Either form of the command
is acceptable.

FIND command only. Search for valid RPB or good block of memory.

SET HOST command only. Refer to command description for usage.

Nomenclature for Table 12-11 and Table 12-12

UPPERCASE denotes the command or qualifier keyword.
{} denotes a mandatory item which must be syntactically correct.
[J denotes an optional item.
! denotes a logical OR condition.
boot_flags, count, size, address, and parameters denote hex longword values.
booCdevice denotes a legal boot device name.
csr _address denotes a Q22-bus 110 page CSR address.
controller_number denotes a controller number from 0 to 255.
halt_action denotes the value of the user-defined halt action from 0 to 4.
language_type denotes the language value, from 1 to 15.
command denotes a console command other than REPEAT.
data, pattern, and mask denote hex values of the current size.
test_number denotes hex byte test number.

12.8 Diagnostics
The ROM-based diagnostics constitute the bulk of the firmware on the KA660. These
diagnostics run automatically on power-up and can be executed interactively as a whole,
or as individual tests using the TEST command (see Section 12.7, Console Commands).
This section summarizes the operation of the ROM-based diagnostics.

The purpose of the ROM-based diagnostics is multifaceted:

1. During power-up, they determine if enough of the KA660 is working to allow the
console to run.

2. During the manufacturing process, they verify that the board was correctly built.

KA660 Firmware 12-75

2. During the manufacturing process, they verify that the board was correctly built.

3. In the field, they verify that the board is operational, and able to report all detected
errors.

4. They allow sophisticated users and field service technicians to run individual
diagnostics interactively, with the intent of isolating errors to the field replaceable
unit (FRU).

To accomodate these requirements, the diagnostics are designed as a collection of
individual parameterized tests. A data structure, called a script, and a program, called
the diagnostic executive, orchestrate the running of these tests in the right order with the
right parameters.

A script is a data structure that points to various tests. There are several scripts, one
for the field, and several for manufacturing, depending on where on the manufacturing
line the board is. Sophisticated users may also create their own scripts interactively.
Additionally, the script contains other information:

• What parameters need to be passed to the test

• What is to be displayed, if anything, on the console

• What is to be displayed, if anything, on the LED

• What to do on errors (halt, loop, or continue)

• Where the tests may be run from

For example, there are certain tests that can only be run from the EPROM. Other
tests are PIC (Position Independent Code), and may be run from EPROM or main
memory to save time in executing commands.

The diagnostic executive "interprets" scripts to determine what tests are to be run. There
are several built-in scripts on the KA660 that are used for manufacturing, power-up, and
field service personnel. The diagnostic executive automatically invokes the correct script
based on the current environment of the KA660. Any script can be explicitly run with
the TEST command from the console terminal.

The diagnostic executive is also responsible for controlling the tests so that when errors
occur, they can be caught and reported to the user. The executive also ensures that when
the tests are run, the machine is left in a consistent and well-defined state.

12.8.1 Error Reporting

Before a console is established, the only error reporting is through the KA660 diagnostic
LEDs (and any LEDs on other boards). Once a console has been established, all
errors detected by the diagnostics are also reported by the console. When possible, the
diagnostics issue an error summary on the console.

Figure 12-14 shows a typical error display.

12-76 KA660 Firmware

?9A 2 02 FF 0000 0000 01

P1=00000002 P2=00000000 P3=00004000 P4=00008000 P5=0000COOO
P6=00000000 P7=00000002 P8=00000002 P9=84004000 P10=0000lFFF
rO=00000054 r1=00000040 r2=OOOOOOOO r3=0000C524 r4=00000014
r5=30002800 r6=0000C4EO r7=20008000 r8=00004000 EPC=20057BBD

Normal operation not possible.

Figure 12-14 Diagnostic Register Dump

(1)

(2)
(3)
(4)
(5)

In Figure 12-14, the numbers in parentheses on the right side of the figure, refer to lines
of the display and are not a part of the diagnostic dump. The information on these lines
is summarized below.

1. Test summary containing six hexadecimal fields. ?9A
This test identifies the diagnostic test.

a. 2
This is the severity level of a test failure, as dictated by the script. A severity
level 2 error causes the display of this five-line error printout, and halts an
autoboot to console 110 mode. A severity level 1 error displays the first line of
the error printout, but does not interrupt an autoboot. Most tests have a severity
level of 2.

b. 02
This is the subtestlog number. In conjunction with listing files, it isolates, to
within a few instructions, where the diagnostic detected the error.

c. FF
This is the de_error code with which the diagnostic executive signals the
diagnostic's state and any illegal behavior. This field indicates a condition that
the diagnostic expects on detecting a failure. The possible codes are:

FF - N onnal error exit from diagnostic
FE - Unanticipated interrupt
FD - Interrupt in cleanup routine
FC - Interrupt in interrupt handler
FB - Script requirements not met
FA - No such diagnostic
EF - Unanticipated exception in executive 0000

This is the SCB vector (if non-zero) through which an unexpected exception or
interrupt trapped, when the de_error field indicates an unexpected exception or
interrupt (FE or EF).

d. 0000
This is the number of previous errors that have occurred.

e. 01
This loop_subtest is an additional subtestlog generated out of the context of the
current test as specified by the current test number and subtestlog. Usually these
logs occur in common subroutines called from a diagnostic test.

f. SUBTEST_9A_02
This subtest_symbol is a unique symbol which identifies the most recent
subtestlog entry in the listing file.

KA660 Firmware 12-77

g. DE_INTERACTION. LIS
This listin~file is the name of the listing file which contains the failed
diagnostic.

2. PI through P5 are the first five parameters containing diagnostic state.

3. P6 through PIO are the last five parameters containing diagnostic state.

4. RO through R4 are the first five GPRs at the moment the error was detected.

5. R5 through R8 are additional GPRs, and EPC is PC at the time of the error.

The use of parameters and registers varies with each test. The appropriate listing file
should be consulted for interpretation of these parameters and registers in determining
diagnostic state.

12.8.2 Diagnostic Interdependencies

When running tests interactively on an individual basis, users should be aware that
certain tests may be dependent on some state set up from a previous test. In general,
tests should not be run out of order.

12.8.3 Areas Not Covered

The goal has been to achieve the highest possible coverage on the KA660 and the memory
boards. However, the testing of the KA660 while running with memory management
turned on is minimal. Also, due to the way the firmware is implemented (a polled
environment running at IPL 31), the testing of interrupts is not extensive.

These diagnostics are not intended to be used as system-level tests. There are no tests
that completely verify that access to the Q22-bus will work. Thus, a disk, a controller, the
backplane, or portions of the CQBIC may be faulty, and the diagnostics may not detect
the fault. Such a fault may later result as an inability to boot.

12-78 KA660 Firmware

12.8.4 Diagnostic Scripts

Table 12-13 lists the firmware diagnostic scripts. Each entry in the following table
corresponds to a test in a script which is executed. The tests can be invoked at the
console prompt. Refer to the examples given for the TEST command in the command
directory (Section 12.7). Refer to the table key for the meaning of each table entry.

Table Key

•• -This sequence number indicates the position of the test in the sequence of tests.
The sequence number is displayed on the console terminal while a test is running
and mayor may not correspond to the test number. (Note: A dash (-) in this column
indicates that no sequence number is displayed while the test is running.)
Test-This is the test number used to identify the specific test that is running.
LED-The Light Emitting Diode code is the HEX number code that is displayed on
the console module while the test is running.
Name-This is the test name used to identify each test. The name is somewhat
indicative of what function is being tested.
Conditions Set by the Firmware-Before a test is run, the firmware establishes a
specific set of conditions under which the test will be run. The condition abbreviations
are interpreted as follows:

NER-O Error reporting ON
RPE-l Error reporting OFF
CON-O Continue on an error
STP-l Stop on an error
SV1-l Severity level 1
SV2-2 Severity level 2
VOF-O Virtual mode ON
VON-l Virtual mode OFF
RHP-O Run halt protected
RHU-l Run halt unprotected
ROM-O Execute from ROM
RAM-2 Execute from RAM
FAST-3Execute fast mode

Table 12-13 Diagnostic Scripts

I .. Test

script_A1:

95 9D

94 42

93 33

92 32

91 31
90 30

89 54
88 49

87 60

LED

C

B

8

8
8

8

B

8

6

Name

Utility
Check_for _intrs

CMCTL_chk_init

CMCTL_registers
CSR_setup
Map_setup

Virtual
Memory _test_fdrn

Serial_line

Conditions

RPE-CON-SV2-VOF-RHP-ROM

RPE-CON-SV2-VOF-RHP-ROM
RPE-CON-SV2-VOF-RHP-ROM

RPE-CON-SV2-VOF-RHP-ROM

RPE-CON-SV2-VOF-RHP-ROM
RPE-STP-SV2-VOF-RHP-ROM

RPE-CON-SV2-VOF-RHP-ROM
RPE-CON-SV2-VOF-RHP-ROM

RPE-CON-SV2-VOF-RHP-ROM

KA660 Firmware 12-79

Table 12-13 (Cont.) Diagnostic Scripts

••• Test LED Name Conditions

script_AI:

85 90 7 Registers RPE-CON-SV2-VOF-RHP-ROM

84 C6 C CSSC_chk_init RPE-CON-SV2~VOF-RHP-ROM

83 52 C PROG_TIME RPE-CON-SV2-VOF-RHP-ROM

82 52 C PROG_TIME RPE-CON-SV2-VOF-RHP-ROM
81 53 C TOY RPE-CON-SV2-VOF-RHP-ROM
80 C1 C SSC_RAM RPE-CON-SV2-VOF-RHP-ROM
79 34 C ROM_logic RPE-CON-SV2-VOF-RHP-ROM
78 C5 C SSC_registers RPE-CON-SV2-VOF-RHP-ROM

76 C7 C CBTCR_timeout RPE-CON-SV2-VOF-RHP-ROM
75 46 B SOC_cache_diag_ NER-CON-SV1-VOF-RHU-ROM

mode

74 46 B SOC_cache_diag_ NER-CON-SV1-VOF-RHV-ROM
mode

73 46 B SOC_cache_di~ NER-CON-SV1-VOF-RHU-ROM
mode

72 46 B SOC_cache_diag_ NER-CON-SV1-VOF-RHU-ROM
mode

71 46 B SOC_cache_diag_ NER-CON-SV1-VOF-RHU-ROM
mode

70 46 B SOC_cache_diag_ NER-CON-SV1-VOF-RHV-ROM
mode

69 46 B SOC_cache_diag_ NER-CON-SV1-VOF-RHU-ROM
mode

68 46 B SOC_cache_diag_ NER-CON-SV1-VOF-RHU-ROM
mode

67 44 B SOC_D_cache_w_ NER-CON-SV1-VOF-RHV-ROM
memory

66 4F 8 Memory_data RPE-CON-SV2-VOF-RHP-ROM
65 4E 8 Memory_byte RPE -"CON - SV2 - VOF - RHP - FAST

64 4D 8 Memory _addr RPE-CON-SV2-VOF-RHP-FAST

63 4C 8 Memory _ECC_error RPE-CON-SV2-VOF-RHP-FAST
62 4B 8 Mask_ write_ w _errs RPE-CON-SV2-VOF-RHP-FAST

61 4A 8 ECC_correction RPE-CON-SV2-VOF-RHP-FAST
60 3F 8 Mem_FDM_addr - RPE-CON-SV2-VOF-RHP-FAST

shorts

59 48 8 Addr_shrts RPE-CON-SV2-VOF-RHP-FAST

58 48 8 Addr_shrts RPE - CON - SV2 - VOF - RHP - FAST

57 48 8 Addr_shrts RPE-CON-SV2-VOF-RHP-FAST

56 48 8 Addr_shrts RPE-CON-SV2-VOF-RHP-FAST

12-80 KA660 Firmware

Table 12-13 (Cont.) Dlag nostlc Scripts

It •• Test LED Name Conditions

script_AI:

55 48 8 Addr_shrts RPE-CON-SV2-VOF-RHP-FAST

54 48 8 Addr_shrts RPE-CON-SV2-VOF-RHP-FAST
53 48 8 Addr_shrts RPE-CON-SV2-VOF-RHP-FAST

52 48 8 Addr_shrts RPE-CON-SV2-VOF-RHP-FAST
51 48 8 Addr_shrts RPE-CON-SV2-VOF-RHP-FAST

50 48 8 Addr_shrts RPE-CON-SV2-VOF-RHP-FAST
48 48 8 Addr_shrts RPE-CON-SV2-VOF-RHP-FAST
47 48 8 Addr_shrts RPE-CON-SV2-VOF-RHP-FAST

46 48 8 Addr_shrts RPE-CON-SV2-VOF-RHP-FAST
45 48 8 Addr_shrts RPE-CON-SV2-VOF-RHP-FAST

44 48 8 Addr_shrts RPE-CON-SV2-VOF-RHP-FAST
43 47 8 Memory_refresh RPE - CON - SV2 - VOF - RHP - FAST

42 40 8 Count_had_pages RPE-CON-SV1-VOF-RHP-ROM

40 44 B SOC_D_cache_w_ NER-CON-SV1-VOF-RHU-ROM
memory

39 44 B SOC_D_cache_w_ NER-CON-SV1-VOF-RHU-ROM
memory

38 44 B SOC_D_C8che_w_ NER-CON-SV1-VOF-RHU-ROM
memory

37 44 B SOC_D_cache_w_ NER-CON-SV1-VOF-RHU-ROM
memory

36 44 B SOC_D_cache_w_ NER-CON-SV1-VOF-RHU-ROM
memory

35 44 B SOC_D_cache_w_ NER-CON-SV1-VOF-RHU-ROM
memory

34 44 B SOC_D_cache_ w_ NER-CON-SV1-VOF-RHU-ROM
memory

33 C2 C SSC_RAM_addr_ RPE-CON-SV2-VOF-RHP-ROM
shrts

32 80 7 CQBIC_memory RPE-CON-SV2-VOF-RHP-FAST

31 45 7 Cache_mem_cqbic NER-CON-SV1-VOF-RHU-ROM

30 45 7 Cache_mem_cqbic NER-CON-SV1-VOF-RHU-ROM

29 45 7 Cache_mem_cqbic NER - CON - SV1 - VOF - RHU - ROM

27 45 7 Cache_mem_cqbic NER-CON-SV1-VOF-RHU-ROM

26 45 7 Cache_mem_cqbic NER-CON-SV1-VOF-RHU-ROM

24 45 7 Cache_mem_cqbic NER-CON-SV1-VOF-RHU-ROM

23 43 B SOC_DCcache_w_ NER-CON-SV1-VOF-RHU-FAST
memory

KA660 Firmware 12-81

Table 12-13 (Cant.) Diag nostlc Scripts

I .. Test LED Name Conditions

script_AI:

21 43 B SOC_DI_cache_ w_ NER - CON - SVI - VOF - RHU - FAST
memory

20 43 B SOC_DCcache_ w_ NER-CON-SVI-VOF-RHU-FAST
memory

19 43 B SOC_DCcache_w_ NER - CON - SVI - VOF - RHU - FAST
memory

18 43 B SOC_DI_cache_w_ NER - CON - SVI - VOF - RHU - FAST
memory

17 43 B SOC_DI_cache_w_ NER - CON - SVI - VOF - RHU - FAST
memory

16 43 B SOC_DCcache_w_ NER - CON - SVI - VOF - RHU - FAST
memory

15 43 B SOC_DI_cache_w_ NER-CON-SVI-VOF-RHU-ROM
memory

14 43 B SOC_DCcache_w_ NER - CON - SVI - VOF - RHU - FAST
memory

13 5A 8 SOC_CMCTL RPE-CON-SV2-VOF-RHP-RAM
12 51 A FPA RPE-CON-SV2-VOF-RHP-FAST

11 5F 4 SGEC_func RPE-CON-SV2-VOF-RHP-ROM
10 5C 5 SHAC_fune RPE-CON-SV2-VOF-RHP-ROM

09 9A 8 Interaction_fune RPE-CON-SV2-VOF-RHP-FAST
08 83 7 Qza_lpbckl RPE-CON-SV2-VOF-RHP-ROM

07 84 7 Qza_lpbck2 RPE-CON-SV2-VOF-RHP-ROM

06 85 7 Qza_memory RPE-CON-SV2-VOF-RHP-ROM

05 86 7 Qza_dma RPE-CON-SV2-VOF-RHP-ROM

04 99 B Flush_ena_caches RPE-CON-SV2-VOF-RHP-ROM

03 41 C Board_reset RPE-CON-SV2-VOF-RHP-ROM

script_A2:

9D 9D C Utility RPE-STP-SV2-VOF-RHP-ROM

42 42 B Check_for_intrs RPE - STP - SV2 - VOF - RHP - ROM

C6 C6 C CSSC_chk_init RPE-STP-SV2-VOF-RHP-ROM
60 60 6 SeriaCline RPE-STP-SV2-VOF-RHP-ROM

52 52 C PROG_TIME RPE-STP-SV2-VOF-RHP-ROM

52 52 C PROG_TIME RPE - STP - SV2 - VOF - RHP - ROM

53 53 C TOY RPE-STP-SV2-VOF-RHP-ROM

Cl Cl C SSC_RAM RPE-STP-SV2-VOF-RHP-ROM
34 34 C ROM_logic RPE-STP-SV2-VOF-RHP-ROM

12-82 KA660 Firmware

Table 12-13 (Cont.) Diagnostic Scripts

#I •• Test LED Name Conditions

script_A2:

91 91 7 CQBIC_chk_init RPE-STP-SV2-VOF-RHP-ROM
C5 C5 C SSC_registers RPE-STP-SV2-VOF-RHP-ROM
55 55 B Interval_timer RPE-STP-SV2-VOF-RHP-ROM
46 46 B SOC_cache_di~ NER-CON-SV1-VOF-RHU-ROM

mode

46 46 B SOC_cache_di~ NER-CON-SV1-VOF-RHU-ROM
mode

46 46 B SOC_cache_di~ NER-CON-SV1-VOF-RHU-ROM
mode

46 46 B SOC_cache_di~ NER-CON-SV1-VOF-RHU-ROM
mode

46 46 B SOC_cache_di~ NER-CON-SV1-VOF-RHU-ROM
mode

46 46 B SOC_cache_diag_ NER-CON-SV1-VOF-RHU-ROM
mode

46 46 B SOC_cache_diag_ NER-CON-SV1-VOF-RHU-ROM
mode

46 46 B SOC_cache_diag_ NER-CON-SV1-VOF-RHU-ROM
mode

99 99 B Flush_ena_caches RPE-STP-SV2-VOF-RHP-ROM
90 90 7 Registers RPE-STP-SV2-VOF-RHP-ROM
32 32 8 CMCTL_registers RPE-STP-SV2-VOF-RHP-ROM
C7 C7 C CBTCR_timeout RPE-STP-SV2-VOF-RHP-ROM
5C 5C 5 SHAC_func RPE-STP-SV2-VOF-RHP-ROM

script_AS:

9D 9D C Utility RPE-STP-SV2-VOF-RHP-ROM
42 42 B Check_for _intrs RPE -: STP - SV2 - VOF - RHP - ROM
33 33 8 CMCTL_chk_init RPE-STP-SV2-VOF-RHP-ROM

31 31 8 CSR_setup RPE-STP-SV2-VOF-RHP-ROM
30 30 8 Map_setup RPE - STP - SV2 - VOF - RHP - ROM

54 54 B Virtual RPE-STP-SV2-VOF-RHP-ROM
49 49 8 Memory_test_fdm RPE-STP-SV2-VOF-RHP-ROM
60 60 6 Serial_line RPE-STP-SV2-VOF-RHP-ROM
91 91 7 CQBIC_chk_init RPE - STP - SV2 - VOF - RHP - ROM
90 90 7 Registers RPE-STP-SV2-VOF-RHP-ROM
C6 C6 C CSSC_chk_init RPE-STP-SV2-VOF-RHP-ROM
52 52 C PROG_TIME RPE-STP-SV2-VOF-RHP-ROM

KA660 Firmware 12-83

Table 12-13 (Cont.) Diagnostic Scripts

I .. Test LED Name Conditions

script_A3:

52 52 C PROG_TIME RPE - STP - SV2 - VOF - RHP - ROM
53 53 C TOY RPE - STP - SV2 - VOF - RHP - ROM
Cl Cl C SSC_RAM RPE-STP-SV2-VOF-RHP-ROM
C5 C5 C SSC_registers RPE-STP-SV2-VOF-RHP-ROM
55 55 B Interval_timer RPE-STP-SV2-VOF-RHP-ROM
C7 C7 C CBTCR_timeout RPE-STP-SV2-VOF-RHP-ROM
46 46 B SOC_cache_diag_ NER-CON-SVI-VOF-RHU-ROM

mode

46 46 B SOC_cache_di~ NER-CON-SVI-VOF-RHU-ROM
mode

46 46 B SOC_cache_diag_ NER-CON-SVI-VOF-RHU-ROM
mode

46 46 B SOC_cache_diag_ NER-CON-SVI-VOF-RHU-ROM
mode

46 46 B SOC_cache_di~ NER-CON-SVI-VOF-RHU-ROM
mode

46 46 B SOC_cache_di~ NER-CON-SVI-VOF-RHU-ROM
mode

46 46 B SOC_cache_diag_ NER-CON-SVI-VOF-RHU-ROM
mode

46 46 B SOC_cache_diag_ NER-CON-SVI-VOF-RHU-ROM
mode

44 44 B SOC_D_cache_w_ NER-CON-SVI-VOF-RHU-ROM
memory

44 44 B SOC_D_cache_ w_ NER-CON-SVI-VOF-RHU-ROM
memory

44 44 B SOC_D_cache_ w_ NER-CON-SVI-VOF-RHU-ROM
memory

44 44 B SOC_D_cache_w_ NER-CON-SVI-VOF-RHU-ROM
memory

44 44 B SOC_D_cache_w_ NE~-CON-SVI-VOF-RHU-ROM
memory

44 44 B SOC_D_cache_w_ NER-CON-SVI-VOF-RHU-ROM
memory

44 44 B SOC_D_cache_w_ NER-CON-SVI-VOF-RHU-ROM
memory

44 44 B SOC_D_cache_w_ NER-CON-SVI-VOF-RHU-ROM
memory

4F 4F 8 Memory_data RPE-STP-SV2-VOF-RHP-ROM
4E 4E 8 Memory _byte RPE - STP - SV2 - VOF - RHP - FAST

4D 4D 8 Memory _addr RPE - STP - SV2 - VOF - RHP - FAST

12-84 KA660 Firmware

Table 12-13 (Cont.) Diagnostic Scripts

I .. Test LED Name Conditions

script_AS:

4C 4C 8 Memory _ECC_error RPE - STP - SV2 - VOF - RHP - FAST
4B 4B 8 Mask_ write_ w _errs RPE - STP - SV2 - VOF - RHP - FAST
4A 4A 8 ECC_correction RPE-STP-SV2-VOF-RHP-FAST
3F 3F 8 Mem FDM addr

short-; - -
RPE-STP-SV2-VOF-RHP-FAST

48 48 8 Addr_shrts RPE-STP-SV2-VOF-RHP-FAST
48 48 8 Addr_shrts RPE-STP-SV2-VOF-RHP-FAST
48 48 8 Addr_shrts RPE-STP-SV2-VOF-RHP-FAST
48 48 8 Addr_shrts RPE-STP-SV2-VOF-RHP-FAST
48 48 8 Addr_shrts RPE-STP-SV2-VOF-RHP-FAST
48 48 8 Addr_shrts RPE-STP-SV2-VOF-RHP-FAST
48 48 8 Addr_shrts RPE-STP-SV2-VOF-RHP-FAST
48 48 8 Addr_shrts RPE-STP-SV2-VOF-RHP-FAST
48 48 8 Addr_shrts RPE-STP-SV2-VOF-RHP-FAST
48 48 8 Addr_shrts RPE-STP-SV2-VOF-RHP-FAST
48 48 8 Addr_shrts RPE - STP - SV2 - VOF - RHP - FAST
48 48 8 Addr_shrts RPE-STP-SV2-VOF-RHP-FAST
48 48 8 Addr_shrts RPE - STP - SV2 - VOF - RHP - FAST
48 48 8 Addr_shrts RPE - STP - SV2 - VOF - RHP - FAST
48 48 8 Addr_shrts RPE - STP - SV2 - VOF - RHP - FAST
47 47 8 Memory_refresh RPE-STP-SV2-VOF-RHP-FAST
40 40 8 Count_had_pages RPE-STP-SV2-VOF-RHP-ROM
44 44 B SOC_D_cache_ w_ NER-CON-SVI-VOF-RHU-ROM

memory

44 44 B SOC_D_cache_ w_ NER-CON-SVI-VOF-RHU-ROM
memory

44 44 B SOC_D_cache_ w_ NER-CON-SVI-VOF-RHU-ROM
memory

44 44 B SOC_D_cache_w_ NER-CON-SVI-VOF-RHU-ROM
memory

44 44 B SOC_D_cache_w_ NER-CON-SVI-VOF-RHU-ROM
memory

44 44 B SOC_D_cache_ w_ NER-CON-SVI-VOF-RHU-ROM
memory

44 44 B SOC_D_cache_w_ NER-CON-SVI-VOF-RHU-ROM
memory

44 44 B SOC_D_cache_w_ NER-CON-SVI-VOF-RHU-ROM
memory

KA660 Firmware 12-85

Table 12-13 (Cont.) Diag nostic Scripts

I .. Test LED Name Conditions

script_AS:

80 80 7 CQBIC_memory RPE-STP-SV2-VOF-RHP-FAST

45 45 7 Cache_mem_cqbic NER-CON-SV1-VOF-RHU-ROM
45 45 7 Cache_mem_cqbic NER-CON-SV1-VOF-RHU-ROM

45 45 7 Cache_mem_cqbic NER-CON-SV1-VOF-RHU-ROM
45 45 7 Cache_mem_cqbic NER-CON-SV1-VOF-RHU-ROM

45 45 7 Cache_mem_cqbic NER-CON-SV1-VOF-RHU-ROM
45 45 7 Ccache_mem_cqbic NER-CON-SV1-VOF-RHU-ROM
45 45 7 Cache_mem_cqbic NER-CON-SV1-VOF-RHU-ROM

45 45 7 Cache_mem_cqbic NER-CON-SV1-VOF-RHU-ROM
43 43 B SOC_DCcache_w_ NER-CON-SV1-VOF-RHU-FAST

memory

43 43 B SOC_DI_cache_w_ NER - CON - SV1 - VOF - RHU - FAST
memory

43 43 B SOC_DCcache_w_ NER - CON - SV1 - VOF - RHU - FAST
memory

43 43 B SOC_DCcache_w_ NER - CON - SV1 - VOF - RHU - FAST
memory

43 43 B SOC_DI_cache_w_ NER - CON - SV1 - VOF - RHU - FAST
memory

43 43 B SOC_DI_cache_w_ NER - CON - SV1 - VOF - RHU - FAST
memory

43 43 B SOC_DCcache_w_ NER-CON-SV1-VOF-RHU-FAST
memory

43 43 B SOC_DI_cache_w_ NER - CON - SV1 - VOF - RHU - FAST
memory

43 43 B SOC_DCcache_ w_ NER-CON-SV1-VOF-RHU-ROM
memory

43 43 B SOC_DI_cache_w_ NER-CON-SV1-VOF-RHU-FAST
memory

5A 5A 8 SOC_CMCTL RPE - STP - SV2 - VOF - RHU - RAM

51 51 A FPA RPE-STP-SV2-VOF-RHP-FAST

5F 5F 4 SGEC_func RPE-STP-SV2-VOF-RHP-ROM

5C 5C 5 SHAC3unc RPE-STP-SV2-VOF-RHP-ROM

9A 9A 8 Interaction_func RPE - STP - SV2 - VOF - RHP - FAST

99 99 B F1ush_ena_caches RPE-STP-SV2-VOF-RHP-ROM

41 41 C Board_reset RPE-STP-SV2-VOF-RHP-ROM
9D 9D C Utility RPE-STP-SV2-VOF-RHP-ROM

12-86 KA660 Firmware

Table 12-13 (Cont.) Diagnostic Scripts

I .. Test LED Name Conditions

script_AS:

3F 3F 8 Mem FDM addr
short~ - - ,

RPE - CON - SV2 - VOF - RHU - FAST

48 48 8 Addr_shrts RPE-STP-SV2-VOF-RHP-FAST

48 48 8 Addr_shrts RPE - STP - SV2 - VOF - RHP - FAST

48 48 8 Addr_shrts RPE-STP-SV2-VOF-RHP-FAST

48 48 8 Addr_shrts RPE-STP-SV2-VOF-RHP-FAST

48 48 8 Addr_shrts RPE - STP - SV2 - VOF - RHP - FAST

48 48 8 Addr_shrts RPE - STP - SV2 - VOF - RHP - FAST

48 48 8 Addr_shrts RPE - STP - SV2 - VOF - RHP - FAST

48 48 8 Addr_shrts RPE - STP - SV2 - VOF - RHP - FAST

48 48 8 Addr_shrts RPE - STP - SV2 - VOF - RHP - FAST

48 48 8 Addr_shrts RPE - STP - SV2 - VOF - RHP - FAST

48 48 8 Addr_shrts RPE - STP - SV2 - VOF - RHP - FAST

48 48 8 Addr_shrts RPE-STP-SV2-VOF-RHP-FAST

48 48 8 Addr_shrts RPE - STP - SV2 - VOF - RHP - FAST

48 48 8 Addr_shrts RPE - STP - SV2 - VOF - RHP - FAST

script-A6:

.30 30 8 Map_setup RPE-STP-SV2-VOF-RHP-ROM

4F 4F 8 Memory_data RPE-STP-SV2-VOF-RHP-ROM

4D 4D 8 Memory _addr RPE - STP - SV2 - VOF - RHP - FAST

4C 4C 8 Memory _ECC_error RPE-STP-SV2-VOF-RHP-FAST

4B 4B 8 Mask_ write_ w _errs RPE - STP - SV2 - VOF - RHP - FAST

4A 4A 8 ECC_correction RPE-STP-SV2-VOF-RHP-FAST

3F 3F 8 Mem_FDM_addr_ RPE - STP - SV2 - VOF - RHP - FAST
shorts

48 48 8 Addr_shrts RP~-STP-SV2-VOF-RHP-FAST

47 47 8 Memory_refresh RPE - STP - SV2 - VOF - RHP - FAST

40 40 8 Count_had_pages RPE-STP-SV2-VOF-RHP-ROM

80 80 7 CQBIC_memory RPE-STP-SV2-VOF-RHP-FAST

script_A7:

4F 4F 8 Memory_data RPE-STP-SV2-VOF-RHP-ROM

4E 4E 8 Memory_byte RPE-STP-SV2-VOF-RHP-FAST

4D 4D 8 Memory_byte RPE-STP-SV2-VOF-RHP-FAST

KA660 Firmware 12-87

Table 12-13 (Cont.) Diagnostic Scripts

••• Test LED Name Conditions

script_A7:

4C 4C 8 Memory _ECC_error RPE - STP - SV2 - VOF - RHP - FAST

4B 4B 8 Mask_ write_ w _errs RPE - STP - SV2 - VOF - RHP - FAST

4A 4A 8 ECC _correction RPE-STP-SV2-VOF-RHP-FAST

3F 3F 8 Mem_FDM_addr_ RPE - STP - SV2 - VOF - RHP - FAST
shorts

48 48 8 Addr_shrts RPE-STP-SV2-VOF-RHP-FAST

48 48 8 Addr_shrts RPE - STP - SV2 - VOF - RHP - FAST

48 48 8 Addr_shrts RPE-STP-SV2-VOF-RHP-FAST

48 48 8 Addr_shrts RPE - STP - SV2 - VOF - RHP - FAST

48 48 8 Addr_shrts RPE-STP-SV2-VOF-RHP-FAST

48 48 8 Addr_shrts RPE-STP-SV2-VOF-RHP-FAST

48 48 8 Addr_shrts RPE - STP - SV2 - VOF - RHP - FAST

48 48 8 Addr_shrts RPE-STP-SV2-VOF-RHP-FAST

48 48 8 Addr_shrts RPE-STP-SV2-VOF-RHP-FAST

48 48 8 Addr_shrts RPE - STP - SV2 - VOF - RHP - FAST

48 48 8 Addr_shrts RPE - STP - SV2 - VOF - RHP - FAST

48 48 8 Addr_shrts RPE - STP - SV2 - VOF - RHP - FAST

48 48 8 Addr_shrts RPE - STP - SV2 - VOF - RHP - FAST

48 48 8 Addr_shrts RPE - STP - SV2 - VOF - RHP - FAST

47 47 8 Memory_refresh RPE-STP-SV2-VOF-RHP-FAST

40 40 8 Count_had_pages RPE-CON-SV2-VOF-RHU-ROM

80 80 7 CQBIC_memory RPE - CON - SV2 - VOF - RHU - FAST

41 41 C Board_reset RPE-STP-SV2-VOF-RHP-ROM

script_AS:

31 31 8 CSR_setup RPE~STP-SV2-VOF-RHP-ROM

30 30 8 Map_setup RPE - STP - SV2 - VOF - RHP - ROM

49 49 8 Memory _test_fdm RPE-STP-SV2-VOF-RHP-ROM

12-88 KA660 Firmware

Table 12-13 (Cont.) Diagnostic Scripts

I .. Test LED Name Conditions

script--A9:

4F 4F 8 Memory_data RPE-STP-SV2-VOF-RHP-ROM
4E 4E 8 Memory_byte RPE-STP-SV2-VOF-RHP-FAST
4D 4D 8 Memory _addr RPE-STP-SV2-VOF-RHP-FAST
4C 4C 8 Memory_ecc_error RPE-STP-SV2-VOF-RHP-FAST
4B 4B 8 Mask_ write_ w _errs RPE-STP-SV2-VOF-RHP-FAST
47 47 8 Memory_refresh RPE - STP - SV2 - VOF - RHP - FAST
40 40 8 Count_had_pages RPE-CON-SV2-VOF-RHU-ROM
41 41 C Board_reset RPE-CON-SV2-VOF-RHU-ROM

script_AD:

41 C Board_reset NER-CON-SV2-VOF-RHP-FAST
30 8 Map_setup NER - CON - SV2 - VOF - RHP - FAST
4F 8 Memory_data NER - CON - SV2 - VOF - RHP - FAST
4E 8 Memory_byte NER-CON-SV2-VOF-RHP-FAST
4D 8 Memory _addr NER-CON-SV2-VOF-RHP-FAST
4C 8 Memory _ECC_error NER - CON - SV2 - VOF - RHP - FAST
4B 8 Memory _ECC_error NER-CON-SV2-VOF-RHP-FAST
4A 8 ECC_correction NER-CON-SV2-VOF-RHP-FAST
3F 8 Mem_FDM_addr_ NER - CON - SV2 - VOF - RHP - FAST

shorts
48 8 Addr_shrts NER-CON-SV2-VOF-RHP-FAST
40 8 Count_had_pages NER-CON-SV1-VOF-RHP-ROM
80 7 CQBIC_memory NER - CON - SV2 - VOF - RHP - FAST
41 C Board_reset NER - CON - SV2 - VOF - RHP - FAST

script_AE:

31 8 CSR_setup NER-CON-SV2-VOF-RHP-FAST
41 C Board_reset NER-CON-SV2-VOF-RHP-FAST

script_AF:

80 7 CQBIC_memory NER - CON - SV2 - VOF - RHP - FAST
41 C Board_reset NER-CON-SV2-VOF-RHP-FAST

KA660 Firmware 12-89

Table 12-13 (Cont.) Diagnostic Scripts

, .. Test LED Name Conditions

script_B3:

9D C Utility NER-STP-SV2-VOF-RHP-ROM
42 B Check_for _intrs NER-STP-SV2-VOF-RHP-ROM
32 8 CMCTL_registers NER-STP-SV2-VOF-RHP-ROM
31 8 CSR_setup NER-STP-SV2-VOF-RHP-ROM
30 8 Map_setup NER-STP-SV2-VOF-RHP-ROM
54 B Virtual NER-STP-SV2-VOF-RHP-ROM
49 8 Memory_test_fdm NER-STP-SV2-VOF-RHP-ROM
60 6 SeriaCline NER-STP-SV2-VOF-RHP-ROM
90 7 Registers NER-STP-SV2-VOF-RHP-ROM
52 C PROG_TIME NER-STP-SV2-VOF-RHP-ROM
52 C PROG_TIME NER-STP-SV2-VOF-RHP-ROM
53 C TOY NER-STP-SV2-VOF-RHP-ROM
C1 C SSC_RAM NER-STP-SV2-VOF-RHP-ROM
34 C ROM_logic NER-STP-SV2-VOF-RHP-ROM
C5 C SSC_registers NER-STP-SV2-VOF-RHP-ROM
55 B Interval_timer NER-STP-SV2-VOF-RHP-ROM
C7 C CBTCR_timeout NER-STP-SV2-VOF-RHP-ROM
46 B SOC_cache_diag_ NER-CON-SV1-VOF-RHU-ROM

mode
46 B SOC_cache_di~ NER-CON-SV1-VOF-RHU-ROM

mode

46 B SOC_cache_diag_ NER-CON-SV1-VOF-RHU-ROM
mode

46 B SOC_cache_diag_ NER-CON-SV1-VOF-RHU-ROM
mode

46 B SOC_cache_di~ NER-CON-SV1-VOF-RHU-ROM
mode

46 B SOC_cache_di~ NER-CON-SV1-VOF-RHU-ROM
mode

4F 8 Memory_data NER-STP-SV2-VOF-RHP-ROM
4E 8 Memory _byte NER - STP - SV2 - VOF - RHP - FAST

4D 8 Memory _addr NER - STP - SV2 - VOF - RHP - FAST
4C 8 Memory _ECC_error NER - STP - SV2 - VOF - RHP - FAST

4B 8 Mask_ write_ w _errs NER - STP - SV2 - VOF - RHP - FAST
4A 8 ECC_correction NER - STP - SV2 - VOF - RHP - FAST
3F 8 Mem_FDM_addr_ NER - STP - SV2 - VOF - RHP - FAST

shorts

12-90 KA660 Fi rmware

Table 12-13 (Cont.) Diagnostic Scripts

••• Test LED Name Conditions

script_B3:

48 8 Addr_shrts NER - STP - SV2 - VOF - RHP - FAST

47 8 Memory_refresh NER - STP - SV2 - VOF - RHP - FAST

40 8 Count_bad_pages NER-STP-SV2-VOF-RHP-ROM

44 B SOC_D_cache_w_ NER-CON-SVI-VOF-RHU-ROM
memory

44 B SOC_D_cache_w_ NER-CON-SVI-VOF-RHU-ROM
memory

44 B SOC_D_cache_w_ NER-CON-SVI-VOF-RHU-ROM
memory

44 B SOC_D_cache_w_ NER-CON-SVI-VOF-RHU-ROM
memory

44 B SOC_D_cache_w_ NER-CON-SVI-VOF-RHU-ROM
memory

44 B SOC_D_cache_w_ NER-CON-SVI-VOF-RHU-ROM
memory

44 B SOC_D_cache_w_ NER-CON-SVI-VOF-RHU-ROM
memory

44 B SOC_D_cache_w_ NER-CON-SVI-VOF-RHU-ROM
memory

C2 C SSC_RAM_addr_ NER-STP-SV2-VOF-RHP-ROM
shrts

80 7 CQBIC_memory NER - STP - SV2 - VOF - RHP - FAST

45 7 Cache_mem_cqbic NER-CON-SVI-VOF-RHU-ROM

45 7 Cache_mem_cqbic NER-CON-SVI-VOF-RHU-ROM

45 7 Cache_mem_cqbic NER-CON-SVI-VOF-RHU-ROM

45 7 Cache_mem_cqbic NER-CON-SVI-VOF-RHU-ROM

45 7 Cache_mem_cqbic NER-CON-SVI-VOF-RHU-ROM

45 7 Cache_mem_cqbic NER-CON-SVI-VOF-RHU-ROM

45 7 Cache_mem_cqbic NER-CON-SVI-VOF-RHU-ROM

43 B SOC_DCcache_w_ NER - CON - SVI - VOF - RHU - FAST
memory

43 B SOC_DCcache_w_ NER - CON - SVI - VOF - RHU - FAST
memory

43 B SOC_DI_cache_w_ NER - CON - SVI - VOF - RHU - FAST
memory

43 B SOC_DCcache_w_ NER - CON - SVI - VOF - RHU - FAST
memory

43 B SOC_DCcache_w_ NER - CON - SVI - VOF - RHU - FAST
memory

KA660 Firmware 12-91

Table 12-13 (Cont.) Diag nostic Scripts

•• Test LED Name Conditions

script_B3:

43 B SOC_DCcache_w_ NER-CON-SV1-VOF-RHU-FAST
memory

43 B SOC_DCcache_ w_ NER - CON - SV1 - VOF - RHU - FAST
memory

43 B SOC_DCcache_w_ NER-CON-SV1-VOF-RHU-ROM
memory

43 B SOC_DI_cache_w_ NER-CON-SV1-VOF-RHU-FAST
memory

5A 8 SOC_CMCTL NER-STP-SV2-VOF-RHP-FAST
51 A FPA NER-STP-SV2-VOF-RHP-FAST
5F 4 SGEC_func NER-STP-SV2-VOF-RHP-ROM
5C 5 SHAC_func NER-STP-SV2-VOF-RHP-ROM
9A 8 Interaction_func NER - STP - SV2 - VOF - RHP - FAST
99 B Flush_ena_caches NER-STP-SV2-VOF-RHP-ROM
41 C Board_reset NER-STP-SV2-VOF-RHP-ROM
9D C Utility NER-STP-SV2-VOF-RHP-ROM

script_B4:

42 B Check_for _intrs NER-STP-SV2-VOF-RHP-ROM
32 8 CMCTL_registers NER-STP-SV2-VOF-RHP-ROM
54 B Virtual NER-STP-SV2-VOF-RHP-ROM
46 B SOC_cache_diag_ NER-CON-SV1-VOF-RHU-ROM

mode
46 B SOC_cache_diRg.. NER-CON-SV1-VOF-RHU-ROM

mode
46 B SOC_cache_diag_ NER-CON-SV1-VOF-RHU-ROM

mode
46 B SOC_cache_diRg.. NER '- CON - SV1 - VOF - RHU - ROM

mode

46 B SOC_cache_diag_ NER-CON-SV1-VOF-RHU-ROM
mode

46 B SOC_cache_diag_ NER-CON-SV1-VOF-RHU-ROM
mode

46 B SOC_cache_diRg.. NER-CON-SV1-VOF-RHU-ROM
mode

49 8 Memory _test_fdm NER-STP-SV2-VOF-RHP-ROM
90 7 Registers NER-STP-SV2-VOF-RHP-ROM

52 C PROG_TIME NER-STP-SV2-VOF-RHP-ROM
53 C TOY NER-STP-SV2-VOF-RHP-ROM

12-92 KASSO Firmware

Table 12-13 (Cont.) Diagnostic Scripts

#I •• Test LED Name Conditions

script_B4:

Cl C SSC_RAM NER-STP-SV2-VOF-RHP-ROM
34 C ROM_logic NER-STP-SV2-VOF-RHP-ROM
C5 C SSC_registers NER-STP-SV2-VOF-RHP-ROM
55 B Interval_timer NER-STP-SV2-VOF-RHP-ROM
C7 C CBTCR_timeout NER-STP-SV2-VOF-RHP-ROM
4F 8 Memory_data NER-STP-SV2-VOF-RHP-ROM
4E 8 Memory_byte NER - STP - SV2 - VOF - RHP - FAST
4D 8 Memory _addr NER - STP - SV2 - VOF - RHP - FAST
4C 8 Memory _ECC_error NER - STP - SV2 - VOF - RHP - FAST
4B 8 Mask_ write_ w_errs NER - STP - SV2 - VOF - RHP - FAST

4A 8 ECC_correction NER - STP - SV2 - VOF - RHP - FAST
48 8 Addr_shrts NER - STP - SV2 - VOF - RHP - FAST
40 8 Count_had_pages NER-STP-SV2-VOF-RHP-ROM
44 B SOC_D_cache_ w_ NER-CON-SVI-VOF-RHU-ROM

memory

44 B SOC_D_cache_w_ NER-CON-SVI-VOF-RHU-ROM
memory

44 B SOC_D_cache_ w_ NER-CON-SVI-VOF-RHU-ROM
memory

44 B SOC_D_cache_w_ NER-CON-SVI-VOF-RHU-ROM
memory

44 B SOC_D_cache_w_ NER-CON-SVI-VOF-RHU-ROM
memory

44 B SOC_D_cache_w_ NER-CON-SVI-VOF-RHU-ROM
memory

44 B SOC_D_cache_w_ NER-CON-SVI-VOF-RHU-ROM
memory

C2 C SSC_RAM_addr_ NER-STP-SV2-VOF-RHP-ROM
shrts

80 7 CQBIC_memory NER - STP - SV2 - VOF - RHP - FAST

45 7 Cache_mem_cqbic NER-CON-SVI-VOF-RHU-ROM

45 7 Cache_mem_cqbic NER-CON-SVI-VOF-RHU-ROM

45 7 Cache_mem_cqbic NER-CON-SVI-VOF-RHU-ROM

45 7 Cache_mem_cqbic NER-CON-SVI-VOF-RHU-ROM

45 7 Cache_mem_cqbic NER-CON-SVI-VOF-RHU-ROM

45 7 Cache_mem_cqbic NER-CON-SVI-VOF-RHU-ROM

43 B SOC_DI_cache_w_ NER-CON-SVI-VOF-RHU-FAST
memory

KA660 Firmware 12-93

Table 12-13 (Cant.) Diagnostic Scripts

#I •• Test LED Name Conditions

script_B4:

43 B SOC_DCcache_w_ NER - CON - SV1 - VOF - RHU - FAST
memory

43 B SOC_DCcache_ w_ NER - CON - SV1 - VOF - RHU - FAST
memory

43 B SOC_DI_cache_w_ NER - CON - SV1 - VOF - RHU - FAST
memory

43 B SOC_DI_cache_w_ NER-CON-SV1-VOF-RHU-FAST
memory

43 B SOC_DCcache_w_ NER - CON - SV1 - VOF - RHU - FAST
memory

43 B SOC_DCcache_w_ NER - CON - SV1 - VOF - RHU - FAST
memory

43 B SOC_DCcache_w_ NER-CON-SV1-VOF-RHU-ROM
memory

43 B SOC_DCcache_w_ NER - CON - SV1 - VOF - RHU - FAST
memory

5A 8 SOC_CMCTL NER - STP - SV2 - VOF - RHP - FAST

5F 4 SGEC_func NER-STP-SV2-VOF-RHP-ROM

5C 5 SHAC_func NER-STP-SV2-VOF-RHP-ROM

9A 8 Interaction_func NER - STP - SV2 - VOF - RHP - FAST

41 C Board_reset NER-STP-SV2-VOF-RHP-ROM

9D C Utility NER-STP-SV2-VOF-RHP-ROM

8Cript_B5:

46 46 B SOC_cache_di~ RPE-CON-SV2-VOF-RHP-ROM
mode

46 46 B SOC_cache_di~ RPE-CON-SV2-VOF-RHP-ROM
mode

46 46 B SOC_cache_diag_ RPE-CON-SV2-VOF-RHP-ROM
mode

46 46 B SOC_cache_di~ RPE-CON-SV2-VOF-RHP-ROM
mode

46 46 B SOC_cache_di~ RPE-CON-SV2-VOF-RHP-ROM
mode

46 46 B SOC_cache_di~ RPE-CON-SV2-VOF-RHP-ROM
mode

46 46 B SOC_cache_di~ RPE-CON-SV2-VOF-RHP-ROM
mode

44 44 B SOC_D_cache_ w_ RPE-CON-SV2-VOF-RHP-ROM
memory

12-94 KA660 Firmware

Table 12-13 (Cont.) Diagnostic Scripts

i .. Test LED Name Conditions

script_B5:

44 44 B SOC_D_cache_w_ RPE-CON-SV2-VOF-RHP-ROM
memory

44 44 B SOC_D_cache_w_ RPE-CON-SV2-VOF-RHP-ROM
memory

44 44 B SOC_D_cache_w_ RPE-CON-SV2-VOF-RHP-ROM
memory

44 44 B SOC_D_cache_w_ RPE-CON-SV2-VOF-RHP-ROM
memory

44 44 B SOC_D_cache_w_ RPE-CON-SV2-VOF-RHP-ROM
memory

44 44 B SOC_D_cache_w_ RPE-CON-SV2-VOF-RHP-ROM
memory

44 44 B SOC_D_cache_w_ RPE-CON-SV2-VOF-RHP-ROM
,memory

45 45 7 Cache_mem_cqbic RPE-CON-SV2-VOF-RHP-ROM
45 45 7 Cache_mem_cqbic RPE-CON-SV2-VOF-RHP-ROM
45 45 7 Cache_mem_cqbic RPE-CON-SV2-VOF-RHP-ROM
45 45 7 Cache_mem_cqbic RPE-CON-SV2-VOF-RHP-ROM
45 45 7 Cache_mem_cqbic RPE-CON-SV2-VOF-RHP-ROM
45 45 7 Cache_mem_cqbic RPE-CON-SV2-VOF-RHP-ROM
45 45 7 Cache_mem_cqbic RPE-CON-SV2-VOF-RHP-ROM
45 45 7 Cache_mem_cqbic RPE-CON-SV2-VOF-RHP-ROM
43 43 B SOC_DCcache_w_ RPE-CON-SV2-VOF-RHP-FAST

memory
43 43 B SOC_DCcache_ w_ RPE - CON - SV2 - VOF - RHP - FAST

memory

43 43 B SOC_DI_cache_w_ RPE-CON-SV2-VOF-RHP-FAST
memory

43 43 B SOC_DCcache_w_ RPE~CON-SV2-VOF-RHP-FAST
memory

43 43 B SOC_DCcache_w_ RPE-CON-SV2-VOF-RHP-FAST
memory

43 43 B SOC_DCcache_w_ RPE-CON-SV2-VOF-RHP-FAST
memory

43 43 B SOC_DI_cache_w_ RPE-CON-SV2-VOF-RHP-FAST
memory

KA660 Firmware 12-95

Table 12-13 (Cont.) Diagnostic Scripts

i .. Test LED Name Conditions

43 43 B SOC_DCcache_w_ . RPE-CON-SV2-VOF-RHP-FAST
memory

43 43 B SOC_DCcache_w_ RPE-CON-SV2-VOF-RHP-ROM
memory

43 43 B SOC_DCcache_w_ RPE-CON-SV2-VOF-RHP-FAST
memory

99 99 B F1ush_ena_caches RPE-CON-SV2-VOF-RHP-ROM

A
Q22-bus Specification

A.1 Introduction
The Q22-bus, also known as the extended LSI-II bus, is the low-end member of Digital's
bus family. All of Digital's microcomputers, such as the MicroVAX I, MicroVAX II,
MicroVAX 3500, MicroVAX 3600, and MicroPDP-11 use the Q22-bus.

The Q22-bus consists of 42 bidirectional and 2 unidirectional signal lines. These form the
lines along which the processor, memory, and I/O devices communicate with each other.

Addresses, data, and control information are sent along these signal lines, some of which
contain time-multiplexed information. The lines are divided as follows:

• Sixteen multiplexed data/address lines - BDAL<15:00>

• Two multiplexed address/parity lines - BDAL<17:I6>

• Four extended address lines - BDAL<2I:I8>

• Six data transfer control lines - BBS7, BDIN, BDOUT, BRPLY, BSYNC, BWTBT

• Six system control lines - BHALT, BREF, BEVNT, BINIT, BDCOK, BPOK

• Ten interrupt control and direct memory access control lines - BIAKO, BIAKI,
BIRQ4, BIRQ5, BIRQ6, BIRQ7, BDMGO, BDMR, BSACK, BDMGI

In addition, a number of power, ground, and space lines are defined for the bus. Refer to
Table A-I for a detailed description of these lines.

The discussion in this appendix applies to the general 22-bit physical address capability.
All modules used with the KN220-AA CPU mod\lle must use 22-bit addressing.

Most Q22-bus signals are bidirectional and use terminations for a negated (high) signal
level. Devices connect to these lines by way of high-impedance bus receivers and open
collector drivers. The asserted state is produced when a bus driver asserts the line low.

Although bidirectional lines are electrically bidirectional (any point along the line can be
driven or received), certain lines are functionally unidirectional. These lines communicate
to or from a bus master (or signal source), but not both. Interrupt acknowledge (BIAK)
and direct memory access grant (BDMG) signals are physically unidirectional in a daisy­
chain fashion. These signals originate at the processor output signal pins. Each is
received on device input pins (BIAKI or BDMGI) and is conditionally retransmitted

-through device output pins (BIAKO or BDMGO). These signals are received from
higher priority devices and are retransmitted to lower priority devices along the bus,
establishing the position-dependent priority scheme.

A-1

A-2 Q22-bus Specification

A.1.1 Master/Slave Relationship

Communication between devices on the bus is asynchronous. A master/slave relationship
exists throughout each bus transaction. Only one device has control of the bus at any
one time. This controlling device is termed the bus master, or arbiter. The master device
controls the bus when communicating with another device on the bus, termed the slave.

The bus master (typically the processor or a DMA device) initiates a bus transaction. The
slave device responds by acknowledging the transaction in progress and by receiving data
from, or transmitting data to, the bus master. Q22-bus control signals transmitted or
received by the bus master or bus slave device must complete the sequence according to
bus protocol.

The processor controls bus arbitration, that is, which device becomes bus master at any
given time. A typical example of this relationship is a disk drive, as master, transferring
data to memory as slave. Communication on the Q22-bus is interlocked so that, for
certain control signals issued by the master device, there must be a response from
the slave in order to complete the transfer. It is the master/slave signal protocol that
makes the Q22-bus asynchronous. The asynchronous operation precludes the need for
synchronizing with, and waiting for, clock pulses.

Since bus cycle completion by the bus master requires response from the slave device,
each bus master must include a timeout error circuit that aborts the bus cycle if the slave
does not respond to the bus transaction within 10 J.1s. The actual time before a timeout
error occurs must be longer than the reply time of the slowest peripheral or memory
device on the bus.

A.2 Q22-bus Signal Assignments
Table A-I lists the data and address signal assignments. Table A-2 lists the control
signal assignments. Table A-3 lists the power and ground signal assignments. Table A-4
lists the spare signal assignments.

Table A-1 Data and Address Signal Assignments

Data and Address Signal Pin Assignment

BDALO AU2
BDALI AV2
BDAL2 BE2
BDAL3 BF2
BDAL4 BH2
BDAL5 BJ2
BDAL6 BK2
BDAL7 BL2
BDALS BM2
BDAL9 BN2
BDALIO BP2
BDALll BR2
BDAL12 BS2

Table A-1 (Cont.) Data and Address Signal Assignments

Data and Address Signal Pin Assignment

BDALl3 BT2

BDALl4 BU2

BDALl5 BV2

BDALl6 ACI

BDALl7 ADI

BDALl8 BCI

BDALl9 BDI

BDAL20 BEl

BDAL21 BFI

Table A-2 Control Signal Assignments

Control Signal

Data Control

BDOUT

BRPLY

BDIN

BSYNC

BWTBT

BBS7

Interrupt Control

BIRQ7

BffiQ6

BffiQ5

BffiQ4

BIAKO

BIAKI

DMA Control

BDMR

BSACK

BDMGO

Pin Assignment

AE2

AF2

AH2

AJ2

AK2

AP2

BPI

ABI

AAI

AL2

AN2

AM2

ANI

BNI

AS2

Q22-bus Specification A-3

A-4 Q22-bus Specification

Table A-2 (Cont.) Control Signal Assignments

Control Signal Pin Assignment

BDMGI AR2

System Control

BHALT API

BREF ARI
BEVNT BRI
BIN IT AT2
BDCOK BAI
BPOK BBI

Table A-3 Power and Ground Signal Assignments

Power and Ground Pin Assignment

+5 B (battery) or ASI
+12 B (battery)

+12B BS1
+5B AV1
+5 AA2

+5 BA2
+5 BVI
+12 AD2
+12 BD2
+12 AB2

-12 AB2

-12 BB2
GND AC2

GND AJ1
GND AMI
GND AT1

GND BC2

GND BJ1

GND BM1

GND BTl

Q22-bus Specification A-5

Table A-4 Spare Signal Assignments

Spare Pin Assignment

SSparel AEI

SSpare3 AHI

SSpare8 BHI

SSpare2 AFI

MSpareA AKI

MSpareB ALI

MSpareB BKI

MSpareB BLI

PSparel AUI

ASpare2 BUI

A.3 Data Transfer Bus Cycles
Data transfer bus cycles, executed by bus master devices, transfer 32-bit words or 8-
bit bytes to or from slave devices. In block mode, multiple words can be transferred to
sequential word addresses, starting from a single bus address. Data transfer bus cycles
are listed and defined in Table A-5.

Table A-5 Data Transfer Operations

Function (with respect to the
Bus Cycle Definition bus master)

DATI Data word input Read

DATO Data word output Write

DATOB Data byte output Write-byte

DATIO Data word inputJoutput Read-modify-write

DATIOB Data word inputlbyte output Read-modify-write byte

DATBI Data block input Read block

DATBO Data block output Write block

The bus signals listed in Table A-6 are used in the data transfer operations described in
Table A-5.

A-6 Q22-bus Specification

Table A-6 Bus Signals for Data Transfers

Signal

BDAL<21:00> L

BSYNC L

BDINL

BDOUTL

BRPLYL

BWTBTL

BBS7

Definition

22 data/address lines

Bus cycle control

Data input indicator

Data output indicator

Slave's acknowledge of bus
cycle

Writelbyte control

110 device select

Function

BDAL<15:00> L are used for word and
byte transfers. BDAL<17:16> L are used
for extended addressing, memory parity
error (16), and memory parity error
enable (17) functions. BDAL<21:18> L
are used for extended addressing beyond
256 Kbytes.

Indicates bus transaction in progress.

Strobe signals

Strobe signals

Strobe signals

Control signals

Indicates address is in the 110 page.

Data transfer bus cycles can be reduced to five basic types: DATI, DATO(B), DATIO(B),
DATBI, and DATBO. These transactions occur between the bus master and one slave
device selected during the addressing part of the bus cycle.

A.3.1 Bus Cycle Protocol
Before initiating a bus cycle, the previous bus transaction must have been completed
(BSYNC L negated) and the device must become bus master. The bus cycle can be
divided into two parts: addressing and data transfer. During addressing, the bus master
outputs the address for the desired slave device, memory location, or device register. The
selected slave device responds by latching the address bits and holding this condition for
the duration of the bus cycle until BSYNC L becomes negated. During data transfer the
actual data transfer occurs.

A.3.2 Device Addressing
Device addressing of a data transfer bus cycle comprises an address setup and deskew
time, and an address hold and deskew time. During address setup and deskew time, the
bus master does the following operations:

• Asserts BDAL<21:00> L with the desired slave device address bits.

• Asserts BBS7 L if a device in the I/O page is being addressed.

• Asserts BWTBT L if the cycle is a DATO(B) or DATBO bus cycle.

Q22-bus Specification A-7

During this time, the address, BBS7 L, and BWTBT L signals are asserted at the slave
bus receiver for at least 75 ns before BSYNC goes active. Devices in the I/O page ignore
the nine high-order address bits BDAL<21:13>, and instead, decode BBS7 L along with
the 13 low-order address bits. An active BWTBT L signal during address setup time
indicates that a DATO(B) or DATBO operation follows, while an inactive BWTBT L
indicates a DATI, DATBI, or DATIO(B) operation.

The address hold and deskew time begins after BSYNC L is asserted.

The slave device uses the active BSYNC L bus received output to clock BDAL address
bits, BBS7 L, and BWTBT L into its internal logic. BDAL<21:00> L, BBS7 L, and
BWTBT L remain active for 25 ns minimum after the BSYNC L bus receiver goes active.
BSYNC L remains active for the duration of the bus cycle.

Memory and peripheral devices are addressed similarly, except for the way the slave
device responds to BBS7 L. Addressed peripheral devices must not decode address bits on
BDAL<21:13> L. Addressed peripheral device can respond to a bus cycle when BBS7 Lis
asserted (low) during the addressing of the cycle. When asserted, BBS7 L indicates that
the device address resides in the I/O page (the upper 4K address space). Memory devices
generally do not respond to addresses in the I/O page; however, some system applications
may permit memory to reside in the I/O page for use as DMA buffers, read-only memory
bootstraps, and diagnostics.

DATI

The DATI bus cycle, shown in Figure A-I, is a read operation. During DATI, data is
input to the bus master. Data consists of 16-bit word transfers over the bus. During data
transfer of the DATI bus cycle, the bus master asserts BDIN L 100 ns minimum after
BSYNC L is asserted. The slave device responds to BDIN L active as follows:

• Asserts BRPLY L 0 ns minimum (8 ns maximum to avoid bus timeout) after receiving
BDIN L, and 125 ns maximum before BDAL bus driver data bits are valid.

• Asserts BDAL<21:00> L with the addressed data and error information 0 ns
(minimum) after receiving BDIN, and 125 ns (maximum) after assertion of BRPLY.

A-8 Q22-bus Specification

Bus Master
(Processor or Device)

Address Device or Memory

• Asserts BDAL <21 :OO>L with

address

• Asserts BBS7 if the address

is in the I/O page

• Asserts BSYNC L --- ---

Slave
Memory Device

- - - -.... Decode Address

• Store "Device SelectedM

Request Data

• Remove the address from

BDAL>21 :OO>L

• Negate BBS7 L

• Assert BDIN L

Terminate Input Transfer

• Accept data and respond

by negating BDIN L

Terminate Bus Cycle

• Negate BSYNC L

Figure A-1 DATI Bus Cycle

- -­~-------

- --

operation

- - - - ~ Input Data

• Place data on BDAL < 15 :00> L

• Assert BRPL Y L

--~-

-..... Operation Completed
... __________ • Negate BRPLY L

LJ·00176·TIO

Q22-bus Specification A-9

When the bus master receives BRPLY L, it does the following:

• Waits at least 200 ns deskew time and then accepts input data at BDAL<17:00> L
bus receivers. BDAL <17:16> L are used for transmitting parity errors to the master.

• Negates BDIN L 200 ns minimum to 2 JIS maximum after BRPLY L goes active.

The slave device responds to BDIN L negation by negating BRPLY L and removing
read data from BDAL bus drivers. BRPLY L must be negated 100 ns maximum prior
to removal of read data. The bus master responds to the negated BRPLY L by negating
BSYNC L.

Conditions for the next BSYNC L assertion are as follows:

• BSYNC L must remain negated for 200 ns minimum.

• BSYNC L must not become asserted within 300 ns of previous BRPLY L negation.

Figure A-2 shows DATI bus cycle timing.

NOTE
Continuous assertion of BSYNC L retains control of the bus by the bus master,
and the previously addressed slave device remains· selected. This is done for
DATIO(B) bus cycles where DATO or DATOB follows a DATI without BSYNC L
negation and a second device addressing operation. Also, a slow slave device
can hold off data transfers to itself by keeping BRPLY L asserted, which causes
the master to keep BSYNC L asserted.

DATOB

DATOB, shown in Figure A-3, is a write operation. Data is transferred in 32-bit words
(DATO) or 8-bit bytes (DATOB) from the bus master to the slave device. The data
transfer output can occur after the addressing part of a bus cycle when BwrBT L has
been asserted by the bus master, or immediately following an input transfer part of a
DATIOB bus cycle.

A-10 Q22-bus Specification

T R DAL

TSYNC

T DIN

R RPLY

TBS7

TWTBT

RIT DAL

RSYNC

R DIN

T RPLY

R BS7

~ TADDR X (4) R Data X (4)

~ 100NS
Minimum

100 NS Minimum b= 8fJS Maximum

150 NS

_ ~_nim_um ____ ... 1;:: 100 NS Minimum --'<--________ ~)(~ _______________________ (_4_) ____________________________ __

~~ ____ ~A~ ___________________ (4_) __________________ ___

TIMING AT MASTER DEVICE

T Data

125 NS Maximum

(4)

25 NS Minimum

(4) t= 100 NS Maximum
o NSMinimum

1\ 1SONS t-- Minimum

RWTBT ~~ ____ -Jj{~ _____________________ (4_) ____________________________ ___

TIMING AT SLAVE DEVICE

NOTES:

1. Timing shown at master a~d slave device bus
driver inputs and bus receiver outputs.

2. Signal name prefixes are defined below:

Figure A-2

T =Bus Driver Input
R=Bus Receiver Output

DATI Bus Cycle Timing

3. Bus driver output and bus receiver input
signal names include a "B" prefix.

4. Don't care condition.

LJ-00177-TI0

Bus Master
(Processor or Device)

Address device/memory

• Assert BDAL <21 :00> L with
address and

• Assert BBS? L if address is

in the 1/0 Page

• Assert BWTBT L (write cycle)

• Assert BSYNC L --- ---

Q22-bus Specification A-11

Slave
(Memory or Device)

- - - - ~ Decode Address

• Store "Device Selected"

operation

Output Data
~-------

• Remove the address from

BDAL <21 :00> L and negate BBS? L

• Negate BWTBT L unless DA TOB

• Place data on BDAL <15:00> L

• Assert BDOUT L

Terminate Output Transfer.

• Negate BDOUT L (and BWTBT L

if in a DATOB bus cycle)

- --

~-

• Remove data from BDAL <15:00> L_

--- - - - - ~ Take Data

• Receive data from BDAL lines

• Assert BRP L Y L

- - Operation Completed

Terminate Bus Cycle

• Negate BSYNC L

~ __________ • Negate BRPLY L

LJ-00178-TIO

Figure A-3 DATO or DATOB Bus Cycle

A-12 Q22-bus Specification

The data transfer part of a DATOB bus cycle comprises a data setup and deskew time
and a data hold and deskew time.

During the data setup and deskew time, the bus master outputs the data on
BDAL<15:00> L at least 100 ns after BSYNC L assertion. BWTBT L remains negated for
the length of the bus cycle. If the tr~nsfer is a byte transfer, BWTBT L remains asserted.
If it is the output of a DATIOB, BWTBT L becomes asserted and lasts the duration of the
bus cycle.

During a byte transfer, BDAL<OO> L selects the high or low byte. This occurs in the
addressing part of the cycle. If asserted, the high byte (BDAL<15:08> L) is selected;
otherwise, the low byte (BDAL<07:00> L) is selected. An asserted BDAL 16 L at this
time forces a parity error to be written into memory if the memory is a parity-type
memory. BDAL 17 L is not used for write operations. The bus master asserts BDOUT
L at least 100 ns after BDAL and BDWTBT L bus drivers are stable. The slave device
responds by asserting BRPLY L within 10 J.1S to avoid bus timeout. This completes the
data setup and deskew time.

During the data hold and deskew time, the bus master receives BRPLY L and negates
BDOUT L, which must remain asserted for at least 150 ns from the receipt of BRPLY L
before being negated by the bus master. BDAL< 17 :00> L bus drivers remain asserted for
at least 100 ns after BDOUT L negation. The bus master then negates BDAL inputs.

During this time, the slave device senses BDOUT L negation. The data is accepted
and the slave device negates BRPLY L. The bus master responds by negating BSYNC
L. However, the processor does not negate BSYNC L for at least 175 ns after negating
BDOUT L. This completes the DATOB bus cycle. Before the next cycle, BSYNC L must
remain unasserted for at least 200 ns. Figure A-4 shows DATOB bus cycle timing.

DAnOB

The protocol for a DATIOB bus cycle is identical to the addressing and data transfer
part of the DATI and DATOB bus cycles, and is shown in Figure A-5. After addressing
the device, a DATI cycle is performed as explained earlier; however, BSYNC L is not
negated. BSYNC L remains active for an output word or byte transfer (DATOB). The bus
master maintains at least 200 ns between BRPLY L negation during the DATI cycle and
BDOUT L assertion. The cycle is terminated when the bus master negates BSYNC L, as
described for DATOB. Figure A-6 illustrates DATIOB bus cycle timing.

TDAL

TSYNC

TDOUT

R RPLY

TBS7

TWTBT

Rfr DAL

RSYNC

R DIN

TRPLY

RBS7

RWTBT

150NS
Minimum

8t'S
Maximum

100 NS Minimum

(4)

lOONS
Minimum

Q22-bus Specification A-13

o NS Minimum

(4)

(4)

TIMING AT MASTER DEVICE

TIMING AT SLAVE DEVICE

NOTES:

1. Timing shown at requesting device bus driver
inputs and bus receiver outputs.

2. Signal name prefixes are defined below
T =Bus Driver Input
R=Bus Receiver Output

3. Bus driver output and bus receiver input
signal names include a -B- prefix.

4. Don't care condition.

W-00179-TI0

Figure A-4 DATO or DATOS Sus Cycle Timing

A-14 Q22-bus Specification

Bus Master
(Processor or Device)

Address device memory

• Assert BDAL <21 :00> L with
address

• Assert BBS7 L if the
address is in the 1/0 page

• Assert BSYNC L

Slave

(Memory or Device)

- - - - -... Decode Address

Request Data

• Remove the address from
BDAL <21 :00> L

• Assert BDIN L

-----.,.---

--- ---
----~

Terminate Input Transfer JIk -

• Accept data and respond by
terminating BDIN L

Output Data

--- --- ---- ...
- -­.,.-----

• Place output data on BDAL <15:00> L

• Assert BWTBT L if an output

byte transfer

• Assert BDOUT L --- ---
----~

• Store -Device Selected"

operation

Input Data

• Place data on BDAL <15:00> L

• Assert BRPL Y L

Complete Input Transfer

• Remove data

• Negate BRPL Y L

Take Data

·Receive data from BDAL lines

Terminate Output Transfer

.,. ___________ • Assert BRPL Y L

• Remove data from BDAL lines

• Negate BOOUT L

Terminate Bus Cycle

• Negate BSYNC L
(and BWTBT L if N

A DATIOB bus cycle)

Figure A-5 DATIO or DATIOB Bus Cycle

- -- ---
----~

- -­..... ~----
Operation Completed

• Negate BRPL Y L

LJ-00180-TIO

RIT DAL

TSYNC

TDOUT

TDIN

RRPLY

TBS7

TWTBT

Figure A-6

Q22-bus Specification A-15

TIMING AT MASTER DEVICE

TIMING AT SLAVE DEVICE

NOTES:

1. Timing shown at requesting device bus
driver inputs and bus receiver outputs.

2. Signal name prefixes are defined below:
T =Bus Driver Input
R=Bus Receiver Output

DATIO or DATIOB Bus Cycle Timing

3. Bus driver output and bus receiver input
signal names include a wBw prefix.

4. Don't care condition.

W-00309-TIO

A-16 Q22-bus Specification

A.4 Direct Memory Access
The direct memory access (DMA) capability allows direct data transfer between 110
devices and memory. This is useful when using mass storage devices (for example, disks)
that move large blocks of data to and from memory. A DMA device needs to be supplied
with only the starting address in memory, the starting address in mass storage, the
length of the transfer, and whether the operation is read or write. When this information
is available, the DMA device can transfer data directly to or from memory. Since most
DMA devices must perform data transfers in rapid succession or lose data, DMA devices
are given the highest priority.

DMA is accomplished after the processor (normally bus master) has passed bus
mastership to the highest priority DMA device that is requesting the bus. The processor
arbitrates all requests and grants the bus to the DMA device electrically closest to it.
A DMA device remains bus master until it relinquishes its mastership. The following
control signals are used during bus arbitration:

• BDMGI L DMA grant input

• BDMGQ L DMA grant output

• BDMR L DMA request line

• BSACK L bus grant acknowledge

A.4.1 DMA Protocol

A DMA transaction can be divided into the following three phases:

• Bus mastership acquisition phase

• Data transfer phase

• Bus mastership relinquishment phase

During the bus mastership acquisition phase, a DMA device requests the bus by
asserting BDMR L. The processor arbitrates the request and initiates the transfer of
bus mastership by asserting BDMGO L.

The maximum time between BDMR L assertion and BDMGO L assertion is DMA
latency. This time is processor-dependent. BDMGO LlBDMGI L is one signal that is
daisy-chained through each module in the backplane.

Q22-bus Specification A-17

It is driven out of the processor on the BDMGO L pin, enters each module on the BDMGI
L pin, and exits on the BDMGO L pin. This signal passes through the modules in
descending order of priority until it is stopped by the requesting device. The requesting
device blocks the output of BMDGO L and asserts BSACK L. If BDMR L is continuously
asserted, the bus hangs.

During the data transfer phase, the DMA device continues asserting BSACK L. The
actual data transfer is performed as described earlier.

The DMA device can assert BSYNC L for a data transfer 250 ns minimum after it
received BDMGI L and its BSYNC L bus receiver is negated.

During the bus mastership relinquishment phase, the DMA device gives up the bus by
negating BSACK L. This occurs after completing (or aborting) the last data transfer
cycle (BRPLY L negated). BSACK L can be negated up to a maximum of 300 ns before
negating BSYNC L.

NOTE
If multiple data transfers are performed during this phase, consideration must
be given to the use of the bus for other system functions, such as memory
refresh (if required).

Figure A-7 shows the DMA protocol, and Figure A-8 shows DMA request/grant timing.

A.4.2 Block Mode DMA

For increased throughput, block mode DMA can be implemented on a device for use with
memories that support this type of transfer. In a block mode transaction, the starting
memory address is asserted, followed by data for that address, and data for consecutive
addresses.

By eliminating the assertion of the address for each data word, the transfer rate is almost
doubled.

There are two types of block mode transfers, DATBI (input) and DATBO (output). The
DATBI bus cycle is described in Section A4.2.l and illustrated in Figure A-9.

The DATBO bus cycle is described in Section A4.2.2 and illustrated in Figure A-lO.

A-18 Q22-bus Specification

KOJ11-E Processor
(Memory is Slave)

Bus Master
(Controller)

Request Bus
• Assert BOMR L

Grant Bus Control
---­

~------

- Near the end of the
current bus cycle
(BRPL Y L is negated).
Assert BOMGO Land
inhibit new processor
generated BSYNC L for
the duration of the
OMA operation. ---

Terminate Grant .tIIIIIt: -

Sequence
- Negate BOMGO Land

wait for OMA operation
to be completed.

-Monitor the transaction to
invalidate cache if
cache hit.

Resume Processor .tIIIIIt: -
Operation

- Enable processor­
generated BSYNC L
(processor is bus
master) or issue
another grant if BOM R
L is asserted.

Figure A-7 DMA Protocol

--- ---- ... Acknowledge Bus
Mastership

--

--

• Receive BOMG
• Wait for negation of

BSYNC Land BRPL Y L
- Assert BSACK L
• Negate BOMR L

-..... Execute a OMA Data
Transfer
• Address memory and

transfer up to 4 words
of data as described
for DATI or DATO bus
cycles.

• Release the bus by
terminating BSACK L
(no sooner than
negation of last BRPLY L)
and BSYNC L

I
Wait 4..,S or until
another FIFO transfer
is pending before
requesting bus again.

LJ-00182-TIO

TDMR

RDMG

TSACK

RIT SYNC

RIT RPLY

TDAL

(ALSO BS7

wrBT,REF)

NOTES:

~ 0 NS Minimum
t-- 0 NS Minimum

ADDR

1. Timing shown at requesting device bus driver
inputs and bus receiver outputs.

2. Signal name prefixes are defined below
T =Bus Driver Input
R=Bus Receiver Output

Figure A-8 DMA Request/Grant Timing

Q22-bus Specification A-19

I I I
I I I

Data

Second

3. Bus driver output and bus receiver input
signal names include a "B" prefix.

W-00183-TlO

A-20 Q22-bus Specification

TDMR

RDMG

TSACK ---'

T/R DAL -----' ,.... -' ~~~ ~---' ~~."" ""--I-t--.... -
RIT
SYNC

TDIN

R RPLY

R REF

TBS7

T WTBT -.-\ S\~S""""S \""\I
Timing at Master Device
T = Bus Driver Input
R = Bus Receiver Output

AS\S\SS\S\SS\SS\\\\\\\\\\

RIT DAL -.J\ R ADDR X\\\\\)¢ T DATA X\~\\\X
~ 125 NS Max ""-~~~~"I--

TDATA

RSYNC __ --'

RDIN

T RPLY

TREF

R BS7
___ -...If ,"--------

R WTBT \S\~_...",.<sSS\\\S\S\S\\\S\S\S\S\\\\~
Timing at Slave Device
T = Bus Driver Input
R = Bus Receiver Output

Figure A-9 DATBI Bus Cycle TIming

LJ·00310·TIO

TDMR

RDMG

TSACK

o NS
Min

Q22-bus Specification A-21

T/R DAL ______ ..J ,.... -- .,..~~~-- ~---..... ~

RIT
SYNC

T DOUT -------..... ----1,....,.

RRPLY

RREF

TBS?

T WTBT ______ ...J

Timing at Master Device
T = Bus Driver Input
R = Bus Receiver Output

Undefined

300 NS
Max

R DAL
~RADDRX~ ___ R_D_AT_A __ ~X~ ___ R_D_A_TA __ -J~~ ________ _

R SYNC __ ..J! '''''' ___ _
R DOUT -------'

TRPLY

TREF

! RBS?
Undefined

,
RWTBT~ '''''' _______________________ ___

Timing at Slave Device
T = Bus Driver Input
R = Bus Receiver Output

Figure A-10 DATBO Bus Cycle Timing

LJ-00311-TIO

A-22 Q22-bus Specification

A.4.2.1 DATBI Bus Cycle
Before a DATBI block mode transfer can occur, the DMA bus master device must request
control of the bus. This occurs under conventional Q22-bus protocol.

A block mode DATBI transfer is executed as follows:

• Address device memory-the address is asserted by the bus master on
TADDR<21:00> along with the negation ofTWTBT. The bus master asserts TSYNC
150 ns minimum after gating the address onto the bus.

• Decode address-the appropriate memory device recognizes that it must respond to
the address on the bus.

• Request data-the address is removed by the bus master from TADDR<21:00> 100
ns minimum after the assertion ofTSYNC. The bus master asserts the first TDIN 100
ns minimum after asserting TSYNC. The bus master asserts TBS7 50 ns maximum
after asserting TDIN for the first time. TBS7 remains asserted until 50 ns maximum
after the assertion of TDIN for the last time. In each case, TBS7 can be asserted or
negated as soon as the conditions for asserting TDIN are met. The assertion of TBS7
indicates the bus master is requesting another read cycle after the current read cycle.

• Send data-the bus slave asserts TRPLY 0 ns minimum (8000 ns maximum to avoid
a bus timeout) after receiving RDIN. The bus slave asserts TREF concurrent with
TRPLY if, and only if, it is a block mode device which can support another RDIN after
the current RDIN. The bus slave gates TDATA<15:00> onto the bus 0 ns minimum
after receiving RDIN and 125 ns maximum after the assertion of TRPLY.

NOTE
Block mode transfers must not cross 16-word boundaries.

• Terminate input transfer-the bus master receives stable RDATA<15:00> from 200
ns maximum after receiving RRPLY until 20 ns minimum after the negation of RDIN.
(The 20 ns minimum represents total minimum receiver delays for RDIN at the slave
and RDATA<15:00> at the master.) The bus master negates TDIN 200 ns minimum
after receiving RRPLY.

• Operation completed-the bus slave negates TRPLY 0 ns minimum after receiving
the negation of RDIN. If RBS7 and TREF are both asserted when TRPLY negates,
the bus slave prepares for another DIN cycle. RBS7 is stable from 125 ns after RDIN
is received until 150 ns after TRPLY negates. If TBS7 and RREF were both asserted
when TDIN negated, the bus master asserts TDIN 150 ns minimum after receiving
the negation of RRPLY and continues with the timing relationship in send data
above. RREF is stable from 75 ns after RRPLY asserts until 20 ns minimum after
TDIN negates. (The 0 ns minimum represents total minimum receiver delays for
RDIN at the slave and RREF at the master.)

Q22-bus Specification A-23

NOTE
The bus master must limit itself to not more than eight transfers unless it
monitors RDMR. If it monitors RDMR, it may perform up to 16 transfers as
long as RDMR is not asserted at the end of the seventh transfer.

• Terminate bus cycle-if RBS7 and TREF were not both asserted when TRPLY
negated, the bus slave removes TDATA<15:00> from the bus 0 ns minimum and 100
ns maximum after negating TRPLY. If TBS7 and RREF were not both asserted when
TDIN negated, the bus master negates TSYNC 250 ns minimum after receiving the
last assertion of RRPLY and 0 ns minimum after the negation of that RRPLY.

• Release the bus-the DMA bus master negates TSACK 0 ns after negation of the
last RRPLY. The DMA bus master negates TSYNC 300 ns maximum after it negates
TSACK The DMA bus master must remove RDATA<15:00>, TBS7, and TWTBT from
the bus 100 ns maximum after clearing TSYNC.

At this point the block mode transfer is complete, and the bus arbitration logic in the
CPU enables processor-generated TSYNC or issues another bus grant (TDMGO) if RDMR
is asserted.

A.4.2.2 DATBO Bus Cycle
Before a block mode transfer can occur, the DMA bus master device must request control
of the bus. This occurs under conventional Q22-bus protocol.

A Block mode DATBO transfer is executed as follows:

• Address device memory-the address is asserted by the bus master on
TADDR<21:00> along with the aasertion of TWTBT. The bus master asserts TSYNC
150 ns minimum after gating the address onto the bus.

• Decode address-the appropriate memory device recognizes that it must respond to
the address on the bus.

• Send data-the bus master gates TDATA<15:00> along with TWTBT 100 ns
minimum after the assertion of TSYNC. TWTBT is negated. The bus master asserts
the first TDOUT 100 ns minimum after gating TDATA<15:00>.

NOTE
During DATBO cycles, TBS7 is undefined.

• Receive data-the bus slave receives stable data on RDATA<15:00> from 25 ns
minimum before receiving RDOUT unti125 ns minimum after receiving the negation
of RDOUT. The bus slave asserts TRPLY 0 ns minimum after receiving RDOUT. The
bus slave asserts TREF concurrent with r:fRPLY if, and only if, it is a block mode
device which can support another RDOUT after the current RDOUT.

NOTE
Block mode transfers must not cross 16-word boundaries.

• Terminate output transfer-the bus master negates TDOUT 150 ns minimum after
receiving RRPLY.

A-24 Q22-bus Specification

• Operation completed-the bus slave negates TRPLY 0 ns minimum after receiving
the negation of RDOUT. If RREF was asserted when TDOUT negated and if the
bus master wants to transfer another word, the bus master gates the new data on
TDATA<15:00> 100 ns minimum after negating TDOUT. RREF is stable from 75 ns
maximum after RRPLY asserts until 20 ns minimum after RDOUT negates. (The 20
ns minimum represents minimum receiver delays for RDOUT at the slave and RREF
at the master). The bus master asserts TDOUT 100 ns minimum after gating new
data on TDATA<15:00> and 150 ns minimum after receiving the negation of RRPLY.
The cycle continues with the timing relationship in receive data above.

NOTE
The bus master must limit itself to not more than 8 transfers unless it
monitors RDMR. If it monitors RDMR, it may perform up to 16 transfers as
long as RDMR is not asserted at the end of the seventh transfer.

• Terminate bus cycle-if RREF was not asserted when RRPLY negated or if the
bus master has no additional data to transfer, the bus master removes data on
TDATA<15:00> from the bus 100 ns minimum after negating TDOUT. If RREF was
not asserted when TDOUT negated, the bus master negates TSYNC 275 ns minimum
after receiving the last RRPLY and 0 ns minimum after the negation of the last
RRPLY.

• Release the bus-the DMA bus master negates TSACK 0 ns after negation of the
last RRPLY. The DMA bus master negates TSYNC 300 ns maximum after it negates
TSACK The DMA bus master must remove TDATA, TBS7, and TWTBT from the bus
100 ns maximum after clearing TSYNC.

At this point the block mode transfer is complete, and the bus arbitration logic in the
CPU enables processor-generated TSYNC or issues another bus grant (TDMGO) ifRDMR
is asserted.

A.4.3 DMA Guidelines

The following is a list of DMA guidelines:

• Systems with memory refresh over the bus must not include devices that perform
more than one transfer per acquisition.

• Bus masters that do not use block mode are limited to four DATI, four DATO, or two
DATIO transfers per acquisition.

• Block mode bus masters that do not monitor BDMR are limited to eight transfers per
acquisition.

• If BDMR is not asserted after the seventh transfer, block mode bus masters that do
monitor BDMR may continue making transfers until the bus slave fails to assert
BREF, or until they reach the total maximum of 16 transfers. Otherwise, they stop
after eight transfers.

Q22-bus Specification A-25

A.S Interrupts
The interrupt capability of the Q22-bus allows an 110 device to temporarily suspend
(interrupt) current program execution and divert processor operation to service the
requesting device. The processor inputs a vector from the device to start the service
routine (handler). Like the device register address, hardware fixes the device vector at
locations within a designated range below location 001000. The vector indicates the first
of a pair of addresses. The processor reads the contents of the first address, the starting
address of the interrupt handler. The contents of the second address is a new processor
status word (PS).

The new PS can raise the interrupt priority level, thereby preventing lower-level
interrupts from breaking into the current interrupt service routine. Control is returned
to the interrupted program when the interrupt handler is ended. The original interrupted
program's address (PC) and its associated PS are stored on a stack. The original PC and
PS are restored by a return from interrupt (RTI or RTT) instruction at the end of the
handler. The use of the stack and the Q22-bus interrupt scheme can allow interrupts to
occur within interrupts (nested interrupts), depending on the PS.

Interrupts can be caused by Q22-bus options or the MicroVAX CPU. Those interrupts that
originate from within the processor are called traps. Traps are caused by programming
errors, hardware errors, special instructions, and maintenance features.

The following Q22-bus signals are used in interrupt transactions:

Signal Definition

BIRQ4L Interrupt request priority level 4

BIRQ5 L Interrupt request priority level 5

BIRQ6 L Interrupt request priority level 6

BIRQ7 L Interrupt request priority level 7

BIAKIL Interrupt acknowledge input

BIAKOL Interrupt acknowledge output

BDAL<21:00> Data/address lines

BDINL Data input strobe

BRPLYL Reply

A-26 Q22-bus Specification

A.S.1 Device Priority

The Q22-bus supports the following two methods of device priority:

• Distributed arbitration - priority levels are implemented on the hardware. When
devices of equal priority level request an interrupt, priority is given to the device
electrically closest to the processor.

• Position-defined arbitration - priority is determined solely by electrical position on
the bus. The closer a device is to the processor, the higher its priority is.

A.S.2 Interrupt Protocol

Interrupt protocol on the Q22-bus has three phases:

• Interrupt request

• Interrupt acknowledge and priority arbitration

• Interrupt vector transfer phase

The interrupt request phase begins when a device meets its specific conditions for
interrupt requests. For example, the device is ready, done, or an error occurred. The
interrupt enable bit in a device status register must be set. The device then initiates
the interrupt by asserting the interrupt request line(s). BIRQ4 L is the lowest hardware
priority level and is asserted for all interrupt requests for compatibility with previous
Q22-bus processors. The level at which a device is configured must also be asserted. A
special case exists for level 7 devices that must also assert level 6. The following list
gives the interrupt levels and the corresponding Q22-bus interrupt request lines. For an
explanation, refer to Section A5.3.

Interrupt Level

4

5

6

7

Lines Asserted by Device

BIRQ4 L

BIRQ4 L, BIRQ5 L

BIRQ4 L, BIRQ6 L

BIRQ4 L, BIRQ6 L, BIRQ7 L

Figure A-11 shows the interrupt request/acknowledge sequence.

Figure A-11

Processor

Strobe Interrupts
• Assert BDIN L

I
I
I

t
Grant Request
• Pause and assert BIAKO L

Receive Vector and
Terminate Request
• Input vector address

..,--- -- -

- --

Q22-bus Specification A-27

- - --
Device

Initiate Request
• Assert BIRO L

--- - - - -.. Receive BDIN L
• Store "Interrupt Sending"

in device.

- -::l1lI.. Receive BIAKI L
• Receive BIAKI L and inhibit

BIAKO L

• Place vector on BDAL <15:00> L
• Assert BRPL Y L

-- • Negate BIRO L --
~--

• Negate BDIN L and BIAKO L

Process the Interrupt
• Save interrupted program

PC and PS on stack
• Load new PC and PS from

vector address location

• Execute interrupt service
routine for the device

--- --- ---- ..

--
~-

Interrupt Request! Acknowledge Sequence

Complete Vector Transfer
• Remove vector from BDAL bus
• Negate BRPL Y L

LJ·OO184-TIO

A-28 Q22-bus Specification

The interrupt request line remains asserted until the request is acknowledged.

During the interrupt acknowledge and priority arbitration phase, the processor
acknowledges interrupts under the following conditions:

• The device interrupt priority is higher than the current PS<7:5>.

• The processor has completed instruction execution and no additional bus cycles are
pending.

The processor acknowledges the interrupt request by asserting BDIN L, and 150 ns
minimum later asserting BIAKO L. The device electrically closest to the processor
receives the acknowledge on its BIAKI L bus receiver.

At this point, the two types of arbitration must be discussed separately. If the device that
receives the acknowledge uses the four-level interrupt scheme, it reacts as follows:

• If not requesting an interrupt, the device asserts BIAKO L and the acknowledge
propagates to the next device on the bus.

• If the device is requesting an interrupt, it must check that no higher-level device is
currently requesting an interrupt. This is done by monitoring higher-level request
lines. The following table lists the lines that need to be monitored by devices at each
priority level:

Device Priority Level

4

5

6

7

Line(s) Monitored

BIRQ5, BIRQ6

BIRQ6

BIRQ7

In addition to asserting levels 7 and 4, level 7 devices must drive level 6. This is done
to simplify the monitoring and arbitration by level 4 and 5 devices. In this protocol,
level 4 and 5 devices need not monitor level 7 because level 7 devices assert level 6.
Level 4 and 5 devices become aware of a level 7 request because they monitor the
level 6 request. This protocol has been optimized for level 4, 5, and 6 devices, since
level 7 devices are very seldom necessary.

• If no higher-level device is requesting an interrupt, the acknowledge is blocked by
the device. (BIAKO L is not asserted.) Arbitration logic within the device uses the
leading edge of BDIN L to clock a flip-flop that blocks BIAKO L. Arbitration is won
and the interrupt vector transfer phase begins.

• If a higher-level request line is active, the device disqualifies itself and asserts BIAKO
L to propagate the acknowledge to the next device along the bus.

Q22-bus Specification A-29

Signal timing must be considered carefully when implementing four-level interrupts
(Figure A-12).

TIRQ

RDIN

R 1AKI

TRPLY

TDAL

RSYNC

RBS7

125 NS MaxilTlJm ---.!
(4)

(Unasserted)

(Unuserted)

NOTES:

1. Timing shown at requesting device bus driver
inputs and bus receiver outputs.

2. Signal name prefixes are defined below
T =Bus Driver Input
R=Bus Receiver Output

Figure A-12 Interrupt Protocol Timing

3. Bus driver output and bus receiver input
signal names include a -B- prefix.

4. Don't care condition.

If a single-level interrupt device receives the acknowledge, it reacts as follows:

W·00185-TIO

• If not requesting an interrupt, the device asserts BIAKO L and the acknowledge
propagates to the next device on the bus.

• If the device was requesting an interrupt, the acknowledge is blocked using the
leading edge of BDIN L, and arbitration is won. The interrupt vector transfer phase
begins.

A-30 Q22-bus Specification

The interrupt vector transfer phase is enabled by BDIN Land BIAKI L. The device
responds by asserting BRPLY L and its BDAL<15:00> L bus driver inputs with the
vector address bits. The BDAL bus driver inputs must be stable within 125 ns maximum
after BRPLY L is asserted. The processor then inputs the vector address and negates
BDIN Land BIAKO L. The device then negates BRPLY Land 100 ns maximum later
removes the vector address bits. The processor then enters the device's service routine.

NOTE
Propagation delay from BIAKI L to BIAKO L must not be greater than 500 ns
per Q22-bus slot. The device must assert BRPLY L within 10).ls maximum after
the processor asserts BIAKI L.

A.S.3 Q22-bus Four-Level Interrupt Configurations

If you have high-speed peripherals and desire better software performance, you can
use the four-level interrupt scheme. Both position-independent and position-dependent
configurations can be used with the four-level interrupt scheme.

Figure A-13 shows the position-independent configuration. This allows peripheral
devices that use the four-level interrupt scheme to be placed in the backplane in any
order. These devices must send out interrupt requests and monitor higher-level request
lines as described. The level 4 request is always asserted from a requesting device
regardless of priority. If two or more devices of equally high priority request an interrupt,
the device physically closest to the processor wins arbitration. Devices that use the
single-level interrupt scheme must be modified, or placed at the end of the bus, for
arbitration to function properly.

BIAK (INTERRUPT ACKNOWLEDGE) LEVEL 4 BIAK LEVEL 6 BIAK LEVEL 5 BIAK LEVEL 7
CPU

DEVICE DEVICE DEVICE DEVICE

1 BIRO. (LEVEL' INTERRUPT REOUEST)

BIRO 5 (LEVEL 5 INTERRUPT REOUEST)

BIRO 6 (LEVEL 6 INTERRUPT REOUEST)

BIRO 7 (LEVEL 7 INTERRUPT REOUEST)

""-X0815-111

Figure A-13 Position-Independent Configuration

Q22-bus Specification A-31

Figure A-14 shows the position-dependent configuration. This configuration is simpler
to implement. A constraint is that peripheral devices must be inserted with the highest
priority device located closest to the processor, and the remaining devices placed in the
backplane in decreasing order of priority (with the lowest priority devices farthest from
the processor). With this configuration, each device has to assert only its own level and
level 4. Monitoring higher-level request lines is unnecessary. Arbitration is achieved
through the physical positioning of each device on the bus. Single-level interrupt devices
on level 4 should be positioned last on the bus.

BIAK (INTERRUPT ACKNOWLEDGE) LEVEL 7 BIAK LEVEL 6
CPU

DEVICE DEVICE

• ,
BIRQ 4 (LEVEL 4 INTERRUPT REQUEST)

BIRQ 5 (LEVEL 5 INTERRUPT REQUEST)

BIRQ 6 (LEVEL 6 INTERRUPT REQUEST)

BIRQ 7 (LEVEL 7 INTERRUPT REQUEST)

Figure A-14 Position-Dependent Configuration

A.6 Control Functions
The following Q22-bus signals provide control functions:

Signal

BREFL

BHALTL

BINITL

BPOKH

BDCOKH

A.6.1 Halt

Definition

Memory refresh (also block mode DMA)

Processor halt

Initialize

Power OK

DC power OK

BIAK LEVEL 5 BIAK LEVEL 4

DEVICE DEVICE

•

MA-XD616-U

Assertion of BHALT L for at least 25 ns interrupts the processor, which stops program
execution and forces the processor unconditionally into console 110 mode.

A-32 Q22-bus Specification

A.S.2 Initialization

Devices along the bus are initialized when BINIT L is asserted. The processor can assert
BINIT L as a result of executing a reset instruction as part of a power-up or power-down
sequence. BINIT L is asserted for approximately 10 JIS when reset is executed.

A.S.3 Power Status

Power status protocol is controlled by two signals, BPOK Hand BDCOK H. These signals
are driven by an external device (usually the power supply).

A.7 Q22-bus Electrical Characteristics
The input and output logic levels for Q22-bus signals are given in Section A 7.1.

A.7.1 Signal Level Specifications

The signal level specifications for the Q22-bus are as follows:

Input Logic Level
TTL logical low
TTL logical high

Output Logic Level
TTL logical low
TTL logical high

A.7.2 Load Definition

0.8 V dc maximum
2.0 Vdc minimum

0.4 Vdc maximum
2.4 V dc minimum

AC loads make up the maximum capacitance allowed per signal line to ground. A unit
load is defined as 9.35 pF of capacitance. DC loads are defined as maximum current
allowed with a signal line driver asserted or unasserted. A unit load is defined as 210 J.IA
in the unasserted state.

A.7.3 120-0hm Q22-bus

The electrical conductors interconnecting the bus device slots are treated as transmission
lines. A uniform transmission line, terminated in its characteristic impedance,
propagates an electrical signal without reflections. Since bus drivers, receivers,
and wiring connected to the bus have finite resistance and nonzero reactance, the
transmission line impedance is not uniform, and introduces distortions into pulses
propagated along it. Passive components of the Q22-bus (such as wiring, cabling, and
etched signal conductors) are designed to have a nominal characteristic impedance of 120
ohms.

The maximum length of interconnecting cable, excluding wiring within the backplane, is
limited to 4.88 m (16 ft).

Q22-bus Specification A-33

A.7.4 Bus Drivers

Devices driving the 120-ohm Q22-bus must have open collector outputs and meet the
following specifications:

DC Specifications

• Output low voltage when sinking 70 rnA of current is 0.7 V maximum.

• Output high leakage current when connected to 3.8 Vdc is 25 pA (even if no power is
applied, except for BDCOK H and BPOK H).

• These conditions must be met at worst-case supply temperature, and input signal
levels.

AC Specifications

• Bus driver output pin capacitance load should not exceed 10 pF.

• Propagation delay should not exceed 35 ns.

• Skew (difference in propagation time between slowest and fastest gate) should not
exceed 25 ns.

• Transition time (from 10% to 90% for positive transition-rise time, from 90% to 10%
for negative transition-fall time) must be no faster than 10 ns.

A.7.5 Bus Receivers
Devices that receive signals from the 120-ohm Q22-bus must meet the following
requiremen ts:

DC Specifications

• Input low voltage maximum is 1.3 V.

• Input high voltage minimum is 1. 7 V.

• Maximum input current when connected to 3.8 Vdc is 80 pA (even if no power is
applied).

These specifications must be met at worst-case supply voltage, temperature, and output
signal conditions.

AC Specifications

• Bus receiver input pin capacitance load should not exceed 10 pF.

• Propagation delay should not exceed 35 ns ...

• Skew (difference in propagation time between slowest and fastest gate) should not
exceed 25 ns.

A-34 Q22-bus Specification

A.7.6 Bus Termination

The 120-ohm Q22-bus must be terminated at each end by an appropriate terminator,
as shown in Figure A-15. This is to be done as a voltage divider with its Thevenin
equivalent equal to 120 ohms and 3.4 V (nominal). This type of termination is provided
by an REVI1-A refresh/bootlterminator, BDVll-AA, KPVII-B, TEVll, or by certain
backplanes and expansion cards.

178 n

383n
1%

+5 V

1200
I--~ Bus Line

Termination

Figure A-15 Bus Line Terminations

+5 V

330n

2500
Bus Line
Termination

680n

LJ-00188-TIO

Each of the several Q22-bus lines (all signals whose mnemonics start with the letter B)
must see an equivalent network with the following characteristics at each end of the bus:

Bus Termination Characteristic

Input impedance
(with respect to ground)

Open circuit voltage

Capacitance load

NOTE

Value

120 ohm +5%, -15%

3.4 Vdc +5%

Not to exceed 30 pF

The resistive termination can be provided by the combination of two modules.
(The processor module supplies 220 ohms to ground. This, in parallel with
another 220-ohm card, provides 120 ohms.) Both terminators must reside
physically within the same backplane.

Q22-bus Specification A-35

A.7.7 Bus Interconnecting Wiring

The following sections give specific information about bus interconnecting wiring.

A.7.7.1 Backplane Wiring
The wiring that connects all device interface slots on the Q22-bus must meet the
following specifications:

• The conductors must be arranged so that each line exhibits a characteristic
impedance of 120 ohms (measured with respect to the bus common return).

• Crosstalk between any two lines must be no greater than 5%. Note that worst­
case crosstalk is manifested by simultaneously driving all but one signal line and
measuring the effect on the undriven line.

• DC resistance of the signal path, as measured between the near-end terminator
and the far-end terminator module (including all intervening connectors, cables,
backplane wiring, and connector-module etch) must not exceed 20 ohms.

• DC resistance of the common return path, as measured between the near-end
terminator and the far-end terminator module (including all intervening connectors,
cables, backplane wiring and connector-module etch) must not exceed an equivalent
of 2 ohms per signal path. Thus, the composite signal return path dc resistance must
not exceed 2 ohms divided by 40 bus lines, or 50 milliohms. Note that although this
common return path is nominally at ground potential, the conductance must be part
of the bus wiring. The specified low impedance return path must be provided by the
bus wiring as distinguished from the common system or power ground path.

A.7.7.2 Intrabackplane Bus Wiring
The wiring that connects the bus connector slots within one contiguous backplane is
part of the overall bus transmission line. Owing to implementation constraints, the
nominal characteristic impedance of 120 ohms may not be achievable. Distributed wiring
capacitance in excess of the amount required to achieve the nominal 120-ohm impedance
may not exceed 60 pF per signal line per backplane.

A.7.7.3 Power and Ground
Each bus interface slot has connector pins assigned for the following dc voltages. The
maximum allowable current per pin is 1.5 A +5 V dc must be regulated to 5% with a
maximum ripple of 100 m V pp. + 12 V dc must be regulated to 3% with a maximum ripple
of 200 mV pp.

• +5 Vdc - three pins (4.5 A maximum per b~s device slot)

• + 12 V dc - two pins (3.0 A maximum per bus device slot)

• Ground - eight pins (shared by power return and signal return)

NOTE
Power is not bused between backplanes on any interconnecting bus cables.

A-36 Q22-bus Specification

A.a System Configurations
Q22-bus systems can be divided into two types:

• Systems containing one backplane

• Systems containing multiple backplanes

Before configuring any system, three characteristics for each module in the system must
be identified.

• Power consumption - +5 V dc and + 12 V dc are the current requirements.

• AC bus loading - the amount of capacitance a module presents to a bus signal line.
AC loading is expressed in terms of ac loads, where one ac load equals 9.35 pF of
capacitance.

• DC bus loading-the amount of dc leakage current a module presents to a bus signal
when the line is high (undriven). DC loading is expressed in terms of dc loads, where
one dc load equals 210 pA (nominal).

Power consumption, ac loading, and dc loading specifications for each module are included
in the Microcomputer Interfaces Handbook.

NOTE
The ac and dc loads and the power consumption of the processor module,
terminator module, and backplane must be included in determining the total
loading of a backplane.

Rules for configuring single-backplane systems are as follows:

• When using a processor with 220-ohm termination, the bus can accommodate modules
that have up to 20 ac loads before additional termination is required (Figure A-16).
If more than 20 ac loads are included, the other end of the bus must be terminated
with 120 ohms, and then up to 35 ac loads may be present.

• With 120-ohm processor termination, up to 35 ac loads can be used without additional
termination. If 120-ohm bus termination is added, up to 45 ac loads can be configured
in the backplane.

• The bus can accommodate modules up to 20 dc loads (total).

• The bus signal lines on the backplane can be up to 35.6 cm (14 in.) long.

Q22-bus Specification A-37

I~
Backplane Wire

35.6 CM (14 IN) Maximum ~I

One One One Optional

Unit Unit Unit

Load Load Load

3.4V 3.4 V
\.. y

)

- 35 AC Loads -- -
20 DC Loads

KDJ11-B Term

Processor

W-00189-TIO

Figure A-16 Single-Backplane Configuration

Rules for configuring multiple backplane systems are as follows:

• Figure A-17 shows that up to three backplanes can make up the system.

• The signal lines on each backplane can be up to 25.4 em (10 in.) long.

• Each backplane can accommodate modules that have up to 22 ac loads. Unused
ac loads from one backplane may not be added to another backplane if the second
backplane loading exceeds 22 ac loads. It is desirable to load backplanes equally, or
with the highest ac loads in the first and second backplanes.

• DC loading of all modules in all backplanes cannot exceed 20 loads.

• Both ends of the bus must be terminated with 120 ohms. This means the first
and last backplanes must have an impedance of 120 ohms. To achieve this, each
backplane can be lumped together as a single point. The resistive termination can be
provided by a combination of two modules in the backplane - the processor providing
220 ohms to ground in parallel with an expansion paddle card providing 250 ohms to
give the needed 120-ohm termination.

Alternately, a processor with 120-ohm termination would need no additional
termination on the paddle card to attain 120 ohms in the first box. The 120-ohm
termination in the last box can be provided in two ways: the termination resistors
may reside either on the expansion paddle card, or on a bus termination card (such
as the BDV11).

• The cable(s) connecting the first two backplanes is 61 em (2 ft.) or more in length.

• The cable(s) connecting the second backplane to the third backplane is 122 cm (4 ft.)
longer or shorter than the cable(s) connecting the first and second backplanes.

• The combined length of both cables cannot exceed 4.88 m (16 ft.).

• The cables used must have a characteristic impedance of 120 ohms.

A-38 Q22-bus Specification

Backplane Wire

35.6 CM (14 IN) M aximum

Additional
Cables and
Backplane

Notes:

Processor

Cable

120n
3.4 V

CablelTerm

\.

\.

\.

1. Two cables (max) 4.88 M (16 FT) (Max)
total length.

2. 20 DC loads total (max).

One

Unit

Load

t ,

One

Unit

Load

y

20 AC Lo ads Max

Backplane

25.4 CM (10 IN)
f ,

One

Unit

Load

Wire

Maximum
f
I

One

Unit

Load

)

20A

_yr------)

C Loads Max

Backplane Wire

25.4 CM (10 IN) Maximum

One

Unit

Load

l ,

y

One

Unit

Load

20 AC Loads Max

)

Figure A-17 Multiple Backplane Configuration

~

Cable ~

~I

Cable

LJ-00312-TIO

Q22-bus Specification A-39

A.8.1 Power Supply Loading

Total power requirements for each backplane can be determined by obtaining the
total power requirements for each module in the backplane. Obtain separate totals
for +5 V and + 12 V power. Power requirements for each module are specified in the
Microcomputer Interfaces Handbook.

When distributing power in multiple backplane systems, do not attempt to distribute
power through the Q22-bus cables. Provide separate, appropriate power wiring from
each power supply to each backplane. Each power supply should be capable of asserting
BPOK Hand BDCOK H signals according to bus protocol; this is required if automatic
power-fail/restart programs are implemented, or if specific peripherals require an orderly
power-down halt sequence. The proper use of BPOK Hand BDCOK H signals is strongly
recommended.

A.9 Module Contact Finger Identification
Digital's plug-in modules all use the same contact finger (pin) identification system. A
typical pin is shown in Figure A-1S.

SE2

/~
Slot (Row) Identifier Module Side Identifier
·Slot S· ·Side 2" (Solder Side)

Pin Identifier
·Pin E·

LJ-00313-TIO

Figure A-18 Typical Pin Identification System

The Q22-bus is based on the us~ of quad-height modules that plug into a 2-slot bus
connector. Each slot contains 36 lines (lS lines on both the component side and the
solder side of the circuit board).

Slots, row A, and row B include a numeric identifier for the side of the module. The
component side is designated side 1, the solder side is designated side 2, as shown in
Figure A-19.

A-40 Q22-bus Specification

Side 1
Component Side

RewA

RowS

RowC

Row 0

. . .

---L-

Solder Side

Figure A-19 Quad-Height Module Contact Finger IdentHicatlon

Letters ranging from A through V (excluding G, I, 0, and Q) identify a particular pin on
a side of a slot. Table A-7 lists and identifies the bus pins of the quad-height module. A
bus pin identifier ending with a 1 is found on the component side of the board, while a
bus pin identifier ending with a 2 is found on the solder side of the board.

The positioning notch between the two rows of pins mates with a protrusion on the
connector block for correct module positioning.

The dimensions for a typical Q22-bus module are represented in Figure A-20.

5.117 ~:g~_

f--2.437~:~~_
(DoubIeHgt)

CSingleHgt)

5.250--..,

I---2.7S0-r--
2111 ~.002

~.01
Ty.,

10.457~ :g~
(au.! Hilt)

~

Q22-bus Specification A-41

L2a CIa +.001 Handle
·.004

Not ..
Otmen_ona gIVen In InCh ••

Dmen.ons denoted by' are for
max UI'" orcuit ... a

U,I ... o1herwise .poc,filtd all
dimenSion •• r. t.OGS In

~

fL' .. ~ .. +~ t
lao Typ

t.OlO

f--
30~.010 8.4

IE xt 19th)

2.312'
(Single Hgt)

7.431
(Extlllth)

BoIIDm offi "!Ie ..
_Ie

Extlgth)
SId Lllth)

to top of
8.114 !.010 I
5.50 !.010 I

I + 1+ + ++ H-
t J

I 5.1112' ---f
(Double Hgt) r: 10.312 •

t.Ol0 (au.! Hgt)
3.1131' 4.1130t.01G

(Sid 19th) .ooo--.J (SId lllth)

.15& .525 Typ .725 Typ
foOl 0 t.007 ~-~

2.750- ':tt- t.G07

L- .125 Typ

*
i ~

Component lom it
.583

t ~

~ ~'
~'"'''' J+"':J~"-~ t t
il--USOt.Ol0 ~~ .S10Typ

5.34&t.Ol0 2 PI.. ~2.240 t.oas.

1.0II7t.Ol0 Typ
2.125 Typ

117 Equal 5pEe.) Mu'mu
Solde

Conductive· .834 in
Nonc:ondudve •• 175 in

SiI!c!le Width

Component Limit
Conductive· .343 in

Nonconductive •• 375 in

lJ-00314·TIO

Figure A-20 Typical Q22·bus Module Dimensions

Table A-7 Bus Pin Identifiers

Bus Pin Signal

AAI BffiQ5L

ABI BffiQ6L

ACI BDALI6 L

ADI BDALI7L

AEI SSPAREI
(alternate +5B)

Definition

Interrupt request priority level 5.

Interrupt request priority level 6.

Extended ad~ess bit during addressing protocol; memory
error data line during data transfer protocol.

Extended address bit during addressing protocol; memory
error logic enable during data transfer protocol.

Special spare - not assigned or bused in Digital's cable
or backplane assemblies. Available for user connection.
Optionally, this pin can be used for +5 V battery (+5 B) back­
up power to keep critical circuits alive during power failures.
A jumper is required on Q22-bus options to open (disconnect)
the +5 B circuit in systems that use this line as
SSPAREI.

A-42 Q22-bus Specification

Table A-7 (Cont.) Bus Pin Identifiers

Bus Pin Signal Definition

AFI SSPARE2 Special spare - not assigned or bused in Digital's cable or
backplane assemblies. Available for user interconnection. In
the highest priority device slot, the processor can use this
pin for a signal to indicate its run state.

AHI SSPARE3 Special spare - not assigned or bused simultaneously in
SRUN Digital's cable or backplane assemblies; available for user

interconnection. An alternate SRUN signal can be connected
in the highest priority set.

AJI GND Ground - system signal ground and dc return.

AKI MSPAREA Maintenance spare - normally connected together on the
backplane at each option location (not a bused connection).

ALI MSPAREB Maintenance spare - normally connected together on the
backplane at each option location (not a bused connection).

AMI GND Ground - system signal ground and dc return.

ANI BDMRL DMA request - a device asserts this signal to request
bus mastership. The processor arbitrates bus mastership
between itself and all DMA devices on the bus. If the
processor is not bus master (it has completed a bus cycle
and BSYNC L is not being asserted by the processor), it
grants bus mastership to the requesting device by asserting
BDMGO L. The device responds by negating BDMR Land
asserting BSACK L.

API BHALTL Processor halt - when BHALT L is asserted for at least 25
JlS, the processor services the halt interrupt and responds by
halting normal program execution. External interrupts are
ignored but memory refresh interrupts in Q22-bus operations
are enabled ifW4 on the M7264 and M7264-YA processor
modules is removed and DMA request/grant sequences are
enabled. The processor executes the ODT microcode, and the
console device operation is invoked.

ARI BREFL Memory refresh - asserted by a DMA device. This signal
forces all dynamic MOS memory units requiring bus refresh
signals to be activated for each BSYNC UBDIN L bus
transaction. It is also used as a control signal for block mode
DMA.

CAUTION
The user ~ust avoid multiple DMA data transfers
(burst or hot mode) that could delay refresh operation
if using DMA refresh. Complete refresh cycles must
occur once every 1.6 ms if required.

ASI +12 B or +5 B +12 Vdc or +5 V battery back-up power to keep critical
circuits alive during power failures. This signal is not bused
to BSI in all of Digital's backplanes. A jumper is required on
all Q22-bus options to open (disconnect) the backup circuit
from the bus in systems that use this line at the alternate
voltage.

ATI GND Ground - system signal ground and dc return.

AUI PSPARE 1 Spare - not assigned. Customer usage not recommended.
Prevents damage when modules are inserted upside down.

Q22-bus Specification A-43

Table A-7 (Cont.) Bus Pin Identifiers

Bus Pin

AV1

BA1

BB1

BC1

BD1

BEl

BF1

BH1

BJ1

BK1
BL1

BM1

BN1

BPI

BR1

BS1

BTl

BU1

BV1

AA2

Signal

+5 B

BDCOKH

BPOKH

SSPARE4
BDAL18 L
(22-bit only)

SSPARE5
BDAL19 L
(22-bit only)

SSPARE6
BDAL20 L

SSPARE7
BDAL21L

SSPARE8

GND

MSPAREB
MSPAREB

GND

BSACKL

BffiQ7L

BEVNTL

+12B

GND

PSPARE2

+5

+5

Definition

+5 V battery power - secondary +5 V power connection.
Battery power can be used with certain devices.

DC power OK - a power supply generated signal that is
asserted when the available dc voltage is sufficient to sustain
reliable system operation.

Power OK - asserted by the power supply 70 ms after
BDCOK is negated when ac power drops below the value
required to sustain power (approximately 75% of nominal).
When negated during processor operation, a power-fail trap
sequence is initiated.

Special spare in the Q22-bus - not assigned. Bused in
22-bit cable and backplane assemblies. Available for user
interconnection.

CAUTION
These pins may be used by manufacturing as test
points in some options.

In the Q22-bus, these bused address lines are address lines
<21:18>. Currently not used during data time.

In the Q22-bus, these bused address lines are address lines
<21:18>. Currently not used during data time.

Special spare - not assigned or bused in Digital's cable and
backplane assemblies. Available for user interconnection.

Ground - system signal ground and dc return.

Maintenance spare - normally connected together on the
backplane at each option location (not a bused connection).

Ground - system signal ground and dc return.

This signal is asserted by a DMA device in response to the
processor's BDMGO L signal, indicating that the DMA device
is bus master.

Interrupt request priority level 7.

External event interrupt request - when asserted, the
processor responds by entering a service routine through
vector address 1008. A typical use of this signal is as a line
time clock (LTC) interrupt.

+12 Vdc battery back-up power (not bused to AS1 in all of
Digital's backplanes).

Ground - system signal ground and dc return.

Power spare 2 - not assigned a function and not
recommended for use. If a module is using
-12 V (on pin AB2), and, if the module is accidentally
inserted upside down in the backplane, -12 Vdc appears
on pin BUl.

+5 V power - normal +5 V dc system power.

+5 V power - normal +5 V dc system power.

A-44 Q22-bus Specification

Table A-7 (Cont.) Bus Pin Identifiers

Bus Pin

AB2

AC2

AD2

AE2

AF2

AH2

.AJ2

AK2

AL2

Signal

-12

GND

+12

BDOUTL

BRPLYL

BDINL

BSYNC L

BWTBTL

BIRQ4 L

Definition

-12 V power - -12 Vdc power for (optional) devices requiring
this voltage. Each Q22-bus module that requires negative
voltages contains an inverter circuit that generates the
required voltage(s). Therefore, -12 V power is not required
with Digital's options.

Ground - system signal ground and dc return.

+ 12 V power - + 12 V dc system power.

Data output - when asserted, BDOUT implies that valid
data is available on BDAL<0:15> L and that an output
transfer, with respect to the bus master device, is taking
place. BDOUT L is deskewed with respect to data on the
bus. The slave device responding to the BDOUT L signal
must assert BRPLY L to complete the transfer.

Reply - BRPLY L is asserted in response to BDIN L or
BDOUT L and during IAK transactions. It is generated by
a slave device to indicate that it has placed its data on the
BDAL bus or that it has accepted output data from the bus.

Data input - BDIN L is used for two types of bus
operations.

• When asserted during BSYNC L time, BDIN L implies
an input transfer with respect to the current bus master,
and requires a response (BRPLY L). BDIN L is asserted
when the master device is ready to accept data from the
slave device.

• When asserted without BSYNC L, it indicates that an
interrupt operation is occurring. The master device
must deskew input data from BRPLY L.

Synchronize - BSYNC L is asserted by the bus master
device to indicate that it has placed an address on
BDAL<0:17> L. The transfer is in process until BSYNC
L is negated.

Writelbyte - BWTBT L is used in two ways to control a bus
cycle.

• It is asserted at the leading edge of BSYNC L to indicate
that an output sequence (DATO or DATOB), rather than
an input sequence, is to follow.

• It is asserted during BDOUT L, in a DATOB bus cycle,
for byte addressing.

Interrupt request priority level 4 - a level 4 device asserts
this signal when its interrupt enable and interrupt request
flip-flops are set. If the PS word bit 7 is 0, the processor
responds by acknowledging the request by asserting BDIN L
andBIAKOL.

Q22-bus Specification A-45

Table A-7 (Cont.) Bus Pin Identifiers

Bus Pin

AM2
AN2

AP2

AR2
AS2

AT2

AU2
AV2

BA2

BB2

BC2

BD2

Signal

BIAKIL
BIAKOL

BBS7L

BDMGIL
BDMGOL

BINIT L

BDALOL
BDALIL

+5

-12

GND

+12

Definition

Interrupt acknowledge - in accordance with interrupt
protocol, the processor asserts BIAKO L to acknowledge
receipt of an interrupt. The bus transmits this to BIAKI L
of the device electrically closest to the processor. This device
accepts the interrupt acknowledge under two conditions.

• The device requested the bus by asserting BffiQn L
(where n= 4, 5, 6 or 7)

• The device has the highest priority interrupt request on
the bus at that time.

If these conditions are not met, the device asserts BIAKO
L to the next device on the bus. This process continues
in a daisy chain fashion until the device with the highest
interrupt priority receives the interrupt acknowledge signal.

Bank 7 select - the bus master asserts this signal
to reference the I/O page (including that part of the
page reserved for nonexistent memory). The address in
BDAL<O: 12> L when BBS7 L is asserted is the address
within the I/O page.

Direct memory access grant - the bus arbitrator asserts
this signal to grant bus mastership to a requesting device,
according to bus mastership protocol. The signal is passed
in a daisy-chain from the arbitrator (as BDMGO L) through
the bus to BDMGI L of the next priority device (the device
electrically closest on the bus).

This device accepts the grant only if it requested to be
the bus master (by a BDMR L). If not, the device passes the
grant (asserts BDMGO L) to the next device on the bus. This
process continues until the requesting device acknowledged
the grant.

CAUTION
DMA device transfers must not interfere with the
memory refresh cycle.

Initialize - this signal is used for system reset. All
devices on the bus are to return to a known, initial state;
that is, registers are reset to zero, and logic is reset to
state o. Exceptions should be completely documented in
programming and engineering specifications for the device.

Data/address lines - these two lines are part of the 16-line
data/address bus over which address and data information
are communicated. Address information is first placed on the
bus by the bus master device. The same device then either
receives input data from, or outputs data to, the addressed
slave device or memory over the same bus lines.

+5 V power - normal +5 V dc system power.

-12 V power (voltage not supplied) - -12 Vdc power for
(optional) devices requiring this voltage.

Ground - system signal ground and dc return.

+ 12 V power - +12 V system power.

A-46 Q22-bus Specification

Table A-7 (Cont.) Bus Pin Identifiers

Bus Pin

BE2
BF2
BH2
BJ2
BK2
BL2
BM2
BN2
BP2
BR2
BS2
BT2
BU2
BV2

Signal

BDAL2L
BDAL3L
BDAIA L
BDAL5L
BDAL6L
BDAL7L
BDAL8L
BDAL9 L
BDALI0 L
BDALn L
BDAL12 L
BDAL13 L
BDAL14L
BDAL15 L

Definition

Data/address lines - these 14 lines are part of the 16-line
data/address bus.

B
Specifications

B.1 Dimensions
The KA660-AA and MS650-BA are quad height modules with the following dimensions:

Height Length
Module anches) (Inches) Width (Inches) •

KA660 10.457 +0.0151 8.430 +0.0101 0.7 maximum
-0.020 -0.010

MS650 10.457 +0.0151 8.430 +0.0101 0.375 maximum
-0.020 -0.010

• Width, as defined for Digital Equipment modules, is the height of components above the surface of the
module.

B.2 KA660-AA Connectors
The KA660-AA has five connector interfaces: two fingers that plug into rows A and B
of the backplane (the AlB row fingers), two fingers that plug into rows C and D of the
backplane (the CID row fingers), a 50-pin connector that connects the KA660-AA and
MS650-BA modules (the KA660-AA memory connector), a 50-pin connector that connects
the KA660-AA to the DSSI bus, and a 40-pin connector that connects the KA640-AA with
the H3602 CPU cover panel.

B.2.1 KA660-AA AlB Row Fingers

The KA660-AA AlB row fingers are compatible with the Q22-bus specification. The
SRUN(L) signal appears on pin AFl.

B.2.2 KA660-AA C/O Row

The pinout of the KA660-AA elD row fingers is included in the following section.

B-1

8-2 Specifications

8.2.3 KA660-AA Configuration and Display Connector (J1)

The configuration and display connector is a 40-pin connector that connects the KA660
module to the H3602 console module. The connector features the following pinouts:

Table B-1 H3602 Connector Pinout

Pin Mnemonic

01 XMIT-H

02 XMIT+H

03 GND

04 GND

_ 05 GND

06 RCV-H

07 RCV+H

08 GND

09 GND

10 GND

11 COL-H

12 COL+H

13 GND

14 GND

15 GND

16 GND

17 +12v

18 GND

19 DTRH

20 GND

21 TXDL

22 GND

23 GND

24 RXDL

25 RXDH

26 GND

27 +5v

28 CONBITRATE2 L
29 CONBITRATEI L
30 CONBITRATEO L

Meaning

Transmit - output to the LAN interface

Transmit + output to the LAN interface

Ground

Ground

Ground

Receive - input from the LAN interface

Receive + input from the LAN interface

Ground

Ground

Ground

Collision -

Collision +

Ground

Ground

Ground

Ground

Fused +12 V dc

Ground

Data Thrminal Ready

Ground

Transmit Data

Ground

Ground

Receive Data

Receive Data

Ground

Fused +5 Vdc

Console bit rate <02:00>. These three bits determine the
console baud rate. They are configured using the select switch
on the inside of the H3602 console panel.

Specifications B-3

Table B-1 (Cont.) H3602 Connector Pinout

Pin

31
32
33
34

35

36
37

38

39

40

NOTE

Mnemonic

LED CODEO L
LED CODE1 L
LED CODE2 L
LED CODE3 L

ENBHALTL

BDCODEIL
BDCODEOL

VBATH

GND

GND

Meaning

LED code register bits <03:00>. When asserted, each of these
four output signals turns on a corresponding LED on the
module. LED CODE <03:00> are asserted (low) by power-up
and by the negation of DCOK when the processor is halted.
They are updated by the boot and diagnostic programs,
through the boot and diagnostic register.

Halt Enable. This input signal controls the response to the
halt conditions. If ENB HALT is asserted (low), then the
KA660 halts and enters the console program if:

1. The program executes a Halt instruction in kernel mode

2. The console detects a break character.

3. The Q22-bus Halt line is asserted (but only if the KA660
is configured as an arbiter CPU).

4. The interprocessor communication register AUX HLT bit
is set (but only if the KA660 is configured as an auxiliary
CPU).

If ENB HALT is negated, then the Halt line and break
character are ignored and the ROM program responds to
a halt instruction by restarting or rebooting the system.

ENB HALT can be read by software, through the boot and
diagnostic register.

In the MicroVAX 3000 system, ENB HALT originates
from a switch on the H3602 or cover panel.

This 2-bit code can be read by software through the boot and
diagnostic register. The KA660 ROM program may use boot
and diagnostic code <01 :00> to select various boot device or
diagnostic test parameters at power-up and at system restart.

Battery backup voltage for the TOY clock.

Ground

Ground

The KA660 module provides 10K pull-up resistors for the eight input signals.

8.2.4 KAS60 DSSI and Private Memory Interconnect Connectors

The pinouts of the KA660 lOO-pin nSSI and PMI connector are as follows:

Table B-2 DSSI and PMI Connector Pinout

Pin Number Signal Name

01 GNDH

B-4 Specifications

Table B-2 (Cont.) DSSI and PMI Connector Pinout

Pin Number Signal Name

02 MOOH
03 MD8H
04 MD7H
05 GNDH
06 MD6H
07 MD5H
08 MD4H
09 MD3H
10 GNDH
11 MD2H
12 MDIH
13 MDOH
14 MD19H
15 GNDH
16 MD18H
17 MD17H
18 MD16H
19 MD15H
20 GNDH
21 MD14H
22 MD13H
23 MD12H
24 GNDH
25 MDl1 H
26 MDI0H
27 GNDH
28 MD29H
29 MD28H
30 MD27H
31 GNDH
32 MD26H
33 MD25H
34 MD24H
35 MD23H
36 GNDH
37 IvlD22 H
38 MD21 H
39 MD20H
40 MD38H
41 GNDH
42 MD37 H
43 MD36H
44 MD35H
45 MD34H
46 GNDH
47 MD33H
48 MD32H
49 MD31 H

Specifications 8-5

Table 8-2 (Cont.) DSSI and PMI Connector Pinout

Pin Number Signal Name

50 MD30H
51 DSSIDATAOL
52 GND
53 DSSIDATA1L
54 GND
55 DSSIDATA2L
56 GND
57 DSSIDATA3L
58 GND
59 DSSIDATA4L
60 GND
61 DSSIDATA5L
62 GND
63 DSSIDATA6L
64 GND
65 DSSIDATA7L
66 GND
67 DSSIPARITYL
68 GND
69 DSSI19L
70 GND
71 DSSI21L
72 GND
73 VTERM
74 VTERM
75 VTERM
76 VTERM
77 VTERM
78 VTERM
79 GND
80 DSSI30L
81 GND
82 DSSI32L
83 GND
84 DSSI34L
85 GND
86 DSSIBSYL
87 GND
88 DSSIACKL
89 GND
90 DSSIRSTL
91 GND
92 DSSI42L
93 GND
94 DSSISELL
95 GND
96 DSSICDL
97 GND

8-6 Specifications

Table B-2 (Cont.) DSSI and PMI Connector Pinout

Pin Number

98
99
100

Signal Name

DSSIREQL
GND
DSSIIOL

B.3 DC Power Consumption
The KA660 CPU module power requirements are as follows:

+5V±5%
+12V±5%

Typical currents are 10% less than the specified maximum.

B.4 Bus Loads
The KA660 CPU bus loads are as follows:

Module DC AC

KA660 1.4 loads 4.75 loads

B.5 Battery Backup Specifications
When DC power is supplied to the KA660 module, it charges the external batteries from
+5 volts through a 240 ohm resistor.

When DC power is removed from the KA660 module, it drains the external batteries at
a rate of 1.0 milliampslhour. Because the batteries are rated at 180 mAlhr the battery
backup lasts 180 hours.

NOTE
These batteries supply power to the KA660 time of year clock and sse RAM
only. There are no battery backup hooks for the memory system.

B.6 Operating Conditions
The KA660-AA module meets or exceeds Digital's requirements for operation in an add-on
environment.

Temperature

Temperature should be +5 to +600 C (-40 to + 1400 F) with a change rate no greater than
20 +_20 C (36 +_40 F)lhour at sea level. The maximum temperature must be derated by
1.80 C/1000 meters (1 degree F/1000 feet) above sea level.

Humidity

Humidity should be 10% to 95% noncondensing, with a maximum wet bulb temperature
of 320 C (900 F) and a minimum dew point temperature of 2 0 C (360 F).

Altitude

Specifications 8-7

Altitude can be 2,400 meters (8,000 feet) with a change rate no greater than 300 meters
iminute (1000 feet/minute).

Airflow

The airflow required to meet these specifications is 200 lfm.

8.7 Nonoperating Conditions (Less than 60 days)

Temperature

Tempature should be -40 to +660. C (-40 to + 1510 F) with a change rate no greater than
11 +_20 C (20 +_40 F)I hour at sea level. The maximum temperature must be derated by
1.80 C/I000 meters (1 degree F/I000 feet) above sea level.

Humidity

Up to 95% noncondensing.

Altitude

Altitude can be as many as 4,900 meters (16,000 feet) with a change rate no greater than
600 meters/minute (2000 feet/minute).

8.8 Nonoperating Conditions (Greater than 60 days)
Temperature

Tempature should be +5 to +600 C (-40 to + 1400 F) with a change rate no greater than 20
+_20 C (36 +_40 F)lhour at sea level. The maximum temperature must be derated by 1.80

C/I000 meters (1 degree F/I000 feet) above sea level.

Humidity

Humidity can be 10% to 95% noncondensing, with a maximum wet bulb temperature of
320 C (900 F) and a minimum dew point temperature of 2 0 C (360 F).

Altitude

Altitude can be as many as 2,400 meters (8,000 feet) with a rate of change no greater
than 300 meters/minute (1000 feet/minute).

8-8 Specifications

Altitude can be 2,400 meters (8,000 feet) with a change rate no greater than 300 meters
/minute (1000 feetiminute).

Airflow

The airflow required to meet these specifications is 200 lfm.

B.7 Nonoperating Conditions (Less than 60 days)

Temperature

Tempature should be -40 to +660 C (-40 to + 1510 F) with a change rate no greater than
11 +_20 C (20 +-40 F)/ hour at sea level. The maximum temperature must be derated by
1.80 C/1000 meters (1 degree F/1000 feet) above sea level.

Humidity

Up to 95% noncondensing.

Altitude

Altitude can be as many as 4,900 meters (16,000 feet) with a change rate no greater than
600 meters/minute (2000 feetiminute).

B.8 Nonoperating Conditions (Greater than 60 days)
Temperature

Tempature should be +5 to +600 C (-40 to + 1400 F) with a change rate no greater than 20
+_20 C (36 +_40 F)lhour at sea level. The maximum temperature must be derated by 1.80

C/1000 meters (1 degree F/1000 feet) above sea level.

Humidity

Humidity can be 10% to 95% noncondensing, with a maximum wet bulb temperature of
320 C (900 F) and a minimum dew point temperature of 2 0 C (360 F).

Altitude

Altitude can be as many as 2,400 meters (8,000 feet) with a rate of change no greater
than 300 meters/minute (1000 feet/minute).

C
Address Assignments

C.1 KA660 Physical Address Space

Table C-1 General Local Address Space Map

Address Range

VAX Memory Space

0000 0000-1FFF FFFF

VAX 110 Space

2000 0000-2000 1FFF

2000 2000 - 2003 FFFF

2004 0000 - 2007 FFFF

20080000 - 201F FFFF

2020 0000 - 23FF FFFF

2400 0000 - 27FF FFFF

2008 0000 - 2BFF FFFF

2C08 0000 - 2FFF FFFF

3000 0000 - 303F FFFF

3040 0000 - 33FF FFFF

3400 0000 - 37FF FFFF

3800 0000 - 3BFF FFFF

3COO 0000 - 3FFF FFFF

Description

Local Memory Space (512 Mbytes)

Local Q22-bus I/O Space (8 Kbytes)

Reserved Local I/O Space(248 Kbytes)

Local ROM Space

Local Register I/O Space (1.5 Mbytes)

Reserved Local 110 Space (62.5 Mbytes)

Reserved Local 110 Space(64 Mbytes)

Reserved Local 110 Space(64 Mbytes)

Reserved Local 110 Space (64 Mbytes)

Local Q22-bus Memory Space (4 Mbytes)

Reserved Local I/O Space (60 Mbytes)

Reserved Local 110 Space (64 Mbytes)

Reserved Local 110 Space (64 Mbytes)

Reserved Local I/O Space (64 Mbytes)

C-1

G-2 Address Assignments

C.2 KA660 Detailed Physical Address Map

Table C-2 Detailed Local Address Space Map

Description Address Range

VAX Memory Space

Local Memory Space, 64 Mbytes (Q22-bus Map at top 32 0000 0000-03FF FFFF
Kbytes of Main Memory)

Reserved Memory Space (448 Mbytes) 0400 0000-1FFF FFFF

VAX 110 Space

Local Q22-bus 110 Space

Reserved Q22-bus I/O Space

Q22-bus Floating Address Space

User Reserved Q22-bus I/O Space

Reserved Q22-bus I/O Space

Interprocessor Comm Reg

Reserved Q22-bus I/O Space

Local Register 110 Space

Reserved Local Register I/O Space

SHACSSWCR

Reserved Local Register I/O Space

SHACSSHMA

SHACPQBBR

SHACPSR

SHACPESR

SHACPFAR

SHACPPR

SHACPMCSR

Reserved Local Register I/O Space

SHACPCQOCR

SHACPCQ1CR

SHACPCQ2CR

SHACPCQ3CR

SHACPDFQCR

SHACPMFQCR

SHACPSRCR

2000 0000-2000 IFFF

20000000-20000007

20000008---200007FF

2000 0800-2000 OFFF

2000 1000-2000 1F3F

20001F40

2000 1F44-2000 1FFF

2000 2000-2003 FFFF

2000 4202-2000 422F

20004230

2000 4234-2000 4043

20004244

20004248

2000 424C

20004250

20004254

20004258

2000 425C

2000 4260-2000 427F

20004280

20004284

20004288

2000 428C

20004290

20004294

20004298

Address Assignments C-3

Table C-2 (Cont.) Detailed Local Address Space Map

Description

Local Register 110 Space

SHAC PECR

SHACPDCR

SHAC PICR

SHACPMTCR

SHAC PMTECR

Reserved Local Register I/O Space

NICSRO-Vector Add, IPL, Sync/Async

NICSRI-Polling Demand Register

NICSR2-Reserved

NICSR3-Receiver List Address

NICSR4--Transmitter List Address

NICS~tatus Register

NICSR6-Command and Mode Register

NICSR7-System Base Address

N ICSR8-Re served

NICSR9-Watchdog Timers

NICSRlO- Reserved

NICSRll- Rev Num and Missed Frame Count

NICSR12- Reserved

NICSRl3- Breakpoint Address

NICSRl4- Reserved

NICSRl5- Diagnostic Mode and Status

Reserved Local Register I/O Space

Local EPROM Space

}lVAX System 1YPe Register (In EPROM)

Local EPROM~Halt Protected)

Local Register 110 Space

Q22 System Configuration Register

Q22 System Error Register

Q22 Master Error Address Register

Q22 Slave Error Address Register

Q22-hus Map Base Register

Address Range

2000 2000-2003 FFFF

2000 429C

2000 42AO

200042A4

2000 42A8

200042AC

2000 42B0-2000 7FFF

20008000

20008004

20008008

2000800C

20008010

20008014

20008018

200080lC

20008020*

20008024·

20008028*

2000802C*

20008030*

20008034*

20008038*

2000803C

2000 8040-2003 FFFF

2004 0000-2007 FFFF

20040004

20040000-2007 FFFF

2008 0000-201F FFFF

20080000

20080004

20080008

2008000C

20080010

*These are virtual registers. See Section 11.3.1.2 to access information.

C-4 Address Assignments

Table C-2 (Cont.) Detailed Local Address Space Map

Description

Local Register 110 Space

Reserved Local Register I/O Space

Main Memory Error Status Register

Main Memory ControllDiag Status Register

Reserved Local Register I/O Space

Boot and Diagnostic Register (32 Copies)

NI Station Address ROM

DSSI ID Switch Settings

Reserved Local Register I/O Space

Q22-bus Map Registers

Reserved Local Register I/O Space

SSC Base Address Register

SSC Configuration Register

CDAL Bus Timeout Control Register

Diagnostic LED Register

Reserved Local Register I/O Space

Address Range

2008 0000-20lF FFFF

2008 0014-2008 OOFF

20080140

20080144

20080148-20083FFF

20084000-2008407C

2008 4080-2008 7FFF

2008 8000-2008 FFFF

2009 0000-2013 FFFF

20140000

20140010

20140020

20140030

2014 0034-2014 006B

The following addresses allow those KA660 Internal Processor Registers that are
implemented in the sse chip (External, Internal Processor Registers) to be accessed
via the local 110 page. These addresses are documented for diagnostic purposes only and
should not be used by non-diagnostic programs.

Time Of Year Register

Console Storage Receiver Status

Console Storage Receiver Data

Console Storage Transmitter Status

Console Storage Transmitter Data

Console Receiver Control/Status

Console Receiver Data Buffer

Console Transmitter Control/Status

Console Transmitter Data Buffer

Reserved Local Register I/O Space

110 Bus Reset Register

2014006C

20140070t

20140074t

20140078t

2014007Ct

20140080

20140084

20140088

2014008C

2014 0090-2014 OODB

201400DC

tThesc registers are not fully implemented. Accesses yield unpredictable results.

Address Assignments C-5

Table C-2 (Cont.) Detailed Local Address Space Map

Description Address Range

The following addresses allow those KA660 Internal Processor Registers that are
implemented in the sse chip (External, Internal Processor Registers> to be accessed
via the local 110 page. These addresses are documented for diagnostic purposes only and
should not be used by non-diagnostic programs.

Reserved Local Register I/O Space

Rom Data Register

Bus Timeout Counter

Interval Timer

Reserved Local Register I/O Space

Timer 0 Control Register

Timer 0 Interval Register

Timer 0 Next Interval Register

Timer 0 Interrupt Vector

Timer 1 Control Register

Timer 1 Interval Register

Timer 1 Next Interval Register

Timer 1 Interrupt Vector

Reserved Local Register I/O Space

BDR Address Decode Match Register

BDR Address Decode Mask Register

Reserved Local Register I/O Space

Battery Backed-Up RAM

Reserved Local Register I/O Space

Reserved Local I/O Space

Local Q22-bus Memory Space

Reserved Local Register I/O Space

201400EO

201400FO:t:

201400F4:t:

201400F8:t:

2014 00FC-2014 OOFF

20140100

20140104

20140108

2014010C

20140110

20140114

20140118

2014011C

2014 0120-2014 012F

20140130

20140134

2014 0138-2014 03FF

2014 0400-2014 07FF

2014 0800-201F FFFF

2020 0000-2FFF FFFF

3000 0000-303F FFFF

3040 0000-3FFF FFFF

:j:These registers are internal SSC registers used for SSC chip test purposes only. They should not be accessed
by the CPU.

C-6 Address Assignments

C.3 External, Internal Processor Registers
Several of the Internal Processor Registers OPR's) on the KA660 are implemented in the
SSC chip rather than the SOC CPU chip. These registers are referred to as External,
Internal Processor Registers and are listed below.

Table C-3 External, Internal Processor Registers

IPR Number Register Name Mnemonic

27 Time of Year Register TOY

28 Console Storage Receiver Status CSRS*

29 Console Storage Receiver Data CSRD*

30 Console Storage Transmitter Status CSTS*

31 Console Storage Transmitter Data CSDB*

32 Console Receiver Control/Status RXCS

33 Console Receiver Data Buffer RXDB

34 Console Transmitter Control/Status TXCS

35 Console Transmitter Data Buffer TXDB

55 I/O System Reset Register IORESET

C.4 Global Q22-bus Physical Address Space

Table C-4 Global Q22-bus Physical Address Map

Description

Q22-bus Memory Space

Q22-bus Memory Space (Octal)

Q22-bus 110 Space (BDS7 Asserted)

Q22-bus 110 Space (Octal)

Reserved Q22-bus I/O Space

Q22-bus Floating Address Space

User Reserved Q22-bus I/O Space

Reserved Q22-bus I/O Space

Interprocessor Comm Register

Reserved Q22-bus I/O Space

Address Range

0000 0000-1777 7777

17760000-17777777

1776 0000-1776 0007

1776 0010-1776 3777

1776 4000-1776 7777

1777 0000-1777 7477

17777500

1777 7502-1777 7777

D
VAX Instruction Set

The information in this appendix is for reference only.

The standard notation for operand specifiers is:

name .access type data type

Name
A suggestive name for the operand in the context of the instruction. The name is the
capitalized name of a register or block for implied operands.

Access type
A letter denoting the operand specifier access type.
a Address operand

b Branch displacement

m Modified operand (both read and written)

r Read-only operand

v If not Rn, same as a. Otherwise R[n+l]'R[n]

w Write-only operand

Data type
A letter denoting the data type of the operand.
b Byte

d

f

g

1

q

v

w

*

D_floating

F_floating

G_floating

Loflgword

Quadword

Field (used only in implied operands)

Word

Multiple longwords (used only in implied operands)

Implied operands
Locations that are accessed by the instruction, but not specified in an operand, are
denoted by curly braces o.

0-1

0-2 VAX Instruction Set

Abbreviations for Condition Codes

*

o
1

Conditionally set/cleared

Not affected

Cleared

Set

Abbreviations for Exceptions
rsv Reserved operand fault

iov Integer overflow trap

idvz Integer divide by zero trap

fov Floating overflow fault

fuv Floating underflow fault

fdvz Floating divide by zero fault

dov Decimal overflow trap

ddvz Decimal divide by zero trap

sub Subscript range trap

prv Privileged instruction fault

Integer Arithmetic And Logical Instructions

Opcode Instruction

58 ADAWI add.rw, sum.mw

80 ADDB2 add.rb, sum.mb

CO ADDL2 add.rl, sum.ml

AO ADDW2 add.rw, sum.mw

81 ADDB3 add1.rb, add2.rb, sum.wb

CI ADDL3 add1.rl, add2.rI, sum.wI

Al ADDW3 add1.rw, add2.rw, sum. ww

D8 ADWC add.rl, sum.ml

78 ASHL cnt.rb, src.rl, dst.wl

79 ASHQ cnt.rb, src.rq, dst.wq

8A BICB2 mask.rb, dst.mb

CA BICL2 mask.rI, dst.ml

AA BICW2 mask.rw, dst.mw

8B BICB3 mask.rb, src.rb, dst.wb

CB BICL3 mask.rl, src.rl, dst.wI

AB BICW3 mask.rw, src.rw, dst.wYl

NZVC Exceptions

* * * * iov

* * * * iov

* * * * iov

* * * * iov

* * * * iov

* * * * iov

* * * * iov

* * * * iov

***0 iov

***0 iov

**0-

* * 0 -

**0-

**0-

**0-

* * 0 -

VAX Instruction Set D-3

Opcode Instruction NZVC Exceptions

88 BISB2 mask.rb, dst.mb **0-

C8 BISL2 mask.rl, dst.ml **0-

A8 BISW2 mask.rw, dst.mw * * 0 -

89 BISB3 mask.rb, src.rb, dst. wb **0-

C9 BISL3 mask.rl, src.rl, dst.wl **0-

A9 BISW3 mask.rw, srC.rw, dst. ww **0-

93 BITB mask.rb, src.rb **0-

D3 BITL mask.rl, src.rl **0-

B3 BITW mask.rw, src.rw **0-

94 CLRB dst.wb 010-

D4 CLRL{=F} dst.wl 010-

7C CLRQ{=D=G} dst. wq 010-

B4 CLRW dst.ww 010-

91 CMPB src l.rb, src2.rb **0*

D1 CMPL src1.rl, src2.rl **0*

B1 CMPW src1.rw, src2.rw **0*

98 CVTBL src.rb, dst. wI **00

99 CVTBW src.rb, dst.wl **00

F6 CVTLB src.rl, dst.wb ***0 iov

F7 CVTLW src.rl, dst.ww ***0 iov

33 CVTWB srC.rw, dst. wb ***0 iov

32 CVTWL srC.rw, dst. wI **00

97 DECB dif.mb **** iov

D7 DECL dif.ml **** iov

B7 DECW dif.mw **** iov

86 DIVB2 divr.rb, quo.mb ***0 iov,idvz

C6 DIVL2 divr.rl, quo.ml ***0 iov,idvz

A6 DIVW2 divr.rw, quo.mw ***0 iov,idvz

D-4 VAX Instruction Set

Opcode Instruction NZVC Exceptions

87 DIVB3 divr.rb, divd.rb, quo.wb ***0 iov,idvz

C7 DIVL3 divr.rl, divd.rI, quo.wI ***0 iov,idvz

A7 DIVW3 divr.rw, divd.rw, quo. ww ***0 iov,idvz

7B EDIV divr.rl, divd.rq, quo.wI, * * * 0 iov,idvz
rem.wI

7A EMUL mulr.rI, muId.rl, add.rI, **00
prod.wq

96 INCB sum.mb **** iov

D6 INCL sum.mI * * * * iov

B6 INCWsum.mw **** iov

92 MCOMB src.rb, dst.wb **0-

D2 MCOML src.rI, dst.wl **0-

B2 MCOMW src.rw, dst. ww **0-

8E MNEGB src.rb, dst.wb **** iov

CE MNEGL sre.rI, dst.wl **** iov

AE MNEGW srC.rw, dst.ww * * * * iov

90 MOVB src.rb, dst.wb * * 0 -

DO MOVL sre.rl, dst.wI **0-

7D MOVQ srC.rq, dst.wq **0-

BO MOVW src.rw, dst.ww * * 0 -

9A MOVZBW src.rb, dst.wb 0*0-

9B MOVZBL sre.rb, dst.wl 0*0-

3C MOVZWL src.rw, dst.ww 0*0-

84 MULB2 mulr.rb, prod.mb ***0 iov

C4 MULL2 mulr.rI, prod.ml ***0 iov

A4 MULW2 mulr.rw, prod.mw ***0 iov

85 MULB3 mulr.rb, muld.rb, prod. wb ***0 iov

C5 MULL3 mulr.rl, muld.rl, prod. wI ***0 iov

VAX I nstruction Set 0-5

Opcode Instruction NZVC Exceptions

A5 MULW3 muIr.rw, muId.rw, ***0 ioy
prod.ww

DD PUSHL src.rl, {-(SP).wl} **0-

9C ROTL cnt.rb, src.rl, dst.wl **0-

D9 SBWC sub.rl, dif.ml **** ioy

82 SUBB2 sub.rb, dif.mb **** ioy

C2 SUBL2 sub.rl, dif.ml **** ioy

A2 SUBW2 sub.rw, dif.mw **** ioy

83 SUBB3 sub.rb, min.rb, dif. wb **** ioy

C3 SUBL3 sub.rl, min.rl, dif. wI **** ioy

A3 SUBW3 sub.rw, min.rw, dif.ww **** ioy

95 TSTB src.rb **00

D5 TSTL src.rl **00

B5 TSTW src.rw **00

8C XORB2 mask.rb, dst.mb **0-

CC XORL2 mask.rl, dst.ml **0-

AC XORW2 mask.rw, dst.mw **0-

8D XORB3 mask.rb, src.rb, dst.wb **0-

CD XORL3 mask.rl, src.rl, dst. wI **0-

AD XORW3 mask.rw, src.rw, dst. ww **0-

Address Instructions

Opcode Instruction NZVC Exceptions

9E MOVAB src.ab, **0-
dst.wl

DE MOVAL{=F} src.al, **0-
dst.wl

7E MOVAQ{=D=G} **0-
src.aq, dst.wl

3E MOVAW src.aw, **0-
dst.wl

D-6 VAX Instruction Set

Opcode Instruction NZVC Exceptions

9F PUSHAB sre.ab, * * 0 -
{-(SP).wl}

DF PUSHAL{=F} sre.aI, * * 0 -
{-(SP).wl}

7F PUSHAQ{=D=G} * * 0 -
sre.aq, {-(SP). wI}

3F PUSHAW sre.aw, * * 0 -
{-(SP).wI}

Variable Length Bit Field Instructions

Opcode Instruction

EC CMPV pos.rl, size.rb, base. vb,
{field.rv}, src.rl

ED CMPZV pos.rl, size.rb, base. vb,
{field.rv}, src.rl

EE EXTV pos.rl, size.rb, base. vb,
{field.rv}, dst.wl

EF EXTZV pos.rl, size.rb, base.vb,
{field.rv}, dst.wl

FO INSV src.rl, pos.rl, size.rb, base. vb,
{field.wv}

EB FFC startpos.rl, size.rb, base.vb,
{field.rv}, findpos.wl

EA FFS startpos.rl, size.rb, base. vb,
{field.rv}, findpos.wl

Control Instructions

Opcode

9D

Fl

3D

F3

F2

IE
IF

13

18

14

lA

15

Instruction

ACBB limit.rb, add.rb, index.mb,
displ.bw

ACBL limit.rl, add.rl, index.ml,
disp1.bw

ACBW limit.rw, add.rw, index.mw,
displ.bw

AOBLEQ limit.rl, index.ml,
disp1.bb

AOBLSS limit.rl, index.ml, disp1.bb

BCC{=BGEQU} disp1.bb

BCS{=BLSSU} disp1.bb

BEQL{=BEQLU} disp1.bb

BGEQ disp1.bb

BGTR disp1.bb

BGTRU disp1.bb

BLEQ disp1.bb

VAX Instruction Set 0-7

NZVC Exceptions

**0* rsv

**0* rsv

**0- rsv

**0- rsv

rsv

0*00 rsv

0*00 rsv

NZVC Exceptions

*** iov

*** iov

*** iov

*** iov

*** iov

D-8 VAX Instruction Set

Opcode Instruction NZVC Exceptions

IB BLEQU disp1.bb

19 BLSS displ.bb

12 BNEQ{=BNEQU} displ.bb

lC BVC displ.bb

ID BVS disp1.bb

El BBC pos.rl, base.vb, displ.bb, rsv
{field.rv}

EO BBS pos.rl, base. vb, disp1.bb, ----rsv
{field.rv}

E5 BBCC pos.rl, base.vb, disp1.bb, rsv
{field.mv}

E3 BBCS pos.rl, base.vb, disp1.bb, rsv
{field.mv}

E4 BBSC pos.rl, base. vb, disp1.bb, rsv
{field.mv}

E2 BBSS pos.rl, base. vb, displ.bb, rsv
{field.mv}

E7 BBCCI pos.rl, base.vb, displ.bb, rsv
{field.mv}

E6 BBSSI pos.rl, base.vb, disp1.bb, rsv
{field.mv}

E9 BLBC src.rl, displ.bb

E8 BLBS src.rl, disp1.bb

11 BRB disp1.bb

31 BRW displ.bw

10 BSBB disp1.bb, {-(SP).wl}

30 BSBW displ.bw, {-(SP). wI}

8F CASEB selector.rb, base.rb, **0*
limit.rb, disp1.bw-list

CF CASEL selector.rl, base.rl, limit.rl, **0*
disp1.bw-list

AF CASEW selector.rw, base.rw, **0*
limit.rw, disp1.bw-list

VAX Instruction Set 0-9

Opcode Instruction NZVC Exceptions

17 JMP dst.ab

16 JSB dst.ab, {-(SP). wI}

05 RSB {(SP)+.rl)

F4 SOBGEQ index.ml, displ.bb *** iov

F5 SOBGTR index.ml, displ.bb *** iov

Procedure Call Instructions

Opcode . Instruction NZVC Exceptions

FA CALLG arglist.ab, dst.ab, {- 0000 rsv
(SP).w*}

FB CALLS numarg.rl, dst.ab, {- 0000 rsv
(SP).w*}

04 RET {(SP)+.r*} **** rsv

Miscellaneous Instructions

Opcode Instruction NZVC Exceptions

B9 BICPSW mask.rw **** rsv

B8 BISPSW mask.rw **** rsv

03 BPT {-(KSP). w*} 0000

00 HALT {-(KSP).w*} prY

OA INDEX subscript.rl, low.rl, bigh.rl, **00 sub indexout. wI
size.rl, indexin.rl,

DC MOVPSL dst.wl

01 NOP

BA POPR mask.rw, {(SP)+.r*}

BB PUSHR mask.rw, {-(SP). w*}

FC XFC {unspecified operands} 0000

Queue Instructions

Opcode Instruction NZVC Exceptions

5C INSQHI entry.ab, header.aq 0*0* rsv

5D INSQTI entry.ab, header.aq 0*0* rsv

0-10 VAX Instruction Set

Opcode

OE

5E

5F

OF

Instruction

INSQUE entry.ab, pred.ab

REMQHI header.aq, addr.wl

REMQTI header.aq, addr.wl

REMQUE entry.ab, addr.wl

Operating System Support Instructions

Opcode Instruction

BD CHME param.rw, {-{ySP). w*}

BC CHMK param.rw, {-{ySP).w*}

BE CHMS param.rw, {-(ySP).w*}

BF CHMU param.rw, {-(ySP).w*)

NZVC

**0*

0***

0***

* * * *

NZVC

0000

0000

0000

0000

Where y=MINU(x), PSkCURRENT_MODE>

06 LDPCTX {PCB.r*, -(KSP).w*)

DB MFPR procreg.rl, dst. wI * * 0 -

DA MTPR src.rl, procreg.rl **0-

OC PROBER mode.rb, Ien.rw, base.ab 0*0-

OD PROBEW mode.rb, len.rw, base.ab 0*0-

02 REI {(SP)+.r*) ****

07 SVPCTX {(SP)+.r*, PCB.w*}

Flol1ting Point Instructions

Exceptions

rsv

rsv

Exceptions

rsv, pry

rsv, pry

rsv, pry

rsv

prY

These instructions are implemented by the KA670 floating point accelerator.

Opcode Instruction NZVC Exceptions

60 ADDD2 add.rd, sum.md **00 rsv,fov,fuv

40 ADDF2 add.rf, sum.mf **00 rsv,fov,fuv

40FD ADDG2 add.rg, sum.mg **00 rsv,fov,fuv

61 ADDD3 add1.rd, add2.rd, sum.wd **00 rsv,fov,fuv

41 ADDF3 add1.rf, add2.rf, sum.wf **00 rsv,fov,fuv

41FD ADDG3 add1.rg, add2.rg, sum.wg **00 rsv,fov,fuv

71 CMPD src1.rd, src2.rd **00 rsv

51 CMPF src1.rf, src2.rf **00 rsv

51FD CMPG src1.rg, src2.rg **00 rsv

VAX Instruction Set 0-11

Opcode Instruction NZVC Exceptions

6C CVTBD src.rb, dst.wd **00

4C CVTBF src.rb, dst. wf **00

4CFD CVTBG src.rb, dst. wg **00

68 CVTDB src.rd, dst. wb ***0 rsv, iov

76 CVTDF src.rd, dst. wf **00 rsv, fov

6A CVTDL src.rd, dst. wI ***0 rsv, iov

69 CVTDW src.rd, dst.ww ***0 rsv, iov

48 CVTFB src.rf, dst. wb ***0 rsv, iov

56 CVTFD src.rf, dst.wd **00 rsv

99FD CVTFG src.rf, dst. wg **00 rsv

4A CVTFL src.rf, dst.wI ***0 rsv, iov

49 CVTFW src.rf, dst.ww ***0 rsv, iov

48FD CVTGB src.rg, dst.wb ***0 rsv, iov

33FD CVTGF src.rg, dst.wf **00 rsv,fov,fuv

4AFD CVTGL srC.rg, dst.wI ***0 rsv, iov

49FD CVTGW src.rg, dst. ww ***0 rsv, iov

6E CVTLD src.r1, dst. wd **00

4E CVTLF src~rI, dst.wf **00

4EFD CVTLG src.rI, dst.wg **00

-6D CVTWD src.rw, dst. wd **00

4D CVTWF src.rw, dst.wf **00

4DFD CVTWG src.rw, dst. wg **00

6B CVTRDL src.rd, dst. wI ***0 rsv, iov

4B CVTRFL src.rf, dst. wI ***0 rsv, iov

4BFD CVTRGL src.rg, dst.wI ***0 rsv, iov

66 DIVD2 divr.rd, quo.md **00 rsv,fov,fuv, fdvz

46 DIVF2 divr.rf, quo.mf * * 0 0 rsv,fov,fuv,fdvz

46FD DIVG2 divr.rg, quo.mg **00 rsv,fov,fuv,fdvz

67 DIVD3 divr.rd, divd.rd, quo. wd **00 rsv,fov,fuv,fdvz

47 DIVF3 divr.rf, divd.rf, quo.wf **00 rsv,fov,fuv,fdvz

0-12 VAX Instruction Set

Opcode Instruction NZVC Exceptions

47FD DIVG3 divr.rg, divd.rg, qUo.wg **00 rsv,fov,fuv,fdvz

72 MNEGD src.rd, dst. wd ' **00 rsv

52 MNEGF src.rf, dst. wf **00 rsv

52FD MNEGG src.rg, dst.wg **00 rsv

70 MOVD src.rd, dst.wd **0- rsv

50 MOVF src.rf, dst.wf **0- rsv

50FD MOVG src.rg, dst. wg **0- rsv

64 MULD2 mulr.rd, prod.md **00 rsv,fov,fuv

44 MULF2 mulr.rf, prod.mf **00 rsv,fov,fuv

44FD MULG2 mulr.rg, prod.mg **00 rsv,fov,fuv

65 MULD3 mulr.rd, muld.rd, prod.wd **00 rsv,fov,fuv

45 MULF3 mulr.rf, muld.rf, prod.wf **00 rsv,fov,fuv

45FD MULG3 mulr.rg, muld.rg, prod. wg **00 rsv,fov,fuv

62 SUBD2 sub.rd, dif.md **00 rsv,fov,fuv

42 SUBF2 sub.rf, dif.mf **00 rsv,fov,fuv

42FD SUBG2 sub.rg, dif.mg **00 rsv,fov,fuv

63 SUBD3 sub.rd, min.rd, dif.wd **00 rsv,fov,fuv

43 SUBF3 sub.rf, min.rf, dif. wf **00 rsv,fov,fuv

43FD SUBG3 sub.rg, rnin.rg, dif.wg **00 rsv,fov,fuv

73 TSTD src.rd **00 rsv

53 TSTF src.rf **00 rsv

53FD TSTG src.rg **00 rsv

Microcode-Assisted Emulated Instructions

The KA670 CPU provides microcode assistance for the macrocode emulation of these
instructions. The CPU processes the operand specifiers, creates a standard argument
list, and invokes an emulation routine to perform emulation.

Opcode Instruction NZVC Exceptions

20 ADDP4 addlen.rw, addaddr.ab, ***0 rsv, dov
sumlen.rw, sumaddr.ab

VAX I nstruction Set 0-13

Opcode Instruction NZVC Exceptions

21 ADDP6 addllen.rw, addladdr.ab, ***0 rsv, dov
add2Ien.rw, add2addr.ab,
surnlen.rw, surnaddr.ab

F8 ASHP cnt.rb, srclen.rw, srcaddr.ab, ***0 rsv, dov
round.rb, dstlen.rw, dstaddr.ab

35 CMPP3 len.rw, srcladdr.ab, **00
src2addr.ab

37 CMPP4 srcllen.rw, src1addr.ab, **00
src2Ien.rw, src2addr.ab

OB CRC tbl.ab, inicrc.rl, strlen.rw, **00
strearn.ab

F9 CVTLP src.rl, dstlen.rw, dstaddr.ab ***0 rsv, dov

36 CVTPL srclen.rw, srcaddr.ab, ***0 rsv, iov
dst.wl

08 CVTPS srclen.rw, srcaddr.ab, ***0 rsv, dov
dstlen.rw, dstaddr.ab

09 CVTSP srclen.rw, srcaddr.ab, ***0 rsv, dov
dstlen.rw, dstaddr.ab

24 CVTPT srclen.rw, srcaddr.ab, ***0 rsv, dov
tbladdr.ab, dstlen.rw, dstaddr.ab

26 CVTI'P srclen.rw, srcaddr.ab, ***0 rsv, dov
tbladdr.ab, dstlen.rw, dstaddr.ab

27 DIVP divrlen.rw, divraddr.ab, ***0 rsv,dov,ddvz
divdlen.rw, divdaddr.ab, quolen.rw,
quoaddr.ab

38 EDITPC srclen.rw, srcaddr.ab, * * * * rsv, dov
pattern.ab, dstaddr.ab

39 MATCHC objlen.rw, objaddr.ab, 0*00
srclen.rw, srcaddr.ab

34 MOVP len.rw, srcaddr.ab, **00
dstaddr.ab

2E MOVTC srclen.rw, srcaddr.ab, **0*
fill.rb, tbladdr.ab, dstlen.rw,
dstaddr.ab

2F MOVTUC srclen.rw, srcaddr.ab, ****
esc.rb, tbladdr.ab, dstlen.rw,
dstaddr.ab

25 MULP mulrlen.rw, mulraddr.ab, ***0 rsv, dov
rnuldlen.rw, muldaddr.ab,
prodlen.rw, prodaddr.ab

22 SUBP4 sublen.rw, subaddr.ab, ***0 rsv, dov
difien.rw, difaddr.ab

23 SUBP6 sublen.rw, subaddr.ab, ***0 rsv, dov
minlen.rw, minaddr.ab, diflen.rw,
difaddr.ab

E
Machine State on Power-Up

This appendix describes the state of the KA660 after a power-up halt.

The descriptions in this section assume a machine with no errors, that the machine has
just been turned on and that only the power-up diagnostics have been run. The state
of the machine is not defined if individual diagnostics are run or during any other halts
other than a power-up halt (SAVPSL<13:8>(RESTART_CODE) = 3).

The following sections describe data structures that are guaranteed to be constant
over future versions of the KA660 firmware. Placement and/or existance of any other
structure(s) is not implied.

E.1 Main Memory Layout and State
Main memory is tested and initialized by the firmware on power-up. Figure E-l is a
diagram of how main memory is partioned after diagnostics.

o

PFN bitmap

QMR base

Available system memory
(pages potentially good or bad)

PFN bitmap
(always on page boundary and

size in pages n = (# of MB)/2)

Firmware "scratch memory"
(always 16KB)

Q22-Bus Scatter/Gather Map
(always on 32KB boundary)

Potential "bad" memory

Top of Memory ----------------~

Figure E-1 Memory Layout after Power-up Diagnostics

n pages

32 pages

~
64 pages

~

E-1

E-2 Machine State on Power-Up

E.1.1 Reserved Main Memory

In order to build the scatter/gather map and the bitmap, the firmware attempts to find
a physically contiguous page aligned 64 Kbyte block of memory at the highest possible
address that has no multiple bit errors. Single bit errors are tolerated in this section.

Of the 64 Kbyte, the upper 32 Kbyte is dedicated to the Q22-bus scatter/gather map, as
shown in Figure E-l. Of the lower portion, as many as 16 Kbyte at the bottom of the
block is allocated to the Page Frame Number bitmap. The size of the PFN bitmap is
dependent on the extent of physical memory, each bit in the bitmap maps one page (512
bytes) of memory. The remainder of the block between the bitmap and scater/gather map
(minimum ally 16 Kbytes) is allocated for the firmware.

E.1.1.1 PFN Bitmap
The PFN bitmap is a data structure that indicates which pages in memory are deemed
useable by operating systems. The bitmap is built by the diagnostics as a side effect
of the memory tests on power-up. The bitmap always starts on a page boundary. The
bitmap requires 1 Kbyte for every 4 Mbytes of main memory, so an 8 Mbyte system
requires 2 Kbytes, a 16 Mbyte system requires 4 Kbytes, a 32 Mbyte system requires 8
Kbytes, and a 64 Mbyte system requires 16 Kbytes. The bitmap does not map itself or
anything above it. There may be memory above the bitmap which has both good and bad
pages.

Each bit in the PFN bitmap corresponds to a page in main memory. There is a one to one
correspondance between a page frame number (origin 0) and a bit index in the bitmap. A
one in the bitmap indicates that the page is good and can be used. A zero indicates that
the page is bad and should not be used. By default, a page is flagged bad, if a multiple
bit error occurs when referencing the page. Single bit errors, regardless of frequency, will
not cause a page to be flagged bad.

The PFN bitmap is protected by a checksum stored in the BBURAM. The checksum is a
. simple byte wide, two's complement checksum. The sum of all bytes in the bitmap and
the bitmap checksum should result in zero. Operating systems that modify the bitmap
are encouraged to update this checksum to faciliate diagnosis by service personnel.

E.1.1.2 Scatter/Gather Map
On power-up, the scatter/gather map is initialized by the firmware to map to the first
4 Mbyte of of main memory. Main memory pages will not be mapped, if there is a
corresponding page in Q22-bus memory, or if the page is marked bad by the PFN bitmap.

On a processor halt other than power-up, the contents of the scatter/gather map is
undefined and is dependent on operating system usage.

Operating systems should not move the location of the scatter/gather map, and should
access the map only on aligned longwords through the local 110 space of 20088000 to
2008FFFC, inclusive. The Q22-bus map base register, (QMBR) is set up by the firmware
to point to this area, and should not be changed by software.

E.1.1.3 Firmware Scratch Memory
This section of memory is reserved for the firmware. However, it is only used after
successful execution of the memory diagnostics and initialization of the PFN bitmap and
scatter/gather map. This memory is primarily used for diagnostic purposes.

Machine State on Power-Up E-3

E.1.2 Contents of Main Memory

The contents of main memory are undefined after the diagnostics have run. Typically,
non-zero test patterns are left in memory.

The diagnostics scrub all of main memory so that no power-up induced errors remain in
the memory system. On the KA660 memory subsystem, the state of the ECC bits and
the data bits are undefined on initial power-up. This can result in single and multiple bit
errors if the locations are read before written, because the ECC bits are not in agreement
with their correspsonding data bits. An aligned longword write to every location (done by
diagnostics) all power-up induced errors.

E.2 Memory Controller Registers
The KA660 firmware assigns bank numbers to the MEMCSRs in ascending order without
attempting to disable physical banks that contain errors. High order unused banks are
set to zero. Error loggers should capture the following bits from each MEMCSR register:

MEMCSR<31> (bank enable bit). As the firmware always assigns banks in ascending
order, knowing which banks are enabled is sufficient information to derive the bank
numbers. MEMCSR<1:0> (bank usage). This field determines the size of the banks on
the particular memory board.

Additional information should be captured from the MEMCSR32, MEMCSR33,
MEMCSR34, MEMCSR35, and MEMCSR36 as needed.

E.2.1 On-Chip Cache

The CPU on-chip cache is tested during the power-up diagnostics, flushed and then
turned off. The cache is again turned on by the BOOT and the INIT command.
Otherwise, the state of the on-chip cache is disabled.

E.2.2 Translation Buffer

The CPU translation buffer is tested by diagnostics on power-up, but not used by the
firmware because it runs in physical mode. The translation buffer can be invalidated by
using PR$_TBIA, IPR 57.

E.2.3 Halt Protected Space

On the KA660 halt protected space spans the 256KB EPROM from 20040000 to
2007FFFF.

The firmware always runs in halt protected space. When passing control to the bootstrap,
the firmware exits the halt protected space, so if halts are enabled, and the halt line is
asserted, the processor then halts before booting.

F
Maintenance Operations Protocol (MOP) Support

F.1 Network Listening
While the KA660 is waiting for a load volunteer during bootstrap, it listens on the
network for other maintenance messages directed to the node and periodically identifies
itself at the end of each 8 to 12 minute interval prior to a bootstrap retry. In particular,
this listener supplements the MOP functions of the VMB load requester typically found
in bootstrap firmware, and supports the following:

• A remote console server that generates COUNTERS messages in response to RE(L
COUNTERS messages, unsolicited SYSTEM_ID messages every 8 to 12 minutes,
and solicited SYSTEM_ID messages in response to REQUEST_ID messages, and
recognizes BOOT messages.

• A loopback server that responds to Ethernet LOOPBACK messages by echoing the
message to the requester.

• An IEEE 802.2 responder which replies to both XID and TEST messages.

During network bootstrap operation, the KA660 complies with the requirements for a
primitive node. The firmware listens only to MOP Load/Dump, MOP Remote Console,
Ethernet Loopback Assistance, and IEEE 802.3 XIDtrEST messages (listed in Table F-4
) directed to the Ethernet physical address of the node. All other Ethernet protocols are
filtered by the network device driver.

The MOP functions and message types which are supported by the KA660 are
summarized in the following tables:

Table F-1 KA660 Network Maintenance Operations Summary

Function

Dump

Role

Requester

Server

Tl"ansmit Receive

MOP Ethernet and IEEE 802.3 Messages 1

1 All unsolicited messages are sent in Ethernet (MOP V3) and IEEE 802.2 (MOP V4), until the MOP version
of the server is known. All solicited messages are sent in the format used for the request.

F-1

F-2 Maintenance Operations Protocol (MOP) Support

Table F-1 (Cont.) KA660 Network Maintenance Operations Summary

Function

Load

Console

Loopback

Exchange
ID

Test

Role

Requester

Server

Requester

Server

Requester

Server

Requester

Server

Requester

Server

Transmit Receive

MOP Ethernet and IEEE 802.3 Messages 1

RE(L
PROGRAM2

to solicit VOLUNTEER

RE(LMEM_ to solicit and MEM_LOAD
LOAD ACK

or MEM_LOAD _ w _XFER

or P~_LOAD_w_XFER

COUNTERS in response to RE(LCOUNTERS

SYSTEM_rna in response to REQUEST_ID

BOOT

LOOPED_ in response to LOOP_DATA
DATA4

IEEE 802.2 Messages5

in response to

in response to

1 All unsolicited messages are sent in Ethernet (MOP V3) and IEEE 802.2 (MOP V4), until the MOP version
of the server is known. All solicited messages are sent in the format used for the request.

2The initial RE'LPROGRA.J.\f message is sent to the d,umpload multicast address. If an assistance
VOLUNTEER message is received, then the responder's address is used as the destination to repeat the
RE(LPROGRAM message and for all subsequent RECLMEM_LOAD messages.

3SYSTEM_ID messages are sent out every 8 to 12 minutes to the remote console multicast address and on
receipt of a REQUEST_ID message they are sent to the initiator.

4LOOPED_DATA messages are sent out in response to LOOP_DATA messages. These messages are actually
in Ethernet LOOP TEST format, not in MOP format, and when sent in Ethernet frames omit the additional
length field (padding is disabled).

5IEEE 802.2 support of XID and TEST is limited to Class 1 operations.

Maintenance Operations Protocol (MOP) Support F-3

Table F-2 Supported MOP Messages

Message
Type

DUMPILOAD

MEM_LOAD_w_ Code
XFER 00

MEM_LOAD Code
02

RECL Code
PROGRAM 08

RECLMEM_ Code
LOAD OA

PARM_LOAD_ Code
w_XFER 14

VOLUNTEER Code
03

REMOTE CONSOLE

REQUEST_ID

IMOP V3.0 only.

2MOP x4.0 only.

Code
05

Load # Load addr
nn aa-aa-aa-aa

Load # Load addr
nn aa-aa-aa-aa

Device Format
25
LQA 01
?? V3
KA660 04 V4

Load # Error
nn ee

Load # Prm
nn typ

01
02
03
04
05
06
00 End

Rsrvd Recpt #
xx: nn-nn

Message Fields

Image data Xfer addr
None aa-aa-aa-aa

Image data
dd-...

Program SWID Procesr Info
3 (see SYSTEM_ID)

02 C-171 00
Sys C-l28

2
Sys

If C[l]
>00
Len
00 No
ID
FFOS
FE
Maint

Prm Prm val Xfer addr
len Target name 1 aa-aa-aa-aa
1-16 Target addr 1
1-06 Host name 1
1-16 Host addr 1
1-06 Host time 1
OA Host time 2
08

3Software ID field is load from the string stored in the 40 byte field, RPB$T_FlLE, of the RPB on a solicited
boot.

F-4 Maintenance Operations Protocol (MOP) Support

Table F-2 (Cont.) Supponed MOP Messages

Message
Type Message Fields

REMOTE CONSOLE

SYSTEM_ID

RE(L
COUNTERS

COUNTERS

BOOT 4

LOOPBACK

LOOP_DATA

LOOPED_DATA

IEEE 802.2

XID_CMDIRSP

TEST _CMDIRSP

2MOP x4.0 only.

Code
07

Code
09

Code
OB

Code
06

Skpcnt

nn·
nn

Skpcnt

nn·
nn

Form
81

Rsrvd Recpt Info type
xx # 01-00 Version

nn-nn 02-00 Functions
or 07-00 HW addr
00-00 64-00 Device

90-01 DataIink
91-01 Bufr size

Recpt

nn-nn

Recpt Counter block

nn-nn

Verification Procesr Control
vv-vv-vv-vv-vv-vv·
vv-vv 00 xx

Sys

Skipped bytes Function
bb-... 00-02 Forward

data

Skipped bytes Function
bb-... 00-01 Reply

Class
01

Rx window size (K)
00

Optional data.

Info Info value
len 04-00-00
03 00-59
02 ee-ee-ee-ee-ee-ee
06 25 or??
01 01
01 06-04
02

DevID SWID Script
C·17 3 ID 2

(see C-128
RE(L
PROGRAM)

Forward addr Data
ee-ee-ee-ee-ee-ee dd· ...

Recpt # Data
nn-nn dd-...

3Software ID field is load from the string stored in the 40 byte field, RPB$T_FILE, of the RPB on a solicited
boot.

4 A BOOT message is not verified, because in this context, a boot is already in progress. However, a received
BOOT message will cause the boot backofl' timer to be reset to its minimum value.

Maintenance Operations Protocol (MOP) Support F-5

Table F-3 Ethernet and IEEE 802.3 Packet Headers

Ethernet MOP Message Format (MOP V3)

Dest_address Src_address Prot Len MOPmsg Pad CRC

dd-dd-dd-dd- ss-ss-ss-ss- 60-01 nn- dd-... xx-... cc-cc
dd-dd ss-ss nn

60-02 nn- dd-...
nn

90-00 dd-...

IEEE 802.3 SNAP SAP MOP Message Format (MOP V4)

Dest_address Src_address Len DSAP SSAP Ctl P_ID MOP_ CRC
msg

dd-dd-dd-dd- ss-ss-ss-ss- nn- AA AA 03 08-OO-2B-60- dd-... cc-cc
dd-dd ss-ss nn 01

08-00-2B-60-
02
08-00-2B-90-
00

IEEE 802.3 XIDtrEST Message Format (MOP V4)

Dest_address Src_address Len DSAP SSAP Ctl l Data CRC

dd-dd-dd-dd- ss-ss-ss-ss- nn- aa bb cc tr-tt-ss (XID) cc-cc
dd-dd ss-ss nn Optional data (TEST)

IXID and TEST messages are identified in the IEEE 802.2 control field with binary 10lxllll and 11lxOOll,
respectively. "x" denotes the PolllFinal bit which gets echoed in the response.

Table F-4 MOP Multicast Addresses and Protocol Specifiers

IEEE
Function Address Prefix I Protocol Owner

DumplLoad AB-00-00-01-00-00 OB-00-2B 60-01 Digital

Remote Console AB-00-00-02-00-00 OB-00-2B 60-02 Digital

Loopback Assistance CF -00-00-00-00-002 OB-00-2B 90-00 Digital

I MOP 4.0 only.

2Not used.

F.2 MOP Counters
The counters listed in Table F-5 are kept for the Ethernet boot channel. All counters
are unsigned integers. V4 counters roll over on overflow. All V3 counters "latch" at their
maximum value to indicate overflow. Unless otherwise stated, all counters include both
normal and multicast traffic. Furthermore, they include information for all protocol
types. Frames received and bytes received counters do not include frames received with
errors. Table F-5 displays the byte lengths and ordering of all the counters in both MOP
Version 3.0 and 4.0.

F-6 Maintenance Operations Protocol (MOP) Support

Table F-5 MOP Counter Block

va V4

Name Off Len Off Len Description

TIME_SINCE_CREATION 00 2 00 16 Time since last zeroed This is the
time which has elapsed, since the
counters were last zeroed. It provides
a frame of reference for the other
counters by indicating the amount of
time they cover. For MOP V3, this
time is the number of seconds. MOP
V 4 uses the UTC Binary Relative
Time format.

Rx_BYTES 02 4 10 8 Bytes received
This is the total number of user
data bytes successfully received.
This does not include Ethernet data
link headers. This number is the
number of bytes in the Ethernet data
field, which includes any padding or
length fields when they are enabled.
These are bytes from frames that
passed hardware filtering. When the
number of frames received is used
to calculate protocol overhead, the
overhead plus bytes received provides
a measurement of the amount of
Ethernet bandwidth (over time)
consumed by frames addressed to the
local system.

Tx_BYTES 06 4 18 8 Bytes sent
This is the total number of user
data bytes successfully transmitted.
This does not include Ethernet data
link headers or data link generated
retransmissions. This number is the
number of bytes in the Ethernet data
field, which includes any padding or
length fields when they are enabled.
When the number of frames sent is
used to calculate protocol overhead,
the overhead plus bytes sent provides
a measurement of the amount of
Ethernet bandwidth (over time)
consumed by frames sent by the local
system.

Rx_FRAMES OA 4 20 8 Frames received
This is the total number of frames
successfully received. These are
frames that passed hardware filtering.
It provides a gross measurement of
incoming Ethernet usage by the local
system. It provides information used
to determine the ratio of the error
counters to successful transmits.

Maintenance Operations Protocol (MOP) Support F-7

Table F-5 (Cont.) MOP Counter Block

va V4

Name Off Len Off Len Description

Tx_FRAMES OE 4 28 8 Frames sent
This is the total number of frames
successfully transmitted. This does
not include data link generated
retransmissions. It provides a gross
measurement of outgoing Ethernet
usage by the local system. It provides
information used to determine
the ratio of the error counters to
successful transmits.

Rx_MCAST_BYTES 12 4 30 8 Multicast bytes received
This is the total number of multicast
data bytes successfully received.
This does not include Ethernet data
link headers. This number is the
number of bytes in the Ethernet data
field. In conjunction with total bytes
received, it provides a measurement
of the percentage of this system's
receive bandwidth (over time) that
was consumed by multicast frames
addressed to the local system.

Rx_MCAST_FRAMES 16 4 38 8 Multicast frames received
This is the total number of multicast
frames successfully received. In
conjunction with the total frames
received, it provides a gross
percentage of the Ethernet usage
for multicast frames addressed to this
system.

Tx_INIT_DEFFERED lA 4 40 8 Frames senti, initially deferred
This is the total number of times that
a frame transmission was deferred
on its first transmission attempt. In
conjunction with the total frames
sent, it measures Ethernet contention
with no collisions.

Tx_ ONE_COLLISION IE 4 48 8 Frames senti, single collision
This is the total number of times
that a frame was successfully
transmitted on the second attempt,
after a normal collision on the first
attempt. In conjunction with the total
frames sent, it measures Ethernet
contention at a level where there are
collisions but the backoff algorithm
still operates efficiently.

lOnly one of these three counters will be incremented for a given frame.

F-8 Maintenance Operations Protocol (MOP) Support

Table F-5 (Cont.) MOP Counter Block

Name

Tx_MULTCCOLLISION

va
Off Len

22 4

26 2

2C 2

V4

Off Len

50 8

58 8

Description

Frames senti, multiple collisions
This is the total number of times
that a frame was successfully
transmi tted on the third or later
attempt, after normal collisions on
previous attempts. In conjunction
with the total frames sent, it
measures Ethernet contention at
a level where there are collisions
and the backoff algorithm no longer
operates efficiently. NO SINGLE FRAME

IS COUNTED IN MORE THAN ONE OF THE

ABOVE THREE COUNTERS.

Send failure count2

This is the total number of times a
transmit attempt failed. Each time
the counter is incremented, a type of
failure is recorded. When the read­
counter function reads the counter,
the list of failures is also read. When
the counter is set to zero, the list of
failures is cleared. In conjunction
with the total frames sent, it provides
a measure of significant transmit
problems. TxFAIL_BITMAP contains
the possible reasons.

Send failure reason bit map2
This bit map lists the types of
transmit failures that occurred as
summarized here:

o -Excessive collisions
1 - Carrier detect failed
2 - Short circuit
3 - Open circuit
4 - Frame too long
5 - Remote failure to defer

Send failure • excessive collisions
The maximum number of
retransmissions due to collisions was
exceeded. This indicates an overload
condition on the Ethernet.

lOnly one of these three counters will be incremented for a given frame.

2V3 send/receive failures are collapsed into one counter with bit map indicating which failures occurred.

Maintenance Operations Protocol (MOP) Support F-9

Table F-5 (Cant.) MOP Counter Block

Name

TxFAIL_CARIER_ CHECK

3 Always zero.

va
Off Len

V4

Off Len

60 8

68 8

70 8

78 8

80 8

Description

Send failure - carrier check failed
The data link did not sense the
receive signal that is required to
accompany the transmission of a
frame. This indicates a failure in
either the transmitting or receiving
hardware. It could be caused by
either the transceiver, the transceiver
cable, or a babbling controller that
has been cut off.

Send failure - short circuitS
There is a short somewhere in the
local area network coaxial cable or the
transceiver or controller/transceiver
cable has failed. This indicates a
problem either in local hardware
or global network. The two can be
distinguished by checking to see if
other systems are reporting the same
problem.

Send failure - open circuitS
There is a break somewhere in the
local area network coaxial cable. This
indicates a problem either in local
hardware or global network. The two
can be distinguished by checking to
see if other systems are reporting the
same problem.

Send failure - frame too longS
The controller or transceiver cut off
transmission at the maximum size.
This indicates a problem with the
local system. Either it tried to send
a frame that was too long or the
hardware cut off transmission too
soon.

Send failure - remote failure to
defers
A remote system began transmitting
after the allowed window for
collisions. This indicates either a
problem with some other system's
carrier sense or a weak transmitter.

F-10 Maintenance Operations Protocol (MOP) Support

Table F-5 (Cont.) MOP Counter Block

va V4

Name Off Len Off Len Description

RxFAIL_COUNT 2A 2' Receive failure count2

The total number of frames received
with some data error. Includes only
data frames that passed either
physical or multicast address
comparison. This counter includes
failure reasons in the same way as the
send failure counter. In conjunction
with the total frames received, it
provides a measure of data-related
receive problems. RxFAIL_BITMAP
contains the possible reasons.

RxFAIL_BITMAP 2C 2 Receive failure reason bit map2
This bit map lists the types of receive
failures that occurred as summarized
here:

o -Block check failure
1 - Framing error
2 - Frame too long

RxFAIL_B LOCK_CHE CK 88 8 Receive failure· block check
error
A frame failed the CRC check. This
indicates several possible failures,
such as, EMI, late collisions, or
improperly set hardware parameters.

RxFAIL_F~TING_ERR 90 8 Receive failure· framing error
The frame did not contain an integral
number of 8-bit bytes. This indicates
several possible failures, such as,
EMI, late collisions, or improperly set
hardware parameters.

RxFAIL_LONG_F~E 98 8 Receive failure· frame too longS
The frame was discarded because it
was outside the Ethernet maximum
length and could not be received. This
indicates that a remote system is
sending invalid length frames.

UNKNOWN_ 2E 2 AO 8 Unrecognized frame destination
DESTTINATION This is the number of times a frame

was discarded because there was
no portal with the protocol type or
multicast address enabled. This
includes frames received for the
physical address, the broadcast
address, or a multicast address.

2V3 send/receive failures are collapsed into one counter with bit map indicating which failures occurred.

3 Always zero.

Maintenance Operations Protocol (MOP) Support F-11

Table F-5 (Cont.) MOP Counter Block

va V4

Name Off Len Off Len Description

DATA_OVERRUN 30 2 A8 8 Data overrun
This is the total number of times the
hardware lost an incoming frame
because it was unable to keep up with
the data rate. In conjunction with
the total frames received, it provides
a measure of hardware resource
failures. The problem reflected in this
counter is also captured as an event.

NO _SYSTEM_BUFFER 32 2 BO 8 System buffer unavailable3 This is
the total number of times no system
buffer was available for an incoming
frame. In conjunction with the total
frames received, it provides a measure
of system buffer-related receive
problems. The problem reflected
in this counter is also captured as
an event. This can be any buffer
between the hardware and the user
buffers (those supplied on receive
requests). Further information as
to potential different buffer pools is
implementation specific.

NO_USER_BUFFER 34 2 B8 8 User buffer unavailable3

This is the total number of times
no user buffer was available for
an incoming frame that passed
all filtering. These are the buffers
supplied by users on receive requests.
In conjunction with the total frames
received, it provides a measure of user
buffer-related receive problems. The
problem reflected in this counter is
also captured as an event.

FAIL_COLLIS_DETECT CO 8 Collision detect check failure
This is the approximate number of
times that collision detect was not
sensed after a transmission. If this
counter contains a number roughly
equal to the number of frames sent,
either the collision detect circuitry
is not working correctly or the test
signal is not implemented.

3Always zero.

G
ROM Partitioning

This appendix describes ROM partitioning and subroutine entry points that are public
and are guaranteed to be compatible over future versions of the KA660 firmware. An
entry point is the address at which any subroutine or subprogram will start execution.

G.1 Firm·ware EPROM Layout
The KA660 has 256 Kbytes of EPROM. Unlike previous Q22-bus based MicroVAX
processors, there is no duplicate decoding of the EPROM into halt-protected and halt­
unprotected spaces. The entire EPROM is halt-protected.

20040000

20040006

20040008

2004000C

20040010

20040014

20040018

2004001c

2005F800

2005FFFC

Figure G-1 KA660 EPROM Layout

Branch instruction

System Id Extension

CP$GETCHAR_R4

CP$MSG_OUT_NOLF _R4

CP$READ_WTH_PRMPT_R4

Rsvd Mfg L200 Testing

Def Boot Dev Dscr Ptr

Def Boot Flags Ptr

Console, diagnostic
and boot code

EPROM checksum

Reserved for Digital

4 pages reserved
for customer use

The first instruction executed on halts is a branch around the System Id Extention (SIE)
and the callback entry points. This allows these public data structures to reside in fixed
locations in the EPROM.

The callback area entry points provide a simple interface to the currently defined console
for VMB and secondary bootstraps. This is documented further in the next section.

G-1

G-2 ROM Partitioning

The fixed area checksum is the sum of longwords from 20040000 to the checksum
inclusive. This checksum is distinct from the checksum that the rest of the console
uses in that the fixed checksum is calculated on a stationary series of longwords, whereas
the other console checksum is calculated on a set of longwords that my vary in size
according to the size of the firmware image.

The console, diagnostic, and boot code constitute the bulk of the KA660 firmware. This
code is field upgradable. The console checksum is from 20044000 to the checksum
inclusive.

The memory between the console checksum and the user area at the end of the EPROM
is reserved for DIGITAL for future expansion of the KA660 firmware. The contents of
this area is set to FF.

The last 4096 bytes of EPROM is reserved for customer use and is not included in the
console checksum. During a PROM bootstrap with PRBO as the selected boot device,
this block is the tested for a PROM "signature block". Refer to Section 12.4.3.2 and
Figure 12-12 for a description of the boot block mechanism.

G.1.1 Call-Back Entry Points

The KA660 firmware provides several entry points that facilitate 110 to the designated
console device. Users of these entry points do not need to be aware of the console device
type.

The primary intent of these routines is to provide a simple console device to VMB and
secondary bootstraps, before operating systems load their own terminal drivers.

These are JSB (subroutine as opposed to procedure) entry points located in fixed locations
in the firmware. These locations branch to code that in tum calls the appropriate
routines.

All of the entry points are designed to run at IPL 31 on the interrupt stack in physcial
mode. Virtual mode is not supported. Due to internal firmware architectural restrictions,
users are encouraged to only call into the halt protected entry points. These entry points
are listed in Table G-l and are described in the following sections.

Table G-1 call-Back Entry Points

CP$GET_CHAR_R4

CP$MSG_OUT_
NOLF_R4

CP$READ_WTH_
PRMPT_R4

G.1.1.1 CP$GET_CHAR_R4

20040008

2004000C

20040010

This routine returns the next character entered by the operator in RO. A timeout interval
can be specified. If the timeout interval is zero, no timeout is generated. If a timeout is
specified and if timeout occurs, a value of 18 (CAN) is returned instead of normal input.

Registers RO, Rl, R2, R3, and R4 are modified by this routine; all others are preserved.

ROM Partitioning G-3

--,
; Usage with timeout:

movl
jsb
cmpb
beql
; Input

#timeout_in_tenths_of_second,rO
@#CP$GET_CHAR_R4
rO,#"x18
timeout handler
is in RO.

Specify timeout.
Call routine.
Check for timeout.
Branch if timeout.

--,
; Usage without timeout:

clrl
jsb

rO
@#CP$GET_CHAR_R4

; Input is in RO.

Specify no timeout.
Call routine.

--,

G.1.1.2 CP$MSG_OUT_NOLF _R4
This routine outputs a message to the console. The message is specified either by a
message code or a string descriptor. The routine distinguishes between message codes
and descriptors by requiring that any descriptor be located outside of the first page of
memory. Hence, message codes are restricted to values between 0 and 511.

Registers RO, R1, R2, R3, and R4 are modified by this routine; all others are preserved.

;---------------~---
; Usage with message code:

movzbl
jsb

#console message code,rO
@#CP$MSG=OUT_NOLF_R4

; Specify message code.
; Call routine.

--,
; Usage with a message descriptor (position dependent).

movaq 5$,rO
jsb @#CP$MSG_OUT_NOLF_R4

5$: .ascid /This is a message/

Specify address of desc.
; Call routine.

; Message with descriptor.

--,
; Usage with a message descriptor (position independent).

pushab
pushl
movl
jsb
clrq

5$:
10$:

5$
#10-5
sp,rO
@#CP$MSG_OUT NOLF R4
(sp)+

.ascii /This is a message/

Generate message desc.
on stack.
Pass desc. addr. in RO.
Call routine.
Purge desc. from stack.

; Message.

--I

G.1.1.3 CP$READ _ WTH_PRMPT _R4
This routine outputs a prompt message and then inputs a character string from the
console. When the input is accepted, delete, CtrllU, and Ctr1lR functions are supported.

As with CP$MSG_OUT_NOLF _R4, either a message code or the address of a string
descriptor is passed in RO to specify the prompt string. A value of zero results in no
prompt.

G-4 ROM Partitioning

A descriptor of the input string is returned in RO and RI. RO contains the length of
the string and RI contains the address. This routine inputs the string into the console
program string buffer; therefore, the caller does not need to provide an input buffer.
Successive calls however destroy the previous contents of the input buffer.

Registers RO, RI, R2, R3, and R4 are modified by this routine; all others are preserved.

i---
; Usage with a message descriptor (position independent).

pushab
pushl
movl
jsb
clrq

5$:
10$:

10$
f10-5
sp,rO
@fCP$READ_WTH_PRMPT_R4
(sp)+

.ascii /Prompt> /

Generate prompt desc.
on stack.
Pass desc. addr. in RO.
Call routine.
Purge prompt desc.
Input desc in RO and R1.

Prompt string.

;---

G.1.2 Boot Information Pointers

Two longwords located in EPROM are used as pointers to the default boot device
descriptor and the default boot flags, because the actual location of this data may change
in successive versions of the firmware. Any software that uses these pointers should refer
to them at the addresses in halt-protected space.

200400181 Def Boot Dev Dscr Ptr

v

Class I Type IDesc Length

Boot Device String Ptr t----I .. -\ ASCIZ Dev Name String I

2004001c Def Boot Flags Ptr Boot Flags (Iongword)

Figure G-2 Boot Information Pointers

The following macro defines the boot device descriptor format:

; Default Boot Device Descriptor

boot_device_descriptor::
base = .
• = base + dsc$w_length
.word nvrSs boot device - -
· = base + dsc$b_dtype
. byte dsc$k_dtype_z

· = base + dsc$b class
. byte dsc$k_cl~ss_z

• = base + dsc$a_pointer
. long nvr_base + nvr$b_boot device

• = base + dsc$s_dscdefl

ROM Partitioning G-5

H
Battery Backed-up RAM Partitioning

This appendix describes the KA660 firmware partitions of the sse 1-Kbyte battery
backed-up (BBU) RAM.

H.1 sse RAM Layout
The KA660 firmware uses the 1 Kbyte of BBU RAM on the sse for storage offirmware
specific data structures and other information that must be preserved across power
cycles. This BBU RAM resides in the sse chip starting at address 20140400. The BBU
RAM should not be used by the operating systems except as documented in the following
sections. This BBU RAM is not reflected in the bit map built by the firmware.

20140400 Public Data Stuctures
(CPMBX. etc.)

Service Vectors

Firmware Stack

Diagnostic State

201407FC Rsvd for Customer Use

Figure H-1 KA660 sse BBU RAM Layout

H.1.1 Public Data Structures Area

The public data structures area contains the console program mailbox Section H.1.2.

Fields that are designated as reserved or internal use should not be written, because
there is no protection against such corruption.

H-1

H-2 Battery Backed-up RAM Partitioning

H.1.2 Console Program Mailbox (CPMBX)

The console program mailbox (CPMBX) is a software data structure located at the
beginning of BBU RAM (20140400). The CPMBX is used to pass information between the
KA660 firmware and diagnostics, VMB, or an operating system. It consists of three bytes
referred to here as NVRO, NVR1, and NVR2.

7 6 543 2 1 0

NVRO LANGUAGE I RIP I BIP IHLT_Acrl

Figure H-2 NVRO (20140400) : Console Program Mailbox (CPMBX)

Field Name Description

7:4 LANGUAGE This field specifies the current selected language for displaying halt and
error messages on terminals which support MCS.

a RIP If set, a restart attempt is in progress. This flag must be cleared by the
operating system, if the restart succeeds.

2 BIP If set, a bootstrap attempt is in progress. This flag must be cleared by the
operating system if the bootstrap succeeds.

1:0 HLT_ACT Processor halt action - this field in conjunction with the conditions
specified in Table 12-1 is used to control the automatic restartibootstrap
procedure. HLT_ACT is normally written by the operating system.

o : Restart; if that fails, reboot; if that fails, halt.
1 : Restart; if that fails, halt.
2 : Reboot; if that fails, halt.
a: Halt.

7 6 5 4 320

NVR1

Figure H-3 NVR1 (20140401)

Field Name

2 MCS

1 CRT

Description

If set, this field indicates that the attached terminal supports
Multinational Character Set (MCS). If clear, MCS is not supported.

If set, this field indicates that the attached terminal is a CRT. If clear, it
indicates that the terminal is hard copy.

7 6 543 2 0

NVR2 KEYBOARD

Figure H-4 NVR2 (20140402)

Battery Backed-up RAM Partitioning H-3

Field Name Description

7:0 KEYBOARD This field indicates the national keyboard variant in use.

H.1.3 Firmware Stack Area

This section contains the stack that is used by all of the firmware, with the exception of
VMB, which has its own built-in stack.

H.1.4 Diagnostic State Area

This area is used by the firmware resident diagnostics. This section is not documented
here.

H.1.5 USER Area

The KA660 console reserves the last longword (address 201407FC) of the BBU RAM for
customer use. This location is not tested by the console firmware. Its value is undefined.

I
Data Structures

This appendix contains definitions of key global data structures which are used by the
KA660 firmware.

1.1 Halt Dispatch State Machine
The KA660 halt dispatcher determines what actions the firmware will take on halt entry
based on the machine state. The dispatcher is implemented as a state machine, which
uses a single bit map control word and the transition Table 1-1 to process all halts. The
transition table is sequentially searched for matches with the current state and control
word. If there is a match, a transition occurs to the next state.

The control word is comprised of the following information:

• Halt type is used for resolving external halts. It is valid only if the halt code is 00.

000 : power-up state
001 : halt in progress
010 : negation of Q22-bus DCOK
011 : console BREAK condition detected
100 : Q22-bus BHALT
101 : SGEC BOOT_L asserted (trigger boot)

• Halt code is a compressed form of SAVPSL<13:8>(RESTART_CODE).

00 : RESTART_CODE = 2, external halt
01 : RESTART_CODE = 3, power-up/reset
10: RESTART_CODE = 6, halt instruction
11 : RESTART_CODE = any other, error halts

• Mailbox action is passed by an operating ,system in CPMBX<1:0>(HALT_ACTION).

00 : restart, boot, halt
01 : restart, halt
10 : boot, halt
11 : halt

• User action is specified with the SET HALT console command.

000 : default
001 : restart, halt
010 : boot, halt
011 : halt
100 : restart, boot, halt

• HEN is the BREAK (halt) enable switch, BDR<23>.

• ERR is the error status.

1-1

1-2 Data Structures

• TIP is the trace in progress.

• DIP is the diagnostics in progress.

• BIP is the bootstrap in progress CPMBX<2>.

• RIP is the restart in progress CPMBX<3>.

A transition to a next state occurs if a match is found between the control word and a
current state entry in the table. The firmware does a linear search through the table
for a match. Therefore, the order of the entries in the transition table is important. The
controllongword is reassembled before each transition from the current machine state.
The state machine transitions are shown in Table 1-1.

Table 1-1 Firmware State TransHlon Table

Current
State

Halt
1Ype

Halt
Code

Mailbox User HEN·ERR·TIP·DIP·
Next State Action Action BIP·RIP

ENTRY

ENTRY

ENTRY

ENTRY

RESET
INIT

BREAK
IN IT
TRACE
IN IT

OTHER
INIT

INIT

INIT

IN IT

->RESET
INIT

->BREAK
IN IT

->TRACE
INIT

->OTHER
IN IT

->INIT

->INIT

->INIT

->INIT

->BOOTSTRAP

->BOOTSTRAP

->HALT

Perform conditional initialization.1

xxx 01 xx xxx x-x-x-x-x-x

011 00 xx xxx x-x-x-x-x-x

xxx 10 xx xxx x-O-1-x-x-x

xxx xx xx xxx x-x-x-x-x-x

Perform common initialization. 2

xxx xx xx xxx x-x-x-x-x-x

xxx xx xx xxx x-x-x-x-x-x

xxx xx xx xxx x-x-x-x-x-x

xxx xx xx xxx x-x-x-x-x-x

Check for external halts. 3

010 00 xx xxx O-x-x-x-x-x
101 00 xx xxx x-x-x-x-x-x
xxx 00 xx xxx x-x-x-x-x-x
Check for pending (NEXT) trace. 4

1 Perform a unique initialization routine on entry. In particular, power-ups, BREAKs, and TRACEs require
special initialization. Any other halt entry performs a default initialization.

2 After performing conditional initialization, complete common initialization.

3 Halt on all external halts, except:

if DCOK (unlikely) and halts are disabled, perform a bootstrap
if SGEC remote trigger, bootstrap

4 Unconditionally enter the TRACE state, if the TIP flag is Set and the halt was due to a HALT instruction.
From the TRACE state the firmware exits, if TIP is set and ERR is clear, otherwise it halts.

Data Structures \-3

Table 1-1 (Cont.) Firmware State TransHion Table

Current Halt Halt Mailbox User HEN·ERR·TIP·DIP·
State Next State Type Code Action Action BIP·RIP

IN IT ->TRACE xxx 10 xx xxx x-x-l-x-x-x

TRACE ->EXIT xxx 10 xx xxx x-0-1-x-x-x

TRACE ->HALT xxx xx xx xxx x-x-x-x-x-x
Check for bootstrap conditions.5

IN IT ->BOOTSTRAP xxx 01 xx xxx 0-0-0-0-0-0

IN IT ->BOOTSTRAP xxx 01 xx 010 1-0-0-0-0-0

INIT ->BOOTSTRAP xxx 01 xx 100 1-0-0-0-0-0

INIT ->BOOTSTRAP xxx Ix 10 xxx x-O-O-O-O-O

INIT ->BOOTSTRAP xxx Ix 00 010 x-O-O-O-O-O

INIT ->BOOTSTRAP xxx Ix 00 100 x-0-0-0-0-1

INIT ->BOOTSTRAP xxx Ix 00 100 x-1-0-0-0-x

IN IT ->BOOTSTRAP xxx Ix 00 000 0-0-0-0-0-1

RESTART ->BOOTSTRAP xxx Ix 00 000 0-1-0-0-0-x
Check for restart conditions. 6

INIT ->RESTART xxx Ix 01 xxx x-O-O-O-O-O

INIT ->RESTART xxx Ix 00 001 x-O-O-O-O-O

IN IT ->RESTART xxx Ix 00 100 x-O-O-O-O-O

INIT ->RESTART xxx Ix 00 000 0-0-0-0-0-0

Perform common exit processing, if
no errors. 7

BOOTSTRAP ->EXIT xxx xx xx xxx x-O-x-x-x-x

RESTART ->EXIT xxx xx xx xxx x-O-x-x-x-x

HALT ->EXIT xxx xx xx xxx x-O-x-x-x-x

Exception transitions, just halt. 8

INIT ->HALT xxx xx xx xxx x-x-x-x-x-x

BOOT ->HALT xxx xx xx xxx x-x-x-x-x-x

5 Perform a bootstrap if:

power-up and halts are disabled
power-up and halts are enabled and user action is 2 or 4
not power-up and mailbox is 2
not power-up, mailbox is 0, and user action is 2
not power-up, restart failed, mailbox is 0, and user action is ° or 4

6 Restart the operating system, if not power-up, and if:

mailbox is 1
mailbox is ° and user action is 1 or 4
mailbox is 0, user action is 0, and halts are disabled

7 Exit after halts, bootstrap or restart. The exit state transitions to program 110 mode.

8 Guard block that catches all exception conditions. In all cases, just halt.

1-4 Data Structures

Table 1-1 (Cont.) Firmware State TransHion Table

Current Halt Halt Mailbox User HEN-ERR-TIP-DIP-
State Next State Type Code Action Action BIP-RIP

RESTART ->HALT xxx xx xx xxx x-x-x-x-x-x

HALT ->HALT xxx xx xx xxx x-x-x-x-x-x

TRACE ->HALT xxx xx xx xxx x-x-x-x-x-x

EXIT ->HALT xxx xx xx xxx x-x-x-x-x-x

x = don't care

1.2 Restart Parameter Block
VMB typically utilizes the low portion of memory unless there are bad pages in the first
128 Kbytes. The first page in its block is used for the restart parameter block (RPB),
through which it communicates to the operating system. Usually, this is page o.
VMB will initialize the RPB as follows:

Table 1-2 Restart Parameter Block fields

(Rll)+ Field Name

00: RPB$L_BASE

04: RPB$L_
RESTART

08: RPB$L_
CHKSUM

OC: RPB$L_
RSTRTFLG

10: RPB$L_
HALTPC

10: RPB$L_
HALTPSL

18: RPB$L_
HALTCODE

lC: RPB$L_
BOOTRO

20: RPB$L_
BOOTRI

24: RPB$L_
BOOTR2

28: RPB$L_
BOOTRa

Description

Physical address of base of RPB

Cleared

-1

Cleared

RIO on entry to VMB (HALT PC)

PR$_SAVPSL on entry to VMB (HALT PSL)

AP on entry to VMB (HALT CODE)

RO on entry to VMB

NOTE
The field RPB$W _ROUBVEC, which overlaps the high order
word of RPB$L_BOOTRO, is set by the boot device drivers to
the SCB offset (in the second page of the SCB) of the interrupt
vector for the boot device.

VMB version number. The high-order word of the version is the
major ID and the low-order word is the minor ID.

R2 on entry to VMB

R3 on entry to VMB

Data Structures 1-5

Table 1-2 (Cont.) Restan Parameter Block fields

(Rll)+ Field Name

2C: RPB$L_
BOOTR4

30: RPB$L_
BOOTR5

34: RPB$L_IOVEC

38: RPB$L_
IOVECSZ

3C: RPB$L_
FILLBN

40: RPB$L_FILSIZ

44: RPB$<L
PFNMAP

4C: RPB$L_
PFNCNT

50: RPB$L_
SVASPT

54: RPB$L_
CSRPHY

58: RPB$L_
CSRVIR

5C: RPB$L_
ADPPHY

60: RPB$L_
ADPVIR

64: RPB$W_UNIT

66: RPB$B_
DEVTYP

Description

R4 on entry to VMB

NOTE
The 48-bit booting node address is stored in RPB$L_BOOTR3
and RPB$L_BOOTR4 for compatibility with VAXELN VI.I.
(This field is only initialized this way when performing a
network boot.)

R5 on entry to VMB

Physical address of boot driver's I/O vector of transfer addresses

Size of BOOT QIO routine

LBN of secondary bootstrap image

Size of secondary bootstrap image in bl<?Cks

The PFN bit map is an array of bits, where each bit has the value 1,
if the corresponding page of memory is valid, or the value 0, if the
corresponding page of memory contains a memory error. Through use
of the PFNMAP, the operating system can avoid memory errors by
avoiding known bad pages altogether.

The memory bit map is always page-aligned, and describes all the
pages of memory from physical page #0 to the high end of memory,
but excluding the PFN bit map itself and the Q-bus map registers.

If the high byte of the bit map spans some pages available to the
operating system and some pages of the PFN bit map itself, the
pages corresponding to the bit map itself will be marked as bad
pages. The first longword of the PFNMAP descriptor contains the
number of bytes in the PFNMAP; the second longword contains the
physical address of the bit map.

Count of good pages of physical memory, but not including the pages
allocated to the Q22-bus scatter/gather map, the console scratch area,
and the PFN bit map at the top of memory.

o

Physical address of CSR for boot device

o

Physical address of ADP
really the address of QMRs - "x800 to look like a DBA adapter

o

Unit number of boot device

Device type code of boot device

1-6 Data Structures

Table 1-2 (Cont.) Restart Parameter Block fields

(RII)+ Field Name

67: RPB$B_SLAVE

68: RPB$T_FILE

90:

AO:

AI:

BO:

BC:

CO:

104:

108:

RPB$B_
CONFREG

RPB$B_
HDRPGCNT

RPB$W_
BOOTNDT

RPB$L_SCBB

RPB$L_
MEMDSC

RPB$L_
MEMDSC+4

RPB$L_
BADPGS

RPB$B_
CTRLLTR

Description

Slave number of boot device

Name of secondary bootstrap image (defaults to
[SYSO.SYSEXE]SYSBOOT.EXE). This field (up to 40 bytes) is
overwritten with the input string on a solicit boot.

NOTE
I : For VMS, the RPB$T_FILE must contain the root directory
string SYSn. on a non-network bootstrap. This string is
parsed by SYSBOOT (that is, SYSBOOT does not use the high
nibble of BOOTR5).
2 : The RPB$T_FILE is overwritten to contain the boot node
name for compatibility with VAXELN VI.I. (This field is only
initialized this way when performing a network boot.)

Array (16 bytes) of adapter types (NDT$_UBO - UNffiUS)

Count of header pages

Boot adapter nexus device type. Used by SYSBOOT and INIADP (OF
SYSLOA) to configure the adapter of the boot device (changed from a
byte to a word field in Version 12 of VMB).

Physical address of SCB

Count of pages in physical memory including both good and bad
pages. The high 8 bits of this longword contain the TR #, which is
always zero for KA660.

PFN of the first page of memory. This field is always zero for KA660,
even if page #0 is a bad page.

NOTE
No other memory descriptors are used.

Count of bad pages of physical memory.

Boot device controller number biased by 1. In VMS, this field is used
by INIT (in SYS) to construct the boot device's controller letter. A
zero implies this field has not been initialized; if it is initialized, then
A=l, B=2, and so on. (This field was added in Version 13 of VMB.)

nn: The rest of the RPB is zeroed.

1.3 VMB Argument List
The VMB code will also initialize an argument list as follows (the address of the
argument list is passed in the AP):

Data Structures 1-7

Table 1-3 VMB Argument List

(AP)+ Field Name

04:

OC:

10:

14:

lC:

24:

2C:

30:

34:

3C:

44:

4C:

54:

58:

VMB$L_
FILE CACHE

VMB$L_LO_
PFN

VMB$L_HC
PFN

VMB$Q...
PFNMAP

VMB$Q...
UCODE

VMB$B_
SYSTEMID

VMB$L_
FLAGS

VMB$L_CC
HIPFN

VMB$Q...
NODENAME

VMB$Q...
HOSTADDR

VMB$Q...
HOSTNAME

VMB$Q...TOD

VMB$L_
XPARAM

Description

Quadword filename

PFN of first page of physical memory (always zero, regardless of where
128 Kbytes of good memory starts).

PFN of last page of physical memory

Descriptor of PFN bit map. First longword contains count of bytes in
bit map. Second longword contains physical address of bit map. (Same
rules as for RPB$Q...PFNMAP listed previously.)

QuadwoL'd

48-bit (actually a quadword is allocated) booting node address which is
initialized when performing a network boot. This field is copied from
the target system address parameter of the parameters message. (The
DECnet HIORD value is added if the field was 2 bytes.)

Set as needed

Cluster interface high PFN

Boot node name which is initialized when performing a network boot.
This field is copied from the target system name parameter of the
parameters message.

Host node address (this value is only initialized when booting over the
network). This field is copied from the host system address parameter
of the parameters message.

Host node name (this value is only initialized when performing
a network boot). This field is copied from the host system name
parameter of the parameters message.

Time of day (this value is only initialized when performing a network
boot). The time of day is copied from the first 8 bytes of the host
system time parameter of the parameters message. (The time
differential values are NOT copied.)

Pointer to data retrieved from request of the parameter file

The rest of the argument list is zeroed.

J
Error Messages

The error messages issued by the KA660 firmware fall into three catagories: halt code
messages, VMB error messages, and console messages.

J.1 Machine Check Register Dump
Some error conditions, such as machine check, generate an error summary register dump
preceeding the error message. For example, examining a nonexistent memory location
results in the following display:

»>ex 1ffffff

PCSTS=0000088A PCERR=02000003 BCSTS=01E00011 BCERR=02000000
BCCTL=OOOOOOOE RMESR=80441044 RMEAR=02000000 RIOEAR=00080188

CEAR=OOOOOooo MCOSR=3E391700 CBTCR=00004000 OSER=00000080
QBEAR=OOOOOOOA OEAR=OOOOOooo IPCRO=OOOO

?70 MACHINE CHECK 80000011 20140544 20043870 00000000 0300000E 00000010

PCSTS=0000080A PCERR=00009A90 BCSTS=01800000 BCERR=20044BBO
BCCTL=OOOOOOOE RMESR=00440044 RMEAR=02000000 RIOEAR=00080188

CEAR=OOOOOOOO MCOSR=3E391700 CBTCR=00004000 OSER=OOOOOOOO
QBEAR=OOOOOOOA DEAR=OOOOOOOO IPCRO=OOOO

?7B SOFT ERROR

J.2 Halt Code Messages
Except on power-up, which is not treated as an error condition, the following halt
messages are issued by the firmware whenever the processor halts.

For example, if the processor encounters a HALT instruction while in kernel mode, the
processor halts and the firmware displays the following message before entering console
110 mode.

?06 HLT INST
PC = 80005003

The number preceding the halt message is the halt code. This number is obtained from
SAVPSL<13:8>(RESTART_CODE), IPR 43, which is saved on any processor restart
operation.

J-1

J-2 Error Messages

Table J-1 HALT Messages

Code

?02

?04

?05

?OS

107

108

10A

10B

?OC

110

?11

?12

113

?19

?1A

?1B

?1D

?1E

?1F

Message

EXTHLT

ISP ERR

DBLERR

HLT INST

SCB ERR3

SCB ERR2

CHM FRISTK

CHMTO ISTK

SCB RDERR

MCHKAV

KSPAV

DBL ERR2

DBL ERR3

PSL EXC51

PSLEXCS1

PSL EXC71

PSL REI51

PSL REIS1

PSL REI71

Description

External halt, caused by a console BREAK condition, a Q22-
bus BHALT_L, or a DBR<AillCHLT> bit, was set while
enabled.

Power-up, no halt message is displayed. However, the
presence of the firm ware banner and diagnostic countdown
indicates this halt reason.

In attempting to push state onto the interrupt stack during
an interrupt or exception, the processor discovered that the
interrupt stack was mapped NO ACCESS or NOT VALID.

The processor attempted to report a machine check to the
operating system, and a second machine check occurred.

The processor executed a HALT instruction in kernel mode.

The SCB vector had bits <1:0> equal to 3.

The SCB vector had bits <1:0> equal to 2.

A change mode instruction was executed when PSL<IS> was
set.

The SCB vector for a change mode had bit <0> set.

A hard memory error occurred while the processor was trying
to read an exception or interrupt vector.

An access violation or an invalid translation occurred during
machine check exception processing.

An access violation or translation not valid occurred during
processing of a kernel stack not valid exception.

Double machine check error. A machine check occured while
trying to service a machine check.

Double machine check error. A machine check occured while
trying to service a kernel stack not valid exception.

PSL<2S:24> = 5 on interrupt or exception.

PSL<2S:24> = S on interrupt of exception.

PSL<2S:24> = 7 on interrupt or exception.

PSL<2S:24> = 5 on an REI instruction

PSL<2S:24> = S on an REI instruction.

PSL<2S:24> = 7 on an REI instruction.

1For the last six cases, the VAX architecture does not allow execution on the interrupt stack while in a mode
other than kernel. In the first three cases, an interrupt is attempting to run on the interrupt stack while
not in kernel mode. In the last three cases, an REI instruction is attempting to return to a mode other than
kernel and still run on the interrupt stack.

J.3 VMB Error Messages
The error messages listed in Table J-2 are issued by VMB.

Error Messages J-3

Table J-2 VMB Error Messages

Code Message Description

?40 NOSUCHDEV No bootable devices found

?41 DEVAS8IGN Device is not present

?42 NOSUCHFILE Program image not found

?43 FILESTRUCT Invalid boot device file structure

?44 BADCHKSUM Bad checksum on header file

?45 BADFILEHDR Bad file header

?46 BADIRECTORY Bad directory file

?47 FILNOTCNTG Invalid program image format

?48 ENDOFFILE Premature end of file encountered

?49 BAD FILENAME Bad file name given

?4A BUFFEROVF Program image does not fit in available memory

?4B CTRLERR Boot device I/O error

?4C DEVINACT Failed to initialize boot device

?4O DEVOFFLINE Device is offline

?4E MEMERR Memory initialization error

?4F SCBINT Unexpected 8CB exception or machine check

?50 SCB2NDINT Unexpected exception after starting program image

?51 NOROM No valid ROM image found

?52 N08UCHNODE No response from load server

?53 INSFMAPREG Invalid memory configuration

?54 RETRY No devices bootable, retrying

?55 IVDEVNAM Invalid device name

?56 DRVERR Drive error

J.4 Console Error Messages
The error messages listed in Table J-3 are issued in response to a console command that
has errors.

Table J-3 Console Error Messages

Code

?61

?62

Message

CORRUPTION

ILLEGAL
REFERENCE

Description

The console program database has been corrupted.

TIlegal reference. The requested reference would violate
virtual memory protection, the address is not mapped, the
reference is invalid in the specified address space, or the value
is invalid in the specified destination.

J-4 Error Messages

Table J-3 (Cont.) Console Error Messages

Code

?63

?64

?65

?66

?67

?68

?69

?6A

?6B

?6C

?6D

?6E

?6F

?70

?71

?72

?73

?74

?75

?76

?77

?78

?79

?7A

?7B

Message

ILLEGAL COMMAND

INVALID DIGIT

LINE TOO LONG

ILLEGAL ADRRESS

VALUE TOO LARGE

QUALIFIER
CONFLICT

UNKNOWN
QUALIFIER

UNKNOWN SYMBOL

CHECKSUM

HALTED

FIND ERROR

TIME OUT

MEMORY ERROR

UNIMPLEMENTED

NO VALUE
QUALIFIER

AMBIGUOUS
QUALIFIER

VALUE QUALIFIER

TOO MANY
QUALIFIERS

TOO MANY
ARGUMENTS

AMBIGUOUS
COMMAND

TOO FEW
ARGUMENTS

TYPEAHEAD
OVERFLOW

FRAMING ERROR

OVERRUN ERROR

SOFT ERROR

Description

The command string cannot be parsed.

A number has an invalid digit.

The command was too large for the console to buffer. The
message is issued only after receipt of the terminating
carriage return.

The address specified falls outside the limits of the address
space.

The value specified does not fit in the destination.

Two different data sizes are specified for an EXAMINE
command.

The switch is unrecognized.

The symbolic address in an EXAMINE or DEPOSIT command
is unrecognized.

The command or data checksum of an X command is incorrect.
If the data checksum is incorrect, this message is issued, and
is not abbreviated to "lllegal command".

The operator entered a HALT command.

A FIND command failed either to find the RPB or 128 Kbytes
of good memory.

During an X command, data failed to arrive in the time
expected (60 seconds).

A machine check occurred with a code indicating a read or
write memory error.

Unimplemented function.

The qualifier does not take a value.

There were not enough unique characters to determine the
qualifier.

The qualifier requires a value.

'Tho many qualifiers supplied for this command.

'Tho many arguments supplied for this command.

There were not enough unique characters to determine the
command.

Insufficient arguments were supplied for this command.

The typeahead buffer overflowed.

A framing error was detected on the console serial line.

An overrun error was detected on the console serial line.

A soft error occurred.

Error Messages J-5

Table J-3 (Cont.) Console Error Messages

Code Message Description

?7C HARD ERROR A hard error occurred.

?70 MACHINE CHECK A machine check occurred.

Glossary

BFLAG
Boot flags is the longword supplied in the SET BFLAG and BOOT 1R5: commands which
qualify the bootstrap operation. SHOW BFLAG displays the current value.

BHALT
Q22-bus HALT signal is usually tied to the front panel halt switch.

BIP
Boot in progress flag in CPMBX<2>

CPMBX
Console program mailbox is used to pass information between operating systems and the
firmware.

COBIC
CVAX to Q22-bus interface chip

DCOK
Q22-bus signal indicating DC power is stable. This signal is usually tied to the front
panel restart switch.

DNA
Digital Network Architecture

EPROM
Erasable programmable read-only memory is used on some products to store firmware.
Commonly used synonyms are PROM or ROM. Erasable by using ultraviolet light.

DE
Diagnostic executive is a component of the ROM-based diagnostics responsible for set-up,
execution, and clean-up of component diagnostic tests.

Firmware
Firmware in this document refers to the VAX instruction code residing in EPROM at
physical address 20040000 on the KA660. The firmware consists of diagnostic, bootstrap,
console, and halt entry and exit code.

GPR
General purpose registers on KA660 are the sixteen standard VAX longword registers
RO through R15. The last four registers, R12 through R15, are also known by their
unique mnemonics: AP (argument pointer), FP (frame pointer), SP (stack pointer), and
PC (program counter), respectively.

Glossary-1

Glossary-2

IPL
Interrupt priority level ranges from 0 to 31 (0 to IF hex).

IPR
Internal processor registers on KA660 are those implemented by the CVAX chip set.
These longword registers are only accessible with the instructions MTPR (Move To
Processor Register) and MFPR (Move From Processor Register) and require kernel mode
privileges. This document uses the prefix "PR$_" when referencing these registers.

LED
Light Emitting Diode

MSCP
Mass storage control protocol is used in Digital disks and tapes.

MOP
Maintenance operations protocol specifies message protocol for network loopback
assistance, network bootstrap, and remote console functions.

Microsecond
One-millionth of a second (10e-6 seconds).

Millisecond
One-thousandth of a second (lOe-3 seconds).

BBURAM
Nonvolatile RAM; on the KA660 this is 1 Kbyte of battery backed-up RAM on the SSC.

PC
Program counter or R15

PCB
Process control block is a data structure pointed to by the PR$_PCBB register and
contains the current process' hardware context.

PFN
Page frame number is an index of a page (512 bytes) of local memory. A PFN is derived
from the bit field <23:09> of a physical address.

PR$_ICCS
Interval clock control and status, IPR 24

PR$_IPL
Interrupt priority level, IPR 18

PR$_MAPEN
Memory management mapping enable, IPR 56

PR$_PCBB
Process control block base register, IPR 16

PR$_RXCS
Receive console status, IPR 32

Glossary-3

PR$_RXDB
Receive data buffer, IPR 33

PR$_SAVISP
Saved interrupt stack pointer, IPR 41

PR$_SAVPC
Saved program counter, IPR 42

PR$_SAVPSL
Saved program status longword, IPR 43

PR$_SCBB
System control block base register, IPR 17

PR$_SISR
Software interrupt summary register, IPR 21

PR$_TODR
Time of day register, IPR 27; is commonly referred to as the time of year register or TOY
clock.

PR$_TXCS
Transmit console status, IPR 34

PR$_TXDB
Transmit data buffer, IPR 35

PSL
Processor status longword is the VAX extension of the processor status word (PSW).

PSW
The processor status word (lower word) contains instruction condition codes and is
accessible by non privileged users; however, the upper word contains system status
information and is accessible by privileged users.

aBMBR
Q22-bus map base register found in the CQBIC determines the base address in local
memory for the scatter/gather registers.

aDSS
Q22-bus video controller for workstations

aNA
Q22-bus Ethernet controller module

aMR
Q22-bus map register

RAM
Random access memory

RIP
Restart in progress flag in CPMBX<3>

Glossary-4

RPB
Restart parameter block is a software data structure used as a communication
mechanism between firmware and the operating system. Information in this block is
used by the firmware to attempt an operating system (warm) restart.

SCB
System control block is a data structure pointed to by PR$_SCBB. It contains a list of
longword exception and interrupt vectors.

SGEC
Second generation Ethernet chip

SHAC
Single host adapter chip

SOC
System on a chip

SP
Stack pointer or R14

SRM
Standard reference manual as in VAX SRM

SSC
System support chip

VMB
Virtual memory boot is the portion of the firmware dedicated to booting the operating
system.

A
Abort

definition of, 3-13
machine check, 5-9, 5-10

Accumulator Registers, 3-1
Address .

assignments, C-1
processor registers, C-6

Q22-bus <21:9>, 9-6
Addresses

descriptor list, 10-8
filtering mode, 10-18
mulitcast, 10-2
ofNICSRx,I0-4
physical, 10-2
system base, 10-19

Address lines, 5-1
Address Translation

CDAL to Q22-bus, 9-6
Q22-bus, 9-2

Airflow specification, B-7
Algorithm

NMRU, see Cache Algorithms
to find a valid RPB, 12-22
to restart operating system, 12-21

Altitude specification, B-6
Arbiter

definition of, 1-2
Areas not covered, 12-77
Arithmetic Logic Unit

condition codes, 3-18

B
Babbling SGEC Transmissions, 10-21
Bank EnablelHit Miss Register, see

Registers
Battery Backup

and the TOY clock, 7-1
RAM,8-5

Battery Low Bit, 8-8
Baud rate select, 8-9
Baud Rate Select, 6-58-2
BBURAM

CPMBX, H-2
partitioning, H-l

Bits
valid bit, see cache
batery low, 8-8
cleared on power-up

Index

ACTION ON DCOK NEGATION,
9-10

AUXHLT, 9-7
BDREN, 8-9
BHALT EN, 9-10
BTO, 8-10
BUS TIMEOUT INTERVAL, 8-10
CAMValid, 9-6
CT BAUD SELECT, 8-9
CTP,8-9
DBI IE, 9-7
DMAQME, 9-7
ERR, 7-4
HALT PROTECT SPACE, 8-9
IE, 7-2,7-4
INT, 7-4
IPL_LVL_SEL, 8-8
IVD,8-8
LM EAE, 9-8
LOST ERROR, 9-12
MAIN MEMORY ERROR, 9-12
NO GRANT TIMEOUT, 9-12
POK, 9-10
Q22-bus DCOK NEGATION

DETECTED, 9-11
RSP,8-8
RUN, 7-4
RWT,8-10
SCR, 9-9
SGL, 7-4
STP, 7-4
XFR,7-4

ENABLE_BANK, 4-6
NICSR access modes, 10-4
Page Table Entry Modify (PTE.M), 3-9
Page Table Entry Valid (PTE. V), 3-9
RESET_L, 4-6
RPB$V _DIAG, 12-20
RPB$V _SOLICT, 12-20
set on power-up

BLO, 8-8
sticky, 4-9
Translation Buffer Valid (TB.V), 3-9
undefined on power-up

A28-A9, 9-4

Index 1

2 Index

Bits
undefined on power-up (Cont.)

QBMBR register, 9-9
QBUS ADR, 9-6
V,9-4

BLINK
definition of, 11-3

BOOT, 12-12, 12-16, 12-32
Boot and Diagnostic Facility, S--1
Boot and Diagnostic Register

see Registers
Boot Block Format, 12-19
Boot Devices, 12-14

names, 12-15
supported, 12-15

Boot Flags, 12-16
RPB$V _BBLOCK, 12-19

Boot Message
from the SGEC, 10-12

Boot Message Enable Mode, 10-16
Bootstrap

automatic
sample output, 12-17

conditions, 12-12, 12-16
definition of, 12-12
device names, 12-32
disk and tape, 12-19
failure, 12-12
initialization, 12-12
memory layout, 12-13
memory layout after successful, 12-18
network, 12-20
preparing for, 12-12
primary, 12-16
PROM, 12-20
secondary, 12-16

control passed to, 12-18
BR4 L, 3-11
BR5 L, 3-11
BR6 L, 3-11
BR7 L, 3-11
BREAK, S--9

connector pin states, S--2
ignored, 12-24

Break Condition, 6-5
Break Response, 6-5
Broadcast Address, 10-2
Buffer Format, 10-25
Buffers

perfect filtering setup frame, 10-37
Burst Limit Mode

SGEC, 10-16
Burst Transfer Rate, 11-1
Bus Grant

levels, 3-11
unreturned, 9-12

Bus length (OSSI), 2-7
Bus Timeout disabling, 8-10
Byte mask lines, 5-3

C
Cabling

OSSI,2-7
ISE, 2-7

Cache
address translation, 4-3
algorithms

NMRU, 4-4
bank selection, 4-4
data block, 4-2, 4-4
displacement field, 4-3
enabling, 4-6,4-7
entry, 4-2
error detection, 4-9
errors, 4-8
flushing, 4-5, 4-6,4-8
index field, 4-3, 4-4
invalidate, 5-10
match, 4-3
miss, 4-3
odd parity, 4-2
on the CQBIC, 9-5
organization, 4-1
Q22-bus interface, 9-4
row, 4-2
set, 4-2
size, 4-1
tag block, 4-2
testing, 4-8
translating physical address, 4-3
valid bit, 4-2

Cacheable References, 4-4
definition of, 4-1

Cache Control Register, see Registers
Cache parity bit, 4-1
Cache Parity Errors

during a demand O-stream read 4-10
during a OMA Write, 4-10 '
during a masked or unmasked write

4-10 '
during a request I-stream read 4-10

CO interconnect, 5-1 '
Chip Revision Number

SGEC for this particular SGEC., 10-22
CI-OSSI Overview, 11-3

arbitration and selection 11-4
command-out phase, 11-4
move data, 11-3
RSPQ,l1-4

Clock, 7-1
host maximum time window, 10-15

CMCTL,5-1
Collision

force mode, 10-18
Command

qualifier
definition of, 12-25

Command Address Specifiers, 12-27
Commands

BOOT, 12-32

Commands (Cont.)
! - Comment, 12-71
CONFIGURE, 12-34
CONTINUE, 12-36
DEPOSIT, 12-37
EXAMINE, 12-39
FIND, 12-42
HALT, 12-43
HELP, 12-44
INITIALIZE, 12-46
MOVE, 12-47
NEXT, 12-49
REPEAT, 12-51
SEARCH, 12-52
SET, 12-55
SHOW, 12-59
START, 12-64
TEST, 12-65
UNJAM, 12-68
X Binary LoadlUnload, 12-69

!- Comment, 12-71
Condition code V bit, 3-9
Configuration, 2-1 to 2-7

DSSI,2-4
CONFIGURE, 12-34
CONFIGURE command, 2-3
Connectors

configuration and display, B-2
Console

commands, 12-31, 12-72
keywords, 12-25
qualifiers, 12-26, 12-73
syntax, 12-24
VAX SRM not supported, 12-25

control characters, 12-23
emulation, 8-4
error messages

invalid characters, 12-24
interrupt, 6-6
language inquiry, 8-5
numeric expression radix specifiers,

12-26
scratchpad, 8-5
services provided, 12-1
symbolic references, 12-27

Console error messages, J-3
Console Module, 1-8
Console receiver control/status register,

see Registers
Console receiver data buffer register, see

Registers
Console Serial Line, 6-1
Console transmit control/status register,

see Registers
Console transmit data buffer register, see

Registers
Context switch, 3-17
CONTINUE, 12-36

in restoring context, 12-7
Control functions, A-31

Halt, A-31
Initialization, A-32

Control functions (Cont.)
Power status, A-32

Control Lines, 5-1
Control P, 8-9
CP Bus Timeout, 8-10
CPU References, 3-26
CQBIC

cache, 9-5
Crystalocillator

accuracy note, 8-10
Cycles

o

asynchronous DMA read, 9-3
CDAL Bus abort, 8-10
demand Q22-bus read, 9-11
D-stream read, 4-1
write, 4-1

Data Buffers, 10-3
Data Chaining

disable mode, 10-17
Data Format, 6-1
datagram

definition of, 11-3

Index 3

Data-stream Read References, 3-26
Data transfer bus cycles, A-5

bus cycle protocol, A-6
device addressing, A-6

DATI, A-7
DATIOB, A-12
DATOB, A-9

Data Types, 3-7
DC511, 1-6
DC541, 1-6
DC542, 1-5
DEAR, see DMA Error Address Register
DEPOSIT, 12-37
Descriptor Chaining

defintion of, 10-25
Descriptor List

address registers, 10-8
definition of, 10-25
format, 10-25
setup frame, 10-36

Descriptor Lists, 10-3
Device Dependent Bootstrap Procedures,

12-19
Diagnostic Executive

as used for error reporting, 12-75
defini tion of, 12-75

Diagnostic Interdependancies, 12-77
Diagnostic LED Register, see Registers
Diagnostics, 12-74
Digital's Systems Communications

Architecture, 11-2
Direct memory access, A-16

block mode DMA, A-17
DATBI bus cycle, A-22
DATBO bus cycle, A-23

DMA guidelines, A-24
DMA protocol, A-16

4 Index

DMA Error Address Register, see
Registers

DMA System Error Register, see Registers
DMA write references, 4-5
DNA CSMAlCD, 10-49
DNA Maintenance Operations Protocol

(MOP), 12-20
Doorbell Interrupt Requests 9-7
DSSI '

as related to SCA, 11-2
bus length, 2-7
bus termination, 2-7
cabling, 2-7
configuration, 2-4
drive order, 2-4
node ID, 2-4
node name, changing, 2-4
unit number, changing, 2-5

DSSI Bus Interface, 11-1

E
Empty Envelopes

definition of, 11-2
Emulation Software, 3-3
Entry Point

definition of, G-l
EPR, see External processor register
EPR 24,7-1
EPR 27,7-1
EPROM, 8-1, 8-4

reprogramming considerations, 8-1
EPRs not implemented, 7-1
Error messages, J-l to J-5
Errors

see also ECC correctable
see also ECC uncorrectable
cache, 4-8
cache data parity, 3-21
cache tag parity, 3-21
CDAL bus parity, 3-215-5
CDAL-bus timeout, 3-21
DAL bus, 4-8
detection/correction, 5-9
ECC, 5-1, 5-3
ECC correctable) 5-4, 5-5, 5-8
ECC uncorrectable, 5-4, &-5
floating point, 3-15
hardware detected, 3-21
interrupt, 3-16
main memory, 5-5
main memory correctable, 3-21
main memory data, 5-4
main memory NXM, 3-21
main memory read, 9-7
main memory uncorrectable, 3-21
memory, 9-1210-13
memory management, 3-15 to 3-16
memory page location, 5-4
messages

console, 12-24
incorrect boot device name, 12-15

Errors (Cont.)
microcode, 3-16
Non-existant memory, 9-12
non-recoverable, 3-15, 3-16, 3-179-7
on DMA read or write, 5-5
page location, 5-10
Q22-bus address space, 9-7
Q22-bus device parity, 3-21
Q22-bus NO GRANT, 3-21
Q22-bus NO SACK, 3-21
Q22-bus NXM, 3-21
Q22-bus parity, 9-12
read,3-16 to 3-17
recoverable, 3-15, 3-16
reported before console is established

12-75 '
SGEC address filter RAM, 10-11
SGEC parity, 10-13
SGEC RAM, 10-11
SGEC ROM, 10-11
SGEC self test loopback error, 10-11
SGEC transmit FIFO error, 10-11
syndromes, &-5
while writing an operand, 3-17
while writing a SPTE, 3-17
write, 3-17

ERR_L, 10-13
Ethernet

control access technique, 10-2
multicast address

defini tion of, 10-2
node priority, 10-2
Overview, 10-1
physical address

definition of, 10-2
types of network addresses, 10-2

Ethernet connector, 1-8
Ethernet Interface, 1-6
EXAMINE, 12-39
Examples

Imperfect Filtering Buffer, 10-40
perfect filtering buffer, 10-38

Exception

F

classes, 3-13
conditions, 5-2
definition of, 3-10

Fast Diagnostic Test Mode, 5-8
Fault

definition of, 3-13
Files-II lookup, 12-19
Fill, 4-15-10
FIND, 12-42
Firmware

block diagram, 12-2
overview, 12-1
reasons for invocation, 12-1
services, 8-4

Firmware ROMs, 1-6
Flags

Flags (Cont.)
FIRST PART DONE, 3-15, 3-16
POWER Aux, 9-9
POWER OK, 9-9
restart in progress, 12-21
state, 3-18
VAX CAN'T RESTART, 3-15, 3-16,

3-18
FLINK

definition of, 11-3
Floating Point Accelerator Unit, 1-5
Floating Point Errors, see Errors
Formats

G

Buffers, 10-25
Descriptor, 10-25

General Purpose Registers
see also Registers

General Purpose Registers (GPRs), 3-1
Global-hit, see hit
Glossary, Glossary-1
Good Memory, 12-18

H
H3602,1-8

Ethernet connect options, 10-1
Halt

auxiliary, 9-7
caused by BREAK, 8-9
caused by control P, 8-9
codes for exceptions, 3-23, 3-24
codes for unmaskable interrupts, 3-23
CPU State After a, 3-22
definition of, 12-22
dispatch, 1-1
dispatch code, 12-4
entry code, 12-3
exit code, 12-7
external, 12-7
hardware procedure, 3-22
information saved on a, 12-4
registers set to predetermined value on

a, 12-4
HALT, 12-43

on bootstrap failure, 12-17
Halt Actions

restoring context, 12-7
summary, 12-5

Halt code messages, J-1
Halt Code_3, 9-10
Halt protect space, 8-9
Hard Error

caused by writing the QBEAR, 9-13
Hardware event indicators, 3-23
Hardware Reset, 9-10
HELP, 12-44
Hit, 4-8

global, 5-109-3,9-12

Host Communication Area, 10-3
Host System Crash Note, 10-5
Humidity specification, B-6

I/O Bus initialization, 8-5
I/O Space registers, 7-2

Index 5

ICCS, see Interval timer register
Imperfect Filtering Buffer, 10-40
Imperfect Filtering Setup Frame Buffer,

10-39
Initialization, 8-5

following a processor halt, 12-21
I/O bus, 8-6
power-up, 8-5
prior to bootstrap, 12-12
processor, 8-6
SGEC,10-10

INITIALIZE, 12-46
Installation, 2-1
Instruction

demand D-stream read, 4-1
request I -stream read, 4-1

Instructions
MOVC,5-8
MTPR,8-6
Return From Interrupt or Exception

(RE!),12-7
VAX, D-1

Instruction Set Summary, 3-7
Integrated storage elements, 1-5
Interface

console, 6-1
Internal Processor Registers

see also Registers
Internal Processor Registers (lPRs), 3-1
Internal Processor Registers (lPRs), see

Registers
Interprocessor Communication Facility,

9-6
Interrupt, 3-16

BR7 -4 disabled, 9-8
conditions, 3-10
console, 6-6
definition of, 3-10
doorbell request, 9-7
from the console receiver, 6-2
priority, 10-6
priority level, 3-10

see also specific IPL
Receive Watchdog Timer, 10-13
SGEC Transmit Watchdog Timer,

10-12
SGEC vector, 10-6

Interrupt Errors, see Errors
Interrupt Priority Level

see also specific IPL
selecting, 8-8

Interrupts, A-25
Device priority, A-26

6 Index

Interrupts (Cont.)
Interrupt protocol, A-26
Q22-bus four-level interrupt

configurations, A-30
SGEC, 10-44

Interrupts and Exceptions, 3-10 to 3-24
Interrupt vector

disabling, 8-8
Interval Timer Interrupt Request, 9-8
intruction-stream read references, 3-26
Inverted code

for baud rate selection, ~5
IPCR, see Interprocessor Communication

Register, 9-6
IPL 14, 6-2, 6-47-29-8
IPL 16, 7-2
IPL 1A, 5-10
IPL 1D, 5-9, 5-11
IPL_14, 8-810-6
IPL_15, 10-6
IPL_16, 10-6
IPL_17, 3-119~810-6
IPL_17-14, 9-1
IPL_31, 12-13
ISE

see Integrated storage element

L
Load Number Field, 12-21
Local I/O page

configuring, 8-6
Local Memory Partitioning, 12-13
Local-miss, see Miss
Lost Error Address, 9-12

M
Machine check

81,3-17
Machine check exception parameters

internal state information 2, 3-18
Machine Check Exception Parameters,

3-15
byte count, 3-15
code parameter, 3-15
internal state information 1,3-17
most recent virtual address, 3-17
PC, 3-18
PSL,3-18

Machine Check Exceptions, 3-14
Machine check register dump, J-l
Main memory

modified hamming code, 5-9
programmable base address, 5-3

Main Memory
controller, 5-1
cycle select, 5-7
diagnostic check mode, 5-9
error conditions, 5-5
locking function, 5-7

Main Memory (Cont.)
organization, 5-3
starting address, 9-4
unlocking, 5-8

Main memory errors, see Errors
Maintenance self-test, 6-4
Manchester Encoded Format, 10-1
Manufacturing '.lest Mode, 8-5
MAPEN,3-9
Mapping Registers

enabling, 9-6
Maskable interrupts, 3-10
Mass storage interface, 1-5
Master/slave relationship, A-2
MEMCSR16, 5-4
MEMCSR17, 5-6
Memory

external access to, 9-8
host communication area, 10-3
Q22-bus address translation, 9-2

MEMORY
Control of the, 4-10
Error Recovery, 4-10
Initialization, 4-10

Diagnostics, 4-10
Use of the C-chip Registers, 4-10

Memory Array Width, 5-3
Memory Controller

supported references, 5-1
Memory Expansion Modules, 5-3
Memory interconnect, 5-1
Memory Management, 3-8
Memory Management Control Registers,

see Registers
Memory Management Errors, see Errors
Memory management IPRs, 3-9
Memory Module, 1-7
Memory Module not supported, 1-8
Memory system error register, see

Registers
message

definition of, 11-3
MFPR Instruction, 3-1, 3-9
Microcode Errors, see Errors
MICSR2, 10-7
Miss

see also Cache Miss
local, 9-3, 9-12

Missed Frame Count, 10-22
modes

pass bad frames, 10-18
Modes

address filtering, 10-18
auxiliary note, 9-7
auxiliary select, 9-10
boot message enable, 10-16
disable data chaining, 10-17
dump and run, 5-3
force collision, 10-18
halt

protect bits, 8-9
native, 3-3

Modes (Cont.)
power-up

normal, 12-8
query, 12-8
test, 12-8

SGEC operating, 10-12
single cycle enable, 10-16

Mode Switch, 12-8
query, 12-9

Modified hamming code, 5-9
Module

configuration, 2-3
order, in backplane, 2-2

Module contact finger identification, A-39
MOM$LOAD, 12-20
MOP functions, F-l
MOP program load sequence, 12-20
MOVE, 12-47
MS650, 1-7
MTPR Instruction, 3-1, 3-9
Multicast Address Filter Mask, 10-2
Multicast-group Address, 10-2
Multi-National character set, 8-5
Multiple Interrupts

note, 7-6

N
Native Mode, 3-3
Network Bootstrap

synchronizing the load sequence, 12-21
Network Interface, 10-1
Network Interface Station Address ROM,

10-3
Network listening, F-1
NEXT, 12-49

in restoring context, 12-7
NI Command and Mode Registers, see

Registers
NICSR

read, 10-5
write, 10-5

NICSRs, 10-3
NISA, see Network Interface Station

Address ROM
NI Station Address, 8-1 .
Non-cacheable reference, 4-1, 4-3
Non-maskable Interrupts, 3-10
Non-privileged software, 3-1
Non-privileged Software, 3-2
Non-vectored interrupt, 3-16
Normal Power-up mode, 12-8
No-write-allocate,4-1

o
Odd parity, see Parity
Operating Modes

for port driver commands, 10-15
Operating System Restart

definition of, 12-21

Index 7

Operator Control Panel (OCP), 2-4, 2-7
Oscillator

100Hz, 7-1
Overrun, 6-3
Overview

Ethernet, 10-1

p
Page Frame Number bit map (PFN),

12-12, 12-20
Page Frame Number Field, 3-9
Page Table Entry, 3-8

changing a valid, 3-9
Parity,4-95-9

error address, 9-12
formats supported, 6-1
odd, 4-2

pass Bad Frames Mode, 10-18
PCB, see Process Control Block
PCBB, see Registers, Process Control

Block Base
Perfect Filtering Buffer

example, 10-38
Perfect Filtering Setup Frame Buffer,

10-37
Physical Address Space, C-l to C-5
Physical NICSRs, 10-4
Pointers

Interrupt Stack(ISP), 12-7
not last used (NLU), 3-9

Port Command Queue 0 Control Register,
see Registers

Port Command Queue 1 Control Register,
see Registers

Port Command Queue 2 Control Register,
see Registers

Port Command Queue 3 Control Register,
see Registers

Port Datagram Free Queue Control
Register ,see Registers

Port Disable Control Register ,see
Registers

Port Driver
definition of, 10-3

Port Enable Control Register ,see
Registers

Port Error Status Register, see Registers
Port Failing Address Register, see

Registers
Port Initialize Control Register ,see

Registers
Port Maintenance Control and Status

Register, see Registers
Port Maintenance Timer Control Register

,see Registers
Port Maintenance Timer Expiration

Control Register ,see Registers

8 Index

Port Message Free Queue Control Register
,see Registers

Port Parameter Register, see Registers
Port Status Register, see Registers
Port Status Release Control Register ,see

Registers
Posted interrupt, 4-8
Power failure

TOY clock, 7-1
Power Failure

and "query" mode, 12-9
Power supply loading, A-39
power-up

memory layout, E-l
Power-up

bits cleared on
ERR, 6-2
FRM ERR, 6-3
MAINT, 6-4
OVRERR, 6-3
RCVBRK, 6-3
RXDONE, 6-2
RX IE, 6-2
'ex IE, 6-4
XMIT BRK, 6-4

bits set un
TXRDY, 6-4

diagnostics, 12-74
initialization, 8-5
lam p test, 8-3
modes, 8-3, 8-5
mode switch, 12-8
OS restart not supported, 12-6
Prc.cessor init, 8-6

PR$_SAVPC, 12-3
PR$_SAVPSL, 12-3
PR$_TBIA, 12-7
PRAO, 12-20
Prefetch, 4-15-10
Primary Bootstrap, 12-16
Privileged Software, 3-1, 3-2
Process

definition of, 3-7
Process Control Block, 3-2, 3-7
Processor i ni tiali zation

and the address decode match register,
8-7

and the BDR, 8-9
Processor Initialization, 8-5

and the address decode mask register,
8-7

and the Q22-bus map, 9-8
Processor Number

as contained ,n the SCR, 9-9
Processor State

definition of, 3-1
Processor Status Longword (PSL), 3-2
Process Structure

definition of, 3-7
Program Control Transfer, 6-5
Program Counter (PC)

defini ti on of, 3-1

Programing
SGEC, 10-3

Programmable Timers, 7-1, 7-2
PSL, see Processor Status Longword
PTE, see Page Table Entry
PTE.M

see Bits
PTE.V

see Bits

Q
Q22-bus

address space error, 9-7
error handling, 9-14
interface, 9-1

cache, 9-4
interprocessor communications

facility, 9-6
supported functions, 9-1

interrupt handling, 9-8
map, 9-2
map cache, 9-5
map configuration, 9-8
mapping, 9-3

see also Registers, Q22-bus Map
Register

enable, 9-4
protecting note, 9-4

Q22-bus electrical characteristics, A-32
Bus drivers, A-33
Bus interconnecting wiring, A-35

Backplane wiring, A-35
Intrabackplane bus wiring, A-35
power and ground, A-35

Bus receivers, A-33
Bus termination, A-34
Load definition, A-32
120-0hm Q22-bus, A-32
signal level specifications, A-32

Q22-bus Error Address Register, see
Registers

Q22-bus Interface Chip (CQBIC)
main memory locking function, 5-7

Q22-bus introduction, A-I
Q22-bus Map Cache

flushing, 9-9
Q22-bus Memory

and VMB, 12-17
Q22-bus signal assignments, A-2
Quadword READ, 4-1

from cacheable references, 4-4
Query Power-up mode, 12-8
Queued

definition of, 10-36

R
R12, see Registers
R13, see Registers
R14, see Registers
R15, see Registers
RAM

battery backed-up, 8-5
Read

from cache data addresses, 4-6
NICSR, 10-5

Read-allocate, 4-1
Read Errors, see Errors
Receive

buffer unavailable, 10-13
Receive Descriptors, 10-26 to 10-30
Receive Interrupt, 10-13
Receive Polling Demand, 10-7
Receive Watchdog Timer Interrupt, 10-13
Reception

start/stop, 10-17
References

cacheable, 4-1
CPU read timing, 5-1
CPU write timing, 5-1
demand read, 5-10
DMA masked write, 5-11
DMA read reference, 5-11
DMA to main memory, 9-2
D-stream read, 8-4
I-stream read, 8-4
masked CPU write, 5-9
multiple transfer masked DMA write,

5-3
non-cacheable, 4-1
Q22-bus interface read timing, 5-2
Q22-bus interface write timing, 5-2
request read, 5-10
single masked CPU write, 5-3
single masked DMA write, 5-3
symbolic, 12-27
to Processor Registers and Memory,

12-29
unmasked CPU write, 5-3, 5-9
unmasked DMA write, 5-3
VAX. memory space read/write, 5-3
writes, 8-4

Registers
IPR 17, see SCBB
IPR 18, see IPLR
IPR 20, see SIRR
IPR 21, see SISR
IPR 42, see SAVPC
IPR 43, see SAVPSL
IPR 56, see MAPEN
IPR 57, see TBIA
IPR 58, see TBIS
IPR 62, see SID
IPR 63, see TBCHK

Index 9

Registers (Cont.)
MMU, see Memory management IPRs
Bank EnablelHi t, 4-7
BDR Address Decode Match, 8-7
BDR compliment loading baud select,

8-9
Boot and diagnostic, 6-5
Boot and Diagnostic, 1-68-1
Boot Message

NICSR11, 10-22
NICSR12, 10-22
NICSR13, 10-22

Bus timeout Control, 8-10
Cache Control, 4-1, 4-5
CI port, 11-5
CMCTL unique, 5-4, 5-6
Console Receiver Control/Status, 6-1
Console receiver data buffer, 6-2
Console Serial Line, 6-1
Console Transmit Control/Status, 6-3
Console Transmit Data Buffer, 6-4
Diagnostic Breakpoint (NICSR14),

10-23
Diagnostic LED, 8-3
DMA Error Address, 5-119-13
DMA System Error, 5-119-11
error reporting, 9-10
for Q22-bus control, 9-1
general purpose, 3-1
I/O Bus Reset, 8-6
initializing the general purpose, 12-13
Internal clock control/status, 7-1
Internal Processor, 3-1
Internal Processor (lPRs), 3-4
Internal Processor Registers (IPRs),

3-7
interprocessor communication, 9-2
Interprocessor Communication, 9-6
Interrupt priority level (lPLR), 3-12
Interval timer, 7-1
involved with console line, 6-1
IPR 33

see RXDB
IPR34

see TXCS
IPR 35

TXDB
IPR 37,4-5
IPR 39, 4-8
IPR 55, 8-69-6
IPR categories, 3-4
main memory configuration, 5-3
Main memory control and diagnostic,

5-6
main memory error status, 5-4
Memory Management Control, 3-9
Memory system error, 4-8
Monitor Command, 10-24
Monitor Command(NICSR15), 10-24
Network Interface, 10-3
NI Command and Mode (NICSR6),

10-15
NICSR5 status report, 10-14

10 Index

Registers (Cont.)
Page Table Entry (PTE), 3-9
Polling Demand (NICSRl), 10-6
Port Command Queue 0 Control, 11-11
Port Command Queue 1 Control, 11-11
Port Command Queue 2 Control, 11-11
Port Command Queue 3 Control, 11-'-11
port control, 11-10
Port Datagram Free Queue Control,

11-11
Port Disable Control, 11-12
Port Enable Control, 11-12
Port Error Status, 11-8
Port Failing Address, 11-9
Port Initialize Control, 11-12
Port Maintenance Control and Status,

11-13
Port Maintenance Timer Control, 11-12
Port Maintenance Timer Expiration

Control, 11-12
Port Message Free Queue Control,

11-11
Port Parameter, 11-10
Port Status, 11-6
Port Status Release Control, 11-12
Process Control Block Base PCBB, 3-7
processor, 3-1
Processor Status Longword, 3-1, 3-2
Q22-bus Error Address, 9-12
Q22-bus Map, 9-3

accessing, 9~
cached copy, 9-5

Q22-bus Map Base Address, 9-9
Q22-bus Map Registers, 9-212-17
RO-R15,3-1
R12 (Argument Pointer), 3-1
R13 (Frame Pointer), 3-1
R14 (Stack Pointer), 3-1
R15 (Program Counter), 3-1
Revision Number and Missed Frame

Count (NICSRI0), 10-21
saved by the console, 12-30
SGEC command and status, 1 O~
SGEC status, 10-10
SHAC, 11-5
SHAC Shared Host Memory Address,

11-15
SHAC Software Chip Reset, 11-14
SHAC specific, 11-14
Software interrupt request, 3-12
Software interrupt summary, 3-12
SSC Base Address, 8-6
SSCConfiguration, 7-18-8
system base (NICSR7), 10-19
System Configuration, 9-9
System Identification (SID), 3-24
System Identification Extension (SIE),

3-25
Tag, 3-9
Time-of-Year clock

and the BLO bit, 8-8
Time-Of-Year Clock (TODR), 7-1
Timer n Control

Registers
Timer n Control (Cont.)

TCRO, 7-2
TCRl, 7-2

Timer n Interrupt Vector
TIVRO, 7-5
TIVRl, 7-5

timer n interval
TIRO, 7~
TIRl, 7-4

timer n next interval
TIIRl, 7-5
TNIRO, 7-5

unique, 8-1
VAX Console Serial Line, 6-1
Virtual address pointer, 3-17

Registers Port Queue Block Base, 11-5
REPEAT, 12-51
REGLMEM_LOAD, 12-21
REQ_PROGRAM, 12-20, 12-21
Reset

SGEC, 10~3
Resident Firmware, 8-1
Restart, 12-21
Restarting a halted Operating System

(OS),12-21
Restart Parameter Block (RPB)

RIP flag, 12-21
Revision Number, 10-21
RF -series disk drive

access to firmware through DUP, 2-6
cabling, 2-7

Ribbon Cable, 5-1, 5-10
ROM

32-Byte X 8-Bit, 1-6
partitioning, G-1
selecting size~ 8-9
Station Address, 1-6

RPB
initialization, I~

RPB Signature Format, 12-22
RS-232C, 6-1
Runt Packets

definition of, 10-2

S
SCA

as related to DSSI, 11-2
Scatter-gather

mapping, 9-1
SCB Vector 4, 4-8
SCR, see System Configuration Register
Scripts

definition of, 12-75
list of KA660, 12-78

SEARCH, 12-52
Secondary Bootstrap, 12-16
Second Generation

operating mode, 10-12
Second generation Ethernet controller,

1-6

Second Generation'iEthernet Controller,
10-1

burst limit mode, 10-16
command·and status registers, 10-4
determining operating mode, 10-6
internal processor~pdates, 10-15
interrupt enable mode, 10-15
loopback modes, 10-48
physical NICSRs, 10-4
processes, 10-3
programming sequence example, 10-3
reception process, 10-11, 10-45
reset, 10-15, 10-43
self test, 10-15
self test timing note, 10-11
startup procedure, 10-44
states, 10-3
transmission process, 10-11, 10-46
virtual NICSRs, 1~

Selecting
Baud rate, 8-9
halt protect ~pace, 8-9
Q22-bus map register, 9-4
·ROM size, 8-9

Self-test
SGEC, 1(}-10'··'2 '".

SET, 12-55 '
Set match, 4-3
Setup Frame, 10-35
; .. first, 10-36

subsequent, 10-36
SGEC, see Second Generation Ethernet

Controller
SHAC,l-5
SHAC, see Single Host Adapter Chip
SHAC Shared Host Memory Address, see

Registers
SHAC Software Chip Reset Register, see

Registers
SHOW, 12-59
Signals, see Bits
Signature Block

PROM, 12-20
Single Cycle Enable Mode, 10-16
Single Host Adapter Chip (SHAC)

its role as a CI port, 11-3
on chip buffering, 11-2
on chip RISC, 11-2
principal tasks, 11-3

Socketted ROM, 10-3
Space condition, 6-4
Specifications

AlB row fingers, B-1
battery backup, B-6
bus loads, B-6
CID row fingers, B-1
configuration and display, B-2
connectors, B-1
DC power consumption, B-6
Dimensions, B-1
DSSI connector, B-3
nonoperating conditions, B-7

Specifications (Cont.)
operating conditions, B-6

Index 11

private memory interconnect (PM!),
B-3

Stack, 3-2
after a machine check exception, 3-14

START, 12-64
in restoring context, 12-7

Start/Stop Reception, 10-17
StartlStop Transmission, 10-16
States

cache observe miscellaneous, 4-5
Static RAM

references supported, 8-5
Station Address ROM, 1-6
Status Register, see Registers
SYSBOOT executable file, 12-19
System Base Address, 10-19
System Configuration Register,see .

Registers
System configurations, A-36
System Control Block (SCB), 3-18
System Control Block Offset for IPL, 3-10
System Identification, 3-24
System On a Chip, 3-1 to 3-27
System subtypes

KA640, 3-25
KA650, 3-25
KA655, 3-25
KA670, 3-25

System support chip (SSC)
Baud rate clock note, 8-10

System Support Chip (SSC), 1-6
address strobes note, 8-8

System support connector
See Configuration and display

connector
System Support Subsystem, 1-6

T
TBCHK, 3-9
TBIA, 3-912-7
TBIS, 3-9
Temperature specification, B-6
Temporary Storage Registers, 3-1
TEST, 12-65
Test Mode

SGEC, 10-25
TEST pins, 4-5
Test Power-up mode, 12-8
Time-of-Year clock, see Registers
Timeout

as detected by the Q22-bus interface,
9-1

programming the period, 8-10
Timers, 7-1

Q22-bus interface NO GRANT, 9-14
Q22-bus interface non-existent memory,

9-14
Q22-bus interface NO SACK, 9-14.

12 Index

Timers (Cont.)
that restrict XMITIRECV time, 10-20

Translation buffer
hit, 3-9
invalidating, 3-9

Translation Buffer, 3-8
Transmission

start/stop, 10-16
Transmission Process State Transitions,

10-47
Transmit Descriptor, 10-31 to 10-35

built as a ring, 10-8
Transmit Interrupt, 10-14
Transmit Polling Demand, 10-6
Transmit watchdog timer interrupt, 10-12
Trap

definition of, 3-12
'!\va-level page tables, 3-8

U
Undeliverable Message, 11-3
tnNJ~, 12-12, 12-68
UVPROM

see EPROM

V
Valid Maps, 12-17
VAX-II code, 12-1
VAX Compatibility, 3-3
VAXELN

and VMB, 12-16
VAX Instruction Set, D-1
VAX PTE PROT, 3-9
VA.X Standard Interval CLock, 7-1

VAX Standard interval cLock, as modeled,
7-2

VAX System Page Table, 10-19
Vector_204,9-8
Vector_54, 5-10
Vector_60, 5-9, 5-11
Vector_78, 7-2
Vector_7C, 7-2
Vector_CO, 7-2
Vector_FC, 6-6
Virtual Memory Boot (VMB), 12-17

definition of, 12-16
Virtual NICSRs, 10-4
Virtual Page Number, 3-9
VMB error messages, J-2
Voltage Threshold

and the BLO bit, 8-8
VOLUNTEER Message, 12-21
VPN, see Virtual Page Number

W
Warm start, 12-21
Watchdog Timer

SGEC, 10-20
Write

NICSR, 10-5
Write Errors, see Errors
Write References, 3-26
Write through cache, 4-1, 4-5
Write wrong parity, 4-5

x
X - Binary Load and Unload, 12-69

"

'.!

malalla

