
EV3 AND EV4 SPECIFICATION
DC227 and DC228

Revision/Update Information: Version 2.0 May 3, 1991

The EV3 and EV4 chips are the first in a family of microprocessors that implement the ALPHA
architecture.

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may occur in this document.

This specification does not describe any program or product which is currently available f rem
Digital Equipment Corporation. Nor does Digital Equipment Corporation commit to implement this
specifi~tion in any product or program. Digital Equipment Corporation makes no commitment
that this document accurately describes any product it might ever make.

Copyright (C) 1991 by Digital Equipment Corporation

Digital Restricted Distribution

Digital Equipment Corporation

:,!J 9 3

Contents

Chapter 1 Introduction

1.1 Scope ... 1-1
1.2 EV 4 Chip Features .. 1-1
1.3 EV3 Chip Features ... · 1-2
1.4 Definitions ... 1-2
1.5 Terminology and Conventions .. 1-3

1.5.1 Numbering ~ 1-3
1.5.2 UNPREDICTABLE And UNDEFINED 1-3
1.5.3 Ranges And Extents ... 1-4
1.5.4 Must be Zero (MBZ) ... 1-4
1.5.5 Should be Zero (SBZ) .. 1-4
1.5.6 Read As Zero (RAZ) ... 1-4
1.5.7 lgriore (IGN) ... 1-4
1.5.8 Register Format Notation .. 1-4

Chapter 2 EVx Micro-architecture

2.1:' Introduction .. 2-1
2.2 Overview .. 2-1
2.3 lbox · ... 2-2

2.3.1 Branch Prediction Logic .. 2-2
2.3.2 ITB .. 2-2
2.3.3 Interrupt Logic ... 2-3
2.3.4 Performance Counters ... 2-4

2.4 Ebox .. 2-4
2.5 Abox .. 2-4

2.5.1 DTB ... 2-4
2.5.2 BIU ... 2-5
2.5.3 Load Silos .. 2-5

iii

2.5.4 Write Buffer ... 2-6
2.5.4.1 EV3 Write Buffer ... 2-6
2.5.4.2 EV4 Write Buffer ... 2-7

2.6 Fbox .. 2-7
2. 7 Cache Organization ... : .. 2-8

2. 7 .1 Data Cache ... 2-8
2. 7 .2 Instruction Cache ... 2-8

2.8 Pipeline Organization .. 2-9
2.9 Scheduling and Issuing Rules ... 2-11

2.9.1 Instruction Class Definition 2-11
2.9.2 Producer-Co~sumer Latency Matrix 2-12
2.9.3 Producer-Producer Latency 2-13
2.9.4 EVx Issue Rules ... 2-14

2.9.4.1 EV3 Specific Issue Rules 2-14
2.9.4.2 EV4 Specific Issue Rules 2-14

2.9.5 Dual Issue Rules .. 2-15

Chapter 3 Privileged Architecture Library Code

3.1 Introduction .. 3-1
3.2 PAI.. Environment ... 3-1
3.3 Special PAI.. Instructions .. 3-2

3.3.1 HW_MFPR and HW_MTPR : 3-3
3.3.2 HW_LD and HW_ST .. 3-6
3.3.3 HW _REI ~ .. 3-7

3.4 PAI.. Entry Points .. 3-7
3.5 General PAI...mode Restrictions .. 3-9

3.5.1 EVx PAI.. Restrictions .. 3-9
3.5.2 EV3 Specific PALmode Restrictions 3-12
3.5.3 EV4 Specific PALmode Restrictions 3-13

3.6 Power Up ... 3-13
3.7 TB Miss Flows .. 3-16

3. 7.1 ITB Miss .. 3-16
3. 7.2 DTB Miss .. 3-16

3.8 Ibox IPRs · 3-17
3.8.1 TB_TAG ... 3-17
3.8.2 ITB_PTE .. 3-18
3.8.3 ICCSR .. 3-18

3.8.3.1 Performance Counters 3-20
3.8.4 ITB_PTE_TEMP .. 3-22
3.8.5 EXC_ADDR .. 3-22
3.8.6 SL_CLR ... 3-23

iv

3.8.7 SL_RCV .. 3-23
3.8.8 ITBZAP ... 3-24
3.8.9 ITBASM ... 3-24
3.8.10 ITBIS ... 3-24
3.8.11 PS · ... 3-24
3.8.12 EXC_SUM ... 3-25
3.8.13 PAL_BASE ... 3-26
3.8.14 HIRR ... 3-26
3.8.15 SIRR ... 3-27
3.8.16 ASTRR .. 3-28
3.8.17 HIER ... 3-28
3.8.18 SIER ... 3-29
3.8.19 ASTER .. 3-30
3.8.20 SL_XMIT .. 3-30

3.9 Abox IPRs .. 3-31
3.9.1 DTB_CTL .. 3-31
3.9.2 DTB_PTE .. 3-31
3.9.3 DTB_PTE_TEMP .. 3-32
3.9.4 MM_CSR .. 3-32
3.9.5 VA .. 3-33
3.9.6 DTBZAP ... 3-33
3.9. 7 DTBASM .. 3-33
3.9.8 DTBIS .. 3-33
3.9.9 FLUSH_IC ... 3-33
3.9.10 FLUSH_IC_ASM .. 3-33
3.9.11 ABOX_CTL .. 3-34
3.9.12 ALT_MODE .. 3-35
3.9.13 CC .. 3-35
3.9.14 CC_CTL ... 3-35
3.9.15 BIU_CTL .. 3-36

3.10 PAL_TEMPs ... 3--38
3.10.l DC_STAT .. 3--39
3.10.2 DC_ADDR•..................................... 3-40
3.10.3 BIU _STAT ... 3-41
3.10.4 BIU_ADDR · .. 3-42
3.10.5 FILL_ADDR .. 3-43
3.10.6 FILL_SYNDROME .. 3-44
3.10. 7 BC_TAG : 3-45

3.11 ECC Error Correction ... 3-47
3.12 Error Flows ... 3-48

v

3.12.1 EV3 Error Flows .. 3-48
3.12.1.1 I-stream ECC error 3-48
3.12.1.2 D-stream ECC error 3-48
3.12.1.3 BIU: tag address parity error 3-48
3 .12.1.4 BIU: tag control parity error 3-49
3.12.1.5 BIU: system transaction terminated with CACK_SERR 3-49
3.12.1.6 BIU: system transaction terminated with CACK_HERR 3-49
3.12.1.7 BIU: I-stream parity error (parity mode only) 3-49
3.12.1.8 BIU: D-stream parity error (parity mode only) 3--50

3.12.2 EV 4 Error Flows .. 3-51
3.12.2.1 I-stream ECC error 3--51
3.12.2.2 D-stream ECC error ~ 3--51
3.12.2.3 BIU: tag address parity error 3--51
3.12.2.4 BIU: tag control parity error 3--52
3.12.2.5 BIU: system external transaction terminated with CACK_SERR ... 3--52
3.12.2.6 BIU: system transaction terminated with CACK_HERR 3--52
3.12.2. 7 BIU: I-stream parity error (parity mode only) 3--52
3.12.2.8 BIU: D-stream parity error (parity mode only) 3--52

Chapter 4 External Interface

4.1 Overview .. 4-1
4.2 Signals .. 4-1

4.2.1 Clocks ... 4-3
4.2.2 DC_OK and Reset .. 4-4
4.2.3 Initialization and Diagnostic Interface 4-5
4.2.4 Address Bus ... 4-7
4.2.5 Data Bus .. 4-7
4.2.6 External Cache Control .. 4-8

4.2.6.1 The TagAdr RAM ... 4-9
4.2.6.2 The TagCtl RAM, 4-9
4.2.6.3 The Data RAM .. 4-10
4.2.6.4 Backmap .. 4-10
4.2.6.5 External Cache Access 4-11
4.2.6.5.1 HoldReq and HoldAck 4-11
4.2.6.5.2 TagOk .. 4-12

4.2.7 External Cycle Control .. 4-12
4.2.8 Primary Cache Invalidate 4-16
4.2.9 Interrupts ... 4-16
4.2.10
4.2.11
4.2.12

Electrical Level Configuration 4-17
Performance Monitoring ... 4-17
Tristate ... 4-17

vi

4.2.13 Continuity ... 4-17
4.3 64-Bit Mode ... 4-17
4.4 'I'ransactions ... 4-18

4.4.1 Reset ... 4-18
4.4.2 Fast External Cache Read Hit 4-20
4.4.3
4.4.4
4.4.5
4.4.6
4.4.7
4.4.8
4.4.9
4.4.10

Chapter 5

Fast External Cache Write Hit 4-20
READ_BLOCK 'I'ransaction 4-21
Write Block : 4-22
LDxL 'I'ransaction ... 4-23
STxC 'I'ransaction . 4-23
BARRIER 'I'ransaction .. 4-23
FETCH Transaction .. 4-24
FETCHM 'I'ransaction .. 4-24

DC Characteristics

5.1 Overview .. 5-1
5.1.1 Power Supply .. 5-1
5.1.2 Reference Supply ... 5-1
5.1.3 Input Clocks ... 5-1
5.1.4 Sigrial pins ... 5-2

5.2 ECL lOOK Mode ... 5-3
5.2.1 Power Supply .. 5-3
5.2.2 Reference Supply ... 5-3
5.2.3 Inputs ... 5-3
5.2.4 Outputs .. 5-3
5.2.5 Bidirectionals .. 5-3

5.3 Power Dissipation ... 5-4

Chapter 6 AC Characteristics

6.1 vRef · 6-1
6.2 Input Clocks .. 6-1
6.3 cpuClkOut_h ... 6-2
6.4 Test ConfigtJ.ration ... 6-3
6.5 Fast Cycles on External Cache ... 6-3

6.5.1 Fast Read Cycles ... 6-3
6.5.2 Fast Write Cycles ... 6-4

6.6 External Cycles ... 6-4
6. 7 tagEq ... 6-5
6.8 tagOk ... 6--6
6. 9 Tester Considerations . 6--6

vii

6.9.1 Asynchronous Inputs .. 6-6
6.9.2 Signals Timed from Cpu Clock 6-7

6.10 Scaling for EV3 ... 6-7

Chapter 7 Package

Chapter 8 Pinout

8.1 Overview .. 8-1
8.2 Change History ... 8-1
8.3 EV4 Pinout .. 8-2
8.4 EV4/NVAX+ Pinout Differences .. 8-11

Appendix A EV3 and EV4 Chip Summary

Figures
7-1 PGA Cavity Up View ... 7-2

Tables
1 REVISION History .. 1
1-1 Register Field Type Notation 1-5
1-2 Register Field Notation ... 1-5
2-1 Producer-Consumer Classes 2-11
2-2 Dual Issue Rules · 2-15
3-1 HW _MFPR and HW _MTPR Format Description 3-3
3-2 IPR Access .. 3-3
3-3 HW _LD and HW _ST Format Description 3-6
3-4 The HW _REI Format Description 3-7
3-5 PAL Entry Points .. 3-8
3-6 D-stream Error PAL Entry Points 3-9
3-7 EV3 IPR Conflicts .. 3-12
3-8 IPR Reset State ... 3-13
3-9 ICCSR ... ·3-19
3-10 BHE,BPE Branch Prediction Selection 3-20
3-11 Performance Counter 0 Input Selection 3-21
3-12 Performance Counter 1 Input Selection 3-22
3-13 SL_CLR .. 3-23
3-14 EXC_SUM ... 3-26
3-15 HIRR .. 3-27

viii

3-16 MM_CSR ... 3-33
3-17 Abox Control Register ... 3-34
3-18 ALT Mode .. 3-35
3-19 BIU Control Register · 3-36
3-20 BC_SIZE · 3-38
3-21 BC_PA_DIS ; 3-38
3-22 Dcache Status Register .. 3-39
3-23 Dcache STAT Error Modifiers 3-40
3-24 BIU STAT .. 3-41
3-25 Syndromes for Single-Bit Errors 3-44
4-1 EVx Signals .. 4-1
4-2 System Clock Divisor ... 4-5
4-3 System Clock Delay .. 4-5
4-4 Icache Test Modes ... 4-5
4-5 Tag Control Encodings .. 4-9
4-6 Cycle 'fypes ... 4-13
4-7 Acknowledgment 'fypes .. 4-14
4-8 Read Data Acknowledgment 'fypes 4-15
4-9 dWSel_h .. 4-18
4-10 Reset State .. 4-19
5-1 CMOS DC Characteristics ... 5-2
5-2 EV 4 Power Dissipation @V dd=3.45V 5-4
6-1 Input Clock Timing .. 6-2
6-2 Externa~ Cycles ... 6-5
6-3 tagEq · ... 6-6
6-4 Asynchronous Signals on a Tester 6-7
A-1 EV3 Chip Summary and Micro-architecture A-2
A-2 EV 4 Chip Summary and Micro-architecture . A-3

ix

Table 1: REVISION History

Revision

1.0

2.0

Date

19-May-1990

May 3, 1991

Description

Initial Release

All EV3 and EV 4 issues are closed

1

2

Chapt~r 1

Introduction

1.1 Scope
This document describes the EV3 and EV4 chips, a family of microprocessors that implement
the ALPHA architecture. This specification describes the external interface and programming
information specific to the actual implementation. It does not describe the detailed imple­
mentation of the chip nor the ALPHA architecture. The reader is referred to the ALPHA
system reference manual for the architectural specification.

1.2 EV4 Chip Features
The EV 4 microprocessor is a CMOS-4 (. 75 micron) super-scalar super-pipelined implementa­
tion of the ALPHA architecture. It will become the basis of the first family of ALPHA products.
The EV 4 chip is designed to meet the requirements of a wide variety of systems, ranging from
uni-processor workstations to midrange multiprocessors. To achieve this goal, EV 4 enforces
as little policy as possible, e.g. it does not enforce a particular cache coherence scheme. EV 4
attempts to spread fairly the design compromises over the range of customers' requirements.
The design balances the cost goals of the low-end workstation with performance goals of the
mid-range multiprocessors.

EV 4 features:

• ALPHA instructions to support byte, word, longword, quadword, DEC F _floating, G_
floating and IEEE S_floating and T_floating data types. Limited support is provided
for DEC D_floating operations. It implements the architecturally optional instructions:
FETCH and FETCH_M.

• Demand paged memory management unit which in conjunction with properly written
PALcode fully implements the ALPHA memory management architecture. The transla­
tion buffer can be used with alternative PALcode to implement a different page table
structure.

• On-chip 8-entry I-stream TB and 32-entry D-stream TB which each map SK.byte pages,
and a four-entry D-stream TB which maps aligned groups of 512 SK.byte pages.

• World class performance. At its nominal frequency EV4 achieves a 6.6ns cycle time. Cycle
times of 5ns are possible by binning the parts.

Introduction 1-1

• Low average cycles per instructions (CPI). The EV4 chip can issue two ALPHA instruc­
tions in a single cycle, thereby minimizing the average CPI. Branch history tables are
also used to minimize the branch latency, further reducing the average CPI.

• On-chip high-throughput floating point unit, capable of executing both DEC and IEEE
floating point data types.

• On-chip 8Kbyte data cache and an 8Khyte physical instruction cache with AsN support.

• On-chip write buffer with four 32-byte entries.

• On-chip performance counters to measure and analyze cpu and system performance.

• Bus interface unit, which contains logic to directly access external cache RAMs without
CPU module action. The size and access time of the external cache is programmable.

• An instruction cache diagnostic interface to support chip and module level testing.

• An internal clock generator which generates both a high-speed clock needed by the chip
itself, and a pair of system clocks for use by the CPU module.

• The EV 4 chip is packaged in 431 pin (24 x 24, 100 mil pin pitch) PGA packages. The heat
sinks are seperable and application specific.

1.3 EV3 Chip Features
The EV3 microprocessor is an early variant of EV4 fabricated in CMOS-3 (1 micron). It is
intended to be used during system-level debug of the first ALPHA products and will be used
by the ALPHA Demonstration Unit. It is pin compatible with EV4, so no significant system­
level changes are needed to transition from EV3 to EV4. Because it is fabricated in less dense
technology, it has less functionality and a slower cycle time than EV 4.

The primary differences between EV3 and EV 4 are:

• The nominal cycle time for EV3 is extended from to 6.6ns to lOns. The external interface
is designed such that running the CPU with a reduced cycle time does not require that
all of the logic surrounding the CPU run at reduced speed.

• EV3 does not provide an on-chip floating point unit. Floating point instructions may be
trapped for emulation if desired.

• EV3 primary caches are smaller. The !cache and Dcache are both lKbytes.

• EV3 uses a simpler branch prediction algorithm, no branch history table.

• Performance counters are not included in EV3.

1.4 Definitions
This document is the specification for both the EV3 and EV 4 chips. Because the bulk of the
functionality is the same for both chips, the remainder of the spec will use the term EVx
to represent both EV3 and EV 4 in discussions of features which are common to both chips.
Discussions of features which are unique to a particular chip will use the name of that chip
(EV3 or EV4).

1-2 Introduction

1.5 Terminology and Conventions
1.5.1 Numbering

All numbers are decimal unless otherwise indicated. Where there is ambiguity, numbers other
than decimal are indicated with the name of the base following the number in parentheses,
e.g., FF(hex).

1.5.2 UNPREDICTABLE And UNDEFINED

Throughout this specification, the terms UNPREDICTABLE and UNDEFINED are used.
Their meanings are quite different and must be carefully distinguished. One key difference
is that only privileged software (that is, software running in kernel mode) may trigger
UNDEFINED operations, whereas either privileged or unprivileged software may trigger
UNPREDICTABLE results or occurrences. A second key difference is that UNPREDICTABLE
results and occurrences do not disrupt the basic operation of the processor; the processor
continues to execute instructions in its normal manner. In contrast, UNDEFINED operation
may halt the processor or cause it to lose information.

A result specified as UNPREDICTABLE may acquire an arbitrary value subject to a few
constraints. Such a result may be an arbitrary function of the input operands or of any state
information that is accessible to the process in its current access mode. UNPREDICTABLE
results may be unchanged from their previous values. UNPREDICTABLE results must not
be security holes. Specifically, UNPREDICTABLE results must not do any of the following:

• Depend on or be a function of the contents of memory locations or registers which are
inaccessible to the current process in the current access mode.

• Write or modify the contents of memory locations or registers to which the current process
in the current access mode does not have access.

• Halt or hang the system or any of its components.

For example, a security hole would exist if some UNPREDICTABLE result depended on the
value of a register in another process, on the contents of processor temporary registers left
behind by some previously running process, or on a sequence of actions of different processes.

An occurrence specified as UNPREDICTABLE may happen or not based on an arbitrary choice
function. The choice function is subject to the same constraints as are UNPREDICTABLE
results and, in particular, must not constitute a security hole.

Results or occurrences specified as UNPREDICTABLE may vary from moment to moment,
implementation to implementation, and instruction to instruction within implementations.
Software can never depend on results specified as UNPREDICTABLE.

Operations specified as UNDEFINED may vary from moment to moment, implementation to
implementation, and instruction to instruction within implementations. The operation may
vary in effect from nothing, to stopping system operation. UNDEFINED operations must not
cause the processor to hang, i.e., reach an unhalted state from which there is no transition
to a normal state in which the machine executes instructions. Only privileged software (that
is, software running in kernel mode) may trigger UNDEFINED operations.

Introduction 1-3

1.5.3 Ranges And Extents

Ranges are specified by a pair of numbers separated by a" .. " and are inclusive, e.g., a range
of integers 0 . .4 includes the integers 0, 1, 2, 3, and 4.

Extents are specified by a pair of numbers in angle brackets separated by a colon and are
inclusive, e.g., bits <7:3> specify an extent of bits including bits 7, 6, 5, 4, and 3.

1.5.4 Must be Zero (MBZ)

Fields specified as Must Be Zero (MBZ) must never be filled by software with a non-zero
value. If the processor encounters a non-zero value in a field specified as MBZ, a Reserved
Operand exception occurs.

1.5.5 Should be Zero (SBZ)

Fields specified as Should Be Zero (SBZ) should be filled by software with a zero value.
These fields may be used at some future time. Non-zero values in SBZ fields produce
UNPREDICTABLE results.

1.5.6 Read As Zero (RAZ)
Fields specified as Read As Zero (RAZ) return a zero when read.

1.5.7 Ignore (IGN)
Fields specified as Ignore (IGN) are ignored when written.

1.5.8 Register Format Notation

This specification contains a number of figures that show the format of various registers,
followed by a description of each field. In general, the fields on the register are labeled with
either a name or a mnemonic. The description of each field includes the name or mnemonic,
the bit extent, and the type.

The "Type" column in the field description includes both the actual type of the field, and
an optional initialized value, separated from the type by a comma. The type denotes the
functional operation of the field, and may be one of the values shown in Table 1-1. If present,
the initialized value indicates that the field is initialized by hardware to the specified value
at powerup. If the initialized value ,is not present, the field is not initialized at powerup.

1-4 Introduction

Table 1-1 : Register Field Type Notation

Notation

RW

RO

WO

wz

WlC

woe

WA

RC

Description

A read-write bit or field. The value may be read and written by software.

A read-only bit or field. The value may be read by software. It is written by
hardware; software writes are ignored.

A write-only bit or field. The value may be written by software. It is used by
hardware and reads by software return an UNPREDICTABLE result.

A write bit or field. The value may be written by software. It is used by hardware
and reads by software return a 0.

A write-one-to-clear bit. If reads are allowed to the register then the value may
be read by software. If it is a write-only register then a read by software returns
an UNPREDICTABLE result. Software writes of a 1 cause the bit to be cleared by
hardware. Software writes of a 0 do not modify the state of the bit.

A write-zero-to-clear bit. If reads are allowed to the register then the value may
be read by software. If it is a write-only register then a read by software returns
an UNPREDICTABLE result. Software writes of a 0 cause the bit to be cleared by
hardware. Software writes of a 1 do not modify the state of the bit.

A write-anything-to-the-register-to-clear bit. If reads are allowed to the register
then the value may be read by software. If it is a write-only register then a read
by software returns an UNPREDICTABLE result. Software write of any value to
the register cause the bit to be cleared by hardware.

A read-to-clear field. The value is written by hardware and remains unchanged
until read. The value may be read by software at which point, hardware may write
a new value into the field.

In addition to named fields in registers, other bits of the register may be labeled with one of
the three symbols listed in Table 1-2. These symbols denote the type of the unnamed fields
in the register.

Table 1-2: Register Field Notation

Notation

RAZ

IGN

Description

Denotes a register bit(s) that is read as a 0.

Denotes a register bit(s) that is ignored on write and UNPREDICTABLE when
read if not otherwise specified.

Introduction 1-5

1-6 Introduction

Chapter 2

EVx Micro-architecture

2.1 Introduction
This chapter gives a programmer and system designer view of the EVx micro-architecture.
It is not intended to be a detailed hardware description of chip. The reader is referred to
the behavioral model for an accurate and highly detailed specification of the chip. Describing
the micro-architecture of a heavily pipelined machine is always problematic. To understand
the hardware you need to understand the pipeline, but it is very difficult to describe the
pipeline without a hardware description. This spec first describes the hardware with only
minimal forward references to the pipeline and then presents the pipeline. EVx can issue
two instructions in a single cycle - the scheduling and dual issue rules are defined at the end
of the chapter.

It is important to realize that the combination of EVx and PALcode implements the ALPHA
architecture. Many hardware design decisions were based on specific PAL functionality. These
PAL assumptions and restrictions are detailed in the next chapter. The important point to
keep in mind is that if a certain piece of hardware appears to be "architecturally incomplete",
the missing functionality is implemented in PALcode.

2.2 Overview
The EV 4 microprocessor consists of three independent execution units: integer execution unit
(Ebox), floating point unit (Fbox), and the address generation, memory management, write
buffer and bus interface unit (Abox). EV3 does not contain a floating point unit. Each unit
can accept at most one instruction per cycle, however if code is properly scheduled, EVx can
issue two instructions to two independent units in a single cycle. A fourth unit, the Ibox,
is the central control unit. It issues instructions, maintains the pipeline and performs all of
the PC calculations. EVx also has on-chip instruction and data caches (lcache and Dcache).
The major functional difference between EV 4 and EV3 is that EV3 does not include a floating
point unit.

EVx Micro-architecture 2-1

2.3 lbox
The primary function of the Ibox is to issue instructions to the Ebox, Abox and Fbox. In order
to provide those instructions, the Ibox also contains the prefetcher, PC pipeline, ITB, abort
logic, register conflict or dirty logic, and exception logic. The Ibox decodes two instructions
in parallel and checks that the required resources are available for both instructions. If
resources are available and dual issue is possible then both instructions may be issued. The
section on Dual Issue Rules details which instructions can be dual issued. If the resources
are available for only the first instruction or the instructions cannot be dual issued then the
Ibox issues only the first instruction. The Ibox does NOT issue instructions out of order, even
if the resources are available for the second instruction and not for the first instruction. The
Ibox does not issue instructions until the resources for the first instruction become available.
If only the first of a pair of instructions issues, the Ibox does not advance another instruction
to attempt to dual issue again. Dual issue is only attempted on aligned quadword pairs.

2.3.1 Branch Prediction Logic
The Ibox contains the branch prediction logic. EV 4 offers a choice of branch prediction
strategies selectable through the ICCSR IPR. The Icache records the outcome of branch
instructions in a single history bit provided for each instruction location in the cache. This
information can be used as the prediction for the next execution of the branch instruction.
The prediction for the first execution of a branch instruction is based on the sign of the
displacement field within the branch instruction itself. If the sign bit is negative, conditional
branches are predicted to be taken. If the sign is positive, conditional branches are predicted
to be not taken. Alternatively, if the history table is disabled, branches can be predicted based
on the sign of the displacement field at all times.

The EV3 chip provides only sign of the displacement branch prediction.

Both chips provide a 4-entry subroutine return stack which is controlled by the hint bits in the
BSR, HW _REI, and jump to subroutine instructions (JMP, JSR, RET, or JSR_ COROUTINE).
Both chips also provide a means of disabling all branch prediction hardware.

2.3.2 ITB

The Ibox contains an 8-entry fully associative translation buffer to cache recently used
instruction-stream address translations and protection information for SK.byte pages. The
ITB uses a not-last-used replacement algorithm. The ITB is filled and maintained by PALcode.
Unlike the DTB, it is not possible to write to the ITB in native(non-PAL) mode. The chapter
on PALcode details the ITB miss flow.

While not executing in PAL mode, the 43-bit virtual program counter (VPC) is presented each
cycle to the ITB. If the PTE associated with the VPC is cached in the ITB then the PFN and
protection bits for the page which contains the VPC are used by the Ibox to complete the
address translation and access checks.

The EVx ITB supports one ASN, the PTE[ASM] bit. PALcode which supports writes to
the architecturally-defined TBIAP register does so by using the hardware-specific HW _
MTPR instruction to write to the hardware-specific ITBASM register. This has the effect
of invalidating ITB entries which do not have their corresponding ASM bits set.

2-2 EVx Micro-architecture

2.3.3 Interrupt Logic

The EVx chip supports three sources of interrupts; hardware, software and asynchronous
system trap (AST). There are six level-sensitive hardware interrupts sourced by pins, 15
software interrupts sourced by an on-chip IPR (SIRR), and 4 AST interrupts sourced by a
second internal IPR (ASTRR). All interrupts are independently maskable via on-chip enable
registers to support a software controlled mechanism for prioritization. In addition, AST
interrupts are qualified by the current processor mode. The EV4 chip further qualifies AST
interrupts with the current state of SIER[2]. EV3 supports this function in PAL code. All
interrupts are disabled when the processor is executing PALcode.

By providing distinct enable bits for each independent interrupt source, a software controlled
interrupt priority scheme can be implemented with maximum flexibility. For example, a six
level interrupt priority scheme can be supported for the six hardware interrupt request pins
by defining a distinct state of the corresponding hardware interrupt enable register for each
IPL. The current interrupt priority is determined by the state of the interrupt enable register.
The lowest interrupt priority level is produced by enabling all 6 interrupts, e.g bits 6-1. The
next is produced by enabling bits 6-2 and so on to the highest interrupt priority level which
is produced by enabling only bit 6 and disabling bits 5 through 1. When all interrupt enable
bits are cleared, the processor can not be interrupted from the hardware interrupt request
register. Each state, 6-1,6-2,6-3,6-4,6-5,6 represents an individual interrupt priority level
(IPL). If these states are the only states allowed in the interrupt enable register, a six level
hardware interrupt priority scheme can be controlled entirely by software.

The scheme is extendible to provide multiple interrupt sources at the same interrupt priority
level by grouping enable bits. Groups of enable bits must be set and cleared together to
support multiple interrupts of equal priority level. Of course, this method reduces the total
available number of distinct levels.

Since enable bits are provided for all hardware, software and AST interrupt requests, a
priority scheme can span all sources of processor interrupts. The only exception to this rule
regards the restriction on AST interrupt requests as- described below.

Four AST interrupts are provided; one for each processor mode. AST interrupt requests are
qualified such that AST requests corresponding to a given mode are blocked whenever the
processor is in a higher mode regardless of the state of the AST interrupt enable register.
In addition, all AST interrupt requests are qualified in EV 4 with SIER[2] to disable AST
requests when IPL is higher than 2. This function is provided in PALcode for EV3.

When the processor receives an interrupt request and that request is enabled, an interrupt is
reported or delivered to the exception logic ifthe processor is not currently executing PALcode.
Before vectoring to the interrupt service PAL dispatch address, the pipeline is completely
drained and all outstanding load instructions are completed. The restart address is saved
in the Exception Address IPR (EXC_ADDR) and the processor enters PALmode. The cause
of the interrupt may be determined by examining the state of any of the interrupt request
registers.

Note that hardware interrupt requests are level sensitive and therefore may be removed
before an interrupt is serviced. If they are removed before the interrupt request register is
read, the register will return a zero value.

EVx Micro-architecture 2-3

2.3.4 Performance Counters

The EV 4 chip contains a performance recording feature. The implementation of this feature
provides a mechanism to count various hardware events and cause an interrupt upon counter
overflow. Interrupts are triggered six cycles after the event, and therefore, the exception PC
may not reflect the exact instruction causing counter overflow. Two counters are provided to
allow accurate comparison of two variables under a potentially non-repeatable experimental
condition. Counter inputs include issues, non-issues, total cycles, pipe dry, pipe freeze,
mispredicts and cache misses as well as counts for various instruction classifications. In
addition, one chip pin input to each counter is provided to measure external events at a rate
determined by the selected system clock speed. Performance counters are not present in EV3.

2.4 Ebox
The Ebox contains the 64-bit integer execution datapath: adder, logic box, barrel shifter, byte
zapper, bypassers and integer multiplier. The integer multiplier retires 4 bits per cycle. The
Ebox also contains the 32-entry 64-bit integer register file. The register file has four read
ports and two write ports which allow the sourcing (sinking) of operands (results) to both the
integer e~ecution datapath and the Abox.

2.5 Abox
The Abox contains six major sections: address translation datapath, load silo, write buffer,
Dcache interface, IPRs and the external bus interface unit (BIU). The address translation
datapath has a displacement adder which generates the effective virtual address for load and
store instructions, and a pair of translation buffers which generate the corresponding physical
address.

2.5.1 OTB

EVx contains a 32-entry fully associative translation buffer which caches recently used data­
stream page table entries for 8Kbyte pages, and a four-entry fully associative translation
buffer which supports the largest granularity hint option (512*8Kbyte pages) as described in
the ALPHA SRM. Both translation buffers use a not-last-used replacement algorithm. They
are hereafter referred to as the small-page and large-page DTBs, respectively. PALcode is
responsible for insuring that a particular PTE is never contained in both the small- and
large-page DTBs at the same time.

EVx supports a single address space number via the PTE[ASM] bit. PALcode which supports
writes to the architecturally-defined TBIAP register does so by using the hardware-specific
HW _MTPR instruction to write to the hardware-specific DTBASM register. This has the
effect of invalidating DTB entries which do not have their corresponding ASM bit set.

For load and store instructions, the effective 43-bit virtual address is presented to the DTBs.
If the PTE of the supplied virtual address is cached in either DTB, the PFN and protection
bits for the page which contains the address are used by the Abox to complete the address
translation and access checks.

The DTBs are filled and maintained by PALcode. The chapter on PALcode details the DTB
miss flow. Note that the DTBs can be filled in kernel mode by setting the HWE bit in the
ICCSR IPR.

2-4 EVx Micro-architecture

2.5.2 BIU

The BIU controls the interface to the EVx pin bus. It responds to three classes of CPU­
generated requests: Dcache fills, Icache fills and write buffer-sourced commands. The BIU
resolves simultaneous internal requests using a fixed priority scheme in which Dcache fill
requests are given highest priority, followed by Icache fill requests. Write buffer requests
have the lowest priority. The external interface chapter of this specification describes the
EVx pin bus.
The BIU contains logic to directly access an external cache to service internal cache fill
requests and writes from the write buffer. The BIU services reads and writes which do not
hit in the external cache with help from external logic.

Internal data transfers between the CPU and the BIU are made via a 64-bit bidirectional
bus. Since the internal cache fill block size is 32 bytes, cache fill operations result in four
data transfers across this bus from the BIU to the appropriate cache. Also, since each write
buffer entry is 32 bytes wide, write transactions may result in four data transfers from the
write buffer to the BIU.

2.5.3 Load Silos
The Abox contains a fully folded memory reference pipeline which may accept a new load or
store instruction every cycle until a Dcache fill is required. Since the Dcache lines are only
allocated on load misses, the Abox may accept a new instruction every cycle until a load miss
occurs. When a load miss occurs the lbox stops issuing all instructions that use the load port
of the register file or are otherwise handled by the Abox (LDx, STx, MFPR, JSR, RCC, RS,
RC), MB and SYNC instructions. A JSR with a destination of R31 may be issued.

Since the result of each Dcache lookup is known late in the pipeline (stage [6]) and instructions
are issued in pipe stage [3], there may be two instructions in the Abox pipeline behind a load
instruction which misses the Dcache. These two instructions are handled as follows:

• Loads which hit the Dcache are allowed to complete - hit under miss.

• Load misses are placed in a silo and replayed in order after the first load miss completes.

• Store instructions are presented to the Dcache at their normal time with respect to the
pipeline. They are silo'ed and presented to the write buffer in order with respect to load
misses. -

When a load miss occurs in EV3 the Ibox stops issuing Abox-directed instructions until all
pending Dcache fills are complete. This insures that no conflicts for the Dcache will occur.

In order to improve performance in EV 4, the lbox is allowed to restart the execution of Abox­
directed instructions before the last pending Dcache fill is complete. Dcache fill transactions
result in four data transfers from the BIU to the Dcache. These transfers may each be
separated by one or more cycles depending on the characteristics of the external cache and
memory subsystems. The BIU attempts to send the quadword of the fill block which the
CPU originally requested in the first of these four transfers (it is always able to accomplish
this for reads which hit in the external cache). Therefore the pending load instruction which
requested the Dcache fill can complete before the Dcache fill finishes. In EV 4, Dcache fill
data is not written into the cache array as it is received from the BIU. Rather, it accumulates
one quadword at a time into a "pending fill" latch. When the load miss silo is empty and the
requested quadword for the last outstanding load miss is received, the lbox resumes execution
of Abox-directed instructions despite the still-pending Dcache fill. When the entire cache line
has been received from the BIU, it is written into the Dcache data array whenever the array
isn't otherwise busy with a load or a store.

EVx Micro-architecture 2-5

2.5.4 Write Buffer

The Abox contains a write buffer for two purposes:

1. To minimize the number of CPU stall cycles by providing a high bandwidth (but finite)
resource for receiving store data. This is required since_ EVx can generate store data at
the peak rate of one quadword every CPU cycle which is greater than the rate at which
the external cache subsystem can accept the data.

2. To attempt to aggregate store data into aligned 32-byte cache blocks for the purpose of
maximizing the rate at which data may be written from EVx into the external cache.

In addition to store instructions, MB, STQ/C, STIJC, FETCH and FETCH_M instructions
are also written into the write buffer and sent off-chip. Unlike stores, however, these write
buffer-directed instructions are never merged into a write buffer entry with other instructions.

Each write buffer entry contains a CAM for holding physical . address bits <33 :5>, four
quadwords of data, eight longword mask bits which indicate which of the associated eight
longwords in the entry contain valid data, and miscellaneous control bits.

To facilitate the discussion, the following two states are defined: invalid and valid. A write
buffer entry is invalid if it does not contain one of the above-listed write buffer-directed
commands. A write buffer entry is valid if it contains one of the above-listed write buffer­
directed commands.

The write buffer contains two pointers: the head pointer and the tail pointer. The head
pointer points to the valid write buffer entry which has been valid the longest period of time.
The tail pointer points to the invalid write buffer entry slot which will next be validated. If
the write buffer is completely full (empty) the head and tail pointers point to the same valid
(invalid) entry.

Each time the write buffer is presented with a store instruction the physical address generated
by the instruction is compared to the address in each valid write buffer entry. If the address
is in the same aligned 32-byte block as an address in a valid write buffer entry which also
contains a store then the new store data is merged into that entry, and the entry's longword
mask bits are updated. Ifno matching address is found in the write buffer, then the store data
is written into the entry designated by the tail pointer, the entry is validated, and the tail
pointer is incremented to the next entry. Note this scheme does not maintain write-ordering.

The EV3 and EV 4 write buffers differ in the number of entries they contain, in the flow
control mechanism used to prevent buffer overflow, and in the mechanism which controls
when entries are written off-chip.

2.5.4.1 EV3 Write Buffer

The EV3 write buffer has eight entries and employs a rather simple flow control mechanism
to prevent the buffer from overflowing. The physical address of each store instruction is
presented to the write buffer CAM array in the second half of pipe stage [6], and the decision
as to whether the store data can be merged with an existing entry or whether a new entry
will be required is made in the first half of pipe stage [7]. Write buffer overflow is prevented
by causing the lbox to stall the execution of store instructions if necessary. Since the write
buffer merge decision is made in pipe stage [7], and instructions are issued from pipe stage
[3], there may be as many as three store instructions in the Abox pipeline behind a store
instruction which causes a new buffer entry to be consumed. Therefore, in order to prevent
overflow the lbox stops issuing store instructions whenever there are three or fewer invalid
write buffer entries available.

2-6 EVx Micro-architecture

In EV3, the write buffer attempts to unload the head entry whenever it is valid. Store data
may get merged into this entry up to the time the entry starts getting sent to the BIU.

2.5.4.2 EV 4 Write Buffer

The EV 4 write buffer contains four entries but employs a more complicated flow control
mechanism which allows its entries to be better utilized than in EV3. In EV 4 the Ibox issues
store instructions irrespective of whether the write buffer is full. If a store instruction enters .
pipe stage [6] of the Abox and the write buffer is full, the Ibox is forced to stop issuing both
loads and stores by the same mechanism which is used for handling load misses. In effect,
the store instruction gets treated as if it were a load miss. Any valid instructions in pipe
stages [4] or [5] get handled exactly as if they had followed a load miss - loads which hit the
Dcache are allowed to complete, stores are presented to the Dcache, placed into the Abox silo
and and presented to the write buffer in order with respect to other silo'ed instructions. The
Abox silo control logic insures that no stores are lost when the write buffer is full by retrying
silo' ed stores until they are accepted by the write buffer.

In EV4, the write buffer attempts to send its head entry off-chip by requesting the BIU when
one of the following conditions are met:

1. The write buffer contains at least two valid entries.

2. The write buffer contains one valid entry and at least 256 CPU cycles have elapsed since
the execution of the last write buffer-directed instruction.

3. The write buffer contains an MB instruction.

4. The write buffer contains a STQ/C or STUC instruction.

5. A load miss is pending which requires the write buffer to be flushed before an external
read is launched to service the load miss.

When the write buffer is requesting the BIU no stores are allowed to merge into the write
buffer's head entry.

2.6 Fbox
EV4 has an on-chip pipelined Fbox capable of executing both DEC and IEEE floating point
instructions. IEEE floating point datatypes S and T are supported with all rounding modes
except round to +/- infinity which is provided in PALcode. DEC floating point datatypes F and
Gare fully supported with limited support for D floating format. The Fbox contains a 32-entry
64-bit floating point register file and a user accessible control register, FP _CTL, containing
round mode controls, trap enables, and exception flag information. The Fbox can accept an
instruction every cycle, with the exception of floating point divide instructions. The latency
for data dependent, non divide instructions is six cycles. Bypassers are provided to allow
issue of instructions which are dependent on prior results while those results are written to
the register file. For detailed information on instruction timing, refer to Section 2.9.

For divide instructions, the Fbox does not compute the inexact flag. Consequently, the INE
exception flag in the FP _CTL register is never updated for any DIV instructions. This is a
known incompatibility in the EV 4 chip.

The EV3 chip contains no on-chip floating point hardware. Floating point instructions can be
emulated in PALcode for EV3.

EVx Micro-architecture 2-7

2.7 Cache Organization
EV3 and EV 4 each include two on-chip caches. All memory cells are fully static CMOS 6T
structures.

2. 7 .1 Data Cache
The EV4 data cache, Dcache, contains 8Kbytes. It is a write-through, direct ~apped, read­
allocate physical cache and has 32-byte blocks. System components may keep the Dcache
coherent with memory by using the invalidate bus described in the pin bus section of this
·specification.

The EV3 data cache contains lKbytes.

2. 7 .2 Instruction Cache
The EV 4 instruction cache, Icache, is an 8Kbyte physical direct-mapped cache. !cache blocks,
or lines, contain 32-bytes of instruction stream data with associated tag as well as a six-bit
ASN field, a one-bit ASM field and an eight-bit branch history field per block. It does not
contain hardware for maintaining coherency with memory and is unaffected by the invalidate
bus.

EV 4 also contains a single-entry !cache stream buffer which together with its supporting
logic reduces the performance penalty due to Icache misses incurred during in-line instruction
processing. The stream buffer physically consists oflatches for one !cache block's data and tag
bits which are adjacent to the fill-side of the cache array, and a comparator, 13-bit incrementer
and associated datapath hardware and control in the Abox.

When an !cache miss occurs, the Ibox sends an !cache fill request to the Abox, which
simultaneously requests the BIU and checks the stream buffer for the requested block. If
the block is present in the stream buffer the Abox aborts the original !cache fill request,
writes the requested block into the !cache and launches a prefetch request to the BIU for the
next consecutive !cache block. The lbox does not interact with the stream buffer - from the
lbox's perspective Icache misses which hit the stream buffer are the same as any other Icache
miss except that the !cache fill finishes sooner.

When an Icache miss also misses the stream buffer the Abox launches a request for the
required fill block and subsequently launches a prefetch request for the next consecutive fill
block, thus getting the stream buffer started down the next I-stream path. Stream buffer
prefetch requests never cross physical page boundaries, but instead wrap around to first
block of the current page.

The EV3 instruction cache contains lKbytes. It is a physical direct-mapped cache and has
32-byte blocks. The EV3 chip contains no hardware for keeping the Icache coherent with
memory. Further, it is unaffected by the invalidate bus. It does not contain ASN,ASM or
branch history information.

A physical, incoherent !cache has the following implications:

1. Software which creates or modifies the instruction stream must execute an IMB PAL call
before trying to execute the new instructions. The PAL IMB routine must explicitly flush
the Icache by writing to the FLUSH_IC register.

2-8 EVx Micro-architecture

2. As virtual pages migrate from one physical page frame to another, the Icache may become
incoherent with memory. A sufficient means of keeping the Icache coherent for this case
is for the PALcode which implements the TBIA, and TBIAP PAL calls to explicitly flush
the Icache as described above. The ASN field and supporting PAL code in EV 4 provide
functionality to conform to the ALPHA SRM requirements regarding instruction caches
while reducing the need to flush the Icache.

2.8 Pipeline Organization
EV 4 has a seven stage pipeline for integer operate and memory reference instructions.
Floating point operate instructions progress through a ten stage pipeline. The Ibox maintains
state for all pipeline stages to track outstanding register writes, and determine Icache
hit/miss. The pipeline diagrams below show the Ebox, Ibox, Abox and Fbox pipelines. The
first four cycles are executed in the Ibox and the last stages are box specific. There are
bypassers in all of the boxes that allow the results of one instruction to be used as operands
of a following instruction without having to be written to the register file. The following
section describes the pipeline scheduling rules.

Integer Operate Pipeline:

IF SWAP IO Il Al A2 WR
1--------1--------1--------1--------1--------1--------1--------1

[0] [1] [2] [3] [4] [5] [6]

• IF - Instruction Fetch.

• SWAP - Swap Dual Issue Instruction /Branch Prediction.

• IO - Decode.

• 11 - Register file(s) access I Issue check.

• Al - Computation cycle 1 I Ibox computes new PC.

• A2 - Computation cycle 2 I ITB look-up

• WR - Integer register file write I !cache Hit/Miss

Memory Reference Pipeline:

IF SWAP IO Il AC TB HM
1--------1--------1--------1--------1--------1--------1--------1

[0] [1] [2] [3] [4] [5] [6]

• AC - Abox calculates the effective D-stream address.

• TB - DTB look-up.

• HM - Dcache Hit/Miss and load data register file write

EVx Micro-architecture 2-9

Floating Point Operate Pipeline:

IF SWAP IO Il Fl F2 F3 F4 FS FWR
1-------1-------1-------1-------1-------1---~---1-------1-------1-------1-------1

[O] [1] (2] [3] [4] [5] [6] (7] (8) [9]

• Fl-F5 - Floating point calculate pipeline

• FWR - Floating point register file write

The EV4 integer pipeline divides instruction processing into four static and three dynamic
stages of execution. The EV 4 floating point pipeline maintains the first four static stages
and adds six dynamic stages of execution. The first four stages consist of the instruction
fetch, swap, decode and issue logic. These stages are static in that instructions may remain
valid in the same pipeline stage for multiple cycles while waiting for a resource or stalling for
other reasons. Dynamic stages always advance state and are unaffected by any stall in the
pipeline. Pipeline stalls are also referred to as pipeline freezes. A pipeline freeze may occur
while zero instructions issue, or while one instruction of a pair issues and the second is held
at the issue stage. A pipeline freeze implies that a valid instruction or instructions is (are)
presented to be issued but can not proceed.

Upon satisfying all issue requirements, instructions are allowed to continue through any
pipeline toward completion. After issuing, instructions cannot be held in a given pipe stage.
It is up to the issue stage to insure that all resource conflicts are resolved before an instruction
is allowed to continue. The only means of stopping instructions after the issue stage is an
abort condition. Note that the term abort as used here is different from its use in the ALPHA
SRM.

Aborts may result from a number of causes. In general, they may be grouped into two
classes, namely exceptions (including interrupts) and non exceptions. The basic difference
between the two is that exceptions require that the pipeline be drained of all outstanding
instructions before restarting the pipeline at a redirected address. In either case, the pipeline
must be flushed of all instructions which were fetched subsequent to the instruction which
caused the abort condition. This includes stopping one instruction of a dual issued pair
in the case of an abort condition on the first instruction of the pair. The non exception
case, however, does not need to drain the pipeline of all outstanding instructions ahead
of the aborting instruction. The pipeline can be immediately restarted at a redirected
address. Examples of non exception abort conditions are branch mispredictions, subroutine
call/return mispredictions and instruction cache misses. Data cache misses do not produce
abort conditions but can cause pipeline freezes.

In the event of an exception, the processor aborts all instructions issued after the excepting
instruction as described above. Due to the nature of some error conditions, this may occur as
late as the write cycle. Next, the address of the excepting instruction is latched in the EXC_
ADDR IPR. When the pipeline is fully drained, the processor begins instruction execution at
the address given by the PALcode dispatch. The pipeline is drained when all outstanding
writes to both the integer and floating point register file have completed and all outstanding
instructions have passed the point in the pipeline such that all instructions are guaranteed
to complete without an exception in the absence of a machine check.

It should be noted that there are two basic reasons for non-issue conditions. The first is a
pipeline freeze wherein a valid instruction or pair of instructions are prepared to issue but
cannot due to a resource conflict. These type of non-issue cycles can be minimized through
code scheduling. The second type of non-issue conditions consist of pipeline bubbles where
there is no valid instruction in the pipeline to issue. Pipeline bubbles exist due to abort

2-10 EVx Micro-architecture

conditions as described above. In addition, a single pipeline bubble is produced whenever
a branch type instruction is predicted to be taken, including subroutine calls and returns.
Pipeline bubbles are reduced directly by the hardware through bubble squashing, but can
also be effectively minimized· through careful coding practices. Bubble squashing involves
the ability of the first four pipeline stages to advance whenever a bubble is detected in the
pipeline stage immediately ahead of it while the pipeline is otherwise frozen.

2.9 Scheduling and Issuing Rules
2.9.1 Instruction Class Definition

It is important to note that the following scheduling and dual issue rules are only performance
related. There are no functional dependencies related to scheduling or dual issuing. The
scheduling and issuing rules are defined in terms of instruction classes. The table below
specifies all of the instruction classes and the box which executes the particular class.

Table 2-1 : Producer-Consumer Classes

Class Name

LD

ST

IBR

FBR

JSR

IADDLOG

SHIFTCM

ICMP

!MULL

IMULQ

FPOP

FDIV

Box

Abox

Abox

Ebox

Fbox

Ebox

Ebox

Ebox

Ebox

Ebox

Ebox

Fbox

Fbox

Instruction List

all loads, (MFPR, RCC, RS, RC, STC producers
only), (FETCH consumer only)

all ~tores, MTPR

integer conditional branches

floating point conditional branches

jump to subroutine instructions JMP, JSR, RET, or
JSR_COROUTINE, (BSR, BR producer only)

ADDL ADDLN ADDQ ADDQ/V SUBL SUBLN
SUBQ SUBQIV S4ADDL S4ADDQ S8ADDL
S8ADDQ S4SUBL S4SUBQ S8SUBL S8SUBQ
LDA LDAH AND BIS XOR BIC ORNOT EQV

SLL SRL SRA EXTQL EXTLL EXTWL EXTBL
EXTQH EXTLH EXTWH MSKQL MSKLL MSKWL
MSKBL MSKQH MSKLH MSKWH INSQL INSLL
INSWL INSBL INSQH INSLH INSWH ZAP ..
ZAPNOT CMOVEQ CMOVNE CMOVLT CMOVLE
CMOVGT CMOVGE CMOVLBS CMOVLBC

CMPEQ CMPLT CMPLE CMPULT CMPULE
CMPBGE

MULLMULLN

MULQ MULQ/V UMULH

floating point operates except divide

floating point divide

EVx Micro-architecture 2-11

2.9.2 Producer-Consumer Latency Matrix

EV3 and EV 4 enforce the same issue rules regarding producer/consumer latencies in all cases
except FPOP-FST in which EV4 is two cycles faster. In fact, floating point code will produce
almost identical timing, although no floating point data, between EV3 and EV 4 when run
with the FPE bit of the ICCSR set. FDIV instructions, however, should never be issued
on EV3 because they will not be signaled as complete and therefore prevent any dependent
instruction from issuing.

The scheduling rules are described as a producer-consumer matrix. Each row an~ column in
~the matrix is a class of ALPHA instructions. A '1' in the Producer-Consumer Latency Matrix
indicates one cycle of latency. A one cycle latency means that if instruction B uses the results
of instruction A, then instruction B may be issued ONE cycle after instruction A is issued.

The first thing to do when determining latency for a given instruction sequence is to identify
the classes of all the instructions. The example below has the classes listed in the comment
field.

ADDQ Rl, R2, R3 IADDLOG class
SRA R3, R4, RS SHIFT class
SUBQ RS, R6, R7 IADDLOG class
STQ R7, D(RlO} ST class

The SRA instruction consumes the result (R3) produced by the ADDQ instruction. The latency
associated with an iadd-shift producer-consumer pair as specified by the matrix is one. That
means that if the ADDQ was issued in cycle 'n' the SRA could be issued in cycle 'n+l'. The
SUBQ instruction consumes the result (R5) produced by the SRA instruction. The latency
associated with a shift-iadd producer-consumer pair as specified by the matrix is two. That
means that if the SRA was issued in cycle 'n' the SUBQ could be issued in cycle 'n+2'. The
lbox injects one nop cycle in the pipeline for this case.

The final case has the STQ instruction consuming the result (R7) produced by the SUBQ
instruction. The latency associated with an iadd-st producer-consumer pair where the result
of the iadd is the store data is zero. This means that the SUBQ and STQ instruction pair
can be dual-issued.

2-12 EVx Micro-architecture

Producer Class

L I J I I I s I I I I F I F F
D l s I A I H c I M M p I D D

I R I D I I M I u u 0 I I I
(1) I I D I F p I L L p I v v

I I L I T I L Q I F/S G/T
Consumer I I 0 I c I I
Class I I G I M I (3) (3) I (4) (4)
-----------+----+----+----+----+----+-----+-----+----+-----+-----+

I I I I I I
LD I 3 I 3 2 I 2 I 2 21 23 I x x x I
ST (2) I 3 I 3 2/01 2/0 2/0 21/20 23/221 X/4 X/32 X/611
!BR I 3 I 3 1 I 2 1 21 23 I x x x I
JSR I 3 I 3 2 I 2 2 " I x x x I

I I I I I
IADDLOG I 3 I 3 1 I 2 2 " I x x x I
SHIFTCM I 3 I 3 1 I 2 2 " I x x x I
ICMP I 3 I 3 1 I 2 2 " I x x x I
IMUL I 3 I 3 1 I 2 2 21/19 23/211 x x x I

I I I I I
FBR I 3 I x x I x x x x I 6 34 63 I
FPOP I 3 I x x I x x x x I 6 34 63 I
FDIV I 3 I x x I x x x x I 6 34/30 63/591

Notes:

1. For loads, Dcache hit is assumed. The latency for a Dcache miss and an external cache
hit is dependent on the system configuration. The latency is determined as the register
file write time less 1 cycle.

2. For some producer classes, two latencies, XJY, are given with the ST consumer class. X
represents the latency for base address of store and Y represents the latency for store
data. FDIV results cannot be used as the base address for store operations.

3. For IMUL followed by IMUL, there are two latencies given. The first represents the
latency with data dependency, i.e. the second IMUL uses the result from the first. The
second is the multiply latency without data dependencies.

4. For FDIV followed by FDIV, there are two latencies given. The first represents the latency
with data dependency, i.e. the second FDIV uses the result from the first. The second is
the division latency without data dependencies.

2.9.3 Producer-Producer Latency .

Producer-producer latency, also known as write after write conflicts, are restricted only by the
register write order. For most instructions, this is dictated by issue order, however IMUL,
FDIV and LD instructions may require more time than other instructions to complete and
therefore must stall following instructions that write the same destination register to preserve
write ordering. In general, only cases involving an intervening producer-consumer conflict are
of interest. They can occur commonly in a dual issue situation when a register is reused. In
these cases, producer-consumer latencies are equal to or greater than the required producer­
producer latency as determined by write ordering and therefore dictate the overall latency.

EVx Micro-architecture 2-13

An example of this case is shown in the code:

LDQ R2, D (RO)
ADDQ R2,R3,R4
LDQ R2,D(Rl)

2.9.4 EVx Issue Rules

R2 destination
wr-rd conflict stalls execution waiting for R2
wr-wr conflict may dual issue when addq issues

The following is a list of conditions that prevent both EV3 and EV 4 from issuing an
instruction.

1. No instruction can be issued until all of it's source and destination registers are clean,
i.e. all outstanding writes to the destination register are guaranteed to complete in issue
order and there are no outstanding writes to the source registers or those writes can be
bypassed.

2. No LD, ST, FETCH, MB, RCC, RS, RC, DRAINT, HW_MXPR or BSR,BR,JSR(with
destination other than R31) can be issued after a MB instruction until the MB has been
acknowledged on the external pin bus.

3. No IMUL instructions can be issued if the integer multiplier is busy.

4. No SHIFT, IADDLOG, ICMP or ICMOV instruction can be issued exactly three cycles
before an integer multiplication completes.

5. No integer or floating point conditional branch instruction can be issued in the cycle
immediately following a JSR,JMP,RET,JSR_COROUTINE or HW_REI instruction.

6. No DRAINT instruction can be issued as the second instruction of a dual issue pair.

2.9.4.1 EV3 Specific Issue Rules

The following rules are specific to EV3.

1. No LD instructions can be issued in the two cycles immediately following any store
instruction.

2. No LD, ST, FETCH, MB, RCC, RS, RC, DRAINT, HW_MXPR or BSR,BR,JSR(with
destination other than R31) instruction can be issued after a load miss until all pending
D-stream fills have been completed.

3. No ST, MB, FETCH or FETCH_M instruction can be issued when the write buffer is full.

4. EV3 does not contain an on-chip floating point unit, therefore if the FPE bit of the ICCSR
is set, any instruction that attempts to use the results of an FDIV instruction will not
issue. Ever. Only reset will clear this condition.

2.9.4.2 EV4 Specific Issue Rules

The following rules are specific to EV 4.

1. No LD instructions can be issued in the· two cycles immediately following a STC.

2. No LD, ST, FETCH, MB, RCC, RS, RC, DRAINT, HW _MXPR or BSR,BR,JSR(with
destination other than R31) instruction can be issued when the Abox is busy due to a
load miss or write buffer overflow. For more information see section 2.5.3.

3. No FDIV instruction can be issued if the floating pointer divider is busy.

2-14 EVx Micro-architecture

4. No floating point operate instruction can be issued exactly five or exactly six cycles before
the floating point divide completes.

2.9.5 Dual Issue Rules

The table below lists the classes of instruction pairs that can be issued in a single cycle. An
instruction from a class in the first column below may be issued in the same cycle as an
instruction from a class in the second column, in the absence of data dependencies and if the
two instructions occupy the same aligned quadword in memory.

Table 2-2: Dual Issue Rules

Instruction 1

LD integer

LD floating pt

ST floating pt

FBR

IADDLOG

SHIFT

ICMP

ICMOV

IMUL

Exceptions:

Instruction 2

LD floating pt

LD integer

ST integer

IBR

FPOP

FDIV

JSR

BSR

BR

HW_x

CALL_PAL

• No more than one of LD, ST, HW_MXPR, FETCH, RCC, RS, RC, MB, DRAIN, HW_REI,
BSR, BR or JSR can be issued in the same cycle.

• No more than one of JSR, IBR, BSR, HW _REI, BR or FBR can be issued in the same
cycle.

EVx Micro-architecture 2-15

2-16 EVx Micro-architecture

, Chapter 3

Privileged Architecture Library Code

3.1 Introduction
In a family of machines both users and operating system implementers require functions
to be implemented consistently. When functions are implemented to a common interface,
the code that uses those functions can be used on several different implementations without
modification.

These functions range from the binary encoding of the instructions and data, to the exception
mechanisms and synchronization primitives. Some of these functions can be cost effectively
implemented in hardware, but several are impractical to implement directly in hardware.
These functions include low-level hardware support functions such as translation buffer
fill routines, interrupt acknowledge, and exception dispatch. Also included is support for
privileged and atomic operations that require long instruction sequences such as Return
from Exception or Interrupt (REI).

In the VAX architecture, these functions are generally provided by microcode. In EVx,
there is no microcode. However an architected interface to these functions that will be
consistent with other members of ALPHA family of machines is still required. The Privileged
Architecture Library Code (PALcode) is used to implement these functions without resorting
to a microcoded machine. The EVx hardware development group will provide and maintain
a version of the PALcode for EVx. Module development groups will have to provide and
maintain module specific modifications to the PALcode.

3.2 PAL Environment
PALcode runs in an environment with privileges enabled, instruction stream mapping
disabled, and interrupts disabled. The enabling of privileges allows all functions of the
machine to be controlled. Disabling of instruction stream mapping allows PALcode to be
used to support the memory management functions (e.g., translation buffer miss routines
can not be run via mapped memory). PALcode can perform both virtual and physical data
stream references. The disabling of interrupts allows the system to provide multi-instruction
sequences as atomic operations. The PALcode environment in EVx also includes 32 PAL
temp registers which are accessible only by PAL reserved move to/from processor register
instructions.

Privileged Architecture Library Code 3-1

3.3 Special PAL Instructions
PALcode uses the ALPHA instruction set for most of its operations. EVx maps the architec­
turally reserved PALcode opcodes (PALRESO - PALRES4) to a special load and store (HW_LD,
HW _ST), a move to and move from processor register (HW _MTPR, HW _MFPR), and a return
from PALmode exception (HW _REI). These instructions produce a Reserved Opcode fault if
executed while not in the PALcode environment unless the HWE bit of the ICC SR IPR is set,
in which case these instructions can be executed in kernel mode.

Register checking and bypassing logic is provided for PALcode instructions as it is for non­
PALcode instructions when using general purpose registers. Explicit software timing is
required for accessing the hardware specific IPRs and the PAL_TEMPs. These constraints
are described in the PALmode restriction and IPR sections.

3-2 Privileged Architecture Library Code

3.3.1 HW_MFPR and HW_MTPR

The internal processor register specified by the PAL, ABX, IBX, and index field is written/read
with the data from the specified integer register. Processor registers may have side effects
that happen as the result of writing/reading them. Coding restrictions are associated with
accessing various registers. Separate bits are used to access Abox IPRs, lbox IPRs, and
PAL_TEMPs, therefore it is possible for an MTPR instructions to write multiple registers in
parallel if they both have the same index.

The HW _MFPR and HW _MTPR instructions have the following format:

3
1

2 2
6 5

2 2
1 0

1 1
6 5

0 0 0 0 0
8 7 6 5 4

0
0

+----------+--------+--------+-----------+-+-+-+-----------+
I I I I IPIAI I I I
I OPCODE I RA I RB I IGN IAIBIBI INDEX I
I I I I ILIXIXI I
+----------+--------+--------+-----------+-+-+-+-----------+

Table 3-1: HW_MFPR and HW_MTPR Format Description

Field

OPCODE

RA/RB

PAL

ABX

IBX

INDEX

Description

Is either 25 (HW_MFPR) or 29 (HW_MTPR).

Contain the source,HW _MTPR or destination,HW _MFPR, register number. The RA and
RB fields must always be identical.

If set this HW _MFPR-or HW _MTPR instruction is referencing a PAL temporary register,
PAL_ TEMP.

If set this HW_MFPR or HW_MTPR instruction is referencing a register in the_Abox.

If set this HW _MFPR or HW _MTPR instruction is referencing a register in the Ibox.

Specifies hardware specific register as shown in Table 3-2

The following table indicates how the PAL, ABX, IBX, and INDEX fields are set to access the
internal processor registers. Setting the PAL, ABX, and IBX fields to zero generates a NOP.

Table 3-2: IPR Access

Mnemonic PAL ABX mx INDEX Access Comments

TB_TAG x x 1 0 w PAL mode only

ITB_PTE x x 1 1 R/W PAL mode only

ICCSR x x 1 2 R/W

ITB_PTE_TEMP x x 1 3 R PAL mode only

EXC_ADDR x x 1 4 R/W

Privileged Architecture Library Code 3-3

Table 3-2 (Cont.): IPR Access

Mnemonic PAL ABX mx INDEX Access Comments

SL_RCV x x 1 5 R

ITBZAP x x 1 6 w PAL mode only

ITBASM x x 1 7 w PAL mode only

ITBIS x x 1 8 w PAL mode only

PS x x 1 9 RIW

EXC_SUM x x 1 10 RIW

PAL_BASE x x 1 11 RIW

HIRR x x 1 12 R

SIRR x x 1 13 RIW

ASTRR x x 1 14 RIW

HIER x x 1 16 RIW

SIER x x 1 17 RJW

ASTER x x 1 18 RIW

SL_CLR x x 1 19 w
SL_XMIT x x 1 22 w
DTB_CTL x 1 x 0 w
DTB_PTE x 1 x 2 RIW

DTB_PTE_TEMP x 1 x 3 R

MM CSR x 1 x 4 R

VA x 1 x 5 R

DTBZAP x 1 x 6 w
DTASM x 1 x 7 w
DTBIS x 1 x 8 w
BIU_ADDR x 1 x 9 R

BIU_STAT x 1 x 10 R

DC_ADDR x 1 x 11 R

DC_STAT x 1 x 12 R

FILL_ADDR x 1 x 13 R

ABOX_CTL x 1 x 14 w

3-4 Privileged Architecture Library Code

Table 3-2 (Cont.): IPR Access

Mnemonic PAL ABX mx INDEX Access Comments

ALT_MODE x 1 x 15 w
cc x 1 x 16 w
CC_CTL x 1 x 17 w
BIU_CTL x 1 x 18 w
FILL_SYNDROME x 1 x 19 R

BC_TAG x 1 x 20 R

FLUSH_IC x 1 x 21 w
FLUSH_IC_ASM x 1 x 23 w EV4 Only

PAL_TEMP[31..0] 1 x x 31-00 R/W

Privileged Architecture Library Code 3-5

3.3.2 HW_LD and HW_ST
PALcode uses the HW _LD and HW _ST instructions to access memory outside of the realm
of normal ALPHA memory management. The HW _LD and HW _ST instructions have the
following format:

3
1

2 2
6 5

2 2
1 0

1 1 1 1 1 1
6 5 4 3 2 1

0
0

+----------+--------+--------+-+-+-+-+---------------------+
I
I OPCODE RA

I
RB

IPIAIRIQI
IHILIWIWI
IYITICI I

DISP

+----------+--------+--------+-+-+-+-+---------------------+
The effective address of these instructions is calculated as follows:

addr <- (SEXT(DISP) +RB) AND NOT (QW I ll(bin))

Table 3-3: HW_LD and HW_ST Format Description

Field Description

OPCODE

RA/RB

PHY

ALT

RWC

QW

DISP

Is either 27 (HW_LD) or 31 (HW_ST).

Contain register numbers, interpreted in the normal fashion for loads and stores.

If clear the effective address of the HW _LD or HW _ST is a virtual address. If set then
the effective address of the HW _LD or HW _ST is a physical address.

For virtual-mode HW _LD and HW _ST instructions this bit selects the processor mode
bits which are used for me~ory management checks. If ALT is clear the current mode
bits of the PS register are used, while if ALT is set the mode bits in the ALT_MODE IPR
are used.

In EV4, physical-mode load-lock and store-conditional variants of the HW_LD and HW_
ST instructions may be created by setting both the PHY and ALT bits.

The RWC (read with write check) bit, if set, enables both read and write access checks
on virtual HW _LD instructions.

The quadword bit specifies the data length. If it is set then the length is quadword. If it
is clear then the length is longword.

The DISP field holds a 12-bit signed byte displacement.

3-6 Privileged Architecture Library Code

3.3.3 HW_REI

The HW _REI instruction uses the address in the Ibox EXC_ADDR IPR to determine the new
virtual program counter (VPC). Bit zero of the EXC_ADDR indicates the state of the PALmode
bit on the completion of the HW _REI. If EXC_ADDR bit[O] is set then the processor remains
in PALmode. This allows PALcode to transition from PALmode to non-PALmode. The HW_
REI instruction can also be used to jump from PALmode to PALmode. This allows PAL
instruction flows to take advantage of the D-stream mapping hardware in EVx, including
traps. The HW _REI instruction has the following format:

3
1

2 2
6 5

2 2
1 0

1 1 1 1
6 5 4 3

0
0

+----------+--------+--------+-----------------------------+
I I I I I I I
I OPCODE I RA I RB 11101 IGN I

I I I I I I I
+----------+--------+--------+-----------------------------+
Note that bits[15 .. 14] contain the branch prediction hint bits. EVx pushes the contents of
the EXC_ADDR register on the JSR prediction stack. Bit[15] must be set to pop the stack to
avoid misalignment. The next address and PALmode bit are calculated as follows:

VPC <- EXC_ADDR AND {NOT 3}

PALmode <- EXC_ADDR[O]

Table 3-4: The HW_REI Format Description

Field Description

The OPCODE field contains 30. OPCODE

RA/RB Contain register numbers which should be R31 or a stall may occur.

3.4 PAL Entry Points
When an exception or interrupt occurs on EVx the chip first drains the pipeline, loads the
PC into the EXC_ADDR IPR and then dispatches to one of the exception routines. The
pipeline is drained when all instructions that update either register file have completed, and
all instructions that do not update the register files are guaranteed to complete without an
exception in the absence of a machine check. In addition, EV 4 requires that all pending
Dcache fill operations have completed before dispatch to one of the exception routines. If
multiple exceptions occur, EVx dispatches to the highest priority PAL entry point. The table
below prioritizes entry points from highest to lowest priority, i.e. the first row in the table
(reset) has the highest priority.

The table below defines only the entry point offset, bits [13 .. 0]. The high-order bits of the
new PC (bits [33 .. 14]) come from the PAL_BASE IPR.

Note that PALcode at PAL entry points of higher priority than DTBMISS must unlock possible
MMCSR IPR and VA IPR locks.

Privileged Architecture Library Code 3-7

Table 3-5: PAL Entry Points

Entry Name Time

RESET anytime

MCHK pipe_stage[7]

ARI TH anytime

INTERRUPT anytime

D-stream errors pipe_stage(6]

ITB_MISS pipe_stage(5]

ITB_ACV pipe_stage(5]

CALLPAL pi pe_stage(5]

OPCDEC pipe_stage[5]

FEN pipe_stage[5]

Offset(Hex) Cause

0000

0020 Uncorrected hardware error.

0060 Arithmetic exception.

OOEO Includes corrected hardware error.

OlEO, OSEO, See Table 3-6.
09EO, UEO

03EO ITB miss.

07EO I-stream access violation.

2000,40,60 thru 256 locations based on instruction[7 .. 0]. If bit(7]
3FEO equals zero and CM does not equal kernel mode

then an OPDEC exception occurs.

13EO Reserved or privileged opcode.

17EO FP op attempted with:

FP instructions disabled via ICCSR FPE bit

FP IEEE round to+/- infinity

FP IEEE with datatype field other than S,T,QW

The PAL entry points assigned to D-stream errors require a bit more explanation. The
hardware recognizes four classes of D-stream memory management errors: bad virtual
address (improper sign extension), DTB miss, alignment error and everything else (ACV,
FOR, FOW). These errors get mapped into four PAL entry points: UNALIGN, DTB_MISS
PAL mode, DTB_MISS Native mode and D_FAULT. Table 3-5 lists the priority of these entry
points as a group with respect to each of the other entry points. Since a particular D-stream
memory reference may generate errors which fall into more than one of the four error classes
which th~ hardware recognizes, we also must define the priority of each of the D-stream PAL
entry points with respect to the others in the D-stream PAL entry group. Table 3-6 gives
this priority. The PAL entry point SEO for Native mode DTB_MISS is only available in EV4.
EV3 provides· only one DTB_MISS PAL entry point at address offset 9EO.

3-8 Privileged Architecture Library Code

Table 3-6: D-stream Error PAL Entry Points

DTB_
BAD_ VA MISS UN ALIGN PAL Other Offset(Hex)

1 x 0 x x OlEO D_FAULT

1 x 1 x x llEO UNALIGN

0 1 x 0 x 08EO DTB_MISS Native

0 1 x 1 x 09EO DTB_MISS PAL

0 0 1 x x llEO UNALIGN

0 0 0 x 1 OlEO D_FAULT

3.5 General PALmode Restrictions
Many of the restrictions involve waiting 'n' cycles before using the results of PAL instructions.
Inserting 'n' instructions between the two time-sensitive instructions is the typical method of
waiting for 'n' cycles. Because EVx can dual issue instructions it is possible to write code that
requires 2*n+ 1 instructions to wait 'n' cycles. Due to the resource requirements of individual
instructions, and the EVx hardware design, multiple copies of the same instruction can not
be dual issued. This fact is used in some of the code examples below.

3.5.1 EVx PAL Restrictions

1. As a general rule, HW _MTPR instructions require at least 4 cycles to update the selected
IPR. Therefore, at least three cycles of delay must be inserted before using the result of
the register update.

Note that only the write followed by read operation requires this software timing. Multiple
reads, multiple writes, or read followed by write will pipeline properly and do not require
software timing except for accesses of the TB registers.

These cycles can be guaranteed by either including 7 instructions which do not use the
IPR in transition or proving through the dual issue rules and/or state of the machine, that
at least 3 cycles of delay will occur. As a special case, multiple copies of a HW _MTPR
instruction, used as a NOP instruction, can be used to pad cycles after the original HW _
MTPR. Since multiple copies of the same instruction will never dual issue, the maximum
number of instructions necessary to insure at least 3 cycles of delay is 3.

An example of this is :

HW_MTPR Rx, HIER
HW_MFPR R31, 0
HW_MFPR R31, 0
HW_MFPR R31, 0
HW_MFPR Ry, HIER

Write to HIER
NOP mxpr instruction
NOP mxpr instruction
NOP mxpr instruction
Read from HIER

Privileged Architecture Library Code 3-9 ·

The HW_REI instruction uses the ITB if the EXC_ADDR register contains a non PAL
mode VPC, VPC<O> = 0. By the rule above, this implies that at least 3 cycles of delay
must be included after writing the ITB before executing a HW _REI instruction to exit
PAL mode.

Exceptions:

• The PAL_TEMP register file is treated as a single register under this rule. However,
PAL_TEMP registers may be read after 3 cycles of delay, not 4. This translates to
code of the form:

HW_MTPR Rx, PAL_RO Write PAL temp 0
HW_MFPR R31, 0 NOP mxpr instruction
HW_MFPR R31, 0 NOP mxpr instruction
HW_MFPR Ry, PAL_Rl Read PAL temp 1

• The EXC_ADDR register may be read by a HW_REI instruction only 2 cycles after
the HW _MTPR. This is equivalent to one intervening cycle of delay. This translates
to code of the form:

HW MTPR Rx, EXC ADDR
HW=MFPR R31, 0 -
HW REI

Write EXC ADDR
NOP cannot dual issue with either
Return

2. An MTPR operation to the DTBIS register cannot be bypassed into. In other words, all
data being moved to the DTBIS register must be sourced directly from the register file.
One way to insure this is to provide at least 3 cycles of delay before using the result of
any integer operation (except MUL) as the source of an MTPR DTBIS. Do not use a MUL
as the source of DTBIS data. Sample code for this operation is :

ADDQ Rl,R2,R3
ADDQ R31,R31,R31
ADDQ R31,R31,R31
ADDQ R31,R31,R31
ADDQ R31,R31,R31
HW_MTPR R3,DTBIS

source for DTBIS address
cannot dual issue with above, 1st cycle of delay
2nd cycle of delay
3rd cycle of delay
may dual issue with below, else 4th cycle of delay
R3 must be in register file, no bypass possible

3. When loading the CC register, bits <3:0> must be loaded with zero. Loading non-zero
values in these bits may cause the count to be inaccurate.

4. An MTPR DTBIS cannot be combined with an MTPR ITBIS instruction. The hardware
will not clear the ITB if both the Ibox and Abox IPRs are simultaneously selected. Instead,
two instructions are needed to clear each TB individually. Code example:

HW_MTPR Rx,ITBIS
HW_MTPR Ry,DTBIS

5. An MXPR ITB_TAG, ITB_PTE, ITB_PTE_TEMP cannot follow a HW _REI that remains
in PAL mode. (Address bit<O> of the EXC_ADDR is set) This rule implies that it is not a
good idea to ever allow exceptions while updating the ITB. If an exception interrupts flow
of the ITB miss routine and attempts to REI back, and the return address begins with
a HW _MxPR instruction to an ITB register, and the REI is predicted correctly to avoid
any delay between the two instructions, then the ITB register will not be written. Code
example:

HW REI return from interrupt
HW_MTPR Rl,ITB_TAG attempts to execute very next cycle, instr ignored

3-10 Privileged Architecture Library Code

6. The ITB_TAG,ITB_PTE and ITB_PTE_TEMP registers can only be accessed in PAL mode.
If the instructions HW _MTPR or HW _MFPR to/from the above registers are attempted
while not in PAL mode by setting the HWE (hardware enable) bit of the ICCSR, the
instructions will be ignored.

7. Machine check exceptions taken while in PAL mode may load the EXC_ADDR register
with a restart address one instruction earlier than the proper restart address. Some
HW _MxPR instructions may have already completed execution even though the restart
address indicates the HW _MxPR as the return instruction. Re-execution of some HW _
MxPR instructions can alter machine state. (e.g. TB pointers, EXC_ADDR register mask)

The mechanism used to stop instruction fl.ow during machine check exceptions causes
the machine check exception to appear as a D-stream fault on the following instruction
in the hardware pipeline. In the event that the following instruction is a HW _MxPR, a
D-stream fault will not abort execution in all cases. Although the EXC_ADDR will be
loaded with the address of the HW _MxPR instruction as if it were aborted, a HW _REI to
this restart address will incorrectly re-execute this instruction.

Machine check service routines should check for MXPR instructions at the return address
before continuing.

8. When writing the PAL_BASE register, exceptions may not occur. An exception occurring
simultaneously with a write to the PAL BASE may leave the register in a metastable state.
All asynchronous exceptions but reset can be avoided under the following conditions:

PAL mode blocks all interrupts
machine checks disabled blocks I/O error exceptions

(via ABOX_CTL reg or MB isolation)
Not under trap shadow avoids arit_hmetic traps

The trap shadow is defined as
less than 3 cycles after a non-mul integer operate that may overflow
less than 22 cycles after a MULL/V instruction
less than 24 cycles after a MULQ/V instruction
less than 6 cycles after a non-div fp operation that may cause a trap
less than 34 cycles after a DIVF or DIVS that may cause a trap
less than 63 cycles after a DIVG or DIVT that may cause a trap

9. The sequence MTPR PTE, MTPR TAG is NOT allowed. At least one cycle must be allowed
after an MTPR PTE before the corresponding MTPR TAG instruction.

10. The AMCHK exception service routine must check the EXC_SUM register for simulta­
neous arithmetic errors. Arithmetic traps will not trigger exceptions a second time after
returning from exception service for the machine check.

11. Three cycles of delay must be inserted between HW _MFPR DTB_PTE and HW _MFPR
DTB_PTE_TEMP. Code example:

HW_MFPR Rx,DTB_PTE
HW_MFPR R31,0
HW_MFPR R31,0
HW_MFPR Ry,DTB_PTE_TEMP

reads OTB PTE into OTB PTE TEMP register
1st cycle of delay
2nd cycle of delay
read DTB_PTE_TEMP into register file Ry

12. Three cycles of delay must be inserted between HW _MFPR IPTE and HW _MFPR ITB_
PTE_TEMP. Code example:

Privileged Architecture Library Code 3-11

HW_MFPR Rx,DTB_PTE reads DTB_PTE into DTB_PTE_TE:MP register
HW MFPR R31,0 1st cycle of delay
HW=MFPR R31,0 2nd cycle of delay
HW_MFPR Ry,DTB_PTE_TE:MP read OTB PTE TE:MP into register file Ry

13. The content of the destination register for HW _MFPR Rx,DTB_PTE or HW _MFPR
Rx,ITB_PTE is UNPREDICTABLE.

14. Two HW_MFPR DTB_PTE instructions cannot be issued in consecutive cycles. This
implies that more than one instruction may be necessary between the HW _MFPR
instructions if dual issue is possibleo Similar restrictions apply to the ITB_PTE register.

15. Reading the EXC_SUM and BC_TAG registers require special timing. Refer to Sec­
tion 3.8.12 and Section 3.10. 7 for specific information.

16. DMM errors occurring one cycle before HW _MxPR instructions to the IPTE will NOT stop
the TB pointer from incrementing to the next TB entry even though the mxpr instruction
will be aborted by the DMM error. This restriction only affects performance and not
functionality.

3.5.2 EV3 Specific PALmode Restrictions

1. HW _MTPR instructions writing the IPRs listed in the first column of Table 3-7 must
guarantee that HW _MFPR instructions reading the corresponding IPRs in the second
column cannot be decoded, even if invalid, exactly three cycles following the first HW _
MTPR.

Table 3-7: EV3 IPR Conflicts

MTPR-Write MFPR-read

ITB_PTE ITB_PTE_TEMP

IC CSR ICCSR

EX CS UM EX CS UM

PS PS

xIER HIER

xIER SIER

xIER ASTER

xIRR SLCLR

xIRR SIRR

xIRR ASTRR

In other words, it must be insured that at least 3 cycles of deterministic I-stream will
always follow the first HW _MTPR. A check of this restriction requires knowledge of
placement within a cache block. Random cache miss data following the HW _MTPR by 3
cycles could cause metastable conditions on the read bus.

3-12 Privileged Architecture Library Code

EV3 PAL code avoids this problem by substituting a macro for the HW _MTPR instruction.
The macro adds NOPs before the HW_MTPR, ifnecessary, to push the HW_MTPR into the
top of a cache block and pads NOPs after the HW _MTPR to insure 3 cycles of deterministic
I-stream.

In addition to the above restrictions, an HW _MFPR ITB_PTE which 'reads' the ITB_PTE
cannot be followed three cycles later with the decode, even if invalid, of a HW _MFPR
ITB_PTE_TEMP which attempts to 'read' the ITB_PTE_TEMP.

2. The contents of the EXC_ADDR register must be written before execution of a HW _REI.
If the EXC_ADDR is not explicitly written after an exception is taken, the register is
not guaranteed to be properly sign extended. This can cause the HW _REI to result in an
ACV fault. Note that the register will appear to be sign extended after a read (HW _MFPR
EXC_ADDR) but is not. A subsequent HW_MTPR is still required.

Code example:

exception entry

HW_MFPR Rl,EXC_ADDR
HW_MTPR Rl,EXC_ADDR
HW_MTPR R31,0
HW REI

read exc addr will appear to be sign extended
write exc_addr to insure sign extend in hardware
NOP delay for one cycle before REI
return without worry of surprise ACV

3.5.3 EV4 Specific PALmode Restrictions

1. HW _STC instructions cannot be followed, for two cycles, by any load instruction that may
miss in the Dcache.

2. Updates to the ASN field of the ICCSR IPR require at least 10 cycles of delay before
entering native mode that may reference the ASN during !cache access. If the ASN field
is updated in Kernel mode via the HWE bit of the ICCSR IPR, it is sufficient that all
I-stream references during this time be made to pages with the ASM bit set to avoid use
of the ASN.

3.6 Power Up
The table below lists the state of all the IPRs immediately following reset. The table also
specifies which IPRs need to be initialized by power-up PALcode.

Table 3-8: IPR Reset State

IPR Reset State

ITB_TAG

ITB_PTE

undefined

undefined

Comments

Privileged Architecture Library Code 3-13

Table 3-8 (Cont.): IPR Reset State

IPR Reset State

ICCSR cleared

ITB_PTE_TEMP undefined

EXC_ADDR undefined

SL_RCV undefined

I TB ZAP n/a

ITBASM n/a

ITBIS n/a

PS undefined

EXC_SUM undefined

PAL_BASE cleared

HIRR n/a

SIRR undefined

ASTRR undefined

HIER undefined

SIER undefined

ASTER undefined

SL_XMIT undefined

DTB_CTL undefined

DTB_PTE undefined

DTB_PTE_TEMP undefined

MM CSR undefined

VA undefined

DTBZAP n/a

DTBASM n/a

DTBIS n/a

BIU_ADDR undefined

Comments

Floating point disabled, single issue mode, VAX mode
enabled, ASN = 0, jsr predictions disabled, branch
predictions disabled, branch history table disabled,
performance counters reset to zero, Perf Cnt0(16b) : 'lbtal
Issues/2, Perf Cnt1(12b) : Dcache Misses

PALcode must do a itbzap on reset.

PALcode must set processor status.

Palcode must clear exception summary and exception
register write mask by doing 64 reads.

Cleared on reset.

PALcode must initialize.

PALcode must initialize.

PALcode must initialize.

PALcode must initialize.

PALcode must initialize.

PALcode must initialize. Appears on external pin.

Palcode must select between SP/LP dtb prior to any TB fill.

Unlocked on reset.

Unlocked on reset.

PALcode must do a dtbzap on reset.

Potentially locked.

3-14 Privileged Architecture Library Code

Table 3-8 (Cont.):

IPR

BIU_STAT

SL_CLR

DC_ADDR

DC_STAT

FILL_ADDR

ABOX_CTL

ALT_MODE

cc

CC_CTL

BIU_CTL

FILL_SYNDROME

I BC_TAG

PAL_TEMP[31..0]

IPR Reset State

Reset State

undefined

undefined

undefined

undefined

undefined

see comments

undefined

undefined

undefined

see comments

undefined

undefined

undefined

Comments

Potentially locked.

PALcode must initialize.

Potentially locked.

Potentially locked.

Potentially locked.

[11..0] <- "x0100 Write buffer enabled, machine checks
disabled, correctable read interrupts disabled, lcache stream
buffer disabled, Dcache disabled, forced hit mode off.

Cycle counter is disabled on reset.

Bcache disabled, parity mode undefined, chip enable asserts
during RAM write cycles, Bcache forced-hit mode disabled.
BC_PA_DIS field cleared. BAD_TCP cleared. BAD_DP
undefined.

Note: The Bcache parameters BC RAM read speed, BC
RAM write speed, BC write enable control, and BC size are
all undetermined on reset and must be initialized before
enabling the Bcache.

Potentially locked.

Potentially locked.

PALcode should execute four jsr call instructions to initialize the jsr stack. This is necessary
to insure deterministic behavior for testers. The following code will initialize the stack once
the ICCSR [JSEJ bit is set.

BSR rl, stk_ 1 push RET PC
stk 1:

BSR r2,stk_2 push RET PC
stk 2:

BSR r3, stk_3 push RET PC
stk 3:

BSR r4,stk 4 push RET PC -
stk 4:

Privileged Architecture Library Code 3-15

3.7 TB Miss Flows
This section describes hardware specific details to aid the PALcode programmer in writing
ITB and DTB fill routines. These flows were included to highlight trade-offs and restrictions
between PAL and hardware. The PALcode source that is released with EVx should be
consulted before any new flows are written. A working knowledge of the ALPHA memory
management architecture is assumed.

3.7.1 ITB Miss

When the Ibox encounters an ITB miss it latches the VPC of the target instruction-stream
reference in the EXC_ADDR IPR, flushes the pipeline of any instructions following the
instruction which caused the ITB miss, waits for any other instructions which may be in
progress to complete, enters PALmode, and junips to the ITB miss PAL entry point. The
recommended PALcode sequence for translating the address and filling the ITB is described
below.

1. Create some scratch area in the integer register file by writing the contents of a few
integer registers to the PAL_TEMP register file.

2. Read the target virtual address from the EXC_ADDR IPR.

3. Fetch the PTE (this may take multiple reads) using a physical-mode HW_LD instruction.
If this PTE's valid bit is clear report TNV or ACV as appropriate.

4. Since the ALPHA SRM states that translation buffers may not contain invalid PTEs, the
PTE's valid bit must be explicitly checked by PALcode. Further, since the ITB's PTE RAM
does not hold the FOE bit, the PALcode must also explicitly check this condition. If the
PTE's valid bit is set and FOE bit is clear, PALcode may fill an ITB entry.

5. Write the original virtual address to the TB_TAG register using HW _MTPR. This writes
the TAG into a temp register and not the actual tag field in the ITB.

6. Write the Pl'E to the ITB_PTE register using HW _MTPR. This HW _MTPR causes both
the TAG and PTE fields in the ITB to be written. Note it is not necessary to delay issuing
the HW_MTPR to the ITB_PTE after the MTPR to the ITB_TAG is issued. .

7. Restore the contents of any modified integer registers to their original state using the
HW _MFPR instruction.

8. Restart the instruction stream using the HW _REI instruction.

3. 7 .2 OTB Miss

When the Abox encounters a DTB miss it latches the referenced virtual address in the VA
IPR and other information about the reference in the MMCSR IPR, and locks these registers
against further modifications. The Ibox latches the PC of the instruction which generated the
reference in the EXC_ADDR register, drains the machine as described above for ITB misses,
and jumps to the DTB miss PALcode entry point. Unlike ITB misses, DTB misses may occur
while the CPU is executing in PALmode. The recommended PALcode sequence for translating
the address and filling the DTB is described below.

1. Create some scratch area in the integer register file by writing the contents of a few
integer registers to the PAL_TEMP register file.

3-16 Privileged Architecture Library Code

2. Read the requested virtual address from the VA IPR. Although the act of reading this
register unlocks the VA and MMCSR registers, the MMCSR register only updates when
D-stream memory management errors occur. It therefore will retain information about
the instruction which generated this DTB miss. This may be useful later.

3. Fetch the PTE (may require multiple reads). If the valid bit of the PTE is clear, a TNV
or ACV must be reported unless the instruction which caused the DTB miss was FETCH
or FETCH/M. This can be checked via the opcode field of the MMCSR register. If the
value in this field is 18 (hex), then a FETCH or FETCH/M instruction caused this DTB
miss, and as mandated by the ALPHA SRM, the subsequent TNV or ACV should NOT be
reported. Therefore PALcode should read the value in EXC_ADDR, increment it by four,
write this value back to EXC_ADDR, and do a HW_REI.

4. Write the register which holds the contents of the PTE to the DTB_CTL IPR. This has the
effect of selecting either the small or large page DTB for subsequent DTB fill operations,
based on the value contained in the granularity hint field of the PTE.

5. Write the original virtual address to the TB_TAG register. This writes the TAG into a
temp register and not the actual tag field in the DTB

6. Write the PTE to the DTB_PrE register. This HW_MTPR causes both the TAG and PTE
fields in the DTB to be written. Note it is not necessary to delay issuing the HW _MTPR
to the DTB_PTE after the MTPR to the DTB_TAG is issued.

7. Restore the contents of any modified integer registers.

8. Restart the instruction stream using the HW _REI instruction.

3.8 lbox IPRs
3.8.1 TB_TAG

The TB_TAG register is a write-only register which holds the tag for the next TB update
operation in either the ITB or DTB. To insure the integrity of the TB, the tag is actually
written to a temporary register and not transferred to the ITB or DTB until the ITB_PTE or
DTB_PTE register is written. The entry to be written is chosen at the time of the ITB_PTE
or DTB_PTE write operation by a not-last-used algorithm implemented in hardware.

Writing the ITB_TAG register is only performed while in PALmode regardless of the state of
the HWE bit in the ICCSR IPR.

Small Page Format:

6
3

4 4
3 2

1 1
3 2

0
0

+--------------+--------------------------+----------------+
I I I I
I I GN I VA [4 2 •• 13] I I GN I
I I I I
+--------------+--------------------------+----------------+

Privileged Architecture Library Code 3-17

GH = ll(bin) Format (DTB only):

6
3

4 4
3 2

2 2
2 1

0
0

+--------------+---------------+---------------------------+
I I I I
I I GN I VA [4 2 •. 2 2] I I GN I
I I I I
+--------------+---------------+---------------------------+

3.8.2 ITB~PTE
The ITB PTE register is a read/write register representing the eight ITB page table entries.
The entry to be written is chosen by a not-last-used algorithm implemented in hardware.
Writes to the ITB_PTE use the memory format bit positions as described in the ALPHA SRM
with the exception that some fields are ignored.

To insure the integrity of the ITB, the ITB's tag array is updated simultaneously from the
internal tag register when the ITB_PTE register is written. Reads of the ITB_PTE require
two instructions. First, a read from the ITB_PrE sends the PTE data to the ITB_PTE_TEMP
register, then a second instruction readingfrom the ITB_PTE_TEMP register returns the PTE
entry to the register file. Reading or writing the ITB_PTE register increments the TB entry
pointer which allows reading the entire set of eight ITB PTE entries.

Reading and writing the ITB_PTE register is only performed while in PALmode regardless
of the state of the HWE bit in the ICCSR IPR.

Write Format:

6
3

5 5
3 2

3 3
2 1

1 1 1 0 0 0 0 0 0 0 0 0 0
2 1 0 9 8 7 6 5 4 3 2 1 0

+---------+-----------------+------------+-+-+-+-+-----+-+-------+
I I I IUISIEIKI IAI I
I IGN I PFN[33 •• 13] I IGN IRIRIRIRI IGN ISi IGN I
I I I IEIEIEIEI IMI I
+---------+-----------------+------------+-+-+-+-+-----+-+-------+
Read Format:

6
3

3 3
4 3

1 1 1 1 0 0 0 0 0 0 0 0 0 0
3 2 1 0 9 8 7 6 5 4 3 2 1 0

+---------------------+-+--------------+-+-+-+-+-----------------+
I IAI IUISIEIKI I
I RAZ IS 1· PFN [33 •• 13] IR IR IR IR I RAZ I
I IMI IEIEIEIEI I
+---------------------+-+--------------+-+-+-+-+-----------------+

3.8.3 ICCSR
The ICCSR register contains various lbox hardware enables. The only architecturally defined
bit in this register is the FPE, floating point enable, which enables floating point instruction
execution. When clear, all floating point instructions generate FEN exceptions. This register
is cleared by hardware at reset. The HWE bit allows the special PAL instructions to execute
in kernel model. This bit is intended for diagnostics or operating system alternative PAL
routines only. It does not allow access to the ITB registers while not running in PALmode.
Therefore, some PALcode flows may require the PALmode environment to execute properly
(e.g. ITB fill).

3-18 Privileged Architecture Library Code

EV4 implements all of the ICCSR functionality described below. EV3 does not contain
performance counters, a branch history table, or ASN support. It does, however, maintain
register state for the performance counter control bits, the BHE bit, and the ASN field. These
register bits may be read and written but otherwise do not affect any hardware function.

Write Format:

6
3

5 5
3 2

4 4
7 6

4 4 4 4 3 3 3 3 3 3 3 3 3
3 2 1 0 9 8 7 6 5 4 3 2 1

1 1 1 0 0 0 0 0 0 0 0 0
2 1 0 9 8 7 5 4 3 2 1 0

+-----+--------+-----+-+-+-+-+-+-+-+-+-----+-----+-------+---+-+-+---+-+
I I I IC IF I I IHI D I BI J I B IV I PC I I PC I I I IP I I P I
I IGN IASN[S:O] I [5:2] IPICIWIIIHISIPIAIMUXl I IGN I MUXO IIGNICICIIGNICI
I I r IElllEI IEIEIEIXI [2:0] I I [3:0] I 10101 Ill
I
+-----+--------+-----+-+-+-+-+-+-+-+-+-----+-----+-------+---+-+-+---+-+

Read Format:

6
3

3 3 3
5 4 3

2 2
8 7

2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

+--------+-+--------+-----+-+-+-+-+-+-+-+-+-----+-------+-----------+-+-+-+
I III I IC IFIIIHIDIBIJIBIVI PC I PC I IPIPIRI
I RAZ ICIASN[5:0] I [5:2] IPICIWIIIHISIPIAIMUXl I MUXO I RAZ ICICIAI
I 101 I IElllEI IEIEIEIXI [2:0] I [3:0] I lllOIZI
I I I I I I I I I I I I I I I I I I I
+--------+-+--------+-----+-+-+-+-+-+-+-+-+-----+-------+-----------+-+-+-+

Table 3-9: ICCSR

Field Type

FPE RW,O

HWE RW,O

DI RW,O

BHE RW,O

JSE RW,O

BPE RW,O

VAX RW,O

PCMUXl RW,O

Description

If set, floating point instructions can be issued. If clear,fioating point
instructions cause FEN exceptions.

If set allows the five PALRES instructions to be issued in kernel mode.

If set enables dual issue.

Used in conjunction with BPE. See table 'rable 3-10 for programming
information. This bit is ignored in EV3.

If set enables the JSR stack to push return addresses.

Used in conjunction with BHE. See table Table 3-10 for programming
information.

If clear causes all hardware interlocked instructions to drain the machine and
waits for the write buffer to empty before issuing the next instruction. Examples
of instructions that do not cause the pipe to drain include HW _MTPR, HW _REI,
conditional branches, and instructions that have a destination register of R31.

See table Table 3-12 for programming information. Performance counters are
present only in EV 4.

Privileged Architecture Library Code 3-19

Table 3-9 (Cont.): ICCSR

Field Type Description

PCMUXO RW,O See table Table 3-11 for programming information. Performance counters are
present only in EV 4.

PCl

PCO

ASN

IC

RW,O

RW,O

RW,O

RW,O

If clear enables performance counter 1 interrupt request after 2**12 events
counted. If set enables performance counter 1 interrupt request after 2**8
events counted.

If clear enables performance counter 0 interrupt request after 2**16 events
counted. If set enables performance counter 0 interrupt request after 2**12
events counted.

The Address Space Number field is used in conjunction with the !cache in
EV 4 to further qualify cache entries and avoid some cache flushes. The ASN
is written to the !cache during fill operations and compared with the I-stream
data on fetch operations. Mismatches invalidate the fetch without affecting the
!cache. This function is only present in EV 4.

The IC state bits are unused by hardware.

Table 3-10: BHE,BPE Branch Prediction Selection

BPE BHE Prediction

0

1

1

x
0

1

Not Taken

Sign of Displacement

Branch History Table, (Not available in EV3)

3.8.3.1 Performance Counters

Performance counters are only available in EY 4. They are reset to zero upon powerup, but
are otherwise never cleared. ·They are intended as a means of counting events over a long
period of time relative to the event frequency and therefore provide no means of extracting
intermediate counter values. Since the counters continuously accumulate selected events
despite interrupts being enabled, the first interrupt after selecting a new counter input has an
error bound as large as the selected overflow range. In addition, some inputs may overcount
events occurring simultaneously with D-stream errors which abort the actual event very
late in the pipeline. For example, when counting load instructions, attempts to execute a
load resulting in a DTB miss exception will increment the performance counter after the
first aborted execution attempt and again after the TB fill routine when the load instruction
reissues and completes.

Performance counter interrupts are reported six cycles after the event that caused the counter
to overflow. Additional delay may occur before an interrupt is serviced if the processor is
executing PALcode which always disables interrupts. In either case, events occurring during
the interval between counter overflow and interrupt service are counted· toward the next

3-20 Privileged Architecture Library Code

interrupt. Only in the case of a complete counter wraparound while interrupts are disabled
will an interrupt be missed.

The six cycles before an interrupt is triggered implies that a maximum of 12 instructions may
have completed before the start of the interrupt service routine. In most cases, by examining
the possible interven.ing instructions and the issue rules presented in section 2.9, it is possible
to further isolate trigger events. Two cases always provide a more accurate exception PC.
When counting Icache misses, no intervening instructions can complete and the exception PC
contains the address of the last Icache miss. Branch mispredictions allow a maximum of only
2 instructions to complete before start of the interrupt service routine.

Table 3-11: Performance Counter o Input Selection
MUX0[3:0]

ooox

OOlX

OlOX

OllX

lOOX

1010

1011

nox

lllX

Input

Total Issues I 2

Pipeline Dry

Load Instructions

Pipeline Frozen

Branch Instruc­
tions

PALniode

Total cycles

Total Non-issues I 2

PERF _CNT_H<O>

Comment

Counts total issues divided by 2, e.g dual issue increments
count by 1

Counts cycles where nothing issued due to lack of valid !­
stream data. Causes include !cache fill, misprediction, branch
delay slots and pipeline drain for exception

Counts all Load instructions

Counts cycles where nothing issued due to resource conflict.
Refer to section 2.9 for information regarding scheduling and
issue rules.

Counts all Branch instructions, conditional, unconditional, any
JSR, HW_REI

Counts cycles while executing in PAL mode

Counts total cycles

Counts total non_issues divided by 2, e.g no issue increments
count by 1

Counts external event supplied by pin at selected system clock
cycle interval

Privileged Architecture Library Code 3-21

Table 3-12: Performance Counter 1 Input Selection

MUX1[2:0]

000

001

010

011

100

101

110

111

Input Comment

Dcache miss Counts total Dcache misses

!cache miss Counts total Icache misses

Dual issues Counts cycles of Dual issue

Branch Mispredicts Counts both conditional branch mispredictions and JSR or
HW _REI mispredictions. Conditional branch mispredictions
cost 4 cycles and others cost 5 cycles of dry pipeline delay.

FP Instructions Counts total floating point operate instructions, i.e no FP
branch, load, store

Integer Operate Counts integer operate instructions including LDA,LDAH with
destination other than R31

Store Instructions Counts total store instructions

PERF _CNT_H<l> Counts external event supplied by pin at selected system clock
cycle interval

3.8.4 ITB_PTE_TEMP

The ITB_PTE_TEMP register is a read-only-holding register for ITB_PTE read data. Reads
of the ITB_PTE require two instructions to return the data to the register file. The first
reads the ITB_PTE register to the ITB_PTE_TEMP register. The second returns the ITB_
PTE_TEMP register to the integer register file. The ITB_PTE_TEMP register is updated on
all ITB accesses, both read and write. A read of the ITB_PTE to the ITB_PTE_TEMP should
be followed closely by a read of the ITB_PTE_TEMP to the register file.

Reading the ITB_PTE_TEMP register is only performed while in PALmode regardless of the
state of the HWE bit in the ICCSR IPR.

6
3

3 3 3
5 4 3

1 1 1 1 0 0
3 2 1 0 9 8

0
0

+---------------------+-+----------------+-+-+-+-+---------+
I IAI IUISIEIKI I
I RAZ I S I PFN [3 3 .. 13] I R I RI R I R I . RAZ I
I IMI IEIEIEIEI I
+---------------------+-+----------------+-+-+-+-+---------+

3.8.5 EXC_ADDR

The EXC_ADDR register is a read/write register used to restart the machine after exceptions
or interrupts. It is written by hardware with the PC of the excepting instruction, or the
currently executing instruction at the time of an interrupt or trap. The instruction pointed
to by the EXC_ADDR register did not complete execution. The EXC_ADDR register can also
be read and written directly by PALcode. The HW _REI instruction executes a jump to the
address contained in the EXC_ADDR register. Since the PC must be longword aligned, the
lsb of the EXC_ADDR register is used to indicate PALmode to the hardware.

3-22 Privileged Architecture Library Code

Note that bit[l] is undefined when the EXC_ADDR is read. The actual hardware ignores this
bit, however PALcode must explicitly clear this bit before it pushes the exception address on
the stack.

EV3 requires that the EXC_ADDR register be written before executing a HW _REI. This
restriction applies because the register may not be sign extended despite a read of the same
register indicating so. This restriction does not apply for the EV 4 chip.

IPR Format:

6
3

0 0 0
2 1 0

+--+-+-+
I I I IP I
I PC[63 •. 2] IGIAI
I INILI
+--+-+-+

3.8.6 SL_CLR

This write-only register clears the serial line interrupt request, the performance counter
interrupt request and the CRD interrupt request. EV3 does not contain performance counters
and cannot initiate CRD interrupt requests. Therefore, the write of any data to the SL_CLR
register will clear the remaining serial line interrupt request. EV 4 requires that the indicated
bit be written with a zero to clear the selected interrupt source.

6
3

3 3 3
3 2 1

1 1 1 1 1 1 1 0 0 7 0 0 0 0 0 0 0
6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

+-----------------+-+------------+-+-----------+-+---------+-+---+
I I SI IP I IPI ICI I
I I GN I LI IGN I C I I GN I CI I GN I RI I GN I
I ICI IO I 111 IDI I
+-----------~-----+-+------------+-+-----------+-+---------+-+---+

Table 3-13: SL_CLR

Field Type Description

CRD woe Clears the correctable read error interrupt request.

PCl woe Clears the performance counter 1 interrupt request.

PCO woe Clears the performance counter 0 interrupt request.

SLC woe Clears the serial line interrupt request.

3.8.7 SL_RCV

The serial line receive register contains a single read-only bit used with the interrupt control
registers and the sRomD_h and sRomClk_h pins to provide an on-chip serial line function.
The RCV bit is functionally connected to the sRomD_h pin after the Icache is loaded from
the external serial ROM. Reading the RCV bit can be used to receive external data one bit
at a time under a software timing loop. A serial line interrupt is requested on detection of
any transition on the receive line which sets the SL_REQ bit in the HIRR. Using a software

Privileged Architecture Library Code 3-23

timing loop, the RCV bit can be read to receive data one bit at a time. The serial line interrupt
can be disabled by clearing the HIER register SL_ENA bit.

EV41PR

6
3

0 0 0 0
4 3 2 0

+--+-+-----+
I IRI I
I RAZ ICI RAZ I
I IVI I
+--+-+-----+
EV3IPR

6
3

0 0 0
5 4 3

0
0

+--+-+-------+
I IRI I
I RAZ ICI RAZ I
I IVI I
+--+-+-------+

3.8.8 ITBZAP

A write of any value to this IPR invalidates all eight ITB entries. It also resets the NLU
pointer to its initial state. The ITBZAP register should only be written in PAL mode.

3.8.9 ITBASM

A write of any value to this IPR invalidates all ITB entries in which the ASM bit is equal to
zero. The ITBASM register should only be written in PAL mode.

3.8.1-0 ITBIS

A write of any value to this IPR invalidates all eight ITB entries. It also resets the NLU
pointer to its initial state. The ITBIS register should only be written in PAL mode.

3.8.11 PS

The processor status register is a read/write register containing only the current mode bits
of the architecturally defined PS.

Write Format:

6
3

0 0 0 0 0
5 4 3 2 0

+--+-+-+-----+
I ICICI I
I I GN I MI MI I GN I
I 111 O I I
+--+-+-+-----+

3-24 Privileged Architecture Library Code

Read Format:

6
3

3 3 3
5 4 3

0 0 0
2 1 0

+-------------------------+-+--------------------------+-+-+
I ICI ICIRI
I RAZ IMI RAZ IMIAI
I 111 Io I Z I
+-------------------------+-+--------------------------+-+-+

3.8.12 EXC_SUM

The exception summary register records the various types of arithmetic traps that have
occurred since the last time the EXC_SUM was written (cleared). When the result of an
arithmetic operation produces an arithmetic trap, the corresponding EXC_SUM bit is set.

In addition, the register containing the result of that operation is recorded in the exception
register write mask IPR, as a single bit in a 64-bit field specifying registers F31-FO and 131-IO.
This IPR is visible only through the EXC_SUM register. The EXC_SUM register provides a
one-bit window to the exception register write mask. Each read to the EXC_SUM shifts one
bit in order F31-FO then 131-IO. The read also clears the corresponding bit. Therefore, the
EXC_SUM must be read 64 times to extract the complete mask and clear the entire register.

Any write to EXC_SUM clears bits [8 .. 2] and does not affect the write mask.

The write mask register bit clears three cycles after a read. Therefore, code intended to
read the register must allow at least three cycles between reads to allow the clear and shift
operation to complete in order to insure reading successive bits.

6
3

3 3 3
4 3 2 9 8 7 6 5 4 3 2 1 0

+----------------------------+-+-----------+-+-+-+-+-+-+-+---+
I IMI IIIIIUIFIDIIISI RI
I RAZ ISi RAZ IOININIOIZINIWI A I
I IKI IVIEIFIVIEIVICI Z I
+----------------------------+-+-----------+-+-+-+-+-+-+-+---+

Privileged Architecture Library Code 3-25

Table 3-14: EXC_SUM

Field Type

swc WA

INV WA

DZE WA

FOV WA

UNF WA

INE WA

IOV WA

MSK RC

Description

Indicates Software Completion possible. The bit is set after a floating point
instruction containing the /S modifier completes with an arithmetic trap and all
previous floating point instructions that trapped since the last MTPR EXC_SUM
also contained the /S modifier. The SWC bit is cleared whenever a floating point
instruction without the /S modifier completes with an arithmetic trap. The bit
remains cleared regardless of additional arithmetic traps until the register is written
via an MTPR instruction. The bit is always cleared upon any MTPR write to the
EXC_SUM register.

Indicates Invalid Operation.

Indicates Divide by Zero.

Indicates Floating Point Overflow.

Indicates Floating Point Underflow.

Indicates Floating Inexact Error.

Indicates Fbox Convert to Integer Overflow or Integer Arithmetic Overflow.

Exception Register Write Mask IPR Window.

3.8.13 PAL_BASE

The PAL base register is a read/write register containing the base address for PALcode. This
register is cleared by hardware at reset.

PAL base register format:

6
3

3 ~
4 3

1 1 0
4 3 0

+---------------------------+------------------------+-----+
I I I IGN I
I IGN/RAZ I PAL_BASE[33 .. 14] I I I
I I I RAZ I
+---------------------------+------------------------+-----+

3.8.14 HIRR

The Hardware Interrupt Request. Register is a read-only register providing a record of all
currently outstanding interrupt requests and summary bits at the time of the read. For each
bit of the HIRR [5:0] there is a corresponding bit of the HIER (Hardware Interrupt Enable
Register) that must be set to request an interrupt. In addition to returning the status of the
hardware interrupt requests, a read of the HIRR returns the state of the software interrupt
and AST requests. Note that a read of the HIRR may return a value of zero if the hardware
interrupt was released before the read (passive release). The register guarantees that the
HWR bit reflects the status as shown by the HIRR bits. All interrupt requests are blocked
while executing in PALmode.

3-26 Privileged Architecture Library Code

Read Format:

6
3

3 3
3 2

2 2
9 8

1 1 1
4 3 2

0 0 0 0
0 9 8 7

0 0 0 0 0 0
5 4 3 2 1 0

+-----------+-------+--------+-+------+-+-+------+-+-+-+-+-+
I IU SE Kl ISi IPIPI ICIAISIHIRI
I RAZ I ASTRR I SIRR ILi HIRR ICICI HIRR IRITIWIWIAI
I I [3 .. O] I [15 .. 1] IRI [2 •. O] 10111 [5 •• 3] IRIRIRIRIZI
+-----------+-------+--------+-+------+-+-+------+-+-+-+-+-+

Table 3-15: HIRR

Field

HWR

SWR

ATR

Type

RO

RO

RO

Description

ls set if any hardware interrupt request and corresponding enable is set

Is set if any software interrupt request and corresponding enable is set

Is set if any AST request and corresponding enable is set. This bit also
requires that the processor mode be equal to or higher than the request
mode. In EV4 chips, a further requirement is that SIER[2] must be set to

HIRR[5 .. 0] RO Corresponds to pins lrq_h[5 .. 0]. ye.j 1(kAo
allow AST interrupt requests. ~ ~

SIRR[15 .. 1] RO Corresponds to software interrupt request 15 thL!:rUY--.11..-------

ASTRR[3 .. 0] RO Corresponds to AST request three th zero (USEK).

PCl RO

PCO RO

SLR RO

Performance counter 1 interrupt request. Performance counters are only
present in EV 4.

Performance counter 0 interrupt request. Performance counters are only
present in EV4.

Serial line interrupt request.

CRR RO CRD correctable read error interrupt request. This bit is only present in EV SL~ C:.L«.
chips and read as zero in EV3.

3.8.15 SIRR

The Software Interrupt Request Register is a read/write register used to control software
· interrupt requests. For each bit of the SIRR there is a corresponding bit of the SIER (Software

Interrupt Enable Register) that must be set to request an interrupt. Reads of the SIRR return
the complete set of interrupt request registers and summary bits, see the HIRR Table 3-15
for details. All interrupt requests are blocked while executing in PALmode.

Write Format:

6
3

4 4
8 7

3 3
3 2

0
0

+-------------+-------------+------------------------------+
I I I I
I IGN I SIRR[15 •. 1] I IGN I
I I I I
+-------------+-------------+------------------------------+

Privileged Architecture Library Code 3-27

Read Format:

6
3

3 3
3 2

2 2
9 8

1 1 1
4 3 2

0 0 0 0
0 9 8 7

0 0 0 0 0 0
5 4 3 2 1 0

+-----------+-------+--------+-+------+-+-+------+-+-+-+-+-+
I IU SE Kl ISi IPIPI ICIAISIHIRI
I RAZ I ASTRR I SIRR ILi HIRR ICICI HIRR IRITIWIWIAI
I I (3 .. 0] I (15 .. 1) IRI (2 .. OJ 10111 (5 .• 3) IRIRIRIRIZI
+-----------+-------+--------+-+------+-+-+------+-+-+-+-+-+

3.8.16 ASTRA

The Asynchronous Trap Request Register is a read/write register. It contains bits to request
AST interrupts in each of the processor modes. In order to generate an AST interrupt, the
corresponding enable bit in the ASTER must be set and the processor must be in the selected
processor mode or higher privilege as described by the current value of the PS CM bits.
In addition, AST interrupts are only enabled in EV 4 if the SIER[2] is set. This provides a
mechanism to lock out AST requests over certain IPL levels. In EV3, this function is provided
in PAL code. All interrupt requests are blocked while executing in PALmode. Reads of the
ASTRR return the complete set of interrupt request registers and summary bits, see the
HIRR Table 3-15 for details.

Write Format:

6
3

5 5 5 4 4 4
2 1 0 9 8 7

0
0

+---------+-+-+-+-+--+
I IUISIEIKI I
I IGN I Al AIAI Al IGN I
I IRIRIRIRI I
+---------+-+-+-+-+-~--------------------------------------+

Read Format:

6
3

3 3
3 2

2 2
9 8

1 1 1
4 3 2

0 0 0 0
0 9 8 7

0 0 0 0 0 0
5 4 3 2 1 0

+-----------+-------+--------+-+------+-+-+------+-+-+-+-+-+
I IU SE Kl ISi IPIPI ICIAISIHIRI
I RAZ I ASTRR I SIRR ILi HIRR ICICI HIRR IRITIWIWIAI
I I (3 .. OJ I (15 .. l] IRI [2 .• 0] 10111 (5 .. 3) IRIRIRIRIZI
+-----------+-------+--------+-+------+-+-+------+-+-+-+-+-+

3.8.17 HIER

The Hardware Interrupt Enable Register is a read/write register. It is used to enable
corresponding bits of the HIRR requesting interrupt. The PCO, PCl, SLE and CRE bits
of this register enable the performance counters, serial line and correctable read interrupts.
There is a one-to-one correspondence between the interrupt requests and enable bits, as with
the reads of the interrupt request IPRs, reads of the HIER return the complete set of interrupt
enable registers, see the HIRR Table 3-15 for details.

Since the CRD interrupt request is not supported in EV3, the CRE bit is not present in the
EV3 register. It is ignored on writes and read back as zero.

3-28 Privileged Architecture Library Code

Write Format:

6
3

3 3 3 1 1 1
3 2 1 6 5 4

0 0 0
9 8 7

0 0
2 0

+---------------------------+-+-----+-+------------+-+-----+-+---+
I I SI IP I IPI I Cl I
I IGN IL I IGN IC I HIER [5 .• O] IC I IGN IR I I
I I El 111 I 01 I El I
+---------------------------+-+-----+-+------------+-+-----+-+---+
Read Format:

6
3

3 3 3 3 2 2
3 2 1 0 9 8

1 1 1
4 3 2

1 0 0 0
0 9 8 7

0 0 0
5 4 3

0
0

+----------+-+-+-+-+-------------+-+------+-+-+------+-+-------+
I IUISIEIKI ISi IPIPI ICI I
I RAZ IAIAIAIAI SIER[lS •• l] ILi HIER ICICI HIER IRI RAZ I
I IEIEIEIEI IEI [2 •• O] 10111 [5 •• 3] IEI I
+----------+-+-+-+-+-------------+-+------+-+-+------+-+-------+

3.8.18 SIER
The Software Interrupt Enable Register is a read/write register. It is used to enable
corresponding bits of the SIRR requesting interrupts. There is a one-to-one correspondence
between the interrupt requests and enable bits, as with the reads of the interrupt request
IPRs, reads of the SIER return the complete set of interrupt enable registers, see the HIRR
Table 3-15 for details.

The CRE bit is only supported in EV 4. Reads of this register will always return zero on the
CRE bit in EV3.

Write Format:

6
3

4 4
8 7

3 3
3 2

0
0

+-------------+-------------+------------------------------+
I I I I
I IGN I SIER[lS .. l] I IGN I
I I I I
+-------------+-------------+------------------------------+
Read Format:

6
3

3 3 3 3 2 2
3 2 1 0 9 8

1 1 1
4 3 2

1 0 0 0
0 9 8 7

0 0 0
5 4 3

0
0

+-------~--+-+-+-+-+-------------+-+------+-+-+------+-+-------+
I IUISIEIKI ISi IPIPI ICI I
I RAZ IAIAIAIAI SIER[lS •. l] ILi HIER ICICI HIER IRI RAZ I
I IEIEIEIEI IEI [2 •• OJ I 0111 (5 .• 3] IEI I
+----------+-+-+-+-+-------------+-+------+-+-+------+-+-------+

Privileged Architecture Library Code 3-29

3.8.19 ASTER
The AST Interrupt Enable Register is a read/write register. It is used to enable corresponding
bits of the ASTRR requesting interrupts. There is a one-to-one correspondence between the
interrupt requests and enable bits, as with the reads of the interrupt request IPRs, reads of
the ASTER return the complete set of interrupt enable registers, see the HIRR Table 3-15
for details.

The CRE bit is only supported in EV 4. Reads of this register will always return zero on the
CRE bit in EV3.

Write Format:

6
3

5 5 5 4 4 4
2 1 0 9 8 7

0
0

+---------+-+-+-+-+--+
I IOISIEIKI I
I IGN IAIAIAIAI IGN I
I IEIEIEIEI I

+---------+-+-+-+-+------~---------------------------------+

Read Format:

6
3

3 3 3 3 2 2
3 2 1 0 9 8

1 1 1
4 3 2

1 0 0 0
0 9 8 7

0 0 0
5 4 3

0
0

+----------+-+-+-+-+-------------+-+------+-+-+------+-+-------+
I IUISIEIKI ISi IPIPI ICI I
I RAZ IAIAIAIAI SIER[lS .• l] ILi HIER ICICI HIER IRI RAZ I
I IEIEIEIEI IEI [2 •• O] 10111 (5 •• 3] IEI I
+----------+-+-+-+-+-------------+-+------+-+-+------+-+-------+

3.8.20 SL_XMIT
The serial line transmit register contains a single write-only bit used with the interrupt
control registers and the sRomD_h and sRomClk_h pins to provide an on-chip serial line
function. The TMT bit is functionally connected to the sRomClk_h pin after the Icache is
loaded from the external serial ROM. Writing the TMT bit can be used to transmit data off
chip one bit at a time under a software timing loop.

6
3

0 0 0
5 4 3

0
0

+--+-+-------+
I ITI I
I IGN IMI IGN I
I ITI I

+--+-+-------+

3-30 Privileged Architecture Library Code

3.9 Abox IPRs

3.9.1 DTB_CTL

The large-page-select (GH=ll(bin)) field selects between the EVx small-page and large-page
DTBs for DTB fills. If GH= ll(bin) then the large page DTB is chosen for DTB_PTE writes
and reads. If GH is anything else then the small page DTB is chosen for DTB_PTE writes
and reads. The GH field is write only.

6
3

0 00 0
7 65 4

0
0

+---+--+---------+
I I I I
I IGN IGHI IGN I
I I I I
+---+--+---------+

3.9.2 DTB_PTE

The DTB PTE register is a read/write register representing the 32-entry small-page and
4-entry large-page DTB page table entries. The entry to be written is chosen by a not-last­
used algorithm implemented in hardware and the value in the DTB_CTL register. Writes to
the DTB_PTE use the memory format bit positions as described in the ALPHA SRM with
the exception that some fields are ignored. In particular the valid bit is not represented in
hardware.

To insure the integrity of the DTBs, the DTB's tag array is updated simultaneously from the
internal tag register when the DTB_PTE register is written. Reads of the DTB_PTE require
two instructions. First, a read from the DTB_PTE sends the PTE data to the DTB_PTE_
TEMP register, then a second instruction reading from the DTB _PTE_TEMP register returns
the PTE entry to the register file. Reading or writing the DTB_PTE register increments the
TB entry pointer of the DTB indicated by the DTB_CTL IPR which allows reading the entire
set of DTB PTE entries.

Small Page Format:

6 5 5
3 3 2.

3 3
2 1

1 1 1 1 1 1 1 0 0 00 0 0 0 0 0
6 5 4 3 2 1 0 9 8 75 4 3 2 1 0

+---+---------------+---------+-+-+-+-+-+-+-+-+--+-+-+-+-+-+
I I I IUISIEIKIUISIEIKII IAIIIFIFIII
IIGNI PFN[33 •. 13] I IGN IWIWIWIWIRIRIRIRIG ISIGIOIOIGI
I I I IEIEIEIEIEIEIEIEIN IMINIWIRINI
+---+---------------+---------+-+-+-+-+-+-+-+-+--+-+-+-+-+-+

Large Page Format:

6 5 5
3 3 2

4 4
1 0

1 1 1 1 1 1 1 0 0 00 0 0 0 0 0
6 5 4 3 2 1 0 9 8 75 4 3 2 1 0

+---+---------------+---------+-+-+-+-+-+-+-+-+--+-+-+-+-+-+
I I I IUISIEIKIUISIEIKII IAIIIFIFIII
IIGNI PFN[33 .. 22] I IGN IWIWIWIWIRIRIRIRIG ISIGIOIOIGI
I I I IEIEIEIEIEIEIEIEIN IMINIWIRINI
+---+---------------+---------+-+-+-+-+-+-+-+-+--+-+-+-+-+-+

Privileged Architecture Library Code 3-31

3.9.3 DTB_PTE_TEMP

The DTB_PTE_TEMP register is a read-only holding register for DTB_PTE read data. Reads
of the DTB_PTE require ·two instructions to return the data to the register file. The first
reads the DTB_PrE register to the DTB_PTE_TEMP register. The second returns the DTB_
PTE_TEMP register to the integer register file.

Small Page Format:

6
3

3 3 3
5 4 3

1 1 1 1 0 0 0 0 0 0 0 00
3 2 1 0 9 8 7 6 5 4 3 20

+--------------+-+------------------+-+-+-+-+-+-+-+-+-+-+--+
I IAI IUISIEIKIUISIEIKIFIFI RI
I RAZ ISi PFN[33 .• 13] IRIRIRIRIWIWIWIWIOIOI Al
I IMI IEIEIEIEIEIEIEIEIWIRI ZI
+--------------+-+------------------+-+-+-+-+-+-+-+-+-+-+--+

Large Page Format:

6
3

3 3 3
5 4 3

2 2 1 1 1 1 0 0 0 0 0 0 0 00
2 2 3 2 1 0 9 8 7 6 5 4 3 20

+--------------+-+-------------+----+-+-+-+-+-+-+-+-+-+-+--+
I IAI II IUISIEIKIOISIEIKIFIFI RI
I RAZ ISi PFN[33 .• 22] I G IRIRIRIRIWIWIWIWIOIOI Al
I IMI I N IEIEIEIEIEIEIEIEIWIRI ZI
+--------------+-+-------------+----+-+-+-+-+-+~+-+-+-+-+--+

3.9.4 MM_CSR

When D-stream faults occur the information about the fault is latched and saved in the MM_
CSR register. The VA and MMCSR registers are locked against further updates until software
reads the VA register. Palcode must explicitly unlock this register whenever its entry point
was higher in priority than a DTB miss. MM_ CSR bits are only modified by hardware when
the register is not locked and a memory management error or a DTB miss occurs. The MM_
CSR is unlocked after reset.

6
3

1 1
5 4

0 0
9 8

0 0 0 0 0
4 3 2 1 0

+--------------------------------+----------+------+-+-+-+-+
I I I IFIFIAIWI
I RAZ I OPCODE I RA IOIOICIRI
I I I IWIRIVI I
+--------------------------------+----------+------+-+-+-+-+

3-32 Privileged Architecture Library Code

Table 3-16:

Field

WR

ACV

FOR

FOW

RA

OPCODE

3.9.5 VA

MM_CSR

Type

RO

RO

RO

RO

RO

RO

D~scription

Set if reference which caused error was a write.

Set if reference caused an access violation.

Set if reference was a read and the PTE's FOR bit was set.

Set if reference was a write and the PTE's FOW bit was set.

Ra field of the faulting instruction.

Opcode field of the faulting instruction.

When D-stream faults or DTB misses occur the effective virtual address associated with the
fault or miss is latched in the read-only VA register. The VA and MMCSR registers are locked
against further updates until software reads the VA register. The VA IPR is unlocked after
reset. Palcode must explicitly unlock this register whenever its entry point was higher in
priority than a DTB miss.

3.9.6 DTBZAP

A write of any value to this IPR invalidates all 32 small-page and four large-page DTB entries.
It also resets the NLU pointer to its initial state.

3.9.7 DTBASM

A write of any value to this IPR invalidates all 32 small-page and 4 large-page DTB entries
in which the ASM bit is equal to zero.

3.9.8 DTBIS

If the virtual address in the RB field is mapped in either the small-page or large-page DTB
then those entries are invalidated.

3.9.9 FLUSH_IC

A write of any value to this pseudo-IPR flushes the entire instruction cache.

3.9.10 FLUSH_IC_ASM

In EV4, a write of any value to this pseudo-IPR invalidates all Icache blocks in which the
ASM bit is clear. In EV3, a write to this pseudo-register is equivalent to a NOP.

Privileged Architecture Library Code 3-33

3.9.11 ABOX_CTL

63 12 11 10 9 8 7 6 5 4 3 2 1 0
+------------------------+--+--+--+--+--+--+--+--+--+--+--+--+
I I I I I I I I I
I I GN I WO I WO I I GN I WO I WO I WO I WO I
I I I I I I I I I
+------------------------+--+--+--+--+--+--+--+--+--+--+--+--+

I I
I I
I +-> WB DIS
+----> MCHK EN

+-------> CRD EN
+----------> IC SBUF EN

+-------------------------------> DC ENA
+----------------------------------> DC FHIT

Table 3-17: Abox Control Register

Field

WB_DIS

MCHK_EN

CRD_EN - EV 4 only

IC_SBUF_EN - EV4
only

DC_EN

DC_FHIT

Type

wo,o

wo,o

wo,o

wo,o

wo,o

wo,o

Description

Write Buffer unload Disable. When set, this bit prevents the write
buffer from sending write data to the BIU. It should be set for
diagnostics only.

Machine Check Enable. When this bit is set the Abox generates
a machine check when errors which are not correctable by the
hardware are encountered. When this bit is cleared, uncorrectable
errors do not cause a machine check, but the BIU_STAT, DC_STAT,
BIU _ADDR, FILL_ADDR and DC_ADDR registers are updated and
locked when the errors occur.

Corrected read data interrupt enable. When this bit is set the Abox
generates an interrupt request whenever a pin bus transaction is
terminated with a cAck_h code of SOFT_ERROR.

!cache stream buffer enable. When set, this bit enables operation of
a single .entry !cache stream buffer.

Dcache enable. When clear, this bit disables and flushes the Dcache.
When set, this bit enables the Dcache.

Dcache force hit. When set, this bit forces all D-stream references to
hit in the Dcache. This bit takes precedence over DC_EN, i.e. when
DC_FHIT is set and DC_EN is clear all D-stream references hit in
the Dcache.

3-34 Privileged Architecture Library Code

3.9.12 ALT_MODE

ALT_MODE is a write-only IPR. The AM field specifies the alternate processor mode used by
HW _LD and HW _ST instructions which have their ALT bit (bit 14) set.

6
3

0 00 0
5 43 2

0
0

+--+--+--------+
I IA I I
I IGN I M I I GN I
I I I I
+--+--+--------+

Table 3-18: ALT Mode

ALT_
MODE[4 •• 3] Mode

00 Kernel

01 Executive

10 Supervisor

11 User

3.9.13 cc
EVx supports a cycle counter as described in the ALPHA SRM. This counter, when enabled,
increments once each CPU cycle. HW _MTPR Rn,CC writes CC[63 .. 32] with the value held
in Rn[63 .. 32], and CC[31..0] are not changed. This register is read by the RCC instruction
defined in the ALPHA SRM.

3.9.14 CC_CTL

HW_MTPR Rn,CC_CTL writes CC[31..0] with the value held in Rn[31..0], and CC[63 .. 32] are
not changed. CC[3 .. 0] must be written with zero. If Rn[32] is set then the counter is enabled,
otherwise the counter is disabled. CC_CTL is a write-only IPR.

Privileged Architecture Library Code 3-35

3.9.15 BIU_CTL

6 3 3 3
3 7 6 5

3 3 3 2 2
2 1 0 8 7

1 1 1
3 2 1 8 7 4 3 2 1 0

+---+-+-----+-+-----+-----------------+-+---------+---------+-+-+-+-+
I I I
I IGNI I
I I I

I I
I I
I I

I I I I I I I I I I
IBC_WE_CTL[l5 .. l] IGIBC_WR_SPDIBC_RD_SPDI I I I I
I INI I I I I I I

+---+-+-----+-+-----+-----------------+-+-------~-+---------+-+-+-+-+

I I I I I I I I
I I I I I I I +-> BC ENA
I I I I I I +---> ECC
I I I I I +-----> OE
I I I I +-------> BC FHIT
I I I +---> BC SIZE
I I +---> BAD TCP
I +---> BC PA DIS
+---> BAD DP

Table 3-19: BIU Control Register

Field Type Description

BC_EN wo,o

ECC WO

OE wo,o

BC_FHIT wo,o

BC_RD_SPD WO

External cache enable. When clear, this bit disables the external cache.
When the external cache is disabled the BIU does not probe the external
cache tag store for read and write references; it launches a request on cReq_h
immediately.

When this bit is set EVx generates/expects ECC on the check_h pins. When
this bit is clear EVx generates/expects parity on four of the check_h pins.

When this bit is set EVx does not assert its chip enable pins during RAM
write cycles, thus enabling these pins to be connected to the output enable
pins of the cache RAMs.

External cache force hit. When this bit is set and J3C_EN is also set, all pin
bus READ_BLOCK and WRITE_BLOCK transactions are forced to hit in
the external cache. Tag and tag control parity are ignored when the BIU
operates in this mode. BC_EN takes precedence over BC_FHIT. When BC_
EN is clear and BC _FHIT is set no tag probes occur and external requests
are directed to the cReq_h pins.

Note that the BC_PA_DIS field takes precedence over the BC_FHIT bit.

External cache read speed. This field indicates to the BIU the read access
time of the RAMs used to implement the off-chip external cache, measured
in CPU cycles. It should be written with a value equal to one less the read
access time of the external cache RAMs.

Access times for reads must be in the range 16 .. 3 CPU cycles, which means
the values for the BC_RD_SPD field are in the range of 15 .. 2.

BC_RD_SPD are not initialized on reset and must be explicitly written before
enabling the external cache.

3-36 Privileged Architecture Library Code

\
/

Table 3-19 (Cont.): BIU Control Register

Field Type

BC_WR_SPD WO

BC_WE_CTL WO

BC_SIZE WO

BAD_TCP- EV4 WO,O
only

BC_PA_DIS

BAD_DP - EV4
only

WO

WO

Description

External cache write speed. This field indicates to the BIU the write cycle
time of the RAMs used to implement the off-chip external cache, measured
in CPU cycles. It should be written with a value equal to one less the write
cycle time of th~ external cache RAMs.

Access times for writes must be in the range 16 .. 2 CPU cycles, which means
the values for the BC_RD_SPD field are in the range of 15 .. 1.

BC_ WR_SPD are not initialized on reset and must be explicitly written
before enabling the external cache.

External cache write enable control. This field is used to control the timing
of the write enable and chip enable pins during writes into the data and tag
control RAMs. It consists of 15 bits, where each bit determines the value
placed on the write enable and chip enable pins during a given CPU cycle
of the RAM write access. When a given bit of BC_WE_CTL is set, the write
enable and chip enable pins are asserted during the corresponding CPU cycle
of the RAM access. BC_WE_CTL[O] (bit 13 in BIU_CTL) corresponds to the
second cycle of the write access, BC_WE_CTL[l] (bit 14 in BIU_CTL) to the
third CPU cycle, and so on. The write enable pins will never be asserted in
the first CPU cycle of a RAM write access.

Unused bits in the BC_ WE_CTL field must be written with zeros.

BC_ WE_CTL is not initialized on reset and must be explicitly written before
enabling the external cache.

This field is used to indicate the size of the external cache. BC_SIZE is
not initialized on reset and must be explicitly written before enabling the
external cache. See Table 3-20 for the encodings.

When set, BAD_TCP causes EV4 to write bad parity into the tag control
RAM whenever it does a fast external RAM write.

This 4-bit field may be used to prevent the CPU chip from using the external
cache to service reads and writes based upon the quadrant of physical
address space which they reference. The correspondence between this bit
field and the physical address space is shown in Table 3-21.

When a read or write reference is presented to the BIU the values of BC_PA_
DIS, BC_ENA and physical address bits [33:32] together determine whether
to attempt to use the external cache to satisfy the reference. If the external
cache is not to be used for a given reference the BIU does not probe the tag
store, and makes the appropriate system request immediately. The value of
BC_PA_DIS has NO impact on which portions of the physical address space
may be cached in the primary caches. System components control this via
the RDACK field of the pin bus.

BC _PA_DIS are not initialized by reset.

When set, BAD_DP causes EV4 to invert the value placed on bits [0],[7],[14]
and [21] of the check_h[27 .. O] field during off-chip writes. This produces bad
parity when EV4 is in parity mode, and bad check bit codes when EV4 is in
ECC mode.

Privileged Architecture Library Code 3-37

Table 3-20: BC_SIZE

BC_SIZE Size

000 128 Kbytes

0 0 1 256 Kbytes

010 512 ~bytes

0 11 1 Mbytes

100 2 Mbytes

101 4 Mbytes

11 0 8 Mbytes

Table 3-21: BC_PA_DIS

BIU_ CTL bits Physical Address

[32] PA[33 .. 32] = 0

[33] PA[33 .. 32] = 1

[34] PA[33 .. 32] = 2

[35] PA[33 .. 32] = 3

3w 10 PAL_ TEMPs
The CPU chip contains 32 registers which are accessible via HW _MXPR instructions. These
registers provide temporary storage for PALcode.

3-38 Privileged Architecture Library Code

3.10.1 DC_STAT

The DC_STAT is a read-only IPR.

Overview:

When an external ECC or parity error is recognized during a primary cache fill operation,
the DC_STAT register is locked against further updates. In the event that the cache fill was
due to D-stream activity the contents of this register may be used by PAL code in conjunction
with information latched elsewhere (see Section 3.12) to recover from some single-bit ECC
errors. DC_STAT is unlocked when DC_ADDR is read.

63 15 14 13 12 11 10 9 8 4 3 2 0
+----------------------+--+--+--+--+--+--+----------+--+--------+
I I I I I I I I I I I
I RAZ IROIROIROIROIROIROI RO IROI RA Z I
I I I I I I I I I I I
+----------------------+--+--+--+--+--+--+----------+--+--------+

I I I I I I I I
I I I I I I I +-----------> DC HIT
I I I I I I +-------------------> RA
I I I I I +-------------------------> INT
I I I I +----------------------------> LW
I I I +-------------------------------> V'AX FP
I I +----------------------------------> LOCK
I +-------------------------------------> STORE
+--> SEO

Table 3-22: Dcache Status Register

Field Type Description

DC_HIT RO This bit indicates whether the last load or store instruction processed by the
Abox hit, (DC_HIT set) or missed, (DC_HIT clear) the Dcache. In EV4, loads
that miss the Dcache may be completed without requiring external reads.
e.g. pending fill or pending store hits.

SEO RO Second Error Occurred. Set when an error which would normally lock the
DC_STAT register occurs while the DC_STAT register is already locked.

The following bits are only meaningful if the FILL_ECC or FILL_DPERR bit in the BIU_
STAT register is set.

Privileged Architecture Library Code 3-39

Table 3-23: Dcache STAT Error Modifiers

Field Type Description

RA RO The Ra field of the instruction which resulted in the error.

INT RO When set, indicates an integer load or store.

LW RO

VAX_FP RO

When set, indicates that the data length of the load or store was longword.

When INT is clear, this bit is set to indicate that a VAX floating point format
load or store caused the error.

LOCK RO

STORE RO

3.10.2 DC_ADDR

This bit is set to indicate that the error stemmed from a LDLL, LDQL, STLC,
or STQC instruction.

This bit is set to indicate that the error stemmed from a store instruction.

In EV3, this is a read-only register which contains bits [33 .. 2] of the physical address
generated by the load instruction associated with errors reported by the FILL_ECC or FILL_
DPERR bits in the BIU_STAT register.

In EV4, this is a pseudo-register used for unlocking DC_STAT.

In both EV3 and EV4, DC_STAT and DC_ADDR are unlocked when DC_ADDR is read.

3-40 Privileged Architecture Library Code

3.10.3 BIU_STAT

BIU _STAT is a read-only IPR.

When one of BIU_HERR, BIU_SERR, BC_TPERR or BC_TCPERR is set, BIU_STAT[6 .. 0]
are locked against further updates, and the address associated with the error is latched and
locked in the BIU_ADDR register. BIU_STAT[6 .. 0] and BIU_ADDR are also spuriously locked
when FILL_ECC or BIU_DPERR is set. BIU_STAT[7 .. 0] and BIU_ADDR are unlocked when
the BIU_ADDR register is read.

When FILL_ECC or BIU_DPERR is set, BIU_STAT[13 .. 8] are locked against further updates,
and the address associated with the error is latched and locked in the FILL_ADDR register.
BIU_STAT[14 .. 8] and FILL_ADDR are unlocked when the FILL_ADDR register is read.

This register is not unlocked or cleared by reset and needs to be explicitly cleared by PALcode.

63 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+--+--+--+--+--+--+-----+--+--+--+--+--+--------+--+--+--+--+
I I I I I I RI I I I I I I I
I RAZ I RO I RO I RO I RO I A I RO I RO I RO I RO I RO I RO I RO I
I I I I I I ZI I I I I I I I
+--+--+--+--+--+--+-----+--+--+--+--+--+--------+--+--+--+--+

Table 3-24: BIU STAT

Field Type

BIU_HERR RO

BIU_SERR RO

BC_TPERR RO

BC_TCPERR RO

BIU_CMD RO

I I I I I I I I I I I

I I I I I I I I I I +-> BIU HERR
I I I I I I I I I +----> BIU SERR
I I I I I I I I +-------> BC TPERR
I I I I I I I +----------> BC TCPERR
I I I I I I +----------------> BIU_CMD
I I I I I +----------------------> BIU_SEO
I I I I +-------------------------> FILL_ECC
I I I +-------------------------------> FILL_DPERR
I I +----------------------------------> FILL_IRD
I +---------------------------------------> FILL_QW
+-----------------------------------~-------> FILL SEO

Description

This bit, when set, indicates that an external cycle was terminated with the
cAck_h pins indicating HARD _ERROR.

This bit, when set, indicates that an external cycle was terminated with the
cAck_h pins indicating SOFT_ERROR.

This bit, when set, indicates that a external cache tag probe encountered bad
parity in the tag address RAM.

This bit, when set, indicates that a external cache tag probe encountered bad
parity in the tag control RAM.

This field latches the cycle type on the cReq_h pins when a BIU _HERR,
BIU_SERR, BC_TPERR, or BC_TCPERR error occurs.

Privileged Architecture Library Code 3-41

Table 3-24 (Cont.): BIU STAT

Field Type Description

BIU_SEO RO This bit, when set, indicates that an external cycle was terminated with the
cAck_h pins indicating HARD_ERROR or that a an external cache tag probe
encountered bad parity in the tag address RAM or the tag control RAM while
one ofBIU_HERR, BIU_SERR, BC_TPERR, or BC_TCPERR was already set.

FILL_ECC RO

FILL_DPERR RO

FILL_IRD RO

FILL_QW RO

FILL_SEO RO

3.10 .. 4 BIU_ADDR

ECC error. This bit, when set, indicates that primary cache fill data received
from outside the CPU chip contained an ECC error.

Fill Parity Error. This bit when set, indicates that the BIU received data
with a parity error from outside the CPU chip while performing either a
Dcache or lcache fill. FILL_DPERR is only meaningful when the CPU chip is
in parity mode, as opposed to ECC mode.

This bit is only meaningful when either FILL_ECC or FILL_DPERR is set.
FILL_IRD is set to indicate that the error which caused FILL_ECC or FILL_
DPERR to set occurred during an Icache fill and clear to indicate that the
error occurred during a Dcache fill.

This field is only meaningful when either FILL_ECC or FILL_DPERR is set.
FILL_ QW identifies the quadword within the hexaword primary cache fill
block which caused the error. It can be used together with FILL_ADDR[33 .. 5]
to get the complete physical address of the bad quadword.

This bit, when set, indicates that a primary cache fill operation resulted in
either an uncorrectable ECC error or in a parity error while FILL_ECC or
FILL_DPERR was already set.

This read-only register contains the physical address associated with errors reported by BIU_
STAT[7 .. 0]. Its contents are meaningful only when one of BIU _HERR, BIU _SERR, BC_
TPERR, or BC_TCPERR are set. Reads of BIU_ADDR unlock both BIU_ADDR and BIU_
STAT[7 .. 0].

In both EV3 and EV4, BIU_ADDR[33 .. 5] contain the values of adr_h[33 .. 5] associated with
the pin bus transaction which resulted in the error indicated in BIU _STAT[7 .. 0].

In EV3, if the BiU_CMD field of the BIU_STAT register indicates that the transaction
which received the error was READ_BLOCK or LDx/L, then BIU_STAT[4 .. 3] identify which
quadword within the 32-byte cache block the CPU was attempting to read when the primary
cache miss occurred. This applies to both I-stream and D-stream reads. If the BIU_CMD
field of the BIU_STAT register encodes any pin bus command other than READ_BLOCK or
LDx/L, then BIU_ADDR[4 .. 3] will contain zeros. BIU_ADDR[63 .. 34] and BIU_ADDR[2 .. 0]
always read as zero.

In EV4, if the BIU_CMD field of the BIU_STAT register indicates that the transaction
which received the error was READ _BLOCK or LDx/L, then BIU _STAT[4 .. 2] are UNPRE­
DICTABLE. If the BIU_CMD field of the BIU_STAT register encodes any pin bus com­
mand other than READ_BLOCK or LDx/L, then BIU_ADDR[4 .. 2] will contain zeros. BIU_
ADDR[63 .. 34] and BIU_ADDR[l..0] always read as zero.

3-42 Privileged Architecture Library Code

3.10.5 FILL_ADDR

This read-only register contains the physical address associated with errors reported by BIU _
STAT[14 .. 8]. Its contents are meaningful only when FILL_ECC or FILL_DPERR is set. Reads
of FILL_ADDR unlock FILL_ADDR, BIU_STAT[14 .. 8] and FI.LL_SYNDROME::

In both EV3 and EV4, FILL_ADDR[33 .. 5] identify the 32-byte cache block which the CPU
was attempting to read when the error occurred.

In EV3, FILL_ADDR[4 .. 3] identify the quadword within the cache block which the CPU was
attempting to read when the primary cache fill request was generated. FILL_ADDR[63 .. 34]
and FILL_ADDR[2 .. 0] read as zero.

In EV 4, if the FILL_IRD bit of the BIU _STAT register is clear, indicating that the error
occurred during a D-stream cache fill, then FILL_ADDR[4 .. 2] contain bits [4 .. 2] of the physical
address generated by the load instruction which triggered the cache fill. If FILL_IRD is set,
then FILL_ADDR[4 .. 2] are UNPREDICTABLE. FILL_ADDR[63 .. 34] and FILL_ADDR[l..0]
read as zero.

Privileged Architecture Library Code 3-43

3.10.6 FILL_SYNDROME

The FILL_SYNDROME register is a 14-bit read-only register.

If the chip is in ECC mode and an ECC error is recognized during a primary cache
fill operation, the syndrome bits associated with the bad quadword are locked in the
FILL_SYNDROME register. FILL_SYNDROME[6 .. 0] contain the syndrome associated with
the lower longword of the quadword, and FILL_SYNDROME[13 .. 7] contain the syndrome
associated with the higher longword of the quadword. A syndrome value of zero means that
no errors where found in the associated longword. See Table 3-25 for a list of syndromes
associated with correctable single-bit errors. The FILL_SYNDROME register is unlocked
when the FILL_ADDR register is read.

If the chip is in parity mode and a parity error is recognized during a primary cache fill
operation, the FILL_SYNDROME register indicates which of the longwords in the quadword
got bad parity. FILL_SYNDROME[O] is set to indicate that the low longword was corrupted,
and FILL_SYNDROME[7] is set to indicate that the high longword was corrupted. FILL_
SYNDROME[l3 .. 8] and [6 .. 1] are RAZ in parity mode.

6
3

1 1
4 3

0 0
7 6

0
0

+------------------------------------+----------+----------+
I I I I
I RAZ I HI [6 •• 0] I LO [6 •• 0] I
I I I I
+------------------------------------+----------+----------+

Table 3-25: Syndromes for Single-Bit Errors

Data Bit Syndrome(llex) Check Bit Syndrome(Hex)

00 4F 00 01

01 4A 01 02

02 52 02 04

03 54 03 08

04 57 04 10

05 58 05 20

06 5B 06 40

07 5D

08 23

09 25

10 26

11 29

12 2A

3-44 Privileged Architecture Library Code

Table 3-25 (Cont.): Syndromes for Single-Bit Errors

Data Bit Syndrome(Hex) Check Bit Syndrome(Hex)

13 2C

14 31

15 34

16 OE

17 OB

18 13

19 15

20 16

21 19

22 lA

23 lC

24 62

25 64

26 67

27 68

28 6B

29 6D

30 70

31 75

3.10.7 BC_TAG

BC_TAG is a read-only IPR. Unless locked, the BC_TAG register is loaded with the results
of every backup cache tag probe. When a tag or tag control parity error or primary fill data·
error (parity or ECC) occurs this register is locked against further updates. Software may
read the LSB of this register by using the HW _MFPR instruction. Each time an HW _MFPR
from BC_ TAG completes the contents of BC_TAG are shifted one bit position to the right, so
that the entire register may be read using a sequence of HW _MFPRs. Software may unlock
the BC_TAG register using a HW _MTPR to BC_TAG.

Successive HW _MFPRs from the BC_TAG register must be separated by at least one null
cycle.

Privileged Architecture Library Code 3-45

63 23 22 21 5 4 3 2 1 0
+-------------+--+------------------------------+--+--+--+--+--+
I I I I I I I I I
I RAZ IROI TAG [33 .. 17] IROIROIROIROIROI
I I I I I I I I I
+-------------+--+------------------------------+--+--+--+--+--+

I I I I I I
I I I I I +---> HIT
I I I I +------> TAGCTL_P
I I I +---------> TAGCTL_D
I I +------------> TAGCTL S
I +---------------> TAGCTL V
+---> TAG P

Unused tag bits in the TAG field of this register are always clear, based on the size of the
external cache as determined by the BC_SIZE field of the BIU_CTL register.

3-46 Privileged Architecture Library Code

3.11 ECC Error Correction
When in ECC mode EVx generates longword ECC on writes, and checks ECC on reads. EVx
does not include hardware to correct single-bit errors, however.

When an ECC error is recognized during a Dcache fill the BIU places the affected fill block into
the Dcache unchanged, validates the block and posts a machine check. The load instruction
which triggered the Dcache fill is completed by writing the requested longword(s) into the
register file. The longword(s) read by the load instruction may or not have been the cause of
the error, but a machine check is posted either way. The Ibox will react to the machine check
by aborting instruction execution before any instruction issued subsequent to the load could
overwrite the register containing the load data, and vectoring to the PAL code machine check
handler. Sufficient state is retained in various status registers (see Section 3.12) for PAL
code to determine whether the error affects the longword(s) read by the load instruction,
and whether the error is correctable. In any event, PAL code must explicitly flush the
Dcache. If the longword containing the error was written into the register file, PAL code
must either correct it and restart the machine, or report an uncorrectable hardware error
to the operating system. Independent of whether the failing longword was read by the load
instruction, PAL may scrub memory by explicitly reading the longword with the physical/lock
variant of the HW .:..LD instruction, flipping the necessary bit, and writing the longword with
the physical/conditional variant of the HW_ST instruction. Note that when PAL rereads the
affected longword the hardware may report no errors, indicating that the longword has been
overwritten.

When an ECC error occurs during an !cache fill the BIU places the affected fill block into the
leach~ unchanged, validates the block and posts a machine check. The Ibox will vector to the
PAL code machine check handler before it executes any of the instructions in the bad block.
PAL code may then flush the !cache and scrub memory as deicribed above.

As compared with hardware error correction, this approach is vulnerable to single-bit errors
which may occur during I-stream reads of the PAL code machine check handler, to single-bit
errors which occur in multiple quadwords· of a cache fill block, and to single-bit errors which
occur as a result of multiple silo'ed load misses.

Privileged Architecture Library Code 3-47

3.12 Error Flows
The following sections give a summary of the hardware flows for various error conditions for
both EV3 and EV 4.

3.12.1 EV3 Error Flows

3.12.1.1 I-stream ECC error

• data put into !cache unchanged, block gets validated

• machine check

• BIU_STAT: FILL_ECC, FILL_IRD set, FILL_SEO set if multiple errors occurred

• FILL_ADDR[33 .. 5] & BIU_STAT[FILL_QW] give bad QW's address

• FILL_SYNDROME contains syndrome bits associated with failing quadword

• BIU _ADDR, BIU _STAT[6 .. 0] locked - contents are UNPREDICTABLE

• DC_STAT, DC_ADDR locked - contents are UNPREDICTABLE

• BC_TAG hold~ results of external cache tag probe if external cache was enabled for this
transaction

3.12.1.2 D·stream ECC error

•
•
•
•
•
•
•

•

•

data put into Dcache unchanged, block gets ... validated

machine check

BIU _STAT: FILL_ECC set, FILL_IRD clear, FILL_SEO set if multiple errors occurred

FILL_ADDR[33 .. 5] & BIU_STAT[FILL_QW] give bad QW's address

FILL_SYNDROME contains syndrome bits associated with failing quadword

BIU _ADDR, BIU _STAT[6 .. 0] locked - contents are UNPREDICTABLE

DC_ADDR:contains PA bits [33:2] of1ocation which the failing load instruction attempted
to read

DC_STAT: RA identifies register which holds the bad data. LW,LOCK,INT,VAX_FP
identify type of load instruction

BC_TAG holds results of external cache tag probe if external cache was enabled for this
transaction

3.12.1.3 BIU: tag address parity error

• recognized at end of tag probe sequence

• lookup uses predicted parity so transaction misses the external cache

• BC_TAG holds results of external cache tag probe

• machine check

3-48 Privileged Architecture Library Code

• BIU_STAT: BC_TPERR set

• BIU _ADDR holds address

3.12.1.4 BIU: tag control parity error

• recognized at end of tag probe sequence

• transaction forced to miss external cache

• BC_TAG holds results of external cache tag probe

• machine check

• BIU_STAT: BC_TCPERR set

• BIU _ADDR holds address

3.12.1.5 BIU: system transaction terminated with CACK_SERR

• CRD interrupt: NOT SUPPORTED BY EV3

• BIU_STAT: BIU_SERR set, BIU_CMD holds cReq_h[2 .. 0]

• BIU _ADDR holds address

3.12.1.6 BIU: system transaction terminated with CACK_HERR

• machine check

• BIU_STAT: BIU_HERR set, BIU_CMD holds cReq_h[2 .. 0]

• BIU_ADDR holds address

3.12.1. 7 BIU: I-stream parity error (parity mode only)

• data put into Icache unchanged, block gets validated

• machine check

• BIU_STAT: FILL_DPERR set, FILL_IRD set

• FILL_ADDR[33 .. 5] & BIU_STAT[FILL_QW] give bad QWs address

• FILL_SYNDROME identifies failing longword(s)

• BIU_ADDR, BIU_STAT[6 .. 0] locked - contents are UNPREDICTABLE

• DC_STAT, DC_ADDR locked - contents are UNPREDICTABLE

• BC_TAG holds results of external cache tag probe if external cache was enabled for this
transaction

Privileged Architecture Library Code 3-49

3.12.1.8 BIU: D-stream parity error (parity mode _only)

• data put into Dcache unchanged, block gets validated

• machine check

• BIU _STAT: FILL_DPERR set, FILL_IRD clear

• FILL_ADDR[33 .. 5] & BIU_STAT[FILL_QWJ give bad QW's addre.ss

• FILL_SYNDROME identifies failing longword(s)

• BIU_ADDR, BIU_STAT[6 .. 0] locked - contents are UNPREDICTABLE

• DC_ADDR: contains PA bits (33:2] oflocation which the failing load instruction attempted
to read

• DC_STAT: RA identifies register which holds the bad data. LW,LOCK,INT,VAX_FP
identify type of load instruction

• BC_TAG holds results of external cache tag probe if external cache was enabled for this
transaction

3-50 Privileged Architecture Library Code

3.12.2 EV4 Error Flows

3.12.2.1 I-stream ECC error

• data put into Icache unchanged, block gets validated

• machine check

• BIU _STAT: FILL_ECC, FILL_IRD set, FILL_SEO set if multiple errors occurred

• FILL_ADDR[33 .. 5] & BIU_STAT[FILL_QW] give bad QW's address

• FILL_SYNDROME contains syndrome bits associated with failing quadword

• BIU_ADDR, BIU_STAT[6 .. 0] locked - contents are UNPREDICTABLE

• DC_STAT locked - contents are UNPREDICTABLE

• BC_TAG holds results of external cache tag probe if external cache was enabled for this
transaction

3.12.2.2 D-stream ECC error

• data put into Dcache unchanged, block gets validated

• machine check

• BIU _STAT: FILL_ECC set, FILL_IRD clear, FILL_SEO set if multiple errors occurred

• FILL_ADDR[33 .. 5] & BIU_STAT[FILL_QW] give bad QW's address

• FILL_ADDR[4 .. 2] contain PA bits [4 .. 2] of location which the failing load instruction
attempted to read

• FILL_SYNDROME contains syndrome bits associated with failing quadword

• BIU_ADDR, BIU_STAT[6 .. 0] locked - contents are UNPREDICTABLE

• DC_STAT: RA identifies register which holds the bad data. LW,LOCK,INT,VAX_FP
identify type of load instruction

• BC_TAG holds results of external cache tag probe if external cache was enabled for this
transaction

3.12.2.3 BIU: tag address parity error

• recognized at end of tag probe sequence

• lookup uses predicted parity so transaction misses the external cache

• BC_TAG holds results of external cache tag probe

• machine check

• BIU_STAT: BC_TPERR set

• BIU _ADDR holds address

Privileged Architecture Library Code 3-51

3.12.2.4 BIU: tag control parity error

• recognized at end of tag probe sequence

• transaction forced to miss external cache

• BC_TAG holds results of external cache tag probe

• machine check

• BIU_STAT: BC_TCPERR set

• BIU_ADDR holds address

3.12.2.5 BIU: system external transaction terminated with CACK_SERR

• CRD interrupt.

• BIU_STAT: BIU_SERR set, BIU_CMD holds cReq_h[2 .. 0].

• BIU _ADDR holds address.

3.12.2.6 BIU: system transaction terminated with CACK_HERR

• machine check

• BIU_STAT: BIU_HERR set, BIU_CMD holds cReq_h[2 .. 0J

• BIU _ADDR holds address

3.12.2.7 BIU: I-stream parity error (parity mode only)

• data put into lcache unchanged, block gets validated

• machine check

• BIU_STAT: FILL_DPERR set, FILL_IRD set

• FILL_ADDR[33 .. 5] & BIU_STAT[FILL_QW] give bad QW's address

• · FILL_SYNDROME identifies failing longword(s)

• BIU_ADDR, BIU_STAT[6 .. 0] locked - contents are UNPREDICTABLE

• DC_STAT locked - contents are UNPREDICTABLE

• BC_TAG holds results of external cache tag probe if external cache was enabled for this
transaction

3.12.2.8 BIU: D-stream parity error (parity mode only)

• data put into Dcache unchanged, block gets validated

• machine check

• BIU_STAT: FILL_DPERR set, FILL_IRD clear

• FILL_ADDR[33 .. 5] & BIU_STAT[FILL_QW] give bad QW's address

3-52 Privileged Architecture Library Code

• FILL_ADDR[4 .. 2] contain PA bits [4 .. 2] of location which the failing load instruction
attempted to read

• FILL_SYNDROME identifies failing longword(s)

• BIU_ADDR, BIU_STAT[6 .. 0] locked - contents are UNPREDICTABLE

• DC_STAT: RA identifies register which holds the bad data. LW,LOCK,INT,VAX_FP
identify type of load instruction

• BC_TAG holds results of external cache tag probe if external cache was enabled for this
transaction

Privileged Architecture Library Code 3-53

3-54 Privileged Architecture Library Code

Chapter 4

External Interface

4.1 Overview
The EVx chip connects directly to an external cache built from off-the-shelf static RAMs. ·
Because building high-speed logic is very difficult in low-end systems, the chip controls the
RAMs directly. The chip contains a programmable external cache interface, so that each
system can make its own external cache speed and configuration tradeoffs.

The clocks used by the external interface are generated by the chip, but the speed of the
clocks is programmable, and is determined during chip reset. This allows each system to
make its own external interface speed tradeoffs. EVx is also configured during reset to use
either a 64-bit or 128-bit wide external data bus. The bulk of this chapter describes the chip's
operation in 128-bit mode, and Section 4.3 of this chapter describes details specific to 64-bit
mode operation.

4.2 Signals
The following table lists all of the signals on the EVx chip. In the "type" column, an "I" means
a pin is an input, an "O" means the pin is an output, and a "B" means the pin is tristate and
bidirectional.

Table 4-1: EVx Signals

Signal Name Count Type Function

clkln_h, .J 2 I Clock input

testClkln_h, _l 2 I Clock input for testing

cpuClkOut_h 1 0 CPU clock output

sysClkOutl_h, _l 2 0 System clock output, normal

sysClkOut2_h, _l 2 0 System clock output, delayed

dcOk_h 1 I Power and clocks ok

External Interface 4-1

Table 4-1 (Cont.): EVx Signals

Signal Name Count Type Function

reset_! 1 I Reset

icMode_h[l..O] 2 I !cache Test Mode Selection

sRomOE_l 1 0 Serial ROM output enable

sRomD_h 1 I Serial ROM data/Rx data

sRomClk_h 1 0 Serial ROM clock/Tx data

adr_h[33 .. 5] 29 B Address bus

data_h[127 .. 0] 128 B Data bus

check_h[27 .. O] 28 B Check bit bus

dOE_l 1 I Data bus output enable

dWSel_h[l..O] 2 I Data bus write data select

dRAck_h[2 .. 0] 3 I Data bus read data acknowledge

tagCEOE_h 1 0 tagCtl and tagAdr CE/OE

tagCtlWE_h 1 0 tagCtl WE

tagCtlV_h 1 B Tag valid

tagCtlS_h 1 B Tag shared

tagCtlD_h 1 B Tag dirty

tagCtlP_h 1 B Tag V/S/D parity

tagAdr_h[33 .. 17] 17 I Tag address

tagAdrP_h 1 I Tag address parity

tagOk_h, _l 2 I Tag access from CPU is ok

tagEq_l 1 0 Tag compare output

dataCEOE_h[3 .. 0] 4 0 data CE/OE, longword

data WE_h[3 .. 0] 4 0 data WE, longword

dataA_h[4 .. 3] 2 0 data A[4 .. 3]

holdReq_h 1 I Hold request

holdAck_h 1 0 Hold acknowledge

cReq_h[2 .. 0] 3 0 Cycle request

cWMask_h[7 .. 0] 8 0 Cycle write mask

cAck_h[2 .. 0] 3 I Cycle acknowledge

4-2 External Interface

Table 4-1 (Cont.): EVx Signals

Signal Name Count Type Function

iAdr_h[12 .. 5] 8 I Invalidate address

dlnvReq_h 1 I Invalidate request, Dcache

dMapWE_h 1 0 Backmap WE, Dcache

irq_h[5 .. 0] 6 I Interrupt requests

vRef 1 I Input reference

eclOut_h 1 I Output mode selection

perf_cnt_h[l..O] 2 I Performance counter inputs

tristate_l 1 I Tristate for testing

cont_l 1 I Continuity for testing

Systems using EVx in 128-bit mode should ignore dataA_h[3] and tie dWSel_h[O] false. See
Section 4.3 for 64-bit mode details.

4.2.1 Clocks
External logic supplies EVx with a differential clock at twice the desired internal clock
frequency via the clkln_h and clkln_l pins. EVx divides this clock by two to generate the
internal chip clock.

The internal chip clock is supplied to the external interface via the cpuClkOut_h pin. The
false-to-true transition of cpuClkOut_h is the "CPU clock" used in the timing specification for
the tagOk_h,_l signals.

The CPU clock is divided by a programmable value between 2 and 8 to generate a system
clock, which is supplied to the external interface via the sysClkOutl_h and sysClkOutl_l
pins. The system clock is delayed by a programmable number of CPU clock cycles between 0
and 3 to generate a delayed system clock, which is supplied to the external interface via the
sysClk0ut2_h and sysClk0ut2_1 pins.

The clock generator runs, generating cpuClkOut_h and correctly timed and positioned
sysClkOutl and sysClkOut2, while the chip is held in reset.

The output of the programmable divider is symmetric if the divisor is even, and asymmetric
with sysClkOutl_h TRUE for one extra CPU cycle if the divisor is odd.

The false-to-true transition of sysClkOutl_h is the "system clock" used as a timing reference
throughout this specification.

Almost all transactions on the external interface run synchronously to the CPU clock
and phase aligned to the system clock, so the external interface appears to be running
synchronously to the system clock (most setup and hold times are referenced to the system
clock). The exceptions to this are the fast, EVx controlled transactions on the external caches
and the sample of the tagOk_h, _l inputs, which are synchronous to the CPU clock, but
independent of the system clock.

External Interface 4-3

4.2.2 DC_OK and Reset

EVx contains a ring oscillator which is switched into service during power up to provide
an internal chip clock. The dcOk_h signal switches clock sources between an on-chip ring
oscillator and the external clock oscillator. If dcOk_h is false then the on-chip ring oscillator
feeds the clock generator, and EVx is held in reset independent of the state of the reset_l
signal. If dcOk_h is true then the external clock oscillator .feeds the clock generator. When
dcOk_h is true the vRef input must be valid so that inputs can be sensed. The dcOk_h signal
is special in that it does not require that vRef be stable to be sensed. It is important to
emphasize the importance of driving dcOk_h false until the voltage on vRef has stabilized.
Because chip testers can apply clocks and power to the chip at the same time, the chip tester
can always drive dcOk_h true, but the tester must drive reset_l true for a period longer than
the minimum hold time of vRef.

When EVx is running off the internal ring oscillator the clock outputs follow it, just like they
would when real clocks are applied. The frequency of the ring oscillator varies from chip
to chip within a range of lOMHZ to lOOMHz, which corresponds to an internal CPU clock
frequency of between 5 MHz and 50 MHz. Also, when the dcOk_h signal is false, the system
clock divisor is forced to eight, and the sysClkOut2_h, _I delay is forced to three.

Note if the dcOk_h signal is generated by an RC delay, there is no check that the input
clocks are really running. This means that if a board is powered up in manufacturing with a
missing, defective, or mis-soldered clock oscillator then EVx will enter a possibly destructive
high-current state. Furthermore, if a clock oscillator fails in stage 1 burn-in then EVx may
also enter this state. The frequency and duration of such events need to be understood by
the module designer to decide if this is really a problem.

The reset_! signal forces the CPU into a known state - see Table 3-8. The reset_l signal may
be asynchronous, and need not be asserted beyond the assertion of dcOk_h to guarantee that
the EVx chip is properly reset.

In order to bring the chip out of internal reset at a deterministic time, the reset_l pin may
be deasserted synchronously with respect to the system clock. See chapter Chapter 6 for the
setup and hold requirements of the reset_l pin when used in this way.

The EV3 and EV 4 CPU chips, use a 3.3V power supply. This 3.3V supply must be stable
before any input goes above 4 V. -

While in reset, EVx reads sysClkOut and external bus configuration information off the irq_h
pins - external logic should drive the configuration information onto the irq_h pins any time
reset_! is true.

The irq_h[5] bit is used to select 128-bit or 64-bit mode. If irq_h[5] is true then 128-bit mode
is selected. · -

The ir_q_h[2 .. 0] bits encode the value of the divisor used to generate the system clock from
the CPU clock.

4-4 External Interface

Table 4-2: System Clock Divisor

irq_h[2] irq_h[l] irq_h[O] Ratio

F F F 2

F F T 3

F T F 4

F T T 5

T F F 6

T F T 7

T T F 8

T T T 8

The irq_h[4 .. 3] bits encode the delay, in CPU clock cycles, from sysClkOutl to sysClk0ut2.

Table 4-3: System Clock Delay

irq_h[4]

F

F

T

T

irq_h[3]

F

T

F

T

Delay

0

1

2

3

When the tristate_! pin is asserted the chip is internally forced into the reset state, without
resampling the interrupt pins.

4.2.3 Initialization and Diagnostic Interface

EV 4 implements three lcache initialization modes to support chip and module level testing.
The value placed on icMode_h[l..0] determines which of these modes is used after EV4 is
reset. Unlike the value placed on irq_h[5 .. 0] during reset, the value placed on icMode_h[l..0]
must be retained after reset_l is deasserted.

Table 4-4: lcache Test Modes

icMode_h[l] icMode_h[O] Mode

F F Serial Rom

F T Disabled

T F !cache Test - Write

T T !cache Test - Read

External Interface 4-5

If the value on icMode_h[l..O] selects Serial ROM Mode, EV4 will load the contents of its
internal Icache from an external serial ROM (such as an AMD Am1736) before executing
its first instruction. The serial ROM could contain enough ALPHA code to complete the
configuration of the external interface, e.g. setting the timing on the external cache RAMs;
and diagnose the path between the CPU chip and the real ROM. EV 4 is in PALmode following
the deassertion ofreset_l - this gives the code loaded into the Icache access to all of the visible
state within the chip.

Three signals are used to interface to the serial ROM. The sRomOE_l output signal supplies
the output enable to the ROM, serving both as an output enable and as a reset (refer to the
serial ROM specifications for details). The sRomClk_h output signal supplies the clock to
the ROM that causes it to advance to the next bit. The ROM data is read by EVx via the
sRomD_h input signal.

Once the data in the serial ROM has been loaded into the Icache, the three special signals
become simple parallel 1/0 pins that can be used to drive a diagnostic terminal. When the
serial ROM is not being read, the sRomOE_l output signal is false. If this pin is wired to
the active high enable of an RS422 receiver driving onto sRomD_h (the 26LS32 will work)
and to the active high enable of an RS422 driver driving from sRomClk_h (the 26LS31 will
work). The CPU allows sRomD_h to be read and sRomClk_h to be written by PALcode; this
is sufficient hardware support to implement a bit-banged serial interface.

Using the icMode_h[l..0] pins, the Icache diagnostic interface may be disabled altogether. In
this case, since the Icache valid bits are cleared by reset, the first instruction fetch will miss
the Icache.

In addition to Serial ROM mode, EV 4 includes two test modes which together allow chip
tester hardware full read and write access to the Icache. Icache Test/Write Mode works
exactly like Serial ROM mode except that bits are loaded into the !cache at a higher rate.
Icache Test/Read Mode allows the contents of the Icache to be read in a bit-serial manner
from the sRomOE_l pin. These two modes are available only to chip test hardware. Systems
using EV 4 ~ust tie icMode_h[l] to FALSE.

In EV 4, all Icache bits are loaded from the diagnostic interface, including each blocks' tag,
ASN, ASM, valid and branch history bits. Thelcache blocks are loaded in sequential order
starting ~th block zero and ending with block 255. The order in which bits within each block
are serially loaded is shown below:

bht lw7 lwS lw3 lwl v

a
s
m asn tag lw6 lw4 lw2 lwO

+---+ +---+ +---+ +---+ +---+ +-+ +-+ +---+ +---+ +---+ +---+ +---+ +---+
I I I I I I I I I I I I I I I I I I 1- I I I I I I
I
I

+---+ +---+ +---+ +---+ +---+ +-+ +-+ +---+ +---+ +---+ +---+ +---+ +---+

Bits within each field are arranged such that high-order bits are on the
left. The serial chain shifts to the right.

EV3 does not implement the Icache TestJWrite and Icache Test/Read modes described above.
Further, the icMode_h[l] pin does not connect to the EV3 die. Also, for EV3 the serial
ROM should contain only the bits of the instructions which are to be loaded into the Icache.
When the !cache is loaded the valid bit in each cache block is set, and the tag is cleared.
Conceptually, the data bits from the serial ROM are shifted into a 64-bit wide holding register
and then written into the Icache 64 bits at a time. The bits from the serial ROM are shifted

4-6 External Interface

into this holding register from the least significant bit to the most significant bit. Quadwords
are written into the Icache in increasing order starting with the quadword at byte address
zero.

4.2.4 Address Bus
The tristate, bidirectional adr_h pins provide a ·path for addresses to flow between EVx and
the rest of the system. The adr_h pins are connected to the buffers that drive the address
pins of the external cache RAMs, and to the transceivers that are located between the EVx
local address bus and the CPU module address bus.

The address bus is normally driven by EVx. EVx stops driving the address bus during reset
and during external cache hold. In the external cache hold state the address bus acts like
an input, and the tagEq_l output is the result of an equality compare between adr_h and
tagAdr_h. Only bits that are part of the cache tag, as specified by the BC_SIZE field of the
BIU_CTL IPR, participate in the compare. The tagEq_l pin is asserted during external cache
hold only if the result of the tag comparison is true, and the parity calculated across the
appropriate bits of tagAdr_h matches the value on tagAdrP _h. Even parity is used. tagEq_l
is deasserted when the address bus is not in the external cache hold state.

4.2.5 Data Bus
The tristate, bidirectional data_h pins provide a path for data to flow between EVx and the
rest of the system. The data_h pins connect directly to the 1/0 pins of the external cache data
RAMs and to the transceivers that are located between the EVx local data bus and the CPU
module data bus.

The tristate, bidirectional check_h pins provide a path for check bits to flow between the CPU
and the rest of the system. The check_h pins connect directly to the 1/0 pins of the external
cache data RAMs and to the transceivers that are located between the EVx local check bus
and the CPU module check bus.

The data bus is driven by EVx when it is running a fast write cycle on the external caches,
or when some type of write cycle has been presented to the external interface and external
logic has enabled the data bus drivers (via dOE_l).

If EVx is in ECC mode then the check_h pins carry 7 check bits for each longword on the
data bus. Bits check_h[6 .. 0] are the check bits for data_h[31..0]. Bits check_h[13 .. 7] are the
check bits for data_h[63 .. 32]. Bits check_h[20 .. 14] are the check bits for data_h[95 .. 64]. Bits
check_h[l 7 .. 21] are the check bits for data_h[127 .. 96].

The following ECC code is used. This code is the same one used by the IDT49C460 and
AMD29C660 32-bit ECC generator/checker chips.

External Interface 4-7

dddddddddddddddddddddddddddddddd
33222222222211111111110000000000
10987654321098765432109876543210

c6 XOR xxxxxxxx xxxxxxxx
c5 XOR xxxxxxxx xxxxxxxx
c4 XOR xx xxxxxx xx xxxxxx
c3 XNOR xxx xxx xx xxx xxx xx
c2 XNOR x x xx x xx xx x xx x xx x
cl XOR x x x x x xxx x x x x x xxx
cO XOR x xx x x xxx x x xxxx x x

By arranging the data and check bits correctly, it is possible to arrange that any number of
errors restricted to a 4-bit group can be detected. One such arrangement is as follows:

d [00]' d[Ol], d[03]' d[25]
d[02]' d[04]' d[06]' c [06]
d[05]' d[07], d[12]' c[03]
d [08], d[09]' d[ll], d (14]
d [10] ' d[13]' d[l5], d[l9]
d[16]' d[l7], d[22]' d[28]
d[l8]' d[23], d[30]' c[OS]
d[20]' d (27]' c (04]' c (00]
d[21], d[26]' c [02]' c[Ol]
d[24]' d[29], d[31]

If EVx is in PARITY mode then 4 of the check_h pins carry EVEN parity for each longword
on the data bus, and the rest of the bits are unused. Bit check_h[O] is the parity bit for
data_h[31..0]. Bit check_h[7] is the parity bit for data_h[63 .. 32]. Bit check_h[14] is the parity
bit for data_h[95 .. 64]. Bit check_h[21] is the parity bit for data_h[127 .. 96].

The ECC bit in the BIU_CTL IPR determines if EVx is in ECC mode or in PARITY mode.

4.2.6 External Cache Control
The external cache is a direct-mapped, write-back cache. EVx always views the external
cache as having a tag for each 32-byte block (the same as the on-chip !cache and Dcache).

The external cache tag RAMs are located between EVx's local address bus and EVx's tag
inputs. The external cache data RAMs are located between the CPU's local address bus and
the CPU's local data bus. EVx reads the external cache tag RAMs to determine if it can
complete a cycle without any module level action, and EVx reads or writes the external cache
data RAMs if, in fact, this is the case.

A cycle requires no module level action if it is a non-LDxL read hit to a valid block, or a
non-STxC write hit to a valid but not shared block. All other cycles require module level
action. All cycles require module level action if the external cache is disabled (the BC _EN bit
in the BIU_CTL IPR is cleared) or the physical address of the reference is in a quadrant in
memory that is not cached, i.e. the appropriate bit in the BC_PA_DIS field in the BIU_CTL
IPR is set for the quadrant of the reference.

All EVx controlled cycles on the external cache have fixed timing, described in terms of EVx's
internal clock. The actual timing of the cycle is programmable (via the BC_RD_SPD, BC_
WR_SPD, and BC_WE_CTL fields in the BIU_CTL IPR), allowing for much flexibility in the
choice of CPU clock frequencies and cache RAM speeds.

The external cache RAMs can be partitioned into three sections; the tagAdr RAM, the tagCtl
RAM, and the data RAM. Sections do not straddle physical RAM chips.

4-8 External Interface

4.2.6.1 The TagAdr RAM

The tagAdr RAM contains the high order address bits associated with the external cache
block, along with a parity bit. The contents of the tagAdr RAM is fed to the on-chip address
comparator and parity checker via the tagAdr_h and tagAdrP _h inputs.

EVx verifies that tagAdrP _his an EVEN parity bit over tagAdr_h when it reads the tagAdr
RAM. If the parity is wrong, the tag probe results in a miss, and an external transaction is
initiated. If machine checks are enabled (the MCHK_EN bit in the Abox_CTL IPR is set)
EVx traps to PALcode.

The number of bits of tagAdr_h that participate in the address compare and the parity check
is controlled by the BC_SIZE field in the BIU_CTL IPR. The tagAdr_h signals go all the way
down to address bit 17, allowing for a 128Kbyte cache built out of RAMs that are SK deep.

The chip enable or output enable for the tagAdr RAM is normally driven by a two input NOR
gate (such as the 7 4AS805B). One input of the two input NOR gate is driven by tagCEOE_h,
and the other input is driven by external logic. EVx drives tagCEOE_h false during reset,
during external cache hold, and during any external cycle. The OE bit in the BIU_CTL IPR
determines if tagCEOE_h has chip enable timing or output enable timing.

4.2.6.2 The TagCtl RAM

The tagCtl RAM contains control bits associated with the external cache block, along with a
parity bit. EVx reads the tagCtl RAM via the three tagCtl signals to determine the state of
the block. EVx writes the tagCtl RAM via the three tagCtl signals to make blocks dirty.

EVx verifies that tagCtlP _his an EVEN parity bit over tagCtlV _h, tagCtlS_h, and tagCtlD_h
when it reads the tagCtl RAM. If the parity is wrong, the tag probe results in a miss, and an
external transaction is initiated. If machine, checks are enabled (the MCHK_EN bit in the
Abox_CTL IPR is set) EVx traps to PALcode. EVx computes EVEN parity across the tagCtlV _
h, tagCtlS_h, and tagCtlD_h bits, and drives the result onto the tagCtlP _h pin, when it writes
the tagCtl RAM.

The following combinations of the tagCtl RAM bits are allowed. Note that the bias toward
conditional write-through coherence is really only in name; the tagCtlS_h bit can be viewed
simply as a write protect bit.

Table 4-5: Tag Control Encodings

tagCtlV_h tagCtlS_h tagCtlD_h Meaning

F x x Invalid

T F F Valid, private

T F T Valid, private, dirty

T T F Valid, shared

T T T Valid, shared, dirty

EVx can satisfy a read probe if the tagCtl bits indicate the entry is valid (tagCtlV _h = T).
EVx can satisfy a write probe if the tagCtl bits indicate the entry is valid and not shared
(tagCtlV _h = T, tagCtlS_h = F).

External Interface 4-9

The chip enable or output enable for the tagCtl RAM is normally driven by a two input NOR
gate (such as the 74AS805B). One input of the two input NOR gate is driven by tagCEOE_h,
and the other input is driven by external logic. EVx drives tagCEOE_h false during reset,
during external cache hold, and during any external cycle. The OE bit in the BIU_CTL IPR
determines if tagCEOE_h has chip enable timing or output enable timing.

The write enable for the tagCtl RAM is normally driven by a two input NOR gate (such
as the 74AS805B). One input of the two input NOR gate is driven by tagCtIWE_h, and the
other input is driven by external logic. EVx drives tagCtlWE_h false during reset, during
external cache hold, and during any external cycle. The BC_WE_CTL field in the BIU_CTL
IPR determines the width of the write enable, and its position within the write cycle.

4.2.6.3 The Data RAM

The data RAM contains the actual cache data, along with any ECC or parity bits.

The most significant bits of the data RAM address are driven, via buffers, from the address
bus. The least significant bit of the data RAM address is driven by a two input NOR gate
(such as the 74AS805B). One of the inputs of the two input NOR gate is driven by dataA_
h[4], and the other input is driven by external logic. EVx drives dataA_h[4] false during
reset, during external cache hold, and during any external cycle.

The chip enables or output enables for the data RAM are driven by a two input NOR gate
(such as the 74AS805B). One input of the two input NOR gate is driven by dataCEOE_h[3 .. 0],
and the other input is driven by external logic. EVx drives dataCEOE_h[3 .. 0] false during
reset, during external cache hold, and during external cycles. The OE bit in the BIU_CTL
IPR determines if dataCEOE_h[3 .. 0] has chip enable timing or output enable timing.

The write enables for the data RAM are normally driven by a two input NOR gate (such as
the 74AS805B). One input of the two input NOR gate is driven by dataWE_h[3 .. 0], and the
other input is driven by external logic. EVx drives data WE_h[3 .. 0] false during reset, during
external cache hold, and during any external cycle. The BC_ WE_CTL field in the BIU_CTL
IPR determines the width of the write enable, and its position within the write cycle.

4.2.6.4 Backmap

Some systems may wish to maintain a backmap of the contents of the primary data cache to
improve the quality of their invalidate filtering. EVx must maintain the backmap for external
cache read hits, since external cache read hits are controlled totally by EVx. External logic
maintains the backmaps for external cycles (read misses, invalidates, and so on).

The backmap is only consulted by external logic, so that its format, or, for that matter, its
existence, is of no concern to EVx. All EVx does is generate a backmap write pulse at the right
time. Simple systems will not bother to maintain a backmap, will not connect the backmap
write pulse to anything, and will generate extra invalidates.

The write enable input of the data cache backmap RAM is driven by a two input NOR gate
(such as the 74AS805B). One side of the two input NOR gate is driven by dMapWE_h, and
the other input is driven by external logic. The CPU drives a write pulse onto dMapWE_h
whenever is fills the on-chip data cache from the external cache.

In 128-bit mode the dMapWE_h and iMapWE_h[l..0] signals assert one CPU cycle into the
second (last) data read cycle, and negate one CPU cycle from the end of that cycle. If read
cycles are 3 CPU cycles long, then dMapWE_h is one CPU cycle long. See Section 4.3 for
64-bit mode operations.

4-10 External Interface

[Implementation Note: This anomaly is caused by the fact that the backmap write overlaps
a cycle whose 'length is specified by BC_RD_SPD. If we used the standard write pulse timing
mechanism, and BC_ WR_SPD were longer than BC_RD_SPD, the address would go away in
the middle of the write cycle.]

4.2.6.5 External Cache Access

The external caches are normally controlled by EVx. Two methods exist for gaining access to
the external cache RAMs.

4.2.6.5.1 HoldReq and HoldAck

The simple method for external logic to access the external caches is to assert the holdReq_h
signal. When holdReq_h is asserted, EVx finishes any external cache cycle which may be in
progress, tristates adr_h, data_h, check_h, tagCtlV _h, tagCtlD_h, tagCtlS_h and tagCtlP _h,
drives tagCEOE_h, tagCtlWE_h, dataCEOE_h, data_ WE_h and dataA_h false, and asserts
holdAck_h - the cReq_h and c WMask_h signals are not modified in any way. When external
logic is finished with the external caches it deasserts holdReq_h. When EVx detects the
deassertion of holdReq_h it deasserts holdAck_h and re-enables its outputs.

The holdReq_h signal is synchronous, and external logic must guarantee setup and hold
requirements with respect to the system clock. The holdAck_h signal is synchronous to the
CPU clock but phase aligned to the system clock, so it can be used as an input to state
machines running off the system clock.

EVx generates the holdAck_h signal such that it may be tied directly to the enable-inputs of
external tristate drivers which connect to the bidirectional pin bus signals. EVx will tum off
its tristate drivers on or before the system clock edge at which it asserts holdAck_h, and will
tum on its tristate drivers two CPU cycles after the system clock edge at which it deasserts
holdAck_h.

The delay from holdReq_h assertion to holdAck_h assertion depends on the programming of
the external interface, and on exactly how the system clock is aligned with a pending external
cache cycle. In the best case the external cache is idle or is just about to start a cycle, in
which case holdAck_h asserts one system clock cycle after the system clock edge at which
EVx samples the holdReq_h assertion. In the worst case the system clock edge at which EVx
samples the holdReq_h assertion happens one CPU clock cycle into an external cache write
probe that hits on a non shared line and requires two RAM data cycles to complete. In this
case holdAck_h asserts at the first system clock edge that is at least ((BC_RD_SPD + 1) - 1)
+ 2*(BC_WR_SPD + 1) + 1 CPU cycles after the system clock edge at which EVx sampled the
holdReq_h assertion.

HoldAck_h deasserts in the system clock cycle immediately following the system clock edge
at which EVx samples the deassertion of holdReq_h.

A holdReq_h/holdAck_h sequence can happen at any time, even in the middle of an external
transaction. In this case all of the acknowledge-like signals (dOE_l dWSel_h, dRAck_h, cAck_
h) work normally, although since EVx has forced most of its outputs to either tristate or false,
doing anything useful with them is difficult.

The assertion of holdReq_h prevents EVx's BIU sequencer from starting new CPU requests.
However, ifthe BIU sequencer has already started an external cache tag probe when holdReq_
h is asserted, and the result of the tag probe is such that an external transaction is required
to complete the CPU's request, the BIU sequencer will initiate the external transaction by
driving the cReq_h signals to the appropriate value despite holdReq_h's assertion. HoldAck_h
will assert at the next system clock edge after the tag probe completes.

External Interface 4-11

Note that since EVx doesn't turn on its tristate drivers until two CPU cycles after it deasserts
holdAck_h care must be taken as to when external logic begins processing new external
transactions at the tail end of a holdReq_h/holdAck_h sequence.

4.2.6.5.2 TagOk

The fastest way for external logic to gain access to the external caches is to use the tagOk_
h, _l signals. TagOk_h, _l are EVx bus interface control signals which allow external logic
to stall a CPU cycle on the external cache RAMs at the last possible instant. All tradeoffs
surrounding these signals have been made in favor of high-performance systems making them
next to impossible to use in low-end systems.

The tagOk_h and tagOk_l signals are synchronous, and external logic must guarantee setup
and hold requirements with respect to the CPU clock. This implies very fast logic, since the
CPU clock may run at 200 MHz for the binned parts.

Furthermore, the only thing that tagOk does is stall a sequencer in the EVx bus interface
unit. EVx does not tri-state the busses that run between EVx and the external cache RAMs.
External logic must supply the necessary multiplexing functions in the address and data
path.

If the tagOk is true at a CPU clock edge, the external logic is guaranteeing that the tagCtl
and tagAdr RAMs were owned by EVx in the previous BC_RD_SPD+l CPU cycles, that the
tagCtl RAMs will be owned by EVx in the next BC_WR_SPD+l cycles, that the data RAMs
were owned by EVx in the previous BC_RD_SPD+l cycles, and that the data RAMs will be
owned by EVx in the next BC_RD_SPD+l CPU cycles or in the next 2*(BC_WR_SPD+l) CPU
cycles, whichever is longer.

The bus interface unit samples tagOk in the last two cycles of each tag probe, and only ...
proceeds if tagOk was asserted in both of these cycles. Two cycles of tagOk assertion rather
then one was cycle of assertion was chosen to alleviate a tight circuit path inside the chip.
This choice in no way impacts the above stated use of tagOk by external logic. If EVx samples
tagOk as false in either of the last two CPU cycles of a tag probe then it stalls until it samples
tagOk true in consecutive cycles (at which time all of the above assertions are true, which
means, in particular, that any address EVx has been holding on the address bus all this time
has made it through the external cache RAMs), and then it proceeds normally.

4.2. 7 External Cycle Control

EVx requests an external cycle when it determines that the cycle it wants to run requires
module level action.

An external cycle begins when EVx puts a cycle type onto the cReq_h outputs. Some cycles
put an address on the adr_h outputs, and additional information (low-order address bits,
I/D stream indication, write masks) on the cWMask_h outputs. All of these outputs are
synchronous, and EVx meets setup and hold requirements with respect to the system clock.

The cycle types are as follows.

4-12 External Interface

Table 4-6: Cycle fypes

cReq_h[2] cReq_h[l] cReq_h[O] Type

F F F IDLE

F F T BARRIER

F T F FETCH

F T T FETCHM

T F F READ_BLOCK

T F T WRITE_BLOCK

T T F LDxL

T T T STxC

A BARRIER cycle is generated by the MB instruction. Normally all the module does with
this cycle is acknowledge it. Modules which have write buffers between EVx and the memory
system must drain these buffers before the cycle is acknowledged to guarantee that machine
checks caused by transport and/or memory system errors get posted on the correct side of the
MB instruction.

The FETCH and FETCHM cycles are generated by the FETCH and FETCHM instructions,
respectively. The address bus contains the effective address of the FETCH or FETCHM
instruction. These addresses can be used by module level prefetching logic. Simple systems
simply acknowledge the cycles.

The READ _BLOCK cycle is generated on read misses. External logic reads the addressed
block from memory and supplies it, 128 bits at a time, to EVx via the data bus. External
logic may also write the data into the external cache, after perhaps writing a victim.

The WRITE_BLOCK cycle is generated on write misses, and on writes to shared blocks.
External logic pulls the write data, 128 bits at a time, from EVx via the data bus, and writes
the 'valid longwords to memory. External logic may also write the data into the external
cache, after perhaps writing a victim.

The LDxL cycle is generated by the interlocked load instructions. The cycle works just like a
READ_BLOCK, although the external cache has not been probed (so the external logic needs
to check for hits), and the address has to be latched into a locked address register.

The STxC cycle is generated by the conditional store instructions. The cycle works just like
a WRITE_BLOCK, although the external cache has not been probed (so that external logic
needs. to check for hits), and the cycle can be acknowledged with a failure status.

On WRITE_BLOCK and STxC cycles the cWMask_h pins supply longword write masks to the
external logic, indicating which longwords in the 32-byte block are, in fact, valid. A cWMask_
h bit is true if the longword is valid. WRITE_BLOCK commands can have any combination of
mask bits set. STxC cycles can only have combinations that correspond to a single longword
or quadword.

External Interface 4-13

til .. 1'>
\ ·~
VJ' On READ _BLOCK and LDxL cycles the c WMask_h pins have additional information about V the miss overloaded onto them. The cWMask_h[l..0] pins contain miss address bits [4 .. 3]

~~ (indicating the address of the quadword that actually missed), which is needed to implement
n quadword read granularity to 110 devices. The cWMask_h[2] pin is true if the miss is a
~ D-stream reference, and false if the miss is an I-stream reference.

The cycle remains on the external interface until external logic acknowledges it, by placing an
acknowledgment type on the cAck_h pins. The cAck_h inputs are synchronous, and external
logic must guarantee setup and hold requirements with respect to the system clock.

The acknowledgment types are as follows.

Table 4-7: Acknowledgment 'JYpes
cAck_h[2] cAck_h[l] cAck_h[O] Type

F F F IDLE

F F T HARD_ERROR

F T F SOFT_ERROR

F T T STxC_FAIL

T F F OK

EVx behavior in response to cAck_h encodings others than those listed above is UNDEFINED.

The HARD_ERROR type indicates that the cycle has failed in some catastrophic manner. EVx
latches sufficient state to determine the cause of the error, and initiates a machine check.

The SOFT_ERROR type indicates that a failure occurred during the cycle, but the failure
was corrected. EVx latches sufficient state to determine the cause of the error, and initiates
a corrected error interrupt.

The STxC_FAIL type indicates that a STxC cycle has failed. It is UNDEFINED what happens
if this type is used on anything but an STxC cycle.

The OK type indicates success.

The dRAck_h pins inform EVx that read data is valid on the data bus, if the data should
be cached, and if ECC checking and correction or parity checking should be attempted. ..
The dRAck_h inputs are synchronous, and external logic must guarantee setup and hold
requirements with respect to the system clock. If dRAck_h is sampled IDLE at a system
clock then the data bus is ignored. If dRAck_h is sampled non IDLE at a system clock then
the data bus is latched at that system clock, and external logic must guarantee that the data
meets setup and hold with respect to the system clock.

The acknowledgment types are as follows.

4-14 External Interface

Table 4-8: Read Data Acknowledgment Types

dRAck_h[2] dRAck_h[l] dRAck_h[O] Type

F F F IDLE

T F F OK_NCACHE_NCHK

T F T OK_NCACHE

T T F OK_NCHK

T T T OK

EVx behavior in response to dRAck_h encoding others than those listed above is UNDE­
FINED.

The first non IDLE sample of dRAck_h tells EVx to sample data bytes [15 .. 0], and the second
non IDLE sample of dRAck_h tells EVx to sample data bytes [31..16]. External logic may
drive the second dRAck_h and the cAck_h during the same system clock.

READ_BLOCK and LDxL transactions may be terminated with HARD_ERROR status before
all expected dRAck_h cycles are received. Here the behavior of EV3 and EV 4 differ
slightly. In EV3 the affected primary cache block is invalidated, and its data contents are
UNPREDICTABLE. In EV 4 the contents of the entire cache block, including its tag and valid
bit, are UNPREDICTABLE. In both EV3 and EV4 a machine check is posted.

EVx may use D-stream primary cache fill data as soon as it is received, including data
received in the first half of a READ _BLOCK transaction which is later terminated with
HARD_ERROR. EVx does not use any I-stream primary cache fill data until it successfully
receives the entire cache block.

EVx does not change its interpretation of dRAck_h[l.. 0] based on cAck_h if all expected
dRAck's are received, so external logic must avoid caching and/or ECC/parity checking data
which is known to be garbage if it cares.

EVx behavior is UNDEFINED if dRAck_h is asserted in a non-read cycle.

EVx checks dRAck_h[O] (the bit that determines if the block is ECC/parity checked) during
both halves of the 32-byte block. It is legal, but probably not useful, to check only one half of
the block. ·

EV3 checks dRAck_h[l] (the bit that determines if the block is cached or not) during the
second half of the 32-byte block. EV 4 checks dRAck_h[l] during the first half of the 32-byte
block.

The dOE_l inputs tells EVx if it should drive the data bus. It is a synchronous input, so
external logic must guarantee setup and hold with respect to the system clock. If dOE_l is
sampled true at a system clock then EVx drives the data bus at the system clock if it has a
WRITE_BLOCK or STxC request pending (the request may already be on the cReq pins, or it
may appear on the cReq pins at the same system clock edge as the data appears). If dOE_l is
sampled false at the system clock then EVx tri-states the data bus on the next system clock
cycle. The cycle type is factored into the enable so that systems can leave dOE_l asserted
unless it is necessary to write a victim.

External Interface 4-15

The dWSel_h inputs tells EVx which half of the 32-byte block of write data should be driven
onto the data bus (dOE_l permitting). They are synchronous inputs, so external logic must
guarantee setup and hold with respect to the system clock. If dWSel_h[l] is sampled false
at the end of a system clock cycle then bytes (15 .. 0J are driven onto the data bus in the next
system clock cycle. If dWSel_h(l] is sampled true at the end of a system clock cycle then
bytes (31..16] are driven onto the data bus in the next system clock cycle. Once dWSel_h[l]
has been sampled true bytes (15 .. 0] are lost; there is no backing up.

4.2.8 Primary Cache Invalidate

External logic needs to be able to invalidate primary data cache blocks to maintain coherence.
EVx provides a mechanism to perform the necessary invalidates, but enforces no policy as to
when invalidates are needed. Simple systems may choose to invalidate more or less blindly,
and complex systems may choose to implement elaborate invalidate filters.

There are two situations where entries in the on-chip Dcache may need to be invalidated.

The first situation is the obvious one. Any time an external agent updates a block in memory
(for example, an 1/0 deVice does a DMA transfer into memory), and that block has been loaded
into the external cache, then the external cache block must be either invalidated or updated.
If that external cache block has been loaded into the Dcache then that Dcache block must be
invalidated.

The second situation is more subtle. If a system is maintaining the Dcache as a subset of
the external cache, and an !cache miss results in an external cache block being replaced, and
that external cache block has been loaded into Dcache, then an invalidate is needed.

External logic invalidates an entry in the Dcache by asserting the dlnvReq_h signal. EVx
samples dlnvReq_h at every system clock. When EVx detects dlnvReq_h asserted, it
invalidates the block in the Dcache whose index is on the iAdr_h pins.

EVx can accept an invalidate at every system clock.

The dlnvReq_h input is synchronous, and external logic must guarantee setup and hold with
respect to the system clock. The iAdr_h inputs are also synchronous, and external logic must
guarantee setup and hold with respect to the system clock in any cycle in which dlnvReq_h
is true.

4.2.9 lnterru pts

External interrupts are fed to EVx via the irq_h bus. The 6 interrupts are identical; they may
be asynchronous; they are level sensitive; and they can be individually masked by PALcode.

It is expected that on most ALPHA systems the combination of hardware and PALcode will
use these 6 inputs as a power fail interrupt, a halt interrupt, and as 4 external interrupts
(with the timer interrupt, the interprocessor interrupt, and the corrected read data interrupt
wired to their normal IPL) but this is not enforced by EVx. Low-end systems could, for
example, use all of them as device interrupts, and arrange that its PALcode treated them all
as IPL20 interrupts, using fixed vectors. See Section 2.3.3 for more details on interrupts.

To aid pattern-driven chip testers, the irq_h pins may be driven synchronously with respect
to the system clock. See chapter Chapter 6 for the setup and hold requirements of the irq_h
pins with respect to the system clock for this case.

4-16 External Interface

4.2.1 O Electrical Level Configuration

EVx can drive and receive either CMOS levels or lOOK ECL levels (with assistance from
resistors on the module).

The vRef input supplies a reference voltage to the input sense circuits. If external logic ties
this to VSS + 1.4V then all inputs sense TTL levels. If external logic ties this to VDD-1.3V
(which can be obtained, for example, from the VBB output of an MClOOElll) then all inputs
sense ECL lOOK levels.

The eclOut_h input selects the output levels. If external logic ties this false then all outputs
generate CMOS levels. If external logic ties this true then all outputs are switched into a
mode in which external resistors can be used to generate ECL lOOK compatible levels.

4.2.11 Performance Monitoring

The perf_cnt_h[l..0] pins provide a means of giving EV4's internal performance monitoring
hardware access to off-chip events. These pins are system clock synchronous inputs which
may be selected via the ICCSR IPR to be inputs to the performance counters inside the EV 4
chip. If in a given system clock cycle a perf_cnt_h pin is sampled TRUE, and the pin is
selected as the source of its respective performance counter, then the counter will increment.

The perf_cnt_h[l..O] signals are unused in EV3.

4.2.12 Tristate

The tristate_l signal, if asserted, causes EV 4 to fl.oat all of its output and bidirectional pins
with the exception of cpuClkOut_h, and causes EV3 to fl.oat all of its output and bidirectional
pins with the exception of cpuClkOut_h, sysClkOutl_h, sysClkOutl_l, sysClkOut2_h and
sysClk0ut2_1. When tristate_! is asserted, EVx is forced into the reset state, but the irq_h
pins are not resampled.

4.2.13 Continuity

The cont_l signal, if asserted, causes EVx to connect all of its pins to VSS, with the exception
of clkln_h, clkln_l, testClkln_h, testClkln_l, cpuClkOut_h, sysClkOutl_h, sysClkOutl_l,
sysClk0ut2_h, sysClkOut2_1, VREF and cont_l.

4.3 64-Bit Mode
EVx may be configured at reset to use a 64-bit wide external data bus, in which case data_
h[127 .. 64] and check_h[27 .. 14] are not used. In EV 4 these pins are internally pulled to VSS,
while in EV3 they are left floating.

The dataA_h[3] pin is used as an additional address line for the external cache data RAMs.
Like the dataA_h[4] pin, it should drive a two input NOR gate, with the other input being
driven by external logic. EVx drives dataA_h[3] false during reset, during external cache
hold, and during any external cycle.

The dWSel_h[O] pin should be used by external logic along with the dWSel_h[l] pin to select
which quadword of a 32-byte block is driven onto data_h[63 .. 0] during each system clock cycle
of an external WRITE_BLOCK or STxC transaction. The relationship between dWSel_h[l..0]
and the selected bytes of the 32-block block is as follows:

External Interface 4-17

Table 4-9: dWSel_h

dWSel_h[l •• O] Selected Bytes

00

01

10

11

(07 .. 00]

(15 .. 08]

(23 .. 16]

(31..24]

External logic must select quadwords in increasing order within the 32-byte block, but is free
to skip over any quadword which does not have corresponding longword mask bits TRUE in
cWMask_h(7 .. 0].

Systems should ignore dataCEOE_h[3 .. 2] and data WE_h[3 .. 2].

External cache read hit transactions are extended to consist of four cache read cycles in 64-bit
mode, where each cache read cycle is (BC_RD_SPD + 1) CPU cycles in duration. The first
cache read cycle consists of a tag probe and data read, while the subsequent three cache
read cycles consist of data reads. The EVx bus interface optimizes the external cache read
hit transaction by wrapping cache read cycles around the quadword which EVx originally
requested. The dMapWE_h pin asserts 1 CPU cycle into the second cache read cycle and
remains asserted until one CPU cycle before the end of the fourth cache read cycle.

External cache write hit transactions consist of one cache tag probe cycle which is (BC_RD_
SPD + 1) CPU cycles long, followed by one, two, three or four external cache write cycles
which are each (BC_ WR_SPD + 1) cycles long. The EVx bus interface uses the minimum
number of cache write cycles required to write the necessary longwords within the 32-byte
block.

Note that the maximum latency from holdReq_h assertion to holdAck_h assertion in 64-bit
mode is longer than in 128-bit mode. Also, the guarantee which external logic must make
as to the availability of the external cache data RAMs when asserting tagOk is different for
64-bit mode than for 128-bit mode.

For external READ _BLOCK and LDxL transactions the EVx chip normally expects four
distinct dRAck_h acknowledgment cycles. The first non-IDLE dRAck_h sample informs EVx
to sample data bytes (7 .. 0], the second to sample data bytes (15 .. 8], and so on. Each quadword
is parity/ECC checked based on the dRAck_h code supplied with that quadword. In EV3
the dRAck_h code supplied with the fourth quadword determines whether the 32-byte block
is cached, while in EV 4 the dRAck_h code supplied with the first quadword performs this
function.

4.4 Transactions
4.4.1 Reset

External logic resets EVx by asserting reset_l. When EVx detects the assertion of reset_l it
terminates all external activity, and places the output signals on the external interface into
the following state. Note that all of the control signals have been placed in the state that
allows external access to the external cache.

4-18 External Interface

Table 4-10: Reset State

Pin State

sRomOE_l F

sRomClk_h T

adr_h z
data_h z
check_h z
tagCEOE_h F

tagCtlWE_h F

tagCtlV_h z
tagCtlS_h z
tagCtlD_h z
tagCtlP_h z
dataCEOE_h F

dataWE_h F

dataA_h F

holdAck_h F

cReq_h<2:0> FFF

After asserting reset_l for long enough to reset the serial ROM (100 ns), external logic negates
reset_l.

When EVx detects reset_l negate it may load bits from an external serial ROM into its internal
!cache, based on the value placed on icMode_h[l..O]. The timing is shown below (assuming
EVx only read 3 bits from the serial ROM):

reset l --------1
sRomOE l
sRomClk h
Sample sRomD_h

1-------------------1
----1 1-----1 1-----1 1--

A A A

Each half-tick of the sRomClk_h signal is 63 CPU cycles long, which guarantees the 200ns
clock high and clock low specifications and the 400ns clock to data specification of the serial
ROM with 5ns CPU cycles.

Recall that it is possible to disable the serial ROM mechanism altogether - see Section 4.2.3.

External Interface 4-19

4.4.2 Fast External Cache Read Hit
A fast external cache read consists of a probe read (overlapped with the first data read),
followed by the second data read if the probe hits.

The following diagram assumes that the external cache is using 4 cycle reads (BC_RD_SPD
= 3), 4 cycle writes (BC_ WR_SPD = 3), chip enable control OE = L).

Internal Clock
adr h
tagCEOE_h
tagCtlWE_h
tagAdr h
tagCtl-h
iMapWE=h, dMapWE_h
dataCEOE h
dataWE h
dataA_h[4]
data h
check h

IO 11 1·2 13 14 15 16 17 I
1-------------------------------1
1---------------1

-ram-I
-ram-I

1-------1
1-------------------------------1

1---------------1
-ram-0-1 -ram-1-1
-ram-0-1 -ram-1-1

If the probe misses then the cycle aborts at the end of clock 3.

If the probe hits and the miss address had bit 4 set then the two data reads would have been
swapped (dataA_h[4] would have been true in cycles 0, 1, 2, 3, and would have been false in
cycles 4, 5, 6, 7).

4.4.3 Fast External Cache Write Hit

A fast external cache write consists of a probe read, followed by 1 or 2 data writes.

The following diagram assumes that the external cache is using 4 cycle reads (BC_RD_SPD
= 3), 4 cycle writes CBC_ WR_SPD = 3), chip enable control (OE = L), and a 2 cycle write pulse
centered in the 4 cycle write (BC_WE_CTL[l5 .. 1] = LLLLLLLLLLLLLHH).

Internal Clock
adr h
tagCEOE_h
tagCtlWE_h
tagAdr_h
tagCtl_h
dataCEOE h
dataWE h
dataA_h[4]
data h
check h

10 11 12 13 14 15 16 17 18 19 110 111 I
1---1
1---------------1 1-------1

1-------1
-ram-I
-ram-I l-cpu-------1

1-------1
1-------1

1-------1
1-------1

1---------------1
l-cpu-o---------l-cpu-1---------1
l-cpu-o---------l-cpu-1---------1

Note that EVx drives the tagCtl_h pins one CPU cycle later than it drives the data_h and
check_h pins relative to the start of the write cycle. This is because, unlike data_h and
check_h, the tagCtl_h field must be read during the tag probe which proceeds the write cycle.
Since EVx can switch its pins to a low impedance state much more quickly than most RAMs
can switch their pins to a high impedance state, EVx waits one CPU cycle before driving the
tagCtl_h pins in order to minimize tristate driver overlap.

If the probe misses then the cycle aborts at the end of clock 3.

4-20 External Interface

4.4.4 READ_BLOCK Transaction

A READ _BLOCK transaction appears at the external interface on external cache read misses,
either because it really was a miss, or because the external cache has not been enabled.

sysClkOut Cycle
sysClkOutl_h
adr h
RAM Ctl
data h
check h
cReq_h
cWMask h
dRAck h
cAck h

o 1 2 3 4 I s 6
I --- I I ---1 I --- I I ---1 I ---1 I ---1 I --- I

1---1
------------1

1-0-----1 1-1-----1
1-0-----1 1-1-----1

1---------------------------------------1
1-------------------------------1

1-------1 1-------1
1-------1

0. The cReq_h pins are always idle in the system clock cycle immediately before the
beginning of an external transaction. The adr_h pins always change to their final value
(with respect to a particular external transaction) at least one CPU cycle before the start
of the transaction.

1. The READ_BLOCK transaction begins. EVx has already placed the address of the
block containing the miss on adr_h. EVx places the quadword-within-block and the I/D
indication on cWMask_h. EVx places a READ_BLOCK command code on cReq_h. EVx
will clear the RAM control pins (dataA_h[4 .. 3], dataCEOE_h[3 .. 0] and tagCEOE_h) no
later than one CPU cycle after the system clock edge at which the transaction begins.

2. The external logic obtains the first 16 bytes of data. Although a single stall cycle has
been shown here, there could be no stall cycles, or many stall cycles.

3. The external logic has the first 16 bytes of data. It places it on the data_h and check_h
busses. It asserts dRAck_h to tell EVx that the data and check bit busses are valid. EVx
detects dRAck_h at the end of this cycle, and reads in the first 16 bytes of data at the
same time.

4. The external logic obtains the second 16 bytes of data. Although a single stall cycle has
been shown here, there could be no stall cycles, or many stall cycles.

5. The external logic has the second 16 bytes of data. It places it on the data_h and check_h
busses. It asserts dRAck_h to tell EVx that the data and check bit busses are valid. EVx
detects dRAck_h at the end of this cycle, and reads in the second 16 bytes of data at the
same time. In addition, the external logic places an acknowledge code on cAck_h to tell
EVx that the READ_BLOCK cycle is completed. EVx detects the acknowledge at the end
of this cycle, and may change the address.

6. Everything is idle. EVx could start a new external cache cycle at this time.

Since external logic owns the RAMs by virtue of EVx having deasserted its RAM control
signals at the beginning of the transaction, external logic may cache the data by asserting its
write pulses on the external cache during cycles 3 and 5.

EVx performs ECC checking and correction (or parity checking) on the data supplied to it via
the data and check busses if so requested by the acknowledge code. It is not necessary to
place data into the external cache to get checking and correction.

External Interface 4-21

4.4.5 Write Block

A WRITE_BLOCK transaction appears at the external interface on external cache write
misses (either because it really was a miss, or because the external cache has not been
enabled), or on external cache write hits to shared blocks.

sysClkOut Cycle
sysClkOutl_h
adr h
RAM ctl
data h
check h
cReq_h
cWMask h
dOE 1
dWSel h
cAck h

o 1 2 3 I 4 s 6
1---1 1---1 1---1 1---1 1---1 1---1 1---1

1---1
------------1

1-0-----1 1-1-----1
1-0-----1 1-1-----1

1---------------------------------------1
1---------------------------------------1

1-------1 1-------1
1-------1

1-------1

I
1-

0. The cReq_h pins are always idle in the system clock cycle immediately before the
beginning of an external transaction. The adr _h pins always change to their final value
(with respect to a particular external transaction) at least one CPU cycle before the start
of the transaction.

1. The WRITE_BLOCK cycle begins. EVx has already placed the address of the block on
adr_h. EVx places the longword valid masks on cWMask_h. EVx places a WRITE_
BLOCK command code on cReq_h. EVx will clear the RAM control pins (dataA_h[4 .. 3],
dataCEOE_h[3 .. 0] and tagCEOE_h) no later than one CPU cycle after the system clock
edge at which the transaction begins.

2. The external logic detects the command and asserts dOE_l to tell EVx to drive the first 16
bytes of the block onto the data bus. The timing shown for dOE_l is chosen for discussion
purposes - external logic may in fact assert dOE_l by default and only deassert when it
needs to read the data RAMs, such as when writing back a victim block.

3. EVx drives the first 16 bytes of write data onto the data_h and check_h busses, and the
external logic writes it into the destination. Although a single stall cycle has been shown

· here, there could be no stall cycles, or many stall cycles.

4. The external logic asserts dOE_l and dWSel_h to tell EVx to drive the second 16 bytes of
data onto the data bus.

5. EVx drives the second 16 bytes of write data onto the data_h and check_h busses, and
the external logic writes it into the destination. Although a single stall cycle has been
shown here, there could be no stall cycles, or many stall cycles. In addition, the external
logic places an acknowledge code on cAck_h to tell EVx that the WRITE_BLOCK cycle is
completed. EVx detects the acknowledge at the end of this cycle, and changes the address
and command to their next values.

6. Everything is idle. EVx may start a new external cache access at this time.

Since external logic owns the RAMs by virtue of EVx having deasserted its RAM control
signals at the beginning of the transaction, external logic may cache the data by asserting its
write pulses on the external cache during cycles 3 and 5.

EVx performs ECC generation (or parity generation) on data it drives onto the data bus.

4-22 External Interface

Although in the above diagram external logic cycles through both 128-bit chunks of potential
write data, this need not always be the case. External logic must pull from the EVx chip only
those 128-bit chunks of data which contain valid longwords as specified by the cWMask_h
signals. The only requirement is that if both halves are pulled from EVx, then the lower half
must be pulled before the upper half.

4.4.6 LDxL Transaction

An LDxL transaction appears at the external interface when an interlocked load instruction
is executed. The external cache is not probed. With the exception of the command code output
on the cReq pins, the LDxL transaction is exactly the same as a READ_BLOCK transaction.
See section Section 4.4.4.

4.4. 7 STxC Transaction

An STxC transaction appears at the external interface when a conditional store instruction
is executed. The external cache is not probed.

The STxC transaction is the same as the WRITE_BLOCK transaction, with the following
exceptions:

0. The code placed on the cReq pins is different.

1. The cWMask field will never validate more than a single longword or quadword of data.

2. External logic has the option of making the transaction fail by using the cAck code of
STxC_FAIL. It may do so without asserting either dOE_l or dWSel_h.

See section Section 4.4.5.

4.4.8 BARRIER Transaction

A BARRIER transaction appears on the external interface as a result of an MB instruction.
The acknowledgment of the BARRIER transaction tells EVx that all invalidates have been
supplied to it, and that any external write buffers have been pushed out to the coherence
point. Any errors detected during these operations can be reported to EVx when the BARRIER
transaction is acknowledged.

sysClkOut Cycle I 0 1 2
sysClkOut_h 1---1 1---1 1---1 ..
cReq_h 1---------------1
cAck h 1-------1

0. The BARRIER transaction begins. EVx places the command code for BARRIER onto the
cReq_h outputs.

1. The external logic notices the BARRIER command, and since it has completed processing
the command (it isn't going to do anything), it places an acknowledge code on the cAck_h
inputs.

2. EVx detects the acknowledge on cAck_h, and removes the command. The external logic
removes the acknowledge code from cAck_h. The cycle is finished.

External Interface 4-23

4.4.9 FETCH Transaction

A FETCH transaction appears on the external interface as a result of a FETCH instruction.
The transaction supplies an address to the external logic, which may choose to ignore it, or
use it as a memory-to-cache prefetching hint.

sysClkOut Cycle
sysClkOut_h
adr h
RAM ctl
cReq_h
cAck h

I o 1 2
1---1 1---1 1---1 I

1-------------------1
------------1

1-~-------------1

1-------1

3

0. The cReq_h pins are always idle in the system clock cycle immediately before the
beginning of an external transaction. The adr_h pins always change to their final value
(with respect to a particular external transaction) at least one CPU cycle before the start
of the transaction.

1. The FETCH transaction begins. EVx has already placed the effective address of the
FETCH on the address outputs. EVx places the command code for FETCH on the cReq_
h outputs. EVx will clear the RAM control pins (dataA_h[4 .. 3], dataCEOE_h[3 .. 0] and
tagCEOE_h) no later than one CPU cycle after the system clock edge at which the
transaction begins.

2. The external logic notices the FETCH command, and since it has completed processing
the command (it isn't going to do anything), it places an acknowledge code on the cAck_h
inputs.

3. EVx detects the acknowledge on cAck_h, and removes the address and the command. The
external logic removes the acknowledge code from cAck_h. The cycle is finished.

4.4.1 O FETCHM Transaction

A FETCHM transaction appears on the external interface as a result of a FETCHM instruc­
tion. The transaction supplies an address to the external logic, which may choose to ignore
it, or use it as a memory-to-cache prefetching hint. With the exception of the command code
placed on cReq_h, the FETCHM transaction is the same as the FETCH transaction. See
section Section 4.4.9.

4-24 External Interface

Chapter 5

DC Characteristics

5.1 Overview
EV3 and EV 4 are capable of running in a CMOS/TTL environment or an ECL environment.
The chips will be tested and characterized in a CMOS environment. The specifications
below assume a CMOS!rTL environment. Differences for an ECL environment are noted
in Section 5.2.

5.1.1 Power Supply

In CMOS mode the VSS pins are connected to 0.0V, and the VDD pins are connected to 3.3V,
+/- 5%.

To prevent damage to EV 4, it is important that the 3.3V power supply be stable before any
of EV 4's input or bidirectional pins be allowed to rise above 4. OV. System designers should
note that this is exactly opposite to the rule used by 5.0V inputs in CMOS-3, so care should
be taken when "borrowing" power supplies from CMOS-3 systems.

To help in meeting this requirement, the assertion levels of EV 4's input pins have been
arranged so that their default state is the electrical low state. This makes them active high,
with the exception of tagOk_l and dOE_l, which are true by default.

5.1.2 Reference Supply
The vRef analog input should be connected to a 1.4V +/-10% reference supply.

5.1.3 Input Clocks

clkln (_h,_l) is expected to be a differential signal generated from an ECL oscillator circuit,
although non-ECL circuits may also be used. It may be AC coupled, with a nominal DC bias
of VDD/2 set by a high-impedence (i.e. >lK) resistive network on chip. It need not be AC
coupled ifVDD is used as the VCC supply to the ECL oscillator. See the AC Characteristics
chapter for more detail.

DC Characteristics 5-1

5.1.4 Signal pins
Input pins are ordinary CMOS inputs with standard TTL levels, see Table 5-1. Once power
has been applied and vRef has met its hold time, the majority of input pins can be driven
by 5.0V (nominal) signals without harming EV 4. There are some signals that are sampled
before vRef is stable, and these signals can not be driven above the power supply. These
signals are:

• dcOk_h

• tristate_}

• cont_l

• eclOut_h

Output pins are ordinary 3.3V CMOS outputs. Although output signals are rail-to-rail, timing
is specified to standard TTL levels, see Table 5-1.

Bidirectional pins are ordinary 3.3V CMOS bidirectional. On input, they act like input pins.
On output, they drive like output pins.

Once power has been applied, input (except noted above) and bidirectional pins can be driven
to a maximum DC voltage of 5.5V without harming EV 4 (it is not necessary to use static
RAMS with 3.3V outputs). ·

Table 5-1 : CMOS DC Characteristics

Parameter

Symbol Description

TrL Inputs/Outputs

Vih High level input voltage

Vil Low level input voltage

Voh High level output voltage

Vol Low level output voltage

Power/Leakage

lcin Clock input Leakage

lil Input leakage current

Iol Output leakage current
(three-state)

5-2 DC Characteristics

Requirements

Min

2.0

2.4

-50

10

-10

Max Units Test Conditions

v
0.8 v

V Ioh = -lOOuA

0.4

50

10

v

uA

uA

-10 uA

Iol = 3.2mA

-0.5<Vin<5.5V

O<Vin<Vdd V

5.2 ECL 1 OOK Mode
In ECL lOOK mode a combination of on-chip and off-chip circuits provide ECL lOOK compat­
ible interfaces.

5.2.1 Power Supply

In ECL lOOK mode the VDD pins are connected to O.OV, and the VSS pins are connected to
-3.3V, +/- 5%.

5.2.2 Reference Supply

In ECL lOOK mode the vRef input is connected to a reference supply at VDD-l.3V. The best
way to generate the reference supply is to use the VBB output provided by several chips, such
as the ECLinPS MClOOElll.

5.2.3 Inputs

In ECL lOOK mode inputs appear to be ordinary ECL lOOK inputs, with the exception that
they lack the pull down resistor that is normally present in ECL lOOK circuits.

5.2.4 Outputs

In ECL lOOK mode external resistors create the correct ECL lOOK levels. The following
stylized circuit is used.

I
I +---+ I

CPU 1------IRl 1-------------1 ECL lOOK
I +---+ I I
I 50 ohms +-+ I

IRI

5.2.5 Bidirectionals

121 100 ohms
+-+

I
-+-

-2. 0V

In ECL lOOK mode f~1e bidirectional pins should be converted into unidirectional input and
output busses as close to EV 4 as possible. The EV 4 chip bidirectional bus is buffered and
driven onto the system output bus. The system input bus is driven onto EV 4's bidirectional
bus using cut-off drivers controlled by the CPU's output enables.

The same resistor network used on output pins is used on bidirectional pins.

DC Characteristics 5-3

5.3 Power Dissipation
A comprehensive power dissipation analysis consisting of both analytic and empirical tech­
niques was performed on EV3. Once a program that caused maximum EV3 dynamic power
dissipation was identified, it was run on the logic simulator and using analysis tools, EV 4
power dissipation was analytically predicted. The results from that analysis are shown in
Table 5-2.

Table 5-2: EV4 Power Dissipation @Vdd:3.45V

Speed Min Typ Max

5.0ns

6.6ns

24

19

29.5

23

36

27.5

Units

Watts

Watts

The minimum power occurs during reset, the Typ column is the worst case average program
and the Max column is the worst case pathological program. An important observation is the
fact that all normal programs observed to date (both stand-alone and under ULTRIX) run in
a range between Min and Typ. So while the pathological case is theoretically possible, it is
extremely unlikely in practice. The following approach is recommended for system designers:

• Design the EV 4 heat sink and thermal environment to keep the die temperature to 85C
for the Typ power case. This is certainly the limiting case for average power dissipation
to be used for long term reliability assessment. With Typ designed for 85C, then in all
cases, Max will result in die temperatures under the lOOC design, test and process qual
limits.

• Design the overall enclosure and the power supply to handle the Max power case.

As a further refinement, it is possible to account for applications where the maximum supply
voltage is other than 3.45V and/or the operating frequency is not 150 or 200MHz. The
formulae for calculating Idd under various conditions are as follows:

Idd (Min)

Idd (Typ)

Idd (Max)

5-4 DC Characteristics

116mA/V + 9.6mA/V*MHz

116mA/V + ll.7mA/V*MHz

116mA/V + 14.4mA/V*MHz

Chapter 6

. AC Characteristics

This chapter contains the AC specification for EV4. Timing parameters are given for the
nominal speed binned (6.6ns) parts.

6.1 vRef
vRef is an analog reference voltage used by the input buffers of all signals except clkln_h,_l,
testclkln_h,_l, tagOk_h,_l, dcOk_h, eclOut_h, tristate_l, and cont_l. N2te that upon power
up, reset_l cannot be sampled until vRef is stable. There is a large internal capacitance on
vRef, and an RC delay between its pin and the input buffers. Therefore, systems must not
assert dcOk_h until a suitable interval following the stability of the vRef source. This interval
is specified as the greater of lµs and lOnF * Zout, where Zout is the vRef source impedance.

6.2 Input Clocks
The input clocks clkln_h,_l and testclkln_h,_l are received differentially, then XORed to
provide the time-base for EV 4 when dcOk_h is asserted. We expect testclkln_h,_l to be used
only by testers unable to drive clkln_h,_l at full speed. The terminations on these signals are
designed to be compatible with system oscillators of arbitrary DC bi_as. Schematically, they
look as follows:

AC Characteristics 6-1

+-----+ +-----+
I PIN 1----+----I PAD 1-----------+------------> (to diff-amp}
+-----+ +-----+ I

I
I SOohms Hi_Z

Cpkg +----RRRR----+----RRRR----+
I I

I
40pF I

Vbias = (Vdd-Vss}/2 I
+-----------------------------------+------------+

This is designed to approximate a 50ohm termination for the purpose of impedance matching
for those systems (if any) which drive input clocks across long traces. Furthermore, the high
impedance bias driver allows a clock source of arbitrary DC bias to be AC coupled to EV 4.
The peak-to-peak amplitude of the clock source must be between 0.6V and 3.0V as seen by
EV4. Either a "square-wave" or a sinusoidal source may be used. Note that full-rail clocks
may be driven by testers.

The following table lists the input clock cycle times for the various EV4 bin speeds. Note that
the these periods equal one-half the corresponding cpu cycle times.

Table 6-1: Input Clock Timing

Name Fast Bin Nominal Bin Slow Bin Unit

clkln period min 2.5 3.3 5.o ... nS

clkln period max tbd tbd tbd nS

clkln symmetry 50%+/-10% 50%+/-10% 50%+/-10% percent

6.3 cpuClkOut_h
The cpuClkOut_h signal is expected to be used only by an ECL synchronizer in systems using
the tagOk protocol. In order to accommodate ECL levels, the driver consists of only a PMOS
pullup device. ECL lOOK levels may be constructed with a 50ohm board resistor in series
with the driver and a lOOohm board resistor between the load and CV dd - 2V). CMOS V dd
must equal ECL V cc in this scheme. Note that the trace must be short to insure good signal
integrity if, as expected, the board impedance is not in the vicinity of lOOohm.

6-2 AC Characteristics

6.4 Test Configuration
All outputs and bidirectional signals including clocks but excluding cpuClkOut_h are specified
with respect to a standard 40pF load as shown below. All timing is specified with respect to
the crossing of standard TTL input levels at 0.8V and 2.0V.

I
EV4 !------------+
PIN I I

I 40pf

-+­
GND

6.5 Fast Cycles on External Cache
From a system standpoint, fast cycles on the external cache are completely unclocked. The
two cases of read and write cycles require separate treatment.

6.5.1 Fast Read Cycles

External logic must meet the maximum flow-through delay, as defined with respect to the
circuits below.

I Address
EV4 !-------------+
PIN I Control I

I 40pf

-+­
GND

I Address +----------+
EV4 1-------------1
PIN I Control I

I I External
I
I Logic

I Data I
EV4 1-------------1
PIN I +----------+

I

"Address" refers to adr_h and dataA_h. "Control" refers to dataCEOE_h and tagCEOE_h.
"Data" refers to data_h, check_h, tagAdr_h, and tagCtl_h. Assume that address/control is
driven from the same EV4 internal clock edge in the two cases above. External flow-through
delay is defined as the delay between address/control valid to the 40pF standard load in the
left-hand case and data valid to EV 4 in the right-hand case. It may not exceed the fast read
cycle time (i.e. BC_RD_SPD+l cpu cycles) less 5.0ns. EV4 guarantees that its address drivers
are enabled at least one cpu cycle prior to a fast cache access, such that adr_h need never be
pulled down from 5V during the cycle.

AC Characteristics 6-3

6.5.2 Fast Write Cycles

External logic must guarantee that fast writes complete. Data, address, and control (including
data WE_h and tagCtlWE_h) are driven by EV 4 with identical timing from its internal clock.
Actual pulse widths are at least the nominal width less 1.5ns, or 2.9ns on lines precharged
to 5V (i.e. data lines following a probe read). The timing of dMapWE_h during dcache read
hits is specified in the same way.

6.6 External Cycles
All external cycle timing is referenced to the rising edge of sysClkOutl_h. Input setup
and hold times and output delay and enable times are referenced to the point at which
sysClkOutl_h crosses O.SV. (Output enable time is defined as output delay time from a tri­
stated state. It may differ from the nominal delay because it may entail pulling down from a
5V level.) Output hold times are referenced to the point at which sysClkOutl_h crosses 2. OV.
They denote the times beyond sysClkOutl_h for which outputs hold their valid values from
the previous cycle. Note that these times are negative, meaning that data may lose validity
BEFORE sysClkOutl_h becomes valid high. (This is possible because there is no cause-effect
relationship between the system clock outputs and data. In fact, the system clock outputs
are nothing more than data pins which happen to switch in a fixed pattern.) Address enable
timing is relevant only for systems using the holdReq protocol with two cpu cycles per system
cycle. All bidirectional lines may be considered enable or d.isabled simultaneously with the
rising edge of sysClkOutl_h.

6-4 AC Characteristics

Table 6-2: External Cycles

Name

Enable, sysClkOutl_h to

adr_h, data_h, check_h

Output Delay, sysClkOutl_h to

adr_h, data_h, check_h, cReq_h, cWMask_h,
holdAck_h

Output hold, sysClkOutl_h to

adr_h, data_h, check_h, cReq_h, cWMask_h,
holdAck_h

Input Setup relative to sysClkOutl_h

dRAck_h, dWSel_h, dOE_l

cAck_h

holdReq_h

dlnvReq_h, iAdr_h

data_h, check_h

Input Hold relative to sysClkOutl_h

cAck_h, dRAck_h, dWSel_h, dOE_l

data_h, check_h

holdReq_h, dlnvReq_h, iAdr_h

Min

-1.5

9.3

Tcyc/2 + 6.0

4.8

4.5

3.5

0

0

0

Max

2.9

1.5

Units

nS

nS

nS

nS

nS

nS

nS

nS

nS

nS

nS

The cAck_h input setup time is a function of the chip cycle time(Tcyc). At the nominal 6.6nS
cycle time, required setup on the cAck_h pin is 9.3nS.

6.7 tagEq
When active during external cache hold, the timing of tagEq_l is specified from when its
inputs become valid at the EV 4 pins.

AC Characteristics 6-5

Table 6-3: tagEq

Name

Delay, adr_h -> tagEq_l

Delay, tagAdr_h -> tagEq_l

6.8 tagOk

Min Max

17.0

17.0

Units

nS

nS

The tagOk_h,_l signals are expected to be driven to EV4 directly from the final stage of an
ECL synchronizer clocked by cpuClkOut_h. As in the case of fast external cache cycles, the
system must meet a maximum flow-through delay. This delay is defined with respect to the
circuits below.

I cpuClkOut_h
EV4 1----RRRR----+------+
PIN I 50ohms I I lOpF

I I
I

Vdd-2 .OV I I
0----RRRR----+ V

lOOohms

I cpuClkOut_h +----------+
EV4 1---------------1 I
PIN I I I

I I External I
I I
I Logic I

I tagOk_h,_l I I
EV4 1---------------1 I
PIN I +----------+

I

Assume that cpuClkOut_h is driven from the same EV 4 internal clock edge in the two cases
above. External flow-through delay is defined as the delay between cpuClkOut_h valid to the
lOpF ECL "standard" load in the left-hand case and tagOK_h,_l valid to EV 4 in the right­
hand case. It may not exceed the nominal cpu cycle time less 3.9ns. Note that board resistors
must be part of" external logic" in the circuit on the right. For purposes of this specification,
cpuClkOut_h is considered valid when it crosses the ECL threshold "Vbb" (equal to roughly
V cc - l.3V) ~d tagOk is considered valid when the differential lines cross each other.

6.9 Tester Considerations

6.9.1 Asynchronous Inputs
The signals reset_l, irq_h, and sRomD _h (in serial port mode) are asynchronous during normal
system operation. However, for test purposes they should be driven synchronously with
sysClkOutl_h with the timing given below. Note once again that these parameters are given
with respect to the time at which the rising edge of sysClkOutl_h crosses O.SV.

6-6 AC Characteristics

Table 6-4: Asynchronous Signals on a Tester

Name Min Max Units

Setup,' reset_} -> sysClkOutl_h 5.0 nS

Setup, irq_h -> sysClkOutl_h 5.0 nS

Hold, irq_h -> sysClkOutl_h 0 nS

Setup, sRomD_h -> sysClkOutl_h 5.0 nS

Hold, sRomD_h -> sysClkOutl_h 0 nS

6.9.2 Signals Timed from Cpu Clock
Due to the speed of EV 4, it is expected that at-speed testing will be done with tester cycle
equal to system cycle (i.e. sysClkOutl_h). However, fast external cache operation and serial
ROM operation are timed from internal cpu clock. Therefore, input sampling and output
enabling and switching may occur at different time points within a tester cycle from one cycle
to the next. Fortunately, the number of such points is finite, equal to the number of cpu cycles
per tester cycle. For any given transaction, each signal will have its standard external cycle
timing with respect to the rising edge of sysClkOutl_h OR to a "phantom" edge offset from
sysClkOutl_h by exactly an integer number of cpu cycles. (Note that dataA_h, dataCEOE_h,
dataWE_h, tagCEOE_h, tagCtlWE_h, and dMapWE_h have the same delay timing as adr_
h.) Therefore, outputs may be sampled deterministically with appropriate placement of the
tester strobe and inputs may be received deterministically with appropriate placement of the
drive edge. Bidirectional signals present a different problem. Because the tester can enable
or disable a given driver at just one point within its cycle, it must in the worst case drive an
input beyond its EV 4 sample point by at least (N-1) cpu cycles, where N is the number of cpu
cycles per system cycle. However, in the worst case EV 4 will enable its drivers just one cpu
cycle after sampling (for example, tagCtl_h following probe write). Therefore, the number of
cpu cycles per system cycle must not exceed two to avoid driver conflict between EV 4 and the
tester.

The serial ROM outputs sRomOE_l and sRomClk_h may be strobed with the same timing as
the data_h pins when driven by EV4. The serial ROM input sRomD_h may be switched with
the same timing used in serial port mode.

6.1 O Scaling for EV3
Prototype systems using EV3 must make allowance for the use of CMOS-3 technology by
scaling all timing parameters (except those on vRef) by a factor of 1.5. Systems which use
the holdReq protocol with 5V address drivers are further constrained to keep "flow-through
delay" on fast cache read cycles less than the nominal fast read cycle time less 9.6ns. In
addition, one-half a cpu cycle must be added to the maximum delay between tagAdr_h and
tagEq_l due to an internal latch on the tagAdr_h inputs to the tagEq_l comparator.

AC Characteristics 6-7

6-8 AC Characteristics

Chapter 7

Package

EV3 and EV4 packages are pin compatible. Figure 7-1 shows pin locations for both EVx
chips. Pin numbers are compatible with EVx bodies used in the Artemis/Lyre CAD system.

Package 7-1

Figure 7-1: PGA Cavity Up View

AD 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
E9

AC 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
E9

AB 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
E9

AA 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
E9

y 313 314 315 316 317 318 319 320 321 322 323 324 325 325 327 328 329 330 331 332 333 334 335 336
E9

x 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
E9 E9 E9 E9 (D E9 E9 E9 e E9 E9 E9 E9 E9 E9 E9 E9 E9 E9 E9 E9 E9 E9 E9

w 277 278 279 280 281 282 283 284 285 286 287 288
E9 E9 E9 E9 E9 E9 E9 E9 E9 E9 E9 E9

u 265 266 267 268 269 270 271 272 273 274 275 276
E9 E9 E9 E9 E9 E9

11

E9 @ e e E9 e
T 253 254 255 256 257 258 l 259 260 261 262 263 264

E9 E9 E9 E9 E9 E9 I E9 E9 E9 E9 E9 e
I

R 241 242 243 244 245 246 I 247 248 249 250 251 252 I
E9 E9 E9 E9 e E9 I E9 E9 E9 E9 E9 E9

I
229 230 231 232 233 234 I 235 236 237 238 239 240 p 11 I
E9 E9 E9 E9 E9 e

11
I E9 E9 e E9 E9 e I

217 218 219 220 221 222 I 223 224 225 226 227 228 N I
E9 E9 E9 E9 E9 E9 I I I E9 E9 e E9 E9 e I I I EVx I

M 205 206 207 208 209 210 I I 211 212 213 214 215 216
E9 E9 E9 E9 E9 E9 I I E9 E9 E9 E9 E9 E9 I I I

L 193 194 195 196 197 198 I I 199 200 201 202 203 204
E9 E9 E9 E9 E9 e I I E9 E9 e e E9 e I I

11 I

K 181 182 183 184 185 186 I 187 188 189 190 191 192
E9 E9 e e E9 ED 11

111

E9 E9 E9 E9 E9 e
J 169 170 171 172 173 174 I! t 175 176 177 178 179 180

e E9 E9 E9 (D E9 E9 E9 E9 e E9 E9
157 158 159 150 161 162 I' 163 164 165 166 167 168 H I

E9 ED E9 e E9 E9 E9 E9 E9 E9 E9 e I I
G 145 146 147 148 149 150 431 PIN PGA CAVITY UP VIEW 151 152 153 154 155 156 uuuuuuuuuuou

E9 E9 E9 E9 E9 E9 E9 E9 E9 E9 E9 E9 PINS

F 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 i E9 E9 E9 E9 E9 e E9 E9 EB ED E9 E9 E9 E9 E9 E9 E9 E9 E9 E9 E9 E9 E9 E9

E 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
E9 E9 E9 E9 E9 E9 E9 E9 E9 e E9 E9 E9 E9 E9 E9 E9 E9 E9 E9 E9 E9 E9 E9 VIEW

D 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096
e E9 E9 E9 E9 E9 e E9 E9 e E9 E9 E9 E9 E9 e E9 E9 e e E9 E9 E9 E9

c 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072
E9 E9 e e E9 e e E9 E9 e E9 E9 e E9 E9 E9 E9 E9 E9 E9 E9 E9 E9 E9

B 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048
E9 E9 E9 e ED E9 e e E9 e E9 E9 E9 E9 E9 E9 E9 E9 e E9 E9 E9 E9 E9

A 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024
e E9 e e E9 E9 e E9 E9 E9 E9. E9 e E9 E9 E9 e E9 E9 E9 E9 e E9 E9
1 2 3 4 5 6 7 8 9 10 1 1 12 1 3 14 15 16 17 18 1 9 20 21 22 23 24

7-2 Package

Chapter 8
Pin out

8.1 Overview
This chapter contains the entire EV 4 pinout ordered by PGA location. In addition, it contains
a list of differences between the EV 4 pinout and the NVAX+ pin out.

8.2 Change History

Name

rrh
rrh

ejm

ejm

Data

10-sep-90
19-sep-90

22-apr-91

30-apr-91

Comment

First released this format
Pin R23, tagAdr<17>, type was changed from
B to I. The B was a typo and the change
does not represent a functional change.
The following is a list of changed signals:

EV4 SIGNAL EV3 SIGNAL CHANGE

icMode h<O> sromFast name chango only
icMode-h<l> scan h<2> new I formerly 0
perf _cnt_h<O> perf _h<l> new I formerly 0
perf_cnt_h<l> perf _h<2> new I formerly 0
spare<4> scan h<3> new N formerly 0
spare<5> scan h<O> new N formerly 0
spare<6> scan h<l> new N formerly 0
spare<7> perf _h<3> new N formerly 0
spare<8> perf _h<O> new N formerly 0

remove unused SIG No., replace with
Pin No. compatible with Artemis/Lyre files.

Pinout 8-1

8.3 EV4 Pinout
PGA PAD PIN
LOC. No. No. TYPE NAME

Al 009 001 B data h<33>
A2 008 002 B data h<97>
A3 004 003 B data h<98>
A4 426 004 B data-h<lOO>
AS 421 005 B data h<38>
A6 418 006 B check h<27>
A7 412 007 B data h<104>
A8 407 008 B data-h<42>
A9 403 009 B data h<44>
AlO 398 010 B data-h<109>
All 391 011 B data h<47>
Al2 387 012 B data h<49>
A13 386 013 B data h<113>
A14 379 014 B data-h<S2>
AlS 373 015 B check h<12>
A16 367 016 B data h<SS>
Al7 364 017 B data h<120>
Al8 3S8 018 B data-h<122>
Al9 35S 01.9 B check h<7>
A20 349 020 B data h<60>
A21 347 021 B data_h<61>
A22 343 022 B data h<62>
A23 340 023 B data h<l27>
A24 337 024 B check h<9>

Bl 014 025 B check h<l5>
B2 046 026 p VDD plane
B3 003 027 B data h<3S>
B4 039 028 p VSS plane
BS 424 029 B data h<lOl>
B6 054 030 p VDD plane
B7 413 031 B data h<40>
B8 047 032 p VSS plane
B9 404 033 B data h<l07>
BlO 062 034 p VDD plane
Bll 394 035 B data h<llO>
B12 05S 036 p VSS plane
Bl3 383 037 B data h<SO>
Bl4 070 038 p VDD plane
BlS 372 039 B check h<26>
Bl6 063 040 p VSS plane
Bl7 363 041 B data h<57>
B18 078 042 p VDD plane
Bl9 354 043 B check h<21>
B20 071 044 p VSS plane
B21 346 045 B data h<125>
B22 086 046 p VDD plane
B23 079 047 p VSS plane
B24 335 048 B check h<8>

8-2 Pinout

Cl 016 049 B check h<16>
C2 119 050 p VSS plane
C3 010 051 B data h<96>
C4 002 052 B data h<99>
cs 425 053 B data h<37>
C6 419 054 B check h<l3>
C7 414 055 B data h<103>
C8 410 056 B data h<105>
C9 405 057 B data_h<43>
ClO 399 058 B data_h<45>
Cll 395 059 B data_h<46>
C12 388 060 B data_h<112>
C13 382 061 B data_h<114>
Cl4 378 062 B data_h<116>
Cl5 371 063 B data_h<54>
Cl6 366 064 B data_h<ll9>
Cl7 362 065 B data_h<121>
Cl8 357 066 B check h<ll>
Cl9 351 067 B data_h<59>
C20 348 068 B data_h<124>
C21 342 069 B data_h<126>
C22 336 070 B check h<23>
C23 330 071 I d.RAck-h<O>
C24 331 - 072 N spare<3>

01 022 073 B data h<94>
02 017 074 B check h<2>
03 015 075 B check h<l>
04 005 076 B data h<34>
05 427 077 B data h<36>
06 420 078 B data h<102>
07 415 079 B data_h<39>
08 411 080 B data h<41>
09 406 081 B data_h<10_6>
010 402 082 B data h<108>
011 396 083 B check h<24>
012 389 084 B data_h<48>
013 381 085 B data_h<51>
014 375 086 B data h<53>
015 370 087 B data_h<118>
016 365 088 B data h<56>
017 .. 359 089 B data h<58>
018 356 090 B check h<25>
019 350 091 B data h<123>
020 341 092 B data_h<63>
021 334 093 B check h<22>
022 328 094 I d.RAck h<2>
023 152 095 p VOO plane
024 325 096 I dOE 1

Pinout 8-3

El 023 097 B data h<30>
E2 126 098 p VDD plane
E3 021 099 B data h<31>
E4 011 100 B data h<32>
ES 226 101 p VDD plane
E6 235 102 p VSS plane
E7 234 103 p VDD plane
E8 243 104 p VSS plane
E9 242 105 p VDD plane
ElO 255 106 p vss plane
Ell 397 107 B check_h<lO>
El2 390 108 B data_h<lll>
El3 380 109 B data_h<llS>
El4 374 110 B data_h<ll 7>
ElS 266 111 p VDD plane
El6 279 112 p vss plane
E17 278 113 p VDD plane
El8 291 114 p vss plane
El9 290 115 p VDD plane
E20 303 116 p vss plane
E21 329 117 I dRAck h<l>
E22 324 118 I dWSel h<O>
E23 323 119 I dWSel-h<l>
E24 322 120 I cAck h<O>

Fl 028 121 B data h<92>
F2 027 122 B data h<29>
F3 026 123 B data-h<93>
F4 020 124 B data-h<95>
F5 231 125 p vss plane
F6 230 126 p VDD plane
F7 239 127 p VSS plane
F8 238 128 p VDD plane
F9 249 129 p VSS plane
FlO 248 130 p VDD plane
Fll 261 131 p vss plane
Fl2 254 132 p VDD plane
Fl3 267 133 p VSS plane
Fl4 260 134 p VDD plane
Fl5 273 135 p vss plane
Fl6 272 136 p VDD plane
F17 285 137 p VSS plane
F18 284 138 p VDD plane
Fl9 297 139 p vss plane
F20 296 140 p VDD plane
F21 319 141 I cAck h<l>
F22 318 142 I cAck h<2>
F23 155 143 p VSS plane
F24 317 144 I holdReq_h

8-4 Pinout

Gl 033 14S B data_h<27>
G2 111 146 p VSS plane
G3 032 147 B data_h<91>
G4 029 148 B data h<28>
GS 360 149 p VDD plane
G6 369 lSO p VSS plane
Gl9 N/A lSl p VDD plane
G20 N/A 1S2 p VSS plane
G21 316 1S3 0 holdAck h
G22 313 1S4 0 dataCEOE h<O>
G23 312 lSS 0 dataCEOE h<l>
G24 311 1S6 0 dataCEOE h<2>

Hl 037 1S7 B check h<4>
H2 036 1S8 B check h<18>
H3 03S 1S9 B check h<O>
H4 034 160 B check h<14>
HS 361 161 p VSS plane
H6 3S2 162 p VDD plane
H19 N/A 163 p VSS plane
H20 428 164 p VDD plane
H21 310 16S 0 dataCEOE h<3>
H22 307 166 0 tagCtlWE_h
H23 142 167 p VDD plane
H24 306 168 0 cWMask h<O>

Jl 042 169 B data h<89>
J2 118 170 p VDD plane
J3 041 171 B data_h<26>
J4 040 172 B data h<90>
JS 344 173 p VDD plane
J6 3S3 174 p VSS plane
Jl9 422 17S p VDD plane
J20 N/A 176 p VSS plane
J21 30S 177 0 cWMask h<l>
J22 304 178 0 cWMask h<2>
J23 301 179 0 cWMask-h<3>
J24 300 180 0 cWMask h<4>

Kl 048 181 B data h<87>
K2 04S 182 B data h<24>
K3 044 183 B data h<88>
K4 043 184 B data h<2S>
KS 34S 18S p VSS plane
K6 338 186 p VDD plane
K19 423 187 p VSS plane
K20 416 188 p VDD plane
K21 299 189 0 cWMask h<S>
K22 298 190 0 cWMask h<6>
K23 147 191 p VSS plane
K24 29S 192 0 cWMask h<7>

Pinout 8-5

Ll OS2 193 B check h<l9>
L2 103 194 p VSS plane
L3 OSl 195 B data h<22>
L4 oso 196 B data_h<86>
LS 049 197 B data h<23>
L6 339 198 p VSS plane
Ll9 408 199 p VDD plane
L20 294 200 0 dataWE h<O>
L21 293 201 0 dataWE-h<l>
L22 292 202 0 dataWE h<2>
L23 289 203 0 dataWE=h<3>
L24 288 204 0 dMapWE_h

Ml OS9 205 B data h<20>
M2 058 206 B data_h<84>
M3 OS7 207 B data_h<21>
M4 OS6 208 B data_h<8S>
MS OS3 209 B check h<S>
M6 332 210 p VDD plane
Ml9 417 211 p VSS plane
M20 287 212 0 cReq_h<O>
M21 286 213 0 cReq_h<l>
M22 283 214 0 cReq_h<2>
M23 140 215 p VDD plane
M24 282 216 N spare<O>

Nl 060 217 B data_h<83>
N2 110 218 p VDD plane
N3 061 219 B data_h<19>

· N4 064 220 B data_h<82>
NS 06S 221 B data_h<18>
N6 333 222 p VSS plane
Nl9 400 223 p VDD plane
N20 27S 224 I tagOk_l
N21 276 22S I tagOk_h
N22 277 226 0 dataA h<4>
N23 280 227 0 dataA h<3>
N24 281 228 0 tagCEOE_h

Pl 066 229 B data h<81>
P2 067 230 B data h<l7>
P3 068 231 B data h<80>
P4 069 232 B data_h<16>
PS 072 233 B data_h<79>
P6 326 234 p VDD plane
Pl9 409 23S p VSS plane
P20 269 236 B tagCtlS_h
P21 270 237 B tagCtlD_h
P22 271 238 B tagCtlP_h
P23 14S 239 p VSS plane
P24 274 240 0 tagEq~l

8-6 Pinout

Rl 073 241 B data h<lS>
R2 09S 242 p VSS plane
R3 074 243 B data h<78>
R4 07S 244 B data h<14>
R5 320 245 p VDD plane
R6 327 246 p VSS plane
R19 392 247 p VDD plane
R20 401 248 p vss plane
R21 263 249 I tagadr_h<19>
R22 264 2SO I tagadr_h<18>
R23 26S 2Sl I tagadr_h<17>
R24 268 2S2 B tagCtlV_h

Tl 076 2S3 B check h<17>
T2 077 2S4 B check h<3>
T3 080 2SS B data h<77>
T4 081 2S6 B data h<13>
TS 321 2S7 p vss plane
T6 314 2S8 p VDD plane
Tl9 393 2S9 p VSS plane
T20 384 260 p VDD plane
T21 2S8 261 I tagadr_h<22>
T22 2S9 262 I tagadr_h<21>
T23 138 263 p VDD plane
T24 262 264 I tagadr_h<20>

Ul 082 26S B data h<76>
U2 102 266 p VDD plane
U3 083 267 B data h<12>
U4 084 268 B data h<7S>
us 308 269 p VDD plane
U6 31S 270 p vss plane
Ul9 376 271 p VDD plane
U20 38S 272 p VSS plane
U21 2S2 273 I tagadr_h<26>
U22 2S3 274 I tagadr_h<2S>
U23 2S6 27S I tagadr_h<24>
U24 2S7 276 I tagadr_h<23>

Wl 085 277 B data h<ll>
W2 088 278 B data h<74>
W3 089 279 B data h<lO>
W4 090 280 B data h<73>
ws 309 281 p vss plane
W6 302 282 p VDD plane
Wl9 377 283 p VSS plane
W20 368 284 p VDD plane
W21 247 28S I tagadr_h<29>
W22 2SO 286 I tagadr_h<28>
W23 143 287 p VSS plane
W24 2Sl 288 I tagadr_h<27>

Pinout 8-7

Xl 091 289 B data h<9>
X2 087 290 p VSS plane
X3 092 291 B data_h<72>
X4 099 292 B check h<6>
XS 154 293 p VDD plane
X6 163 294 p vss plane
X7 168 295 p VDD plane
X8 175 296 p VSS plane
X9 139 297 I testClkin h
XlO 141 298 I testClkin_l
Xll 180 299 p VDD plane
X12 167 300 I clkin h
X13 169 301' I clkin 1
X14 199 302 p vss plane
X15 198 303 p VDD plane
X16 211 304 p vss plane
X17 210 305 p VDD plane
X18 219 306 p vss plane
X19 218 307 p VDD plane
X20 227 308 p vss plane
X21 240 309 I tagadrP_h
X22 244 310 I tagadr_h<32>
X23 245 311 I tagadr_h<31>
X24 246 312 I tagadr_h<30>

Yl 093 313 B data h<8>
Y2 096 314 B data h<71>
Y3 097 315 B data h<7>
Y4 106 316 B data h<68>
Y5 161 317 p VSS plane
Y6 166 318 p VDD plane
Y7 165 319 p VSS plane
Y8 170 320 p VDD plane
Y9 181 321 p vss plane
YlO 174 322 p VDD plane
Yll 187 323 p VSS plane
Yl2 186 324 p VDD plane
Yl3 193 325 p VSS plane
Yl4 192 326 p VDD plane
Yl5 205 327 p vss plane
Yl6 204 328 p VDD plane
Yl 7 215 329 p vss plane
Yl8 214 330 p VDD plane
Yl9 223 331 p vss plane
Y20 222 332 p VDD plane
Y21 232 333 B adr h<8>
Y22 237 334 B adr h<5>
Y23 132 335 p VDD plane
Y24 241 336 I tagadr_h<33>

8-8 Pinout

AAl 098 337 B check h<20>
AA2 094 338 p VDD plane
AA3 lOS 339 B data h<S>
AA4 112 340 B data h<66>
AAS 117 341 B data h<O>
AA6 121 342 I iAdr h<6>
AA7 12S 343 I iAdr-h<lO>
AAS 136 344 I vRef
AA9 144 34S 0 sysClkOut2_h
AAlO 146 346 0 sysClkOut2_1
AAll 1S7 347 N spare<6>
AA12 162 348 0 sysClkOutl_h
AA13 164 349 0 sysClkOutl_l
AA14 171 3SO I cont 1
AAlS 182 3Sl I irq_h<5>
AA16 188 3S2 N spare<8>
AA17 191 3S3 B adr h<31>
AA18 197 3S4 B adr h<27>
AA19 202 3S5 B adr h<24>
AA20 213 3S6 B adr h<17>
AA21 217 3S7 B adr h<15>
AA22 22S 3S8 B adr h<ll>
AA23 233 3S9 B adr h<7>
AA24 236 360 B adr h<6>

ABl 100 361 B data h<70>
AB2 104 362 B data h<69>
AB3 108 363 B data-h<67>
AB4 113 364 B data h<2>
ABS 116 36S B data-h<64>
AB6 122 366 I iAdr h<7>
AB7 129 367 I iAdr-h<l2>
AB8 137 368 I reset 1
AB9 148 369 I sRomD h
ABlO 149 370 0 sRomOE 1
ABll 1S3 371 0 h cpuClkOut_
AB12 1S9 372 I dcOk h
AB13 160 373 I tristate 1
AB14 172 374 I icMode h<O>
AB15 179 375 I irq_h<4>
AB16 185 376 I perf _cnt_h<O>
ABl 7 190 377 B adr h<32>
AB18 196 378 B adr h<28>
AB19 201 379 B adr h<2S>
AB20 207 380 B adr h<21>
AB21 212 381 B adr h<l8>
AB22 220 382 B adr h<14>
AB23 127 383 p VSS plane
AB24 229 384 B adr h<9>

Pinout 8-9

ACl 101 385 B data h<6>
AC2 001 386 p VSS plane
AC3 006 387 p VDD plane
AC4 114 388 B data h<65>
ACS 007 389 p VSS plane
AC6 123 390 I iAdr h<8>
AC7 012 391 p VDD plane
AC8 128 392 I iAdr h<ll>
AC9 013 393 p VSS plane
AClO 150 394 0 sRomClk h
ACll 018 395 p VDD plane
AC12 158 396 N spare<S>
AC13 019 397 p VSS plane
AC14 177 398 I irq_h<2>
AC15 024 399 p VDD plane
AC16 184 400 I perf _cnt_h<l>
AC17 025 401 p VSS plane
AC18 195 402 B adr h<29>
AC19 030 403 p VDD plane
AC20 206 404 B adr h<22>
AC21 031 405 p VSS plane
AC22 216 406 B adr h<l6>
AC23 038 407 p VDD plane
AC24 228 408 B adr h<lO>

AD2 107 409 B data h<4>
AD3 109 410 B data h<3>
AD4 115 411 B data h<l>
ADS 120 412 I iAdr h<S>
AD6 124 413 I iAdr-h<9>
AD7 131 414 N spare<l>
AD8 135 415 I eclOut h
AD9 130 416 I dinvReq_h
ADlO 134 417 N spare<2>
ADll 151 418 N spare<4>
AD12 156 419 I icMode h<l>
AD13 173 420 I irq_h<o>
AD14 176 421 I irq_h<l>
AD15 178 422 I irq_h<3>
AD16 183 423 N spare<?>
AD17 189 424 B adr h<33>
AD18 194 425 B adr h<30>
AD19 200 426 B adr h<26>
AD20 203 427 B adr h<23>
AD21 208 428 B adr h<20>
AD22 209 429 B adr-h<l9>
AD23 221 430 B adr h<l3>
AD24 224 431 B adr h<l2>

8-10 Pinout

8.4 EV4/NVAX+ Pinout Differences
The following table shows the differences between the EV 4 chip pinout and the NV AX+ chip pinout.
The NVAX+ pins pp_data_h<7:6> and pp_data_h<4:3> are normally tristated. NVAX+ will only
drive them during chip test.

PGA PAD PIN EV4 NVAX+
LOC. No. No. TYPE NAME TYPE NAME

E22 324 118 I dWSel h<O> I pp_cmd_h<O> } ~4b 1)-.o~ E23 323 119 I dWSel h<l> I pp_cmd_h<l>
flt:> Ct>-~ E21 329 117 I dRAck h<l> I pp_cmd_h<2> I

L24 288 204 0 dMapWE_h 0 pMapWE_h<O>
AD9 130 416 I dinvReq_h I pinvReq_h<O>

M24 282 216 N spare<O> 0 pMapWE_h<l>
AD7 131 414 N spare<l> I elk rst h
ADlO 134 417 N spare<2> 0 pp_data_h<O>
C24 331 072 N spa:t'.e<3> I pinvReq_h<l>
ADll 151 418 N spare<4> 0 pp_data_h<2>
AC12 158 396 N spare<5> I osc16M H
AAll 157 347 N spare<6> 0 pp_data_h<l>
AD16 183 423 N spare<7> 0 pp_data_h<5>
AA16 188 352 N spare<8> 0 pp_data_h<ll>

AB16 185 376 I perf _cnt_h<O> 0 pp_data_h<3>
AC16 184 400 I perf _cnt_h<l> 0 pp_data_h<4>

ADS 135 415 I eclOut h I test mode h - -
R23 265 251 I tagadr_h<17> B tagadr_h<17>
R22 264 250 I tagadr_h<18> B tagadr_h<18>
R21 263 249 I tagadr_h<19> B tagadr_h<19>
X22 244 310 I tagadr_h<32> 0 pp_data_h<6>
Y24 241 336 I tagadr_h<33> 0 pp_data_h<7>

Y22 237 334 B adr h<5> 0 adr h<5>
AA24 236 360 B adr h<6> 0 adr h<6>
AA23 233 359 B adr h<7> 0 adr h<7>
Y21 232 333 B adr h<8> 0 adr h<8>
AB24 229 384 B adr h<9> 0 adr h<9>
AC24 228 408 B adr h<lO> 0 adr h<lO>
AA22 225 358 B adr h<ll> 0 adr h<ll>
AD24 224 431 B adr h<12> 0 adr h<12>
AD23 221 430 B adr h<13> 0 adr h<13>
AB22 220 382 B adr-h<14> 0 adr h<l4>
AA21 217 357 B adr h<15> 0 adr h<15>
AC22 216 406 B adr h<16> 0 adr-h<16>

Pinout 8-11

8-12 Pinout

Appendix A

EV3 and EV4 Chip Summary

The following two pages are a quick summary of the EV3 and EV 4 chip.

EV3 and EV4 Chip Summary A-1

Table A-1 : EV3 Chip Summary and Micro-architecture

Feature

Cycle 'lime

Process Technology

Transistor count

Die Size

Package

No. Chip Pads

No. Signal Pins

Typ Power Dissi pa ti on

Clocking input

Virtual address size

Physical address size

Page size

Issue rate

Pipeline

On-chip Dcache

On-chip !cache

On-chip DTB

On-chip ITB

FPU

Bus

Serial ROM Interface

Description

10 ns

CMOS3 1.0u CMOS

550K

14.lmm X 16.8mm; 559mils X 657mils

431 pin PPGA; 24 X 24, 100 mil pin pitch

428

291

lOW@ lOns· cycles, Vdd=3.45V

200Mhz differential @ lOns cycles

43 bits

34 bits

BKbytes

2 instructions per cycle

7 stage :fetch, swap, IO, Il, Al, A2, and write

lKbyte, physical, direct-mapped, write-thru, 32-byte line, 32-byte fill

lKbyte, physical, direct-mapped, 32-byte line, 32-byte fill, No ASN

32-entry, fully-associative, NLU replacement, BK pages, I-bit ASM

4-entry, fully-associative, NLU replacement, 512 *BK pages, I-bit ASM

8-entry, fully-associative, NLU replacement, 1-bit ASM

No on-chip FPU

Separate data and address bus. 128-bit/64-bit Data Bus

Allows the chip to access a serial ROM

A-2 EV3 and EV4 Chip Summary

Table A..:..2: EV4 Chip Summary and Micro-architecture

Feature

Cycle Time

Process Technology

Transistor count

Die Size

Package

No. Chip Pads

No. Signal Pins

Typ Power Dissipation

Typ Power Dissipation

Clocking input

Clocking input

Virtual address size

Physical address size

Page size

Issue rate

Integer Pipeline

Floating Pipeline

On-chip Dcache

On-chip Icache

On-chip DTB

On-chip ITB

FPU

Bus

Serial ROM Interface

Description

6.6ns nominal; 5ns fast bin; lOns slow bin

CMOS4 .75u CMOS

1.8 million

14.lmm X 16.Smm; 555mils X 661mils

431 pin PGA; 24 X 24, 100 mil pin pitch

428

291

23W @ 6.6ns cycles, V dd=3.45V

29.5W@ 5ns cycles, Vdd=3.45V

300Mhz differential @ 6.6ns cycles

400Mhz differential @ 5ns cycles

43 bits

34 bits

SK.bytes

2 instructions per cycle

7 stage :fetch, swap, IO, 11, Al, A2, and IWR

10 stage :fetch, swap, IO, 11, Fl, F2, F3, F4, F5 and FWR

8Kbyte, physical, direct-mapped, write-thru, 32-byte line, 32-byte fill

8Kbyte, physical, direct-mapped, 32-byte line, 32-byte fill, 64 ASN s

32-entry, fully-associative, NLU replacement, SK pages, 1-bit ASM

4-entry, fully-associative, NLU replacement, 512 * SK pages, 1-bit ASM

S-entry, fully-associative, NLU replacement, 1-bit ASM

On-chip FPU supports both IEEE and DEC floating point

Separate data and address bus. 128-bit/64-bit Data Bus

Allows the chip to access a serial ROM

EV3 and EV4 Chip Summary A-3

From:
1507"
To:
CC:
Subj:

SEGAD2::MCLELLAN "Ed McLellan DTN 225-4790
17-0CT-1991 15:09:16.67

@OCT91 SORTLOC.DIS
MCLELLAN
Updates to EV3/4 Specification V2.0

HL02-3/J03

Digital Equipment Corporation CONFIDENTIAL

+---------------------------+ TM
I I I I I I I I

17-0ct-1991

I d I i I g I i I t I a I 1 I I N T E R 0 F F I C E M E M 0 R A N D U M
I I I I I I I I
+---------------------------+

TO: Distribution DATE: 17-0ct-91
FROM: Ed McLellan
DEPT: SEG/AD
EXT : 225-4790
L/MS: HL02-3/J03
ENET: AD::MCLELLAN

SUBJ: EV3/EV4 Specification 2.0 Updates

EV4 Pass 2 design is well under way, however, some of the design
modifications will alter functionality as described in the EV3/EV4
Specification Version 2.0. This memo highlights those areas of change
in order to most quickly disseminate the information. Since the
design is not fully complete, additional modification, although
unlikely, may be necessary.

1 PAGE 2-2 SECTION 2.3.2 ITB

CAUSE: increase maximum ITB translatable address space
=>modify the first paragraph to begin with "The EV3 Ibox contains ... "
=> add the following text after the first paragraph

The EV4 Ibox contains an 8 entry fully associative translation
buffer which caches recently used instruction-stream page table
entries for 8Kbyte pages, and a 4 entry fully associative translation
buffer which supports the largest granularity hint option (512*8Kbyte
pages} as described in Section 6.5 of the ALPHA SRM V4.0. Both
translation buffers use a not-last-used replacement algorithm. They
are hereafter referred to as the small-page and large-page ITBs,
respectively.

In addition, EV4 provides an extension referred to as the super
page, which can be enabled by the MAP bit in the ICCSR IPR. Super
page mappings provide one-to-one virtual PC<33:13> to physical
PC<33:13> translation when virtual address bits <42:41> = 2. This
function essentially maps the entire physical address space multiple
times over to one' quadrant of the virtual address s.pace defined by
<42:41> = 2. When translating through the super page, the PTE[ASM]
bit used in the !cache is always set. Access to the super page
mapping is only allowed while executing in kernel mode.

Digital Equipment Corporation CONFIDENTIAL Page 2

The ITBs are filled and maintained by PALcode. The operating
system via PALcode is responsible for insuring that virtual addresses
can only be mapped through a single, large page, small page or super
page ITB entry at the same time.

2 PAGE 2-4 SECTION 2.5.1 DTB

CAUSE: increase maximum DTB translatable address space
=> modify the first paragraph to begin with "EV3 contains a
=> add the following text after the first paragraph

"

EV4 contains a 32-entry fully associative translation buffer
which caches recently used data-stream page table entries and supports
all four variants of the granularity hint option as described in
Section 6.5 of the ALPHA SRM V4.0. The operating system via PALcode
is responsible for insuring that translation buffer entries, including
super page regions, do not map overlapping virtual address regions at
the same time.

In addition, EV4 provides an extension referred to as the super
page, which can be enabled via ABOX CTL<5:4>. Super page mappings
provide virtual to physical address translation for two regions of the
virtual address space. The first enables super page mapping when
virtual address bits <42:41> = 2. In this mode, the entire physical
address space is mapped multiple times over to one quadrant of the
virtual address space defined by VA<42:41> = 2. The second super page
mode maps a 30-bit region of the total physical address space defined
by PA<33:30> = 0 into a single corresponding region of virtual space
defined by VA<42:30> lFFE(Hex). Super page translation is only
allowed in kernel mode.

3 PAGE 3-8 SECTION 3.4 PAL ENTRY POINTS

CAUSE: provide larger CALLPAL code regions and PC+4 return addresses
=> replace Table 3-5 CALLPAL entry with the following

CALLPAL EV3 pipe_stage[5]

=> add new Table 3-5 entry

CALLPAL EV4 pipe_stage[5]

2000,20,40,thru
3FEO

2000,40,80,CO
thru 3FCO

256 locations based
on instruction[7:0]
see description below

128 locations based
on instruction[7,5:0]
see description below

Digital Equipment Corporation CONFIDENTIAL Page 3

=> add text describing CALL PAL instruction hardware dispatches

PALcode functions are implemented via the CALL PAL instruction.
CALL PAL instructions cause exceptions in the hardware. As with all
exceptions, the EXC ADDR register is loaded by hardware with a
possible return address. EV3 always loads this register with the
address of the instruction which caused the exception, or was
executing, but not complete, at the time of the exception or trap.
EV4 provides an improvement for CALL PAL exceptions. CALL PAL
exceptions do not load the EXC ADDR regTster with the address of-the
CALL PAL instruction. Rather, they load the EXC ADDR register with
the -address of the instruction following the CALL PAL. For this
reason, EV4 PALcode supporting the desired PAL mode function need not
increment the EXC ADDR register before executing a HW REI instruction
to return to native mode. This .feature requires special handling in
the arithmetic trap and machine check PALcode flows for EV4. See
Section 3.8.5 EXC_ADDR for more complete information.

To improve speed of execution, a limited number of CALL PAL
instructions are directly supported in hardware with dispatches to
specific address offsets. EV3 provides the first 128 privileged and
128 unprivileged CALL PAL instructions with hardware PAL entry points
starting at address offset 2000(Hex) and continuing through 3FEO(Hex).
Addresses are generated in the following manner. Note that <7>
distinguishes privileged instruction encodings.

Offset(Hex) = 2000 + (Instruction<7:0> shift left 5)

EV3 CALL PAL instructions that do not fall within the range
[OOOOOOOO:OOOOOOFF] result in OPCDEC exceptions. In addition,
CALL PAL instructions that fall within the range [00000000:0000007F]
while EV3 is not executing in kernel mode result in OPCDEC exceptions.

EV4 provides the first 64 privileged and 64 unprivileged CALL PAL
instructions with larger code regions than EV3; 64byte vs. 32byte.
This produces hardware PAL entry points as described below.

Privileged CALL_PAL Instructions [00000000:0000003F]

Offset(Hex) = 2000 + (<5:0> shift left 6)

Unprivileged CALL_PAL Instructions [00000080:000000BF]

Offset(Hex) = 3000 + (<5:0> shift left 6)

EV4 CALL PAL instructions that do not fall within
[00000000:0000003F] and [00000080:000000BF] result in
exception. In addition, CALL PAL instructions that fall
range [00000000:0000003F] while EV4 is not executing in
will result in an OPCDEC exception.

the ranges
an OPCDEC

within the
kernel mode

Digital Equipment Corporation CONFIDENTIAL

4 PAGE 3-10 SECTION 3.5.1 EVX PAL RESTRICTIONS

CAUSE: respecify PALcode restriction regarding PAL TEMP use
=> replace first bullet item with the following -

Page 4

o HW MFPR instructions reading any PAL TEMP register can never occur
exactly two cycles after a HW MTPR instruction writing any PAL TEMP
register. The simple solution results in code of the form: -

HW MTPR Rx, PAL RO
HW-MFPR R31, 0 -
HW-MFPR R31, 0
HW-MFPR Ry, PAL_RO

Write PAL temp 0
NOP mxpr instruction
NOP mxpr instruction
Read PAL temp 0

The above code guarantees 3 cycles of delay after the write before
the read. It is also possible to make use of the cycle immediately
following a HW MTPR to execute a HW MFPR instruction to the same
(accomplishing-a swap) or a different PAL TEMP register. The swap
operation only occurs if the HW MFPR instruction immediately follows
the HW MTPR. This timing requires great care and knowledge of the
pipeline to insure that the second instruction does not stall for
one or more cycles. Use of the slot to accomplish a read from a
different PAL TEMP register requires that the second instruction not
stall for exactly one cycle. This is much easier to insure. A
HW MFPR instruction may stall for a single cycle as a result of a
wr1te after write conflict.

=>add new PAL Restriction 17.

17. PALcode that writes multiple ITB entries must write the entry
that maps the address contained in the EXC ADDR register last.

5 PAGE 3-11 SECTION 3.5.1 EVX PAL RESTRICTIONS.

CAUSE: Spec correction
=>Change restriction nine as follows:

The sequence HW MTPR PTE, HW MTPR TAG is NOT allowed. At least
two null cycles must-occur between HW MTPR PTE and HW MTPR TAG.

6 PAGE 3-13 SECTION 3.5.3 EV4 SPECIFIC PALMODE RESTRICTIONS

CAUSE: add new EV4 restrictions
=> add new PAL Restrictions 3 thru 5.

3. At least one cycle of delay must occur after a HW MTPR TB CTL
before either a HW MTPR ITB PTE or a HW MFPR ITB PTE to allow
setup of the ITB large page7small page decode.

4. The first cycle (the first one or two instructions) at all

Digital Equipment Corporation CONFIDENTIAL Page 5

PALcode entry points may not execute a conditional branch
instruction or any other instruction that uses the jsr stack
hardware. This includes instructions JSR,JMP,RET,COROUTINE,
BSR,HW_REI and all Bxx opcodes except BR, which is allowed.

5. The following table indicates the number of cycles required
after a HW MTPR instruction before a subsequent HW REI
instruction for the specified IPRs. These cycles can be
insured by inserting one HW MFPR R31,0 instruction or other
appropriate instruction(s) for each cycle of delay required
after the HW MTPR.

IPR Cycles between HW_MTPR and HW REI

xTBIS,ASM,ZAP
xIER
xIRR
ICCSR<FPE>
ICCSR<ASN>
FLUSH_IC[ASM]

0
2
2
3
5
6

7 PAGE 3-12 SECTION 3.5.2 EV3 SPECIFIC PALMODE RESTRICTIONS

CAUSE: spec correction
=> replace Table 3-7 with the following

MTPR-Write

ITB PTE
ICCSR
EXCSUM
PS
HIER
SIER
ASTER
SLCLR
SIRR
ASTRR

MFPR-Read

ITB PTE TEMP
ICCSR
EXCSUM
PS
xIER
xIER
xIER
xIRR
xIRR
xIRR

8 PAGE 3-14 TABLE 3-8 IPR RESET STATE

CAUSE: spec correction
=> replace first entry with the following

ICCSR cleared except
ASN,PCO,PCl

Digital Equipment Corporation CONFIDENTIAL

9 PAGE 3-19 SECTION 3.8.3 ICCSR

CAUSE: spec correction, add super page enable
=> add text

Page 6

EV3 can be distinguished from EV4 by writing a one to ICCSR<l> and
reading back ICCSR<3>. EV3 returns ICCSR<3> equal to one and EV4
reads back zero.

=> modify Write format diagram

bit 41 - MAP

=> modify Read format diagram

bit 22 - MAP

=> add description to HWE Field

Use of the HW MTPR instruction to update the EXC ADDR IPR while in
native mode -is restricted to values with bit<O> equal to 0. The
combination of native mode and EXC ADDR<O> equal to one causes
UNDEFINED behavior.

=> add Field to Table 3-9 ICCSR (EV4 only)

MAP RW,0 If set allows super page I-stream memory mapping of
VPC<33:13> directly to Physical PC<33:13> essentially
bypassing ITB for VPC addresses containing VPC<42:41>= 2.
Super page mapping is allowed in Kernel mode only. The
ASM bit is always set. The MAP bit is available in EV4 only.

10 PAGE 3-22 SECTION 3.8.5 EXC ADDR

CAUSE: add support for CALL PAL automatic load of PC+4 return address
=> replace the first two paragraphs with the following

The EXC ADDR register is a read/write register used to restart
the machine after exceptions or interrupts. The EXC ADDR register can
be read and written by software via the HW MTPR instruction as well as
being written directly by hardware. The HW REI instruction executes a
jump to the address contained in the EXC ADDR register. The EXC ADDR
register is written by hardware after an-exception to provide a return
address for PALcode. The instruction pointed to by the EXC ADDR
register did not complete execution. Since the PC is longword
aligned, the lsb of the EXC ADDR register is used to indicate PALmode
to the hardware. When the lsb is clear, the HW REI instruction
executes a jump to native(non-PAL) mode, enabling address translation.

In EV3, the address written to the EXC ADDR register
exception is always the PC of the instruction that
exception or the PC of the instruction that was currently

after an
caused the
executing,

Digital Equipment Corporation CONFIDENTIAL Page 7

but not complete, at the time of the exception or trap. As a special
case in EV4 only, CALL PAL exceptions load the EXC ADDR with the PC of
the instruction followTng the CALL PAL. This function allows CALL PAL
service routines to return without-needing to increment the value- in
the EXC_ADDR register.

This feature, however, requires careful treatment in PALcode.
Arithmetic traps and machine check exceptions can preempt CALL PAL
exceptions resulting in an incorrect value being saved in the EXC ADDR
register. In the cases of an arithmetic trap or machine check
exception, and only in those cases, EXC ADDR<l> takes on special
meaning. PALcode servicing these two exceptions should interpret a
zero in EXC ADDR<l> as indicating that the PC in EXC ADDR<63:2> is too
large by a value of 4bytes and subtract 4 before executing a HW REI
from this address. PALcode should interpret a one in EXC ADDR<l>- as
indicating that the PC in EXC ADDR<63:2> is correct and clear the
value of EXC ADDR<l>. All other PALcode entry points except reset can
expect EXC_ADDR<l> to be zero.

This logic allows the following code sequence to conditionally
subtract 4 from the address in the EXC ADDR register without use of an
additional register. This code sequence should be present in
arithmetic trap and machine check flows only.

HW MFPR Rx, EXC ADDR
SUBQ Rx,#2,Rx
BIC Rx,#2,Rx
HW MTPR Rx, EXC_ADDR

read EXC ADDR into GPR
; subtract-2 causing borrow if <1>=0

clear <1>
write back to EXC ADDR

EV3 does not provide an advanced EXC ADDR value after CALL PAL
exceptions. It also does not guarantee a zero value in EXC ADDR<l>
upon reads of that IPR. PALcode must explicitly clear this bit before
pushing the exception address on the stack.

11 PAGE 3-31 SECTION 3.9.1 OTB CTL

CAUSE: register now controls both ITB and OTB granularity hints
=> Change header title to TB CTL
=> Replace text with the following

The granularity hint (GH) field selects between the EVx TB page
mapping sizes. EV3 provides two sizes in the DTB, selectable through
this register and only the smallest size (8Kbytes) in the ITB. EV4
provides two sizes in the !TB and all four sizes in the DTB. When
only two sizes are provided, the large-page-select (GH=ll(bin)) field
selects the largest mapping size (512 * 8Kbytes) and all other values
select the smallest (8Kbyte) size. The GH field affects both reads
and writes to the ITB and DTB in EV4. It only affects use of the DTB
in EV3. The TB CTL register itself is write only.

Digital Equipment Corporation CONFIDENTIAL Page 8

12 PAGE 4-22 SECTION 4.4.5 WRITE BLOCK

CAUSE: spec correction
=> Change the description for cycle one as follows:

1. The WRITE BLOCK cycle begins. EVx has already placed the
address of the block on adr h. EVx places the longword valid
masks.on cWMask_h and a WRITE_BLOCK command code on cReq_h.
EVx will clear dataA h[4 .. 3] and tagCEOE h no later than one
CPU cycle after the system clock edge at-which the transaction
begins. EVx clears dataCEOE H[3 .. 0] at least one CPU cycle
before the system clock edge at which the transaction begins.

13 PAGE 3-34 SECTION 3.9.11 ABOX CTL

CAUSE: add big endian, super page options
=> add new bit<6> big endian enable (EV4 only)

EV4 provides limited hardware support for big endian data formats via
bit <6> of the ABOX CTL register. This bit, when set, inverts
physical address bit <2> for all D-stream references. It is intended
that chip endian mode be selected during initialization PALcode only.

=> add new bit<S> VA<42:41> super page enable (EV4 only)

This bit, when set, enables one-to-one super page mapping of D-stream
virtual addresses with VA<33:13> directly to physical addresses
PA<33:13>, if virtual address bits VA<42:41> = 2. Virtual address
bits VA<40:34> are ignored in this translation. Access is only
allowed in kernel mode.

=> add new bit<4> VA<42:30> super page enable (EV4 only)

This bit, when set, enables one-to-one super page mapping of D-stream
virtual addresses with VA<42:30> = lFFE(Hex) to physical addresses
with PA<33:30> = O(Hex). Access is only allowed in kernel mode.

14 PAGE 4-14 SECTION 4.2.7 EXTERNAL CYCLE CONTROL

CAUSE: provide address [2] for I/O device longword read granularity

SPECIAL NOTE: Consideration for final inclusion is still pending.

=> replace the first paragraph with the following

On READ BLOCK and LDxL cycles, the cWMask h pins have additional
information - about the cache miss overloaded onto them. The
cWMask h[l:O] and cWMask h[3] pins contain miss address bits [4:3] and
[2] respectively. These additional address bits, which specify the
longword that missed, are needed to implement longword granularity to

Digital Equipment Corporation CONFIDENTIAL Page 9

I/O devices.

15 PAGE 5-2 SECTION 5.1.4 SIGNAL PINS

CAUSE: Correct clock input leakage spec
=> replace first line of Power/Leakage section of table 5-1

Icin Clock input Leakage 4 4 mA -0.5 <Vin < 3.6V

16 PAGE 7-2 CHAPTER 7 PACKAGE

CAUSE: Correct PGA location grid to conform to JEDEC standard, that is
required by the ceramic PGA vendors.

SPECIAL NOTE: This change in no way affects functionality. It simply
updates pin labels to conform to JEDEC standards. All
future references to PGA locations should use these labels.

=> replace row label X with new label W
=> replace row label W with new label V

17 PAGE 8-2 SECTION 8.2 CHANGE HISTORY

=> add line at bottom of table

ejm 17-oct-91 modify labels to conform to JEDEC standard
replace row label X with new label W
replace row label W with new label V

18 PAGES 8-7,8-8 SECTION 8.3 EV4 PINOUT

=> replace PGA loc Wl - W24 with corresponding Vl - V24 labels
=> replace PGA loc Xl - X24 with corresponding Wl - W24 labels

19 PAGE 8-5 SECTION 8.3 EV4 PINOUT

=> correct PAD no. at PGA loc H19 from N/A to 133

Hl9 133 163 p VSS Plane

Digital Equipment Corporation CONFIDENTIAL Page 10

20 PAGE A-3

CAUSE: update table for pass 2 functionality
=> replace corresponding lines with the following

Cycle Time

On-chip DTB

On-chip ITB

6.6ns nominal; Sns fast bin; 8ns slow bin

32-entry, fully-associative, NLU replacement,
full granularity hint support, 1-bit ASM

8-entry, fully-associative, NLU replacement,
8K pages, 1-bit ASM

4-entry, fully-associative, NLU replacement,
512 * SK pages, 1-bit ASM

j

From: AD::MEYER "Dirk Meyer HL02-3/J3 225-6325 09-Feb-1993 1611 11 9-FEB-1993
16:18:36.78
To: @EV45
CC:
Subj: EV45 definition, rev 1.1

+---------------------------+ TM
I I I I I I I I
I d I i I g I i I t I a I 1 I I N T E R 0 F F I C E M E M 0 R A N D U M
I I I I I I I I
+---------------------------+

TO: -Distribution

SUBJ: EV45 Definition - Rev 1.1

OVERVIEW

DATE: 9-Feb-93
FROM: Dirk Meyer
DEPT: SEG/AD
EXT : 225-6325
L/MS: HL02-3/J03
ENET: AD::MEYER

This memo describes the electrical and functional differences
between EV45 and EV4 pass 3. It replaces a previous memo dated
2-Nov-1992, and contains change bars to highlight changes and
additions to that document. The substantive changes to EV45 from
those previously described are:

1. EV45 will contain a mode bit which when set will have the effect
of asserting dinvReq_h<l> when dinvReq_h<O> is asserted. This
will allow EV4-based systems which do not contain a DCache
backmap to upgrade to EV45 operating in 16KB DCache mode with no
module-level changes. Such systems were previously required to
externally tie dinvReq_h<O> and dinvReq_h<l> together.

2. EV45 will include a new operating mode which will enable LDx/L
and STx/C instructions to be processed by EV45 using BCache-hit
timing. This will result in better LDx/L and STx/C performance
for systems which support this mode.

3. The tagAdr_h<17> pin will be redefined to support the above
operating mode, as a result EV45 will not support a 128 KB
BCache.

4. The sRomClk h divisor when loading the module-level serial ROM
will be changed from 126 in EV4 to 254 in EV45 in order to
ensure that existing EV4 serial ROM designs will work with a
higher frequency EV45.

Page 2

1 ELECTRICAL CHARACTERISTICS

We expect the CMOS-5 technology to provide about a 1.5X clock
frequency improvement over CMOS-4. Therefore, EV4's speed bin
points of 150 and 180 MHz should move to about 225 and 270 MHz,
respectively, for EV45. Our goal is to ensure reliable operation up
to 300MHz so that we can take advantage of any additional
performance which CMOS-5 may provide. At a given clock frequency
EV45's power dissipation will be about 80 percent of EV4's. The
typical and maximum supply currents for EV45 can be estimated from
the following equations:

Idd{Typ) =
Idd{Max) =

where:

116 rn.A/V
116 rn.A/V

+ 9.56 rn.A/{V * MHz) * f
+ 11.5 rn.A/{V *MHz) * f

Idd is the supply current in amperes
f is the CPU frequency in MHz
Vdd is the power supply voltage in volts
power dissipation is Vdd * Idd

1.1 AC Timings

* Vdd
* Vdd

This section describes the AC timing specifications for the nominal
speed EV45 part, which as described above should provide a 225 MHz
internal operating frequency. These timings are specified and
measured in exactly the same way as were the AC timings for EV4.
Refer to the DECchip 21064 Microprocessor Hardware Reference Manual
for details.

1.2 BCache Read Loop

The external flow through delay of the BCache read loop, as defined
in section 7.3.5 of the DECchip 21064 Hardware Reference Manual,
must not exceed the overall BCache read time {BC_RD_SPD+l CPU
cycles) less 4.0 ns.

1.3 External Cycles

NAME

Enable, sysClkOutl_h to

adr_h
data_h
check_h

Output Delay, sysClkOutl_h to

adr_h
data_h
check_h
cReq_h
cWMask_h
holdAck_h

Input Setup relative to sysClkOutl_h

dRack_h
dWSel_h
dOE_l
cAck_h
holdReq_h
dinvReq_h
iAdr_h
perf_cnt_h
data_h
check_h

Input Hold, relative to sysClkOutl_h

dRack_h
dWSel_h
dOE_l
cAck_h
holdReq_h
dinvReq_h
iAdr_h
perf_cnt_h
data_h
check_h

MIN (ns)

-1.0
-1.0
-1,0

-1.0
-1.0
-1.0
-1. 0
-1.0
-1.0

7.0
7.0
7.0
7.0
3.8
3.5
3.5
3.5
2.5
2.5

0
0
0
0
0
0
0
0,
0
0

Page 3

MAX (ns)

2.0
2.0
2.0

1. 0
1. 0
1. 0
1. 0
1. 0
1. 0

2 ICACHE INCREASED TO 16KB

The instruction cache will be
It will be direct mapped,
physically tagged. Since the
contain coherence hardware no
virtual synonyms.

3 DCACHE INCREASED TO 16KB

Page 4

increased in size from 8 KB to 16 KB.
virtually addressed using VA<13>, and

ICache is never written and does not
extra logic will be required to manage

The data cache will also be increased from 8 KB to 16 KB, remain
physically tagged and direct mapped, and become virtually addressed
using VA<13>. The DCache requires additional logic to manage
virtual synonyms, however. In addition, the DCache coherence
interface requires changes. As externally viewed the DCache appears
to be two-way set associative, which implies that systems which
employ a backmap to filter invalidates need more information to
maintain the backmap.

o For external read transactions, cWMask_h<3> and cWMask_h<4> will
each carry virtual address bit <13>. This information is
duplicated on these pins so that both slices of the Cobra bus
interface ASICs will have access to it. NVAX+ places the set
number on cWMask_h<3>.

o EV45 will include a second backmap write enable output pin. It
will assert one of dMapWe_h<l:O> during D-stream backup cache
reads to indicate where the block is being allocated in the
DCache. dMapWe_h<O> will assert if VA<13> generated by the
originating load instruction was zero, while dMapWe_h<l> will
assert if it was one. The new output, dMapWe_h<l> will be
placed on spare<O> (PGA location M24) in order to match NVAX+.

o EV45 will include a second invalidate request input. External
logic may assert one or both of dinvReq_h<l:O> along with
iAdr_h<12:5> to invalidate DCache lines. The new input,
dinvReq_h<l>, will be placed on spare<3> (PGA location C24) in
order to match NVAX+.

Systems which do not include a DCache backmap can simply tie
dinvReq_h<l:O> together. Alternatively, they can set ABOX_CTL<15>.
This bit, when set, has the effect of asserting dinvReq_h<l> when
dinvReq_h<O> is asserted, and is intended for use by existing
EV4-based systems which do not use dinvReq_h<l>.

In order to provide compatibility with existing system designs which
use a DCache backmap, EV45 will include a mode in which the DCache
reverts to 8 KB. This mode will be controlled via ABOX_CTL<12>.
When ABOX_CTL<12> is clear the DCache will operate in 8 KB mode, and
when it's set the DCache will operate in 16 KB mode.

Page 5

4 NEW FLOATING POINT DIVIDER

EV45 will include new floating point divide hardware which
implements a nonrestoring, normalizing, variable shift (maximum
4-bits/cycle) algorithm that retires 2.4 bits per cycle on average.
The average overall divide latency including pipeline overhead will
be 29 cycles for double precision and 19 cycles for single precision
vs. 63 and 34 cycles in EV4.

The new divider will also address EV4's noncompliant IEEE divide
behavior by calculating the inexact flag, setting FPCR<INE> if
appropriate, and trapping on DIVx/SI instructions only when the
result is really inexact.

5 IMPROVED BRANCH PREDICTION

EV45 will include an improved branch prediction scheme which uses a
4K by 2-bit history table. The table will be indexed using the same
bits used to index the !Cache. Each 2-bit table entry behaves as a
counter which increments on taken branches (stopping at binary 11)
and decrements on not-taken branches (stopping at binary 00). If
the upper bit of the counter is set, the branch is predicted taken.
The contents of the table will not be disturbed by !Cache fills. As
in EV4, EV45 will also include a static branch prediction mode which
uses the sign bit of the branch displacement.

6 PARITY FOR !CACHE AND DCACHE.

The !Cache and DCache will include parity protection. Each cache
line will contain a tag parity bit and eight longword data parity
bits. The !Cache tag parity bit will be calculated across the ASN
and ASM bits in addition to the tag address.

DCache and ICache parity errors will generate a machine check, if so
enabled by ABOX_CTL<MCHK_EN>, and will set C_STAT (formerly DC_STAT)
register bits <4> and <5>, respectively. These bits will be cleared
when the C_STAT register is read. !Cache parity errors will be
recoverable - the PAL machine check handler can flush the !Cache and
return. DCache parity errors will not be recoverable.

Primary cache parity checking can be disabled by setting ABOX_CTL
bit <14>.

In order to ease an on-chip circuit path, EV45 will derive primary
cache fill data parity from the parity or ECC check bits received
from off-chip. In longword parity mode, the externally supplied
parity bit will be used. In byte parity mode (see below) the four
externally supplied byte parity bits will be XOR'd to generate
longword parity. In ECC mode the externally supplied check bits
will be XOR'd to generate longword parity, and single-bit errors in
the check bits will be corrected and reused to calculate longword

Page 6

parity. External read transactions for which no parity or ECC bits
are supplied with the response data represent a problem under this
scheme. The solution will be to add a bit in each cache tag which
when set overrides parity checking across the associated cache data.
This bit will be set for fills from external reads which aren't
accompanied by parity or check bits.

Since internal cache data parity is derived from the parity which
accompanies the cache fill data, and since EV45 has a mechanism for
creating bad parity in the backup cache, no explicit diagnostic
hooks are required for the primary cache data parity function.
Diagnostic code for systems which employ ECC need to briefly operate
the chip in parity mode in order to use this diagnostic method.
Internal cache tag parity diagnostics can be written using bit <13>
of the ABOX_CTL register. This bit, when set, will generate
incorrect tag parity for both !Cache and DCache fills.

7 BYTE PARITY ON EXTERNAL DATA BUS

EV45 will include a mode for byte parity on the external data bus in
order to allow it to more easily interface with industry standard
peripherals which support byte parity. This mode will be controlled
by BIU_CTL<37>:

BIU_CTL<37> BIU_CTL<l>

(BYTE_PARITY) (ECC) mode
---------------------------+-----------------

0 0 I LW parity
x 1 I ECC
1 0 I byte parity

BYTE_PARITY and ECC are cleared by chip reset.

In byte parity mode the check_h pins carry EVEN
associated data_h pins. The correspondence
check_h pins is shown below:

parity
between

across the
data_h and

data_h

data_h<7:0>
data_h<15:8>
data_h<23:16>
data_h<31:24>
data_h<39: 32>
data_h<47:40>
data_h<55:48>
data_h<63:56>
data_h<71:64>
data_h<79:72>
data_h<87:80>
data_h<95:88>
data_h<103:96>
data_h<lll:104>
data_h<119:112>
data_h<127:120>

check_h

check_h<O>
check_h<l>
check_h<2>
check_h<3>
check_h<7>
check_h<8>
check_h<9>
check_h<10>
check_h<14>
check_h<15>
check_h<16>
check_h<17>
check_h<21>
check_h<22>
check_h<23>
check_h<24>

8 INTERNAL SYNCHRONIZERS FOR TAGOK_H, TAGOK_L

Page 7

The tagOk function as currently defined does not scale well at
higher clock rates and will be almost impossible to use for EV45
systems running below 4ns. In order to alleviate this inherent
timing constraint the synchronizers currently implemented off-chip
on the Laser and Cobra modules will be implemented on-chip in EV45.
Three cycles of worst-case synchronizer delay will be added to the
current internal tagOk path. The tagOk_h and tagOk_l inputs will
become single ended inputs referenced to VREF. Either input can be
used to control the tagOk function. Systems which use tagOk_h
should tie tagOk_l to VSS, while systems which use tagOk_l should
tie tagOK_h to VDD. Systems which don't use the tagOk function
should tie tagOk_h to VDD and tagOk_l to VSS

9 NEW MODE FOR DMAPWE_H PINS

At the Laser team's request, EV45 will include a mode in which the
dMapWe_h pins assert during both I-stream and D-stream backup cache
reads. This makes it possible to build external hardware to track
the frequency with which given BCache blocks are accessed, and to
base BCache allocation on this information to improve overall
performance. This mode will be controlled via BIU_CTL<39>, IMAP_EN.
When IMAP_EN is set, dMapWe_h<l:O> will assert during both I-stream
and D-stream backup cache reads. For D-stream reads one of
dMapWe_h<l:O> will assert based on which half of the DCache is being
allocated. Which dMapWe_h pin asserts for I-stream reads is
UNPREDICTABLE.

Page 8

10 TAGEQ_L FUNCTION REMOVED

The tagEq_l function was originally proposed by the Flamingo design
team but is not used in the Flamingo design, and as currently
defined is not useful for any existing design. This function will
therefore be removed from EV45.

11 NEW MODE FOR LDX/L AND STX/C HANDLING.

EV45 will contain a new operating mode, fast lock, which will
improve the performance of LDx/L and STx/C instructions in systems
designed to support this mode. Fast lock mode is enabled by setting
BIU_CTL<44>, and can only be used with OE-mode BCache RAMs, i.e.,
when BIU_CTL<2> is set.

When operating in fast lock mode, EV45 attempts to service LDx/L and
STx/C instructions using BCache-hit timing. Two new pin functions
will also be used to support this mode: lockWe_h and lockFlag_h.
LockWe_h will use the pin previously used by tagEq_l, and lockFlag_h
will use the pin previously used by tagAdr_h<17>.

For LDx/L, EV45 performs a 32-byte BCache read if the address hits a
valid BCache block. In addition, it will assert lockWe_h with the
same timing as it asserts dMapWe_h. It is intended that module
level hardware use the assertion of lockWe_h and dataCEOE_h to set
the lock flag and load the lock address register. Further, it is
assumed that the module design uses the tagOk mechanism (or some
other module-level means) to ensure that this operation does not
conflict with module-level access to the lock hardware. If the
probe does not hit a valid BCache block, EV45 will start a
sysClkOut-timed LDx/L transaction on cReq_h<2:0>.

For STx/C, EV45 will probe the BCache and sample lockFlag_h. If the
probe hits a valid nonshared BCache block and lockFlag_h is
asserted, EV45 will perform the BCache write and assert lockWE_h
with the same timing as tagCtlWE_h. It is intended that module
level hardware uses the assertion of tagWE_H and the deassertion of
dataCEOE_h to clear the lock flag. If the probe doesn't hit a valid
nonshared BCache block, or if lockFlag_h is deasserted, then EV45
will start a sysClkOut-timed STx/C transaction on cReq_h<2:0>.
LockFlag_h has the same timing requirements as tagAdr_h<33:18>.

12 TWEAK TO WRITE BUFFER UNLOAD LOGIC.

The EV4 write buffer implementation does not fully comply with the
Alpha SRM's requirement that writes not be buffered indefinitely.
In EV4, the write buffer attempts to send a buffered write off-chip
when one of the following conditions is met:

Page 9

1. The write buffer contains at least two valid entries.

2. The write buffer contains one valid entry and 256 cycles have
elapsed since the execution of the last write.

3. The buffer contains an MB or STx/C instruction.

4. A load miss hits an entry in the write buffer.

Condition 2 above is implemented using an 8-bit counter, and the
overflow of this counter is used to kick the buffer. The counter is
cleared when one of the following conditions is met:

1. The write buffer is empty.

2. The write buffer unloads an entry.

3. A write executes.

Condition 3 above will be removed from the counter's reset equation
in EV45, since it permits a sadistic case to cause writes to be
buffered indefinitely. This case would require an indefinite stream
of writes which all merge into the same 32-byte buffer entry.

13 SUPPORT FOR 3-CYCLE EXTERNAL CACHE READ

EV4 has a design bug which prevents it from supporting 3 cycle
external cache reads. This problem will be corrected in EV45.

14 SYSCLKOUT CHANGES

14.1

EV45 will support sysClkOut divisor values between 2 and 17. The
additional divisors will be encoded using a new input, sysClkDiv_h,
which will be placed on spare<8> (PGA location AA16). Systems may
tie sysClkDiv_h to VDD to have access to the additional clock
ratios. As in EV4, the values placed on irq_h<2:0> during reset
will also be used to select the sysClkOut_h ratio. The table below
shows the ratio encodings.

Page 10

sysClkDiv_h irq_h<2> irq_h<l> irq_h<O> sysClk Divisor

L L L L 2
L L L H 3
L L H L 4
L L H H 5
L H L L 6
L H L H 7
L H H L 8
L H H H 9
H L L L 10
H L L H 11
H L H L 12
H L H H 13
H H L L 14
H H L H 15
H H H L 16
H H H H 17

The sysClkOut2_h delay options will be the same as in EV4 zero,
one, two or three CPU cycles. When dcOk_h is deasserted, a
sysClkOut divisor of nine will be applied to the internally
generated CPU clock.

14.2 SysClkOut Divider Initialization

EV45 will include a pin to initialize the sysClkOut divider for chip
testing. The new pin, resetSClk_h, will be placed on spare<6> (PGA
location AAll). Appendix A describes the timing of this
tester-controlled sequence.

15 CACHE REDUNDANCY

Each cache in EV45 is physically implemented as two separate arrays.
Each array contains 66 rows, two of which are redundant and may be
used for laser repair. As shown if the diagram below, each array
consists of two subarrays separated by a central row-pair decoder.
Each subarray has an independent set of fuses for laser programming.
Rows within each subarray are manipulated as adjacent pairs - within
a subarray only a single defective adjacent pair may be replaced.
The subarray fuses can be programmed independently.

I
I
I

33
Row
Pairs

I
I
v

Page 11

+----------------------+---+---------+---+----------------------+
I I I I I I
I I F I D I F I I
I ARRAY I U I E I U I ARRAY I
I I s I c I s I I
I I E I o I E I I
I I s I D I s I I
I I I E I I I
I I I I I I
+----------------------+---+---------+---+----------------------+

16 SERIAL ROM & ICACHE TESTING CHANGES

Each ICache block in EV45 will contain 18 new bits (eight data
parity bits, one tag parity bit, one bit to disable data parity
checks, and eight additional branch history bits), or 311 bits
altogether. Systems which use serial boot ROMs must supply values
for each of these bits. Odd parity is used. Only half of the
ICache can be utilized by the serial boot code. This consists of
79,616 bits (256 blocks at 311 bits/block). The ICache blocks are
loaded in sequential order starting with block zero and ending with
block 255. The table below shows the bit shift order within each
cache block. Bits are shifted from top to bottom and from left to
right:

Page 12

Name Required Value
------------ --------------
sRomD_h

bht<15:0> x
dp7 x
lw7<31:0> x
lw5<31:0> x
dp5 x
dp3 x
lw3<31:0> x
lw1<31:0> x
dpl x
noDp 1
v 1
asm 1
asn<5:0> x
tag<33:13> 0
tp 1
dp6 x
lw6<31:0> x
lw4<31: 0> x
dp4 x
dp2 x
lw2<31:0> x
lw0<31:0> x
dpO x

The table also shows the values which must loaded into each cache
block's tag and control bits.

The ICache will be implemented as two physically separate arrays.
In ICache serial write mode the contents of both arrays will be
written from the same serial input stream. In ICache serial read
mode the contents of the two arrays will be shifted onto two pins -
sRomOe_l and sRomClk_h. Thus the overall test time for the 16 KB
ICache in EV45 will be about the same as for the 8 KB ICache in EV4.

In order to fully test EV45 at wafer probe without having to first
laser repair defective ICache rows, EV45 will ·include a "soft fuse"
mode in which defective ICache rows can be electrically replaced. A
new signal, icMode_h<2>, will be placed on spare<l> (PGA location
AD7). The table below shows the encoding of icMode_h<2:0>.

icMode_h<2> icMode_h<l> icMode_h<O>

L L L

L L H

L H L

L H H

H L L

H L H

H H L

H H H

Page 13

Mode

Serial ROM Mode
Soft Fuses Disabled

Serial Interface Disabled
Soft Fuses Disabled

!Cache Test - Write
Soft Fuses Disabled

!Cache Test - Read
Soft Fuses Disabled

Load Soft Fuses

Serial Interface Disabled
Soft Fuses Enabled

!Cache Test - Write
Soft Fuses Enabled

!Cache Test - Read
Soft Fuses Enabled

The sRomClk_h divisor in mode zero will change from 126 in EV4 to
254 in EV45. Modes one through three are identical to their EV4
counterparts.

Mode four allows the soft fuses to be written from a serial bit
stream applied to sRomD_h. Modes five through seven are the same as
modes one through three, except that the soft fuses are enabled.
The sequence for using the soft fuses is described below.

1. Test the !Cache using modes two and three. Keep icMode_h<l>
asserted during this process to prevent the !Cache tag valid
bits from being cleared by chip reset. Determine which
row-pairs are defective one defective pair of rows can be
replaced in each subarray of the !Cache.

2. Program the soft fuses using !Cache mode four. The value
written into the soft fuses is retained as long as power is
applied to the chip and icMode_h<2> is asserted.

3. Test the !Cache again using !Cache modes six and seven.

4. Test the rest of the chip using !Cache mode five.

Appendix B of this document describes the soft fuse modes in more
detail.

Page 14

17 SUMMARY OF IPR CHANGES

This section summarizes all IPR differences between EV45 and EV4
pass 3.

17.1 New Bits In ABOX_CTL

Bit Name

12 DC_l6K

13 F_TAG_ERR

14 NOCHK_PAR

15 DOUBLE_INVAL

Function
-----------~-~----------------------------------
Set to select- 16 KB DCache, clear to select
8 KB DCache. Cleared by reset.

Set to generate bad primary cache tag parity
on fills. Cleared by re.set.

Set to disable checking of primary cache parity.
Cleared by reset.

When set, dinvReq_h<O> assertions invalidate both
DCache blocks addressed by iAdr_h<12:5>.
Cleared by reset.

17.2 DC_STAT Renamed To C_STAT (Same Register Number)

Bit Name Function
----------- ---

2:0 N/A Hardwired to 101 (bin) to allow PAL to
identify EV45.

3 DC _HIT Same as existing DC_HIT bit in EV4.

4 DC _ERR Set by DC ache parity error. Cleared by read
of C_STAT register.

5 IC _ERR Set by I Cache parity error. Cleared by read
of C_STAT register.

17.3 New Bit In BIU_CTL

Bit Name

37 BYTE_PARITY

39 IMAP_EN

44 FAST_LOCK

Page 15

Function

If set when BIU_CTL<ECC> is cleared, external
byte parity is selected. When BIU_CTL<ECC>
is set this bit is ignored. BYTE_PARITY is
cleared by reset.

Set to allow dMapWe_h<l:O> to assert for
I-stream backup cache reads. Cleared by
reset.

When set, FAST_LOCK mode operation is selected.
This mode can only be used when BIU_CTL<2> is
also set, indicating that OE-mode BCache RAMs
are used. Cleared by reset.

18 SUMMARY OF EXTERNAL INTERFACE CHANGES

This section summarizes all external interface differences between
EV45 and EV4 pass 3.

18.1 New Use For Former Spare Pins

Pin Type New Name Old Name PGA Location
-------- --------- ---------- -------------

0 d.MapWe_h<l> spare<O> M24
I icMode_h<2> spare<l> AD7
I dinvReq_h<l> spare<3> C24
I resetSClk_h spare<6> AAll
I sysClkDiv_h spare<8> AA16

The new inputs above will have internal pulldowns which will draw a
maximum current of 200 uA at 2.4V.

18.2 Renamed Pins

Pin Type

0
I

New Name

lockWE_h
lockFlag_h

Old Name PGA Location

tagEq_l P24
tagAdr_h<17> R23

18.3 Pins With New Functions For Other Differences

Page 16

18.3.1 TagOk_h, TagOk_l -

EV45 will include an on-chip synchronizer circuit for tagOk_h and
tagOk_l which will add a worst case delay of three CPU cycles to the
path. tagOk_h and tagOk_l will both be single-ended inputs
referenced to VREF. Systems which use tagOk_h should tie tagOk_l to
VSS. Systems which use tagOK_l should tie tagOK_h to VDD. Systems
which do not use the tagOk function should tie tagOk_h to VDD and
tagOK_l to VSS.

18.3.2 Irq_h<2:0> -

The value 111 (bin) placed on irq_h<2:0> during reset will select a
sysClkOut ratio of nine for EV45 vs. eight for EV4.

18.3.3 CWMask_h<4:3> -

During READ BLOCK and LDx/L transactions these pins will contain
virtual address bit <13>, which should be used as a "set number"
when allocating backmap entries in 16 KB DCache mode.

18.3.4 Check h<27:0> - Some of these pins will be used to carry
parity in byte parity mode.

APPENDIX A

SYSCLKOUT DIVIDER INITIALIZATION SEQUENCE

resetSClk_h is a test pin used to place EV45's system clock divider into
a known state. The sequence begins with resetSClk_h being asserted for
a minimum of ten CPU cycles. While resetSClk_h is asserted the system
clock outputs are deasserted. ResetSClk_h should be deasserted
synchronously to EV45's internal CLK signal. ResetSClk_h is sampled by
EV45 at the rising edge of CLK, and the first rising edge of
sysClkOutl_h will occur five CLK cycles after the point at which EV45
samples resetSClk_h's deassertion. The figure below shows this
sequence.

cpuClkOut_h I _/ _/ _/ _/ _/ _/ _

resetSClk_h

sysClkOutl_h

APPENDIX B

ICACHE SOFT FUSE MODES

The ICache consists of two arrays each containing two subarrays. Each
subarray contains 32 row-pairs, plus one additional redundant row-pair.
The figure below shows how the ICache partitions the physical address:

33 13
+-------------------------+
I TAG I
+-------------------------+

13 12 11 10 6 5 4 3
+--+--+--+------------+--+--+--+
I I I I I I I I
+--+--+--+------------+--+--+--+

I I I I I I I
I I I I I +--+----> bank sel
I I I I +----~-----> row in row-pair
I I I +------------------> row-pair index
I +--+--------------------------> column mux
+--------------------------------> array select

The next figure shows a block diagram of the cache. Each row contains
four complete cache blocks; address bits <12:11> control the column mux.
The top subarray is selected when address bit <13> is one, otherwise the
bottom array is selected. In ICache test modes three and seven, EV45
serially drives the top array's inverted contents onto sRomOe_l and the
bottom array's inverted contents onto sRomClk_h.

!CACHE SOFT FUSE MODES Page B-2

<-------------- 4 Cache blocks per row ------------->

A +---+---+---+---+---+-----+---+-----+---+---+---+---+
I I I I I I I I I I I I I I Row-pair 31
I I L I L I L I L I f I d I f I t I L I L I L I L I

33 I w I w I w I w I u I e I u I a I w I w I w I w I
Row I I I I I s I c I s I g I I I I I
Pairs I 7 I 5 I 3 I 1 I e I 0 I e I s I 6 I 4 I 2 I 0 I

I I I I I I s I d I s I I I I I I
I I I I I I I e I I I I I I I Row-pair 0
v +---+---+---+---+---+-----+---+-----+---+---+---+---+

A +---+---+---+---+---+-----+---+-----+---+---+---+---+
I I I I I I I I I I I I I I Row-pair 31
I I L I L I L I L I f I d I f I t I L I L I L I L I

33 I w I w I w I w I u I e I u I a I w I w I w I w I
Row I I I I I s I c I s I g I I I I I
Pairs I 7 I 5 I 3 I 1 I e I 0 I e I s I 6 I 4 I 2 I 0 I

I I I I I I s I d I s I I I I I I
I I I I I I I e I I I I I I I Row-pair 0
v +---+---+---+---+---+-----+---+-----+---+---+---+---+

The left subarrays contain the odd numbered longwords and associated
parity for each cache block. The right subarrays contain the even
numbered longwords and associated parity, the tag, and tag control bits
of each block.

The soft fuses form a serial shift register which can be loaded via the
sRomD_h pin using !Cache test mode four (icMode_h<2:0> = HLL). Each
subarray has 32 fuses for disabling a particular row-pair, and one fuse
for enabling the redundant row-pair. In addition, there are five fuses
for programming each redundant row-pair's decoder. Overall there are
152 soft fuse bits in the !Cache [(32+1+5) * 4]. The order in which
these bits are loaded via the serial shift chain is shown below. Bits
shift from top to bottom and left to right:

Name

DEC_TL
DEC_TR
ENR_TR
DIS_ TR
ENR_BR
DIS_BR
DIS_BL
ENR_BL
DEC_BR
DEC_BL
DIS_ TL
ENR_TL

<0:4>
<4:0>
<0>
<31:0>
<0>
<31:0>
<0:31>
<0>
<4:0>
<0:4>
<0: 31>
<0>

Function

Redundant row-pair decode, top left
Redundant row-pair decode, top right
Enable redundant row-pair, top right
Disable row-pair, top right
Enable redundant row-pair, bottom right
Disable row-pair, bottom right
Disable row-pair, bottom left
Enable redundant row-pair, bottom left
Redundant row-pair decode, bottom right
Redundant row-pair decode, bottom left
Disable row-pair, top left
Enable redundant row-pair, top left

ICACHE SOFT FUSE MODES Page B-3

To disable a particular row-pair place a zero in its associated shift
chain location. To enable a redundant row-pair place a zero in its
shift chain location. Write true addresses into the · redundant decoder
shift chain locations, eg. to make a redundant row-pair replace
row-pair zero, place all zeros in its associated shift chain locations.

The figure below shows the timing for loading the soft fuse latches.
The bit rate for this sequence is one bit per two CPU cycles. The chip
tester must assert icMode_h<l> one CPU cycle before EV45 samples the
last bit of the soft fuse shift chain. EV45 should sample this
assertion of icMode_h<l> in the same CPU cycle in which it samples the
last soft fuse shift chain bit.

reset_l _

icMode_h<2>

icMode_h<l> __ _

icMode_h<O> __ _

sysClkOutl_h _ ... _/ _/ _/ _/
I I I I I I I

sRomClk_h _/ _/ _/ _
I I I I I I I

bit 0 1 2 3

sRomD_h xxxxxxx ... x x x x __
I I I I

_

_ __ /
I

... _/ _/ _/ \
I I I I I I I

_/ _/ _/ _/
I I I I I I I

151 152

_x xxxxxxxxxxxx
I I I I I I

