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Chapter 1
Introduction

1.1 Scope

This document describes the EV3 and EV4 chips, a family of microprocessors that implement
the ALPHA architecture. This specification describes the external interface and programming
information specific to the actual implementation. It does not describe the detailed imple-
mentation of the chip nor the ALPHA architecture. The reader is referred to the ALPHA
system reference manual for the architectural specification.

1.2 EV4 Chip Features

The EV4 microprocessor is a CMOS-4 (.75 micron) super-scalar super-pipelined implementa-
tion of the ALPHA architecture. It will become the basis of the first family of ALPHA products.
The EV4 chip is designed to meet the requirements of a wide variety of systems, ranging from
uni-processor workstations to midrange multiprocessors. To achieve this goal, EV4 enforces
as little policy as possible, e.g. it does not enforce a particular cache coherence scheme. EV4
attempts to spread fairly the design compromises over the range of customers’ requirements.

The design balances the cost goals of the low-end workstation with performance goals of the
mid-range multiprocessors.

EV4 features:

* ALPHA instructions to support byte, word, longword, quadword, DEC F_floating, G_
floating and IEEE S_floating and T floating data types. Limited support is provided

for DEC D_floating operations. It implements the architecturally optional instructions:
FETCH and FETCH_M.

¢ Demand paged memory management unit which in conjunction with properly written
PALcode fully implements the ALPHA memory management architecture. The transla-

tion buffer can be used with alternative PALcode to implement a different page table
structure.

¢  On-chip 8-entry I-stream TB and 32-entry D-stream TB which each map 8Kbyte pages,
and a four-entry D-stream TB which maps aligned groups of 512 8Kbyte pages.

e  World class performance. At its nominal frequency EV4 achieves a 6.6ns cycle time. Cycle
times of 5ns are possible by binning the parts.
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Low average cycles per instructions (CPI). The EV4 chip can issue two ALPHA instruec-
tions in a single cycle, thereby minimizing the average CPI. Branch history tables are
also used to minimize the branch latency, further reducing the average CPI.

On-chip high-throughput floating point unit, capable of executing both DEC and IEEE
floating point data types.

On-chip 8Kbyte data cache and an 8Kbyte physical instruction cache with ASN support.
On-chip write buffer with four 32-byte entries.
On-chip performance counters to measure and analyze cpu and system performance.

Bus interface unit, which contains logic to directly access external cache RAMs without
CPU module action. The size and access time of the external cache is programmable.

An instruction cache diagnostic interface to support chip and module level testing.

An internal clock generator which generates both a high-speed clock needed by the chip
itself, and a pair of system clocks for use by the CPU module.

The EV4 chip is packaged in 431 pin (24 x 24, 100 mil pin pitch) PGA packages. The heat
sinks are seperable and application specific.

1.3 EV3 Chip Features

The EV3 microprocessor is an early variant of EV4 fabricated in CMOS-3 (1 micron). It is
intended to be used during system-level debug of the first ALPHA products and will be used
by the ALPHA Demonstration Unit. It is pin compatible with EV4, so no significant system-
level changes are needed to transition from EV3 to EV4. Because it is fabricated in less dense
technology, it has less functionality and a slower cycle time than EV4.

The primary differences between EV3 and EV4 are:

The nominal cycle time for EV3 is extended from to 6.6ns to 10ns. The external interface
is designed such that running the CPU with a reduced cycle time does not require that
all of the logic surrounding the CPU run at reduced speed.

EV3 does not provide an on-chip floating point unit. Floating point instructions may be
trapped for emulation if desired.

EV3 primary caches are smaller. The Icache and Dcache are both 1Kbytes.
EV3 uses a simpler branch prediction algorithm, no branch history table.

Performance counters are not included in EV3.

1.4 Definitions

This document is the specification for both the EV3 and EV4 chips. Because the bulk of the
functionality is the same for both chips, the remainder of the spec will use the term EVx
to represent both EV3 and EV4 in discussions of features which are common to both chips.

Discussions of features which are unique to a particular chip will use the name of that chip
(EV3 or EV4).
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1.5 Terminology and Conventions
1.5.1 Numbering

All numbers are decimal unless otherwise indicated. Where there is ambiguity, numbers other
than decimal are indicated with the name of the base following the number in parentheses,
e.g., FF(hex).

1.5.2 UNPREDICTABLE And UNDEFINED

Throughout this specification, the terms UNPREDICTABLE and UNDEFINED are used.
Their meanings are quite different and must be carefully distinguished. One key difference
is that only privileged software (that is, software running in kernel mode) may trigger
UNDEFINED operations, whereas either privileged or unprivileged software may trigger
UNPREDICTABLE results or occurrences. A second key difference is that UNPREDICTABLE
results and occurrences do not disrupt the basic operation of the processor; the processor
continues to execute instructions in its normal manner. In contrast, UNDEFINED operation
may halt the processor or cause it to lose information.

A result specified as UNPREDICTABLE may acquire an arbitrary value subject to a few
constraints. Such a result may be an arbitrary function of the input operands or of any state
information that.is accessible to the process in its current access mode. UNPREDICTABLE
results may be unchanged from their previous values. UNPREDICTABLE results must not
be security holes. Specifically, UNPREDICTABLE results must not do any of the following:

¢ Depend on or be a function of the contents of memory locations or registers which are
inaccessible to the current process in the current access mode. ‘

*  Write or modify the contents of memory locations or registers to which the current process
in the current access mode does not have access.

¢ Halt or hang the system or any of its components.

For example, a security hole would exist if some UNPREDICTABLE result depended on the
value of a register in another process, on the contents of processor temporary registers left
behind by some previously running process, or on a sequence of actions of different processes.

An occurrence specified as UNPREDICTABLE may happen or not based on an arbitrary choice
function. The choice function is subject to the same constraints as are UNPREDICTABLE
results and, in particular, must not constitute a security hole.

Results or occurrences specified as UNPREDICTABLE may vary from moment to moment,
implementation to implementation, and instruction to instruction within implementations.
Software can never depend on results specified as UNPREDICTABLE.

Operations specified as UNDEFINED may vary from moment to moment, implementation to
implementation, and instruction to instruction within implementations. The operation may
vary in effect from nothing, to stopping system operation. UNDEFINED operations must not
cause the processor to hang, i.e., reach an unhalted state from which there is no transition
to a normal state in which the machine executes instructions. Only privileged software (that
is, software running in kernel mode) may trigger UNDEFINED operations.

Introduction 1-3



1.5.3 Ranges And Extents

Ranges are specified by a pair of numbers separated by a ".." and are inclusive, e.g., a range
of integers 0..4 includes the integers 0, 1, 2, 3, and 4.

Extents are specified by a pair of numbers in angle brackets separated by a colon and are
inclusive, e.g., bits <7:3> specify an extent of bits including bits 7, 6, 5, 4, and 3.

1.5.4 Must be Zero (MB2)

Fields specified as Must Be Zero (MBZ) must never be filled by software with a non-zero
value. If the processor encounters a non-zero value in a field specified as MBZ, a Reserved
Operand exception occurs.

1.5.5 Should be Zero (SB2)

Fields specified as Should Be Zero (SBZ) should be filled by software with a zero value.

These fields may be used at some future time. Non-zero values in SBZ fields produce
UNPREDICTABLE results.

1.5.6 Read As Zero (RAZ)

Fields specified as Read As Zero (RAZ) return a zero when read.

1.5.7 Ignore (IGN)
Fields specified as Ignore (IGN) are ignored when written.

1.5.8 Register Format Notation

This specification contains a number of figures that show the format of various registers,
followed by a description of each field. In general, the fields on the register are labeled with
either a name or a mnemonic. The description of each field includes the name or mnemonic,
the bit extent, and the type.

The “Type” column in the field description includes both the actual type of the field, and
an optional initialized value, separated from the type by a comma. The type denotes the
functional operation of the field, and may be one of the values shown in Table 1-1. If present,
the initialized value indicates that the field is initialized by hardware to the specified value
at powerup. If the initialized value is not present, the field is not initialized at powerup.
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Table 1-1: Register Field Type Notation

Notation Description
RW A read-write bit or field. The value may be read and written by software.
RO A read-only bit or field. The value may be read by software. It is written by

hardware; software writes are ignored.

WO A write-only bit or field. The value may be written by software. It is used by
hardware and reads by software return an UNPREDICTABLE result.

WZ A write bit or field. The value may be written by software. It is used by hardware
and reads by software return a 0.

WicC A write-one-to-clear bit. If reads are allowed to the register then the value may
be read by software. If it is a write-only register then a read by software returns
an UNPREDICTABLE result. Software writes of a 1 cause the bit to be cleared by
hardware. Software writes of a 0 do not modify the state of the bit.

wocC A write-zero-to-clear bit. If reads are allowed to the register then the value may
be read by software. If it is a write-only register then a read by software returns
an UNPREDICTABLE result. Software writes of a 0 cause the bit to be cleared by
hardware. Software writes of a 1 do not modify the state of the bit.

WA A write-anything-to-the-register-to-clear bit. If reads are allowed to the register
then the value may be read by software. If it is a write-only register then a read
by software returns an UNPREDICTABLE result. Software write of any value to
the register cause the bit to be cleared by hardware.

RC A read-to-clear field. The value is written by hardware and remains unchanged
until read. The value may be read by software at which point, hardware may write
a new value into the field. -

In addition to named fields in registers, other bits of the register may be labeled with one of

the three symbols listed in Table 1-2. These symbols denote the type of the unnamed fields
in the register.

Table 1-2: Register Field Notation

Notation Description
RAZ Denotes a register bit(s) that is read as a 0.
IGN Denotes a register bit(s) that is ignored on write and UNPREDICTABLE when

read if not otherwise specified.

Introduction 1-5



1-6 Introduction



Chapter 2
EVx Micro-architecture

2.1 Introduction

This chapter gives a programmer and system designer view of the EVx micro-architecture.
It is not intended to be a detailed hardware description of chip. The reader is referred to
the behavioral model for an accurate and highly detailed specification of the chip. Describing
the micro-architecture of a heavily pipelined machine is always problematic. To understand
the hardware you need to understand the pipeline, but it is very difficult to describe the
pipeline without a hardware description. This spec first describes the hardware with only
minimal forward references to the pipeline and then presents the pipeline. EVx can issue
two instructions in a single cycle - the scheduling and dual issue rules are defined at the end
of the chapter.

It is important to realize that the combination of EVx and PALcode implements the ALPHA
architecture. Many hardware design decisions were based on specific PAL functionality. These
PAL assumptions and restrictions are detailed in the next chapter. The important point to
keep in mind is that if a certain piece of hardware appears to be "architecturally incomplete”,
the missing functionality is implemented in PALcode.

2.2 Overview

The EV4 microprocessor consists of three independent execution units: integer execution unit
(Ebox), floating point unit (Fbox), and the address generation, memory management, write
buffer and bus interface unit (Abox). EV3 does not contain a floating point unit. Each unit
can accept at most one instruction per cycle, however if code is properly scheduled, EVx can
issue two instructions to two independent units in a single cycle. A fourth unit, the Ibox,
is the central control unit. It issues instructions, maintains the pipeline and performs all of
the PC calculations. EVx also has on-chip instruction and data caches (Icache and Dcache).
The major functional difference between EV4 and EV3 is that EV3 does not include a floating
point unit,.
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2.3 Ibox

The primary function of the Ibox is to issue instructions to the Ebox, Abox and Fbox. In order
to provide those instructions, the Ibox also contains the prefetcher, PC pipeline, ITB, abort
logic, register conflict or dirty logic, and exception logic. The Ibox decodes two instructions
in parallel and checks that the required resources are available for both instructions. If
resources are available and dual issue is possible then both instructions may be issued. The
section on Dual Issue Rules details which instructions can be dual issued. If the resources
are available for only the first instruction or the instructions cannot be dual issued then the
Ibox issues only the first instruction. The Ibox does NOT issue instructions out of order, even
if the resources are available for the second instruction and not for the first instruction. The
Ibox does not issue instructions until the resources for the first instruction become available.
If only the first of a pair of instructions issues, the Ibox does not advance another instruction
to attempt to dual issue again. Dual issue is only attempted on aligned quadword pairs.

2.3.1 Branch Prediction Logic

The Ibox contains the branch prediction logic. EV4 offers a choice of branch prediction
strategies selectable through the ICCSR IPR. The Icache records the outcome of branch
instructions in a single history bit provided for each instruction location in the cache. This
information can be used as the prediction for the next execution of the branch instruction.
The prediction for the first execution of a branch instruction is based on the sign of the
displacement field within the branch instruction itself. If the sign bit is negative, conditional
branches are predicted to be taken. If the sign is positive, conditional branches are predicted
to be not taken. Alternatively, if the history table is disabled, branches can be predicted based
on the sign of the displacement field at all times.

The EV3 chip provides only sign of the displacement branch prediction.

Both chips provide a 4-entry subroutine return stack which is controlled by the hint bits in the
BSR, HW_REI, and jump to subroutine instructions (JMP, JSR, RET, or JSR_COROUTINE).
Both chips also provide a means of disabling all branch prediction hardware.

23.2 ITB

The Ibox contains an 8-entry fully associative translation buffer to cache recently used
instruction-stream address translations and protection information for 8Kbyte pages. The
ITB uses a not-last-used replacement algorithm. The ITB is filled and maintained by PALcode.
Unlike the DTB, it is not possible to write to the ITB in native(non-PAL) mode. The chapter
on PALcode details the ITB miss flow.

While not executing in PAL mode, the 43-bit virtual program counter (VPC) is presented each
cycle to the ITB. If the PTE associated with the VPC is cached in the ITB then the PFN and
protection bits for the page which contains the VPC are used by the Ibox to complete the
address translation and access checks.

The EVx ITB supports one ASN, the PTE[ASM] bit. PALcode which supports writes to
the architecturally-defined TBIAP register does so by using the hardware-specific HW_
MTPR instruction to write to the hardware-specific ITBASM register. This has the effect
of invalidating ITB entries which do not have their corresponding ASM bits set.
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2.3.3 Interrupt Logic

The EVx chip supports three sources of interrupts; hardware, software and asynchronous
system trap (AST). There are six level-sensitive hardware interrupts sourced by pins, 15
software interrupts sourced by an on-chip IPR (SIRR), and 4 AST interrupts sourced by a
second internal IPR (ASTRR). All interrupts are independently maskable via on-chip enable
registers to support a software controlled mechanism for prioritization. In addition, AST
interrupts are qualified by the current processor mode. The EV4 chip further qualifies AST
interrupts with the current state of SIER[2]. EV3 supports this function in PAL code. All
interrupts are disabled when the processor is executing PALcode.

By providing distinct enable bits for each independent interrupt source, a software controlled
interrupt priority scheme can be implemented with maximum flexibility. For example, a six
level interrupt priority scheme can be supported for the six hardware interrupt request pins
by defining a distinct state of the corresponding hardware interrupt enable register for each
IPL. The current interrupt priority is determined by the state of the interrupt enable register.
The lowest interrupt priority level is produced by enabling all 6 interrupts, e.g bits 6-1. The
next is produced by enabling bits 6-2 and so on to the highest interrupt priority level which
is produced by enabling only bit 6 and disabling bits 5 through 1. When all interrupt enable
bits are cleared, the processor can not be interrupted from the hardware interrupt request
register. Each state, 6-1,6-2,6-3,6-4,6-5,6 represents an individual interrupt priority level
(IPL). If these states are the only states allowed in the interrupt enable register, a six level
hardware interrupt priority scheme can be controlled entirely by software.

The scheme is extendible to provide multiple interrupt sources at the same interrupt priority
level by grouping enable bits. Groups of enable bits must be set and cleared together to

support multiple interrupts of equal priority level. Of course, this method reduces the total
available number of distinct levels.

Since enable bits are provided for all hardware, software and AST interrupt requests, a
priority scheme can span all sources of processor interrupts. The only exception to this rule
regards the restriction on AST interrupt requests as described below.

Four AST interrupts are provided; one for each processor mode. AST interrupt requests are
qualified such that AST requests corresponding to a given mode are blocked whenever the
processor is in a higher mode regardless of the state of the AST interrupt enable register.
In addition, all AST interrupt requests are qualified in EV4 with SIER[2] to disable AST
requests when IPL is higher than 2. This function is provided in PALcode for EV3.

When the processor receives an interrupt request and that request is enabled, an interrupt is
reported or delivered to the exception logic if the processor is not currently executing PALcode.
Before vectoring to the interrupt service PAL dispatch address, the pipeline is completely
drained and all outstanding load instructions are completed. The restart address is saved
in the Exception Address IPR (EXC_ADDR) and the processor enters PALmode. The cause

of the interrupt may be determined by examining the state of any of the interrupt request
registers.

Note that hardware interrupt requests are level sensitive and therefore may be removed
before an interrupt is serviced. If they are removed before the interrupt request register is
read, the register will return a zero value.
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2.3.4 Performance Counters

The EV4 chip contains a performance recording feature. The implementation of this feature
provides a mechanism to count various hardware events and cause an interrupt upon counter
overflow. Interrupts are triggered six cycles after the event, and therefore, the exception PC
may not reflect the exact instruction causing counter overflow. Two counters are provided to
allow accurate comparison of two variables under a potentially non-repeatable experimental
condition. Counter inputs include issues, non-issues, total cycles, pipe dry, pipe freeze,
mispredicts and cache misses as well as counts for various instruction classifications. In
addition, one chip pin input to each counter is provided to measure external events at a rate
determined by the selected system clock speed. Performance counters are not present in EV3.

2.4 Ebox

The Ebox contains the 64-bit integer execution datapath: adder, logic box, barrel shifter, byte
zapper, bypassers and integer multiplier.- The integer multiplier retires 4 bits per cycle. The
Ebox also contains the 32-entry 64-bit integer register file. The register file has four read
ports and two write ports which allow the sourcing (sinking) of operands (results) to both the
integer execution datapath and the Abox.

2.5 Abox

The Abox contains six major sections: address translation datapath, load silo, write buffer,
Dcache interface, IPRs and the external bus interface unit (BIU). The address translation
datapath has a displacement adder which generates the effective virtual address for load and

store instructions, and a pair of translation buffers which generate the corresponding physical
address.

2.5.1 DTB

EVx contains a 32-entry fully associative translation buffer which caches recently used data-
stream page table entries for 8Kbyte pages, and a four-entry fully associative translation
buffer which supports the largest granularity hint option (512*8Kbyte pages) as described in
the ALPHA SRM. Both translation buffers use a not-last-used replacement algorithm. They
are hereafter referred to as the small-page and large-page DTBs, respectively. PALcode is
responsible for insuring that a particular PTE is never contained in both the small- and
large-page DTBs at the same time,

EVx supports a single address space number via the PTE[ASM] bit. PALcode which supports
writes to the architecturally-defined TBIAP register does so by using the hardware-specific
HW_MTPR instruction to write to the hardware-specific DTBASM register. This has the
effect of invalidating DTB entries which do not have their corresponding ASM bit set.

For load and store instructions, the effective 43-bit virtual address is presented to the DTBs.
If the PTE of the supplied virtual address is cached in either DTB, the PFN and protection
bits for the page which contains the address are used by the Abox to complete the address
translation and access checks.

'fhe DTBs are filled and maintained by PALcode. The chapter on PALcode details the DTB
miss flow. Note that the DTBs can be filled in kernel mode by setting the HWE bit in the
ICCSR IPR.
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2.5.2 BIU

The BIU controls the interface to the EVx pin bus. It responds to three classes of CPU-
generated requests: Dcache fills, Icache fills and write buffer-sourced commands. The BIU
resolves simultaneous internal requests using a fixed priority scheme in which Dcache fill
requests are given highest priority, followed by Icache fill requests. Write buffer requests
have the lowest priority. The external interface chapter of this specification describes the
EVx pin bus.

The BIU contains logic to directly access an external cache to service internal cache fill
requests and writes from the write buffer. The BIU services reads and writes which do not
hit in the external cache with help from external logic.

Internal data transfers between the CPU and the BIU are made via a 64-bit bidirectional
bus. Since the internal cache fill block size is 32 bytes, cache fill operations result in four
data transfers across this bus from the BIU to the appropriate cache. Also, since each write

buffer entry is 32 bytes wide, write transactions may result in four data transfers from the
write buffer to the BIU.

2.5.3 Load Silos

The Abox contains a fully folded memory reference pipeline which may accept a new load or
store instruction every cycle until a Deache fill is required. Since the Decache lines are only
allocated on load misses, the Abox may accept a new instruction every cycle until a load miss
occurs. When a load miss occurs the Ibox stops issuing all instructions that use the load port
of the register file or are otherwise handled by the Abox (LDx, STx, MFPR, JSR, RCC, RS,
RC), MB and SYNC instructions. A JSR with a destination of R31 may be issued.

Since the result of each Dcache lookup is known late in the pipeline (stage [6]) and instructions
are issued in pipe stage [3], there may be two instructions in the Abox pipeline behind a load
instruction which misses the Dcache. These two instructions are handled as follows:

* Loads which hit the Dcache are allowed to complete - hit under miss.
* Load misses are placed in a silo and replayed in order after the first load miss completes.

e Store instructions are presented to the Dcache at their normal time with respect to the

pipeline. They are silo’ed and presented to the write buffer in order with respect to load
misses.

When a load miss occurs in EV3 the Ibox stops issuing Abox-directed instructions until all
pending Decache fills are complete. This insures that no conflicts for the Dcache will occur.

In order to improve performance in EV4, the Ibox is allowed to restart the execution of Abox-
directed instructions before the last pending Dcache fill is complete. Dcache fill transactions
result in four data transfers from the BIU to the Dcache. These transfers may each be
separated by one or more cycles depending on the characteristics of the external cache and
memory subsystems. The BIU attempts to send the quadword of the fill block which the
CPU originally requested in the first of these four transfers (it is always able to accomplish
this for reads which hit in the external cache). Therefore the pending load instruction which
requested the Dcache fill can complete before the Dcache fill finishes. In EV4, Dcache fill
data is not written into the cache array as it is received from the BIU. Rather, it accumulates
one quadword at a time into a "pending fill" latch. When the load miss silo is empty and the
requested quadword for the last outstanding load miss is received, the Ibox resumes execution
of Abox-directed instructions despite the still-pending Dcache fill. When the entire cache line
has been received from the BIU, it is written into the Dcache data array whenever the array
isn’t otherwise busy with a load or a store.
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2.5.4 Write Buffer

The Abox contains a write buffer for two purposes:

1. To minimize the number of CPU stall cycles by providing a high bandwidth (but finite)
resource for receiving store data. This is required since EVx can generate store data at
the peak rate of one quadword every CPU cycle which is greater than the rate at which
the external cache subsystem can accept the data.

2. To attempt to aggregate store data into aligned 32-byte cache blocks for the purpose of
maximizing the rate at which data may be written from EVx into the external cache.

In addition to store instructions, MB, STQ/C, STL/C, FETCH and FETCH_M instructions
are also written into the write buffer and sent off-chip. Unlike stores, however, these write
buffer-directed instructions are never merged into a write buffer entry with other instructions.

Each write buffer entry contains a CAM for holding physical address bits <33:5>, four
quadwords of data, eight longword mask bits which indicate which of the associated eight
longwords in the entry contain valid data, and miscellaneous control bits.

To facilitate the discussion, the following two states are defined: invalid and valid. A write
buffer entry is invalid if it does not contain one of the above-listed write buffer-directed
commands. A write buffer entry is valid if it contains one of the above-listed write buffer-
directed commands.

The write buffer contains two pointers: the head pointer and the tail pointer. The head
pointer points to the valid write buffer entry which has been valid the longest period of time.
The tail pointer points to the invalid write buffer entry slot which will next be validated. If
the write buffer is completely full (empty) the head and tail pointers point to the same valid
(invalid) entry.

Each time the write buffer is presented with a store instruction the physical address generated
by the instruction is compared to the address in each valid write buffer entry. If the address
is in the same aligned 32-byte block as an address in a valid write buffer entry which also
contains a store then the new store data is merged into that entry, and the entry’s longword
mask bits are updated. If no matching address is found in the write buffer, then the store data
is written into the entry designated by the tail pointer, the entry is validated, and the tail
pointer is incremented to the next entry. Note this scheme does not maintain write-ordering.

The EV3 and EV4 write buffers differ in the number of entries they contain, in the flow
control mechanism used to prevent buffer overflow, and in the mechanism which controls
when entries are written off-chip.

2.5.4.1 EV3 Write Buffer

The EV3 write buffer has eight entries and employs a rather simple flow control mechanism
to prevent the buffer from overflowing. The physical address of each store instruction is
presented to the write buffer CAM array in the second half of pipe stage [6], and the decision
as to whether the store data can be merged with an existing entry or whether a new entry
will be required is made in the first half of pipe stage [7]. Write buffer overflow is prevented
by causing the Ibox to stall the execution of store instructions if necessary. Since the write
buffer merge decision is made in pipe stage [7], and instructions are issued from pipe stage
[3], there may be as many as three store instructions in the Abox pipeline behind a store
instruction which causes a new buffer entry to be consumed. Therefore, in order to prevent
overflow the Ibox stops issuing store instructions whenever there are three or fewer invalid
write buffer entries available.
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In EV3, the write buffer attempts to unload the head entry whenever it is valid. Store data
may get merged into this entry up to the time the entry starts getting sent to the BIU.

2.5.4.2 EV4 Write Buffer

The EV4 write buffer contains four entries but employs a more complicated flow control
mechanism which allows its entries to be better utilized than in EV3. In EV4 the Ibox issues
store instructions irrespective of whether the write buffer is full. If a store instruction enters.
pipe stage [6] of the Abox and the write buffer is full, the Ibox is forced to stop issuing both
loads and stores by the same mechanism which is used for handling load misses. In effect,
the store instruction gets treated as if it were a load miss. Any valid instructions in pipe
stages [4] or [5] get handled exactly as if they had followed a load miss - loads which hit the
Dcache are allowed to complete, stores are presented to the Dcache, placed into the Abox silo
and and presented to the write buffer in order with respect to other silo’ed instructions. The
Abox silo control logic insures that no stores are lost when the write buffer is full by retrying
silo’ed stores until they are accepted by the write buffer.

In EV4, the write buffer attempts to send its head entry off-chip by requesting the BIU when
one of the following conditions are met:

1. The write buffer contains at least two valid entries.

2. The write buffer contains one valid entry and at least 256 CPU cycles have elapsed since
the execution of the last write buffer-directed instruction.

3. The write buffer contains an MB instruction.
The write buffer contains a STQ/C or STL/C instruction.

A load miss is pending which requires the write buffer to be flushed before an external
read is launched to service the load miss.

When the write buffer is requesting the BIU no stores are allowed to merge into the write
buffer’s head entry.

2.6 Fbox

EV4 has an on-chip pipelined Fbox capable of executing both DEC and IEEE floating point
instructions. IEEE floating point datatypes S and T are supported with all rounding modes
except round to +/- infinity which is provided in PALcode. DEC floating point datatypes F and
G are fully supported with limited support for D floating format. The Fbox contains a 32-entry
64-bit floating point register file and a user accessible control register, FP_CTL, containing
round mode controls, trap enables, and exception flag information. The Fbox can accept an
instruction every cycle, with the exception of floating point divide instructions. The latency
for data dependent, non divide instructions is six cycles. Bypassers are provided to allow
issue of instructions which are dependent on prior results while those results are written to
the register file. For detailed information on instruction timing, refer to Section 2.9.

For divide instructions, the Fbox does not compute the inexact flag. Consequently, the INE
exception flag in the FP_CTL register is never updated for any DIV instructions. This is a
known incompatibility in the EV4 chip.

The EV3 chip contains no on-chip floating point hardware. Floating point instructions can be
emulated in PALcode for EV3.
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2.7 Cache Organization

EV3 and EV4 each include two on-chip caches. All memory cells are fully static CMOS 6T
structures.

2.7.1 Data Cache

The EV4 data cache, Dcache, contains 8Kbytes. It is a write-through, direct mapped, read-
allocate physical cache and has 32-byte blocks. System components may keep the Dcache
‘coherent with memory by using the invalidate bus described in the pin bus section of this
specification.

The EV3 data cache contains 1Kbytes.

2.7.2 Instruction Cache

The EV4 instruction cache, Icache, is an 8Kbyte physical direct-mapped cache. Icache blocks,
or lines, contain 32-bytes of instruction stream data with associated tag as well as a six-bit
ASN field, a one-bit ASM field and an eight-bit branch history field per block. It does not

contain hardware for maintaining coherency with memory and is unaffected by the invalidate
bus.

EV4 also contains a single-entry Icache stream buffer which together with its supporting
logic reduces the performance penalty due to Icache misses incurred during in-line instruction
processing. The stream buffer physically consists of latches for one Icache block’s data and tag
bits which are adjacent to the fill-side of the cache array, and a comparator, 13-bit incrementer
and associated datapath hardware and control in the Abox.

When an Icache miss occurs, the Ibox sends an Icache fill request to the Abox, which
simultaneously requests the BIU and checks the stream buffer for the requested block. If
the block is present in the stream buffer the Abox aborts the original Icache fill request,
writes the requested block into the Icache and launches a prefetch request to the BIU for the
next consecutive Icache block. The Ibox does not interact with the stream buffer - from the

Ibox’s perspective Icache misses which hit the stream buffer are the same as any other Icache
miss except that the Icache fill finishes sooner.

When an Icache miss also misses the stream buffer the Abox launches a request for the
required fill block and subsequently launches a prefetch request for the next consecutive fill
block, thus getting the stream buffer started down the next I-stream path. Stream buffer
prefetch requests never cross physical page boundaries, but instead wrap around to first
block of the current page.

The EV3 instruction cache contains 1Kbytes. It is a physical direct-mapped cache and has
32-byte blocks. The EV3 chip contains no hardware for keeping the Icache coherent with

memory, Further, it is unaffected by the invalidate bus. It does not contain ASN,ASM or
branch history information.

A physical, incoherent Icache has the following implications:

1. Software which creates or modifies the instruction stream must execute an IMB PAL call
before trying to execute the new instructions. The PAL IMB routine must explicitly flush
the Icache by writing to the FLUSH_IC register.
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2. Asvirtual pages migrate from one physical page frame to another, the Icache may become
incoherent with memory. A sufficient means of keeping the Icache coherent for this case
is for the PALcode which implements the TBIA, and TBIAP PAL calls to explicitly flush
the Icache as described above. The ASN field and supporting PAL code in EV4 provide
functionality to conform to the ALPHA SRM requirements regarding instruction caches
while reducing the need to flush the Icache.

2.8 Pipeline Organization

EV4 has a seven stage pipeline for integer operate and memory reference instructions.
Floating point operate instructions progress through a ten stage pipeline. The Ibox maintains
state for all pipeline stages to track outstanding register writes, and determine Icache
hit/miss. The pipeline diagrams below show the Ebox, Ibox, Abox and Fbox pipelines. The
first four cycles are executed in the Ibox and the last stages are box specific. There are
bypassers in all of the boxes that allow the results of one instruction to be used as operands
of a following instruction without having to be written to the register file. The following
section describes the pipeline scheduling rules.

Integer Operate Pipeline:

IF SWAP I0 Il Al A2 WR

| | o = mm e | mmmrmmem | = mm e fmmmmmmme |
(o] (1] (2] (3] [4] (5] (6]

e IF - Instruction Fetch.
¢ SWAP - Swap Dual Issue Instruction /Branch Prediction.
¢ 10 - Decode.

e I1 - Register file(s) access / Issue check.

¢ Al - Computation cycle 1/ Ibox computes new PC.
e A2 - Computation cycle 2 / ITB look-up
¢ WR - Integer register file write / Icache Hit/Miss

Memory Reference Pipeline:

IF SWAP I0 I1 AC B HM
| - - | === | e | = e |
[0] (1] [2] (3] (4] (5] (6]

¢ AC - Abox calculates the effective D-stream address.
¢ TB - DTB look-up.
¢ HM - Dcache Hit/Miss and load data register file write
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Floating Point Operate Pipeline:

IF SWAP I0 Il Fl F2 F3 F4 F5 FWR

| == | | -~ 1 e - | [

[0] [1] [2] [3] (4] (5] [6] [7] (8} [9]
¢ F1-F5 - Floating point calculate pipeline

¢ FWR - Floating point register file write

The EV4 integer pipeline divides instruction processing into four static and three dynamic
stages of execution. The EV4 floating point pipeline maintains the first four static stages
and adds six dynamic stages of execution. The first four stages consist of the instruction
fetch, swap, decode and issue logic. These stages are static in that instructions may remain
valid in the same pipeline stage for multiple cycles while waiting for a resource or stalling for
other reasons. Dynamic stages always advance state and are unaffected by any stall in the
pipeline. Pipeline stalls are also referred to as pipeline freezes. A pipeline freeze may occur
while zero instructions issue, or while one instruction of a pair issues and the second is held
at the issue stage. A pipeline freeze implies that a valid instruction or instructions is (are)
presented to be issued but can not proceed.

Upon satisfying all issue requirements, instructions are allowed to continue through any
pipeline toward completion. After issuing, instructions cannot be held in a given pipe stage.
It is up to the issue stage to insure that all resource conflicts are resolved before an instruction
is allowed to continue. The only means of stopping instructions after the issue stage is an

abort condition. Note that the term abort as used here is different from its use in the ALPHA
SRM. :

Aborts may result from a number of causes. In general, they may be grouped into two
classes, namely exceptions (including interrupts) and non exceptions. The basic difference
between the two is that exceptions require that the pipeline be drained of all outstanding
instructions before restarting the pipeline at a redirected address. In either case, the pipeline
must be flushed of all instructions which were fetched subsequent to the instruction which
caused the abort condition. This includes stopping one instruction of a dual issued pair
in the case of an abort condition on the first instruction of the pair. The non exception
case, however, does not need to drain the pipeline of all outstanding instructions ahead
of the aborting instruction. The pipeline can be immediately restarted at a redirected
address. Examples of non exception abort conditions are branch mispredictions, subroutine
call/return mispredictions and instruction cache misses. Data cache misses do not produce
abort conditions but can cause pipeline freezes.

In the event of an exception, the processor aborts all instructions issued after the excepting
instruction as described above. Due to the nature of some error conditions, this may occur as
late as the write cycle. Next, the address of the excepting instruction is latched in the EXC_
ADDR IPR. When the pipeline is fully drained, the processor begins instruction execution at
the address given by the PALcode dispatch. The pipeline is drained when all outstanding
writes to both the integer and floating point register file have completed and all outstanding
instructions have passed the point in the pipeline such that all instructions are guaranteed
to complete without an exception in the absence of a machine check.

- It should be noted that there are two basic reasons for non-issue conditions. The first is a
pipeline freeze wherein a valid instruction or pair of instructions are prepared to issue but
cannot due to a resource conflict. These type of non-issue cycles can be minimized through

~ code scheduling. The second type of non-issue conditions consist of pipeline bubbles where
there is no valid instruction in the pipeline to issue. Pipeline bubbles exist due to abort
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conditions as described above. In addition, a single pipeline bubble is produced whenever
a branch type instruction is predicted to be taken, including subroutine calls and returns.
Pipeline bubbles are reduced directly by the hardware through bubble squashing, but can
also be effectively minimized through careful coding practices. Bubble squashing involves
the ability of the first four pipeline stages to advance whenever a bubble is detected in the
pipeline stage immediately ahead of it while the pipeline is otherwise frozen.

2.9 Scheduling and Issuing Rules
2.9.1 Instruction Class Definition

It is important to note that the following scheduling and dual issue rules are only performance
related. There are no functional dependencies related to scheduling or dual issuing. The
scheduling and issuing rules are defined in terms of instruction classes. The table below
specifies all of the instruction classes and the box which executes the particular class.

Table 2-1: Producer-Consumer Classes

Class Name Box Instruction List

LD Abox all loads, (MFPR, RCC, RS, RC, STC producers
only), (FETCH consumer only)

ST Abox all stores, MTPR

IBR . Ebox integer conditional branches

FBR Fbox floating point conditional branches

JSR Ebox jump to subroutine instructions JMP, JSR, RET, or
JSR_COROUTINE, (BSR, BR producer only)

IADDLOG Ebox ADDL ADDL/V ADDQ ADD@/V SUBL SUBL/V

SUBQ SUBQ/V S4ADDL S4ADDQ S8ADDL
S8ADDQ S4SUBL S4SUBQ S8SUBL S8SUBQ
LDA LDAH AND BIS XOR BIC ORNOT EQV

SHIFTCM Ebox SLL SRL SRA EXTQL EXTLL EXTWL EXTBL
EXTQH EXTLH EXTWH MSKQL MSKLL MSKWL
MSKBL MSKQH MSKLH MSKWH INSQL INSLL
INSWL INSBL INSQH INSLH INSWH ZAP .
ZAPNOT CMOVEQ CMOVNE CMOVLT CMOVLE
CMOVGT CMOVGE CMOVLBS CMOVLBC

ICMP Ebox ‘ CMPEQ CMPLT CMPLE CMPULT CMPULE
CMPBGE

IMULL Ebox MULL MULL/V

IMULQ Ebox MULQ MULQ/V UMULH

FPOP Fbox floating point operates except divide

FDIV Fbox floating point divide
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2.9.2 Producer-Consumer Latency Matrix

EV3 and EV4 enforce the same issue rules regarding producer/consumer latencies in all cases
except FPOP-FST in which EV4 is two cycles faster. In fact, floating point code will produce
almost identical timing, although no floating point data, between EV3 and EV4 when run
with the FPE bit of the ICCSR set. FDIV instructions, however, should never be issued
on EV3 because they will not be signaled as complete and therefore prevent any dependent
instruction from issuing.

The scheduling rules are described as a producer-consumer matrix. Each row and column in
- the matrix is a class of ALPHA instructions. A ’1’ in the Producer-Consumer Latency Matrix

indicates one cycle of latency. A one cycle latency means that if instruction B uses the results

of instruction A, then instruction B may be issued ONE cycle after instruction A is issued.

The first thing to do when determining latency for a given instruction sequence is to identify
the classes of all the instructions. The example below has the classes listed in the comment
field.

ADDQ R1, R2, R3 ! IADDLOG class
SRA R3, R4, RS ! SHIFT class
SUBQ R5, R6, R7 ! TADDLOG class
STQ R7, D(R10) ! ST class

The SRA instruction consumes the result (R3) produced by the ADDQ instruction. The latency
associated with an iadd-shift producer-consumer pair as specified by the matrix is one. That
means that if the ADDQ was issued in cycle 'n’ the SRA could be issued in cycle 'n+1’. The
SUBQ instruction consumes the result (R5) produced by the SRA instruction. The latency
associated with a shift-iadd producer-consumer pair as specified by the matrix is two. That
means that if the SRA was issued in cycle 'n’ the SUBQ could be issued in cycle 'n+2’. The
Ibox injects one nop cycle in the pipeline for this case.

The final case has the STQ instruction consuming the result (R7) produced by the SUBQ
instruction. The latency associated with an iadd-st producer-consumer pair where the result
of the iadd is the store data is zero. This means that the SUBQ and STQ instruction pair
can be dual-issued.
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Producer Class

! ! ¢ I}y s) 1¢( I | I | ¥1| F | F |
| D1 s| A} H|] ¢C| M | M | P D | D |
| | R} D} I | M| U | U | O] I | I |
| (1) | D} FYy P L | L | P| VvV | V |
| | | L | T} I L |1 Q | | F/S | G/T |
Consumer | | | O C | | i | | | |
Class | | | G| M| I (3) | (3) | |4y | (4) |
et + T S ' + P +
| | | | | | | | | | |
LD | 31 31 2| 2 | 2121 |} 23 | X | X | X |
ST (2) | 3|1 3| 2/0| 2/0} 2/0121/20}123/22| X/4| X/32] X/61}
IBR I 31 31| 1 2 | 112 | 23 |} X | X | X |
JSR 31 31 21 2 279 " 1 " | X! X | X |
| | | | | | | | | I |
IADDLOG I 3t 31 1] 21 2| "o "] X1 X | X |
SHIFTCM | 3 i 3] 1] 2 | 2 | " | " | X1 X | X |
ICMP P31 3! 11 2y 29 " | " | X! X | X |
IMUL | 31 3| 11 2| 2 121/19123/21] X | X | X |
| i | | | | I | | | |
FBR | 3] X | X | X | X X | X | 6 | 34 | 63 |
FPOP | 3] X | X | X | X ]| X | X | 6 | 34 | 63 |
FDIV | 3] X | X | X} X | X | X | 6 |34/30|63/59]
Notes:

1. For loads, Dcache hit is assumed. The latency for a Dcache miss and an external cache
hit is dependent on the system configuration. The latency is determined as the register
file write time less 1 cycle.

2. For some producer classes, two latencies, X/Y, are given with the ST consumer class. X
represents the latency for base address of store and Y represents the latency for store
data. FDIV results cannot be used as the base address for store operations.

3. For IMUL followed by IMUL, there are two latencies given. The first represents the
latency with data dependency, i.e. the second IMUL uses the result from the first. The
second is the multiply latency without data dependencies.

4. For FDIV followed by FDIV, there are two latencies given. The first represents the latency
with data dependency, i.e. the second FDIV uses the result from the first. The second is
the division latency without data dependencies.

2.9.3 Producer-Producer Latency

Producer-producer latency, also known as write after write conflicts, are restricted only by the
register write order. For most instructions, this is dictated by issue order, however IMUL,
FDIV and LD instructions may require more time than other instructions to complete and
therefore must stall following instructions that write the same destination register to preserve
write ordering. In general, only cases involving an intervening producer-consumer conflict are
of interest. They can occur commonly in a dual issue situation when a register is reused. In
these cases, producer-consumer latencies are equal to or greater than the required producer-
producer latency as determined by write ordering and therefore dictate the overall latency.
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An example of this case is shown in the code:

ILDQg R2,D(RO) ; R2 destination
ADDQ R2,R3,R4 ; wr~rd conflict stalls execution waiting for R2
LDQ R2,D(Rl) ; wr-wr conflict may dual issue when addq issues

2.9.4 EVx Issue Rules

The following is a list of conditions that prevent both EV3 and EV4 from issuing an
instruction.

1.

6.

No instruction can be issued until all of it’s source and destination registers are clean,
i.e. all outstanding writes to the destination register are guaranteed to complete in issue
order and there are no outstanding writes to the source registers or those writes can be
bypassed.

No LD, ST, FETCH, MB, RCC, RS, RC, DRAINT, HW_MXPR or BSR,BR,JSR(with
destination other than R31) can be issued after a MB instruction until the MB has been
acknowledged on the external pin bus.

No IMUL instructions can be issued if the integer multiplier is busy.

No SHIFT, IADDLOG, ICMP or ICMOYV instruction can be issued exactly three cycles
before an integer multiplication completes.

No integer or floating point conditional branch instruction can be issued in the cycle
immediately following a JSR,JMP,RET,JSR_COROUTINE or HW_REI instruction.

No DRAINT instruction can be issued as the second instruction of a dual issue pair.

2.9.4.1 EV3 Specific Issue Rules
The following rules are specific to EV3.

1L

2.

No LD instructions can be issued in the two cycles immediately following any store
instruction.

No LD, ST, FETCH, MB, RCC, RS, RC, DRAINT, HW_MXPR or BSR,BR,JSR(with
destination other than R31) instruction can be issued after a load miss until all pending
D-stream fills have been completed.

No ST, MB, FETCH or FETCH_M instruction can be issued when the write buffer is full.

EV3 does not contain an on-chip floating point unit, therefore if the FPE bit of the ICCSR
is set, any instruction that attempts to use the results of an FDIV instruction will not
issue. Ever. Only reset will clear this condition.

2.9.4.2 EV4 Specific Issue Rules
The following rules are specific to EV4.

1.
2.

No LD instructions can be issued in the two cycles immediately following a STC.

No LD, ST, FETCH, MB, RCC, RS, RC, DRAINT, HW_MXPR or BSR,BR,JSR(with
destination other than R31) instruction can be issued when the Abox is busy due to a
load miss or write buffer overflow. For more information see section 2.5.3.

No FDIV instruction can be issued if the floating pointer divider is busy.

2-14 EVx Micro-architecture



4. No floating point operate instruction can be issued exactly five or exactly six cycles before

the floating point divide completes.

2.9.5 Dual Issue Rules

The table below lists the classes of instruction pairs that can be issued in a single cycle. An
instruction from a class in the first column below may be issued in the same cycle as an
instruction from a class in the second column, in the absence of data dependencies and if the
two instructions occupy the same aligned quadword in memory.

Table 2-2: Dual Issue Rules

Instruction 1 Instruction 2
LD integer LD floating pt
LD floating pt LD integer
ST floating pt ST integer
FBR IBR
IADDLOG FPOP
SHIFT FDIV
ICMP JSR
ICMOV BSR
IMUL BR
HW_x
CALL_PAL
Exceptions:

* No more than one of LD, ST, HW_MXPR, FETCH, RCC, RS, RC, MB, DRAIN, HW_REI,
BSR, BR or JSR can be issued in the same cycle. '

¢ No more than one of JSR, IBR, BSR, HW_REI, BR or FBR can be issued in the same

cycle.
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"Chapter 3
Privileged Architecture Library Code

3.1 Introduction

In a family of machines both users and operating system implementers require functions
to be implemented consistently. When functions are implemented to a common interface,
the code that uses those functions can be used on several different implementations without
modification.

These functions range from the binary encoding of the instructions and data, to the exception
mechanisms and synchronization primitives. Some of these functions can be cost effectively
implemented in hardware, but several are impractical to implement directly in hardware.
These functions include low-level hardware support functions such as translation buffer
fill routines, interrupt acknowledge, and exception dispatch. Also included is support for
privileged and atomic operations that require long instruction sequences such as Return
from Exception or Interrupt (REI).

In the VAX architecture, these functions are generally provided by microcode. In EVx,
there is no microcode. However an architected interface to these functions that will be
consistent with other members of ALPHA family of machines is still required. The Privileged
Architecture Library Code (PALcode) is used to implement these functions without resorting
to a microcoded machine. The EVx hardware development group will provide and maintain
a version of the PALcode for EVx. Module development groups will have to provide and
maintain module specific modifications to the PALcode.

3.2 PAL'Environment

PALcode runs in an environment with privileges enabled, instruction stream mapping
disabled, and interrupts disabled. The enabling of privileges allows all functions of the
machine to be controlled. Disabling of instruction stream mapping allows PALcode to be
used to support the memory management functions (e.g., translation buffer miss routines
can not be run via mapped memory). PALcode can perform both virtual and physical data
stream references. The disabling of interrupts allows the system to provide multi-instruction
sequences as atomic operations. The PALcode environment in EVx also includes 32 PAL
temp registers which are accessible only by PAL reserved move to/from processor register
instructions.
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3.3 Special PAL Instructions

PALcode uses the ALPHA instruction set for most of its operations. EVx maps the architec-
turally reserved PALcode opcodes (PALRESO - PALRES4) to a special load and store (HW_LD,
HW_ST), a move to and move from processor register (HW_MTPR, HW_MFPR), and a return
from PALmode exception (HW_REI). These instructions produce a Reserved Opcode fault if
executed while not in the PALcode environment unless the HWE bit of the ICCSR IPR is set,
in which case these instructions can be executed in kernel mode.

Register checking and bypassing logic is provided for PALcode instructions as it is for non-
PALcode instructions when using general purpose registers. Explicit software timing is
required for accessing the hardware specific IPRs and the PAL_TEMPs. These constraints
are described in the PALmode restriction and IPR sections.
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3.3.1 HW_MFPR and HW_MTPR

The internal processor register specified by the PAL, ABX, IBX, and index field is written/read
with the data from the specified integer register. Processor registers may have side effects
that happen as the result of writing/reading them. Coding restrictions are associated with
accessing various registers. Separate bits are used to access Abox IPRs, Ibox IPRs, and
PAL_TEMPs, therefore it is possible for an MTPR instructions to write multiple registers in
parallel if they both have the same index.

The HW_MFPR and HW_MTPR instructions have the following format:

3 2 2 22 11 000O0O Q
1 6 5 10 6 5 8 7 6 5 4 0
+= +== + o ——————— it Tt RS +
| | | | IPIA[T] |
| OPCODE | RA | RB | IGN |A|B|B]| INDEX |
I | | | ILIXIX] |
+ +—= + e =t =t =t -+

Table 3-1: HW_MFPR and HW_MTPR Format Description

Field Description
OPCODE Is either 25 (HW_MFPR) or 29 (HW_MTPR).
RA/RB Contain the source, HW_MTPR or destination, HW_MFPR, reglster number. The RA and

RB fields must always be identical.

PAL If set this HW_MFPR-or HW_MTPR instruction is referencing a PAL temporary register,
PAL_TEMP.

ABX If set this HW_MFPR or HW_MTPR instruction is referencing a register in the Abox.

IBX If set this HW_MFPR or HW_MTPR instruction is referencing a register in the Tbox.

INDEX Specifies hardware specific register as shown in Table 3-2

The following table indicates how the PAL, ABX, IBX, and INDEX fields are set to access the
internal processor registers. Setting the PAL, ABX, and IBX fields to zero generates a NOP.

Table 3-2: IPR Access .
Mnemonic PAL ABX IBX INDEX Access Comments

TB_TAG X X 1 0 w PAL mode only

ITB_PTE p:d X 1 1 R/W PAL mode only

ICCSR X X 1 2 RW

ITB_PTE_TEMP X X 1 3 R PAL mode only
1 4 RW

EXC_ADDR X X
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Table 3-2 (Cont.): IPR Access

Mnemonic PAL ABX IBX INDEX Access Comments
- SL_RCV x x 1 5 R
ITBZAP X X 1 6 w PAIL mode only
ITBASM X X 1 7 w PAL mode only
ITBIS X X 1 8 W PAL mode only
PS X X 1 9 R/W
EXC_SUM X X 1 10 RW
PAL_BASE X X 1 11 R/W
HIRR X X 1 12 R
SIRR X X 1 13 R/W
ASTRR X X 1 14 R/W
HIER X X 1 16 R/W
SIER X X 1 17 R/W
ASTER X X 1 18 R/W
SL_CLR X X 1 19 w
SL_XMIT x  x 1 22 w
DTB_CTL X 1 X 0 w
DTB_PTE X 1 X 2 RW
DTB_PTE_TEMP X 1 X 3 R
MMCSR x 1 X 4 R
VA X 1 X 5 R
DTBZAP X 1 X 6 W
DTASM X 1 X 7 w
DTBIS x 1 X 8 w
BIU_ADDR X 1 X 9 R
BIU_STAT X 1 X 10 R
DC_ADDR X 1 x 1 R
DC_STAT X 1 X 12 R
FILL_ADDR X 1 X 13 R
ABOX_CTL X 1 X 14 N
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Table 3-2 (Cont.): IPR Access

Mnemonic PAL ABX IBX INDEX Access Comments
ALT MODE X 1 b4 15 W

cC X 1 X 16 A

CC_CTL X 1 X 17 w

BIU_CTL b4 1 X 18 w

FILL_SYNDROME X 1 X 19 R

BC_TAG X 1 X 20 R

FLUSH_IC X 1 X 21 w

FLUSH_IC_ASM X 1 X 23 w EV4 Only
PAL_TEMP({31..0] 1 X X 31-00 R/W
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3.3.2 HW_LD and HW_ST

PALcode uses the HW_LD and HW_ST instructions to access memory outside of the realm
of normal ALPHA memory management. The HW_LD and HW_ST instructions have the
following format:

3 2 2 2 2 111111 0
1 6 5 10 6 54321 0
- -+ e RN r— ——+
| | | |IPIAIR[Q] |
| OPCODE | RA | RB |HILIWI[W| DISP |
| ] | [TITICH | |
+ + + s ——
The effective address of these instructions is calculated as follows:
addr <- (SEXT(DISP) + RB) AND NOT (QW | 11(bin))
Table 3-3: HW_LD and HW_ST Format Description
Field Description
OPCODE Is either 27 (HW_LD) or 31 (HW_ST).
RA/RB Contain register numbers, interpreted in the normal fashion for loads and stores.
PHY If clear the effective address of the HW_LD or HW_ST is a virtual address. If set then

ALT

RWC
QW

DISP

the effective address of the HW_LD or HW_ST is a physical address.

For virtual-mode HW_LD and HW_ST instructions this bit selects the processor mode
bits which are used for memory management checks. If ALT is clear the current mode
bits of the PS register are used, while if ALT is set the mode bits in the ALT MODE IPR
are used.

In EV4, physical-mode load-lock and store-conditional variants of the HW_LD and HW_
ST instructions may be created by setting both the PHY and ALT bits.

The RWC (read with write check) bit, if set, enables both read and write access checks
on virtual HW_LD instructions.

The quadword bit specifies the data length. If it is set then the length is quadword. If it
is clear then the length is longword.

The DISP field holds a 12-bit signed byte displacement.

3-6

Privileged Architecture Library Code



3.3.3 HW_REI

The HW_REI instruction uses the address in the Ibox EXC_ADDR IPR to determine the new
virtual program counter (VPC). Bit zero of the EXC_ADDR indicates the state of the PALmode
bit on the completion of the HW_REI. If EXC_ADDR bit[0] is set then the processor remains
in PALmode. This allows PALcode to transition from PALmode to non-PALmode. The HW_
REI instruction can also be used to jump from PALmode to PALmode. This allows PAL
instruction flows to take advantage of the D-stream mapping hardware in EVx, including
traps. The HW_REI instruction has the following format:

3 22 22

1 6 5 10

I
T

! Il
OPCODE | RA RB  [1]0] IGN
| T

I
I
!

1
+

Note that bits[15..14] contain the branch prediction hint bits. EVx pushes the contents of
the EXC_ADDR register on the JSR prediction stack. Bit[15] must be set to pop the stack to
avoid misalignment. The next address and PALmode bit are calculated as follows:

VPC <- EXC_ADDR AND {NOT 3}
PALmode <- EXC_ADDR[0]

Table 3-4: The HW_REI Format Description

Field Description
OPCODE The OPCODE field contains 30.
RA/RB Contain register numbers which should be R31 or a stall may occur.

3.4 PAL Entry Points

When an exception or interrupt occurs on EVx the chip first drains the pipeline, loads the
PC into the EXC_ADDR IPR and then dispatches to one of the exception routines. The
pipeline is drained when all instructions that update either register file have completed, and
all instructions that do not update the register files are guaranteed to complete without an
exception in the absence of a machine check. In addition, EV4 requires that all pending
Decache fill operations have completed before dispatch to one of the exception routines. If
multiple exceptions occur, EVx dispatches to the highest priority PAL entry point. The table
below prioritizes entry points from highest to lowest priority, i.e. the first row in the table
(reset) has the highest priority.

The table below defines only the entry point offset, bits [13..0]l. The high-order bits of the
new PC (bits [33..14]) come from the PAL_BASE IPR.

Note that PALcode at PAL entry points of higher priority than DTBMISS must unlock possible
MMCSR IPR and VA IPR locks.
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Table 3-5: PAL Entry Points

Entry Name Time Offset(Hex) Cause

RESET anytime 0000

MCHK pipe_stage(7] 0020 Uncorrected hardware error.

ARITH anytime 0060 Arithmetic exception.

INTERRUPT anytime 00E0 Includes corrected hardware error.

D-stream errors  pipe_stage[6] 01E0, 08EO, See Table 3-6.
09E0, 11E0

ITB_MISS pipe_stage[5] 03E0 ITB miss.

ITB_ACV pipe_stage[5] O7E0 I-stream access violation.

CALLPAL pipe_stage[5] 2000,40,60 thru 256 locations based on instruction(7..0]. If bit[7]
3FE0 equals zero and CM does not equal kernel mode

then an OPDEC exception occurs.
OPCDEC pipe_stage(5] 13E0 Reserved or privileged opcode.
FEN pipe_stage[5] 17E0 FP op attempted with :

FP instructions disabled via ICCSR FPE bit
FP IEEE round to +/- infinity
FP IEEE with datatype field other than S, T,QW

The PAL entry points assigned to D-stream errors require a bit more explanation. The
hardware recognizes four classes of D-stream memory management errors: bad virtual
address (improper sign extension), DTB miss, alignment error and everything else (ACV,
FOR, FOW). These errors get mapped into four PAL entry points: UNALIGN, DTB_MISS
PAL mode, DTB_MISS Native mode and D_FAULT. Table 3-5 lists the priority of these entry
points as a group with respect to each of the other entry points. Since a particular D-stream
memory reference may generate errors which fall into more than one of the four error classes
which the hardware recognizes, we also must define the priority of each of the D-stream PAL
entry points with respect to the others in the D-stream PAL entry group. Table 3-6 gives
this priority. The PAL entry point 8EO for Native mode DTB_MISS is only available in EV4,
EV3 provides only one DTB_MISS PAL entry point at address offset 9EOQ.
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Table 3-6:

D-stream Error PAL Entry Points

BAD_VA 11311'1'38_ UNALIGN PAL Other Offset(Hex)

1 x 0 X x 01E0 D_FAULT

1 X 1 X X 11E0 UNALIGN

0 1 x 0 X 08E0 DTB_MISS Native
0 1 X 1 x 09E0 DTB_MISS PAL

0 0 1 x x 11E0 UNALIGN

0 0 0 X 1 01E0 D_FAULT

3.5 General PALmode Restrictions

Many of the restrictions involve waiting 'n’ cycles before using the results of PAL instructions.
Inserting 'n’ instructions between the two time-sensitive instructions is the typical method of
waiting for 'n’ cycles. Because EVx can dual issue instructions it is possible to write code that
requires 2*n+1 instructions to wait 'n’ cycles. Due to the resource requirements of individual
instructions, and the EVx hardware design, multiple copies of the same instruction can not
be dual issued. This fact is used in some of the code examples below.

3.5.1 EVx PAL Restrictions

1. As a general rule, HW_MTPR instructions require at least 4 cycles to update the selected
IPR. Therefore, at least three cycles of delay must be inserted before using the result of

the register update.

Note that only the write followed by read operation requires this software timing. Multiple
reads, multiple writes, or read followed by write will pipeline properly and do not require

software timing except for accesses of the TB registers.

These cycles can be guaranteed by either including 7 instructions which do not use the
IPR in transition or proving through the dual issue rules and/or state of the machine, that
at least 3 cycles of delay will occur. As a special case, multiple copies of a HW_MTPR
instruction, used as a NOP instruction, can be used to pad cycles after the original HW_
MTPR. Since multiple copies of the same instruction will never dual issue, the maximum
number of instructions necessary to insure at least 3 cycles of delay is 3.

An example of this is :

HW_MTPR Rx, HIER
HW_MFPR R31, 0
HW_MFPR R31, 0
HW_MFPR R31, 0
HW_MFPR Ry, HIER

Ne Ne Se Ne N

Write to
NOP mxpr
NOP mxpr
NOP mxpr

HIER

instruction
instruction
instruction

Read from HIER
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The HW_REI instruction uses the ITB if the EXC_ADDR register contains a non PAL
mode VPC, VPC<0> = 0. By the rule above, this implies that at least 3 cycles of delay

must be included after writing the ITB before executing a HW_REI instruction to exit
PAL mode.

Exceptions:

* The PAL_TEMP register file is treated as a single register under this rule. However,
~ PAL_TEMP registers may be read after 3 cycles of delay, not 4. This translates to
code of the form:

HW_MTPR Rx, PAL RO ; Write PAL temp O
HW_MFPR R31, O ; NOP mxpr instruction
HW_MFPR R31, O ; NOP mxpr instruction
HW_MFPR Ry, PAL Rl ; Read PAL temp 1

¢ The EXC_ADDR register may be read by a HW_REI instruction only 2 cycles after
the HW_MTPR. This is equivalent to one intervening cycle of delay. This translates
to code of the form:

HW_MTPR Rx, EXC_ADDR ; Write EXC_ADDR
HW_MFPR R31, O ; NOP cannot dual issue with either
HW_REI ; Return

2. An MTPR operation to the DTBIS register cannot be bypassed into. In other words, all
data being moved to the DTBIS register must be sourced directly from the register file.
One way to insure this is to provide at least 3 cycles of delay before using the result of
any integer operation (except MUL) as the source of an MTPR DTBIS. Do not use a MUL
as the source of DTBIS data. Sample code for this operation is :

ADDQ R1,R2,R3 ; source for DTBIS address

ADDQ R31,R31,R31 ; cannot dual issue with above, 1lst cycle of delay
ADDQ R31,R31,R31 ; 2nd cycle of delay

ADDQ R31,R31,R31 ; 3rd cycle of delay

ADDQ R31,R31,R31 ; may dual issue with below, else 4th cycle of delay
HW_MTPR R3,DTBIS ; R3 must be in register file, no bypass possible

3. When loading the CC register, bits <3:0> must be loaded with zero. Loading non-zero
values in these bits may cause the count to be inaccurate.

4. An MTPR DTBIS cannot be combined with an MTPR ITBIS instruction. The hardware
will not clear the ITB if both the Ibox and Abox IPRs are simultaneously selected. Instead,
two instructions are needed to clear each TB individually. Code example:

HW_MTPR Rx, ITBIS
HW_MTPR Ry, DTBIS

5. An MXPR ITB_TAG, ITB_PTE, ITB_PTE_TEMP cannot follow a HW_REI that remains
in PAL mode. (Address bit<0> of the EXC_ADDR is set) This rule implies that it is not a
good idea to ever allow exceptions while updating the ITB. If an exception interrupts flow
of the I'TB miss routine and attempts to REI back, and the return address begins with
a HW_MxPR instruction to an ITB register, and the REI is predicted correctly to avoid
any delay between the two instructions, then the I'TB register will not be written. Code

example:
HW_REI ; return from interrupt
HW_MTPR R1, ITB TAG ; attempts to execute very next cycle, instr ignored
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6.

9.

10.

11.

12.

The ITB_TAG,ITB_PTE and ITB_PTE_TEMP registers can only be accessed in PAL mode.
If the instructions HW_MTPR or HW_MFPR to/from the above registers are attempted
while not in PAL mode by setting the HWE (hardware enable) bit of the ICCSR, the
instructions will be ignored.

Machine check exceptions taken while in PAL mode may load the EXC_ADDR register
with a restart address one instruction earlier than the proper restart address. Some
HW_MxPR instructions may have already completed execution even though the restart
address indicates the HW_MxPR as the return instruction. Re-execution of some HW_
MxPR instructions can alter machine state. (e.g. TB pointers, EXC_ADDR register mask)

The mechanism used to stop instruction flow during machine check exceptions causes
the machine check exception to appear as a D-stream fault on the following instruction
in the hardware pipeline. In the event that the following instruction is a HW_MxPR, a
D-stream fault will not abort execution in all cases. Although the EXC_ADDR will be
loaded with the address of the HW_M=xPR instruction as if it were aborted, a HW_REI to
this restart address will incorrectly re-execute this instruction.

Machine check service routines should check for MXPR instructions at the return address
before continuing.

When writing the PAL_BASE register, exceptions may not occur. An exception occurring
simultaneously with a write to the PAL BASE may leave the register in a metastable state.
All asynchronous exceptions but reset can be avoided under the following conditions:

PAL MOdE ¢ .ivvireneennncennns blocks all interrupts
machine checks disabled ..... blocks I/0 error exceptions

(via ABOX CTL reg or MB isolation)
Not under trap shadow ....... avoids ari;pmetic traps

The trap shadow is defined as :
less than 3 cycles after a non-mul integer operate that may overflow
less than 22 cycles after a MULL/V instruction
less than 24 cycles after a MULQ/V instruction
less than 6 cycles after a non-div fp operation that may cause a trap
less than 34 cycles after a DIVF or DIVS that may cause a trap
less than 63 cycles after a DIVG or DIVT that may cause a trap

The sequence MTPR PTE, MTPR TAG is NOT allowed. At least one cycle must be allowed
after an MTPR PTE before the corresponding MTPR TAG instruction.

The AMCHK exception service routine must check the EXC_SUM register for simulta-
neous arithmetic errors. Arithmetic traps will not trigger exceptions a second time after
returning from exception service for the machine check.

Three cycles of delay must be inserted between HW_MFPR DTB_PTE and HW_MFPR
DTB_PTE_TEMP. Code example:

HW_MFPR Rx,DTB PTE ; reads DTB_PTE into DTB_PTE TEMP register
HW _MFPR R31,0 ; 1st cycle of delay
HW MFPR R31,0 ; 2nd cycle of delay

HW:MFPR Ry,DTB PTE TEMP ; read DTB_PTE_TEMP into register file Ry

Three cycles of delay must be inserted between HW_MFPR IPTE and HW_MFPR ITB_
PTE_TEMP. Code example:
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HW_MFPR Rx,DTB PTE ; reads DTB_PTE into DTB_PTE_TEMP register
HW_MFPR R31,0 ; lst cycle of delay
HW_MFPR R31,0 ; 2nd cycle of delay
HW_MFPR Ry,DTB_PTE _TEMP ; read DTB_PTE TEMP into register file Ry

13. The content of the destination register for HW_MFPR Rx,DTB_ PTE or HW_MFPR
Rx,ITB_PTE is UNPREDICTABLE.

14. Two HW_MFPR DTB_PTE instructions cannot be issued in consecutive cycles. This
implies that more than one instruction may be necessary between the HW_MFPR
instructions if dual issue is possible. Similar restrictions apply to the ITB_PTE register.

15. Reading the EXC_SUM and BC_TAG registers require special timing. Refer to Sec-
tion 3.8.12 and Section 3.10.7 for specific information.

16. DMM errors occurring one cycle before HW_MxPR instructions to the IPTE will NOT stop
the TB pointer from incrementing to the next TB entry even though the mxpr instruction
will be aborted by the DMM error. This restriction only affects performance and not
functionality.

3.5.2 EV3 Specific PALmode Restrictions

1. HW_MTPR instructions writing the IPRs listed in the first column of Table 3-7 must
guarantee that HW_MFPR instructions reading the corresponding IPRs in the second
column cannot be decoded, even if invalid, exactly three cycles following the first HW_
MTPR.

Table 3-7: EV3 IPR Conflicts

MTPR-Write MFPR-read
ITB_PTE ITB_PTE_TEMP
ICCSR ICCSR
EXCSUM EXCSUM
PS PS

xIER HIER

xIER SIER

xIER ASTER
xIRR SLCLR
xIRR SIRR

xIRR ASTRR

In other words, it must be insured that at least 3 cycles of deterministic I-stream will
always follow the first HW_MTPR. A check of this restriction requires knowledge of
placement within a cache block. Random cache miss data following the HW_MTPR by 3
cycles could cause metastable conditions on the read bus :
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EV3 PAL code avoids this problem by substituting a macro for the HW_MTPR instruction.
The macro adds NOPs before the HW_MTPR, if necessary, to push the HW_MTPR into the
top of a cache block and pads NOPs after the HW_MTPR to insure 3 cycles of deterministic
I-stream. '

In addition to the above restrictions, an HW_MFPR ITB_PTE which 'reads’ the ITB_PTE
cannot be followed three cycles later with the decode, even if invalid, of a HW_MFPR
ITB_PTE_TEMP which attempts to ‘read’ the ITB_PTE_TEMP.

The contents of the EXC_ADDR register must be written before execution of a HW_REIL
If the EXC_ADDR is not explicitly written after an exception is taken, the register is
not guaranteed to be properly sign extended. This can cause the HW_REI to result in an
ACYV fault. Note that the register will appear to be sign extended after a read (HW_MFPR
EXC_ADDR) but is not. A subsequent HW_MTPR is still required.

Code example:

exception entry

HW_MFPR R1,EXC ADDR
HW_MTPR R1,EXC_ADDR
HW_MTPR R31,0
HW_REI

read exc addr will appear to be sign extended
write exc_addr to insure sign extend in hardware
NOP delay for one cycle before REI

return without worry of surprise ACV

Ne Ne N N

3.5.3 EV4 Specific PALmode Restrictions

1.

2.

HW_STC instructions cannot be followed, for two cycles, by any load instruction that may
miss in the Dcache.

Updates to the ASN field of the ICCSR IPR require at least 10 cycles of delay before
entering native mode that may reference the ASN during Icache access. If the ASN field
is updated in Kernel mode via the HWE bit of the ICCSR IPR, it is sufficient that all
I-stream references during this time be made to pages with the ASM bit set to avoid use
of the ASN.

3.6 Power Up

The table below lists the state of all the IPRs immediately following reset. The table also
specifies which IPRs need to be initialized by power-up PALcode.

Table 3-8: IPR Reset State

IPR ‘Reset State Comments
ITB_TAG undefined
ITB_PTE undefined
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Table 3-8 (Cont.): IPR Reset State

IPR Reset State Comments

ICCSR cleared Floating point disabled, single issue mode, VAX mode
enabled, ASN = 0, jsr predictions disabled, branch
predictions disabled, branch history table disabled,
performance counters reset to zero, Perf Cnt0(16b) : Total
Issues/2, Perf Cnt1(12b) : Dcache Misses

ITB_PTE_TEMP undefined

EXC_ADDR undefined

SL_RCV undefined

ITBZAP n/a PALcode must do a itbzap on reset.

ITBASM n/a

ITBIS n/a

PS undefined PALcode must set processm" status.

EXC_SUM undefined Palcode must clear exception summary and exception
register write mask by doing 64 reads.

PAL_BASE cleared Cleared on reset.

HIRR n/a

SIRR undefined PALcode must initialize.

ASTRR undefined PALcode must initialize.

HIER undefined PALcode must initialize.

SIER undefined PALcode must initialize.

ASTER undefined PALcode must initialize.

SL_XMIT undefined PALcode must initialize. Appears on external pin.

DTB_CTL undefined Palcode must select between SP/LP dtb prior to any TB fill.

DTB_PTE undefined

DTB_PTE_TEMP undefined

MMCSR undefined Unlocked on reset.

VA undefined Unlocked on reset.

DTBZAP n/a PALcode must do a dtbzap on reset.

DTBASM n/a

DTBIS n/a

BIU_ADDR undefined

Potentially locked.
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Table 3-8 (Cont.):

IPR Reset State

IPR Reset State Comments

BIU_STAT undefined Potentially locked.

SL_CLR undefined PAlLcode must initialize.

DC_ADDR undefined Potentially locked.

DC_STAT undefined Potentially locked.

FILL_ADDR undefined Potentially locked.

ABOX_CTL see comments [11..0] < "xOlOb Write buffer enabled, machine checks
disabled, correctable read interrupts disabled, Icache stream
buffer disabled, Dcache disabled, forced hit mode off.

ALT MODE undefined

CC undefined Cycle counter is disabled on reset.

CC_CTL undefined

BIU_CTL see comments Bcache disabled, parity mode undefined, chip enable asserts

FILL_SYNDROME undefined
BC_TAG undefined
PAL_TEMPI[31..0] undefined

during RAM write cycles, Beache forced-hit mode disabled.
BC_PA_DIS field cleared. BAD_TCP cleared. BAD_DP
undefined.

Note: The Beache parameters BC RAM read speed, BC
RAM write speed, BC write enable control, and BC size are
all undetermined on reset and must be initialized before
enabling the Beache.

Potentially locked.
Potentially locked.

PALcode should execute four jsr call instructions to initialize the jsr stack. This is necessary
to insure deterministic behavior for testers. The following code will initialize the stack once

the ICCSR [JSE] bit is set.

BSR rl,stk 1

stk_1:

BSR r2,stk_2
stk_2:

BSR r3,stk_3
stk _3:

BSR r4,stk_4
stk_4:

; push RET PC
; push RET PC
; push RET PC

; push RET PC
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3.7 TB Miss Flows

This section describes hardware specific details to aid the PALcode programmer in writing
ITB and DTB fill routines. These flows were included to highlight trade-offs and restrictions
between PAL and hardware. - The PALcode source that is released with EVx should be
consulted before any new flows are written. A working knowledge of the ALPHA memory
management architecture is assumed.

3.7.1 ITB Miss

When the Ibox encounters an ITB miss it latches the VPC of the target instruction-stream
reference in the EXC_ADDR IPR, flushes the pipeline of any instructions following the
instruction which caused the ITB miss, waits for any other instructions which may be in
progress to complete, enters PALmode, and jumps to the ITB miss PAL entry point. The

recommended PALcode sequence for translating the address and filling the ITB is described
below.

1. Create some scratch area in the integer register file by writing the contents of a few
integer registers to the PAL_TEMP register file.

2. Read the target virtual address from the EXC_ADDR IPR.

Fetch the PTE (this may take multiple reads) using a physical-mode HW_LD instruction.
If this PTE’s valid bit is clear report TNV or ACV as appropriate.

4. Since the ALPHA SRM states that translation buffers may not contain invalid PTEs, the
PTE’s valid bit must be explicitly checked by PALcode. Further, since the ITB’s PTE RAM
does not hold the FOE bit, the PALcode must also explicitly check this condition. If the
PTE’s valid bit is set and FOE bit is clear, PALcode may fill an ITB entry.

5. Write the original virtual address to the TB_TAG register using HW_MTPR. This writes
the TAG into a temp register and not the actual tag field in the ITB.

6. Write the PTE to the ITB_PTE register using HW_MTPR. This HW_MTPR causes both
the TAG and PTE fields in the ITB to be written. Note it is not necessary to delay issuing
the HW_MTPR to the ITB_PTE after the MTPR to the ITB_TAG is issued.

7. Restore the contents of any modified integer registers to their original state usmg the
HW_MFPR instruction.

8. Restart the instruction stream using the HW_REI instruction.

3.7.2 DTB Miss

When the Abox encounters a DTB miss it latches the referenced virtual address in the VA
IPR and other information about the reference in the MMCSR IPR, and locks these registers
against further modifications. The Ibox latches the PC of the instruction which generated the
reference in the EXC_ADDR register, drains the machine as described above for ITB misses,
and jumps to the DTB miss PALcode entry point. Unlike ITB misses, DTB misses may occur
while the CPU is executing in PALmode. The recommended PALcode sequence for translating
the address and filling the DTB is described below.

1. Create some scratch area in the integer register file by writing the contents of a few
integer registers to the PAL_TEMP register file.
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Read the requested virtual address from the VA IPR. Although the act of reading this
register unlocks the VA and MMCSR registers, the MMCSR register only updates when
D-stream memory management errors occur. It therefore will retain information about
the instruction which generated this DTB miss. This may be useful later.

Fetch the PTE (may require multiple reads). If the valid bit of the PTE is clear, a TNV
or ACV must be reported unless the instruction which caused the DTB miss was FETCH
or FETCH/M. This can be checked via the opcode field of the MMCSR register. If the
value in this field is 18 (hex), then a FETCH or FETCH/M instruction caused this DTB
miss, and as mandated by the ALPHA SRM, the subsequent TNV or ACV should NOT be
reported. Therefore PALcode should read the value in EXC_ADDR, increment it by four,

5,

write this value back to EXC_ADDR, and do a HW_REIL.

4. Write the register which holds the contents of the PTE to the DTB_CTL IPR. This has the
effect of selecting either the small or large page DTB for subsequent DTB fill operations,
based on the value contained in the granularity hint field of the PTE.

5. Write the original virtual address to the TB_TAG register. This writes the TAG into a
temp register and not the actual tag field in the DTB

6. Write the PTE to the DTB_PTE register. This HW_MTPR causes both the TAG and PTE
fields in the DTB to be written. Note it is not necessary to delay issuing the HW_MTPR
to the DTB_PTE after the MTPR to the DTB_TAG is issued.

Restore the contents of any modified integer registers.

Restart the instruction stream using the HW_REI instruction.

3.8 Ibox IPRs
3.8.1 TB_TAG

The TB_TAG register is a write-only register which holds the tag for the next TB update
operation in either the ITB or DTB. To insure the integrity of the TB, the tag is actually
written to a temporary register and not transferred to the I'TB or DTB until the ITB_PTE or
DTB_PTE register is written. The entry to be written is chosen at the time of the ITB_PTE
or DTB_PTE write operation by a not-last-used algorithm implemented in hardware.

Writing the ITB_TAG register is only performed while in PALmode regardless of the state of
the HWE bit in the ICCSR IPR.

Small Page Format:

4 4
3 32

4+
-+

w -
NP
[oNa]

VA[42..13] IGN

+——— +

+——— 4+

R e + -
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GH = 11(bin) Format (DTB only):
44 22 0
3 32 21 0

—————————t

——— —_——t —_

I l
| IGN | VA[42..22] | IGN
|

I
-+

+ -

R—

3.8.2 ITB_PTE

The ITB PTE register is a read/write register representing the eight ITB page table entries.
The entry to be written is chosen by a not-last-used algorithm implemented in hardware.
Writes to the ITB_PTE use the memory format bit positions as described in the ALPHA SRM
with the exception that some fields are ignored.

To insure the integrity of the ITB, the ITB’s tag array is updated simultaneously from the
internal tag register when the ITB_PTE register is written. Reads of the ITB_PTE require
two instructions. First, a read from the ITB_PTE sends the PTE data to the ITB_PTE_TEMP
register, then a second instruction reading from the ITB_PTE_TEMP register returns the PTE
entry to the register file. Reading or writing the ITB_PTE register increments the TB entry
pointer which allows reading the entire set of eight ITB PTE entries.

Reading and writing the ITB_PTE register is only performed while in PALmode regardless
of the state of the HWE bit in the ICCSR IPR.

Write Format:

6 55 33 1110000000000
3 32 21 2109876543210
e t — + e S s et e
| | | |UISIE|K] |A] |
|  IGN | PFN[33..13] | IGN I[RIR|R|R| IGN |S| IGN |
| | | |IEIE|E|E] M| |
+ + - + B s o e + +

Read Format:

6 33 11110000000000
3 4 3 32109876543210
+= fmtm i ————t
| |A] |UIS|IE|K] |
| RAZ S| PFN([33..13] |R|R|R{R]| RAZ |
I M| |[EIE|E|B] |
+ ——————— et T S T S ittt

3.8.3 ICCSR

The ICCSR register contains various Ibox hardware enables. The only architecturally defined
bit in this register is the FPE, floating point enable, which enables floating point instruction
execution. When clear, all floating point instructions generate FEN exceptions. This register
is cleared by hardware at reset. The HWE bit allows the special PAL instructions to execute
in kernel model. This bit is intended for diagnostics or operating system alternative PAL
routines only. It does not allow access to the ITB registers while not running in PALmode.

Therefore, some PALcode flows may require the PALmode environment to execute properly
(e.g. ITB fill).
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EV4 implements all of the ICCSR functionality described below. EV3 does not contain
performance counters, a branch history table, or ASN support. It does, however, maintain
register state for the performance counter control bits, the BHE bit, and the ASN field. These
register bits may be read and written but otherwise do not affect any hardware function.

Write Format:

6 55 4 4 4 444333333333 111000000000

3 32 7 6 3210987654321 210987543210

+ + S s g S Y - R T R

I I | IC |F|I|H|IDIB|JIB|V| PC | | PC | ITIP| IP|

| IGN |ASN{5:0]|[5:2]{P|C|W|I|H|S|P|A|MUX1 | IGN | MUXO |IGN|C|C|IGN|C|

| | | IEI1IE| |EJEIE{X][2:0]]| | [3:0] | [0]0] 1]

| | | A | | | I ol

e T e T s T e ST TS T )
s,

Read Format: M

6 333 2 2 2222211111111110000000000 P‘r\

3 54 3 8 7 4321098765 432109876543210 2

+ ——t—t o b e e e e + e ettt )

| T} | IC |{FI|I|HIDIB|JIB|V] PC | PC | |IP|P|RI S"‘(

| RAZ |C|ASN[5:0]|[5:2]|P|C|W|I|H|S|P|A|MUXl | MUXO |  RAZ ICICIAl g A‘}Q/’

| 10} | IEILIE] |EIEIEIX]|[2:0]] [3:0] | |1]0}2] V“)

| | | | T T Y O S | | [

. et + R s e T S + + ™

Table 3-9: ICCSR

Field Type Description

FPE

RW,0 If set, floating point instructions can be issued. If clearfloating point
instructions cause FEN exceptions.

HWE RW,0 If set allows the five PALRES instructions to be issued in kernel mode.

DI RW,0 If set enables dual issue.

BHE RW,0 Used in conjunction with BPE. See table Table 3-10 for programming
information. This bit is ignored in EV3.

JSE RW,0 If set enables the JSR stack to push return addresses.

BPE RW,0 Used in conjuriction with BHE. See table Table 3-10 for programming
information.

VAX RW,0 If clear causes all hardware interlocked instructions to drain the machine and
waits for the write buffer to empty before issuing the next instruction. Examples
of instructions that do not cause the pipe to drain include HW_MTPR, HW_REI,
conditional branches, and instructions that have a destination register of R31.

PCMUX1 RW,0 See table Table 3-12 for programming information. Performance counters are

present only in EV4,
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Table 3-9 (Cont.): ICCSR

Field Type Description

PCMUXO RW,0 See table Table 3-11 for programming information. Performance counters are
present only in EV4.

PC1 RW,0 If clear enables performance counter 1 interrupt request after 2**12 events

PCoO

Ic

counted. If set enables performance counter 1 interrupt request after 2**8
events counted.

RW,0 If clear enables performance counter 0 interrupt request after 2**16 events
counted. If set enables performance counter 0 interrupt request after 2¥*12
events counted. :

RW,0 The Address Space Number field is used in conjunction with the Icache in
EV4 to further qualify cache entries and avoid some cache flushes. The ASN
is written to the Icache during fill operations and compared with the I-stream
data on fetch operations. Mismatches invalidate the fetch without affecting the
Icache. This function is only present in EV4.

RW,0 The IC state bits are unused by hardware.

Table 3-10: BHE,BPE Branch Prediction Selection

BPE BHE Prediction

0 X Not Taken

1 0 Sign of Displacement

1 1 Branch History Table, (Not available in EV3)

3.8.3.1 Performance Counters

Performance counters are only available in EV4. They are reset to zero upon powerup, but
are otherwise never cleared. They are intended as a means of counting events over a long
period of time relative to the event frequency and therefore provide no means of extracting
intermediate counter values. Since the counters continuously accumulate selected events
despite interrupts being enabled, the first interrupt after selecting a new counter input has an
error bound as large as the selected overflow range. In addition, some inputs may overcount
events occurring simultaneously with D-stream errors which abort the actual event very
late in the pipeline. For example, when counting load instructions, attempts to execute a
load resulting in a DTB miss exception will increment the performance counter after the
first aborted execution attempt and again after the TB fill routine when the load instruction
reissues and completes.

Performance counter interrupts are reported six cycles after the event that caused the counter
to overflow. Additional delay may occur before an interrupt is serviced if the processor is
executing PALcode which always disables interrupts. In either case, events occurring during
the interval between counter overflow and interrupt service are counted toward the next
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interrupt. Only in the case of a complete counter wraparound while interrupts are disabled
will an interrupt be missed.

The six cycles before an interrupt is triggered implies that a maximum of 12 instructions may
have completed before the start of the interrupt service routine. In most cases, by examining
the possible intervening instructions and the issue rules presented in section 2.9, it is possible
to further isolate trigger events. Two cases always provide a more accurate exception PC.
When counting Icache misses, no intervening instructions can complete and the exception PC
contains the address of the last Icache miss. Branch mispredictions allow a maximum of only
2 instructions to complete before start of the interrupt service routine.

Table 3—-11: Performance Counter 0 input Selection

MUXo0([3:0] Input Comment

000X Total Issues / 2 Counts total issues divided by 2, e.g dual issue increments
count by 1

001X Pipeline Dry Counts cycles where nothing issued due to lack of valid I-
stream data. Causes include Icache fill, misprediction, branch
delay slots and pipeline drain for exception

010X Load Instructions Counts all Load instructions

011X Pipeline Frozen Counts cycles where nothing issued due to resource conflict.
Refer to section 2.9 for information regarding scheduling and
issue rules.

100X Branch Instruc- Counts all Branch instructions, conditional, unconditional, any

tions JSR, HW_REI

1010 PALmode Counts cycles while executing in PAL mode

1011 Total cycles Counts total cycles

110X Total Non-issues /2  Counts total non_issues divided by 2, e.g no issue increments
count by 1

111X PERF_CNT H<0> Counts external event supplied by pin at selected system clock

cycle interval
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Table 3—-12: Performance Counter 1 Input Selection

MUX1[2:0] Input Comment

000 Dcache miss Counts total Dcache misses

001 Icache miss Counts total Icache misses

010 Dual issues Counts cycles of Dual issue

011 Branch Mispredicts Counts both conditional branch mispredictions and JSR or
HW_REI mispredictions. Conditional branch mispredictions
cost 4 cycles and others cost 5 cycles of dry pipeline delay.

100 FP Instructions Counts total floating point operate instructions, i.e no FP
branch, load, store

101 Integer Operate Counts integer operate instructions including LDA,LDAH with
destination other than R31

110 Store Instructions Counts total store instructions

111 PERF_CNT H<1> Counts external event supplied by pin at selected system clock

cycle interval

3.8.4 ITB_PTE_TEMP

The ITB_PTE_TEMP register is a read-only holding register for ITB_PTE read data. Reads
of the ITB_PTE require two instructions to return the data to the register file. The first
reads the ITB_PTE register to the ITB_PTE_TEMP register. The second returns the ITB_
PTE_TEMP register to the integer register file. The ITB_PTE_TEMP register is updated on
all ITB accesses, both read and write. A read of the ITB_PTE to the ITB_PTE_TEMP should
be followed closely by a read of the ITB_PTE_TEMP to the register file.

Reading the ITB_PTE_TEMP register is only performed while in PALmode regardless of the
state of the HWE bit in the ICCSR IPR.

6 333 111100 0
3 54 3 3210098 0
+- =t - Rt ot S IR
| IA] ITISIEIK] !
| RAZ |S| PEFN[33..13] |RIRIRIR|- RAZ I
| M| IEJE|E|E] !
Tt +=+ ! -+

3.8.5 EXC_ADDR

The EXC_ADDR register is a read/write register used to restart the machine after exceptions
or interrupts. It is written by hardware with the PC of the excepting instruction, or the
currently executing instruction at the time of an interrupt or trap. The instruction pointed
to by the EXC_ADDR register did not complete execution. The EXC_ADDR register can also
be read and written directly by PALcode. The HW_REI instruction executes a jump to the
address contained in the EXC_ADDR register. Since the PC must be longword aligned, the
Isb of the EXC_ADDR register is used to indicate PALmode to the hardware.
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Note that bit[1] is undefined when the EXC_ADDR is read. The actual hardware ignores this

bit, however PALcode must explicitly clear this bit before it pushes the exception address on
the stack.

EV3 requires that the EXC_ADDR register be written before executing a HW_REI. This
restriction applies because the register may not be sign extended despite a read of the same
register indicating so. This restriction does not apply for the EV4 chip.

IPR Format:

6 000
3 210
+ —_— - —t et
I 1TIP]|
I PC[63..2] IGIA]
| INIL]
R o - et

3.8.6 SL_CLR

This write-only register clears the serial line interrupt request, the performance counter
interrupt request and the CRD interrupt request. EV3 does not contain performance counters
and cannot initiate CRD interrupt requests. Therefore, the write of any data to the SL_CLR
register will clear the remaining serial line interrupt request. EV4 requires that the indicated
bit be written with a zero to clear the selected interrupt source.

6 333 11111110070000000
3 321 654321098765 43210
+ — +=+ ——t—t s e
I {8i [P 1P| ICl I
| IGN | L] IGN |CH IGN |CI IGN |RIIGN]|
| Icl (o} 1] ID| |
+ e e et e it T fmtmmmt

Table 3-13: SL_CLR

Field Type Description

CRD woC Clears the correctable read error interrupt request.
PC1 wocC Clears the performance counter 1 interrupt request.
PCoO WoC Clears the performance counter 0 interrupt request.
SLC WoC Clears the serial line interrupt request.

3.8.7 SL_RCV

The serial line receive register contains a single read-only bit used with the interrupt control
registers and the sRomD_h and sRomClk_h pins to provide an on-chip serial line function.
The RCV bit is functionally connected to the sRomD_h pin after the Icache is loaded from
the external serial ROM. Reading the RCV bit can be used to receive external data one bit
at a time under a software timing loop. A serial line interrupt is requested on detection of
any transition on the receive line which sets the SL_REQ bit in the HIRR. Using a software

Privileged Architecture Library Code 3-23



timing loop, the RCV bit can be read to receive data one bit at a time. The serial line interrupt
can be disabled by clearing the HIER register SL_ENA bit.

EV4 IPR

6 000 0
3 432 0
Fr - ———t +
b IR{ I
| RAZ {C| RAZ |
| |V} I
o ——————— —— —————— —+—+ +
EV3 IPR

6 000 0
3 54 3 0
fom——— +=+ -+
| |R| |
| RAZ ICl RAZ |
| 1V |
+ - +-+ -+

3.8.8 ITBZAP

A write of any value to this IPR invalidates all eight ITB entries. It also resets the NLU
pointer to its initial state. The ITBZAP register should only be written in PAL mode.

3.8.9 ITBASM

A write of any value to this IPR invalidates all ITB entries in which the ASM bit is equal to
zero. The ITBASM register should only be written in PAL mode.

3.8.10 ITBIS

A write of any value to this IPR invalidates all eight ITB entries. It also resets the NLU
pointer to its initial state. The ITBIS register should only be written in PAL mode.

3.8.11 PS

The processor status register is a read/write register containing only the current mode bits
of the architecturally defined PS.

Write Format:

6 00O 0
3 ’ 5432 0
| ICiC| |
| IGN |M|M| IGN |
| |110] I
== - - - fmt et +
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Read Format:

6
3

o w
=W
w w
N O
= O
[oN ]

— T R
ICI |CIR|
RAZ My RAZ IMIA|

;

|

e ol 4
3.8.12 EXC_SUM

The exception summary register records the various types of arithmetic traps that have
occurred since the last time the EXC_SUM was written (cleared). When the result of an
arithmetic operation produces an arithmetic trap, the corresponding EXC_SUM bit is set.

In addition, the register containing the result of that operation is recorded in the exception
register write mask IPR, as a single bit in a 64-bit field specifying registers F31-F0 and 131-10.
This IPR is visible only through the EXC_SUM register. The EXC_SUM register provides a
one-bit window to the exception register write mask. Each read to the EXC_SUM shifts one
bit in order F31-F0 then I31-I0. The read also clears the corresponding bit. Therefore, the
EXC_SUM must be read 64 times to extract the complete mask and clear the entire register.

Any write to EXC_SUM clears bits [8..2] and does not affect the write mask.

The write mask register bit clears three cycles after a read. Therefore, code intended to
read the register must allow at least three cycles between reads to allow the clear and shift
operation to complete in order to insure reading successive bits.

6 333

3 4 3 2 9876543210
+ - +-+ e e 3
| M| [TIT|UIF|D|IIIS| R |
| RAZ 181 RAZ |{O|N|N|O|Z|N|W| A |
| IK| IVIEIFIVIE|VIC| Z |
o e - —+—t i T S B S A S
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Table 3-14: EXC_SUM

Field Type Description

SWC

INV
DZE
FOV
UNF
INE
ov
MSK

WA Indicates Software Completion possible. The bit is set after a floating point
instruction containing the /S modifier completes with an arithmetic trap and all
previous floating point instructions that trapped since the last MTPR EXC_SUM
also contained the /S modifier. The SWC bit is cleared whenever a floating point
instruction without the /S modifier completes with an arithmetic trap. The bit
remains cleared regardless of additional arithmetic traps until the register is written
via an MTPR instruction. The bit is always cleared upon any MTPR write to the
EXC_SUM register.

WA Indicates Invalid Operation.

WA Indicates Divide by Zero.

WA Indicates Floating Point Overflow.

WA Indicates Floating Point Underflow.

WA Indicates Floating Inexact Error.

WA Indicates Fbox Convert to Integer Overflow or Integer Arithmetic Overflow.
RC Exception Register Write Mask IPR Window.

3.8.13 PAL_BASE

The PAL base register is a read/write register containing the base address for PALcode. This
register is cleared by hardware at reset.

PAL base register format:

6 33 11 0
3 4 3 4 3 0
—_—— e e +
I | IGN |
IGN/RAZ ] PAL BASE(33..14] A
| | RAZ |
o e e e - Fommmm +

3.8.14 HIRR

3-26

The Hardware Interrupt Request Register is a read-only register providing a record of all
currently outstanding interrupt requests and summary bits at the time of the read. For each
bit of the HIRR [5:0] there is a corresponding bit of the HIER (Hardware Interrupt Enable
Register) that must be set to request an interrupt. In addition to returning the status of the
hardware interrupt requests, a read of the HIRR returns the state of the software interrupt
and AST requests. Note that a read of the HIRR may return a value of zero if the hardware
interrupt was released before the read (passive release). The register guarantees that the

HWR bit reflects the status as shown by the HIRR bits. All interrupt requests are blocked
while executing in PALmode.
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Read Format:

6 33 2 2 111 00O00O0 000000
3 32 9 8 4 3 2 0987 543210
Fmmm e pmm e Fmm =t +—+—+ —t—t—t—t—t—t
| |U 8 E K| Isi IPIP| ICIA|SIHIR]
| RAZ | ASTRR | SIRR |[L| HIRR |C|C| HIRR |[R|T|WIW|A]|
| | [3..01] [15..1]1|RI[2..0110]12][5..3]IRIRIRIR|Z]|
e + e +—+ +=t—+ —mt =t =t —t
Jaen b
Table 3-15: HIRR e~ 2
Field Type Description
HWR RO Is set if any hardware interrupt request and corresponding enable is set
SWR RO Is set if any software interrupt request and corresponding enable is set
ATR RO Is set if any AST request and corresponding enable is set. This bit also
requires that the processor mode be equal to or higher than the request
mode. In EV4 chips, a further requirement is that SIER[2] must be set to
allow AST interrupt requests. P
HIRR[5..0] RO Corresponds to pins Irq_h[5..0]. , r€7 s Fero
SIRR[15..1] RO Corresponds to software interrupt request 15 thr
ASTRRI[3..0] RO Corresponds to AST request three zero (USEK).
PC1 RO Performance counter 1 interrupt request. Performance counters are only
present in EV4.
PCo RO Performance counter 0 interrupt request. Performance counters are only
present in EV4.
SLR RO Serial line interrupt request.
CRR RO CRD correctable read error interrupt request. This bit is only present in EV4 SL - cLR

chips and read as zero in EV3.

3.8.15 SIRR

The Software Interrupt Request Register is a read/write register used to control software

" interrupt requests. For each bit of the SIRR there is a corresponding bit of the SIER (Software
Interrupt Enable Register) that must be set to request an interrupt. Reads of the SIRR return
the complete set of interrupt request registers and summary bits, see the HIRR Table 3-15
for details. All interrupt requests are blocked while executing in PALmode.

Write Format:

w o

[o ot =N

~

o ——

IGN

+——— +

SIRR{15..1]

IGN

+ = — +

+ - +
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Read Format:

6 33 2 2 111 0000 0000000
3 32 9 8 4 3 2 0987 543210
+= + + bt F=t—t —t =ttt =t
I IU S E K| S| |PIP] ICIAIS|H|R]|
] RAZ | ASTRR | SIRR |L| HIRR |[C|C| HIRR |R|T|W|W|A|
| | [3..0]f [15..1]IR|[2..0]]0|1]([5..3]IRIR|R|R|Z]
+= + + e o ot O s Tt e

3.8.16 ASTRR

The Asynchronous Trap Request Register is a read/write register. It contains bits to request
AST interrupts in each of the processor modes. In order to generate an AST interrupt, the
corresponding enable bit in the ASTER must be set and the processor must be in the selected
processor mode or higher privilege as described by the current value of the PS CM bits.
In addition, AST interrupts are only enabled in EV4 if the SIER[2] is set. This provides a
mechanism to lock out AST requests over certain IPL levels. In EV3, this function is provided
in PAL code. All interrupt requests are blocked while executing in PALmode. Reads of the

ASTRR return the complete set of interrupt request registers and summary bits, see the
HIRR Table 3-15 for details.

Write Format:

6 5554 4 4 0
3 2100987 0
+ e e +
| |UISIEIK]| I
|  IGN  |A|A|A|A| IGN |
| JRIR|R|R]| }
Read Format:

6 33 22 111 0000 000000
3 32 9 8 432 0987 543210
+ ——————r pmmmmmm bt bt =ttt =t —t
I |U S E K| 1S} |IP|P| |CIA|S|HIR|
| RAZ | ASTRR | SIRR |L| HIRR |C|C| HIRR [R|T|W|W|A]
I | [3..0]] [15..1]|R|[2..0]10]1([5..3]|R|IRIRIR|Z]
+ ————— + +=+ =t —t bt =t

3.8.17 HIER

The Hardware Interrupt Enable Register is a read/write register. It is used to enable
corresponding bits of the HIRR requesting interrupt. The PC0, PC1, SLE and CRE bits
of this register enable the performance counters, serial line and correctable read interrupts.
There is a one-to-one correspondence between the interrupt requests and enable bits, as with
the reads of the interrupt request IPRs, reads of the HIER return the complete set of interrupt
enable registers, see the HIRR Table 3-15 for details.

Since the CRD interrupt request is not supported in EV3, the CRE bit is not present in the
EV3 register. It is ignored on writes and read back as zero.
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Write Format:

6 333 111 000 0 0
3 321 6 5 4 9 8 7 2 0
T S S =t e ot Fotmm—t
| | S| |P| P ICl |
| IGN |L] IGN |C|] HIER[5..0] |C| IGN |R{ |
| [E] 111 |0} |E] |
S S —— —_—— podmmm— et —t Fotmm et —pme—t

Read Format:

6 333322 111 1000 000Q0 0
3 321098 4 3 2 0 987 54 3 0
+ fmt—t et e e +—t—t RN —— +
| |UISIE|K] S| IP|P| |Cl !
i RAZ |AJA|A|A| SIER[15..1] |L| HIER |C|C| HIER |R| RAZ |
| |E|E|E|E] IE1[2..0110]12[([5..3]|E| |
S S S +—t +—t—t ST +

3.8.18 SIER

The Software Interrupt Enable Register is a read/write register. It is used to enable
corresponding bits of the SIRR requesting interrupts. There is a one-to-one correspondence
between the interrupt requests and enable bits, as with the reads of the interrupt request

IPRs, reads of the SIER return the complete set of interrupt enable registers, see the HIRR
Table 3—15 for details.

The CRE bit is only supported in EV4. Reads of this register will always return zero on the
CRE bit in EV3.

Write Format:

6 44 33 0
3 8 7 32 0
| | | |
| IGN | SIER[15..1] | IGN |
| | | |
+- e e e pm———— - +

Read Format:

6 333322 111 1000 000 0
3 3210098 432 0987 543 0
T S o fotmt tmt +
| |UISIE|K] S| |PIP] |Cl |
| RAZ |A|A|A|A| SIER([15..1] |L| HIER |C|C| HIER |R| RAZ |
| |[E{E|E|E| |E|1[2..01]011(5..3]1I|E] |
T T NS S +-+ e et B R e s
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3.8.19 ASTER

The AST Interrupt Enable Register is a read/write register. It is used to enable corresponding
bits of the ASTRR requesting interrupts. There is a one-to-one correspondence between the
interrupt requests and enable bits, as with the reads of the interrupt request IPRs, reads of
the ASTER return the complete set of interrupt enable registers, see the HIRR Table 3-15

for details.

The CRE bit is only supported in EV4. Reads of this register will always return zero on the

CRE bit in EV3.
Write Format:

6 5554 44 0
3 2100987 0
+ Fmt bt —t ——t
| |UISIEIK] |
| IGN |A|A|A|A| IGN |
| |E|IE|E|E] |
Read Format:
6 333322 111 1000 000 0
3 3210098 4 32 0987 54 3 0
b b b ==t —t—t b=t =t i ittt +
| |UIS|E|K] B2 IPIP| IC] |
| RAZ  |A|A|A|A| SIER[15..1] |L| HIER {C|C| HIER |R| RAZ |
| |EIE|E|E]
+ e +—+

3.8.20 SL_XMIT

}
T=T=T

[E1[2..011011/[5..3]1E| [

b=t

The serial line transmit register contains a single write-only bit used with the interrupt
control registers and the sRomD_h and sRomClk_h pins to provide an on-chip serial line
function. The TMT bit is functionally connected to the sRomClk_h pin after the Icache is
loaded from the external serial ROM. Writing the TMT bit can be used to transmit data off

chip one bit at a time under a software timing loop.
6

000 0

3 543 0
+——- +-+ +
f IT} [
| IGN M| IGN |
| IT| !
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3.9 Abox IPRs
3.9.1 DTB_CTL

The large-page-select (GH=11(bin)) field selects between the EVx small-page and large-page
DTBs for DTB fills. If GH=11(bin) then the large page DTB is chosen for DTB_PTE writes
and reads. If GH is anything else then the small page DTB is chosen for DTB_PTE writes
and reads. The GH field is write only.

6 0000 0
3 7 65 4 0
| (. |
| IGN |GH| IGN |
| [ i
+- - e e D e +

3.9.2 DTB_PTE

The DTB PTE register is a read/write register representing the 32-entry small-page and
4-entry large-page DTB page table entries. The entry to be written is chosen by a not-last-
used algorithm implemented in hardware and the value in the DTB_CTL register. Writes to
the DTB_PTE use the memory format bit positions as described in the ALPHA SRM with

the exception that some fields are ignored. In particular the valid bit is not represented in
hardware. _ -

To insure the integrity of the DTBs, the DTB’s tag array is updated simultaneously from the
internal tag register when the DTB_PTE register is written. Reads of the DTB_PTE require
two instructions. First, a read from the DTB_PTE sends the PTE data to the DTB_PTE_
TEMP register, then a second instruction reading from the DTB_PTE_TEMP register returns
the PTE entry to the register file. Reading or writing the DTB_PTE register increments the
TB entry pointer of the DTB indicated by the DTB_CTL IPR which allows reading the entire
set of DTB PTE entries.

Small Page Format:

6 55 33 1111111000000000
33 2. 21 6543210987543 210

- + Bt e S N S
| |IUISIEIK|UIS|EIKIT {AJI|FIFIT]
| IGN [WIW|W|W|RIRIRIR|IG |S|G|0O|0O|G]
| |IE|IE|EIE|E|E|EIE|IN |[M|N|W|R|N]
+

- B e e e e e

|
IGN| PFN[33..13}
I

+——— +

Large Page Format:

6 55 4 4 1111111000000000
332 10 6543210987543210
e T T o
| | | |UISIE|K|UISIEIRITI [A[I|F|FI|T]
|IGN| PFN([33..22] | IGN |W|WI|W|W|RIR|IR|IR|IG |S|G|0|0IG]|
| | | |EIE|E|E{E|E|E|EIN |M|N|W|R|N]|
et T T T e o o
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3.9.3 DTB_PTE_TEMP

The DTB_PTE_TEMP register is a read-only holding register for DTB_PTE read data. Reads
of the DTB_PTE require -two instructions to return the data to the register file. The first
reads the DTB_PTE register to the DTB_PTE_TEMP register. The second returns the DTB_
PTE_TEMP register to the integer register file.

Small Page Format:

6 333

1111000000000
3 54 3 3210987654320
+ et e et T I E B R
o -y IUISIEIK|U|SIE|K|F|F| R|
| RAZ | 8] PFN[33..13] IRIRIR|IRIW|W|W|W|O|O| A}
| [M] |EIE|E|E|E|E|E|E|WIR] 2]
+= - =+ bttt et

1o o o o fo oo ol
TTeTeetT ———

Large Page Format:

6 333 22 1111000000000
3 543 22 3210987¢654320
Fmm e +=+ B i et St S LU S
| 1Al B IUISIE|KIUISIE|IKI|F|F]| R|
| RAZ |S| PFN[33..22] | G |R|IR|R|RIW|W|W|W|O|O| A|
I I M| | N |E|E|E|E|E|EIE|E|WI|R] Z|
Fm +=t - s St S

3.9.4 MM_CSR

When D-stream faults occur the information about the fault is latched and saved in the MM_
CSR register. The VA and MMCSR registers are locked against further updates until software
reads the VA register. Palcode must explicitly unlock this register whenever its entry point
was higher in priority than a DTB miss. MM_CSR bits are only modified by hardware when

the register is not locked and a memory management error or a DTB miss occurs. The MM _
CSR is unlocked after reset.

6 11 00 000O00O0
3 5 4 9 8 4 3210
+- - + B s T T S
[ I | IFIF|A|W]
| RAZ | OPCODE | RA |O|O|CI|R]|
l J I [WIRIV] | -
pmm——— e + et bt
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Table 3-16: MM_CSR

Field Type Description
WR RO Set if reference which caused error was a write.
ACV RO Set if reference caused an access violation.
FOR RO Set if reference was a read and the PTE’s FOR bit was set.
Fow RO Set if reference was a write and the PTE’s FOW bit was set.
RA RO Ra field of the faulting instruction.
OPCODE RO Opcode field of the faulting instruction.
3.9.5 VA

When D-stream faults or DTB misses occur the effective virtual address associated with the
fault or miss is latched in the read-only VA register. The VA and MMCSR registers are locked
against further updates until software reads the VA register. The VA IPR is unlocked after
reset. Palcode must explicitly unlock this register whenever its entry point was higher in
priority than a DTB miss.

3.9.6 DTBZAP

A write of any value to this IPR invalidates all 32 small-page and four large-page DTB entries.
It also resets the NLU pointer to its initial state.

3.9.7 DTBASM

A write of any value to this IPR invalidates all 32 small-page and 4 large-page DTB entries
in which the ASM bit is equal to zero.

3.9.8 DTBIS

If the virtual address in the RB field is mapped in either the small-page or large-page DTB
then those entries are invalidated.

3.9.9 FLUSH_IC
A write of any value to this pseudo-IPR flushes the entire instruction cache.

3.9.10 FLUSH_IC_ASM

In EV4, a write of any value to this pseudo-IPR invalidates all Icache blocks in which the
ASM bit is clear. In EV3, a write to this pseudo-register is equivalent to a NOP.
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3.9.11 ABOX_CTL

121110 9 8 7 6 5 4 3 2 1 O

| IGN

I

s B et LS I L P
N

|WO|WO| IGN | WO |WO | WO |WO|
! oy

L

e s et I e
I
b
| | | +->WB DIS
| | +==-=> MCHK_EN
I > CRD_EN
e > IC_SBUF_EN

- > DC_ENA
- > DC_FHIT

+ — — —— ——

I
|
!
|
I
|
|
+

Table 3-17: Abox Control Register

Field

Type

Description

WB_DIS

MCHK_EN

CRD_EN - EV4 only

IC_SBUF_EN - EV4
only

DC_EN

DC_FHIT

WO,0

WO,0

WO,0

WO,0

WO,0

WO,0

Write Buffer unload Disable. When set, this bit prevents the write
buffer from sending write data to the BIU. It should be set for
diagnostics only.

Machine Check Enable. When this bit is set the Abox generates

a machine check when errors which are not correctable by the
hardware are encountered. When this bit is cleared, uncorrectable
errors do not cause a machine check, but the BIU_STAT, DC_STAT,
BIU_ADDR, FILL_ADDR and DC_ADDR registers are updated and
locked when the errors occur.

Corrected read data interrupt enable. When this bit is set the Abox
generates an interrupt request whenever a pin bus transaction is
terminated with a cAck_h code of SOFT_ERROR.

Icache stream buffer enable. When set, this bit enables operation of
a single .entry Icache stream buffer.

Dcache enable. When clear, this bit disables and flushes the Dcache.
When set, this bit enables the Dcache.

Dcache force hit. When set, this bit forces all D-stream references toA
hit in the Dcache. This bit takes precedence over DC_EN, i.e. when

DC_FHIT is set and DC_EN is clear all D-stream references hit in
the Dcache.
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3.9.12 ALT_MODE

ALT_MODE is a write-only IPR. The AM field specifies the alternate processor mode used by
HW_LD and HW_ST instructions which have their ALT bit (bit 14) set.

6 0 000 0
3 5 43 2 0
+ _—— _—— ot m e +
i 1A | |
| IGN IM | IGN |
| o i
+ - - i s STt +

Table 3-18: ALT Mode

ALT_
MODE[4..3] Mode
00 Kernel
01 Executive
10 Supervisor
11 User
3.9.13 CC

EVx supports a cycle counter as described in the ALPHA SRM. This counter, when enabled,
increments once each CPU cyclee. HW_MTPR Rn,CC writes CC[63..32] with the value held
in Rn[63..32], and CC[31..0] are not changed. This register is read by the RCC instruction
defined in the ALPHA SRM.

3.9.14 CC_CTL
HW_MTPR Rn,CC_CTL writes CC[31..0] with the value held in Rn[31..0], and CC[63..32] are

not changed. CC[3..0] must be written with zero. If Rn[32] is set then the counter is enabled,
otherwise the counter is disabled. CC_CTL is a write-only IPR.
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3.9.15 BIU_CTL

6 333 333 2 2 111
3 765 210 8 7 321, 8 7 4 3210
tmmmt et b e +=t e S S
| bl (| | [T | [
JIGN| | [ |IBC_WE_CTL[15..1] |G|BC_WR SPD|BC_RD _SPD| | | | |
I I (I | IN| I N I T
et S et T + bt + T e e
I ! l | [ I
| | | | | | | +=> BC_ENA
I | ! | | | +--=-> ECC
I I l [ | 4= > OE
| I | | Fom > BC_FHIT
| | — e e > BC_SIZE
|+ > BAD_TCP
I+ > BC_PA DIS
+ - - - ----> BAD DP
Table 3-19: BIU Control Register
Field Type Description
BC_EN WO,0 External cache enable. When clear, this bit disables the external cache.

When the external cache is disabled the BIU does not probe the external

cache tag store for read and write references; it launches a request on cReq_h
immediately.

ECC WO When this bit is set EVx generates/expects ECC on the check_h pins. When
this bit is clear EVx generates/expects parity on four of the check_h pins.

OE WO,0 When this bit is set EVx does not assert its chip enable pins during RAM

write cycles, thus enabling these pins to be connected to the output enable
pins of the cache RAMs.

BC_FHIT WO,0 External cache force hit. When this bit is set and BC_EN is also set, all pin
bus READ_BLOCK and WRITE_BLOCK transactions are forced to hit in
the external cache. Tag and tag control parity are ignored when the BIU
operates in this mode. BC_EN takes precedence over BC_FHIT. When BC_
EN is clear and BC_FHIT is set no tag probes occur and external requests
are directed to the cReq_h pins.

Note that the BC_PA_DIS field takes precedénce over the BC_FHIT bit.
BC_RD_SPD WO External cache read speed. This field indicates to the BIU the read access
time of the RAMs used to implement the off-chip external cache, measured

in CPU cycles. It should be written with a value equal to one less the read
access time of the external cache RAMs.

Access times for reads must be in the range 16..3 CPU cycles, which means
the values for the BC_RD_SPD field are in the range of 15..2.

BC_RD_SPD are not initialized on reset and must be explicitly written before
enabling the external cache.
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Table 3—19 (Cont.): BIU Control Register

Field Type

Description

BC_WRSPD WO

BC_WE_CTL WO

BC_SIZE WO

BAD_TCP - EV4 WO,0
only

BC_PA_DIS WO

BAD DP-EV4 WO
only

External cache write speed. This field indicates to the BIU the write cycle
time of the RAMs used to implement the off-chip external cache, measured
in CPU cycles. It should be written with a value equal to one less the write
cycle time of the external cache RAMs.

Access times for writes must be in the range 16..2 CPU cycles, which means
the values for the BC_RD_SPD field are in the range of 15..1.

BC_WR_SPD are not initialized on reset and must be explicitly written
before enabling the external cache.

External cache write enable control. This field is used to control the timing
of the write enable and chip enable pins during writes into the data and tag
control RAMs. It consists of 15 bits, where each bit determines the value
placed on the write enable and chip enable pins during a given CPU cycle

of the RAM write access. When a given bit of BC_WE_CTL is set, the write
enable and chip enable pins are asserted during the corresponding CPU cycle
of the RAM access. BC_WE_CTLI[0] (bit 13 in BIU_CTL) corresponds to the
second cycle of the write access, BC_WE_CTL([1] (bit 14 in BIU_CTL) to the
third CPU cycle, and so on. The write enable pins will never be asserted in
the first CPU cycle of a RAM write access.

Unused bits in the BC_WE_CTL field must be written with zeros.

BC_WE_CTL is not initialized on reset and must be explicitly written before
enabling the external cache.

This field is used to indicate the size of the external cache. BC_SIZE is
not initialized on reset and must be explicitly written before enabling the
external cache. See Table 3—20 for the encodings.

When set, BAD_TCP causes EV4 to write bad parity into the tag control
RAM whenever it does a fast external RAM write.

This 4-bit field may be used to prevent the CPU chip from using the external
cache to service reads and writes based upon the quadrant of physical
address space which they reference. The correspondence between this bit
field and the physical address space is shown in Table 3—-21.

When a read or write reference is presented to the BIU the values of BC_PA_
DIS, BC_ENA and physical address bits [33:32] together determine whether
to attempt to use the external cache to satisfy the reference. If the external
cache is not to be used for a given reference the BIU does not probe the tag
store, and makes the appropriate system request immediately. The value of
BC_PA_DIS has NO impact on which portions of the physical address space
may be cached in the primary caches. System components control this via
the RDACK field of the pin bus.

BC_PA_DIS are not initialized by reset.

When set, BAD_DP causes EV4 to invert the value placed on bits [0],[7],{14]
and [21] of the check_h{27..0] field during off-chip writes. This produces bad

parity when EV4 is in parity mode, and bad check bit codes when EV4 is in
ECC mode.
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Table 3-20: BC_SIZE

BC_SIZE Size
000 128 Kbytes
001 256 Kbytes
010 512 Kbytes
011 1 Mbytes
100 2 Mbytes
101 4 Mbytes
110 8 Mbytes

Table 3-21: BC_PA_DIS
BIU_CTL bits Physical Address

[32] PA[33..32] =
{33] PA[33..32] =
[34] PA[33..32] =
[35] PA[33..32] = 3

3.10 PAL_TEMPs

The CPU chip contains 32 registers which are accessible via HW_MXPR instructions. These
registers provide temporary storage for PALcode. .
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3.10.1 DC_STAT
The DC_STAT is a read-only IPR.

Overview:

When an external ECC or parity error is recognized during a primary cache fill operation,
the DC_STAT register is locked against further updates. In the event that the cache fill was
due to D-stream activity the contents of this register may be used by PAL code in conjunction
with information latched elsewhere (see Section 3.12) to recover from some single-bit ECC
errors. DC_STAT is unlocked when DC_ADDR is read.

63 15 14 13 12 11 10 9 8 4 3 2 0
+- tm—tmmtmmtmmtm et et s S T +
| N o |
| RAZ |RO|RO|RO|RO|RO|RO| RO |IROl R A Z |
I | A Y I R R [ |
+- e e S e e e
[ | !
| | | | | | | te——m e ————— > DC_HIT
[ R + > RA
[ R N - ~=—=> INT
T T T - -> LW
T R T — -> VAX_FP
| | A -> LOCK
| 4= — ----> STORE
+ > SEO
Table 3-22: Dcache Status Register
Field Type Description
DC_HIT RO This bit indicates whether the last load or store instruction processed by the
Abox hit, (DC_HIT set) or missed, (DC_HIT clear) the Dcache. In EV4, loads
that miss the Dcache may be completed without requiring external reads.
e.g. pending fill or pending store hits.
SEO RO

Second Error Occurred. Set when an error which would normally lock the
DC_STAT register occurs while the DC_STAT register is already locked.

The following bits are only meaningful if the FILL_ECC or FILL_DPERR bit in the BIU_

STAT register is set.
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Table 3-23:

Dcache STAT Error Modifiers

Field Type Description

RA RO The Ra field of the instruction which resulted in the error.

INT RO When set, indicates an integer load or store.

Lw RO When set, indicates that the data length of the load or store was longword.

VAX_FP RO When INT is clear, this bit is set to indicate that a VAX floating point format
load or store caused the error.

LOCK RO This bit is set to indicate that the error stemmed from a LDLL, LDQL, STLC,
or STQC instruction.

STORE RO

This bit is set to indicate that the error stemmed from a store instruction.

3.10.2 DC_ADDR

In EV3, this is a read-only register which contains bits [33..2] of the physical address
generated by the load instruction associated with errors reported by the FILL_ECC or FILL_
DPERR bits in the BIU_STAT register.

In EV4, this is a pseudo-register used for unlocking DC_STAT.
In both EV3 and EV4, DC_STAT and DC_ADDR are unlocked when DC_ADDR is read.
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3.10.3 BIU_STAT

BIU_STAT is a read-only IPR.

When one of BIU_HERR, BIU_SERR, BC_TPERR or BC_TCPERR is set, BIU_STAT(6..0]
are locked against further updates, and the address associated with the error is latched and
locked in the BIU_ADDR register. BIU_STAT[6..0] and BIU_ADDR are also spuriously locked

when FILL_ECC or BIU_DPERR is set. BIU_STAT(7..0] and BIU_ADDR are unlocked when
the BIU_ADDR register is read.

When FILL_ECC or BIU_DPERR is set, BIU_STAT[13..8] are locked against further updates,
and the address associated with the error is latched and locked in the FILL_ADDR register.
BIU_STAT(14..8] and FILL_ADDR are unlocked when the FILL_ADDR register is read.

This register is not unlocked or cleared by reset and needs to be explicitly cleared by PALcode.
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Table 3-24: BIU STAT
Field Type Description
BIU_HERR RO This bit, when set, indicates that an external cycle was terminated with the
cAck_h pins indicating HARD_ERROR.
BIU_SERR RO This bit, when set, indicates that an external cycle was terminated with the
cAck_h pins indicating SOFT_ERROR.
BC_TPERR RO This bit, when set, indicates that a external cache tag probe encountered bad
parity in the tag address RAM.
BC_TCPERR RO This bit, when set, indicates that a external cache tag probe encountered bad
parity in the tag control RAM.
BIU_CMD RO This field latches the cycle type on the cReq_h pins when a BIU_HERR,

BIU_SERR, BC_TPERR, or BC_TCPERR error occurs.
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Table 3-24 (Cont.): BIU STAT

Field Type Description

BIU_SEO RO This bit, when set, indicates that an external cycle was terminated with the

cAck_h pins indicating HARD_ERROR or that a an external cache tag probe
encountered bad parity in the tag address RAM or the tag control RAM while
one of BIU_HERR, BIU_SERR, BC_TPERR, or BC_TCPERR was already set.

FILL_ECC RO ECC error. This bit, when set, indicates that primary cache fill data received

from outside the CPU chip contained an ECC error.

FILL_DPERR RO Fill Parity Error. This bit when set, indicates that the BIU received data

with a parity error from outside the CPU chip while performing either a
Dcache or Icache fill. FILL_DPERR is only meaningful when the CPU chip is
in parity mode, as opposed to ECC mode.

FILL_IRD RO This bit is only meaningful when either FILL_ECC or FILL_DPERR is set.

FILL_IRD is set to indicate that the error which caused FILL_ECC or FILL_
DPERR to set occurred during an Icache fill and clear to indicate that the
error occurred during a Deache fill.

FILL_QW RO This field is only meaningful when either FILL_ECC or FILL_DPERR is set.

FILL_QW identifies the quadword within the hexaword primary cache fill
block which caused the error. It can be used together with FILL_ADDR[33..5]
to get the complete physical address of the bad quadword.

FILL_SEO RO This bit, when set, indicates that a primary cache fill operation resulted in

either an uncorrectable ECC error or in a parity error while FILL_ECC or
FILL_DPERR was already set.

3.10.4 BIU_ADDR

This read-only register contains the physical address associated with errors reported by BIU_
STAT([7..0]. Its contents are meaningful only when one of BIU_HERR, BIU_SERR, BC_
TPERR, or BC_TCPERR are set. Reads of BIU_ADDR unlock both BIU_ADDR and BIU_
STAT(7..0].

In both EV3 and EV4, BIU_ADDRI33..5] contain the values of adr_h[33..5] associated with
the pin bus transaction which resulted in the error indicated in BIU_STAT[7..0l.

In EV3, if the BIU_CMD field of the BIU_STAT register indicates that the transaction
which received the error was READ_BLOCK or LDx/L, then BIU_STAT4..3] identify which
quadword within the 32-byte cache block the CPU was attempting to read when the primary
cache miss occurred. This applies to both I-stream and D-stream reads. If the BIU_CMD
field of the BIU_STAT register encodes any pin bus command other than READ_BLOCK or
LDx/L, then BIU_ADDRI4..3] will contain zeros. BIU_ADDRI63..34] and BIU_ADDRI[2..0]
always read as zero.

In EV4, if the BIU_CMD field of the BIU_STAT register indicates that the transaction
which received the error was READ_BLOCK or LDx/L, then BIU_STAT[4..2] are UNPRE-
DICTABLE. If the BIU_CMD field of the BIU_STAT register encodes any pin bus com-
mand other than READ_BLOCK or LDx/L, then BIU_ADDRI4..2] will contain zeros. BIU_
ADDR(63..34] and BIU_ADDRI1..0] always read as zero.
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3.10.5 FILL_ADDR

This read-only register contains the physical address associated with errors reported by BIU_
STAT[14..8]. Its contents are meaningful only when FILL_ECC or FILL_DPERR is set. Reads
of FILL_ADDR unlock FILL_ADDR, BIU_STAT{14..8] and FILL_SYNDROME:

In both EV3 and EV4, FILL_ADDRI[33..5] ideﬁtify the 32-byte cache block which the CPU
was attempting to read when the error occurred.

In EV3, FILL_ADDRI4..3] identify the quadword within the cache block which the CPU was

attempting to read when the primary cache fill request was generated. FILL_ADDRI[63..34]
and FILL_ADDRI2..0] read as zero.

In EV4, if the FILL_IRD bit of the BIU_STAT register is clear, indicating that the error
occurred during a D-stream cache fill, then FILL_ADDRI[4..2] contain bits [4..2] of the physical
address generated by the load instruction which triggered the cache fill. If FILL_IRD is set,
then FILL_ADDR{4..2] are UNPREDICTABLE. FILL_ADDR[63..34] and FILL_ADDR(1..0]
read as zero.
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3.10.6 FILL_SYNDROME
The FILL_SYNDROME register is a 14-bit read-only register.

If the chip is in ECC mode and an ECC error is recognized during a primary cache
fill operation, the syndrome bits associated with the bad quadword are locked in the
FILL_SYNDROME register. FILL_SYNDROME[6..0] contain the syndrome associated with
the lower longword of the quadword, and FILL_SYNDROME([13..7] contain the syndrome
associated with the higher longword of the quadword. A syndrome value of zero means that
no errors where found in the associated longword. See Table 3-25 for a list of syndromes
associated with correctable single-bit errors. The FILL_SYNDROME register is unlocked
when the FILL_ADDR register is read.

If the chip is in parity mode and a parity error is recognized during a primary cache fill
operation, the FILL,_ SYNDROME register indicates which of the longwords in the quadword
got bad parity. FILL_SYNDROMEI[O0] is set to indicate that the low longword was corrupted,
and FILL_SYNDROME[7] is set to indicate that the high longword was corrupted. FILL_
SYNDROME[13..8] and [6..1] are RAZ in parity mode.

6 11 00 0
3 4 3 76 0
+ -+ Fomm et
I | | !
| RAZ | HI[6..0] | LO[6..0] |
_— S b :
Table 3-25: Syndromes for Single-Bit Errors
Data Bit Syndrome (Hex) Check Bit Syndrome(Hex)

00 4F 00 01

01 4A 01 02

02 52 02 04

03 54 08 08

04 57 04 10

05 58 05 20

06 5B 06 ' 40

07 5D

08 23

09 25

10 26

11 29

12 2A
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Table 3-25 (Cont.): Syndromes for Single-Bit Errors

Data Bit Syndrome(Hex) Check Bit Syndrome(Hex)
13 2C
14 31
15 34
16 OE
17 0B
18 13
19 15
20 16
21 19
22 1A
23 1C
24 62
25 64
26 67
27 68
28 6B
29 6D
30 70

31 75

3.10.7 BC_TAG

BC_TAG is a read-only IPR. Unless locked, the BC_TAG register is loaded with the results
of every backup cache tag probe. When a tag or tag control parity error or primary fill data’
error (parity or ECC) occurs this register is locked against further updates. Software may
read the LSB of this register by using the HW_MFPR instruction. Each time an HW_MFPR
from BC_TAG completes the contents of BC_TAG are shifted one bit position to the right, so
that the entire register may be read using a sequence of HW_MFPRs. Software may unlock
the BC_TAG register using a HW_MTPR to BC_TAG.

Successive HW_MFPRs from the BC_TAG register must be separated by at least one null
cycle.
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Unused tag bits in the TAG field of' this register are always clear, based on the size of the
external cache as determined by the BC_SIZE field of the BIU_CTL register.
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3.11 ECC Error Correction

When in ECC mode EVx generates longword ECC on writes, and checks ECC on reads. EVx
does not include hardware to correct single-bit errors, however.

When an ECC error is recognized during a Dcache fill the BIU places the affected fill block into
the Dcache unchanged, validates the block and posts a machine check. The load instruction
which triggered the Dcache fill is completed by writing the requested longword(s) into the
register file. The longword(s) read by the load instruction may or not have been the cause of
the error, but a machine check is posted either way. The Ibox will react to the machine check
by aborting instruction execution before any instruction issued subsequent to the load could
overwrite the register containing the load data, and vectoring to the PAL code machine check
handler. Sufficient state is retained in various status registers (see Section 3.12) for PAL
code to determine whether the error affects the longword(s) read by the load instruction,
and whether the error is correctable. In any event, PAL code must explicitly flush the
Dcache. If the longword containing the error was written into the register file, PAL code
must either correct it and restart the machine, or report an uncorrectable hardware error
to the operating system. Independent of whether the failing longword was read by the load
instruction, PAL may scrub memory by explicitly reading the longword with the physical/lock
variant of the HW-_LD instruction, flipping the necessary bit, and writing the longword with
the physical/conditional variant of the HW_ST instruction. Note that when PAL rereads the
affected longword the hardware may report no errors, indicating that the longword has been
overwritten.

When an ECC error occurs during an Icache fill the BIU places the affected fill block into the
Icache unchanged, validates the block and posts a machine check. The Ibox will vector to the
PAL code machine check handler before it executes any of the instructions in the bad block.
PAL code may then flush the Icache and scrub memory as described above.

As compared with hardware error correction, this approach is vulnerable to single-bit errors
which may occur during I-stream reads of the PAL code machine check handler, to single-bit
errors which occur in multiple quadwords of a cache fill block, and to single-bit errors which
occur as a result of multiple silo’ed load misses.
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3.12 Error Flows

The following sections give a summary of the hardware flows for various error conditions for
both EV3 and EV4.

3.12.1 EV3 Error Flows

3.12.1.1

3.12.1.2

l-stream ECC error

data put into Icache unchanged, block gets validated

machine check

BIU_STAT: FILL_ECC, FILL_IRD set, FILL_SEO set if multiple errors occurred
FILL_ADDRI33..5] & BIU_STAT{[FILL_QW] give bad QW’s address
FILL_SYNDROME contains syndrome bits associated with failing quadword
BIU_ADDR, BIU_STAT[6..0] locked - contents are UNPREDICTABLE '
DC_STAT, DC_ADDR locked - contents are UNPREDICTABLE

BC_TAG holds results of external cache tag probe if external cache was enabled for this
transaction

D-stream ECC error

data put into Dcache unchanged, block gets validated

machine check _

BIU_STAT: FILL_ECC set, FILL_IRD clear, FILL_SEO set if multiple errors occurred
FILL_ADDRI33..5] & BIU_STATI[FILL_QW] give bad QW’s address
FILL_SYNDROME contains syndrome bits associated with failing quadword
BIU_ADDR, BIU_STAT{6..0] locked - contents are UNPREDICTABLE

DC_ADDR:contains PA bits [33:2] of location which the failing load instruction attempted
to read :

DC_STAT: RA identifies register which holds the bad data. LW,LOCKINT,VAX_FP
identify type of load instruction

BC_TAG holds results of external cache tag probe if external cache was enabled for this
transaction

BIU: tag address parity error

recognized at end of tag probe sequence
lookup uses predicted parity so transaction misses the external cache
BC_TAG holds results of external cache tag probe

machine check
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BIU_STAT: BC_TPERR set
BIU_ADDR holds address

BIU: tag control parity error

recognized at end of tag probe sequence
transaction forced to miss external cache
BC_TAG holds results of external cache tag probe
machine check

BIU_STAT: BC_TCPERR set

BIU_ADDR holds address

BIU: system transaction terminated with CACK_SERR

CRD interrupt: NOT SUPPORTED BY EV3
BIU_STAT: BIU_SERR set, BIU_CMD holds cReq_h[2..0]
BIU_ADDR holds address

BlU: system transaction terminated with CACK_HERR

machine check
BIU_STAT: BIU_HERR set, BIU_CMD hoids cReq_hl[2..0]
BIU_ADDR holds address

BIU: I-stream parity error (parity mode only)

data put into Icache unchanged, block gets validated

machine check

BIU_STAT: FILL_DPERR set, FILL_IRD set

FILL_ADDRI[33..5] & BIU_STAT[FILL_QW] give bad QW’s address
FILL_SYNDROME identifies failing longword(s)

BIU_ADDR, BIU_STAT(6..0] locked - contents are UNPREDICTABLE
DC_STAT, DC_ADDR locked - contents are UNPREDICTABLE

BC_TAG holds results of external cache tag probe if external cache was enabled for this
transaction
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3.12.1.8 BIU: D-stream parity error (parity mode only)

¢ data put into Dcache unchanged, block gets validated

¢ machine check

¢ BIU_STAT: FILL_DPERR set, FILL_IRD clear

¢ FILL_ADDRI33..5] & BIU_STATI[FILL_QW] give bad QW’s addre_ss

¢ FILL_SYNDROME identifies failing longword(s)

¢ BIU_ADDR, BIU_STAT(6..0] locked - contents are UNPREDICTABLE

* DC_ADDR: contains PA bits [33:2] of location which the failing load instruction attempted
to read

¢ DC_STAT: RA identifies register which holds the bad data. LW,LOCKINT,VAX_FP
identify type of load instruction

e BC_TAG holds results of external cache tag probe if external cache was enabled for this
transaction
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3.12.2 EV4 Error Flows

3.12.2.1

3.12.2.2

l-stream ECC error

data put into Icache unchanged, block gets validated

machine check

BIU_STAT: FILL_ECC, FILL_IRD set, FILL_SEO set if multiple errors occurred
FILL_ADDRI33..5] & BIU_STAT[FILL_QW] give bad QW’s address
FILL_SYNDROME contains syndrome bits associated with failing quadword
BIU_ADDR, BIU_STATT(6..0] locked - contents are UNPREDICTABLE
DC_STAT locked - contents are UNPREDICTABLE

BC_TAG holds results of external cache tag probe if external cache was enabled for this
transaction

D-stream ECC error

data put into Dcache unchanged, block gets validated

machine check v
BIU_STAT: FILL_ECC set, FILL_IRD clear, FILL_SEO set if multiple errors occurred
FILL_ADDRI[33..5] & BIU_STAT[FILL_QW1 give bad QW’s address

FILL_ADDRI[4..2] contain PA bits [4..2] of location which the failing load instruction
attempted to read

FILL_SYNDROME contains syndrome bits associated with failing quadword
BIU_ADDR, BIU_STAT[6..0] locked - contents are UNPREDICTABLE

DC_STAT: RA identifies register which holds the bad data. LW,LOCK,INT,VAX_FP
identify type of load instruction

BC_TAG halds results of external cache tag probe if external cache was enabled for this
transaction

BIU: tag address parity error

recognized at end of tag probe sequence

lookup uses predicted parity so transaction misses the external cache
BC_TAG holds results of external cache tag probe

machine check

BIU_STAT: BC_TPERR set

BIU_ADDR holds address
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3.12.2.4 BIU: tag control parity error

¢ recognized at end of tag probe sequence

* transaction forced to miss external cache

¢ BC_TAG holds results of external cache tag probe
¢ machine check

¢ BIU_STAT: BC_TCPERR set

¢ BIU_ADDR holds address

3.12.2.5 BIU: system external transaction terminated with CACK_SERR

¢ CRD interrupt.
e BIU_STAT: BIU_SERR set, BIU_CMD holds cReq_h[2..0].
¢ BIU_ADDR holds address.

3.12.2.6 BiU: system transaction terminated with CACK_HERR

* machine check
e BIU_STAT: BIU_HERR set, BIU_CMD holds cReq_h[2..0] |
e BIU_ADDR holds address !

3.12.2.7 BIU: I-stream parity error (parity mode only)

¢ data put into Icache unchanged, block gets validated

¢ machine check

¢ BIU_STAT: FILL_DPERR set, FILL_IRD set

¢ FILL_ADDRI[33..5] & BIU_STATI[FILL_QW] give bad QW’s address

¢ FILL_SYNDROME identifies failing longword(s)

¢ BIU_ADDR, BIU_STAT[6..0] locked - contents are UNPREDICTABLE
* DC_STAT locked - contents are UNPREDICTABLE

¢ BC_TAG holds results of external cache tag probe if external cache was enabled for this
transaction

3.12.2.8 BIU: D-stream parity error (parity mode only)

¢ data put into Dcache unchanged, block gets validated
¢ machine check

¢ BIU_STAT: FILL_DPERR set, FILL_IRD clear
¢ FILL_ADDRI[33..5] & BIU_STAT[FILL_QW] give bad QW’s address
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FILL_ADDRI[4..2] contain PA bits [4..2] of location which the failing load instruction
attempted to read

FILL_SYNDROME identifies failing longword(s)
BIU_ADDR, BIU_STATY6..0] locked - contents are UNPREDICTABLE

DC_STAT: RA identifies register which holds the bad data. LW,LOCK,INT VAX FP
identify type of load instruction

BC_TAG holds results of external cache tag probe if external cache was enabled for this
transaction
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Chapter 4
External Interface

4.1 Overview

The EVx chip connects directly to an external cache built from off-the-shelf static RAMs.
Because building high-speed logic is very difficult in low-end systems, the chip controls the
RAMs directly. The chip contains a programmable external cache interface, so that each
system can make its own external cache speed and configuration tradeoffs.

The clocks used by the external interface are generated by the chip, but the speed of the
clocks is programmable, and is determined during chip reset. This allows each system to
make its own external interface speed tradeoffs. EVx is also configured during reset to use
either a 64-bit or 128-bit wide external data bus. The bulk of this chapter describes the chip’s
operation in 128-bit mode, and Section 4.3 of this chapter describes details specific to 64-bit
mode operation.

4.2 Signals

The following table lists all of the signals on the EVx chip. In the "type" column, an "I" means

a pin is an input, an "O" means the pin is an output, and a "B" means the pin is tristate and
bidirectional.

Table 4-1: EVx Signals
Signal Name Count Type Function
clkin_h, 1 2 I Clock input
testClkIn_h, _1
cpuClkOut_h
sysClkOutl_h, _}
sysClkOut2_h, _1
dcOk_h

Clock input for testing
CPU clock output
System clock output, normal

System clock output, delayed

I N N )
- o O O "™

Power and clocks ok
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Table 4-1 (Cont.): EVx Signals

Signal Name Count Type Function

reset_] ‘1 I Reset

icMode_h[1..0] 2 I Icache Test Mode Selection
sRomOE_] 1 (o) Serial ROM output enable
sRomD_h 1 I Serial ROM data/Rx data
sRomClk_h 1 (0] Serial ROM clock/Tx data
adr_h[33..5] 29 B _ Address bus
data_h{127..0] 128 B Data bus

check_h[27..0] 28 B Check bit bus

dOE_1 1 1 Data bus output enable
dWSel_h[1..0] 2 I Data bus write data select
dRAck_h[2..0] 3 1 Data bus read data acknowledge
tagCEOE_h 1 0O tagCtl and tagAdr CE/OE
tagCtIWE_h 1 o tagCtl WE

tagCtlV_h 1 B Tag valid

tagCtlS_h 1 B Tag shared

tagCtlD_h 1 B Tag dirty

tagCtlP_h 1 B Tag V/S/D parity
tagAdr_h[33..17] 17 I Tag address

tagAdrP_h ‘ 1 I Tag address parity
tagOk_h, _1 2 I Tag access from CPU is ok
tagEq_l 1 o Tag compare output
dataCEOE_h(3..0] 4 0] data CE/OE, longword
dataWE_h[3..0] 4 (6] data WE, longword
dataA_h[4..3] 2 (o) data A[4..3]

holdReq_h 1 I Hold request

holdAck_h 1 O Hold acknowledge
cReq_h[2..0] 3 o Cycle request
c¢WMask_h[7..0] 8 0 Cycle write mask
cAck_h[2..0] 3 I Cycle acknowledge
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Table 4-1 (Cont.): EVx Signals

Signal Name Count Type Function

iAdr_h[12..5] 8 1 Invalidate address
dInvReq_h 1 I Invalidate request, Dcache
dMapWE_h 1 (0] Backmap WE, Dcache
irq_h[5..0] 6 I Interrupt requests

vRef 1 I Input reference

eclOut_h 1 I Output mode selection
perf_cnt_h([1..0] 2 I Performance counter inputs
tristate_l 1 1 Tristate for testing

cont_l 1 I Continuity for testing

Systems using EVx in 128-bit mode should ignore dataA_h[3] and tie dWSel_h[0] false. See
Section 4.3 for 64-bit mode details.

4.2.1 Clocks

External logic supplies EVx with a differential clock at twice the desired internal clock
frequency via the clkIn_h and clkIn_l pins. EVx divides this clock by two to generate the
internal chip clock.

The internal chip clock is supplied to the external interface via the cpuClkOut_h pin. The
false-to-true transition of cpuClkOut_h is the "CPU clock” used in the timing specification for
the tagOk_h,_l signals.

The CPU clock is divided by a programmable value between 2 and 8 to generate a system
clock, which is supplied to the external interface via the sysClkOutl_h and sysClkOutl_l
pins. The system clock is delayed by a programmable number of CPU clock cycles between 0
and 3 to generate a delayed system clock, which is supplied to the external interface via the
sysClkOut2_h and sysClkOut2_l pins.

The clock generator runs, generating cpuClkOut_h and correctly timed and positioned
sysClkOutl and sysClkOut2, while the chip is held in reset.

The output of the programmable divider is symmetric if the divisor is even, and asymmetric
with sysClkOutl_h TRUE for one extra CPU cycle if the divisor is odd.

The false-to-true transition of sysClkOutl_h is the "system clock” used as a timing reference
throughout this specification.

Almost all transactions on the external interface run synchronously to the CPU clock
and phase aligned to the system clock, so the external interface appears to be running
synchronously to the system clock (most setup and hold times are referenced to the system
clock). The exceptions to this are the fast, EVx controlled transactions on the external caches

and the sample of the tagOk_h, _l inputs, which are synchronous to the CPU clock, but
independent of the system clock.
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4.2.2 DC_OK and Reset

EVx contains a ring oscillator which is switched into service during power up to provide
an internal chip clock. The dcOk_h signal switches clock sources between an on-chip ring
oscillator and the external clock oscillator. If deOk_h is false then the on-chip ring oscillator
feeds the clock generator, and EVx is held in reset independent of the state of the reset_l
signal. If decOk_h is true then the external clock oscillator.feeds the clock generator. When
dcOk_h is true the vRef input must be valid so that inputs can be sensed. The deOk_h signal
is special in that it does not require that vRef be stable to be sensed. It is important to
emphasize the importance of driving dcOk_h false until the voltage on vRef has stabilized.
Because chip testers can apply clocks and power to the chip at the same time, the chip tester
can always drive deOk_h true, but the tester must drive reset_l true for a period longer than
the minimum hold time of vRef,

When EVx is running off the internal ring oscillator the clock outputs follow it, just like they
would when real clocks are applied. The frequency of the ring oscillator varies from chip
to chip within a range of 10MHZ to 100MHz, which corresponds to an internal CPU clock
frequency of between 5 MHz and 50 MHz. Also, when the deOk_h signal is false, the system
clock divisor is forced to eight, and the sysClkOut2_h, _1 delay is forced to three.

Note if the deOk_h signal is generated by an RC delay, there is no check that the input
clocks are really running. This means that if a board is powered up in manufacturing with a
missing, defective, or mis-soldered clock oscillator then EVx will enter a possibly destructive
high-current state. Furthermore, if a clock oscillator fails in stage 1 burn-in then EVx may
also enter this state. The frequency and duration of such events need to be understood by
the module designer to decide if this is really a problem.

The reset_] signal forces the CPU into a known state - see Table 3-8. The reset_l signal may
be asynchronous, and need not be asserted beyond the assertion of dcOk_h to guarantee that
the EVx chip is properly reset.

In order to bring the chip out of internal reset at a deterministic time, the reset_l pin may
be deasserted synchronously with respect to the system clock. See chapter Chapter 6 for the
setup and hold requirements of the reset_l pin when used in this way.

The EV3 and EV4 CPU chips. use a 3.3V power supply. This 3.3V supply must be stable
before any input goes above 4V.

While in reset, EVx reads sysClkOut and external bus configuration information off the irq_h
pins - external logic should drive the configuration information onto the irq_h pins any time
reset_l is true.

The irq_h[5] bit is used to select 128-bit or 64-bit mode. If irq_h[5] is true then 128-bit mode
is selected.

The irqg_h[2..0] bits encode the value of the divisor used to generate the system clock from
the CPU clock.

44 External Interface



Table 4-2: System Clock Divisor
irq_h[2] irq_h[1] irq_h[0] Ratio
F F F 2

H 4 3 S = = 9
A 3 = = 3 3
I B T T
® @ =N o o b

The irq_h{4..3] bits encode the delay, in CPU clock cycles, from sysClkOutl to sysClkOut2.

Table 4-3: System Clock Delay

irq_hl4] irg_h[3] Delay
F F 0
F T 1
T F 2
T T 3

When the tristate_l pin is asserted the chip is internally forced into the reset state, without
resampling the interrupt pins.

4.2.3 Initialization and Diagnostic Interface

EV4 implements three Icache initialization modes to support chip and module level testing.

. The value placed on icMode_h{1..0] determines which of these modes is used after EV4 is
reset. Unlike the value placed on irq_h{5..0] during reset, the value placed on icMode_h[1..0]
must be retained after reset_l is deasserted.

Tabie 4-4: Icache Test Modes
icMode_h{1] icMode_h{0] Mode

F F Serial Rom

F T Disabled

T F Icache Test - Write
T T Icache Test - Read
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If the value on icMode_h{1..0] selects Serial ROM Mode, EV4 will load the contents of its
internal Icache from an external serial ROM (such as an AMD Am1736) before executing
its first instruction. The serial ROM could contain enough ALPHA code to complete the
configuration of the external interface, e.g. setting the timing on the external cache RAMs;
and diagnose the path between the CPU chip and the real ROM. EV4 is in PALmode following
the deassertion of reset_l - this gives the code loaded into the Icache access to all of the visible
state within the chip.

Three signals are used to interface to the serial ROM. The sRomOE_] output signal supplies
the output enable to the ROM, serving both as an output enable and as a reset (refer to the
serial ROM specifications for details). The sRomClk_h output signal supplies the clock to
the ROM that causes it to advance to the next bit. The ROM data is read by EVx via the
sRomD_h input signal.

Once the data in the serial ROM has been loaded into the Icache, the three special signals
become simple parallel I/O pins that can be used to drive a diagnostic terminal. When the
serial ROM is not being read, the sRomOE_]l output signal is false. If this pin is wired to
the active high enable of an RS422 receiver driving onto sRomD_h (the 26LS32 will work)
and to the active high enable of an RS422 driver driving from sRomClk_h (the 26LS31 will
work). The CPU allows sRomD_h to be read and sRomClk_h to be written by PALcode; this
is sufficient hardware support to implement a bit-banged serial interface.

Using the icMode_h[1..0] pins, the Icache diagnostic interface may be disabled altogether. In
this case, since the Icache valid bits are cleared by reset, the first instruction fetch will miss
the Icache.

In addition to Serial ROM mode, EV4 includes two test modes which together allow chip
tester hardware full read and write access to the Icache. Icache Test/Write Mode works
exactly like Serial ROM mode except that bits are loaded into the Icache at a higher rate.
Icache Test/Read Mode allows the contents of the Icache to be read in a bit-serial manner
from the sRomOE_] pin. These two modes are available only to chip test hardware. Systems
using EV4 must tie icMode_h[1] to FALSE.

In EV4, all Icache bits are loaded from the diagnostic interface, including each blocks’ tag,
ASN, ASM, valid and branch history bits. The Icache blocks are loaded in sequential order
starting with block zero and ending with block 255. The order in which bits within each block
are serially loaded is shown below: '

a

s
bht 1w7 1wS 1w3 1wl v m asn tag lwé 1wd lw2 1wO
e T i et i sl e A s

T e e e e O e R O e e
e O O e e O

e R A T A Y Y Y N A Y A H R R A A
e i e i e S S S B e S s i S

Bits within each field are arranged such that high-order bits are on the
left. The serial chain shifts to the right.

EV3 does not implement, the Icache Test/Write and Icache Test/Read modes described above.
Further, the icMode_h[1] pin does not connect to the EV3 die. Also, for EV3 the serial
ROM should contain only the bits of the instructions which are to be loaded into the Icache.
When the Icache is loaded the valid bit in each cache block is set, and the tag is cleared.
Conceptually, the data bits from the serial ROM are shifted into a 64-bit wide holding register
and then written into the Icache 64 bits at a time. The bits from the serial ROM are shifted

4-6 External Interface



into this holding register from the least significant bit to the most significant bit. Quadwords
are written into the Icache in increasing order starting with the quadword at byte address
zero.

4.2.4 Address Bus

The tristate, bidirectional adr_h pins provide a path for addresses to flow between EVx and
the rest of the system. The adr_h pins are connected to the buffers that drive the address
pins of the external cache RAMs, and to the transceivers that are located between the EVx
local address bus and the CPU module address bus.

The address bus is normally driven by EVx. EVx stops driving the address bus during reset
and during external cache hold. In the external cache hold state the address bus acts like
an input, and the tagEq_l output is the result of an equality compare between adr_h and
tagAdr_h. Only bits that are part of the cache tag, as speclﬁed by the BC_SIZE field of the
BIU_CTL IPR, participate in the compare. The tagEq_l pin is asserted during external cache
hold only if the result of the tag comparison is true, and the parity calculated across the
appropriate bits of tagAdr_h matches the value on tagAdrP_h. Even parity is used. tagEq_l
is deasserted when the address bus is not in the external cache hold state.

4.2.5 Data Bus

The tristate, bidirectional data_h pins provide a path for data to flow between EVx and the
rest of the system. The data_h pins connect directly to the I/O pins of the external cache data

RAMs and to the transceivers that are located between the EVx local data bus and the CPU
module data bus.

The tristate, bidirectional check_h pins provide a path for check bits to flow between the CPU
and the rest of the system. The check_h pins connect directly to the /O pins of the external
cache data RAMs and to the transceivers that are located between the EVx local check bus
and the CPU module check bus.

The data bus is driven by EVx when it is running a fast write cycle on the external caches,
or when some type of write cycle has been presented to the external interface and external
logic has enabled the data bus drivers (via dOE_l).

If EVx is in ECC mode then the check_h pins carry 7 check bits for each longword on the
data bus. Bits check_h[6..0] are the check bits for data_h[31..0]. Bits check_h[13..7] are the
check bits for data_h[63..32]. Bits check_h[20..14] are the check bits for data_h[95..64]. Bits
check_h[17..21] are the check bits for data_h[127..96].

The following ECC code is used. This code is the same one used by the IDT49C460 and
AMD29C660 32-bit ECC generator/checker chips.
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dddddddddddddddddddddddddddddddd
33222222222211111111110000000000
10987654321098765432109876543210

c6 XOR XXXXXXXX XXXXXXXX
c5 XOR XXXXXXXX XXXXXXXX
c4 XOR xx XXXXXX XX KXXKXXX

c3 XNOR XXX XXX XX XXX XXX XX
c2 XNOR X X XX X XX XX X XX X XX X
cl XOR X X X X X XXX X X X X X XXX
c0 XOR x xx X X XXX X X XXXX X X,

By arranging the data and check bits correctly, it is possible to arrange that any number of
errors restricted to a 4-bit group can be detected. One such arrangement is as follows:

d[oo], d4{o1], d[03], d[25]
d[02], df04], d[06], c[06]
d[05], d[07], d[12], <¢[03]
d[o8], d4d[09], d[1i1l], d[14]
d[{10], d{13], d[15], d[19]
d[le], d[17], d(22], d[28]
d[18], d[23], 4[30], c[05]
d[20], d[27], c[04], c[00]
d{21], d[26], c[02], c[01]
d[24], d[29], d[31]

If EVx is in PARITY mode then 4 of the check_h pins carry EVEN parity for each longword
on the data bus, and the rest of the bits are unused. Bit check_h[0] is the parity bit for
data_h[31..0]. Bit check_h[7] is the parity bit for data_h[63..32]. Bit check_h[14] is the parity
bit for data_h[95..64]. Bit check_h[21] is the parity bit for data_h[{127..96].

The ECC bit in the BIU_CTL IPR determines if EVx is in ECC mode or