
ULTRIX-32

Guide to the

BIND Service

Order No. AA-LY21A-TE

ULTRIX-32 Operating System, Version 3.0

Digital Equipment Corporation

Copyright © 1987, 1988 Digital Equipment Corporation

All Rights Reserved.

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by DIGITAL or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

DEC Q-bus VAX

DECnet RT VAXstation

DECUS ULTRIX VMS

MASSBUS ULTRIX-11 VT

MicroVAX ULTRIX-32 ULTRIX Worksystem Software

PDP UNIBUS dildiltlal1

UNIX is a registered trademark of AT&T in the USA and other countries.

IBM is a registered trademark of International Business Machines Corporation.

MICOM is a registered trademark of Micom System, Inc.

This manual was written and produced by the ULTRIX Documentation Group in Nashua, New
Hampshire.

Contents

About This Guide

PN 1o T2 o (o1 = SN vil

OrganiZatiOncooviiiiiiiiiiieiiiiiiiee eriireeeeeeettrieraseereeeen e s erereerasseeerenssnasssennes vii

Related DoOCUIMENES .ooviveiiriiiiiii ittte b ee et e eeaesrteenneenee viii

(01033872=Y15 10) o - R U viil

1 Introduction to the BIND Service

1.1 BIND S OrVerS cuieiiniiiiiiiiiiiiieieieeeettt ttnteerstreeatraeserernorierersessssssrernerns 1-4

1.1.1 The ROOt SerVeT ootttettt e e e e tir e s ts e eeearsaeens 14

1.1.2 The MaASter SeIVEE cuviuiieiieiiiiiieiieiieeiieeteeereneereereseneeriesnsersernernns 1-5

1.1.3 The Caching Server ..oe e eevaeaees 1-5

1.1.4 The Forwarding Serverccccccocceeeiiiiiiiiiiiineireniniiiinneneennnnseenien 1-5

1.1.5 The Slave SeIVeT .oooviiieiieiiiiiiiittt ittt et etesttesreeasernesnesnes 1-7

1.2 BIND ClentS oenieniiieiiiiiiiieiiteettt ee et eeereeressstretnstsenstneenssessssresnscnsens 1-8

1.3 How BIND Queries are Resolvedccoooiviiiiiiiiiiiiiiiiiiiiee, 1-8

1.4 How to Use the BIND ServiICe ..ooviiiiiiiiiiiiiiiiiiieiiiieiieiineneireineinenseneens 1-9

2 Setting Up the BIND Service

2.1 Setting Up a BIND Client Automaticallyccccooevviiiiiiiiiiiiiiiiniinienn, 22

2.2 Setting Up A BIND Client Manuallycccccooeiiiiiiiiiiiininieniiieiiiiieneennnns 2-2

2.2.1 Create the Resolver Filecccooooooiooiiieoeeeeeee 2-3
2.2.2 Set the Host NAMEooovvieviiiiieeeeeeee oo 2-4
2.2.3 Edit the Services Order Filecccoocoommmmiieeeeieoooeeoeeo, 24
2.2.4 Reboot the Systemccccoooiiiiiiiiioeeeeee oo 24

2.3 Setting Up a BIND Server Automaticallyc.occovvvovvovoeeoeoonn, 2-4

2.3.1 Run the bindsetup Commandcccccooceveveverveieeooeooesein. 2-4
2.3.2 Edit the Domain Data Filesoooccoovvvmvoreeeeeeeoeeooe oo, 2-6
2.3.3 Reboot the Systemoccccooovoeeeeoeeieeeoee oo 2-6

2.4 Setting Up a BIND Server Manuallycccoocovveeevoorooeooeeoeoeo 2-6

2.4.1 Edit the Boot File ..c.ccccooiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeoeeoee, 2-7
2.4.2 Edit the Domain Data Filescccccoocvevoveveeeeeoeeeeeoee 2-10
2.4.3 Set the Host Name in the hosts and rc.local Files 2-11
2.4.4 Edit the svcorder Filecccocoeooveemoeeeeeeeeeeeeeeeeeeeoeeeeo, 2-11
2.4.5 Reboot the Systemccccoooiivoeeeeeeeeieeeeeeeeeee e 2-12

2.5 Format of BIND File ENtTIES ...cccovvveereeeesoesoeeeeeeeeeeeeoeeeeooeeoeo, 2-13

2.5.1 The include Data File ENtrycccccoooivorimmoieeeeoieoeoeeeeeoeoe, 2-15
2.5.2 The origin Data File ENLTY .cccocovivveiviiiiiiseeeeeeeeeeeeeeers 2-15
2.5.3 The Start of Authority Data File ENtryccooooevevvvvivvennn. 2-16
2.5.4 The Name Server Data File Entryoccooovovevvevieeiooioieon, 2-18
2.5.5 The Address Data File ENtryccccooovvveovoeoeeeeeeooeeeeoieo, 2-18
2.5.6 The Host Information Data File Entryccococooevvevvvvvvvevveninn.s 2-19
2.5.7 The Well Known Services Data File Entrycoooocevevvnnnn... 2-19
2.5.8 The Canonical Name Data File Entrycococooevvevoevveeevoervenin.s 2-20
2.5.9 The Domain Name Pointer Data File Entrycccovvvvenrnnn, 2-21
2.5.10 The Mailbox Data File ENtry ..ccocoovvvvovoeoeeeoieioeeeooeol 2-22
2.5.11 The Mail Rename Data File ENtryccooovvvvvovivevoseviiiionnn 2-22
2.5.12 The Mailbox Information Data File Entrycoocoovvivennn., 2-23
2.5.13 The Mail Group Data File Entry e 2-24
2.5.14 The Mail Exchanger Data File Entryccooovvveivvvvveninn 2-24

3 Managing and Using the BIND Service

3.1.2 The Technical and Zone Contactcocoovvvvvveeveenvinn.n. . 3-2

3.2 Naming Domains and HoStSccccooeviiiiiiiiiiiiiiiiiie e 3-2

3.3 Registering With Public Networksccccocceeveiviiiieninnnnnn.. e —— 3-3

3.3.1 Contacting the DARPA Internet Networkccccovvveeveennnn. 3-4

3.3.2 Contacting the CSNET ..., 3-4

3.3.3 Contacting the BITNETccoovviiiiiiii e 3-4

3.4 Updating BIND Data Filescccccccceiiiiiiiiiiiiiiiicceee. 3-5

3.5 Obtaining Host Name and IP Address Informationcccooeeennn. 3-6

3.5.1 The nslookup Commandccceeviiieiiiiniiiiiiiiiieeeeen. 3-6

3.5.2 The nsquery Commandccccooiiiviieeiiiniiiiiiiiieeieee .87

3.5.3 The NIC whois Servicecccccccciiiiiiiieiiiiiiiiiiieicieeee, 3-7

3.6 Obtaining Further Information about the BIND Service 3-8

4 Troubleshooting the BIND Service

4.1 Reviewing the Domain Data Filesccccoooviviiiiiiniiiiiiiiiiiiiiiiiiieiieeen, 4-1

4.2 Reviewing the /etc/rc.local Filecccccoiviiiiiiiiiiiieeeeeeeeeeeeeee 4-2

4.3 Reviewing the Resolver Filecccooiiiimiiiiiiiiiiiieeeeeeeee 4.2

4.4 Reviewing the Debug Filesccoooovvvvoiiiiiiiiiiiiiiiiiceeiieereeeeeeeeeee e eeeaa 4-3

4.4.1 The SYSIOZ File oo.ovveieeeeeeeeeeeeereoseseeeeeseseseeesseeseeeeseeeses esssseeenns 4-3
4.4.2 The named_dump.db Filecoooooiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee, 4-4

4.4.3 The named.run Fileccccooiviiiiiiiiiiiiiiiiiiiiie, 4-4

4.4.4 The named.stats Fileccooooiiiiiiiiiiiiiiiiiiie, 4-5

4.5 Obtaining the named Process IDccccccooiiiiiiiiiiiieieeeieeeeeeeeeeereenn, 4-6

4.6 Sending Signals to the named Daemonccccoeeeeeieemvoveiveveeeenerannn, 4-6

A Appendix

A.1 The Named.Doot FIle ...ooouoviireiiieeeieee e, A-1

A.2 The Named.ca FIle .oooooonoeieeee e e A-3

A.3 The named.local Filec.cccooiiiiiiiiiiiiiiiiiiceeee el A4

A4 The named.hosts Fileccccooiiiiiiiiiiiiiiieee eeeeee e A4

A.5 The named.rev Filecccccoiiiiiiiiiiiiiiiieee eeee e A-5

A.6 The named_dump.db Fileccccccooviiiiiiiiieiiieeeeeeeeeeeceeeeeeee A-5

A.7T The named.run Filecccoooiiiiiiiiiiiiiiie e e eei A-9

A7.1 A Healthy named.run Fileccccceevmiiiiiiimmiiieeeeeeieeeeeeieseeean, A-9

A.7.2 An Unhealthy named.run Fileccocooceiivmmoviieimeiiieeeesieeeien, A-22

B Appendix

C Appendix

D Appendix

D.1 Getting nslookup Helpcccoovviiiiiiiiiiiie e D-1

D.2 Seeing Which nslookup Options Are Setoccccevvoveeeevveeeeirevienvinn, D-2

D.3 Listing Hosts in @ Domainccoovieiiieiieieeeeeeeeee oo D-2

D.4 Finding Mail EXChangersccccccoviiiiiiiiiioieeeeeeeeeeeeeee e eeees e, D-3

D.5 Finding the Start of Authoritycccccooovvveeeerniinn, eternaa D-4

D.6 Finding Servers for a Domaincccocoevivienieiecieiciieceeeeeereeeenns D4

D.7 Obtaining a Debug TTaceccccooiiiiiiiiieeeeeeeeeceeeeeeeeeeeeeeeeeeeseeseese, D-5

Figures

1-1: Hierarchy of BIND Zones and Domains on the Internet 1-3

1-2: Relationship of Master/Forwarder and Slave Servers 1-7

About This Guide

This guide provides introductory information about the the Berkeley

Internet Name Domain (BIND) service and explains how to install and

troubleshoot the service. In addition, this guide will assist you in

developing BIND management procedures by presenting guidelines from

which you can develop specific procedures for your site.

Audience

This guide is meant for the person responsible for maintaining networks

and system utilities such as mail on the ULTRIX operating system. This

person is usually the system manager, but could be a network manager or

the system manager who is also a user of a MicroVAX processor running

the ULTRIX operating system. This guide assumes that the reader is

familiar with the ULTRIX system commands, the system configuration, the

naming conventions, and an editor such as vi or ed. It also assumes that

the reader knows the names and addresses of the other systems on the

local network.

Organization

This guide consists of four chapters, several appendixes, and an index.
The chapters are:

Chapter 1: Introduction

This chapter introduces the BIND service. It provides the background

information that you need before you can set up and run BIND on

your system. This chapter also describes basic BIND concepts.

Chapter 2: Setting Up the BIND Service

This chapter describes how to perform the preliminary BIND setup on

your system using the bindsetup command, how to set up the BIND

service manually, and how to edit the BIND-related files.

Because the BIND environment varies from site to site, you need to

edit these files regardless of whether you use the bindsetup command.

The description of how to set up the BIND service manually is

included for those who want to understand how the BIND service

operates in addition to understanding how to edit the BIND-related

files.

Chapter 3: Managing and Using the BIND Service

This chapter describes how to manage the BIND service, including
defintions of the BIND administrative roles and information on how to
register a new top-level domain. It also describes how to use some of
the BIND features, such as obtaining a host name and IP address
using the nslookup command.

Chapter 4: Troubleshooting the BIND Service

This chapter describes how to debug the BIND service and review the
resulting debug files. It also offers general suggestions on how to
troubleshoot the BIND service.

Appendix A

This appendix provides sample BIND files for your reference. Some
depict a system with the BIND service set up properly, while others
indicate error conditions with the service.

Appendix B

This appendix shows a sample ftp session for transferring the BIND
registration questionnaire from the Network Information Center (NIC).
It also contains a copy of the registration questionnaire for your
information.

Appendix C

This appendix lists several papers, articles, and RFCs related to the
BIND service which you may want to read.

Appendix D

This appendix provides a sample interactive session with the nslookup
command. The sample is intended to help you get started with using
the command.

Related Documents

You should have available the related hardware documentation for your
system. You also should have the other documents in the ULTRIX
documentation set.

Conventions

The following conventions are used in this guide:

special In text, each mention of a specific command, option,
partition, pathname, directory, or file is presented in this
type.

command(x)

literal

italics

[]

function

UPPERCASE

example

example

%

#

>>2>

KEYNAME

CTRL/x

In text, cross-references to the command documentation

include the section number in the reference manual where

the commands are documented. For example: See the

cat(1l) command. This indicates that you can find the

material on the cat command in Section 1 of the ULTRIX

Reference Pages.

In syntax descriptions, this type indicates terms that are

constant and must be typed just as they are presented.

In syntax descriptions, this type indicates terms that are

variable.

In syntax descriptions, square brackets indicate terms that

are optional.

In syntax descriptions, a horizontal ellipsis indicates that

the preceding item can be repeated one or more times.

In function definitions, the function itself is shown in this

type. The function arguments are shown in italics.

The ULTRIX system differentiates between lowercase and

uppercase characters. Enter uppercase characters only

where specifically indicated by an example or a syntax line.

In examples, computer output text is printed in this type.

In examples, user input is printed in this bold type.

This is the default user prompt in multiuser mode.

This is the default superuser prompt.

This is the console subsystem prompt.

In examples, a vertical ellipsis indicates that not all of the

lines of the example are shown.

In examples, a word or abbreviation in angle brackets

indicates that you must press the named key on the

terminal keyboard.

In examples, symbols like this indicate that you must hold

down the CTRL key while you type the key that follows

the slash. Use of this combination of keys may appear on

your terminal screen as the letter preceded by the

circumflex character. In some instances. it mav not appear

Introduction to the BIND Service 1

This chapter provides an overview of the Berkeley Internet Name Domain

(BIND) Service.

The Bind service allows client systems to obtain host names and addresses

from BIND servers, and is basically a host name and address lookup

service for information on the Internet network. You can use the BIND

service to replace or supplement the host table mapping provided by the

local /etc/hosts file or the Yellow Pages (YP) service.

The BIND service is comprised of two parts, the software interface and

the server. The software interface is called the resolver, which consists of

a group of routines that reside in the C library /usr/lib/libc.a. The resolver

exchanges query packets with a BIND server. All BIND servers have a

name server daemon running in the background, which services queries on

a given network port. The standard port for UDP and TCP is specified in

the /etc/services file.

An advantage of using the BIND service instead of the host table lookup

method for host name and address resolution is that you avoid the need

for a single centralized clearing house for all the names and addresses.

With the BIND service you can delegate the authority to disseminate host

‘information to the different systems on the network responsible for it.

This works well for large networks where systems cross organizational

boundaries.

The BIND service utilizes several concepts such as domains, zones, servers,

clients, and host names and addresses. The rest of this chapter introduces

these concepts and summarizes the steps the BIND service takes to

resolve a query. For a complete discussion of host names and Internet

addresses, see the Guide to Networking.

The BIND service breaks the Internet into a hierarchy of domains, similar

to a tree structure. Each domain is given a label, and The name of the

domain is the concatenation of all the labels of the domains, from the root

to the current domain, listed from right to left and separated by dots. A

label must be unique within its domain. The entire BIND Internet

hierarchy is partitioned into several zones, each starting at a domain and

extending down to the leaf domains, or to domains where other zones

start. A zone is a subdivision of a domain and is a discrete, non-

overlapping entity. Each zone is an area of authority for which a master

server is responsible, and therefore usually represents an administrative

boundary.

Currently there are seven top-level domains in the BIND hierarchy in the

United States:

arpa

com

edu

gov

mil

net

org

For

For

For

For

For

For

the Arpanet (gradually being phased out)

commercial institutions

educational institutions

the government

military organizations

network-type organizations such as network service centers,

consortia, and information centers

For miscellaneous organizations such as professional societies,

similar non-profit organizations, and so forth

In addition to these, there are several top-level domains for individual

countries. You can contact the NIC for more information about them.

root

| Internet

(""" | "")
com edu

| | | |
dec hp mit berkeley

1 LTI T T | |
citles l l 1 XX XXX X X X x X

chicago newyork boston

ZK-0013U~GE

Figure 1-1: Hierarchy of BIND Zones and Domains on the Internet

Figure 1-1 shows the hierarchy of the Internet, two top-level domains, and

some of the major zones. In Figure 1-1, everything below com is in the

com top-level domain, and the zones are mit.edu, dec.com, and

cities.dec.com, and the host names (sometimes termed leaf domains) have

the names of cities or are depicted by an x.

Assuming a host name in the zone cities.dec.com is chicago, the following

is the fully qualified domain name for that host:

chicago.cities.dec.com.

In this example, com is the top level domain, cities.dec.com a subdomain

of com, and chicago is a host name. If a master server has the authority

for the dec.com domain only, then dec.com is a zone.

In the preceding example, note the dot (.) at the end of the domain name.

This indicates that the domain name is fully qualified, and is thus a

complete, definitive, and absolute name of a singular host.

The rest of this chapter introduces BIND servers and clients and indicates

how an individual can make use of the BIND service.

1.1 BIND Servers

A BIND server is a system running the named daemon and therefore can

answer BIND queries. There are several types of BIND servers: root,

master, caching, forwarding, and slave. The following sections describe

each them in detail

1.1.1 The Root Server

Root servers are the ultimate authorities. The root servers know about all

the top-level domains on the Internet network. From these top-level

domains, information can be gathered about hosts on subdomains. The

root servers, for example, do not necessarily know about the cities.dec.com

subdomain. However, by performing an NS query with the nslookup

command, a root server can tell you to check with decwrl.dec.com for

information about a host on the cities.dec.com subdomain.

If a client requests information on another domain, any server, other than

slave, can pass along the request to a root server.

At this time there are seven root servers in the continental United States.

These root servers are:

ns.nasa.gov.

sri-nic.arpa.

a.isi.edu.

gunter-adam.arpa.

brl-aos.arpa.

terp.umd.edu.

c.nyser.net.

The period (.) at the end of each root server name indicates that this is

the absolute pathname and that no BIND name extensions are to be

appended. Without the period, the server name is relative to the current

domain.

With the proper option set in a BIND server’s cache file, the BIND

service automatically updates the server’s cache with information about any

changes regarding the root servers. This information will be absorbed by

the boot file when your server reboots. This is described in Chapter 2.

The Network Information Center (NIC) determines who will be root

servers. The toll-free number for the NIC is:

(800) - 235 - 3155

The electronic mailing address is:

hostmaster@sri-nic.arpa

1.1.2 The Master Server

A master server is the authority for the current domain space and

maintains the BIND data bases for its zone. A server may be a master

server for multiple domains, being the primary server for some domains

and a secondary server for others.

The primary master server loads its data base from a file on disk. This

server can also delegate to other servers in its zone the authority to

answer queries for its domain space.

A secondary master server receives its authority and its data base from

the primary master server. When a secondary master server first boots, it

loads the data for the zone from a backup file, if possible (assuming you

configured your BIND service this way). It then consults with a primary

master server to check that the data base is still up to date. After the

secondary master server is running, it periodically checks with the primary

master server to see if it needs to update its data base. For information

on how to define the frequency of the update checks, see Chapter 2.

Each BIND domain should have at least two master servers, one primary

and one or more secondary. The duplicate secondary servers act as backup

servers in the event that the primary master server fails, is overloaded, or

is down.

1.1.3 The Caching Server

All servers cache the information they receive for use until the data

expires. However, caching servers have no authority for any zone, and

thus have no data bases to maintain. These servers service BIND queries

by asking other servers who have authority, such as a master server, for

the information. Caching servers store the information in a cache until the

data expires. The expiration date is based on a time to live (tt]) field,

which is attached to the data when the caching server receives it.

1.1.4 The Forwarding Server

Forwarding servers, called forwarders, process recursive requests that slave

servers cannot resolve locally. A forwarder can be any BIND server that

has Internet access. Thus, forwarders can be a primary or a secondary

master server or a caching only server. The configuration files on the

slave servers define which systems the slaves will access as forwarders.

Forwarders have full access to the Internet network and therefore are able

to obtain information not held in their local caches from root servers.

Because forwarders receive many requests from slave servers, they tend to

have a larger local cache than do slave servers. All the hosts on the

domain benefit from this meta-cache, which reduces the total number of

queries from that site by forwarding them to the root servers on the

outside Internet network.

A slave server and forwarder configuration is typically used when you do

not want all the servers to interact with the rest of the servers on the

Internet network. For example, assume a site consists of several

workstations and a VAX 8800 processor acting as a BIND forwarder.

Assume the workstations are not to have access to the Internet network.

To give the workstations the appearance of access to the Internet network,

they could be set up as BIND slave servers to the VAX 8800 system. In

this case, the BIND forwarder forwards the workstations’ queries and

interacts with other BIND servers on the Internet network. When the

forwarder resolves the queries, it sends the answer to the slave server.

Figure 1-2 shows the relationship among master and slave servers and

forwarders. The arrows in Figure 1-2 depict the general flow of

information to and from some of the hosts.

BIND

moster BIND
server client
condary)

BE H

: H !
1 ! i

BIND BIND
BIND slave moster/
client server forwarder BIND

server root

{primary) server

. 1
P (! i
[[y. Internet
l [é
L ¥N N N N |

B

BIND

root

server

ZK~0012U-GE

Figure 1-2: Relationship of Master/Forwarder and Slave Servers

Note

You can run the BIND service on a local network, only, without

having a forwarder on your network. However, if you do not

have a forwarder on your network there is no need to have slave

servers. Without forwarders, your system does not have access

to the root servers on the Internet.

1.1.5 The Slave Server

Slave servers typically do not have full network access and therefore

cannot directly interact with root servers if the information requested is

not in their local caches.

If a slave server cannot resolve a query locally, it forwards the query to

its fixed list of forwarders. The slave servers try the forwarders listed in

+thotr hoant filae Ane at a Fima 11+l the et e avhattctad Av +ha ~11antr o

satisfied.

1.2 BIND Clients

A BIND client is any system that uses the BIND service to resolve host
names and addresses. BIND clients make queries, but they never resolve

them locally. Instead, BIND servers resolve the client’s requests.

BIND clients do not run the named daemon. Instead, BIND clients have
the resolver file /etc/resolv.conf. No other BIND files are necessary. Here
is an example of a /etc/resolv.conf file:

domain dec.com

nameserver 128.11.22.33

nameserver 128.11.22.44

The /etc/resolv.conf file tells the resolver the IP address of the BIND
servers which can service the client’s BIND requests.

1.3 How BIND Queries are Resolved

The following steps describe the usual procedure a slave server and
forwarder take to resolve a BIND query:

1. A slave server receives a query for a host name resolution.

2. The slave server uses the gethostbyname library routine.

3. If the gethostbyname library routine cannot obtain the information,

the slave server asks the forwarders listed in its BIND boot file (the
default is named.boot) one at a time, until the query is resolved or
the list is exhausted.

4. If the forwarder does not have the information in its local cache, it
asks the root servers listed in its BIND data file, one at a time,
until the query is resolved or the list is exhausted.

5. The root server provides the forwarder with the information needed
to contact servers of the domain space containing the host in

question.

6. The forwarder sends a request to a server for that domain. It gets
the server’s address information from a root server.

7. The server provides the forwarder with the information to contact
servers of the next lower domain.

8. Steps 5 and 6 repeat until the forwarder actually gets the host
information, or until the information obtained from the root server is
exhausted.

9. The forwarder returns the results to the slave server, even if the

Other BIND servers follow similar steps.

1.4 How to Use the BIND Service

If the BIND service is enabled, your system automatically uses it for any

process that needs a host name or address such as mail, rlogin, ftp, and so

forth.

In addition, users on a system with the BIND service properly set up can

run the nslookup and nsquery commands to find host names and addresses.

See Chapter 3 and nslookup(1l) and nsquery(1) in the ULTRIX Reference

Pages for further information.

Setting Up the BIND Service 2

This chapter explains how to perform the preliminary setup of the Internet

Name Domain (BIND) service using the bindsetup command, and how to

perform the preliminary setup manually. The bindsetup command allows

you to set up your system as a BIND server or client. See bindsetup(8)

in the ULTRIX Reference Pages for further information about the

bindsetup command. See Chapter 1 for a description of BIND servers and

clients.

Note

After you have installed your ULTRIX operating system and set

up the BIND service, you need to edit the sendmail configuration

file /etc/sendmail.cf. For the mail utility to run with the BIND

service, you must specify your BIND domain in the sendmail.cf

file. For example, if your domain name is cities.dec.com, here is

the appropriate entry in the sendmail.cf file:

DDcities.dec.com

See the sendmail documentation and read the comments in the

file itself for further information.

The topics discussed in this chapter are:

o Setting up a BIND client automatically

° Setting up a BIND client manually

° Setting up a BIND server automatically

° Setting up a BIND server manually

. Format of BIND file entries

If you want the BIND service to be able to resolve queries about other

domains, you must register your domain. Chapter 3 describes how to

register your domain with a public network.

2.1 Setting Up a BIND Client Automatically

To set up your system as a BIND client automatically, run the bindsetup

command and then reboot the system. However, before you run the

bindsetup command, be sure that the system is in multiuser mode and

that the network is up. The easiest way to run the bindsetup command is

to supply the domain name and server IP address on the command line.

For example, if the domain name is cities.dec.com and the server IP

addresses are 128.11.22.33 and 128.11.22.44 type:

bindsetup -c cities.dec.com 128.11.22.33 128.11.22.44

The bindsetup command then sets up your system silently as a BIND

client with the domain and servers specified.

To use the bindsetup command interactively to set up a BIND client, type:

bindsetup

The bindsetup command then displays a menu and prompts you for the

required information.

After the setup has been completed, the bindsetup command lists the

updated files for your information. You should then reboot the system.

This ensures that the BIND service has your system’s fully qualified

domain name, such as chicago.cities.dec.com. The following command

reboots your system: ' ‘

/etc/shutdown -r now

Note

If the bindsetup command fails for any reason, be sure to check
the /etc/svcorder file. If the BIND service is not properly set

up, be sure that there is no bind entry in this file.

When prompted for the domain, be sure to supply the domain

name without the trailing dot (.), for example:

cities.dec.com

2.2 Setting Up A BIND Client Manually

To set up your system as a BIND client manually, you need to follow

these three steps:

1. Create the file /etc/resolv.conf

2. Set the host name in the /etc/hosts and /etc/rc.local files

3. Edit the /etc/svcorder file

4, Reboot the system

2.2.1 Create the Resolver File

The resolver file /etc/resolv.conf designates the BIND servers on the

network that can answer queries.

Note

If your system is a BIND server running the named daemon,

you should not set up your system as a client, since the

/etc/resolv.conf file, if it exists, is read each time the

gethostbyname() or gethostbyaddr() routine is called.

An easy way to tell if your system is a BIND server is to see if

the named daemon is running:

ps —aux | grep named

The resolv.conf file consists of at least two entries. The first entry defines

the domain and the second entry defines the server. It is best to have

additional entries, one for each additional server. Server replication reduces

the possibility of the BIND service being interrupted in the event that a

server goes down. Here is the format for /etc/resolv.conf file entries:

domain domainname

nameserver IP address

For example, the following shows the contents of the resolver file for a

client on the domain cities.dec.com. In this example there are two servers

listed. Note that the semicolon (;) designates a comment line in BIND

files:

domain cities.dec.com

nameserver 128.11.22.33

nameserver 128.11.22.44

See resolver(5) in the ULTRIX Reference Pages for further information
about the /etc/resolv.conf file.

2.2.2 Set the Host Name

For information on how to set the host name in the /etc/hosts and

/etc/rc.local files, see Section 2.4.3.

2.2.3 Edit the Services Order File

For information on how to edit the services order file /etc/svcorder, see

Section 2.4.4.

2.2.4 Reboot the System

After you have created the resolver file, modified your host name to the

fully qualified BIND name, and edited the services order file, you should

reboot the system. By rebooting the system, you cause all the

modifications to the files to take effect.

The following command shuts down the system and reboots it immediately:

/etc/shutdown -r now

See shutdown(8) in the ULTRIX Reference Pages for further information

about shutting down the system.

2.3 Setting Up a BIND Server Automatically

To set up your system as a BIND server automatically, you need to edit a

few files, and run the bindsetup command, and reboot the system.

However, before you run the bindsetup command, be sure that the system

is in multiuser mode and that the network is up. These are the steps for

setting up a BIND server:

1. Run the bindsetup command and answer the questions

2. Edit the domain data files

3. Reboot the System

2.3.1 Run the bindsetup Command

The first step is to execute the bindsetup command, specifying no options.

First, however, be sure that the network is up.

bindsetup

The bindsetup command prompts you for the following information:

° The domain name.

° The type of configuration, such as primary master, secondary master,

caching, or slave server.

o The full path name of the directory where the BIND data files are

to reside: the default is /etc/namedb.

e The BIND boot file name: the default is /etc/named.boot.

If you are setting up your system as a primary master server, you need to

supply the following additional information:

® The BIND host file name: the default is named.hosts.

° The BIND local host file name: the default is named.local.

o The BIND reverse local host file name: the default is named.rev.

o The BIND cache file name: the default is named.ca.

After obtaining the necessary information, bindsetup creates the appropriate

boot file for your BIND server. This file is /etc/named.boot by default.

If the /etc/svcorder file does not exist, bindsetup creates it and places two

entries in it. One entry is for the BIND service and the other is for the

local service. The local entry allows your system to perform local host

and address resolution with the /etc/hosts file in the event that the BIND

servers are down.

If the svcorder file already exists, the bindsetup commands reminds you to

review the file and to be sure that the services are listed in the proper

order. You can edit the /etc/svcorder file after the bindsetup command

completes. Be sure that you have an entry in the svcorder file for local.

See Section 2.4.4 and svcorder(5) in the ULTRIX Reference Pages for

further information about the svcorder file.

Note

If the bindsetup command fails for any reason, be sure to check

the /etc/svcorder file. If the BIND service is not properly set

up, be sure that there is no bind entry in this file.

The bindsetup command edits the /etc/rc.local file. The /bin/hostname

entry is changed to reflect the full BIND name, such as changing chicago

to chicago.cities.dec.com. In addition, bindsetup places an entry for the

named daemon before the local daemons such as sendmail. The named

entry goes either before or after any YP entries, but before any NFS

entries.

Finally, the bindsetup command executes the hosthame command, using the

new BIND hostname. The new host name is placed in the /etc/hosts file

for local host name and address resolution.

2.3.2 Edit the Domain Data Files

When the bindsetup command has completed, it lists the files you need to
edit manually. The default files are:

o /etc/namedb/named.hosts

o /etc/namedb/named.rev

® /etc/namedb/named.local

® /etc/namedb/named.ca

® /etc/svcorder

See Sections 2.4.4 and 2.5 for information about editing the files.

2.3.3 Reboot the System

After you have modified the files, you should reboot the system. The
following command shuts down the system and reboots it immediately:

/etc/shutdown -r now

See shutdown(8) in the ULTRIX Reference Pages for further information
about shutting down the system.

Note

If you do not want to reboot your system, you can type the

following command to start the named daemon and thus start
the BIND service running:

/usr/etc/named /etc/named.boot &

Be advised, however, that not all systems will necessarily know

about your system’s new host name. Therefore, it is best to

reboot the system, if possible.

The named daemon places its process number in the file /etc/named.pid.
In the event that you need to send a signal to the named process, this is
where you can find its process identification (pid) number.

2.4 Setting Up a BIND Server Manually

BIND servers make use of several configuration files. To set up your
system as a BIND server, the first task is to set up the BIND

environment by editing the BIND configuration files. After the BIND
environment has been established, you start the BIND service by rebooting
the system as described in Section 2.3.3. Here are the steps:

1. Edit the boot file

Edit the domain data files

Set the host name in the hosts and rc.local files

Edit the svcorder file

Reboot the System

2.4.1 Edit the Boot File

When the named daemon starts running, it reads the boot file. This file

tells the server what type of server it is, which zone it has authority for,

and where to get its initial data. The default path and name for the boot

file is /etc/named.boot.

Note

You can change the name of the boot file and the path by

specifying the full pathname on the command line when you start

the named daemon.

The boot file named.boot has two types of entries. One entry specifies the

directory, and the other specifies the type of server. Here is the format

of the directory entry:

directory directory

This entry specifies the directory where the data files reside for the named

daemon to read at start time. (The directory should be large enough to

hold a core dump, should one occur.) This is especially important if there

are include files with relative path names called by $include. (See Section

2.5.1 for information about the include data file entry.) The default

directory is /etc/namedb. For example:

directory /etc/namedb

The directory entry allows you to state just the file name in subsequent

entries in the boot file. If you do not have a directory entry in the boot

file, you must explicitly state the full pathname for each file name in each

entry.

Here is the format for the second type of boot file entry:

type domain/zone source data file/IP addr refresh

The first field is the type variable, which qualifies the remainder of the

line by specifying the type of server. The choices are primary, secondary,

cache, forwarder, or slave. The second field specifies the domain or zone

for which the server has authority. The third field specifies the name of

the file from which the data is to be read. The fourth opntional field is

specifies the interval, in seconds, for refreshing the data file. The exact

content of each field depends upon the type of server:

primary

secondary

For a primary server, the first field specifies that the server

is primary for the zone stated in the second field. The third

field specifies the name of the file from which data is read.

Thus, for a primary server in a zone called cities.dec.com

with a data file called /etc/namedb/namedb.hosts, and a cache

file that is refreshed every 3600 seconds (one hour), here are

the proper entries:

directory /etc/namedb

;type domain/zone data file/TP addr refresh

primary cities.dec.com named.hosts

cache , named.ca 3600

Note that the entry beginning with a semicolon (;) is a

comment.

The entry for a secondary server is similar to that of the

primary server. The exceptions are in the first and third

fields. The first field states that the server is secondary, the

second field specifies the name of the zone, and the third

field contains the IP addresses for each of the primary

servers of the zone. For example:

directory /etc/namedb

;type domain/zone data file ‘ refresh

secondary cities.dec.com 128.11.22.33 128.11.22.44 cities.dec.com.db

cache named.ca

The data file cities.dec.com.db contains the information

accumulated in the secondary server’s cache. Because this

file is explicitly specified, there is no need to specify a

refresh time for the cache entry. If the primary server is

down when a secondary server boots, the secondary server

uses this file to load its cache.

Secondary servers obtain their information across the network

from the listed primary servers. In this example, the two IP

addresses are 128.11.22.33 and 128.11.22.44, Each primary

server is tried in the order listed until the secondary server

successfully obtains the information it needs, or the list is

exhausted. Each server needs an entry similar to the

following in its boot file:

cache

primary 0.0.127-in-addr.arpa /etc/named.local

This entry provides address to hostname translation for the

local host.

Note

If no primary server is running when a secondary

server is booted, the secondary server will not be

able to load its cache. Therefore, when the server

comes to multiuser mode, the BIND service will

not be able to resolve all addresses, especially those

in the local domain that require data from the

primary server. It will, however, keep trying to

resolve all queries until a primary server comes on

line.

The absence of an entry specifying the type of authority, or

server, such as secondary or primary, designates a caching

server.

All servers, however, need an entry similar to the following:

directory /etc/namedb

;stype domain/zone data file refresh

cache . named.ca 3600

This entry primes the server’s cache and designates the

cache save file. In this example, the cache save file is

/etc/namedb/named.ca. The optional time interval specifies

how often the BIND service cache will be dumped into the

cache save file. In this example, the cache is refreshed once

every 3600 seconds (once per hour). The dump frequency

should not be more often than once per hour. If the

frequency is 0 or not specified, the cache is never dumped.

In this situation, all cache files listed are read each time the

system boots.

The cache entry should be the last entry in the boot file.

Each time the system is brought to multiuser mode, any

values that are still valid (based on the time-to-live field) are

reinstated in the cache and the IP addresses of the root

BIND servers in the cache files are always used.

The following shows sample entries for a caching only server:

forwarder

slave

;type domain/zone data file refresh

primary 0.0.127-in-addr.arpa named.local

cache . named.ca 3600

A forwarding server is always a primary or secondary server,

but is designated a forwarder by a slave server. See the

following information on slave servers in order to understand

how a slave server designates which master servers will be

its forwarder.

Slave servers need to access forwarders in order to provide

answers to resolver queries. Here are the necessary entries

for a slave server:

slave

directory /etc/namedb

;type domain/zone data file refresh

forwarders 128.32.3.55 128.32.4.66

primary 0.0.127-in-addr.arpa named.local

cache : named.ca 3600

The forwarders entry lists the IP addresses of all the

forwarders on the local network. In this example there are

two forwarders on the network. Their addresses are

128.32.3.55 and 128.32.4.66.

The slave server will query each of the forwarders in the

order they are specified until the list is exhausted or the

answer is found.

2.4.2 Edit the Domain Data Files

There are four standard files for specifying the data for a domain. These

are named.ca, named.local, named.hosts, and named.rev. These files use

the standard format described in Section 2.5. Examples of each of these

files are shown in Appendix A. The boot file specifies the location of

these files, which is usually /etc/namedb.

named.ca This file identifies the authoritative server for the zone. By

default, the named.ca file contains the necessary entries for

the root servers and does not need to be edited.

The format of the named.ca file follows the standard

described in Section 2.5.

named.local This file specifies the address for the local loopback interface,

and is typically expressed as localhost with the network

address 127.0.0.1.

named.hosts This file contains the host and address information for all

the systems in the zone.

named.rev This file specifies the in-addr.arpa domain, which allows

reverse address to name mapping. This special domain was

formed to allow inverse mapping because IP host addresses

do not fall within domain boundaries. The in-addr.arpa

domain has four labels preceding it, which correspond to the

four octets of an IP address. You must specify all four

octets even if an octet is zero. For example, the IP address

128.32.0.4 is located in the domain 4.0.32.128.in-addr.arpa.

This address reversal is awkward to read but allows for the

natural grouping of hosts in a network. See the Guide to

Networking for further information about IP addresses.

2.4.3 Set the Host Name in the hosts and rc.local Files

You need to change the host name of your system to the fully qualified

BIND name. For example, if your system’s name is miami and your

BIND domain is cities.dec.com, you need to change your system’s name to

miami.cities.dec.com in both the /etc/hosts and /etc/rc.local files. Here is

an example of a proper hosts file entry:

128.11.22.33 miami.cities.dec.com

Here is an example of a proper rc.local file entry:

/bin/hostname miami.cities.dec.com

2.4.4 Edit the svcorder File

The gethostbyname() library call can detect if the BIND service is selected.

If the BIND service is not selected, gethostbyname() checks the

letc/svcorder file to see if there is another host lookup service to use to

resolve the host name and address information.

Since the services are accessed in the order they appear in the service

order file /etc/svcorder, you need to be sure that the svcorder file has its

services listed in the proper order for your site. For example, assume the

svcorder file has the following entries:

bind

yp

local

In this example, the BIND service is first used to resolve a query. If the
BIND service fails, the YP service is used. If this fails, the local
/etc/hosts file is used. Because the process of reading the /etc/hosts file is
slow, it may be best for you to place the local entry last in the
letc/svcorder file. Of course, if the majority of operations on your site
concern the localhost entry of the /etc/hosts file, it may be best for you to
list the local entry first in the /etc/svcorder file. This would save quite a
bit of traffic on the network and ease the load of your BIND server. It
is cheaper to find the first or second line of the /etc/hosts file than it is
to go over the IP network or through the socket software. See

svcorder(5) in the ULTRIX Reference Pages for further information about
the svcorder file.

Note

You should place entries for your system’s local host, interface
addresses, and a few names and addresses of other systems on
your local network in the /etc/hosts file. Then you can use the
rcp command to copy files from another system while your

system is in single-user mode. Do not include duplicate host

names and addresses that are covered by network services,

because the /etc/hosts file does not get updated automatically.
You should have the localhost and loopback entries in the
letc/hosts file, in addition to the few names and addresses of
other systems on your local network. See hosts(5) in the
ULTRIX Reference Pages for a description of the hosts file
format.

245 Reboot the System

To have the BIND service start automatically on the BIND servers each
time the system is brought to multiuser mode, place an entry for the
named daemon in the /etc/rc.local file. This entry should go before any
local daemon entries, such as sendmail. The entry for the named daemon
can go either before or after the entries for YP, but should go before any
NFS entries, if they exist. The following is a typical entry:

%BINDSTART% - BIND daemon

echo -n 'BIND daemon:’ > /dev/console

[—f /usr/etc/named | && {

lusr/etc/named /etc/named.boot ; echo -n

}
echo '’ > /dev/console

%BINDEND%

The lines beginning with a number sign (#) are comments that make the

rc.local file easier to read.

The following command shuts down the system and reboots it immediately:

’

named’ >/dev/console

/etc/shutdown —-r now

See shutdown(8) in the ULTRIX Reference Pages for further information

about shutting down the system.

Note

To start the BIND service without having to bring the system to

single-user and then multiuser mode, type:

/usr/etc/named

To start the BIND service with this command, the boot file

name must be the default, which is /etc/named.boot.

2.5 Format of BIND File Entries

The boot file, by default called /etc/named.boot, specifies the names of the

BIND data files. These data files, also known as Resource Records (RR)

consist of entries that follow the formats described in this section.

Here is the general format of a BIND data file entry (RR):

name ttl addr-class entry-type entry-specific-data

The fields are as follows:

name This is the name of the domain, for example

cities.dec.com. The domain name must begin in the

first column.

For some data file entries the name field is left blank.

In that case the domain name is assumed to be the

same as the previous entry.

A free standing period (.) refers to the current domain.

A free standing at sign (@) denotes the current origin,

thus allowing you to specify more than one domain.

Two free standing periods (..) represent the null

domain name of the root.

ttl This is the time-to-live field, and specifies how long, in

seconds, the data will be stored in the data base. If

this field is left blank, the value defaults to the ttl

specified in the start of authority entry. The maximum

time-to-live is 99999999 seconds, or 3 years.

addr-class This field is the address class. There are two classes.

Internet addresses are of class IN. All other types of

network address are of class ANY. The address class

of all data file entries in a particular zone must be the

same. Therefore, only the first entry in a zone need

specify the addr-class field.

entry-type This field states the resource record type, for example
SOA, A, and so forth.

entry-specific-data All fields after the entry-type field vary for each type

of date file entry (resource record).

The case is preserved in name and data fields when loaded into the BIND
server. All comparisons and lookups using the BIND service are performed
case insensitive.

The following characters have special meanings in BIND data file entries:

A backslash (\) escapes the next non-digit (x) character so that
the character’s special meaning does not apply. For example, you
could use . to place a period character in a label.

nn A backslash denotes the octet corresponding to the decimal number

represented by nnn. The resulting octet is assumed to be text and

is not checked for special meaning.

O) Parentheses group data that cross a line. In effect, line

terminations are not recognized within parentheses.

A semicolon starts a comment, causing the rest of the line to be
ignored.

* An asterisk signifies wildcarding.

Most BIND data file entries have the current domain appended to their
names if they are not terminated by a period (.). This is useful for
appending the current domain name to the data, such as system names,
but could cause problems when you do not want this to happen.
Consequently, if the name is not in the domain for which you are creating
the data file end the name with a narind

These are the types of entries that data files (resource records) can have:

° $include

o $origin

° SOA - start of authority

® NS - name server

° A - address

° HINFO - host information

e WKS - well know services

. CNAME - canonical name

o PTR - domain name pointer

® MB - mail box

° MR - mail rename

o MINFO - mailbox information

° MG - mail group

o MX - mail exchanger

The following sections describe each of these entries and the formats they

take.

2.5.1 The include Data File Entry

An include entry is similar to a header file in the C programming

language. This feature is particularly useful for separating different types

of data into multiple files. An include entry begins with $include in the

first column, and is followed by the name of the file to be included. For

example:

$include /etc/named/data/mailboxes

This entry requests the BIND service to load the data file

/etc/named/data/mailboxes.

The $include entry loads data files into the local zone and acts as a data

file organizer. For example, you can use $include entries to separate mail

from host information.

2.5.2 The origin Data File Entry

An origin entry changes the origin in a data file. This feature is

particularly useful for putting more than one domain in a data file. An

origin entry begins with $origin in the first column, followed by a domain

origin. For example:

$origin state.dec.com.

This entry includes the domain state.dec.com in the data file. As a result,

the BIND service can provide information about the state.dec.com domain

in addition to the local domain, provided your server is authoritative for

the zone.

The $origin and $include entries can work together. They can also save

typing and help keep the files organized. For example, assume that the

following entries are in the named.rev file:

$origin 11.128.in-addr.arpa.

$include cities.dec.com.rev

The period after arpa is significant, since it signifies the complete domain

name.

Assume that the cities.dec.com.rev file consists of entries similar to the

following:

33.22 IN PTR chicago.cities.dec.com.

In this situation, the complete reverse name for the host chicago is

translated to be:

33.22.11.128.in-addr.arpa IN PTR chicago.cities.dec.com.

2.5.3 The Start of Authority Data File Entry

The start of authority (SOA) entry designates the beginning of a zone.

There should be no more than one SOA entry per zone. Here is the

format of an SOA entry:

name ttl addr-class entry-type origin person serial# refresh retry expire min

The fields in the SOA entry have the values described in Section 2.5, with
the following exceptions:

origin This field is the name of the host on which the data file
resides. This is usually a primary master server.

person This field defines the login name and mailing address of the

person responsible for the BIND service running on the local

domain.

serial# This field specifies the version number of the data file. The

person editing the master files for the zone should increment

the value in this field each time a change is made to the data

within the file. The serial number being changed informs the

secondary servers that there is new data to be obtained from
4+A N1 1N A ITT N AT P e 2 3} L S ML Ve Ve Ve Y TR I

refresh

retry

expire

min

decimal point.

The serial# field allows the BIND service to determine which

of two copies of data files in a zone are more recent.

Typically, the serial# field begins at one (1) and is incremented

by one each time the original data file is modified. It is best

to use whole integers.

This field specifies how often, in seconds, a secondary BIND

server is to check with the primary server to see if it needs to

update its data files. If the data files are out of date (as

indicated by a mismatch of serial# fields), they are updated

with the contents of the master server’s files.

The minimum refresh period is 300 seconds (five minutes). If

the refresh field is left blank, however, the data file is not

dynamically updated.

This field specifies how often in seconds, a secondary BIND

server will try to refresh its data files after a refresh failure

has occurred while making the check. If a BIND server

attempts to refresh the files and fails, it tries to refresh them

again every so many seconds, as specified in the retry field.

This field specifies the upper limit, in seconds, that a

secondary BIND server can use the data files in its cache

before the data expires for lack of being updated, or before the

BIND server checks to see if its cache needs to be updated.

This field specifies the default time to live, in seconds, that a

data entry can exist in the event that the ttl entry is left

blank.

The following is an example of an SOA entry. The first line is a

comment that shows the fields:

;name

@

In this

ttl addr-class entry-type origin person

IN SOA utah.states.dec.com hes.utah.states.dec.com. (

1 ; serial

3600 ; refresh every hr.

300 ; retry every 5 min.

3600000 ; expire in 100 hrs.

86400) ; min. life is 24 hrs.

example note that the parentheses indicate to the BIND service

that this is a single entry. the ttl field is left blank, indicating that the

default

used.

time to live specified in the min field (86400 seconds) is being

The semicolons allow comments for readability. In the example, the serial
field is 1, the refresh field is 3600 seconds (once per hour), the retry field
is 300 seconds (once per 5 minutes), the expire field is 3,600,000 (100

hours), and the minimum field is 86400 seconds (24 hours).

2.5.4 The Name Server Data File Entry

The name server (NS) entry specifies which system is the primary master
server, that is, which BIND server is responsible for the domain. There
should be only one NS entry for each primary master server on the
domain. Here is the format of the NS entry: ,

name ttl addr-class entry-type server

The fields in the NS entry have the values described in Section 2.5, with
the exception of the server field. This field specifies the name of the
primary master server for the domain specified in the first field.

Here is an example of an NS entry:

;name ttl addr-class entry-type server

IN NS utah.states.dec.com.

In this example note that the first and second fields are left blank, thus
using the domain specified in a previous entry and the ttl specified in the

SOA entry.

2.5.5 The Address Data File Entry

The address (A) data file entry lists the address for a specific system.
Here is the format for an A entry:

name ttl addr-class entry-type address

The fields in the A entry have the values described in Section 2.5, with
the exception of the address field. This field specifies the IP address for
each system. There should only be one A entry for each address of a
given system.

Here is an example of two A entries:

;name ttl addr-class entry-type address

miami.cities.dec.com. IN A 128.11.22.44

IN A 128.11.22.33

In this example note that the first entry has left the ttl field blank, thus
using the default ttl specified in the SOA entry. The second entry has
1oft +ha vat and carmimd 2413 dawTls dlocom ao®0 21 A1 f YL i

in the previous entry and the default ttl specified in the SOA entry. In

this example, the host miami.cities.dec.com has two IP addresses.

2.5.6 The Host Information Data File Entry

The host information (HINFO) data file entry is for host specific

information. This entry lists the hardware and operating system that are

running at the specified host system. Only a single space separates the

name of the hardware from the operating system information. Thus, if you

need to use spaces as part of a host or operating system name, you must

place the name in quotes. In addition, there can be no more than one

HINFO entry for each host on the domain. Here is the HINFO entry

format: ‘

host ttl addr-class entry-type hardware opsys

The fields in the HINFO entry have the values described in Section 2.5,

with the following exceptions:

host This field specifies the host name. If the host is in the

current domain, you only need to specify the host, say chicago,

for example. If the host is in a different domain, you must

specify the full BIND name, for example: utah.state.dec.com..

Be sure to include the period (.) at the end of the host

name. This indicates the fully qualified BIND name.

hardware This field specifies the type of CPU, for example, a VAX 8800

~ processor. |

opsys This field specifies the type of operating system running on the

specified host and should be ULTRIX for the ULTRIX operating

system.

Here is an example of a HINFO entry:

;name ttl addr-class entry-type hardware opsys

ohio.state.dec.com. IN HINFO - X-11/780 ULTRIX

In this example, note that the second field specifying the ttl is blank, thus

using the default ttl specified in the SOA entry.

2.5.7 The Well Known Services Data File Entry

The well know services (WKS) entry describes well known services

supported by a particular protocol at a specified address. The services and

port numbers are obtained from the list of services specified in the

/etc/servicesfile. Here is the format of a WKS entry:

name ttl addr-class entry-type address protocol services

The fields in the WKS entry have the values described in Section 2.5,

with the following exceptions:

address This field specifies the IP address for each system. ‘There
should only be one WKS entry for each protocol at each

address.

protocol This field specifies the protocol to be used, for example TCP or

UDP.

Here is an example of two WKS entries:

;name ttl addr-class entry-type address protocol services

IN WKS 128.32.0.4 UDP who route

IN WKS 128.32.0.78 TCP (echo talk

discard sunrpc sftp

uucp-path netstat host

systat daytime link

auth time ftp

nntp whois pop

finger smtp supdup

domain nameserver

chargen)

Note that the first and second fields of both entries in this example are

blank, which indicates that they are using the domain name specified in a

previous entry and the default ttl specified in the SOA entry. The

services listed in the second entry are contained within parentheses and are

thus interpreted as being one entry, even though they appear to be on

several lines.

2.5.8 The Canonical Name Data File Entry

The canonical name (CNAME) entry specifies an alias for a canonical

name. For example, if the canonical name, (also known as the full BIND

name or the fully qualified name) is miami.cities.dec.com, a reasonable alias

might be miami or mi.

An alias must be unique, and all other entries should be associated with

the canonical name and not with the alias. Do not create an alias and

then use it in other entries. Here is the format of a CNAME entry:

aliases ttl addr-class entry-type can-name

The fields in the CNAME entry have the values described in Section 2.5,
LY I TR o b L S 1. S

aliases This field specifies the nickname, or alias, of the canonical

name of the host.

can-name This is the canonical name of the host. If the canonical name

is a part of the current domain, then you only need to specify

the host name, for example, miami. If the canonical name is

for a host in another domain, you must specify the fully

qualified BIND name, followed by a period (.). For example:

ohio.state.dec.com.

The following example shows two CNAME entries. The first entry is for a

CNAME in the current domain; the second entry is for a CNAME in

another domain:

;aliases ttl addr-class entry-type can-name

to IN CNAME toledo

mon IN CNAME ohio.state.dec.com.

2.5.9 The Domain Name Pointer Data File Entry

The domain name pointer (PTR) entry allows special names to point to

some other location in the domain. PTR names should be unique to the

zone. Here is the format of a PTR entry:

rev-addr ttl addr-class entry-type realname

The fields in the PTR entry have the values described in Section 2.5, with

the following exceptions:

rev-addr This field specifies the reverse IP address of the host. You

can obtain the reverse address from the /etc/namedb/named.rev

file. For example, if the host’s address is 128.11.22.33, the

reverse address is 33.22.11.128.

realname This is the fully qualified (canonical) BIND name of the host,

for example, miami.cities.dec.com. Be sure to include the

period (.) at the end of the real name if the host is not in

the current domain.

Here is an example of two PTR entries:

;rev-addr ttl addr-class entry-type realname

33.22 IN PTR chicago

66.55.44.121 IN PTR mail.peace.org.

In this example, the first entry is for a host whose IP host address is

22.33 in the current domain. The specified rev.addr (33.22) is meamngful
e vto e Al md m DAY ety vyo d O oon bt PO Lo o A maatands o

of the $origin entry. If there is not a $origin entry, then the entire IP
address, in reverse, must be specified.

The second entry is for a host in different domain (state.dec.com.). As a
rule, you should not do this because you are putting data in your server’s
cache for which your server is not authoritative. PTR entries and other
resource records should be for hosts in your domain, only.

The PTR entry sets up a reverse pointer for the special domain peace.org.

2.5.10 The Mailbox Data File Entry

The mailbox (MB) entry lists the system where a user wants to receive
mail. Here is the format of an MB entry:

login ttl addr-class entry-type system

The fields in the MB entry have the values described in Section 2.5, with
the following exceptions:

login This field is the login name for a user. Login names must be
unique for the domain.

system This field specifies the name system where the user wants to

receive mail.

Here is an example of an MB entry:

;login ttl addr-class entry-type system

fred IN MB potsdam.cities.dec.com.

In this example note that the second field is left blank, thus using the ttl
specified in the SOA entry. Consequently, the user fred will have mail
delivered to the host named potsdam in the domain cities.dec.com.

2.5.11 The Mail Rename Data File Entry

The mail rename (MR) entry lists aliases for a specific user. Here is the
format of an MR entry:

alias ttl addrclass entry-type login

The fields in the MR entry have the values described in Section 2.5, with
the following exceptions:

alias This field lists the nicknames for the specified user. The alias
must be unique to the domain.

login This field is the login name for the user whose alias is being
established. There should also be a corresponding MB entry
for the specified locin name

Login names must be unique for the domain.

Here is an example of an MR entry:

;alias ttl addr-class entry-type login

lady IN MR diana

princess IN MR diana

This example shows how to set up the aliases lady and princess for a user

whose login name is diana. Note that the second field is left blank, thus

using the ttl specified in the SOA entry.

2.5.12 The Mailbox Information Data File Entry

The mailbox information (MINFO) entry creates a mail group for a mailing

list. The MINFO entry is usually associated with a mail group (MG)

entry, but can also be used with a mailbox (MB) entry. Here is the

format of a MINFO entry:

mailbox ttl addr-class entry-type requests maintainer

The fields in the MINFO entry have the values described in Section 2.5,

with the following exceptions:

mailbox This field specifies the name of the mailbox, and is usually

BIND.

requests This field specifies the name where users should send mail

relating to the BIND service or mail. For example, a user

might want to send a mail message requesting that an alias be

set up.

maintainer This field contains the login name of the person who should

receive mail error messages. This is particularly useful when

an error in member’s names should be reported to a person

other than the sender.

Here is an example of a MINFO entry:

;mailbox ttl addr-class entry-type requests maintainer

BIND IN MINFO BIND-REQUEST fred@ miami.cities.dec.com.

In this example, note that the second field is left blank, thus using the ttl

specified in the SOA entry.

2.5.13 The Mail Group Data File Entry

The mail group entry specifies the members of a mail group. The MG

entry is usually used with a MINFO entry. Here is the format of an MG

entry:

group ttl addr-class entry-type member

The fields in the MG entry have the values described in Section 2.5, with

the following exceptions:

group This field specifies the name of the mail group, for example,

users or marketing.

member This field specifies the login name and the domain of the user

to be included in the mail group.

Here is an example of a MINFO entry and several MG entries:

;group ttl addr-class entry-type requests member

fun IN MINFO BIND-REQUEST fred@ miami.cities.dec.com.

IN MG john@ miami.cities.dec.com.

IN MG amy@ miami.cities.dec.com.

In this example, note that the second field for all three entries is left

blank, thus using the ttl specified in the SOA entry. In addition, if mail is

sent to the mail group fun, fred, john, and amy receive it.

2.5.14 The Mail Exchanger Data File Entry

The mail exchanger (MX) entry specifies a system in the local domain

(called a gateway) that knows how to deliver mail to a system that may

not be directly connected to the local network. Consequently, the MX

entry is useful for systems outside your local network that want to send

mail to a user on one of your network’s hosts.

You can also use the MX entry to list some of the hosts in the /etc/hosts

file so that they do not appear to other systems using the BIND service.

Here is the format of an MX entry:

system ttl addr-class entry-type prefvalue gateway

The fields in the MX entry have the values described in Section 2.5, with

the following exceptions:

system This field specifies the name of the system where mail is to be

sent.

pref-value This field specifies the order a mailer should follow when there

is more than one way to deliver mail to a given system.

gateway This field contains the name of the gateway system, that is,

the system that can deliver mail to the destination system on

another network.

Here is an example of two MX entries:

;system ttl addr-class entry-type pref-value gateway

tampa.cities.dec.com IN MX 0 seismo.cs.au.
* folks.dec.com IN MX 0 relay.cs.net.

In this example, all mail destined for the domain folks.dec.com, regardless

of the host name, is sent by route of the relay.cs.net. host. In addition,

note that the second field in both entries is left blank, thus using the ttl

specified in the SOA entry. The second entry uses an asterisk, which is a

wildcard.

Managing and Using the BIND Service 3

This chapter provides the background information required for maintaining

and using the BIND service. Included is a description of the domain

administrator and the technical and zone contacts, as well as the duties of

each.

This chapter describes how to register your site with the public networks

and where to find additional information about the BIND name server.

Finally, this chapter provides a brief tutorial on how to make use of the

BIND service for obtaining host names and IP addresses. In addition, the

nslookup and nsquery commands are also introduced.

3.1 Maintaining the Domain

BIND domains are administrative entities that provide decentralized

management of host names and addresses. The domain naming scheme is

distributed and hierarchical. The Network Information Center (NIC)

maintains the zone files of the root domain BIND server. The NIC also

maintains the top-level domains arpa, com, edu, gov, mil, and org, plus a

number of country domains. In addition, the NIC registers first and

second-level domains.

The domain administrator (DA) administers each local domain with the

help of the technical and zone contacts. These roles are described in the

following sections.

3.1.1 Domain Administrator Role

Typically, each BIND domain has a domain administrator (DA), who is

responsible for coordinating and managing the domain. The DA registers a

second-level or lower domain by interacting with the DA in the next higher

level domain. For information on finding the names of the DA contacts,

see section 3.5.3.

The DA duties include:

o Understanding the concepts and procedures of the BIND service

e Ensuring that the service is reliable

° Ensuring that the BIND data is current

o Taking prompt action when necessary, for example if protocols are

violated or other serious misbehavior

° Controlling the assignments of the host and domain names

The DA furnishes users with access to names and name-related information

both inside and outside the local domain. In addition, the DA works

closely with the domain technical and zone contacts for the domain.

3.1.2 The Technical and Zone Contact

Typically, the technical and zone contact is concerned with the technical

aspects of maintaining the BIND server and resolver software and the data

files. The technical and zone contact keeps the BIND server running and

interacts with technical people in other domains and zones to solve

problems affecting the local domain.

A zone consists of those contiguous parts of the domain tree for which a
domain server has complete information and over which it has authority.

A BIND server can be the authority for several zones.

3.2 Naming Domains and Hosts

The NIC makes domain name assignments on a first-come, first-served

basis. The NIC only registers domains under the top-level domains, not

individual hosts. This allows administration and data maintenance to be

delegated down the hierarchical tree.

A domain is identified by a domain name, and consists of that part of the
domain name space that is at or below the domain name. A domain is a

subdomain of another larger domain, if it is contained within that domain.
That is, if a domain’s name ends with the containing domain’s name, of

which it is a subdomain. For example, A.B.C.D is a subdomain of B.C.D,

C.D, D, and the root domain (.).

There are two types of names:

° The fully qualified name represents the complete domain name. This

is also known as the absolute or canonical name. For example:

chicago.cities.dec.com.

o Relative names represent the starting name (label) of an absolute

domain name. Relative names are incomplete, but are completed by
the BIND service, using knowledge of the local domain, for example:

chicago

Relative host names such as chicago are automatically expanded to

the fully qualified domain name (chicago.cities.dec.com) when given

in a typical command.

Domain and host names must begin with a letter, end with a letter or

digit, and have only letters, digits, or hyphens as internal characters.

Although the names can be up to 64 characters, it is best to choose

names that are 12 characters or fewer because the canonical (fully

qualified) domain names are easier to keep track of if they are short. The

sum of all the label octets and label lengths is limited to 255.

Note

Domain names are case insensitive. By convention, however,

whenever you receive a domain name you should preserve its

case.

It is up to the DA to resolve any local conflicts concerning the domain

name chosen.

Note

Countries can register as top-level domains provided they name

themselves after a two-letter country code listed in the

international standard IS0O-3166. (Appendix C lists several BIND

standards.) In the event that a country code is identical to a

state code that the U.S. Postal Service uses, the country can

request a three-letter code.

3.3 Registering With Public Networks

Before you can set up the BIND service on your system, your system

must be established on a local area network. If the BIND service for your

domain is part of a public network, you should get in touch with the

organization in charge of that network and request the appropriate domain

registration form. Even if your site belongs to more than one network,

you should register your site with only one. The following sections describe

how to contact these networks:

® DARPA Internet network (ARPANET)

® CSNET

® BITNET

3.3.1 Contacting the DARPA Internet Network

If your system is on the DARPA (Defense Advanced Research Projects

Agency) Internet network (also known as the ARPANET), contact the

following organization:

hostmaster@sri-nic.arpa

The people there will provide you with information about setting up a

BIND domain.

You can also request to be placed on the BIND mailing list. This mailing

list is for people running BIND on the DARPA Internet network who want

to discuss future designs, operational problems, and other related topics.

Here is the address:

bind-request@ucbarpa.berkeley.EDU

3.3.2 Contacting the CSNET

If your site’s domain name is not already registered with the CSNET

(Computer Science Network), contact the CSNET Coordination and

Information Center (CIC). They will send you an application and provide

you with information and technical advice about setting up a domain.

If your site’s domain name is already registered with the CIC, you should

keep the CIC informed of how you want your site’s mail routed. In

general, the CSNET relay prefers to send mail by CSNET, rather than by

the BITNET or the ARPANET. If your site is on more than one

network, the CSNET relay might not be the preferred route.

You can contact the CIC at the following electronic mail address:

cic@sh.cs.net

Or, you can reach the CIC hotline at this phone number:

(617) 873-2777

3.3.3 Contacting the BITNET

Some colleges and universities are on the BITNET network. This network

is reserved for students, faculty, and scholars who want to communicate on

a common network. BITNET stands for: ‘“Because It’s Time Network.”

If your site is on the BITNET and you want to set up a domain, contact

the following address or phone number for information:

BITNET Network Information Center (BITNIC)

Educom

Bitnet Network Information Center

P.O. Box 364

Princeton, NJ 08540

(609) 520-3340

For general information, send electronic mail to:

bitserve@ CUNYVM

For general inquiries, send electronic mail to:

info%bitnic.bitnet@ CUNYVM.CUNY.EDU

3.4 Updating BIND Data Files

Occasionally you may need to update the BIND data files. For example,

you may need to add a host to the data files. To update the data file -

for example to add a host — here are the steps:

1. Be sure the minimum refresh time on the secondary servers is at

least five minutes (300 seconds).

2. Edit the appropriate data files on the primary server. If you are

adding a host name, you typically need to edit the

/letc/namedb/named.rev file and any other files with an SOA record

for your domain.

3. Increment the serial# field of the SOA entry in the appropriate data

files on the primary server. For example, if you are adding a host

name, you probably need to increment the SOA entry for the domain

in the /etc/namedb/named.rev file, as well as any other data base

files you may have set up for host names and addresses.

If you neglect to change the serial# field, the secondary servers will

not be aware of the modified data when they check their serial#

fields against the primary server’s to see if they need to refresh their

data files.

The serial# field typically starts at one (1) and is incremented by

one each time the data is modified.

4. Tell the primary server to reload the data base by sending the —HUP

signal to the named daemon as follows:

kill -HUP “cat /etc/named.pid’

3.5 Obtaining Host Name and IP Address Information

There are several ways that you can obtain information about host name
and IP addresses from a system using the BIND service. The following

sections provide an introduction to these commands:

° nslookup

o nsquery

° whois

3.5.1 The nslookup Command

One way to obtain information about host name and IP addresses is with

the nslookup command. With this command, you can non-interactively and

interactively query the BIND service for information about hosts on the

local, as well as remote, domains. You can also find information about

BIND resource records such as MX, NS, and so forth.

Here is the format for a non-interactive query with the nslookup command:

nslookup hostname

A good way to learn how to use the nslookup options is to experiment

with it. Appendix D provides a sample interactive session with the

nslookup command. For further 1nformat10n see nslookup(1) in the

ULTRIX Reference Pages.

To find out MX information, you need to supply the nslookup command

with a bogus host name and a valid domain name. For example, to get

an answer to the question, ‘“who takes mail for the domain mit.edu?”, you

could type the following: ‘

nslookup

Default Server: oops.cities.dec.com

Address: 128.54.54.1

> set querytype=mx

> find MX.mit.edu

Server: oops.cities.dec.com

Address: 128.54.54.1

findMX.mit.edu.cities.dec.com preference = 51, mail exchanger = noun.cities.dec.com
findMX.mit.edu.cities.dec.com preference = 50, mail exchanger = wepel.cities.dec.com
noun.cities.dec.com inet address = 128.54.54.79

wepel.cities.dec.com inet address = 128.54.54.93

(continued on next page)

> <CTRL/d>

#

In this example, the host name MX.mit.edu. is bogus, but the domain

mit.edu. is real. See Appendix D for further examples of nslookup

command sessions.

3.5.2 The nsquery Command

The nsquery command provides a quick, non-interactive method for

obtaining host names, aliases, and IP addresses. The following example

shows how to get the host name, alias, and IP address for a host called

chicago:

nsquery chicago

Name: chicago

Address: 128.11.22.333

Aliases: ¢ ch

See nsquery(1) in the ULTRIX Reference Pages for further information.

3.5.3 The NIC whois Service

The NIC whois service allows you to verify the following information:

e The name and address of the organization responsible for the domain

° The name of the domain

° The domain’s administrative and technical and zone contacts

® The host names and network addresses of sites providing the BIND

service for the domain

To use the NIC whois service to find information about a domain named

roads, send mail specifying the whois command and the domain in question

in the subject header:

mail servicea@sri-nic.arpa

Subject: whois domain rice.edu

CTRL /d

Cc:

Null message body; hope that’'s ok

Here is a sample response:

From SERVICE-REPLY@ SRI-NIC.ARPA Thu Jun 2 17:58:38 1988

Received: from chicago.cities.dec.com (chicago.ARPA) by paris.cities.dec.com (1.2/dv.5.yp)

id AA17498; Thu, 2 Jun 88 17:57:20 edt

Received: by chicago.cities.dec.com (5.57/v2.4)

id AA03640; Thu, 2 Jun 88 17:56:49 EDT

Message-Id: <8806022156.AA03640@ chicago.cities.dec.com>
—~ s N mr o~

From: NIC Mail Service <SERVICE-REPLY@ SRI-NIC.ARPA>

To: jane@ chicago (h jane ramburg-crane)

Subject: Re: whois domain rice.edu

Status: RO

Rice California (RICE-DOM)

Advanced Studies and Research

Houston, TX 77001

Domain Name: RICE.EDU

Administrative Contact:

Kennedy, Ken (KK28) Kennedy@ LLL-CRG.ARPA (713) 527-4834

Technical Contact, Zone Contact:

Riffle, Vicky R. (VVR) rif@ RICE.EDU

(713) 527-8101 ext 3844

Domain servers in listed order:

RICE.EDU 128.42.5.1

PENDRAGON.CS.PURDUE.EDU 128.10.2.5

3.6 Obtaining Further information about the BIND Service

The NIC has several online documents which you can access to obtain

further information about the BIND service. Some of these documents

are:

NETINFO:DOMAINS.TXT

This file consists of an informational table of the top-level domains

and their root servers. This file is updated each time a new top-level

domain is approved.

NETINFO:DOMAIN-INFO.TXT

This file contains a concise list of all top-level and second-level domain

names registered with the NIC. This file is updated monthly.

NETINFO:DOMAIN-CONTACTS.TXT

This file lists each of the top-level and second-level domains, and

includes the administrative, technical and zone contacts for each as

well.

NETINFO:DOMAIN-TEMPLATE.TXT

This file contains the questionnaire to be completed before registering

a top-level or second-level domain. A copy of this document is in

Appendix B.

You can use the ftp command to transfer copies of the online documents

from SRI-NIC.ARPA. Appendix B provides a sample ftp session. Or, you

can open a TCP or UDP connection to the NIC host name server, port

101 on SRI-NIC.ARPA. From there, you can invoke the command ALL-

DOM. Appendix C lists several other articles and RFCs which may be of

interest to you.

For further information about the BIND service, you can do the following:

o Send electronic mail to:

HOSTMASTER@SRI-NIC.ARPA

° Call the toll-free NIC hotline at:

(800) 235-3155

Troubleshooting the BIND Service 4

This chapter contains guidelines for troubleshooting the BIND service, as

well as information for starting, controlling and debugging the named

daemon.

If the BIND service fails to work properly, the cause is typically one of

the following:

o The data files are not set up properly

° The BIND service cannot access the root servers

The following files and daemon are crucial to the proper working of the

BIND service:

o The standard domain server data files are located in the directory

/etc/namedb, and are usually named.boot, named.rev, named.hosts,

named.local, and named.ca

e The /etc/svcorder file

o The /etc/rc.local file

e The /etc/resolv.conf file (for BIND clients, only)

® The named daemon (for BIND servers, only)

The following sections describe these files and the daemon in greater detail

4.1 Reviewing the Domain Data Files

This section offers some suggestions of what to do in the event that the

BIND service is not working properly.

First, be sure that the domain data files are set up correctly. Specifically,

be sure that the following are correct:

° The local host in the boot file and cache files

° The in-addr domain in the boot file and any other data base files

° The reverse arp IP addresses

® The host names are in the correct domain

In addition, be sure tht there is only one reverse address per host in the

domain.

If the preceding criteria is correct and you are still experiencing problems,

you should continue troubleshooting the BIND service as described in the

rest of this chapter.

For information about the domain data files, see Chapter 2. For examples

of domain data files, see Appendix A.

4.2 Reviewing the /etc/rc.local File

Make sure that the host name is set to the fully qualified (canonical)

BIND name in the the /etc/rc.local file. Be sure that an entry similar to

the following one exists in the /etc/rc.local file. Here is the format for the

entry:

/bin/hostname host.domain

For example, here is the appropriate entry for a system named chicago in

the domain cities.dec.com:

/bin/hostname chicago.cities.dec.com

The following entry starts the domain name server each time the system

goes to multiuser mode:

BINDSTART

echo -n 'BIND daemon:’ > /dev/console

[—f /usr/etc/named] && {

/usr/etc/named /etc/named.boot; echo —n ' named’ > /dev/console

}
echo

BINDEND

This entry belongs either before or after any YP entries, but before any

NFS entries, if they exist. If YP and NFS entries do not exist in the

/etc/rc.local file, the named entry belongs before the local daemons such as

sendmail.

1

Note

Do not run the named daemon directly from inetd. This causes

continual restarts of the name server and defeats the purpose of

having a cache.

4.3 Reviewing the Resolver File

Make sure that the resolver file /etc/resolv.conf is accurate. It should
contain at least one master server. See chapter 2 for information about

the resolver file.

4.4 Reviewing the Debug Files

If after reviewing the rc.local file and the resolver file you are still

experiencing problems, there are several other files to help you troubleshoot

the BIND service further. These files are:

o Ivar/spool/mqueue/syslog

o /var/tmp/named_dump.db

° /var/tmp/named.run

® tmp/named.stat

This section provides general information about the debug files and explains

how to use them to troubleshoot the BIND service.

4.4.1 The syslog File

If the BIND service cannot access the root servers, it cannot resolve

queries about hosts in other domains. One way to determine if the root

servers are accessible is to look in the /var/spool/mqueue/sysiog file. The

key phrase is:

root hints too low

This key phrase indicates how many of the available root servers are

actually accessible to your system. The minimum threshold is two, and

the maximum is the number of root servers available at their various

addresses (currently 10). If the number of root hints is too low, either

the BIND files are not configured properly or one or more of the links to

the root servers is down.

In addition, the named daemon may log error messages in the syslog file.

Here is a sample syslog file:

Jun 21 04:05:05 sysiog restart

Jun 21 12:09:51 localhost: 1688 named: restarted

Jun 21 12:09:51 localhost: 1688 named: /etc/named.primaray/named.boot: No such file or directory

Jun 21 12:10:49 localhost: 1692 named: restarted

Jun 21 12:12:16 locathost: 1692 named: ..(new) named started..

Jun 21 12:17:30 localhost: 1705 sendmail: AA01705: message-id = <8806211616.AA01705@chicago.cities.dec.com>

Jun 21 12:17:31 localhost: 1705 sendmail: AA01705: from =jane, size =243562, class=0

Jun 21 12:17:49 locathost: 1707 sendmail: AA01705: to=jane@orlando, delay=00:01:18, stat=Sent

Jun 21 14:50:37 localhost: 1692 named: reloading nameserver

Jun 21 14:50:45 localhost: 1692 named: 0 root hints... (too low)

Jun 21 15:20:46 localhost: 1692 named: 0 root hints... (too low)

Jun 21 15:50:46 localhost: 1692 named: 0 root hints... (too low)

Jun 21 15:59:02 localhost: 1840 sendmail: AA01840: message-id= <8806211958.AA01840@chicago.cities.dec.com>

Jun 21 15:59:02 localhost: 1840 sendmail: AA01840: from =jane, size =835, class=0

Jun 21 15:59:12 localhost: 1842 sendmail: AA01840: to=jane@tempe, delay=00:00:20, stat=Sent

4.4.2 The named_dump.db File

If you send the named daemon a signal to dump the data base, a copy of

the data base is dumped in the file /var/tmp/named_dump.db. Here is how

to send the signal:

kill —INT ‘cat /etc/named.pid’

By examining the resulting named_dump.db file you can determine whether

any of the BIND data files are set up incorrectly. Here are some things

to look for: :

o Is the local loopback correct?

° Is the inaddr entry correct?

® Is the local host set up correctly?

° Are the reverse arp IP addresses correct?

° Is there a reverse address for each host?

° Are the host names in the correct domain?

Appendix A lists a sample named_dump.db file for a BIND server whose

data files are correct.

4.4.3 The named.run File

If you turn on debugging, the results are logged in the file

Ivaritmp/named.run. There are up to 11 debug levels. Typically, however,

you should debug the named daemon at level five. Then, from glancing at

the named.run file you should be able to get an idea of whether the BIND
~ e

named.run file indicates a connection to a root server:

TCP connected

The following lines in the named.run file indicate a poorly running system:

o Several QUESTIONS, but no ANSWERS

o Several iterations of findns, which attempt to find a name server

e Several iterations of schedretry, which schedule another attempt to

access a root server

Appendix A lists two named.run files: one for a system that is running

the BIND service properly, the other for a system that is not.

4.4.4 The named.stats File

The /var/tmp/named.stats file lists the statistics for the BIND service.

From this file you can see how much activity is being generated for the

BIND server. To generate this file, send a signal to the named daemon.

For example:

kill -I0OT ‘cat /etc/named.pid’

See Section 3.7.6 for more information about how to send signals to the

named daemon.

After the named daemon is running with the -10T signal, it generates the

named.stats file. Here is an example of this file:

Thu June 21 15:05:09 1988

3389 time since boot (secs)

3389 time since reset (secs)

72 input packets

72 output packets

69 queries

iqueries

duplicate queries

responses

duplicate responses

OK answers

FAIL answers

- FORMERR answers

system queries

prime cache calls

check_ns calls

bad responses dropped

martian responses

Unknown query types

0 A querys

NS querys

MX querys

ANY querys

O
O

W
O
O
o

©
W
O
N
P
A
P
O
O
D
O
O
O

-

=
2
N
O

The named.stats file may have entries for martian responses. A martian

response indicates a query response from a host that is unknown to the

server.

4.5 Obtaining the named Process ID

When the named daemon starts running, it places its process identification
number (pid) in the file /etc/named.pid. This feature is useful for

programs that need to send signals to the named daemon.

4.6 Sending Signals to the named Daemon

You can send several signals to the running named process without having

to restart it.

You can also find the named process ID (pid) by using the ps command

or by using the cat command with /etc/named.pid.

The signals you can send to named are as follows:

SIGHUP This signal causes the named process to read the boot file and

reload the data base. However, all previously cached data is
) PR L. . .01 ')T T T T T T T 1

and you want named’s internal data base to reflect the change.

SIGINT This signal dumps the current data base and cache to the file

/var/tmp/named_dump.db. This can give you an indication of

whether the data base was loaded correctly.

USR1 This signal turns on debugging. Each subsequent USR1 signal

increments the debug level. A good rule of thumb is to

increment the debug level to five (this is accomplished by

issuing the signal five times). The output is appended to the

file /var/tmp/named.run.

After turning on debugging, you can try using the nslookup command and

watch the debug trace. Appendix A has an example of two named.run

files; one is from a system with the BIND service running properly, the

other is from a system that cannot reach any of the root servers.

Here is an example of how to send the USR1 signal to the named

daemon:

kill -USR1 ‘'cat /etc/named.pid’

You can start the named daemon in debug mode by typing the following

command:

/usr/etc/named named.boot -d5 &

This command starts the named daemon and sets the debug level to five.

USR2 This signal turns off debugging completely.

kill -USR2 “cat /etc/named.pid’

KILL This signal terminates the named process. To stop the BIND

service from running in the future, comment out the bind (or

BIND) entry in the /etc/svcorder file by placing a number sign

(#) in the first column of the BIND entry.

Appendix A

This appendix provides sample BIND files to help you understand,

maintain, and troubleshoot the BIND service. The following files are listed

in this appendix:

J The named.boot file

o The named.ca file

° The named.local file

o The named.hosts file

° The named.rev file

o The named_dump.db file

¢ A healthy named.run file

° An unhealthy named.run file

Note

Sample BIND files are not provided for root servers. If you are

establishing your system as a root server, you can get help from

the NIC, as stated in Chapter 1.

A.1 The named.boot File

Only BIND servers need a boot file. The default name and location of the

boot file is /etc/named.boot. This section provides a sample boot file for

each type of BIND server: primary master, secondary master, slave, and

caching. Note that each type of server needs an entry of the form:

primary 0.0.127-in-addr.arpa /etc/named.local

This entry provides the address-to-hostname translation for the local host.

Here are the sample boot files:

° Primary Master Server Boot File

.

]

; Data file to boot a BIND primary master server.

; directory where all the data files are stored

directory etc/namedb

3

; type domain source host/file

primary cities.dec.com named.hosts

b

primary 33.22.128.in-addr.arpa named.rev

Y

primary 0.0.127.in-addr.arpa named.local

; load the cache data last

cache . named.ca

Secondary Master Server Boot File

; Data file to boot a BIND secondary master server.

; directory where all the data files are stored

directory /etc/namedb

; type domain source host/file

secondary cities.dec.com 128.11.22.33 128.11.22.44

secondary 33.22.128.in-addr.arpa 128.11.22.33 128.11.22.33

’

primary 0.0.127.in-addr.arpa named.local

; load the cache data last

cache) named.ca

Slave Server Boot File

; Data file to boot a BIND slave server.

; directory where all the data files are stored

directory /etc/namedb

; type domain source host/file

primary 0.0.127.in-addr.arpa named.local

b

forwarders 128.11.22.33 128.11.22.33

; load the cache data last

cache named.ca

o Caching Server Boot File

; Data file to boot a BIND caching only server.

’

; directory where all the data files are stored

directory /etc/namedb

; type domain source host/file refresh

primary 0.0.127.in-addr.arpa named.local

; load the cache data last

cache 3600named.ca

H

A.2 The named.ca File

Only BIND servers running the named daemon need a cache file. The

default name and location of the cache file is /etc/namedb/named.ca. Here

is a sample cache file:

; @(#)named.ca 4.2 (ULTRIX) 3/16/88

’

; Data file for initial cache data for BIND root domain servers.
’

;domain ttl addr-class entry-type server

99999999 IN NS ns.nasa.gov.

99999999 IN NS sri-nic.arpa.

99999999 IN NS a.isi.edu.

99999999 IN NS gunter-adam.arpa.

99999999 IN NS brl-aos.arpa.

99999999 IN NS terp.umd.edu.

. 99999999 IN NS c.nyser.net.

sri-nic.arpa. 99999999 IN A 26.0.0.73

99999999 IN A 10.0.0.51

a.isi.edu. 99999999 IN A 26.3.0.103

gunter-adam.arpa. 99999999 IN A 26.1.0.13

hrl.aoe arna 0000000 IN A 109 K OK Q9

99999999 IN A 128.20.1.2

ns.nasa.gov. 99999999 IN A 128.102.16.10
c.nyser.net. 99999999 IN A 128.213.5.17
terp.umd.edu. 99999999 IN A 10.1.0.17

99999999 IN A 128.8.10.90

A.3 The named.local File

Only BIND servers need a local file. The default name and location of

the local file is /etc/namedb/named.local. Here is a sample named.local
file:

; @ (#)named.local 4.1 (ULTRIX) 1/18/88

; Data file for local loopback interface.

;name ttl addr-class entry-type origin

@ IN SOA host.domain. sysmgr.host.domain. (

1 ; Serial

3600 ; Refresh

300 ; Retry

3600000 ; Expire

3600) ; Minimum

IN NS host.domain.

1 IN PTR localhost.

A.4 The named.hosts File

Only BIND servers need a hosts file. The default name and location of
the hosts file, specified in the boot file, is /etc/namedb/named.hosts. Here
is a sample named.hosts file:

;@ (#)named.hosts 4.1 (ULTRIX) 1/18/88

; Data file of hostnames in this domain.

;name ttl addr-class entry-type origin ' person

@ IN SOA host.domain. sysmgr.host.domain. (

1

3600

300

3600000

3600)

localhost IN A 127.0.0.1

sri-nic.arpa IN A 10.0.0.51

host IN A 111.22.33.44

‘ IN HINFO VAXstation2000 ULTRIX

anotherhost IN A 111.22.33.55

IN HINFO VAXstation]I ULTRIX

onemorehost IN A 111.22.33.66

IN HINFO VAX8800 ULTRIX

A.5 The named.rev File

Only BIND servers need a reverse hosts file. The default name and

location of the reverse hosts file is /etc/namedb/named.rev. Here is a

sample named.rev file:

;@ (#)named.rev 4.1 (ULTRIX) 1/18/88

; Data file for 22.111.in-addr.arpa domain (inverse mapping).

;name ttl addr-class entry-type origin person

@ IN SOA host.domain. sysmgr.host.domain. (

91 ; Serial

43200 ; Refresh

3600 ; Retry

1209600 ;' Expire

86400) ; Minimum

IN NS host.domain.

44.33 IN PTR hosttwo.domain.

A.6 The named_dump.db File

If you cause the named daemon to dump the data base, the results are

stored in the /var/tmp/named_dump.db file. This file is helpful in checking

the BIND data files for possible errors. Here is an excerpt of a

named_dump.db file for a system whose data base is correctly set up:

; Dumped at Thu Jun 23 14:33:15 1988

; - Cache & Data ---

$ORIGIN .

arpa 42391 IN SOASRI-NIC.ARPA. HOSTMASTER.SRI-NIC.ARPA. (

880620 1800 300 604800 86400)

474256 IN NS BRL-AOS.ARPA.

474256 IN NS A.JISLEDU.

474256 IN NS C.NYSER.NET.

474256 IN NS TERP.UMD.EDU.

474256 IN NS NS.NASA.GOV.

42256 IN SOASRI-NIC.ARPA. HOSTMASTER.SRI-NIC.ARPA. (

880620 1800 300 604800 86400)

$ORIGIN arpa.

GUNTER-ADAM 474256 IN A 26.1.0.13 ; 15034

BRL-AOS 474256 IN A 128.20.1.2; 13398

474256 IN A 192.5.25.82 ; 15097

SRI-NIC 474391 IN A 26.0.0.73 ; 12557

474391 IN A 10.0.0.51 ; 13135

42391 IN MX 10 SRI-NIC.ARPA.

$ORIGIN 128.in-addr.arpa.

45 475231 IN NS SONORA.DEC.COM.

475231 IN NS CYBELE.DEC.COM.

475231 IN NS DECWRL.DEC.COM.

$ORIGIN 45.128.in-addr.arpa.

31 43231 IN NS know.roads.dec.com.

45 IN SOA chicago.cities.dec.com. doe.chicago.cities.dec.com. (

7 1800 3600 1209600 86400)

IN NS chicago.cities.dec.com.

$ORIGIN 41.45.128.in-addr.arpa.

72 IN PTR hole.cities.dec.com.

$ORIGIN 42.45.128.in-addr.arpa.

141 IN PTR miami.cities.dec.com.

27 IN PTR toledo.cities.dec.com.

8 IN PTR paris.cities.dec.com.

1 IN PTR potsdam.cities.dec.com.

$ORIGIN 43.45.128.in-addr.arpa.

2 IN PTR madrid.cities.dec.com.

141 IN PTR cannes.cities.dec.com.

$ORIGIN 44.45.128.in-addr.arpa. '

24 IN PTR galway.cities.dec.com.

27 IN PTR antrim.cities.dec.com.

25 IN PTR chism.cities.dec.com.

$ORIGIN 49.45.128.in-addr.arpa.

6 IN PTR akron.cities.dec.com.

13 IN PTR toledo.cities.dec.com.

14 IN PTR madrid.cities.dec.com.

15 IN PTR columbia.cities.dec.com.

2 ’ IN PTR stow.cities.dec.com.

4 IN PTR atlanta.cities.dec.com.

$ORIGIN 0.127.in-addr.arpa.

0 IN SOA chicaon citiea dae enm dne ohicaon ritiacs dar ane [

7 1800 3600 1209600 86400)

IN NS chicago.cities.dec.com.

$ORIGIN 0.0.127.in-addr.arpa.

1 IN PTR localhost.

$ORIGIN com.

dec IN SOA decwrl.dec.com. postmaster.decwrl.dec.com. (

142 43200 3600 1209600 86400)

IN NS sonora.dec.com.

IN NS decwrl.dec.com.

IN NS cybele.dec.com.

IN MX 100 decwrl.dec.com.

$ORIGIN dec.com.

aa IN A 128.45.1.87

bb IN A 128.45.1.81

cc IN CNAME cc32.dec.com.

dd IN A 128.45.1.33

cities IN SOA chicago.cities.dec.com. doe.chicago.cities.dec.com. (

7 1800 3600 1209600 86400)

IN NS chicago.cities.dec.com.

IN MX 200 detroit.dec.com.

tempe IN A 128.45.45.79

coxland IN A 12845.1.176

$ORIGIN cities.dec.com.

ff IN A 128.45.45.221

* IN MX 51 tempe.cities.dec.com.

IN MX 50 chicago.cities.dec.com.

tempe IN A 128.45.45.79

IN TXT "This is class IN data for tempe.”

3 TXT "choas text data for tempe.”

dixie IN CNAME sunup.cities.dec.com.

IN CNAME sunset.cities.dec.com.

alias IN SOA chicago.cities.dec.com. doe.chicago.cities.dec.com. (

8 1800 3600 1209600 86400)

8 1800 3600 1209600 86400)

am IN CNAME antrim.cities.dec.com.

rutland IN A 128.45.45.105

derry IN CNAME derry.cities.dec.com.

london IN CNAME Ilondon.cities.dec.com.

$ORIGIN alias.cities.dec.com.

$ORIGIN uid.cities.dec.com.

$ORIGIN passwd.cities.dec.com.

$ORIGIN pa.dec.com.

wilton IN A 128.45.1.14

$ORIGIN nac.dec.com.

midland IN A 128.45.31.151

$ORIGIN NASA.GOV.

NS 474256 IN A 128.102.16.10 ; 13964

$ORIGIN local.

tempe IN CNAME tempe.cities.dec.com.

chicago IN CNAME chicago.cities.dec.com.

$ORIGIN NYSER.NET.

C 474256 IN A 192.33.4.12 ; 12999

$ORIGIN UMD.EDU.

TERP 474256 IN A 10.1.0.17 ; 12186

474256 IN A 128.8.10.90 ; 3414

$ORIGIN ISI.EDU.

A 474256 IN A 26.3.0.103; 15203

; --- Hints ---

$ORIGIN .

474256 IN NS BRL-AOS.ARPA.

474256 IN NS A.ISILEDU.

474256 IN NS GUNTER-ADAM.ARPA.

474256 IN NS C.NYSER.NET.

474256 IN NS TERP.UMD.EDU.

474256 IN NS NS.NASA.GOV.

3600 IN SOA SRI-NIC.ARPA. HOSTMASTER.SRI-NIC.ARPA. (

880620 1800 300 604800 86400)

UK 407690 IN NS NS1.CS.UCL.AC.UK.

407690 IN NS NS2.CS.UCL.AC.UK.

407690 IN NS BRL-AOS.ARPA.

$ORIGIN arpa.

GUNTER-ADAM 474256 IN A 26.1.0.13

BRL-AOS 474256 IN A 128.20.1.2

474256 IN A 192.5.25.82

SRI-NIC 474256 IN A 26.0.0.73 ; 2850

474256 IN A 10.0.0.51

13620 IN MX 10 SRI-NIC.ARPA.

$ORIGIN 128.in-addr.arpa.

45 348719 IN NS SONORA.DEC.COM.

348719 IN NS CYBELE.DEC.COM.

348719 IN NS DECWRL.DEC.COM.

$ORIGIN 45.128.in-addr.arpa.

31 3600IN NS iknow.nac.dec.com.

$ORIGIN CS.UCL.AC.UK.

NS2 407690 IN A 128.16.8.3

NS1 407690 IN A 128.16.5.32

nss 249294 IN A 128.41.9.3

249294 IN A 14.0.0.9

249294 IN MX 13 nss.cs.ucl.ac.uk.

249294 IN HINFO "MICROVAXZ2” "ULTRIX1.2”

249294 IN WKS 128.41.9.3 tcp telnet smtp

$ORIGIN NASA.GOV.

NS 474256 IN A 128.102.16.10

$ORIGIN UMD.EDU.

TERP 474256 IN A 10.1.0.17

474256 IN A 128.8.10.90

$ORIGIN ISI.EDU.

A 474256 IN A 26.3.0.103

$ORIGIN NYSER.NET.

C 474256 IN A 192.33.4.12

A.7 The named.run File

If you turn on debugging for the named daemon, the results are recorded

in the /var/tmp/named.run file. This file is helpful in troubleshooting the

BIND service. This section lists two sample named.run files. The first

sample is indicative of a system that has the BIND service properly set

up, while the second sample indicates a system that has the BIND service

improperly set up.

A.7.1 A Healthy named.run File

The following sample named.run file logs the successful BIND service

transactions. Notice the numerous ANSWERS.

Debug turned ON, Level 5

bootfile = /etc/named.primary/named.boot

ns__init(/etc/named.primary/named.boot)

savehash GROWING to 2

savehash GROWING to 2

zone[l] type 1: ’cities.dec.com’, source = cities.dec.com.SOA

db__load(cities.dec.com.SOA, cities.dec.com, 1)

d="cities.dec.com’, ¢=1, t=6, ttl=0, data=’boston.cities.dec.com.’

db_update(cities.dec.com, 0x31c04, 0x31c04, 01, 0x203a4)

savehash GROWING to 2

savehash GROWING to 2

db__update: adding 31c04

d="cities.dec.com’, ¢c=1, t=2, ttl=0, data=’boston.cities.dec.com.’

db__update(cities.dec.com, 0x32404, 0x32404, 01, 0x203a4)

match(0x31c¢04, 1, 2) 1, 6

db_update: adding 32404

d="boston.cities.dec.com’, ¢c=1, t=1, ttl=0, data='128.45.45.93’

db__update(boston.cities.dec.com, 0x2d4c4, 0x2d4c4, 01, 0x203a4)

savehash GROWING to 2

db_update: adding 2d4c4

d="tampa.cities.dec.com’, c=1, t=1, ttl=0, data=’128.45.45.79’

db_update(tampa.cities.dec.com, 0x2d524, 0x2d524, 01, 0x203a4)

db_update: adding 2d524

d="*.cities.dec.com’, c=1, t=15, ttl=0, data=’51’

db__update(*.cities.dec.com, 0x324c4, 0x324c4, 01, 0x203a4)

db_update: adding 324c4

d="*cities.dec.com’, c=1, t=15, ttl=0, data=’50’

db_update(*.cities.dec.com, 0x32504, 0x32504, 01, 0x203a4)

match(0x324c4, 1, 15) 1, 15

db_update: flags = 0x1, sizes = 20, 19 (1)

db_update: adding 32504

db_load(cities.dec.com.db, cities.dec.com, 1)

d="localhost.cities.dec.com’, c=1, t=1, ttl=0, data=’127.0.0.1’

db_update(localhost.cities.dec.com, 0x2d5a4, 0x2d5a4, 01, 0x203a4)

db__update: adding 2d5a4

d=’nashua.cities.dec.com’, ¢c=1, t=1, ttl=0, data=’128.45.45.17’

db_update(nashua.cities.dec.com, 0x2d5e4, 0x2d5e4, 01, 0x203a4)

savehash GROWING to 11

savehash(0x2d4e4) cnt=5, sz=2, newsz=11

db_update: adding 2d5e4

d="paris.cities.dec.com’, ¢=1, t=1, ttl=0, data='128.45.42.1’

db__update(paris.cities.dec.com, 0x2d4e4, 0x2d4e4, 01, 0x203a4)

db_update: adding 2d4e4

d=’paris.cities.dec.com’, ¢c=1, t=13, ttl=0, data='VAX’

db_update(paris.cities.dec.com, 0x32644, 0x32644, 01, 0x203a4)

match(0x2d4e4, 1, 13) 1, 1

db_update: adding 32644

d="p.cities.dec.com’, c=1, t=5, ttl=0, data="’paris’

db_update(p.cities.dec.com, 0x32684, 0x32684, 01, 0x203a4)

db_update: adding 32684

d="galway.cities.dec.com’, c=1, t=1, ttl=0, data='128.45.45.1’

db__update(galway.cities.dec.com, 0x2d664, 0x2d664, 01, 0x203a4)

db_update: adding 2d664

d="gy.cities.dec.com’, c=1, t=5, ttl=0, data=’galway’

db_update(gy.cities.dec.com, 0x32704, 0x32704, 01, 0x203a4)

db_update: adding 32704

d="norfolk.cities.dec.com’, ¢c=1, t=1, ttl=0, data='128.45.42.2’

db__update(norfolk.cities.dec.com, 0x2d6c4, 0x2d6c¢4, 01, 0x203a4)

db_update: adding 2d6c4

d="n.cities.dec.com’, ¢c=1, t=5, ttl=0, data=’norfolk’

db__update(n.cities.dec.com, 0x32784, 0x32784, 01, 0x203a4)

db_update: adding 32784

d=’bangor.cities.dec.com’, ¢=1, t=1, ttl=0, data=’128.45.45.2’

db__update(bangor.cities.dec.com, 0x2d724, 0x2d724, 01, 0x203a4)

db_update: adding 2d724

d="bg.cities.dec.com’, c=1, t=5, ttl=0, data=bangor’

db__update(bg.cities.dec.com, 0x32804, 0x32804, 01, 0x203a4)

db_update: adding 32804

d="canton.cities.dec.com’, c=1, t=1, ttl=0, data='128.45.43.2’

db_update(canton.cities.dec.com, 0x2d784, 0x2d784, 01, 0x203a4)

db_update: adding 2d784

d="c.cities.dec.com’, ¢c=1, t=5, ttl=0, data=’canton’

db_update(c.cities.dec.com, 0x32884, 0x32884, 01, 0x203a4)

db_update: adding 32884

d="few.cities.dec.com’, ¢c=1, t=1, ttl=0, data='128.45.45.3’

db_update(few.cities.dec.com, 0x2d7e4, 0x2d7e4, 01, 0x203a4)

db_update: adding 2d7e4

d="f.cities.dec.com’, ¢=1, t=5, ttl=0, data=’few’

db_update(f.cities.dec.com, 0x32904, 0x32904, 01, 0x203a4)

db_update: adding 32904

d="trouble.cities.dec.com’, ¢c=1, t=1, ttl=0, data='128.45.45.4’

db__update(trouble.cities.dec.com, 0x2d844, 0x2d844, 01, 0x203a4)

db_update: adding 2d844

d="t.cities.dec.com’, ¢=1, t=5, ttl=0, data=’trouble’

db__update(t.cities.dec.com, 0x32984, 0x32984, 01, 0x203a4)

db__update: adding 32984

d="foto.cities.dec.com’, ¢c=1, t=1, ttl=0, data='128.45.45.5’

db__update(foto.cities.dec.com, 0x2d8a4, 0x2d8a4, 01, 0x203a4)

db_update: adding 2d8a4

d="wise.cities.dec.com’, ¢=1, t=1, ttl=0, data="128.45.45.6’

db_update(wise.cities.dec.com, 0x2d8e4, 0x2d8e4, 01, 0x203a4)

db_update: adding 2d8e4

d="w.cities.dec.com’, ¢c=1, t=5, ttl=0, data=’wise’

db_update(w.cities.dec.com, 0x32a44, 0x32a44, 01, 0x203a4)

db_update: adding 32a44

d=’marg.cities.dec.com’, c=1, t=1, ttl=0, data=’128.45.45.7’

db_update(marg.cities.dec.com, 0x2d944, 0x2d944, 01, 0x203a4)

savehash GROWING to 113

savehash(0x32584) cnt=23, sz=11, newsz=113

db_load: origin NYSER.NET., buf 45.128.in-addr.arpa

db_load: origin now NYSER.NET

d="C.NYSER.NET’, c=1, t=1, ttl=583091719, data='192.33.4.12’

db_update(C.NYSER.NET, 0x5dba4, 0x5dba4, 021, 0x203c4) hint

savehash GROWING to 2

db_update: adding hint 5dba4

db_load: origin UMD.EDU., buf NYSER.NET

db_load: origin now UMD.EDU

d="TERP.UMD.EDU’, ¢=1, t=1, ttl=583091719, data=’10.1.0.17’

db_update(TERP.UMD.EDU, 0x5dc64, 0x5dc64, 021, 0x203c4) hint

savehash GROWING to 2

db_update: adding hint 5dc64

d="TERP.UMD.EDU’, ¢c=1, t=1, tt1=583091719, data=’128.8.10.90’

db_update(TERP.UMD.EDU, 0x5dd24, 0x5dd24, 021, 0x203c4) hint

match(0x5dc64, 1, 1) 1, 1

db_update: flags = 0Ox11, sizes = 4, 4 (4)

db_update: adding hint 5dd24

db_load: origin ISI.LEDU., buf UMD.EDU

db_load: origin now ISI.EDU

d="AISLEDU’, c=1, t=1, ttlI=583091719, data=’26.3.0.103’

db_update(A.ISL.EDU, 0x5dd44, 0x5dd44, 021, 0x203c4) hint

savehash GROWING to 2

db_update: adding hint 5dd44

z_time 582916333, z_refresh 3600

exit ns_init() Next interrupt in 3598 sec

database initialized

net x2d2d80 mask =xffffff my_addr x5d2d2d80 128.45.45.93

net x7f mask xff my_addr x100007f 127.0.0.1

net x2d80 mask xffff my_addr x5d2d2d80 128.45.45.93

ds 0.0.0.0 7

dgp->dq_addr 127.0.0.1 d_dfd 8

dgp->dq_addr 128.45.45.93 d_dfd 9

Ready to answer queries.

prime__cache: priming = 0

sysquery(, 1, 2)

findns: using hints

findns: np 0x5d964

findns: 7 NS’s added for ”

gnew(x1f604)

nslookup(nsp=x7fffdcbe,qp=x1f604)

nslookup:

nslookup:

nslookup:

nslookup:

nslookup:

nslookup:

nslookup:

nslookup:

nslookup:

nslookup:

nslookup:

NS SRI-NIC.ARPA c1 t2 (x1)

2 ns addrs

NS BRL-AOS.ARPA cl1 t2 (x1)

4 ns addrs

NS AISI.EDU c1 t2 (x1)

5 ns addrs

NS GUNTER-ADAM.ARPA cl1 t2 (x1)

6 ns addrs

NS C.NYSER.NET c1 t2 (x1)

7 ns addrs

NS TERP.UMD.EDU ec1 t2 (x1)

nslookup: 9 ns addrs

nslookup: NS NS.NASA.GOV cl1 t2 (x1)

NS.NASA.GOV: not found ??? 0

nslookup: 9 ns addrs total

schedretry(0x1f604, 13sec)

sysquery: send -> 26.0.0.73 7 (53), nsid=1 id=0 Oms

Return from getdtablesize() > FD_SETSIZE

datagram from 128.45.45.15, 9 1568 (39)

ns_req()

HEADER:

opcode = QUERY, id = 155, rcode = NOERROR

header flags: rd

qdcount = 1, ancount = 0, nscount = 0, arcount = 0

QUESTIONS:

localhost.cities.dec.com, type = A, class = IN

req: nlookup(localhost.cities.dec.com) id 39680 type=1

req: found ’localhost.cities.dec.com’ as ’localhost.cities.dec.com’ (cname=0)

wanted(2d5a4, 1, 1) 1, 1

make_rr(localhost.cities.dec.com, 2d5a4, 7fffddbb, 473, 1) 4

finddata: added 1 class 1 type 1 RRs

req: foundname = 1 count = 1 founddata = 1 cname = 0

sort_response(1)

findns: np 0x2d5c4

match(0x2d5a4, 1, 6) 1, 1

findns: np 0x2d4a4

match(0x31c04, 1, 6) 1, 6

findns: SOA found

req: leaving (localhost.cities.dec.com, rcode 0)

req: answer -> 128.45.45.15 9 (1568) id=155 Local

datagram from 128.45.45.15, 9 1570 (40)

ns_req()

HEADER:

opcode = QUERY, id

header flags: rd

gdcount = 1, ancount = 0, nscount

154, rcode = NOERROR

0, arcount = 0

QUESTIONS:

1.0.0.127.in-addr.arpa, type = PTR, class = IN

req: nlookup(1.0.0.127.in-addr.arpa) id 39424 type=12

req: found ’1.0.0.127.in-addr.arpa’ as ’1.0.0.127.in-addr.arpa’ (cname=0)

wanted(44c44. 1. 12) 1. 12

make_rr(1.0.0.127.in-addr.arpa, 44c44, 7fffddbc, 472, 1) 10

finddata: added 1 class 1 type 12 RRs

req: foundname = 1 count = 1 founddata = 1 cname = 0

sort_response(1)

findns: np 0x44a44

match(0x44c44, 1, 6) 1, 12

findns: np 0x44a04

match(0x32084, 1, 6) 1, 6

findns: SOA found

req: leaving (1.0.0.127.in-addr.arpa, rcode 0)

req: answer -> 128.45.45.15 9 (1570) id=154 Local

retry(x1f604) id=0

resend(addr=1 n=0) -> 10.0.0.51 7 (53) nsid=1 id=0 Oms

unsched(0x1f604, 0)

schedretry(0x1f604, 13sec)

datagram from 10.0.0.51, 9 53 (421)

ns_req()

HEADER:

opcode = QUERY, id

header flags: qr aa

qdcount = 1, ancount

1, rcode = NOERROR

7, nscount = 1, arcount = 10

QUESTIONS:

., type = NS, class = IN

ANSWERS:

type = NS, class = IN, ttl = 518400, dlen 14

domain name = SRI-NIC.ARPA

type = NS, class = IN, ttl = 518400, dlen = 14

domain name = BRL-AOS.ARPA

type = NS, class = IN, ttl = 518400, dlen = 11

domain name = A.ISIL.EDU

type = NS, class = IN, ttl = 518400, dlen 18

domain name = GUNTER-ADAM.ARPA

tvpe = NS. clagss = IN +#t1 = 518400 dlen = 192

domain name = C.NYSER.NET

type = NS, class = IN, ttl = 518400, dlen = 14

domain name = TERP.UMD.EDU

type = NS, class = IN, ttl = 518400, dlen = 13

domain name = NS.NASA.GOV

NAME SERVERS:

type = SOA, class = IN, ttl = 86400, dlen = 59

origin = SRI-NIC.ARPA

mail addr = HOSTMASTER.SRI-NIC.ARPA

serial=880620, refresh=1800, retry= 300, expire=604800, min= 86400

ADDITIONAL RECORDS:

SRI-NIC.ARPA

type = A, class

internet address

= IN, ttl = 518400, dlen = 4

= 26.0.0.73

SRI-NIC.ARPA

type = A, class

internet address

IN, ttl = 518400, dlen = 4

10.0.0.51

BRL-AOS.ARPA

type = A, class = IN, ttl = 518400, dlen = 4

internet address = 128.20.1.2

BRL-AOS.ARPA

type = A, class = IN, ttl = 518400, dlen = 4

internet address = 192.5.25.82

A.ISLLEDU

type = A, class = IN, ttl = 518400, dlen = 4

internet address = 26.3.0.103

GUNTER-ADAM.ARPA

IN, ttl = 518400, dlen = 4

26.1.0.13

type = A, class

internet address [
T

C.NYSER.NET

tvpe = A. class IN. tt1 = 518400. dlen = 4

internet address = 192.33.4.12

TERP.UMD.EDU

type = A, class = IN, ttl = 518400, dlen = 4

internet address = 10.1.0.17

TERP.UMD.EDU

type = A, class = IN, ttl = 518400, dlen = 4

internet address = 128.8.10.90

NS.NASA.GOV

type = A, class = IN, ttl = 518400, dlen = 4

internet address = 128.102.16.10

qfindid(1)

SYSTEM response nsid=1 id=0

stime 582912747/180000 now 582912750/390000 rtt 3210

NS #1 addr 10.0.0.51 used, rtt 3210

NS #0 26.0.0.73 rtt now 3852

NS #2 128.20.1.2 rtt now O

NS #3 192.5.25.82 rtt now O

NS #4 26.3.0.103 rtt now O

NS #5 26.1.0.13 rtt now O

NS #6 192.33.4.12 rtt now 0

NS #7 10.1.0.17 rtt now O

NS #8 128.8.10.90 rtt now O

resp: ancount 7, nscount 1, arcount 10

sort_response(7)

sort_rr(x7fffdda5, 7, 0.0.0.0)

sort_rr(x7fffddab, 7, 128.45.45.0)

sort_rr(x7fffdda5, 7, 127.0.0.0)

sort_rr(x7fffddab, 7, 128.45.0.0)

doupdate(zone 0, savens 7fffd3a0, flags 9)

doupdate: dname type 2 class 1 ttl 518400

db_update(, 0x5clc4, 0x5clc4, 011, 0x203a4)

db_update: hint ” 583431150

db_update(, 0x5c¢204, 0x5c204, 031, 0x203c4) hint

match(0x5bf04, 1, 2) 1, 2

db_update: flags = 0x19, sizes = 13, 13 (0)

db_update: new ttl 583431150, + 518400

db_update: hint 5c¢204 freed

db_update: adding 5clc4

doupdate(zone 0, savens 7fffd3a0, flags 9)

doupdate: dname type 2 class 1 ttl 518400

db__update(, 0x5c204, 0x5c204, 011, 0x203a4)

db__update: hint ” 583431150

db_update(, 0x5c244, 0x5c244, 031, 0x203c4) hint

match(0x5bf04, 1, 2) 1, 2

db_update: flags = 0x19, sizes = 13, 13 (17)

match(0x5bf44, 1, 2) 1, 2

db_update: flags = 0x19, sizes = 13, 13 (0)

db_update: new ttl 583431150, +518400

db_update: hint 5c244 freed

match(0x5cle4, 1, 2) 1, 2

db__update: flags = 0x9, sizes = 13, 13 (17)

db_update: adding 5c204

doupdate(zone 0, savens 7fffd3a0, flags 9)

doupdate: dname type 2 class 1 ttl 518400

db_update(, 0x5c244, 0x5c244, 011, 0x203a4)

db_update: hint ” 583431150

HEADER:

opcode = QUERY, id = 220, rcode = NOERROR

header flags: rd

qdcount = 1, ancount = 0, nscount = 0, arcount = 0

QUESTIONS:

1.0.0.127.in-addr.arpa, type = PTR, class = IN

req: nlookup(1.0.0.127.in-addr.arpa) id 56320 type=12

req: found ’1.0.0.127.in-addr.arpa’ as ’1.0.0.127.in-addr.arpa’ (cname=0)

wanted(44c44, 1, 12) 1, 12

make_rr(1.0.0.127.in-addr.arpa, 44c44, 7fffddbec, 472, 1) 10

finddata: added 1 class 1 type 12 RRs

req: foundname = 1 count = 1 founddata = 1 cname = 0

sort_response(1)

findns: np 0x44a44

match(0x44c44, 1, 6) 1, 12

findns: np 0x44a04

match(0x32084, 1, 6) 1, 6

findns: SOA found

req: leaving (1.0.0.127.in-addr.arpa, rcode 0)

req: answer -> 128.45.45.95 9 (4713) id=220 Local

datagram from 128.45.45.95, 9 4714 (40)

ns_req()

HEADER: :

opcode = QUERY, id = 3, rcode = NOERROR

header flags: rd

gdcount = 1, ancount = 0, nscount = 0, arcount = 0

QUESTIONS:

antrim.cities.dec.com.com, type = A, class = IN

req: nlookup(antrim.cities.dec.com.com) id 768 type=1

req: found ’antrim.cities.dec.com.com’ as ’com’ (cname=0)

findns: np 0x2d424

findns: using cache

findns: np 0x5de24

findns: 7 NS’s added for ”

ns__forw()

qnew(x1f604)

nslookup(nsp=x7fffdb80,qp=x1f604)

nslookup: NS SRI-NIC.ARPA cl1 t2 (x0)

nslookup: 2 ns addrs

nslookup: NS BRL-AOS.ARPA c1 t2 (x0)

nslookup: 4 ns addrs

nslookup: NS A.ISLEDU cl1 t2 (x0)

nslookup: 5 ns addrs

nslookup: NS GUNTER-ADAM.ARPA c1 t2 (x0)

nslookup: 6 ns addrs

nslookup: NS C.NYSER.NET cl1 t2 (x0)

nslookup: 7 ns addrs

nslookup: NS TERP.UMD.EDU c1 t2 (x0)

nslookup: 9 ns addrs

nslookup: NS NS.NASA.GOV cl1 t2 (x0)

nslookup: 10 ns addrs total

schedretry(0x1f604, 4sec)

forw: forw -> 192.33.4.12 7 (53) nsid=4 id=3 Oms

datagram from 128.45.45.95, 9 4715 (40)

ns_req()

HEADER:

opcode = QUERY, id

header flags: rd

1023, rcode = NOERROR

gdcount = 1, ancount = 0, nscount = 0, arcount = 0

QUESTIONS:

queens.dec.com, type = A, class = IN

req: nlookup(queens.dec.com) id 65283 type=1

req: found ’queens.dec.com’ as ’queens.dec.com’ (cname=0)

wanted(4cle4, 1, 1) 1, 15

finddata: added 0 class 1 type 1 RRs

findns: np 0x4c7a4

match(0x4cle4, 1, 6) 1, 15

findns: np 0x2d464

match(0x32104, 1, 6) 1, 6

findns: SOA found

req: leaving (queens.dec.com, rcode 0)

make_rr(dec.com, 32104, 7fffddb3, 481, 1) 61

req: answer -> 128.45.45.87 9 (1741) id=1023 Local

datagram from 128.45.45.87, 9 1743 (31)

ns_req()

HEADER:

opcode = QUERY, id

header flags: rd

1023, rcode = NOERROR

gdcount = 1, ancount = 0, nscount = 0, arcount = 0

QUESTIONS:

queens.dec.com, type = A, class = IN

req: nlookup(queens.dec.com) id 65283 type=1

req: found ’queens.dec.com’ as ’queens.dec.com’ (cname=0)

wanted(4cle4, 1, 1) 1, 15

finddata: added O class 1 type 1 RRs

findns: np 0x4c7a4

match(0x4cle4, 1, 6) 1, 15

findns: np 0x2d464

match(0x32104, 1, 6) 1, 6

findns: SOA found

req: leaving (queens.dec.com, rcode 0)

make_rr(dec.com, 32104, 7fffddb3, 481, 1) 61

req: answer -> 128.45.45.87 9 (1743) id=1023 Local

datagram from 128.45.45.87, 9 1745 (31)

ns_req()

HEADER:

opcode = QUERY, id

header flags: rd

1024, rcode = NOERROR

qgdcount = 1, ancount = 0, nscount = 0, arcount = 0

QUESTIONS:

queens.dec.com, type = A, class = IN

req: nlookup(queens.dec.com) id 4 type=1

req: found ’queens.dec.com’ as ’queens.dec.com’ (cname=0)

wanted(4clc4, 1, 1) 1, 15

finddata: added O class 1 type 1 RRs

findns: np 0x4c7a4

match(0Ox4cle4, 1, 6) 1, 15

findns: np 0x2d464

match(0x32104, 1, 6) 1, 6

findns: SOA found

req: leaving (queens.dec.com, rcode 0)

make_rr(dec.com, 32104, 7fffddb3, 481, 1) 61

req: answer -> 128.45.45.87 9 (1745) id=1024 Local

datagram from 128.45.45.87, 9 1747 (31)

ns_req()

HEADER:

opcode = QUERY, id

header flags: rd

1024, rcode = NOERROR

qdcount = 1, ancount = 0, nscount = 0, arcount = 0

QUESTIONS:

queens.dec.com, type = A, class = IN

req: nlookup(queens.dec.com) id 4 type=1

req: found ’queens.dec.com’ as ’queens.dec.com’ (cname=0)

wanted(4clc4, 1, 1) 1, 15

finddata: added 0 class 1 type 1 RRs

findns: np Ox4c7a4

match(0x4cle4, 1, 6) 1, 15

findns: np 0x2d464

match(0x32104, 1, 6) 1, 6

findns: SOA found

req: leaving (queens.dec.com, rcode 0)

make_rr(dec.com, 32104, 7fffddb3, 481, 1) 61

req: answer -> 128.45.45.87 9 (1747) id=1024 Local

datagram from 128.45.45.87, 9 1749 (31)

ns_req()

HEADER:

opcode = QUERY, id = 1025, rcode = NOERROR

header flags: rd

qdcount = 1, ancount = 0, nscount = 0, arcount = 0

QUESTIONS:

queens.dec.com, type = A, class = IN

req: nlookup(queens.dec.com) id 260 type=1

req: found ’queens.dec.com’ as ’queens.dec.com’ (cname=0)

wanted(4clec4, 1, 1) 1, 15

finddata: added 0 class 1 type 1 RRs

findns: np Ox4c7a4

match(0x4clc4, 1, 6) 1, 15

findns: np 0x2d464

match(0x32104, 1, 6) 1, 6

findns: SOA found

req: leaving (queens.dec.com, rcode 0)

make_rr(dec.com, 32104, 7fffddb3, 481, 1) 61

req: answer -> 128.45.45.87 9 (1749) id=1025 Local

datagram from 128.45.45.87, 9 1751 (31)

ns_req()

HEADER:

opcode = QUERY, id

header flags: rd

1025, rcode = NOERROR

qdcount = 1, ancount = 0, nscount = 0, arcount = 0

QUESTIONS:
queens.dec.com, type = A, class = IN

req: nlookup(queens.dec.com) id 260 type=1

req: found ’queens.dec.com’ as ’queens.dec.com’ (cnhame=0)

wanted(4clc4, 1, 1) 1, 15

finddata: added O class 1 type 1 RRs

findns: np 0x4c7a4

match(0x4clc4, 1, 6) 1, 15

findns: np 0x2d464

match(0x32104, 1, 6) 1, 6

findns: SOA found

req: leaving (queens.dec.com, rcode 0)

make_rr(dec.com, 32104, 7fffddb3, 481, 1) 61

req: answer -> 128.45.45.87 9 (1751) id=1025 Local

datagram from 128.45.45.15, 9 1574 (39)

ns_req()

HEADER:

opcode = QUERY, id

header flags: rd

157, rcode = NOERROR

gdcount = 1, ancount = 0, nscount = 0, arcount = 0

QUESTIONS:

localhost.cities.dec.com, type = A, class = IN

req: nlookup(localhost.cities.dec.com) id 40192 type=1

req: found ’localhost.cities.dec.com’ as ’localhost.cities.dec.com’ (cname=0)

wanted(2d5a4, 1, 1) 1, 1

make_ rr(localhost.cities.dec.com, 2d5a4, 7fffddbb, 473, 1) 4

finddata: added 1 class 1 type 1 RRs

req: foundname = 1 count = 1 founddata = 1 cname = 0

sort_response(1)

findns: np 0x2d5c4

match(0x2d5a4, 1, 6) 1, 1

findns: np 0x2d4a4

match(0x31c04, 1, 6) 1, 6

findns: SOA found

req: leaving (localhost.cities.dec.com, rcode 0)

req: answer -> 128.45.45.15 9 (1574) id=157 Local

datagram from 128.45.45.15, 9 1576 (40)

ns_req()

HEADER:

opcode = QUERY, id

header flags: rd

gdcount = 1, ancount = 0, nscount

156, rcode = NOERROR

0, arcount = 0

QUESTIONS:

1.0.0.127.in-addr.arpa, type = PTR, class = IN

req: nlookup(1.0.0.127.in-addr.arpa) id 39936 type=12

req: found ’1.0.0.127.in-addr.arpa’ as ’1.0.0.127.in-addr.arpa’ (cname=0)

wanted(44c44, 1, 12) 1, 12

make_rr(1.0.0.127.in-addr.arpa, 44c44, 7fffddbec, 472, 1) 10

finddata: added 1 class 1 type 12 RRs

req: foundname = 1 count = 1 founddata = 1 cname = 0

sort_response(1)

findns: np Ox44a44

match(0x44c44, 1, 6) 1, 12

findns: np 0x44a04

match(0x32084, 1, 6) 1, 6

findns: SOA found

req: leaving (1.0.0.127.in-addr.arpa, rcode 0)

Req: answer -> 128.45.45.15 9 (1576) id=156 Local

Debug turned OFF, Level 5

A.7.2 An Unhealthy named.run File

The following sample named.run file indicates that there is an error with
the BIND service. Notice the numerous QUESTIONS that are not

followed by ANSWERS. Notice, too, the numerous attempts to load BIND
name servers to answer queries.

Debug turned ON, Level 1

Debug turned ON, Level 2

Debug turned ON, Level 3

Debue turned ON I.evel 4

Debug turned ON, Level 5

datagram from 128.45.45.93 port 2034, fd 7, len- 39

ns_req()

HEADER:

opcode = QUERY, id

header flags: rd

1, rcode = NOERROR

qdcount = 1, ancount = 0, nscount = 0, arcount = 0

QUESTIONS:

localhost.cities.dec.com, type = A, class = IN

req: nlookup(localhost.cities.dec.com) id 256 type=1

req: found ’localhost.cities.dec.com’ as ’localhost.cities.dec.com’ (cname=0)

wanted(2d564, 1, 1) 1, 1

make__rr(localhost.cities.dec.com, 2d564, 7fffddbb, 473, 1) 4 zone 1 ttl 0

finddata: added 1 class 1 type 1 RRs

req: foundname = 1 count = 1 founddata = 1 cname = 0

sort_response(1)

findns: np 0x2d584

match(0x2d564, 1, 6) 1, 1

findns: np 0x2d4a4

match(0x31c04, 1, 6) 1, 6

findns: SOA found

req: leaving (localhost.cities.dec.com, rcode 0)

req: answer -> 128.45.45.93 9 (2034) id=1 Local

datagram from 128.45.45.93 port 2036, fd 7, len 47

ns_req()

HEADER:

opcode = QUERY, id

header flags: rd

2, rcode = NOERROR

gdcount = 1, ancount = 0, nscount = 0, arcount = 0

QUESTIONS:

wepel.cities.dec.com.cities.dec.com, type = A, class = IN

req: nlookup(wepel.cities.dec.com.cities.dec.com) id 512 type=1

req: found ’'wepel.cities.dec.com.cities.dec.com’ as

‘wepel.cities.dec.com.cities.dec.com’ (cname=0)

wanted(32444, 1, 1) 1, 15

finddata: added O class 1 type 1 RRs

findns: np 0x2d4e4

matech(Oxl2444 1 &) 1 18

match(0x31c04, 1, 6) 1, 6

findns: SOA found

req: leaving (wepel.cities.dec.com.cities.dec.com, rcode 0)

req: answer -> 128.45.45.93 9 (2036) id=2 Local

datagram from 128.45.45.93 port 2037, fd 7, len 43

ns_req()

HEADER:

opcode = QUERY, id = 3, rcode = NOERROR

header flags: rd

qdcount = 1, ancount = 0, nscount = 0, arcount = 0

QUESTIONS:

wepel.cities.dec.com.dec.com, type = A, class = IN

req: nlookup(wepel.cities.dec.com.dec.com) id 768 type=1

req: found ’wepel.cities.dec.com.dec.com’ as ’wepel.cities.dec.com.dec.com’ (cname=0)

wanted(4bec4, 1, 1) 1, 15

finddata: added O class 1 type 1 RRs

findns: np 0x4c624

match(0x4bec4, 1, 6) 1, 15

findns: np 0x2d464

match(0x31d84, 1, 6) 1, 6

findns: SOA found

req: leaving (wepel.cities.dec.com.dec.com, rcode 0)

req: answer -> 128.45.45.93 9 (2037) id=3 Local

datagram from 128.45.45.93 port 2038, fd 7, len 35

ns_req()

HEADER:

opcode = QUERY, id

header flags: rd

4, rcode = NOERROR

qdcount = 1, ancount = 0, nscount = 0, arcount = 0

QUESTIONS:

wepel.cities.dec.com, type = A, class = IN

req: nlookup(wepel.cities.dec.com) id 1024 type=1

req: found ’wepel.cities.dec.com’ as ’wepel.cities.dec.com’ (cname=0)

wanted(2d504, 1, 1) 1, 1

make_rr(wepel.cities.dec.com, 2d504, 7fffddb7, 477, 1) 4 zone 1 ttl 0

finddata: added 1 class 1 type 1 RRs

req: foundname = 1 count = 1 founddata = 1 cname = 0

sort_response(1)

findns: np 0x2d524

match(0x2d504, 1, 6) 1, 1

findns: np 0x2d4a4

match(0x31c04, 1, 6) 1, 6

findns: SOA found

req: leaving (wepel.cities.dec.com, rcode 0)

req: answer -> 128.45.45.93 9 (2038) id=4 Local

datagram from 128.45.45.93 port 2039, fd 7, len 28

ns_req()

HEADER:

opcode = QUERY, id = 5, rcode = NOERROR

header flags: rd

qgdcount = 1, ancount = 0, nscount = 0, arcount = 0

QUESTIONS:

muon.local, type = ANY, class = IN

req: nlookup(muon.local) id 1280 type=255

req: missed 'muon.local’ as ”’ (cname=0)

findns: using cache

findns: np Ox5dec4

findns: 7 NS’s added for ”

ns_ forw()

qnew(x1f604)

nslookup(nsp=x7fffdb88,qp=x1f604)

nslookup:

nslookup:

nslookup:

nslookup:

nslookup:

nslookup:

nslookup:

nslookup:

nslookup:

nslookup:

nslookup:

nslookup:

NS SRI-NIC.ARPA c1 t2 (x0)

2 ns addrs

NS BRL-AOS.ARPA c1 t2 (x0)

4 ns addrs

NS A.ISILEDU cl1 t2 (x0)

5 ns addrs

NS GUNTER-ADAM.ARPA cl1 t2 (x0)

6 ns addrs

NS C.NYSER.NET cl1 t2 (x0)

8 ns addrs

NS TERP.UMD.EDU cl1 t2 (x0)

10 ns addrs total

retrytime: nstime lms.

schedretry(0x1f604, 4sec)

forw: forw -> 10.1.0.17 7 (53) nsid=9 id=5 1260ms retry 4 sec

datagram from 10.1.0.17 port 53, fd 7, len 86

ns._req()

HEADER:

opcode = QUERY, id = 9, rcode = NXDOMAIN

header flags: qr aa ra

gdcount = 1, ancount = 0, nscount = 1, arcount = 0

QUESTIONS:

muon.local, type = ANY, class = IN

NAME SERVERS:

type = SOA, class = IN, ttl = 86400, dlen = 47

origin = SRI-NIC.ARPA

mail addr = HOSTMASTER.SRI-NIC.ARPA

serial= 880513, refresh=1800, retry=300, expire=604800, min= 86400

gfindid(9)

USER response nsid=9 id=5

stime 579814526/240000 now 579814528/940000 rtt 2700

NS #0 addr 10.1.0.17 used, rtt 1692

NS #1 128.213.5.17 rtt now 1433

NS #2 26.1.0.13 rtt now 1481

NS #3 26.3.0.103 rtt now 3364

NS #4 192.33.4.12 rtt now 3881

NS #5 128.8.10.90 rtt now 3995

NS #6 128.20.1.2 rtt now 4328

NS #7 10.0.0.51 rtt now 5194

NS #8 192.5.25.82 rtt now 5194

NS #9 26.0.0.73 rtt now 5194

resp: ancount 0, aucount 1, arcount 0

doupdate(zone 0, savens 7fffd3b0, flags 19)

doupdate: dname type 6 class 1 ttl 86400

db_update(, 0x32084, 0x32084, 031, 0x5da44)

match(0x5d744, 1, 6) 1, 2

match(0x5d784, 1, 6) 1,

match(0x5d7¢4, 1, 6) 1

match(0x5d804, 1, 6) 1

match(0x5d844, 1, 6) 1,

match(0x5d884, 1, 6) 1

match(0x5d8c4, 1, 6) 1

match(0x32004, 1, 6) 1,

db_update: flags = 0x19, sizes = 57, 57 (0)

db_update: new ttl 579900928, + 86400

update failed (DATAEXISTS)

resp: leaving auth NO

N
N

N
N

send_msg -> 128.45.45.93 (UDP 9 2039) id=5

qgp 1f604 q_id: 1280 q_nsid: 2304 q_msglen: 28 g_naddr: 10 q_curaddr: O

g_next: 0 g_link: O

qremove(x1f604)

unsched(0x1f604, 5)

gfree(x1f604)

datagram from 128.45.45.93 port 2040, fd 7, len 34

ns_req()

HEADER:

opcode = QUERY, id = 6, rcode = NOERROR

header flags: rd

qgdcount = 1, ancount = 0, nscount = 0, arcount = 0

QUESTIONS:

tampa.cities.dec.com, type = MX, class = IN

req: nlookup(tampa.cities.dec.com) id 1536 type=15

req: found ’tampa.cities.dec.com’ as 'muon.cities.dec.com’ (cname=0)

wanted(3b4e4, 1, 15) 1, 1

finddata: added O class 1 type 15 RRs

findns: np 0x3b504

match(0x3b4e4, 1, 6) 1, 1

findns: np 0x2d4a4

match(0x31c04, 1, 6) 1, 6

findns: SOA found

req: leaving (tampa.cities.dec.com, rcode 0)

req: answer -> 128.45.45.93 9 (2040) id=6 Local

datagram from 128.45.45.93 port 2041, fd 7, len 34

ns_req()

HEADER:

opcode = QUERY, id

header flags: rd

qdcount = 1, ancount = 0, nscount = 0, arcount = 0

7, rcode = NOERROR

QUESTIONS:

tampa.cities.dec.com, type = A, class = IN

req: nlookup(tampa.cities.dec.com) id 1792 type=1

req: found ’tampa.cities.dec.com’ as ’muon.cities.dec.com’ (cname=0)

wanted(3b4e4, 1, 1) 1, 1

make_ rr(tampa.cities.dec.com, 3b4e4, 7fffddb6, 478, 1) 4 zone 1 ttl O

finddata: added 1 class 1 type 1 RRs

req: foundname = 1 count = 1 founddata = 1 cname = 0

sort_response(1)

findns: np 0x3b504

match(0x3b4e4, 1, 6) 1, 1

findns: np 0x2d4a4

match(0x31c04, 1, 6) 1, 6

findns: SOA found

req: leaving (tampa.cities.dec.com, rcode 0)

req: answer -> 128454593 9 (2041) id=7 Local

Debug turned OFF, Level 5

Appendix B

This appendix provides a copy of the BIND questionnaire that you need to

complete and send to the NIC domain registrar to register your BIND

domain. To obtain an on-line copy of the questionnaire, you can use the

ftp command.

The following example shows a successful ftp exchange. In this example

the site sri-nic.arpa is opened, the help option is invoked, and the BIND

domain registration questionnaire is copied to the file /tmp/questionnaire on

the local system:

ftp

ftp> open

(to) sri-nic.arpa

Connected to sri-nic.arpa.

220 SRI-NIC.ARPA FTP Server Process 5Z(47)-6 at Fri 10-Jun-88 12:07-PDT

Name (sri-nic.arpa:liza): anonymous

Password (sri-nic.arpa:anonymous):

331 ANONYMOUS user ok, send real ident as password.

230 User ANONYMOUS logged in at Fri 10-Jun-88 12:07-PDT

ftp> help

Commands may be abbreviated. Commands are:

! dir mget ‘ quit trace

append form mkdir quote type

ascii get mis recv user

bel i glob mode binary hash

cd ted prompt send ?

ftp> get

(remote-file) netinfo:domain-template.txt

(local-file) /tmp/questionnaire

200 Port 4.30 at host 128.45.45.93 accepted.

150 ASCII retrieve of <NETINFO>DOMAIN-TEMPLATE.TXT.28 started.

226 Transfer completed. 6129 (8) bytes transferred.

6129 byies received in 4.62 seconds (1.3 Kbytes/s)

(continued on next page)

ftp> close

221 QUIT command received. Goodbye.

ftp> bye

Upon completing a successful ftp exchange, as shown in the previous

example, here is what you receive:

more /tmp/questionnaire

[NETINFO:DOMAIN-TEMPLATE.TXT] [2/88]

To establish a domain, the following information must be sent to

the NIC Domain Registrar (HOSTMASTER@ SRI-NIC.ARPA). Questions

may be addressed to the NIC Hostmaster by electronic mail at the

above address, or by phone at (415) 859-5539 or (800) 235-3155.

NOTE: The key people must have electronic mailboxes and NIC

"handles,” unique NIC database identifiers. If you have access to

"WHOIS"”, please check to see if you are registered and if so, make

sure the information is current. Include only your handle and any

changes (if any) that need to be made in your entry. If you do not

have access to "WHOIS”, please provide all the information indicated

and a NIC handle will be assigned.

(1) The name of the top-level domain to join.

For example: COM

(2) The NIC handle of the administrative head of the organization.

Alternately, the person’s name, title, mailing address, phone number,

organization, and network mailbox. This is the contact point for

administrative and policy questions about the domain. In the case of

a research project, this should be the principal investigator.

For example:

Administrator

Organization The NetWorthy Corporation

Name Penelope Q. Sassafrass

Title President

Mail Address The NetWorthy Corporation

4676 Andrews Way, Suite 100

Santa Clara, CA 94302-1212

Phone Number (415) 123-4567

NIC Handle PQS

(3) The NIC handle of the technical contact for the domain.

Alternately, the person’s name, title, mailing address, phone number,

organization, and network mailbox. This is the contact point for

problems concerning the domain or zone, as well as for updating

information about the domain or zone.

For example:

Technical and Zone Contact

Organization The NetWorthy Corporation

Name Ansel A. Aardvark

Title Executive Director

Mail Address The NetWorthy Corporation

4676 Andrews Way, Suite 100

Santa Clara, CA. 94302-1212

Phone Number (415) 123-6789

Net Mailbox Aardvark@ ECHO.TNC.COM

NIC Handle AAA2

(4) The name of the domain (up to 12 characters). This is the name

that will be used in tables and lists associating the domain with the

domain server addresses. [While, from a technical standpoint, domain

names can be quite long (programmers beware), shorter names are

easier for people to cope with.]

For example: TNC

(5) A description of the servers that provide the domain service for

translating names to addresses for hosts in this domain, and the date

they will be operational.

A good way to answer this question is to say "Our server is

supplied by person or company X and does whatever their standard

issue server does.”

For example: Our server is a copy of the one operated by

the NIC; it will be installed and made operational on

1 November 1987.

(6) Domains must provide at least two independent servers for the

domain. Establishing the servers in phvsicallv separate locations

and on different PSNs is strongly recommended. A description of

the server machine and its backup, including

(a) Hardware and software (using keywords from the Assigned

Numbers RFC).

(b) Host domain name and network addresses (which host on which

network for each connected network).

(c) Any domain-style nicknames (please limit your domain-style

nickname request to one)

For example:

- Hardware and software

VAX-11/750 and UNIX, or

IBM-PC and MS-DOS, or

DEC-1090 and TOPS-20

- Host domain names and network addresses

BAR.FOO.COM 10.9.0.193 on ARPANET

- Domain-style nickname

BR.FOO.COM (same as BAR.FOO.COM 10.9.0.13 on ARPANET)

(7) Planned mapping of names of any other network hosts, other than

the server machines, into the new domain’s naming space.

For example:

BAR-FOO2.ARPA (10.8.0.193) -> FOO2.BAR.COM

BAR-FOO3.ARPA (10.7.0.193) -> FO0O3.BAR.COM

BAR-FOO4.ARPA (10.6.0.193) -> FOO4.BAR.COM

(8) An estimate of the number of hosts that will be in the domain.

(a) Initially

(b) Within one year

(¢c) Two years

(d) Five years.

For example:

(a) Initially = 50

(b) One year = 100

(¢c) Two years = 200

(d) Five years 500

(9) The date you expect the fully qualified domain name to become

the official host name in HOSTS.TXT.

Please note: Registration of this domain does not imply an

automatic name change to previously registered ARPANET or MILNET

hosts that will be included in this domain. If changing to a

fully qualified domain name (e.g., FOO.BAR.COM) causes a change

in the official host name of an ARPANET or MILNET host, DCA

approval must be obtained. This should be done after your domain

name is approved by Hostmaster. Allow 10 working days for your

requested changes to be processed. ARPANET (network 10) sites

should contact ARPANETMGR@DDN1.ARPA. MILNET (network 26) sites

should contact MILNETMGR@ DDN1.ARPA.

(10) Please describe your organization briefly.

For example: The NetWorthy Corporation is a consulting

organization of people working with UNIX and the C language in an

electronic networking environment. It sponsors two technical

conferences annually and distributes a bimonthly newsletter.

Appendix C

This appendix lists the papers, articles, and RFCs associated with the

BIND service that you may find useful. You can obtain the RFCs online

by using the ftp command as shown in Appendix B. See ftp(1lc) in the

ULTRIX Reference Pages for further information.

[Dunlap 86al]

[Dunlap 86b]

[Dyer 87]

[IEN-116]

[Mockapetris 88]

[Quarterman 86]

[RFC-882]

[RFC-883]

[RFC-920]

Dunlap, K. J., Bloom, J. M., "Experiences Implementing

BIND, A Distributed Name Server for the DARPA

Internet”, Proceedings USENIX Summer Conference,

Atlanta, Georga. June 1986, pages 172-181

Dunlap, K. J., "Name Server Operations Guide for

BIND”, Unix System Manager’s Manual, SMM-11. 4.3

Berkeley Software Distribution, Virtual VAX-11 Version.

University of California. April 1986

Dyer, S., and F. Hsu, "Hesiod”, Project Athena Technical

Plan - Name Service, April 1987, version 1.9.

Postel J., "Internet Name Server”, IEN-116,

USC/Information Sciences Institute, August 1979.

Mockapetris, P. V., Dunlap, K. J., "Development of the

Domain Name System”, Proceedings ACM SIGCOMM

1988 Symposium, Stanford University, Stanford,

California, August 1988.

Quarterman, J., and J. Hoskins, "Notable Computer

Networks” ,Communications of the ACM, October 1986,

volume 29, number 10.

P. Mockapetris, "Domain names - Concepts and

Facilities,” RFC-882, USC/Information Sciences Institute,

November 1983.

P. Mockapetris, "Domain names - Implementation and

Specification,” RFC-883, USC/Information Sciences

Institute, November 1983.

J. Postel and J. Reynolds, "Domain Requirements”,

RF(C-920, USC/Information Sciences Institute October

1984,

[RFC-973]

[RFC-974]

[RFC-1031]

[RFC-1032]

[RFC-1033]

[RFC-1034]

[RFC-1035]

P. Mockapetris, "Domain System Changes and

Observations”, RFC-973, USC/Information Sciences

Institute, January 1986.

C. Partridge, "Mail routing and the domain system”,

RFC-974, CSNET CIC BBN Labs, January 1986.

W. Lazear, "MILNET Name Domain Transition”, RFC-

1031, November 1987.

M. K. Stahl, "Establishing a Domain - Guidelines for

Administrators”, RFC-1032, November 1987.

M. K. Lottor, "Domain Administrators Operations Guide”,

RFC-1033, November 1987.

Mockapetris, P. V., "Domain Names - Concepts and

Facilities” RFC 1034, USC/Information Sciences Institute,

November 1987.

Mockapetris, P. V., "Domain names - Implementation and

Specification,” RFC 1035, USC/Information Sciences

Institute, November 1987.

Note

In the references listed, RFC refers to papers in the ARPA

Request for Comments series and IEN refers to ARPA Internet

Experiment Notes. Both the RFCs and IENs may be obtained

from the Network Information Center, SRI International, Menlo

Park, CA 94025, or from the authors of the papers.

Appendix D

This appendix provides sample interactive sessions with the nslookup

command. These samples are intended to help you get started using the

nslookup command. Here are the tasks shown in this appendix:

o Getting nslookup help

° Seeing which nslookup options are set

. Listing hosts in a domain

o Finding mail exchangers

® Finding the start of authority (SOA)

o Finding servers for a domain

° Obtaining a debug trace

7.1 Getting nsiookup Help

To see a list of the nslookup commands, type a question mark (?) at the

nslookup prompt:

nsliookup

Default Server: wepel.cities.dec.com

Address: 0.0.0.0

> 7

Commands: (identifiers are shown in uppercase, [] means optional)

NAME - print info on host/domain NAME using default server

NAME1 NAME?2 - as above, but use NAME2 as server

help or 7 - -.print help information

set OPTION - set an option

all - print options, current server and host

ALL - print options, current server and host, state info

[no]ldebug - print debugging information

[no]d2 - print exhaustive debugging information

[no]ldefname - append domain name to each query

[no]recurse - ask for recursive answer to query

[no]lvc - always use a virtual circuit

doma i n=NAME - set default domain name to NAME

(continued on next page)

root=NAME - set root server to NAME

retry=X -.-.set number of retries to X

timeout=X - set time-out interval to X

querytype=X - set query type to A,CNAME,HINFO,MB,MG,MINFO,6MR, MX
type=X - set query type to A,CNAME,HINFO,MB,MG,MINFO,MR, MX

server NAME - set default server to NAME, using default server
Iserver NAME - set default server to NAME, using initial server
finger [NAME] - finger the optional NAME

root - set current default server to the root

I's [-adhms] DOMAIN [> FILE] - list DOMAIN, optional output to FILE

-a = list CNAME entries

-d = list all entries

-h = list HINFO entries

-m = Jist MX entries

-s = list WKS entries

view FILE - sort an “Is’ output file and view it with more

I

D.2 Seeing Which nslookup Options Are Set

To see which nslookup options are set, use the set all command:

nslookup

Default Server: wepel.cities.dec.com

Address: 0.0.0.0

> set ail

Default Server: wepel.cities.dec.com

Address: 0.0.0.0

Set options:

debug defname search recurse novc
querytype=A class=IN timeout=4 retry=4

domain=cities.dec.com

search list: cities.dec.com dec.com

root=sri-nic.arpa

D.3 Listing Hosts in a Domain

The following example shows how to use the nslookup command to create
a file listing the hosts in the domain cities.dec.com, and to then view that
file:

nslookup

Default Server: wepel.cities.dec.com

Address: 0.0.0.0

(continued on next page)

> Is cities.dec.com > filename

[wepel.cities.dec.com]

HUEBHAHBRHY

Received 531 records.

> view filename

amherst 128.67.45.1

ayers 128.67.42 .2

berlin 128.67 .45.3

boston 128.67.45 .4

cannes 128.67.45.5

chandler 128.67.45.6

chicago 128.67.45.7

denver 128.67.46.8

galway 128.67.45.9

hollis 128.67.49.10

ipswich 128.67.45.11

laconia 128.67.48.12

fondon 128.67.45.13

madrid 128.67 .45.14

mason 128.67.45.15

milford 128.67 .46.16

nashua 128.67 .45.17

newyork 128.67.45.18

--More-- <RETURN>

paris 128.67 .42.19

phoenix 128.67.46 .20

tempe 128.67.45.21

temple 128.67.45.22

wilton 128.67.45.23

<CTRL/c>

> <CTRL/d>

#

D.4 Finding Mail Exchangers

The following example shows how to use the nslookup command to find

the mail exchanger for any system in the domain wepel.cities.dec.com.

Note the use of a bogus host name. In the following example, the bogus

host nameis nohost:

nslookup

Default Server: wepel.cities.dec.com

Address: 0.0.0.0

> set type=mx

> nohost

Server: wepel.cities.dec.com

Address: 0.0.0.0

(continued on next page)

nohost.cities.dec.com pref

o

51, mail exchanger = noun.cities.dec.com

nohost.cities.dec.com pref 50, mail exchanger = wepel.cities.dec.com

noun.cities.dec.com inet address = 128.45.45.79

wepel .cities.dec.com inet address = 128.45.45.93

> wepel

Server: wepel.cities.dec.com

Address: 0.0.0.0

cities.dec.com origin = wepel.cities.dec.com

mail addr = doe.wepel.cities.dec.com

serial=10, refresh=1800, retry=3600, expire=1209600, min=86400

D.5 Finding the Start of Authority

The following sample session shows how to use the nslookup command to

find the start of authority for the hosts named wepel and decwrl.dec.com:

nslookup

Default Server: wepel.cities.dec.com

Address: 0.0.0.0

> set type=SOA

> wepel

Server: wepel.cities.dec.com

Address: 0.0.0.0

cities.dec.com origin = wepel.cities.dec.com

mail addr = doe.wepel.cities.dec.com

serial=10, refresh=1800, retry=3600, expire=1209600, min=86400

> decwr| .dec.com.

Server: wepel.cities.dec.com

Address: 0.0.0.0

dec.com origin = decwr!l.dec.com

mail addr = postmaster.decwr!.dec.com

serial=197, refresh=43200, retry=3600, expire=1209600, min=86400

> <CTRL/d>

D.6 Finding Servers for a Domain

The following example shows how to use the nslookup command to find

the servers for the domain mit.edu.:

nslookup

Default Server: wepel.cities.dec.com

Address: 0.0.0.0

(continued on next page)

> server sri-nic.arpa.

Default Server: sri-nic.arpa

Address: 26.0.0.73

> set domain=mit.edu.

> |s

Server:

Address:

sri-nic.arpa

26.0.0.73

Name : Is.mit.edu.

Served by:

- MIT-STRAWB.ARPA

18.71.0.151

MIT.EDU

- W20NS. MIT.EDU

18.70.0.160

MIT.EDU

- BITSY.MIT.EDU

18.72.0.3

MIT.EDU

- LITHIUM.LCS.MIT.EDU

18.26.0.121

MIT.EDU

> <CTRL/d>

D.7 Obtaining a Debug Trace

The following example shows how to use the nslookup command to help

debug the BIND service:

nslookup

Default Server: wepel.cities.dec.com

Address: 0.0.0.0

> set debug

> set d2

> foobar

Server: wepel.cities.dec.com

Address: 0.0.0.0

res_mkquery(0, foobar.cities.dec.com, 1, 1)

SendRequest()

HEADER:

opcode = QUERY, id = 1, rcode = NOERROR

header flags: query, want recursion

questions = 1, answers = 0, n.s. = 0, additional = 0

(continued on next page)

QUESTIONS:

foobar.cities.dec.com, type = A, class = IN

answer:

HEADER:

opcode = QUERY, id = 1, rcode = NOERROR

header flags: resp, auth. answer, want recursion, recursion avail.

questions = 1, answers = 0, n.s. = 0, additional = 1

QUESTIONS:

foobar.cities.dec.com, type = A, class = IN

ADDITIONAL RECORDS:

-> cities.dec.com

type = SOA, class = IN, ttl = 86400, dlen = 37

origin = wepel.cities.dec.com

mail addr = doe.wepel.cities.dec.com

serial=10, refresh=1800, retry=3600, expire=1209600, min=86400

> noun

Server: wepel.cities.dec.com

Address: 0.0.0.0

res_mkquery(0, noun.cities.dec.com, 1, 1)

SendRequest()

HEADER:

opcode = QUERY, id = 2, rcode = NOERROR

header flags: query, want recursion

questions = 1, answers = 0, n.s. = 0, additional =0

QUESTIONS:

noun.cities.dec.com, type = A, class = IN

answer:

HEADER:

opcode = QUERY, id = 2, rcode = NOERROR

header flags: resp, auth. answer, want recursion, recursion avail.
questions = 1, answers = 1, n.s. = 0, additional = 0

QUESTIONS:

noun.cities.dec.com, type = A, c¢class = IN

ANSWERS:

(continued on next page)

-> noun.cities.dec.com

type = A, class = IN, ttl = 86400, dien = 4

inet address = 128.45.45.79

Name: noun.cities.dec.com

Address: 128.45.45.79

> set type=SO0A

> noun

Server: wepel.cities.dec.com

Address: - 0.0.0.0

res_mkquery(0, noun.cities.dec.com, 1, 6)

SendRequest()

HEADER:

opcode = QUERY, id = 3, rcode = NOERROR

header flags: query, want recursion

questions = 1, answers = 0O, n.s. =0, additional = 0O

QUESTIONS:

noun.cities.dec.com, type = SOA, class = IN

answer:

HEADER:

opcode = QUERY, id = 3, rcode = NOERROR

header flags: resp, auth. answer, want recursion, recursion avail.

questions = 1, answers = 0, n.s. = 0, additional = 1

QUESTIONS:

noun.cities.dec.com, type = SOA, class = IN

ADDITIONAL RECORDS:

-> cities.dec.com

type = SOA, class = IN, ttl = 86400, dlen = 37

origin = wepe!l.cities.dec.com

mail addr = doe.wepel.cities.dec.com

serial=10, refresh=1800, retry=3600, expire=1209600, min=86400

ies.dec.com

type = SOA, class = IN, ttl = 86400, dlen = 37
origin = wepel.cities.dec.com

mail addr = doe.wepel.cities.dec.com

serial=10, refresh=1800, retry=3600, expire=1209600, min=86400

(continued on next page)

> decwrl .dec.com.

Server: wepel.cities.dec.com

Address: 0.0.0.0

res_mkquery(0, decwrl|.dec.com, 1, 6)

SendRequest()

HEADER:

opcode = QUERY, id = 4, rcode = NOERROR

header flags: query, want recursion

questions = 1, answers = 0, n.s. = 0, additional = 0

QUESTIONS:

decwr| .dec.com, type = SOA, class = IN

Got answer:

HEADER:

opcode = QUERY, id = 4, rcode = NOERROR ;

header flags: resp, auth. answer, want recursion, recursion avail.
questions = 1, answers = 0, n.s. = 0, additional =1

QUESTIONS:

decwr| .dec.com, type = SOA, class = IN

ADDITIONAL RECORDS:

-> dec.com

type = SOA, class = IN, ttl = 83633, dlen = 35

origin = decwr! .dec.com

mail addr = postmaster.decwr!.dec.com

serial=197, refresh=43200, retry=3600, expire=1209600, min=86400

dec.com

type = SOA, class = IN, ttl = 83633, dlen = 35

origin = decwrl .dec.com

mail addr = postmaster.decwrl.dec.com ~

serial=197, refresh=43200, retry=3600, expire=1209600, min=86400

> <CTRL/d> ‘

#

A

address data file entry

defined, 2-18

Berkeley Internet Name Domain

See BIND

BIND client

automatic setup, 2-1 to 2-2

defined, 1-8 '

manual setup, 2-2 to 24

named daemon, 2-3n

BIND file entries

format of, 2-24

BIND file entry

defined, 2-13

format of, 2-13

BIND query

resolving, 1-8 to 1-9

BIND server

See also caching server

See also forwarding server

See also master server

See also root server

See also slave server

automatic setup, 2-4 to 2-6

caching, 1-5

defined, 1-4

Index

BIND server (cont.)

forwarding, 1-5 to 1-7

indication of, 2-3n

manual setup, 2-6 to 2-13

master, 1-5

root, 1-4 to 1-5

slave, 1-7

BIND service

advantage of, 1-1

defined, 1-1

failure causes, 4-1

further information, 3-8 to 3-9

BIND Service

introduction, 1-9

BIND service

managing, 3-1 to 3-9

resolver, 1-1

server, 1-1

setting up, 2-1 to 2-24

starting, 2-6

starting without rebooting, 2-6n

troubleshooting, 4-1 to 4-7

two parts, 1-1

utilities using, 1-9

with no forwarder, 1-7n

bindsetup command

command line, 2-2e

defined, 2-1

failure of, 2-2n

running, 2-1, 2-4

BITNET network

contacting, 3-4

boot file

default, 2-4

editing, 2-7 to 2-10

sample caching server, A-3

sample primary master server, A-1

sample secondary master server, A-2

sample slave server, A-2

C

cache file

default, 2-5

caching server

defined, 1-5

canonical name

See fully qualified

CNAME data file entry

defined, 2-20

CSNET network

contacting, 3-4

D

DARPA network

contacting, 3-4

data file

updating, 3-5

data file directory

default, 2-4

data file entry

address, 2-18

CNAME, 2-20

HINFO, 2-18

include, 2-15

MB, 2-22

MG, 2-23

MINFO, 2-23

MR, 2-22

data file entry (cont.)

MX, 2-24

NS, 2-17

origin, 2-15

PTR, 2-21

SOA, 2-16

WKS, 2-19

debug files

reviewing, 4-3

domain

case insensitive, 3-3n

defined, 3-1, 3-2

fully qualified name, 3-2

maintaining, 3-1 to 3-2

naming, 3-2

relative name, 3-2

subdomain of, 3-2

domain administrator

defined, 3-1

duties of, 3-1

domain hierarchy, 1-1, 1-2f, 1-2f

label, 1-1

leaf domain, 1-1

root, 1-1

top-level domain, 1-2

domain name

trailing period, 2-2n

F

forwarding server

defined, 1-5

ftp command, B-le

G

gethostbyname routine

with BIND, 1-8

H

HINFO data file entry

defined, 2-18

host

naming, 3-2

host file

default, 2-5

host name

obtaining, 3-6

setting, 2-3

include data file entry

defined, 2-15

IP address

obtaining, 3-6

L

local host file

default, 2-5

master server

defined, 1-5

MB data file entry

defined, 2-22

MG data file entry

defined, 2-23

MINFO data file entry

defined, 2-23

MR data file entry

defined, 2-22

MX data file entry

bogus name, 3-6

defined, 2-24

N

named daemon

inetd, 4-2n

obtaining PID, 4-6

process number, 2-6

sending signals to, 4-6 to 4-7

named.boot file

defined, A-1

named.ca file

defined, 2-10

named_dump file

reviewing, 4-4

named.hosts file

defined, 2-10

named.local file

defined, 2-10

named.pid file

process number, 2-6

named.rev file

defined, 2-11

named.run file

reviewing, 4-4

named.stats file

reviewing, 4-5

NIC

address, 1-4

phone number, 1-4

NIC whois service

See whois service

NS data file entry

defined, 2-17

nslookup command

debug trace, D-5

finding MX, D-3, D-3e to D-4e

finding servers, D-4, D-4e to D-5e

finding SOA, D-4, D-4e

getting debug trace, D-5¢ to D-8e

getting help, D-1, D-le

host info, 3-6

listing hosts, D-2, D-2e to D-3e

nslookup command (cont.)

obtaining IP info, 3-6

viewing options, D-2

nsquery command

obtaining host info, 3-7

obtaining IP info, 3-7

o)

origin data file entry

defined, 2-15

P .

PTR data file entry

defined, 2-21

public networks

registering with, 3-3 to 3-5

Q

questionnaire (bind)

sample of, B-1 to B-5

R

reboot system

command line, 2-2e

resolv.conf file

entries of, 2-3

reviewing, 4-2

resolver

See also resolv.conf file

resolver file

creating, 2-3

resource record

See data file

See data file entries

See also BIND file entry

resource record (cont.)

defined, 2-13

reverse local host file

default, 2-5

root server

defined, 1-4

list of, 1-4

setting up, A-1n

S

sendmail.cf file

editing, 2-1n

services file

specifying port, 1-1

services order file

See svcorder file

slave server

defined, 1-7

SOA data file entry

defined, 2-16

starting BIND

See reboot system

sveorder file

entries of, 2-5

named entry, 2-5

syslog file

reviewing, 4-3

sample of, 4-3

T

technical and zone contact

defined, 3-2

top-level domain

country, 3-3n

registering, 3-2

trailing period

significance of, 1-1

\i'}

whois service

using, 3-7 to 3-8

WKS data file entry

defined, 2-19

Y4

zone

defined, 1-1, 3-2

HOW TO ORDER ADDITIONAL DOCUMENTATION

DIRECT TELEPHONE ORDERS

In Continental USA In Canada

and New Hampshire, call 800-267-6215

Alaska or Hawaii

call 800-DIGITAL

DIRECT MAIL ORDERS (U.S. and Puerto Rico*)

DIGITAL EQUIPMENT CORPORATION

P.O. Box CS2008

Nashua, New Hampshire 03061

DIRECT MAIL ORDERS (Canada)

DIGITAL EQUIPMENT OF CANADA LTD.

100 Herzberg Road

Kanata, Ontario K2K 2A6

Attn: Direct Order Desk

INTERNATIONAL

DIGITAL EQUIPMENT CORPORATION

PSG Business Manager

c/o Digital’s local subsidiary

or approved distributor

Internal orders should be placed through the Software Distribution Center (SDC), Digital

Equipment Corporation, Westminster, Massachusetts 01473

*Any prepaid order from Puerto Rico must be placed

with the Local Digital Subsidiary:

808-754-7575

ULTRIX- 32

Guide to the BIND Service

AA-LY21A-TE

Reader’'s Comments

Note: This form is for document comments only. DIGITAL will use comments

- submitted on this form at the company’s discretion. If you require a writ-

ten reply and are eligible to receive one under Software Performance

Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please

make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer

Higher-level language programmer

Occasional programmer (experienced)

User with little programming experience

Student programmer

O
D
O
0
0
o
o
Q
o
o
g
n
o

Other (please specify)

Name Date

Organization

Street

=~ — = =Do Not Tear - Fold Here and Tape = = = = == <= « « we oo o0 o o s s i 0m 0mn o o e o o s e o o e e

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

Digital Equipment Corporation

Documentation Manager

ULTRIX Documentation Group

ZKO3-3/X18

Spit Brook Road

Nashua, N.H.

03063

== = =0 Not Tear - Fold Here and Tape — — = = = =~ e e e e e e e e o e e e o e e e e

No Postage

Necessary

if Mailed in the

United States

—
—

 e
C
u
t
 A
l
o
n
g
 D
o
t
t
e
d
 L
i
n
e

ULTRIX- 32

Guide to the BIND Service

AA-LY21A-TE

Reader’'s Comments

Note: This form is for document comments only. DIGITAL will use comments
submitted on this form at the company’s discretion. If you require a writ-

ten reply and are eligible to receive one under Software Performance

Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please

make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer

Higher-level language programmer

Occasional programmer (experienced)

User with little programming experience

Student programmer

O
o
b
g
o
g

Other (please specify)

Name Date

Organization

Street

= —==Do Not Tear - Fold Here and Tape — = = == = = = = v e o e om0 o s e o o e s o s e e o e e o e

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

Digital Equipment Corporation

Documentation Manager

ULTRIX Documentation Group

ZKO3-3/X18

Spit Brook Road

Nashua, N.H.

03063

=~ —=Do Not Tear - Fold Here and Tape ~~ ===~ m e m e e e e e e e o e

No Postage

Necessary

if Mailed in the

United States

—
—
—

 e
C
u
t
 A
l
o
n
g
 D
o
t
t
e
d
 L
i
n
e

