
&
@

ISR

Users GUIde

dijgliltal

WX
Diagnostic System

Users Guide

- EK-VX11D-UG-001

Digital Equipment Corporation

Maynard, Massachusetts

First Edition, September 1980

Copyright © 1980, Digital Equipment Corporation.

All Rights Reserved.

The reproduction of this material, in part or whole, is

strictly prohibited.

Printed in U.S.A.

The information in this document is subject to change with-

out notice and should not be construed as a commitment by

Digital Equipment Corporation. Digital Equipment Corpo-

ration assumes no responsibility for any errors that may ap-

pear in this document.

Digital Equipment Corporation assumes no responsibility for

the use or reliability of its software on equipment that is not

supplied by Digital.

The following are trademarks of Digital Equipment Corporation,

Maynard, Massachusetts:

DIGITAL DECsystem-10 | MASSBUS

DEC DECSYSTEM-20 OMNIBUS

PDP DIBOL 0S/8

DECUS EDUSYSTEM RSTS

UNIBUS VAX RSX

VMS IAS

Contents

Chapter 1 Introduction

Diagnostic System SEIUCEUIvev v veeeeeee oo eeee e ee e e 2

DiagnoSstiC STrategyccoceeeiiririeiiiiiie s 9

Diagnostic File MaintenBinee oo s o ssossssessapssxs 11

Diagnostic Documentation Hierarchy............ccccooooninn 12

EVNDX, VAX Development MAINDEC IndexXcccccoovvviiiiniiiniinnnnn, 13

Remote DiagnoSiS.......ccceiiiriiiiieiriiin i e 15

Chapter 2 Console Command Language

Command Description Terms and Symbols.............ccccoviiinin 18

Console Command QUalifiers........ccccov v 18

Console Commands Common to all VAX Systemscccceevviviinnenn. 19

Console Error M@SSAgES.ccvieuieeiiieieeeiieecieceet e 24

HaAlt COAS ...ooiiiiiiee ettt et e e e st e e e et s re s e aasee e e s 25

Chapter 3 Level 4 Diagnostics

Chapter 4 Diagnostic Supervisor Commands

Program and Test Sequence Control Commands...........cccoceeiiiennenn, 30

L5711 . RSTR 39

Execution Control FUNCLIONS.........c.uvvuiiiiieiiiiieiieceieeiee e 43

Debug and Utility Commands.........ccccvevviiiiiiiiiinicins 47

Chapter 5 Diagnostics Under the Supervisor

On-Line Diagnostic Supervisor Load Procedures..................ccooiene 55

StaNdalonNe BOOt. ... 57

Using the Script FIles.......oooiiic 57

Creating and Modifying Script Filesccccoco 59

Running Diagnostics Under the Supervisor without Script Files 59

Chapter 6 Diagnostic Program Interpretation

Error Report FOrMAatScooiviiiieiiiiir e 61

Finding the Relevant Documentationcccoeiiiiiiiin, 62

ErrOr ANAIYSIS . .ooiiiiiiiiie e 66

MACRO-32 Code Interpretation — A Sample Test..........ccocviininnn, 67

BLISS-32 Code Interpretation..........ccccvivviiiiiiiciiiiiice 72

Assembly Language Listings in BLISS-32 Programs 79

Chapter 7 System Verification and Analysis

Running the User Environment Test Package (UETP)..................cc..... 82

Running the System Dump Analyzer (SDA)c.ccooviiiiiniiiin, 85

Using the Error Log Facility and SYE ... 98

Appendix Troubleshooting

Glossary

FIGURES

1-1 Schematic Representation of a VAX Diagnostic System 3

1-2 The Building Block Structure of the Diagnostic Environment....... 4

1-3 Console ENVIFONMENToooiiiiiie it 5

1-4 CPU Cluster ENVIroNmMeNt.. ..o 7

1-b System ENVIFONMENt ..ot 8

1-6 VAX Diagnostic System Load and Control Sequences................ 10

1-7 VAX Diagnostic System Documentation.............ccociviiiiinnnnnn, 11

6-1 Link Map Program Section Synopsis........c.ccccciiinniiiiiiininnncnnn. 64

6-2 Link Map Symbol Cross Reference...........cccccceevviiiiiiciinnn, 65

6-3 RH780 (MBA) Diagnostic Program Tests, Subtest 1, Listing....68

1-1

2-1

2-2

2-3

2-4

2-5

2-6

7-1

TABLES

Related Documentationoovvviiiiiiiiiiei e e 13

Term and Symbol Definition.............cccoo i 18

Data Length Qualifierscccoocooiiiii 19

Address Type QUalifierscccooviiiiiiii e, 19

Symbolic Addresses for Use with Deposit and Examine............. 22

ConSOIE Error CodeSuuuimiiiiiiiiiiiiiiiiiiee e 25

Instruction Set Processor Halt Code..............o.oc 26

Summary of SDA Commands.........cccooevviiieiiii i 86

;

INTRODUCTION

The VAX diagnostic system is a hierarchy of programs with a wide range

of capabilities. The diagnostic system provides field service engineers

and customers with a powerful tool for VAX hardware verification, trou-

bleshooting, and maintenance. The system’s fault detection and isolation

features speed repair time.

The programs range in function from general to specific. The system

diagnostic control program (ESXBB) detects failing functions and sub-

systems. At the other extreme, microdiagnostic programs can isolate

faults to field-replaceable units (printed circuit boards or LSl chips). The

programs also execute in a range of environments. Some diagnostic pro-

grams run simultaneously with user application programs under the

VMS operating system. Other diagnostic programs require exclusive use

of the VAX computer system.

In addition, the VAX diagnostic system includes several versatile com-

mand sets. The commands provide the operator with a variety of selec-

tion and execution options.

2 INTRODUCTION

DIAGNOSTIC SYSTEM STRUCTURE

The diagnostic system hierarchy consists of six program levels.

Level 1 -

Level 2R -

Level 2 -

Level 3 -

Level 4 -

Console

Level —

Operating system (VMS) based diagnostic programs

Diagnostic supervisor-based diagnostic programs re-

stricted to running under VMS only

Peripheral diagnostic programs which are not supported

by the supervisor in the standalone mode

System diagnostic control program

Diagnostic supervisor-based diagnostic programs that can

be run either under VMS (on-line) or in the standalone

mode

Bus interaction program

Formatter and reliability level peripheral diagnostic pro-

grams

Diagnostic supervisor-based diagnostic programs that can

be run in standalone mode only

Functional level peripheral diagnostic programs

Repair level peripheral diagnostic programs

CPU cluster diagnostic programs

Standalone macrodiagnostic programs that run without

the supervisor

Hard-core instruction test (This program tests the basic

CPU functions necessary to running the supervisor.)

Console-based diagnostic programs that can be run in the

standalone mode only

Microdiagnostics

Console program

ROM resident power-up tests

INTRODUCTION 3

The six program levels operate in the context of four environments: user,

system, cluster, and console. These four environments, in turn, run

within two operating modes: on-line (under VMS) and standalone (with-

out VMS). Figure 1-1 gives a schematic representation of these relation-

ships.

LEVEL1

(VIRTUAL QIO)

ON-LINE

MODE SER

5&?&$EOLFROM ENVIRONMENT P

ON Sysfiévlwv)\lAL (PHYSICAL QIO)

DIAGNOSTIC

______ T eveLz]
SYSTEM SUPERVISOR (PHYSICAL QIO)
ENVIRONMENT

STANDALONE

_____ LEVEL3
(DIRECT 1/0)

MODE

CLUSTER

ENVIRONMENT

LEVEL4

(CONTROL FROM (MACHINE-LEVEL)
CONSOLE
TERMINAL,
OFF-LINE)

CONSOLE CONSOLE LEVEL

ENVIRONMENT (SUB-MACHINE LEVEL)

TK-3007

Figure 1-1 Schematic Representation of a VAX Diagnostic System

The four environments form the basis of the building block diagnostic

approach. For each environment a portion of the hardware functions as a

hard-core, which is assumed to be fault-free. Specific diagnostic pro-

grams operate from the hard-core of this environment to test the hard-

ware in an area beyond the hard-core. The hard-core for each

4 INTRODUCTION

environment consists of the hard-core of the next lower environment

plus the area tested in that lower environment. Figure 1-2 shows the

building block structure of the diagnostic environments. Notice the over-

lap between the areas under test in the different environments.

USER

MODE

N\
r N

STANDALONE

MODE USER
. A J ENVIRONMENT

AREA UNDER

TEST

SYSTEM

ENVIRONMENT

AREA UNDER

TEST <

CPU CLUSTER

ENVIRONMENT
AREA UNDER

TEST

I USER
CONSOLE

ENVIRONMENT SYSTEM RO NENT
AREA UNDER > ENVIRONMENT
TEST HARD-CORE

CPU CLUSTER

ENVIRONMENT

HARD-CORE

CONSOLE CONSOLE
HARDWARE ENVIRONMENT

HARD-CORE

J))

TK-3009

Figure 1-2 The Building Block Structure of the Diagnostic Environment

Console Environment

The console environment operates in the standalone mode only. The

operator controls the system from the console terminal. This environ-

ment consists of submachine level hardware, software, and firmware. It

provides fundamental operator control functions, system programmer

debugging functions, and basic machine diagnostic functions. Figure 1-3

shows the console environment configuration. The console hardware

forms the hard-core that must be fault-free in order to run the micro-

diagnostics. Notice that the CPU microcode remains untested in the

console environment.

5INTRODUCTION

¥00E
-M1 JuswuolIAUg8josu0)g-|ainbiyanyIHYMAYVH

-
-)\

IHVYM
AYYH

Ndd

1531370SNOD

JOINNQOIHILNI

#
L#

6 INTRODUCTION

From a diagnostic strategy standpoint, the console environment is the

most basic, most implementation-specific piece of the diagnostic sys-

tem. It ranges from the extensive capability and functionality of the VAX-

11/780 console (LSI-11 subsystem) to totally ROM-based quick verify

tests in lower priced VAX CPUs.

CPU Cluster Environment

Like the console environment, the CPU cluster environment operates in

the standalone mode only. The operator must use the console terminal.

This environment consists of the console environment plus the machine

level components (complete CPU, memory, 1/0 channels) that support

standalone, macro level program execution. Figure 1-4 shows the CPU

cluster environment configuration. The hardware tested in the console

environment, by the microdiagnostics, forms the hard-core of the cluster

environment.

The VAX CPU cluster environment provides a small number of level 4

and level 3 diagnostic programs. In a building block fashion, these pro-

grams test basic and extended CPU functions, memory functions, and

I/0 channel functions. The I/0 channel and cluster interaction diagnostic

programs make full use of channel loopback capability.

System Environment

The system environment also operates only in the standalone mode. The

operator must use the console terminal. This environment contains a

wide spectrum of diagnostic programs ranging from level 3 repair diag-

nostics through level 2 (QlO) device exercisers.

The VAX system environment level diagnostic strategy is to implement a

series of level 3 repair diagnostic programs and level 2 functional diag-

nostic programs for each /0 subsystem. The diagnostic series (level 3

and level 2) for each 1/0 subsystem is designed to give building block

test coverage. This evolves from static logic and maintenance loopback

tests (level 3) through basic function and electromechanical timing tests

(level 3 or 2) to media reliability, acceptance, and multidevice exercisers

(level 2).

Figure 1-5 shows the system environment configuration in a typical VAX

system. The hardware tested in the CPU cluster environment forms the

hard-core for the system environment.

7INTRODUCTION

IHVYMAHVYHJHVMAHVHNdod

LO3NNOJYILNI
|||

1S31

H3IANNVIHVININNO
YHIANT

431SN710

INTRODUCTION8 JuawuolAugwalsAgG-|ainbigTVYNI
WHIL

anNvVvJHYMAYVYHITOS
NOD|

LO3INNOJHILNI_|

_

|

3JOV4
HILNI

sSNE
SSYW

cH#

L3JOV4H
IULNI

SNAS
SYIN

AHOWIW

HISIOHIAXT[i

i

L]|+l3A0HOINW
/

JOVIHILNIsNAaINN

H3S10H3IX3snaiNn

WILSAS

|

HITTO
HLNOD

H37704LN0D|fuatiouinod|[H3LivwHo4HI11VINHOSXNWH3TT0HLNODH3INIYd
dAHaJsia

advl

W3IAdow

HILNIHdEL
V

-

1s3lW3I1
SAS

Lol B

INTRODUCTION 9

User Environment

The VAX user environment operates in the on-line mode, under VMS.

The operator can control the diagnostic process from any terminal on the

system, including the console terminal. The user environment includes

the level 2 diagnostic programs, which run in the system environment,

as well as the level 2R programs, which do not. Many of the diagnostic

programs that run in the user environment will run simultaneously with

user application programs. However, some, like the system diagnostic

control program, require exclusive use of the computer system.

Program Load and Control Sequences

The VAX diagnostic system provides some flexibility concerning the load

paths and execution control of different program levels. For example,

level 2 and level 3 programs can be loaded from the console load device

or from the system disk. Microdiagnostic programs, on the other hand,

are usually loaded from the console load device. Although level 2 pro-

grams are flexible and will run in user or standalone mode, level 2R, 3,

and 4 programs are less flexible. Figure 1-6 shows the load and control

sequences and operating modes for the VAX diagnostic system.

DIAGNOSTIC STRATEGY

The wide range of diagnostic programs and program levels in the VAX

diagnostic system provides users with flexibility in fault isolation pro-

cedures. Detailed knowledge of the computer and the diagnostic system

will enable you to troubleshoot effectively.

However, if you are troubleshooting a machine where a failure is not

obvious, you should use on-line tools as a first step, when possible. SYE,

the system error log program, helps you to analyze the recent perform-

ance of the machine. SDA, the system dump analyzer, helps you to

analyze VAX system crashes. UETP provides a confidence check for the

entire VAX system (Chapter 7). And on-line diagnostic programs help

you to identify the failing subsystem. Once you know what subsystem is

at fault, run level 3 programs and then level 2 programs (bottom up

approach) to isolate the failure to a field-replaceable unit.

INTRODUCTION10 saouanbag|0J1u0)puepeoqwalsAgonsoubeiqXvWA9-|84nbiygSWYHO0Ud¢1AATT

/4
A\

SWVYH
OO0HdJILSO
NDVIQ£T13ATT|

eere
-M1

SWVHD
O0Hd

J11SO
NOVIA4z

13AT
]

(dL1
3n)

ID9V
MOVd

18
31LINIWN
OHIANT43
sn

+(vas)
!

HIZATYNY
[

dnNa
“INILSAS_q901__HOHH3I|_W3LSAS|A_I4HOSIAH3dNS
___O11SONDVIQ_|_]4|||_LHOLYINNTITOSNOD@————o——|

A

SIWA/XYA(L008)
\

30NaNI-No

kil30IA3A

W3LSASWOHASWVHO
O0HdOILSONDV

IQ
dvon|

130IA3A3TOSNO
D

NOHHSWVHD
O0HdOILSONDV

IQ
avo%

—

301
A30

W3L
SASWOHAHOSIAH
I3dNSJ1LSONOVI

AQ
L00gidav

ot
dYYAN

Vv.Ls

t g_SWYHO0Hd9I1SO
NOVIA

301A30Q¥13A37avo;310SNODWOH4HOSIAHIdNSSNYHDO0HdOILSON9VIQLOO08
9ILSONOVIQOHIN

SOILSONOVIQHOLINOWHLYdQvOT
OILSONDVIQOHOIN

1HO1vI
Ni3g

3T0SNOD1S1s3
l

dnH3IMOd;¥Ja
owIANOTVAN

YLS

INTRODUCTION 11

If you cannot run VMS or boot the diagnostic supervisor from a system

disk, try booting the supervisor and loading programs from the second-

ary load path (the console load device). If this also fails, run micro-

diagnostics or level 4 programs, as appropriate. See the appendix for

detailed troubleshooting guidelines.

DIAGNOSTIC FILE MAINTENANCE

DIGITAL Field Service is responsible for building and maintaining the

diagnostic directory (SYSMAINT) on VAX systems for customers who

have a maintenance contract. Customers who have bought their own

diagnostic system licenses must install and maintain the diagnostic files

themselves.

Build the SYSMAINT directory when you install the system. Keep the file

up to date by transferring new versions of programs to the SYSMAINT

directory as you receive them. DIGITAL distributes diagnostic updates

on magnetic media periodically. In some cases VMS indirect command

fles may be provided to aid in the installation and updating of

SYSMAINT. See the diagnostic system overview manual (the second

level of documentation shown in Figure 1-7) that refers to your VAX

system for details on SYSMAINT build and update procedures.

VAX DIAGNOSTIC — PRINTED

SYSTEM USER’S GUIDE — MICROFICHE

EVNDX PROCESSOR| |PROCESSOR| |SUBSYSTEM

DIAGNOSTIC| | SPECIFIC SPECIFIC SPECIFIC | — MICROFICHE

PROGRAM OVERVIEW OVERVIEW OVERVIEW | — MAGNETIC MEDIA

INDEX MANUAL MANUAL MANUAL

DIAGNOSTIC PROGRAM — MICROFICHE

DOCUMENTATION FILES — MAGNETIC MEDIA

DIAGNOSTIC PROGRAM — MICROFICHE

LISTINGS — MAGNETIC MEDIA

TK-3424

Figure 1-7 VAX Diagnostic System Documentation

12 INTRODUCTION

DIAGNOSTIC DOCUMENTATION HIERARCHY

Digital supplies four levels of documentation for the VAX diagnostic sys-

tem, as shown in Figure 1-7.

This manual, the VAX Diagnostic System User’s Guide, contains stable

information that applies across all VAX implementations. Since this

manual is general, it provides no information on processor-specific diag-

nostic features such as microdiagnostic programs or diagnostic and op-

erating system bootstraps. This manual is available in hard copy and on

microfiche.

Processor and subsystem-specific diagnostic overview manuals provide

the details not covered in this VAX manual. Explanations of the console

command language, microdiagnostic program use, and boot procedures

are included in the processor and subsystem-specific overview manuals.

The overview manuals are available on microfiche. DIGITAL updates the

overview manuals periodically to reflect changes in the hardware and

diagnostic programs.

A documentation file for each VAX diagnostic program is available on

microfiche and magnetic media. These documentation files are grouped

together on several microfiche sheets. Each documentation file contains

the following information categories.

® coversheet

e table of contents

® program maintenance history

® program abstract

® program execution requirements

® assumptions

® operating instructions

e program functional description

® bibliography

® glossary

The diagnostic program listings are available on microfiche and mag-

netic media. The programs are organized into tests and subtests. Each

INTRODUCTION 13

test is preceded by a test description in the listing. See Chapter 6 of this

manual for details. Changes in the programs are reflected in the listings

and distributed periodically.

Table 1-1 lists other related manuals that are available in hard copy.

Table 1-1 Related Documentation

Title “Document Number

VAX/VMS Documentation Kit QEO01-GZ

VAX Diagnostic Design Guide EK-1VAXD-TM

VAX-11 Architecture Handbook EB-17580 /

VAX-11 Software Handbook EB-15485 ¢

PDP-11 Peripherals Handbook EB-07667 s

Terminals and Communications EB-15486

Handbook

BLISS-32 Language Guide AA-HO19A-RE

EVNDX, VAX DEVELOPMENT MAINDEC INDEX

DIGITAL distributes EVNDX, the VAX Development MAINDEC Index, on

magnetic media and microfiche. EVNDX enables users to keep up with

the periodic changes and additions to the VAX diagnostic system. Once

you are familiar with the format and content of this index, a quick review

of each new release will show you what’s new and what changes may

be important for your VAX system. The general format for EVNDX fol-

lows.

e Coversheet

e Table of Contents

INTRODUCTION

Introduction

Media descriptor. Codes and part numbers for magnetic media

containing executable programs and documentation.

Program code naming convention

VAX Diagnostic Program Codes

Revision number

Update status. One asterisk means that the revision listed is

new; two asterisks indicate a new program.

Program level (2R, 2, 3, or 4)

Program title

Magnetic Media MAINDEC Codes

Revision number

Update status. One asterisk means that the revision listed is

new; two asterisks indicate a new disk or tape.

AIDS Problem Reports

Reports of problems encountered by program users and solu-

tions provided by DIGITAL Diagnostic Engineering, where ap-

plicable.

Release Notes

General information on the VAX diagnostic system

Notes on revisions to diagnostic programs

VAX Diagnostic Media Contents

A list of files contained on each diagnostic disk and tape.

INTRODUCTION 15

e VAX Diagnostic Hardware Option Kit List

A list of diagnostic media packages arranged for specific VAX

hardware configurations. Each option list contains a part num-

ber, a MAINDEC code, and a title for each disk and tape in the

kit.

e ECO/DECO Cross Reference History File

A list of hardware revisions and compatible diagnostic program

revisions.

REMOTE DIAGNOSIS

Customers who have bought VAX remote diagnosis contracts and have

remote diagnosis option kits installed should call a DIGITAL Diagnostic

Center (DDC) when they suspect hardware failures. The dispatcher at

the DDC will provide customers with the information necessary to pro-

ceed with the remote diagnostic session. See the appropriate remote

diagnosis manual for details.

2

CONSOLE

COMMAND LANGUAGE

All VAX computer systems include an ASCII console which provides an

interface between an operator at a terminal or an automatic test system

and the:

e CPU hardware

e CPU microcode

e instruction set processor (macro level) software.

The console interprets commands typed on the terminal. And it performs

appropriate operations for each command by means of the console soft-

ware or the CPU microcode.

The console normally operates in one of two modes. When the console

is in the console 1/0O mode, it interprets all console terminal output in

order to perform the lights, switches, and maintenance functions, and to

implement the console command language. When the console is waiting

for input in the console 1/0 mode, it displays the symbol >>2> as a

prompt on the terminal. When the console is in the program 1/0 mode, it

functions as a user terminal, passing characters between the operator’s

keyboard and the software operating in the instruction set processor

(ISP).

17

18 CONSOLE COMMAND LANGUAGE

The console is an important diagnostic tool. It gives the operator visibil-

ity into and control of memory, processor registers, and 1/0 registers. It

also enables the operator to start and stop the CPU instruction set pro-

cessor and to initialize the CPU.

COMMAND DESCRIPTION TERMS AND SYMBOLS

Table 2-1 defines the special symbols used to describe the syntax of the

console commands.

Table 2-1 Term and Symbol Definitions

Term/Symbol Definition

<> Denotes a category name. For example, the category name <ad-

dress> represents a valid address.

[] Indicates the part of an expression that is optional.

<SP> Represents one or more spaces or tabs.

<address> Represents an address argument (hexadecimal).

<data> Represents a numeric argument (hexadecimal).

<qualifier-list>

<CR>

Represents a list of command modifiers (switches).

Represents a console terminal carriage return.

Delimits a command from its qualifiers.

CONSOLE COMMAND QUALIFIERS

/

VAX console commands take two types of qualifiers: data length and

address. Table 2-2 lists the data length qualifiers. Table 2-3 lists the

address type qualifiers.

CONSOLE COMMAND LANGUAGE 19

Table 2-2 Data Length Qualifiers

Qualifier Meaning

/B byte data length (8 bits)

/W word data length (16 bits)

/L longword data length (32 bits) (this is the default length qualifier

following initialization)

Table 2-3 Address Type Qualifiers

Qualifier Meaning

/Q general register address space

/1 internal processor register address space

/P physical address space (this is the default address type qualifier fol-

lowing initialization)

N virtual address space

CONSOLE COMMANDS COMMON TO ALLVAX SYSTEMS

Seven standard console commands are common to all VAX systems.

Detailed explanations of these comands follow. The radix (base) for all

values in console commands is hexadecimal. In the examples that fol-

low, operator input is printed in color.

NOTE

See the appropriate processor-specific overview manual

for an explanation of the complete command set for any

VAX processor.

20 CONSOLE COMMAND LANGUAGE

CTRL/P Command

AP

This command causes the console to enter the console I/0 mode. On

some VAX implementations CTRL/P halts the processor.

When the console is in the console I/0 mode, the console fields charac-

ters typed on the console terminal. If the console is already in the con-

sole 1/0 mode, CTRL/P causes the console to display another input

prompt, >>>. CTRL/P is normally used when the central processor is

running.

! Processor is running.

P ! Enter console I/O mode.

>>> ! Console input prompt.

>>>C ! Continue with the interrupted

Process.

Example 2-1 CTRL/P Command

Continue Command

C<CR>

The continue (C) command causes the CPU instruction set processor

(ISP) to begin execution at the address currently contained in the pro-

gram counter (PC). If the CPU is already running, it will continue running

in response to a continue command. Continue does not initialize the

CPU.

The console enters the program I/O mode after issuing the continue

command to the ISP. You may use the continue command to return the

console to the program 1I/0 mode even if the CPU is already running.

CONSOLE COMMAND LANGUAGE 21

>3 3C ! Console input prompt.

! The operator types C and

! carriage return. The console

! enters the program I/O

! mode.

SCR> !

Username: ! Operating system prompts for
| login.

Example 2-2 Continue Command

Deposit Command

D[<qualifier-list>]<SP> <address> <SP> <data> <CR>

The deposit (D) command accepts the following qualifiers (Tables 2-2

and 2-3):

/B, /W, /L, /P, /V, /G, /I

This command writes <data> into the <address> specified.The ad-

dress space used (physical, virtual, internal register, or general register)

depends on the qualifier given. Note that the deposit virtual command

(D/V) will not work unless mapping is set up for the virtual address

referenced.

If no qualifiers are given, the current address type default determines the

address space to be used. The data length used will be the current

default, unless the operator specifies a data length qualifier (byte, word,

or longword). If the default data length or the data length specified by a

qualifier is shorter than the number of digits typed as <data>, the con-

sole will respond in one of two ways, depending on the VAX processor

implementation. The console will either ignore the command and issue

an error message, or it will use only the low-order digits in the assem-

bled data quantity.

>>>D/W/P FE 4C09

Deposit the hexadecimal

word value 4C09

in the physical

location FE.

>>2

Example 2-3 Deposit Command

22 CONSOLE COMMAND LANGUAGE

In addition, certain symbolic addresses are accessible to both the de-

posit and the examine commands on some VAX processors, as shown in

Table 2-4.

Table 2-4 Symbolic Addresses for Use with Deposit and Examine

Symbol Function

PSL Reference the processor status longword

PC Reference the program counter

SP Reference the current stack pointer

Rn Reference general register n, where n is a decimal number from O to 15.

+ Reference the location immediately following the last location referenced.

For physical and virtual references, the location referenced will be the last

address plus n. n=1 for byte, n=2 for word, and n=4 for longword. For

all other address spaces n is always equal to 1.

- Reference the location immediately preceding the last location refer-

enced.

* Reference the location last referenced.

(@ Reference the location represented by the last data examined or depos-

ited.

Examine Command

E| <qualifier-list>][|<SP> <address>|<CR>

The examine (E) command accepts the following qualifiers (Tables 2-2

and 2-3):

/B, /W, /L, /P, /V, /G, /I

The examine command causes the console to display on the terminal the

contents of the specified <address>. If you do not specify an address,

CONSOLE COMMAND LANGUAGE 23

the console displays the contents of the current default address. Exam-

ine accepts the symbolic addresses listed in Table 2-4.

>>>E/L/P 6B

P 0000006B 58455359

Examine the longword at

physical address 6B.

>>>E Examine the next longword,

P 0000006F 59535D45 the default.

>>>E + Examine the next longword.

P 00000073 4F4F4253 +,-, and * are not available
on all VAX-11l processors

3308 = Examine the longword preceding

P 0000006F 59535D45 the last longword referenced.

>>>E * Examine the last referenced

P 0000006F 59535D45 location.

>»>D * PC | Deposit FC in the last
referenced location.

>>>E @ | Examine the location

P 000000FC 0000043A represented by the data

> ! last referenced.

Example 2-4 Examine Command

Halt Command

H<CR>

The CPU instruction set processor (ISP) will stop after completing the

instruction being executed when the console presents the halt (H)

request to the CPU. If the CPU is running and the console is in the

console 1/0 mode (note that this is not possible on all VAX processors),

you must type H before you can execute some of the other console

commands, including initialize (I) and binary load/unload (X).

| CPU is running. Console

! is in program I/0O mode.

“p | Enter console I/0 mode.

>>2>8 ! Halt the CPU.

DI

Example 2-5 Halt Command

24 CONSOLE COMMAND LANGUAGE

Initialize Command

|<CR>

This command causes the console to initialize the CPU system. You

must halt the CPU before you can use initialize.

>O>1 ! The initialize command

! is given before the

! CPU has been halted.

?15 ! Error message: Illegal

! command while CPU was running.
>>>H ! Halt the CPU.

>>>1 ! Initialize the CPU.

>>>

Example 2-6 Initialize Command

Binary Load/Unload Command

This command loads or dumps a block of binary data. It is intended for

down-line or up-line data transfers in manufacturing environments only.

CONSOLE ERROR MESSAGES

If the console encounters an error (in a command, in the hardware, or in

the software) which prevents execution of a specified function, the con-

sole will print an error message. All error messages have the following

format.

?[<error number>][<sp><message text>]|<CR><LF>

The error number is a two-digit hexadecimal number. Table 2-5 lists the

numbers and their meanings. The words in upper case letters show the

message text.

CONSOLE COMMAND LANGUAGE 25

Table 2-5 Console Error Codes

Number Meaning

01 SYNTAX ERROR. The console does not recognize this command.

10 ILLEGAL GPR. An invalid general register number was typed.

11 ILLEGAL IPR. An invalid internal register number was typed.

15 ILLEGAL COMMAND WHILE CPU RUNNING.

19 INVALID DEFAULT NEXT ADDRESS. Attempt to wrap around from SP

to RO.

20 EXECUTION ERROR. A non-existent memory location may have been

referenced. Or some other error may have been encountered during a

command execution.

21 HALT TIMEQUT. The CPU did not respond to a halt request within the

alluted time.

30 APT CHECKSUM ERROR. The checksum received either following an X

command or following the data did not match the expected value.

33 UNRECOGNIZED BOOT DEVICE.

81 CONSOLE INSTRUCTION TEST FAILURE.

82 CONSOLE ROM1 CHECKSUM FAILURE.

83 CONSOLE ROM2 CHECKSUM FAILURE.

84 CONSOLE ROM3 CHECKSUM FAILURE.

85 CONSOLE RAM DATA TEST ERROR.

86 CONSOLE RAM ADDRESS TEST FAILURE.

HALT CODES

When the instruction set processor halts, the console will type out a one-

or two-digit hexadecimal code. Table 2-6 lists the halt codes and their

meanings.

26 CONSOLE COMMAND LANGUAGE

Table 2-6 Instruction Set Processor Codes

Code Meaning

0 A halt command was executed from the console.

2 A CTRL/P from the console automatically halted the CPU.

4 Interrupt stack not valid, or unable to read SCB.

6 Halt MACRO-32 instruction was executed with PSL

<CUR MODE>=0.

7 An SCB vector was encountered with bits <1:0>=3.

8 An SCB vector with bits <1:0>=2 was executed but no WCS is

present.

9 Undefined.

A A change mode was attempted while the interrupt stack was active.

B A change mode was attempted and SCB vector<1:0> not equal to

0.

3

LEVEL 4

DIAGNOSTICS

Level 4 diagnostics are macro level (instruction set processor level) diag-

nostic programs that run without the diagnostic supervisor, in the stand-

alone. mode. The load, control, and error reporting features of level 4

programs are primitive. Although level 4 programs are excellent trouble-

shooting tools, they are more difficult to use than microdiagnostic pro-

grams and level 2, 2R, and 3 programs. In general, therefore, you should

run level 4 programs only when you are sure that you cannot obtain the

same error information from other types of programs.

Level 4 programs always load at physical address O and start at physical

address 200. See the appropriate processor-specific diagnostic system

overview manual for an explanation of how to run level 4 diagnostic

programs.

27

4

DIAGNOSTIC

SUPERVISOR COMMANDS

The diagnostic supervisor provides a context for running level 3, 2, and

2R diagnostic programs. Run the supervisor in the standalone mode to

execute level 3 programs. Run it in the on-line mode (under VMS) to

execute level 2R programs. Level 2 programs will run under the super-

visor when it is in either mode.

The supervisor provides nondiagnostic services, such as message con-

trol, to diagnostic programs. And it handles processor-specific features

of the VAX system so that nearly all level 3, 2, and 2R diagnostic pro-

grams can be run on any VAX processor.

The supervisor implements a set of commands and control flags that

allow the operator to control diagnostic program loading and execution.

In order to make good use of the VAX diagnostic system the operator

should be familiar with the supervisor commands and with the diagnos-

tic programs applicable to his/her computer system.

DIGITAL intends to enhance the supervisor functions and broaden the

command set in future diagnostic releases. See the release notes in

EVNDX, the VAX Development MAINDEC Index for details.

29

30 DIAGNOSTIC SUPERVISOR COMMANDS

The diagnostic supervisor commands are grouped in four sets.

Program and test sequence control

Scripting features

Execution control

Debug and utility features

Commands, switches, and literal arguments can be abbreviated to the

minimum number of characters necessary to retain their unique identity.

For example, the load command can be specified by a single L, whereas

the start command requires a minimum of ST.

In the command descriptions which follow, certain special characters are

employed that require some explanation. Angle brackets, <>, are used

to enclose symbolic arguments that are satisfied by a numeric expres-

sion or character string. Optional arguments are enclosed by square

brackets, []. An OR function is indicated with an exclamation point, !.

Literal arguments such as ALL, OFF, and FLAGS are capitalized.

Use the hyphen, -, as a continuation character at the end of a line to

continue a command from one line to the next. Use an exclamation

point, |, to separate a comment from a command in a command line.

In the examples that follow, operator input is printed in color.

PROGRAM AND TEST SEQUENCE CONTROL

COMMANDS

These commands enable the operator to select programs and portions of

programs and to control the sequence of test execution.

Set Load Command

SET LOAD <device>:[directory]<CR>

The set load command establishes the storage device from which the

supervisor will load diagnostic programs. Initially the default load device

is the device from which the supervisor was booted. Use set load when

you wish to load diagnostic programs from a different device. Set load

DIAGNOSTIC SUPERVISOR COMMANDS 31

establishes a new default. Use the set load command in combination

with the load command or the run command.

DS> SET LOAD DMAO: [SYSMAINT]

DS> LOAD ESDXA

DS> SET LOAD DMAO: [SYSMAINT]

DS> RUN ESDXA

Example 4-1 Set Load Command

NOTE

The directory name, and the square brackets around it,

are necessary in the set load command.

Show Load Command

SHOW LOAD<CR>

The show load command causes the supervisor to display the names of

the storage device and directory from which diagnostic programs are to

be loaded when the load command is given.

DS> SHOW LOAD

DMAO: [SYSMAINT]

DS>

Example 4-2 Show Load Command

Load Command

LOAD <file-spec><CR>

This command loads the specified file into main memory from the

default load device. The default file extension is .EXE. The storage device

from which the program is loaded is the device established on the pre-

vious set load command. Note that you need supply only the five-letter

code that identifies each diagnostic program for the command line argu-

ment <file-spec>.

32 DIAGNOSTIC SUPERVISOR COMMANDS

DS> LOAD EVTAA ! Load the local terminal

DS> ! diagnostic program.

Example 4-3 Load Command

Attach Command

ATTACH <UUT-type> <link-name> <generic-device-name>...<CR>

Before starting a diagnostic program, the operator must use several at-

tach commands to define each unit under test (UUT). You must also

define for the supervisor the devices that link it to the system bus. If you

are testing several units at once, repeat the attach command for each

device. Every unit under test is uniquely defined by a hardware designa-

tion and a link. See the explanation of the attach command in the diag-

nostic system overview manual that applies to your VAX system.

The first parameter, <UUT-type>, is the hardware designation of the

unit under test. For example, RH, TMO3, TE16, and DZ11 are hardware

designations.

The second parameter, <link-name>, is the name of the piece of hard-

ware that links the unit under test, in most cases through intermediate

links, to the main system bus. For example, an RH is linked to the inter-

connect; an MTa is linked to an RH; a TU45 is linked to an MTa; and a

DZ11 is linked to a DWn. You must attach each piece of hardware (with

the exception of the main system bus) before you can use it as a link in

an attach command.

The third parameter is the generic device name, which identifies to the

supervisor the particular unit to be tested. Use the form <GGan> for

the device name.

<GG> is a two-character generic device name (alphabetic).

<a> is an alphabetic character, specifying the device controller.

<n> is a decimal humber in the range of 0-255, specifying the num-

ber of the unit with respect to the controller.

DIAGNOSTIC SUPERVISOR COMMANDS 33

Use the unit number, <n> or <a>, only if it is applicable to the device.

You must supply additional information for some types of hardware to

enable the diagnostic program to address the device. For example, you

must supply the TR and BR numbers for an RH780, the controller num-

ber for a TMO3, and the CSR vector and BR for a UNIBUS device. If you

do not include additional information, but the information is necessary,

the supervisor will prompt you for it.

Select Command

SELECT <generic-device-name>|:],-<CR>

[<generic-device-name>[:] . . . | /ALLKCR>

You must select each unit to be tested with the select command, after

attaching it. For each unit, supply the appropriate generic device name,

as shown in the appropriate processor-specific overview manual. The

select command adds the specified device to the list of units to be

tested. The command takes effect the next time the diagnostic program

is started.

DS> SELECT TTA:

DS>

Example 4-4 Select Command

Deselect Command

DESELECT <device>[:][. <device>[:]...]! ALLCR>

Use the deselect command to remove the name of one or more devices

from the list of units to be tested.

DS> DESELECT TTA:

DS> DESELECT ALL

DS>

Example 4-5 Deselect Command

34 DIAGNOSTIC SUPERVISOR COMMANDS

Show Device Command

SHOW DEVICE <device>[:][.<device>[:] . . .]<CR>

The show device command causes the supervisor to display the charac-

teristics of the specified devices on the operator’'s terminal. If you omit

the device name, the supervisor will list the characteristics of all at-

tached devices (Example 4-6).

Show Selected Command

SHOW SELECTED<CR>

The show selected command causes the display of information in the

same format as the show device command. However, the information is

shown only for the devices that have been previously selected.

DS> SHOW DEVICE

_DWO DW780 60006000 TR=3. BR=4. NUMBER=0.

DMA RK611 DWO 6013FF20 CSR=00000777440(0) VECTOR=00000000210(0) BR=5.
_DMAO RKO7 ~DMA 00000000

TTTA DzZ11 ~DWO 6013E050 CSR=00000760120(0) VECTOR=00000000320(0) BR=4.

DS> SHOW SELECTED

DS> SELECT TTA:

DS> SHOW SELECTED

_TTA DZ1ll _DWO 6013E050 CSR=00000760120(0) VECTOR=00000000320(0) BR=4.

DS> DESELECT TTA:

DS> SHOW SELECTED

DS>

Example 4-6 Show Device and Show Selected Commands

Start Command

START [/SECTION: <section-name>]-<CR>

[/TEST: <first>[: <last>!/SUBTEST: <num>|]-<CR>

[/PASSES: <count>]|<CR>

DIAGNOSTIC SUPERVISOR COMMANDS 35

The start command causes the diagnostic supervisor to pass control to

the initialize routine in the diagnostic program in memory, thus begin-

ning program execution.

Each diagnostic program is organized in discrete tests. The tests are

grouped in sections, according to their functions, execution times, and

whether or not there is need for operator interaction.

If the start command is given without switches, the program will run the

tests in the default section. In other words, the initial setting for SEC-

TION is DEFAULT. The supervisor calls only those tests that have been

designed by the diagnostic engineer to run in the default section. Default

section tests do not require operator intervention. When a section is

selected in conjunction with the start command, only the tests that it

contains will be executed.

The TEST switch is used in two distinctly different ways. If the first and

last arguments are specified, the supervisor sequentially passes control

to tests first through /ast, inclusively. If the first argument is combined

with the SUBTEST switch, program execution begins at the beginning of

the first test and terminates at the end of the subtest num. If the SUB-

TEST switch is used in conjunction with the PASSES switch, the oper-

ator is provided with a loop-on-subtest capability. In this case, only the

subtest named in the command line is executed, once looping begins.

If the TEST switch is not specified, all tests within the named section of

the program are executed. In other words, the default for TEST is TEST a

through TEST n, where TEST n is the highest numbered test in the sec-

tion. If only the first argument is specified with the TEST switch, the /ast

argument is assumed by default to be the highest numbered test within

the selected section of the program.

Tests are run only if they are included in the section named. If the

PASSES switch is not used, the default value is 1. Test and pass num-

bers are decimal. The minimum value for passes is 1. The maximum

value is O, which means infinity in this context.

36 DIAGNOSTIC SUPERVISOR COMMANDS

For example:

DS> START

DS V
v

START/SEC: MANUAL

DS> START/SEC:MANUAL/TEST:32:33

DS> START/TEST:6:12

DS> START/TEST:9/SUBTEST:5

DS V
v

START/TEST:9

DS> START/PASS:3

DS> START/TEST:9/SUBTEST:5/PASS:0

Start execution of the diag-

nostic program in memory.

Start execution of the manual

section of the program.

Run tests 32 and 33 if they

are in the manual section.

Some tests may not be executed

unless the section is speci-

fied.

Run tests 6, 7, 8, 9, 10, 11,

12,

Run test 9, subtests 1, 2, 3,

4, 5.

Run tests 9 through N, where

N is the last test in the de-

fault section.

Run 3 passes of the default

section.

Execute test 9, subtests 1, 2,

3, 4, and then loop on sub-

test 5 indefinitely.

Example 4-7 Start Command

Run Command

RUN <file-spec>[/SECTION: <section name>]-<CR>

[/TEST: <first>[: <last>!/SUBTEST: <num>]]-<CR>

[/PASSES: <count>]|<CR>

Run is the equivalent to a load and start command sequence. The run

command switches are identical to those in the start command.

DIAGNOSTIC SUPERVISOR COMMANDS

For example:

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

RUN

RUN

RUN

RUN

RUN

RUN

RUN

RUN

EVTAA

EVTAA/SEC:MANUAL

EVTAA/SEC:MANUAL/TEST:32:33

EVTAA/TEST:6:

EVTAA/TEST:9/SUBTEST:5

EVTAA/TEST:9

EVTAA/PASS:3

EVTAA/TEST:9/SUBTEST:5/PASS:0

e

37

Load and run the local

terminal diagnostic.

Load the local terminal

diagnostic and run the

manual section.

Load the local terminal

diagnostic and run tests

32 and 33 in the manual

section.

Load the local terminal

diagnostic and run tests

6, 7, 8, 9, 10, 11, 12.

terminal

run test 9,

3, 4, 5.

Load the local

diagnostic and

subtests 1, 2,

Load the local terminal

diagnostic and run tests 9

through N, where N is the

last test in the default

section.

Load the local terminal

diagnostic and run three

passes of the

default section.

Load the local terminal

diagnostic, execute test

9, subtests 1,2,3,4, and

then loop on test 9, sub-

test 5 indefinitely.

Example 4-8 Run Command

Summary Command

SUMMARY<CR>

This command causes the execution of the program’s summary report

code section, which prints statistical reports. Note that this command is

generally used only after running a pass of a diagnostic program. How-

ever, the summary command can be used at any time, and would be

useful, for example, when the disk reliability program is run. Type

CTRL/C first to return control to the command line interpreter (CLI).

38 DIAGNOSTIC SUPERVISOR COMMANDS

Then type SUMMARY to obtain a statistical report on the program.

CONTINUE can be typed at this point, if the operator wishes to resume

program execution.

CTRL/C

Normally CTRL/C returns control from a diagnostic program to the com-

mand line interpreter in the diagnostic supervisor. The supervisor then

enters a command wait state and displays the DS> prompt on the oper-

ator’s terminal. The operator may then issue any valid command.

CTRL/C is the only diagnostic supervisor command that may be issued

while a program is running. When a diagnostic program is running in

conversation mode, CTRL/C returns control to a command interpreter

within the program for the conversation mode.

Continue Command

CONTINUE<LCR>

This command causes program execution to resume at the point at

which the program was suspended. This command is used to proceed

from a breakpoint, error halt, summary, or CTRL/C situation.

The following example shows how CTRL/C, summary, and continue can

be used together to obtain statistics on the program being run and to

then resume execution.

...Program is running...

~

s

DS> SUMMARY

! Operator types CTRL/C.

! Supervisor prompt.

! Operator requests

! statistical report.

Statistical

Report

Printed Here

DS> CONTINUE ! Supervisor prompt.

! Operator requests

! resumption of program.

...Program is running...

Example 4-9 Use of CTRL/C, Summary, and Continue Commands

DIAGNOSTIC SUPERVISOR COMMANDS 39

Abort Command

ABORT<CR>

This command passes control to the program’s cleanup code and then

returns control to the supervisor, which enters a command wait state

and displays the supervisor prompt, DS>. At this point the operator may

issue any command except CONTINUE. Example 4-10 shows how the

abort command can be used together with CTRL/C and the summary

command.

...Program is running...

“C ! Operator types CTRL/C.

DS> SUMMARY ! Supervisor prompt.
! Operator requests

| statistical report.

Statistical

Report

Printed Here

DS> ABORT ! Supervisor prompt.
! Operator requests program

! cleanup and termination.

DS> ! Supervisor prompt.

Example 4-10 Use of CTRL/C, Summary, and Abort Commands

SCRIPTING

The scripting feature in the supervisor enables the computer operator to

run predefined sequences of diagnostic programs automatically. Super-

visor commands normally solicited from the operator’'s terminal are in-

stead taken from a text file.

Scripting Command

@|load-device] [|directory] | <file-spec> <CR>

This command causes the supervisor to execute the commands that it

finds in the command file specified. You should build the command file

40 DIAGNOSTIC SUPERVISOR COMMANDS

with a text editor before starting the supervisor. See the VAX-71 Text

Editing Reference Manual (AA-DO29A-TE). Type DS> at the beginning

of each line of the script. Then copy the command file on the diagnostic

program load device. When you execute the command file from the su-

pervisor, the supervisor assumes that the load device for the command

file is the device from which the supervisor was loaded. If the load device

Is different, specify the device and the directory for the file, either with

the scripting command or with a preceding set load command.

Example 4-11 shows a typical command file. Example 4-12 shows how

the file can be used. Notice that in Example 4-12 the load device is

specified, but the file type and version are not specified. When the oper-

ator does not supply the file type and version number, the supervisor

applies the defaults “.COM" and latest version number.

DS> ATTACH DW780 SBI DWO 3 4

DS> ATTACH DZ1ll DWO TTA 760120 320 4 EIA

DS> SELECT TTA:

DS> RUN ESDAA/PASS:3

Example 4-11 A Typical Command File

$ COPY CMD.COM DMAO: [TEST] ! Copy the command file.
$ RUN DMAOQ: [TEST]ESSAA ! Run the diagnostic supervisor.

DS>@CMD ! Execute the command file.

Example 4-12 Execution of a Typical Command File

NOTE

The square brackets around the directory name, [TEST],

are necessary. COPY and RUN are VMS commands.

COPY makes a copy of the first named file (CMD.COM)

in the [TEST] directory. RUN loads and starts the pro-

gram named (ESSAA).

DIAGNOSTIC SUPERVISOR COMMANDS 41

Diagnostic programs do not solicit information from the operator, except

under unusual circumstances. Exceptions are manual intervention tests

and volume verification failures for programs that write on disks. Re-

sponses to questions of this nature should come from the operator, not

from a script. Therefore, script files contain only supervisor commands.

@ Command Processing

The supervisor processes the @ command roughly as follows.

1. The supervisor aborts the current program if necessary.

. The supervisor reads the whole script at once into a buffer.

. The supervisor initializes a pointer to the first line of the script.

>
 S

OV
 I
\

. The supervisor sets a flag to indicate that the next command is to

be taken from the script.

5. As the supervisor processes the commands in the script, it displays

the prompt and command text on the operator’s terminal.

6. When the script has been exhausted, the supervisor types

"@<EOF>".

Buffer Allocation and Script Nesting

The supervisor dynamically allocates the memory buffer for script text

and control and position information. Each script descriptor is linked to

previous script descriptors. This allows you to nest scripts. The amount

of memory available on a given computer system limits the number of

nesting levels possible. If you exceed the memory capacity, the super-

visor will type UNKNOWN ERROR PC = 00000124

You can invoke script nesting with an @ <file-spec>" command within

a script. The supervisor processes commands from the second script file

until it reaches the end of the script. The supervisor then releases the

second script and resumes processing commands from the first script. If

no previous script is left unprocessed, control returns to the operator’s

terminal.

42 DIAGNOSTIC SUPERVISOR COMMANDS

Interrupting the Script

You may type CTRL/C on the terminal to interrupt the script, if neces-

sary. CTRL/C causes the supervisor to suspend the script and stop the

current program, if a program is running. You can issue any command

while the script is suspended. However, if you want to resume the script

eventually, by typing CONTINUE, the selection of commands is limited.

These commands can be followed by resumption of a script or program.

SET SHOW

CLEAR SUMMARY

EXAMINE NEXT

DEPOSIT CONTINUE

The following commands flush all scripts and return control to the com-

mand line interpreter in the supervisor.

ATTACH START

SELECT RUN

DESELECT ABORT

In general, a command flushes a script if it would be meaningless to

continue the script after the command has been executed.

Command File Format

A command procedure must be a contiguous ASCII file created by VAX

RMS (record management services) on an ODS-1 or ODS-2 disk file

structure. The file must be line oriented and records must not exceed 72

characters. You can create a command procedure file with any editor or

with the VMS CREATE command. The supervisor treats all records as

supervisor commands. Any legitimate supervisor command is valid in a

script.

DIAGNOSTIC SUPERVISOR COMMANDS 43

EXECUTION CONTROL FUNCTIONS

The execution control functions allow you to alter the characteristics of

the diagnostic programs and the diagnostic supervisor. These functions

are implemented by command flags and event flags. The command flags

are used to control the printing of error messages, ringing the bell, and

halting and looping of the program.

Set Flags Command

SET [FLAGS] <arg-list><CR>

This command results in the setting of the execution control flags speci-

fied by <arg-list>. No other flags are affected. <Arg-list> is a string of

flag mnemonics from the following table, separated by commas.

HALT Halt on error detection. When the program detects a

failure and this flag is set, the supervisor enters a com-

mand wait state after all error messages associated

with the failure have been output. You may then con-

tinue, rerun, or abort the program. This flag takes prec-

edence over the LOOP flag.

LOOP Loop on error. When set, this flag causes the program

to enter a predetermined scope loop on a test or sub-

test that detects a failure. Set the IE1 flag if you want

to inhibit error messages. Note that you cannot inhibit

messages forced by the program or the supervisor.

Looping will continue until the operator returns control

to the supervisor by using the CTRL/C command. You

may then continue, clear the flag and continue, or

abort the program.

BELL Bell on error. When set, this flag causes the supervisor

to send a bell to the operator whenever the program

detects a failure.

44 DIAGNOSTIC SUPERVISOR COMMANDS

IE1

|E2

IE3

IES

QUICK

TRACE

OPERATOR

PROMPT

ALL

Inhibit error messages at level 1. When set, this flag

suppresses all error messages, except those that are

forced by the program or supervisor.

Inhibit error messages at level 2. When set, this flag

suppresses basic and extended information con-

cerning the failure. Only the header information mes-

sage (first three lines) is output for each failure.

Inhibit error messages at level 3. When set, this flag

suppresses extended information concerning the fail-

ure. The header and basic information messages are

output for each failure.

Inhibit summary report. When set, this flag suppresses

statistical report messages.

Quick verify. When set, this flag indicates to the pro-

gram that the operator wants a quick verify mode of

operation. The interpretation of this flag is program

dependent.

Report the execution of each test. When set, this flag

causes the supervisor to report the execution of each

individual test within the program as the supervisor

dispatches control to that test.

Operator present. When set, this flag indicates to the

supervisor that operator interaction is possible. When

cleared, the supervisor takes appropriate action to en-

sure that the test session continues without an oper-

ator.

Display long dialogue. When set, this flag indicates to

the supervisor that the operator wants to see the lim-

its and defaults for all questions printed by the pro-

gram.

All flags in this list.

DIAGNOSTIC SUPERVISOR COMMANDS 45

Clear Flags Command

CLEAR [FLAGS]<arg-list><CR>

This command results in the clearing of the flags specified by

<arglist>. No other flags are affected. <Arg-list> is a string of flag

mnemonics separated by commas. See the set command for supported

arguments.

Set Flags Default Command

SET FLAGS DEFAULT<CR>

This command returns all flags to their initial default status. The default

flag settings are OPERATOR and PROMPT.

Show Flags Command

SHOW FLAGS<CR>

This command displays all the execution control flags and their current

status. The flags are displayed as two mnemonic lists; one list is for

those flags that are set, the other for those that are clear.

The following example shows how the set flags, clear flags, and show

flags commands can be coordinated.

DS> SET FLAGS TRACE ! Set the TRACE flag.

DS> CLEAR FLAGS QUICK ! Clear the QUICK flag.

DS> SHOW FLAGS

CONTROL FLAGS SET: PROMPT, OPER, TRACE

CONTROL FLAGS CLEAR: QUICK, IES, IE3, IE2, IEl, BELL, LOOP, HALT

DS>

Example 4-13 Use of the Flag Control Commands

46 DIAGNOSTIC SUPERVISOR COMMANDS

Set Event Flags Command

SET EVENT [FLAGS] <arg-list>!ALL<CR>

This command results in the setting of the event flags specified by

<arglist>. No other event flags are affected. <Arg-list> is a string of

flag numbers in the range of 1-23, separated by commas. ALL may be

specified instead of <arg-list>.

Event flags are status posting bits maintained by VMS and the super-

visor. Diagnostic programs can use event flags to perform a variety of

signaling functions, including communication with the operator.

The VMS operating system specifies the functions of the first two event

flags.

Event Flag 1 enables (when set) and disables (when clear) error log-

ging under VMS. The default is clear.

Event Flag 2 enables (when set) and disables (when clear) retries

under VMS. The default is clear.

The other available event flags (3-23) are not permanently defined. Di-

agnostic programs that use event flags for interaction with the operator

will specify their functions in program documentation files. For example,

a program might use an event flag to enable the operator to specify the

use of a particular data pattern.

Clear Event Flags Command

CLEAR EVENT [FLAGS] <arg-list>!ALL<CR>

This command clears the event flags specified by <arg-list>. No other

event flags are affected. <Arg-list> is a string of flag numbers in the

range of 1-23, separated by commas. You may specify ALL instead of

<arg-list>

DIAGNOSTIC SUPERVISOR COMMANDS 47

Show Event Flags Command

SHOW EVENT [FLAGS]<CR>

This command causes the supervisor to display a list of the event flags

that are currently set.

Example 4-14 shows how the set event flags, clear event flags, and

show event flags commands can be coordinated.

DS> SET EVENT FLAGS 1, 9, 15

DS> CLEAR EVENT FLAGS 2, 6

DS> SHOW EVENT FLAGS

EVENT FLAGS SET: 15, 9, 1

DS>

Example 4-14 Event Flag Control Commands

DEBUG AND UTILITY COMMANDS

This group of commands provides the operator with the ability to isolate

errors and to alter diagnostic program code. The supervisor allows up to

15 simultaneous breakpoints within the program. The operator can also

examine and modify the program image in memory.

Set Base Command

SET BASE <address><CR>

This command loads the address specified into a software register. This

number is then used as a base to which the address specified in the set

breakpoint, clear breakpoint, examine, and deposit commands is added.

The set base command is useful when referencing code in the diagnostic

program listings. The base should be set to the base address (see the

program memory allocation map) of the program section referenced.

Then the PC numbers provided in the listings can be used directly in

referencing locations in the program sections.

48 DIAGNOSTIC SUPERVISOR COMMANDS

For example:

DS> SET BASE EOQ0O0 Set the base

address to the

beginning of the psect for

the routine under

examination.
DS>

Example 4-15 Set Base Command

NOTE

Virtual address = physical address (normally) when

memory management is turned off.

You can show the base by typing E O.

For example:

DS> SET BASE 3800

DS> E O

00003800 43190003

DS>

Example 4-16 Showing the Base Address

Set Breakpoint Command

SET BREAKPOINT <address> <CR>

This command causes control to pass to the supervisor when the pro-

gram counter points to the <address> previously specified by this com-

mand. A maximum of 15 simultaneous breakpoints can be set within the

diagnostic program.

DIAGNOSTIC SUPERVISOR COMMANDS 49

For example:

DS> SET BREAKPOINT 30 Set a breakpoint
at an offset of

30 from the

base address.

Example 4-17 Set Breakpoint Command

Clear Breakpoint Command

CLEAR BREAKPOINT <address>! ALL<SCR>

This command clears the previously set breakpoint at the memory loca-

tion specified by <address>. If no breakpoint existed at the specified

address, no error message is given. An optional argument of ALL clears

all previously defined breakpoints.

For example:

DS> CLEAR BREAKPOINT 30 Clear the breakpoint
at the location which

is offset 30 from

the base address.

DS>

Example 4-18 Clear Breakpoint Command

Show Breakpoints Command

SHOW BREAKPOINTS<CR>

This command displays all currently defined breakpoints.

50 DIAGNOSTIC SUPERVISOR COMMANDS

For example:

DS> SHOW BREAKPOINTS ! Display breakpoints

! currently set.

CURRENT BREAKPOINTS:

00000E30(X)

DS>

Example 4-19 Show Breakpoints Command

Set Default Command

SET DEFAULT <arg-list><CR>

This command causes setting of default qualifiers for the examine and

deposit commands. The <arg-list> argument consists of data length

default and/or radix default qualifiers. If both qualifiers are present, they

are separated by a comma. If only one default qualifier is specified, the

other one is not affected. Initial defaults (if you don’t change them) are

HEX and LONG. Default qualifiers may be:

Data Length: Byte, Word, Long

Radix: Hexadecimal, Decimal, Octal

For example:

DS> SET DEFAULT BYTE, DECIMAL ! Set the default data

! length qualifier as

! byte and the default

! radix qualifier as

! decimal.

DS>

Example 4-20 Set Default Command

Examine Command

EXAMINE [<qualifiers>][<address>]|<CR>

DIAGNOSTIC SUPERVISOR COMMANDS 51

The examine command displays the contents of memory in the format

described by the qualifiers. If no qualifiers are specified, the default qual-

ifiers set by a previous set default command are used. The applicable

qualifiers are described In Table 4-1.

Table 4-1 Examine Command Qualifier Descriptions

Qualifier Description

/B Address points to a byte

/W Address points to a word

/L Address points to a longword

/H Display in hexadecimal radix

/D Display in decimal radix

/0 Display in octal radix

/A Display in ASCII bytes

When specified, the <address> argument is accepted in hexadecimal

format unless some other radix has been set with the set default com-

mand. Optionally, <address> may be specified as decimal, octal, or

hexadecimal by immediately preceding the address argument with %D,

%0, or %H, respectively. <address> may also be one of the following:

RO—-R11. AP, FP, SP, PC, PSL. Note that the supervisor will also accept

the names R12-R15 for AP, FP, SP, and PC, respectively.

For example:

DS> EXAMINE 30 Display the contents
of the longword which

is offset 30 from

the base address of EO0O.

00000E30: DO513DO1

DS>

Example 4-21 Examine Command

52 DIAGNOSTIC SUPERVISOR COMMANDS

Deposit Command

DEPOSIT [<qualifiers>]<address> <data><CR>

This command accepts data and writes it into the memory location spec-

ified by <address> in the format described by the qualifiers. If no qual-

iflers are specified, the default qualifiers are used. The applicable

qualifiers are identical to those of the examine command described in

Table 4-2.

The <address> argument is accepted in hexadecimal format unless

some other radix has been set with the set default command. Optionally,

<address> may be specified as decimal, octal, or hexadecimal by im-

mediately preceding <address> with %D, %0, or %H, respectively.

For example:

DS> DEPOSIT/W/H 30 0001 Deposit 0001 (hex)

in the word

offset 30 from

the base address.

00000E30: 0001

DS>

DS> DEPOSIT/W/D %HFF 1009 ! Deposit the value 1009|

! decimal in the word offset

! FF (hexadecimal) from

! the base address.

Example 4-22 Deposit Command

Next Command

NEXT [number-of-instructions] <CR>

This command causes the supervisor to execute one macro instruction.

If you specify a number (decimal) after NEXT, the supervisor will execute

that number of macro instructions. The supervisor displays the PC of the

next instruction and the contents of the next four bytes, after execution

of each instruction.

DIAGNOSTIC SUPERVISOR COMMANDS 53

Use this command to step through an area of a program where you

suspect a problem.

NOTE

Do not use NEXT unless you have stopped the program

at a breakpoint.

For example:

DS> NEXT | Execute the next instruction.

00000E31l: DO0513D01

DS>

Example 4-23 Next Command

O

DIAGNOSTICS

UNDER THE SUPERVISOR

Whether you run diagnostics on-line or standalone, you must first start

the supervisor to run level 3, 2, or 2R programs. Then, using supervisor

commands, describe the system configuration to the supervisor, set and

clear flags as appropriate, and run the diagnostic programs needed.

ON-LINE DIAGNOSTIC SUPERVISOR LOAD

PROCEDURES

When you wish to run diagnostic programs in the on-line mode, ensure

that a properly formatted diagnostic volume with the SYSMAINT di-

rectory is on-line and mounted. Then type RUN [SYSMAINT]ESSAA to

the VMS command interpreter to load and start the diagnostic super-

visor.

$ RUN [SYSMAINT]ESSAA

DS>

Example 5-1 Running the Supervisor On-Line

55

56 DIAGNOSTICS UNDER THE SUPERVISOR

The supervisor is loaded and started. It prompts the operator with DS>.

If the SYSMAINT directory is not available, VMS will display an error

message indicating that the file (ESSAA) was not found.

VAX/VMS Privileges and Quotas Required (as a minimum)

for Running Diagnostics On-Line

The system manager must use the Authorize program to set up the field

service user account with the following privileges and quotas.

Privileges:

GPRNAM PRMCEB

ALLSPOOL PRMMBX

DETACH PSWAPM

DIAGNOSE TMPMBX

LOG_IO WORLD

GROUP PHY_IO

Quotas:

CLI: DCL

ASTLM: 1000 |

DIOLM: 1000

WSDEFAULT: 256

PCRCLM: 100

BIOLM: 1000

FILLM: 100

WSQUOTA: 512

PRI: 4

BYTLM: 65000

TQELM: 1000

PGFLQUOTA: 40

DIAGNOSTICS UNDER THE SUPERVISOR 57

STANDALONE BOOT

The VAX diagnostic system provides two methods for booting the super-

visor and loading diagnostic programs in the standalone mode. The

standard method involves booting the supervisor and loading the diag-

nostic program from the system device on the system bus. Use this

method unless a fault in the load path prevents booting the supervisor.

If a load path problem exists, boot the supervisor and load the diagnostic

programs from the load path diagnostic package on the console load

device. See the appropriate processor-specific diagnostic system over-

view manual for standalone diagnostic boot procedures.

USING THE SCRIPT FILES

The SYSMAINT area on the system disk contains at least two script files.

These files make it easy to run diagnostic programs on-line or stand-

alone from the system disk. However, they are not available when you

run load path diagnostics.

The script files contain sequences of commands to the supervisor that

make it possible for you to run a series of diagnostic programs with one

or more commands. This means that you need not deal with the names

of the hardware components and the diagnostic programs in order to

test the system. The scripts for each VAX system are tailored to the

hardware configuration of that system.

The configuration script file (CONFIG) consists of a series of attach com-

mands that describe the hardware configuration to the supervisor. The

program execution script file (SYSTEST) includes a call to CONFIG, se-

lects devices for test, controls flags, and executes appropriate diagnostic

programs. The SYSTEST script file runs in the standalone mode only.

Type @SYSTEST or @CONFIG to execute these scripts. Example 5-2

shows the listing for a typical CONFIG script. Example 5-3 shows a

corresponding listing for a SYSTEST script.

58

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DS>

DIAGNOSTICS UNDER THE SUPERVISOR

ICONFIGURATION FILE FOR SYSTEM TYPE SV-AXHAA DUAL RKO07

!PACKAGED SYSTEM VERSION: 1.0 01-MAY-79

ICONFIG.COM;3

!

!Define processor...

ATTACH KA780 SBI KAO NO NO 0 O

!

!Define Memory

ATTACH MS780 SBI MSO 1

|

!Define UNIBUS adapters...

ATTACH DW780 SBI DWO 3 4 0
|

!Define UNIBUS disks...

ATTACH RK611 DWO DMA 777440 210 5

ATTACH RKO0O7 DMA DMAO

ATTACH RKO7 DMA DMAl

|

!Define terminals...

ATTACH DZ1ll DWO TTB 760110 310 5 EIA
|

ATTACH VT100 TTB TTBO

ATTACH VT100 TTB TTB1

ATTACH VT100 TTB TTB2

ATTACH VT100 TTB TTB3

ATTACH VT100 TTB TTB4

ATTACH VT100 TTB TTBS

ATTACH VT100 TTB TTB6

ATTACH VT100 TTB TTB7

Example 5-2 A Typical CONFIG Script Listing

ISYSTEM TEST SCRIPT FOR SYSTEM TYPE SV-AXHHA DUAL RKOQ7

!PACKAGED SYSTEM

!FOR STANDALONE USE ONLY...

!SYSTEST.COM; 3 VERSION:1.0 01-MAY-79

@CONFIG
|

SELECT ALL ! Select everything.
|

RUN ESKAX ! Cluster Exerciser Quick Verify.

RUN ESKAY ! Cluster Exerciser Native Mode Inst.

RUN ESKAZ ! Cluster Exerciser MEM-MGT/PDP-11 Inst.
|

RUN ESCBA ! DW780 Test

RUN EVRAA/SEC:QUAL ! Verify disk functionality.

RUN EVDAA/SEC:QUAL ! Verify DZ1l1l functionality.

|

RUN EVXBA

I

Verify integrity of system buses.

SET FLAGS QUICK

RUN EVRAA ! Run disk reliability in quick mode.

CLEAR FLAGS QUICK

|

!END OF SYSTEST...

Example 5-3 A Typical SYSTEST Script Listing

DIAGNOSTICS UNDER THE SUPERVISOR 59

CREATING AND MODIFYING SCRIPT FILES

DIGITAL distributes script files for packaged systems. You will need to

update these script files in order to reflect the addition of new peripheral

devices. Use an editor (such as SOS) under VMS to modify your script

files or create new scripts. See Chapter 4 for details. The file names for

the existing script files are: [SYSMAINT|]CONFIG.COM, and

[SYSMAINT|SYSTEST.COM.

RUNNING DIAGNOSTICS UNDER THE SUPERVISOR

WITHOUT SCRIPT FILES

You will probably, on occasion, need to run diagnostics without the ben-

efit of script files, for example, when you run load path diagnostics. Load

path diagnostics are programs which test for failures in the primary load

path (system disk, channel adapter, CPU).

The CONFIG script file is of no use when you are using load path diag-

nostics or when you are testing a device not mentioned in the CONFIG

file. In either case, use the attach command to make the device known

to the supervisor. Then select the device for testing with the select com-

mand and run the appropriate program, as shown in Example 5-4.

DS> ATTACH RH780 SBI RHO 8 5 ! Attach MASSBUS interface.

DS> ATTACH RP06 RHO DBA7 ! Attach system disk.

DS> SELECT DBA7 ! Select system disk.

DS> RUN EVRAA/SECTION:QUAL ! Load the disk reliability
! program from the console load

| device and run it to verify disk

! functionality. The console 1load

! device is the default load

! device if the supervisor has

! been booted from the floppy.

Example 5-4 Use of Attach, Select, and Run

The SYSTEST script file is unavailable when you run diagnostics on-line

or when you run load path diagnostics, and useless when you wish to

run one test or a portion of one test only. If the device to be tested is

60 DIAGNOSTICS UNDER THE SUPERVISOR

mentioned in the CONFIG file, type @CONFIG to make the device

known to the supervisor. Then select the device and run the appropriate

diagnostic program, as shown in Example 5-5. See Chapter 4 for details

on the supervisor commands.

DS> @CONFIG ! Invoke the Configuration

! script file.

DS> SELECT DBA7: ! Select the device to be tested.

DS> RUN EVRAA/SECTION:CONVERSATION

! Load the disk reliability

! program and run the

! manual intervention section.

Example 5-5 Running a Diagnostic Program Without Use of the SYSTEST Script File

Notice that when you use the load or run commands, the program will

always be loaded from the default load device. The default load device is

the device from which the supervisor has been loaded, unless you

change the default with the set load command.

6

DIAGNOSTIC

PROGRAM INTERPRETATION

ERROR REPORT FORMATS

VAX diagnostic programs provide informative error messages. In most

cases these messages will help you to quickly indentify a failing sub-

system, function, or module. Example 6-1 shows a message from a re-

pair level program. Example 6-2 shows one from a functional level

program.

kkkkkk** MAINDEC ZZ-ESCAA-6.0 RH780 DIAGNOSTIC - 6.0

PASS 1 TEST 3 SUBTEST 2 ERROR 2 11-SEP-1979 13:30:23.18

HARD ERROR WHILE TEST RHO: FAILING-MODULE: MIR(M8276)

(RHCR) = 00000004 ERROR:

EXPECTED: BIT17,BIT16,I1E

RECEIVED: IE

XOR: BIT17,BIT16

EXPECTED: 00030004 RECEIVED: 00000004 XOR: 00030000

Example 6-1 Sample Error Message with Failing Module Callout

61

62 DIAGNOSTIC PROGRAM INTERPRETATION

kk*k*k**% 77-EVRCA RPOX/DCL DIAGNOSTIC - 4.1 *¥xkkkkx

PASS 1 TEST 1 SUBTEST 0 ERROR 2 10-MAR-1980 08:26:20.26

DEVICE FATAL WHILE TESTING DBAQO: CONTROL BUS PARITY ERROR DETECTED

MBA CHANNEL STATUS DUMP

MBA CSR:[20010000] 00000020(X) ;

MBA CR:[20010004] 00000000(X) ;

MBA SR:[20010008] 00020000 (X) ; MCPE

MBA VAR:[2001000C] 00000200(X) ;

MBA MAP (80) : 00000000(X) ;

MBA BCNT: [20010010] 00000000(X) ;

Example 6-2 Sample Error Message with Failing Function Callout

In each case, these messages would probably give you enough informa-

tion to identify the problem and repair the machine. And as you become

more familiar with the VAX computer system, the diagnostic system,

and the program being run, the error messages should become even

more useful.

Occasionally, however, a message may be insufficient or even mis-

leading. For example, you may replace module M8276 in accordance

with the message in Example 6-1. If you then rerun the program and get

the same message, error isolation will obviously require more work.

FINDING THE RELEVANT DOCUMENTATION

Error messages always give the failing test number, the subtest number,

and the error number. This information provides an index into the pro-

gram documentation.

The documentation for each VAX diagnostic program falls into five cate-

gories. All are available on microfiche.

e EVNDX, for AIDS Problem Reports and Release Notes

e documentation file

e memory allocation map

e header module listing

e test module listings

DIAGNOSTIC PROGRAM INTERPRETATION 63

Documentation File

The documentation files for all VAX diagnostic programs are grouped

together on microfiche. Ideally, you should be familiar with the docu-

mentation file before running any program. The documentation file in-

cludes the following items.

e program maintenance history

e program abstract

e requirements necessary for program execution

e assumptions concerning previous testing

e program operating instructions

e program functional description

e bibliography

e glossary

To make good use of any diagnostic program, read the requirements,

assumptions, operating instructions, and program functional description.

Memory Allocation Map

Two parts of the memory allocation map (link map) are useful for trou-

bleshooting.

First, the program section synopsis lists the starting and ending address

of each program section (psect) in the program. Since each test begins

with a new psect, its starting address is given in the program section

synopsis. Figure 6-1 shows parts of the link map program section sy-

nopsis for the RH780 diagnostic, ESCAA.

Consider the psect for Test 3 (TEST_003). The map gives two entries for

Test 3. In this case they are identical. The first entry shows the base and

end addresses and the length of the Test 3 psect. The second entry

shows what part of the psect was contributed by the RH780_TESTS1

module.

Second, the symbol cross reference alphabetically lists the global sym-

bols used in the program. A value is given for each symbol. The symbols

may be equivalent to literal values or to addresses. An R beside a value

indicates that the symbol is relocatable.

Figure 6-2 shows a section of the symbol cross reference in the map.

The symbol PGM_INIT has been assigned a value of 1. PISR10, on the

other hand, is the symbol for address 2CFC.

DIAGNOSTIC PROGRAM INTERPRETATION64

v0B6
E-AL

[+ o -])[aVINAY][AV AV66

3ovd39vd39vd39
vd

39
vd

39
vd

INOT9N
OT

9M0"39vd

)
A~—

BeTvoepY
HiondT

0NIsve "o1834

65DIAGNOSTIC PROGRAM INTERPRETATION

€06E-M1€S1S3170QL
HY

€S.1S3.L7PgL
HY

CS1S317
0QLHY€SLS317PeL

HY 9ouaiayeyssol)|[oquAigdelpSui.

430AVIHTOBLHYH3QvIHTBBLHYd3Qv3IHTPELHYA8Q3NI43Q
Z-9aInbi4000200001000

0000oBoezeovoe610200800Yvvo
poen000000

000020h000200000
04

ANVA xalddid01314°%4¢140
¥3434N8°HABWANnHHz:voz4AN0JITdg3¥ONdBoNIATEATLSIX'NONAnIHAONL3V8EIN

66 DIAGNOSTIC PROGRAM INTERPRETATION

Program Modules

The program header module is the next item in the listing. This part of

the listing has little value in system troubleshooting. The header module

contains the following items.

e module preface

e declarations

e data

e working storage allocation

e |nitialization routine

e cleanup routine

e summary routine

Gobal subroutines may be in the header module or they may be in a

separate module..A local symbol table follows the header module, and

each of the other program modules.

Test modules follow, and they make up the greater part of most diagnos-

tic programs. Each test module generally contains the following items.

e module preface

e declaration section

e test description for each test

e code for each test

e a module symbol table and symbol cross reference

ERROR ANALYSIS

Begin your analysis of an error by reading the description of the failing

test in the program documentation file. The description explains the pur-

pose and methods of the test, and it should give a general idea of the

nature of the fault. Further analysis of the program is not normally

necessary.

Detailed Test And Subtest Descriptions

If you require more information on the test, find the location of the

microfiche frame number for the listing containing the failing test. The

DIAGNOSTIC PROGRAM INTERPRETATION 67

index in the lower right corner of the microfiche sheet will help you to

find the right frame. Each test begins with a functional description. The

description normally includes debug procedures and troubleshooting

aids, as well as a step by step statement of the test algorithm. Read this

before proceeding. Then locate the program code for the failing function

by looking through the test routine listing for the appropriate subtest and

error numbers. Line comments and block comments explain the func-

tions of each line or group of lines.

If you need still more details concerning the failure, several procedures

are available.

e Loop on error by rerunning the program with LOOP flag set.

e Analyze the code.

e Set breakpoints and step through the test.

e Use examine and deposit commands to alter code and data after

setting breakpoints.

Looping and stepping through the program require good familiarity with

the diagnostic supervisor commands (Chapter 4). Analyzing the code

requires an understanding of the appropriate programming language -

MACRO-32 or BLISS-32.

MACRO-32 CODE INTERPRETATION - A SAMPLE TEST

MACRO-32 is the assembly language for VAX computers. Each line of

MACRO-32 code produces machine code which is exactly equivalent.

Listing Column Format Description

Figure 6-3 shows the program listing for the MBA RH780 diagnostic

program (ESCAA), Test 3, subtest 1. The sixth column from the left

contains the relative address of each instruction. These numbers begin at

0 with the beginning of each program section. Note that the address

offset of the program section containing Test 3 (380016), found in the

memory allocation map, must be added to the relative address to find

the physical memory address of the instruction.

DIAGNOSTIC PROGRAM INTERPRETATION68

Buisiq“|1saiqng‘g1s8|weiboigonsoubelq(YEN)08ZHY€£-98inbig
9€/0

-M1clLLoL68L2]g174£CL|

d314
103d

S
SANV

H3dO
aANV

vd3a
do

SLN3IWWOD|aNVvsa3av(X3H)NOISN3LX3OdOVINNVHOOYHdd314103dSANVH3IdOANVv
Hd3d

oO
SNOISNVdX3SOHOVIN(AvYID3Q)(X3H)

OHOVINWOHHaNv439NN|300240d314103ds
SANVH3IdOSOINOWINWINITLSNIANVHIdO

1SNI
ONILSIT

1
[]

gNsSN9g~sasShgv6a0ea!hhgV600
830837v¥INlS¥04¥ILSIOIHToHAINOD1631!gheV60044820¢vVép0

8NSQN3SSaNe‘§6S991V4000v443,0000000046,00000000IXT1s7gL41600
8NSAN3TSQS1§114800d00%I%sane‘gAt979VLeB0V44vLI416,000000080

¢d00734028¢$07Yd00%278AS1802Bh¢LBQdQUVHYHISSA#O‘WESH$9v)0epe84he46,00000000
1IHSNd3le@Qqaq10
NNIHSNdgle@aqaq43.00000000
4IWVHSNd2Lem4443.,00000000

3087INI¥dVHSNd29e@4043,000000003087INING6€¢29900
HO¥H3LINI¥d¢sNIWINNTT8TadvHHY3T8088g¢g9990¥316I93YS11ns3¥03193dx3¥v3Iy!¢bybRkLE€v9e@ndhsSHO¥Y¥ION41dINS¢$020389¢¢g9ae€1at

¥31S1934T0HINODWOH¥4S,?Qviy¢CHY(2YH)¥)TAOW141€90084q27,0000€S
SINdNI@VIA¥V3TD)¢(24¥)¥)74872neg4S990nd27,0000

¥)01SLNANIQ@VIAS,3INO3LI4m!(2H)¥23IXe®TEZAOW£5¢vS08V63027,0000
1831¥3QNNWELINT¢(2HI¥ILINIWOdR981491§012¢¢1528€)46,0000000827,0000

8NSNOGeSANe‘8SS997vI9h@dvi443,0000000046,0000000028167¢l
9hp@

gNSN9gTSAS15¢9hp@==lB¢9nge
8lNdNI=QvIAONI¥VIID1S3l¢!62%¢

DIAGNOSTIC PROGRAM INTERPRETATION 69

The seventh column from the left contains the listing line numbers.

These numbers begin at O for each module of the program. Note that the

line number increments for each line of the source program. The relative

address increases according to the amount of memory space required for

the instructions and operands. Line numbers are present only for lines

entered by the program developer. Macro expansions do not have lin
e

numbers.

The eighth column from the left contains labels used by the programmer

as symbolic addresses.

The ninth column from the left contains instruction mnemonics and

macro calls. Note that the macro calls themselves require no m
emory

space (the relative address does not change), and that in the macro

expansion which follows, the line numer is not incremented (see lines

331 to 333). At assembly time, the assembler program has responded

to the macro calls, expanding the macro according to the definition listed

at the beginning of the file or in a macro library.

Column ten contains operands for those intructions located in column

nine: and it contains instruction mnemonics and parameters for the

macro expansions.

The eleventh column from the left contains operands from the ma
cro

expansions.

Column five contains the op codes (hex) for the instructions contained in

columns nine and ten.

Columns one through four contain the hexadecimal code for the oper
-

ands specified in columns ten and eleven. Columns two and four contain

operand specifiers. Columns one and three contain operand specifier

extensions. Numbers followed by an apostrophe (e.g., 00000000’) are

the machine code for symbolic operands. They are modified by the linker

at link time. However, the program listing is always created before the

program modules are linked. Therefore these symbols are represented as

00000000'.

The twelfth column contains comments describing the functions of the

instructions. A semicolon precedes each comment.

70 DIAGNOSTIC PROGRAM INTERPRETATION

Analysis of Typical Lines

Line 332, the BISL instruction, sets bits in the destination according to

the mask provided. PGM_INIT is the symbol for the mask. The symbol

table at the end of the module gives ** **** asits value. The asterisks

indicate that the symbol is global. You must look in the symbol cross

reference in the map for the value (Figure 6-2). The value is 00000001

CR is the symbol for the relative address (offset from the MBA base

register) of the control register of the MBA under test. lts value

(00000004) is also listed in the symbol cross reference in the map. This
value is added to the contents of R2, the base address of the MBA under

test, to produce the physical address of the control register. The instruc-

tion thus sets bit zero of the control register. The comment, INIT, in-

dicates the function that setting bit zero performs.

Note that it may often be easier to find the value assigned to a symbol by

using the examine command in the diagnostic supervisor. You could

determine the value of PGM_INIT, for instance, as follows.

DS> SET BASE 3800
DS> EXAMINE/L 53

00003853 00000001
DS>

Example 6-3 Using Examine to Find the Value of a Symbol

Line 338, $DS_ERRHARD_S in line 338, is a macro call. The symbols

that follow it are arguments to be used in the call. The five lines that

follow line 339 show the expansion of the macro. These Instructions

push the arguments on the stack and call the DSSERRHARD subroutine

in the supervisor, which sets the error flag and prints an error message

based on the stored arguments.

Test Procedure and Flow

The test procedure used most commonly in VAX diagnostic programs

involves writing data to the device under test and then reading it back.

This method exercises the logic circuits or the functions to be tested. The

code compares data received with the data expected. The test may per-

form the I/0 and comparison functions directly, or it may call a sub-

routine to perform these functions. Level 2 and 2R programs call VMS

DIAGNOSTIC PROGRAM INTERPRETATION 71

system services to perform all I/0 functions (QlO). If the comparison

indicates a failure, the test routine calls an error routine, which, in turn,

sends a message to the operator.

Subroutines and system services normally return a status code via gen-

eral register RO to the test routine.

1

0)

When the code indicates an error, the test routine normally calls an error

print routine to send a message to the operator. If you must analyze the

code of the subroutine, proceed as follows.

success

error

e Find the call, branch, or jump instruction which passes control to

the subroutine. This may be in a macro expansion.

e Find the subroutine name in the local symbol table. Some global

symbols will require you to go to the symbol cross reference in the

memory allocation map.

e Locate the subroutine in the header module, the global subroutine

module, or the test module.

Diagnostic supervisor service routines and VMS service routines are

called with macros. Supervisor routine names begin with the characters

DS$. VMS service routines begin with SYS$. You should not normally

need to analyze the code of the service routines.

Scope Loops

Scope loops are available in most subtests. If the LOOP flag is set and

the test detects an error, the program will loop on the error indefinitely.

Look in the subtest listing for the macro:

$SDS_CKLOOP <label>

This statement forms the end of the loop. The label forms the beginning.

In Figure 6-3, line 340 contains a $SDS_CKLOOP macro. Control

branches from line 340 back to line 332, 10$, at the beginning of each

loop.

72 DIAGNOSTIC PROGRAM INTERPRETATION

BLISS-32 CODE INTERPRETATION

BLISS-32 is a block-structured, medium level language that has many

features of a high level language. It uses algebraic notation for calcu-

lations, with operations for arithmetic, shifting, comparison, and logic. It

supports a rich variety of data structures and provides the developer with

the facility to create his own data structures.

However, BLISS-32 has no built-in 1/0 routines. BLISS-32 is a ma-

chine-dependent language, and this permits a high degree of coupling

between the software and hardware. This feature of BLISS-32 makes it

suitable for implementing hardware diagnostic programs. See the

BLISS-32 LANGUAGE GUIDE (AA-HO19A-RE).

Data Representation and Manipulation in BLISS-32

The default data element in BLISS-32 is the longword. The BLISS-32

compiler will always attempt to use the most efficient machine code to

handle a calculation, and this is often done by using longword instruc-

tions. For example, consider the following BLISS-32 expressions (the

variable names represent consecutive bytes of memory storage).

BYTE_LONE = O;

BYTE_TWO = O;

BYTE_THREE = O;

BYTE_FOUR = O;

The BLISS-32 compiler, in all probability, would generate a single line of

machine code to accomplish those four assignments.

CLRL BYTE_ONE

In a hardware diagnostic program, it is often undesirable to allow the

compiler free choice. For example, in a read or write on a UNIBUS de-

vice, the developer must be sure the compiler does not try to use a

longword reference (which would cause a trap). This is easily accom-

plished in BLISS-32. Any size of bus reference can be effected simply by

DIAGNOSTIC PROGRAM INTERPRETATION 73

an explicit specification of the field size of the operand. In general, the

compiler will use branch-on-bit instructions in dealing with single-bit

fields, byte instructions for byte aligned 8-bit fields, and word instruc-

tions for byte or word aligned 16-bit fields.

The Fetch Operator

Because addresses can be manipulated in the same manner as data in

BLISS-32, an operator, represented by a period, distinguishes a value in

an expression as either an address or the contents of the address. In

BLISS-32, a variable name by itself is always an address. A period pre-

ceding a variable name represents the contents of that address. For ex-

ample, the expression

X =123;

stores the decimal value 123 in location X, whereas the expression

X = 123,;

stores the decimal value 123 in the location specified by the contents of

X. As an additional example, consider the representation of an increment

instruction in BLISS-32.

COUNTER = .COUNTER + 1;

This expression increments the contents of the location COUNTER by

one, and replaces the contents of COUNTER with the sum.

Value Assignments

The assignment operator, = , is used to assign a value to a storage

location. For example, the expression

TEMP = 1000;

causes the longword value representing decimal 1000 to be stored in

the four consecutive bytes of storage beginning at the byte whose ad-

dress i1s TEMP.

74 DIAGNOSTIC PROGRAM INTERPRETATION

Expressions

Most high level languages distinguish between statements and expres-

sions. A statement performs an action without producing a value, and an

expression calculates a value. Thus an assignment such as

A=1;

Is a statement, whereas the sum

B+ 1;

Is an expression. The combination of the two is typically permitted on

the same line, as

A= B+ 1:

in which the value of the expression .B + 1 is assigned to A. However, in

BLISS-32, there is no distinction made between statements and expres-

sions. Thus, an assignment can legally appear anywhere in an expres-

sion. For example,

X=Y*(A=B+1);

computes the value .B + 1 and multiplies it by the contents of Y. The

resulting value is stored in location X. However, at the same time, with

no additional computation, the value .B + 1 is stored in location A.

Blocks

Blocks provide for the organization of a program into units. The typical

block is delimited by the pair of keywords BEGIN and END. Blocks can

also be legally delimited by a pair of parentheses. A block delimited by a

pair of parentheses is generally termed a parenthesized expression. A

block which contains no declarations is generally termed a compound

expression. There are two main categories of blocks: blocks that com-

pute a value, and blocks that only take action.

- DIAGNOSTIC PROGRAM INTERPRETATION 75

Declarations

Before any name may be used in a BLISS-32 program, it must be de-

clared. The initial declaration of a name provides the compiler with infor-

mation about the attributes to be associated with the name. A

declaration is altogether distinct from an expression. For instance, the

declaration

LITERAL A = 1234;

means that whenever A appears in the program, the value 1234 decimal

is to be used. The value 1234 is not stored in location A.

Storage is allocated to a program with a declaration such as

OWN BETA:

In this example, four consecutive bytes are allocated to the program, and

the name BETA is associated with the address of the first byte. A declar-

ation may also specify attributes to be associated with a name, as in the

following example:

OWN STATUS: VECTOR [4].

which allocates four longwords of storage and tells the compiler that

STATUS has the attribute of a longword vector.

Data Segments |

Values in a BLISS-32 program are stored in data segments. A data

segment is defined as one or more bytes of memory. There are two main

categories of data segments: scalars and structures. A scalar is a single

value, and can be either a byte, word, or longword in length. It may also

be signed or unsigned. The default attributes are longword, unsigned.

For example,

OWN ALPHA;

allocates four consecutive bytes of memory storage. In contrast,

OWN ALPHA: BYTE;

allocates a single byte of memory storage.

76 DIAGNOSTIC PROGRAM INTERPRETATION

BLISS-32 defines several structures. These predeclared structures in-

clude:

. Vectors

. Bitvectors

Blocks

BlockvectorsP
w
N
=

A vector structure is a sequence of elements. The number of elements is

the extent of the vector, and is given as part of the declaration of the

data segment name. Thus,

OWN ALPHA: VECTOR]J3];

allocates three consecutive longwords of storage. Reference to a par-

ticular element in the program would typically appear as

B=.ALPHA[1];.

This expression would store the contents of the second element in the

location whose address is B.

A vector can also be declared with an allocation unit. This allocation unit

can be byte, word, or longword. Thus,

OWN GAMMA: VECTORJ[11, BYTE];

allocates eleven consecutive bytes of storage.

The bitvector structure is similar to the vector, except that each element

of the vector is always one bit in length. For example,

OWN DELTA: BITVECTOR [15];

allocates two consecutive bytes of storage, even though one bit will

never be referenced.

DIAGNOSTIC PROGRAM INTERPRETATION 77

A block structure is a sequence of components. The block has a name,

- and each component of the block has a name. A block is declared with a

size and an allocation unit. The size will specify the total amount of

required storage for the entire block. The allocation unit specifies the

units in which the size is measured. Thus,

OWN TOTAL: BLOCK [6, BYTE]:

allocates six consecutive bytes of storage.

The blockvector is a sequence of elements (just like a vector). The num-

ber of elements is the extent of the blockvector, and is given as part of

the declaration of the segment name. Each element of the blockvector is

a sequence of components (just like a block).

Control Expressions

There are five basic types of flow of control in BLISS-32: sequential,

conditional, iterative, subroutine, and condition handling.

Sequential flow of control is the evaluation of expressions strictly in the

order that the expressions appear in the program. This applies to expres-

sions that are contained in a block and separated by semicolons. For

example: |

BEGIN

X+ 1;A

B A+ 3;

C = 24;

END;

This block consists of three assignments, each of which is evaluated in

turn,

78 DIAGNOSTIC PROGRAM INTERPRETATION

Conditional flow of control produces the evaluation of one of two expres-

sions on the basis of the outcome of a test. For example:

IF .EXPECTED EQL .RECEIVED

THEN

FLAG —

ELSE

FLAG O;

This expression sets FLAG equal to 1 if the contents of EXPECTED are

equal to the contents of RECEIVED. Otherwise, it sets FLAG equal to O.

BLISS-32 has three main categories of conditional flow expressions:

conditional expressions, case expressions, and select expressions.

Iterative flow of control is the repeated evaluation of an expression. For

example:

INCR 1 FROM O to 99 DO

ALl] = B [I];

In this example, the loop is evaluated 100 times.

Subroutine flow of control is the evaluation of an expression (usually a

block) that is written somewhere else in the program. For example:

ROUTINE INCREMENT (ALPHA)=

ALPHA = ALPHA + 1;

INCREMENT (ALPHA):

When the program reaches the routine call INCREMENT (ALPHA), the

flow jumps to the routine, evaluates the assignment, and returns the

flow to the next line following the routine call.

DIAGNOSTIC PROGRAM INTERPRETATION 79

Condition handling flow of control is the evaluation of an expression

(usually a block) in response to an unusual condition detected either by

the VAX hardware or by software. The expression that is evaluated,

which must be coded as the body of a routine, is determined by the stack

of routine calls that lead to the detection of the condition. Different rou-

tines can be invoked for the same condition at different times. Flow of

control may or may not return to the point at which the conditon was

detected.

ASSEMBLY LANGUAGE LISTINGS IN BLISS-32

PROGRAMS

Each section of BLISS-32 source code in the program listing is followed

by corresponding assembly language code. If you wish to bypass the

BLISS-32 code and read the assembly language code for a failing test,

first scan the BLISS-32 code for the failing test. Then continue looking

through the BLISS-32 code until you find the error number. The error

number will appear in the listing in the following format:

- %PRINT ERROR NUMBER N

Go to the line immediately following the error number, and note the

source line number. For example, consider the listing fragment shown in

Example 6-4.

; 1511 IF .TEMP1l NEQ .TEMP2

; 1512 THEN

; 1513 BEGIN

; $PRINT: ERROR NUMBER 1

; 1514 $DS_ERRHARD (UNIT=.LUN,MSG_ADR=RCS_CPU_RW):

; 1515 $DS_PRINTX (FMT_CPU_RW) :

Example 6-4 Sample BLISS-32 Source Code

The source line number of interest is 1514. Advance through the listing

until you locate the MACRO-32 listing for this test. The MACRO-32

listing can be found immediately following the BLISS-32 source code

listing. Scan the extreme right of the listing until you locate the source

80 DIAGNOSTIC PROGRAM INTERPRETATION

line number (1514 in Example 6-4). All of the MACRO-32 code associ-

ated with that line appears sequentially in the listing, starting at the line

identified with the source line number, and continuing until the next

source line number is encountered. Example 6-5 is a MACRO-32 listing

fragment for the BLISS-32 code shown in Example 6-4.

00561 BEQL 2% ;

00563 CLRQ - (SP) ;1514
00565 CLRQ - (SP) ;

00567 CLRQ - (SP) ;

00569 CLRL - (SP) ;

0056B PUSHAB RCS _CPU RW ;

0056F MOVZBL LUN, -(SP) ;

00574 PUSHL 1 ;

00567 CALLS 10, @#DSSERRHARD ;

0057D PUSHAB FMT CPU RW ; 1515

00581 CALLS 1, @#DSSPRINTX ;

Example 6-5 Assembler Equivalent of BLISS-32 Code

The column of five-digit numbers is the assembler location counter. Note

that from location counter 00563 to 00567 is code associated with line

1514 of the BLISS-32 source listing.

Now, to find the beginning of the subtest, having located the error call,

simply scan the MACRO-32 listing in reverse until the first BGNSUB call

is located. This appears in the MACRO-32 listing as:

CALLS 2, @#DS$BGNSUB

Block comments describing the program action are interspersed with the

MACRO-32 code. These comments, coupled with the functional descrip-

tion of the test, should provide the user with enough information to

understand the program.

[

SYSTEM

VERIFICATION AND ANALYSIS

VMS provides several tools that aid VAX customers and DIGITAL Field

Service engineers in hardware maintenance. The User Environment Test

Package (UETP) is a collection of tests which demonstrate whether the

hardware and software components of a VAX/VMS system are in work-

ing order. The UETP is not a diagnostic program.

The System Dump Analyzer (SDA) is a VAX/VMS utility which aids in

determining the cause of an operating system crash. When the operating

system fails, SDA writes information concerning the operating system

status at the time of the crash to a predefined system dump file. SDA

also examines the formats and contents of this file.

The VAX/VMS error logging facility gathers and maintains information

on system errors and events as they occur. This information provides a

detailed record of system activity. By running the report generator pro-

gram (SYE), you can obtain a record of errors and events that have

occurred within a specified time period. Both SDA and SYE have been

designed for efficient use at a video terminal for the experienced user.

81

82 SYSTEM VERIFICATION AND ANALYSIS

This chapter gives a brief summary of the operating procedures for each

of these facilities. See the appropriate VAX/VMS manuals for details.

UETP:

VAX/VMS UETP User’s Guide (AA-D643A-TE)

SDA:

VAX/VMS System Dump Analyzer Reference Manual (AA-J562A-TE)

Error Logging:

VAX/VMS System Manager’s Guide, Chapter 16, (AA-D0O27A-TE)

VAX/VMS Operator’s Guide, Section 2.4.1 (AA-DO25A-TE)

RUNNING THE USER ENVIRONMENT TEST PACKAGE (UETP)

The UETP leads the system through a series of exercises. At the end of

the series most hardware and software components have been re-

quested to perform one or more tasks.

When the tests run successfully, they show not only that individual com-

ponents work, but also that those components work together as an in-

tegrated system. The UETP is not a diagnostic program. Instead, it is a

VAX system verification tool.

Logging Out

Log out from the field service or user account:

$ LOGOUT <CR>

the system responds:

VAX/VMS LOGOUT at 12:43:10 17-JUL-1978

Logging In

Log into the SYSTEST account as follows:

<CR>

Username: SYSTEST <CR>

Password: <CR>

SYSTEM VERIFICATION AND ANALYSIS 83

Note that the system does not echo the password.

Preparing Devices for Testing

This section tells you how to prepare different kinds of devices for test-

ing by the UETP.

Disk Drives — To prepare each disk for testing, perform the following

steps.

e Physically mount a scratch disk.

e Start up the drive.

e |ssue one or more of the following commands as required.

$ INITIALIZE/DATA _ CHECK <device-name:label><CR>

$ MOUNT/SYSTEM<device-name:label><CR>

$ CREATE/DIRECTORY <device-name:>[SYSTEST|<CR>

Magnetic Tape Drives —To prepare each magnetic tape drive for testing,

perform the following steps.

e Turn power on to the device.

e Physically mount a write-enabled scratch tape at least 600 feet

long.

e Position the tape at the BOT marker.

e Press the ONLINE switch.

e |f necessary, initialize the tape by entering the command:

$ INITIALIZE <device-name:label><CR>

e Mount the tape by entering the command:

$ MOUNT<device-name:label> <CR>

84 SYSTEM VERIFICATION AND ANALYSIS

Terminals and Line Printers — Prepare terminals and line printers for

testing by performing the following steps.

e Turn on power to the device.

e Check the paper supply if the device produces hard copy (two

pages for each pass of the UETP).

e Press the ONLINE switch.

e Check baud rates and terminal characteristics.

Other Devices — The UETP does not test the following devices.

e (Card reader

e Network devices (DMC11s)

e Null devices

e Mailboxes

e The console terminal and the console load device

e The terminal used to initiate the UETP tests

e Dialup terminal lines

e Nonstandard devices

Running the Entire UETP

To initiate the UETP test package, enter a call to the UETP master com-

mand procedure and respond to the three prompts shown below:

$ @QUETP[/OUTPUT=<filespec>]<CR>

VAX/VMS UETP STARTED dd-mmm-yy hh:mm

ENTER NUMBER OF LOAD TEST USERS [D]:<n><CR>

ENTER NUMBER OF COMPLETE UETP RUNS [D]:<n><CR>

ENTER SCRATCH MAGTAPE (E.G. MTO:) OR A <CR>:<device-

name:> <CR>

See Chapter 2 of the VAX/VMS UETP User’s Guide for information on

choosing the number of load test users. This parameter varies according

to the system memory size and system disk drive type.

Use CTRL/Y or CTRL/C to interrupt the tests.

SYSTEM VERIFICATION AND ANALYSIS 85

RUNNING THE SYSTEM DUMP ANALYZER (SDA)

When the operating system crashes, the kernel routine writes the con-

tents of the error log file, the processor registers, and physical memory

to a contiguous file called SYSDUMP.DMP. With the help of the SDA

commands you can analyze and display parts of the formatted system

dump file on a video display terminal. Or, you can create hard copy

listings.

Any user may run SDA by typing the DCL command:

$ RUN SYS$SYSTEM:SDA

When you issue this command, SDA will prompt for the name of the

system dump file you want to examine.

Enter name of dump file >

To examine the most recent system dump, press RETURN at the prompt

Enter name of dump file >

SDA will search the system directory [SYSEXE| (logical name

SYS$SYSTEM) for the SYSDUMP.DMP file. To examine an older sys-

tem dump, enter its file specification.

Enter name of dump file > DBO.[EYSEXE|SYSDUMP.OLD

Saving the System Dump File

When the kernel routine writes data into SYSDUMP.DMP, it destroys

the previous contents of the file. Therefore, be sure to make a copy of the

file under another name. Use the VMS copy command or the SDA copy

command to save the file.

$ COPY SYSDUMP.DMP SAVEDUMP.DMP

or

SDA> COPY SYS$SYSTEM:SAVEDUMP.DMP

86 SYSTEM VERIFICATION AND ANALYSIS

SDA Commands

Table 7-1 gives a summary of the SDA commands.

Table 7-1 Summary of SDA Commands

Command Function

<escape key>

COPY

DEFINE

EVALUATE

EXAMINE

EXIT

FORMAT

READ

SET OUTPUT

SET PROCESS

SHOW CRASH

SHOW DEVICE

'SHOW PAGE_TABLE

SHOW PFN_DATA

SHOW POOL

SHOW PROCESS

SHOW STACK

SHOW SUMMARY

SHOW SYMBOL

Repeat last command

Copy dump file

Define symbols and their values

Perform computations

Examine memory locations

Exit from display or utility

Format data blocks

Copy object module symbols

Set output to device or file specification

Set to the current process context

Display crash information

Display 1/0 data structures

Display system page table

Display PFN data base

Display dynamic memory

Display specific process information

Display process/interrupt stacks

Display process summary

Display symbol table

Three help files within SDA will provide explanations.

e HELP<command-name> briefly explains a command

e HELP SDA briefly explains command format

e HELP briefly explains the SDA utility

Detailed explanations of several SDA commands follow.

SYSTEM VERIFICATION AND ANALYSIS 87

Evaluate Command - This command computes the value of an SDA

expression.

EVALUATE <expression>

<expression> specifies the expression to be evaluated.

EVALUATE computes the value of any SDA expression and displays the

results in hexadecimal and decimal.

SDA> EVALUATE -1

Hex = FFFFFFFF Decimal = -1

! SDA prints the value of negative 1 in hex and decimal.

SDA> DEFINE TEN = A

SDA> EVALUATE A

Hex = 0000000A Decimal = 10

! SDA evaluates the symbol TEN and prints the results.

SDA> EVALUATE ((TEN*6)+(-1/3))*(2+4)

Hex = 00000166 Decimal = 358

! SDA evaluates a complex expression and prints the results in hex

! and decimal.

Example 7-1 SDA Evaluate Command

Examine Command - This command displays the contents of a location

or range of locations in physical memory.

EXAMINE <location>[:<location>]

<location>[;<length>]

Command Qualifiers

/PO

Prints the entire program region for a given process. You must SET PRO-

CESS to the process whose PO region you want to examine. Otherwise,

you will get a dump of the PO region belonging to the process which

was executing at the time of the crash.

88 SYSTEM VERIFICATION AND ANALYSIS

/P1

Prints the entire control region for a given process. You must SET PRO-

CESS to examine different P1 regions. The default P1 space is the pro-

cess to examine different P1 regions. The default P1 space is the process

that was executing when the system crashed.

/SYSTEM

Prints portions of the writable system region.

/ALL

Parameters

<location>

Specifies the address in virtual memory at which data is stored.

<length>

Specifies the number of bytes you want to display.

You may use command parameters to examine specific locations or

command qualifiers to display entire process and system regions. There

are two ways to examine a range of locations.

1. Designate a location followed by a colon and an ending location

(e.g., 80000000:80000030).

2. Specify a location and a byte length, separating the two values

with a semicolon.

If, at any time, you omit the command parameter from the examine

command, SDA takes the location you last examined, increments it by

four (one longword), and examines the resulting location.

Examining Specific Locations

A location may be represented by any valid SDA expression. When you

examine a location, SDA displays the location and its contents in hex-

adecimal and in ASCII.

SYSTEM VERIFICATION AND ANALYSIS 89

SDA initially sets the “current location” to —4 (decimal) in the program

(PO) region of the process which was executing at the time of the crash.

To examine memory locations in different processes, you must SET

PROCESS to the process whose memory you want to examine.

SDA> EXAMINE 80000200

SYSSSETEF : 8FBCO003C " awaTM

! The system virtual address is defined by a global symbol. The

! information stored at this address is given in hex and in ASCII.

! SDA represents unprintable characters by ".".

SDA> EXAMINE PC

PC : 8002484C "LH.."

SDA> EXAMINE @PC

8002484C : O00ODDOODD "...."

! SDA examines the program counter and the location referenced by

! the program counter.

SDA> EXAMINE 80000008;11

! SDA displays a range of bytes starting at address 80000008 and

! ending at 80000027. SDA displays byte ranges in units of 16

! (decimal) bytes. 1In this case, SDA displays two lines of 16

! bytes even though a value of 17 (11 hex) was given.

Example 7-2 SDA Examine Command

Examining Memory Regions

You may dump an entire region of virtual memory by adding one or more

of the command qualifiers to the examine command.

SDA organizes the dump into columns of longwords, 4 for an 80 column

device and 8 for 132 column device, and prints the ASCI| value of the

longwords on the right side of the display. The final column contains the

address of the first longword in each line. Read the dump display from

right to left.

If a series of virtual addresses does not exist in physical memory, SDA

prints a message specifying the range of addresses which were not

translated:

Virtual locations : (addr) are not in physical memory

90 SYSTEM VERIFICATION AND ANALYSIS

If a range of virtual locations contains only zeros, SDA prints the mes-

sage:

Zeros suppressed from (addr) to (addr).

Exit Command - The exit command stops SDA displays and ends use

of SDA.

EXIT

The exit command has two functions: discontinuing SDA displays, and

exiting from the utility. During interactive sessions with SDA, if a display

has more than one page and is being shown on a terminal such as a

VT52 or VT100, SDA will issue this message each time it reaches the

bottom of a page:

Press RETURN for more.

SDA>

At this point, you type EXIT if you want to discontinue the current dis-

play.

To stop running SDA, type EXIT at the regular SDA prompt.

NOTE

If you do not type EXIT at the RETURN message and

simply execute another command, SDA will accept the

command as if you had exited from the display.

Set Output - This command causes SDA to write displays to a file or

device.

SET OUTPUT <file-spec>

<File-spec> specifies the device, directory, and/or file to which SDA

output will be written. The default file specification is SYSDUMP.LIS.

SYSTEM VERIFICATION AND ANALYSIS 91

SET OUTPUT writes the output of SDA commands to a file or device of

your choice. If you have set output to a file, SDA will create a table of

contents that identifies the displays you selected.

Once you set SDA output to a file or device, you are locked out of

interactive operation. After you have issued all the commands you want

to execute, you must exit from the utility and then recall SDA, or issue

another SET OUTPUT to the terminal device.

SDA> SET OUTPUT BROKEN

SDA> SHOW CRASH

SDA> SHOW PROCESS/ALL

SDA> SHOW SUMMARY

SDA> EXIT

| SDA stores the displays produced by the commands following SET

1 OUTPUT in a file called BROKEN.LIS.

Example 7-3 SDA Set Output Command

Set Process Command — This command sets the process default to a

specific process so that information and memory locations can be exam-

ined by later commands.

SET PROCESS [<name>] [/INDEX=<nn>]

<name>

A 1 through 15 character alphanumeric string assigned to the process.

The symbols “$” and “_" may be included in the string.

INDEX=<nn>

nn is the index to the software PCB and is composed of the last two

hexadecimal digits of the process identification number (PID). You may

specify the process using either name or index number, but you must use

only one of them or SDA will issue a syntax error message.

The main function of the SET process command is to permit you to

examine per process virtual memory and data structures. SET PROCESS

is a functional command. It locates the information needed for the par-

ticular process but produces no output.

92 SYSTEM VERIFICATION AND ANALYSIS

SDA> SET PROCESS/I=43

SDA> EXAMINE/PO

| SDA locates the process via the index number and displays the

| contents of its program region.

SDA> SET PROCESS GROVE

SDA> SHOW DEVICE

| Setting the process to GROVE causes the SHOW DEVICE command to

| default to GROVE rather than the process which was executing at

I the time of the crash.

Example 7-4 SDA Set Process Command

Show Crash Command — The show crash command lists fundamental

information concerning the operating system and the process currently

executing at the time of the crash.

SHOW CRASH

The display produced by SHOW CRASH can be divided into three parts.

e operating system and process information

e general and special register contents

e processor and hardware register contents

Operating System and Process Information

The first section of SHOW CRASH lists the following.

e date and time of crash

e name and version number of operating system

e name of process executing at time of crash

e file specification of image executing in process context (left blank

if no image was executing)

e interrupt priority level (in decimal) of the processor

SYSTEM VERIFICATION AND ANALYSIS 93

General Purpose and Special Register Contents

The second part of the SHOW CRASH display lists the contents of the

general purpose and special registers.

(

e RO-R11 e AP (Argument Pointer)

e FP (Frame Pointer) e SP (Stack Pointer)

e PC (Program Counter) e PSL (Processor Status Long-

word)

Process and Hardware Maintenance Register Contents

The third part of the SHOW CRASH display lists the contents of three

sets of registers. The first set includes registers that store the vital statis-

tics of the process executing when the system crashed, as well as regis-

ters that contain information used by the operating system. The second

set of registers contains the stack pointers for the processor access

modes and the interrupt stack. The third set of registers is used in hard-

ware maintenance.

Per Process and System Registers:

e POBR Program Region Base Register

e POLR Program Region Length Register

e P1BR Control Region Base Register

e P1LR Control Region Length Register

e SBR System Region Base Register

e SLR System Region Length Register

e PCBB Process Control Block Base Register

e SCBB System Control Block Base Register

e ASTLVL Asynchronous System Trap Level

e SISR Software Interrupt Summary Register

94 SYSTEM VERIFICATION AND ANALYSIS

Stack Pointers:

e |SP Interrupt Stack Pointer

e KSP Kernel Stack Pointer

e ESP Executive Stack Pointer

e SSP Supervisor Stack Pointer

e USP User Stack Pointer

Hardware maintenance registers are processor dependent.

Show Device Command - This command displays a formatted list of all

data structures associated with a device.

SHOW DEVICE [<device-name>]

<device-name>

Specifies the name of a device whose data structures you want to dis-

play. Device-name takes the form “ddcu”, where:

dd device type (two characters)

controller

device unit.

You may display information about several devices or a single unit by

specifying device-type, (for example, DB), device-type and controller

(DBA), or the full device-name (DBAO). If you do not specify a device-

name, SDA will list the data structures of every device on the system as

they existed at the time of the crash.

The display for each device is divided into three sections.

e device data block list

e controller data structures

e device unit data structures

The sections that follow outline the information contained in these areas.

SYSTEM VERIFICATION AND ANALYSIS 95

Device Data Block List

The device data block list shows information common to all devices

associated with a single controller.

e address of controller

e name of controller

e name of ancillary control process (ACP)

e name of I/0 driver

Controller Data Structures

SDA displays the contents of four data structures associated with each

controller.

e Device Data Block (DDB). This points to the driver dispatch table,

the channel request block, and the first unit control block con-

nected to the controller.

e Channel Request Block (CRB). This stores information used to ar-

bitrate requests between devices attached to a single controller.

e |nterrupt Dispatch Block (IDB). This contains controller status in-

formation used to dispatch interrupts to the proper driver.

e Driver Dispatch Table (DDT). This points to routines used to pro-

cess the 170 request.

Device Unit Data Structures

The final section of the SHOW DEVICE display itemizes the contents of

the unit control block for each device. If the device handles file-struc-

tured requests, the display lists the volume control block and the ACP

queue as well.

Unit Control Block

SDA organizes the data stored in the UCB into a list of items. Heading

the list are the address of next UCB, the status of the device, and the

longword whose bits express various characteristics of the device.

96 SYSTEM VERIFICATION AND ANALYSIS

Following the heading, SDA lists pointers to other block types.

e |RP (/0 Request Packet) address

e CRB (Channel Request Block) address

e VCB (Volume Control Block) address

The next six items on the list deal with the fork block for the device

driver.

e FQFL (Fork Queue Forward Link)

e FQBL (Fork Queue Backward Link)

e Fork IPL (Interrupt Priority Level)

e Fork PC, R3 and R4

The UCB also contains device status information.

e Device class

e Device type

e DEVBUFSIZ (Device Buffer Size)

e DEVDEPEND (Device Dependent data longword)

e DEVSTS (Device Status longword)

e Device IPL

The next two quantities displayed are counters.

e reference count

e operations count

The final items detailed concern mailboxes and information obtained

from the 1/0 request packet.

e AMB address (Associated Mail Box)

e SVPN (System Virtual Page Number)

e SVAPTE (System Virtual Page Table Entry)

e BOFF (Byte Offset)

e BCNT (Byte Count)

e ERTCNT (Error Retry Count)

e ERTMAX (Error Retry Maximum)

e ERRCNT (Error Count)

e QOwner UIC

e PID (Process ID)

SYSTEM VERIFICATION AND ANALYSIS 97

SDA also formats the 1/0 request queue, another area of data stored in

the UCB. Information concerning the request at the head of the queue is

listed in the following order across the page.

e CHAN (Channel Number)

e FUNC (Function value)

e \WCB (Window Control Block)

e EFN (Even Flag Number)

e AST (Asynchronous System Trap)

e |OSB (I/0 Status Block)

e STATUS

If the request queue is empty, SDA will issue the message.

#* ¥ ¥

I/0 request queue is empty ***

Volume Control Block and ACP Queue

If a volume has been mounted on a device, SDA will read and display the

contents of the volume control block and the ACP queue block. The

volume control block (VCB) identifies the volume and contains counts

and quotas concerning files on the volume.

The ACP queue block (AQB) contains information about the ACP associ-

ated with the volume. SDA reads the AQB and lists its contents in read-

able format.

If the request queue is empty, SDA prints the message.

*** ACP request queue is empty ** *

Show Summary Command - This command displays a formatted list

of processes which were active when the system crashed.

SHOW SUMMARY

98 SYSTEM VERIFICATION AND ANALYSIS

SHOW SUMMARY displays values used in swapping and scheduling for

all processes. The information listed in the display includes the following.

e PID — The 32-bit quantity which uniquely identifies the process.

This is the process identification and sequence number.

e PROCESS NAME - The name assigned to the process. This may

be from 1 through 15 alphanumeric characters long.

e IMAGE NAME - The VAX/VMS file specification of the image

currently executing under the process.

e STATE — The condition of the process at the time of the crash.

e PRI — The current scheduling priority of the process.

e UIC - User ldentification Code.

e \WKSET - The total number of pages currently in the working set.

NOTE

If the process has been swapped out of the balance set,

the message --- SWAPPED OUT --- will appear in the

IMAGE NAME column.

USING THE ERROR LOGGING FACILITY AND SYE

The VAX/VMS error logging facility detects a variety of hardware and

software errors. When an error occurs, the facility gathers significant

information about the current state of the system. The type of informa-

tion gathered depends on the type of error detected. In addition to de-

tecting actual errors, the facility monitors events that reflect other

aspects of system performance. The recording of such events helps to

define the system context in which actual errors occur.

The errors detected include:

e device errors

e asynchronous write errors

.
e

SYSTEM VERIFICATION AND ANALYSIS 99

e corrected read data

e |nterconnect errors

e fatal hardware errors such as parity errors in cache memory orin a

translation buffer (machine checks)

o fatal software errors (bugchecks).

The system events recorded include:

e normal system start up (cold start)

e recovery after a power failure (warm start)

e cold start after a crash (crash restart)

e volume mounts and dismounts

e error log messages sent by an operator or by a process that issues

a send message to error logger system device ($SNDERR)

e Time stamps that indicate that no errors or events have occurred

within a given period of time.

-‘The error logging facility stores information on all these errors and

events in a file on the system disk. This file becomes the input to the

report generator program SYE. Depending on how a user invokes it, SYE

reports either on all the errors in the file or on a specific subset of errors.

Parameters to SYE also determine the level of detail to be included in a

report.

Error reports allow the system manager to track system performance

and to anticipate failures. Field service engineers should interpret the

reports as aids to both corrective and preventive maintenance.

Error Logging Facility Components

The error logging facility consists of three working parts.

e a set of executive routines that detect errors and events and write

relevant information into error log buffers in memory

100 SYSTEM VERIFICATION AND ANALYSIS

e a process called ERRFMT that periodically empties the
error log

buffers, transforms the descriptions of the errors into sta
ndard for-

mats, and stores the formatted information in a file o
n the system

disk

e a process called SYE that generates readable reports fr
om the in-

formation formatted by ERRFMT

Printing the Error Log File

The following procedure shows how you can create an
 error log report

and how to obtain a copy of it.

1 Set the default disk to the system disk and the de
fault directory

[SYSERR] by typing the following commands:

$ SET DEFAULT SYS$SYSTEM

$ SET DEFAULT SYS$DISK: [SYSERR]

2 Examine the [SYSERR] directory to se€ what versions
 of the ER-

RLOG.SYS file are on disk by typing.

$ DIRECTORY ERRLOG.SYS:”

3 Rename all the versions of the ERRLOG.SYS file to ERRLOG.OLD

by issuing the command.

$ RENAME ERRLOG.SYS:” ERRLOG.OLD;*/NEW VERSION

4. Invoke the SYE utility by typing the command:

$ RUN SYS$SYSTEM:SYE

5. Enter the following file name in response to the in
put file prompt

(input file:):

ERRLOG.OLD

This is the file created in step 3 of this procedure. By def
ault, SYE

uses the highest version of the ERRLOG.OLD fi
le.

SYSTEM VERIFICATION AND ANALYSIS 101

6. Obtain a copy of the error log report by entering the following

command:

¢ PRINT <filename>

The file name is the name of the file entered in response to the

output file prompt (output file.). Example 7-5 shows the whole

procedure.

g SET DEFAULT SYSS$SSYSTEM

¢ SET DEFAULT SYSSDISK: [SYSERR]

¢ DIRECTORY ERRLOG.SYS

DIRECTORY DBB2: [SYSERR]

18-JUL-78 15:13

ERRLOG .SYS;1 14. 18-JUL-80 13:48

TOTAL OF 14./18. BLOCKS IN 1. FILE

$ RENAME ERRLOG .SYS;* ERRLOG.OLD; */NEW VERSION

¢ RUN SYSSSYSTEM:SYE

SYE x0.6-0

_input file: [[1,6]ERRLOG.SYS] ? ERRLOG . OLD
output file: [SYS$SOUTPUT] ? ERRLOG.DAT

“options: [ROLL-UP] ? R
" device name: [<all>] ? <CR>
“after date: [17-NOV-1858] ? <CR>

17-NOV-1858

00:00:00.00

before date: [31-DEC-9999] ? <CR>
o 31-DEC-9999

23:59:59.99

Successful completion

Example 7-5 Error Logging Commands

The SET DEFAULT commands set the operator's default disk and di-

rectory to DBB2:[SYSERR]. The DIRECTORY command lists all the ER-

RLOG.SYS files contained in the [SYSERR] directory. In this example,

[SYSERR] contains only one version of ERRLOG.SYS. The RENAME

command renames ERRLOG.SYS to ERRLOG.OLD. The/NEW_-VER-

SION qualifier requests that ERRLOG.OLD be assigned a new version

number if a file of this name already exists.

102 SYSTEM VERIFICATION AND ANALYSIS

The operator then invokes the SYE utility by typing RUN

SYS$SYSTEM:SYE. SYE prompts for the following six parameters:

e The name of the file to be manipulated. The operator responds

with ERRLOG.OLD.

e The name of the file that is to contain the error log report. The

operator responds with ERRLOG.DAT.

e The type of report that SYE should generate. The operator re-

sponds with R, which indicates the ROLL UP report.

¢ The devices on which SYE should report errors. The operator re-

sponds by pressing the RETURN key, which requests SYE to re-

port on all devices.

e The time after which SYE should report errors. The operator re-

sponds by pressing the RETURN key, which requests SYE to re-

port on all errors occurring after November 17,1858.

e The time up to which SYE should report errors. The operator re-

sponds by pressing the RETURN key, which requests SYE to re-

port the occurrence of errors until December 31, 9999.

SYE creates the error log report and stores it in the ERRLOG.DAT file.

The operator obtains a hard copy of this report by using the print com-

mand.

Device Errors

You may request that all device errors be reported, or only those which

occur on one or more devices specified by a device name. SYE prompts

for the device name by typing

device name: [<all>] ?

By default, errors on all devices are reported (that is, if only a carriage

return is typed, all error types are inspected).

If a device name is specified, then device errors and mount/dismount

messages whose device names match are selected for further in-

spection.

SYSTEM VERIFICATION AND ANALYSIS 103

SYE will accept generic device names, allowing you to specify that errors

be reported for all devices of a particular type (for example, DB:) for

devices attached to a particular controller (for example, DBA:), or for a

particular device (for example, DBA1:).

When you specify a device name to SYE, you may also request that it

report one of three special classes of errors.

CP Hardware errors other than device errors which include ma-

chine checks, corrected read data, read data substitutes, and

asynchronous write errors.

CO Configuration changes which include mount and dismount

messages.

SY System information which includes system startup, power re-

covery, crash/restart, system service and network messages,

and system and user bugchecks.

Although time stamp messages are included in the summary

totals under system information, they are not included in this

option.

You can also use a device-name to deselect one device class or special

class by prefixing the name with a minus sign(-). For example:

device-name: [<all>] ? -DMAT:

This command string instructs SYE to report on all errors other than

DMAT1: errors. The device-name -SY would cause all errors except sys-

tem information entries to be reported.

This method can be used only to exclude one device or one special class

of device.

Appendix

TROUBLESHOOTING

The flowcharts that follow should help you repair VAX computer sys-

tems quickly, with minimum adverse impact on the customer’s appli-

cation. See the appropriate processor-specific diagnostic system

overview manual for more detailed information. The DIGITAL Diagnostic

Center (DDC) is always available for technical assistance.

105

TROUBLESHOOTING

A
THE VAX SYSTEM

HAS REMOTE DIAG-

NOSIS SUPPORT, AND

THE DDC HAS COME

TO SOME CONCLU-

SIONS.

B

VMS RUNS, BUT THE

CUSTOMER'S APPLI-

CATION DOES NOT.

Figure A-1

C i

VMS AND THE APPLI-

CATION BOTH RUN,

BUT THE PERFOR-

MANCE IS DEGRADED.

J

VMS DOES NOT RUN

OR YOU SUSPECT A

HARDWARE SUB-

SYSTEM FAILURE.

TK-4256

VAX Troubleshooting Flowchart (Sheet 1 of 11)

107

108 TROUBLESHOOTING

1 THE VAX SYSTEM HAS REMOTE DIAGNOSIS (RD) SUPPORT,

AND THE DDC HAS COME TO SOME CONCLUSIONS.

RERUN THE DIAG-

NOSTIC PROGRAM

WHICH FAILED FOR

THE DDC.

l
IDENTIFY AND RE-

PLACE THE FAILING

MODULE OR COM-

PONENT.

l
VERIFY THE REPAIR

BY RERUNNING THE

PROGRAM THAT DE-

TECTED THE FAILURE

NO
SUCCESS

YES

ASK THE DDC TO

VERIFY THE RE-

PAIR.

NO

YES

S

&, 4

Figure A-1 VAX Troubleshooting Flowchart (Sheet 2 of 11)

TK-4257

TROUBLESHOOTING

2 VMS RUNS, BUT THE CUSTOMER'S APPLICATION DOES NOT

RUN SYSTEM AND EX-

AMINE COMMAND

FILES TO DETERMINE

WHETHER THE SYS-

TEM IS PROPERLY

CONFIGURED.

RUN SYE TO HELP ID-

ENTIFY THE FAILING

HARDWARE OR SOFT-

WARE COMPONENT.

DO YOU

SUSPECT A FAILING

HARDWARE

SUBSYSTEM

ES[Y
]

[CALL SUPPORT

TK-4258

Figure A-1 VAX Troubleshooting Flowchart (Sheet 3 of 11)

109

110 TROUBLESHOOTING

3 VMS AND THE CUSTOMER’S APPLICATION BOTH RUN, BUT PERFORMANCE

IS DEGRADED. THIS SITUATION IMPLIES THAT THE CUSTOMER HAS

IDENTIFIED AND CONFIGURED AROUND THE PROBLEM.

GATHER FAULT IN-

FORMATION FROM

THE CUSTOMER,

E.G.,

FAILURE SYMP-

TOMS

ERROR PRINT-

OUTS

F

IDENTIFIABLE AND

CORRECTABLE WITHOUT
RUNNING

DIAGNOSTICS

DID THE

FAULT CAUSE

A VMS

CRASH

YES

ACQUIRE CRASH IN-

FORMATION

NOTE THE CON-

SOLE LOGOUT

REFERENCE

VAX/VMS DOCU-

MENTATION

RUNSYE TO

ACQUIRE FAILURE

INFORMATION

Figure A-1 VAX Troubleshooting Flowchart (Sheet 4 of 11)

TROUBLESHOOTING 111

FAULT

REPAIRED

NO

CALL SUPPORTTHE PROBLEM

RUN THE SYSTEM

DIAGNOSTIC TO

IDENTIFY THE

FAILING SUBSYS-

TEM

RUN THE APPROP-

RIATE SUBSYSTEM

DIAGNOSTICS TO

IDENTIFY THE

FAILURE.

FAULT

IDENTIFIED

REPAIR THE FAULT

AND VERIFY BY RE-

RUNNING THE FAIL,

ING DIAGNOSTICS

Figure A-1 VAX Troubleshooting Flowchart (Sheet 5 of 11)

112 TROUBLESHOOTING

4 VMS DOES NOT RUN, OR YOU SUSPECT A HARDWARE SUBSYSTEM FAILURE

BOOT THE DIAGNOSTIC

SUPERVISOR FROM A

SYSTEM DISK

(PRIMARY LOAD PATH)

SUCCESSFUL

5 BOOT

DOES

THE CUSTOMER

6 SUSPECT A
DEVICE

RUN THE MEMORY

DIAGNOSTIC (IF

APPLICABLE)

DETECT

AND REPAIR

FAULT

YES

RERUN THE MEMORY

DIAGNOSTIC

NO

4B

Figure A-1 VAX Troubleshooting Flowchart (Sheet 6 of 11)

TROUBLESHOOTING 113

;
RUN THE SET OF RUN ANY APPLICABLE

CLUSTER EXERCISER I/O ADAPTER DIAG-

PROGRAMS NOSTIC PROGRAM.

EVKAB

EVKAC

EVKAD

EVKAE FAULT

E?KAX DETECTED
AND

REPAIRED

NO

RUN DIAGNOSTICS

AGAINST REMAINING

I/O0 ADAPTERS AND

PERIPHERAL DE-

VICES IN THE ORDER

OF THEIR IMPORT-

ANCE TO RUNNINGNO,

CUSTOMER VMS:

I/0 ADAPTERS

DISK DRIVES

TAPE DRIVES

COMM DEVICES

RUN OTHERS

| SWAP MODULES I IMICRODIAGNOSTICSJ

FAULT

DETECTED

AND

REPAIREDREPAIR

THE

PROBLEM

| BooTvms |

r CALL SUPPORT I

SUCCESSFUL

BOOT

r CALL SUPPORT I

4B >

Figure A-1 VAX Troubleshooting Flowchart (Sheet 7 of 11)

114 TROUBLESHOOTING

5 PRIMARY LOAD PATH FAILS

BOOT THE SUPER-

VISOR FROM THE

CONSOLE LOAD

DEVICE (SECOND-

ARY LOAD PATH)

SUCCESSFUL

BOOT

RUN THE FOLLOWING

DIAGNOSTICS:

© MEMORY (IF APPLI-

CABLE)

® CLUSTER SET

® DIAGNOSTIC LOAD

CHANNEL

® DISK DIAGNOSTICS

CALL SUPPORT

IDENTIFY

AND REPAIR

THE

FAULT

YES

TK-4262

Figure A-1 VAX Troubleshooting Flowchart (Sheet 8 of 11)

TROUBLESHOOTING 115

6 THE CUSTOMER SUSPECTS A DEVICE AND YOU CAN BOOT

THE SUPERVISOR

IS THE

SUSPECTED

DEVICE THE

e CPU

e | OAD CHANNEL

ADAPTER

e MEMORY

® WCS

®

®

FPA

SYSTEM DISK

RUN THE

APPROPRIATE

DIAGNOSTIC AGAINST

THE SUSPECTED DE-

VICE

DETECT

AND REPAIR

THE FAULT

CALL SUPPORT

TK-4263

Figure A-1 VAX Troubleshooting Flowchart (Sheet 9 of 11)

116 TROUBLESHOOTING

7 SECONDARY LOAD PATH FAILS

7

BOOT THE

HARD — CORE

INSTRUCTION TEST

(EVKAA) FROM THE

CONSOLE LOAD

DEVICE

SUCCESSFUL

BOOT

DISABLE THE CACHE

USING A PROCESSOR

SPECIFIC METHOD

(SEE THE APPROPRI-

ATE PROCESSOR

SPECIFIC DIAGNOSTIC

SYSTEM OVERVIEW

MANUAL)

'
BOOT THE

HARD — CORE

INSTRUCTION TEST

AGAIN

SUCCESSFUL

BOOT

SWAP BOARDS UNTIL

YOU REPAIR THE
I LOOP ON THE ERROR | PROBLEM

DETECT

AND REPAIR YES

THE FAULT '

; YES NO

| CALL SUPPORT J u | CALL SUPPORT J
TK-4264

Figure A-1 VAX Troubleshooting Flowchart (Sheet 10 of 11)

TROUBLESHOOTING 117

8 SYSTEM VERIFICATION

L BOOT VMS 1

SUCCESSFUL

BOOT

RUN

® THE SYSTEM DIAG-

NOSTIC

® UETP

® THE CUSTOMER’'S

APPLICATION

CALL SUPPORT OR NO

GO BACK TO START

YES

COMPLETE

PAPERWORK

AND END SESSION

TK-4259

Figure A-1 VAX Troubleshooting Flowchart (Sheet 11 of 11)

Glossary

APT - An automated product test application used throughout DIGITAL

manufacturing.

Argument — An independent value within a command statement that

specifies where, how, or on what the command will operate. Parameter.

Assembler — The program that translates source language code into

object language code. On VAX computers the assembler is MACRO-32.

BLISS-32 - A middle level software development language, having ad-

vantages of both higher and lower level languages.

Boot (bootstrap) — A program that loads another (usually larger) pro-

gram into memory.

Breakpoint — In diagnostics, an address assigned through the diagnostic

supervisor. When the PC equals the value of the breakpoint, control re-

turns to the diagnostic supervisor.

Buffer — A temporary data storage area.

120 GLOSSARY

Channel - A logical path connecting a user process to a physical device

unit. The MASSBUS adapters and UNIBUS adapters are channels.

CPU Cluster Environment — The console, CPU, memory, and 1/0 chan-

nels that support macro level program execution.

Console Environment — Hardware, software, and firmware in the con-

sole and CPU that operate without macro level program execution.

Command File — A file containing command strings.

Command Line Interpreter — Code that receives, checks, and passes

commands typed by the user at a terminal or submitted in a command

file.

CPU - Central processor unit.

DDC - DIGITAL Diagnostic Center; the location from which DIGITAL

Field Service conducts remote diagnosis.

Diagnostic Supervisor — A program that is loaded in memory to provide

a framework for control and execution of diagnostic programs. It pro-

vides non-diagnostic services to diagnostic programs.

Direct I/0 - A mode of access to peripheral devices in which the pro-

gram accesses device registers directly, without relying on support from

the operating system drivers.

Driver — The set of operating system code that handles physical I/0 to a

device through QIO services.

Documentation File — A listing available on microfiche that describes a

given diagnostic program.

Event Flag - Status posting bits maintained by VMS and the diagnostic

supervisor. Diagnostic programs often use event flags to perform a vari-

ety of signaling functions, including communication with the operator.

File Specification — A unique name for a file on a mass storage medium.

GLOSSARY 121

Hard-Core - That portion of a computer system assumed to be fault-

free in a given diagnostic situation. A diagnostic program will yield valid

results only when the hard-core for that program is fault-free.

ISP - Instruction set processor. That portion of a computer system that

executes macro level instructions.

Level 1 - Operating system (VMS) based diagnostic programs using

logical or virtual 1/0 references with QIO services.

Level 2 - Diagnostic supervisor based diagnostic programs that can be

run either under VMS (on-line) or in the standalone mode, using physical

I/0 references with QIO services.

Level 2R - Diagnostic supervisor based diagnostic prograrhs that can be

run only under VMS, using physical 1/0 references with QIO services.

Level 3 — Diagnostic supervisor based diagnostic programs that can be

run in standalone mode only, using direct 1/0.

Level 4 - Standalone macro level diagnostic programs that run without

the supervisor.

Link Map - A listing that shows the virtual memory allocation of the

program image. The first part of a program listing contains the link map.

Load Path Diagnostics — A set of diagnostic programs designed to run

when the primary load path fails. You can load the load path diagnostics

from the console load device, the secondary load path. Use these pro-

grams to test the primary load path.

MACRO-32 — The native assembler for VAX computers.

Microdiagnostics — Diagnostic programs that test the CPU cluster but

for which control remains in the console processor.

On-Line Diagnostics — Diagnostic programs that run under the oper-

ating system (VMS).

122 GLOSSARY

Parameter — An independent value within a command statement that

specifies where, how, or on what the command will operate. Argument.

Physical QIO - A set of I/0 functions that allow access to all device

level operations except maintenance mode operations.

Primary Load Path - That portion of a VAX system that includes the

CPU cluster and the mass storage device from which VMS or the diag-

nostic supervisor is booted.

Program Module — A portion of a program that is assembled as a unit

and then linked with other modules. Program listings are arranged ac-

cording to modules.

Prompt — The symbol displayed on the operator’s terminal by a program

which tells the operator that he should type a command or other infor-

mation. The diagnostic supervisor prompt is DS>.

Qualifier - An argument used to modify the function of a command.

QIO - Queue I/0, the VMS and diagnostic supervisor service that en-

ables a program to communicate with a device via a device driver rou-

tine.

Scope Loop - A portion of a diagnostic test that enables the operator to

loop on a hardware failure at machine speed.

Script File - A line-oriented ASCII file that contains a list of commands.

SDA - System Dump Analyzer, a program under VMS that enables you

to analyze and display parts of a formatted system dump file after recov-

ery from a crash.

Secondary Load Path — The console and that portion of the CPU cluster

necessary to boot diagnostic programs from the console load device.

Section - A portion of a program that consists of a group of tests. If you

run a diagnostic program without specifying a section, only the default

section will run.

GLOSSARY 123

Standalone Mode — The mode of VAX diagnostic system operation that

enables you to run diagnostic programs without VMS.

Subtest - A portion of a test in a diagnostic program that tests a small

section of logic or a specific function. With arguments to the start and

run commands in the supervisor, you can cause a program to loop on a

specific subtest.

SYE - System Error log report generator program. You can use SYE to

report all errors or a subset of errors stored in the system error log.

Symbol Cross Reference — An alphabetical list of global symbols used

in the program. A value is given for each symbol.

SYSMAINT - The name of the directory containing the diagnostic sys-

tem files on disk storage.

System Environment — The environment provided by the standalone

diagnostic supervisor. Level 2 and level 3 programs run in the system

environment,

Test — A unit of a diagnostic program that checks a specific function or

portion of the hardware.

UETP - User Environment Test Package, a program under VMS that

checks the integrity of the VAX system hardware and software. This is

not a diagnostic program.

User Environment — The environment provided by the diagnostic super-

visor when it runs under VMS. Level 2 and level 2R diagnostic programs

will run in the user environment.

User Mode - A mode of diagnostic testing that runs under VMS while

customer applications are running.

Virtual QIO - A set of /0 functions that must be interpreted by an

ancillary control process.

VMS - Virtual Memory System, the operating system for VAX com-

puters.

	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-001.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-002.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-003.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-004.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-005.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-006.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-007.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-008.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-009.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-010.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-011.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-012.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-013.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-014.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-015.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-016.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-017.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-018.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-019.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-020.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-021.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-022.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-023.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-024.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-025.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-026.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-027.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-028.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-029.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-030.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-031.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-032.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-033.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-034.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-035.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-036.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-037.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-038.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-039.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-040.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-041.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-042.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-043.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-044.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-045.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-046.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-047.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-048.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-049.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-050.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-051.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-052.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-053.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-054.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-055.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-056.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-057.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-058.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-059.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-060.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-061.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-062.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-063.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-064.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-065.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-066.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-067.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-068.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-069.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-070.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-071.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-072.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-073.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-074.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-075.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-076.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-077.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-078.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-079.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-080.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-081.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-082.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-083.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-084.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-085.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-086.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-087.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-088.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-089.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-090.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-091.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-092.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-093.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-094.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-095.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-096.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-097.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-098.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-099.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-100.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-101.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-102.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-103.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-104.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-105.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-106.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-107.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-108.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-109.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-110.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-111.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-112.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-113.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-114.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-115.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-116.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-117.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-118.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-119.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-120.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-121.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-122.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-123.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-124.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-125.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-126.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-127.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-128.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-129.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-130.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-131.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-132.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-133.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-134.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-135.tif
	EK-VX11D-UG-001 VAX Diagnostic System User's Guide-136.tif

