|IDNUDIA] 80U818}8y 9INJOSIYUDIY | [-XVA

=l ol

EK-VAXAR-RM-001

VAX-11
Architecture
Reference Manudl

20 May 1982
Revision 6.1

Revision 1, Sept, 1975
Revision 3, June, 1976
Revision 4, May, 1977
Revision 5, Feb, 1979
Revision 6, May, 1980
Revision 6.1, June,1981

The information in this document is subject to change
without notice and should not be construed as a commitment
by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that
may appear in this document.

The specifications, herein, are the property of Digital
Equipment Corporation and shall not be reproduced or copied
in whole or in part as the basis for the manufacture or sale
of items without written permission.

Copyright (c) 1976, 1977, 1979, 1980, 1981 by Digital
Equipment Corporation

The following are trademarks of Digital Equipment
Corporation:

ASSIST-11 DIBOL K110 RSTS
COMPUTER LABS DIGITAL KL1@ RSX
COMSYST DNC LAB-8 RT-11
COMTEX EDGRIN LAB-K RTS-8

DDT EDUSYSTEM MASSBUS SABR

DEC FLIP CHIP OMNIBUS SBI

DECnet FOCAL 0S/8 TRAX
DECCOMM GLC-8 PDP TYPESET-8
DECUS IDAC PHA TYPESET-10
DECsystem-10 IDACS PS/8 TYPESET-11
DECsystem-20 INDAC QUICKPOINT UNIBUS

DECtape KAl0 RAD-8 VAX

PREFACE

The VAX-11 is a family of upward-compatible computer systems. It is a
natural outgrowth of and is strongly compatible with the PDP-11 family.
We believe that these systems represent a significant departure from
traditional methods of computer design. VAX-11 represents the
culmination of years of analysis of the needs of software, and compilers
in particular.

For readers interested in just a summary of the family, please refer to
the VAX Technical Summary. This manual explains the machine language
programming and operation of any member of the VAX-11 family, for both
instructional and reference purposes. Basically the manual defines in
detail how the central processor functions, exactly what its
instructions do, how it handles data, what 1its control and status
information means, and what programming techniques and procedures must
be employed to wutilize it effectively. The programming is given in
machine language, in that it uses only the basic instruction mnemonics
and symbolic addressing defined by the assembler. The treatment relies
neither on any other Digital software nor on any of the more

sophisticated features of the assembler. Moreover, the manual is
completely self-contained -- no prior knowledge of the assembler is
required.

The text of the manual is devoted almost entirely to functional
description and programming. Chapter 1 discusses the goals of the
system and the notational conventions used throughout the manual.
Chapter 2 defines the formats of the various forms of data and
instructions. Chapter 3 discusses the addressing modes used in
instructions. Chapter 4 gives the definition and detailed description
of all instructions generally available to users of the system. Chapter
5 defines the memory management aspects of the system. Chapter %
discusses the interrupt and exception handling in the system. Chapter 7
covers process structure and context switching. Chapter 8 defines those
interactions between processor, memory, and I/0 devices which are true
of any member of the family. Chapter 9 defines the specifics of
interacting with processor registers. Chapter 18 documents the PDP-11
Compatibility Mode of operation. Appendix A is a summary of the
instructions, their operands, and the encoding. It is suitable to be
used to construct an "instruction card".

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION
. INTRODUCTION e e e e .
TERMINOLOGY AND CONVENTIONS . e .

Numbering . . e e e
UNPREDICTABLE And UNDEFINED .
Ranges And Extents . ,
S
Reserved
Figure Drawing Conventions . . .

e e Sy
. . . .
NN NN NN

.

.
.

.
DU D W N

CHAPTER

N

BASIC ARCHITECTURE

ADDRESSING
DATA TYPES
Byte 0L ...
Word
Longword
Quadword
Octaword e v e e e e e e e
F floatlng L
D_floatlng © e e e e e e e 4 W .
G _floating
H floating . . e
Variable Length Blt Fleld . .
Character String
Trailing Numeric String
Leading Separate Numeric String
Packed Decimal String
PROCESSOR STATE
PROCESSOR STATUS WORD
CBit & .«
VBit . . . o000 ...,
ZBit
N Bit 00000 ...,
TBit
IVBit
FUBit
DV Bit o e . .
PERMANENT EXCEPTION ENABLFS o e .
Divide By Zero
Floating Overflow
INSTRUCTION FORMAT
SEPARATION OF PROCEDURE AND DATA .
I/0 STRUCTURE
INTERRUPT STRUCTURE o e .

. e e
« e e .

.
.

« s e .
DD NN NDNN -~
e & o o .

. .
.
HHEFRFFRWOWOJN U S WN —

WS

\om\lmmmmaabbbpbbbwwwwm

DN NN NDNDNDNDNDND N
. .

¢« o o o o
* .

o« e e . .
e o
O JAUT D WN

.
N =

NN NONONNNDNNODNNDNDNDNDND NN
. .

CHAPTER

W

INSTRUCTION FORMATS AND ADDRESSING

OPCODE FORMATS
OPERAND SPECIFIERS
NOTATION
GENERAL MODE ADDRESSING FORMATS

.

wwww
. e
S wW N

et il I
W W N NN -

NN NN N
L T N O I T T B |
N

SN SIS IS N SN N
WHEOOAUTU & D WWN

NN
=

Page 1ii

3.4.1 Register Mode . . « « « « o o « o o o o . e e
3.4.2 Register Deferred Mode

3.4.3 Autoincrement Mode . . e e e e e e e
3.4.4 Autoincrement Deferred Mode e e e e e e e
3.4.5 Autodecrement Mode . .+ « ¢« e e . e e e e
3.4.6 Displacement Mode . . .« .« « & o & s o e . . -
3.4.7 Displacement Deferred Mode « .« « . « -
3.4.8 Literal Mode .« v o & o o o o o o o o o o o o =
3.4.9 Index Mode e e e e e e e
3.5 SUMMARY OF GENERAL MODE ADDQES%INF .

3.5.1 General Register Addressing . .

3.5.2 Program Counter Addressing (reg=15) e e e e .
3.5 BRANCH MODE ADDRESSING FORMATS . . « « o o o « &
3.7 OPERAND SPECIFIER CONVENTIONS e e e e e e

S

CHAPTER INSTRUCTIONS
INSTRUCTION SET +« o o « o o o o o o o o o o =
Instruction Descriptions . . « « « ¢ « + « « .
Operand Specifier Notation . . . « « « « « « =
Operation Description Notation . « « « « « « &
INTEGER ARITHMETIC AND LOGICAL INSTRUCTIONS . .
ADDRESS INSTRUCTIONS e e e e e e e
VARIABLE LENGTH BIT FIELD INSTRUCTIONS e o .
CONTROL INSTRUCTIONS & & o « o« « o o o o o o o o
PROCEDURE CALL INSTRUCTIONS . . « ¢ o o o o o =
MISCELLANEQUS INSTRUCTIONS . .« o &+ &« o o o o o &
QUEUE INSTRUCTIONS . « + o o o o o o o = « «
Absolute QUEUES +« o « o o o o o o o e e s e e
Self-relative QuUeUES .« + o« o o o o o o o o o
Instruction Descriptions« .« « « « .
FLOATING POINT INSTRUCTIONS . « « « « « =« =«
Introduction e . e e e e e e e
Overview Of The Instructlon Set e e e . . .
ACCUracCy .« o« « o o o = e e s e e e e e e e
Instruction Descrlptlons e e e e e e e e e e
CHARACTER STRING INSTRUCTIONS . . . « « « =« =«
CYCLIC REDUNDANCY CHECK INSTRUCTION e e e e e e
DECIMAL STRING INSTRUCTIONS . .+ + o « o o o o =«
Decimal Overflow .« .+ + « « o« o s o o o =« o o« =
Zero NUMDEIrS « v o o o o o o o o o o o o o =
Reserved Operand Exception « « « « «
UNPREDICTABLE Results . « « « o ¢« « « o « =« =
Packed Decimal Operations . . « « « « + « « =«
Zero Length Decimal Strings . . . « « « « -
Instruction Descriptions e e e e e e e e e
EDIT INSTRUCTION e e e e e e e e e e s
OTHER VAX-11 INSTRUCTIONS e e e s e e e e e e s

« o 0 e
« s e
w N -

.

.

R S S S S N S I S e]
. . .
OO ~JO U D WNH -

« o o o s s e
« . .« .
=W N w N

.
= o b= = 2 b e e W0 W0 00 WO 00

waNNMNNNN&—‘@o
. .
N OY U bW N

.
.

.
.

B N N S N S S S O O L =R T =
. . . Y

CHAPTER 5 MEMORY MANAGEMENT
5.1 INTRODUCTION . . . e e e e e e e e e e e e e e
5.2 VIRTUAL ADDRESS SPACE R

.

.

Ll W W W W W
— o b |
O QN NMUTWEHEEROOINYU)

.
Ww W wwWwww

5.2.1 Process Space 5-4
5.2.2 System Space 5-4
5.2.3 Virtual Address Format e « « . 5-4
5.2.4 Virtual Address Space Layout 5-5
5.3 MEMORY MANAGEMENT CONTROL « o « ¢ o + & 5-5
5.3.1 Memory Management Disabled « 5-5
5.4 ADDRESS TRANSLATION e s e + e+ + « o « 5-5
5.4.1 Page Table Entry (PTE) « « 5-6
5.4.2 Page Table Entry (PTE) For 1/0 Devices 5-8
5.4.3 Changes To Page Table Entries « « 5-9
5.5 ACCESS CONTROL . . . v W o o o o . . e+ « <« « . 5-10
5.5.1 Processor Modes 5-10
5.5.2 Protection Code 5-1¢
5.5.3 Length Violation 5-13
5.5.4 Access Control Violation Fault 5-13
5.5.5 Access Across A Page Boundary 5-13
5.5.6 System Space Address Translation 5-13
5.5.7 Process Space Address Translation 5-16
5.5.8 Pg Region « + . 5-17
5.5.9 Pl Region« . 5-29
5.6 TRANSLATION BUFFER e e e e e 4 e . 5-22
5.7 FAULTS AND PARAMETERS e e e e e e e . 5-23
5.8 PRIVILEGED SERVICES AND ARGUMENT VALIDATION ., . 5-24
5.8.1 Changing Access Modes 5-24
5.8.2 Validating Address Arguments (PROBE

instructions) © + e o 4 ¢ 4 4 e 4 4 4 4w e « . B-25
5.8.3 Notes On The PROBE instructions 5-28

CHAPTER 6 EXCEPTIONS AND INTERRUPTS

5.1 INTRODUCTION . . ¢ v v v v v o o v . . o e e e W 5-1
5.1.1 Processor Interrupt Priority Levels (IPL) . . . 6=2
5.1.2 Interrupts 62
5.1.3 Exceptions o 6-3
6.1.4 Contrast Between Exceptions And Interrupts . . . 6-3
6.2 PROCESSOR STATUS e e e e . 6-5
6.3 INTERRUPTS v v v & v o . . e+ e « + . . H5-8
6.3.1 Urgent Interrupts -- Levels 18-1F (Hex) 6-9
5.3.2 Device Interrupts -- Levels 19-17 (Hex) e e 6-9
5.3.3 Software Generated Interrupts -- Levels 0l-gF

{Hex) L o
5.3.3.1 Software Interrupt Summary Register 6-10
6.3.3.2 Software Interrupt Request Register 6-18
6.3.4 Interrupt Priority Level Register 6-11
6.3.5 Interrupt Example 6-12
6.4 EXCEPTIONS v v v « o . . e+« « « . 5-13
5.4.1 Arithmetic Traps/Faults « . 06-14
5.4.1.1 Integer Overflow Trap 6-14
6.4.1.2 Integer Divide By Zero Trap 6-15
6.4.1.3 Floating Overflow Trap 6-15
6.4.1.4 Divide By Zero Trap - Floating or Decimal

String . . . e e e e e e e . 6-15

6.4.1.5 Floating Underflow Trap 6-15
5.4.1.56 Decimal String Overflow Trap 6-15

Page iv

6.4.1.7 Subscript Range Trap . . « .« « « « « « =« =
5.4.1.8 Floating Overflow Fault « « . . =
6.4.1.9 Divide By Zero Floating Fault
h.4.1.10 Floating Underflow Fault« « « . =«
5.4.2 Memory Management Exceptions . .
6.4.2.1 Access Control Violation Fault
65.4.2.2 Translation Not Valid Fault . . e e .
5.4.3 Exceptions Detected During Operand Reference
5.4.3.1 Reserved Addressing Mode Fault
5.4.3.2 Reserved Operand Exception
6.4.4 Exceptions Occurring As The Consequence Of An
Instruction« . e e e e e e e e e
6.4.4.1 Opcode Reserved To DIGITAL fault .
6.4.4.2 Opcode Reserved To Customers (and CSS) Fault
56.4.4.3 Compatibility Mode Exception
LA4.4.4 Breakpoint Fault . . .« « « « « « « o ¢ « =
.4.5 Tracing « + o o« « o o o+ o s s e e e e e e
.4.5.1 Trace Instruction Summary . . « « « « « =« =
.4.5.2 Using Trace .« « o« o o o o o o & o o o o o =
.4.6 Serious System Failures . . . ¢ « « « ¢ = « =
.4.6.1 Kernel Stack Not Valid Abort . . « « . . « =
.4.6.2 Interrupt Stack Not Valid Halt
.4.6.3 Machine Check Exception . . « « .« . =« .

SERIALIZATION OF NOTIFICATION OF MULTIPLE EVENTS
SYSTEM CONTROL BLOCK (SCB) . . . e e s e e e e
System Control Block Base (SCBB) e e e e e s e
VECLOLS ¢ « o o o o o o o o o o o o o o o o @
STACKS v v o o o o o o o o o o o o o o o o o = =
Stack Residency . « « o o« o o o o o o o o o
Stack Alignment . .« « + ¢ o ¢ = e e e o e e e
Stack Status Bits .+ « ¢« ¢ ¢ o o o o e e e .
Accessing Stack Registers . . . « « ¢ ¢« « o &
INITIATE EXCEPTION OR INTERRUPT .« . « « « « « .
RELATED INSTRUCTIONS . .« ¢ & o o o o o o o o o =
PROCESSOR STATE TRANSITION TABLE

.
N

.

.
HWO 0 ~d -~ ~J13D DO UL DD DD
. . .

=

¢ o e
Y
W N

O N R R RO o RO R XeaRe e le) o) B o) IU) o))

CHAPTER 7 PROCESS STRUCTURE

PROCESS DEFINITION . . &« o ¢ o o o « o o o o o
PROCESS CONTEXT e e s e e e e e e s e s o e e
Process Control Block Base (PCBB) e e e e s e
Process Control Block (PCB) e e e e e e e e
Process Privileged Registers« « « « o =«
ASYNCHRONOUS SYSTEM TRAPS (AST) e o o o o o o =
PROCESS STRUCTURE INTERRUPTS . « « « « « o o =«
PROCESS STRUCTURE INSTRUCTIONS . « <« o« « « « o &
USAGE EXAMPLE + v « ¢ o o o o o o o o o o o s

.

« o e .
«
w N =

NN NN NN
. . e

AU W NN
.

CHAPTER 8 SYSTEM ARCHITECTURAL IMPLICATIONS
8.1 INTRODUCTION . « & & o o o o o o o o o o = o s =
8.2 DATA SHARING AND SYNCHRONIZATION« « « .« =«
8.3 CACHE &« &+ o o o o o o o s o s o o o o o o o o =

[UL

NN N NN

=
WO ~JOHNDNDNK

-

o @ ©
N

CHAPTER

CHAPTER

4 RESTARTABILITY e e e e e 4 e .
5 INTERRUPTS e e e e W

6 ERRORS e e e e e
.7 I/0 STRUCTURE e s e e e e 4 e .
7.1 Introduction
7.2 Constraints On I/0 Registers

9 PRIVILEGED REGISTERS

1 PROCESSOR REGISTER SPACE e e e e . . o .
.2 PER-PROCESS REGISTERS AND CONTEXT SWITCHING .
STACK POINTER IMAGES e .
MTPR AND MFPR INSTRUCTIONS e e o e e o o o a0 W
VAX-11 SERIES REGISTERS e o e e o o o o o o

1 System Tdentification Register (SID)

2 Console Terminal Registers

2.1 VAX-11/780 console register 1mp1ementat10n
.2.1.1 Status Byte Definition

3

3

3

O WO YWY WY
. .

Clock Registers
1 Time-of-Year Clock e e e e
.2 Interval Clock . . . e e e e e e e
VAX-11/780 SPECIFIC REGISTERS e e e e e o o
1 VAX-11/788 Accelerator . . . o e e 4 e . .
2 VAX-11/78@ Micro Control Store e e e e e e .
3 SBI FAULT/STATUS REGISTER (SBIFS) « e e e
4 SBI SILO DATA REGISTER (SBIS) e e o o o e o
.5 SBI SILO COMPARATOR REGISTER (SBISC)
6
7
8
9

. o

SBI MAINTENANCE REGISTER (SBIMT)
SBI ERROR REGISTER (SBIER)
SBI TIMEOUT ADDRESS (SBITA) e e e e e e .
SBI QUAD CLEAR (SBIQC)
VAX-11/756 SPECIFIC REGISTERS e .

O WO WVWWYWWIWIWIWVLW W WIO W WYY
. o

7.1 CMI Error Register e e e e e

7.2 Console Storage Device Reglsters e e e e s .

.7.3 Translation Buffer Group Disable Register

(TBDR) e v et e e e e e e e

9.7.4 Cache Disable Reglster (CADR) e e e e e e .
9.7.5 Machine Check Error Summary Register (MCESR)
9.7.6 Cache Error Register (CAER) e e e e e e e .
9.7.7 Accelerator Control/Status Register
9.7.8 Initialize UNIBUS (IORESET) e e e e e e e
9.7.9 Translation Buffer Data Register (TBDATA) .
10 PDP-11 COMPATIBILITY MODE

19.1 INTRODUCTION . ., . . o o o e e e e e
16.2 COMPATIBILITY MODE U%ER ENVIRONMENT e e e e
1.2.1 General Registers And Addressing Modes . . .
18.2.1.1 Register Mode
18.2.,1.2 Register Deferred Mode
18.2.1.3 Autoincrement Mode . . . c e e v e e e
10.2.1.4 Autoincrement Deferred Mode o e e e e e
18.2.1.5 Autodecrement Mode

O O
1
-

[U |
P HWOWWOJIOWN

| O WO W W WYY W
| I

WO O O
I

—

U W

9-15
9-17
9-18
9-19
9-19
9-20
9-21
9-22
9-23
9-24
9-24
9-25

9-26
9-26
9-26
9-26
9-27
9-27
9-28

10-1
19-2
1a-2
19-2
14-2
10-3
10-3
19-4

Page vi

10.2.1.6 Autodecrement Deferred Mode . . « .« .« .+ « = 19-4
10.2.1.7 Index Mode v v v o o o o o o o e e e e e e e 10-5
10.2.1.8 Index Deferred Mode e e e e e e e e e e e 10-5
10.2.2 The StacK « o o o o o o o o o o o o o o o o = 10-5
16.2.3 Processor Status Word . . « « « + « o o o o - 10~
10.2.4 INSErUCEIiOoNS v v ¢ & o o o o o o o o o & o s 19-7
16.2.4.1 Single Operand Instructions - 10-9
14.2.4.2 Double Operand Instructions « . - 10-24
16.2.4.3 Branch Instructions . . + « « « o o o o o = 13-38
10.2.4.4 Jump And Subroutine Instructions 10-42
16.2.4.5 Return From Interrupts And Traps . . . « . =« 10-45
190.2.4.6 MiscellaneoUuS o « « « o o s o o o o o o o o 10-48
1.3 ENTERING AND LEAVING COMPATIBILITY MODE 10-53
19.3.1 General Register Usage . . .« « « « « « « « « = 10-53
19.4 COMPATIBILITY MODE MEMORY MANAGEMENT 10-54
1.5 COMPATIBILITY MODE EXCEPTIONS AND INTERRUPTS . . 10-57
19.5.1 Reserved Instruction Fault « « « « « = 19-57
10.5.2 BPT Instruction Fault . . ¢« « « « « « o o « = 10-57
19.5.3 10T Instruction Fault . . « « o ¢ o o « o « 19-57
190.5.4 EMT Instruction Fault . . .« « « ¢ « ¢« « « = = 19-57
18.5.5 TRAP Instruction Fault . .« « « « « ¢ « ¢ « - = 13-57
10.5.5 Illegal Instruction Fault « « « « « - 14-57
10.5.7 0dd Address Error Abort . . s e e e e e o« . 10-58
1.6 T BIT OPERATION IN COMPATIBILITY MODE . . . + . lDp-58
19.7 UNIMPLEMENTED PDP-11 TRAPS . . « « + « « o « o = 10-60
10.8 COMPATIBILITY MODE 1I/0 REFERENCES i e e e e . . lp-61
1¢.9 PROCESSOR REGISTERS e 19-51

10.19 PROGRAM SYNCHRONIZATION . .« « ¢ « « o o =« o = - 10-61

APPENDIX A INSTRUCTION SET AND OPCODE ASSIGNMENTS
A.l INSTRUCTION OPERAND FORMATS . « .« =« o« ¢ « =« « o - A-1
A.2 OPERAND SPECTFIER NOTATION . « « o « o o o o =« o A-9
A3 OPCODE ASSIGNMENTS . . « « o o o o o o o o o o o A-12
A.4 INSTRUCTIONS USABLE TO REFERENCE I/O SPACE . . . A-18

CHAPTER 1
INTRODUCTION

1-Feb-88 -- Rev 6

1.1 INTRODUCTION

VAX-11 represents a significant extension of the PDP-11 family
architecture, It shares with the PDP-11 byte addressing, similar 1/0

and interrupt structures, and identical data formats. Although the
instruction set is not strictly compatible with the PDP-11, it is
related, and can be mastered easily by a PDP-11 programmer. Likewise

the similarity enables straightforward manual conversion of existing
PDP-11 programs to VAX-11. Existing user mode PDP-11 programs which do
not need the extended features of VAX-11 can run unchanged in the PDP-11
compatibility mode provided in VAX-11.

As compared to the PDP-11, VAX-1l1 offers a greatly extended virtual
address space, additional 1instructions and data types, and new
addressing médes. Also provided is a sophisticated memory management
and protection mechanism, and hardware assisted process scheduling and
synchronization.

A number of specific goals guided the VAX-11 desiqgn:

1. Maximal compatibility with the PDP-11 consistent with a
significant extension of the virtual address space, and a
significant functional enhancement.

2. High bit efficiency. This is achieved by a wide range of data
types and new addressing modes. PDP-11 programs naively
translated to VAX-11 should not grow significantly in size;
while programs redesigned to exploit VAX-11 should get smaller
despite the extended virtual address space.

3. A systematic, elegant instruction set with orthogonality of
operators, data types, and addressing modes. This enables the
instruction set to be exploited easily, particularly by high
level language processors.

Introduction 1-Feb-82 -- Rev 6 Page 1-2
INTRODUCTION

4. Extensibility. The instruction set is designed so that new
data types and operators can be included efficiently in a
manner consistent with the currently defined operators and data
types.

5. Range. The architecture should be suitable over the entire
range of PDP-11 computer system implementations currently sold
by Digital Equipment Corporation.

The VAX-11 Architecture Reference Manual describes the architecture of
VAX-11 and applies to all implementations of VvAX-11 systems.

1.2 TERMINOLOGY AND CONVENTIONS
1.2.1 Numbering

All numbers unless otherwise indicated are decimal. Where there 1is
ambiguity, numbers other than decimal are indicated with the base in
English following the number in parentheses (e.g., FF (hex)).

1.2.2 UNPREDICTABLE And UNDEFINED

Results specified as UNPREDICTABLE may vary from moment to moment,
implementation to implementation, and instruction to instruction within
implementations. Software can never depend on results specified as
UNPREDICTABLE. Operations specified as UNDEFINED may vary from moment
to moment, implementation to implementation, and instruction to
instruction within implementations. The operation may vary in effect
from nothing to stopping system operation. UNDEFINED operations must
not cause the processor to hang i.e. reach an unhalted state from which
there is no transition to a normal state in which the machine executes
instructions. Note the distinction between result and operation.
Non-privileged software can not invoke UNDEFINED operations.

1.2.3 Ranges And Extents

Ranges are specified in English and are inclusive (e.g., a range of
integers @ through 4 includes the integers 0, 1, 2, 3, and 4.) Extents
are specified by a pair of numbers separated by a colon and are
inclusiv (i.e. bits 7:3 specifies an extent of bits including bits 7,
6, 5, 4, and 3).

Introduction 1-Feb-80 -- Rev 5 Page 1-3
TERMINOLOGY AND CONVENTIONS

1.2.4 MBZ

Fields specified as MBZ (Must Be Zero)} should never be filled by
software with a non-zero value. TIf the processor encounters a non-zero
value in a field specified as MBZ, a reserved operand fault or abort
occurs (see Chapter 4, Exceptions and Interrupts) if that field is
accessible to non-privileged software. MBZ fields that are accessible
only to privileged software (kernel mode) may not be checked for
non-zero value by some or all VAX-11 implementations. Non-zero wvalues
in MBZ fields accessible only to privileged software may produce
UNDEFINED operation.

1.2.5 Reserved

Unassigned values of fields are reserved for future use. In many cases,
some values are 1indicated as reserved to CSS/customers. Only these
values should be used for non-standard applications. The values
indicated as reserved to DEC and all MBZ fields are to be used only to
extend the standard architecture in the future.

1.2.6 Figure Drawing Conventions

Figures which depict registers or memory follow the convention that
increasing addresses run right to left and top to bottom.

CHAPTER 2
BASIC ARCHITECTURE

29-Feb-80 -- Rev 6

2.1 ADDRESSING

The basic addressable unit in VAX-11 is the 8-bit byte. Virtual
addresses are 32 bits long: hence the virtual address space is 2%**32
(approximately 4.3 billion) bytes. Virtual addresses as seen by the
program are translated into physical memory addresses by the memory
Mmanagement mechanism described in Chapter 5.

2.2 DATA TYPES

2.2.1 Byte

A byte is 8 contiguous bits starting on an addressable byte boundary.
The bits are numbered from the right # through 7:

A byte is specified by its address A. When interpreted arithmetically,
a byte is a twos complement integer with bits of increasing significance
going @ through 6 and bit 7 the sign bit. The value of the integer is
in the range -128 through 127, For the ©purposes of addition,
subtraction, and comparison, VAX-11 instructions also provide direct
support for the interpretation of a byte as an unsigned integer with
bits of increasing significance going 0 through 7. The wvalue of the
unsigned integer is in the range @ through 255,

Basic Architecture 29-Feb-80 -- Rev 5 Page 2-2
DATA TYPES

2.2.2 Word

A word is 2 contiguous bytes starting on an arbitrary byte boundary.
The bits are numbered from the right 0 through 15:

A word is specified by its address A, the address of the byte containing

bit @. When interpreted arithmetically, a word is a twos complement
integer with bits of increasing significance going @ through 14 and bit
15 the sign bit. The value of the integer is in the range -32,768

through 32,767. For the purposes of addition, subtraction and
comparison, VAX-11 instructions also provide direct support for the
interpretation of a word as an unsigned integer with bits of 1increasing
significance going @ through 15. The value of the unsigned integer 1is
in the range 8 through 65,535.

2.2.3 Longword

A longword is 4 contiguous bytes starting on an arbitrary byte boundary.
The bits are numbered from the right 0 through 31:

A longword is specified by its address A, the address of the byte
containing bit #. When interpreted arithmetically, 2 longword is a twos
complement integer with bits of increasing significance going 9 through
39 and bit 31 the sign bit. The value of the integer is in the range
-2,147,483,648 through 2,147,483,647. For the purposes of addition,
subtraction, and comparison, VAX-11 instructions also provide direct
support for the interpretation of a longword as an unsigned integer with
bits of increasing significance going @ through 31. The value of the
unsigned integer is in the range @ through 4,294,967,295.

Note that the longword format is different from the longword format
defined by the PDP-11 FP-11l. In that format, bits of increasing
significance go from 16 through 31 and @ through 14. Bit 15 is the sign
bit. Most DEC software and in particular PDP-11 FORTRAN and COBOL use
the VAX-11 longword format.

Basic Architecture 29-Feb-80 -- Rev 5 Page 2-3
DATA TYPES

2.2.4 Quadword

A quadword is 8 contiguous bytes starting on an arbitrary byte boundary.
The bits are numbered from the right @ through 63:

3

1]
o +

| | :A
o e +
| | :A+4
e e e +

5 3

3 2

A quadword is specified by its address A, the address of the byte
containing bit #. When interpreted arithmetically, a quadword is a twos
complement integer with bits of increasing significance going ¢ through
62 and bit 63 the sign bit. The value of the integer is in the range
=2**63 to 2**63-1. The quadword data type is not fully supported by
VAX-11 instructions.

2.2.5 Octaword

A octaword 1is 16 contiguous bytes starting on an arbitrary byte
boundary. The bits are numbered from the right @ through 127:

3

1 4]
o +

| | :A
o +

| | :A+4
o +

I | :A+8
A +
| | :A+12
P +

1 9

2 6

7

A octaword is specified by its address A, the address of the byte
containing bit @. When interpreted arithmetically, a octaword is a twos
complement integer with bits of increasing significance going @ through
126 and bit 127 the sign bit. The value of the integer is in the range
-2**127 to 2**127-1. The octaword data type is not fully supported by
VAX-11 instructions.

Basic Architecture 29-Feb-88 -- Rev 5 Page 2-4
DATA TYPES

2.2.6 F floating

A F floating datum is 4 contiguous bytes starting on an arbitrary byte
boundary. The bits are labelled from the right @ through 31.

11

5 4 75 9]
fobm I +

S| exp | fraction | A
fo o — +

| fraction | A+2
o e — +

A F_floating datum is specified by its address A, the address of the
byte containing bit #. The form of a F floating datum is sign magnitude
with bit 15 the sign bit, bits 14:7 an excess 128 binary exponent, and
bits 6:0 and 31:16 a normalized 24-bit fraction with the redundant most
significant fraction bit not represented. Within the fraction, bits of
increasing significance go from 16 through 31 and 0 through 6. The
8-bit exponent field encodes the values @ through 255. An exponent
value of @ together with a sign bit of @, is taken to indicate that the
F floating datum has a value of 0. Exponent values of 1 through 255
indicate true binary exponents of -127 through +127. An exponent value
of @, together with a sign bit of 1, is taken as reserved. Floating
point instructions processing a reserved operand take a reserved operand
fault (See Chapter 4 and 6). The value of a F_floating datum is in the
approximate range .29*1g**-38 through 1.7*1¢**38. The precision of a
F_floating datum is approximately one part in 2%%23 i,e., typically 7
decimal digits.

2.2.7 D _floating

A D floating datum is 8 contiguous bytes starting on an arbitrary byte
boundary. The bits are labelled from the right @ through 63:

11

5 4 76 2
o fomm +

s exp | fraction | :A
Fodm e — fomm e +

| fraction | 1A+2
e +

| fraction | :a+4
e +

| fraction | :A+56
ittt bbb +

A D _floating datum is specified by its ad s A, the address of the

dres
byte containing bit @. The form of a D _floating datum is identical to a
floating datum except for an additional 32 1low significance fraction
bits. Within the fraction, bits of increasing significance go 48
through 63, 32 through 47, 16 through 31, and @ through 6. The exponent

Basic Architecture 29-Feb-80 -- Rev 6 Page 2-5
DATA TYPES

conventions, and approximate range of values is the same for D floating
as F_floating. The precision of a D floating datum is approximately one
part in 2**55, i.e., typically 16 decimal digits.

2.2.8 G_floating

A G_floating datum is 8 contiguous bytes starting on an arbitrary byte
boundary. The bits are labelled from the right ¢ through 63:

11

5 4 4 3]
e~ o +

Is| exp | fract | :a
. oo +

| fraction | :A+2
o _ +

| fraction | :A+4
o e ___ +

| fraction | :A+6
e +

A G_floating datum is specified by its address A, the address of the
byte containing bit @. The form of a G_floating datum is sign magnitude
with bit 15 the sign bit, bits 14:4 an excess 1024 binary exponent, and
bits 3:0 and 63:16 a normalized 53-bit fraction with the redundant most
significant fraction bit not represented. Within the fraction, bits of
increasing significance go 48 through 63, 32 through 47, 16 through 31,
and @ through 3. The 1ll-bit exponent field encodes the values 0 through
2047, An exponent value of @ together with a sign bit of 9, is taken to
indicate that the G_floating datum has a value of 0. Exponent values of
1 through 2047 indicate true binary exponents of -1623 through +1023.
An exponent value of @, together with a sign bit of 1, is taken as
reserved. Floating point 1instructions processing a reserved operand
take a reserved operand fault (See Chapter 4 and 6). The wvalue of a
G_floating datum 1is in the approximate range ,56*10**-3g8 through
.9*10**3098., The precision of a G_floating datum 1is approximately one
part in 2**52, i,e., typically 15 decimal digits.

2.2.9 H_floating

A H_floating datum is 15 contiguous bytes starting on an arbitrary byte
boundary. The bits are labelled from the right @ through 127:

Basic Architecture 29-Feb-80 -- Rev 6 Page 2-5%
DATA TYPES

11

5 4 0
S +

13 exponent | A
S +

| fraction | :A+2
gy g +

| fraction | :A+4
e +

| fraction | :A+5
e +

| fraction | :A+8
o +

| fraction | :A+10
e +

| fraction | :a+12
S +

| fraction | :A+14
et +

A H floating datum is specified by its address A, the address of the
byte containing bit #. The form of a H_floating datum is sign magnitude
with bit 15 the sign bit, bits 14:0 an excess 16384 binary exponent, and
bits 127:16 a normalized 113-bit fraction with the redundant most
significant fraction bit not represented. Within the fraction, bits of
increasing significance go 112 through 127, 96 through 111, 8P through
95, 64 through 79,48 through 53, 32 through 47, and 15 through 31. The
15-bit exponent field encodes the values 9 through 32767. An exponent
value of @ together with a sign bit of 4, is taken to indicate that the
H floating datum has a value of #. Exponent values of 1 through 32767
indicate true binary exponents of -16383 through +163383. An exponent
value of @, together with a sign bit of 1, is taken as reserved.
Floating point instructions processing a reserved operand take a
reserved operand fault (See Chapter 4 and 6). The value of a H floating
datum is in the approximate range .84%*19**-4932 through .59%1¢**4932.,
The precision of a H floating datum is approximately one part in 2%*112,
i.e., typically 33 decimal digits.

2.2.10 Variable Length Bit Field

A variable bit field is @ to 32 contiguous bits located arbitrarily with
respect to byte boundaries. A variable bit field is specified by 3
attributes: the address A of a byte, a bit position P which 1is the
starting location of the field with respect to bit 0 of the byte at A,
and a size S of the field. The specification of a bit field is
indicated by the following where the field is the shaded area.

Basic Architecture 29-Feb-80 -- Rev 5 Page 2-7
DATA TYPES

P+S P+S-1 P P-1 2
T Togu—— P Fm +
l L/777777777777777/777771 I :a
e T Fo b +
S-1 7

For bit strings in memory, the position is in the range -2**31 through
2**31-1 and is conveniently viewed as a signed 29-bit byte offset and a
3-bit bit-within-byte field:

The sign extended 29-bit byte offset is added to the address A and the
resulting address specifies the byte in which the field begins. The
3-bit bit-within-byte field encodes the starting position (# through 7)
of the field within that byte. The VAX-11 field instructions provide
direct support for the interpretation of a field as a signed or unsigned
integer. When interpreted as a signed integer, it is twos complement
with bits of increasing significance going @ through 5-2; bit S-1 |is
the sign bit. When interpreted as an unsigned integer, bits of
increasing significance go from 0 to S-1. A field of size 0 has a value
identically equal to 0.

A variable bit field may be contained in 1 to 5 bytes. From a memory
management point of view (Chapter 5) only the minimum number of bytes
necessary to contain the field is actually referenced.

For bit fields in registers, the position is in the range 9 through 31.
The position operand specifies the starting position (@ through 31) of
the field in the register. A variable bit field may be contained in 2
registers if the sum of position and size exceeds 32.

3

1 P P-1]
L P +

W/ /77777771 | Rn
o +
| \/7///7///7///1 Rin+1]
P e +
P+S P+S-1

For further details on the specification of variable length bit fields
see Chapter 4.

Basic Architecture 29-Feb-80 -- Rev % Page 2-8
DATA TYPES

2.2.11 Character String

A character string is a contiguous sequence of bytes in memory. A
character string 1is specified by 2 attributes: the address A of the
first byte of the string, and the length L of the string in bytes. Thus
the format of a character string is:

7 a
B +

| | A
Tttt +
- +

| | +A+L-1
o +

7 (4]

The address of a string specifies the first character of a string. Thus
"YXyzZ" is represented:

fomm e +

‘ IIX" | A
ettt +

l “Y" | :A+l
fom e +
A | tA+2
fomm +

The length L of a string is in the range @ through 65,535.

2.2.12 Trailing Numeric String

A trailing numeric string is a contiguous sequence of bytes in memory.
The string is specified by 2 attributes : the address A of the first
byte (most significant digit) of the string, and the length L of the
string in bytes.

All bytes of a trailing numeric string, except the least significant
digit byte, must contain an ASCII decimal digit character (6-9). The
representation for the high order digits is:

Basic Architecture 29-Feb-80 -- Rev 5 Page 2-9
DATA TYPES

digit decimal hex ASCII character
0 48 30 @
1 49 31 1
2 50 32 2
3 51 33 3
4 52 34 4
5 53 35 5
6 54 35 6
7 55 37 7
8 56 38 8
9 57 39 9

The highest addressed byte of a trailing numeric string represents an
encoding of both the least significant digit and the sign of the numeric
string. The VAX numeric string instructions support any encoding;
however there are 3 preferred encodings used by DEC software. These are
(1) unsigned numeric in which there is no sign and the least significant
digit contains an ASCII decimal digit character, (2) zoned numeric, and
(3) overpunched numeric. Because the overpunch format has been used by
compilers of many manufacturers over many vyears, and because various
card encodings are used, several variations in overpunch format have
evolved. Typically, these alternate forms are accepted on input; the
normal form is generated as the output for all operations. The wvalid

representations of the digit and sign in each of the later two formats
is:

Basic Architecture 29-Feb-8¢ -- Rev 5 Page 2-10
DATA TYPES

Representation of Least Significant Digit and Sign

Zoned Numeric Format Overpunch Format
digit | decimal hex ASCII | decimal hex ASCII char
| char | norm alt.
l |
? l 48 30 0 \ 123 78 { 01 °2
1 | 49 31 1 | 65 41 A 1
2 | 50 32 2 | 66 42 B 2
3 | 51 33 3 | 57 43 C 3
4 | 52 34 4 | 68 44 D 4
5 | 53 35 5 | 69 45 E 5
6 | 54 36 6 | 79 46 F 6
7 | 55 37 7 | 71 47 G 7
8 | 56 38 8 | 72 48 H 8
9 | 57 39 9 | 73 49 1 9
-0 | 112 70 P | 125 7D } 11
-1 | 113 71 q | 74 Y.\ J
-2 | 114 72 r | 75 4B K
-3 | 115 73 S | 76 AC L
-4 | 116 74 t | 77 4D M
-5 | 117 75 u | 78 4E N
-6 | 118 76 v | 79 4F 0
-7 | 119 77 w | 80 50 P
-8 | 129 78 X | 81 51 Q
-9 | 121 79 y | 82 52 R

The length L of a trailing numeric string must be in the range 0 to 31
(6 to 31 digits). The value of a @ length string is identically @.

The address A of the string specifies the byte of the string containing
the most significant digit. Digits of decreasing significance are
assigned to increasing addresses. Thus "123" is represented:

Basic Architecture 29-Feb-80 -- Rev 6 Page 2-11
DATA TYPES

Zoned Format or Unsigned Overpunch Format

7 4 3 a 7 4 3 U]
Fom———— R + fomm - R +

| 3 I 1 | A I 3 | 1 | A
e fom + R tomm +

| 3] 2 | : A+l | 3 | 2 | A+l
o —— Fomm e + domm - tom +

| 3 | 3 ! A+2 I 4 | 3 | s A+2
R Fomm + o R +

and "-123" is represented

Zoned Format Overpunch Format

7 4 3 @ 7 4 3 [}
e tem + teo—————- tom———— +

I 3 I 1 I A l 3 ! 1 | A
Frm———— i + - o +

! 3 ! 2 [« A+l | 3 | 2 | : A+l
Fo————— R + R - +

| 7 | 3 | A+2 | 4 J C I+ A+2
Fom———— to————— + tom———— - +

2.2.13 Leading Separate Numeric String

A leading separate numeric string is a contiguous sequence of bytes in
memory. A leading separate numeric string is specified by 2 attributes:
the address A of the first byte (containing the sign character), and a
length L, which is the length of the string in digits and NOT the length
of the string in bytes. The number of bytes in a 1leading separate
numeric string is L+1.

The sign of a separate leading numeric string is stored in a separate
byte. Valid sign bytes are:

Sign decimal hex ASCII character
+ 43 2B +
+ 32 20 <blank>
- 45 2D -
The preferred representation for "+" is ASCII "+". All subsequent bytes

contain an ASCIT digit character:

Basic Architecture 29-Feb-80 -- Rev 5 Page 2-12
DATA TYPES
digit decimal hex ASCITI character

%) 48 30 6]

1 49 31 1

2 50 32 2

3 51 33 3

4 52 34 4

5 53 35 5

6 54 36 6

7 55 37 7

8 56 38 8

9 57 39 9

The length L of a leading separate numeric string must be in
to 31 (0 to 31 digits). The value of a @ length string is
a.

The address A of the string specifies the byte of the string
the sign. Digits of decreasing significance are assigned
increasing addresses. Thus "+123" is:

7 4 3]
e frmm——— +

l 2 | B | A
=== Fommm——- |

I 3 | 1 | ¢ A+l
| ———===- to—-—— |

| 3 | 2 | ¢ A+2
=== t--m——— |

| 3 | 3 | : A+43
SRS ——— R +

and "-123" is:

7 4 3 [9)

fom e b +

| 2 | D | A
=== to————- |

| 3 | 1 |+ A+l
|===—==—- tmmm——— |

| 3 | 2 |+ A+2
[-mmm e o !

| 3 | 3 | ¢ A+3
FRERE b +

the range 0
identically

containing
to bytes of

Basic Architecture 29-Feb-80 -- Rev 4§ Page 2-13
DATA TYPES

2.2.14 Packed Decimal String

A packed decimal string is a contiquous sequence of bytes in memory. a
packed decimal string is specified by 2 attributes: the address A ot
the first byte of the string and a length L which is the number of
digits in the string and NOT the length of the string in bytes. The
bytes of a packed decimal string are divided into 2 4-bit fields
(nibbles) which must contain decimal digits except the low nibble (bits
3:3) of the last (highest addressed) byte which must contain a sign.
The representation for the digits and sign is:

digit or sign decimal hex
@ 0 @
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 5 5
7 7 7
8 8 8
9 9 9
+ 19,12,14 or 15 A,C,E, or F
- 11 or 13 B, or D

The preferred sign representation is 12 for "+" and 13 for "-r, The

length L is the number of digits in the packed decimal string (not
counting the sign) and must be in the range @ through 31. When the
number of digits is odd, the digits and the sign fit in L/2 (integer
part only) + 1 bytes., When the number of digits is even, it is required
that an extra "gv digit appear in the high nibble (bits 7:4) of the
first byte of the string., Again the length in bytes of the string is
L/2 + 1.

The address A of the string specifies the byte of the string containing
the most significant digit in its high nibble. Digits of decreasing
significance are assigned to increasing byte addresses and from high
nibble to low nibble within a byte. Thus "+123" has length 3 and is
represented:

7 4 3 4]

N Fommm +

| 1 | 2 | A
Fommm e Fomm +

I 3 | 12 | A+ 1
B S +

and "-12" has length 2 and is represented:

Basic Architecture 29-Feb-84 -- Rev 5 Page 2-14
DATA TYPES

7 4 3 0
fmmm———— fm————— +

|) | 1 | A
e e +

| 2 | 13 | A+ 1
o fommm———— +

Basic Architecture 29-Feb-80 -- Rev 6 Page 2-15
PROCESSOR STATE

2.3 PROCESSOR STATE

The processor state consists of that portion of a process's state which,
while the process is executing, is stored in processor registers rather
than memory. The processor state described here consists of that
accessible to non-privileged software. Certain additional processor
state is described in Chapters 5, 5, and 7.

The non-privileged processor state includes 156 32-bit general purpose
registers denoted Rn where n is in the range @ through 15 and a 16-bit
processor status word (PSW). Where there is ambiquity (e.g., n 1is an
arithmetic expression) +the notation R(n] is also used to denote the
register. The general purpose registers are used for temporary storage,
accumulators, index registers, and base registers. A register
containing an address is termed a base register. A register containing
an address offset (in multiples of operand size, see Chapter 3) is
termed an index register.

The bits of a register are numbered from the right @ through 31:

Certain of the registers are assigned special meaning by the VAX-11
architecture:

1. R15 is the program counter (PC). PC contains the address of
the next instruction byte of the program.

2. Rl4 is the stack pointer (SP). SP contains the address of the
top of the processor defined stack.

3. R13 is the current frame pointer (FP). The VAX-11 procedure
call convention (see VAX/VMS Run Time Library Reference Manual)
builds a data structure on the stack called a stack frame. FP
contains the address of the base of this data structure.

4. R12 is the argument pointer (AP). The VAX-11 procedure call
convention uses a data structure termed an argument list. AP
contains the address of the base of this data structure.

Note that these registers are all used as base registers. The
assignment of special meaning to these registers does not generally
preclude their use for other purposes. However, as will be seen 1in
Chapter 3, PC cannot be used as an accumulator, temporary, or index
register.

When a datum of type byte, word, longword, or F_floating is stored in a
register, the bit numbering in the register corresponds to the numbering

Basic Architecture 29-Feb-80 -- Rev & Page 2-16
PROCESSOR STATE

in memory. Hence a byte is stored in register bits 7:0, a word in
register bits 15:0, and longword or F_floating, in register bits 31:0.
A byte or word written to a register writes only bits 7:0 and 15:0
respectively; the other bits are unaffected. A byte or word read from
a register reads only bits 7:0 and 15:9 respectively; the other bits
are ignored.

When a quadword, D _floating or G floating datum is stored in a vregister
R[n], it 1is actually stored in 2 adjacent registers Rln] and R[n+1l].
Because of restrictions on the specification of PC (see Chapter 3)
wraparound from PC to R@ is UNPREDICTABLE. Bits 31:0 of the datum are
stored in bits 31:0 of register Rin] and bits 63:32 of the datum are
stored in bits 31:08 of register R[{n+l].

When an octaword or a H floating datum is stored in register R[nl, it is
actuall stored in adjacent registers R[nl, Rin+l), R[n+2], and R{n+3].
Because of restrictions on the specification of PC (see Chapter 3)
wraparound from PC to RO is UNPREDICTABLE. Bits 31:0 of the datum are
stored in bits 31:8 of register R{n], bits 63:32 1in bits 31: 8 of
register R([n+l]l, Dbits 95:64 in bits 31:0 of register R[n+2], and bits
127:96 in bits 31:0 of register R[n+3].

With one restriction, a variable length bit field may be specified in
the registers: the starting bit position P must be in the range ¢
through 31. As for quadword, D floating, and G floating, a pair of
registers R{n] and R[n+l] is treated as a 54-bit register with bits 31:0
in register R[n] and bit 53:32 in register R[n+1l].

None of the string data types stored in registers can be processed by
the VAX-11 string 1instructions. Thus there is no architectural

specification of the representation of strings in registers.

Basic Architecture 29-Feb-80 -- Rev 5 Page 2-17
PROCESSOR STATUS WORD

24 PROCESSOR STATUS WORD

The processor status word (PSW) contains the condition codes which give
information on the results produced by previous instructions and the

exception enables which control the processor action on certain
exception conditions (see Chapter 5). The format of the PSW is:
1
5 8 7654321090
Frm -ttt -ttt -+
| IDIFITL | | | | |
1 MB?Z IVIUIVITIN|ZIVIC]
e t—t—F—t—F—t—4—f—+

The condition codes are UNPREDICTABLE when they are affected by
UNPREDICTABLE results. The VAX-11 procedure call instructions (See
Chapter 4) conditionally set the IV and DV enables, clear the FU enable,
and leave the T enable unchanged at procedure entry.

2.4.1 C Bit

When set, the ¢ (carry) condition code bit indicates the last
instruction which affected C had a carry out of the most significant bit
of the result or a borrow into the most significant bit. When C is

clear, there was no carry or borrow.

2.4.2 Vv Bit

When set, the V (overflow) condition code bit indicates that the last
instruction which affected Vv produced a result whose magnitude was too
large to be properly represented in the operand which received the
result or there was a conversion error. When V is clear, there was no
overflow or conversion error.

2.4.3 7 Bit
When set, the 7 (zero) condition code indicates that the last

instruction which affected Z produced a result which was 0. When 2 is
clear, the result was non-zero.

2.4.4 N Bit

When set, the N (negative) condition code bit indicates that the last
instruction which affected N produced a result which was negative. When

N is clear, the result was positive (or zero).

Basic Architecture 29-Feb-80 -- Rev A Page 2-18
PROCESSOR STATUS WORD

2.4.5 T Bit

When set at the beginning of an instruction, the T (trace) bit causes
the TP bit in the Processor Status Longword to be set (see Chapter 5).
When TP is set at the end of an instruction, a trace fault 1is taken
before the execution of the next instruction. See Chapter 6 for
additional information on the trace fault.

2.4.6 IV Bit

When set, the IV (integer overflow) bit forces an integer overflow trap
after execution of an instruction which produced an integer result that
overflowed or had a conversion error. When IV is clear, no integer
overflow trap occurs. (However, the condition code V bit is still set.)

2.4.7 FU Bit

When set, the FU (floating underflow) bit forces a floating wunderflow
fault if the result of a floating point instruction is too small in
magnitude to be represented in the result operand. When FU is clear, no
underflow fault occurs.

2.4.8 DV Bit

When set, the DV (decimal overflow) bit forces a decimal overflow trap
after execution of an instruction which produced an overflowed decimal
(numeric string, or packed decimal) result or had a conversion error.
Wwhen DV is clear, no trap occurs. (However, the condition code V bit is
still set.)

Basic Architecture 29-Feb-80 -- Rev 6 Page 2-19
PERMANENT EXCEPTION ENABLES

2.5 PERMANENT EXCEPTION ENABLES

The processor action on certain exception conditions is not controlled
by bits in the PSW. Traps or faults always result from these exception
conditions.

2.5.1 Divide By Zero

A divide by zero trap is forced after the execution of integer, or
decimal division 1instruction which has a zero divisor. A fault occurs
on a floating division instruction which has a zero divisor.

2.5.2 Floating Overflow

A floating overflow fault is forced after the execution of a floating
point instruction which produced a result too large to be represented in
the result operand.

2.6 INSTRUCTION FORMAT

VAX-11 has a variable 1length instruction format. An instruction
specifies an operation and 0 to & operands. An operation specifier is
termed an opcode. Depending on the instruction the opcode is 1 or 2
bytes long. An operand specifier indicates the addressing mode used to
access the operand and may be 1 or 2 bytes. An operand specifier may be
followed by a specifier extension, an address, or immediate data. The
format of an n operand instruction is:

opcode

operand specifier 1

specifier extension, address, or immediate data 1 (if needed)
operand specifier 2

operand specifier n

specifier extension, address, or immediate data n (if needed)

See Chapter 3 for a full description of addressing modes. See Chapter 4
for a definition of the instructions. See Appendix A for a summary of
all operands, instructions, and their binary assignments.

Basic Architecture 29-Feb-80 -- Rev & Page 2-20
SEPARATION OF PROCEDURE AND DATA

2.7 SEPARATION OF PROCEDURE AND DATA

The VAX-11 architecture encourages (and provides the mechanisms to
facilitate) separation of procedure (instructions) and writable data.
Procedures may not write data which is to be subsequently executed as an
instruction without an intervening REI instruction being executed (Sece
Chapter 6) or an intervening context switch occurring (See Chapter 7).
1f no REI or context switch occurs between a procedure writing data as
instructions to be executed, and those instructions being executed, the
instructions executed are UNPREDICTABLE.

2.8 1/0 STRUCTURE

Generally, the VAX-11 I/O structure closely follows that of the PDP-11.
An I/0 device controller is defined by a set of registers. The

registers are assigned addresses in the physical address space.
Commands are issued to I/0 controllers by the processor writing these
registers; controllers return status by writing these registers and the

processor subsequently reading them. Since the registers have memory
addresses, ordinary instructions can read or write them; no special I/0
instructions are needed. The normal memory management mechanism
controls access to device controller registers.

2.9 INTERRUPT STRUCTURE

A VAX-11 processor provides a 32 level vectored priority interrupt
system. This is described in detail in Chapter 6.

CHAPTER 3
INSTRUCTION FORMATS AND ADDRESSING MODES

5-May-80 -- Rev 7

3.1 OPCODE FORMATS

An instruction is specified by the byte address A of its opcode:

The opcode may extend over 2 bytes; the length depends on the contents
of the byte at address A. If, and only if, the value of the byte is FC
(hex) through FF (hex) is the opcode 2 bytes long:

Instruction Formats and Addressing Modes 5-May-88 -- Rev 7 pPage 3-2
OPERAND SPECIFIERS

32 OPERAND SPECIFIERS

Each instruction takes a specific sequence of operand specifier types.
An operand specifier type conceptually has two components: the access
type and the data type.

The access types include:
1. Read - the specified operand is read only.
2. Write - the specified operand is written only.

3. Modify - the specified operand is read, potentially modified,
and written. This is not done under a memory interlock.

4. Address - the address of the specified operand in the form of a
longword is the actual instruction operand. The specified
operand is not accessed directly although the instruction may
subsequently use the address to access that operand.

5. Variable bit field base address - same as address access type
except for register mode. In register mode, the field is
contained in register n designated by the operand specifier (or
register n+l concatenated with register n). This access type
is a special variant of the address access type.

6. Branch - no operand is accessed. The operand specifier itself
is a branch displacement.

Types 1 - 5 are termed general mode addressing and are discussed 1in
Section 3.4. Type 6 is termed branch mode addressing and is discussed
in Section 3.6.
The data types include:

1. Byte

2. Word

3. Longword and F_floating which are equivalent for addressing
mode considerations.

4, Quadword, and D floating and G floating which are similarly
equivalent.

5. Octaword and H floating which are also similarly equivalent.

For the address and branch access types which do not directly reference
operands, the data type indicates:

1. Address - the operand size to be wused in the address
calculation in autoincrement, autodecrement, and index modes.

Instruction Formats and Addressing Modes 5-May-80 -- Rev 7

Page 3-3
OPERAND SPECIFIERS

2. Branch - the size of the branch displacement,

Instruction Formats and Addressing Modes 5-May-80 -- Rev 7 Page 3-4
NOTATION

3.3 NOTATION

To describe the addressing modes the following is used:

+ - addition

- - subtraction

* - multiplication
<- - is replaced by

= - is defined as

- concatenation

Rn or R[n] - the contents of register n

PC or SP - the contents of register
15 or 14 respectively

NOTE

In the formal descriptions of the
addressing modes Rn or PC, for example,
always means the contents of register n or
register 15. When there is no ambiguity,
Rn or PC, for example, is often used in
text as the name of register n or register

15.

(x) — the contents of a location in memory
whose address is x.

{1 - arithmetic parentheses used
to indicate precedence

SEXT (x) - x is sign extended to size
of operand needed

ZEXT (%) - x is zero extended to size
of operand needed

0OA - operand address

! - comment delimiter

Each general mode addressing description includes the definition of the
operand address, and the specified operand. For operand specifiers of
address access type, the operand address is the actual instruction
operand; for other access types the specified operand 1is the
instruction operand. The branch mode addressing description includes
the definition of the branch address.

Instruction Formats and Addressing Modes 5-May-80 -- Rev 7 Page 3-5
GENERAL MODE ADDRESSING FORMATS

34 GENERAL MODE ADDRESSING FORMATS
3.4.1 Register Mode

The operand specifier format is:

No specifier extension follows.

In register mode addressing the operand is the contents of register n
(or register n+l concatenated with register n for quadword, D floating,
and certain field operands):

operand = Rn 'if one register
or
R{n+1]'Rn 'if two registers
or
R{n+3]'R[n+2]'R[n+1]"'Rn 'if four registers

Because registers do not have memory addresses, the operand address is
not defined, and register mode may not be used for operand specifiers of
address access type (except in the case of the base address for variable
bit field instructions, see Chapter 4). If it is, an illegal addressing
mode fault results (See Chapter 6). PC may not be used in register mode
addressing. If PC is read, the value read is UNPREDICTABLE. If PC is
written, the next instruction executed or the next operand specified is
UNPREDICTABLE. Likewise, SP may not be used in register mode addressing
for an operand which takes two adjacent registers. Again, if it is, the
results are UNPREDICTABLE in the same fashion. If PC is used in
register mode for a write access type operand which takes 2 adjacent
registers, the contents of R@ are UNPREDICTABLE. If R12, R13, SP, or PC
are used in register mode addressing for an operand which takes four
adjacent registers, the results are UNPREDICTABLE. TIf PC is used in
register mode for a write access type operand which requires 4 adjacent
registers, the contents of R@, R1l, and R2 are UNPREDICTABLE. Likewise,
if R13 is used in register mode for a write access type operand which
takes 4 adjacent registers, the contents of RO are UNPREDICTABLE; and,
if SP is used in register mode for a write access type operand which
takes 4 adjacent registers, the contents of RO and Rl are UNPREDICTARBLE.

The assembler notation for register mode is Rn.

Instruction Formats and Addressing Modes 5-May-80 -- Rev 7 Page 3-6
GENERAL MODE ADDRESSING FORMATS
3.4.2 Register Deferred Mode

The operand specifier format is:

No specifier extension follows.

In register deferred mode addressing, the address of the operand is the
contents of register n:

0OA = Rn

operand = (OA)
PC may not be used in register deferred mode addressing. 1If it is, the
address of the operand (and whether the operand is written if it 1is of

modify or write access type) is UNPREDICTABLE.

The assembler notation for register deferred mode is (Rn).

3.4.3 Autoincrement Mode

The operand specifier format is:

7 4 3 %)
fmm————— t—————— +
| 8 | Rn |
fo—m o +
No specifier extension follows. 1f Rn denotes PC, immediate data

follows, and the mode is termed immediate mode.

In autoincrement mode addressing, the address of the operand 1is the
contents of register n. After the operand address is determined, the
size of the operand in bytes (1 for byte; 2 for word; 4 for longword
and F_floating; 8 for quadword, G_floating and D _floating; and 16 for
octaword, and H floating)is added to the contents of register n and the

contents of register n is replaced by the result:
OA = Rn
Rn <- Rn + size
operand = (OA)
Immediate mode may not be used for operands of modify or write access

type. If immediate mode is used for an operand of modify access type,
the value of the data read is UNPREDICTABLE. If immediate mode is used

Instruction Formats and Addressing Modes 5-May-80 -- Rev 7 Page 3-7
GENERAL MODE ADDRESSING FORMATS

for an operand of modify or write access type, the address at which the
operand is written (and whether it is written) is UNPREDICTABLE.

The assembler notation for autoincrement mode is (Rn) +. For immediate

mode the notation is I"#constant where constant is the immediate data
which follows.

3.4.4 Autoincrement Deferred Mode

The operand specifier format is:

No specifier extension follows. If Rn denotes PC, a longword address
follows, and the mode is termed absolute mode.

In autoincrement deferred mode addressing, the address of the operand is
the contents of a longword whose address is the Contents of register n.
After the operand address is determined, 4 (the size in bytes of a
longword address) is added to the contents of register n and the
contents of register n is replaced by the result:

0A = (Rn)
Rn <- Rn + 4
operand = (0A)
The assembler notation for autoincrement deferred mode is @(Rn) +. For

absolute mode the notation is @kaddress where address is the longword
which follows.

Instruction Formats and Addressing Modes 5-May-88 -- Rev 7 page 3-8
GENERAL MODE ADDRESSING FORMATS

3.4.5 Autodecrement Mode

The operand specifier format is:

No specifier extension follows.

In autodecrement mode addressing, the size of the operand 1in Dbytes (1
for byte; 2 for word; 4 for longword and F_floating; 8 for quadword,
G_floating and D_floating; and 16 for octaword, and H floating Yis
subtracted from the contents of register n and the contents of register
n are replaced by the result. The updated contents of register n is the
address of the operand:

Rn <- Rn - size
OA = Rn
operand = (OA)

PC may not be used in autodecrement mode. 1If it is, the address of the
operand (and whether the operand is written if it is of modify or write
access type) is UNPREDICTABLE and the next instruction executed or the
next operand specified is UNPREDICTABLE.

The assembler notation for autodecrement mode is —(Rn).

Instruction Formats and Addressing Modes 5-May-8@ -- Rev 7 Page 3-9
GENERAL MODE ADDRESSING FORMATS
3.4.6 Displacement Mode

There are 3 operand specifier formats:

The specifier extension is a signed byte displacement, which follows the
operand specifier. This is termed byte displacement mode.

The specifier extension is a signed word displacement, which follows the
operand specifier. This is termed word displacement mode.

The specifier extension is a longword displacement, which follows the
operand specifier. This is termed longword displacement mode.

In displacement mode addressing, the displacement (after being sign
extended to 32 bits if it is byte or word) is added to the contents of
register n and the result is the operand address:

OA = Rn + SEXT(displ) !if byte or word displacement
or
Rn + displ 'if longword displacement
operand = (0A)

If Rn denotes PC, the updated contents of PC is used. The wupdated
contents of PC is the address of the first byte beyond the specifier
extension.

The assembler notation for byte, word, and 1long displacement mode is
B"D(Rn), W'D (Rn), and L"D(Rn) respectively where D = displ.

Instruction Formats and Addressing Modes 5-May-88 -- Rev 7 Page 3-10
GENERAL MODE ADDRESSING FORMATS

3.4.7 Displacement Deferred Mode

There are 3 operand specifier formats:

The specifier extension is a signed byte displacement, which follows the
operand specifier. This is termed byte displacement deferred mode.

The specifier extension is a signed word -displacement, which follows the
operand specifier. This is termed word displacement deferred mode.

The specifier extension is a longword displacement, which follows the
operand specifier. This is termed longword displacement deferred mode.

In displacement deferred mode addressing, the displacement (after being
sign extended to 32 bits if it is byte or word) is added to the contents
of register n and the result is the address of a longword whose contents
is the operand address:

OA = (Rn + SEXT(displ)) tif byte or word displacement
or
(Rn + displ) 1if longword displacement

operand = (0OA)

If Rn denotes PC, the updated contents of the PC is used. The updated
contents of PC is the address of the first byte beyond the specifier
extension.

The assembler notation for byte, word, and longword displacement
deferred mode is @B"D(Rn), @W'D(Rn), and @L"D(Rn) respectively where D =
displ.

Instruction Formats and Addressing Modes 5-May-88 -- Rev 7 Page 3-11

GENERAL MODE ADDRESSING FORMATS

3.4.8 Literal Mode

The operand specifier format is:

No specifier extension follows.

For operands of data type byte, word, longword, quadword, octaword
operand is the zero extension of the 5-bit literal field:

operand = ZEXT(literal)

Thus for these data types, literal mode may be used for wvalues 1in
range ¢ through 63.

For operands of data type F_floating, G floating, D floating,
H_floating, the 6-bit literal field is composed of 2 3-bit fields:

where exp is exponent and fra is fraction. The exp and fra fields
used to form a F floating or D floating operand as follows:

11

5 4 7 6 4 3 a
LT TP e R T +

19| 128 + exp | fra | 0 |
R T . Ty +

| g | :A+2
Fom . +

| 0 | :A+4
o ___ +

| 2 | :A+56
o __ +

where bits 63:32 are not present in a F floating operand.

the

the

and

are

Instruction Formats and Addressing Modes 5-May-88 -- Rev 7 Page 3-12
GENERAL MODE ADDRESSING FORMATS

The exp and fra fields are used to form a G _floating operand as follows:

11
5 4 4 3 1 0
b e — - - I -+
19| 1024 + exp | fra 101
b e — fom +—4+
| 0 | tA+2
SRS +
|) | :A+4
o +
| 0 | :A+6
S +

The exp and fra fields are used to form a H_floating operand as follows:

11

5 4 [4)
PR +

191 16384 + exp |
S +

| fra | 4] | :A+2
T e +

| 0 | :A+4
I +

| @ | :A+5
A +

| g | :A+8
fommmmm e mm e —m—— +

| 1% | :A+190
S +

|) | tA+12
S +

|) | :A+14
SRS S +

The range of values available is given in the following table:

E F -
|
\Y

7 1 2 3 4 5 6 7
g 1/2 9/16 5/8 11/16 3/4 13/16 7/8 15/16
1 1 1 1/8 1 1/4 1 3/8 11/2 1 5/8 1 3/4 1 7/8
2 2 2 1/4 2 1/2 2 3/4 3 31/4 31/2 3 3/4
3 4 4 1/2 5 5 1/2 6 5 1/2 7 7 1/2
4 8 9 10 11 12 13 14 15
5 16 18 20 22 24 26 28 30
6 32 36 40 44 48 52 56 50
7 64 72 80 88 96 104 112 120

Table 1. Floating Literals

Instruction Formats and Addressing Modes 5-May-88% -- Rev 7 Page 3-13
GENERAL MODE ADDRESSING FORMATS

Because there is no operand address, literal mode addressing may not be
used for operand specifiers of address access type. Literal mode
addressing may also not be used for operand specifiers of write or
modify access type. If literal mode is used for operand specifiers of
either address, modify, or write access type, an illegal addressing mode
fault results (see Chapter 5).

Literal mode addressing is a very efficient way of specifying integer
constants in the range § to 63 and the floating point constants given in
Table 1., Literal values outside the indicated range may be obtained by
autoincrement mode using PC (immediate mode) .

The assembler notation for literal mode is S“#literal.

3.4.9 Index Mode

The operand specifier format is:

Bits 15:8 contain a second operand specifier (termed the base operand
specifier) for any of the addressing modes except register, literal or
index. The specification of register, literal, or index addressing mode
results in an illegal addressing mode fault (see Chapter 6)., 1If the
base operand specifier requires a specifier extension, it immediately
follows. The base operand specifier is subject to the same restrictions
as would apply if it were used alone. If the use of some particular
specifier is 1illegal (i.e., causes a fault or UNPREDICTABLE behavior)
under some circumstances, then that specifier is similarly illegal as a
base operand specifier in index mode under the same circumstances.

The operand to be specified by index mode addressing is termed the

primary operand. The base operand specifier is used normally to
determine an operand address. This address is termed the base operand
address (BOA). The address of the primary operand specified 1is

determined by multiplying the contents of the index register x by the
size of the primary operand in bytes (1 for byte; 2 for word; 4 for
longword and F_floating; 8 for quadword, D_floating and G_floating;
and 16 for octaword, and H floating), adding BOA, and taking the result:

OA = BOA + {size * (Rx)}
operand = (OA)
If the base operand specifier is for autoincrement or autodecrement mode

the increment or decrement size is the size in bytes of the primary
operand.

Instruction Formats and Addressing Modes 5-May-80 -- Rev 7 Page 3-14
GENERAL MODE ADDRESSING FORMATS

Index mode addressing permits very general and efficient accessing of
arrays. The base address of the array is determined by the operand
address caculation of the base operand specifier. The contents of the
index register is taken as a logical index into the array. The logical
index is converted into a real (byte) offset by multiplying the contents
of the index register by the size of the primary operand in bytes.

Certain restrictions are placed on the index register x. PC cannot be
used as an index register. If it is, a reserved addressing mode fault
occurs (see Chapter 5). If the base operand specifier is -for an
addressing mode which results in register modification (i.e.
autoincrement mode, autodecrement mode, or autoincrement deferred mode),
the same register cannot be the index register. If it is, the primary
operand address is UNPREDICTABLE.

The names of the addressing modes resulting from index mode addressing
are formed by adding the suffix "indexed" to the addressing mode of the
base operand specifier. The following gives the names and assembler
notation. The 1index register is designated Rx to distinguish it from
the register Rn in the base operand specifier.

1. register deferred indexed - (Rn) [Rx]
2. autoincrement indexed - (Rn)+[Rx]
or immediate indexed - I "#constant[Rx] which is recognized by

the assembler but 1is not generally useful. Note that the
operand address is independent of the value of constant.

3. autoincrement deferred indexed - @ (Rn) +[Rx]

or absolute indexed - Rfaddress[Rx]
4. autodecrement indexed - -(Rn) [Rx]
5. byte, word, or longword displacement indexed -

B™D (Rn) [Rx],W"D (Rn) [Rx], or L"D(Rn) [Rx]

5. byte, word, or longword displacement deferred indexed -
@B"D (Rn) [Rx],@W"D (Rn) [Rx], or @L"D(Rn) [Rx]

Instruction Formats and Addressing Modes 5-May-80 -- Rev 7 Page 3-15
SUMMARY OF GENERAL MODE ADDRESSING

3.5 SUMMARY OF GENERAL MODE ADDRESSING

3.5.1 General Register Addressing

7 4 3)
e fmm o +
| mode | reg |
Fom———— R +
Hex Dec Name Assembler rmwav PC SP AP& Index-
FP able
g-3 #-3 literal S"#literal y £ f f f - - - f
4 4 indexed i [Rx] VY VYYY f y y f
5 5 register Rn vyvyy £y u ug uo £
6 6 register deferred (Rn) YYVYVYY u y Y Y
7 7 autodecrement - (Rn) Y YVYVYY u Y Y ux
8 8 autoincrement (Rn) + YY Y VYY p Y Y ux
9 9 autoincrement
deferred @(Rn)+ YYYVYY P Y Y ux
A 19 byte displacement B"D (Rn) Y Y VY VYY |% Y Y Y
B 11 byte displacement
deferred @B"D (Rn) YYvYyYyYy P Y Y Y
C 12 word displacement W™D (Rn) YYYVYY p Y y y
D 13 word displacement
deferred @W"D (Rn) YYVYVYY P Y Y Y
E 14 longword displacement L°D (Rn) YYVYVYY p y Y Y
F 15 longword displacement
deferred @L "D (Rn) YYVYYY P Y y Y

Instruction Formats and Addressing Modes
SUMMARY OF GENERAL MODE ADDRESSING

3.5.2 Program Counter Addressing (reg=15)

7 4 3219
foem——— b—t—t—t—-+
| mode |1 1 1 1}
Fommm b=+

Hex Dec Name Assembler

8 8 immmediate I"#constant
9 9 absolute @#address
A 10 byte relative B"address
B 11 byte relative @B"address
deferred
C 12 word relative W address
D 13 word relative @W~address
deferred
E 14 long word relative L"address
F 15 long word relative @L"address
deferred
Key to 3.5.1 and 3.5.2
D - displacement
i - any indexable addressing mode
- - logically impossible
f - reserved addressing mode fault
p - Program Counter addressing
u - UNPREDICTABLE
u

o = KKK
MK ©

Mo N

5-May-80

»
~

-- Rev 7

b
w
<

MK S

K o

S = KRR
= = KR

Page 3-15

Indexable?

KRR

= LS

g - UNPREDICTABLE for quad, octa, D floating, G_floating, and
H floating (and field if position + size greater than 32)
uo - UNPREDICTABLE for octa, and H format

ux - UNPREDICTABLE for index register same
- yes, always valid addressing mode

Y

r - read access

m - modify access
w - Write access

a - address access
v - field access

as base register

Instruction Formats and Addressing Modes 5-MAY-80 -- REV 7 PAGE 3-17
BRANCH MODE ADDRESSING FORMATS

3.6 BRANCH MODE ADDRESSING FORMATS

There are 2 operand specifier formats:

The operand specifier is a signed word displacement.

In branch displacement addressing, the byte or word displacement is sign
extended to 32 bits and added to the updated contents of PC. The
updated contents of PC is the address of the first byte beyond the
operand specifier. The result is the branch address A:

A = PC + SEXT(displ)
The assembler notation for byte and word branch displacement addressing

is A where A is the branch address. Note that the branch address and
not the displacement is used.

Instruction Formats and Addressing Modes 5-May-80 -- Rev 7 Page 3-18

OPERAND SPECIFIER CONVENTIONS

3.7 OPERAND SPECIFIER CONVENTIONS

The following 3 steps are performed by each instruction:

1. Each operand specifier 1in order of instruction stream

occurrence is treated as follows:

a. If read access type: evaluate the operand address,

read the operand, and save it.

b. TIf write access type: evaluate the operand address

and save it.

c. If modify access type: evaluate the operand
address and save it; read the operand and save it.

d. If address access type: evaluate the address and

save it.

e. 1If branch access type: save the operand specifier.

2. Perform the operation indicated by the instruction.

3. Store the result(s) using the saved addresses

in the order

indicated by the occurrence of operand specifiers in the

instruction stream.

NOTE

The string (character, =zoned decimal,

and packed

decimal) instructions are an exception to 2. and 3.

in that partial results are stored

before the

instruction operation 1is completed. The variable bit

field instructions treat the position, size,

and Dbase

address operand specifiers as the specification of an

implied field operand specifier (see Appendix
multiple exceptions occur during 1. and 2.,

in which they are taken is UNPREDICTABLE.

a). If
the order
This can

occur, for example, in a floating point instruction
whose destination operand specifier of write access
type uses a reserved addressing mode and the operation

results in an overflow fault.

1. Autoincrement and autodecrement operations occur as the operand
specifiers are processed, and subsequent operand specifiers use
the updated contents of registers modified by those operations.

Instruction Formats and Addressing Modes 5-May-8¢ -- Rev 7 Page 3-19
OPERAND SPECIFIER CONVENTIONS

2,

Other than as indicated by 1, all input operands are read, and
all addresses of output operands computed before any results of
the instruction are stored.

An operand of modify access type is not read, modified, and
written as an indivisible operation; therefore, modify access
type operands cannot be wused for synchronization. (For
synchronization instructions, See Chapter 8.)

If an instruction references two operands of write or modify
access type at the same address, the first will be overwritten
by the second.

CHAPTER 4
INSTRUCTIONS

12-Feb-82 -- Rev 7

4.1 INSTRUCTION SET

This chapter describes the instructions generally used by all software

across all implementations of the VAX-11 architecture. Certain
instructions which are specific to specialized portions of the VAX-11
architecture (e.g., memory management, interrupts and exceptions,

process dispatching, and processor registers) and are generally used by
privileged software are described in the chapters describing those

portions of the architecture. A concise list of instructions and opcode
assignments appears in Appendix A.

4.1.1 1Instruction Descriptions
The instruction set is divided into 12 major sections:
l. Integer arithmetic and logical
2., Address
3. Variable length bit field
4, Control
5. Procedure call
6. Miscellaneous
7. Queue

8. Floating point

e

Character string

Instructions 12-Feb-82 -- Rev 7 Page 4-2
INSTRUCTION SET

19.
11.

12.

Cyclic Redundancy Check
Decimal string

Edit

Within each major section, instructions which are closely related are

combined

into groups and described together. The instruction group

description is composed of the following:

1.

2.

3.
4,

5.

6.

7.

8.

The group name.

The format of each instruction in the group. This gives the
name and type of each instruction operand specifier and the
order in which it appears in memory. Operand specifiers from
left to right appear in increasing memory addresses.

The operation of the instruction.

The effect on condition codes.

Exceptions specific to the instruction. Exceptions which are
generally possible for all instructions (e.g., 1illegal or
reserved addressing mode, T-bit, memory management violations,

etc.) are not listed.

The opcodes, mnemonics, and names of each instruction in the
group. The opcodes are given in hex.

A description in English of the instruction.

Optional notes on the instruction and programming examples.

Instructions
INSTRUCTION SET

12-Feb-82 -- Rev 7 Page 4-3

4.1.2 Operand Specifier Notation

Operand specifiers are described in the following way:

<name>.<access type><data type>

where:

1. Name is a suggestive name for the operand in the context of the
instruction. The name is often abbreviated.

2. Access type is a letter denoting the operand specifier access

type:

autodecrement,

a - Calculate the effective address of the specified

operand. Address is returned in a longword

which is the actual instruction operand. Context

of address calculation is given by <data type>;

i.e. size to be used in autoincrement,

and indexing.

No operand reference. Operand specifier is a
branch displacement. Size of branch displacement
is given by <data type>.

Operand is read, potentially modified and written.
Note that this is NOT an indivisible memory
operation. Also note that if the operand is not
actually modified, it may not be written back.
However, modify type operands are always checked
for both read and write accessability (See
Chapter 5).

Operand is read only.

Calculate the effective address of the specified
operand. If the effective address is in memory,
the address is returned in a longword

which is the actual instruction operand. Context
of address calculation is given by <data type>.
If the effective address is Rn, the operand is

in Rn or R[n+l]'Rn.

Operand is written only.

3. Data type is a letter denoting the data type of the operand:

b - byte

d - D _floating

Instructions 12-Feb-82 -- Rev 7 Page 4-4
INSTRUCTION SET

H
|

F _floating

g - G floating

h - H floating

1 - longword

o - octaword

g - quadword

w - word

x - first data type specified by instruction

y - second data type specified by instruction

4.1.3 Operation Description Notation
The operation of each instruction is given as a sequence of control and
assignment statements in an ALGOL-like syntax. No attempt is made to
define the syntax formally, it is assumed to be familiar to the reader.
The notation used is an extension of that introduced in Chapter 3.

+ - addition

- - subtraction, unary minus

* - pultiplication
/ - division (quotient only)
**x - exponentiation

' - concatenation

(- - is replaced by
= - is defined as
Rn or R[n] - contents of register Rn

pCc, SP, FP, or AP - the contents of register R15, R14, R13,
or R12 respectively

PSW - the contents of the processor status word
PSL - the contents of the processor status long word

(x) - contents of memory location whose address is X

Instructions 12-Feb-82 -- Rev 7 Page 4-5
INSTRUCTION SET

(x)+ - contents of memory location whose address is X;
X incremented by the size of operand referenced
at x

-(x) - x decremented by size of operand to be referenced
at x; contents of memory location whose address is x

<x:y> - a modifier which delimits an extent from bit
position x to bit position y inclusive

<x1,%X2,...,¥xn> - a modifier which enumerates bits x1,x2,...,xn
{ } - arithmetic parentheses used to indicate precedence

AND - logical AND

OR - logical OR

XOR - logical XOR

NOT - logical (ones) complement

LSS less than signed

LSSU - less than unsigned

LEQ - less than or equal signed

LEQU - less than or equal unsigned
EQL - equal signed

EQLU - equal unsigned

NEQ - not equal signed

NEQU - not equal unsigned

GEQ - greater than or equal signed
GEQU - greater than or equal unsigned

GTR - greater than signed

GTRU - greater than unsigned

SEXT(x) - x is sign extended to size of operand
needed
ZEXT (x) - x is zero extended to size of operand needed

REM(x,y) - remainder of x divided by y, such that x/y and
REM(x,y) have the same sign

Instructions 12-Feb-82 -- Rev 7 Page 4-6
INSTRUCTION SET

MINU (x,y) - minimum unsigned of x and y

MAXU (x,y) - maximum unsigned of x and vy

The following conventions are used:

1.

Other than that caused by ()+, or —{), and the advancement of
PC, only operands or portions of operands appearing on the left
side of assignment statements are affected.

No operator precedence is assumed, other than that replacement
(<-) has the lowest precedence. Precedence 1is indicated
explicitly by { }.

All arithmetic, logical, and relational operators are defined
in the context of their operands. For example "+" applied to
floating operands means a floating add while "+" applied to
byte operands is an integer byte add. Similarily, "LSS" is a
floating comparison when applied to floating operands while
"LSS" is an integer byte comparison when applied to byte
operands.

Instruction operands are evaluated according to the operand
specifier conventions (See Chapter 3). The order in which
operands appear in the instruction description has no effect on
the order of evaluation.

Condition codes are in general affected on the value of actual
stored results, not on "true" results (which might be generated
internally to greater precision). Thus, for example, 2
positive integers can be added together and the sum stored,
because of overflow, as a negative value. The condition codes
will indicate a negative value even though the "true® result is
clearly positive.

Instructions 12-Feb-82 -- Rev 7 Page 4-7
INTEGER ARITHMETIC AND LOGICAL INSTRUCTIONS

4.2 INTEGER ARITHMETIC AND LOGICAL INSTRUCTIONS

The following instructions are described in this section.

Instructions

—_————— e

1. Add Aligned Word 1
ADAWI add.rw, sum.mw

2. Add 2 Operand 3
ADD{B,W,L}2 add.rx, sum.mx

3. Add 3 Operand 3
ADD{B,W,L}3 addl.rx, add2.rx, sum.wx

4. Add With Carry 1
ADWC add.rl, sum.ml

5. Arithmetic Shift 2
ASH{L,Q} cnt.rb, src.rx, dst.wx

6. Bit Clear 2 Operand 3
BIC{B,W,L}2 mask.rx, dst.mx

7. Bit Clear 3 Operand 3
BIC{B,W,L}3 mask.rx, src.rx, dst.wx

8. Bit Set 2 Operand 3
BIS{B,W,L}2 mask.rx, dst.mx

9. Bit Set 3 Operand . 3
BIS{B,W,L}3 mask.rx, src.rx, dst.wx

18. Bit Test 3
BIT{B,W,L} mask.rx, src.rx

11. Clear 4
CLR{B,W,L,Q} dst.wx

12. Compare 3
CMP{B,W,L} srcl.rx, src2.rx

13. Convert 6
CVT{B,W,L}{B,W,L} src.rx, dst.wy
All pairs except BB,WW,LL.

14, Decrement 3
DEC{B,W,L} dif.mx

15. Divide 2 Operand 3
DIV{B,W,L}2 divr.rx, quo.mx

Instructions 12-Feb-82 -- Rev 7
INTEGER ARITHMETIC AND LOGICAL INSTRUCTIONS

16.

17.

18.

19.

20.

21.

22,

23.

24,

25,

25.

27.

28.

29.

30.

31.

Divide 3 Operand
DIV{B,W,L}3 divr.rx, divd.rx, quo.wx

Extended Divide
EDIV divr.rl, divd.rqg, quo.wl, rem.wl

Extended Multiply
EMUL mulr.rl, muld.rl, add.rl, prod.wq

Increment
INC{B,W,L} sum.mx

Move Complemented
MCOM{B,W,L} src.rx, dst.wx

Move Negated
MNEG{B,W,L} src.rx, dst.wx

Move
MOV {B,W,L,Q} src.rx, dst.wx

Move Zero-Extended
MOVZ {BW,BL,WL} src.rx, dst.wy

Multiply 2 Operand
MUL{B,W,L}2 mulr.rx, prod.mx

Multiply 3 Operand
MUL{B,W,L}3 mulr.rx, muld.rx, prod.wx

Push Long
PUSHL src.rl, {-(sP).wl}

Rotate Long
ROTL cnt.rb, src.rl, dst.wl

add Aligned Word

Subtract With Carry
SBWC sub.rl, dif.ml

Subtract 2 Operand
SUB{B,W,L}2 sub.rx, dif.mx

Subtract 3 Operand
suB{B,W,L}3 sub.rx, min.rx, dif.wx

Test
TST{B,W,L} src.rx

Exclusive OR 2 Operand
XOR{B,W,L}2 mask.rx, dst.mx

Page 4-8

Instructions 12-Feb-82 -- Rev 7

Page 4-9
INTEGER ARITHMETIC AND LOGICAL INSTRUCTIONS

34. Exclusive OR 3 Operand
XOR{B,W,L}3 mask.rx, src.rx, dst.wx

Instructions 12-Feb-82 —-- Rev 7 Page 4-19
INTEGER ARITHMETIC AND LOGICAL INSTRUCTIONS

ADAWI Add Aligned Word Interlocked
Format:

opcode add.rw, sum.mw
Operation:

tmp <- add;

{set interlock};

sum <- sum + tmp;

{release interlockl;
Condition Codes:
<- sum LSS 0;
<- sum EQL @;

<- {integer overflow};
<- {carry from most significant bit};

NN =2

Exceptions:

reserved operand fault
integer overflow

Opcodes:

58 ADAWI Add Aligned Word Interlocked

Description:

The addend operand is added to the sum operand and the sum operand is
replaced by the result. The operation is interlocked against similar

operations on other processors in a multiprocessor system. The
destination must be aligned on a word boundary i.e. bit @ of the
address of the sum operand must be zero. If it 1is not, a reserved

operand fault is taken.
Notes:

1. Integer overflow occurs if the input operands to the add have
the same sign and the result has the opposite sign. On
overflow, the sum operand is replaced by the low order bits of
the true result.

2. 1f the addend and the sum operands overlap, the result and the
condition codes are UNPREDICTABLE.

Instructions 12-Feb-82 -- Rev 7 Page 4-11
INTEGER ARITHMETIC AND LOGICAL INSTRUCTIONS

ADD Add
Format:
opcode add.rx, sum.mx 2 operand
opcode addl.rx, add2.rx, sum.wx 3 operand
Operation:
sum <- sum + add; !2 operand
sum <- addl + add2; !3 operand

Condition Codes:

<- sum LSS @2;

<~ sum EQL @;

<- {integer overflow};

<- {carry from most significant bit};

<N 2

Exceptions:

integer overflow

Opcodes:
80 ADDB2 Add Byte 2 Operand
81 ADDB3 Add Byte 3 Operand
AQ ADDW2 Add Word 2 Operand
Al ADDW3 Add Word 3 Operand
Cco ADDL2 Add Long 2 Operand
Cl ADDL3 Add Long 3 Operand

Description:

In 2 operand format, the addend operand is added to the sum operand and
the sum operand 1is replaced by the result. 1In 3 operand format, the
addend 1 operand is added to the addend 2 operand and the sum operand is
replaced by the result,

Notes:

Integer overflow occurs if the input operands to the add have the same
sign and the result has the opposite sign. On overflow, the sum operand
is replaced by the low order bits of the true result.

Instructions 12-Feb-82 -- Rev 7 Page 4-12
INTEGER ARITHMETIC AND LOGICAL INSTRUCTIONS

ADWC Add With Carry
Format:

opcode add.rl, sum.ml
Operation:

sum <- sum + add + C;
Condition Codes:
<- sum LSS @;
<~ sum EQL 0;

¢- {integer overflow};
<- {carry from most significant bit};

N<<N =z

Exceptions:
integer overflow
Opcodes:

D8 ADWC Add With Carry

Description:

The contents of the condition code C bit and the addend operand are
added to the sum operand and the sum operand is replaced by the result.

Notes:

1. On overflow, the sum operand is replaced by the low order bits
of the true result.

5. The 2 additions in the operation are performed simultaneously.

Instructions 12-Feb-82 -- Rev 7 Page 4-13
INTEGER ARITHMETIC AND LOGICAL INSTRUCTIONS

ASH Arithmetic Shift
Format:

opcode cnt.rb, src.rx, dst.wx
Operation:

dst <- src shifted cnt bits;
Condition Codes:
<- dst LSS 4;
<- dst EQL 92;

<- {integer overflow};
<- 0;

A< NZ

Exceptions:

integer overflow

Opcodes:
78 ASHL Arithmetic Shift Long
79 ASHQ Arithmetic Shift Quad

Description:

The source operand is arithmetically shifted by the number of bits
specified by the count operand and the destination operand is replaced
by the result. The source operand is unaffected. A positive count
operand shifts to the left bringing #s into the least significant bit,
A negative count operand shifts to the right bringing in copies of the
most signficant (sign) bit into the most significant bit. A @ count
operand replaces the destination operand with the unshifted source
operand.

Notes:

1. Integer overflow occurs on a left shift if any bit shifted into
the sign bit position differs from the sign bit of the source
operand.

2. If cnt GTR 32 (ASHL) or cnt GTR 64 (ASHQ) the destination
operand is replaced by 0.

3. If cnt LEQ -31 (ASHL) or cnt LEQ -63 (ASHQ) all the bits of the
destination operand are copies of the sign bit of the source
operand.

Instructions 12-Feb-82 -- Rev 7 Page 4-14
INTEGER ARITHMETIC AND LOGICAL INSTRUCTIONS

BIC Bit Clear
Format:
opcode mask.rx, dst.mx 2 operand
opcode mask.rx, src.rx, dst.wx 3 operand
Operation:
dst <- dst AND {NOT mask}; 12 operand
dst <- src AND {NOT mask}; 13 operand

Condition Codes:

N <- dst LSS 8;
7 <~ dst EQL @;
VvV <- 8;
C <= C;

Exceptions:

none

Opcodes:
8A BICB2 Bit Clear Byte
8B BICB3 Bit Clear Byte
AA BICW2 Bit Clear Word
AB BICW3 Bit Clear Word
CA BICL2 Bit Clear Long
CB BICL3 Bit Clear Long

Description:

In 2 operand format, the destination operand is ANDed with the ones
complement of the mask operand and the destination operand is replaced
by the result. 1In 3 operand format, the source operand 1is ANDed with
the ones complement of the mask operand and the destination operand is
replaced by the result.

Instructions 12-Feb-82 -- Rev 7 Page 4-15
INTEGER ARITHMETIC AND LOGICAL INSTRUCTIONS

BIS Bit Set
Format:

opcode mask.rx, dst.mx 2 operand

opcode mask.rx, src.rx, dst.wx 3 operand
Operation:

dst <- dst OR mask; !2 operand

dst <- src OR mask; '3 operand
Conditon Codes:

N <- dst LSS @;

Z <- dst EQL g;

V <- @;

C <-C;

Exceptions:

none
Opcodes:

88 BISB2 Bit Set Byte 2 Operand
89 BISB3 Bit Set Byte 3 Operand
A8 BISW2 Bit Set Word 2 Operand
A9 BISW3 Bit Set Word 3 Operand
c8 BISL2 Bit Set Long 2 Operand
c9 BISL3 Bit Set Long 3 Operand

Description:

In 2 operand format, the mask operand is ORed with the destination
operand and the destination operand is replaced by the result. 1In 3
operand format, the mask operand is ORed with the source operand and the
destination operand is replaced by the result.

Instructions 12-Feb-82 -- Rev 7 Page 4-16
INTEGER ARITHMETIC AND LOGICAL INSTRUCTIONS

BIT Bit Test
Format:

opcode mask.rx, src.rx
Operation:

tmp <- src AND mask;
Conditon Codes:

N <- tmp LSS

7 <- tmp EQL &;

vV <= 8;
C K- C;

[
~

Exceptions:

none

Opcodes:
93 BITB Bit Test Byte
B3 BITW Bit Test Word
D3 BITL Bit Test Long

Description:

The mask operand is ANDed with the source operand. Both operands are
unaffected. The only action is to affect condition codes.

Instructions 12-Feb-82 -- Rev 7
INTEGER ARITHMETIC AND LOGICAL INSTRUCTIONS

CLR Clear
Format:

opcode dst.wx
Operation:

dst <- @;

Condition Codes:

N <- @;
Z <- 1;
V <~ @;
C <- C;
Exceptions:
none
Opcodes:
94 CLRB Clear Byte
B4 CLRW Clear Word
D4 CLRL Clear Long

7C CLRQ Clear Quad
7CFD CLRO Clear Octa

Description:
The destination operand is replaced by 0.
Notes:

CLRx dst is equivalent to MOVx S"#08, dst, but

Page 4-17

is 1 byte shorter.

Instructions 12-Feb-82 -- Rev 7 Page 4-18
INTEGER ARITHMETIC AND LOGICAL INSTRUCTIONS

CMP Compare
Format:
opcode srcl.rx, sSrc2.rx
Operation:
srcl - src2;
Condition Codes:
<- srcl LSS src2;
<- srcl EQL src2;

<- 0;
<- srcl LSSU src2;

NN 2

Exceptions:

none

Opcodes:
91 CMPB Compare Byte
Bl CMPW Compare Word
D1 CMPL Compare Long

Description:

The source 1 operand is compared with the source 2 operand. The only
action is to affect the condition codes.

Instructions 12-Feb-82 -- Rev 7 Page 4-19
INTEGER ARITHMETIC AND LOGICAL INSTRUCTIONS

CVT Convert
Format:

opcode src.rx, dst.wy
Operation:

dst <- conversion of src;
Condition Codes:
<- dst LSS @;
<- dst EQL 9;

<- {integer overflow};
<- 0;

LN =2

Exceptions:
integer overflow
Opcodes:

99 CVTBW Convert Byte to Word
98 CVTBL Convert Byte to Long
33 CVTWB Convert Word to Byte
32 CVTWL Convert Word to Long
F6 CVTLB Convert Long to Byte
F7 CVTLW Convert Long to Word

Description:

The source operand is converted to the data type of the destination
operand and the destination operand 1is replaced by the result.
Conversion of a shorter data type to a longer is done by sign extension;
conversion of longer to a shorter is done by truncation of the higher
numbered (most significant) bits.

Notes:

Integer overflow occurs if any truncated bits of the source operand are
not equal to the sign bit of the destination operand.

Instructions 12-Feb-82 -- Rev 7
INTEGER ARITHMETIC AND LOGICAL INSTRUCTIONS

DEC Decrement
Format:

opcode dif.mx
Operation:

dif <- dif - 1;
Condition Codes:
<- dif LSS 0;
<- dif EQL @;

<- {integer overflowl};
<- {borrow into most significant bit};

a<snN 2

Exceptions:

integer overflow

Opcodes:
97 DECB Decrement Byte
B7 DECW Decrement Word
D7 DECL Decrement Long

Description:

Page 4-20

One is subtracted from the difference operand and the difference operand

is replaced by the result.

Notes:

1. 1Integer overflow occurs if the largest negative integer
decremented. on overflow, the difference operand is replaced

by the largest positive integer.

2. DECx dif is equivalent to SUBx S7#1, dif, but is
shorter.

Instructions 12-Feb-82 -- Rev 7 Page 4-21
INTEGER ARITHMETIC AND LOGICAL INSTRUCTIONS

DIV Divide

Format:
opcode divr.rx, quo.mx 2 operand
opcode divr.rx, divd.rx, quo.wx 3 operand

Operation:
quo <- quo / divr; !2 operand
quo <- divd / divr; !3 operand
Condition Codes:
<- quo LSS ¢;
<{- quo EQL @;

<- {integer overflow} OR {divr EQL 0};
<- 0;

NN 2

Exceptions:

integer overflow
divide by zero

Opcodes:
86 DIVB2 Divide Byte 2 Operand
87 DIVB3 Divide Byte 3 Operand
A6 DIVW2 Divide Word 2 Operand
a7 DIVW3 Divide Word 3 Operand
Cé6 DIVL2 Divide Long 2 Operand
c7 DIVL3 Divide Long 3 Operand

Description:

In 2 operand format, the quotient operand is divided by the divisor
operand and the quotient operand is replaced by the result. 1In 3
operand format, the dividend operand is divided by the divisor operand
and the quotient operand is replaced by the result.

Notes:

1. Division is performed such that the remainder (unless it is
zero and which is 1lost) has the same sign as the dividend,
i.e., the result is truncated towards @.

2. Integer overflow occurs if and only if the largest negative

integer is divided by -1. oOn overflow, operands are affected
as in 3 below.

Instructions 12-Feb-82 -- Rev 7 Page 4-22

INTEGER ARITHMETIC AND LOGICAL INSTRUCTIONS

3. If the divisor operand is @, then in 2 operand format the
quotient operand is not affected; in 3 operand format the

quotient operand is replaced by the dividend operand.

Instructions 12-Feb-82 -~ Rev 7 Page 4-23
INTEGER ARITHMETIC AND LOGICAL INSTRUCTIONS

EDIV Extended Divide
Format:

opcode divr.rl, divd.rq, quo.wl, rem.wl
Operation:

quo <- divd / divr;
rem <- REM(divd, divr);

Condition Codes:

N <~ quo LSS g;

Z <- quo EQL @;

V <- {integer overflow} OR {divr EQL 0};
C K- 9;

Exceptions:

integer overflow
divide by zero

Opcodes:

7B EDIV Extended Divide

Description:

The dividend operand is divided by the divisor operand; the quotient
operand is replaced by the quotient and the remainder operand is replace
by the remainder.

Notes:

1. The division is performed such that the remainder operand
(unless it is @) has the same sign as the dividend operand.

2. On overflow, the operands are affected as in 3. below.
3. If the divisor operand is @, then the quotient operand 1is

replaced by bits 31:80 of the dividend operand, and the
remainder operand is replaced by 4.

Instructions 12-Feb-82 —-- Rev 7 Page 4-24
INTEGER ARITHMETIC AND LOGICAL INSTRUCTIONS

EMUL Extended Multiply
Format:

opcode mulr.rl, muld.rl, add.rl, prod.wq
Operation:

prod <- {muld * mulr} + SEXT (add);

Condition Codes:

N <- prod LSS &;
7z <- prod EQL 0;
vV <- 0;
C <- 0;

Exceptions:
none

Opcodes:

7A EMUL Extended Multiply

Description:

The multiplicand operand is multiplied by the multiplier operand giving
a double length result. The addend operand is sign-extended to double
length and added to the result. The product operand is replaced by the
final result.

Instructions 12-Feb-82 -- Rev 7 Page 4-25
INTEGER ARITHMETIC AND LOGICAL INSTRUCTIONS

INC Increment
Format:
opcode sum.mx
Operation:
sum <- sum + 1;
Condition Codes:
N <- sum LSS @;
Z <- sum EQL 4;
V <- {integer overflow};
C <~ {carry from most significant bit};

Exceptions:

integer overflow

Opcodes:
96 INCB Increment Byte
B6 INCW 1Increment Word
D6 INCL Increment Long

Description:

One is added to the sum operand and the sum operand is replaced by the
result.

Notes:

1. Arithmetic overflow occurs if the largest positive integer is
incremented. On overflow, the sum operand is replaced by the
largest negative integer.

2. INCx sum is equivalent to ADDx S"#1, sum, but is 1 byte
shorter.

Instructions 12-Feb-82 -- Rev 7 Page 4-26
INTEGER ARITHMETIC AND LOGTICAL INSTRUCTIONS

MCOM Move Complemented
Format:

opcode src.rx, dst.wx
Operation:

dst <- NOT src;

Condition Codes:

N <- dst LSS 0;
7z <- dst EQL 0;
vV <- B;
Cc <- C;
Exceptions:
none
Opcodes:
92 MCOMB Move Complemented Byte
B2 MCOMW Move Complemented Word
D2 MCOML Move Complemented Long

Description:

The destination operand is replaced by the ones complement of the source
operand.

Instructions 12-Feb-82 -- Rev 7 Page 4-27
INTEGER ARITHMETIC AND LOGICAL INSTRUCTIONS

MNEG Move Negated
Format:

opcode src.rx, dst.wx
Operation:

dst <- -src;
Condition Codes:
{- dst LSS @;
<- dst EQL g;

<- {integer overflow};
<- dst NEQ @;

<N =2

Exceptions:

integer overflow

Opcodes:
8E MNEGB Move Negated Byte
AE MNEGW Move Negated Word
CE MNEGL Move Negated Long

Description:

The destination operand is replaced by the negative of the source
operand.

Notes:

Integer overflow occurs if the source operand is the largest negative
integer (which has no positive counterpart). On overflow, the
destination operand is replaced by the source operand.

Instructions

MOV

Format:

Move

opcode src.rx,

Operation:

dst <-

src;

Condition Codes:

K-

NN Z

Exceptions:

none
Opcodes:
90 MOVB
BO MOVW
D@ MOVL
7D MOVQ
7DFD MOVO

Description:

The destination operand is replaced by the source operand.

Move
Move
Move
Move
Move

<- dst LSS @;
<- dst EQL @;
a;
<- C;

Byte
Word
Long
Quad
Octa

12-Feb-82 -- Rev 7

INTEGER ARITHMETIC AND LOGICAL INSTRUCTIONS

Page 4-28

Instructions 12-Feb-82 -- Rev 7 Page 4-29
INTEGER ARITHMETIC AND LOGICAL INSTRUCTIONS

MOV?Z Move Zero-Extended
Format:

opcode src.rx, dst.wy
Operation:

dst <= ZEXT(src);

Condition Codes:

N <- @;
Z <- dst EQL @;
V <~ 0;
C K- C;

Exceptions:

none
Opcodes:
9B MOVZBW Move Zero-Extended Byte to Word
9A MOVZBL Move Zero-Extended Byte to Long
3C MOVZWL Move Zero-Extended Word to Long

Description:

For MOVZBW, bits 7:8 of the destination operand are replaced by the
source operand; bits 15:8 are replaced by zero. For MOVZBL, bits 7:0
of the destination operand are replaced by the source operand; bits
31:8 are replaced by @, For MOVIWL, bits 15:0 of the destination

operand are replaced by the source operand; bits 31:16 are replaced by
g.

Instructions 12-Feb-82 -- Rev 7 Page 4-30
INTEGER ARITHMETIC AND LOGICAL INSTRUCTIONS

MUL Multiply

Format:
opcode mulr.rx, prod.mx 2 operand
opcode mulr.rx, muld.rx, prod.wx 3 operand

Operation:
prod <- prod * mulr; 12 operand
prod <- muld * mulr; 13 operand

Condition Codes:

N <- prod LSS @;
Z <~ prod EQL @;
V <- {integer overflowl};
C <- 0;
Exceptions:

integer overflow

Opcodes:
84 MULB2 Multiply Byte 2 Operand
85 MULB3 Multiply Byte 3 Operand
Ad MULW2 Multiply Word 2 Operand
AS MULW3 Multiply Word 3 Operand
C4 MULL2 Multiply Long 2 Operand
C5 MULL3 Multiply Long 3 Operand

Description:

In 2 operand format, the product operand is multiplied by the multiplier
operand and the product operand is replaced by the low half of the
double length result. In 3 operand format, the multiplicand operand 1is
multiplied by the multiplier operand and the product operand is replaced
by the low half of the double length result.

Notes:

Integer overflow occurs if the high half of the double length result is
not equal to the sign extension of the low half.

Instructions 12-Feb-82 -- Rev 7 Page 4-31
INTEGER ARITHMETIC AND LOGICAL INSTRUCTIONS

PUSHL Push Long
Format:

opcode src.rl
Operation:

- (SP) <~ src;

Condition Codes:

N <- src LSS 9;
Z <- src EQL @;
V <- 0;
C K- C;

Exceptions:
none

Opcodes:

DD PUSHL Push Long

Description:
The longword source operand is pushed on the stack.
Notes:

PUSHL is equivalent to MOVL src, —-(SP), but is 1 byte shorter.

Instruct
INTEGER

ions 12-Feb-82 -- Rev 7 Page 4-32
ARITHMETIC AND LOGICAL INSTRUCTIONS

ROTL Rotate Long
Format:

opcode cnt.rb, src.rl, dst.wl
Operation:

dst <- src rotated cnt bits;

Condition Codes:

N <- dst LSS 0;
7 <- dst EQL 0;
vV <~ 0;
C <~ C;

Exceptions:

Opcodes:

9C

none

ROTL Rotate Long

Description:

The source operand is rotated logically by the number of bits specified

by the
result.
rotates
@ count
operand.

count operand and the destination operand is replaced by the
The source operand is unaffected. A positive count operand
to the left. A negative count operand rotates to the right. A
operand replaces the destination operand with the source

Instructions 12-Feb-82 -- Rev 7
INTEGER ARITHMETIC AND LOGICAL INSTRUCTIONS

SBWC Subtract With Carry
Format:

opcode sub.rl, dif.ml
Operation:

dif <- dif - sub - C;
Condition Codes:
<- dif LSS 0;
<~ dif EQL 4;

<- {integer overflow};
<- {borrow into most significant bit};

aO<LN 2

Exceptions:
integer overflow
Opcodes:

D9 SBWC Subtract With Carry

Description:

Page 4-33

The subtrahend operand and the contents of the condition code C bit are
subtracted from the difference operand and the difference operand is

replaced by the result.
Notes:

1. On overflow, the difference operand is replaced by
order bits of the true result.

2. The 2 subtractions in the operation are
simultaneously.

the 1low

performed

Instructions 12-Feb-82 -- Rev 7 Page 4-34
INTEGER ARITHMETIC AND LOGICAL INSTRUCTIONS

SUB Subtract
Format:
opcode sub.rx, dif.mx 2 operand
opcode sub.rx, min.rx, dif.wx 3 operand
Operation:
dif <- dif - sub; 12 operand
dif <- min - sub; 13 operand

Condition Codes:

<- dif LSS @;

<- dif EQL 9;

<- {integer overflowl};

<- {borrow into most significant bit};

AN 2

Exceptions:

integer overflow

Opcodes:
82 SUBB2 Subtract Byte 2 Operand
83 SUBB3 Subtract Byte 3 Operand
A2 SUBW2 Subtract Word 2 Operand
A3 SUBW3 Subtract Word 3 Operand
c2 SUBL2 Subtract Long 2 Operand
C3 SUBL3 Subtract Long 3 Operand

Description:

In 2 operand format, the subtrahend operand is subtracted from the
difference operand and the difference operand is replaced by the result.
In 3 operand format, the subtrahend operand is subtracted from the
minuend operand and the difference operand is replaced by the result.

Notes:

Integer overflow occurs if the input operands to the subtract are of
different signs and the sign of the result 1is the sign of the
subtrahend. On overflow, the difference operand is replaced by the low
order bits of the true result.

Instructions 12-Feb-82 -- Rev 7 Page 4-35
INTEGER ARITHMETIC AND LOGICAL INSTRUCTIONS

TST Test
Format:

opcode src.rx
Operation:

src - @;
Condition Codes:

N <- src LSS 4;

Z <- src EQL 4;

vV <- 8;

C <- 0;

Exceptions:

none
Opcodes:
95 TSTB Test Byte
B5 TSTW Test Word
D5 TSTL Test Long

Description:

The condition codes are affected according to the value of the source
operand.

Notes:

TSTx src is equivalent to CMPx src, S"#0, but is 1 byte shorter.

Instructions
INTEGER ARITHMETIC AND LOGICAL INSTRUCTIONS

Format:

XOR

opcod

12-Feb-82

Exclusive OR

e mask.rx,

opcode mask.rx,

Operation:

dst <

dst <

Condition Cod

<{-
<~
<-
<-

NN 2

Exceptions:

Opcodes:

8C
8D
AC
AD
cC
CD

none

XORB2
XORB3
XORW2
XORW3
XORL2
XORL3

Description:

In 2 operand

operand

and

- dst XOR mask;

- src XOR mask;

es:

dst LSS 0;
dst EQL 4;
2;
C;

Exclusive
Exclusive
Exclusive
Exclusive
Exclusive
Exclusive

dst.

src

OR
OR

OR
OR

OR
OR

mXx

.r%,

Byte
Byte
Word
Word
Long
Long

-- Rev 7

2 operand

dst.wx 3 operand

12

'3

WKW WN

operand

operand

Operand
Operand
Operand
Operand
Operand
Operand

format, the mask operand 1is XORed
the destination

Page 4-36

destination
operand is replaced by the result. In 3
operand format, the mask operand is XORed with the
the destination operand is replaced by the result.

operand and

Instructions 12-Feb-82 -- Rev 7 Page 4-37
ADDRESS INSTRUCTIONS

4.3 ADDRESS INSTRUCTIONS

The following instructions are described in this section.
Instructions

1. Move Address 5
MOVA{B,W,L=F,Q=D=G,0=H} src.ax, dst.wl

2. Push Address 5
PUSHA{B,W,L=F,Q=D=G,0=H} src.ax, {-(SP).wl}

Instructions 12-Feb-82 -- Rev 7 Page 4-38
ADDRESS INSTRUCTIONS

MOVA Move Address
Format:

opcode src.ax, dst.wl
Operation:

dst <- src;

Condition Codes:

N <- dst LSS @;
7 <- dst EQL 2;
vV <= 0;
C <~ C;

Exceptions:

none
Opcodes:
9E MOVAB Move Address Byte
3E MOVAW Move Address Word
DE MOVAL, Move Address Long
MOVAF Move Address F_floating
7E MOVAQ, Move Address Quad

MOVAD, Move Address D_floating
MOVAG Move Address G floating

7EFD MOVAH Move Address H_floating,
MOVAO Move Address Octa

Description:

The destination operand is replaced by the source operand. The context
in which the source operand is evaluated is given by the data type of
the instruction. The operand whose address replaces the destination
operand is not referenced.

Notes:

The source operand is of address access type which causes the address of
the specified operand to be moved.

Instructions 12-Feb-82 -- Rev 7 Page 4-39
ADDRESS INSTRUCTIONS

PUSHA Push Address
Format:

opcode src.ax
Operation:

-(SP) <= src;

Condition Codes:

N <- src LSS 9;
Z <- src EQL @;
V <- @;
C K- C;

Exceptions:

none
Opcodes:
9F PUSHAB Push Address Byte
3F PUSHAW Push Address Word
DF PUSHAL, Push Address Long
PUSHAF Push Address F_floating
TF PUSHAQ, Push Address Quad

PUSHAD, Push Address D_floating
PUSHAG Push Address G floating

7FFD PUSHAH Push Address H_floating,
PUSHAO Push Address Octa

Description:

The source operand is pushed on the stack. The context in which the
source operand is evaluated 1is given by the data type of the
instruction. The operand whose address is pushed is not referenced.

Notes:

1. PUSHAx src is equivalent to MOVAx src, -(SP), but 1is 1 byte
shorter.

2. The source operand is of address access type which causes the
address of the specified operand to be pushed.

Instructions 12-Feb-82 -- Rev 7 Page 4-490
VARIABLE LENGTH BIT FIELD INSTRUCTIONS

4.4 VARIABLE LENGTH BIT FIELD INSTRUCTIONS
A variable length bit field is specified by 3 operands:
1. A longword position operand.

2. A byte field size operand which must be in the range @ through
32 or a reserved operand fault occurs.

3. A base address (relative to which the position is used to
locate the bit field). The address is obtained from an operand
of address access type. However, unlike other 1instances of
operand specifiers of address access type, register mode may be
designated in the operand specifier. 1In this case the field is
contained in the register n designated by the operand specifier
(or register n+l concatenated with register n). (See Chapter
2) If the field is contained in a register and size is not
zero, the position operand must have a value 1in the range @
through 31 or a reserved operand fault occurs.

In order to simplify the description of the variable bit field
instructions, a macro FIELD(pos, size, address) is introduced with the
following expansion (if size NEQ 0):

FIELD (pos, size, address)

(address + SEXT (pos<31:3>))<{size - 1} + pos<2:@>:pos<2:0>>

1if address not specified by register mode

U}

{(R[n+1]'Rn}<{size - 1} + pos:pos>

1if address specified by register mode and pos + size
IGTRU 32

Rn<{size - 1} + pos:pos>
1if address specified by register mode and pos + size
'LEQU 32
The number of bytes referenced by the contents () operator
above 1is:

1 + {{{size - 1} + pos<2:0>} / 8}

Zero bytes are referenced if the field size is 0.

Instructions 12-Feb-82 -- Rev 7 Page 4-41
VARIABLE LENGTH BIT FIELD INSTRUCTIONS

The following instructions are described in this section.
Instructions

1. Compare Field 1
CMPV pos.rl, size.rb, base.vb, {field.rv}, src.rl

2. Compare Zero-Extended Field 1
CMPZV pos.rl, size.rb, base.vb, {field.rv}, src.rl

3. Extract Field 1
EXTV pos.rl, size.rb, base.vb, {field.rv}, dst.wl

4. Extract Zero-Extended Field 1
EXTZV pos.rl, size.rb, base.vb, {field.rv}, dst.wl

5. Find First 2
FF{S,C} startpos.rl, size.rb, base.vb, {field.rv}, findpos.wl

6. Insert Field 1
INSV src.rl, pos.rl, size.rb, base.vb, {field.wv}

The following variable bit field instructions are described 1in the
section on Control Instructions.

1. Branch on Bit 2
BB{S,C} pos.rl, base.vb, displ.bb, {field.rv}

2. Branch on Bit (and modify without interlock) 4
BB{sS,C}{s,C} pos.rl, base.vb, displ.bb, {field.mv}

3. Branch on Bit (and modify) Interlocked 2
BB{SS,CC}I pos.rl, base.vb, displ.bb, {field.mv}

Instructions 12-Feb-82 -- Rev 7 Page
VARIABLE LENGTH BIT FIELD INSTRUCTIONS

CMP Compare Field
Format:

opcode pos.rl, size.rb, base.vb, src.rl
Operation:

tmp <- if size NEQU @ then SEXT(FIELD (pos,
size, base)) else 0; ICMPV
tmp - src;

tmp <- if size NEQU 0 then ZEXT (FIELD (pos,
size, base)) else @; ICMPZV
tmp - Src;

Condition Codes:

<- tmp LSS src;

<- tmp EQL src;

<- 0;

<- tmp LSSU src;

N<NZ

Exceptions:

reserved operand

Opcodes:
EC CMPV Compare Field
ED CMPZV Compare Zero-Extended Field

Description:

The field specified by the position, size and base operands is compared
with the source operand. For CMPV, the source operand is compared with
the sign extended field. For CMPZV, the source operand is compared with
the zero extended field. The only action is to affect the condition

codes.
Notes:
1. A reserved operand fault occurs 1if:
1. size GTRU 32.

2. pos GTRU 31, size NEQ ¢, and the field is contained in
registers.

the

Instructions 12-Feb-82 -- Rev 7

Page 4-43
VARIABLE LENGTH BIT FIELD INSTRUCTIONS

2. On a reserved operand fault, the condition codes are
UNPREDICTABLE.

Instructions 12-Feb-82 -- Rev 7 Page 4-44
VARIABLE LENGTH BIT FIELD INSTRUCTIONS

EXT Extract Field
Format:

opcode pos.rl, size.rb, base.vb, dst.wl
Operation:

dst <- if size NEQU @ then SEXT(FIELD(pos, size, base))
else @; LEXTV

dst <- if size NEQU @ then ZEXT(FIELD(pos, size, base))
else 0; TEXTZV

Condition Codes:

N <- dst LSS 8;
7 <- dst EQL 0@;
V <~ @;
C K- C;

Exceptions:

reserved operand

Opcodes:
EE EXTV Extract Field
EF EXTZV Extract Zero-Extended Field

Description:

For EXTV, the destination operand is replaced by the sign extended field
specified by the position, size, and base operands. For EXTZV, the
destination operand is replaced by the zero extended field specified by
the position, size and base operands. If the size operand is 8, the
only action is to replace the destination operand with @ and affect the
condition codes.

Notes:
1. A reserved operand fault occurs 1if:
1. size GTRU 32.

2. pos GTRU 31, size NEQ &, and the field is contained in the

reg1 sters

LolLCILoe

2. On a resemved operand fault, the destination operand is
unaffected and the condition codes are UNPREDICTABLE,

Instructions 12-Feb-82 -- Rev 7 Page 4-45
VARIABLE LENGTH BIT FIELD INSTRUCTIONS

FF Find First
Format:

opcode startpos.rl, size.rb, base.vb, findpos.wl
Operation:

state = if {FFS} then 1 else 0;
if size NEQU @ then

begin
tmpl <- FIELD(startpos, size, base);
tmp2 <~ g;

while {tmpl<tmp2> NEQ state} AND
{tmp2 LEQU {size - 1}} do
tmp2 <- tmp2 + 1;
findpos <- startpos + tmp2;
end
else
findpos <- startpos;

Condition Codes:

N <- @;
Z <- {bit not found};
vV <- 0;
C <- @;

Exceptions:

reserved operand

Opcodes:
EB FFC Find First Clear
EA FFS Find First Set

Description:

A field specified by the start position, size, and base operands is
extracted. The field is tested for a bit in the state indicated by the
instruction starting at bit ¢ and extending to the highest bit in the
field. If a bit in the indicated state is found. the find position
operand is replaced by the position of the bit and the Z condition code
bit is cleared. If no bit in the indicated state is found, the find
position operand is replaced by the position (relative to the base) of a
bit one position to the left of the specified field, and the Z condition
code bit is set. If the size operand is @, the find position operand is
replaced by the start position operand and the Z condition code bit is
set.

Instructions 12-Feb-82 -- Rev 7 Page 4-456
VARIABLE LENGTH BIT FIELD INSTRUCTIONS

Notes:

1. A reserved operand fault occurs if:

1. size GTRU 32.

2. startpos GTRU 31, size NEQ 0, and the field is contained in
the registers.

5. On a reserved operand fault, the find position operand is
unaffected and the condition codes are UNPREDICTABLE.

Instructions 12-Feb-82 -- Rev 7 Page 4-47
VARIABLE LENGTH BIT FIELD INSTRUCTIONS

Format:

INSV Insert Field

opcode src.rl, pos.rl, size.rb, base.vb

Operation:

if size NEQU 0 then FIELD (pos, size, base) <-
src<{size - 1}:0>;

Condition Codes:

N <- N;
Z <-Z7;
V K- V;
C K- C;

Exceptions:

Opcodes:

F@

reserved operand

INSV Insert Field

Description:

The field specified by the position, size, and base operands is replaced

size-1:0 of the source operand. If the size operand is @, the

only action is to affect the condition codes.

by bits

Notes:
1.
2,

A reserved operand fault occurs if:
1. size GTRU 32.

2. pos GTRU 31, size NEQ @, and the
registers.

rh

[
(]

[
Q

1s contained in the

On a reserved operand fault, the field is unaffected and the
condition codes are UNPREDICTABLE.

Instructions

CONTROL INSTRUCTIONS

4.5

In most implementations of the VAX-11 arch
result if

speed

will

12-Feb-82

CONTROL INSTRUCTIONS

the

aligned longword boundary.

target

-- Rev 7

of

itecture,
a control

improved

instruction

The following instructions are described in this section.

Add Compare and Branch

ACB{B.,W,L,F,D,G,H} limit.rx, add.rx,

Page 4-48

execution
is on an

Instructions

Compare is LE on positive add, GE on negative

add.

Add One and Branch Less Than or Equal

AOBLEQ limit.rl,

index.ml, displ.bb

add One and Branch Less Than
AOBLSS limit.rl,

index.ml,

Conditional Branch
B{condition} displ.bb

Condition

LSS
LEQ
EQL,
NEQ,
GEQ
GTR
LSSU, CS
LEQU

GEQU, CC

EQLU
NEQU

GTRU
VS
vC

Branch on Bit
BR{S,C} pos.rl, base.vb, displ.bb, {field.rv}

Name

Less Than

displ.bb

Less Than or Equal
Equal, Equal Unsigned

Not Equal, Not Equal Unsigned

Greater Than or Equal
Greater Than

Less Than Unsigned,
Less Than or Equal Unsigned

Greater Than or Equal Unsigned,

Carry Clear
Greater Than Unsigned
Overflow Set

Overflow Clear

Carry Set

Branch on Bit (and modify without interlock)
BB{s,C}{s,C} pos.rl, base.vb, displ.bb, {field.mv}

Branch on Bit (and modify) Interlocked

BB{SS,CC}I pos.rl, base.vb, displ.bb,

Branch on Low Bit
BLB{S,C} src.rl, displ.bb

{field.mv}

index.mx, displ.bw

12

Instructions 12-Feb-82 -- Rev 7 Page 4-49
CONTROL INSTRUCTIONS

9. Branch With {Byte, Word} Displacement 2
BR{B,W} displ.bx

16. Branch to Subroutine With {Byte, Word} Displacement 2
BSB{B,W} displ.bx, {-(SP).wl}

11, Case 3
CASE{B,W,L} selector.rx, base.rx, limit.rx, displ.bw-list

12, Jump 1
JMP dst.ab

13. Jump to Subroutine 1

JSB dst.ab, {-(SP).wl}

14. Return from Subroutine 1
RSB {(SP)+.rl}

15. Subtract One and Branch Greater Than or Equal 1
SOBGEQ index.ml, displ.bb

16. Subtract One and Branch Greater Than 1
SOBGTR index.ml, displ.bb

Instructions 12-Feb-82 -- Rev 7 Page 4-50
CONTROL INSTRUCTIONS

ACB add Compare and Branch
Format:

opcode limit.rx, add.rx, index.mx, displ.bw
Operation:

index <- index + add;

if {{add GEQ @} AND {index LEQ limit}} OR
{{add LSS @} AND {index GEQ limit}} then
PC <- PC + SEXT(displ);

Condition Codes:

<- index LSS @;

<- index EQL @;

<- {integer or floating overflow};
<- C;

NN 2

Exceptions:

integer overflow
floating overflow
floating underflow
reserved operand

Opcodes:
9D ACBB Add Compare and Branch Byte
3D ACBW Add Compare and Branch Word
F1l ACBL Add Compare and Branch Long
4F ACBF Add Compare and Branch F_floating
6F ACBD Add Compare and Branch D_floating
AFFD ACBG Add Compare and Branch G_floating
6FFD ACBH Add Compare and Branch H_floating

Description:

The addend operand is added to the index operand and the index operand
is replaced by the result. The index operand is compared with the limit
operand. If the addend operand is positive (or @) and the comparison is
less than or equal or if the addend is negative and the comparison is
greater than or equal, the sign-extended branch displacement is added to

PC and PC is replaced by the result.

Instructions 12-Feb-82 -- Rev 7 Page 4-51
CONTROL INSTRUCTIONS

Notes:

1.

ACB efficiently implements the general FOR or DO loops in high
level languages since the sense of the comparison between index
and limit is dependent on the sign of the addend.

On integer overflow, the index operand is replaced by the 1low
order bits of the true result. Comparison and branch
determination proceed normally on the updated index operand.

On floating underflow, if FU is clear, the 1index operand is
replaced by @ and comparison and branch determination proceed

normally. A fault occurs if FU is set and the index operand is
unaffected.

On floating overflow, the instruction takes a floating overflow
fault and the index operand is unaffected.

On a reserved operand fault, the index operand 1is unaffected
and the condition codes are UNPREDICTABLE.

Except for 5. above, the C-bit is unaffected.

Instructions 12-Feb-82 -- Rev 7 Page 4-52
CONTROL INSTRUCTIONS

AOBLEQ Add One and Branch Less Than or Equal
Format:
opcode limit.rl, index.ml, displ.bb
Operation:
index <- index + 1;
if index LEQ limit then PC <-
PC + SEXT(displ);

Condition Codes:

N <- index LSS 0;

Z <- index EQL @;

Vv <- {integer overflow};
C <= C;

Exceptions:
integer overflow
Opcodes:

F3 AOBLEQ Add One and Branch Less Than or Equal

Description:

One is added to the index operand and the index operand is replaced by
the result. The index operand is compared with the limit operand. If
it is less than or equal, the sign-extended branch displacement is added
to PC and PC is replaced by the result.

Notes:

1. Integer overflow occurs if the index operand before addition is
the largest positive integer. On overflow, the index operand
is replaced by the largest negative integer, and the branch is
taken.

2. The C-bit is unaffected.

Instructions 12-Feb-82 -- Rev 7 Page 4-53
CONTROL INSTRUCTIONS

AOBLSS Add One and Branch Less Than
Format:
opcode limit.rl, index.ml, displ.bb
Operation:
index <- index + 1;
if index LSS limit then PC <-
PC + SEXT (displ);

Condition Codes:

N <- index LSS 0;
Z <- index EQL @;
V <- {integer overflow};
C K- C;
Exceptions:

integer overflow
Opcodes:

F2 AOBLSS Add One and Branch Less Than

Description:

One is added to the index operand and the index operand is replaced by
the result. The index operand is compared with the limit operand. If
it is less than, the sign-extended branch displacement is added to the
PC and PC is replaced by the result.

Notes:

1. 1Integer overflow occurs if the index operand before addition is
the 1largest positive integer. On overflow, the index operand
is replaced by the largest negative integer, and thus (unless
the 1limit operand is the largest negative integer) the branch
is taken.

2. The C-bit is unaffected.

Instructions
INSTRUCTIONS

CONTROL

Format:

opcode displ.bb

Operation:

12-Feb-82 -- Rev 7

Branch on (condition)

if condition then PC <- PC + SEXT (displ);

Condition Codes:

N <- N;
7 <- Z7;
VvV <~ V;
C <= C;
Exceptions:
none

Opcodes:

14

15

12

13

18

19
1A

1B
1C

1D
1E

1r

Condition

{N OR
{N OR
Z EQL
Z EQL
N EQL

N EQL
{Cc OR

{c or
VvV EQL

vV EQL
C EQL

C EQL

Description:

2}

z}

EQL

EQL

EQL

EQL

BGTR
BLEQ

BNEQ,
BNEQU
BEQL,
BEQLU
BGEOQ

BLSS
BGTRU

BLEQU

BVC
BVS
BGEQU,

BCC
BLSSU,
BCS

Branch on Greater Than
(signed)

Branch on Less Than or Equal
(signed)

Branch on Not Equal (signed)
Branch on Not Equal Unsigned
Branch on Equal (signed)
Branch on Equal Unsigned
Branch on Greater Than or
Equal (signed)

Branch on Less Than (signed)
Branch on Greater Than
Unsigned

Branch Less Than or Equal
Unsigned

Branch on Overflow Clear
Branch on Overflow Set
Branch on Greater Than or
Equal Unsigned

Branch on Carry Clear

Branch on Less Than Unsigned
Branch on Carry Set

The condition codes are tested and if the condition 1indicated by
instruction

the PC and PC is replaced by the result.

is

met,

Page 4-54

the

the sign-extended branch displacement is added to

Instructions 12-Feb-82 -- Rev 7 Page 4-55
CONTROL INSTRUCTIONS

Notes:

The VAX-11 conditional branch instructions permit considerable
flexibility in branching but require care in choosing the correct branch
instruction. The conditional branch instructions are best seen as 3
overlapping groups:

1.

Overflow and Carry Group

BVS V EQL 1
BVC V EQL ¢
BCS C EQL 1
BCC C EQL @

These instructions are typically used to check for overflow
(when overflow traps are not enabled), for multiprecision
arithmetic, and for other special purposes.

Unsigned Group

BLSSU C EQL 1
BLEQU {C OR Z} EQL 1
BEQLU Z EQL 1
BNEQU Z EQL @
BGEQU C EQL ¢
BGTRU {C OR Z} EOQL ¢

These instructions typically follow integer and field
instructions where the operands are treated as unsigned

integers, address instructions, and character string
instructions.

Signed Group

BLSS N EQL 1
BLEQ {N OR z} EQL 1
BEQL Z EQL 1
BNEQ Z EQL 0
BGEQ N EQL @
BGTR {N OR Z} EQL @

These instructions typically follow integer and field
instructions where the operands are being treated as signed
integers, floating point instructions, and decimal string
instructions.

Instructions 12-Feb-82 -- Rev 7

CONTROL INSTRUCTIONS

BB Branch on Bit

Format:
opcode pos.rl, base.vb, displ.bb

Operation:

teststate if {BBS} then 1 else 0;
if FIELD(pos, 1, base) EQL teststate then
PC <- PC + SEXT (displ);

Condition Codes:
N <- N;
7 <- Z7;
VvV <= V;
Cc <- C;

Exceptions:

reserved operand

Opcodes:
EQ BBS Branch on Bit Set
El BBC Branch on Bit Clear

Description:

The single bit field
tested. 1f it is

specified by the
in the test state

position

Page 4-56

and base operands is

indicated by the instruction, the

sign-extended branch displacement is added to PC and PC is replaced by
the result.
Notes:
1. See Section 4.5 for definition of FIELD.
2. A reserved operand fault occurs if pos GTRU 31 and the bit 1is
contained in a register.
3. oOn a reserved operand fault, the condition codes are

UNPREDICTABLE.

Instructions 12-Feb-82 -- Rev 7 Page 4-57
CONTROL INSTRUCTIONS

BB Branch on Bit (and modify without interlock)
Format:

opcode pos.rl, base.vb, displ.bb
Operation:

teststate = if {BBSS or BBSC} then 1 else g;

newstate = if {BBSS or BBCS} then 1 else 2;

tmp <- FIELD(pos, 1, base);

FIELD (pos, 1, base) <- newstate;

if tmp EQL teststate then

PC <~ PC + SEXT(displ);

Condition Codes:

N <- N;
Z <-7;
V <- V;
C <-C;

Exceptions:

reserved operand

Opcodes:
E2 BBSS Branch on Bit Set and Set
E3 BBCS Branch on Bit Clear and Set
E4 BBSC Branch on Bit Set and Clear
ES BBCC Branch on Bit Clear and Clear

Description:

The single bit field specified by the position and base operands is
tested. If it 1is in the test state indicated by the instruction, the
sign-extended branch displacement is added to PC and PC is replaced by
the result. Regardless of whether the branch is taken or not, the
tested bit is put in the new state as indicated by the instruction.

Notes:
l. See Section 4.5 for definition of FIELD.

2. A reserved operand fault occurs if pos GTRU 31 and the bit is
contained in a register.

3. On a reserved operand fault, the field is unaffected and the
condition codes are UNPREDICTABLE.

Instructions 12-Feb-82 -- Rev 7 Page 4-58

CONTROL INSTRUCTIONS

4. The modification of the bit is not an interlocked operation.
See BBSSI and BBCCI for interlocking instructions.

Instructions 12-Feb-82 -- Rev 7 Page 4-59
CONTROL INSTRUCTIONS

BB Branch on Bit Interlocked
Format:

opcode pos.rl, base.vb, displ.bb
Operation:

teststate = if {BBSSI} then 1 else g;
newstate = teststate;
{set interlock};
tmp <~ FIELD(pos, 1, base);
FIELD (pos, 1, base) <- newstate;
{release interlock};
if tmp EQL teststate then
PC <~ PC + SEXT(displ);

Condition Codes:

N <- N;
Z K- 7;
V <= V;
C <- C;

Exceptions:

reserved operand

Opcodes:
E6 BBSSI Branch on Bit Set and Set Interlocked
E7 BBCCI Branch on Bit Clear and Clear Interlocked

Description:

The single bit field specified by the position and base operands is
tested. If it 1is in the test state indicated by the instruction, the
sign-extended branch displacement is added to the PC and PC is replaced
by the result. Regardless of whether the branch is effected or not, the

tested bit is put in the new state as indicated by the instruction. If
the bit is contained in memory, the reading of the state of the bit and
the setting of it to the new state is an interlocked operation. No

other processor or 1I/0 device can do an interlocked access on the bit
during the interlocked operation.

Notes:
l. See Section 4.5 for definition of FIELD

2. A reserved operand fault occurs if pos GTRU 31 and the bit is
contained in registers.

Instructions 12-Feb-82 -- Rev 7 Page 4-60
CONTROL INSTRUCTIONS

3.

On a reserved operand fault, the field is unaffected and the
condition codes are UNPREDICTABLE.

Except for memory interlocking BBSSI is equivalent to BBSS and
BBCCI is equivalent to BBCC.

This instruction is designed to modify interlocks with other
processors or devices. For example, to implement "busy
waiting":

1$: BBSSI bit,base,1$

Instructions 12-Feb-82 -- Rev 7 Page 4-51
CONTROL INSTRUCTIONS

BLB Branch on Low Bit
Format:
opcode src.rl, displ.bb
Operation:
teststate = if {BLBS} then 1 else 0;
if src<@> EQL teststate then
PC <- PC + SEXT(displ);

Condition Codes:

N <- N;
Z K- Z7;
V <- V;
C K- ¢C;
Exceptions:
none
Opcodes:
E8 BLBS Branch on Low Bit Set
E9 BLBC Branch on Low Bit Clear

Description:

The low bit (bit @) of the source operand is tested and if it is equal
to the test state indicated by the instruction, the sign-extended branch
displacement is added to PC and PC is replaced by the result.

Instructions 12-Feb-82 -- Rev 7 Page 4-62
CONTROL INSTRUCTIONS

BR Branch
Format:

opcode displ.bx
Operation:

PC <- PC + SEXT(displ);

Condition Codes:

N <- N;
Z <- Z7;
Vv <= V;
C <~ C;

Exceptions:

none

Opcodes:
11 BRB Branch With Byte Displacement
31 BRW Branch With Word Displacement

Description:

The sign-extended branch displacement is added to PC and PC is replaced
by the result.

Instructions 12-Feb-82 -- Rev 7 Page 4-63
CONTROL INSTRUCTIONS

BSB Branch To Subroutine
Format:

opcode displ.bx
Operation:

-(SP) <- PC;
PC <~ PC + SEXT(displ);

Condition Codes:

N <- N;
Z K- Z7;
V <= V;
C <~ C;
Exceptions:
none
Opcodes:
10 BSBB Branch to Subroutine With Byte Displacement
30 BSBW Branch to Subroutine With Word Displacement

Description:

PC is pushed on the stack as a longword. The sign-extended branch
displacement is added to PC and PC is replaced by the result.

Instructions 12-Feb-82 -- Rev 7 Page 4-64
CONTROL INSTRUCTIONS

CASE Case
Format:

opcode selector.rx, base.rx, limit.rx,
displ(#].bw,..., displ[limit].bw

Operation:

tmp <- selector - base;
PC <- PC + if tmp LEQU 1limit then
SEXT (displltmp]l) else {2 + 2 * ZEXT(limit)};

Condition Codes:

<- tmp LSS limit;
<- tmp EQL limit;
<- 0;

<- tmp LSSU limit;

n<<N =2

Exceptions:

none

Opcodes:
8F CASEB Case Byte
AF CASEW Case Word
CF CASEL Case Long

Description:

The base operand is subtracted from the selector operand and a temporary
is replaced by the result. The temporary is compared with the limit
operand and if it is less than or equal unsigned, a branch displacement
selected by the temporary value is added to PC and PC is replaced by the
result. Otherwise, 2 times the sum of the limit operand and 1 is added
to PC and PC is replaced by the result. This causes PC to be moved past
the array of branch displacements. Regardless of the branch taken, the
condition codes are affected by the comparison of the temporary operand
with the limit operand.

Notes:

1. After operand evaluation, PC is pointing at displ(#], not the
next instruction. The branch displacements are relative to the
address of displ{g].

2. The selector and base operands can both be considered either as
signed or unsigned integers.

Instructions 12-Feb-82 -- Rev 7 Page 4-65
CONTROL INSTRUCTIONS

JMP Jump
Format:

opcode dst.ab
Operation:

PC <- dst;

Condition Codes:

N <- N;

Z <-27;

V <=~ V;

C K- C;
Exceptions:

none
Opcodes:

17 JMP Jump

Description:

PC is replaced by the destination operand.

Instructions 12-Feb-82 -- Rev 7 Page 4-66
CONTROL INSTRUCTIONS

JSB Jump to Subroutine
Format:

opcode dst.ab
Operation:

-(SpP) <- PC;
PC <- dst;

Condition Codes:

{—
< -
<~
<-

A<<N2Z
N <N 2

Exceptions:
none
Opcodes:

16 JSB Jump to Subroutine

Description:

PC is pushed on the stack as a longword. PC is replaced by the
destination operand.

Notes:

Since the operand specifier conventions cause the evaluation of the
destination operand before saving PC, JSB can be used for coroutine
calls with the stack used for linkage. The form of such a call is JSB
@(sp)+.

Instructions 12-Feb-82 -- Rev 7 Page 4-67
CONTROL INSTRUCTIONS

RSB Return from Subroutine
Format:

opcode
Operation:

PC <- (SP)+;

Condition Codes:

N <- N;
Z <-7;
V <- V;
C <= C;

Exceptions:
none
Opcodes:

35 RSB Return From Subroutine

Description:
PC is replaced by a longword popped from the stack.
Notes:

1. RSB is used to return from subroutines called by the BSBB, BSBW
and JSB instructions.

2. RSB is equivalent to JMP @(SP)+, but is 1 byte shorter.

Instructions 12-Feb-82 -- Rev 7 Page 4-68
CONTROL INSTRUCTIONS

SOBGEQ Subtract One and Branch Greater Than or Equal

Format:
opcode index.ml, displ.bb
Operation:
index <- index - 1;
if index GEQ @ then PC <-
PC + SEXT(displ);

Condition Codes:

N <- index LSS @;
7 <- index EQL 9;
V <- {integer overflow};
C <~ C;
Exceptions:

integer overflow
Opcodes:

Fa SOBGEQ Subtract One and Branch Greater Than or Equal

Description:

One is subtracted from the index operand and the index operand is
replaced by the result. I1f the index operand is greater than or equal

to @, the sign-extended branch displacement is added to PC and PC s
replaced by the result.

Notes:

1. Integer overflow occurs if the index operand before subtraction
is the largest negative integer. on overflow, the index
operand is replaced by the largest positive integer, and thus
the branch is taken.

2. The C-bit is unaffected.

Instructi
CONTROL I

ons 12-Feb-82 -- Rev 7 Page 4-69
NSTRUCTIONS

SOBGTR Subtract One and Branch Greater Than

Format:

opcode index.ml, displ.bb

Operation
i

i

Condition

NN =2

Exception
i
Opcodes:

F5 S

Descripti

One is su
replaced
sign-exte
the resul

Notes:

1.

.

ndex <- index - 1;
f index GTR @ then PC <-
PC + SEXT(displ);

Codes:

<- index LSS @;

<- index EQL 4;

<- {integer overflow};
{- C;

S:

nteger overflow

OBGTR Subtract One and Branch Greater Than

on:

btracted from the index operand and the index operand is

by the result. If the index operand is greater than @, the
nded branch displacement is added to PC and PC is replaced by
t.

Integer overflow occurs if the index operand before subtraction
is the largest negative integer. On overflow, the index
operand is replaced by the largest positive integer, and thus
the branch is taken.

The C-bit is unaffected.

Instructions 12-Feb-82 —-- Rev 7 Page 4-70
PROCEDURE CALL INSTRUCTIONS

4.6 PROCEDURE CALL INSTRUCTIONS

Three instructions are used to implement a standard procedure calling
interface. Two instructions implement the CALL to the procedure; the
third implements the matching RETURN. Refer to the VAX/VMS Run Time
Library Reference Manual for the procedure calling standard. The CALLG
instruction calls a procedure with the argument list actuals in an
arbitrary location. The CALLS instruction calls a procedure with the
argument list actuals on the stack. Upon return after a CALLS this list
is automatically removed from the stack. Both call instructions specify
the address of the entry point of the procedure being called. The entry
point is assumed to consist of a word termed the entry mask followed by
the procedure's instructions. The procedure terminates by executing a
RET instruction.

The entry mask specifies the subprocedure's register wuse and overflow
enables:

11111

54321)
fot—Fmm—fmmmmmm e mm e mmmm——— = +
IDITIMBZ] REGISTERS |
jvivi | |
bt m————m +

On CALL the stack is aligned to a longword boundary and the trap enables
in the PSW are set to a known state to ensure consistent behavior of the
called procedure. Integer overflow enable and decimal overflow enable
are affected according to bits 14 and 15 of the entry mask respectively.
Floating underflow enable is cleared. The registers R11 through R#?
specified by bits 11 through 0 respectively are saved on the stack and
are restored by the RET instruction. In addition, PC, SP, FP, and AP
are always preserved by the CALL instructions and restored by the RET
instruction.

All external procedure CALLs generated by standard DIGITAL language
processors, and all inter-module CALLs to major VAX-1ll software
subsystems comply with the procedure calling software standard (see
VAX/VMS Run Time Library Reference Manual, Appendix C). The procedure
calling standard requires that all registers in the range R2 through R11
used in the procedure must appear in the mask. RO and R1l are not
preserved by any called procedure that complies with the procedure
calling standard.

In order to preserve the state, the CALL instructions form a structure
on the stack termed a call frame or stack frame. This contains the
saved registers, the saved PSW, the register save mask, and several
control bits. The frame also includes a longword which the CALL
instructions clear; this is used to implement the condition handling
facility. Refer to Appendix D. At the end of execution of the CALL
instruction, FP contains the address of the stack frame. The RET
instruction uses the contents of FP to find the stack frame and restore
state. The condition handling facility assumes that FP always points to
the stack frame. The stack frame has the following format:

Instructions 12-Feb-82 -- Rev 7 Page 4-71
PROCEDURE CALL INSTRUCTIONS

e +
| condition handler (initially 0) | : (FP)
Fom bbb e e TS T +
[SPA|S (0] mask<1l1:98> | saved PSW<15:5> | Y] |
Fomm b e Fmm e +
f saved AP !
o e +
| saved FP |
P e +
| saved PC |
o +
| saved RO (...) |
et +
P +
| saved R1l (...) !
o T e e e +

(6 to 3 bytes specified by SPA, Stack Pointer Alignment)

S = set i1f CALLS; clear if CALLG.

Note that the saved condition codes and the saved trace enable (PSWKT>)
are cleared.

The contents of the frame PSW<3:8> at the time RET is executed will
become the condition codes resulting from the execution of the
procedure. Similarly, the content of the frame PSW<4> at the time the
RET is executed will become the PSW<T> bit.
The following instructions are described in this section.

Instructions

1. Call Procedure with General Argument List 1
CALLG arglist.ab, dst.ab, {-(SP).w*}

2. Call Procedure with Stack Argument List 1
CALLS numarg.rl, dst.ab, {-(SP).w*}

3. Return from Procedure 1
RET {(SP)+.r*}

Instructions 12-Feb-82 -- Rev 7 Page 4-72
PROCEDURE CALL INSTRUCTIONS

CALLG Call Procedure With General Argument List
Format:

opcode arglist.ab, dst.ab
Operation:

{align stack};

{create stack frame};

{set arithmetic exception enables};

{set new values of AP,FP,PC};

Condition Codes:

N <- @;
7 <- 0;
V <- @;
C <- @;

Exceptions:
reserved operand
Opcodes:

FA CALLG Call Procedure with General Argument List

Description:

SP is saved in a temporary and then bits 1:8 are replaced by 8 so that
the stack is longword aligned. The procedure entry mask 1is scanned from
bit 11 to @ and the contents of registers whose number corresponds to
set bits in the mask are pushed on the stack as longwords. PC, FP, and
AP are pushed on the stack as longwords. The condition codes are
cleared. A longword containing the saved two low bits of SP in bits
31:3¢, a @ in bit 29 and bit 28, the low 12 bits of the procedure entry
mask in bits 27:16, and the PSW in bits 15:0 with T cleared is pushed on
the stack. A longword 8 is pushed on the stack. FP is replaced by SP.
AP is replaced by the arglist operand. The trap enables in the PSW are
set to a known state. Integer overflow, and decimal overflow are
affected according to bits 14 and 15 of the entry mask respectively;
floating underflow is cleared. T-bit is unaffected. PC is replaced by
the sum of destination operand plus 2 which transfers control to the
called procedure at the byte beyond the entry mask.

Instructions 12-Feb-82 -- Rev 7 Page 4-73
PROCEDURE CALL INSTRUCTIONS

(8 to 3 bytes specified by SPA)

1. If bits 13:12 of the entry mask are not 9, a reserved operand
fault occurs.

2. On a reserved operand fault, condition codes are UNPREDICTABLE,

3. The procedure calling standard and the condition handling
facility require the following register saving conventions. R
and Rl are always available for function return values and are
never saved in the entry mask. All registers R2 through R11
which are modified in the called procedure must be preserved in
the mask. Refer to VAX/VMS Run Time Library Reference Manual,
Appendix C.

Instructions 1

PROCEDURE CALL

CALLS

Format:

INSTRUCTIONS

Call Procedure with Stack Argument

2-Feb-82 -- Rev 7 Page

List

opcode numarg.rl, dst.ab

Operation:

{push arg count};
{align stack};

{create stack frame};
{set arithmetic exception enables};

{set new values of

Condition Codes:
N <- 8;
7 - 9;
VvV <- @;
C <- 9;

Exceptions:

reserved operand
Opcodes:

FB CALLS

Description:

The numarg operand is pushed on the stack as a

the number of arguments,
software). SP is saved in
replaced by @ so that

entry mask is scanned from

AP,FP,PC};

Call Procedure With Stack Argument List

longword (byte @ contains

high order bits are used by DIGITAL
a temporary and then bits 1:0 of SP are
the stack is longword aligned. The procedure
bit 11 to bit @ and the contents of registers

24

whose number corresponds to set Dbits in the mask are pushed on the
stack. PC, FP, and AP are pushed on the stack as longwords. The
condition codes are cleared. A longword containing the saved two low

bits of SP in bits 31:38,

of the procedure entry mask in bit

T cleared is pushed on the
FP is replaced by SP.

are set to a known state.
affected according to bits
is

TAads
floating underflow

called procedure

al in bit 29,

AP is set to
the numarg operand was pushed on the stack.

cl
the sum of destination operan
at the byte beyond

a 0 in bit 28, the low 12 bits
s 27:16, and the PSW in bits 15:0 with
A longword @ is pushed on the stack.

the value of the stack pointer after
The trap enables in the PSW

Integer overflow, and decimal overflow, are
14 and 15 of the entry mask, respectively,
eared. T-bit is unaffected.PC is replaced by
d plus 2 which transfers control to the
the entry mask. The appearance of

stack.

the stack after CALLS is executed is:

Instructions 12-Feb-82 -- Rev 7 Page 4-75
PROCEDURE CALL INSTRUCTIONS

P tom +
I I N I : (AP)
P Fm +

. N longwords of argument list .
et +
Notes:

1. If bits 13:12 of the entry mask are not @, a reserved operand
fault occurs.

2. On a reserved operand fault, the condition codes are
UNPREDICTABLE.

3. Normal use is to push the arglist onto the stack in reverse
order prior to the CALLS. On return, the arglist is removed
from the stack automatically.

4. The procedure calling standard and the condition handling
facility require the following register saving conventions. R@
and Rl are always available for function return values and are
never saved in the entry mask. All registers R2 through R11
which are modified in the called procedure must be preserved in
the entry mask. Refer to VAX/VMS Run Time Library Reference
Manual, Appendix C.

Instructions 12-Feb-82 -- Rev 7 Page 4-76
PROCEDURE CALL INSTRUCTIONS

RET Return from Procedure
Format:

opcode
Operation:

{restore SP from FP};

{restore registers};

{drop stack alignment};

{if CALLS then remove arglist};
{restore PSW};

Condition Codes:

<- tmpl<3>;
<- tmpl<2>;
<- tmpl<l>;
<— tmpl<@>;

A< N Z

Exceptions:
reserved operand
Opcodes:

g4 RET Return from Procedure

Description:

SP is replaced by FP plus 4. A longword containing stack alignment bits
in bits 31:38, a CALLS/CALLG flag in bit 29, the low 12 bits of the
procedure entry mask in bits 27:16, and a saved PSW in bits 15:8 is
popped from the stack and saved in a temporary. PC, FP, and AP are
replaced by longwords popped from the stack. A register restore mask is
formed from bits 27:16 of the temporary. Scanning from bit 6 to bit 11
of the restore mask, the contents of registers whose number is indicated
by set bits in the mask are replaced by longwords popped from the stack.
SP is incremented by 31:38 of the temporary. PSW is replaced by bits
15:0 of the temporary. If bit 29 in the temporary is 1 (indicating that
the procedure was called by CALLS), a longword containing the number of
arguments is popped from the stack. Four times the unsigned value of
the low byte of this longword is added to SP and SP is replaced by the
result.

Instructions 12-Feb-82 -- Rev 7 Page 4-77
PROCEDURE CALL INSTRUCTIONS

Notes:

1.

A reserved operand fault occurs if tmpl<15:8> NEQ 4.

On a reserved operand fault, the condition codes are
UNPREDICTABLE.

The value of tmpl<28> is ignored.

The procedure calling standard and condition handling facility
assume that procedures which return a function value or a
status code do so in R@® or R® and RI1. Refer to VAX/VMS Run
Time Library Reference Manual, Appendix C.

Instructions 12-Feb-82 -- Rev 7 Page 4-78
MISCELLANEOUS INSTRUCTIONS

4.7 MISCELLANEOUS INSTRUCTIONS

The following instructions are described in this section.
Instructions

1. Bit Clear PSW 1
BICPSW mask.rw

2. Bit Set PSW 1
BISPSW mask.rw

3. Breakpoint Fault 1
BPT {-(KSP).w*}

4., Halt 1
HALT {-(KSP).w*}

5. Index 1
INDEX subscript.rl, low.rl, high.rl, size.rl, indexin.rl,
indexout.wl

6. Move from PSL 1
MOVPSL dst.wl

7. No Operation 1
NOP
8. Pop Registers 1

POPR mask.rw, {(SP)+.r*}

9. Push Registers 1
PUSHR mask.rw, {-(SP).w*}

18. Extended Function Call 1
XFC {unspecified operands}

Instructions 12-Feb-82 -- Rev
MISCELLANEOUS INSTRUCTIONS

BICPSW Bit Clear PSW
Format:

opcode mask.rw
Operation:

PSW <- PSW AND {NOT mask};
Condition Codes:
<~ N AND {NOT mask<3>};
<- Z AND {NOT mask<2>};

<~ V AND {NOT mask<1>};
<- C AND {NOT mask<@>};

<N 2

Exceptions:
reserved operand
Opcodes:

B9 BICPSW Bit Clear PSW

Description:

PSW is ANDed with the ones complement of the mask

replaced by the result.

Notes:

A reserved operand fault occurs if mask <15:8>
reserved operand fault, the PSW is not affected.

7

Page 4-79

and PSW is

zero. On a

Instructions 12-Feb-82 -- Rev 7 Page 4-890
MISCELLANEOUS INSTRUCTIONS

BISPSW Bit Set PSW
Format:

opcode mask.rw
Operation:

PSW <- PSW OR mask;
Condition Codes:
<- N OR mask<3>;
<- Z OR mask<2>;

<- V OR mask<1l>;
<- C OR mask<?>;

o< Z

Exceptions:
reserved operand
Opcodes:

B8 BISPSW Bit Set PSW

Description:
PSW is ORed with the mask operand and PSW is replaced by the result.
Notes:

A reserved operand fault occurs if mask<l5:8> 1is not zero. On a
reserved operand fault, the PSW is not affected.

Instructions 12-Feb-82 -- Rev 7 Page 4-81
MISCELLANEOUS INSTRUCTIONS

BPT Breakpoint Fault
Format:

opcode
Operation:

PSLLTP> <- @;
{breakpoint fault}; !push current PSL on stack

Condition Codes:

<- 82;
<- 0;
<- @;
<- 0;

!condition codes cleared after BPT fault

NN Z

Exceptions:
none

Opcodes:

a3 BPT Breakpoint Fault

Description:

In order to understand the operation of this instruction, it is
necessary to read Chapter 6. This instruction is used, together with
the T-bit, to implement debugging facilities.

Instructions 12-Feb-82 -- Rev 7 Page 4-82
MISCELLANEQUS INSTRUCTIONS

HALT Halt
Format:
opcode
Operation:
If PSL<current mode> NEQU kernel then
{priviTeged instruction fault}

else
{halt the processor};

Condition Codes:

N <- @; 'If privileged instruction fault

7 <- @; lcondition codes are cleared after

V <- @; !the fault. PSL saved on stack

C <- @; lcontains condition codes prior to HALT.
N <- N; !If processor halt

Z - 7;

VvV <= V;

C <= C;

Exceptions:
privileged instruction
Opcodes:

09 HALT Halt

Description:

In order to understand the operation of this instruction it is necessary
to read Chapter 6. If the process 1is running in kernel mode, the
processor is halted. Otherwise, a privileged instruction fault occurs.

Notes:

This opcode is 8 to trap many branches to data.

Instructions 12-Feb-82 -- Rev 7 Page 4-83
MISCELLANEOUS INSTRUCTIONS

INDEX Compute Index

Format:

opcode subscript.rl, low.rl, high.r1l,
size.rl, indexin.rl, indexout.wl

Operation:
indexout <- {indexin + subscript} *size;
if {subscript LSS low} or {subscript GTR high}
then {subscript range trap};

Condition Codes:

N <- indexout LSS g;
Z <- indexout EQL @;
V <~ @3;
C <- @;

Exceptions:
subscript range
Opcodes:
A INDEX index
Description:

The indexin operand is added to the subscript operand and the sum
multiplied by the size operand. The indexout operand is replaced by the
result. If the subscript operand is less than the low operand or
greater than the high operand, a subscript range trap is taken,

Notes:

l. No arithmetic exception other than subscript range can result
from this instruction. Thus no indication is given if overflow
occurs in either the add or multiply steps. 1If overflow occurs
on the add step the sum is the low order 32 bits of the true
result. TIf overflow occurs on the multiply step, the indexout
operand is replaced by the 1low order 32 bits of the true
product of the sum and the subscript operand. In the normal
use of this 1instruction, overflow cannot occur without a
subscript range trap occurring.,

2. The index instruction 1is wuseful in index calculations for
arrays of the fixed length data types (integer and floating)
and for index calculations for arrays of bit fields, character
strings, and decimal strings. The indexin operand permits
cascading INDEX instructions for multidimensional arrays. For

Instructions 12-Feb-82 -- Rev 7 Page 4-84
MISCELLANEOUS INSTRUCTIONS

one-dimensional bit field arrays it also permits introduction
of the constant portion of an index calculation which is not

readily absorbed by address arithmetic. The following notes
will show some of the uses of INDEX,
The COBOL statements:
g1 A-ARRAY.
@2 A PIC X(12) OCCURS 15 TIMES.
@1 B PIC X(l0).
MOVE A(I) TO B.
could compile to:

INDEX I, #1, #15, #10, #0, RO

mMovc3 #1@, A-19([RrRO], B.

The PL/1l statements:

DCL A(-3:108) BIT (5);

could compile to:
INDEX I, #-3, #10, #5, #3, RO

INSV #1, RO, #5, A; assumes A byte aligned

The FORTRAN statements:

INTEGER*4 A(L1l:U1, L2:U2), I, J

A(1,J) =1

could compile to:
INDEX J, #L2, #U2, #M1l, #0, R@; M1=Ul-LI1+1
INDEX I, #L1, #Ul, #1, RO, RO;

MOVL #1, A-a[R@]; a = {{L2*M1} + L1} *4

Instructions 12-Feb-82 -~ Rev 7 Page 4-85
MISCELLANEOUS INSTRUCTIONS

MOVPSL Move from PSL
Format:

opcode dst.,wl
Operation:

dst <- PSL;

Condition Codes:

N <- N;
Z K- Z;
V <- V;
C <~ C;

Exceptions:
none

Opcodes:

DC MOVPSL Move from PSL

Description:

The destination operand is replaced by PSL (See Chapter 6).

Instructions 12-Feb-82 -- Rev 7 Page 4-86
MISCELLANEOQUS INSTRUCTIONS

NOP No Operation
Format:

opcode
Operation:

none
Condition Codes:
<—
<._

<=
{—-

. o~

NN 2
N <N

Exceptions:
none
Opcodes:

g1 NOP No Operation

Description:

No operation is performed.

Instructions 12-Feb-82 -- Rev 7 Page 4-87
MISCELLANEQUS INSTRUCTIONS

POPR Pop Registers
Format:

opcode mask.rw
Operation:

for tmp <~ @ step 1 until 14 do
if mask<tmp> EQL 1 then R{tmp] <- (SP)+;

Condition Codes:

N <- N;
Z <-17;
V <= V;
C K- ¢C;

Exceptions:
none

Opcodes:

BA POPR Pop Registers

Description:

The contents of registers whose number corresponds to set bits in the
mask operand are replaced by longwords popped from the stack. R([n] is
replaced if mask<n> is set. The mask is scanned from bit 8 to bit 14.
Bit 15 is ignored.

Instructions 12-Feb-82 -- Rev 7 Page 4-88
MISCELLANEQUS INSTRUCTIONS

PUSHR Push Registers
Format:

opcode mask.rw
Operation:

for tmp <- 14 step -1 until @ do
if mask<tmp> EQL 1 then -(SP) <- R{tmp];

Condition Codes:

N <- N;
Z <- 7;
V K- V;
C <~ C;

Exceptions:
none
Opcodes:

BB PUSHR Push Registers

Description:

The contents of registers whose number corresponds to set bits in the
mask operand are pushed on the stack as longwords. RI[n] is pushed if
mask<n> is set. The mask is scanned from bit 14 to bit 0. Bit 15 1is
ignored.

Notes:

The order of pushing 1is specified so that the contents of higher
numbered registers are stored at higher memory addresses. This results
in, say, a double floating datum stored in adjacent registers being
stored by PUSHR in memory in the correct order.

Instructions 12-Feb-82 -- Rev 7
MISCELLANEOUS INSTRUCTIONS

XFC Extended Function Call
Format:
opcode
Operation:
{XFC fault};
Condition Codes:
N <-
Z <-

vV <~
C <-

S SIS R

we Ne we we

Exceptions:
none
Opcodes:

FC XFC Extended Function Call

Description:

In order to understand the operation of

this

Page 4-89

instruction,

it

is

necessary to read Chapter 6. This instruction provides for customer

defined extensions to the instruction set.

Instructions 12-Feb-82 -- Rev 7 Page 4-90
QUEUE INSTRUCTIONS

4.8 QUEUE INSTRUCTIONS

A queue is a circular, doubly linked list. A queue entry 1is specified
by its address, Each queue entry is linked to the next via a pair of
longwords. The first longword is the forward link : it specifies the
location of the succeeding entry. The second longword is the backward
link : it specifies the location of the preceeding entry. The VAX-11
supports two distinct types of links : absolute, and self-relative. An
absolute link contains the absolute address of the entry that it points
to. A self-relative link contains a displacement from the present queue
entry. A queue is classified by the type of link it uses.

4.8.1 Absolute Queues

Absolute queues use absolute addresses as links. Queue entries are
linked by a pair of longwords.

The first (lowest addressed) longword is the forward link: the address
of the succeeding queue entry. The second (highest addressed) longword
is the backward link: the address of the ©preceding queue entry. A
queue is specified by a queue header which is identical to a pair of
queue linkage longwords. The forward link of the header is the address
of the entry termed the head of the queue. The backward link of the
header is the address of the entry termed the tail of the queue. The
forward link of the tail points to the header.

Two general operations can be performed on queues: insertion of entries
and removal of entries. Generally entries can be inserted or removed
only at the head or tail of a queue. (Under certain restrictions they
can be inserted or removed elsewhere; this is discussed later.)

The following contains examples of queue operations. An empty queue is
specified by its header at address H:

3

1 g
o oo +
| H | :H
o o — oo oo +

| H | :H+4
e — - +

3 o)

1

If an entry at address B is inserted into an empty queue (at either the
head or tail), the queue is as shown below:

Instructions 12-Feb-82 -- Rev 7 Page 4-91
QUEUE INSTRUCTIONS

3

1 2
P e +

I B | :H
P e +

! B | :H+4
P e +

3)

1

3

1 0
P e e e . +

| H | :B
o e . +

| H | :B+4
o +

3 2

Instructions 12-Feb-82 -- Rev 7 Page 4-92
QUEUE INSTRUCTIONS

If an entry at address A is inserted at the head of the queue, the queue
is as shown below:

3

1 0
et bbb +

| A | :H
it et e +

| B | :H+4
et e +

3 2

1

3

1 0
et et +

! B | A
IR i +

| H | :A+4
Sttt +

3 g

1

3

1 9
PR it b +

| H | :B
ittt +

| A | :B+4
PR S it +

3]

Instructions 12-Feb-82 -- Rev 7 Page 4-93
QUEUE INSTRUCTIONS

Finally, if an entry at address C is inserted at the tail, the queue
appears as follows:

3
1 {4
o e +
[A | :H
e e +
| C | :H+4
F o e +
3 /]
1
3
1]
o +
| B I :a
o +
! H | :A+4
o e +
3 @
1
3
1]
o +
| C | :B
o e +
| A | :B+4
A e +
3 4]
1
3
1]
o +
| H | :C
o +
| B | :C+4
o +
3 4]
1

Following the above steps in reverse order gives the effect of removal
at the tail and removal at the head.

Instructions 12-Feb-82 -- Rev 7 Page 4-94
QUEUE INSTRUCTIONS

If more than 1 process can perform operations on a queue simultaneously,
insertions and removals should only be done at the head or tail of the
queue. If only 1 process (or 1 process at a time) can perform
operations on a queue, insertions and removals can be made at other than
the head or tail of the queue. In the example above with the Qqueue
containing entries A,B, and C, the entry at address B can be removed
giving:

3

1]
Sttt b +
| A | :H
o e — - — === +
! C | :H+4
o o e — - +

3]

1

3

1 @
b e e o — +
| C | :A
RS S S S e +
| H | :a+4
N RSEEEEEEESEESE +

3 1%}

1

3

1 1]
b o oo +

| H | :C
PR S S i +
| A | :C+4
I S e +

3)

1

The reason for the above restriction is that operations at the head or
tail are always valid because the queue header is always present;
operations elsewhere in the queue depend on specific entries being
present and may become 1invalid if another process is simultaneously
performing operations on the queue.

Two instructions are provided for manipulating absolute queues
INSQUE, and REMQUE. INSQUE inserts an entry specified by an entry
operand into the queue following the entry specified by the predecessor
operand. REMQUE removes the entry specified by the entry operand.
Queue entries can be on arbitrary byte boundaries. Both INSQUE and
REMQUE are implemented as non-interruptible instructions.

Instructions 12-Feb-82 -- Rev 7 Page 4-95
QUEUE INSTRUCTIONS

4.8.2 Self-relative Queues

Self-relative queues use displacements from queue entries as links.
Queue entries are linked by a pair of longwords. The first longword
(lowest addressed) is the forward link : displacement of the succeeding
queue entry from the present entry. The second longword (highest
addressed) is the backward link: the displacement of the preceding
queue entry from the present entry. A queue is specified by a queue
header, which also consists of two longword links.

The following contains examples of queue operations. An empty queue is
specified by 1its header at address H. Since the queue is empty, the
self-relative links must be zero as shown below:

3
1 %]
o e +
| 2 | :H
e S +
|] | :H+4
Fo e e +
3 2
1

If an entry at address B is inserted into an empty queue (at either the
head or tail), the queue is as shown below:

3

1)
e e e +

I B - H | :H
e +

| B - H | :H+4
i +

3]

1

1)
o +

| H-B | :B
o e +

| H - B | :B+4
o e +

]

Instructions
QUEUE INSTRUCTIONS

If an entry at address
is as shown below:

12-Feb-82 -- Rev 7

is inserted at the head of the queue,

Page 4-96

the queue

3

1]
o — oo oo +
| A H | :H
e s i +
i B H | :H+4
Uttt bt s +

3 2

1

3

1)
et +
| B A | :A
et ettt b +
| H A | :A+4
o e e e e e e e e e TS T T T T T T T +

3 2

1

3

1 2
o - — oo +
| H B | :B
S S S S S ittt +
| A B | :B+4
o == oo +

g

Instructions 12-Feb-82 -- Rev 7 Page 4-97
QUEUE INSTRUCTIONS

Finally, if an entry at address C is inserted at the tail, the queue
appears as follows:

3

1 2
L T T +

! A - H | :H
P e e e +

| C - H | :H+4
P T T e e e e e +

3 2

1

3

1 2
trm e +
! B - A | :A
t-————————————————— +
| H - A | :A+4
tm +

3 9

1

3

1]
o +
| C - B | :B
b +
| A - B | :B+4
Fom +

3]

1

3

1 7]
o e +
! H-C | :C
o +
| B - C | :C+4
Fo e e +

3 1}

1

Following the above steps in reverse order gives the effect of removal
at the tail and removal at the head.

Four operations can be performed on self-relative queues insert at
head, insert at tail, remove from head, and remove from tail.
Furthermore, these operations are interlocked to allow cooperating
processes in a multiprocessor system to access a shared list without

Instructions 12-Feb-82 -- Rev 7 Page 4-98
QUEUE INSTRUCTIONS

additional synchronization. Queue entries must be quadword aligned.
Hardware supported interlocked memory access mechanism is used to read
the queue header. Bit @ of the queue header 1is wused as a secondary
interlock and is set when the queue is being accessed. If an
interlocked queue instruction encounters the secondary interlock set, it
terminates after setting the condition codes to indicate failure to gain
access to the queue. If the secondary interlock bit is not set, then
the interlocked queue instruction sets it during its operation and
clears it at instruction completion. This prevents other interlocked
queue instructions from operating on the same queue.

4,8.3 1Instruction Descriptions

The following instructions are described in this section.
Instructions

1. Insert Entry into Queue at Head, Interlocked 1
INSQHI entry.ab, header.aq

2. Insert Entry into Queue at Tail, Interlocked 1
INSQTI entry.ab, header.aq

3. 1Insert Entry in Queue 1
INSQUE entry.ab, pred.ab

4, Remove Entry from Queue at Head, Interlocked 1
REMQHI header.aq, addr.wl

5. Remove Entry from Queue at Tail, Interlocked 1
REMQTI header.aq, addr.wl

6. Remove Entry from Queue 1
REMQUE entry.ab, addr.wl

Instructions 12-Feb-82 -- Rev 7 Page 4-99
QUEUE INSTRUCTIONS

INSQHI Insert Entry into Queue at Head, Interlocked
Format:

opcode entry.ab, header.aq
Operation:

tmpl <- (header){interlocked}; lacquire hardware interlock
!must have write access to

header
theader must be quadword aligned
!header cannot be equal to entry
1tmpl<2:1> must be zero
if tmpl<@> EQLU 1 then
_RAINBW:: TTAl:,NUNES 15:29:57.79
begin
(header) {interlocked} <- tmpl; !release hardware

interlock
{set condition codes and terminate instruction};

end;
else
begin
(header){interlocked} <- tmpl v 1; !set secondary
interlock

lrelease hardware
interlock
If {all memory accesses can be completed} then
!check if following addresses can be written
!without causing a memory management exception:
! entry
! header + tmpl
!Also, check for quadword alignment
begin
{insert entry into queue};
{release secondary interlock};
end;
else
begin
{release secondary interlock};
{backup instruction};
{initiate fault};
end;
end;

Instructions 12-Feb-82 —-- Rev 7 Page 4-1080
QUEUE INSTRUCTIONS

Condition Codes:

if {insertion succeeded} then

begin
N <- @;
7 <- (entry) EQL (entry+4); t1first entry in queue
Vv <- @;
C <- @;
end;
else
begin
N <- @;
Z <- @;
vV <- @;
c <~ 1; Isecondary interlock failed
end;

Exceptions:
reserved operand
Opcodes:

5C INSQHI Insert Entry into Queue at Head, Interlocked

Description:

The entry specified by the entry operand is inserted 1into the dueue

following the header. If the entry inserted was the first one in the
queue, the condition code 7-bit is set; otherwise it is cleared. The
insertion is a non-interruptible operation. The 1insertion 1is

interlocked to prevent concurrent interlocked insertions or removals at
the head or tail of the same queue by another process even in a
multiprocessor environment. Before performing any part of the
operation, the processor validates that the entire operation can be
completed. This ensures that if a memory management exception occurs
(See Chapters 5 and 6), the dqueue is left in a consistent state. If the
instruction fails to acquire the secondary interlock, the instruction
sets condition codes and terminates.

Instructions 12-Feb-82 -- Rev 7 Page 4-101
QUEUE INSTRUCTIONS

Notes:

1.

Because the insertion is non-interruptible, processes running
in kernel mode can share queues with interrupt service routines
(See Chapters 5, 6, and 7).

The INSQHI, INSQTI, REMQHI, and REMQTI instructions are
implemented such that cooperating software processes in a
multiprocessor may access a shared 1list without additional
synchronization.

To set a software interlock realized with a dqueue, the
following can be used:

INSERT: INSQHI ... iWwas queue empty?
BEQL 18 iyes
BCS INSERT itry inserting again
CALL WAIT(...) ;no, wait

1$:

During access validation, any access which cannot be completed
results in a memory management exception even though the queue
insertion is not started.

A reserved operand fault occurs 1if entry or header is an
address that is not quadword aligned (i.e. <2:8> NEQU 0) or if
(header)<2:1> is not =zero. A reserved operand fault also
occurs 1if header equals entry. In this case the queue is not
altered.

Instructions

12-Feb-82 -- Rev 7 Page 4-102

QUEUE INSTRUCTIONS

INSQTI
Format:

opcode
Operation:

tmpl <-

header

Insert Entry into Queue at Tail, Interlocked

entry.ab, header.aqg

(header){interlocked}; lacquire hardware interlock
‘tmust have write access to

lheader must be quadword aligned
theader cannot be equal to entry
1tmpl<2:1> must be zero

if tmpl<@> EQLU 1 then

interlock

else

interlock

interlock

begin
(header) {interlocked} <- tmpl; trelease hardware

{set condition codes and terminate instruction};
end;

begin
(header){interlocked} <- tmpl v 1; !set secondary

lrelease hardware

If {all memory accesses can be completed} then
icheck if the following addresses can be written
lwithout causing a memory management exception:

! entry
! header + (header + 4)
1Also, check for gquadword alignment

begin
{insert entry into queue};
{release secondary interlock};
end;

else
begin
{release secondary interlock};
{backup instruction};
{initiate fault};
end;

end;

Instructions 12-Feb-82 -- Rev 7 Page 4-103
QUEUE INSTRUCTIONS

Condition Codes:

if {insertion succeeded} then

begin
N <- g;
Z <- (entry) EQL (entry+4); 'first entry in queue
V <- 3;
C K- @;
end;
else
begin
N <- @;
Z <- @;
V <- 8;
C K- 1; !secondary interlock failed
end;

Exceptions:
reserved operand
Opcodes:

5D INSQTI Insert Entry into Queue at Tail, Interlocked

Description:

The entry specified by the entry operand 1is inserted into the queue

preceding the header. If the entry inserted was the first one in the
queue, the condition code Z-bit is set; otherwise it is cleared. The
insertion is a non-interruptible operation. The insertion is

interlocked to prevent concurrent interlocked insertions or removals at
the head or tail of the same queue by another process even in a
multiprocessor environment. Before performing any part of the
operation, the processor validates that the entire operation can be
completed. This ensures that if a memory management exception occurs
(See Chapters 5 and 6), the queue is left in a consistent state. If the
instruction fails to acquire the secondary interlock, the instruction
sets condition codes and terminates.

Instructions 12-Feb-82 -- Rev 7 Page 4-104
QUEUE INSTRUCTIONS

Notes:

1.

Because the insertion is non-interruptible, processes running
in kernel mode can share queues with interrupt service routines
(See Chapters 5, 6, and 7).

The INSQHI, INSQTI, REMQHI, and REMQTI instructions are
implemented such that cooperating software processes in a

multiprocessor may access a shared list without additional
synchronization.

To set a software interlock realized with a queue, the
following can be used:

INSERT: INSQHI ... ;was queue empty?
BEQL 13$ iyes
BCS INSERT ;try inserting again
CALL WAIT(...) ;no, wait

1$:

During access validation, any access which cannot be completed
results in a memory management exception even though the queue
insertion is not started.

A reserved operand fault occurs if entry, header, or (header+4)
is an address that is not guadword aligned (i.e. <2:0> NEQU 9)
or if (header)<2:1> is not zero. A reserved operand fault also
occurs if header equals entry. In this case the queue is not
altered.

Instructions 12-Feb-82 -- Rev 7 Page 4-105
QUEUE INSTRUCTIONS

INSQUE 1Insert Entry in Queue
Format:
opcode entry.ab, pred.ab

Operation:

If {all memory accesses can be completed} then

begin
(entry) <- (pred); !forward link of entry
(entry + 4) <- pred; !backward link of entry
((pred) + 4) <- entry; !backward link of successor
(pred) <- entry; !forward link of predecessor
end;

else
begin

{backup instruction};
{initiate fault};
end;

Condition Codes:

N <- (entry) LSS (entry+4);

Z <- (entry) EQL (entry+4); first entry in queue
V <- §;

C

<- (entry) LSSU (entry+4);
Exceptions:

none
Opcodes:

OE INSQUE 1Insert Entry in Queue

Description:

The entry specified by the entry operand 1is 1inserted into the queue
following the entry specified by the predecessor operand. If the entry
inserted was the first one in the queue, the condition code 2Z-bit is
set; otherwise it 1is cleared. The insertion is a non-interruptible
operation. Before performing any part of the operation, the processor
validates that the entire operation can be completed. This ensures that

if a memory management exception occurs (See Chapters 5 and 6), the
queue is left in a consistent state.

Instructions 12-Feb-82 -- Rev 7 Page 4-106
QUEUE INSTRUCTIONS

Notes:

1.

Three types of insertion can be performed by appropriate choice
of predecessor operand:

1. Insert at head
INSQUE entry,h ;h is queue head
2. Insert at tail

INSQUE entry,@h+4 :h is queue head
(Note "@" in this case only)

3. Insert after arbitrary predecessor

INSQUE entry,p ;p 1s predecessor

Because the insertion is non—-interruptible, processes running

in kernel mode can share queues with interrupt service routines
(See Chapters 5, 6, and 7).

The INSQUE and REMQUE instructions are implemented such that
cooperating software processes in a single processor may access
a shared list without additional synchronization if the
insertions and removals are only at the head or tail of the
queue.

To set a software interlock realized with a queue, the
following can be used:

INSQUE ... ;was queue empty?
BEQL 1$;yes
CALL WAIT (...) ;no, wait

1$:

During access validation, any access which cannot be completed
results in a memory management exception even though the queue
insertion is not started.

Instructions 12-Feb-82 -- Rev 7 Page 4-107
QUEUE INSTRUCTIONS

REMQHI Remove Entry from Queue at Head, Interlocked
Format:

opcode header.aq, addr.wl
Operation:

tmpl <- (header){interlocked}; lacquire hardware interlock
!must have write access to
header
!header must be quadword aligned
'header cannot equal address of
addr
'tmpl<2:1> must be zero

if tmpl<@P> EQLU 1 then
begin
(header) {interlocked} <- tmpl; !release hardware
interlock
{set condition codes and terminate instruction};

end;
else
begin
(header) {interlocked} <- tmpl v 1; !set secondary
interlock

!release hardware
intevlock
If {all memory accesses can be completed} then
!check if the following can be done without
!causing a memory management exXception:
!write addr operand
!read contents of header + tmpl {if tmpl NEQU 4}
!write into header + tmpl + (header + tmpl) {if
! tmpl NEQU 0}
!Also, check for quadword alignment
begin
{remove entry from queue};
{release secondary interlock};
end;
else
begin
{release secondary interlock};
{backup instruction};
{initiate fault};
end;
end;

Instructions 12-Feb-82 -- Rev 7 Page 4-108
QUEUE INSTRUCTIONS

Condition Codes:

if {removal succeeded} then

begin
N <- 9;
7 <- (header) EQL @; !queue empty
Vv <- tmpl EQL @; 'no entry to remove
C <- 0;
end;
else
begin
N <- @;
7 <- B;
Vv <= 1; 1did not remove anything
c <- 1; 1secondary interlock failed
end;

Exceptions:
reserved operand
Opcodes:

5E REMQHI Remove Entry from Queue at Head, Interlocked

Description:

The queue entry following the header is removed from the dueue. The
address operand is replaced by the address of the entry removed. If no
entry was removed from the queue (because either there was nothing to
remove or secondary interlock failed), the condition code V bit is set;
otherwise it is cleared. 1If the interlock succeeded and the queue is
empty at the end of this instruction, the condition code Z-bit is set;
otherwise it is cleared. The removal 1is 1interlocked to prevent
concurrent interlocked insertions or removals at the head or tail of the
same queue by another process even in a multiprocessor environment. The
removal is a non-interruptible operation. Before performing any part of
the operation, the processor validates that the entire operation can be
completed. This ensures that if a memory management exception occurs
(See Chapters 5 and 6), the queue is left in a consistent state. TIf the
instruction fails to acquire the secondary interlock, the instruction
sets condition codes and terminates without altering the queue.

Instructions 12-Feb-82 -- Rev 7 Page 4-109
QUEUE INSTRUCTIONS

Notes:

1.

Because the removal is non-interruptible, processes running in
kernel mode can share queues with interrupt service routines
(See Chapters 5, 6, and 7).

The INSQHTI, INSQTI, REMQHI, and REMOQTI instructions are
implemented such that cooperating software processes 1in a
multiprocessor may access a shared list without additional
synchronization.

To release a software interlock realized with a queue, the
following can be used:

1$: REMQHI ... ;removed last?
BEQL 2$;yes
BCS 1s itry removing again
CALL ACTIVATE(...) ;Activate other waiters
2$:

To remove entries until the queue is empty, the following can
be used:

1s: REMQHI ... ;janything removed?
BVS 23 ino
process removed entry

BR 1$;

2S: BCS 1% itry removing again
queue empty

During access validation, any access which cannot be completed
results in a memory management exception even though the queue
removal is not started.

A reserved operand fault occurs if header or (header +
(header)) is an address that is not quadword aligned (i.e.
<2:0> NEQU @) or if (header)<2:1> is not Zero. A reserved
operand fault also occurs if the header address operand equals
the address of the addr operand. 1In this case the queue is not
altered.

Instructions

12-Feb-82 -- Rev 7 Page 4-110

QUEUE INSTRUCTIONS

REMQTI
Format:
opcode

Operation:

Remove Entry from Queue at Tail, Interlocked

header.aq, addr.wl

tmpl <- (header){interlocked}; tacquire hardware interlock

header

addr

Imust have write access to

theader must be quadword aligned
theader cannot equal address of

1tmpl<2:1> must be zero

if tmpl<@> EQLU 1 then

interlock

else

interlock

interlock

n}

begin
(header){interlocked} <- tmpl; lrelease hardware

{set condition codes and terminate instruction};
end;

begin
(header) {interlocked} <- tmpl v 1; !set secondary

lrelease hardware

I1f {all memory accesses can be completed} then
icheck if the following can be done without
lcausing a memory management exception
lwrite addr operand
tread contents of header + (header + 4) {if tmpl
! NEQU @}
Iwrite into header + (header + 4)
! + (header + 4 + (header + 4)) {if tmpl NEQU

1Also, check for quadword alignment
begin
{remove entry from queuel};
{release secondary interlock};
end;

else
begin
{release secondary interlock};
{backup instruction};
{initiate fault};
end;

end;

Instructions 12-Feb-82 -- Rev 7 Page 4-111
QUEUE INSTRUCTIONS

Condition Codes:

if {removal succeeded} then

begin
N <- @;
Z <- (header + 4) EQL 0; !queue empty
V <- tmp3 EQL o !no entry to remove
C <- @;
end;
else
begin
N <- @;
Z <- @;
V <-1; !did not remove anything
C K- 1; !secondary interlock failed
end;

Exceptions:
reserved operand
Opcodes:

5F REMQTI Remove Entry from Queue at Tail, Interlocked

Description:

The queue entry preceding the header is removed from the queue. The
address operand is replaced by the address of the entry removed. If no
entry was removed from the queue (because either there was nothing to
remove or secondary interlock failed), the condition code V bit is set;
otherwise it is cleared. If the interlock succeeded and the queue is
empty at the end of this instruction, the condition code Z-bit is set;
otherwise it 1is cleared. The removal 1is interlocked to prevent
concurrent interlocked insertions or removals at the head or tail of the
same queue by another process even in a multiprocessor environment. The
removal is a non-interruptible operation. Before performing any part of
the operation, the processor validates that the entire operation can be
completed. This ensures that if a memory management exception occurs
(See Chapters 5 and 6), the queue is left in a consistent state. If the
instruction fails to acquire the secondary interlock, the instruction
sets condition codes and terminates without altering the queue.

Instructions 12-Feb-82 -- Rev 7 Page 4-112
QUEUE INSTRUCTIONS

Notes:

1.

Because the removal is non-interruptible, processes running in
kernel mode can share queues with interrupt service routines
(See Chapters 5, 6, and 7).

The INSQHI, INSQTI, REMQHI, and REMQTI instructions are
implemented such that cooperating software processes in a
multiprocessor may access a shared 1list without additional
synchronization.

To release a software interlock realized with a queue, the
following can be used:

1$: REMQTI ... ;removed last?
BEQL 2% ;yes
BCS 1$;jtry removing again
CALL ACTIVATE(...) ;Activate other waiters
28:

To remove entries until the queue is empty, the following can
be used:

1$: REMQTI ... ;anything removed?
BVS 2$;no

process removed entry

BR 1$;

2%: BCS 1$;try removing again
queue empty

During access validation, any access which cannot be completed
results in a memory management exception even though the queue
removal is not started.

A reserved operand fault occurs if header, (header + 4), or
(header + (header + 4)+4) is an address that is not quadword
aligned (i.e. <2:0> NEQU @) or if (header)<2:1> is not 2zero.
A reserved operand fault also occurs if the header address
operand equals the address of the addr operand. In this case
the queue is not altered.

Instructions 12-Feb-82 -- Rev 7 Page 4-113
QUEUE INSTRUCTIONS

REMQUE Remove Entry From Queue
Format:

opcode entry.ab,addr.wl
Operation:

if {al11 memory acceses can be completed} then
begin

((entry+4)) <- (entry); !forward link of predecessor
((entry)+4) <- (entry +4);1backward link of successor
addr <- entry;
end;
else
begin
{backup instruction};
{initiate fault};
end;

Condition Codes:

N <- (entry) LSS (entry+4);

Z <- (entry) EQL (entry+4); !queue empty
V <- entry EQL (entry+4); !no entry to remove
C <- (entry) LSSU (entry+4);

Exceptions:
none
Opcodes:

gF REMQUE Remove Entry from Queue

Description:

The queue entry specified by the entry operand is removed from the
queue. The address operand is replaced by the address of the entry
removed. If there was no entry in the queue to be removed, the
condition code V bit is set; otherwise it is cleared. 1If the queue is
empty at the end of this instruction, the condition code Z-bit is set;
otherwise it is cleared. The removal is a non-interruptible operation.
Before performing any part of the operation, the processor validates
that the entire operation can be completed. This ensures that if a
memory management exception occurs (See Chapters 5 and 6), the queue is
left in a consistent state.

Instructions 12-Feb-82 -- Rev 7 Page 4-114
QUEUE INSTRUCTIONS

Notes:

1.

Three types of removal can be performed by suitable choice of
entry operand:

1. Remove at head

REMQUE @h,addr ;h is queue header
2. Remove at tail

REMQUE @h+4,addr ;h 1s queue header
3. Remove arbitrary entry

REMQUE entry,addr ;
Because the removal is non-interruptible, processes running in
kernel mode can share queues with interrupt service routines
(See Chapters 5, 6, and 7).

The INSQUE and REMQUE instructions are implemented such that
cooperating software processes in a single processor may access
a shared 1list without additional synchronization if the
insertions and removals are only at the head or tail of the
queue.

To release a software interlock realized with a queue, the
followng can be used:

REMQUE ... ;queue empty?
BEQL 18 iyes
CALL ACTIVATE (...) ;Activate other waiters

1$:

To remove entries until the queue is empty, the following can
be used:

1$: REMQUE ... ;anything removed?
BVS EMPTY ;no
BR 1$ i

During access validation, any access which cannot be completed

results in a memory management exception even though the queue
removal is not started.

Instructions 2-Feb-81 -- Rev 6.2 Page 4-115
FLOATING POINT INSTRUCTIONS

4.9 FLOATING POINT INSTRUCTIONS

The floating point instructions operate on four data types. F floating
and D_floating instructions are standard on all VAX processors,
G_floating and H_floating instructions are optional on the VAX-11/788
and the VAX-11/750; standard on the VAX-11/7340.

In order to be consistent with the floating point instruction set which
faults on reserved operands (See Chapter 2), software implemented
floating point functions (e.g., the absolute function) should verify
that the input operand(s) is (are) not reserved. An easy way to do this
is a floating move or test of the input operand(s).

In order to facilitate high speed implementations of the floating point
instruction set, certain restrictions are placed on the addressing mode
combinations usable within a single floating point instruction. These
combinations involve the logically inconsistent simultaneous use of a
value as both a floating point operand and an address.

Specifically: if within the same instruction the contents of register
Rn is wused as both a part of a floating point input operand (i.e., a
.rf, .rd, .rg, .rh, .mf, .md, .mg, or .mh operand) and as an address in
an addressing mode which modifies Rn (i.e., autoincrement,
autodecrement, or autoincrement deferred), the value of the floating
point operand is UNPREDICTABLE.

4.9.1 Introduction

Mathematically, a floating point number may be defined as having the
form

(+ or -) (2**K)*f,

where K is an integer and f 1is a non-negative fraction. For a
non-vanishing number, K and f are uniquely determined by imposing the
condition

1/2 LEQ £ LSS 1.

The fractional factor, £, of the number 1is then said to be binary
normalized. For the number zero, f must be assigned the value 0, and
the value of K is indeterminate.

The VAX-11 floating point data formats are derived from this
mathematical representation for floating point numbers. Four types of
floating point data are provided : the two standard PDP-11 formats
(F_floating and D_floating), and two extended range formats (G_floating
and H floating). Single precision, or floating, data is 32 bits 1long.
Double precision, or D _floating, data is 64 bits long. Extended range
double precision, or G_floating, data is 64 bits long. Extended range

Instructions 2-Feb-81 -- Rev 6,2 Page 4-116
FLOATING POINT INSTRUCTIONS

quadruple precision, or H floating, data 1is 128 bits long. Sign
magnitude notation is used, as follows:

1. Non-zero floating point numbers:

The most significant bit of the floating point data is the sign bit:
g for positive, and 1 for negative.

The fractional factor f is assumed normalized, so that 1its most
significant bit must be 1. This 1 is the "hidden" bit: it is not
stored in the data word, but of course the hardware restores it
before carrying out arithmetic operations. The F floating and
D floating data types use 23 and 55 bits, respectively, for f, which
with the hidden bit, imply effective significance of 24 bits and 56
bits for arithmetic operations. The extended range data types,
G floating and H floating, use 52 and 112 bits, respectively, for f,
which with the hidden bit, imply effective significance of 53 and
113 bits for arithmetic operations.

In the F_floating and D_floating data types, eight bits are reserved
for the storage of the exponent K in excess 128 notation. Thus
exponents from -128 to +127 could be represented, in biased form, by
@ to 255. For reasons given below, a biased EXP of @ (true exponent
of -128), is reserved for floating point =zero. Thus, for the
F_floating and D_floating data types, exponents are restricted to
the range -127 to +127 inclusive, or in excess 128 notation, 1 to
255.

In the G _floating data type eleven bits are reserved for the storage
of the exponent in excess 1024 notation. In the H floating data
type fifteen bits are reserved for the storage of the exponent in
excess 16384 notation. A biased exponent of 0 is reserved for
floating point zero. Thus, exponents are restricted to -1823 to
+1023 inclusive (in excess notation, 1 to 2047), and -16383 to
+16383 inclusive (in excess notation, 1 to 32767) for the G floating
and H floating data types respectively.

2. Floating point zero:

Because of the hidden bit, the fractional factor is not available to
distinguish between zero and non-zero numbers whose fractional
factor is exactly 1/2. Therefore the vax-11 reserves a
sign-exponent field of @ for this purpose. Any positive floating
point number with biased exponent of @ is treated as if it were an
exact @ by the floating point instruction set. 1In particular, a
floating point operand, whose bits are all @'s, is treated as zero,
and this is the format generated by all floating point instructions
for which the result is zero.

3. The Reserved Operands:

A reserved operand is defined to be any bit pattern with a sign bit
of one and a biased exponent of zero. On the VAX-11, all floating
point instructions generate a fault if a reserved operand is

Instructions 2-Feb-81 -- Rev 6.2 Page 4-117
FLOATING POINT INSTRUCTIONS

encountered. A reserved operand is never denerated as a result of a
floating point instruction.

4.9.2 Overview Of The Instruction Set

The VAX-11 has the standard arithmetic operations ADD, SUB, MUL, and DIV
implemented for all four floating data types. The results of these
operations are always rounded, as described in the section on accuracy.
It has, in addition, two composite operations, EMOD and POLY, also
implemented for all four floating point data types. EMOD generates a
product of two operands, and then separates the product into its integer
and fractional terms. POLY evaluates a polynomial, given the degree,
the argument and pointer to a table of coefficients. Details on the
operation of EMOD and POLY are given in their respective descriptions.
All of these instructions are subject to the rounding errors associated
with floating point operations, as well as to exponent overflow and
underflow. Accuracy is discussed in the next section, and exceptions
are discussed in Chapter 6.

The VAX-11 also has a complete set of instructions for conversion from
integer arithmetic types (byte, word, longword) to all floating types
(F_floating, D_floating, G floating, H floating), and vice versa. The
VAX-11 also has a set of instructions for conversion between all of the
floating types except between D_floating and G_floating. Many of these
instructions are exact, in the sense defined In the section on accuracy
to follow. However, a few may generate rounding error, floating
overflow, floating underflow, or induce integer overflow. Details are
given in the description of the CVT instructions.

There is a class of move-type instructions which are always exact: MOV,
NEG, CLR, CMP, and TST. And, finally, there is the ACB (add, compare
and branch) instruction, which is subject to rounding errors, overflow
and underflow.

All of the floating point instructions on the VAX-11 fault if a reserved
operand is encountered. Floating point instructions also fault on the
occurrence of floating overflow or divide by zero, and the condition
codes are UNPREDICTABLE. The FU bit, in the PSW, is available to enable
or disable an exception on underflow. If the FU bit 1is clear, no
exception occurs on underflow and zero is returned as the result. If
the FU bit is set, a fault occurs on underflow. Further details on the
actions taken if any of these exceptions occurs are included in the
descriptions of the instructions, and completely discussed in Chapter 6.

4.9.3 Accuracy

General comments on the accuracy of the VAX-11 floating point
instruction set are presented here. The descriptions of the individual
instructions may include additional details on the accuracy at which
they operate.

Instructions 2-Feb-81 -- Rev 5h.2 Page 4-118
FLOATING POINT INSTRUCTIONS

An instruction is defined to be exact if its result, extended on the
right by an infinite sequence of zeroes, is identical to that of an
infinite precision calculation involving the same operands. The a
priori accuracy of the operands is thus ignored. For all arithmetic
operations, except DIV, a zero operand implies that the instruction is
exact. The same statement holds for DIV if the zero operand is the
dividend. But if it is the divisor, division |is undefined and the
instruction faults.

For non-zero floating point operands, the fractional factor 1is binary
normalized with 24 or 56 bits for single precision (F_floating) or
double precision (D_floating), respectively; and 53 or 113 bits for
extended range double precision (G_floating), and extended range
quadruple precision (H_floating), respectively. We show below that for
ADD, SUB, MUL and DIV, an overflow bit, on the left, and two guard bits,
on the right, are necessary and sufficient to guarantee return of a
rounded result identical to the corresponding infinite precision
operation rounded to the specified word length. Thus, with two guard
bits, a rounded result has an error bound of 1/2 LSB (least significant
bit).

Note that an arithmetic result is exact if no non-zero bits are lost in
chopping the infinite precision result to the data length to be stored.
Chopping is defined to mean that the 24 (F floating), 56 (D_floating),
53 (G_floating), or 113 (H_floating) high order bits of the normalized
fractional factor of a result are stored; the rest of the bits are
discarded. The first bit 1lost 1in chopping 1is referred to as the

"rounding" bit. The value of a rounded result is related to the chopped
result as follows:

1. If the rounding bit is one, the rounded result is the chopped
result incremented by an LSB (least significant bit).

2. 1If the rounding bit is zero, the rounded and chopped results
are identical.

All VAX-11 processors implement rounding so as to produce results
identical to the results produced by the following algorithm. Add a 1l
to the rounding bit, and propagate the carry, if it occurs. Note that a
renormalization may be required after rounding takes place; 1if this
happens, the new rounding bit will be zero, so it can happen only once.
The following statements summarize the relations among chopped, rounded
and true (infinite precision) results:

1. If a stored result is exact
rounded value = chopped value = true value.
2. 1If a stored result is not exact, it's magnitude

1. is always less than that of the true result for chopping.

Instructions 2-Feb-81 -- Rev 6.2 Page 4-119
FLOATING POINT INSTRUCTIONS

2. is always less than that of the true result for rounding if
the rounding bit is zero.

3. is greater than that of the true result for rounding if the
rounding bit is one.

Instructions 2-Feb-81 -- Rev 6.2 Page 4-120
FLOATING POINT INSTRUCTIONS

4.9.4 Instruction Descriptions
The following instructions are described in this section.

Instructions

1. Add 2 Operand 4
ADD{F,D,G,H}2 add.rx, sum.mx

2. Add 3 Operand 4
ADD{F,D,G,H}3 addl.rx, add2.rx, sum.wX

3., Clear 3
CLR{L=F,Q=D=G,O=H} dst.wx

4., Compare 4
cMp{F,D,G,H} srcl.rx, src2.rx

5. Convert 34
cvT{F,D,G,H}{B,wW,L,F,D,G,H} src.rx, dst.wy
cvr{B,w,L}{F,D,G,H} src.rx, dst.wy
All pairs except FF,DD,GG,HH,DG, and GD

6. Convert Rounded 4
CVTR{F,D,G,H}L src.rx, dst.wl

7. Divide 2 Operand 4
DIV{F,D,G,H}2 divr.rx, quo.mx

8. Divide 3 Operand 4
DIV{F,D,G,H}3 divr.rx, divd.rx, quo.wx

9. Extended Modulus 4
EMOD {F,D} mulr.rx, mulrx.rb, muld.rx, int.wl, fract.wx
EMOD{G,H} mulr.rx, mulrx.rw, muld.rx, int.wl, fract.wx

1. Move Negated 4
MNEG {F,D,G,H} src.rx, dst.wx

11. Move 4
MOV {F,D,G,H} src.rx, dst.wx

12. Multiply 2 Operand 4
MUL{F,D,G,H}2 mulr.rx, prod.mx

13. Multiply 3 Operand 4
MUL{F,D,G!H}3 mulr.rx, muld.rx, prod.wx

14. Polynomial Evaluation F_floating 1
POLYF arg.rf, degree.rw, tbladdr.ab, {(rRE-3.wl}

Instructions 2-Feb-81 -- Rev 6.2 Page 4-121
FLOATING POINT INSTRUCTIONS

15,

16.

17,

18.

19.

20.

Polynomial Evaluation D_floating
POLYD arg.rd, degree.rw, tbladdr.ab, {RO-5.wl}

Polynomial Evaluation G_floating
POLYG arg.rg, degree.rw, tbladdr.ab, {RO-5.wl}

Polynomial Evaluation H_floating
POLYH arg.rh, degree.rw, tbladdr.ab,
{Rﬂ—S.wl,—l6(SP):-l(SP).wb}

Subtract 2 Operand
SUB{F,D,G,H}2 sub.rx, dif.mx

Subtract 3 Operand
SUB{F,D,G,H}3 sub.rx, min.rx, dif.wx

Test
TST{F,D,G,H} src.rx

The following floating point instructions are described in the
on Control Instructions.

1.

Add Compare and Branch

ACB{F,D,G,H} limit.rx, add.rx, index.mx, displ.bw
Compare is LE on positive add, GE on negative
add.

section

Instructions 2-Feb-81 -- Rev 5.2 Page 4-122
FLOATING POINT INSTRUCTIONS

ADD Add

Format:
opcode add.rx, sum.mx 2 operand
opcode addl.rx, add2.rx, sum.wX 3 operand

Operation:
sum <- sum + add; 12 operand
sum <- addl + add2; 13 operand
Condition Codes:
<- sum LSS @;
<~ sum EQL @;

<- {floating overflow};
<- 0;

O<N Z

Exceptions:

floating overflow
floating underflow
reserved operand

Opcodes:
49 ADDF2 Add F_floating 2 Operand
41 ADDF3 Add F_floating 3 Operand
60 ADDD2 Add D floating 2 Operand
61 ADDD3 Add D _floating 3 Operand
40FD ADDG2 ADD G _floating 2 Operand
41FD ADDG3 ADD G_floating 3 Operand
60FD ADDH2 ADD H floating 2 Operand
61FD ADDH3 ADD H floating 3 Operand

Description:

In 2 operand format, the addend operand is added to the sum operand and
the sum operand is replaced by the rounded result. 1In 3 operand format,
the addend 1 operand is added to the addend 2 operand and the sum
operand is replaced by the rounded result.
Notes:

1. On a re ved operand fault,

r t operand is unaffected and
tion codes are UNPRED

he sum

ICTABLE.

2. On floating underflow, if FU is set a fault occurs. Zero is
stored as the result of floating underflow only if FU is clear.
On a floating underflow fault, the sum operand is unaffected.
If FU is clear, the sum operand is replaced by @ and no

Instructions 2-Feb-81 -- Rev 6.2 Page 4-123
FLOATING POINT INSTRUCTIONS

exception occurs,

3. On floating overflow, the instruction faults; the sum operand
is unaffected, and the condition codes are UNPREDICTABLE.,

Instructions

2-Feb-81

FLOATING POINT INSTRUCTIONS

CLR

Format:

Clear

opcode dst.wx

Operation:

dst <- 0;

Condition Codes:

N <-
Z <-
vV <~
c <-
Exceptions:
none
Opcodes:
D4 CLRF
C CLRD
CLRG
7CFD CLRH

Description:

[@ NNl
~ s me e

Clear F_floating
Clear D _floating,
Clear G_floating
Clear H _floating

Rev 6.2

The destination operand is replaced by 8.

Notes:

CLRx dst is equivalent to MOVx #@, dst,

but

is

5

Page 4-124

(F_floating)

(D_floating or G_floating) or 17 (H_floating) bytes shorter.

or

9

Instructions 2-Feb-81
FLOATING POINT INSTRUCTIONS

CMP Compare
Format:

opcode srcl.rx, src2.rx
Operation:

srcl - src2;

Condition Codes:

N <- srcl LSS src2;
Z <- srcl EQL src2;
V <- @;
C K- 0;

Exceptions:

reserved operand

Opcodes:
51 CMPF Compare F floating
71 CMPD Compare D floating
51FD CMPG Compare G_floating
71FD CMPH Compare H floating

Description:

The source 1 operand is compared with the source 2

-- Rev 6.2

action is to affect the condition codes.

Notes:

On a reserved operand fault, the condition codes are UNPREDICTABLE.

operand.

Page 4-125

The

only

Instructions 2-Feb-81 -- Rev 6.2
FLOATING POINT INSTRUCTIONS

CVT Convert
Format:

opcode src.rx, dst.wy
Operation:

dst <- conversion of src;

Condition Codes:

N <- dst LSS 0;

7 <- dst EQL 0;

V <- {src cannot be represented in dst};
C <- @;

Exceptions:

integer overflow
floating overflow
floating underflow
reserved operand

Opcodes:
4C CVTBF Convert Byte to F_floating
6C CVTBD Convert Byte to D_floating

4CFD CVTBG Convert Byte to G _floating
6CFD CVTBH Convert Byte to H floating

4D CVIWF Convert Word to F_floating
6D CVTWD Convert Word to D_floating
4DFD CVTWG Convert Word to G_floating
6DFD CVTWH Convert Word to H_floating

4E CVTLF Convert Long to F_floating
6E CVTLD Convert Long to D_floating
4EFD CVTLG Convert Long to G _floating
6EFD CVTLH Convert Long to H floating

Page 4-125

Instructions
FLOATING POINT INSTRUCTIONS

48
68
48FD
68FD

49
69
49FD
69FD

42
4B
6A
6B
4AFD
4BFD
6AFD
6BFD

56
99FD
98FD

76
32FD

33FD
56FD

F6FD
F7FD
76FD

CVTFB
CVTDB
CVTGB
CVTHB

CVTFW
CVTDW
CVTGW
CVTHW

CVTFL
CVTRFL
CVTDL
CVTRDL
CVTGL
CVTRGL
CVTHL
CVTRHL

CVTFD
CVTFG
CVTFH

CVTDF
CVTDH

CVTGF
CVTGH

CVTHF

CVTHD
CVTHG

2-Feb-81

Convert F floating
Convert D floating
Convert G _floating
Convert H floating

Convert F_floating
Convert D floating
Convert G floating
Convert H floating

Convert F floating

to
to
to
to

to
to
to
to

to

-— Rev 6.2

Byte
Byte
Byte
Byte

Word
Word
Word
Word

Long

Convert Rounded F floating to Long

Convert
Convert
Convert

D floating to Long
Rounded D_floating
G floatlng to Long

to

Convert Rounded G_floating to

Convert
Convert

H floating to Long
Rounded H floating

to

Long
Long

Long

Convert F_floating
Convert F_floating
Convert F_floating

Convert D floating
Convert D floating

Convert G_floating
Convert G floating

Convert H_floating

Convert H floating
Convert H floating

to
to
to

to
to

to
to

to

to
to

D_floating
G floating
H floating

F_floating
H_floating

F_floating
H floating

F floating

D floating
G_floating

Page 4-127

Instructions

FLOATING POINT INSTRUCTIONS

Description:

The source operand

2-Feb-81

is converted to the
operand and the destination operand is rep

of the conversion is as follows:

Notes:

1.

CVTBF
CVTBD
CVTBG
CVTBH
CVTWF
CVTWD
CVTWG
CVTWH
CVTLF
CVTLD
CVTLG
CVTLH

CVTFB
CVTDB
CVTGB
CVTHB
CVTFW
CVTDW
CVTGW
CVTHW
CVTFL
CVTRFL
CVTDL
CVTRDL
CVTGL
CVTRGL
CVTHL
CVTRHL

CVTFD
CVTFG
CVTFH
CVTDF
CVTDH
CVTGF
CVTGH
CVTHF
CVTHD
CVTHG

Oonly CVTDF, CVTGF,

exact
exact
exact
exact
exact
exact
exXxact
exact
rounded
exact
exact
exact

truncated
truncated
truncated
truncated
truncated
truncated
truncated
truncated
truncated
rounded

truncated
rounded

truncated
rounded

truncated
rounded

exact
exact
exact
rounded
exact
rounded
exact
rounded
rounded
rounded

CVTHF,

floating overflow fault;
and the condition codes are UNPREDICTABLE.

-- Rev 6.

data

CVTHD,

2

type of

and CVTHG

the

can

Page 4-128

destination
laced by the result.

The form

result in

the destination operand is unaffected

Instructions 2-Feb-81 -- Rev 6.2 Page 4-129
FLOATING POINT INSTRUCTIONS

2.

Only converts with a floating point source operand can result
in a reserved operand fault. On a reserved operand fault, the

destination operand is unaffected and the condition codes are
UNPREDICTABLE,

Only converts with an integer destination operand can result in
integer overflow. On integer overflow, the destination operand
is replaced by the low order bits of the true result.

Only CVTGF, CVTHF, CVTHD, and CVTHG can result in floating
underflow. If FU is set a fault occurs. Zero is stored as the

result of floating underflow only if FU 1is clear. On a
floating underflow fault, the destination operand is
unaffected. If FU 1is «clear, the destination operand is

replaced by @ and no exception occurs.

Instructions 2-Feb-81 -- Rev 6.2 Page 4-130
FLOATING POINT INSTRUCTIONS

DIV Divide
Format:
opcode divr.rx, quo.mx 2 operand
opcode divr.rx, divd.rx, quo.wx 3 operand
Operation:
quo <~ quo / divr; 12 operand
quo <- divd / divr; 13 operand
Condition Codes:
<{- quo LSS @;
<- quo EQL @;

<- {floating overflow} or {divr EQL 0};
<- 0;

NanN2Z

Exceptions:

floating overflow
floating underflow
divide by zero
reserved operand

Opcodes:
46 DIVF2 Divide F_floating 2 Operand
47 DIVF3 Divide F floating 3 Operand
66 DIVD2 Divide D floating 2 Operand
67 DIVD3 Divide D_floating 3 Operand
46FD DIVG2 Divide G_floating 2 Operand
47FD DIVG3 Divide G _floating 3 Operand
66FD DIVH2 Divide H floating 2 Operand
67FD DIVH3 Divide H floating 3 Operand

Description:

In 2 operand format, the quotient operand 1is divided by the divisor
operand and the quotient operand is replaced by the rounded result. 1In
3 operand format, the dividend operand is divided by the divisor operand
and the quotient operand is replaced by the rounded result.

Notes:

1. On a reserved operand fault, the quotient operand is unaffected
and the condition codes are UNPREDICTABLE.

Instructions 2-Feb-81 -- Rev 6.2 Page 4-131
FLOATING POINT INSTRUCTIONS

2.

On floating underflow, if FU is set a fault occurs. Zero is
stored as the result of floating underflow only if FU is clear.
On a floating wunderflow fault, the quotient operand is
unaffected. If FU is clear, the quotient operand is replaced
by # and no exception occurs.

On floating overflow, the 1instruction faults; the quotient
operand is unaffected, and the condition codes are
UNPREDICTABLE.

On divide by zero, the quotient operand and condition codes are
affected as in 3. above.

Instructions 2-Feb-81 -- Rev 6.2 Page 4-132
FLOATING POINT INSTRUCTIONS

EMOD Extended Multiply and Integerize

Format:

EMODF and EMODD:
opcode mulr.rx, mulrx.rb, muld.rx, int.wl,
fract.wx

EMODG and EMODH:
opcode mulr.rx, mulrx.rw, muld.rx, int.wl,
fract.wx

Operation:

int <- integer part of muld * {mulr'mulrx};
fract <- fractional part of muld * {mulr'mulrx};

Condition Codes:

<- fract LSS 0;
<- fract EQL @;

<- {integer overflow};
<- 0;

no<sN 2

Exceptions:

integer overflow
floating underflow
reserved operand

Opcodes:
54 EMODF Extended Multiply and Integerize F_floating
74 EMODD Extended Multiply and Integerize D__floating

S4FD EMODG Extended Multiply and Integerize G_floating
74FD EMODH Extended Multiply and Integerize H floating

Description:

The multiplier extension operand is concatenated with the multiplier
operand to gain 8 (EMODD and EMODF), 11 (EMODG), or 15 (EMODH)
additional low order fraction bits. The low order 5 or 1 bits of the
16-bit multiplier extension operand are ignored by the EMODG and EMODH
instructions respectively. The multiplicand operand is multiplied by
the extended multiplier operand. The multiplication is such that the
result is equivalent to the exact product truncated (before
normalization) to a fraction field of 32 bits in F_floating, 64 bits in
D floating and G_floating, and 128 in H_floating. Regarding the result
as the sum of an integer and fraction of the same sign, the integer

Instructions 2-Feb-81 -- Rev 6.2 Page 4-133
FLOATING POINT INSTRUCTIONS

operand is replaced by the integer part of the result and the fraction
operand is replaced by the rounded fractional part of the result.

Notes:

1.

On a reserved operand fault, the integer operand and the
fraction operand are unaffected. The condition codes are
UNPREDICTABLE.

On floating underflow, if FU 1is set a fault occurs. The
integer and fraction parts are replaced by =zero on the
occurrence of floating underflow only if FU is clear. On a
floating underflow fault, the integer and fraction parts are
unaffected. If FU is clear, the integer and fraction parts are
replaced by # and no exception occurs.

On integer overflow, the integer operand is replaced by the low
order bits of the true result.

Floating overflow is indicated by integer overflow; however
integer overflow is possible in the absence of floating
overflow.

The signs of the integer and fraction are the same unless
integer overflow results.

Because the fraction part is rounded after separation of the
integer part, it is possible that the value of the fraction
operand is 1.

Instructions 2-Feb-81 -- Rev 6.2 Page 4-134
FLOATING POINT INSTRUCTIONS

MNEG Move Negated
Format:

opcode src.rx, dst.wx
Operation:

dst <~ -src;

Condition Codes:

N <- dst LSS @;
7 <- dst EQL @;
vV <~ @;
C <- 0;

Exceptions:

reserved operand

Opcodes:
52 MNEGF Move Negated F_floating
72 MNEGD Move Negated D floating

52FD MNEGG Move Negated G floating
72FD MNEGH Move Negated H_floating

Description:

The destination operand is replaced by the negative of the source
operand.
Notes:

On a reserved operand fault, the destination operand is wunaffected and
the condition codes are UNPREDICTABLE.

Instructions

2-Feb-81

FLOATING POINT INSTRUCTIONS

MOV

Format:

Move

opcode src.rx, dst.wx

Operation:

dst <- src;

Condition Codes:

N <- dst LSS 0;
Z <- dst EQL 9;
V K- #;
C <-¢C;

Exceptions:

reserved operand

Opcodes:
50 MOVF
70 MOVD
50FD MOVG
70FD MOVH

Description:

The destination operand is replaced by the source operand.

Notes:

On a reserved operand fault, the destination operand is

Move F floating
Move D_floating
Move G floating
Move H floating

-- Rev 6.2

the condition codes are UNPREDICTABLE.

Page 4-135

unaffected and

Instructions 2-Feb-81 -- Rev 6
FLOATING POINT INSTRUCTIONS

MUL Multiply
Format:

opcode mulr.rx, prod.mX

opcode mulr.rx, muld.rx, prod.wx
Operation:

prod <- prod * mulr; 12 operand

prod <- muld * mulr; 13 operand
Condition Codes:

<- prod LSS #;

<- prod EQL 8;

<- {floating overflow};
<- @;

NN Z

Exceptions:

floating overflow
floating underflow
reserved operand

Opcodes:
44 MULF2 Multiply F floating 2 Operand
45 MULF3 Multiply F _floating 3 Operand
64 MULDZ Multiply D floating 2 Operand
65 MULD3 Multiply D _floating 3 Operand
44FD MULG2 Multiply G floating 2 Operand
45FD MULG3 Multiply G_floating 3 Operand
64FD MULH2 Multiply H floating 2 Operand
65FD MULH3 Multiply H floating 3 Operand

Description:

In 2 operand format, the product operand is
operand and the product operand is replaced
operand format, the multiplicand operand is
operand and the product operand is replaced
Notes:
1. On a reserved operand fault,
and the condition codes are U

.2 Page 4-136

2 operand

3 operand

multiplied by the multiplier
by the rounded result. 1In 3
multiplied by the multiplier
by the rounded result.

ufnial icecied

Instructions 2-Feb-81 -- Rev 6.2 Page 4-137
FLOATING POINT INSTRUCTIONS

2.

On floating underflow, if FU is set a fault occurs. Zero is
stored as the result of floating underflow only if FU is clear.
On a floating wunderflow fault, the product operand is
unaffected. If FU is clear, the product operand is replaced by
@ and no exception occurs.

On floating overflow, the instruction faults; the product
operand is unaffected, and the condition codes are
UNPREDICTABLE.

Instructions 2-Feb-81 -- Rev 6.2 Page 4-138
FLOATING POINT INSTRUCTIONS

POLY Polynomial Evaluation
Format:
opcode arg.rx, degree.rw, tbladdr.ab

Operation:

tmpl <- degree;
if tmpl GTRU 31 then RESERVED OPERAND FAULT;
tmp2 <- tbladdr;
tmp3 <- {(tmp2)+}; 1tmp3 accumulates the partial result
ltmp3 is of type X
if POLYH then -(SP) <- arg;
while tmpl GTRU 0 do
begin tcomputation loop
tmpd <- {arg * tmp3}; 1tmp4d accumulates new partial result.
1tmp3 has old partial result.
1Perform multiply, and retain the 31 (POLYF) ,
163 (POLYD, POLYG), or 127 (PCLYH) most significant
1bits of the fraction by truncating the unnormalized
tproduct. (The most significant bit of the 31, 63,
1or 127 bits in the product magnitude will be zero
1if the product magnitude is LSS 1/2 and GEQ 1/4.)
1Use the result in the following add operation.
tmp4 <- tmp4 + (tmp2);
tnormalize, and round to type X.
1Check for over/underflow only after the combined
'multiply/add/normalize/round sequence.
if OVERFLOW then FLOATING OVERFLOW FAULT
if UNDERFLOW then

begin

if FU EQL 1 then FLOATING UNDERFLOW FAULT;
tmp4 <- 0; tforce result to 0;

end;

tmpl <- tmpl - 1;
tmp2 <- tmp2 + {size of data typetl;

tmp3 <- tmp4; tupdate partial result in tmp3
end;

if POLYF then
begin
RO <- tmp3;
R1 <- O0;
R2 <- 0;
R3 <- tmp2;
end;

if POLYD or POLYG then
begin
R1'RO <- tmp3;
R2 <- 0;

R3 <- tmp2;
R4 <- 0;

Instructions 2-Feb-81 -- Rev 6.2 Page 4-139
FLOATING POINT INSTRUCTIONS

R5 <- ¢;
end;
if POLYH then
begin
SP <- SP + 16;
R3'R2'R1'RA <- tmp3;

R4 <~ §;
R5 <- tmp2;
end;

Condition Codes:

N <- R@ LSS @;
Z <- R@ EQL 8;
V <~ {floating overflow};
C <- 0;
Exceptions:

floating overflow
floating underflow
reserved operand

Opcodes:
55 POLYF Polynomial Evaluation F _floating
75 POLYD Polynomial Evaluation D floating

55FD POLYG Polynomial Evaluation G_floating
75FD POLYH Polynomial Evaluation H floating

Description:

The table address operand points to a table of polynomial coefficients.
The coefficient of the highest order term of the polynomial is pointed
to by the table address operand. The table is specified with lower
order coefficients stored at increasing addresses. The data type of the
coefficients is the same as the data type of the argument operand. The
evaluation is carried out by Horner's method and the contents of R@
(R1'RO for POLYD and POLYG, R3'R2'R1'R# for POLYH)) are replaced by the
result. The result computed is:

if d = degree

and x = arg

result = C[8] + x*(C[1] + x*(C[2] + ... x*C[d]))

The wunsigned word degree operand specifies the highest numbered
coefficient to participate in the evaluation. POLYH requires four
longwords on the stack to store arg in <case the instruction is
interrupted.

Notes:

Instructions 2-Feb-81 -- Rev 6.2 Page 4-140
FLOATING POINT INSTRUCTIONS

1, After execution:

POLYF

RO = result

Rl = 0

R2 = 0

R3 = table address + degree*4d + 4

POLYD and POLYG

R@ = high order part of result

R1 = low order part of result

R2 = 0

R3 = table address + degree*8 + 8

R4 = 0

RS =0

POLYH

R@ = highest order part of result

R1 = second highest order part of result
R2 = second lowest order part of result
R3 = lowest order part of result

R4 = 0

R5 = table address + degree*16 + 16

2. On a floating fault:

1. TIf PSL<FPD> = @, the instruction faults and all relevant
side effects are restored to their original state.

2. If PSL<KFPD> = 1, the instruction is suspended and state is
saved in the general registers as follows:

POLYF

RO = tmp3 !partial result after iteration prior to the
tone causing the overflow/underflow

R1 = arg

R2<7:@> = tmpl tnumber of iterations remaining

R2<31:8> = implementation specific

R3 = tmp2 !points to table entry causing exception

POLYD and POLYG

R1'RO = tmp3 tpartial result after iteration prior to
the

lone causing the overflow/underflow

R2<7:8> = tmpl 1number of iterations remaining

R2<31:8> = implementation specific

R3 = tmp2 !points to table entry causing exception

R5'R4 = arg

POLYH

R3'R2'R1'RO = tmp3 !partial result after iteration prior to
Ithe one causing the overflow/underflow

R4<7:8> = tmpl tnumber of iterations remaining

R4<31:8> = implementation specific

R5 = tmp2 !points to table entry causing exception

Instructions 2-Feb-81 -- Rev 6.2 Page 4-141

FLOATING

POINT INSTRUCTIONS

arg is saved on the stack in use during the faulting

instruction.

Example:

Implementation specific information is saved to allow the
instruction to continue after possible scaling of the
coefficients and partial result by a fault handler.

If the unsigned word degree operand is @ and the argument 1is
not a reserved operand, the result is clo].

If the unsigned word degree operand is greater than 31, a
reserved operand fault occurs.

On a reserved operand fault:

1. if PSL<KFPD> = 2, the reserved operand is either the degree
operand (greater than 31), or the argument operand, or some
coefficient.

2. if PSLKFPD> = 1, the reserved operand is a coefficient, and
R3 (except for POLYH) or R5 (for POLYH) is pointing at the
value which caused the exception.

3. The state of the saved condition codes and the other
registers is UNPREDICTABLE. If the reserved operand is
changed and the contents of the condition codes and all
registers are preserved, the fault is continuable.

On floating underflow after the rounding operation at any
iteration of the computation loop, a fault occurs if FU is set,
If FU is clear, the temporary result (tmp3) is replaced by zero
and the operation continues. 1In this case the final result may
be non zero if underflow occurred before the last iteration.

On floating overflow after the rounding operation at any
iteration of the computation loop, the instruction terminates
with a fault.

If the argument is zero and one of the coefficients 1in the
table is the reserved operand, whether a reserved operand fault
occurs is UNPREDICTABLE.

For POLYH, some implementations may not save arg on the stack
until after an interrupt or fault occurs. However, arg will
always be on the stack if an interrupt or floating fault occurs
after FPD 1is set. If the four longwords on the stack overlap
any of the source operands, the results are UNPREDICTABLE.

To compute P(x) = Cg + Cl*x + C2*x*%*)

where C0

=1.0, Cl = .5, and C2 = .25

Instructions 2-Feb-81 -- Rev 6.2

Page 4-142
FLOATING POINT INSTRUCTIONS

POLYF X, #2,PTABLE

PTABLE: .FLOAT 9.25 ;C2
.FLOAT 0.5 ;C1
L.FLOAT 1.0 ;C0O

Instructions

FLOATING POINT

Format:

SuB

opcode

opcode

Operation:

2-Feb-81

INSTRUCTIONS

Subtract

sub.rx, dif.mx

-- Rev 6.2 Page 4-143

2 operand

sub.rx, min.rx, dif.wx 3 operand

dif <- dif - sub;

dif <- min - sub;
Condition Codes:

N <- dif LSS B;

Z <- dif EQL @;

V <- {floating overflow};

C <- @;

Exceptions:

Opcodes:

42
43
62
63
42FD
43FD
62FD
63FD

floating overflow
floating underflow

reserved operand

SUBF2
SUBF3
SUBD2
SUBD3
SUBG?2
SUBG3
SUBH2
SUBH3

Description:

In 2 operand format, the

Subtract
Subtract
Subtract
Subtract
Subtract
Subtract
Subtract
Subtract

F_floating
F floating
D floating
D_floating
G_floating
G floating
H floating
H_floating

subtrahen

d

12 operand

!3 operand

Operand
Operand
Operand
Operand
Operand
Operand
Operand
Operand

operand is subtracted from the

difference operand and the difference is replaced by the rounded result.

In 3 operand format, the

minuend
result,
Notes:

1.

operand and

On

reserved

subtrahen

operand

d

operand 1is subtracted from the

the difference operand is replaced by the rounded

fault, the difference operand is
unaffected and the condition codes are UNPREDICTABLE.

Instructions 2-Feb-81 -- Rev 6.2 Page 4-144
FLOATING POINT INSTRUCTIONS

2.

Oon floating underflow, if FU is set a fault occurs. Zero is
stored as the result of floating underflow only if FU is clear.
Oon a floating underflow fault, the difference operand is
unaffected. If FU is clear, the difference operand is replaced
by @ and no exception occurs.

On floating overflow, the instruction faults; the difference
operand is unaffected, and the condition codes are
UNPREDICTABLE.

Instructions 2-Feb-81 -- Rev 6.2 Page 4-145
FLOATING POINT INSTRUCTIONS

TST Test
Format:

opcode src.rx
Operation:

src - @;

Condition Codes:

N <- src LSS @;
Z <- src EQL @;
V <- @;
C <~ 0;

Exceptions:

reserved operand

Opcodes:
53 TSTF Test F_floating
73 TSTD Test D floating

53FD TSTG Test G _floating
73FD TSTH Test H floating

Description:

The condition codes are affected according to the value of the source
operand.
Notes:

1. TSTx src is equivalent to CMPx src, #0, but is 5 (F _floating)
or 9 (D_floating or G_floating) or 17 (H floating) bytes
shorter.

2. On a reserved operand fault, the condition codes are
UNPREDICTABLE.

Instructions 12-Feb-82 -- Rev 7 Page 4-146
CHARACTER STRING INSTRUCTIONS

4.10 CHARACTER STRING INSTRUCTIONS
A character string is specified by 2 operands:

1. An unsigned word operand which specifies the length of the
character string in bytes.

2. The address of the lowest addressed byte of the character
string. This is specified by a byte operand of address access

type.

Each of the character string instructions uses general registers RO
through R1l, R®@ through R3, or RO through R5 to contain a control block
which maintains updated addresses and state during the execution of the
instruction. At completion, these registers are available to software
to use as string specification operands for a subsequent instruction on
a contiguous character string. During the execution of the
instructions, pending interrupt conditions are tested and if any is
found, the control block is updated, a first part done bit is set in the
pPSL, and the 1instruction interrupted (See Chapter 6). After the
interruption, the instruction resumes transparently. The format of the
control block is:

PSPPSR e +
| | LENGTH 1 | : R®
Form e ———— = — o — +
| ADDRESS 1 | : R1
= fommm e ———— = +
[| LENGTH 2 | : R2
fm e — btttk h bty +
| ADDRESS 2 | : R3
e I it +
[| LENGTH 3 | + R4
ittt kb o +
| ADDRESS 3 | ¢+ RS
o e — e — - +

The fields LENGTH 1, LENGTH 2 (if required) and LENGTH 3 (if required)
contain the number of bytes remaining to be processed in the first,
second and third string operands respectively. The fields ADDRESS 1,
ADDRESS 2 (if required) and ADDRESS 3 (if required) contain the address
of the next byte to be processed in the first, second, and third string
operands respectively.

Memory access faults will not occur when a zero length string is
specified because no memory reference occurs.

Instructions 12-Feb-82 —-- Rev 7 Page 4-147
CHARACTER STRING INSTRUCTIONS

The following instructions are described in this section.

10.

11.

Instructions

Compare Characters 3 Operand 1
CMPC3 len.rw, srcladdr.ab, src2addr.ab, {RO-3.wl}

Compare Characters 5 Operand 1
CMPC5 srcllen.rw, srcladdr.ab, fill.rb, src2len.rw,
src2addr.ab, {RO-3.wl}

Locate Character 1
LOCC char.rb, len.rw, addr.ab, {RO-1.wl}

Match Characters 1
MATCHC lenl.rw, addrl.ab, len2.rw, addr2.ab, {RO-3.wl}

Move Character 3 Operand 1
MOVC3 len.rw, srcaddr.ab, dstaddr.ab, {RO-5.wl}

Move Character 5 operand 1
MOVC5 srclen.rw, srcaddr.ab, fill.rb, dstlen.rw, dstaddr.ab,
{RO-5.wl}

Move Translated Characters 1
MOVTC srclen.rw, srcaddr.ab, fill.rb, tbladdr.ab, dstlen.rw,
dstaddr.ab, {RO#-5.wl}

Move Translated Until Character 1
MOVTUC srclen.rw, srcaddr.ab, esc.rb, tbladdr.ab, dstlen,rw,
dstaddr.ab, {R@-5.wl}

Scan Characters 1
SCANC len.rw, addr.ab, tbladdr.ab, mask.rb, {RO-3.wl}

Skip Character 1
SKPC char.rb, len.rw, addr.ab, {RO-1.wl}

Span Characters 1
SPANC len.rw, addr.ab, tbladdr.ab, mask.rb, {R@-3.wl}

Instructions 12-Feb-82 -- Rev 7 Page 4-148
CHARACTER STRING INSTRUCTIONS

Format:

CMPC Compare Characters

opcode len.rw, srcladdr.ab, src2addr.ab 3 operand

opcode srcllen.rw, srcladdr.ab, fill.rb,
src2len.rw, src2addr.ab 5 operand

Operation:

0}

tmpl <- len; 13 operand
tmp2 <- srcladdr;

tmp3 <- src2addr;
if tmpl EQL @ then; !Condition Codes affected on tmpl EQL @
if tmpl GTRU @ then

begin

while {tmpl NEQU 4} do
if (tmp2) EQL {(tmp3) then
1Condition Codes affected on ((tmp2) EQL (tmp3))

begin

tmpl <- tmpl - 1;
tmp2 <- tmp2 + 1;
tmp3 <- tmp3 + 1;
end;

else exit while loop;

end;
RO <- tmpl;
R1 <- tmp2;
R2 <- R@;
R3 <= tmp3;

tmpl <- srcllen; 15 operand
tmp2 <~ srcladdr;

tmp3 <- src2len;

tmp4 <- src2addr;

if {tmpl EQL @} AND {tmp3 EQL g} then;

1Condition codes affected on {tmpl EQL @} AND {tmp3 EQL

while {tmpl NEQU @} AND {tmp3 NEQU g} do
if (tmp2) EQL (tmp4) then
1Condition Codes affected on ((tmp2) EQL (tmp4))
begin

tmpl <- tmpl - 1;
tmp2 <- tmp2 + 1;
tmp3 <- tmp3 - 1;

Instructions 12-Feb-82 -- Rev 7 Page 4-149
CHARACTER STRING INSTRUCTIONS

tmpd <- tmp4 + 1;
end;

else exit while loop;
if NOT{tmpl NEQU @} AND {tmp3 NEQU @} then

begin

while {tmpl NEQU @} AND {(tmp2) EQL fill} do

!Condition Codes affected on ((tmp2) EQL fill)
begin
tmpl <- tmpl - 1;
tmp2 <- tmp2 + 1;
end;

while {tmp3 NEQU @} AND {fill EQL (tmp4)} do

RO
R1
R2
R3

!Condition Codes affected on (fill EQL (tmpd))
begin
tmp3 <- tmp3 - 1;
tmpd <- tmpd + 1;

end;

end;
<- tmpl;
<- tmp2;
<- tmp3;
<- tmp4;

Condition Codes:

!Final Condition Codes reflect last affecting
!of Condition Codes in Operation above.

N <- {first byte} LSS {second byte};

Z <- {first byte} EQL {second byte};

V <- @;

C <- {first byte} LSSU {second byte};

Exceptions:

none
Opcodes:
29 CMPC3 Compare Characters 3 Operand
2D CMPC5 Compare Characters 5 Operand

Description:

In 3 operand format, the bytes of string 1 specified by the length and
address 1 operands are compared with the bytes of string 2 specified by

the length

and address 2 operands. Comparison proceeds until inequality

Instructions 12-Feb-82 -- Rev 7 Page 4-150
CHARACTER STRING INSTRUCTIONS

is detected or all the bytes of the strings have been examined.
Condition codes are affected by the result of the last byte comparison.
In 5 operand format, the bytes of the string 1 specified by the length 1
and address 1 operands are compared with the bytes of the string 2
specified by the 1length 2 and address 2 operands. 1If one string is
longer than the other, the shorter string is conceptually extended to
the length of the longer by appending (at higher addresses) bytes equal
to the fill operand. Comparison proceeds until inequality 1is detected
or all the bytes of the strings have been examined. Condition codes are
affected by the result of the last byte comparison. For either CMPC3 or
CMPC5 two =zero length strings compare equal (i.e. Z is set and N, V,
and C are cleared).

Notes:
1. After execution of CMPC3:
R@ = number of bytes remaining in string 1 (including
byte which terminated comparison);
RP is zero only if strings are equal
R1 = address of the byte in string 1 which terminated
comparison; if strings are equal, address of one

byte beyond string 1

R2

RO

R3

0

address of the byte in string 2 which terminated
comparison; if strings are equal, address of
one byte beyond string 2.

2. After execution of CMPC5:

R® = number of bytes remaining in string 1 (including
byte which terminated comparison); RO is zero only
if string 1 and string 2 are of equal length and
equal or string 1 was exhausted before comparison
terminated

R1 = address of the byte in string 1 which terminated
comparison; if comparison did not terminate
before string 1 exhausted, address of one byte
beyond string 1

R2 = number of bytes remaining in string 2 (including
byte which terminated comparison); R2 is zero
only if string 2 and string 1 are of equal length
or string 2 was exhausted before comparison terminated

R3 = address of the byte in string 2 which terminated
comparison; if comparison did not terminate before
string 2 was exhausted, address of one byte beyond
string 2.

Instructions 12-Feb-82 -- Rev 7 Page 4-151
CHARACTER STRING INSTRUCTIONS

3. 1If both strings have zero length, condition code Z is set and

N, V, and C are cleared ijust as in the case of two equal
strings.

Instructions
CHARACTER STRING INSTRUCTIONS

LOCC Locate Character
Format:

opcode char.rb, len.rw, addr.ab
Operation:

tmpl <- len;

tmp2 <- addr;

if tmpl GTRU @ then
begin

12-Feb-82 -- Rev 7

Page 4-152

while {tmpl NEQ 8} AND {(tmp2) NEQ char}l do

begin

tmpl <- tmpl - 1;
tmp2 <- tmp2 + 1;
end;

end;

RO <- tmpl;
Rl <- tmp2;

Condition Codes:

N <- 8;
7 <- R@® EQL 0@;
v <- @;
C <- 8;

Exceptions:
none
Opcodes:

3A LOCC Locate Character

Description:

The character operand is compared with the bytes of the string specified
by the length and address operands. Comparison continues until equality

is detected or all bytes of the string have been compared. If equality
is detected; the condition code Z-bit is cleared; otherwise the Z-bit

is set.
Notes:

1. After execution:

RO = number of bytes remaining in the string (including

located one) if byte located;

otherwise 9

Rl = address of the byte located if byte located; otherwise

Instructions 12-Feb-82 -- Rev 7

Page 4-153
CHARACTER STRING INSTRUCTIONS

address of one byte beyond the string.

2. If the string has zero length, condition code Z is set just

though each byte of the entire string were
character.

as
unequal to

Instructions 12-Feb-82 -- Rev 7 Page 4-154
CHARACTER STRING INSTRUCTIONS

MATCHC Match Characters
Format:

opcode obijlen.rw, objaddr.ab, srclen.rw, srcaddr.ab
Operation:

tmpl <- objlen;

tmp2 <- objaddr;

tmp3 <- srclen;

tmp4 <- srcaddr;

tmp5 <- tmpl;

while {tmpl NEQU 0} AND {tmp3 GEQU tmpl} do

begin
if (tmp2) EQL (tmp4) then
begin
tmpl <- tmpl - 1;
tmp2 <- tmp2 + 1;
tmp3 <- tmp3 - 1;
tmp4 <- tmp4d + 1;
end
else
begin
tmp2 <- tmp2 - ZEXT (tmp5-tmpl);
tmp3 <- {tmp3 - 1} + {tmpS-tmpl};
tmp4d <- {tmp4 + 1} - ZEXT (tmp5-tmpl);
tmpl <~ tmp5;
end;
end;

if {tmp3 LSSU tmpl} then

begin

tmp4 <- tmpd + tmp3;
tmp3 <- @;

end;

R@ <- tmpl;
Rl <- tmp2;
R2 <- tmp3;
R3 <- tmp4;

Condition Codes:

N <- @;
7Z <- RO EQL @; Imatch found
vV <- @;
C K- 8;

Exceptions:

none

Instructions 12-Feb-82 —-- Rev 7 Page 4-155
CHARACTER STRING INSTRUCTIONS

Opcodes:

39 MATCHC Match Characters

Description:

The source string specified by the source 1length and source address
operands is searched for a substring which matches the object string
specified by the object length and object address operands. If the
substring 1is found, the condition code Z-bit is set; otherwise, it is
cleared.

Notes:
1. After execution:

RO = if a match occurred 9; otherwise the number of
bytes in the object string.

Rl = if a match occurred, the address of one byte beyond
the object string i.e. objaddr + objlen; otherwise
the address of the object string.

R2 = if a match occurred, the number of bytes remaining in

the source string; otherwise 0.

R3 = if a match occurred, the address of 1 byte beyond
the last byte matched; otherwise the address of 1
byte beyond the source string i.e. srcaddr + srclen.

For zero length source and object strings, R3 and Rl contain
the source and object addresses respectively.

2. If both strings have zero length or if the object string has
zero length, condition code Z is set and registers R@-R3 are
left just as though the substring were found.

3. If the source string has zero length and the object string has
non-zero length, condition code Z 1is cleared and registers
R@-R3 are left just as though the substring were not found.

Instructions 12-Feb-82 -- Rev 7 Page 4-1556
CHARACTER STRING INSTRUCTIONS

MOVC Move Character
Format:
opcode len.rw, srcaddr.ab, dstaddr.ab 3 operand
opcode srclen.rw, srcaddr.ab, fill.rb,
dstlen.rw, dstaddr.ab 5 operand
Operation:
tmpl <- len; 13 operand

tmp2 <- srcaddr;
tmp3 <- dstaddr;
if tmp2 GTRU tmp3 then
begin
while tmpl NEQU @ do
begin
(tmp3) <- (tmp2);
tmpl <- tmpl - 1;
tmp2 <- tmp2 + 1;
tmp3 <- tmp3 + 1;
end;
R1 <- tmp2;
R3 <- tmp3;

end
else
begin
tmp4d <- tmpl;
tmp2 <- tmp2 + ZEXT(tmpl);
tmp3 <- tmp3 + ZEXT(tmpl);
while tmpl NEQU @ do
begin
tmpl <- tmpl - 1;
tmp2 <- tmp2 - 1;
tmp3 <- tmp3 - 1;
(tmp3) <- (tmp2);
end;
R1 <- tmp2 + ZEXT(tmp4);
R3 <- tmp3 + ZEXT(tmpd);
end;
RO <- 0;
R2 <~ 8;
R4 <- 0;

R5 <- @;

Instructions 12-Feb-82 -- Rev 7 Page 4-157
CHARACTER STRING INSTRUCTIONS

tmpl <- srclen; 15 operand
tmp2 <- srcaddr;

tmp3 <- dstlen;

tmp4 <- dstaddr;

if tmp2 GTRU tmpd then

begin
while {tmpl NEQU 0} AND {tmp3 NEQU 0} do
begin
(tmpd) <- (tmp2);
tmpl <- tmpl - 1;
tmp2 <- tmp2 + 1;
tmp3 <- tmp3 - 1;
tmp4 <- tmpd + 1;
end;
while tmp3 NEQU @ do
begin
(tmp4d) <- £fill;
tmp3 <- tmp3 - 1;
tmpd <- tmpd + 1;
end;
R1 <- tmp2;
R3 <- tmp4;
end
else
begin
tmp5 <~ MINU (tmpl, tmp3);
tmp6 <- tmp3;
tmp2 <- tmp2 + ZEXT (tmp5);
tmp4 <- tmp4 + ZEXT (tmp6);
while tmp3 GTRU tmpl do
begin
tmp3 <- tmp3 - 1;
tmpd <- tmp4d - 1;
(tmpd) <- fill;
end;
while tmp3 NEQU @ do
begin
tmpl <- tmpl - 1;
tmp2 <- tmp2 - 1;
tmp3 <- tmp3 - 1;
tmp4 <- tmpd - 1;
(tmp4) <- (tmp2);
end;
Rl <- tmp2 + ZEXT (tmp5);
R3 <- tmp4 + ZEXT (tmpb6);
end;
R# <- tmpl;
R2 <- @;
R4 <- @;

RS <- 4;

Instructions 12-Feb-82 -- Rev 7 Page 4-158
CHARACTER STRING INSTRUCTIONS

Condition Codes:

N <- 0; IMOVC 3
Z <- 1;

V <- 8;

C K- 0;

N <- srclen LSS dstlen; !MOVCS5
7Z <- srclen EQL dstlen;

VvV <- @;

C <- srclen LSSU dstlen;

Exceptions:

none

Opcodes:
28 MOVC3 Move Character 3 Operand
2C MOVC5 Move Character 5 Operand

Description:

In 3 operand format, the destination string specified by the length and
destination address operands is replaced by the source string specified
by the length and source address operands. In 5 operand format, the
destination string specified by the destination length and destination
address operands is replaced by the source string specified by the
source length and source address operands. If the destination string is
longer than the source string, the highest addressed bytes of the
destination are replaced by the fill operand. If the destination string
is shorter than the source string, the highest addressed bytes of the
source string are not moved. The operation of the instruction is such
that overlap of the source and destination strings does not affect the
result.

Instructions 12-Feb-82 -- Rev 7 Page 4-159
CHARACTER STRING INSTRUCTIONS

Notes:

1. After execution of MOVC3:

RO =0

Rl = address of one byte beyond the source string

R2 =0

R3 = address of one byte beyond the destination string.
R4 = 0

R5 =0

2. After execution of MOVC5:

R@ = number of unmoved bytes remaining in source string.
RO is non-zero only if source string is longer
than destination string

Rl = address of one byte beyond the last byte
in source string that was moved

R2 = ¢

R3 = address of one byte beyond the destination string
R4 = ¢

R5 = @

3. MOVC3 is the preferred way to copy one block of memory to
another.

4. MOVC5 with a @ source length operand is the preferred way to
fill

a block of memory with the fill character.

Instructions

MOVTC

Format:

opcode srclen.rw,

Operation:

tmpl
tmp2
tmp3
tmp4

-
{—
<~
-

if tmp2

else

12-Feb-82 —-- Rev 7
CHARACTER STRING INSTRUCTIONS

Move Translated Characters

srcaddr.ab,

dstlen.rw, dstaddr.ab

srclen;
srcaddr;
dstlen;
dstaddr;

GTRU tmp4 then
begin

fill.rb,

tbladdr.ab,

while {tmpl NEQU @} AND {tmp3 NEQU &}

begin

(tmp4d) <-

tmpl <- tmpl - 1;
tmp2 <- tmp2
tmp3 <- tmp3
tmpd <- tmp4

end;

+

+

while {tmp3 NEQU 4} do

begin

1;
1;
1;

(tmpd) <- £ill;
tmp3 <- tmp3 - 1;
tmpd <- tmpd + 1;

end;
Rl <- tmp2;
R5 <- tmp4;
end;
begin

tmp5 <- MINU (tmpl,tmp3);

tmp6 <- tmp3;

tmp2 <- tmp2 + ZEXT (tmp5)
tmp4 <- tmp4 + ZEXT (tmpb)

~e

-

while tmp3 GTRU tmpl do

begin

tmp3 <- tmp3 - 1;
tmpd <- tmp4d - 1;
(tmpd) <- £fill;

end;
while tmp3 NEQU
begin
tmpl <-
tmp2 <-
tmp3 <-
tmp4d <-

(tmpd) <-

end;

@ do

tmpl
tmp2
tmp3
tmp4d

~o

1
1
1

~. ~

1

R1 <- tmp2 + ZEXT(tmp5);

(tbladdr + ZEXT((tmp2)));

(tbladdr + ZEXT((tmp2)));

Page 4-160

Instructions 12-Feb-82 -- Rev 7 Page 4-161
CHARACTER STRING INSTRUCTIONS

R5 <- tmp4 + ZEXT (tmp6);

end;
R@ <- tmpl;
R2 <~ 9;
R3 <- tbladdr;
R4 <- @;

Condition Codes:

N <- srclen LSS dstlen;
Z <- srclen EQL dstlen;
V K- @;

C <- srclen LSSU dstlen;

Exceptions:
none
Opcodes:

2E MOVTC Move Translated Characters

Description:

The source string specified by the source 1length and source address
operands is translated and replaces the destination string specified by
the destination length and destination address operands. Translation is
accomplished by using each byte of the source string as an index into a
256 byte table whose zeroth entry address is specified by the table
address operand. The byte selected replaces the byte of the destination
string. 1If the destination string is longer than the source string, the
highest addressed bytes of the destination string are replaced by the
fill operand. 1If the destination string is shorter than the source
string, the highest addressed bytes of the source string are not
translated and moved. The operation of the instruction 1is such that
overlap of the source and destination strings does not affect the
result. If the destination string overlaps the translation table, the
destination string is UNPREDICTABLE.

Notes:
After execution:
R% = number of untranslated bytes remaining in source string;

RA is non-zero only if source string is longer than
destination string

Rl = address of one byte beyond the last byte in
source string that was translated

R2 = 0

R3 = address of the translation table.

Instructions 12-Feb-82 -- Rev 7 Page 4-162
CHARACTER STRING INSTRUCTIONS

R4 = 0

R5

address of one byte beyond the destination
string.

Instructions 12-Feb-82 —-- Rev 7
CHARACTER STRING INSTRUCTIONS

MOVTUC Move Translated Until Character

Format:

opcode srclen.rw, srcaddr.ab, esc.rb, tbladdr.ab,
dstaddr.ab

Operation:

tmpl <~ srclen;
tmp2 <- srcaddr;
tmp3 <- dstlen;
tmp4 <~ dstaddr;

if tmpl GTRU & and tmp3 GTRU @ then
begin

while {tmpl NEQU @} AND {tmp3 NEQU @} do
if{(tbladdr + ZEXT(tmp2)) NEQU esc} then

begin

(tmp4) <- (tbladdr + ZEXT(tmp2));
tmpl <- tmpl - 1;

tmp2 <- tmp2 + 1;

tmp3 <- tmp3 - 1
tmpd <- tmp4 + 1;
end;

~e

-

else exit while loop;
end;

R@ <- tmpl;

R1 <- tmp2Z;

R2 <- 0;

R3 <- tbladdr;
R4 <- tmp3;

R5 <- tmp4;

Condition Codes:

<- srclen LSS dstlen;

<- srclen EQL dstlen;

<- {terminated by escape};
<- srclen LSSU dstlen;

NNz

none
Opcodes:

2F MOVTUC Move Translated Until Character

Page 4-163

dstlen.rw,

Instructions 12-Feb-82 -- Rev 7 Page 4-164
CHARACTER STRING INSTRUCTIONS

Description:

The source string specified by the source 1length and source address
operands 1is translated and replaces the destination string specified by
the destination length and destination address operands. Translation is
accomplished by using each byte of the source string as index into a 256
byte table whose zeroth entry address is specified by the table address
operand. The byte selected replaces the byte of the destination string.
Translation continues until a translated byte is equal to the escape
byte or until the source string or destination string is exhausted. 1If
translation is terminated because of escape the condition code V-bit is
set; otherwise it is cleared. If the destination string overlaps the
table, the destination string and registers R@ through R5 are
UNPREDICTABLE. If the source and destination strings overlap and their
addresses are not identical, the destination string and registers RO
through R5 are UNPREDICTABLE. If the source and destination string
addresses are identical, the translation is performed correctly.

Notes:
After execution:

R@ = number of bytes remaining in source string (including
the byte which caused the escape). RO is zero only
if the entire source string was translated and
moved without escape

Rl = address of the byte which resulted in destination
string exhaustion or escape; or if no exhaustion or
escape, address of one byte beyond the source string

R2 = 0§
R3 = address of the table
R4 = number of bytes remaining in the destination string

R5 = address of the byte in the destination string
which would have received the translated byte
which caused the escape or would have received a
translated byte if the source string were not exhausted;
or if no exhaustion or escape, the address of one byte
beyond the destination string.

Instructions 12-Feb-82 -- Rev 7 Page 4-165
CHARACTER STRING INSTRUCTIONS

SCANC Scan Characters
Format:

opcode len.rw, addr.ab, tbladdr.ab, mask.rb
Operation:

tmpl <~ len;
tmp2 <~ addr;
if tmpl GTRU @ then
begin
while {tmpl NEQU @} AND
{{(tbladdr + ZEXT((tmp2))) AND mask} EQL @} do
begin
tmpl <- tmpl - 1;
tmp2 <- tmp2 + 1;

end;

end;
R@ <- tmpl;
Rl <- tmp2;

R2 <- @;
R3 <- tbladdr;

Condition Codes:

N <- @;
Z <- RO EQL @;
vV <- 0@;
C <- 0;

Exceptions:
none
Opcodes:

2A SCANC Scan Characters

Description:

The bytes of the string specified by the length and address operands are
successively used to 1index 1into a 256 byte table whose zeroth entry
address is specified by the table address operand. The byte selected
from the table is ANDed with the mask operand. The operation continues
until the result of the AND is non-zero or all the bytes of the string
have been exhausted. If a non-zero AND result 1is detected, the
condition code Z-bit is cleared; otherwise, the Z-bit is set.

Instructions 12-Feb-82 -- Rev 7 Page 4-166
CHARACTER STRING INSTRUCTIONS
Notes:

1. After execution:

R@ = number of bytes remaining in the string (including
the byte which produced the non-zero AND result)
RP is zero only if there was no non-zero AND result.

R1 = address of the byte which produced non-zero
AND result; or, if no non-zero result, address
of one byte beyond the string

R2 = @

R3

address of the table

2. 1If the string has zero length, condition code Z is set just as
though the entire string were scanned.

Instructions 12-Feb-82 -- Rev 7 Page 4-167
CHARACTER STRING INSTRUCTIONS

SKPC Skip Character
Format:

opcode char.rb, len.rw, addr.ab
Operation:

tmpl <~ 1len;
tmp2 <- addr;
if tmpl GTRU @ then
begin
while {tmpl NEQ @} AND {(tmp2) EQL char} do
begin
tmpl <- tmpl - 1;
tmp2 <- tmp2 + 1;

end;
end;
R# <- tmpl;
Rl <- tmp2;
Condition Codes:
N <- §;
Z <- RO EQL @;
V <- @;
C <- @;
Exceptions:
none
Opcodes:
3B SKPC Skip Character

Description:

The character operand is compared with the bytes of the string specified
by the length and address operands. Comparison continues until
inequality is detected or all bytes of the string have been compared.
If 1inequality 1is detected; the condition code Z-bit 1is cleared;
otherwise the Z-bit is set.

Notes:
1. After execution:
RO = number of bytes remaining in the string (including the

unequal
one) if unequal byte located; otherwise @

P

1 = address of the byte located if byte located; otherwise
address

Instructions 12-Feb-82 -- Rev 7 Page 4-168
CHARACTER STRING INSTRUCTIONS

of one byte beyond the string.

2. 1If the string has zero length, condition code Z is set Jjust as
though each byte of the entire string were equal to character.

Instructions 12-Feb-82 -- Rev 7 Page 4-169
CHARACTER STRING INSTRUCTIONS

SPANC Span Characters

Format:

opcode len.rw, addr.ab, tbladdr.ab, mask.rb

Operation:

tmpl <~ len;
tmp2 <~ addr;
if tmpl GTRU @ then
begin
while {tmpl NEQU @} AND
{{(tbladdr + ZEXT ((tmp2))) AND mask} NEQ @} do
begin
tmpl <~ tmpl - 1;
tmp2 <- tmp2 + 1;

end;

end;
RO <- tmpl;
R1 <- tmp2;
R2 <- @;

R3 <- tbladdr;

Condition Codes:

N <- g;
Z <- RQ EQL 02;
V <- @;
C <- @;

Exceptions:

none

Opcodes:

2B

SPANC Span Characters

Description:

The bytes of the string specified by the length and address operands are
successively used to index 1into a 256 byte table whose zeroth entry
address is specified by the table address operand. The byte selected

from
until
been
Z-bit

the table is ANDed with the mask operand. The operation continues
the result of the AND is zero or all the bytes of the string have
exhausted. If a zero AND result is detected, the condition code
is cleared; otherwise, the Z-bit is set.

Instructions 12-Feb-82 -- Rev 7 Page 4-1780
CHARACTER STRING INSTRUCTIONS

Notes:

1. After execution:

R@ = number of bytes remaining in the string {including
the byte which produced the zero AND result)
RO is zero only if there was no zero AND result.
R1 = address of the byte which produced a zero AND
result; or, if no non-zero result, address of
one byte beyond the string
R2 = 0

R3 = address of the table.

2. If the string has zero length, the condition code Z is set Jjust
as though the entire string were spanned.

Instructions 12-Feb-82 -- Rev 7 Page 4-171
CYCLIC REDUNDANCY CHECK INSTRUCTION

4.11 CYCLIC REDUNDANCY CHECK INSTRUCTION

This instruction is designed to implement the calculation and checking
of a cyclic redundancy check for any CRC polynomial up to 32 bits,
Cyclic Redundancy Checking is an error detection method involving a
division of the data stream by a CRC polynomial. The data stream is
represented as a standard VAX-11 string in memory. Error detection is
accomplished by computing the CRC at the Ssource and again at the
destination, comparing the CRC computed at each end. The choice of the
polynomial is such as to minimize the number of undetected block errors
of specific lengths. The choice of a CRC polynomial is not given here;
see, for example, the article "Cyclic Codes for Error Detection" by w.
Peterson and D. Brown in the Proceedings of the IRE (January, 1961),

The operands to the CRC instruction are a string descriptor, a
16-longword table, and an initial CRC. The string descriptor is a
standard VAX-11 operand pair of the length of the string in bytes (up to
65,535) and the starting address of the string. The contents of the
table are a function of the CRC polynomial to be used. It can be
calculated from the polynomial by the algorithm in the notes. Several
common CRC polynomials are also included in the notes. The initial CRC
is used to start the polynomial correctly. Typically, it has the value
8 or -1, but would be different if the data stream is represented by a
sequence of non-contiguous strings.

The CRC instruction operates by scanning the string, and for each byte
of the data stream, including it in the CRC being calculated. The byte
is included by XORing it to the right 8 bits of the CRC. Then the CRC
is shifted right 1 bit, inserting zero on the left. The right most bit
of the CRC (lost by the shift) is used to control the XORing of the CRC
polynomial with the resultant CRC. If the bit is set, the polynomial is
XORed with the CRC. Then the CRC is again shifted right and the
polynomial is conditionally XORed with the result a total of eight
times. The actual algorithm used can shift by one, two, or four bits at
a time wusing the appropriate entries in a specially constructed table.
The instruction produces a 32-bit CRC. For shorter polynomials, the
result must be extracted from the 32-bit field. The data stream must be
a multiple of eight bits in length. 1If it is not, the stream must be
right adjusted in the string with leading ¢ bits.

Instructions 12-Feb-82 -- Rev 7 Page 4-172
CYCLIC REDUNDANCY CHECK INSTRUCTION

CRC Calculate Cyclic Redundancy Check

Format:

opcode tbl.ah, inicrc.rl, strlen.rw, stream.ab

Operation:

tmpl <- strlen;

tmp2 <- stream;

tmp3 <- inicrc;

tmpd <- tbl;

while tmpl NEQU 0 do

begin
tmp3<7:@><~- tmp3<7:8> XOR (tmp2)+;
for tmp5S <- 1,limit do 1see note 5 for

limit,s,i
tmp3 <- ZEXT (tmp3<31:s>) XOR
(tmp4d + {4*ZEXT(tmp3<s—1:@>*i)};
tmpl <- tmpl -1;

end;
R <- tmp3;
R1 <- @;
R2 <- 0;
R3 <- tmp?2; 1address of end of string + 1

Condition Codes:

N <- R@ LSS &;
7 <~ R@® EQL @;
vV <- @;
C <- 9;

Exceptions:
none

Opcodes:

o8B CRC Calculate Cyclic Redundancy Check

Description:

The CRC of the data stream described by the string descriptor is
calculated. The initial CRC is given by inicrc and is normally @ or -1
unless the CRC is calculated in several steps. The result is 1left 1in
RO. If the polynomial is 1less than order-32, the result must be
extracted from the result. The CRC polynomial 1is expressed by the

contents of the 16-longword table. See the notes for the calculation o
the table.

Instructions 12-Feb-82 -- Rev 7 Page 4-173
CYCLIC REDUNDANCY CHECK INSTRUCTION

Notes:

1. If the data stream is not a multiple of 8-bits long, it must be
right adjusted with leading zero fill.

2. If the CRC polynomial is less than order 32, the result must be
extracted from the low order bits of R®.

3. The following algorithm can be used to calculate the CRC table
given a polynomial expressed as follows:

polyn<n> <- {coefficient of x**{order -1-n}}

This routine is available as system library routine
LIBSCRC_TABLE (poly.rl, table.ab). The table is the
location of a 64- -byte (16 longword) table into which
the result will be written.

SUBROUTINE LIBSCRC_TABLE (POLY, TABLE)
INTEGER*4 POLY, TABLE(#:15), TMP, X
DO 199 INDEX = @, 15

TMP = INDEX
DO 150 I =1, 4
X = TMP .AND, 1
TMP = ISHFT (TMP,-1) !logical shift right one bit
IF (X .EQ. 1) TMP = TMP .XOR. POLY
158 CONTINUE
TABLE (INDEX) = TMP

199 CONTINUE
RETURN
END

4. The following are descriptions of some commonly used CRC
polynomials.

CRC-16 (used in DDCMP and Bisync)

polynomial: x"16 + x715 + x"2 + 1
poly: 12008081 (octal)
initialize: @

result: RB<15: 9>

CCITT (used in ADCCP, HDLC, SDLC)
polynomial: X716 + x712 + x5 + 1
poly: 102010 (octal)
initialize: -1<15:0>

Instructions 12-Feb-82 -- Rev 7 Page 4-174
CYCLIC REDUNDANCY CHECK INSTRUCTION

result: one's complement of R@<15:0>
AUTODIN-II
polynomial: X 324x%726+x723+x722+x716+x712
FXT1I1HXT1I04x78+) T+ "5+x T 4+x T2+ x+1
poly: EDB8832@ (hex)
initialize: -1<31:8>
result: one's complement of R@#<31:0>

5. This instruction produces an UNPREDICTABLE result unless the
table 1is well formed, such as produced in note 3. Note that
for any well formed table, entry (8] is always @ and entryl(8]
is always the polynomial expressed as in note 3. The operation
can be implemented using shifts of one, two, or four bits at a
time as follows:

shift steps table index table index use table
per byte multiplier entries
(s) (limit) (i)
1 8 tmp3<08> 8 [61=0,18]
2 4 tmp3<1l: 08> 4
(e1=0,(41,(8],[12]
4 2 tmp3<3: 08> 1 all

6. If the stream has zero length, RO receives the initial CRC.

Instructions 12-Feb-82 -- Rev 7 Page 4-175
DECIMAL STRING INSTRUCTIONS

4.12 DECIMAL STRING INSTRUCTIONS

Decimal string instructions operate on Packed Decimal strings. Convert
instructions are provided between Packed Decimal and Trailing Numeric
String (Overpunched and Zoned) and Leading Separate Numeric string
formats. Where necessary a specific data type is identified. Where the
phrase decimal string is used, it means any of the three data types.

A decimal string is specified by 2 operands:

l. For all decimal strings the length is the number of digits in
the string. The number of bytes in the string is a function of
the length and the type of decimal string referenced (see
Chapter 2).

2. The address of the lowest addressed byte of the string. This
byte contains the most significant digit for Trailing Numeric,
and packed decimal strings. This byte contains a sign for Left
Separate Numeric strings. The address is specified by a byte
operand of address access type.

Each of the decimal string instructions uses general registers RY
through R3 or R@ through R5 to contain a control block which maintains
updated addresses and state during the execution of the instruction. At
completion, the registers containing addresses are available to the
software to use as string specification operands for a subsequent
instruction on the same decimal strings.

During the execution of the instructions, pending interrupt conditions
are tested and if any is found, the control block is updated. First
Part Done is set in the PSL, and the instruction interrupted (See
chapter 6). After the interruption, the instruction resumes
transparently. The format of the control block at completion is:

3

1]
P +

|) | : RO
P e +

| ADDRESS 1 | : R1
e +

|] | : R2
P +

| ADDRESS 2 | : R3
e +

| 4] | : R4
P e +

[ADDRESS 3 | + RS
P +

The fields ADDRESS 1, ADDRESS 2 and ADDRESS 3 (if required) contain the
address of the byte containing the most significant digit of the first,
second and third (if required) string operands respectively,

Instructions 12-Feb-82 -- Rev 7 Page 4-176
DECIMAL STRING INSTRUCTIONS

The decimal string instructions treat decimal strings as integers with
the decimal point assumed immediately beyond the least significant digit
of the string. If a string in which a result is to be stored is longer
than the result, its most significant digits are filled with zeros.

4.12.1 Decimal Overflow

Decimal overflow occurs if the destination string is too short to
contain all the digits (excluding leading zeroes) of the result. On
overflow, the destination string is replaced by the correctly signed
least significant digits of the true result (even if the stored result
is -@). Note that neither the high nibble of an even length packed
decimal string, nor the sign byte of a Leading Separate Numeric string
is used to store result digits.

4.12.2 Zero Numbers

A zero result has a positive sign for all operations which complete
without decimal overflow, except for CVTPT which does not fixup a -0 to
a +3. However, when digits are lost because of overflow, a zero result
receives the sign (positive or negative) of the correct result.

A decimal string with value -8 is treated as identical to a decimal
string with value +0. Thus for example +@ compares equal to -g. When
condition codes are affected on a -8 result they are affected as if the
result were +0: 1i.e., N is cleared and Z is set.

4.12.3 Reserved Operand Exception

A reserved operand abort occurs 1if the length of a decimal string
operand is outside the range ¢ through 31, or if an invalid sign or
digit is encountered in CVTSP, and CVTTP. The PC points to the opcode
of the instruction causing the exception.

4.12.4 UNPREDICTABLE Results

The result of any operation is UNPREDICTABLE if any source decimal
string operand contains invalid data. Except for CVTSP and CVTTP, the
decimal string instructions do not verify the validity of source operand
data.

If the destination operands overlap any source operands, the result of
an operation will, in general, be UNPREDICTABLE. The destination
strings, registers used by the instruction and condition codes will, in
general, be UNPREDICTABLE when a reserved operand abort occurs.

Instructions 12-Feb-82 -- Rev 7 Page 4-177
DECIMAL STRING INSTRUCTIONS

4.12.5 Packed Decimal Operations

Packed decimal strings generated by the decimal string instructions
always have the preferred sign representation: 12 for "+" and 13 for
"-". An even length packed decimal string is always generated with a
"0" digit in the high nibble of the first byte of the string.

A packed decimal string contains an invalid nibble if:
1. A digit occurs in the sign position.
2. A sign occurs in a digit position.

3. For an even length string, a non-zero nibble occurs in the high
order nibble of the lowest addressed byte.

4.12.6 Zero Length Decimal Strings

The length of a packed decimal string can be #. 1In this case, the value
is =zero (plus or minus) and one byte of storage is occupied. This byte
must contain a "@" digit in the high nibble and the sign in the 1low
nibble.

The length of a trailing numeric string can be 8. In this <case no
storage is occupied by the string. If a destination operand is a zero
length trailing numeric string, the sign of the operation 1is 1lost.
Memory access faults will not occur when a zero length trailing numeric
operand is specified because no memory reference occurs. The value of a
zero length trailing numeric string is identically @,

The length of a leading separate numeric string can be @. 1In this case
one byte of storage is occupied by the sign. Memory is accessed when a
zero length operand is specified, and a reserved operand abort will
occur if an 1invalid sign is detected. The value of a zero length
leading separate numeric string is identically 4.

Instructions 12-Feb-82 -- Rev 7 Page 4-178
DECIMAL STRING INSTRUCTIONS

4,12.7

Instruction Descriptions

The following instructions are described in this section.

19.

11.

12,

13.

14.

Instructions

Add Packed 4 Operand 1
ADDP4 addlen.rw, addaddr.ab, sumlen.rw, sumaddr.ab, {RO-3.wl}

Add Packed 6 Operand 1
ADDP6 addllen.rw, addladdr.ab, add2len.rw, add2addr.ab,
sumlen.rw, sumaddr.ab, {[R@-5.wl}

Arithmetic Shift and Round Packed 1
ASHP cnt.rb, srclen.rw, srcaddr.ab, round.rb, dstlen.rw,
dstaddr.ab, {RO-3.wl}

Compare Packed 3 Operand 1
CMPP3 len.rw, srcladdr.ab, src2addr.ab, {R#-3.wl}

Compare Packed 4 Operand 1
CMPP4 srcllen.rw, srcladdr.ab, src2len.rw, src2addr.ab,
{RO-3.wl}

Convert Long to Packed 1
CVTLP src.rl, dstlen.rw, dstaddr.ab, {RO-3.wl}

=

Convert Packed to Long
CVTPL srclen.rw, srcaddr.ab, {R@-3.wl}, dst.wl

Convert Packed to Leading Separate 1
CVTPS srclen.rw, srcaddr.ab, dstlen.rw, dstaddr.ab, {RO-3.wl}

Convert Packed to Trailing 1
CVTPT srclen.rw, srcaddr.ab, tbladdr.ab, dstlen.rw, dstaddr.ab,
{RO-3.wl}

Convert Leading Separate to Packed 1
CVTSP srclen.rw, srcaddr.ab, dstlen.rw, dstaddr.ab, {RO#-3.wl}

Convert Trailing to Packed 1
CVTTP srclen.rw, srcaddr.ab, tbladdr.ab, dstlen.rw, dstaddr.ab,
{RO-3.wl}

Divide Packed 1
DIVP divrlen.rw, divraddr.ab, divdlen.rw, divdaddr.ab,
quolen.rw, quoaddr.ab, {R@-5.wl, -16(SP):-1(SP).wb}

Move Packed 1

MOVP len.rw, srcaddr.ab, dstaddr.ab, {R@#-3.wl}

Multiply Packed 1
MULP mulrlen.rw, mulraddr.ab, muldlen.rw, muldaddr.ab,
prodlen.rw, prodaddr.ab, {R#-5.wl}

Instructions 12-Feb-82 ~- Rev 7

Page 4-179
DECIMAL STRING INSTRUCTIONS

15, Subtract Packed 4 Operand 1
SUBP4 sublen.rw, subaddr.ab, diflen.rw, difaddr.ab, {RO-3.wl}

16. Subtract Packed 6 Operand

SUBP6 sublen.rw, subaddr.ab, minlen.rw, minaddr.ab,
diflen.rw, difaddr.ab, {RO-5.wl}

1

Instructions 12-Feb-82 -- Rev 7 Page 4-180
DECIMAL STRING INSTRUCTIONS

ADDP Add Packed
Format:

opcode addlen.rw, addaddr.ab, sumlen.rw,
sumaddr.ab

opcode addllen.rw, addladdr.ab, add2len.rw,
add2addr.ab, sumlen.rw, sumaddr.ab

Operation:

({sumaddr + ZEXT (sumlen/2)} : sumaddr) <-
({sumaddr + ZEXT (sumlen/2)} : sumaddr) +
({addaddr + 7EXT (addlen/2)} : addaddr); 14 operand

({sumaddr + ZEXT (sumlen/2)} : sumaddr) <-
({add2addr + ZEXT (add21len/2)} : add2addr) +
({addladdr + ZEXT(addllen/2)} : addladdr); 16
operand

Condition Codes:

N <- {sum string} LSS @;
7 <- {sum string} EQL 0;
V <- {decimal overflow};
C <- 0;

Exceptions:

reserved operand
decimal overflow

Opcodes:
20 ADDP4 add Packed 4 Opeiand
21 ADDP6 Add Packed 6 Operand

Description:

In 4 operand format, the addend string specified by the addend length
and addend address operands is added to the sum string specified by the
sum length and sum address operands and the sum string is replaced by
the result.

In 6 operand format, the addend 1 string specified by the addend 1
length and addend 1 address operands is added to the addend 2 string
specified by the addend 2 length and addend 2 address operands. The sum
string specified by the sum length and sum address operands is replaced
by the result.

Instructions 12-Feb-82 -- Rev 7 Page 4-181
DECIMAL STRING INSTRUCTIONS

Notes:

1.

2.

After execution of ADDP4:

RO = 0

Rl = address of the byte containing the most
significant digit of the addend string

R2 = 0

R3 = address of the byte containing the most

significant digit of the sum string
After execution of ADDP6:
RO =0

R1

address of the byte containing the most
significant digit of the addendl string

R2 = 0

R3 = address of the byte containing the most
significant digit of the addend2 string

R4 =0

R5 = address of the byte containing the most

significant digit of the sum string

The sum string, RO through R3 (or RO through R5 for ADDP6) and
the condition codes are UNPREDICTABLE if the sum string
overlaps the addend, addendl, or addend2 strings; the addend,
addendl, addend2 or sum (4 operand only) strings contain an
invalid nibble; or a reserved operand abort occurs.

Instructions
DECIMAL STRING INSTRUCTIONS

ASHP
Format:

opcode cnt.rb, srclen.rw,
dstlen.rw,

Operation:

({dstaddr + ZEXT (dstlen/2)}

{({srcaddr + ZEXT(srclen/2)}
+ {round <3:

* {lg * %

Condition Codes:

<- {dst string} LSS 2;
<- {dst string} EQL 8;
<- {decimal overflow};
<- 0@;

a<<N =2

Exceptions:

reserved operand
decimal overflow

Opcodes:

F8 ASHP Arithmetic Shift

Description:

The source string specified by the

operands is scaled by a power of 14
destination string specified by the
address operands is replaced by the

A positive count
effectively divides;
codes.
the Round Operand.

operand

Notes:
1. After execution:
R = @
Rl =

digit of the source

R2 = 0

12-Feb-82

dstaddr.ab

effectively
and a zero count just moves and affects condition
When a negative count is specified,

-- Rev 7 Page 4-182

Arithmetic Shift and Round Packed

srcaddr.ab, round.rb
dstaddr) <-
srcaddr)

@>*{10 ** {-cnt-1}1}1}}

cnt} ;

and Round Packed

source length and source address
specified by the count operand. The
destination length and destination
result.

count

multiplies; a negative

the result is rounded using

address of the byte containing the most significant

string

Instructions 12-Feb-82 -- Rev 7 Page 4-183
DECIMAL STRING INSTRUCTIONS

R3 = address of the byte containing the most significant
digit of the destination string

The destination string, R® through R3, and the condition codes
are UNPREDICTABLE if the destination string overlaps the source
string, the source string contains an invalid nibble, or a
reserved operand abert occurs.

When the count operand is negative, the result 1is rounded by
decimally adding bits 3:8 of the round operand to the most
significant low order digit discarded and propagating the
carry, if any, to higher order digits. Both the source operand
and the round operand are considered to be quantities of the
same sign for the purpose of this addition.

If bits 7:4 of the round operand are non-zero, or if bits 3:0
of the round operand contain an invalid packed decimal digit
the result is UNPREDICTABLE.

When the count operand is zero or positive, the round operand
has no effect on the result except as specified in note 4.

The round operand is normally five. Truncation may be
accomplished by using a zero round operand.

Instructions 12-Feb-82 -- Rev 7 Page 4-184
DECIMAL STRING INSTRUCTIONS

CMPP Compare Packed

Format:
opcode len.rw, srcladdr.ab, src2addr.ab 3 operand

opcode srcllen.rw, srcladdr.ab, src2len.rw,
src2addr.ab 4 operand

Operation:

({srcladdr + ZEXT(len/2)} : srcladdr) -
({src2addr + ZEXT (len/2)} : srcladdr); !3 operand

({srcladdr + ZEXT {srcllen/2)} : srcladdr) -
({src2addr + ZEXT (src2len/2)} : src2addr); 14
operand

Condition Codes:

N <- {srcl string} LSS {src2 string};

7 <- {srcl string} EQL {src2 string};
VvV K- 9;
C <- 0;

Exceptions:

reserved operand

Opcodes:
35 CMPP3 Compare Packed 3 Operand
37 CMPP4 Compare Packed 4 Operand

Description:

In 3 operand format, the source 1 string specified by the length and
source 1 address operands is compared to the source 2 string specified
by the length and source 2 address operands. The only action is to
affect the condition codes.

In 4 operand format, the source 1 string specified by the source 1
length and source 1 address operands is compared to the source 2 string
specified by the source 2 length and source 2 address operands. The
only action is to affect the condition codes.

Notes:

1. After execution of CMPP3 or CMPP4:

RG = 0

Instructions 12-Feb-82 -~ Rev 7 Page 4-185
DECIMAL STRING INSTRUCTIONS

Rl = address of the byte containing the most
significant digit of string 1.

R2 g

R3 address of the byte containing the most

significant digit of string 2.

2. RO through R3 and the condition codes are UNPREDICTABLE, if the
source strings overlap, 1if either string contains an invalid
nibble or if a reserved operand abort occurs.

Instructions 12-Feb-82 —-- Rev 7 Page 4-1856
DECIMAL STRING INSTRUCTIONS

CVTLP Convert Long to Packed
Format:
opcode src.rl, dstlen.rw, dstaddr.ab
Operation:
({dstaddr + ZEXT(dstlen/2)} : dstaddr) <- conversion of src;
Condition Codes:
<- {dst string} LSS 0;
<- {dst string} EQL &;

<- {decimal overflow};
<- 0;

NN 2

Exceptions:

reserved operand
decimal overflow

Opcodes:
F9 CVTLP Convert Long to Packed
Description:
The source operand is converted to a packed decimal string and the

destination string operand specified by the destination length and
destination address operands is replaced by the result.

Notes:
1. After execution:
RO = 0
R1 =0
R2 = 0
R3 = address of the byte containing the most significant

digit of the destination string

2. The destination string, R@ through R3, and the condition codes
are UNPREDICTABLE on a reserved operand abort.

3. Overlapping operands produce correct results.

Instructions 12-Feb-82 -- Rev 7 Page 4-187
DECIMAL STRING INSTRUCTIONS

CVTPL Convert Packed to Long

Format:
[¢)
Operation

d

pcode srclen.rw, srcaddr.ab, dst.wl

st <- conversion of ({srcaddr + ZEXT (srclen/2)} : srcaddr);

Condition Codes:

N

<{- dst LSS ¢;
<- dst EQL 2;

A
V <- {integer overflow};
C

Exception

r
i

Opcodes:

36 c

Descripti
The sourc
operands
replaced
Notes:

1.

<- 0;
S:

eserved operand
nteger overflow

VTPL Convert Packed to Long

on:
e string specified by the source length and source address

is converted to a 1longword and the destination operand is
by the result.

After execution:

RO = 0

Rl = address of the byte containing the most significant
digit of the source string

R2 = 0

R3 = ¢

The destination operand, R#® through R3, and the condition codes
are UNPREDICTABLE on a reserved operand abort or if the string
contains an invalid nibble.

The destination operand 1is stored after the registers are
updated as specified in 1 above. Thus R® through R3 may be
used as the destination operand.

Instructions 12-Feb-82 -- Rev 7 Page 4-188
DECIMAL STRING INSTRUCTIONS

4, 1If the source string has a value outside the range
-2,147,483,648 through 2,147,483,647 integer overflow occurs
and the destination operand is replaced by the low order 32
bits of the correctly signed infinite precision conversion.
Thus, on overflow the sign of the destination may be different
from the sign of the source.

5. Overlapping operands produce correct results.

Instructions 12-Feb-82 -- Rev 7 Page 4-189
DECIMAL STRING INSTRUCTIONS

CVTPS Convert Packed to Leading Separate Numeric
Format:

opcode srclen.rw, srcaddr.ab, dstlen.rw, dstaddr.ab
Operation:

{dst string} <- conversion of {src string};
Condition Codes:
<- {src string} LSS 4;
<- {src string} EQL a;

<- {decimal overflow};
<- 0;

a<g<N =2

Exceptions:

reserved operand
decimal overflow

Opcodes:

a8 CVTPS Convert Packed to Leading Separate Numeric

Description:

The source packed decimal string specified by the source length and
Source address operands is converted to a leading Separate numeric
string. The destination string specified by the destination length and
destination address operands is replaced by the result.

Conversion is effected by replacing the lowest addressed byte of the
destination string with the ASCII Character '+' or '-', determined by
the sign of the source string. The remaining bytes of the destination
string are replaced by the ASCII representations of the values of the
corresponding packed decimal digits of the source string.

Notes:

1. After execution:
RO =0

R1

address of the byte containing the most significant
digit of the source string

R2 = ¢

R3

address of the sign byte of the destination string

Instructions 12-Feb-82 -- Rev 7 Page 4-1940
DECIMAL STRING INSTRUCTIONS

2.

The destination string, R@ through R3, and the condition codes
are UNPREDICTABLE if the destination string overlaps the source
string, the source string contains an invalid nibble, or a
reserved operand abort occurs.

This instruction produces an ASCII "+" or "_" in the sign byte
of the destination string.

1f decimal overflow occurs, the value stored in the destination
may be different from the value indicated by the condition
codes (Z and N bits).

1f the conversion produces a -0 without overflow, the
destination leading separate numeric string is changed to a +0
representation.

Instructions 12-Feb-82 -- Rev 7 Page 4-191
DECIMAL STRING INSTRUCTIONS

CVTPT Convert Packed to Trailing Numeric
Format:

opcode srclen.rw, srcaddr.ab, tbladdr.ab, dstlen.rw, dstaddr.ab
Operation:

{dst string} <- conversion of {src string};

Condition Codes:

N <- {src string} LSS a;
Z <~ {src string} EQL @;
V <- {decimal overflow};
C K- @;

Exceptions:

reserved operand
decimal overflow

Opcodes:

24 CVTPT Convert Packed to Trailing Numeric

Description:

The source packed decimal string specified by the source length and
source address operands is converted to a trailing numeric string. The
destination string specified by the destination length and destination
address operands is replaced by the result. The condition code N and Z
bits are affected by the value of the source packed decimal string.

Conversion is effected by using the highest addressed byte (even if the
source string value 1is -0) of the Source string (i.e., the byte
containing the sign and the least significant digit) as an unsigned
index into a 256 byte table whose zeroth entry address is specified by
the table address operand. The byte read out of the table replaces the
least significant byte of the destination string. The remaining bytes
of the destination string are replaced by the ASCII representations of
the wvalues of the corresponding packed decimal digits of the source
string.

Notes:
l. After execution:
RO = @

Rl = address of the byte containing the most significant
digit of the source string

Instructions 12-Feb-82 -- Rev 7 Page 4-192
DECIMAL STRING INSTRUCTIONS

R2

@

R3

address of the most significant digit of the
destination string

The destination string, R@ through R3, and the condition codes
are UNPREDICTABLE if the destination string overlaps the source
string or the table, the source string or the table contains an
invalid nibble, or a reserved operand abort occurs.

The condition codes are computed on the wvalue of the source
string even if overflow results. 1In particular, condition code
N is set if and only if the source is non-zero and contains a

minus sign.

By appropriate specification of the table, conversion to any
form of trailing numeric string may be realized. See Chapter 2
for the preferred form of trailing overpunch, zoned and
unsigned data. In addition, the table may be set up for
absolute value, negative absolute value or negated conversions.
The translation table may be referenced even if the length of
the destination string is zero.

Decimal overflow occurs if the destination string is too short
to contain the converted result of a non-zero packed decimal
source string (not including leading zeroes). Conversion of a
source string with =zero value never results in overflow.
Conversion of a non-zero Ssource string to a zero length
destination string results in overflow.

I1f decimal overflow occurs, the value stored in the destination
may be different from the value indicated by the condition
codes (Z and N bits).

Instructions 12-Feb-82 -- Rev 7
DECIMAL STRING INSTRUCTIONS

CVTSP Convert Leading Separate Numeric to Packed
Format:

opcode srclen.rw, srcaddr.ab, dstlen.rw, dstaddr.ab
Operation:

{dst string} <- conversion of {src string}

Condition Codes:

N <- {dst string} LSS g;
Z <- {dst string} EQL 4;
V <- {decimal overflow};
C K- @;

Exceptions:

reserved operand
decimal overflow

Opcodes:

29 CVTSP Convert Leading Separate Numeric to Packed

Description:

The source numeric string specified by the source 1length

Page 4-193

and source

address operands is converted to a packed decimal string and the

destination string specified by the destination address and
length operands is replaced by the result.

Notes:

l. A reserved operand abort occurs if:

destination

1. The length of the source Leading Separate numeric string is

outside the range @ through 31.

2. The length of the destination packed decimal

outside the range @ through 31.

3. The source string contains an 1invalid byte.

byte 1is any character other than an ASCII "g"

string 1is

An invalid
through "9"

in a digit byte or an ASCII "+", "<space>", or "-" in the

sign byte.

2. After execution:

R@ =0

Instructions 12-Feb-82 -- Rev 7 Page 4-194
DECIMAL STRING INSTRUCTIONS

R1 = address of the sign byte of the source string
R2 =0
R3 =

address of the byte containing the most significant
digit of the destination string.

3. The destination string, RO through R3, and the condition codes
are UNPREDICTABLE if the destination string overlaps the source
string, or a reserved operand abort occurs.

Instructions 12-Feb-82 -~ Rev 7 Page 4-195
DECIMAL STRING INSTRUCTIONS

CVTTP Convert Trailing Numeric to Packed
Format:

opcode srclen.rw, srcaddr.ab, tbladdr.ab, dstlen.rw, dstaddr.ab
Operation:

{dst string} <- conversion of {src string}
Condition Codes:

N <- {dst string}LSS ¢;

Z <- {dst string} EQL g;

V <- {decimal overflow};

C K- @;
Exceptions:

reserved operand
decimal overflow

Opcodes:

26 CVTTP Convert Trailing Numeric to Packed

Description:

The source trailing numeric string specified by the source length and
source address operands is converted to a packed decimal string and the
destination packed decimal string specified by the destination address
and destination length operands is replaced by the result.

Conversion is effected by using the highest addressed (trailing) byte of
the source string as an unsigned index into a 256 byte table whose
zeroth entry is specified by the table address operand. The byte read
out of the table replaces the highest addressed byte of the destination
string (i.e. the byte containing the sign and the 1least significant
digit). The remaining packed digits of the destination string are
replaced by the low order 4 bits of the corresponding bytes in the
source string.

Notes:
1. A reserved operand abort occurs if:

1. The length of the source trailing numeric string is outside
the range ¢ through 31.

2. The length of the destination packed decimal string is
outside the range @ through 31,

Instructions 12-Feb-82 -- Rev 7 Page 4-196
DECIMAL STRING INSTRUCTIONS

2.

3. The source string contains an invalid byte. An invalid
byte 1is any value other than ASCII "@" through "9" in any
high order byte (i.e., any byte except the least
significant byte).

4. The translation of the least significant digit produces an
invalid packed decimal digit or sign nibble.

After execution:

RO = 0

Rl = ad@ress of the most significant digit of the source
string

R2 = 0

R3 = address of the byte containing the most significant

digit of the destination string.

The destination string, R@ through R3, and the condition codes
are UNPREDICTABLE if the destination string overlaps the source
string or the table, or a reserved operand abort occurs.

If the convert instruction produces a -9 without overflow, the
destination packed decimal string is changed to A& +0

representation, condition code N is cleared and Z is set.

If the length of the source string is @, the destination packed
decimal string 1s set identically equal to &, and the
translation table is not referenced.

By appropriate specification of the table, conversion from any
form of trailing numeric string may be realized. See Chapter 2
for the preferred form of trailing overpunch, zoned and
unsigned data. In addition, the table may be set up for
absolute value, negative absolute value or negated conversions.

1f the table translation produces a sign nibble containing any
valid sign, the preferred sign representation is stored in the
destination packed decimal string.

Instructions 12-Feb-82 -- Rev 7 Page 4-197
DECIMAL STRING INSTRUCTIONS

DIVP Divide Packed
Format:

opcode divrlen.rw, divraddr.ab, divdlen.rw,
divdaddr.ab, quolen.rw, quoaddr.ab

Operation:

({quoaddr + ZEXT (quolen/2)} : quoaddr) <-
({divdaddr + ZEXT (divdlen/2)} : divdaddr) /
({divraddr + ZEXT (divrlen/2)} : divraddr);

Condition Codes:

<- {quo string} Lss g;
<- {quo string} EQL @;
<- {decimal overflow};
<- 0;

a<<N =2

Exceptions:

reserved operand
decimal overflow
divide by zero

Opcodes:

27 DIVP Divide Packed

Description:

The dividend string specified by the dividend length and dividend
address operands is divided by the divisor string specified by the
divisor length and divisor address operands. The quotient string
specified by the quotient length and quotient address operands is
replaced by the result.

Notes:

1. This instruction allocates a 16 byte workspace on the stack.
After execution SP is restored to its original contents and the
contents of {(SP)-16}:{(SP)-1} are UNPREDICTABLE,

2. The division is performed such that:

1. The absolute value of the remainder (which is lost) is less
that the absolute value of the divisor.

2. The product of the absolute value of the quotient times the
absolute value of the divisor is less than or equal to the
absolute value of the dividend.

Instructions 12-Feb-82 —-- Rev 7 Page 4-198
DECIMAL STRING INSTRUCTIONS

3.

3. The sign of the quotient is determined by the rules of
algebra from the signs of the dividend and the divisor. If
the value of the quotient 1s zero, the sign 1is always
positive.

After execution:

RO = @

R1

U}

address of the byte containing the most significant
digit of the divisor string

R2 =0

R3 = address of the byte containing the most significant
digit of the dividend string

R4 = @

RS = address of the byte containing the most significant
digit of the quotient string.

The quotient string, RO through R5, and the condition codes are
UNPREDICTABLE if the quotient string overlaps the divisor or
dividend strings, the divisor or dividend string contains an
invalid nibble, the divisor is @ or a reserved operand abort
occurs.

Instructions 12-Feb-82 -- Rev 7 Page 4-199
DECIMAL STRING INSTRUCTIONS

MOvVPp Move Packed
Format:

opcode len.rw, srcaddr.ab, dstaddr.ab
Operation:

({dstaddr + ZEXT (len/2)} : dstaddr) <-
({srcaddr + ZEXT(len/2)} : srcaddr);

Condition Codes:

N <- {dst string} LSS g;
Z <- {dst string} EQL 4;

V <- @;
C <-¢C;
Exceptions:

reserved operand
Opcodes:
34 MOVP Move Packed

Description:

The destination string specified by the length and destination address
operands is replaced by the source string specified by the length and
source address operands.
Notes:

1. After execution:

RG =0

R1

address of the byte containing the most
significant digit of the source string

R2 @

R3 = address of the byte containing the most
significant digit of the destination string.

2. The destination string, RO through R3, and the condition codes
are UNPREDICTABLE if the destination string overlaps the source
string, the source string contains an invalid nibble, or a
reserved operand abort occurs.

Instructions 12-Feb-82 -- Rev 7 Page 4-200

DECIMAL STRING INSTRUCTIONS

3. 1f the source is -0, the result is +0, N is cleared and Z 1is

set.

Instructions 12-Feb-82 -- Rev 7 Page 4-201
DECIMAL STRING INSTRUCTIONS

MULP Multiply Packed
Format:

opcode mulrlen.rw, mulraddr.ab, muldlen.rw,
muldaddr.ab, prodlen.rw, prodaddr.ab

Operation:

({prodaddr + ZEXT (prodlen/2)} : prodaddr) <-
({muldaddr + ZEXT (muldlen/2)} : muldaddr) *
({mulraddr + ZEXT (mulrlen/2)} : mulraddr);

Condition Codes:

<- {prod string} LSS 0;
<- {prod string} EQL 9;
<- {decimal overflow};
<- 0;

NN 2

Exceptions:

reserved operand
decimal overflow

Opcodes:

25 MULP Multiply Packed

Description:

The multiplicand string specified by the multiplicand length and
multiplicand address operands is multiplied by the multiplier string
specified by the multiplier length and multiplier address operands. The
product string specified by the product 1length and product address
operands is replaced by the result.

Notes:
1. After execution:
RO = @

R1 = address of the byte containing the most
significant digit of the multiplier string

R2 =0

R3 = address of the byte containing the most
significant digit of the multiplicand string

R4 = ¢

Instructions 12-Feb-82 -- Rev 7 Page 4-202
DECIMAL STRING INSTRUCTIONS

R5 = address of the byte containing the most
significant digit of the product string

2. The product string, RO through RS, and the condition codes are
UNPREDICTABLE if the product string overlaps the multiplier or

multiplicand strings, the multiplier or multiplicand strings
contain an invalid nibble, or a reserved operand abort occurs.

Instructions 12-Feb-82 -- Rev 7 Page 4-203
DECIMAL STRING INSTRUCTIONS

SUBP Subtract Packed
Format:

opcode sublen.rw, subaddr.ab, diflen.rw,
difaddr.ab 4 operand

opcode sublen.rw, subaddr.ab, minlen.rw,
minaddr.ab, diflen.rw, difaddr.ab 6 operand

Operation:

({difaddr + ZEXT (diflen/2)} : difaddr) <-
({difaddr + ZEXT(diflen/2)} : difaddr) -
({subaddr + ZEXT (sublen/2)} : subaddr); !4 operand

({difaddr + ZEXT(diflen/2)} : difaddr) <-
({minaddr + ZEXT (minlen/2)} : minaddr) -
({subaddr + ZEXT(sublen/2)} : subaddr); !6 operand

Condition Codes:
N <~ {dif string} LSS @;
Z <- {dif string} EQL 0;
V <- {decimal overflow};
C <- 0;

Exceptions:

reserved operand
decimal overflow

Opcodes:
22 SUBP4 Subtract Packed 4 Operand
23 SUBPG6 Subtract Packed 6 Operand

Description:

In 4 operand format, the subtrahend string specified by subtrahend
length and subtrahend address operands is subtracted from the difference
string specified by the difference length and difference address
operands and the difference string is replaced by the result.

In 6 operand format, the subtrahend string specified by the subtrahend
length and subtrahend address operands is subtracted from the minuend
string specified by the minuend length and minuend address operands.
The difference string specified by the difference length and difference
address operands is replaced by the result.

Instructions 12-Feb-82 -- Rev 7 Page 4-204
DECIMAL STRING INSTRUCTIONS
Notes:
1. After execution of SUBP4:
RO = 0
R1 = address of the byte containing the most
significant digit of the subtrahend string
R2 = 0
R3 = address of the byte containing the most
significant digit of the difference string
2. After execution of SUBP6:
RO = 0
R1 = address of the byte containing the most
significant digit of the subtrahend string
R2 = 0
R3 = address of the byte containing the most
significant digit of the minuend string
R4 = @
R5 = address of the byte containing the most
significant digit of the difference string
3. The difference string, R@ through R3 (R@® through R5 for SUBP6),
and the condition codes are UNPREDICTABLE if the difference
string overlaps the subtrahend or minuend strings; the
subtrahend, minuend, or difference (4 operand only) strings

contain an invalid nibble;

or a reserved operand abort occurs.

Instructions 12-Feb-82 -- Rev 7 Page 4-205
EDIT INSTRUCTION

4.13 EDIT INSTRUCTION

This instruction is designed to implement the common editing functions
which occur in handling fixed format output. It operates by converting
a packed decimal string to a character string. This operation is
exemplified by a MOVE to a numeric editted (PICTURE) item in COBOL or
PL/I, but the instruction can be used for other applications as well.
The operation consists of converting an input packed decimal number to
an output character string, generating characters for the output. When
converting digits, options include leading =zero £fill, leading zero
protection, insertion of floating sign, insertion of floating currency
symbol, insertion of special sign representations, and blanking an
entire field when it is zero.

The operands to the EDITPC instruction are an input packed decimal
string descriptor, a pattern specification, and the starting address of
the output string. The packed decimal descriptor is a standard VAX-11
operand pair of the length of the decimal string in digits (up to 31)
and the starting address of the string. The pattern specification is
the starting address of a pattern operation editing sequence which is
interpreted much the way that the normal instructions are. The output
string 1is described by only its starting address because the pattern
defines the length unambiguously.

While the EDITPC instruction is operating, it manipulates two character
registers and the four condition codes. One character register contains
the fill character. This is normally an ASCII blank, but would be
changed to asterisk for check protection. The other character register
contains the sign character. 1Initially this contains either an ASCII
blank or a minus sign depending upon the sign of the input. This can be
changed to allow other sign representations such as plus/minus or
plus/blank and can be manipulated in order to output special notations
such as CR or DB. The sign register can also be changed to the currency
sign in order to implement a floating currency sign. After execution,
the condition codes contain the sign of the input (N), the presence of a
zero source (Z), an overflow condition (V), and the presence of
significant digits (C). Condition code N is determined at the start of
the instruction and is not changed thereafter (except for correcting a
@ input). The other condition codes are computed and updated as the
instruction proceeds. When the EDITPC instruction terminates, registers
R@-R5 contain the conventional values after a decimal instruction.

Instructions

EDIT INSTRUCTION

EDITPC

Format:

12-Feb-82 -- Rev 7 Page

Edit Packed to Character String

opcode srclen.rw, srcaddr.ab, pattern.ab, dstaddr.ab

Operation:

if srclen GTRU 31 then {reserved operand abort};

PSW<KV,C>

<- &;

PSW<KZ> <- 1;
PSWKN> <- {src has minus sign};

RO

<~

srclen;

tmpl <- R@;
<- srcaddr;

R1
R2

R3
R4
R5

<=

222 ' {if PSWKN> EQL @ then " " else "-"} ' " ";

1<15:8>=sign, <7:0>=fill

<~ pattern;

{—

rirarx
[aE e+

<- dstaddr;
exit flag <- false;

while NOT exit_flag do

if
RO
R1
R2
R4
if

Condition Codes:

<N 2

Exceptions:

RO
<-
<-
<~
<—

begin

{fetch pattern byte};

{if pattern @8:4 no operandl;

{if pattern 40:47 increment R3 and
fetch one byte operand};

{if pattern 80:AF except 86, 90, A
operand is rightmost nibble};

{else {reserved operand}};

{perform pattern operator};

if NOT exit flag then {increment R3};

end;

NEQ @ then {reserved operand};
tmpl; tlength of source string
1 - {tmpl/2} lpoint to start of source string

PSW<Z> EQL 1 then PSW<IN> <- &;

<-
{—-

{—

< -

reserved operand
decimal overflow

4-206

{src string} LSS &; IN <- @ if src is -0
{src stringl} EQL @;
f{decimal overflow};
{significancel;

'non-zero digits lost

Instructions 12-Feb-82 ~-- Rev 7 Page 4-2087
EDIT INSTRUCTION

Opcodes:

38 EDITPC Edit Packed to Character String

Description:

The destination string specified by the pattern and destination address
operands is replaced by the editted version of the source string
specified by the source 1length and source address operands. The
editting 1is performed according to the pattern string starting at the
address pattern and extending until a pattern end (EOSEND) pattern
operator 1is encountered. The pattern string consists of one byte
pattern operators. Some pattern operators take no operands. Some take
a repeat count which is contained in the rightmost nibble of the pattern
operator itself. The rest take a one byte operand which follows the
pattern operator immediately. This operand is either an unsigned
integer length or a byte character. The individual pattern operators

are described on the following pages.
Notes:

l. A reserved operand abort occurs if srclen GTRU 31.

2. The destination string is UNPREDICTABLE if the source string
contains an invalid nibble, if the EO$ADJUST INPUT operand is
outside the range 1 through 31, if the source and destination
strings overlap, or if the pattern and destination strings
overlap.

3. After execution:
RO = length of source string

Rl = address of the byte containing the most
significant digit of the source string

R2 =0

R3

address of the byte containing the EOSEND
pattern operator

R4 =0

R5 = address of one byte beyond the last byte
of the destination string

If the destination string is UNPREDICTABLE, R# through RS5 and
the condition codes are UNPREDICTARLE.

4. If V is set at the end and DV is enabled, numeric overflow trap
occurs unless the conditions in note 9 are satisfied.

Instructions 12-Feb-82 -- Rev 7 Page 4-208
EDIT INSTRUCTION

[N

5.

19.

11.

The destination length is specified exactly by the pattern
operators in the pattern string. If the pattern is incorrectly
formed or if it 1is modified during the execution of the
instruction, the length of the destination string 1is
UNPREDICTABLE.

If the source is -0, the result may be -8 unless a fixup
pattern operator is included (EOSBLANK ZERO or
EO$REPLACE_SIGN).

The contents of the destination string and the memory preceding
it are UNPREDICTABLE if the length covered by EOSBLANK ZERO or
EOSREPLACE SIGN is 0 or is outside the destination string.

If more input digits are requested by the pattern than are

specified, then a reserved operand abort is taken with RO = -1
and R3 = location of pattern operator which requested the extra
digit. The condition codes and other registers are as

specified in note 11. This abort is not continuable.

If fewer input digits are requested by the pattern than are
specified, then a reserved operand abort is taken with R3 =
location of EOSEND pattern operator. The condition codes and
other registers are as specified in note 11. This abort is not
continuable.

On an unimplemented or reserved pattern operator, a reserved
operand fault 1is taken with R3 = location of the faulting
pattern operator. The condition codes and other registers are
as specified in note 11. This fault is continuable as long as
the defined register state 1is manipulated according to the
pattern operator description and the state specified as 2?2 is
preserved.

On a reserved operand exception as specified in notes 8 through
19, FPD 1is set and the condition codes and registers are as
follows:

N = {src has minus sign}

7 = all source digits @ so far

V = non-zero digits lost

C = significance

RO = -zeros<l15:8> ' remaining srclen<l5:0>

R1 current source location
R2 = 22?2 ' sign ' fill

R3

lJocation of edit pattern operator causing exception

Instructions 12-Feb-82 -- Rev 7 Page 4-209
EDIT INSTRUCTION

R4 = 2727

R5

location of next destination byte
where:

Zzeros = count of source zeros to supply

sign = current contents of sign character register

fill

current contents of fill character register

Instructions 12-Feb-82 -- Rev 7 Page 4-210
EDIT INSTRUCTION

insert:

move:

fixup:

load:

control:

Summary of EDIT pattern operators

name operand summary

EOSINSERT ch insert character, fill if insignificant
EOSSTORE SIGN - insert sign

EOSFILL r insert fill

EQOS$SMOVE r move digits, filling insignificant
EOSFLOAT r move digits, floating sign

EOSEND_FLOAT end floating sign

EOSBLANK_ ZERO len fill backward when zero
EOSREPLACE_SIGN len replace with fill if -@

EOSLOAD FILL ch load fill character

EOSLOAD SIGN ch load sign character

EOSLOAD PLUS ch load sign character if positive
EOS$SLOAD MINUS ch load sign character if negative

EO$SET SIGNIF set significance flag

EOSCLEAR SIGNIF - clear significance flag
EO$ADJUST INPUT len adjust source length
EOSEND - end edit
where:

ch = one character

r
len

repeat count in the range 1 through 15
length in the range 1 through 255

Instructions 12-Feb~82 -- Rev 7 Page 4-211
EDIT INSTRUCTION

EDIT pattern operator encoding

(hex)
a0 EOSEND
g1 EO$END_ELOAT
82 EOSCLEAR_SIGNIF
23 EOSSET_SIGNIF
24 EOSSTORE_SIGN
25..1F Reserved to DEC
20..3F Reserved for all time
49 EO$LOAD_FILL \
41 EOSLOAD SIGN |
42 EOSLOAD_PLUS | -— character is in next byte
43 EOSLOAD MINUS |
44 EOSINSERT /
45 EOSBLANK_ ZERO \
46 EOSREPLACE SIGN |-- unsigned length is in next byte
47 EOSADJUST_INPUT /
48, .5F Reserved to DEC
60..7F Reserved to CSS, customers

80,90,A0 Reserved to DEC

81..8F EOSFILL \
91..9F EOSMOVE |-- repeat count is <3:0>
Al..AF EOSFLOAT /

B@..FE Reserved to DEC
FF Reserved for all time

Instructions 12-Feb-82 -- Rev 7 Page 4-212
EDIT INSTRUCTION

The following pages define each pattern operator in a format similar to
that of the normal instruction descriptions. In each case, if there is
an operand it is either a repeat count (r) from 1 through 15, an
unsigned byte length (len), or a character byte (ch). 1In the formal
descriptions, the following two routines are invoked:

READ: tfunction value & through 9
if R@ EQL @ then {reserved operand};

if R@ LSS @ then
begin
READ <- 0;
R@<31:16> <- RO<31:16> + 1; Isee EOSADJUST_INPUT
end;
else
begin
READ <- (R1)<3+4*R@<@>:4*R0O<G>>; !get next nibble
lalternating high then low
RO <- RO - 1;
if RO<KP> EQL 1 then R1 <- Rl + 1;
end;
return;

STORE (char) :
(R5) <- char;
R5 <- R5 + 1;
return;

Also the following definitions are used:

fill R2<7:08>

R2<15:8>

sign

Instructions 12-Feb-82 -- Rev 7 Page 4-213
EDIT INSTRUCTION

EOSINSERT Insert Character
Purpose:

Insert a fixed character, substituting the fill character if not
significant

Format:

pattern ch
Operation:

if PSWKC> EQL 1 then STORE (ch) else STORE(fill);
Pattern operators:

44 EOSINSERT Insert Character

Description:

The pattern operator is followed by a character. If significance is
set, then the character is placed into the destination. If significance
is not set, then the contents of the fill register is placed 1into the
destination.

Notes:

This pattern operator is used for blankable inserts (e.g.,
comma) and fixed inserts (e.g., slash). Fixed inserts require
that significance be set (by EOSSET_SIGNIF or EOSEND FLOAT).

Instructions 12-Feb-82

EDIT INSTRUCTION

EOSSTORE_SIGN Store Sign
Purpose:
Insert the sign character
Format:
pattern
Operation:
STORE (sign) ;
Pattern operators:

24 EOSSTORE_SIGN Store Sign

Description:

-- Rev 7

Page 4-214

The contents of the sign register is placed into the destination.

Notes:

This pattern operator is used for any
preceded by

sign. It should be

non-floating
EOSLOAD PLUS and/or

arithmetic

EOSLOAD MINUS if the default sign convention is not desired.

Instructions 12-Feb-82
EDIT INSTRUCTION

EOSFILL Store Fill
Purpose:
Insert the fill character
Format:

pattern r
Operation:

repeat r do STORE (fill);
Pattern operators:

8x EOSFILL Store Fill

Description:

-— Rev 7

The right nibble of the pattern operator is
contents of the fill register 1is placed into the destination repeat

times.

Notes:

This pattern operator is used for fill

Page 4-215

count. The

insertion.

Instructions 12-Feb-82 -- Rev 7 Page 4-216
EDIT INSTRUCTION

EOSMOVE Move Digits
Purpose:
Move digits, filling for insignificant digits (leading zeros)
Format:

pattern r
Operation:

repeat r do

begin

tmp <- READ;
if tmp NEQU @ then

begin

PSWKZ> <- @;

PSWLC> <- 1; Iset significance
end;

if PSWKC> EQL @ then STORE(fill)
else STORE ("@" + tmp);
end;

Pattern operators:

9x EOSMOVE Move Digits

Description:

The right nibble of the pattern operator is the repeat count. For
repeat times, the following algorithm is executed. The next digit is
moved from the source to the destination. 1If the digit 1is non-zero,
significance is set and zero 1is cleared. If the digit 1is not
significant (i.e., is a leading zero) it is replaced by the contents of
the fill register in the destination.

Notes:

1. 1If r is greater than the number of digits remaining 1in the
source string, a reserved operand abort is taken.

2. This pattern operator is used to move digits without a floating
sign. If leading =zero suppression is desired, significance
must be clear. If leading =zeros should be explicit,
significance must be set. A string of EOSMOVEs intermixed with
EOSINSERTs and EOS$FILLs will handle suppression correctly.

3. 1If check protection (*) is desired EOSLOAD_FILL must precede
the EOS$MOVE.

Instructions 12-Feb-82 ~-- Rev 7 Page 4-217
EDIT INSTRUCTION

EOSFLOAT Float Sign
Purpose:
Move digits, floating the sign across insignificant digits
Format:

pattern r
Operation:

repeat r do

begin

tmp <- READ;
if tmp NEQU @ then

begin
if PSW<C> EQL @ then
begin
STORE (sign) ;
PSW<KZ> <- 4;
PSWLC> <- 1; !set significance
end;
end;

if PSW<KC> EQL @ then STORE (£ill)
else STORE("@" + tmp);
end;

Pattern operators:

Ax EOSFLOAT Float Sign

Description:

The right nibble of the pattern operator is the repeat count. For
repeat times, the following algorithm is executed. The next digit from
the source is examined. If it is non-zero and significance is not vyet
set, then the contents of the sign register 1is stored 1in the
destination, significance is set, and zero is cleared. If the digit is
significant, it is stored in the destination, otherwise the contents of
the fill register is stored in the destination.

Notes:

1. If r is greater than the number of digits remaining 1in the
source string, a reserved operand abort is taken.

2. This pattern operator is used to move digits with a floating
arithmetic sign. The sign must already be setup as for
EOSSTORE_SIGN. A sequence of one or more EO$FLOATs can include
intermixed EOSINSERTs and EOS$FILLs. Significance must be clear
before the first pattern operator of the sequence. The
sequence must be terminated by one EO$END FLOAT.

Instructions 12-Feb-82 -- Rev 7
EDIT INSTRUCTION

3.

Page 4-218

This pattern operator is used to move digits with a floating
currency sign. The sign must already be setup with a
EOSLOAD SIGN. A sequence of one or more EOSFLOATs can include
intermixed EOSINSERTs and EOSFILLs. Significance must be clear
before the first pattern operator of the sequence. The
sequence must be terminated by one EOSEND_FLOAT.

Instructions 12-Feb-82 -~ Rev 7 Page 4-219

EDIT INSTRUCTION

EOSEND FLOAT End Floating Sign
Purpose:
End a floating sign operation
Format:
pattern
Operation:

i1f PSWKC> EQL 9 then

begin

STORE (sign);

PSWLC> <- 1; !set significance
end;

Pattern operators:

21 EOSEND_FLOAT End Floating Sign

Description:

If the floating sign has not yet been placed in the destination

if significance is not set), the contents of the sign register is stored

in the destination and significance is set.
Notes:

This pattern operator is used after a sequence of one

EOSFLOAT pattern operators which start with significance clear.
The EOSFLOAT sequence can include intermixed EOSINSERTs

EOSFILLs.

Instructions 12-Feb-82 -- Rev 7 Page 4-220
EDIT INSTRUCTION
EOSBLANK ZERO Blank Backwards When Zero
Purpose:
Fixup the destination to be blank when the value is zero
Format:
pattern len
Operation:
if len EQLU @ then {UNPREDICTABLE};
i1f PSW<Z> EQL 1 then
begin
R5 <- R5 - len;
repeat len do STORE (£1i11);
end;

Pattern operators:

45 EO$BLANK ZERO Blank Backwards When Zero

Description:

The pattern operator 1is followed by an unsigned byte integer length. T1f
the value of the source string is zero, then the contents of the fill
register is stored into the last length bytes of the destination string.

Notes:

1. The length must be non-zero and within the destination string

already produced. 1f it 1is not, the contents of the
destination string and the memory preceding it are
UNPREDICTABLE.

2. This pattern operator is used to blank out any characters
stored 1in the destination under a forced significance, such as
a sign or the digits following the radix point.

Instructions 12-Feb-82 -- Rev 7 Page 4-221
EDIT INSTRUCTION
EOSREPLACE_SIGN Replace Sign When Zero
Purpose:
Fixup the destination sign when the value is zero
Format:
pattern len

Operation:

if len EQLU @ then {UNPREDICTABLE};
if PSW<Z> EQL 1 then (R5 - len) <- fill;

Pattern operators:

46 EOSREPLACE _SIGN Replace Sign When Zero

Description:

The pattern operator is followed by an unsigned byte integer length., TIf
the wvalue of the source string is zero (i.e., if Z is set), then the
contents of the fill register is stored into the byte of the destination
string which is length bytes before the current position.

Notes:

1. The length must be non-zero and within the destination string

already produced. If it 1is not, the contents of the
destination string and the memory preceding it are
UNPREDICTABLE.

2. This pattern operator can be used to correct a stored sign
(EOSEND_FLOAT or EOSSTORE_SIGN) if a minus was stored and the
source value turned out to be zero.

Instructions 12-Feb-82 -- Rev 7 Page 4-222
EDIT INSTRUCTION

EOSLOAD_ Load Register
Purpose:

Change the contents of the fill or sign register

Format:
pattern ch
Operation: Iselect one depending on pattern operator
£i11 <- ch; 1EO$LOAD_FILL
sign <~ ch; !EO$LOAD_SIGN
i{f PSWKN> EQL @ then sign <- ch; 1EOSLOAD_PLUS
if PSW<N> EQL 1 then sign <- ch; 1EOSLOAD MINUS

Pattern operators:

49 EOSLOAD_FILL Load Fill Register
41 EOSLOAD_SIGN Load Sign Register
42 EOSLOAD PLUS Load Sign Register If Plus
43 EOSLOAD MINUS Load Sign Register If Minus

Description:

The pattern operator is followed by a character. For EOSLOAD_FILL this
character 1is placed into the £ill register. For EOSLOAD_SIGN this
character is placed into the sign register. For EOSLOAD PLUS this
character is placed into the sign register if the source string has a
positive sign. For EOSLOAD MINUS this character is placed into the sign
register if the source string has a negative sign.

Notes:

1. EOSLOAD FILL is used to setup check protection (* instead of
space) .

2. EOSLOAD SIGN is used to setup a floating currency sign.
3. EOSLOAD_PLUS is used to setup a non-blank plus sign.

4. EOSLOAD MINUS is used to setup a non-minus minus sign (such as
CR, DB, or the PL/I +).

Instructions 12-Feb-82 -- Rev 7 Page 4-223
EDIT INSTRUCTION

EOS SIGNIF Significance
Purpose:

Control the significance (leading zero) indicator

Format:
pattern

Operation:
PSW<C> <~ g; !EOSCLEAR SIGNIF
PSW<C> <- 1; !EOSSET_SIGNIF

Pattern operators:

g2 EOSCLEAR_SIGNIF Clear Significance

63 EO$SET_SIGNIF Set Significance
Description:
The significance indicator is set or cleared. This controls the
treatment of leading zeros (leading zeros are zero digits for which the
significance indicator is clear).

Notes:

1. EOSCLEAR SIGNIF is used to initialize leading zero suppression
(EOSMOVE) or floating sign {(EOSFLOAT) following a fixed insert
(EOSINSERT with significance set) .

2. EOSSET_SIGNIF is used to avoid leading zero suppression (before
EOSMOVE) or to force a fixed insert (before EOSINSERT).

Instructions 12-Feb-82 —-- Rev 7 Page 4-224
EDIT INSTRUCTION

EO$ADJUST INPUT Adjust Input Length
Purpose:

Handle source strings with lengths different from the output

Format:
pattern len
Operation:
if len EQLU @ or len GTRU 31 then {UNPREDICTABLE};
if RA<C15:8> GTRU len
then
begin
RO<31:16> <~ @
repeat RP<15:0> - len do
if READ NEQU @ then
begin
PSW<KZ> <- #;
PSWKC> <- 1; tset significance
PSWKV> <- 1;
end;
end;
else R@<31:16> <- RALK15:0> - len; tnegative of number to
fill
Pattern operators:
47 EOS$ADJUST INPUT Adjust Input Length

Description:

The pattern operator is followed by an unsigned byte integer length in
the range 1 through 31. If the source string has more digits than this
length, the excess leading digits are read and discarded. If any
discarded digits are non-zero then overflow is set, significance is set,
and zero is cleared. 1If the source string has fewer digits than this
length, a counter is set of the number of leading zeros to supply. This
counter is stored as a negative number in R@<31:16>.

Notes:

If length is not in the range 1 through 31 the destination
string, condition codes, and R¢ through R5 are UNPREDICTABLE.

Instructions 12-Feb-82

EDIT INSTRUCTION

EOSEND End Edit
Purpose:
End the edit operation
Format:
pattern

Operation:

exit flag <- true;

instruction
Pattern operators:
End Edit

20 EOSEND

Description:
The edit operation is terminated.
Notes:

1.
taken.

2,

If there are still input digits a

-- Rev 7 Page 4-225

!terminate edit loop
!end processing is

!described under EDITPC

reserved operand abort is

If the source value is -8, the N condition code is cleared.

Instructions 12-Feb-82 -- Rev 7
OTHER VAX-11 INSTRUCTIONS

4.14 OTHER VAX-11 INSTRUCTIONS

The following instructions are specified in
document as indicated below.

Chapter 5:

Probe {Read, Write} Accessability
PROBE {R,W} mode.rb, len.rw, base.ab
Chapter 6:

Change Mode

CcHM{K,E,S,U} param.rw, {-(ySP) .w*}
where y=MINU(x, PSL<current_mode>)
Return from Exception or Interrupt
REI {(SP)+.r*}

Chapter 7:

Load Process Context
LDPCTX {PCB.r¥*, -(KSP).w*}

Save Process Context
SVPCTX {(SP)+.r*, PCB.w*}

Chapter 9:
Move To Process Register
MTPR src.rl, procreg.rl

Move From Processor Register
MFPR procreg.rl, dst.wl

other

Page 4-226

chapters of this

Instructions

Instructions 12-Feb-82 -- Rev 7 Page 4-227
OTHER VAX-11 INSTRUCTIONS

BUG Bugcheck
Format:

opcode message.bx
Operation:

{fault to report error}

Condition Codes:

N <- N;
Z <~ Z;
V <= V;
C <-¢C;

Exceptions:

reserved instruction

Opcodes:
FEFF BUGW Bugcheck with word message identifier
FDFF BUGL Bugcheck with longword message identifier

Description:

The hardware treats these opcodes as RESERVED to DIGITAL and faults.
The VAX/VMS operating system treats these as requests to report software
detected errors. The in-line message identifier is zero extended to a
longword (BUGW) and interpreted as a condition value (see Appendix c,
VAX/VMS Run Time Library Reference Manual). If the process is
privileged to report bugs, a log entry is made. If the process is not
privileged, a reserved instruction is signalled.

CHAPTER 5
MEMORY MANAGEMENT

17-Jun-81 -- Rev 5.3

5.1 INTRODUCTION

Memory management consists of the hardware and software which control
the allocation and use of physical memory. Typically, in a
multiprogramming system, several processes may reside in physical memory
at the same time. The VAX-11 uses memory protection and multiple
address spaces to ensure that one process will ‘not affect other
processes or the operating system.

To further improve software reliability, four hierarchical access modes
provide memory access control. They are, from most to least privileged:
kernel, executive, supervisor, and user. Protection is specified at the
individual page level, where a page may be inaccessible, read-only, or
read/write for each of the four access modes. Any location accessible
to one mode is also accessible to all more privileged modes.
Furthermore, for each access mode, any location that can be written can
also be read.

The CPU generates virtual addresses when an image is executed. However,
before these addresses can be used to access instructions and data, they
must be translated into physical addresses. Memory management software
maintains tables of mapping information (page tables) that keep track of
where each 512-byte virtual page is located in physical memory. The CPU
utilizes this mapping information when it translates virtual addresses
to physical addresses.

Therefore, memory management is the scheme that provides both the memory
protection and memory mapping mechanisms of the VAX-11. The memory
Management meets several development goals:

1. Provide a large address space for instructions and data.

2. Allow data structures up to one gigabyte.

Memory Management 17-Jun-81 -- Rev 5.3 Page 5-2
INTRODUCTION

3. Provide convenient and efficient sharing of instructions and
data.

4. Contribute to software reliability.

A virtual memory system provides a large address space, yet allows
programs to run on hardware with small memory configurations. Programs
execute in an environment termed a process. The virtual memory system
for VAX-11 provides each process with a 4 billion byte address space.

The virtual address space is divided into two equal size spaces, the
system address space and the per-process address space. The system
address space is the same for all processes. It contains the operating
system which 1is Wwritten as callable procedures. Thus all system code
can be available to all other system and user code via a simple CALL.
Each process has its own separate process address space. However,
several processes may have access to the same page, thus providing
controlled sharing.

5.2 VIRTUAL ADDRESS SPACE

A virtual address is a 32 bit unsigned integer specifying a byte
location in the address space. The programmer Sees a linear array of
4,294,967,296 bytes. The virtual address space is broken into 512 byte
units termed pages. The page is the unit of relocation and protection.

This virtual address space is too large to be contained in any presently
available main memory. Memory management provides the mechanism to map
the active part of the virtual address space to the available physical
address space. Memory management also provides page protection between
processes. The operating system controls the virtual-to-physical
address mapping tables, and swaps the inactive but used parts of the
virtual address space onto the external storage media.

The virtual address space is divided into two parts. The half with the
smaller addresses, known as "per-process space," is distinct for each
process running on the system. The half with the larger addresses,
known as "system space," is shared by all processes. Virtual address
space is illustrated in Figure 5-1.

Memory Management 17-Jun-81 -- Rev 5.3 Page 5-3
VIRTUAL ADDRESS SPACE

P +
ggopo000 | I
[length of P@# Region [
| in pages (P@LR) |
| I p
| PQ [e
I (Program) —eeoo o ___ I r
| Region | -
| | P# Region ! p
| | growth direction | r
I | [o
| 3FFFFFFF v I c
P + e
140000000 : | S
I I I s
| | Pl Region |
| | growth direction | S
| Pl [I p
I (Control) wmmmme I a
I Region | o
I length of Pl Region I e
| in pages (2**21-P1LR) |
| I
TFFFFFFF | I
______ +______________________.____.____.___._______.._-_____+_._____
83000000 1 ‘
| length of System Region |
| s, in pages (SLR) |
| Region -l f
| | S
I I y
| ! I s
| | System Region | t
l | growth direction | e
|BFFFFFFF v | m
et +
[Ce000000 | S
I p
! I a
I I c
I | e
| Reserved |
I Region :
|
| |
I |
FFFFFFFF | |
et +
Figure 5-1

Virtual Address Space

Memory Management 17-Jun-81 -- Rev 5.3 Page 5-4
VIRTUAL ADDRESS SPACE

5.2.1 Process Space

The smaller-—-addressed half (addresses 00A0GHO0-7FFFFFFF, hex) of the
virtual address space 1is termed "per-process space." The per—-process
space is divided into two equal parts, the program region (P@ region)
and the control region (Pl region). Each process has a separate address
translation map for per-process space, SO the per-process spaces of all
processes are completely disjoint (see the section on Sharing at the end
of this chapter). The address map for per—-process space is context
switched (changed) when the Dprocess running on the system 1is changed
(see the chapter on Process Structure).

5.2.2 System Space

The larger-addressed half (addresses 80P00000-FFFFFFFF, hex) of the
virtual address space 1s termed "system space.” All processes use the
same address translation map for system space, so system space is shared
among all processes. The address map for system space is not context
switched.

5.2.3 Virtual Address Format

The VAX-11 processor dgenerates a 32-pit virtual address for each
instruction and operand in memory. As the process executes, the system
translates each virtual address to a physical address. The virtual
address has the following format:

3
1 9 8 2
e ———m—— e ——— ST oS T ettty +
| VPN | byte # |
PSSR S e et +
Figure 5-2
Virtual Address Format
VPN ¢31:9> The Virtual Page Number field specifies the
virtual page to be referenced. The virtual

address space contains 8,388,608 (2**23) pages
of 512 bytes each.

Byte # <8:0> The byte number field specifies the byte address
within the page. A page contains 512 bytes.

Nh 31 is one, the address is in the system space. When bit 31 is

e it
zero, the address is in the per-process space.

3

o}
|9}

<

1

Within the per-process space, bit 30 distinguishes between the program
and control regions. when bit 3¢ is one, the control region is
referenced, and when it is zero, the program region 1is referenced.

Memory Management 17-Jun-81 -- Rev 5.3 Page 5-5
VIRTUAL ADDRESS SPACE

5.2.4 Virtual Address Space Layout

The layout of virtual address space is illustrated in Figure 5-1. Note
that access to each of the three regions (P@, P1, System) is controlled
by a length register (POLR, PILR, SLR). Within the limits set by the
length registers, the access is further controlled by page tables that
specify the validity, access requirements, and physical location of each
pPage in the memory.

5.3 MEMORY MANAGEMENT CONTROL

The action of translating a virtual address to a physical address is
governed by the setting of the Memory Mapping Enable (MME) bit in the
MAPEN internal processor register, Figure 5-3 illustrates the
privileged MAP ENable register,

3

1 10
T +-+
| IM]
| MBZ IM|
l lE |
o +-—+

Figure 5-3

MAP ENable Register (MAPEN)
(to read: MFPR #56, dst.wl)
(to write: MTPR src.rl, %55)

MAPEN<O> is the Memory Mapping Enable (MME) bit. When MME is set to 1,
Mmémory management 1is enabled. When MME is set to @, memory management
is disabled. At processor initialization time, MAPEN is initialized to
a.

5.3.1 Memory Management Disabled

Setting MME to @ turns off address translation and access control,.
Virtual address bit n, VA<n>, is copied directly to the corresponding
physical address bit, PA<n>, for n = @ to 29. VA<31:30> are ignored;
PA<31:30> are always zero. VA<n> is ignored if PA<n> doesn't exist.
(The number of PA bits is implementation dependent.)

PA = VA<29:¢> modulo (2** number of PA bits)

There is no page brotection: all accesses are allowed in all modes. No
modify bit is maintained.

Memory Management 17-Jun-81 -- Rev 5.3 Page 5-5
ADDRESS TRANSLATION
5.4 ADDRESS TRANSLATION
When MME is a 1, address translation and access control are on. The
processor uses the following to determine whether an intended access 1is
allowed:

1. The virtual address, which is used to index a page table,

2. The intended access type (read or write), and

3. The current privilege level from the Processor Status Longword,

or Kernel level for page table mapping references.

If the access is allowed and the address can be mapped, the result is
the physical address corresponding to the specified virtual address.
The intended access is READ if the operation to be performed is a read.
The intended access 1is WRITE if the operation to be performed is a
write. If the operation to be performed is a modify (that 1is, read

followed by write) the intended access is specified as a WRITE.

If an operand is an address operand, then no reference is made. Hence
the page need not be accessible and need not even exist.

5.4.1 Page Table Entry (PTE)

The CPU uses a Page Table Entry (PTE) to translate virtual addresses to
physical addresses. Figure 5-4a illustrates the PTE format.

33 22222222

18 76543218)
ot bopefom—fodmfmmm—mmm———m—————— oo - s s o - oo oSS — T oo TTETT +

V] PROT [M|ZIOWNISIS]I PFN l
tot o bot—fom—dofmfomm—mm—mmm————— === oo ———— - - s oo SS— ST TTTET +
Figure 5-4a
Page Table Entry
\Y <31> Valid bit - governs the validity of the M bit

and PFN field. v=1 for wvalid; V=8 for not
valid. When V=0, the M and PFN fields are
reserved for DIGITAL software.

PROT <3@:27> PROTection field - this field is always wvalid
and is used by the CPU hardware even when V=0.

M <26> Modify bit - When the Valid bit is clear, M is
not used by CPU hardware, and is reserved for
DIGITAL software and 1I/0 devices. When the
valid Dbit 1is set, M shows whether the page has
been modified. If M is clear, the page has not

Memory Management 17-Jun-81 -- Rev 5.3 Page 5-7
ADDRESS TRANSLATION

been modified. If M is set, the page may have
been modified.

M is cleared only by software. It is set by CPU
hardware on a successful write or modify to the
page. In addition, it may be set by the
probe-write instruction (PROBEW) or by an
implied probe-write. M is not set if the page
is inaccessible, Beyond that, it is
UNPREDICTABLE whether M is set if a fault occurs
in an instruction which would otherwise have
modified the page.

For example, if a write reference crosses a page
boundary where the first Page is not accessible
and the second page is accessible, the reference
will fault. M is unchanged in the PTE mapping
the first page. It is UNPREDICTABLE whether M
is set in the PTE mapping the second page.

Tt is UNPREDICTABLE whether the modification of
a process PTE<KM> bit causes modification of the
system PTE that maps that process page table.
Note that the update of the M bit is not
interlocked in a multiprocessor system.

OWN <24:23> OwWNer bits - reserved for DIGITAL software use
as the access mode of the owner of the page
(that is, the mode allowed to alter the page
protection or to delete the page); not examined
or altered by any hardware.

PFN <20:8> Page Frame Number - the upper 21 bits of the
physical address of the base of the page. Used
by CPU hardware only if v=1,

Z <25> Zero bit - bit 25,is RESERVED to DIGITAL and
must be zero. The hardware does not necessarily
test that this bit is zero because the PTE is
established by privileged software.

S <22:21> Software bits - bits 22, and 21 are reserved for
DIGITAL software.

(Software symbols defined for the above fields use PTES as the prefix.)

The operating system software uses some combinations of the software
bits to implement its page management data structures and functions.

Among the functions implemented this way are
initialize—pages—with—zeros, copy-on-reference, page sharing, and
transitions between active and swapped-out states. VAX/VMS encodes

these functions in PTEs whose Valid bit, PTE<31>, is a @ and processes
them whenever a page fault occurs.

Memory Management 17-Jun-81 -- Rev 5.3 Page 5-8
ADDRESS TRANSLATION

5.4.2 Page Table Entry (PTE) For I1/0 Devices

Some 1/0 devices, such as the DR32, use VAX-11 memory management to
translate addresses. These 1/0 devices use a Page Table Entry format
which is an extension of that in Figure 5-4a used by the CPU. The
extended PTE implements for I/0 hardware some functions that the CPU
does with software using software bits and page faults. 1In particular,
PTE bits 31, 25, and 22 are decoded into four combinations. Some of
these are used in the same way as in the CPU PTE format, and some are
used in different ways. The four combinations are:

PTE<31,25,22> PTE Type

Valid PFN

Valid PFN

Global Page Table Index
Invalid, 1/0 abort

o™
=@ E X
RS g

and their interpretations are:

PTE<31,26,22>=1xx, Figure 5-4b. PTE<2@:0> is a valid PFN field. This
is identical to the PFN field illustrated in Figure 5-4a for the CPU
PTE.

33 22222222

14 76543210 @
N 4ot e m e m e — o= — oo +
|1} PROT IM|ZlowWwN|S |3 PFN |
Fotbmmmm——— b fm b m e ——m— - —— == +

Figure 5-4b
PTE<31,26,22>=1xx, Valid PFN

PTE<31,26,22>=000, Figure 5-4c. PTE<20:0> is a valid PFN field. This
is identical to the PFN field illustrated in Figure 5-4a for the CPU
PTE.

33 22222222

10 755432190 g
f—t—————— T S ST R ittt s +
19| PROT |@|ZIOWNIOIS] PFN |
t=t—m———— befofmm o mmmmmmmm— e ———m— - - —— oo —m oo T o T +

Figure 5-4c
PTE<31,26,22>=000, Valid PFN

PTE<31,26,22>=001, Figure 5-4d. PTE<21:0> is a Global Page Table Index
(GPTX) . The 1I/0 device has a Global page table Base Register (GBR)
which is loaded by software with a system virtual address. The 1I/0
device calculates GBR + GPTX * 4 to get the system virtual address of a
second PTE. The second PTE must contain a valid PFN, and must have
PTE<31,26,22> equal to either 00608 or 1xx, binary. 1If either of these
requirements is not met, the result is UNDEFINED. For those devices
that use it, the PROTection field always comes from the first PTE.

Memory Management 17-Jun-81 -- Rev 5.3 Page 5-9
ADDRESS TRANSLATION

33 2222222

1 0 7654321 9
Ft—m P e +
81 PROT |0|Z|0OWN]|1| GPTX |
e i e +

Figure 5-44
PTE<31,25,22>=001, Global Page Table Index

PTE<31,26,22>=01X, Figure 5-4e. This PTE format is RESERVED to DIGITAL.
I1/0 devices will abort in a DEVICE DEPENDENT manner.

33 22222222

10 7654321490 @
o T Pt e ____ +
[6] PROT [1]Z|OWN|S|S]| S |
Fotmm o e e e e e +

Figure 5-4e
PTE<31,26,22>=01%x, Invalid, I/0 abort

1/0 devices may look at and check the PROTection field or modify the M
bit; this is DEVICE DEPENDENT. Those devices that do use them, use
them the same way the CPU does.

I1/0 devices that do memory mapping use the same SPT as the CPU, but they
have their own copies of the SBR and SLR. Buffer addresses are
described in terms of a system virtual address of the PTE for the first
buffer page and a byte offset within that page. 1In addition the I/0
devices use a Global Page Table in memory and an 1I/0 hardware Global
page table Base Register (GBR) which must be loaded by software.

5.4.3 Changes To Page Table Entries

The operating system changes PTEs as part of its memory management
functions. For example, VMS sets and clears the valid bit and changes
the PFN field as pages are swapped in and out.

The software must guarantee that each PTE is always consistent within
itself. Changing a PTE one field at a time may give incorrect system
operation. An example would be to set PTE<V> with one instruction
before establishing PTE<PFN> with another. An interrupt routine between
the two instructions could use an address that would map wusing the
inconsistent PTE. The software can solve this problem by building a new
PTE in a register and then moving the new PTE to the page table with a
single instruction such as MOVL.

Multiprocessing makes the problem more complicated. Another processor,
be it another CPU or an I1/0 processor, can reference the same page
tables that the first CPU is changing. The second processor must always
read consistent PTEs. 1In order to quarantee this, first note that PTEs

Memory Management 17-Jun-81 -- Rev 5.3 Page 5-10
ADDRESS TRANSLATION

are longwords, longword-aligned. Then two requirements must be met:

1. Whenever the software modifies a PTE in more than one byte, it
must use a longword, Jlongword-aligned, write-destination
instruction, such as MOVL, and

2. The hardware must guarantee that a longword, longword-aliqgned
Wwrite 1is an "atomic" operation. That is, a second processor
cannot read (or write over) any of the first processor's
partial results.

5.5 ACCESS CONTROL

Access control is the function of validating whether a particular type
of memory access is to be allowed to a particular page. Access to each
page is controlled by a protection code that specifies for each access
mode whether or not read or write references are allowed. Additionally,
each address is checked to make certain that it lies within the PO, P1,
or system region.

5.5.1 Processor Modes

In the order of most privileged to least privileged, the four processor
modes are:

§ - Kernel - used by the kernel of the operating system for page
management, scheduling, and I/0 drivers.

1 - Executive - used for many of the operating system service
calls, including the record management system.

2 - Supervisor - used for such services as command interpretation.

3 - User - used for wuser level code, utilities, compilers,

debuggers, etc.

The access mode of a running process 1is the current processor mode,
stored in the Current Mode field of the Processor Status Longword (PSL)
(see the Chapter on Exceptions and Interrupts).

5.5.2 Protection Code

Every page in the virtual address space is protected accor te its
use. Even though all of the system space is shared, in that the program
may generate any address, the program may be prevented from modifying,
or even accessing portions of it. A program may also be prevented from
accessing or modifying portions of per-process space.

Memory Management 17-Jun-81 -- Rev 5.3 Page 5-11
ACCESS CONTROL

For example, in system space, scheduling queues are highly protected,
whereas library routines may be executable by code of any privilege.
Similarly per-process accounting information may be in per-process
space, but highly protected, while normal wuser code in per-process
spaces is executable at low privilege.

Associated with each page is a protection code that describes the
accessibility of the page for each processor mode. The code allows a

choice of protection for each processor mode, within the following
limits:

1. Each level's access can be read-write, read-only, or no-access.

2. If any level has read access then all more privileged 1levels
also have read access.

3. If any level has write access then all more privileged levels
also have write access.

The protection codes for the 15 combinations of page protection are
encoded in a 4 bit field in the Page Table Entry as follows:

Memory Management
ACCESS CONTROL

CODE MNEMONIC

DECIMAL BINARY

W3 U WN R

—
— @

12
13
14
15

poae
goal
0010
0911
g100
g1al
a1rie
0111
10006
1891
1410
1911
1100
1191
1110
1111

NA

KW
KR
UwW
EW
ERKW
ER
SW
SREW
SRKW
SR
URSW
UREW
URKW
UR

RW

RW
RW
RW
R

RN
RW
RW
R

RW
RW
RW
R

Key

- - no access
read only
read write

R -
RW -

17-Jun-81 -- Rev 5.3 Page 5-12
PRIVILEGE LEVEL COMMENT
E S U
- - - no ACCESS
UNPREDICTABLE RESERVED
RW RW RW ALL ACCESS
RW - -
R —_ —_
R —_ _
RW RW -
RW R -
R R -
R R -
RW RW R
W R R
R R R
R R R
K - Kernel
E - Executive
S - Supervisor
U - User
Figure 5-5

Protection Mnemonics

(Software symbols are defined by using PTESK_ as a prefix to the above
mnemonics.)

This encoding was

chosen

to simplify hardware access checking for

implementations not using a table decoder.

{CODE NEQU @} AND
{{CODE EQLU 4} OR

CM is current processor mode
RM is left 2 bits of code
WM is one's complement of right 2 bits of code

The access is allowed if:

{CM LSSU wM} OR {READ AND {cM LEQU RM}}}

Memory Management 17-Jun-81 -- Rev 5.3 Page 5-13
ACCESS CONTROL

5.5.3 Length Violation

Every valid wvirtual address 1lies within bounds determined by the
addressing region (P#, Pl, or System) and the associated length register
(POLR, P1LR, or SLR). Virtual addresses outside these bounds cause a
length violation. The addressing bounds algorithm is a simple limit
check whose formal notation is:

case VAddr<31:30>
set
[(21: !P@ region
if ZEXT(VAddr<29:9>) GEQU POLR
then {length violation};
[1]: !'P1l region
if ZEXT(VAddr<29:9>) LSSU P1lLR
then {length violation};
[2]: !5 region
if ZEXT (VAddr<29:9>) GEQU SLR
then {length violation};
[31: !reserved region
{length violation};
tes;

5.5.4 Access Control Violation Fault
An access control fault occurs if an illegal access is attempted, as

determined by the current PSL mode and the page's protection field, or
if the address causes a length violation.

5.5.5 Access Across A Page Boundary
If an access is made across a page boundary, the order in which the

pages are accessed is UNPREDICTABLE. However, for a given page, access
control violation always takes precedence over translation not valid.

5.5.6 System Space Address Translation

A virtual address with <31:30>=2 is an address in the system wvirtual
address space.

Memory Management 17-Jun-81 -- Rev 5.3 Page 5-14
ACCESS CONTROL

[{=mmmm== System Virtual Page No. (SVPN)------ > |
e o e +

Figure 5-6
System Virtual Page Format

The system virtual address space is defined by the System Page Table
(SPT), which 1is a wvector of Page Table Entries (PTEs). The SPT is
always located in physical address space. The base address of the SPT
is also a physical address and is contained in the System Base Register
(SBR). The size of the SPT in longwords (that is, the number of PTEs)
is contained in the System Length Register (SLR). The SBR points to the
first PTE in the SPT. In turn, this PTE maps the first page of System
Space, that is, virtual byte address 80000000 (hex) .

The PTEs in the System Page Table contain the mapping information
themselves, or point to the mapping information in the Global Page Table
if the PTE is in GPTX format. (See the section on PTEs for I/0 devices
for a description of the GPTX format.)

332
149 2190
o o e et
IMBZ | Physical Longword Address |MBZ |
o e e N
Figure 5-7
System Base Register (SBR)
(to read: MFPR #12, dst.wl)
(to write: MTPR src.rl, #12)
3 2 2
1 21 9]
e it e +
| MBZ | Length of SPT in longwords |
B ittt et T b e +

Figure 5-8
System Length Register (SLR)
(to read: MFPR #13, dst.wl)
(to write: MTPR src.rl, #13)

Bits <31:9> of the virtual address contain the Virtual Page Number.
However, system virtual addresses have VAddr<31:38>=2, Thus, there
could be as many as 2**21 pages in the system region. (Typically the
value is in the range of a few hundred to a few thousand system pages;
see the section at the end of this chapter on Sharing.) The length field
in the System Length Register requires 22 bits to express the values @
through 2**21 inclusive. At processor initialization time, the contents
of both registers are UNPREDICTABLE. Figure 5-9 illustrates the

Memory Management 17-Jun-81 -- Rev 5.3 Page 5-15
ACCESS CONTROL

translation of a system virtual address to a physical address.

332
199 9 8 Y
o fom +
SVA: P2 | byte |
(System Virtual P Fom +
Address) | Extract and | |
3 212 Check Length l |
1 312 2110 l
Fo——————e Fom & +--+ |
| 4] | | 9] |
Fom Fo +--+ I
1
Add I
|
l
Fmm e —————— e +-—+ |
SBR: | Phys Base Adr of SPT | @ |
Fm e ——— +-—+ |
l
Yields !
|
Fm +-—+ |
| Phys Adr of PTE | a1 l
F . +--+ |
|
Fetch |
33 22 |
10 10 @ |
et R L T, + |
PTE: 1] | PFN I |
o ——— i TS + |
check access | | l
| I [
3 312 |
1 9i9 918 vV @
Fom b Fom e —_— +
Physical Adr of Data: | 0 | | |
ot T, +
Figure 5-9

System Virtual to Physical Translation

The algorithm to generate a physical address from a system region
virtual address is:

SYS PA = (SBR+4*SVAK29:9>)<20:0>"'SVA<S8: §> !System Region

Memory Management 17-Jun-81 -- Rev 5.3 Page 5-16
SYSTEM VIRTUAL TO PHYSICAL TRANSLATION

Note
For all occurrences within this
chapter, the parentheses indicate
"contents of," the angle brackets
indicate referenced bits, and the

apostrophe indicates concatenation.

5.5.7 Process Space Address Translation

The process virtual address space 1s divided into two equal sized,
separately mapped regions. 1f virtual address bit 30 is 0, the address
is in region P@. If virtual address bit 30 is a 1, the address is 1in
regicen PLl.

The P@ region maps a virtually contiguous area that begins at the
smallest address (0) in the ©process virtual space and grows in the
direction of larger addresses.

P§ is typically used for program images and can grow dynamically.

The Pl region maps a virtually contiguous area that begins at the
largest address (2**31 - 1) in the process virtual space and grows in
the direction of smaller addresses.

Pl is typically used for system—-maintained, per-process context. It may
grow dynamically for the user stack.

Each region is described by a virtually contiguous vector of Page Table
Entries. Unlike the System Page Table, which is addressed with a
physical address, these two page tables are addressed with wvirtual
addresses in the system region of the virtual address space. Thus, for
per-Process Space, the address of the PTE is a virtual address in System
Space and the fetch of the PTE is simply a longword fetch using a system
virtual address.

There is a significant reason to address process page tables in wvirtual
rather than physical space. A physically addressed process page table
that required more than a page of PTEs (that is, that mapped more than
64K bytes of process virtual space) would require physically contiguous
pages. Such a requirement would make dynamic allocation of process page
table space very awkward since a running system tends to fragment
storage into page-sized areas.

slation buffer
miss will cause one memory reference for the p ss PTE. If the
virtual address of the page containing the process PT also missing
from the translation buffer, a second memory reference is required.

A process space address translation that causes a t
E

Memory Management 17-Jun-81 -- Rev 5.3 Page 5-17
ADDRESS TRANSLATION

When a process Page Table Entry is fetched, a reference is made to
System Space. This reference is made as a kernel read. Thus the system
page containing a process page table is either "No Access" (that is,
protection code zero) or will be accessible (protection code non-zero) .
Similarly, a check is made against the System page table Length Register
(SLR). Thus, the fetch of an entry from a process page table can result
in access or length violation faults (see the section on Faults and
Parameters).

5.5.8 P@ Region

The PO region of the address space is mapped by the Pg Page Table (P@PT)
which 1is defined by the P@# Base Register (P@BR) and the P@ Length
Register (PPLR). The P@BR contains a wvirtual address in the system
region which 1is the base address of the P@ Page Table. Figure 5-1¢
illustrates the P@ Base Register. The POLR contains the size of the
PPT in 1longwords, that is, the number of Page Table Entries. Figure
5-11 illustrates the Pg Length Register. The Page Table Entry addressed
by the P@ Base Register maps the first page of the PJ region of the
virtual address space, that is, virtual byte address 4.

The PTEs in the Pg@ Page Table contain the mapping information
themselves, or point to the mapping information in the Global Page Table
if the PTE is in GPTX format. (See the section on PTEs for I1/0 devices
for a description of the GPTX format.)

332
129 2109
R -t
2 | System Virtual Longword Address IMBZ |
e +———+
Figure 5-19¢
PJ Base Register (P@BR)
(to read: MFPR #8, dst.wl)
(to write: MTPR src.rl, #8)
3 2 2 2222
1 7 6 4 3 21]
Fom to——— o e e ____ +
| MBZ | IGN |MBZ| Length of P@PT in longwords |
Fom e P e e e __ +

Figure 5-11
P? Length Register (PQLR)
(to read: MFPR #9, dst.wl)
(to write: MTPR src.rl, #9)

The Virtual Page Number is contained in bits <29:9> of the virtual
address, A 22-bit length field isg required to express the values 0
through 2**21 inclusive. There could be as many as 2%*2] pages in the
P@ region.

Memory Management 17-Jun-81 -- Rev 5.3 page 5-18
ADDRESS TRANSLATION

POLR<26: 24> are ignored on MTPR and read back ¢ on MFPR. At processor
initialization time, the contents of both registers are UNPREDICTABLE.
An attempt to load P@BR with a value less than 2**31 or greater than
2%%3] + 2%%¥3g - 4 results in a reserved operand fault in some

implementations. Figure 5-12 illustrates the P@ wvirtual address to
physical address translation.

Memory Management 17-Jun-81 -- Rev 5.3 Page 5-19
P@ VIRTUAL TO PHYSICAL TRANSLATION

3 32
1 99 9 8 @
bt ___ fomm e +
PVA: | o | | byte |
(Process Virtual Fom e t-—————— +
Address) | | |
3 212 Extract and I |
1 312 Check Length 2]19 |
Fom————— e . +-—+ |
| 0 I | o] |
tm—————— e +-—4 |
|
|
Add I
P . +——+ |
POBR: | Sys Virt Base Adr of P@PT | 3] |
Fmm e _ +-—+ |
l
Yields I
e +-—-+
| Sys Virt Adr of PTE | 2] I
Ao +--+ |
I
Fetch by System Space [
translation algorithm, |
including length and I
Kernel mode access checks l
|
33 22 |
19 1 0 4] |
R e ——— + |
PTE: 11 | PFN | I
-t Rt et T + |
check access | this access check | I
| in current mode | |
| | |
3 3]2 | 1
1 02]9 918 vV 2
Fom b Fomm e +
Physical Adr of Data: | ¢ | | |
At Fmm o +

Figure 5-12
PO Virtual to Physical Translation

The algorithm to generate a physical address from a Pg region wvirtual
address is:

PVA PTE = POBR+4*PVA<29:9> !P@ Region
PTE PA = (SBR+4*PVA_PTE<29:9>)<20:@>'PVA_PTE<8:G>
PROC PA = (PTE PA)<20:0>'PVA<C8: 0>

Memory Management 17-Jun-81 -- Rev 5.3 page 5-20
ADDRFESS TRANSLATION

5.5.9 Pl Region

The Pl region of the address space is mapped by the Pl Page Table (P1PT)
which is defined by the Pl Base Register (P1BR) and the Pl Length
Register (P1LR). Because Pl space grows towards smaller addresses, and
pbecause a consistent hardware interpretation of the base and length
registers is desirable, PIBR and P1LR describe the portion of Pl space
that is NOT accessible. Figure 5-13 illustrates the Pl Base Register.
Figure 5-14 illustrates the Pl Length Register. Note that PILR contains
the number of nonexistent PTEs. PIBR contains a virtual address of what
would be the PTE for the first page of Pl, that is, virtual byte address
40000000 (hex) .

The address in P1BR is not necessarily an address in System Space, but
all the addresses of PTEs must be in System Space.

The PTEs in the Pl Page Table contain the mapping information, or point
to the mapping information in the Global Page Table if the PTE is in
GPTX format. (See the section on PTEs for I/0 devices for a description
of the GPTX format.)

3
1 219
SRS S S E SR it Fo——t
| Virtual Longword Address IMBZ |
e e — oo s
Figure 5-13
Pl Base Register (P1BR)
(to read: MFPR $#10, dst.wl)
(to write: MTPR src.rl, #19)
33 2 2
10 21 1%
fodm e e ————— === +
111 MBZ | 2%*2]1 - Length of P1PT in longwords |
ot o ————— = +

Figure 5-14
Pl Length Register (PlLR)
(to read: MFPR #11, dst.wl)
(to write: MTPR src.rl, #11)

PILR<31> is ignored on MTPR and reads back # on MFPR. At processor
initialization time, the contents of both registers are UNPREDICTABLE.
An attempt to load P1BR with a value less than 2%%*31 - 2%*23 (7F800000,
hex) or greater than 2%**31 + 2**30 - 2%%23 —~ 4 results in a reserved
operand fault in some implementations.

Memory Management 17-Jun-81 -- Rev 5.3 Page 5-21
Pl VIRTUAL TO PHYSICAL TRANSLATION

332

1 3 9 9 8]
Ao Fomm o +
PVA: I 1] | byte |
(Process Virtual Pt Fomm e +

Address) | Extract and | |

3 212 Check Length | |

1 312 2|10 I

e o +-—+ |

| g | | o] I

Fom————— R T T, +--+ |

I

Add |

|

Fmmm e _ +-—+ |

P1BR: | Sys Virt Adr of P1PT | ol |

Fom——————————— e +-—+ !

|

Yields l

|

tm +-—-+ |

| Sys Virt Adr of PTE | 21 l

e +-—+ |

l

Fetch by System Space |

translation algorithm. |

including length and |

Kernel mode access checks |

|

33 22 l

10 10 0 |

-t Fo + |

PTE: 1] | PFN | I

i e Fom + |

check access | this access check | [

| in current mode [I

l | |

3 312 | |
1019 918 A
Ao __ dom +
Physical Adr of Data: | @ | | |
F e _ fom——— +

Figure 5-15
Pl Virtual to Physical Translation

The algorithm to generate a physical address from a Pl region virtual
address is:

PVA PTE = P1BR+4*PVA<29:9> !P1l Region
PTE PA (SBR+4*PVA_PTE<29:9>)<20:®>'PVA_PTE<8:@>
PROC PA (PTE_PA)<28:0>'PVA<8: 0>

1]

Memory Management 17-Jun-81 -- Rev 5.3 pPage 5-22
TRANSLATION BUFFER

5.6 TRANSLATION BUFFER

In order to save actual memory references when repeatedly referencing
the same pages, a hardware implementation may include a mechanism to
remember successful virtual address translations and page states,. Such
a mechanism is termed a translation buffer.

When the process context is loaded with LDPCTX, the translation buffer
is automatically updated (that 1is, the process virtual address
translations are invalidated). However, when the software changes any
part of a wvalid Page Table Entry for the system or a current process
region, it must also move a virtual address within the corresponding
page to the Translation Buffer Invalidate Single (TBIS) register with
the MTPR instruction. Figure 5-16 illustrates the TBIS register.

Additionally, when the software changes a System Page Table Entry which
maps any part of the current process page table, all process pages SO
mapped must be invalidated in the translation buffer. They may be
invalidated by moving an address within each such page into the TBIS
register. They may also be invalidated by clearing the entire
translation buffer. This is done by moving A to the Translation Buffer
Invalidate All (TBIA) register with the MTPR instruction. Figure 5-17
illustrates the TBIA register.

The translation buffer must not store invalid PTEs. Therefore, the
software 1is not required to invalidate translation buffer entries when
making changes for PTEs that are already invalid.

When the location or size of the system map is changed (SBR, SLR) the
entire translation buffer must be cleared.

Whenever Memory Management Enable (MME) is a @, the contents of the
translation buffer are UNPREDICTABLE. Therefore, before enabling memory
management at processor initialization time, or any other time, the
entire translation buffer must be cleared.

Figure 5-16
Translation Buffer Invalidate Single (TBIS)
(to write: MTPR src.rl, #58)

Memory Management 17-Jun-81 -- Rev 5.3 Page 5-23
TRANSLATION BUFFER

Figure 5-17
Translation Buffer Invalidate All (TBIA)
(to write: MTPR src.rl, #57)

An internal processor register 1is available for interrogating the
presence of a wvalid translation in the translation buffer. When a
virtual address 1is written to the TBCHK register with a MTPR
instruction, the condition code V bit is set if the translation buffer
holds a valid translation for that virtual page. The specification of
the TBCHK register is based on VAX/VMS usage. The TBCHK register is
reserved for Digital use. Tts specification is subject to change
without prior notice.

5.7 FAULTS AND PARAMETERS

Two types of faults are associated with memory mapping and protection
(see the chapter on Exceptions and Interrupts for a description of
faults). A Translation Not Valid Fault is taken when a read or write
reference 1is attempted through an invalid PTE (PTE<31>=0). An Access
Control Violation Fault is taken when the protection field of the PTE
indicates that the intended page reference in the specified access mode
would be illegal. Note that these two faults have distinct vectors in
the System Control Block. If both faults could occur, then the Access
Control Violation Fault takes precedence. An Access Control Violation
Fault is also taken if the virtual address referenced is beyond the end
of the associated page table. Such a "length violation" is essentially
the same as referencing a PTE that specifies "No Access" in its
protection field. To avoid having the fault software recompute the
length check, a "length wviolation" indication is stored in the fault
parameter word illustrated in Figure 5-18.

3

1 210
o ettt
[o IMIPIL| :(SP)
o e . +-—t—t-+
| some virtual address in the faulting page |
Fem T T T T T T T T T T T e e, e e - +
| PC of faulting instruction |
o +
| PSL at time of fault
o +

Figure 5-18
Fault Parameter Block

Memory Management 17-Jun-81 —-- Rev 5.3 Page 5-24
FAULTS AND PARAMETERS

The same parameters are stored for both types of fault. The first
parameter pushed on the stack aiter the PSL and PC is some virtual
address in the same page with the virtual address that caused the fault.
A Process Space reference can result in a System Space virtual reference
for the PTE. If the PTE reference faults, the virtual address that is
saved is the process virtual address. In addition, a 1 is stored in bit
1 of the fault parameter word if the fault occurred in the per-process
PTE reference.

The second parameter pushed on the Kernel stack contains the following
information:

L Length Violation. Set to 1 to indicate that an
Access Control Violation was the result of a
length violation rather than a protection
violation. This bit is always @ for a
Translation Not Valid Fault.

P <1> PTE Reference - Set to 1 to indicate that the
fault occurred during the reference to the
process page table associated with the virtual
address. This can be set on either length or
protection faults.

M <2> Write or Modify Intent — Set to 1 to indicate
that the program's intended access was a write
or modify. This bit is @ 1if the program's
intended access was a read,

5.8 PRIVILEGED SERVICES AND ARGUMENT VALIDATION
5.8.1 Changing Access Modes
Four instructions allow a program to change its access mode to a more

privileged mode and transfer control to a service dispatcher for the new
mode.

CHMK change mode to Kernel
CHME change mode to Exec
CHMS change mode to Super
CHMU change mode to User

These instructions, described in detail in the chapter on Exceptions and
Interrupts, provide the normal mechanism for less privileged code to
call more privileged code. When the mode transition takes place, the
previous mode is saved in the Previous Mode field of the PSL, thus
allowing the more privileged code to determine the privilege of its
caller.

Memory Management 17-Jun-81 -- Rev 5.3 Page 5-25
PRIVILEGED SERVICES AND ARGUMENT VALIDATION

5.8.2 Validating Address Arguments (PROBE instructions)

Two instructions, PROBER and PROBEW, allow privileged services to check
addresses passed as parameters. To avoid protection holes in the
system, a service routine must always verify that 1its less privileged
caller could have directly referenced the addresses passed as parameters
(see the appendix on Address Validation Rules). The PROBE instructions
do this verification.

Memory Management 17-Jun-81 -- Rev 5.3 Page 5-25
PRIVILEGED SERVICES AND ARGUMENT VALIDATION

PROBEX PROBE ACCESSIBILITY

Purpose:
verify that arguments can be accessed

Format:
opcode mode.rb, len.rw, base.ab

Operation:
probe mode <- MAXU (mode<l:0>, PSL<PRV_MOD>)
condition codes <- {accessibility of bhase} and
{accessibility of {base+ZEXT(len)-1}}

using probe mode

Condition Codes:

N <- @;
7 <- if {both accessible} then @ else 1;
VvV <- @;
C K- C;

Exceptions:

translation not valid

Opcodes:
ule PROBER Probe Read Accessibility
gD PROBEW Probe Write Accessibility

Description:

The PROBE instruction checks the read or write accessibility of the
first and last byte specified by the base address and the zero extended
length. Note that the bytes in between are not checked. System
software must check all pages between the two end bytes if they will be
accessed.

The protection 1is checked against the larger (and therefore less
privileged) of the modes specified in bits <1:8> of the mode operand and
the Previous Mode field of the PSL. Note that probing with a mode
operand of 2 is equivalent to probing the mode specified in
PSL<previous-mode>.

Example:
MOVL 4 (AP) ,R0O ;Copy the address of first arg so that
; it can't be changed.
PROBER #0,#4, (R@) ;Verify that the longword pointed to by

; the first arg could be read by the
; previous access mode.

Memory Management 17-Jun-81 -- Rev 5.3 Page 5-27
PRIVILEGED SERVICES AND ARGUMENT VALIDATION

iNote that the arg list itself must
i already have been probed

BEQL violation iBranch if either byte gives an access
; violation.

MOVQ 8 (AP) ,R0 iCopy length and address of buffer args
i so that they can't change.

PROBEW #@,R#, (R1) iVerify that the buffer described by the

;7 2nd and 3rd args could be written by

i the previous access mode.

iNote that the arg list must already

i have been probed and that the 2nd arg

i must be known to be less than 512.
BEQL violation iBranch if either byte gives an access

; violation.

Flows:

The following flows describe the operation of PROBE on each of the
virtual addresses it is checking. Note that probing an address returns
only the accessibility of the page(s) and has no effect on their
residency. However, probing a process address may cause a page fault in
the system address space on the per-process page tables,.

1. Look up the virtual address in the translation buffer. If
found, wuse the associated protection field to determine the
accessibility and EXIT.

2. Check for length violation for System or per-Process address as
appropriate. See elsewhere in this chapter for the length
violation check flows. If length wviolation then return No
Access and EXIT,.

3. If System virtual address, form physical address of PTE, fetch
the PTE, use the protection field to determine the
accessibility and EXIT.

4. For per-Process virtual address, must do a virtual memory
reference for the PTE.

1. Look up the virtual address of the PTE in the translation
buffer, form the physical address of the PTE if found,
fetch the PTE, use the protection field to determine the
accessibility and EXIT.

2. Check the System virtual address of the PTE for length
violation. If length violation, then return No Access and
EXIT.

3. Tl <- Page Table Entry for the page containing the
per-process PTE.

4. If the protection field of Tl indicates no access (not even
readable by Kernel), then return No Access and EXIT. A no
access, not valid pointer to a page of PTE's conserves

Memory Management 17-Jun-81 -- Rev 5.3 Page 5-28
PRIVILEGED SERVICES AND ARGUMENT VALIDATION

5.8.3

storage space for a page full of no access, not valid
PTE's.

5. If the valid bit in Tl is @, then take a Translation Not
Valid Fault and EXIT. This case allows for the demand
paging of per-process page tables.

S

. Finally, calculate the physical address of the per-process
PTE from the PFN field of Tl (see the section on System
Space Address Translation), fetch the PTE, use the
protection field to determine the accessibility, and EXIT.

Notes On The PROBE instructions

If the Valid bit of the examined Page Table Entry is set, it is
UNPREDICTABLE whether the Modify bit of the examined Page Table
Entry is set by a PROBEW. If the Valid bit 1is clear, the
Modify bit is not changed.

Except for 1, above, the wvalid bit of the Page Table Entry,
PTE<31>, mapping the probed address is ignored.

A length violation gives a status of "not-accessible."

On the probe of a process virtual address, if the valid bit of
the system Page Table Entry is @ then a Translation Not Valid
Fault occurs. This allows for the demand paging of the process
page tables.

On the probe of a process virtual address, if the protection
field of the system Page Table Entry indicates No Access, then
a status of "not-accessible"™ is given. Thus, a single No
Access Page Table Entry in the system map is equivalent to 128
No Access Page Table Entries in the process map.

CHAPTER 6
EXCEPTIONS AND INTERRUPTS

12-Dec-80 -- Rev 7.1

6.1 INTRODUCTION

At certain times during the operation of a system, events within the
system require the execution of particular pieces of software outside
the explicit flow of control. The processor transfers control by
forcing a change in the flow of control from that explicitly indicated
in the currently executing process.

Some of the events are relevant primarily to the currently executing
process, and normally invoke software in the context of the current
process. The notification of such events is termed an exception.

Other events are primarily relevant to other processes, or to the system
as a whole, and are therefore serviced in a system-wide context. The
notification process for these events is termed an interrupt, and the
system-wide context is described as "executing on the interrupt stack"
(IS). Further, some interrupts are of such urgency that they require
high-priority service, while others must be synchronized with
independent events. To meet these needs, the ©processor has priority
logic that grants interrupt service to the highest priority event at any
point in time. The priority associated with an interrupt is termed its
interrupt priority level (IPL).

Exceptions and Interrupts 12-Dec-8¢ -- Rev 7.1 Page 6-2
INTRODUCTION

6.1.1 Processor Interrupt Priority Levels (IPL)

The processor has 31 interrupt priority levels (IPL), divided into 15
software levels (numbered, in hex, @81 to @F), and 16 hardware levels (10
to 1F, hex). User applications, system calls, and system services all
run at process level, which may be thought of as IPL @. Higher numbered
interrupt levels have higher priority, that is to say, any requests at
an interrupt 1level higher than the processor's current IPL will
interrupt immediately but requests at a lower or equal level are
deferred.

Interrupt levels 01 through OF (hex) exist entirely for use by software.
No device can request interrupts on those levels, but software can force
an interrupt by executing MTPR src,#SIRR. (See Chapter 9 and section on
software generated interrupts later in this chapter). Once a software
interrupt request is made, it will be cleared by the hardware when the
interrupt is taken.

Interrupt levels 10 to 17 (hex) are for use by devices and controllers,
including UNIBUS devices; UNIBUS levels BR4 to BR7 correspond to VAX-11
interrupt levels 14 to 17 (hex) .

Interrupt levels 18 to 1F (hex) are for use by urgent conditions,
including the interval clock, serious errors, and power fail.

6.1.2 Interrupts

The processor arbitrates interrupt requests according to priority. Only
when the priority of an interrupt request 1is higher than the current IPL
(Bits 20:15 of the Processor Status Longword) will the processor raise
the IPL and service the interrupt request. The interrupt service
routine is entered at the IPL of the interrupt request and will not
usually change the IPL set by the processor. Note that this is

different from the PDP-11 where the interrupt vector specifies the IPL
for the ISR.

Interrupt requests can come from devices, controllers, other processors,
or the processor itself. Software executing in kernel mode can raise
and lower the priority of the processor by executing MTPR src, #IPL
where src contains the new priority desired; see Chapter 9. However, a
processor cannot disable interrupts on other processors. Furthermore
the priority level of one processor does not affect the priority level
of the other processors. Thus in multiprocessor systems interrupt
priority levels cannot be used to synchronize access to shared
resources. Even the various urgent interrupts including those
exceptions that run at IPL 1F (hex) do so on only one processor, thus
special software action is required to stop other processors in a
multiprocessor system.

Exceptions and Interrupts 12-Dec-84 -- Rev 7.1 Page 6-3
INTRODUCTION

6.1.3 Exceptions

Most exception service routines execute at IPL ¥ 1in response to
exception conditions caused by the software. A variation from this is
serious system failures, which raise IPL to the highest level (1F, hex)
to minimize processor interruption until the problem is corrected.
Exception service routines are usually coded to avoid exceptions,
however nested exceptions can occur.

A trap is an exception condition that occurs at the end of the
instruction that caused the exception. Therefore the PC saved on the
stack is the address of the next instruction that would normally have
been executed. Any software can enable and disable some of the trap
conditions with a single instruction; see the BISPSW and BICPSW
instructions described in Chapter 4. '

A fault is an exception condition that occurs during an instruction, and
that leaves the registers and memory in a consistent state such that
elimination of the fault condition and restarting the 1instruction will
give correct results. Note that faults do not always leave everything
as it was prior to the faulted instruction, they only restore enough to
allow restarting. Thus, the state of a process that faults may not be
the same as that of a Process that was interrupted at the same point.

An abort is an exception condition that occurs during an instruction,
and potentially leaves the registers and memory indeterminate, such that
the instruction cannot necessarily be correctly restarted, completed,
simulated, or undone.

6.1.4 Contrast Between Exceptions And Interrupts

Generally exceptions and interrupts are very similar. When either is
initiated, both the processor status (PSL) and the program counter (PC)
are pushed onto the stack. However there are seven important

differences:

1. An exception condition is caused by the execution of the
current instruction while an interrupt 1is caused by some
activity in the computing system that may be independent of the
current instruction.

2. An exception condition is usually serviced in the context of
the process that produced the exception condition, while an
interrupt is serviced independently from the currently running
process.

3. The IPL of the processor is usually not changed when the
pProcessor initiates an exception, while the 1IPL is always
raised when an interrupt is initiated.

Exceptions and Interrupts 12-Dec-8¢ -- Rev 7.1 Page 6-4
INTRODUCTION

4.

Exception service routines usually execute on a per-process
stack while interrupt service routines normally execute on a
per-CPU stack.

Enabled exceptions are always initiated immediately no matter
what the processor IPL is, while interrupts are held off until
the processor IPL drops below the IPL of the requesting
interrupt.

Most exceptions can not be disabled. However, if an exception
causing event occurs while that exception 1is disabled, no
exception is initiated for that event even when enabled
subsequently. This includes overflow which 1is the only
exception whose occurrence is indicated by a condition code
(Vy. 1If an interrupt condition occurs while it is disabled, or
the processor is at the same or higher IPL, the condition will
eventually 1initiate an interrupt when the proper enabling
conditions are met if the condition is still present.

The previous mode field in the PSL is always set to Kernel on
an interrupt, but on an exception it indicates the mode of the
exception.

Exceptions and Interrupts 12-Dec-80 -- Rev 7.1 Page 6-5
PROCESSOR STATUS

6.2 PROCESSOR STATUS

When an exception or an interrupt is serviced, the processor status must
be preserved so that the interrupted process may continue normally.
Basically, this is done by automatically saving the Program Counter (PC)
and the Processor Status Longword (PSL). These are later restored with
the Return from Exception or Interrupt instruction (REI). Any other
status required to «correctly resume an interruptable instruction is
stored in the general registers. Process context such as the mapping
information 1is not saved or restored on each interrupt or exception.
Instead, it is saved and restored only when process context switching is
performed. Refer to the LDPCTX and SVPCTX instructions in chapter 7.
Other processor status is changed even less frequently; refer to the
privileged register descriptions in chapter 9.

The Processor Status Longword (PSL) is a longword consisting of a word
of privileged processor status concatenated with the Processor Status
Word (PSW). Refer to chapter 2 for a description of the PSW. The PSL
is automatically saved on the stack when an exception or interrupt
occurs and is saved in the PCB on a process context switch. The PSL can
also be stored by the MOVPSL instruction; refer to chapter 4. (The
terms current PSL and saved PSL are used to distinguish between this
status information when it is in the processor and when copies of it are
materialized in memory.)

Bits <31:21> of the current PSL can be changed explicitly only by
executing a return from exception or interrupt instruction (REI). REI
considers the current mode when restoring the PSL, and faults if a
program attempts to increase its privilege by this means. Thus REI is
available to all software including user exception handling routines.

332222222222 11
1398765432140 65 8 76543219
B e s d R L kT P tomm e +—t—F—t—t—+-+-+-+
[CIT] |[FII|CUR|PRVIM]| ! IDIFITITIN|ZIVIC]I
IM|P|MBZ|P|S|MOD|MOD|B] IPL | MBZ (VIiglvli |1 1 1 |
[N L N N e A | N
i e e S T P AR T S, Fom e -ttt -ttt -+
\ /
\ /
R S +

Processor Status Longword

At bootstrap time, PSL is cleared except for IPL and IS.

Exceptions and Interrupts 12-Dec-80 -- Rev 7.1 Page 5-6
PROCESSOR STATUS

Bits

15:8

20:16

21

22:23

25:24

Description
Condition Codes: N, Z, V, C (See chapter 2)

Trace enable (T) . Wwhen set at the beginning of an
instruction, causes TP to be set. When TP is set at the end
of an instruction, a trace fault is taken before the execution
of the next instruction. When TP is clear, no trace exception
occurs. Most programs should treat T as UNPREDICTABLE because
it 1is set by debuggers and trace programs for tracing and for
proceeding from a breakpoint.

Integer Overflow trap enable (IV). When set, forces an
integer overflow trap after execution of an instruction that
produced an integer result that overflowed or had a conversion
error. When IV is clear, no integer overflow trap occurs.
(However, the condition code V bit 1is still set.)

Floating Underflow exception enable (FU). When set, forces a
floating underflow exception after execution of the
instruction that produced an underflowed result (i.e., a
result exponent, after normalization and rounding, less than
the smallest representable exponent for the data type) . When
FU is clear, no exception occurs. On the original VAX-11/780
a trap occurs; on all other VAX processors a fault occurs.

Decimal Overflow trap enable (DV). When set, forces a decimal
overflow trap after execution of an instruction that produced
an overflowed decimal (numeric string, or packed decimal)
result (i.e., no room to store a non-zero digit) or had a
conversion error. When DV is <clear, no trap occurs.
(However, the condition code V bit is still set.)

Reserved to DIGITAL, must be zero.

Interrupt Priority Level (IPL). The current processor
priority, in the range @ to 1F (hex). The processor will
accept interrupts only on levels greater than the current
level. At bootstrap time, IPL is initialized to 1F (hex).

Reserved to DIGITAL, must be zero.
Previous Access Mode (PRV_MOD). Loaded from current mode by
exceptions and CHMX instructions, cleared by interrupts, and

restored by REI.

Current Access Mode (CUR_MOD). The access mode of the
currently executing process, as follows:

g - KERNEL

1 - EXECUTIVE
2 - SUPERVIGSOR
3 - USER

Exceptions and Interrupts 12-Dec-84 -- Rev 7.1 Page 5-7
PROCESSOR STATUS

25

27

29:28

30

31

Interrupt Stack (IS). When set the processor is executing on
the interrupt stack. Any mechanism that sets IS also clears
current mode and raises IPL above 8. 1If an RET attempts to
restore a PSL with IS=1 and non-zero current mode or zero IPL,
a reserved operand fault is taken. When clear, the processor
is executing on the stack specified by current mode. At
bootstrap time, IS is set.

First Part Done (FPD). When set, execution of the instruction
addressed by PC cannot simply be started at the beginning, and
must be restarted at some other, implementation specific,
point in its operation. If FPD is set and the exception or
interrupt service routine modifies FPD, the general registers,
or the saved PSL (except for T or TP), the results of the
restarted instruction's execution are UNPREDICTABLE. If a
routine sets FPD, the results are also UNPREDICTABLE.
However, if software is simulating unimplemented instructions,
it may make free use of FPD in its simulation. TIf the
hardware encounters a reserved instruction with FPD set, a
reserved 1instruction fault is taken with the saved PSL<FPD>
set.

Reserved to DIGITAL, must be zero.

Trace Pending (TP). Forces a trace fault when set at the
beginning of any instruction. Set by the processor if T is
set at the beginning of an instruction. Any exception or
interrupt service routine clearing TP must also clear T or the
tracing of the interrupted instruction, if any, is
UNPREDICTABLE.

Compatibility Mode (CM). When set the processor is in PDP-11
compatibility mode (see chapter 10). When CM is clear, the
processor is in native mode.

Exceptions and Interrupts 172-Dec-808 -- Rev 7.1 Page 6-8
INTERRUPTS

6.3 INTERRUPTS

The processor services interrupt requests between instructions. The
processor also services interrupt requests at well defined points during
the execution of 1long, iterative instructions such as the string
instructions. For these instructions, in order to avoid saving
additional instruction state in memory, interrupts are initiated when
the instruction state can be completely contained in the registers, PSL,
and PC.

The following events cause interrupts:

1. Device completion (IPL 16-17 hex)

2. Device error (IPL 10-17 hex)

3. Device alert (IPL 10-17 hex)

4. Device memory error (IPL 10-17 hex)

5. Console terminal transmit and receive (IPL 14 hex)

5. 1Interval timer (IPL 18 hex)

7. Recovered memory or bus or Pprocessor errors (implementation
specific, IPL 18 to 1D hex); The VAX-11/788 processor

interrupts at 1B on memory errors.

8. Unrecovered memory or bus or processor errors (implementation
specific, IPL 18 to 1D hex)

9. Power fail (IPL 1lE hex)
1g. Software interrupt invoked by MTPR #STRR (IPL 01 to OF hex)

11. AST delivery when REI restores a PSL with mode greater than or
equal to ASTLVL (see chapter 7) (IPL g2)

Each device controller has a separate set of interrupt vector locations
in the system control block (SCB). Thus interrupt service routines do
not need to poll controllers in order to determine which controller
interrupted. The vector address for each controller is fixed by
hardware.

In order to reduce interrupt overhead, no memory mapping information 1is
changed when an interrupt occurs. Thus the instructions, data, and
contents of the interrupt vector for an interrupt service routine must
be in the system address space oOr present in every process at the same
address.

Exceptions and Interrupts 12-Dec-8¢ -~ Rev 7.1 Page 6$-9
INTERRUPTS

6.3.1 Urgent Interrupts -- Levels 18-1F (Hex)

The processor provides 8 priority levels for use by urgent conditions
including serious errors (e.g., machine check) and power fail.
Interrupts on these levels are initiated by the processor upon detection
of certain conditions. Some of these conditions are not interrupts.
For example, Machine Check is usually an exception but it runs at a high
priority level on the interrupt stack.

Interrupt level 1E (hex) is reserved for power fail. Interrupt level 1F
(hex) is reserved for those exceptions that must lock out all processing
until handled. This includes the hardware and software "disasters"
(machine check and kernel stack not valid). It might also be used to
allow a kernel mode debugger to gain control on any exception.

6.3.2 Device Interrupts -- Levels 10-17 (Hex)

The processor provides 8 priority levels for use by peripheral devices,
Any given implementation may or may not implement all 8 levels of
interrupts. The minimal implementation is levels 14-17 (hex) that
correspond to the UNIBUS levels BR4 to BR7 if the system has a UNIBUS.

Exceptions and Interrupts 12-Dec-83 -- Rev 7.1 Page 6-14
INTERRUPTS

6.3.3 Software Generated Interrupts -- Levels 01-0F (Hex)

6.3.3.1 Software Interrupt Summary Register - The processor provides 15
priority interrupt levels for use by software. Pending software
interrupts are recorded in the Software Interrupt Summary Register
(SISR). The SISR contains 1's in the bit positions corresponding to
levels on which software interrupts are pending. All such levels, of
course, must be lower than the current processor IPL, or the processor
would have taken the requested interrupt.

3 11

1 6 5 10
it i +—+
| | Pending Software Interrupts [M|
| MBZ l IB|
| IFEDCBA98765432 1121
o it Akl et

Software Interrupt Summary Register

The SISR 1is a read/write privileged register accessible only to
privileged software (see Chapter 9). At bootstrap time, the contents of
SISR is cleared. The mechanism for accessing it is:

MFPR #SISR,dst Reads the software interrupt summary register.

MTPR src,#SISR Loads it, but this is not the normal way of
making software interrupt requests. It is
useful for clearing the software interrupt
system, and for reloading its state after a
power fail, for example.

6.3.3.2 Software Interrupt Request Register - The software interrupt
request register (SIRR) is a write-only four bit privileged register
used for making software interrupt requests.

Software Interrupt Request Register

Executing MTPR src,#SIRR requests an interrupt at the level specified by
src<3:@>. Once a software interrupt request is made, it will be cleared
by the hardware when the interrupt is taken. 1f src<3:8> 1is greater
than the current IPL, the interrupt occurs before execution of the
following instruction. If src<3:0> is less than or equal to the current
IPL, the interrupt will be deferred until the IPL is lowered to less
than src<3:0> and that there is no higher interrupt level pending. This
lowering of IPL is by either REI or by MTPR x,#IPL. If src<3:8> is 2,

Exceptions and Interrupts 12-Dec-80 -- Rev 7.1 Page 6-11
INTERRUPTS

no interrupt will occur.

Note that no indication is given if there is already a request at the

selected level. Therefore, the service routine must not assume that
there is a one-to-one correspondence of interrupts gdenerated and
requests made. A wvalid protocol for generating such a correspondence
is:

1. The requester uses INSQUE to place a control block describing
the request onto a queue for the service routine.

2. The requester uses MTPR src,#SIRR to request an interrupt at
the appropriate level.

3. The service routine uses REMQUE to remove a control block from
the queue of service requests. If REMQUE returns failure
(nothing in the queue), the service routine exits with RET.,

4. If REMQUE returns success (an item was removed from the queue) ,
the service routine performs the service and returns to step 3
to look for other requests.

6.3.4 Interrupt Priority Level Register

Writing to the IPL with the MTPR instruction will 1load the processor
priority field in the Program Status Longword (PSL), that is, PSL<20:156>
is loaded from IPL<4:0>. Reading from IPL with the MFPR instruction
will read the ©processor priority field from the PSL. On writing IPL
bits <31:5> are ignored, on reading IPL bits <31:5> are returned zero.

Interrupt Priority Level Register
At bootstrap time, IPL is initialized to 31 (1F, hex) .

Interrupt service routines must follow the discipline of not lowering
IPL below their initial level. If they do, an interrupt at an
intermediate level could cause the stack nesting to be improper. This
would result in REI faulting . Actually, a service routine could lower
the IPL if it ensures that no intermediate 1levels could interrupt,
however this is probably unreliable code.

Exceptions and Interrupts 12-Dec-80 -- Rev 7.1 Page 6-12
INTERRUPTS

6.3.5 Interrupt Example

As an example, assume the processor is running in response to an
interrupt at IPLS, it then sets IPL to 8, and then posts software
requests at IPL3, IPL7, and IPL9. Then a device interrupt arrives at
IPL11 (hex). Finally TIPL is set Dback to IPL5S. The sequence of
execution is:

state after event IPL in
event contents of IPL STISR PSL on
(hex) (hex) stack
(initial) 5 @ Y
MTPR #8,#IPL 8 (4] 9]
MTPR #3,#SIRR 8 8 Y
MTPR &7, #SIRR 8 38 4
MTPR #9,#SIRR interrupts to 9 88 8,0
device interrupts to 11 88 9,8,40
device service routine REI 9 88 8,0
IPL9 service routine REI 8 88 %)

MTPR #5,#1PL changes IPL to 5
and the request for 7 is
granted immediately 7 8 5,0

IPL7 service routine REI 5 3 g

initial IPLS5 service routine
REI back to IPLO and the
request for 3 is granted
immediately

IPL3 service routine REI d

W
=
=2

Exceptions and Interrupts 12-Dec-8¢ -- Rev 7.1 Page 6-13
EXCEPTIONS

6.4 EXCEPTIONS
Exceptions can be grouped into six classes:
1. Arithmetic traps/faults
2. Memory management exceptions
3. Exceptions detected during operand reference
4. Exceptions occuring as a consequence of an instruction
5. Tracing

6. Serious system failures

Exceptions and Interrupts 12-Dec-80 -- Rev 7.1 Page 5-14
EXCEPTIONS

5.4.1 Arithmetic Traps/Faults

This section contains the descriptions of the exceptions that occur as
the result of performing an arithmetic or conversion operation. They
are mutually exclusive and all are assigned the same vector in the SCB,
and hence the same signal "reason" code. Each of them indicates that an
exception had occurred during the 1last instruction and that the
instruction has been completed (trap) or backed up (fault). An
appropriate distinguishing code is pushed on the stack as a longword:

USSP RS S S S St +
1 type code | :(SP)
b m——— oo +
| PC of next instruction to execute* |
S S S S S +
| PSL |
IS S S S S it +

*same as the instruction causing exception in case of fault

type code exception type software mnemonic

(hex)
TRAPS

1 integer overflow SRMSK_INT_OVF_T

2 integer divide by zero SRM$K INT_DIV_T

3 floating overflow SRMS$K FLT OVF T

4 floating/decimal divide by zero SRMSK FLT DIV T

5 floating underflow SRM$K_FLT UND T

6 decimal overflow SRMSK DEC _OVF_T

7 subscript range SRM$K_SUB_RNG_T
FAULTS

8 floating overflow SRM$K_FLT OVF_F

9 floating divide by zero SRM$K_FLT_DIV_F

A floating underflow SRMS$K _FLT UND_F

6.4.1.1 Integer Overflow Trap - An integer overflow trap is an

exception that 1indicates that the last 1instruction executed had an
integer overflow setting the V condition code and that integer overflow
was enabled (IV set). The result stored is the low-order part of the
correct result. N and Z are set according to the stored result. The
type code pushed on the stack is 1 (SRM$K_INT OVF _T). Note that the
instructions RET, REI, REMQUE, REMQHI, REMQTI, MOVTUC, and BISPSW do not
cause overflow even if they set V. Also note that the EMODX floating
point instructions can cause integer overflow.

Exceptions and Interrupts 12-Dec-8¢ -- Rev 7.1 Page 6-15
EXCEPTIONS

6.4.1.2 1Integer Divide By Zero Trap - An integer divide by zero trap is
an exception that indicates that the last instruction executed had an
integer zero divisor. The result stored is equal to the dividend and
condition code V is set. The type code pushed on the stack is
2 (SRMSK_INT DIV T).

6.4.1.3 Floating Overflow Trap - A floating overflow trap is an
exception that indicates that the last instruction executed resulted in
an exponent greater than the largest representable exponent for the data
type after normalization and rounding. The result stored contains a one
in the sign and zeros in the exponent and fraction fields. This 1is a
reserved operand, and will cause a reserved operand fault if used in a
subsequent floating point instruction. The N and V condition code bits
are set and Z and C are cleared. The type code pushed on the stack is
3 (SRM$K_FLT OVF T).

6.4.1.4 Divide By Zero Trap - Floating or Decimal String - A floating
divide by zero trap is an exception that indicates that the last
instruction executed had a floating zero divisor. The result stored is
the reserved operand, as described above for floating overflow trap, and
the condition codes are set as in floating overflow.

A decimal string divide by zero trap is an exception that indicates that
the last instruction executed had a decimal string zero divisor. The
destination, RO through R5, and condition codes are UNPREDICTABLE. The
zero divisor can be either +0 or -4.

The type code pushed on the stack for both types of divide by zero is
4 (SRM$K_FLT_DIV_T).

6.4.1.5 Floating Underflow Trap - A floating wunderflow trap is an
exception that indicates that the last instruction executed resulted in
an exponent less than the smallest representable exponent for the data
type after normalization and rounding and that floating underflow was
enabled (FU set). The result stored is zero. Except for POLYx the N,
V, and C condition codes are cleared and Z is set. 1In POLYx, the trap
occurs on completion of the instruction, which may be many operations
after the underflow. The condition codes are set on the final result in
POLYx. The type code pushed on the stack is 5 (SRM K_FLT UND T).

6.4.1.6 Decimal String Overflow Trap - A decimal string overflow trap
is an exception that indicates that the last instruction executed had a
decimal string result too large for the destination string provided and
that decimal overflow was enabled (DV set). The V condition code is
always set. Refer to the individual instruction descriptions in Chapter
4 for the value of the result and of the condition codes. The type code

Exceptions and Interrupts 12-Dec-8¢ -- Rev 7.1 Page 6-16
EXCEPTIONS

pushed on the stack is 6 (SRM$K_DEC_OVF_T).

6.4.1.7 Subscript Range Trap - A subscript range trap is an exception
that indicates that the last instruction was an INDEX instruction with a
subscript operand that failed the range check. The value of the
subscript operand is lower than the low operand or greater than the high
operand. The result is stored in indexout, and the condition codes are
set as if the subscript were within range. The type code pushed on the
stack is 7 (SRMS$SK SUB RNG_T).

6.4.1.8 Floating Overflow Fault - A floating overflow fault 1is an
exception that indicates that the last instruction executed resulted in
an exponent greater than the largest representable exponent for the data
type after normalization and rounding. The destination was unaffected
and the saved condition codes are UNPREDICTABLE. The saved PC points to
the 1instruction causing the fault. 1In the case of a POLY instruction,
the instruction is suspended with FPD set (see Chapter 4 for details).
The type code pushed on the stack is 8 (SRMSK_FLT_OVF _F).

6.4.1.9 Divide By Zero Floating Fault - A floating divide by zero fault
is an exception that indicates that the last instruction executed had a
floating zero divisor. The quotient operand was unaffected and the
saved condition codes are UNPREDICTABLE. The saved PC points to the
instruction causing the fault. The type code pushed on the stack is
9 (SRMSK_FLT DIV_F).

6.4.1.1¢0 Floating Underflow Fault - A floating underflow fault is an
exception that indicates that the last instruction executed resulted in
an exponent less than the smallest representable exponent for the data
type after normalization and rounding and that floating underflow was
enabled (FU set). The destination operand is unaffected. The saved
condition codes are UNPREDICTABLE. The saved PC points to the
instruction causing the fault. 1In the case of a POLY instruction, the
instruction 1is suspended with FPD set (see Chapter 4 for details). The
type code pushed on the stack is 10 (SRM K _FLT _UND_F).

Exceptions and Interrupts 12-Dec-80 -- Rev 7.1 Page 6-17
EXCEPTIONS

6.4.2 Memory Management Exceptions

6.4.2.1 Access Control Violation Fault - An access control wviolation
fault 1is an exception indicating that the process attempted a reference
not allowed at the access mode at which the process was operating. See
Chapter 5, Memory Management, for a description of the information
pushed on the stack as parameters. Software may restart the ©process
after changing the address translation information.

6.4.2.2 Translation Not Valid Fault - A translation not valid fault is
an exception indicating that the process attempted a reference to a page
for which the valid bit in the page table was not set. See Chapter 5,
Memory Management, for a description of the information pushed on the
stack as parameters. Note that if a process attempts to reference a
page for which the page table entry specifies both Not Valid and Access
Violation, an Access Control Violation Fault occurs.

Exceptions and Interrupts 12-Dec-8@ -- Rev 7.1 Page 6-18
EXCEPTIONS

6.4.3 Exceptions Detected During Operand Reference

6.4.3.1 Reserved Addressing Mode Fault - A reserved addressing mode
fault is an exception indicating that an operand specifier attempted to
use an addressing mode that is not allowed in the situation in which it
occurred. No parameters are pushed.

The situations in which each specifier type is reserved are:

SPECIFIER RESERVED SITUATION

Short Literal Modify, destination, address
source, or within index mode.

Register Address source or within index mode.
Index Mode Within index mode, or with PC as index.

See Chapter 3 for combinations of addressing modes and registers that
cause UNPREDICTABLE results. The VAX-11/788 processor also faults on
PC, @pC, and -(PC).

6.4.3.2 Reserved Operand Exception - A reserved operand exception is an
exception indicating that an operand accessed has a format reserved for
future use by DIGITAL. No parameters are pushed. This exception always
backs up the PC to point to the opcode. The exception service routine
may determine the type of operand by examining the opcode wusing the
stored PC. Note that only the changes made by instruction fetch and
because of operand specifier evaluation may be restored. Therefore,
some instructions are not restartable. These exceptions are labelled as
ABORTs rather than FAULTs. The PC is always restored properly unless
the 1instruction attempted to modify it in a manner that results in
UNPREDICTABLE results. The PSL other than FPD and TP 1is not changed
except for the conditon codes, which are UNPREDICTABLE.

The reserved operand exceptions are caused by:

1. A floating point number that has the sign bit set and the
exponent zero except in the POLY table (FAULT)

2. A floating point number that has the sign bit set and the
exponent zero in the POLY table (FAULT; see chapter 4 for
restartability)

3. POLY degree too large {(FAULT)

4. Decimal string too long (ABORT)

5. Invalid digit in CVTTP, CVTSP (ABORT)

Page 6-19

during RET

to

some

Exceptions and Interrupts 12-Dec-80 -- Rev 7.1
EXCEPTIONS
6. Bit field too wide (FAULT)
7. 1Invalid combination of bits in PSL restored by REI (FAULT)
8. Reserved pattern operator in EDITPC (FAULT; see Chapter 4 for
restartability)
9. Incorrect source string length at completion of EDITPC (ABORT)
19. Invalid combination of bits in PSW/MASK longword
(FAULT)
11. 1Invalid combination of bits in BISPSW/BICPSW (FAULT)
12. Invalid CALLx entry mask (FAULT)
13. Invalid register number in MFPR or MTPR (FAULT)
14, 1Invalid combinations in PCB loaded by LDPCTX (ABORT)
15. Unaligned operand in ADAWI (FAULT)
16. Invalid register contents in MTPR instructions
registers for some implemantations (FAULT):
SISR<31:16>'SISR<P> NEQU ¢
PPBR<1:@> NEQU @
POBR LSSU 2**3]
P@BR GTRU 2**3142%*3p-]1
P1BR<1:0> NEQU ¢
PIBR LSSU 2**31-2%%23
PIBR GTRU 2#**3142*%*3g-2%%)3_]
POLR<31:27>'POLR<23:22> NEQU @
P1LR<30:22> NEQU @
ASTLVL<2:8> GTRU 4
17. Invalid operand addresses in INSQHI, INSQTI, REMQHI,

(FAULT)

or

REMQTI

Exceptions and Interrupts 12-Dec-804 -- Rev 7.1 Page 6-20
EXCEPTIONS

6.4.4 Exceptions Occurrina As The Consequence 0f An Instruction

6.4.4.1 Opcode Reserved To DIGITAL fault - An opcode reserved to
DIGITAL fault occurs when the processor encounters an opcode that is not
specifically defined, or that requires higher privileges than the
current mode. No parameters are pushed. Opcode FFFF (hex) will always
fault.

6.4.4.2 Opcode Reserved To Customers (and CSS) Fault - An opcode
reserved to customers fault is an exception that occurs when an opcode
reserved to the customers or DIGITAL's Computer Special Systems group 1is
executed. The operation is identical to the opcode reserved to DIGITAL
fault except that the event is caused by a different set of opcodes, and
faults through a different vector. All opcodes reserved to customers
(and CSS) start with FC (hex), which is the XFC instruction. If the
special instruction needs to generate a unique exception, one of the
reserved to CSS/Customer vectors should be used. An example might be an
unrecognized second byte of the instruction.

Exceptions and Interrupts 12-Dec-84 -- Rev 7.1 Page 6-21
EXCEPTIONS

5.4.4.3 Compatibility Mode Exception - A compatibility mode exception
is an exception that occurs when the processor is in compatibility mode.
A longword of information is pushed on the stack, which contains a code
as follows:

2 reserved opcode FAULT
1 BPT FAULT
2 I0T FAULT
3 EMT FAULT
4 TRAP FAULT
5 illegal instruction FAULT
6 odd address ABORT

All other exceptions in compatibility mode occur to the regular VAX-11
vector, e.g., Access Control Violation, Translation Not Valid, Memory
Error, and Machine Check Abort. See chapter 14, Compatibility Mode.

6.4.4.4 Breakpoint Fault - A breakpoint fault is an exception that
occurs when the breakpoint instruction (BPT) is executed. No parameters
are pushed,

To proceed from a breakpoint, a debugger or tracing program typically
restores the original contents of the location containing the BPT, sets
T in the PSL saved by the BPT fault, and resumes. When the breakpointed
instruction completes, a trace exception will occur (see section on
tracing). At this point, the tracing program can again re-insert the
BPT instruction, restore T to its original state (usually clear), and
resume. Note that if both tracing and breakpointing are in progress
(i.e., 1if PSL<KT> was set at the time of the BPT), then on the trace
exception both the BPT restoration and a normal trace exception should
be processed by the trace handler.

Exceptions and Interrupts 12-Dec-808 -- Rev 7.1 Page 6-22
EXCEPTIONS

5.4.5 Tracing

A trace is an exception that occurs between instructions when trace is

enabled. Tracing 1is wused for tracing programs, for performance
evaluation, or debugging purposes. It is designed so that one and only
one trace exception occurs before the execution of each traced

instruction. The saved PC on a trace 1is the address of the next
instruction that would normally be executed. If a trace fault and a
memory management fault (or an odd address abort during a compatibility
mode instruction fetch) occur simultaneously, the order in which the
exceptions are taken is UNPREDICTABLE. The trace fault for an
instruction takes precedence over all other exceptions.

In order to ensure that exactly one trace occurs per instruction despite
other traps and faults, the PSL contains two bits, trace enable (T) and
trace pending (TP). If only one bit were used then the occurrence of an
interrupt at the end of an instruction would either produce zero or two
traces, depending on the design. Instead of the PSL<KT> bit being
defined to produce a trap after any other traps or aborts at the end of
an instruction, the trap effect is implemented by copying PSLLKT> to a
second bit (PSL<TP>) that is actually used to generate the exception.
PSL<TP> generates a fault before any other processing at the start of
the next instruction.

The rules of operation for trace are:

1. At the beginning of an instruction, if TP is set then a trace
fault is taken after clearing TP.

2. TP is loaded with the value of T.

3. TIf the instruction faults or an interrupt is serviced, PSL<TP>
is cleared before the PSL is pushed. The pushed PC is set to
the start of the faulting or interrupted instruction.
Instruction execution is resumed at Step 1.

4. TIf the instruction aborts or takes an arithmetic trap, PSLLTP>
is not changed before the PSL is pushed.

5. If an interrupt is serviced after instruction completion and
arithmetic traps but before tracing is checked for at the start

of the next instruction, then PSL<TP> is not changed before the
PSL is pushed.

The routine entered by a CHMx is not traced because CHMx clears T and TP
in the new PSL. However, 1if T was set at the beginning of CHMx the
saved PSL will have both T and TP set. Trace faults resume with the
instruction following the REI in the routine entered by the CHMx. An
instruction following an REI will fault either if T was set when the REI
was executed or if TP in the saved PSL is set; in both cases TP is set
after the REI. Note that a trace fault that occurs for an instruction
following an REI that sets TP will be taken with the new PSL. Thus,
special care must be taken if exception or interrupt routines are
traced. If the T bit is set by a BISPSW instruction, trace faults begin

Exceptions and Interrupts 12-Dec-80 -- Rev 7.1 Page 5-23
EXCEPTIONS

with the second instruction after the BISPSW.

In addition, the CALLx instructions save a clear T, although T in the
PSL is unchanged. This 1is done so that a debugger or trace program
proceeding from a BPT fault does not get a spurious trace from the RET
that matches the CALL.

The detection of reserved instruction faults occurs after the trace
fault. The detection of interrupts and other exceptions can occur
during instruction execution. In this case, TP is cleared before the
exception or interrupt 1is initiated. The entire PSL (including T and
TP) is automatically saved on interrupt or exception initiation and is
restored at the end with an REI. This makes interrupts and benign
exceptions totally transparent tc the executing program.

Exceptions and Interrupts 12-Dec-80 -- Rev 7.1 Page 6-24
EXCEPTIONS

6.4.5.1 Trace Instruction Summary - The following table shows all of
the cases of T enabled at the beginning of the instruction, enabled at
the end of the instruction, and TP set in the popped PSW or PSL for
ordinary instructions (XXX), CHMx...REI, interrupt or exception...RET,
CcALLx, RETURN, CHMx, REI, BISPSW, and BICPSW:

Trace exception

enabled enabled TP bit
at beg at end at end
(T) (T) (TP)
XXX N N N
Y Y Y
CHMxX...RET N N N
Y Y Y
interrupt or N N N
exception...REI Y Y Y
CALLx N N N
Y Y Y (pushed PSW<T> clear)
RET N N* N
N Y * N (no fault before
next instruction)
Y N* Y
Y y* Y
CHMx N N N (pushed PSL<TP> clear)
Y N N (pushed PSL<KTP> set)
RETI N N* N
(if PSLKLTP>=0 N Y* N
on stack) Y N* Y
Y Y* Y
RETI N N* Y
(if PSLKTP>=1 N Y * Y
on stack) Y N* Y
Y Y* Y
BISPSW N Y N
Y Y Y
BICPSW N N N
Y N Y
interrupt or N N N (pushed PSL<KTP> clear)
exception Y N N (pushed PSL<TP> depends

on above description)

Exceptions and Interrupts 12-Dec-80 -- Rev 7.1 Page 4-25
EXCEPTIONS

* = depends on PSW<T> popped from stack

$.4.5.2 Using Trace - Routines using the trace facility are termed
trace handlers. They should observe the following conventions and
restrictions:

1. When the trace handler performs its REI back to the traced
program, it should always force the T bit on in the PSL that

will be restored. This defends against programs clearing T via
RET, REI, or BICPSW.

2. The trace handler should never examine or alter the TP bit when
continuing tracing. The hardware flows ensure that this bit is
maintained correctly to continue tracing.

3. When tracing is to be ended, both T and TP should be cleared.
This ensures that no further traces will occur.

4. Tracing a service routine that completes with an REI will give
a trace 1in the restored mode after the REI. If the program
being restored to was also being traced, only one trace
exception is generated.

5. If a routine entered by a CALLx instruction is executed at full
speed by turning off T, then trace control can be regained by
setting T in the PSW in its call frame. Tracing will resume
after the instruction following the RET.

6. Tracing is disabled for routines entered by a CHMx instruction
or any exception. Thus, if a CHMx or exception service routine
is to be traced, a breakpoint instruction must be placed at its
entry point. If such a routine is recursive, breakpointing
will catch each recursion only if the breakpoint is not on the
CHMX or instruction with the exception.

7. If it is desired to allow multiple trace handlers, all handlers
should preserve T when turning on and off trace. They also
would have to simulate traced code that alters or reads T.

Exceptions and Interrupts 12-Dec-88 -- Rev 7.1 Page 6-26
EXCEPTIONS

6.4.6 Serious System Failures

6.4.6.1 Kernel Stack Not Valid Abort - Kernel stack not valid abort is
an exception that indicates that the Kernel stack was not valid while
the processor was pushing information onto the Kernel stack during the
initiation of an exception or interrupt. Usually this is an indication
of a stack overflow or other executive software error. The attempted
exception 1is transformed 1into an abort that uses the interrupt stack.
No extra information is pushed on the interrupt stack in addition to PSL
and PC. IPL is raised to 1F (hex). Software may abort the process
without aborting the system. However, because of the lost information,
the process cannot be continued. If the Kernel Stack is not valid
during the normal execution of an instruction (including CHMK or REI),
the normal memory management fault is initiated. If the exception
vector <1:8> for Kernel Stack Not Valid 1is 3, the behavior of the
processor is UNDEFINED (see section on SCB vectors).

6.4.6.2 Interrupt Stack Not Valid Halt - An interrupt stack not wvalid
halt is an exception that indicates that the interrupt stack was not
valid or that a memory error occurred while the processor was pushing
information onto the interrupt stack during the initiation of an
exception or interrupt. ©No further interrupt requests are acknowledged
on this processor. The processor leaves the PC, the PSL, and the reason
for the halt in registers so that it is available to a debugger, the
normal bootstrap routine, or an optional watch dog bootstrap routine. A
watch dog bootstrap can cause the processor to leave the halted state.

6.4.6.3 Machine Check Exception - A machine check exception indicates
that the processor detected an internal error in itself. As usual for
exceptions, this exception is taken independent of IPL. IPL is raised
to 1F (hex) only if vector<l:0> is 1..

Implementation specific information is pushed on the stack as longwords.
The processor specifies the number of bytes pushed by placing the number
of bytes pushed as the last longword pushed. (@ if none, 4 if 9one,
eee) . This count excludes the PC, PSL, and count longwords. Software
can decide, on the basis of the information presented, whether to abort
the current process if the machine check came from the process. Machine
check includes uncorrected bus and memory errors anywhere, and any other
processor—-detected errors. Some processor errors cannot ensure the
state of the machine at akl. For such errors, the state will be
preserved on a "best effort" basis. 1If the exception vector <1:8> for
machine check is 3, the behavior of the processor Iis UNDEFINED (see
section on SCB vectors).

Exceptions and Interrupts 12-Dec-80 -- Rev 7.1 Page 6-27
SERIALIZATION OF NOTIFICATION OF MULTIPLE EVENTS

6.5 SERIALIZATION OF NOTIFICATION OF MULTIPLE EVENTS

The interaction between arithmetic traps, tracing, other exceptions, and
multiple interrupts is complex. In order to ensure consistent and
useful implementations, it is necessary to understand this interraction
at a detailed level. As an example, if an instruction is started with
T=1 and TP=0, it gets an arithmetic trap, and an interrupt request is
recognized, the following sequence occurs:

1. The instruction finishes, storing all its results. PSL<TP> is
set at the end of this instruction since PSL<T> was set at the
beginning.

2. The overflow trap sequence is initiated, pushing the PC and PSL
(with TP=1), loading a new PC from the vector, and creating a
new PSL.

3. The interrupt sequence is initiated, pushing the PC and PSL
appropriate to the overflow trap service routine, loading a new
PC from the vector, and Creating a new PSL.

4. If a higher priority interrupt is noticed, the first
instruction of the interrupt service routine is not executed.
Instead, the PC and PSL appropriate to that routine are saved
as part of initiating the new interrupt. The original
interrupt service routine will then be executed when the higher
priority routine terminates via REI.

5. The interrupt service routine runs, and exits with REI.

6. The overflow trap service routine runs, and exits with REI,
which sets PSL<KTP> since the saved PSL<TP> was set.

7. The trace fault occurs, again pushing PC and PSL but this time
with TP=g,

8. Trace service routine runs, and exits with RET.

9. The next instruction is executed.

Exceptions and Interrupts 12-Dec-80 -- Rev 7.1 Page 5-28
SERIALIZATION OF NOTIFICATION OF MULTIPLE EVENTS
This is accomplished by the following operation hetween instructions:

lhere at completion of instruction including
1 at end of REI from an exception or interrupt routine

15: {possibly take interrupts or console halt};
IPSL<TP> is not modified before PSL is saved
if PSLLKTP> EQLU 1 then 1if trace pending, take trace fault.
begin 1Trace fault takes precedence
PSLLTP> <- J; lover other exceptions.
{initiate trace fault};
end;

{possibly take interrupts or console halt};
IPSLLTP> is not modified before PSL is saved

PSLLTP> <- PSLLT>; 1if trace enable, set trace pending

{go start instruction execution};
1Reserved instruction faults are taken here
IFPD is tested here, thus TP takes
! precedence over FPD if both are set.
if {instruction faults} OR {an interrupt or console halt
is taken before end of instruction} then
begin
{back up PC to start of opcodel;
{either set PSL<FPD> or back up all general
register side effects};
PSLLTP> <- @;
{initiate exception or interrupt};

if {arith trap needed and no other abort
or trap} then {initiate arith trap};

end;
lnote: all instructions end by flowing

! through 1%, thus the REI from a service
! routine will return to 1$

Exceptions and Interrupts 12-Dec-80 -- Rev 7.1 Page 6-29
SYSTEM CONTROL BLOCK (SCB)

6.6 SYSTEM CONTROL BLOCK (SCB)

The System Control Block is a page containing the vectors by which
exceptions and interrupts are dispatched to the appropriate service
routines.

6.6.1 System Control Block Base (SCBB)

The SCBB is a privileged register containing the physical address of the
System Control Block, which must be page-aligned.

332
129 9 8)
B e Fo e +
IMBZ | Physical page address of SCB | MBZ I
e e Fomm +
System Control Block Base
At bootstrap time, the contents of SCBB is UNPREDICTABLE. The actual

length is implementation dependent because it represents a physical
address.

5.6.2 Vectors

A vector is a longword in the SCB that is examined by the processor when
an exception or interrupt occurs, to determine how to service the event.

Separate vectors are defined for each interrupting device controller and
each class of exceptions. Each vector is interpreted as follows by the
hardware. Bits 1:0 contain a code interpreted:

#. Service this event on the kernel stack unless already running
on the interrupt stack, in which case service on the interrupt
stack.,

1. Service this event on the interrupt stack. If this event is an
exception, the IPL is raised to 1F (hex).

2. Service this event in writable control store, passing bits 15:2
to the installation-specific microcode there. If writable
control store does not exist or is not loaded, the operation is
UNDEFINED. On the VAX-11/789¢ processor, the operation in this
case is a HALT.

3. Operation UNDEFINED. Reserved to DIGITAL. On the VAX-11/780
processor, the operation is a HALT.

For codes 0 and 1, bits 31:2 contain the virtual address of the service
routine, which must begin on a longword boundary and will ordinarily be

Exceptions and Interrupts 12-Dec-8@¢ -- Rev 7.1 Page 6-31
SYSTEM CONTROL BLOCK (SCB)

in the system space. CHMx is serviced on the stack selected by the new
mode. Bits <1:¢> in the CHMx vectors must be zero or the operation is
UNDEFINED. On the VAX-11/780 processor, these bits are ignored in the
CHMx vectors.

Exceptions and Interrupts 12-Dec-89 -- Rev 7.1 Page 5-31
SYSTEM CONTROL BLOCK (SCB)

System Control Block {(exception and interrupt vectors)

Number of

Vector Name Type Params Notes

(hex)

20 Unused Reserved to DIGITAL.

g4 Machine Check Abort/ * Processor-and error-
Fault/ specific information
Trap is pushed on the

stack, if possible.
Restartability is
processor specific,

If vector<l:0> is 1,

IPL is raised to 1F (hex)
and the interrupt stack
is used (i.e. IS <- 1)..

* -— the number of bytes
of parameters is pushed
on the stack and is
implementation dependent.

78 Kernel Stack Not Valid Abort @ Serviced on the
interrupt stack
(i.e. IS <~ 1). IPL is

raised to 1F (hex).

ac Power Fail Interrupt @ IPL is raised
to 1E (hex).
19 Reserved/Privileged Fault (Y Opcodes reserved to
Instruction DIGITAL and

privileged instructions.

14 Customer Reserved Fault] XFC instruction.
Instruction

18 Reserved Operand Fault/ 2 Type depends on
Abort circumstances. See section
on reserved operand
exceptions,

1C Reserved Addressing Mode Fault 0

20 Access Control Violation Fault 2 Virtual address
causing fault is
pushed onto stack.
See chapter 5,

Exceptions and Interrupts 12-Dec-8¢0 —-- Rev 7.1 Page 5-32
SYSTEM CONTROL BLOCK (SCB)

24 Translation Not Valid Fault 2 Virtual address
causing fault is
pushed onto stack.
See chapter 5.

28 Trace Pending (TP) Fault g
2C Breakpoint Instruction Fault Y

30 Compatibility Fault/ 1 A type code is pushed
Abort onto the stack. See section
on compatibility mode
exceptions.

34 Arithmetic Trap/ 1 A type code is pushed
Fault onto the stack,
See 5.4.

38-3C Unused Reserved to DIGITAL.

40 CHMK Trap 1 The operand word is
sign extended and
pushed onto the stack.
Vector<l:0> MBZ.

44 CHME Trap 1 The operand word is
sign extended and
pushed onto the stack.
Vector<l:0> MBZ.

48 CHMS Trap 1 The operand word is
sign extended and
pushed onto the stack.
Vector<l:9> MBZ.

AC CHMU Trap 1 The operand word is
sign extended and
pushed onto the stack.
Vector<l:0¢> MBZ.

50 SBI SILO Compare Interrupt 9 IPL is 19 (hex).
vaxX-11/78¢ only.

54 Corrected Memory Interrupt * IPL is 1A (hex).
Read Data Also used for Read Data
Substitute on VAX-11/780.
Number of parameters is
implementation dependent.

58 SBI Alert Interrupt 0 IPL is 1B (hex).
VAX-11/780 only.

5C SBI Fault Interrupt @ IPL is 1C (hex).

Exceptions and Interrupts 12-Dec-80 -- Rev 7.1 Page 6-33
SYSTEM CONTROL BLOCK (SCB)

VAX-11/788 only.

60 Memory Write Timeout Interrupt * IPL is 1D (hex).
Number of parameters is
implementation dependent.

64-80 Unused Reserved to DIGITAL.

84 Software Level 1 Interrupt o

88 Software Level 2 Interrupt @ Ordinarily used for
AST delivery.

8C Software Level 3 Interrupt 0 Ordinarily used for
Process Scheduling.

9¢-BC Software Levels 4-F Interrupt @

Cgo Interval Timer Interrupt 0 IPL is 18 (hex).

C4-DC Unused Reserved to DIGITAL

E@-EC Unused Reserved to CSS/Customers

Fo Console Storage Rec. Interrupt 0 IPL is 17 (hex).
VAX-11/758 only.

F4 Console Storage Trans. Interrupt @ IPL is 17 (hex).
VAX-11/758 only.

F8 Console Terminal Rec. Interrupt o IPL is 14 (hex).

FC Console Terminal Trans. Interrupt @ IPL is 14 (hex).

100-3FC Device Vectors Interrupt ¢

In the VAX-11/780 processor, only interrupt priority levels 14
to 17 (hex) are available to a NEXUS external to the CPU, and
there is a limit of 16 such NEXUS. A NEXUS is a connection on
the SBI, which is the internal interconnection structure. The
NEXUS vectors are assigned as follows:

130-13C IPL 14 (hex) NEXUS 2-15
149-17C IPL 15 (hex) NEXUS @-15
180-1BC IPL 16 (hex) NEXUS #-15
1C8-1FC IPL 17 (hex) NEXUS 0-15

In the VAX-11/750 processor, UNIBUS devices interrupt the
processor directly. The vector is determined by adding 200
(hex) to the vector supplied by the device. Only SCB vectors in
the range 288 to 3FC (hex) are allowed. Interrupt priority
levels 14 to 17 (hex) correspond to UNIBUS levels BR4 to BR7.

Exceptions and Interrupts 12-Dec-80 -- Rev 7.1 Page 5-34
STACKS

6.7 STACKS

At any time, the processor is either in a process context (1IS=0) in one
of four modes (kernel, exec, super, user), or in the system-wide
interrupt service context (IS=1) that operates with kernel privileges.
There 1is a stack pointer associated with each of these five states, and
any time the processor changes from one of these states to another, SP
(R14) is stored in the process context stack pointer for the old state
and loaded from that for the new state. The process context stack
pointers (KSP=kernel, ESP=exec, SSP=super, USP=user) are allocated in
the PCB (see Chapter 7), although some hardware implementations may keep
them in privileged registers. The interrupt stack pointer (ISP) is in a
privileged register.

Operating system design must choose a priority 1level that is the
boundary between kernel and interrupt stack use. The SCB interrupt
vectors must be set such that interrupts to levels above this boundary
run on the interrupt stack (vector<l:0> = 1) and interrupts below this
boundary run on the kernel stack (vector<l:8> = @). Typically, AST
delivery (IPL 2) is on the kernel stack and all higher levels are on the
interrupt stack.

~

5.7.1 Stack Residency

The USER, SUPER, and EXEC stacks do not need to be resident. The kernel
can bring in or allocate process stack pages as Address Translation Not
Valid faults occur. However, the kernel stack for the current process,
and the interrupt stack (which is process-independent) must be resident
and accessible. Translation Not Valid and Access Control Violation
faults occurring on references to either of these stacks are regarded as
serious system failures, from which recovery is not possible.

1f either of these faults occurs on a reference to the kernel stack, the
processor aborts the current sequence and initiates Kernel Stack Not
Valid abort on hardware level 1F (hex). If either of these faults
occurs on a reference to the interrupt stack, the processor halts. Note
that this does not mean that every possible reference is checked, but
rather that the processor will not loop on these conditions.

It is not necessary that the kernel stack for processes other than the
current one be resident, but it must be resident before a process is
selected to run by the software's process dispatcher. Further, any
mechanism that uses Translation Not Valid or Access Control Violation
faults to gather process statistics, for instance, must exercise care
not to invalidate kernel stack pages.

Exceptions and Interrupts 12-Dec-8¢ -- Rev 7.1 Page 6-35
STACKS

6.7.2 Stack Alignment

Except on CALLx instructions, the hardware makes no attempt to align the
stacks. For best performance on all processors, the software should
align the stack on a longword boundary and allocate the stack in
longword increments. The convert byte to long (CVTBL and MOVZBL),
convert word to long (CVTWL and MOVZWL), convert long to byte (CVTLB),
and convert long to word (CVTLW) instructions are recommended for
pushing bytes and words on the stack and popping them off in order to
keep it longword aligned.

6.7.3 Stack Status Bits

The interrupt stack bit (IS) and current mode bits in the privileged
Processor Status Longword (PSL) specify which of the five stack pointers
is currently in use as follows:

IS MODE REGISTER
1 g ISp
) 0 KSP
] 1 ESP
] 2 SSPp
g 3 Usp

The processor does not allow current mode to be non-zero when IS=1.
This is achieved by clearing the mode bits when taking an interrupt or

exception, and by causing reserved operand fault if REI attempts to load
a PSL in which both IS and mode are non-zero.

The stack to be used for an interrupt or exception is selected by the
current PSL<IS> and bits <1:0> of the vector for the event as follows:

vector<l: 0>

ol 91
D Fmmm——— +
g | KSp | 1sp |
PSL<IS> Fom o S S +
1 | 1sP | 18P |
+o——— - +

Values 10 (binary) and 11 (binary) of the vector<l:8> are used for other
purposes. Refer to section on SCB vectors for details,

6.7.4 Accessing Stack Registers

Reference to SP (the stack pointer) in the general registers will access
one of five possible architecturally defined stack pointers; the user,
supervisor, executive, kernel, or interrupt stack pointer, depending on
the wvalues of the current mode and IS bits in the PSL. Some processors

Exceptions and Interrupts 12-Dec-8¢ -- Rev 7.1 Page 5-36
STACKS

might implement these five stack pointers as five internal processor
registers. On these processors, software can access any of the five
stack pointers not currently selected by the current mode and IS bits in
the PSL via the MTPR and MFPR instructions. Results are correct even if
the stack pointer specified by the current mode and 1S bits in the PSL
is referenced 1in the processor register space by an MTPR or MFPR
instruction. If the process stack pointers are implemented as
registers, then these instructions are the only method for accessing the
stack pointers of the current process. If the process stack pointers
are kept only in the PCB, MTPR and MFPR of these registers might not
access the PCB. See Chapter 9 for conventions to be followed when
referencing per-process registers that are also in the processor
register space.

The internal processor register numbers were chosen to be the same as
PSL<26:24> (see Chapter 9). The previous stack pointer is the same as
PSL<?23:22> unless PSL<IS> is set. If PSLLIS> is set, the previous mode
cannot be determined from the PSL since interrupts always clear
PSL<23:22>. At bootstrap time, the contents of all stack pointers are
UNPREDICTABLE.

Exceptions and Interrupts 12-Dec-8¢ -~ Rev 7.1 Page 6-37
INITIATE EXCEPTION OR INTERRUPT

6.8 INITIATE EXCEPTION OR INTERRUPT

Condition Codes (if vector<l:0> code is @ or 1):

N <- @;
Z <- 0;
V <- @;
C <= @;

Exceptions:

interrupt stack not valid
kernel stack not valid

Description:

The handling is determined by the contents of a longword vector in the
System control block which is indexed by the exception or interrupt
being processed. If the Processor is not executing on the interrupt
stack, then the current stack pointer is saved and the new stack pointer
is fetched. The old PSL is pushed onto the new stack. The PC is backed
up (unless this is an interrupt between instructions or a trap) and is
pushed onto the new stack. The PSL is initialized to a canonical state.
IPL is changed if this is an interrupt or if it is an exception with
vector<l:@> code 1. Any parameters are pushed. Except for interrupts,
the previous mode in the new PSL is set to the old value of the current
mode., Finally, the PC is changed to point to the longword indicated by
the vector<31:2>.

Notes:
1. Interrupts are disabled during this sequence.
2. If the vector<l:0> code is invalid, the behavior is UNDEFINED.

3. On an abort, the saved condition codes are UNPREDICTABLE. On a
fault or interrupt, the saved condition codes are
UNPREDICTABLE; they are only saved to the extent necessary to
ensure correct completion of the instruction when resumed. On
an abort or fault or interrupt that sets FPD, the general
registers except PC, SP and FP are UNPREDICTABLE unless the

. instruction description specifies a setting. If FP 1is the
destination 1in this case, then it is also UNPREDICTABLE. On a
Kernel Stack Not Valid abort, both SP and FP are UNPREDICTABLE.
In this case, UNPREDICTABLE means unspecified; upon REI the
instruction behavior and results are predictable. This implies
that processes stopped with FPD set cannot be resumed on
processors of a different type or engineering change level.

4. If the processor gets an Access Control Violation or a
Translation Not Valid condition while attempting to push
information on the kernel stack, a Kernel Stack Not Valid abort
is initiated and 1IPL is changed to 1F (hex). The additional

Exceptions and Interrupts 12-Dec-88 -- Rev 7.1 Page 6-38
INITIATE EXCEPTION OR INTERRUPT

information, if any, associated with the original exception is
lost. However PSL and PC are pushed on the interrupt stack
with the same values as would have been pushed on the kernel
stack.

5. If the processor gets an Access Control Violation or &
Translation Not Valid condition while attempting to push
information on the interrupt stack, the processor is halted and
only the state of ISP, PC, and PSL is insured to be correct for
subsequent analysis. The PSL and PC have the values that would
have been pushed on the interrupt stack.

6. The value of PSL<TP> that is saved on the stack is as follows:

fault clear

trace clear

interrupt clear (if FPD set)

from PSLCTP> (if after traps, before trace)

abort from PSLLTP>

trap from PSLLTP>

CHMx from PSLLTP>

BPT, XFC clear

reserv.instr. clear

7. The value of PC that is saved on the stack points to the

following:
fault instruction faulting
trace next instruction to execute
i.e. instruction at the beginning of which
the trace fault was taken.
interrupt instruction interrupted or
next instruction to execute
abort instruction aborting or
detecting Kernel Stack Not Valid
(not ensured on machine check)
trap next instruction to execute
CHMx next instruction to execute
BPT, XFC BPT, XFC instruction
reserv.instr. reserv.instr.

8. The non-interrupt stack pointers may be fetched and stored by
hardware in either privileged registers or in their allocated
slots in the PCB. Only LDPCTX and SVPCTX always fetch and
store in the PCB, see Chapter 7. MFPR and MTPR always fetch
and store the pointers whether in registers or the PCB.

Exceptions and Interrupts 12-Dec-80 -- Rev 7.1 Page 6-39
RELATED INSTRUCTIONS

6.9 RELATED INSTRUCTIONS

REI Return from Exception or Interrupt

Format:
Opcode

Operation:

tmpl <~ (SP)+; ! Pick up saved PC
tmp2 <- (SP)+; ! and PSL

if {tmpZ(CUR_MOD) LSSU PSL(CUR_MOD)} OR

{tmp2<IS> EQLU 1 AND PSLKIS> EQLU @9} OR

{tmpZ(IS) EQLU 1 AND tmp2<CUR_MOD> NEQU 9} OR

{tmp2<IS> EQLU 1 AND tmp2<IPL> EQLU @} OR

{tmp2<IPL> GTRU @ AND tmp2<CUR_MOD> NEQU 9} OR

{tmp2<PRV MOD> LSSU tmp2<CUR_MOD>} OR

{tmp2<IPL> GTRU PSL<IPL>} OR

{tmp2<PSL_MBZ> NEQU 0} then {reserved operand fault};
if {tmp2<CM> EQLU 1} AND

{{tmp2<FPD,IS,DV,FU,IV> NEQU #} OR

{tmp2<CUR_MOD> NEQU 3}} then {reserved operand fault};

if PSLKIS> EQLU 1 then ISP <- SP !save old stack pointer
else PSLKCUR_MOD> SP <- SP;
if PSLLTP> EQLU 1 then tmp2<TP> <- 1; !TP <~ TP or stack TP

PC <- tmpl;
PSL <- tmp2;
if PSL<KIS> EQLU 0 then

begin

SP <- PSL<KCUR MOD> SP; !switch stack

if PSL<CUR_M05> GEQU ASTLVL !check for AST delivery
then {request interrupt at IPL 2};

end;

{check for software interrupts};
{clear instruction look-ahead}

Condition Codes:
N <- saved PSL<3>;
Z <- saved PSL<2>;
V <- saved PSL<1>;
C <- saved PSL<@>;

Exceptions:
reserved operand

Opcodes:

@2 REI Return from Exception or Interrupt

Exceptions and Interrupts 12-Dec-89 -- Rev 7.1 Page 6-40
RELATED INSTRUCTIONS

Description:

A longword is popped from the current stack and held in a temporary PC.
A second longword is popped from the current stack and held in a
temporary PSL. Validity of the popped PSL is checked. The current
stack pointer is saved and a new stack pointer is selected according to
the new PSL CUR MOD and IS fields (see section on Stack Status Bits).
The level of the highest privilege AST is checked against the current
mode to see whether a pending AST can be delivered; refer to chapter 7.
Execution resumes with the instruction being executed at the time of the
exception or interrupt. Any instruction lookahead in the processor is
reinitialized.

Notes:

1. The exception or interrupt service routine is responsible for

restoring any registers saved and removing any parameters from
the stack.

2. As usual for faults, any Access Violation or Translation Not

Valid conditions on the stack pops restore the stack pointer
and fault.

3. The non-interrupt stack pointers may be fetched and stored
either 1in privileged registers or in their allocated slots in
the PCB. Only LDPCTX and SVPCTX always fetch and store in the
PCB (see Chapter 7). MFPR and MTPR always fetch and store the
pointers whether in registers or the PCB.

Exceptions and Interrupts 12-Dec-89 -- Rev 7.1 Page 6-41
RELATED INSTRUCTIONS

CHM Change Mode
Purpose: request services of more privileged software
Format:

opcode code.rw
Operation:

tmpl <- {mode selected by opcode (K=8, E=1, S=2, U=3)};

tmp2 <- MINU (tmpl, PSL<CUR_MOD>) ; !maximize privilege
tmp3 <- SEXT (code);

if {PSL<IS> EQLU 1} then HALT; tillegal from I stack
PSL<CUR_MOD> SP <- SP; !save old stack pointer
tmp4 <- tmp2 SP; !get new stack pointer
PROBEW (from tmp4-1 through tmp4-12 with mode=tmp2); !check

! new stack access
if {access control violation} then
{initiate access violation fault};
if {translation not valid} then
{initiate translation not valid fault};

{initiate CHMx exception with new mode=tmp2
and parameter=tmp3
using 40+tmpl*4 (hex) as SCB offset
using tmp4 as the new SP
and not storing SP again};

Condition Codes:

NN =Z
A
|

Exceptions:

halt
Opcodes:
BC CHMK Change Mode to Kernel
BD CHME Change Mode to Executive
BE CHMS Change Mode to Supervisor

BF CHMU Change Mode to User

Exceptions and Interrupts 12-Dec-80 -- Rev 7.1 Page 5-42
RELATED INSTRUCTIONS

Description:

Change Mode instructions allow processes to change their access mode in
a controlled manner. The instruction only increases privilege (i.e.,
decreases the access mode).

A change in mode also results in a change of stack pointers; the old
pointer is saved, the new pointer is loaded. The PSL, PC, and code
passed by the instruction are pushed onto the stack of the new mode.
The saved PC addresses the instruction following the CHMx instruction.
The code is sign extended. After execution, the new stack's appearance
is:

o o e — +
} sign extended code I :(SP)
RS S S S +
| PC of next instruction |
e +
| old PSL I
PSR SRS S S e e +

The destination mode selected by the opcode is used to obtain a location
from the System Control Block. This location addresses the CHMX
dispatcher for the specified mode. If the vector<l:9> code NEQU # then
the operation is UNDEFINED.

Notes:

1. As usual for faults, any Access Violation or Translation Not
Valid fault saves PC, PSL, and leaves SP as it was at the
beginning of the instruction except for any pushes onto the
kernel stack.

2. The non-interrupt stack pointers may be fetched and stored
either in privileged registers or in their allocated slots in
the PCB. Only LDPCTX and SVPCTX always fetch and store in the
PCB, see Chapter 7. MFPR and MTPR always fetch and store the
pointers whether in registers or the PCB.

3. By software convention, negative codes are reserved to CSS and
customers.
Examples:

CHMK 7 jrequest the kernel mode service
specified by code 7

~. ~

CHME #4 ;request the executive mode service
; specified by code 4

CHMS #-2 ;request the supervisor mode service
; specified by customer code -2

Except

ions and Interrupts 12-Dec-8¢ -- Rev 7.1 Page 6-43

PROCESSOR STATE TRANSITION TABLE

6.10 PROCESSOR STATE TRANSITION TABLE
FINAL STATE
\ User Super Exec Kernel Kernel Kernel Program
INITIAL| 1S=0 15=0 1S=0 15=9 15=9 I1s=1 Halt
STATE | 1IPL=0 IPL=0 IPL=0 IPL=0 IPL>f IPL>Q
Fommm——— R R R R e e +
User | CHMU | CHMS | CHME | CHMK |Tnter(0) |Excep(l)| impos- |
15=0 | REI I | [Excep(9) | [Inter(1l)] sible |
IPL=g | I | I ! | | |
Fom e o e R Fom Fomm———— R +
Super | | CHMU,S | CHME | CHMK |Inter (@) |Excep(l) | impos- |
1S=0 | REI* | REI | |[Excep(d) | lInter(l)| sible |
IPL=0 | J | | I ! | |
Fomm e R Fomm e e e R +
Exec | | |CHMU,S,E| CHMK |Inter(8) |Excep(l) | impos- |
1S=0 I REI* | REI* | REI |Excep (@) | |Inter (1)} sible |
IPL=0 | | | | I J | |
e e Fomm e Fomm R R e +
Kernel | | | |CHMUSEK |MTPR IPL| SVPCTX |HALT |
15=0 ' REI* | REI* | REI* | REI* |Inter (@) |Excep(l)| 1Instr.]|
IPL=0 | | | [Excep (9) | lInter(l)] |
I | I IMTPR IPL| | | |
| | | | LDPCTX | I | |
- fomm o Fmmm Fmmmm o fommm o N S S, +
Kernel | | | | | CHMUSEK | | |
I1S=0 | REI* | REI* | REI* |MTPR IPL| REI* | SVPCTX |HALT |
IPL>G | | | | REI* |[Excep (@) |[Excep(l)] Instr.|
| [| | |Inter (@) |Inter(l)| |
I | | | |MTPR IPL| | |
| | | | | LDPCTX | I I
e tomm Fom—————— tmm————— - to—mm t-mm———— +
Kernel | | | | | | SVPCTX |HALT I
18=1 | REI* | REI* | REI* | REI* | LDPCTX | REI | Instr.!
IPL>E | I I | | REI* | Excep |CHMUSEK |
| | | | | | Inter | |
| | | | | IMTPR IPL| !
Fomm e Fom————— tom————— t-—————— o ———— tm—————— +
Inter is Interrupt (@) is vector<l:g> = @
Excep is Exception (1) is vector<l:9> 1

* Any REI that increases mode can cause an
interrupt request at IPL 2 for AST delivery.

Processor State Transitions

CHAPTER 7
PROCESS STRUCTURE

21-May-8¢ -- Rev 5

7.1 PROCESS DEFINITION

A process is a single thread of execution. It is the basic schedulable
entity that 1is executed by the processor. A process consists of an
address space and both hardware and software context. The hardware
context of a process is defined by a Process Control Block (PCB) that
contains images of the 14 general purpose registers, the processor
status longword (PSL), the program counter (PC), the 4 per-process stack
pointers, the process virtual memory defined by the base and length
registers P@OBR, POLR, PIBR, and P1LR and several minor control fields.
In order for a process to execute, the majority of the PCB must be moved
into the internal registers. While a process is executing, some of its
hardware context is being updated in the internal registers. When a
process is not being executed its hardware context is stored in a data
structure termed the Process Control Block (PCB). Saving the contents
of the privileged registers in the PCR of the currently executing
process and then loading a new context from another PCB is termed
context switching. Context switching occurs as one process after
another is scheduled for execution.

Process Structure 21-May-82 -- Rev 5 page 7-2
PROCESS CONTEXT

7.2 PROCESS CONTEXT
7.2.1 Process Control Block Base (PCBB)

The process control block for the currently executing process is pointed
to by the content of the Process Control Block Base (PCBB) register, an
internal privileged register. Figure 7.1 depicts the Process Control
Block Base.

(read/write)
Process Control Block Base (PCBB) Register

At bootstrap time, the contents of PCBB is UNPREDICTABLE.

7.2.2 Process Control Block (PCB)

The process control block (PCB) contains all of the switchable process
context .collected into a compact form for ease of movement to and from
the privileged internal registers. Although in any normal operating
system there 1is additional software context for each process, the
following description is limited to that portion of the PCB known to the
hardware. Figure 7-2 depicts the PCB, whose contents are described in
Table 7-1.

Page 7-3

-- Rev 5

21-May-8¢

Process Structure
PROCESS CONTEXT

AP (R12)

co N

09} o3}

+ o+

-+ ——— 4+
| |
t !
[_
| |
_ [
_ _
_ !
| 1
_ |
[_
_ _
| 1
| |
| I
_ [
| I
_ !
I _
_ _
| !
| i
T -
| 1 I
| —i |
oo
[_
| _
| !

oo |

@ [

— | |

o _
[[
| I
I |
_ |
i [
| |
I _
| 1
| |
| |
_ [
+———+
| !
| |
f _
| |
_ _
_ _
t N |
@
[
_ [
| |
| |
1 1
[I
_ _
! |
! _
+———+
| oS |

(PCB)

Process Control Block

Figure 7-2

Process Structure

PROCESS CONTEXT

Longword

2

18

19

20

21

21

21-May-884 -- Rev 5 page 7-4

Table 7-1

Description of Process Control Block

Bits

<31:0>

<31:8>

<31:0>

<31:0>

<31:0>

<31:0>

<31:0>

<31:0>

<21:0>

<23:22>

Mnemonic

KSP

ESP

SSP

usp

R@-R11,
AP,FP

PC
PSL

POBR

POLR

MBZ

Description

Kernel Stack Pointer. Contains the
stack pointer to be used when the
current access mode field in the PSL
is @ and 1S = 0.

Executive Stack Pointer. Contains
the stack pointer to be used when the
current access mode field in the PSL
is 1.

Supervisor Stack Pointer. Contains
the stack pointer to be used when the
current access mode field in the PSL
is 2.

User Stack Pointer. Contains the
stack pointer to be used when the
current access mode field in the PSL
is 3.

General registers R@ through R11,
AP, FP.

Program Counter.

Program Status Longword.

Base register for page table
describing process virtual addresses
from @ to 2**3p9-1. See chapter 5.
Length register for page table
located by P@BR. Describes effective
length of page table. See chapter 5.

Must be zero.

Process Structure

PROCESS CONTEXT

21

21

22

23

23

23

<26:24>

<31:27>

<31:0>

<21:0>

<30:22>

<31>

21-May-80 -- Rev 5 Page 7-5

ASTLVL

MBZ

P1BR

P1LR

MBZ

PME

Contains access mode number
(established by software) of the most
privileged access mode for which an
AST is pending. Controls the
triggering of the AST delivery
interrupt during REI instructions.

ASTLVL Meaning

] AST pending for access
mode @ (kernel)

1 AST pending for access
mode 1 (executive)

2 AST pending for access
mode 2 (supervisor)

3 AST pending for access
mode 3 (user)

4 No pending AST
5-7 Reserved to DIGITAL
Must be zero.

Base register for page table
describing process virtual addresses
from 2**30 to 2%*31-1, See chapter
5.

Length register for page table
located by P1BR. Describes effective
length of page table. See chapter 5.

Must be zero.

Performance Monitor Enable controls a
signal visible to an external
hardware performance monitor. This
bit is set to identify those
processes for which monitoring is
desired and to permit their behavior
to be observed without interference
from other system activity.

Process Structure 21-May-80 -- Rev 5 Page 7-6
PROCESS CONTEXT

Software symbols for these locations consist of the prefix PTXSL and
the mnemonic. For example, the PCB offset to R3 s PTXSL R3.
Exceptions are longwords 21 and 23, for which the software symbols are:

PTX$L_P@LRASTL longword 21
PTXSL P1LRPME longword 23

To alter its P@BR, P1BR, POLR, PILR, ASTLVL or PME, a process must be
executing in kernel mode. It must first store the desired new value 1in
the memory image of the PCB then move the value to the appropriate
privileged register. This protocol results from the fact that these are
read-only fields (for the context switch instructions) in the PCB.

7.2.3 Process Privileged Registers

The ASTLVL and PME fields of the PCB are contained in registers when the
process is running. 1In order to access them, two privileged registers
are provided. Figure 7.3 depicts the AST Level Register.

| ignored; returns 0 |AST- |

(read/write)
Figure 7-3 AST Level Register

An MTPR src,#ASTLVL with src<2:0> GEQU 5 results in a reserved operand
fault. At bootstrap time, the contents of ASTLVL is 4. Figure 7.4
depicts the Performance Monitor Enable (PME) Register.

3

1 19
PP ittt +-+
| P
| MBZ IM|
| |E|
S it +-+

(read/write)
Figure 7-4 Performance Monitor Enable Register

At bootstrap time, PME is cleared.

Process Structure 21-May-88 -- Rev 5§ Page 7-7
ASYNCHRONOUS SYSTEM TRAPS (AST)

7.3 ASYNCHRONOUS SYSTEM TRAPS (AST)

Asynchronous system traps are a technique for notifying a process of
events that are not synchronized with 1its execution and initiating
processing for asynchronous events with the least possible delay. This
delay in delivery of the AST may be due to either process non-residence
or an access mode mismatch. The efficient handling of AST's in VAX-11
requires some hardware assistance to detect changes in access mode
(current access mode in PSL). A process in any of the four execution
access modes (kernel, exec, super, and user) may receive AST's;
however, an AST for a less privileged access mode must not be permitted
to interrupt execution in a more protected access mode. Since outward
access mode transitions occur only in the REI instruction, comparison of
the current access mode field is made with a privileged register
(ASTLVL) containing the most privileged access mode number for which an
AST is pending. 1If the new access mode is greater than or equal to the
pending ASTLVL, an IPL 2 interrupt is triggered to cause delivery of the
pending AST.

General Software Flow for AST processing:

1. An event associated with an AST causes software enqueuing of an
AST control block to the software PCB and the software sets the
ASTLVL field in the hardware PCB to the most privileged access
mode for which an AST is pending. TIf the target process is
currently executing, the ASTLVL privileged register also has to
be set.

2. When an REI instruction detects a transition to an access mode
that can be interrupted by a pending AST, an IPL 2 interrupt is
triggered to cause delivery of the AST. Note that the REI
instruction does not make pending AST checks while returning to
a routine executing on the interrupt stack.

3. The (IPL 2) interrupt service routine should compute the
correct new value for ASTLVL that prevents additional AST
delivery interrupts while in kernel mode and move that value to
the PCB and the ASTLVL register before lowering IPL and
actually dispatching the AST. This interrupt service routine
normally executes on the kernel stack in the context of the
process receiving the AST.

4. At the conclusion of processing for an AST, the ASTLVL is
recomputed and moved to the PCB and ASTLVL register by
software.

Process Structure 21-May-84 -- Rev 5 Page 7-8
PROCESS STRUCTURE INTERRUPTS

7.4 PROCESS STRUCTURE INTERRUPTS

Two of the software interrupt priorities are reserved for process
structure software.

They are:
(IPL 2) - AST delivery interrupt.

This interrupt is triggered by a REI that detects
PSL<KCUR_MOD> GEQU ASTLVL and indicates that a pending AST
may now be delivered for the currently executing process.

(IPL 3) - Process scheduling interrupt.

This interrupt is only triggered by software to allow the
software running at IPL 3 to cause the currently
executing process to be blocked and the highest priority
executable process to be scheduled.

7.5 PROCESS STRUCTURE INSTRUCTIONS

Process scheduling software must execute on the interrupt stack (PSL<IS>
set) in order to have a non-context-switched stack available for use.
If the scheduler were running on a process's Kkernel stack, then any
state information it had there would disappear when a new process is
selected. Running on the interrupt stack can occur as the result of the
interrupt origin of scheduling events, however some synchronous
scheduling requests such as a WAIT service may want to cause
rescheduling without any interrupt occurrence. For this reason, the
Save Process Context (SVPCTX) instruction can be executed while on
either the kernel or the interrupt stack and forces a transition to
execution on the interrupt stack.

All of the process structure instructions are privileged and require
kernel mode.

Process Structure 21-May-80 -- Rev 5§ Page 7-9
PROCESS STRUCTURE INSTRUCTIONS

LDPCTX Load Process Context
Purpose: restore register and memory management context
Format:

opcode
Operation:

if PSL<CUR_MOD> NEQU @
then {privileged instruction fault};
{invalidate per-process translation buffer entries};
!PCB is located by physical address in PCBB
if {internal registers for stack pointers} then
begin
KSP <- (PCB);
ESP <- (PCB+4);
SSP <- (PCB+8);
USP <- (PCB+12);
end;
R@ <- (PCB+16);
R1 <- (PCB+20);
R2 <- (PCB+24);
R3 <- (PCB+28);
R4 <- (PCB+32);
R5 <- (PCB+3%);
R6 <- (PCB+40);
R7 <- (PCB+44);
R8 <- (PCB+48);
R9 <- (PCB+52);
R19 <- (PCB+56);
R11 <- (PCB+60);
AP <- (PCB+64);
FP <- (PCB+68);
tmpl <- (PCB+80);
if {tmpl<31:30> NEQU 2} OR {tmpl<l:8> NEQU @} then
{reserved operand abort};
P@BR <- tmpl;
if (PCB+84)<31:27> NEQU @ then {reserved operand abort};
if (PCB+84)<23:22> NEQU @ then {reserved operand abort};
POLR <- (PCB+84)<21:0>;
if (PCB+84)<26:24> GEQU 5 then {reserved operand abort};
ASTLVL <- (PCB+84)<26:24>;
tmpl <- (PCB+88);
tmp2 <- tmpl + 2**23;
if {tmp2<31:30> NEQU 2} OR {tmp2<l:0> NEQU @} then
{reserved operand abort};
P1BR <- tmpl;
if (PCB+92)<30:22> NEQU 0 then {reserved operand abort};
PILR <- (PCB+92)<21:0>;
PME <- (PCB+92)<31>;
if (PCB+92)<3@:22> NEQU @ then {reserved operand abort};
if PSL<KIS> EQLU 1 then

Process Structure 21-May-88 -- Rev 5 Page 7-10
PROCESS STRUCTURE INSTRUCTIONS

begin

ISP <- SP;
{interrupts off};
PSLKIS> <- 0;

SP <- (PCB); lget KSP
{interrupts on};
end;
-(SP) <- (PCB+76); !push PSL
-(SP) <- (PCB+72); tpush PC

Condition Codes:

N <- N;
7 <- 7;
VvV <~ V;
C <- C;
Exceptions:
reserved operand
privileged instruction
Opcodes:
26 LDPCTX Load Process Context
Description:

The Process Control Block 1is specified by the privileged register
Process Control Block Base. The general registers are loaded from the
PCB. The memory management registers describing the process address
space are also loaded and the process entries in the translation buffer
are cleared. Execution is switched to the kernel stack. The PC and PSL

are moved from the PCB to the stack, suitable for use by a subsequent
REI instruction.

Note:

1. Some processors keep a copy of each of the per-process stack
pointers in internal registers. In those processors, LDPCTX
loads the internal registers from the PCB. Processors that do
not keep a copy of all four per-process stack pointers in
internal registers, keep only the current access mode register
in an internal register and switch this with the PCB contents
whenever the current access mode field changes.

2. Some implementations may not perform some or all of the
reserved operand checks.

Process Structure 21-May-80 -- Rev 5
PROCESS STRUCTURE INSTRUCTIONS

SVPCTX Save Process Context
Purpose: save register context
Format:

opcode

Operation:

if PSL<CUR_MOD> NEQU @ then
{privileged instruction fault};
!PCB is located by physical address in PCBB
if {internal registers for stack pointers} then
begin
(PCB) <- KSP;
(PCB+4) <- ESP;
(PCB+8) <~ SSP;
(PCB+12) <- USP;
end;
(PCB+16) <- RO;
(PCB+2@) <- R1;
(PCB+24) <- R2;
(PCB+28) <- R3;
(PCB+32) <- R4;
(PCB+36) <- R5;
(PCB+48) <- R6;
(PCB+44) <- R7;
(PCB+48) <- RS;
(PCB+52) <- R9;
(PCB+56) <~ R10;
(PCB+6#8) <- R1l1;
(PCB+64) <- AP;
(PCB+68) <- FP;

(PCB+72) <- (SP)+; !pop PC
(PCB+76) <- (SP)+; !pop PSL
If PSL<IS> EQLU @ then
begin
PSL<KIPL> <- MAXU (1, PSL<IPL>);
(PCB) <- SP; !save KSP
KSP <- SP;

{interrupts off};
PSL<KIS> <- 1;

SP <- 1ISp;
{interrupts on};
end;

Condition Codes:

N <- N;
Z <- Z;
V <- V;

Page 7-11

Process Structure
PROCESS STRUCTURE INSTRUCTIONS

Exceptions:
privileged
Opcodes:

@7 SVPCTX

Description:

The Process Control Block 1is
Process Control Block Base.
PCB. The PC and PSL currently
popped and stored in the PCB.
IS is clear,

21-May-8¢

then IS is set, the interrupt stack pointer activated,

-- Rev 5 Page 7-12

instruction

Save Process Context

specified by the privileged register
The general registers are saved into the
on the top of the current stack are
Tf a SVPCTX instruction is executed when
and

IPL is maximized with 1 because of the switch to the interrupt stack.

Notes:

1. The map, and
because

overhead.

ASTLVL,

pointers in

not keep a copy

in an

PME contents of
they are rarely changed.

Some processors keep a copy of each of
internal
stores the internal registers into the PCB.
of
internal registers, keep only the current access mode

the PCB are not saved
Thus, not writing them saves

stack
SVPCTX
processors that do
four per-process stack pointers in
register

the per-process

registers. In those processors,

all

internal register and switch this with the PCB contents

whenever the current access mode field changes.

and the LDPCTX
stack pointers may
instructions. This

invoked at a priority
context switching
pointers.

Between the SVPCTX instruction that saves state for one process
that loads the state of another,

the internal
or MTPR
interrupt service routines
the 1lowest one used for
reference the process stack

not Dbe
implies
higher
must

referenced by MFPR
that
than
not

Process Structure 21-May-84 -- Rev 5 Page 7-13
USAGE EXAMPLE

7.6 USAGE EXAMPLE

The following example illustrates how the process structure instructions
can be used to implement process dispatching software. It is assumed
that this simple dispatch routine is always entered via an interrupt.

ENTERED VIA INTERRUPT
IPL=3

~e we ~o

RESCHED: SVPCTX

;i Save context in PCB

<{set state to runnable>
<and place current PCB>
<on proper RUN queue>

<Remove head of highest>
<priority, non-empty, >
<RUN queue.>

MTPR @#PHYSPCB, PCBB i Set physical PCB address
;in PCBB

LDPCTX i Load context from PCB
;i For new process

REI ;i Place process in execution

CHAPTER 8
SYSTEM ARCHITECTURAL IMPLICATIONS

17-June~-89 -- Rev 5

8.1 INTRODUCTION

Certain portions of the VAX-11 architecture have implications on the
system structure of implementations. There are four broad categories of
interaction: data sharing and synchronization, restartability,
interrupts and errors. Of these, data sharing is most visible to the
programmer.

8.2 DATA SHARING AND SYNCHRONIZATION

The memory system must be implemented such that the granularity of
access for independent modification is the byte. Note that this does
not imply a maximum reference size of one byte but only that independent
modifying accesses to adjacent bytes produce the same results regardless
of the order of execution. For example, suppose 1locations @ and 1
contain the wvalues 5 and 6. Suppose one processor executes INCB @ and
another executes INCB 1. Then regardless of the order of execution,
including effectively simultaneous, the final contents must be 6 and 7.

Access to explicitly shared data that may be written must be
synchronized by the programmer or hardware designer. Before accessing
shared writeable data, the programmer must acquire control of the data
structure, Seven instructions (BBSSI, BBCCI, ADAWI, INSQHI, INSQTI,
REMQHI, REMQTI) are provided to allow the programmer to control
("interlock™) access to a control wvariable. These interlocked
instructions must be implemented in such a way that read, test, modify,
and write happen while other processors and I/0 devices are locked out
of performing interlocked operations on the same control variable. This
is termed an 1interlocked sequence. Only interlocking operations are
locked out by the interlock. On the VAX-11/780, the SBI primitive
operations are interlock read and interlock write. The interlocked read
operation sets the interlock, and the interlocked write releases it.

System Architectural Implications 17-Jun-8¢ -- Rev 5 Page 8-2
DATA SHARING AND SYNCHRONIZATION

BBSST and BBCCI instructions use hardware provided primitive operations
to make a read reference, then test, and then make a write reference to
a single bit within a single byte in an interlocked sequence. The ADAWI
instruction uses a hardware provided primitive operation to make a read
and then a write operation to a single aligned word in an interlocked
sequence to allow counters to be maintained without other interlocks.
The ADAWI instruction takes the hardware lock on the read of the .mw
operand (the second operand which is the one being modified).

The INSQUE and REMQUE instructions provide a series of longword reads
and writes in an uninterruptible sequence to allow dueues to be
maintained without other interlocks in a uniprocessor system.

The INSQHI, INSQTI, REMQHI, and REMQTI instructions use an interlock on
the queue header to allow queues to be maintained consistently in a
multiprocessor system.

In order to provide a functionality upon which some UNIBUS peripheral
devices rely, processors must insure that all instructions making byte
or word sized modifying references (.mb and .mw) use the DATIP -
DATO(B) functions when the operand physical address selects a UNIBUS
device. This constraint does not apply to longword, quadword, field,
all floating, or string operations if implemented using byte or word
modifying references. This constraint also does not apply to
instructions precluded from I/0 space references (see Appendix A).

In a multiprocessor system, any software clearing PTE<V> or changing the
protection code of a page table entry for system space such that it
issues a MTPR xxx,#TBIS must arrange for all other processors to issue a
similar TBIS. The original processor must wait until all the other
processors have completed their TBIS before it allows access to the
system page.

8.3 CACHE

A hardware implementation may include a mechanism to reduce access time
by making local copies of recently used memory contents. Such a
mechanism is termed a cache. A cache must be implemented in such a way
that 1its existence 1is transparent to software (except for timing and

error reporting/control/recovery). 1In particular, the following must be
true:

1. Program writes to memory followed by starting a peripheral
output transfer must output the updated value.

2. Completing a peripheral input transfer followed by the program
reading of memory must read the input value.

3. A write or modify followed by a HALT on one processor followed
by a read or modify on another processor must read the updated
value.

System Architectural Implications 17-Jun-8¢9 -- Rev § Page 8-3
CACHE

4. A write or modify followed by a power failure followed by
restoration of power followed by a read or modify must read the
updated value provided that the duration of the power failure
does not exceed the maximum non-volatile period of the main
memory.

5. In multiprocessor systems, access to variables shared between
processors must be interlocked by software executing one of the
interlocked instructions (BBSSI, BBCCI, ADAWI,
INSQHI, INSQTI,REMQHI ,REMQTI).

6. Valid accesses to I/0 registers must not be cached.

On the VAX-11/788, this is achieved by a cache that writes through to
memory and that watches the memory bus for all external writes to
memory.

At bootstrap time, the cache must be either empty or valid.

8.4 RESTARTABILITY

The VAX-11 architecture requires that all instructions be restartable
after a fault or interrupt that terminated execution before the
instruction was completed. Generally, this means that modified
registers are restored to the value they had at the start of execution.
For some complex or iterative instructions, indicated in Chapter 4,
intermediate results are stored in the general registers. 1In the latter
case memory contents may have been altered but the former case requires
that no operand be written unless the instruction can be completed. For
most instructions with only a single modified or written operand, this
implies special processing only when a multibyte operand spans a
protection boundary making it necessary to test accessibility of both
parts of the operand.

In order that instructions which store intermediate results in the
general registers not compromise system integrity, they must insure that
any addresses stored or used are virtual addresses, subject to
protection checking, and that any state information stored or used
cannct result in a non-interruptable or non-terminating sequence.

Instruction operands that are peripheral device registers having access
side effects may produce UNPREDICTABLE results due to instruction
restarting after faults or interrupts. In order that software may
dependably access peripheral device registers, instructions used to
access them must not permit -a fault or interrupt after the first 1/0
space access. The instructions and addressing modes that can be used to
meet this condition are listed in Appendix A, "INSTRUCTIONS USABLE TO
REFERENCE I/0 SPACE."

Memory modifications produced as a side effect of instruction execution,
e.g. memory access statistics, are specifically excluded from the
constraint that memory not be altered until the instruction can be

System Architectural Implications 17-Jun-8¢ ~-- Rev 5 Page 8-4
RESTARTABILITY

completed.

Instructions that abort are constrained only to insure memory protection
(e.g., registers can be changed).

8.5 INTERRUPTS

Underlying the vaX-11 architectural concept of an interrupt 1is the
notion that an interrupt request is a static condition, not a transient
event, which can be sampled by a processor at appropriate times.
Further, if the need for an interrupt disappears before a processor has
honored an interrupt request, the interrupt request can be removed
(subject to implementation dependent timing constraints) without
consequence.

In order that software be able to operate deterministically it is
necessary that any instruction changing the processor priority (IPL)
such that a pending interrupt is enabled must allow the interrupt to
occur before executing the next instruction that would have been
executed had the interrupt not been pending.

Similarly, instructions that generate requests at the software interrupt
levels (See Chapter 6) must allow the interrupt to occur, if processor
priority permits, before executing the apparently subsequent
instruction.

8.6 ERRORS

Processor errors, if not inconsistent with instruction completion,
should create high priority interrupt requests. Otherwise, they must
terminate instruction execution with an exception (fault, trap or
abort), in which case there may also be an associated interrupt request.

Error notification interrupts may be delayed from the apparent
completion of the instruction in execution at the time of the error but
if enabled, the interrupt must be requested before processor context is
switched, priority permitting.

An example of a case where both an interrupt and an exception are
associated with the same event occurs when the VAX-11/780 instruction
buffer gets a read data substitution (i.e. read memory data error). In
this case the interrupt request associated with error will not be taken
if the priority of the running program is high, but an abort will occur
when an attempt is made to execute the instruction. However, the
interrupt is still pending and will be taken when the priority is
lowered.

System Architectural Implications 17-Jun-89 -- Rev 5 Page 8-5
I/0 STRUCTURE

8.7 1/0 STRUCTURE
8.7.1 Introduction

The VAX-11 I/O architecture is very similar to the PDP-11 structure, the
principal difference being the method by which processor registers (such
as the PSL) are accessed (see Chapter 9). Peripheral device
control/status and data registers appear at locations in the physical
address space, and can therefore be manipulated by normal memory
reference instructions. On the VAX-11/78¢ implementation, this I1/0
space occupies the upper half of the physical address space and is 2%**29
bytes in 1length. Use of general instructions permits all the virtual
address mapping and protection mechanisms described in Chapter 5 to be
used when referencing 1I/0 registers. Note: Implementations that
include a cache feature must suppress caching for references in the I1/0
space.

For any member of the VAX-11 series implementing the UNIBUS, there will
be one or more areas of the I/0 physical address space each 2%*18 bytes
in length, which "maps through" to the UNIBUS addresses. The collection
of these areas is referred to as the UNIBUS space.

8.7.2 Constraints On I1/0 Registers

The following is a list of both hardware and programming constraints on
I/0 registers. These items affect both hardware register desiqn and
programming considerations.

1. The physical address of an I1/0 register must be an integral
multiple of the register size in bytes, (which must be a power
of two); i.e., all registers must be aligned on natural
boundaries.

2. References using a length attribute other than the 1length of
the register and/or unaligned references may produce
UNPREDICTABLE results. For example a byte reference to a
word-length register will not necessarily respond by supplying
or modifying the byte addressed.

3. In all peripheral devices, error and status bits that may be
asynchronously set by the device must be cleared by software
writing a "1" to that bit position and not affected by writing
a "gr. This is to prevent clearing bits that may be
asynchronously set between reading and writing a register.

4. Only byte and word references of a read-modify-write (i.e.,
".mb" or ".mw") type in UNIBUS I/0 spaces are guaranteed to
interlock correctly. References in the I/0 space other than in
UNIBUS spaces are UNDEFINED with respect to interlocking. This
includes the BBSSI and BBCCI instructions.

System Architectural Implications 17-Jun-84 -- Rev 5 Page 8-6

I/0 STRUCTURE

5. String, quad, octa, F _floating, D_floating, G _floating,
H floating, and field references in the 1/0 space result in

UNDEFINED behavior.

CHAPTER 9
PRIVILEGED REGISTERS

13-May-81 -- Rev 5.2

9.1 PROCESSOR REGISTER SPACE

The processor register space (PRS) provides access to many types of CPU
control and status registers such as the memory management base
registers, the PSL, and the multiple stack pointers. These registers
are explicitly accessible only by the Move to Processor Register (MTPR)
and Move from Processor Register (MFPR) instructions which require
kernel mode privileges.

All the internal processor registers are summarized in the tables at the
end of this section. Those which need further explanation are described
below. Reference to general registers means R@ through R13, the SP, and
the PC (See Chapter 2). Registers referenced by the MTPR and MFPR
instructions are designated processor registers, and appear in the
processor register space.

9.2 PER-PROCESS REGISTERS AND CONTEXT SWITCHING

There are several per-process registers which are loaded from the PCB
during a context 1load operation and, with the exception of the memory
mapping registers and AST level, written back to the PCB during a
context save operation (see Chapter 7). Some implementations may copy
some or all of these registers from the PCB into scratchpad registers
and write them back into the PCB during a context save operation. Other
implementations may retain the registers in main memory in the PCB.

For this reason, reading or writing any of these registers via the MFPR
or MTPR instruction, or through reference to SP, may or may not read or
write the register copy in the current PCB, depending on the
implementation. Likewise modifying one of these registers in the PCB
will not necessarily update the register which appears in the register
space or SP.

Privileged Registers 13-May-81 -- Rev 5.2 Page 9-2
PER-PROCESS REGISTERS AND CONTEXT SWITCHING

An implementation may retain some or all per-process internal registers
only in the PCB. In this case, MTPR and MFPR for these registers must
access the corresponding PCB location. However, implementations that
have internal registers in hardware scratchpads are not required to
access the corresponding PCB locations for MTPR and MFPR.

9.3 STACK POINTER IMAGES

Reference to SP (the stack pointer) in the general registers will access
one of five possible stack pointers; the user, supervisor, executive,
kernel, or interrupt stack pointer, depending on the values of the
current mode and IS bits in the PSL (see Chapter 6). Additionally,
software can access any of the five stack pointers (including the one
currently selected by the current mode and IS bits in the PSL) via the
MTPR and MFPR instructions (even on processors that implement the KSP,
Ssp, ESP, or USP only in the PCB) Results are correct even if the stack
pointer specified by the current mode and IS bits in the PSL is
referenced in the PRS by an MTPR or MFPR instruction. This means that a
MFPR/MTPR to the KSP (if 1S=0) or the ISP (if IS=1) is equivalent to a
MOVL from/to the SP.

Privileged Registers 13-May-81 -- Rev 5.2 Page 9-3
MTPR AND MFPR INSTRUCTIONS
9.4 MTPR AND MFPR INSTRUCTIONS
MTPR Move To Processor Register
Format:
opcode src.rl, procreg.rl
Operation:
if PSL <CUR_MOD> NEQ # then {reserved
instruction fault};
PRS [procreg] <- src;
Condition Codes:
N <- src LSS @; !'if register is replaced
Z <- src EQL 0;
vV <- 0; !except TBCHK register (see Chapter 5)
C <- C;
N <- N; !if register is not replaced
Z K- Z7;
V <- V;
C - C;
Exceptions:

reserved operand fault
reserved instruction fault

Opcode:

DA MTPR Move To Processor Register

Description:

Loads the source operand specified by source into the processor register
specified by procreg. The procreg operand is a longword which contains

the processor register number. Execution may have

side effects.

Notes:

1. 1If the processor internal register does not

operand fault occurs.

register-specific

reserved

2. A reserved instruction fault occurs if instruction execution is

attempted in other than kernel mode.

Privileged Registers 13-May-81 -- Rev 5.2 Page 9-4

MTPR AND MFPR INSTRUCTIONS

3. A reserved operand fault occurs on a move to a read only
register.

Privileged Registers 13-May-81 -- Rev 5.2 Page 9-5
MTPR AND MFPR INSTRUCTIONS

MFPR Move From Processor Register
Format:

opcode procreqg.rl, dst.wl
Operation:

if PSL <CUR_MOD> NEQ 0 then {reserved

instruction fault};

dst <- PRS[procreqg];

Condition Codes:

N <- dst LSS 0; !if destination is replaced

7Z <- dst EQL @;

V <~ 0;

C K- C;

N <- N; !if destination is not replaced
Z <- 7;

V <- V;

C K- C;

Exceptions:

reserved operand fault
reserved instruction fault

Opcode:

DB MFPR Move From Processor Register

Description:

The destination operand is replaced by the contents of the processor
register specified by procreg. The procreg operand is a longword which
contains the processor register number. Execution may have
register-specific side effects.

Notes:

1. 1If the processor internal register does not exist a reserved
operand fault occurs.

2. A reserved instruction fault occurs if instruction execution is
attempted in other than kernel mode.

3. A reserved operand fault occurs on a move from a write only
register.

Privileged Registers 13-May-81 -- Rev 5.2 Page 9-6
VAX-11 SERIES REGISTERS

9.5 VAX-11 SERIES REGISTERS

Mne-

Register Name monic Number Type Scope Init?
Kernel Stack Pointer KSP 1) R/W PROC -
Executive Stack Pointer ESP 1 R/W PROC ——
Supervisor Stack Pointer SSP 2 R/W PROC -
User Stack Pointer usp 3 R/W PROC -—
Interrupt Stack Pointer ISP 4 R/W CPU -
P@ Base Register POBR 8 R/W PROC -
P@ Length Register PALR 9 R/W PROC -=
Pl Base Register P1BR 19 R/W PROC -
Pl Length Register P1LR 11 R/W PROC -
System Base Register SBR 12 R/W CPU -—
System Limit Register SLR 13 R/W CPU --
Process Control Block Base PCBB 16 R/W PROC -
System Control Block Base SCBB 17 R/W CPU -
Interrupt Priority Level IPL 18 R/W CPU yes
AST Level ASTLVL 19 R/W PROC yes
Software Interrupt Request SIRR 29 W CPU -
Software Interrupt Summary SISR 21 R/W CPU yes
Interval Clock Control ICCS 24 R/W CPU yes
Next Interval Count NICR 25 W CPU -
Interval Count ICR 25 R CPU --
Time of Year (optional) TODR 27 R/W CpPU no
Console Receiver C/S RXCS 32 R/W CPU yes
Console Receiver D/B RXDB 33 R CPU -
Console Transmit C/S TXCS 34 R/W CPU yes
Console Transmit D/B TXDB 35 W CPU -
Memory Management Enable MAPEN 56 R/W CPU yes
Trans. Buf. Invalidate All TBIA 57 W CPU -
Trans. Buf. Invalidate Single TBIS 58 W CPU -
Performance Monitor Enable PMR 61 R/W PROC yes
System Identification SID 52 R CPU no

Translation Buffer Check TBCHK 63 W CPU -—

Privileged Registers 13-May-81 -- Rev 5.2 Page 9-7
VAX-11 SERIES REGISTERS

9.5.1 System Identification Register (SID)

The SID is a read only constant register that specifies the processor
type. The entire SID register is included in the error log and the type
field may be used by software to distinguish processor types.

3 2 2
1 4 3 2
Fm e e +
| TYPE | type specific !
Fom e +
(read only)
System Identification Register
Type A unique number assigned by engineering to identify a specific
processor:
0 = Reserved to DIGITAL (error)
1 = vVAX-11/789
2 = VAX-11/750
3 = VAX-11/730
4 through 127 = Reserved to DIGITAL
128 through 255 = Reserved to CSS and customers
type specific format and content is a function of the value in

type. It is intended to include such information
as serial number and revision level.

For the VAX-11/780, the type specific format is:

| ECO level [plant] serial number |
L R . o +

For the VAX-11/750, the type specific format is:

| | microcode rev | hardware rev |
o b o +

Privileged Registers 13-May-81 -- Rev 5.2 Page 9-8
VAX-11 SERIES REGISTERS

9.5.2 Console Terminal Registers

The console terminal is accessed through four internal registers. Two
are associated with receiving from the terminal and two with writing to
the terminal. 1In each direction there is a control/status register and
a data buffer register.

3

1 8 765 ?
IS S Sttt ot ———— +
| IDIT| |
| MBZ 101E| MBZ |
! INT] !
e ———— ettt ———— +

R R
O W
Console Receive Control/Status (RXCS)

3 111 11

1 6 5 4 21 8 7 2
e b ——— o ———— ettt +
| IE | | | |
| 2 IR] @ | 1ID | DATA |
| IR | | | I
it e fomm———— e +

(read only)
Console Receive Data Buffer (RXDB)

At bootstrap time, RXCS is initialized to a. Whenever a datum is

received, the read only bit DONe is set by the console. If IE
(interrupt enable) is set by the software then an interrupt is generated
at IPL 20. Similarly, if DONe is already set and the software sets IE,
an interrupt is generated (i.e., an interrupt is generated whenever the
function {IE AND DON} changes from # to 1). If the received data
contained an error such as overrun or loss of connection then ERR is set
in RXDB. The received data appears in DATA., When a MFPR #RXDB,dst is
executed, DONe is cleared as is any interrupt request. If ID is 8 then
the data 1is from the console terminal. If ID is non-zero then the
entire register is implementation dependent.

Privileged Registers 13-May-81 -- Rev 5.2 Page 9-9-
VAX-11 SERIES REGISTERS

3
1 8 765 g
o e _ R e T +
| IRIT|]
| MB?Z IDIE | MBZ |
I Iyl |]
P e Fmt—tmm e +
R R
0w
Console Transmit Control/Status (TXCS)
3 11
1 21 8 7]
Fm to————— Fom e +
| MBZ ! 1D | DATA |
Fo . to————— tomm e +

(write only)
Console Transmit Data Buffer (TXDB)

At bootstrap time, TXCS 1is initialized with just the RDY bit set
(ready). Whenever the console transmitter is not busy, it sets the read
only bit RDY. 1If IE (interrupt enable) is set by the software then an
interrupt 1is generated at IPL 20. Similarly, if RDY is already set and
the software sets IE, an interrupt is generated (i.e., an interrupt is
generated whenever the function {IE AND RDY} changes from @ to 1). The
software can send a datum by writing it to DATA. When a MTPR src,#TXDB
is executed, RDY is cleared as is any interrupt request. If ID is
written 0 then the datum is sent to the console terminal. If ID is
non-zero then the entire register is implementation dependent.

On the VAX-11/780 if ID is one then the datum is sent to the floppy
disk.

9.5.2.1 VAX-11/780 console register implementation -

RXDB
3 2 2 11 11
1 4 3 6 5 21 8 7 4}
tom————— to—— - o +--—— o o +
I I I | ! I
| MBZ | MBZ | Used by | I |
| | | DL-11 | | I
Fom e Fom e i o Fom e +
I I
| |
Select Data

Privileged Registers 13-May-81 -- Rev 5.2 Page 9-10
VAX-11 SERIES REGISTERS

TXDB
3 2 2 11 11
1 4 3 6 5 21 8 7 Y]
for e ————— o ———— o ———— o ——— o — +
| | | | | |
| MBZ | MBZ | MBZ | I |
| | | | | !
o ———— o o ——— tm———— fom - +
| |
| !
Select Data
Field Field
Select Field Values (in Hex)
Select Code Device Data Field Values
2 Operator's Terminal g thru 7F - ASCII Data
1 Drive 0 (Data) @ thru FF - Binary Data
2 Function Complete (Status)
9 Drive @ (Command) @ = Read Sector
1 = Write Sector
2 = Read Status
3 = Write Deleted Data
Sector
4 = Cancel Function
5 = Protocol Error
F Misc. Communication 1 = Software Done
2 = Boot CPU
3 = Clear Warm-start flag
4 = Clear Cold-start flag

Code 5 (Protocol Error), 1is sent by the console when one of the
following occurs:

1. Another load device command (except for Cancel Function) is
issued by the 0S before a previous command 1is completed.

2. The console gets a 'Drive 8 (DATA) ' when expecting a command.

Privileged Registers 13-May~-81 -- Rev 5.2 Page 9-11
VAX-11 SERIES REGISTERS

9.5.2.1.1 Status Byte Definition - The Status Byte is used by VMS to
determine the success or failure of a Read or Write operation. The
Status Byte is sent to the 0S at the completion of a Read, Write, or
Read Status operation. The Select code is always 'Function Complete'
(code 2). The Status Bit assignments are as follows:

RXDB
3 2 2 11 11
1 4 3 6 5 21 8 7 6 210
o Fom - Fom - te——— Fot—toe -t —4
I ! | | L1 [
[MBZ | MBZ | MBZ | [] b
| | | | P [
Fom e Fom - Fom t-———- ottt -t -4
| |
CODE '2° | | CRC ERR

The Status Bit assignments are identical to those supplied by the Floppy
controller, excepting Bit 7. Bit 7 «corresponds to Bit 15 of the
Floppy's 'RXCS' Register.

9.5.3 Clock Registers

The clocks consist of a time of vyear clock and an interval clock. The
time of year clock is used to measure the duration of power failures and
is required for unattended restart after a power failure. The interval
clock is used for accounting, for time dependent events, and to maintain
the software date and time.

9.5.3.1 Time-of-Year Clock -

The time-of-year clock consists of one longword register. The register
forms an unsigned 32-bit binary counter that is driven by a precision
clock source with at least .0025% accuracy (approximately 65 seconds per
month) . The least significant bit of the counter represents a
resolution of 10 milliseconds. Thus, the counter cycles to @ after
approximately 497 days.

Privileged Registers 13-May-81 -- Rev 5.2 Page 9-12
VAX-11 SERIES REGISTERS

The counter has an optional battery hack-up power supply sufficient for
at least 100 hours of operation, and the clock does not gain or lose any
ticks during transition to or from stand-by power. The battery 1is
recharged automatically. If the battery has failed, so that time is not

accurate, then the register is cleared upon power up. One of two things
then happens:

1. The register starts counting from 0. Thus, if software
initializes this clock to a value corresponding to a large time
(e.g., a month), it can check for loss of time after a power

restore by checking the clock value. This is the VAX-11/780
implementation.

2. The register stays at @ until the software writes a non-zero

value into 1it. It counts only when it contains a non-zero
value. This is the VAX-11/750 implementation.

(read/write)

Time of Year (TODR)

Privileged Registers 13-May-81 -- Rev 5.2 Page 9-13
VAX-11 SERIES REGISTERS

9.5.3.2 Interval Clock - The interval clock provides an interrupt at
IPL 24 at programmed intervals. The counter 1s incremented at 1
microsecond intervals, with at least .01% accuracy (3.64 seconds per
day) . The clock interface consists of three registers in the privileged
register space:

3
1]
P +
| interval count |
o +
(read only)
interval count register (ICR)
3
1 Y]
o e +
| next interval count |
F e +
(write only)
next interval (NICR)
33
10 8 76543 10
Fobm -t +-+
IE] ITITIsIX]| IR
IR | MB?Z INIEIGIF| MBZ 1U|
IR | IT] ILIRI IN |
Ft R e e e e e e
W WRWW R
C CWOOo W
Interval Clock Control/Status (ICCS)

l. Interval Count - The interval register is a read only register
incremented once every microsecond. It is automatically loaded
from NICR upon a carry out from bit 31 (overflow) which also
interrupts at IPL 24 if the interrupt is enabled.

2. Next Intérval Count - The reload register is a write only
register that holds the value to be loaded into ICR when it
overflows. The value is retained when ICR is loaded. NICR is
capable of being loaded regardless of the current values of ICR
and ICCS.

3. Interval Clock Control Status (ICCS) - The 1ICCS register
contains control and status information for the interval clock.

RUN <@> When set, ICR increments each microsecor When clear

nd. 1
ICR does not increment automatically. At bootstrap t

run is cleared.

Privileged Registers 13-May-81 -- Rev 5.2 Page 9-14
VAX-11 SERIES REGISTERS

XFR <4> A write only bit., Each time this bit is set, NICR 1is
transferred to ICR.

SGL <5> A write only bit. TIf RUN is clear, each time this bit is
set, ICR is incremented by one.

1E <H> When set, an interrupt request at IPL 24 is generated
every time ICR overflows (INT is set). When clear, no
interrupt is requested. Similarly, if INT is already set
and the software sets 1IE, an interrupt is generated
(i.e., an interrupt is generated whenever the function
{IE AND INT} changes from @ to 1).

INT (7> Set by hardware every time ICR overflows. If IE 1is set
then an interrupt is also generated. An attempt to set
this bit via MTPR clears INT, thereby reenabling the
clock tick interrupt (if IE is set).

ERR <31> Whenever ICR overflows, if INT is already set, then ERR
is set. Thus, ERR 1indicates a missed clock tick. An
attempt to set this bit via MTPR clears ERR.

Thus, to setup the interval clock, lJoad the negative of the desired
interval into NICR. Then a MTPR #7X51,#ICCS will enable interrupts,
reload ICR with the NICR interval and set run. Every "interval count"
microseconds will cause INT to be set and an interrupt to be requested.
The interrupt routine should execute a MTPR #°XC1,$ICCS to clear the
interrupt. If TINT has not been cleared (i.e., the interrupt has not
been handled) by the time of the next ICR overflow, the ERR bit will be
set.

At bootstrap time, bits <6> and <0> of ICCS are cleared. The rest of
ICCS and the contents of NICR and ICR are UNPREDICTABLE.

Privileged Registers 13-May-81 -- Rev 5.2 Page 9-15
VAX-11/780 SPECIFIC REGISTERS

9.6 VAX-11/780 SPECIFIC REGISTERS

Mne-

Register Name monic Number Type Scope Init?
Accelerator Control/Status ACCS 4Q R/W CPU yes
Accelerator Maintenance ACCR 41 R/W CPU no
WCS Address WCSA 44 R/W CPU no
WCS Data WCSD 45 R/W CPU yes
SBI Fault/Status SBIFS 48 R/W CPU yes
SBI Silo SBIS 49 R CPU no
SBI Silo Comparator SBISC 50 R/W CPU yes
SBI Maintenance SBIMT 51 R/W CPU yes
SBI Error Register SBIER 52 R/W CpPU yes
SBI Timeout Address SBITA 53 R CPU -
SBI Quadword Clear SBIQC 54 W CPU -
Micro Program Breakpoint MBRK 50 R/W CpPU no

9.6.1 VAX-11/780 Accelerator

The VAX-11/780 processor has an optional accelerator for a subset of the

instructions. Two internal registers control the accelerator, ACCS and
ACCR.

ACCS is the accelerator «control and status register. It 1indicates
whether an accelerator exists, controls whether it |is enabled,

identifies its type and reports errors and status. At bootstrap time,
the type and enable are set; the errors are cleared.

3322202 111

1069876 6 5 4 8 7 4]
B R e e e i T TN e e R +
[EIMIUIOI|R] |E | | |
[RIBIN|V|S| MBZ IN | MBZ | TYPE !
IRIZIFIF|V]| IB| | !
ettt -t o +
R R R R R RO

0 000 W

Accelerator Control/Status (ACCS)

TYPE <7:0> Read only field specifying the accelerator type as
follows:

B = No Accelerator
1 Floating point accelerator

]

Numbers in the range 2 through 127 are reserved to
DIGITAL. Numbers in the range 128 through 255 are
reserved to CSS/customers,

Privileged Registers 13-May-81 -- Rev 5.2 Page 9-16
VAX-11/788 SPECIFIC REGISTERS

ENB <15> Read/write field specifying whether the accelerator is
enabled. At bootstrap time, this 1is set 1f the
accelerator is installed and functioning. An attempt to
set this if no accelerator is installed is ignored.

RSV 27> Read only bit specifying that the last operation had a
reserved operand.

OVF <28> Read only bit specifying that the last operation had an
overflow.

UNF <29> Read only bit specifying that the last operation had an
underflow.

ERR <31> Read only bit specifying that at least one of bits RSV,
OVF, and UNF 1is set. Note that bits <31:27> are
normally cleared by the main processor microcode Dbefore
starting the next macro instruction.

ACCR is the accelerator maintenance register. It controls the
accelerator's microprogram counter. At bootstrap time its contents are
UNPREDICTABLE.

33 2 2 1111

10 4 3 6 5 4 3 9 8 2
ot —— R e et fetmt pormmmmm e +

lE| | |E M| l l

IT| MBZ | TRAP ADDRESS IM|P| MBZ | MICRO PC |

IL | I L IM] | I
e e o —— bt fommmm e +

W RW W R RW

0] 0 0

Accelerator Maintenance Register (ACCR)

PC <@:8> NEXT MICRO PC on read. This contains the next micro
address to be executed.

MATCH MICRO PC on write. If EML is also set, then this
updates the micro PC match register.

MPM <14> MICRO PC MATCH. A read only bit that 1is set whenever
the accelerator's micro PC matches the micro PC match
register. This is useful primarily as a scope Sync
signal.

EML <15> ENABLE MICRO PC MATCH LOAD. A write only bit that when
set causes <8:0> to be loaded into the accelerator's
micro PC match register.

TRAP <16:23> TRAP ADDRESS. A read/write field used by the main

processor to force the accelerator to a specified micro

location.

Privileged Registers 13-May-81 -- Rev 5,2 Page 9-17
VAX-11/78@¢ SPECIFIC REGISTERS

ETL <K31> ENABLE TRAP ADDRESS LOAD. A write only bit that when
set causes <23:16> to be loaded into the accelerator's
trap address register. Subsequently, the main

processor's micro code can force the accelerator to trap
to this location by asserting an internal signal.

9.6.2 VAX-11/780 Micro Control Store

The VAX-11/780 processor has three registers for control/status of its
microcode. Two are wused for writing into any writable control store
(WCS) and one is used to control micro breakpoints.

3 11111

1 654 3 2 2
e R e R i T +
| P | I
| MBZ ITICTR] WCS ADDR |
| IN| | |
B it e T B B ittt U —— +

R RW RW
W
Writable Control Store Address (WCSA)

3

1 1)
e +
| WCS Data |
Fo e +

(on Write)

3

1 8 7 Y
o Fom e +
| 2 | PRESENT [
Fo e~ R T S +

(on read)
Writable Control Store Data (WCSD)

Reading WCSD indicates which control store addresses are writable. If

WCSD<n> is set, then addresses n*1024 through n*1024+1023 are writable
(i.e., that WCSA<K12:10> EQLU n corresponds to writable control store).
n=4 corresponds to WCS that is reserved to DIGITAL for diagnostics and
engineering change orders. Other fields correspond to blocks of control
that can be used to implement customer or CSS specific microcode. Each
word of control store contains 96 bits plus 3 parity bits. To write one
or more words, initialize WCS ADDR to the address and CTR to #. Then
each MTPR to WCSD will write the next 32 bits and automatically
increment CTR. When CTR would become 3, it is automatically cleared and

Privileged Registers 13-May-81 -- Rev 5.2 Page 9-18
VAX-11/780 SPECIFIC REGISTERS

WCS ADDR is incremented. 1f PIN is set, then any writes to WCSD are
done with inverted parity. An attempt to execute a microword with bad
parity results in a machine check. At bootstrap time, the contents of
WCSA are UNPREDICTABLE.

(read/write)
Micro Program Breakpoint Address (MBRK)

Whenever the microprogram PC matches the contents of MBRK, an external
signal is asserted. If the console has enabled stop on mlcrobreak then
the processor clock is stopped when this signal is asserted. If the
console has not enabled microbreak, then this signal is available as a
diagnostic scope point. Many diagnostlcs use the NOP instruction to
trigger this method of giving a scope point. At bootstrap time, the
contents of MBRK are UNPREDICTABLE.

9.6.3 SBI FAULT/STATUS REGISTER (SBIFS)

332222272 211111

12987654 g 987 65 g
Fot—t—t—t—t—t—tmm———— = ittt +
[PIMIUIMIMIXIN] ILITIsIs| |
ITIBINIBILIMIS] MBZ I'TINITIT] MBZ l
fylzixlziTiTITI [HITIGIL] |
e ek S i ottt oo ——m +
R R R R W R W

0 0 0 0 C 0 C
15: 0 MBZ
16 SIL SILO FLT LOCK Fault Silo Lock

(set if Silo Locked due to Fault Signal)

17 SIG SIG FLT Fault Signal

18 INT INT FLT EN Fault Interrupt Enable

19 LTH LTH FLT Fault Latch
20: 24 MB2Z

25 NST NST ERR Nested Error
26 XMT XMT FLT Transmitter during Fault cycle
27 MLT MLT XMT Multiple Transmitter Fault Flag
29 UNX UNX RD Unexpected read Data Fault Flag

31 PTY PTY FLT SBI Parity Fault Flag

Privileged Registers 13-May-81 -~ Rev 5.2 Page 9-19
VAX-11/780 SPECIFIC REGISTERS

9.6.4 SBI SILO DATA REGISTER (SBIS)

The SBI Silo is a history of the state of the indicated SBI signals for
the past 16 SBI cycles. The silo is updated every cycle until FAULT is
asserted on the SBI or an SBI Silo Comparator match occurs. Each entry
in the silo has the following format:

332 2 2 2 2 1111
1809 5 4 21 8 76 5 g
ottt e o et +
AT I I I | I
[FIN] ID | TAG | SBI | CNF | SBI TRK15:0> |
ITIT]| | | [| |
B - to————— ot +
READ ONLY
@:15 SBI TR SBI Transmit/Receive Lines
17:16 CNF SBI CNF1-9¢ SBI Confirmation Lines
21:18 SBI SBI M3-Mg SBI bits 21-18 are written
OR B31-B28 with SBI B31-B28 when SBI
TAG FIELD specifies command
address TAG. Otherwise, M3-M@
are written in this field.
24:22 TAG SBI TAG
29:25 ID SBI IDI
30 INT INTLK SBI Interlock
31 AFT AFT FLT First Entry after FAULT cleared

9.6.5 SBI SILO COMPARATOR REGISTER (SBISC)

The Silo Comparator allows the SBI to become locked when pre specified
conditions are detected. Conditional and unconditional lock modes are
provided by the Silo Comparator.

Privileged Registers 13-May-81 -- Rev 5.2 Page 9-24
VAX-11/780 SPECIFIC REGISTERS

332 222 2 2 21 11

189875 3 2 3 9 6 5 Y]
ettt ———— FR——— o —— e +
lclT|L| L |COMPARE| COMP| COUNT | |
IMIN|Cl O | CMD OR| | | MBZ |
lP|TIK] C | MASK | TAG | FIELD | |
bttt —————— - o e +

*

*CLEARED ON ANY WRITE TO SBISC

15: 0 MBZ

19:16 COUNT FIELD

22:20 COMPARE TAG

26:23 COMPARE CMD or MASK Command or Mask

28: 27 LOC LOCK COND CODES Conditional Lock Codes

29 LCK LCK UNCOND Lock Unconditional

30 INT INT EN Silo Lock Interrupt Enable
31 CMP CMP STILO LOCK Compare Silo Lock
9.6.6 SBI MAINTENANCE REGISTER (SBIMT)

The SBI Maintenance register allows error conditions to be

diagnostic purposes.

forced

Privileged Registers

VAX-11/789 SPECIFIC REGISTERS

13-May-81 -- Rev 5.2
1111111
6543210987)
B e s e it e e 5
IFIFIFIFIDIPIGIGITI I
IGIGIRIRIS|1I1|O]T| MB?Z |
f@111g11IBl | | |M| |
R e e L e e B e e
RRRRR
00000

Force Timeout on Read

Group @ Match

Group 1 Match

Force Pl reversal on SBI
Disable SBI Cycles

Force Cache Replacement Group 1
Force Cache Replacement Group 0
Force Cache Miss Group 1

Force Cache Miss Group 0

Reverse Cache Parity Field

Enable SBI Invalidate

Force SBI Write Invalidate to Cache
Maintenance ID - to force faults
and as SILO Comparator

Force Multiple Transmitter Fault
Force Unexpected Read Data Fault

Force Write Sequence Fault
Force P@ Reversal on SBI

33222 2222
19987 32140

e e e it e e
[PIWIU M| [T1E]
[IRIN|L] MAINT IDIN|N|] REV
[ITIXIT] IvIT]

i e e e b e S
R R RR R R R R
0000 0 00 0

Bd:7 MB?Z

8 TIM TIME F OUT

9 GO G@ MAT

10 Gl Gl MAT
11 Pl REV SBI Pl
12 DSB DSBL SBI CYC

13 FR1 F G1 REP

14 FRO F G@ REP

15 FG1 F Gl MISS

16 FGO MISS F G@

20:17 REV REV CACHE

PAR FIELD

21 ENT EN SBI INV

22 INV INV F SBI

27:23 MAINT ID

28 MLT MLT F XMIT

29 UNX UNEX F RD

30 WRT WRT F SEQ

31 Pg P@ REV SBI

9.6.7 SBI ERROR REGISTER (SBIER)

Page 9-21

Privileged Registers 13-May-81 -- Rev 5.2 Page 9-22
VAX-11/780 SPECIFIC REGISTERS

3 1111111

1 654321998 765432179

o e bttt =ttt —F—F———F—F+—+—+-+

| |clcIriclicp IMiclTlIlIB [TIIMII M|

| MBZ ITIRIDIPITIM|IBIEIRIB|TIMIE|LIN|B]

| lEIDIS! louT!zicl | louTiclTiBlZI

o e -ttt —t———F—-+—F+-F—F-——F—-+-+-+-+
WWWRR RWW R RRR
cccoo occ O 00O

1) MB?Z

1 INB INT NOT BSY SBT SBI Interface Not Busy

2 MLT MLT CP ERR Multiple CP Error

3 IEC IR SBI CNF FERR Error Confirmation

5:4 IB TIM OUT

IR TIME OUT STATUS

5 1B IB TIME OUT

7 IR IB RDS

8 CEC CP SBI CNF ERR Error Confirmation

9 MBZ

11:1¢ CP TIM OUT

CP TIME OUT STATUS
12 CP CP TIME OUT
13 RDS Read Data Substitute -

set whenever RDS is
returned to CPU.

14 CRD CRD (Corrected Read Data)
is set whenever CRD is
returned to CPU.

15 CIE CRD INT EN RDS CRD/RDS Interrupt Enable

31:16 MBZ

9.6.8 SBI TIMEOUT ADDRESS (SBITA)

This register is a holding register for the Physical Address sent on the
SBI. When a timeout occurs on the SBI, this register will latch up with

the physical address of the timeout. It is reset by clearing bit 12 of
the SBI error register.

Privileged Registers

13-May-81 -- Rev 5.2 Page 9-23

VAX-11/78¢ SPECIFIC REGISTERS

33222

14987 @
e e e e e L +
IMIMIP] | I
11181C|a| PHYSICAL ADDRESS <29:2> |
i e e et +

READ ONLY

27: 0 PHYSICAL ADDRESS <29:2>

28 2
29 PC NO PROT CHK Protection checked reference.
30 M@ Mode 0 reference

31 M1 Mode 1 reference
9.6.9 SBI QUAD CLEAR (SBIQC)

332

129 32 Y
F et te——— +
IMBZ | PHYSICAL QUADWORD ADDRESS | MBZ |
o e e t———— +

WRITE ONLY

Privileged Registers 13-May-81 -- Rev 5.2 Page 9-24
VAX-11/75¢ SPECIFIC REGISTERS

9.7 VAX-11/750 SPECIFIC REGISTERS

Mne-
Register Name monic Number Type Scope Init?
CMI Error Register CMIERR 23 R CPU yes
Console Storage Receiver Status CSRS 28 R/W CPU yes
Console Storage Receiver Data CSRD 29 R CPU -
Console Storage Transmit Status CSTS 30 R/W CPU yes
Console Storage Transmit Data CSTD 31 W CPU --
Translation Buffer Disable TBDR 36 R/W CPU -
Cache Disable CADR 37 R/W CPU -
Machine Check Error Summary MCESR 38 R/W CPU --
Cache Error CAER 39 R/W CPU -
Accelerator Control/Status ACCS 49 R/W CPU -
Initialize UNIBUS IORESET 55 W CPU -
Translation Buffer Data TBDATA 59 R/W CPU -—
9.7.1 CMI Error Register
3 221 11 111
1 109 5 5 321 8 7 54 3 @
o fet t————- +tm————— e -t +
| @ | | SMR | 0 | | TBGPR | @ [BER |
e — fotm————— it t—tmmm———— +————= +—p—mmm——— +
@:3 BER Bus Error
@ Corrected Data Error
1 Lost Error
2 Uncorrectable Data Error
3 Non-existent memory
4 TBHIT TB hit on last reference
11:8 TBGPR TB Group Error
8 TB Group @ Data error
9 TB Group 1 Data Error
10 TB Group @ Tag Error
11 TB Group 1 Tag error
12 RLTO Read Lock Timeout
18:16 SMR Saved Mode Register
17:16 Processor access mode for last reference
18 Virtual=@, Physical=l

29 CMIDIS Disable CMI references

Privileged Registers 13-May-81 -- Rev 5.2 Page 9-25
VAX-11/750 SPECIFIC REGISTERS

9.7.2 Console Storage Device Registers

The VAX-11/750 accesses the console storage device through four internal
registers that are distinct from those used to access the console
terminal. The architecture of these registers is similar to that of the
console terminal registers.

3
1 8 76 5 @
e R T . T, +
| IDIT| |
| MBZ |O|E | MBZ I
I INT] I
P e Fotb o +
R R
oW
Console Storage Receive Status (CSRS)
3
1 8 7 1%}
Fo e T +
I 2 | DATA |
e e B T up—— +
(read only)
Console Storage Receive Data Buffer (CSRD)
3
1 8 7 6 5 10
o e e _ Fobmpmm o +-+
| IR|T| B
| MBZ IDIE | MBZ IR |
| [yl | K|
P e e T +-+
R R W
O W 0]
Console Storage Transmit Status (CSTS)
3
1 8 7)
e tom e +
l] | DATA |
o e _ At +

(write only)
Console Storage Transmit Data Buffer (CSTD)

Privileged Registers 13-May-81 -- Rev 5.2 Page 9-26
VAX-11/7506 SPECIFIC REGISTERS

9.7.3 Translation Buffer Group Disable Register (TBDR)

3

1 4 32190
e e — e —— - — oo +-t-t-+-—+
| f [
e —————— e ———— oo - oo +-t—t-+-+
0 Force Miss Group @

1 Force Miss Group 1

2 if {<3> EQL 1} then this bit selects group to be replaced
3 @ = Random replacement, 1 = Force replacement
9.7.4 Cache Disable Register (CADR)

3

1 10
e e — - +-+
| MBZ (.
e — - - —— oo +-+
] Disable cache
9.7.5 Machine Check Error Summary Register (MCESR)

3

1 4 3210
e ————— e — oo +-t-+-+-+
| u el |
e ——— oo — - o — oo +—+—4-+-+
@ Reference was through prefetch logic
2 TB parity error

3 Bus error
9.7.6 Cache Error Register (CAER)

Privileged Registers 13-May-81 -- Rev 5.2 Page 9-27
VAX-11/750 SPECIFIC REGISTERS

3

1 4 32109
o e e ___ R e
| Y (I I
P e _ -t —F—t—1
@ Cache hit
1 Lost error
2 Cache data parity error
3 Cache Tag parity error

9.7.7 Accelerator Control/Status Register

The accelerator control and status register on the VAX-11/750 is a
subset of the ACCS on the VAX-11/784.

3 111
1 6 5 4 8 7 Y]
Fr o ot e L, +
| 1E | | |
| MBZ IN | MBZ] TYPE |
| IBI I |
Fo e __ R L gy Fom e +
W RO
o]
<T7:0> TYPE [} no accelerator or disabled

1 Floating Point Accelerator (FPA)

Numbers in the range 2-127 are reserved to DIGITAL.

Numbers in the range 128-255 are reserved to CSS/customers.
<15> ENB Enable FPA.

ACCS<15> always reads as 0. To determine if an FPA is present, write a

1 to ACCS<K15> and then read ACCS<@>. 1If there is no FPA, ACCS<@> will
read as 0,

9.7.8 1Initialize UNIBUS (IORESET)

 Initialize Unibus

Privileged Registers 13-May-81 -- Rev 5.2 Page 9-28
VAX-11/75@¢ SPECIFIC REGISTERS

9.7.9 Translation Buffer Data Register (TBDATA)

This internal processor register is used to read and write locations in
the TB. On a MFPR to this register, the page table entry for the
virtual address in P@BR is read from the TB into the destination. On a
MTPR, the source operand is written into the TB as the page table entry
for the virtual address in POBR. The results of an MTPR/MFPR on the
register are UNPREDICTABLE if memory management is enabled.

CHAPTER 10
PDP-11 COMPATIBILITY MODE

23-March-81 -- Rev 5.2

10.1 INTRODUCTION
VAX compatibility mode hardware, in conjunction with a compatibility
mode software executive (which runs in VAX mode), can emulate the
environment provided to user programs on a PDP-11. This environment
excludes the following features of normal PDP-11 operation:

1. Privileged instructions such as HALT and RESET.

2. Special instructions such as traps and WAIT.

3. Access to internal processor registers (e.g., PSW and console
switch register).

4. Direct access to trap and interrupt vectors.
5. Direct access to I/0 devices.

6. Interrupt servicing.

7. Stack overflow protection.

8. Alternate general register sets.

9. Any processor mode other than user (i.e., Kernel and Supervisor
modes are not supported) and Sseparate I and D spaces,

10. Floating point instructions.

This specification is based on the behavior of all PDP-11
implementations. Compatibility mode behavior is defined as
UNPREDICTABLE where there 1is a difference between any two PDP-11
implementations.

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 10-2
COMPATIBILITY MODE USER ENVIRONMENT

10.2 COMPATIBILITY MODE USER ENVIRONMENT

14.2.1 General Registers And Addressing Modes

All of the PDP-11 general registers and addressing modes are provided in
compatibility mode. gide effects caused by a destination address
calculation have no effect on source values (except in JSR), and
auto-increment modes in JMP and JSR do not affect the new PC. However,
side effects caused by a source address calculation might affect the
value of a register used for destination address calculation. All

PDP-11 addresses are 16 bits wide. In compatibility mode, @ 16-bit
pDP-11 address is zero-extended to 32 bits.

In register mode addressing, the operand is the contents of register n:
operand = Rn

Byte operations, except for MOVB to a register, access the low order

byte, 1i.e. bits <7:0>. The low byte is sign-extended if a register is

used as the destination of a MOVB instruction. If the PC is used as the

destination of a byte instruction, the result is UNPREDICTABLE.

The assembler notation for register mode is Rn.

1¢6.2.1.2 Register Deferred Mode -

The addressing format for register deferred mode is:

In register deferred mode addressing, the address of the operand is the
contents of register n:

OA = Rn

operand = (0OA)

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 1¢-3
COMPATIBILITY MODE USER ENVIRONMENT

The assembler notation for register deferred mode is (Rn) or @Rn.

16.2.1.3 Autoincrement Mode -

The addressing format for autoincrement mode is:

If Rn denotes PC, immediate data follows the instruction, and the mode
is termed immediate mode.

In autoincrement mode addressing, the address of the operand 1is the
contents of register n. After the operand address is determined, the
size of the operand in bytes (1 for byte; 2 for word) is added to the
contents of register n (except in the case of SP and PC), and the
register is replaced by the result. If Rn denotes SP or PC, the
register is incremented by 2 and the register is replaced by the result.

OA = Rn
if n LEQ 5 then Rn <- Rn + size else Rn <- Rn + 2
operand = (0A)
The assembler notation for autoincrement mode is (Rn) +. For 1immediate

mode the notation 1is #constant where constant is the immediate data
which follows the instruction.

10.2.1.4 Autoincrement Deferred Mode -

The addressing format for autoincrement deferred mode is:

If Rn denotes PC, a 16-bit address follows the instruction, and the mode
is termed absolute mode.

In autoincrement deferred mode addressing, the address of the operand is
the contents of a word whose address is the contents of register n.
After the operand address is determined, 2 is added to the contents of
register n, and the register is replaced by the result.

pDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 1@-4
COMPATIBILITY MODE USER ENVIRONMENT

OA = (Rn)

Rn <- Rn + 2

operand = (OA)
The assembler notation for autoincrement deferred mode is @(Rn}+. For

absolute mode the notation is @#address where address is the word which
follows the instruction.

1¢.2.1.5 Autodecrement Mode -

The addressing format for autodecrement mode is:

In autodecrement mode addressing, the size of the operand 1in bytes (1
for Dbyte; 2 for word) is subtracted from the contents of register n
(except in the case of SP and pC), and the register is replaced by the
result. If Rn denotes SP or PC, the register is decremented by 2 and
the register is replaced by the result. The updated contents of
register n is the address of the operand:

if n LEQ 5 then Rn <- Rn - size else Rn <- Rn - 2
OA = Rn
operand = (OA)

The assembler notation for autodecrement mode is - (Rn).

1¢.2.1.6 Autodecrement Deferred Mode -

The addressing format for autodecrement deferred mode is:

In autodecrement deferred mode addressing, 2 is subtracted from the
contents of register n, and the register is replaced by the result. The
updated contents of register n is the address of the word whose contents
is the address of the operand:

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 1¢-5
COMPATIBILITY MODE USER ENVIRONMENT

Rn <~ Rn - 2

0OA = (Rn)

operand = (0OA)

The assembler notation for autodecrement deferred mode is @-(Rn).

10.2.1.7 1Index Mode -

The addressing format for index mode is:

5 3 2 2
+———— o +
I 6 | Rn |
R B +
In index mode, the index (contents of the word following the

instruction) is added to the contents of register n. The result is the
address of the operand:

OA = Rn + index
operand = (0A)

If Rn denotes PC, the updated contents of the PC is used, and the mode
is termed relative mode.

The assembler notation for index mode is index(Rn), where the index
value is the word following the instruction.

16.2.1.8 1Index Deferred Mode -

The addressing format for index deferred mode is:

In index deferred mode, the index (contents of the word following the
instruction) 1is added to the contents of register n. The result is the
address of a word whose contents is the address of the operand:

0A = (Rn + index)

operand = (0A)

pPDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 10-6
COMPATIBILITY MODE USER ENVIRONMENT

If Rn denotes PC, the updated contents of the PC is used, and the mode
is termed relative deferred mode.

The assembler notation for index deferred mode is €index(Rn), where the
index value is the word following the instruction.

1¢9.2.2 The Stack

General register R6 is used as the stack pointer by certain
instructions. as in the PDP-11. 1t is not, however, used by the
nardware for any exceptions or interrupts. There 1is also no stack

overflow protection in compatibility mode.

19.2.3 Processor Status Word

PDP-11 compatibility mode uses a subset of the full PDP-11 Processor
Status Word. The format of the compatibility mode PSW is:

1

5 54 3210
o +—t-+-+-+-+
| @ ITIN|ZIVIC]
e — +—t-—F—+—-+-+

When an RTI or RTT instruction is executed, bits 15 through 5 in the
saved PSW on the stack are ignored.

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 1¢0-7
COMPATIBILITY MODE USER ENVIRONMENT

18.2.4 Instructions

Table 1#.1 lists the instructions provided in compatibility mode.

TABLE 14.1
Compatibility Mode Instructions
Opcode Mnemonic
(octal)
000002 RTI
00036 RTT
0a91DD JMP
PB020R RTS
p0B240-000277 Condition codes
@333DD SWAB

P00400-003777 Branches
1000006-103777 Branches

0@4RDD JSR
.259DD CLR (B)
.851DD COM (B)
.252DD INC (B)
.953DD DEC (B)
.854DD NEG (B)
.B55DD ADC (B)
.956DD SBC (B)
.057ss TST (B)
.860DD ROR (B)
.961DD ROL (B)
.952DD ASR (B)
.063DD ASL (B)
#065SS MFPI*
2966DD MTPI *
1865Ss MFPD*
1066DD MTPD*
@8567DD SXT
@70RSS MUL
@71RSS DIV
@72RSS ASH
@73RSS ASHC
274RDD XOR
@#77RNN SOB
.1SSDD MOV (B)
. 25SSS CMP (B)
. 35SSS BIT (B)
.45SDD BIC (B)
.555DD BIS (B)
§6SSDD ADD
165SDD SUB

R = register specifier
SS source operand specifier
DD destination operand specifier
= @ for word operations and 1 for byte operations

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 10-8
COMPATIBILITY MODE USER ENVIRONMENT

* These instructions execute exactly as they would on a PDP-11 in user
mode with Instruction and Data space overmappecd. More specifically,
they ignore the previous access level and act like PUSH and POP
instructions referencing the current stack.

Table 10.2 lists the trap instructions that cause the machine to fault
to VAX mode, where either the complete trap may be serviced, or where
the instruction may be simulated.

TABLE 10.2
Compatibility Mode Trap Instructions

Opcode Mnemonic
(octal)

0o0ea3 BPT
000004 I0T

104000-104377 EMT
104400-104777 TRAP

The instructions listed in Table 10.3 and all other opcodes not listed
in Tables 18.1 or 10.2 are considered reserved instructions in
compatibility mode, and fault to VAX mode. See Section 10.5.

TABLE 10.3
Compatibility Mode Reserved Instructions
Opcode Mnemonic
(octal)
0600 HALT
00001 WAIT
0ea0eBS5 RESET
g00ea067 MFPT
PB@23N SPL
@36 4NN MARK
@@7@8DD CSM
P7500R FADD--FIS
@7501R FSUB--FIS
#37502R FMUL--FIS
#7503R FDIV--FIS
B76XXX Extended Instructions
1064SS MTPS
1867DD MFPS
17XXXX FP1l Floating Point

Note that no floating point instructions are included in compatibility
mode.

PDP-11 Compatibility Mode 23-March-81
COMPATIBILITY MODE USER ENVIRONMENT

18.2.4.1 Single Operand Instructions -

Arithmetic and Logical:

CLR DEC INC NEG TST COM
CLRB DECB INCB NEGB TSTB COMB
Shifts:

ASR ASL

ASRB ASLB

Multiprecision:

ADC SBC SXT
ADCB SBCB
Rotates:

ROL ROR SWAB

ROLB RORB

-— Rev 5.2

Page 1¢-9

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 10-10
COMPATIBILITY MODE USER ENVIRONMENT

CLR Clear
Format:
1
5 6 5 g
e R +
| Opcode | dst.wx |
e R +

Operation:
dst <- @;

Condition Codes:

N <- 0;
7 <- 1;
V <~ 0;
C <~ 0;

Exceptions:
none

Opcodes (octal)

..

0B850 CLR Clear Word
1059 CLRB Clear Byte

Description:

The destination operand is replaced by zero.

PDP-11 Compatibility Mode 23-March-81 --.Rev 5.2 Page 10-11
COMPATIBILITY MODE USER ENVIRONMENT

DEC Decrement
Format:
1
5 6 5 2
e o +
| Opcode | dst.mx |
o o~ +

Operation:
dst <- dst - 1;
Condition Codes:

<- dst LSS ¢;

<- dst EQL 0;

<- {integer overflow};
<- C;

A< N2

Exceptions:
none
Opcodes (octal):

@953 DEC Decrement Word
1953 DECB Decrement Byte

Description:

One is subtracted from the destination operand and the destination
operand is replaced by the result.

Note:

Integer overflow occurs if the largest negative integer is decremented.

On overflow, the destination operand is replaced by the largest positive
integer.

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 10-12
COMPATIBILITY MODE USER ENVIRONMENT

INC Increment
Format:
1
5 5 5 a
oo o —— +
| Opcode | dst.mx |
o o +

Operation:
dst <~ dst + 1;
Condition Codes:
N <- dst LSS 0;
7 <- dst EQL 9;
Vv <- {integer overflow};
Cc K- C;
Exceptions:
none

Opcodes (octal):

g852 INC Increment Word
1952 INCB Increment Byte

Description:

One is added to the destination operand and the destination operand is
replaced by the result.

Note:
Integer overflow occurs if the largest positive integer is incremented.

On overflow, the destination operand is replaced by the largest negative
integer.

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 1¢-13
COMPATIBILITY MODE USER ENVIRONMENT

NEG Negate
Format:
1
5 6 5 J
e e T B . +
| Opcode | dst.mx !
o b +
Operation:

dst <- -dst;
Condition Codes:

<- dst LSS ¢;
<- dst EQL d;
<- dst EQL most negative integer;
<{- dst NEQ ¢;

NN 2

Exceptions:
none
Opcodes (octal):

2354 NEG Negate Word
1854 NEGB Negate Byte

Description:

The destination operand is negated (2's complement) and the destination
operand is replaced by the result.

Note:

Integer overflow occurs if the operand 1is the most negative integer
(which has no positive counterpart). On overflow, the destination
operand is replaced by itself.

pPDP-11 Compatibility Mode 23-March-81
COMPATIBILITY MODE USER ENVIRONMENT

TST Test
Format:
1
5 5 5 1)
T fmmm e — +
| Opcode | src.rx |
e bome e +

Operation:
src - @;

Condition Codes:

N <- src LSS @;
7 <- src EQL @;
vV <- 0;
C <~ 9;

Exceptions:
none
Opcodes (octal):

2357 TST Test Word
1357 TSTB Test Byte

Description:

The condition codes are affected according to the value

operand.

—— Rev 5.2

of

Page 1A-14

the

source

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 1¢-15
COMPATIBILITY MODE USER ENVIRONMENT

COM Complement
Format:
1
5 6 5]
e R T T +
| Opcode | dst.mx |
Fm e _ e +

Operation:
dst <~ NOT dst;

Condition Codes:

N <- dst LSS 0;
Z <- dst EQL g;
V <- @;
C <-1;

Exceptions:
none
Opcodes (octal):

2951 COM Complement Word
1851 COMB Complement Byte

Description:

The destination operand is complemented (l1's complement) and the
destination operand is replaced by the result.

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 10-16
COMPATIBILITY MODE USER ENVIRONMENT

ASR Arithmetic Shift Right
Format:
1
5 6 5 a
fom e o +
| Opcode | dst.mx |
o B +

Operation:
dst <- dst shifted one place to the right;
Condition Codes:

<- dst LSS 0;

<- dst EQL @;

<- {bit shifted out} XOR {dst LSS 0};
<- bit shifted out;

O<<N Z

Exceptions:
none
Opcodes (octal):

0052 ASR Arithmetic Shift Right Word
1062 ASRB Arithmetic Shift Right Byte

Description:

The destination operand is arithmetically shifted right by one bit and
the destination operand is replaced by the result.

Notes:
1. The sign bit of the destination operand is replicated in shifts

to the right. The condition code C bit stores the bit shifted
out.

2. 1If the PC is used as the destination operand, the result and
the next instruction executed are UNPREDICTABLE.

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2

COMPATIBILITY MODE USER ENVIRONMENT

ASL Arithmetic Shift Left
Format:
1
5 6 5 @
e _ Fom e +
| Opcode | dst.mx I
o __ R P, +

Operation:
dst <- dst shifted one place to the left;
Condition Codes:
<- dst LSS ¢;
<- dst EQL g;

<~ {integer overflow};
<- bit shifted out;

A< N 2

Exceptions:
none
Opcodes (octal):

0063 ASL Arithmetic Shift Left Word
1063 ASLB Arithmetic Shift Left Byte

Description:

The destination operand is arithmetically shifted left by

the destination operand is replaced by the result.

Notes:

Page 16-17

one bit and

1. The least significant bit is filled with zero in shifts to the
left. The condition code C bit stores the bit shifted out.

2. Integer overflow occurs if the destination changes sign due to

the shift.

PDP-11 Compatibility Mode 23-March-81 --
COMPATIBILITY MODE USER ENVIRONMENT

ADC Add Carry

Format:

Operation:

dst <- dst + C;

Condition

Nn<agN 2

Codes:

<~ dst LSS 0;

<- dst EQL @;

<- {integer overflow};

<- {carry from most significant bit};

Exceptions:

none

Opcodes (octal):

3055 ADC add Carry to Word
1055 ADCB Add Carry to Byte

Description:

Rev 5.2 Page 10-18

The contents of the condition code C bit are added to the destination

operand and the

Note:

destination operand is replaced by the result.

Integer overflow occurs if the most positive integer is incremented. On
overflow, the result is the most negative integer.

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 10-19
COMPATIBILITY MODE USER ENVIRONMENT

SBC Subtract Carry
Format:
1
5 6 5 2
o o +
| Opcode | dst.mx |
R i T o +

Operation:

dst <- dst - C;
Condition Codes:
<- dst LSS 0;
<- dst EQL 4;

<- {integer overflow};
<- {borrow into most significant bit};

NN 2

Exceptions:
none
Opcodes (octal):

2056 SBC Subtract Carry from Word
1956 SBCB Subtract Carry from Byte

Description:

The contents of the condition code C bit are subtracted from the

destination operand and the destination operand 1is replaced by the
result.

Note:

Integer overflow occurs if the most negative integer is decremented. On
overflow, the result is the most positive integer.

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 10-20
COMPATIBILITY MODE USER ENVIRONMENT

SXT Sign Extend Word
Format:
1
5 6 5 a
fr e - fmmm +
[Opcode | dst.ww |
B e b ———— +

Operation:
if N EQL 1 then dst <- -1 else dst <- §;

Condition Codes:

N <- dst LSS #; IN <- N
7 <- dst EQL 0;

VvV <- B;

C <= C;

Exceptions:

none
Opcodes (octal):

3067 SXT Sign Extend
Description:

If the condition code N bit is set then the destination operand is
replaced by -1; otherwise the destination operand is cleared.

Note:

If the PC is used as the destination operand, the results and the next
instruction executed are UNPREDICTABLE.

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 1¢0-21
COMPATIBILITY MODE USER ENVIRONMENT

ROL Rotate Left
Format:
1
5 6 5)
R T —— o +
! Opcode | dst.mx |
R e T Tp—— e +

Operation:
dst'C <- dst'C rotated left;
Condition Codes:
<- dst LSS @;
<{- dst EQL @;

<- {integer overflow};
<- {bit rotated out of dst};

ao<LN 2

Exceptions:
none
Opcodes (octal):

3061 ROL Rotate Left Word
1961 ROLB Rotate Left Byte

Description:

The condition code C bit and the destination operand are rotated left by
one bit position; i.e. the C bit gets the most significant bit of the
destination operand, the destination is replaced by the destination

shifted 1left by one bit with the 1initial ¢ bit filling the least
significant bit.

Notes:

1. The rotate instructions operate on the destination operand and
the condition code C bit taken as a circular datum.

2. Integer overflow occurs if the destination changes sign due to
the rotate.

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 10-22
COMPATIBILITY MODE USER ENVIRONMENT

ROR Rotate Right
Format:
1
5 6 5 2
Fommmm e Fommm +
| Opcode | dst.mx |
T e +

Operation:
dst'C <~ dst'C rotated right;

Condition Codes:

N <- dst LSS 0;

7 <- dst EQL @;

V <- {C bit changed due to rotate};

C <- {bit rotated out of dst};
Exceptions:

none

Opcodes (octal):

gp6a ROR Rotate Right Word
1060 RORB Rotate Right Byte

Description:

The condition code C bit and the destination operand are rotated right
by one bit position; 1i.e. the C bit gets the least significant bit of
the destination operand, the destination is replaced by the destination
shifted right by one bit with the initial C bit filling the most
significant bit.

Note:

The rotate instructions operate on the destination operand and the
condition code C bit taken as a circular datum.

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 10-23
COMPATIBILITY MODE USER ENVIRONMENT

SWAB Swap Bytes
Format:
1
5 6 5 a
o e +
| Opcode | dst.mw I
o o +

Operation:
dst <- dst<7:ﬂ>'dst<15:8>;
Condition Codes:
N <- dst<7:0> LSS 0;
Z <- dst<7:0> EQL @;
V <- 0;
C <- 4;
Exceptions.
none
Opcodes (octal):
00803 SWAB Swap Bytes
Description:
The high and low bytes of the destination word operand are swapped.

Note:

If the PC is used as the destination operand, the result and the next
instruction executed are UNPREDICTABLE.

PDP-11 Compatibility Mode 23-March-81
COMPATIBILITY MODE USER ENVIRONMENT

16.2.4.2 Double Operand Instructions -

Arithmetic and Logical:

MOV ADD SUB CMP MUL DIV
MOVB CMPB

Shift:

ASH ASHC

-—- Rev 5.2 Page 1f-24
XOJR BIS BIC BIT
BISB BICB BITB

If a register that 1is wused in the source operand specifier in
autoincrement or autodecrement modes is also used in the destination (or
source 2) operand specifier, the updated value of the register 1is used

to evaluate the destination specifier.

Side effects caused by a

destination address calculation have no effect on source values.

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 19-25
COMPATIBILITY MODE USER ENVIRONMENT

MOV Move
Format:
1 11
5 21 6 5 @
e ———— B L R e +
|Opcode | src.rx | dst.wx |
- R e +
Operation:
dst <- src;
Condition Codes:
N <- dst LSS @;
Z <- dst EQL @;
V <- @;
C <- C;
Exceptions:
none
Opcodes (octal):
g1 MOV Move Word
11 MOVB Move Byte

Description:
The destination operand is replaced by the source operand.
Note:

The low byte is sign-extended on a MOVB to a register;i.e. bits <15:8>

of the destination register are replaced by bit <7> of the source
operand.

PDP-11 Compatibility Mode 23-March-81
COMPATIBILITY MODE USER ENVIRONMENT

-- Rev 5.2

ADD Add
Format:
1 11
5 21 65 5 g
R R e +
|Opcode | src.rw | dst.mw |
R R frm e +

Operation:

dst <- dst + src;
Condition Codes:
N <- dst LSS 0;
7 <- dst EQL @;
Vv <- {integer overflow};
C <- {carry from most significant digit};

Exceptions:

none
Opcodes (octal):
a6 ADD Add Word
Deccription:
The source operand 1is added to the destination

destination operand is replaced by the result.
Note:
Integer overflow occurs if the input operands have the

result has the opposite sign. On overflow,
replaced by the low order bits of the true result.

the destination operand

Page 10-26

operand and the

same sign and the
is

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 10-27
COMPATIBILITY MODE USER ENVIRONMENT

SUB Subtract
Format:
1 11
5 21 6 5 A
Fmm S R . +
IOpcode | src.rw | dst.mw I
Fomm o Frmmm - R T +

Operation:
dst <- dst - src;
Condition Codes:
N <- dst LSS @;
Z <- dst EQL 4;
V <~ {integer overflow};
C <- {borrow into most significant digit};
Exceptions:
none
Opcodes (octal):
15 SUB Subtract Word

Description:

The source operand is subtracted from the destination operand and the
destination operand is replaced by the result.

Note:

Integer overflow occurs if the input operands are of different signs and
the result has the sign of the source. On overflow, the destination
operand is replaced by the low order bits of the true result.

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 10-28
COMPATIBILITY MODE USER ENVIRONMENT

CMP Compare
Format:

1 11

5 21 6 5 3

o Fomm fomm e ————— +

lopcode | srcl.rx | src2.rx |

o fomm - fomm - +
Operation:

tmp <- srcl - src2;
Condition Codes:

N <- tmp LSS 09;

7 <- tmp EQL 0;

V <- {integer overflow};

C <- {borrow into most significant digit};
Exceptions:

none
Opcodes (octal):

g2 CMP Compare Word

12 CMPB Compare Byte
Description:
The source 1 operand is compared with the source 2 operand. The only
action is to set the condition codes.
Note:
Integer overflow occurs if the operands are of different sign and the
result of the subtraction (srcl - src2) has the same sign as the source

2 operand.

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 10-29
COMPATIBILITY MODE USER ENVIRONMENT

MUL Multiply

Format:
1
5 9 8 6 5 @
e S, o Fomm e~ +
I Opcode | reg | src.rw |
Fmm e fom—— Fom +

Operation:

tmp<31l:8> <~ Rn * src;

Rn <- tmp<31l:16>;

R[{n OR 1] <- tmp<15:0>;
Condition Codes:

N <- tmp LSS 4;

Z <- tmp EQL 0;

V K- @;

C <- {result unrepresentable in 16 bits};
Exceptions:

none
Opcodes (octal):

970 MUL Multiply Word

Description:

The destination register is multiplied by the source operand. The most
significant 16 bits of the 32-bit product are stored in register Rn.
Then the least significant 16 bits are stored in R[n OR 1]. The
condition codes are set based on the 32-bit result.

Note:

1. The C bit is set if the result of the multiplication cannot be
represented in 16 bits; 1i.e. the 32-bit product is less than
-2**15 or greater than or equal to 2%**15,

2. If an odd numbered register is used as the destination, the low
order sixteen bits are stored as the result.

3. If R6 or PC is used as the destination, the next instruction
exXecuted and the result are UNPREDICTABLE.

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 10-30
COMPATIBILITY MODE USER ENVIRONMENT

DIV Divide
Format:
1
5 9 8 6 5 4]
fom - O fome +
| Opcode | reg | src.rw |
fom - e e +
Operation:

tmp <- Rn'R{n OR 1]
Rn <- tmp / src;
R{n OR 1] <- REM(tmp , src);

Condition Codes:

N <- Rn LSS 0; I1UNPREDICTABLE if V is set
7 <- Rn EQL 0; IUNPREDICTABLE if V is set
Vv <- {src EQOL @} OR {integer overflow};

C <- {src EQL 0};

Exceptions:

none
Opcodes (octal):

871 DIV Divide
Description:
1f the source operand is not zero, the 32-bit integer in Rn'R[n OR 1] is
divided by the source operand. The quotient is stored in Rn, and the
remainder is stored in R[n OR 1]. The remainder has the same sign as
the dividend. If the source operand is zero, the instruction terminates

without modifying the destination registers.

Notes:

1. Integer overflow occurs if the quotient is less than -2%%15 or
greater than or equal to 2**15, On integer overflow, the
contents of the destination registers are UNPREDICTABLE.

2. 1If an odd register or R6 is used as the destination, the
results are UNPREDICTABLE. Furthermore, if R6 or PC is used as
the destination, the next instruction executed is
UNPREDICTABLE.

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 1¢0-31
COMPATIBILITY MODE USER ENVIRONMENT

XOR Exclusive OR
Format:
1
5 9 8 5 5 %]
T T O et T +
l Opcode | reg | dst.mw |
e dom—— T T +

Operation:
dst <- Rn XOR dst;

Condition Codes:

N <- dst LSS @;
Z <~ dst EQL #;
V <~ @;
C K- C;

Exceptions:

none
Opcodes (octal):

@74 XOR Exclusive OR Word
Description:

The source register is XORed with the destination operand and the
destination operand is replaced by the result.

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2
COMPATIBILITY MODE USER ENVIRONMENT

BIS Bit Set
Format:
1 11
5 21 6 5)
fo————— fomm e o —————— +
|Opcode | src.rx | dst.mx !
e o Fom +
Operation:
dst <- dst OR src;
Condition Codes:
N <- dst LSS ;
7 <- dst EQL @;
Vv <- @;
C <- C;
Exceptions:
none
Opcodes (octal):
35 BIS Bit Set Word
15 BISB Bit Set Byte

Description:

The source operand is ORed with the destination
destination operand is replaced by the result.

Page 1¢-32

operand

and

the

PDP-11 Compatibility Mode 23-March-81
COMPATIBILITY MODE USER ENVIRONMENT

BIC Bit Clear
Format:
1 11
5 21 6 5 %)
Fem T T R - +
|[Opcode | src.rx | dst.mx |
Fom e R T ——— s +

Operation:

dst <- dst AND {NOT src};
Condition Codes:

N <- dst LSS g;

Z <- dst EQL @;

V <- @;

C K- C;
Exceptions:

none

Opcodes (octal):

g4 BIC Bit Clear Word
14 BICB Bit Clear Byte

Description:

The destination operand is ANDed with the 1's complement of

-- Rev 5.2

Page 10-33

the

operand and the destination operand is replaced by the result.

source

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2

COMPATIBILITY MODE USER ENVIRONMENT

BIT Bit Test
Format:
1 11
5 21 5 5 0
fmm T ittt fomm - +
|opcode | srcl.rx | src2.rx |
fom fomm e fomm - +

Operation:
tmp <- srcl AND src?2;
Condition Codes:

N <- tmp LSS 0;

7Z <- tmp EQL 0;
vV <~ @;
C <= C;

Exceptions:
none
Opcodes (octal):

73 BIT Bit Test Word
13 BITR Bit Test Byte

Description:

The source 1 operand is ANDed with the source
action is to set the condition codes.

2

operand.

The

Page 10-34

only

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 10-35
COMPATIBILITY MODE USER ENVIRONMENT

ASH Arithmetic Shift
Format:
1
5 9 8 6 5 %)
R t—m—— R Bt T - +
I Opcode | reg | src.rw |
Fmm e Fo———— R +

Operation:
Rn <- Rn shifted src<5:g> bits;
Condition Codes:

<{- Rn LSS ¢;

<{- Rn EQL 4;

<- if src<5:0> EQL # then @ else {integer overflow};
<- if src<5:0> EQL 0 then 0 else {last bit shifted out};

14

N<<N 2

Exceptions:

none
Opcodes (octal):

872 ASH Arithmetic Shift
Description:

The specified register is arithmetically shifted by the number of bits
specified by the count operand (bits <5:0> of the source operand) and
the register is replaced by the result. The count ranges from -32 to
+31. A negative count signifies a right shift. A positive count
signifies a left shift. A zero count implies no shift; but condition
codes are affected.

Notes:

1. The sign bit of Rn is replicated in shifts to the right. The
least significant bit is filled with zero in shifts to the
left. The C bit stores the last bit shifted out.

2. Integer overflow occurs on a left shift if any bit shifted into
the sign position differs from the initial sign bit of the
register.

3. If the PC is used as the destination operand the result and the
next instruction executed are UNPREDICTABLE,

pPDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 10-36
COMPATIBILITY MODE USER ENVIRONMENT

ASHC Arithmetic Shift Combined
Format:
1
5 9 8 6 5)
fomm e f—m———— Fomm +
| Opcode | reg | src.rw |
fom e - b +
Operation:

tmp <- Rn'R[n OR 11;

tnp <- tmp shifted src<5:8> bits;
Rn <- tmp<31l:16>;

R{n OR 1] <- tmp<l5:8>;

Condition Codes:

<- tmp LSS @;

<- tmp EQL 0;

if src<5:0> EQL @ then 8 else {integer overflow};

<- if src<5:9> EQL @ then 0 else {last bit shifted out};

NN 2
~
1

Exceptions:

none
Opcodes (octal):

73 ASHC Arithmetic Shift Combined
Description:

The contents of the specified register, Rn, and the register R{n OR 1]
are treated as a single 32-bit operand and are shifted by the number of
bits specified by the count operand (bits <5:0> of the source operand)
and the registers are replaced by the result. First, bits <31:16> of
the result are stored in register Rn. Then, bits <15:0> of the result
are stored in register R[n OR 1]. The count ranges from -32 to +31. A
negative count signifies a right shift. A positive count signifies a
left shift. A =zero count implies no shift; but condition codes are
affected. Condition codes are always set on the 32-bit result.

Notes:

1. The sign bit of Rn is replicated in shifts to the right. The
least significant bit is filled with zero in shifts to the
left. The C bit stores the last bit shifted out.

2. Integer overflow occurs on a left shift if any bit shifted into
the sign position differs from the initial sign bit of the
32-bit operand.

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 1¢-37
COMPATIBILITY MODE USER ENVIRONMENT

3. If the SP or PC is used as the destination operand, the

result
and the next instruction executed are UNPREDICTABLE.

PDP-11 Compatibility Mode 23-March-81
COMPATIBILITY MODE USER ENVIRONMENT
1¢.2.4.3 Branch Instructions -

BR BNE BPL BVC BCC BGE
BEQ BMI BVS BCS BLT

-- Rev 5.2

BGT
BLE

BHI
BLOS

Page 10-38

BHIS SOB
BLO

PDP-11 Compatibility Mode 23-March-81 -- Rev 5,2 Page 1¢-39
COMPATIBILITY MODE USER ENVIRONMENT

BR Branch
Format:
1
5 8 7 /)
e i tm—— e +
| Opcode | displ.bb |
R tmm e +

Operation:
PC <- PC + SEXT (2*displ);

Condition Codes:

N <- N;
Z <- Z;
V <= V;
C <~ C;

Exceptions:

none
Opcodes (octal):

o004 BR Branch
Description:

Twice the sign-extended displacement is added to the PC and the PC is
replaced by the result.

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 10-490

COMPATIBILITY MODE USER ENVIRONMENT

B Branch on (condition)
Format:
1
5 8 7)
fmm e e +
| Opcode | displ.bb |
N e it +

Operation:
if condition then PC <- PC + SEXT (2*displ)

Condition Codes:

N <- N;
7 <- Z;
V <= V;
Cc <- C;

Exceptions:

.
’

none
Opcodes (octal): Condition
2314 BEQ Z EQL 1 Branch on Equal
2010 BNE 7 EQL @ Branch Not Equal
1004 BMI N EQL 1 Branch on Minus
1008 BPL N EQL @ Branch on Plus
1034 BCS, C EQL 1 Branch on Carry Set,
BLO Branch on Lower
1039 BCC, C EQL @ Branch on Carry Clear,
BHIS Branch on Higher or Same
1924 BVS V EQL 1 Branch on Overflow Set
1029 BVC V EQL @ Branch on Overflow Clear
gp24 BLT {N XOR V} EQL 1 Branch on Less Than
3920 BGE (N XOR V} EQL @ Branch on Greater Than or <jual
334 BLE {z OR {N XOR v}
EQL 1 Branch on Less Than or Equal
00380 BGT {z OR {N XOR V}}
EQL 0@ Branch on Greater Than
1010 BHI {c OR Z} EQL @ Branch on Higher
1014 BLOS {c OR Z} EQL 1 Branch on Lower or Same
Description:
The condition codes are tested and if the condition 1indicated by the

instruction is met, twice the sign-extended displacement is added to the

PC and the PC is replaced by the result.

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 10-41
COMPATIBILITY MODE USER ENVIRONMENT

SOB Subtract One and Branch
Format:
1
5 9 8 6 5 %]
Fo—— e R e e +
| Opcode | reg | displ.bs |
e +-——— R e +

Operation:

Rn <- Rn - 1;
if Rn NEQ @ then PC <- pPC - ZEXT (2*displ);

Condition Codes:

N <- N;
Z K- 27;
V <= V;
C <= C;

Exceptions:

none
Opcodes {octal):

377 SOB Subtract One and Branch
Description:
One is subtracted from the specified register and the register is
replaced by the result. If the register is not equal to zero, twice the
zero-extended displacement is subtracted from the PC and the ©PC is

replaced by the result.

Notes:

1. If the PC is specified as the register, the results and the
next instruction executed are UNPREDICTABLE,

2. The 6-bit displacement operand is contained in bits <5:8> of
the instruction.

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 10-42
COMPATIBILITY MODE USER ENVIRONMENT
1¢9.2.4.4 Jump And Subroutine Instructions -

JMP JSR
RTS

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2
COMPATIBILITY MODE USER ENVIRONMENT

JMP Jump
Format:
1
5 6 5 a
A L, +
| Opcode | dst.aw |
Fom e T +

Operation:
PC <- dst;

Condition Codes:

N <- N;
Z K- 7;
V <- V;
C <~ C;

Exceptions:

compatibility mode illegal instruction
Opcodes (octal):

pogl JIMP Jump
Description:
The PC is replaced by the destination operand.
Note:

A compatibility mode illegal instruction fault occurs
mode 6 is used.

if

Page 1¢-43

destination

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 10-44
COMPATIBILITY MODE USER ENVIRONMENT

JSR Jump to Subroutine
Format:
1
5 9 8 6 5 Y
fomm - fmmm +
| Opcode | reg | dst.aw |
fomm = - o +

Operation:

tmp <- dst;

-(SP) <- Rn; tvalue of Rn affected by dst specifier evaluation
Rn <- PC;
PC <- tmp;

Condition Codes:

N <- N;
7 <- Z;
VvV <~ V;
C <- C;

Exceptions:

compatibility mode illegal instruction
Opcodes (octal):

oo4 JSR Jump to Subroutine
Description:

The source register is pushed on the stack and the source register 1is
replaced by the PC. The PC is replaced by the destination operand.

Notes:

1. A compatibility mode illegal instruction fault occurs if
destination mode 0 is used.

2. If the destination uses the same register as the source in the
autoincrement or autodecrement addressing modes, the updated
contents of the register are pushed on the stack.

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 10-45
COMPATIBILITY MODE USER ENVIRONMENT

RTS Return from Subroutine
Format:
1
5 3 2 a
o Fm— +
I Opcode | reg |
t————————— e Fm——— +

Operation:

PC <- Rn;
Rn <- (SP)+;

Condition Codes:

N <- N;
Z <- Z7;
V K- V;
C <- C;

Exceptions:

none
Opcodes (octal):

20020 RTS Return from subroutine
Description:

The PC is replaced by the destination register. The destination
register is replaced by a word popped from the stack.

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 page 14-46
COMPATIBILITY MODE USER ENVIRONMENT

10.2.4.5 Return From Interrupts And Traps -

RTI RTT

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 10-47

COMPATIBILITY MODE USER ENVIRONMENT

RTI Return from Interrupt
RTT Return from Trap
Format:

1

5 0
to e _ +
! Opcode I
Fo +

Operation:

PC <- (SP)+;
PSW<4:0> <- {(SP)+}<4:0>;

Condition Codes:

{- saved PSW<3>;
<~ saved PSW<2>;
<- saved PSW<1>;
<- saved PSW<@>;

<N Z

Exceptions:
none
Opcodes (octal):

000092 RTI Return from Interrupt
200006 RTT Return from Trap

Description:

The PC is replaced by the first word popped from the stack. The

bits of the PSW are replaced by the corresponding bits of the second

word popped from the stack.

Notes:

1. In compatibility mode, the RTI and RTT instructions ignore

high 11 bits of the PSw popped from the stack.

2. In compatibility mode, the RTI and RTT instructions

identical.

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 10-48
COMPATIBILITY MODE USER ENVIRONMENT

19.2.4.6 Miscellaneous -
MTPI MTPD SCC
MFPI MEPD CcccC

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 10-49
COMPATIBILITY MODE USER ENVIRONMENT

MTP Move To Previous Space
Format:
1
5 6 5 2
St T tmmm e +
| Opcode | dst.ww |
R T T Fom e +
Operation:

dst <- (SP)+;
Condition Codes:

N <- dst LSS @;

Z <- dst EQL 9;

V <- 0;

C K- C;
Exceptions:

none

Opcodes (octal):

PB66 MTPI Move To Previous Instruction Space
1066 MTPD Move To Previous Data Space

Description:

In compatibility mode, this PDP-11 instruction works 1like a POP
instruction. The destination operand is replaced by a word popped from
the stack.

Note:

The implied source operand specifier is evaluated before the destination
specifier.

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 10-50
COMPATIBILITY MODE USER ENVIRONMENT

MFP Move From Previous Space
Format:
1
5 55 2
o fomm +
| Opcode | src.rw |
et T o +

Operation:
- (SP) <- src;

Condition Codes:

N <- src LSS 4;
7 <- src EQL 9;
vV <- 0;
C K- C;
Exceptions:
none

Opcodes (octal):

@365 MFPI Move From Previous Instruction Space
1855 MFPD Move From Previous Data Space

Description:

In compatibility mode, this pPDP-11 instruction works 1like a PUSH
instruction. The source operand is pushed onto the stack.

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 1¢-51
COMPATIBILITY MODE USER ENVIRONMENT

CcC Condition Code Operators
Format:
1
5 5 4 0
Fo Fo—m +
| Opcode I mask |
o Fomm e +
Operation:

if mask<4> EQL 1 then PSW<3:0> <- PSW<3:0> OR mask<3:0>
else PSW<3:0> <- PSW<3:¢> AND {NOT mask<3:0>};

Condition Codes:

if mask<4> EQL 1 then
begin
N <- N OR mask<3>;
Z <- Z OR mask<2>;
V <~ V OR mask<1>;
C <- C OR mask<@>;

end

else
begin
N <= N AND {NOT mask<3>};
Z <= Z AND {NOT mask<2>};
V <~ V AND {NOT mask<1>};
C <- C AND {NOT mask<@>};
end

Exceptions:
none
Opcodes (octal):

003249 No operation

900241 CLC Clear C

ge0242 cCLV Clear V

3gg244 CLZ Clear 7

P00250 CLN Clear N

@89257 cCccC Clear all Condition Codes

00A261 SEC Set C

300262 SEV Set V

3264 SEZ Set Z

333270 SEN Set N

#@e277 scc Set all Condition Codes

Combinations of the above set or clear operations may be

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 10-52
COMPATIBILITY MODE USER ENVIRONMENT

ORed together to form combined instructions.
Description:

I1f the mask<4> bit is set, the PSW condition code bits are ORed with
mask<3:8> and the condition codes are replaced by the result. If the
mask<4> bit is clear, the PSW condition code bits are ANDed with the 1l's
complement of mask<3:0> and the condition codes are replaced by the
result.

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 10-53
ENTERING AND LEAVING COMPATIBILITY MODE

10.3 ENTERING AND LEAVING COMPATIBILITY MODE

Compatibility mode is entered by executing an REI instruction with the
compatibility mode bit set in the image of the PSL on the stack. Other
bits in the PSL have the following effects:

Bits Effect

NZVC Condition Codes

T T Bit

DV Reserved operand fault if not zero
FU Reserved operand fault if not zero
v Reserved operand fault if not zero
IPL Reserved operand fault if not zero
PRV MOD Reserved operand fault if not 3
CUR MOD Reserved operand fault if not 3

IS Reserved operand fault if not zero
FPD Reserved operand fault if not zero
TP T pending bit. See Section on T bit

operation in compatibility mode for a
complete description of how trace faults
work in compatibility mode.

VAX native mode is re-entered from compatibility mode by the
compatibility mode program causing an exception, or by an interrupt.
The PSL pushed on the kernel or interrupt stack when leaving
compatibility mode has all the bits that cause reserved operand faults
in the above table set to the appropriate state.

Note that when an RTI or RTT instruction is executed in compatibility
mode, the 11 high bits of the PSW are ignored, but when the PSW is
restored as part of the PSL when going from VAX native mode to

compatibility mode, those bits must be zero, or a reserved oparand fault
occurs.,

10.3.1 General Register Usage

Compatibility mode registers RO through R6 are bits 15 through 0 of VAX
general registers RO through R6, respectively. Compatibility mode
register R7 (PC) is bits 15 through 8 of VAX general register RIS (PC).
VAX registers R8 through R14 (SP) are not affected by compatibility
mode. When entering compatibility mode, VAX register R7 and the upper
halves of registers RO through R6 and R15 are ignored. when an
exception or interrupt occurs from compatibility mode, VAX register R7
is UNPREDICTABLE and the upper halves of RO through R6 are either
cleared or left unchanged. and the upper half of the stacked RIS (PC)
is zero. Since there are no FPl1 floating point instructions in
compatibility mode, there are no floating accumulators.

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 10-54
COMPATIBILITY MODE MEMORY MANAGEMENT

10.4 COMPATIBILITY MODE MEMORY MANAGEMENT

PDP-11 addresses are 15-bit byte addresses, hence compatibility mode
programs are confined to execute in the first A4k bytes of the per
process part of the virtual address space. There is a one-to-one
correspondence betw2en a compatibility mode virtual address and its VAX
counterpart (e.g., virtueal address 0 references the same location in
both modes). A compatibility mode address is interpreted as follows:

PDP-11 segments can consist of 1 to 128 blocks of 64 bytes. VAX pages
are 512 bytes long. Thes PDP-11 capability of providing different access
protection to different segments is provided in 8 block chunks since
protection is specified at the page level in the VAX architecture.

The memory management system protects and relocates compatibility mode
addresses in the normal native mode manner. Thus, all of the memory
management machanisms available in VAX mode are available to the
compatibility mode executive for managing both the virtual and physical
memory of compatibility mode programs. All of the exception conditions
that can be caused by memory management in VAX mode can also occur when
relocating a compatibility mode address. See Chapter 5.

Most of the KT-11 features that affect the user environment can be
simulated with the VAX memory management system. Table 10-4 briefly
describes the simulation method. Refer to Chapter 5 of this manual and
the appropriate PDP-11 documents for details of each system.

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 1¢-55
COMPATIBILITY MODE MEMORY MANAGEMENT

Table 16-4

KT11-D VAX
feature to be simulated simulation method

8 segments 8 segments can be simulated by dividing

per user. the 128 pages of the compatibility mode
virtual address spac. into 8 logical groups
of 16 pages each having possibly different
protection.

Segment size from 54 Segment size from 512 to 8K bytes

to 8K bytes (1 to (1 to 16 pages) in 512 byte (1 page)
128 blocks) in 54 byte increments, using discontiquous memory.
increments, using

contiguous memory.

Forward growing Can be simulated using page table entries
segments specifying no access for those pages that
(Expand Direction=8). are not allocated.
Backward growing Can be simulated using page table entries
segments specifying no access for those pages that
(ED=1) . are not allocated.

Segments begin on any Segments begin on any 512 byte boundary.
64 byte boundary.

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 10-556
COMPATIBILITY MODE MEMORY MANAGEMENT

The following example shows how a PDP-11 environment can be simulated
using VAX memory management. Segments O, 1, and 2 of the PDP-11
environment are program segments; 3 is unused; 4 and 5 are stack; and
6 and 7 are read-write cdata.

11 Environment VAX Page Table

Seg # Size Expand Access Page Access
(bytes)Direction

2 8K Up Read only #-15 Read only
1 8K Up Read only 16-31 Read only
2 255 Up Read only 32 Read only
3 3 -- None 33-77 No Access
4 1K Down Read-Write 78-79 Read-Write
5 8K Down Read-Write 86-95 Read-Write
6 8K Up Read-Write 96-111 Read-Write
7 2K Up Read-Write 112-115 Read-Write

116-127 No Access

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 10-57
COMPATIBILITY MODE EXCEPTIONS AND INTERRUPTS

10.5 COMPATIBILITY MODE EXCEPTIONS AND INTERRUPTS

All interrupts and exception conditions that occur while the machine |is
in compatibility mode cause the machine to enter VAX mode, and are
serviced as indicated in Chapter 6 (note that this includes backing up
instruction side effects if necessary). The exception conditions
discussed in this section are specific to compatibility mode. All these
exceptions create a 3-longword frame on the kernel stack containing PSL,
PC, and one longword of exception specific information. Bits 15 through
of this 1longword contain a code indicating the specific type of
exception and bits 31 through 16 are zero. There are no compatibility
mode exception <conditions that result in traps (see Chapter 6 for
definition of trap, fault, and abort).

18.5.1 Reserved Instruction Fault

A reserved instruction fault occurs for opcodes that are defined as
reserved in compatibility mode (see section on Instructions). The code
for the reserved instruction fault is 4.

10.5.2 BPT Instruction Fault

The code for the BPT instruction fault is 1.

10.5.3 10T Instruction Fault

The code for the IOT instruction fault is 2.

10.5.4 EMT Instruction Fault

The fault code for the group of EMT instructions is 3.

18.5.5 TRAP Instruction Fault

The fault code for the group of TRAP instructions is 4.

10.5.6 1Illegal Instruction Fault

In compatibility mode,JMP and JSR instructions with a register
destination are illegal. The fault code for illegal instructions is 5.

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 10-58
COMPATIBILITY MODE EXCEPTIONS AND INTERRUPTS

14.5.7 0dd Address Error Abort

An odd address error abort is caused in compatibility mode whenever a
word reference is attempted on a byte boundary. The code for odd
address errors is 6.

10.6 T BIT OPERATION IN COMPATIBILITY MODE

In compatibility mode, a trace fault occurs at the beginning of an
instruction when the T bit is set in the PSW at the beginning of the
prior instruction. This effect is achieved by using the TP bit in the
PSL (see Chapter 6). On trace faults, a 2-longword kernel stack frame
is created, containing PSL and PC. IPL and IS are zero and CM is one in
the stacked PSL. Compatibility mode trace fault uses the same vector as
vAX mode trace fault. See Chapter 5. The rules for trace fault
generation in compatibility mode are identical to those for native mode.
However, an odd address abort for an instruction fetch may precede the
trace fault for that instruction.

There are two ways to get the T bit set at the beginning of a
compatibility mode instruction:

1. An RTT/RTI instruction is executed in compatibility mode with
the T bit is set in the PSW image on the stack. 1In this case,
the next instruction is executed (the one pointed to by the PC
on the stack), and a trace fault is taken before the following
instruction.

2. An REI instruction is executed in VAX mode which has both the T
bit and CM bit set (and TP clear) in the saved PSL image on the
stack. Again, one instruction is executed, and the trace fault
is taken. (For a complete description of the interaction of
REI, T bit, and TP bit, see Chapter 5. The operations that
occur as a function of these conditions are the same whether or
not compatibility mode is being entered from the REI.)

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 10-59
T BIT OPERATION IN COMPATIBILITY MODE

The T bit interacts with other compatibility mode operations as follows
(for interaction with other than compatibility mode specific operations,
see Chapter 6):

1.

T bit set (but TP is <c¢lear) at the beginning of any

compatibility mode instruction which does not cause a
compatibility mode fault.

In this case, the instruction sets TP and executes. A trace
fault 1is taken before the next instruction. The saved PSL has
the T bit set and TP clear. The compatibility mode executive
can take one of the following courses of action:

1. If it services the exception directly, it can clear the T
bit in the saved PSL on the kernel stack if it no longer
wants to trace the program, or it can leave it set if it
wants to continue tracing the program. It exits with an
REI.

2. If it returns the trace exception to compatibility mode, it
pushes a (16-bit) PC and (16-bit) PSW with the T bit set on
the compatibility mode User stack to simulate the effect of
the PDP-11 trace trap. It then clears the T bit in the
saved PSL image on the kernel stack, changes the saved PC
to point to the compatibility mode service routine, and
does an REI. The compatibility mode service routine can
then clear the T bit in the PSW image on its stack if it
does not want to continue tracing. The compatibility mode
routine returns with RTT or RTI.

T bit set (but TP is clear) at the beginning of an RTI or RTT.

The RTT/RTI instruction executes and TP is set. A trace fault
occurs before the next instruction is executed. There are two
different cases, depending on whether or not the T bit was set
in the image of the PSW which was popped from the stack by the
RTT/RTI instruction:

1. T bit not set.

Neither TP nor T will be set in the saved PSL on the kernel
stack.

2, T bit set.
TP will not be set, and T will be set, as is the case as

for other compatibility mode instructions.

T bit set (but TP is clear) at the beginning of any instruction
which causes a compatibility mode fault.

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 10-60
T BIT OPERATION IN COMPATIBILITY MODE

The fault condition is serviced first. TP is clear and T is
set in the saved PSL pushed on the kernel stack.

UNIMPLEMENTED PDP-11 TRAPS

Several traps that occur in PDP-1lls are not implemented in compatibility

10.7

mode:
1.
2.
3.

There is no stack overflow trap. This is equivalent to the
User Mode of the KT1ll, where there 1is also no overflow
protection. Stack overflow can be provided by the
compatibility mode executive wusing the memory management
mechanisms.

There is no concept of a double error trap in compatibility
mode, since the first error always puts the machine in VAX
mode.

All other exception conditions such as power failure, memory
parity, @and memory management exceptions cause the machine to
enter VAX mode.

PDP-11 Compatibility Mode 23-March-81 -- Rev 5.2 Page 1¢-61
COMPATIBILITY MODE I/0 REFERENCES

10.8 COMPATIBILITY MODE 1/0 REFERENCES

Neither instruction stream references nor data reads nor writes can be
to I/0 space. The results are UNPREDICTABLE if 1/0 space is referenced
from compatibility mode.

10.9 PROCESSOR REGISTERS

The only processor register available in compatibility mode is part of
the PSW, and it maybe explicitly referenced only with the condition code
instructions, RTI, and RTT. Access to all other registers must be done
in VAX mode.

10.10 PROGRAM SYNCHRONIZATION

All PDP-11ls guarantee that read-modify-write operations to I1/0 device
registers are interlocked; that is, the device can determine at the
time of the read that the same register will be written as the next bus
cycle. This synchronization also works in memory on most PDP-11s. In
compatibility mode, instructions that have modify destinations will
perform this synchronization for UNIBUS I/0 device registers and never
for memory.

APPENDIX A
INSTRUCTION SET AND OPCODE ASSIGNMENTS

23-Mar-81 -- Rev 17.1

Al INSTRUCTION OPERAND FORMATS

The format of the instructions is given using the qualified name
convention described in the next section. For the mnemonics {} encloses
a list of data types of which one must be selected. Instructions which
have two forms differing in the number of operands have the number of
operands appended to the opcode as a digit. For the operands, {}
encloses all implied operands. Refer to the VAX-11 Macro Reference
Manual for a description of when the data type suffix and operand number
suffix may be omitted.
Instructions

1. Move 9
Mov{s,w,L,F,D,G,H,Q,0} src.rx, dst.wx

2. Push Long 1
PUSHL src.rl, {-(SP).wl}

3. Clear 5
CLR{B,W,L=F,Q=D=G,0=H} dst.wx

4. Move Negated 7
MNEG {B,W,L,F,D,G,H} src.rx, dst.wx

5. Move Complemented 3
MCOM{B,W,L} src.rx, dst.wx

5. Move Zero-Extended 3
MOVZ {BW,BL,WL} src.rx, dst.wy

7. Convert 49
cvri{s,w,L,F,D,G,H}{B,W,L,F,D,G,H} src.rx, dst.wy
All pairs except BB,WW,LL,FF,DD,GG,HH,DG, and GD

Instruction Set and Opcode Assignments 23-Mar-81 -- Rev 17.1

INSTRUCTION OPERAND FORMATS

19.

11.

12.

13,

14,

15.

17.

18.

19.

20.

21,

22,

23.

24,

25,

Convert Rounded
CVTR{F,D,G,H}L src.rx, dst.wl

Compare
cmp{B,wWw,L,F,D,G,H} srcl.rx, src2.rx

Test
T5T7{B,W,L,F,D,G,H} src.rx

Add 2 Operand
ADD{B,W,L,F,D,G,H}2 add.rx, sum.mx

Add 3 Operand
apD{B,W,L,F,D,G,H}3 addl.rx, add2.rx, Sum.wx

Increment
INC{B,W,L} sum.mx

Add With Carry
ADWC add.rl, sum.ml

Add Aligned Word
ADAWI add.rw, sum.mw

Subtract 2 Operand
syp{B,wW,L,F,D,G,H}2 sub.rx, dif.mx

-~

Subtract 3 Operand
suB{B,w,L,F,D,G,H}3 sub.rx, min.rx, dif.wx

Decrement
DEC{B,W,L} dif.mx

Subtract With Carry
SBWC sub.rl, dif.ml

Multiply 2 Operand
MuL{B,w,L,F,D,G,H}2 mulr.rx, prod.mx

Multiply 3 Operand
MUL{B,W,L,F,D,G,H}B mulr.rx, muld.rx, prod.wx

Extended Multiply
EMUL mulr.rl, muld.rl, add.rl, prod.wqg

Divide 2 Operand
pIv{B,w,L,F,D,G,H}2 divr.rx, quo.mx

Divide 3 Operand
pIiv{e,w,L,F,D,G,H}3 divr.rx, divd.rx, quo.wx

Extended Divide
EDIV divr.rl, divd.rq, quo.wl, rem.wl

Page A-2

Instruction Set and Opcode Assignments 23-Mar-81 -- Rev 17.1 Page A-3
INSTRUCTION OPERAND FORMATS

26. Arithmetic Shift 2
ASH{L,Q} cnt.rb, src.rx, dst.wx

27. Bit Test 3
BIT{B,W,L} mask.rx, src.rx

28. Bit Set 2 Operand 3
BIS{B,W,L}2 mask.rx, dst.mx

29. Bit Set 3 Operand 3
BIS{B,W,L}3 mask.rx, src.rx, dst.wx

30. Bit Clear 2 Operand 3
BIC{B,W,L}2 mask.rx, dst.mx

31. Bit Clear 3 Operand 3
BIC{B,W,L}3 mask.rx, src.rx, dst.wx

32. Exclusive OR 2 Operand 3
XOR{B,W,L}2 mask.rx, dst.mx

33. Exclusive OR 3 Operand 3
XOR{B,W,L}3 mask.rx, src.rx, dst.wx

34. Rotate Long 1
ROTL cnt.rb, src.rl, dst.wl

35. Extended Modulus 4
EMOD{F,D} mulr.rx, mulrx.rb, muld.rx, int.wl, fract.wx
EMOD{G,H} mulr.rx, mulrx.rw, muld.rx, int.wl, fract.wx

36. Polynomial Evaluation F_floating 1
POLYF arg.rf, degree.rw, tbladdr.ab, {R@-3.wl}

37. Polynomial Evaluation D _floating 1
POLYD arg.rd, degree.rw, tbladdr.ab, {RO-5.wl}

38. Polynomial Evaluation G_floating 1
POLYG arg.rg, degree.rw, tbladdr.ab, {R@-5.wl}

39. Polynomial Evaluation H floating 1
POLYH arg.rh, degree.rw, tbladdr.ab,
{R@-5.w1,-16 (SP):-1(SP) .wb}

40. Move Address 5
MOVA{B,W,L=F,Q=D=G,0=H} src.ax, dst.wl

41. Push Address 5
PUSHA{B,W,L=F,Q=D=G,0=H} src.ax, {-(SP).wl}

42. Index 1

INDEX subscript.rl, low.rl, high.rl, size.rl, indexin.r1,
indexout.wl

Instruction Set and Opcode Assignments 23-Mar-81 -- Rev 17.1 Page A-4

INSTRUCTION OPERAND FORMATS

43.

44,

45,

46.

47.

48.

49.

50.

51.

52.

53.

54,

Extract Field 1
EXTV pos.rl, size.rb, base.vb, {field.rv}, dst.wl

Extract Zero-Extended Field 1
EXTZV pos.rl, size.rb, base.vb, {field.rv}, dst.wl

Insert Field 1
INSV src.rl, pos.rl, size.rb, base.vb, {field.wv}

Compare Field 1
CMPV pos.rl, size.rb, pase.vb, {field.rv}, src.rl

Compare Zero-Extended Field 1
CMPZV pos.rl, size.rb, base.vb, {field.rv}, src.rl

Find First 2
FF{S,C} startpos.rl, size.rb, base.vb, {field.rv}, findpos.wl

Conditional Branch 12
B{condition} displ.bb

Condition Name

LSS Less Than

LEQ Less Than or Equal

EQL, EQLU Equal, Equal Unsigned

NEQ, NEQU Not Equal, Not Equal Unsigned

GEQ Greater Than or Equal

GTR Greater Than

LSsuU, CS Less Than Unsigned, Carry Set

LEQU Less Than or Equal Unsigned

GEQU, CC Greater Than or Equal Unsigned,

Carry Clear

GTRU Greater Than Unsigned

VS Overflow Set

vC Overflow Clear
Branch With {Byte, Word} Displacement 2
BR{B,W} displ.bx
Jump 1
JMP dst.ab
Branch on Bit 2

BB{S,C} pos.rl, base.vb, displ.bb, {field.rv}

Branch on Bit (and modify without interlock) 4
BB{S,c}{s,C} pos.rl, base.vb, displ.bb, {field.mv}

Branch on Bit (and modify) Interlocked 2
BB{SS,CC}I pos.rl, base.vb, displ.bb, {field.mv}

Instruction Set and Opcode Assignments 23-Mar-81 -- Rev 17.1 Page A-5
INSTRUCTION OPERAND FORMATS

55, Branch on Low Bit 2
BLB{S,C} src.rl, displ.bb

56. Add Compare and Branch 7
ACB{B,W,L,F,D,G,H} limit.rx, add.rx, index.mx, displ.bw
Compare is LE on positive add, GE on negative
add.

57. Add One and Branch Less Than or Equal 1
AOBLEQ limit.rl, index.ml, displ.bb

58. Add One and Branch Less Than 1
AOBLSS limit.rl, index.ml, displ.bb

59. Subtract One and Branch Greater Than or Equal 1
SOBGEQ index.ml, displ.bb

60. Subtract One and Branch Greater Than 1
SOBGTR index.ml, displ.bb

61. Case 3
CASE{B,W,L} selector.rx, base.rx, limit.rx, displ.bw-1list

62. Branch to Subroutine With {Byte, Word} Displacement 2
BSB{B,W} displ.bx, {-(SP).wl}

63. Jump to Subroutine 1
JSB dst.ab, {-(SP).wl}

64, Return from Subroutine 1
RSB {(SP)+.rl}

65. Call Procedure with General Argument List 1
CALLG arglist.ab, dst.ab, {-(SP).w*}

66. Call Procedure with Stack Argument List 1
CALLS numarg.rl, dst.ab, {-(SP).w*}

67. Return from Procedure 1
RET {(SP)+.r*}

68. Breakpoint Fault 1
BPT {-(KSP).w*}

69. Halt 1
HALT {-(KSP).w*}
Halts in Kernel mode, faults otherwise.
Assigned opcode 4.

70. Push Registers 1
PUSHR mask.rw, {-(SP)}.w*}

Instruction Set and Opcode Assignments

INSTRUCTION OPERAND FORMATS

71.

72.

73.

74.

75.

77.

78.

79.

80.

81.

82.

83.

84,

85.

86.

87.

Pop Registers
POPR mask.rw, {(SP)+.r*}

Move from PSL
MOVPSL dst.wl

Bit Set PSW
BISPSW mask.rw

Bit Clear PSW
BICPSW mask.rw

No Operation
NOP

Extended Function Call
XFC {unspecified operands}

Insert Entry in Queue
INSQUE entry.ab, pred.ab

Insert Entry into Queue at Head,
INSQHI entry.ab, header.aq

Insert Entry into Queue at Tail,
INSQTI entry.ab, header.ag

Remove Entry from Queue
REMQUE entry.ab, addr.wl

Remove Entry from Queue at Head,
REMQHI header.aq, addr.wl

Remove Entry from Queue at Tail,
REMOQTI header.aq, addr.wl

Move Character 3 Operand
MOVC3 len.rw, srcaddr.ab, dstaddr

Move Character 5 operand
MOVCS srclen.rw, srcaddr.ab, fill
{RO-5.w1}

Move Translated Characters
MOVTC srclen.rw, srcaddr.ab, fill
dstaddr.ab, {R8-5.wl}

Move Translated Until Character
MOVTUC srclen.rw, srcaddr.ab, esc
dstaddr.ab, {R@-5.wl}

Compare Characters 3 Operand
CMPC3 len.rw, srcladdr.ab, src2ad

23-Mar-81 -- Rev

Interlocked

Interlocked

Interlocked

Interlocked

.ab, {R#-5.wl}

.rb, dstlen.rw,

.rb, tbladdr.ab,

.rb, tbladdr.ab,

dr.ab, {RO-3.wl}

17.1 Page A-6

1
dstaddr.ab,

1
dstlen.rw,

1
dstlen,rw,

Instruction Set and Opcode Assignments 23-Mar-81 -- Rev 17.1 Page A-7
INSTRUCTION OPERAND FORMATS

88. Compare Characters 5 Operand 1
CMPCS5 srcllen.rw, srcladdr.ab, fill.rb, src2len.rw,
src2addr.ab, {R@-3.wl}

89. Scan Characters 1
SCANC len.rw, addr.ab, tbladdr.ab, mask.rb, {RO-3,wl}

98. Span Characters 1
SPANC len.rw, addr.ab, tbladdr.ab, mask.rb, {RO-3.wl}

91. Locate Character 1
LOCC char.rb, len.rw, addr.ab, {R@-1.wl}

92. Skip Character 1
SKPC char.rb, len.rw, addr.ab, {RO-1.wl}

93. Match Characters 1
MATCHC lenl.rw, addrl.ab, len2.rw, addr2.ab, {RO-3.wl}

94. Cyclic Redundancy Check 1
CRC tbl.ab, inicrc.rl, strlen.rw, stream.ab, {RO-3.wl}

95. Move Packed 1
MOVP len.rw, srcaddr.ab, dstaddr.ab, {R#-3.wl}

96. Compare Packed 3 Operand 1
CMPP3 len.rw, srcladdr.ab, src2addr.ab, {RO-3.wl}

97. Compare Packed 4 Operand 1
CMPP4 srcllen.rw, srcladdr.ab, src2len.rw, src2addr.ab,
{RO-3.wl}

98. Add Packed 4 Operand 1

ADDP4 addlen.rw, addaddr.ab, sumlen.rw, sumaddr.ab, {R#-3.wl}

99. Add Packed 6 Operand 1
ADDP6 addllen.rw, addladdr.ab, add2len.rw, add2addr.ab,
sumlen.rw, sumaddr.ab, {R@-5.wl}

100. Subtract Packed 4 Operand 1
SUBP4 sublen.rw, subaddr.ab, diflen.rw, difaddr.ab, {RO-3.wl}

181. Subtract Packed 6 Operand 1
SUBP6 sublen.rw, subaddr.ab, minlen.rw, minaddr.ab,
diflen.rw, difaddr.ab, {R@-5.wl}

102, Multiply Packed 1
MULP mulrlen.rw, mulraddr.ab, muldlen.rw, muldaddr.ab,
prodlen.rw, prodaddr.ab, {RO-5.wl}

193. Divide Packed 1
DIVP divrlen.rw, divraddr.ab, divdlen.rw, divdaddr.ab,
quolen.rw, quoaddr.ab, {R@#-5.wl, -16(SP):-1(SP) .wb}

Instruction Set and Opcode Assignments 23-Mar-81 -- Rev 17.1 Page A-8
INSTRUCTION OPERAND FORMATS

104, Convert Long to Packed 1
CVTLP src.rl, dstlen.rw, dstaddr.ab, {RO-3.wl}

165. Convert Packed to Long 1
CVTPL srclen.rw, srcaddr.ab, {RO-3.wl}, dst.wl

186. Convert Packed to Trailing 2
Convert Trailing to Packed
CVT{PT,TP} srclen.rw, srcaddr.ab, tbladdr.ab, dstlen.rw,
dstaddr.ab, {RO-3.wl}

107. Convert Packed to Leading Separate 2
Convert Leading Separate to Packed
CVT{PS,SP} srclen.rw, srcaddr.ab, dstlen.rw, dstaddr.ab,
{RE-3.wl}

1¢8. Arithmetic Shift and Round Packed 1
ASHP cnt.rb, srclen.rw, srcaddr.ab, round.rb, dstlen.rw,
dstaddr.ab, {R@-3.wl}

169. Edit Packed to Character String 1
EDITPC srclen.rw, srcaddr.ab, pattern.ab, dstaddr.ab, {R#-5.wl}

116. Probe {Read, Write} Accessability 2
PROBE{R,W} mode.rb, len.rw, base.ab

111. Change Mode 4
cuMi{K,E,S,U} param.rw, {-(ySP) .w*}
Illegal on interrupt stack.
Where y=MINU(x, pSL<current_mode>)

112. Return from Exception or Interrupt 1
REI {(SP)+.r*}

113, Load Process Context 1
LDPCTX {PCB.r*, - (KSP) .w*}
Legal only on interrupt stack.

114. Save Process Context
SVPCTX {(SP)+.r*, PCB.w*}
Legal only in Kernel mode.

115. Move To Process Register 1
MTPR src.rl, procreg.rl
Legal only in Kernel mode.

116. Move From Processor Register 1
MFPR procreg.rl, dst.wl
Legal only in Kernel mode.

Total 304

Instruction Set and Opcode Assignments 23-Mar-81 -- Rev 17.1 Page A-9
OPERAND SPECIFIER NOTATION

A2 OPERAND SPECIFIER NOTATION

The standard VAX notation for operand specifiers is:
<{name>.<access type><data type>

where:

l. Name is a suggestive name for the operand in the
context of the instruction. It is the capitalized
name of a register or block for implied operands.

2. Access type is a letter denoting the operand
specifier access type.

a - Calculate the effective address of the
specified operand. Address is returned in a
pointer which is the actual instruction operand.
Context of address calculation is given
by data type given by <data type>.

b - No operand reference. Operand specifier is
branch displacement. Size of branch
displacement is given by <data type>.

- operand is modified (both read and written)

- operand is read only

if not "Rn", same as a. If "Rn", R[n+l]'R[n].
- operand is written only

g3
1

3. Data type is a letter denoting the data type of the
operand

- byte

- D_floating

- F_floating

- G _floating

- H_floating

- longword

octaword

- quadword

- field (used only on implied operands)

- word

- first data type specified by instruction
- second data type specified by instruction
- multiple longwords (used only on implied operands)

K X E QOO MOAD
|

For names, the following names and abbreviations are used:
1. add - addend
2. addr - address

3. arglist - argument list

Instruction Set and Opcode Assignments
OPERAND SPECIFIER NOTATION

4, base - base

5. char - character

6. cnt - count

7. dif - difference

8. displ - displacement

9, divd - dividend

1. divr - divisor

11. dst - destination

12. entry - entry

13. esc - escape

14, fil11 - fill

15. findpos - find position

16, fract - fraction
17. index - index
18, inicrc - initial crc

19. int - integer

20. len - length

21. limit - limit

22. mask - mask

23. min - minuend

24. muld - multiplicand

25, mulr - multiplier

26, mulrx - multiplier extension
27. numarg - number of arguments
28. option - option

29. param - parameter

23-Mar-81 -- Rev 17.1 Page A-10

Instruction Set and Opcode Assignments 23-Mar-81 -- Rev 17.1 Page A-11
OPERAND SPECIFIER NOTATION

3. pos - position

31. pred - predecessor

32. procreg - internal processor register

33. prod - product

34, quo - quotient

35. rem - remainder

36. selector - selector

37. size - size

38. src - source

39. startpos - starting position

49. stream - stream

41. strlen - string length

42, sub - subtrahend

43, sum - sum

44, tbl - table

Instruction Set and Opcode Assignments
OPCODE ASSIGNMENTS

23-Mar-81 -- Rev 17.1 Page A-12

A3 OPCODE ASSIGNMENTS

SINGLE BYTE OPCODES

Binary Hex Mnemonic Binary Hex Mnemonic
00000000 @0 HALT p010000@ 2@ ADDPA4
23000091 @1 NOP gp1000681 21 ADDPG6
0PP000618 @2 REI 20100010 22 SUBP4
00oeee11 @3 BPT p0190@11 23 SUBP6
00000100 04 RET 90100100 24 CVTPT
¢0000101 @5 RSB 0@lo0101 25 MULP
900090116 @6 LDPCTX @e19@118 26 CVTTP
0A0@0111 @7 SVPCTX p@10@111 27 DIVP
gooele0e ©8 CVTPS g01010@¢@ 28 MOVC3
ge0@1061 @9 CVTSP 20101001 29 CMPC3
g0P01018 @A INDEX 931010818 2A SCANC
90001011 @B CRC ¢9101011 2B SPANC
ggp21100 @C PROBER 93101109 2C MOVCS5S
¢00261101 0D PROBEW §21¢1181 2D CMPC5H
gp0@1118 ©GE INSQUE 9101113 2E MOVTC
¢@0@1111 @F REMQUE §@161111 2F MOVTUC
go010003 10 BSBB gg110000 30 BSBW
70010001 11 BRB $0110001 31 BRW
g@@1001¢ 12 BNEQ,BNEQU 90110010 32 CVTWL
90916011 13 BEQL,BEQLU 90110011 33 CVTWB
09010109 14 BGTR 09110100 34 MOVP
00216161 15 BLEQ §#1101¢1 35 CMPP3
pP91011¢ 16 JSB @911011¢ 36 CVTPL
9P010111 17 JMP g#110111 37 CMPP4
p9@11000 18 BGEQ 99111000 38 EDITPC
g@o110081 19 BLSS 90111001 39 MATCHC
99911018 1A BGTRU @211191¢ 3A LOCC
g@®11911 1B BLEQU P3111011 3B SKPC
g@o111068 1C BVC 90111108 3C MOVZWL
g@@11191 1D BVS $21111¢1 3D ACBW
g@@11119 1E BGEQU,BCC #0111119 3E MOVAW
¢@@¥11111 1F BLSSU,BCS 93111111 3F PUSHAW

Instruction Set and Opcode Assignments

OPCODE ASSIGNMENTS

Binary Hex

01000000
01000001
21000010
01000011
21900100
01000101
01000110
91000111

01001000
01001091
31001010
21001011
21001100
01001101
210901110
P1001111

01010000
21010001
010100190
21010011
21010100
01010101
01010110
21010111

31011000
010110061
01011010
21911011
21011100
91011101
210111190
21911111

49
41
42
43
44
45
46
47

48
49
4A
4B
4C
4D
4E
4F

50
51
52
53
54
55
56
57

58
59
54
5B
5C
5D
5E
5F

Mnemonic

ADDF2
ADDF3
SUBF2
SUBF3
MULF2
MULF 3
DIVF2
DIVF3

CVTFB
CVTFW
CVTFL
CVTRFL
CVTBF
CVTWF
CVTLF
ACBF

MOVF

CMPF

MNEGF

TSTF

EMODF

POLYF

CVTFD
RESERVED to

ADAWI
RESERVED to
RESERVED to
RESERVED to
INSQHI
INSQTI
REMOQHI
REMQTI

PUSHAQ, PUSHAD, PUSHAG

DEC

DEC
DEC
DEC

23-Mar-81 -- Rev 17.1 Page A-13

Binary Hex

21100000
21100001
211000190
01100011
01100100
21100101
21100119
21100111

21101000
21101001
011019010
21101011
01101100
21101101
21101110
P1101111

21110000
01110001
01119010
21110011
21110109
p1119101
21110110
01119111

01111009
21111001
21111010
21111011
31111100
21111101
#1111119

50
61
62
63
64
65
66
67

68
69
6A
6B
6C
6D
6E
6F

70
71
72
73
74
75
76
77

78
79
7A
7B
7C
7D
7E

Mnemonic

ADDD2
ADDD3
SUBD2
SUBD3
MULD2
MULD3
DIVD2
DIVD3

CVTDB
CVTDW
CVTDL
CVTRDL
CVTBD
CVTWD
CVTLD
ACBD

MOVD

CMPD

MNEGD

TSTD

EMODD

POLYD

CVTDF

RESERVED to DEC

ASHL

ASHQ

EMUL

EDIV

CLRQ,CLRD,CLRG

MOVQ

MOVAQ,MOVAD,MOVAG
#1111111 F

Instruction Set and Opcode Assignments 23-Mar-81 -- Rev 17.1 Page A-14
OPCODE ASSIGNMENTS

Binary Hex Mnemonic Binary Hex Mnemonic
10000006 80 ADDB2 10100008 AQ ADDW2
10000061 81 ADDB3 16100061 Al ADDW3
10000018 82 SUBB2 10106018 A2 SUBW2
19000011 83 SUBB3 161600611 A3 SUBW3
10000100 84 MULB2 10106100 A4 MULW2
10600191 85 MULB3 191060181 A5 MULW3
10900119 86 DIVB2 10100119 A6 DIVW2
10000111 87 DIVB3 19168111 A7 DIVW3
100010600 88 BISB2 10101000 A8 BISW2
19001061 89 BISB3 191010601 A9 BISW3
190001016 8A BICB2 1010101@ AA BICW2
19801011 8B BICB3 19101811 AB BICW3
19000¢110¢ 8C XORB2 10181109 AC XORW2
190961101 8D XORB3 19181181 AD XORW3
10061119 B8E MNEGB 19191118 AE MNEGW
106081111 8F CASEB 19181111 AF CASEW
100100060 98 MOVB 10110000 BO MOVW
109010001 91 CMPB 12110001 Bl CMPW
10910018 92 MCOMB 10110019 B2 MCOMW
10910011 93 BITB 19110011 B3 BITW
10013190 94 CLRB 19110100 B4 CLRW
100101061 95 TSTB 19110161 B5 TSTW
16010116 96 INCB 14110811¢ B6 INCW
19610111 97 DECB 10118111 B7 DECW
10011960 98 CVTBL 14111060 B8 BISPSW
10011001 99 CVTBW 19111661 B9 BICPSW
19011918 9A MOVZIBL 14111016 BA POPR
10911011 9B MOVZBW 191119811 BB PUSHR
166111086 9C ROTL 19111108 BC CHMK
10011161 9D ACBB 12111191 BD CHME
10911118 9E MOVAB 19111119 BE CHMS

19911111 9F PUSHAB 19111111 BF CHMU

Instruction Set and Opcode Assignments 23-Mar-81 -- Rev 17.1 Page A-15
OPCODE ASSIGNMENTS

Binary Hex Mnemonic Binary Hex Mnemonic
11000006 C0 ADDL2 11100000 E@ BBS
11660001 Cl1 ADDL3 111000081 E1 BBC
11000018 C2 SUBL2 111066019 E2 BBSS
11900011 C3 SUBL3 1119060611 E3 BBCS
11090100 C4 MULL2 11100100 E4 BBSC
1100606181 C5 MULL3 11190181 E5 BBCC
110090116 C6 DIVL2 11100119 E6 BBSSI
110908111 C7 DIVL3 11186111 E7 BBCCI
110010600 C8 BISL2 11101009 E8 BLBS
11661091 C9 BISL3 111610081 E9 BLBC
1190010610 CA BICL2 111610619 EA FFS
110061811 CB BICL3 11191811 EB FFC
11401108 CC XORL?2 11191108 EC CMPV
11961161 CD XORL3 11191161 ED CMPZV
11601116 CE MNEGL 11161119 EE EXTV
11891111 CF CASEL 11101111 EF EXTZV
110100060 D@ MOVL 11110088 FO INSV
11010081 D1 CMPL 11116001 Fl1 ACBL
11910019 D2 MCOML 11110010 F2 AOBLSS
11916011 D3 BITL 111166811 F3 AOBLEQ
11016100 D4 CLRL,CLRF 11116100 F4 SOBGEQ
11914101 D5 TSTL 11114101 F5 SOBGTR
11016119 D6 INCL 11110119 F6 CVTLB
11918111 D7 DECL 11110111 F7 CVTLW
110911060 D8 ADWC 11111000 F8 ASHP
1191106061 D9 SBWC 11111801 F9 CVTLP
11411010 DA MTPR 11111014 FA CALLG
11011911 DB MFPR 11111911 FB CALLS
11611166 DC MOVPSL 111111080 FC XFC
11611161 DD PUSHL 11111161 FD ESCD to DEC
11911119 DE MOVAL,MOVAF 11111114 FE ESCE to DEC

11911111 DF PUSHAL,PUSHAF 11111111 FF ESCF to DEC

Instruction Set and Opcode Assignments 23-Mar-81 -- Rev 17.1 Page A-16
OPCODE ASSIGNMENTS

TWO BYTE OPCODES

Hex Mnemonic Hex Mnhemonic
@OFD

to

31FD RESERVED to DIGITAL

32FD CVTDH 33FD CVTGF
34FD

to

3FFD RESERVED to DEC

49FD ADDG 2 60FD ADDH2
41FD ADDG3 61FD ADDH3
42FD SUBG?2 62FD SUBH2
43FD SUBG3 63FD SUBH3
44FD MULG 2 64FD MULH2
45FD MULG3 65FD MULH3
46FD DIVG2 66FD DIVH2
47FD DIVG3 67FD DIVH3
48FD CVTGB 68FD CVTHB
49FD CVTGW 69FD CVTHW
4AFD CVTGL 6AFD CVTHL
4BFD CVTRGL 6BFD CVTRHL
4CFD CVTBG 6CFD CVTBH
4DFD CVTWG 6DFD CVTWH
4EFD CVTLG 6EFD CVTLH

4FFD ACBG 6FFD ACBH

Instruction Set and Opcode Assignments 23-Mar-81 -- Rev 17.1 Page A-17
OPCODE ASSIGNMENTS

50FD MOVG 70FD MOVH
51FD CMPG 71FD CMPH
52FD MNEGG 72FD MNEGH
53FD TSTG 73FD TSTH
54FD EMODG 74FD EMODH

55FD POLYG 75FD POLYH
56FD CVTGH 76FD CVTHG

57FD RESERVED to DEC 77FD RESERVED to DEC
58FD RESERVED to DEC 78FD RESERVED to DEC
59FD RESERVED to DEC 79FD RESERVED to DEC
5AFD RESERVED to DEC 7AFD RESERVED to DEC
5BFD RESERVED to DEC 7BFD RESERVED to DEC
5CFD RESERVED to DEC 7CFD CLRH,CLRO

SDFD RESERVED to DEC 7DFD MOVO

S5EFD RESERVED to DEC 7EFD MOVAH ,MOVAOQ
5FFD RESERVED to DEC TFFD PUSHAH,PUSHAO
8@FD

to

97FD RESERVED to DIGITAL
98FD CVTFH 99FD CVTFG

9AFD
to
F5FD RESERVED to DIGITAL

F6FD CVTHF F7FD CVTHD

F8FD

to
FCFF RESERVED to DIGITAL

FDFF BUGL (used by VMS for BUGCHECK) FEFF BUGW

FFFF RESERVED for all time

Instruction Set and Opcode Assignments 23-Mar-81 -- Rev 17.1 Page A-18
INSTRUCTIONS USABLE TO REFERENCE I/O SPACE

A4 INSTRUCTIONS USABLE TO REFERENCE I/0 SPACE

Some of the instructions are not usable to reference 1I/0 space. The
reasons for this are:

1. String instructions are restartable via PSL<FPD>
2. The instruction is not in the kernel set
3. The PC, SP, or PCBB can not point to I/0 space

4., 1/0 space does not support operand types of quad, floating,
field, or queue; nor can the position, size, length, or base
of them be from I/O space

5. The instruction may be interruptible because it is potentially
a slow instruction in some implementations

6. Only instructions with a maximum of one modify or write
destination can be used. The destination must be the last
operand

For any memory reference to 1I/0 space, the programmer must use an
instruction from the following lists and must ensure that no interrupts
or faults will occur, including page faults, after the first 1/0 space
reference. To ensure no interrupts, the programmer must avoid operand
specifier modes 9, 11, 13, and 15, and these modes indexed.
(Symbolically, these are @(Rn)+, @B "D(Rn), @W"D(Rn), and @L"D(Rn), and
these indexed.) The hardware may allow interrupts for these modes in
order to minimize interrupt latency. For the 1instructions in the
following lists, the hardware ensures that no other interrupts will
occur after the first I/0 space access.

Since these instructions are not interruptable after I/0 space accesses
(except for the addressing modes above), their execution will extend the
interrupt latency. The programmer should make some effort to keep them
short by minimizing the number of memory references. Use R@ through R13
instead, for example.

Instructions for which any explicit operand can be in I/0 space:

MOV {B,W,L}, PUSHL, CLR{B,W,L}, MNEG{B,W,L}, MCOM{B,W,L}, MOVZ{BW,BL,WL},
CVT{BW,BL,WB,WL,LB,LW}, CMP{B,W,L}, TST{B,W,L}, ADD{B,W,L}2,
ADD{B,W,L}3, ADAWI, INC{B,W,L}, ADWC, SUB{B,W,L}2, SUB{B,W,L}3,
DEC{B,W,L}, SBWC, BIT{B,W,L}, BIS{B,w,L}2, BIS{B,W,L}3, BIC{B,W,L}2,
BIC{B,W,L}3, XOR{B,W,L}2, XOR{B,W,L}3, MOVA{B,W,L}, MOVAQ, PUSHA{B,W,L},
PUSHAQ, CASE{B,W,L}, MOVPSL, BISPSW, BICPSW, CHM{K,E,S,U} PROBE{R,W},
MTPR, MFPR

Instructions for which all operands except the branch displacement can
be in 1/0 space:

BLB{sS,C}

Instruction Set and Opcode Assignments 23-Mar-81 -- Rev 17.1 Page A-19
INSTRUCTIONS USABLE TO REFERENCE I/O SPACE

Instruction for which some operand can be in I/0 space:

XFC (depending on implementation)
REMQUE addr (destination)
REMQHI addr (destination)
REMQTI addr (destination)

Notwithstanding the above rules, it is possible for a specific hardware
implementation to execute macro code from the I/0 space and/or to allow
the stack or PCB to be in I/0 space. This might, for example, be wused
as part of the bootstrap process. If this is done, then it is valid for
software to transfer to this code.

Page Index-1

INDEX

()

as a notation,

{}

as a notation,

3-4
3-4

Abort, 6-1, 6-3
Absolute addressing mode, 3-7
Absolute indexed addressing mode,
3-14
Absolute indexed mode, 3-14
Absolute mode, 3-7
Interlocked,
Absolute queues, 4-99
ACBB - Add Compare and
Byte, 4-50
ACBD - Add Compare and
D floating, 4-50
ACBF - Add Compare and
F_floating, 4-50
ACBG - Add Compare and
G floating, 4-50
ACBH - Add Compare and
H_floating, 4-50
ACBL - Add Compare and
Long, 4-50
ACBW - Add Compare and
Word, 4-50
Accelerator
VAX-11/78¢, 9-15
Accelerator Control/Status
Register (ACCS), 9-15
register (ACCS), 9-27
Accelerator Maintenance
Register (ACCR), 9-15
Access across page boundaries,
5-13
Access control,
Access
6-17
Access mode,
memory, 6-5
Access mode, memory, 5-10
Executive, 5-10
Kernel, 5-10
Supervisor,
User, 5-190
Access type, operand, 3-2
address, 3-2, 3-18
branch, 3-2, 3-18
modify, 3-2, 3-18

Branch
Branch
Branch
Branch
Branch
Branch

Branch

5-18
control violation fault,

6-5

5-19

synchronization, 3-19
read, 3-2, 3-18
write, 3-2, 3-18
ACCR - Accelerator Maintenance
Register, 9-15
- Accelerator
Control/Status register,
9-27
ACCS - Accelerator Control/Status
Register, 9-15
ADAWI - Add Aligned Word

ACCS

4-190
ADDB2 - Add
ADDB3 - Add
ADDD2 - Add

4-122
ADDD3 -

4-122
ADDF2 -

4-122
ADDF3 - Add

4-122
ADDG2 -

4-122
ADDG3 -

4-122
ADDH2 -

4-122
ADDH3 - ADD

4-122
ADDL2 - Add
ADDL3 - Add
ADDP4 - Add

Byte 2 Operand, 4-11
Byte 3 Operand, 4-11
D floating 2 Operand,
Add

D floating 3 Operand,

Add F_floating 2 Operand,

F _floating 3 Operand,

ADD G_floating 2 Operand,

ADD G_floating 3 Operand,

ADD H_floating 2 Operand,

H floating 3 Operand,
Long 2 Operand, 4-11
Long 3 Operand, 4-11
Packed 4 Operand,

4-18¢

ADDP6 - Add Packed 6 Operand,
4-180

Address, 2-1

Address access type, operand,
3-2, 3-18

Address arguments, validating,
5-25
Address instructions, 4-38
Address translation, 5-6
Addressing modes notation, 3-4
ADDW2 - Add Word 2 Operand, 4-11
ADDW3 - Add Word 3 Operand, 4-11
ADWC - Add With Carry, 4-12
Alignment

stack, 6-35

target
AOBLEQ -

of control, 4-48
Add One and Branch

Less Than or Equal, 4-52
AOBLSS - Add One and Branch
Less Than, 4-53

AP - Argument Pointer Register,
2-15
Argument Pointer Register, 2-15
Arithmetic faults, 6-14
Arithmetic instructions
decimal string, 4-175
floating point, 4-115
integer, 4-7
Arithmetic traps,
Array addressing,
ASHL - Arithmetic
4-13
ASHP - Arithmetic
Packed, 4-182
ASHQ - Arithmetic Shift Quad,
4-13
AST - Asynchronous System Trap,
6-8, 6-33, 6-40
AST - Aynchronous System Trap,
6-34
AST, Asynchronous System Traps,
7-7
ASTLVL -
Trap
ASTLVL -

6-14
3-14
shift Long,

shift and Round

Asynchronous System

Level, 6-8

Aynchronous System
Trap Level, 6-19, 6-39

ASTLVL - Pending AST Level, 7-5

Autodecrement addressing mode,

3-8

Autodecrement indexed
addressing mode, 3-14

Autodecrement indexed mode,

Autodecrement mode, 3-8

Autoincrement addressing mode,

3-6

Autoincrement deferred
addressing mode, 3-7

Autoincrement deferred indexed
addressing mode, 3-14
mode, 3-14

Autoincrement deferred mode,

Autoincrement indexed
addressing mode, 3-14

Autoincrement indexed mode, 3-14

Autoincrement mode, 3-6

3-14

3-7

Base operand specifier, 3-13

Base register, 2-15

Page Index-2

BBC
BBCC

- Branch on Bit Clear, 4-56
- Branch on Bit Clear

and Clear, 4-57

BBCCI - Branch on Bit Clear

and Clear Interlocked,
- Branch on Bit Clear

and Set, 4-57

- Branch on Bit Set, 4-56
- Branch on Bit Set

and Clear, 4-57

4-59
BBCS

BBS
BBSC

BBSS - Branch on Bit Set
and Set, 4-57
BBSSI - Branch on Bit Set

and Set Interlocked, 4-59
BCC - Branch on Carry Clear,
4-54
BCS - Branch on Carry Set, 4-54
BEQL - Branch on Equal, 4-54
BEQLU - Branch on Equal Unsigned,
4-54
BGEQ - Branch on Greater Than
or Equal, 4-54
BGEQU - Branch on Greater Than
or Equal Unsigned, 4-54
BGTR - Branch on Greater Than,
4-54

BGTRU - Branch on Greater Than
Unsigned, 4-54

BICB2 - Bit Clear Byte 2 Operand,
4-14

BICB3 - Bit Clear Byte 3 Operand,
4-14

BICL2 - Bit Clear Long 2 Operand,
4-14

BICL3 - Bit Clear Long 3 Operand,
4-14

BICPSW - Bit Clear PSW, 4-79

BICW2 - Bit Clear Word 2 Operand,
4-14

BICW3 - Bit Clear Word 3 Operand,
4-14

BISB2 - Bit Set Byte 2 Operand,
4-15

BISB3 - Bit Set Byte 3 Operand,
4-15

BISL2 - Bit Set Long 2 Operand,
4-15

BISL3 - Bit Set Long 3 Operand,
4-15

BISPSW - Bit Set PSW, 4-80

BISW2 - Bit Set Word 2 Operand,
4-15

BISW3 - Bit Set Word 3 Operand,

4-15
Bit efficiency
as a goal, 1-1
BITB - Bit Test Byte, 4-16
BITL - Bit Test Long, 4-16
BITW - Bit Test Word, 4-16
BLBC - Branch on Low Bit Clear,
4-61
BLBS - Branch on Low Bit Set,
4-61
BLEQ - Branch on Less Than
or Equal, 4-54
BLEQU - Branch on Less Than
or Equal Unsigned, 4-54
BLSS - Branch on Less Than, 4-54
BLSSU - Branch on Less Than
Unsigned, 4-54
BNEQ - Branch on Not Equal, 4-54
BNEQU - Branch on Not Equal
Unsigned, 4-54
BPT - Breakpoint Fault, 4-81
Braces
as a notation, 3-4
Branch access type, operand,
3-2, 3-18
Branch displacement addressing,
3-17
BRB - Branch Byte Displacement,
4-62
Breakpoint fault, 6-21
BRW - Branch Word Displacement,
4-62
BSBB - Branch to Subroutine
Byte Displacement, 4-63
BSBW - Branch to Subroutine
Word Displacement, 4-63
Bugcheck, 4-227
BUGL, 4-227
BUGW, 4-227
BVC - Branch on Overflow Clear,
4-54
BVS - Branch on Overflow Set,
4-54
Byte, 2-1
Byte data type, operand, 3-2
Byte displacement
addressing mode, 3-8
Byte displacement deferred
addressing mode, 3-9
indexed addressing mode,
3-14
indexed mode, 3-14
Byte displacement deferred mode,

Page Index-3

3-9
Byte displacement indexed
addressing mode, 3-14
Byte displacement indexed mode,
3-14
Byte displacement mode, 3-8

C - Carry Condition Code, 2-17,
6-5

C condition code, 2-17, 6-5

Cache, 8-2

Cache Disable register (CADR) ,
9-26

Cache Error register (CAER),
9-26

CADR - Cache Disable register,
9-26

CAER - Cache Error register,
9-26

Call frame, 4-70

CALLG - Call Procedure With

General Argument List, 4-72
CALLS - Call Procedure With
Stack Argument List, 4-74

CASEB - Case Byte, 4-64

CASEL - Case Long, 4-64

CASEW ~ Case Word, 4-64

Change mode instructions, 6-41

Character, 2-8
£ill, 4-205
sign, 4-2@5

Character string data type, 2-8

Character string instructions,
4-145

Check protection, 4-222

CHME - Change Mode to Executive,
6-41

CHME -- Change Mode to Executive,
4-226

CHMK - Change Mode to Kernel,
5-41

CHMK -- Change Mode to Kernel,
4-226

CHMS - Change Mode to Supervisor,
6-41

CHMS -- Change Mode to Supervisor,
4-226

CHMU - Change Mode to User, 6-41

CHMU -- Change Mode to User,
4-226

Clock Registers, 9-11

Clock, interval, 9-13

CLRB - Clear Byte, 4-17

CLRD - Clear D floating, 4-124
CLRF - Clear F floating, 4-124
CLRG - Clear G _floating, 4-124
CLRH - Clear H floating, 4-124
CLRL - Clear Long, 4-17
CLRO - Clear Octa, 4-17
CLRQ - Clear Quad, 4-17
CLRW - Clear Word, 4-17
CMI Error register, 9-24
CMIERR - CMI Error register,
9-24
CMP - Compatibility Mode, 6-5
CMPB - Compare Byte, 4-18
CMPC3 - Compare Characters
3 Operand, 4-148
CMPC5 - Compare Characters
5 Operand, 4-148
CMPD - Compare D _floating, 4-125
CMPF - Compare F floating, 4-125
CMPG - Compare G floating, 4-125
CMPH - Compare H floating, 4-125
CMPL - Compare Long, 4-18
CMPP3 - Compare Packed
3 Operand, 4-184
CMPP4 - Compare Packed
4 Operand, 4-184
CMPY - Compare Field, 4-42
CMPW - Compare Word, 4-18
CMPZV - Compare Zero Extended
Field, 4-42
Compatibility
as a goal, 1-1
Compatibility (PDP-11)
longword data format, 2-2
Compatibility mode, 6-5
address modes, 10-2
addresses, 10-54
BPT fault, 10-57
EMT fault, 10-57
entering, 10-53
exceptions, 10-57
1/0, 10-61
illegal instruction fault,
19-57
instructions, 16-7
interrupts, 10-57
10T fault, 106-57
leaving, 10-53
memory management, 18-54
processor registers, 10-61
PSW, 10-6
register mapping, 10-53
registers, 10-2

Page Index-4

reserved instrucions, 10-8
reserved instruction fault,
10-57
stack, 16-6
synchronization, 10-561
T-bit, 10-58
TRAP fault, 18-57
trap instrucions, 10-8
unimplimented traps, 10-69
user environment, 10-2
Compatibility mode exception,
6-21
Condition Codes, 2-17, 6-5
Console Receive Control/Status
register (RXCS), 9-8
Console Receive Data Buffer
register (RXDB), 9-8
Console Storage
Receive Status register
9-25
Console Storage Device, 9-25
Console Storage Receive
Data Buffer register (CSRD),
9-25
Console Storage Transmit
Status register (CSTS), 9-25
Console Storage Transmit Data
Buffer register (CSTD), 9-25
Console terminal registers, 9-8
Console Transmit Control/Status
register (TXCS), 9-9
Console Transmit Data Buffer
register (TXDB), 9-9
Constraints on I/0 registers,
8-5
Context switching, 7-1
Context, process, 6-1, 6-3,
6-5, 6-34, 7-1 to 7-2
Context, system wide,
Control instructions,
Control Store, Micro
VAX-11/780, 9-17
Conventions
general, 1-2
in notation, 4-6
CRC - Calculate Cyclic
Redundancy Check, 4-172
CSRD - Console Storage Receive
Data Buffer register, 9-25
CSRS - Console Storage Receive
Status register, 9-25
CSS, Reserved to, 1-3
CSTD - Console Storage Transmit

1

, 6-34
48

6-
4-

(CSRS),

Data Buffer register, 9-25

CSTS - Console Storage
Transmit Status register,

9-25

CUR_MOD - Current Mode, %-5

Currency sign, 4-205

Current Frame Pointer Register,

2-15

Current mode, 6-
Customers, Reserved to, 1-3

CVTBD - Convert
D floating,
CVTBF - Convert
F floating,
CVTBG - Convert
G_floating,
CVTBH - Convert
H_floating,
CVTBL - Convert
4-19
CVTBW - Convert

4-19
CVTDB - Convert
Byte, 4-126

CVTDF - Convert
F_floating,
CVTDH - Convert
H_floating,
CVTDL - Convert
Long, 4-126
CVTDW' - Convert
Word, 4-126
CVTFB - Convert
Byte, 4-1256
CVTFD - Convert
D _floating,
CVTFG - Convert
G_floating,
CVTFH - Convert
H_floating,
CVTFL - Convert
Long, 4-126
CVTFW - Convert
Word, 4-126
CVTGB - Convert
Byte, 4-126
CVTGF - Convert
F_floating,
CVTGH - Convert
H_floating,
CVTGL - Convert
Long, 4-126
CVTGW - Convert

5

Byte to
4-126
Byte to
4-1256
Byte to
4-126
Byte to
4-126

Byte to Long,

Byte to Word,

D floating

D floating
4-1245
D_floating
4-126
D floating

D _floating
F_floating

F_floating
4-126
F floating
4-126
F floating
4-126
F_floating

F floating
G_floating
G_floating
4-126

G_floating
4-126

G_floating

G_floating

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

Word, 4-126
CVTHB - Convert
Byte, 4-126
CVTHD - Convert
D floating,
CVTHF - Convert
F floating,
CVTHG - Convert
G_floating,
CVTHL - Convert
Long, 4-126
CVTHW - Convert
Word, 4-126
CVTLB - Convert
4-19
CVTLD - Convert
D _floating,
CVTLF - Convert
F floating,
CVTLG - Convert
G floating,
CVTLH - Convert
H floating,
CVTLP - Convert
4-1856
CVTLW - Convert
4-19
CVTPL - Convert
4-187
CVTPS - Convert
to Leading
4-189
CVTPT - Convert
to Trailing

Page Index-5

H floating

H floating
4=125
H_floating
4-126
H floating
4-126
H floating

H_floating

to

to

to

to

to

to

Long to Byte,

Long to
4-126
Long to
4-126
Long to
4-126
Long to
4-126

Long to Packed,

Long to Word,

Packed to Long,

Packed

Separate Numeric,

Packed

Numeric, 4-

CVTRDL - Convert Rounded
D_floating to Long, 4-126
CVTRFL - Convert Rounded
F_floating to Long, 4-126
CVTRGL - Convert Rounded
G_floating to Long, 4-126
CVTRHL - Convert Rounded
H_floating to Long, 4-126

CVTSP - Convert Leading Separate
Numeric to Packed,

CVTTP - Convert
to Packed,
CVTWB - Convert
4-19

CVTWD - Convert
D floating,
CVTWF - Convert
F_floating,
CVTWG - Convert

4-195

191

4-193
Tra111ng Numeric

Word to Byte,

Word to
4-126
Word to
4-126
Word to

G _floating, 4-125
CVTWH - Convert Word to
H floating, 4-126
CVTWL - Convert Word to Long,
4-19
Cyclic redundancy check, 4-171

Page Index-6

Displacement mode, 3-9

DIVB2 - Divide
4-21

DIVB3 - Divide
4-21

DIVD2 - Divide

Byte 2 Operand,
Byte 3 Operand,

D floating

2 Operand, 4-130

D floating, 2-4 DIVD3 - Divide D floating

D floating data type, 3 Operand, 4-130
operand, 3-2 DIVF2 - Divide F floating
Data sharing, 8-1 2 Operand, 4-130
Data synchronization, 8-1 DIVF3 - Divide F _floating
Data type 3 Operand, 4-130
character string, 2-8 DIVG2 - Divide G_floating
decimal string, 2-13 2 Operand, 4-1390
floating, 2-4 to 2-5 DIVG3 - Divide G_floating
integer, 2-1 to 2-3 3 Operand, 4-130
packed decimal string, 2-13 DIVH2 - Divide H floating
string, 2-8, 2-13 2 Operand, 4-139
variable length bit field, 2-6 DIVH3 - Divide H _floating
Data type, operand, 3-2 3 Operand, 4-1390
byte, 3-2 Divide by zero fault, 6-16
D floating, 3-2 pivide by zero trap, 6-15
F_floating, 3-2 DIVL2 - Divide Long 2 Operand,
G floating, 3-2 4-21
H floating, 3-2 DIVL3 - Divide Long 3 Operand,
longword, 3-2 4-21
octaword, 3-2 DIVP - Divide Packed, 4-197
quadword, 3-2 DIVW2 - Divide Word 2 Operand,
word, 3-2 4-21
Data types, 2-1 DIVW3 - Divide Word 3 Operand,
DEC, Reserved to, 1-3 4-21

DECB - Decremen
Decimal overflo
Decimal string
packed, 2-13
Decimal string
zero trap,
Decimal string
4-175
Decimal string
5-15
DECL - Decremen
DECW - Decremen
Digits
significant,
Dispatch
CHMx, 6-42
Displacement ad
3-9
Displacement de

t Byte, 4-20
w, 2-18, 6-5
data type
divide by

6-15
instructions,
overflow trap,

t Long, 4-20
t Word, 4-20

4-205

dressing mode,

ferred indexed

addressing mode, 3-14

mode, 3-14

DV - Decimal Overflow Enable,
2-18, 6-5

Edit instruction, 4-205
EDITPC - Edit Packed to
Character String, 4-206
EDIV - Extended Divide, 4-23
Efficiency, bit
as a goal, 1-1
EMODD - Extended Multiply and

Integerize D floating, 4-132

EMODF - Extended Multiply and

Integerize F _floating, 4-132

EMODG - Extended Multiply and

Integerize G_floating, 4-132

EMODH - Extended Multiply and

Integerize H_floating, 4-132

EMUL - Extended Multiply, 4-24

Entry mask, 4-70

EO$ADJUST INPUT - Adjust Input
Length, 4-224

EOSBLANK ZERO - Blank Backwards
When Zero, 4-22¢
EOSCLEAR_SIGNIF - Clear
Significance, 4-223
EOSEND - End Edit, 4-225
EOSEND_FLOAT - End Floating Sign,
4-219
EOSFILL - Store Fill, 4-215
EOSFLOAT - Float Sign, 4-217
EOSINSERT - Insert Character,
4-213
EOSLOAD FILL - Load Fill
Register, 4-222
EOSLOAD_MINUS - Load Sign
Register If Minus, 4-222

EOSLOAD_PLUS - Load Sign
Register If Plus, 4-222

EO$LOAD_SIGN - Load Sign
Register, 4-222

EOSMOVE - Move Digits, 4-216
EOSREPLACE_SIGN - Replace Sign
When Zero, 4-221
EO$SET_SIGNIF - Set Significance,
4-223
EOSSTORE SIGN - Store Sign,
4-214 —
Errors, processor, 8-4
ESP - Executive Stack Pointer,
7-4
Exception, 6-3
Exception condition, 6-1
Exceptions detected during
operand reference, 6-18
the operation, 6-14
Exceptions occurring as the
consequence of an
instruction, 6-20
Executive memory access mode,
5-10
Extensibility
as a goal, 1-1
Extension, specifier,
3-9 to 3-14, 3-13
Extent, 1-2
EXTV - Extract Field, 4-44
EXTZV - Extract Zero Extended
Field, 4-44

F _floating, 2-4

F_floating data type, operand,
3-2

Fault, 6-1, 6-3

memory management, 5-23

Page Index-7

Faults
arithmetic, 6-14

FF - Floating Fault Enable, 6-5

FFC - Find First Clear, 4-45

FFS - Find First Set, 4-45

Field, 2-6

FIELD - field addressing

notation, 4-4¢

Field instructions, 4-4¢

Fill, 4-285

Fill character, 4-2g5

Fill register, 4-205

First part done, 6-5

Floating, 2-4 to 2-5

Floating currency symbol,

Floating data type, 2-4

Floating divide by zero fault,
5-16

Floating
6-15

Floating

Floating

4-205

divide by zero trap,

fault, 6-5
overflow fault, 6-15
Floating overflow trap, 6-15
Floating point
immediate constant, 3-12
Floating point instructions,
4-115
Floating
Floating

sign, 4-2@95

underflow, 2-18, 6-5

Floating underflow fault, 6-16

Floating underflow trap, 6-15

FP - Current Frame Pointer

Register, 2-15

FPD - First Part Done, 6-5

Frame Pointer Register, Current,
2-15

FU - Floating Underflow Enable,
2-18, 6-5

G_floating, 2-5
G_floating data type,
operand, 3-2
General mode addressing, 3-5
General Registers, 7-4
Global page table index (gptx),
5-8

1-1
5-8

Goals,
Gptx,

H floating, 2-5
H_floating data type,
operand, 3-2

HALT - Halt, 4-82

Page Index-8

Halt, processor, 6-26, 6-28, Interrupt Priority Level (IPL),
6-34, 6-38, 6-41, 6-43, 8-2, 6-2, 6-11
9-18 Interrupt process, 6-8
VAX-11/780, 6-29 Interrupt stack, 6-5
Interrupt stack not valid halt,
1/0 instructions, A-18 6-26
1/0 structure, 2-20, 8-5 Interrupt structure, 2-20
ICCS - Interval Clock Interrupt, Process Scheduling,
Control/Status register, 7-8
9-13 Interrupts, 8-4
ICR - Interval Count Register, Interrupts, Process Structure,
9-13 7-8
Immediate addressing mode, 3-6 Interval clock, 9-13
Immediate constant Interval Clock Control/Status
floating point, 3-12 register (ICCS), 9-13
integer, 3-11 Interval Count Register (ICR),
Immediate indexed 9-13
addressing mode, 3-14 IORESET - Initialize UNIBUS,
Immediate indexed mode, 3-14 9-27
Immediate mode, 3-6 IPL - Interrupt Priority Level,
INCB - Increment Byte, 4-25 6-2, 6-5, 6-10 to 6-11
INCL - Increment Long, 4-25 IS - Interrupt Stack in use,
INCW - Increment Word, 4-25 6-5, 6-35
INDEX - Compute Index, 4-83 IV - Integer Overflow Enable,
Index addressing mode, 3-13 2-18, 6-5
Index mode, 3-13
Index register, 2-15 JMP - Jump, 4-65
Indivisible operation JSB - Jump To Subroutine, 4-66
modify access, 3-19
Initialize UNIBUS (IORESET), Kernel memory access mode, 5-10
9-27 Kernel stack not valid abort,
Initiate exception or interrupt, 6-26
6-37 KSP - Kernel Stack Pointer, 7-4
INSQHI - Insert Entry into Queue
at Head, Interlocked, 4-99 LDPCTX - Load Process Context,
INSQTI - Insert Entry into Queue 7-9
at Tail, Interlocked, 4-102 LDPCTX -- Load Process Context,
INSQUE - Insert Entry in Queue, 4-226
4-105 Leading separate sign, 4-175,
Instruction format, 2-19 4-189, 4-193
Instruction operand formats, A-1 Leading zero, 4-223
INSV - Insert Field, 4-47 Literal addressing mode, 3-11
Integer Literal mode, 3-11
immediate constant, 3-11 LOCC - Locate Character, 4-152
Integer data type, 2-1 to 2-3 Logical instructions, 4-7
Integer divide by zero trap, Longword, 2-2
6-15 PDP-11 compatibility, 2-2
Integer instructions, 4-7 Longword data type, operand, 3-2
Integer overflow, 2-18, 5-5 Longword displacement
Integer overflow trap, 5-14 addressing mode, 3-8
Interrupt, 6-1 to 6-3, 6-8 Longword displacement deferred
Interrupt AST Delivery, 7-8 addressing mode, 3-9

Interrupt priority level, 6-5 indexed addressing mode,

3-14
indexed mode, 3-14
mode, 3-9
Longword displacement indexed
addressing mode, 3-14
mode, 3-14
Longword displacement mode, 3-8

M - Modify bit, 5-6
Machine Check Error Summary
register (MCESR), 9-26
Machine check exception, 6-26
MAPEN - Map Enable Register, 5-5
MATCHC - Match Characters, 4-154
MBRK - Micro Program Breakpoint
Address register, 9-18
MBZ, 1-2
MCESR - Machine Check Error
Summary register, 9-25%
MCOMB - Move Complemented Byte,
4-26
MCOML - Move Complemented Long,
4-26
MCOMW - Move Complemented Word,
4-26
Memory access mode, 5-18, 6-5

Executive, 5-1¢
Kernel, 5-1¢
Supervisor, 5-10
User, 5-190

Memory management control, 5-5
Memory management exceptions,
6-17
Memory management faults, 5-23
Memory Mapping Enable (MAPEN),
5-5
MFPR - Move From
Processor Register, 9-5
MFPR -- Move From Processor
Register, 4-226
Micro Control Store
VAX-11/780, 9-17
Micro Program Breakpoint Address
register (MBRK), 9-18
MINU - minimum unsigned notation,
4-6
Miscellaneous instructions, 4-78
MME - Memory Mapping Enable, 5-5
MNEGB - Move Negated Byte, 4-27
MNEGD - Move Negated D floating,
4-134
MNEGF - Move Negated F _floating,
4-134

Page Index-9

MNEGG - Move Negated G floating,
4-134

MNEGH - Move Negated H floating,
4-134

MNEGL - Move Negated Long, 4-27
MNEGW - Move Negated Word, 4-27
Mode, 5-19, 6-5

compatibility, 6-5
Mode changing instructions, 6-41
Mode, memory access, 5-18, 6-5
Modify access type, operand,
3-2, 3-18
synchronization, 3-19
Modify bit, 5-6
MOVAB - Move Address Byte, 4-38

MOVAD - Move Address D floating,
4-38

MOVAF - Move Address F _floating,
4-38

MOVAG - Move Address G floating,
4-38

MOVAH - Move Address H floating,
4-38

MOVAL - Move Address Long, 4-38

MOVAO - Move Address Octa, 4-38

MOVAQ - Move Address Quad, 4-38

MOVAW - Move Address Word, 4-38

MOVB - Move Byte, 4-28

MOVC3 - Move Character 3 Operand,
4-156

MOVC5 - Move Character 5 Operand,
4-156

MOVD - Move D floating, 4-135
MOVF - Move F floating, 4-135
MOVG - Move G floating, 4-135
MOVH - Move H floating, 4-135
MOVL - Move Long, 4-28

MOVO - Move Octa, 4-28

MOVP - Move Packed, 4-199
MOVPSL - Move PSL, 4-85

MOVQ - Move Quad, 4-28
MOVTC - Move Translated
Characters, 4-168
MOVTUC - Move Translated
Until Character, 4-163
MOVW - Move Word, 4-28
MOVZBL - Move Zero-Extended
Byte to Long, 4-29
MOVZBW - Move Zero-Extended
Byte to Word, 4-29
MOVZWL - Move Zero-Extended
Word to Long, 4-29
MTPR - Move To

Processor Register, 9-3
MTPR -- Move To Processor
Register, 4-226
MULB2 - Multiply Byte 2 Operand,
4-30¢
MULB3 - Multiply Byte 3 Operand,
4-30
MULD2 - Multiply D floating
2 Operand, 4-135
MULD3 - Multiply D floating
3 Operand, 4-135
MULF2 - Multiply F floating
2 Operand, 4-135
MULF3 - Multiply F _floating
3 Operand, 4-136
MULG2 - Multiply G _floating
2 Operand, 4-136
MULG3 - Multiply G_floating
3 Operand, 4-136
MULH2 - Multiply H floating
2 Operand, 4-136
MULH3 - Multiply H floating
3 Operand, 4-136
MULL2 - Multiply Long 2 Operand,
4-30
MULL3 - Multiply Long 3 Operand,
4-30
MULP - Multiply Packed, 4-201
MULW2 - Multiply Word 2 Operand,
4-30
MULW3 - Multiply Word 3 Operand,
4-30

N - Negative Condition Code,
2-17, 6-5
N condition code, 2-17, 6-5
Next Interval Count
Register (NICR), 9-13
Nibble, 2-13
NICR - Next Interval Count
Register, 9-13
NOP - No Operation, 4-86
as a diagnostic scope point,
9-18
Notation
(y, 3-4
{}I 3-4
addressing modes, 3-4
FIELD - field addressing, 4-40
MINU - minimum unsigned, 4-6
OA - operand address, 3-4
operand specifier, 4-3, A-9
operation description, 4-4

Page Index-10

R(nl, 2-15

register, 2-15

REM - remainder, 4-6

Rn, 2-15

SEXT - sign extend, 3-4, 4-6

7EXT - zero extend, 3-4, 4-6
Numbering, 1-2

0A - operand address notation,
3-4
Octaword, 2-3
Octaword data type, operand, 3-2
Opcode assignments, A-12
Opcode formats, 3-1
Opcode reserved to customers
fault, 6-20
Opcode reserved to DIGITAL Fault,
6--20
Operand format summary, A-1
Operand specifier, 3-2
Operand specifier access type,
3-2
Operand specifier conventions,
3-18
Operand specifier data type, 3-2
Operand specifier notation, A-9
Operand specifier, base, 3-13
Operand, primary, 3-13
Orthogonality
as a goal, 1-1
Overflow, 6-4 to 6-5,
6-14 to 6-16, 6-27
stack, 6-26

P@ Base Register, 7-4

PY Base Register (POBR), 5-17

P? Length Register (POLR), 5-17

P¢ Limit Register, 7-4

Pg@ Page Table (p@PT), 5-17

Pg Region, 5-17

P8 region, 5-4

PPBR - PO Base Register, 5-17,
7-4

PULR - PO Length Register, 5-17

PPLR - P@ Limit Register, 7-4

P@PT - P@ Page Table, 5-17

Pl Base Register, 7-5

Pl Base Register (P1BR), 5-20

Pl Length Register (P1LR), 5-20

Pl Limit Register, 7-5

Pl Page Table (P1PT), 5-20

Pl Region, 5-20

Pl region, 5-4

PIBR - Pl Base Register, 5-249,
7-5

PILR - Pl Length Register, 5-2¢

PILR - Pl Limit Register, 7-5

P1PT - Pl Page Table, 5-20

Packed decimal

instructions, 4-175
Packed decimal string, 2-13
Page, 5-2
Page frame number field, 5-6
Page Table Entry (PTE), 5-6, 5-8
Parentheses
as a notation,
Part done, 6-5
PC - Program Counter Register,
2-15
in process context, 7-4
PCB - Process Control Block, 7-2
PCBB ~ Process Control Block
Base, 7-2
Per-process Space, 5-4
Performance monitor enable, 7-5
PFN - Page Frame Number field,
5-6
PME - Performance Monitor Enable,
7-5
POLYD - Polynomial Evaluation
D floating, 4-138
POLYF - Polynomial Evaluation
F_floating, 4-138
POLYG - Polynomial Evaluation
G_floating, 4-138
POLYH - Polynomial Evaluation
H floating, 4-138
POPR - Pop Registers, 4-87
Power fail, 8-2
Previous mode, 6-5
Primary operand, 3-13
Priority level, 6-5
Probe accessibility, 5-26, 5-28
PROBER - Probe Read
Accessibility, 4-226
accessibility, 5-26
PROBEW - Probe Write
Accessibility, 4-226
accessibility, 5-26
Procedure call instructions,
4-79
Procedure calling interface,
4-70
Process context, 7-1
Process control block, 7-2
Process scheduling, 7-1

3-4

Page Index-11

Process Space, 5-4, 5-16
Process, definition, 7-1
Processor Errors, 8-4
Processor Internal Register
space, 9-1
Processor mode, 5-10
Processor Registers, 9-6
Processor Status Longword (PSL),
6-5
Processor Status Word, 2-17
Processor type, 9-7
Program counter
in process context, 7-4
Program Counter Register, 2-15
Program status longword
in process context, 7-4
PROT - Protection field, 5-6
Protection, 5-10
check, 4-222
Protection Code, 5-19
Protection field, 5-6
PRV MOD - Previous Mode, 6-5
PSL - Processor Status Longword,
6-5
PSL - Program Status Longword
in process context, 7-4
PSW - Processor Status Word,
2-17, 6-3, 6-5, 6-19
PTE - Page Table Entry, 5-6, 5-8

PUSHAB - Push Address Byte, 4-39

PUSHAD - Push Address D floating,
4-39

PUSHAF - Push Address F_floating,
4-39

PUSHAG - Push Address G_floating,
4-39

PUSHAH - Push Address H floating,
4-39

PUSHAL - Push Address Long, 4-39

PUSHAQ - Push Address Quad, 4-39

PUSHAW - Push Address Word, 4-39

PUSHL - Push Long, 4-31
PUSHR - Push Registers, 4-88

Quadword, 2-3
Quadword data type, operand, 3-2
Queue instructions, 4-9¢

Range
as a goal, 1-2

Range of values, 1-2

Read access type, operand, 3-2,
3-18

Register
£i11, 4-205
sign, 4-205
Register addressing mode,
3-5 to 3-6
Register deferred
addressing mode, 3-5
Register deferred indexed
addressing mode, 3-14
Register deferred indexed mode,
3-14
Register deferred mode, 3-5
Register mode, 3-5 to 3-6

Register usage, 2-15
Registers
VAX-11 Series, 9-6

VAX-11/75@ Specific, 9-24
VAX-11/78¢ Specific, 9-15
REI - Return from Exception
or Interrupt, 6-39
-- Return from Exception
or Interrupt, 4-226
REM - remainder notation,

REI

4-6

REMQHI - Remove Entry from Queue
at Head, Interlocked, 4-107
REMQTI - Remove Entry from Queue
at Tail, Interlocked, 4-114
REMQUE - Remove Entry from Queue,
4-113
RESERVED, 1-3

Reserved addressing mode fault,
6-18
Reserved operand exception, 6-18
Restartability, 8-3
RET - Return from Procedure,
4-76
Revision level, 9-7
ROTL - Rotate Long, 4-32
RSB - Return From Subroutine,
4-67
RXCS - Console Receive
Control/Status register, 9-8
RXDB - Console Receive
Data Buffer register, 9-8

saved PC, 6-3, 6-5, 6-14, 6-18,
6-22, 6-27 to 6-28

Saved PSL, 6-3, 6-5, 6-14,
6-21 to 6-23, 6-25,
6-27 to 65-28

Saved TP, 6-22 to 5-23, 6-25,
6-27 to 6-28

SBI Error register (SBIER), 9-21

Page Index-12

SBI Fault/Status register (SBIFS),
9-18

SBI Maintenance register (SBIMT),
9-20

SBI Quad Clear (SBIQC), 9-23
SBI Silo Comparator
register (SBISC), 9-19
SBI Silo Data Register (SBIS),
9-19
SBI Timeout Address
register (SBITA), 9-22

SBIER - SBI Error register, 9-21
SBIFS - SBI Fault/Status register,
9-18
SBIMT - SBI Maintenance register,
9-20
SBIQC - SBI Quad Clear, 9-23
SBIS - SBI Silo Data Register,
9-19
SBISC - SBI Silo Comparator
register, 9-19
SBITA - SBI Timeout Address
register, 9-22
SBR - System Base Register, 5-13
SBWC - Subtract With Carry, 4-33
SCANC - Scan Characters, 4-165
SCBB - System Control Block Base,
6-29
Scheduling, process, 7-1
Self-relative queues, 4-95
Separate sign, leading, 4-175,
4-189, 4-193
Separation of procedure and data,
2-20
Serial number, 9-7
Serialization of notification
of multiple events, 6-27
SEXT - sign extend notation,
3-4, 4-6
Sharing, 8-1
SID - System Identification, 9-7
Sign, 4-205
currency, 4-2065
Sign character, 4-205
Sign register, 4-205
Significance, 4-205
Significance indicator, 4-205,
4-223
Significant digits, 4-20
SIRR - Software Interrup
Request Register, 6-2, 6-8,
6-10 to 6-11
SISR - Software Interrupt

Summary Register, 6-10
SKPC - Skip Character, 4-167
SLR - System Length Register,
5-13
SOBGEQ - Subtract One and Branch
Greater Than or Equal, 4-68
SOBGTR - Subtract One and Branch
Greater Than, 4-69
Software Interrupt
Request Register (SIRR),
6-10
Summary Register
6-10
Software interrupt, 6-190
SP - Stack Pointer Register,
2-15
SPANC - Span Characters, 4-169
Specifier extension,
3-9 to 3-1¢, 3-13
SPT - System Page Table, 5-13
SSP - Supervisor Stack Pointer,
7-4
Stack alignment, 6-35
Stack frame, 4-79
Stack pointer
in process context, 7-4
Stack pointer images, 9-2
Stack Pointer Register, 2-15
Stack residency, 6-34
Stack, switch, 6-34, 6-37, 6-39
String data type
character, 2-8
packed decimal, 2-13
String descriptor
as operand, 4-146, 4-175
String instructions
character, 4-146
cyclic redundancy check, 4-171
decimal, 4-175
SUBB2 - Subtract Byte 2 Operand,
4-34
SUBB3 - Subtract Byte 3 Operand,
4-34
SUBD2 - Subtract D floating
2 Operand, 4-143
SUBD3 - Subtract D floating
3 Operand, 4-173
SUBF2 - Subtract F _floating
2 Operand, 4-143
SUBF3 - Subtract F_floating
3 Operand, 4-143
SUBG2 - Subtract G floating
2 Operand, 4-143

(SISR),

Page Index-13

SUBG3 - Subtract G floating
3 Operand, 4-173
SUBH2 - Subtract H floating
2 Operand, 4-1143
SUBH3 - Subtract H floating
3 Operand, 4-143
SUBL2 - Subtract Long 2 Operand,
4-34
SUBL3 - Subtract Long 3 Operand,
4-34
SUBP4 - Subtract Packed
4 Operand, 4-203
SUBP6 - Subtract Packed
6 Operand, 4-2¢3
Subscript range trap, 6-16
SUBW2 - Subtract Word 2 Operand,
4-34
SUBW3 - Subtract Word 3 Operand,
4-34
Summary, 1-1
Supervisor memory access mode,
5-1a
SVPCTX - Save Process Context;
7-11
SVPCTX -- Save Process Context,
4-226
Switching, context, 7-1
Synchronization, 8-1
modify access, 3-19 \
System Base Register (SBR), 5-13
System Control Block Base (sCBB),
6-29
System Identification
register (SID), 9-7
System Length Register (SLR),
5-13
System Page Table (SPT), 5-13
System Region, 5-13
System Space, 5-4, 5-13

T - Trace Enable, 6-5

T - Trace Trap Enable, 2-18

TB Data register (TBDATA), 9-28

TB Group Disable
register (TBDR), 9-26

TBCHK - Translation Buffer
Check register, 5-23

TBDATA - TB Data Register, 9-28

TBDR - TB Group
Disable register, 9-26

TBIA - Translation Buffer
Invalidate All Register,
5-23

TBIS - Translation Buffer
Invalidate Single Register,
5-22
Terminology
general, 1-2

Time-of-Year Register (TODR),
9-11

TODR - Time-of-Year Register,
9-11

TP - Trace Pending, 6-5

Trace, 6-5, 6-22

Trace pending, 6-5

Trace trap, 2-18

Trailing numeric

string instructions, 4-175
string instructions, 4-191,
4-195

Translation buffer, 5-22

Translation Buffer Check
register (TBCHK), 5-23

Translation Buffer Invalidate
All Register (TBIA), 5-23
Single Register (TBIS), 5-22

Translation not valid fault,

6-17

Translation, address, 5-6

Trap, 6-1, 6-3

Traps

arithmetic, 6-14

TSTB - Test Byte, 4-35

TSTD - Test D floating, 4-145

TSTF - Test F_floating, 4-145

TSTG - Test G _floating, 4-145

TSTH - Test H floating, 4-145

TSTL - Test Long, 4-35

TSTW - Test Word, 4-35

TXCS - Console Transmit
Control/Status register, 9-9

TXDB -~ Console Transmit
Data Buffer register, 9-9

Type, processor, 9-7

UNDEFINED, 1-2

UNIBUS, 6-2, 6-9, 8-1
Unmapped system, 5-5
UNPREDICTABLE, 1-2

Unsigned integer, 2-1 to 2-2
User memory access mode, 5-10
USP - User Stack Pointer, 7-4

V - Overflow Condition Code,
2-17, 6-5
Vv - Valid bit, 5-6

Page Index-14

V condition code, 2-17, 6-5

Valid bit, 5-6

Validating address arguments,
5-25

Variable length bit field

instructions, 4-40

bytes referenced, 2-7
data type, 2-6

VAX-11/788 Accelerator, 9-15

VAX-11/78% Micro Control Store,
9-17

Vector, 6-2, 6-20 to 6-21,
6-26 to 6-27, 6-29, 6-31,
6-34 to 6-35, 6-37, 6-42
interrupt, 6-8

Virtual address, 2-1

Virtual Address Space, 5-2

Virtual Page Number, 5-4

VPN - Virtual Page Number, 5-4

WCSA - Writable Control Store
Address register, 9-17
WCSD - Writable Control Store

Data register, 9-17
Word, 2-2
Word data type, operand, 3-2
Word displacement
addressing mode, 3-8
Word displacement deferred
addressing mode, 3-9
indexed addressing mode,
3-14
indexed mode, 3-14
Word displacement deferred mode,
3-9
Word displacement indexed
addressing mode, 3-14
Word displacement indexed mode,
3-14
Word displacement mode, 3-8
Writable Control Store Address
register (WCSA), 9-17
Writable Control Store Data
register (WCSD), 9-17
Write access type, operand,
3-2, 3-18

XFC - Extended Function Call,
4-89
XORB2 - Exclusive OR Byte
2 Operand, 4-36
XORB3 - Exclusive OR Byte
3 Operand, 4-36

XORL2 - Exclusive OR Long
2 Operand, 4-36

XORL3 - Exclusive OR Long
3 Operand, 4-36

XORW2 - Exclusive OR Word
2 Operand, 4-36

XORW3 - Exclusive OR Word
3 Operand, 4-36

Z - Zero Condition Code, 2-17
6-5

Z condition code, 2-17, 6-5

Zero
leading, 4-223

ZEXT - zero extend notation,
3-4, 4-5%

14

Page Index-15

VAX-11 ARCHITECTURE REFERENCE MANUAL READER’S COMMENTS
REVISION 6.1

Your comments and suggestions will help us in our continuous effort to improve the
quality and usefulness of our manuals.

What is your general reaction to this manual? (format, accuracy, completeness, orga-
nization, etc.)

What features are most useful?

Does the publication satisfy your needs?

What errors have you found?

Additional comments

Name

Title

Company Dept.
Address

City State Zip

Do Not Tear - Fold Here and Staple . — — —

. __ __ FoldHere - - — — — — —

il

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 33 MAYNARD, MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
VAX ARCHITECTURE MANAGEMENT
1925 ANDOVER STREET

TW/BO5

TEWKSBURY, MA 01876

No Postage
Necessary
if Mailed in the
United States

(o]

)

Q

	0001
	0002
	0003
	001
	002
	003
	004
	005
	006
	01-01
	01-02
	01-03
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	04-001
	04-002
	04-003
	04-004
	04-005
	04-006
	04-007
	04-008
	04-009
	04-010
	04-011
	04-012
	04-013
	04-014
	04-015
	04-016
	04-017
	04-018
	04-019
	04-020
	04-021
	04-022
	04-023
	04-024
	04-025
	04-026
	04-027
	04-028
	04-029
	04-030
	04-031
	04-032
	04-033
	04-034
	04-035
	04-036
	04-037
	04-038
	04-039
	04-040
	04-041
	04-042
	04-043
	04-044
	04-045
	04-046
	04-047
	04-048
	04-049
	04-050
	04-051
	04-052
	04-053
	04-054
	04-055
	04-056
	04-057
	04-058
	04-059
	04-060
	04-061
	04-062
	04-063
	04-064
	04-065
	04-066
	04-067
	04-068
	04-069
	04-070
	04-071
	04-072
	04-073
	04-074
	04-075
	04-076
	04-077
	04-078
	04-079
	04-080
	04-081
	04-082
	04-083
	04-084
	04-085
	04-086
	04-087
	04-088
	04-089
	04-090
	04-091
	04-092
	04-093
	04-094
	04-095
	04-096
	04-097
	04-098
	04-099
	04-100
	04-101
	04-102
	04-103
	04-104
	04-105
	04-106
	04-107
	04-108
	04-109
	04-110
	04-111
	04-112
	04-113
	04-114
	04-115
	04-116
	04-117
	04-118
	04-119
	04-120
	04-121
	04-122
	04-123
	04-124
	04-125
	04-126
	04-127
	04-128
	04-129
	04-130
	04-131
	04-132
	04-133
	04-134
	04-135
	04-136
	04-137
	04-138
	04-139
	04-140
	04-141
	04-142
	04-143
	04-144
	04-145
	04-146
	04-147
	04-148
	04-149
	04-150
	04-151
	04-152
	04-153
	04-154
	04-155
	04-156
	04-157
	04-158
	04-159
	04-160
	04-161
	04-162
	04-163
	04-164
	04-165
	04-166
	04-167
	04-168
	04-169
	04-170
	04-171
	04-172
	04-173
	04-174
	04-175
	04-176
	04-177
	04-178
	04-179
	04-180
	04-181
	04-182
	04-183
	04-184
	04-185
	04-186
	04-187
	04-188
	04-189
	04-190
	04-191
	04-192
	04-193
	04-194
	04-195
	04-196
	04-197
	04-198
	04-199
	04-200
	04-201
	04-202
	04-203
	04-204
	04-205
	04-206
	04-207
	04-208
	04-209
	04-210
	04-211
	04-212
	04-213
	04-214
	04-215
	04-216
	04-217
	04-218
	04-219
	04-220
	04-221
	04-222
	04-223
	04-224
	04-225
	04-226
	04-227
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	10-37
	10-38
	10-39
	10-40
	10-41
	10-42
	10-43
	10-44
	10-45
	10-46
	10-47
	10-48
	10-49
	10-50
	10-51
	10-52
	10-53
	10-54
	10-55
	10-56
	10-57
	10-58
	10-59
	10-60
	10-61
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	Index-13
	Index-14
	Index-15
	replyA
	replyB
	xBack

