
ULTRIX-32

Guide to System

Configuration File Maintenance

Order No. AA-ME90A-TE

ULTRIX-32 Operating System, Version 3.0

Digital Equipment Corporation

Copyright © 1987, 1988 Digital Equipment Corporation

All Rights Reserved.

The information in this document is subject to change without notice and should not be

construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation

assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or

copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not

supplied by DIGITAL or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

DEC Q-bus VAX

DECnet RT VAXstation

DECUS ULTRIX VMS

MASSBUS ULTRIX-11 VT

MicroVAX ULTRIX-32 ULTRIX Worksystem Software

PDP UNIBUS dlilaliltla]]

UNIX is a registered trademark of AT&T in the USA and other countries.

IBM is a registered trademark of International Business Machines Corporation.

MICOM is a registered trademark of Micom System, Inc.

This manual was written and produced by the ULTRIX Documentation Group in Nashua, New

Hampshire.

Contents

About This Manual

AUIEIICE o oiieii etttet v

OrganiZatiOnNccociiiiieiiiiiiiie et e e e e e e e e s e e e e r s v

Related DoOCUMENTS ..ooovuiiiiiiiiiiiiiiiicet e s et e st eeeans vi

LO70) 1A TZ=Y 01 (0] o SOPPROTRR vi

1 The System Configuration File

1.1 The System Configuration Filecccoooiiiiiiiiiiiiiiiiiiiiiieeeeeeveaen, 1-1

1.2 The Generic System Configuration Filecccoovviiiiiiiiiiiiiiniininnnnnnnn, 1-1

1.3 The Generic System Configuration File Formatcceee. 1-2

1.3.1 Global Definitionscccccoviiiiiiieiriiiiiiiiiieciei e e eeee e 1-2

1.3.2 System Image Definitionscccccovviiiiiiiiiiiiiiiiiiinneeiieieeevveinnnn. 1-8

1.3.3 Device Definitionsccccccviiiiiiieiiiiiiiiiiiiieieei eeeeeeeeeenanaens 1-10

1.3.3.1 Adapter Specificationscccccccoviiiiiiiieiiiieiiiiiiiieeeeeeeeeeeeiaen, 1-10

1.3.3.2 Master Specificationsc.cccoccvviviiiiiiiiniiiiiiiiiiiinee e 1-11

1.3.3.3 Controller Specificationsccccccovviiiieeieriiiiiiiiiiieeeeeeeeeeeeenaeen, 1-12

1.3.3.4 Device Specificationscccoeeievvviviiiiiiiieieeeiiiiiieee e 1-14

1.3.3.5 Disk Specificationscccccccoveeriiiiiiiiiiiiiieniiieeeiiiciiiee 1-15

1.3.4 Pseudodevice Definitionsccccoiiiiiiiiiiiiiviiiiiiiin e, 1-16

1.4 Sample Generic Configuration Fileccccccovviiiiiiiiiiiiiiriiineeiiiiniiiiienenn. 1-18

1.5 System Configuration Files for Diskless Clientscccoooeviiviiinnnnin, 1-24

1.5.1 Default Diskless Configuration File Naming Conventions 1-24

1.5.2 Diskless Default Configuration File Differencesooooo...... 1-25

1.56.3 Diskless Configuration File Useccccoceeeeviveeviineeseeireeeernnnn 1-25

1.5.4 Sample Default Diskless Configuration Filecoccooevvvvvenrvnnn, 1-26

2 Building the Kernel

2.1 When To Build a New Kernelcccooccvvemoeieeeemeeieeeeeeeeeeeeeeeeoeene, 2-1

2.2 Building a Kernel Automatically ete eeeetar s 2-2

2.2.1 Using the doconfig Programccccccooooeoovooieeeeeeeiieeeeeeeeeiennenn 2-2

2.2.2 Testing the New Kerneloocoooooveeeimmeeeeiiiieeeeeeeeeeeeeeeeeieenen 2-6

2.3 Building a New Kernel Manuallyccooceeeoieeivoieeeeeeeeeeeeeeeeeeeeeoenns 2-6

2.3.1 Edit the Configuration Fileccccccoovovoovieeeeeeeieeeeeeeeeennsein 2-7

2.3.2 Prepare the Directory for the Binary Filescccoooevvvervennn.. 2-7

2.3.3 Define the Code Dependenciesccccccoovoeveeevceevreriereeeiinnein, 2-8

2.3.4 Compile and Load the Binary Filesc.cccccceeoovevvoeeevineeennn 2-9

2.3.5 Boot the New Kernelc.ccccoovoiiiiiimiiiieeeoieeeeeeeeeeeeeeeeeeiiann 2-10

2.4 Building the Kernel After a Capacity Upgrade Installation 2-11

A Device Mnemonics

Index

Examples

1-1: Sample Configuration Fileccoccoooooiemoeeioemmoeeeeeeeeeeieseeeeeeeeeino, 1-18

1-2: Sample QEQDVAX.dlconf Configuration Fileccccoeveveeveevvevvviin, 1-27

2-1: Sample doconfig EXecutionccccceeeveemveivveeeeeeeeeeeeeeeeeeeeeeoeeeeos 24

Tables

A-1: Devices Supported by MAKEDEV ...cooooiiioiiioieeeeeoeeeoeeoe, A-2

iv Contents

About This Manual

This guide provides information on how to maintain the system

configuration file and how to build a new kernel system image. This guide

also explains how to build a new kernel automatically or manually.

Audience

The ULTRIX-32 Guide to System Configuration File Maintenance is

written for the person responsible for managing and maintaining an

ULTRIX system. It assumes that this individual is familiar with ULTRIX

commands, the system configuration, the system’s controller/drive unit

number assignments and naming conventions, and an editor such as vi or

ed. You do not need to be a programmer to use this guide.

Organization

This manual consists of two chapters, one appendix, and an index. The

chapters are:

Chapter 1: The System Configuration File

Explains the format of the generic configuration file and

provides a sample configuration file. This chapter also

describes the default configuration files used in a

diskless environment.

Chapter 2: Building the Kernel

Describes how to build a kernel either automatically or

manually, and explains how to build a new kernel after

a capacity upgrade installation.

Appendix A: Device Mnemonics

Lists the supported device mnemonics and explains how

to obtain detailed reference page information on devices.

Related Documents

You should have the hardware documentation for your system and

peripherals.

Conventions

The following conventions are used in this manual:

special

command(x)

literal

italics

[]

function

UPPERCASE

example

example

%

#

>>>

In text, each mention of a specific command, option,

partition, pathname, directory, or file is presented in this

type.

In text, cross-references to the command documentation

include the section number in the reference manual where

the commands are documented. For example: See the

cat(1) command. This indicates that you can find the

material on the cat command in Section 1 of the reference

pages.

In syntax descriptions, this type indicates terms that are

constant and must be typed just as they are presented.

In syntax descriptions, this type indicates terms that are

variable.

In syntax descriptions, square brackets indicate terms that

are optional.

In syntax descriptions, a horizontal ellipsis indicates that

the preceding item can be repeated one or more times.

In function definitions, the function itself is shown in this

type. The function arguments are shown in italics.

The ULTRIX system differentiates between lowercase and

uppercase characters. Enter uppercase characters only

where specifically indicated by an example or a syntax line.

In examples, computer output text is printed in this type.

In examples, user input is printed in this bold type.

This is the default user prompt in multiuser mode.

This is the default superuser prompt.

This is the console subsystem prompt.

vi About This Manual

<KEYNAME >

<CTRL/x >

In examples, a vertical ellipsis indicates that not all of the

lines of the example are shown.

In examples, a word or abbreviation in angle brackets

indicates that you must press the named key on the

terminal keyboard.

In examples, symbols like this indicate that you must hold

down the CTRL key while you type the key that follows

the slash. Use of this combination of keys may appear on

your terminal screen as the letter preceded by the

circumflex character. In some instances, it may not appear

at all.

About This Manual vii

The System Configuration File 1

This chapter explains the contents and format of the generic configuration

file. A sample generic configuration file is provided to illustrate how

specific information defines the hardware, software, and system parameters.

The chapter also contains a description of the default configuration files

and their location in a diskless system environment.

1.1 The System Configuration File

The system configuration file describes how you want the configuration

software to build the kernel. It identifies all of the device driver source

code that needs to be compiled into the kernel, as well as a number of

system parameters that affect how the kernel operates. The kernel is the

system image that controls system scheduling, memory management, input

and output services, device management, and organization of the file

systems. Provided you have enough disk space, you can build more than

one kernel.

Except for diskless systems, the system configuration file resides in

lfusr/sys/conf and has the same name as the system name (in uppercase

letters) which was defined during the installation procedure. For example,

if you named your system tucson during the installation procedure, then

the system configuration file name will be /usr/sys/conf/TUCSON. The

lusr/sys/conf directory also has a generic system configuration file that you

can use to tailor other system configuration files to your hardware.

1.2 The Generic System Configuration File

This section describes the organization and entries of the GENERIC

configuration file, /usr/sys/conf/GENERIC, which is a template that you can

use to build other configuration files. In addition to the configuration file

information contained in this chapter, the following information will help

you tailor a configuration file to your system’s hardware, options, and

- requirements:

° Section 4 of the ULTRIX Reference Pages contains definitions of

configuration file entries and the syntax to define supported devices.

Use the descriptions in Section 4 to determine the correct syntax for

changes to the configuration file

o Appendix A provides information on the names of the device

mnemonics supported by MAKEDEV

1.3 The Generic System Configuration File Format

All configuration files, including the generic configuration file, have four

parts:

® Global definitions

° System image definitions

o Device definitions

® Pseudodevice definitions

Note

In some cases, the system parameters discussed in this section

do not appear in the GENERIC configuration file. These

parameters, as well as some of the arguments to the parameters,

are described here because the parameters are used in some
system configuration files.

1.3.1 Global Definitions

The global definitions parameters apply to all the kernels generated by the

configuration file. Each global definition appears on a separate line in the

configuration file. Each line represents a tunable system parameter and

begins with one of these keywords:

machine

cpu

ident

timezone

maxusers

maxuprc

manuva

maxtsiz

physmem

dmmin

dmmax

1-2 The System Configuration File

smmin

smmax

smseg

smsmat

smbrk

processors

scs_sysid

options

The following paragraphs display the syntax and describe how and when to

use each parameter:

machine type

This parameter defines the hardware; the argument type must be vax:

For example:

machine vax

Cpu ||type 1

This parameter defines the processor; the argument type must be

enclosed in quotes. For example:

cpu "VAX780+

The GENERIC configuration file lists the cpu types by processor

class. This is because in some cases, the processor names have been

equivalenced in the configuration software. For instance, the "MVAX”

entry applies to the MicroVAX II and VAXstation 2000 processors.

The VAX3600 entry in the GENERIC configuration file applies to all

of the MicroVAX 3000, VAX 3000, and VAXserver 3000 type

processors. The VAX 8200 applies to the VAX 8200 processor.

° If you know your processor class, then you can use that as

your configuration file entry.

° If you do not know your processor class, then you can use the

exact processor name. For example:

VAX8800

VAX8820

VAX8700

VAX8600

VAX8550

VAX8530

VAX8500

VAX8350

The System Configuration File 1-3

VAX8300

VAX8200

VAX6210

VAX6220

VAX3600

VAX3500

VAX3400

VAX3300

VAX785

VAX780

VAX750

VAX420

MVAX

o You can specify more than one cpu type for a kernel that can

be booted on multiple cpu’s. However, a kernel for multiple

processors means that during the configuration process, your

system will build more capabilities than it needs. The result is

that in most cases, your kernel will require more memory than

a kernel for a single processor requires. It is also possible that

under these conditions, your system will have to do more

paging and swapping during daily operations, which will affect

system performance.

ident name

This parameter defines the host machine for which you are creating

the configuration file. The name argument is the system name

which you specified during the installation procedure. Enter the

name in upper cases letters.

ident TUCSON

This parameter ensures that all host-specific source code is compiled

during the actual configuration process.

timezone number dst x

This parameter defines timezone information for your site. The

installation procedure enters this value to your system configuration

file according to information you supply during the installation or

when you register a diskless client. The number argument identifies

your time zone, measured by the number of hours west of Greenwich

Mean Time: for example, Eastern Standard Time is five hours west

of Greenwich Mean Time, and Pacific Standard Time is eight hours

west. Negative numbers indicate hours east of GMT. The generic

configuration file time zone entry is set to Eastern Daylight Savings

Time (The entry is timezone 5 dst).

1-4 The System Configuration File

The argument dst indicates daylight savings time. During the

installation procedure, you can include a number (x) to request a

particular daylight savings time correction algorithm. The values are:

United States (the default value)

Australia

Western Europe

>

W

N

=

Central Europe

5 FEastern Europe

maxusers number

This parameter defines the maximum number of simultaneously active

users allowed on your system. The number argument should be equal

to or greater than the maximum number of users allowed by your

license agreement.

The number in this field is used in the system algorithms to size a

number of system data structures and to determine the amount of

space allocated to system tables. Omne such table is the system

process table, which is used to determine how many active processes

can be running at one time.

The maxusers number also affects the number of mbuf pages that

the kernel allocates based on increments of 32. For instance:

° If the maxusers number is less than 64, the kernel allocates 32

mbuf pages. :

o If the maxusers number is between 64 and 95, the kernel

allocates 64 mbuf pages.

° If the maxusers number is between 96 and 127, the kernel

allocates 96 mbuf pages.

® If the maxusers number is between 128 and 159, the kernel

allocates 128 mbuf pages.

maxuprc number

This parameter defines the the maximum number of processes one

user can run simultaneously. The default maxuprc entry is 50.

maxuva num

This parameter defines the maximum aggregate number of user

virtual address space in megabytes allowed by the system. The

default value is 256 Mb.

maxsiz num

This parameter defines the largest text segment in megabytes allowed

by the system. The default value is 12 Mb.

The System Configuration File 1-5

physmem number

This parameter defines an estimate of the amount of physical

memory currently in the system in Mbytes. This number argument

is not used to limit the amount of memory, rather, it is used by the

system to size the system page table, so it should be greater than or

equal to the amount of physical memory in the system.

dmmin numl and dmmax num2

The system satisfies requests for additional virtual memory using the

values for dmmin and dmmax. A process is initially granted numl

512-byte blocks of virtual memory. The next time the process

requests memory, the system grants twice as much (numl x 2).

This allocation continues until the amount of memory granted is

equal to num2 blocks. After that, additional requests are satisfied

with num2 blocks of memory. The default value for numl is 32.

The default value for num2 is 1024. The numl and num2 values

should be a power of 2, and the num2 value should be a multiple of

numl. Otherwise, the system’s behavior may be unpredictable.

The dmmin and dmmax parameters are used to size the maximum

permitable process data segment. To get a maximum permitable

process data segment of about 23 Mbytes, the dmmax value should

be 1024. If you double the dmmax value to 2048, the process data

segment size will be roughly 43 Mbytes. If you double 2048 to

4096, the process data segment size will be roughly 80 Mbytes. You

should note that as the dmmax number increases, so does swap

space fragmentation.

smmin num

This parameter defines the minimum number of 512 byte blocks of

virtual memory at which a shared memory segment (SMS) may be

sized. The default for smmin is 0 blocks. For more information see

shmget(2) in the ULTRIX Reference Pages.

smmax num

This parameter defines the maximum number of 512 byte blocks of

virtual memory at which a shared memory segment may be sized.

The default for smmax is 256 blocks (128 Kbytes). For more

information see shmget(2) in the ULTRIX Reference Pages.

smseg num

This parameter defines the maximum number of shared memory

segments per process. The default value is 6. For more information

see shmop(2) in the ULTRIX Reference Pages.

1-6 The System Configuration File

smbrk num

This parameter defines the default spacing between the end of a

private data space of a process and the beginning of its shared data

space in 512 byte blocks of virtual memory. This value is important

because, once a process attaches shared memory, private data cannot

grow past the beginning of shared data. The default for smbrk is 64

blocks (32 Kbytes). For more information on shared memory

operations, see shmop(2) in the ULTRIX Reference Pages.

smsmat num

This parameter defines the highest attachable address in megabytes

for shared memory segments. The default value is MAXDSIZE.

For more information see shmop(2) in the ULTRIX Reference Pages.

processors num

This parameter defines the number of processors in the system.

scs_sysid number

This parameter identifies each host uniquely on the CI star cluster to the

SCS subsystem. The number argument must be a unique identifier for

each host. At installation, the system automatically generates this number,

and puts it in the configuration file. If the system does not detect a CI

at installation, it provides a default value of 1.

options optionlist

Although the options field allows optional code to be compiled into

the system, you should leave the options as they appear in the

generic configuration file. However, you can remove any of the

options if they do not pertain to your site, or if your system is

short on physical memory space. These are the possible values for

optionlist:

EMULFLT Emulates the floating point instruction set if it is

not already present in the hardware.

INET Provides internet communication protocols. The

inet pseudodevice must also be set.

LAT Allows you to access your machine from a local

area terminal server on the Ethernet. The lta

and lat pseudodevices must also be set.

DECNET If the DECnet layered product is installed, this

option must be set. The decnet pseudodevice

must also be set.

QUOTA Allows disk quotas to be set.

The System Configuration File 1-7

SYS_TRACE Enables the system call tracing capability. The

sys_trace pseudodevice must also be set.

DLI Allows mop-mom activity to be invoked. The

mop_mom command is usually included in the

/etc/rc.local file as a background task to cause

mop-mom to listen for down-line and up-line load

requests over the network. The dli pseudodevice

must also be set.

BSC Allows 2780/3780 emulation. The bsc

pseudodevice must also be set.

RPC Remote Procedure Call facility

This option is necessary for RPC-based applications

within the NFS file system. The rpc pseudodevice

must also be set.

NFS Network File System

This option allows you to access the NFS protocol.

It requires the RPC option. The nfs pseudodevice

must also be set.

UFS ULTRIX File System

This option is the standard, local file system. If

you do not use the NFS option, the UFS option

must be set. If you do not specify this option,

the system will be considered diskless. The ufs

pseudodevice must also be set.

1.3.2 System Image Definitions

There is one system definition in the generic configuration file. However,

you can change the definition or add more lines to the configuration file

you are building to indicate that you want to generate more than one

kernel. For each kernel you wish to generate, specify one line that begins

with the keyword config. Each line can be used to define the root device,

the swap area or areas, the dump area, and the argument processing area

for system calls.

The general format of a line for any one kernel is:

config filename configuration-clauses

The filename argument is the name to be assigned to the file constituting

the compiled kernel, or system image. The installation procedure assigns

the name vmunix.

1-8 The System Configuration File

The configuration-clauses define the devices for the root file system, for

the paging and swapping area, and for crash dumps. The configuration-

clauses keywords are: root, swap, and dumps. The syntax and descriptions

of these keywords are:

root [on] device

The installation procedure assigns partition a of the system disk to

the root file system. You can change this assignment by editing the

configuration file. For diskless clients, this entry is set to root on

se0.

swap [on | device [and device] [size x] [boot]

The first device argument specifies the device and partition that you

want the system to use for a paging and swapping area. The

installation procedure assigns partition b of the system disk for the

paging and swapping area. You can change this assignment by editing

the configuration file. '

The second device argument enables you to add another partition so

that the kernel interleaves paging and swapping between the two

partitions. To specify a second paging and swapping area, use the

and clause with a device, a logical unit, and a partition name.

Use the size clause to specify a nonstandard partition size for one or

more swap areas. The value of x represents the number of 512-byte

sectors. A size larger than the associated disk partition is trimmed

to the partition size. The default swap device is partition b of the

device where the root is located.

If you specify swap on boot, the a partition of the booted device

becomes the root, and swap space is assumed to be the b partition of

the same device.

Example configuration file entries are:

swap on ra0b

swap on ralh

swap on raOb and ralh

In the first example, the system swaps on partition b of the ra0 disk.

In the second example, the system swaps on partition h of the rat

disk. In the last example, the system swaps on partition b of the

ra0 disk and partition h of the ral disk.

For diskless systems, if the swap file is remote, then you do not have

to specify a swap device.

dumps [on] device

The device argument specifies the partition and the device where

crash dumps are to be stored. The device that is specified must be

on the same controller as the boot device. The default dump device

The System Configuration File 1-9

is the first swap device configured.

Usually, this entry is unnecessary in a diskless environment because

the dms setup process specifies using the mop_mom command for

dumping. However, customized diskless kernels can specify dumping

to a disk. See mop_mom(8) for a description of this command. See

the Guide to Diskless Management Services for more information on

the creation of diskless environments.

1.3.3 Device Definitions

This section of the configuration file contains descriptions of each current

or planned device on the system. You need to add definitions for devices

that were not on the system at installation time. You may also want to

delete device definitions for devices that have been removed from the

hardware configuration.

Each line of this section of the file begins with one of these keywords:

adapter Identifies a physical connection to a system bus such as

VAXBI, MASSBUS, Q-bus, UNIBUS, MSI, IBUS, or CL

master A MASSBUS tape controller.

controller Identifies either a physical or a logical connection with one

or more slaves attached to it. Some examples are: uda,

kdb, hsc, and uq.

device An autonomous device which connects directly to a Q-bus,

or to a UNIBUS, MASSBUS, IBUS, or VAXBI adapter (as

opposed to a disk, for example, which connects through a

disk controller).

disk A disk drive connected to either a master or a controller.

tape A tape drive connected to either a master or a controller.

The format of the information required for each of these types of devices

varies, as described in the following sections:

1.3.3.1 Adapter Specifications - The adapters discussed in this section

are the VAXBI, MASSBUS, UNIBUS, MSI, CI, IBUS, and Q-bus

adapters. Each adapter is specified by its own format in the configuration

file.

1. The format for VAXBI adapters is:

adapter vaxbin at nexus?

The n is the unit number of the adapter. The question mark (?)

allows the system to pick the appropriate NEXUS for you.

1-10 The System Configuration File

2. The format for MASSBUS adapters is:

adapter mban at nexus?

The n is the unit number of the adapter. The question mark (?)

allows the system to pick the appropriate NEXUS for you.

3. The format for IBUS adapters is:

adapter ibusn at nexus?

4. The format for UNIBUS and Q-bus adapters is the same. Q-bus

adapters are specific to MicroVAX-~ and VAXstation-type processors.

The format is:

adapter uba0 at nexus ?

The question mark (?¢) allows the system to pick the appropriate

NEXUS for you.

5. The format for MSI adapters is:

adapter msi0 at nexus?

The question mark (?) allows the system to pick the appropriate

NEXUS for you.

6. The formats for CI adapters are:

adapter ci0 at nexus?

adapter ci0 at vaxbi?

The question mark (?) allows the system to pick the appropriate

NEXUS or VAXBI for you. '

1.3.3.2 Master Specifications - MASSBUS tape drives must be attached

to a master. The format for specifying a master is:

master devname at mbam driven

dev The name of the tape device, such as htO.

m The MASSBUS adapter number.

n The drive number.

The System Configuration File 1-11

For example:

master

tape

tape

htO at mba? drive?

tu0 at htoO slave 0

tul at htO stave 1

1.3.3.3 Controller Specifications - This section contains examples of the

specifications for the various controllers. The controller examples are for

MSCP, TMSCP and SCSI controllers. This section also defines the format

for specifying other tape-to-disk interface controllers.

1. MSCP disk controllers

e For UNIBUS or Q-bus:

udaO at ubalcontroller

controller

disk ra0 at

disk ral at

disk ra2 at

disk ra3 at

® For VAXBI:

uqoO

ugo0

uqoO

uqO

ug0

at udaO csr 0172150 vector ugintr

drive 0

drive 1

drive 2

drive 3

controller kdbO at vaxbiO node?

controlfer ug0 at kdbO vector ugintr

disk ra0 at ugO drive O

disk ral at ugqO drive 1

disk ra2 at ugO drive 2

disk ra3 at uqO drive 3

controller aiol at vaxbi? node?

controller bvpsspO at aiol vector bvpsspintr

disk ra0 at bvpsspO drive 0O

° For VAX CI/HSC:

adapter ciO at nexus?

adapter ci0O at vaxbi? node?

controller hscO at ciO cinodeO

disk ra0 at hscO driveO

° For MSI bus:

adapter msi0O at nexus?

controller dsscO at msi0O msinode O

disk ra0 at dsscO drive O

1-12 The System Configuration File

TMSCPtape controllers

For UNIBUS or Q-bus:

controller klesiuO at uba0

controller uq0 at klesiuO csr 0174500 vector uqgintr

tape tmsO at ugO drive O

For VAXBI:

controller kiesibO at vaxbi0O node O

controller ugq0 at klesibO vector uqgintr

tape tms0O at ugqO drive O

controller aie0 at vaxbi? node?

controller bvpsspO at aie0 vector bvpsspintr

tape tmsO at bvpsspO drive O

For MSI Bus:

adapter msiO at nexus?

controller dsscO at msi0O msinodeO

tape tmsO at dsscO drive O

For VAX CI/HSC:

adapter ciO at nexus?

adapter ci0O at vaxbi? node?

controller hscO at ciO cinodeO

tape tmsO at hscO drive O

SCSI controllers

For disks:

adapter uba0O at nexus?

controller scsiO at ubaO csr 0x200c0080 vector szintr

controller scsil at uba0 csr 0x200c0180 vector szintr

disk rzl at scsiO drivel

disk rz2 at scsiO drive?2

disk rz9 at scsil drivel

disk rz10 at scsil drive2

For tapes:

adapter ubaO at nexus?

controller scsiO at ubaO csr 0x200c0080 vector szintr

controller scsil at ubaO csr 0x200c0180 vector szintr

tape tzl at scsiO drivel

tape tz2 at scsiO drive2

tape 1z9 at scsil drivel

tape tz10 at scsil drive?2

The System Configuration File 1-13

The

Other controllers

format for controllers for the magnetic tape interface (ts) and

the disk interface 1i.:

dev

controller dev at condev[csr n]| vector vec

tape unit at dev drive n

The device name and logical unit number of the controller.

condev The name and logical unit number of the device to which

unit

vec

the controller is connected.

For the controller, n represents the octal address of the

control status register for the device. Note that the

address needed here is a 16-bit address. This entry is not

needed for the VAXBI. For the tape, n represents the

logical name of the tape unit.

The unit number of the tape drive.

The address of any interrupt vector for the controller.

This example shows a sample entry for a TU80 or TSVO05 (for

MicroVAX) magnetic tape interface:

controller zs0 at ubaO csr 0172520 vector tsintr

tape ts0 at zsO drive O

1.3.3.4 Device Specifications - The format for the hardware classified as

devices is:

device dev condev [csr n] [flags [] vector vl ...

Tab characters are used to indicate continuation lines, if needed. The

arguments are:

dev

condev

The device name and logical unit number of the device.

The name and logical unit number of the adapter or controller to

which the device is connected.

The octal address of the control status register for the device.

The csr n option is not needed for VAXBI devices. A number

used to convey information about the device to the device driver.

The only flags for DIGITAL-supported devices are for line

printers and communications multiplexers.

The default page width for all DIGITAL line printers is 132

columns. To change the page width, use flags f, where f is a

decimal number giving the desired width in columns. For

example, to change to 80 columns, enter flags 80.

1-14 The System Configuration File

The DH, DZ, DMB, DHU, DMF, and DMZ communications

multiplexers accept a hexadecimal flag value to specify any lines

that should be treated as hardwired with carrier always present.

The DHV-11, DZQ, and DZV serve the same function as the Q-

bus. The format of the hexadecimal number is Oxnn, where nn

is a hexadecimal number consisting of digits ranging from 0-9, a-

f.

Because bits are numbered from right to left, setting bit O of the

flag indicates that tty0O is hardwired, setting bit 1 of the flag

indicates that tty0l is hardwired, and so forth. This example

shows that tty02 is hardwired with carrier always present: flags

0x04

vl... The names of interrupt vector routines for the device driver.

The following example shows a sample device specification for the DEUNA

10-Mbyte Ethernet interface:

device de0O at ubaO csr 0174510 vector deintr

The following example shows a sample device specification for a DZ-11

communications multiplexer:

device dz0O at ubaO csr 0160100 flags Oxff vector dzrint dzxint

The following example shows a sample device specification for a DMB32

communications controller device:

device dmbO at vaxbi2 node3 flags OxO00ff vector dmbsint dmbaint dmblint

1.3.3.5 Disk Specifications - The format for specifying disks is:

disk dev at condev drive n

dev The device name and logical unit number of the disk.

condev The name and logical unit number of the adapter or controller to

which the disk is connected.

n The physical unit number of the disk. If your disk is on a

MASSBUS device, you can specify a question mark (?) for n.

A question mark (?) allows the system to assign the physical

number to the disk for you.

Here is an example of a device specification for MSCP disks:

disk ra0O at ugO drive O

The System Configuration File 1-15

The MAKEDEV program allows you to make up to 32 RA units. You can

have physical drive numbers (n) from 0 through 251, and logical drive

numbers (dev) from O through 31. Number the drives consecutively. The

physical drive number should correspond with its assigned logical drive

number whenever possible, as shown in the preceding example. Therefore,

the physical drive numbers from 32 through 251 are rarely used. Refer to

MAKEDEV(8) for more information.

1.3.4 Pseudodevice Definitions

A pseudodevice is an operating system component for which there is no

associated hardware such as a pseudoterminal or one of the various

supported protocols. Pseudodevice definitions are needed in the config file

so that the operating system will recognize these components.

Each pseudodevice definition line in the config file defines a driver for a

particular pseudodevice. Each pseudodevice definition line begins with the

keyword pseudodevice, followed by the pseudodevice name. The format is:

pseudo-device name [max n]

The name is the name of the pseudodevice. Configuration files can have

the following pseudodevice names:

pty For pseudoterminal support (default = 16, specify max n for

more than 16).

inet For DARPA internet protocols.

loop For network loopback interface.

ether For 10-Mbyte Ethernets.

lat For local area terminal (LAT) protocols.

Ita For pseudoterminal driver (default = 16, specify max n for more

than 16).

decnet For support of DECNET, and is only required when the

DECNET layered product is installed.

sys_trace For support of the system call trace capability.

dli For DLI support of mop_mom activity.

bsc For support of 2780/3780 emulation. To work, the dpv0 or dupO

devices must be defined in the configuration file as shown in the

example in Section 1.2.

rpc For Remote Procedure Call facility.

nfs For Network File System (NFS) protocol support.

1-16 The System Configuration File

ufs For local ULTRIX file system use.

scsnet For Systems Communications Services (SCS) network interface

driver. See scs(4) in the ULTRIX Reference Pages for more

information.

The optional max n argument lets you assign more pseudoterminals. By

default, pty and lta are set to 16. If you need more pseudoterminals you

must specify a max n value. For example:

pseudo-device pty 32

pseudo-device Ita 32

The System Configuration File 1-17

1.4 Sample Generic Configuration File

Example 1-1 illustrates a typical generic configuration file. Be aware that

the generic configuration file supplied with your system may be different

from the one shown here.

Example 1-1: Sample Configuration File

#

@(#)GENERIC4.1.1.18 (ULTRIX) 9/14/88

GENERIC VAX

#

Global Definitions

#

machine vax

cpu "VAX8800

cpu "VAX8600

cpu "VAX8200+

cpu "VAX6210~"

cpu "VAX3600+

cpu “VAX785n

cpu tVAX780+

cpu tVAX750+»

cpu “VAX420:»

cpu s MVAX=

ident GENERIC

timezone 5 dst

maxusers 2

maxuprc 10

physmem 6

processors 1

sCcs_sysid 32

options QUOTA

options UFS

options INET

options EMULFLT

#

#

System Image Definitions

#

#

config vmuni x swap on boot

1-18 The System Configuration File

(continued on next page)

Adapter Specifications

#

#

adapter

adapter

adapter

adapter

adapter

adapter

adapter

adapter

adapter

adapter

adapter

adapter

adapter

adapter

adapter

adapter

adapter

adapter

adapter

adapter

adapter

adapter

adapter

adapter

adapter

adapter

adapter

adapter

adapter

adapter

adapter

adapter

adapter

adapter

adapter

adapter

#

#

Controller

#

#

controller

controller

controller

controller

controller

controller

xmi0 at nexus?

vaxbiO

vaxbil

vaxbi?

vaxbi3

vaxbié4

vaxbib

vaxbill

vaxbil?

vaxbil3

vaxbil4d

mbalO at

mba0 at

mbal at

mba0 at

mbal at

mba2 at

mba3 at

ubalO at

ubal at

uba2 at

uba3 at

uba4 at

ubab at

ubaé at

ibusO a

ibusl a

ibus2 a

ibus3 a

ibus4 a

ibusb a

ibus6 a

ibus7 a

at

at

at

at

at

at

nexus?

nexus?

nexus?

nexus?

nexus?

nexus?

at nexus?

at nexus?

at nexus?

at nexus?

nexus?

nexus?

nexus?

nexus?

nexus?

nexus?

nexus?

nexus?

nexus?

nexus?

nexus?

nexus?

nexus?

nexus?

t

t

t

t

t

t

t

t

nexus?

nexus?

nexus?

nexus?

nexus?

nexus?

nexus?

nexus?

msi0 at nexus?

ci0 at nexus?

ciO at vaxbi? node?

Specifications

hscO at

hscl at

hsc2 at

hsc3 at

hsc4 at

hscb at

ciO

ciO

ciO

ciO

ciO

ciO

cinode

cinode

cinode

cinode

cinode

cinode G
O

W
N
H
O

(continued on next page)

The System Configuration File 1-19

control

control

conirol

control

control

control

control

control

contirol

control

control

control

control

control

control

control

control

control

control

control

control

control

control

control

control

control

control

control

control

control

control

control

control

control

control

control

control

control

control

control

control

control

control

control

control

control

control

control

ler

ler

ler

ler

ler

fer

ler

ler

ler

ler

ler

ler

ler

ler

ler

ler

ler

ler

ler

ler

ler

ler

ler

ler

ler

ler

ler

ler

ler

ler

ler

ler

ler

ler

ler

ler

ler

ler

ler

ler

ler

ler

fer

ler

fer

ler

ler

ler

hsc6 at

hsc7 at

dsscO a

dsscO a

dsscl a

dssc2 a

dssc3 a

dssc4 a

dsscb a

dssc6 a

dssc7 a

aio0 at

aiol at

aie0 at

aiel at

aie2 at

aied at

kdbO at

kdbl at

kdb2 at

kdb3 at

kdb4 at

kdbb at

kdb6 at

kdb7 at

kdb8 at

kdb9 at

kdbl0 a

kdbll a

klesibO

klesibl

klesib?2

udaO at

udal at

uda?2 at

uda3 at

klesiu0

kiesiul

klesiu?2

klesiu3

ug0 at

ugl at

ugq2 at

ug3 at

ug4 at

ugb at

ugé at

ug/7 at

ci0 cinode 6

ciO cinode 7

t msiO msinode

t msiO msinode

t msiO msinode

t msiO msinode

t msiO msinode

t msiO msinode

t msiO msinode

t msiO msinode

t msiO msinode

vaxbi? node?

vaxbi? node?

vaxbi? node?

vaxbi? node?

vaxbi? node?

vaxbi? node?

vaxbi? node?

vaxbi? node?

?

?

?

?

?

?

N
O
O
P
_
R
,
W
N
R
O
O

vaxbi? node?

vaxbi? node?

vaxbi? node?

vaxbi? node?

vaxbi? node?

vaxbi? node?

vaxbi? node?

vaxbi? node?

t vaxbi? node?

t vaxbi? node?

at vaxbi? node?

at vaxbi? node?

at vaxbi? node?

uba?

uba?

uba?

uba?

at uba?

at uba?

at uba?

at uba?

udaO0 csr 0172150

udal csr 0172150

uda2 csr 0172150 vector

uda3 csr 0172150 vector

kdbO vector ugintr

kdbl vector ugintr

kdb2 vector ugintr

kdb3 vector ugintr

vector

vector

1-20 The System Configuration File

ugintr

ugintr

ugintr

ugintr

(continued on next page)

control

control

control

control

control

control

control

control

control

control

control

control

control

control

control

#

#

ler

ler

ler

ler

ler

ler

ler

ler

ler

ler

ler

ler

ler

ler

ler

bvpssp0O at aioO

bvpsspl at aiol

bvpssp2 at aieO

ug0 at udaO csr

uql at udal csr

uq2 at uda2 csr

ug3 at uda3 csr

uqlé

ugl7

uqls8

ugl?9

uq20

uq2l

at

at

at

at

at

at

klesiuO

klesiul

klesiu2

klesiu3

klesibO

klesibl

vector bvpsspintr

vector bvpsspintr

vector bvpsspintr

0172150 vector ugintr

0172150 vector ugintr

0172150 vector ugintr

0172150 vector ugintr

csr 0174500 vector uqgintr

csr 0174500 vector ugintr

csr 0174500 vector ugintr

csr 0174500 vector ugintr

vector uqgintr

vector uqgintr

scsi0 at ubalO csr 0Ox200c0080 vector szintr

scsil at uba0 csr 0x200c0180 vector szintr

Disk Specifications

#

#

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

hpO

hpl

hp2

hp3

hp4

hpb

hp6

hp7

ra0

ral

raz2

ra3

rad

rab

raé

rz0

rzl

rz2

rz3

rz4

rzb

rz6

rz7

rz8

rz9

rz10 at scsil drive2

rz1l at scsil drive3

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

mba?

mba?

mba?

mba?

mba?

mba?

mba?

mba?

ug0 d

uq0 d

ug0 d

ug0 d

uq0 d

ug0 d

ug0 d

scsiO

scsiO

scsiO

scsiO

scsiO

scsiO

scsiO

scsiO

scsil

scsil

drive

drive

drive

drive

drive

drive

drive

drive

rive

rive

rive

rive

rive

rive

rive

driveO

drivel

drive?

drive3

drive4d

driveb

driveb

drive?7

driveO

drivel

N
O
O
R

W
N
R
R
O

O

w
W
w
N
-
=
O

(continued on next page)

The System Configuration File 1-21

Tape Specifications

#

#

tape

tape

master

tape

tape

tape

tape

master

tape

tape

tape

tape

tape

tape

tape

tape

tape

tape

tape

tape

tape

tape

tape

tape

tape

tape

tape

tape

tape

tape

tape

tape

tape

tape

tape

#

#

stO

ts0

htO

tu0

tul

tu2

tu3

mtO

mu0

mul

mu?2

mu3

tmsl

tms?2

tms3

tms4

tms5

tms6

tms7

tz0

tzl

tz2

tz3

tz4

tz5

tz6

tz7

tz8

tz9

tz10

1211

tz12

tz13

tz14

tz15

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

stcO driveO

zs0 driveO

mba? drive?

ht0O slave 0

ht0 slave 1

ht0 slave 2

ht0 siave 3

mba? drive ?

mtO0 slave O

mtO slave 1

mtO slave 2

mt0 slave 3

mscp drive

mscp drive

mscp drive

mscp drive

mscp drive

mscp drive

mscp drive

scsiO drive

scsiO drive

scsiO drive

scsiO drive

scsiO drive

scsiO drive

scsiO drive

scsiO drive

scsil drive

scsil drive

scsil drive 10

scsil drive 11

scsil drive 12

scsil drive 13

scsil drive 14

scsil drive 15

N
O

O
B

W
N

-

C
o
O
N
O
O
T
T
R
R
W
N
R
F
O

Workstation Specifications

#

#

device

device

device

device

device

device

qv0

qdoO

qdl

smQ

sg0

I x0

at uba0 csr 0177200 flags OxOf vector gvkint gvvint
at ubaO csr 0177400 flags OxOf vector gddint gdaint qgdiint
at ubaO csr 0177402 flags OxOf vector qddint qdaint gdiint

at ubaO csr 0x200f0000 flags OxOf vector smvint

at uba0 csr 0x3c000000 flags OxOf vector sgaint sgfint

at vaxbi? node? vector Ixbvpint

(continued on next page)

1-22 The System Configuration File

Network Specifications

#

#

device

device

device

device

device

device

device

device

device

#

#

Terminal

#

#

device

device

device

device

device

device

device

device

device

device

device

device

device

#

#

bvpniO at

bvpnil at

bvpni?2 at

bvpni3 at

de0 at uba?

del at uba?

ge0 at ubal

se0 at ubaO

In0 at

aiel

aiel

aie2

aie3

cCSr

CSsr

cCsSr

csr

ibusO vector

vector

vector

vector

vector

bvpniintr

bvpniintr

bvpniintr

bvpniintr

0174510 vector deintr

0174510 vector deintr

0174440 vector geintr

0x200e0000 vector seintr

Inintr

and Printer Specifications

ssO0 at

shO0 at

Ip0 at

dmbO at

dmbl at

dmb2 at

dmb3 at

dmb4 at

dmbb at

dmb6 at

dmb7 at

dmb8 at

dmb9 at

uba? csr 0x200a0000 flags OxOf

uba0 csr 0x38000000 flags Oxff

uba? csr 0177514 vector

vaxbi?

vaxbi??

?

?

vaxbi?
"

?

?

?

node?

node?

node?

node?

node?

node?

node?

node?

node?

node?

Pseudodevice Specifications

#

#

pseudo-device

pseudo-device

pseudo-device

pseudo-device

pseudo-device

pseudo-device

ufs

pty
foop

inet

ether

scsnet

flags

flags

flags

flags

flags

flags

flags

flags

flags

flags

Oxff

Oxff

Oxff

Oxff

Oxff

Oxff

Oxff

Oxff

Oxff

Oxff

Ipintr

vector

vector

vector

vector

vector

vector

vector

vector

vector

vector

vector ssrint ssxint

vector shrint shxint

dmbsint

dmbsint-

dmbsint

dmbsint

dmbsint

dmbsint

dmbsint

dmbsint

dmbsint

dmbsint

dmbaint

dmbaint

dmbaint

dmbaint

dmbaint

dmbaint

dmbaint

dmbaint

dmbaint

dmbaint

dmb|

dmb|

dmb|

dmb|

dmb|

dmb|

dmb|

dmb|

dmb|

dmb|

The System Configuration File 1-23

int

int

int

int

int

int

int

int

int

int

1.5 System Configuration Files for Diskless Clients

This section describes the default system configuration files that the

Diskless Management Services (dms) utility uses to establish diskless

clients on a server. The section:

o Identifies the diskless configuration file naming conventions

o Explains some of the differences between the diskless configuration

files and the configuration files on systems that have disks

o Describes how dms utility uses the diskless configuration files to

configure diskless clients

o Provides a sample of a diskless configuration file

1.5.1 Default Diskless Configuration File Naming Conventions

The default diskless configuration files reside in /usr/var/diskless/defs, or in

Ivar/diskless/defs if you did an advanced installation. In either case, the

names of these files all end with .dlconf. The upper case letters that

precede .dlconf identify the processor type. These upper case letters use

the following conventions:

o The first two letters identify the Ethernet communications device.

These letters agree with the corresponding communications device

mnemonic, for example QE or SE.

o The second two letters identify the graphics device. These letters

agree with the corresponding graphics device mnemonic, for example,

QD, QV, SM, or SG. One exception is that non-graphic devices have

the letters TE to denote a non-graphic terminal. Additionally, the

second two letters can be followed by 2 to denote a dual-headed

processor, for example QD2.

o The remaining three letters identify the architecture type, for example

VAX.

An example of a diskless default configuration file name is

QEQDVAX.dlconf.

The available default system configuration files and their corresponding

systems are:

e QEQDVAX.dlconf — A VAXstation II/GPX that uses a VCB02 video

subsystem (QDSS monochrome or color), or a VAXstation 3000

processor that uses a VCBO02 video subsystem (QDSS color)

o QEQVVAX.dlconf -~ A VAXstation II processor that uses a VCBO1

video subsystem (QVSS monochrome)

o QEQD2VAX.dlconf - A VAXstation II/GPX, dual-headed processor

that has two VCBO02 video subsystems (QDSS monochrome or color)

1-24 The System Configuration File

° QETEVAX.dlconf - A MicroVAX II, non-graphic device or a

MicroVAX 3000 processor

o SESGVAX.dlconf - A VAXstation 2000 processor that uses a color

monitor

o SESMVAX.dlconf - A VAXstation 2000 processor that uses a

monochome monitor

o SETEVAX.dlconf — A MicroVAX 2000 non-graphic device

° LNTEVAX.dlconf - A VAX 3400 processor

o PVSGVAX.dlconf — A VAXstation 3100 processor that uses a color

monitor

. PVSMVAX.dlconf - A VAXstation 3100 processor that uses a
monochrome monitor

1.5.2 Diskless Default Configuration File Differences

This section lists some of the differences between the entries in these

configuration files and the entries in configuration files for systems that

have disks. These differences include the following:

° The timezone entry is not included in the diskless configuration file.

The dms utility puts the server’s timezone information into the

client’s configuration file automatically.

o The root entry in the diskless configuration file is always an Ethernet

device such as gqe0 or se0 depending on the processor type. This is

because the client’s root is on the server’s system and can only be

accessed over the network.

° By default, none of the diskless configuration files specify the xos

pseudodevice. When installed into the diskless environment, the

worksystem software puts this entry into the client’s configuration file

automatically.

o Two of the default configuration files (QEQDVAX.dlconf and

QEQTEVAX.dlconf) specify more than one cpu. This is so the

kernel can be booted on more than one processor type.

1.5.3 Diskless Configuration File Use

The dms utility uses the doconfig command to configure a diskless client

on a server system. The form of the doconfig command that dms invokes

is:

/etc/doconfig -c $i -p $INSDIR

The System Configuration File 1-25

The $i variable is the default configuration file name. The $INSDIR

variable defines the full pathname of a diskless default root area.

Upon completion of a typical dms client installation, the diskless client will

have access to a kernel that exists in one of two places depending on

whether an advanced installation was performed. If an advanced installation

was performed, the client will have access to a kernel on the server’s disk

in:

Ivar/diskless/dlenvx/rootx.vax/usr/sys/config_file_name.dlconf/vmunix

If an advanced installation was not performed, then the client will have

access to a kernel on the server’s disk in:

lusr/var/diskless/dlenvx/rootx.vax/usr/sys/config_file_name.dlconf/vmunix

In this syntax, x is a number denoting a particular diskless environment

where config_file_name.dlconf coincides with one of the default

configuration files listed in Section 1.3.1. An example pathname for a

client who has installed a VAXstation II/GPX using an advanced

installation is:

/var/diskless/dlenv0/root0.vax/usr/sys/QEQDVAX.dlconf/vmunix

This pathname structure enables many clients to share the same kernel.

However, in some dms client installations, you may choose to set the

diskless client up with its own kernel in its own root directory. The

process of creating diskless clients or changing the location of a client’s

kernel is described in the Guide to Diskless Management Services.

Note

Never make changes to the supplied default configuration files. If

you want to build a customized diskless system kernel, copy the

default file to a separate area and make the changes to the

copied version.

It is important to maintain the same default file names because the

dms utility only builds kernels based on the default files supplied with

the system.

1.5.4 Sample Default Diskless Configuration File

Example 1-2 shows a sample QEQDVAX.dlconf default configuration file.

All of the configuration files have the same format as this one and except

for the specified devices, are almost identical.

Refer to Section 1.1 for a detailed description of each of the entries.

1-26 The System Configuration File

Example 1-2: Sample QEQDVAX.dlconf Configuration File

@(#)QEQDVAX

machine

ident

cpu

cpu

maxusers

processors

maxuprc

physmem

timezone

options

options

options

options

options

config vmuni

adapter ubaO

device qe0

device qdo

pseudo-device

pseudo-device

pseudo-device

pseudo-device

pseudo-device

pseudo-device

pseudo-device

pseudo-device

.dlconf 3.7

vax

*QEQDVAX"

tMVAX«

«VAX3600+"

32

1

25

4

INET

NFS

RPC

LAT

EMULFLT

X root on qge0

. at nexus 7

at ubaO csr 0174440

at ubaO csr 0177400 flags Ox0f vector qddint gdaint gdiint

pty

loop

ether

inet

nfs

rpc

lat

Ita

vector qeintr

The System Configuration File 1-27

Building the Kernel 2

This chapter describes how to build a kernel. There are three procedures

from which to choose:

1. You can build a new kernel automatically using the doconfig

command. Section 2.1 describes this procedure.

You can build the kernel manually following the steps listed in

Section 2.2. If you opt to build the kernel manually, make sure you

understand the contents and format of the configuration file. Chapter

1 describes this file.

You can build a kernel when you are performing a capacity upgrade
installation. Section 2.3 describes this procedure.

Choose the procedure that best complements your experience and the needs

of your particular installation.

2.1 When To Build a New Kernel

You need to build a new kernel after any of the following events:

If you add a new device and its driver to your configuration. When

you add a new device and device driver, you need to rebuild the

kernel to include the specifications in the configuration file.

If you delete a device and its driver from your configuration. When

you delete a device and device driver from your configuration and

edit the configuration file to include only the actual hardware and

software at your installation, you need to rebuild the kernel to match

this configuration.

If you tune the operating system. When you alter the default

configuration or change the original disk setup, you need to rebuild

the kernel. For example, if you create swap areas on two disk

drives, thereby modifying the original single swap area on disk, you

need to rebuild the kernel

If you upgrade your system. For example, if you increase the log-in

capacity on your system, you need to rebuild the kernel.

o If you add layered products. For example, if you add the DECnet

facility, or any layered product to your configuration, you need to

rebuild the kernel.

2.2 Building a Kernel Automatically

The ULTRIX software provides the /etc/doconfig program with which you

build your kernel automatically. The program prompts you for information

about your system configuration, generates the necessary files and

directories, then automatically builds the new kernel. The following section

describes this procedure.

Note

Be aware that the command line entry for the /etc/doconfig

program differs for diskless systems. Refer to Chapter 1 and to

the Guide to Diskless Management Services for information about

the diskless client kernel.

2.2.1 Using the doconfig Program

When updating an existing configuration file or creating a new one with

/etc/doconfig, the system must be operating the generic kernel, vmunix.

To use the /etc/doconfig program, follow these steps:

1. Log in as superuser (root). You must be superuser to execute the

doconfig command.

2. Shut the system down to single-user mode by typing:

shutdown +5 "Building a new kernel"

Before building the kernel, you must be in single-user mode because

when doconfig completes, it rearranges the previously-defined symbols.

Save the running vmunix as vmunix.old.

Move /genvmunix to /vmunix.

Reboot the system to single user mode.

Check file systems.

N
S

o
o

Mount the /usr file system.

2-2 Building the Kernel

10.

11.

Run the doconfig program by typing:

/etc/doconfig

When the program finishes, it prints a message showing the path and

location of the new vmunix.

Move /vmunix to /genvmunix.

Copy the new vmunix to /vmunix. (Make certain that you use the

pathname for vmunix that the doconfig program printed when it

finished executing.)

Reboot the system.

Refer to doconfig(8) in the ULTRIX Reference Pages for details on the

command and its options. .

Example 2-1 depicts a sample execution of the doconfig program. It

demonstrates how doconfig works on a VAXstation II/GPX, dual-display

system (qdO, qdl devices).

Entries in square brackets [] are the default values. When you run

doconfig, press the RETURN key to select the default value. The

example shows the default entries typed in for presentation purposes

only.

After you enter the system name and the date and time information,

the doconfig program builds a configuration file. When doconfig

completes the configuration file build process, it loads vmunix,

rearranges the symbol table, and makes the special files for the

system based on the configuration.

Building the Kernel 2-3

Example 2-1: Sample doconfig Execution

/etc/doconfig

Type the name of your system using alphanumeric characters.

The first character must be a letter. For example, tinker.

Type your system name:tinker

You typed tinker as the name of your system.

[s this correct? Type y or n [y]: vy

*** SPECIFY THE DATE AND TIME ***

Enter the current date and time in this format:

yymmddhhmm. Use two digits for year (yy),

month (mm), day (dd), hour (hh), and minute (mm).

You type the time in 24-hour format. For example,

for 11:30 p.m. on May 14, 1987, the response

would be:

8705142330

Type the date and time [no default]: 8705142330

**#* SPECIFY THE TIME ZONE INFORMATION *#*

Enter the time zone for your area, using the options
listed in this table:

Time Zone Options

Eastern e

Central c

Mountain m

Pacific p

Greenwich g

You can also enter the number of hours (-12 to 12) in time
west of Greenwich.

Type the time zone [no default]: p

Does your area alternate between Daylight Savings
and Standard time [yes] ?yes

(continued on next page)

2-4 Building the Kernel

Enter the geographic area for Daylight Savings Time,

using the options

Geographic Area

USA

Australia

fisted in this table:

Options

Eastern

Central

Western

Type the geographic

Tue May 10 12:29:00

% System Configuration Procedure *

Europe

u

a

Europe e

c

Europe w

area [u]l: u

EDT 1988

Configuration file complete.

Do you want to edit the configuration file?

**%* PERFORMING SYSTEM CONFIGURATION

working Tue May 10 12:29:

working Tue May 10 12:31:

working Tue May 10 12:33:

working Tue May 10 12:35:

working Tue May 10 12:37:

working Tue May 10 12:39;

working Tue May 10 12:41:

working Tue May 10 12:43:

working Tue May 10 12:45:

DEVICE SPECIAL FILE CREATION

Tue May

Tue May

s %

3 12:05:

3 12:08:

L R

00

01

02

03

*

59

00

EDT

EDT

EDT

EDT

EDT

EDT

EDT

EDT

EDT

EDT

EDT

1988

1988

1988

1988

1988

1988

1988

1988

1988

1988

1988

(y/n) [n]: n

Building the Kernel 2-5

2.2.2 Testing the New Kernel

Upon completion of the automatic configuration process, you can test the

new kernel that you have built by performing the following steps:

1. Save your original kernel:

#mv /vmunix /vmunix.old

2. Put the newly-created kernel in the root directory. For instance, to

put the kernel created in example 2—1 into the root directory, you

would type:

#imv /sys/TINKER/vmunix /vmunix

3. Reboot the system:

/etc/reboot

If you have any problems booting the new kernel, you can reboot the

system using the original kernel that you copied to /vmunix.old.

Refer to the Guide to System Shutdown and Startup for booting

information.

2.3 Building a New Kernel Manually

You can build a new kernel manually in either single-user or multiuser

mode. However, it is recommended that you build it in single-user mode so

that users will not affect the process of rebuilding the kernel. You can

shut down the system to single-user mode with the following command:

shutdown +5 "Building a new kernel"

To build a new kernel manually in either single-user or multiuser mode,
you must perform the following steps:

1. Edit the configuration file

2. Prepare the directory for the binary files

3. Define code dependencies

4. Compile and load the binary files

5. Boot the new kernel

Each of these steps is described in the following sections. You must

follow these steps consecutively.

2-6 Building the Kernel

2.3.1 Edit the Configuration File

The configuration file resides in the directory /usr/sys/conf and has the
same name as your system, but in uppercase letters. For example, if your

system is named myvax, your configuration file is named

/usr/sys/conf/MYVAX.

The configuration file is the file you copy and edit when you build a new
kernel. This file includes definitions for all supported devices. The

supported devices are listed in Appendix A.

Follow these steps to copy and then to edit the configuration file.

1. Log in to the system as superuser (root).

2. Change your working directory to /usr/sys/conf by typing:

c¢d /usr/sys/conf

3. Make a backup copy of the original configuration file. To do this,

copy the original configuration file to another file in the same

directory. The name of the working configuration file should be the
same as the original configuration file, with NEW. as a prefix. For

example, if your configuration file is MYVAX, type:

cp MYVAX NEW.MYVAX

4, Change the file access permissions (mode) of the working

configuration file to permit the owner (superuser) to write to it. For
example, if your working configuration file is named NEW.MYVAX,
type:

chmod +w NEW.MYVAX

5. Edit the working file. If your configuration file is named MYVAX,
then NEW.MYVAX is the file you should edit. Add or delete the
entries you want to change, using the format and rules described in

Chapter 1:

vi NEW.MYVAX

2.3.2 Prepare the Directory for the Binary Files

The second step is to create a directory for building the binary files that
are used to create the new kernel. Use the mkdir command to make an
empty directory. Then run the config utility to place the necessary binary
files in the directory. The config utility uses the name of the configuration
file you edited in step 1.

Building the Kernel 2-7

To generate the new binary files:

1. Make sure your working directory is /usr/sys/conf. (You should be in

this directory after editing the configuration file.)

2. Run the mkdir command to create a directory in the /usr/sys

directory. The directory and configuration file names must be the

same as your system name, but in uppercase letters. For example, if

the name of your system is myvax, the command to create the

appropriate directory is:

mkdir ../NEW.MYVAX

3. Run the config utility with the name of the working configuration file

you edited in Section 2.2.1. When the utility finishes, it displays a

reminder message for you to do a make depend. This example

shows the command for a system named myvax:

config NEW.MYVAX

Don't forget to run 'make depend»

2.3.3 Define the Code Dependencies

The third step is to define the code dependencies. The code dependencies

determine which binary files are needed and how they are to be built,

based on your kernel’s configuration.

To define the code dependencies:

1. Change your working directory to the one you created in Section

2.2.2. For example, if your system is named myvax, type:

cd /usr/sys/NEW.MYVAX

2. Execute the make command with the clean parameter. For example:

make clean

This command ensures that the /usr/sys/INEW.MYVAX directory

contains only the required files for creating the kernel specified by

the NEW.MYVAX configuration file.

3. Execute the make command with the depend parameter. For

example:

make depend

2-8 Building the Kernel

2.3.4

This command instructs make to build or rebuild the rules that it

needs to recognize interdependencies in the system source code.

Executing this command will ensure that any changes to the system

source code will be recompiled the next time you run the make

command. The make command modifies the makefile, appending the

dependencies to the end of the file. After make successfully

completes, it updates the makefile.

Compile and Load the Binary Files

The fourth step is to compile and load the new binary files using the

makefile that you created when you defined the code dependencies (Section

2.2.3).

To compile and load the binary files:

1. Use the make command to produce a complete binary system image,

the kernel. The kernel is stored in the current directory. The system

responds by displaying a number of messages as it compiles and

loads the binary files. When the make command completes, the

system redisplays the system prompt. For example:

make

#

Save the original kernel in the root (/) directory in case your new

kernel fails to work. If the new kernel fails, you can recover by

booting from the original kernel. Boot instructions are in Section

2.2.5. Move the original kernel to another filename in the root

directory. For example:

mv /vmunix /vmunix.old

The output of the make command is a kernel named vmunix in the

current directory. Move this file to the root directory and then

change its mode. For example:

mv vmunix /vmunix

chmod 755 /vmunix

The original /vmunix file is replaced by the new vmunix file and is

ready to be booted. The original /vmunix resides in /vmunix.old

because you copied it there in step 2.

Building the Kernel 2-9

2.3.5 Boot the New Kernel

If you are in single-user mode, use the reboot command to boot the new

kernel, /vmunix. To boot the new kernel, type:

/etc/reboot

If you are in multiuser mode, use the shutdown command with the

appropriate options to boot the new kernel.

/etc/shutdown -r +5 "Rebooting new kernel"

In this example, the processor halts and then automatically reboots using

the default boot device. The system boots the /vmunix image.

If the new kernel fails to boot or displays errors, you can recover by

booting the original kernel (/vmunix.old) and running that kernel until you

determine the cause of the problem.

If the new kernel runs but displays errors:

1. Shut the system down:

/etc/shutdown -h now

2. After the system is halted, boot the system using the conversational

mode, as described in the Guide to System Shutdown and Startup.

When the boot prompt appears, boot the old kernel using the name

of the original kernel that you saved in Section 2.2.4.

The following example shows how to reboot the old kernel in

conversational mode on a VAX-11/780:

>>> b ask

Enter image name:vmunix.old

In this example, the system boots the default system disk in

conversational mode using the original system image which was

renamed to vmunix.old. See the Guide to System Shutdown and

Startup for processor-specific booting information and for information

on booting in conversational mode.

2-10 Building the Kernel

2.4 Building the Kernel After a Capacity Upgrade
Installation

After you have completed an ULTRIX operating system capacity upgrade

installation, you need to build a new kernel. You should use the doconfig
command to build the kernel.

The doconfig command asks you questions about your system, such as
what time zone you are in, if you have daylight savings time, and so forth.

It also shows you possible responses.

When doconfig asks if you want to edit the configuration file, type yes.
The doconfig command then asks for the name of the editor you want to
use. Once you are editing the configuration file, change the maxusers
number to the new number of authorized users provided in your upgrade

installation kit. For example, if your system currently has a maximum of
32 users, and you have an upgrade installation kit for 64 users, substitute

the number 64 for 32. In this case, the new entry would read:

maxusers 64

Exit the editor and continue answering the doconfig utility prompts. Most
of your answers will be no, unless you are adding or deleting devices.

After the doconfig utility completes, you can test the new kernel that you
have built by performing the following steps:

1. Save your original kernel:

#mv /vmunix /vmunix.old

2. Put the newly-created kernel in the root directory. For example, to

put the kernel created in Example 2-1, you would type:

#mv /sys/TINKER/vmunix /vmunix

3. Reboot the system:

/etc/reboot

If you have any problems booting the new kernel, you can reboot the
system using the original kernel that you copied to /vmunix.old.

Refer to the Guide to System Shutdown and Startup for booting
information. If you have any problems booting the newly-created
kernel, you can boot the old kernel /vmunix.old and then try the
capacity upgrade installation again.

Also, if you have difficulties using the doconfig command, you can
build the kernel manually using the steps described in this chapter.

Building the Kernel 2-11

Device Mnemonics A

This appendix identifies and defines the mnemonics that are used to attach

any hardware or software device to your system. The mnemonics are used

by the /deviIMAKEDEV shell script to create the character or block special

files that represent each of the devices. The mnemonics also appear in

the system configuration file as described in the Guide to System

Configuration File Maintenance.

Table A-1 lists the mnemonics in seven categories: generic, consoles, disks,

tapes, terminals, modems, and printers. The generic category lists the

mnemonics of a general nature and includes memory, null, trace, and tty

devices. The consoles category lists the system console devices that the

ULTRIX operating system uses. The disks, tapes, terminals, modems, and

printers categories identify the appropriate mnemonics for those devices.

The description heading in Table A-1 identifies the corresponding device

name. It does not define the mnemonic’s use. For detailed information

on the use of each mnemonic in relation to both the MAKEDEV script and

the system configuration file, refer to the reference pages in Section 4 of

the ULTRIX Reference Pages. If on-line reference pages are available, you

can also use the man command. For instance, if you enter at the system

prompt:

man ra

the system displays the reference page for the Mass Storage Control

Protocol (MSCP) disk controller driver. Where appropriate, the SYNTAX

section of the reference page defines the device’s syntax as it appears, or

should appear, in the config file. Refer to /dev/MAKEDEV for additional

software device mnemonics that MAKEDEV uses. Refer to MAKEDEV(8) in

the ULTRIX Reference Pages for a description of the MAKEDEV utility.

You should note that Table A-1 uses the convention of an asterisk (*)

beside a mnemonic and a question mark (?) beside a device name to mean

a variable number. The range of the variable number is dependent on the

particular device.

Table A-1: Devices Supported by MAKEDEV

Category Mnemonic Description

Generic boot * Boot and std devices by cpu number; e.g., boot750

mvax* All MicroVAX setups; e.g., mvax2000

vaxstation®* A VAXstation 2000 setup; e.g., vaxstation2000

std Standard devices below with all console subsystems:

drum Kernel drum device

errlog Error log device

kUmem Kernel Unibus/Q-bus virtual memory

kmem Virtual main memory

mem Physical memory

null A null device

trace A trace device

tty A tty device

local Customer specific devices

Consoles console System console interface

crl Console RL0O2 disk interface for VAX 86?70

cs* Console RX50 floppy interface for VAX 8??0

ctu*® Console TU58 cassette interface for VAX 11/750

cty* Console extra serial line units for VAX 8?20

cfl Console RX01 floppy interface for 11/78?

ttycp Console line used as auxiliary terminal port

Disks hp* MASSBUS disk interface for RM?? drives

ra* UNIBUS/Q-bus/BI/HSC MSCP disk controller interface

ese* UNIBUS/Q-bus/BI/HSC MSCP electronic ESE20 disk

rb* UNIBUS IDC RLO02 disk controller interface

for RB?? drives

rd* VAXstation 2000 and MicroVAX 2000 RD type drives

rz SCSI disks (RZ22/RZ23/RZ55/RRD40)

rk* UNIBUS RK?? disk controller interface

rl* UNIBUS/Q-bus RL?? disk controller interface

rx* VAXstation 2000 and MicroVAX 2000 RX type drives

Tapes mu* TU78 MASSBUS magtape interface

tms* UNIBUS/Q-bus/B/HSC TMSCP tape controller interface

rv* UNIBUS/Q-bus/BI/HSC TMSCP optical disk

ts* UNIBUS/Q-bus TS11/TS05/TU80 magtape interface

tu* TE16/TU45/TU77 MASSBUS magtape interface

st* VAXstation 2000 and MicroVAX 2000 TZK50

A-2 Device Mnemonics

cartridge tape

Category Mnemonic Description

tz* SCSI tapes (TZ30/TZK50)

Terminals cxa* Q-bus cxal6

cxb* Q-bus cxbl6

cxy* Q-bus cxt08

dfa* Q-bus DFAO01 comm multiplexer

dhqg* Q-bus DHQ11 comm multiplexer

dhu* UNIBUS DHU11 comm multiplexer

dhv* Q-bus DHV11 comm multiplexer

dmb* BI DMB32 comm multiplexer including dmbsp

serial printer/plotter

dhb* BI DHB32 comm multiplexer

dmf* UNIBUS DMF32 comm multiplexer including dmfsp

serial printer/plotter

dmz* UNIBUS DMZ32 comm multiplexer

dz UNIBUS DZ11 and DZ32 comm multiplexer

sh* MicroVAX 2000, 8 serial line expansion option

ss’* VAXstation 2000 and MicroVAX 2000 basic

4 serial line unit

dzqg* Q-bus DZQ11 comm multiplexer

dzv* Q-bus DZV11 comm multiplexer

lta* Sets of 16 network local area terminals (LAT)

pty* Sets of 16 network pseudoterminals

qd* Q-bus VCB02 (QDSS) graphics controller/console

qv* Q-bus VCBO1 (QVSS) graphics controller/console

sm* VAXstation 2000 monochrome bitmap graphics/console

sg* VAXstation 2000 color bitmap graphics console '

Modems dfa* DFAO1 integral modem communications device.

Printers dmbsp* BI DMBS32 serial printer/plotter

dmfsp* UNIBUS DMF32 serial printer/plotter

Ip* UNIBUS LP11 parallel line printer

lpv* Q-bus LP11 parallel line printer

Device Mnemonics A-3

C

capacity upgrade installation

rebuilding the kernel after, 2-11

configuration file (diskless)

available default files, 1-24

default, 1-24 to 1-27

description, 1-24 to 1-27

differences, 1-25

naming conventions, 1-24

sample configuration file, 1-27e

use, 1-25

configuration file (Generic)

example, 1-23

configuration file (system)

adapter specifications, 1-10 to 1-11

allocating virtual memory, 1-6

defined

device definition syntax, 1-10 to

1-16

device specifications, 1-14

disk specification syntax, 1-15

editing, 2-7

estimating physical memory, 1-6

example, 1-18

format, 1-1 to 1-17

global definition syntax, 1-2 to 1-8

identifying number of processors,

1-7

master specifications, 1-11 to 1-12

pseudodevice definition syntax, 1-16

to 1-17

Index

configuration file (system) (cont.)

sizing process data segment, 1-6

specifying controllers, 1-12 to 1-14

specifying CPU, 1-3

specifying machine, 1-3

specifying maximum processes, 1-5

specifying maximum users, 1-5

specifying optional code, 1-7

specifying system name, 1-4

specifying time zone, 1-4

system image definition syntax, 1-8

to 1-10

D

daylight saving time

specifying, 1-4

doconfig command

building kernel automatically, 2-2

K

kernel

building, 2-1 to 2-11

building automatically, 2-2 to 2-6

building manually, 2-6 to 2-10

execution, 2-4e to 2-6e

when to rebuild, 2-1

M

MASSBUS adapter

configuration file format, 1-10

MASSBUS controller

specifying, 1-11

MSCP disk controller

specifying, 1-12e, 1-12e

P

printer

specifying line width, 1-14

Q

Q-bus adapter

configuration file format, 1-11

S

SCSI controller

specifying, 1-13e

T

time zone

specifying, 1-4

TMSCP tape controller

specifying, 1-13e

U

UNIBUS adapter

configuration file format, 1-11

Index-2

Vv

VAX BI adapter

configuration file format, 1-10

HOW TO ORDER ADDITIONAL DOCUMENTATION

DIRECT TELEPHONE ORDERS

In Continental USA in Canada

and New Hampshire, call 800-267-6215

Alaska or Hawaii

call 800-DIGITAL

DIRECT MAIL ORDERS (U.S. and Puerto Rico*)

DIGITAL EQUIPMENT CORPORATION

P.O. Box CS2008

Nashua, New Hampshire 03061

DIRECT MAIL ORDERS (Canada)

DIGITAL EQUIPMENT OF CANADA LTD.

100 Herzberg Road

Kanata, Ontario K2K 2A6

Attn: Direct Order Desk

INTERNATIONAL

DIGITAL EQUIPMENT CORPORATION

PSG Business Manager

c/o Digital’s local subsidiary

or approved distributor

Internal orders should be placed through the Software Distribution Center (SDC), Digital

Equipment Corporation, Westminster, Massachusetts 01473

*Any prepaid order from Puerto Rico must be placed

with the Local Digital Subsidiary:

809-754-7575

ULTRIX- 32

Guide to System Configuration

File. Maintenance

© AA-MESOA-TE

Reader’'s Comments

Note: This form is for document comments only. DIGITAL will use comments

submitted on this form at the company’s discretion. If you require a writ-

ten reply and are eligible to receive one under Software Performance

Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please

make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

J Assembly language programmer

[J Higher-level language programmer

[J Occasional programmer (experienced)

[J User with little programming experience

(] Student programmer

[J Other (please specify)

Name Date

Organization

Street

City State lem(? ode
Country

|

No Postage

Necessary

it Mailed in the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

Digital Equipment Corporation

Documentation Manager

ULTRIX Documentation Group

ZKO3-3/X18

Spit Brook Road

Nashua, N.H.

03063

L i I i ! i o S Z & - [0 s
1

'
z e =y = ® - ® o 8 a o & i ®

! [i I i | | | |] | I { ! ! | { ! I ! i i i | ! i i |
,

{ { 1 | i [| | e

-
C
u
t
 A
l
o
n
g
 D
o
t
t
e
d
 L
i
n
e

ULTRIX- 32

Guide to System Configuration

File Maintenance

AA-MEQ0A-TE
Reader’'s Comments

Note: This form is for document comments only. DIGITAL will use comments

submitted on this form at the company’s discretion. If you require a writ-

ten reply and are eligible to receive one under Software Performance

Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please

make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

[Assembly language programmer

[J Higher-level language programmer

[J Occasional programmer (experienced)

[J User with little programming experience

[0 Student programmer

[0 Other (please specify)

Name Date

Organization

Street

City State Zip Code
Country

|S
R

No Postage

Necessary

it Mailed in the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

Digital Equipment Corporation

Documentation Manager

ULTRIX Documentation Group

ZKO3-3/X18

Spit Brook Road

Nashua, N.H.

03063

| { 1 1 ! i -
l

=] Z Q o - o] =
]) =3 - oo o B ® =] Q
.

~) -
] & | | | { | | i (i | | I i i | ! | i | i { i | | | i |] ! { ! | | [| |

d

C
u
t
 A
l
o
n
g
 D
o
t
t
e
d
 L
i
n
e

