
Realtime Products

Technical Summary
Fifth Edition

Part Number: EK-RPTSS-TM-004

Realtime Products Technical Summary

Order Number: EK-RPTSS-TM-004

Fifth Edition

This summary describes Digital's key realtime software and hardware
offerings.

Revision/Update Information: This manual supersedes the Realtime
Products Technical Summary,
EK-RPl'SS-TM-003.

Digital Equipment Corporation
Maynard, Massachusetts

First Printing, August 1990
Revised, May 1991, December 1991, January 1992, December 1992

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1990, 1991, 1992.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your critical
evaluation to assist in preparing future documentation.

Trademarks of Digital Equipment Corporation and third-party trademarks are listed in
Appendix B.

The cover photo for this manual appears courtesy of the National Aeronautics and Space
Administration, Houston, Texas.

This document is available on CD-ROM.

This document was prepared using VAX DOCUMENT, Version 2.1.

S1962

Contents

Preface ... xvii

1 Introduction to Digital's Realtime Products

1.1
1.2
1.3
1.4
1.4.1
1.4.2
1.4.3
1.5
1.5.1
1.5.2
1.5.3
1.5.4
1.6
1.6.1
1.6.2
1.6.3
1.6.4
1.6.5
1.6.6
1.6.7
1.6.8
1.7

1.7.1
1.7.2
1.7.3
1.7.4

Realtime Applications
Realtime System Characteristics
Industry Standards
Open Systems Support

Standards Comp1ianc~ ~
Open System Foundation
Network Application Support

POSIX. Standards
DECelx POSIX.
DEC OSF/l POSIX.
VMS PO SIX.
VAXELN POSIX.

Realtime Products Summary ~
DECelx Realtime Tools
VAXELN Toolkit
VMS Operating System ~
UNIX Operating Systems
High-Level Language Compilers and Runtime Libraries
Digital's COHESION Environment
DEC Realtime Integrator
Realtime VAX Hardware•......................

Digital-Sponsored Programs for Promoting Realtime
Solutions .. .

Cooperative Marketing Program
Enterprise Integration Services
Technical OEM Organization
TRIIADD Program

1-2
1-4 .
1-5
1-6
1-6
1-7
1-7
1-8
1-9

1-10
1-10
1-10
1-11
1-13
1-13
1-14
1-14
1-14
1-15
1-16
1-16

1-17
1-18
1-18
1-19
1-20

iii

Part I DECelx

2 DECelx Overview
2.1
2.2
2.3
2.3.1
2.3.2
2.3.3
2.4
2.5
2.5.1
2.5.2
2.5.3
2.6

DECelx. Realtime System Features
DECelx. Realtime Tools for ULTRIX
DECelx. Development Cycle

Developing a DECelx Hardware Environment
Developing a DECelx ~pplication
Loading a DECelx. Target

DECelx. Board Support Packages
DECelx. Target Hardware

Microprocessors on the R3000 Architecture
Microprocessors on Motorola Architecture
Realtime Options

DECelx Hardware and Software Requirements

3 DECelx Components

iv

3.1

3.2
3.2.1
3.2.2
3.2.3
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.4
3.5
3.6
3.7
3.8
3.9
3.9.1
3.9.2
3.9.3
3.9.4
3.10
3.11

Kernel Facilities for Multitasking and Intertask
Communications
POSIX Synchronization Facilities

Binary Semaphores 0 0

Clocks and TImers ... 0 • 0 •• 0 •• 0 0 •••••••• 0 0 ••• 0 0 • 0 • 0 0

POSIX Synchronization Functions . 0 • 0 0 ••• 0 0 0 •• 0 0 0 • 0 • 0 •

Networking Facilities 0 0 ••• 0 ••• 0 0 •••••• 0 ••• 0 0 0 • 0 0

Sockets 0 ••• 0 • 0 • 0 • 0000000 ••• 0 • 0 ••••••••••• 0 ••• 0 •••

Remote Procedure Calls (RPC) 0 •

Remote Login: rlogin, telnet ... 0 •••• 0 • 0 ••• 0 •• 0 ••• 0 • 0 •

Remote File Access: NFS, ftp, rsh 0 ••••••••••••• 0 0

Remote Command Execution ... 0 ••••• 0 ••••••• 0 • 0 • 0 • 0 •

Module Loader and System Symbol Table 0 •• 0 0 • 00 0 0 0 0 0 0 0 0 0 0

Shell .. 0000 ••• 0 0 0 • 0 0 0 00.0000 •• 00.000000000.000 •• 0 0 ••

Debugging Facilities .. 0 0 0 0 • 0 0 0 • 0 • 0 •

Performance Evaluation ... 0 0 •• 0 0 • 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0

110 System 0 ••• 0 • 0 000 •••••••••• 0 • 0 •• 0 ••• 0 •• 0 • 0 0 0 0 .000

Local File Systems .. 0 • • 0 •• 0 0 • • •• 0 • • • • • • • • • • • 0 • 0 0 •••• 0 0

DOS File System 0 ••••••• 0 0 0 0 • 0 ••••••• 0 •• 0 • 0 0 • 0 0 • 0 0

RT-ll File System .. 0 •••••••••• 0 •• 0 0 •••• 0 •• 0 • 0 • 0 • 0 •

Raw Disk File System 0 ••• 0 • 0 0 • 0 0 • 0 • 0 •• 0 ••• 0

Alternative File Systems. 0 0 ••• 0 ••• 0 0 0 0 • 0 0 • 0 • 0 0 0 0 0 • 0 0

Utility libraries 0 0 0 0 0 0 0 0 0 • 0 0 0 • 0 0 0 0 0 0 0 0 0 • 0 0 0 0 • 0 0 0 0 0 0 0 • 0

Board Support Packages 0 •• 0 0

2-2
2-4
2-4
2-5
2-6
2-7
2-9
2-9

2-10
2-11
2-11
2-12

3-2
3-2
3-3
3-3
3-4
3-5
3-6
3-7
3-7
3-7
3-7
3-8
3-8
3-9
3-9

3-10
3-10
3-10
3-11
3-11
3-11
3-11
3-13

Part II VAXELN Toolkit

4 VAXELN Toolkit Overview

4.1
4.2
4.3

Survey of VAXELN Toolkit Components
VAXELN Toolkit Realtime Programming Features
VAXELN Hardware and Software Requirements

5 VAXELN Programming Concepts

5.1
5.2
5.3
5.3.1
5.3.2
5.3.3

Processes: Program Execution Threads
Jobs: Process Families
Concurrency: Processes Sharing Processor Resources

Multitasking '
Multiprogramming
Multiprocessing

6 VAXELN Toolkit Components

6.1
6.1.1
6.1.2
6.1.3
6.1.4
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7
6.2.8
6.3
6.3.1
6.3.2
6.3.3

VAXELN System Development Software
VAXELN Pascal Compiler
VAXELN_SERVICES Ada and Runtime Libraries
VAXELN System Builder
Loading and Booting a VAXELN System Image

VAXELN Runtime Software
V.AXELN Kernel
VAXELN POSIX Runtime Library
KAV30 Runtime Library
V.AXELN Runtime Libraries
Device Drivers ' .. .
Network Communications Services
Authorization Service
File Service

VAXELN Utilities
Development Utilities
Command Language Utility
Network Utilities

4-1
4-2
4-5

5-1
5-2
5-2
5-3
5-4
5-4

6-1
6-2
6-3
6-4
6-6
6-6
6-8

6-23
6-29
6-32
6-33
6-37
6-45
6-46
6-47
6-47
6-51
6-52

v

7 VAXELN DECwindows

7.1
7.2
7.3
7.4
7.5

DECwindows Architecture
DECwindows User Environment
VAXELN DECwindows Server
VAXELN DECwindows Applications ~
VAXELN DECwindows User Environment Components

8 VAXELN Window Server·

8.1
8.2
8.3
8.4
8.5

VAXELN Window Server Overview
VAXELN Window Server Features
VAXELN Window Station
VAXELN Window Server Development Software
VAXELN Window Server Hardware and Software

7-2
7-3
7-5
7-5
7-6

8-1
8-3
8-3
8-4

Requirements. 8-5

Part III VMS Systems in Realtime Applications

9 Survey of VMS Realtime Capabilities

9.1
9.2
9.3
9.4
9.4.1
9.4.2
9.4.3

VMS Realtime Services
Programming Techniques for VMS Realtime Applications
VMS POSIX for VMS Realtime Applications
Software Tools for VMS Realtime Applications

VMS Error Log Utility
VMS Librarian
VMS Linker

10 VMS POSIX Realtime Programming

vi

10.1
10.2
10.2.1
10.2.2
10.3
10.3.1
10.3.2
10.3.3

VMS POSIX Programming Environment
VMS POSIX Commands and Utilities

VMS POSIX File System
VMS POSIX Shell

VMS POSIX Realtime Environment ~
Process Synchronization Using VMS POSIX
Interprocess Communication Using VMS POSIX ~
Realtime Performance Using VMS POSIX

9-1
9-5
9-6
9-8
9-9
9-9
9-9

10-1
·10-3
10-4
10-4
10-5
10-5
10-8
10-9

Part IV DEC OSF/1 Systems in Realtime Applications

11 Survey 0' Programming on DEC OSF/1 Systems
11.1
11.1.1
11.1.2
11.1.3
11.1.4
11.1.5
11.1.6
11.2
11.3
11.3.1
11.3.2

DEC OSF/1 Operating System Overview
Preemptive Kernel
Realtime Priorities
DECthreads
Memory-Mapped Files
Interprocess Communication
Networking

DEC OSF/1 Programming Support Tools
DEC OSF/1 Realtime Environment

POSIX 1003.1 on DEC OSF/1
P1003.4ID11 on DEC OSF/1

12 DEC OSF/1 Realtime Programming Environment

12.1
12.2
12.2.1
12.2.2
12.2.3
12.2.4
12.2.5
12.2.6

DEC OSF/1 POSIX Environment
DEC OSF/1 Realtime Functions

Clocks and TImers
Process Priority Scheduling
Process Memory Locking
Asynchronous Input and Output
Shared Memory and Memory Mapped Files
Semaphores ~

Part V High-Level Language Support for Realtime
Applications

13 High-Level Language Overview

11-1
11-2
11-3
11--4
11--4
11-5
11-5
11--6
11-7
11-7
11-8

12-1
12-2
12-3
12--4
12-5
12--6
12-7
12-9

13.1 DEC Ada. 13-2
13.2 VAX BASIC 13-3
13.3 DEC C 13-4
13.4 DEC C++ . 13-5
13.5 DEC Fortran 13-5
13.6 VAX FORTRAN High-Performance Option 13--6
13.7 DEC Pascal ... 13-7
13.8 VAX Pascal. 13-8

vii

14 VAXELN Ada
14.1
14.2
14.2.1
14.2.2
14.2.3
14.2.4
14.3
14.3.1
14.3.2
14.4
14.5

VAXELN Ada Software Features
VAXELN Ada Programming Support Environment

VAX Ada Compiler
VAX Ada Program Library Manager
VAXELN Toolkit
VAXELN Ada Remote Debugger

VAXELN Ada Runtime Software
VAXELN Runtime Facilities
VAX Ada Predefined Library Packages

VAXELN Ada Development Cycle
VAXELN Ada Hardware and Software Requirements

15 XD Ada Cross-Development System
1S.1
1S.2
1S.2.1
1S.2.2
1S.2.3
1S.2.4
1S.2.S
1S.2.6
1S.2.7
1S.2.8
1S.2.9
1S.2.10
1S.3
1S.3.1
1S.3.2
1S.4
1S.5

XD Ada Software Features
XD Ada Programming Support Environment

XD Ada Cross-Compilers
XD Ada Library of Predefined Compilation Units
XD Ada Program Library Manager
XDAda Macro Assemblers
XD Ada Librarian
XD Ada Builder
XD Ada Loader
XD Ada Form.atter
XD Ada Run Command
XD Ada Debugger

XD Ada Runtime Software
XD Ada Target Runtime System
XD Ada Target Debug Kernel

XD Ada Development Cycle
XD Ada Hardware and Software Requirements

Part VI The Digital COHESION Environment

viii

14-1
14-3
14-3
14-3
14-3
14-3
14-S
14-S
14-S
14-S
14-7

15-1
15-3
15-3
15-3
15-4
15-4
15-4
15-4
15-4
15-4
15-S
15-S
15-5
15-S
15-S
15-6
15-7

16 Overview of the COHESION Environment

16.1
16.2
16.3
16.3.1
16.3.2
16.3.3
16.3.4

Digital's Vision of the COHESION Environment
Introduction to the Digital COHESION Environment
Components of the Digital COHESION Environment

Comprehensive Services and Support
Network Application Support (NAS)
Tools for Software Life Cycle and Management
Tools for Factory Management

17 VMS CASE Tools in the COHESION Environment

17.1
17.1.1
17.1.2
17.1.3
17.1.4
17.1.S
17.1.6
17.1.7
17.1.8
17.2
17.2.1
17.2.2
17.2.3
17.2.4
17.3
17.3.1
17.3.2
17.3.3
17.3.4
17.3.S
17.3.6
17.3.7
17.3.8
17.3.9
17.4
17.4.1
17.4.2
17.4.3
17.4.4

VMS DECset CASE Tools
DEC Code Management System
DEC Module Management System
DEC Test Manager
DEC Language-Sensitive Editor ".
DEC Source Code Analyzer
DEC Performance and Coverage Analyzer
Integrated Symbolic Debugger Support
DECset for VMS Software Requirements

Network Application Support (NAS) for VMS
NAS 200 for VMS: Integration at the Desktop
NAS 250 for VMS: VAXstation Integration
NAS 300 for VMS: Distributed Client/Server Computing
NAS 400 for VMS: Critical Large Business Operations

Additional CASE Tools
DEC Graphics Kernel System
DEC PHIGS
DECdesign
DECgraph
VAXNotes
VAX Performance Advisor
VAX Software Performance Monitor
VMS DECwindows Motif
VMS Workstation Software

Third-Party VMS CASE Tools
EXCELERATOR
Software through Pictures
Statemate
TEAMWORK

16-2
16-3
16-3
16-4
16-4
16-S
16-S

17-1
17-2
17-2
17-3
17-3
17-4
17-4
17-4
17-4
17-S
17-S
17-6
17-6
17-7
17-8
17-8
17-9
17-9
17-9

17-10
17-10
17-11
17-11
17-12
17-12
17-12
17-12
17-13
17-13

ix

18 UNIX CASE Tools in the COHESION Environment

18.1
18.1.1
18.1.2
18.1.3
18.1.4
18.1.S
18.1.6
18.1.7
18.1.8
18.2
18.3
18.3.1
18.3.2

DECset Tools for ULTRIX Systems
SCCS Code Manager
CMS to SCCS Library File Converter
make Program Builder
DEC Test Manager
dbx Program Debugger
DEC Language-Sensitive Editor
DEC Performance and Coverage Analyzer
DEC Source Code Analyzer

PC DECwindows Display Facility
Network Application Support (NAS) for ULTRIX

NAS 200 for ULTRIX: Integration at the Desktop
NAS 300 for ULTRIX: Distributed Client/Server
Computing

FUSE Tools for UNIX Systems 18.4
18.4.1
18.4.2
18.4.3
18.4.4
18.4.S
18.4.6
18.4.7
18.4.8
18.4.9
18.4.10
18.4.11 .
18.4.12

FUSE Control Panel
FUSE Builder
FUSE Call Graph Browser
FUSE Code Manager
FUSE Cross-Referencer
FUSE Debugger
FUSE Editors
FUSE Online Help
FUSE Profiler
FUSE EnCASE Kit
DEC FUSE C++ Support Kit
DEC FUSE Support for DEC C++ Kit

19 DECfactory Products in The Realtime Environment

x

19.1
19.2

19.2.1
19.2.2
19.2.3
19.2.4
19.3
19.4
19.5
19.6

Digital's DECfactory Services
BASEstar to Integrate Manufacturing Applications and
Devices

Application Integration
Device Integration
Configuration Management
BASEstar CIMfast for Application Development

DECmessageQ for Application Communications
DEComni to Simplify Device Integration
DECosap to Link Siemens Devices
@aGlance to Access Data

18-2
18-2
18-3
18-3
18-4
18-4
18-S
18-S
18-S
18-6
18-6
18-7

18-7
18-8
18-9
18-9
18-9

18-10
18-10
18-11
18-12
18-12
18-12
18-12
18-13
18-14

19-2

19-2
19-3
19-4
19-5
19-5
19-5
19-6
19-8
19-9

20 DECmessageQ in the Realtime Environment

20.1
20.1.1
20.1.2
20.1.3
20.1.4
20.1.5
20.1.6
20.2
20.2.1
20.2.2
20.3
20.3.1
20.3.2
20.3.3
20.3.4
20.4
20.4.1
20.4.2
20.4.3

DECmessageQ Overview
DECmessageQ Services
DECmessageQ Features
DECmessageQ Queues
Message Selection
Message Recovery
DECmessageQ Application Programming Interface

DECmessageQ for UNIX
DECmessageQ for UNIX Message Recovery Services
DECmessageQ for UNIX Selective Broadcast Services

DECmessageQ for VMS
DECmessageQ for VMS Message Recovery Services
DECmessageQ for VMS Selective Broadcast Services
DECmessageQ for VMS Developer's Tool Kit
DECmessageQ for VMS LU6.2 Services

DECmessageQ Hardware and Software Requirements
DECmessageQ Hardware Requirements
DECmessageQ Software Requirements
DECmessageQ System Configuration

Part VII DEC Realtime Integrator

21 DEC Realtime Integrator Overview

20-1
20-5
20-5
20-6
20-7
20-7
20-8

20-10
20-11
20-11
20-11
20-12
20-13
20-13
20-14
20-15
20-15
20-15
20-16

21.1 DEC Realtime Integrator General Features. 21-2
21.2 DEC Realtime Integrator Use .. 21-3
21.3 DEC Realtime Integrator for VAXELN 21-5
21.4 DEC Realtime Integrator Hardware and Software

Requirements. 21-6

22 DEC Realtime Integrator Programming

22.1
22.2
22.2.1
22.2.2
22.2.3
22.2.4
22.2.5
22.2.6
22.2.7

Programming Environment
Icon Libraries.

Hardware Input/Output Library
Software Input/Output Library
Text Manipulation Library
Signal Processing Library
Control Libraty
Data Display Libraty
Panel Input Libraty

22-1
22-5
22-5
22-7
22-8
22-8
22-9

22-10
22-11

xi

22.3
22.3.1
22.3.2
22.3.3

Subroutine Libraries '.
Laboratory Input/Output (LIO) Library
Laboratory Signal Processing (LSP) Library
Laboratory Graphics Package (LGP) Library

Part VIII Realtime Hardware

23 Realtime Hardware Overview

24 Realtime Hardware Product Families
24.1 Overview of Hardware Products for Realtime Systems
24.2 Realtime Chip-Level Processors
24.2.1 rtVAX 300
24.3 Realtime Single-Board Computers
24.4 Workstations for Realtime Systems
24.4.1 Workstation Overview
24.4.2 The VAXstation 4000 Family
24.4.2.1 The VAXstation 4000 VLC
24.4.2.2 The VAXstation 4000 Model 60
24.4.2.3 The VAXstation 4000 Model 90
24.4.3 The DECstation 5000 Family
24.4.3.1 The Personal DECstation 5000 Series
24.4.3.2 The DECstation 5000 Model 133
24.4.3.3 The DECstation 5000 Model 240
24.5 MicroVAX 3100 Realtime Workstations
24.6 rtVAX Realtime VAX Systems
24.6.1 rtVAX 3300/3305/3400 Realtime Systems
24.6.2 rtVAX 4000 Family of Realtime Systems
24.6.3 rtVAX 6000 Family of Realtime Systems
24.6.4 rtVAX 9000 Model 110 and 310 Systems
24.7 VAX and MIPS-Based Systems
24.7.1 The DECsystem 5900 Server
24.7.2 VAX 6000 Systems

xii

22-12
22-12
22-13
22-13

24-2
24-2
24-3
24-4
24-6
24-6
24-9
24-9

24-10
24-11
24-12
24-14
24-15
24-16
24-17
24-18
24-20
24-22
24-24
24-25
24-26
24-27
24-28

25 Realtime Options

25.1 Q22-bus Options
25.1.1 AAVII-C Digital-to-Analog Converter Module
25.1.2 AAV11-DA Digital-to-Analog Converter Module
25.1.3 ADQ32 Analog-to-Digital Converter Module
25.1.4 ADV11-C Analog-to-Digital Converter Module
25.1.5 ADVII-DA Analog-to-Digital Converter Module
25.1.6 AXV11 Analog Input/Output Module
25.1.7 DECscan Products for BITBUS Interconnection
25.1.7.1 IBQOl DECscan BITBUS Controller Module
25.1.7.2 QA-VCJAA DECscan Driver Package
25.1.7.3 QA-VCSAA VAX DECscan VMS Toolkit
25.1.8 DRQ3B Parallel-Line Interface Module
25.1.9 DRVIJ and DRVIIJ Parallel-Line Interface Modules
25.1.10 DRV11-WA and DRVlW Parallel-Line Interface Modules .. .
25.1.11 IEQII-AB,AD,AF IECIIEEE-488 Bus Interface Modules .. .
25.1.12 KWVl1-C Programmable Realtime Clock Module
25.1.13 Universal Data Interface Panels
25.2 SCSI Bus Options
25.2.1 IEZl1 SCSI-to-IEEE-488 Bus Converter Module
25.3 TURBOchannel Bus Options
25.3.1 DWTVX and DWTVA TURBOchannel-to-VME Adapters
25.3.2 IETl1 TURBOchannel-to-IEEE-488 Adapter
25.4 VAXBI Bus Options
25.4.1 DRB32-M,W,E Parallel-Line Interface Modules
25.4.1.1 DRB32-M Parallel-Line Interface Module
25.4.1.2 DRB32-W Parallel-Line Interface Module
25.4.1.3 DRB32-E Parallel-Line Interface Module
25.4.2 KA800-M Processor Board
25.4.3 MS82O-CA Memory Module
25.5 XM]-to-VMEbus Option
25.6 Industrial Terminals
25.6.1 IT330 and IT340 Industrial Terminals
25.6.2 VT33N and VT34N Industrial Terminals

25-1
25-2
25-2
25-3
25-4
25-5
25-6
25-7
25-8
25-8
25-8
25-9
25-9

25-10
25-10
25-11
25-12
25-12
25-12
25-13
25-14
25-15
25-17
25-17
25-18
25-18
25-18
25-18
25-19
25-19
25-20
25-20
25-21

xiii

A Associated Documents

8 Trademarks

Glossary

Index

Figures

1-1
2-1
2-2
3-1
4-1

5-1
5-2
5-3

xiv

5-4

5-5

6-1
6-2
6-3
6-4
6-5
6-6
7-1
8-1
14-1
15-1
19-1
20-1
21-1

Realtime Software Products
Typical Minimum Configuration for DECelx
Downloading a Program
DECelx Network Components
Development Systemtrarget System Relationship
Process Family
Loosely Coupled Multiprocessing Configuration
Tightly Coupled Symmetric Multiprocessing
Configuration
Closely Coupled Multiprocessing Configuration with
VAXELN Primary System
Closely Coupled Multiprocessing Configuration with VMS
Primary . System
Preparing a VAXELN System Image
VAXELN System Software
Process State Transitions
Memory Allocation
VAXELN Remote Debugger Environment
VAXELN Local Debugger Environment
DECwindows Architecture
Sample VAXELN Window Server Configuration
Developing a Typical VAXELN Ada System
Developing a Typical XD Ada System
Integration of DEComni and DECosap
DECmessageQ Communication Paths . '
DEC Realtime Integrator in Digital's Distributed Realtime
Architecture

1-12
2-5
2-8
3-6
4-2

5-3
5-4

5-5

5-6

5-7
6-5
6-8

6-14
6-17
6-48
6-49
7-2
8-2

14-6
15-8
19-7
20-4

21-7

22-1
22-2
22-3

Tables

2-1
2-2
2-3
~1

3-2
6-1
6-2

6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
7-1
10-1
10-2
10-3
12-1
12-2
12-3
12-4
12-5

12-6
20-1
20-2

Signal Processing Icons ..
IOtech WAVE488 Application Data Flow View
IOtech WAVE488 Application Signal Flow View

DECelx Development Tools by Target
R3000 Target Board Summary
Motorola Target Board Summary
Synchronization Routines Available in DECelx POSIX
DECelx PO SIX Process Synchronization Functions
Kernel Objects
Data Structures for Optimizing Area and Binary Semaphore
Operations
Kernel Operations ','
Process States
Types of Exceptions
Exception-Handler Operations
VAXELN POSIX Process Synchronization Functions
VAXELN POSIX Communication Functions
VAXELN POSIX Memory-Locking Functions
KAV30 Routine Summary
Device-Handling Operations
VAXELN Internet Services Protocols
Sample DECwindows User Interface
VMS POSIX Process Synchronization Functions
VMS PO SIX Interprocess Communication Functions
VMS POSIX Realtime Performance Functions
DEC OSF/l Clock and Timer Functions
DEC OSF/l Process Priority Scheduling Functions
DEC OSF/l Memory-Locking Functions
DEC OSF/l Asynchronous 110 Functions
DEC OSF/l Shared Memory and Memory Mapped File
Functions
DEC OSF/l Semaphore Functions
DECmessageQ Basic Service Functions
DECmessageQ Extended Service Functions

22-2
22-4
22-4

2-7
2-10
2-11
3-3
3-4
6-9

6-10
6-11
6-13
6-22
6-23
6-26
6-28
6-28
6-31
6-36
6-42
7-5

10-7
10-9

10-11
12-4
12-5
12-6
12-7

12-9
12-10
20-8
20-9

xv

xvi

20-3
22-1
22-2
22-3
22-4
22-5
22-6
22-7
24-1
24-2
24-3

DECmessageQ for VMS LU6.2 Services Limits
Hardware I/O Icons
Software I/O Icons
Text Manipulation Icons
Signal Processing Icons
Control Icons ..
Data Display Icons
Panel Input Icons
Workstation Products
Graphics Options for All DECstation 5000 Systems
rtVAX Products

20-14
22-5
22-7
22-8
22-9

22-10
22-11
22-11
24-7

24-13
24-19

Preface

The Realtime Products Technical Summary surveys Digital's key realtime
software and hardware products. Here you will find discussions of each
product's features, development and runtime environments, and typical uses.

This swnmary is written for computer professionals who are investigating
realtime solutions. Familiarity with Digital's portfolio of realtime offerings
is not a prerequisite, but readers should be acquainted with basic realtime
concepts. If you are a Digital system user with an interest in Digital's products
for developing realtime solutions, this summary provides insight into Digital's
product capabilities and uses.

The Realtime Products Technical Summary is organized in ten parts and
contains two appendixes and a glossary. Each part discusses a different facet
of Digital's realtime products. Appendix A provides pointers to additional
docwnentation arranged by topic. The book parts are marked by dividers to
help you locate specific areas of interest.

To further assist you in navigating the book, Chapter 1 discusses the term
realtime, identifies realtime system characteristics, and gives an overview of
Digital's commitment to standards and Open Systems. Also outlined here are
Digital's key realtime offerings (which are described within the book) and some
Digital-sponsored programs for promoting realtime solutions.

The fifth edition includes these enhancements and additions:

• The order in which products are presented was changed to emphasize
recently introduced realtime products.

• For easy online navigation, the introductory material previously presented
in the Preface is now in Chapter 1.

• Part I, DECelx, was updated to include functionality added for DECelx
Version 2.0.

• Part II, VAXELN Toolkit, was updated to include functionality added for
VAXELN Version 4.4 and to include VAXELN Window Server Version 1.2
functionality and the new VAXELN Window Station.

xvii

xviii

• Part Iv, DEC OSF/l Systems in Realtime Applications, was updated to
reflect new POSIX 1003.4 Draft 11 functionality for DEC OSF/l Version
1.2.

• Part V, High-Level Language Support for Realtime Applications, was
revised to cover a wider range of languages now available on UNIX
platforms.

• Part VI, The Digital COHESION Environment, was revised to reflect
recent releases of VMS and UNIX CASE tools. Other layered products that
contribute to Digital's realtime environment, such as DECmessageQ and
the DECfactory products, were added to the section.

• Part VII, DEC Realtime Integrator, was updated to include functionality
added for DEC Realtime Integrator Version 3.0 and the new product, DEC
Realtime Integrator for VAXELN.

• Part VIII, Realtime Hardware, was revised to include new and updated
hardware offerings for VAX and MIPS-based platforms. Information on
older hardware offerings was eliminated.

• Earlier versions of this manual included an appendix listing the software
requirements for products covered in the technical summary. General
software requirements are now included in the chapters covering those
products. For specific software requirements, refer to the System Support
Addendum (SSA) for each product.

Digital's UNIX products include the ULTRIX and DEC OSF/l operating
systems running on multiple hardware platforms. Not all products discussed
in this manual run on all of Digital's UNIX platforms. The following definitions
will help you understand the context of the discussions.

• UNIX applies to all Digital UNIX products, including ULTRIX and
DEC OSF/1.

• ULTR1X applies to Digital products running on either a VAX ULTRIX or
MIPS-based ULTRIX system.

• DEC OSF/l applies to Digital products running on MIPS-based and Alpha
hardware.

• DECelx applies to Digital products running on a DECelx system.

1
Introduction to Digital's Realtime Products

Digital offers a variety of products for developing realtime solutions that
run on the PDP-II, VAX, MIPS-based, and Alpha processors. Most realtime
solutions come from third-party vendors that specialize in areas such as
process control systems, aircraft simulators, robotics, and medical diagnostics
equipment. Digital's products help these vendors produce the best solutions in
the market.

Not only does Digital furnish a comprehensive set of products for developing
realtime solutions, it allows for connectivity as well. With Digital's
interconnect products and networking software, companies can seamlessly
integrate solutions throughout the corporate network. Using Digital's realtime
products, you can bring distributed computing to the factory floor or laboratory.
You can distribute computing power where it is needed. As application
requirements change, you can easily add computing power or migrate the
application to a more appropriate configuration .

. This introduction covers the following topics:

• Realtime Applications, Section 1.1

• Real time System Characteristics, Section 1.2

• Industry Standards, Section 1.3

• Open Systems Support, Section 1.4

• POSIX Standards, Section 1.5

• Realtime Products Summary, Section 1.6

• Digital-Sponsored Programs for Promoting Realtime Solutions, Section 1.7

Although this technical summary focuses on Digital's 32-bit realtime products,
thousands of realtime solutions are running on Digital's 16-bit PDP-l1
processors. Running RT-II, RSX-I1, or MicroPowerlPascal, the PDP-I1
processors and their boards and options have answered realtime computing
needs for 20 years and will continue to do so.

Introduction to Digital's Realtime Products 1-1

The speed, responsiveness, and predictability of VAX and MIPS-based
processors suit them to realtime application requirements~ The Digital
family supplies a wide range of hardware and software options for building
realtime systems. You can choose among processor implementations, bus
architectures, realtime device options, mass storage devices, and integrated
software environments to configure a system that meets the requirements of
your realtime application.

1.1 Realtime Applications
Realtime applications are equipment oriented. Rather than furnish interfaces
for people, as desktop applications do, realtime applications supply interfaces
for equipment, such as input/output (1/0) devices and busses. Realtime
applications run on computers connected to equipment that collects and,
in some cases, controls the processing of data. Examples of realtime,
data-collecting applications include long-distance telephone testing systems,
systems that receive data from satellites, and systems that use laboratory
measuring equipment. Automobile automatic braking systems, process control
systems in power-generating plants, and airplane automatic pilot systems are
examples of realtime control applications.

Realtime applications must respond to events generated by equipment within
a predetermined time limit. Typical realtime applications include data
acquisition and analysis, simulations, process control, computer-integrated
manufacturing (elM), image processing, built-in test equipment, networked
110 servers, communication switching systems, and dedicated professional
workstations.

The term realtime does not necessarily imply high speed. An environmental
monitoring system is an example of a realtime application that might require
that readings of wind speed, wind direction, and environmental pollutant levels
be taken at intervals ranging from one second to several minutes. Although
this application does not require high speed, it must obtain each reading at the
specified interval. If a reading is missed, you cannot recover the lost data.

Many realtime applications require high I/O throughput. I/O throughput,
the rate at which a computer system handles incoming and outgoing data, is
dependent upon the speed and features of the central processing unit (CPU)
and I/O device as well as the bandwidth of the I/O bus. Realtime applications
that require high I/O throughput rely on continuous processing of large
amounts of data. The primary requirement of such applications is to acquire a
number of data points equally spaced in time. The collected data can then be
stored or used in computations.

1-2 Introduction to Digital's Realtime Products

High I/O throughput requirements are typically found in signal-processing
applications such as sonar and radar analysis, telemetry, vibration analysis,
speech analysis, and music synthesis. Likewise, a continuous stream of
data points must be acquired for many of the qualitative and quantitative
methods used in applications including gas and liquid chromatography,
mass spectrometry, automatic titration, and colorimetry. For some of these
applications, the throughput requirements on anyone channel are relatively
modest. However, a system may need to handle multiple channels of data
simultaneously, resulting in a high aggregate throughput requirement.

Some realtime applications require both high throughput and fast response to
asynchronous external events. High I/O throughput and fast response are the
key metrics for data acquisition systems, for which data collection is triggered
by an external event.

The key metrics for realtime control systems include the speed at which the
system responds to asynchronous eXternal events (device interrupts) and the
system's ability to schedule and provide communication between multiple
tasks. High I/O throughput may be an important factor for realtime control
systems as well. Realtime control systems (such as simulators) must capture
input parameters, perform decision-making operations, and compute updated
output parameters within a given time frame.

Consider a flight simulator application. The application might acquire several
hundred input parameters from the cockpit controls; compute updated position,
orientation, and speed parameters; and then send several hundred output
parameters to the cockpit console and a visual display subsystem. Typically,
these operations must be performed within 3 milliseconds. Other applications
for which response time is critical include process monitoring and control,
synchronous communications, and stimulus-response testing in biological and
psychological research.

Predictability is another characteristic of realtime systems. Realtime systems
should respond predictably to realtime tasks. Thus, realtime systems reduce
system services and activities, such as paging and swapping, to minimize
overhead and maximize predictability.

The following types of applications can incorporate realtime hardware and
software; many of these are cited as examples throughout this technical
summary:

• Acoustics

• Aerospace research and testing

• Analytical instrumentation

Introduction to Digital's Realtime Products 1-3

•
•
•
•
•
•
•
•
•
•
•
•
•

Component evaluation

Electronic and equipment testing

Function generators

Graphics displays and imaging

Interprocessor communications

Materials testing

Medical research

Physiological monitoring

Product handling

Programmable power supplies

Seismic data collection

Spectrum analysis

Structural analysis and performance testing

1.2 Realtime System Characteristics
In addition to offering high throughput, fast response to asynchronous external
events, and predictable responses to realtime tasks, realtime systems can also
exhibit one or more of the following characteristics:

• Dedicated resources. A dedicated realtime system uses one or more
computers to solve a specific problem or set of related problems. A
dedicated system devotes all system resources to the realtime application;
it does not provide time-sharing services. Dedicated realtime applications
are somtimes referred to as hard realtime applications.

• Distributed processing. A distributed realtime system uses computing
resources efficiently by distributing less time-critical functions to other
processors. You can distribute applications, application components,
and application resources over a network or between processors
in multiprocessor configurations. This allows time-critical tasks to
use realtime target processors more efficiently while maintaining
communication with all application functions.

• High IlO througput. 110 throughput is the rate at which a computer
system handles incoming and outgoing data. 110 throughput i's dependent
upon the speed and features of the central processing unit (CPU), the
110 device, and the bandwidth of the 110 bus. Realtime applications that

1-4 Introduction to Digital's Realtime Products

require high I/O throughput rely on continuous processing of large amounts
of data. The primary requirements of such application is to acquire a
number of data points equally spaced in time. The collected data might
then be stored or used in computations.

• Networking. A realtime system connected to a network can communicate
and share resources with other systems.

• Read-only memory (ROM). Some realtime systems must be loaded from
. ROM.

• Self-sufficiency. A self-sufficient realtime application has realtime and
time-sharing computing capabilities. You might use such an application
both to collect data in realtime and to reduce, manage, or write a report
about the data. Self-sufficient realtime applications are often referred to as
soft realtime applications.

• Stability. A stable realtime system remains relatively unchanged once it
is implemented. Most realtime systems that remain stable are dedicated.

• System resource control Most realtime systems (specifically, control
systems) optimize the use of system resources by controlling their
availability. Time-critical applications require that adequate CPU time,
physical memory, and I/O bandwidth be available when needed. Realtime
applications can control the availability of these resources through
asynchronous execution of multiple code paths within a single application.
In the broadest sense, this includes:

Code paths that external events invoke, such as interrupt service
routines (ISRs) and I/O completion routines

Multiple detached processes and subprocesses executing on a single
processor or on multiple processors in a distributed configuration

Realtime systems must be able to perform operations such as context
switching and interprocess communication and synchronization efficiently.

1.3 Industry Standards
Digital supports and promotes industry standards by providing the capability
of developing applications in a POSIX environment for the VMS operating
system, DECelx Realtime Tools for ULTRIX, DEC OSF/l, and VAXELN 'lbolkit.

You can develop realtime solutions using standard programming languages
such as Ada, C, FORTRAN, or Pascal. Networking standards, such as
Transmission Control ProtocollIntemet Protocol (TCPIIP) and DECnetiOSI,
let distributed applications and their components communicate across
local or wide area networks (LANs or WANs). If your solution requires a

Introduction to Digital's Realtime Products 1-5

graphics interlace, you can integrate DECwindows, which is based on the
industry-standard X Window System. If your solution incorporates third-party
hardware or open I/O busses, the Q-bus and a variety of industry-standard
busses (such as the VME [Versa Module Eurocard] bus) can be integrated with
the rtVAX 300 processor component.

Digital supports key standards from the Open Software Foundation's
Distributed Computing Environment (OSFIDCE) on VMS and DEC OSF/1
systems. DCE is a highly integrated set of open systems technologies, built
in acccordance with OSF guidelines, that address transparent-computing
multi vendor environments. Digital has already announced support for and is
currently shipping OSFlMotif, an industry-standard graphical user interface.

1.4 Open Systems Support
Open systems computing means multivendor integration-true systems
integration regardless of your hardware platform or operating system. Digital
offers true open systems computing through these key commitments:

• Standards compliance and support, Section 1.4.1

• Open Software Foundation (OSF), Section 1.4.2

• Network Application Support (NAS), Section 1.4.3

In 1988, Digital was one of the seven founding members of the Open Software
Foundation. Today, OSF members together represent the mainstream of the
computing industry. In addition to Digital, there are over 275 members of OSF,
including major companies such as Hewlett-Packard/Apollo, IBM, Honeywell,
Groupe Bull, and Siemens.

1.4.1 Standards Compliance
Industry standards determine how well a computer system works with
other systems. Only through a vendor's adherence to standards can you
reap the benefits of open systems. Achieving open systems requires a broad
suite of standards, including networking protocols, common user interface
specifications, and standard programming interfaces. Only when all these
standards come together is a system truly open. Digital offers all the benefits
of open systems based on industry standards.

Digital complies with major de facto and industry standards today, and plays
an active role in developing new standards for the future. As a member
of major international standards committees, Digital participates in and
encourages the development of emerging standards. And Digital's products,
offered to the appropriate standards bodies, have been accepted and formalized

1-6 Introduction to Digital's Realtime Products

into industry standards. For example, Digital was instrumental in driving the
development of the X and PEX (PHIGS Extension to X) standards.

Digital supports the following industry standards:

Category

Application Portability

Operating Environment

Data Portability

User Portability

Graphics

Networking

1.4.2 Open System Foundation

Standard

OSF AES, XlOpen, ANSI, NIST, FIPS

POSIX, XlOpen, OSF/l

SQL, ANSI, ODA, SGML, CGM

OSFlMotif

X Window System, GKS, PHIGS, PEX

TCPIIP, NFS, IEEE B02.3IEthernet, FDDI, X.25,
X.400, OSI, XTI

Open Software Foundation (OSF) is an independent corporation; it is not
a consortium. It drives open systems standards with open cooperation,
aggressively adopting specifications while developing source code. OSF is best
known today for its specification and implementation of the popular graphical
user interface known as OSFlMotif. OSF chose Digital's XVI (X User Interface)
and UIL (User Interface Language) implementations, both part of Digital's
DECwindows user interface, for the underlying technologies of OSFlMotif.
OSF uses Digital's DECstation 3100 workstations for its software development.

The goal of OSF is to develop specifications for a completely open software
environment, not just for an operating system. This ensures application
portability and protects your investments. Under the OSF Application
Environment Specification (AES), POSIX, XlOpen, and other standards
are being extended to form a complete applications environment. The AES
provides standards-compliant interfaces that will make code truly portable
across multivendor distributed systems.

1.4.3 Network Application Support
Today, computer users work in computing environments that include systems
from many vendors. Digital unifies this complex environment with Network
Application Support (NAS), a framework and set of products that enables new
and existing applications that run in a multivendor environment to share
information and resources. For example, Digital's family of PC LAN software,
PATHWORKS, connects systems that run the ULTRIX, DOS, OS/2, VMS,
and Macintosh operating systems. NAS is a path to true open computing and
communication regardless of the operating platform.

Introduction to Digital's Realtime Products 1-7

1.5 POSIX Standards
Digital's DECelx, DEC OSF/1, VP..xELN, and VM:S operating systems support
the widely accepted Portable Operating System Interface for Computer
Environments (POSIX) standards of the Institute of Electrical and Electronics
Engineers (IEEE). POSIX is a set of standards generated and maintained
by standards organizations - they are developed and approved by the
Institute of Electrical and Electronics Engineers, Inc.(IEEE) and adopted
by the International Standards Organization (ISO) and the International
Electrotechnical Commission (lEe). Digital's POSIX implementations follow
the standards and drafts defined by the POSIX standards.

The only formal standards to date are POSIX 1003.1 for basic system
interfaces and POSIX 1003.13, the test assertions a vendor must test to claim
conformance to POSIX 1003.1. Draft standards, such as 1003.4 Draft 11, are
not formal standards. These are working documents that will evolve over time
into formal standards.

As Digital adds support for evolving and final standards, customers may want
to modify their POSIX applications to conform to the latest version of these
standards. Because draft standards are working documents and not formal
standards, the level of backwards compatibility and formal support for older
versions (drafts) will be less than that normally expected from a stable Digital
product.

POSIX standards, or draft standards, for the programming interface (Standard
1003.1) and realtime programming extensions (drafts of PI003.4) are supported
by DECelx, DEC OSF/1, VAXELN, and VMS. POSIX threads (PI003.4a!D4) are
supported by DEC OSF/1 and VMS. In addition, VMS POSIX also supports the
shell and utilities (P1003.21D10). These drafts and standards are described as
follows:

Standard

POSIX 1003.1

POSIX 1003.2

Description

Defines the standard for basic system services on an operating
system, and describes how system services can be used by POSIX
applications. These services allow an application to petform
operations such as process creation and execution, file system
access, and 110 device management.

Provides a callable and interactive interface to shell and utility
services. POSlX 1003.2 support also includes a set of callable
interfaces for'executing shell commands, compiling and executing
regular expressions, and performing pattern matching.

1-8 Introduction to Digital's Realtime Products

Standard

POSIX. 1003.4

POSIX. 1003.4a

Descri ption

Provides support for functions that support the needs of realtime
applications, such as enhanced interprocess communication,
scheduling and memory management control, and asynchronous
I/O operations.

Defines a set of thread functions that can be used in the design and
creation of multithreaded realtime applications.

An application that strictly conforms to any combination of these standards
and drafts can be developed on one system and then ported to another system
that supports the same PO SIX standards or drafts. (A strictly conforming
application uses only the facilities within the applicable standards.) Similarly,
an application developed on a non-Digital platfonn, if it strictly conforms to the
POSIX standards and drafts supported by Digital systems, can be ported and
run on a Digital system on which the POSIX software is installed.

It is the source code of an application that is portable. Most applications
written for a POSIX environment use the C programming language. Each
system that supports a POSIX environment includes POSIX runtime libraries
as well as C runtime libraries. A portable application that requires an
executable image must be compiled and linked on a system after being ported.
It is important that you compile and link your POSIX applications against the
runtime libraries on the system where they will be run~

The POSIX standards are based on the UNIX environment. However, POSIX
specifies an interface to an operating system, not the operating system itself.
VMS POSIX and VAXELN POSIX provide environments that include many
aspects of both the VMS and VAXELN environments as well as the UNIX
environment.

1.5.1 DECelx POSIX
DECelx Realtime Tools for ULTRIX (DECelx) supports the POSIX
programming interface (POSIX 1003.1-1990), portions of the realtime
programming extensions (PI003.41D11), and portions of POSIX threads
(PI003.4a1D4). These extensions let you develop and run realtime applications
on a DECelx system.

Introduction to Digital's Realtime Products 1-9

1.5.2 DEC OSF/1 POSIX
The DEC OSF/1 operating system supports portions of the POSIX
programming interface (POSIX 1003.1-1990) and many of the realtime
programming extensions (P1003.41D11). These extensions let you develop and
run realtime applications on a DEC OSF/1 system.

You can use the DEC FUSE tools to develop realtime applications in a
COHESION environment.

DEC OSF/1 supports the realtime functions used in the creation of realtime
applications in the DEC OSF/1 POSIX environment. For this version of DEC
OSF/1, Draft 11 of the proposed POSIX 1003.4 standard (P1003.4ID11) has
been used.

1.5.3 VMS POSIX
On a VMS system that includes the VMS POSIX product, you can choose
either the VMS environment or thePOSIX environment (POSIX 1003.1) and
can easily move between the two environments.

Programmers using VMS PO SIX must choose either the VMS file system
or the POSIX file system for their applications. The VMS file system in a
POSIX application is the same as in other applications developed under the
VMS operating system. The POSIX file system is portable to other systems
supporting PO SIX and looks like a UNIX file system.

The shell and utilities make up the command line, or interactive, part of VMS
PO SIX. You can use the VMS POSIX shell as your command line interpreter,
and you can also write shell scripts using the VMS POSIX utilities.

VMS POSIX supports the functions used to create realtime applications in
the VMS POSIX environment. For this version of VMS POSIX, Draft 9 of the
proposed POSIX 1003.4 standard (P1003.4ID9) has been used.

1.5.4 VAXELN POSIX
The VAXELN Toolkit includes support for programming in the POSIX
environment. The VAXELN Toolkit supports portions of the POSIX
programming interface (POSIX 1003.1-1990) and realtime programming
extensions (P1003.4ID11). VAXELN PO SIX lets you develop and run POSIX
applications on a VAXELN system.

Programmers using VAXELN POSIX can compile and link POSIX application
modules in with VAXELN application modules to create a single program
image. (However, you should avoid calling PO SIX functions from VAXELN
subprocesses.)

1-10 Introduction to Digital's Realtime Products

· You can also use the VAXELN Debugger and VAXELN System Builder with
VAXELN POSIX applications. (However, using the POSIX fork and exec
functions may require some additional considerations.)

VAXELN POSIX supports the functions used to create realtime applications in
the VAXELN environment. For the current version of VAXELN POSIX, Draft
11 of the proposed POSIX 1003.4 standard (PI003.41D11) has been used.

1.6 Realtime Products Summary
Digital's realtime product offerings can meet the demands of any realtime
application. Digital's operating systems furnish comprehensive realtime
system development environments that can communicate with the rest of your
enterprise using DECnet or TCPIIP networking products. You can assemble a
configuration from a variety of execution environments and platforms.

As Figure 1-1 shows, software products available for realtime application
development on VMS systems include the following:

• VMS and VAXELN POSIX support

• VAXELN Toolkit

• . High-Level Language Compilers and Runtime Libraries

• DEC Realtime Integrator

• CASE Tools

The software products available for realtime application development on UNIX
systems include the following:

• UNIX and DECelx POSIX support

• DECelx Realtime Tools

• DEC OSF/l preemptive kernel

• High-Level Language Compilers and Runtime Libraries

• DEC Realtime Integrator

• CASE Tools

Depending on the tools you used to develop your VAXELN application, it can
run as a VAXELN or VMS system on a VAX configuration or as an XD Ada
system on a Motorola 68020 or MIL-STD-1750A microprocessor.

Introduction to Digital's Realtime Products 1-11

Figure 1-1 Realtime Software Products

Development
Environment

Interconnection

Runtime
Environment

VAX Processor

VMS System

• POSIX Support (VMS. ELN)

• VAXELN Toolkit
• VAX Compilers
• VAXELN Ada
• XD Ada
• VAX Realtime Accelerator
• DEC Realtime Test Integrator
• CASE Tools

Ethernet

\.. ___ -..y,... ___ ~J Motorola 68020

VAX Processors or MIL-STD-17S0A

RISC Processor

UNIX System

• POSIX Support (UNIX. ELX)
• DECelx Realtime Tools
• RISC Compilers

• DEC Realtime Test Integrator

• CASE Tools

Ethernet

\. ___ y,-_____ J Motorola

RISC Processors Processors

MLo-OO7643

Figure 1-1 shows DEC Realtime Integrator graphical programming tools,
UNIX CASE tools, and high-level language compilers also available for an
ULTRIX on a MIPS-based system. As with OpenVMS on a VAX and VAXELN
systems, your UNIX system can communicate with the rest of your enterprise
using DECnet or TCPIIP networking software.

Digital's realtime·hardware products include boards, workstations, and systems
and a variety of realtime hardware options. These products are described in
Part VIII.

Sometimes realtime applications have multiple requirements, some of which
are addressed better by one product and some by another. You must weigh the
relative importance of each of the application design goals and the comparative
development cost required to achieve those goals to determine which approach
provides the best solution.

1-12 Introduction to Digital's Realtime Products

1.6.1 DECelx Realtime Tools
DECelx Realtime Tools for ULTRIX (DECelx) is a powerful development
environment for realtime applications. DECelx includes a high-performance
runtime executive, powerful testing and debugging facilities, and an
unparalleled ULTRIX cross-development package. Networking facilities allow
DECelx and ULTRIX to combine to form a complete, integrated development
and operational environment for realtime applications.

The ULTRIX operating system environment is used for software development
and the non-realtime components of the application. DECelx is used for
testing, debugging, and running realtime applications.

For more information about DECelx Realtime Tools, see Part 1.

1.6.2 VAXELN Toolkit
The VAXELN Toolkit provides software for developing dedicated realtime (in
some cases, embedded) applications that run on VAX platforms, ranging from
the rtVAX 300 processor board to the rtVAX 9000 multiprocessor systems.
The toolkit lets you create low-overhead systems that include only necessary
services, drivers, and utilities. Typical VAXELN applications include industrial
automation, process control, robotics, simulation, scientific data acquisition and
analysis, image processing, built-in test equipment, file and print servers, and
communication switching systems.

You develop a VAXELN application on a VAX processor by using VMS
computer-aided software engineering (CASE) and VAXELN development
tools. The, resulting VAXELN system image includes user and toolkit program
images. After creating a system image, you can load or boot the image onto
a dedicated target VAX configuration from disk, tape, or ROM. If you have a
DECnet license and the appropriate Ethernet hardware, you can downline load
the system image from a VAXELN, VMS, or ULTRIX boot-host processor to the
target processors. The memory-resident system image runs-independently of
the VMS development system-on the target processor configuration.

VAXELN is appropriate for realtime systems that have the following
characteristics:

• Predictable responses to realtime tasks in a realtime system

• Dedication to the runtime environment of the realtime application

• Context switching, which constitutes a major and highly demanding
component of the processing requirements for fast response to external
events

• Minimal memory or mass storage requirements

Introduction to Digital's Realtime Products 1-13

• Maximal user control of the operating environment with minimal
programming effort

For more information about the VAXELN Toolkit, see Part II. In addition, this
section presents an example of a dedicated application, the VAXELN Window
Server, that was created using the VAXELN Toolkit.

1.6.3 VMS Operating System
The VMS operating system is a full-service operating system widely known
in the industry. You can tune a VMS system for realtime performance. For
example, you can shut down unused system services, adjust process priorities,
and make critical sections of code memory resident. System features are also
available for interprocess communication and synchronization, symmetric
multiprocessing, and low-overhead I/O.

You can also use VMS POSIX, a product that allows you to develop and run
portable realtime applications in a POSIX environment. VMS POSIX includes
support for a number of POSIX standards and draft standards, including the
realtime POSIX 1003.4 standard (Draft 9).

For more information about VMS realtime systems, see Part III.

1.6.4 UNIX Operating Systems
Digital offers two UNIX operating systems, ULTRIX and DEC OSF/l. Both
operating systems are full-service systems that are highly regarded within the
industry. The DEC OSF/1 operating system is Digital's implementation of the
Open Software Foundations (OSF) operating system component Vl.Ol.

DEC OSF/1 ships with an optionally in stall able realtime kernel. The realtime
kernel provides support for many of the POSIX realtime functions, as specified
in P1003.4 Draft 1l.

For more information about the DEC OSF/1 realtime kernel, see Part Iv.

1.6.5 High-Level Language Compilers and Runtime Libraries
Using Digital's realtime products, you can employ high-level languages to
develop realtime applications, without sacrificing performance.

• VAXELN Toolkit. With the VAXELN Toolkit, you can use the VAX Ada,
VAX C, VAX FORTRAN, or VAXELN Pascal compiler. The toolkit furnishes
VAXELN runtime libraries for C, FORTRAN, Pascal, KAV30, and POSIX.
The runtime libraries for Ada applications are supplied as part of a
separate VAXELN Ada product.

1-14 Introduction to Digital's Realtime Products

VAXELN Ada has features required by government agencies for
applications such as radar control, communication, and navigational
systems. This product is well integrated with the VMS and VAXELN
environments. In addition to supplying runtime software, the VAXELN
Ada product includes an interactive remote debugger.

If your application is to run on a Motorola 680nO or MIL-STD-1750A
microprocessor, you can develop the application using Digital's XD Ada
product.XD Ada is a set of development tools for implementing commercial
and military embedded realtime systems.

• ULTRlX. With ULTRIX you can use the DEC C, DEC C++, DEC Fortran,
DEC Pascal, or the Pascal for RISC compiler. ULTRIX furnishes runtime
libraries for C, C++ Fortran, Pascal, and POSIX.

Other languages available through Digital include Ada, COBOL, and Lisp.

• DEC OSF/l. With DEC OSF/1 you can use the DEC C, DEC Fortran,
or DEC Pascal compiler. DEC OSF/1 furnishes runtime libraries for C,
Fortran, Pascal, and POSIX.

• DECelx. With DECelx you can use either the MIPS C compiler or the
GNU C compiler, depending on your target system.

For more information about Digital's high-level language support for realtime
applications, see Part V.

1.6.6 Digital's COHESION Environment
Successful research organizations are increasingly using computer-aided
software engineering (CASE) tools to reduce the time and effort required to
write application code and leave more time for product research. Digital's
COHESION environment is the industry's most comprehensive and inclusive
CASE environment for developing, using, and managing software. The
COHESION environment also furnishes a highly efficient, full-service
development environment for developing realtime applications in a multivendor
environment.

Encompassed in the COHESION vision are all industries and markets, all
project sizes, and all styles of computing. To realize this vision, the following
strategic goals are included in the COHESION solution:

• Provide a full range of quality software services and products that can run
on multiple platforms

• Link technological and business planning

• Offer a common environment across the enterprise

Introduction to Digital's Realtime Products 1-15

• Provide a software development platform that can integrate software from
Digital and other vendors .

o Provide a high level of service

For more information about Digital's CASE tools and the COHESION
environment, see Part VI.

1.6.7 DEC Realtime Integrator
For data acquisition, instrument control, and test and measurement
applications, you can consider using DEC Realtime Integrator. This software
provides an icon-based, graphical programming environment. Instead of using
a conventional programming language, the user can create and run realtime
applications by drawing them graphically as flow diagrams.

Each DEC Realtime Integrator icon represents a function, such as analog or
digital input, an arithmetic operation, or a logical function. DEC Realtime
Integrator provides several libraries of commonly used functions, to which
you can add your own functions and icons. You create applications by using
a mouse to select icons from different libraries, placing them on a work
surface on the computer screen, connecting them up with data flow lines, and
performing further setup with pop-up menus. To run a program, you simply
click on the start button.

DEC Realtime Integrator is also available for ULTRIX on MIPS-based systems.
Using DEC Realtime Integrator for ULTRIX, you can develop realtime
applications using a graphical programming interface. Once developed,
the application can be run on the same ULTRIX system or, with very few
modifications, run on any other VAX or MIPS-based system appropriately
configured and loaded with DEC Realtime Integrator software.

For the OEM and end user working with engineering or scientific realtime
applications, DEC Realtime Integrator can simplify the development of
high-quality test and research solutions.

For more information about DEC Realtime Integrator, see Part VII.

1.6.8 Realtime VAX Hardware
Realtime hardware products are designed to meet the demanding requirements
of many factory, laboratory, and simulation activities, and to perform either
as standalone computing solutions or as integral parts of corporate-wide,
distributed networks. Digital's realtime products include VAX and MIPS-based
components, workstations, systems, software, and networking tools to provide
the complete environment you need for developing realtime solutions for your
organization. Realtime products can be migrated to equipment and options
with higher performance and functionality.

1-16 Introduction to Digital's Realtime Products

The realtime hardware product family offers chip-Ieve1 processors (CLPs),
single-board computers (SBCs), workstations, and system-level configurations
of Digital's 32-bit VAX and MIPS-based computers, housed in many types
of enclosures. The realtime hardware product family spans a wide range of
processing power and can meet realtime computing needs on many levels.

Digital also offers a variety of hardware options that you can attach to your
realtime systems to:

• Generate high-speed analog signals

• Convert and transfer analog and digital data

• Scan data

• Perform high-speed DMA parallel IIO

• Interface with laboratory instrumentation

• Serve as a realtime clock

• Provide memory for high-performance data collection, reduction, and
analysis·

For manufacturing environments that require rugged electronic equipment
(such as factory floors, assembly areas, and loading docks), Digital furnishes a
family of industrialized products. Built to withstand harsh environments, this
set of products includes two series of industrialized terminals. You can place·
these terminals, which are packaged in sturdy enclosures, wherever you need
to access or collect data.

For more information about Digital's realtime hardware products, see
Part VIII.

1.7 Digital-Sponsored Programs for Promoting Realtime
Solutions

To encourage third parties to plan products that easily integrate into Digital
computing environments, Digital develops and sponsors programs that
promote realtime solutions. Four such programs are Digital's Cooperative
Marketing Program (CMP), Digital's Enterprise Integration Services (EIS), the
Technical OEM organization, and Digital's Third Parties with Add-On Products
(TRIIADD) Program.

Introduction to Digital's Realtime Products 1-17

1.7.1 Cooperative Marketing Program
Digital's Cooperative Marketing Program (CMP) encourages cooperation with
third-party vendors that specialize in specific application areas. By sharing
product goals and directions, CMP participants and Digital can provide
customers with the best integrated systems available on the market.

CMP members are recognized leaders in specific market segments. Their
application solutions complement Digital's strategies, support Digital's
architectures, satisfy network and communications, requirements, support
current system software updates. Members must pass a rigorous technical
evaluation before gaining acceptance to the CMP.

1.7.2 Enterprise Integration Services
Digital's Enterprise Integration Services (EIS) are provided for realtime
customers through the Manufacturing and Government Enterprise Integration
Center (M&G EIC). This center delivers complete integrated solutions
according to customer specifications. This might include:

• Device drivers for third party VM:E or SCSI devices

• Custom hardware development

• . System integration

In support of Digital's commitment to open buses, the M&G EIC has developed
extensive knowledge of the VM:Ebus, and for embedded realtime applications,
the DECelx and VAXELN software environments. One result of this knowledge
is the delivery of the Digital R3000-based single board computer (SBC).
The M&G EIC exploits a variety of competencies to solve customer realtime
computing needs. Expert-level knowledge of DECelx Realtime Tools for
ULTRIX., the VAXELN Toolkit, DEC OSF/1, VM:S device drivers, and VM:E
hardware can help find the best solution for customers.

The scope of EIC involvement can range from pres ales support and
consultation services to complete solution delivery. The scope is determined by
customer needs.

Customers that might need this level of dedicated realtime project services
include Original Equipment Manufacturers (OEMs) and Complimentary
Solutions Organization (CSO) partners. The services these customers require
can vary as follows:

• Design start-up

1-18 Introduction to Digital's Realtime Products

Customers that use Digital realtime products and third-party solutions
as an integral part of their product or solution might need EIC project
services during the start-up phase of the product's design. A feasibility
study or functional specification might be the deliverable.

• Prototype development

Customers might want to shorten their development cycle for a solution
subsystem prototype by requesting the EI C to develop the prototype
according to their specifications. The customer might then want to develop
the production integration system on their own.

• Complete integration services

Customers might want the M&G EIC to provide the highest level of
system integration for complete packaged solutions. This saves customers
from negotiating with suppliers for VME crates, software development
environments, boards, and components.

In all of the preceding scenarios, the customer benefits from the EIC's
experience with Digital products and knowledge of available VME products. If
required, Digital's Customer Services organization can support EIC solutions
worldwide. .

1.7.3 Technical OEM Organization
A new Technical OEM (TO EM) business group was formed recently to provide
focus for TOEM marketing and sales efforts around the world. One of the
goals of the TOEM group is to provide products and support efficiently, on
a world-wide scale. Technical OEMs provide customers with solutions, and
increasingly, a large number of these solutions include realtime functionality,
high performance I/O, and specialized peripherals.

With market needs growing and products and services becoming more
globalized, no single vendor, Digital or otherwise, has the resources necessary
to meet all industrial or realtime requirements. To meet customer demand
for timely, high quality solutions, TOEMs make use of either Digital or third
party components. Software and hardware vendors who have expertise and
can provide quick and reliable solutions are valuable resources for industry
demands.

Introduction to Digital's Realtime Products 1-19

1.7.4 TRI/ADD Program
When configuring Realtime Solutions, many third-party hardware add-on
boards and peripherals are available to be used on Digital platforms. A
significant source for many realtime component products is Digital's Third
Parties with Add-On Products for MIPS UNIX Platforms (TRIIADD) Program.
However, a customer or Digital sales representative must contact vendors
directly about a product. To learn which vendors to contact, the TRIIADD
Shippable Products Catalog lists the growing number of clocks, converters,
adapters to other buses, and other third-party realtime products. Two versions
of the catalog are updated monthly:

• The short version lists the product's name, the vendor's name, and the
vendor's telephone number. This version of the catalog is organized around
the interconnect (TURBOchannel, SCSI, and so on) on which the product is
based.

The file name for the short catalog is shortTAcatalog. txt, an ASCII file.

• The full version lists all the above information and also gives a description
of the product, and addresses and phone numbers of the vendor's sales
offices worldwide. This version of the catalog is organized according to type
of product (3D peripherals, adapters and controllers, and so on). The Full
Version catalog contains a "Coming Attractions" section that broadcasts
TURBOChannel based products before their shipment.

The file name for the full catalog is TAcatalog. ps, a PostScript file.

A Digital sales representative can call TRIIADD for information about how to
get the catalog.

U.S. and German DECdirect catalogs also include information about TRIIADD
vendors' products.

Digital's TRIIADD Program provides technical and marketing support
worldwide to third-party vendors using the SCSI, TURBOchannel, VME,
ACCESS.bus, and Futurebus+ interconnects to develop add-on products for
open systems. Complimentary membership and services are restricted to third­
party vendors. Customers can recommend their third-party vendor contact
TRIIADD about membership in these circumstances:·

• . A third-party device, such as a SCSI disk, does not work on a particular
Digital system, but the customer has successfully connected it to other
systems.

• A hardware product used on another system needs porting to a Digital
system.

1-20 Introduction to Digital's Realtime Products

A customer or sales representative should contact TRIIADD when in need of a
state-of-technology product or one in an emerging technological area and the
product is not listed in the catalog. TRIIADD specializes in several product
areas: high-performance networking and database, and graphics, imaging, and
multimedia. The TRIIADD Program number is [1] 415.617.3452.

Introdu~tion to Digital's Realtime Products 1-21

Part I
DECelx

Part I surveys DECelx Realtime Tools for ULTRIX, a software product for
developing dedicated realtime applications for several processor boards based
on the VMEbus architecture. A DECelx application is developed on an ULTRIX
host system and executes on one of the supported DECelx target boards, based
on the Motorola 680nO or the R3000. This part contains the following chapters:

• Chapter 2, DECelx Overview, introduces the DECelx software, its features,
use, and requirements.

• Chapter 3, DECelx Components, describes the development and runtime
components of the DECelx software.

2
DECelx Overview

DECelx Realtime Tools for ULTRIX (DECelx) is a software product for
developing dedicated realtime and distributed applications that run on a
supported set of Motorola 680nO-based and MIPS R3000-based processor
platforms. The DECelx realtime system includes a high-performance runtime
executive, powerful testing and debugging facilities, and an unparalleled
ULTRIX cross-development package, at the heart of which lies DECelx's
extensive UNIX-compatible networking facilities.

The networking facilities allow DECelx and ULTRIX systems to combine to
form a complete, integrated development and runtime environment. Each
product is used for what it does best. The ULTRIX system is used for software
development and the non-realtime components of applications; DECelx
software is used for testing, debugging, and running realtime applications.

This chapter includes the following sections:

• DECelx Realtime System Features, Section 2.1

• DECelx Realtime Tools for ULTRIX, Section 2.2

• The Development Cycle, Section 2.3

• DECelx Board Support Packages, Section 2.4

• DECelx Target Hardware, Section 2.5

• DECelx System Hardware and Software Requirements, Section 2.6

Once development is complete, the DECelx system can operate standalone,
embedded, or networked with other systems running DECelx, UNIX, or any
other operating system with TCPIIP networking facilities.

An ULTRIX system that is usable as a UNIX host for DECelx system
development has the DECelx Realtime Tools and either or both the DECelx
BSP for MIPS or DECelx BSP for 68K board support package (BSP) kits
installed.

OECelx Overview 2-1

The DECelx BSP for MIPS is based on the R3000. The DECelx BSP for 68K is
based on the Motorola 680nO series.1 These BSP kits include support for the
following hardware:

BSP kit

MIPS kit

68K kit

Supported Hardware

Lockheed/Sanders STAR MVP

Omnibyte VRSOOO

Radstone SL-3000

Personal DECstation 5000 models

Motorola MVME133XT

Motorola MVME147S-1

Motorola MVME167

. The VMEbus or TURBOchannel 110 devices are available on all supported
target boards, allowing the use of a wide range of third-party 110 devices.

The DECelx software offers limited support, to be increased in future versions,
for the following POSIX standards and draft standards: POSIX 1003.1-1990
and P1003.4ID11.

2.1 DECelx Realtime System Features
The features of the DECelx realtime system include the following:

• High-performance realtime kernel facilities. Multitasking
with preemptive priority scheduling, intertask synchronization and
communications facilities, interrupt handling support, watchdog timers,
and memory management.

• POSIX synchronization facilities. Functions defined by the
P1003.41D11 standard that support semaphore, clock, and timer operations
for realtime applications.

• Network facilities. Transparent access to other DECelx and UNIX
systems via UNIX source-compatible sockets, remote command execution,
remote login, remote procedure calls (RPC), source-level remote debugging,
and remote file access. These all use TCPIIP network protocols both loosely
coupled over standard Ethernet connections and tightly coupled over a
backplane bus using shared memory.

1 Refer to the SPD and SSA for a complete, updated list of supported boards.

2-2 DECelx Overview

• Module loader and system symbol table. Dynamic loading of object
modules over the network or from a disk, with runtime relocation and
linking.

• Shell. A C-interpreter interface that allows interactive execution of most
C language expressions, DECelx functions, and any other loaded functions,
and that also includes symbolic references to variables.

• Debugging facilities. Remote source-level debugging, a symbolic
disassembler, symbolic C-subroutine traceback, task-specific breakpoints
and single-stepping, system status displays, and exception handling to
safely trap and report on interrupts and hardware exceptions such as bus
or address errors.

• 110 system. A fast and flexible I/O system that is compatible with UNIX
sources, including UNIX standard buffered I/O.

~ Local file systems. Fast file systems appropriate for realtime and
compatible with the MS-DOS and RT-ll file systems and a raw disk file
system that treats an entire disk much like a large file.

• Remote file system. Network File System (NFS) facilities for accessing
files transparently on any NFS server on the network, and a non-NFS
network facility for accessing the host file systems using rsh or ftp.

• Performance evaluation tools. An execution timer for timing a routine
or group of routines, and utilities to show processor utilization percentage
by task.

• Utility libraries. An extensive set of utility functions available to
application developers, including: message logging, string formatting and
scanning, linear and ring buffer manipulations, linked-list manipulations,
and symbol table manipulation.

• 110 drivers. The following drivers are included:

Driver

Ty driver

Network driver

Pipe driver

RAM . disk driver

SCSI library

Device

Serial I/O devices

Remote files

Intertask communication

Memory resident files

SCSI hard disks and floppies

• Board-support packages. Routines for hardware initialization, interrupt
setup, timers, memory mapping, and so on.

DECelx Overview 2-3

• Boot ROMs. Allow a target processor to be booted directly over the
network.

• System configuration utilities. Allow reconfiguration and extension of
DECelx and building applications in ROM.

Chapter 3 outlines each of the components listed above. Appendix A provides
references to further documentation.

2.2 DECelx Realtime Tools for ULTRIX
The objective behind the DECelx Realtime Tools for ULTRIX product is to
network two different but cooperating operating systems in a single cross­
development environment. DECelx systems can be used to handle the critical
realtime chores, while ULTRIX can be used for program development and for
non-:-time-critical applications. The DECelx and ULTRIX systems work well
together because DECelx was designed to be UNIX-compatible at many levels,
especially in its extensive networking facilities. Distributed applications can
have DECelx and UNIX systems in combination, or the entire distributed
application can be based on DECelx systems.

As a cross-development host, the ULTRIX system is used to edit, compile, link,
and store realtime code, which is then run and debugged on DECelx. The
resulting DECelx application can then be downline loaded via the network
or can run standalone in ROM with no further need for the network or the
development system.

ULTRIX and DECelx systems can also work together in a hybrid application,
with ULTRIX (and other UNIX systems) using DECelx as a realtime server in
a networked environment. For instance, a DECelx system communicating with
a robot can be controlled by an expert system running in a UNIX environment.
A number of DECelx systems running factory equipment can be connected to
UNIX systems tracking inventory or generating reports.

2.3 DECelx Development Cycle
To understand the environment provided by the DECelx Realtime Tools,
consider a typical development cycle. This section outlines typical DEcelx
hardware and software development environments.

2-4 DECelx Overview

2.3.1 Developing a DECelx Hardware Environment
The hardware in a typical development environment includes one or more
multi-user ULTRIX host systems and one or more single-user DECelx target
systems connected by an Ethernet network.

The ULTRIX host system can be fully loaded with large main memory, large
disks, backup media, printers, and terminals.

The target systems, on the other hand, usually have only the resources
required by the realtime system, and software for testing and debugging. This
may be as little as a processor, some serial 110 channels, and an Ethernet
connection. Figure 2-1 shows a typical minimwn target system configuration,
including the following:

Chassis

Processor board

Ethernet board

Console

A card cage with VMEbus backplane and power supply.

A single-board target computer supported by DECelx software.

An Ethernet controller board (some processor boards include the
Ethernet controller on-board).

An ASCII terminal or a serial port on a workstation; this is
required for initial setup only.

Figure 2-1 Typical Minimum Configuration for DECelx

Workstation

DECelx
Target CPU

Chassis

Ethernet
Board

MLo.o09444

DECelx supports network communications between an ULTRIX host system
and target systems connected to a common VME backplane. The ULTRIX.
backplane driver uses the TURBOchannelNME adapter and provides a bsd
socket interlace between ULTRIX. processes on MIPS-based DECstations and
DECelx tasks running on the VMEbus.

DECelx Overview 2-5

All shared memory for the backplane network is allocated on the host system
and the host system driver must be configured as the software backplane
master. To use the uLTRIX VME backplane driver rebuild the ULTRIX
kernel to include the driver and the TURBOchannel/VME adapter in the
configuration.

2.3.2 Developing a DECelx Application
Software development for a realtime system begins on the ULTRIX host
development system. Using the development and management tools on
ULTRIX, the application team begins to design and implement the application
modules. Developers are free to use the standard ULTRIX tools such as text
editors, compilers, assemblers, the make utility, source code control, and so on.
The following list explains the basic steps to develop a DECelx application.

1. Create the application source code

On the host system, use an ULTRIX editor such as vi or EMACS, to create
a file containing C code.

2. Compile the source code

On the host system, use the ULTRIX or DECelx GNU C complIer to process
the source code. DECelx supports the loading of MIPS COFF files on all
big-endian and little-endian target systems. This means that you no longer
need to convert MIPS COFF files to bsd a. out format for loading.

Ada application modules are compiled on the UNIX host system using
the DEC Ada compiler for the runtime environment on MIPS R3000
li ttle-endian targets.

3. Link the object modules

You might want to link some of your application object modules on the host
system. You might do this if two modules cross-reference each other or if
you want to link related modules to reduce the number of modules that
you will need to load onto the target system. To link modules on the host
system, use an ULTRIX linker or the DECelx GNU linker.

4. Load the application modules

On the target system, use the DECelx module loader from the DECelx shell
to load the application modules into the target system's memory. If you
chose not to link the object modules on the host system, the module loader
performs runtime linking operations on the target system. The module
loader provides you with the option of loading and debugging modules
incrementally.

2-6 DECelx Overview

DECelx Realtime Tools provide host system tools for developing DECelx
applications that can run on R3000-based or 680nO-based target processors.
Target system tools include header files and a CPU variable, a shell, a module
loader, a system symbol table, and a sample Makefile for rebuilding DECelx
system images. Table 2-1 lists the host system development tools you can use
for each type of target processor:

Table 2-1 DECelx Development Tools by Target

MIPS R3DDD

ULTRIX C compiler .

MIP S ToBsd utility

ULTRIX Id linker

DECelx header files

Configuration files

Makefiles and make

Motorola 68Dna

DECelx GNU C compiler

DECelx GNU C preprocessor

DECelx GNU assembler

UNIX Id68k linker

DECelx GNU linker

DECelx header files

Configuration files

Makefiles and make

C application modules are compiled with a C compiler appropriate for the
target system; the native MIPSIULTRIX C compiler for R3000-based targets
and the DECelx GNU C cross-compiler for Motorola 680nO-based targets.

2.3.3 Loading a OECelx Target
DECelx can load the compiler-generated object modules directly into a target,
using the symbol table contained in all ULTRIX object modules to resolve

. external symbol references dynamically. The application modules do not need
to be linked with the DECelx system libraries or even with each other.

For testing and debugging, a DECelx target system can be booted via Ethernet
and selected modules can be dynamically loaded, across the network, onto the
running DECelx target. The DECelx shell program can then be used to invoke
and test individual application subroutines interactively, or to complete tasks.

The command to load applications into DECelx system memory, Id, performs
three functions:

1. Loads the program into memory

2. Adds the program's symbols to the system symbol table

DECelx Overview 2-7

3. Resolves the program's external references

Figure 2-2 shows the result of loading a program'module, demo. 0, from an
ULTRIX host to a DECelx target.

Figure 2-2 Downloading a Program

host target '

'------Id < demo,o ---.-I

symbol
table

MLO-007204

DECelx stores the symbol tables from previously loaded object modules,
allowing symbolic access to data and subroutine names. Users can examine
data variables, call subroutines, spawn tasks, disassemble code in memory, set
breakpoints, obtain subroutine call tracebacks, and so on, using the original
symbolic names. Program errors detected by the hardware, such as illegal
memory references or illegal instructions, are safely trapped and reported by
DECelx, allowing further symbolic debugging.

DECelx offers three debuggers: a basic symbolic debugger for all targets;
a ElxGDB debugger for the 680nO; and a ElxGDB debugger for the R3000.
ElxGDB is a powerful remote source-level debugger that allows the application
to be viewed and debugged in the original source code. For example, setting
breakpoints, single-stepping, and examining variables can be done at the
source level, using either commands at an ASCII terminal or a mouse-based
menu-driven interface on a windowed workstation.

2-8 DECelx Overview

The cycle of building, downloading, and testing modules is repeated until
the application is ready for the production environment. DECelx debugging
facilities can be removed from the production system, if necessary, to produce a
system requiring minimal resources. At that point, the application can easily
be linked with DECelx, and put into ROM if so desired.

2.4 DECelx Board Support Packages
The DECelx Toolkit includes two board support packages consisting of
libraries that adapt the kernel to the supported architectures. These libraries
furnish an identical software interface for the hardware-specific fWlctions of
DECelx target computers. The libraries contain routines to handle hardware
initialization, interrupts, memory mapping and sizing, clock and timer control,
and device drivers.

This software makes most of the differences among target computers
transparent to the kernel and to DECelx applications.

Digital provides a Board Porting Kit to help you create DECelx applications
for unsupported hardware. The Board Porting Kit helps you modify selected
DECelx kernel functions such that an application can run on unsupported
target hardware, as long as the target hardware belongs to the MIPS R3000 or
Motorola 680nO series processors.

2.5 DECelx Target Hardware
DECelx supports two architectures, Motorola 680nO and the MIPS R3000, and
seven platforms based on those architectures.

You use a RISC-based Digital system running the ULTRIX operating system
as the DECelx development system, or host. You use a single-board computer
(based on the MIPS R3000 processor or the Motorola 680nO processor) as a
runtime system, or target.

When a target system is part of a network, the target can communicate
with other DECelx systems, ULTRIX systems, UNIX systems, or any other
computer systems that use the Internet Protocol Suite. Flexible DECelx
network software permits multiple target systems to communicate across an
Ethernet link or a backplane.

For many distributed applications, the host computer used for development
subsequently functions as a file server or database server for the DECelx
system and the clients in a distributed network. Or, the DECelx systems
can be used as realtime servers in a networked environment. For example,
a DECelx system controlling a robot or running factory equipment can

DECelx Overview 2-9

communicate with an expert system running in a UNIX environment to track
inventory or generate reports.

All supported DECelx single-board computers (except the Personal DECstation
5000) support the VMEbus. The VMEbus is currently one of the most popular
industry-standard busses with many options that are well understood by
systems and peripherals vendors. The VMEbus is an industry-standard, high­
performance, open 110 interconnect that features microprocessor independence.

The Personal DECstation 5000 supports TURBOchannel, an open bus standard
developed by Digital. Many third party TURBOchannel 110 options are
available through Digital's Third Parties with Add-On Products for RISe UNIX
Platforms (TRlIADD) Program.

2.5.1 Microprocessors on the R3000 Architecture
DECelx applications can run on four supported target microprocessors on the
R3000 architecture (MIPS kit).

• Personal DECstation 5000 models 1

• Lockheed/Sanders STAR MVP

• Omnibyte VR3000

• Radstone SL-30002

Table 2-2 compares common features of the supported R3000 target boards.

Table 2-2 R3000 Target Board Summary

Feature OECstation SOOO STAR MVP SL-3000 VR3000

Serial ports 1 2 2 1

On-board SCSI Yes No Yes No

VMEbus No Yes Yes Yes

TURBOchannel Yes No No No

On-board Ethernet Yes No Yes No

Clock Frequency 25.0 or 33.0 MHz 25.0 MHz 40.0 MHz 25.0 MHz

1 Note that support for the DEC station 5000 models are without graphics and are rack
mountable.

2 Refer to the SPD for the Digital model name.

2-10 DECelx Overview

2.5.2 Microprocessors on Motorola Architecture

2.5.3

DECelx applications can run on three supported target microprocessors on the
Motorola architecture (68K kit).

• Motorola MVME133XT

• Motorola MVME147S-1

• Motorola MVME167

Table 2-3 compares common features of the supported Motorola target boards.

Table 2-3 Motorola Target Board Summary

Feature MVME133XT MVME147S-1 MVME167

Serial ports 2 2 4

On-board SCSI No Yes Yes

VMEbus Yes Yes Yes

On-board Ethernet No Yes Yes

Clock Frequency 25.0 MHz 25.0 MHz 25.0 MHz

Timers 3 (8-bit) 3 (16-bit) 4 (32-bit)

Realtime Options
Digital's TRIIADD Program provides technical and marketing support
worldwide to third-party vendors using the SCSI, TURBOchannel, VMEbus,
ACCESSbus, and Futurebus+ interconnects to develop add-on products for
open systems.

A TRIIADD catalog lists vendor-supplied information on available products.
Twelve catagories of products are listed, ranging from software to hardware.
A division of the TRIIADD program specializes in third-party products for
the development and functioning of realtime systems. The TRIIADD catalog
provides easy access to third-party, add-on product information.

In addition to the services provided by the TRIIADD Program, Digital offers
services for system integration and the development ofVME based solutions.
through its Enterprise Integration (EIS). Section 1.7.4 provides additional
information on the TRIIADD Program.

o ECelx Overview 2-11

2.6 OECelx Hardware and Software Requirements
This section identifies DECelx hardware and software requirements for
developing and running realtime applications.

DECelx Hardware Requirements
You can install the DECelx software and run the host development tools on
any ULTRIX system. If the ULTRIX development host includes Ethernet
interfaces and the appropriate interconnecting hardware, you can download
your DECelx object modules or fully-linked applications to a supported,
network-connected target processor. The Ethernet hardware also provides
the necessary communication link for remote debugging from the ULTRIX host
or network communication between the DECelx target and the ULTRIX host.

A DECelx: target configuration must include a target processor that the
DECelx: software supports. The DECelx Version 1.0 software supports
the following 680nO-based or R3000-based target systems: Motorola
MVME133XT (68020-based), Motorola MVME147S-1 (68030-based), Motorola
MVME167 (68040-based), Lockheed/Sanders STAR MVP (R3000-based),
Personal DECstation 5000 models (R3000-based), and Omnibyte VR3000
(R3000-based). For details on currently supported systems, see the latest
DECelx System Support Addendum, obtained from your Digital sales
representative. The target processors can be standalone systems or Ethernet­
connected systems distributed on a local area network (LAN).

Application-specific target hardware requirements include Ethernet hardware,
serial I/O hardware, and VMEbus peripheral devices. If your DECelx:
application requires downloading or remote debugging, or makes use of
network facilities, the target configuration must include the appropriate
Ethernet hardware. If you want to execute functions and commands
interactively using the DECelx shell on a target terminal, serial hardware
must be configured on the target. Application-specific peripheral devices
supplied by Digital or a third party may also be required. If you use the
DECelx: backplane driver, the VME-to-TURBOchannel adapter is required.

DECelx Software Requirements
The software requirements for a DECelx: system are as follows:

• ULTRIX Version 4.2A or higher

• MIPS C for ULTRIX (for R3000-based systems)

• GNU C (for Motorola 680nO-based systems)

2-12 DECelx Overview

3
DECelx Components

You develop a DECeb: application on an ULTRIX development host by using a
comprehensive set of ULTRIX and DECelx software tools and libraries. The
code you develop - ranging from an object module to a fully linked application
- is loaded into a supported target processor for execution, testing, and
debugging.

This chapter describes the following DECelx host and target software
components:

• Kernel facilities, Section 3.1

• POSIX synchronization facilities, Section 3.2

• Network facilities, Section 3.3

• Module loader and system symbol table, Section 3.4

• Shell, Section 3.5

• Debug facilities, Section 3.6

• Performance evaluation tools, Section 3.7

• I/O system and I/O drivers, Section 3.8

• Local file systems, Section 3.9

• Utility libraries, Section 3.10

• Board support packages, Section 3.11

For additional sources of information on the DECelx software, refer to
AppendixA.

DECelx Components 3-1

3.1 Kernel Facilities for Multitasking and Intertask
Communications

Modem realtime systems are based on multitasking and intertask
communications. A multitasking environment allows realtime applications
to be constructed as set of independent tasks, each with its own thread of
execution and set of system resources. The intertask communication facilities
allow these tasks to synchronize and communicate to coordinate their activity.

The DECelx multitasking kernel uses interrupt-driven, priority-based task
scheduling. It features fast context switch times and low interrupt latency. In
a DECelx environment, any C subroutine may be spawned as a separate task,
with its own context and stack. Task control allows tasks to be suspended,
resumed, deleted, delayed, and moved in priority.

The DECelx software supplies several types of traditional task-blocking
semaphores to perform task synchronization and mutual exclusion. DECelx
semaphores are fast and efficient. In addition to being available to application
builders, they have also been used extensively in building DECelx higher-level
facilities.

For intertask communications, the DECelx software also supplies a fast and
flexible message queue facility, intertask pipes, sockets, and signals. UNIX
sockets are a method for exchanging byte streams in a networked application
task regardless of location. UNIX signals are a method for asynchronous
transfer of control within a task, based on hardware or software exceptions.

3.2 POSIX Synchronization Facilities
The DECelx software provides limited support for the following POSIX
standards and draft standards:

• PO SIX 1003.1-1990

• P1003.41D11

The POSIX 1003.1 standard defines a set of functions for use in application
programs using the C programming language. The purpose of using the
POSIX 1003.1 standard in an application is to promote application portability
among systems that support the POSIX 1003.1 standard. POSIX 1003.1
includes some functions that are identical to ANSI C functions, some functions
that use the same syntax as ANSI C functions, but operate slightly differently
in the POSIX environment, and some functions that are unique· to POSIX.

3-2 DECelx Components

The PI003.4IDII draft standard defines a set of fWlctions that can be used
in the design and creation of realtime applications in the DECelx POSIX.
environment. The subset of these functions offered by the current version of
the DECelx software facilitate realtime application development in the area of
process synchronization. I

Synchronization techniques and restrictions on resource access ensure that
critical and noncritical activities execute at appropriate times with the
necessary resources available. Table 3-1 lists the synchronization routines
available in the DECelx POSIX. runtime library.

Table 3-1 Synchronization Routines Available In DECelx POSIX

Types of Synchronization
Routines Header File

Binary semaphores <bins em. h>

Clocks and timers <timers .h>

3.2.1 Binary Semaphores

Purpose

Restricts access to resources

Arms and disables timers

A binary semaphore is a synchronization mechanism used to control access to
systemwide resources. With DECelx POSIX. binary semaphores, you can create
and remove binary semaphores. You can also release, wait for, and lock binary
semaphores. Each action on a semaphore requires an explicit fWlction call and
is Wlder the control of the application programmer.

Semaphores are used by cooperating processes to synchronize access to
resources, such as shared memory. Semaphores can protect resources such as
global variables, hardware resources, and the kernel from uncontrolled access.

Semaphore protection works only if all communicating processes using the
shared resource cooperate by waiting for the semaphore when it is Wlavailable
and resetting the semaphore COWlt when relinquishing the resource. For
cooperating tasks, semaphores are mutual exclusion flags that lock and unlock
a resource.

3.2.2 Clocks and Timers
Realtime clocks and timers allow an application developer to synchronize and
coordinate activities according to a predefined schedule. The systemwide clock
(CLOCK_REALTIME) provides the timing base for per-process timers. DECelx
POSIX. clock and timer functions allow you to retrieve and set the systemwide
clock, suspend execution for a period of time, provide high-resolution timers,
and use asynchronous event notification. Realtime timers are created, armed,
and removed by the application programmer.

DECelx Components 3-3

Realtime timers allow the application to set timers based on either absolute
or relative time. Furthermore, a DECelx POSIX timer can fire as either a
one-shot or periodic timer. The application creates timers in advance, but the
timers can be manipulated according to the needs of the realtime application.
Some applications may require only one or two timers; others may require
multiple timers within a single process.

These timers use the nanosecond as the smallest unit of time, which makes
them suitable for realtime applications.

3.2.3 POSIX Synchronization Functions
Table 3-2 categorizes synchronization functions and lists the corresponding
DECelx POSIX functions.

Table 3-2 DECelx POSIX Process Synchronization Functions

Operation

Make a binary semaphore set

Open, close, and delete a binary semaphore set

Return the number of semaphores in a semaphore set

Wait (or conditionally wait) for a binary semaphore

Release a binary semaphore

Get or set the value of the systemwide clock

Get the resolution of the clock

Get or set the clock drift rate

Allocate or free a per-process timer, get the value of
the per-process timer

Arm a per-process timer absolutely or relatively

Return the timer expiration overrun

Suspend current task until time interval elapses

Function

sem mksem
sem open
sem-close
sem=destroy
sem_getnsems
sem wait
sem-ifwait
sem_post
clock get time
clock-settime
clock_getres
clock get drift
clock-setdrift
timer create
timer-delete
timer=gettime
timer settime
timer_getoverrun
nanosleep

DECelx also provides the clockLiblnit function to initialize the systemwide
clock.

3-4 DECelx Components

3.3 Networking Facilities
The key to the partnership between the DECelx and ULTRIX software is
extensive networking facilities. By providing a fast, easy-to-use connection
between the two systems, the network allows the ULTRIX system to be used
as a development system, a debugging host, and a provider of non-realtime
services in a final system.

The DECelx network connects DECelx systems with other UNIX or DECelx
systems over Ethernet, backplane bus, or serial line interconnections. DECelx
uses the TCPIIP network protocols as implemented in BSD 4.3 for all network
communications.

The hierarchy of DECelx network components is shown in Figure 3-1. At
the lowest level, a DECelx system typically uses Ethernet as the basic
transmission medium. A DECelx system can also use serial lines for long­
distance connections or shared memory on a common backplane in more
closely coupled environments. On top of the transmission media, the Internet
protocols TCP/IP and UDP/IP are used to transport data between processes
running under either a DECelx or UNIX system.

U sing Internet protocols, the DECelx software makes several types of network
facilities available to the user:

• Sockets. Allow communications between tasks, running either under a
DECelx or UNIX system.

• Remote Procedure Calls. Allow a task on one machine to invoke procedures
that actually run on other machines. Both the calling task and the called
procedure may run under either a DECelx or UNIX system.

• Remote Login. Allows remote access to the DECelx shell from a UNIX
system, and remote access to a UNIX shell from a DECelx system, using
either rlogin or telnet protocols.

• Remote File Access. Allows DECelx tasks to access UNIX files remotely,
via the Network File System (NFS), UNIX remote shell (rsh), or Internet
File Transfer Protocol (ftp).

• Remote Command Execution. Allows DECelx tasks to invoke shell
commands on a UNIX system over the network using the UNIX remote
shell rsh.

DECelx Components 3-5

Figure 3-1 DECelx Network Components

3.3.1 Sockets

Source
Debugger

Sockets

IP+ leMP

ftp

MLO-OO9680

DECelx software offers standard UNIX socket calls, which allow realtime
DECelx processes and other processes, such as UNIX processes, to
communicate in any combination with each other over the network. DECelx
socket calls are source compatible with UNIX BSD 4.3.

Any process can open one or more sockets, to which other sockets may be
connected. Data written to one socket of a connected pair may be read from
the other socket. The network link is transparent in communications. In
fact, the processes do not need to know whether they are communicating with

3-6 OECelx Components

other processes on the same CPU or another CPU, or with DECelx or UNIX
processes.

3.3.2 Remote Procedure Calls (RPC)
Remote Procedure Call (RPC) is a facility that allows a process on one machine
to call a procedure that is executed by another process on another machine.
Using RPC, a DECelx task or UNIX process can invoke routines that are
executed on other DECelx or UNIX machines, in any combination. RPC
documentation is available in the public domain.

3.3.3 Remote Login: rlogin, telnet
The remote login feature allows users to log into DECelx or UNIX machines
from any other DECelx or UNIX machine on the network. This is convenient
from the programmer's point of view. For instance, on a UNIX workstation,
the programmer can open an rlogin window that communicates with the
DECelx shell. By opening such windows, programmers can monitor and control
realtime DECelx systems right from their desks.

DECelx machines can also be accessed via telnet, for systems that do not have
rlogin.

3.3.4 Remote· File Access: NFS, ftp, rsh
Remote file access across the network is available. A program running on a
DECelx system can use a UNIX system as a virtual file system. Files on any
UNIX system may be accessed, via the network, as if they were local to the
DECelx system. A program running under DECelx does not need to know
where that file is, or how to access it. For example, / dk/ file might be a file
local to the DECelx system, and host: file might be a file located on another
machine entirely.

DECelx software includes the industry standard Network File System (NFS).
It runs as an NFS client with any other system that runs an NFS server.
Alternatively, a DECelx system can use either of two older protocols to provide
transparent remote file access: rsh or ftp. An ftp server furnishes remote
access to a DECelx system from other DECelx or UNIX systems using ftp.

3.3.5 Remote Command Execution
The DECelx remote command execution facilities allow programs running on
a DECelx system to invoke UNIX commands and have the results returned on
standard out and standard error via socket connections. This is accomplished
using the UNIX remote shell protocol, which is serviced by the remote shell
daemon on UNIX.

DECelx Components 3-7

3.4 Module Loader and System Symbol Table
The DECelx realtime operating system is unusual in that its facilities are made
available to application programs simply as an extensive set of C subroutines.
DECelx does not require you to use system traps to get to system functions.
Instead, DECelx supplies a system symbol table and a loader with runtime
linking to give dynamic and even interactive access to all loaded modules.

The DECelx module loader can load object modules, over the network or from a
disk, and relocate them anywhere in memory. The loader also uses the symbol
table contained in every object module to build a systemwide symbol table of
loaded function and variable names. Names from both system and application
modules are added to the system symbol table.

This symbol table is a key DECelx development tool. First, the loader itself
uses the system symbol table to resolve undefined references in modules
being loaded, dynamically linking newly loaded modules to previously loaded
modules. DECelx uses the system symbol table to supply interactive access to
all system and application modules that have been loaded. Finally, DECelx
debugging facilities use the system symbol table to furnish symbolic references
wherever possible.

Runtime linking makes it easy to share subroutine libraries. A single copy of
a set of subroutines can be used by several tasks, rather than requiring each
task to be linked with a separate copy of needed subroutines. Because there is
no inherent distinction between DECelx system modules and user application
modules, the system facilities are easy to access, modify, and extend.

3.5 Shell
DECelx Realtime Tools include an interactive program called the shell, which
allows developers to interact with all DECelx facilities. The DECelx shell
provides one simple but powerful capability: it can interpret and execute
almost all C-Ianguage expressions, including calls to functions and references
to variables whose names are found in the system symbol table.

Thus, the shell can call DECelx system functions or any application functions,
examine and set application variables, create new variables, and serve as a
general purpose calculator with all C operators.

In addition, the shell includes a command history facility and command-line
editing similar to the vi editor. The shell can also be used to log into a remote
UNIX or DECelx machine with the rlogin or telnet command.

3-8 DECelx Components

3.6 Debugging Facilities
DECelx Realtime Tools fwnishe three debuggers: a basic symbolic debugger
for all targets; and ElxGDB for 680nO and R3000, depending on your target
environment. ElxGDB is a powerful, remote source-level debugger.

The DECelx debug facilities include:

• Routines to display system and task status

• A symbolic disassembler that can disassemble any loaded module

• A symbolic C-subroutine traceback facility that can be called at any time to
list the current sequence of nested subroutine calls of any task (Motorola
680nO target-specific)

• Trapping of hardware exceptions in a non-fatal way that allows symbolic
debugging to continue

• A breakpoint and single-stepping facility that can be applied to specific
tasks, even in shared code

These facilities use the system symbol table to provide symbolic references
wherever possible.

ElxGDB enables developers to spawn and debug tasks running on networked
DECelx targets. Already-running tasks spawned from the DECelx shell
can also be debugged. While using ElxGDB, users can continue to take
advantage of DECelx native development tools. By combining the DECelx
shell, symbolic debugging and disassembly, and performance monitoring
facilities with ElxGDB capabilities, developers will have a comprehensive
high-level debugging solution.

3.7 Performance Evaluation
To understand and optimize the performance of a realtime system, you must
often time various tasks that the system performs. DECelx Realtime Tools
offer various timing facilities to help with this task.

The DECelx execution timer can time any C subroutine, or group of
subroutines. If the system clock alone cannot provide the resolution necessary
to time especially fast functions, the timer routine can repeatedly call a
function until the time of a single iteration can be determined to a reasonable
tolerance.

DECelx also provides a utility using an auxiliary clock that shows, for
each task, the amount of CPU time utilized, the amount of time spent at
interrupt level, and the amount of idle time. Time is displayed in ticks and in
percentage.

DECelx Components 3-9

3.8 1/0 System
The DECelx 110 system offers uniform device-independent access to many
kinds of devices. The user can call seven basic I/O functions: creat, delete,
open, close, read, write, and ioctl. Higher-level 1/0 functions, such as UNIX
printf and scanf routines, are supplied and built on these basic functions.

The DECelx software also furnishes a stdio buffered 110 package that includes
UNIX routines such as fopen, fclose, fread, fwrite, getch, putch, and so
forth. These routines increase I/O performance in many cases.

DECelx includes device drivers for serial communications lines, disks, RAM
disks, intertask communication devices called pipes, and devices on a network.
Application developers can easily write additional drivers, if needed. DECelx
allows dynamic installation and removal of drivers without rebooting the
system.

Internally, the DECelx I/O system is fast and flexible, allowing individual
drivers complete control over how the user requests are serviced. Drivers can
easily implement different protocols, unique device-specific functions, and even
different file systems, without interference from the I/O system itself. DECelx
Realtime Tools also supply several high-level packages that make it easy for
drivers to implement common device protocols and file systems.

3.9 Local File Systems
DECelx includes different local file systems for use with block devices (disks).
These devices all use a standard interface so that file systems can be freely
miXed with device drivers. DECelx 1/0 architecture makes it possible to have
several different file systems, even on a single DECelx system at the same
time.

3.9.1 DOS File System
DECelx offers a file system compatible with DOS for personal computers.
DECelx DOS is compatible with versions of MS-DOS up to and including
Version 4.0. DECelx DOS capabilities offer considerable flexibility appropriate
to the varying demands of realtime applications. Major features include:

• A hierarchical arrangement of files and directories, allowing efficient
organization and permitting an indefinite number of files to be created on a .
volume.

• A choice of file fragmentation or contiguity on a per-file basis. File
fragmentation results in more efficient use of available disk space while
contiguity offers enhanced performance.

3-10 DECelx Components

• Compatibility with widely available storage and retrieval media. Disks
created with DECelx DOS and on DOS personal computers may be freely
interchanged.

3.9.2 RT-11 File System
DECelx is supplied with a file system compatible with that of the RT-ll
operating system. This file system is appropriate for many realtime file
sys_tems, since all files are contiguous. File accesses require exactly one disk
access, and sequential file accesses involve minimal disk movement.

The RT-ll file system does have some drawbacks, however. It lacks a
hierarchical file organization that is particularly useful on large disks. Also,
the contiguous allocation scheme may result in fragmented disk space.

The DECelx implementation of the RT-ll file system includes byte-addressable
random access (seeking) to all files. Each open file has a block buffer for
optimized reading and writing.

3.9.3 Raw Disk File System
DECelx offers a simple file system for use with disk devices. This file system
treats the entire disk like a single large file. Portions of the disk can be read
and written, specified by byte offset, and simple buffering is performed. The
file system offers the advantages of size of transfer and speed when only
simple, low-level disk I/O is required.

3.9.4 Alternative File Systems
In DECelx, the file system is not tied to the device or its driver. A device may
be associated with any file system. Alternative, user-supplied file systems
can be written and used by drivers in the same way, by following the same
standard interfaces between the file system, the driver, and the DECelx I/O
system.

3.10 Utility Libraries
DECelx supplies many general utility subroutines to application developers.
These routines are organized as a set of subroutine libraries, which are
described next. Application developers are encouraged to use these libraries
wherever possible to reduce both development time and memory requirements
for the application.

DECelx Components 3-11

Interrupt Handling
Support

Watchdog Timers

Message Logging

Memory Allocation

String Formatting and
Scanning

Linear and Ring Buffer
Manipulations

Linked-List Manipulations

3-12 DECelx Components

DECelx furnishes routines for handling hardware
interrupts and software traps without having to resort
to assembly language coding. Routines are provided to
connect C routines to hardware interrupt vectors and to
manipulate the processor interrupt level.

A watchdog facility allows callers to schedule execution of
their own routines after specified time delays. As soon as
the specified number of ticks have elapsed, the specified
timeout routine will be called at the interrupt level of the
system clock, unless the watchdog is canceled first. Note
that this mechanism is entirely different from the kernel's
task delay facility.

A simple message logging facility allows elTor or status
messages to be sent to a logging task, which then formats
and outputs the messages to a systemwide logging device,
such as the system console, disk, or accessible memory.
The message logging facility can be used from interrupt
level or task level.

DECelx supplies a memory management facility (source­
compatible with UNIX) useful for dynamically allocating,
freeing, and reallocating blocks of memory from a memory
pool. The size of the pool can be set by the user. Blocks
of arbitrary size can be allocated. This memory scheme
is built on a much more general mechanism that allows
DECelx to manage several separate memory pools.

DECelx includes string formatting and scanning
subroutines compatible with UNIX that implement
printf/scanf format-driven encoding and decoding.

DECelx furnishes buffer manipulation functions such as
copying, filling, comparing, and so on, that are optimized
for speed. Also provided is a set of general ring buffer
routines that manage first-in first-out circular buffers.
Additionally, these ring buffers allow a single writer and
a single reader to access a ring buffer simultaneously,
without being required to interlock their accesses
explicitly.

DECelx supplies a complete set of routines for creating
and manipulating doubly-linked lists.

3.11 Board Support Packages
Board Support Packages (BSP) for each board include two target-specific
libraries, sysLih and sysALih. These libraries provide an identical software
interface to the hardware functions of all boards. They include routines for
hardware initialization, interrupt handling and generation, hardware clock and
timer management, mapping of local and bus memory spaces, memory sizing,
and so on.

DECelx Components 3-13

Part II
VAXELN Toolkit

Part II, contains the following chapters:

• Chapter 4, VAXELN Toolkit Oyerview, introduces the VAXELN Toolkit
components and realtime programming features.

~ Chapter 5, VAXELN Programming Concepts, discusses VAXELN processes
and jobs and the concept of concurrency.

• Chapter 6, VAXELN Toolkit Components, describes VAXELN system
development software, runtime software, and utilities inclll:ding support for
POSIX. 1003.1, P1003.4ID11 and P1003.4a1D4

• Chapter 7, VAXELN DECwindows, outlines the basic DECwindows
architecture and user environment.

• Chapter 8, VAXELN Window Server, describes the VAXELN Window
Server (EWS), VAXELN Window Station, and DECwindows server software
that runs on Digital workstations and X Window terminals.

4
VAXELN Toolkit Overview

The VAXELN Toolkit is a VMS layered product that provides powerful
software for developing dedicated, realtime software applications that run
on VAX processors. Supported platforms range from the low-end rtVAX 300
embeddable daughterboard to high-end rtVAX 9000 systems. A VAXELN
application relies on the VAX processor and the VAXELN kernel to provide
prompt, predictable responses to time-critical events. The VAXELN Toolkit
caters to the memory and speed requirements of a dedicated, realtime
application by allowing you to create tailored systems that include only the
services, drivers, and utilities required by the application.

You develop a VAXELN application on a VMS aevelopment system using
VMS and VAXELN development tools. With these tools, you create a bootable
VAXELN system image, which incorporates user and Digital program images.
You load the system image into the memory of a supported VAX target
processor, where it runs independently of the development system.

This chapter presents the following topics:

• Survey of VAXELN Toolkit Components, Section 4.1

• VAXELN Toolkit Realtime Programming Features, Section 4.2

• VAXELN Hardware and Software Requirements, Section 4.3

4.1 Survey of VAXELN Toolkit Components
The VAXELN Toolkit includes:

• System development software that runs on a VMS development system

• Runtime software that executes as part of an application on a supported
VAX target system

• VAXELN utilities that run on the VMS development system, the VAXELN
target system, or both

VAXELN Toolkit Overview 4-1

Figure 4-1 shows the relationship between the development and target
systems .

. Figure 4-1 Development SystemlTarget System Relationship

Development System Target System

Development Software Runtime Software

Utilities Utilities

Ethernet or V AXBI Bus Other
Targets

MLO'()C12S4

You develop a VAXELN application on a VMS development system by using
a comprehensive set of VMS CASE and VAXELN development tools. The
resulting VAXELN system image contains user and toolkit program images,
and can be booted on the VAX. target system from disk, tape, or read-only
memory (ROM). If you have a DECnet-VAX license and the appropriate
Ethernet hardware, you can down-line load the system image from a VMS,
ULTRIX, or VAXELN system (serving as boot host) to the target processors.

See Chapter 6 for details about the VAXELN Toolkit components.

4.2 VAXELN Toolkit Realtime Programming Features
Realtime application programmers formerly were required to be proficient
in hardware architecture, operating systems, and assembly language
programming, as well as realtime system design and high-level language
programming. However, the VAXELN Toolkit eliminates the intricate, low­
level knowledge requirements of realtime programming. Toolkit features, such
as the following, free you to focus on system design and high-level language
programming:

• Small, optimized, realtime kernel executive. The kernel controls the
sharing of processor resources and employs a preemptive priority-based
scheduler for supporting concurrent processing. Each of the supplied
kernel images is customized for the system it supports.

4-2 VAXELN Toolkit Overview

• Tailorability. A VAXELN system includes only those services, drivers,
and utilities that the application design requires; it does not serve as a
general-purpose operating system. Omitting unnecessary services, drivers,
and utilities reduces system size and overhead.

• Predictability. VAXELN systems are predictable in part because they
are memory resident and do not incur the overhead associated with
general-purpose, time-sharing systems. The VAXELN kernel's preemptive,
priority-based scheduling also helps ensure predictable, timely response to
events and interrupts.

• Distributed processing. Transparent local area network (LAN),
shared CPU bus, and VAXBI bus support let you distribute application
programs among multiple processors. By distributing an application's less
time-critical functions to other processors, time-critical tasks can make
better use of processor time, while maintaining communication with all
application functions.

$ Expandability.When an application requires more speed or computing
power, you can move programs to a faster VAX processor or distribute the
system's programs among processors. in a multiprocessing configuration
with little or no code modification.

• DECnet end-node support. VAXELN provides full DECnet end-node
support, which lets a VAXELN system communicate over the Ethernet
with other systems (including VAXELN and VMS) running on other
DECnet-VAX nodes.

• Internet network support. Using an Ethernet network interface, a
VAXELN application can communicate with other applications in an
Internet network. The Internet interface supports the Internet Protocol
(IP), Transmission Control Protocol (TCP), User Datagram Protocol (UDP),
Address Resolution Protocol (ARP), Reverse Address Resolution Protocol
(RARP), and Boot Protocol (BOOTP).

In addition, a File Transfer Protocol (FTP) client interface is available
for transferring files from one host to another host in a heterogeneous
operating system environment.

• VMS :file system compatibility. VAXELN applications that use storage
media can take advantage of a file service that supports file-oriented disk
and tape I/O operations and remote file access. The file service maintains
VMS file compatibility by using the VMS on-disk file structure (ODS II)
and the record management services (RMS) file format.

VAXELN Toolkit Overview 4-3

• Interoperability. VAXELN applications can communicate with and gain
access to files on other operating systems, such as the VMS, ULTRIX, and
MS-DOS operating systems.

• VAXELN POSIX functions. VAXELN POSIX functions provide the
capability of developing and running applications in a POSIX environment.

• KAV30 support. The VAXELN Toolkit provides the capability of
developing and running applications on the KAV30.

• High-level language programming. You can code VAXELN applications
entirely in structured, modular, high-level languages (VAX Ada, VAX C,
VAX FORTRAN, and VAXELN Pascal), without sacrificing performance.
Thus application code is easier to write, read, maintain, and translate.
Language constructs that implement VAXELN architectural features are
either predefined in the compilers or provided as callable kernel or runtime
library utility routines. By using a high-level language to program device
drivers and interrupt service routines (ISRs), you eliminate the need for
assembly language programming.

• Interactive debugger. The debugger offers two operating environments.
A remote debugger environment supports symbolic debugging and lets you
debug your target application from a development system user terminal
across an Ethernet DECnet connection. If your application does not include
DECnet support, you can include a local debugger environment in your
VAXELN system and debug the application from the target system's
console.

• Development, command language, and network utilities. VAXELN
utilities can be included in your system image to help you debug and
fine-tune your application, and issue interactive commands to the VAXELN
system.

You can use these utilities to perform LAT and SET HOST network
functions. These utilities include the VAXELN Performance Utility
(EPC and EPA), VAXELN Display Utility (EDISPLAY), error logging.
tools, VAXELN Command Language Utility (ECL), LAT Control Program
(LATCP), Outbound Remote Terminal Utility (SET~HOST), and TELNET
server.

• DECwindows support. The Toolkit's DECwindows support allows you to
create network-transparent distributed applications that perform drawing
and windowing operations. The DECwindows components include a server,
runtime libraries and tools, a Wmdow Manager, and terminal emulators.

4-4 VAXELN Toolkit Overview

4.3 VAXELN Hardware and Software Requirements
This section identifies VAXELN system development and runtime hardware
and software requirements. The VAXELN System Support Addendum (SSA)
includes a list of the supported hardware and minimum software requirements.

VAXELN Hardware Requirements
You can run the VAXELN Toolkit system development software on any VAX,
MicroVAX, or VAXstation processor. If the VMS development system includes
Ethernet interfaces and the appropriate interconnecting hardware, you can
downline load your VAXELN system image to your VAX target configuration.
The Ethernet hardware also provides the ·necessary communication link for
applications that require remote debugging, remote error logging, performance
data collection, or remote command-language sessions.

A VAXELN target configuration must include a target processor that the
VAXELN Toolkit supports. The toolkit supports target processors ranging from
the rtVAX 300 daughterboard to rtVAX 9000 systems. The target processors
can be standalone systems or Ethernet-connected systems distributed on a
LAN. For a list of supported target processors, see the latest VAXELN Toolkit
System Support Addendum (SSA). You can obtain a copy of the SSA from your
Digital sales representative.

Application-specific target hardware requirements include Ethernet hardware
and peripheral devices. If your VAXELN application requires downline loading,
remote debugging, remote error logging, Performance Utility support, or
Remote Terminal Utility support, the target configuration must include
the appropriate Ethernet hardware. Application-specific peripheral devices
supplied by Digital, or a third party may also be required.

VAXELN Software Requirements
To develop a VAXELN system, the following software is required:

• VMS Version 5.0 or higher

• DEOnet-VAX Version 4.6 or higher

• One of the following high-level languages:

VAXELN Pascal (included in the VAXELN Toolkit)
VAX. Ada, Version 1.4 or higher and VAXELN Ada Version 2.0 or higher
VAX 0, Version 2.4 or higher
VAX FORTRAN Version 4.4 or higher

VAXELN Toolkit Overview 4-5

Optional VAXELN Development Software
Other software products can be used to augment the VAXELN development
environment provided by VMS CASE tools and the VAXELN Toolkit:

• DECnet-VAX

• Additional programming language compilers:

VAX Ada

VAXC

VAX FORTRAN

• VAXELN Ada Toolkit (to supplement the VAX Ada compiler)

• DECmessageQ for VAXELN

• DEC Realtime Integrator for VAXELN

4-6 VAXELN Toolkit Overview

5
VAXELN Programming Concepts

A VAXELN application's design and development are based on the concept of
concurrency, the logically simultaneous execution of multiple programs and
parts of programs. Concurrency is a proven approach for applications that
require programs to work together efficiently and quickly to solve a specific
problem.

VAXELN programs execute as independently scheduled jobs. A typical
VAXELN application consists of multiple jobs, each with functionally
independent components called processes.

This chapter discusses the following VAXELN programming concepts:

• Processes, Section 5.1

• Jobs, Section 5.2

• Concurrency, Section 5.3

5.1 Processes: Program Execution Threads
A VAXELN process is an independent thread of program execution, essentially
similar to a VAX. process as defined by the VAX. architecture. Associated with
a process are hardware and software context, program code, and an address
space. Each process in a VAXELN system represents a specialized task. The
main section of program code (the innermost procedure block for Ada programs,
the main routine for C programs, the main program for FORTRAN programs,
and the program block for VAXELN Pascal programs) executes as the master
process. The kernel creates this process automatically when the program
starts executing.

VAXELN Programming Concepts 5-1

5.2 Jobs: Process Families
The processes associated with a running program collectively constitute a
job. A job consists of a master process and zero or more subprocesses. A job
also represents a single activation of a program, with all processes in the job
sharing access to the program's executable code.

You can think of a job as a family of processes. A job's master process and
subprocesses create other subprocesses dynamically. Once created, a process
stays active until one of the following conditions occurs:

• The· process exits.

• Another process deletes the process.

• Its master process terminates.

• It encounters an error from which it cannot recover.

• It finishes executing the associated code segment.

The exit operation provides the most controlled means of forcing process
termination.

Figure 5-1 illustrates the creation and dependency paths for a job consisting
of a master process and five subprocesses. The creation path consists of
two levels. The master process creates two subprocesses: Subprocess 2
and Subprocess 3. Subprocesses 2 and 3 subsequently create one and two
subprocesses, respectively.

The dependency path, however, has one level. All subprocesses that the master
process or any of its subprocesses spawn depend on the master process. When
a master process terminates under any circumstances, the kernel removes the
corresponding job, its master process and associated subprocesses, and shared
data from the system. The kernel returns the job's memory resources to the
system. ..

5.3 Concurrency: Processes Sharing Processor Resources
To take advantage of a VAXELN realtime system's efficiency, you design
applications with the concept of concurrency in mind. Concurrency is built
into VAXELN so that cooperating processes can share resources. While some
processes wait to execute (wait for an event to occur or a resource to become
available), others can execute. The kernel manages system resources such that

5-2 VAXELN Programming Concepts

Figure 5-1 Process Family

Job
Master
Process

1

~ Creation Path

~----.... , , , , , , , , , , , , ,

- - -.. Dependency Path

Subprocess
2

Subprocess
4

Subprocess
3

Subprocess
5

Subprocess
G

MLO-0053S9

all jobs and processes appear to execute simultaneously, although only one
process actually executes on a processor at a time.

You determine whether jobs and processes should execute concurrently when
you design. your application. Concurrent programming has numerous system
design. advantages, including improved performance.

The VAXELN kernel supports three levels of concurrency: multitasking,
multiprogramming, and multiprocessing.

5.3.1 Multitasking
Multitasking lets you divide an application program's functionality into a set
of smaller, focused tasks that can execute concurrently. Each task executes as
a separate dedicated process. For example, a program controlling a wing in a
flight simulation application might consist of processes that specialize in tasks
such as surface control and engine fire-up.

VAXELN Programming Concepts 5-3

5.3.2 Multiprogramming
Multiprogramming is the concurrent execution of entire programs, including
multitasking programs. The programs execute as jobs that mayor may not
coordinate their execution; Job A mayor may not depend on Job B. However,
in most VAXELN systems, jobs work together to accomplish mutual goals.
For example, in a flight simulation application, a collection of cooperating
jobs might emulate major components of an airplane, such as cockpit controls
and instrumentation, navigation equipment, left and right wings, and tail
structure.

5.3.3 Multiprocessing
A VAXELN application's jobs can reside on one processor or they can be
distributed among multiple processors. The concurrent execution of a VAXELN
application's programs on multiple processors is called multiprocessing. The
VAXELN kernel supports loosely, tightly, and closely coupled multiprocessing
configurations.

In a loosely coupled multiprocessing configuration, connections to a common
Ethernet link the processors, as shown in Figure 5-2. Each processor runs its
own VAXELN system image with a separate collection of jobs.

Figure 5-2 Loosely Coupled Multiprocessing Configuration

Processor 1 Processor 2 ProcessorS

Job A
Job E

Job B Job 0

Job F
JobC

VAXELN VAXELN VAXELN
System System System

lr l[Jr
Ethernet

MLO-O03135

5-4 VAXELN Programming Concepts

Figure 5-3 TIghtly Coupled Symmetric Multiprocessing Configuration

Processor 1 Shared Memory

JobC

Job B

Job A

VAXELN

CP!J Memory Bus

Ethernet

Processor 2

MLO..Q05390

In a tightly coupled configuration, VAXELN supports multiple symmetric
processors on the same processor bus, as shown in Figure 5-3.

VAXELN supports tightly coupled symmetric multiprocessing on VAX 6000
series and VAX 8800 multiprocessor configurations. All processors share a
single copy of a VAXELN system image and thus share the same kernel,
runtime components, and program images. A job can be eligible to execute on
any processor (the default), or you can limit it to a specific subset of processors.

A closely coupled multiprocessing configuration consists of a VAX primary
system and one or more KA800 VAX processor boards. The KA800 boards
operate as secondary processors, for example, as I/O processors (lOPs) to
offload 110 handling duties from the primary system. The primary system can
be a single processor or a tightly coupled multiprocessor, such as a VAX 6000
multiprocessor. Each KA800 system is connected to the primary system's
VAXBI bus and runs its own VAXELN system image, with its own kernel,
runtime components, and program images.

VAXELN Programming Concepts 5-5

As shown in Figures 5-4 and 5-5, the primary system in a closely coupled
environment can run a VAXELN or VMS system. A VAXELN primary system
can run on a VAX 6000 series, 8500, 8530, 8550, 8700, 8800, 8810, or 8820-N
processor. When an application uses a VAXELN primary system, you downline
load VAXELN systems into the KA800 processors by using a configuration file,
a runtime procedure call, or an EeL command.

Figure 5-4 Closely Coupled Multiprocessing Configuration with VAXELN Primary
System

Primary
Processor KA800 KA800 KA800

Processor Processor User Device Processor
Application MS820

Images Job A Memory
JobB JobG

Module

JobD JobF
KA800
Loader JobC Buffer

Job E High- JobH
Memory Speed

VAXELN VAXELN VAXELN Parallel VAXELN
System System System Interface System

MLO-O01266

A VMS primary system can run on any VAX processor that supports VAX
Realtime Accelerator (RTA) software.

A common application for closely coupled multiprocessing is the distribution
of realtime 110 functions. You can achieve superior performance by offloading
interrupt-intensive tasks to KA800 systems, thus freeing the primary system
for other functions. The KA800 systems can control the DRB32 direct
memory access (DMA) parallel port device directly to distribute 110 control
for high-speed data transfers and fast, predictable interrupt response time.

5-6 VAXELN Programming Concepts

Figure 5-5 Closely Coupled Multiprocessing Configuration with VMS Primary System

Primary
Processor

Application
Images

VAX RTA
Software

VMS
System

KA800
Processor

Job A

JobD

JobC

VAXELN
System

MS820
Memory
Module

Buffer
Memory

KA800
Processor

JobB

Job E

VAXELN
System

User Device

High­
Speed

Parallel
Interface

KA800
Processor

JobG

Job F

JobH

VAXELN
System

MLO-O01289

Data-sharing between primary and secondary processors in closely coupled
configurations is limited to sharing of primary system memory. Data in the
primary system's memory can be accessed by the attached KASOO systems.
However, the primary system cannot gain access to data in the memory of the
KASOO systems.

VAXELN Programming Concepts 5-7

6
VAXELN Toolkit Components

You develop a VAXELN application on a VMS development system using
a comprehensive set of VMS CASE and VAXELN development tools. This
chapter discusses the following VAXELN Toolkit components:

o VAXELN System Development Software, Section 6.1

• VAXELN Runtime Software, Section 6.2

• VAXELN Utilities, Section 6.3

6.1 VAXELN System Development Software
The VAXELN development software runs under the VMS operating system.
You use this software and VMS CASE tools to prepare your VAXELN system
on the development system. The VAXELN Toolkit's system development
components include the following:

• VAXELN Pascal compiler, which generates object modules from
VAXELN Pascal source files, Section 6.1.1

• VAXELN_SERVICES Ada package, VAXELN C, FORTRAN, and Pascal
runtime libraries, which contain source modules that support realtime,
110, math, KAV30, DECwindows, and other routines called from VAX Ada,
VAX C, VAX FORTRAN, and VAXELN Pascal programs, Section 6.1.2

• VAXELN System Builder, which creates VAXELN system images by
combining application program images with the VAXELN kernel and
optional toolkit components, Section 6.1.3

If you choose to program your application in Ada, C, or FORTRAN, you
need to use the VAX Ada, VAX C, or VAX FORTRAN compiler. Like the
VAXELN Pascal compiler, these compilers generate object modules from your
source files.

VAXELN Toolkit Components 6-1

If you use Ada, you also need the VAXELN Ada runtime libraries, which
are available as part of the VAXELN Ada Toolkit. This toolkit packages
the runtime libraries with a remote debugger for developing VAXELN Ada
applications. For more information about the VAXELN Ada Toolkit, see
Chapter 14.

To combine your program object modules and shareable images into program
images that you can include in your VAXELN system, you use the VMS Linker.
Section 9.4.3 provides more information about the linker.

Once you create the image, you can downline load or boot the image onto a
target processor configuration. Section 6.1.4 discusses the ways you can load
and boot a system image.

6.1.1 VAXELN Pascal Compiler
The VAXELN Pascal compiler is an extended version of the
ANSIIIEEE770X3.97-1983 Pascal compiler that supports data types and
operations for concurrent programming. The optimizing VAXELN Pascal
compiler generates position-independent code and features realtime
programming extensions and system programming enhancements. The
following list identifies the realtime programming extensions:

• Process blocks. You can declare blocks of code with the reserved word
PROCESS_BLOCK. Process blocks are similar to procedures but execute as
concurrent subprocesses.

• Kernel support. You have direct access to kernel objects. You can declare
kernel data using the predeclared data types AREA, DEVICE, EVENT,
MESSAGE, NAME, PORT, PROCESS, and SEMAPHORE. You manipulate
kernel objects using predeclared kernel routines. The compiler applies
type-checking to the data types and the kernel routine arguments.

• Mutex and area-lock variable support. The MUTEX and
AREA_LOCIC VARIABLE data types and associated routines are provided
as library declarations.

• Queue support. You can use the predeclared data type QUEUE_ENTRY
and associated routines for representing and using absolute queues.

• Interrupt service routine (ISR) declarations. You can declare ISRs
with the reserved word INTERRUPT_SERVICE. These constructs are
similar to procedures, but they are called by the kernel to handle device
interrupts.

6-2 VAXELN Toolkit Components

System programming enhancements include the following:

• Flexible data types. You can use the predeclared data types STRING(n),
VARYING_STRING(n), and BYTE_DATA(n) to represent fixed-length
strings, variable-length strings, and series of bytes. You can also declare
your own flexible data types.

• Flexible parameter lists. You can use variable-length and Iionpositional
parameter lists.

• Typecasting. You can typecast variable references to access data using a
data type other than that declared for the data.

• Procedure and function type declarations. You can declare procedure
and function types to categorize constructs that have arguments of the
same data types.

• Modular compilation. You can compile large programs in separate
smaller modules and still maintain type-checking.

6.1.2 VAXELN_SERVICES Ada and Runtime Libraries
The VAXELN Toolkit includes the VAXELN_SERVICES Ada package and
runtime libraries for languages, VAXELN and VAXELN POSIX, and support
for the KAV30 kernel. The VAXELN Toolkit includes the following:

• VAXELN_SERVICES Ada package. This package provides the types,
operations, constants, and so forth for calling the VAXELN kernel and
utility routines from Ada programs.

• VAXELN C Runtime Library. This library is a compatible subset of the
VAX. C runtime environment. Many VAX. C programs originally written for
VMS or UNIX can run in a VAXELN system with only minor modifications.
However, the VAXELN C Runtime Library does not support all VAX. Cor
UNIX emulation functions.

• VAXELN FORTRAN Runtime Library. This library provides an
extensive subset of the VAX FORTRAN runtime environment. In VAXELN
systems, VAX. FORTRAN is used primarily for computation and is limited
to sequential or direct access to sequential files. Most VAX. FORTRAN
programs that you migrate to VAXELN systems require minimal change.
Some features· are restricted or unavailable in the VAXELN environment,
such as ISAM or relative file access, VMS logical names, QIO and RMS
service calls, and some VMS services.

VAXELN Toolkit Components 6-3

• VAXELN Pascal Runtime Library. This library extends the
VAXELN Pascal programming language to include modules for runtime
routines that have local read/write data, define entry points for kernel
routines, and contain modules that support the VAXELN system service
and device driver interfaces.

• VAXELN POSlX Runtime Library. This library consists of
POSIX 1003.1-1990, PI003.4a1D4, and P1003.4ID11 functions and is
compatible with the VAX C runtime environment. Many VAX C programs
originally written for VMS or UNIX can run in a VAXELN POSIX
environment with only minor modifications. However, the VAXELN
PO SIX Runtime Library does not support all POSIX 1003.1, PI003.4a1D4,
P1003.41D11 functions.

~ KAV30 Runtime Library. This library contains language bindings,
symbols, sharable images, and messages for using the KAV30 as the target
processor. You can use the KAV30 kernel from your Ada, C, FORTRAN, or
Pascal application,

6.1.3 VAXELN System Builder
After you develop your application program images, use the VAXELN System
Builder to create a system image. The VAXELN System Builder is a menu­
driven facility that generates a bootable system image by combining application
program images with the VAXELN kernel, runtime services, and utilities.

You invoke the System Builder from VMS with the DCL command EBUILD.
The System Builder executes in an interactive screen-editing mode that lets
you modify a series of menus in order to define your system's characteristics.
Using the menus, you can:

• Select a target processor type

• Edit systemwide characteristics

• Edit DECnet and Internet network characteristics

• Edit or add descriptions of programs and devices

• Edit console characteristics

• Edit error log characteristics

• Edit DECwindows characteristics

• Build a system image

6-4 VAXELN Toolkit Components

Figure 6-1 Preparing a VAXELN System Image

CREATE APPLICATION SOURCE CODE

Source Files

I Source and Object
Module Libraries

External I--
Source and
Object Files

.. .J L,..
...... ./

COMPILE SOURCE CODE

Object Module

Object Module
Libraries

Shareable Image
Ubraries

.. .J L,..
...... ./

LINK OBJECT MODULES

Executable
Image

VAXELN
System Image

Other Executable
Images

VAXELN
Runtime

Components

Use a standard VMS editor, such
as the VAX Language-Sensitive
Editor (VAX LSE), to create a file
containing VAX Ada, VAX C,
VAX FORTRAN, or VAXELN
Pascal source code.

Use the VAX Ada, VAX C,
VAXFORTRAN,orVAXELN
Pascai compiler to process the
source code.

Use the VMS Linker to combine
object modules and shareable
images and produce a program
image.

Use the V AXELN System Builder
to create a system image.

KEY: D Input or output file

r, Optional input or
~ _ ~ output file

MI.Oo006178

VAXELN Toolkit Components 6-5

If you specified your system's characteristics in a previous menu-editing
session, you can invoke EBUILD with a qualifier that directs the System
Builder to rebuild the system image without reentering the interactive
screen-editing mode. You can also specify qualifiers to generate additional
information, such as a system map file.

Figure 6-1 illustrates the steps for preparing a VAXELN system image.

6.1.4 Loading and Booting a VAXELN System Image
Mter you use the System Builder to create your system image, you load or boot
the system image onto a target processor with one of the following methods:

• Downline system load

• Disk or tape device

• Read-only memory (ROM)

To downline load an image from a VMS, ULTRIX, or VAXELN system, serving
as boot host, you must have a DECnet license and the appropriate Ethernet
hardware configured into your system. The VAXELN Toolkit supplies the
programs and command ·procedures necessary for downline loading to each
type of target processor.

For those applications that cannot use the downline load feature, the Toolkit
supplies a command procedure that copies a system image to a disk, tape,
cartridge, or diskette device. Once the image is copied, you can transfer the
storage medium to the target processor, then boot the volume.

Additionally, you can program a VAXELN system into ROM. Mter installing
that memory on the target processor, you can load and boot your system.

6.2 VAXELN Runtime Software
A VAXELN system image includes user-application and Digital program
images. The user application programs, which you write in high-level
languages, can be data acquisition and reduction programs, process control
supervisors, and user-written device drivers, to name a few. The program
images that Digital supplies include the following:

• The VAXELN Toolkit's highly optimized kernel executives, which control
the sharing of the target processor's resources, Section 6.2.1

• The VAXELN POSIX runtime library, which allows you to develop and run
portable applications in a POSIX environment, Section 6.2.2

6-6 VAXELN.Toolkit Components

• The VAXELN Toolkit's support of for the KAV30 kernel, which allows you
to develop and run realtime applications for the KAV30 using the VAXELN
Toolkit, Section 6.2.3

• VAXELN_SERVICES Ada package and runtime libraries, which contain
object modules and shareable images that support realtime, KAV30, 110,
math, DECwindows, and other routines called from VAX. Ada, VAX C,
VAX FORTRAN, and VAXELN Pascal programs, Section 6.2.4

• Device drivers, which control communication between application programs
and external devices, Section 6.2.5

• Network communication services, which include a DECnet Service, an
EthernetlIEEE 802 Datagram Service, Internet Services, and Local Area
Transport (LAT) Host Services, Section 6.2.6

• An Authorization Service, which maintains a database of a system's
authorized users and identifies users that issue network requests,
Section 6.2.7

• A File Service, which provides support for file-oriented disk and tape 110
operations and remote file access, Section 6.2.8

In addition to the preceding runtime software, the toolkit includes a
DECwindows Server, a Window Manager, and terminal emulators. For
information about these runtime components, see Chapter 7.

Using the VAXELN Toolkit's System Builder, you combine the application and
Digital program images into a VAXELN system image. When building the
system, you can specify the programs that are to start executing as soon as you
load or boot the system.

Figure 6-2 shows the system image components. As shown in the diagram,
the kernel executive is the heart of a VAXELN system; the kernel schedules
and controls an application's execution and access to system resources. The
appropriate kernel image is included for your target configuration. The second
tier of the diagram represents optional user and Digital software that provides
kernel extensions; you tailor your VAXELN system by including only those
services and utilities that your application requires. The outermost tier
represents a VAXELN system's highest level of code: your application program
images.

VAXELN Toolkit Components 6-7

Figure 6-2 VAXELN System Software

MLO-O03133

6.2.1 VAXELN Kernel
The VAXELN kernel is a small, realtime executive that controls target
hardware resources and the execution of VAXELN system software. The
kernel defines a set of objects that it uses to control the sharing of resources
and to synchronize communication between the jobs in a system. The kernel
manipulates these objects in response to routine calls issued from application
programs. In addition, the kernel maintains system-level and user-level data.

VAXELN applications typically require fast, predictable responses to
interrupts. To meet this crucial need, the highly optimized kernel takes
advantage of the VAX architecture and imposes minimal overhead between the
application code and the hardware.

The following sections outline the data structures that the kernel defines and
the operations that it performs.

6-8 VAXELN Toolkit Components

Data Structures for Realtime Programming
The VAXELN kernel recognizes and operates on a group of realtime
programming data structures, which processes use to synchronize and
communicate with each other. These structures include a set of kernel
objects and two specialized structures called mutexes and area-lock variables.
The objects represent ongoing activities, such as process execution, and
hardware and software resources, such as devices, memory regions, events,
and messages. Mutexes and area lock variables are structures for optimizing
kernel object operations. Table 6-1 describes the kernel objects, and Table 6-2
describes the optimized structures.

Table 6-1 Kernel Objects

Object

Area

Device

Event

Message

Name

Port

Description

Represents a region of physical memory accessible to all jobs executing
on the same node in a local area network (LAN).

Represents a channel to an I/O device and associates an interrupt
service routine (ISR) with the device's interrupt. Device objects
synchronize ISR and the execution of device driver processes.

Represents a flag that identifies the occurrence of a realtime event.
Events synchronize process execution and access to shared data.

Represents data that is transmitted between processes. Messages can
be sent between two processes, two jobs, or two nodes in aLAN.

Represents an entry in a name table that associates a character string
name with a message port or process. Port names can be local (known
only on their own node) or universal (known on any node in the LAN).

Represents a system-maintained store for messages that are sent or
waiting to be received. A program can connect two ports in the same
or different jobs to form a circuit, which simplifies and increases the
reliability of communication between jobs. Programs can use ports
to communicate with any system in a LAN. If a port is connected in
a circuit, the processes in the job that creates the port can receive
messages from that port. However, any process in any job can send a
message to the port.

(continued on next page)

VAXELN Toolkit Components 6-9

Table 6-1 (Cont.) Kernel Objects

Object

Process

Semaphore

Description

Represents a functionally independent entity that provides the
execution context for a program image or part of a program image.
The main program executes as a master process, which can control
subprocesses. Collectively, a master process and its subprocesses
constitute a job.

Represents a synchronization gate that controls access to a shared
resource. Binary semaphores enforce exclusive access to a resource.
Counting semaphores permit metered access, allowing a specified
number of processes simultaneous access to units of a resource.

Table 6-2 Data Structures for Optimizing Area and Binary Semaphore
Operations '

Structure

Area-lock variable

Mutex

Description

Represents a variable that resides in an area object for
synchronizing job access to the associated area. Using
this variable, a process can lock an area to gain exclusive
access. When the process locks the area, the process does
not have to issue a wait before accessing the associated
area unless the area is already locked.

Represents a binary semaphore that a process can lock
and unlock. A process can lock a mutex to gain exclusive
access to a shared resource. When the process locks the
mutex, the process does not have to issue a wait before
accessing the resource unless the mutex is already locked.

VAXELN Pascal predeclared data types represent the kernel objects. 'lb create
and use an object, a program declares a variable of the' object's type. The
variable then takes on the object's identifying value. 'lb use mutexes and area
lock variables, you must include the appropriate definition module.

The VAXELN 'lbolkit also provides kernel interfaces for VAX Ada, VAX. C and
VAX FORTRAN programming.

Operations for Manipulating Kernel Data Structures
Each VAXELN kernel data structure is associated with a corresponding set
of operations that are implemented as routine calls. The operations let
VAXELN systems manipulate the structures and the resources associated
with them. 'lb perform the operations, VAXELN Ada, VAX C, VAX. FORTRAN,
and VAXELN Pascal application programs call kernel routines directly.

6-10 VAXELN Toolkit Components

Kernel operations are categorized according to three types of services: process
synchronization, communication, and device handling. Table 6-3 categorizes
the kernel operations and lists the corresponding routines.

Table 6-3 Kernel Operations

Operation

Process Synchronization

Create an area, event, job, mutex, process, or
semaphore

Initialize an area lock variable

Wait for an area, event, mutex, process, or
semaphore to be set to an available state, or
wait for a timeout to occur

Signal an area, event, mutex, process, or
semaphore

Delete an area, event, job, mutex, process, or
semaphore

Get the identification value of the current
process

Disable or enable process switching

Exit from a process

Set job or process priorities

Suspend or resume a process

Get the job control block (JCB) address of the
currently running job

Routines

CREATE AREA
CREATE AREA EVENT
CREATE AREA SEMAPHORE
CREATE EVENT
CREATE JOB
CREATE MUTEX
CREATE PROCESS
CREATE SEMAPHORE

INITIALIZE AREA LOCK

LOCK AREA
LOCKMUTEX
WAlT ALL
WAIT ANY

SIGNAL
UNLOCK AREA
UNLOCK MUTEX

DELETE
DELETE MUTEX

CURRENT PROCESS

DISABLE SWITCH
ENABLE SWITCH

EXIT

SET JOB PRIORITY
SET JOB PRIORITY ANY
SET PROCESS PRIORITY

RESUME
SUSPEND

GETJCB

(continued on next page) (.

VAXELN Toolkit Components 6-11

Table 6-3 (Cont.) Kernel Operations

Operation

Process Synchronization

Specify the processors on which a job is
eligible to run in a tightly coupled symmetric
mUltiprocessing system

Clear an event

Allocate or free memory for a job

Communication

Use a queue to share data between a job's
processes

Create an area, message, name, or port

Get a job's port value

Get the port value of a named port

Establish a virtual circuit between two ports

Transmit a message

Initialize an area lock variable

Wait for an area or port to be set to an
available state

6-12 VAXELN Toolkit Components

Routines

SET JOB ELIGIBILITY

CLEAR EVENT

ALLOCATE CLEAR HEAP
ALLOCATE HEAP
ALLOCATE MEMORY
FREE HEAP
FREE MEMORY

INSERT ENTRY
REMOVE ENTRY
START QUEUE

CREATE AREA
CREATE AREA EVENT
CREATE AREA SEMAPHORE
CREATE MESSAGE
CREATE NAME
CREATE PORT

JOB PORT

TRANSLATE NAME

ACCEPT CIRCUIT
CONNECT CIRCUIT
DISCONNECT cmCUIT

RECEIVE
SEND

INITIALIZE AREA LOCK

LOCK AREA
WAIT ALL
WAIT ANY
WAIT ALL EXPEDITED
WAIT ANY EXPEDITED

(continued on next page)

Table 6-3 (Cont.) Kernel Operations

Operation

Communication

Signal an area

Clear an event associated with an area

Delete an area, message, name, or port

Device Handling

Create a device

. Wait for a device to be set to an available state

Signal a device

Delete a device

Processes and Process States

Routines

SIGNAL
UNLOCK AREA

CLEAR EVENT

DELETE

CREATE DEVICE

WAIT ALL
WAIT ANY

SIGNAL DEVICE

DELETE

A process is a thread of program execution, which the kernel can schedule
and execute independently as part of a VAXELN job. A job represents a single
activation of a program and can be initiated automatically at system startup
or dynamically at runtime. The job consists of a master process, created
automatically at job creation to execute the program's main section of code, and
zero or more subprocesses created dynamically by the master process and other
subprocesses. While the job is active, a job's processes are always in one of
four process states: Run, Ready, Wait, or Suspended. Table 6-4 describes these
states, and Figure 6-3 illustrates valid transitions from one state to another.

Table 6-4 Process States

State

Run

Ready

Description

If its job is in the Run state, the process has control of the processor
and is currently executing.

The process is not executing but is ready to execute as soon as the
scheduler allows. When an application creates a process, the process
enters the. Ready state.

(continued on next page)

VAXELN Toolkit Components 6-13

Table 6-4 (Cont.) Process States

State

Wait

Suspended

Description

The process is waiting for a specified set of conditions to be satisfied,
such as an amount of time to elapse, an event or series of events to
occur, or a message to be received. A process enters the Wait state by
calling one of the following routines:

• WAIT ANY, WAIT ANY EXPEDITED. Wait for any of the listed
conditions to be satisfied.

• WAIT ALL, WAIT ALL EXPEDITED. Wait for all the listed
conditions to be satisfied.

o RESUME. Reenter the Wait state if the process was waiting when
it was suspended with the SUSPEND routine and the wait still is
not satisfied. Another process must issue the call to RESUME.

The process cannot reenter the Ready state until another process in the
same job reactivates the suspended process with a call to the RESUME
routine. A process can put itself or any other process in the same job
into the Suspended state with a call to the SUSPEND routine.

Figure 6-3 Process State Transitions

MLO-OO2937

6-14 VAXELN Toolkit Components

The rules for process state transitions are as follows:

• Ready is the initial state for a process.

• When a process's wait conditions are satisfied, it enters the Ready state.
If the scheduling state of the system is such that the process can run
immediately, the process enters the Run state.

• The scheduler selects a ready process to enter the Run state based on the
system's jobs and process priorities.

• A process in the Run state enters the Ready state when the process is
preempted by a higher-priority process.

• A process in the Run state enters the Wait state when the process issues
a call to WAIT ANY, WAIT ALL, WAIT ANY EXPEDITED, or WAIT ALL
EXPEDITED that blocks due to the wait conditions not being satisfied.

• If a process is in the Run or Ready state when it is suspended, it enters
the Ready state when it is resumed. If the scheduling state of the system
is such that the process can run immediately, the process enters the Run
state immediately.

• If a process is in the Wait state when it is suspended and the wait
conditions still are not satisfied when the process is resumed, it reenters
the Wait state.

• If a process was in the Wait state when it was suspended and all the wait
conditions are satisfied when the process is resumed, it enters the Ready
state. If the scheduling state of the system is such that the process can run
immediately, the process enters the Run state immediately.

Scheduling
The order in which processes enter the Run state depends on job and process
scheduling. The VAXELN kernel selects a process to run on the basis of a
preemptive, priority-scheduling scheme.

To accommodate preemptive priority scheduling, you must assign a priority
to each job and process in a VAXELN system. You set initial priorities when
you build the system, on System Builder menus, and you can change priorities
dynamically at runtime with the routines SET JOB PRIORITY, SET JOB
PRIORITY ANY, and SET PROCESS PRIORITY. Job priorities can range from
o to 31 (with 0 being the highest and 16 the default). Process priorities can
range from 0 to 15 (with 0 being the highest and 8 the default). Therefore,
within a job, processes can have 16 levels of priority, independent of the job's
priority.

VAXElN Toolkit Components 6-15

The kernel scheduler considers a job ready to execute if one or more processes
in that job are in the Ready state. Of the jobs and processes that are ready
to execute, the kernel scheduler gives preference to those with the highest
priorities. The scheduler identifies the job with the highest priority and then
selects that job's highest-priority ready process for execution. If multiple jobs
have the same highest priority, the scheduler selects the job that "has the
highest-priority ready process. The jobs in a system, whether executing or idle,
are rescheduled when one or more of a job's processes enters the Ready state.

Since process rescheduling is automatic and predictable, you can design
systems that execute without noticeable delays, even though some programs
may sit idly while others execute.

In loosely or closely coupled multiprocessing configurations, each processor
executes its own copy of a VAXELN system image, with its own kernel, system
components, and program images. Single-processor scheduling rules are
applied separately on each processor participating in these configurations to
schedule jobs and processes.

However, in a tightly coupled symmetric multiprocessing configuration,
application components running on different processors share a single copy
of the VAXELN system image, including the kernel, system components, and
program images. The kernel schedules all processors participating in the
configuration, selecting a ready job to run on each available processor. Once a
job begins to run on a processor, all its processes run on that processor also;
later, the job can run on another processor. If a job is eligible to run on only a
subset of the processors configured for the system, the kernel ensures that the
job and its processes run on those processors only. The scheduling of a job for a
particular processor may preempt the processor's execution of a lower-priority
job.

Initially, a job is eligible to run on any processor configured for the system.
A job can alter its eligibility while executing by calling the SET JOB
ELIGIBILITY routine. This mechanism lets you fine tune applications to
gain maximum perlormance.

Memory Management
The VAXELN kernel uses VAX. memory management hardware to map a
VAXELN system into a processor's virtual address space. Figure 6-4 illustrates
a typical mapping of virtual address space for a single activation of a program
image.

6-16 VAXELN Toolkit Components

Figure 6-4 Memory Allocation

SYSTEM
REGION

SO

Kernel Image

Program 1 Image

Program 2 Image

Program n Image

Shareable
Runtime Image

Dynamic Memory

PROGRAM { REGION

PO

Global Data

Program Image

Dynamic Memory

Subprocess n
Local Data

Master Process Code

Subprocess 1 Code

-< Subprocess 2 Code

Subprocess n Code

{

Job Context Page

Job Heap Data

Job Message Buffer

P1
f User Stack

t----l~ -< No Access Page

l Kernel Stack

Process Context Page

CONTROL Master Prooess
REGION Local Data

MLO-003136

When you load and boot a VAXELN system onto a target processor, the kernel
maps the system image (including kernel, program, and shareable runtime
images) into SO virtual address space (the system region).

When the kernel creates a job, it creates a PO page table and maps the job's
program image, global data, and message buffers into PO virtual address space
(the program region). If multiple jobs in a system use the same program
image, the kernel maps the image's global read/write data to each job's PO
address space and lets all jobs share the same read-only code and data.

The kernel uses PO virtual address space for static variables and message text.
Also, the kernel maps the context of open file variables into PO address space
so that the runtime libraries can use the variables for their data structures on
a jobwide basis.

VAXELN Toolkit Components 6-17

A job's processes share its PO page table and PO address space. Thus the
processes can access the same job-level data. The processes can coordinate
their access to this data by using synchronization techniques.

In addition to setting up static memory mapping, the kernel manages the
data associated with dynamically created processes. "When the kernel creates
a process, it creates a PI page table and maps a kernel stack into PI virtual
address space (the control region). If a job is running in user mode, the kernel
maps a user stack into that address space also. Each process in ajob, including
the master process, has its own stacks that store process-specific data, such as
local variables and procedure call frames.

The kernel uses PI virtual address space exclusively for dynamic memory;
PI address space does not map any part of the job's program image. Kernel
routines and kernel mode programs use the fixed-sized kernel stack. The
kernel expands the user stack as necessary, enabling programs to start out
with minimal stack space. This feature saves space that might be wasted if .
memory were preallocated ..

Your application programs can control memory allocation directly by calling
language-specific routines, such as the Pascal NEW and DISPOSE procedures;
memory allocating utility routines ALLOCATE CLEAR HEAP, ALLOCATE
HEAP, and FREE HEAP; and kernel routines that allocate and free PO, PI,
and SO address space.

Process Synchronization
In addition to performing scheduling and memory management tasks, the
kernel coordinates operations on kernel data structures, including process
synchronization. Process synchronization is a mechanism for coordinating
the concurrent execution of two or more processes within a job or in different
jobs. Processes must be synchronized when they share a resource or when
they depend on the completion of another process's execution. The ability of a
process to gain sole access to a shared resource is called mutual exclusion. The
ability of a process to coordinate its activities with completion or other actions
of other processes is called event response.

To attain mutual exclusion or coordinate event response, processes wait for one
or more conditions to exist. Conditions for which a process might wait include:

• A specific date and time

• A period of time to expire

• Another process to terminate

• A semaphore or mutex to be signaled

~18 VAXELN Toolkit Components

• An event to occur

See Table 6-3 for a list of process synchronization operations.

Communication Between Processes and Between Jobs
Processes and jobs exchange information by applying interprocess and inteIjob
communication techniques.

Different communication mechanisms are available for processes and jobs.
Processes in the same job communicate by using module-level data (global
data) and queues. Jobs communicate by passing messages and sharing areas
of memory. Message-passing allows jobs to communicate whether or not they
execute on the same node; sharing memory areas restricts communication to
jobs executing on the same node.

Sharing Module-Level Data A job's processes can communicate by sharing
module-level data: constants and variables that you declare outside routines.
Module-level data is static; the kernel makes it available to all processes
in a job by mapping the data in the job's PO virtt;lal address space. Since
concurrently executing processes compete for the module-level data, you control
access by using semaphores and mutexes.

Processes can also share local data (data declared within a routine) by passing
the data or data pointers as arguments to routines and other processes. The
kernel stores this data in process-specific PI virtual address space.

Sharing Packets of Data Using Queues In addition to sharing module-level
data, a job's processes can communicate by using queues. Queues provide
an efficient, highly structured means for a job's processes to exchange large
packets of information.

VAXELN provides the predeclared data types and routines you need to create
and maintain queue structures. The routines for inserting and removing queue
entries use VAX. machine instructions specifically designed to synchronize
queue operations automatically. Thus two processes can access a queue
simultaneously: One can insert an entry while the other removes an entry.
An application can use semaphores or mutexes to indicate the queue's state
transitions (empty to nonempty and full to nonfull).

Passing Messages A message is a block of contiguous bytes of memory that
is transmitted between processes in the same or different jobs. The kernel
maps message data into a job's unique, protected PO virtual address space,
making the data available to all processes in that job. Within a single system,
the kernel uses VAX. memory management hardware to distinguish the virtual
address space for each job. Within a local area network (LAN), the virtual
address space for each job resides in the memory of its system, which might be
a different target system. By passing messages, the jobs in a VAXELN system

VAXELN Toolkit Components 6-19

can use the. same mechanism to share data efficiently and transparently in
both single-processor and multiprocessor configurations.

Processes send messages to and receive messages from system-maintained
queues called ports. The ports in a system store messages that are waiting
to be received. Calls to the CREATE PORT routine create ports dynamically
and associate them with unique port identifiers that can be used throughout
the application: within the creating job, within other jobs on the same node, or
within jobs on other network nodes.

To facilitate inteIjob communication and to make the distribution of
applications across LAN nodes transparent, you can use the CREATE
NAME ,routine to associate port identifiers with port names. When ports
are associated with names, a process can call the TRANSLATE NAME routine
to look up a name in a table. Then the process can use the returned port
identifier to communicate with other processes and jobs. Port names can be up
to 31 characters long and can be either local or universal. Local port names
are known only to processes and jobs on the node on which they are created.
Universal port names are known to processes and jobs on all nodes in the LAN.

VAXELN systems can pass messages by using datagrams or virtual circuits.
The datagram method, which uses the DECnet-VAX datagram, requires
no explicit connection sequence and provides fast communication with low
overhead. The datagram method cannot guarantee message delivery or
sequence, but the probability of received messages being correct is extremely
high. Using datagrams, a process can obtain the identifier of any named port
in the system, whether the port is on the same node or on a different node on
the Ethernet.

The virtual circuit method, which uses the network services protocol within
the VAXELN DECnet Service, is the preferred method for VAXELN systems
to pass messages. Virtual circuits require two ports, usually in different jobs,
to be connected as a pair. Despite the overhead of setting up and handling a
virtual circuit connection, circuits offer the following advantages:

• Guaranteed delivery and sequence

• Flow control

• Message size not limited by the underlying physical media characteristics
due to automatic message segmentation and reconstruction

When a job sends a message to another job on the same node, the kernel
simply unmaps the message buffer's address from the sending job's virtual
address space and maps the address to the receiving job's address space. If the
jobs are on different Ethernet nodes, the VAXELN DECnet Service transports
the data across the network and places it in the receiving job's virtual address

6-20 VAXELN Toolkit Components

space. (Network configurations limit datagram message size to the maximum
imposed by relevant network devices.)

Sharing Memory Areas Jobs executing on the same node can communicate by
sharing an area, a common region of physically contiguous memory. Each job
that shares an area must identify it by declaring an area object and specifying
the same area identifier in a call to one of the following routines:

CREATE AREA
CREATE AREA EVENT
CREATE AREA SEMAPHORE

The kernel maps the associated physical memory to each job's virtual address
space. The first job that calls one of these routines creates the area and
an associated event or semaphore that controls access. Subsequent calls to
the routine let other jobs gain access to the area. You synchronize access to
the area by specifying the area in calls to the WAIT, SIGNAL, and CLEAR
EVENT routines. Using the LOCK AREA and UNLOCK AREA routines, jobs
synchronize access to the area without issuing a wait. A job executes a wait
operation for an area only if the area is already locked.

Device Handling
The kernel also provides routines for handling devices and device interrupts.
Using the device kernel object and the associated kernel routines, you can
write sophisticated device drivers for external hardware devices, such as
sensors, analog-to-digital converters, array processors, communication lines,
and robots. Section 6.2.5 discusses device drivers in more detail.

exception Handling
To achieve realtime performance, VAXELN systems must respond to exceptions
without significant delay. An exception is a hardware or software event
that changes the normal flow of a . program's execution synchronously or
asynchronously. Synchronous exceptions occur at predictable points during a
program's execution (for example, dividing by zero). In contrast, asynchronous
exceptions result from unpredictable events, such as power failures. Table 6-5
lists examples of exception types according to their hardware or software
origin.

VAXELN Toolkit Components 6-21

Table 6-5 Types of Exceptions

Exception Source

Hardware

Software

Exception Type

Division by zero
Integer overflow
Nonexistent memory addressing
Power failure

Signal sent to a process
Pascal range violation
Error opening a disk file
Runtime error that the kernel detects

VAXELN application programs can handle a variety of exceptions by checking
status codes or by using exception handlers. You have the option of specifying
a status argument in kernel and utility routine calls. By checking whether
the argument's return value is odd (success) or even (failure), a program can
determine whether an operation succeeds or fails.

If you include VAXELN message object modules when you compile and link a
program, you can also check for specific exception conditions. The message
modules associate status codes with symbols. In your program, you can
compare these symbols with the status codes that routines return to their
status arguments.

When an exception condition occurs, the action taken depends on whether you
establish an exception handler or include a debugger in the system.

• If you establish an exception handler, it takes control and appropriate
action.

• If you do not establish an exception handler and you include debugger
support in your system, the debugger takes control when an exception
occurs.

• If you do not establish a handler and you do not include debugger support,
the kernel deletes the process that caused the exception.

The VAXELN Toolkit provides routines that you can use to create exception
handlers for conditions that require more extensive handling than status
code checking. For example, before you create an exception handler in a
Pascal program, you declare the handler as a function of type EXCEPTION_
HANDLER. Once you declare the handler, you can use exception-handling
routines to perform the operations listed in Table 6-6.

6-22 VAXELN Toolkit Components

Table 6-6 Exception-Handler Operations

Operation

Establish a function as a block's
exception handler

Disable exception handlers

Prevent the delivery of asynchronous
exceptions to a calling process

Allow the delivery of asynchronous
exceptions to a calling process

Raise an exception in the calling process

Raise the asynchronous exception KER$_
PROCESS_ATTENTION in a process

Unwind an exception handler's call stack

Get text associated with a status code

6.2.2 VAXELN POSIX Runtime Library

Routine

ESTABLISH

REVERT

DISABLE ASYNCH EXCEPl'ION

ENABLE ASYNCH EXCEPl'ION

RAISE EXCEPTION

RAISE PROCESS EXCEPTION

UNWIND

GET STATUS TEXT

The VAXELN POSIX runtime library lets you develop and run portable
applications in a POSIX environment. The POSIX standards and drafts
support the concept of open systems.

The VAXELN Toolkit includes limited support for the following POSIX
standards and draft standards:

• POSIX 1003.1-1990

• P1003.41D11

• P1003.4a1D4

The POSIX Characteristics Menu on the System Builder menu lets you select
some POSIX characteristics, such as the round-robin interval.

VAXELN POSIX applications that call VAXELN routines must be linked with
both the VAXELN POSIX and VAXELN C runtime libraries. The PSXSHARE
and CRTLSHARE runtime libraries contain pointers to shareable images and
should be linked with your VAXELN application.

VAXELN Toolkit Components 6-23

POSIX 1003.1-1990
The POSIX 1003.1 (interface) standard defines a set of functions for use in
application programs that use the C programming language. The use of the
POSIX 1003.1 standard in an application promotes application portability
among systems that support the POSIX 1003.1 standard. POSIX 1003.1
includes: some functions that are identical to ANSI C functions; some functions
that use the same syntax as ANSI C functions, but operate slightly differently
in the POSIX environment; some functions that are unique to POSIX.

POSIX 1003.4/011
The P1003.4ID11 (realtime) standard defines a set of functions that can be
used in the design and creation of realtime applications in the VAXELN POSIX
environment. These functions facilitate realtime application development in
the following areas:

• Process synchronization

• Communication between processes

• Process memory locking

Process Synchronization Using VAXELN POSIX
Using synchronization techniques and restrictions on resource access ensures
that critical and noncritical activities execute at appropriate times with the
necessary resources available. The following table lists the synchronization
functions available in the VAXELN POSIX runtime library.

Synchronization

Binary semaphores

Clocks and timers

Priority scheduling

Header File

<binsem.h>

<time.h>

<sched.h>

Purpose

Restricts access to resources

Arms and disables timers

Sets process priority and the
scheduling policy

Binary Semaphores A binary semaphore is a synchronization mechanism
used to control access to systemwide resources. With VAXELN POSIX binary
semaphores, you can create and remove persistent and nonpersistent binary
semaphores. You can also release, wait for, and lock binary semaphores. Each
action on a semaphore requires an explicit function call and is under the
control of the application programmer.

Semaphores are used by cooperating processes to synchronize access to
resources, such as shared memory. Semaphores can protect resources such
as global variables, hardware resources, and the kernel from uncontrolled
access.

6-24 VAXELN Toolkit Components

Semaphore protection works only if al! communicating processes using the
shared resource cooperate by waiting for the semaphore when it is unavailable
and resetting the semaphore count when relinquishing the resource. For
cooperating tasks, semaphores are mutual exclusion flags that lock and unlock
a resource.

Clocks and Timers Realtime clocks and timers allow an application developer
to synchronize and coordinate activities according to a predefined schedule.
The systemwide clock (CLOCK_REALTIME) provides the timing base for per­
process timers. VAXELN POSIX clock and timer functions allow you to retrieve
and set the systemwide clock, suspend execution for a period of time, provide
high-resolution timers, and use asynchronous event notification. Realtime
timers are created, armed, and removed by the application programmer.

Realtime timers allow the application to set timers based on either absolute
or relative time. Furthermore, VAXELN POSIX timers can fire as either a
one-shot or periodic timer. The application creates timers in advance, but the
timers can be manipulated according to the needs of the realtime application.
Some applications may require only one or two timers; others may require
multiple timers within a single process.

Priority Scheduling The scheduler determines how CPU resources are
allocated to executing processes. Each process has a priority that associates
the process with a run queue. Although each process starts out with an initial
priority, that priority can change as the application executes.

Priority scheduling gives an application programmer control over the execution
sequence of processes that comprise an application. Priority scheduling also
addresses the need for a realtime process to execute when it needs to and for
as long as it needs to.

The system maintains a list of runnable processes at each priority level. Each
process list has a priority value ranging from PRIO_MIN to PRIO_MAX. A
process in a list with a high priority value executes before a process in a list
with a low priority value.

A scheduling policy is the algorithm that determines how processes are placed
on the process list and when processes execute. Whatever the scheduling
policy, the process at the head of the process list with the highest priority level
executes first.

VAXELN POSIX supports two scheduling policies: first-in, first-out (FIFO) and
rOWld-robin (RR). These two scheduling policies determine how the process lists
are managed, the order of the process lists, and when processes of different
priorities can execute.

VAXELN Toolkit Components 6-25

Table 6-7 categorizes synchronization functions arid lists the corresponding
VAXELN POSIX functions.

Table 6-7 VAXELN POSIX Process Synchronization Functions

Operation

Make a binary semaphore special file or
determine the number of semaphores in a set

Open, close, and destroy a binary semaphore

Wait (or conditionally wait) for a binary
semaphore

Release a binary semaphore

Get or set the value of the systemwide clock, get
the resolution of the clock

Get or set the clock drift rate

Allocate or free a per-process timer, get the value
or overrun of the per-process timer

Arm a per-process timer absolutely or relatively

Get or set the priority of a process, get the
maximum or minimum priority allowed

Get or set the scheduling policy

Get the quantum allowed for round robin
scheduling

Yield to another process

Functions

sem_mksem
sem...,getnsems

sem_open
sem_close
sem_destroy

sem_wait
sem_ifwait

sem-post

clock...,gettime
clock_settime
clock...,getres

clock...,getdrift
clock_setdrift

timer_create
timer_delete
timer...,gettime

timer_settime

sched...,getparam
sched_setparam
sched...,get-priority _max
sch~d...,get-priority _min

sched...,getsched~er
sched_setscheduler

sched...,get_rr_interval

sched-Yield

Communication Between Processes Using VAXELN POSIX
Communication is a way of isolating or controlling different levels of
functionality within an application. Using communication between processes,
you can synchronize independently executing processes by passing data
within an application. Processes can pursue their own tasks until they must
synchronize with other processes at some predetermined point. "When they
reach that point, they wait for some form of communication to occur. The
following table lists the types of communication functions available in VAXELN
PO SIX..

6-26 VAXELN Toolkit Components

Communication

Signals

Shared memory

Header File

<signal.h>

<mman.h>

Purpose

Allows two or more processes to
communicate through signals

Allows two or more processes to
share the same address space

Signals The signal interface is a traditional form of communication and
is generally used to notify processes that something has happened in one
process that affects another process. Signals are a way of passing data within
an application when the application must respond to an application-defined
occurrence; Signals are often sent asynchronously; that is, the receiving
process cannot predict when a signal will arrive. The application must contain
code to take action once the signal is received. The action can be to terminate
the process, ignore the signal, or catch the signal and respond appropriately.

Signals provide a means to communicate among a large number of processes,
but communication is limited to a signal number. Signals use a data structure,
making signal delivery asynchronous, fast, and reliable.

-Signals do not pass data, do not identify the sending process, and are not
prioritized. Nevertheless, signals are used by realtime timers and other events
to trigger the start of a signal handler once the signal is received.

VAXELN POSIX signals use the POSIX 1003.1 signals functions as well as the
P1003.4ID11 realtime signal functions.

Shared Memory The use of shared memory allows multiple processes to share
data because a region of memory is mapped into each process's address space.
Use of shared memory among processes provides faster data access.

You can allocate as little memory as possible for each process or allocate one
large region and manage it within the application. Shared memory can be
created as persistent or nonpersistent, mapped and unmapped, linked and
unlinked, or closed.

Table 6-8 lists communication operations and the corresponding VAXELN
POSIX functions.

VAXELN Toolkit Components 6-27

Table 6-8 VAXELN POSIX Communication Functions

Operation

Send a signal

Suspend the calling process until a signal is
delivered

Store a set of pending signals, poll for queued
events

Queue a signal to a process

Wait for queued realtime signals

Examine or specify the action of a signal

Open and unlink a shared memory object

Locking Memory

Functions

kill
sigsend

pause
sleep
nanosleep
wait
waitpid

sigpending
sigpoll

sigqueue

sigwaitrt
sigtimedwait

sigaction

shm_open
shm_unliDk

VAXELN PO SIX applications do not require explicit use of memory-locking
functions because applications are automatically locked in memory. There is no
paging or swapping in VAXELN POSIX applications.

However, to make your application portable to other environments, you may
need to use the POSIX memory-locking fanctions. Although the calls to these
functions do not affect the performance of an application, the software checks
the syntax of the calls.

Table 6-9 lists the VAXELN PO SIX memory-locking functions.

Table 6-9 VAXELN POSIX Memory-Locking Functions

Operation

Lock and unlock a specified memory region

Lock and unlock all memory mapped by the
address space

6-28 VAXELN Toolkit Components

Functions

mlock
munlock

mlockall
munlockall

POSIX 1003.4a/04
The PI003.4a1D4 (threads) standard defines a set of thread fWlctions that can
be used in the design and creation of multithreaded realtime applications in
the VAXELN POSIX environment.

A thread is a single, sequential flow of control within a program. Within a
single thread, there is a single point of execution. In a multithreaded program,
threads execute concurrently with multiple points of execution. Since threads
execute within a single address space, threads can read and write to the same
shared memory locations. Therefore, thread usage must be synchronized
through such elements as mutexes and condition variables to ensure that
shared memory is accessed appropriately.

On single-processor systems multiple threads can improve application
performance by overlapping I/O operations with computational operations.

Threads can improve the performance of slow devices such as disks, networks,
terminals, and printers. A multithreaded program can perform useful work
while waiting for the device to complete its next event (such as a disk transfer
or the receipt of a packet from the network).

VAXELN POSIX provides a full complement of threads functions. These
fWlctions perform the following types of tasks:

• Create, delete, and determine thread attributes

• Create, delete, and determine thread mutex attributes

• Set or retrieve the scheduling policy or priority of a thread

• Create, initialize, wait for, or delete condition variables

• Perform specific or global locks

• Cancel or delay thread execution

• Notify the scheduler of a yield

• Perform cleanup operations

6.2.3 KAV30 Runtime Library
With the KAV30, you develop applications on a VMS host system using the
VAXELN Toolkit and high-level languages and runtime libraries such as Ada,
VAX. C, VAX FORTRAN, and VAXELN Pascal. The application is built into a
VAXELN runtime system, downline loaded into a KAV30 target via Ethernet,
or booted from SCSI disk or EPROM. The VAXELN Toolkit runtime libraries
contain the language bindings to use these languages with the KAV30.

VAXELN Toolkit Components 6-29

The KAV30 module allows you to have a common distributed VAX architecture
extending from the mainframe to the VMEbus. Being on the VMEbus makes
the KAV30 well suited for industrial front end solutions where a broad selection
of readily available sensor interfaces and I/O options is required. Over 4000
VME modules are available from more than 400 suppliers.

The VAX architecture, when combined with the powerful software development
and runtime environment provided by the VMS host system and the VAXELN
Toolkit, significantly reduces product development times. Applications,
including device drivers, are developed in high level languages with compilers
common between host and target. Extensive networking and integration
capabilities are provided using DECnet and TCP/IP protocols.

The VAXELN kernel for the KAV30 has the following capabilities:

• Asynchronous system trap processing. VAXELN applications can
incl ude device drivers for the devices on the VMEbus or VSB that interact
with the KAV30. These device drivers contain code to call AST routines to
handle intelTUpts.

• Timers. There are five 32-bit timers and two I6-bit timers on the KAV30.
One I6-bit timer is a watchdog timer while the other one is the local bus
timeout timer.

• Calendar/clock. The calendar/clock maintains the time and date in units
as small as one-hundredths of a second. This programmable calendar/clock
can be used to set alarms and timers in several different formats. The
timesave RAM stores the contents on the clock in the event of a power
failure.

• FIFO buffers. Four independently operating FIFO buffers enable
intelligent devices on the VMEbus to exchange data with the KAV30.

• Battery backed-up RAM. The battery backed-up RAM allows you to store
critical information in the event of a system or power failure.

• Scatter-gather map. The scatter-gather map (SGM) allows the KAV30 to
use a master/slave model to access devices on the VSB or VMEbus.

• Ability to communicate with VMEbus devices. A KAV30 can
communicate with VMEbus devices by using shared memory or by
exchanging data through the FIFO buffers.

• Error logging support. The KAV30 kernel logs errors for timeouts, bus
errors, invalid SGM entries, or SGM access violations.

The VAXELN KAV30 system services allow you to perform the following tasks:

• Initialize the KAV30

6-30 VAXELN Toolkit Components

• Establish and control access to the devices on the VSB and VMEbus

• Establish and control the KAV30 FIFO buffers

• Establish and control the calendar/clock and counter/timers

• Exchange data with the VSB and VMEbus devices

• Read and write RAM on the KAV30

• Collect error information from the RAM

• Use ASTs in user-written device drivers

• Interrupt another VMEbus device

The VAXELN system service names for the KAV30 begin with KAV$. The
exception is services in VAX Ada. Because the dollar sign ($) is not part of the
VAX Ada character set, KAV30 kernel services in VAX Ada have the facility
prefix KAV_,

Table 6-10 summarizes the VAXELN system service routines for the KAV30,

Table &-10 KAV30Routine Summary

System Service

KAV$BUS_BITCLR

KAV$BUS_BITSET

KAV$BUS_READ

KAV$BUS_ WRITE

KAV$CHECK_BATTERY

KAV$CLR_AST

KAV$DEF _AST

KAV$FIFO_READ

KAV$FIFO_WRITE

Description

Clears the bits at a VSB or VMEbus address

Sets the bits at a VSB or VMEbus address

Reads the contents of a VSB or VMEbus address

Writes data to a VSB or VMEbus address

Checks the power supply to the RAM and the
calendar/clock

Clears a device's AST queue

Creates an AST control block for an event

Reads data from a KAV30 FIFO buffer

Writes data to a KAV30 FIFO buffer

KAV$GATHER_KAV _ERRORLOG Reads error log information from the KAV30 RAM

KAV$IN_MAP Maps a 64 Kbyte page of VMEbus address space to
the KAV30 process address space

KAV$INT_VME

KAV$LIFO_ WRITE

Generates vectored VMEbus interrupts

Writes data to a KAV30 LIFO buffer

(continued on next page)

VAXELN Toolkit Components 6-31

Table 6-10 (Cant.) KAV30 Routine Summary

System Service

KAV$NOTIFY_FIFO

KAV$QUE_AST

KAV$RTC

KAV$RW _BBRAM

KAV$SET_AST

KAV$SET_CLOCK

KAV$TlMERS

KAV$UNMAP

6.2.4 VAXELN Runtime Libraries

Description

Delivers an AST when a specified event occurs in a
KAV30 FIFO buffer

Maps KAV30 system I/O space to the VSB or
VMEbus address space, in 64 Kbyte pages

Queues an AST for delivery to a process

Performs realtime clock functions, using the KAV30
calendar/clock

Reads or writes the KAV30 RAM

Places an entry in the AST queue for a device

Sets the KAV30 system clock and the calendar/clock

Sets a counter/timer and delivers and AST when
the timer interval expires

Unmaps VMEbus address space from KAV30
system RAM or unmaps the KAV30 system RAM
from .the VMEbus address space

Configures the VSB and VMEbus interrupt delivery
mechanism

The VAXELN Toolkit supplies runtime libraries for linking with VAXELN
Pascal, VAX C, and VAX FORTRAN object modules. The libraries are
organized into object module and shareable image libraries so you can
customize the runtime support for your system images. Depending on the
libraries you link with your program object modules, a system image can
include:

• Program images that share one copy of runtime routine· code

• Program images that use local copies of runtime routine code

• A combination of images that share routine code and images that use local
routine code

6-32 VAXELN Toolkit Components

6.2.5 Device Drivers
Realtime applications require fast, predictable response to service external
devices, such as sensors, communication lines, and robots. VAXELN systems
meet this requirement by using device drivers that minimize overhead and
maximize the VAX processor's speed and responsiveness.

Device drivers are programs that control communication between application
programs and external devices. In the case of realtime applications, most
external devices are interrupt driven; they communicate with the application
only· when they need service. A device requests service by sending an interrupt
signal to the processor. The processor recognizes the signal, stops what it is
doing, and services the request by executing a block of the application's code
called an interrupt service routine (ISR).

Once you decide on your application's device requirements, you build the
relevant devices and drivers into your VAXELN system by specifying device
characteristics on the System Builder's Device Description Menu. (The System
Builder is discussed in Section 6.1.3.)

The VAXELN Toolkit simplifies VAX device support with the following facilities:

• Pregenerated drivers for commonly used devices

• Virtual-memory driver for RAM disk support

• Support for writing drivers, including the ISRs, in high-level languages

• High-level language device driver templates you can use for writing your
own device drivers

The next sections provide information about the following:

• VAXELN device support

• Small Computer System Interface (SCSI) driver

• Virtual-memory driver

• Software for developing application-specific drivers

VAXELN Device Support
The VAXELN Toolkit supplies device drivers that you can include in your
VAXELN systems. These drivers provide support for a variety of disk, tape,

. printer, terminal, Ethernet, and realtime devices.

Realtime device support includes a collection of object modules that reside
in the RTLOBJECT module library and corresponding source code. The
object modules define routines for interfacing with the supported realtime
devices. You add realtime device support to a VAXELN system by including

VAXELN Toolkit Components 6-33

the appropriate module in one of the system's application programs and linking
that program with the RTLOBJECT library.

The toolkit supplies the source code for a number of the supplied realtime
device drivers. You can use the supplied source code as templates while writing
your own drivers.

For lists of the bus devices currently supported by the VAXELN Toolkit, see
the VAXELN Toolkit System Support Addendum (SSA) or Software Product
Description (SPD).

Small Computer System Interface Driver
The VAXELN Toolkit provides a driver image that supports the American
National Standards Institute, Small Computer System Interface (SCSI) devices
on realtime systems. The image includes a disk class driver and a generic class
driver.

For lists of the class drivers currently supported by the VAXELN Toolkit, see
the VAXELN Toolkit System Support Addendum (SSA) or Software Product
Description (SPD).

The generic class driver provides an interface for all other types of SCSI
devices, such as scanners, optical devices, test equipment, and medical devices.

VAXELN application programs can use a supplied message interface to
communicate with the generic class driver.

You can use the VAXELN SCSI driver image for third-party SCSI devices that
attach to realtime systems. The disk class driver supports direct-access and
CD-ROM devices, whereas the generic class driver provides an interface for all
other devices.

You can also combine a user-written SCSI class driver with the supplied
VAXELN SCSI port driver to produce a vendor-specific VAXELN SCSI driver
image. Then you can build that image into a VAXELN system.

___________________________ Note

The American National Standard for Information Systems-Small
Computer System Interface-2 (SCSI-2) specification allows flexibility
for some device implementation details and omits other details. Thus
implementations of the SCSI standard may differ from manufacturer
to manufacturer and from device to device. Although you can use
third-party devices with the VAXELN SCSI disk class driver, the
VAXELN Toolkit does not necessarily support such devices.

6-34 VAXELN Toolkit Components

Digital does not guarantee that third-party devices that currently run
with the supplied class driver will continue to run under subsequent
releases of the VAXELN Toolkit.

The American National Standard for Information Systems-Small
Computer System Interface-2 (SCSI-2) specification should be the
official guide to what a third-party device implements.

To ensure that your third-party device will work properly in a
VAXELN environment, Digital encourages the use of an established
and supported VAXELN interface.

You can use the following facilities to build third-party SCSI device support
into VAXELN systems:

• VAXELN SCSI disk class driver

• VAXELN SCSI generic class driver message interface

• A user-defined class driver that communicates with the VAXELN SCSI port
driver

The application designer must decide which method to use for a particular
SCSI device application. The designer should consider the SCSI device's
capabilities, user needs, and available programming resources.

For more information about Digital's implementation of the American National
Standard for Information Systems-Small Computer System Interface-2 (SCSI-
2) specification and how to use the implementation to develop SCSI peripheral
devices that are currently available through Digital, see Small Computer
System Interface: An Overview and Small Computer System Interface: A
Developer's Guide.

Virtual-Memory Driver
The VAXELN Toolkit's virtual-memory driver (VMDRIVER) lets you create a
virtual· disk structure in system memory and use the memory as you would an
actual disk drive. You can use the virtual disk structure as a scratch disk for
the life of the system. Multiple readers and writers can share the disk, and it
can participate in network file operations.

The VMDRIVER runs as a job in a VAXELN system. You build the driver
into a system by entering the driver's characteristics on the System Builder's
Program Description Menu.

The memory pages used for the VM disk are allocated from contiguous
addresses in system virtual address space. Therefore, once the disk is
initialized, you cannot extend it.

VAXELN Toolkit Components 6-35

Customized, Application-Specific Device Drivers
The VAXELN Toolkit provides a highly productive environment for developing
application-specific device drivers. You can implement drivers in VAX Ada,
VAX C, VAX FORTRAN, or VAXELN Pascal; you have the option of
customizing existing driver code.

You can design a device driver so that it executes as an independent job or
as part of a user job. As an independent job, a device driver is a shareable
resource available to all program images in a system. Such a driver might
support a single unit, such as a line printer, or it might function as a server
supporting multiple units.

A driver that is part of a user job might be a process within the job or a
collection of subroutines. Such a driver reduces overhead by eliminating job
context switching, but only processes in the job that includes the driver can use
it.

A VAXELN device driver executes concurrently with the jobs that use the
related device. The driver's activity depends on the characteristics and actions
of the device it controls. However, you program a driver's general interface by
declaring a variable of type DEVICE (which represents the hardware device)
and an ISR. You then specify these constructs in routine calls to perform the
operations listed in Table 6-1l.

A driver's ISR provides a fast, customized interface for handling device
interrupts and power recovery. When an interrupt occurs, the kernel executes
a maximum of two machine instructions on a single processor system; then
it calls the ISR. to service the device. While servicing the device, the ISR
communicates with the driver code by sharing an area of memory called the
communication region. The driver establishes this region when it creates the
device object. When the ISR finishes servicing the device, it unblocks a waiting
driver process by calling the SIGNAL DEVICE kernel routine.

Table 6-11 Device-Handling Operations

Operation Routine

Associate a device with an ISR and a driver program CREATE DEVICE

Read data from a device's control status register (CSR) READ REGISTER
or data buffer

(continued on next page)

6-36 VAXELN Toolkit Components

Table 6-11 (Cont.) Device·Handling Operations

Operation

Write data to a device's CSR or data buffer

Cause a process to wait for an ISR to service a device
interrupt

Indicate that the ISR has finished servicing an
interrupt

Routine

WRITE REGISTER

WAIT ALL
WAIT ALL EXPEDITED
WAIT ANY
WAIT ANY EXPEDITED

SIGNAL DEVICE

Depending on your target configuration, a driver program can use either
the DISABLE INTERRUPT and ENABLE INTERRUPT routines or the
LOCK DEVICE and UNLOCK DEVICE routines to synchronize access to
the communication region. You use DISABLE INTERRUPT and ENABLE
INTERRUPT if your target is a single processor or if it is a VAX. 8800
multiprocessor. You use LOCK DEVICE and UNLOCK DEVICE if your target
configuration includes a multiprocessor that lets devices interrupt on any
processor, such as a VAX. 6000 series multiprocessor.

For a driver job to use DISABLE INTERRUPT on a VAX. 8800 multiprocessor,
the job must be running on the processor that handles the device's interrupts.
The driver sets this up automatically when an application creates the device
object. If a driver does not use DISABLE INTERRUPT, it can use the SET
JOB ELIGIBILITY routine to make the job eligible to run on other processors.
If necessary, an application can request specific processor eligibility at runtime
by issuing a call to the SET JOB ELIGIBILITY routine.

6.2.6 Network Communications Services
The VAXELN Toolkit includes EthernetlIEEE 802 datalink drivers for
supported network devices. Each of the datalink drivers supports the VAXELN
EthernetlIEEE 802 Datagram Service, VAXELN DECnet Service, and VAXELN
Internet Services.

• The Datagram Service provides an interface that VAXELN systems can
use to communicate with other types of systems using system-independent
communications protocols.

• The DECnet Service routes messages sent between two DECnet LAN
nodes, manages VAXELN universal names for the LAN, and furnishes a
runtime interface for managing DECnet on the local node.

VAXELN Toolkit Components 6-37

• The Internet Services provide an Ethernet network interface that VAXELN
systems can use to communicate with other applications in an Internet
network.

The datalink drivers also provide security and local area transport (LAT)
support. Security is furnished through the Authorization Service, which
maintains a database of authorized users and identifies users that issue
network requests. LAT host services let VAXELN systems communicate with
devices attached to terminal servers.

The VAXELN datalink drivers support one or more Ethernet controllers in
a system. VAXELN systems can include multiple Ethernet controllers of the
same type and can participate in homogeneous or heterogeneous networking
environments. Although DECnet software can run on only one controller at a
time, you can implement other private EthernetlIEEE 802 protocols that can
run on all available controllers. For example, if your system is configured with
two Ethernet controllers, DECnet can operate over one of the controllers while
both controllers are used for private EthernetlIEEE 802 protocols.

Ethernet/IEEE 802 Datagram Service
The VAXELN EthernetlIEEE 802 Datagram Service enables VAXELN systems
to communicate with other types of systems over a Carrier Sense Multiple
Access/Collision Detect (CSMAlCD) LAN. Using the service's network interface
routines, you can program system-independent communications protocols that
your VAXELN application can use to communicate in such environments.
VAXELN application programs can use the routines to do the following: .

• Retrieve the CSMAlCD LAN configuration

• Retrieve Ethernet controller attributes

• Connect and disconnect an EthernetlIEEE 802 protocol

• Transmit and receive messages over the CSMAlCD LAN

DECnet Service
The DECnet Service controls message transmission between DECnet network
nodes, manages a network name table, and provides an interface for managing
DECnet on the local node. You configure a DECnet Service for each target
node using DECnet software in a multinode application. The DECnet Service
preserves the methods for sending and receiving messages, whether jobs
communicate on the same node or between nodes; data transmission across
network nodes is transparent to your programs.

6-38 VAXELN Toolkit Components

oeCnet Service Protocols The DECnet Service employs the following Phase
IV DECnet protocols:

• Routing protocol

• Network services protocol (NSP)

• Session control protocol (SCP)

• Data access protocol (DAP)

The routing protocol routes system-level datagrams between VAXELN
nodes and other DECnet nodes. The NSP and SCP support transparent
application-level circuits that are connected to remote nodes.

The VAXELN runtime software uses DAP in most communication tasks within
an application. For example, console and disk 110 use DAP as their highest­
level interface. All VAXELN disk, tape, and terminal drivers have DAP front
ends to facilitate transparent multiprocessing in LAN configurations.

In addition, VAXELN uses direct device access (DDA) to perform 110 functions
that the DAP architecture does not define. DDA provides an interface for
disk and serial-line read and write operations. This protocol also provides
an interface for dynamically setting serial-line characteristics, setting serial
lines to the spacing state, monitoring the use of out-of-band characters, and
controlling modem signals.

MessageTransmission The DECnet Service uses Phase IV DECnet
protocols to add transparent network extensions to the message-passing
kernel routines ACCEPT CIRCUIT, CONNECT CIRCUIT, DISCONNECT
CIRCUIT, RECEIVE, and SEND. When an application uses these routines to
pass messages between two network nodes, the kernel and DECnet Service
on each node cooperate to ensure message delivery. When a process sends
a message, the kernel checks to see if the specified port value is local to the
executing node. If it is not, the kernel and DECnet Service route the message
throLgh the receiving node's DECnet Service to the destination port. The
receiving process receives and replies to the message as though executing on
the same node as the sending process.

Name Service The DECnet Service also provides a name service, which
adds network extensions to the CREATE NAME, TRANSLATE NAME, and
DELETE kernel routines. These extensions let jobs access and maintain a
table of universal port names, which are known to all VAXELN nodes in a
VAXELNLAN.

VAXELN Toolkit Components 6-39

Universal port names are the key to distributed applications. Universal
port names allow a VAXELN system to move a job or disk file to another
node without your having to modify code. The DECnet Service ensures the
validity of the communication path. Thus, a job running on one node can
open, read, and write files located on another node, while the use of multiple
nodes remains transparent to the user. Also, jobs executing on different nodes
can communicate over a network transparently by establishing circuits and
exchanging messages between named ports.

Each target system in a VAXELN network application retains a list of the
universal names it creates and sends a copy of those names to the network's
universal name table. One of these target systems serves as an acting name
server and manages this table. If the acting name server shuts down, another
node in the LAN that has universal name service capabilities is elected as the
name server.

Network Management The DECnet Service supports a subset of the Phase IV
network management protocol and VAXELN network management services.
To manage VAXELN DECnet nodes from your VMS development system, you
use the DECnet-VAX network control program (NCP). You can use the NCP
functions to invoke the following facilities:

• Network management listener (NML) Monitors the network and
controls DECnet systems.

• Loopback Mirror. Tests the DECnet Service and its ability to
communicate with other nodes on the network.

The DECnet Service also provides the following services for managing VAXELN
DECnet nodes from VAXELN target systems:

• Network Management Service. Furnishes a routine interface for
dynamically starting and stopping DECnet software at runtime. A
VAXELN application can use the routines to initialize DECnet addresses at
runtime, start and stop DECnet to temporarily reduce network overhead,
or switch the Ethernet controller on which DECnet is to run.

e Downline Load Service. Handles VAXELN system load requests and
provides a runtime routine interface. An application can use the interface
routines to configure, manage, and monitor a memory-resident downline
load database. Applications can also use routines to trigger boot VAXELN
systems to remote VAXELN target nodes.

6-40 VAXELN Toolkit Components

Communication with VMS and ULTRIX Nodes The DECnet Service also
provides for communication with VMS and ULTRIX network nodes. Jobs
running on VAXELN nodes can communicate with jobs running on VMS and
ULTRIX nodes transparently by using standard 110 statements. Alternatively,
jobs running on VMS and ULTRIX nodes can use network-specific features,
such as mailboxes, to exchange messages with VAXELN jobs.

Remote Terminal Utility The Network Service provides a remote terminal
utility that lets you connect to a remote computer system from a terminal
on another computer system by using a SET HOST command. For example,
you can connect to a VAXELN system from a VMS system terminal by using
the DCL SET HOST command, or you can connect to a VMS system from
a VAXELN system terminal by using the ECL SET HOST command. Once
connected to a remote system, you can log in, use operating system commands
(such as DCL and ECL commands), receive messages, and interact with
programs that run on that system.

To use the VAXELN Remote Terminal Utility, you must build it into your
VAXELN system with outbound, inbound, or outbound/inbound capability. The
outbound capability lets you connect to computer systems from your VAXELN
system. The inbound capability lets you connect to your VAXELN system from
other systems.

Internet Services
VAXELN applications can use the VAXELN Internet Services to communicate
between two computer hosts that reside on the same or on different networks.
The hosts are the sources and destinations of transferred data. The Internet
Services provide the protocols necessary for VAXELN applications to transfer
data over an Internet.

An Internet is a set of networks that are connected by hosts called gateways.
A network is a collection of hosts that are physically connected by a
communications medium, such as an Ethernet. Gateways physically connect
and transfer messages between networks. Higher-level software hides the
underlying Internet architecture and makes a collection of networks appear as
a single large network. Applications can communicate across intermediate
networks even though the networks are not connected to the source or
destina tion host.

___________________________ Note __________________________ ___

Although VAXELN systems can use gateways for Internet communica­
tion, they cannot function as gateways.

VAXELN Toolkit Components 6-41

The VAXELN Internet Services provide the following features:

• Connectionless packet delivery service or end-to-end connection-oriented
stream delivery service

• Packet delivery service that is independent of the communications mediwn
over which data is transmitted

• Communications environment that supports a variety of computer
platforms

• Communications protocol standards support

The Internet architecture consists of four layers of protocol that allow
two-way interprocess data flow between hosts, gateways, and networks. The
architecture includes an application layer, host-to-host protocol layer, Internet
protocol (IP) layer, and network protocol layer. The host-to-host layer supports
two protocols: the User Datagram Protocol (UDP) and the Transmission
Control Protocol (TCP).

Processes on a host transmit data by passing it to the lower protocol layers.
A process at the application layer passes the data to the host-to-host protocol
layer. The host-to-host protocol layer then packages the data according to
protocol functions. For example, TCP adds a header that ensures reliable
communication. Then the protocol sends the packaged data to the IP layer. IP
also adds a header and sends the data to the local datalink driver.

Table 6-12 swnmarizes the protocols that the VAXELN Internet Services use.

Table 6-12 VAXELN Internet Services Protocols

Protocol

Internet protocol (IP)

6-42 VAXELN Toolkit Components

. Description

Implements mechanisms for connecting networks
and gateways into a system that can deliver
network packets from source to destination. This
protocol routes packets to destinations through
networks, keeps track of routes for hosts and
networks, and accounts for incompatibilities. IP is
limited to delivering datagrams, without provisions
for reliability, flow control, sequencing, or other
services provided by host-to-host protocols.

(continued on next page)

Table 6-12 (Cont.) VAXELN Internet Services Protocols

Protocol

User datagram protocol (UDP)

Transmission control protocol
(TOP)

Address resolution protocol
(ARP)

Internet control message protocol
(IOMP)

Reverse Address Resolution
Protocol (RARP)

Boot protocol (BOOTP)

Description

Provides host-to-host datagram communication
for applications that do not require streamed
communication. UDP adds multiplexing to IP,
letting multiple processes use the protocol to send
and receive data independently. UDP is transaction
oriented, and it does not guarantee delivery or
duplicate protection. .

Provides host-to-host, connection-oriented
communication in a network environment. TOP
adds multiplexing, checksum computations,
connectivity, and reliability to IP. For data
transmission, TOP uses virtual circuits. The
circuits provide automatic sequencing, error control,
and flow control.

Dynamically maps Internet addresses to physical
Ethernet addresses and stores the address pairs in
an ARP cache. Using this protocol, an application
can determine a target host's physical (built-in)
Ethernet address.

Transmits error and control messages to a
destination host's IP when an IP datagram delivery
fails. ICMP provides routing information and
notifies hosts when a datagram cannot reach its
destination or does not reach its destination because
a time limit expires.

Determines a diskless host's Internet address at
startup so that the host can operate in an Internet
network. A host can broadcast a message that
specifies its physical Ethernet address to all hosts
in a LAN. A host running an RARP server searches
its address database and responds by returning the
appropriate Internet address.

Determines a diskless host's Internet address at
startup so that the host can operate in an Internet
network. A host can broadcast a message that
specifies its physical Ethernet address to all hosts
in aLAN. A host running a BOOTP server searches
its address database and responds by returning the
appropriate Internet address. BOOTP is based on
UDP.

In addition to providing the services of the Internet protocols, the VAXELN
Internet Services provide runtime routines that applications can use to:

VAXELN Toolkit Components 6-43

• Manage an ARP cache

• Show statistics

• Convert byte-order

• Manage an Internet routing table

• Manage Internet network interfaces

• Retrieve Internet performance and error data

• Retrieve TCP connection data

• Convert the byte order of Internet and host physical addresses

• Manipulate Internet addresses

• Communicate over an Internet using sockets

• Retrieve and set socket characteristics

• . Transfer files from one host to another using FTP protocol in a
heterogeneous operating system environment 1

TELNET Server
The VAXELN 'lbolkit includes a TELNET server that is implemented as a
terminal driver. The TELNET server lets you gain access to VAXELN systems
from remote systems using TCPIIP. Once you gain access to a VAXELN system,
you can type commands as if you were logged in to that system locally.

LAT Host Services
The VAXELN Toolkit includes local area transport CLAT) host services that
VAXELN systems can use to communicate with devices attached to terminal
servers, such as the DECserver 500. LAT is a communications protocol that
lets system nodes running LAT host services communicate with dedicated
terminal server nodes running LAT server services. The collection of system
nodes and terminal server nodes in a LAN constitutes a LAT network.

The VAXELN LAT host services· support the following:

• Terminal server communication

• Terminal JJO

• A control interface that LAT application programs can use to manage and
monitor the LAT environment on a VAXELN system

1 Supported for clients only

6-44 VAXELN Toolkit Components

• An interactive utility you can use to manage and monitor the LAT
environment on a VAXELN system

A VAXELN system that includes the LAT host services is a VAXELN service
node. A service node can offer services to or request access to services offered
by a terminal server. By default, a service node offers ECL as a service. You
can access that service from an interactive terminal attached to a terminal
server.

The LAT host services let application programs:

• Manage and monitor a VAXELN service node's characteristics and activities
by calling VAXELN LAT utility routines

• Set up dedicated service environments

• Set up application device environments

You can initiate communication between a service node and terminal server
from an interactive terminal attached to the terminal server or from an
application program running on the service node. From an interactive
terminal, you establish a session with a service offered by the service node.
The service can be ECL or a user-created dedicated service that is built into
your VAXELN system and executes as a job.

An application program running on a service node can establish a session
with a remote application device or service attached to a terminal server. An
application device offers a service to VAXELN service nodes in a LAT network.
For example, a printer would offer printing services; a terminal device might
offer display services.

A VAXELN application program can manage and monitor a LAT service node
environment by calling LAT utility routines.

The LAT driver also supports a LAT Control Program (LATCP) Utility that
lets you manage and monitor LAT service node characteristics and activities
interactively by entering LATCP commands.

6.2.7 Authorization Service
The VAXELN Toolkit includes an optional Authorization Service that you can
include in network applications. The Authorization Service protects system
resources and data by maintaining a database of a system's authorized users
and identifying users that issue network requests.

VAXELN Toolkit Components 6-45

A target system can include local or network authorization services. 'When a
system includes the network authorization services, it handles authorization
for the nodes in a LAN that need security but do not have their own service.
To use the network authorization services, at least one node in a LAN must
include this service. If multiple nodes include the network authorization
service and all nodes in the LAN use the same database file, one target system
acts as an authorization server and manages the database while the other
nodes stand by as backups. By designating multiple authorization servers, you
can preserve the application's security if the acting server shuts down.

The DECnet Service, File Service, and Command Language Utility (ECL) use
the Authorization Service to protect the resources and data that they control.
The DECnet Service running on a particular node accepts circuit connections
only from users who are listed in the Authorization Service's database. The
File Service provides read, write, and delete protection for files on disks
that it controls. ECL lets authorized users log into VAXELN systems. Your
application programs can use the service to protect their resources and data.

6.2.8 File Service
The File Service is a set of system disk and tape driver services that lets
VAXELN application programs perform file-oriented disk and tape I/O
operations. The File Service consists of a disk File Service and a tape File
Service and provides for access to local and remote data.

Disk File Service
The disk File Service uses FILES-ll On-Disk Structure Level 2 services and is
compatible with the VMS file system and the VMS record management services
(RMS). Files are organized sequentially, and programs can use sequential or
random access for creating, reading, and writing sequential disk files. VAXELN
does not support indexed, multikeyed, and relative file access.

The disk File Service provides a direct device access (DDA) interface for local
file access. Applications can use this interface to read data from and write
data to local disks block by block, avoiding the overhead incurred by the data
access protocol (DAP). This interface maximizes disk performance by allowing
very large data transfers. The DDA diskinterface also provides for physical
memory transfers by allowing applications to transfer data to and from an
allocated region of virtual address space.

Tape File Service
The tape File Service is based on ANSI Standard X3.27-1978. You can use this
service to transport files to and from other operating systems that implement
this standard.

6-46 VAXELN Toolkit Components

Remote File Access
The File Service uses DECnet to implement transparent file access across the
network. Using this service, VAXELN systems can run without a local disk
or tape and can gain access to files on other DECnet nodes, as if the disks or
tapes were physically located on the same system.

The VAXELN file access listener (FAL) handles file access requests from remote
systems. You can include the FAL in a VAXELN system that needs to provide
remote DECnet file access to files on that system .

. 6.3 \1 AXELN Utilities
The VAXELN Toolkit provides development, command language, and network
utility programs that you can build into your VAXELN system image and
use when the system executes. (:Nlany utilities additionally have cooperating
components that execute on the VMS development system and interact with
executing VAXELN applications.)

The VAXELN utilities allow you to perform the following types of operations:

• Debug and fine tune VAXELN applications, Section 6.3.1

• Issue commands to the system at a VAXELN terminal, Section 6.3.2

• Perform network functions such as LAT control and SET_HOST,
Section 6.3.3

6.3.1 Development Utilities
The VAXELN Toolkit provides the following tools for debugging and fine tuning
your VAXELN application:

• VAXELN Debugger (EDEBUG), supporting remote debugging over
Ethernet and local debugging from the target system console

• VAXELN Performance Utility (EPe and EPA), which collects and analyzes
data about application program performance

• VAXELN Display Utility (EDISPLAY), which displays system and job
resource information on a video terminal

• Error logging tools, for logging hardware errors, volume changes, and
system events

You might also use the following VMS and VAX. tools when developing VAXELN
applica tions:

• VMS Librarian

• VMS Error Log Utility

VAXELN Toolkit Components 6-47

• Language-Sensitive Editor (LSE)

• Source Code Analyzer (SCA)

• Code Management System (CMS)

• Module Management System (MMS)

• Test Manager

. For more information about these tools, see Part VI.

VAXELN Debugger (EDEBUG)
The VAXELN Debugger (EDEBUG) supports two environments: a remote
symbolic environment that you use from a development system terminal and a
local environment that you use from the target system's console.

If you have a DECnet-VAX license and the appropriate Ethernet hardware,
you can use the remote debugger environment. This environment lets you
downline load and run your VAXELN system on a target VAX system from the
VMS development system. In addition, you can access multiple VAXELN target
systems simultaneously and use debug symbol table information provided by
VAX compilers. Figure 6-5 shows a remote debugger environment.

Figure 6-5 VAXELN Remote Debugger Environment

VMS Development System V AXELN Target System

V AXELN Remote Symbolic Remote Debugger
Debugger Component Component

I /"> ~", ;::..

VMS User
Terminal

Ethernet

MLO-O01287

6-48 VAXELN Toolkit Components

If your application cannot take advantage of the remote debugging envi­
ronment, you can build a self-contained local environment into your VAXELN
system and debug from your target system console. The local environment does
not allow symbolic debugging but provides traditional debugging functions,
such as setting breakpoints and examining and depositing values in memory
and registers. Figure 6-6 shows a local debugger environment.

Figure 6-6 VAXELN Local Debugger Environment

VMS Development System VAXELN Target System

Local
Debugger

I I I
Mass Storage Mass Storage Console

Transfer Media Transfer Media Terminal

MLO-001288

You must use the local debugger environment to debug or inspect code
executing at an elevated VAX hardware interrupt priority level (IPL) (greater
than 0).1 Examples of such code include the kernel and ISRs.

The VAXELN Debugger provides complete support for modular programming.
You can debug an application's components (programs or parts of programs)
independently. Rather than halt the entire system when a breakpoint is
encountered, the VAXELN Debugger lets all but the affected process continue
running while you debug the suspected module.

The VAXELN Debugger provides a rich set of commands that you can use
from a remote debugger environment, complete with command line recall.
The local debugger environment supports a subset of these commands, which
encompasses essentially all but the commands that access development system
data.

1 A hardware priority is not the same as a VAXELN job or process priority.

VAXELN Toolkit Components 6-49

VAXELN Performance Utility (EPC and EPA)
The VAXELN Performance Utility is a tool for tuning a VAXELN system's
performance. This utility helps you measure and analyze a VAXELN system's
runtime behavior by isolating bottlenecks and other performance problems that
affect the system's throughput.

The VAXELN Performance Utility has two components: a Collector (EPC) that
you include in a VAXELN system for collecting performance data as the target
system executes; and an Analyzer (EPA) that you run on a VMS development
system to process the data and display tabular or histogram performance
reports.

If your development and target systems are connected by DECnet-VAX, you
can use the VAXELN Performance Utility to collect and analyze the following
types of performance data:

• Samples of a job's program counter (PC)

• The number of times each job enters the Run state and the elapsed CPU
times

• The number of times a job's processes enter the Run state and the elapsed
CPU times

• The number of times a line of source code in a job was executed in a test

• The number of times a job calls each VAXELN kernel routine

You control the VAXELN Performance Utility by issuing Collector and Analyzer
commands from the VMS development system.

VAXELN Display Utility (EDISPLAY)
The VAXELN Display Utility (EDISPLAY) displays VAXELN system resource
information on a VAXELN or remote VMS video terminal. The utility lets you
monitor system performance without including debugger support in the system.
Three displays are available:

• Setup. Provides access to memory and job displays and a help menu. Also
allows you to change the rate at which the utility updates information.

• Memory. Displays system-level information (such as memory, pool, and
slot table usage) and identifies the system's jobs.

• Job. Displays statistics about a job and its subprocesses.

When you build EDISPLAY into your VAXELN system, you can specify whether
the utility is to run when the system begins executing. If the utility does not
start immediately, you can invoke it at runtime with an EeL command, a
debugger command, or a CREATE JOB routine call from program code.

6-50 VAXELN Toolkit Components

VAXELN Error Logging Tools
The VAXELN Toolkit provides the Error Logging Service, which you can build
into your VAXELN system image to log errors, and the Error Logging Server
(ELSE) utility, which you can run under VMS to create a remote error log
file for the VAXELN system. These tools provide input to the VMS Error Log
Utility, which generates error log reports.

Error Logging Service The Error Logging Service writes data that identifies
hardware errors, volume changes, and system events to an error log file that
exists on the local VAXELN target system or on a remote VMS system. You
select local or remote error logging by editing a System Builder menu. If
. you select local error logging, you must transfer the log file to a VMS system
for processing, using a VMS DCL COpy command or a VAXELN ECL COpy
command. If you select remote error logging support, the Error Logging Service
transmits error log data over the Ethernet to the VAXELN Error Log Server.

Error Log Server The VAXELN Error Log Server is invoked on the VMS
development system and records error log records generated by a VAXELN
target system. The server writes the records to a file on the VMS system.

You start and stop the Error Log Server by invoking supplied command
procedures. By changing runtime parameters and command qualifiers in the
startup command procedure, you can tailor the server to meet your application
needs.

Once the error log file resides on the VMS system, you can use the VMS
Error Log Utility to generate an error log report. You invoke the VMS Error
Log Utility by issuing the DCL command ANALYZE/ERROR_LOG and using
command qualifiers to specify various forms of error log output.

6.3.2 Command Language Utility
The VAXELN Command Language Utility (ECL) provides an interactive
command-language interface to executing VAXELN target systems. ECL
provides a basic set of commands and a command-line editor that you can use
to display system characteristics, load and execute programs, and maintain
files, disks, and magnetic tapes.

You can issue commands interactively from a target system terminal or
from a remote VMS system terminal by first using the VMS command SET
HOST. As part of your ECL session, you can invoke command files (including
LOGIN.COM) and define symbols equivalent to often-used commands.

The ECL Utility does not furnish an environment for program development,
such as that provided by the VMS Digital Command Language (DCL); you
develop VAXELN systems in a VMS environment.

VAXELN Toolkit Components 6-51

6.3.3 Network Utilities
The VAXELN Toolkit provides the following network utilities:

• LAT Control Program (LATCP), which allows you to interactively manage
and monitor LAT service node characteristics and activities

• Outbound Remote Terminal Utility (SET_HOST), which lets you connect to
a remote Digital system from a VAXELN terlninal session

LAT Control Program (LATCP)
The LAT Control Program (LATCP) provides a set of commands that you can
use to control and monitor VAXELN LAT service node characteristics and
activities at runtime. You can issue commands interactively from a terminal
attached to a terminal server.

When you build the LATCP Utility into your VAXELN system, you can
specify whether the utility is to run when the system begins executing. If
the utility does not start immediately, you can invoke it at runtime with an
ECL command, a debugger command, or a CREATE JOB routine call from
program code.

Outbound Remote Terminal Utility (SET_HOST)
The Outbound Remote Terminal Utility (SET_HOST) allows you to connect to
a remote Digital system, such as VMS, from a VAXELN terminal session. For
example, you can set host to a VMS terminal, using the ECL command SET
HOST, and enter commands as if you were logged into VMS locally. Both the
target system and the remote system must be running DECnet, and the remote
node must support inbound remote access.

VAXELN systems can also be configured to accept inbound remote access;
for example, you can SET HOST from a VMS terminal session to a VAXELN
system and enter commands as if you were a VAXELN terminal user.

Both forms of remote access, outbound and inbound, can be included in your
VAXELN system using the System Builder.

6-52 VAXELN Toolkit Components

7
VAXELN DECwindows

VAXELN DECwindows (which is based on Release 4 of MITs X Window
System) incorporates the Open Software Foundation (OSF) Motif interface
into the DECwindows product, providing powerful software to simplify the
development of graphics-oriented applications. DECwindows Motif contains
several programming layers:

• Xlib. Xlib, the lowest level interface to the X Window System, is a graphics
library used to manipulate screen displays and to handle events.

• X Tholkit. The X Toolkit (also called Intrinsics) is a library of routines
that creates and manipulates interface objects called widgets.

• Motif Tholkit. The Motif Toolkit provides a library of routines that create
the Motif widget set. A Motif Window Manager (MWM) and Motif User
Interface Language (UIL) compiler are part of Motif.

• Digital extensions. Digital extensions to Motif include widgets and
convenience routines to manipulate widgets. Digital also provides non-C
bindings for Ada, C, and FORTRAN programming.

The VAXELN Toolkit increases its versatility and enhances distributed
processing by supplying DECwindows support. Using VAXELN and
DECwindows software in concert, you can develop dedicated, realtime
applications that feature network-transparent, graphics-oriented user
interfaces. DECwindows also lets you apply graphics, colors, and fonts to
increase application usability.

Like the VAXELN Toolkit, DECwindows lets you take advantage of the power
and resources of other systems by distributing applications and application
tasks among nodes in a network. You can run an application on a remote
node, while the application displays output and you enter input on a local
workstation. Network activity is transparent, and the application appears to
run locally.

VAXELN DECwindows 7-1

VAXELN applications that can benefit from DECwindows support are those
that include a human interface, such as a monitor/control station. For
example, a DECwindows interface for a process control application might
display windows from which you can start various systems, display schematics
of processes being controlled, and show graphs representing acquired and
computed data. The system may also display alarms and warning messages
when human intervention is necessary.

This chapter discusses the following:

• DECwindows Architecture, Section 7.1

• DECwindows User Environment, Section 7.2

It VAXELN DECwindows Server, Section 7.3

• VAXELN DECwindows Applications, Section 7.4

• VAXELN DECwindows User Environment Components, Section 7.5

For additional sources of information on VAXELN DECwindows, refer to
AppendixA.

7.1 DECwindows Architecture
The DECwindows architecture consists of one or more application programs,
called clients, and a server. A client and the server communicate by
sending data over a connection that the client establishes. Clients use an
application programming interface to initiate, control, and monitor client­
server communication. Figure 7-1 shows the DECwindows architecture.

Figure 7-1 DECwlndows Architecture

MLO-003000

The server provides a common means for clients to interact with graphics
workstations. A server can handle multiple client-server connections; the
server displays the output for each client in a separate application window.

7-2 VAXELN DECwindows

The server receives graphics output requests from the client and sends replies,
events, and errors to the client. Replies inform the client of the results of an
output request. The server sends events to the client in response to keyboard
or mouse input, side effects of client requests, and declarations from other
clients that need to share data. Also, the server reports errors that occur
during request processing.

A client can reside on the same node as the server or on a remote network
node. In both cases, communication is transparent, and the local workstation
on which the server runs displays the client's output. Thus clients that run on
remote nodes appear to run on the local workstation.

The VAXELN Toolkit supplies the following DECwindows software:

• A DECwindows server that you can build into VAXELN systems

• The DECwindows runtime libraries and tools youneed to develop VAXELN
DECwindows clients that you can build into VAXELN systems

• DECwindows user environment components that you can build into
VAXELN systems .

Note ______________________ __

To use some VAXELN DECwindows features, your host system must
be running VMS Version 5.4 or later and VMS DECwindows Motif
must be installed. Also, it is assumed that you have access to the VMS
DECwindows Motif documentation.

7.2 DECwindows User Environment
The graphics-oriented user interface that characterizes DECwindows
environments lets you do the following:

• Tailor your own user environment

• Perform tasks by manipulating objects on the workstation screen using a
pointer (mouse or tablet)

• Interact with applications in a consistent, transparent manner from
workstations running any server that supports the DECnet or Internet
protocol and the X Window System

• Use accelerators for interacting with applications more quickly

• Interact with an application that is distributed among network nodes from
a single workstation screen

VAXELN DECwindows 7-3

• Interact with multiple applications (local and distributed) from a single
workstation screen

User interfaces for DECwindows applications look alike and respond to user
input similarly. The interfaces consist of objects such as menu bars, scroll bars,
pop-up menus, pull-down menus, and buttons. You use a pointer (mouse or
tablet) to manipulate these objects and select text to perfonn various tasks.
For example, you might· select a button to open an application window that
displays a graph based on data that the application is collecting.

Using DECwindows, you can communicate with applications that are
distributed among network nodes from a single workstation screen. For
example, you can interact with a compute-intensive application that runs on a
remote VAX 6000 processor from one window, while you edit a file that resides
on the local workstation in another window.

Similarly, you can distribute a single multiprocessing application among
network nodes and communicate with the application components through
different windows on a workstation screen. Consider a VAXELN loosely
coupled multiprocessing application in which jobs are distributed across three
VAXELN systems. A subset of the application's jobs might be distributed as
follows:

System Processor Job Task

A, B, and C

D

E

VAX4000VLC

VAX 6000

VAXstation 3100

Acquire status data

Compute the data

Report the computation results

You could interact with each of the VAXELN systems from windows displayed
on the workstation. Table 7-1 shows what the preceding jobs might display in
various windows and the type of user interface they might provide.

7-4 VAXELN DECwindows

Table 7-1 Sample DECwlndows User Interface

Job Task User Interface Output User Interface

Acquire data. Select system A, B, or
C from a pull-down
menu.

Displays a layout
of the device
configuration from
which the job is
acquiring the status
data.

Not applicable.

Compute data.

Report results.

Not applicable.

Select a graph type
and the system whose
results you want to
view by clicking on
option buttons.

Displays alarms and
warning messages
when computations
identify conditions
that require human
intervention.

Displays computation
results in the form of
graphs.

7.3 VAXELN DECwindows Server

Correct the condition;
then inform the system
that the condition is
corrected by selecting a
toggle button.

Not applicable.

The VAXELN Toolkit provides a DECwindows server that runs as a job on
the hardware where the graphics display, keyboard, and pointer are located.
You can build the server into VAXELN systems that run on a subset of the
VAXELN supported target workstations.

The DECwindows server supports one display screen, one keyboard, and
one pointer per workstation for performing graphics, windowing, and input
functions.

The VAXELN DECwindows server consists of components that handle client­
server connections and provide interfaces for workstation devices. The server
also manages fonts (memory-resident or on-disk), keymap files, and· security
access files.

7.4 VAXELN DECwindows Applications
The VAXELN Toolkit supplies the runtime libraries and development tools you
need to develop VAXELN applications that employ the capabilities of graphics
workstations. Applications can perform windowing and graphics functions or
get input from the keyboard or pointer by calling routines from Xlib and Motif
Toolkit programming libraries.

VAXELN DECwindows 7-5

Xlib is the low-level X Window System interface that DECwindows applications
can use to create windows, manage windows, and perform graphics functions.

The Motif Toolkit is layered on top of Xlib and consists of high-level library
routines that applications can use to create and manage a DECwindows user
interface. Using Motif Toolkit routines and development tools, applicatjons
can create, modify, and control interface objects, such as buttons, menus, and
scroll bars. VAXELN DECwindows Motif includes Digital's implementation of
the X Toolkit for the X Window System and provides the mechanisms you need
to create a DECwindows user interface that conforms to the Motif style. The
Motif Toolkit consists of the following components:

• User interface objects and runtime routines that create those objects

• X Toolkit routines that manipulate the user interface objects

• Cut and paste routines that you can use to copy data between applications

• Application development tools, including the User Interface Language
CUlL) and Motif Resource Manager CMRM)

Applications written in Ada, FORTRAN,or VAXELN Pascal can call Xlib and
Motif Toolkit routines by using the standard VAX calling format. Applications
written in C can call the routines by using the VAX or MIT C calling format.

Note

VAXELN DECwindows Motif has limited support for programming
in VAXELN Pascal. VAXELN Pascal language bindings are provided
for Xlib and the XUl Toolkit routines. The VAXELN Pascal language
bindings are not supported for the Motif Toolkit.

7.5 VAXELN OECwindows User Environment Components
The Motif Window Manager and terminal emulators are part of VAXELN
DECwindows support. The Motif Window Manager manages the location and
~ize of an application's main windows. You can use the Motif Window Manager
to control the appearance of windows on your workstation screen.

The terminal emulators display a window that looks and functions like a
terminal. That is, a terminal emulator window can perform application
terminal lIO and can provide a command line interface. If your system is part
of a network, you can use a terminal emulator window to communicate with
other systems on that network.

7-6 VAXELN DECwindows

The VAXELN Toolkit supplies terminal emulators (a console emulator and a
VT300-series terminal emulator) that can handle terminal I/O for VAXELN
DECwindows applications running on the local workstation or on remote
systems in the local area network (LAN). The console emulator displays a
window that provides minimal terminal 110 functionality. The VT300-series
terminal .emulator displays a window that looks and functions like a VT300
series terminal.

VAXELN DECwindows 7-7

8
VAXELN Window Server

The VAXELN Window Server (EWS) software is a product for setting up a
DECwindows environment on Digital's workstations, VT1300 terminals, and
VAXELN Window Stations. EWS software offers a DECwindows solution
for diskless workstations and, depending on your configuration, can provide
improved windowing performance.

Digital's VAXELN Window Station is the price-performance leader in the
high-resolution color X Window terminal market. The VAXELN Window Server
software provides the DECwindows functionality.

This chapter discusses the following:

• VAXELN Window Server Overview, Section 8.1

• VAXELN Window Server Features, Section 8.2

• VAXELN Window Station, Section 8.3

• VAXELN Window Server Development Software, Section 8.4

• VAXELN Window Server Hardware and Software Requirements,
Section 8.5

8.1 VAXELN Window Server Overview
The VAXELN Window Server software is an ULTRIX and VMS layered product
that loads a VAXELN system image containing a DECwindows server to a
target VAXstation. These images, downline loaded, also set up an environment
in which a host VMS or ULTRIX system provides DECwindows applications
back to the workstation. Since VAXELN supports the full range of Digital
workstations, EWS can be used by both older and newer VAXstations.

The VMS or ULTRIX host system in a VAXELN Window Server configuration
downline loads the appropriate VAXELN Window Server system images to the
VAXstation via Ethernet. Once the image is loaded, that device becomes an X
Window Terminal and acts as the display device for DECwindows applications
that run on a central host system.

VAXELN Window Server 8-1

A single host system can support multiple window servers. Figure 8-1 shows a
sample VAXELN Window Server configuration consisting of a VAX 6000 Model
200 host system and the following window servers:

• A VAXstation 4000 VLC

• A VAXELN Window Station

• A VAXstation 2000 workstation

• A VAXstation 111GPX workstation

• A VT1300 terminal

Figure 8-1 Sample VAXELN Window Server Configuration

VAX 6000 Model 200

~
llIlIllIllIllIIlIlillIllIlIIlIIlIllI

11111111111111111111111111111111111
11111111111111111111111111111111111
11111111111111111111111111111111111

JIIIIII

V AXstation 3100
or VT1300

8-2 VAXELN Window Server

Host System

VAXstation 2000

VAXELN Window Station
- Window Server

Window
Server

VAXstation II/GPX
MLO"()09259

DECwindows is an implementation of the industry-standard XII protocol
which provides powerful graphics software that can simplify many typical
tasks. For further information on DECwindows and the X Window System,
refer to Chapter 7.

8.2 VAXELN Window Server Features
The VAXELN Window Server software has these key features:

• Customizable environment. Users may customize (rebuild) the EWS
configuration by rebuilding the EWS system images using the VAXELN
Toolkit. These customized images, which can include local DECwindows
clients or custom software, are then downline loaded to the target
workstation or X Window terminal. Customized software may be dedicated
to a specific task, such as process control, or it may be used in interactive
sessions to a host computer.

• DECnet and TCPI1P support. The communication protocol between
the host system and the workstation or VT1300 terminal can be DECnet,
TCPIIP (transmission control protocol/internet protocol), or both.

• Supports a full range of Digital VAXstations. EWS allows users to
include many older, minimum-memory platforms, such as the VAXstation
2000, to be brought online as Windowing Stations.

• User selectable login. EWS allows users to select a node on a network
from which the session will run. This menu list can include any mix of
VMS DECnet, ULTRIX DECnet, and ULTRIX TCPIIP nodes.

8.3 VAXELN Window Station
The VAXELN Window Station combines the existing VAXELN Window Server
Software (EWS) and the high-performance, low-cost VAXstation 4000 VLC
workstation. The customer chooses an appropriate monitor, keyboard, and
mouse. This packaging offers flexibility which can meet the requirements of
most any situation and allows for use of third party products which have been
developed for EWS (such as a Touch Screen monitor).

The VAXELN Window Station has these key features:

• The EWS software downline loads a VAXELN system image providing
X Window Terminal functionality as an alternative to a fully functional
workstation.

System management becomes a centralized function, local to the host
computer. Basckups, for example, are not necessary on an X Window
Terminal.

VAXELN Window Server 8-3

• The VAXELN Toolkit allows you to customize the windowing environment.

• Since the VAXELN Window Station can also run VMS, it can be easily
upgraded to a workstation.

• The VAXstation 4000 VLC is diskless and comes with a standard 8 Mbytes
of memory, optionally expandable to 24 Mbytes.

• Both TCP/IP and DECnet communication protocols are supported, making
it easy to access multiple operating systems supporting the X protocol.

The VAXELN Window Station gives you access to applications running on
different operating systems and hardware platforms from anywhere across
the network. Multiple window applications can be displayed simultaneously
whether running under VMS, ULTRIX, or any other operating system
suporting the X Window Protocol.

8.4 VAXELN Window Server Development Software
The VAXELN Window Server is an example of a product that was developed
using the VAXELN Toolkit. While another operating system could have been
chosen, the characteristics of VAXELN were a factor in selecting the VAXELN
Toolkit.

Typically, X Window terminals boot quickly, are easily upgraded, and may cost
less per seat than full workstations. Since customers have grown to expect
these characteristics in X Window terminals, the selection of suitable software
was critical to the success of the VAXELN Window Server product.

VAXELN was selected as the software of choice for developing the VAXELN
Window Server product because it gives EWS these key capabilities and
characteristics:

• Boot quickly off the network. The Maintenance Operation Protocol
(MOP) allows VAXELN systems to boot quickly off a network. The
operating system is booted from a host node and DECwindows applications
can be operational in a matter of moments.

• Software easily updated. VAXELN's downline load capability affords
easy software updates. The server node is updated with nwe VAXELN
system images and the EWS workstations simply reboot off the network to
take advantage of new software. There is no ROM software for EWS.

• Software easily customized. The VAXELN Toolkit allows you to
customize the system image, tune memory, or specialize the software. The
VAXELN Toolkit is a sophisticated, mature, full-featured toolkit which can
be used to adapt EWS to almost any environment. This feature is unique
to the X Window Terminal industry.

8-4. VAXELN Window Server

• Low memory requirements. The minimum memory required for
running the VAXELN Window Server is 6 Mbytes, which reduces the cost
per seat for VAXELN Window Server operation.

• Memory-resident fonts. The ability of VAXELN to store fonts in physical
memory rather than on a disk drive is important for an X Window
Terminal.

• Support the full range of workstations. VAXELN is a full
implementation of the VAX architecture, which allows support for the
entire range of Digital VAXstations, not just X Window Terminal products.
Older VAXstations with limited memory may be added to the network as
EWS workstations. For example, while a VAXstation 2000 with only 6
Mbytes of memory may not have enough power or memory to serve as a
standalone system, it can comfortably run EWS.

• Use VAXELN transport mechanisms. Data is moved using standard
VAXELN messaging and shared memory, making VAXELN Window Server
software fast and dependable.

8.5 VAXELN Window Server Hardware and Software
Requirements

This section identifies the VAXELN Window Server hardware and software
requirements.

For a detailed list of host and window server processors (VAX and MIPS-based)
supported by the VAXELN Window Server software for VMS . and ULTRIX and
the software required to down-line load and run the VAXELN Window Server
software, refer to the System Support Addendum (SSA) for the VAXELN
Window Server for VMS and ULTRIX, respectively. You may obtain these from
your Digital sales representative.

VAXELN Window Server Hardware Requirements
A system configuration for installing and running the VAXELN Window Server
software requires the following hardware:

• A system to serve as the EWS host system that runs DECwindows client
applications

• A Digital workstation, VAXELN Window Station, or VT1300 terminal

• An Ethernet connection between the VAXELN Window Server host system
and a target workstation or terminal

VAXELN Window Server 8-5

VAXELN Window Server Software Requirements
This section outlines the software required to down-line load and run the
VAXELN Window Server software for VMS and ULTRIX.

VMS Requirements A VM:S host system requires the following software:

• VM:S operating system with DECwindows application support

• For the DECnet protocol environment: DECnet-VAX networking software

• For the TCP/IP protocol environment: VM:SIULTRIX Connection (UCX)

If you choose to rebuild your VAXELN Window Server system images, you will
also need the VAXELN Toolkit.

ULTRIX Requirements An ULTRIX host system requires the following
software:

• ULTRIX operating system

• ULTRIX XII DECwindows user environment

• Maintenance Operation Protocol (MOP)

• DECnet--ULTRIX or TCP/IP networking software

8-6 VAXELN Window Server

Part III
VMS Systems in Realtime Applications

Part III surveys the VMS operating system as a development and runtime
environment for realtime applications and introduces the product VMS POSIX,
which can aid in realtime application development on VMS systems. This part
contains the following chapters:

• Chapter 9, Survey of VMS Realtime Capabilities, outlines the VMS
operating system realtime services and some VMS realtime application
programming techniques.

• Chapter 10, outlines the functionality provided with the VMS POSIX
product. VMS POSIX allows application developers to write applications
that contain functions that contain POSIX 1003.1, P1003.2ID10, and
P1003.4ID9 functions.

9
Survey of VMS Realtime Capabilities

The VMS operating system is a full-service operating system widely regarded
as the premier software development environment in the industry. It also
features all the services required of a realtime operating system. A VMS
system can be tuned to meet the performance requirements of many of the
most demanding realtime applications at runtime. Tuning involves shutting
down unnecessary system processes (for example, accounting, error logger,
batch queues, network servers), locking the realtime process into physical
memory to prevent paging, and other techniques.

This chapter covers the following topics:

• VMS Realtime Services, Section 9.1

• Programming Techniques for VMS Realtime Applications, Section 9.2

• VMS POSIX for VMS Realtime Applications, Section 9.3

• Software Tools for VMS Realtime Applications, Section 9.4

For additional information on VMS realtime capabilities, refer to the Realtime
User's Guide. Additional sources of information are listed in Appendix A.

9.1 VMS Realtime Services
The VMS operating system offers these realtime services:

• Realtime scheduler. The VMS operating system allows for 32 levels
of process priority. The higher 16 priorities are reserved for realtime
processes. At these higher priority levels, the scheduler is a true
preemptive, priority-based scheduler. Processes that are assigned these
realtime priorities undergo neither time-slice scheduling nor automatic
priority adjustment, unlike timesharing processes. System services are
available to alter process priority dynamically.

Survey of VMS Realtime Capabilities 9-1

• Memory management services. Critical sections of code or data can be
made resident in physical memory to guarantee availability and eliminate
the device overhead associated with paging. Also, the privileged user has
complete control of the allocation of physical memory resources through the
management of process quotas.

• Interprocess communication. The VMS operating system offers several
methods of communication between processes, including:

Common event flags. Common event flags provide a simple,
convenient means for event notification. Cooperating processes can set,
clear, and wait for flags in a common event flag cluster.

Global sections. A global section is an area of physical memory that
is contained within the virtual-address space of multiple processes.
The VMS operating system furnishes services for dynamically creating,
mapping, and deleting shared global sections. These services allow
several processes to use shared memory for common data pools or
interprocess message passing. Common event flags can be used to
synchronize access to shared memory.

In many realtime applications (such as data acquisition or industrial
process control), response time is so critical that control variables and
data readings must remain in memory. Frequently, many processes
must use this data simultaneously. Global sections supply a convenient
mechanism for fast data access and for rapid data passing from one
process to another.

Mailboxes. The VMS operating system provides mailboxes, which are
memory pseudodevices (virtual devices) for interprocess communication.
The VMS operating system supports drivers for pseudodevices,
including the null device (NL:), network device (NET:), remote terminal
device (RT:), and mailbox (MB:). You can assign channels to these
devices and issue 110 requests just as though they were real devices.

Processes can send messages or other data using mailboxes that cannot
be conveyed by the simpler and faster operations of setting and clearing
event flags. Mailboxes can hold multiple messages that are read on
a first-in-first-out (FIFO) basis. In contrast, the current status of an
event flag does not indicate how many times it has been set or cleared.

Mailboxes entail some overhead. To pass and read messages faster, you
can use a global section (discussed previously) to hold the messages
and common event flags to notify processes that messages are ready to
be read.

9-2 Survey of VMS Realtime Capabilities

DECnet. DECnet, Digital's networking software that runs on nodes in
local and wide area networks (LANs and WANs), enables task-to-task
communication. Using DECnet, a logical communication link can
be created between two programs for the purpose of interprocess
communication. The two programs can be running under the same or
different operating systems.

Asynchronous System Trap Service Routines. An asynchronous
system trap (AST) is a software-simulated interrupt used for event
notification within a process. An AST service routine is a user-written
routine that receives control when an AST is delivered after being
queued to the process.

The AST interrupts the process execution flow as soon as no higher
priority process is executable, unless specific conditions temporarily
prevent delivery. When theAST service routine completes, the current
image continues executing from the point at which it was interrupted.
ASTs are thus a mechanism to allow asynchronous operations.

Hibernation and Suspension. Hibernation and suspension
(accessible through separate VMS system service calls) are two
synchronization mechanisms that allow a process to control when it
or another process becomes active. Both hibernation and suspension
temporarily halt process execution. A process can place itself in the
hibernate state, or place itself or other processes in the suspend state.

Shareable Images. Shareable images can be used to share frequently
used code or data among multiple processes. A shareable image might
contain routines common to several programs. If a shareable image is
installed in the system as a permanent global section (as is normally
the case), other programs can link with it and share its contents.

Lock Manager. Realtime applications often run as a group of
processes that share a common database. The VMS lock management
services supply a mechanism that lets cooperating processes
synchronize their access to shared resources.

The lock management services allow a group of processes to associate
a name with a resource and then individually request access to the
resources using that name. If the resource is locked, the request is
placed in a queue. When the resource is free, the request is granted.
A process that requests a lock must specify a lock mode; the lock mode
designates how the process wants to share the resource with the rest of
the group. Processes can change the lock mode assigned to a resource
by requesting a lock conversion.

Survey of VMS Realtime Capabilities 9-3

Privileged Shareable Images. A privileged shareable image is a
shareable image containing one or more routines that nonprivileged
users can call to perform privileged functions. The creator of the
privileged shareable image codes, compiles or assembles, links, and
installs the routine. Other users can then call this routine in their
programs, provided they have linked their object module(s) with the
privileged shareable image.

Privileged shareable images thus offer a vehicle for you to write
and use your own system services. These shareable images furnish
a suitable vehicle for special-purpose routines that nonprivileged
processes in realtime applications can use.

e Interprocess synchronization. As mentioned earlier, the VMS operating
system supplies event flags and locks for interprocess synchronization
and signaling. Common event flags can be used to synchronize access
to shared physical memory and to notify a process of event completion
(for example, notification that an I/O operation is complete). Locks allow
shared multiprocessor access to shared devices or memory.

• Symmetric multiprocessing. The VMS operating system offers true
symmetric multiprocessing (SMP) support for multiprocessor VAX systems.
VMS SMP configurations consist of multiple central processing units
(CPUs) executing code from a single memory address space. All processors
share a single copy of the VMS operating system. Any processor can
request I/O as well as execute computational tasks. This allows you to
make maximum use of multiprocessor configurations.

• Low overhead IJO. A process can map a portion of its address space to
the I/O page and directly access I/O module control/status registers (CSRs).
This access to I/O module CSRs can be accomplished by using high-level
language assignment operations or assembler-level instructions.

Access to devices by drivers is accomplished by using the queued
input/output (QIO) system service. QIO, in conjunction with a device
driver, allows for asynchronous direct memory access (DMA) or interrupt­
driven I/O.

9-4 Survey of VMS Realtime Capabilities

9.2 Programming Techniques for VMS Realtime Applications
The following VMS programming techniques optimize realtime application
development and performance:

• Read and write to device registers directly. If you are a privileged
user, you can read from and write to device registers directly from a
program, bypassing the liD subsystem altogether. For example, during
polled liD (also known as memory-mapped liD), a synchronous routine
call maps directly to the liD page of the VMS operating system and reads
from or writes to the CSR of the device. This provides the least software
overhead between your program and the liD device.

• Use QIO system service to access device drivers directly. You can
access device drivers directly by using the QIO system service to perform
synchronous or asynchronous liD. The QIO system service is most suited to
continuous liD using asynchronous liD routine calls and multiple buffers,
or to liD through DMA-driven devices.

~ Use file creation methods that optimize disk 110. You can optimize
disk liD for realtime access by creating files in contiguous blocks or in
specific regions of a disk volume. This will minimize head-movement
overhead.

• Use connect-to.interrupt facility to service device interrupts. You
can use the connect-to-interrupt facility to service device interrupts without
writing a full device driver. A process with suitable privileges can connect
to a device interrupt vector using the VMS connect-to-interrupt facility.
A process normally uses this facility for devices that do not have VMS
drivers. Such devices cannot be used in a DMA mode and must be attached
to the Q22-bus or UNIBUS.

Connecting to a device interrupt vector allows you to:

Respond to an interrupt within a very short time

Preempt other system processing to handle a realtime event (for
example, a clock interrupt)

Buffer data from a device in realtime and return the data to the process
at a later time

Set an event flag or queue an AST (or both) to notify your process that
an interrupt has occurred

Survey of VMS Realtime Capabilities 9-5

9.3 VMS POSIX for VMS Realtime Applications
VMS POSIX is a software product that allows you to develop and run portable
applications in a POSIX environment. The VMS POSIX product includes
an interactive interface and a programming interface, based on the POSIX
standards and draft standards. The POSIX standards and drafts support the
concept of open systems.

The VMS POSIX product includes support for the following POSIX standards
and draft standards:

• POSIX 1003.1-1990

• P1003.21D 10

~ P1003.41D9

$ P1003.1a1D4

• P1003.2a1D5 (UPE)

VMS POSIX also conforms to the XPG3 BASE specifications. VMS POSIX has
passed the Verfication Suite (VSX3) test suite and has been branded by x/Open
as conforming to the BASE specifications. The Verfication Suite consists of
over 5000 tests that test the implementation of the XPG Common Applications
Environment (CAE), which consists of internationalization system calls and
functions, commands and utilities, and the C language as implemented on a
specific hardware platform.

Standard

POSIX 1003.1

P1003.2ID10

Description

A set of functions and calls for programs using the 0 programming
language. Using the POSIX 1003.1 standard in an application
promotes application portability among systems supporting the
POSIX 1003.1 standard. The functions and calls in POSIX 1003.1
include some functions that are identical to ANSI 0 functions, some
functions that use the same syntax as ANSI 0 functions but operate
slightly differently in the POSIX environment, and some functions
that are unique to POSIX.

A set of commands and utilities that provide functions at an
interactive level. For this version of VMS POSIX, Draft 10 of
P1003.2 has been used.

The P1003.2ID10 utilities provide an interface based on the most
popular UNIX commands and utilities. A VMS user may notice that
some commands are similar to DOL-level commands in the VMS
operating system, and other commands and utilities are unique to
the POSIX environment.

9-6 Survey of VMS Realtime Capabilities

Standard Description

PlOO3.4ID9 A set of functions and calls for designing and creating realtime
applications in the VMS POSIX environment.

The VMS POSIX realtime environment offers these POSIX features:

• Process synchronization. VMS POSIX functions offer several methods
for synchronizing processes, including:

Binary semaphores. A binary semaphore is a synchronization
mechanism used to control access to systemwide resources.

Realtime clocks and timers. Realtime clocks and timers allow an
application developer to synchronize and coordinate activities according
to a predefined schedule.

Priority scheduling. Priority scheduling gives an application
programmer control over the execution sequence of the processes
comprising an application. Priority scheduling also addresses the need
for a realtime process to execute when it needs to and for as long as
it needs to. VMS POSIX supports three scheduling policies: first-in
first-out (FIFO), round-robin (RR), and timesharing (OTHER).

• Interprocess communication. VMS POSIX functions offering
interprocess communication include:

Event notification. Event notification is a way of passing data within
an application when the application must respond to an application­
defined occurrence. Events are associated with event classes to define
groups of events so that you have more control over operations. In
addition, event masks block or unblock event notification.

Message queues. A message queue is a systemwide special file
accessible by a pathname. Message queues remain after a child process
terminates and can be reused by other processes. VMS POSIX message
functions allow you to define the size of the message, receive messages
selectively, and send or receive messages asynchronously.

Shared memory. Shared memory allows multiple processes to share
data by mapping a region of memory into each process's address space.
Use of shared memory among processes provides faster data access.

You can allocate as little memory as possible for each process or allocate
one large region and manage it within the application. Shared memory
can be created as persistent or nonpersistent, mapped or unmapped,
linked or unlinked, or closed.

Survey of VMS Realtime Capabilities 9-7

• Performance. Access to files and memory are major factors affecting
the speed of program execution. A realtime application designer
should consider the importance of execution speed versus file and data
integrity. VMS POSIX provides several methods of controlling application
performance, including:

Process memory locking. In a non-realtime environment, the system
swaps processes in and out of memory depending on system load and
resources. However, realtime processes require an upper limit on the
amount of time required to fetch data. Locking a process's address
space in memory eliminates paging and swapping by the target process.
VMS POSIX memory-locking functions allow an application to lock the
entire address space, and the stack segment, and to perfonn region and
lock stacking.

Asynchronous 110. Realtime applications require input and output
operations that do not block the initiating process. With VMS POSIX,
asynchronous I/O read and write operations are queued and the
initiating process continues execution.

Synchronized 110. Synchronized input and output ensures data and
file integrity during read and write operations. A synchronized input
operation ensures that a read operation from a device transfers the
current image of the data from the device. A synchronized output
operation blocks the initiating process from executing and does not
return until the write operation is complete.

Realtime Files. A realtime application relies on the file management
system to provide bounded response times to whatever external
demands are placed on the application. The file system must ensure a
high level of perfonnance, access to resources, and the delivery of data
to the media. VMS POSIX realtime files allow for this capability. Note,
however, that VMS POSIX does not support direct I/O.

9.4 Software Tools for VMS Realtime Applications
You can use the VMS operating system for many realtime applications
requiring the full range of available services found in a general-purpose
computing environment. A number of available software development products
complement the VMS operating system.

9-8 Survey of VMS Realtime Capabilities

9.4.1 VMS Error Log Utility
The VMS Error Log Utility, bundled with the VMS operating system, is a
system-management tool that selectively reports the contents of one or more
error log files. This utility supports most VMS system-supported hardware,
including disks, tapes, CPUs, and memory.

9.4.2 VMS Librarian
With the VMS Librarian, you can maintain libraries of object modules and
shareable images. This tool is also packaged with the VMS operating system
and can:

• Create new libraries

a Insert or replace modules in an existing library

• List a library's contents

• Extract modules from a library

• Delete modules from a library

• Compress a library

9.4.3 VMS Linker
Another tool that is bundled with the VMS operating system is the VMS
Linker. With this tool, you can combine object modules and shareable images
into one of three types of images:

• Executable image

• Shareable image

• System image

You can control the linkage of your images by specifying qualifiers with the
Digital Command Language (DCL) LINK command. In turn, the qualifiers
instruct the VMS Linker to perform operations such as:

• Resolve symbolic references. The VMS Linker maintains a global
symbol table (GST). Here, it stores the name and definition of every global
symbol. To resolve a symbolic reference, the linker searches its GST for a
definition of the symbol.

• Limit the search scope in resolving symbolic references. The VMS
Linker can be directed to suppress the search for undefined symbolic
references through default system libraries and the default shareable
image library.

Survey of VMS Realtime Capabilities 9-9

• Allocate virtual memory. The VMS Linker can place program segments
in memory locations that best meet program and memory-management
requirements.

• Ini tialize an image. After the VMS Linker resolves references and
allocates virtual memory, it initializes the image by:

Filling it with the compiled binary data and code

Inserting addresses into instructions that refer to externally defined
fields

Computing values that depend on externally defined fields

• Generate debugger information. The VMS Linker can generate a debug
symbol table and give control to the VMS Debugger when the image is run.

9-10 Survey of VMS Realtime Capabilities

10
VMS POSIX Realtime Programming

VMS POSIX is a software product that allows you to develop and run portable
applications in a POSIX environment. The VMS POSIX product includes
an interactive interface and a programming interface, based on the POSIX
standards and draft standards.

An application is considered to have portable code when the same source code
can be successfully compiled, linked, and run on more than one system. In the
VMS POSIX environment, a program is considered portable when it conforms
to the same POSIX standards and drafts supported by VMS POSIX. The
advantages of portability are clear; however, tradeoffs may be required.

This chapter describes the following aspects of the VMS POSIX environment:

• VMS POSIX Programming Environment, Section 10.1

• VMS POSIX Commands and Utilities, Section 10.2

• VMS POSIX Realtime Environment, Section 10.3

For additional information on the VMS POSIX environment, refer to the
Guide to Using VMS POSIX. Additional sources of information are listed in
Appendix A.

10.1 VMS POSIX Programming Environment
On a VMS system where VMS POSIX is installed, you have the choice of
logging in to either the VMS environment or the VMS POSIX environment.
You may also switch between these two environments within a single login
session. In the VMS POSIX environment, you must use only those commands
supported by the POSIX environment. This environment uses the PO SIX
1003.1 standard to promote and allow for portability between systems that
support the POSIX 1003.1 standard.

VMS POSIX Realtime Programming 10-1

The POSIX 1003.1 standard defines an operating system interface and
standardized services through the C programming language. The following
major categories are covered by the POSIX 1003.1 standard.

Process primitives. Process primitives define process creation,
execution, and termination. Signals and timers are defined as a means of
synchronizing process execution and interprocess communication.

Process environment. Process environment commands allow you to
set and retrieve user and group IDs. In addition, commands are used
for system identification, setting time, accessing environment variables,
identifying terminals, and configuring system variables.

Files and directories. File commands allow you to create, open, link,
set a mask, rename, or remove files and special files. You can set file
characteristics, such as file accessibility and status. Directory commands
allow you to perform directory operations, such as creating or removing a
directory.

Input and output primitives. Input and output primitives include
standard read and write operations as well as pipes and control operations
on files.

Device-specific and class-specific functions. Device-specific and class­
specific functions include functions that allow you to communicate With
devices and device files.

Language-specific services for the C programming language.
Language-specific services define extensions to C language functions.

System databases. System database functions create and establish access
to system databases.

Data interchange format. Data interchange format commands specify
archive and interchange file formats.

The VMS POSIX environment is similar to a UNIX environment. Many
commands are identical to those of UNIX. Users accustomed to a VMS
environment will find that many of the commands are similar, but will want
to consult Guide to Using VMS POSIX for a comparison of the commands and
how they function.

A VMS POSIX application can use all features available in the VMS operating
system, with some restrictions. For example, the following VMS features can
be used freely and do not affect your application's portability:

• VAXcluster environments

• Symmetric Multiprocessing (SMP)

10-2 VMS POSIX Realtime Programming

• Disk shadowing

The following programming practices can be used but may affect the portability
of your application:

• Linking a VMS POSIX application with modules written in languages
other than C

• Using VMS file specifications

• Calling VMS system services

The following features are restricted in VMS POSIX applications:

• RMSjournaling

~ Recovery unit journaling

VMS POSIX provides a VMS POSIX runtime library and POSIX header
files so that you can compile and link your application in the VMS PO SIX
environment.

You can use VMS HELP from the POSIX shell, which provides the full range
of online help for VMS. If your system provides access to the DECwindows
Bookreader, you can also obtain information about VMS POSIX in the
DECwindows Bookreader.

10.2 VMS POSIX Commands and Utilities
The P1003.2ID10 draft standard is a set of commands and utilities that .
provide functions at an interactive level. The VMS POSIX command language
interpreter (shell) has many of the functions and features of the Korn Shell.
For this version of VMS POSIX, Draft 10 of P1003.2 has been used.

The P1003.21D10 utilities provide an interface based on the most popular UNIX
commands and utilities. The POSIX interactive user can use appropriate
P1003.2ID10 commands to manipulate files, while POSIX-compliant
applications can interact with the file system using POSIX 1003.1 and
P1003.4ID9 functions. The VMS POSIX set of commands and utilities includes
the following:

• All utilities presented on P1003.2ID10

• The make and ar utilities for software development

• The c89, yacc, and lex utilities for developing applications using the C
language

• The asa utility for developing applications using FORTRAN

VMS POSIX Realtime Programming 10-3

• Over 30 new utilities designed to increase application portability

The following file system and shell functionality supports VMS POSIX
commands and utilities:

• Container file system

• VMS POSIX shell

10.2.1 VMS POSIX File System
The VMS POSIX file system more closely resembles a UNIX file system than
the VMS file system. Like a UNIX file system, VMS POSIX uses pathnames
instead of VMS file specifications, but you can use the VMS file system
to increase interoperability with other components of the VMS operating
system. You can also use the container file system, which provides a means of
translating a VMS file name to a file that fully supports the POSIX standards.
Files in the container file system have the following features:

• Full conformance to the POSIX standard

• POSIX standard naming conventions

• POSIX file time-stamping

• POSIX user IDs (UID) and group IDs (GID)

Symbolic links, hard links, special files, and first-in first-out (FIFO) files must
reside in the container file system.

Within the VMS POSIX system, you can work both in the VMS file system and
in the VMS POSIX container file system. Within the VMS POSIX container,
PI003.2IDIO utilities can be used to create an additional entry (link) to a file
or directory, remove a link, or perform other useful file functions.

10.2.2 VMS POSIX Shell
The VMS POSIX shell is a command language interpreter (CLI) and is
equivalent to the VMS Digital Command Language (DCL). You can instruct the
shell, either interactively or within a VMS POSIX command file (shell script),
to perform a· number of tasks. The shell is parsed by the sh utility and the
functions listed in IEEE PI003.2IDIO. The VMS PO SIX shell (based on the

. Korn shell) is an application that runs as a separate process.

Shell scripts are files containing shell commands, much as a VMS command file
contains DCL commands. From a shell script, you can perform the following
functions:

• Manipulate and run commands in the foreground or background

• Redirect input, output, and error messages

10-4 VMS POSIX Realtime Programming

• Use pipelines

• Set and pass variables

• Test conditions, use conditional statements, and loop

• Perform arithmetic operations

• Create shell functions

• Define environment and export variables

You can execute DCL commands from within the VMS POSIX environment by
using the VMS POSIX del command, which creates a VMS POSIX subprocess
running DCL. The process can run in the background or foreground, which
allows you to create a multitasking environment. During the DeL session,
the terminal is changed from VMS POSIX to VMS mode; when the program
returns, the mode is reset to VMS POSIX.

10.3 VMS POSIX Realtime Environment
The VMS POSIX product includes support for the POSIX 1003.4 Draft 9
standard (P1003.4ID9), a set of functions and calls that can be used in the
design and creation of realtime applications in the VMS POSIX environment in
the following areas:

• Process synchronization

• Interprocess communication

• Realtime performance

Other POSIXfeatures support interprocess communication through event
notification, message queues, and shared memory. Performance on a realtime
system is enhanced through the use of VMS POSIX features such as process
memory locking, synchronous and asynchronous 110, and realtime files.

10.3.1 Process Synchronization Using VMS POSIX
Synchronization techniques and access-control of resources ensure that critical
and noncritical activities execute at appropriate times with the necessary
resources available. The following table lists the synchronization functions
available with VMS POSIX.

Function Header File Purpose

Binary semaphores <syslsem.h> Restricts access to resources

VMS POSIX Realtime Programming 10-5

Function

Clocks and timers

Priority scheduling

Header File

<sysltimers.h>

<syslsched.h>

Purpose

Arms and disables timers

Sets process priority and the
scheduling policy

• Binary semaphores. Semaphores are used by cooperating processes to
synchronize access· to resources such as shared memory. Semaphores can
protect resources such as global variables, hardware resources, and the
kernel from uncontrolled access.

Semaphore protection works only if all of the communicating processes
using the shared resource cooperate by waiting for the semaphore when it
is unavailable and resetting the semaphore count when relinquishing the
resource. For cooperating tasks, semaphores are mutual exclusion flags
that lock and unlock a resource.

With VMS POSIX. semaphores, you can create and remove persistent
and nonpersistent binary semaphores, post and wait for semaphores, and
perform P and V operations. Each action on a semaphore requires an
explicit function call.

• Clocks and timers. The systemwide clock provides the timing basis for
per-process timers and is the primary source for timer synchronization.
VMS POSIX. clock and timer functions allow you to retrieve and set
the systemwide clock, suspend execution for a period of time, provide
high-resolution timers, and use asynchronous event notification.

Realtime timers allow the application to set timers based on either absolute
or relative time. Furthermore, VMS PO SIX. timers can fire as either a one­
shot or periodic timer. The application creates timers in advance, but the
timers can be manipulated based on the needs of the realtime application.
Some applications may require only one or two timers; others may require
multiple timers within a single process.

• Priority scheduling. The scheduler determines how CPU resources
are allocated to executing processes. Each process has a priority that
associates the process with a run queue. Although each process starts
out with an initial priority, the priority can change as the application
executes depending on the algorithm used by the scheduler or application
requirements.

The system maintains a list of runnable processes at each priority level.
Each process list has a priority level value ranging from PRIO_MIN to
PRIO_MAX. A process in a list with a higher priority value executes before
a process in a list with a lower priority value.

10-6 VMS POSIX Realtime Programming

VMS POSIX supports three scheduling policies; FIFO (first-in first-out), RR
(round-robin), and OTHER (VMS timesharing). A scheduling policy is the
algorithm that determines how processes are placed on the process list and
when processes execute. Whatever the scheduling policy, the process at the
top of the process list with the highest priority level executes first.

Table 10-1 categorizes the VMS POSIX synchronization functions and lists the
corresponding functions.

Table 10-1 VMS POSIX Process Synchronization Functions

Operation

Open, close, and control a special file

Make a binary semaphore special file

Wait (or conditionally wait) for a binary
semaphore .

Post (or conditionally post) to a binary semaphore

Get or set the value of the systemwide clock, get
the resolution of the clock

Allocate or free a per-process timer, get the value
of the per-process timer

Arm a per-process timer absolutely or relatively

Get the resolution supported by relative or
absolute timers and high resolution sleep

High resolution sleep

Get or set the priority of a process

Get or set the scheduling policy

Yield to another process

Functions

open
close
fcntl

mksem

semwait
semifwait

sempost
semifpost

getclock
setclock
resclock

mktimer
rmtimer
gettimer

reltimer
abstimer

resrel
resabs
res sleep

nanosleep

getprio
setprio

getscheduler
setscheduler

yield

VMS POSIX Realtime Programming 10-7

10.3.2 Interprocess Communication Using VMS POSIX
Using interprocess communication, you can synchronize independently
executing processes by passing data within an application. Processes can
pursue their own tasks until they must synchronize with other processes
at some predetermined point. When they reach that point, they wait for.
some form of communication to occur. The following table lists the types of
communication functions available in VMS POSIX.

Function Header File

Event notification <syslevents.h>

Message queue <syslmqueue.h>

Shared memory <syslshmmap.h>

Purpose

Notifies the calling process of an
instance of an event

Passes messages between
processes

Allows two or more processes to
share the same address space

• Asynchronous event notification. Event notification is a way of passing
data within an application when the application must respond to an
application-defined occurrence. Events are associated with event classes to
define groups of events so that you have more control over operations. In
addition, event masks are used to block or unblock event notification.

When an event is raised, the event is queued and the calling process is
notified if the calling process is currently executing or the event becomes
unblocked. A user-defined event handler is activated to handle the event.
An event can be the arrival of a message, timer expiration, arrival of data,
or asynchronous I/O request completion.

• IPC message passing. Interprocess communication through message
queues allows cooperating processes within an application to send data to
each other. A message queue is a systemwide special file accessible by a
pathname. Message queues remain after a child process terminates and
can be reused by other processes.

VMS POSIX message functions allow you to define the size of the message,
receive messages selectively, send or receive messages asynchronously, and
perform other operations.

• Shared memory. Shared memory allows multiple processes to share data
by mapping a region of memory into each process's address space. Use of
shared memory among processes provides faster data access.

10-8 VMS POSIX Realtime Programming

You can allocate as little memory as possible for each process or allocate
one large region and manage it within the application. Shared memory can
be created as persistent or nonpersistent. Once created, shared memory
can be mapped and unmapped, linked and unlinked, or closed.

Table 10-2 lists the VMS POSIX interprocess communication operations and
the corresponding functions.

Table 10-2 VMS POSIX Interprocess Communication Functions

Operation

Get or set the mask of blocked event classes,
suspend processes, block specified event classes

Poll for event notification, generate an
application-defined event

Associate signals with an event class

Create a message queue special file, send or
receive a message from a queue

Get and set message queue attributes, purge
messages

Get process identifier, allocate and free a message
data buffer

Get and put event data from or on a message
queue

Make a shared memory special file, map the
shared file into a process's address space, unmap
previously mapped shared memory

Functions

evtprocmask
evtsuspend

evtpoll
evtraise

evtsigclass

mkmq
mqsend
mqreceive

mqsetattr
mqgetattr
mqpurge

mqgetpid
msgalloc
msgfree

mqgetevt
mqputevt

mkshm
shmmap
shmunmap

10.3.3 Realtime Performance Using VMS POSIX
Access to files and memory represent major factors affecting the speed of
program execution. A realtime application designer should consider the
importance of execution speed versus file and data integrity. The following
table lists the types of perlormance functions available in VMS PO SIX.

Function Header File

Process memory locking <sys/memlk.h>

Purpose

Locks process address space in
memory

VMS POSIX Realtime Programming 10-9

Function Header File Purpose

Synchronized I/O <syslfcntl.h> Performs synchronized I/O
operations

Asynchronous I/O <syslaio.h> Performs asynchronous I/O
operations

Real-time Files <syslfiles.h> Performs file management

• Process memory locking. A realtime application cannot afford long
latencies in the execution of critical code. In a virtual memory system, a
process may have part of its address space paged in and out of memory in
response to system demands for critical space. In some cases the entire
process may be swapped out to disk in order to free up resources. Memory
locking is one of the primary tools for guaranteeing that time-critical
processes are locked into memory. and subject to memory management
appropriate only for timesharing applications.

However, realtime processes require an upper limit on the amount of time
required to fetch data. VMS POSIX memory-locking functions allow an
application to lock the entire address space, and the stack segment, and to
perform region and lock stacking.

• Synchronized input and output. Synchronized input and output
ensures data and file integrity during read and write operations. A
synchronized input operation ensures that a read operation from a device
transfers the current image of the data from the device. A synchronized
output operation blocks the initiating process from executing and does not
return until the write operation is complete.

Synchronized I/O file integrityis a superset of data integrity that also
ensures that all other file system irlformation relevant to the data is
successfully transferred.

• Asynchronous input and output. Asynchronous I/O allows the calling
process to regain control of execution immediately once an I/O operation is
queued. Without asynchronous I/O, the process waits while I/O completes
before continuing execution. Realtime applications require input and
output operations that do not block the initiating process. With VMS
POSIX, asynchronous I/O read and write operations are queued and control
is immediately returned to the calling process.

• Realtime files. A realtime application relies on the file management
system to provide bounded response times to whatever external demands
are placed on the application. The file system must ensure a high level of
performance, access to resources, and delivery of the data to the media.

10-10 VMS POSIX Realtime Programming

VMS POSIX realtime files allow for this capability. Note, however, that
VMS POSIX does not support direct I/O.

Table 10-3 categorizes the VMS POSIX performance functions and lists the
corresponding functions.

Table 10-3 VMS POSIX Realtime Performance Functions

Operation

Lock and unlock a memory region

Asynchronous read and write, list-directed I/O

Cancel or wait for asynchronous I/O request

Asynchronous and synchronous file synchroniza­
tion

Create a realtime file, get and set attributes of a
realtime file

Get the capabilities of a realtime file, get the
increment list

Read and write from a file

Functions

memlk
memunlk

aread
awrite
listio

acancel
iosuspend

afsync
rtsync

rtcreate
getattr
fgetattr
setattr
fsetattr

getcap
fgetcap
getincr
fgetincr
fsgetincr

read
Write

VMS POSIX Realtime Programming 10-11

Part IV
DEC OSF/1 Systems in Realtime

Applications

Part IV surveys DEC OSF/1 as a development and runtime environment for
realtime applications and introduces the POSIX functionality for realtime
application development on DEC OSF/1 systems. This part contains the
following chapters:

• Chapter 11, Survey of Programming on DEC OSF/1 Systems, outlines
the DEC OSF/1 operating systems and some realtime kernel application
programming techniques.

• Chapter 12, DEC OSF/1 Realtime Programming Environment, outlines
the functionality provided with DEC OSF/1 POSIX realtime (P1003.41D11)
kernel.

11
Survey of Programming on DEC OSF/1

Systems

Digital offers two UNIX operating systems, ULTRIX and .DEC OSF/l. Both
operating systems are full-service systems that are highly regarded within
the industry. Both ULTRIX and DEC OSF/1 offer an environment for
developing realtime applications. As a layered product, DECelx Realtime
Tools for ULTRIX (DECelx) includes a runtime executive, powerful testing and
debugging facilties, and an unparalleled ULTRIX cross-development package.
As a component of the DEC OSF/1 operating system, the realtime kernel
provides suppport for many POSIX 1003.4 Draft 11 realtime functions.

The DEC OSF/1 operating system is Digital's implementation of the Open
Software Foundation (OSF) operating system component V1.01 including OSF's
Motif Vl.1.3.

This chapter discusses the following DEC OSF/1 topics:

• DEC OSF/1 Operating System Overview, Section 11.1

• DEC OSF/1 Programming Support Tools, Section 11.2

• DEC OSF/1 Realtime Environment, Section 11.3

For additional information on DECeIx Realtime Tools, refer to Part 1. For
additional sources of information on DEC OSF/1 and DECelx, refer to
AppendixA.

11.1 DEC OSF/1 Operating System Overview
The DEC OSF/1 operating system is an advanced kernel design. It is an
advanced kernel architecture based on the Mach V2.5 kernel design from
Carnegie Mellon University. The operating system complies with standards
and industry specifications, including FIPS 151-1, PO SIX 1003.1-1990, XPG3
base branding, XTI, X11R5 support, and AT&T System V Interface Definition
(SVID) Issue 3 (base plus kernel extensions). The DEC OSF/1 operating

Survey of Programming on DEC OSF/1 Systems 11-1

system is compatible with the Berkeley 4.3 BSD programming interfaces,
which ensures a level of compatibility with Digital's ULTRIX operating system.

The base operating system kit contains media for installing the Realtime
Options. 'When installed, the realtime kernel and P1003.4IDI1 functions are
available to users on that system.

The following DEC OSF/l features assist programmers in developing realtime
applica tions:

• Preemptive kernel, Section 11.1.1

• Realtime priorities, Section 11.1.2

• DECthreads, Section 11.1.3

• Memory mapped files, Section 11.1.4

• Interprocess Communication, Section 11.1.5

• Networking, Section 11.1.6

One of the goals of OSF is to provide an interface for developing portable
applications that run on a variety of hardware platforms. DEC OSF/l is
compliant with the OSF Application Environment Specification (AES), which
specifies the interface to support portable applications.

11.1.1 Preemptive Kernel
'When you install the realtime options kit, the kernel is replaced with
a realtime (preemptive) kernel. The preemptive kernel allows a higher­
priority process to preempt a lower-priority process regardless of whether it is
running in kernel mode or user mode. With a preemptive kernel, the Process
Preemption Latency (the amount of time it takes to preempt a lower-priority
process) is small and bounded.

A realtime environment must be able to respond to an event within a bounded
(generally quite short) period of time. A preemptive kernel guarantees that
a higher-priority process can quickly interrupt a lower-priority process,
regardless of whether the low-priority process is in user or kernel mode.
Whenever a higher-priority process becomes runnable, a preemption is
requested, which causes the higher-priority process to displace the running,
lower-priority process. A preemptive kernel guarantees a deterministic
response to realtime events by providing the ability to respond to realtime
requests.

11-2 Survey of Programming on DEC OSF/1 Systems

Every realtime application interacts with the operating system in two modes:
user mode and kernel mode. User mode processes allow the application user
to interact with the application. User mode processes call utilities, library
functions, and other user applications.

In kernel mode, the application accesses and interacts with the operating
system. During execution, a user process often calls system functions,
switching the context from user to kernel mode.

The amount of time it takes for a higher-priority process to displace a
lower-priority process is referred to as Process Preemption Latency. In a
realtime environment, the primary concern of application designers is the
Maximum Process Preemption Latency that can occur at runtime. Designers
must understand system timing contraints before designing time-critical
applications.

A preemptive kernel, such as the DEC OSF/l realtime kernel, allows the
operating system to respond as quickly as possible to a process preemption
request. The DEC OSF/l realtime kernel can break out of kernel mode to
honor the preemption request.

A preemptive kernel supports the concept of process synchronization, while
maintaining data integrity, with the ability to respond quickly to interrupts.
The kernel employs mechanisms to protect the integrity of kernel data
structures and defines the restrictions on where the kernel cannot preempt
execution.

The Maximum Process Preemption Latency for a preemptive kernel is exactly
the amount of time required to preserve system and data integrity and preempt
the running process. Under these conditions it is not unusual for worst-case
preemption to take milliseconds.

11.1.2 Realtime Priorities
DEC OSF/l user and system priorities are designed to handle the needs of
timesharing users and the operating system. Priority ranges are divided
equally between the nonprivileged user and the system, with the total number
of priorities equal to 40.

The DEC OSF/l realtime kernel supports three priority ranges and is designed
to handle the needs of nonprivileged, timesharing users, the operating system,
and realtime users. The total number of priorities available is 64, with 32
reserved for realtime processes.

Survey of Programming on DEC OSF/1 Systems 11-3

Every process begins execution with a default initial priority inside the range
for timesharing processes. During execution, realtime processes dynamically
adjust their priorities to deal with realtime tasks. Process priority is closely
tied to the PI003.4ID11 scheduling policies and must be used in conjunction
with those functions.

11.1.3 DECthreads
DEC OSF/l provides software developers with the ability to write
multithreaded programs using DECthreads. DECthreads provides two
interfaces to its threading engine, one which is defined by the former Concert
Multithreaded Architecture (CMA) and a second draft which is defined by the
PI003.4a1D4 draft specification.

A thread is a single sequential flow of control within a process. It is the active
execution of a designated routine, including any nested routine invocations.
Within a single thread, there is a single point of execution. Applications can be
designed to be multithreaded so that each process can have multiple flows of
execution.

Because threads execute independently and simultaneously, they provide a
useful model for structuring applications to exploit parallelism. An application
can be designed to have multiple single-thread~d processes carrying out
processing of different parts of an application. For example, different processes
can do read and write operations from different files, resulting in non-blocking
I/O.

Threads can be scheduled based on the priority of the thread and are subject
to the same priority scheduling policies used by realtime functions. Each
thread has an associated priority and scheduling policy: FIFO, round-robin, or
timesharing.

Binary semaphores are used to synchronize thread access to shared resources.
Special thread functions create these semaphores and track locking activities.

11.1.4 Memory-Mapped Files
DEC OSF/l supports the Berkeley mmap function which allows an application to
access files with memory operations rather than file I/O operations.

Memory-mapped files allow a process to access files by directly incorporating
file data into the process's address space. Once a file is mapped into process's
address space, the data can be easily manipulated and I/O data movement is
reduced. Data no longer has to be copied into process data buffers as it is with
a read or write function call. If multiple processes concurrently map a file, its
contents may be shared among them, thus creating a low-overhead means of
communication and synchronization.

11-4 Survey of Programming on DEC OSF/1 Systems

11.1.5 Interprocess Communication
On DEC OSF/1 Version 1.2, interprocess communication is done using both
P1003.41D11 and System V IPC constructs as well as pipes, named pipes, and
POSIX 1003.1 signals. DEC OSF/1 interprocess communication includes:

• System V messages. A message queue is a systemwide special file
accessible by a pathname. Message queues remain after a child process
tenninates and can be reused by other processes. System V message
functions allow you to define the size of the message, receive messages
selectively, send or receive messages asynchronously, and other operations
that make message queues desireable for realtime applications.

• Pipes. Pipes are used to transfer small amounts of data among related
processes.

• . Named pipes. Named pipes are like pipes, except that named pipes use
file descriptors which provide communication for unrelated processes.

• POSIX 1003.1 signals. POSIX 1003.1 signals provide a means to
communicate to a large number of processes, but communication is limited
to a signal number. Some signals used in DEC OSF/1 realtime timer and
asynchronous I/O functions use a data structure, making signal delivery
asynchronous, fast, and reliable.

11.1.6 Networking
On DEC OSF/1 Version 1.2, networking is facilitated using traditional
networking methods as well as industry-standard networking facilities.
DEC OSF/1 networking facilities include the following functionality:

• INTERNET. The DEC OSF/1 operating system supports a number of
INTERNET RFC (Request for Comment) and non-RFC standards.

• TCPIIP. TCP/IP supports network communications over supported
network devices. The TCP/IP protocol suite is implemented in the socket
framework.

• Sockets. Sockets are similar to pipes. Each process has a single, two-way
channel. A socket is created with a domain and a type, which defines
communication semantics.

• Streams. Streams provide dynamic loading and linking of kernel level
protocols. Like sockets, streams provide a framework for character I/O to
and from user space to kernel networking protocols.

• XTL XlOpen Transport Interface (XTI) is an extension to the AT&T System
V Streams user space interface called Transport Level Interface (TLI).

Survey of Programming on DEC OSF/1 Systems 11-5

• FDDI support. DEC OSF/l provides FDDI fiber optic support for the
DECStation and DECsystem 5000 Series.

• Name Services. DEC OSF/l supports the BIND V4.B name service,
which provides a host name and address lookup service for the INTERNET
network. You can use BIND to replace or supplement the hosts, aliases,
auth, group, networks, passwd, protocols, rpc, and services databases.

• Network Time Protocol. DEC OSF/l provides the Network Time
Protocol (NTP) to synchronize and distribute time for all machines in a
network environment. The time synchronization daemon, timed, is used to
distribute time to all networked machines.

11.2 DEC OSF/1 Programming Support Tools
The DEC OSF/l base system software kit provides a number of programming
support tools, including facilities for text manipulation, macro and application
generation, source file management, and software kit installation and creation.
These programming support tools are independent of COHESION environment
products, which combine much of the functionality of these tools into an
integrated development environment.

The following utilities and commands are of specific interest to realtime
a pplica tion developers:

• The compiler system. The C language is the primary language supported
by DEC OSF/l. Tools that make up the DEC OSF/l compiler system
include compiler commands, preprocessors, compilation options, the link
editor, and the archiver.

• Optimizer. The global optimizer improves the penormance of DEC OSF/l
compiler object programs by transforming existing code into more
efficient coding sequences. The compiler system penorms both machine­
independent and machine-dependent optimizations.

• dbx. The primary debugging tool on DEC OSF/l is the dbx debugger. This
debugger allows you to trace problems at the source code level, control
a program's execution, and monitor program control flow, variables, and
memory locations.

• make. The make utility builds up-to-date versions of the application. It is
most useful in large programming projects in which multiple source files
are combined to form a single application.

11-6 Survey of Programming on DEC OSF/1 Systems

• prof. The prof program helps find areas of code where most of the
execution time is spent. In the typical application, most of the execution
time is conswned in a few sections of code; it is profitable to concentrate on
improving code efficiency in those sections.

• sees. The Source Code Control System, which is also in integral part of
the DECset and FUSE products, is a code management system that allows
you to keep source files in a common library and maintain control over
them.

• setld. The setld software installation and management facility allows
you to create, install, manage, and remove software kits. All DEC OSF/1
software kits supplied by Digital are compatible with setld and many
other software vendors also supply their kits in this form.

These and other programming support tools are included with the base system
software kit. You can also separately purchase CASE tools, which provide a
common interface" and database for managing software development projects.
For additional information on UNIX. CASE tools, refer to Chapter 18.

11.3 DEC OSF/1 Realtime Environment
The DEC OSF/1 realtime kernel and environment provides you With the
capability of developing and running portable applications in a POSIX
environment. DEC OSF/1 includes support for the following POSIX standards
and draft standards:

• POSIX 1003.1-1990

• P1003.4ID11

11.3.1 POSIX 1003.1 on DEC OSF/1
The POSIX 1003.1 standard is a set of functions and calls for use in
application programs using" the C programming language. The purpose of
using the POSIX 1003.1 standard in an application is to promote and allow
the portability of such an application between systems that support the
POSIX 1003.1 standard. The functions and calls in POSIX 1003.1 include some
functions that are identical to ANSI C functions, some functions that use the
same syntax as ANSI C functions, but operate slightly differently in the POSIX
environment, and some functions that are unique to POSIX.

Survey of Programming on DEC OSF/1 Systems 11-7

11.3.2 P1003.4/D11 on DEC OSF/1
The POSIX l003.41D11 draft standard is a set of functions and calls that can
be used in the design and creation of applications in the DEC OSF/l realtime
environment.

The DEC OSF/l realtime environment offers these POSIX features:

• Process synchronization. DEC OSF/l functions offer several methods
for synchronizing processes, including:

Realtime clocks and timers. Realtime clocks and timers allow an
application developer to synchronize and coordinate activities according
to a predefined schedule. The systemwide clock (CLOCK_REALTIME)
provides the timing base for per-process timers. Realtime timers are
created, armed, and removed by the application programmer. You can
use an absolute or relative timer on a one-shot or periodic basis.

Realtime timers use the nanosecond as the smallest unit of time, which
makes them better suited to realtime applications.

Priority scheduling. Priority scheduling gives an application
programmer control over the execution sequence of processes that
comprise an application. Priority scheduling also addresses the need to
ensure that a realtime process to can execute when it needs to and for
as long as necessary to satisfy the realtime requirement.

The system maintains a list of runnable processes at each priority
level. Each process list has a priority level value in the range from
PRIO_MIN to PRIO_MAX.. A process in a list with a higher priority
value executes before a process in a list with a lower priority value.

The DEC OSF/l realtime kernel supports three scheduling policies;
first-in first-out (FIFO), round-robin.(RR), and timesharing (OTHER).
These three scheduling policies determine how the process lists are
managed, the order of the process lists, and when processes of different
priorities can execute.

Semaphores. As a synchronization mechanism, a semaphore is
used to control access to systemwide resources. With PI003.41D11
semaphores, you can create, reserve, release, and remove binary
semaphores. Each action on a semaphore requires an explicit function
call and is under the control of the application programmer.

• Shared memory. Shared memory allows multiple processes to share data
by mapping a region of memory into each process's address space. Use of
shared memory among processes provides faster data access.

11-8 Survey of Programming on DEC OSF/1 Systems

You can allocate a little memory as possible for each process or allocate one
large region and manage it within the application. Shared memory can be
opened and unlinked.

• Process memory locking. Access to files and memory represent major
factors affecting the speed of program execution. The DEC OSF/l realtime
kernel provides process memory locking as a means to control application
performance.

Locking a process's address space in memory eliminates paging by the
target process. DEC OSF/l memory-locking functions allow an application
to lock and unlock both the current and future address space.

• Asynchronous I/O. Realtime applications require input and output
operations that do not block the initiating process. With the DEC OSF/l
realtime kernel asynchronous 110 read and write operations are queued
and the initiating process continues execution.

Survey of Programming on DEC OSF/1 Systems 11-9

12
DEC OSF/1 Realtime Programming

Environment

The DEC OSF/1 operating system provides you with the capability of
developing and running applications in a POSIX environment. DEC OSF/1
includes a regular programming interface and a realtime programming
interface, based on the POSIX standards and draft standards. The POSIX
standards and drafts support the concept of open systems.

This chapter describes the following aspects of the DEC OSF/1 POSIX
environment:

• DEC OSF/1 POSIX Environment, Section 12.1

• DEC OSF/1 Realtime Functions, Section 12.2

For additional information on the DEC OSF/1 realtime environment, refer
to the DEC OSF /1 Guide to Realtime Programming. Additional sources of
information are listed in Appendix A.

12.1 DEC OSF/1 POSIX Environment
DEC OSF/1 supports the POSIX. 1003.1-1990 standard to promote and allow
for portability between systems that support the POSIX 1003.1 standard. The
POSIX. 1003.1 standard defines a standard operating system interface and
provides standardized services through the C programming language.

The following major categories are covered by the POSIX 1003.1 standard.

Process primitives. Process primitives define process creation,
execution, and termination. Signals and timers are defined as a means of
synchronizing process execution and interprocess communication.

Process environment. Process environment commands allow you to
set and retrieve user and group IDs. In addition, commands are used
for system identification, setting time, accessing environment variables,
identifying terminals, and configuring system variables.

DEC OSF/1 Realtime Programming Environment 12-1

Files and directories. File commands allow you to create, open, link,
set a mask, rename, or remove files and special files. You can set file
characteristics, such as file accessibility and status. Directory commands
allow you to perform directory operations, such as creating or removing a
directory.

Input and output primitives. Input and output primitives include
standard read and write operations as well as pipes and control operations
on files.

Device-specific and class-specific functions. Device-specific and class­
specific functions include functions that allow you to communicate with
devices and device files.

Language-specific services for the C programming language.
Language-specific services define extensions to C language functions.

System databases. System database functions create and establish access
to system databases.

Data interchange format. Data interchange format commands specify
archive and interchange file formats.

DEC OSF/l provides a POSIX runtime library and header files so that you can
compile and link your application in the POSIX environment.

The man utility is available for obtaining a full range of online help for
commands and functions. If your system provides you with access to the
Bookreader, then you can also obtain information through that means.

12.2 DEC OSF/1 Realtime Functions
The DEC OSF/l realtime kernel includes support for portions of the
Pl003.4ID11 draft standard, a set of functions and calls that can be used
in the design and creation of realtime applications in the DEC OSF/l realtime
environment in the following areas:

• Clocks and Timers

• Process Priority Scheduling

• Memory Locking

• Asynchronous I/O

• Semaphores

• Shared Memory and Memory Mapped Files

12-2 DEC OSFJ1 Realtime Programming Environment

12.2.1 Clocks and Timers
The DEC OSF/1 systemwide clock, CLOCK_REALTIME!, provides the timing
base for per-process timers and is the primary source for timer synchronization.
This clock maintains user and system time as well as the current time and
date. The resolution of the CLOC1{_REALTIME clock is such that it provides
the basic mechanism to support realtime per-process timers and high resolution
sleep.

Clock and timer functions allow you to retrieve and set the systemwide clock,
retrieve and correct for clock drift rate, suspend execution for a period of time,
provide high resolution timers, and use asynchronous signal notification.

Timers in realtime applications must be able to respond quickly to
asynchronous external events. Timers often schedule tasks and events in time
increments considerably smaller than the traditional one-second timeframe.
Because the CLOCK_REALTIME clock and realtime timers use seconds and
nanoseconds as the basis for time intervals, the resolution for the system
clock, realtime timers, and the nanosleep function has a fine granularity. For
example, in a robotic data acquisition application, information retrieval and
recalculation operations may need to be completed within a 4-milliseconds
timeframe. Timers are created to fire every 4 milliseconds to trigger the
collection of another round of data. On expiration, a timer sends a signal to
the calling process.

Realtime timers must be flexible enough to allow the application to set timers
based on either absolute or relative time. Furthermore, timers must be able to
fire as a one-shot or periodic timer. The application creates timers in advance,
but specifies timer characteristics when the timer is set.

Realtime applications must be able to establish and manipulate timers based
on the needs of the application. Some applications may require only one or
two timers; others may require multiple timers within a single process. The
P1003.4ID11 timing facilities support multiple per-process timers up to a
system-defined limit. Each timer is created and armed independently, which
means that the application designer controls the action of each and every
timer.

Table 12-1 categorizes the DEC OSF/l clock and timer functions.

1 CLOCK_REALTIME is the TIME-OF-DAY clock for DEC OSF/1.

DEC OSF/1 Realtime Programming Environment 12-3

Table 12-1 DEC OSF/1 Clock and Timer Functions

Operation

Get or set the value of the systemwide clock, get
the resolution of the clock

Get or set the clock drift. rate

Allocate or free a per-process timer, get the value
of the per-process timer

Arm a per-process timer absolutely or relatively

High resolution sleep

12.2.2 Process Priority Scheduling

Functions

clock gettime
clock-settime
clock=getres
clock gettimedrift
clock-settimedrift
timer create
timer-delete
timer=gettime
timer settime
nanosleep

The scheduler determines how CPU resources are allocated to executing
processes. Each process has a priority that associates the process with a run
queue. Although each process starts out with an initial priority, that priority
can change as the application executes, depending on the algorithm used by
the scheduler or application requirements.

A scheduling policy is the algorithm that determines how processes are placed
on the process list and when processes execute. Whatever the scheduling
policy, the process at the top of the process list with the highest priority
level executes first. DEC OSF/l realtime supports three scheduling policies;
first-in first-out (FIFO), round-robin (RR), and timesharing (OTHER). FIFO
and RR are fixed-priority scheduling policies. That is, a process's priority and
scheduling policy are controlled by the user, rather than the sche~uler.

Under the FIFO scheduling policy, a running process continues to execute if
there are no other higher-priority processes. Under the control of the user,
a running process can raise its priority to avoid being preempted by another
process. Therefore, a high-priority, realtime process running under the FIFO
scheduling policy can use system resources as long as necessary to finish
realtime tasks.

Under the RR scheduling policy, the highest-priority process runs Until either
its allotted time (quantum) is complete or the process is preempted by another,
higher-priority process. A process continues to execute as long as the waiting
processes are at a lower priority. Therefore, high priority processes running
under the RR scheduling policy can share the processor with other time-critical
processes.

12-4 DEC OSF/1 Realtime Programming Environment

Under the OTHER scheduling policy, a running process runs in the same
manner as any other timesharing process on the system. Priorities can
be adjusted by the system. The OTHER scheduling policy is designed for
non-realtime tasks.

Table 12-2 categorizes the DEC OSF/1 process priority scheduling functions.

Table 12-2 DEC OSF/1 Process Priority Scheduling Functions

Operation

Get or set the priority of a process

Get the maximum or minimum priority allowed

Get or set the scheduling policy

Get the time limit allowed for round robin
scheduling

Yield to another process

12.2.3 Process Memory Locking

Functions

sched getparam
sched=setparam
sched get-priority max
sched=get_priority=min
sched getscheduler
sched-setscheduler

sched_get_rr_interval

schedyield

A realtime application cannot afford long latencies in the execution of critical
code. In a virtual memory system, a process may have part of its address
space paged in and out of memory in response to system demands for critical
space. Memory locking is one of the primary tools for guaranteeing that
time-critical processes are locked into memory and not subject to memory
management for timesharing applications. Unless time-critical processes are
locked into memory, the latency introduced by paging may cause involuntary
and unpredictable time delays at runtime.

Realtime application developers should consider memory locking as a required
part of program initialization. Many realtime applications remain locked for
the duration of execution, but some may want to lock and unlock memory
as the application runs. You can use the plock function or you can use
DEC OSF/1 P1003.4ID11 memory-locking functions. The P1003.4ID11 memory­
locking functions let you lock the entire process at the time of the. function
call and to automatically lock all additional memory throughout the life of the
application. Or, you can selectively lock and unlock memory as needed.

DEC OSF/1 Realtime Programming Environment 12-5

Two P1003.41D11 functions allow you to lock memory, which makes the process
memory or segments of the process immune to paging. The mlock function lets
you lock an address range into memory, and the mlockall function lets you lock
all of a process's memory (both current and future). You can remove memory
locks with corresponding calls to the munlock and munlockall functions.

DEC OSF/1 PI003.41D11 memory-locking functions are easier to use than
many other memory-locking functions and offer the following advantages:

• Portability

• Ability to preallocate and lock memory space

• Ability to lock memory with fewer function calls

Realtime applications often need to lock the entire process for the life of the
application. Memory-locking functions globally track which regions are locked
and which are not. If the data or text segment of a process is shared, then
locked data or text is locked for all sharing processes.

Table 12-3 categorizes the DEC OSF/1 realtime memory-locking functions.

Table 12-3 DEC OSF/1 Memory-Locking Functions

Operation

Lock and unlock a specified memory region

Lock and unlock all memory mapped by the
address space

12~2.4 Asynchronous Input and Output

Functions

mlock
munlock

mlockall
munlockall

DEC OSF/1 asynchronous I/O. allows the calling process to regain control
of execution immediately after an I/O operation is queued. This capability
is desirable in many different applications ranging from graphics and file
servers to dedicated realtime data acquisition and control systems. Without
asynchronous I/O, the process waits while I/O completes before continuing
execution. With asynchronous 110, once an I/O request is queued, control
is immediately returned to the calling process. The process immediately
continues execution, thus overlapping tasks.

Many realtime applications need this ability to overlap application processing
and I/O operations. Often, one process simultaneously performs multiple I/O
functions while other processes continue execution. For example, a process
can queue data for output without blocking (waiting for 1/0 completion).
Applications need to gather large quantities of data from multiple channels

12-6 DEC OSF/1 Realtime Programming Environment

within a short, bounded period of time. In such a situation, blocking 110 may
work at cross purposes with application timing constraints. Asynchronous 1/0
perfonns nonblocking 110, allowing simultaneous reads and writes, which frees
processes for additional processing.

Notification of asynchronous I/O completion is optional. If you choose
to use signal notification, the signal is specified in the aiocb structure,
thereby eliminating the need to call the signal function and providing faster
interprocess communication.

Table 12-4 categorizes the DEC OSF/1 realtime asynchronous functions.

Table 12-4 DEC OSF/1 Asynchronous 1/0 Functions

Operation

Asynchronous read and write, list-directed lIO

Retrieve error or return status of list-directed 110

Cancel or wait for asynchronous 110 request

Functions

aio read
aio-write
lio-listio

aio error
aio-return

aio cancel
aio=suspend

12.2.5 Shared Memory and Memory Mapped Files
Shared memory and memory-mapped objects allow processes to communicate
by incorporating data directly into process address space. Processes
communicate by sharing portions of their address space. When one process
writes to a location in the shared area, the data is immediately available to
other processes sharing the area. Communication is fast because there is
none of the overhead associated with system calls. Data movement is reduced
because it is not copied into buffers.

A memory object is either a memory-mapped file or a shared-memory object
that can be mapped concurrently into the address space of one or more
processes. Memory-mapped files are files, while shared-memory objects may be
either files or namespaces. In either case, shared memory can be accessed by
all processes through the use of global names. Processes using shared memory
map specific sections of the physical address space by using the name of the
shared memory.

DEC OSF/1 Realtime Programming Environment 12-7

A.process manipulates its address space by mapping or removing portions
of shared memory into the process address space. When multiple processes
map the same shared memory, they share access to the underlying data.
Shared-memory functions allow you to open and unlink the shared memory.
The functions discussed in this chapter allow you to map and unmap, protect,
and synchronize shared memory.

Using a shared, mapped object means that the changes to the mapped
memory are reflected back to the memory. Other processes using the same
file descriptor and opening the connection to the shared-memory region have
a shared mapping of the file. Thus, POSIX memory-mapped objects permit a
single process or multiple processes to incorporate data directly into process
address space. Once an object is mapped into a process address space, its data
can be manipulated easily. If the mappings allow it, data written into memory
through the address space of one process appears in the address space of all
processes mapping the same portion of the memory.

Memory mapped objects are persistent; their names and contents remain until
the application calls the unlink function.

Using semaphores in conjunction with shared memory, you can further
synchronize access to shared memory. When using shared memory, processes
map the same area of memory into their address space. This allows for fast
interprocess communication because the data is immediately available to
any other process using the same shared memory. If your application has
multiple processes contending for the same shared-memory resource, 'you must
coordinate access.

Binary semaphores provide an easy means of regulating access to shared
memory and to determine if the memory resource is available. Typically, an
application will begin execution at a nonrealtime priority level, then perform
the following tasks when an application uses mapped or shared memory and
semaphores:

• Create the shared memory

• Determine the address and map the region into memory

• Create a binary semaphore set

• Adjust the process priority and scheduling policy as needed

• Before a read or write operation, lock (reserve) the semaphore

• After a read or write operation, unlock (release) the semaphore

12-8 DEC OSF/1 Realtime Programming Environment

Table 12-5 categorizes the DEC OSF/l realtime shared memory and memory
mapped file functions.

Table 12-5 DEC OSF/1 Shared Memory and Memory Mapped File Functions

Operation

Maps and unmaps the memory object into
memory

Modifies protections of memory objects

Synchronizes a memory-mapped object

Returns the shared-memory file descriptor

Removes the name of the shared memory

12.2.6 Semaphores

Functions

mmap
munmap
mprotect
msync
shm_open
shm unlink

Binary semaphores, as specified in P1003.41D11, provide an efficient form
of interprocess communication. Cooperating processes can use binary
semaphores to synchronize access to resources, most commonly, shared
memory. Semaphores can also protect the following resources available to
multiple processes from uncontrolled access:

• Global variables, such as file variables, pointers, counters, and data
structures. Protecting these variables means preventing simultaneous
access by more than one process, such as reading information as it is being
written by another process.

• Hardware resources, such as disk and tape drives. Hardware resources
require controlled access because simultaneous access can result in
corrupted data.'

Semaphore protection works only if all the processes using the shared
resource cooperate by waiting for the semaphore when it is unavailable and
resetting the semaphore to an unlocked state when relinquishing the resource.
Applications using binary semaphores must carefully detail cooperative tasks.
All of the processes that share a resource must agree on which semaphore c.

controls the resource.

PO SIX P1003.4ID11 binary semaphores are persistent. The state of the
individual binary semaphore is preserved after the semaphore set is no longer
open. For example, a binary semaphore set containing 10 semaphores may
contain 7 semaphores in the locked state and 3 in the unlocked state when the
last process using the semaphore set closes it. The next time a process opens .
that semaphore set, it will find 7 locked semaphores and 3 unlocked ones. For
this reason, cleanup operations are advised when using binary semaphores.

DEC OSF/1 Realtime Programming Environment 12-9

The functions relating to semaphores follow the same general logic as for
P1003.41D11 shared memory and memory mapped files. Table 12-6 categorizes
the DEC OSF/1 realtime semaphore functions.

Table 12-6 DEC OSF/1 Semaphore Functions

Operation Functions

Create and open a new binary semaphore set sem mksem
sem_open

Unlocks a binary semaphore sem _post

Deallocates or destroys the binary semaphore set sem close
sem=destroy

Returns the number of semaphores in the set sem_getnsems

As with other interprocess communication methods, you can set up a signal
handler to remove the semaphore set as one of the tasks performed by the last
process in your application.

12-10 DEC OSF/1 Realtime Programming Environment

Part V
High-Level Language Support for

Realtime Applications

Part V surveys high-level programming language tools that you can use for
realtime and scientific application development and execution. This part
contains the following chapters:

• Chapter 13, High-Level Language Overview, identifies high-level
programming language tools used to develop realtime and scientific
applications.

• Chapter 14, VAXELN Ada, describes the programming environment and
software tools used to develop and run VAXELN Ada applications.

• Chapter 15, XD Ada Cross-Development System, discusses a family of
production-quality Ada cross-development tools for embedded realtime
systems projects.

13
High-Level Language Overview

Digital furnishes high-level programming language products for realtime
and scientific application development. The products include compilers and
associated tools and options. You can use particular combinations of these
products to code VAXELN, VAX Realtime Accelerator, VAY.ELN Ada, and
XD Ada systems, as well as DEC Realtime Integrator functions.

The high-level languages and tools Digital supplies for realtime and scientific
application development include:

• DEC Ada, Section 13.1

• VAX BASIC, Section 13.2

• DEC C, Section 13.3

• DEC C++, Section 13.4

• DEC Fortran, Section 13.5

• VAX FORTRAN High-Performance Option, Section 13.6

• DEC Pascal, Section 13.7

• VAX Pascal, Section 13.8

These language products have been tailored to work efficiently with the
DECset CASE tools presented in Chapter 17. In addition, as native-mode VAX
languages, they are integrated into the VAX common language environment.
This integration provides support for the VAX interlanguage calling standard
and VMS system services and utilities.

Other compilers and tools you can use for realtime application development
include VAXELN Pascal, described in Chapter 6; VAXELN Ada, Chapter 14;
and XD Ada, Chapter 15.

High-Level Language Overview 13-1

13.1 DEC Ada
DEC Ada for OpenVMS on VAX and Alpha systems are validated
implementations of the full ANSI/MI~STD-1815A-1983 Ada language,
specified in the Reference Manual for the Ada Programming Language. The
DEC Ada compiler runs on the OpenVMS operating system and generates
optimized, shareable, position-independent code.

DEC Ada for ULTRIX on RISC systems and DEC Ada for DEC OSF/l on
MIPS systems implement the American National Standards Institute (ANSI)
and International Standards Organization (ISO) standard Ada programming
language on UNIX systems. Where allowed by the standard, DEC Ada for
UNIX systems is implemented to make programming in a UNIX environment
convenient and efficient.

Ada is a powerful, general-purpose programming language that emerged as
the result of a competition sponsored by the U.S. Department of Defense.
The competition was intended to define a language suitable for programming
embedded computer systems. Among the language requirements were features
to reduce software costs by increasing maintainability, evolvability, reliability,
and portability. The Ada language meets these requirements through the
following features:

• Modular structure for programs

• Data abstraction

• Separate compilation of program units

• Strong typing

• Generic definitions

• Exception handling

In addition, Ada's multitasking language features make it particularly suitable
for realtime applications.

Ada Programming Support Environment
The environment for developing Ada programs consists of tools and utilities
provided by DEC Ada and the operating system; the Ada compiler, Ada library
of predefined units, Ada program library manager, Ada runtime library, a
debugger, and development tools and utilities. You may also want to take
advantage of the wide assortment of CASE tools, many of which are surveyed
in Chapter 17.

13-2 High-Level Language Overview

DEC Ada Program Library Manager The DEC Ada program library manager
furnishes management and utility functions for Ada program libraries. The
program manager supports large-scale programming efforts through separate
compilation. Separate compilation allows Ada programs to be composed of
individual compilation units, all of which depend on each other in specific ways.
These dependencies determine the order of compilation for the units. The DEC
Ada program library manager keeps track of the individual compilation unit
dependencies and can compile units in their proper order to keep the program
library current.

Because the DEC Ada program library manager was designed for the
development of both DEC Ada and VAXELN Ada systems, you can defer
your choice of a target system until you link your Ada application. This makes
it easier to build an Ada application that can run on either an OpenVMS or
VAXELN target.

By deferring your choice of a target system until link time, you can create a
DEC Ada program library that can then be modified for a VAXELN target. You
can do this in one of two ways: either you can change the DEC Ada program
library characteristics and then relink, or you can relink by invoking the
program library manager with a special link qualifier. In the latter case, the
DEC Ada program library is not modified. Likewise, a VAXELN Ada program
library can be modified for a VAX target.

On a UNIX system, the program library manager is the user interface to the
DEC Ada compiler and the Id linker. DEC Ada uses the dbx debugger and a
choice of text editors.

For additional sources of information on DEC A.da, refer to Appendix A.

13.2 VAX BASIC
VAX BASIC is an interactive, shareable language processor for the VMS
operating system. This compiler takes full advantage of the VAX floating point,
decimal, and character instructions.

With the VAX BASIC compiler, you get a high-performance environment
for both application development and timesharing through in-line VAX
instructions. It combines the power of a structured programming language
with the interactivity of the BASIC environment and the convenience of
graphics statements. This compiler is also integrated with key components of
the VAX Information Architecture.

High-Level Language Overview 13-3

13.3 DEC C
DEC C is the name of a family of ANSI C compilers that provides a single
language implementation across all strategic Digital platforms (VMS, ULTRIX,
and DEC OSF/l). The goal for DEC C is to provide an industry-leading
compiler for use as a system and application compiler for Digital systems.
DEC C provides support for the American National Standards Institute (ANSI)
definition of the C programming language, ANSI X3Jl1l88-159. DEC C passed
the Plum Hall test suite .

. A most important feature of the DEC C compiler is its ability to accept
different dialects of the C language. With use of command line options, DEC
C is compatible with older dialects of C, including common C (Kernighan and
Ritchie C) and VAX C. The compiler can be run in the following modes:

• ANSI C mode - compiles the C language as defined by the American
National Standard for C along with any extensions not prohibited by that
standard

• Relaxed ANSI C mode - follows the ANSI C standard, but also accepts
additional Digital keywords and predefined macros that do not begin with
an underscore

• VAX C mode - provides compatibility for programs that depend on old
VAX C behavior

• Common, or pcc, mode - provides compatibility with the pee compiler on
ULTRIX

The DEC C compiler provides support for function inlining to eliminate
call overhead, and source code checking features such as those found in the
lint utility for assistance in identifying nonportable or unintentional coding
practices.

DEC C is an extended implementation of the C programming language
originally developed at Bell Laboratories. This compiler runs on the VMS
operating system and generates optimized, position-independent code.

The DEC C compiler supports decomposition of for and while loops.
Decomposed loops run in parallel in multiple processes, thereby reducing
the total elapsed time required to run a program. This capability is most
useful on multiprocessor machines.

In addition to the language, the ANSI C standard also defines the contents of
the C library and header files.

13-4 High-Level Language Overview

13.4 DEC C++
DEC C++ for ULTRIX on RISC systems and DEC C++ for VAXNMS systems
are native compilers which implement the C++ programming language. DEC
C++ includes the following components:

• C++ compiler

• DEC C compiler

• Symbolic debugger for both C++ and C programs

• DEC C++ class libraries

• Enhanced ANSI C and XPG3 header files

The DEC C++ compiler implements C++ as defined by The Annotated C++
Reference Manual by Ellis and Stroustrup. The DEC C++ implementation
includes templates but excludes exception handling. The symbolic debugger,
DE Cladebug, provides basic debugging capabilities as well as many
enhancements to aid in debugging C++ applications. (DEC C++ for ULTRIX
includes a dbx interface.)

DEC C++ can be used within the DECset or DEC FUSE programming
environments.

13.5 DEC Fortran
DEC Fortran is the name of a family of Fortran compilers that provides a
single language implementation across strategic Digital platforms (Open VMS,
ULTRIX, and DEC OSF/l). DEC Fortran is an implementation of full language
FORTRAN-77 conforming to the ANSI-X3.9-1978 FORTRAN standard. DEC
Fortran is highly compatible with VAX FORTRAN.

This compiler includes optional support for programs conforming to the
previous standard, ANSI-X3.9-1966. DEC Fortran for ULTRIX meets
the Federal Information Processing Standard Publication (FIPS-69-1)
requirements by conforming to the ANSI Standard by including a flagger. The
flagger optionally produces diagnostic messages for compile-time elements
which do not conform to the Full-Level ANSI-X3.9-1978 FORTRAN standard.
DEC Fortran for ULTRIX also conforms to the International Standard ISO
1539-1980(E). DEC Fortran conforms to MIL-STD-1753.

DEC Fortran supports extensions to the ANSI standard including a number
of extensions defined by the VAX Fortran compiler that runs on VMS and
ULTRIX systems.

High-Level Language Overview 13-5

DEC Fortran includes enhancements to the ANSI standard, including some
attributes of Cray pointers, common blockS, additional data types, and
composite data declarations using STRUCTURE, END STRUCTURE, and
RECORD statements and access to record components through field references.

The DEC Fortran compiler includes a multi-phase optimizer that is capable
of performing optimizations across entire programs. The highest level of
optimization is on by default. Some specific optimizations include:

• Interprocedural analysis across all modules compiled on the same command
line

• In-line expansion of statement functions and routines

• Value propogation

• Constant folding

• Loop unrolling

• Removal of invariant expressions from loops, redundant and unreachable
code

13.6 VAX FORTRAN High-Performance Option
To use the new VAX Vector Processors effectively, you need a compiler that
can easily take your existing application code and generate code that uses
the vector instructions. The VAX. FORTRAN compiler, combined with the
High-Performance Option (HPO), is designed to do just that for applications on
either VAXlVMS or VAX ULTRIX systems.

Digital has offered multiprocessor VAX systems for some time. To simplify
programming, VAX FORTRAN supplied mechanisms to more easily exploit
the power of VAX multiprocessors. Now, the VAX FORTRAN compiler,
combined with the HPO, extends this capability for vector processor systems.
It should be noted that there is still only one VAX FORTRAN compiler for
VAXlVMS systems: whether scalar or vector and whether a single-processor or
multi processor configuration.

The HPO capabilities enable the VAX. FORTRAN -compiler to automatically
generate vector-processor instructions. The compiler automatically decomposes
programs to improve performance on multiple-processor systems.

And, the VAX FORTRAN HPO on VAXlVMS systems is supported by the VAX
Language-Sensitive Editor (VAX. LSE) and the VAX. Performance Coverage
Analyzer (VAX PCA). With this support, Digital's CASE leadership position is
extended into the vector processing arena.

13-6 High-Level Language Overview

The VAX FORTRAN HPO for VAXlVMS systems and for VAX ULTRIX systems
includes these enhancements to the VAX FORTRAN compiler:

• Thorough dependence analysis

• Automatic transformations for vectorizing difficult constructs

• Multilevel vectorization and decomposition

• Compile-time performance analysis to choose the best vectorization and
decomposition method

• Integration of vector and scalar optimizations

• Generation of VAX Language-Sensitive Editor (VAX LSE) diagnostics for
vectorization inhibitors 1

• Loop summary listing for viewing optimization results

VAX FORTRAN HPO on VAXlVMS systems supports vector processor systems
as well as automatic parallel decomposition. VAX FORTRAN HPO on VAX
ULTRIX systems has only vector support.

13.7 DEC Pascal
DEC Pascal for RISC and DEC Pascal for DEC OSF/l are implementations
of the Pascal language that complies with the ANSIIlEEE-770X3.97-1983
standard and IS0--7185-1983 (E) Level 0 and Levell. DEC Pascal is a fully
compliant, Class A FIPS 109 Certified Pascal compiler. ISO Level 0 is the
ANSI implementation and ISO Level 1 includes support for conformant arrays.

DEC Pascal contains some Domain Pascal extensions, additional BSD Pascal
compatibility, and shared libraries. The Pascal language contains control
statements, data types, and predeclared procedures and functions. Containing
extensions to the standard, DEC Pascal generates optimized code that takes
advantage of RISC hardware.

DEC Pascal provides extensions to the standard language definition to provide
application developers with a Pascal language that serves a wide range of
programs and yet remains consistent with the C programming environment.

To enhance portability, DEC Pascal meets the XlOpen Pascal language
requirements and and will apply for XPG/3 Branding. DEC Pascal's
conformance to these standards reinforces Digital's overall commitment to
meet industry standards.

1 Not available on VAX ULTRIX

High-Level Language Overview 13-7

13.8 VAX Pascal
VAX Pascal is an implementation of the Pascal language that accepts
programs compatible with either level of the ISO specification for programming
languages: IS0-7185-1983(E) and ANSIIIEEE-770X3.97-1983. VAX Pascal
also meets the Federal Information Processing Standard publication FIPS-109
requirements by accepting programs conforming to the ANSI standard.
Furthermore, VAX Pascal accepts many features from the draft Extended
Pascal Standard: ANSIIIEEE-770X3.160-1989 and IS0-10206.

The VAX Pascal compiler has been validated for both levels of the ISO
Unextended Pascal Standard and for conforming to FIPS-109. With extensions
to the standards, the VAX Pascal compiler can generate optimized, shareable
code that takes full advantage of the VAX hardware floating point and
character instruction sets and the virtual memory capabilities of the VMS
operating system.

13-8 High-Level Language Overview

14
VAXELN Ada

VAXELN Ada, a fully validated implementation of the Ada language, is a
realtime software offering that enables you to include VAX Ada programs in
a VAXELN system. The VAXELN Ada product is well integrated in the VMS
and VAXELN Toolkit environments, where the VMS operating system serves
as the development system and the VAXELN kernel serves as the target.

VAXELN Ada systems offer. the fiexibility,dedication, and reliability required
by government agencies for managing radar control, communications, and
navigational systems. Industrial uses of VAXELN Ada include the control of
shop floor equipment, automation, and robots.

This chapter describes the following:

• VAXELN Ada Software Features, Section 14.1

• VAXELN Ada Programming Support Environment, Section 14.2

• VAXELN Ada Runtime Software, Section 14.3

• VAXELN Ada Development Cycle, Section 14.4

• VAXELN Ada Hardware and Software Requirements, Section 14.5

14.1 VAXELN Ada Software Features
Key features of the VAXELN Ada software include:

• Compliance with U.S. Government requirements. VAXELN Ada,
combined with the VAX Ada compiler and VAXELN Toolkit, has been
validated by the U.S. Government's Ada Validation Office and complies
with ANSIIMIL-STD-1815A-1983 (as specified in the Reference Manual
for the Ada Programming Language by the Ada Joint Program Office).

• Target system flexibility. You can defer the choice of a target system
until you link. your Ada applications, .thus making it easier to build
applications that run on either VAXELN or VMS systems.

VAXELN Ada 14-1

• Integration with the VAXELN runtime environment. VAX Ada
applications integrate well with the VAXELN runtime environment in the
following ways:

They conform to the VAX. calling standard, which allows VAX Ada code
to call and be called by code written in other VAX. high-level languages.
VAX. Ada code can call VAXELN and VAX RdblELN runtime facilities.

They adhere to standard Ada exception handling within the scope of an
Ada routine; they follow standard VAX. exception handling outside the
scope of an Ada routine.

They can be linked with shared images and access shared memory
areas between applications on the same target system.

They can control custom devices. You can write device drivers entirely
in Ada high-level language code; no macro code is required.

VAXELN Ada systems run as separate VAXELN processes under
control of the VAXELN scheduler. This differs from the VMS
environment, in which Ada tasks are multithreaded through the
runtime library and the entire program is scheduled as a single process
by the VMS scheduler.

• VAX Ada software development tools foundation. VAXELN Ada
system development complements and builds on the VAX. Ada development
tools by using the VAX Ada compiler and program library manager.

• VAX Ada development and runtime support. VAXELN Ada system
development and runtime support includes all of the VAX. Ada development
and runtime features with the following restrictions:

No access to indexed sequential access method (ISAM) or relative files.

No support for VMS logical names.

No support for the VMS asynchronous system trap (AST)l mechanism.
Instead, VAXELN system service calls supply this functionality with
the additional flexibility required in a realtime environment.

No time-slicing. Instead, VAXELN provides the strictly preemptive,
priority-driven scheduler needed in a realtime environment.

1 An AST is a VMS mechanism for furnishing a software interrupt when an external
event occurs.

14-2 VAXELN Ada

14.2 VAXELN Ada Programming Support Environment
The VAXELN Ada programming support environment (APSE) offers efficient,
controlled, VMS system development of VAXELN Ada systems. APSE consists
of the VAX Ada compiler, VAX Ada program library manager, VAXELN
Toolkit, and VAXELN Ada Remote Debugger. Sections 14.2.1 through 14.2.4
summarize these tools.

Two additional tools that you will find useful for debugging V~XELN Ada
systems include the VAXELN Display Utility and VAXELN Performance
Utility. Section 6.3.1 discusses these tools.

Furthermore, you can use Digital CASE tools such as the VAX Language­
Sensitive Editor (VAX LSE), VAX DEC/Code Management System
(VAX DEC/CMS), VAX DEC!I'est Manager, and VAX Source Code Analyzer
(VAX SCA) to enhance your productivity. Chapter 17 surveys these and other
VMS CASE offerings.

14.2.1 VAX Ada Compiler
You use the VAX Ada compiler to compile VAX Ada programs which
subsequently can be included in a VAXELN Ada system image. This compiler
features comprehensive diagnostic measures, including automatic syntax
error correction (when used with the VAX Language-Sensitive Editor [VAX
LSE]), which can facilitate application development. Chapter 13 presents the
VAX Ada compiler.

14.2.2 VAX Ada Program Library Manager
You also use the VAX Ada program library manager to develop VAXELN Ada
systems. The VAX. Ada program library manager furnishes management and
utility functions for Ada program libraries.

14.2.3 VAXELN Toolkit
Chapter 4 introduces the various components of the VAXELN Toolkit that you
can use to develop VAXELN Ada systems.

14.2.4 VAXELN Ada Remote Debugger
The VAXELN Ada Remote Debugger (which is part of VAXELN Ada) enables
VMS system debugging ofVAXELN Ada systems running on a VAXELN
target. This fully symbolic remote debugger is a superset of the VMS and
VAXELN debuggers. To use the VAXELN Ada Remote Debugger, you need a
DECnet-VAX license and an Ethernet local area network (LAN) link between
the development and target systems.

VAXELN Ada 14-3

The VAXELN Ada Remote Debugger recognizes most VAX Debugger
commands, including those designed specifically for debugging Ada tasks.
In addition, this debugger has VAXELN system-specific commands, which are
highlighted in the next sections.

The VAXELN Ada Remote Debugger supports:

• Mixed VAX Ada code and code written in other VAX high-level languages

• Various Digital-supplied VAX Ada and VAXELN library packages that can
be used in VAXELN Ada systems

• Ada tasking programs, described next

• VAXELN Ada system monitoring and control commands, also described
next

Debug Features for Ada Tasks
When you debug programs involving Ada tasks, you need debugging features
beyond those applicable to most programming languages. In addition to
general debugging features, the VAXELN Ada Remote Debugger allows you to:

• Display the state of given tasks or all tasks in a program.

• Display more detailed substates of a main state.

• Place a task on hold so that it is not scheduled for execution.

• . Perform a task switch.

• Change the priority of a task.

• Abort a task.

• Display tasking runtime statistics, such as number of entry calls, tasks
activated, and accept and select operations.

• Set breakpoints for various tasking events.

Debug Support for VAXELN Ada System Monitoring and Control Commands
The VAXELN Ada Remote Debugger supplies debug support for VAXELN Ada
system monitoring and control commands that let you do the following:

• Debug from a VMS development system. Remote console input/output (110)
allows the VMS system's debugging terminal to act as the target system's
console device.

• Display the status of jobs running on the target system and the use and
availability of system resources.

• Create new VAXELN jobs from programs that are either resident on the
target system or that you add dynamically at runtime.

14-4 VAXELN Ada

• Switch from debugging one VAXELN job to another.

14.3 VAXELN Ada Runtime Software
The VAXELN Ada runtime software includes the VAXELN runtime facilities
and VAX Ada predefined library packages. Sections 14.3.1 and 14.3.2 offer
brief descriptions of this runtime software.

14.3.1 VAXELN Runtime Facilities
The VAXELN runtime facilities can be accessed by an Ada application that is
part of a VAXELN Ada system image. Chapters 4 and 6 describe the VAXELN
runtime facilities.

14.3.2 VAX Ada Predefined Library Packages
The VAX Ada software is packaged with many standard and supplementary
library packages, most of which you can use to develop VAXELN Ada systems.
These library packages supply definitions for types, subtypes, constants,
bindings, and procedures that you can invoke to interface with the VAXELN
runtime facilities.

14.4 VAXELN Ada Development Cycle
You can use these steps to create a VAXELN Ada system:

1. Write your Ada program on a VMS development system using VAX Ada
code.

2. Compile your Ada program using the VAX Ada compiler.

3. Link your Ada program image using the VAX Ada program library manager
interface to the VMS Linker.

4. Build your VAXELN Ada system image using the VAXELN System Builder
to combine one or more Ada program images, any other program images,
runtime libraries, and a VAXELN kernel image.

5. Load and boot your VAXELN Ada system image onto a target processor by
a downline system load, disk or tape device, or read-only memory (ROM).

To downline load your system image, you must have a DECnet-VAX license
and Ethernet hardware configured into your system.

Figure 14-1 illustrates how to build a typical VAXELN Ada system using the
VAX Ada compiler, VAXELN Toolkit, VMS CASE tools, and VMS development
tools in conjunction with VAXELN Ada.

VAXELN Ada 14-5

Figure 14-1 Developing a Typical VAXELN Ada System

14-6 VAXELN Ada

Ada Source
Files

VAXELN Ada
Remote

Debugger ~

VMS CASE
Tools

VAX Ada
Compiler

VAX Ada
Program

Ubrary Manager

VMS
Linker

VAXELN
System
Builder

.~

VAXELN Ada
Bootable System

Image

VAXELN Target Processor

Other
Files

ML0-006176

14.5 VAXELN Ada Hardware and Software Requirements
VAXELN Ada hardware and software requirements and options are specified
next.

Development Hardware Requirements
The VAXELN Ada System Support Addendum (SSA) includes a list of
supported VAXELN Ada development system processors. Contact your Digital
sales representative to obtain the latest VAXELN Ada SSA.

Target Hardware Requirements
VAXELN Ada target processors include any VAX or MicroVAX target supported
by the VAXELN software. For a list of supported VAXELN target processors,
see the latest VAXELN Toolkit System Support Addendum (SSA), also available
from your Digital sales representative.

Development Software Requirements
To develop a VAXELN Ada system, the following software is required:

• VAX Ada compiler

• VAXELN Ada

• VAXELN Toolkit

• VMS operating system

• DECnet-VAX

Optional Hardware and Software
You may also want to acquire a DECnet-VAX license and Ethernet hardware.
When configured into your system, these ingredients will enable you to
downline load your VAXELN Ada system image from the development system
to the target and to use the VAXELN Ada Remote Debugger.

VAXELN Ada 14-7

15
XD Ada Cross-Development System

The XD Ada product set is a family of production-quality Ada
cross-development tools for embedded realtime systems projects. This
software generates optimized, relocatable code for Motorola MC68xxx and
MIL-STD-1750A microprocessor targets. XD Ada is presently targeted to
the MC68000, MC68020, MC68030, MC68040, MC68332, MC68340, and
MIL-STD_1750A bare microprocessor. XD Ada has been developed jointly
by Digital Equipment Corporation and SD (part of the SD-Scicon group) to
address the needs of the rapidly increasing number of military and commercial
organizations committed to using the Ada language in embedded realtime
systems projects.,

This chapter describes the following:

• XD Ada Software Features, Section 15.1

• XD Ada Programming Support Environment, Section 15.2

• XD Ada Runtime Software, Section 15.3

• XD Ada Development Cycle, Section 15.4

• XD Ada Hardware and Software Requirements, Section 15.5

For additional sources of information on XD Ada, refer to Appendix A.

15.1 XC Ada Software Features
Key features of the XD Ada software inel ude the following:

• Complete validation. The XD Ada software is a validated
implementation of the full ANSII.MIL-STD-1815A-1983 Ada language,
specified in the Reference Manual for the Ada Programming Language.

• Extension to the VAX Ada compiler. The XD Ada cross-development
system is the natural choice for current VAX. Ada users. The XD Ada
toolset, in conjunction with the VAX. Ada compiler, extends this unrivaled
development environment to embedded realtime systems.

XD Ada Cross-Development System 15-1

• VMS development, testing, and debugging environment
compatibility. XD Ada system development allows VMS host
development, testing, and debugging of your Ada applications using
the VAX Ada compiler, VAX Ada program library manager, VAX Debugger,
VMS development tools, and VMS CASE tools. Then, you use the XD Ada
toolset to compile your application for a different target system. This
approach enables the development tools to exploit the host's effectiveness
while optimizing the target computer for the embedded application.

• Application development without target hardware. Because
applications that can be included in XD Ada systems can be developed
completely on a VMS host, software development can start before the
target hardware is available. XD Ada also furnishes support for emulators.
Emulators are devices or programs that allow application execution on
a different type of computer than the one on which an application was
developed or for which it was written.

• Reduced development and runtime costs. Two features of the XD Ada
compiler can reduce overhead on the host and target:

The cross-compiler's compilation rate approaches that of the VAX Ada
compiler. It is based on Digital's use of efficient file and memory
management combined with memory-resident data structures.

The cross-compHer's compact code generation is based on global
optimization techniques, pattern-matching instruction selection, and a
global register allocator.

In addition, compatible host and target development and runtime
environments enable efficient use of staff and equipment resources.

• Comprehensive diagnostic messages. When used with the vAx
Language-Sensitive Editor (VAX LSE), the XD Ada compiler features
comprehensive diagnostic messages, including automatic syntax error
correction.

• Target system-dependent application development support. Since
different target systems vary in characteristics such as the size of storage
units, memory size, and the smallest and largest integers supported,
XD Ada supplies target-specific application development support. This
software support consists of a target system-dependent, predefined
library package as well as length, data representation, enumeration
representation, record representation, and address clauses.

15-2 XD Ada Cross-Development System

• Reconfigurable target runtime system. The XD Ada software is
packaged with a reconfigurable, modular runtime system featuring
optimized rendezvous performance. Rendezvous refers to the interaction
that occurs between two parallel Ada tasks. During this interaction,
one task calls an entry of the other task, and a corresponding accept
statement is executed by the other task on behalf of the calling task.
Rendezvous performance is a measure of the time it takes for a rendezvous
between two Ada tasks to complete.

15.2 XD Ada Programming Support Environment
The XD Ada programming support environment consists of a set of software
tools that provide efficient, controlled, VMS host development of XD Ada
systems. The XD Ada toolset currently supports the Motorola MC68xxx and
MIL-STD-1750A target microprocessor environments. Each toolset contains
a target-specific version of the XD Ada cross-compilers, library of predefined
compilation units, program library manager, macro assemblers, librarian,
builder, loader, formatter, run command, and XD Ada Debugger. Sections
15.2.1 through 15.2.10 introduce these components.

You can also use a variety of VMS tools and utilities in conjunction with
VMS CASE tools to facilitate XD Ada program development and testing.
Such CASE tools include the VAX. Debugger, VAX. DEC/Code Management
System (VAX. DEC/CMS), VAX. DECtrest Manager, VAX. Language-Sensitive
Editor (VAX. LSE), VAX. Source Code Analyzer (VAX. SCA), and various VAX.
Information Architecture products. Chapter 17 presents these and other VMS
CASE products.

15.2.1 XC Ada Cross-Compilers
XD Ada cross-compilers are full ANSIIMIL-STD-1815A cross-compilers
targeted to the Motorola MC68xxx and MIL-STD-1750A microprocessors.
The XD Ada cross-compilers generate optimized, relocatable object code
from applications written in Ada. These compilers also flag implementation­
dependent features that couJd result in nonportable code.

15.2.2 XD Ada Library of Predefined Compilation Units
This library contains standard program library units for use in Ada
applications, including those specified in the VAX Ada Language Reference
Manual.

XD Ada Cross-Development System 15-3

15.2.3 XD Ada Program Library Manager
This program library manager provides the following features:

• An extended version of the VAX Ada program library manager.

• A consistent control mechanism for both host and target XD Ada
components.

• Coordination of target-independent Ada source code. This is accomplished
by maintaining target-dependent libraries that contain separate object code
versions for each different target computer.

• User interface to the XD Ada cross-compiler and builder.

15.2.4 XD Ada Macro Assemblers
These assemblers are targeted to the Motorola MC68xxx and MIL-STD-1750A
microprocessors. The XD Ada macro assemblers translate assembly language
into object code for the destined target processor.

15.2.5. XD Ada Librarian
The librarian creates and maintains assembly language object code libraries
of files assembled with the XD Ada macro assembler. It also creates and
maintains XD Ada macro libraries, which include macro definitions used by the.
XD Ada macro assembler.

15.2.6 XD Ada Builder
The builder links object files produced by both the XD Ada cross-compiler
and macro assembler, and automatically links in the XD Ada target runtime
system (XD Ada RTS). The result is a loadable, executable program image of
the complete XD Ada system. The XD Ada builder requires a target definition
and a mapping definition.

15.2.7 XD Ada Loader
The loader downline loads an Ada executable program image onto the target
by means of one of the host-to-target communication links described in
Section 15.4.

15.2.8 XD Ada Formatter
The formatter reformats an Ada program image so that it can be transferred to
the target without the loader.

15-4 XD Ada Cross-Development System

15.2.9 XD Ada Run Command
The rWl command, xdrun, starts execution of an Ada program image on the
target.

15.2.10 XD Ada Debugger
This debugger is a Digital-developed, retargeted version of the VAX Debugger.
The XD Ada Debugger offers window-based host debugging at Ada source,
assembler, and machine code levels on all XD Ada-supported targets. Source­
level debugging support is high-level and fully symbolic. The XD Ada Debugger
furnishes the same environment for target debugging as that provided by the
VAX Debugger on the host.

15.3 XD Ada Runtime Software
The XD Ada rWltime software includes the XD Ada target runtime system (XD
Ada RTS) and XD Ada target debug kernel.

15.3.1 XD Ada Target Runtime System
The XD Ada RTS supports the full Ada language without a target operating
system. Only runtime modules used by an application are included at build
time.

The XD Ada RTS is supplied in source and object form. While the RTS is
pre configured for a standard target, it is designed to enable reconfiguration for
specific target-variant configurations. The RTS comes preconfigured for these
target hardware configurations:

• Motorola MVME133XT VMEmodule monoboard microcomputer (for
Motorola MC68xxx microprocessor support)

• Fairchild SBC-50 board using the F9450 microprocessor (for MIL-STD-
1750A microprocessor support)

15.3.2 XD Ada Target Debug Kernel
The target debug kernel is the XD Ada Debugger target component. It is a
small program that runs separately from the XD Ada program, allowing host
tools to load, start, and debug the XD Ada program image on the target. The
XD Ada target debug kernel can be removed when downloading and debugging
are no longer required.

XD Ada Cross-Development System 15-5

15.4 XD Ada Development Cycle
You create an XD Ada system on a VMS host by simply using the XD Ada
toolset. However, if the target hardware is not yet available, you may want to
start initial development, testing, and debugging using the VAX. Ada compiler,
user-defined test suites, and the VAX. Debugger. Later, you can recompile your
application for a different target using the XD Ada cross-compiler. To create an
XD Ada system in this way, follow these steps:

1. Write your Ada application (which is to be included in an XD Ada system)
on a VMS host using VAX. Ada code. You have the option of developing part
of your application in macro assembly language.

2. Compile your Ada application using the VAX. Ada compiler.

3; Link your program image using the VAX. Ada program library manager
interface to the VMS Linker.

4. Execute your program image on the VMS host system under the control of
the VAX. Debugger.

5. Test the dynamic behavior of your application on the VMS host system by
means of user-defined test suites in conjunction with VMS CASE tools.

6. Use the XD Ada program library manager and XD Ada librarian to create
target-specific libraries.

7. Use the XD Ada compiler (which fully compatible with the VAX. Ada
compiler) to recompile your Ada application for the target computer.
Specify the target memory configuration (that is, the location, size, and
type of each memory area) and the mapping of Ada and assembly units
onto these memory areas.

If you have written part of your application in macro assembly language,
assemble this code using the XD Ada macro assembler.

8. Use the XD Ada builder (which uses the target memory configuration and
memory mapping specified earlier) to create an executable program image.

9. Downline load your program image to the target computer using the XD
Ada loader.

Alternatively, use the XD Ada formatter to reformat your program image.
You can use this reformatted file with programmable read-only memory
(PROM) programming equipment or for loading across industry-standard
interfaces into microprocessor simulators and emulators.

10. Use the XD Ada Debugger to control and monitor the execution of the Ada
program on the target system.

15-6 XD Ada Cross-Development System

11. XD Ada-supported simulators and emulators offer additional facilities for
target software testing and debugging.

Note ___ _____

An RS-232-C, DRI1-W parallel-line, or DRVI1-WA parallel-line
interface is required for program loading and debugging from the host
system.

Figure 15-1 shows how you can use the VAX Ada compiler, VMS CASE tools,
and VMS development tools in conjunction with the XD Ada toolset to build a
typical XD Ada system.

XD Ada Host-to-Target Communication Link Options
Three methods of communication are available for transferring data from the
XD Ada host development system to the target. You can use any of these
communication standards, provided there is a compatible host facility. The
communication facilities available are:

• Standard RS-232-C port connected to a VAX terminal interface

• Fast parallel link to a DRI1-W or DRVII-WA parallel-line interface

• VMS mailbox interface

15.5 XD Ada Hardware and Software Requirements
XD Ada hardware and software requirements are specified next.

Host Hardware Requirements
The XD Ada System Support Addendum (SSA) includes a list of supported
XD Ada host processors. Contact your Digital sales representative to obtain
the latestXD Ada SSA.

Target Hardware Requirements
The XD Ada toolset is targeted to the Motorola MC68xxx and MIL-STD-1750A
microprocessors.

Host Software Requirements
The VMS operating system is required for host development of an XD Ada
system.

XD Ada Cross-Development System 15-7

Figure 15-1 Developing a Typical XD Ada System

Program Library
Manager

VAX Ada
Executable

Image

VAXlMicroVAX
Target Processor

(VMS)

Program Library
Manager

XDAda
Cross-Compiler

VAX Ada
Compiler
Front End

Target Code
Generator

XDAda
Target

Executable
Image

XDAda
Macro

Assembler

XDAda
Debug
Kernel

Motorola MC68xxx or
MIL-STD-1750A

Target Microprocessor
MLO-009258

15-8 XD Ada Cross-Development System

Part VI
The Digital COHESION Environment

Part VI introduces the Digital COHESION environment and surveys many key
Digital tools that compose the COHESION solution. This part contains the
following chapters:

• Chapter 16, Overview of the COHESION Environment, presents the
Digital COHESION environment and strategy.

• Chapter 17, VMS CASE Tools in the COHESION Envi:ronment, describes
VMS CASE tools, including several tools for structured analysis, structured
design, and realtime modeling.

• Chapter 18, UNIX CASE Tools in the COHESION Environment,
Environment, describes UNIX CASE tools including DECset, FUSE
EnCASE and the C++ Support Kit.

• Chapter 19, DECfactory Products in The Realtime Environment, describes
the DECfactory services and products designed to provide manufacturers
with accurate, timely information and management capabilities needed to
achieve manufacturing excellence.

• Chapter 20, DECmessageQ in the Realtime Environment, describes
DECmessageQ as a flagship NAS product for application integration.
DECmessageQ offer a flexible approach to application integration through
interprocess message queuing across multiple environments.

16
Overview of the COHESION Environment

Software development and maintenance costs are often the largest single
expense in a realtime project. Most scientific software used today is developed
for custom research and laboratory applications. In the aerospace and
government markets (where long-term, large-scale projects are common),
software development and maintenance costs dominate hardware-acquisition
costs over the life cycle of major projects. With global competition forcing
the scientific community to reduce the overall time to market, software
development is becoming a key competitive factor.

'!\vo major problems thwart the efficiency of software development today.
First, the phases of the development cycle (from analysis and design to coding,
testing, documentation, and ongoing maintenance) are not well integrated.
Consequently, the effects of change are difficult to manage, both within and
across the phases, which results in more wasted time and money. Second, most
large organizations have acquired multiple hardware and software platforms
over the years. Various departments conduct their work in isolation. As a
result, similar wheels may be invented time after time. This approach wastes
an organization's time and money.

Successful research organizations are increasingly using computer-aided
software engineering (CASE) tools to reduce the time and effort required to
write application code, and leave more time for product research. Digital's
CASE solution, the Digital COHESION environment, is the industry's most
comprehensive and inclusive CASE environment for developing, using, and
managing software. The COHESION environment also furnishes a highly
efficient, full-service development environment for developing realtime
applications.

Discrete manufacturers are under competitive pressure to lower costs,
improve quality, and meet difficult customer delivery requirements. Their
manufacturing processes are· becoming increasingly complex and difficult
to manage and they are besieged by an increasing burden of compliance
with environmental procedures and reporting requirements. Digital's
comprehensive, worldwide DECfactory services and products provide

Overview of the COHESION Environment 16-1

integrated factory floor solutions for all styles of manufacturing in the
Aerospace, Electronics, Automotive and General Discrete (AGD) Industries.

This chapter describes the following:

• Digital's Vision of the COHESION Environment, Section 16.1

• Introduction to the Digital COHESION Environment, Section 16.2

• Components of the Digital COHESION Environment, Section 16.3

For additional sources of information on the Digital COHESION environment
for CASE, refer to Appendix A.

16.1 Digital's Vision of the COHESION Environment
Digital's vision for software development is to enable organizations worldwide
to develop, deploy, and manage software in the multivendor environment.
Encompassed in this vision are all industries and markets, all project sizes,
and all styles of computing. To realize this vision, the strategic goals of the
COHESION solution include:

• Full range of quality software. Build a full range of quality software,
spanning enterprisewide information systems to services and products that
can run on multiple platforms.

• Software to implement corporate goals. Make software an asset in
implementing corporate direction and goals by linking business planning to
technology planning.

• Common software development environment. Offer a common
environment for developing and running software across the enterprise,
with specific solutions to satisfy the needs of commercial, technical,
industrial, and product development segments.

• Integrated software development platform. Provide an integrated
software development platform so that customers can choose the best
software from Digital and other vendors to meet their needs.

• Highest level of service. Provide the highest level of service, enabling
organizations to move forward with new technologies and practices.

16-2 Overview of the COHESION Environment

16.2 Introduction to the Digital COHESION Environment
One of the fundamental goals of the COHESION solution is to enable a wide
spectrum of software developers to create and maintain high-quality software
efficiently. By adhering to industry standards, Digital can offer products
that facilitate application portability across platforms. Industry standards
also allow Digital to create integrated applications with functions that can
be distributed across a multivendor network. Using a strategy grounded in
support for standards, both independent software vendors and Digital can
integrate components into the COHESION environment.

The Digital COHESION solution is composed of integrated products and
services that support the entire software development life cycle--from planning
to maintenance and evolution. This environment provides integration within a
project, within a department, and within an enterprise. Hence, groups can link
software development with the business plans not only of individual projects
and departments, but of the entire organization.

Comprehensive services and support put Digital's CASE expertise and
experience to work for you. Multilevel consulting, training, and support
services assist you throughout the entire computing life cycle. This support

. helps ensure the effective implementation of Digital solutions in your
enterprise.

16.3 Components of the Digital COHESION Environment
To meet the objectives outlined in Section 16.1, the Digital CASE strategy is
built on three elements, which are described in the next sections:

• Comprehensive services and support. A set of services that enable
organizations to implement better software development technologies and
practices.

• Network Application Support (NAB). A set of architectural standards­
based interfaces and components that enable multivendor software
development and application integration.

• Tools for Software Life Cycle and Management. A set of tools that
automate all software development life-cycle and management functions.

• Tools for Factory Management. An offering of products and services to
provide manufacturers with protection for their investments.

Overview of the COHESION Environment 16-3

16.3.1 Comprehensive Services and Support
Digital's CASE products are backed by comprehensive services and support
(including consulting, training, and maintenance) to ensure effective
implementation. Through Digital's Enterprise Integration Centers, systems
integration services are offered to support enterprisewide CASE environments.
These services help businesses tie their product, service, and business goals
directly into the software development and management capabilities furnished
by Digital and Complementary Solutions Organizations (CSOs).l Significant
benefits can be gained by using these services prior to selecting tools.

16.3.2 Network Application Support (NAS)
Network Application Support (NAS) services implement the application layer
of Digital's system architecture to facilitate interoperability and portability
in a distributed, networked environment. NAS services allow you to create,
use, and maintain integrated applications with functionality distributed across
hardware and operating system platforms from multiple vendors. With NAS
services, you can also build applications that are more easily ported across
platforms and devices. Not only are the COHESION tools built upon NAS
services so that they work in a distributed multivendor environment, but they
are also used to build NAS applications.

The base integration furnished by NAS services and the NAS principle of
compliance to standards makes tools within COHESION easy to use and widely
accessible. DECwindows and DECmessageQ, NAS components, illustrate this
point.

DECwlndows In NAS
DECwindows extends the capabilities of the industry-standard X Window
System, Version 11, by supplying powerful software that simplifies the
development of graphics-oriented applications. Using DECwindows, you have
a consistent window or means through which to view different applications.
For further information on DECwindows and the X Window System, refer to
Chapter 7.

1 A CSO is a leading third-party application supplier that allies with Digital through
the Cooperative Marketing Program (CMP) and through joint marketing, joint product
develorment, system res eller, or Complementary Software House (CSH) agreements.
Digita and its esos share product goals and directions, supplying Digital's customers
with the best integrated solutions on the market.

16-4 Overview of the COHESION Environment

DECmessageQ In NAS
DECmessageQ offers a common programining interface (API) across
different operating systems and networks, simplifying the integration
of new and existing applications. DECmessageQ uses the client/server
architecture to facilitate a simple and reliable message queuing mechanism
so that applications running on different computers can share data. With
DECmessageQ, program modules can be developed or deployed anywhere in
the DECmessageQ network configuration, whether in stand-alone mode, a
VAXcluster, a LAN, or at remote sites. The queued message bus structure of
DECmessageQ means applications do not have to establish unique links to
each of their application partners. One system acts as the message server to
exchange messages among client implementations on VMS, ULTRIX on a VAX
or MIPS-based system, MS-DOS, and OS/2 systems. For further information
on DECmessageQ, refer to Chapter 20.

Many NAS component products are now available as a single product. NAS .
300, for example, is a factory-installed NAS product available on selected VAX
4000 systems and the MicroVAX 3100 ModelBO.

16.3.3 Tools for Software Life Cycle and Management
The Digital COHESION solution defines two major categories of CASE tools.
The first set, life cycle tools, focuses on facilitating and automating software
development and maintenance. The second set, management tools, addresses
management of the processes and procedures that deal with software.

Digital offers a comprehensive portfolio of industry-leading CASE tools.
These tools address all aspects of software development and maintenance
for business, scientific, technical, and embedded applications. Digital's
CASE offerings consist of design and analysis tools and products that
cover documentation, coding and testing, configuration management, data
management, communications, and expert system shells. Digital's CASE
products help improve software reliability and increase software development
productivity.

16.3.4 Tools for Factory Management
Digital's DECfactory services and products combine with third-party VMS
and UNIX applications to provide manufacturers with protection for their
investments. By integrating DECfactory products with legacy systems, such
as Manufacturing Resource Planning (MRP II), shop floor control, time and
attendance, and cell control, DECfactory solutions support Digital's Open
Advantage Campaign for Manufacturing (OAM).

Overview of the COHESION Environment 16-5

DECfactory solutions provide answers to a wide range of factory floor problems.
By filling the gap between MRP II systems and automation equipment,
such as Programmable Logic Controllers (PLCs) and robots, DECfactory
solutions capture, use, and store data for scheduling, work-in-process tracking,
maintenance, and quality monitoring and analysis. Digital's manufacturing
customers can increase production flexibility, reduce paperwork, improve
quality control, access and share a common set of manufacturing data, lower
costs, react more appropriately to changes on the factory floor, and meet
government regulations more consistently.

16-6 Overview of the COHESION Environment

17
VMS CASE Tools in the COHESION

Environment

This chapter highlights the key VMS CASE and NAS tools that form the
Digital COHESION environment. Included in this survey are DECdesign
and several third-party tools for structured analysis, structured design, and
realtime modeling.

The tools in this chapter are arranged as follows:

• VMS DECset CASE Tools, Section 17.1

• Network Application Support (NAS) for VMS, Section 17.2

• Additional CASE Tools, Section 17.3

• Third-Party VMS CASE Tools, Section 17.4

For additional sources of information on Digital's CASE offerings, refer to
Appendix A. You can also contact your Digital sales representative to obtain
the latest Software Product Description (SPD) and System Support Addendum
(SSA) for each software tool.

17.1 VMS DECset CASE Tools
DECset, an integrated group of CASE tools, creates an environment in which
you work on a single system rather than with a series of unrelated tools
and files. The DECset user environment includes Motif user interfaces, a
consistent layout, and automatically sets up routine programming tasks for
the user. DECset tools are ideal for facilitating teamwork among groups of
programmers. This section describes the following DECset tools:

• DEC Code Management System

• DEC Module Management System

• DEC Test Manager

• DEC Language-Sensitive Editor

VMS CASE Tools in the COHESION Environment 17-1

• DEC Performance and Coverage Analyzer

• DEC Source Code Analyzer

• Integrated Symbolic Debugger Support

17.1.1 DEC Code Management System
DEC Code Management System (CMS), an online file librarian, helps track
software development and maintenance. It furnishes a method of storing and
organizing groups of ASCII files into a project library, tracking changes and
monitoring access to the library.

CMS allows you to:

• Retrieve, modify, and test files in your own directory

• Obtain an historical account of file modification, including when, why, and
by whom the modification was made

• Determine the origin of each line of a file, either as an annotated listing or
as comments in the file

• Manage concurrent file modifications

• Merge separately developed file modifications

• Create successive versions ("generations") of files

• Compare two generations of a file within a library

• Retrieve previous file generations

• Organize related library files into groups

• Define a set of file generations as a class to make up a base level or release
version of a project

CMS allows mulitple team members to store and track all changes to files.
CMS can be used as part of a repository-based solution for large scale team
efforts.

17.1.2 DEC Module Management System
The DEC Module Management System (MM:S) is a productivity tool that
automates and simplifies the building of software systems. This tool tracks
interdependencies and component modifications. You can choose to have MMS
rebuild only those components that have changed since the last build or have
it rebuild an entire system. In addition, MMS can interact with eMS to offer
an enhanced software development package.

17-2 VMS CASE Tools in the COHESION Environment

17.1.3 DEC Test Manager
The DEC Test Manager (DTM) is a flexible, automated regression-testing
system for use during both the development and maintenance phases of the
software life cycle. This tool automates the organization, execution, and review
of test results and allows several developers to use one set of tests concurrently.

Integration of the DEC Test Manager with the DEC Performance and Coverage
Analyzer (PCA) and CMS supplies a further enhanced testing environment,
with corresponding productivity gains.

17.1.4 DEC Language-Sensitive Editor
The DEC Language-Sensitive Editor (LSE) is a powerful, multilanguage,
multimodule, multiwindow, screen-oriented text editor specified for program
design, development, and maintenance. The editor is language sensitive in that
it provides templates of major constructs in support of a wealth of languages
from Digital, including Ada, BASIC, BLISS, C, COBOL, DIBOL on VMS,
FORTRAN, Fortran HPO, MACRO, Pascal, PUI, SCAN, and VAXELN Pascal.

This NAS component, template feature encourages productive programming
by fostering faster and more accurate code development. Using the Motif
interface, you can write code and then edit, compile, review, and correct
compilation errors in the same session. The editor is also extendable, allowing
customization to fit your programming needs.

LSE is tightly integrated with the programming development environment. It
is invoked on the command line and works in concert with supported Digital
languages and other CASE tools. On VMS, LSE works with the VAX Symbolic
Debugger, CMS, and SCA to render a highly interactive program development
environment. LSE facilitates the edit-compile-debug-analyze portion of the
program development cycle. CMS files can be reserved automatically and
replaced in a library during an editing session. And, all SeA commands are
available through LSE.

DECset includes enhancements to LSE, SCA, and Digital language compilers
that support detailed or module design. The Program Design Facility permits
you to express a design using pseudocode, capture the design information, and
supply various reports that list design cross-references, call trees, and the use
of data structures. Users can verify program designs early instead of finding
errors after the application is coded.

LSE can also be called from the DEC Performance and Coverage Analyzer
(PCA) and the VMS Mail Utility.

VMS CASE Tools in the COHESION Environment 17-3

17.1.5 DEC Source Code Analyzer
The DEC Code Analyzer (SCA) is an interactive, multilanguage, multimodule,
source code cross-reference and static-analysis tool. Designed to clarify
the complexities of entire software systems, this tool benefits both the
implementation and maintenance phases of application development.

SCA is tightly integrated with LSE and may be viewed as a logical extension
of the editor's powerful error prevention, detection, and correction facilities.

SCA has a new graphical call tree and data structure information. The
mouse-sensitive displays focus LSE on corresponding source code and static
analysis of the program to give users a more intuitive understanding of the
application.

17.1.6 DEC Performance and Coverage Analyzer
The DEC Performance and Coverage Analyzer (PCA) is a fast, multilanguage,
source-profiling tool designed to help you analyze and improve the execution
behavior of application programs. A new graphical user interface allows users
to click on easy-to-understand options and graphically display collected data.
I t also offers test-coverage analysis by measuring the parts of a user program
that are executed or not executed by a given set of test data.

PCA can be used to analyze applications with a Motif interface. PCA
automatically highlights the differences down to a single pixel and identifies
which segments of code have been executed during testing.

PCA consists of two parts: the Collector and the Analyzer. The Collector
gathers performance or test-coverage data as a program runs and stores it in a
data file. The Analyzer then processes the collected data and presents it either
in tables or histograms.

17.1.7 Integrated Symbolic Debugger Support
The VAX Symbolic Debugger that is bundled with the VMS operating system
is also included as a component of DECset for VMS. By allowing you to
interactively observe and manipulate a program as it executes, the VAX
Debugger aids in . locating runtime programming or logic errors.

17.1.8 DECset for VMS Software Requirements
This section identifies software requirements for developing and running
applications in a DECset for VMS environment. .

VMS Version 5.4 or higher is required for installing the DECset software
and developing applications using DECset tools. In a VMS workstation
environment, DECset requires VMS DECwindows Motif Version 1.0 or higher.

17-4 VMS CASE Tools in the COHESION Environment

17.2 Network Application Support· (NAS) for VMS
Digital's Network Application Support (NAS) products provide solutions to the
problems created by the complexity of today's computing environment.

NAS is a comprehensive set of standards-based software that consists of
well-defined programming interfaces, toolkits, and products to help developers
build applications that are integrated and easily ported across a distributed,
multivendor environment. '!\vo major components comprise the NAS solution,
as follows:

• Distribution of resources across the enterprise, network, and multivendor
systems

• Integration of components within the information system and with other
information systems.

NAS helps to insulate applications from changes, including changes in
hardware platforms and operating systems, and the need for different
network protocols. NAS does this by providing the infrastructure from which
applications can draw common services, masking the differences among the
underlying platforms. The NAS infrastructure, along with a set of tools to help
develop and maintain applications that are built upon it, forms a complete,
platform-independent, virtual system.

VMS NAS component products are bundled into complete sets targeted for
specific environments, as follows:

• NAS 200 for VMS: Integration at the Desktop

• NAS 250 for VMS: VAXstation Integration

• NAS 300 for VMS: Distributed Client/Server Computing

• NAS 400 for VMS: Critical Large Business Operations

17.2.1 NAS 200 for VMS: Integration at the Desktop
NAS 200 for VMS provides a complete set of networking and distributed
computing capabilities for basic print, file, and data-sharing services for
PCs, Macintosh, and workstations. It is targeted for environments where
applications run primarily on the desktop and where users of these applications
need to share files, printers, and data.

The following software and product components are included with NAS 200 for
VMS:

• DECnet-VAX Extensions

• PATHWORKS for VMS

VMS CASE Tools in the COHESION Environment 17-5

• PATHWORKS for Macintosh

• Remote System Manager Client

• RdblVMS Runtime Option

• VMSIULTRIX Connection (UCX)

NAS 200 for VMS supports key standards such as OSI, LAN Manager, TCPIIP,
NFS, and SQL.

17.2.2 NAS 250 for VMS: VAXstation Integration
NAS 250 for VMS provides a complete set of NAS software to enable the
new VAX workstations to fully integrate into a client/server or distributed
environment.

The following software and product components are included with NAS 250 for
VMS:

• DECnet-VAX EN

• DECnet-VAX Extensions

• RdblVMS Runtime Option

• VMSIULTRIX Connection (UCX)

• VAXcluster software

• VMS DECwindows Motif

• DEC ACA Services Runtime Library

NAS 250 for VMS supports key standards such as OSF's Motif, OSI, TCPIIP,
NFS, LAN Manager, OMG/ORB, and SQL.

17.2.3 NAS 300 for VMS: Distributed Clientl~erver Computing
NAS 300 for VMS integrated software products provide a complete set
of runtime services for client/server, distributed, or general host-based
applications. They provide integration capabilities including distributed
user-interface facilities, object-oriented application linking and control, support
for creating multimedia documents and management of multimedia data, and
desktop integration.

The following software and product components are included with NAS 300 for
VMS:

• DECnet-VAX Extensions

• PATHWORKS for VMS

17-6 VMS CASE Tools in the COHESION Environment

• PATHWORKS for Macintosh

• Remote Ssytem Manager Client

• RdbNMS Runtime Option

• VMSIULTRIX Connection UCX

• ALL-IN-l Mail Server (X.400)

• DEC ACA Services VMS Runtime Library

• DECforms Runtime System

• DECmessageQ for VMS Runtime Option

• VMS DECwindows Motif

NAS 300 for VMS supports key standards such as OS1, TCPIIp, OSF's Motif,
NFS, LAN Manager, X Windows, FIMS, ODA, X.400, OMG/ORB, and SQL.

17.2.4 NAS 400 for VMS: Critical Large Business Operations
NAS 400 for VMS offers additional NAS and system software for environments
that require higher levels of availability, manageability, and reliability for
transaction processing and other mission-critical applications. NAS 400
supports performance tuning and capacity planning, dosk shadowing,
clustering, journaling, transaction processing, application distribution and
integration, and desktop integration.

The following software and product components are included with NAS 400 for
VMS:

• DECnet-VAX Extensions

• PATHWORKS for VMS

• . PATHWORKS for Macintosh

• Remote System Manager Client

• RdbNMS Runtime Option

• VMSIULTRIX Connection (UCX)

• ALL-IN-l Mail Server (X.400)

• VAX ACA Services VMS Runtime Library

• DECforms Runtime System

• DECmessageQ for VMS Runtime Option

• VMS DECwindows Motif

VMS CASE Tools in the COHESION Environment 17-7

• VAX ACMS Runtime Library

• DECtrace Runtime Library

• VAX RMS Journaling

• VAXcluster Software

• Volume Shadowing

• DECps Data Collector

NAS 400 for VMS supports key standards such as OSI, LAN Manager, TCPIIP,
NFS, SQL, OSF's Motif, X Windows, OMG/ORB, FIMS, ODA, and X.400.

17.3 Additional CASE Tools
This section describes the following additional CASE tools available from
Digital:

• DEC Graphics Kernel System

• DEC PInGS

• DECdesign

• DECgraph

• VAX Notes

• VAX Performance Advisor

• VAX Software Performance Monitor

• VMS DECwindows Motif

• VMS Workstation Software

17.3.1 DEC Graphics Kernel System
With the DEC Graphics Kernel System (DEC GKS) development tool, you
can produce portable, device-independent graphics applications that create
computer-generated pictures.

DEC GKS is a subroutine library (packaged as a shareable image) that
implements the ISO (18-7942) and ANSI (AN8-X3.124-1985) GKS standard
for two-dimensional, device-independent graphics. This tool conforms to level
2c of the GKS standard, which provides full output capabilities (including
workstation-independent segment storage, level 2) and full input capabilities
(synchronous and asynchronous input, level c).

17-8 VMS CASE Tools in the COHESION Environment

17.3.2 DEC PHIGS
The DEC Programmers Hierarchical Interactive Graphics System
(DEC PIDGS) is a sophisticated, three-dimensional, graphics support system.
This tool manages the definition, modification, and display of hierarchical
graphics data that is stored in a conceptually centralized database. A key
feature of DEC PHIGS is its device independence, which means that the
same program can generate graphical output on different devices without
modification to the source code.

DEC PHIGS is Digital's implementation of the ANSI and ISO PHIGS Standard
for three-dimensional, device-independent graphics.

17.3.3 DECdesig n
DECdesign, a DECwindows product, graphically supports the analysis and
design phases of the software development life cycle. As a multiuser system,
DECdesign is capable of supporting large or small distributed development
teams. It features a single DECdesign database with concurrent access, data
security, and permanent data storage.

DECdesign-supported modeling techniques include Yourdon Structured Design
and Gane & Sarson for process modeling, Ward-Mellor extensions to Yourdon
Structured Design for realtime modeling, and Extended Entity Relationship
(EER) for data modeling.

Based on object-oriented technology, DECdesign is integrated with the VAX.
Common Data Dictionary/Repository (VAX CDDlRepository). Selected data
definitions stored in VAX CDDlRepository can be reused by importing and
linking to models produced in DECdesign. Likewise, selected data definitions
created in DECdesign can be exported and linked to VAX CDD/Repository.

A key benefit of DECdesign is the ability to create, modify, and reuse the
results of the analysis and design phases. This results in more cost-effective
development and lower maintenance.

DECdesign produces Compound Document Architecture (CDA)-compliant
reports of the analysis and design effort (through predefined report templates)
that can be edited in other Digital CDA products, such as DECwrite.

17.3.4 DECg raph
DECgraph is a general-purpose graphics plotting package that allows you to
create, change, display, and print graphs.

VMS CASE Tools in the COHESION Environment 17-9

17.3.5 VAX Notes
VAX Notes is a computer-conferencing software product designed to let you
create and access online conferences and meetings. Computer conferencing
is an electronic messaging technology that allows you to conduct meetings by
computer with people in different geographic locations. Participants can join in
a discussion from their own desks when they choose.

Another feature of VAX Notes is its detailed record keeping. Proceedings can
be searched by an assortment of criteria including name of participant, subject,
or keyword.

You can use VAX Notes for various applications, such as an electronic bulletin
board or collaborative document authoring and review. VAX Notes also:

• Saves travel time and money by facilitating problem solving in a conference

• Can be used for internal classes or seminars

• Can provide expertise to groups that lack resources in a given area by
referencing experts in the company

17.3.6 VAX Performance Advisor
The VAX Performance Advisor (VPA) is a performance-management and
capacity-planning tool. VPA can analyze any VMS standalone system, Local
Area VAXcluster, or mixed-interconnect VAXcluster system. To do this, it uses
an extensive knowledge base of rules, covering CPU, 110, memory, clusterwide
activities, and hardware-specific thresholds.

In performance management, VPA quickly and thoroughly identifies
performance problems, thereby hastening problem resolution. This tool
gathers and analyzes VMS system data, identifies specific conditions causing
performance degradations, produces conclusions on system performance,
and presents detailed evidence to support its conclusions. Also, VPA
offers recommendations for problem resolution. This product may be used
as a monitoring tool when systems are running smoothly, as well as a
troubleshooting tool to identify current and potential problems.

In addition to its expert-system analysis, VPA furnishes capacity-planning
features to determine future system performance. For example, this tool
helps you determine the effects of changes in workload, configuration, and
application on the performance of your systems.

17-10 VMS CASE Tools in the COHESION Environment

17.3.7 VAX Software Performance Monitor
The VAX Software Performance Monitor 0lAX SPM) collects, archives, displays,
analyzes, reports, and graphs performance statistics for VAX and VAXcluster
systems. This statistical information is useful in system tuning, trend analysis,
and workload forecasting. Included in these statistics are resource utilization
and load-balance data for single-node, multiple-CPU, and VAXcluster systems.

With VAX SPM, you gain a flexible facility for collecting and archiving
performance data. Data may be collected by selecting a variety of parameters.
In addition, using a single terminal, you can start and stop data collection for
all nodes in a VAXcluster system or from remote nodes in a distributed system.
Also, you can archive all the performance data in a single file.

17.3.8 VMS DECwindows Motif
VMS DECwindows Motif, a VMS layered product, features windowing and
graphics capabilities based on the industry-standard X Window System
developed at the·Massachusetts Institute of Technology. VMS DECwindows
supplies remote graphics and windowing functionality so that you can run
applications on remote nodes and have the application transparently displayed
on a local workstation.

A hallmark of the VMS DECwindows architecture is a set of flexible, powerful
tools. Software functional components are modular, allowing customized access
to the workstation's capabilities.

VMS DECwindows also has a base set of applications, including:

• Bookreader, for viewing the contents of books distributed online

• Calculator, a four-function calculator

• Calendar, a personal time-management system

• Cardfile, a computerized address book

• Clock, an analog or digital date and time display

• DDIF viewers, tools for reading DDIF documents

• Mail, a DECwindows user interface to the VMS Mail Utility

• Notepad, a text editor

• Paint, a bitmap graphics editor

• TPUIEVE, a DECwindows user interface to the VMS TPU/EVE editor

VMS CASE Tools in the COHESION Environment 17-11

17.3.9 VMS Workstation Software
The VMS Workstation Software (VWS) is a VMS layered product that provides
graphics support for the following workstations: VAXstation I, VAXstation II,
VAXstation II/GPX, VAXstation IIIRC, VAXstation 2000, and VAXstation 2000
Color workstation.

The graphics support.provided by VWS includes:

• Windowing support

• VT220 emulation with technical character set

• TEK4014 emulation

• A graphical programming interface

• VWS SIGHT, a menu-driven application that allows you to create
illustrations containing text and detailed graphics

17.4 Third-Party VMS CASE Tools
Several popular independent software vendors have adapted their CASE tools
to run on VMS systems. These tools are described in the following sections:

• EXCELERATOR

• Software through Pictures

• Statemate

• TEAMWORK

17.4.1 EXCELERATOR
EXCELERATOR, a VMS tool developed by Index Technology Corporation,
which supports structured analysis and design, realtime modeling, and
data modeling. This tool is integrated with VAX Common Data Dictionary
!Repository (VAX. CDDlRepository).

17.4.2 Software through Pictures
Interactive Development Environments, Inc. offers a tool called Software
through Pictures. This VMS tool consists of a set of graphical editors that
support structured analysis and design techniques, realtime modeling, data
modeling, code generation, testing, and automatic documentation. Software
through Pictures is integrated with the DEC Code Management System (CMS)
and DEC Language-Sensitive Editor (LSE).

17-12 VMS CASE Tools in the COHESION Environment

17.4.3 State mate
Statemate is a VMS analysis and design tool developed by i-Logix, Inc., for
modeling and simulating realtime-aerospace and complex-reactive systems.
It enables early error detection through powerful modeling and executable
specifications. By executing the model, you see how the system would behave
long before implementation. Statemate also generates prototype code and
custom documentation directly from the specification. This software has an
interface to CMS and is layered on Rdb for VMS.

17.4.4 TEAMWORK
Cadre Technologies, Inc. offers TEAMWORK, a coordinated set of VMS CASE
tools that is integrated with LSE, CMS, and DOCUMENT. This product
consists of the following components, presented next:

• TEAMWORK/SA, for systems analysis

TEAMWORK/SA, an environment for systems analysis, offers a graphics­
based, integrated tool set that uses structured analysis techniques. It
supplies tools for the creation and editing of data flow diagrams, process
specifications, and data dictionary entries. TEAMWORK/SA checks for
completeness and balancing. It also furnishes facilities for maintaining
requirements traceability and collecting project management data.

• TEAMWORK/SD, for systems design

TEAMWORK/SD, an environment for systems design, supports structured
design techniques. Features include creation and editing of structure
charts, module specifications, and data dictionary entries. Syntax checking
of structure charts is available on a per sheet or whole model basis, at the
user's discretion. .

• TEAMWORK/Access, for systems integration

TEAMWORK/Access, an environment for systems integration, is a database
access and integration tool. It enables the TEAMWORK package of
CASE tools to offer integrated support for the software development life
cycle. TEAMWORK/Access opens the TEAMWORK project database
to allow integration of the TEAMWORK/SA, TEAMWORK/SD, and
TEAMWORKIRT analysis and design tools with documentation, project
management, and software development packages.

• TEAMWORKlRT, for realtime modeling

VMS CASE Tools in the COHESION Environment 17-13

TEAMWORKlRT, an integrated environment for realtime modeling,
supports control-flow modeling at the analysis stage of development. The
data-flow diagram editor furnishes control flows and control-specification
connectors. A state-transition diagram editor and matrix editor are
also included; the matrix editor creates objects such as decision tables,
state-transition tables, process-activation tables, state/state matrices, and
state-event matrices. Control-specification balancing is verified.

17-14 VMS CASE Tools in the COHESION Environment

18
UNIX CASE Tools in the COHESION

Environment

This chapter highlights the key CASE tools that form the Digital COHESION
environment for ULTRIX and UNIX. systems.

The CASE products in this chapter include:

• DECset tools for ULTRIX Systems, Section 18.1

• PC DECwindows Display Facility, Section 18.2

• Network Application Support (NAS) for ULTRIX, Section 18.3

• FUSE tools for UNIX Systems, Section 18.4

The Source Code Control System (SCCS), the dbx debugger, and the make
utility are bundled with the ULTRIX base system. However, they form an
integral part of the DECset and FUSE tools, as they provide functionality
equivalent to the VMS DECset tools.

Other CASE tools must be ordered separately. For additional sources of
information on Digital's CASE offerings, refer to Appendix A. Contact your
Digital sales representative to obtain the latest Software Product Description
(SPD) and System Support Addendum (SSA) for each software tool.

UNIX base systems include many of the tools that comprise these CASE
tool offerings. CASE environments integrate and expand the functionality of
program development tools. FUSE lets you add other tools to FUSE to make
your CASE environment fit your organization's needs.

UNIX CASE Tools in the COHESION Environment 18-1

18.1 DECset Tools for ULTRIX Systems

18.1.1

DECset, an integrated group of CASE tools for ULTRIX systems, lets you
work in one environment rather than using a series of unrelated tools and files.
DECset tools are ideal for facilitating teamwork among groups of programmers.
DECset tools are not sold separately. The following sections describe DECset
tools:

• SCCS Code Manager

• CMS to SCCS Library File Converter

• make Program Builder

• DEC Test Manager

• dbx Program Debugger

• DEC Language-Sensitive Editor

• DEC Performance and Coverage Analyzer

• DEC Source Code Analyzer

sces Code Manager
The DECset SCCS Code Manager provides a DECwindows Motif interface
to the SCCS source code control system bundled with the ULTRIX operating
system. (SCCS is a standalone base system tool and a component of both the
FUSE and DECset CASE tool offerings.) The SCCS system is an online file
librarian that tracks software development and maintenance. It stores and
organizes groups of files into a project library, tracking changes and monitoring
access to the library .

. The SCCS system allows you to perform the following tasks:

• Identify the current status of any file, including the name of the person
editing it.

• Reconstruct earlier versions of files. For each version, SCCS stores and
changes made to produce that version, the name of the person making the
changes, and the reasons for the changes.

• Prevent the pro1Jlems that can occur when two people change a file at the
same time without each other's knowledge.

• Maintain multiple branch versions of files. Branched versions can be
merged back into the original sequence if desired.

• Protect files from unauthorized modification.

18-2 UNIX CASE Tools in the COHESION Environment

SCCS stores files in a reserved directory. Each generation, history, and change
information is kept in this directory.

18.1.2 CMS to SCCS Library File Converter
The CMS to SCCS Library File Converter tool allows users to bring selected
elements, generations of elements, groups, and classes from the DEC Code
Management System (CMS) over to the SCCS source code control system on
ULTRIX systems. The conversion tools provides the following tasks:

• A CMS file selection mechanism

• Methods for moving selected files from VMS to ULTRIX by tape, DECnet,
or NFS mounted disk

• SCCS directory creation and popluation on ULTRIX systems

18.1.3 make Program Builder
The DECset make Program Builder provides a DECwindows Motif interface
to the make utility bundled with the ULTRIX operating system. The make
utility is a productivity tool that builds up-to-date versions of programs. (The
make utility is a standalone base system tool and a component of both the
FUSE and DECset CASE tool offerings.) It is useful for large programming
projects in which multiple source files are combined to form a single program.
The make utility does not, however, address the problem of maintaining more
than one version of the source file. Mter editing a file that is part of a larger
program, you can execute the make command with a variety of options. The
make command creates files based on the last time and date the target file was
created. Only objects modified after the target's creation date are rebuilt.

The make utility allows you to perform the following tasks:

• Combine the instructions for creating a large program in a single file

• Define macros to use within the make description file

• Use shell commands

• Create or update libraries

• Include files from other programs

The make utility uses time stamps on files. On a distributed system, you need
to ensure that date and time are synchronized for all systems in the network.

UNIX CASE Tools in the COHESION Environment 18-3

18.1.4 DEC Test Manager
The DEC Test Manager is a flexible, automated regression-testing system for
use during both the development and maintenance phases of the software
life cycle. This tool automates the organization, execution, and review of test
results and allows several developers to use one set of tests concurrently. With
The DEC Test Manager users can perform the following tasks:

• Create software tests which can include descriptions

• Group tests into meaningful combinations

• Execute specific tests, groups of tests, or combinations of groups of tests

• Compare the results on the executed tests with benchmark test results and
determine differences

• View test results interactively

• Update benchmarks as needed

• Filter test results to ignore output that is expected to change for each run

• Mask screen output results for tests of X Windows applications to ignore
areas of screens

Users have the added flexibility of running DEC Test Manager benchmark
tests in playback mode on systems that do not have a DECset license.

The DEC Test Manager is integrated with the DEC Performance and Coverage
Analyzer (PCA). SCCS further enhances the testing environment and increases
productivity gains.

18.1.5 dbx Program Debugger
The DECset dbx Program Debugger provides a DECwindows Motif interface to
the dbx symbolic debugger bundled with the ULTRIX operating system. The
DECset dbx debugger is a multilanguage, multiwindow, intuitive interface to
both Ultrix and VMS debuggers. Using point and click manipulation you can
set breakpoints and variables to display from source code, view and navigate
through the calling stack, or use any other debugger feature customarily
provided.

The DECset dbx interface allows you to retain debugging information between
executions so there is no startup time to run a new version of the application.
Using the DECset debugger you can find the problem, then localize it using
LSE, SCA, and the Code Manager. You can fix the problem using the Code
Manager, LSE, and the compiler, and then build the system using the Code
Manager and Program Builder.

18-4 UNIX CASE Tools in the COHESION Environment

18.1.6 DEC Language-Sensitive Editor
The DEC Language-Sensitive Editor (LSE) is a multilanguage, multimodule,
multiwindow, screen-oriented text editor for program design, development, and
maintenance. The editor is language sensitive in that it provides templates
of major constructs in supported ULTRIX languages, including DEC Ada, C
languages, and DEC Fortran.

The template fosters rapid and accurate code development. You can write
code and then edit, compile, review, and correct compilation errors in the
same session. The editor is also extendable, allowing customization to fit your
programming needs.

LSE is tightly integrated with the programming development environment. It
is invoked on the command line and works with supported Digital languages
and other CASE tools. On ULTRIX., LSE works with the dbx debugger, SCCS,
and SCA in an interactive program development environment. LSE facilitates
the edit-compile-debug-analyze portion of the program development cycle.

DECset includes enhancements to LSE, SCA, and Digital language compilers
that support detailed or module design. These capabilities permit you to
express a design using pseudocode, capture the design information, and supply
various reports that list design cross-references, call trees, and the use of data
structures.

18.1.7 DEC Performance and Coverage Analyzer
The DEC Performance and Coverage Analyzer (PCA) is a multilanguage,
source-profiling tool designed to help you analyze and improve the execution
behavior of application programs. It also offers test-coverage analysis by
measuring the parts of a user program that are executed or not executed by a
given set of test data.

PCA consists of two parts: the Collector and the Analyzer. The Collector
gathers performance or test-coverage data as a program runs and stores it in a
data file. The Analyzer then processes the collected data and presents it either
in tables or histograms.

18.1.8 DEC Source Code Analyzer
The DEC Source Code Analyzer (SCA) is an interactive, multilanguage,
multimodule, source code cross-reference and static-analysis tool. Designed to
clarify the complexities of entire software systems, this tool benefits both- the
implementation and maintenance phases of application development.

UNIX CASE Tools in the COHESION Environment 18-5

SCA provides navigation capabilities to assist users in locating and viewing
source code components. SCA stores compiler-generated information about a
set of source files in an SCA library, then allows users to perform queries about
their source code in the following ways:

• Using a name browser tQ locate all items that match a search string

• Specifying a cross-reference query to find how and where program symbols
are used

• Specifying a data structure query to graphically display data types or to
find symbols in the source code·· .

SCA is tightly integrated with LSE and may be viewed as a logical extension
of the editor's error prevention, detection, and correction facilities.

18.2 PC DECwindows Display Facility
The PC DECwindows Display Facility is an MS-DOS application that
implements an X server using the industry-standard X Window System,
Version 11 (X11) protocol. DECset components executing on a remote ULTRIX
system with DECnet may be displayed on, and receive input from, the personal
computer. The PC DECwindows Display Facility is supported only on the
Intel 80286-, 80386-, and 80486-based machines. Refer to the PATHWORKS
for DOS Software Products Description (SPD) for full hardware and software
requirements.

18.3 Network Application Support (NAS) for ULTRIX
Digital's Network Application Support (NAS) products provide solutions to the
problems created by the complexity of to day's computing environment.

NAS is a comprehensive set of standards-based· software that consists of
well-defined programming interfaces, toolkits, and products to help developers
build applications that are integrated and easily ported across a distributed,
multi vendor environment. Two major components comprise the NAS solution,
as follows:

• Distribution of resources across the enterprise, network, and multivendor
systems

• Integration of components within the information system and with other
information systems.

18-6 UNIX CASE Tools in the COHESION Environment

NAS helps to insulate applications from changes, including changes in
hardware platforms and operating systems, and the need for different
network protocols. NAS does this by providing the infrastructure from which
applications can draw common services, masking the differences among the
underlying platforms. The NAS infrastructure, along with a set of tools to help
develop and maintain applications that are built upon it, forms a complete,
phitform-independent, virtual system.

NAS for ULTRIX component products are bundled into complete sets targeted
for specific environments, as follows:

• NAS 200 for ULTRIX: Integration at the Desktop

• NAS 300 for ULTRIX: Distributed Client/Server Computing

18.3.1 NAS 200 for ULTRIX: Integration at the Desktop
NAS 200 for ULTRIX provides a complete set of networking and distributed
computing capabilities for basic print, file, and data-sharing services for
PCs, Macintosh, and workstations. It is targeted for environments where
applications run primarily on the desktop and where users of these applications
need to share files, printers, and data.

The following software and product components are included with NAS 200 for
ULTRIX:

• PATHWORKS for ULTRIX

• Remote System Manager (RSM) Client

• DECnet/OSI for ULTRIX

NAS 200 for ULTRIX supports key standards such as OSI, LAN Manager,
TCP/IP, and NFS.

18.3.2 NAS 300 for ULTRIX: Distributed Client/Server Computing
NAS 300 for ULTRIX integrated software products provide a complete set
of runtime services for client/server, distributed, or general host-based
applications. They provide integration capabilities including distributed
user-interface facilities, object-oriented application linking and control, support
for creating multimedia documents and management of multimedia data, and
desktop integration.

The following software and product components are included with NAS 300 for
ULTRIX:

• PATHWORKS for ULTRIX

• Remote System Manager (RSM) Client

UNIX CASE Tools in the COHESION Environment 18-7

• DECnetJOSI for ULTRIX

• DECACA

• DECmessageQ for ULTRIX on RISC systems

NAS 300 for ULTRIX supports key standards such as OSI, TCPIIp, NFS, LAN
Manager, and OMG/ORB.

18.4 FUSE Tools for UNIX Systems
The Friendly Unified Software Environment (FUSE) integrated programming
environment on Digital's ULTRIX ans Sun's SunOS operating systems.
FUSE provides an intuitive style of software development and maintenance
commensurate with the portability requirements of the UNIX community.

FUSE is an integrated, graphically oriented environment for Digital's ULTRIX
and Sun's SunOS operating systems. FUSE commands and utilities are based
on OSFIMotif user-interface standards. It features dynamic, mouse-sensitive,
graphical tools that greatly simplify problem identification and program
navigation. It also provides tool-to-tool interoperation to enhance the power
and efficiency of several programming development, analysis, and maintenance
tasks.

This section describes the following FUSE tools:

• FUSE Control Panel

• FUSE Builder

• FUSE Call Graph Browser

• FUSE Code Manager

• FUSE Cross-Referencer

• FUSE Debugger

• FUSE Editors

• FUSE Online Help

• FUSE Profiler

• FUSE EnCASE Kit

• DEC FUSE Support for DEC C++ Kit

• DEC FUSE C++ Support Kit

18-8 UNIX CASE Tools in the COHESION Environment

Many FUSE tools are based on standard UNIX utilities, such as make, GNUmake,
SCCS, RCS, prof and dbx, that are included with the operating system
software. Programmers who are experienced in developing software with
utilities provided by UNIX based operating systems have an advantage when
working on programs in FUSE. For programmers who are less familiar with
such operating systems, FUSE provides a consistent user interface and online
help for each tool.

18.4.1 FUSE Control Panel
The FUSE Control Panel is the central point for managing FUSE tools and
obtaining FUSE system information. Its display shows what tools are up and
running and what files are associated with each tool.

The FUSE Control Panel is also used to create and manage tool groups, which
enable tool interoperation.

18.4.2 FUSE Builder
The FUSE Builder allows programmers to initiate and control program builds.
It is based on the UNIX make utility and uses conventional makefiles. No
modifications are required to existing makefiles for use with the FUSE Builder.

Use the Builder to complete the following tasks:

• Create simple makefiles

• Build (compile) programs

• Analyze information in makefiles

• Review transcripts of builds

• Track and correct build errors

• Execute distributed builds

Use the Builder with other FUSE tools to track and correct build and runtime
errors.

18.4.3 FUSE Call Graph Browser
The FUSE Call Graph Browser is used to analyze a program's call structure.
The Call Graph Browser displays the relationships among functions in source
files in a program. Use the Call Graph Browser to complete the following
tasks:

• Analyze the call relationships in a program using the call graph

• Review information on calls, functions, source files, and directories

UNIX CASE Tools in the COHESION Environment 18-9

• Track program execution through the call graph

Usually, the Call Graph Browser is used with the FUSE Editor and Debugger
to analyze a program's call structure while also viewing the associated code.
When the Debugger is executing a program, the Call Graph Browser can
visually track the execution. Breakpoints can be set to allow detailed analysis
of the call structure within a section of the program; review of associated
source code; and editing of source code, if necessary.

18.4.4 FUSE Code Manager.
The FUSE Code Manager creates and maintains Source Code Control System
(SCCS) and Revision Control System (RCS) libraries. Use the Code Manager
to complete the following tasks:

• Navigate quickly through a library using the library graph

• Manage files within a library, including creation, check in, check out,
compare, and view

• Review the transcript of a code management session

• Create a code management library

• Review file information

Use the Code Manager with the Debugger and editors to access and update a
series of files to compress the file editing and storing process.

18.4.5 FUSE Cross-Referencer
The FUSE Cross-Referencer searches for and identifies the location of
references within a directory, program, or source file. Use the Cross-Referencer
for the following tasks:

• Request location information about specific entities in the source code

• Examine specific entities in the source code

You can use the Cross-Referencer with an editor to locate items and edit the
associated source files. Either a regular expression or a literal can be used
to locate references, assignments, functions, calls, and declarations in the
directory, program, or source file.

18-10 UNIX CASE Tools in the COHESION Environment

18.4.6 FUSE Debugger
The FUSE Debugger is based on the dbg utility and provides the following
extensive program debugging capabilities:

• Source file editing

• Quick command execution using buttons, dialog boxes, or a command line
interlace

• Visual event setting

• Extensive debugging and program monitoring

• Debugging environment customization

Use the Debugger with other FUSE tools for the following tasks:

• Debug a program and view associated source code

• Trace program execution

• Correct source files, rebuild the program, and test again

Source files associated with the executable file being debugged are loaded into
the Debugger along with the executable file. You can edit source files while
debugging a program, using editing commands in the Debugger's source text
area.

The Debugger provides six windows to monitor the program and display
debugging information. Isolating information in separate windows displays the
informa tion more efficiently. There is a view window for each of the following
debugging and program activities:

• Registers. The contents of general and floating point registers are
displayed and updated at events. (Not available with DEC FUSE for Sun.)

• Stack. The contents of the stack are displayed and updated at events.

• Status. All events with the number, type, and description are listed and
updated as they are added or removed.

• Watch. Variables and locations can be monitored by value, at breakpoints,
or on execution of the source line.

• Assembly. The assembly language instructions before and after the
currently executing line are displayed at each breakpoint.

• Input/Output. All output from the executing program is displayed. You
enter interactive program input in this window.

UNIX CASE Tools in the COHESION Environment 18-11

The debugging environment can be customized to maximize debugging
efficiency. Customization can occur from within the Debugger through a
Debugger initialization file that executes automatically each time the Debugger
starts.

18.4.7 FUSE Editors
FUSE provides three editors: the FUSE Editor, vi, and EMACS. All editors
associated with a tool group and can respond to directives from other FUSE
tools in the same group. For example, if you click on an entry in the Cross­
Referencer's display area, the source file and line associated with that entry is
displayed in the editor.

FUSE contains an extensive set of keyboard bindings for editing and
generating C, Pascal, and FORTRAN language statements. The keyboard
bindings for the editing commands are the standard Motif key bindings.

The File, Edit, and Buffer menus are available in many FUSE tools. Often, the
File and Edit menus are used to manipulate and edit a tool's transcript.

18.4.8 FUSE Online Help
FUSE uses the standard OSFIMotifhelp tool to provide extensive online help
about how to use each tool and its dialog boxes.

18.4.9 FUSE Profiler
The FUSE Profiler is the main tool for performance testing. The Profiler
generates and graphically displays the following runtime statistics:

• CPU cycles used by each function

• The number of calls made by each function

• The execution time required by each function

• A list of functions not executed

The Profiler in DEC FUSE for ULTRIX also generates and displays machine
code runtime statistics.

18.4.10 FUSE EnCASE Kit
The FUSE EnCASE kit provides support for integrating non-FUSE tools into
FUSE. Once a tool is integrated, you can start it from the FUSE Configuration
menus and monitor it using the Message Monitor (FUSE tool available only
with the EnCASE Kit). Integrated tools use the FUSE message server for
interprocess communication and can use FUSE tools to complete tasks.

18-12 UNIX CASE Tools in the COHESION Environment

FUSE EnCASE includes the following facilities for integrating tools:

• Tool Integration Language (TIL) and compiler. TIL defines how tools
are named, the tool's location, startup specifications, and message list.

• Call interface functions and commands. Callable C functions and
script commands provide the messaging interface between a nonFUSE tool
and FUSE.

• Message Monitor. The Message Monitor displays messages sent between
FUSE tools during a FUSE session.

18.4.11 DEC FUSE C++ Support Kit
The optional DEC FUSE C++ Support kit provides you with a new tool and
allows you to use other FUSE tools with programs that were built using AT&T
cfront compatible compilers and Glockenspiel programs. You can use the tools
as follows:

• The C++ Class Browser allows you to graphically view the class hierarchy
of your applications. You can view classes, members, and inheritance
relationships.

• The Debugger supports all C++ debugging requirements, including:

•
•
•

C++ symbol name conversion to user names and vice versa (mangling
and demangling), for C++ object, function, and class member names

Expression evaluation of C++ expressions and operators

Resolution of C++ overloaded functions and operators

Scope resolution using the scope resolution operator

Display of active stack information, including local symbols within
function blocks

Instruction display which includes demangling function names

Display of data objects at all scopes

Access to C++ name and structure information using dbg commands,
including the info, whatis, and whereis commands.

The Call Graph Browser supports C++ program structure in its call graph.

The Cross-Referencer supports querying for C++ programming e~tities.

The Profiler supports C++ user names.

UNIX CASE Tools in the COHESION Environment 18-13

18.4.12 DEC FUSE Support for DEC C++ Kit
The DEC FUSE Support for DEC C++ Kit (on ULTRIX only) provides all the
C++ cfront support in the DEC FUSE C++ kit as well as support for DEC
C++. This kit enables DEC C++ programmers to use the FUSE integrated
development environment with DEC C++, Digital's native, optimizing C++
compiler.

The DEC FUSE Support for C++ kit is used in conjunction with DEC FUSE for
ULTRIX and DEC C++ for ULTRIX. DEC C++ for ULTRIX has a command-line
interface and includes the DEC C and DEC C++ compilers, the DECladebug
debugger, and class libraries. Using these products together provides a
powerful, window-based DEC C++ programming environment.

DEC FUSE Support for DEC C++ contains the following tools:

• The C++ Class Browser allows you to graphically view the class hierarchy
of your applications. You can view classes, members, and inheritance
relationships.

• FUSE DECladebug provides a window-based interface, with full DEC C++
debugging capabilities, to the DECladebug debugger.

• An incremental linker (ild) provides a faster edit-to-execute cycle by
processing only changed modules.

• The Call Graph Browser supports the DEC C++ program structure in its
call graph.

• The Cross-Referencer supports querying for DEC C++ entities.

• The Profiler supports DEC C++ names.

18-14 UNIX CASE Tools in the COHESION Environment

19
DECfactory Products in The Realtime

Environment

DECfactory products and services provide comprehensive factory floor solutions
for targeted industries in all geographies. DECfactory solution products
offer a full range of DECfactory services and Network Application Support
(NAS) information technology components. From single product needs to a
systems integration project, DECfactory services address all the associated
people, business, and technological issues. DECfactory products, as part of
Digital's NAS Environment for Manufacturing, provide manufacturers with
multi platform, standards-based technology in the areas of integration and
information. All DECfactory products run on both VAX and MIPS-based
ULTRIX platforms. DECmessageQ can be used to integrate additional
platforms.

The products and services in this chapter are arranged as follows:

• Digital's DECfactory Services, Section 19.1

• BASEstar to Integrate Manufacturing Applications and Devices,
Section 19.2

• DECmessageQ for Application Communications, Section 19.3

• DEComni to Simplify Device Integration, Section 19.4

• DECosap to Link Siemens Devices, Section 19.5

• @aGlance to Access Data, Section 19.6

When companies integrate manufacturing operations, they typically are faced
with the task of facilitating communication among heterogeneous devices and
computing systems. The factory is usually a mixture of intelligent floor devices
supplied by many vendors with little communication between different levels
of plant management. A common information-management system is needed
to increase productivity and distribute device control beyond the shop floor.
Networking this heterogeneous environment in a piecemeal fashion can be
expensive, difficult to maintain, and therefore, generally short-lived.

DECfactory Products in The Realtime Environment 19-1

To ease the task of manufacturing integration and to prepare for future
expansion and technological advancements, the International Standards
Organization (ISO) developed the Open Systems Interconnection (OSI)
Manufacturing Message Specification (MMS). Iv.tMS specifies a standard
method of communication between host computers or cell controllers and
intelligent floor devices such as programmable logic controllers (PLCs),
numeric controllers (CNCs), distributed control systems (DCSs), and robot
controllers. The MMS standard specifies a device communications protocol and
a set of services for communication between applications and devices.

For manufacturers with devices that do not use the Iv.tMS standard,
DECfactory products also support defacto standard software.

DECfactory products include standards-based integration and communication
products. DECmessageQ facilitates communication between applications while
the other DECfactory products facilitate communication between devices
and applications. All DECfactory products work together in a distributed,
heterogeneous environment to provide manufacturers with standards-based
technology to help achieve manufacturing excellence and preserve current
equipment and software investments.

For additional sources of information on the DECfactory environment, refer to
AppendixA.

19.1 Digital's DECf~ctory Services
DECfactory Services consist of a worldwide portfolio of planning,
implementation, and support services. Through these services, Digital
and its customers can establish and maintain long-term relationships to
address business needs and integrate systems.

DECfactory Services cover two broad areas; Aerospace/Electronics and
Automotive/General Discrete manufacturing practices. These services include
education, change management, human systems consulting, re-engineering of
business and manufacturing processes, and information technology.

19.2 BASEstar to Integrate ·Manufacturing Applications and
Devices

BASEstar integrates manufacturing applications with a variety of industrial
control devices including PLCs, robots, numerical controllers, gauges, and
bar-code readers. The core of BASEstar's integration ability is its memory­
resident, current value data manager, which provides event-driven, distributed,
global naming capabilities for storing and accessing factory data.

19-2 DECfactory Products in The Realtime Environment

BASEstar facilitates the integration of manufacturing applications with plant
equipment, accelerates development of integrated manufacturing systems, and
provides a consistent architecture for developing manufacturing applications.
The interface to BASEstar contains a menu interface, a Command Line
Interface (CLI), and an Application Programming Interface (API). BASEstar
has features to perform the following tasks:

• Application integration

• Device integration

• Configuration management

The application integration facilities include the ability to collect, manage, and
distribute plant data, automatically notify applications of critical changes in
plant information, and synchronize execution of manufacturing applications.
Distributed capabilities allow globally-defined objects to be used by applications
running on different nodes in a BASEstar network.

BASEstar device integration facilities give generic device access and control for
plant equipment through a protocol- and device-independent interface. Device
connection management depends on equipment communications (facilitated
through BASEstar device access software (DAS)) which allows data obtained
through standard mechanisms to be made available through the BASEstar
network. Device connection management facilities can also start and stop
devices, upload and download to programmable devices, and perform other
standard functions offered by industrial control devices.

BASEstar configuration management facilities let you store and track
file development, control access to files, and transfer files to and from
devices. By providing a history of file changes, a file can be tracked from its
development stage through testing and production to archive. By controlling
file distribution, an outdated control program can be kept from running in
production.

19.2.1 Application Integration
BASEstar data comes from a variety of sources including plant devices, work
cell applications (area or plant), and user input. BASEstar data is referenced
by name, regardless of the source or complexity of the data. Data elements
are called logical points and can reference a single data item or complex data
structures. Because BASEstar data is referenced by name, applications are
independent of data sources and do not require alteration when data sources
change.

DECfactory Products in The Realtime Environment 19-3

BASEstar collects and distributes manufacturing data to integrated
applications. You can use BASEstar data management facilities to change
point value definitions, perform arithmetic or local operations on point values,
or receive notification of point value changes.

The integration of BASEstar with DECmessageQ allows BASEstar
applications to receive data change notification through DECmessageQ
queues. Communication in a BASEstar application is often event-driven,
requiring both synchronous and asynchronous messages. DECmessageQ allows
for interprocess communication in a distributed, heterogeneous environment
between independent tasks. Messaging in BASEstar supports point-to-point
messaging, messaging over a circuit between two ports, or messaging to a
circuit cluster port that forwards the message to multiple destinations.

BASEstar application control allows you to initiate startup or shutdown
procedures from any BASEstar system. You can control the entire system or
specific resources within the system to synchronize access. Security features
let you limit access to these features.

The BASEstar kit contains two software development tools to aid in application
development. The Value Notification Utility is a testing tool to track
logical point value changes. The Language Sensitive Editor (LSE) provides
expandable tokens for BASEstar 'callable services, DAS support routines, and
programming interface (API) constants.

19.2.2 Device Integration
Device integration software allows applications to interact with plant devices
without knowing the device characteristics such as location, protocol, or data
formats. Data collection can be event-driven or done through polling.

Device access software (DAS) consists of code that emulates the specific device
and a network interface to distribute the data. BASEstar DAS modules are
available for many leading industrial control devices. The following are three
examples of DAS modules to communicate between devices.

• RS·232 DAS. Enables communication with devices having an RS-232 serial
port

• DECnet and TCP/IP DAB. Enables communication with applications
through DECnet and TCP/IP networking software running on an MS-DOS
personal computer or on a UNIX system with BASEstar device connection
management software

• DECdevice DAB. Emulates the memory of a simple manufacturing device
for testing applications using BASEstar device connection management
functionality

19-4 DECfactory Products in The Realtime Environment

Using the BASEstar library system, programs can be downloaded or uploaded
from the library to a device or vice versa. The version of a file stored on a
programmable device can be compared with library files. The BASEstar library
supports up to 20 concurrent users and a maximum of 2500 files.

19.2.3 Configuration Management
BASEstar configuration management facilities allow you to use named objects
such as plant devices, users, and point values to manage plants tasks. Named
objects can be organized and referenced as collections; named objects can have
either local or global scope to control use of the named objects; and access to
named objects can be controlled through BASEstar security facilities.

Event logging provides a way to centrally record application, system, and
network events, such as a point value change. Events can be logged from an
application or through the API. Text from event messages can be stored and
used later for debugging purposes.

19.2.4 BASEstar CIMfast for Application Development
BASEstar CIMfast reduces development time and application complexity and
aids in rapid prototyping through a customizable, high-level, event-driven
language. The CIMfast Event Language (CEL) can be integrated into existing
BASEstar code and is supported by the Language Sensitive Editor (LSE). CEL
allows the user to define events and specify an action when the action occurs.
For example, the production floor foreman may decide to stop a rolling machine
if the product thickness exceeds 6 millimeters. In this case, the event is a
thickness change over a specified acceptance level and the response is to halt
the rolling machine so that corrections can be introduced without further stock
spoilage.

19.3 OeCmessageQ for Application Communications
DECmessageQ is a NAS software integration product used in the electronics
and semiconductor industries to develop distributed applications running in
multivendor environments. DECmessageQ provides recoverable interprocess
messaging services between two or more cooperating processes or applications.
The message is stored on a disk or memory-based file until it is needed by
the receiving application. If there are difficulties at the receiving end, such as
CPU, application, or network problems, the message is saved until it can be
sent.

DECfactory Products in The Realtime Environment 19-5

DECmessageQ offers a common application programming interface (API)
across different operating systems and networks, simplifying the integration of
new and existing applications. With DECmessageQ, program modules can be
developed or redeployed anywhere in the DECmessageQ network configuration,
whether standalone, in a VAXcluster configuration, in a local area network
(LAN), or at remote sites. The queued message bus structure means that
applications do not have to establish links with each of their application
partners.

DECmessageQ uses a clienUserver architecture, with one system acting as the
server to exchange messages among multiple client implementations. Refer to
Chapter 20 for more information on the platforms supported by DECmessageQ.

19.4 DEComni to Simplify Device Integration
Digital's OSI Manufacturing Network Interconnect (DEComni), implements
the Manufacturing Message Specification (MMS), an international standard
communications protocol (ISOIIEC 950~land ISOIIEC 9506-2). When
combined with prerequisite hardware and software, DEComni interoperates
with other MMS-compliant systems and devices.

DEComni consists of a library of callable routines and runtime services
which allow host applications to communicate with multivendor, intelligent
manufacturing devices such as robot controllers, programmable logic
controllers, numerically controlled machine tools, and distributed process
control systems. DEComni runtime library routines can be called from an
application written using any Digital language.

DEComni includes utility programs for creating and managing definitions
and data structures. The application programming interface (API) is an
implementation of MMS and facilitates use of utilities, libraries, and services
in a seamless, distributed, network application. Service classes support are in
the following categories:

• Environment

• Virtual Manufacturing Device (VMD)

• Domains

• Program Invocations

• Variables

• Files

19-6 DECfactory Products in The Realtime Environment

The DEComni Object Definition Facility (ODF) is used to define local and
remote objects and attributes of a Virtual Manufacturing Device (VMD). ODF
maps MMS variable types to and from VMS data type definitions, but is not
yet supported on VLTRIX.

DEComni can be used from a DECwindows environment or a character cell
terminal.

Figure 19-1 shows how DEComni and DECosap work together to form layers
of industry standard protocols between the application interface and plant floor
devices.

Figure 19-1 Integration of DEComnl and DECosap

DEComni
API

DECosap

I Application Programs

Application Interface
Technological Functions - MMS

~ ~
SINECAP MMS Functions
Technological Functions MMS Protocol Transactions

Application Layer
SINEC AP Monitor Presentation Layer
Protocol Transaction Session Layer

I ISOIOSI Layer 1-4 I

< SINEC H1 Network - lEE 802.3 >
--~.

I. ~ Iii ru
Plant Floor Devices

DEComni
MMS

MLO-O09260

DECfactory Products in The Realtime Environment 19-7

19.5 DECosap to Link Siemens Devices
DECosap is a network communications product that allows applications to
communicate with shop floor devices that use the proprietary Siemens SINEC
Application Protocol (AP) and SINEC HI communication protocols. Digital,
in cooperation with Siemens, developed DECosap to connect VAX VMS and
MIPS-based ULTRIX computers with Siemens communications processors.
As defined, these protocols provide communications functionality for plant
automation over B02.3lEthernet local area networks (LANs). This attention to
standards results in higher performance and lower operating costs.

SINEC AP and SINEC HI are defined for high-speed communications
covering all automation levels. They are application-to-application protocols
developed on top of the Transport Layer of the Open System Interconnection
(OSI) reference model. Although primarily oriented to the manufacturing
environment, SINEC AP and SINEC HI address generic applications
and provide a common communication method between different Siemens
automation devices, such as Programmable Logic Controllers (PLCs), numerical
controllers, robots, and personal computers.

DECosap defines its Application Programming Interface (API) through
DEComni, Digital's device interconnect API for manufacturing devices that is
modeled on the ISOIIEC 9506 Manufacturing Message Specification (MMS).
The result is a migration path for applications to technologies based on
international standards. The following list highlights DECosap support for
both VMS and ULTRIX systems.

• DECosap fully supports SINEC AP services. These services include
environmental management, virtual manufacturing device support,
variable access, serial transfer, program invocation, domain services, and
message exchanging.

• DECosap fully supports SINEC HI services. These services include
environmental management, variable access, message exchanging, and
device management.

• DECosap functionality relies on DECnetiOSL This feature ensures a
smooth migration to an intended full OSI implementation by Siemens and
protects investments in installed applications.

• DECosap supports all supported VAX and MlPS-based processors.
This results in an integrated application environment in which information
can be transferred easily from plant floor devices throughout an enterprise­
wide network

19-8 DECfactory Products in The Realtime Environment

• DEComni services complement DECosap functionality. Tools that
support the creation and managment of plant floor device applications are
provided in conjunction with DEComni. Omni Directory Services support
configuration and management of application addressing information.

Software Requirements for DECosap
Both DECosap for VMS and DECosap for ULTRIX require DECnetJOSI. In
addition, they each DEComni for their respective operating systems (DEComni
for VMS or DEComni for RISC ULTRIX). DECosap for VMS also requires the
RdbNMS Runtime Option.

19.6 @aGlance to Access Data
@aGlance integrates popular desktop applications with control systems across
multivendor platforms. Manufacturers can access plant data easily from a
variety of spreadsheet, statistical analysis, or graphical interface applications
from any control system in the plant or from a remote location. @aGlance is
used primarily by plant personnel to prepare managerial overviews of plant
operations, analyze control loops, or economic analyses.

@aGlance is both an application developer's toolkit and runtime facility which
enables client and server developers to produce interoperable applications.
@aGlance is layered on Digital's Application Control Architecture (ACA)
Services, which provides server registration, method invocation, and data
exchange functions across a variety of hardware platforms in a networked
environment.

DECfactory Products in The Realtime Environment 19-9

20
DECmessa'geQ in the Realtime

Environment

Digital's DECmessageQ product is a solution to application integration across
a range of environments. As the first of a family of message queuing products
under Digital's Network Application Support (NAB) umbrella, DECmessageQ
is a key component in the NAB strategy.

This chapter describes the following:

• DECmessageQ Overview, Section 20.1

• DECmessageQ for UNIX, Section 20.2

• DECmessageQ for VMS, Section 20.3

• DECmessageQ Hardware and Software Requirements, Section 20.4

The original name for DECmessageQ was PAMS, which stood for Process
Activation and Message Support. DECmessageQ greatly expands the
capability of PAMS, but the DECmessageQ API has preserved the original
product acronym in the name of each callable service to protect customer
investment in application development.

DECmessageQ meets the demands for a loosely-coupled, flexible mechanism
for integrating applications in a distributed, multivendor environment. For
additional sources of information on the DECmessageQ product, refer to
Appendix A.

20.1 OECmessageQ Overview
Distributed computing is an important trend which has evolved over the past
several decades. Distributed applications allow for increased accuracy and
timeliness of data collection and enable greater use of data by many users. But
distributed applications require access to the data, even if that data resides
in a heterogeneous computing environment. DECmessageQ contributes to
distributed computing in the following way:

DECmessageQ in the Realtime Environment 20-1

• A common application programming interface (API). The common
API across different operating systems and networks, simplifies the
integration of new and existing applications. The queued message bus
structure of DECmessageQ means that applications do not have to
establish unique links with each of their application partners.

• Two user interface (VI) driver routines. DECmessageQ provides
for both MOTIF and character cell terminals. Application actions are
performed by calling an action routine and passing it the appropriate data
structures. Therefore, a single set of user interface action routines serves
both MOTIF and character cell interfaces. All DECmessageQ MOTIF
user interface components share a common look and feel regardless of the
runtime environment.

• A client-server architecture. The client-server model of message
exchange distributes application components such that they can run in
a multivendor environment, thus maximizing system efficiency while
distributing access to a central database. The client-server model divides
processing application among server processes (that manage a single
resource) and client processes (that issue requests to the servers). By
communicating through messages, clients and servers efficiently send
and receive data. The client-server model lends itself to multiprocessing
environments if applications can be decomposed into smaller tasks.

If tasks are distributed in a homogeneous hardware and software
environment, communication between cooperating tasks is relatively
simple. However, it is common to find distributed systems that make
use of different computing platforms or operating systems. Often, these
systems are connected by more than one network service. For example, in
a manufacturing facility process monitoring and control may be VAX-based
and report distribution may be done using an IBM transaction system to
printers on PCs. In this case, data may be moved around the company
using a combination of network services. Each network service has its own
communication mechanism, which must be understood on both ends of the
data conversation.

• A software message bus for efficient network communications. The
queued message bus structure of DECmessageQ means applications do
not have to establish unique links with each of their application partners
in heterogeneous environments and across multivendor hardware and
operating system platforms. The benefits of using a single communication
mechanism in such a situation can be seen in reduced development and
maintenance costs, improved service, and investment protection.

20-2 DECmessageQ in the Realtime Environment

Development and maintenance costs are reduced when application
designers are freed from customizing networking tasks. DECmessageQ
offers a common application programming interface (API) across different
operating systems and networks, simplifying the integration of new
and existing applications. With DECmessageQ, program modules can
be developed or re-deployed anywhere in the DECmessageQ network
configuration, whether in a standalone mode, a VAXcluster, a LAN,
or at remote sites. Development of new and maintenance of existing
applications is reduced because the need for design compromises is
reduced. DECmessageQ provides the following benefits in a distributed
multivendor environment:

Reduced software development overhead when implementing a
client-server architecture

Shared data among applications running on different computers

Centralized reporting from remote sources within the company

Distributed data stored on IBM host systems

Distributed applications on PCs

• Interoperability between Digital, nonDigital, and mM.
DECmessageQ connectivity to IBM platforms is through the LU6.2
services. DECmessageQ network connectivity options include DECnet,
SNA, and TCPIIP. Since DECmessageQ uses a client/server architecture, at
least one system is needed to act as a message server to exchange messages·
among client implementations on any of the other systems supported by
DECmessageQ. between heterogeneous environments across multivendor

Figure 20-1 shows how DECmessageQ communicates with client
implementations in a distributed environment.

DECmessageQ in the Realtime Environment 20-3

Figure 20-1 DECmessageQ Communication Paths

MS-DOS II Macintosh

DECnet

MLO-O09941

DECmessageQ is one of Digital's Open Systems offerings that supports
multi vendor platfonns and industry standards, which leads to less proprietary
systems that can meet a variety of demands. DECmessageQ provides reliable
message exchange in a multivendor environment using a single portable
application programming interface. The benefits of using DECmessageQ as the
basis for application design can be summarized as follows:

• Productivity. DECmessageQ provides a standardized approach to
interprocess messaging that speeds development and insulates applications
from changes in network and operating system software.

• Simplicity. The DECmessageQ Message Queuing Bus offers a single
connection point for each application to communicate with others.

• Reliability. Advanced DECmessageQ messaging features offer a simple
and reliable queuing mechanism for message delivery.

• Portability. The DECmessageQ Application Programming Interface (API)
is a common programming interface for all environments. Applications are
written once, then ported to other systems.

• Interoperability. DECmessageQ software integrates applications running
in a multivendor environment, including the following products:

VMS (server)
VMS LUB.2 services for IBM CICS and IMS (client)
ULTRIX (server)

20-4 DECmessageQ in the Realtime Environment

Macintosh (client)
MS-DOS (client)
OS/2 (client)
HP-UX (server)
Sun (server)
SYSTEM V/SS (server)

DECmessageQ support of each of these platforms depends on the specifics of
the operating system. Please check the individual Software Product Description
(SPD) for product-specific information, requirements, and restrictions.

20.1.1 OECmessageQ Services
Digital offers a full range of services for every phase of a DECmessageQ
integration project. DECmessageQ services include Digital standard services
such as Loan of Product, Technical Training, Integration Consulting, Customer
Integration Service, DECstart Startup Service, and Customer Services support.

In addition to these standard services, the DECmessageQ Expertise Center
provides a range of custom services to assist customers in planning, designing,
and implementing an even broader range of application communications
capabilities.

• Experienced DECmessageQ consultants are available to advise customers
in the planning and design of integrated application systems.

• As part of its Custom Integration service, the DECmessageQ Expertise
Center has developed a software toolkit called the DECmessageQ
Q-Adapter (DmQA). The DmQA software toolkit is used to expedite
the integration of applications running on systems not currently supported
by the standard DECmessageQ products.

With DECmessageQ, DmQA, and expert consulting, Digital offers shortened
development time, reduces the risks associated with developing complex
applications, and provides competitive off-the-shelf solutions.

20.1.2 OECmessageQ Features
The DECmessageQ communication implementation is designed for ease-of-use,
expandability, and efficiency. DECmessageQ on VMS and UNIX all include the
following features:

• Message sizes up to 32,000 bytes

• Priority queuing of messages

• Selective reception of messages by queue number (FIFO), priority, or by
direct item access methods

DECmessageQ in the Realtime Environment 20-5

• Shared input queues using Multi-Reader Queues (MRQ)

• Remote message delivery

• Inter- and intra-CPU message delivery

• Set of message delivery options

• A maximum of 999 queues per DECmessageQ Group

• A maximum of 32,000 DECmessageQ Groups

• Integration with timers

• Support for local languages

• Utilities for monitoring the network configuration and flow of messages

• Portable call interface

• Connectivity to DECmessageQ implementations on other systems

20.1.3 DECmessageQ Queues
Messaging is the deliberate transmission of data between two or more
cooperating applications. These cooperating applications can run on the
same processor or on several processors in a single multiprocessing CPU. The
process can also run on several CPUs in a VAXcluster, across a local area
network (LAN), or across a wide area network (WAN).

A messaging system provides communication through a standard message­
passing mechanism. Communication can flow in either direction and it can be
synchronous or asynchronous. That is, the sender process can wait for a reply
from the receiver process or it can continue as soon as the message is queued.
By queuing messages, processes can execute independently and are not blocked
during message transmission.

Messages can be placed on a queue in a FIFO or priority-based mariner.
Messages can be extracted from a queue either sequentially or by some
selection criteria (priority, sender, message, class, etc.)

The message queue is a memory storage location (queue number) for
DECmessageQ messages. An application can attach to more than one queue
and can read from multiple queues. Once a message is read, it is removed from
the message queue.

DECmessageQ provides three types of queues. Any process can insert a
message into any queue. These queues are accessed directly by DECmessageQ
procedures, which are called by user-written applications. The three types of
DECmessageQ queues are:

20-6 DECmessageQ in the Realtime Environment

• Primary Queue (PQ) - Each process that attaches to the message queuing
bus is assigned a Primary Queue. This queue is used to receive messages
from processes using DECmessageQ.

• Secondary Queue (SQ) - Any process may attach to one or more secondary
queues. These queues can also be used to receive messages. The order in
which queues are scanned for messages is defined by the DECmessageQ
selection rules.

• Multi-Reader Queue (MRQ) - A Multi-Reader Queue is a single queue that
can be shared by up to 40 simultaneous readers.

20.1.4 Message Selection
DECmessageQ software allows application developers to create message
selection filters for sending and receiving messages. A message can be selected
by queue type, message attribute, message source, or by a combination of
selection criteria.

Message attributes include priority, type, class, and sender. These attributes
allow application developers to assign classifications to messages, then select
criteria to filter which messages are delivered. Support for message selection
attributes may vary depending on the operating system.

Selection by message priority allows programs to read messages according to
their relative importance. Each queued message has a priority of either 0 or
1. Applications can then request delivery of one priority before delivery of the
other. Using priority queuing, applications can read more-critical messages
before less-critical ones.

20.1.5 Message Recovery
When an application sends a message across a communications network, the
final receipt of the message can be interrupted by various failure conditions,
including a task abort or system crash. DECmessageQ for VMS provides the
following set of options for recoverable and nonrecoverable message delivery:

• Datagram. A nonrecoverable attempt is made to deliver a message. If the
message cannot be delivered to a target then, an error is logged.

• Wait for enqueue. The sending process will block until the message is
written to the target queue. A return status will indicate if the message
successfully enqueued to the queue.

• Blocking and nonblocking message Store-and-Forward. The sending
process will send messages that are stored in a disk file locally, before they
are sent over any communication link(s).

DECmessageQ in the Realtime Environment 20-7

• Blocking and nonblocking message disk queuing. The sending
process will send messages that will be delivered to the target's disk queue.

DECmessageQ for UNIX provides support for only the "datagram" and "wait
for enqueue" delivery options.

By using a recoverable delivery option, DECmessageQ for VMS stores the
message on a nonvolatile disk to be delivered as soon as it is possible. These
options are available through the Message Recovery Services (MRS).

20.1.6 DECmessageQ Application Programming Interface
DECmessageQ offers code portability through its standard application
programming interface (API). The DECmessageQ API is a set of services
for application developers that support the exchange of information in a
multivendor environment. Basic services enable applications to attach to
the DECmessageQ message queuing bus, send and receive messages, and
detach from the message queuing bus. DECmessageQ extended services enable
applications to receive messages asynchronously, use timers, locate a queue,
use journaling for message recovery, and confirm recoverable message delivery.

The basic services common to all DECmessageQ environments include the
following functions:

Table 20-1 DECmessageQ Basic Service Functions

Function Service

Attaching

Sending

Receiving

Detaching

Description

Attaches a process to the DECmessageQ
message queuing bus at a specified queue

Captures the contents of the user's buffer
and sends it to a target queue or broadcast
stream

Reads the next message from the queue and
moves the message to the user's local buffer

If the queue is empty, waits for a message,
then reads the message from the queue and
moves the message to the user's local buffer

Detaches the process from the DECmessageQ
message queuing bus

These functions must be used to establish basic messaging functionality in
an application using the DECmessageQ software. Each program must attach
to the queuing bus at a specified queue and each process must detach from
queuing bus when finished with DECmessageQ services. Sending messages
is done through the pams-put_msg function, which specifies how and where

20-8 DECmessageQ in the Realtime Environment

each message is sent as well as the selection criteria. Messages can be received
synchronously or asynchronously. You can associate a timer with the wait
period, affording the programmer more control over process synchronization.

The extended DECmessageQ services are designed to be used with the basic
functions. The extended services provide greater control over sending and
receiving messages. The DECmessageQ extended services include the following
functions:

Table 20-2 OECmessageQ Extended Service Functions

Function Service

pams~et_msga Receiving
Asynchronously

pams_canceCtimer

pams_locate_q Locating a
Queue

pams_openJrn Journaling

Description

Allows multiple asynchronous read
operations with fully selective reception

Cancels pending get-message requests that
match the selection filter

Sets a relative DECmessageQ timer and
sends a message on timer expiration

Cancels specified DECmessageQ timers and
their associated timer expiration messages

Returns the queue address for the specified
queue name

Requests an identifier used in requests
for records from an MRS postconfirmation
journal (VMS only)

Returns the next message from the specified
postconfirmation journal file (VMS only)

Closes the specified postconfirmation
journal file (VMS only)

Informs the MRS Server that the receiver
program processed the message (VMS only)

By receiving messages asynchronously, an application becomes interrupt­
driven. Whenever the selected message is queued, it is delivered.to the receiver
process, which immediately executes the action routine. Timer services allow
the user to set a timer and receive notification when the timer expires. Timers
allow the application to receive messages after a specified period of time and
to send a priority 1 message on timer expiration. Timers can also be set to
dequeue messages that cannot be delivered within a specified period of time.

DECmessageQ in the Realtime Environment 20-9

Message Recovery Services (MRS) (VMS only) uses journaling for message
recovery. The journaling calls allow for opening, reading from, and closing a
postconfirmation journal file. Note that not all environments currently support
Message Recovery Services. .

20.2 DECmessageQ for UNIX
DECmessageQ for UNIX is the product's implementation for use on a host
system running the UNIX operating system. It provides easy-to-use, efficient
task-to-task communications among processes on ULTRIX on a VAX or
MIPS-based system, HP-lJX, SunOS, and SYSTEM V/SS.

A common call interface allows messages to be delivered via local interprocess
communications for intra-CPU applications, or via Transmission Control
ProtocollInternet Protocol (TCPIIP) for applications. Applications can be
designed so that client applications can be redeployed easily anywhere within
the DECmessageQ network configuration, whether in a standalone node, a
local area network (LAN), or a wide area network (WAN).

DECmessageQ for UNIX includes the following features:

• High speed local message delivery using local interprocess communications

• Remote message delivery via TCPIIP and DECnet

• Selective reception of messages by queue number (FIFO), priority, or by
direct item access methods

• Use of intra-CPU naming through a local naming service

• User-specified timers with timer expiration delivered via messages placed
in the user's primary queue

• Dynamic addition of CPUs to the communication network

• Support for the local C compiler

• Connectivity to DECmessageQ implementations on ULTRIX, VMS, SunOS,
HP-ux, and SYSTEM V/SS.

DECmessageQ for UNIX can also be used as an integration tool to merge many
external events with the message queuing bus. In addition to integrating
messages from local and remote processes, DECmessageQ provides for the
integration of other events such as timer settings, simulated messages, or
external events, such as special hardware I/O.

20-10 DECmessageQ in the Realtime Environment

20.2.1 DECmessageQ for UNIX Message Recovery Services
Message Recovery Services is not supported for this release of DECmessageQ
for UNIX, but will be added in a future release.

20.2.2 DECmessageQ for UNIX Selective Broadcast Services
Selective Broadcast Services is not supported for this release of DECmessageQ
for UNIX but will be added in a future release.

20.3 DECmessageQ for VMS
DECmessageQ for VMS is the product's implementation for use on host
systems running VMS. It provides efficient task-to-task communications among
processes using DECmessageQ on VMS, UNIX, MS-DOS, SunOS, Macintosh,
and OS/2.

DECmessageQ messaging is asynchronous and nonblocking. A single message
or a series of messages can be queued for delivery and the sending process is
not blocked while waiting for message delivery. This flexibility results in faster
communication With less overhead.

The DECmessageQ communication implementation is designed for ease­
of-use, expandability, and efficiency. In addition to the features listed in
Section 20.1.2, DECmessageQ for VMS includes the following features:

• Fully asynchronous and synchronous receipt of messages

• Message recovery using Message Recovery Services (MRS)

• Message broadcasting using Selective Broadcast Services (SBS)

• Use of intra-CPU naming through high-speed global sections, and
inter-CPU naming through VAX Distributed Name Service

• Remote message delivery via DECnet and TCPIIP for inter-CPU
applications

• Message simulation facility for use in application testing

• Selectable tracing of Messages and calls to DECmessageQ

• Integration of VMS timers

• Support for languages adhering to the VAX Common Language Calling
standard

• Dynamic addition of message queues and CPUs to the communication
network

OECmessageQ in the Realtime Environment 20-11

• Message interface for retrieving DECmessageQ configuration infonnation
on-line

• Connectivity to DECmessageQ implementations on VMS, UNIX, OS/2,
MS-DOS, Macintosh.

• DECmessageQ LUB.2 Services for VMS systems

DECmessageQ for VMS can be used as an integration tool to merge external
events with the message queuing bus. In addition to integrating messages
from local processes and remote processes, DECmessageQ provides for the
integration of other events such as timer settings, simulated messages, LUB.2
conversations, or other external events such as special hardware 110.

20.3.1 DECmessageQ for VMS Message Recovery Services
DECmessageQ messages have selectable persistence. If your implementation
supports Message Recovery Services (MRS), you can track the progress of
messages through the network. DECmessageQ Recovery Services enable
applications to define the level of recovery required. Using nonvolatile storage,
Message Recovery Services ensure that message delivery can be completed
following network, system, or application failure. Infonnation critical to an
application will arrive at its destination.

Message Recovery Services (MRS) extends data recovery to the level of
pending messages. With MRS, the sender is relieved of the responsibility of
tracking the progress of a message through its next level of processing. This
functionality can be used at both the client and server sides of the application.

Some of the needs addressed by MRS are:

• Sender wishes to insure delivery of messages when the receiving process is
available but does not wish to monitor the delivery.

• Sender wishes to know that a message is recoverable to avoid the cost of
reconstructing it but does not care when it is finally delivered.

• Receiver wishes to maintain a journal of all messages received by it for
audit tiail or reprocessing.

Message Recovery Services are implemented primarily by an MRS server, a
nonprivileged program attached to the DECmessageQ Message Bus. MRS
actions are invoked by standard DECmessageQ send-and-receive message calls.

MRS is oriented toward messages, not processes. That is, not all messages
sent from or directed to a particular process need to be processed by MRS. This
allows applications to incur the additional processing imposed by MRS for just
those messages that are not easily recovered. Message recovery characteristics
are set by the sending process.

20-12 DECmessageQ in the Realtime Environment

Message Recovery Services increase the robustness of DECmessageQ by
permitting applications to recover from message delivery failures due to a
program abort, communication line failure, or system crash.

20.3.2 DECmessageQ for VMS Selective Broadcast Services
'l\vo important application requirements are handled by the Selective
Broadcast Services (SBS). The first is the ability to send a message to many
targets without going through multiple send message requests. The second is
the ability to generate broadcast messages without the originator knowing the
quantity or location of the target processes.

Selective Broadcast Services provide a broadcast stream of data into which
any process can insert a message. Any process can select messages from this
broadcast stream for delivery. Messages may be selected using a set of rules
that provide relational comparisons against DECmessageQ header information
or user's message data information. The Selective Broadcast Services operate
in a single server environment or between cooperating DECmessageQ servers.
When the SBS is operating between nodes, it can operate using DECnet
services or using direct Ethernet operations. In the direct Ethernet operations,
the SBS will optimize message traffic by using Ethernet's multi-casting
capabilities.

20.3.3 DECmessageQ for VMS Developer's Tool Kit
The DECmessageQ Developer's Tool Kit provides the tools necessary to speed
development time. With Capture, Simulation, and Replay, building, testing,
and debugging become more efficient.

The DECmessageQ Capture tool can be used to selectively capture messages
that are sent or received from a process. These messages can be displayed on
the output device or collected in a disk file. The messages are displayed in an
ASCII file using the DECmessageQ scripts syntax.

The DECmessageQ Simulation tool uses a disk file containing DECmessageQ
commands to simulate message traffic to a process. This allows you to simulate
messages from an application not yet developed in order to test and debug an
existing application. Using the simulator, developers can test code response to
queued messages immediately without waiting for integration testing.

The DECmessageQ Replay tool simulates messages that were previously
captured, making repetitive application testing easier. Message replay software
also generates a log file suitable for isolated unit testing.

DECmessageQ in the Realtime. Environment 20-13

20.3.4 DECmessageQ for VMS LUS.2 Services
IBM Lu6.2 is a synchronous and. proprietary communications protocol.
DECmessageQ LU6.2 services allow you to connect to machines supported
by DEC's SNA gateway running LU6.2 APPC using standard DECmessageQ
messages.

DECmessageQ LU6.2 Services for VMS systems (License Option) allows user
programs attached to a DECmessageQ Message Queuing Bus to request,
accept, and conduct APPC (Advanced Program-to-Program Communications)
conversatipns with programs running under CICSNS, IMSNS, and other IBM
environments over SNA LU6.2 sessions.

DECmessageQ LU6.2 Services allows users unfamiliar with SNA
communications to develop quickly and easily applications that operate
with IBM-based APPC applications. Users are insulated from the details of
both SNA and APPC. DECmessageQ provides additional insulation between
the two environments by translating transaction program names known to
DECmessageQ user programs to names known to the IBM system(s) and vice
versa.

DECmessageQ LU6.2 Services for VMS consists of a Port Server, a data
structures library, server management utilities, and development tools.
DECmessageQ LU6.2 Services for VMS has the following limits:

Table 20-3 DECmessageQ for VMS LUS.2 Services Limits

Description Limit

Maximum user message size 31,982 bytes

Maximum number of active LUs 256 per Port Server

Maximum number of remote transaction 512 per DECmessageQ LU6.2 Server (user-
programs written servers: unlimited)

DECmessageQ LU6.2 Services for VMS includes a management utility that
allows a suitably privileged user to start, stop, and configure DECmessageQ
LU6.2 servers and observe their activity (through an event monitoring facility).

Users can develop specialized LU6.2 servers by using the DECmessageQ
LU6.2 Server tool kit. The tool kit consists of a DECmessageQ for VMS User
Callback (a "user callback" is a special User Exit module) and 21 predefined
DECmessageQ message structures.

20-14 DECmessageQ in the Realtime Environment

20.4 DECmessageQ Hardware and Software Requirements
This section identifies hardware and software requirements for developing and
running applications using DECmessageQ.

DECmessageQ supports DECnet/Ethernet connections for VMS (server),
Macintosh, MS-DOS, and OS/2 (client). TCPIIP connections are supported for
UNIX and ULTRIX (servers).

20.4.1 DECmessageQ Hardware Requirements
A configuration for running DECmessageQ requires the following hardware:

• A system to act as the server host system that runs networked applications

• A workstation or terminal to act as the client system that runs networked
applications

• An Ethernet connection between the server system and the client
workstation or terminal

For a list of host and client processors supported by the DECmessageQ
software, refer to the System Support Addendum (SSA) for the specific
DECmessageQ product. You may obtain these from your Digital Sales
Representative.

20.4.2 DECmessageQ Software Requirements
This section outlines the minimum software required to run DECmessageQ on
VMS and UNIX platforms. For additional requirements, refer to the System
Support Addendum (SSA) for the specific DECmessageQ product.

DECmessageQ for VMS Requirements

• VMS Operating System

• VMSIULTRIX Connection (UCX) for the TCPIIP protocol environment

• DECnetlSNA APPC LUS.2 Programming Interface (for LUS.2 Services
Option only)

DECmessageQ for UNIX Requirements

• ULTRIX, HP-ux, SWlOS, or SYSTEM VISS Operating System

• DECnet-ULTRIX networking software for the DECnet protocol environ­
ment

DECmessageQ in the Realtime Environment 20-15

20.4.3 DECmessageQ System Configuration
Before you can develop and run DECmessageQ applications, you must
define the runtime environment that is best for your application and system
configuration.

Using DECmessageQ in a VMS environment, you must allocate global memory,
define VMS symbols, and set system parameters. Using DECmessageQ in
a UNIX environment, you must allocate shared memory, semaphores, and
process slots then rebuild the UNIX kernel.

20-16 DECmessageQ in the Realtime Environment

Part VII
DEC Realtime Integrator

Part VII surveys DEC Realtime Integrator as a development tool for realtime
applications on ULTRIX, VAXELN, and VMS systems. This part contains the
following chapters:

• Chapter 21, DEC Realtime Integrator Overview, describes the DEC
Realtime Integrator for ULTRIX, VAXELN, and VMS.

• Chapter 22, DEC Realtime Integrator Programming, discusses the
icon-based graphical user interface and subroutine libraries of the DEC
Realtime Integrator software.

21
DEC Realtime Integrator Overview

The DEC Realtime Integrator is a window-based icon toolkit that can run
on VMS systems and ULTRIX on MIPS-based systems. It allows for rapid
development of realtime data acquisition and test applications by drawing
them as flow diagrams. Typical applications include data acquisition,
IEEE-488 and RS-232 instrument control, and test and measurement.

Each DEC Realtime Integrator icon represents a function such as an analog
or digital input, an arithmetic operation, or a logical function. With the DEC
Realtime Integrator you create applications by using a mouse to select icons
from different icon libraries, placing them on a work surface on the computer
screen, connecting the icons with data flow or signal flow lines, and performing
further setup. Finally, to run a program, you simply click on the start button.

For the original equipment manufacturer (OEM) and the end user working
with test and realtime applications, DEC Realtime Integrator can simplify the
development of high-quality test and research solutions. The more difficult the
programming challenge, the larger the productivity benefit provided by DEC
Realtime Integrator.

This chapter describes the following:

• DEC Realtime Integrator General Features, Section 21.1

• DEC Realtime Integrator Use, Section 21.2

• DEC Realtime Integrator for VAXELN, Section 21.3

• DEC Realtime Integrator Hardware and Software Requirements,
Section 21.4

With DEC Realtime Integrator, application developers may use icons included
with the DEC Realtime Integrator, custom icons developed with a DEC
Realtime Integrator Development System, or icons sold separately by third
parties.

DEC Realtime Integrator Overview 21-1

21.1 DEC Realtime Integrator General Features
DEC Realtime Integrator provides window-based icon tools for creating
and running realtime applications on ULTRIX on MIPS-based systems,
VAXELN, or VMS systems. It enables test engineers and researchers
who lack programming skills to create new applications, while allowing
sophisticated programmers to create applications of great complexity. It
increases OEM productivity by providing a DECwindows-based platform upon
which customized test and measurement applications can be easily built.
Users need not know how to program DECwindows or Compound Document
Architecture (CDA) applications.

As a window-based product, DEC Realtime Integrator provides an integration
platform for ULTRIX, VAXELN, or VMS workstations, eliminating the need for
custom programming to link test instruments to such environments as RS/l,
SAS, DDIF, DTIF, or NAS (depending on the operating system).

DEC Realtime Integrator features include:

• Graphical programming approach. The icon-based method of
programming allows users to create applications simply, without coding
programs. As a result, less training and development time is required for
producing test and research applications.

• Ability to develop your own icons. Using template code files, users
can use the C language to create their own icons to represent software
functions. Thus you can expand DEC Realtime Integrator and customize
applications by adding functions.

• Modularity of applications. A complete application can be shrunk to
a single icon or macro. Once created, the application icon can be used
like any other icon or macro. It can be treated as a reusable code module,
serving as a building block for more complex applications.

• Macro editing. Application developers can expand and edit icon macros
in a separate window.

• DECnet and TCPIIP communication. Applications distributed across
multiple computing systems can share data directly with each other
through DECnet or TCP/IP communication.

• Automatic data type conversion. DEC Realtime Integrator now
converts data types automatically. You no longer need to use the Converter
icon, except for conversion to and from fixed-length ASCII formats.

• Multiple control panels. Multiple control panels are allowed in each
application. This features allows for more sophisticated interfaces.

21-2 DEC Realtime Integrator Overview

• Data paths can be prioritized.. A path priorith of Low, Medium, or High
offers more precise control over order of execution.

• Debug utility. The debug utility streamlines application development.

• Data can be timestamped.. You can associate a timestamp with data as
it is collected and reference data by its timestamp.

• Support of VAX and MIPS-based realtime hardware options. DEC
Realtime Integrator supports I/O hardware that allows you to perform
testing and measurement on ULTRIX, VAXELN, and VMS systems.

Under ULTRIX, the supported hardware includes IEEE-488 instrument
bus interfaces, TURBOchannel-to-IEEE-488 adapters, and RS-232 serial
interfaces.

Under VAXELN, the supported hardware includes VAXIVME single-board
computer, the KAV30-AD.

Under VMS, supported hardware options include analog-to-digital
converters, digital-to-analog converters, IEEE-488 instrument bus
interfaces, SCSI~to-IEEE-488 adapters, RS-232 serial interfaces, and
realtime clocks.

• Seamless integration with other manufacturing and research
applications. Icons are available to transfer data to database and
data analysis applications, such as RS/l, SAS, and Signal Technology's
N!POWER. Other icons can transfer data through DDIF and DTIF
standards to CDA applications.

• Multitasking environment. DEC Realtime Integrator can run multiple
test and measurement applications concurrently.

• DEC\\tindows compatibility. Applications can be controlled from or
displayed on a workstation or terminal that is compatible with the X
Window System.

21.2 DEC Realtime Integrator Use
DEC Realtime Integrator is a significant part of Digital's solution in the
scientific, engineering, and industrial research marketplaces. DEC Realtime
Integrator is targeted at single-user and research team applications. But it is
easily integrated into a total scientific, engineering, or industria~ computing
environment, including larger VMS and ULTRIX on MIPS-based systems
at the departmental and organizational levels. Therefore, DEC Realtime
Integrator should be viewed as a sophisticated and powerful research and
testing tool that you can use to:

DEC Realtime Integrator Overview 21-3

• Model or create an experiment

• Control distributed serial devices over the network

• Gather, reduce, and analyze test data

• Store, retrieve, or display data in a number of graphical or textual formats

DEC Realtime Integrator provides an integration base in testing, research, and
labora tory environments such as these:

• Electronics

Wafer and component test

Off-line quality test

Design verification

RF and microwave testing

• Automotive

Engine dynamometer test

Materials research and test

Fatigue and life tests

Environmental test

Subassembly testing

• Aerospace electronics

Subassembly test

Maintenance test

Design verification

Performance characterization

• Government and education

Research and development

Teaching tool

• Process

New products and materials research

Pilot plant simulation

21-4 DEC Realtime Integrator Overview

• Utilities

Energy monitoring

Battery testing

Power measurements

21.3 DEC Realtime Integrator for VAXELN
The VAXELN runtime environment is useful in realtime applications where
a dedicated VAX system is used to repeatedly perform a set of tasks or where
the presence of a disk-based general-purpose operating system such as VMS
or ULTRIX is not required. An example would be a process monitoring
system in a chemical plant; in such an application, predictable performance
of a predefined set of tasks is an important selection criterion for a reaitime
system. A VAXELN system image can be built under VMS and can contain
only the VAXELN kernel executive and the programs, services, and device
drivers needed to accomplish the defined tasks. The system image is loaded
into a target VAX, where it performs its set of tasks, independently of the VMS
development system.

DEC Realtime Integrator for VAXELN is an icon-based, graphical programming
environment that allows for rapid developmen~ of realtime data acquisition
and test applications in an embedded VME environment. This version of DEC
Realtime Integrator runs on a KAV30-AD single-board computer. It provides
the DEC Realtime Integrator drawing worksurface and icon libraries for
creating and running applications graphically.

The VAXELN Realtime kernel provides the necessary system services and
interfaces to allow for application development in an embedded realtime
environment. The VAXELN system image is created on a host VMS system
and is then loaded into the target single-board computer over the Ethernet.
Application development can be done directly on the single-hoard computer
(SBC) using an X-windows terminal.

DEC Realtime Integrator for VAXELN provides tools to develop custom icons
on the host VMS system, then include the icons for use on the embedded
system using the VAXELN Toolkit System Builder. For example, you can reuse
previously written code by including it in a DEC Realtime Integrator icon.

DEC Realtime Integrator and VAXELN systems complement each other
in Digital's distributed realtime architecture and can coexist beneficially
in the laboratory, factory, and other realtime environments. Figure 21-1
illustrates how DEC Realtime Integrator fits into Digital's distributed realtime
architecture. The following systems are in a laboratory or testing environment:

DEC Realtime Integrator Overview 21-5

• DECstation 3100, running ULTRIX and loaded with DEC Realtime
Integrator tools and applications

• rtVAX 4000 Model 300 system, running a customized VAXELN system
image and functioning as a dedicated realtime platform

• VAXstation 3200, running the VMS operating system and loaded with DEC
Realtime Integrator tools and applications

Realtime instrument control is being performed by the DECstation 3100
using Digital's IEZ11 SCSI to IEEE-488 converter to connect to IEEE-488
compatible laboratory instrumentation. At the same time, realtime test and
measurement is being performed by the VAXstation 3200 using Digital's
IEQ11 Q-bus to IEEE-488 converter. And, the rt VAX 4000 Model 300 serves
as a dedicated VAXELN system that is accumulating realtime data from a
production system.

In a scientist's office, a DECsystem 3100 runs ULTRIX and is loaded with
DEC Realtime Integrator tools and applications. The DECsystem is used
for analysis of the data that is being collected from the other three realtime
systems in the laboratory, signal processing, and graphic display. Since this
system is part of the corporate network, the scientist can conveniently archive
experimental data that later can be accessed and analyzed by other individuals
and work groups.

In a programmer's office, a VAXstation 3100 is running VMS and is loaded
with DEC Realtime Integrator tools and applications. The VAXstation is used
to program and test DEC Realtime Integrator applications, including building
blocks for future laboratory or testing applications. Application configurations
are saved in a machine-independent format and therefore are portable between
systems loaded with DEC Realtime Integrator. Thus, applications created on
this VAXstation 3100 can be transported to any of the other DEC Realtime
Integrator systems, whether VAX or MIPS-based, and run with very few
modifications. '

21.4 DEC Realtime Integrator Hardware and Software
Requirements

DEC Realtime Integrator runs in ULTRIX, VAXELN, and VMS environments.

21-6 DEC Realtime Integrator Overview

Figure 21-1 DEC Realtime Integrator In Digital's Distributed Realtime Architecture

Office

Laboratory

Central Data
Management

VAX 6000 System

VAX/VMS

• Archiving

• Analysis
• Reporting

DECstation 3100

RISC/UL TRIX

DEC RT Integrator

Realtime Application

• Instrument Control

Other
Devices

Software
Development

VAXstation 3100

VAXlVMS

DEC RT Integrator

• Programming
• Testing

Ethemet

rtVAX 4000

VAx/VAXELN

Realtime Application

• Data Collection

y

Devices

Scientific
Data Analysis

DECstation 3100

RISC/ULTRIX

DEC RT Integrator

• Archiving

• Analysis

• Reporting

VAXstation 3500

VAX/VMS

DEC RT Integrator

Realtime Application

• Test and
Measurement

I
IIEEE-I

488

Other
Devices

MLo.o06422

For ULTRIX the minimum hardware required for DEC Realtime Integrator is
a DECsystem or DECstation as specified in the System Support Addendum.
The software requirements are as follows:

• If you use terminals without a DECwindows interface, the only software
requirement is ULTRIX Version 4.2A or higher

DEC Realtime Integrator Overview 21-7

• If you use workstations (either with or without a DECwindows interface)
the software requirements include the ULTRIX Worksystem Software
Version 4.2A, DEC GKS-3D for ULTRIX Version 1.1 or higher, and the
C language (if you are developing custom icons, customizing libraries, or
including third party icons).

A DEC GKS-3D Runtime-only license is the minimum prerequisite software
necessary for application developers to use the DEC Realtime Integrator
icon-based visual programming environment. For developers using the VAXlab
Software Library (VSL) subroutine libraries in the DEC Realtime Integrator
Runtime, a DEC GKS-3D development license may also be necessary to allow
use of the GKS development facilities.

For VAXELN the minimum hardware required for DEC Realtime Integrator
is a VAX, MicroVAX, VAXserver, or VAXstation as specified in the System
Support Addendum. The hardware requirement for the target processor is a
KAV30-AD, VT1300, or VXT2000. The software requirements are as follows:

• If you use terminals without a DECwindows interface, the software
requirements are VMS Version 4.7 or higher and VAX C Version 3.2
or higher (if you are developing custom icons, customizing libraries, or
including third party icons).

• If you use DECwindows, the software requirements include the VMS
Operating System, VMS DECwindows Compute Server, VMS DECwindows
Device Support, VMS DECwindows Programming Support, and VAX C
Version 3.2 or higher (if you are developing custom icons, customizing
libraries, or including third party icons).

For VMS, the minimum hardware required for DEC Realtime Integrator is a
VAX, MicroVAX, VAXserver, or VAXstation as specified in the System Support
Addendum. The software requirements are as follows:

• If you use terminals without a DECwindows interface, the software
requirements are VMS Version 5.4 or :higher.

• If you use workstations running VWS, the software requirements include
the VMS Operating System Version 5.4 or higher (or VMS Workstation
Software [VWS] Version 4.4 or higher), VMS DECwindows Compute Server,
VMS DECwindows Device Support, and VMS DECwindows Programming
Support.

Note that the DEC Realtime Integrator graphical drawing editor is not
available on a VWS window system.

21-8 DEC Realtime Integrator Overview

• If you use workstations running DECwindows, the software requirements
include the VMS Operating System, VMS DECwindows, DEC GKS for
VMS Version 4.1 or higher, and VAX C Version 3.2 or higher (if you are
developing custom icons, customizing libraries, or including third party
icons).

• DRB32 VMS drivers Version 3.0 are a prerequisite for LIO support of the
DRB32 and DRB32W devices and I/O subsystems that interface to the
VAXBI through the DRB32 and DRB32W.

• The RTC01 BI clock is a prerequisite to use BI devices through LIO I/O
support.

DEC Realtime Integrator Overview 21-9

22
DEC Realtime Integrator Programming

DEC Realtime Integrator provides an icon-based, graphical programming
environment. Instead of using a conventional programming language, the user
can create and run realtime applications by drawing them as flow diagrams.

This chapter describes the following aspects of DEC Realtime Integrator
programming: .

• Programming Environment, Section 22.1

• Icon Libraries, Section 22.2

• Subroutine Libraries, Section 22.3

22.1 Programming Environment
Each DEC Realtime Integrator icon represents a function, such as an analog
or digital input, an arithmetic operation, or a logical function. DEC Realtime
Integrator provides libraries of such functions (described in Section 22.2).
Figure 22-1 shows one of the icon libraries provided by DEC Realtime
Integrator, the Signal Processing Library.

With DEC Realtime Integrator you build an application by using the point-and­
click method now standard in graphical user interfaces. You use the mouse to
move icons from the libraries to the work surface and to connect the icons with
data flow or signal flow lines. Once the icons have been set up, the application
is ready to run.

The Vlork surface acts as a graphical editor, letting you move, copy, delete,
add, cut, and paste icons representing devices and sections of code. Thus, you
can create and change applications much more quickly than with traditional
programming languages.

DEC Realtime Integrator Programming 22-1

Figure 22-1 Signal Processing Icons

Power Spec Phase Hro91e TherlllOcouple 0

E;]8JE;]
I~I Ri rG~1 [mij Inml

Inte9ratcr Differentiat~ Statistics

lfi'~' II ~(I') 112X
, I

<01 1(>0

Each icon has a setup dialog box that allows customizatioIi of its functioning
for the particular application. Once built, the application can be saved
and restored without the need to repeat the setup operations. Since the
configuration is saved a machine-independent format, it can be moved to any
other system running DEC Realtime Integrator, whether MIPS-based or VAX,
and run with very few modifications. (One constraint on application portability
would be the use of platform-specific icons, for example, the VMS-only ADQ32
converter icon, in the application.)

DEC Realtime Integrator includes several icon libraries, and you can extend
its capabilities by creating your own icons. DEC Realtime Integrator includes
a C template and detailed instructions on how to modify the template. You edit
the template and then compile and link the function with the user library. The
icon is now part of your library and can be used like any other. Since all icons
are modular functions, your icon can be used in future applications.

By placing icons together and shrinking them to form a single icon, you can
build macros (compound groups of icons) and then manipulate the macros like
any other individual icon. A macro editing facility allows users to edit icon
macros in a separate editing window .. This allows you to create higher-order
representations of an application irom basic building blocks. For example, you
could create a macro, representing a complex flow diagram, for an instrument
and then use it in subsequent test applications.

Context-sensitive online help makes the software environment easy to learn.
By using the point-and-click method, you can get help on a selected icon. When
building an icon, you can add help text for that icon.

22-2 DEC Realtime Integrator Programming

When you use the data display and panel input icons, DEC Realtime Integrator
automatically creates a control panel. The control panel is a simple user
interface representing an instrument control panel that nonprogrammers can
use to interact with the application. A user can customize the control panel
by selecting the appropriate icons and positioning the devices they represent
(such as sliders, push buttons, and so forth) on the control panel surface.
Multiple control panels in a single application allow developers to build more
sophisticated user interfaces using multiple windows.

Each application has two conceptual views: a data flow view and a signal flow
view. DEC Realtime Integrator allows you to switch between these views with
the click of a mouse button. In the data flow view, the connection between
icons represents the flow of data through the application; the signal flow view
displays the application's logic structure.

Figures 22-2 and 22-3 show the data flow and signal flow of a sample IEEE-
488 application. This application uses the IEEE-488 icon to send commands
to the IEZll controller and receive data from an instrument connected to the
IEEE-488 bus. Pushing a button on the control panel sends a read signal to
the IEZll device, which then receives data from the instrument. When the
data arrives, it is sent to the counter, and then to the scope icon for display on
the control panel. Each time the counter receives data, it sends a ticked output
signal to the IEEE-488 icon's read port, which causes the read cycle to begin
again. Data is thus continuously read from the instrument and plotted on the
control panel.

The DEC Realtime Integrator programming environment simplifies IEEE-
488 instrument control. You directly program the instrument and need no
knowledge of the bus itself. String manipulation and other support icons
simplify the construction of command strings. The service request (SRQ) can
be detected as a signal in the signal flow view, while the SRQ status byte is
available as data in the data flow view. The mechanisms allow instrument
events to be detected and serviced with the same graphical techniques used to
create the rest of the application.

During data collection, you can monitor data, displaying it as a line plot,
point plot, or scrolling text. Multiple plotting windows are supported on all
supported terminals. You can insert display icons in any path of the data flow
and use them to probe or trace the data as it flows through the application.
You can also generate PostScript hardcopy records of the plots.

DEC Realtime Integrator Programming 22-3

Figure 22-2 IOtech WAVE488 Application Data Flow View

lusr/laeng/meagher/leee-wave-app.rtI

File Library Edit Display

~ IEEE-488

I Dl!bug I
I Chl!ck I
~

Figure 22-3 IOtech WAVE488 Application Signal Flow View

::- lusr/laeng/meagher/ieee-wave-app.rtI

File Library Edit Display Help

~
I Debug I
I Check I
~

01

A Debug Window is provided to help you debug an application. You can set
breakpoints on data and signal flow lines to step through an application and
debug it.

22-4 DEC Realtime Integrator Programming

In addition to traditional mathematical and trigonometric functions, icons are
provided to perform noise filtering, scaling, multiplexing, or signal processing
functions such as fast Fourier transformations (FFTs) and power spectrum
analysis. A range check icon lets you determine if a data buffer falls outside a
given value range and take corrective action.

Time generation functions allow you to trigger applications or events using
a realtime or system clock. In addition, a time stamp can be placed on data
buffers.

Because DEC Realtime Integrator is compatible with DECwindows,
applications can be controlled from or displayed on any workstation, personal
computer, or terminal that is compatible with the X Window System.

22.2 Icon Libraries
DEC Realtime Integrator includes the following icon libraries, which together
provide an extensive selection of icons that are useful in realtime application
development:

• Hardware I/O Library

• Software I/O Library

• Text Manipulation Library

• Signal Processing Library

• Control Library

• Data Display Library

• Panel Input Library

22.2.1 Hardware Input/Output Library
Hardware I/O icons help control physical I/O devices connected to your system.
Table 22-1 lists the Hardware I/O Library icons for ULTRIX, VAXELN, and
VMS.

Table 22-1 Hardware 1/0 Icons

Icon

IEEE-488

Function

Communicates with bus devices that conform to the IEEE-488 or
the IEC-625 standard.

(continued on next page)

DEC Realtime Integrator Programming 22-5

Table 22-1 (Cont.) Hardware 1/0 Icons

Icon

Serial Line

File Input

File Output

ASCII Report
Generator

DTIF Table

System Time

Network Input

Network Output

Binary Input

Binary Output

DTIF Output

ADQ32l

AAVll-Dl

KWVll-C sourcel

KWVll-C counterl

DRQ3Bl

Prestonl

lVMS only.

Function

Performs input and output to a serial line using RS--232 and
DEC422 connections.

Reads data of any type from an existing file.

Writes data of any type to a file.

Uses numbers as input data to create a report containing these
numbers in table format. The report is saved as an ASCII file.

Creates and reads tables of data.

Generates the system date and time and sends the data as ASCII
text or binary output.

Provides a DECnet or TCPIIP network connection so that you
can receive data from another application.

Provides a DECnet or TCPIIP network connection so that you
can send data from another application.

Reads raw binary data from an existing file.

Writes raw binary data from an existing file.

Creates a DTIF data file and writes output to it.

Permits an ADQ32 analog-to-digital converter with DEC
Realtime Integrator.

Permits an ADVll-D analog-to-digital converter with DEC
Realtime Integrator.

Permits an AAVll-D analog-to-digital converter with DEC
Realtime Integrator.

Permits a KWVll-C realtime clock device as a rate generator or
to trigger another device.

Permits a KWVll-C realtime clock device to count events,
measure time intervals, and measure frequency.

Permits a DRQ3B DMA parallel I/O controller with DEC
Realtime Integrator.

Permits a Preston GM or EM series analog-to-digital converter
with DEC Realtime Integrator.

22-6 DEC Realtime Integrator Programming

22.2.2 Software Input/Output Library
The software I/O icons provide I/O functions not directly associated with
physical I/O devices. Table 22-2 lists the Software I/O Library icons.

Table 22-2 Software I/O Icons

Icon Function

Function Generator Simulates a function generator and produces three kinds of
waves: sine, square, and triangle.

Fan In Copies the contents of all connected input ports to the output
port.

Fan Out Copies the data on the data path coming into it and sends the
copied data out.

Accumulator Accumulates data in a buffer and sends it as output; you can use
this icon to create a data stream with a specified buffer size.

Interprocess Input Transfers data from a DEC Realtime Integrator or Laboratory
Input/Output (LIO) application on the same system. (Not
supported for VAXELN.)

Interprocess output Transfers data to a DEC Realtime Integrator or Laboratory
Input/Output LIO application on the same system. (Not
supported for VAXELN.)

Constant Sends a constant value.

Initial Value Fills the first buffer of data with an initial value when an
application starts, then passes data through; used for control
loops.

Scale Adjusts values in an input data buffer to a predetermined range
and sends the scaled result as output.

Record Creates records to be used by other icons.

Get Field Makes record data available for use by icons that are not capable
of processing records directly.

Set Field Makes data in standard buffers available for processing by icons
that use record-type buffers.

Get Timebase Accesses timebase information associated with your data.

Set Timebase Associates timebase information with your data.

Null Input U sed as a placeholder data source icon; passes no data.

(continued on next page)

DEC Realtime Integrator Programming 22-7

Table 22-2 (Cont.) Software 1/0 Icons

Icon

Null Throughput

Null Output

Comment

Ramp Generator

Global Variable

Function

Used as a placeholder throughput icon; passes data unchanged.

Used as, a placeholder data sink or throughput icon.

Adds documentation or comments; the text is saved in the setup
dialog box of the comment icon.

Generates a sequence of numbers in a predetermined range and
sends the numbers as output.

Changes parameter values in the setup dialog boxes for icons
while an application is running.

22.2.3 Text Manipulation Library
The text manipulation icons manipulate alphanumeric data. Table 22-3 lists
the Text Manipulation Library icons.

Table 22-3 Text Manipulation Icons

Icon Function

String Concatenation Concatenates two strings.

Substring Extracts a substring from an input string.

String Select Selects up to eight ASCII text strings and send them as output.

Capture Token

Capture Stream

Packetizer

Extracts one token (word, line, or number) from an alphanumeric
data stream.

Extracts any number of tokens from an alphanumeric data
stream.

Accumulates one or more columns of data from small input
buffers into a larger packet or splits a large input buffer
containing alphanumeric data into smaller packets.

Adds conditional logic to text manipulation applications.

22.2.4 Signal Processing Library
The signal processing icons modify or process signal data. Table 22-4 lists the
Signal Processing Library icons.

22-8 DEC Realtime Integrator Programming

Table 22-4 Signal Processing Icons

Icon

FFT (fast Fourier
transformation)

Hi-Lo-Band Filter

Smoothing Filter

Power Spectrum

Phase Angle

Thermocouple

Converter

Multiplex

Demultiplex

Byte Swap·

Floating-point
Math

Integer Math

Integrator

Differentiator

Statistics

22.2.5 Control Library

Function

Performs an FFT (forward or inverse) on data.

Performs four types of nonrecursive filtering: highpass, lowpass,
bandpass, and notch (bandstop).

Performs polynomial filtering. The icon can filter either raw data
or perform one of the following on the data prior to filtering: first
derivative, second derivative, or third derivative.

Calculates the power spectrum or amplitude of the power
spectrum using FFT output.

Calculates the phase angle and the modulus (vector resultant
amplitude) using FFT output.

Converts thermocouple voltages to centigrade (Celsius)
temperatures.

Converts data from one type to another; types include integer,
floating point, binary, and ASCII.

Multiplexes from one to four single-channel buffers to one
multichannel buffer.

Demultiplexes one multichannel buffer to one to four single- .
channel buffers.

Reverses byte order from Big Endian to Little Endian or the
converse. Can be used to convert Little Endian bytes for Big
Endian devices.

Performs floating-point mathematical operations on data.

Performs integer mathematical operations on data.

Integrates data using the trapezoidal method of numerical
integration.

Takes the numerical derivative, using a finite difference of the
nth and (n-l) point.

Computes one or more statistical values on a data sample; uses
4-byte floating-point format.

The control icons produce signals or act on signals to control the application.
Table 22-5 lists the Control Library icons.

DEC Realtime Integrator Programming 22-9

Table 22-5 Control Icons

Icon

Counter

Switch Input

Switch Output

Range Check

Feedback

Time Delay

State transition

Subprocess

Sequencer

Floating-point IF

Integer IF

Stop

Application

Show Panel

Function

Counts either data buffers or signals.

Selects either of two inputs and sends the result as output; input
can be data, signals, or both.

Receives input and sends it as up output or down output,
depending on the switch state; input can be data, signals, or

"both.

Determines if data is above, below, or within a particular range.

Compares an input value to a reference value and sends a control
value as output.

Sends a signal in response to an input signal after a specified
time has elapsed or at a specific time.

Generates one or more output signals in response to input
signals.

Creates a subprocess (child process or spawned process). (Not
supported for VAXELN.)

Sends up to eight· signals in a sequence.

Evaluates a logical expression and performs a floating point
mathematical operation based on its value.

Evaluates a logical expression and performs an integer
mathematical operation based on its value.

Stops an application; can be used in a runtime-only DEC
Realtime Integrator environment, when the user cannot press
the Stop button.

Loads and executes a previously saved (slave) application while
you run another (master) application.

Makes a specified control panel visible or hidden.

22.2.6 Data Display Library
The data display icons display data on the control panel. Table 22-6 lists the
Data Display Library icons.

22-10 DEC Realtime Integrator Programming

Table 22-6 Data Display Icons

Icon

Scope

Extended Scope

Line Plot

Point Plot

Text Display

Bell

Buffer Watch

Bitmap

Light

Digital Meter

Analog Meter

Single Value
Display

Function

Plots one channel of data dynamically, in oscilloscope fashion.

Plots X and Y data dynamically, in oscilloscope fashion.

Plots X and Y data lines in a variety of line thicknesses and
colors (the X data is optional). (Not supported for VAXELN.)

Plots X and Y data points in a variety of shapes, sizes, and colors.
(Not supported for VAXELN.)

Displays ASCII text on the control panel.

Rings a bell as a signal in an application.

Displays details and performance data about buffers received.
The information is displayed on the control panel.

Uses XII bitmaps to create graphics for a control panel.

Lights a button on a control panel in response to a signal from
other icons.

Displays numerical data on a control panel.

Displays data on a control panel in the form of a moving needle.

Displays data on a control panel in the form of a single moving
histogram.

22.2.7 Panel Input Library
The panel input icons . let you control the application from the control panel
while it runs. Table 22-7 lists the Panel Input Library icons.

Table 22-7 Panel Input Icons

Icon

Push Button

Toggle

Slider

Text Entry

Menu

Function

Sends a signal from a control panel to icons in an application.

Turns a setting in an application on or off.

Inputs numerical (integer or floating-point) values from a range.

Inputs ASCII text from the control panel.

Creates a menu on the control panel; the created menu can be
used to select an option, which sends a signal.

DEC Realtime Integrator Programming 22-11

22.3 Subroutine Libraries
DEC Realtime Integrator utilizes subroutine libraries from the previously
available VAXlab Software Library (VSL) to perform some of its functions.
Although the subroutines used by DEC Realtime Integrator are available as
icons (functions) to the end user, the libraries are also directly accessible from
program code for creating custom icons or application programs. Under DEC
Realtime Integrator for VMS, the subroutines can be accessed from VAX Ada,
VAX BASIC, VAX C, VAX FORTRAN, and VAX Pascal. Under DEC Realtime
Integrator for MIPS, the subroutines can be accessed from C or FORTRAN for
RISC.

DEC Realtime Integrator contains the following subroutine libraries:

• Laboratory Input/Output (LIO) Library

• Laboratory Signal Processing (LSP) Library

• Laboratory Graphics Package (LGP) Library

22.3.1 Laboratory Input/Output (LIO) Library
The Laboratory 110 (LIO) library is a collection of subroutines and realtime
device drivers that permit application programs written in high-level languages
to perform data collection and control. The LIO library has these features:

• Support for several types of realtime device 110. The LIO library
supports polled 110, intelTUpt-driven 110, and direct memory access (DMA)
between supported realtime devices and the system's memory. 110 requests
can either be synchronous or asynchronous.

• Device control and data buffering. The following device control and
data buffering functions are available:

Attach a device and set it up for QIO, connect-to-intelTUpt 110, or
mapped 110

Specify the setup parameters of an 110 device

Verify the setup parameters of an 110 device

Read a buffer of data from a device (synchronous 110)

Write a buffer 'of data to a device (synchronous 110)

Obtain a buffer from a device queue and put it in the user queue
(asynchronous 110)

Enqueue multiple buffers to a device for continuous data transfer
(asynchronous 110)

22-12 DEC Realtime Integrator Programming

Forward a buffer from one device queue to another (asynchronous 110)

Detach a device and shut down the 110 process in an orderly fashion

22.3.2 Laboratory Signal Processing, (LSP) Library
The Laboratory Signal Processing (LSP) library is a set of subroutines that
calculate power spectra and perform data format translation, fast Fourier
transformations (FFTs), signal processing, digital filtering, and interval
histogramming.

The LSP library has these functions:

• Data format translation. Converts raw, analog-to-digital binary data to
floating-point voltages and vice versa.

• Fast Fourier transformations (FFTs). Handles real and complex data
in one or two dimensions, in both the forward and inverse directions.
Spectral-windowing functions are also available.

• Calculate power spectra. Calculates power spectra of equispaced data.

• Digital filtering. Can be used. as either a low-pass, high-pass, band-pass,
or band-cutoff filter. Also included is a polynomial filter based on simple
interpolation of polynomials; first, second, and third derivative polynomial
filtering; and nonrecursive filtering.

• Phase angle conversion. Converts from rectangular to polar coordinates
in one or two dimensions.

• Interval histogramming. Counts the number of elements in a data
stream that fall into one or more predefined categories.

• Correlation. Auto- and cross-correlates a data stream.

• Thermocouple conversion. Converts thermocouple voltages into
temperatures. Thermocouple conversion is available for B-, E-, J-, K-,
R-, 8-, and T-type thermocouples.

22.3.3 Laboratory Graphics Package (LGP) Library
The Laboratory Graphics Package (LGP) is a comprehensive library of powerful
plotting subroutines that require minimal knowledge of computer graphics.

The LGP library performs the following functions:

• Graphic output to terminal, hardcopy device, or disk file. You can
direct LGP output to a terminal or hardcopy device, or you can save it in
disk files for future use.

DEC Realtime Integrator Programming 22-13

• Extensive plotting capabilities. The LGP subroutines enable you to
perform the following plotting-related tasks:

Create a two-dimensional linear or logarithmic axis system and plot an
array

Plot additional data sets on a previously defined graph (up to 16)

Provide auto scaling, spline curve generation, and data interpolation

Plot standard deviation markers on data points

Create a shaded two-dimensional contour projection or add a contour
chart to the existing one

Draw a histogram

Custom plot annotation

Plot a three-dimensional array with hidden-line removal, tilt, and
rotation

Display a menu and return the value selected

Prompt for a text string or numeric input

Select n points from a graph

Create multiple plots on a screen

• DECwindows support. Supports the DECwindows client/server
environment.

• Graphics for inclusion in compound documents. Applications can
write LGP graphs as Digital Document Interchange Format (DDIF) files
for inclusion in compound documents generated by DECwrite or other
Compound Document Architecture (CDA) compatible applications.

• Layering on DEC GKS for a high degree of device independence.
The LGP plotting library is layered on the DEC Graphics Kernel System
(DEC GKS), which provides a high degree of device independence.

22-14 DEC Realtime Integrator Programming

Part VIII
Realtime Hardware

Part VIII surveys Digital's realtime systems and hardware options offerings.
The following chapters are included:

• Chapter 23, Realtime Hardware Overview, introduces Digital's realtime
hardware systems and options.

• Chapter 24, Realtime Hardware Product Families, presents Digital's
realtime hardware product family for VAX and MIPS-based systems.

• . Chapter 25, Realtime Options, describes Digital's realtime bus hardware
options for Q-bus, SCSI, TURBOchannel, and VAXBI.

23
Realtime Hardware Overview

Digital's realtime products support a broad range of systems including
general-purpose VAX and MIPS-based processors, hardware options, and
110 options for mass storage and communication. Additionally, Digital offers
systems and options designed or packaged specifically for realtime applications.

The realtime hardware product family offers chip-level processors (CLPs),
single-board computers (SBCs), workstations, and system-level configurations
of Digital's 32-bit and MIPS-based computers, housed in many types of
enclosures. This realtime product family spans a wide range of processing
power and can meet realtime computing needs on many levels.

Digital's realtime systems and options include rtVAX products that serve
as VAXELN target platforms, 110 hardware usable in VMS, MIPS-based,
or VAXELN realtime environments, and industrial terminals built for
manufacturing environments. In addition, third parties offer realtime
hardware options for use with Digital processors.

Digital's rtVAX products are VAX computers with VAXELN software,
for dedicated realtime computing. The products include the rtVAX. 300
daughterboard, rtVAXstation workstations, and rtVAX system platforms. See
Chapter 24 for more information about the rtVAX realtime computers.

The DECelx Toolkit includes board support packages for the R3000 and
Motorola architectures and SBCs for those architectures. For more information
on DECelx hardware support, see Chapter 2.

Realtime 110 options include analog/digital converters, IEEE-488 instrument
bus controllers, BITBUS controller, parallel 110 controllers, realtime clocks,
110 processor (lOP) boards, and industrial terminals. Busses supported for
realtime 110 include the Q-bus, SCSI, TURBOchannel, and the VAXBI bus.
For more information on'Digital's realtime hardware options, see Chapter 25.

For more detailed hardware configuration information and descriptions of the
third-party realtime options available for Digital systems, consult the Systems
and Options Catalog for Realtime, UNIX, and VMS Systems.

Realtime Hardware Overview 23-1

24
Realtime Hardware Product Families

Realtime hardware products are designed to meet the demanding requirements
of many factory, laboratory, and simulation activities, and to perform either
as standalone computing solutions or as integral parts of corporate-wide,
distributed networks. Digital's realtime products include VAX and MIPS-based
components, workstations, systems, software, and networking tools to proVide
the complete environment you need for developing realtime solutions for your
organization. Realtime products can be migrated to equipment and options
with higher performance and functionality.

The realtime hardware product family offers chip-level processors (CLPs),
single-board computers (SBCs), workstations, and system-level configurations
of Digital's 32-bit VAX and MIPS-based computers, housed in many types
of enclosures. The realtime hardware product family spans a wide range of
processing power and can meet realtime computing needs on many levels. This
chapter describes the following product families:

• Overview of Hardware Products for Realtime Systems, Section 24.1

• Realtime Chip-Level Processors, Section 24.2

• Realtime Single-Board Computers, Section 24.3

• Workstations for Realtime Systems, Section 24.4

• MicroVAX 3100 Realtime Workstations, Section 24.5

• rtVAX Realtime VAX Systems, Section 24.6

• VAX and MIPS-Based Systems, Section 24.7

Realtime Hardware Product Families 24-1

24.1 Overview of Hardware Products for Realtime Systems
Digital's realtime products combine hardware and software products that are
suitable, and in many cases designed specifically for realtime applications.

Both VAX and MIPS-based workstations and systems offer increased
performance and expandability across a wide range of industry segments.
When used with realtime software, such as VAXELN, DECelx, or the DEC
OSF/l realtime kernel, these workstations become powerful, low-cost realtime
workstations for high-penormance graphics applications. They combine
workstation capability with realtime software for sophisticated realtime
requirements, offering the X Window System-based interface, industry­
standard networking, and a highly efficient runtime environment. These
workstations are designed around industry-standard I/O busses and support
communications options suited for distributed processing.

Digital's rtVAX products are dedicated realtime computers with VAXELN
software that provide cost-effective solutions for meeting realtime computing
needs. These products include the rtVAX 300, KAV30, rtVAX workstations, and
rtVAX system-level computing platforms.

Realtime computing often requires less memory and storage than general­
purpose computing. Digital's rtVAX products are VAX systems streamlined
for these conditions, with the cost savings in hardware passed on to you. At
the same time, Digital provides the potential for expansion; memory and disk
space can be increased when customer needs grow. Digital offers many types of
enclosures (rackmount, wallmount, tabletop, pedestal, and cabinet) to suit all
types of environments.

24.2 Realtime Chip-Level Processors
Applications for chip-level processors (CLPs) realtime products can be found
in all industries where highly specialized, dedicated, realtime processors and
controllers are needed. Typical of these industries are discrete and continuous
manufacturing processes, such as found in the automobile, chemical, and
paper industries. Laboratory and scientific enterprises, medicine, aerospace,
government defense agencies, utilities, and oil and gas industries also use
chip-level processors in dedicated applications such as robotics, simulation,
process control, and spacecraft control and tracking.

The chip-level members of the rtVAX product family, the rtVAX 300 combines
a complementary metal oxide semiconductor (CMOS) MicroVAX processor
with floating-point and Ethernet coprocessors on a small board. These
processors can be included as a component in a design with industry-standard
or proprietary I/O hardware. Chip-level processors are extremely flexible
and can be adapted to virtually any application that can benefit from a fully

24-2 Realtime Hardware Product Families

supported network connection, an integrated realtime operating environment,
and a processor.

Because the RAM and ROM memory sizes are selectable, the amount
of memory incorporated into the realtime target is determined by the
requirements of the application, further improving the cost/performance
of realtime targets.

24.2.1 rtVAX 300
The rtVAX 300 realtime target, chip-level processor (CLP) is extremely flexible
and can be adapted to virtually any application that can benefit from a fully
supported network connection, an integrated realtime operating environment,
and a 2.7 VUPs processor.

Features of the rtVAX 300
The rtVAX 300 board has these features:

• 2.7 VUPs CMOS VAX processor

o CMOS floating point coprocessor

• CM OS Ethernet coprocessor, for direct connection to Ethernet

• Integrated on a small (4.61-inch by 3.11-inch), embeddable daughterboard

• VAX architecture extended to the realtime component level

• Ability to interface to an industry-standard or proprietary 110 bus,
potentially allowing a wide range of devices

• Ability to interface to industry-standard LSINLSI peripheral chips

• Memory size determined by the user, according to the application's
minimum requirements (4 Mbytes to 16 Mbytes)

• Memory accesible from rtVAX., SCSI, and VMEbus

• Bootable from the network or external ROM

• VAXELN runtime target license included, with DECnet end-node and
TCP/IP networking functionality (no additional networking license
required)

These features allow development of realtime applications and in high-level
languages using the powerful CASE tools of VMS and the VAXELN Toolkit.

The rtVAX 300 chip-level processor is a small subsystem that you can use
as a component in your realtime system designs. Nearly every facet of
the final system, from memory and 110 to power and packaging, is under
your control. Unlike other rtVAX products that incorporate the Q22-bus

Realtime Hardware Product Families 24-3

or XM] bus architecture for I/O, the rtVAX 300 design lets you connect the
processor to non-Digital, industry-standard busses and third-party devices; In
addition, industry-standard Large Scale Integration (LSI) and Very Large Scale
Integration (VLSI) components can be integrated into the VAX architecture,
permitting use of highly specialized hardware coprocessors and controllers.
VAXELN drivers for these devices can be written in high-level languages. A
console terminal is supported by the rtVAX 300 with the addition of a Dual
Universal Asynchronous Receiverlfransmitter (DUART) serial line chip.

Because the designer selects RAM and ROM sizes, the amount of memory
incorporated into the realtime target is determined by the application's exact
requirements. This further improves the cost/performance ratio for realtime
targets built around the rtVAX 300. .

In some cases, the hardware design based on the rtVAX 300 may require
modification of the rtVAX 300 kernel executive provided in the VAXELN
Toolkit. For example, you may need to modify the kernel to provide appropriate
mapping for DMA transfers across a non-Digital I/O bus. In order to modify
the rtVAX 300 kernel, you need materials available in the VAXELN Source
Kit, which is sold separately from the VAXELN Toolkit. Source Kit materials
include templates, command files, and documentation explaining how to tailor
the rtVAX 300 kernel.

The rtVAX 300 can be applied in all industries that use dedicated realtime
processors. Examples are manufacturing (both discrete and continuous
processes), laboratory and scientific enterprises, medicine, aerospace,
government defense agencies, utilities, and oil and gas industries. Applications
within these industries include data acquisition, process control, robotics,
simulation, command and control, and aircraft and spacecraft control and
tracking.

24.3 Realtime Single-Board Computers
Single-board computers (SBCs) for realtime are built around realtime chip-level
processors (CLPs). Generally, a single-board computer contains the following:

• One or more realtime processors

• A floating-point coprocessor

• An Ethernet coprocessor

• A SCSI controller

• Onboard main memory

24-4 Realtime Hardware Product Families

Digital offers two board-level processors for realtime computing using
VAXELN, the KA620 and the KAV30. The KA620 includes an optimized
Micro VAX processor and a Q22-bus interface.

The KAV30 is a VMEbus-based VAX realtime single-board computer that runs
VAXELN, dedicated realtime systems. Built around the rtVAX 300 realtime
processor, the KAV30 contains a 2.7-VUP CMOS VAX processor, a CMOS
floating-point coprocessor, Ethernet coprocessors, optional SCSI controller, and
4 or 16 Mbytes of main memory.

Features of the KAV30
The KAV30 has these features:

• Contains an rtVAX300 CPU daughter module

• Optional third-generation SCSI controller

• VMEbus Interface that conforms to ANSIIIEEE standard 1014-87, IEC821
and 297, support for AM codes, system controller functions, and VME
interrupt handling

• VME Subsystem Bus (VSB) support

• Extra realtime devices; timers, watchdog timer (MAX696), battery backed
up realtime clock (DP8570 CMOS RTC)

• VAXELN development tools on VAXlVMS including remote symbolic
debugging

• Bootable from over an Ethernet, or booted from SCSI Disk or EPROM

With the KAV30, you develop applications on a VMS host system using the
VAXELN Toolkit and high-level languages and runtime libraries such as Ada,
VAX C, VAX FORTRAN, and VAXELN Pascal. The application can be built
into a VAXELN runtime system, downline loaded into a KAV30 target via
Ethernet, or booted from SCSI disk or EPROM.

These features provide an easy integration of VMEbus modules into the well
accepted VAX architecture. The KAV30 allows users to integrate their VMEbus
based applications into the computing and networking environment. Data can
be communicated to and from any device on the network using DECnet or·
TCPIIP protocols, providing complete integration from the realtime device to
.the data center. The KAV30 complements Digital's family of rtVAX computers.

The VAX architecture, when combined with the powerful software development
and runtime environment provided by the VMS host system and the VAXELN
Toolkit, significantly reduces product development times. Applications,
including device drivers, are developed in high level languages with compilers

. Realtime Hardware Product Families 24-5

common between host and target. Extensive networking and integration
capabilities are provided using DECnet and TCPIIP protocols.

24.4 Workstations for Realtime Systems
Industry standards determine how well a computer system works with other
systems. Only through adherence to standards can you reap the benefits of
open systems. Achieving open systems requires a broad suite of standards,
including networking protocols, common user interface specifications, and
standard programming interfaces.

In addition to adhering to standards, Digital continually improves workstation
performance through new technology. Follow-on models for VAXstations
running the VMS or VAXELN operating systems and DECstations running the
ULTRIX operating system feature new, high-performance technology, improved
graphical capabilities, support a wide range of networking and communication
needs, and are designed to fit well as components in a distributed computing
environment.

This section covers the VAXstation 4000 family (as the follow-on generation of
the VAXstation 3100 family) and the DEC station 5000 family. The DECstation
5000 family of UNIX-based workstations, systems, and servers is based on
RISC (Reduced Instruction Set Computer) technology.

This section describes the following:

• Workstation Overview, Section 24.4.1

• The VAXstation 4000 Family, Section 24.4.2

• The DECstation 5000 Family, Section 24.4.3

For additional sources of information on Digital's workstation products, see the
appropriate Systems and Options Catalog and the Software Product Description
for each product.

24.4.1 Workstation Overview
Digital offers a family of UNIX-based workstations, systems, and servers
based on RISC (Reduced Instruction Set Computer) technology. The family
includes DECstation 5000 workstations, DECsystem servers, and multi-user
systems. Digital also offers a full range of software, networking products, PCs,
terminals, and printers to complete an integrated computing system.

Digital's MIPS-based systems are available as single-user workstations, or
workgroup or departmental systems and servers. From top to bottom, all run
the ULTRIX operating system. The DECstation 5000 models 120 and 125 al~o
currently support the DEC OSF/1 operating system. The versatility of Digital's

24-6 Realtime Hardware Product Families

MIPS-based systems makes them perfect for a variety of tasks, including
client/server computing, or high-performance 2D and 3D graphics.

Digital's DECstation and DECsystem products use the RISe chip technology
from MIPS Computer Systems, Inc.

Digital's little-endian data format is the same format used in more than
80 million personal computers, ensuring easy data interchange between
workstations, servers, and PCs.

The VAXstation 4000 workstations are Digital's newest VAX desktop systems
and include the Model 60, 90, and VLC. They replace the VAXstation 3100
family, one of the most popular families of workstations in the industry, offering
higher performance, lower cost, and increased flexibility and functionality.

The VAXstation 4000 family provides three times better price/performance than
previous VAX workstations. The VAXstation 4000 Model 90 is Digital's highest
performance desktop VAXstation - offering a price/performance similar to
some MIPS-based systems.

Table 24-1 lists the members of Digital's DECstation 5000 and VAXstation
4000 product families.

Table 24-1 Workstation Products

Product Performance 1/0 Interface Operating System

VAX4000VLC 6.2 SPECmarks1 SCSI OpenVMS

VAXELN

VAX 4000 12.0 SPECmarks SCSI OpenVMS

Model 60 optional VAXELN
TURBOchannel

VAX 4000 32.7 SPECmarks SCSI OpenVMS

Model 90 optional
TURBOchannel

DEC station 16.3 SPECmarks TURBOchannel ULTRIX
5000

Model 120 SCSI DEC OSF/l

optionalVME

1 A SPECmark is the geometric mean of ten compute-intensive, public-domain benchmarks
compared to the performance of a VAX-ll.fiBO.

(continued on next page)

Realtime Hardware Product Families 24-7

Table 24-1 (Cont.) Workstation Products

Product Performance 1/0 Interface Operating System

DEC station 19.1 SPECmarks TURBOchannel ULTRIX
5000

Model 125 SCSI DEC OSF/1

optional VME

DEC station 26.5 SPECmarks TURBOchannel ULTRIX
5000

Model 133 SCSI

optionalVME

DECstation 32.4 SPECmarks TURBOchannel ULTRIX
5000

Model 240 SCSI

optionalVME

Personal 16.3 SPECmarks TURBOchannel ULTRIX
DEC station

5000 Model 20 SCSI

optional VME

Personal 19.1 SPECmarks TURBOchannel ULTRIX
DEC station

5000 Model 25 SCSI

optionalVME

Personal 26.5 SPECmarks TURBOchannel ULTRIX
DEC station

5000 Model 33 SCSI

optionalVME

Standards-compliant operating system software promotes application
portability across multivendor networks.

Network Application Support enables systems from different vendors to work
together. Support for graphics standards such as the X Window System and
PEX provides interoperability and distributed graphics support. Support
for industry standard communication protocols, such as MMS, provide for
distributed communications.

24-8 Realtime Hardware Product Families

24.4.2 The VAXstation 4000 Family
The VAXstation 4000 family features a new, high-perfonnance 2-D graphics
accelerator standard, giving perfonnance similar to that of the SPX accelerator
offered as an option with the VAXstation 3100 family. Graphics acceleration
allows the CPU to offload the execution of graphics operations so that the CPU
is available for computational operations.

The VAXstation 4000 family is configured for all communication and
networking needs.

The VAXstation 4000 workstations are suited for both commercial and
technical environments. The entry-level VAXstation 4000 VLC is ideal
for commercial applications such as office automation, desktop publishing,
insurance and banking, and factory automation.

The VAXstation 4000 family introduces a new, high-performance 110
architecture that uses Direct Memory Access (DMA) and synchronous SCSI
support. This new hardware/software architecture increases SCSI throughput
to three times that of the asynchronous SCSI interface supported on the
VAXstation 3100 family. The new synchronous SCSI interface is backward
compatible with the VAXstation 3100 workstations for easy migration to the
new VAXstation family.

This section describes the following:

• The VAXstation 4000 VLC, Section 24.4.2.1

• The VAXstation 4000 Model 60, Section 24.4.2.2

• The VAXstation 4000 Model 90, Section 24.4.2.3

24.4.2.1 The VAXstation 4000 VLC
The VAXstation 4000 VLC offers attractive perfonnance in a compact package
at an extremely low price. The VLC is a viable "alternative for VAX VMS
users to the traditional terminal or PC, offering many advantages such as
a windowing environment and more processing power on your desktop to
increase your productivity. The VAXstation 4000 family protects your software
and hardware investment and provides you with a path to future VAX VMS
computing.

Features of the VAXstatlon 4000 VLC
The VAXstation 4000 VLC has these features:

• Enables connections to industry-standard disks, tapes, and peripherals

• Offers 5.5 SPECmarks (6 VUPS) of processing power using the SOC chip.

Realtime Hardware Product Families 24-9

• Supports memory capacity from 8 to 24 Mbytes and an optional 121 Mbyte
in ternal (RZ23L) disk

• Supports industry-standard SIMMs

• Supports synchronous SCSI speeds of up to 5 Mbytes per second

• Includes accelerated 2D graphics (8-plane color and 8-plane grayscale)

• Comes equipped with Ethernet, one DEC423 serial line, and one RS232D
serial line with modem control

• Supports a number of grayscale and color monitors in a variety of sizes

Additional storage expansions options are available using the SCSI bus.

24.4.2.2 The VAXstatlon 4000 Model 60
The VAXstation 4000 Model 60 offers more expansion, flexibility, and capacity
than the VAXstation 3100 family. Complete one-box systems are available and
include the following:

• 852 Mbytes of internal mass storage (two RZ25 disks)

• A removable media device for up to 104 Mbytes of memory

• A choice of 5 monitors

• Both Thin Wire and thickwire Ethernet

• '!\vo asynchronous lines (one with modem control)

The VAXstation 4000 Model 60 also offers an optional single-width (50 Mbytes
per second) TURBOchannel bus slot that allows you to configure your system
with both Digital and third-party options.

The VAXstation 4000 Model 60 is designed for commercial environments
and technical applications such as CASE, MCAD, geoprocess engineering,
visualization, animation, and simulation.

Features of the VAXstatlon 4000 Model 60
The VAXstation 4000 Model 60 has these features:

• Offers 10.6 SPECmarks (12 VUPs)

• Supports memory capacity from 8 to 104 Mbytes

• Supports up to a total of seven SCSI devices, over 6.0 Gbytes of storage
with an internal storage capacity of 852 Mbytes

• Supports industry-standard SIMMs

• Supports synchronous SCSI speeds of up to 5 Mbytes per second

24-10 Realtime Hardware Product Families

• Includes accelerated 2D graphics (8-plane color, 4-plane grayscale, and
dual-monitor 8-plane color)

• Supports a number of grayscale and color monitors in a variety of sizes

• Enables' connections to industry-standard disks, tapes, and peripherals

• Comes equipped with Ethernet, one DEC423 serial line, and one RS232D
serial line with modem control.

24.4.2.3 The VAXstatlon 4000 Model 90
The VAXstation 4000 Model 90 is a high-performance Open VMS workstation
using the same 14-nanosecond CMOS NVAX chip set as the VAX. 6000 Model
600 datacenter system. The VAXstation 4000 Model 90 offers almost three
times the performance of the VAXstation 4000 Model 60.

VAXstation 4000 Model 90. software licenses include the VMS operating system
and Network Application Support - NAS 250 for VAXstations. Systems
ordered with a disk will have the base operating system, VMS V5.5-2 and
DECwindows Motif factory installed.

You can upgrade the VAXstation 4000 Model 60 to a Model 90. The basic
upgrade kit consists of a new CPU board with eight memory slots. Graphics
cards and monitors can be transferred from a Model 60 to an upgraded Model
90 system.

The VAXstation 4000 Model 90 includes the following:

• 852 Mbytes of internal mass storage

• A removable media device for up to 104 Mbytes of memory

• Both ThinWire and thickwire Ethernet

• Two asynchronous lines (one with modem control)

• Open VMS operating system, including compliance with PO SIX for
application portability and compatibility with industry-standard software
and applications

• Network Application Support (NAS) 250 for VAXstations

The VAXstation 4000 Model 90 also offers an optional single-width (50 Mbytes
per second) TURBOchannel bus slot that allows you to configure your system
with both Digital and third-party options.

The VAXstation 4000 Model 90 is designed for applications such as CAD/CAM.
ICAE, medical and other forms on imaging, econometrics, process control/CIM,
mapping, geophysical analysis, scientific visualization, and provides a level of
performance suited for the most computationally demanding applications.

Realtime Hardware Product Families 24-11

Features of the VAXstation 4000 Model 90
The VAXstation 4000 Model 90 has these features:

•
•

•

•
•
•
•
•
•
•

Offers 32.7 SPECmarks

Supports memory capacity (SIM?\.f technology) from 16 to 128 Mbytes (and
256 Kbytes of writeback cache)

Supports up to a total of seven SCSI devices, over 8.0 Gbytes of storage
with an internal storage capacity of 852 Mbytes

Supports i.ndustry-standard graphics protocols including PInGS and GKS

Supports synchronous SCSI speeds of up to 5 Mbytes per second

Includes accelerated 2D graphics (8-plane color and 8-plane grayscale)

Hardware support for double buffering and Z-buffering

Supports a number of grayscale and color monitors in a variety of sizes

Enables connections to industry-standard disks, tapes, and peripherals

Comes equipped with Ethernet, one DEC423 serial line, and one RS232D
serial line with modem control.

The VAXstation 4000 Model 90 can be enhanced with SPXg and SPXgt high­
resolution, 3D graphics accelerator options, enabling you to run graphics­
intensive applications.

24.4.3 The DECstation 5000 Family
Digital's MIPS-based DECstation 5000 family includes a full range of UNIX­
based desktop workstations. From top to bottom, all run the ULTRIX operating
system. The DECstation 5000 models 120 and 125 also support the DEC
OSF/1 operating system. The versatility of Digital's MIPS-based systems
makes them perfect for a variety of tasks, including client/server computing, or
high-performance 2D and 3D graphics.

Digital's little-endian data format is the same format used in more than
80 million personal computers, ensuring easy data interchange between
workstations, servers, and PCs.

This section describes the following:

• The Personal DECstation 5000 Series, Section 24.4.3.1

• The DECstation 5000 Model 133, Section 24.4.3.2

• The DECstation 5000 Model 240, Section 24.4.3.3

24-12 Realtime Hardware Product Families

All Digital MIPS-based systems support TCPIIP and OSI networking protocols.
DECstation 5000 and DECsystem 5900 systems support high-performance
FDDI networking, VMEbus, and TURBOchannel open 110 interconnect.
Network management is simplified with Digital's DECmcc software.

Table 24-2 Graphics Options for All DECstatlon 5000 Systems

Option

MX

HX

PXG ''furbo+

TX

Description

High-resolution monochrome graphics, ideal for CASE and technical
publishing applications

Color and greyscale 8-plane graphics with a smart frame buffer for
accelerated 2D graphics; ideal for entry-level design automation,
financial modeling, and presentation graphics applications

Double-buffered, high-resolution, 8- or 24-plane color; optional Z
buffer; 44-MHz Intel i860 graphics accelerator for fast 2D and 3D
geometric transformations; PixelStamp rendering chipset; ideal for
CAD/CAE/CAM, molecular modeling, seismic interpretation, and
true-color applications

Double-buffered, high-resolution, 96-plane true color; Z buffer; 44-
MHz Intel i860 geometry accelerator; PixelStamp chipset with two
scan-converter chips operating in parallel; ideal for high-performance
3D modeling, visualization, and animation applications

Graphics option specifically for DECvideo multimedia options;
contains a 24-bit true color frame buffer and an independent 8-bit,
color mapped frame buffer; the 24-bit frame buffer may display
realtime video from the DECvideolPIP card

The wide range of accelerated 2D and 3D graphical capabilities offered for
DECstations make them particularly well suited for applications involving
design automation (CAD, CAE, and CAM), molecular modeling, visual
simulation, and realtime animation.

To protect against technological obsolescence, the entire DECstation 5000
family uses a CPU daughter card design. By placing the CPU on a removable
daughter card, you can easily upgrade your system to higher performance
CPUs in the future.

Realtime Hardware Product Fam ilies 24-13

24.4.3.1 The Personal DECstatlon 5000 Series
The Personal DECstation 5000 Series workstations and servers are Digital's
low-end RISC systems. They offer an excellent combination of performance
and features at low entry prices. The Personal DECstation 5000 is available
in three models, the Personal DECstation 5000 Model· 20, 25, or 33. They
differ only in the speed of the CPU subsystem, and provide an upgrade path by
replacement of the CPU daughter card. All models will support an R4000 CPU
daughter card at a future date.

All Personal DECstations include on-board 8 MB memory and 1024 x 768,
8-plane graphics. Additional memory may be added up to a maximum of 40
MB and graphics performance may be further enhanced with the addition of
any TURBOchannel graphics option. The Personal DECstations are equipped
with an integral SCSI bus, Ethernet port, single RS232 serial port, and two
TURBOchannel expansion slots. A variety of options are available from Digital
or third parties for the TURBOchannel 110 interconnect, providing multimedia
capabilities, fiber-optic networking, and interfaces to other industry-standard
buses such as VME. The Personal DECstation is designed to provide a
high degree of expand ability and flexibility unmatched by other entry-level
workstations.

One of the most exciting trends in desktop applications is multimedia, the
capability to incorporate other media, such as audio and video, into your
applications. With the inclusion of voice-quality speaker and audio 110
(standard with each system), the Personal DECstation Series is designed
to give users the ability to develop and execute multimedia applications. Full
motion video is also available through the TURBOchannel-based DECvideo
option.

Features of the Personal DECstatlon 5000 Series
The Personal DECstation 5000 Series Models 20, 25, and 33 have these
features:

• Enable easy and economical CPU upgrade with the 3-inch by 5-inch
removable CPU daughter card (R4000 daughter cards will be available
for these systems at a future date.)

• Model 20: 16.3 SPECmark, 21.6 integer MIPS (Dhrystone), 2.4 MFLOPS
(double precision), and a clock speed of 20 MHz

• Model 25: 19.1 SPECmark, 26.7 integer MIPS (Dhrystone), 2.8 MFLOPS
(double precision), and a clock speed of 25 MHz

• Model 33: 26.5 SPECmark, 34.4 integer MIPS, 6.0 MFLOPS (double
precision), and a clock speed of 33 MHz

24-14 Realtime Hardware Product Families

• Use the R3000AIR3010 CPU/FPU chipset operating at 20 MHz (Model 20),
25 MHz (Model 25), and 33 MHz (Model 33)

• Support up to 40 Mbytes of 4-Mbit DRAM-based memory

• Support a maximum of 25.3 GB of combined internal and external storage

• Support 426 Mbytes internal storage and a 2.88 MB floppy drive

• Provide standard thick wire Ethernet support (two additional Ethernet
cards may be added), Thin Wire and twisted pair optional

• Provide high-performance, open TURBOchannel 110 interconnect (50
Mbytes per second) - complies with ANSI FDDI for interoperability in a
multivendor environment. '!\vo slots are available for options.

• Provide a 64-Kbyte data cache on the Models 20 and 25, and a 128-Kbyte
data cache on the Model 33

• All provide a 64-Kbyte instruction cache

• Provide one integral SCSI controller; two more may be added as
TURBOchannel options

• Each SCSI controller supports up to seven devices

•. Support standard network facilities - TCPIIP, NFS, and DECnet

• Allow for development of realtime applications using powerful UNIX CASE
tools

24.4.3.2 The DECstatlon 5000 Model 133
The DECstation 5000 Model 133 workstation is the mid-range of Digital's
UNIX-based, desktop family. The DECstation 5000 Model 133 combines high­
performance CPU, fast 110 bus, with a range of 2D and 3D graphics options.

The DECstation 5000/133 workstation is available as a complete workstation
or as an upgrade for existing DECstation 5000 Model 120 or 125 workstations.
The Model 133 has the memory expansion and internal disk storage capacity
generally found in more expensive workstations. With the new EX graphics
option, the Model 133 delivers excellent performance for any application
requiring fast 2D drawing speeds, such as ECAD and MCAD.

Realtime Hardware Product Families 24-15

Features of the DECstatlon 5000 Model 133
The DECstation 5000 Model133 has these features:

• Enable easy and economical CPU upgrade with the 3-inch by 5-inch (8-em
by 13-cm) removable CPU daughter card (R4000 daughter cards will be
available for these systems at a future date.)

• 26.5 SPECmark, 34.3 integer MIPS (Dhrystone), 6.0 MFLOPS (double
precision), and a clock speed of 33 MHz

• Use the R3000AIR3010 CPUIFPU chipset operating at 33 MHz

• Support 16 to 128 Mbytes of 4-Mbit DRAM-based memory

• Support up to 32 Mbytes of I-Mbit DRAM-based memory so you can use
memory from your DECstation 2100 or 3100 workstations

• Support up to 25.3 Gbytes of maximum internal and external storage

• Support up to 852 Mbytes of internal storage

• Provide standard thick wire 802.3lEthernet support (up to three additional
Ethernet cards may be added); ThinWire and twisted-pair are optional.

• Provide high-performance, open TURBOchannel I/O bus (50 Mbytes per
second) - complies with ANSI FDDI for interoperability in a multivendor
environment; three slots are available for options

• Support a 128-Kbyte data cache, 64-Kbyte instruction cache

• Provide one integral SCSI controller; three more may be added as
TURBOchannel options

• Each SCSI controller will support up to seven devices

• Support standard network facilities - TCPIIp, NFS, and DECnet

• Allow for development of realtime applications using the powerful UNIX
CASE tools

24.4.3.3 The DECstatlon 5000 Model 240
The DECstation 5000 Model 240 workstation is Digital's highest performance
MIPS-based workstation, designed for compute-intensive 2D and 3D graphics
applications. The DECstation 5000 Model 240 offers an unprecedented
combination of power and expandability plus a spectrum of accelerated 2D and
3D graphics. The DECstation 5000 Model 240 combines balanced performance,
a high-performance CPU, and superior graphics capabilities in a compact
desktop design.

24-16 Realtime Hardware Product Families

Features of the DECstation 5000 Model 240
The DECstation 5000 Model 240 has these features:

• Offers 32.4 SPECmark and 43 integer MIPS (Dhrystone) performance

• Use the R30001R3010 CPU/FPU chipset operating at 40 MHz

• Include TURBOchannel, an open, high-performance (100 Mbytes per
second) I/O channel to provide three option slots for extensive expansion

• Provide one integral SCSI controller; three more may be added as
TURBOchannel options

• Each SCSI controller will support up to seven devices

~ Support up to 480 Mbytes of ECC (Error Correcting Code) memory

• Support up to 28.98 Gbytes of storage

• Provide a high performance, open TURBOchannel I/O bus (100 Mbytes per
second) - complies with ANSI FDDI for interoperability in a multivendor
environment

• Provide standard ThickWire 802.3IEthernet support (up to three additional
Ethernet cards may be added). Thin Wire and twisted-pair are optional.

24.5 MicroVAX 3100 Realtime Workstations
The MicroVAX 3100 Models 30, 40, and 80 offer increased system performance
and expandability across a wide range of industry segments. These models are
designed around Digital's CMOS technology, use the industry-standard SCSI
bus for storage, and support communications options suited for distributed
processing. The simplified memory configurations allow for easy upgrades and
expandability.

The MicroVAX 3100 Models 30 and 40 uses the same System-On-A-Chip (SOC)
CPU used in the VAX 4000 Model 200. The Model 80 uses the same chip set
used in the VAX 6000 Model 500. The mid-range MicroVAX 3100 models offer
a competitive range of performance.

The enhanced communications options of the MicroVAX 3100 Models results
in higher performance. These options can be purchased separately or together,
offering greater scaleability, flexibility, and growth potential.

The MicroVAX 3100 Models are offered with industry-standard Single In­
Line Memory Modules (SIMM), which are easily accessible for upgrades and
maintenance.

Realtime Hardware Product Families 24-17

Features of the MlcroVAX 3100
The MicroVAX 3100 workstations have these features:

• Models 30 and 40 use the System-On-A-Chip (SOC) CPU which combines
the CPU, FPU, clock, and 6 Kbytes of cache on one chip.

• The Model SO CPU includes the CPU, FPU, clock, and 128 Kbytes of cache.

• VAX processor providing up to 5.0 VUPs (Model 30) or 10.0 VUPs (Model
SO) of processing throughput

• Up to two high-speed, 64 Kbytes per second, Wide Area Network (WAN)
connections for an extended choice of networking connectivity.

• S Mbytes of main memory, expandable up to 72 Mbytes (Model SO)

• Direct Memory Access (DMA) for faster I/O

• High-speed SCSI bus architecture

• Four asynchronous communication lines can be expanded up to 20 total
(Model SO)

• BA42A and BA42B enclosures

• Comes with factory-installed VMS software.

• Optionally comes with factory-installed NAS 300 software.

All models support both asynchronous and synchronous communications.
Optional VAX Wide Area Network (WAN) Device Drivers support various
industry-standard communications protocols, including Digital Data
Communications Message Protocol (DDCMP), High-Level Data Link Control
(HDLC), and Synchronous Data Link Control (SDLC).

24.6' rtVAX Realtime VAX Systems
The rtVAX system-level platforms are specially packaged members of the
VAX family, dedicated for use in realtime applications. rtVAX systems can be
configured as system building blocks, with no peripheral I/O hardware, or with
Ethernet, disk, and cartridge tape options. rtVAX systems include the rtVAX
3300, 3400, 4000 Model 200, 300, 500, and 600 which offer from 2.4 to 150 VAX
units of processing (VUPs). The high-end rtVAX 6000 systems offer computing
power from 2.S to 72 VUPs. The rtVAX 9000 systems offer computing power
up to 40 VUPS.

This section provides information about individual rtVAX system platforms or,
where applicable, related groups of platforms:

• rtVAX 3300/3305/3400 Realtime Systems, Section 24.6.1

24-18 Realtime Hardware Product Families

• rtVAX 4000 Family of Realtime Systems, Section 24.6.2

• rtVAX 6000 Family of Realtime Systems, Section 24.6.3

• rtVAX 9000 Model 110 and 310 Systems, Section 24.6.4

All rtVAX products come with a target license for VAXELN runtime operating
software, which optimizes the dedicated realtime systems for predictability and
fast response time. The VAXELN Toolkit, a set of tools for building efficient
realtime applications, is available as a layered product running under the
VMS operating system on a VAX development system. While a VMS system
running the VAXELN Toolkit is required for development of VAXELN rtVAX.
applications, a VMS, ULTRIX, or VAXELN system connected by Ethernet
can serve as the boot host in an rtVAX system configuration. (An application
can also be booted from disk or tape.) The VAXELN Toolkit includes the
DECwindows user interface, which is based on the industry standard X
Window System. (For more information about the VAXELN host-target
relationship, see Chapter 4; for more information on VAXELN DECwindows
support, see Chapter 7.)

Because realtime computing frequently occurs within a whole enterprise's
computer network, Digital's rtVAX products are built to participate in corporate
networks. Digital's interconnects can tie together your realtime systems, link
them to larger systems, and connect them to local area and wide area networks
(LANs and WANs). As a result, realtime data can be accessed and reported
from any location in the network that is designed to allow access. rtVAX
systems can include Ethernet, DECnet, and TCP/IP networking support, for
connection to the corporate network and distribution of applications and data
throughout the enterprise. (For more information about VAXELN networking
support, see Chapter 6.)

Table 24-3 lists the members of Digital's rtVAX. product family.

Table 24-3 rtVAX Products

Product VUPs' 1/0 Bus Enclosure Type

rtVAX 1000 0.9 Q22-bus BA23 (pedestal or rackmount)
H9642 (cabinet)

rtVAX3300 2.7 Q22-bus BA215 (pedestal or wallmount)

rtVAX3305 2.7 Q22-bus BA214 (rackmount)

lOne VUP equals the performance of a VAX-l1!780.

(continued on next page)

Realtime Hardware Product Families 24-19

Table 24-3 (Cont.) rtVAX Products

Product VUPs' 1/0 Bus Enclosure Type

rtVAX 3400 2.7 Q22-bus BA212 (rackmount)
BA213 (pedestal or rackmount)

rtVAX 4000 Model 200 5.0 Q22-bus BA215 (pedestal or wallmount)
BA430 (pedestal)
BA431 (rackmount)

rtVAX 4000 Model 300 8.0 Q22-bus BA440 (pedestal)
BA441 (rackmount)

rtVAX 4000 Model 400 16.0 Q22-bus BA440(pedestal)
BA441 (rackmount)

rtVAX 4000 Model 500 24.0 Q22-bus BA440(pedestal)
BA441 (rackmount)

rtVAX 4000 Model 600 32.0 to XMI BA440(pedestal)
150 BA441 (rackmount)

rtVAX 6000 Model 400 7 to 72 VAXBII VAX 6000 Series cabinet
XMI

rtVAX 6000 Model 500 13 to 72 VAXBII VAX 6000 Series cabinet
XMI

VAX 6000 Model 600 32 to VAXBII VAX 6000 Series cabinet
Systems 150 XMI

rtVAX 9000 Systems 40 XMII VAX 9000 Series cabinet
VAXBI

lOne VUP equals the performance of a VAX-ll.J780.

24.6.1 rtVAX 3300/3305/3400 Realtime Systems
The rtVAX 3300, rtVAX 3305, and rtVAX 3400 systems provide 2.7 times the
processing throughput of the entry-level rtVAX 1000. These systems feature
an integrated storage element (ISE) interface, Ethernet controller, and 4
Mbytes of ECC memory tightly integrated in a CMOS single-board processor
implementation. In addition to maximizing mass-storage throughput, this
allows the total bandwidth of the Q22-bus to be dedicated to application­
specific I/O.

The rtVAX 3300, rtVAX 3305, and rtVAX 3400 systems allow for development
of realtime applications using the powerful VMS CASE tools and the VAXELN
Toolkit in high-level languages.

24-20 Realtime Hardware Product Families

Features of the rtVAX 3300/3305/3400
The rtVAX 3300, 3305, and 3400 systems have these features:

• CM OS VAX processor, based on the KA640 processor board, providing up to
2.7 VUPs of processing throughput

• On-board 4 Mbytes of ECC memory, Ethernet controller, and Integrated
Storage Element (lSE) interface

• Flexible system configurations

• Main memory expandable up to 52 Mbytes

• Mass storage expandable up to 300 Mbytes (rtVAX 3300) or 1.2 Gbytes
(rtVAX 3400)

• Q22-bus architecture, allowing use of a wide range of 110 devices from
Digital and third-party suppliers

• VAXELN runtime target license included, with DECnet end-node and
TCPIIP networking functionality (no additional networking license
required)

The rtVAX 3300,3305, and 3400 systems have these enclosures:

• The rtVAX 3300 housing consists of a BA215 enclosure (pedestal or
wallmount), with a six-slot Q22-bus backplane, a power supply, up to
two optional 150-Mbyte RF30 disk drives, and a 296-Mbyte TK70 cartridge
tape drive.

• The rtVAX 3305 housing is configured in the small, diskless rackmount
BA214 enclosure. All of the Q22-bus options supported by the rtVAX
3300 and 3400 (except disk controllers) are supported in the rtVAX 3305.
Memory is expandable up to 52 Mbytes with up to three MS650-BA
memory units.

• The rtVAX 3400 housing is in the BA213 enclosure (pedestal or rackmount),
with 12 Q22-bus slots, two power supplies, up to three 400-Mbyte RF71
disk drives, and a 296-Mbyte TK70 cartridge tape drive. The system is also
available in a BA212 rackmount enclosure that requires only 14 inches of
rack space.

The rtVAX 3300 system makes an excellent distributed computing platform,
especially for process control, factory data collection, and machine automation.
The rtVAX 3305 system is traditionally used for data acquisition, monitoring,
analysis, testing, event control, simulation, and high-energy physics.

The rtVAX 3400 system is ideal for factory data collection, machine automation,
and distributed process platforms.

Realtime Hardware Product Families 24-21

24.6.2 rtVAX 4000 Family of Realtime Systems
The rtVAX 4000 Models 200, 300, 400, 500, and 600 are high-performance
realtime computing platforms. The rtVAX 4000 Model 200 through Model 600
are ideal for office, laboratory, or shop floor environments, and for running such
applications as flow process monitoring, flight simulation, power plant training
simulation, and medical imaging and diagnosis.

The rtVAX 4000 Model 400, 500, and 600 are follow-on models from the rtVAX
4000 Model 200 and 300. The newer models offer increased performance, an
advanced I/O subsystem, and high-availability. The older rtVAX 4000 models
are field upgradable to the newer models.

The configuration of the rtVAX4000 systems includes one or more integrated
Digital Storage System Interconnect (DSSI) disk adapters and an integrated
Ethernet adapter with direct memory access (DMA). The integrated system
module allows memory, Ethernet, and disk functions to bypass the I/O bus (a
Q2Z-bus), making the full Q2Z-bus bandwidth available for additional Digital
and third-party I/O options.

The rtVAX 4000 Model 200 can be ordered in pedestal, wallmount, and
rackmount configurations. The lower-cost small pedestal or wallmount
configuration includes the processor module, 8 Mbytes of memory, power
supply, four open Q2Z-bus slots, and four storage bays for DSSI mass-storage
devices. The BA430 pedestal and BA431 rackmount configurations include the
processor module, 16 Mbytes of memory, power supply, ten open Q22-bus slots,
and four mass-storage device bays.

The rtVAX 4000 Model 300 is housed in a BA440 pedestal or BA441 rackmount
enclosure, which includes the processor module, 32 Mbytes of memory, power
supply, seven open Q22-bus slots, and four storage bays for DSSI mass-storage
devices.

Features of the rtVAX 4000 Model 200 and 300
The rtVAX 4000 Model 200 and 300 systems have these features:

• CMOS VAX processor providing high-speed processing throughput up to 5.0
VUPs (Model 200) or 8.0 VUPs (Model 300)

• Main memory expandable up to 64 Mbytes (Model 200) or 128 Mbytes
(Model 300)

• CMOS Ethernet coprocessor, for direct connection to Ethernet (1 or 2
network adapters may be added on)

• Mass storage expandable up to 21 Gbytes (Model 200) or 28 Gbytes (Model
300)

24-22 Realtime Hardware Product Families

• DSSI bus adapter, supporting up to seven other DSSI devices, such as RF­
series mass storage controllers (total configurable capacity of DSSI devices,
21 for Model 200, 28 for Model 300)

• Q22-bus architecture, allowing use of a wide range of 110 devices from
Digital and third-party suppliers

• VAXELN runtime target license included, with DECnet end-node and
TCPIIP networking functionality (no additional networking license
required)

• Allows development of realtime applications using the powerful CASE tools
of VMS and the VAXELN Toolkit and in high-level languages (Ada, C,
FORTRAN, and Pascal)

• Optionally comes with factory-installed NAS 200, 300, or 400 software.

The key improvements of the more recent rtVAX 4000 models over the earlier
ones pertain to performance, improvements in cache and memory subsystem,
clock speed, additional communication or storage options, and improved chip
design.

Features of the rtVAX 4000 Models 400, 500, and 600
The rtVAX 4000 Models 400,500, and 600 systems have these features:

• Two CMOS-based VAX processors provide high-speed processing
throughput up to 16 VUPs (Model 400), 24 VUPs (Model 500), or 150
VUPs (Model 600)

• Main memory expandable up to 512 Mbytes

• A third processor drives the Ethernet controller, for direct connection to
Ethernet

• Mass storage expandable up to 56 Gbytes by using DSSI Integrated Storage
Elements (ISEs)

• Clock speed for the Model 600 is 12 nanoseconds (versus 14 nanoseconds in
earlier models)

• Two embedded DSSI bus adapters, supporting up to seven other DSSI
devices. Two KFQSA adaptors can be added to the Q-bus backplane,
making it possible to configure up to 28 DSSI devices.

• Q22-bus architecture, allowing use of a wide range of 110 devices from
Digital and third-party suppliers

• Model 600 uses an XM:I-based system interconnect, memory subsystems,
110 subsystems, networking, and communications technology.

Realtime Hardware Product Families 24-23

• VAXELN runtime target license included, with DECnet end-node and
TCPIIP networking functionality (no additional networking license
required)

• Allows development of realtime applications using the powerful CASE tools
of VMS and the VAXELN Toolkit and in high-level languages (Ada, C,
FORTRAN, and Pascal)

• Optionally comes with factory-installed NAS 200, 300, or 400 software.

24.6.3 rtVAX 6000 Family of Realtime Systems
rtVAX 6000 systems, based on the VAX 6000 Series multiprocessors, provide
an expandable set of midrange realtime systems in a single cabinet. Two sets
of models comprise the most recent rtVAX 6000 Series, the rtVAX 6000 Model
400 systems, and the rtVAX 6000 Model 500 systems. These models are the
follow-on products for the earlier rtVAX 6000 Models 200 and 300 and in the
future, can be upgraded with just a board swap.

rtVAX 6000 systems are·based on the XM] bus, while offering both XMI
and VAXBI busses for liD. The efficient multiprocessor architecture and
multiple-bus design of rtVAX 6000 systems speed up system throughput. The
VAXELN operating environment balances the load, ensuring that the extensive
processor, memory, and 110 resources are shared among multiple processes.

The rtVAX 6000 Model 400 Series offers from one to six VAX processors. The
model designations are Model 410, 420, 430, 440, 450, and 460, respectively.
As with the Model 200 and 300 Series, models with two or more processors run
under the VAXELN Toolkit's tightly coupled multiprocessing.

The rtVAX 6000 Model 500 Series offers from one to six VAX processors. The
model designations are Model 510, 520, 530, 540, 550, and 560, respectively. As
with the Model 200, 300, and 400 Series, models with two or more processors
run under the VAXELN Toolkit's tightly coupled multiprocessing.

Any rtVAX 6000 system also can participate in a closely coupled multiprocess­
ing configuration, in which one or more KABOO processor boards are connected
to the system's liD bus. Typically, the KABOO executes a VAXELN system
image whose purpose is to offload liD processing from the rtVAX 6000 system.

VAXELN applications can span multiple systems across an Ethernet local
area network (LAN), thus allowing an application to use the computing
resources of a number of realtime processors. Processes executing in parallel
on separate systems can exchange information rapidly across the Ethernet
using a VAXELN message-passing mechanism.

24-24 Realtime Hardware Product Families

Features of the rtVAX 6000
The rtVAX 6000 systems include these features:

• From one to six CMOS VAX processors, providing high-speed processing
throughput ranging from 2.8 VUPs (rtVAX 6000 Model 210) to 72 VUPs
(rtVAX 6000 Model 500)

• Integral floating point

• Main memory expandable to a maximum determined by the type and
number of processors (from 32 to 512 Mbytes), employing MS62 or MS65A
memory

• Up to six Ethernet controllers, for direct connection to Ethernet

• 296-Mbyte TK70 cartridge tape drive

• Mass storage expandable up to 58.2 Gbytes

• Modular components and efficient multiprocessor architecture, allowing
for easy, economical expansion within the same cabinet and rapid system
upgrades

• XMI bus available for native-mode 110, supporting devices such as the DEC
LANcontroller 400 (DEMNA) Ethernet controller

• Up to six VAXBI busses for 110, with 10 backplane slots per bus,
providing fast aggregate and single-device 110 rates, up to a maximum
110 throughput rate of 60 Mbytes per second

• Choice of XBIA or XBIA+ VAXBI bus adapters

• VAXELN runtime target license included, with DECnet end-node and
TCP/IP networking functionality (no additional networking license
required)

• Allows development of realtime applications using the powerful CASE tools
of VMS and the VAXELN Toolkit and in high-level languages (Ada, C,
FORTRAN, and Pascal)

24.6.4 rtVAX 9000 Model 110 and 310 Systems
The rtVAX 9000 system combines supercomputing performance with a
mainframe architecture to meet the needs of the high-performance realtime
user. Two models comprise the rtVAX 9000 Series: the rtVAX 9000 Model
110; and the rtVAX 9000 Model 310. A unique crossbar switch design, the
large capacity XMI bus structure and powerful CPU allow for truely balanced
system performance needed for the most demanding realtime applications,
such as space flight simulations, medical imaging, and strategic government

Realtime Hardware Product Families 24-25

and military programs. A powerful CPU gives the rtVAX 9000 the highest
single-stream performance of any Digital realtime system.

The 110 subsystem uses the XMI bus to support the corporate Backplane
Interconnect (BI), Network Interconnect (NI), and Digital Storage Architecture
(DSA) interconnect architectures through the use of the D"WMBB, DEMNA,
and KDM70 respectively. Both the rtVAX 9000 Models 110 and 310 come with
one XMI 110 bus standard, but the 310 can be expanded to two if more I/O
capacity is needed.

VAXELN supports all non-vector, single processor VAX 9000 systems with 128
or 256 Mbytes of memory.

Features of the rtVAX 9000
The rtVAX 9000 systems include these features:

• Single processor provides 40 VUPs of high-speed throughput

• Integral floating point

• Main Cache of 128 KB with 8 KB virtual instruction cache

• Up to two XMI ItO buses support devices such as, DEMNA Ethernet
adapters, KDM70 disk/tape controllers, and the VAXBI

• Includes one DEMNA Ethernet adapter, expandable to two

• Supports up to four KDM70 disk/tape controllers

• Supports up to four VAXBI channels

• Mass storage expandable to 48 Gbytes

• All systems include VAXELN runtime target license with DECnet end-node
and TCPIIP networking functionality

24.7 VAX and MIPS-Based Systems
This section covers server systems for VAX and MIPS-based systems.

This section describes the following:

• The DECsystem 5900 Server, Section 24.7.1

• VAX 6000 Systems, Section 24.7.2

24-26 Realtime Hardware Product Families

24.7.1 The OECsystem 5900 Server
The DECsystem 5900 is a UNIX-based RISe system supporting a wide range
of networking and storage options. The system is housed in a 67-inch cabinet
(19-inch rack-based) with five modular drawers for upgradability. At the same
time it protects your investment in Digital's storage options.

The DECsystem 5900 is the ideal server for data-intensive applications, large
UNIX-based workgroups, commercial applications needing high volumes of
storage, database systems, and as a software development CASE platform.
As a data server it offers superior backup, management, and a low cost per
user. The high-performance lIO minimizes bottlenecks and provides maximum
server productivity.

Features of the DECsystem 5900
The DECsystem 5900 has these features:

• Balanced performance through high-performance CPU, lIO, and memory

• Exceptional price/performance and application performance

• Includes Presto s erve , a high-performance file system accelerator, for use
with applications using synchronous writes; improves overall file system
performance by up to 300 percent; Prestoserve can be enabled and disabled

• 32.4 SPECmark rating, 42.9 integer MIPS (Dhrystone)

• Wide variety of peripheral support-SCSI, TURBOchannel, FDDI, VME,
802.3IEthemet, CI Interface, and third party peripherals through the
Digital TRlIADD Program

• Provides superior CPU performance through the MIPS R3000AIR3010A
CPUIFPU chipset operating at 40 MHz (upgradeable to a future R4000
CPU daughter card)

• 448 Mbytes ECC (Error Correcting Code) memory

• Maximum internal storage capacity-to 35 Gbytes (SCSI)

• 128 Kbytes system cache

• Network support-TCPIIP and NFS standard; DECnet-ULTRIX optional

DECsystem servers have superior productivity because every system balances
CPU power, high-speed memory, and high lIO to maximize server capabilities.
The Prestoserve accelerator delivers a significant performance increase in an
NFS environment.

Realtime Hardware Product Fam Hies 24-27

24.7.2 VAX 6000 Systems
The focus of the VAX 6000 systems is to provide datacenter solutions across a
wide range of applications.

VAX 6000 systems provide the superior, cost-effective, nondisruptive growth
required by datacenter customers. With the VAX 6000 Model 600, you can add
more processors, memory modules, Xl\U-based I/O adapters, optional VAXBI
connections, and battery backup for availability.

Any VAX 6000 system can be upgraded to any higher VAX 6000 system
through simple board swaps. VAX 6000 Model 600 is the follow-on product
to VAX 6000 Models 520 through 560. However, the vector processor option
is not available on the VAX 6000 Model 600 systems. Customers with the
VAX-llnxx and most VAX 8xxx series systems can also upgrade to the new
VAX 6000 Model 600.

Features of the VAX 6000 Model 600
The VAX 6000 Model 600 includes these features:

• Provides up to 150 VUPS

• Based on multiple high-speed DSSI channels, up to 96 Gbytes of RF73 local
storage can be supported

• Maximum physical storage 1,024 Mbytes

• Up to 83 transactions per second

• The optional XMI-to-VME transport system widens the choice of 110
expansion options

• VAX 6000 cabinet can house TF85 subsystem and up to 8 RF73 drives

• Open access for a wide range of I/O expansion options

• Volume shadowing technology provides site redundancy in a multi­
datacenter facility

• NAS 200, 300, and 400 deliver NAS through focused packages

24-28 Realtime Hardware Product Families

25
Realtime Options

This chapter presents realtime options available from Digital for the following
bus architectures:

• Q22-bus, Section25.1

• SCSI Bus, Section 25.2

• TURBOchannel Bus, Section 25.3

• VAXBI Bus, Section 25.4

• VMEbus, Section 25.5

In addition, two series of industrialized terminals offered by Digital are
described in Section 25.6. These terminals can be used in realtime industrial
settings.

For more detailed information and configuration guidelines, refer to the Digital
Systems and Options Catalog for Realtime and the Digital Systems and Options
Catalog.

25.1 Q22-bus Options
This section describes twelve Q22-bus options in alphabetical order:

• AAV11-C Digital-to-Analog Converter Module, Section 25.1.1

• AAV11-DA Digital-to-Analog Converter Module, Section 25.1.2

• ADQ32 Analog-to-Digital Converter Module, Section 25.1.3

• ADV11-C Analog-to-Digital Converter Module, Section 25.1.4

• ADV11-DA Analog-to-Digital Converter Module, Section 25.1.5

• AXV11 Analog InputJOutput Module, Section 25.1.6

• DECscan Products for BITBUS Interconnection, Section 25.1.7

• DRQ3B Parallel-Line Interface Module, Section 25.1.8

Realtime Options 25-1

• DRV1J and DRV11J Parallel-Line Interface Modules, Section 25.1.9

• DRV11-WA and DRV1W Parallel-Line Interface Modules, Section 25.1.10

• IEQ11-AB,AD,AF IECIIEEE-488 Bus Interface Modules, Section 25.1.11

• KWV11-C Programmable Realtime Clock Module, Section 25.1.12

• Universal Data Interface Panels, Section 25.1.13

25.1.1 AAV11-C Digital-to-Analog Converter Module
The AAV11-C is a dual-height, multichannel, analog output module designed to
interface analog instrumentation to Q22-bus-based MicroPDP-ll or MicroVAX
systems.

The AAV11 is supported by DEC Realtime Integrator.

AAV11-C Dlgltal-to-Analog Converter Module Features
The AAVII-C module includes:

• Four individually addressable digital-to-analog converter circuits

• 12-bit digital resolution

• Read/write, word, or byte-addressable registers

• Jumpers to permit selection of analog output voltage range for each register
and its operating mode (either unipolar or bipolar)

• Output voltage range selection ±10 V or 0 to 10 V

• 4-bit digital output for cathode-ray tube (CRT) to control signal intensity,
blank, unblank, and erase

AAV11-C Dlgltal-to-Analog Converter Module Use
The AAV11-C module is used in applications requiring a computer-generated
signal in the ±10 V range, such as acoustics, process control, and flight
simulation.

25.1.2 AAV11-DA Digital-to-Analog Converter Module
The AAV11-DA is a high-speed, direct memory access (DMA) digital-to-analog
converter designed to control experiments and analog instrumentation with the
Micro VAX II, VAXstation II, or any Q22-bus-based Digital system.

The AAV11 is supported by DEC Realtime Integrator.

25-2 Realtime Options

AAV11-DA Dlgltal-to-Analog Converter Module Features
The AAVII-DA module features:

• High-performance, DMA, analog output system with support for 22-bit
memory addressing and four-level interrupts

• Two independent, high-speed, 12-bit, digital-to-analog channels with Z-axis
control and ranges of ±10 V, ±5 V, and 0-10 V

• Data conversion with 12-bit resolution under programmed 110 or DMA
mode

• Two data conversion start schemes, two channel selection modes, and two
data conversion modes

• Four lines of digital output

• Continuous (no gap) output from disk, software drivers, and subroutines
available

• High aggregate data output rate in DMA mode of up to 200,000 values per
second in single-channel mode or 300,000 values per second in dual-channel
mode

AAV11-DA Dlgltal-to-Analog Converter Module Use
The AAVl1 module is used in realtime applications requiring high-speed signal
output or high-speed instrument control in the 10 V range, such as aerospace
research and testing, materials testing, structural analysis, speech processing,
physiological monitoring, and electronic testing.

25.1.3 ADQ32 Analog-to-Digital Converter Module
The ADQ32 is a high-speed, direct memory access (DMA) analog-to-digital
converter for Q22-bus systems.

ADQ32 Analog-to-Dlgltal Converter Module Features
The ADQ32 module features:

• 32 single-ended or 16 differential-input channels of input data converted to
12-bit digital ~ata

• Maximum (single-channel) throughput of 200 kHz

• Programmable gains of 1, 2, 4, and 8

• Programmable, single-ended, or differential operation per conversion

• Vernier digital-to-analog converters for programmable calibration of the
analog-to-digital converters

• On-board,. 512-word FIFO (first in/first out) to use the bus more effectively

Realtime Options 25-3

• On-board parameter list for random channel, gain, and single-ended or
differential~input selection

• On-board realtime clock that can provide a wide range of triggering modes

• Switch-selectable, four-level interrupts

• Pre- and post-stimulus triggering

• Continuous data collection through block mode DMA engine with dual
channels and buffer chaining

ADQ32 Analog-to-Dlgltal Converter Module Use
The ADQ32 module provides a range of sampling and triggering mechanisms
to meet the requirements of most research and laboratory applications. This
device can be used to interface transducers 'and laboratory instruments to the
computer. Designed for the efficient transfer of large blocks of data at high
speeds, the ADQ32 can be used in speech processing, electronic and material
testing, aerospace research, physiological monitoring, and vibrational analysis.

The ADQ32 is supported by DEC Realtime Integrator.

25.1.4 ADV11-C Analog-to-Digital Converter Module
The ADV11--C is a dual-height, analog-to-digital converter for Q22-bus­
compatible MicroPDP-11 and MicroVAX systems.

The ADV11 (without continuous DMA) is supported by DEC Realtime
Integrator. The ADV11 ,(continuous DMA) is supported by DEC Realtime
Integrator, but only through the LIO subroutine library calls.

ADV11-C Analog-to-Dlgltal Converter Module Features
The ADV11--C module features:

• 16 single-ended or 8 differential-input jumper-selectable analog input
channels

• 12-bit digital resolution

• Maximum throughput of 25,000 samples per second

• Software-programmable gain amplifier with gains of 1, 2, 4, and 8

• Initiation of data conversion by program start, realtime clock input, or
external trigger input

• Polled or interrupt-driven I/O

25-4 Realtime Options

ADV11-C Analog-to-Dlgltal Converter Module Use
The ADV11-C can be used in applications involving data acquisition of analog
signals in the range of 10 V and for interfacing analytical instruments such as
gas chromatographs to Q22-bus computers.

25.1.5 ADV11-DA Analog-to-Digital Converter Module
The ADV11-DA is a high-speed, direct memory access (DMA) analog-to-digital
converter designed to interface instrumentation to any Q22-bus-based
MicroPDP-11 and Micro VAX system.

The ADV11 (without continuous DMA) is supported by DEC Realtime
Integrator. The ADV11 (continuous DMA) is supported by DEC Realtime
Integrator, but only through the" LIO subroutine library calls.

ADV11-DA Analog-to-Dlgltal Converter Module Features
The ADV11-DA module features:

• 16 single-ended or 8 differential-input jumper-selectable input channels

• 12-bit digital resolution

• 50-kHz analog-to-digital converter

• Support for 22-bit memory addressing

• Support for four-level interrupts

• Data transfer by programmed I/O or DMA

• Two data-acquisition start schemes:

Software start

Realtime clock start

• Two channel-selection schemes:

Single channel

Automatic increment from specified start channel

• Two types of data conversions per start:

Single conversion per start

Multiple conversion per start

Realtime Options 25-5

ADV11-DA Analog-to-Dlgltal Converter Module Use
The ADV11 module can be used in realtime applications involving high-speed
instrument interfacing or signal acquisition. Applications that require
transferring large blocks of data at high speed will benefit from the device's
DMA capabilities, in such fields as aerospace research and testing, structural
analysis, speech processing, and electronics testing.

25.1.6 AXV11 Analog Input/Output Module
The AXV11 is a low-cost, high-performance, Q22-bus-compatible analog
input/output module for MicroPDP-11 or MicroVAX systems.

The AXV11 is supported by DEC Realtime Integrator, but oriIy through the
LIO subroutine library calls.

AXV11 Analog Input/Output Module Features
The AXV11 module has these features:

• 16 single-ended or 8 differential-input channels

• 12-bit digital resolution

• 25-kHz analog-to-digital converter, interrupt driven

• Two-channel, 12-bit, digital-to-analog converter, set under program control

• Software-programmable gains of 1, 2, 4, and 8

• Analog-to-digital conversions can be started by:

Software program

External trigger

Realtime clock

• Analog-to-digital conversion results can be received by:

Programmed 110 transfer

Servicing an interrupt request

• Output data notation in binary, offset binary, or two's complement format

AXV11 Analog Input/Output Module Use
The AXV11 can be used for data acquisition and output of analog signals in
the range of 10 V, in applications such as acoustics, process control, and flight
simulation.

The AXV11 can also interface analytical instruments such as gas chro­
matographs to Q22-bus systems.

25-6 Realtime Options

25.1.7 DECscan Products for BITBUS Interconnection
Digital's DECscan products provide realtime access to data from 110 devices
on the factory floor. Using Intel Corporation's BITBUS interconnect and
application software running on a Q22-bus-based VAX system, the DECscan
products allow communication to any BITBUS-compatible measurement and
control devices. The DECscan interconnect products suit a wide variety of
monitoring, control, and data-acquisition applications in many industries.

DECscan links measurement and control devices to a master control system
from as many as 250 slave nodes interconnected over a physically distributed
domain ranging from 30 meters to thousands of meters. The BITBUS uses
twisted-pair cable to send and receive data based on the RS-485 specification.
The communications protocol is a modified synchronous datalink control
(SDLC) protocol.

OECscan Product Features
The DECscan BITBUS interconnect products:

• Connect realtime interfaces and devices to Digital computers

• Provide a realtime data management subsystem

• Provide an open architecture that allows for system and application
expansion as needs grow

• Allow for scanning of 110 data for status information and responding in
realtime to alarm conditions, current 110 values, and external events

OECscan Product Use
The open architecture of the DECscan products and BITBUS let you tie
together 110 equipment from multiple vendors and connect this equipment
to a single MicroVAX or VAXstation host system. This flexibility makes
DECscan products ideal for many applications in both process and discrete
manufacturing.

You can set up monitoring and control activity (without any coding) in
applications such as factory floor monitoring and automation, product handling,
environmental control, and remote, high-speed data acquisition and control.

The DECscan products have three components, which are described in the
sections that follow:

• IBQ01 DECscan BITBUS Controller Module, Section 25.1.7.1

• QA-VCJAA DECscan Driver Package, Section 25.1.7.2

• QA-VCSAA VAX DECscan VMS Toolkit, Section 25.1.7.3

Realtime Options 25-7

25.1.7.1 IBQ01 DECscan BITBUS Controller Module
The IBQ01 DECscan BITBUS controller provides the hardware and firmware
support for a MicroVAX or VAXstation Q22-bus-to-BITBUS interface. The·
IBQ01 module is the master controller in a BITBUS system. It handles all
message transactions between the supervisory host system and the industrial
process I/O devices that are distributed along a BITBUS.

Operational control of slave nodes is based on a user-generated program that
can be written in any VMS-supported language such as FORTRAN, Macro, or
Pascal.

The IBQ01 controller supports transmission rates of:

• 2.4 Mbits per second (at 30 meters)

• 375 Khits per second (at 900 meters)

• 62.5 Khits per second (at 13,200 meters)

25.1.7.2 QA-VCJAA DECscan Driver Package
QA-VCJAA, the DECscan Driver Package, contains a standard VMS and
VAXELN driver interface to BITBUS compatible I/O devices.

25.1.7.3 QA-VCSAA VAX DECscan VMS Toolkit
QA-VCSAA, the VAX DECscan Toolkit:

• Allows for monitor and control of BITBUS I/O through simple menu
interaction

• Provides callable runtime routines for developing DECscan VMS industrial
applications

• Allows for data acquisition

• Allows for alarm detection with controlling actions and reporting

• Allows for action sets (sequence control)

• Allows for closed loop regulatory control

• Has I/O vendor routines to support both Honeywell Micro Switch and
Phoenix Contact BITBUS I/O devices

• Allows for generating and dynamically adding more I/O vendor support

• Includes a graphics interface between the DECscan Toolkit realtime I/O
database and the Data Views (DV-Draw and DV-Tools) industrial graphics
package sold by v.l. Corporation, Northhampton, MA

25-8 Realtime Options

25.1.8 DRQ38 Parallel-Line Interface Module
The DRQ3B is a high-performance, direct memory access (DMA), parallel,
Q22-bus I/O interface designed for realtime data collection or for high-speed
interprocessor communications between MicroVAX II systems.

The DRQ3B is supported by DEC Realtime Integrator.

ORQ38 Parallel-Line Interface Module Features
The DRQ3B interface module features:

• Quad-height module

• Two independent, unidirectional I/O channels

• I6-bit parallel data transfers (in and out)

• Single-cycle burst-mode and block-mode DMA or program-controlled
transfers

• 5I2-word FIFO (first in/first out) buffer on each channel

• 2.6 Mbytes per second maximum transfer rate

• Continuous data transfer capability

• Buffer chaining

ORQ38 Parallel-Line Interface Module Use
Typical applications of the DRQ3B interface module include high-speed
graphics display and imaging, data telemetry, simulation, structural and
performance testing, and seismic data collection.

25.1.9 DRV1J and DRV11J Parallel-Line Interface Modules
The DRVIJ and DRVI1J are general-purpose, I6-bit, parallel, programmable
I/O interfaces for realtime data collection. .

ORV1J and DRV11J Parallel-Line Interface Modules Features
The DRVIJ and DRVIIJ interface modules feature:

• Four 3-state I6-bit parallel ports

• User-assigned device addresses

• Accepts up to 16 external interrupt requests

• Programmable interrupt vector addresses

• Program-controlled I/O operations

• Programable operating modes (interrupt controller, priority, and vector
address modes)

Realtime Options 25-9

• Can drive up to 25 feet (7.6 meters) of shielded cable and 6 feet (1.8 meters)
of unshielded fiat or round cable

DRV1 J and DRV11 J Parallel-Line Interface Modules Use
The DRV1J and DRV11J interface modules can accept up to 16 external
interrupt requests, making them ideal in sensor I/O applications.

25.1.10 DRV11-WA and DRV1W Parallel-Line Interface Modules
The DRV11-WA and DRV1 Ware general-purpose, 16-bit, parallel, direct
memory access (DMA) interface units for Q22-bus systems.

The DRV11-W is supported by DEC Realtime Integrator, but only through the
LIO subroutine library calls.

DRV11-WA and DRV1W Parallel-Line Interface Modules Features
. The DRV11-WA and DRV1W interface modules feature:

• Dual-height module (DRV11-WA) or quad-height module (DRV1W)

• Backward-compatible with DRV11-B

• 16-bit, bidirectional, parallel I/O port

• Switch-selectable 18- or 22-bit addressing mode

• Switch-selectable device and vector addresses

• Burst mode, byte addressing, and read-modify-write operation support

• Data transfer rates up to 500 KB per second in single-cycle mode and up to
800 KB per second in burst mode

DRV11-WA and DRV1W DMA Parallel-Line Interface Modules Use
The DRVI1-WA and DRV1 W interface modules are useful for connecting to
high-speed user devices or an interprocessor communications link between
Q22-bus, VAX, or PDP-11 systems. In typical applications, the DRV11-WA
and DRV1 W interface with such hardware as high-speed graphics terminals,
data acquisition devices, and machine tool controls to the host processor.

25.1.11 IEQ11-AB,AD,AF IEC/IEEE-488 Bus Interface Modules
The IEQ11 is a direct memory access (DMA) controller that interfaces a
Q22-bus system and two independent instrument busses. The instrument
busses conform to both the European Standard IEC 625-1 and the United
States IEEE-488 Standard (1978).

The IEQ11 is supported by DEC Realtime Integrator.

25-10 Realtime Options

IEQ11-AB,AD,AF IEC/IEEE-488 Bus Interface Modules Features
The IEQll interface module features:

• One quad module to support two independent General-Purpose Interface
Busses (GPIBs)

• 100-kHz DMA transfer rate available for each GPIB

• Full IEEE-488 Standard (1978) interface support

• 14 devices supported plus the controller itself

• End or identify (EOI) byte count or matched characters data transfer
termination

• Ability to serve as a device interface between a MicroPDP-11 or MicroVAX
system and microprocessor-controlled instrumentation

IEQ11-AB,AD,AF IEC/IEEE-488 Bus Interface Modules Use
The IEQ11 module provides an interface to laboratory instrumentation devices,
such as programmable power supplies, signal generators, digital multimeters,
function generators, and spectrum analyzers.

25.1.12 KWV11-C Programmable Realtime Clock Module
The K\VV11-C is a programmable realtime clock module for Q22-bus­
compatible MicroPDP-11 and MicroVAX systems.

KWV11-C Programmable Realtime Clock Module Features
The K\VV1l-C clock module includes:

• Five internal base frequencies: 1 MHz, 100 kHz, 10 kHz, 1 kHz, and 100
Hz

• l6-bit clock divider

• 1 microsecond minimum time base

• Four operational modes

• Two Schmitt triggers (level and edge adjustable)

• Line frequency input from BEVNT bus signal (50/60 Hz)

• Ability to trigger the ADV11, the AAV11, and the AXVll-xx

KWV11-C Programmable Realtime Clock Module Use
Typical uses of the KWVII-C clock module include measuring'time intervals,
measuring frequency, counting events, triggering analog data collection,
triggering analog-to-digital or digital-to-analog converter modules, and
interrupting the CPU at predetermined intervals.

Realtime Options 2S-11

25.1.13 Universal Data Interface Panels
Universal data interface panels (UDIPs) are special termination panel
connections to laboratory instruments and transducers.

Each analog-to-digital, digital-to-analog, and realtime clock option has its
own special UDIP. The options mount into the UDIP-BA box, which holds
three single-width UDIPs or one single-width and one double-width UDIP. The
UDIP-BA can be mounted in three ways:

• Inside either or both of the top two disk bays of a BA123

• Inside the UDIP-TA tabletop expansion box

• In a pair (two UDIP-BAs) inside the UDIP-RA rackmount expansion box

25.2 SCSI Bus Options
For most of its VAXstation, DECstation, and DECsystem products, Digital
offers SCSI (Small Computer Systems Interface) disks and tapes. Digital's
RZ disk drive interface products conform to the SCSI-2 industry-standard
specification, which allows for high performance, high capacity, small form
factor, and fast, simple interface features.

A SCSI bus can interface with up to eight SCSI devices, seven of which can be
target devices.

25.2.1 IEZ11 SCSI-to-IEEE-488 Bus Converter Module
The IEZ11 Small Computer System Interface (SCSI) IEEE-488 bus converter
provides IEEE-488 General-Purpose Interface Bus (GPIB) monitoring and
control capabilities to VAXstation 3100 and MicroVAX 3100 systems. This
converter allows bidirectional communication between system SCSI ports and
IEEE-488 devices.

The IEZ11 bus converter is well suited for electronic test and measurement
applications, where low cost and high performance are critical selection
criteria.

DEC Realtime Integrator supports the IEZ11. DEC Realtime Integrator
manages all SCSI and IEEE-488 bus interactions, allowing the user to
communicate directly with the instruments. DEC Realtime Integrator for
ULTRIX includes the software driver and icon support for this option.

25-12 Realtime Options

IEZ11 SCSI-to-IEEE-488 Bus Converter Module Features
The IEZ11 converter module:

• Supports up to 14 IEEE-488 instruments per IEZ11 module

• Achieves a maximum data throughput rate of over 500 KB per second

• Provides all major IEEE-488 interface functions specified in the
IEEE-488.1 Standard

• Meets the ANSI X3T9.2 (SCSI-2) Standard

• Can connect up to four IEZ11 converter modules to a VAXstation 3100
or MicroVAX 3100 system, thus providing an interface to communication
networks

• Can modify IEQ11 application programs for use with the IEZ11 converter

• Consists of a SCSI-to-IEEE-488 converter module in a tabletop or
rackmount enclosure

• Is packaged with this software:

VMS system-based SCSI-class driver

Installation, test, and demonstration software (ITADS)

• Is supported by the DEC Realtime Integrator for VMS and ULTRIX

IEZ11 SCSI-to-IEEE-488 Bus Converter Module Use
The IEZ11 converter is used to monitor and control standard test instruments,
such as signal generators, voltmeters, programmable power supplies, transient
recorders, and network analyzers.

Also, the IEZ11 converter can be connected to IEEE-488-compatible
peripherals, such as plotters, printers, video terminals, disks, and tapes.

25.3 TURBOchannel Bus Options
TURBOchannel is an open, high-performance I/O interconnect designed by
Digital for desktop computers and servers. The TURBOchann~1 architecture
departs from previous bus architectures in that the TURBOchannel control
signals have a radial point-to-point topology. A TURBOchannel-based system
provides separate control lines for each of several peripheral slots, resulting in
high-bandwidth DMA block transfer, low-latency transactions, and simplified
option module design.

Realtime Options 2~13

TURBOchannel is a synchronous channel, transferring one 32-bit word of data
or protocol overhead in each cycle. TURBOchannel protocol supports either
DMA or I/O transactions. With DMA transactions, data is transferred directly
into buffers and system memory in block sizes determined by the option, up to
a system-defined maximum.

TURBOchannel I/O transactions transfer single words of data between CPU
registers and memory locations and may be used for data ,transfers by options
lacking DMA buffers and logic.

Digital made the TURBOchannel specifications available outside of Digital
to encourage the development of additional high-performance options for the
DECsystem and DECstation computers.

Today, more than 200 vendors offer, or are developing, TURBOchannel options.
TURBOchannel adapters, such as the TURBOchannel-to-VME adapter let you
connect to other interconnect devices.

This section features TURBOchannel adapters offered by Digital that can be~
used in realtime industrial settings:

• DWTVX and DWTVA TURBOchannel-to-VME Adapters, Section 25.3.1

• IET11 TURBOchannel-to-IEEE-488 Adapter, Section 25.3.2

25.3.1 DWTVX and DWTVA TURBOchannel-to-VME Adapters
TURBOchannel-to-VME adapter options provide the ability to interface various
standard and specialized independently supplied VMEbus ('Versa Module
Eurocard) devices to the VAXstation 4000 Models 60 and 90, DECstation,
DECsystem 5000 Series, and DEC system 5900 systems. The TURBOchannel­
to_ VME adapter makes systems suitable for a wider range of applications.
TURBOchannel-to-VME adapters conforms to ANSI IEEE 1014-1987 VMEbus
specifications and are compatible with over 4000 VMEbus compliant products.

TURBOchannel-to-VME adapters allow customers to expand the DECstation
500 Series with a variety of standard and specialized peripheral devices, which
makes the DECStation 5000 Series suitable for a wider range of applications.

The adapter consists of a two-board set (DWTVX) and optionally an expansion
card cage (DWTVA). One board is mounted in a single TURBOchannel slot; the
other requires a 6Ux160mm VMS slot in a VME card cage. These modules are
interconnected by a cable supplied with the modules. The software supported
is included with ULTRIXVersion 4.2 (or later) or DEC OSF/l. Byte ordering
is accommodated via programmable hardware circuitry to minimize impact on
performance.

25-14 Realtime Options

A bus is open to the extent that third parties claim it is open and commit to
port their products to it. Digital is actively working with VMEbus third party
companies to port their products to Digital systems. Industry standard third­
party option support is available. Also, Digital's TRIIADD Program provides
technical and marketing support worldwide to third-party vendors using the
SCSI, TURBOchannel, VME, ACCESSbus, and Futurebus+ interconnects to
develop products on open systems.

DWTVX and DWTVA TURBOchannel-to-VME Adapter Features
The TURBOchannel-to-VME adapter features:

• Programmable hardware

• Block Mode DMA Read of 21.0 Mbytes per second and DMA Write of 17
Mbytes per second

• Number of mapped pages in VME address space is 892

• Page size of 4096

• Total of 3.5 Mbytes

• Conformance to ANSI IEEE 1014-1987 VMEbus specifications

• Compatibility with over 4000 VMEbus-compliant products

• Available as a standalone module set or with VME expansion chassis

• Industry-standard, third-party option support

The TURBOchannel-to-VME option addresses the needs of technical OEMs,
Government prime contractors, aerospace companies, and others needing
specialized interface hardware to VAX and MIPS-based systems running
applications such as realtime, data acquisition, process control, and image­
processing applications. TURBOchannel expansion slots allow use of 3D,
true-color, and high-resolution graphics, live video, specialized networking
options (including FDDI networks), serial line expansion, and 110 options.

25.3.2 IET11 TURBOchannel-to-IEEE-488 Adapter
The IET11 is a combined hardware/software solution that includes the
TURBOchannel-to-IEEE-488 bus converter, ULTRIX-based driver software
and documentation. The software consists of a loadable multitasking device
driver and programs, which allows a DECstation 5000 workstation to act
as an IEEE-488 controller with complete communication and management
capabilities. In addition, the device driver is LIO-compliant; that is, the IET11
is supported by the latest version of the DEC Realtime Integrator software
platform. The software runs under ULTRIX, version 4.2 and compatability will
be maintained with future ULTRIX releases. '

Realtime Options 25-15

The IET11 TURBOchannel-to-IEEE-488 converter provides a high-performance
TURBOchannelllO connection with the IEEE-488 bus for realtime computing.
The IET11 provides IEEE-488 bus capabilities for the DECstation 5000 series
workstations. It connects instruments and measuring devices communicating
via the IEEE-488 bus to the TURBOchannel, Digital's integral 110 interconnect
for workstations.

The IET11 converter allows standardized, bi-directional communication
between the TURBOchannel and the widely used IEEE-488 bus, also known
as GPIB bus or IEC bus. It features all major IEEE-488 interface functions
specified in the IEEE-488.1 and IEEE-488 488.2 standard, and ensures data
transfer rates of 1 Mbytes per second for both read and write operations by
providing enhanced DMA transfer capability.

A DECstation 5000 workstation equipped with the IET11 converter is well
suited for instrument control applications where low-cost and high-performance
requirements are important selection criteria. These applications can be found
in research and development, service laboratories, education and government.
'J.Ypical applications include data acquisition, automatic test equipment, and
numerous graphic applications including digitizing analog video signals for
CAD/CAM, high-speed laser printers, and color scanners.

The IET11 provides full IEEE-488 interface functionality including, controller,
talker and extended talker, listener and extended listener, service request,
parallel poll, etc. It features high-speed data transfers with a sustainable
transfer data rate capability of 1 Mbyte per second for both read and write
operations.

DEC Realtime Integrator for ULTRIX supports the IET1l. The ULTRIX
device driver for the IET11 is only sold with the IET11 module. DEC Realtime
Integrator for ULTRIX, however, provides icon support for the IET11 module
through an interface layer between the IET11 driver and DEC Realtime
Integrator's generic IEEE-488 icon.

IET11 TURBOchannel-to-IEEE-488 Adapter Features
The TURBOchannel-to-IEEE-488 adapter features:

• Provides IEEE-488 capability to DECstation 5000 series workstations

• Low-cost, high-performance IEEE-488 bus converter which sustains
transfer rates of 1 Mbyte per second

• Installs in any single-width TURBOchannel slot

• Provides the highest attainable performance specified by the IEEE-488
standard

• Supports up to 14 IEEE-488 instruments or devices

25-16 Realtime Options

• Compliance with all revisions of the IEEE-488 standard, includ­
ing IEE~B8.2-1987 and Standard Commands for Programmable
Instrumentation

• Complete IEE~88 ControllerlTalkerlListener capability

• ULTRIX-based software driver including diagnostic software

• Supported by DEC Realtime Integrator software

25.4 VAXBI Bus Options
The following VAXBI bus options are described in this section:

• DRB32-M,W,E Parallel-Line Interface Modules, Section 25.4.1

• KABOO-M Processor Board, Section 25.4.2

• MS820-CA Memory Module, Section 25.4.3

25.4.1 DRB32-M,W,E Parallel-Line Interface Modules
The DRB32 is a high-speed, asynchronous, direct memory access· (DMA)
parallel interface to the VAXBI bus.

DRB32-M, W,E Parallel-Line Interface Modules Features
The DRB32 interface module features:

• 32-bit, half-duplex, bidirectional I/O path to transfer data to and from the
user device

• Two 8-bit unidirectional paths for control data

• Limitless data transfers provided by a dual register set

• DMA block-mode transfer rates up to 6.7 Mbytes per second

• Page tables supported so that buffers do not need to be physically
contiguous

• DR11 (16-bit) emulation mode available

• DRB32 VMS software included in one package

• Supported by VAXELN Toolkit, Version 3.1 or higher

The DRB32 is offered in three versions:

• DRB32-M Parallel-Line Interface Module, Section 25.4.1.1

• DRB32-W Parallel-Line Interface Module, Section 25.4.1.2

• DRB32-E Parallel-Line Interface Module, Section 25.4.1.3

Realtime Options 25-17

DRB32-M,W,E Parallel-Line Inter1ace Modules Use
The DRB32 parallel port is useful for realtime applications that collect data
and control realtime devices using parallel lines. For example, in closely
coupled symmetric multiprocessing configurations, VAXELN KA800 systems
can use DRB32 devices to communicate with user devices. VAXELN KA800
systems can directly control the DRB32 parallel port for high interrupt
response time.

25.4.1.1 DRB32-M Parallel-Line Inter1ace Module
The DRB32-M is the VAXBI bus parallel interface. The DRB32 connects to a
user device within the same cabinet system as the VAXBI system.

25.4.1.2 DRB32-W Parallel-Line Inter1ace Module
The DRB32-W is the module with a subset of DRI1-W functionality (providing
a UNIBUS migration path to the VAXBI bus) plus DRB32-M. The DRB32-W
connects to a user device within the same cabinet system as the VAXBI system.

25.4.1.3 DRB32-E Parallel-Line Interface Module
The DRB32-E is the long-line module plus DRB32-M. The DRB32-E connects
to a user device or another DRB32-E up to 40 feet outside the system cabinet.

25.4.2 KASOO-M Processor Board
The KA800 is a MicroVAX II class processor board in a VAXBI form factor,
which you connect to the VAXBI bus of a VAX 6000 or 8000 system. The KA800
runs VAXELN software and serves as a secondary procesSor, typically dedicated
to I/O handling tasks, in a closely coupled multiprocessor configuration.

KA800-M Processor Board Features
The KA80a module has these features:

• MicroVAX II-based CPU

• 1 Mbyte of on-board memory

• Private memory interconnect (PMI), used for all instruction fetches and
references to local data .

• Ability to access all physical address space available on the VAXBI bus to
which it is connected, including both memory space and I/O space

• A slave port that gives other processors and I/O devices on the VAXBI bus
access to its local memory

25-18 Realtime Options

• Useable in any system with a VAXBI bus, including VAX 6000 systems,
VAX 8200, VAX 8250, VAX 8300, VAX 8350,1 VAX 8500, VAX 8530,
VAX 8550, VAX 8700, and VAX 8800

KA80O-M Processor Board Use
The KA800 module is used as a secondary processor in closely coupled
symmetric VAX multiprocessor configurations. The KA800 processor may be
dedicated to the control of critical, realtime devices to deliver optimal system
response. The VAX 6000 or 8000 system in which the KA800 is installed-the
primary system-may itself run either VMS or VAXELN. The KA800 does not
support VMS locally.

25.4.3 MS820-CA Memory Module
The MS820 is a 16-Mbyte, dynamic random access memory (DRAM) high-speed
memory module.

MS820-CA Memory Module Features
The MS820 module has these features:

• 16-Mbyte, DRAM high-speed memory module

.• Useable in any system with a VAXBI bus, including VAX 6000 systems,
VAX 8200, VAX 8250, VAX 8300, VAX 8350, VAX 8500, VAX 8530,
VAX 8550, VAX 8700, and VAX 8800

• Public accessibility over the VAXBI bus

25.5 XMI-to-VMEbus Option
VMEbus is an industry-standard, high-performance, open 110 interconnect.
VME is currently the most popular industry standard bus with more options
than any other bus, and is well understood by systems and peripherals
vendors. In an open systems environment, the XMI-to-VME option provides a
transport from realtime, laboratory, and data-acquisition devices to a VAX 6000
datacenter system or server.

The VAX 6000 VME Adapter option is the interface between the XMI system
bus of the VAX 6000 Models 200, 300, 400, 500, and 600 systems and the
VMEbus. You can use this option to interface with any of the commercially
available VMS add-in or custom modules.

1 The VAX 8350 and KA800 configuration is supported only with VAXELN running on
the VAX 8350 (primary) system, not with VMS.

Realtime Options 25-19

The VMS operating system provides for the third party support with VMS
device driver subroutines that allow you to write VME device drivers under
supported systems. Both programmed I/O (PIO) and direct memory access
(DMA) support routines are included. Setup, device interrupt routines, and
"byte swapping" routines are includes for additional compatibility.

XMI-to-VMEbus Option Features
The XMI-to-VMEbus Option has these features:

• Supported on all VAX 6000 models

• Byte-swapping modes include: byte, word, longword, and no swap

• DMA support increases performance

25.6 Industrial Terminals
Digital offers a family of industrialized products that provide tolerance for
manufacturing environments: heavy- to light-industrial, rugged hardware
including terminals, keyboards, processors, air-conditioned computer cabinets,
application software, and analog and digital I/O interfaces.

This section features two series of industrialized terminals (and accompanying
keyboard options) offered by Digital that can be used in realtime industrial
settings:

• IT330 and IT340 Industrial Terminals, Section 25.6.1

• VT33N and VT34N Industrial Terminals, Section 25.6.2

Additional product and configuration information can be found in the Digital
Systems and Options Catalog for Realtime.

25.6.1 IT330 and IT340 Industrial Terminals
The IT330 and IT340 are Digital's industrialized terminals for use in heavy­
industrial environments. Housed in sturdy, NEMA-12, cast-aluminum
enclosures, these terminals give all the features and capabilities of the VT330
and VT340 terminals out on the factory floor. They have twice the resolution of
the VT240 and VT241 terminals, and their graphics capabilities are up to five
times faster.

25-20 Realtime Options

IT330 and IT340 Industrial Terminal· Features
The IT330 and IT340 industrial terminals feature:

• VT3301VT340 terminal functionality

• Tough, sealed, NEMA-12 enclosures to protect the terminals from vibration
or rough handling, and a high-impact shield to protect the monitors against
breakage

• Unique, passive-cooling design that lets the terminals withstand higher
operating temperatures than ordinary office terminals

• IT3nn-AA membrane keyboard and IT3nn-AB tactile keyboard, also sealed
to NEMA-12 standards, available for both the IT330 and IT340

• Optional tilt/swivel base and NEMA-12 wallmount and rackmount kits
available for both IT330 and IT340 terminals and IT3nn keyboards

IT330 and IT340 Industrial Terminal Use
The IT330 and IT340 industrial terminals are ideal general-purpose terminals
for inventory management and factory data collection on the shop floor.
Because these terminals are sealed to the NEMA-12 industrial standard,
they can operate in any harsh environment where dirt, airborne particles,
and other noncorrosive liquids and leaking oil or coolants would damage an
unprotected terminal or might cause traditional keyboards to stick and fail.

25.6.2 VT33N and VT34N Industrial Terminals
The VTN series of industrial terminals features Digital's VT330 and VT340
terminals packaged in NEMA-2 enclosures for light-industrial areas.

VT33N and VT34N Industrial Terminal Features
The VT33N and VT34N industrial terminals feature:

• Conformance to the NEMA-2 standard to provide protection from falling
dirt and splashing, noncorrosive liquids while the rugged enclosures protect
from rough handling.

• Optional LK207 compact keyboard. The LK207 can be rackmounted and
is compatible with the LK201 standard keyboard for Digital's VT330 and
VT340 terminals.

• For VTN series tabletop terminals, an optional keyboard garage. The VTN
series terminal sits on the keyboard garage.

• Optional highly rugged keyboards (IT3nn-AA and IT3nn-AB) compatible
with the VTN terminals. These may be ordered with the VTN series
terminal alone.

Realtime Options 25-21

• Optional rackmount kit that allows the VTN terminals to be mounted in
industry-standard, 19-inch racks or cabinets. Alternatively, they can sit on
a tabletop.

VT33N and VT34N Industrial Terminal Use
The VTN terminals are designed to operate in light-industrial environments
where office-grade eqwpment would fail. These terminals can be located
next to an assembly area, manufacturing process, or loading dock to provide
convenient graphics capability.

25-22 Realtime Options

A
Associated Documents

Appendix A lists supplementary readings on the products described in this
technical summary. These associated documents have been grouped by product
or functional category as follows:

• CASE tools

• DEC Ada, VAX. Ada, and VAXELN Ada

• DECelx Toolkit

• DECmessageQ

• DEC OSF/l realtime kernel

• DEC Realtime Integrator

• rtVAX. 300 realtime processor board

• VAXELN Toolkit

• VAXELN Window Server (EWS)

• VMS POSIX

• XDAda

• Additional documents

CASE Tools
Additional discussion on VMS and ULTRIX CASE tools is presented in the
following manuals:

• The Digital COHESION Environment for CASE. A survey of Digital VMS
and ULTRIX CASE tool offerings and associated computing environments.
Some popular third-party CASE tools are also described.

• Using DECset in the DEC COHESION Environment. A tutorial for using
DECset tools in the COHESION environment. This manual supersedes
Using VAXset.

Associated Documents A-1

• DEC FUSE Handbook. A description of the FUSE software as used for
software development; analysis, and maintenance of application programs.

• DEC FUSE EnCASE Manual. A tutorial for integrating tools into the DEC
FUSE environment.

DEC Ada, VAX Ada, and VAXELN Ada
The following manuals document the VAX Ada and VAXELN Ada products:

• Developing Ada Programs on VMS Systems. A description of how to use
the VAX Ada compiler, program library manager, and VAX Debugger to
compile, link, run, and debug VAX Ada programs. This book also describes
how to set up and maintain program libraries and how to use the Ada
language-specific features of optional tools such as the VAX Language­
Sensitive Editor and VAX Source Code Analyzer.

• Reference Manual for the Ada Programming Language. A presentation of
the full text of the Ada standard, ANSII.MIL-STD-1815A-1983, as specified
by the U.S. Government's Ada Joint Program Office.

• VAX Ada and VAXELN Ada Technical Summary. A technical summary
of the VAX Ada and VAXELN Ada products. Topics covered include
the VAX Ada and VAXELN Ada application development environments,
execution environments, and VAX Ada· compiler performance and capacity
(on the host) and generated target code performance.

• VAX Ada Language Reference Manual. A presentation of the full text of
the Ada standard, ANSIIMIL-STD-1815A-1983, as specified by the U.S.
Government's Ada Joint Program Office, together with VAX Ada language­
specific supplements. (Insertions and additions are printed in a different
color.)

• VAX Ada Runtime Reference Manual. A collection of system-related
material on topics such as VAX Ada storage allocation and object
representations. This book also explains how to use VMS operating system
components external to the language (for example, VMS system services).
Furthermore, it explains how to use VMS operating system-related Ada
features (such as multitasking and input/output) and how to call code
written in other VAX languages from an Ada program.

• VAX Ada Installation Guide. Step-by-step instructions for installing the
VAX Ada product, including information and recommendations on resource
requirements.

A-2 Associated Documents

• VAXELN Ada User's Manual. A description of the VAXELN Ada product
features. This book also explains how to compile, link, build, execute, and
debug VAXELN Ada applications. Furthennore, it describes the differences
between the VAXELN Ada and VAX Ada products.

• VAXELN Ada Installation Guide. Step-by-step instructions for installing
the VAXELN Ada product.

The following manuals document the DEC Ada on ULTRIX systems:

• Developing Ada Programs on ULTRIX Systems. A description of how
to use the DEC Ada compiler, program library manager, and VAX dbx
debugger to compile, link, run, and debug DEC Ada programs. This book
also describes how to set up and maintain program libraries and how to
use the Ada language-specific features of optional tools such as the DEC
Language-Sensitive Editor and DEC Source Code Analyzer.

• DEC Ada Language Reference Manual. A presentation of the full text
of the Ada standard, ANSIIMIL-STD-1815A-1983, as specified by the
U.S. Government's Ada Joint Program Office, together with DEC Ada
language-specific supplements.

• Run-Time Reference Manual for ULTRIX Systems. A collection of system­
related material on topics such as DEC Ada storage allocation and object
representations. This book also explains how to use ULTRIX operating
system components external to the language.

• DEC Ada Installation Guide for ULTRIX Systems. Step-by-step
instructions for installing the DEC Ada product, including information
and recommendations on resource requirements.

DECelx Toolkit
The following manuals further detail the DECelx product:

• Introduction to DECelx. A brief overview of the DECelx Realtime Tools
for ULTRIX product and DECelx development environment for realtime
applications.

• DECelx Reference Manual. A description of the functions provided in the
DECelx callable interface, including the PO SIX functions.

• DECelx Programming Guide. A description of the components of the
DECelx system and how these components interrelate.

• Hardware Supplements. These supplements to the DECelx Reference
Manual provide reference infonnation for coding DECelx. routine calls
that are specific to the processor. There is one supplement for each of the
supported processors.

Associated Documents A-3

• DECelx Guide to ElxGDB. There is one guide for each of the architectures
supported by DECelx. This guide describes ElxGdb, the source-level
debugger for debugging DECelx applications.

• DECelx Guide to the GNU Toolkit. This guide describes the customized
versions of the GNU C compiler, assembler, loader, and object-file utilities
for cross-development to Motorola processors (68K architecture).

• DECelx Board Support Porting Guide. This guide describes the how to port
DECelx board support to an otherwise unsupported 680nO or R3000-based
target pIa tfonn.

OECmessageQ
For descriptions of using the DECmessageQ software, refer to the following
manuals:

• DECmessageQ Introduction to Messaging. A description of how
DECmessageQ interprocess message queuing software integrates
distributed applications in a multivendor environment.

• DECmessageQ Guide to Application Integration. An explanation of how to
integrate distributed applications using DECmessageQ software.

• DECmessageQ Programmer's Reference. Reference material for program­
mers who use the DECmessageQ application programming interface.

• DECmessageQ Management and Configuration Guides. Provide task- ,
oriented infonnation for DECmessageQ system managers and explains how
to configure and troubleshoot DECmessageQ software.

• DECmessageQ Installation Guides. Instructions for installing DECmessageQ.

DEC OSF/1 Realtime Kernel
To enhance your understanding of the developing realtime applications using
the DEC OSF/l operating system, refer to these manuals:

• DEC OSF /1 Guide to Realtime Programming. A description of how to use
PI003.41D11 functions in combination with other DEC OSF/l system and
library functions to write realtime applications.

• DEC OSF /1 Programmer's Guide. A description of the programming
environment for the DEC OSF/l operating system with an emphasis on the
C programming language. This manual covers program development,
shared libraries, build and debugging programs, and improving
performance.

A-4 Associated Documents

• DEC OSF /1 Guide to Programming Support Tools. A description of
commands and utilities in the DEC OSF/l system, including facilities for
text manipulation, macro and program generation, source file management,
and software kit installation and creation.

DEC Realtime Integrator
For descriptions of using the DEC Realtime Integrator software for application
development, refer to the following manuals:

• DEC Realtime Integrator leon Developer's Guide. A guide to developing
icons for use in DEC RT Integrator applications.

• DEC Realtime Integrator Installation Guide. A guide to installing the DEC
RT Integrator Development Kit and Runtime Kit on RISC ULTRIX and
VMS systems.

• DEC Realtime Integrator Application Developer's Guide. A guide to
developing and running applications with the DEC RT Integrator graphical
user interface.

For descriptions of using only the DEC Realtime Integrator graphical user
interface, refer to the following manuals: .

• Getting Started with the DEC RT Integrator Subroutine Libraries. A
description of the subroutine library components of the product.

• DEC RT Integrator Laboratory Graphics Package (LPG) Reference Manual.
A reference manual describing how to plot realtime data or data produced
by calculations in two dimensions, three dimensions, and 2-dimensional
contours from a 3-dimensional view.

• DEC RT Integrator Laboratory Input/Output (LIO) Reference Manual for
ULTRIX. A reference manual describing how to initiate, control, process,
and terminate I/O to and from I/O devices under the ULTRIX operating
system.

• DEC RT Integrator Laboratory Input / Output (LIO) Reference Manual for
VMS. A reference manual describing how to initiate, control, process, and
terminate I/O to and from I/O devices under the VMS operating system.

• DEC RT Integrator Laboratory Signal Processing (LSP) Reference Manual
for VMS. A reference manual describing how to use the signal-processing
routines to perform Fourier transforms, correlation functions, and data
filtering.

Associated Documents A-5

rtVAX 300 Realtime Processor Board
The next manuals further discuss the rtVAX 300 realtime processor board:

• rtVAX 300 Hardware User's Guide. A collection of rtVAX 300 technical and
physical specifications and details necessary for configuring this processor
into a host and target configuration. Specifically, this guide describes the
following interfaces: memory system, console and boot ROM, network
interconnect, and I/O device.

• rtVAX 300 Programmer's Guide. A g,nde to writing device drivers that
interface the rtVAX 300 processor with realtime devices.

• VAXELN rtVAX 300 Supplement. A description of the steps that may
be required to tailor the VAXELN kernel image to run in a specialized
rtVAX 300 target system configuration. Such tailoring is performed only
when the VAXELN Toolkit's basic support for an rtVAX 300 target and
associated integral-bus devices must be augmented, for example, to support
an external I/O bus and associated devices not supported by the VAXELN
Toolkit.

VAXELN Toolkit
The following manuals in the VAXELN documentation set will enhance your
understanding of the VAXELN Toolkit:

• Introduction to VAXELN. A manual that surveys the features of the
VAXELN Toolkit, introduces VAXELN concepts and practices, and
illustrates the design, coding, building, and running of a sample VAXELN
application.

• VAXELN Ada Programming Guide. A guide to using the VAX Ada
language to program VAXELN applications. This guide explains how
to develop and debug VAXELN Ada application programs. The guide
also discusses I/O, tasking, VAXELN data types, the creation of routine
bindings, device handling, and exception handling.

• VAXELN Application Design Guide. A guide that uses sample VAXELN
applications to illustrate VAXELN application design issues, such as the
use of asynchronous 110, multiple-cicuit servers, and device drivers.

• VAXELN C Programming Guide. A guide to using the VAX C language
to program VAXELN applications. This guide explains how to develop
VAXELN C application programs. The guide also discusses the C interface
to the VAXELN kernel, 110, device handling, and exception handling.
Descriptions of C runtime library functions and macros are also included.

A-6 Associated Documents

• VAXELN Device Drivers Guide. A guide to using the VAXELN Toolkit
device drivers. This guide discusses the Ethernet, disk, tape, printer,
tenninal, Small Computer System Interface (SCSI), and realtime device
drivers that are supplied in the toolkit. The guide also explains how to use
the programming interfaces that are available for some of these drivers.

• VAXELN Device Drivers Reference Manual. A reference manual that
describes VAXELN device driver interface routines. Routine.descriptions
include an overview, language-specific format information, argument
descriptions, and status values. .

• VAXELN File, Network, and Security Services Guide. A guide to using the
VAXELN Toolkit file, network, and security services. This guide discusses
and explains how to use the programming interfaces for the File Service,
EthernetlIEEE 802 Datagram Service, DECnet Service, Internet Services,
Local Area Tenninal (LAT) Host Services, and Authorization Service.

$ VAXELN File, Network, and Security Services Reference Manual. A
reference manual that describes VAXELN file, network, and security
service interface routines. Routine descriptions include an overview,
language-specific format information, argument descriptions, and status
values.

• VAXELN FORTRAN Programming Guide. A guide to using the
VAX. FORTRAN language to program VAXELN applications. This guide
explains how to develop VAXELN FORTRAN application programs. The
guide also discusses programming considerations, device handling, and
exception handling.

• VAXELN Guide to DECwindows. A guide to programming and building
dedicated, realtime applications that integrate VAXELN and DECwindows
software. This guide provides a VAXELN DECwindows overview and
explains how to build the VAX.ELN DECwindows Server into VAXELN
applications, program VAXELN DECwindows applications, and use
VAXELN DECwindows user environment components. The guide also
walks you through the development of a sample VAXELN DECwindows
application. You use this guide as a supplement to the VMS DECwindows
documentation.

• VAXELN Guide to Using POSIX. A guide to programming VAXELN
POSIX applications. This guide explains how to develop VAX.ELN PO SIX
application programs and discusses issues concerning the use of POSIX
functions in VAXELN application programs. The guide also explains how to
use process primitives, the process environment, 110 primitives, device and
class-specific fWlctions, the system database, binary semaphores, clocks,

Associated Documents A-7

and timers. Memory usage, priority scheduling, and message passing are
also discussed.

• VAXELN .KAV30 Programming Guide. A guide that describes the KAV30
software and hardware and how to develop realtime applications for the
~V30 using the VAXELN Toolkit software.

• VAXELN Messages Manual. A reference manual that describes the
messages produced by the VAXELN Toolkit system development and
runtime software. Each description includes an explanation and, where
applicable, a suggested recovery procedure:

• VAXELN Pascal Programming Guide. A guide to using the VAXELN Pascal
language to program VAXELN applications. This guide describes the
VAXELN Pascal program structure and the language components,
which include declarations, data types, constants, variables, expressions
and operators, statements, procedures and functions, and predefined
routines. The guide explains how to use language-defined elements for
queues and exception handling. The guide also explains how to develop
VAXELN Pascal programs, including how to use the VAXELN Pascal
compiler.

• VAXELN POSIX Callable Interface Reference Manual. A reference manual
that describes the functions provided by the VAXELN POSIX callable
interface. Function descriptions include an overview, declaration formats,
argument descriptions, and status values.

• POSIX Conformance Information for VAXELN (Std 1003.1). A manual
that discusses details of the VAXELN implementation of the IEEE
1003.1-1990 standard (POSIX.l). This information includes limit values,
implementation defined features, and features ofVAXELN POSIX that do
not conform to the POSIX.l standard.

• POSIX Conformance Information Concerning Draft 11 of PI003.4.
A manual that discusses details of the VAXELN implementation of
POSIXA Draft 11 (POSIX.4IDll). This information includes limit values,
implementation defined features, and features of VAXELN POSIX that do
not comply with POSIX.4IDl1.

• VAXELN POSIX Information Concerning Draft 4 of PI003.4a. A manual
that discusses details of the VAXELN implementation of POSIX.4a Draft
4 (POSIX.4a/D4). This information includes limit values, implementation
defined features, and features of VAXELN POSIX threads that do not
comply with POSIXAalD4.

A-8 Associated Documents

• VAXELN Quick Reference. A document that summarizes components of
the VAXELN Toolkit and serves as a convenient, fast reference tool as you
program and develop VAXELN applications. This reference document lists
language-specific formats for the VAXELN kernel and utility routines and
summarizes commands, qualifiers, and other information pertaining to
program development and the use ofVAXELN Toolkit utilities.

• VAXELN Release Notes. A document that discusses release-specific
enhancements, corrections, restrictions, and documentation errors and
omissions. This document also provides VAXELN performance data.

• VAXELN System Development Guide. A guide that explains how to develop
a VAXELN system image. This guide. explains how to build program
images, build a system image, and load and boot the system image on
target processors.

• VAXELN System Services Guide. A guide to using the VAXELN Toolkit
system services. This guide describes VAXELN kernel objects and data
structures. The guide also explains how to use those objects and structures
with VAXELN kernel and utility routines to manage jobs, processes, and
memory; synchronize process execution; program communication between
processes and jobs; and handle device interrupts and exceptions.

• VAXELN System Services Reference Manual. A reference manual that
describes VAXELN system service routines. The system service routines
include kernel routines, kernel-related utility routines, VAX instruction
routines, and other general-purpose routines for VAXELN programming.
The routine descriptions include an overview, language-specific format
information, argument descriptions, and status values.

• VAXELN Utilities Guide. A guide that discusses the VAXELN utlities. This
guide explains how to use and describes the commands for the debugger,
Performance Utility, Display Utility, Command Language, LAT Control
Program, outbound Remote Terminal Utility, and Error Logging Services.

These manuals are not part of the VAXELN documentation set and can be
ordered separately:

• VAXELN Internals and Data Structures. A description of the internal data
structures and operations of the VAXELN kernel.

• VAXELN rtVAX 300 Supplement. A description of the steps that may
be required to tailor the VAXELN kernel image to run in a specialized
rtVAX. 300 target system configuration. Such tailoring is performed only
when the VAXELN Toolkit's basic support for an rtVAX 300 target and
associated integral-bus devices must be augmented, for example, to support

Associated Documents A-9

an external 1/0 bus and associated devices not supported by the VAXELN
Toolkit.

VAXELN Window Server
Additional information on installing and using the VAXELN Window Server
software is supplied in the next manuals:

• ULTRIX Worksystem Software DECwindows Desktop Applications Guide.
A guide that explains how to use a variety of desktop applications in the
ULTRIX Worksystem Software DECwindows environment.

• ULTRIX Worksystem Software DECwindows User's Guide. A guide that
explains how to use the ULTRIX Worksystem Software DECwindows
software.

• VAXELN Window Server Installation Guide for ULTRIX Systems. A guide
that explains how to install the VAXELN Window Server software on the
ULTRIX operating system.

• VAXELN Window Server Installation Guide for VMS Systems. A guide that
explains how to install the VAXELN Window Server software on the VMS
operating system.

• VAXELN Window Server User's Manual. A manual that furnishes
information about using workstations and terminals that run VAXELN
Window Server software.

VMS POSIX
These manuals furnish further details on the VMS POSIX product:

• Guide to Using VMS POSIX. A guide that explains how to use POSIX
1003.1, P1003.2ID10, and P1003.4ID9 functions in combination to write
portable applications using VMS POSIX.

• VMS POSIX Reference Manual: Shell and Utilities. A description of the
PO SIX shell and utilities as presented in P1003.2ID10 and P1003.2a
standards. This manual also contains descriptions of VMS POSIX utilities
not covered in the standard.

• VMS POSIX Reference Manual: Callable Interface. A description of the
callable interface and realtime functions as presented in POSIX 1003.1,
P1003.21D10, and P1003.4ID9 standards or draft standards. This manual
is designed to be used in conjunction with the Guide to Using VMS POSIX.

A-10 Associated Documents

XDAda
The following manuals further detail the XD Ada cross-development system:

• Developing XD Ada Programs on VMS Systems for the MC68020. A
description of how the XD Ada compiler, program library manager, and
debugger differ from their VAX Ada counterparts. Also described is how
to use the XD Ada toolset for developing applications that will run on
Motorola MC68020 microprocessor target systems.

• XD Ada MC68020 Assembly Language Reference Manual. A description of
how to use the assembly language that is supplied as part of the MC68020
version of the XD Ada toolset.

• XD Ada MC68020 Installation Guide. Step-by-step instructions for
installing XD Ada for MC68020 target processor application development.

• XD Ada MC68020 Runtime Reference Manual. A description of the XD
Ada MC68020 target system hardware. This book also informs you about
program execution on the target, including memory allocation, compiler
optimization, interfacing with assembly language, and writing interrupt
handlers.

• XD Ada MC68020 Supplement to the Ada Language Reference Manual.
A collection of supplements to the Ada standard ANSIIMIL-STD-
1815A-1983. This book describes the XD Ada interpretation of the
MC68020 target processor-dependent language features and permitted
implementation-dependent additions to the language.

• Developing XD Ada Programs on VMS Systems for the MIL-STD-1750A.
A description of how the XD Ada compiler, program library manager, and
debugger differ from their VAX Ada counterparts. Also described is how
to use the XD Ada toolset for developing applications that will run on
MIL-STD-1750A microprocessor target systems.

• XD Ada MIL-STD-1750A Assembly Language Reference Manual. A
description of how to use the assembly language that is supplied as part of
the MIL-STD-1750A version of the XD Ada toolset.

• XD Ada MIL-STD-1750A Installation Guide. Step-by-step instructions
for installing XD Ada for MIL-STD-1750A target processor application
development.

• XD Ada MIL-STD-1750A Runtime Reference Manual. A description of
the XD Ada MIL-STD-1750A target system hardware. Also, this book
discusses program execution on the target, including memory allocation,
compiler optimization, interfacing with assembly language, and writing
interrupt handlers.

Associated Documents A-11

• XD Ada MIL-STD-1750A Supplement to the Ada Language Reference
Manual. A collection of supplements to the Ada standard ANSIIMIL­
STD":"'1815A-1983. This book describes the XD Ada interpretation of
the MIL-STD-1750A target processor-dependent language features and
permitted implementation-dependent additions to the language.

• XD Ada Technical Summary. A technical overview of the XD Ada
cross-development system. This book describes software and hardware
configurations for host development and target runtime environments, the
host program support environment, Ada language-related issues, host-to­
target communications, XD Ada cross-compiler performance and capacity
(on the host) and generated target code performance, software validation,
and support services. It also includes some sample code listings.

Additional Documents
Some of the products described in this book are discussed in the following
documents:

• Digital Systems and Options Catalog for Realtime. The most current
descriptions, ordering, and configuration information available on Digital
software and hardware products for use in realtime applications.

• Realtime User~s Guide. A technical description of the realtime features
of Digital VAX hardware and software systems used in scientific and

. industrial settings. This guide assists in configuring Digital VAX systems
for realtime applications and in programming these applications.

• VAX Architecture Reference Manual. A detailed technical description
of the VAX architecture, including virtual address translation, data
representations, instruction formats, addressing modes, interrupt schemes,
and memory management.

• VAX Hardware Handbook. A collection of general technical material for
the VAX hardware product line. This book includes descriptions and
specifications for the VAX processors, data storage systems and devices,
VAXcluster configurations, and communication products.

• Digital Systems and Options Catalog. A collection of descriptions, ordering,
and configuration information on Digital products, including VAX Systems,
DECsystems, communications hardware, disks and tapes, terminals and
printers, integrated personal computing solutions, and software and service
offerings.

• VMS DCL Dictionary. A collection of detailed discussions and examples of
VMS Digital Command Language (DCL) commands and lexical functions.

A-12 Associated Documents

• VMS Linker Utility Manual. A description of how the VMS Linker works
and how to use it.

• VMS Network Control Program Reference Manual. A description of how
to use the Network Control Program (NCP) to manage DECnet-VAX
networks.

Associated Documents A-13

B
Trademarks

Appendix B lists Digital and third-party trademarks referenced within this
technical summary.

The cover photo for this manual appears courtesy of the National Aeronautics
and Space Administration, Houston, Texas.

The following are trademarks of Digital Equipment Corporation: ACCESSbus,
BASE star, CDA, CDDIPLUS, CDDlRepository, CI, COHESION, DDIF, DEC
Ada, DEC C, DEC CMS, DECdevice, DEC Fortran, DEC FUSE, DEC GKS,
DEC LSE/SCA, DEC MMS, DEC OSF/I, DEC Pascal, DEC PCA, DEC PHIGS,
DEC Realtime Integrator, DEC Test Manager, . DEC@aGlance, DECdesign,
DECelx, DECelx BSP, DECelx Runtime, DECelx Realtime, DECforms,
DECgraph, DECimage, DECmessageQ, DECmessageQ Message Bus,
DECnet, DECnet-ULTRIX, DECnet-VAX, DEComni, DECosap, DECpresent,
DECscan, DECserver, DECset, DECstation, DECwindows, DECwrite, Digital,
DRB32, DRQ, DSSI, DTIF, EDCS, FUSE, INTERNET, LA50, LK, Local Area
VAXcluster, LN03 PLUS, LVP16, MicroPDP-ll, MicroPowerlPascal, MicroVAX,
MS820, PAMS, PATHWORKS, PDP-II, PixelStamp, Q-bus, Q22-bus, RSX-II,
RT-ll, rtVAX, rtVAXstation, SQL, ThinWire, TK, TURBOchannel, ULTRIX,
UNIBUS, VAX, VAX Ada, VAXBI, VAX BASIC, VAX. C, VAX DIBOL, VAX.
DOCUMENT, VAX FORTRAN, VAX. Notes, VAX. Pascal, VAX. Performance
Advisor, VAX. RdbIVMS, VAX SCAN, VAX SPM, VAXBI, VAXcamps, VAXcluster,
VAXELN, VAXELN Pascal, VAXELN Toolkit, VAXlab, VAXserver, VAXset,
VAXstation, VAXft, VAXNMS Connection (UCX), VMS, VT, VT1300, XD Ada,
XUI, and the DIGITAL logo.

Ada is a registered trademark of the U.S. Government (Ada Joint Program
Office).

Apple and Macintosh are registered trademarks of Apple Computer, Inc.

AT&T is a registered trademark of American Telephone and Telegraph.

Bell is a trademark of Bell Telephone Companies.

BSD is a trademark of the University of California, Berkeley.

'.
Trademarks B-1

CRAY is a trademark of Cray Research, Inc.

DataViews is a registered trademark of Visual Intelligence Corporation.

Domain is a registered trademark of Apollo Computer, Inc., a subsidiary of
Hewlett-Packard Company.

EXCELERATOR is a registered trademark of Index Technology Corporation.

Futurebus+ is a trademark of Force Computers GMBH, Federal Republic of
Germany.

Glockenspiel C++ is a registered trademark of Glockenspiel, Ltd.

HP and HP-UX are trademarks of Hewlett-Packard Company, Inc.

IBM and OS/2 are registered trademarks of International Business Machines
Corporation.

Intel is a trademark of Intel Corporation.

Macintosh and MacX are registered trademarks of Apple Computer, Inc.

Micro Switch is a trademark of Honeywell, Inc.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation.

Motorola is a registered trademark of Motorola, Inc.

MS and MS-DOS are registered trademarks of Microsoft Corporation.

Network File System and NFS are trademarks of Sun Microsystems, Inc.

Open Software Foundation, OSF, OSF/l, and OSFIDCE are trademarks of the
Open Software Foundation, Inc.

OSFIMotif and Motif are registered trademarks of the Open Software
Foundation, Inc.

PostScript is a registered trademark of Adobe Systems, Inc.

Radstone is a trademark of Radstone Technology PLC.

RS/l is a registered trademark of BBN Software Products Corporation.

SAS is a registered trademark of SAS Institute, Inc.

SINEC, SINUMERIK, SICOMP, and SIROTEC are trademarks of Siemens AG.

Software through Pictures is a trademark of Interactive Development
Environments, Inc.

SONIC is a trademark of National Semiconductor.

Star MVPIR3000 is a trademark of Lockheed Sanders.

B-2 Trademarks

Statemate is a registered trademark of i-Logix, Inc.

SUN, SunOS, and SUNISPARC are trademarks of SWl Microsystems, Inc.

System V, System V/88, and AT&T are registered trademarks of American
Telephone & Telegraph Company in the U.S. and other cOWltries.

TEAMWORK, TEAMWORK/Access, TEAMWORKlRT, TEAMWORK/SA, and
TEAMWORKISD are registered trademarks of Cadre Technologies, Inc.

TEKTRONIX is a registered trademark of Tektronix, Inc.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

VMEmodule and SYSTEM V/88 are trademarks of Motorola, Inc.

VR3000 is a trademark of Omnibyte.

XlOpen is a trademark of XlOpen Company Limited.

X Window System, Version 11 and its derivations (X, X11, X Version 11, X
Window System) are trademarks of the Massachusetts Institute of Technology.

68000, 68020, and 68030 are trademarks of Motorola, Inc.

Trademarks B-3

Glossary

application device

In a local area transport (LAT) configuration, a remote device attached to a
terminal server, which offers a service to the VAXELN service node.

area

A region of physically contiguous memory accessible to all jobs executing on
the same node in a local area network (LAN).

area-lock variable

A variable that resides in an area for synchronizing job access to that area.
Using an area-lock variable, a process can lock an area to gain exclusive
access.

AST (asynchronous system trap)

A VMS mechanism for furnishing a software interrupt when an external event
occurs.

AST (asynchronous system trap) service ro~tlne

A user-written routine that receives control when an AST is delivered after
being queued to a process.

asynchronous 1/0

In a POSIX environment, a type of non-blocking 110. The process making the
110 request immediately regains control of execution once the 110 operation is
queued to the device.

authorization server

The node in a multinode VAXELN system that manages a shared Authorization
Service database.

Glossary-1

binary semaphore

A semaphore that enforces exclusive access to a shared resource.

boot server

In the VAXELN context, a VMS or ULTRIX host system that downline loads,
over Ethernet, VAXELN system images to target systems.

booting

A technique that brings a device or processor to a state in which it can operate
on its own.

CASE (Computer-Aided Software Engineering)

A software development environment that helps developers create and
maintain software faster, with high-quality code.

circuit

See virtual circuit.

client

An application program connected to the server.

closely coupled multiprocessing

A computer configuration consisting of a VAX primary system running a
VAXELN or VMS system and one or more KA800 processor boards. The KA800
processors are linked to the primary processor by a VAXBI bus. Each KA800
processor runs its own copy of a VAXELN system image and its own collection
of jobs.

COHESION

Digital's COHESION environment is designed for the development,
deployment, and management of software. COHESION includes a
comprehensive CASE environment that supports all phases of the software life
cycle and emphasizes efficiency and productivity throughout these ph~ses.

communication region

An area of memory that an interrupt service routine (ISR) uses for
communicating with device driver code while servicing a device.

compilation unit

A source file consisting of a program block or module that you can compile to
produce an object module.

Glossary-2

complier

A program that translates a high-level language program into an object module
of binary machine code.

Complementary Solutions Organization (CSO)

A leading third-party application supplier that allies with Digital through the
Cooperative Marketing Program (CMP) and through joint marketing, joint
product development, system reseller, or Complementary Software House
(CSH) agreements. Digital and its CSOs share product goals and directions,
supplying Digital's customers with the best integrated solutions on the market.

Compound Document Architecture (CDA)

An open, integrated, Digital architecture for creating~ displaying, revising,
processing, managing, and distributing compound documents throughout a
networked, heterogeneous computing environment. CDA defines two primary
formats: Digital Document Interchange Format (DDIF) and Digital Tabular
Interchange Format (DTIF). The encoding of CDA documents is compatible
with the American National Standards Institute (ANSI) standard. CDA also
provides support for full two-way conversion to and from both International
Standards Organization (ISO) standards: Office Document ArchitectureJOffice
Document Interchange Format (ODAJODIF) and Standard Generalized Markup
Language (SGML). See also Digital Document Interchange Format (DDIF) and
Digital Tabular Interchange Format (DTIF).

connection

In a DECwindows context, the network path between a client and server.

console emulator

A program that displays a window that looks and functions like a console
device, providing minimal terminal input/output (I/O) functionality.

control region

See PI virtual address space.

counting semaphore

A semaphore that permits metered access, allowing a specified number of
processes simultaneous access to units of a shared resource.

Glossary-3

data access protocol (DAP)

A set of standardized formats and procedures that facilitate the creation,
deletion, transfer, and access of files between a process and a file system in a
network environment.

datagram
A message sent between two named ports in a VAXELN system. Datagrams do
not require an explicit connection sequence.

debugger

A program that helps you find errors in application programs. For example,
the VAXELN Debugger supports local and remote debugging environments.

DECmessageQ

A family of software products that provide interprocess communication for
distributed applications through a message queuing system.

DECmessageQ Message Queuing Bus

Digital's product implementation of the message queuing technology.

DECset

A collection of Digital's CASE offerings for ULTRIX systems. DECset tools
include a Motif interface for software development tools.

DEC OSF/1

DEC OSF/l is Digital's implmentation of the OSF/l operating system.

dedicated application
An application that uses a computer to solve a specific problem or a set of
related problems.

development software
Programs that serve as tools for developing applications.

device driver

A program that controls communication between application programs and
external devices.

device Interrupt

See interrupt.

Glossary-4

Digital Document Interchange Format (DDIF)

A standard Compound Docwnent Architecture (CDA) interchange format
for the complete life cycle of networked, electronic compound documents.
DDIF compound documents include text, graphics, and images. Compliant
applications can interchange any common data. See also Compound Docwnent
Architecture (CDA).

Digital Tabular Interchange Format (DTIF)

A standard Compound Document Architecture (CDA) interchange format for
the complete life cycle of networked, electronic compound documents. DTIF
compound documents include text and tabUlar or spreadsheet data. Compliant
applications can interchange any common data. See also Compound Document
Architecture (CDA).

distributed processing

A computer configuration in which computer resources are distributed among
multiple processors linked by a common communication path, such as a local
area network (LAN) or VAXBI bus.

downllne loading

Transmitting a runtime image from a host VAX. processor over an Ethernet
logical link to a target VAX processor where the image is loaded and started.

emulator

A device or program that allows application execution on a different type of
computer than the one on which an application was developed or for which it
was written.

Ethernet

A local communication network that employs coaxial cable as a passive
communications medium. The coaxial cable interconnects different kinds
of computers, information processing products, and office equipment at a
local business site without requiring switching logic or control by a central
processor.

event

A flag that identifies the occurrence of a realtime event. Events synchronize
process execution and access to shared data.

event response

The ability of a process to coordinate its activities with other processes.

Glossary-5

exception

A hardware or software event that changes the. normal flow of a program's
execution synchronously or asynchronously. Synchronous exceptions occur at
predictable points during a program's execution. Asynchronous exceptions
result from unpredictable events, such as power failures.

exception handler

A routine or program function that traps exceptions and handles them through
appropriate action.

executive

A program that controls a VAXELN system's hardware resources and the
execution of the system's software.

Friendly Unified Software Environment (FUSE)

A collection of Digital's CASE offerings for ULTRIX and UNIX systems.
FUSE software development tools are based on traditional UN1X tools. FUSE
includes a consistent Motif interface, a database, and FUSE EnCASE, a tool
for integrating additional tools into the FUSE environment.

function

A routine that defines executable code and data that executes from and returns
control and a value to the calling routine.

gateway

A computer system that physically connects and transfers messages between
networks.

global section

An area of physical memory that is contained within the virtual-address space
of multiple processes.

hibernate state

In the VMS context, a synchronization mechanism (accessible through a VMS
system service call) that allows a process to control when it becomes active.
A process can only place itself into the hibernate state; that is, one process
cannot put another into hibernation. Hibernation temporarily halts process
execution. See also suspend state.

Glossary-6

host

In an Internet environment, the source and destination computer systems of
transferred data.

host processor

In the VAXELN context, a VAX computer, running the VMS operating system,
on which you develop VAXELN applications by using VAXELN and VMS
development tools.

IEC/IEEE-488 Standard (1978)

An industry-standard bus for digital interfacing to programmable
instrumentation.

Image file

An executable, shareable, or system-type file containing information that
establishes the process context for a user program.

Interactive terminal

In a local area transport (LAT) configuration, a user-controlled terminal device
connected to a terminal server, which lets you establish a session with a
service offered by the VAXELN service node.

Internet

A set of networks that are connected by hosts called gateways.

Interrupt

An event other than an exception that changes the normal flow of instruction
execution. Interrupts are external to the executing process and occur
asynchronously to the currently executing instruction stream.

Interrupt priority level (IPL)

The interrupt level at which a hardware component generates an interrupt.
IPL ranges are system-dependent.

Interrupt service routine (ISR)

A routine that responds to a device's interrupt signal and services the device's
request.

Glossary-7

Interrupt service routine (ISR) latency
The amount of time required by a system to recognize an external interrupt,
cease the current activity, save the current process state, and execute the first
instruction in the ISR.

job
An instance of a VAXELN application program, consisting of a master process
and zero or more subprocesses, that executes concurrently with other jobs and
processes.

kernel

A small, realtime executive that controls target hardware resources and the
execution of VAXELN system software. See UNIX kernel and preemptive
kernel.

kernel object

A data structure that represents an ongoing activity (such as process
execution) or a hardware or software resource (such as a device, memory
region, event, or message).

local area network (LAN)

A privately owned data communications system that offers high-speed
communications channels optimized for connecting information-processing
equipment. The geographical area is usually limited to a section of a building,
an entire building, or a group of closely situated buildings.

local area transport (LAT)

A communications protocol that lets system nodes running LAT host services
communicate with dedicated terminal server nodes running LAT server
services.

local area transport (LAT) network

The collection of system nodes and terminal server nodes in a local area
network (LAN).

local data

Data that you declare within a routine.

local debugging environment

The VAXELN debugger environment that you can include as part of a VAXELN
system image and use from a target system console.

Glossary-8

local port name
A port name known only to processes and jobs on the node on which the name
is created.

loosely coupled multiprocessing
A computer configuration in which computer resources are distributed among
multiple processors that are linked by a common external communication
or data path. For example, the configuration can consist of multiple VAX
processors participating on the same Ethernet segment of a local area network
(LAN).

MacX X Window System Server
A Macintosh application that implements an X Window System server
using the industry-standard X Window System, Version 11.4 (X11) protocol.
MacX X Window System Server is developed by Apple Computer and is
furnished with the PATHWORKS for Macintosh software.

main memory
See physical memory.

master process
The process that represents the execution of a program's main section of code:
the innermost procedure block for Ada programs, the main routine for C
programs, the main program for FORTRAN programs, and the program block
for VAXELN Pascal programs.

memory locking

In a POSIX environment, one method to ensure that a process stays in primary
memory. UNIX functions explicitly lock. processes into memory.

memory management
The system functions that use hardware to map a VAXELN system image into
a processor's virtual address space.

message
A block of contiguous bytes of memory that is transmitted between processes
in the same or different jobs, processes, or applications.

Message Recovery Services (MRS)
A set of DECmessageQ services which manage the automatic redelivery of
critical messages.

Glossary-9

metadata

Data definitions associated with actual data. In the VAX CDDIPlus repository
context, metadata refers to data stored in the repository that keeps track
of location, type, format, size, change history, and usage of the actual data.
The metadata that is stored in the VAX CDDIPlus repository may be used by
multiple software products. See also repository.

Manufacturing Message Specification (MMS)

Internationally accepted application-layer, communications protocol.
MM:S makes it possible to monitor and control disparate devices such as
programmable sensors, robots, controllers, and numerical-control machines.

mOdule-level data

Data that a job's processes can use to communicate. Module-level data includes
constants, types, variables, procedures, functions, and process blocks that you
declare outside routines.

multiprocessing

ConcUlTent processing of an application's parts on more than one processor.

multiprogramming

ConcUlTent processing of multiple jobs, including multitasking jobs.

multitasking

The division of an application program's labor into a set of smaller, focused
tasks that execute concurrently.

mutex

A mutual exclusion semaphore that ensures that only one process at a time
has exclusive access to a shared resource.

mutual exclusion

The ability of a process to gain sole access to a shared resource.

name

An entry in a name table that associates a character string name with a
message port or process. Names can be local or universal.

name server

A target system that manages a multinode VAXELN application's universal
name table.

Glossary-10

name service

The Network Service component that provides kernel extensions so that jobs
can access and maintain a universal name table.

network

A collection of computers physically connected by a communication medium,
such as an Ethernet. See also Ethernet.

Network Application Services (NAS)

A comprehensive set of standards-based software that consists of well-defined
programming interfaces, toolkits, and products to help developers build
applications that are integrated and easily ported across a distributed,
multi-vendor environment.

node

A computer system in a network that can communicate with other systems in
the network.

NTSC (National Television Standards Committee)

A video signal standard used in the United States. It defines a composite video
signal transmitted on a wire as 525 scan lines at a field frequency of 60 Hz
displaying 30 frames per second.

object

See kernel object.

OSF (Open Software Foundation)

The OSF is open to all computer companies wishing to support a commitment
to a standards-based operating system. OSF is pledged to POSIX compliance
and has adopted Motif as its windowing standard.

OSF/1

OSF/l is a UNIX operating system based on the MACH and BSD kernels.

PAL (phase-alternating line)

A video signal standard used (in several variants) throughout much of
Europe, except France and the Soviet Union. It defines the color encoding
of a composite video signal transmitted on a wire as 625 scan lines, a field
frequency of 50 Hz, and displaying 25 frames per second.

Glossary-11

PAMS

Process Activation and Message Support. PAMS is the original name for the
DECmessageQ messaging system.

PC DECwlndows Display Facility

An MS-DOS application that implements an X Window System server
using the industry-standard X Window System, Version 11 (X11) protocol.
PC DECwindows Display Facility is developed by Microsoft and is supplied
with the PATHWORKS for DOS software.

PO virtual address space

In the VAXELN context, the area of a target processor's virtual memory into
which the kernel maps job program images, data, and message buffers.

P1 virtual address space

In the VAXELN context, the area of a target processor's virtual memory into
which the kernel maps data associated with dynamically created processes.
Each process in a job, including the master process, has its own PI virtual
address space.

physical address

The address of a program in terms of and limited by the amount of a
computer's actual, physical memory.

physical memory

A computer's primary storage in which program instructions and data are
stored and executed.

port

A system-maintained queue for messages waiting to be sent and received.

portability

The ability to compile an unaltered source program on several operating
systems and machines.

port name

An entry in a name table that associates a character string name with a
VAXELN message port or process. Port names can be local (known only on
their own node) or universal (known on any node in the LAN).

Glossary-12

position-Independent code (PIC)
A coding technique that lets code execute anywhere in the virtual address
space without alteration.

POSIX (Portable Operating System Interface for Computer Environments)

A collection of standards proposed by the PO SIX working groups of the IEEE
Computer Society. POSIX standards are developed through participation by
representatives of many computer companies. POSIX standards define system
interfaces to support the source portability of applications.

preemptive kernel

A realtime UNIX kernel that guarantees a deterministic response to realtime
events by providing the ability to respond quickly to requests.

priority
An integer value assigned to a job or process to determine when that job or
process can access system resources. Priority ranges are system-dependent.

procedure
A routine that defines executable code and data that executes from and returns
control to a calling routine.

process
A functionally independent entity that provides the execution context for a
program image or part of a program image.

process block

A routine that defines executable code and data available to one or more
dynamically created processes.

process state

The current state of a process. While active, a process is always in one of four
states: run, ready, wait, or suspend.

program

One or more compilation units, each of which is a source file that you can
compile to produce an object module.

Glossary-13

program block

The main section of a VAXELN Pascal program's code that you declare with
the reserved word PROGRAM and that executes as a job. The C equivalent is
a program's main routine.

program region

See PO virtual address space.

pseudodevlce

A virtual device. The VMS operating system supports drivers for
pseudodevices, including the null device (NL:), network device (NET:),
remote terminal device (RT:), and mailbox (MB:). You can assign channels to
these devices and issue I/O requests just as though they were real devices.

QIO (queued Input/output)

A VMS operating system term for queued input/output using the SYS$QIO
system service routine.

queue

A list of items to be processed in a first-in-first-out (FIFO) order. In the
VAXELN context, queues provide an efficient, highly structured means for a
job's processes to exchange large packets of information.

ready state

The state during which a process is not executing but is ready to execute as
soon as the VAXELN kernel scheduler allows.

realtime application

An application that provides interfaces for equipment, such as input/output
(110) devices and busses that collects and, in some cases, controls the
processing of data. Realtime applications must respond to events generated by
equipment within a predetermined time limit.

realtime timers

In a POSIX environment, per-process timers for synchronizing and scheduling
realtime events.

remote debugger environment

The VAXELN debugger environment that you can use from the remote host
system if you have a DECnet license and the appropriate Ethernet hardware.
This debugger environment provides a symbolic interface.

Glossary-14

rendezvous

In the Ada context, the interaction that occurs between two parallel Ada
tasks. During this interaction, one task calls an entry of the other task, and a
corresponding accept statement is executed by the other task on behalf of the
calling task.

rendezvous performance

In the Ada context, a measure of the time it takes for a rendezvous between
two Ada tasks to complete. See also rendezvous.

repository

An evolutionary extension of data dictionary systems. A repository takes the
facilities of the dictionary for data integration and adds the control services
(that is, security, versioning, and object management) that facilitate control
integration. A repository must allow access to all types of data and data
defini tions.

routine

A set of instructions that performs an operation.

RS/1 tables

A statistical analysis package used in applications such as research and quality
analysis.

RS170

An Electronic Institute of America (EIS) video signal standard that defines a
composite video signal as transmitted on a wire.

run state

The state during which a process has control of the processor and is currently
executing.

runtime library

The group of common functions and macros that accompany the compiler.
Access to the runtime library is by receiving a copy of the function module in
the program image or by sharing the function image.

runtime software

In the VAXELN context, system and application programs that run as a
realtime system on a VAX. computer configuration.

Glossary-15

SO virtual address space

In the VAXELN context, the area of a target processor's virtual memory into
which the kernel maps a VAXELN system image: the kernel, program, and
shareable runtime images.

scheduling policy

In a POSIX environment, the set of rules that governs how the scheduler
selects runnable processes, how processes are queued, and how much time each
process is given to run. POSIX. supports multiple, user-specified scheduling
policies, including fixed-priority and round-robin.

semaphore

A synchronization gate that controls access to a shared resource. Semaphores
can be binary or counting.

server

A program that controls specific devices. For example, a DECwindows server
controls workstation devices such as screens, keyboards, and pointers.

service node

See VAXELN service node.

session

In the VAXELN context, a logical connection between a terminal device
attached to a terminal server and a service offered by a VAXELN service node.

shared memory

Shared memory allows for fast communication between processes that share
portions of their virtual address space.

SMP (symmetric multiprocessing)

See symmetric multiprocessing (SMP).

subprocess

A subsidiary process that a job's master process or another subprocess creates
dynamically.

Glossary-16

suspend state

In the VAXELN context, the state during which a process cannot reenter the
ready state until another process in the same job reactivates the suspended
process.

In the VMS context, a synchronization mechanism (accessible through a VMS
system service call) that allows a process to control when it or another process
becomes active. A process can place other processes into the 'suspend state.
Suspension temporarily halts process execution. See also hibernate state.

symbolic debugging
The use of debug symbol table information provided by VMS compilers (such
as variable names, labels, and source-line information) during a debugging
session.

symmetric multiprocessing (SMP)

A computer configuration in which multiple processors can share common
resources equally.

system Image
See VAXELN system.

system region

See SO virtual address space.

target processor

In the VAXELN context, the VAX computer on which a VAXELN system image
runs.

TCP/IP

Transport Control Protoco1lIntemet Protocol. TCPIIP is a general-purpose
networking standard.

terminal emulator

A program that displays a window that looks and functions like a terminal.

throughput

The rate at which a computer system computes data.

tightly coupled symmetric multiprocessing

A computer configuration in which multiple processors are linked by a CPU
memory data path or bus.

Glossary-17

timers

See realtime timers.

transparent networking

See distributed processing.

TRI/ADD Program

Third Parties with Add-On Products for RISC UNIX Platforms. The TRIIADD
Program provides technical and marketing support worldwide to third-party
vendors using the SCSI, TURBOchannel, VME, ACCESSbus, and Futurebus+
interconnects to develop add-on products for open systems.

UIS (User Interface Services)

A library of shared routines and commands supported by VWS (VMS
Workstation Software). These routines can be used for manipulating graphics
using world coordinates.

UISX (User Interface Services X)

A library of routines that emulate VIS calls on an eight-plane VMS
DECwindows workstation or X Window terminal.

universal port name

A port name known to processes and jobs on all nodes in the local area network
(LAN). Universal names are the key to distributed applications.

UNIX kernel

The operating system on a UNIX machine. Can also be used to refer to
ULTRIX, DEC OSF/l, or DECelx operating systems.

utility

A program that provides a set of related, general-purpose functions, such as a
command language or error logging utility.

VAX calling standard

A software standard that enables full access to all of the VMS operating
system's services and procedures through high-level language extensions.

VAXELN service node

A VAXELN system on which the local area transport (LAT) driver executes.

Glossary-18

VAXELN system

A set of user and Digital program images that comprise a VAXELN application
and execute on VAX. target hardware.

virtual address
A memory address within the 4-gigabyte virtual address space available to a
program.

virtual address space

A set of theoretical virtual addresses that a program can occupy, which is
limited by the memory addressing hardware on which the program executes.
The virtual address space for VAX. computers is 4 gigabytes.

virtual circuit
A communication path between two connected ports over which messages are
transmitted.

virtual memory

The set of storage locations in physical memory to which virtual addresses
correspond. For example, in VAXELN, the size of a system's virtual memory
depends on the amount of available physical memory.

virtual memory (VM) driver

A device driver program that lets you create a virtual disk structure in system
memory and use the memory as you would an actual disk drive.

walt state

The state during which a process is waiting for a specified set of conditions to
be satisfied. A process might be waiting for an amount of time to elapse, an
event or series of events to occur, or the receipt of a message.

window server

A system that displays DECwindows application interfaces while taking
advantage of the resources and power of the host system.

WYSIWYG

WYSIWYG (what you see is what you get) refers to an editor that allows the
editing, formatting, and viewing of a document, on a monitor screen, exactly as
it will appear when the document or screen is printed.

Glossary-19

A
Ada

See VAX Ada; VAXELN Ada; XD Ada
programming support environment, 1~2

compiler, 13-2
debugger, 13-2
library of predefined units, 13-2
program library manager, 13-2
runtime library, 13-2
tools and utilities, 13-2

Address resolution protocol (ARP), 6-43
@aGlance

with DECfactory tools, 19-9
aiocb structure, 12-7
American National Standards Institute

(ANSI) standards
See ANSI standards

ANSI standards
ANS-X3.124-1985 GKS (graphics kernel

system), 17-8
ANSI standards

ANSI-X3.9-1978 FORTRAN compiler
standard, 13-5

ANSI-X3.9-1978 FORTRAN compiler
standard, 13-5

ANSI-X3Jl1188-159 C compiler standard,
13-4

ANSIIIEEE-770X3.160-1989 Extended
Pascal Standard (draft), 13-8

ANSIlIEEE-770X3.97-1983 Pascal
compiler standard, 13-8

ANSIIMIL-STD-1815A-1983
Ada language standard, 14-1, 15-1

Index

ANSI standards (cont'd)
ANSIIMIL-STD-1815A-1983 Ada

language standard, 13-2, 14-1, 15-1
PHIGS (Programmers Hierarchical

Interactive Graphics System), 17-9
Application devices, VAXELN LAT, 6-45
Applications

dedicated realtime
VAXELN Window Server (EWS), 8-1

to 8-6
developing

DEC OSF/1, 1-10
DECelx, 2-1
Realtime

VMS programming techniques,
9-5

VAXELN, 1-13,4-1
VAXELN Ada, 14-5

figure, 14-5
VAXELN DECwindows, 7-1, 7-5
XDAda, 15-6

figure, 15-7
distributed, using VAXELN DECwindows,

7-1,7-4
realtime, 1-2 to 1--4

Applications protocols
Siemens SINEC AP, 19-8

APSE (VAXELN Ada programming support
environment), 14-3

Area-lock variables
declaring, using VAXELN Pascal, 6-2
definition of, 6-10
in the VAXELN kernel, 6-9

operations on, 6-11

Index-1

Area objects in the VAXELN kernel, 6-9
Areas in VAXELN systems

operations on, 6-11, 6-12
sharing, 6-21

ARP (address resolution protocol), 6-43
cache, 6-43

AST (asynchronous system trap), 9-3
in VMS systems, 14-2
service routine, in VMS, 9-3

Asynchronous 110
and signals, 12-7
DEC OSF/l, 11-9, 12-6
DEC OSF/1 functions, 12-7
VMS POSIX, 9-8, 10-10

Asynchronous system trap (AST), 9-3
in VMS systems, 14-2
service routine, in VMS, 9-3

Authorization Service, included in VAXELN
Toolkit, 6-45

B
BASEstar, 19-2 to 19-5

application integration, 19-3
communication

with an RS-232 serial port, 19-4
with DECnet, 19-4
with manufacturing devices, 19-4

configuration management, 19-5
device integration, 19-4
integration with DECmessageQ, 19-4
LSE support, 19-4
with DECfactory tools, 19-2

BASEstar CIMfast
for application development, 19-5

BASIC, VAX, 13-3
Binary semaphores

DEC OSF/l, 12-9
DECelx POSIX, 3-3
VAXELN kernel, 6-10
VAXELN POSIX, 6-24
VMS POSIX, 9-7,10-6

Boot protocol (BOOTP), VAXELN Internet
Services, 6-43

servers, 6-43

Index-2

Booting VAXELN system images, 6-6
Builder

FUSE tools, 18-9
Building applications

DEC OSF/l, 11-6
Byte order

little-endian, 24-7, 24-12

c
C compiler and runtime libraries

See DEC C; Runtime, libraries, DEC C;
Runtime, libraries, VAXELN C

C++
FUSE support, 18-13

Call Graph Browser
FUSE tools, 18-9

Carrier Sense Multiple Access/Collision
Detect (CSMA/CD) in VAXELN systems,
6-38

CASE
environment

See COHESION environment
tools

See COHESION environment
See Tools, UNIX CASE
See Tools, VMS CASE

CDA (Compound Document Architecture),
17-9

Chip-level processors (CLP)
. realtime products, 24-2
Circuits, virtual, in VAXELN systems, 6-20
Client, VAXELN DECwindows, 7-2

connection to server, 7-2
Clock modules

KWV11-C programmable realtime clock
module, 25-11

Clocks
DEC OSF/l, 12-3

Clocks and timers
DEC OSF/l, .12-3
DECelx POSIX, 3-4
POSIX

DEC OSF/l, 11-8
VAXELN PO SIX, 6-25

Clocks and timers (cont'd)
VMS POSIX, 9-7

CLOCK_REALTIME clock, 12-3
Closely coupled multiprocessing

configurations, VAXELN, 5-5
with VAXELN primary system

(figure), 5-6
in rtVAX 6000 systems, 24-24
in VAXELN systems, 6-16

CMP (Cooperative Marketing Program),
1-18

Code Manager
FUSE, 18-10
FUSE tools, 18-10

COHESION environment, 1-15
adherence to industry standards, 16-3
Complementary Solutions Organization

(CSO), 16-4
components of, 16-3
Digital's vision of, 16-2
introduction to, 16-1
Network Application Support (NAS),

16-4
. overview of, 16-3
services and support, 16-3, 16-4

Enterprise Integration Centers, 16-4
tools for software management, 16-5
tools for the software life cycle, 16-5

Command Language Utility (ECL), VAXELN,
6-51

as VAXELN LAT host service, 6-45
Communication

between XD Ada host and target, 15-7
between processes

using VAXELN POSIX, 6-26
in VAXELN POSIX systems

functions, 6-28
in VAXELN systems, 6-19 to 6-21

beVweenjobs, 6-19,6-38
between processes, 6-19
DECnet, 6-38
Internet, 6-42
module-level data, 6-19
network, 6-37

TELNET, 6-44

Communication
in VAXELN systems

network (cont'd)
VAXELN Internet Services, 6-41

operations, 6-12
passing messages for, 6-19
routines, 6-12
sharing memory areas for, 6-21
using queues for, 6-19
with ULTRIX nodes, 6-41
with VMS nodes, 6-41

in VMS POSIX systems
functions, 10-9

region, 6-36
VAXELN POSIX. shared memory, 6-26,

6-27
VAXELN POSIX. signals, 6-26, 6-27

Communication, interprocess
DEC OSF/1, 11-5
POSIX 1003.1 signals, 11-5
System V, 11-5
VMS POSIX, 9-7, 10-8, 10-9
VMS POSIX event notification, 9-7, 10-8
VMS POSIX message queues, 9-7, 10-8
VMS realtime services

lock manager, 9-3
privileged shareable images, 9-4
shareable images, 9-3

Communications protocols
Digital Data Communications Message

Protocol (DDCMP), 24-18
High-Level Data Link Control (HDLC),

24-18
Siemens SINEC H1, 19-8
Synchronous Data Link Control (SDLC),

24-18
Compilers, 1-14

DEC Ada, 13-2
DEC C, 13-4
DEC C++, 13-5
DEC Fortran, 13-5
DEC OSF/1, 11-6
DEC Pascal, 13-7
optimizing, 11-6
UNIX systems, 13-4, 13-5

Index-3

Compilers (cont'd)
VAX Ada, 14-3
VAX BASIC, 13-3
VAX FORTRAN, 13-6

High-Performance Option (HPO),
13-6, 13-7

VAX Pascal, 13-8
VAXELN Pascal, 6-1, 6-2
XD Ada cross-compilers, 15-3

Complementary Solutions Organization
(CSO), 16-4

Compound Document Architecture (CDA),
17-9

Computer-conferencing CASE tools
VAX Notes, 17-10

ConcUlTency
in VAXELN systems, 5-1,5-2

Connection
See Client, connection to server

Console emulator, VAXELN Toolkit, 7-7
Container file system

VMS POSIX, 10-4
Context switching, 1-5, 1-13
Control messages, Internet protocol for

returning, 6-43
Control Panel

FUSE tools, 18-9
Control region in VAXELN kernel processes,

6-18
Control system applications, 1-3
Cooperative Marketing Program (CMP),

1-18
Counting semaphores

VAXELN kernel, 6-10
Cross-development tools

XD Ada toolset, 15-1
Cross-Referencer

FUSE, 18-10
FUSE tools, 18-10

CRTLSHARE
runtime library, 6-23

CSO (Complementary Solutions
Organization), 16-4

Index-4

D
Data access protocol (DAP), VAXELN

DECnet Services, 6-39
Data collecting applications, 1-3
Data flow, interprocess, with VAXELN

Internet Services, 6-42
Data structures, VAXELN realtime, 6-9
Data types, flexible, in VAXELN Pascal, 6-3
Database

downline load, in VAXELN applications,
6-40

Internet address, in VAXELN systems,
6-43

Datagrams in VAXELN systems, 6-20
Datalink drivers

as Internet layer, 6-42
in the VAXELN Toolkit, 6-37

dbx debugger
on DEC OSF/1, 11-6

DDIF (Digital Document Interchange
Format)

viewers, 17-11
Debuggers

DEC OSF/1, 11-6
DECset dbx, 18-4
FUSE tools, 18-11
VAX Symbolic Debugger, 17-4
VAXELN, 4-4, 6-48

local environment (figure), 6-49.
remote environment (figure), 6-48

VAXELN Ada 'Remote, 14-3
XDAda, 15-5

DEC Ada
-compiler, 13-2
with LSE, 18-5

DEC C, 1-14,13-4
with LSE, 18-5

DEC C++, 13-5
FUSE support, 18-14

Class Browser, 18-14
DEC CMS, 17-2
DEC DTM, 17-3

DEC Fortran, 1-14, 13-5
with LSE, 18-5

DEC GKS, 17-8
DEC LSE, 17-3

with Ada, 18-5
with C, 18-5
with Fortran, 18-5

DEC MMS, 17-2
DEC OSF/l, 11-1 to 11-9

asynchronous I/O, 11-9, 12-6
asynchronous I/O functions

table, 12-7
clock and timer functions

table, 12-3
clocks, 12-3
compilers, 11-6
debugger, 11-6
Global

memory locking, 12-6
interprocess communication, 11-5
locking memory, 12-5
Locking memory

current, 12-6
future, 12-6

Memory locking
global, 12-6

memory mapped files, 12-7
memory-locking functions, 12-5, 12-6

table, 12-6
memory-mapped file functions

table, 12-9
memory-mapped files, 11-4
messages, 11-5
named pipes, 11-5
network support, 11-5

FDDI, 11-6
INTERNET, 11-5
Name Services, 11-6
Network Time Protocol, 11-6
sockets, 11-5
streams, 11-5
TCPIIP, 11-5

nonpreemptive kernel, 11-2
performance functions, 12-6, 12-7
pipes, 11-5

DEC OSF/1 (cont'd)
POSIX, 1-10
preemptive kernel, 11-2
priority scheduling, 12-4
priority scheduling functions

table, 12-5
profiling, 11-6
programming environment, 12-1
programming on, 11-1 to 11-9
programming support tools, 11-6
realtime clocks and timers, 11-8
realtime environment, 11-7, 12-2
realtime kernel, 11-2
realtime priorities, 11-3
realtime programming, 11-7, 12-1 to

12-10
scheduling policies, 11-8, 12-4
sema phore functions

table, 12-10
semaphores, 12-9
shared memory, 12-7
shared memory functions

table, 12-9
signals, 11-5
sockets, 11-5
source code management, 11-7
threads, 11-4
timers, 12-3
Timers

absolute, 12-3
and signals, 12-3
one-shot, 12-3
periodic, 12-3
relative, 12-3

tools
ee compilation system, 11-6
dbx debugger, 11-6
make utility, 11-6
prof program, 11-6
sees utility, 11-7
setld utility, 11-7

unlocking memory, 12-5
DEC Pascal, 1-14, 13-7
DEC PCA, 17-4, 18-5

Index-5

DEC PHIGS, 17-9
DEC Programmers Hierarchical Interactive

Graphics System (DEC PHIGS), 17-9
DEC Realtime Integrator, 1-12, 1-16, 9-8,

13-1,21-1,22-1
for embedded environment, 21-5
forVAXELN, 21-5
graphical programming environment,

22-1
hardware requirements, 21-6
in Digital's distributed realtime

architecture (figure), 21-6
IOtech WAVE488 application

data flow view (figure), 22-3
signal flow view (figure), 22-3

libraries
icon, 22-5
subroutine, 22-12

signal processing icons (figure), 22-1
software requirements, 21-6

DEC SCA, 17-4, 18-5
DEC Test Manager

See DEC DTM
DEC design, 17-9
DECelx, 1-13,2-1

applications
developing, 2-1

board support packages, 3-13
buffer manipulation, 3-12
developing an application, 2-6
file systems, 3-11
Hardware

microprocessors, 2-9, 2-10, 2-11
hardware environment, 2-5
hardware requirements, 2-12
interrupt handling, 3-12
intertask communications 3-2
IPC, 3-2 '
kernel facilities, 3-2
linked-list manipulation, 3-12
loading a target, 2-7
memory allocation, 3-12
message logging, 3-12
multitasking, 3-2
POSlX, 1-9

Index-6

DECelx
POSIX (cont' d)

binary semaphores, 3-3
functions

table, 3-4
process synchronization, 3-3
realtime clocks, 3-3,3-4
realtime environment, 3-3
realtime programming, 3-2,3-3 to

3-4
realtime timers, 3-3,3-4
standards, 3-2
synchronization functions, 3-4

priority scheduling, 3-2
process synchronization, 3-2
semaphores, 3-2
software requirements, 2-12
string formatting, 3-12
Target hardware, 2-9

microprocessors, 2-9, 2-10, 2-11
porting kit, 2-9
realtime options, 2-11
support packages, 2-9
TURBOchannel, 2-10
VMEbus, 2-10 '

utility libraries, 3-11
watchdog process, 3-12

DECfactory overview, 16-5
DECfactory services, 19-2
DECfactory tools

@aGlance, 19-9
BASE star , 19-2
BASEstar CIMfast, 19-5
DECmessageQ, 19-2, 19-5
DEComni, 19-6
DECosap, 19-8
in NAS, 19-1

DECgraph, 17-9
DECmessageQ, 16-5, 20-1 to 20-16

and PAMS, 20-1
API, 20-8
as part of NAS, 20-1
connectivity to other platforms, 20-3
Expertise Center, 20-5
extended services, 20-9

DECmessageQ (cont'd)
features, 20-5
for UNIX., 20-10

common call interface, 20-10
features, 20-10

for VMS, 20-11
Developer's Toolkit, 20-13
LU6.2 Services, 20-14
Message Recovery Services (MRS),

20-12
Selective Broadcast Services (SBS),

20-13
hardware requirements, 20-15
in a multivendor environment, 20-1,

20-4
integration with BASEstar, 19-4
message bus, 20-2
message recovery, 20-7
message selection, 20-7
MOTIF interface, 20-2
overview, 20-1,20-2
queues, 20-6
service functions, 20-8
services, 20-5 .
software requirements, 20-15
system configuration, 20-16
with DECfactory tools, 19-5

DECnet
interface, VAXELN, ~8
rtVAX connection to, 24-3, 24-19
services, VAXELN, ~7
VAXELN Window Server (EWS) support

of, 8-3
VT1300 Color X Window terminal support

of, 8-3
DECnet Service, VAXELN, ~7, 6-38

communicating with ULTRIX nodes with,
6-41

communicating with VMS nodes with,
6-41

Downline Load Service, 6-40
managing, 6-40
name service, 6-39
Network Management Service, 6-40
protocols, 6-39

DECnet services protocol (NSP)
DECnet Services, VAXELN, 6-39

DECnet, for VMS systems
realtime services

interprocess communication, 9-3
DECnet-VAX network control program

(NCP), VAXELN DECnet Service, 6-40
DEComni

with DECfactory tools, 19-6
decomposition

DEC C compiler support, 13-4
DECosap

interface through DEComni, 19-8
software requirements, 19-9
with DECfactory tools, 19-8

DEC scan BITBUS interconnect products
IBQ01 controller module, 25-8
QA-VCJAA driver package, 25-8
QA-VCSAA VMS Toolkit, 25-8

DECset, 17-1 to 17-4, 18-2 to 18-6
CMS to SCCS converter, 18-3
dbx debugger, 18-4
DEC Code Management System (CMS),

17,....2
DEC Module Management System (MMS),

17-2
DEC Performance and Coverage Analyzer

(PCA), 17-4, 18-5
DEC Source Code Analyzer (SCA), 17-4,

18-5
DEC Test Manager, 18-4
DEC Test Manager (DTM), 17-3
Language-Sensitive Editor (LSE), 17-3
make utility, 18-3
PC DECwindows Display Facility, 18-6
program design, 17-3, 18-5
Source Code Control System (SCCS),

18-2
VAX Language-Sensitive Editor (LSE),

18-5
DECset for VMS

software requirements, 17-4
DEC station

I/O Interfaces (table), 24-7
product family

Index-7

DEC station
product family (cont'd)

table, 24-7
SPECmarks

table, 24-7
workstations, 24-8

DEC station 5000
2D and 3D options, 24-15
DECvideo option, 24-14
graphics options, 24-13
multimedia options, 24-14

DEC station 5000 family, 24-12
DEC station 5000 Model 133, 24-15

features, 24-16
DEC station 5000 Model 20, 24-14

features, 24-14
DEC station 5000 Model 240, 24-16

features, 24-17
DEC station 5000 Model 25, 24-14

features, 24-14
DEC station 5000 Model 33, 24-14

features, 24-14
DEC system

servers, 24-27
DECsystem 5900

features, 24-27
Prestoserve, 24-27

DECsystem 5900 Server, 24-27
DECthreads

DEC OSF/1, 11-4
DECvideo option

DEC station 5000 graphics, 24-14
DEC windows , 16-4, 17-9

architecture of, 7-1, 7-2
(figure), 7-2

on DEC station workstations, 24-15,
24-16

on MicroVAX 3100 workstations, 24-17
PC DECwindows Display Facility, 18-6
VAXELN, 7-1 to 7-7

accelerators, 7-3
applications, 7-5
architecture of, 7-2
client, 7-2
Motif Window Manager, 7-6

Index-8

DECwindows
VAXELN (cont'd)

object manipulation, 7-3
server, 7-2, 7-5
terminal emulators, 7-6
Toolkit components, 7-5
use with distributed applications,

7-3
use with multiple applications, 7-4
user environment, 7-3, 7-6

VAXELN Window Server (EWS)
implementation, 8-1

VMS DECwindows Motif, 17-11
Dedicated realtime applications, 1-4
Dedicated VAXELN applications

See also Dedicated realtime applications
VAXELN Window Server (EWS), 8-1 to

8-6
Development system

VAXELN, 4-1, 6-47
relationship to VAXELN target

system (figure), 4-2
Development tools

See Compilers; Tools, VMS CASE; Tools,
development

Device drivers
for VAXELN systems, 4-4, 6-33 to 6-34

customized, 6-36
interrupt handling, 6-13,6-21
operations, 6-13, 6-36, 6-37
virtual-memory driver (VMDRIVER),

6-35
SCSI VAXELN systems, 6-34

Device drivers for VAXELN systems
customized

VAXELN Ada, 14-2
Device interrupts

See Interrupts
Device objects, VAXELN kernel, 6-9, 6-21,

6-36
Device support for VAXELN systems, 6-33
Digital Data Communications Message

Protocol (DDCMP), 24-18

Digital Document Interchange Format
(DDIF)

viewers, 17-11
Digital-to-analog converters

See Realtime, hardware
Direct device access (DDA) in VAXELN

systems, 6-39
Disk class driver, VAXELN SCSI, 6-34
Disk devices in VAXELN systems, accessing

local, 6-46
Display Utility, VAXELN Toolkit, 6-50
Distributed applications

DECmessageQ, 20-1
Distributed Computing Environment (DCE),

1-6
Distributed processing

See VAXELN, Network Service
Downline load database

in VAXELN systems, 6-40
Downline Load Service

See VAXELN, DownlineLoad Service
Downline loading

VAXELN system images, 6-6
Dynamic memory management, VAXELN

kernel, 6-18

E
ECL (VAXELN Command Language Utility),

6-51
as default LAT service, 6-45

Editing CASE tools
Language-Sensitive Editor (LSE), 17-3
VAX Language-Sensitive Editor (LSE),

18-5
VMS TPUIEVE, 17-11

Editors
FUSE editors, 18-12
Language-Sensitive Editor (LSE), 17-3
VAX Language-Sensitive Editor (LSE),

18-5
VMS TPUIEVE, 17-11

EER (Extended Entity Relationship), data
modeling techniques, 17-9

EIS (Enterprise Integration Services), 1-18
EMACS editor

FUSE, 18-12
Embedded realtime systems

creation using the XD Ada toolset, 15-1
Emulators, 15-2
Enclosures

BA212 rackmount enclosure, 24-21
BA213 enclosure, 24-21
BA214 rackmount enclosure, 24-21
BA215 enclosure, 24-21,24-22
BA430 pedestal enclosure, 24-22
BA431 rackmount enclosure, 24-22
BA440 pedestal enclosure, 24-22
BA441 rackmount enclosure, 24-22
for DEC stations (table), 24-7
for rtVAX systems (table), 24-19

Enterprise Integration Services (EIS), 1-18
Environment

DEC OSF/l programming environment,
12-1

VMS POSIX programming environment,
10-1

ERROR LOG
See VMS Error Log· Utility (ERROR LOG)

Error Logging Service, 6-51
Error messages, Internet protocol for

returning, 6-43
Ethernet

addresses in VAXELN systems
broadcasting, 6-43
protocol for mapping Internet

addresses to, 6-43
controllers supported by VAXELN

datalink drivers, 6-38
rtVAX connection to, 24-3, 24-19, 24-20,

24-21
EthernetlIEEE 802 Datagram Service,

VAXELN, 6-37, 6-38
Event notification

VMS POSIX, 9-7, 10-8
Event objects

in the VAXELN kernel, 6-9
Event response

in VAXELN systems, 6-18

Index-9

Events
application response to, 1-2
DECelx POSIX

functions, 3-4
VAXELN kernel, 6-9

operations on, 6-11
VAXELN POSIX

functions, 6-26
VMS PO SIX

functions, 10-7, 10-9
EXCELERATOR, 17-12
Exceptions in VAXELN applications, 6-21
Extended Entity Relationship (EER), data

modeling techniques, 17-9

F
F9450 microprocessor

supported by XD Ada, 15-5
Fairchild SBC-50 board using the F9450

microprocessor
supported by XD Ada, 15-5

FDDI
for DEC OSF/1 network support, 11-6

File access
remote, by VAXELN programs, 6-46

File access listener (FAL), VAXELN, 6-47
File Services

VAXELN, 4-3
disk, 6-46
tape, 6-46

File system
high-performance accelerator, 24-27
VMS POSIX, 10-4

File systems
alternative for DECelx, 3-11

Files
realtime in VMS POSlX, 10-11

Files, sequential, in VAXELN File Service,
6-46

Flags, common event, in VMS, 9-2
Flight simulator applications, 1-3
FORTRAN

See VAX FORTRAN; VAXELN FORTRAN

Index-10

Fortran, DEC, 13-5
FORTRAN, VAX

High-Performance Option (HPO), 13-7
High-Performance Option (HPO) on VMS,

13-6
Functions, DEC OSF/1

memory-locking, . 12-6
synchronization, 12-5

Functions, DECelx POSlX
synchronization, 3-4

Functions, VMS POSlX
commur.rication, 10-9
synchronization, 10-7, 10-9

FUSE

G

applications
developing with, 18-1

C++ support, 18-13
DEC C++ support, 18-14
EnCase Kit, 18-12
environment, 18-8
tools

builder, 18-9
call graph browser, 18-9
code manager, 18-10
control panel, 18-9
cross-referencer, 18-10
debugger, 18-11
editor, 18-12
online help, 18-12
Prof Her, 18-12
SCCS, 18-10
Tool Integration Kit, 18-12

Gane & Sarson, process modeling techniques,
17-9

Gateways, 6-41
Generic class driver, SCSI, 6-34
Global data

Module-level data, sharing in VAXELN
systems, 6-19

Global sections, in VMS, 9-2
Graphics

DECvideo option, 24-14

Graphics (cont'd)
multimedia capabilities, 24-14
options for DECstation 5000, 24-13
TURBOchannel options, 24-14
using MicroVAX 3100, 24-17
using Personal DEC station 5000, 24-12
using VAXstation 4000 family, 24-9
using VAXstation 4000 Model 60, 24-10
using VAXstation 4000 Model 90, 24-11
using VAXstation 4000 VLC, 24-9

Graphics CASE tools

H

DEC Graphics Kernel System (DEC GKS),
17-8

DEC PHIGS, 17-9
DECgraph, 17-9
VMS DECwindows Motif, 17-11
VMS Workstation Software (VWS), 17~12

Hardware
See Enclosures; Realtime, hardware;

Realtime, systems
DECelx

realtime options, 2-11
standards

. See Standards, hardware
Hardware options

VAXELN Ada, 14-7
Hardware requirements

DECelx, 2-12
VAXELN, 4-5
VAXELN Ada

development system, 14-7
target system, 14-7

VAXELN Window Server (EWS), 8-5
XD Ada, 15-7

host system, 15-7
target system, 15-7

Hibernation, in VMS, 9-3
High-Level Data Link Control (HDLC),

24-18
Host-to-host Internet layer, 6-42
Hosts, Internet, 6-41

Hosts, TELNET, 6-44
HPO (High-Performance Option) for the

VAX FORTRAN compiler, 13-7
HX graphics option, 24-13

110 (input/output)
busses

for DEC station systems (table), 24-7
for rtVAX systems (table), 24-19

low overhead VMS realtime services, 9-4
throughput, 1-2

ICMP (Internet control message protocol),
6-43

Icons
DEC Realtime Integrator, 22-1

IEEE POSIX (Institute of Electrical
and Electronics Engineers Portable
Operating System Interface for
Computer Environments) standards

1003.1 (operating system interface), 1-8
1003.4 (realtime extension) (draft), 1-8
1003.2 (shells and utilities) (draft), 1-8

IET11 TURBOchannel-to-IEEE-488 adapter,
25-15

Image file, VAXELN system, 6-4
Images, privileged shareable

in VMS, 9-4
Industrial terminals

See Terminals, industrial
Input/output

See I/O (input/output)
Installing applications

UNIX, 11-7
International Standards Organization

See ISO
International Standards Organization (ISO)

standards
See ISO Standards

Internet, 6-41
architecture, 6-42
layers

host-to-host, 6-42

Index-11

Internet
layers (cont'd)

Internet protocol (IP), 6-42
protocols

ARP (address resolution protocol),
6-43

BOOTP (boot protocol), 6-43
for returning routing information,

6-43
ICMP (Internet control message

protocol), 6-43
IP (Internet protocol), 6-42
RARP (Reverse Address Resolution

Protocol), 6-43
TCP (transmission control protocol),

6-42,6-43
UDP (user datagram protocol), 6-42

INTERNET
for DEC OSF/l network support, 11-5

Interprocess communication, 1-5
using VMS PO SIX, 10-8
VMS realtime services, 9-2

asynchronous system trap (AST)
service routines, 9-3

common event flags, 9-2
DECnet, 9-3
global sections, 9-2
hibernation, 9-3
lock manager, 9-3
mailboxes, 9-2
privileged shareable images, 9-4
shareable images, 9-3
suspension, 9-3

Interprocess synchronization, 1-5
VMS realtime services, 9-4

Interrupt handling
DECelx, 3-12

Interrupt service routine (ISR)
in VAXELN systems, 4-4, 6-33, 6-36

declaring, 6-2
Interrupts

in VAXELN systems, 6-8
interrupt service routine (ISR), 6-36
operations for handling, 6-36
operations for handling (table), 6-13

Index-12

Interrupts
in VAXELN systems (cont'd)

routines for handling, 6-21
software

asynchronous system trap (AST), in
VMS systems, 14-2

Intertask communications
DECelx, 3-2

IP (Internet protocol), 6-42
18-7942 GKS (graphics kernel system), an

ISO standard, 17-8
ISO standards

18-7942 GKS (graphics kernel system),
17-8

IS0-10206 Extended Pascal Standard
(draft), 13-8

ISO-1539-1980(E), 13-6
IS0-7185-1983(E), 13-8
ISOIIEC 9506, 19-6
MMS, 19-6
PHIGS (Programmers Hierarchical

Interactive Graphics System), 17-9
Unextended Pascal Standard, 13-8

ISO standrds
manufacturing, 19-2

ISR (interrupt service routine)
See Interrupt service routine (ISR)

J
Job control block (JCB), 6-11
Jobs in VAXELN systems, 5-2

communication between, 6-19
operations on, 6-11
passing messages between, 6-19
priorities of, 6-15
processor eligibility of, 6-16
scheduling, 6-15
sharing areas between, 6-21

K
KA620 processor board, 24-5
KABOO

processor board, 25-18
KAV30

features, 24-5
libraries

. in VAXELN_SERVICES, 6-1
processor board, 24-5
programming, 6-29
realtime single-board computer, 24-5

Kernel
See VAXELN, kernel
preemptive, 11-3

Kernel mode
and preemption, 11-3

L
LAN (local area network)

in DECelx systems
target processors on, 2-12

in VAXELN systems, 4-3, 6-39
Authorization Service, 6-46
name service, 6-39
target processors on, 4-5

Language-Sensitive Editor (LSE), 6-48
Languages

See Programming languages
LA.T Oocal area transport) in VAXELN

systems
application devices, 6-45
default service, 6-45
host services, 6-44, 6-45
network, 6-44
service nodes, 6-45
utility routines, 6-45

LAT Control Program Utility, VAXELN,
6-45,6-52

Latency
preemption, 11-3
preemptive kernel, 11-3

Libraries
See also Runtime, libraries
DEC Realtime Integrator, 1-16, 21-1,

22-1
Linkers

VMS Linker, 6-2,9-9
XD Ada builder, 1~

Little-endian data .format, 24-7,24-12
Loading VAXELN system images, 6-6
Local area network

See LAN Oocal area network)
Local area transport

See LAT Oocal area transport)
Local data, sharing in VAXELN system

processes, 6-19
Local debugger environment in VAXELN

systems, 6-49
Local disk devices, accessing in VAXELN

systems, 6-46
Local port names in VAXELN LANs, 6-20
Lock manager, in VMS, 9-3
Loopback Mirror, 6-40
Loosely coupled multiprocessing

configurations, VAXELN, 5-4
(figure), 5-4

in VAXELN systems, 6-16
LSE

See Language Sensitive Editor

M
Mailboxes, in VMS, 9-2
make utility

in DECset, 18-3
on DEC OSF/1, 11-6

Management CASE tools
See Tools, data-dictionary management;

Tools, project management; Tools,
system management

Manufacturing Message Specification (MMS)
standard, 19-2, 19-6

Master process in VAXELN systems, 5-1
MC68xxx microprocessor

supported by XD Ada, 15-5

Index-13

Memory
allocation in VAXELN systems (figure),

6-16
areas in VAXELN systems, sharing, 6-21
management in VAXELN systems, 6-16

dynamic, 6-18
Memory allocation

DECelx, 3-12
Memory locking

DEC OSF/1 POSIX., 11-9, 12-5
functions, 12-6

VAXELN POSIX, 6-28
VMS POSIX, 9-8, 10-10

Memory management, in VMS
realtime services, 9-2

Memory modules
MS820-CA, 25-19

Memory-mapped files
DEC OSF/1, 11-4, 12-7

functions, 12-9
Message logging

DECelx, 3-12
Message queues

VMS POSIX, 9-7
Messages

DEC OSF/1, 11-5
object modules, 6-22
objects, 6-9
System V, 11-5
VAXELN systems, 6-19

operations on, 6-12
transmission of, 6-39

VMS POSIX, 10-8
functions, 10-9

Messaging
DECmessageQ, 20-1

MicroVAX 3100
enclosures, 24-18
features, 24-18

MicroVAX 3100 workstations
graphics applications, 24-17

MIL-STD-1750A microprocessor
supported by Xl) Ada, 15-1, 15-5

MIL-STD-1753 standard, 13-6

Index-14

mlock function, 12-6
mlockall function, 12-6
Modeling techniques

data
Extended Entity Relationship (EER),

17-9
process

Gane & Sarson, 17-9
Yourdon Structured Design, 17-9

realtime·
Yourdon Structured Design with

Ward-Mellor extensions, 17-9
Modular compilation in VAXELN systems,

6-3
Module Management System (MMS), 6-48
Module-level data

sharing in VAXELN systems, 6-19
Motif graphical user interface, 1-6
Motif Toolkit, 7-5
Motif Window Manager, VAXELN

DECwindows, 7-6
Motorola MC68xxx microprocessor

supported by XD Ada, 15-1,15-5
Motorola MVME133XT VMEmodule

monoboard microprocessor
supported by XD Ada, 15-5

Multiprocessing
closely coupled

in rtVAX 6000 systems, 24-24
in VAXELN systems, 5-5, 6-16
with VAXELN primary system

(figure), 5-6
in VAXELN systems, 4-3,5-4 to 5-7
loosely coupled in VAXELN systems, 5-4,

6-16
(figure), 5-4

tightly coupled symmetric
in VAXELN systems, 5-5, 6-16

(figure), 5-5
Multiprocessing, symmetric, in VMS systems,

9-4
Multiprogramming in VAXELN systems,

5-4
Multitasking in VAXELN systems, 5-3

Multithreaded programming
VAXELN POSIX, 6-29

munlock function, 12-6
munlockallfunction, 12-6
Mutexes, 6-9, 6-10

in VAXELN Pascal, 6-2
operations on, 6-11

Mutual exclusion, 6-18
MVME133XT VMEmodule monoboard

microprocessor
. supported by XD Ada, 15-5

MX graphics option, 24-13

N
Name objects, VAXELN kernel, 6-9
Name server in VAXELN network

applications, 6-40
Name services

DEC OSF/1, 11-6
VAXELN, 6-39

Names
port, in VAXELN systems, 6-9,6-20
VAXELN kernel operations on, 6-12

nanosleep function, 12-3
NAS, 17-5 to 17-8, 18-6 to 18-8

DECfactory tools, 19-1
NAS 200 for ULTRIX., 18-7
NAS 200 for VMS, 17-5
NAS 250 for VMS, 17-6
NAS 300 for ULTRIX., 18-7
NAS 300 for VMS, 17-6
NAS 400 for VMS, 17-7
tools

See COHESION environment
NAS (Network Application Support)

See Network Application Support (NAS)
NCP (DECnet-VAX network control

program, VAXELN DECnet Service),
6-40

Network, 6-41
environments, VAXELN, 6-38
LAT

See LAT Goeal area transport)
management protocol, Phase IV, 6-40

Network (cont'd)
management, VAXELN, 6-40

Network Application Support (NAS), 16-4
bidirectional relationship between

COHESION and NAS, 16-4
DECmessageQ as a component of, 16-5
DECwindows as a component of, 16-4

Network management listener (NML),
VAXELN DECnet Service, 6-40

Network management protocol (NMP),
VAXELN DEC net Service, 6-40

Network Management Service, VAXELN,
6-40

Network Time Protocol
for DEC OSF/l network support, 11-6

Networking
in open systems, 1-6
in realtime systems, 1-5
in rtVAX. systems,· 24-19
VAXELN, 4-3

See also Communication, in VAXELN
systems

NML (network management listener),
VAXELN DECnet Service, 6-40

NMP (network management protocol),
VAXELN DECnet Service, 6-40

o
Object-oriented interface

in DECdesign, 17-9
Objects

VAXELN DECwindows user interface,
7-4

VAXELN kernel, 6-9
Online Help

FUSE tools, 18-12
Open Software Foundation (OSF), 1-7, 11-1

Distributed Computing Environment
(DCE), 1-6

Open systems
multi vendor . integration, 1-6
networking, 1-6
standards, 1-6

See Standards

- Index-15

Open systems
standards (cont'd)

Digital's endorsement of, 1-8
Operations

VAXELN kernel
communication, 6-12, 6-19 to 6-21
device-handling, 6-36
exception-handler (table), 6-22
synchronization, 6-11, 6-18

Optimizing compilers
DEC OSF/l, 11-6

Options, DECelx, 2-11
OSF operating system

Digital's implementation, 11-1
OSI (Open Systems Interconnection)

standards
in manufacturing, 19-2

Outbound Remote Terminal Utility
(SET_HOST), VAXELN, 6-52

p
PO virtual address space

in VAXELN jobs, 6-17
PI virtual address space

in VAXELN jobs, 6-18
PAMS

and DECmessageQ, 20-1
Parameter lists, flexible, in VAXELN Pascal,

6-3
Pascal

See VAX Pascal; Runtime, libraries,
VAXELN Pascal

PC DECwindows Display Facility
in DECset, 18-6

PDP-II products, 1-1
Performance

using VMS POSlX, 10-9
Performance CASE tools

VAX Performance Advisor (VPA), 17-10
VAX Software Performance Monitor

(VAX SPM), 17-11
Performance Utility, VAXELN, 6-50
Personal DEC station 5000, 24-14

Index-16

Phase IV DECnet protocols in VAXELN
DECnet Service, 6-39, 6-40

PHIGS (DEC Programmers Hierarchical
Interface Graphics System), 17-9

Physical addresses in VAXELN systems
broadcasting, 6-43
protocol for mapping Internet addresses

to, 6-43
Port names, 6-20
Port objects in VAXELN systems, 6-9
Porting

targets for DECelx, 2-9
Ports in VAXELN systems, 6-20

operations on, 6-12
PO SIX

DEC OSF/l, 1-10, 11-8
asynchronous 110, 11-9
memory locking, 11-9
priority scheduling, 11-8
realtime clocks, 11-8
realtime timers, 11-8
scheduling policies, 11-8
semaphores, 11-8
shared memory, 11-8,11-9
signals, 11-5

DECelx, 1-9,3-2
1003.1 (operating system interlace), 1-8
portability, 1-9
1003.4 (realtime extensions) (draft), 1-8
1003.2 (shells and utilities) (draft), 1-8
VAXELN, 1-10
VMS, 1-10

Preemption latency, 11-3
Preemptive kernel, 11-3

DEC OSF/l, 11-2
latency, 11-3
process preemption latency, 11-2
realtime options, 11-2

Preemptive priority scheduler, VAXELN
kernel, 6-15

Prestoserve
with the DECsystem 5900, 24-27

Priorities
realtime range in DEC OSF/l, 11-3

Priority
and preemption, 11-2

Priority scheduling
DEC OSF/1, 12-5
PO SIX

DEC OSF/1, 11-8
VAXELN POSIX, 6-25
VAXELN systems, 6-15
VMS POSIX, 9-7

Process blocks
VAXELN Pascal, 6-2

Process objects
VAXELN kernel, 6-9

Process preemption latency
realtime DEC OSF/1 kernel, 11-2

Process states
VAXELN kernel, 6-13 to 6-15

Processes, VAXELN, 5-1
communication between, 6-19
data passed by, 6-42
family of (figure), 5-2
operations on, 6-11
priorities of, 6-15
scheduling, 6-15
synchronizing, 6-18

Processor
board, 24-1,24-4

KAV30, 24-4
boards

"KA620, 24-5
KA800, 24-24, 25-18
KAV30, 24-5

chip, 24-1, 24-2
rtVAX300, 24-2

chips
rtVAX 300, 24-2, 24-3

eligibility in VAXELN jobs, 6-16
Productivity CASE tools

See Tools, productivity
prof program

on DEC OSF/1, 11-6
Profiler

FUSE tools, 18-12
Profiling code

UNIX, 11-6

Program
block, VAXELN Pascal, 5-1
region, VAXELN kernel, 6-17

Programmable Logic Controller (PLC), 19-8
Programmers Hierarchical Interactive

Graphics System (PHIGS), 17-9
Programming

features, VAXELN, 4-2
language compilers

See Compilers
languages, 1-14

for VAXELN applications, 4-4
support tools

DEC OSF/1, 11-6
Protection, system, for VAXELN network

applications, 6-45
Pseudodevices, in the VMS operating system,

9-2
PSXSHARE

runtime library, 6-23
PXG Turbo+ graphics option, 24-13
PXG+ graphics option, 24-13

Q
Q22-bus

in KA620 processor board, 24-5
Q22-bus

in rtVAX systems, 24-19
QIO (queued 110) system service, in VM:S

systems, 9-4
Queues

in VAXELN jobs, 6-19
representing using VAXELN Pascal, 6-2

R
Random access

of files by VAXELN programs, 6-46
RARP (Reverse Address Resolution Protocol),

6-43
servers, 6-43

Read-only memory (ROM), 4-2, 6-6
Realtime

applications, 1-2 to 1-4

Index-17

Realtime
applications (cont'd)

dedicated, 1-4:
I/O throughput, 1-2
response to events, 1-2

CASE tools, modeling
DEC design, 17-9
third-party

EXCELERATOR, 17-12
Software through Pictures,

17-12
Statemate, 17-13
TEAMWORKlRT, 17-14

DEC OSF/1 POSIX environment, 12-2
DEC OSF/1 POSIX programming, 12-1

to 12-10
DEC OSF/l programming, 11-7
DECelx POSIX environment, 3-3
DECelx POSIX programming, 3-2, 3-3 to

3-4
device support, VAXELN, 6-33
hardware, 1-16

DECscan BITBUS options, 25-7
IBQ01 DEC scan BITBUS

controller, 25-8
QA-VCJAA DECscan Driver

Package, 25-8
QA-VCSAA VAX DECscan VMS

Toolkit, 25-8
DRV1J and DRVI1J parallel-line

interfaces, 25-9
Q22-bus options, 25-1 to 25-12

AAVI1-C digital-to-analog
converter, 25-2

AAVll-DA digital-to-analog
converter, 25-2

Index-18

ADQ32 analog-to-digital
converter, 25-3

ADVI1-C analog-to-digital
converter, 25-4:

ADVI1-DA analog-to-digital
converter, 25-5

AXVll analog input/output
module, 2~

DRB32-M parallel-line interface,
25-18

Realtime
hardware

Q22-bus options (cont'd)
DRQ3B parallel-line interface,

25-9
DRVI1-WA, DRV1W parallel-line

interfaces, 25-10
IEQII-AB, AD, AF IECIIEEE bus

interface modules, 25-10
KWVI1-C programmable realtime

clock module, 25--11
universal data interface panels

(UDIPs), 25-12
rtVAX product family, 1-12
SCSI bus options

IEZl1 IEEE-i88 bus converter
module, 25-12

terminals, industrial, 25-20
IT330, 25--20
IT340, 25--20
VT33N, 25-21
VT34N, 25-21

VAXBI bus options, 25-17 to 25--19
DRB32-E parallel-line interface,

25-18
DRB32-M,W,E parallel-line

interface modules, 25-17
DRB32-W parallel-line interface,

25--18
KA800-M processor board,

25--18
MS820-CA inemory module,

25-19
X Window terminals

VAXELN Window Station, B-1
VT1300 Color X Window

terminal, B-1 .
hardware options, 1-17
KAV30 programming, 6-29
POSIX standards, 1-8 to 1-10
programming features, 4-2
software

See also VAXELN Toolkit
COHESION environment, 1-15
DEC OSF/l operating system, 1-14

Realtime
software (cont'd)

DEC Realtime Integrator, 1-12,
1-16,21-1,22-1

DECelx, 2-1
DECelx Realtime Tools, 1-13
product summary, 1-11 to 1-17

/ product summary (figure), 1-11
UNIX operating system, 1-14
VAXELN Ada, 6-2, 14-1 to 14-7
VAXELN Ada runtime library, 1-15
VAXELN C runtime library, 6-1, 6-3
VAXELN DECwindows, 7-1 to 7-7
VAXELN FORTRAN runtime library,

6-1,6-3
VAXELN Pascal runtime library,

6-1,6-3
VAXELN POSIX runtime library,

6-4
VAXELN Toolkit, 1-13, 4-1

component summary, 4-1
VAXELN Window Server (EWS), 8-1

to 8-6
VMS opreating system, 1-14
XD Ada, 1-11, 1-15, 15-1 to 15-7

systems
characteristics of, 1-4
DECsystem 5900 Server, 24-26
dedicated, 1-4, 1-13
loading, 1-5
MIPS, 24-1
rtVAX, 23-1, 24-18

3300/3305/3400, 24-20
4000, 24-22
6000, 24-24
9000, 24-25

self-sufficient, 1-5
VAX, 24-1
VAX 6000, 24-26, 24-28

VAXELN KAV30, 6-29 to 6-32
VAXELN POSIX, 6-23, 6-24 to 6-29
VMS capabilities for, 9-1 to 9-10

application development tools, 9-8
DEC Realtime Integrator, 9-8

VMS POSIX, , 9-6, 10-1 to 10-11

Realtime
VMS POSIX (cont'd)

commands and utilities, 10-3
environment, 10-5

VMS programming techniques, 9-5
connect-to-interrupt facility to service

device interrupts, 9-5
file creation methods to optimize disk

I/O, 9-5
read and write to device registers

directly, 9-5
VMS services, 9-1

interprocess communication, 9-2
asynchronous system trap (AST)

service routines, 9-3
common event :flags, 9-2
DECnet, 9-3
global sections, 9-2
hibernation, 9-3
lock manager, 9-3
mailboxes, 9-2
privileged shareable images, 9-4
shareable images, 9-3
suspension, 9-3

interprocess synchronization, 9-4
low overhead I/O, 9-4
memory management, 9-2
scheduler, 9-1
symmetric multiprocessing (SMP),

9-4
workstations, 24-6, 24-9, 24-12, 24-14,

24-15,24-16
DECstation 5000 family, 24-12
DECstation 5000 Model 133, 24-15
DECstation 5000 Model 240, 24-16
MicroVAX 3100, 24-17
Personal DECstation 5000, 24-14
VAXstation 4000 family, 24-9-
VAXstation 4000 Model 60, 24-10
VAXstation 4000 Model 90, 24-11
VAXstation 4000 VLC, 24-9

Realtime environment
@aGlance, 19-9
DECfactory services, 19-2
DECfactory tools, 19-1 to 19-9

Index-19

Realtime environment (cont'd)
DECmessageQ, 19-5
DEComni, 19-6
DECosap, 19-8

Realtime files
VMS POSIX, 9-8, 10-11

Realtime kernel
DEC OSF/l, 11-7
UNIX

See DEC OSF/l
Realtime options

for DECelx, 2-11
Realtime POSlX

draft used for DEC OSF/l, 1-10
draft used for VAXELN POSIX, 1-11
draft used for VMS PO SIX, 1-10

Realtime products
introduction, 1-1

Remote debugger environment, VAXELN,
6-48

Remote terminal utility, VAXELN, 6-41
Reverse Address Resolution Protocol (RARP),

6-43
servers, 6-43

Routines, DEC OSF/l
performance, 12-6, 12-7

Routines, VAXELN
communication, 6-12
device-handling, 6-13,6-36
exception-handler (table), 6-22
kernel, 6-10 to 6-13
message-passing, 6-39
name service, 6-39
synchronization, 6-11

Routines, VMS POSIX
performance, 10-11

Routing protocol for DECnet Service,
VAXELN, 6-39

Routing, Internet
information, protocol for returning, 6-43

RTLOBJECT library, 6-33
RTS, XD Ada target runtime system, 15-4,

15-5
rtVAX, 24-1

configuration options, 24-18

Index-20

rtVAX (cont'd)
configurations, 24-18
enclosures, 24-2, 24-21, 24-22

table, 24-19
I/O busses (table), 24-19
~V30processor, 24-5
4000 Model 200

features, 24-22
4000 Model 300

features, 24-22
.4000 Model 400

features, 24-23
4000 Model 500

features, 24-23
4000 Model 600

features, 24-23
networking, 24-19
300 processor, 24-2, 24-3

features, 24-3
I/O busses, 24-3
modifying VAXELN kernel for, 24-4

product family, 1-16
300 processor board, 1-5, 1-13
table, 24-19

3300 system, 24-20,24-21
enclosures, 24-21
features, 24-21

3305 system, 24-20,24-21
enclosures, 24-21
features, 24-21

3400 system, 24-20,24-21
enclosures, 24-21
features, 24-21

systems, 23-1
4000 systems

Model 200, 24-22
Model 300, 24-22
Model 400, 24-22
Model 500, 24-22
Model 600, 24-22
use of RISC-based adapters, 24-22

6000 systems, 24-24 to 24-25
expanding, 24-25
features, 24-25
Model 400 Series, 24-24

rtVAX
6000 systems (cont'd)

Model 500 Series, 24-24
multiprocessing in, 24-24
upgrading, 24-25

9000 systems, 24-25 to 24-26
features, 24-26

VAXELN target license, 24-19
VUP ratings, 24-18

table, 24-19
workstations, 24-19

Run state in VAXELN processes, 6-13
Runtime

libraries, 1-14
CRTLSHARE, 6-23
KAV30, 6-1, 6-29
PSXSHARE, 6-23
VAX Ada predefined packages, 14-5
VAXC, 6-3
VAXELN, 6-3, 6-7, 6-32

use in the VAXELN Ada
programming support
environment (APSE), 14-5

VAXELN Ada, 6-2
VAXELN C, 6-1, 6-3
VAXELN FORTRAN, 6-1, 6-3
VAXELN Pascal, 6-1, 6-3
VAXELN PO SIX, 6-4
VAXELN_SERVICES Ada, . 6-1, 6-3
XD Ada, 15-4, 15-5

services
Authorization, 6-45
Error Logging, 6-51
EthernetlIEEE 802 Datagram, 6-38
File, 4-3
TELNET, 6-44
VAXELN DECnet, 6-37,6-38
VAXELN EthemetlIEEE 802

Datagram, 6-37
VAXELN File, 6-46
VAXELN Internet, 6-37, 6-41

utilities
VAXELN Command Language (ECL),

6-45,6-51
VAXELN Display, 6-50

Runtime
utilities (cont'd)

VAXELN LAT Control Program,
6-45,6-52

VAXELN Outbound Remote Terminal
Utility, 6-52

VAXELN Remote Terminal, 6-41

s
SO virtual address space

in VAXELN systems, 6-17
using to transfer data, 6-46

SBC-50 board using the F9450
microprocessor

supported by XD Ada, 15-5
SCCS

FUSE, 18-10
sees utility

on DEC OSF/1, 11-7
Scheduler, 6-15

preemptive priority, VAXELN kernel,
6-15

VMS realtime services, 9-1
Scheduling

DECelx, 3-2
Scheduling policies

DEC OSF/l, 12-5
PO SIX

DEC OSF/1, 11-8
VAXELN POSIX, 6-25
VMS POSIX, 9-,.7

SCSI
converters

IEZll IEEE-488 bus converter
module, 25-12

device drivers for VAXELN systems, 6-34
driver, VAXELN, 6-34

disk class, 6-34
generic class, 6-34

Semaphore
objects, VAXELN kernel, 6-10

Semaphores
controlling access, 12-9
DEC OSF/1, 12-9
DEC OSF/l functions, 12-10

Index-21

Semaphores (cont'd)
DECelx, 3-2
DECelx POSIX

functions, 3-4
PO SIX

DEC OSF/1, 11-8
VAXELN kernel, 6-10

operations on, 6-11
VAXELN POSIX

functions, 6-26
VMSPOSIX

functions, 10-7
Sequential file access by VAXELN programs,

6-46
Sequential files, 6-46
Servers

BOOTP, 6-43
RARP, 6-43
terminal, 6-44
VAXELN DECwindows, 7-2,7-5

Service nodes, VAXELN, 6-45
Session control protocol (SCP), 6-39
setld utility

on DEC OSF/1, 11-7
Shareable images

in VAXELN, 6-32
in VMS, 9-3, 9-4

Shared memory
DEC OSF/1, 12-7

functions, 12-9
PO SIX

DEC OSF/1, 11-8, 11-9
VAXELN POSIX, 6-26, 6-27

functions, 6-28
VMS POSIX, 9-7, 10-9

Shell
script

VMS POSIX, 10-4
VMS POSIX, 10-4

SIGHT, 17-12
signal function, 12-7
Signals

VAXELN POSIX, 6-26, 6-27, 6-28
functions, 6-28

Index-22

SINEC AP services
support for, 19-8

SINEC H1 services
support for, 19-8

Single-board computers (SBCs)
See Processor boards
realtime products, 24-4

Small Computer System Interface
See SCSI

SMP (symmetric multiprocessing), in VMS
systems, 9-4

Sockets
for DEC OSF/1 network support, 11-5
for interprocess communication, 11-5

Software
for realtime and scientific application

development
See Tools, for realtime and scientific

application development
standards

See Standards, software
Software options

VAXELN Ada, 14-7
Software requirements

DECelx, 2-12
DECset for VMS, 17-4
VAXELN, 4-5
VAXELNAda

host system, 14-7
VAXELN Window Server (EWS), 8-5
XDAda

host system, 15-7
Software through Pictures, 17-12
Souce code management

UNIX, 11-7
Source Code Analyzer (SCA), 6-48
SPECmark, definition, 24-7
Standards

software
ANSI

ANS-XS.124-1985 GKS (graphics
kernel system), 17-8

ANSI-X3.9-1978 FORTRAN
compiler standard, 13-5

Standards
software

ANSI (cont' d)
ANSI-XSJl1188-159 C compiler

standard, 13-4
ANSIIIEEE-770XS.160-1989

Extended Pascal Standard
(draft), 13-8

AN~I1IEEE-770XS.97-1983

Pascal compiler standard,
13-8

ANSIIMIL-STD-1815A-1983,
13-2, 14-1

PIDGS (Programmers
Hierarchical Interactive
Graphics System), 17-9

ANSIlIEEE-770XS.160-1989
Extended Pascal Standard (draft),
13-8

compliance, 1-6
IEEE

ANSIIIEEE-770XS.97-1983
Pascal compiler standard,
13-8

IEEE POSlX (Institute of Electrical
and Electronics Engineers
Portable Operating System
Interface for Computer
Environments)

ISO

1003.1 (operating system
interface), 1-8

1003.4 (realtime extension)
(draft), 1-8

1003.2 (shells and utilities)
(draft), 1-8

18-7942 GKS (graphics kernel
system), 17-8

ISO-10206 Extended Pascal
Standard (draft), 13-8

ISO-1539-1980(E), 13-6
ISO-7185-1983(E), 13-8
PIDGS (Programmers

Hierarchical Interactive
Graphics System), 17-9

Standards
software (cont'd)

ISO (Internation Standards
Organization)
in manufacturing, 19-2

ISO Pascal Standard, 1~ 7
ISO U nextended Pascal Standard,

13-8
MIL

MIL-STD-1753, 13-6
MMS (Manufacturing Message

Specification), 19-2
networking, 1-5
Open Software Foundation (OSF),

1-7
Distributed Computing

Environment (DCE), 1-6
Motif graphical user interface,

1-6
OSI(Open Systems Interconnection)

in manufacturing, 19-2
programming languages, 1-5
U.S. Government

ANSIIMIL-STD-1815A-1983,
14-1, 15-1

X Window System, 16-4,17-11
Statemate, 17-13
Static memory management in VAXELN

systems, 6-16
Status codes, 6-22
Streams

for DEC OSF/1 network support, 11-5
Structured analysis and design CASE tools

DEC design, 17-9
EXCELERATOR, 17-12
Software through Pictures, 17-12
Statemate, 17-13
TEAMWORK, 17-13

Support packages
targets for DECelx, 2-9

Suspended state in VAXELN processes,
6-14

Suspension, in VMS, 9-3
Symmetric multiprocessing (SMP)

VMS realtime services, 9-4

Index-23

Synchronization
functions

DEC OSF/1, 12-5
DECelx PO SIX, 3-4
VAXELN PO SIX, 6-26, 6-28
VMS POSrx, 10-7,10-9

in realtime systems, 1-5
interprocess, VMS realtime services, 9-4
operations, VAXELN, 6-18
routines, VAXELN, 6-11
using DECelx POSIX, 3-3
using VAXELN POSIX, 6-24
using VMS POSrx, 10-5

. Synchronized I/O
VMS POSrx, 9-8, 10-10

Synchronous Data Link Control (SDLC),
24-18

System
images

VAXELN, 4-1, 6-6
creating, 6-4
debugging, 6-48
loading and booting, 6-6
memory mapping of, 6-16
preparing, 6-6

region, VAXELN, 6-17
using to transfer data, 6-46

relationship, VAXELN development to
target (figure), 4-2

System Builder, VAXELN, 6-4
System V

message queues, 11-5
messages, 11-5

System-management CASE tools
VAX. Performance Advisor (VPA), 17-10
VAX. Software Performance Monitor

(VAX SPM), 17-11
VMS Error Log Utility, 9-9

Systems
See Realtime, systems
dedicated realtime

VAXELN Window Server (EWS), 8-1
to 8-6

Index-24

T
Tape File Service, VAXELN, 6-46
Target microprocessors

for DECelx, 2-9, 2-10, 2-11
Target system, VAXELN

relationship to development system
(figure), 4-2

TCP (transmission control protocol), 6-42,
6-43

TCPIIP (transmission control protocol
linternet protocol) .

DEC OSF/1 support of, 11-5
TCPIIP (transmission control

protocol/internet protocol)
rtVAX connection to, 24-3,24-19
VAXELN Window Server (EWS) support

of, 8-3
VT1300 Color X Window terminal support

of, 8-3
TEAMWORK

TEAMWORK/Access, 17-13
TEAMWORKlRT, 17-13
TEAMWORK/SA, 17-13
TEAMWORK/SO, 17-13

TELNET Server, VAXELN, 6-44
Terminal emulators

TEK4014, 17-12
VAXELN DECwindows, 7-6
VT220, 17-12
VT300-series, VAXELN DECwindows,

7-7
Terminal servers

in VAXELN LAT networks, 6-44
Terminals

industrial, 1-16,23-1,25-20
IT330 and IT340, 25-20
VT33N, 25-21
VT34N, 25-21

X Window
VT1300 Color, 8-1

Test Manager, 6-48

Third Parties with Add-On Products for
RISCIUNIX Platforms (TRIIADD), 1-20

Thread
definition of, 6-29

Tightly coupled symmetric multiprocessing
conngurations, VAXELN, 5-5

(figure), 5-5
in VAXELN systems, 5-5,6-16

(figure), 5-5
Timers

DEC OSF/1, 12-3
Timers and clocks

PO SIX
DEC OSF/l, 11-8

TOEM organization, 1-19
Tool Integration Kit

FUSE, 1~12
Tools

CASE, 17-1 to 17-14
DEC Graphics Kernel System (DEC

GKS), 17-8
DEC Programmers Hierarchical

Interactive Graphics System
(DEC PHIGS), 17-9

DECdesign, 17-9
DE C graph, 17-9
DECset, 17-1 to 17-4, 1~2 to 18-6

CMS to SCCS converter, 18-3
DEC Code Management System

(CMS), 17-2
DEC Module Management

System (MrdS), 17-2
DEC Performance and Coverage

Analyzer (PCA), 17-4,18-5
DEC Source Code Analyzer

(SCA), 17-4, 18-5
DEC Test Manager, 18-4
DEC Test Manager (DTM), 17-3
Language-Sensitive Editor (LSE),

17-3
make utility, 18-3
program design, 17-3, 1~5
Source Code Control System

(SCCS), 18-2

Tools
CASE

DECset (cont'd)
VAX Language-Sensitive Editor

(LSE), 18-5
DECset dbx debugger, 1~
FUSE builder, 18-9
FUSE call graph browser, 1~9
FUSE code manager, 1~10
FUSE control panel, 1~9
FUSE cross-referencer, 1~10
FUSE debugger, 18-11
FUSE editors, 1~12
FUSE EnCase Kit, 1~12

FUSE make utility, 18-3
FUSE online help, 18-12
FUSE profiler, 18-12
third-party, i 7-12

EXCELERATOR, 17-12
Software through Pictures,

17-12
Statemate, 17-13
TEAMWORK, 17-13

VAX Notes, 17-10
VAX Performance Advisor (VPA),

17-10
VAX Software Performance Monitor

(VAX SPM), 17-11
VAX Symbolic Debugger, 17-4
VMS DECwindows, 17-11
VMS Error Log Utility, 9-9
VMS Librarian, 9-9
VMS Linker, . 9-9
VMS TPUIEVE, 17-11
VMS Workstation Software (VWS),

17-12
computer conferencing

VAX Notes, 17-10
debugging

DECset dbx debugger, 1~
FUSE debugger, 18-11
VAX Symbolic Debugger, 17-4
VAXELN Ada Remote Debugger,

14-3
XD Ada Debugger, 15-5

Index-25

Tools (cont' d)
DECelx, 2-1
DECmessageQ, 16-5
development

DEC Realtime Integrator, 21-1, 22-1
VAX Ada compiler, 14-3
VAXELN Ada programming support

environment (APSE)
See VAXELN Ada, programming

support environment (APSE)
VAXELN Toolkit, 14-3

editing
Language-Sensitive Editor (LSE),

17-3
VAX Language-Sensitive Editor

(LSE), 18-5
VMS TPUIEVE, 17-11

for realtime and scientific application
development
DEC Realtime Integrator

See also DEC Realtime Integrator
VAXELNAda

See also VAXELN Ada,·
programming support
environment

VAXELN Pascal compiler
See also VAXELN Pascal,

compiler
VAXELN Toolkit

See also VAXELN Toolkit
XDAda

See also XD Ada, programming
support environment (APSE)

graphics
DEC Graphics Kernel System (DEC

GKS), 17-8
DEC Programmers Hierarchical

Interactive Graphics System
(DEC PHIGS), 17-9

DECgraph, 17-9
VMS DECwindows, 17-11
VMS Workstation Software (VWS),

17-12
high-perl'ormance application development

Index-26

Tools
high-perl'ormance application development

(cont'd)
VAX FORTRAN HPO compiler, 13-1

linkers
VMS Linker, 6-2,9-9

NAS for ULTRIX, 18-6 to 18-8
NAS for VMS, 17-5 to 17-8
performance measurement and

management
VAX Perl'ormance Advisor (VPA),

17-10
VAX Software Performance Monitor

(VAX SPM), 17-11
productivity

CMS to SCCS converter, 18-3
DEC Code Management System

(CMS), 17-2
DEC Module Management System

(MMS), 17-2
DEC Test Manager, 18-4
DEC Test Manager (DTM), 17-3
DECset dbx debugger, 18-4
FUSE builder, 18-9
FUSE call graph browser, 18-9
FUSE code manager, 18-10
FUSE control panel, 18-9
FUSE cross-referencer, 18-10
FUSE debugger, 18-11·
FUSE editors, 18-12
FUSE EnCase Kit, 18-12
FUSE online help, 18-12
FUSE profiler, 18-12
Language-Sensitive Editor (LSE),

17-3
make utility, 18-3
program design, 17-3,18-5
Source Code Control System (SCCS),

18-2, 18-10
VAX Language-Sensitive Editor

(LSE), 18-5
VMS Librarian, 9-9

productivity and performance
Language-Sensitive Editor (LSE),

6-48

Tools
productivity and performance (cont'd)

Module Management System (MMS),
6-48

Source Code Analyzer (SCA), 6-48
Test Manager, 6-48
VAX DEC/Code Management System

(VAX DEC/CMS), 6-48
VMS Error Log Utility, 6-47
VMS Librarian, 6-47

realtime and scientific application
development, 13-1 to 13-8
DEC Ada compiler, 13-1
DEC C compiler, 13-1
DEC C++ compiler, 13-1
DEC Fortran compiler, 13-1
DEC Pascal compiler, 13-1
DEC Realtime Integrator, 13-1
VAX BASIC compiler, 13-1
VAX Pascal compiler, 13-1
VAXELN Ada, 13-1
VAXELN Pascal compiler, 13-1
VAXELN Toolkit, 13-1
XD Ada, 13-1
XD Ada toolset, 13-1

realtime modeling
DECdesign, 17-9
third-party

EXCELERATOR, 17-12
Software through Pictures,

17-12
Statemate, 17-13
TEAMWORKlRT, 17-14

system management
VAX Performance Advisor (VPA),

17-10
VAX Software Performance Monitor

(VAX SPM), 17-11
VMS Error Log Utility, 9-9

UNIX CASE tools, 18-1 to 18-14
VAXELN POSIX

runtime libraries, 6-4
VAXELN Toolkit, 1-13, 4-1, 4-2

Command Language Utility (ECL),
6-51

Tools
VAXELN Toolkit (cont'd)

Display Utility, 6-50
Error Log Server, 6-51
Error Logging Service, 6-51
LAT Control Program Utility, 6-45,

6-52
Outbound Remote Terminal Utility,

6-52
Performance Utility, 6-50
runtime libraries, 6-1, 6-3
System Builder, 6-4
VAXELN Debugger, 6-48
VAXELN Pascal compiler, 6-1,6-2

VMS CASE
VMS Linker, 6-2

XDAda
See XD Ada, programming support

environment
TPUIEVE, 17-11
Transmission control protocol (TCP), 6-42,

6-43
TRIIADD (Third Parties with Add-On

Products for RISCIUNIX Platforms),
1-20

TRIIADD Program, 2--11,25-15
TURBOchannel

as target for DECelx, 2-10
graphics options, 24-14
in DEC station systems, 24-7

TURBOchanneloptions, 25-13
TURBOchannel-to-IEEE-488 adapter

DEerti support, 25-17
TURBOchannel-to-VME adapter, 25-14
TX graphics option, 24-13

u
U.S. Department of Defense standards

DEC Ada compiler compliance, 13-2
U.S. Government standards
~S~STD-1815A-1983

Ada language standard, 14-1,15-1
UDP (user datagram protocol), 6-42

Index-27

Universal data interface panels (UDIPs),
25-12

Universal port names
in VAXELN LANs, 6-20, 6-39

UNIX
CASE tools, 18-1 to 18-14
workstations, 24-6, 24-12, 24-14, 24-15,

24-16
UNIX operating system, 1-14
User datagram protocol (UDP), 6-42
User environment

VAXELN DECwindows, 7-3
User interface

VAXELN DECwindows, 7-3
objects, 7-4

User mode
and preemption, 11-3

Utilities
VAXELN Toolkit, 4-4,6-47

Display, 6-50
ECL (VAXELN Command Language),

6-45
LAT Control Program, 6-45, 6-52
Outbound Remote Terminal Utility,

6-52
Remote Terminal, 6-41
VAXELN Command Language (ECL),

6-51
VMS Error Log Utility, 6-47,9-9
VMS Mail, 17-3, 17-11

Utility libraries
for DECelx, 3-11

v
VAX

6000 systems, 24-28
VAX 6000 Model 600

features, 24-28
VAX Ada, 1-14

compiler, 15-1, 15-2
program library manager, 15-2

VAX BASIC, 13-3
VAXC, 1-14

runtime library

Index-28

VAXC
runtime library (cont' d)

relationship to VAXELN C, 6-3
VAX Common Data DictionarylRepository

(VAX CDDlRepository), 17-9
VAX Debugger, 15-2
VAX DEC/Code Management System (CMS),

6-48
VAX FORTRAN, 1-14

High-Performance Option (HPO) on VMS,
13-6

VAX Notes, 17-10
VAX Pascal, 13-8

ISO U nextended Pascal Standard, 13-8
VAX Performance Advisor (VPA), 17-10
VAX Software Performance Monitor

(VAX SPM), 17-11
VAX Symbolic Debugger, 17-4
VAX Vector Processors, 13-6
VAXBI bus

in rtVAX 6000 systems, 24-20, 24-25
options

See Realtime, hardware, VAXBI bus
options

VAXELN
applications

developing, 4-1
with DECwindows, 7-1, 7-5

as development system for EWS, 8-4
closely coupled multiprocessing

configuration, 6-16
communication region, 6-36
debugger, 4-4, 6-48

local environment (figure), 6-49
remote environment (figure), 6-48

DECnet Service, 6-37,6-38 to 6-41
communication with VMS and

ULTRIX nodes, 6-41
DECnet-VAX network control

program (NCP), 6-40
message transmission, 6-39
name service, 6-39
network management listener (NML),

6-40

VAXELN
DECnet Service (cont'd)

network management protocol (NMP),
6-40

Network Management Service, 6-40
TELNET, 6-44

DECwindows
accelerators, 7-3
applications, 7-5
architecture of, 7-2
client, 7-2
Motif Window Manager, 7-6
object manipulation, 7-3
server, 7-2, 7-5
software, 4-4
terminal emulators, 7-6
Toolkit components, 7-5
use with distributed applications,

7-3
use with multiple applications, 7-4
user environment, 7-3, 7-6

development tools
See Tools, development; VAXELN,

Toolkit
device drivers, 6-33 to 6-34
device objects, 6-9, 6-21, 6-36
Disk File Service, 6-46
Downline Load Service, 6-40
downline loading systems, 6-40
EeL (Command Language Utility)

as LAT host service, 6-45
Error Log Server, 6-51
Error Logging Service, 6-51
EthernetlIEEE 802 Datagram Service,

6-37,6-38
event response, 6-18
features, 4-2
file access listener (FAL), 6-47
File Service, 6-46
hardware requirements, 4-5
Internet Services, 6-37,6-42
interrupt response, 6-8
jobs, 5-2

processor eligibility of, 6-16
KAV30 kernel, 6-7

VAXELN (cont'd)
kernel, 4-2, 6-6, 6-8

communication routines, 6-12
data structures, 6-9

table, 6-10
device-handling, 6-13
interrupt-handling operations, 6-36
interrupt-handling routines, 6-21
message-passing routines, 6-39
modifying for rtVAX 300, 24-4
name service routines, 6-39
objects, 6-9

data types for, 6-2
table, 6-9

operations, 6-10 to 6-13
table, 6-11

routines, 6-2, 6-10 to 6-13
scheduler, 6-16
synchronization routines, 6-11

LAT host services, 6-44
dedicated, 6-45

loosely coupled multiprocessing
configuration, 6-16

memory management, 6-16
message object modules, 6-22
network communications, 6-37
Network Service, 6-38 to 6-41

Remote Terminal, 6-41
VAXELN Internet, 6-41

Performance Utility, 6-50
POSIX. runtime library, 6-6
process state transitions

figure, 6-14
processes; 5-1

ready state in, 6-13
programming concepts, 5-1
runtime libraries, 6-3
SCSI device drivers, 6-34·
service nodes, 6-45

See also LAT (local area transport)
software requirements, 4-5
Source Kit, 24-4
System Builder, 6-1, 6-4, 6-7
system image, 6-6

memory mapping of, 6-16

Index-29

VAXELN
system image (cont'd)

preparing, 6-6
figure, 6-5

software components
figure, 6-7

systems, 4-1
for rtVAX, 24-1
loading and booting, 6-6
protecting, 6-45
virtual address space in, 6-16, 6-17
virtual circuits in, 6-20
virtual memory in, 6-16

tightly coupled symmetric multiprocessing
configuration, 6-16

Toolkit, 1-13, 4-1, 4-2, 4-4
criteria for selecting, 1-13

trigger booting systems or downline load,
6-40

utilities
See Utilities, VAXELN Toolkit

workstations, 24-6
VAXstation 4000 VLC, 24-9

VAXELN Ada, 13-1, 14-1 to 14-7
booting systems, 14-5
developing systems, 14-5

figure, 14-5
features, 14-1, 14-2

Compliance with U.S. Government
requirements
Ada Validation Office, 14-1

integration with the VAXELN
runtime environment, 14-2

target system flexibility, 14-1
U.S. Government requirements

compliance
ANSIIMIL-STD-1815A-1983,

14-1
VAX Ada software development and

runtime restrictions, 14-2
VAX Ada software development tools,

14-2
hardware requirements

development system, 14-7
target system, 14-7

Index-30

VAXELN Ada (cont'd)
hardware, optional, 14-7
loading systems, 14-5
programming support environment

(APSE), 14-3
Remote Debugger, 14-3

features for Ada tasks, 14-4
features for VAXELN Ada system

monitoring and control
commands, 14-4

VAX Ada compiler, 14-3
VAX Ada program library manager,

14-3
VAXELN Toolkit, 14-3

runtime software, 14-5
VAX Ada predefined library packages,

14-5
VAXELN runtime facilities, 14-5

software requirements
host system, 14-7

software, optional, 14-7
use, 14-1

VAXELN Ada runtime library, 1-15
VAXELN C runtime library, 6-1

relationship to VAX C, 6-3
VAXELN FORTRAN runtime library, 6-3
VAXELN kernel

process states, 6-13 to 6-15
VAXELN Pascal

compiler, 1-14,6-1,6-2
data types, flexible, 6-3
function type declarations, 6-3
parameter lists, flexible, 6-3
procedure type declarations, 6-3
runtime library, 6-3
type declarations, 6-3
typecasting data, 6-3

VAXELN PO SIX, 1-10
binary semaphores, 6-24
clocks, 6-25
communication between processes, 6-26
communication functions, 6-28
environment, 6-24
functions

table, 6-26,6-27,6-28'

VAXELN POSIX (cont'd)
memory locking, 6-28
memory-locking functions, 6-28
priority scheduling, 6-25
process synchronization, 6-24
programnring, 6-23, 6-24 to 6-29
runtime libraries, 6-4
scheduling policies, 6-25
shared memory, 6-27
signals, 6-27
synchronization functions, 6-26, 6-28
timers, 6-25

VAXELN Toolkit, 13-1
VAXELN Window Server (EWS), 8-1 to 8-6

as a DECwindows implementation, 8-1,
8-5

as a VAXELN implementation, 8-4
communication with host system, 8-1,

8-3
DECnet protocol support, 8-3
features, 8-3
hardware requirements, 8-5
overview, 8-1
software requirements, 8-5, 8-6
TCPIIP (transmission control

protoco1/internet protocol) support,
8-3

VAXELN Window Station
features, 8-3

VAXELN Window Station (EWS), 24-9
VAXELN_SERVICES Ada package, 6-1, 6-3
VAXstation 4000 Model 60, 24-10

features, 24-10
VAXstation 4000 Model 90, 24-11

features, 24-12
VAXstation 4000 VLC, 24-9

features, 24-9
vi editor

FUSE, 18-12
Vu-tual circuit

establishing, 6-12
Virtual-Memory driver (VMDRIVER),

VAXELN, 6-35
VME options, 25-19
VMEbus

VM:Ebus (cont'd)
as target for DECelx, 2-10

VMS
interprocess synchronization, 9-4
pseudodevices, 9-2
queued 110 (QIO) system service, 9-4
realtime application development

programming techniques
conne~to-interrupt facility to

service device interrupts,
9-5

file creation methods to optimize
disk 110, 9-5

queued inpuUoutput (QIO)
system service to access
device drivers directly, 9-5

read and write to device registers
directly, 9-5

realtime capabilities, 9-1 to 9-10
application development tools, 9-8

DEC Realtime Integrator, 9-8
realtime services, 9-1

interprocess communication, 9-2
asynchronous system trap (AHr)

service routines, 9-3
common event flags, 9-2
DECnet, 9-3
global sections, 9-2
hibernation, 9-3
lock manager, 9-3
mailboxes, 9-2
privileged shareable images, 9-4
shareable images, 9-3
suspension, 9-3

interprocess synchronization, 9-4
low overhead 110, 9-4
memory management, 9-2
scheduler, 9-1 '
symmetric multiprocessing (SMP),

9-4
VMS CASE~ 15-2, 15-3
VMS DECwindows Motif, 17-11
VMS ElTor Log Utility, 6-47,9-9
VMS Librarian, 6-47, 9-9

Index-31

VMS Linker, 6-2,9-9
VMS Mail Utility, 17-3, 17-11
VMS operating system, 1-14
VMS PO SIX, 1-10

asynchronous I/O, 9-8, 10-10
binary semaphores, 9-7
clocks, 9-7, 10-6
commands and utilities, 10-3
communication functions, 10-9
container file system, 10-4
event notification, 9-7, 10-8
file system, 10-4
files, 9-8, 10-11
functions

table, 10-7, 10-9, 10-11
interprocess communication, 9-7, 10-8
memory locking, 10-10
message queues, 9-7, 10-8
performance, 10-9
performance functions, 10-11
priority scheduling, 9-7, 10-6
process synchronization, 10-5
programming, 9-6
programming environment, 10-1
realtime environment, 10-5
realtime programming, 10-1 to ·10-11
scheduling policies, 9-7, 10-6
shared memory, 9-7,10-9
shell, 10-4
synchronization functions, 10-7, 10-9
synchronized I/O, 9-8, 10-10
timers, 9-7, 10-6

VMS TPUIEVE, 17-11
VMS Workstation Software (VWS), 17-12
VPA (VAX Performance Advisor), 17-10
VT1300 Color X Window terminal, 8-1

communication with host system, 8-1,
8-3

DECnet protocol support, 8-3
TCPfIP <transmission control

protocol/internet protocol) support,
8-3

VT300-series terminal emulator, 7-7
VWS (VMS Workstation Software), 17-12

Index-32

VWS SIGHT, 17-12

w
Wait state in VAXELN processes, 6-13
Ward-Mellor extensions to Yourdon

Structured Design, realtime modeling
techniques, 17-9

Workstations
for EWS, 24-9
for UNIX, 24-6, 24-12, 24-14, 24-15,

24-16
for VAXELN, 24-6

Workstations, realtime
DEC station 5000 Model 133, 24-15
DEC station 5000 Model 240, 24-16
MicroVAX 3100, 24-17
Personal DEC station 5000 Model 20,

24-14
Personal DEC station 5000 Model 25,

24-14
Personal DEC station 5000 Model 33,

24-14
Worksystems

servers, 24-27
Worstations, realtime

Personal DEC station 5000 Series, 24-14

x
X Window System, 7-1, 16-4, 17-11

architecture of, 7-2
Motif Toolkit, 7-5
VAXELN Window Server (EWS)

implementation, 8-1
Xlib, 7-5

XD Ada, 1-15,13-1,15-1 to 15-7
communication standards between host

and target systems
parallel link to a DR11-W or

DRV11-WA parallel-line interface,
15-7

standard RS-232-C port connected to
a VAX terminal interface, 15-7

VMS mailbox interface, 15-7

XD Ada (cont'd)
debugging applications, 15-2
developing applications, 15-2, 15-6

figure, 15-7
features

application development without
target hardware, 15-2

compatible host and target
development and runtime
environments, 15-2

cross-compiler
compact code generation, 15-2
comprehensive diagnostic

messages, 15-2
fast compilation rate, 15-2

extension to the VAX Ada compiler,
15-1

reconfigurable target system, 15-3
target system-dependent application

development support, 15-2
U.S. Government requirements

compliance
ANSIf.MIL-STD-1815A-1983,

15-1
VMS development, testing, and

debugging environment
compatibility, 15-2

hardware requirements, 15-5, 15-7
host system, 15-7
target system, 15-7

MIL-STD-1750A microprocessor
support, 15-5

Motorola MC68xxx microprocessor
support, 15-5

loading applications, 15-6
programming support environment, 15-3

assemblers, macro, 15-4
builder, 15-4
cross-compilers, 15-3
debugger, 15-5
formatter, 15-4
librarian, 15-4
library of predefined compilation

units, 15-3
loader, 15-4

XDAda
programming support environment

(cont'd)
program library manager, 15-4
xdrun command, 15-5

runtime software, 15-5
target debug kernel, 15-5
target runtime system (RTS), 15-4,

15-5
hard ware preconfigurations,

15-5
, software requirements

host system, 15-7
testing applications, 15-2, 15-6
toolset, 13-1

XD Ada toolset, 15-3
Xlib, 7-5
XMI bus

in rtVAX 6000 systems, 24-25
in rtVAX 9000 systems, 24-20

XMI-to-VME option, 25-19
XPG3 BASE

VMS POSIX, 9-6

v
Yourdon Structured Design

process and realtime modeling techniques, .
17-9

with Ward-Mellor extensions for realtime
modeling, 17-9

Index-33

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-DIGITAL
(800-344-4825) and press 2 for technical assistance.

Electronic Orders
If you wish to place an order through your account at the Electronic Store, dial
800-234-1998, using a modem set to -2400 or -9600 baud. You must be using a VT
terminal or terminal emulator set at 8 bits, no parity. If you need assistance using
the Electronic Store, call 800-DIGITAL (800-344-4825) and ask for an Electronic Store
specialist.

Telephone and Direct Mail Orders

From
U.S.A.

Puerto Rico

Canada

International

Internal Orders 1

(for software
documentation)

Internal Orders
(for hardware
documentation)

Call
DECdirect
Phone: 800-DIGITAL
(800-344-4825)
FAX: (603) 884-5597

Phone: (809) 781-0505
FAX: (809) 749-8377

Phone: 800-267-6215
FAX: (613) 592-1946

DTN: 241-3023
(508) 874-3023

DTN: 234-4325
(508) 351-4325
FAX: (508)351-4467

Write
Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Digital Equipment Carribean, Inc.
3 Digital Plaza, 1st Street
Suite 200
Metro Office Park
San Juan, Puerto Rico 00920

Digital Equipment of Canada Ltd.
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: DECdirect Sales

Local Digital subsidiary or
approved distributor

Software Supply Business (SSB)
Digital Equipment Corporation
1 Digital Drive
Westminster, MA 01473

Publishing & Circulation Services
Digital Equipment Corporation
NR02-2
444 Whitney Street
Northboro, MA 01532

lCall to request an Internal. Software Order Form (EN-01740-07).

Reader's Comments Realtime Products Technical Summary
EK-RPTSS-TM-004

Your comments and suggestions help us improve the quality of our publications.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (product works as manual says) 0
Completeness (enough information) 0
Clarity (easy to understand) 0
Organization (structure of subject matter) 0
Figures (useful) 0
Examples (useful) 0
Index (ability to find topic) 0
Page layout (easy to find information) 0

I would like to see morelless

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:
Page Description

Good

o
o
o
o
o
o
o
o

Additional comments or suggestions to improve this manual:

Fair

0
0
0
0
0
0
0
0

Poor

0
0
0
0
0
D.
0
0

For software manuals, please indicate which version of the software you are using: __

Name!I'itle

Company

Mailing Address

Dept.

Phone

Date

Do Not Tear - Fold Here and Tape

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Information Design and Consulting
NU01-1/G10
55 NORTHEASTERN BLVD.
NASHUA, NH 03062-9934

No Postage
Necessary
If Mailed

in the
United States

Do Not Tear - Fold Here --

