
ULTRIX

Reference Pages for Unsupported Software

Order Number: AA-MFQO5B-TE

June 1990

Product Version: ULTRIX Version 4.0 or higher

This manual describes the unsupported commands, library routines, special files, file formats,

games, and macro packages for RISC and VAX platforms.

digital equipment corporation
maynard, massachusetts

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause of DFARS 252.227-7013.

© Digital Equipment Corporation 1987, 1988, 1990

All rights reserved.

Portions of the information herein are derived from copyrighted material as permitted under license agreements with

AT&T and the Regents of the University of California. © AT&T 1979, 1984. All Rights Reserved.

Portions of the information herein are derived from copyrighted material as permitted under a license agreement with

Sun MicroSystems, Inc. © Sun MicroSystems, Inc, 1985. All Rights Reserved.

Portions of this document © Massachusetts Institute of Technology, Cambridge, Massachusetts, 1984, 1985, 1986,

1988.

The information in this document is subject to change without notice and should not be construed as a commitment

by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may

appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance

with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital or its

affiliated companies.

The following are trademarks of Digital Equipment Corporation:

mngnan DECUS ULTRIX Worksystem Software

DECwindows UNIBUS

CDA DTIF VAX

DDIF MASSBUS VAXstation

DDIS MicroVAX VMS

DEC Q-bus VMS/ULTRIX Connection

DECnet ULTRIX vT

DECstation ULTRIX Mail Connection XUI

Triumvirate is a trademark of Compugraphic Corporation.

Modula-2 is a trademark of Interface Technologies Corporation.

System V is a registered trademark of AT&T.

Tektronix is a trademark of Tektronix, Inc.

Teletype is a registered trademark of AT&T in the USA and other countries.

UNIX is a registered trademark of AT&T in the USA and other countries.

Acknowledgments

In accordance with the licenses granted to Digital Equipment Corporation by AT&T and the University of California

at Berkeley pertaining to the software described herein, the following should be understood: Any related

documentation provided to third parties, whether pursuant to an agreement with Digital Equipment Corporation

permitting sublicensing of the software described herein or otherwise, must contain the provisions as set forth below.

Information herein is derived from copyrighted material as permitted under a license agreement with AT&T and The

Regents of the University of California.

Copyright © 1979, 1984 AT&T. All Rights Reserved.

UNIX is a trademark of AT&T. The UNIX trademark may not be used as or in the name of any licensee’s product.

Any use of the trademark in advertising, publicity, packaging, labeling or otherwise must state that UNIX is a

trademark of AT&T.

The software described in this documentation is based in part on the Fourth Berkeley Software Distribution under

license from The Regents of the University of California. The following individuals and institutions are acknowledged

for their role in its development:

The Electrical Engineering and Computer Science Department at the Berkeley Campus of the University of

California, Eric Allman, Ken Arnold, Ozalp Babaoglu, Scott B. Baden, Jerry Berkman, John Breedlove, Earl T.

Cohen, Robert P. Corbett, Mike Curry, Steve Feldman, Tom Ferrin, John Foderaro, Susan L. Graham, Charles Haley,

Robert R. Henry, Andy Hertzfeld, Mark Horton, S.C. Johnson, William Joy, Howard Katseff, Peter Kessler, Jim

Kleckner, J.E. Kulp, James Larus, Kevin Layer, Mike Lesk, Steve Levine, Jeff Levinsky, Louise Madrid, M. Kirk

McKusick, Colin L. McMaster, Mikey Olson, Geoffrey Peck, Ed Pelegri-Llopart, Rob Pike, Dave Presotto, John F.

Reiser, Asa Romberger, Bill Rowan, Jeff Schreibman, Eric P. Scott, Greg Shenaut, Eric Shienbrood, Kurt Shoens,

Keith Sklower, Helge Skrivervik, Al Stanberger, Ken Thompson, Michael C. Toy, Richard Tuck, Bill Tuthill, Mike

Urban, Edward Wang, David Wasley, Joseph Weizenbaum, Jon L. White, Glenn Wichman, Niklaus Wirth.

The Fourth Berkeley Software Distribution is provided by The Regents of the University of California and the Other

Contributors on an *‘as is’’ basis. Neither The Regents of the University of California nor the Other Contributors

warrant that the functions contained in the Fourth Berkeley Software Distribution will meet the licensee’s

requirements or will operate in the combinations which may be selected for use by the licensee, or that the operation

of the Fourth Berkeley Software Distribution will be uninterrupted or error free.

Neither The Regents of the University of California nor the Other Contributors make any warranties, either express or

implied, as to any matter whatsoever, including without limitation, the condition of the Fourth Berkeley Software

Distribution, its merchantability or its fitness for any particular purpose.

The licensee understands and agrees that The Regents of the University of California and the Other Contributors are

under no obligation to provide either maintenance services, update services, notices of latent defects, or correction of

defects for the Fourth Berkeley Software Distribution.

About Unsupported Reference Pages

The Reference Pages for Unsupported Software describe commands, routines, file

formats, special files and games for RISC and VAX platforms that are part of the

optionally installed, unsupported software subset. The unsupported software is not all

documented and there are differences between the documentation levels on the RISC
and VAX platforms. QARs are not accepted on the unsupported reference pages.

The unsupported reference pages are each labeled ‘‘Unsupported’” under the title.

Sections

The reference pages for the unsupported software are in one binder that is divided

into seven sections according to topic. Within each section, the reference pages are

organized alphabetically by title, except Section 3, which is divided into subsections.

Some reference pages carry a one- to three-letter suffix after the section number, for

example, abort(3f). The suffix indicates a ‘‘family’’ of reference pages for that

utility or feature.

Following are the sections that make up the Reference Pages for Unsupported

Software.

Section 1: Commands

This section describes unsupported commands that are available to all ULTRIX users.

Section 3: Library Routines

This section describes the unsupported routines available in ULTRIX libraries.

Routines are sometimes referred to as subroutines or functions.

Section 4: Special Files

This section describes unsupported special files, related device driver functions,

databases, and network support.

Section 5: File Formats

This section describes the format of unsupported system files and how the files are

used.

Section 6: Games

The reference pages in this section describe the games that are available in the

unsupported software subset.

Section 7: Macro Packages and Conventions

This section contains miscellaneous information, including ASCII character codes,

mail addressing formats, text formatting macros, and a description of the root file

system.

Section 8: Maintenance

This section describes unsupported commands for system operation and maintenance.

Platform Labels

The Reference Pages for Unsupported Software contain entries for both RISC and

VAX platforms. Pages that have no platform label beside the title apply to both

platforms. Reference pages that apply only to RISC platforms have a ‘*‘RISC”’ label

beside the title and the VAX-only reference pages that apply only to VAX platforms

are likewise labeled with ‘‘“VAX.”’ If each platform has the same command, system

call, routine, file format, or special file, but functions differently on the different

platforms, both reference pages are included, with the RISC page first.

Reference Page Format

Each reference page follows the same general format. Common to all reference pages

is a title consisting of the name of a command or a descriptive title, followed by a

section number; for example, date(1l). This title is used throughout the

documentation set.

The headings in each reference page provide specific information. The standard

headings are:

Name Provides the name of the entry and gives a short description.

Syntax Describes the command syntax or the routine definition. Section 5

reference pages do not use the Syntax heading.

Description Provides a detailed description of the entry’s features, usage, and

syntax variations.

Options Describes the command-line options.

Restrictions Describes limitations or restrictions on the use of a command or

routine.

Examples Provides examples of how a command or routine is used.

Return Values Describes the values returned by a system call or routine. Used in

Sections 2 and 3 only.

Diagnostics Describes diagnostic and error messages that can appear.

Files Lists related files that are either a part of the command or used

during execution.

Environment Describes the operation of the system call or routine, with the

POSIX and SYSTEM V environments. If the environment has no

effect on the operation, this heading is not used. Used in Sections

2 and 3 only.

vi About Unsupported Reference Pages

See Also

Conventions

Lists related reference pages and documents in the ULTRIX

documentation set.

The following documentation conventions are used in the reference pages.

%

#

user input

The default user prompt is your system name followed by a right

angle bracket. In this manual, a percent sign (%) is used to

represent this prompt.

A number sign is the default superuser prompt.

This bold typeface is used in interactive examples to indicate

typed user input.

system output This typeface is used in text to indicate the exact name of a

UPPERCASE

lowercase

rlogin

filename

[]

{1}

cat(l)

command, routine, partition, pathname, directory, or file. This

typeface is also used in interactive examples to indicate system

output and in code examples and other screen displays.

The ULTRIX system differentiates between lowercase and

uppercase characters. Literal strings that appear in text,

examples, syntax descriptions, and function definitions must be

typed exactly as shown.

This typeface is used for command names in the Syntax portion

of the reference page to indicate that the command is entered

exactly as shown. Options for commands are shown in bold

wherever they appear.

In examples, syntax descriptions, and routine definitions, italics

are used to indicate variable values. In text, italics are used to

give references to other documents.

In syntax descriptions and routine definitions, brackets indicate

items that are optional.

In syntax descriptions and routine definitions, braces enclose lists

from which one item must be chosen. Vertical bars are used to

separate items.

In syntax descriptions and routine definitions, a horizontal ellipsis

indicates that the preceding item can be repeated one or more

times.

A vertical ellipsis indicates that a portion of an example that

would normally be present is not shown.

Cross-references to the ULTRIX Reference Pages include the

appropriate section number in parentheses. For example, a

reference to cat(1) indicates that you can find the material on the

cat command in Section 1 of the reference pages.

About Unsupported Reference Pages vii

Online Reference Pages

The ULTRIX reference pages for unsupported software, as well as supported, are

available online if installed by your system administrator. The man command is

used to display the reference pages as follows:

To display the t rof £(1) reference page:

% man troff

To display the Name lines of all reference pages that contain the word ‘‘Fortran’’:

% man -~k Fortran

Users on ULTRIX workstations can also display the reference pages using the

unsupported xman utility, if installed. See the xman(1X) reference page for details.

Reference Pages for Supported Software

The reference pages for the supported ULTRIX software are in the document

ULTRIX Reference Pages.

viii About Unsupported Reference Pages

Introduction

You can use the set 1d command to install all or some of the unsupported software

subsets included with your ULTRIX. See setl1d(8) in the ULTRIX Reference

Pages for further information.

Table 1: VAX Unsupported Subset Sizes

Kilobytes Used

Subset Name / (root) lusr fusr/var Total

ULXAPLA400 0 270 0 270

ULXBASEA400 56 2558 1 2615

ULXBIB400 0 195 0 195

ULXCOURIER400 0 105 0 104

ULXCPM400 0 28 0 28

ULXDOC400 0 3448 0 3448

ULXEDIT400 0 6237 0 6237

ULXF77400 0 733 0 733

ULXGAMES400 0 2230 0 2230

ULXHYPER400 0 79 0 79

ULXICON400 0 347 0 347

ULXINGRES400 0 2638 0 2638

ULXLEARN400 0 653 0 653

ULXLISP400 0 3963 0 3963

ULXMAN400 0 319 0 319

ULXMOD2400 0 1036 0 1036

ULXNEWS400 0 866 0 866

ULXNOTES400 0 1179 0 1179

ULXRCS400 0 227 0 227

ULXSHELLS400 0 56 0 56

ULXSPMS400 0 1236 0 1236

ULXTOOLS400 0 55 0 55

ULXVARIAN400 0 2736 0 2736

Table 2: RISC Unsupported Subset Sizes

Kilobytes Used

Subset Name / (root) fusr /usr/var Total

UDXBASE400 95 3614 1 3710

UDXBIB400 0 292 0 292

UDXCOURIER400 0 165 0 165

UDXDOC400 0 3448 0 3448

UDXEDIT400 0 6237 0 6237

UDXGAMES400 0 2507 0 2507

UDXLEARN400 0 734 0 734

UDXMAN400 0 129 0 129

UDXNEWS400 0 866 0 866

UDXNOTES400 0 1885 0 1885

UDXRCS400 0 213 0 213

UDXSHELLS400 0 95 0 95

UDXTOOLS400 0 112 0 112

Table 3 lists each unsupported software subset and gives a brief description of its

contents. The Dependencies column shows the names of any other subsets and

kernel configuration file options related to each subset.

X Introduction

Table 3: Unsupported Software Subset Descriptions and Dependencies

Subset Name Contents Dependencies

ULXAPLA400*

ULXBASEA400,

UDXBASE400

ULXBIB400*,

UDXBIB400*

ULXCOURIER400%*,

UDXCOURIER400*

ULXCPM400*

ULXDOC400,

UDXDOC400

ULXEDIT400,

UDXEDIT400

ULXF77400

ULXGAMES400%,

UDXGAMES400*

ULXHYPER400*

ULXICON400*

APL Development Package

User-contibuted APL language interpreter

and associated utilities. The software in

this subset is not supported by DIGITAL.

Base Extension

Programs and data files that may be useful

in some environments. These include

obsolete boot programs, drivers for

unsupported devices, the troff package

with fonts, and miscellaneous software.

The software in this subset is not supported

by DIGITAL.

Bibliographic Utilities

Programs and data useful in maintaining

bibliographic information. The software in

this subset is not supported by DIGITAL.

Requires:

ULTDCMT400,

UDTDCMT400

Remote Procedure Call Compiler

Modules for producing software using the

COURIER remote procedure call protocol.

The software in this subset is not supported

by DIGITAL.

CP/M 8in Diskette Utility

Utilities for reading and writing 8-inch

diskettes used with the CP/M operating

system. The software in this subset is not

supported by DIGITAL.

Supplementary Documentation

Online supplementary documentation set.

GNU Emacs

The Public Domain GNU Emacs editor and

edit-macro files. The software in this

subset is not supported by DIGITAL.

FORTRAN-77

Utilities for developing programs using the

UNIX F77 dialect of FORTRAN.

Games and Diversions

Programs used for entertainment. The

software in this subset is not supported by

DIGITAL.

Hyperchannel Utilities

The Hyperchannel driver and associated

daemons and utilities. The software in this

subset is not supported by DIGITAL.

ICON (Language) Development Package

Translator and linker for the ICON

programming language. The software in

this subset is not supported by DIGITAL.

Introduction xi

Table3: (continued)

Subset Name Contents Dependencies

ULXINGRES400

ULXLEARNA400,

UDXLEARN400

ULXLISP400

ULXMAN400,

UDXMAN400

ULXMOD2400

ULXNEWS400,

UDXNEWS400

ULXNOTES400,

UDXNOTES400

ULXRCS400,

UDXRCS400

ULXSHELLS400%*,

UDXSHELLS400*

Xii Introduction

University Ingres QUEL DBMS

INGRES database management system.

The software in this subset is not supported

by DIGITAL.

Computer-Aided System Tutor

Software for the learn program, which

provides lessons in aspects of the

computing environment. This subset is

useful for persons new to the UNIX

environment. The software in this subset is

not supported by DIGITAL.

Franz Lisp Development Package

Programs that make up the Franz Lisp

program development environment,

including interpreter, libraries, and

compiler. The software in this subset is not

supported by DIGITAL.

Unsupported On-Line Manuals

On-line reference pages for programs found

in the ULXBASE400 or UDXBASE400

subset. The software in this subset is not

supported by DIGITAL.

Modula-2 Development Package

MODULA-2 compiler and libraries. The

software in this subset is not supported by

DIGITAL.

USENET News Interface Software Requires:

Software needed to participate in the ULTCOMMA400,

USENET news network. The software in ULTUUCP400 or

this subset is not supported by DIGITAL. UDTCOMM400,

UDTUUCP400

Notesfiles Package

Software that lets you establish

notesfiles on your ULTRIX system.

The software in this subset is not supported

by DIGITAL.

Revision Control System

Programs that make up a package similar to

the SCCS facility provided with the

supported software subsets. The software

in this subset is not supported by

DIGITAL.

Auxiliary Command Line Interpreters

The ’distributed’ shell and a version of the

C-shell that features command completion.

The software in this subset is not supported

by DIGITAL.

Table 3: (continued)

Subset Name Contents Dependencies

ULXSPMS400 Software Project Management System

A package useful for managing large

software development efforts. The software

in this subset is not supported by

DIGITAL.

ULXTOOLS400%*, Miscellaneous User-Contributed Utilities

UDXTOOLS400* Small utilities contributed by the user

community. The software in this subset is

not supported by DIGITAL.

ULXVARIAN400 Raster Plotter Package Requires:

Software used to typeset documents on the ULTDCMT400

VARIAN typesetter. The software in this

subset is not supported by DIGITAL.

* User-contributed software.

Introduction xiii

efl(1) VAX

Unsupported

Name

efl — Extended FORTRAN Language

Syntax

efl [option ... 1 [filename ...]

Description

The ef1 command compiles a program written in the EFL language into clean

FORTRAN. The efl command provides the same control flow constructs as does

rat for(1), which are essentially identical to those in C:

statement grouping with braces;

decision-making with if, if-else, and switch-case; while, for,

FORTRAN do, repeat, and repeat...until loops; multi-level break

and next. In addition, EFL has C-like data structures, and more

uniform and convenient input/output syntax, generic functions.

EFL also provides some syntactic sugar to make programs easier

to read and write:

free form input: multiple statements/line; automatic continuation statement label

names (not just numbers),

comments: # this is a comment

translation of relationals:

>, >=, etc., become .GT., .GE., etc.

return (expression)

returns expression to caller from function

define: define name replacement

include: include filename

The ef1 program is best used with £77(1).

Options

-w Suppresses warning messages.

-C Causes comments to be copied through to the FORTRAN output (default).

—+# Prevents comments from being copied through. If a command argument

contains an embedded equal sign, that argument is treated as if it had

appeared in an option statement at the beginning of the program.

See Also

£77(1), ratfor(1).

S. 1. Feldman, The Programming Language EFL, Bell Labs Computing Science

Technical Report #78.

Commands 1-1

eqn(1)

Unsupported

Name

Syntax

eqn, neqn, checkeq — typeset mathematics

eqn [—dxy][-pn][-sn][fn][file]..
checkeq [file] ...

Description

The eqn commandis a troff(1) preprocessor for typesetting mathematics on a

Graphic Systems phototypesetter, neqn on terminals. Usageis almost always

egn file ... | troff

negn file ... | nroff

If no files are specified, these programs reads from the standard input. A line

beginning with .EQ marks the start of an equation; the end of an equation is marked

by a line beginning with .EN. Neither of these lines is altered, so they may be

defined in macro packages to get centering, numbering, etc. It is also possible to set

two characters as delimiters; subsequent text between delimiters is also treated as

eqgn input. Delimiters may be set to characters x and y with the command-line

argument ~dxy or (more commonly) with ‘delim xy’ between .EQ and .EN. The left

and right delimiters may be identical. Delimiters are turned off by delim off. All
text that is neither between delimiters nor between .EQ and .EN is passed through

untouched.

The program checkeq reports missing or unbalanced delimiters and .EQ/.EN pairs.

Tokens within eqn are separated by spaces, tabs, newlines, braces, double quotes,

tildes or circumflexes. Braces {} are used for grouping; generally speaking,

anywhere a single character like x could appear, a complicated construction enclosed

in braces may be used instead. Tilde ~ represents a full space in the output,

circumflex A half as much.

Subscrlpts and superscrlpts are produced with the keywords sub and sup. Thugs x sub

i makes x;, a sub i sup 2 produces a?, and e sup {x sup 2 + y sup 2} gives e* 7 .

Fractions are made with over: a over b yields—

sqrt makes square roots: I over sqrt {ax sup 2 +bx+c} results in .

\/ax2+bx+c
The keywords from and to introduce lower and upper limits on arbitrary things:

n

lim Y x; is made with lim from {n—> inf } sum from 0 to n x sub i.
n-—oo O

Left and right brackets, braces, and so forth, of the right height are made with left

and right:

2left [x sup 2 + y sup 2 over alpha right | ~=~I produces {x%%}‘ = 1.

1-2 Commands

eqn(1)

Unsupported

The right clause is optional. Legal characters after left and right are braces,

brackets, bars, ¢ and f for ceiling and floor, and "" for nothing at all (useful for a

right-side-only bracket).

Vertical piles of things are made with pile, Ipile, cpile, and rpile: pile {a above b
a

above c} produces b. There can be an arbitrary number of elements in a pile. lpile
c

left-justifies, pile and cpile center, with different vertical spacing, and rpile right

justifies.

Matrices are made with matrix: matrix { lcol { x sub i above y sub 2 } ccol { 1

Xi

above 2 } } produces vy 2 In addition, there is rcol for a right-justified column.

Diacritical marks are made with dot, dotdot, hat, tilde, bar, vec, dyad, and under:

x d70t (—_—-__)f(t) bar is x=f (t), y dotdot bar ~=~ n under is y = n, and x vec ~=~y dyad

is X' ="y.

Sizes and font can be changed with size n or size +n, roman, italic, bold, and font x.

Size and fonts can be changed globally in a document by gsize n and gfont 7, or by

the command-line arguments —sn and —fn.

Normally subscripts and superscripts are reduced by 3 point sizes from the previous

size; this may be changed by the command-line argument —px.

Successive display arguments can be lined up. Place mark before the desired lineup

point in the first equation; place lineup at the place that is to line up vertically in

subsequent equations.

Shorthands may be defined or existing keywords redefined with define: define thing

% replacement % defines a new token called thing which will be replaced by

replacement whenever it appears thereafter. The % may be any character that does

not occur in replacement.

Keywords like sum (3.) int (f) inf (=) and shorthands like >= (=) —> (=), and != (#)
are recognized. Greek letters are spelled out in the desired case, as in alpha or

GAMMA. Mathematical words like sin, cos, log are made Roman automatically.

Troff(1) four-character escapes like \(bs (@) can be used anywhere. Strings enclosed

in double quotes "..." are passed through untouched; this permits keywords to be

entered as text, and can be used to communicate with troff when all else fails.

Restrictions

To embolden digits, parens, etc., it is necessary to quote them, as in bold "12.3".

See Also

troff(1), tbl(1), ms(7), eqnchar(7)

ULTRIX Programmer’s Manual, Unsupported

B. W. Kernighan and L. L. Cherry, Typesetting Mathematics—User's Guide

J. F. Ossanna, NROFF/TROFF User’s Manual

Commands 1-3

VAX 77(1)

Unsupported

Name

Syntax

£77 — Fortran 77 compiler

f77 [option...] file...

Description

The £77 command runs the ULTRIX Fortran 77 compiler.

Arguments

The £77 command accepts several types of file arguments:

Arguments whose names end with ‘.f’ are taken to be Fortran 77 source programs;

they are compiled, and each object program is left on the file in the current directory

whose name is that of the source with ‘.0’ substituted for *.f°.

Arguments whose names end with ‘.F’ are also taken to be Fortran 77 source

programs; these are first processed by the C preprocessor before being compiled by

£77.

Arguments whose names end with ‘.1’ or ‘.’ are taken to be Ratfor or EFL source

programs respectively; these are first transformed by the appropriate preprocessor,

then compiled by f77.

Arguments whose names end with ‘.c’ or ‘.s’ are taken to be C or assembly source

programs and are compiled or assembled, producing a ‘.0’ file.

Other arguments are taken to be F77-compatible object programs, typically produced

by an earlier run, or libraries of F77-compatible routines. These programs, together

with the results of any compilations specified, are loaded in the order given to

produce an executable program with the name ‘‘a.out”’.

Programs compiled with £77 produce memory dumps in file core upon abnormal

termination if the —g option was specified during loading. If the environment

variable f77_dump_flag is set to a value beginning with y or n, dumps for abnormal

terminations are respectively forced or suppressed.

Options

The following options have the same meaning as in cc(1). See 1d(1) for load-time

options.

—¢ Suppresses loading and produces ‘.o’ files for each source file.

-g Produces additional symbol table information for dbx(1) and pass the -Ig flag

to 1d(1) so that on abnormal terminations, the memory image is written to file

core. Incompatible with —O.

-0 output -

Name the final output file output instead of a. out .

—p Prepare object files for profiling, see prof(1).

-pg Causes the compiler to produce counting code in the manner of —p, but invokes

1-4 Commands

-Ww

f77(1) VAX

Unsupported

a run-time recording mechanism that keeps more extensive statistics and

produces a gmon.out file at normal termination. An execution profile can then

be generated by use of gprof(1).

Suppresses all warning messages. If the option is ‘~w66’, only Fortran 66

compatibility warnings are suppressed.

~Dname=def

—-Dname

Defines the name to the C preprocessor, as if by ‘#define’. If no definition is

given, the name is defined as "1". (“.F’ suffix files only).

~Idir ‘#include’ files whose names do not begin with ‘/* are always sought first in

-0

-S

the directory of the file argument, then in directories named in -I options, then

in directories on a standard list. (*.F’ suffix files only).

Invoke an object-code optimizer. Incompatible with —g.

Compiles the named programs, and leave the assembler-language output on

corresponding files suffixed ‘.s’. (No ‘.0’ is created.).

The following options are peculiar to £77.

-d Used for debugging the compiler.

—i2 On machines which support short integers, make the default integer

constants and variables short. (-i4 is the standard value of this option).

All logical quantities will be short.

—q Suppresses printing of file names and program unit names during

compilation.

-m Apply the M4 preprocessor to each “.r’ file before transforming it with the

Ratfor or EFL preprocessor.

—onetrip

-1 Compile DO loops that are performed at least once if reached. (Fortran 77

DO loops are not performed at all if the upper limit is smaller than the

lower limit.)

-8 Treat all floating point variables, constants, functions and intrinsics as

double precision and all complex quantities as double complex.

-u Make the default type of a variable ‘undefined’ rather than using the

default Fortran rules.

-V Print the version number of the compiler, and the name of each pass as it

executes.

~C Compile code to check that subscripts are within declared array bounds.

For multi-dimensional arrays, only the equivalent linear subscript is

checked.

-F Apply the C preprocessor to ‘.F’ files, and the EFL, or Ratfor

preprocessors to ‘.’ and ‘.’ files, put the result in the file with the suffix

changed to ‘.f°, but do not compile.

-Ex Use the string x as an EFL option in processing ‘.’ files.

Commands 1-5

VAX 77 (1)

Unsupported

-Rx Use the string x as a Ratfor option in processing ‘.r’ files.

—N[qxscn]nnn

Make static tables in the compiler bigger. The compiler will complain if it

overflows its tables and suggest you apply one or more of these flags.

These flags have the following meanings:

q

X

n

Maximum number of equivalenced variables. Default is 150.

Maximum number of external names (common block names,

subroutine and function names). Default is 200.

Maximum number of statement numbers. Default is 401.

Maximum depth of nesting for control statements (e.g. DO loops).

Default is 20.

Maximum number of identifiers. Default is 1009.

-U Do not convert upper case letters to lower case. The default is to convert
Fortran programs to lower case except within character string constants.

Restrictions

Files longer than about 50,000 lines must be split up to be compiled.

Diagnostics

The diagnostics produced by £77 itself are intended to be self-explanatory.

Occasional messages may be produced by the loader.

Files

file.[fFresc]

file.o

a.out

Input file

Object file

Loaded output

/ust/lib/f77pass1 ~ Compiler

/lib/f1

/lib/c2

/lib/cpp
fusr/lib/libF77.a

Jusr/lib/libI77.a

Pass 2

Optional optimizer

C preprocessor

Intrinsic function library

Fortran 1/O library

fusr/lib/libU77.a ULTRIX interface library

Jusr/lib/libm.a

/lib/libc.a

math library

C library, see section 3

/usr/lib/libF77_p.a Profiling intrinsic function library

/usr/lib/libI77_p.a Profiling Fortran I/O library

fusr/lib/libU77_p.a Profiling ULTRIX interface library

fusr/lib/libm_p.a Profiling math library

fusr/lib/libc_p.a

mon.out

prof(1)

gmon.out

gprof(1)

1-6 Commands

Profiling C library, see section 3

File produced for analysis by

File produced for analysis by

f77 (1) VAX

Unsupported

See Also

ar(1), cc(1), dbx(1), efi(1), fpr(1), fsplit(1), gprof(1), 1d(1), prof(1), ranlib(1),

ratfor(1), struct(1), intro(3f)

“‘Introduction to the 77 I/O Library’’, and ‘‘A Portable Fortran 77 Compiler,”’
ULTRIX Supplementary Documents, Vol. II:Programmer

Commands 1-7

VAX fed(1)

Unsupported

Name

Syntax

fed — font editor

fed [-i][—q] name

Description

The fed program is an editor for font files. It is display oriented and must be used

on an HP 2648 graphics terminal. fed does the necessary handshaking to work at

9600 baud on the 2648.

Options

—i Requests inverse video mode, where all dots are dark and the background

is bright. This provides a setting similar to the hardcopy output of the

plotter, and is useful for fonts such as the shadow font where shading is

important.

—q Requests quiet mode, where all graphic output is suppressed. This mode

is useful on terminals other than the HP 2648 (assuming you are editing

blindly) and for operations such as the # and A commands, since these

operations do not make essential use of graphics, and since suppression of

the graphic output speeds of fed considerably.

Restrictions

Fonts

Attempting to use the second 128 characters would be folly. Fed has never been

tested on such fonts, and at a bare minimum there would be problems trying to input

8 bit characters.

The character DEL is interpreted by the tty driver to mean interrupt. Hence the

corresponding glyph cannot be accessed. The start, stop, and quit characters are

turned off, but other characters used by the new tty driver must be quoted with AV.

Changed widths are not copied to the width table used by troff. This only matters if

logical widths are changed, or if glyphs are moved around. For these cases,

vwidth(1) must be used.

A font is a collection of up to 256 glyphs, each of which is some pattern or design.

Glyphs are represented on Unix as a rectangular array of dots, each of which is either

dark or blank. Each location in the array is called a pixel. There are 200 pixels per

inch due to the hardware of the Versatec and Varian plotters.

Each glyph has, in addition to its bit pattern, a base and a width. The base is a point,

typically near the lower left of the array, that represents the logical lower left point of

the glyph. The base is not restricted to be within the array, in fact, it is usually a few

locations to the left of the edge. The vertical position of the base defines the

baseline,, which is held constant for all glyphs when a line is typeset. Letters with

descenders, such as ‘‘g’’, go below the baseline. Other glyphs typically rest on the

baseline.

1-8 Commands

fed(1) VAX

Unsupported

The width is used by troff{1) to determine where to place the next glyph. It need not

be the same as the width of the array, although it is usually about the same.

The size of the array, location of the base, and the width can vary among glyphs in a

font. Fonts where all glyphs have the same width are called fixed width fonts, others

are variable width fonts.

Attributes which do not vary among glyphs include the font name, which can be up

to 11 alphabetic characters, and the point size, which is a positive integer indicating

the overall size of the font. A point is 1/72 inch. The point size of a font is the

distance, in points, from the top of the tallest glyph to the bottom of the lowest. The

software of troff currently restricts point sizes to 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20,

22, 24, 28, and 36 point. Normal text is usually 10 point.

Font files conventionally have names of the form

name.pointsize

for example, ‘bocklin.14’ to indicate 14 point bocklin. Fed will look for such a file

in both the current directory and /usr/lib/vfont. Vtroff will only look in /usr/lib/vfont.

There is a correspondence between glyphs and characters in a font. For a given font,

each glyph has an ASCII character associated with it. The glyph is obtained in troff

by typing the associated character, and in fed glyphs are also referred to by their

character. However, it is not required for all characters to have a glyph, fonts never

have more than 128 glyphs and usually have fewer.

There is usually a natural correspondence between glyphs and characters. For

example, the glyph which is a roman lower case ‘a’ will generally have the ascii

character ‘a’ as its corresponding character. In the special font, the Greek lower case

alpha has ‘a’ as it’s corresponding character, upper case delta has D’ as it’s

corresponding character, etc. However, special fonts such as the chess font have

glyphs that do not appear to be related to their corresponding characters.

It is easy to confuse glyphs and characters. Note, however, that the three glyphs

roman a, bold a, and italic a, are all different, yet all three correspond to the character

‘a’. When this is multiplied by the large number of font styles and point sizes, there

are many glyphs that match a single character, (but only one in a particular font).

Fed Organization

Fed organizes the screen into 21 windows in a 3 by 7 array. Each window is 100 by

100 pixels, meaning that the maximum height and width of a glyph is 100 pixels.

Since the HP 2648 has a resolution of 100 dots per inch, glyphs displayed on the

screen and printer will be double the actual height and width, even when fully

zoomed out. There is a current window, which will be marked with a square border.

There are two pens, called fine and bold. The fine pen is one pixel wide, the bold

pen can range from two pixels to ten pixels in diameter. The default width of the

bold pen is taken from the point size implied by the file name. The point size is not

otherwise used. There are also fine and bold erasers.

There are two locations in the window, called the cursor and the mark. These tools

are used to draw on glyphs.

Sometimes the cursor is on, in which case it is indicated by the hardware graphics

cursor of the terminal, a cross. The cursor is considered to be located at the center of

the cross. Sometimes the rubber band line is turned on, showing the path a line

Commands 1-9

VAX fed (1)

Unsupported

drawn would traverse. This line runs from the mark to the cursor, and is the only

way the mark is graphically visible.

Commands

Commands to fed are single characters, sometimes followed by any needed

arguments. The commands used by fed were chosen to be as similar to vi(1)

commands as was reasonable. Another distinction is that certain commands are in

upper case. These commands were deliberately made hard to type because they cause

a large change in the state of the editor and should not be done by accident. In a few

cases there are both upper and lower case commands with the same letter.

Alphanumeric Keypad: Note that this is the keypad on the far right. The graphics

keypad on the near right will not work. These keys are each synonyms for other

commands. They are arranged in a manner that causes the five arrow keys to behave

sensibly, but the others need to be memorized or stickers placed on the keys. They

are provided for convenience only, and the user can avoid memorization simply by

using the mnemonic letter keys instead.

The layout is as follows:

undo (u) rezoom () fillin (f)

move (m) up (k) draw (d)

left (h) base (b) right (1)

setdot (.) down (j) cleardot (>)

The arrow keys move the cursor one pixel in the indicated direction. The cursor is

turned on if it was off. Note that the alphanumeric keys (far right) must be used.

The graphics keys (near right) will appear to move the cursor but it will not be

moved internally. The cursor cannot be moved outside the current window.

N.: Redraw the screen. This is useful if an I/O error or background process has

caused the screen to get messed up.

b: Move the cursor to the base of the window. This is the default location of the

cursor.

c: If the cursor is on, turn it off. Otherwise, turn it on.

d: Draw a line from the mark to the cursor. The currently selected tool (fine pen,

bold pen, fine eraser, bold eraser) is used. The cursor is turned off. The mark is

moved to the location of the cursor.

f+ Hill in the current hole. The cursor must be in a completely enclosed empty

(white) area. The area is set to black. If this command is invoked on the outside or

there are any leaks to the outside, the entire outside will be filled in. (Undo is useful

in this case.) Filling in cannot jump diagonals, but can rather only spread in the four

orthogonal directions.

g <x>: Geta glyph. X can be any character. The glyph corresponding to x is put

in a window, and this window is made the current window. The glyph is centered

horizontally in the window. The baseline is located at row 70 from the top of the

window. The pen and cursor are placed at the base, and the cursor is turned off. The

glyph must exist.

h,j, k, and [are accepted to mean left, down, up, and right, respectively. They are

synonymous with the alphanumeric arrow keys. They have the same meanings as in

vi(l).

1-10 Commands

fed(1) VAX

Unsupported

m: Move the mark to the current location of the cursor. The cursor is turned on.

n <x>: New glyph. This is similar to g, except that the glyph must not exist. It is

used to create a new glyph. A blank window is created, centered at (50, 70) as in g.

p: Print the contents of the screen. An HP 2631 pnnter must be connected to the

terminal. The screen is copied to the printer. Ifin inverse video mode, the screen is

changed to normal video mode before the print, and then changed back after the

print.

r: If the rubber band line is on, turn it off. Otherwise, turn it on.

s <what> [<where>]: Set <what> to <where>. What and where are single

characters. The possibilities are:

spf: Set pen fine. (1’ for light is also accepted.)

spb: set pen bold. (‘h’ for heavy is also accepted.)

sd: Set draw. The pen is used instead of the eraser.

se: Set erase. The eraser is used instead of the pen.

ss<n>: Set size of bold pen. <n> is a digit from 1 to 9. The size of the

bold pen is set accordingly. This also affects the bold eraser.

u: Undo. The previous change to the current window is undone. Note that undo is

on a window by window basis, so that commands that affect characters or more than

one window cannot be undone.

z <n>: Zoom to level n. The screen is blown up by a factor of n. This only affects

the appearance of the screen to make it easy to see the individual dots, and does not

affect the size of the glyph or the result of a print command. Zooming to 1 shows

the entire screen, a level of 3 or 4 is probably good for editing glyphs. When a

message is printed on the screen, fed automatically zooms out to level 1 so you can

read the message. Hitting space will zoom back. z followed by <return> zooms out

without changing the previous zoom.

space: Zoom back to the level most recently requested by the z command.

A <ilelr> <first> <last> [<oldps> <newps>]:

Artificially italicize/embolden/resize a range of glyphsin the current font. Enteri for

italicize, e for embolden, or r for resize, and the first and last characterin the range

desired. If you are resizing you will also have to enter the old and new point size,

each terminated by a return. Each glyph is gotten and changed on the screen visibly.

Glyphs are italicized by slanting them to the right at a slope of 1/5. They are

emboldened by smearing them to the right a number if pixels equal to the current

heavy pen size. They are resized with an algorithm which translates all on bits to the

new posmon These operatlons will be cons1derably faster if the —q option 1is in

effect, since much overheadis involvedin the graphic display.

B: Move the base to the cursor. The cursor is turned on.

C <from> <to>: Copy the glyph in character <from> to character <to>. If <from>

has a window on the screen, that window is given to <to>.

D <from> <through>: Delete a range of characters in the font, from <from>

through <through> inclusive. To delete a single character type it twice.

Commands 1-11

VAX fed (1)

Unsupported

E <file>: Edit the named file. If changes have been made to the current file,

confirmation will be requested. (Either 'y’ or 'E’ is accepted.) The file name is

terminated with return.

F <first> <last>: Show the font on the screen. The characters in the specified

range are shown. The width values are used to get natural spacing. The display will

remain until another command is typed, at which time the previous display will be

redrawn and the new command will be executed. As a special case, a ‘‘p’> command

will print the results of the *‘F’’ command instead of the previous display.

I <h/v>: Invert the current glyph about a horizontal or vertical axis, as indicated by

h or v. The axis runs up the center of the window. The base can be subsequently

positioned with the B command.

K: Kill the current glyph. All dots are set to blank. The glyph is not removed from

the font. This is used for redrawing a glyph from scratch or replacing it with another

glyph.

M <from> <to>: Move a glyph from <from> to <to>. This is just like the copy

command but the original is deleted.

N <file>: Write out the current file, if necessary, and edit the new file specified.

The file name is terminated with return.

P <first> <last> <file>: Partial read from a file. A file and the first and last

characters in the range are prompted for. Characters not in the range are left

unmodified, characters in the range are handled as in the R command.

Q: Quit the editor, without saving any work. If changes have been made

confirmation will be required (either ‘Q’ or ’y’ is taken as ‘yes’.)

R <file>: Read in the named file on top of the current file. Glyphs are merged

wherever possible. If there is a conflict, you will be asked whether fed should take

the glyph from the file (f) or buffer (b). Responding with F or B will lock in that

mode for the remainder of the read. The file name is terminated with a return.

T <text>: Typeset the line of text on the terminal. This is similar to the F command

except that the given text is arranged on the screen, so you can see how some

particular combination of characters would look.

V: Toggle whether editing is being done in inverse video mode.

W <file>: Write the buffer out onto the named file, which is terminated by return.

A null file name means the current file name.

ZZ: Exit fed. A write is done, if necessary, followed by a quit. This is the normal

way to leave fed. The Z must be doubled for compatibility with vi.

: Turn on the dot under the cursor. The cursor is turned off.

>: Turn off the dot under the cursor. The cursor is turned off.

<char> <field> <value>: Edit a numerical field. This only makes sense if the

glyph has not been gotten (g or n) yet, since otherwise the values are taken from

window specific things such as the base. Fed does not do any sanity checking, but

just substitutes the value input. Fields are the first letter of any field from the

dispatch structure (see vfont(5)), specifically, these fields are addr, nbytes, left, right,

up, down, and width. The number, which may be signed, is terminated by a

newline.

1-12 Commands

fed (1) VAX

Unsupported

Files

[usr/lib/vfont/*.*

See Also

vfont(5), vfontinfo(1), vtroff(1), vwidth(1)

Commands 1-13

fp(1)
Unsupported

Name

fp — Functional Programming language compiler/interpreter

Syntax

fp

Description

The fp interpreter/compiler implements the applicative language proposed by John

Backus. It is written in FRANZ LISP .

In a functional programming language intent is expressed in a mathematical style

devoid of assignment statements and variables. Functions compute by value only;

there are no side-effects since the result of a computation depends solely on the

inputs.

The f£p programs consist of functional expressions — primitive and user-defined fp

functions combined by functional forms. These forms take functional arguments and

return functional results. For example, the composition operator '@’ takes two

functional arguments and returns a function which represents their composition.

There exists a single operation in fp — application. This operation causes the system

to evaluate the indicated function using the single argument as input (all functions are

monadic).

Getting Started

fp invokes the system. fp compiles functions into /isp (1) source code; lisp(1)

interprets this code (the user may compile this code using the lisz¢(1) compiler to

gain a factor of 10 in performance). Ctrl D exits back to the shell. Break terminates

any computation in progress and resets any open file units.)help provides a short

summary of all user commands.

Restrictions

If a non-terminating function is applied as the result of loading a file, then control is

returned to the user immediately, everything after that position in the file is ignored.

fp incorrectly marks the location of a syntax error on large, multi-line function

definitions or applications. (Turing award lecture by John Backus).

Files

fusr/ucb/lisp the FRANZ LISP interpreter

/usr/ucb/liszt the liszt compiler

/usr/doc/fp the User’s Guide

See Also

lisp(1), liszt (1).

The Berkeley FP user’s manual, available on-line. The language is described in the

August 1978 issue of CACM

1-14 Commands

fpr(1) VAX

Unsupported

Name

fpr — print FORTRAN file

Syntax

fpr

Description

The £pr filter transforms files formatted according to FORTRAN’s carriage control

conventions into files formatted according to UNIX line printer conventions.

The £pr filter copies its input onto its output, replacing the carriage control

characters with characters that will produce the intended effects when printed using

1pr(1). The first character of each line determines the vertical spacing as follows:

Character | Vertical Space Before Printing

Blank One line

0 Two lines

1 To first line of next page

+ No advance

A blank line is treated as if its first character is a blank. A blank that appears as a

carriage control character is deleted. A zero is changed to a newline. A one is

changed to a form feed. The effects of a "+" are simulated using backspaces.

Restrictions

Results are undefined for input lines longer than 170 characters.

Examples

% a.out | fpr | lpr -Pprinter

% fpr < f77.output | Ipr -Pprinter

Commands 1-15

help (1)

Unsupported

Name

help — tips on getting started with an ULTRIX system

Syntax

help

Description

The help command displays information on how to get started using an ULTRIX

operating system. It recommends places to start with the ULTRIX documentation,

and gives a list of commands helpful to beginners.

1-16 Commands

learn(1)

Unsupported

Name

learn — computer aided instruction about UNIX

Syntax

learn [—directory] [subject [lesson]]

Description

The 1earn command gives computer aided instruction courses and practice in the

use of UNIX, the C Shell, and the Berkeley text editors. To get started simply type

learn. The program will ask questions to find out what you want to do. Some

questions may be bypassed by naming a subject, and more yet by naming a lesson.

You may enter the lesson as a number that 1earn gave you in a previous session. If

you do not know the lesson number, you may enter the lesson as a word, and learn

will look for the first lesson containing it. If the lesson is ‘~’, 1learn prompts for

each lesson; this is useful for debugging.

The subjects presently handled are

files

editor

vi

morefiles

macros

eqn

C

There are a few special commands. The command ‘bye’ terminates a 1earn session

and ‘where’ tells you of your progress, with ‘where m’ telling you more. The

command ‘again’ re-displays the text of the lesson and ‘again lesson’ lets you review

lesson.

Options

—directory Allows one to exercise a script in a nonstandard place.

Restrictions

The main strength of 1earn, that it asks the student to use the real UNIX, also

makes possible baffling mistakes. It is helpful, especially for nonprogrammers, to

have a UNIX initiate near at hand during the first sessions.

Occasionally lessons are incorrect, sometimes because the local version of a

command operates in a non-standard way. Such lessons may be skipped with the

‘skip’ command, but it takes some sophistication to recognize the situation.

To find a lesson given as a word, learn does a simple fgrep(1) through the

lessons. It is unclear whether this sort of subject indexing is better than none.

Spawning a new shell is required for each of many user and internal functions.

Commands 1-17

learn (1)

Unsupported

Files

/usr/lib/learn subtree for all dependent directories and files

fusr/tmp/pl* playpen directories

See Also

csh(1), ex(1)

1-18 Commands

Name

Syntax

lisp(1) VAX

Unsupported

lisp — lisp interpreter

lisp

Description

The 1isp interpreter is for a dialect which closely resembles MIT’s MACLISP. This

lisp, known as FRANZ LISP, features an I/O facility which allows the user to change

the input and output syntax, add macro characters, and maintain compatibility with

upper-case only lisp systems; infinite precision integer arithmetic, and an error

facility which allows the user to trap system errors in many different ways.

Interpreted functions may be mixed with code compiled by /lisz¢(1) and both may be

debugged using the ‘‘Joseph Lister’’ trace package. A 1isp containing compiled

and interpreted code may be dumped into a file for later use.

There are too many functions to list here; one should refer to the manuals listed

below.

Files

[usr/lib/lisp/trace.1 Joseph Lister trace package

/ust/lib/lisp/toplevel.l top level read-eval-print loop

See Also

liszt(1), Ixref(1)

‘FRANZ LISP Manual, Version 1’ by John K. Foderaro

MACLISP Manual

Commands 1-19

VAX liszt(1)

Unsupported

Name

liszt — compile a Franz Lisp program

Syntax

liszt [-mpqruwxCQST][—e form] [—o objfile] [name]

Description

The 1iszt compiler takes a file whose names ends in ‘.1’ and compiles the FRANZ

LISP code there leaving an object program on the file whose name is that of the

source with ‘.0’ substituted for °.I’.

Options

—

-

1-20 Commands

Evaluate the given form before compilation begins.

Compile a MACLISP file, by changing the readtable to conform to MACLISP

syntax and including a macro-defined compatibility package.

Put the object code in the specified file, rather than the default ‘.0’ file.

Places profiling code at the beginning of each non-local function. If the

lisp system is also created with profiling in it, this allows function calling

frequency to be determined (see prof(1).)

Only print warning and error messages. Compilation statistics and notes

on correct but unusual constructs will not be printed.

Place bootstrap code at the beginning of the object file, which when the

object file is executed will cause a lisp system to be invoked and the

object file fasl’ed in.

Compile a UCI-lispfile, by changing the readtable to conform to UCI-Lisp

syntax and including a macro-defined compatibility package.

Suppress warning diagnostics.

Create a lisp cross reference file with the same name as the source file but

with ‘.x’ appended. The program Ixref(1) reads this file and creates a

human readable cross reference listing.

Put comments in the assembler output of the compiler. Useful for

debugging the compiler.

Print compilation statistics and warn of strange constructs. This is the

default.

Compile the named program and leave the assembler-language output on

the corresponding file suffixed ‘.s’. This will also prevent the assembler

language file from being assembled.

Send the assembler output to standard output.

liszt(1) VAX

Unsupported

If no source file is specified, then the compiler will run interactively. You will find

yourself talking to the lisp(1) top-level command interpreter. You can compile a file

by using the function /isz¢ (an nlambda) with the same arguments as you use on the

command line. For example to compile ‘foo’, a MACLISP file, you would use:

(liszt —m foo)

Note that liszt supplies the ‘.1’ extension for you.

Files

/usr/lib/lisp/machacks.1 MACLISP compatibility package

[ust/lib/lisp/syscall.l macro definitions of Unix system calls

/usr/lib/lisp/ucifnc.1 UCIT Lisp compatibility package

See Also

lisp(1), Ixref(1)

Commands 1-21

VAX Ixref(1)

Unsupported

Name

Syntax

Descrip

Ixref — lisp cross reference program

Ixref [=N] xref-file ... [—a source-file ...]

tion

The 1xref command reads cross reference file(s) written by the lisp compiler

liszt and prints a cross reference listing on the standard output. 1iszt will create

a cross reference file during compilation when it is given the —x switch. Cross

reference files usually end in ‘.x” and consequently 1xref will append a °.x’ to the

file names given if necessary. The first option to 1xref is a decimal integer, N,

which sets the ignorelevel. If a function is called more than ignorelevel times, the

cross reference listing will just print the number of calls instead of listing each one of

them. The default for ignorelevel is 50.

The —a option causes 1xref to put limited cross reference information in the

sources named. lxref will scan the source and when it comes across a definition of

a function (that is a line beginning with ‘(def’ it will precede that line with a list of

the functions which call this function, written as a comment preceded by ¢;.. . All

existing lines beginning with ;.. > will be removed from the file. If the source file

contains a line beginning ¢;.-> then this will disable this annotation process from this

point on until a ;.+’ is seen (however, lines beginning with *;.. > will continue to be

deleted). After the annotation is done, the original file named ‘foo.l’ is renamed to

‘#.foo.]’ and the new file with annotation is named ‘foo.l’

See Also

lisp(1), liszt(1)

1-22 Commands

mod (1) VAX

Unsupported

Name

mod — Modula-2 compiler

Syntax

mod [options] name ...

Description

The mod command compiles one or more Modula-2 programs or implementation

modules. Definition modules are not compiled. In the absence of options, it will

compile all specified modules and link them together into an executable file called

a.out.

Each program or implementation module must be in a separate file with a name

ending with .mod. Each definition module must be in a separate file called

module.def where module is the name of the module. Object files ending with .0

compiled with mod or some other compiler may be specified.

File name arguments ending with .pcd, and .s, are assumed to be —pcode and

assembly language files respectively, and are translated and assembled into object

files.

Options

—C Create object files but do not link them together.

—g Generate additional symbol table information for the debugger dbx(1).

—i Ignore the errors in some of the modules and continue compiling the rest

of them.

-m flags Perform intermodule checking. If an out-of-date module is encountered,

recompile it using the specified flags. The flags are separated by commas

or spaces, and must be quoted if spaces are used.

-n Write out what will happen when the same command is entered without

the ‘‘-n’’ option.

-0 name Create an executable file called ‘‘name’’ instead of the default ‘‘a.out’’.

-pg Set up object files for profiling by gprof(1).

-r Retain pcode and assembly language files in the current directory after

compilation.

- Use standard conventions for reserved word case, cardinal data type, and

strings. See Extensions below.

-SC Use standard conventions for cardinal data type (See Extensions, below).

-sk Use standard conventions for reserved word case (See Extensions, below).

-SS Use standard conventions for string constants (See Extensions, below).

-u Convert all identifiers and reserved words to upper case (that is, ignore the

case of identifiers and reserved words on input).

Commands 1—-23

VAX mod (1)

Unsupported

-V Print out messages which state what is occurring during compilation.

-C Generate runtime checks for illegal pointers, subrange and index bounds,

and variant record tags.

=D directory

Use the specified directory for the phases of the compiler and the location

of the standard definition modules and libraries.

-L Ignore references to modules not specified while performing intermodule

checking. This is useful when checking modules to be placed in a library.

-M Perform intermodule checking, but do not recompile if inconsistencies are

found.

-N Ignore references to the module name while performing intermodule

checking. This is useful when the module name is not a Modula-2

module. You may use this option as many times as needed.

-0 Perform code optimizations.

-P Stop after generating pcode in a file ending with .pcd.

=S Stop after generating assembly language in a file ending with .s.

Library Modules

By default, an import of a global module will cause the compiler to look for the

definition module first in the working directory and then in the standard library

directory. The standard library modules are automatically linked with the program.

The default may be overridden to specify other directories of definition modules

using the MODPATH environment variable. MODPATH is set to a sequence of

directory names separated by colons. Those directories will be searched in the order

specified to find a definition module. The corresponding object files or libraries are

specified when linking. The MODPATH environment variable may be set by the

user in .login or in .modpath in the working directory. If the file .modpath exists in

the working directory, the mod command will use its first line as the value of the

MODPATH variable.

The following modules are provided by this implementation of Modula-2. Note that

system, memory, io, and bitoperations are builtin modules; definition modules for

them are provided for documentation purposes only. Only strings and parameters are

actually implemented in Modula-2.

system Built in system module. Contains types of what word, address, etc.,

and process routines.

memory Built in storage module. Sets up pointers properly for runtime checks.

Contains ALLOCATE and DEALLOCATE.

i0 Built in I/O module that provides formatted read and write similar to

scanf(3) and print £(3).

bitoperations Built in bit manipulation module. Performs operations such as shift,

exclusive or, etc., on integer operands.

math Performs mathematical functions. Interface to the C math library.

parameters Accesses command line parameters and environment variables.

1-24 Commands

mod(1) VAX

Unsupported

strings Compares, assigns, and links strings.

unix Defines some UNIX system calls and C library routines.

Storage Standard storage module, for compatibility with standard Modula-2.

Contains ALLOCATE and DEALLOCATE.

Differences And Extensions

This implementation of Modula-2 has compiled and run Wirth’s Modula-2 compiler

(as modified by Cambridge University for the VAX) with only minor changes to

make Wirth’s compiler more portable. However, the definition of the language has

been relaxed in some areas. For the most part, these changes are compatible.

The following is an incomplete list of differences between this compiler and Wirth’s

compiler:

Reserved words and standard identifiers are recognized in upper and lower case,

Thus, case variations of reserved words may not be used for identifiers. This feature

is disabled by the —sk option.

Cardinal and non-negative subranges that do not exceed MAXINT are considered to

be subranges of integer and are compatible with integers. Subranges that exceed

MAXINT are compatible with cardinal and non-negative subranges. This feature is

disabled by the —sc option.

A built in module called io provides formatted input and output. The readf and

writef routines can accept any number of parameters, as long as their types

correspond properly with the format string. Supported formats include: for integer

and cardinal, d, x, and o; for real, g (output only), f, and e; for longreal, G (output

only), F, and E; for char, c¢; and for string (array of char), s and [] (input only).

No import of allocate or deallocate is required to use new and dispose if the standard

memory allocation routines are desired. Programs that require checking import

allocate and deallocate from memory rather than storage.

The sizes returned by size and tsize and expected by allocate, deallocate and

newprocess are in units of bits.

The system module includes the type byte, which is analogous to word, as well as

appropriate related constants. There is also a function cputime, which returns the

accumulated program CPU time in milliseconds.

There is a standard type called longreal that stores a double precision real value. A
standard function longfloat converts cardinals, integers, or reals to longreal.

Additional standard procedures include:

min(a,b) Returns the smaller of two cardinal, integer, real, or longreal values.

max(a,b) Returns the larger of two cardinal, integer, real, or longreal values.

assert(condition[,message])

Aborts the program (with the optional message) if the condition is

false.

number(a) Returns the number of elements in the specified array.

first(type) Returns the smallest legal value of the specified type.

Commands 1-25

VAX mod (1)

Unsupported

last(type) Returns the largest legal value of the specified type.

Definition modules are not compiled.

Escape sequences may be placed in strings to specify non-printing characters. E.g.,

\n, \t, \r, \f, \b, \\, \’, and \"" mean linefeed, tab, carriage return, form feed, backspace,

backslash, single quote, and double quote, respectively. In addition a \ followed by

up to three octal digits specifies the the character whose ASCII code is the octal

value. A single (double) quote also may be put in a string delimited with single

(double) quotes by specifying two single (double) quotes. This feature is disabled by

the —ss option.

The interface to Unix is through a module called unix rather than the system module.

The unixcall procedure is handled for compatibility with the Cambridge compiler, but

is not recommended.

Additional keywords are recognized in certain contexts. These keywords are prefixed

by @ to avoid conflicting with valid identifiers.

Pointer attributes

Attributes may be specified between the keywords pointer and to in order

to change the default assumptions of Modula-2 pointer with checking.

Recognized attributes are:

@nocheck Modula-2 pointer, no checking

@c C/malloc pointer, no checking

@pascal Pascal pointer, Pascal checking

Size and alignment

The size and alignment of data types may be specified preceding any type

specification. The size and alignment multiples are in bits. For example,

type Register = @align 2 @size 4 [-8..7]; _

defines a type that occupies 4 bits aligned on a multiple of two bits.

Exports Exports from a definition module are assumed qualified. Unqualified

exports are permitted if the @unqualified keyword is used. Multiple

export statements are permitted, but they must occur next to each other.

External variables and procedures

A procedure or variable may be accessed by C and Pascal routines using

its unqualified name if the @external attribute occurs between the keyword

procedure and the name of the procedure or precedes the variable

declaration.

Uncounted open arrays

Open array parameters appear as two parameters, the address of the array

and the number of element-to-non-Modula-2 programs. If necessary, the

count may be omitted by placing the attribute @nocount between the

keywords array and of in the open array declaration.

Restrictions

This is an experimental compiler, and thus no warranties are expressed or implied

about its conformance to the definition of the Modula-2 language or about its proper

functioning. We will endeavor to report and fix bugs, but users should be aware that

this compiler is not a supported product.

1-26 Commands

Diagnostics

All error messages suppress subsequent compilation phases. Error messages ending

with a question mark are internal errors, and probably represent compiler bugs.

When pointer checking is running in a Modula-2 program, segmentation faults may

be generated by the pointer validation test. These are intentional and should be

considered as invalid pointer messages. The compiler runs with runtime checks

enabled, and may produce core dumps. Report problems to the author.

Files

file.mod

file.def

file.pcd

file.s

Jusr/local/lib/mod/mod2.0

Jusr/local/lib/mod/mod2.1

Jusr/local/lib/mod/mod2.2

Jusr/local/lib/mod/*.def

Jusr/local/lib/mod/modlib

/tmp/modNNNNNN.pcd

/tmp/modNNNNNN.s

mod (1) VAX

Unsupported

Program or implementation module

Definition module

Pcode (-P or —-1)

Assembly code (S or —r)

Modula-2 compiler front-end

Modula-2 compiler back-end

Intermodule checker

Standard definition modules

Default library

Temporary Pcode file

Temporary assembly code file

Commands 1-27

msgs (1)

Unsupported

Name

msgs — system messages and junk mail program

Syntax

msgs [—fhlpq] [number 1 [—number]

msgs —s

msgs —¢ [—days]

Description

The msgs command is used to read system messages. These messages are sent by

mailing to the login ‘‘msgs’’ and should be short pieces of information that are

suitable to be read once by most users of the system.

The msgs command is normally invoked each time you log in, by placing it in the

file .1ogin (.profile if you use /bin/sh). It will then prompt you with the

source and subject of each new message. If there is no subject line, the first few

non-blank lines of the message will be displayed. If there is more to the message,

you will be told how long it is and asked whether you wish to see the rest of the

message. The possible responses are:

y

RETURN

n

q

m or m-

Type the rest of the message

Synonym for y.

Skip this message and go on to the next message.

Redisplay the last message.

Drops you out of msgs; the next time you run the program it will pick up

where you left off.

Append the current message to the file Messages in the current

directory; s— saves the previously displayed message. Entering s or s—

followed by a space and a filename specifies writing the message to a file

other than the default, Messages.

Causes a copy of the specified message to be placed in a temporary

mailbox and mail to be invoked on that mailbox.

Both m and s accept a numeric argument in place of the ‘-’.

The msgs command keeps track of the next message you will see by a number in the

file .msgsrc in your home directory. In the directory /usr/msgs, it keeps a set

of files whose names are the (sequential) numbers of the messages they represent.

The file /usr/msgs/bounds shows the low and high number of the messages in

the directory so that msgs can quickly determine if there are no messages for you. If

the contents of bounds is incorrect it can be fixed by removing it; msgs will make

a new bounds file the next time you run msgs.

1-28 Commands

Options

f

number

—days

msgs(1)

Unsupported

Causes it not to say ‘‘No new messages.’”’. This is useful in your

. login file since this is often the case here.

Queries whether there are messages, printing ‘“There are new messages.’’

if there are. The command ‘‘msgs —q’’ is often used in login scripts.

Causes msgs to print the first part of messages only.

Causes only locally originated messages to be reported.

causes msgs to start at the message specified by number, rather than at

the next message indicated by your .msgsrc file. Thus

% msgs 5

causes msgs to begin at the fifth message.

Causes msgs to start number messages back from the one indicated by

your .msgsrc file. This option is useful for reviewing recent messages.

Causes long messages to be piped through more.

Adds a new message to /usr/msgs.

Removes messages that have been in /usr/msgs more than a specified

number of days from that file.

Determines the number of days a message is in /usr/msgs before it is

removed. You must be the superuser to use the —c option.

Within msgs you can also go to any specific message by typing its number when

msgs requests input.

Files

/usr/msgs/* database

~/ .msgsrc number of next message to be presented

See Also

mail(1), more(1)

Commands 1-29

pti(1)
Unsupported

Name

pti — phototypesetter interpreter

Syntax

pti [file ...]

Description

The pti command shows the commands in a stream from the standard output of

troff(1l) using troff’s —t option, interpreting them as they would act on the

typesetter. Horizontal motions shows as counts in internal units and are marked with

‘<’ and >’ indicating left and right motion. Vertical space is called lead and is also

indicated.

See Also

troff(1)

1-30 Commands

ptoc(1)

Unsupported

Name

ptoc — Pascal to C language translator

Syntax

ptoc [filename]

Description

The ptoc (P to C) translator accepts as input a Pascal source file and produces on

the standard output a C language translation. The Pascal input file must not contain

any Pascal syntax errors. The ptoc translator is not meant to be used as a Pascal

debugging tool or as a Pascal syntax checker. The ptoc translator does check for

some common Pascal syntax errors. If it finds an error, it prints an error message and

quits.

The ptoc translator accepts standard Pascal (as defined by the

ANSI/IEEE770X3.97-1983 standard) with some extensions and restrictions detailed

below. It outputs C code that conforms to the portable C compiler, except as noted

in the RESTRICTIONS section. The ptoc translator converts all identifiers to lower

case. This is to conform with Pascal, which is not case sensitive.

The ptoc translator will read header files, which are referenced by an include

statement, to resolve symbol names that are used in the Pascal file being translated.

All Pascal header files which are part of the program being translated must be run

through ptoc separately, to produce C format header files.

A word about Pascal variant records is in order. The C equivalent of a Pascal variant

record is a union. A C union is implemented as a structure with a name, whereas a

Pascal variant record is not named, nor does it introduce another structure level.

Furthermore, if two or more fields are grouped together in a Pascal variant, they do

not require a nested record. In C, however, they must be grouped within a structure.

These considerations add one or two extra reference levels in the C code compared to
the reference levels needed in the Pascal code.

A common practice in C is to use ‘‘#defines’’ to make these reference levels

transparent in the code. This technique is used by ptoc. Thus, the extra structure

levels required by C are transparent in the C code translation of the Pascal source

code. For example:

Pascal C

g: record struct g {

i: integer; int 1i;

case boolean of union {

true: (ga: char; struct

gb: integer); char uga;

false: (gf: boolean); int ugb;

end; } unl;

struct {

char uqf;

} un2;

} un;

}i

#define ga un.unl.uga

#define gb un.unl.ugb

tdefine gf un.un2.uqf

Commands 1-31

ptoc(1)

Unsupported

If a Pascal program has a variable with the same name as one of the field names

within a variant record, then the define statement in the C translation will be applied

to the variable as well as to the field within the variant. One solution is to change

the name of the Pascal variable before running ptoc. If you do not change the

conflicting variable name, when you try to compile the C translation you may see

strange errors such as ‘‘warning: old-fashioned initialization’’ or ‘‘warning: illegal

member use’’.

Extensions

The ptoc translator handles a few extensions to standard Pascal which are features

of ‘‘popular’’ versions of Pascal. These extensions are detailed below.

Reserved Words

The ptoc translator accepts upper or lower case Pascal reserved words.

Compilation Units

The ptoc translator accepts the keyword ‘‘module’’ in place of the keyword

‘‘program’’. This is used at the top of a file of separately compiled procedures and

functions.

Include Files

Two formats of include files are accepted:

Berkeley Pascal Alternate

#include "filename" $include ’filename’

Declarations

The ‘‘_’’ (underscore) character in symbol names is accepted syntax. Any

underscores in symbol names will be kept in the C translation.

The
(X144

characterinsymbolnamesisacceptedsyntax.Symbolnamesmayalsostartwiththe$character Al

characters in symbol names will simply be discarded and not output in the C

translation.

Arrays of type ‘‘varying’’ are accepted and translated into character arrays in C. For

example:

Pascal C

varid: varying[10] of char; char varid{l1l1];

9% 46

The types ‘‘double’’, ‘‘single’’, ‘‘quadruple’’, and ‘‘unsigned’’, are accepted and

translated into corresponding C data types. For example:

Pascal C

d: double; double d;

s: single; float s;

q: quadruple; double g:;

1-32 Commands

ptoc(1)

Unsupported

u: unsigned; unsigned u;

Initializer values are allowed on variable declarations. The Pascal syntax is:

Pascal C

varid: integer := const-expr; int varid = const-expr;

Attributes associated with type and variable declarations and procedure or function

declarations are allowed. The attributes are simply discarded in the C translation.

The accepted syntax is:

type_id = [attribute-list] type:;

variable_id: [attribute-list] type;

[attribute-list] procedure name(args);

External Procedures

The ptoc translator recognizes the keywords ‘‘external’’, ‘‘extern’’, ‘‘fortran’’, and

“‘forward’’ on procedure and function declarations. In the C translation, this will

simply generate a function type definition. The syntax is:

procedure name (params); external;

Mechanism-specifiers which are used to describe parameter attributes are recognized.

The mechanism-specifiers (%ref, %descr, %stdescr, %immed) are simply discarded in

the C translation. The accepted syntax is:

procedure name (%REF paraml: integer := %IMMED 0); external;

Case Statement

The ptoc translator accepts the keyword ‘‘otherwise’’ as the default selection in a
Pascal case statement. This is translated to ‘‘default’’ in the C switch statement.

Octal And Hexadecimal Numbers

The ptoc translator accepts octal and hex numbers as values for constant

declarations and as valid numbers in expressions. The accepted syntax for constant

declarations is:

CONST

hexone = %$x ’DEC’; {(* hex const *)

octone = %0 '777'; (* octal const *)

The accepted syntax in expressions is:

i := $X'DEC’;

if (i > %0'777")

then i := i * hexone + %x 'abc’;

Operators

The pt oc translator accepts the operator ‘‘rem’’, and translates it the same as the

“‘mod’” operator. This produces the ‘‘%’’ operator in C.

Commands 1-33

ptoc(1)

Unsupported

Restrictions

Syntax

All Pascal source files and header files must not contain any Pascal syntax errors.

The ptoc translator may dump core at runtime on some types of syntax errors in

input files.

Arrays

Lower bounds of Pascal arrays are ignored. Only the upper bound is considered for

the C translation. The C translation will declare the array with enough space to index

from O through the upper bound of the Pascal array. A negative Pascal array bound

will need special attention from the user, since C does not allow negative array

bounds.

The ptoc translator does not handle array bounds which are enumerated *‘in place’’.

Constructs like this will produce a syntax error:

A: array[(RED,WHITE,BLUE)] of integer;

The ptoc translator does not translate array declarations where the base type of the

array 1s in turn a complex type. The base type of the array is set to ‘‘integer’’ and a

warning is printed. The following Pascal declaration is an example:

A: array[l..10] of array([l..20] of char;

Pointer Declarations

Pascal allows type declarations of pointers to objects that are not defined yet. The

ptoc translator translates these to C and generates a warning message. It is illegal

in C for a pointer type to reference an object that is not defined yet, so this will

require the user to modify the C source translation.

Empty Records

Pascal allows empty records. These translate to empty structures in C. Empty

structures will produce syntax errors in C. The user must edit these in the Pascal file

or in the C translation.

Subrange Declarations

Pascal allows types and variables of subrange types, which C does not. The ptoc

translator translates these into types or variables of the base type of the Pascal

subrange. For example:

Pascal C

srl: -10..10; int srl;

sr2: 'a'..’z’"; char sr2;

1-34 Commands

Files

ptoc(1)

Unsupported

Write Statements

The ptoc translator does not handle all possible forms of Pascal write statements

with complex variables. If ptoc complains about the syntax of a write statement,

comment it out and translate it to C by hand.

Sets

A Pascal set declaration becomes a plain variable in C, having the same type as the

base type of the Pascal set. For example:

Pascal C

v: set of char; char v;

Pascal statements using certain set constructs will translate into C code that will not

compile. You will have to comment out the Pascal code and translate by hand, or

edit the C code to correct it. For example:

Pascal C

v = ["a’,’'b","c']; v=["a’"]ll'b"]["c"];

The ptoc translator interprets the set construct as an array index and generates array

index code.

Nested Procedures

Pascal nested procedures are linearized. The corresponding C functions are all at the

same lexical level. Variables that are defined at an outer procedure scope level and

are referenced by a procedure at a nested scope level, will be undefined in the C

translation of the nested procedure. Such variables must be declared global to all

procedures in the Pascal source file or they must be passed as arguments to the nested

procedure.

/usr/bin/ptoc

Commands 1-35

VAX ratfor (1)

Unsupported

Name

ratfor — rational FORTRAN dialect

Syntax

ratfor [option ...][filename ...]

Description

The rat for command converts a rational dialect of FORTRAN into ordinary

irrational FORTRAN. rat for provides control flow constructs essentially identical

to those in C:

statement grouping:

{ statement; statement; statement }

decision-making:

if (condition) statement [else statement]

switch (integer value) {

case integer: statement

.["default:] statement
}

loops: while (condition) statement

for (expression; condition; expression) statement

do limits statement

repeat statement [until (condition)]

break

next

and some syntactic sugar to make programs easier to read and write:

free form input:

multiple statements/line; automatic continuation

comments:

this is a comment

translation of relationals:

>, >=, etc., become .GT., .GE,, etc.

return (expression)

returns expression to caller from function

define: define name replacement

include: include filename

ratfor is best used with £77(1).

See Also

£77(1)

B. W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley, 1976.

1-36 Commands

struct(1) VAX

Unsupported

Name

struct — structure FORTRAN programs

Syntax

struct [options] ... file

Description

The struct command translates the FORTRAN program specified by file (standard

input default) into a rat for program. Wherever possible, rat for control

constructs replace the original FORTRAN. Statement numbers appear only where

still necessary. Cosmetic changes are made, including changing Hollerith strings into

quoted strings and relational operators into symbols (for example, ".GT." into ">").

The output is appropriately indented.

Options

—S Input is accepted in standard format, that is comments are specified by a c,

C, or * in column 1, and continuation lines are specified by a nonzero,

nonblank character in column 6. Normally input is in the form accepted

by £77(1).

—i Do not turn computed goto statements into switches. (ratfor does not

turn switches back into computed goto statements.)

-a Turn sequences of else ifs into a non-rat for switch of the form

switch

{ case predl: code

case pred2: code

case pred3: code

default: code

}

The case predicates are tested in order; the code appropriate to only one

case is executed. This generalized form of switch statement does not

occur in ratfor.

-b Generate goto’s instead of multilevel break statements.

-n Generate goto’s instead of multilevel next statements.

~tn Make the nonzero integer n the lowest valued label in the output program

(default 10).

—Ccn Increment successive labels in the output program by the nonzero integer n

(default 1).

—en If n is O (default), place code within a loop only if it can lead to an

iteration of the loop. If n is nonzero, admit a small code segments to a

loop if otherwise the loop would have exits to several places including the

segment, and the segment can be reached only from the loop. ‘Small’ is

close to, but not equal to, the number of statements in the code segment.

Commands 1-37

VAX struct(1)

Unsupported

Values of n under 10 are suggested.

Restrictions

Struct knows FORTRAN 66 syntax, but not full FORTRAN 77.

If an input FORTRAN program contains identifiers which are reserved words in

ratfor, the structured version of the program will not be a valid rat for program.

The labels generated cannot go above 32767.

If you get a goto without a target, try —e .

Files

/tmp/struct*

[usr/lib/struct/*

See Also

f77(1)

1-38 Commands

sysline(1)

Unsupported

Name

sysline — display system status on status line of a terminal

Syntax

sysline [-bcdehDilmpqrsj 1 [-H remote][+N]

Description

The sysline command runs in the background and periodically displays system

status information on the status line of the terminal. Not all terminals contain a

status line. Those that do include the h19, concept 108, Ann Arbor Ambassador,

vt100, Televideo 925/950 and Freedom 100. If no options are given, sysline

displays the time of day, the current load average, the change in load average in the

last 5 minutes, the number of users (followed by a ‘u’), the number of runnable

process (followed by a ‘r’)}(VAX only), the number of suspended processes (followed

by a ‘s’)(VAX only), and the users who have logged on and off since the last status

report. Finally, if new mail has arrived, a summary of it is printed. If there is unread

mail in your mailbox, an asterisk will appear after the display of the number of users.

The display is normally in reverse video (if your terminal supports this in the status

line) and is right justified to reduce distraction. Every fifth display is done in normal

video to give the screen a chance to rest.

If you have a file named . who in your home directory, then sysline prints the

contents of that file first. One common use of this feature is to alias chdir, pushd,

and popd to place the current directory stack in ~/ .who after it changes the new

directory.

Options

-b Beep once every half hour and twice every hour, just like those

obnoxious watches you keep hearing.

—C Clear the status line for 5 seconds before each redisplay.

—d Debug mode -- print status line data in human readable format.

-D Print out the current day/date before the time.

—€ Print out only the information. Do not print out the control commands

necessary to put the information on the bottom line. This option is

useful for putting the output of sysline onto the mode line of an

emacs window.

-H remote Print the load average on the remote host remote (VAX only). If the

host is down, or is not sending out rwhod packets, then the down time

is printed instead.

-h Print out the host machine’s name after the time (VAX only).

-1 Don'’t print the names of people who log in and out.

~m Don’t check for mail.

-p Don’t report the number of processes which are runnable and

suspended.

Commands 1-39

sysline (1)

Unsupported

-r Don’t display in reverse video.

+N Update the status line every N seconds. The default is 60 seconds.

—q Don’t print out diagnostic messages if something goes wrong when

starting up.

—i Print out the process id of the sysline process onto standard output

upon startup. With this information you can send the alarm signal to

the sysline process to cause it to update immediately. The

sysline command writes to the standard error, so you can redirect

the standard output into a file to catch the process id.

- Print "short” form of line by left-justifying. No iff escapes are allowed

in the status line. Some terminals (the Televideos and Freedom 100

for example) do not allow cursor movement (or other "intelligent"

operations) in the status line. For these terminals, sysline normally

uses blanks to cause right-justification. This flag will disable the

adding of the blanks.

-j Force sysline output to be left-justified, even on terminals capable

of cursor movement on the status line.

If you have a file .syslinelock in your home directory, then sysline will not update

its statistics and write on your screen; it will just go to sleep for a minute. This is

useful if you want to momentarily disable sysline. Note that it may take a few

seconds from the time the lock file is created until you are guaranteed that sysline

will not write on the screen. In order to use sysline on a VT100 terminal, either

of the following termcap entries should be used to specify terminal attributes:

vt100-s Creates a top-of-screen status line.

vt100-s-bot Creates a bottom of screen status line.

Restrictions

Files

If you interrupt the display, then you may find your cursor missing or stuck on the

status line. The best thing to do is reset your terminal. If there is too much output

for one line, the excess is thrown away.

/etc/utmp Names of people who are logged in.

/dev/kmem Process table (VAX only).

/usr/spool/rwho/whod.* Who/uptime information for remote hosts (VAX only).
print

HOME/ .wholnformationonbottomline. TP {HOME}/.syslinelock

When the .syslinelock file exists, sysline will not

print.

1-40 Commands

tc(1)

Unsupported

Name

tc — phototypesetter simulator

Syntax

tc[-t][-sN1[-pL1l[file]

Description

The tc command interprets its input (standard input default) as device codes for a

Graphic Systems phototypesetter (cat). The standard output of tc is intended for a

Tektronix 4015 (a 4014 terminal with ASCII and APL character sets). The sixteen

typesetter sizes are mapped into the 4014’s four sizes; the entire TROFF character set

is drawn using the 4014’s character generator, using overstruck combinations where

necessary. Typical usage:

troff —t file | tc

At the end of each page tc waits for a newline (empty line) from the keyboard before

continuing on to the next page. In this wait state, the command e will suppress the

screen erase before the next page; sN will cause the next N pages to be skipped; and

lline will send line to the shell.

Options

-t Don’t wait between pages; for directing output into a file.

—sN Skip the first N pages.

-pL Set page length to L. L may include the scale factors p (points), i (inches),

¢ (centimeters), and P (picas); default is picas.

Multiply the default aspect ratio, 1.5, of a displayed page by //w.

Restrictions

Font distinctions are lost.

tc’s character set is limited to ASCII in just one size.

See Also

troff(1), plot(lg)

Commands 1-41

tk(1)

Unsupported

Name

tk — paginator for the Tektronix 4014

Syntax

tk[-t]1[-N][-pL][file]

Description

The output of tk is intended for a Tektronix 4014 terminal. tk arranges for 66 lines

to fit on the screen, divides the screen into N columns, and contributes an eight space

page offset in the (default) single-column case. Tabs, spaces, and backspaces are

collected and plotted when necessary. Teletype Model 37 half- and reverse-line

sequences are interpreted and plotted. At the end of each page tk waits for a

newline (empty line) from the keyboard before continuing on to the next page. In

this wait state, the command !command will send the command to the shell.

Options

-t Don’t wait between pages; for directing output into a file.

-N Divide the screen into N columns and wait after the last column.

—pL Set page length to L lines.

See Also

pr(1)

1-42 Commands

tp(1)
Unsupported

Name

tp — manipulate tape archive

Syntax

tp [key][name...]

Description

The tp command saves and restores files to and from an archive on DECtape or

magnetic tape. The default archive is tapx, but any file or device may be requested

through the use of options. Its actions are controlled by the key argument. The key

is a string of characters containing at most one function letter and possibly one or

more function modifiers. Other arguments to the command are file or directory

names specifying which files are to be dumped, restored, or listed. In all cases

appearance of a directory name refers to the files and (recursively) subdirectories of

that directory.

NOTE

The DECtape device is not supported in ULTRIX.

The function portion of the key is specified by one of the following letters:

d Deletes the named files from the tape. At least one name argument must be

given. This function is not permitted on magnetic tapes.

r The named files are written on the tape. If files with the same names already

exist, they are replaced. ‘‘Same’’ is determined by string comparison, so

. /abc is not the same as /usr/dmr/abc even if /usr/dmr is the current

directory. If no name argument is given, ‘.’ is the default.

t Lists the names of the specified files. If no name argument is given, the entire

contents of the tape are listed.

u Updates the tape. u is like r, but a file is replaced only if its modification date

is later than the date stored on the tape. u is the default function key if none is

given.

X Extracts the named files from the tape to the file system. The owner and mode

are restored. If no name argument is given, the entire contents of the tape are

extracted.

You can use one or more of the following options in addition to the letter that selects

the function desired.

c A fresh dump is to be created. The tape directory is cleared before beginning.

This option is usable only with the r and u function keys. This option is

assumed with magnetic tape since it is impossible to selectively overwrite

magnetic tape.

f Use the next argument as the name of the archive. Any special file can be used

as the next argument. When used with the r function key, the ¢ option is

implied. That is, the directory is cleared before beginning.

This option cannot be used with the d or u function keys.

Commands 1-43

tp(1)
Unsupported

i

Restrictions

Errors reading and writing the tape are noted, but no action is taken.

Normally, errors cause a return to the command level.

Specifies magnetic tape as opposed to DECtape. The default tape is rmt Oh,

but other devices may be requested with the f option.

When used with the r function key, the ¢ option is implied. That is, the

directory is cleared before beginning.

This option cannot be used with the d or u function keys.

Normally, tp does its work silently. This option causes it to display the name

of each file it treats, preceded by the function letter. With the t function, v

gives more information about the entries than just the name.

Causes 7p to pause before transferring each file, type the indicative letter and

the file name (as with v) and await the user’s response.

Response y means ‘yes’, so the file is transferred. Null response means ‘no’,

and the file is not transferred

Response x means ‘‘exit’’; the £p command terminates immediately. With the

x function key, files previously asked about have been extracted already. With

the r, u, and d function keys, no change has been made to the tape.

A single file with several links to it is treated like several files.

Binary-coded control information makes magnetic tapes written by tp difficult to

carry to other machines. The tar(1) command avoids this problem.

Diagnostics

There are several. The least obvious one is ‘Phase error’, which means the file

changed after it was selected for dumping but before it was dumped.

Files

/dev/tap? DECtape archive

/dev/rmt?h or /dev/nmt?h

See Also

ar(1),

1-44 Commands

Magnetic tape archive

tar(1)

trman(1)

Unsupported

Name

trman — translate version 6 manual macros to version 7 macros

Syntax

trman [file]

Description

The t rman command reads the input file, which should be nroff/troff input and

attempts to translate the version 6 manual sections therein to version 7 format. It is

largely successful, but seems to have trouble with indented paragraphs and

complicated font control. You should expect to have to fix up long sections by hand

somewhat.

See Also

man(7)

Commands 1-45

troff(1)

Unsupported

Name

Syntax

troff — text formatting and typesetting

troff [option 1... [file] ...

Description

The trof f program formats text in the named files for printing on a Graphic

Systems C/A/T phototypesetter; nroff is used for for typewriter-like devices. Their

capabilities are described in the NroffiTroff User’s Manual.

If no file argument is present, the standard input is read. An argument consisting of a

single minus (-) is taken to be a file name corresponding to the standard input.

Options

The options, which may appear in any order so long as they appear before the files,

are:

-~olist Print only pages whose page numbers appear in the comma-separated list of

numbers and ranges. A range N-M means pages N through M an initial

—N means from the beginning to page N; and a final N— means from N to

the end.

-nN Number first generated page N.

—sN Stop every N pages. Nroff will halt prior to every N pages (default N=1) to

allow paper loading or changing, and will resume upon receipt of a newline.

troff will stop the phototypesetter every N pages, produce a trailer to

allow changing cassettes, and resume when the typesetter’s start button is

pressed.

—mname Prepend the macro file /usr/lib/tmac/tmac.name to the input files.

-raN Set register a (one-character)to N.

-i Read standard input after the input files are exhausted.

—q Invoke the simultaneous input-output mode of the rd request.

troff Only

~t Direct output to the standard output instead of the phototypesetter.

—f Refrain from feeding out paper and stopping phototypesetter at the end of

the run.

-w Wait until phototypesetter is available, if currently busy.

-b Report whether the phototypesetter is busy or available. No text processing

is done.

-a Send a printable ASCII approximation of the results to the standard output.

—pN Print all characters in point size N while retaining all prescribed spacings

and motions, to reduce phototypesetter elapsed time.

1-46 Commands

troff(1)

Unsupported

~Ffontdir

The directory fontdir contains the font width tables [usr/lib/font. This option

can be used to produce output for devices besides the phototypesetter.

If the file /usr/adm/tracct is writable, t rof£ keeps phototypesetter accounting

records there. The integrity of that file may be secured by making troff a ’set

user-id’ program.

Files

/tmp/ta* temporary file

fusr/lib/tmac/tmac.* standard macro files

[usr/lib/term/* terminal driving tables for nroff

/usr/lib/font/* font width tables for troff

/dev/cat phototypesetter

Jusr/adm/tracct accounting statistics for /dev/cat

See Also

eqn(1), tbl(1), ms(7), me(7), man(7), col(1)

J. F. Ossanna, NroffiTroff user’s manual

B. W. Kernighan, A TROFF Tutorial

Commands 1-47

unifdef(1)

Unsupported

Name

unifdef — removes ifdef’ed lines

Syntax

unifdef [—c =Dsym —idsym —iusym -1 -t -Usym] ... [file]

Description

The unifdef command is useful for removing ifdef’ed lines from a file while

otherwise leaving the file alone. The unifdef command is like a stripped-down C

preprocessor: it is smart enough to deal with the nested ifdefs, comments, single and

double quotes of C syntax so that it can do its job, but it doesn’t do any including or

interpretation of macros. Neither does it strip out comments, though it recognizes

and ignores them. Ifdefs involving symbols you don’t specify are untouched and

copied out along with their associated ifdef, else, and endif lines. The ifdef, ifndef,

else, and endif lines associated with the symbol, sym, will also be removed. If an

ifdef X occurs nested inside another ifdef X, then the inside ifdef is treated as if it

were an unrecognized symbol. If the same symbol appears in more than one

argument, only the first occurrence is significant.

If you use ifdefs to delimit non-C lines, such as comments or code which is under

construction, then you must tell unifdef which symbols are used for that purpose so

that it won'’t try to parse for quotes and comments in those ifdef’ed lines.

The unifdef command copies its output to stdout and will take its input from stdin

if no file argument is given.

Options

—C Causes the operation of unifdef to be complemented. The lines that

would have been removed or blanked are retained and vice versa.

—idsym Specifies that you want the lines inside certain ifdefs to be ignored, but

copied out.

—iusym Specifies that you want the lines inside certain ifdefs to be ignored, but

copied out.

-1 Causes unifdef to replace removed lines with blank lines instead of

deleting them.

~t Makes unifdef refrain from attempting to recognize comments and

single and double quotes. This option is for use on plain text (not C

code).

—Dsym Specifies which symbols you want defined and the lines inside those

ifdefs will be copied to the output.

—Usym Specifies which symbols you want undefined and the lines inside those

ifdefs will be removed.

1-48 Commands

unifdef(1)

Unsupported

Restrictions

Does not know how to deal with cpp constructs such as

#f defined(X) Il defined(Y)

Diagnostics

Premature EOF, inappropriate else or endif.

Exit status is O if output is exact copy of input, 1 if not, 2 if trouble.

See Also

diff(1)

Commands 1-49

units (1)

Unsupported

Name

Syntax

units — conversion program

units

Description

Files

The units command converts quantities expressed in various standard scales to

their equivalents in other scales. It works interactively in this fashion:

You have: inch

You want: cm

* 2.54000e+00

/ 3.93701e-01

A quantity is specified as a multiplicative combination of units optionally preceded

by a numeric multiplier. Powers are indicated by suffixed positive integers, division

by the usual sign:

You have: 15 pounds force/in2

You want: atm

* 1.02069¢+00

/! 9.79730e-01

The units command only does multiplicative scale changes. Thus it can convert

Kelvin to Rankine, but not Centigrade to Fahrenheit. Most familiar units,

abbreviations, and metric prefixes are recognized, together with a generous leavening

of exotica and a few constants of nature including:

pi ratio of circumference to diameter

c speed of light

e charge on an electron

g acceleration of gravity

force sameasg

mole Avogadro’s number

water pressure head per unit height of water

au astronomical unit

‘Pound’ is a unit of mass. Compound names are run together, for example,

‘lightyear’. British units that differ from their US counterparts are prefixed thus:

‘brgallon’. Currency is denoted ‘belgiumfranc’, ‘britainpound’, ...

If units is used with no arguments, it will use /usr/lib/units to define the

units and the conversions that it knows about. When file is supplied, it will be used

to define the units and conversions that units will recognize.

/usr/lib/units

1-50 Commands

viontinfo (1) VAX

Unsupported

Name

vfontinfo — inspect and print out information about UNIX fonts

Syntax

vfontinfo [—v] fontname [characters]

Description

The vfontinfo command allows you to examine a font in the UNIX format. It

prints out all the information in the font header and information about every non-null

(width > 0) glyph. This can be used to make sure the font is consistent with the

format.

The fontname argument is the name of the font you wish to inspect. It writes to

standard output. If it can’t find the file in your working directory, it looks in

/usr/lib/vfont (the place most of the fonts are kept).

The characters, if given, specify certain characters to show. If omitted, the entire

font is shown.

Options

-V Displays the bits of the glyph itself as an array of X’s and spaces, in

addition to the header information.

See Also

vpr(1), viont(5)

The Berkeley Font Catalog

Commands 1-51

VAX vgrind (1)

Unsupported

Name

vgrind — grind nice listings of programs

Syntax

verind [f][-][-t][-n][—=x][-W][-sn][-hheader][—d file][

-llanguage | name ...

Description

The vgrind command formats the program sources which are arguments in a nice

style using t rof£(1). Comments are placed in italics, keywords in bold face, and

the name of the current function is listed down the margin of each page as it is

encountered.

vgrind runs in two basic modes, filter mode or regular mode. In filter mode

vgrind acts as a filter in a manner similar to tb11 The standard input is passed

directly to the standard output except for lines bracketed by the t rof £-like macros:

-vS - starts processing

.VE - ends processing

These lines are formatted as described above. The output from this filter can be

passed to trof £ for output. There need be no particular ordering with eqn(1) or

tbl(l).

In regular mode, vgrind accepts input files, processes them, and passes them to

trof £(1) for output.

In both modes vgrind passes any lines beginning with a decimal point without

conversion.

Options

-f Forces filter mode

- Forces input to be taken from standard input (default if —f is specified)

-t Similar to the same option in t rof £ causing formatted text to go to the

standard output

-n Forces no keyword bolding

—X Outputs the index file in a *‘pretty’’ format. The index file itself is

produced whenever vgrind is run with a file called index in the current

directory. The index of function definitions can then be run off by giving

vgrind the —x option and the file index as argument.

-W Forces output to the (wide) Versatec printer rather than the (narrow)

Varian

- Specifies a point size to use on output (exactly the same as the argument

of a .ps)

-h header

Specifies a particular header to put on every output page (default is the file

name)

1-52 Commands

vgrind (1) VAX

Unsupported

—d Specifies an alternate language definitions file (default is /usr/lib/vgrindefs)

-1 language

Specifies the language to use. Currently known are PASCAL (-lIp),

MODEL (-Im),C (-Ic or the default), CSH (-lcsh), SHELL (-Ish),

RATFOR (-Ir), and ICON (-1I).

Restrictions

Vfontedpr assumes that a certain programming style is followed:

For C - function names can be preceded on a line only by spaces, tabs, or

an asterisk. The parenthesized arguments must also be on the same line.

For PASCAL - function names need to appear on the same line as the

keywords function or procedure.

For MODEL - function names need to appear on the same line as the

keywords is beginproc.

If these conventions are not followed, the indexing and marginal function name

comment mechanisms will fail.

More generally, arbitrary formatting styles for programs mostly look bad. The use of

spaces to align source code fails miserably; if you plan to vgrind your program you

should use tabs. This is somewhat inevitable since the font used by vgrind is

variable width.

Files

index file where source for index is created

fusr/lib/tmac/tmac.vgrind macro package

fusr/lib/viontedpr preprocessor

/ust/lib/vgrindefs language descriptions

See Also

vip(1), vtroff(1), vgrindefs(5)

Commands 1-53

VAX vip(1)
Unsupported

Name

vlp — Format Lisp programs to be printed with nroff, vtroff, or troff

Syntax

vlp [—p pointsize 1 [-d 1 [£] [-1 1 [=v 1[=T titlel] filel [=T title2] file2 ...

Description

The v1p command formats the named files so that they can be run through nroff,

vtroff, or troff to produce listings that line-up and are attractive. The first

non-blank character of each line is lined-up vertically, as in the source file.

Comments (text beginning with a semicolon) are printed in italics. Each function’s

name is printed in bold face next to the function. This format makes Lisp code look

attractive when it is printed with a variable width font.

Normally, v1p works as a filter and sends its output to the standard output.

However, the —v option pipes the output directly to vtroff. If no files are

specified, then v1p reads from the standard input.

Options

-V

-T

Restrictions

Changes the size of the text from its default value of 8 points to one of 6,

8, 10, or 12 points. Once set, the point size is used for all subsequent

files. This point size does not apply to embedded text (see the —f option).

Puts v1p into debugging mode.

Sets the filtered mode in which all lines are passed unmodified, except

those lines between the directives .Ls and .Le. This mode can be used to

format Lisp code that is embedded in a document. The directive .Ls takes

an optional argument that gives the point size for the embedded code. If

not size is specified, the size of the surrounding text is used.

Prevents v1p from placing labels next to functions. This switch is useful

for embedded Lisp code, where the labels would be distracting.

Causes v1p to send its output to vt rof £ rather than the standard output.

Print a title on each page. The -T option applies only to the next file

given. Titles are not printed for embedded text (see —f, above). This

option may not be used if v1p is reading from the standard input.

v1p transforms \ into \\ so that it will be printed out. Hence, troff commands

cannot be embedded in Lisp code.

1-54 Commands

vip(1) VAX

Unsupported

Files

/usr/lib/vlpmacs troff/nroff macros

See Also

vgrind(1), lisp(1)

Commands 1-55

VAX vpr(1)

Unsupported

Name

Syntax

vpr, vprm, vpq, vprint — raster printer/plotter spooler

vpr[-W [][-v][-t[-1234font]][-w][-wwidth][-m][file ...]

vprm [id ...][file ...][owner ...]

vPq

vprint [-W] file ...

Description

The vpr spooler causes the named files to be queued for printing or typeset

simulation on one of the available raster printer/plotters. If no files are named, the

standard input is read. By default the input is assumed to be line printer-like text.

For very wide plotters, the input is run through the filter /usr/1ib/sidebyside

giving it an argument of —w106 which arranges it four pages adjacent with 90

column lines (the rest is for the left margin). Since there are 8 lines per inch in the

default printer font, vpr thus produces 86 lines per page (the top and bottom lines

are left blank).

Options

-1 Print the input in a more literal manner. Page breaks are not

inserted, and most control characters (except format effectors: \n,

\f, etc.) are printed (many control characters print special graphics

not in the ASCII character set.) Tab and underline processing is

still done. If this option is not given, control characters which are

not format effectors are ignored, and page breaks are inserted after

an appropriate number of lines have been printed on a page.

-W Queues files for printing on a wide output device, if available.

Normally, files are queued for printing on a narrow output device.

-1234 Specifies a font to be mounted on font position i. The daemon

will construct a . railmag file referencing

/usr/lib/vfont/name.size.

~-m Report by mail(1) when printing is complete.

-W (Applicable only to wide output devices.) Do not run the input

through sidebyside. Such processing has been done already, or full

(440 character) printer width is desired.

—wwidth Use width width rather than 90 for sidebyside.

-V Use the filter /usr/lib/vrast to convert the vectors to raster.

The named files must be a parameter and vector file (in that order)

created by plot(3x) routines.

—t Use the filter /usr/1ib/vcat to typeset the input on the

printer/plotter. The input must have been generated by t rof £(1)

run with the —t option. This is not normally run directly to wide

output devices, since it is wasteful to run only one page across.

1-56 Commands

vpr(1) VAX

Unsupported

The program vtrof£(1) is normally used and arranges, using

vsort for printing to occur four pages across, conserving paper.

vprm removes entries from the raster device queues. The id, filename or owner

should be that reported by vpqg. All appropriate files will be removed. Both queues

are always searched. The id of each file removed from the queue will be printed.

vpq prints the queues. Each entry in the queue is printed showing the owner of the

queue entry, an identification number, the size of the entry in characters, and the file

which is to be printed. The id is useful for removing a specific entry from the printer

queue using vprm.

vprint is a shell script which pr’s a copy of each named file on one of the

electrostatic printer/plotters. The files are normally printed on a narrow device; -W

option causes them to be printed on a wide device.

Restrictions

The 1’s (one’s) and I’s (lower-case el’s) in a Benson-Varian’s standard character set

look very similar; caution is advised.

Files

fusr/spool/v?d/* device spool areas

fusr/lib/v2d daemons

fusr/lib/vpd Versatec daemon

[ust/lib/vpf filter for printer simulation

[ust/lib/*vcat filter for typeset simulation

[usr/lib/vrast filter for plot

[usr/lib/sidebyside filter for wide output

See Also

troff(1), vfont(5), vp(4), pti(1), vtroff(1), plot(3x)

Commands 1-57

VAX viroff(1)

Unsupported

Name

Syntax

vtroff — troff to a raster plotter

vtroff [—-w] [—F majorfont] [-123 minorfont] [-llength] [—x] "troff arguments"

Description

The vtroff command runs trof (1) sending its output through various programs

to produce typeset output on a raster plotter such as a Benson-Varian or or a

Versatec. The —W option specifies that a wide output device be used; the default is

to use a narrow device. The -1 (lower case 1) option causes the output to be split

onto successive pages every length inches rather than the default 11°°.

The default font is a Hershey font. If some other font is desired you can give a -F

argument and then the font name. This will place normal, italic and bold versions of

the font on positions 1, 2, and 3. To place a font only on a single position, you can

give an argument of the form -~ and the minor font name. A .r will be added to the

minor font name if needed. Thus

% vtroff -ms paper

will set a paper in the Hershey font, while

% vtroff —F nonie —ms paper

will set the paper in the (sans serif) nonie font. The —x option asks for exact

simulation of photo-typesetter output (that is, using the width tables for the C.A.T.

photo-typesetter).

Restrictions

Files

Since some macro packages work correctly only if the fonts named R, I, B, and S are

mounted, and since the Versatec fonts have different widths for individual characters

than the fonts found on the typesetter, the following dodge was necessary: If you

don’t use the ““.fp’’ troff directive then you get the widths of the standard

typesetter fonts suitable for shipping the output of troff over the network to the

computer center A machine for phototypesetting. If, however, you remount the R, I,

B and S fonts, then you get the width tables for the Versatec.

/usr/lib/tmac/tmac.vcat default font mounts and bug fixes

/usr/lib/fontinfo/* fixes for other fonts

/usr/lib/vfont directory containing fonts

See Also

troff(1), vfont(5), vpr(1)

1-58 Commands

vwidth (1) VAX

Unsupported

Name

vwidth — make troff width table for a font

Syntax

vwidth fontfile pointsize > ftxx.c

cc -¢ ftxx.c mv ftxx.o /usr/lib/font/ftxx

Description

The vwidth command translates from the width information stored in the vfont

style format to the format expected by troff. troff wants an object file in

a.out(5) format. (This fact does not seem to be documented anywhere.) troff

should look directly in the font file but it doesn’t.

vwidth should be used after editing a font with fed(1). It is not necessary to use
vwidth unless you have made a change that would affect the width tables. Such

changes include numerically editing the width field, adding a new character, and

moving or copying a character to a new position. It is not always necessary to use

vwidth if the physical width of the glyph (for example, the number of columns in

the bit matrix) has changed, but if it has changed much the logical width should

probably be changed and vwidth run.

vwidth produces a C program on its standard output. This program should be run

through the C compiler and the object (that is, the .o file) saved. The resulting file

should be placed in /usr/1ib/font in the file ftxx where is a one or two letter

code that is the logical (internal to t rof £) font name. This name can be found by

looking in the file /usr/lib/fontinfo/fname* where fname is the external name of the

font.

Restrictions

Produces the C file using obsolete syntax about which the portable C compiler

complains.

See Also

fed(1), vfont(5S), troff(1), vtroff(1)

Commands 1-59

whois (1)

Unsupported

Name

whois — DARPA Internet user name directory service

Syntax

whois [-h servername | name

Description

The whois command allows you to look up people, hosts, and organizations in the

database kept by the Network Information Center (NIC) at SRI International. The

name can be the last name of a registered user, or the name of a registered Internet

host, or other things recognized by the whois server. Not all users, and only a few

Internet hosts, are registered with the NIC. If the name argument contains white

space or other special characters, you must surround it with double quote (") marks to

prevent its interpretation by the shell.

The WHOIS server at the NIC will provide more information on doing complex

searches if you do

whois "?2"

(note the quotes around the question mark), or even more information if you do

whois help

Options

-h servername Specifies the whois server on a host other than the default

(NIC.DDN.MIL).

Examples

whois cerf

whois dec.com

whois -h nic.ddn.mil knuth

whois smith

Note that the last example, at least, will match many records (and may take fairly

long to complete). The whois server at the NIC will automatically provide

information on how to single out one record. Remember to put quotes around strings

that contain ‘!’ characters.

See Also

RFC 812: Nicname/Whois

1-60 Commands

Name

Syntax

dial (3c) VAX

Unsupported

dial — establish an out-going terminal line connection

#include <dial.h>

int dial(call)

CALL *call,;

void undial(fd)

int fd,

Description

The dial routine returns a file-descriptor for a terminal line open for read/write.

The argument to dial is a CALL structure which is defined in the <dial.h> header

file.

When finished with the terminal line, the calling program must invoke undial to

release the semaphore that has been set during the allocation of the terminal device.

The CALL typedef in the <dial.h> header file is:

typedef struct {

struct termio *attr;/* pointer to termio attribute struct */

int baud; /* transmission data rate */

int speed; /* 212A modem: low=300, high=1200 */

char *1ine; /% device name for out—going line */

char *telno; /* pointer to tel-no digits string */

int modem; /* specify modem control for direct lines */

} CALL;

The CALL element speed is intended only for use with an outgoing dialed call.

The CALL element baud is for the desired transmission baud rate. For example, one

might set baud to 110 and speed to 300 (or 1200).

If the desired terminal line is a direct line, a string pointer to its device-name should

be placed in the 1ine element in the CALL structure. Legal values for such terminal

device names are kept in the L-devices file. In this case, the value of the baud

element need not be specified as it is determined from the L-devices file.

The telno element is for a pointer to a character string representing the telephone

number to be dialed. The termination symbol is supplied by the dial function, and

should not be included in the telno string passed to dial in the CALL structure.

The CALL element modem is used to specify modem control for direct lines. This

element should be non-zero if modem control is required.

The CALL element attr is a pointer to a termio structure, as defined in the

termio.h header file. A NULL value for this pointer element may be passed to the

dial function, but if such a structure is included, the elements specified in it are set

for the outgoing terminal line before the connection is established. This is often

important for certain attributes such as parity and baud-rate.

Subroutines 3—1

VAX dial (3¢)

Unsupported

Restrictions

Including the <dial.h> header file automatically includes the <termio.h> header file.

An alarm(3) system call for 3600 seconds is made (and caught) within the dial

module for the purpose of ‘‘touching’’ the LCK.. file and constitutes the device

allocation semaphore for the terminal device. Otherwise, uucp(lc) may simply

delete the LCK.. entry on its 90-minute clean-up rounds. The alarm may go off while

the user program is in a read(2) or write(2) system call, causing an apparent error

return. If the user program expects to be around for an hour or more, error returns

from reads should be checked for (errno==EINTR), and the read possibly reissued.

Diagnostics

On failure, a negative value indicating the reason for the failure is returned.

Mnemonics for these negative indices as listed here are defined in the <dial.h> header

file.

INTRPT -1 /* interrupt occured */

D_HUNG -2 /* dialer hung (no return from write) */

NO_ANS -3 /* no answer within 10 seconds */

ILL_BD -4 [* illegal baud-rate */

A_PROB -5 /* acu problem (open() failure) */

L_PROB -6 /* line problem (open() failure) */

NO_Ldv =7 /* can’t open LDEVS file */

DV_NT_A -8 /* requested device not available */

DV_NTE -12 /* requested speed does not match */

DV_NTK -9 /* requested device not known */

NO_BD_A -10 /* no device available at requested baud */

NO_BDK -11 /* no device known at requested baud */

Files

/usr/lib/uucp/L-devices

/usr/spool/uucp/LCK. .ty-device

See Also

uucp(1c), alarm(3), read(2), write(2), termio(7)

3-2 Subroutines

intro (3f) VAX

Unsupported

Name

intro — introduction to FORTRAN library functions

Description

This section describes those functions that are in the FORTRAN run time library.

The functions listed here provide an interface from £77 programs to the system in

the same manner as the C library does for C programs. They are automatically

loaded as needed by the FORTRAN compiler £77(1).

Most of these functions are in libU77.a. Some are in 1ibF77.a or libI77.a. A few

intrinsic functions are described for the sake of completeness.

For efficiency, the SCCS ID strings are not normally included in the a. out file. To

include them, simply declare the following in any £77 module:

external £771id

Subroutines 3-3

VAX abort (3f)

Unsupported

Name

abort — terminate abruptly with memory image

Syntax

subroutine abort (string)

character®(*) string

Description

The abort subroutine cleans up the I/O buffers and then aborts producing a core file

in the current directory. If string is given, it is written to logical unit O preceded by

““abort:’’.

Files

[usr/lib/l1ibF77.a

See Also

abort(3)

3—4 Subroutines

access (3f) VAX

Unsupported

access — determine accessibility of a file

integer function access (name, mode)

character*(*) name, mode

Description

The access subroutine checks the given file, name, for accessibility with respect to

the caller according to mode. The mode argument may include in any order and in

any combination one or more of:

T test for read permission

w test for write permission

X test for execute permission

(blank) test for existence

An error code is returned if either argument is illegal, or if the file can not be

accessed in all of the specified modes. 0 is returned if the specified access would be

successful.

Restrictions

Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

Jusr/lib/libU77.a

See Also

access(2), perror(3f)

Subroutines 3-5

VAX alarm (3f)

Unsupported

Name

alarm — execute a subroutine after a specified time

Syntax

integer function alarm (time, proc)
integer time

external proc

Description

This routine arranges for subroutine proc to be called after time seconds. If time is

‘0’’, the alarm is turned off and no routine will be called. The returned value will be

the time remaining on the last alarm.

Restrictions

Both alarmand sleep interact. If sleep is called after alarm, the alarm

process will never be called. SIGALRM will occur at the lesser of the remaining

alarm time or the sleep time.

Files

fusr/lib/libU77.a

See Also

alarm(3), sleep(3f), signal(3f)

3-6 Subroutines

Name

Syntax

bessel functions — of two kinds for integer orders

function besj0 (x)

function besjl (x)

function besjn (n, x)

function besy0 (x)

function besyl (x)

function besyn (n, x)

double precision function dbesj0 (x)

double precision x

double precision function dbesjl (x)

double precision x

double precision function dbesjn (n, x)

double precision x

double precision function dbesy0 (x)

double precision x

double precision function dbesyl (x)

double precision x

double precision function dbesyn (n, x)

double precision x

Description

These functions calculate Bessel functions of the first and second kinds for real

arguments and integer orders.

Diagnostics

Negative arguments cause besy0, besyl, and besyn to return a huge negative value.

The system error code will be set to EDOM (33).

bessel (3f)

Unsupported

Subroutines 3-7

VAX

VAX bessel (3f)

Unsupported

Files

Jusr/lib/1ibF77.a

See Also

bessel(3m), perror(3f)

3-8 Subroutines

bit (3f)

Unsupported

Name

bit, and, or, xor, not, rshift, Ishift — bitwise functions

Syntax

(intrinsic) function and (wordl, word2)

(intrinsic) function or (wordl, word2)

(intrinsic) function xor (wordl, word2)

(intrinsic) function not (word)

(intrinsic) function rshift (word, nbits)

(intrinsic) function Ishift (word, nbits)

Description

These bitwise functions are built into the compiler and return the data type of their

argument(s). It is recommended that their arguments be integer values.

Inappropriate manipulation of real objects may cause unexpected results.

The bitwise combinatorial functions return the bitwise ‘‘and’’ (and), ‘“‘or’’ (or),

or ‘“‘exclusive or’’ (xor) of two operands. The not returns the bitwise

complement of its operand.

The 1shift, or rshift with a negative nbits, is a logical left shift with no end

around carry. The rshift, or 1shift with a negative nbits, is an arithmetic right

shift with sign extension. No test is made for a reasonable value of nbits.

Files

These functions are generated in-line by the f77 compiler.

Subroutines 3-9

VAX

VAX chdir (3f)

Unsupported

Name

chdir — change default directory

Syntax

integer function chdir (dirname)

character*(*) dirname

Description

The default directory for creating and locating files will be changed to dirname.

Restrictions

Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

Use of this function may cause inquire by unit to fail.

Return Value

Zero is returned if successful; an error code otherwise.

Files

[usr/lib/libU77.a

See Also

cd(1), chdir(2), perror(3f)

3-10 Subroutines

chmod (3f) VAX

Unsupported

Name

chmod — change mode of a file

Syntax

integer function chmod (name, mode)

character*(*) name, mode

Description

This function changes the filesystem mode of file name. The mode can be any

specification recognized by chmod(1). The name must be a single pathname.

The normal returned value is 0. Any other value will be a system error number.

Restrictions

Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

Files

fusr/lib/libU77.a

/bin/chmod exec’ed to change the mode.

See Also

chmod(1)

Subroutines 3-11

VAX etime (3f)

Unsupported

Name

etime, dtime — return elapsed execution time

Syntax

function etime (tarray)

real tarray(2)

function dtime (tarray)

real tarray(2)

Description

These two routines return elapsed runtime in seconds for the calling process. The

dt ime routine returns the elapsed time since the last call to dt ime, or the start of

execution on the first call.

The argument array returns user time in the first element and system time in the

second element. The function value is the sum of user and system time.

The resolution of all timing is 1/HZ sec. where HZ is currently 60.

Files

Jusr/lib/libU77.a

See Also

time(3f)

3-12 Subroutines

exit(3f) VAX

Unsupported

Name

exit — terminate process with status

Syntax

subroutine exit (status)

integer status

Description

The exit function flushes and closes all the process’s files, and notifies the parent

process if it is executing a wait . The low-order 8 bits of status are available to the

parent process. Therefore, status should be in the range 0 — 255.

This call will never return.

The C function exit may cause cleanup actions before the final ‘sys exit’.

Files

fust/lib/libF77.a

See Also

exit(2), fork(2), wait(2), fork(3f), wait(3f)

Subroutines 3—-13

VAX fdate (3f)

Unsupported

Name

fdate — return date and time in an ASCII string

Syntax

subroutine fdate (string)

character®(*) string

character*(*) function fdate()

Description

The fdate function returns the current date and time as a 24-character string in the

format described under ct ime(3). Neither *newline’ nor NULL will be included.

The £date function can be called either as a function or as a subroutine. If called

as a function, the calling routine must define its type and length. For example:

character*24 fdate

external fdate

write (*,*) fdate()

Files

Jusr/lib/libU77.a

See Also

ctime(3), idate(3f), time(3f)

3-14 Subroutines

Name

Syntax

flmin (3f) VAX

Unsupported

fimin, fimax, ffrac, dfimin, dfimax, dffrac, inmax — return extreme values

function flmin()

function flmax()

function ffrac()

double precision function dfimin()

double precision function dfimax()

double precision function dffrac()

function inmax()

Description

Files

Functions £1min and £lmax return the minimum and maximum positive floating

point values respectively. Functions df 1lmin and df 1max return the minimum and

maximum positive double precision floating point values. Function inmax returns

the maximum positive integer value.

The functions ffrac and df frac return the fractional accuracy of single and

double precision floating point numbers respectively. These are the smallest numbers

that can be added to 1.0 without being lost.

These functions can be used by programs that must scale algorithms to the numerical

range of the processor.

fusr/lib/libF77.a

Subroutines 3-15

VAX flush (3f)

Unsupported

Name

flush - flush output to a logical unit

Syntax

subroutine flush (lunit)

Description

The £1ush function causes the contents of the buffer for logical unit /unit to be

flushed to the associated file. This is most useful for logical units 0 and 6 when they

are both associated with the control terminal.

Files

Jusr/lib/libl77.a

See Also

fclose(3s)

3-16 Subroutines

fork(3f) VAX

Unsupported

Name

fork — create a copy of this process

Syntax

integer function fork()

Description

The fork function creates a copy of the calling process. The only distinction

between the two processes is that the value returned to one of them (referred to as the

‘parent’ process) will be the process ID of the copy. The copy is usually referred to

as the ’child’ process. The value returned to the ’child’ process will be zero.

All logical units open for writing are flushed before the fork to avoid duplication of

the contents of I/O buffers in the external file(s).

If the returned value is negative, it indicates an error and will be the negation of the

system error code. See perror(3f).

A corresponding exec routine has not been provided because there is no satisfactory

way to retain open logical units across the exec. However, the usual function of

fork/exec can be performed using system(3f).

Files

Jusr/lib/libU77.a

See Also

fork(2), kill(3f), perror(3f), system(3f), wait(3f)

Subroutines 3-17

VAX fseek (3f)

Unsupported

Name

fseek, ftell — reposition a file on a logical unit

Syntax

integer function fseek (lunit, offset, from)

integer offset, from

integer function ftell (lunit)

Description

The lunit argument must refer to an open logical unit. The offset argument is an

offset in bytes relative to the position specified by from. Valid values for from are:

0 meaning ’beginning of the file’

1 meaning ’the current position’

2 meaning ’'the end of the file’

The value returned by £seek will be 0 if successful, a system error code otherwise.

See perror(3f).

The £tell function returns the current position of the file associated with the

specified logical unit. The value is an offset, in bytes, from the beginning of the file.

If the value returned is negative, it indicates an error and will be the negation of the

system error code. See perror(3f).

Files

fusr/lib/libU77.a

See Also

perror(3f), fseek(3s)

3-18 Subroutines

getarg (3f) VAX

Unsupported

Name

getarg, iargc — return command line arguments

Syntax

subroutine getarg (k, arg)

character*(*) arg

function iargc ()

Description

A call to getarg will return the kth command line argument in character string arg.

The Oth argument is the command name.

An iargc call returns the index of the last command line argument.

Files

fusr/lib/libU77.a

See Also

execve(2), getenv(3f)

Subroutines 3-19

VAX getc (3f)

Unsupported

Name

getc, fgetc — get a character from a logical unit

Syntax

integer function getc (char)

character char

integer function fgetc (lunit, char)

character char

Description

These routines return the next character from a file associated with a FORTRAN

logical unit, bypassing normal FORTRAN 1I/O. The getc function reads from

logical unit 5, usually connected to the control terminal input.

The value of each function is a system status code. Zero indicates no error occurred

on the read. A -1 indicates end of file was detected. A positive value will be either

an ULTRIX system error code or an £77 I/O error code. For further information,

see perror(3f).

Files

Jusr/lib/1ibU77.a

See Also

intro(2), getc(3s), perror(3f)

3-20 Subroutines

getcwd (3f) VAX

Unsupported

Name

getcwd — get pathname of current working directory

Syntax

integer function getcwd (dirname)

character*(*) dirname

Description

The pathname of the default directory for creating and locating files will be returned

in dirname. The value of the function will be zero if successful; an error code

otherwise.

Restrictions

Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

Files

[usr/lib/libU77.a

See Also

chdir(3f), perror(3f)

Subroutines 3-21

VAX getenv (3f)

Unsupported

Name

getenv — get value of environment variables

Syntax

subroutine getenv (ename, evalue)

character*(*) ename, evalue

Description

The getenv subroutine searches the environment list for a string of the form

ename=value and returns value in evalue if such a string is present, otherwise fills

evalue with blanks. For further information, see environ(7).

Files

[usr/lib/libU77.a

See Also

execve(2), environ(7)

3-22 Subroutines

getlog (3f) VAX

Unsupported

Name

getlog — get user’s login name

Syntax

subroutine getlog (name)

character*(*) name

character*(*) function getlog()

Description

The get 1og subroutine will return the user’s login name or all blanks if the process

is running detached from a terminal.

Files

fusr/lib/libU77.a

See Also

getlogin(3)

Subroutines 3-23

VAX getpid (3f)

Unsupported

Name

getpid — get process ID

Syntax

integer function getpid()

Description

The getpid subroutine returns the process ID number of the current process.

Files

Jusr/lib/1ibU77.a

See Also

getpid(2)

3-24 Subroutines

getuid (3f) VAX

Unsupported

Name

getuid, getgid — get user or group ID of the caller

Syntax

integer function getuid()

integer function getgid()

Description

These functions return the real user or group ID of the user of the process.

Files

Jusr/lib/1ibU77.a

See Also

getuid(2)

Subroutines 3—-25

VAX hostnm (3f)

Unsupported

Name

hostnm — get name of current host

Syntax

integer function hostnm (name)

character*(*) name

Description

This function puts the name of the current host into character string name.

Return Value

The return value should be 0; any other value indicates an error.

Files

Jusr/lib/libU77.a

See Also

gethostname(2)

3~26 Subroutines

idate (3f) VAX

Unsupported

Name

idate, itime — return date or time in numerical form

Syntax

subroutine idate (iarray)

integer iarray(3)

subroutine itime (iarray)

integer iarray(3)

Description

The subroutine idate returns the current date in iarray. The order is: day, mon,

year. Month will be in the range 1-12. Year will be = 1969.

The it ime routine returns the current time in iarray. The order is: hour, minute,

second.

Files

fusr/lib/l1bU77.a

See Also

ctime(3), fdate(3f)

Subroutines 3—-27

VAX index (3f)

Unsupported

Name

Syntax

index, rindex, Inblnk, len — tell about character objects

(intrinsic) function index (string, substr)

character*(*) string, substr

integer function rindex (string, substr)

character*(*) string, substr

function Inblnk (string)

character*(*) string

(intrinsic) function len (string)

character*(*) string

Description

Files

The index and rindex subroutines return the index of the first (last) occurrence of

the substring substr in string, or zero if it does not occur. The index subroutine is

an f77 intrinsic function. The rindex subroutine is a library routine.

The 1nblnk subroutine returns the index of the last non-blank character in string.

This is useful since all £77 character objects are fixed length, blank padded. Intrinsic

function /en returns the size of the character object argument.

Jusr/lib/libF77.a

3-28 Subroutines

ioinit(3f) VAX

Unsupported

Name

ioinit — change f77 I/O initialization

Syntax

logical function ioinit (cctl, bzro, apnd, prefix, vrbose)

logical cctl, bzro, apnd, vrbose

character*(¥*) prefix

Description

This routine will initialize several global parameters in the £f77 I/O system, and attach

externally defined files to logical units at run time. The effect of the flag arguments

applies to logical units opened after ioinit is called. The exception is the

preassigned units, 5 and 6, to which cct! and bzro will apply at any time. The

ioinit routine is written in FORTRAN-77.

By default, carriage control is not recognized on any logical unit. If cctl is .true. then

carriage control will be recognized on formatted output to all logical units except unit

0, the diagnostic channel. Otherwise the default will be restored.

By default, trailing and embedded blanks in input data fields are ignored. If bzro is

rue. then such blanks will be treated as zeros. Otherwise the default will be

restored.

By default, all files opened for sequential access are positioned at their beginning. It

is sometimes necessary or convenient to open at the END-OF-FILE so that a write

will append to the existing data. If apnd is .true. then files opened subsequently on

any logical unit will be positioned at their end upon opening. A value of .false. will

restore the default behavior.

The ioinit routine may be used to associate file names with FORTRAN logical
unit numbers through environment variables. See the ‘‘Introduction to the £77 I/O
Library’’ in the ULTRIX Supplementary Documents for a more general way of doing

this. If the argument prefix is a non-blank string, then names of the form prefixXNN

will be sought in the program environment. The value associated with each such

name found will be used to open logical unit NN for formatted sequential access.

For example, if £77 program myprogram included the call:

call ioinit (.true., .false., .false., FORT, .false.)

then the following sequence:

setenv FORTO1l mydata

setenv FORT12 myresults

myprogramo
®

o
°

o
°

would result in logical unit 1 opened to file mydata and logical unit 12 opened to file

myresults . Both files would be positioned at their beginning. Any formatted output

would have column 1 removed and interpreted as carriage control. Embedded and

trailing blanks would be ignored on input.

If the argument vrbose is .true. then ioinit will report on its activity.

Subroutines 3-29

VAX ioinit (3f)

Unsupported

The effect of:

call ioinit (.true., .true., .false., , .false.)

can be achieved without the actual call by including ‘‘-1166’’ on the £77 command

line. This gives carriage control on all logical units except 0, causes files to be

opened at their beginning, and causes blanks to be interpreted as zero’s.

The internal flags are stored in a labeled common block with the following definition:

integer*2 ieof, ictl, ibzr

common /ioiflg/ ieof, ictl, ibzr

Restrictions

The prefix argument can be no longer than 30 characters. A pathname associated

with an environment name can be no longer than 255 characters.

The “‘+’’ carriage control does not work.

Files

fusr/lib/libI77.a £77 1/O library

fusr/lib/1ibl66.a Sets older FORTRAN I/O modes

See Also

getarg(3f), getenv(3f)

‘‘Introduction to the f77 I/O Library,”” ULTRIX Supplementary Documents,

Vol. II: Programmer

3-30 Subroutines

kill (3f) VAX

Unsupported

Name

kill — send a signal to a process

Syntax

function kill (pid, signum)

integer pid, sighum

Description

The pid argument must be the process id of one of the user processes. The signum

argument must be a valid signal number. For further information, see sigvec(2).

Return Value

The returned value will be O if successful and an error code otherwise.

Files

fusr/lib/libU77.a

See Also

kill(2), sigvec(2), signal(3f), fork(3f), perror(3f)

Subroutines 3—-31

VAX link (3f)

Unsupported

Name

link, symlink — make a link to an existing file

Syntax

function link (namel, name2)

character*(*) namel, name2

integer function symink (namel, name2)

character*(*) namel, name2

Description

The namel must be the pathname of an existing file. The name2 is a pathname to be
linked to file namel. The name2 must not already exist.

The symlnk subroutine creates a symbolic link to namel.

Restrictions

Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

Return Value

The returned value will be 0 if successful and a system error code otherwise.

Files

fusr/lib/libU77.a

See Also

link(2), symlink(2), perror(3f), unlink(3f)

3-32 Subroutines

Name

loc — return the address of an object

Syntax

function loc (arg)

Description

The returned value will be the address of arg.

Files

Jusr/lib/libU77.a

loc (3f)

Unsupported

Subroutines 3-33

VAX

VAX long (3f)

Unsupported

Name

long, short — integer object conversion

Syntax

integer*4 function long (int2)

integer*2 int2

integer*2 function short (int4)

integer*4 int4

Description

These functions provide conversion between short and long integer objects. The

long subroutine is useful when constants are used in calls to library routines and the

code is to be compiled with ‘‘-i2’’. The short subroutine is useful in similar

context when an otherwise long object must be passed as a short integer.

Files

/usr/lib/libF77.a

3-34 Subroutines

Name

Syntax

perror (3f) VAX

Unsupported

perror, gerror, iermo — get system error messages

subroutine perror (string)

character*(*) string

subroutine gerror (string)

character®(*) string

character*(*) function gerror()

function ierrno()

Description

The perror subroutine will write a message to FORTRAN logical unit O

appropriate to the last detected system error. The string will be written preceding the

standard error message.

The gerror subroutine returns the system error message in character variable

string. The gerror subroutine may be called either as a subroutine or as a function.

The ierrno subroutine will return the error number of the last detected system

error. This number is updated only when an error actually occurs. Most routines and

I/O statements that might generate such errors return an error code after the call.

That value is a more reliable indicator of what caused the error condition.

Error Codes

ULTRIX system error codes are described in intro(2). The £77 I/O error codes and

their meanings are:

100 ‘‘error in format’’

101 ‘‘illegal unit number’’

102 ‘'formatted io not allowed’’

103 ‘‘unformatted io not allowed’’

104 ‘‘direct io not allowed’’

105 ‘‘sequential io not allowed’’

106 ‘‘can’t backspace file’’

107 ‘'Yoff beginning of record’’

108 ‘‘can’t stat file’’

109 ‘‘no * after repeat count’’

110 ‘Yoff end of record’’

111 ‘‘truncation failed’’

112 ‘‘incomprehensible list input’’

113 ‘‘out of free space’’

114 ‘‘unit not connected’’

115 ‘vYinvalid data for integer format term’’

116 ‘Vinvalid data for logical format term’’

117 “Vnew’ file exists’’

118 ‘‘can’t find ’old’ file'’

119 ‘‘opening too many files or unknown system error’’

120 ‘‘requires seek ability’’

121 ‘‘illegal argument’’

Subroutines 3-35

VAX perror (3f)

Unsupported

122 ‘‘negative repeat count’’

123 ‘‘illegal operation for unit’’

124 ‘‘invalid data for d, e., f, or g format term’’

Restrictions

The string in the call to perror can be no longer than 127 characters.

The length of the string returned by gerror is determined by the calling program.

Files

Jusr/lib/libU77.a

See Also

intro(2), perror(3)

“‘Introduction to the f77 I/O Library,”” ULTRIX Supplementary Documents,

Vol. II: Programmer

3-36 Subroutines

putc(3f) VAX

Unsupported

Name

putc, fputc — write a character to a FORTRAN logical unit

Syntax

integer function putc (char)

character char

integer function fputc (lunit, char)

character char

Description

These functions write a character to the file associated with a FORTRAN logical unit

bypassing normal FORTRAN I/O. The putc routine writes to logical unit 6,

normally connected to the control terminal output.

The value of each function will be zero unless some error occurred; a system error

code otherwise. For further information, see perror(3f).

Files

fusr/lib/libU77.a

See Also

intro(2), perror(3f), putc(3s)

Subroutines 3-37

VAX qsort(3f)

Unsupported

Name

gsort — quick sort

Syntax

subroutine gsort (array, len, isize, compar)

external compar

integer*2 compar

Description

One dimensional array contains the elements to be sorted. The len is the number of

elements in the array. The isize is the size of an element, typically:

4 for integer and real

8 for double precision or complex

16 for double complex

(length of character object) for character arrays

The compar is the name of a user supplied integer*2 function that will determine the

sorting order. This function will be called with two arguments that will be elements

of array. The function must return:

negative if arg 1 is considered to precede arg 2

zero if arg 1 is equivalent to arg 2

positive if arg 1 is considered to follow arg 2

On return, the elements of array will be sorted.

Files

Jusr/lib/libU77.a

See Also

gsort(3)

3-38 Subroutines

rand (3f) VAX

Unsupported

Name

rand, drand, irand — return random values

Syntax

function irand (iflag)

function rand (iflag)

double precision function drand (iflag)

Description

These functions use rand(3) to generate sequences of random numbers. If iflag is

’1”, the generator is restarted and the first random value is returned. If iflag is

otherwise nonzero, it is used as a new seed for the random number generator, and the

first new random value is returned.

Restrictions

The algorithm returns a 31-bit quantity on the VAX.

Return Value

The irand subroutine returns positive integers in the range O through 2147483647.

The rand and drand subroutines return values in the range 0. through 1.0.

Files

Jusr/lib/libF77.a

See Also

rand(3)

Subroutines 3—-39

VAX rename (3f)

Unsupported

Name

rename — rename a file

Syntax

integer function rename (from, to)

character*(*) from, to

Description

The rename subroutine renames a file. The from argument must be the pathname of
an existing file, and fo will become the new pathname for the file. If to exists, then
both from and to must be the same type of file, and must reside on the same
filesystem. If fo exists, it will be removed first.

Restrictions

Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

Return Value

The returned value will be 0 if successful and a system error code otherwise.

Files

Jusr/lib/libU77.a

See Also

rename(2), perror(3f)

3-40 Subroutines

Name

Syntax

signal (3f) VAX

Unsupported

signal — change the action for a signal

integer function signal(signum, proc, flag)

integer signum, flag

external proc

Description

Files

When a process incurs a signal, the default action is usually to clean up and abort.

For further information, see signal(3). The user may choose to write an alternative

signal handling routine. A call to signal is the way this alternate action is

specified to the system.

The signum is the signal number. For further information, see signal(3). If flag is

negative, then proc must be the name of the user signal handling routine. If flag is

zero or positive, then proc is ignored and the value of flag is passed to the system as

the signal action definition. In particular, this is how previously saved signal actions

can be restored. Two possible values for flag have specific meanings: 0 means "use

the default action" (See Note), 1 means "ignore this signal".

A positive returned value is the previous action definition. A value greater than 1 is

the address of a routine that was to have been called on occurrence of the given

signal. The returned value can be used in subsequent calls to signal in order to

restore a previous action definition. A negative returned value is the negation of a

system error code. For further information, see perror(3f).

NOTE

The £77 arranges to trap certain signals when a process is started. The

only way to restore the default £77 action is to save the returned value

from the first call to signal.

If the user signal handler is called, it will be passed the signal number as an integer

argument.

Jusr/lib/libU77.a

See Also

kill(1), kill(3f), signal(3)

Subroutines 3—41

VAX sleep (3f)

Unsupported

Name

sleep — suspend execution for an interval

Syntax

subroutine sleep (itime)

Description

The sleep subroutine causes the calling process to be suspended for itime seconds.

The actual time can be up to 1 second less than itime due to granularity in system

timekeeping.

Files

Jusr/lib/libU77.a

See Also

sleep(3)

3-42 Subroutines

Name

Syntax

stat (3f) VAX

Unsupported

stat, Istat, fstat — get file status

integer function stat (name, statb)

character*(*) name

integer stath(12)

integer function Istat (name, statb)

character*(*) name

integer statb(12)

integer function fstat (lunit, statb)

integer statbh(12)

Description

These routines return detailed information about a file. The stat and 1stat

routines return information about file name. The fstat subroutine returns

information about the file associated with FORTRAN logical unit lunit. The order

and meaning of the information returned in array statb is as described for the

structure st at under stat(2). The spare values are not included.

Restrictions

Return

Files

Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

Value

The value of either function will be zero if successful; an error code otherwise.

Jusr/lib/libU77.a

See Also

stat(2), access(3f), perror(3f), time(3f)

Subroutines 3-43

VAX system (3f)

Unsupported

Name

system — execute an ULTRIX command

Syntax

integer function system (string)

character*(*) string

Description

The system routine causes string to be given to your shell as input as if the string
had been typed as a command. If environment variable SHELL is found, its value
will be used as the command interpreter (shell); otherwise sh(l) is used.

The current process waits until the command terminates. The returned value will be

the exit status of the shell. See wait(2) for an explanation of this value.

Restrictions

The string cannot be longer than NCARGS_R50 characters, as defined in

<sys/param.h>.

Files

Jusr/lib/libU77.a

See Also

execve(2), wait(2), system(3)

3-44 Subroutines

time (3f) VAX

Unsupported

Name

time, ctime, Itime, gmtime — return system time

Syntax

integer function time()

character*(*) function ctime (stime)

integer stime

subroutine ltime (stime, tarray)

integer stime, tarray(9)

subroutine gmtime (stime, tarray)

integer stime, tarray(9)

Description

The t ime routine returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in

seconds. This is the value of the ULTRIX system clock.

The ct ime routine converts a system time to a 24-character ASCII string. The

format is described under ct ime (3). No ’newline’ or NULL will be included.

The 1t ime and gmtime routines dissect ULTRIX time into month, day and

seconds, either for the local time zone or as GMT. The order and meaning of each

element returned in farray is described under ctime (3).

Files

Jusr/lib/libU77.a

See Also

ctime(3), fdate(3f), idate(3f)

Subroutines 3-45

VAX topen (3f)

Unsupported

Name

Syntax

topen, tclose, tread, twrite, trewin, tskipf, tstate — £77 tape I/O

integer function topen (tlu, devnam, label)

integer tlu

character*(*) devnam

logical label

integer function tclose (tlu)

integer tlu

integer function tread (tlu, buffer)

integer tlu

character*®(*) buffer

integer function twrite (tlu, buffer)

integer tlu

character*(*) buffer

integer function trewin (tlu)

integer tlu

integer function tskipf (tlu, nfiles, nrecs)

integer tlu, nfiles, nrecs

integer function tstate (tlu, fileno, recno, errf, eoff, eotf, tcsr)

integer tlu, fileno, recno, tcsr

logical errf, eoff, eotf

Description

These functions provide a simple interface between f77 and magnetic tape devices.

A “‘tape logical unit,”’ tlu, is ‘‘topen’’ed in much the same way as a normal 77

logical unit is ‘‘open’’ed. All other operations are performed via the t/u. The tlu has

no relationship at all to any normal {77 logical unit.

It should be noted that these functions return integers and should be declared in the

user program before using them. The default function return value for the £77

compiler is float. The failure to declare these functions will produce improper

results.

The topen function associates a device name with a t/u. The t/lu must be in the

range 0 to 3. The logical argument label should indicate whether the tape includes a

tape label. This is used by trewin below. The topen function does not move the

tape. The normal returned value is 0. If the value of the function is negative, an

error has occurred. See perror(3f) for details.

The t close function closes the tape device channel and removes its association

with tlu. The normal returned value is 0. A negative value indicates an error.

3—-46 Subroutines

topen (3f) VAX

Unsupported

The t read function reads the next physical record from tape to buffer. The bujffer

must be of type character. The size of buffer should be large enough to hold the

largest physical record to be read. The actual number of bytes read will be returned

as the value of the function. If the value is 0, the end-of-file has been detected. A

negative value indicates an error.

The twrite function writes a physical record to tape from buffer. The physical

record length will be the size of buffer. The buffer must be of type character. The

number of bytes written will be returned. A value of 0 or negative indicates an error.

The trewin function rewinds the tape associated with #/u to the beginning of the

first data file. If the tape is a labeled tape then the label is skipped over after

rewinding. For further information, see topen above. The normal returned value is

0. A negative value indicates an error.

The tskipf function allows the user to skip over files and/or records. First, nfiles

end-of-file marks are skipped. If the current file is at EOF, this counts as 1 file to

skip. (Note: This is the way to reset the EOF status for a tlu.) Next, nrecs physical

records are skipped over. The normal returned value is 0. A negative value indicates

an error.

Finally, the t state function allows the user to determine the logical state of the

tape I/O channel and to see the tape drive control status register. The values of fileno

and recno will be returned and indicate the current file and record number. The

logical values errf, eoff, and eoff indicate an error has occurred, the current file is at

EOF, or the tape has reached logical end-of-tape. End-of-tape (EOT) is indicated by

an empty file, often referred to as a double EOF mark. It is not allowed to read past

EOT although it is allowed to write. The value of ¢csr will reflect the tape drive

control status register. For further details, see tu(4).

Files

Just/lib/libU77.a

See Also

fseek(3f), perror(3f), tu(4)

Subroutines 3—-47

VAX traper (3f)

Unsupported

Name

traper — trap arithmetic errors

Syntax

integer function traper (mask)

Description

Integer overflow and floating point underflow are not normally trapped during

execution. This routine enables these traps by setting status bits in the process status

word. These bits are reset on entry to a subprogram, and the previous state is restored

on return. Therefore, this routine must be called inside each subprogram in which

these conditions should be trapped. If the condition occurs and trapping is enabled,

signal SIGFPE is sent to the process. For further information, see signal(3).

The argument has the following meaning:

value meaning

0 do not trap either condition

1 trap integer overflow only

2 trap floating underflow only

3 trap both the above

The previous value of these bits is returned.

Files

Jusr/lib/1ibF77.a

See Also

signal(3), signal(3f)

3-48 Subroutines

trapov (3f) VAX

Unsupported

Name

trapov — trap and repair floating point overflow

Syntax

subroutine trapov (numesg, rtnval)

double precision rtnval

Description

NOTE: This routine applies only to the older VAX 11/780’s. VAX computers made

or upgraded since spring 1983 (REV 7) handle errors differently. See trpfpe(3f) for

the newer error handler. This routine has always been ineffective on the VAX

11/750. It is a null routine on the PDP11.

This call sets up signal handlers to trap arithmetic exceptions and the use of illegal

operands. Trapping arithmetic exceptions allows the user’s program to proceed from

instances of floating point overflow or divide by zero. The result of such operations

will be an illegal floating point value. The subsequent use of the illegal operand will

be trapped and the operand replaced by the specified value.

The first numesg occurrences of a floating point arithmetic error will cause a message

to be written to the standard error file. If the resulting value is used, the value given

for rtnval will replace the illegal operand generated by the arithmetic error. The

rtnval must be a double precision value. For example, ‘‘0d0’’ or ‘‘dfimax()”’.

Restrictions

Other arithmetic exceptions can be trapped but not repaired.

There is no way to distinguish between an integer value of 32768 and the illegal

floating point form. Therefore such an integer value may get replaced while repairing

the use of an illegal operand.

Files

fust/lib/libF77.a

See Also

signal(3f), trpfpe(3f)

Subroutines 3-49

VAX trpfpe (3f)

Unsupported

Name

Syntax

trpfpe, fpecnt — trap and repair floating point faults

subroutine trpfpe (numesg, rtnval)

double precision rtnval

integer function fpecnt ()

common /fpefit/ fperr

logical fperr

Description

The trpfpe routine sets up a signal handler to trap arithmetic exceptions. If the

exception is due to a floating point arithmetic fault, the result of the operation is

replaced with the rtnval specified. The rtnval must be a double precision value. For

example, ‘‘0d0’’ or ‘‘dfimax()’’.

The first numesg occurrences of a floating point arithmetic error will cause a message

to be written to the standard error file. Any exception that cannot be repaired will

result in the default action, typically an abort with core image.

The fpecnt routine returns the number of faults since the last call to trpfpe.

The logical value in the common block labeled fpefit will be set to .true. each time a

fault occurs.

Restrictions

This routine works only for faults, not traps. This is primarily due to the VAX

architecture.

If the operation involves changing the stack pointer, it cannot be repaired. This

seldom should be a problem with the f77 compiler, but such an operation might be

produced by the optimizer.

The POLY and EMOD opcodes are not dealt with.

Files

Jusr/lib/l1ibF77.a

See Also

signal(3f)

3-50 Subroutines

ttynam (3f) VAX

Unsupporied

Name

ttynam, isatty — find name of a terminal port

Syntax

character*(*) function ttynam (lunit)

logical function isatty (lunit)

Description

The ttynam subroutine returns a blank padded pathname of the terminal device

associated with logical unit lunit.

The isatty subroutine returns .true. Otherwise, if lunit is associated with a

terminal device, .false.

Diagnostics

The ttynam returns an empty string (all blanks) if /unit is not associated with a

terminal device in directory /dev.

Files

[dev/*

Jusr/lib/libU77.a

Subroutines 3—-51

VAX unlink (3f)

Unsupported

Name

unlink — remove a directory entry

Syntax

integer function unlink (name)

character*(*) name

Description

The unlink subroutine causes the directory entry specified by pathname name to be

removed. If this was the last link to the file, the contents of the file are lost.

Restrictions

Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

Return Value

The returned value will be zero if successful; a system error code otherwise.

Files

Jusr/1ib/libU77.a

See Also

unlink(2), link(3f), perror(3f)

3-52 Subroutines

wait(3f) VAX

Unsupported

Name

wait — wait for a process to terminate

Syntax

integer function wait (status)

integer status

Description

The wait routine causes its caller to be suspended until a signal is received or one

of its child processes terminates. If any child has terminated since the last wait,

return is immediate; if there are no children, return is immediate with an error code.

If the returned value is positive, it is the process ID of the child and status is its

termination status. For further information, see wait(2). If the returned value is

negative, it is the negation of a system error code.

Files

fusr/lib/libU77.a

See Also

wait(2), kill(3f), perror(3f), signal(3f)

Subroutines 3—-53

1ib2648 (3x)

Unsupported

Name

1ib2648 — subroutines for the HP 2648 graphics terminal

Syntax

#include <stdio.h>

typedef char *bitmat;

FILE *trace;

cc file.c -12648

Description

Lib2648 is a general purpose library of subroutines useful for interactive graphics on

the Hewlett-Packard 2648 graphics terminal. To use it you must call the routine

ttyinit() at the beginning of execution, and done() at the end of execution. All

terminal input and output must go through the routines rawchar, readline, outchar,

and outstr.

Lib2648 does the necessary AE/AF handshaking if getenv(‘ TERM’’) returns

“‘hp2648°’, as it will if set by zset(1). Any other value, including for example

¢¢2648”°, will disable handshaking.

Bit matrix routines are provided to model the graphics memory of the 2648. These

routines are generally useful, but are specifically useful for the update function which

efficiently changes what is on the screen to what is supposed to be on the screen.

The primative bit matrix routines are newmat, mat, and setmat.

The file trace, if non-null, is expected to be a file descriptor as returned by fopen. If

so, lib2648 will trace the progress of the output by writing onto this file. It is

provided to make debugging output feasible for graphics programs without messing

up the screen or the escape sequences being sent. Typical use of trace will include:

switch (argv[1][1]) {

case "T’:

trace = fopen("trace", "w");

break;

1f (trace)

fprintf(trace, "x is %d, y is %s\n", X, y);

dumpmat("before update”, xmat);

Routines

agoto(x, y)
Move the alphanumeric cursor to position (X, y), measured from the upper

left corner of the screen.

aoff() Turn the alphanumeric display off.

aon() Turn the alphanumeric display on.

Subroutines 3—-55

ib2648 (3x)

Unsupported

areaclear(rmin, cmin, rmax, cmax)

Clear the area on the graphics screen bordered by the four arguments. In

normal mode the area is set to all black, in inverse video mode it is set to

all white.

beep() Ring the bell on the terminal.

bitcopy(dest, src, rows, cols) bitmat dest,

Copy a rows by cols bit matrix from src to (user provided) dest.

cleara() Clear the alphanumeric display.

clearg() Clear the graphics display. Note that the 2648 will only clear the part of

the screen that is visible if zoomed in.

curoff() Turn the graphics cursor off.

curon() Turn the graphics cursor on.

dispmsg(str, x, y, maxlen) char *str;

Display the message str in graphics text at position (x, y). The maximum

message length is given by maxlen, and is needed to for dispmsg to know

how big an area to clear before drawing the message. The lower left

corner of the first character is at (x, y).

done() Should be called before the program exits. Restores the tty to normal,

turns off graphics screen, turns on alphanumeric screen, flushes the

standard output, etc.

draw(x, y)

Draw a line from the pen location to (x, y). As with all graphics

coordinates, (x, y) is measured from the bottom left corner of the screen.

(x, y) coordinates represent the first quadrant of the usual Cartesian system.

drawbox(r, c, color, rows, cols)

Draw a rectangular box on the graphics screen. The lower left corner is at

location (r, ¢). The box is rows rows high and cols columns wide. The

box is drawn if color is 1, erased if color is 0. (r, c) absolute coordinates

represent row and column on the screen, with the origin at the lower left.

They are equivalent to (x, y) except for being reversed in order.

dumpmat(msg, m, rows, cols) char *msg; bitmat m;

If trace is non-null, write a readable ASCII representation of the matrix m

on trace. Msg is a label to identify the output.

emptyrow(m, rows, cols, r) bitmat m;

Returns 1 if row r of matrix m is all zero, else returns 0. This routine is

provided because it can be implemented more efficiently with a knowledge

of the internal representation than a series of calls to mat.

error(msg) char *msg;

Default error handler. Calls message(msg) and returns. This is called by

certain routines in [ib2648. It is also suitable for calling by the user

program. It is probably a good idea for a fancy graphics program to

supply its own error procedure which uses sezjmp(3) to restart the

program.

gdefault()

Set the terminal to the default graphics modes.

3-56 Subroutines

1ib2648 (3x)

Unsupported

goff() Turn the graphics display off.

gon() Turn the graphics display on.

koff() Turn the keypad off.

kon() Turn the keypad on. This means that most special keys on the terminal

(such as the alphanumeric arrow keys) will transmit an escape sequence

instead of doing their function locally.

line(x1, y1, x2, y2)

Draw a line in the current mode from (x/, yI) to (x2, y2). This is

equivalent to move(xl, yl); draw(x2, y2); except that a bug in the terminal

involving repeated lines from the same point is compensated for.

lowleft() Move the alphanumeric cursor to the lower left (home down) position.

mat(m, rows, cols, r, ¢) bitmat m;

Used to retrieve an element from a bit matrix. Returns 1 or 0 as the value

of the [r, c] element of the rows by cols matrix m. Bit matrices are

numbered (7, c¢) from the upper left corner of the matrix, beginning at (0,

0). R represents the row, and c represents the column.

message(str) char *str;

Display the text message str at the bottom of the graphics screen.

minmax(g, rows, cols, rmin, cmin, rmax, cmax) bitmat g;

int *rmin, *cmin, *rmax, *cmax;

Find the smallest rectangle that contains all the 1 (on) elements in the bit

matrix g. The coordinates are returned in the variables pointed to by rmin,

cmin, rmax, cmax.

move(x, y)

Move the pen to location (x, y). Such motion is internal and will not cause

output until a subsequent sync().

movecurs(x, y)

Move the graphics cursor to location (x, y).

bitmat newmat(rows, cols)

Create (with malloc(3)) a new bit matrix of size rows by cols. The value

created (e.g. a pointer to the first location) is returned. A bit matrix can be

freed directly with free.

outchar(c) char c;

Print the character ¢ on the standard output. All output to the terminal

should go through this routine or outstr.

outstr(str) char *str;

Print the string str on the standard output by repeated calls to outchar.

printg() Print the graphics display on the printer. The printer must be configured

as device 6 (the default) on the HPIB.

char rawchar()

Read one character from the terminal and return it. This routine or

readline should be used to get all input, rather than getchar(3).

rboff() Turn the rubber band line off.

Subroutines 3-57

1ib2648 (3x)

Unsupported

rbon() Turn the rubber band line on.

char *rdchar(c) char c;

Return a readable representation of the character c. If ¢ is a printing

character it returns itself, if a control character it is shown in the AX

notation, if negative an apostrophe is prepended. Space returns /°, rubout

returns 7.

NOTE: A pointer to a static place is returned. For this reason, it will not

work to pass rdchar twice to the same fprintf/sprintf call. You must

instead save one of the values in your own buffer with strcpy.

readline(prompt, msg, maxlen) char *prompt, *msg;

Display prompt on the bottom line of the graphics display and read one

line of text from the user, terminated by a newline. The line is placed in

the buffer msg, which has size max/en characters. Backspace processing is

supported.

setclear() Set the display to draw lines in erase mode. (This is reversed by inverse

video mode.)

setmat(m, rows, cols, r, ¢, val) bitmat m;

The basic operation to store a value in an element of a bit matrix. The [r,

c] element of m is set to val, which should be either O or 1.

setset() Set the display to draw lines in normal (solid) mode. (This is reversed by

inverse video mode.)

setxor() Set the display to draw lines in exclusive or mode.

sync() Force all accumulated output to be displayed on the screen. This should

be followed by fflush(stdout). The cursor is not affected by this function.

Note that it is normally never necessary to call sync, since rawchar and

readline call sync() and fflush(stdout) automatically.

togvid() Toggle the state of video. If in normal mode, go into inverse video mode,

and vice versa. The screen is reversed as well as the internal state of the

library.

ttyinit() Set up the terminal for processing. This routine should be called at the

beginning of execution. It places the terminal in CBREAK mode, turns

off echo, sets the proper modes in the terminal, and initializes the library.

update(mold, mnew, rows, cols, baser, basec) bitmat mold, mnew;

Make whatever changes are needed to make a window on the screen look

like mnew. Mold is what the window on the screen currently looks like.

The window has size rows by cols, and the lower left corner on the screen

of the window is [baser, basec]. Note: update was not intended to be

used for the entire screen. It would work but be very slow and take 64K

bytes of memory just for mold and mnew. It was intended for 100 by 100

windows with objects in the center of them, and is quite fast for such

windows.

vidinv() Set inverse video mode.

vidnorm()

Set normal video mode.

3-58 Subroutines

1ib2648 (3x)

Unsupported

zermat(m, rows, cols) bi*tmat m;

Set the bit matrix m to all zeros.

zoomn(size)

Set the hardware zoom to value size, which can range from 1 to 15.

zoomoff() Turn zoom off. This forces the screen to zoom level 1 without affecting
the current internal zoom number.

zoomon() Turn zoom on. This restores the screen to the previously specified zoom

size.

Diagnostics

The routine error is called when an error is detected. The only error currently

detected is overflow of the buffer provided to readline.

Subscripts out of bounds to sefmat return without setting anything.

Files

Jusr/lib/1ib2648.a

See Also

fed(1)

Subroutines 3-59

acc (4) VAX

Unsupported

Name

acc — ACC LH/DH IMP interface

Syntax

pseudo-device imp

device acc0 at uba0 csr 0167600 vector accrint accxint

Description

The acc device provides a Local Host/Distant Host interface to an IMP. It is

normally used when participating in the DARPA Internet. The controller itself is not

accessible to users, but instead provides the hardware support to the IMP interface

described in imp(4). When configuring, the imp pseudo-device must also be

included.

Diagnostics

acc%d: not alive.

The initialization routine was entered even though the device did not autoconfigure.

This indicates a system problem.

acc%d: can’t initialize.

Insufficient UNIBUS resources existed to initialize the device. This is likely to occur

when the device is run on a buffered data path on an 11/750 and other network

interfaces are also configured to use buffered data paths, or when it is configured to

use buffered data paths on an 11/730 (which has none).

acc%d: imp doesn’t respond, icsr=%b.

The driver attempted to initialize the device, but the IMP failed to respond after 500

tries. Check the cabling.

acc%d: stray xmit interrupt, csr=%b.

An interrupt occurred when no output had previously been started.

acc%d: output error, ocsr=%b, icsr=%Db.

The device indicated a problem sending data on output.

acc%d: input error, csr=%b.

The device indicated a problem receiving data on input.

acc%d: bad length=%d.

An input operation resulted in a data transfer of less than O or more than 1008 bytes

of data into memory (according to the word count register). This should never

happen as the maximum size of a host-IMP message is 1008 bytes.

Special Files 4-1

VAX ad(4)

Unsupported

Name

ad — Data Translation A/D converter

Syntax

device ad0 at uba0 csr 0170400 vector adintr

Description

The ad converter provides the interface to the Data Translation A/D converter. This

is not a real-time driver, but merely allows the user process to sample the board’s

channels one at a time. Each minor device selects a different A/D board.

The driver communicates to a user process by means of ioctls. The AD_CHAN ioctl

selects which channel of the board to read. For example,

chan = §; ioctl(fd, AD_CHAN, &chan);

selects channel 5. The AD_READ ioctl actually reads the data and returns it to the

user process. An example is

ioctl(fd, AD_READ, &data);

Files

/dev/ad

4-2 Special Files

bk(4) VAX

Unsupported

Name

bk — line discipline for machine-machine communication (obsolete)

Syntax

pseudo-device bk

Description

This line discipline provides a replacement for the old and new tty drivers described

in tty(4) when high speed output to and especially input from another machine is to

be transmitted over a asynchronous communications line. The discipline was

designed for use by the Berkeley network. It may be suitable for uploading of data

from microprocessors into the system. If you are going to send data over

asynchronous communications lines at high speed into the system, you must use this

discipline, as the system otherwise may detect high input data rates on terminal lines

and disables the lines; in any case the processing of such data when normal terminal

mechanisms are involved saturates the system.

The line discipline is enabled by a sequence:

#include <sgtty.h>

int 1disc = NETLDISC, fildes; ...

ioctl(fildes, TIOCSETD, &ldisc);

A typical application program then reads a sequence of lines from the terminal port,

checking header and sequencing information on each line and acknowledging receipt

of each line to the sender, who then transmits another line of data. Typically several

hundred bytes of data and a smaller amount of control information will be received

on each handshake.

The old standard teletype discipline can be restored by doing:

ldisc = OTTYDISC;

ioctl(fildes, TIOCSETD, &ldisc);

While in networked mode, normal teletype output functions take place. Thus, if an 8

bit output data path is desired, it is necessary to prepare the output line by putting it

into RAW mode using ioct1(2). This must be done before changing the discipline

with TIOCSETD, as most ioct 1(2) calls are disabled while in network line-

discipline mode.

When in network mode, input processing is very limited to reduce overhead.

Currently the input path is only 7 bits wide, with newline the only recognized

character, terminating an input record. Each input record must be read and

acknowledged before the next input is read as the system refuses to accept any new

data when there is a record in the buffer. The buffer is limited in length, but the

system guarantees to always be willing to accept input resulting in 512 data

characters and then the terminating newline.

User level programs should provide sequencing and checksums on the information to

guarantee accurate data transfer.

Special Files 4-3

VAX bk(4)

Unsupported

See Also

tty(4)

4-4 Special Files

css(4) VAX

Unsupported

Name

css — DEC IMP-11A LH/DH IMP interface

Syntax

pseudo-device imp

device css0 at uba0 csr 0167600 flags 10 vector cssrint cssxint

Description

The css device provides a Local Host/Distant Host interface to an IMP. It is

normally used when participating in the DARPA Internet. The controller itself is not

accessible to users, but instead provides the hardware support to the IMP interface

described in imp(4). When configuring, the imp pseudo-device is also included.

Diagnostics

css%d: not alive.

The initialization routine was entered even though the device did not autoconfigure.

This is indicates a system problem.

css%d: can’t initialize.

Insufficient UNIBUS resources existed to initialize the device. This is likely to occur

when the device is run on a buffered data path on an 11/750 and other network

interfaces are also configured to use buffered data paths, or when it is configured to

use buffered data paths on an 11/730 (which has none).

css%d: imp doesn’t respond, icsr=%Db.

The driver attempted to initialize the device, but the IMP failed to respond after 500

tries. Check the cabling.

css%d: stray output interrupt csr=%b.

An interrupt occurred when no output had previously been started.

css%d: output error, ocsr=%b icsr=%b.

The device indicated a problem sending data on output.

css%d: recv error, csr=%b.

The device indicated a problem receiving data on input.

css%d: bad length=%d.

An input operation resulted in a data transfer of less than 0 or more than 1008 bytes

of data into memory (according to the word count register). This should never

happen as the maximum size of a host-IMP message is 1008 bytes.

Special Files 4-5

VAX ct(4)

Unsupported

Name

ct — phototypesetter interface

Syntax

device ct0 at uba0 csr 0167760 vector ctintr

Description

This provides an interface to a Graphic Systems C/A/T phototypesetter. Bytes

written on the file specify font, size, and other control information as well as the

characters to be flashed. The coding is not described here.

Only one process may have this file open at a time. It is write-only.

Files

/dev/cat

See Also

troff(1)

Phototypesetter interface specification

4-6 Special Files

dh(4) VAX

Unsupported

Name

dh — DH-11/DM-11 communications multiplexer

Syntax

device dhO at uba? csr 0160020 flags 0x???? vector dhrint dhxint

device dmo0 at uba? csr 0170500 flags 0x???? vector dmintr

Description

A DH-11 provides 16 communication lines; DM-11’s may be optionally paired with

DH-11’s to provide modem control for the lines.

Each line attached to the DH-11 communications multiplexer behaves as described in

tty(4). Input and output for each line may independently be set to run at any of 16

speeds; see tty(4) for the encoding.

Bit i of flags may be specified for a dh to say that a line is not properly connected,

and that the line should be treated as hard-wired with carrier always present. Thus

specifying ‘‘flags 0x0004"’ in the specification of dh0 would cause line ttyh2 to be

treated in this way.

The dh driver normally uses input silos and polls for input at each clock tick (10

milliseconds) rather than taking an interrupt on each input character.

Diagnostics

dh%d: NXM

No response from UNIBUS on a dma transfer within a timeout period. This is often

followed by a UNIBUS adapter error. This occurs most frequently when the

UNIBUS is heavily loaded and when devices which hog the bus (such as tk07’s) are

present. It is not serious.

dh%d: silo overflow

The character input silo overflowed before it could be serviced. This can happen if a

hard error occurs when the CPU is running with elevated priority, as the system will

then print a message on the console with interrupts disabled. If the Berknet is

running on a dh line at high speed (for example, 9600 baud), there is only 1/15th of

a second of buffering capacity in the silo, and overrun is possible. This may cause a

few input characters to be lost to users and a network packet is likely to be corrupted,

but the network will recover. It is not serious.

Files

/dev/tty[h-0] [0-%a-f]

/dev/ttyd[0-9a-£f]

See Also

tty(4)

Special Files 4-7

VAX dn(4)

Unsupported

Name

dn — DN-11 autocall unit interface

Syntax

device dn0 at uba? csr 0160020 vector dnintr

Description

The dn device provides an interface through a DEC DN-11 (or equivalent such as the

Able Quadracall) to an auto-call unit (ACU). To place an outgoing call one forks a

sub-process which opens the appropriate call unit file, /dev/cua? and writes the

phone number on it. The parent process then opens the corresponding modem line

/dev/cul?. When the connection has been established, the open on the modem

line, /dev/cul? will return and the process will be connected. A timer is

normally used to timeout the opening of the modem line.

The codes for the phone numbers are:

0-9 dial 0-9

dial * (‘2 is a synonym)

dial # (*;’ is a synonym)

delay 20 milliseconds

end-of-number (‘e’ is a synonym)

delay for a second dial tone (‘w’ is a synonym)

force a hangup of any existing connection=

A

H

The entire telephone number must be presented in a single write system call.

By convention, even numbered call units are for 300 baud modem lines, while odd

numbered units are for 1200 baud lines. For example, /dev/cua0 is associated

with a 300 baud modem line, /dev/cul0, while /dev/cual is associated with a

1200 baud modem line, /dev/cull. For devices such as the Quadracall which

simulate multiple DN-11 units, the minor device indicates which outgoing modem to

use.

Diagnostics

Two error numbers are of interest at open time.

[EBUSY] The dialer is in use.

[ENXIO] The device doesn’t exist, or there’s no power to it.

Files

/dev/cua? call units

/dev/cul? associated modem lines

See Also

tip(1c)

4-8 Special Files

ec(4) VAX

Unsupported

Name

ec — 3Com 10 Mb/s Ethernet interface

Syntax

device ec0 at uba0 csr 0161000 vector ecrint eccollide ecxint

Description

The ec interface provides access to a 10 Mb/s Ethernet network through a 3com

controller.

The hardware has 32 kilobytes of dual-ported memory on the UNIBUS. This memory

is used for internal buffering by the board, and the interface code reads the buffer

contents directly through the UNIBUS.

The host’s Internet address is specified at boot time with an SIOCSIFADDR ioctl.

The ec interface employs the address resolution protocol described in arp(4p) to

dynamically map between Internet and Ethernet addresses on the local network.

The interface software implements an exponential backoff algorithm when notified of

a collision on the cable. This algorithm utilizes a 16-bit mask and the VAX-11’s

interval timer in calculating a series of random backoff values. The algorithm is as

follows:

1. Initialize the mask to be all 1’s.

2. If the mask is zero, 16 retries have been made and we give up.

3. Shift the mask left one bit and formulate a backoff by masking the interval

timer with the mask (this is actually the two’s complement of the value).

4. Use the value calculated in step 3 to delay before retransmitting the packet.

The delay is done in a software busy loop.

The interface normally tries to use a ‘‘trailer’’ encapsulation to minimize copying

data on input and output. This may be disabled, on a per-interface basis, by setting

the IFF_NOTRAILERS flag with an SIOCSIFFLAGS ioctl.

Diagnostics

ec%d: send error.

After 16 retransmissions using the exponential backoff algorithm described above, the

packet was dropped.

ec%d: input error (offset=%d).

The hardware indicated an error in reading a packet off the cable or an illegally sized

packet. The buffer offset value is printed for debugging purposes.

ec%d: can’t handle af%d.

The interface was handed a message with addresses formatted in an unsuitable

address family; the packet was dropped.

Special Files 4-9

VAX ec(4)

Unsupported

See Also

intro(4n), inet(4f), arp(4p)

4-10 Special Files

en(4)

Unsupported

Name

en — Xerox 3 Mb/s Ethernet interface

Syntax

device en0 at uba0 csr 0161000 vector enrint enxint encollide

Description

The en interface provides access to a 3 Mb/s Ethernet network. Due to limitations in

the hardware, DMA transfers to and from the network must take place in the lower

64K bytes of the UNIBUS address space.

The network number is specified with a SIOCSIFADDR ioctl; the host’s address is

discovered by probing the on-board Ethernet address register. No packets will be

sent or accepted until a network number is supplied.

The interface software implements an exponential backoff algorithm when notified of

a collision on the cable. This algorithm utilizes a 16-bit mask and the VAX-11’s

interval timer in calculating a series of random backoff values. The algorithm is as

follows:

1. Initialize the mask to be all 1’s.

2. If the mask is zero, 16 retries have been made and we give up.

3. Shift the mask left one bit and formulate a backoff by masking the interval

timer with the mask (this is actually the two’s complement of the value).

4. Use the value calculated in step 3 to delay before retransmitting the packet.

The interface handles both Internet and PUP protocol families, with the interface

address maintained in Internet format. PUP addresses are converted to Internet

addresses by subsituting PUP network and host values for Internet network and local

part values.

The interface normally tries to use a ‘‘trailer’’ encapsulation to minimize copying

data on input and output. This may be disabled, on a per-interface basis, by setting

the IFF_NOTRAILERS flag with an SIOCSIFFLAGS ioctl.

Diagnostics

en%d: output error.

The hardware indicated an error on the previous transmission.

en%d: send error.

After 16 retransmissions using the exponential backoff algorithm described above, the

packet was dropped.

en%d: input error.

The hardware indicated an error in reading a packet off the cable.

en%d: can’t handle af%d.

The interface was handed a message with addresses formatted in an unsuitable

address family; the packet was dropped.

Special Files 4-11

VAX

VAX en(4)

Unsupported

See Also

intro(4n), inet(4f)

4-12 Special Files

hy(4) VAX

Unsupported

Name

hy — Network Systems Hyperchannel interface

Syntax

device hy0 at uba0 csr 0172410 vector hyint

Description

The hy interface provides access to a Network Systems Corporation Hyperchannel

Adapter.

The network to which the interface is attached is specified at boot time with an

SIOCSIFADDR ioctl. The host’s address is discovered by reading the adapter status

register. The interface will not transmit or receive packets until the network number

is known.

Restrictions

If the adapter does not respond to the status command issued during autoconfigure,

the adapter is assumed down. A reboot is required to recognize it.

Diagnostics

hy%d: unit number 0x%x port %d type %x microcode level 0x %x.

Identifies the device during autoconfiguration.

hy%d: can’t handle af%d.

The interface was handed a message with addresses formatted in an unsuitable

address family; the packet was dropped.

hy%d: can’t initialize.

The interface was unable to allocate UNIBUS resources. This is usually due to

having too many network devices on an 11/750 where there are only 3 buffered data

paths.

hy%d: NEX - Non Existent Memory.

Non existent memory error returned from hardware.

hy%d: BAR overflow.

Bus address register overflow error returned from hardware.

hy%d: Power Off bit set, trying to reset.

Adapter has lost power, driver will reset the bit and see if power is still out in the

adapter.

hy%d: Power Off Error, network shutdown.

Power was really off in the adapter, network connections are dropped. Software does

not shut down the network unless power has been off for a while.

ny%d: RECYD MP > MPSIZE (% d).

A message proper was received that is too big. Probable a driver bug. Shouldn’t

happen.

Special Files 4-13

VAX hy(4)

Unsupported

hy%d: xmit error — len > hy olen [%d > %d].

Probable driver error. Shouldn’t happen.

hy%d: DRIVER BUG - INVALID STATE %d.

The driver state machine reached a non-existent state. Definite driver bug.

hy%d: watchdog timer expired.

A command in the adapter has taken too long to complete. Driver will abort and

retry the command.

hy%d: adapter power restored.

Software was able to reset the power off bit, indicating that the power has been

restored.

See Also

intro(4n), inet(4f)

4-14 Special Files

ik(4) VAX

Unsupported

Name

ik — Ikonas frame buffer, graphics device interface

Syntax

device ik0Q at uba? csr 0172460 vector ikintr

Description

The ik program provides an interface to an Ikonas frame buffer graphics device.

Each minor device is a different frame buffer interface board. When the device is

opened, its interface registers are mapped, by virtual memory, into the user processes

address space. This allows the user process very high bandwidth to the frame buffer

with no system call overhead.

Bytes written or read from the device are DMA’d from or to the interface. The frame

buffer XY address, its addressing mode, etc. must be set up by the user process

before calling write or read.

Other communication with the driver is by ioctls. The IK_GETADDR ioctl returns

the virtual address where the user process can find the interface registers. The

IK_WAITINT ioctl suspends the user process until the ikonas device has interrupted

(for whatever reason — the user process has to set the interrupt enables).

Restrictions

An invalid access (for example, longword) to a mapped interface register can cause

the system to crash with a machine check.

Files

/dev/ik

Special Files 4-15

VAX i1(4)

Unsupported

Name

il — Interlan 10 Mb/s Ethernet interface

Syntax

device il0 at uba0 csr 0161000 vector ilrint ilcint

Description

The i1 interface provides access to a 10 Mb/s Ethernet network through an Interlan

controller.

The host’s Internet address is specified at boot time with an SIOCSIFADDR ioctl.
The i1 interface employs the address resolution protocol described in arp(4p) to

dynamically map between Internet and Ethernet addresses on the local network.

The interface normally tries to use a “‘trailer’’ encapsulation to minimize copying

data on input and output. This may be disabled, on a per-interface basis, by setting

the IFF_NOTRAILERS flag with an SIOCSIFFLAGS ioctl.

Diagnostics

il%d: input error.

The hardware indicated an error in reading a packet off the cable or an illegally sized

packet.

il%d: can’t handle af%d.

The interface was handed a message with addresses formatted in an unsuitable

address family; the packet was dropped.

See Also

intro(4n), inet(4f), arp(4p)

4-16 Special Files

imp(4) VAX

Unsupported

Name

imp — 1822 network interface

Syntax

pseudo-device imp

Description

The imp interface, as described in BBN Report 1822, provides access to an

intelligent message processor normally used when participating in the Department of

Defense ARPA network. The network interface communicates through a device

controller, usually an ACC LH/DH or DEC IMP-11A, with the IMP. The interface is

“‘reliable’’ and ‘‘flow-controlled’’ by the host-IMP protocol.

To configure IMP support, one of acc(4) and css(4) must be included. The

network number on which the interface resides is specified at boot time using the

SIOCSIFADDR ioctl. The host number is discovered through receipt of NOOP

messages from the IMP.

The network interface is always in one of four states: up, down, initializing, or going

down. When the system is booted, the interface is marked down. If the hardware

controller is successfully probed, the interface enters the initializing state and

transmits three NOOP messages to the IMP. It then waits for the IMP to respond

with two or more NOOP messages in reply. When it receives these messages it

enters the up state. The going down state is entered only when notified by the IMP

of an impending shutdown. Packets may be sent through the interface only while it

is in the up state. Packets received in any other state are dropped with the error

ENETDOWN returned to the caller.

Diagnhostics

imp%d: leader error.

The IMP reported an error in a leader (1822 message header). This causes the

interface to be reset and any packets queued up for transmission to be purged.

imp%d: going down in 30 seconds.

imp%d: going down for hardware PM.

imp%d: going down for reload software.

imp%d: going down for emergency reset.

The Network Control Center (NCC) is manipulating the IMP. By convention these

messages are reported to all hosts on an IMP.

imp%4: reset (host % d/imp %d).

The host has received a NOOP message which caused it to reset its notion of its

current address. This normally occurs at boot time, though it may also occur while

the system is running (for example, if the IMP-controller cable is disconnected, then

reconnected).

imp%d: host dead.

The IMP has noted a host, to which a prior packet was sent, is not up.

Special Files 4-17

VAX imp (4)
Unsupported

imp%d: host unreachable.

The IMP has discovered a host, to which a prior packet was sent, is not accessible.

imp%d: data error.

The IMP noted an error in data transmitted. The host-IMP interface is reset and the
host enters the init state (awaiting NOOP messages).

imp%d: interface reset.

The reset process has been completed.

imp%d: marked down.

After receiving a ‘‘going down in 30 seconds’’ message, and waiting 30 seconds, the
host has marked the IMP unavailable. Before packets may be sent to the IMP again,

the IMP must notify the host, through a series of NOOP messages, that it is back up.

imp%d: can’t handle af%d.

The interface was handed a message with addresses formatting in an unsuitable

address family; the packet was dropped.

See Also

intro(4n), inet(4f), acc(4), css(4)

4-18 Special Files

imp(4p) VAX

Unsupported

Name

imp — IMP raw socket interface

Syntax

#include <sys/socket.h>

#include <netinet/in.h>

#include <netimp/if_imp.h>

s = socket(AF_IMPLINK, SOCK_RAW, IMPLINK_IP);

Description

The raw imp socket provides direct access to the imp(4) network interface. Users

send packets through the interface using the send(2) calls, and receive packets with

the recv(2), calls. All outgoing packets must have space for an 1822 96-bit leader

on the front. Likewise, packets received by the user will have this leader on the

front. The 1822 leader and the legal values for the various fields are defined in the

include file <netimp/if imp.h>.

The raw imp interface automatically installs the length and destination address in the

1822 leader of all outgoing packets; these need not be filled in by the user.

Diagnostics

An operation on a socket may fail with one of the following errors:

[EISCONN] when trying to establish a connection on a socket which already

has one, or when trying to send a datagram with the destination

address specified and the socket is already connected.

[ENOTCONN] when trying to send a datagram, but no destination address is

specified, and the socket hasn’t been connected.

[ENOBUFS] when the system runs out of memory for an internal data structure.

[EADDRNOTAVAIL]

when an attempt is made to create a socket with a network address

for which no network interface exists.

See Also

intro(4n), inet(4f), imp(4)

Special Files 4-19

VAX kg (4)
Unsupported

Name

kg — KL-11/DL-11W line clock

Syntax

device kg0 at uba0 csr 0176500 vector kglock

Description

A klI-11 or dl-11w can be used as an alternate real time clock source. When

configured, certain system statistics and, optionally, system profiling work will be

collected each time the clock interrupts. For optimum accuracy in profiling, the dl-

11w should be configured to interrupt at the highest possible priority level. The kg

device driver automatically calibrates itself to the line clock frequency.

See Also

kgmon(8), config(8)

4-20 Special Files

pci(4) VAX

Unsupported

Name

pcl — DEC CSS PCL-11 B Network Interface

Syntax

device pcl0 at uba? csr 0164200 vector pclxint pclrint

Description

The pcl device provides an IP-only interface to the DEC CSS PCL-11 time division

multiplexed network bus. The controller itself is not accessible to users.

The hosts’s address is specified with the SIOCSIFADDR ioctl. The interface will not

transmit or receive any data before its address is defined.

As the PCL-11 hardware is only capable of having 15 interfaces per network, a

single-byte host-on-network number is used, with range [1..15] to match the TDM

bus addresses of the interfaces.

The interface currently only supports the Internet protocol family and only provides

‘‘natural’’ (header) encapsulation.

Diagnostics

pcl%d: can’t init.

Insufficient UNIBUS resources existed to initialize the device. This is likely to occur

when the device is run on a buffered data path on an 11/750 and other network

interfaces are also configured to use buffered data paths, or when it is configured to

use buffered data paths on an 11/730 (which has none).

pcl%d: can’t handle af%d.

The interface was handed a message with addresses formatted in an unsuitable

address family; the packet was dropped.

pcl%d: stray xmit interrupt.

An interrupt occured when no output had previously been started.

pcl%d: master.

The TDM bus had no station providing ‘‘bus master’’ timing signals, so this interface

has assumed the ‘‘master’’ role. This message should only appear at most once per

UNIBUS INIT on a single system. Unless there is a hardware failure, only one

station may be master at at time.

pcl%d: send error, tcr=%b, tsr=%Db.

The device indicated a problem sending data on output. If a ‘‘receiver offline’’ error

is detected, it is not normally logged unless the option PCL_TESTING has been

selected, as this causes a lot of console chatter when sending to a down machine.

However, this option is quite useful when debugging problems with the PCL

interfaces.

pcl%d: rcv error, rcr=%b rsr=%b.

The device indicated a problem receiving data on input.

pcl%d: bad len=%d.

An input operation resulted in a data transfer of less than 0 or more than 1008 bytes

of data into memory (according to the word count register). This should never

Special Files 4-21

VAX pcl(4)

Unsupported

happen as the maximum size of a PCL message has been agreed upon to be 1008

bytes (same as ArpaNet message).

See Also

intro(4n), inet(4f)

4-22 Special Files

ps(4) VAX

Unsupported

Name

ps — Evans and Sutherland Picture System 2 graphics device interface

Syntax

device ps0 at uba? csr 0172460 vector psintr

Description

The ps driver provides access to an Evans and Sutherland Picture System 2 graphics

device. Each minor device is a new PS2. When the device is opened, its interface

registers are mapped, via virtual memory, into a user process’s address space. This

allows the user process very high bandwidth to the device with no system call

overhead.

DMA to and from the PS2 is not supported. All read and write system calls will fail.

All data is moved to and from the PS2 via programmed I/O using the device’s

interface registers.

Commands are fed to and from the driver using the following ioctls:

PSIOGETADDR

Returns the virtual address through which the user process can access the

device’s interface registers.

PSIOAUTOREFRESH

Start auto refreshing the screen. The argument is an address in user space

where the following data resides. The first longword is a count of the number

of static refresh buffers. The next count longwords are the addresses in refresh

memory where the refresh buffers lie. The driver will cycle thru these refresh

buffers displaying them one by one on the screen.

PSIOAUTOMAP

Start automatically passing the display file thru the matrix processor and into

the refresh buffer. The argument is an address in user memory where the

following data resides. The first longword is a count of the number of display

files to operate on. The next count longwords are the address of these display

files. The final longword is the address in refresh buffer memory where

transformed coordinates are to be placed if the driver is not in double buffer

mode (see below).

PSIODOUBLEBUFFER

Cause the driver to double buffer the output from the map that is going to the

refresh buffer. The argument is again a user space address where the real

arguments are stored. The first argument is the starting address of refresh

memory where the two double buffers are located. The second argument is the

length of each double buffer. The refresh mechanism displays the current

double buffer, in addition to its static refresh lists, when in double buffer mode.

PSIOSINGLEREFRESH

Single step the refresh process. That is, the driver does not continually refresh

the screen.

PSIOSINGLEMAP

Single step the matrix process. The driver does not automatically feed display

files thru the matrix unit.

Special Files 4-23

VAX ps(4)

Unsupported

PSIOSINGLEBUFFER

Turn off double buffering.

PSIOTIMEREFRESH

The argument is a count of the number of refresh interrupts to take before

turning off the screen. This is used to do time exposures.

PSIOWAITREFRESH

Suspend the user process until a refresh interrupt has occurred. If in

TIMEREFRESH mode, suspend until count refreshes have occurred.

PSIOSTOPREFRESH

Wait for the next refresh, stop all refreshes, and then return to user process.

PSIOWAITMAP

Wait until a map done interrupt has occurred.

PSIOSTOPMAP

Wait for a map done interrupt, do not restart the map, and then return to the

user.

Restrictions

An invalid access (for example, longword) to a mapped interface register can cause

the system to crash with a machine check.

Diagnostics

Files

ps device intr.

ps dma intr.

An interrupt was received from the device. This shouldn’t happen, check your device

configuration for overlapping interrupt vectors.

/dev/ps

4-24 Special Files

pup (4f) VAX

Unsupported

Name

pup — Xerox PUP-I protocol family

Syntax

#include <sys/types.h>

#include <netpup/pup.h>

Description

The PUP-I protocol family is a collection of protocols layered atop the PUP Level-0

packet format, and utilizing the PUP Internet address format. The PUP family is

currently supported only by a raw interface.

Addressing

PUP addresses are composed of network, host, and port portions. The include file

<netpup/pup.h> defines this address as,

struct pupport {

u _char pup_net;

u_char pup_ host;

u_char pup_socket[4];

}s

Sockets bound to the PUP protocol family utilize the following addressing structure,

struct sockaddr pup {

short spup_family;

short spup_zerol;

u_char spup net;

u_char spup_host;

u _char spup sock{4];

char spup_zero2[4];

}i

Headers

The current PUP support provides only raw access to the 3Mb/s Ethernet. Packets

sent through this interface must have space for the following packet header present at

the front of the message,

struct pup_header {

u_short pup_length;

u_char pup_ tcontrol; /* transport control */

u _char pup_type; /* protocol type */

u_long pup_ id; /* used by protocols */

u_char pup_dnet; /* destination */

u_char pup_dhost;

u_char pup_dsock([4];

u_char pup_snet; /* source */

u_char pup_shost;

u_char pup ssock([4];

}s

Special Files 4-25

VAX pup (4f)

Unsupported

The sender should fill in the pup_tcontrol, pup type, and pupid fields. The

remaining fields are filled in by the system. The system checks the message to insure

its size is valid and, calulates a checksum for the message. If no checksum should be

calculated, the checksum field (the last 16-bit word in the message) should be set to

PUP_NOCKSUM.

The pup_tcontrol field is restricted to be O or PUP_TRACE; PUP_TRACE indicates

packet tracing should be performed. The pup type field may not be 0.

On input, the entire packet, including header, is provided the user. No checksum

validation is performed.

See Also

intro(4n), pup(4p), en(4)

4-26 Special Files

pup(4p) VAX
Unsupported

Name

pup — raw PUP socket interface

Syntax

#include <sys/socket.h>

#include <netpup/pup.h>

socket(AF_PUP, SOCK_RAW, PUPPROTO_BSP);

Description

A raw pup socket provides PUP-I access to an Ethernet network. Users send packets

using the sendto call, and receive packets with the recvfrom call. All outgoing

packets must have space present at the front of the packet to allow the PUP header to

be filled in. The header format is described in pup(4F). Likewise, packets received

by the user will have the PUP header on the front. The PUP header and legal values

for the various fields are defined in the include file <netpup/pup.h>.

The raw pup interface automatically installs the length and source and destination

addresses in the PUP header of all outgoing packets; these need not be filled in by

the user. The only control bit that may be set in the tcontrol field of outgoing

packets is the ‘‘trace’ bit. A checksum is calculated unless the sender sets the

checksum field to PUP_NOCKSUM.

Diagnostics

A socket operation may fail and one of the following will be returned:

[EISCONN] When trying to establish a connection on a socket which already

has one, or when trying to send a datagram with the destination

address specified and the socket is already connected.

[ENOTCONN] When trying to send a datagram, but no destination address is

specified, and the socket hasn’t been connected.

[ENOBUEFS] When the system runs out of memory for an internal data structure.

[EADDRNOTAVAIL]

When an attempt is made to create a socket with a network address

for which no network interface exists.

A sendto operation may fail if one of the following is true:

[EINVAL] Insufficient space was left by the user for the PUP header.

[EINVAL] The pup_type field was O or the pup_tcontrol field had a bit other

than PUP_TRACE set.

[EMSGSIZE] The message was not an even number of bytes, smaller than

MINPUPSIZ, or large than MAXPUPSIZ.

Special Files 4-27

VAX pup(4p)
Unsupported

[ENETUNREACH]

The destination address was on a network which was not directly

reachable (the raw interface provides no routing support).

See Also

send(2), recv(2), intro(4n), pup(4f)

4-28 Special Files

tm(4) VAX

Unsupported

Name

tm — TM-11/TE-10 magtape interface

Syntax

controller tm0 at uba? csr 0172520 vector tmintr

tape te0 at tm0 drive 0

Description

The tm-11/te-10 combination provides a standard tape drive interface as described in

mt io(4). Hardware implementing this on the VAX is typified by the Emulex TC-11

controller operating with a Kennedy model 9300 tape transport, providing 800 and

1600 bpi operation at 125 ips.

Restrictions

If any non-data error is encountered on non-raw tape, it refuses to do anything more

until closed.

Diagnostics

te%d: no write ring.

An attempt was made to write on the tape drive when no write ring was present; this

message is written on the terminal of the user who tried to access the tape.

te%d: not online.

An attempt was made to access the tape while it was offline; this message is written

on the terminal of the user who tried to access the tape.

te%d: can’t switch density in mid-tape.

An attempt was made to write on a tape at a different density than is already recorded

on the tape. This message is written on the terminal of the user who tried to switch

the density.

te%d: hard error bn%d er=%>b.

A tape error occurred at block bn; the tm error register is printed in octal with the

bits symbolically decoded. Any error is fatal on non-raw tape; when possible the

driver will have retried the operation which failed several times before reporting the

erTor.

te%d: lost interrupt.

A tape operation did not complete within a reasonable time, most likely because the

tape was taken off-line during rewind or lost vacuum. The controller should, but

does not, give an interrupt in these cases. The device will be made available again

after this message, but any current open reference to the device will return an error as

the operation in progress aborts.

See Also

mt(1), tar(1), tp(1), mtio(4), ht(4), ts(4), mt(4), ut(4)

Special Files 4-29

VAX un(4)

Unsupported

Name

un — Ungermann-Bass interface

Syntax

device un0 at uba0 csr 0160210 vector unintr

Description

The un interface provides access to a 4 Mb/s baseband network. The hardware uses

a standard DEC DR11-W DMA interface in communicating with the host. The

Ungermann-Bass hardware incorporates substantial protocol software in the network

device in an attempt to offload protocol processing from the host.

The network number on which the interface resides must be specified at boot time

with an SIOCSIFADDR ioctl. The host’s address is discovered by communicating
with the interface. The interface will not transmit or receive any packets before the

network number has been defined.

Restrictions

The device does not reset itself properly resulting in the interface getting hung up in

a state from which the only recourse is to reboot the system.

Diagnostics

un%d: can’t initialize.

Insufficient UNIBUS resources existed for the device to complete initialization.

Usually caused by having multiple network interfaces configured using buffered data

paths on a data path poor machine such as the 11/750.

un%d: unexpected reset.

The controller indicated a reset when none had been requested. Check the hardware

(but see the bugs section below).

un%d: stray interrupt.

An unexpected interrupt was received. The interrupt was ignored.

un%d: input error csr=%b.

The controller indicated an error on moving data from the device to host memory.

un%d: bad packet type %d.

A packet was received with an unknown packet type. The packet is discarded.

un%d: output error csr=%Db.

The device indicated an error on moving data from the host to device memory.

un%d: invalid state %d csr=%Db.

The driver found itself in an invalid internal state. The state is reset to a base state.

un%d: can’t handle af%d.

A request was made to send a message with an address format which the driver does

not understand. The message is discarded and an error is returned to the user.

4-30 Special Files

un(4) VAX

Unsupported

un%d: error limit exceeded.

Too many errors were encountered in normal operation. The driver will attempt to

reset the device, desist from attempting any i/o for approximately 60 seconds, then

reset itself to a base state in hopes of resyncing itself up with the hardware.

un%d: restarting.

After exceeding its error limit and resetting the device, the driver is restarting

operation.

See Also

intro(4n), inet(4f)

Special Files 4-31

VAX up(4)
Unsupported

Name

up — unibus storage module controller/drives

Syntax

controller sc0 at uba? csr 0176700 vector upintr

disk up0 at sc0 drive 0

Description

This is a generic UNIBUS storage module disk driver. It is specifically designed to

work with the Emulex SC-21 controller. It can be easily adapted to other controllers

(although bootstrapping will not necessarily be directly possible.)

Files with minor device numbers O through 7 refer to various portions of drive 0;

minor devices 8 through 15 refer to drive 1, etc. The standard device names begin

with ‘‘up’’ followed by the drive number and then a letter a-h for partitions 0-7

respectively. The character ? stands here for a drive number in the range 0-7.

The block files access the disk via the system’s normal buffering mechanism and may

be read and written without regard to physical disk records. There is also a ‘raw’

interface which provides for direct transmission between the disk and the user’s read

or write buffer. A single read or write call results in exactly one I/O operation and

therefore raw 1/O is considerably more efficient when many words are transmitted.

The names of the raw files conventionally begin with an extra ‘r.’

In raw I/O counts should be a multiple of 512 bytes (a disk sector). Likewise seek

calls should specify a multiple of 512 bytes.

Disk Support

The driver interrogates the controller’s holding register to determine the type of drive

attached. The driver recognizes four different drives: AMPEX 9300, CDC 9766,

AMPEX Capricorn, and FUJITSU 160. The origin and size of the pseudo-disks on

each drive are as follows:

CDC 9766 300M drive partitions:

disk start length cyl

up?a 0 15884 0-26

up?b 16416 33440 27-81

up?c 0 500384 0-822

up?d 341696 15884 562-588

up?e 358112 55936 589-680

up?f 414048 861760 681-822

up?g 341696 158528 562-822

up?h 49856 291346 82-561

4-32 Special Files

up(4)
Unsupported

AMPEX 9300 300M drive partitions:

disk start length cyl

up?a 0 15884 0-26

up?b 16416 33440 27-81

up?c 0 495520 0-814

up?d 341696 15884 562-588

up?e 358112 55936 589-680

up?f 414048 81312 681-814

up?g 341696 153664 562-814

up?h 49856 291346 82-561

AMPEX Capricorn 330M drive partitions:

disk start length cyl

hp?a 0 15884 0-31

hp?b 16384 33440 32-97

hp?c 0o 524288 0-1023

hp?d 342016 15884 668-699

hp?e 358400 55936 700-809

hp?f 414720 109408 810-1023

hp?g 342016 182112 668-1023

hp?h 50176 291346 98-667

FUJITSU 160M drive partitions:

disk start length cyl

up?a 0 15884 0-49

up?b 16000 33440 50-154

up?c 0 263360 0-822

up?d 49600 15884 155-204

up?e 65600 55936 205-379

up?f 121600 141600 380-822

up?g 49600 213600 155-822

It is unwise for all of these files to be present in one installation, since there is

overlap in addresses and protection becomes a sticky matter. The up?a partition is

normally used for the root file system, the up?b partition as a paging area, and the

up?c partition for pack-pack copying (it maps the entire disk). On 160M drives the

up?g partition maps the rest of the pack. On other drives both up?g and up?h are

used to map the remaining cylinders.

Restrictions

In raw I/O read and write(2) truncate file offsets to 512-byte block boundaries,

and write scribbles on the tail of incomplete blocks. Thus, in programs that are

likely to access raw devices, read, write and 1seek(2) should always deal in

512-byte multiples.

Diagnostics

up%d%c: hard error sn%d cs2=%b erl=%b er2=%b.

An unrecoverable error occurred during transfer of the specified sector in the

specified disk partition. The contents of the cs2, erl and er2 registers are printed in

octal and symbolically with bits decoded. The error was either unrecoverable, or a

large number of retry attempts (including offset positioning and drive recalibration)

Special Files 4-33

VAX

VAX up (4)
Unsupported

could not recover the error.

up%d: write locked.

The write protect switch was set on the drive when a write was attempted. The write

operation is not recoverable.

up%d: not ready.

The drive was spun down or off line when it was accessed. The i/o operation is not

recoverable.

up%d: not ready (flakey).

The drive was not ready, but after printing the message about being not ready (which

takes a fraction of a second) was ready. The operation is recovered if no further

eITors OCCUr.

up%d%c: soft ecc sn%d.

A recoverable ECC error occurred on the specified sector of the specified disk

partition. This happens normally a few times a week. If it happens more frequently

than this the sectors where the errors are occurring should be checked to see if certain

cylinders on the pack, spots on the carriage of the drive or heads are indicated.

sc%d: lost interrupt.

A timer watching the controller detecting no interrupt for an extended period while

an operation was outstanding. This indicates a hardware or software failure. There is

currently a hardware/software problem with spinning down drives while they are

being accessed which causes this error to occur. The error causes a UNIBUS reset,

and retry of the pending operations. If the controller continues to lose interrupts, this

error will recur a few seconds later.

Files

/dev/up[0-7][a-h] block files

/dev/rup[0-7][a-h] raw files

See Also

hk(4), hp(4), uda(4)

4-34 Special Files

urx(4) VAX

Unsupported

Name

urx — DEC RXO02 floppy disk interface

Syntax

controller fx0 at uba0 csr 0177170 vector rxintr

disk rx0 at fx0 drive 0

disk rx1 at fx0 slave 1

Description

The urx device provides access to a DEC RX02 floppy disk unit with M8256

interface module (RX211 configuration). The RX02 uses 8-inch, single-sided, soft-

sectored floppy disks (with pre-formatted industry-standard headers) in either single

or double density.

Floppy disks handled by the RX02 contain 77 tracks, each with 26 sectors (for a total

of 2,002 sectors). The sector size is 128 bytes for single density, 256 bytes for

double density. Single density disks are compatible with the RX01 floppy disk unit

and with IBM 3740 Series Diskette 1 systems.

In addition to normal (‘block’ and ‘raw’) i/o, the driver supports formatting of disks

for either density and the ability to invoke a 2 for 1 interleaved sector mapping

compatible with the DEC operating system RT-11.

The minor device number is interpreted as follows:

Bit Description

0 Sector interleaving (1 disables interleaving)

1 Logical sector 1 is on track 1 (0 no, 1 yes)

2 Not used, reserved

Other Drive number

The two drives in a single RX02 unit are treated as two disks attached to a single

controller. Thus, if there are two RX02’s on a system, the drives on the first RX02

are “‘rx0’’ and ‘‘rx1’’, while the drives on the second are ‘‘rx2’’ and ‘‘rx3”’.

When the device is opened, the density of the disk currently in the drive is

automatically determined. If there is no floppy in the device, open will fail.

The interleaving parameters are represented in raw device names by the letters ‘a’

through ‘d’. Thus, unit 0, drive 0 is called by one of the following names:

Mapping Device name Starting track

interleaved /dev/rrx0Oa 0

direct /dev/rrx0b 0

interleaved /dev/rrxOc 1

direct /dev/rrx0d 1

The mapping used on the ‘c’ device is compatible with the DEC operating system

RT-11. The ‘b’ device accesses the sectors of the disk in strictly sequential order.

The ‘a’ device is the most efficient for disk-to-disk copying.

The 1/O requests must start on a sector boundary, involve an integral number of

complete sectors, and not go off the end of the disk.

Special Files 4-35

VAX urx(4)

Unsupported

Notes

Even though the storage capacity on a floppy disk is quite small, it is possible to

make filesystems on double density disks. For example, the command

% mkfs /dev/rx0 1001 13 1 4096 512 320 4

makes a file system on the double density disk in rx0 with 436 kbytes available for

file storage. Using tar(1) gives a more efficient utilization of the available space for
file storage. Single density diskettes do not provide sufficient storage capacity to

hold file systems.

A number of ioctl(2) calls apply to the rx devices, and have the form

#include <vaxuba/rxreg.h>

ioctl (fildes, code, arg)

int *arg;

The applicable codes are:

RXIOC_FORMAT Format the diskette. The density to use is specified by the arg

argument, 0 gives single density while non-zero gives double

density.

RXIOC_GETDENS Return the density of the diskette (0 or !=0 as above).

RXIOC_WDDMK On the next write, include a deleted data address mark in the

header of the first sector.

RXIOC_RDDMK Return non-zero if the last sector read contained a deleted data

address mark in its header, otherwise return 0.

Restrictions

A floppy may not be formatted if the header information on sector 1, track 0 has been

damaged. Hence, it is not possible to format completely degaussed disks or disks

with other formats than the two known by the hardware.

If the drive subsystem is powered down when the machine is booted, the controller

won’t interrupt.

Diagnostics

The following errors may be returned by the above ioctl calls:

[ENODEV] Drive not ready; usually because no disk is in the drive or the drive

door is open.

[ENXIO] Nonexistent drive (on open); offset is too large or not on a sector

boundary or byte count is not a multiple of the sector size (on read or

write); or bad (undefined) ioctl code.

[EIO] A physical error other than ‘‘not ready’’, probably bad media or

unknown format.

[EBUSY] Drive has been opened for exclusive access.

[EBADF] No write access (on format), or wrong density; the latter can only
happen if the disk is changed without closing the device, that is,

calling close(2).

4-36 Special Files

urx(4) VAX

Unsupported

rx%d: hard error, trk %d psec %d cs=%b, db=%b, err=%x, %X, %X, %Xx.
An unrecoverable error was encountered. The track and physical sector numbers, the

device registers and the extended error status are displayed.

rx%d: state %d (reset).

The driver entered a bogus state. This should not happen.

Files

/dev/rx?

/dev/rrx?[a-d]

See Also

tar(1), arff(8v), mkfs(8), newfs(8), rxformat(8v)

Special Files 4-37

VAX ut(4)

Unsupported

Name

ut — UNIBUS TU4S5 tri-density tape drive interface

Syntax

controller ut0 at uba0 csr 0172440 vector utintr

tape tj0 at ut0 drive 0

Description

The ut interface provides access to a standard tape drive interface as describe in

mt io(4). Hardware implementing this on the VAX is typified by the System

Industries SI 9700 tape subsystem. Tapes may be read or written at 800, 1600, and

6250 bpi.

Restrictions

If any non-data error is encountered on non-raw tape, it refuses to do anything more

until closed.

Diagnostics

tj%d: no write ring.

An attempt was made to write on the tape drive when no write ring was present; this

message is written on the terminal of the user who tried to access the tape.

tj%d: not online.

An attempt was made to access the tape while it was offline; this message is written

on the terminal of the user who tried to access the tape.

tj%d: can’t change density in mid-tape.

An attempt was made to write on a tape at a different density than is already recorded

on the tape. This message is written on the terminal of the user who tried to switch

the density.

ut%d: soft error bn%d cs1=%Db er=%Db cs2=%Db ds=%Db.

The formatter indicated a corrected error at a density other than 800bpi. The data

transferred is assumed to be correct.

ut%d: hard error bn%d cs1l=%b er=%b cs2=%b ds=%b.

A tape error occurred at block bn. Any error is fatal on non-raw tape; when possible

the driver will have retried the operation which failed several times before reporting

the error.

tj%d: lost interrupt.

A tape operation did not complete within a reasonable time, most likely because the

tape was taken off-line during rewind or lost vacuum. The controller should, but

does not, give an interrupt in these cases. The device will be made available again

after this message, but any current open reference to the device will return an error as

the operation in progress aborts.

4--38 Special Files

ut(4) VAX

Unsupported

See Also

mt(1), mtio(4)

Special Files 4-39

VAX uu(4)

Unsupported

Name

uu — TUS8/DECtape IT UNIBUS cassette interface

Syntax

options UUDMA

device uuQ at uba0 csr 0176500 vector uurintr uuxintr

Description

The uu device provides access to dual DEC TUS58 tape cartridge drives connected to

the UNIBUS via a DL11-W interface module.

The interface supports only block i/o to the TUS58 cassettes. The drives are normally

manipulated with the ar £ £(8v) program using the m and f options.

The driver provides for an optional write and verify (read after write) mode that is

activated by specifying the ‘‘a’’ device.

The TUS58 is treated as a single device by the system even though it has two separate

drives, “‘uu0’’ and ‘‘uul”’. If there is more than one TU58 unit on a system, the extra

drives are named ‘‘uu2’’, “‘uu3”’ etc.

NOTE

Assembly language code to assist the driver in handling the receipt of

data (using a pseudo-dma approach) should be included when using this

driver; specify ‘‘options UUDMA"’ in the configuration file.

Diagnostics

The following errors may be returned:

[ENXIO] Nonexistent drive (on open); offset is too large or bad (undefined) ioctl

code.

[EIO] Open failed, the device could not be reset.

[EBUSY] Drive in use.

uu%d: no bp, active %d.

A transmission complete interrupt was received with no outstanding i/o request. This

indicates a hardware problem.

uu%d protocol error, state=%s, op=%x, cnt=%d, block=%d.

The driver entered an illegal state. The information printed indicates the illegal state,

the operation currently being executed, the i/o count, and the block number on the

cassette.

uu%d: break received, transfer restarted.

The TUS8 was sending a continuous break signal and had to be reset. This may

indicate a hardware problem, but the driver will attempt to recover from the error.

uu%d receive state error, state=%s, byte=%x.

The driver entered an illegal state in the receiver finite state machine. The state is

shown along with the control byte of the received packet.

4-40 Special Files

uu(4) VAX

Unsupported

uu%d: read stalled.

A timer watching the controller detected no interrupt for an extended perlod while an

operation was outstanding. This usually indicates that one or more receiver interrupts

were lost and the transferis restarted.

uu%d: hard error bn%d, pk_mod %o.

The device returned a status code indicating a hard error. The actual error codeis

shownin octal. No retries are attempted by the driver.

Files

/dev/uu?

/dev/uu?a

See Also

tu(4), arff(8V)

Special Files 4-41

VAX va(4)

Unsupported

Name

Syntax

va — Benson-Varian interface

controller va0 at uba0 csr 0164000 vector vaintr

disk vz0 at va0 drive 0

Description

NOTE

The configuration description, while counter-intuitive, is actually as

shown above.

The Benson-Varian printer/plotter in normally used with the programs vpr(1),

vprint(l) or vtroff(l). This description is designed for those who wish to drive

the Benson-Varian directly.

In print mode, the Benson-Varian uses a modified ASCII character set. Most control

characters print various non-ASCII graphics such as daggers, sigmas, copyright

symbols, etc. Only LF and FF are used as format effectors. LF acts as a newline,

advancing to the beginning of the next line, and FF advances to the top of the next

page.

In plot mode, the Benson-Varian prints one raster line at a time. An entire raster line

of bits (2112 bits = 264 bytes) is sent, and then the Benson-Varian advances to the

next raster line.

Note: The Benson-Varian must be sent an even number of bytes. If an odd number

is sent, the last byte will be lost. Nulls can be used in print mode to pad to an even

number of bytes.

To use the Benson-Varian yourself, you must realize that you cannot open the device,

/deviva0 if there is a daemon active. You can see if there is an active daemon by

doing a Ipg(1) and seeing if there are any files being printed.

To set the Benson-Varian into plot mode include the file <sys/vemd.h> and use the

following ioctl(2) call

ioctl(fileno(va), VSETSTATE, plotmd);

where plotmd is defined to be

int plotmd[] = { VPLOT, 0, 0 };

and va is the result of a call to fopen on stdio. When you finish using the Benson-

Varian in plot mode you should advance to a new page by sending it a FF after

putting it back into print mode, i.e. by

int prtmd([] = { VPRINT, 0, 0 };

.f.f.lush(va);
ioctl(fileno(va), VSETSTATE, prtmd);

write(fileno(va), "\f\0", 2);

4-42 Special Files

va(4) VAX

Unsupported

N.B.: If you use the standard I/O library with the Benson-Varian you must do

setbuf(vp, vpbuf);

where vpbuf is declared

char vpbuf{ BUFSIZ];

otherwise the standard 1/O library, thinking that the Benson-Varian is a terminal

(since it is a character special file) will not adequately buffer the data you are sending

to the Benson-Varian. This will cause it to run extremely slowly and tend to grind

the system to a halt.

Diagnostics

Files

The following error numbers are significant at the time the device is opened.

[ENXIO] The device is already in use.

[EIO] The device is offline.

The following message may be printed on the console.

va%d: npr timeout.

The device was not able to get data from the UNIBUS within the timeout period,

most likely because some other device was hogging the bus.

/dev/val

See Also

1pr(1), vtroff(1), vp(4), vont(5), Ipd(8)

Special Files 4-43

VAX vp(4)
Unsupported

Name

vp — Versatec interface

Syntax

device vp0 at ubaQ csr 0177510 vector vpintr vpintr

Description

The Versatec printer/plotter is normally used with the programs vpr(1), vprint(1)

or vtroff£(1). This description is designed for those who wish to drive the Versatec

directly.

To use the Versatec yourself, you must realize that you cannot open the device,

/dev/vp0 if there is a daemon active. You can see if there is a daemon active by

doing a 1pg(1), and seeing if there are any files being sent.

To set the Versatec into plot mode you should include <sys/vemd.h> and use the

ioct1(2) call

ioctl(fileno(vp), VSETSTATE, plotmd);

where plotmd is defined to be

int plotmd[] = { VPLOT, 0, 0 };

and vp is the result of a call to fopen on stdio. When you finish using the Versatec
in plot mode you should eject paper by sending it a EOT after putting it back into

print mode, i.e. by

int prtmd[] = { VPRINT, 0, 0 };

fflush(vp);

ioctl(fileno(vp), VSETSTATE, prtmd);

write(fileno(vp), "\04", 1);

N.B.: If you use the standard I/O library with the Versatec you must do

setbuf(vp, vpbuf);

where vpbuf is declared

char vpbuf{ BUFSIZ];

otherwise the standard I/O library, thinking that the Versatec is a terminal (since it is
a character special file) will not adequately buffer the data you are sending to the

Versatec. This will cause it to run extremely slowly and tends to grind the system to

a halt.

Restrictions

The configuration part of the driver assumes that the device is setup to vector print

mode through 0174 and plot mode through 0200. Since the driver doesn’t care

whether the device considers the interrupt to be a print or a plot interrupt, it would be

preferable to have these be the same. This since the configuration program can’t be

sure at boot time which vector interrupted and where the interrupt vectors actually

are. For the time being, since our versatec is vectored as described above, we specify

4-44 Special Files

vp(4) VAX

Unsupported

that it has two interrupt vectors and are careful to detect an interrupt through 0200 at

boot time and (manually) pretend the interrupt came through 0174.

Diagnostics

The following error numbers are significant at the time the device is opened.

[ENXIO] The device is already in use.

[EIO] The device is offline.

Files

/dev/vp0

See Also

vfont(5), Ipr(1), 1pd(8), vtroff(1), va(4)

Special Files 4—-45

VAX vv(4)

Unsupported

Name

vv — Proteon proNET 10 Megabit ring

Syntax

device vv0 at uba0 csr 0161000 vector vvrint vvxint

Description

The vv interface provides access to a 10 Mb/s Proteon proNET ring network.

The network number to which the interface is attached must be specified with an
SIOCSIFADDR ioctl before data can be transmitted or received. The host’s address
is discovered by putting the interface in digital loopback mode (not joining the ring)
and sending a broadcast packet from which the source address is extracted. the
Internet address of the interface would be 128.3.0.24.

The interface software implements error-rate limiting on the input side. This

provides a defense against situations where other hosts or interface hardware failures
cause a machine to be inundated with garbage packets. The scheme involves an
exponential backoff where the input side of the interface is disabled for longer and
longer periods. In the limiting case, the interface is turned on every two minutes or
so to see if operation can resume.

If the installation is running CTL boards which use the old broadcast address of 0
instead of the new address of Oxff, the define OLDBROADCAST should be
specified in the driver.

If the installation has a Wirecenter, the define WIRECENTER should be specified in
the driver. N.B.: Incorrect definition of WIRECENTER can cause hardware damage.

The interface normally tries to use a ‘‘trailer’’ encapsulation to minimize copying
data on input and output. This may be disabled, on a per-interface basis, by setting
the IFF_NOTRAILERS flag with an SIOCSIFFLAGS ioctl.

Diagnostics

vw%d: host %d.

The software announces the host address discovered during autoconfiguration.

vv%d: can’t initialize.

The software was unable to discover the address of this interface, so it deemed
"dead" will not be enabled.

vv%d: error vvocsr=%b.

The hardware indicated an error on the previous transmission.

vv%d: output timeout.

The token timer has fired and the token will be recreated.

vv%d: error vvicsr=%b.

The hardware indicated an error in reading a packet off the ring.

en%d: can’t handle af%d.

The interface was handed a message with addresses formatted in an unsuitable
address family; the packet was dropped.

4--46 Special Files

vv(4) VAX

Unsupported

vw%d: vs_olen=%d.

The ring output routine has been handed a message with a preposterous length. This

results in an immediate panic: vs_olen.

See Also

intro(4n), inet(4f)

Special Files 4-47

bootparams(5)

Unsupported

Name

bootparams — boot parameter data base

Syntax

[etc/bootparams

Description

The bootparams file contains the list of client entries that Sun diskless clients use

for booting. For each diskless client the entry should contain: first, the name of the

diskless client; and, second, a list of keys, names of servers, and pathnames.

Items are separated by TAB characters.

Examples

The following is an example of the /etc/bootparams taken from a SunOS

system.

myclient root=myserver:/nfsroot/myclient \
swap=myserver:/nfsswap/myclient \

dump=myserver:/nfsdump/myclient

See Also

bootparamd(8)

File Formats 5—-1

sliphosts (5)

Unsupported

Name

sliphosts — information about Serial Line Internetcol Protocol hosts

Syntax

/etc/sliphosts

Description

The /etc/sliphosts file contains information about Serial Line Internet Protocol

hosts. Hosts come in numerous types, but all are considered masters or slaves

depending on what is present in this s1iphosts file. Master systems initiate the

connection as:

/etc/slattach host

where host is a destination address. The destination is eventually passed to an

/etc/ifconfig command. Slave systems use /etc/slattach as their login

shell (shell field of /etc/passwd) and the login name is matched against the

destination field. The fields describing each connection are:

destination gateway netmask speed tty modemtype phonenum logininfo

Destination is matched against the command line argument (master) or against the

login name (for a slave connection). Gateway is usually the hostname of the system

although it may be changed for specific routing cases. Netmask depends on your

network and is passed to /etc/ifconfig. Speed is the speed at which the

connection is to be run. The speed may be any for slaves and the speed of the line

will not be modified. The fy is the line to use for this connection. For master

systems this is the outgoing line to use and for slave systems /dev/tty is usually

specified. Modemtype is specified as the type of modem to use (name must match an

entry in /etc/acucap or hw for hardwired connections - master only). Phonenum

is present if modemtype is not hw and is the phone number to use (master only).

Logininfo is similar to UUCP information needed to negotiate the SLIP login at the

remote host (master only).

Examples

A sample master destination is as follows:

slvname mastname mask 19200 /dev/ttyd0 hayes-V 5-5555 ogin:

Stest ssword: guess

A sample slave destination is as follows:

mastname slvname mask any /dev/tty

NOTE

slvname, mastname, and mask must be found in /etc/hosts or

/etc/networks as these are passed to /etc/ifconfig.

5-2 File Formats

sliphosts (5)

Unsupported

Files

/etc/sliphosts

/etc/ifconfig

/et.PN c/acucap

/etc/h.PN osts

Jusr/mew/.PN slattach

See Also

L.sys(5), slattach(8)

File Formats 5-3

tp(5)
Unsupported

Name

tp — DEC/mag tape formats

Description

The tp file dumps files to and extracts files from magtape. The formats of these

tapes are the same except that magtapes have larger directories.

Block zero contains a copy of a stand-alone bootstrap program. For further

information, see reboot(8).

Blocks 1 through 62 for magtape contain a directory of the tape. There are 192 (resp.

496) entries in the directory; 8 entries per block; 64 bytes per entry. Each entry has

the following format:

struct {

char pathname[32];

unsigned short mode;

char uid;

char gid;

char unusedl;

char sizel[3];

long modtime;

unsigned short tapeaddr;

char unused2[16];

unsigned short checksum;

}:

The path name entry is the path name of the file when put on the tape. If the

pathname starts with a zero word, the entry is empty. It is at most 32 bytes long and

ends in a null byte. Mode, uid, gid, size and time modified are the same as described

under i-nodes. For further information, see file system fs(5). The tape address is the

tape block number of the start of the contents of the file. Every file starts on a block

boundary. The file occupies (size+511)/512 blocks of continuous tape. The

checksum entry has a value such that the sum of the 32 words of the directory entry

1S zero.

Blocks above 25 (resp. 63) are available for file storage.

A fake entry has a size of zero.

See Also

tp(1), £5(5)

5—4 File Formats

vfont(5) VAX

Unsupported

Name

vfont — font formats for the Benson-Varian or Versatec

Syntax

/usr/lib/vfont/*

Description

The fonts for the printer/plotters have the following format. Each file contains a

header, an array of 256 character description structures, and then the bit maps for the

characters themselves. The header has the following format:

struct header ({

short magic;

unsigned shortsize;

short maxx;

short maxy;

short xtnd;

} header;

The magic number is 0436 (octal). The maxx, maxy, and xtnd fields are not used at

the current time. Maxx and maxy are intended to be the maximum horizontal and

vertical size of any glyph in the font, in raster lines. The size is the size of the bit

maps for the characters in bytes. Before the maps for the characters is an array of

256 structures for each of the possible characters in the font. Each element of the

array has the form:

struct dispatch {

unsigned shortaddr;

short nbytes;

char up;

char down;

char left;

char right;

short width;

}:

The nbytes field is nonzero for characters which actually exist. For such characters,

the addr field is an offset into the rest of the file where the data for that character

begins. There are up+down rows of data for each character, each of which has

left+right bits, rounded up to a number of bytes. The width field is not used by vcat,

although it is to make width tables for troff. It represents the logical width of the

glyph, in raster lines, and shows where the base point of the next glyph would be.

File Formats 5-5

VAX viont(5)

Unsupported

Files

/usr/lib/vfont/*

See Also

troff(1), pti(1), vpr(1), vtroff(1), vfontinfo(1)

5-6 File Formats

vgrindefs (5) VAX

Unsupported

Name

vgrindefs — vgrind’s language definition data base

Syntax

/usr/lib/vgrindefs

Description

The vgrindefs database contains all language definitions for vgrind. The database

is very similar to termcap(5).

Fields

The following table names and describes each field.

Name Type Description

pb str regular expression for start of a procedure

bb str regular expression for start of a lexical block

be str regular expression for the end of a lexical block

cb str regular expression for the start of a comment

ce str regular expression for the end of a comment

sb str regular expression for the start of a string

se str regular expression for the end of a string

b str regular expression for the start of a character constant

le str regular expression for the end of a character constant

tl bool present means procedures are only defined at the top

lexical level

ocC bool present means upper and lower case are equivalent

kw str a list of keywords separated by spaces

Entries may continue onto multiple lines by giving a \ as the last character of a line.

Capabilities in vgrindefs are of two types: Boolean capabilities which indicate that

the language has some particular feature and string capabilities which give a regular

expression or keyword list.

Regular Expressions

The vgrindefs database uses regular expression which are very similar to those

of ex(1) and lex(1). The characters ‘A’, ‘$’, ‘> and \’ are reserved characters and

must be quoted with a preceding \ if they are to be included as normal characters.

The metasymbols and their meanings are:

$ the end of a line

A the beginning of a line

\d a delimiter (space, tab, newline, start of line)

\a matches any string of symbols (like .* in lex)

\p matches any alphanumeric name. In a procedure definition (pb) the string

that matches this symbol is used as the procedure name.

0 grouping

File Formats 5-7

VAX vgrindefs (5)

Unsupported

l alternation

? last item is optional

\e preceding any string means that the string will not match an input string if

the input string is preceded by an escape character (\). This is typically

used for languages (like C) which can include the string delimiter in a

string by escaping it.

Unlike other regular expressions in the system, these match words and not

characters. Hence something like "(tramplsteamer)flies?" would match "tramp”,
" on

"steamer", "trampflies”, or "steamerflies".

Keyword List

The keyword list is just a list of keywords in the language separated by spaces. If

the "oc" boolean is specified, indicating that upper and lower case are equivalent,

then all the keywords should be specified in lower case.

Examples

Files

The following entry, which describes the C language, is typical of a language entry.

Clc: :pb=\d?7*NdNp\d??):bb={:be=}:cb=/*:ce=*/:sb=":se=\e"\

db=":le=\e’:tl:\

:kw=asm auto break case char continue default do double else enum\

extern float for fortran goto if int long register return short\

sizeof static struct switch typedef union unsigned while #define\

#else #endif #if #ifdef #ifndef #include #undef # define else endif\

if ifdef ifndef include undef:

Note that the first field is just the language name (and any variants of it). Thus the C

language could be specified to vgrind(1) as c or C.

fusr/lib/vgrindefs file containing terminal descriptions

See Also

troff(1), vgrind(1)

5-8 File Formats

aardvark (6) VAX

Unsupported

Name

aardvark — yet another exploration game

Syntax

/usr/games/aardvark

Description

The aardvark program is yet another computer fantasy simulation game of the

adventure/zork genre. This one is written in DDL (Dungeon Definition Language)

and is intended primarily as an example of how to write a dungeon in DDL.

Files

/usr/games/lib/ddlrun ddl interpreter

/usr/games/lib/aardvark internal form of aardvark dungeon

Games 6-1

VAX adventure(6)

Unsupported

Name

adventure — an exploration game

Syntax

/usr/games/adventure

Description

The object of the adventure game is to locate and explore Colossal Cave, find the

treasures hidden there, and bring them back to the building with you. The program is

self-describing to a point, but part of the game is to discover its rules.

To terminate a game, type ‘‘quit’’; to save a game for later resumption, type

‘‘suspend”’.

6—2 Games

arithmetic (6)

Unsupported

Name

arithmetic — provide drill in number facts

Syntax

lusr/games/arithmetic [+—x/] [range]

Description

The arithmetic program types out simple arithmetic problems, and waits for an

answer to be typed in. If the answer is correct, it types back ‘‘Right!”’, and a new

problem. If the answer is wrong, it replies ‘“What?’’, and waits for another answer.

Every twenty problems, it publishes statistics on correctness and the time required to

answer.

To quit the program, type an interrupt (delete).

The first optional argument determines the kind of problem to be generated; +-x/

respectively cause addition, subtraction, multiplication, and division problems to be

generated. One or more characters can be given; if more than one is given, the

different types of problems will be mixed in random order; default is +-

Range is a decimal number; all addends, subtrahends, differences, multiplicands,

divisors, and quotients will be less than or equal to the value of range. Default

range is 10.

At the start, all numbers less than or equal to range are equally likely to appear. If

the respondent makes a mistake, the numbers in the problem which was missed

become more likely to reappear.

As a matter of educational philosophy, the program will not give correct answers,

since the learner should, in principle, be able to calculate them. Thus the program is

intended to provide drill for someone just past the first learning stage, not to teach

number facts de novo. For almost all users, the relevant statistic should be time per

problem, not percent correct.

Games 6-3

backgammon (6)

Unsupported

Name

backgammon — the game

Syntax

/usr/games/backgammon

Description

This program does what you expect. It will ask whether you need instructions.

6-4 Games

banner(6)

Unsupported

Name

banner — print large banner on printer

Syntax

/usr/games/banner [—-wr] message ...

Description

The banner program prints a large, high quality banner on the standard output. If

the message is omitted, it prompts for and reads one line of its standard input. If -w

is given, the output is scrunched down from a width of 132 to », suitable for a

narrow terminal. If n is omitted, it defaults to 80.

The output should be printed on a hard-copy device, up to 132 columns wide, with

no breaks between the pages. The volume is enough that you want a printer or a fast

hardcopy terminal, but if you are patient, a decwriter or other 300 baud terminal will

do.

Restrictions

Several ASCII characters are not defined, notably <, >, [, L\ A, _, {, }, |, and ~.

Also, the characters ", ’, and & are funny looking (but in a useful way.)

The —w option is implemented by skipping some rows and columns. The smaller it

gets, the grainier the output. Sometimes it runs letters together.

Games 6-5

bed (6)

Unsupported

Name

bcd — convert to antique media

Syntax

/usr/games/bed text

Description

The bed program converts the literal text into a form familiar to old-timers.

See Also

dd(1)

6-6 Games

boggle(6)

Unsupported

Name

boggle — play the game of boggle

Syntax

lusr/games/boggle [+ 1 [++]

Description

This program is intended for people wishing to sharpen their skills at Boggle (TM

Parker Bros.). If you invoke the program with 4 arguments of 4 letters each, (e.g.

‘‘boggle appl epie moth erhd’’) the program forms the obvious Boggle grid and

lists all the words from /usr/dict/words found therein. If you invoke the program

without arguments, it will generate a board for you, let you enter words for 3

minutes, and then tell you how well you did relative to /usr/dict/words.

The object of Boggle is to find, within 3 minutes, as many words as possible in a 4

by 4 grid of letters. Words may be formed from any sequence of 3 or more adjacent

letters in the grid. The letters may join horizontally, vertically, or diagonally.

However, no position in the grid may be used more than once within any one word.

In competitive play amongst humans, each player is given credit for those of his

words which no other player has found.

In interactive play, enter your words separated by spaces, tabs, or newlines. A bell

will ring when there is 2:00, 1:00, 0:10, 0:02, 0:01, and 0:00 time left. You may

complete any word started before the expiration of time. You can surrender before

time is up by hitting ’break’. While entering words, your erase character is only

effective within the current word and your line kill character is ignored.

Advanced players may wish to invoke the program with 1 or 2 +’s as the first

argument. The first + removes the restriction that positions can only be used once in

each word. The second + causes a position to be considered adjacent to itself as well

as its (up to) 8 neighbors.

Games 6-7

canfield (6)

Unsupported

Name

canfield, cfscores — the solitaire card game canfield

Syntax

/usr/games/canfield

/usr/games/cfscores

Description

If you have never played solitaire before, it is recommended that you consult a

solitaire instruction book. In Canfield, tableau cards may be built on each other

downward in alternate colors. An entire pile must be moved as a unit in building.

Top cards of the piles are available to be able to be played on foundations, but never

into empty spaces.

Spaces must be filled from the stock. The top card of the stock also is available to be

played on foundations or built on tableau piles. After the stock is exhausted, tableau

spaces may be filled from the talon and the player may keep them open until he

wishes to use them.

Cards are dealt from the hand to the talon by threes and this repeats until there are no

more cards in the hand or the player quits. To have cards dealt onto the talon the

player types ’ht’ for his move. Foundation base cards are also automatically moved to

the foundation when they become available.

The command ’c’ causes canfield to maintain card counting statistics on the bottom

of the screen. When properly used this can greatly increase ones chances of winning.

The rules for betting are somewhat less strict than those used in the official version of

the game. The initial deal costs $13. You may quit at this point or inspect the game.

Inspection costs $13 and allows you to make as many moves as is possible without

moving any cards from your hand to the talon. (the initial deal places three cards on

the talon; if all these cards are used, three more are made available.) Finally, if the

game seems interesting, you must pay the final installment of $26. At this point you

are credited at the rate of $5 for each card on the foundation; as the game progresses

you are credited with $5 for each card that is moved to the foundation. Each run

through the hand after the first costs $5. The card counting feature costs $1 for each

unknown card that is identified. If the information is toggled on, you are only

charged for cards that became visible since it was last turned on. Thus the maximum

cost of information is $34. Playing time is charged at a rate of $1 per minute.

With no arguments, the program cfscores prints out the current status of your canfield

account. If a user name is specified, it prints out the status of their canfield account.

If the —a flag is specified, it prints out the canfield accounts for all users that have

played the game since the database was set up.

Files

Jusr/games/canfield the game itself

[/usr/games/cfscores the database printer

fusr/games/lib/cfscores the database of scores

6—-8 Games

chess (6) VAX

Unsupported

Name

chess — the game of chess

Syntax

/usr/games/chess

Description

The chess computer program plays class D chess. Moves may be given either in

standard (descriptive) notation or in algebraic notation. The symbol ‘+’ is used to

specify check; ‘0-0’ and ‘0-0-0" specify castling. To play black, type ‘first’; to print

the board, type an empty line.

Each move is echoed in the appropriate notation followed by the program’s reply.

Restrictions

Pawns may be promoted only to queens.

Diagnostics

The most cryptic diagnostic is ‘eh?’ which means that the input was syntactically

incorrect.

Files

Jusr/lib/chess binary image to run in compatibility mode

Games 6-9

VAX ching(6)

Unsupported

Name

ching — the book of changes and other cookies

Syntax

/usr/games/ching [hexagram]

Description

The I Ching or Book of Changes is an ancient Chinese oracle that has been in use for

centuries as a source of wisdom and advice.

The text of the oracle (as it is sometimes known) consists of sixty-four hexagrams,

each symbolized by a particular arrangement of six straight (—) and broken (- -)

lines. These lines have values ranging from six through nine, with the even values

indicating the broken lines.

Each hexagram consists of two major sections. The Judgement relates specifically

to the matter at hand (E.g., ‘It furthers one to have somewhere to go.’’) while the

Image describes the general attributes of the hexagram and how they apply to one’s

own life (*“Thus the superior man makes himself strong and untiring.”’).

When any of the lines have the values six or nine, they are moving lines; for each

there is an appended judgement which becomes significant. Furthermore, the moving

lines are inherently unstable and change into their opposites; a second hexagram (and

thus an additional judgement) is formed.

Normally, one consults the oracle by fixing the desired question firmly in mind and

then casting a set of changes (lines) using yarrow-stalks or tossed coins. The

resulting hexagram will be the answer to the question.

The oracle simply reads a question from the standard input (up to an EOF) and

hashes the individual characters in combination with the time of day, process id and

any other magic numbers which happen to be lying around the system. The resulting

value is used as the seed of a random number generator which drives a simulated

coin—toss divination. The answer is then piped through nroff for formatting and will

appear on the standard output.

For those who wish to remain steadfast in the old traditions, A the oracle will also

accept the results of a personal divination using, for example, coins. To do this, cast

the change and then type the resulting line values as an argument.

See Also

fortune(6)

6-10 Games

cribbage(6)

Unsupported

Name

cribbage — the card game cribbage

Syntax

/usr/games/cribbage [-req] name ...

Description

The cribbage program plays the card game cribbage, with the program playing

one hand and the user the other. The program will initially ask the user if the rules

of the game are needed — if so, it will print out the appropriate section from

According to Hoyle with more (I).

The cribbage program first asks the player whether he wishes to play a short game

(‘‘once around’’, to 61) or a long game (‘‘twice around’’, to 121). A response of ‘s’

will result in a short game, any other response will play a long game.

At the start of the first game, the program asks the player to cut the deck to

determine who gets the first crib. The user should respond with a number between 0

and 51, indicating how many cards down the deck is to be cut. The player who cuts

the lower ranked card gets the first crib. If more than one game is played, the loser

of the previous game gets the first crib in the current game.

For each hand, the program first prints the player’s hand, whose crib it is, and then

asks the player to discard two cards into the crib. The cards are prompted for one per

line, and are typed as explained below.

After discarding, the program cuts the deck (if it is the player’s crib) or asks the

player to cut the deck (if it’s its crib); in the later case, the appropriate response is a

number from 0 to 39 indicating how far down the remaining 40 cards are to be cut.

After cutting the deck, play starts with the non-dealer (the person who doesn’t have

the crib) leading the first card. Play continues, as per cribbage, until all cards are

exhausted. The program keeps track of the scoring of all points and the total of the

cards on the table.

After play, the hands are scored. The program requests the player to score his hand

(and the crib, if it is his) by printing out the appropriate cards (and the cut card

enclosed in brackets). Play continues until one player reaches the game limit (61 or
121).

A carriage return when a numeric input is expected is equivalent to typing the lowest

legal value; when cutting the deck this is equivalent to choosing the top card.

Cards are specified as rank followed by suit. The ranks may be specified as one of:
‘a’, ‘2, ‘3, ‘4%, ‘5, ‘6’, ‘T, 8%, ‘9, ‘", 5§, ‘q’, and ‘k’, or alternatively, one of:

“‘ace’’, ‘“‘two’’, ‘‘three’’, ““four”’, “‘five’’, ‘‘six’’, ‘‘seven’’, ‘‘eight’’, ‘“‘nine’’, *‘ten’’,

““jack’’, ‘“‘queen’’, and ‘‘king’’. Suits may be specified as: ‘s’, ‘h’, ‘d’, and ‘c’, or

«lternatively as: ‘‘spades’’, ‘‘hearts’’, ‘‘diamonds’’, and ‘‘clubs’’. A card may be

specified as: <rank> ‘‘ >’ <suit>, or: <rank> ‘* of >’ <suit>. If the single letter rank

and suit designations are used, the space separating the suit and rank may be left out.

Also, if only one card of the desired rank is playable, typing the rank is sufficient.

For example, if your hand was ‘‘2H, 4D, 5C, 6H, JC, KD’ and it was desired to

discard the king of diamonds, any of the following could be typed: ‘‘k’’, “‘king’’,

Games 6-11

cribbage(6)

Unsupported

“kd”’, “kd”’, “k of d”’, “king d”’, “‘*king of d”’, ‘‘k diamonds’’, ‘‘k of diamonds’,

‘‘king diamonds’’, or ‘‘king of diamonds’’.

Options

—€ When the player makes a mistakes scoring his hand or crib, provide an

explanation of the correct score. (This is especially useful for beginning

players.)

-q Print a shorter form of all messages — this is only recommended for users

who have played the game without specifying this option.

-r Instead of asking the player to cut the deck, the program will randomly cut

the deck.

Files

/usr/games/cribbage

6-12 Games

doctor(6) VAX

Unsupported

Name

doctor — interact with a psychoanalyst

Syntax

/usr/games/doctor

Description

The doctor program is a lisp-language version of the legendary ELIZA program.

This script simulates a Rogerian psychoanalyst. Type in lower case, and when you

get tired or bored, type your interrupt character (either control-C or Rubout).

Remember to type two carriage returns when you want it to answer.

In order to run this you must have a Franz Lisp system in /usr/ucb/lisp.

Games 6-13

fish (6)

Unsupported

Name

Syntax

fish — play the card game Fish

/usr/games/fish

Description

The £ish program plays the game of ‘‘Go Fish’’, a childrens’ card game. The

Object is to accumulate ‘books’ of 4 cards with the same face value. The players
alternate turns; each turn begins with one player selecting a card from his hand, and
asking the other player for all cards of that face value. If the other player has one or

more cards of that face value in his hand, he gives them to the first player, and the

first player makes another request. Eventually, the first player asks for a card which
is not in the second player’s hand: he replies ‘GO FISH!” The first player then draws
a card from the ‘pool’ of undealt cards. If this is the card he had last requested, he

draws again. When a book is made, either through drawing or requesting, the cards

are laid down and no further action takes place with that face value.

To play the computer, simply make guesses by typing a, 2, 3,4, 5,6, 7, 8, 9, 10, j, q,

or k when asked. Hitting return gives you information about the size of my hand and

the pool, and tells you about my books. Saying ‘p’ as a first guess puts you into

‘pro’ level; The default is pretty dumb.

6-14 Games

fortune(6)

Unsupported

Name

fortune — print a random, hopefully interesting, adage

Syntax

/usr/games/fortune [—][—wsl]

Description

The fortune program with no arguments prints out a random adage.

Options

-w Waits before termination for an amount of time calculated from the number of

characters in the message. This is useful if it is executed as part of the logout

procedure to guarantee that the message can be read before the screen is

cleared.

—s Short messages only.

-1 Long messages only.

Files

/usr/games/lib/fortunes.dat

Games 6—-15

hangman(6)

Unsupported

Name

hangman — Computer version of the game hangman

Syntax

/usr/games/hangman

Description

In hangman, the computer picks a word from the on-line word list and you must

try to guess it. The computer keeps track of which letters have been guessed and

how many wrong guesses you have made on the screen in a graphic fashion.

Files

Jusr/dict/words On-line word list

6-16 Games

mille (6)

Unsupported

Name

mille — play Mille Bournes

Syntax

/usr/games/mille [file]

Description

The mille program plays a two-handed game reminiscent of the Parker Brother’s

game of Mille Bournes with you. The rules are described below. If a file name is

given on the command line, the game saved in that file is started.

When a game is started up, the bottom of the score window will contain a list of

commands. They are:

P Pick a card from the deck. This card is placed in the ‘P’ slot in your hand.

D Discard a card from your hand. To indicate which card, type the number

of the card in the hand (or ‘“‘P*’ for the just-picked card) followed by a

<RETURN> or <SPACE>. The <RETURN or <SPACE> is required to

allow recovery from typos which can be very expensive, like discarding

safeties.

U Use a card. The card is again indicated by its number, followed by a

<RETURN> or <SPACE>.

0 Toggle ordering the hand. By default off, if turned on it will sort the cards

in your hand appropriately. This is not recommended for the impatient on

slow terminals.

Q Quit the game. This will ask for confirmation, just to be sure. Hitting

<DELETE> (or <RUBOUT>) is equivalent.

S Save the game in a file. If the game was started from a file, you will be

given an opportunity to save it on the same file. If you don’t wish to, or

you did not start from a file, you will be asked for the file name. If you

type a <RETURN> without a name, the save will be terminated and the

game resumed.

R Redraw the screen from scratch. The command AL (control ‘L’) will also

work.

W Toggle window type. This switches the score window between the startup

window (with all the command names) and the end-of-game window.

Using the end-of-game window saves time by eliminating the switch at the

end of the game to show the final score. Recommended for hackers and

other miscreants.

If you make a mistake, an error message will be printed on the last line of the score

window, and a bell will beep.

At the end of each hand or game, you will be asked if you wish to play another. If

not, it will ask you if you want to save the game. If you do, and the save is

unsuccessful, play will be resumed as if you had said you wanted to play another

hand/game. This allows you to use the *‘S’’ command to reattempt the save.

Games 6-17

mille(6)

Unsupported

Cards

Here is some useful information. The number in parentheses after the card name is

the number of that card in the deck:

Hazard Repair Safety

Out of Gas (2) Gasoline (6) Extra Tank (1)

Flat Tire (2) Spare Tire (6) Puncture Proof (1)

Accident (2) Repairs (6) Driving Ace (1)

Stop (4) Go (14) Right of Way (1)

Speed Limit (3) End of Limit (6)

25 —(10), 50 - (10), 75 - (10), 100 — (12), 200 — (4)

Rules

Object: The point of game is to get a total of 5000 points in several hands. Each

hand is a race to put down exactly 700 miles before your opponent does. Beyond the

points gained by putting down milestones, there are several other ways of making

points.

Overview: The game is played with a deck of 101 cards. Distance cards represent a

number of miles traveled. They come in denominations of 25, 50, 75, 100, and 200.

When one is played, it adds that many miles to the player’s trip so far this hand.

Hazard cards are used to prevent your opponent from putting down Distance cards.

They can only be played if your opponent has a Go card on top of the Battle pile.

The cards are Out of Gas, Accident, Flat Tire, Speed Limit, and Stop. Remedy cards

fix problems caused by Hazard cards played on you by your opponent. The cards are

Gasoline, Repairs, Spare Tire, End of Limit, and Go. Safety cards prevent your

opponent from putting specific Hazard cards on you in the first place. They are Extra

Tank, Driving Ace, Puncture Proof, and Right of Way, and there are only one of

each in the deck.

Board Layout: The board is split into several areas. From top to bottom, they are:

SAFETY AREA (unlabeled): This is where the safeties will be placed as they are

played. HAND: These are the cards in your hand. BATTLE: This is the Battle

pile. All the Hazard and Remedy Cards are played here, except the Speed Limit and

End of Limit cards. Only the top card is displayed, as it is the only effective one.

SPEED: The Speed pile. The Speed Limit and End of Limit cards are played here to

control the speed at which the player is allowed to put down miles. MILEAGE:

Miles are placed here. The total of the numbers shown here is the distance traveled

so far.

Play: The first pick alternates between the two players. Each turn usually starts with

a pick from the deck. The player then plays a card, or if this is not possible or

desirable, discards one. Normally, a play or discard of a single card constitutes a

turn. If the card played is a safety, however, the same player takes another turn

immediately.

6—-18 Games

mille (6)

Unsupported

This repeats until one of the players reaches 700 points or the deck runs out. If

someone reaces 700, they have the option of going for an Extension, which means

that the play continues until someone reaches 1000 miles.

Hazard and Remedy Cards: Hazard Cards are played on your opponent’s Battle

and Speed piles. Remedy Cards are used for undoing the effects of your opponent’s

nastiness.

Go

Stop

Speed Limit

End of Limit

Out of Gas

Flat Tire

Accident

(Green Light) must be the top card on your Battle pile for you

to play any mileage, unless you have played the Right of Way

card (see below).

Played on your opponent’s Go card to prevent them from

playing mileage until they play a Go card.

Played on your opponent’s Speed pile. Until they play an End

of Limit they can only play 25 or 50 mile cards, presuming

their Go card allows them to do even that.

Played on your Speed pile to nullify a Speed Limit played by

your opponent.

Played on your opponent’s Go card. They must then play a

Gasoline card, and then a Go card before they can play any

more mileage.

Played on your opponent’s Go card. They must then play a

Spare Tire card, and then a Go card before they can play any

more mileage.

Played on your opponent’s Go card. They must then play a

Repairs card, and then a Go card before they can play any

more mileage.

Safety Cards: Safety cards prevent your opponent from playing the corresponding

Hazard cards on you for the rest of the hand. It cancels an attack in progress, and

always entitles the player to an extra turn.

Right of Way

Extra Tank

Puncture Proof

Driving Ace

Prevents your opponent from playing both Stop and Speed

Limit cards on you. It also acts as a permanent Go card for the

rest of the hand, so you can play mileage as long as there is not

a Hazard card on top of your Battle pile. In this case only,

your opponent can play Hazard cards directly on a Remedy

card besides a Go card.

When played, your opponent cannot play an Out of Gas on

your Battle Pile.

When played, your opponent cannot play a Flat Tire on your

Battle Pile.

When played, your opponent cannot play an Accident on your

Battle Pile.

Distance Cards: Distance cards are played when you have a Go card on your Battle

pile, or a Right of Way in your Safety area and are not stopped by a Hazard Card.

They can be played in any combination that totals exactly 700 miles, except that you

cannot play more than two 200 mile cards in one hand. A hand ends whenever one

Games 6—19

mille (6)

Unsupported

player gets exactly 700 miles or the deck runs out. In that case, play continues until

neither someone reaches 700, or neither player can use any cards in their hand. If the

trip is completed after the deck runs out, this is called Delayed Action.

Coup Fourré: This is a French fencing term for a counter-thrust move as part of a

parry to an opponents attack. In Mille Bournes, it is used as follows: If an opponent

plays a Hazard card, and you have the corresponding Safety in your hand, you play it

immediately, even before you draw. This immediately removes the Hazard card from

your Battle pile, and protects you from that card for the rest of the game. This gives

you more points (see ‘‘Scoring’’ below).

Scoring: Scores are totaled at the end of each hand, whether or not anyone

completed the trip. The terms used in the Score window have the following

meanings:

Milestones Played

Each Safety

All 4 Safeties

Each Coup Fouré

Each player scores as many miles as they played before

the trip ended.

100 points for each safety in the Safety area.

300 points if all four safeties are played.

300 points for each Coup Fouré accomplished.

The following bonus scores can apply only to the winning player.

Trip Completed

Safe Trip

Delayed Action

Extension

Shut-Out

400 points bonus for completing the trip to 700 or 1000.

300 points bonus for completing the trip without using

any 200 mile cards.

300 points bonus for finishing after the deck was

exhausted.

200 points bonus for completing a 1000 mile trip.

500 points bonus for completing the trip before your

opponent played any mileage cards.

Running totals are also kept for the current score for each player for the hand (Hand

Total), the game (Overall Total), and number of games won (Games).

See Also

curses(3X)

Screen Updating and Cursor Movement Optimization: A Library Package, Ken

Arnold

6-20 Games

monop(6)

Unsupported

Name

monop — Monopoly game

Syntax

/usr/games/monop [file]

Description

The monop game is reminiscent of the Parker Brother’s game Monopoly, and

monitors a game between 1 to 9 users. It is assumed that the rules of Monopoly are

known. The game follows the standard rules, with the exception that, if a property

would go up for auction and there are only two solvent players, no auction is held

and the property remains unowned.

The game, in effect, lends the player money, so it is possible to buy something which

you cannot afford. However, as soon as a person goes into debt, he must “‘fix the

problem”’, that is, make himself solvent, before play can continue. If this is not

possible, the player’s property reverts to his debtee, either a player or the bank. A

player can resign at any time to any person or the bank, which puts the property back

on the board, unowned.

Any time that the response to a question is a string, for example, a name, place or

person, you can type ‘?’ to get a list of valid answers. It is not possible to input a

negative number, nor is it ever necessary.

A Summary of Commands:

quit: quit game: This allows you to quit the game. It asks you if you’re sure.

print: print board: This prints out the current board. The columns have the

following meanings (column headings are the same for the where, own

holdings, and holdings commands):

Name The first ten characters of the name of the square

Own The number of the owner of the property.

Price The cost of the property (if any)

Mg This field has a ‘*’ in it if the property is mortgaged

If the property is a Utility or Railroad, this is the number of such

owned by the owner. If the property is land, this is the number of

houses on it.

Rent Current rent on the property. If it is not owned, there is no rent.

where: where players are: Tells you where all the players are. A ‘*’ indicates

the current player.

own holdings:

List your own holdings, i.e., money, get-out-of-jail-free cards, and

property.

holdings: holdings list: Look at anyone’s holdings. It will ask you whose holdings

Games 6-21

monop(6)

Unsupported

you wish to look at. When you are finished, type ‘‘done’’.

shell: shell escape: Escape to a shell. When the shell dies, the program

continues where you left off.

mortgage: mortgage property: Sets up a list of mortgageable property, and asks

which you wish to mortgage.

unmortgage:

unmortgage property: Unmortgage mortgaged property.

buy: buy houses: Sets up a list of monopolies on which you can buy houses.

If there is more than one, it asks you which you want to buy for. It then

asks you how many for each piece of property, giving the current amount

in parentheses after the property name. If you build in an unbalanced

manner (a disparity of more than one house within the same monopoly),

it asks you to re-input things.

sell: sell houses: Sets up a list of monopolies from which you can sell

houses. It operates in an analogous manner to buy.

card: card for jail: Use a get-out-of-jail-free card to get out of jail. If you're

not in jail, or you don’t have one, it tells you so.

pay: pay for jail: Pay $50 to get out of jail, from whence you are put on Just

Visiting. Difficult to do if you’re not there.

trade: This allows you to trade with another player. It asks you whom you

wish to trade with, and then asks you what each wishes to give up. You

can get a summary at the end, and, in all cases, it asks for confirmation

of the trade before doing it.

resign: Resign to another player or the bank. If you resign to the bank, all

property reverts to its virgin state, and get-out-of-jail free cards revert to

the deck.

save: save game: Save the current game in a file for later play. You can

continue play after saving, either by adding the file in which you saved

the game after the monop command, or by using the restore command

(see below). It will ask you which file you wish to save it in, and, if the

file exists, confirm that you wish to overwrite it.

restore: restore game: Read in a previously saved game from a file. It leaves the

file intact.

roll: Roll the dice and move forward to your new location. If you simply hit

the <RETURN> key instead of a command, it is the same as typing roll.

Restrictions

No command can be given an argument instead of a response to a query.

Files

/usr/games/lib/cards.pck

Chance and Community Chest cards

6-22 Games

number(6)

Unsupported

Name

number — convert Arabic numerals to English

Syntax

/usr/games/number

Description

The number program copies the standard input to the standard output, changing

each decimal number to a fully spelled out version.

Games 6—23

quiz(6)

Unsupported

Name

quiz — test your knowledge

Syntax

lusr/games/quiz [—i file 1 [-t][categoryl category2]

Description

The quiz program gives associative knowledge tests on various subjects. It asks

items chosen from categoryl and expects answers from category2. If no categories

are specified, quiz gives instructions and lists the available categories.

The quiz program tells a correct answer whenever you type a bare newline. At the

end of input, upon interrupt, or when questions run out, qui z reports a score and

terminates.

The —t option specifies ‘tutorial’ mode, where missed questions are repeated later,

and material is gradually introduced as you learn.

The - option causes the named file to be substituted for the default index file. The

lines of these files have the syntax:

line = category newline | category ‘:’ line
category = alternate | category ‘I’ alternate
alternate = empty | alternate primary

primary = character | ‘[’ category ‘1" | option
option = ‘{’ category ‘}’

The first category on each line of an index file names an information file. The

remaining categories specify the order and contents of the data in each line of the

information file. Information files have the same syntax. Backslash °\’ is used as

with sh(1) to quote syntactically significant characters or to insert transparent

newlines into a line. When either a question or its answer is empty, quiz will

refrain from asking it.

Restrictions

The construct ‘alab’ doesn’t work in an information file. Use ‘a{b}’.

Files

/usr/games/quiz.k/*

6—24 Games

rain(6)

Unsupported

Name

rain — animated raindrops display

Syntax

/usr/games/rain

Description

The rain program’s display is modeled after the VAX/VMS program of the same
name. The terminal has to be set for 9600 baud to obtain the proper effect.

As with all programs that use termcap, the TERM environment variable must be set

(and exported) to the type of the terminal being used.

Files

/etc/termcap

Games 6-25

rogue(6)

Unsupported

Name

rogue — Exploring The Dungeons of Doom

Syntax

/usr/games/rogue [-r][save file][-s][—d]

Description

The rogue program is a computer fantasy game with a new twist. It is crt oriented

and the object of the game is to survive the attacks of various monsters and get a lot

of gold, rather than the puzzle solving orientation of most computer fantasy games.

To get started you really only need to know two commands. The command ? will

give you a list of the available commands and the command / will identify the things

you see on the screen.

To win the game (as opposed to merely playing to beat other people high scores) you

must locate the Amulet of Yendor which is somewhere below the 20th level of the

dungeon and get it out. Nobody has achieved this yet and if somebody does, they

will probably go down in history as a hero among heros.

When the game ends, either by your death, when you quit, or if you (by some

miracle) manage to win, rogue will give you alist of the top-ten scorers. The scoring

is based entirely upon how much gold you get. There is a 10% penalty for getting

yourself killed.

If save_ file is specified, rogue will be restored from the specified saved game file.

For more detailed directions, read the document A Guide to the Dungeons of Doom.

Options

-r The save game file is presumed to be the default.

- Print out the list of scores.

—d The rogue program will kill you and try to add you to the score file.

Files

/usr/games/lib/rogue_roll Score file

~[rogue.save Default save file

6-26 Games

snake (6)

Unsupported

Name

snake, snscore — display chase game

Syntax

lusr/games/snake [-wn][-ln]

/usr/games/snscore

Description

The snake program is a display-based game which must be played on a CRT

terminal from among those supported by vi(1). The object of the game is to make

as much money as possible without getting eaten by the snake. The -1 and -w

options allow you to specify the length and width of the field. By default the entire

screen (except for the last column) is used.

You are represented on the screen by an I. The snake is 6 squares long and is

represented by S’s. The money is $, and an exit is #. Your score is posted in the

upper left hand corner.

You can move around using the same conventions as vi(l), the h, j, k, and 1 keys

work, as do the arrow keys. Other possibilities include:

sefc These keys are like hjkl but form a directed pad around the d key.

HJKL These keys move you all the way in the indicated direction to the same

row or column as the money. This does not let you jump away from the

snake, but rather saves you from having to type a key repeatedly. The

snake still gets all his turns.

SEFC Likewise for the upper case versions on the left.

ATPB These keys move you to the four edges of the screen. Their position on

the keyboard is the mnemonic, e.g. P is at the far right of the keyboard.

X This lets you quit the game at any time.

p Points in a direction you might want to go.

w Space warp to get out of tight squeezes, at a price.

! Shell escape

W/ Suspend the snake game, on systems which support it. Otherwise an

interactive shell is started up.

To earn money, move to the same square the money is on. A new $ will appear

when you earn the current one. As you get richer, the snake gets hungrier. To leave

the game, move to the exit (#).

A record is kept of the personal best score of each player. Scores are only counted if

you leave at the exit, getting eaten by the snake is worth nothing.

As in pinball, matching the last digit of your score to the number which appears after

the game is worth a bonus.

Games 6-27

snake (6)

Unsupported

To see who wastes time playing snake, run /usr/games/snscore.

Restrictions

When playing on a small screen, it’s hard to tell when you hit the edge of the screen.

The scoring function takes into account the size of the screen.

Files

/ust/games/lib/snakerawscores database of personal bests

/usr/games/lib/snake.log log of games played
/usr/games/busy program to determine if system too busy

6—-28 Games

trek — trekkie game

fusr/games/trek [[—a] file]

Description

trek (6)

Unsupported

The t rek program is a game of space glory and war. Below is a summary of

commands. For a complete description, see Trek documentation.

If a filename is given, a log of the game is written onto that file. If the —a option is

given before the filename, that file is appended to, not truncated.

The game will ask you what length game you would like. Valid responses are

““short’’, “‘medium’’, and ‘‘long’’. You may also type ‘‘restart’’, which restarts a

previously saved game. You will then be prompted for the skill, to which you must

respond ‘‘novice”’, ‘‘fair’’, ‘“‘good’’, ‘‘expert
79 ¢

commadore’’, or ‘‘impossible’’.

You should normally start out with a novice and work up.

In general, throughout the game, if you forget what is appropriate the game will tell

you what it expects if you just type in a question mark.

Command Summary

abandon

cloak up/down

computer request; ...

destruct

help

Irscan

phasers automatic amount

phasers manual amt1 coursel spreadl ...

torpedo course [yes] angle/no

ram course distance

shell

srscan [yes/no]

status

undock

warp warp_factor

See Also

/usr/doc/trek

capture

damages

dock

impulse course distance

move course distance

rest time

shields up/down

terminate yes/no

visual course

Games 6-29

worm (6)

Unsupported

Name

Syntax

worm — Play the growing worm game

/usr/games/worm [size]

Description

In worm, you are a little worm, your body is the "0"’s on the screen and your head

is the "@". You move with the hjkl keys (as in the game snake). If you don’t press

any keys, you continue in the direction you last moved. The upper case HIKL keys

move you as if you had pressed several (9 for HL and 5 for JK) of the corresponding

lower case key (unless you run into a digit, then it stops).

On the screen you will see a digit, if your worm eats the digit is will grow longer, the

actual amount longer depends on which digit it was that you ate. The object of the

game is to see how long you can make the worm grow.

The game ends when the worm runs into either the sides of the screen, or itself. The

current score (how much the worm has grown) is kept in the upper left corner of the

screen.

The optional argument, if present, is the initial length of the worm.

Restrictions

If the initial length of the worm is set to less than one or more than 75, various

strange things happen.

6-30 Games

worms (6)

Unsupported

Name

worms — animate worms on a display terminal

Syntax

fusr/games/worms [—field] [-length #] [-number #] [—trail]

Description

The worms program is based on the TOPS-20 program on the DEC-2136 machine

called WORM.

—field makes a "field" for the worm(s) to eat; —trail causes each worm to leave a trail

behind it. You can figure out the rest by yourself.

Restrictions

The lower-right-hand character position will not be updated properly on a terminal

that wraps at the right margin.

Files

/etc/termcap

Games 6-31

wump (6)

Unsupported

Name

wump — the game of hunt-the-wumpus

Syntax

/usr/games/wump

Description

The wump game plays the game of ‘Hunt the Wumpus.” A Wumpus is a creature

that lives in a cave with several rooms connected by tunnels. You wander among the

rooms, trying to shoot the Wumpus with an arrow, meanwhile avoiding being eaten

by the Wumpus and falling into Bottomless Pits. There are also Super Bats which

are likely to pick you up and drop you in some random room.

The program asks various questions which you answer one per line. It will give a

more detailed description if you want.

This program is based on People’s Computer Company, 2, 2 (November 1973).

6-32 Games

zork(6) VAX

Unsupported

Name

zork — the game of dungeon

Syntax

/usr/games/zork

Description

C Dungeon is a computer fantasy simulation based on Adventureand on Dungeons

& Dragons. In it you explore a dungeon made up of various rooms, caves, rivers,

and so on. The object of the game is to collect as much treasure as possible and stow

it safely in the trophy case (and, of course, to stay alive.)

Figuring out the rules is part of the game, but if you are stuck, you should start off

with ‘‘open mailbox’’, ‘‘take leaflet’’, and then ‘‘read leaflet’’. Additional useful

commands that are not documented include:

quit (to end the game)

'lcmd (the usual shell escape convention)

> (to save a game)

< (to restore a game)

Files

/usr/games/lib/d*

Games 6-33

eqnchar(7)

Unsupported

The egnchar file contains t rof f and nrof£ character definitions for constructing

characters that are not available on the Graphic Systems typesetter. These definitions

are primarily intended for use with eqn and neqn. The egnchar file contains

Name

eqnchar — special character definitions for eqn

Syntax

eqn /usr/pub/eqnchar [files] | troff [options]

neqn /usr/pub/eqnchar [files] | nroff [options]

Description

definitions for the following characters:

ciplus ® /] Il

citimes ~ ® langle |
wig ~ rangle)

>wig 2 ppd 1
<wig < <-> ©

=wig = <=> <>

star % /< £

bigstar % /> p S

=dot = ang I

orsign Vv rang L

andsign 3dot :

=del A thf c

oppA v quarter s

oppE = 3quarter 34

angstrom A degree

Files

/usr/pub/eqnchar

See Also

troff(1), eqn(1)

square

circle

blot

bullet

prop

empty
member

nomem

cup

cap

incl

subset

supset

!subset

Isupset u
n
u
n
f
f
i
>
o
C
c
e
a
m
Q
e

e«
O
p
O

Macro Packages and Conventions 7-1

bootparamd(8)

Unsupported

Name

bootparamd — boot parameter server

Syntax

/usr/etc/rpc.bootparamd [—d]

Description

The bootparamd daemon is a server process that provides information to Sun

diskless clients that is necessary for them to boot. It consults the

/etc/bootparams database for information about the client.

The bootparamd daemon can be invoked only by the superuser.

Options

-d Displays debugging information

Files

/etc/bootparams boot parameters database

See Also

bootparams(5), inetd(8c)

Maintenance 8-1

diskpart(8)

Unsupported

Name

diskpart — calculate default disk partition sizes

Syntax

letc/diskpart [—p][—d] disk-type

Description

The diskpart command is used to calculate the disk partition sizes based on the

default rules used at Berkeley. If the —p option is supplied, tables suitable for
inclusion in a device driver are produced. If the —d option is supplied, an entry

suitable for inclusion in the disk description file /etc/disktab is generated. For

further information, see disktab(5). Space is always left in the last partition on the

disk for a bad sector forwarding table. The space reserved is one track for the

replicated copies of the table and sufficient tracks to hold a pool of 126 sectors to

which bad sectors are mapped. For more information, see bad144(8).

The disk partition sizes are based on the total amount of space on the disk as give in

the table below (all values are supplied in units of 512 byte sectors). The ‘c’ partition

is, by convention, used to access the entire physical disk, including the space

reserved for the bad sector forwarding table. In normal operation, either the ‘g’

partition is used, or the ‘d’, ‘e’, and ‘f’ partitions are used. The ‘g’ and ‘f* partitions
are variable sized, occupying whatever space remains after allocation of the fixed

sized partitions. If the disk is smaller than 20 Megabytes, then diskpart aborts

with the message ‘‘disk too small, calculate by hand’’.

Partition 20-60 MB 61-205 MB 206-355 MB 356+ MB

15884 15884 15884 15884

10032 33440 33440 66880

15884 15884 15884 15884

unused 55936 55936 307200

unused unused 291346 2913465
0

Q
0
w

If an unknown disk type is specified, diskpart prompts for the required disk

geometry information.

Restrictions

Certain default partition sizes are based on historical artifacts (for example, RP06),

and may result in unsatisfactory layouts.

When using the —d flag, alternate disk names are not included in the output.

The diskpart command does not understand how to handle drives attached to the

controllers described on the ra(4) reference page (MSCP disk interface).

See Also

disktab(5), bad144(8), chpt(8)

8-2 Maintenance

Name

rdt(8)

Unsupported

rdt — read diagnostic tape

Syntax

rdt function-key [-Bblksize][-Ddensity][filename ...]

Description

The rdt command reads diagnostic programs to disk from labeled tapes. The files

are placed in the current user’s area. The reading is based upon the precepts set forth

in the ANSI standard x3.27-1978. The tape is assumed to have been written by a

VAX/VMS system.

The filename arguments list the files to be read. As each file is read from the tape, a

disk file of the same name is created in the user’s area to contain the diagnostic

program.

Function Keys

The function performed by the rdt command is specified by one of the following

characters:

t

Options

—Bblksize

—Ddens

The names of the specified files are listed. If no file argument is given, all

the files on the tape are listed.

Normally, rdt does its work with little terminal output. The v (for

verbose) option causes rdt to type the name of each file after processing

it. With the t function, v gives more information about the tape entries

than the name.

The named files are extracted from the tape. If no filename argument is

given, the entire content of the tape is extracted.

The blksize parameter is the block size for tape records, in bytes. The

default is 2048, the maximum is 20480. The block size may also be

specified as multiples of 512 or 1024 by appending either the character b or

k to blksize, respectively. For example, block sizes 4b and 2k both equal

2048 bytes.

The dens parameter is the density of the tape, in bits per inch. Possible

values are 800 or 1600. The default is 1600 bits per inch. If dens is

neither 800 nor 1600, the rdt command takes dens to be the name of the

tape device. For example, /dev/rmtOh. The device must be a raw,

nonrewinding magnetic tape drive.

Maintenance 8—-3

rdt(8)

Unsupported

Examples

This example shows how to load the file TEST1 from rmtOh.

rdt x TEST1

This example shows how to load the contents of a whole 800 bpi tape on
/dev/nmt01.

rdt -D/dev/nmt0l

Diagnostics

Diagnostics from rdt are written on the standard error file. There are two forms:
warnings, which are not fatal, and errors, which are. The majority of diagnostics are
intended to be self-explanatory. Some that might not be are:

illegal label format (hdr).

The header rdt is reading contains an incorrect label identifier or label number. The
correct header label name is enclosed between parentheses.

pwd failed!

Cannot execute /bin/pwd or /usr/bin/pwd.

cannot find mkdir!

Cannot execute /bin/mkdir or /usr/bin/mkdir.

Files

/dev/rmt0Oh

1600 bpi tape device (default)

8—4 Maintenance

slattach (8c)

Unsupported

Name

slattach — attach serial lines

Syntax

/usr/new/slattach [host]

Description

The slattach command uses the serial line internet protocol to connect to another

system. Master systems initiate a connection by specifying a host for the connection.

The host must be listed in the file /etc/sliphosts. Slave systems use

slattach as their login shell.

Restrictions

The appropriate entries in s1iphosts must exit for the connection to be successful.

The pseudo-device s1 must be compiled into your kernel.

Files

/etc/sliphosts

See Also

netstat(1), ifconfig(8c), sliphosts(5)

Maintenance 8-5

How to Order Additional Documentation

Technical Support

If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing

your electronic, telephone, or direct mail order.

Electronic Orders

To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-baud modem from

anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the Electronic Store, call

800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location Call

Continental USA, 800-DIGITAL

Alaska, or Hawaii

Puerto Rico 809-754-7575

Canada 800-267-6215

International

*

Internal

Contact

Digital Equipment Corporation

P.O. Box CS2008

Nashua, New Hampshire 03061

Local Digital Subsidiary

Digital Equipment of Canada

Attn: DECdirect Operations KAO2/2

P.O. Box 13000

100 Herzberg Road

Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or

approved distributor

SSB Order Processing - WMO/E15

or

Software Supply Business

Digital Equipment Corporation

Westminster, Massachusetts 01473

* For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader’s Comments ULTRIX
Reference Pages for Unsupported Software

AA-MFO5B-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software

problem and are eligible to receive one under Software Performance Report (SPR) service, submit your

comments on an SPR form.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair Poor

Accuracy (software works as manual says)

Completeness (enough information)

Clarity (easy to understand)

Organization (structure of subject matter)

Figures (useful)

Examples (useful)

Index (ability to find topic)

Page layout (easy to find information)
o
a
d

O
0
0
O
o
o
a
n

o
o
0
o
o
0
o
O
o
o
o

O
O
o
O
o
O
o
O
o
o
o
d

O
o
o
O
o
o
o
d
o
a
o

What would you like to see more/less of?

What do you like best about this manual?

What do you like least about this manual?

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using?

Name/Title Dept.

Company Date

Mailing Address

Email Phone

------- Do Not Tear — Fold Here and Tape --=======ccemcccme ce e]—l- R it

TM

‘ NECESSARY

IF MAILED IN THE

UNITED STATES

—

E——

E——

BUSINESS REPLY MAIL S——
——

FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA NS

E—

POSTAGE WILL BE PAID BY ADDRESSEE]

EE——

E——

DIGITAL EQUIPMENT CORPORATION

OPEN SOFTWARE PUBLICATIONS MANAGER

ZK0O3-2/204

110 SPIT BROOK ROAD

NASHUA NH 03062-9987

Hlmndlllpnlinillduhilulubibinlidind

-------- Do Not Tear —FoldHere === == = et e e e e e e ee

Cut

Along

Dptted

Line

Reader’s Comments ULTRIX
Reference Pages for Unsupported Software

AA-MF05B-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software

problem and are eligible to receive one under Software Performance Report (SPR) service, submit your

comments on an SPR form.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair Poor

Accuracy (software works as manual says) O O O O

Completeness (enough information) O O [O

Clarity (easy to understand) O O O O

Organization (structure of subject matter) O O O O

Figures (useful) O O O O

Examples (useful) O O O O

Index (ability to find topic) O O O O

Page layout (easy to find information) O O O O

What would you like to see more/less of?

What do you like best about this manual?

What do you like least about this manual?

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using?

Name/Title Dept.

Company Date

Mailing Address

Email Phone

------- Do Not Tear — Fold Here and Tape =====--cememme cc e o P m e ————

TM

n n 't E NO POSTAGE
NECESSARY

IF MAILED IN THE

UNITED STATES

—

A

I

BUSINESS REPLY MAIL e—
S

FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA —

I

POSTAGE WILL BE PAID BY ADDRESSEE R

e

I

DIGITAL EQUIPMENT CORPORATION

OPEN SOFTWARE PUBLICATIONS MANAGER

ZK0O3-2/7Z04

110 SPIT BROOK ROAD

NASHUA NH 03062-9987

il lnuhiilahlalohlinhiol

-------- DoNotTear~FOId HEre = === = e o e e e

Cut

Along

Dotted

Line

