EK-MBOX-UD-004

MBOX -
STORAGE CONTROLLER
UNIT DESCRIPTION

digital equipment corporation « marlborough, massachusetts

1st Edition, June 1975

nd Edition (Rev), January 1976
3rd Edition (Rev), September 1976
4th Edition (Rev), May 1977

The drawings and specificaitions herein are the property of Digital Equipment
Corporation and shall not be reproduced or copied or used in whole or in part as
the basis for the manufacture or sale of equipment described herein without
written permission.

Copyright © 19751976, 1977 by Digital Lquipment Corporation

The material in this manual is for informational
purposes and is subject to change without notice.
Digital Equipruent Corporation assumes no respon-
sibilitv for any crrors which may appear in this
manual.

Printed in US.A.

This document was set on DIGITAL’s DECset-8000
computerized typesctting system.

The tollowimg are trademarks of Digital Equipment
Corporation. Maynard, Massachusetts:

DEC DECtape PDP
DECCOMM DECUS RSTS
DECsystem-10 DIGITAL TYPESET-8
DECSYSTEM-20 MASSBUS TYPESET-11
UNIBUS

CONTENTS

Page
SECTION 1 OVERVIEW
Tl INTRODUCTION o oo oo MBox‘l-]
1.2 PAGER MBox'1-&
1.3 CACHE . . . MBox/I-10
1.4 CACHE CONTROL oo o o, MBox i-17
1.5 CHANNELS . . . o oo MBox 1-19
1.6 CHANNEL CONTROL MBox 'I-20
1.7 CACHE CLEARER CONTROL oo o000 MBox '1-21
1.8 MB CONTROL oo oo MBox -1
1.9 CORL CONTROL . . . o oo oo MBox 1-11

SECTION 2 FUNCTIONAL DESCRIPTION .
INTRODUCTIONMBox2I

2.1

2.2 CHANNEL RAMCYCLES oo oo MBox/2-4
2.2.1 CBus Request Cyele . . 0 . o 0 00 0 o oo oo MBox/2-4
222 CBus Control Cycle I MBox:2-4
2.2.3 Channel MB Cycle e e e e MBox:- 24
2.3 CACHE CYCLES e e MBox 2.5
2.3.1 Cache MB Cycle . . 0 0 o 0 0 0 0 MBox/2-7
2.3.2 Cache Channel Cycle . 0 . 0 0 0 o0 0 oo o0 . MBox:/2-7
2.3.3 Cache EBox Cycle . - . 0 . 0 0 . o o o oo MBox:2-7
234 Cachc CCACycle .o . 0 0 o s MBox2-7
2.4 CORECYCLES . . . e MBox'2-7
2.5 ADDRESS PATH SUMMARY oo MBox 2-7
2.6 DATA PATH SUMMARY o e MBox - 2-8
2.7 EBOX REQUESTS o e e MBox/2-9
2.7.1 B/ Interface Summary ... Lo e MBox: 2-9
2.7.2 Request Dizlogue . 0 . 0 00 0 0000 oo MBox -i%
2.7.3 Register References 0 o 0 0 0 0 o 000 o s MBox - 2-1x
2.7.4 Memory References o 0 0 0 0 o oL MBox/2-28
2.7.4.1 Read Memory . . . L L e e MBox; 2-28
2.74.2 Write Memory . . . L L 0L L MBox; 2-28
2.7.4.3 Read and Write-Check Paged Memory MBox2-29
2.7.4.4 Writc-Check Paged Memory . . L . 0 oL 0oL 0oL MBox 2-249
2.7.4.5 Read-Modify-Write Memoryo MBox/2-29
2.7.4.6 SBus Diagnostic Cycle00 0oL MBox:2-29
2.8 CHANNEL REQUESTS o o o oo MBox;2-30
2.8.1 Channcl/Cache Interfuce Summary MBox 30
2.8.2 Request Dialogue . . 0 o o o o oo MBoxs2-22
2.8.2.1 Channel Read Operations MBox '2-32
2.8.2.2 Channel Write Operations MBox, 2-34
2.9 CCA REQUESTS . . e e e MBox, 2-35
2.10 CORE REQUESTS o MBox/2-30
2.10.1 SBus Summary ... 0L L. e e MBox/2-36

iii

10.2
10.2.1
10.2.2
10.2.3
11

11.
a1,
11,

1J 1212121ty a1l

Wty —

dn
gt
A2
13
131
A3.2
14
BEN
14.2
14.3
.14.4
1441 .
1442
14.43
1444
14.4.5
14.4.6
14.4.7
14.5
15

w W
T =

[T QU N (O I G I NO T O R T 0 B 5 1 40 1 0 I DTS N SO 3 N S B SO T (U I oV)

[g}

SECTION 3
3.1
"

w W
SET SR

[F8]

W W W W

RIS S N SR A)
hoh i B Wty —

W W W L W
R
1y —

o —

CONTENTS (Cont)

Request Dialogue
Core Read Cycle
Core Write Cycle
Core Read-Pause-Write Cycic
CBUS REQUESTS
CBus Summary
CBus Timing
Functional Description of Channel Read (NOT CTOM) and
Channel Write (CTOM)
Channel Write Operation (CTOM)
Channel Read Operation (NOT CTOM)
ADDRESS AND DATA PATHS
CONTROL LOGIC
Cache and Core Cycle Control
~ Channel Control
ERROR CHECKING AND REPORTING LOGIC
Address Parity Logic
Data Parity Logic
Time-out Error
Error Flags
PAGE FAIL HOLD Flag
(ST ADR PAR ERR IFlag
MBOX ADR PAR ERR Flag
MBOX MB PAR [ERR Flag
MBOX SBUS ERR Flag
MBOX NXM ERR Flag
CBUS ERR Flag
Status Words
DIAGNOSTIC REGISTERS

..........................
..................

LOGIC DESCRIPTIONS

INTRODUCTION
PAGER
Page Refill
Page OK
Page Fatl
Page TFault (P19 Codes
Opcrating Modes
K1 Paging Mode
KL Paging Mode
CACHE AND CACHE CONTROL
Cache Control Logic
Request Arbitration Logic
Kequest Fxecution Logic

............................

.......................

>
Page

MBox;2-36
MBox/2-38
MBox/2-40
MBox/2-40
MBox/2-40
MBox/2-40
MBox 2-43

MBox 2458
MBox /245
MBox/2-53
MBox/2-57
MBox/2-64
MBox/2-71
MBox/2-71
MBox/2-72
MBox/2-72
MBox/2-75
MBox/2-77
MBox/2-78
MBox/2-78
MBox/2-78
MBox '2-78
MBox,;2-78
MBox/2-78
MBox/2-78
MBox/2-79
MBox/2-79
MBox/2-79

MBox/3-5
MBox/3-6
MBox/3-6
MBox/3-7
MBox/3-7
MBox/3-8
MBox/3-9
MBox/3-12
MBox/3-12
MBox/3-14

CONTENTS (Cont)

Page
3.3.1.3 Page Table and Cache Address Logic MBox,'3-16
33.1.4 Cycle Decision Logic MBox/3-20
3.3.1.5 Cache Control Time States, MBox/3-25
3.3.2 Cache FBox Cycle oo .. MBox/3-2&
3.3.2.1 EBox Load Register MBox/3-29
3.32.2 EBox Read Registero MBox;3-30
3.3.2.3 FBoxMap MBox/3-30
3324 EBox Read o v i i .. MBox'3-31
3.3.2.5 EBox Write o MBox/3-40
3.3.2.6 IFBox Read-Pause-Write MBox/3-47
3.3.2.7 EBox Write-Checko MBox/3-47
3.3.2.8 Write Refil RAMo MBox/3-48
3.3.2.9 SBus Diagnostic Cycle e e e . . MBox/349
333 ‘ Cache MBCycle e e MBox/3-50
334 Cache Writeback Cycle o o oo oo MBox/3-50
3.3.5 Cache Page Refill Cycle (KI Mode Only) MBox;3-52
3.3.6 Cache CCA Cycle o . o o oo oo o MBox:/3-56
3.3.6.1 OncPage e e MBox, 3-58
3.3.6.2 All Pages e v MBox/3-58
3.3.7 Cache Channel Cycle I . MBox,3-58
3.3.7.1 Channel Read e MBox/3-58
3.3.7.2 Channel Write MBox/3-60
34 CACHEUSELOGIC I MBox, 3-61
34.1 Load Lookup Table (Refil RAM) MBox, 3-63
3.4.2 Initialize Cache Directory and Use Table. MBox, 3-64
343 Normal Operation L e MBox/3-65
3.5 CACHE CLEARER CONTROL oo o o oo oo MBox/3-66
3.6 MB CONTROIL., . . . e MBox/3-66
3.6.1 ‘ MBO-3WRRQOQueuce oo MBox:3-70
36.2 MB Input Selector and L.oad Pulse Generator MBox/3-72
3.6.3 CTOMBWDO0-3 RQQueue MBox/3-73
3.6.4 MB Output Selector C e e e MBox/3-73 .
3.7 CORE CONTROL e MBox/3-73
3.7.1 SBus Dialogue Synchronization e e e e MBox/3-76
3.7.2 Acknowledge Pulse Counter (MBC4) MBox,/3-77
3.7.3 Data Valid Pulse Counter MBox/3-78
3.8 CHANNEL CONTROL oo oo MBox/2-80
3.8.1 Timing Logic e MBox/3-80
3.8.2 Control Request Queues o .o MBox/3-83
3.8.3 CTOM REgiStCr o o o v o e e e . MBox/3-88
384 , CBUS Request Logic . . o o 0 o 0o 000 o e MBox/3-88
3.8.5 Control RAMS e MBox/3-92
3.8.6 Action Flag Arithmetic Logic MBox/3-95
3.8.6.1 Action Count e e MBox/3-95

3.8.6.2
3.8.6.3
3.8.04
3.8.7

3.8.8

3.8.8.1
3.8.8.2
3.8.8.3
3.8.8.4
3.8.8.5

APPENDIX A

Figure No:

1 1 1] 1] L} 1 1 [} ¥ 1 1] 1 1]
—_— e D o udh Al
B L —O

VAN NV

PO DN BPU T DO DD D =t et mes et et it bt i i pmn e s e s
ok)
~ O\ bt

W
oo

LI
— et et s D

N O I'\J 9t

CONTENTS (Cont)

Mcmory Pointer
Channel Pointer
Operation
MB Request Queucs
MB Request Logic
CCWF Request
Action Flag (CTOM) Request
Action Flag (NOT CTOM) Request
Memory Store Request
Error Request

ABBREVIATIONS AND MNEMONICS

ILLUSTRATIONS
Title

MBox Simplified Block Diagram
MBox RAM Structures, Interfaces and Controls, Block Diagram
MBox Functional Block Diagram
KI Paging Scheme (User and Exec Mode)
Pager Structure
Address Format for Linear Address Space
Linear Address Space Representation
Two-Dimensional Address Representation
Address Format for Two-Dimensional Address Space
Pscudo Three-Dimensional Address Space Representation
Address Format for Pseudo Three-Dimensional Address Space
Logical Structure of Core and Cache Memory
Cache Structure (Details A and B)
Channel Command Word Formats
MBox Functional Block Diagram
Channel RAM Cycle Control, Simplified Flow Diagram
Cache Cycle Control, Simplified Flow Diagram
MBox Address Paths, Simplified Path Diagram
MBox Data Paths, Simplified Path Diagram
EBox Request Dialogue, Simplificd Flow Diagram
Cache Cycle Control, Functional Flow Diagram
Channel Request Dialogue, Simplificd Flow Diagram
(Data Read and Write)
Core Control Cycle, Functional Flow Diagram
Channel Scanner Timing Diagram
Channel Scanner State Diagram
Channel RAM Cycle Control Functional Flow Diagram
MBox Address and Data Path, Logic Diagram

............................

..............

........

...................

....................

Page
MBox/3-97
MBox/3-98
MBox/3-98
MBox/3-99

MBox/3-103
MBox/3-103
MBox/3-109
MBox/3-111
MBox/3-114
MBox/3-116

Page

. MBox/1-2
. MBox/1-6
. MBox/1-7
. MBox/1-9
MBox/1-10
MBox/1-11
MBox/1-11
MBox/1-11
MBox/1-12
MBox/1-12
MBox/1-13
MBox/1-14
MBox‘1-15
MBox/1-20
. MBox/2-2
. MBox/2-5
. MBox/2-6
. MBox/2-8
. MBox/2-9
MBox/2-17
MBox/2-21

MBox/2-33
MBox/2-39
MBox/2-44
MBox/2-46
MBox/2-47
MBox/2-58

35

39

3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-30
3-31
3-32
3-33
3-34
3-35

ILLUSTRATIONS (Cont)
Titie

Cache/Core Control Logic Block Diagram
Channel Control Logic, Block Diagram
MBox Address Parity, NXM, and SBus Error Logic Paths,

Logic Diagram e e e e
MBox Data and Page Table Parity, Path Logic Diagram
Page Fail Word Format e e e e
ERA Word Format e
MBox Diagnostic Register Bit Maps0
Pager, Simplificd Logic Diagram
Page Table Address Hash Function
Page Fail Word Format e
Cache Control Block Diagram e e
Cache Block Diagram
Cache Control Time State and PMA Control Block Diagram
Cache Address Simplified Logic Diagram
PMA Mixer Simplified Logic Diagram,
Cache EBox Cycle Decisions Flow Diagram For Read and

Write Requests L o e e e e e e e e
Cache Channel and CCA Cycle Decisions Flow Dmgrdm
Cache Directory Test and Control, Simplificd Logic Diagram
Cache EBox Cycle, Time State Bar Chart
EBox Read, Time State Bar Chart
PMA Format for Unpaged Memory Read Request
PMA Format for Paged Mcmory Read Request
PMA Format for EPT or UPT Read Request
EBox Write, Time State BarChart
PMA Format for Unpaged Memory Write Request
PMA Format for Paged Memory Write Request . . ",
PMA Format for EPT or UPT Write Request
Cache MB Cycle, Time State Bar Chart
Cache Writeback Cycle, Time State Bar Chart
Cache Page Refill Cycle, Time State Bar Chart
SBus Address Format for User Page Refills
SBus Address Format for Exccutive Page (Pages 000-3374) Refills
SBus Address Format for Exccutive Page (Pages 400-7773) Refills
SBus Address Format for Exccutive Page (Pages 340-3774) Refills . .
Cache CCA Cycle, Time State Bar Chart
Cache Channel Cycle, Time State Bar Chart L.
Cache Use Logic, Simplified Block Diagram S e e e
Cache Use History Update Functions
Cache Clearer Control, Simplified Logic Diagram
MB Control, Functional Block Diagram
MB WR RQ Queuc and MB SEL Logic, Simplified Logic Dlagram
CTOMB WD RO Quecuc, Load Pulse Gencerator, and MB IN

Selector Simplified Logic Diagram« o . oL

vii

Page

MBox/2-65
MBox/2-08

MBox/2-73
MBox/2-74
MBox/2-79
MBox/2-80
MBox,2-80

MBox/3-2

MBox/3-3

MBox/3-8
MBox/3-10
MBox/3-11
MBox/3-13
MBox/3-17
MBox/3-18

MBOX/ 3-21
MBox/3-22
MBox/3-23
MBox/3-29
MBox/3-32
MBox/3-33
MBox/3-33
MBox;3-33
MBox/341
MBox/3-42
MBox/3-42
MBox/3-42
MBox/3-50
MBox/3-51
MBox/3-53
MBox/3-54
MBox/3-54
MBox/3-55
MBox/3-55
MBox/3-57
MBox/3-59
MBox/3-62
MBox/3-65
MBox/3-67
MBox/3-68
MBox/3-64

MBox/3-70

Figure No.

3-36

3-37
3-38
3-39
340
341
342
343
3-44
345
346
347
348
349
3-50
3-51
3-52
3-53
3-54
3-55
3-56

Table No.

o =

erJt'\)t)-—h-‘
w N =

IN

ILLUSTRATIONS (Cont)

Title Page
Memory Start Control and Acknowledge Pulse Counter,

- Simplified Block Diagramo MBox/3-74
Core Data Valid Pulse Counter, Simplificd Logic Diagram MBox/3-75
Timing Logic, Simplified Logic Diagram MBox/3-81
Timing Logic, Timing Diagram MBox/3-82
Control Request Queues, Simplified Logic Diagram MBox/3-84
Control Request Queue, Timing Diagram MBox/3-88
CTOM Register, Simplified Logic Diagram MBox/3-89
CBus Data Request Logic, Simplified Logic Diagram MBox/3-90
CBus Data Request (CTOM) Logic, Timing Diagram MBox/3-91
CBus Data Request (NOT CTOM) Logic, Timing Diagram MBox/3-91
Control RAM Structure« o v v i MBox/3-92
Action Flag Arithmetic Logic, Simplified Logic Diagram MBox/3-96
‘MB Request Qucues, Simplified Logic Diagram MBox/3-100
MB Request Timing Logic, Simplified Logic Diagram MBox/3-104
MB Request Control Logic, Simplified Logic Diagram MBox/3-105
Word Request Logic. Simplified Logic Diagram MBox/3-106
CCWF MB Request Timing Diagram MBox/3-107
Action Flag MB Request (CTOM), Timing Diagram MBox/3-109
Action Flag MB Request (NOT CTOM), Timing Diagram MBox/3-112
-Memory Store MB Request, Timing Diagram MBox/3-115
Memory Error MB Request, Timing Diagram MBox/3-117

TABLES

Title Page
MBox Module Complement MBox/1-3
Cache Cycle TYPES « « v v v v v v it e e it e e e MBox/1-18
Major Channel Control RAM Cycle Priorities MBox/2-4
Major Cache Cycle Priorities MBox/2-6
E/M Interface Summary MBox/2-10
Reglster Reference Requests o L oo oo oL MBox/2-19
Memory Reference Requests ™o oo MBox/2-20
CHAN/CSH Interface Summary« o v o oo MBox/2-30
SBUS SUMMATY .« v v v e e v e e e e e e e e e MBox/2-37
CBus Summary e e e e e e e e e e MBox/2-41
Cache Directory Address Sources oo MBox/2-61
MEM TO C Mixer Select Codes e e e e e MBox/2-63
Memory TIMEOULS v v v v v e e e e MBox/2-77
Diagnostic Register 1605 Bit Assignments MBox/2-81
Diagnostic Register 1614 Bit Assignments MBox/2-82
Diagnostic Register 1625 Bit Assignments MBox/2-83

viii

Table No.

1o o

]]] 1 1] 1 ']) 1] L}]
P = e m e

~N U RN — O8O0) N A

(9 12 19 LD I ta 1o

Sty L

(VS ERVETRENIE " I 35 I SST U6 By NS S U6 T 06 Y 6 T 36 2 30)

W w
VAN

3-6
37
3-8
3-9
3-10
3-11
3-12
3-13
3-14

3-15
3-16
3-17

TABLES (Cont)
Title

Diagnostic Register 1634 Bit Assignments
Diagnostic Register 1645 Bit Assignments
Diagnostic Register 1655 Bit Assignments
Diagnostic Register 1664 Bit Assignments
Diagnostic Register 1674 Bit Assignments
Diagnostic Register 1704 Bit Assignments
Diagnostic Register 171, Bit Assignments
Diagnostic Register 172, Bit Assignments
Diagnostic Register 1734 Bit Assignments
Diagnostic Register 1744 Bit Assignments
Diagnostic Register 1754 Bit Assignments
Diagnostic Register 1764 Bit Assignments
Diagnostic Register 177, Bit Assignments
Page Fault (PF) Code Truth Table
Page Fault (PF) Code Truth Table
Time State Generator Control Variables
Cache Cycle Functions
Cache Address Combinations
Cache Control Time State Summary
Cache Strategies for Memory Read Requests
Cache Strategy for Memory Write Requests

Cache CCA Cycle Variations
Cache Refill Algorithm
MB Input Functions
MB Load Functions
Acknowledge Pulse Counter Initialization Truth Table
MM ADR 34-35 Derivation Truth Table for Page Refill and
Channel Read Cache Cycles
Core Data Valid Counter Initialization Truth Table
Control RAM Bit Description
Action Count Truth Table

...............

...............

...............

...............

...............

...............

...............

...............

....................

.......................

.....................

.................

.....................

........................

..........................

........

......................

.......................

Page

MBox/2-84
MBox/2-84
MBox/2-85
MBox/2-85
MBOX/:-86
MBox/2-86
MBox/2-87
MBox/2-88
MBox/2-89
MBox/2-90
MBox/2-91
MBox/2-92
MBox/2-93

MBox/3-6

MBox/ 3-8
MBox/3-15
MBox/3-15
MBox/3-19
MBox/3-2%
MBox/3-34
MBox/3-43
MBox/3-37
MBox/3-63
MBox/3-72
MBox/3-73
MBox/3-77

MBox/3-78
MBox,/3-79
MBox/3-93
MBox/3-97

PREFACE

The MBox Technical Description contains three levels (sections) of descriptions as do all other unit
descriptions. The three levels are:

I. Overview
2. Functional Description
3. Logic Descriptions

The Overview section identifies and introduces the major elements of the MBox and provides a brief
description of their individual functions and how they operate collectively to execute the primary
M Box functions which are to service EBox and CBus requests.

The Functional Description section describes the primary MBox functions, To describe these func-
tions, an orderly functional presentation with appropriate introductory and support material, is pro-
vided. The level of detail in this section is limited to a functional perspective: it does not provide
specific details.

The Logic Description section contains a detailed logic description of the basic elements introduced in
the Overview. These functional clements are further described in the primary functional context in the
Functional Description section. The Logic Description section is the most comprehensive part of the
M Box Technical Description because not only are the basic elements of the MBox described in detail.
they are described in the context of how they execute the primary MBox functions. In addition, this
section provides a direct index into the logic print set and wire lists through the use of print prefixes.

SECTION 1
OVERVIEW

1.1 INTRODUCTION

This scction contains an overview of the MBox. The MBox is the storage controller of the KL 10
processor (Figure 1-1). Each functional element in the MBox is introduced in this section. The func-
tional elements are:

Pager

Physical Memory Address selector (PMA)

Data Cache and Use Logic

Memory Buffers (M Bs)

Channel 1/0 Processor (channel controller)

Several Autonomous Controls (Cache/Core/MB/CCA Control)

Besides the functional elements, this section also introduces some of the operational concepts unique
to these elements.

—ac ot o

The pager. the PMA, the optional four-segment data cache, and the four MB registers provide the
EBox instruction execution unit access to physical memory. The physical memory address is formed by
the Pager and the PMA, while the data path between main memory and the EBox is created by the
MBs and the cache.

The MBox can also be equipped with an integral data channel 1/O processor (a multiplexed channel
controller). This 1/0 processor interfaces with the Cache and the MBs to form a data path from the
physical memory Storage Bus (SBus) to the Channel Bus (CBus). The CBus is multiplexed by the
channel 1/0 processor to orderly select up to eight Massbus controllers (channels). The channel 1,0
processor interacts with the Cache to maintain the integrity of the data flow between physical memory
and mass storage.

 There are several versions of the MBox: for example, one version is implemented in DECsystem-1080:
another is implemented in DECsystem-2040. The MBox implemented in DECsystem-1080 contains a
cache but does not contain an integral channel 1/0 processor; the MBox implemented in DECsystem-
2040 contains the integral channel 1/0 processor but does not contain a cache. In both cases, the
interface signals for the functional element that is not implemented are terminated in substitute termi-
nator boards. Table 1-1 summarizes four variations. The module designator, name, mnemonic, quan-
tity. and used on code are specified.

Besides the four MBox variations, two model: of the CPU (EBox and MBox) have been released. They
are designated KL10-PA and KL.10-PV CPU. The module complements that compose the MBox for
both the KL10-PA and KL10-PV CPUs are also identified in Table 1-1. Except for some minor
changes to facilitate a higher operating clock (MBox clock). the MBox is identical for both CPU
models. The MBox clock for the KL10-PA CPU is 25 MHz while the clock for the KL10-PV CPU is
30 MHz.

When reading this text to gain an understanding of an MBox without an integral channel 1/0 process-
or (channel control), as implemented in the DECsystem-1080, simply ignore any reference to the
channel control, CBus requests to the channel control, and channel requests to the cache,/core control.
Although the C H BUF and CCW BUF remain on the MB boards, the four channel control boards are
not included: instead, the signals that would interface with these boards are terminated on substitution
boards.

MBox/1-1

PON

"

NOTES

* These signcis are routed thru SBus Tronslator Board M8519
4% These boards are repioced by Coche Substitution Boaras it
the Cache (s not implementes
&% These boords are repiaced by Channel Substitution Boards if
the channels ore not implemented

Figure 1-1

MBox Simplified

Block Diagram

MBox/1-2

CHANNEL
CONTROL 1 CONTROL | ¢
CHAN CONTR LOGIC CHAN CONTR WORD CHAN RAM CONTR HAN CONTR ECL/TTL TRANSLATOR
(CCL) MB536 (CCW) M8534 “T(CRC) MB%3s [CHC) MBS33 (TR®) M8516 i 8
anm H ans 5% | aan DATA g
T [
ccw CH_BUF |cm~
DATA DATA {ADR v
MEMORY BUFFER BOARDS DATA CACHE / | { A
(MBO) MB517 (3) JSE LOGIC j
) 518 23 s I 24 29 12 17 30 s o 89 17 18 28 27 35 :
3 T —3 : I {CONTROL
E T T]] T 3 o | i
£ 8 x 16- CHAN DATA BUF 3 £ F i | °
£ (CH BUF) 3 v F ‘ i !
. | | 5 ! - :
e i : 3 € FcacHe | cACHE cacME cacHES .
- - = sam L ooata . B
cata® E 8 x 2-InAN CONTR WORZ BUF = MB SaTA ad EA.,@‘ : R:AHT:\ (%tr: (Dc:Tv;—‘«-
= ice put] ! .
= | (cowsun 3 Fueszi | mesz: Mes2t | Meszi iz i
I = o Eowr [as aa .
_ i I 3 s = | = SBUS - CACHE - MB - AR cata
- FOUR-WORD MEM BUF i o .F = DATA
_ (MB)] < . Z3 !
N i | - 2047 = ! j -
° i [T 2 :
CACHE EXTENSICN {CHX! MB%15 !
Y
- — | €
o_ o ; 7
[~ CACHE ADDRESS (CHA) MBS14 — M
ol e | |
51 3 N
CONTROL I
s ! £
] R
8 : F
v | CACHE 2
:STATUS [CONTROL |PA IR <
i ADR Lo
] I y
CORE /MB/ ' 1 1 ;
CACHE /CCA ‘ ; |
CONTROL" CONTROLS S8US TRANS [MBOX CONTROL 3 | MBOX CONTROL L0G(C MBOX CONTROL 4 CACHE CONTROL I CONTROL
(MT@) M8519 | (MBC) MB331 (MBX) M8529 (MBZ) MBS37 (CSH) MB513 |
T | T !
J | ; !
!
] T
‘pa DIR contR SHEN contraL p CAGE FAIL
; 1 ' |
ADR* | | PHYS MEM ADR sEL pr/vma | PAGING BOARD | vMa
1 (PMA) mests (PAG) M8520 |
I
|
DIAG BITS ¢ EBUS DATA
{SNAPSHOTS}

10- 2482

Table 1-1 MBox Module Complement
Designation Used On
KL10-PA KL10-PV Name Miiemonic Quantity 1080 1090 2040 2050
M8513 M8513-YA Cache Control CSH 1 X X X X
M&514 Mg&S14 Cache Address CHA 1 X X X
M&51S M&515 Cache Extension CHX | X X X
M8516 M&516 ECL/TTL Translator TRO 3 X X X X
(F:Bus and CBus)
M&517 M8517 Memory Buffer MBO 3 X X X X
M&518 M&518-YA Physical Memory PMA ! X X X X
) Address Buffer
MR519 M&519 Internal Mem Bus MTO 2 X X X X
Translator (SBUS)
MR520 M8520-YA Paging Board PAG 1 X X X X
MgS521 M8521 Cache Data CHO 4 X X X
M&529 M8529-YA MBox Control Logic MBX ! X X X X
M&531 MK531-YA MBox Control 3 MBC 1 X X X X
M8533 M&533 Channel Control CHC ! X X AN
M8534 M&534 Channel Control CCW | X X X
Word
MK535 M&S53S Channel RAM CRC | X X X
Control
M&536 M8536 Channel Control CCL 1 X X X
Logic
M&537 M&537 MBox Control 4 MBZ. 1 X X X X
M8549-YA M&549-YA Channel Control CHCS | X
Substitute
M&549-YB M&549-YA Channel Control CCWS | X ;
Word Substitute
M8&549-YC M&549-YA Channel RAM CRCS 1 X
Control Substitute

MBox/1-3

Table 1-1 MBox Modul¢ Complement (Cont)

Designation Used On
KL10-PA hKLIO-PV Name Mnemonic Ouantity 1080 1090 2040 2050
MBS49-YD | M8549-YD Channet Control CCLS 1 X
Logic Substitute
MNI4G-YE M8549-YE Cache Address CHAS 1 X
Substitute
MIS40YF M8S549-YF Cache bixtension CHXS | X
Substitute
M&349.YH | M8549-YH Cache Data 'DOS 4 X
Substiture

W hen reading this téxt to gain an understanding of an MBox without a cache, as implemented in the
DECsystem-2040, simply disregard any reference to checking the cache in the cache control decision
path and any reference to MB and Cache Clearer (CCA) requests. Even though the cache is not
implemented (six boards which include four data boards, one cache address board, and one cache
extension board), the cache control logic, which is contained on three boards, remains and memory
read. write requests are executed as if the EBox issued a request to bypass the cache; that is, one-word
read /write operations will be executed. The cache control signals that would interface with the six
cache boards are terminated in substitution boards.

The pager is a high-speed, 512-word, set-associative automatic buffer memory where physical page
addresses and page descriptor keys are stored. It serves as a high-speed extension of the page table
portions of the user and executive process tables (UPTs and EPT) (KI paging) or the page table
pointed to by entries in the UPTs and EPT (KL paging). When the EBox issues a request for paged
memory, the MBox automatically checks the contents of the pager to see if it contains a valid physical
page address. If there is a valid address, it simply concatenates the entry with the low-order nine bits of
the virtual address (Q-WORD and WORD No.). This address is then used to look in the cache and, if
necessary, issue a core request. If the pager does not contain a valid physical page address for KI
paging, the M Box automatically issues a core read cycle to refill the hardware page table from the UPT
or EPT. Since four words are typically fetched at a time and since the process table contains two
physical page address entries per word, eight page table entries will be fetched and moved to the Pager
at a time. Consequently, a page refill cycle will be required only when the program addresses pass
through the boundary of every eighth page. For KL paging, the EBox executes the page refill

operation.

The cache is a high-speed, 2048-word, multiple set-associative automatic data buffer memory where
instructions and data are stored and maintained as the EBox issues requests for memory. It serves a
high-speed extension of core memory. When the EBox issues a memory request, the MBox fetches a 4-
word block (quadword) from core, transfers the requested word to the EBox, and stores the words in
the cache (refills the cache). Once instructions and data have been moved from core to the cache, the
EBox can fetch instructions and operands much faster via the cache on subsequent references, since a
time-consuming core cycle will not have to be executed. By fetching 4-word blocks instead of single
words from memory, and due to the principle that the program may need the next sequential word or
words in the program, results in what is referred to as having the ability to “look ahead.” Another
characteristic of programs is to execute the same instructions many times as in iterative loops. In this
situation, the cache is particularly effective because once the instructions and operands are resident in
the cache. further references to core will not be required in executing the code comprising the loops.

MBox/1-4

For write operations, the MBox writes the word directly into the cache instead of core. Write oper-
ations to core are initiated only when core needs to be updated. This feature has the effect of con-
serving core cycles while a user program is running.

The channel 1/0 processor is a multiplexed channel controller that can handle up to eight simultane-
ous high-speed block transfers without program intervention. After being started by a Massbus con-
troller, the channel /O processor executes the block transfer under the control of a channel command
list that is stored in physical memory. The channel I/O processor employs a set of random access
memories (RAMs) for storing control and status bits, maintaining the channel command list pointer
(CLP) and the channel command word (CCW), and buffering the data.

Besides the functional elements introduced above, the MBox contains several autonomous control
elements to execute operations and maintain order. The controls are:

a. Cache Control

b. Channel Control

¢. MB Control

d. Core Control

e¢. Cuache Clearer Control

Thesc controls operate autonomously in that each can run independent of the other until the requested
operation is completed. Requests are issued by the EBox, the CBus, or by the controls themselves. This
control structure has the effect of compressing time in that several operations can be going on at the
same time.

On a priority basis, the MBox grants and executes all memory requests made by the EBox and up to
cight high-speed multiplexed data channels. The MBox will execute a request whenever the request is
made, unless it is busy executing a previous request. Once a request is granted, the MBox can remain
busy for a number of clock ticks. To ensure the channels adequate service, the EBox is prevented from
getting the next core memory cycle if a channel has requested service in the meantime. If channel
requests are backed up, the channels will continue to get the available core cycles. Although it is not
considered to be its main function, the cache also affords the channels more available core cycles than
would otherwise be possible.

The cache is included in the MBox to provide the EBox with a high-speed buffer memory for instruc-
tions and operands (Figures 1-2 and 1-3). The access speed of this memory is a function of the machine
clock (160 ns at 25 MHz and 133 ns at 30 MHz). As the EBox makes requests for instructions and
operands, memory cycles are granted by the MBox and the cache is filled up four words at a time. Data
is transferred from core to the cache via the four MBs. Considering that it is very likely that the EBox
will request the next consecutive word in a string, the word will already be in the cache and, therefore,
will be available to the EBox sooner, since it will come from the cache rather than from core. When the
EBox makes a request for a word that is not already in the cache, the MBox will grant another core
cycle to place four more words in the cache. To identify each quadword group, the cache contains a
directory that stores the physical page number of the quadword (ADR). The directory also contains
locations for the purpose of identifying which words are valid (VAL bit) and which words were written
by the EBox (WR bits). As the cache is filled with instructions and operands, the associated locations
of the directory are updated to specify the physical page address (ADR) of the quadword and to
specify which words were fetched from core (VAL bits). Words that have been written into the cache
by the EBox are identified by updating directory address, VAL bits, and WR bits, accordingly, so that
they can be moved back to core before they are supplanted.

NOTE
If the cache is not implemented in the MBox, EBox
requests are serviced by transferring a single word
to/from core memory.

MBox/1-5

SEL 1-2-4 C
-
cLocK
CHANNEL CONTROL RAM AND BUFFERS
0
CH CH CH CH CH CcH cH CH DATA DATA
BUF BUF sUF BUF 8UF sUF BUF BUF e r—
18
NEM MEM MEW MEW WEW WEW WMEW WEM
PTR PTR PTR PTR PTR PTR PTR PTR
controL | cu-me | DATA __I'ACT |cONTR| ACT |CONTR] ACT JCONTR) ACT CONTR| ACT |CONTR| ACT [CONTRI ACT [CONTRI ACT R CONTROL cBuS
* S INTERFACE ACT |CONTR| &kt |°Birs L CNT | BITS | CNT | BYTS [CNT | BITS | CNT | BITS | CNT | BITS | CNT BITS INTERFACE
TH cH cH cH e cH cH o
PR PTR PTR PTR PTR PIR PTR PIR | _
A ! cLP cLP cLp cLP cLP cLP oL cLP CHANNEL ADDRESS
CHANS
ADORESS fcow BuF | [ccw BUF] [ccw BUF} [CCW_BUF] CCW_BUF] [CCw BUF } (Ccw BUF} [COW BUF} oo o o= o o o w0 o0 o0 | CONTROL -
o fommon e e o o| we [aor| we [abR| wc JaoR| wc | aDR | wc | AOR wc | aoR | wc | aoR | wc | ADR i
8 2
ul, controL ° ! 2 3 s g 7 1
s CONTROL CONTROL. i
' i
CONTROL CH CONTROL CONTROL :
CONTI
T CONTROL i
et
DATA DATA ve t \
jconTROL
olif2]s] 1
coRe . TR CONTROL.
AND M@ fo-SONTROL £sH CONTROL .
CONTROL ;
g DATA ——— +
\sl CONTROL CONTROL CONTROL 1 ;
o o ! 2 3 $
ADORESS le— O 0 T 1+ i 2 !owizva 2 ¢ . . 2 | 3 s] ' 1 2 | 3
ATA ! i i DATA DATA
(omer— DATA DATA DATA i H CaTA i ' hguerme—————
CONETROL| csn-we 27 ‘ i - ! ; - ! _J""" usox-
ENTERFACE " 1 j 3 . INTE
DIRECTORY ! o'RECTORY DIRECTORY " pimecToRY 1§ orvSICAL INTERRCE! ONTROL
— v W ADR 1o w AOR VoW ADR VoW ADR e —————— PAGE lo—CONTROL
! i AR
27! : i N - i
o va. = N TAT-E] ¥
MATCH { . __glock
E ZACHE RECENC™ i \ '
} —L——“———}_y i
LrS.cAL ATD !
e b e SUEE SRR e e e o o e o oua o e - o LA ADDRESS
!
-o-—.i 1
S—
Ten | Esm | ia | 4 :
PAGE TABLE -: ;
A PHYSICAL P
DATA wIP PAGE . | GATA
= w1 |7is]c|nooress [Ty
0 ¥
i |
H VIRTUAL T
! Bl secr by .- e PTWRITE
: o ADR ZLA
; . L
| 12
i
Figure 1-2 MBox RAM Structures,

Interfaces and Controls. Block Diagram

MBox/i-6

noe o

x ~m

MOBTDmAZ

%

16 sese

CHAN TO MEM [CHAN REQ
CHAN EPT RAM REQ a 174]
RAN CYC
REQUEST M8 cve CHan
LosIC A Lol tOwRREQ
WO READY —ERRORREQ])
sy CLR cowE M CYC ceus rea i REQUEST
REQ CTR « | ACT FLG READY IN
€0 CTR MEM STORE DATA .11 1) S
L LAST WORQ IN REQUEST
i AF MEM Hees CHAN ARQA TN
ACTFLS REQ POINTER POINTER [oCTOM | : e
raM RAM ; ! T
! ek
= . | 3
MB RiP we on RAM ADR [CONTROL|, RAM Al RAM : ggf?cron B
w8 cve RIP RAM ADDRESS AND
MEM CLOCK
PTR| X
71 CONTR SEL L [
OR l mnc q’.é" $27 t-2-4 E # H
T HO - TOM TOM
GATE RAM CTOM CHO-7 CTO! 2 LYo g
ACTCTR T store | M CHO-7 STORE STORE
[e R2GUEST
ADR E INTR CHO-7 DONE INTR N|
RE o ENA CCWF EN DONE IN DONE
£8US REQE RD PRICRITY E ENA START INTR ::lémr(CHO -7 START INTR START
REQUEST [_R GATE A MEM START EN RESEY INTR - £HO-7 RESET INTR. RESET
f
w0 0:3REQ
Al oM ADDRESS MIXER CONTRi-2-4] AcORESS MixER CBUS REGE
NB SEL
START MEM
— CHA cow BUF CHAN BUF Dgg-35
A CHAN CYC I
MB HOLD
CLK CiX
CHAR 7O MEM | /\
3 EBOX REQ QUALIFERS
S RD Fi - ANY WR MATCH - ANY VALID MATCH CSH EBOX TO IN
L RETTECIN o Y cache Cs EBOX RETRY REQ
s TiE o L L] CONTROL CLK EBOX SYNC O
5 M STATE r""‘—r.’ STaTe MBOX RESP IN
al, surr Y MB SEL I-2 cca REQ
NP - MBF-3 HOLD IN {
0 3 MBIN SEL |-2-4| TIME CHA CHAl ok]
s leDATA waLiD] R STATE 38! jEeT o OK c¥C TYeE jenan
g RQP-3 — i FA| HOLD ’gJﬂEO
S i, roRra CORE WD -3 VAL DaTA PMA 27-35 PMA PRIORITY CLX_EBOX REQ
lo B0 RO | ANDME fo WDP-3 VAL | NETWORK
1 | WRRQ coNTROL| CACHE LECT {REQ GRANT) E
f—— wpp-3 wR BREQ /
|—ERROR | [*—jcveLe 13.35 M
DIAG VMA 13- -
ADR 14-35 PMA [4-35 PMA EBOX REQ QUALIFIERS N
Tomare-3s R eR-ocy ,J i
v L cvcLe PMA 14-35 ERA 4
(ERROR ADR REG} T 1e-26 ADORESS PAGE FAIL HOLD %
CACHE PF_EBOX HANDLE N
(PAGER)
1 U-PF HOLD 1-3-P-C f CLK PT DIR/PT WR
EBUS REG I ARGE-35
caoms eaaze 3
EBUS DBY-35
L DIAG_READ FUNCT (16X-17X)
DiAG REG -
MB - CHAN - EBOX -REFILL - WRITEBACK - CCA CYC [oacne | REFILL
SO CHAN EROX RERLL _WRITEBACK Lo | WRITEBACK
DIA EN REFILL RAM WR
"DUAG LOAD FUNGY OA7 /€80 |
- SBUS DIAG
10 57

Figure 1-3 MBox Functional Block Diagram

MBox/1-

Channels are granted core cycles if core is not busy or after a core cycle that is started by the EBox is
done. The EBox can get core cycles only if the channels do not have a request pending. This feature is
incorporated into the MBox to minimize potential data overruns on channel transfers. Channel datais -
accumulated by 16-word CH buffers. Each channel has the use of such a buffer to smooth the transfer
of data between the CBus and the MBs. Only 15 locations in each CH buffer are used. This is because a
4-bit code is used to keep track of the buffer contents. On channel writes (controller to memory), four
words may have to be accumulated before a core write cycle can be requested; on channel reads
(memory to controller), four empty locations may be needed before a core read cycle can be requested.
As words are moved in and out of the CH buffers, the number of words remaining for channel writes
and the number of empty locations remaining for channel reads can be computed by comparing the
channel pointer (CH PTR) with the memory pointer (MEM PTR). The CH PTR is advanced every
time a word is moved via the CBus into or out of the CH buffer. The MEM PTR is advanced every
time a group of words (maximum of four) is moved into or out of the CH buffer as a result of a request
for a core cycle. The WC and ADR in the CCW BUF are also updated every time a core cycle is
completed. The Action Count (ACT CNT) specifies how many words are to be moved to or from core
when a core cycle is started. This count is a function of the Word Count (WC) and Address (ADR)
stored in the CCW buffer. Besides keeping track of all the words to be transferred, the channels must
keep track of how many words are to be moved to or from core for a given core cycle, because core
control is designed to transfer four words (quadword defined by all but bits 34 and 35 of the address) at
a time and because the starting address and WC may be such that the first or last word to be trans-
ferred may not fall on the quadword boundary of the quadword group. Therefore, it is possible that
the first and last core cycle will have to transfer less than four words. Less than four words must also be
transferred when fetching CCWs and storing status. In addition to holding the WC and ADR, the
CCW BUF also holds the channel CLP. As data is moved to or from core, the WC is decremented by
the value in the ACT CNT to keep track of the number of words. When the WC goes to zero, the CLP
is used to fetch the next CCW. :

Besides granting memory cycles to the EBox and to the channels, the MBox assembles the desired
physical address to accommodate the type of request. All addresses that may be needed are made
available to the PMA at all times. Then, depending on the type of request the M Box granted, the PMA
is controlled to select the desired address mixture. The PMA gets the entire virtual address from the
EBox virtual memory address register (VMA), the physical page address from the page table, the
physical page address from the cache directory, and the physical channel address from the CCW BUF.
In addition. the PMA has access to the User Base Register (UBR), Executive Base Register (EBR), and
the Cache Clearer Address register (CCA), which are loaded at some point with an appropriate
address from the VMA. The page table is filled as the EBox makes paged requests for words for which
the page table has no valid physical page address. A page refill mechanism is employed to automat-
ically fetch page table entries from one of the core process tables and write them into the page table (K1
mode) or to alternately inform the EBox that it must perform a page refill operation and write the
phvsical page address into the page table (KL mode).

1.2 PAGER
The pager is a high-speed, set-associative, automatic buffer memory that holds the mapping informa-
tion from the process tables (page tables) in main memory.

User programs reference instructions and data via virtual (or logical) addresses. These addresses are
not absolute (physical core addresses) since any given page can reside anywhere in core when the
program is running. The monitor determines where the entire program will reside and also, if a con-
tiguous segment is not available, it will assign core on a page-by-page basis. Therefore, since user
programs are allocated core dynamically, the transformation from virtual address to physical address
must also be performed dynamically. As the monitor assigns core to a user program, the user process
table and associated page tables are created to specify where in physical core the user program resides.

MBox/1-8

BASE REGISTERS CORE PROCESS TABLES

00 13 14 26 27 35
USER R i, UBR v e
I 0 7 EBR 0 /) S— UPT
EPT
00 13 e 26 27 35
MUY 740 | __PRGE | LINE]
[' S —
[i Ye]
HARDWARE HARDWARE
PT DIR PAGE TABLE
— SR S N T
00 13 14 y 26 27 33 35
pma 7 Y PAGE | e-worp [wo]
10 -+ 458

Figure 1-4 KI Paging Scheme (User and Exec Mode)

This information is specified on a page-by-page basis. Then, when a given user program is given time
to run by the scheduler, paging data is transferred from the user process table and associated page
tables to the hardware tables in the pager (Figures 1-4 and 1-5). The hardware tables include a page
table and a directory. The page table contains 512 locations to accommodate translation requirements
for all 512 pages of a section. The page table is logically divided into sets of four, which are identified
by virtual section address entries in the 128-location directory. Both the page table and the directory
are addressed by the virtual page address to store and retrieve translation entries. Consequently, this
structure of the pager facilitates maintaining translation information for all 512 pages from any sec-
tion. The pager may contain a mixture of pages from several sections of both the user and executive
address space.

As the running program references core memory, the pager is filled. Eventually, the pager will have
enough entries to eliminate the need for further references to memory for paging information. At this
point, all virtual addresses can be transformed by the entries in the hardware tables when K| paging is
used (Subsection 3.2).

When a given user program runs out of time, all entries in the hardware tables are invalidated by
setting the NOT VALID bits in the directory table and the procedure is then repeated for the next
scheduled program.

The pager transforms the virtual page address into a physical page address and checks the page access
keys every time the EBox makes a paged read or write request.

MBox/1-9

ADR 25-26 ,WW_méﬁi//_— MiX \\\

o) i 2 3
0IRECTORY [T] 1
O l j N ¥ g T }7
i |
. | L LLois .
T e ‘ I T) !l _ :
VMA ADR : . 1‘ s
1-26 | 8-24 | | . | |
n N A ; A | c A A
g¢ VIRTUAL |V W | PHYS w l PHYS w! PHYS w PHYS
£ ADR A [P ADR P ADR P ADR P ADR
Rlo13-17 L s l 14-26 s| 1 1a-28 s 14-26 s 14-26
i | c Ic| c c
! D ‘ '
| |
| |]
27 | l i
__JT PAGE TABLE
ADR !3-17
VMA USER PT MATCH
09 12 13 17 18 26 27 35
W SEcT| PAGE | LNE |

i0-1461

Figure 1-5 Pager Structure

The transformation, essentially, is the replacement of the virtual section and page address with the
physical page address. Both tables are automatically filled as virtual addresses are referenced by the
user program. These entries are then used to determine if the entries are valid, and if so, to use the
desired entry (addressed entry) as a replacement for the virtual section and page number.

If the pager does not contain a valid entry, one of two courses of action can take place. For KI paging,
the M Box starts a page refill cycle to fetch four words (8 entries) from the process table and then retries
the request. If, after refilling the page table, the request cannot be honored because of the state of the
access keys, the EBox is informed that a page fail condition occurred. The EBox must then take an
alternate course of action and retry the request. For KL paging, the MBox clears the addressed page

table location and informs the EBox that a page fail condition occurred. The EBox must then calculate
the physical page address, write the address into the page table, and retry the request (Subsection 3.2).

1.3 CACHE

The cache is a high-speed, multiple set-associative, automatic buffer memory. This buffer serves as a
high-speed extension of main memory to hold some selection of words from the main (core) memory
system to reduce access time and to cut the percentage of available memory cycles needed by the EBox.

MBox/1-10

Besides reducing the memory access time, this benefits the channels in that they can get a greater
pereentage of available memory cycles, thereby minimizing possible data overruns. The basic address-
able clement of core memory is a 36-bit unit called a word. The memory address mechanism generates
a 22-bit physical memory address allowing for up to 22 words (4 million) of main memory (Figure |-
6). Consequently, main memory can be considered to be a string of words as shown in Figure 1-7.

Core memory can also be viewed as a 2-dimensional array as shown in Figure -8,

}e, 36 BIT WORD !

F,_whw, i} - 22 BITS >

T

00 13 14 s

Figure 1-6 Address Format for Linear Address Space

((. (
YT T
4 —— }
00 01 02 03 04 05 06 1022 1023 1024 1025 22224
Q-4
Figure 1-7 Linear Address Space Representation
PAGE
0 1 2 3 4 5 6 8189 8190 819

o PWORD L WORD

0 © 512

"WORD

! 513
2
3
LINE 4

[[e [~
509
510
511
TC 1464

Figure 1-8 Two-Dimensional Address Representation

MBox/1-11

To complement the two-dimensional address space as shown in Figure 1-8, the 22-bit address is inter-
preted as a 13-bit Page number and a 9-bit Line number, as shown in Figure 1-9. For example, word
513 is a word in Page 1. Line 1. This is the convention that is used in the KI10.

Another wav of looking at core memory is somewhat 3-dimensional as shown in Figure 1-10.
In this perspective, memory is logically divided into pages of 512 words that are divided into 128 sets of

four words. A line then contains four words from each page. The 22-bit address is interpreted as a 13-
bit page number, a 7-bit quadword (Q-Word) number. and a 2-bit word number, as shown in Figure 1-

[t is this perspective of main memory that should be kept in mind when reading about the cache.

o - 22 BITS >
- . . R
////Z/ /////’ /’/ 7 // 7 ’////7; %/?4/ PAGE NO. LINE NO.
00 13 14 26 27 35
10-1468
Figure 1-9 Address Format for Two-Dimensional Address Space
PAGE
0 ! 2 3 4 8189 8190 8191
o 1 f] i " I ‘ T
i .
1 amili
2 | ‘
3 .
1
—~ - ‘
o-worD e ~l
-W — T T
— T T ‘Tj"fd\“ﬂ“"'/‘ T (T T
25| | | \ : P
— —
126 | [‘
127 | | (: o
H l | |]| Il I
0ot230123012301230123 012301230123
WORD 10-1466

Figure 1-10 Pseudo Three-Dimensional Address Space Representation

MBox/1-12

[4-~ e 22 BT S -

~
PAGE NO. Q-WORD WORD
7 % NO. NO.
00 13 14 26 27 33 34 35

Figure 1-11 Address Format for Pseudo Three-Dimensional Address Space

The cache consists of a data buffer for storing instructions and operands, and a directory buffer for
storing the physical memory address and status (VALID and WRITTEN bits) information (Figures |-
12 and 1-13). The contents of the Directory buffer identify the contents of the data buffer. The cache
data buffer contains 2048 locations, each of which is associated with a valid and a written bit location
in the directory. These 2048 word data and status bit locations are divided into 512 sets of four, which
are directly associated with corresponding address locations in the directory. In addition, the 512 sets
of data and directory locations are divided further into sets of 128, resulting in four cache quarters
(pages). This results in a cache structure similar to the pseudo 3-dimensional structure described pre-
viously, where the least significant nine bits of the memory address, which are not subject to paging,
can be used to address four blocks (a cache line) of the cache simultaneously. If a copy of a block is
made from main memory, it is always and only stored in one of the four corresponding (addressed)
blocks of the data buffer. The actual block to be used is specified by the contents of a use table. This
table maintains a record of the order in which the four addressed cache blocks are used and maintains
one entry for each of the 128 lines in the cache. The contents of the use table are employed to select the
block that contains the Least Recently Used (LRU) data for storing the new data; thereby, the LRU
data is always supplanted. Besides writing a block of four words into the cache data buffer, the associ-
ated directory locations are also updated to specify the valid words and the physical address of the data
block. The written bits in the cache directory are not set when data is moved from memory to the cache
but are set only when the EBox writes into the cache. When words are written into the cache by the
EBox, the address and the valid bit in the directory are also updated.

NOTE
Write through to memory is not implemented to con-
serve core cycles while the user program is running.

The convention that a block from main memory is always stored in the LRU block of the correspond-
ing data buffer line ensures that a given line in the data buffer will never contain more than one
quadword from a given page. Therefore, a conflict (more than one address in one line matching) will
never occur when comparing the address with the contents of the directory to determine if the desired
word is in the data buffer. This feature of refilling the cache also tends to keep instructions and
operands that are used more frequently stored in the cache for a longer period of time.

At any given time the cache may contain up to 512 quadwords (2048 words). The distribution may
range from four complete pages, from anywhere in core, to four words from every page of any section
of core. A section of core contains 512 pages. Every time the EBox makes a paged request for which
the page test was OK (or an unpaged request) to read or write a word, the cache directory is checked to
see if a record exists for the quadword in which the requested word is located. If an address matches
and at least one valid bit in that block is set, then the cache has a record of the quadword.

MBox/1-13

PAGE
o] 1 2 3 508 509 510 511 o i 2 3 [o} 1 2 3

. . —r T - ™
°)) L ° ; ; | A °
1 { ! i 1 ', .
;
2 \ Y é :L 2 N ; 2
3 / i 3 i | 3
| I | L i
4 | \ ! 4 4
¢ f +— - } +—+ 11 —t —+
Q-WORD "A'_J/*_J/L‘L‘&_/"' — \-/WW\J —~——
- — -1 . =T TN . S
123 A/\/’(\"’\ 1(!j}' f T_(‘ f r T 123 LU “ : 23
& i . "
al | ! 124 124
12 ; i i \‘ - —t— R
125 ! {/ , | 125 ; 128
I I e i : "
126 ! : I)\ j " 126 ‘ ! ‘ 126
N % ! ’ i " ! ! t
127 : A i (S 127 : : 127
H o i i i " H N - b H 1 i i
WORD—=0 { 2 3 01 2 3 01 230123 012 3012301230123 012301230123 0123
CORE MEMORY CACHE DATA BUFFER CACHE ADDRESS BUFFER
{ONE SECTION) (DIRECTORY)
0 1 2 3 o ' 2 3
ol) { o ‘ i :
1 1 ! 1
X -_4
LB t
3 3 3
4 4 4
t
Q-WORD \/\/\m e T
00 13 14 26 27 33 3435 ~—— T T~ S e
T 1 | ! i i
pmn% //ﬁ PAGE Q-WORD Lﬂ] 123 123 123 ! L
124 126 | . : 124
125 125] ' 125
126 ' s . 126
127 ; er|)| . 2t P ’ B
— : Ll i i Lo L
USE TABLE 0123012301 230123 012301 2301230123
CACHE VALID BITS CACHE WRITTEN BITS
(DIRECTORY) {DIRECTORY)

10-1468

Figure 1-12 Logical Structure of Core
and Cache Memory

MBox/1-14

CACHE DATA
I 00 ~-35

ADR 34-35 SEL]/ ix \ En
0 2 3
DIRECTORY [1] []
0 0
PAGE n wD 0 ‘WD WD 2 WD 3
fatss | 27733
=35 v v v v
A A A A
2!3;3 L 83'“;5 L L L DATA
F b BUFFER
14~26 w w W w
R R R R
127 127
L\
—_— .
ADR 14 -26 ~ CSH MATCH A CSH VALID MATCH -~
-/ _/
NOTE: 26 27 3334 3%
THE VAL AND WR BITS ARE LOGICALLY PART

OF THE CACHE DIRECTORY.

Figure 1-13

e 7007 ace

| a-woro [wo]

Cache Structure (Detail A)

MBox/1-15

10-1469

SMA 14-35

CACHE DATA OC - 35

/]

f
J

(BN

ADR 14 -26

CSH 2 MATCH

CSH 2 VALID MATCH

Figure 1-13 Cache Structure (Detail B)

MBox/1-16

A
ADR 3435 SEL £N SEL DR 34-35
CSH O MIX o} — CSH 1 M e
! ! ? { T T T
K : 2] 3 i : : 1 2| 31
LSH O __J.___| F——h—— : | I
o ikEeToRY [I | 1 ! i | f 7o 1T osEoRy
° i I T i | | T m
o i i : i i b
1| | l l i o . ; | [i S
PAGE r wi O we | w0 2 WD 3 : i L WO 2 WO 2 PAGE »
. CPUNI S — . ™7 T T T I
! T i ! !] o . P |
apR] i 1 i ! i B Ci ADR
27-33 b ! I ' ! | ‘ | i i 27-33
—f v’ v l Vo V[VE V: N v v pe——ro
oHYS Al DaTa . ai LI CSHO | coMlfA; ALt A ae A - PHYS
ADR [S DATA L | DATA L LATA DATA I DATA|L:; | DATA Ly i JATA L CATR N DATA ADR
1a-26 i 00-35 00-35 i1 oo-3s | 00-35 lBUFFER i er| : | 00-35 L. 06-35 00-18 20-35 1426
! iwi | Iwi iw} w! " w w
L R R F .Pl ‘R ® A
' |
i ‘ :
; :
27 | . = il i Ll 127
| E ! | | ! 1
:) i I ‘
i — \ /“_/ i L \) '
]
l y
ADR 14 - 25 CSH O MATCH A CSK © VALIO MATCH ; . L CSH | VALID MATCH CSH ! MATCH ADR 14-26
- — A} A -
: = At
AN
: |
ADR 34-35 SEL csh 2 Mix EN v/ CSH 3 WX SEL ADR 34 -35
1
H
T T j T ; i] : |
ol ! 2t 3 o v 2 3|
i ' i i 1
csH 2 1 : : ' CsH 3
o AECTORY I [i i ! ‘ i ! T DIRECTORY
0 ! - T
! TT i l [I : i l 7 ; T °
: i ! 1 ! |
Il l l | | 1 i I I
PAGE n w0 0 WD 1 WD 2 WD 3 . wD 0 WD 1 W0 2 w0 3 PAGE n
T i
ADR ADR
27-33 27-33
v v v v v v pe—
e A A A A A A
o L DATA L DATA L DATA L DATA DATA DATA(L DATA L 0ATA L DATA L DATA A
ADR i ADR
14-26 H oc- 00-3% 00-33 00-3% |BUFFER BUFFER 00-3%5 00-35 00-3% I 00-3%5 - 26
w w w w w w w:
r R R R R R R R
27, . I 27
|
i
i
H
'——‘é\f CSH 3 VALID MATCH CSH 3 MATCH ADR 14-26

PMA 14-35

10- 1470

When set, the valid bits identify those words that were placed in the cache due to a cache refill oper-
ation or in response to an EBox write request. A cache refill operation is initiated by the MBox cache
control in response to an EBox read request if the requested word is not found in the cache. The
written bits, when set, identify those words that were placed in the cache in response to an EBox write
request. The words that are written into the cache by the EBox are identified so that the core copy can
be updated when necessary.

If the valid bit for the requested word (EBox read request) is set and the directory address matches the
given address, the word is in the cache and the addressed location is simply read.

- If one or more words of a quadword group are valid, but the requested word is not valid, a cache refill
operation is initiated to fetch all non-valid words of the quadword group. The word requested by the
EBox will come in first to be available for the EBox and the remaining words will come in from core in
ascending modulo four order. Besides making the first word available to the EBox, the words are
moved into the MBs and then into the cache. As each word is placed in the cache, the valid bit for that
word is set to update the cache directory record.

If the cache does not have a record of the quadword (address does not match and/or no valid bits are
set) the LRU cache block is checked to see if any written bits are set. If none of the written bits are set,
then the block is available for use. In the case of an EBox write request, the addressed word in the
selected block is simply written, and the corresponding directory address, valid bit, and written bit
locations are updated. In the case of an EBox read request, the page address is recorded in the cache
directory and a core read cycle is initiated to fetch the desired word first and the three other words of
the quadword group, in ascending modulo four order, as described before. As the words are moved
from the MB to the cache, the corresponding valid bits are set to update the directory.

If one or more written bits are set, the core copy must be updated before the LRU cache block can be
used. Core is updated by initiating a writeback cycle. This cycle causes all written words in the LRU
block to be moved to the MBs and then to core. As each word is moved to the respective MB, the
written bit for the word is cleared. After all words are on their way to core, the EBox request is retried.
This time, no written bits will be set, permitting this block to be used for the current request, as
described before (Subsection 3.3).

1.4 CACHE CONTROL

The cache control executes requests initiated by the EBox and the channel control. Both the EBox and
the channel control can issue data read and data write requests to the cache control. The EBox can also
request to load or read internal MBox registers, check if a given page is writable, map the virtual
address, and sweep the cache.

Data read and write requests from the EBox and from the channel control cause the cache control to
enter a specific cache cycle and step through a set of time states. (The relevant time-state-set varies with
the cycle.) The cache control can execute four major and two minor cache cycles (Table 1-2).

MBox/1-17

Table 1-2 Cache Cycle Types

Cvcle Major Minor
CSH EBOX X
CSH PAGE REFILL X
CSH WRITEBACK X
CSH MB X
CSH CCA X
CSH CHAN X

All EBox requests are serviced by the MBox by starting a cache EBox cycle. As the cache control
advances through the relevant states in response to an EBox request the page table (if paged reference)
and cache directory are checked for valid entries. Page table entries are valid when the USER bit and
section address matches the EBOX USER signal and the virtual section address presented by the EBox
and the INVAL bit in the table is cleared. Cache entries are valid if the address of the requested word is
found and the valid bit is set in the cache directory. If a valid entry is found for an EBox request, the
data is simply transferred between the cache and the Arithmetic Register (AR). If a valid entry is not
found and the EBox requested to read a word, the cache control initiates a core read cycle to fetch the
desired word along with adjacent words of the quadword group. For EBox write requests, the cache
control writes the word into the cache block that has a record of one quadword or into the least
recently used cache block; no core cycle is started. Words coming in from core are placed into the MBs
by the core and MB controls and then are individually moved into the cache by the cache and MB
controls. The first word, which will be the word the EBox requested, is placed on cache data lines so
that the EBox can take it. Words are written back into core only when the EBox makes a request to
read or write a word (except for cache sweep) and a valid entry is not found but the written bit is set.
Having the written bit set means that the corresponding data is more up to date than the core copy
and, therefore, core must be validated before that cache location can be used for the pending request.
To write words back to core, the cache and MB controls move the words into the M Bs and start a core
write cycle after the first word is placed into an MB.

The channel control does not write into the cache, but moves the words to be written from the channel
buffer to the MBs and causes the cache control to invalidate any valid entries in the cache. On channel
writes, the valid entries in the cache (if any) are invalidated because it is defined that data coming in
from mass storage is more up to date (or is another process) than any data that may still be in core or
in the cache. Therefore, on channel write requests, the cache control always initiates a core write cycle.
On channel reads, any valid entries in the cache will be moved into the MBs and a core read cycle will
be initiated for the remaining words requested, if any. The channel control then moves the words from
the MBs to the channel buffer (Subsection 3.3).

MBox/1-18

1.5 CHANNELS

The channel 1/0 processor (channel contrely, wiich 1s an integral part of the storage controller
(MBox), is time-divison multiplexed to provide service for up to eight separate synchronous channel
paths simultaneously. A typical disk channel consists of Main Memory (M A20), the channel control in
the MBox, one RH20 Massbus Controller, and one of eight mass storage drives. Each mass storage
drive, implemented on a given channel, is connected to the same RH20 Massbus Controller. The
controller is connected to the EBox via the asynchronous EBus, which allows the EBox to issue control
and data transfer commands to the controller and the associated drives. The controller is also con-
nected to the MBox via the CBus. This path is the synchronous data path, which allows the controller
to access memory via the M Box chanrel control without having to utilize the EBus and the EBox. This
configuration frees the EBox to perform computation and execute direct I/O operations to other
controllers and devices while the channels are executing a data block transfer. Memory fetch and store
operations can also be performed by the EBox while the channels are busy executing a block transfer.
provided the cache is implemented. Otherwise, the EBox must compete with the channels for core
cycles.

Each block transfer between main memory and a mass storage drive must be initiated by the EBox.
This is done by the EBox (under program control} by setting up the channel command list in main
memory, and by execcuting DATAO instructions to transfer one or more command words and other
control information to a specific controller. The channel command list serves as a control program for
executing the block transfer to/from a series of contiguous segments (buffers) of main memory. The
control information and commands specify one particular drive of those connected to the controller, a
physical starting block address, a block count, a command function (read or write) code, and other
control bits such as reset CLP and/or store status, if required.

As soon as the block address and command are transferred to the drive, which is done automatically as
soon as the drive is not busy, the controller informs both the channel control and the drive to start the
block transfer. To get ready, the channel control fetches the first word in the channel command list. If
the block transfer is a channel read operation (NOT CTOM), which is specified by the RH20, the
channel control also fetches at least two words of data from the locations specified by the address field
of the CCW. This is done because the controller has a two-word data buffer for which words will be
requested as soon as the channel control is ready. The drive, on the other hand, will remain dormant
until it reaches the specified block address. When the block is reached, the drive, the controller, and the
channel control will operate together under the control of the channel command list and the block
counter to transfer the block(s) of data. Both the controller and the channel control contain data
buffers to normalize the transfer speeds of the different components in the channel path. As the buffers
are filled /emptied, additional requests will be made via the buses and interfaces in the path to keep the
data moving until the entire block transfer is done. The transfer is done when the channel control

fetches a HALT CCW, or when it is executing a LAST DATA XFER CCW and the WC field of that

CCW has reached zero and when the block counter in the controller overflows.

The RH20 controller maintains and updates the block count as the block transfer is executed. Up to
1024 blocks can be specified when the read/write command is issued by the EBox. When the block
count overflows, the RH20 interrupts the EBox to inform it that the transfer is done. The RH20 also
informs the channel control that the transfer is done.

The channel control logic maintains a status and CLP word and a CCW. These two words are kept in
the CCW BUF. To keep track of these words for all the channels, the CCW BUF contains two
locations for each of the eight possible channels. The format of the two channel command words is
given in Figure 1-14. The status/CLP word (relative location | in the CCW BUF) contains the status
of the channel and the so-called address (program counter or CLP) of the next CCW to be executed.

MBox/1-19

5TLT SICLP

e 15 14 38

STATUS CLP

CrW

PoonuE b WwC ADR

Figure 1-14 Channel Command Word Formats

The initial CCW is kept in the EPT. The status bits of word 1 are updated by the channel control when
the channel logs out, which occurs on an error condition, or when the block transfer is completed
(done) if a store operation was specified when the transfer was initiated by the EBox. The channel
control logs out by writing the appropriate status/CLP and CCW words into the preassigned EPT

locations.

The CCW word (relative location 0 in the CCW BUF) contains the current channel command word.
This word specifies the operation (instruction) the channel control is to perform. The word contains a
3-bit op code field that specifies one of the following six operations.

Op code 0 specifies a Halt operation.

Op code 23 specifies a Jump operation.

OP code 44 specifies a Forward Data Transfer operation.

Op code 5s specifies a Reverse Data Transfer operation.

Op code 64 specifies a Forward Last Data Transfer operation.
Op code 7 specifies a Reverse Last Data Transfer operation.

e o6 o

After being started, the channel control will continue to fetch CCW until it gets a HALT CCW or a
DATA TRANSFER CCW. In response to a HALT CCW, the channel control will simply halt and it
may cause the channel control to log out, if so specified, when the transfer was initiated. In response to
a JUMP, the channel control will simaply fetch another CCW. The location of the next CCW is speci-
fied by the contents of the ADR field of the JUMP CCW. In response to a DATA TRANSFER CCW,
the channel control will transfer the number of words specified by the WC field from/to the starting
address specified by the ADR field.

1.6 CHANNEL CONTROL

The channel control continuously scans the RH20 Massbus Controllers to see if a data transfer is to be
started. executed. or terminated. A controller is allowed to transmit or receive control information (to
start or terminate a transfer) and data only after it is selected. A RAM is used by the channel control to
buffer the data. and to keep track of the channel status/CLP and CCW words of each channel. When a
controller starts a transfer, the RAM is initialized to remember the type of transfer the controller
requested. As data is transferred between the channel and the controller, the RAM is continually
updated to keep track of various parameters describing the status of the transfer. At the beginning and
at specific times throughout the transfer, the channel control will request to transfer data to or from
memory by initiating an MB request. These requests are made to:

4. Fetch a CCW

b, Transfer data to or from memory
«. Store status

MBox/1-20

These requests are initiated by monitoring the contents of the RAM as a function of the scanner,
thereby monitoring the status of the selected channel and, when needed, issuing a request for that
channel. When an M B request is initiated, the channel control requests a cache cycle to check the cache
for any valid words, to move the data between the CH BUF and the MB, and to start a core cycle
(Subsection 3.8).

1.7 CACHE CLEARER CONTROL

The cache clearer control executes the cache sweep operation after the EBox executes the “Sweep”
instruction. The Sweep instruction is used in a program to validate core and/or invalidate the cache.
Core must be validated in the event of a power failure to prevent the loss of written data, before
initiating a channel read operation (1080/1090 external channels only), or when rescheduling a job to
another processor in a multiprocessor system, The cache will need to be invalidated when the system is
powered-up and after a channel write operation is executed (1080/1090 external channels only). When
powering the system up, this operation must be done after the cache refill RAM is loaded to initialize
the cache memory (Subsection 3.5).

1.8 MB CONTROL

The MB control moves data in and out of the four MBs in response to gating functions from the cache
control, core control, or the channel control. It can move data out of the MBs while data is still being
moved into the MBs. The input and output operations are independent of each other to minimize the
transfer time (Subsection 3.6).

1.9 CORE CONTROL

The core control executes core read and write cycles in response to requests from the cache control and
the channel control. Up to four words, in any combination, can be requested by either control. The
number of words to be read or written depends on a number of conditions.

a. Read Request from Cache Control: Requests are made to read a single word or read those
words that are not in the cache. Bits 34 and 35 (LSB) of the SBus address specify which word
is to be fetched first. The remaining words will come back in ascending modulo four order.
As each word comes in, it is placed in the MB by the core and MB controls. Words that were
not in the cache are then written into the cache by the cache control.

b. Write Request from Cache Control: Requests are made to write a single word or write those
words that have been written in the cache by the EBox to make room in the cache or to
validate core. The written words in the cache are moved to the MBs by the cache and MB
controls and then written back to core by the core control.

c. Read and Write Requests from Channel Control: Requests are made to read or write one,
two, three, or four words depending on the current CCW address (ADR) and WC. A given
request is confined to those words that occupy the same quadword. That is, the quadword
boundary cannot be crossed during a request (Subsection 3.7).

MBox/1-21

SECTION 2
FUNCTIONAL DESCRIPTION

2.1 INTRODUCTION

This section contains a functional description of the MBox. Appropriate introductory and supportive
material is included at the beginning of this section and in each functional description subsection. The
following MBox functions are described in this section:

"EBox Requests
Channel Requests
CCA Requests
Core Requests
CBus Requests

o oo gos

In addition, this section describes the error checking and reporting functions and the diagnostic regis-
ters implemented in the MBox.

Figure 2-1 illustrates the major functional elements of the MBox. The purpose of this drawing is to
support the functional descriptions contained in this section.

The major data and address paths and the individual controls introduced in the previous section are
shown in Figure 2-1 with some additional detail. Major interfaces are also shown in some detail.

The EBox is shown gutted in Figure 2-1 to provide a better functional perspective of the MBox in the
system,

The interfaces between the EBox and the MBox and between the channels and the cache are not buses,
but are functionally shown and described as such because their operation is similar to that of the
system buses.

As described before, the MBox serves as the storage controller for the EBox and for up to eight
optional integral data channels. Since there is logically only one SBus connected to core memory, the
EBox and the integral channels must share the bus in referencing memory. Therefore, one of the main
functions of the MBox is to allocate core cycles to the EBox and to the channels. This is done by
executing cache cycles on a priority basis. Cache cycles are executed by the cache control in response to
requests issued by the EBox and the channels. If the requested word(s) is not found in the cache, a core
read cycle is started. Core write cycles are always started in response to channel write requests. Core
write cycles are also started when the cache cycle control decides to write written words back to core.
Channels are assigned a higher priority than the EBox to minimize channel data overruns. When
neither the EBox nor the channels have a request pending, the cache clearer control can get a core cycle
if it has a request pending. After a core cycle is started, core will remain busy until all the requested
words have been transferred. This means that another core cycle cannot be initiated until the current
request is satisfied. In satisfying an EBox request, all but the first word of a quadword group coming in
from core will cause MB requests to be issued to request cache cycles for moving the words into the
cache.

MBox/2-1

= <

N4

Figure 2-1
Diagram (Sheet 1 of 2)

SBUS 0

$8US 1

VAN

CHAN /CSH INTERFACE

><

E/M INTERFACE

MB CH BUF 00-35/PAR
ACH|
o CACHE | s
ofeTiT213fo]i[2]3]e] 1 T2[3]e]f2[3]e
DOO-35/PAR CACHE DATA 00-35 oaTA oATA DATA oara| L
L] 127 | | | | 127
01 23 Waun Trivet rt T o
{ — ——»{V W ADR |V W ADR|Y W ADR|V W ADR
erhwl, Ll M mm 127 yma
PA14-35 WRITE MATCH VALID & 22
CACHE WRITTEN ROFOUND
CHAN START MEM
CHAN MB SEL 1-2 /CHAN LOAD MB
M8 0-3 HOLD IN
CHAN REQ
CHAN WD 0-3 REQ
TART A/
START A/8 CHAN TO MEM
CHAN EPT
RQO-
a0-3 CSH CHAN CYC
MB 0-3 | ! CHA 14 -35
RD RQ coRe | MR RG | _cTome_.0ap [
CYCLE M3 T CACHEN%\'CLE
CONTROL : A P
WR RO CONTROL ; CACHE CLEARER i
i CONTROLS) ~
DATA VALID A CORE ! AR/CACHE DATA 00-35
gobuoﬁé ! MB REQ IR 10-12 (AC)
t i
ACKN A8 . L £80X REQ
* REQ QUALIFIERS
2 : EBOX SYNC
—_—
a ; MBOX RESP
! MEM START SET .| T |
DIAG | i
MBOX ERROR PMA SEL K P
NXM ERROR _ s cLoc P
ERROR (DATA) (] 4 .
' 7] error | HOLD ERA Yy b
ADR PAR ERROR o] wosic T EBR ‘L
PA 14-35 T PA 14-35 PHYSICAL MEMORY UBR !
‘ ADDRESS (PMA] MIXER
! cca .
ADR PAR PARITY i
GENERATOR| PT14-26
AR PAGER
: PHYSICAL T T Terysicac -
i 1 AlwlP|$ C | PAGE ADDRESS |4 wlplslc PAGE ADORESS VMAa13-35
255 (PT26-35) { (PT18- REQ QUALIFIERS
Me__ O VIRTUAL SECTION ADDRESS PAGE FAIL HOLD /EBOX PF HANDLE
-
USER (VMR 13-19) vaLip
255
cLock | T
-KIPAGING :
MODE i
! PF CODE ! EBUS D0O-35
DIAG MEM RESET :
o DIAS MEN T
0 l 35
LOAD EBUS REG =
L > EBUS REGISTER GRS
Pa 14-35 4 00-135 DIAG _FUNCTIONS
ERROR CLOCK
CorE DIAG MEM RESET
€RROR FLAGS/ ERROR CODE e ERROR FLAGS

. .
The SBUS mcludes TTL/ECL trarsiators

A4

MBox Functional Block

MBox /2-2

N

10 214>

a8 CH BUF

[38
' VN
/\ MB CH BUF 00-38/PAR] ' I 1 D0O-35:PAR
s | El
0 1 2 6 7
E CH BUF WR
R | o [ACT_CNTIMEM PTR| CHPTR
STATUS_AND CONTROL BITS DaTA
CHAN START MEM READY CBUS REQUEST REQUEST
] ! CONTROL LOGIC
§ CHAN MB SEL 1-2 CHAN LOAD M8 l I ';‘%SRTD READY
& - wE EN 2 ERROR TRANSFER CONTROL LAST WORD
G| WBO-3HOLON MEMoRY eSS o "ER LAsT .
Z | CHAN REQ M8 MB | REQUEST 3| CONTROL B 0
z CONTROL |, REQ | QUEUE | ACT FLAG EN RAM s
7] CHAN WD 0-3 REQ LOGIC AND MEM —— AND RAM a
< PRIORITY |_STORE EN 4| — ocoeic — | TR lemomity | ape HANNE SEL O-T
CHAN TO MEM CONTROL. A CONTRO! L
z e T I AND WR L3 A SCANNER
T CHAN EPT 5|
S RESET
CSH CHAN CYC 6 I I CONTR START
! | REQ CONTROL REQUEST CTOM
oP CCW BUF WR lccw BUF ADRO-3 7 QUEUE [DONE
CODE o S STORE
-
i o 14 2 3 5 6 7
ctP T CLP TLP TP 7 <P T TP TP] cLP
S [cew res wC ADR | WC ADR WwC | ADR | WC_| ADR ;. WC_ | ADR | WwC | ADR WC | ADR | WC | ADR |1
cCw BUF
[________._.._______.__________..__._ /\
i I 000-35 .
IR10-12 (AC) 1 !
i . I CLOCK
I oo
PAGE FAIL HOLD/ ' ' s o .
EBOX PF HANDLE 1 FO0-922
w EBOX REQ | DEMAND ;
:’ REQ QUALIFIERS 1 ZCKN e g
@
“; iBO’; :YE';g TRANSFER b
.M_J BO:] RESET
z
= VMA 13-35 | I PLY-7
w H CONTROL
' 200- 35 N
ERROR FLAGS |
DiaG FUNCTION I
Doo .
| "UAY;’Z_";“/ L _
leltOCk o 0oErataTyL
DIAG §Y‘4="bl[-
I REMOVE DS 57]
EBUS DOO-35 N 00615 i
v % The CBUS ond EBUS includes \/
ECL /TTL TRANSLATCRS
Figure 2-1 MBox Functional Biock

Diagram (Sheet 2 of 2}

MBox - 2-3

As core cvcles are allocated to the EBox and the channels, the MBox also forms the correct physical
memory address. To this end, the MBox contains a number of address registers. The address registers
that are used in forming the address to service an EBox request can be loaded and read by the EBox.

2.2 CHANNEL RAM CYCLES |

RAM cycles are executed by the channel control to keep the contents of the control RAM up to date
and to move data in and out of the CH BUF and the CCW BUF. RAM cycles are granted and
executed on a priority basis in response to CBus control and data requests, and in response to inter-
nallv generated MB requests. Accordingly, there are three major types of RAM cycles that can be
granted and executed. The types of RAM cycles and their order of priority are given in Table 2-1.

Table 2-1 Major Channel Control RAM Cycle Priorities

.Request RAM Cycle Priority
CBUS REQULST o CBUS R1Q CYC 1
CBUS START- CBUS CONTR CYC 2
RESET/DONL
MEMORY REQUEST MB CYC 3

2.2.1 C(CBus Request Cycle

CBus request cvcles (Figure 2-2) are executed by the channel control in response to CBus requests from
the R H20 Massbus Controllers. These RAM cycles are executed to move 36-bit data words between
the CH BUF of the MBox channel control logic and the data buffers in the RH20 via the 36-bit CBus
data lines.

The controller, when asserting CBUS START, also asserts or negates CBUS CTOM to specify the
direction of the transfer. This information is stored in the channel control and is used by the channel
control to execute the block transfer correctly.

2.2.2 CBus Control Cycle

CBus control cycles are executed by the channel control in response to CBUS START, RESET, or
DONE from the RH20 Massbus Controllers. These RAM cycles are executed to initiate and terminate
data block transfers. Data block transfers are initiated by fetching the initial or next CCW. This
operation is started by an internally generated memory request. Data block transfers are terminated by
emptying the CH BUF and by clearing CBUS READY. A store operation to store the channel status
words (current CCW and status/CLP words) will also be executed if the RH20 controller asserted
CBUS STORE along with CBUS DONE. The store operation is also initiated by an internally gener-
ated memory request.

2.2.3 Channel MB Cycle

MB cycles are executed by the channel control in response to internally generated memory requests
(MB REQ). These RAM cycles are executed to request access to main memory (cache/core) and to
update the control RAM after a memory operation is done. The channel control will request access to
main memory when it needs to fetch a CCW, to fetch or store data, and to store status. Figure 2-2
depicts three types of MB cycles. One type of MB cycle (ADR=0) is shown for the case where the
channel is performing a zero fill /skip operation. Another type of MB cycle (INIT) is shown for setting
up the channel request for main memory. A third MB cycle (REQ CTR=0) is shown for updating the
control RAM after a group (maximum of four) of words is transferred to/from the MBs.

M Box/2-4

Com

N ves
/

CBUS

RESET/ST
DONE

CBUS REQ SET MEM REQ
cye
CBUS CONTR SET MEM REQ
cve
SET MEM REQ
MB CYC
MB CYC
CHAN REQ
MEM REQ
MB CYC

10 2145

Figure 2-2 Channel RAM Cycle Control, Simplified Flow Diagram

2.3 CACHE CYCLES

Cache cycles are executed to move data in and out of internal registers, the cache or the MBs, to
invalidate individual, pages or all pages in the cache, to update core, and to start core cycles. Depend-
ing on the type of request that is granted, a particular type of cache cycle is executed. Requests are
granted on a priority basis (Table 2-2). There are four major cache cycles that can be executed by the

cache cycle control, one to accommodate each type of request.

MBox /2-5

Table 2-2 Major Cache Cycle Priorities

Request Cache Cycle Priority
MB REQ CSH MB CYC 1
CHAN REQ ¢Sl CHAN CYC 2
IBOX REQ CSH EBOX CYC 3
CCA REQ CSH CCA CYC 4

In addition. there are two secondary cache cycles that can be executed by the cache cycle control.
These cache cycles are:

a. . Cache Page Refill cyclé
b. Cache Writeback cycle

A cache page refill cycle can only be started by a cache EBox cycle to refill the page table when KI
paging mode is specified by the EBox. The cache writeback cycle can be started by either the cache
EBox cycle or the cache CCA cycle to move written words back to core (Figure 2-3).

- - —
MB REQ CHAN REQ EBOX REQ CCA REQ

YES CORE
- BUSY

CsSHMB I
cYc

I S

CSH
CRAN | }-——
cve

006
<ou
opx

CCA REQ EEEm——

cyc

10-1472

Figure 2-3 Cache Cycle Control, Simplified Flow Diagram

MBox/2-6

2.3.1 Cache MB Cycle

Cache MB cycles are executed by the cache cycle control in response to MB requests from the core
cycle control to move words, which have come in from core and have been placed in the MBs, out of
the MBs into the cache. MB requests are issued only if a core read cycle was entered from a cache
EBox cycle that is initiated in response to an EBox read request.

NOTE
MB requests are issued only for those words follow-
ing the first word. This permits the cache cycle con-
trol to be freed while core is still busy. The first word
is moved to the EBox and the cache before another
request can be serviced.

2.3.2 Cache Channel Cycle

Cache channel cycles are executed by the cache cycle control in response to channel requests from the
channel control to pick up or invalidate any valid words in the cache and, if necessary, to start a core
cycle. To satisfy a channel read request, any valid words are moved into the MBs so that the channel
control can pick them up. If all the requested words are not in cache, a core read cycle is initiated to
read them for core. To satisfy a channel write request, any valid words in the cache are invalidated and
a core write cycle is started after the channel control moves the first word into an MB. The valid words
in the cache are invalidated during a channel write operation because the strategy is that the words
coming from a mass storage drive are the correct copy. The only case for which a core cycle is not
started is if all requested words are found in the cache for a channel read request.

2.3.3 Cache EBox Cycle

Cache EBox cycles are executed by the cache cycle control in response to EBox requests for the EBox
to read and write registers, RAMs, and main memory. The EBox can also issue a request to execute a
memory diagnostic cycle. To satisfy a memory reference request, the cache cycle control can also enter
a cache refill cycle, cache writeback cycle, or a core cycle from the cache EBox cycle. A considerable
amount of decision logic is contained in the cache cycle control to determine which path is to be taken
to satisfy the request.

2.3.4 Cache CCA Cycle

Cache CCA cycles are executed by the cache cycle control in response to CCA requests from the cache
clearer control to invalidate the cache and/or validate core. These operations can be executed for a
single page or the entire physical address space. The cache clearer control is activated when the CCA
register is loaded by the EBox, which is done when the EBox executes a Sweep instruction.

2.4 CORE CYCLES

Core cycles are executed by the core cycle control to move data in and out of core memory. Core read
cycles are executed to read up to four words and core write cycles are executed to write up to four
words. If more than one word is to be transferred, they will be transferred in ascending modulo four
order, starting with the word specified by SBus address bits 34 and 35.

2.5 ADDRESS PATH SUMMARY

All the address paths implemented in the MBox are shown in Figure 2-4. These paths are implemented
to facilitate the formation of the appropriate SBus address and to address the various RAMs in the
MBox. The addressable RAMs include the page table and its directory, the cache and its directory, the
use table and its refill table, the CCW buffer, the CH buffer, the control RAM, and the RAMs for the
pointers and the action count.

MBox/2-7

CHAN SEL
SCANNER
0-7)

PAGE TABLI
DIRECTORY,

L * o EBUS *
»@ EBUS
% ADGRESS /DIAGNOSTIC DATA

i0- 1473

Figure 2-4 MBox Address Paths, Simplified Path Diagram

Any memory request, whether from the channel or from the EBox, must be accompanied by an
address. The address accompanying EBox requests is supplied by the VMA in the EBox. The CCW
BUF provides the address when the channel makes a request. For EBox requests other than references
to memory, the VMA also serves as an address and/or data source. For example, the VMA serves as a
data source when loading the UBR, EBR, or CCA, and as an address and data source when loading
the cache refill RAM.

The PMA HOLD register supplies the address for cache cycles executing MB requests and the CCA
register supplies the address for cache cycles executing CCA requests.

2.6 DATA PATH SUMMARY

All data paths implemented in the MBox are shown in Figure 2-5. These paths are implemented to
move data from source to destination buses, registers, and RAMs. The desired path is selected by the
cache cycle control when a request is granted, by the core control during a core cycle, and by the
channel control. The MBs serve as a buffer in executing most data transfers.

MBox/2-8

_______ —
e a IS st
./’
Gt BUF — CCW BUF
N,
/ /

*DATA PARITY IS NOT PROPOGATED OVER THESE PATHS

Figure 2-5 MBox Data Paths, Simplified Path Diagram

2.7 EBOX REQUESTS

Requests are issued by the EBox to:
a. Read and write memory
b. Read and load MBox registers
‘c. Read and write MBox RAMs
d. Initiate a diagnostic cycle

To qualify the request, the EBox asserts a set of interface signals along with CLK EBOX REQ to
specify exactly what type of service is desired. From what has been described so far in this section, an
obvious request qualification is to differentiate between reads and writes and between memory and
register references. Besides these basic qualifications, each request is qualified further by asserting
other signals to declare the register of interest in the case of a register reference or declare the type of
addressing to be used and whether the cache is to be used in the case of memory references. After the
MBox executes a cache cycle to process the EBox request, the MBox will always assert MBOX RESP
IN to notify the EBox that the operation is completed.

2.7.1 E/M Interface Summary
A summary of the E/M interface is presented in Table 2-3. The interface signals are grouped into sets
according to their function. The notations in parentheses are field maintenance print set prefixes that
specify the source of the signals.

MBox/2-9

Table 2-3 F./M Interface Summary

Signal

Description

Control Commands
CLK EBOX REQ (CLK4)
CSH EBOX RETRY REQ (CSH2)

MBOX GATE VMA 27-33 (CSH3)

CSH EBOX TO IN (CSH4)

VMA AC REF A (VMAL1)

PT PUBLIC (PAG1)

PAGE FAIL HOLD (CSH6)

PF EBOX HANDLE (PAG4)

MBOX RESP IN (CSH2)

CLK EBOX SYNC D (CLK3)

CCA REQ (MBX1)

Request Qualifiers
1. Memory Reference

MCL VMA READ (MCL2)

MCL VMA WRITE (MCL2)

MCL VMA READ and
WRITE (MCL2)

Issucd by the EBox to request service,

Asscrted by the MBox to set CLK EBOX REQ so that request
will be retried.

Asserted by the MBox when a Cache EBox cycle is granted to
service the EBox Request to enable gated VMA bits 2733 for
addressing the Cache directory.

Asserted for one clock period when the cache cycle control
starts processing an EBox Request. This signal is used to clear
CLK EBOX REQ.

Asserted by the EBox when it finds that the reference is to one
of the AC blocks (fast memory) to abort the MBox cache cycle
if it was started. This is done to allow the MBox to start ser-
vicing a request earlier than would otherwise be possible.

Transferred to the EBox to allow the EBox to decide whether
it should assert MCL PAGE ILLEGAL ENTRY for the next
reference or change its mode of operation from public to
private.

Asserted by the MBox if the page test for any paged memory
reference request failed.

Asserted by the MBox if the KL mode page test for a paged
memory request failed.

Asserted by the MBox after the request is processed.

Asserted by the EBox to inform the MBox that the data will be
taken.

Cleared by the MBox to inform the EBox that the cache clear
operation is done.

Read a word from memory. Read check the page for paged
references and assert PAGE FAIL HOLD if page test failed.

Write a word into memory. Write check the page for paged
references and assert PAGE FAIL HOLD if page test failed.

Read a word from memory, read and write check the page for
paged references and assert PAGE FAIL HOLD if page test
failed.

MBox/2-10

Table 2-3 E/M Interface Summary (Cont)

Signal

Descriptiom

Request Qualifiers (Cont)

MCL EBOX CACHE
(MCL¢)

CON CACHE LOOK
EN (CON3)

CON WR EVEN PAR
" DIR (CON3)

APR WR BAD ADR
PAR (APR2)

APR EBOX SBUS DIAG
(APR6)

Register References
APR EBOX I.LOAD REG
(APR6)

APR EBOX READ REG
(APR6)

APR EBOX UBR (APR6)
APR EBOX EBR (APR6)

APR EBOX CCA (APR6)

IR AC10 (IRD1)

Asserted by the EBox for references to those instructions and
operands that may reside in the cache. Instructions and operands
that must be shared by two processors cannot reside in the
cache.

Asserted by the EBox to take the word from the cache if it is
found even if MCL. EBOX CACHE is negated or for paged ref-
erences if PT CACHE is cleared.

Asserted by the EBox to write even parity into cache directory
during a write request.

Asserted by the EBox to gencrate even address parity on the
SBUS.

Asserted by the EBox to initiate and execute an SBUS Diag-
nostic cycle. All other request qualifiers must be negated for
this request.

Asserted by the EBox to load a register (UBR, EBR, CCA) in
the MBox. The EBox also specifies which register is to be load-
ed by asserting the appropriate register signal.

Asscrted by the EBox to get ready to read a register (UBR,
EBR, CCA, ERA) in the MBox. The EBox also specifies which
register is to be read by asserting the appropriate register signal.
After the Read Register Request is executed by the MBox, the
EBox can read the value of the register by simply asserting the
Read EBus Register diagnostic function.

Asserted by the EBox when the UBR is to be loaded or read.
Asserted by the EBox when the EBR is to be loaded or read.

Asserted by the EBox when the CCA Register is to be loaded
or read.

NOTE
Instruction bits 10—12 (AC field) must be correctly set
or cleared and the VMA bits 27-33 must contain the
page address when clearing one page in the cache,

Instruction bit 10 (AC10) is set when only one page is to be
cleared from the cache and is not set when the entire cache is
to be cleared.

MBox/2-11

Table 2-3 E/M Interface Summary (Cont)

Signal

Description

Request Qualifiers (Cont)

MCL VMA READ .
PAUSE and WRITLE
(MCL2)

MCL VMA PAUSE and
WRITE (MCL2)

MCL EBOX MAY BE
PAGED (MCL6)

CON KI PAGING
MODE (CON3)

MCL VMA USER (MCL2)
MCL PAGE UEBR REF
(MCL3)

MCL VMA UPT (MCL3)

MCL VMA EPT (MCL3)

MCL PAGE ILL ENTRY
(MCL3)

MCL PAGE TEST
PRIVATE (MCL2)

MCL PAGE ADDRESS
COND (MCL3)

Execute the read portion of the read-pause-write cycle. Read
and write check the page for paged references and assert PAGE
FAIL HOLD if page test failed. The write portion of the cycle
is started by asserting CLK EBOX REQ a second time.

Write check the page for paged references and assert PAGE
FAIL HOLD if page test failed.

NOTE
When issuing memory reference requests, the EBox must
also set up the VMA and the Paging and Cache Qualifiers
appropriately.

Asserted by the EBox to indicate that the reference is to be
paged. The EBox decides whether the reference is paged or
unpaged.

Indicates KI Paging mode when asserted and KL Paging mode
when negated.

Asserted by the EBox when the memory reference is to the
user address space.

Asserted by the EBox when the UPT or the EPT is
referenced to bypass the page check.

Asserted by the EBox when the reference is to the UPT
to inform the MBox that the contents of the UBR must be
used in forming the physical memory address.

Asserted by the EBox when the reference is to the EPT to
inform the MBox that the contents of the EBR must be used
in forming the physical memory address.

Asserted by the EBox to force a page fail condition in the
MBox to abort the current request. The EBox asserts PAGE
ILL ENTRY if the previous instruction was fetched from a
proprietary area and the instruction is not a Portal instruction
(JRST1).

Asserted by the EBox for a non-instruction reference in the
PUBLIC mode to check whether the page is private. PAGE
FAIL HOLD is asserted if the page is not public.

Asserted when the EBox detects an address break condition.

The EBox also asserts PAGE ILL ENTRY at this time to force
a page fail condition in the MBox and cause PAGE FAIL HOLD
to be asserted.

MBox/2-12

Table 2-3 E/M Interface Summary (Cont)
Signal Description
B. Request Qualifiers (Cont)
NOTE

IR AC11 (IRD1)

IRD AC12 (IRD1)

APR EBOX ERA (APR6)

MCL EBOX MAP (MCL6)

APR EN REFILL RAM
WR (APR6)

C. Error Reporting Commands

MBOX NXM ERR (MBZ3)

APR NXM ERR (APR1)

MBOX SBUS ERR (MBZ4)

APR SBUS ERR (APR1)

The term “Clear The Cache™ means to write back to core
all words that are written in the cache (words that have
their written bits set) and/or invalidate the words in the
cache.

Instruction bit 11 (AC11) is set when the written words in the
Cache are to be written back into core to validate core.

Instruction bit 12 (AC12) is set when the cache entries are to
be invalidated.

NOTE
The contents of AC bit 1012 of the instruction is trans-
ferred to the CCA control register in the MBox when the
EBox issues a request to load the CCA register.

Asserted by the EBox when the Error Address (ERA) register
is to be read. This register can only be read. It is frozen when
the MBox senses a parity or a non-<¢xistent memory (NXM)
crror; otherwise it tracks.

Asserted by the EBox along with APR EBOX READ REG to
transform the virtual address into the physical address. If the
page table contains a valid entry, this entry will be transferred
to the AR of the EBox. If the page table does not contain a
valid entry, a page refill operation will be initiated.

Asserted by the EBox along with APR EBOX READ REG to
load the Cache refill RAM when the Cache is initialized. Before
this operation can be executed, VMA bits 27—33 must be sct
up with the desired address and VMA bits 18—20 must be load-
ed with the data to be loaded in the refill RAM.

This error flag is set when the MBox memory control logic
times out (“hangs™) or when non-existent memory is addressed.

This line serves as the recirculation path for the MBOX NXM
ERR flag.

This error flag is set when the memory system senses a data
parity error or times out (“hangs”).

This line serves as the recirculation path for the MBOX SBUS
ERR flag.

MBox/2-13

Table 2-3

E/M Interface Summary (Cont)

Signal

Description

MBOX MB PAR ERR (MBZ4)

APR MB PAR ERR (APR1)

MBOX ADR PAR ERR (MBZ4)

APR S ADR P ERR (APR2)

CSH ADR PAR ERR FLG (MBX5)

APR C DIR P ERR (APR2)

APR ANY EBOX ERR FLG
(APR2)

Direct Commands
APR WR PT SEL 0-1 (APRS)

CLK PT DIR WR (CLK2)

CLK PT WR (CLK2)

DIAG READ FUNCT
16X and 17X (CTL3)

DIAG LOAD FUNCT 071
(CTL3)

This error {lag is set when the MBox senses an MB parity error.

This line serves as the recirculation path for the MBOX MB
PAR ERR flag.

This error tlag is set when the memory system senses an address
parity error.

This line serves as the recirculation path for the MBOX ADR
PAR ERR flag.

This error flag is set when the MBox senses a cache directory
parity error.

This line serves as the recirculation path for the CSH ADR PAR
ERR FLG.

This line is true when any APR EBox error flag is set to prevent
the ERA (Error Address Register) in the MBox from being
changed facilitating error recovery procedures.

When writing the Page Table, the EBox places the appropriate
write select code on these lines.

Asserted by the EBox during KL paging mode to write or clear
a page table directory entry.

Asserted by the EBox during KL paging mode to write or clear
a page table entry.

One or the other line is asserted by the EBox to read a Diagnostic
register. The Diagnostic register to be read is specified by the
code presented on DIAG 04—06 (0—7). Also asserted by the
EBox to read the EBus register (167,). Octal code seven must

be presented on the DIAG 04—06 lines to read the EBus register.
This register will contain the contents of the register specified
with the EBox Read Register request or it will contain the

Page Fail Word in the event the MBox Pager sensed a page fail
condition. The EBox is informed that a page fail condition was
sensed by the MBox (PAGE FAIL HOLD is asserted by the
MBox).

Asserted by the EBox to set up the MEM TO C mixer to read
the contents of the memory data register (SBus), the MBs,

the CBus (CH REG), or the cache. The contents of the AR can
also be looped back. The code presented on the EBus Data bits
30—35 determines which data specified above will be read back
on the cache data lines. ‘

MBox/2-14

Table 2-3 E/M Interface Summary (Cont)

Signal Description

DIAG 04-06B (CTL3) These lines present a control code to the MBox for selecting
diagnostic and EBus registers.

MR RESET 05/06 (CLK2) Asserted to initialize system logic.

Address

VMA 13-35A (VMA2) Register load data or virtual address from EBox.

VMA 27-33G (VMA1) Gated address from EBox. This address is gated by the MBox
to address the cache directory when a cache EBox cycle is
started.

NOTE

Address parity is not propagated.

Data

AR 00-35A (DPO1) Data from EBox AR,

SH AR PAR ODD A (SHM1) Data parity from EBox AR parity generator.
CACHE DATA 00--35B (CDO01) Cache/core data to EBox IR, AR and ARX.
CACHE DATA 00-35C (CDO1) Cache/core data to EBox IR.

CSH PAR BIT A/B (MBZ6) Cache/core data parity to EBox.

EBUS D00-35 (CRC5, MBZ2, EBus data lines.

CCws, CHCS, CCL1, CHX4,
CSH7, MBCS, MBX6)

NOTE
Data parity is not propagated from the MBox to the
EBus.

Clocks The following clocks are generated on the CLK Module in the
EBox and are distributed to the MBox Boards.

CLK CCL (CLK1) Clock for Channel Control Logic Module M8536
CLK CCW (CLK1) Clock for Channel Control Word Module M8534
CLK CH (CLK1) Clock for Channel Control Module M8533

CLK CRC (CLK1) Clock for Channel RAM Control Module M8535
CLK CSH (CLK1) Clock for Cache Control Module M8513

CLK CHX (CLK1) Clock for Cache Extension Module M8515

MBox/2-15

Table 2-3 E/M Interface Summary (Cont)

N Signal Description
CLK MBC (CLK1) ('lockmf; MBm Control Module No. 3 M853]
CLK MBX (CLK1I) Clock for MBox Control Module M8529
CLK MBZ (CLKI) Clock for MBox Control Module No. 4 M8537
CLK PMA (CLK1) Clock for PMA Module M8518
CLK MBO0O (CLK1) Clock for MB Module No. 1 M8517
CLK MBO06 (CLK1) Clock for MB Module No. 2 M8517
| CLK MBI12 (CLKI) Clock for MB Module No. 3 MB8517
CLK SBUS CLK (CLK1) Clock ot SBus
DIAG CHANNEL CLK (CTL3) Controllable clock for diagnosing channel logic

2.7.2 Request Dialogue

The EBox issues requests to the MBox by asserting CLK EBOX REQ (Figure 2-6). At the same time
or one clock tick after CLK EBOX REQ is asserted, the VMA and all request qualifiers become valid.
These signals remain valid until the request has either been processed to completion or aborted. CLK
EBOX REQ is cleared by CSH EBOX TO0 IN when the MBox starts processing the request.

For the first clock period after CLK EBOX REQ is asserted, the request can be aborted by the EBox
by asserting VMA AC REF. If the EBox aborts the request, CLK EBOX REQ is also cleared by the
EBox if the MBox has not yet started to process the request.

When the MBox starts to process the EBox request, the MBox asserts CSH EBOX TO IN. This signal
causes CLK EBOX REQ to be cleared. This occurs on the clock tick after which the request is made, if
the MBox has no higher priority request pending. If the MBox is busy when the request is made a
number of clock ticks may transpire before the MBox asserts CSH EBOX TO IN. Consequently, CLK
EBOX REQ will remain asserted until the MBox starts processing the request.

After CSH EBOX TO IN is asserted, a number of clock ticks may transpire before the MBox completes
processing the request. The MBox notifies the EBox that is has completed processing the request by
asserting MBOX RESP IN. This signal remains asserted until the EBox asserts CLK EBOX SYNC D.
While MBOX RESP IN is asserted, the instruction or operand requested by the EBox will be valid on
the cache data lines. The MBox holds the data on the cache data lines until CLK EBOX SYNC D is
asserted because the EBox will take the data only when CLK EBOX SYNC D is asserted. One clock
tick after CLK EBOX SYNC D is asserted MBOX RESP IN is cleared.

MBox/2-16

EBOX REQ

ASSERT EBOXREQ
ASSERT EBOX
REQ QUAL

HOLD VMA

CSH EBOX
T@% IN

ASSERT le YES
|__esoxrea [*

CSH
EBOX
CcYC

EBOX SYNC

CLR MBOX RESP

‘ DONE)

10-1475

Figure 2-6 EBox Request Dialogue, Simplified Flow Diagram

MBox/2-17

2.7.3 Register References

The MBox contains a number of registers that can be loaded and read by the EBox. These registers are
address registers for storing the address in the event of an error and for modifying the physical memory
address in response to certain request qualifiers. The registers are:

User Base Register (UBR)

Executive Base Register (EBR)

Cache Clearer Address Register (CCA)
Error Address Register (ERA)

oo o

NOTE
The ERA register can only be read by the EBox.

In addition. the EBox can also read the contents of the page table to transform (map) the virtual
address to the physical address and load the cache refill RAM with the cache refill algorithm.

To read and load any of the registers and RAMs previously mentioned, the MBox must execute a
cache cycle in response to the EBox request to prevent potential conflicts with other pending requests.

NOTE

Some registers and RAMs can also be loaded and
read by the EBox directly, without having to execute
a cache cycle. The registers and RAMs that fall into
this class are those for which a conflict with another
type of request (CHAN REQ, for example) cannot
occur. The MEM TO C diagnostic register and the
page table can be loaded and 16 diagnostic registers
(including the EBus register) can be read directly
from the EBox.

To read or write the registers and R AMs in the MBox, the EBox must assert a specific set of qualifier
signals along with CLK EBOX REQ for each type of reference. When loading registers, the EBox must
also move the data to be loaded into the VMA no later than one clock tick after issuing the request. All
register operations the EBox is capable of requesting, and the required request qualifiers, are given in
Table 2-4. Flows for each type of register operation are shown in Figure 2-7.

MBox/2-18

Table 2-4 Register Reference Requests

EBOX REQUEST QUALIFIERS

CLK APR APR APR APR APR APR R MCL APR EN CIK C1K APR DIAG | DIAG |DIAG

EBOX | EBOX { EBOX | EBOX | EBOX | EBOX | EBOX | AC 10-12 | EBOX | REFILL PT DIR PTWR | WR PT READ | LOAD | 0406

REQ LOAD | READ | UBR EBR CCA ERA MAP RAM WR WR SEL 0-1 FUNCT | FUNCT
Register Operation REG REG Remarks
Load UBR X X X VMA contains address data
Load EBR X X X VMA contains address data
Load CCA X X X X VMA contains address data
Load REFILL RAM X X X VMA contains address and data
Read UBR X X X Contents of UBR is transferred to EBUS REG
Read EBR X X X Contents of EBR is transferred to EBUS REG
Read CCA X X X Contents of CCA is transferred to EBUS REG
Read ERA X X X Contents of ERA is transferred to EBUS REG
Read PT X X X Contents of PT is transferred to EBUS REG
Load MEM TO C Diag Reg X X EBUS D30-35 carries the data to be loaded
Write PT Directory X X VMA 13-17 contains the section No. to be written
Write PT X X VMA 18-26 conuains the page No. to be written
Read Diag Registers X X DIAG 04-06 carties the register No. to be.read
Read EBus Register { ; X Ty Contents of EBUS REG is transferred to AR via

! ! EBUS data lines

MBox ‘2-19

Table 2-5 Memory Reference Requests

EBCX REQUEST QUALIFIERS

CLK [MCL MCL MCL MCL MCL EBOX | CON KI MCL PAGE |MCL PAGE |MCL PAGE {MCL PAGE !MCL MCL |MCL EBOX | CON CACHE | APR

EBOX|VMA | VMA |[VMA |VMA MAY BE |PAGING | ILLEGAL |TEST ADDRESS |UEBR REF |VMA VMA |CACHE LOOK EN " EBOX |

REQ |READ| PAUSE | WRITE | USER | PAGED MODE ENTRY PRIVATE |COND EPT UPT SBUS

Memory Opention DIAG Remarks

Read EPT X X X X . * VMA contains address
Read UPT X X X X * * VMA contains address
Read Instructions and Data | X X . . * * b . . * * VMA contains address
Write EPT X X X X * * VMA contains address
Write UPT X X X X * * VMA contains address
Write Instructions and Data | X X . . * hd hd . . . VMA contains address
Write Check X X X hd X VMA contains address
Read Modify Write (1st) X X X X . d * . d * * - VMA contains address
Read Modify Write (2nd) X X . . - * i hd . * VMA contains address
SBUS Disg Cyc X X AR contains control word

*These qualifiers may be true or not true depending on the specific type of request the EBox decides to make.

MBox/2-20

%
¥

(START) A

EBOX READ REG

: !

ES0X UBR €80X EBR EBOX ERA DIA EN REFILL
i Box RAM WR EBOX AP
w8 REQ CHAN REQ £80X REQ CCA REQ
@ @ @ @ I:ws RiG‘-U;' l:aus REGe-EBR I | £8US REG‘EHAI Moy
l 1 REFILL RAM_AOR wip
s (SHEET 2)
YES & core Busy CORE BusY S
0 e SET MBOX RESP
a CACHE CHAN CYC
NO
£80X REQ CACHE EBOX CYC ;
I !
EBOX AC REF EBOX LOAD REG EBOX PAUSE
"o A WRITE | €B0X WRITE
SHEET 6 i
ABORT l
@ CACHE EBOX |
BOX WRITE | WRITE
CACHE cca cve EBOX ueR £a0x eeR CHECK ; (SHEET 53
I l (SHEET 3} . —
i
— 3 ¥
UBR=-VMA EBR
DESCAIPTION INDEX B L e BR-vMA EBOX REAC Essé;glm pf&f’;m{‘g
xEY FUNCTION suRsECTION ! ! !
L [} H i
@ me rea 21021331 :
. @ CHAN REQ 28331 i
@ EBOX REQ 2733134
; READ
@ Cca nga 28331 i (SHEET 4}
I
@ CONE REQ 21037 i
|
@ TRHMBCYC 23333 ‘
@ C3H CHAN CYC 2333738 ES
@ caH EmOX CYC 232323438 | CLA MBOX RESP
@ csuccacre 2333838 |
CBHPAGERERILLEYC | 2333838 |
| w0-rars
@ CEHWRITEBACKCYC | 2333438
@ ToRreCve 24216237 ’
[S
NOTE' Ateo refer to Figures 2-13 thew 217

Figure 2-7 Cache Cycle Control,
Functional Flow Diagram
(Sheet 1 of 6)

MBox/2-21

EBOX MAP

(SHEET 11
c
PT YES fT YES
MATCH ACCESS PAGE FAIL
NO (%
KL ves [EBusheEcerrword yes KL
PAGING SET PAGE FAIL HOLD PAGING E£BUS RE
MODE ISET PF EBOXHANDLE] MODE
No
£8US RES EBUS REG
50X RESP St SEnX RESP osggmmsn
MBOX RES! PAIL HOLD X RES
NO SET
‘ MBOX RESP
80X SYNC SET EBOX REQ YES & CoRE BUSY N0 eBox sYNC
No YEs
&) cLr
SHEET | MBOX RESP
SHEET 1 SHEET 1
Yes
ANY
MB < CSH VALID
(EFT
()
FOUR
Ll WORDS

wm
YES

LY DATA VALID
YES

MB «-CORE
CLR RQ

SET PAGE REFILL
(RETRY REQ)

PT < MB
TEST MB PAR

SHEET!I

Figure 2-7 Cache Cycle Control,
Functional Flow Diagram
(Sheet 2 of 6)

MBox/2-22

10- 1477

EBOX PMBETA,)WRITE

o
EBUS REQ
<= PF WORD PAGE WRITE YES 37 T
SET PaGE FAILURE ooe” PAGE FAIL MATCH
FAIL HOLD
s NO NO NO
S REG - BUS REG=+PF WORD) KL YES |EBUSREG*PF WORD)
PAGE FAIL HOLD PAGE FAIL HOLD, PAGING SETPAGE FAR HOLD
T PF EBOX HANOLE] T DIR CLR MOOE SET PF EBOX HANDLE]
EBUS REG
SET ;E?.ELL YES «=PF WORD SET.
MBOX RESP AT SET PAGE MBOX RESP
L_FAILHOLD |
. NO
1—'_— !
NO < gBox SYNC SET EBOX REQ YES & CORE BUSY
Yes No
CLR) -
MBOX RESP sHeer | SET EBOX REQ
SHERT | SHEET
‘ YES
ANY ANY
VALID YES MBe—CSH VALID
MATCH LEFT
"o o
o FouR

SET CORE

READ CYC YES
SET RQ

(Fig. 2=

00

l ves
any CORE

NO pata vaLio l WORDS N RO IN
. INMB PROG

TES () (4

WBe— CORE PTe— M8 seT Pace REFILL

CLR RQ TEST MB PAR oM
YES 0)

SHEET |

i0-tare

Figure 2-7 Cache Cycle Control,
Functional Flow Diagram
{Sheet 3 of 6)

MBox/2-23

HTE
USE A waiTE

>
23

SET £80X REQ

SHEET |

B -CSH

PTe—up
EST e an

s Borw |
B hox rese |
————
C
-

Figure 2-7 Cache Cycle Control, Functional Flow Diagram
(Sheet 4 of 6)

MBox/2-24

YES

Lie ey TEST CSn ADR PRR
+ +
unox wgse
——
h ‘
i
ves
R
u80x nese
O
SHEE

SET E60x REQ

SHEET

ves

€L 480X RES®

CLmRERILL mf»J

0
SHEET

SET PaGE
REFILL Coup
IRETRY REQ)

SHEET ¢

(oo ane

Figure 2-7 Cache Cycle Control,
Functional Flow Diagram
(Sheet 5 of 6)

MBox/2-25

CACHE M8 CYC
(SHEET 1)

CACHE CCACYC
SHEET |

HOLD.
WRITEBACK CYC
SEL PMA

TEST CSH ADR PAR
MB «- CSH
CLR CSH WR BIT

START CORE
WRITE CYC
(FIG 2-9)

SHWEET |

CACHE CHAN CYC
SHEET |

~CCL CHAN TO MEM CCL CHAN TO MEM

! ;

| HOLO CHAN CYC
A

SEL PMI

@

@ HOLD CHAN CYC
SEL PMa
I

TEST CSH

LR C3H VAL BIT

ELﬁ CZH WR Eﬂ'
(OF REQUESTED
WORDS)

START CORE

READ CYC
(FIG. 2-9}

——— -
' 8) voTE2
G NOTE
SREET
SHEET

| The channel wiit toke words out of the MB's os *hey come back from core
€Boa 15 free 10 use the COChe Suring this me However, Core remoing
busy ond prevents 1ne EBox fram gatting a core cytie

~

The chanoet tokes controf of this point. The channel 100as 9 word inio The
MB's 0nC 81ar1s 0 Core wiite cycie The channel then 1000t any remaining
words mio the MB's EBOx 4 frae 10 use 1he COCNG during Hus ima

Howevar, Core ramains busy gnd prevents the EBox from getting a core cycle

10-am

Figure 2-7 Cache Cycle Control,
Functional Flow Diagram
(Sheet 6 of 6)

MBox/2-26

The following is a summary of why and/or when these registers can be loaded or read by the EBox.

d.

The cache refill RAM is loaded with the refill algorithm during system initialization. The
refill algorithm specifies the extent to which the cache is used by using all or bypassing some
cache quarters.

The EBR is loaded with the base address of the EPT during system initialization. The regis-
ter can be read for diagnostic purposes.

The UBR is loaded with the base address of the UBR every time another user process is
started. The register can be read for diagnostic purposes.

The CCA register (including the request qualifier bits) is loaded to invalidate the cache
and/or validate core. One page or the entire address space in the cache can be specified for
this operation. The entire address space in the cache is invalidated during system
initialization. Core may be validated for various reasons. One case where core must be
validated is prior to initiating a channel read operation, when external channels (DF10 or
DAS33) are used. When external channels are implemented, one or more pages may also
have to be invalidated in the cache before a channel write operation is executed. The CCA
register can be read for diagnostic purposes.

The ERA register is loaded with the current address and error source code by the MBox
automatically whenever the MBox senses a parity or a non-existent memory (NXM) error. .
The register is read by the EBox to determine the cause of the error.

The content of the addressed page table location is read by the EBox when a MAP instruc-
tion is executed. This instruction is executed to obtain the physical address of the 1/0 buffer
when building the channel command list. This address is placed into the address field (ADR)
of the Data Transfer CCW.

The diagnostic register is loaded with a code from the EBus data lines to adjust the MBox
data path during system initialization and for diagnostic purposes. The data path can be
adjusted to read data from MBO, SBUS, addressed cache data location, the CBus via the CH
REG or the AR. ’

The section address (VMA 13-17) is written into the addressed page table location when the
EBox writes an entry into the page table (KL paging mode only). The EBox will also write
the directory to clear all entries when switching users.

The physical page address (AR00-17) is written into the addressed page table location after
it is fetched from the core page table to update the hardware table.

The 15 diagnostic registers in the MBox are read by the front-end processor for diagnostic
purposes.

The EBus register is a holding register for the read register function (APR EBOX READ
REG asserted).

MBox/2-27

2.7.4 Memory References

The EBox can issue requests to read and to write memory. The EBox can request to read or write the
executive and user process tables and user or executive paged and unpaged memory. The EBox will
also specify whether the cache is to be used in servicing the memory request. When the MBox starts
processing 4 memory request, it automatically forms the correct physical memory adress in response to
the request qualifiers presented with the request. If the EBox requested a reference to paged memory, it
also automatically reads and/or write-checks the referenced page. If the page check fails, the MBox
informs the EBox of this condition by asserting PAGE FAIL HOLD.

To read. or write memory, the EBox must set up the address in the VMA and assert a specific set of
qualifier signals along with CLK EBOX REQ for each type of reference. When writing memory, the
EBox must also move the word to be written into the AR when issuing the request. All memory
operations the EBox is capable of requesting and the required request qualifiers are given in Table 2-5.
Flows for each type of memory reference operation are presented in Figure 2-7.

2.7.4.1 Read Memory - To read memory, the EBox asserts CLK EBOX REQ and the appropriate
EBox request qualifiers. When the request is granted, a cache EBox cycle is executed by the cache cycle
control to service the request. In executing a cache EBox cycle for a memory read request, the follow-
ing operations are performed by the cache cycle control:

a. The required physical memory address, as specified by the EBox request qualifiers, is
selected (PMA 14-35 SEL). The virtual section and page addresses will be replaced with the
contents of the EBR, UBR, or the page table, as needed. The resultant address is used to
address the cache and, if necessary, to address core memory if a core read cycle is required.

b. If the EBox issued a request to read paged memory, the contents of the pager are checked to
see if the reference is permitted. For KI paging mode references, the cache cycle control will
also execute a page refill cycle automatically to update the pager, if required.

¢ Ifsospecified by the EBox, the cache is checked to see if the desired word is in the cache.

d. A core read cycle is initiated if:

1. The réquested word is not found but some of the words of the respective quadword
group are in the cache.

to

. None of the words of the associated quadword group are in the cache and the Least
Recently Used (LRU) cache block does not contain any written words. If written
words from another page were found in the LRU cache, the cache cycle control will
initiate a core write cycle to write back the written words to core before starting the
core read cycle.

3. The EBox did not specify the cache to be used or the cache does not exist (is not
implemented).

2.7.4.2 Write Memory - To write memory, the EBox asserts CLK EBOX REQ and the appropriate
FBox request qualifiers. When the request is granted, a cache EBox cycle is executed by the cache cycle
control to service the request. In executing a cache EBox cycle for a memory write request, the follow-
ing operations are performed by the cache cycle control:

4. The required physical memory address, as specified by the EBox request qualifiers, is
selected (PMA 14-35 SEL). The virtual section and page addresses will be replaced with the
contents of the EBR, UBR, or the page table, as needed. The resultant address is used to
address the Cache and, if necessary, to address core memory if a core write cycle is required.

M Box/2-28

b. If the EBox issued a request to write paged memory, the contents of the pager are checked to
see if the reference is permitted. For KI paging mode references, the cache cycle control will
also execute a page refill cycle automatically to update the hardware page table, if required.

c. Ifso specified by the EBox, the word is written into the cache; otherwise, a core write cycle is
initiated to move the word to core.

d. If the addressed cache line does not contain any words from the associated quadword group
and the LRU cache contains written words from another page, the cache cycle control will
initiate a core write cycle to write back the written words before writing the cache.

2.7.4.3 Read and Write-Check Paged Memory - To both read and write-check a paged memory
location, the EBox asserts CLK EBOX REQ and the appropriate request qualifiers. When the request
is granted, a cache EBox cycle is executed by the cache cycle control to write-check (Subsection 2.7.4.4)
and read (Subsection 2.7.4.1) the addressed memory location.

2.7.4.4 Write-Check Paged Memory - To write-check a paged memory location, the EBox asserts
CLK EBOX REQ and the appropriate request qualifiers. When the request is granted, a cache EBox
cycle is executed by the cache cycle control to service the request. In executing a cache EBox cycle for a
write-check request, the following operations are performed by the cache cycle control:

a. The pager is checked to see if it contains a valid entry and if the page is writable,

b. Ifthe pager contains a valid entry and the page is writable, the M Box simply responds in the
normal manner.

c. Ifthe page is not writable, the Page Fail word is loaded into the EBus register and the EBox
is notified that a page fail condition was sensed.

d. If the pager does not contain a valid entry and the EBox specifies the KI paging mode, the
cache cycle control will automatically execute a page refill cycle to update the pager.

e. If the KL paging mode was specified, the MBox will notify the EBox to initiate the refill
cycle.

2.7.4.5 Read-Modify-Write Memory - To read, modify and write memory, the EBox asserts CLK
EBOX REQ and the appropriate request qualifiers for each of the read and the write portions of the
operation. This operation is the same as requesting a separate read and a separate write operation if
the cache is specified for use. If the cache is not specified by the EBox, then the cache cycle control, the
core cycle control, and core memory wait for the EBox to request the second half of the operation.

2.7.4.6 SBus Diagnostic Cycle - An SBus diagnostic cycle is issued by the EBox to initialize core
memory and to read core memory status information. To issue an SBus diagnostic cycle, the EBox
moves a diagnostic control word into the AR and asserts CLK EBOX REQ and APR EBOX SBUS
DIAG. When the request is granted by the MBox, a cache EBox cycle is executed by the cache cycle
control to service the request. In executing the cache EBox cycle for an SBus diagnostic cycle request to
read core memory status, the following operations are performed by the cache cycle control:

a. The control word is moved from the AR to the MB.
b. SBUS DIAG is asserted.
c. The contents of the register specified by the control word are transferred to the AR.

The control word transferred to the MB is moved to the core memory system to select a controller and

the function to be performed. The core memory system, in response, will transfer the status of the
selected function to the AR.

MBox/2-29

2.8 CHANNEL REQUESTS

Requests are issued by the channcl control to read and to write memory after a channel is started
(Subsection 2.11). Request qualifiers are used in issuing the request to specify precisely what type of
service is desired by the requesting channel. To write, CCL CHAN TO MEM is asserted: to read CCL
CHAN TO MEM is negated. If a channel needs to fetch a CCW from the EPT, or needs to store the
status in the EPT, then the channel will assert CCL CHAN EPT to qualify the request. A fter issuing a
request, the requesting channel waits for a cache channel cycle to be initiated by the cache cycle control
to check the cache and/or start a core cycle. When the cache channel cycle is started, the channel
assumes direct control of the M Bs to move data in or out. In the case of channel write operations, the
channel will load the MBs and start a core write cycle after the first word is loaded. For a channel write
operation, the cache channel cycle is executed only to invalidate any valid entries in the cache. In the
case of channel read operations, the channel specifies which words are needed and waits for a cache
channel cycle to transfer any valid words in the cache to the appropriate MBs and to initiate a core
read cycle for those words that are not in the cache. After a core read cycle is started (a core read cycle
is started only if all the requested words are not in the cache), the channel continues to wait for the
words to come in from core. As each word is placed into the appropriate MB by the cache cycle control
andor the core control, the channel moves the word into the channel data buffer (CH BUF) by
sclecting the appropriate MB. Words are moved into the CH BUF only in ascending order, starting
with word zero. '

2.8.1 Channel/Cache Interface Summary

A summary of the CHAN/CSH interface is presented in Table 2-6. The interface signals are grouped
into sets according to their function. The notations in parentheses are field maintenance print set
prefixes that specify the source of the signals.

Table 2-6 CHAN/CSH Interface Summary

Signal Description

A, Control Commands
CCL CHAN REQ (CCL3) Issued by the channels to request service.

CCL HOLD MEM (CCL2) Asserted by the channels if the channels have requests backed up.
By asscrting this signal, the channel is assured the next core cycle
by preventing an EBox Request from initiating a core cycle.

CSH CHAN CYC A (MBX4) Asserted when the Cache cycle control starts processing the Channel
request. This signal informs the channel that it can start writing
the MBs in the case of channcl write operation or start looking

for words ready to be taken from the MBs in the case of channel
read operations.

CCL START MEM (‘(‘CL4) Asserted by the channel during channel write operations after the
first word is loaded into the MBs. Subsequent words are moved
into the MBs at four clock-tick intervals assuring the core control
lias a word to move to core when it gets ready. The core control
moves words to core at six clock-tick intervals. During .channel read
operations, the Cache cycle control starts the core cycle when it is
ready.

CCL CH MB SEL 1-2 (CCL4) The channel places a two bit code on these lines to select the
correct MB to be loaded during channel write operations or read
during channel read operations.

MBox/2-30

Table 2-6 CHAN/CSH Interface Summary (Cont)

Signal

Description

CCL CH LOAD MB (CCL4)

MB0-3 HOLD IN (MBX6)

CCL CH TEST MB PAR (CCLA)

Request Qualifiers
CCL CHAN TO MEM (CCL4)

CCW WDO0--3 RQ (CCW4)

CCL CHAN EPT (CCL3)

Error Reporting Commands
CHAN PAR ERR (MBZ4)

CHAN ADR PAR ERR (MBZ4)

CHAN NXM ERR (MBZ3)

Address
CCW CHA 14-35 (CCW?2)

Data

Clocks

Asserted by the channel to load the selected MB during channel
write operations.

Asserted by the Cache cycle control and/or the core cycle control
during a channel read operation to load the MBs and to inform
the channel that the corresponding word is ready to be taken.

Asserted by the channel to check the parity of the selected word

before it is taken from the MB during channel read operations.

Asserted by the channel to specity a channel write operation is
to be executed. When negated. a channel read operation is
executed.

These four signals are asserted by the channel to specify the
words to be read or written.

Asserted by the channel to read or write the Executive Process

"Table. The EPT is read to fetch the initial CCW and is written to

store the channel status at the end of a transfer. The Cache cycle
control will automatically select the correct address for referencing
the EPT.

Asserted for one clock period when the MB parity check fails
during a channel read or channel write operation. During chan-
nel write operations, parity is checked when the channel asserts
CCL CH TEST MB PAR and during channel read operations,
parity is checked when the Cache cycle control or the core cycle
control loads the word into the MB. This signal informs the
channel that a data parity error occurred during the transfer.

Asserted for one clock period when the SBus address parity check
fails during channel read or channel write operations.

Asserted for one clock period when the NXM counter in the

MBox times out. This counter times out if one of the ACKN

pulses for the requested words is not received from the mem-
ory. (Subsection 2.14.3).

Physical memory address from channel.

Data Buffer and path is an integral part of the MB modules.

Clocks are distributed to the channels from the EBox (Table 2-3.
E/M Interface Summary.

MBox/2-31

2.8.2 Request Dialogue

The channels issue requests to the cache cycle control for core cycles by asserting CCL CHAN REQ
and CCL HOLD MEM (Figure 2-8) during an initial MB RAM cycle. Along with asserting CCL
CHAN REQ and CCL HOLD MEM, the channels also set up the channel address (CHA) and the
request qualifiers. The request qualifiers are:

a. CCL CHAN TO MEM
b. CCL CHAN WDO0-3RQ
c. CCL CHAN EPT

These signals remain valid until the request has been processed to completion. If another request is
ready to be processed, CCL CHAN REQ and CCL HOLD MEM remain asserted while the address
and request qualifiers are adjusted to specify the next request.

When the cache cycle control starts to process a request, the cache cycle control asserts CSH CHAN
CYC. This signal informs the channel that it can start moving words from the CHAN BUF to the
MBs. in the case of channel data write operations, or can start looking for words that are ready to be
moved out of the MBs into the CH BUF, in the case of channel data read operations.

2.8.2.1 Channel Read Operations - Two types of read requests can be issued by the channels:

a. Read a single word from the EPT. The EPT contains eight locations for storing the initial
CCW. One location is assigned to each channel.

b. Read one, two, three, or four words (instructions and data) from physical core memory.
To read the initial CCW from the EPT, the channel issues and qualifies the request as follows:
Assert CCL CHAN REQ.
Clear CCL CHAN TO MEM.

Assert CCL CHAN EPT.
Assert CCW WDO0 RQ.

oo o

NOTE
Word 0 is requested because the initial CCW is
stored in location 0 of a quadword group.

e. Setup CCL CH MB SEL 1-2 lines to point to MBO.
f. Assert CCL HOLD MEM.
g. Hold CCW CHA 14-35.

The channel then waits for a cache cycle. When the cache cycle is started, the correct address is formed
by replacing CCW CHA 14-26 with the contents of the EBR. This address is then used to look in the
cache; if the word is not in the cache, the word is read from core (refer to cache channel cycle descrip-
tion). In either case, the word is moved into MBO. The channel recognizes that MBO was loaded when
MBO HOLD IN was negated for one clock tick. The channel will then move the word from MBO to the
CCW BUF and cause MB parity to be checked.

MBox/2-32

ORDER OF WORDS
IS ASCENDING
MODULO 4

SET
CCL CH LOAD
B8

YES

ORDER OF WORDS
1S.DESCENDING
MODULO 4 ORDER

DECR
CCL CH MB
SEL

-2

&gn

CHAN LOAD

NOTES:

1.1f channe! requests are backed up “HOLD MEM" ond "CHAN REQ”
are not cleored , the channe! will 1hen get the next core cycle.
The next core cycle can be storted whan all words in the MB's are
writien to core on CH WRITE operations or ofter the iost word is
moved from the MB's 1o the CH BUF on CHAN READ operations.

2 Refer 10 subsection 28 and 388

3 Refer 1o figures 2-13 thru 2-17.

CLR CCL HOLD
CLRCCL CHAN
REQ

READ

SEY CCL CHAN REQ

HAN REQ

CLR CCL HOLD
CLRCCL CHAN
REQ

Figure 2-8 Channel Request Dialogue,
Simplified Flow Diagram
(Data Read and Write)

To read data and instructions from physical core memory, the channel issues and qualifies the request

as follows:
a. Assert CCL CHAN REQ.
b. Clear CCL CHAN TO MEM.
¢. Clear CCL CHAN EPT.
d. Set up CCW WDO0-WD3 RQ lines to indicate which words are to be read.
e. Set up CCL CH MB SEL 1-2 lines to point to the MB that corresponds to the lowest order
word requested.
f. Assert CCL HOLD MEM.

2.

Hold CCW CHA 14-35.

The channel then waits for a cache cycle. When the cache cycle is started, the channel address (CCW
CHA 14-35) is used to look in the cache, and if all the requested words are not in the cache, to read
those words from core. In either case, the requested words are moved into the MBs. The channel
recognizes that an MB is loaded when MBO, 1, 2, or 3 HOLD IN is negated for one clock tick. The
channel will start moving the words to the CH BUF as soon as the lowest order requested word is
placed into the corresponding MB. Subsequent words are moved from the MBs to the CH BUF in
ascending order. As each word is transferred, its parity is also checked in the MB.

2.8.2.2 Channel Write Operations — Two types of write requests can be issued by the channels:

d.

b.

Write two words into the EPT. The EPT contains 16 locations for storing channel status
information. Two locations are assigned to each channel.

Write one, two, three, or four words (data and instruction) into physical core memory.

NOTE
These words may have been read from a magnetic
tape drive that is capable of reading forward and
reverse.

To write the two status words into the EPT, the channel issues and qualifies the request as follows:

aoc o

IR)

Assert CCL CHAN REQ.

Assert CCL CHAN TO MEM.
Assert CCL CHAN EPT.

Assert CCW WDI and WD2 REQ.

NOTE
Word 1 and Word 2 are specified because the status
words are stored in locations 1 and 2 of a quadword

group.

Set up CCL CH MB SEL 1-2 lines to point to MBI.
Assert CCL HOLD MEM.
Hold CCW CHA 14-35.

MBox/2-34

The channel then waits for a cache cycle. When the cache cycle is started, the correct address is formed
by replacing CH A 14-26 with the contents of the EBR. This address is then used to write the words to
core after they are moved to the MBs. The cache is also checked to see if there is a copy of the
referenced EPT locations in the cache, if CON CACHE LOOK EN is set, and if the cache is imple-
mented. If there is, this copy is invalidated because it is assumed to be an old copy. After the first word
is moved into the MB, the channel initiates a core write cycle to move the word to core, The second
word is moved into its MB four clock ticks after the first word, in time for the core control.

To write data and instructions into physical core memory, the channel issues and qualifies the request
as follows:

a. Assert CCL CHAN REQ.

b. Assert CCL CHAN TO MEM.

c. Clear CCL CHAN EPT.

d. Set up CCW WDO0-WD3 RQ lines to indicate which words are to be written.

e. Set up CCL CH MB SEL 1-2 lines to point to the MB that corresponds to the first word to
be transferred by the channel.

NOTE
If the words were read from a magnetic tape drive
operating in the forward mode, the words will be
transferred in ascending modulo four order. How-
ever, if the drive was operating in the reverse mode,
the words will be transferred in descending modulo
four order.

f. Assert CCL HOLD MEM.
g. Hold CCW CHA 14-35.

The channel then waits for a cache channel cycle. When the cache cycle is started, the channel address
(CCW CHA 14-35) is used to write the words into core after they are moved into the M Bs. The cache
is also checked to see if there is a copy of the referenced memory locations in the cache. If there is, this
copy is invalidated since it is assumed that this must be an old copy. After the first word (lowest
numbered word) is moved into the MB, the channel initiates a core write cycle to move the word to
core. Subsequent words are moved into the MBs at four clock-tick intervals so that the words will be
available for transfer to core. The core cycle control moves a word to core every six clock ticks once a
core cycle is started.

2.9 CCA REQUESTS

Requests arc issued by the cache clearer control to invalidate the cache and/or validate core. The cache
clearer control is activated by the EBox when it executes a Sweep instruction. While executing a Sweep
instruction, the EBox issues a request to load the CCA register. This request loads the CCA register
and activates the CCA control by latching CCA REQ and loading a 3-bit request qualifier register.
After this operation is done, the CCA control will issue requests, accompanied with the preset request
qualifiers, until the Sweep operation is completed, at which time, the CCA REQ latch is cleared. The
preset request qualifiers include:

a. CSH CCA ONE PAGE
b. CSH CCA VAL CORE
c. CSH CCA INVAL CSH

MBox,/2-35

Whenever an MB, CHAN, or EBox request is not pending, a cache cycle is executed for the cache
clearer control to:

4. Sweep one page, or
b. Sweep entire cache

In cither case, depending on the request qualifiers, the cache may be cleared and/or core may be
validated.

When sweeping one page, each line of the cache is checked to see if there is a valid entry. An entry is
valid if the address in the cache directory matches the high-order 14 address bits in the CCA register
and one or more valid bits are set. If there is a valid entry in the addressed cache line then the entry is
invalidated and/or a core cycle is started to move any written words to core. After this operation is
done. the low-order nine cache clearer address bits in the CCA register are decremented by four to
address the next cache line in preparation for the next cache CCA cycle.

When sweeping the entire cache, each of the four cache blocks in each cache line is checked to see if
there is a valid entry. An entry is valid if one or more valid bits in the addressed cache block are set.
The high-order 14 cache clearer address bits are not required when sweeping the entire cache because
every entry in the cache, regardless of its address, is subject to the sweep operation. If there is a valid
entry in the addressed cache block, the entry is invalidated and/or a core cycle is started to move any
written words to core. After this operation is done, the low-order nine cache clearer address bits are
decremented by one to address the next cache block in preparation for the next cache CCA cycle.

After the cache clearer control has stepped through the entire cache, CCA REQ is cleared to inform
the EBox that the Sweep operation is done.

2.10 CORE REQUESTS :

Core requests to read or write main memory are issued by the core cycle in response to a start signal
and appropriate request qualifiers from the cache cycle control or from the channel control. All con-
trol signals, the address, and the data are transferred between the MBox and the main memory system
via the SBus. Both the channel and the cache cycle control can initiate a core cycle to read or write up
(o four words at a time. Once the core cycle control is set up by the channel or cache cycle control, the
core cycle control will execute the requested operation to completion, independently.

NOTE
SBus . diagnostic cycles are executed by the cache

cycle control not the core cycle control (Subsection
2.7.4.6).

2.10.1 SBus Summary

A summary of the SBus is presented in Table 2-7. The SBus signals are grouped into sets, according to
their function. The notations in parentheses are field maintenance print set prefixes that specify the
source of the signals.

2.10.2 Request Dialogue

The core cycle control starts a core cycle by asserting SBUS START A or B, asserting the appropriate
SBus request qualifiers and holding the physical memory address (Figure 2-9). The request qualifiers
are: ' .

4. SBUS RQ 0-3

b. SBUS RD RQ
¢. SBUS WR RQ

MBox/2-36

Table 2-7 SBus Summary

Signal

Description

Control Commands
START A/B (MTO01)

ACKN PULSE A/B (SBUS 0/1)

DATA VALID A/B (SBUS 0/1-
MTO1)

DIAG (MTO1)

Request Qualifiers
RQO-3 (MTO1)

RD RQ (MTO1)

WR RQ (MTO1)

Error Reporting Commands
ADR PAR ERR (SBUS 0/1)

ERROR (SBUS 0/1)
Address v
ADR 14--35 (MT04)

ADR PAR (MTO1)

" Data
D00-35 (SBUS 0/1-MT02-3)

START A or START B is asserted by the core control to start a
core cycle.

ACKN PULSE A or ACKN PULSE B is asserted by the core
memory system to acknowledge the requests.

DATA VALID A or DATA VALID B is asserted by the core
memory system when a word is placed on the data lines of the
SBus. Also asserted by the MBox during the write portion of a
Read-Pause-Write cycle.

NOTE
The above control signals are phase-locked with the leading
or trailing edges (Phase A or B) of the SBus clock to mini-
mize bus latency.

Asserted by the Cache cycle control to start a diagnostic cycle.
These four signals are asserted by the core control to specify the
words to be read or written.

Asserted by the core cycle control to specify a core read cycle is
to be executed.

Asserted by the core cycle control to specify a core write cycle is
to be executed.

NOTE

During a Read-Pause-Write Cycle both RD RQ and WR RQ
are asserted.

Asserted by the core memory system when an address parity error
is sensed.

Asserted by the core memory system when a data parity error is
sensed. Data parity is checked on both read and write cycles.

Physical address for memory system.

Address and Request Qualifier parity for memory system.

Bidirectional data path between MBox and core memory system.

MBox/2-37

Table 2-7 SBus Summary (Cont)

Signal Description
L. Data (Cont)
' DATA PAR (SBUS 0/1-MTOS) Bidircctional data parity line between MBox and core memory
system.
F. Clocks
INT CLK (MTO1) Clock for internal memory system (MA/MB20);
EXT CLK (MTOI) Clock for external memory system (DMA20).

These signals remain valid until all requested words have been acknowledged. All further core requests
from the channels or cache cycle control will be deferred until core is freed at the completion of the
core cycle in progress. Three types of core cycles can be initiated by the core cycle control:

a. Read cycle
b. Write cycle
¢. Read-Pause-Write cycle

The read-pause-write cycle will only be initiated in response to an EBox request for which the cache is
not to be used.

2.10.2.1 Core Read Cycle - To read from core, the core cycle control, in response to a command from
the cache cycle control or the channel control, issues and qualifies the request as follows:

Assert SBUS START A or B.
Assert SBUS RD RQ.

Assert SBUS RQ 0-3.

Hold SBUS ADR 14-35.

an o

At the same time the core cycle control issues the request, CORE BUSY is set and the acknowledge
and data valid pulse counters are initialized (Subsection 3.7). The counters keep track of the requested
words coming back from core by counting the SBUS ACKN and DATA VALID pulses. After setting
up the request, the core cycle control waits for the words to come in from core. As each request is
acknowledged and each word comes in from core, the associated requests held in the acknowledge and
data valid pulse counters are cleared and the word is moved into the appropriate MB. The first word
may also be moved to the AR in the EBox. When all requested words have been acknowledged, SBUS
START A or B is cleared. CORE BUSY remains set until the channel or the cache cycle control,
depending on which control requested the core cycle, moves the words out of the MBs. If a core read
cycle for more than one word was started by the cache cycle control in response to an EBox request,
the core cycle control will issue M B requests to the cache cycle control for all but the first word. As MB
requests are granted by the cache cycle control, the words that were moved into the MBs by the core
cycle control are moved in the cache. If the core read cycle was initiated to satisfy a channel request,
the channel will take the word in ascending modulo four order after they have come in from core.

MBox/2-38

“ES

SET_SBUS
START 4

CORE BU

SET
RQ HOLD

MTES:

1. During Reed aperstsns btk OATA WALID end ACKN puises o
ore coumed. The isel ACKN puise elmers esccurs bufers the
iast OATA VALID puise.

2. n » Lowest numbared RORA .
3

» InitigHy » equeis the number of The word requestsd By
he EBoL Thorealter & 1 incraments! medvie 4 shipging
@Ot wOrds net TIQUONIEE Until 11 WerEs heve Come A oM cece

A& ANY MBWRAG remaine set unhi| €}l worés heve bean takan by the
coche or chamnel

5. Reter 10 subsactions 2,10 end 3 7
6. Reter 1o figures 2-13 theu 2-17

YES

| MO NxM FLG

CLR RQnA

Br «— AR
TEST MB PAR

ASSERT S8US

OATA VALID

(NOTE)

- FIRST WORD
SET
M8 REQ

SHEET 1
FiG 27

161083

Figure 2-9 Core Control Cycle,

Functional Flow Diagram

MBox/2-39

2.10.2.2 Core Write Cycle - To write into core, the core cycle control, in response to a command
from the cache control or the channel control, issues and qualifies the request as follows:

a. Assert SBUS START A or B.
b. Assert SBUS WR RQ.

¢. Assert SBUS RQ 0-3.

d. Hold SBUS ADR 14-35.

Before the core request is issued. the cache cycle control or the channel control will have moved the
first word to be written into the appropriate MB. '

At the same time, the core cycle control issues the request, it also sets CORE BUSY and initializes the
acknowledge pulse counter. This counter keeps track of which words have been moved to core by
counting the SBUS ACKN pulses. After setting up the request, the core cycle control waits for each
word that is to be written to core to be acknowledged. As each word is acknowledged, the associated
request held in the acknowledge pulse counter is cleared and the next word is placed on the SBus data
lines by selecting the appropriate M B. When all words have been acknowledged, SBUS START A or B
and CORE BUSY are cleared.

2.10.2.3 Core Read-Pause-Write Cycle - To read, modify, and write a core location without releasing
core (PAUSE) between the read and write operation, the core cycle control, in response to a command
from the cache cycle control, issues and qualifies the request as follows:

Assert SBUS START A or B.
Assert SBUS RD RQ.

Assert SBUS WR RQ.

Assert SBUS RQ 0-3.

Hold SBUS ADR 14-35.

cac o

At the same time the core cycle control issues the request, CORE BUSY is set and the acknowledge
and data valid pulse counters are initialized. During this type of core cycle, only one word will be
requested from core. Consequently, the acknowledge and data valid pulse counters will be cleared after-
the request is acknowledged and the first word comes in from core. When the word comes in from
core. it is placed in the appropriate MB and is made available to the EBox AR. SBUS START A or B
is also cleared at this time. However, CORE BUSY is not cleared until the EBox issues the write
request and the word is on its way to core memory. When the EBox makes the write request, the word
to be written is moved from the AR to the MB and SBUS DATA VALID is asserted to inform core
memory that it is to write the word.

2.11 CBUS REQUESTS

The CBus is a synchronous bus system that connects the integral channel control logic of the MBox to
a maximum of eight RH20 Massbus controllers. These controllers are selected (scanned) in such a way
that the first four controllers (0-3) can handle a data transfer rate of approximately one 36-bit word
per microsecond, while the second four controllers (4-7) handle a data transfer rate of half that speed.

The MBox is a logical unit that provides the path to the main memory subsystem for both the integral
data channels and the EBox. Each Massbus controller can control up to eight mass-storage disk drives
(fixed-head disks or moving-head disks) or up to eight TM02 or TM03 magtape controllers with each
controller having up to four TU16 or TU45 drives. The purpose of the CBus is to provide a high-speed
path between the MBox channel control logic and up to eight controllers for control and data
information.

2.11.1 CBus Summary
A summary description of the CBus is given in Table 2-8. The notations in parentheses are field
maintenance print set prefixes that specify the source of the signals.

MBox/2-40

Table 2-8 CBus Summary

Signal

Description

SEL 0-7 (TROS)

RESET (CBUS)

START (TROS)

CTOM (CBUS)

READY (TROS)

REQUEST (CBUS)

These eight radial lines are controlled by the channel control to select
one Massbus controller at a time every four MBox clock ticks. The
SELECT line of a controller defines the beginning of its four data trans-
fer cycles (SELECT cycle, REQUEST cycle, WAIT cycle, and DATA
cycle).

This signal may be asserted by a Massbus controller during its DATA
cycle. The channel control logic, upon detecting this signal, will clear
the control RAM location associated with the controller (channel) and
will store the fact that reset has occurred.

A Massbus controller will always begin a block transfer by asserting
this line once during its DATA cycle. The line will be asserted only
when CBUS READY is negated. The channel control logic will assert
READY when it is prepared for data transfer.

A Massbus controller begins a block transfer by asserting START for
exactly one DATA cycle. The controller will inform the channel control
logic during the same cycle of the direction of the block transfer by:

a. Asserting CTOM for an input block transfer (Channel to
Memory).

b. Negating CTOM for an output block transfer (Memory to
Channel).

The channel control logic will assert this line (during the DATA cycle
only) after it detects a START signal sent by a Massbus controller and
after the channel control logic is ready for data transfer. For an output
block transfer, the channel control will have at least two words of data
from memory (if WC > 2) before asserting READY. The READY
signal, once asserted, will normally be negated only after sensing the
DONE signal and after the channel control is prepared to start another
block transfer operation. Errors will also cause READY to be negated.

A Massbus controller will assert REQUEST during its REQUEST
cycle when:

a. One of its data buffers is full (for an input block transfer
operation).

b. One of its data buffers is empty (for an output block transfer
operation).

MBox/2-41

Table 2-8 (' Bus Summary (Cont)

Signal

Description

REQUEST (CBUS)
(Cont)

DONE (CBUS)

STORE (CBUS)

LAST WORD (TROS)

A Massbus controller will not assert REQUEST if:
a. READY line is not asserted by the channel control.

b. ERROR line has been asserted by the channel control during
the current block transfer.

c. LAST WORD has been asserted by the channel control dur-
ing the current block transfer.

d. DONE has been asserted by the Massbus controller during
the current block transfer.

For an input data transfer, the Massbus controller will place data
(throughout its DATA cycle) on the DATA lines and the channel con-
trol will strobe the DATA lines at the trailing edge of the same data
cycle.

For an output transfer, the above operation is reversed.

The Massbus controller will terminate a block transfer by asserting this
signal once during its DATA cycle. No more data requests will be made
after DONE is asserted. The channel control, after detecting DONE,
will get ready for a new block transfer (empty the input data buffers,
etc.). The error line can still be used to inform the Massbus controller
that an error has been detected in the current block transfer as long as
the READY line is not negated.

The Massbus controller will send STORE to the channel control once
(at the same time the controller sends DONE) when:

a. The current block transfer is terminated due to errors
detected in the Massbus controller and/or

b. The current block transfer command in the Massbus con-
troller specifies that STORE be sent to the channel control at
the conclusion of the block transfer.

The channel control, upon detecting STORE, will write all status infor-
mation associated with the controller into memory.

The channel control will keep READY asserted until it is prepared to
initiate another block transfer.

The channel control (for an output block transfer only) will assert this
line (during the DATA cycle) one cycle after the last data word is sent
to a controller. No more data requests will be made by the Massbus
controller after detecting LAST WORD.

MBox/2-42

Figure 2-8 CBus Summary (Cont)

Signal Description

ERROR (TRO05) The channel control will assert this line (during DATA cycle only) to
inform the controller that the current input/output block transfer must
not continue due to error conditions detected in the channel control.
The Massbus controller, upon sensing the ERROR signal, will termi-
nate the block transfer by not making any more data requests and will
assert DONE exactly once during a subsequent DATA cycle. The
ERROR line will be negated before the channel control negates the
READY line. If the ERROR line is detected after the READY line is
negated, it may be interpreted by a Massbus controller to be an error
associated with the next block transfer.

DATA 00-35 These 36 bidirectional lines carry the high speed data and are valid only
(TRO1/2-CBUS) during DATA cycle. The channel control will apply zeros on the DATA
lines for a Massbus controller (during its DATA cycle) whenever there
is no data transfer request from the Massbus controller.

PAR LEFT/PAR RIGHT | These two bidirectional lines carry the computed parity for the left and
(TROI1-CBUS) right half word of the DATA lines.

2.11.2 CBus Timing

A clock-time-division multiplexing technique is used to control the CBus operations. A free-running
clock exists in the EBox and is sent to the MBox by internal connections. One delay line per Massbus
controller is used to synchronize (deskew) the signals between each Massbus controller and the chan-
nel control logic of the MBox.

The channel control continuously selects one of the eight controllers by generating eight selection lines
in the following sequence: 0,1,2, 3,4,5,0,1,2,3,6,7,0,1,2,3,4,5. . . . (Figure 2-10). The sequence is
stepped with the leading edge of the clock signal.

A Massbus controller is aliowed to tr-ansmit or receive data and control information only after it has
been selected by the channel control. F1,'ure 2-10 shows the four cycles used by the channel control and
a Massbus controller during a data transfer operation. Each cycle is asserted by the leading edge of a
clock pulse and is negated by the leading edge of the next clock pulse.

a. SELECT cycle - The SELECT line of a particular Massbus controller is asserted throughout
this cycle.

b. REQUEST cycle - The selected Massbus controller will assert the REQUEST line (if data
request is needed) throughout this cycle.

c. WAIT cycle - This cycle is used by the channel control to prepare data and status for
transmission. Neither data nor status is asserted during this cycle.

d. DATA cycle - Data is placed on the DATA lines either by the MBox (output data transfer)
or by the Massbus controller (input data transfer) during this cycle. The recipient of the data
will strobe the data lines at the trailing edge of the data cycle. All CBus control lines
(ERROR, READY, LAST WORD, CTOM, START, RESET, DONE, and STORE),
except the REQUEST line, are allowed to be asserted during this cycle only.

MBox/2-43

mac 2 {

M8ecC 3

cosssevo_[] I L i r
far] 1
[+

CB8US SEL *

CBUS SEL 2

]3

]

CBUS SEL 3

cBUS SEL 4

CBUS SEL S

B
e

CBUS SEL. 6 A

cous SEL 7|

REQUEST B

WAIT

MBC O‘
L

pAaTA

[Foeo

WAIT

(’Rsouesr
! .
)
|
|

DATA

{REQUEST

WAIT

:L DATA —]
(

REQUEST

watT —1
pata _|]

ﬁ:j:j]

MBC 4

[aeouam

WAIT

£ATA

REQUEST

MBC 5

|
mac 6 {

¢
(rReEQUEST | I
I

MBC71

NOTES 1

2.

L
reauest |
|

WALIT

DATA

feel

WAIT I

i

L]

DATA

A

foses |

WAIT

M

ol
=

CATA

[

[o7]e7l

CBUS control signals are asser ted only during the DATA tuve slot
The control signals are: START, RESF T, CTOM, READY, LAST WORD. DONE, STORE.

CBUS REQUEST 15 asserted only during the REQUEST time slot.

Figure 2-10 Channel Scanner Timing Diagram

MBox /2-44

10-2076

Controllers 0, 1, 2, and 3 are selected twice as often by the channel control’s selection sequence as
controllers 4, 5, 6, and 7.

a. The maximum transfer rate of Massbus controllers 0, 1, 2, 3 is 1 usec/word.

b. The maximum transfer rate of Massbus controllers 4, 5, 6, and 7 is 2 usec/word.

2.11.3 Functional Description of Channel Read (NOT CTOM) and Channel Write (CTOM)
The following are descriptions of channel read and channel write operations presented in a chronologi-
cal context. Refer to Figure 2-11 and 2-12.

2.11.3.1 Channel Write Operation (CTOM) - A channel write operation transfers data from the drive
(reads from the drive medium) to main memory.

a. A user program will trap to the monitor when I/O is required because the timesharing user
programs I/O using monitor calls.

b. The monitor decides which and how many physical blocks to read. For directory devices
(disks), a file search may need to be done to obtain this information.

c. The monitor sets up the CCW list in main memory. The starting address is EPT + (4 X Phys
No.) + 0.

d. The monitor sets up the Massbus drive and RH20 Massbus controller to execute a READ
operation. This may involve a seek and/or a search operation after which the monitor exe-
cutes a DATAO instruction to transfer the drive read command to the RH20 and the drive.

e. If the channel control is not busy (CBUS READY is negated), the RH20 asserts CBUS
START/RESET and CTOM during the DATA cycle (time D slot) of the scanner when the
command is transferred from the RH20 to the drive.

f. The channel control responds to CBUS START/RESET and CTOM by fetching the first
CCW and then asserting CBUS READY. The control RAM, CCWF queue, and MB
request logic are all involved in this operation. The address for the memory request is
obtained from the CCW BUF which contains a CLP.

M Box/2-45

€ |
3|03
cpﬂh 4(C |6 047.4
*\P‘\“ 51B|7 w4/7-
€l o|Aale feo 4
(5% Sg,
3 o 00D\ /EVEN ¢ 508
6 PASS\ / PASS oX 7
A 1 X0
SEL opp X 1
@ PASS
EVEN
SEL SELY FASS
7 ADVANCE 1
SCANNER
U’ START
oDD
sgL 3 T SEL) PASS | 21
2 VEN|2]1]o
PASS ’
T2
SEL
3
O?gﬁ
SEL)OS
5 3/ e 3
4 2
3 1
0
4
3
2
1

l o! 123 o! 1]2]3] ol 2|3

ADRRAM_[_] J_'l :.
I

LATCH RAM OUT

WRITE RAM

Tl

n+1

RAM CYC

S .
El
—

10-2099

Figure 2-11 Channel Scanner State Diagram

MBox/2-46

DESCRIPTION INDEX

KEY FUNCTION SUBSECTION
@ CBUS SEL 211381

@ CBUS DATA REQUEST 211384386

@ cTom 2.11.3.1-38.33.843.86
@ NOT CTOM 2113.2-38.33.843.86
@ CBUS CONTR REQUEST | 2.1138.2385

@ RESET 2.11.338.2

@ START 2113382

DONE 2.11.338.2

STORE 2113382

MB REQUEST 377388386

@ COWF 3881

@ ACTION FLAG 387388

@ cTom 3882

@ NOT CTOM 3883

@ ZERO FILL/SKIP | 3883

STORE 38538843885

NOTE: ALSO REFER TO FIGURES 2-13 THROUGH 2:17.

UPDATE CH PTR (+1}

DONE V
DONE A
STORE

O)(O)

.
* CH BUF ~CBUS
NO o REQRAMCYC ACTION FLAG
* SET ACT FLG REQ
ENA iF (CHPTR. STORE
MEMPTR] -AC > 0!
STORE
® UPDATE CH PTR (+1}
® CBUS -~ CH BUF
* REQ RAMCYS
« SET ACT FLG REQ ACTION FLAG
BUF \NO ENA IF 15 - ICH PTR
EMPTY -MEMPTR! -AC 2 0 STORE
* SETCBUSLAST
WORD (FPTRDIFF =
YES 154 WC=0
SET OVN ERR
N STORE
SET CBUS ERR
IN
SET STORE
* REQRAMCYC NO
* CLRCONTR RAMS
® SET RAM RESET FLG
YES
* REQRAMCYC
csus No o SET CCWF REQ ENA CowF
READY © SETEPTIF RESET
FLG IS SET sroRe
YES
SET RH20 ERR IN °
SETMEM STORE | STORE
ENA
SET CBUS ERR
* REQRAMCYC
« UPDATE CONTR RAM
® IF.STORE CLRCBUS
READY ACTION FLAG
e IF CHPTR-MEMPTR
>0 STORE
SET ACT FLG ENA
© IF STORE SET MEM
STORE REQ FENA
SET LONG WC
ERR IN
SET MEm sTORE [STORE
EN
SET CBUS ERR
IN
* REQ RAMCYC
* UPDATE CONTR RAM a
LAST ves e IF.storecLAceus | STORE
WORD READY
® IF STORE SET MEM
STORE REQ ENA
NO
SET LONG WC
ERR IN
SET MEM STORE | STORE
N
SET CBUS ERR
N

10-2216

Figure 2-12 Channel RAM Cycle Control
Functional Flow Diagram (Sheet 1 of 3)

MBox/2-47

* SET M8 RiP
= COW REG - CCW CLP
* COWCLP- COWCLP

.1
® SET CMAN EPT IF

RESET

* EPT WD OREQ
* EPT WD
REQ - AC

* CHAN REQ

HEADY

TEST MB PAR
LOAD OP CODE

CCW BUF — M8

1F JUMP SET COWF
REQ ENA

1F DATAXFER - CTOM
SET ACT FLG REQ
ENA OR SET CBUS
READY IF CTOM

* CLRMBRIP

CHAN READ

2 CONSECUTIVE RAM CYC ——
ND 15 FORCED PROVIDED |
A MIGHER PRIORITY REQUEST
iS NOT PENDING

e SETMBRIF
e OCW REG — CCW
BUF CCw

® COWBUF —WC - AC

e SET COWF REQ EN
1IFWC =0

* CLR M@ AP

* UPDATE MEM PTR

s SETMBRIP
* CCW REG - CCW
BUF CcwW
s SETUP:
REQCTR

M8 SEL LOGIC
WO REQ LOGIC
CH BUF ADR

o SETCHAN REQ. ETC

* UPDATE MEMPTR

® UPDATE CCW WC
AND ADR

* SET CCWFREQ ENA
F WC = 0 AND DONE

® SET ACT FLG REQ
ENA IF (CHPTR -
MEM PTAI -AC >0
& CLAMB AP

ACTION
FLAG

)

CHAN WRITE

INITIAL
AM

(44

o SETMBRIP
* CCW REG — CCW BUF
cow

v SETUP:
REQCTR
M8 SEL LOOKC
WD REQ LOGIC
CH BUF ADR

* SET CHAN REQ, ETC

CHAN READ

102700

Figure 2-12 Channel RAM Cycle Control
Functional Flow Diagram (Sheet 2 of 3)

MBox/2-48

UPDATE MEM PTA
UPDATE COW WC
AMO ADR

SET CONF AEQ ENA

IF WC =0 - DONE
SET ACT FLG REQ

ENA IF 15+ (CHPTR

-MEMPTR) -AC >0
SET CBUS READY
CLR M8 Ri?

REQCTA =0

e CCW REG - CCW BUF

SE

cow

* SETUP:

REQCTR

MB SEL LOGIC
WO REQ LOGIC
CH BUF ADR =
0

SET CHAN REQ. ETC g

CHAN READ

UPDATE MEM PTR

CCW BUF ~ WC - AC
SET CCWFREQ ENA

IF WC = 0 - DONE
SET ACT FLG REQ

ENA IF 15 + (CH PTR
-MEMPTR) - AC >0

SET CBUS READY
CLRMB RiP

STORE 7

SET LAST XFER
ERR IN

SET M8 AIP

CCW BUF - STATUS

aITs
SET UP:
REQCTR
M8 SEL LOGIC
WD REQ LOGIC
CH BUF ADR
CHAN EPT
CHAN REQ
LOAD MB'S WiTH

STATUS/CLP AND $

cocw

CHAN WRITE
ERR REQ

SET M8 RIP

CCW BUF ~ STATUS

BTS

SET MEM STORE
REQENA

$ET CBUS ERAOR
SAME AS STORE
ABOVE

STORE

162108

Figure 2-12 Channel RAM Cycie Control
Functional Flow Diagram (Sheet 3 of 3)

MBox/2-49

Memory requests (CCL HOLD MEM) are made by the MB request logic to fetch additional
channel command words as long as DATA XFER CCW is not received. Memory requests
are made as follows:

1. Assertion of CBUS START/RESET and CTOM causes the channel control to initiate
a CBUS CONTR CYC to update the control RAM.

2. Thereafter, a memory request is issued to fetch the CCW and load it into the CCW
BUF.

[f CBUS RESET was asserted by the R H20, then the first CCW is fetched from the
EPT (EPT + [4 X Phys No.] + 0).

If CBUS RESET was not asserted, then the first CCW is fetched from the location
pointed to by the CLP + 1 in the CCW BUF.

' NOTE
Additional CCWs are fetched until a DATA XFER
CCW is received.

3. CBUS READY enables the RH20 to allow it to transfer words from its buffer to the
channel buffer (CH BUF) via the CBUS. CBUS REQUEST is set every time a word is
placed on the CBus.

At this point, the channel control is executing two operations:

1. Fetching CCWs until a DATA XFER CCW is received.

2. Placing a word into the CH BUF every time CBUS REQUEST is asserted by the
RH20.

NOTE
Enough time is assured to receive a DATA XFER
CCW before a memory request is forced to transfer
these words to memory.

CBUS REQUEST causes the channel control logic to execute a REQ CYC to move the
word from the CBus into a CH BUF location. The RH20 asserts CBUS REQUEST only
when it has a word to transfer. Words are assembled in the RH20 in a two-word data buffer,
one half-word at a time. These half-words are received by the RH20 from the Massbus drive
via the Massbus at a rate dependent on the drive characteristics.

Every time a word is placed in the CH BUF, the CH PTR is updated. Also, an arithmetic
algorithm is applied to the CH POINTER, MEM POINTER, and ACT COUNT to see if
enough words are in the CH BUF to warrant a memory request to store the words.

I. ACTION COUNT is a function of CCW CHA 34-35 and the CCW WC. This count
specifies how many words must be in the CH BUF before a memory request can be
started to store up to four more words.

NOTE
Memory requests cannot be made for words that
cross the quadword boundary.

MBox/2-50

2. MEM PTR is advanced by the ACTION CNT when all the words have been moved to
the MBs. -

3. The CH PTR is advanced by one when a CBUS REQ CYC is executed.

4. The difference between the MEM and CH PTRs specifies the number of words in the
CH BUF for a given channel.

5. An action flag is set to initiate a memory request if (CHAN PTR -MEM PTR)
-ACTION COUNT 2 0.

When the above condition is satisfied, the action flag is set and a memory request for the
number of words specified by the action count can be initiated. The memory request will be
executed as follows:

1. Set CCL ACT FLAG REQ.
2. Set CCL HOLD MEM.
3. Request INIT RAM cycle.

NOTE
CBus data requests, CBus control requests, and
memory requests all require at least one RAM cycle
to obtain the necessary information for executing the
request and for reading and writing the RAMs (Con-
troi RAM, CCW BUF, CH BUF, and Pointer
RAMs).

Since there are only a limited number of RAM cycles
available (one every four ticks), an order of priority
has been established for granting RAM cycles. This
order is:

1. CBUS DATA REQ for channels 0-7.
2." CBUS CONTROL. REQ for channesl 0-7.
3. MEMORY REQUESTS for channels 0-7.

Memory requests are made for fetching CCWs,
transfering data, and storing status. To ensure
efficient channel operation, an order of priority also
exists for allocating RAM cycles to memory
requests. The order is:

1. Fetch CCW (CCWF REQ).
2. Data (ACT FLAG REQ).
3. Store Status (MEM STORE REQ).

Since heavy channel activity (CBus requests for data)
can consume many of the available RAM cycles,
control requests and memory requests are queued so
that they are remembered and can be executed in the
proper order of priority when RAM cycles become
available.

MBox/2-51

4.

All channels are assured at least one RAM cycle for
each scanner pass. When there is more than one
request pending, only the higher priority request is
excuted for a given channel. Therefore, a given chan-
nel may have to wait before a pending memory
request or control request gets a RAM cycle. When
initiated, the memory request and type (CCWF,
ACT FLAG, or MEM STORE REQ) are latched.
Then, if a higher priority request comes in, it will not
be granted until the current request is done.

A RAM cycle is needed for an action flag memory request to transfer the appropriate
CCW word (CCW CHA 14-35) from the CCW BUF to the CCW register and to read
the ACT CNT and the MEM PTR. This address is needed to address core/cache. The
ACT CNT, in conjunction with the least two significant bits of the address (bits 34 and
35), is used to set up the word request logic; the MEM PTR, in conjunction with the
channel code of the ACT FLAG REQ, is used to form the CH BUF ADR.

NOTE
After the memory transfer is completed, the CCW
address (ADR) will be incremented and the WC will
be decremented by the value contained in the action
counter and written back into the CCW BUF,

After the action flag memory request gets a RAM cycle, CCL CHAN REQ, along with
the appropriate request qualifiers, is set to request a cache cycle.

If the cache control is not busy (IDLE), if core is not busy, and an MB request is not
pending, the cache control grants a cache channel cycle.

The channel control recognizes that a cache channel cycle is granted by sensing that
CSH CHAN CYC is asserted.

The channel control then asserts CCL START MEM and CCL CH LOAD MB.

NOTE
CCW WD 0-3 REQ and CCL CHAN TO MEM
where latched, along with CCL CHAN REQ, to
request a Cache cycle. The CCW WD 0-3 REQ sig-
nals are a function of ACTION COUNT, and the
MB SEL 1-2 signals are a function of CHA ADR
34-35.

A word is transferred to an MB every four clock ticks. As each word is transferred, the
MB SEL [-2 counter is incremented, the REQ counter is decremented, and the CH
BUF ADR is advanced until all words are transferred.

When the contents of the request counter are 0, a request for a RAM cycle is again

made to update the MEM PTR (MEM PTR « MEM PTR - ACT CNT). The CCW
ADR and WC are also updated (ADR « ADR + ACT CNT; WC « WC - ACT CNT).

MBox/2-52

11. While the channel control is transferring the words to the MB, the cache control checks
to see if cache has any valid words. If any valid words are found, the VALID and
WRITTEN bits are cleared for these words. Thereafter the cache control returns to
IDLE.

12. CCL START MEM is asserted approximately the same time the first word is trans-
ferred to an MB, assuring that the MBs have at least one word when the core control is
started. Subsequent words are transferred to the MBs faster than the core control can
move them into core.

13. While the core control is transferring the words to core, the EBox can access the cache,
but a core reference cannot be started until the current reference is done.

14. The core control acknowledge pulse counter keeps track of the number of words trans-
ferred and clears core busy after all words are transferred.

As long as there are enough words in the CH BUF (CHAN PTR - MEM PTR) - ACTION
COUNT=0 and the CCW WC is not zero, additional action flag memory requests are
initiated and executed as described in j and k above.

Each time CBUS REQUEST is asserted by the RH20, another word is moved from the
CBUS to the CH BUF and the pointers are updated as described in j above.

‘When the WC of the CCW reaches zero, a request to fetch the next CCW, which is pointed

to by the CLP in the CCW BUF, is initiated.

The operations described above are repeated until either a LAST DATA XFER or a HALT
CCW is fetched. If a HALT CCW is fetched, the channel simply halts. If a LAST DATA
XFER CCW is fetched, the channel continues to execute the transfer until the WC reaches
zero. In either case, the RH20 interrupts the processor when the Block Count (BC) reaches
zero to inform it that the channel operation is done.

NOTE
Various error conditions can be sensed throughout
the entire write operation (Paragraph 3.8.5). In addi-
tion, when the channel halts, both the CCW W(,
which is maintained by the channel control logic, and
the BC, which is maintained by the RH20, must be
zero.

2.11.3.2 Channel Read Operation (NOT CTOM) - A channel read operation transfers data from
main memory to the drive (writes on the drive medium). '

a.

A user program will trap to the monitor when 1/O is required because the timesharing user
programs I/O using monitor calls.

The monitor decides which and how many physical blocks to write. For directory devices
(disks), a file search may need to be done to obtain this information.

The monitor sets up the CCW list in main memory. The starting address is EPT + (4 X Phys
No.) + 0.

MBox/2-53

The Monitor sets up the Massbus drive and the RH20 Massbus controller to execute a write
operation. This may involve a seek and/or a search operation after which the monitor exe-
cutes a DATAO instruction to transfer the device write command to the RH20 and the
drive.

If the channel control is not busy (CBUS READY is negated), the RH20 asserts CBUS
START/RESET (but not CTOM) during the DATA cycle (time slot D) of the scanner when
the command is transferred from the RH20 to the drive.

The channel control responds to CBUS START/RESET and NOT CTOM by fetching the
first CCW. The control RAM, CCWF REQ queue, and MB request logic are involved in
this operation. The address for the memory request is obtained from the CCW buffer, which
contains a CLP.

Memory requests (CCL HOLD MEM) are made by the MB request logic to fetch additional
CCW as long as a DATA XFER CCW is not received. Memory requests are made as
follows:

1. Assertion of CBUS START/RESET and NOT CTOM causes the channel control to
initiate a CBUS CONTR CYC to update the control RAM.

2. Thereafter, a memory request is issued to fetch the CCW and load it into CCW BUF.

If CBUS RESET was asserted by the RH20, then the first CCW is fetched from the
EPT (EPT + 4 X Phys No. + 0).

If CBUS RESET was not asserted, then the first CCW is fetched from the location
pointed to by CLP + 1 in the CCW BUF.

NOTE
Additional CCW are fetched until a DATA XFER
CCW is received.

When a DATA XFER CCW is received, memory requests are made to fetch the data words
from memory specified by the WC and ADR in the CCW. As the words are received, they
are moved into the CH BUF.

When two words are in the CH BUF providing the WC=2, CBUS READY is asserted.

The RH20 responds to CBUS READY by asserting CBUS REQUEST since its two data
buffers are empty.

CBUS REQUEST causes the channel control logic to execute a REQ CYCLE to move a
word from the CH BUF to the CBus. Two requests will be made by the RH20 back-to-back
since the RH20 has a two word buffer. Additional requests will be made every time a buffer
location is empty. The RH20 buffer is unpacked one half word at a time and placed on the
Massbus to be written on the drive medium.

The CH PTR is updated every time a word is taken from the CH BUF. Also, an arithmetic
algorithm is applied to the CH POINTER, MEM POINTER, and ACTION COUNT to see
if there are enough empty locations in the CH BUF to warrant another memory request to
fetch up to four more words from core.

MBox/2-54

1. ACTION COUNT is a function of CCW CHA 34-35 and the CCW WC. This count
specifies how many empty locations (number of words to be fetched next) must be in
the CH buffer before a memory request for additional words can be made.

NOTE
Memory requests cannot be made for words that
cross the quadword boundary.

2. The MEM PTR is advanced by the ACTION COUNT when all requested words have
been received.

3. The CH PTR is advanced by one when a CBUS REQ CYC is executed.

4. The difference between the MEM and CH PTRS + 15 specifies the number of empty
locations in the CH BUF for a given channel.

5. An action flag is set to initiate a memory request if:
15 + (CHAN PTR - MEM PTR) - ACTION COUNT 2 0.

When the above condition is satisfied, the action flag is set and a memory request for the
number of words specified by the ACTION COUNT can be initiated. The memory request
will be executed as follows:

1. Set CCL ACT FLAG REQ.
2. Set CCL HOLD MEM.
3. Request INIT RAM cycle.

NOTE

CBus data requests, CBus control requests, and
memory requests all require at least one RAM cycle
to obtain the necessary information for executing the
request and for reading and writing the RAMs (con-
troo RAM, CCW BUF, CH BUF, and pointer
RAMs). Since there are only a limited number of
RAM cycles available (one every four clock ticks),
an order of priority has been established for granting
RAM cycles. This order is:

1. CBUS DATA REQ for channels 0-7.
2. CBUS CONTROL REQ for channels 0-7.
3. MEMORY REQUESTS for channels 0-7.

Memory requests are made for fetching CCW’s,
transferring data, and for storing status. To ensure
efficient channel operation, an order of priority also
exists for allocating RAM cycles to memory
requests. The order is:

1. Fetch CCW (CCWF REQ).

2. Data (ACT FLAG REQ).
3. Store Status (MEM STORE REQ).

MBox/2-55

Since heavy channel activity (CBus requests for data)
can consume many of the available RAM cycles,
control requests and memory requests are queued so
that they are remembered and can be executed in the
proper order of priority when RAM cycles become
available.

All channels are assured a RAM cycle for each scan-
ner pass. But, when there are more than one request
pending, only the higher priority request is executed.
Therefore, a given channel may have to wait before a
pending memory request or a control request gets a
RAM cycle. The memory request and type (CCWE,
ACT FLAG, MEM STORE REQ) are latched when
made. Then, if a higher request comes in, it will not
be granted until the current request is done.

4. A RAM cycle is needed for an action flag memory request to transfer the appropriate
CCW word (CCW CHA 14-35) from the CCW BUF to the CCW register and to read
the ACT CNT and MEM PTR. This address is needed to address core/Cache. The
ACT CNT, in conjunction with the least two significant bits of the address (bits 34 and
35), is used to set up the word request logic; the MEM PTR, in conjunction with the
channel code of the ACT FLAG REQ, is used to form the CH BUF ADR.

NOTE
After the memory transfer is completed, the CCW
ADR will be incremented and the WC will be decre-
mented by the value contained in the action counter
and written back into the CCW BUF.

5. After the action flag memory request gets a RAM cycle, CCL CHAN REQ, along with
the appropriate request qualifiers, is set to request a Cache cycle.

6. If the cache control is not busy (IDLE), if core is not busy, and an MB request is not
pending, the cache control grants a cache channel cycle.

7. The channel control recognizes that a cache channel cycle is granted by sensing that
CSH CHAN CYC is asserted.

NOTE
The channel control then waits for the cache control
and core control to execute the request.

8. The cache control checks to see if any valid words are in the cache.

If there are valid words in the cache, the cache control moves the valid words into
corresponding MBs and starts a core cycle for those words that are not valid.

If there are no valid words in the cache, the cache control starts a core read cycle for all
requested words.

MBox/2-56

9. As the words are placed in the MB by cache control or core control, MB 0-3 HOLD IN
is negated for one clock tick to load the corresponding MB. The channel control senses
this and sets AF WD READY to move the word into the CH BUF and to advance the
REQ CTR, MB SEL CTR, and the CH BUF ADR.

NOTE
The channel control will take the words only in the
order 0, 1, 2, and 3. Therefore, even if some high-
order words are in the cache, the low-order words
have to come in from core first and be transferred to
the CH BUF before the high-order words are
transferred.

10. Aseach word is taken by the channel, the REW CTR, MB SEL CTR, and the CH BUF
ADR are advanced.

11. When REQ CTR reaches zero, a second request for a RAM cycle is made to update the
MEM PTR (MEM PTR « MEM PTR + ACT CNT). The CCW WC and ADR are
also updated (ADR « ADR + ACT CNT; WC ~ WC - ACT CNT).

12. Core busy is cleared by core data valid counter of the core control when all requested
words have come in.

n. As long as there are enough empty locations in the CH BUF (15 + [CHAN PTR - MEM
PTR] - ACT CNT > 0), additional action flag memory requests are initiated and executed
as described in | and m above.

o. Each time CBUS REQUEST is asserted by RH20, another word is moved from the CH
BUF to the CBus and the pointers are updated as described in I above.

p. When the WC reaches zero, a request to fetch the next CCW, which is pointed to by the CLP
in the CCW BUF, is initiated.

q. The operation described above is repeated until either a LAST DATA XFER or a HALT
CCW is fetched. If a HALT CCW is fetched, the channel simply halts. If a LAST DATA
XFER CCW is fetched, the channel continues to execute the transfer until the WC reaches
zero. In either case, the RH20 interrupts the EBox when the BC reaches zero to inform it
that the channel is done.

NOTE
Various error conditions can be sensed throughout
the entire read operation (Subsection 3.8.5). In addi-
tion, when the channel halts both the CCW WC,
which is maintained by the channel control logic, and
the BC, which is maintained by the RH20, must be
zero.

2.12 ADDRESS AND DATA PATHS
The specific address and data paths in the MBox are shown on Figure 2-13.

MBox/2-57

M8 CH
CH TR BUF LOAD

»
MB CH BUF ': CH BUF CH BUF 00-35 @
H
oo
CLKE
0 33
¥ T T]
s — [
CRC CH BUF ADR O- 6 H CH BUFF ADR O-6 CHAN BUF
s wey) __
1 1 (]
o i 1
CCL CHAN BUF EN 12 { T
cLk M8
: CRC2 BUF.
N MB SEL
88 00-3%
s
[] - o) 33 MB 00-35
v _SBUS DATA 00 - 33 i MB SEL1-2 l_—@
H ! I (Me2) X
- 1
ccw mix 00 -3 y ; ! iMBo [w we2 |83
| |
a7 e L_‘.," 3 oL MBREQT2 0 335 | | ‘ '
E&.{ cowz T cCL MiX | { o Wiz | 2324 38
CoAD ; T W SEL | (MBe) | MBO HOLD] —3,
- ¢ 3 ' Twmi Moo] ue ,
cCw CHa 27-30,34] MTO 2 MB2 HOLD (M8 2) 2
i 14-26 et MBS MOLD . 3
CCW CHAN EPT prosnpe i . k:oo 38 v
CCL ZERO FILL w2 - _
RAM o — 1 B INSEL SEL_/seL [iwear] cn\—————""" ANY
i
3 T 5 e 7 2P|
[COW CHA 34-35 CCL CONS 0-2 L MB CH BUF I° 1" cacwe oata o0-3s @
i CCw CHA 14-33 i
-— 14
1 2%.'{‘;& ssvsa 33 CCW2 ALU MINUS | MEM DATA IN 00- Bi@
\ o ! v\ tccws) Cowz ALU PLUS
4 35
{cces) ceL 1 T 0 ¥e 00-35 7y
%o_nzs 1 T i
60 | 02 i ccw Bur ——] CCW BUF
CCL WEM L1 i3 1 1 13 (MBa) ADR 0-3
PTR EN (SUB) 1\ tc?f / T T CCW CHA 00—35@
ccL cew 1 | 5
03 3 BUF WR
= cCw BUF
O CODE | 00- 35 IN AR 00:35 (7Y

SBUS ADR HOLD

SBUS ADR 14 - 35 XLATOR PMA 14-35
(MTQ4) O

10-1484-a

Figure 2-13 MBox Address and Data
Path, Logic Diagram
(Sheet 1 of 3)

MBox/2-58

() CH BUF 00O-3%5

CBUS OUT BUF (B

— "SH ADR WR PULSE

cBUS D (1750
i
CH REG 80-35 cBUSD [IRE @
CH REG HOLD
PT INO
CACHE DATA 00-3% you |
L&
o 138
MEM TO C o %
SEL -2 |
i CACHE wRITE 1 CACWE DATA
CH REG 00-35 | 3l Nas (THD -3)]
> -~ ! — i f — |
; v sl | 2 | 3 i |
' i {
@MB 00-35 i MEM DATA IN 00-3% 2l ¥ ' 1t 3 l
¢ i c ic ¢
| MATCH [MATCH (MATCw |MATCH |
' AROC -35 °c 2 : i2
o |
CSH O-3 VALID MATCH cHoal licHoal kcHDe {
) csH USE |
. ! o ¢ T i
: . woLO MEMTO T EN Ll T 17 csm En i
: o] Zt 314 q] I H CS% DATA CHX3
P &l d ! ?
olLﬂu M i [
s‘ X ' 1 i H '
; i 3 2 H
; exs | e 2 o EEREE 2 03 .
i i - ; . ! .
i e7lzi314l, REFILL i [e O O 0 . PTi4-26 PTI4-28 /N
CACHE DATA 00-35 | | | FF ———*™" X ‘c .&— ~
@ ‘ — LA ! i3} 2 Jes S Jenx N
i [Lo il i3 03 o , 264 2604 | 2614 | 26 | ‘) T) |
@MEMDATAIN 00-35] | o 213]4%0; z13jor112[3] ° T2z 1 3 ! g L T S [
: ‘ CSH USE I é CSh DR 1£-26 cHavz ! CACHE ADR 27-35
! WR EN |MRU{D LAU; VALID |WRITTEN CACHE ADR DR < S + WBx CSH ADR 27- 12 (’D
M8 00-35 L 5y ! i (CHa -3)
o= ‘ cHx3) | rcHx2) ‘ (CHA3) CaM 1426
: 2rl0j2i3iel ! i z 2 12 iz : A—©
| 1 LI B I
i 1 CSH USE [LSH O-3 WREN : s
| i INO-: v PMA 14 - 26) : M2 14-26 @
CCW CHA 14-35 i P
@ 1 H

@AR 00-35

T VM4 18-20

CSH 0-3 vaL WR

! CSH VAL WR DATA —l
CSH VAL WD 0-3 SEL —

CSH 0-3 WR WR
CSe WR WC O-3 SEL

CS™ WR WR DATA

VM5 18-2D

DU 5.1 -

O PMA 14-35
!

) CACHE DATA 30-35@

| 1 [I '=
20 4 2 0% I 10 il 14 }oo 04 16 18- .9 ﬂ i 29 %‘v&?ﬁ‘v"i;
(CHxa) (ccws) (CHS) tCsHT) DIAG o6
RS 10 PPl le 7 oTife[sialstie|? ofrzlajalsie]?
~ JR—
DIAGNOSTIC BITS
a8a &

Figure 2-13

MBox Address and Data
Path, Logic Diagram
(Sheet 2 of 3)

MBox/2-59

CH CBUS

RECEIVE
ENA
cBUSD ¢ ITE
: DATA 00-3%
XLATOR
®csusa(IRE {TR21-2)

@PT IN =

PAGE FAIL T

PAGE REFIL 2 D

CLK PT OIR WR

PY MATCN (5 () g EBOX REQ QUAL
. PAGE FAiL HOLD
you| _ (1 En 1 t
\ﬁf_\ _1:—-1—— ' : + PF 80X HANDLE
i i | LEFT $ RIGHT .
N R e an A A AL e G S
1 PMA A .. | A H PAG i- 21
| ! 14-35 : sace w| |(PAG -2 P owr | G‘] o SEL 12
se_ TEST ! 8 SEL -
‘ 1 oacic e ! pivs | | 1P \ i pHYs t
:] | (PaGA) sj I AR s IA‘oa" :
CAM 14 26 ! .- ! it - —
255 il CLK PT DIR WA

. b
i)’] ! i 1‘
' Fie of B —

F:SR B N} 3

1
. M8 SEL -2 CACHE TO M8 34-35 | Ma 13-35 | E
| . p 0 T +
i ie’inc wlz PMA HOLD o UBR SEL "
. ! B 2 | 7- A .
@ﬂ -2 e 12 1o | 32 438 UEBR 14 (a(P 2 EBR {(PMAI) €80x EOR } N
[& Uk T 3 leoze % €£BOX EBR ;
i ADR [. 267 F UBR (PMAI) je—SBOX EBR :
27-33 ‘ | EBOX CCA 2
H [P b————— F
; CsH PAR | cca (PMAZ} £
N PMA EN c
CACHE ADR 27-35 | | o 7 s ; E
@ MBX CSH ADR 27-33. 27 33 38 R CN CCA SEL 1-2
REFILL omA wOLD (MBCII| | (Pmaz ERA SEL
CAM 14-26 HOLT : CSH EBOX
| LOAD REG

PF
CO0E__ 0

@ PMA 14-26

@vm 18-20
AR 00-35 |
(>—“_ 1 ' LOAD EBUS REG
@(:ACHE DATA 00-35) . EBUS REG (MBC1)
‘ ‘ | AR 00-35

O cra 14-35 L : e - - S T CACHE DATA 0035
@2 14-35 | j

£RR CQODE |

DiAG BITS

DIAG READ
1AG REAI FUNCT 17X

FUNCT 16X

e EBUS TND

N

0 orama-g

Figure 2-13 MBox Address and Data
Path, Logic Diagram
(Sheet 3 of 3)

MBox,2-60

The functional elements in the address path between the EBox VMA, the CBus, and the SBus involved
in forming the physical memory address are:

Physical Memory Address Mixer (PMA)

Page Table and Page Table Directory

User and Executive Base Registers (UBR and EBR)

Cache Clearer Address Register (CCA)

PMA HOLD Register

Cache Directory

Cache Address Mixer (CAM)

Channel Command Word (CCW) Register and CCW Buffer

oS0 o a0 o

The correct physical memory address is formed by the PMA under explicit control of the cache cycle
control. The desired address mixture is selected and held when a particular cache cycle is started. This
address is then used to address the cache and core memory if a core cycle is started.

The PMA is a 22-bit eight-input mixer that receives various types of addresses for forming the desired
physical memory address for a given cache cycle.

The page table contains 512 entries that are associated with (indexed by) entries in the page table
directory. Each page table directory entry identifies four adjacent entries in the page table; con-
sequently, the directory contains 128 entries. Both the page table and the page table directory are
addressed by the virtual address every time a cache EBox cycle is started.

The UBR, EBR, and CCA registers are loaded from the VMA. The contents of these registers are
made available to the PMA so that the correct physical memory address can be formed by the PMA.

The PMA HOLD register is loaded when a core read cycle is started. This address is then used to move
the words coming in from core into the cache. This address needs to be held since the EBox can issue
another request and can get into the cache after the first word comes in from core.

The cache directory contains one physical memory page address location for each corresponding
quadword location in the cache data buffer. This address is made available to the PMA so that the
correct physical memory address can be formed by the PMA for a write-back operation.

The cache directory is addressed by the VMA, PMA, or the refill address from the PMA HOLD
register, depending on the particular cache cycle being executed as outlined in Table 2-9.

Table 2-9 Cache Directory Address Sources

Cache Cycle Address Source
CSH MB CYC PMA HOLD 27-33
CSH CHAN CYC PMA 27--33
CSH EBOX CYC VMA 27-33
CSH CCA CYC PMA 27 -33
CSH PAGE REFILL CYC PMA 27-33
CSH WRITEBACK CYC PMA 27--33

MBox/2-61

The CAM, a 13-bit four-input mixer, provides the means for distributing the address from the appro-
priate cache directory quarter to the PMA during a write-back operation. The mixer is controlled by
the CAM SEL 1-2 code, which is a function of the cache quarter in which the written words are
located.

The CCW buffer contains two words for each channel. These words supply the channel WC, ADR,
CLP, and status bits. The CLP (or the address) is transferred to the CCW register and held when the
channel issues a request so that the address can be selected by the PMA for distribution to the SBus.

The functional elements in the data path between the EBox AR, the CBus, and the SBus involved in
transferring and storing data are:

MEM TO C mixer
Cache

MB IN mixer

MBs

MB SEL mixer

PT IN mixer

CH BUF IN mixer
CH BUF

MB CH BUF
CBUS OUT BUF
CH REG mixer-latch
CCW mixer

CCW BUF

S e a0 o

— T

=

Some of these functional elements are controlled by the cache cycle control and core cycle control
when a cache cycle is executed and some are controlled by the channel control when channel moves
data between the MBs and the CH BUF or the CCW BUF.

The MEM TO C mixer, a 36-bit four-input mixer, provides a means for adjusting the data path within
the MBox. The MEM TO C mixer is controlled by the MEM TO C SEL -2 code produced by the
cache cvcle control when a cache cycle is started. Table 2-10 lists the paths-that may be established by
the mixer.

NOTE

MEM TO C SEL 1-2 code 1 is used for transferring
the first word coming in from core if EBOX SYNC is
not seen, and for transferring the words following the
first word (if any). MEM TO C SEL 1-2 code 2 is
used for transferring the first word coming in from
core if EBOX SYNC is seen, and for transferring the
word coming from core when the SBus diagnostic
cycle is executed.

MBox/2-62

Table 2-10 MEM TO C Mixer Select Codes

MEM TO C
SEL 1-2
CODE Data Path Function

0 CSH < AR EBOX WRITE

1 CSH < MB EBOX READ
AR « MB

2 CSH « SBUS EBOX READ OR
AR < SBUS EBOX SBUS DIAG

3 CSH « CH REG DIAG Function

The cache data buffer contains 512 quadword locations that are associated with (indexed by) corre-
sponding entries in the cache directory. The cache data buffer is addressed by the PMA or the refill
address from the PMA HOLD register concatenated with the MB SEL 1-2 code. PMA 27-35 are used
for all but the cache MB cycle. When a cache MB cycle is executed, the cache is addressed by the refill
address concatenated with the MB SEL 1-2 code to move a word from the MB into the appropriate
cache location,

The MB IN mixer a 36-bit eight-input mixer, provides a means for adjusting the data path within the
MBox. The MB IN mixer is controlled by the MB IN SEL 1-2-4 code. By adjusting the select code, the
MBs can be loaded with data from the following sources:

a. Cache

b. AR

c¢. CH Buffer
d. SBus

e. CCW Buffer

The four MBs are 36-bit memory buffer registers for temporarily holding the data as it is moved from
the source to the destination registers or RAMs. In effect, the MBs serve as a buffer to normalize
(compensate for the differences in speed) the transfer of data between the source and destination. The
sources for data are selected by the MB IN mixer and the desired destination is selected by one of the
following mixers:

a. CH BUF IN
b. PTIN
¢. MEMTOC
d. CCW

The MB SEL mixer, a 36-bit, four-input mixer, selects the contents of one of the four MBs when
transferring the data to the destination.

The cache cycle, core cycle, and the channel controls all can affect control of the MBs and their input
and output mixers.

MBox/2-63

The CH BUF IN mixer, a 36-bit, two-input mixer, is controlled by the channel control to move data
into the CHAN BUF from the selected MB during a channel read operation, or from the CBus data
lines during a channel write operation.

I'he PT IN mixer, a 36-bit, two-input mixer, is controlled by the cache cycle control to load page table
entries into the page table from the MBs or from the AR.

The CH BUF contains 16 locations of buffer storage for each channel; consequently, there are 128
locations in the CH BUF to accommodate all eight channels. The CH BUF is addressed by CH BUF
ADR 00-06, which is a function of the selected channel and the buffer location to be read or written.
This address is formed by the channel control.

The MB CH BUF is a 36-bit register that holds the word to be moved from the CH BUF to the MB via
the MB IN mixer during a channel write operation.

The CBUS OUT BUF is a 36-bit register that holds the word to be moved from the CH BUF to the
CBus.

The CH REG mixer latch is a 36-bit, two-input mixer combined with a 36-bit register (latch). This
mixer latch is controlled by the channel control to adjust the two half words coming in from the CBus
(cach half word is one word from the drive) in the correct order to accommodate both forward and
reverse read operation of a magtape drive before moving the word into the CH BUF.

The CCW mixer, a 36-bit, two-input mixer, is controlled by the channel control in executing the
following operations:

a. Transfer a newly fetched CCW that was placed into an MB by the core cycle control from
the MB to the CCW BUF.

b. Transfer the ADR or the CLP from the CCW BUF to the CCW register when the channel
issues a request to read or write memory.

¢. Transfer the status from the CCW BUF to the MBs when the channel issues a request to
store the status words.

The channel CCW buffer (CCW BUF) contains two locations of storage for each channel; con-
sequently, there are 16 locations in the CCW BUF to accommodate all eight channels. This buffer
contains the WC, the ADR, the CLP, and status information for each channel. The CCW BUF is
addressed by CCW BUF ADR 00-03, which is a function of the selected channel and the buffer
location to be read or written. This address is formed by the channel control.

2.13 CONTROL LOGIC
The MBox control logic is introduced here in two parts:

a. That logic that is involved in controlling the execution of cache cycles and core cycles. This
logic is shown in block form on Figure 2-14.

b. That logic that is involved in servicing CBus requests and issuing channel requests for core
cycles. This logic is shown in block form on Figure 2-15.

MBox/2-64

wcon

ozr O

ozp O ocww

CORE CYCLE CONTROL

MB CONTROL
N .
I 1 f 1
—— EBOX_SYNC HOLD
A7B CHANGE
e ©
ceL ~ceL
CLK INT a}:‘RT CHMB CHAN
CLK BUS CLK o SEL 1-2 YO MEM
CLK EXT J
O]
A/B CHANGE | o
COMING ERA
< | DATA VALIC
L |
A H MEM
: MEM START c SH T1
starT ace |7 START MB SEL (-2 A oo~ CLR ERd e CSH WR Fi
o (MBC4) - (MBX2) (MBX2) AND CLR RQ WR FROM MEW NXT -
° T —CLR CSH3,6, CSH_MB CYC
[1 M8x2) I -
MEM T FuEM ¥ ! we we :]
START |START CLR ceL | | ‘RQ ANY | !
cew | | :
t——>{ ACKN PULSE i EYaR S | [
scan 28 e L f ‘ | i
! H }] !
(MBC4) ; i : . ; ~CLR PAGE REFILL T8 Do
: NXM ACKN i . i D E— :
RQC-3 ol ' L RAO-3IN Iggoﬁugssrs MB 0-3 WR RQ I MBO-3 54 TOMB CSH WD 0-3 WR O
| | (MBX 4/5) i #20-3 CSH WD 0- |
L cI, | ! ! (MBx2] | Max1,2) Do-3 vaL —@®
' ONE WORD WR TO i -CSH CHAN CYC J
H | CSH WD 0-3 VAL] b : 1
3 PMA ! !
i i PA34-35—= ADDRESS 34-35 L CTCMB 242
] SE0RSR 8US ADR 34-35 : dOROrer |.coRE ADR 34-35 SORE WD 0-3 gngREEO*D - == PAGE REFILL T8
— (MEx2) (MBC4) (MBX2) (MBX2,3) ’ WRITEBACK T2
i ¥ T SSH T2
| | S
; ANY
: i AT,
i ! : DATS VALID | CSH CHAN CYC :
P : | ! : ; ; CSH PGRF 2ND CYC :
L__.h__.' 1 1 i H
! DATA VALID COUNTER CONTROL ; ; ' CZL CHAN TO MEM j i
1 : SU(SE < 35 .
Al ass —* COUNTER CORE ADR 33-55 £S5+ EBOX CYC_ CSH CHANCYC |
(M8C4) CORE READ IN PROG M8 INPUT CACHE TC MB T3 ONE WORD WR TO :
¥ T cacke TomB T2 ‘ MB IN (MBZ!, MBX6)
1] | sevl.2.4 i]
\ RD PAUSE 2ND HALF : : T ¥ MB 0-3
(MBCa) 1 ‘ i | PMaA32-35 ! HOLD TN
RD RO pagl NXM DATA VALID - ‘ . .| CCL CHAN EPT
; (MEX5) s | CCL CHAN TO MEM
i ¢ _‘ : AT i CORE READ IN PROG CCL CH MB SEL (-2 %AR?-'?EE REQ E CORE RDRQ :
: * REQUEST : CONTRO |
WR RQ ; — T e {(MBC3, MBX5) |
x : e CYCLES |
C i o ¢ ¢ | PMA 14-35
A i (MBC4) i i
T ; | { CACHE TO MB 34-35 ®
o] ‘ " APR WR B ! >
ADR PAR T ‘ > WR BAD ADR PAR !
R PAR |
(MBC 2741 K(PMAS) | i o R
'SBUS ADR 34-35 : I R —0
! ;
(MTOG1
ADR 4-35 - O ERA i
SBUS_ADR H T YL I I ;
o ¢ RQ HOLD
DIAG MEM DIAG e o CasLE . R [I
(MBX3} T T

Figure 2-14 Cache/Core Control

Logic

Block Diagram (Sheet 1 of 3)

MBox/2-65

CACHE

A

CYCLE CONTROL

v

EBOX SYNC HOLD

CSH WDO-3 VAL

TIME STATES AND CONDITIONS

CSH LRU I-2

H
£ BOX SYNC OLD@

CSH LRU ANY WRITTEN

CACHE STATUS (CSH3, CHA3, CHX4)

1 RD FOUND-ANY VALID MATCH-ANY WRITTEN MATCH-CSH LRU ANY WR?TTEN@

TIME STATES AND CONDIT/ONS

®- :
H
“HTTEN CSHO-3 WDO-3 WR '
BIT SEL
(CHA3) CSH 03 [CSHO-3 !
TCHES) WD 0-3 (WC O-3 !
Yirui-2 CoH SE T vaL C jwR |
CSH WR FROM (CSHB, MRU i ! LAY 1 +) !
©ueu NXT . o emx3i L ; . WR USE BITS WRITE
! 1 1 ! (CSMB) i
i i ADR27-33 i i . !
CsH 1 + + !
i VALID BIT i CSHO-3 WDO-3 VAL i |
SEL AND HOLD ‘
| SEL AND how N OR 02-06 : CSH REFILL RAM WR waiTe —
; ; L _ OOKUP CACHE DATAO0-35 |
i ' i IANY vauiDl | SELECT LRU ADRQO-Q! Lmaas) ' |
CSH WD O-3 WR ; “THOLO. T (MBC2. CHX3) : oua enmerie | S . T l
| ¥ L RAM WR i batA v oW H
H VMA CACHE ! ¢ (] Pma
®csﬂ W0 0-3 VAL ;3§3 ~ Rz erse [_!m FR]A (CHD1-31 1 (CHx2) icwaz Y SEL -2 34-35
IVALID N N
{mMaTCH — ++1 (MBC2, L
CAM SEL H | csHe) ¥ ¥ CSH WR WD 0-3 EN
| -2 . : ‘L——' csne-s] A REEE CSH WR SELL ALL SELECT
: ¢ + - vauidl CSH VAL WD O-3EN | (MBC3)
[: FORCE vAL MATCH MATCH CSH VAL SELL ALL
REFILL HOLD REFILL HOLD MATCH HOLD T .
(MBX3) . PT14-26

(CSH3.MBC 1, 5)

FORCE NO MATCH

pPMA |

— _— O]

CSH WR wR DATA

;CSH WR

DATA
(MBC3)

| 8-26 ATA

i iy : IFROM , -3 CSK_vAL WR DAT
j [— {MEM NXT | PMaia =35 PMA 14 - 35 ®
: IMATCH : ADDRE 5SS 8l mBsEL -2

‘ ‘N ; | (CHat-3) a0r 27-38} §
: : L] FILL Al :
: gg;_g;m L REFILL ADR EN i Ik ! 5 E_E,.. iiLDaND
i EN
i t (MBx:) L PMA 14 -26 X M8 X | M. 1,’:}35
; S WRITE P WRITE CSHO-3 csHO-3 L PMA HOLD

L BA%K ! . VAL WR WR WR (MBCI}

| v !

| ¢ ———————j’ WRITE 1

LANY vaL HOLD - (MBC2, CHA3, CHX2! 1

! ¥ U —
ISHC-3WREN . :
i = [. REFILL HOLD |
; I CYCLES
~NCYCLES i CYCLES H ®
PMA 14 - ,

@CACHE TO MB 34-35

| |CACHE TO MB 34-35
: ®

+
VMA 18-20 O
h

OHBRODI

ME REQ IN O
i
PMA 14~ 35 @

TIME STATES AND C
CONDITIONS

U_Vﬂ [N. REF-LL PAM WK

(DeOx SBUS DIAC/APR R BAD AOR PAR

&
EBOX SBUS LI "L@

ACERRTLYY

Figure 2-14 Cache Core Control Logic
Block Diagram (Sheet 2 of 3)

MBox 2-66

C

CACHE CYCLE CONTROL
A

& I
GILEBO* SYNC HOLD £80X SYNC HOLD
EBOX SYNC A
(®)-Rurouno= Any VALID MATCH - ANY WRITTEN MATCH ~ CSH LRU ANY WRITTEN CORE BusY HOLO
i CSH E80X REQ QUALIFIERS
TATES AND CONDITIONS STATE_GEN AND REQ
@lw s < CONDITION LATCHES | EBOX TO IN |
(CSH 4-6, | M8X4) cca RE
GUALIFIERS
RESPONSE ; MBOX RESP IN_ | ¢
DATA VALID (CSH2) 2 R RS e ¢
»
IDLE 1
(€SH 1) N
T
€
R
F
READY TO GO CLK_EBOX SYNC D |y
(CSH1D <
€
RETRY NEXT CSH_EBOX RETRY REQ
(CSH2) *
CCw CHA £B0X REQ QUALIFIERS
14-35 {
T 14-26 CCL CHAN CCL CHAN REQ
PT 14-
@ PMA EPT RANT PRIORITY £00x REQ |
SELECT SEQ SRANT B NETWORK ™ 45 REQ
(PMAS) (CSHI) [t
cca REQ
'WMA I3,
@ PMA 14 -35 18-21
EBOX]
T CSHI) REQ ENA
CCA - CHAN
CYC TYPE
ROLD
: —lﬁlﬁaml(TZI
aj, REFILL T4 }—1 |
' A REQ CCA REQ | ¢
M | CONTROL [/
: (MBXI, PMA2)
ool H EBOX REQ QUALIFIERS
{
| i 1
CYCLES | CYCLES CYCLE LATCH N
@ l (CSHI, PMAS) g
R
CACHE TO MB 34-35 f GATE VMA l MBOX GATE VMA 27-35 F
® o (CSH3) —a
M I A
@ VMA 18-20 VMA 13-35 13
o} M8 REQ IN
: €80X REQ QUALIFIERS
PAGE FAIL HOLD
A 14-35 | T S——
(i}—'=M | [PAGE FAIL HOLD R - PF £B0X HANDLE
oK ISEE ACCESS FAIL | ; T} PEEROY PATOLY o
TIME STATES AND CONDITIONS i
G. } REFILL e J
fAIL ADORESS CLK PT DIR/ PT WR
LOAD] 1AG CACHE
EBus BITS | paceD |
REG | | PT CACH (PAG) ___ EBOX REQ_QUALIFIERS
i ! PTI4-26 |
EBUS REG PF HOLD (-5
AND MIXER PT
oM BT PUBLIC - PT CACHE
PT IN oo-ssJ €8US 000-

DA EN REFILL RAM WR

APR_WR BAD ADR PAR/EBOX_SBUS DIAG
\} 10-1486p

Figure 2-14 Cache/Core Control Logic
Block Diagram (Sheet 3 of 3)

MBox /2-67

O DIA EN REFILL RAM WR —
@ EBOX SBUS DIAG

cc
BUF

CSH cew CHAN
CHAN 14-35% BUf TO CHAN
cve N WR MEM REQ
MB REQ CLR { T T t
CHAN EPT RaM REC D
| N
!
i MB REGUEST
! TIMING LOGIC MB_CYC >
i (CCLZ CCL3, CCL4, CRC3)
—
! (w8 REQ TIMING CCWF. ACT FLAG, MEM STORE CLEAR]
:] T 1 :
1 f *
; i HOLD MEM
| : | | (core ReQ) |
b ! M8 RiP *_—“ i
|
i ;
H I
‘ s |
i RAM ADR - 23R
Y PRIQRITY -
w0 owe ‘ | NETWORK MB REQ QUEUES
WD 0-1 REQ =it i . |
-— | CCWF REQ | ! GAND - ! :
1 f ATE | CCWF REQ ENA ccwe-" cows i [nes
CSH CHANCYC . womp | #O! @ — | i fecr2) T - 2 R | ciority CCW@-7 CCWF REQ | resisTer - ey LCRE cowr B
. REQUEST - ' R ! ‘ CCWF ADR 1-2-4 | SNCOOER SR Gowe-T cows =
MB 0-3 HOLD IN Foue s | At:*i“:no..-\.,l o 2 cowe: cewe: | HOLD e-ooeR
CH BUF wR (cowa, CHCa, — + GATE —+ ACT FLAG ccwe-7 acT LW CRC acT
ceLa, coLal woz e fccLz ! e | REQ ENA FLAG IN LS EN
CCWF TP cowa | R T ' 1 ACT FLAG ::'P,RD‘;; CCw@-7 ACT FLAG REGISTER | CCW@-7 ACT
- ! stone o | agR 1:2-a| ENCODER iccws) | FLAG HOLD
i © TRes be— i .
wi3 | * GATE [MEM CCw@-7 MEM TRC MEM
tcce2) [, stoReenal ccwp-? STORE ‘N SORE EN
] | ' ' wew sToRe| U ONITT | MEM STOSE PEQ | REGISTER Tecwe - mew
! } 4DR11-2-a| ENCTOE 1 (ccwe) | STORE HOLD
lconTroL W .
| | | *
) ! 1 9y
i : Cw BUF
i ' ; [S | CC% BUF BB N o cHan cve
: 3 ! Ll ERR REQ
START MEM : CCLz. CCw: ERR ADR 0-2 REGISTER
MB CONTROL™ !
MB SEL1-2 AND | RN | s
- REQUEST : T . | cow BLT
CH LOAD MB COUNTER 20T CTR O-2 i > H 85R93_~
2
(ccLay I !
T | + FUNCTION OF MIGHEST PR,ORITY
L len 4 ccw s
i | Cow ot MB REQ PENDING, TRUE FGR ST EN
! { ! DURAT F =TS
D r ! URATICN OF MB RIP PEA SN
e | | WD 0-3 | e
™ REQ o 1
0P COOE i
L06iC . aCT CTR C-3 N
(REVERSE} (cco2. O
COME WATNG =
—————{y
CCWF T
: cow BuE o2 m] | —— S TR
i !
| - i CHA 3a
I g "
S —
cHa 39

Figure 2-15 Channel Control Logic, Block Diagram

(Sheet 1 of 3)

MBox /2-68

RAM REQ

MB CYC

RAM ﬂE!):@

CBUS REC CYC

O

CHA 34-3%

CCW BUF
02-13IN

COMB LOGIC
{CCL53, COWY)

T

d

CBUS REQCYC

M8 CYC N
O]

READY
F—{c

)
i
‘ I AR 1 - wOR
I i ! 1 ™ RAM OUTPUT LATCHES T2 | -T LAST WORD /%)
i ACTION COUNTER| | |MEM POINTER| CcHaN POINTER| L . 1 !
! INPUT LOGIC : INPUT LOGIC 1 INPUT LOGIC | : ! b | caron
i (CRC2) | (CRCTY i (CRCY) | [‘ 1 .—._.C
H T : |
RAM ‘I H i i
ADR 1-2-4R PSS o7 MEM ! CHAN
= trz-s jcRe-2 PR §-3 | PTRB-3 1
: N N i ! IN ! RAM
N o T ! ! [ouT
] T 118 [cre2 cRe3 creice.6iccu6 e eoeleoin T T Tioe cace cRcs cRa.cacalores cRe2lcRE3|CRCS]
; ! i [! i 1) ioHe A - o] i lcHericncr, WR RAM D
{ H i E = oz B e k3 H i ¢ |
o I HRE PP e & = EEly T s g o S o
MEM PTR ; CHAN PTR : 0 Fow eI & W E etz LD o Ele w, o %2zl
i i L - x = £ .oz o 4 CONTROL ¢ prrt - § <& R ERR
aau | i | RaM . D F2:58 .2 § o5t TF 0 isrt oeem IR S x - oz 3og % &2 RamanRi-2ar
:cwcn‘ | ICRTY s SR SR = S 3 o ¥R e I S A A Poe R E Heeme——
i i P P ELL R ERE- O LD S S R "I 2 |- J
H to - s © e gasnen ey e sz H B
| i | [co- z H . P = ¢
c 2|3 | ol ;23 H . < | | | et a7
| MEM : T mew . ! 5 7 2z 3 & 5 =& e w2 B
i eTRP-3 | {PTRE-3 . |
i —_— |
' ! ! RAM iN 1
i L3 |
| RAM CYC o
| e’
Tg+T1 | [MB —CH BUF) ‘L
1 (CBUS — CHBUF! AF REQ ENA cToM o~
1 ACTION FLAG. CHANNEL SIFF PTR GE2
T2 (cHBUF —cBUS! BUFFER POINTER ARITMETIC n
i AND CHANNEL BUFFER ADDRESS Crl BUF EMPTY STORE ~
3 ! Lo6IC PTR DIFF = 0/15 '
B u(cHBUF =N8B! s
(cHe (CRC1,CRC2Z, CREE) oM
ccw BUF : ST/RES INTR
ADRG-3 : P ERROR REQ_ /™
i CONTROL RAM INPUT AND kj
; MB REQUEST ENABLE LOGIC DONE NTR
i l CH BUF MB REQ EN o
CCWF EN H ADR 0-6 CCWF_EN
ACT FLG EN ‘
MEM STORE EN ACT FLG EN . —ART INT
(Ox ORE EN | START NTR o
! MEM STORE EN ST/RES iNTR A:SO
| | ST/RES INTR A8
ACTCTR -3 | RESET INTR o~
¢ JoelCTRO) - &
Sy COWF_WAITING
J@ccwr T2 START :
¥ ¥ ¥)
! ; |
cHaN cHan cow BUF
PR ERR NXM IRR 00-13 iN
SEL1-2-4E SEL 1-2-4E '0)

-2087

Figure 2-15- Channel Control Logic,
Block Diagram (Sheet 2 of 3)

MBox/2-69

CONTROL 18 {\ .
RAM REQ @]
PRIORITY COMB. LOGIC
NETWORK CBUS REQ | SCNCT erea REQ C CBUS REQUEST €
M8 CYC (CRC2) ccL3. coLa .
®- 0)
READY READY CBUS READY E
G €20 REGISTER -
(cHen
Ry LAST WORD _m CBUS LAST WORD E
LAST WORD ouTeuT
@ REGISTER L
teHen
CBUS ERROR E
® ERROR ERROR lcuu }
: -T2
! Ram CBUS REQ CYC
CONTR CYC
cve 7 (CRC6) CH SE.
WR RAM TRC2 , M8 CYC SEL oran Secooen CBUS SEL
cres |13 N\ i . N I S-TE
i j (CHC S}
| CLM A PHASE
! RAM ADR |e—1 eAs
RaM ADR1-2-4R : RaM ADR1-2-4R | SELECT | SWNS
! LOGIC T CLOCK AND | =k (n
! (CRCS) SCANNER 3 -
¥ LCHC1,CHCS) Lo O1AG LDAD < E
: | RAM FUNCT 070 2 3
i cow BUF | ADR 1-2-4R x
ADR 0-2 CHP-7 N s
: CTOM IN DECODER |qud CHX CTOM ~ CBUS CTOM E g
CH@-7 CTOM ! REGISTER [o > CHC3) (once CHES
ICHCH | CTOM HOLD | pECODER '
@.R“‘CC—._ : chen |7
; i i
CTOM [MIXER : j CH@~7 STORE ! CHB-T
0 : P T L - i i CHx caus
! o — REGISTER | STORE IN DECODER SSore cBos
i icHe) icHe2)
sTore | MixeR- lo STORE ENA| MIXER ReC -
(D— raten [o tene 2! i CONTR 1-2-4 |
cuc2) [+ NC . l CAD- T
CONTR CONTROL REQ QUEJES
t CONTR CYC PRIORITY NET oo REQ BRIORITY
- cHE-7
{ Hi —
ERROR REQ 1 CNE INTR ENA | MIXER . (cHea ¢——1 REGISTER | DONE INTR N | DECODER -1
(eHe2) i CH@-7 DONE INTR o (eHES) CHX DONE DONE E
DONE INTR }‘gg: :
O - - I -
icHear =N STaRT . REGISTER | SART NTR R [~ y
T [inTaEna| wmixem . CHB-7 START INTR : EGISTE TART INTR i | DECODE! A g&,g .
7o (T < i (cHe) (cHea) il T l
START INTR {1 MIXER crez HC2! } 1
®=srmss 1 i 4) : | CHP-7
i NT | -
INTR A/B l fevear = MIXER . CH@-7 RESET INTR | REGISTER | RESET INTRIN | DECODER [*]
SESET INTR ‘A < . , o
cre2) (CHC4) (cHea) CHX RESE ts.5 eESETE
T INTR MIXER i CHCS
7~ RESET INT i, e
! teaca) [N ¥
CHE- 7 v
i b sonTe sd'?:r ! CLx T2 .
-7t -2- i T3
©=STAHT | ' [MIXER HOLD i
i (CHCa) i
5@ SECODER cng-r
’ (CHC a1 RESET INTR HOLD
DECODER
{CHC4)
@ SEL 1-2-4E

10-2098

Figure 2-15 Channel Controi Logic, Block Diagram
(Sheet 3 of 3)

MBox/2-70

The purpose of this subsection is to provide some insight into the nature of the MBox control logic. It
is not intended to be a detailed description; rather, this subsection attempts to show how the various
control functional elements hang together. Appropriate prefixes are included on the block diagram to
permit a student or reader to jump directly to the logic print that shows the actual logic.

NOTE
Refer to Section 3 for the logic description.

2.13.1 Cache and Core Cycle Control
The priority network (Figure 2-14, sheet 3) grants a Cache cycle to the pending request having the
highest priority. The assigned priorities are:

1. MBREQ

' 2. CHAN REQ
3. EBOX REQ
4. CCA REQ

When a request is granted, the appropriate cache cycle latch is held, the required physical memory
address is selected, and the time state generator is started. The time state generator will then step
through a specific set of time states depending on the request qualifiers associated with the granted
request and on what, if anything, is found in the cache if it is implemented.

The cache and core cycle control block diagram shows, extending from the time state generator and
from the cycle latches, a time-state bus and a cycle bus, respectively. These buses have been defined for
the sake of this presentation; they are not so defined in the actual logic. As can be seen by reviewing the
block diagram, elements from both the time state and the cycle bus extend to many of the control
elements. For the most part, a control element for the cache and core cycle is simply an AND function
of a particular time state and a particular cycle. .

2.13.2 Channel Control

The channel control consists of essentially two autonomous controls with data, status, and control
buffers (RAMs) in between. One control services CBus data and control requests; the other executes
memory requests.

The priority network (Figure 2-15, sheet 3) grants a RAM cycle to the pending request having the
highest priority. The assigned priorities for a given channel are:

1. CBus Request (for data)
2. Control Request (CBUS RESET, START, or DONE)
3. MB RAM Request (for memory access)
When the request is granted, the appropriate RAM address is selected and the RAM is updated.

Each time the RAM is updated, its contents are also read to generate internal operations for executing
the granted request. :

When a CBus request is granted, one data word is transferred between the CH BUF and the CBus (to
or from the RH20 as specified) and the status bits and pointers in the RAM are updated.

When a control request is granted, appropriate control bits in the control RAM are set, cleared or
updated, and appropriate internal requests are initiated to execute the control operation.

MB RAM requests are issued to initiate a memory operation and to update the control RAM after the
memory operation is completed.

MBox/2-71

2.14 ERROR CHECKING AND REPORTING LOGIC
The following error checking and reporting logic (Figures 2-16 and 2-17) is implemented in the MBox:

a. Address Parity
. Data Parity

¢. Timeout Error

d. Error Flags

e. Status Words

2.14.1 Address Parity Logic .

[n the MBox. an address parity bit is generated for the cache directory and the SBus. The parity bit for
the cache directory is generated for physical address bits 14-26 (PA14-26) whenever the cache control
updates the cache directory. The cache directory is updated for EBox read requests in preparation of a
core read cycle. The parity bit for the SBus is generated for the entire physical memory address (bits
14-35) and the SBus request qualifiers whenever a core request is made by the cache control.

In addition, a parity bit is also written into the page table whenever a page refill operation is executed.
This parity bit is picked up from core memory for K I-style page refills and from the EBox for KL-style
refills.

Address parity is checked in the MBox for paged memory references, references to cache memory, and
references to core memory. ‘

Page table parity is checked for all EBox memory requests to paged memory. If the page check fails,
the M Box asserts the PAGE FAIL HOLD flag, transfers the page fail word to the EBus register, and
terminates the cycle. The EBox then traps to the microstore page fail routine to read the EBus register
and evaluate the failure. , .

Cache directory parity is checked whenever the cache is referenced. The cache is referenced for both
channel and EBox-initiated memory reference requests if CON CACHE LOOK EN is set.

For EBox memory requests the cache is referenced to:

Write a word and its page address into the cache.

Write the page address into the cache in preparation for a core read cycle.
Read a word from the cache.

Pick up any valid words during a KI-style page refill operation.

Pick up all written words during a write-back operation.

o oo o

For channel memory requests the cache is referenced to:

a. Invalidate any valid entries during channel write operations to memory.
b. Pick up any valid entries during channel read operations from memory.

If the cache address parity check fails for any of the above references, the MBox sets the CSH ADR
PAR ERR FLG which, in turn, disables the cache after the current request is executed to completion.

MBox/2-72

/Emuu_fa.

ACKN A/8

START A/B

wcon

wCcme

ADR PAR

ADR 14 - 35

ADR PAR ERR

ERROR

MTBY

CACA

MT@1

DO x

MT@1

MTZ4

MT31

NxM
ACKN AND
AAVALD, |o_PHasE cHanse coming
PULSE GEN
ACKN_PULSE {MB23)
COUNTER ;
MBCe) - .
i
- T0 ERA i
MEM START A/8 SHate ;
GEN
(MB24!
|
NXM i
NXM FLG |
FLAG |
wezn | !
' 1 MBIN EN (MB4)
i APR NXM ERR
A CHANGE : H
JOMNG ! L MBOX NXM
l ‘_jj _] (E‘RBRE;) © MBOX NXM ERR
XM CLR CONE H CHAN
CHAN REF. Ff NXM ERR
(MB23)
CSHO-3 ANY vay €
3 CACHE ADR PAR BAD M
CSH DIR 0~3 ACHE ADR PAR] SACHE ADR CSH ADR PAR ERR FLG
PaR (MBXS! T
RQ HOLC PAR CHECK ¥
! (CHX4) aPRc DRPERR |]
L ¥ H ¥ Fosu o Tesnowm cacwe 2
MEM WA RO MEM WR RQ IN 1-26 03 jPaR0-3 E£80X PAGED "AND* GATE BT a
le MEM WR RGO | | MEMWRRQIN T‘F‘“A_f A (MBx: c
MEM RD RQ MEM RD RQ IN - J‘IT T | \1 H 1 1 L - 3
1T2T3[oT T2T3[oTi [273]ol 1127 T
e RO Crosmn GTiT2TS] oNTZsfon Tz T 1 1 T
i CACHE 3R | AGR 27-33
MEM RO 2 a2 IN CACHE VALID BiT (CHX21 | caCHE DR ADR(CHA -3)] ADH PARS T je—i-Sri32
PAR HOLD CACHE K) (CHA4}
:AE:ADR GEN MEM_RQ ! RQ! IN [} o2 b3 to iz i3lol 2 3] wate
(MBC4) [MEM RQD MBcel, RQE IN s DIR
MBC ADR 35 AR O-3 4 LON #R_EVEN PAR
IN PMA
MBC ADR 34 jwa 16-26 92 S
PMA ADR PAR HOLD PMA ADR PAR PAR GEN PMA 14 -25 PAR . PAR GEN !
T wBaa T i (Puaay i
L i i H
P Rl S
Pa 26-33 @nzs M [CACHE TO M8 34-35 |
! PAI4-33 i A VMA i4-35
ADR14-35 | !sBusapr3a JjuesRie-26
SBUS ADR 35 apCCA-26
COW CHA 14
APR S ADR © ERR
MEM ADR PAR MBOX ADR PAR ERR
ERR
. APRSBUS ERR |
MBOX 55US ERR
MEM ERROR
i . AR ANY E8OX FER FiC
APR WE 82D ADF PAR .
ey

Figure 2-16 MBox Address Parity,
NXM, and SBus Error Logic Paths,

Logic Diagram

MBox/2-73

CRC CBUS
R L] . . GuT HOLD
CH BUF 00-17 PAR - “ COUS PARLEFT TE
[] PAR LEFT
CH_BUF 18 -3 PAR § CBUS PAR MGHT TE _
=
- <
CHAN REG 00-17 PAR R . PAR RIGHT_f €
2 CHAN REG 18 - 35 PAR XLATOR G
s
CTRET)
PT PAR LEFT IN _ |
PT PAR RIGHT IN 1 i
: ERROR
| —
4 — 3% 4 _— 35 ' el
a (PAGS) . \}
N PHYS w PHYS PT PAR ADR 18-26
M ::g :: gg :Z :: 14 ADR LEFT 1 RIGHT [*—— ——
s| | Pagi-2 s| | Pagi-2 i CHAN CaN AR
C C NXM caR ERI

‘ &
T)
Sman A
Pak ERR
TN PAR CHECK PT_PAR 0DD | FasE "EST REQ QUAL
/ T iPaGs) i 2a3e’

M/8 TEST PAR 4/8 IN

Y AR £RR : MIOX MB PAR ERR
MEM TOC ACKN PULSE (WRITE) J(MBZ46, SS13) !
| v APR MBOX PAR ERR
1 i
XLATOR o|m i PAGE FAIL
wTes) — 8 |
3|2 T i .
B esio [] |eswi [] jeswz [1 fesw3[PAGE FAIL HOLD
5 :
2| ISELA SELA \SELA. sELl CSH EN
1 t CSH DATA
| : H
1 * we ’ :
MBO HOLD I T : My
e oD 1T T — e AT CODE i EN &l EN EN EN i
Mgz voLg B¢ 0aTA & —f— PR BT —— %t — i
MB3 HOLD 5T me2 T] (MBx3) fuex3) : caguE cacre I cacHE cagHe R 27 H
L]
t . eaR BIT PARBIT | PARBIT PAR B/T . -
MBOD-35 Lo sul__(cHos) (cHas! | (cHas) (cHa5] cacue £
N T WRITE F
z,4 1 : :
-CH BUF PAR BIT 3 ‘] 82 9 csuearmir '] F'T P I [\/l i csw Par BIT a8 | E
L wEm PARIN i A4 \/ \J Heee \ [/ \V4
PE_HOLD 01 -05 IN
. N S4 AR PaR 330
t
PT_PUBLIC LOAT EBUS fﬂ_j
PE HOLD Oiv E8US EN V| DIAG READ
W FUNCT Er |
PAR GEN ; PAR GEN da —PAGEDREF] 8 N i
eeLs) (cowa) —MEM RD RO " BT CACKE ¢ . EBUS REG :
8 EBUS REG 00-06 IN ’ BezQe.Antt
— z u -
MB_DATA CODE 1-2 H) H
z ¢
— 2 s
_CHAN CORE BUSY CHAN REF | Joo | £BUS REG)
™8 TEST 0-6 IPMA 435 M H
PAR - g |
ACKN PULSE "‘l’ ™ MR ccawmTERACK | | | CCA REF ERA SEL PMA SEL H
NXM FLAG - A !
MEM START a/8 \—-"'B S 12 M8 WD SEL 1-2 Pal4-3s A ;
MBOX NXM ERR | “oroaTe | __noLo gRa “AND: GATE LOAD M w Z 124 DiaG 00 - 06
- (Ml
ADR_PAR ERR FLG wezs | I l_.__r “ } :
it RA ‘
RO HOLD FF HoLD € i
. J i
P PAR ERR
APR ANY EBOX ERR FLG

v

Figure 2-17 MBox Data and Page Table Parity, Path Logic Diagram

MBox/2-74

When the MBox issues a core read or write cycle, the MBox generates the SBus address parity bit and
transfers this bit with the address to the core memory system via the SBus. Parity of the SBus address is
checked by the core memory system. If the parity check fails, the core memory system asserts SBUS
ADR PAR ERR which, in turn, sets the MBOX ADR PAR ERR flag and holds the ERA register in
the MBox. For core read operations, four words of zeros with bad parity are returned by the
M A /MB20, which causes the MBOX MB PAR ERR flag in the MBox to be asserted. For core write
operations, the data sent to the MA/MB is thrown away, thereby preserving the data in the addressed
locations. The DMA20 will not respond other than asserting SBUS ADR PAR ERR if it senses an
address parity error. This will cause a NXM error to be detected in the M Box if the request was for the
DMA20.

2.14.2 Data Parity Logic

In general, data parity is propagated through the system with the data from source to destination and
is checked along the way at various strategic points. In the MBox, data parity is propagated with the
data for both EBox and channel-initiated transfers (Refer to simplified data path drawing, Figure 2-5).
This figure shows all data sources and destinations for the MBox. Data parity is propagated with the
data for all paths except those noted. Data parity is checked in the MBox only at the output of the
MBs and then only as data is moved out of the MBs by the cache, core, or channel controls. These
controls move data from the MBs to the EBox, cache, page table, CCW bulffer, CH buffer, and core
memory via the SBus. A parity splitting network is employed between the MBs and the CH buffer and
page table (Figure 2-17) to convert full word parity to half word parity; a parity folding network is
employed between the CH buffer and the MBs. Each word transferred on the CBus and stored in the
page table is associated with two parity bits, one for each half word, while the data word on the SBus is
associated with only one parity bit. If a word in an MB has bad parity, not only will the MBOX MB
PAR ERR flag set, but the word (or half words) leaving the MB will also contain bad parity when the
word is moved out to the SBus, CCW buffer, CH buffer, page table, cache, or EBox AR.

For EBox write requests, a data parity bit is generated by the EBox for the contents of the AR, which
are transferred with the AR data to the MBox. If the cache is to be used, the parity bit is stored in the
cache along with the data. Parity is not checked in the MBox in this case. However, if a core cycle is
required, then.the parity bit is transferred to core memory via the M Bs along with the data. When core
acknowledges the write request for the addressed word, the MBox checks the parity of the word at the
output of the MB. If MB parity is not odd, the MBOX MB PAR ERR flag is set and the ERA register
is loaded and held. Core memory will then check data parity (DMA20 only), assert SBUS ERROR if
parity is not odd, and write the data and parity bit into core. Asserting SBUS ERROR causes the
MBOX SBUS ERR flag to be set.

NOTE
Data is written into core whether data parity is good
or bad.

If the cache cycle control decides it must execute a write-back cycle, the parity bits associated with the
written words in the cache are picked up and are written along with the data into core memory, as
described previously for the core write cycle.

For EBox read requests, the parity bits associated with the addressed words in core memory are picked
up and transferred to the MBox where they are stored in the cache along with the data. The first word
and its parity bit is also transferred to the AR in the EBox. As each word leaves core memory, its parity
is checked (DMA 20 only). If parity is not odd. SBUS ERROR is asserted by core memory which sets
the MBOX SBUS ERR flag in the MBox. As each word and its parity bit is received by the MBox.
they are stored in the MBs. When the EBox takes the first word, parity is checked at the output of the
MB and in the AR of the EBox. Parity for subsequent words is checked at the output of the MBs as the

MBox/2-75

cache cycle control moves the words from the MBs to the cache. If the parity check fails for any of the
remaining words, the MBOX MB PAR ERR flag is set and the ER A register is loaded and held. When
the EBox initiates a read request and the word is found in the cache, the word and its parity bit are
simply transferred to the AR where parity is then checked. If the cache cycle control decides it must
execute a write-back cycle before satisfying the EBox read request, the parity bits associated with the
written words in the cache are picked up and are written along with the data into core memory, as
described previously for the EBox write request.

For a channel read request to fetch a CCW, the parity bit associated with the addressed word in core
memory is picked up and transferred to the MBox, where it is placed into the MB along with the data.
As the word leaves core memory, its parity is checked (DMA20 only). If parity is not odd, SBUS
ERROR is asserted by core memory, which then sets the MBOX SBUS ERR flag in the MBox. The
channel recognizes that the word was placed into an MB; in response, the channel moves the word into
the CCW buffer and causes the MB parity to be checked.

NOTE
Only the CCW is stored in the CCW buffer. The
parity bit is not stored in the CCW buffer with the
data but is dropped after MB parity is checked.

If the MB parity check failed, the MBOX MB PAR ERR flag is set. The ERA register is loaded and
held and CBUS ERROR is asserted.

For a channel read request to move data from memory to the CH buffer, the parity bits associated with
the addressed words in core memory (or from the cache, if the words are in the cache) are picked up
and transferred to the MBs along with the data. For those words that come from core, parity is
checked as they leave core memory (DMA20 only). If the parity check fails, SBUS ERROR is asserted
bv core memory which, in turn, sets the MBOX SBUS ERR flag in the MBox.

Parity is not checked for those words that are valid in the cache when they are moved from the cache to
the M Bs. The channel recognizes that the requested words and the associated parity bits were placed in
the MBs: in response, the channel moves the words and the parity bits into the CH buffer and causes
M B parity to be checked. If the MB parity check fails on any word as it is moved from the MB to the
CH buffer the MBOX MB PAR ERR flag is set and the ERA register is loaded and held.

NOTE
CBUS ERROR is not asserted for this case.

In the data parity path from the M Bs to the CH buffer, the single data parity bit that was received from
core (or the cache) is split into two parity bits, one for each half word. These parity bits are then stored
in the CH buffer and are placed on the CBus with the data when the mass storage system requests a
word. The mass storage system asserts CBUS REQUEST whenever a word is needed. '

For a channel write request to move data from the CH buffer to core memory, the parity bits associ-
ated with the addressed words in the CH buffer are picked up and transferred to the MBs along with
the data. The CH buffer contains one parity bit for each half word. The two parity bits and the data
word are moved into the CH buffer from the CBus when the mass storage system sends a word (asserts
CBUS REQUEST). In the data parity path, from the CH buffer to the MBs, the two parity bits are
folded into one bit to accommodate the SBus. From the MBs, each word and the associated parity bit
is moved to core memory. As each word is transferred, parity is checked at the output of the MB and in
core memory. If the parity check fails at the output of the MB, the MBOX MB PAR ERR flag is set
and the ERA register is loaded and held. If the parity fails in core memory, MBOX SBUS ERR is
asserted by core memory, which in turn causes the MBOX SBUS ERR flag in the MBox to be set.

MBox,/2-76

For a channel write request to store the two status words, parity for each word is generated by the
channel. The two status words are held by the CCW buffer after a channel transfer terminates. After
the two words and the associated parity bits are transferred to the MBs, they are moved to core
memory. As each word is moved to core, parity is checked at the output of the MBs and in core
memory, as described for the channel data write request.

The page table can be refilled from core or from the AR. During the KL paging mode, the page refill
operation is executed by the EBox microcode. Essentially, the EBox will perform a table lookup to find
a valid page address. When a valid address is found, it is written into the page table from the AR.
During the KI paging mode, the page refill operation is executed by the MBox automatically. In this
case, eight entries are written into the page table from the process table in core memory via the MBs. In
either case, the parity bits associated with the entries are transferred along with the data and are
written into the page table. During the KL paging mode, parity on the contents of the AR is generated
by the EBox and is transferred with the page table entry. The MBox does not check the parity of this
transfer before it is written into the page table. During the KI paging mode, the parity bits associated
with the addressed words in core memory (or the cache for any valid words) are transferred with the
data and parity is checked along the way (in core memory and at the output of the MBs), as described
previously for core read operations. In the parity path from the MBs to the page table, a parity-
splitting network is used to convert full-word parity to half-word parity. This is done to provide a
parity bit for each page table entry. Page table parity is checked whenever the EBox makes a paged
‘memory reference.

2.14.3 Time-out Error

The MBox and the core memory system employ time-out counters to sense incompleted memory
cycles and NXM. The time-out duration and the location of the time-out networks are itemized in
Table 2-11.

Table 2-11 Memory Timeouts

Duration
us
25MHz 30 MHz Location
10.240 8.448 MA/MB (Internal)
36.000 29.700 DMA (External)
81.900 67.567 MBox

If a core cycle is started by either internal or external core memory, and the cycle is not gompleted
within the specified time-out duration, the core memory system asserts SBUS ERROR, whu;h in turn
sets the MBOX SBUS ERR flag in the MBox. The time-out is activated whenever the MBox initiates a
core cycle by asserting SBUS START. When SBUS START is cleared at the end of the core cycle, the
time-out is reset. Consequently, if all the requested words are not acknowledged by the core memory
system, the time-out is allowed to expire, which in turn causes the MBOX NXM ERR flag to be set.
Besides reporting errors due to hardware failures in the core memory system, the MBOX NXM ERR
flag can be used to find out how much memory is connected to the system.

MBox/2-77

2.14.4 Error Flags
The following flags are implemented in the MBox for error reporting purposes:

1. PAGE FAIL HOLD
b. CSH ADR PAR ERR
¢. MBOX ADR PAR ERR
d. MBOX MB PAR ERR
e. MBOX SBUS ERR

f. MBOX NXM ERR

g. CBUS ERR

2.14.4.1 PAGE FAIL HOLD Flag - The PAGE FAIL HOLD flag is set when the MBox senses a
page table parity error or when the page test fails. Accessability of a given page and page table parity is
checked only for EBox memory read and write requests to paged memory. When the flag is set, the
Page Fail Word is also loaded into the EBus register so that it can be read by the EBox. Setting the
PAGE FAIL HOLD flag causes the EBox to trap to the microcode page fail handler. The flag is
cleared automatically when the current cache EBox cycle is completed.

2.14.4.2 CSH ADR PAR ERR Flag - The CACHE ADR PAR ERR flag is set when the MBox
senses a cache directory parity error. Parity is checked on the address in the directory whenever the
cache is referenced. If the CACHE ADR PAR ERR flag is set, the APR C DIR P ERR flag in the
EBox is set on the next EBox clock tick to interrupt the Priority Interrupt (PT) system if the APR flag is
enabled. The APR flag is cleared by executing a CONO APR instruction. The MBox error flag is
cleared by virtue of setting the EBox APR C DIR P ERR flag.

2.14.4.3 MBOX ADR PAR ERR Flag - The MBOX ADR PAR ERR flag is set when the core
memory system senses an address parity error. Parity is checked on the SBus address and the request
qualifiers whenever the MBox initiates a core cycle. If the MBOX ADR PAR ERR flag is set, the
contents of the ERA is held and the APR S ADR P ERR flag in the EBox is set on the next EBox clock
tick to interrupt the PI system if the APR flag is enabled. The APR flag is cleared by executing a
CONO APR instruction. The MBox error flag is cleared by virtue of setting the EBox APR S ADR P
ERR flag.

2.14.4.4 MBOX MB PAR ERR Flag - The MBOX MB PAR ERR flag is set when the MBox senses
an MB parity error. Parity is checked on the data in the MB whenever data is moved out of the MB to
the AR, cache, page table, CH buffer, or SBus. If the MBOX MB PAR ERR flag is set, the contents of
the ERA are held and the APR MB PAR ERR flag in the EBox is set on the next EBox clock tick to
interrupt the Pl system, if the APR flag is enabled. The APR flag is cleared by executing a CONO APR
instruction. The MBox error flag is cleared by virtue of setting the EBox APR MB PAR ERR flag.

2.14.4.5 MBOX SBUS ERR Flag - The MBOX SBUS ERR flag is set when the core memory system
senses a data parity error or times out. Parity is checked on the data during both core read and core
write cvcles (DMA20 only). The core memory system times out if all requested words are not acknowl-
edged. which would occur in the event of a hardware failure. If the MBOX SBUS ERR flag is set, the
APR SBUS ERR flag in the EBox is set on the next EBox clock tick to interrupt the PI system, if the
APR flag is enabled. The flag is cleared by executing a CONO APR instruction. The MBox error flag
is cleared by virtue of setting the EBox APR SBUS ERR flag.

2.14.4.6 MBOX NXM ERR Flag - The MBOX NXM ERR flag is set when the MBox times out. The
NXM timer is started when a core cycle is initiated (SBUS START asserted) and is reset when all
requested words are accounted for (SBUS START clears). If all requested words are not acknowledg-
ed by the core memory system, the NXM time-out expires and sets the MBOX NXM ERR flag. If the
MBOX NXM ERR flag is set, the ERA is loaded and held; and APR NXM ERR flag in the EBox is
set on the next EBox clock tick to interrupt the PI system, if the flag is enabled. The flag is cleared by
exccuting a CONO APR instruction. The M Box error flag is cleared by virtue of setting the EBox APR
NXM ERR flag.

MBox/2-78

2.14.4.7 CBUS ERR Flag - The CBUS ERR flag is asserted if an error is sensed by the MBox or by
the core memory system when a channel request to fetch a CCW is executed. The errors that are sensed
include:

a. MEM ADR PAR ERR
b. MB PAR ERR
c. NXM ERR

Asserting CBUS ERR causes a status bit in the controller of the selected channel to be set.

NOTE
Address and data parity are not checked for regular
data transfer operations or for memory store oper-
ations. Only NXM will be sensed and reported on the
CBUS ERROR line for these operations.

2.14.5 Status Words
One of two status words are formed and stored by the MBox in the event an error is sensed:

a. Page Fail Word
b. Error Address (ERA)

One or the other is stored in a register so that the EBox can read the word and evaluate the failure. In
the case of a page test failure, which includes the page table parity check, the PAGE FAIL HOLD flag
is set and the Page Fail Word is loaded into the EBus register. The format of the Page Fail Word is
shown in Figure 2-18. This register is read by the EBox by asserting the diagnostic register read
function for register 1675.

In the case of a parity, time-out, or NXM error, the corresponding error flags are set and the error
address and associated status bits are loaded into the ERA register. The format of this word is shown
in Figure 2-19. This register is read by the EBox when an RDERA (BLKI, PI) instruction is executed.

2.15 DIAGNOSTIC REGISTERS

There are 16 diagnostic registers in the MBox (Figure 2-20 and Tables 2-12 through 2-27). They are
essentially test points for collecting MBox snapshots on a per-clock-tick basis, or to monitor an indi-
vidual signal to determine or validate its individual characteristics versus function. The Diagnostic
registers can be read by the privileged PDP-11 front end processor.

00 0! 05 06 07 08 14 35

22-BIT PHYSICAL MEMORY ADDRESS

CACHE
USER PUBLIC PAGED

PF CODE
(para 3.2.4)

10~-1489

Figure 2-18 Page Fail Word Format

MBox/2-79

00 01 02 0304 05 06 14 35

/s
///// 22-BIT PHYSICAL MEMORY ADDRESS
7

S

L WRITE REF (| =WRITE, O=READ) oAt
‘g SOURCE ;VS;TE DATA SOURCE
l—————— DATA SOURCE CODE \ CODE
A
L CHAN REF ((=CHAN, 0= —CHAN) \ 0 0| O | MEMORY (READ, RPW)
\ 00 I CHAN STORE STATUS {(WRITE)
CCA REF (1=CCA, O=—CCA) oI 1 CHAN DATA (WRITE)
! 1 0 i AR (EBOX WRITE)
B P 0 | CACHE (PAGE REFILL,CHAN READ)
WHICH WORD Lo i | cacHE wriTE
00 = MBO
01 = MBI
10 =MB2
11 =MB3
t0-1490
Figure 2-19 ERA Word Format
LEFT HALF RIGHT HALF
0o/l 01 (;;l 9 OBIOQ]VIOIII | IGIIS [20'2|[22{23!24|25[26127l20[29i30|3|132|33l34 35
6o Lo % 7
161 Z5
62 /
163 2 /
165 // /
"
166 // /
167
72
173
174
R S
75
1
L
76
177

NOTE | Refer 10 tabies 2-12 thry 2-27 for 81t Assignments
2 Register 167 is the EBus Register
3 Denotes bits not used

Figure 2-20 MBox Diagnostic Register Bit Maps

MBox,/2-80

Table 2-12 Diagnostic Register 160, Bit Assignments

LEFT HALF RIGHT HALF
Bit No. | Source Signal Name Bit No. Source Signal Name

15 MBZ1 CORE BUSY H 18 MBZS MB PAR BIT IN H

16 MBZ4 CHAN PAR ERR L 19 MBZ1 CSH EN CSH DATA L

17 SHD1 SH AR PAR ODD A H 20 MBZ1 MBIN SEL 1 H
21 MBZ3 NXM ACKN H
22 MBZ1 CHAN CORE BUSY H
23 MBZ3 NXM ANY L
24 MBZ4 NXM T6-7 L
25 MBZ3 CHAN NXM ERR L
26 PAGS PAG MB 18-35 PAR H
27 MBCS5 FORCE VALID MATCH O H
28 MBCS FORCE VALID MATCH 1 H
29 MBC5 FORCE VALID MATCH 2 H
30 MBCS FORCE VALID MATCH 3 H
31 MBC1 WRITE OK H
32 MBC?2 CSH ADR WR PULSE H
33 MBC2 CSH DATA CLR DONE IN L

MBox/2-81

Table 2-13 Diagnostic Register 161, Bit Assignments

LEFT HALF RIGHT HALF
Bit No. | Source Signal Name Bit No. Source Signal Name

15 MBZ4 MBOX ADR PAR ERR L 18 MBZo6 CSH PAR BIT H

16 MBZ5 CBUS PAR LEFT TE H 19 MBZ1 MEM TO C DIAG EN L

17 MTO5 MEM PAR IN H 20 MBZ1I MB IN SEL 2 H
21 MBZ1 MBZ1 RD-PSE-WR REF L
22 MBZ3 MBOX NXM ERR L
23 MBZ3 CHAN MEM REF L
24 MBZ4 MBOX SBUS ERR L
25 MBZ3 NXM DATA VAL L
26 MBZ6 CSHPARBITAH
27 MBC2 CSHDATACLRTIL
28 MBC2 CSHDATACLRT2L
29 MBC2 CSHDATACLRT3 L
30 MBC2 CSH SEL LRUH
31 MBC2 CSH VAL WR PULSE H
32 MBC2 CSH WR WR PULSE H
33 MBC2 RQ HOLD FF H

MBox/2-82

Table 2-14 Diagnostic Register 162, Bit Assignments

LEFT HALF RIGHT HALF
Bit No. | Source Signal Name Bit No. Source Signal Name

15 MBZ4 CHAN ADRK PAR ERR L 18 (Not Used)

16 MBZ5 CBUS PAR RIGHT TE H 19 MBZ1 CHAN READ L

17 MBZ5 CSH PAR BIT INH 20 MBZ1 MB IN SEL 4 H
21 MBZ1 MEM BUSY H
22 MBZ3 HOLD ERA L
23 MBZzZ4 NXM T2 H
24 MBZ4 MBOX MB PAR ERR L
25 PAGS PAG MB 0017 PAR H
26 MBZ6 CSH PAR BIT BH
27 MBC2 CACHE WR 00 A H
28 MBC2 CACHE WR 09 A H
29 MBC2 CACHE WR 18 A H
30 MBC2 CACHE WR 27 A H
31 MBC2 SBUS ADR HOLD H
32 MBC3 A CHANGE COMING A L
33 MBC3 ANY SBUS RQ IN L

MBox/2-83

Table 2-15 Diagnostic Register 163, Bit Assignments

LEFT HALF RIGHT HALF
Bit No. Source Signal Name Bit No. Source Signal Name
27 MBC3 B CHANGE COMING L
28 MBC3 CORE BUSY A H
29 MBC3 CSH VAL SEL ALL H
30 MBC3 CSH VAL WR DATA H
31 MBC3 CSH WR SEL ALL H
32 MBC3 CSH WR WR DATA H
33 MBC3 DATA VALID A OUT H
Table 2-16 Diagnostic Register 164, Bit Assignments
LEFT HALF RIGHT HALF
Bit No. Source Signal Name Bit No. Source Signal Name
27 MBC3 DATA VALID B OUT H
28 MBC3 MBC INH 1ST MB REQ H
29 MBC3 MEM TO C EN L
30 MBC3 PHASE CHANGE COMING L
31 MBC4 ACKN PULSE L
32 MBC4 CORE ADR 34 H
33 MBC4 CORE ADR 35 H

MBox /2-84

Table 2-17 Diagnostic Register 165, Bit Assignments

LEFT HALF RIGHT HALF
Bit No. Source Signal Name Bit No. Source Signal Name
27 MBC! CAM SEL I H
28 MBCl1 CAM SEL 2 H
29 MBC4 CORE DATA VALID -1 L
30 MBC4 ' CORE DATA VALID -2 L
31 MBC4 CORE DATA VALID L
32 MBC4 CORE RD IN PROG H
33 MBC4 MEM ADR PAR H
Table 2-18 Diagnostic Register 166, Bit Assignments
LEFT HALF RIGHT HALF
Bit No. Source Signal Name Bit No. Source Signal Name
27 MBC4 MEM RD RQ B H
28 MBC4 MEM RQ O H
29 MBC4 MEM RQ 1 H
30 MBC4 MEM RQ 2 H
31 MBC4 MEM RQ 3 H
32 MBC4 MEM START L
33 MBC4 MEM WR RQ L

MBox/2-85

Table 2-19 Diagnostic Register 167, Bit Assignments

LEFT HALF RIGHT HALF
Bit No. Source Signal Name Bit No. Source Signal Name
00 08 MBZ | I'BUS REG 00 0% H 18 16 MBZ1 EBUS REG 18 26 H
o7 MBZ1 FRUS REG 14 17 H 27033 MBCI IIBUS REG 27 33 H
3435 MBZ.1 IEBUS REG 34, 35 H

Table 2-20 Diagnostic Register 170, Bit Assignments

LEFT HALF RIGHT HALF
Bit No. Source Signal Name Bit No. Source Signal Name
00 CRC6 CRC CH BUF ADR O H 18 CCL5 CCL WC GE4 H
01 CRC4 CRC RESET IN L 19 CCLS CCLWC=0L
02 CRC4 CRC MEM STORE ENA L 20 CHX2 (CSH 0 ANY VAL L
03 CRC4 CRC DONE IN H 21 CHX3 CSHUSE INOH
04 CRC4 CRC STORE IN H 22 CSH5 PAGE REFILL COMP L
0s CCwW4 CCW WD READY H 23 CSHe CACHE WR IN H
06 CCWe CCW CCWF REQ ENA H 24 CSHo MBOX PT DIR WR L
07 CCWo CCW MIEM STORE ENA H 25 CSH2 CSH WR TEST L
08 CCWS5 CCW ACT FLAG REQ ENAH | 26 CSH3 ANY VAL HOLD H
09 CCW3 CCW ALU C8 OUT H 27 CSH4 CSH DATA CLR DONE L
10 CCW3 CCW ALU C2 OUT H 28 (CSH4 CSH REFILL RAM WR L
11 CHI1 CHTOH 29 (SH4 CSH EBOX T3 L
12 CHCS CBUSSEL 0 1 H 30 MBX1 CACHE BIT H
13 CHCl CHX RESET H 31 MBX1 CCA REQ L
14 CHC2 CH RESET INTR H 32 MBX4 CSH WR WD 2 EN H
16 CCLS CCL ODD WC PAR 11 33 MBXS MB REQ IN H
34 MBXS5 MBX MEM TO CENL
35 MBX5 RQ I INH

MBox/2-86

Table 2-21 Diagnostic Register 171, Bit Assignments
LEFT HALF RIGHT HALF
Bit No. Source Signal Name Bit No. Source Signal Name
00 CRC6 CRCCHBUF ADR 1 H 18 CCL3 CCL ALUMINUS L
01 CRC4 CRC RH20 ERR IN H 19 CCL4 CCL CH TESTMBPAR L
02 CRC4 CRC OVN ERR INH 20 CHX2 CSH 1 ANY VAL L
03 CRC4 CRC SHORT WC ERR H 21 CHX3 CSHUSEINTH
04 CRC4 CRC LONG WC ERR H 22 CSH5 CHANRDTS L
05 CCW4 CCW WDO REQH 23 CSHo6 CSH WR DATARDY L
06 CCWwW4 CCWWDI1 REQH 24 CSH4 PAGE FAIL T2 [
07 CCw4 CCWWD2 REQH 25 CSH6 CSH EBOX LOAD REG H
08 CCW4 CCW WD3 REQH 26 CSH7 CSH FILL CACHE RD L
09 CCW1 CCWMEM ADR=0H 27 CSHS CHANWR TS 1
10 CCWo6 CCW CCWF WAITING H 28 CSH3 MB WR RQ CLR NXT L
11 CHC1 CHTIH 29 CSli4 CSH EBOX T1 L
12 CHCS CBUSSEL T EH 30 MBX?2 CACHE TOMB 34 H
13 CHC1 CHX STARTH 31 MBX1 CCASEL T H
14 CHC2 CH START INTR H 32 MBX4 CSHWR WD 3 ENH
16 CCL3 CCLMBRIP AH 33 MBX?2 MBSEL I H
34 MBX3 MEM DIAG 1
35 MBXS RQ2INH

MBox/2-87

Table 2-22 Diagnostic Register 172, Bit Assignments

LEFT HALF RIGHT HALF
Bit No. | Source Signal Name Bit No. Source Signal Name
00 CRCo CRC CH BUF ADR 2 H 18 CCL3 CCLMBREQ T2 H
01 CRC3 CRC READY INH 19 CCL4 CCL REVERSE H
02 CRC3 CRC LASTWORD INH 20 CHX2 CSH 2 ANY VALL
03 CRC3 CRC ERRINH 21 CHX3 CSHUSEIN2H
04 CRC3 CRC REVERSE INH 22 CSHe6 CHAN WR CACHE L
05 CCW3 CCW ACTCTROENH 23 CSH6 CCACYCDONEL
N6 CCW3 CCW ACTCTR 1 ENH 24 CSHS CHANT4 L
07 CCW3 CCW ACTCTR2ENH 25 CHX3 CSH LRU 2 H
08 CCWi CCW BUE ADROL 26 CSH1 READY TOGO AH
09 CCWI CCW BUF ADR 1L 27 CSH6 CSH USE HOLD H
10 CCWI CCWBUF ADR2L 28 CSH1 CSHCCACYCL
11 CHC1 CHT2H 29 CSH1 CSH EBOX REQENL
12 CHCS CBUSSEL 2EH 30 MBX2 CACHE TOMB3SH
13 CHCI CHX DONE H 31 MBX1 CCASEL2H
14 CHC2 CHDONE INTRH 32 MBX1 FORCE NO MATCHH
16 CCL3 CCLCCWF T2 H 33 MBX2 MB SEL 2 H
34 MBX5 MEM RD RQ IN H
35 MBXS RQ3INH

MBox/2-88

Table 2-23 Diagnostic Register 173, Bit Assignments

LEFT HALF RIGHT HALF
Bit No. Source Signal Name Bit No. Source Signal Name

00 CRC6 CRC CH BUF ADR 3 H 18 CCL4 CCLCHMBSEL | H

01 CRC2 CRC ACTCTRORH 19 CCL3 CCLAFT2 L

02 CRC2 CRC ACTCTR IRH 20 CHX2 CSH 3 ANY VAL L

03 CRC2 CRC ACTCTR 2R H 21 CHX3 CSHUSE IN3H

04 CRC2 CRC RAMCYCH 22 CSH2 ONE WORDRD L

05-10 | CCW2 CCW CHA 30-35 H 23 CSH2 MBOX RESP L

11 CHC1 CHT3H 24 CSH2 RD PSE 2ND REQ EN L

12 CHCS CBUSSEL3EH 25 CHX3 CSHIRU I H

13 CHC1 | CHX STOREH 26 CSHS CSHTIL

14 CHC2 CH STORE H 27 CSH4 WRITEBACK T1 AH

16 CCL4 CCLCHMBSEL2H 28 CSH7 CSH CCA WRITEBACK L
29 CSH4 CSHEBOX T2 L
30 MBX4 CACHE TO MB DONE L
31 MBX2 CHAN WR CYC L
32 MBX3 MEM DATA TO MEM H
33 MBX2 MB SEL HOLD H
34 MBX3 MEM TO C SEL. | H
35 MBX2 SBUS ADR 34 H

MBox/2-89

Table 2-24 Diagnostic Register 174, Bit Assignments

LEFT HALF RIGHT HALF
Bit No. | Source Signal Name Bit No. Source Signal Name
00 CRC6 CRC CH BUF ADR4H 18 CCL3 CCL CHAN EPT H
01 CRCI CRC ACT FLAG ENAH 19 CCL4 CCL CHAN TO MEM H
02 CRC5 CRCWRRAM L 20 CHX4 CSH DIR 0 PAR ODD H
03 CRC3 CRC OP CODE 00 H 21 CHX3 CSHUSEIN4H
04 CRC3 CRC OPCODEO1 H 22 CSH2 ECORERDRQL
05-10 | CCW2 CCW CHA 24-29H 23 CSHé6 PAGE FAILHOLD L
11 CHC1 CBUS READY EH 24 CSH5 PAGE REFILL T9,12 L
12 CHC5 CBUSSEL4EH 25 CHA3 CSH3 ANYWRL
13 CHC1 CHXCTOM H 26 CSH5 CSHTOL
14 CHC3 CHCTOMH 27 CSH3 CSH ADR PMA EN H
16 CCL3 CCL CHAN REQH 28 CSH1 CSHEBOXCYCBL
29 CSH1 CACHE IDLE L
30 MBX4 CACHETOMBT2 L
31 MBX1 CSH CCA INVAL CSHH |
32 MBX3 MB DATA CODE 1 H
33 MBX6 MBO HOLD IN H
34 MBX3 MEM TO C SEL2 H
35 MBX2 SBUS ADR 35 H

MBox/2-90

Table 2-25 Diagnostic Register 175, Bit Assignments

LEFT HALF RIGHT HALF
Bit No. | Source Signal Name Bit No. Source Signal Name
00 CRCé6 CRC CH BUF ADR 5 H 18 CCL2 CCL ACT FLAG REQH
01 CRCé6 CRCSELIDL 19 CCL2 CCL MEM STORE REQH
02 CRCé6 CRCSEL2D L 20 CHX4 CSH DIR 1 PAR ODD H
03 CRC6 CRC SEL 4D'L 21 CHX3 CSH USE ADR 2 H
04 CRC1 CRC AFREQENAL 22 CSH2 CSH EBOX RETRY REQ L
05-10 | CCW2 CCW CHA 18—-23 H 23 CSH6 CSH USE WR EN H
11 CHC1 CBUS LAST WORD E H 24 CSH3 MB TESTPARAINL
12 CHCS CBUSSELS5S EH 25 CHA3 CSH1 ANYWR L
13 CHCS CH SEL 8A H 26 CSH5 CSHT3 L
14 CHC2 CH CONTR REQH 27 CSH3 MBOX GATE VMA 27-33 H
16 CCL2 CCL CCWF REQH 28 CSH1 CSHMBCYCL
29 CSH4 ONE WORDWR TO L
30 MBX4 CACHE TOMB T3 L
31 MBX1 CSH CCA VAL CORE H
32 MBX3 MB DATA CODE 2 H
33 MBX6 MBI HOLD IN H
34 MBX5 MEM WR RQ IN H
35 MBX3 SBUSDIAG 3 L

MBox/2-91

Table 2-26 Diagnostic Register 176, Bit Assignments

LEFT HALF RIGHT HALF
Bit No. | Source Signal Name Bit No. Source Signal Name
00 CRC6 CRC CH BUF ADR6 H 18 CCL2 CCL BUF ADR3 H
01 CRC1 CRC MEM PTRO H 19 CCL4 CCL STARTMEM L
02 CRC1 CRC MEM PTR1 H 20 CHX4 CSH DIR 2 PARODD H
03 CRC1 CRC MEM PTR2 H 21 CHX3 CSH USE ADR 3 H
04 CRCI CRC MEM PTR3 H 22 CSH6 CCAINVALT4 L
05 CCW3 CCLWC=3H 23 CSH5 PAGE REFILL T8 L
06 CCW4 CCL CCW REG LOAD H 24 CSH4 CSH EBOX TO L
07-10 | CCW2 CCWCHA 14-17H 25 CHA3 CSH?2 ANYWRL
11 CHC1 CBUS ERROREH 26 CSH5 CSHT2L
12 CHCS CBUSSEL6EH 27 CSH2 E CACHE WRCYCH
13 CHC1 CHMB REQINHH 28 CSH7 CSH E WRITEBACK L
14 CHCi CH REVERSEH 29 CSH5 PAGE REFILL T4 L
16 CCL4 CCL STORE CCW H 30 MBX4 CACHETOMBT4 AL
31 MBX4 CSHWRWDOENH
32 MBX3 MBPAR H
33 MBX6 MB2 HOLD INH
34 MBX3 REFILL HOLD H
< 35 MBX3 SBUS DIAG CYC L

MBox/2-92

Table 2-27 Diagnostic Register 177, Bit Assignments

LEFT HALF RIGHT HALF
Bit No. | Source Signal Name Bit No. Source Signal Name
00 CRC1 CRCPTRDIF=0H 18 CCL6 CCL CSH CHANCYC L
01 CRC6 CRC CH ADR OC L 19 CCL3 CCLMEM PTR ENH
02 CRC6 CRCCHADRICL 20 CHX4 CSH DIR 3 PAR ODD H
03 CRC6 CRCCH ADR 2C L 21 CHX3 CSH USE ADR 4 H
04 CRCé6 CRCCH ADR3CL 22 CSH6 PAGE REFILL ERROR L
05 CCW6 CCW RAM ADR 1 H 23 - CSH6 DATADLY 1 L
06 CCW6 CCW RAM ADR 2 H 24 CSH4 PAGE FAILDLY H
07 CCW6 CCW RAM ADR 4 H 25 CHA3 CSHO ANYWR L
08 CCW3 CCLWC=1H 26 CSHS - PAGE REFILL TIOL
09 CCW3 CCLWC=2H 28 CSH2 RD PAUSE 2ND HALF L
10 CcCw4 CCW ODD ADRPARH 29 CSH4 'CSH EBOX WR T4 L
11 CHC1 CH CBUS REQH 30 | MBX1 CCA ALLPAGESCYCH
12 CHC5 CBUSSEL7EH 31 MBX 4 CSHWR WD 1 ENH
13 CHC2 CH CONTR CYCH 32 MBX2 MB REQ HOLD H 1
14 CHC2 CH STARTH 33 MBX6 MB3 HOLD IN H
16 CCLI1 CCL ERR REQH 34 MBX5 RQOINH
35 MBX4 WRITEBACK T2 L

MBox,/2-93

SECTION 3
LOGIC DESCRIPTIONS

3.1 INTRODUCTION
This section contains a logic description of each functional element of the MBox. These functional
elements are introduced in Section 1 and include the following:

Pager

Cache, Cache Control, and Use Logic
Cache Clearer Control

MB Control

Core Control

Channel Control

™m0 Q0 o8

The logic description covers not only the logic itself, but also how the logic operates in the functional
context detailed in Section 2.

3.2 PAGER

The pager consists of two hardware tables, associated address, enable and write drivers and com-
binational logic for detecting illegal page references (Figure 3-1). One table serves as a Directory and
the other as the page table. The directory contains 128 locations for storing virtual section numbers
and the page table contains 512 locations for storing physical page numbers. Each directory entry
implicitly identifies four page table entries. These tables also contain status bits to identify valid entries
and access privileges. If the virtual section address matches the contents in the directory and the NOT
VALID bit is cleared, then the corresponding four entries in the page table are current for the running
process. The entries themselves may show the page to be accessible and legal for transforming the
virtual address to the physical address.

When the EBox makes a paged memory reference, the page table and its directory are addressed by a
function of the virtual user/executive section and page address, resulting in a modified page address.
EBOX USER and bit 17 of the virtual section address are Exclusive-ORed with bits 19 and 20 of the
virtual page address to modify bits 19 and 20 of the PT address as a function of the section number and
the EXEC/USER address space. This modified page address is used to distribute the entries in the
table for different sections (refer to HASH chart, Figure 3-2). This deters identical page entries from
different sections from occupying the same table locations and therefore minimizes conflict and addi-
tional memory references (thrashing) when switching sections during KL paging mode. In the KI
mode, references outside section 0 will not occur. The directory table is addressed by the seven high-
order bits of PT address and the page table is addressed by all nine PT address bits. Therefore, for a
given virtual address, one directory entry and one page tables entry are selected. When the pager is
addressed by the EBox, a comparison is simultaneously made to determine if the directory entry
(virtual section address) is valid and the same as the virtual address presented by the EBox. If a match
occurs, the corresponding four entries in the page table are valid.

MBox/3-1

- EBOX REQ QUALIFIERS
B I - PF EBOY HANOLE / ~PAGE FAIL HOLD

-
PT_PAR 00D ‘(l
I PAR GENI(PAGY)]l PAR GEN { PAGS)]
PT ucnc@

£ BOX PAGED
CSH EBOX CYC A

PAGE OK @it

|'_‘_“ 3
PMA 1-2-4 SE I
|

PAGE REF|(L @ mmr—eee———eei

;:g PT SOF TWARE FAG‘(
LOGIC
(PAGS!
PAGE FAIL s oT PUBLIC nm({ PT14-26 10 cacHE
PF HOLD 01-08 IN PY WRITABLE_(oast | i
N PT 14-26

PT_ACCESS aGh fst/2) e
¢ VMA 18, 21-23

(PAGI/2) (PAG 172) PT aDR 18-23 | PT ADR 19 7 MCL VMA USER
vMA 19
|
|
i

w S VYMA 1T
!ch :2“52c e anunzo -
PIUTE & PHYSICAL ! A | PHYSICAL | v
RlciT|8}|T R PT ADR 24
RS HHEHH R
Blliale ME I FTHL 7 MB SEL 1
el 1E £ CSH PAGE REFILL CYC
BT ADR 25 APR WR PT SEL @
APR WR ©T SEL 1
01]02 |03 o4 l0s 17| | 1e]1s]20]21|22]23

vMA 25

~CON KI PAGING MODE — -PT WR BOTH HALVES
PAG MB BO-17 PAR—t AGS PT_PAR LEFT IN i]
_ * : |
GON KI PAGING MODE 5T I SEL AR : : : :
i : PT RIGHT EN via 26
{ 1 ! 4 o P2 w2 PT SEL
SH AR PAR 000 — i AR B9-17 : i BT 0-35 IN ! ' T WR BOTH HALVES @ 4P? w SEL @
T ! S : CSw BAE REFILL CYC
| we 2235 § - PT LEFT EN —{&ussg BT ADA 25 i
: PT_PAR RIGHT IN ; i
PAGS :

PAG MB 18-35 PAR

PT MATCH

[T e
PT ADR 24 g
N PAG3
PT ADR 24 [N | EN oaG3
u g /
VIRTUAL .
g AODRESS PT ADR 1823
H 13-17 I -PT AR 24/
(PAG3} v ..__—-———-—-(PAG3§
PAGE FAIL T3 M BOX_PT DiR WR f
WRITE 27 WRITE 127 -4PR WR PT SEL @
PAGE REFILL T12
AGE REFILL CLK PT DIR WR T ?D BT DIR CLR . APR WR PT SEL 1V
CON KI PAGING MODE i PAGE FaiL HOLD
| VMA 13-17
;i MCL VMA USER 10 w2

Figure 3-1 Pager, Simplified Logic Diagram

MBox/3-2

m QO »

000

077
100

177
200

277
300

377
400

477
500

577
600

677
700

777

SECTION

EXECUTIVE

USER

— ——H—

X0 . X1 X0 X1

X2 X3 X2 X3’

X4 X5 X4 X5

XG X7 X6 X7
000/077 100/177 200/277 300/377
200/277 300/377 000/077 100/177
400/47 7 500/577 600/677 700/777
600/677 700/777 400/477 500/577
700/7 77 600/677 500/577 400/477

NOTE: X=0,1,2,0r 3

10-1493

Figure 3-2 Page Table Address Hash Function

MBox/3-3

The directory table, in addition to containing the virtual section address of the corresponding four
physical addresses in the page table, also contains a USER bit and a NOT VALID bit. The USER bit
indicates whether the corresponding four entries in the page table are for the user mode or for the
executive mode. The NOT VALID bit, when cleared, indicates that the entry is current; that is, it is
valid for the current user program (has been written and validated for current user program). The
NOT VALID bit of all directory entries is set when another user program starts to run and is cleared as
transfers are made to the hardware tables for a given user program.

The first five bits (ACCESS, PUBLIC, WRITABLE, SOFTWARE, and CACHE) of each page table
entry are page descriptor bits that specify what type of entry (what kind of page) it is. These bits, along
with the physical address, are transferred from the core table to the hardware table when the user
program references a page that does not have a valid entry in the directory, or if the ACCESS bit of the
page table entry is cleared.

ACCESS bit KI Mode: Entry has been brought in from core. This bit is set in
the core table by the monitor when that page is brought into
core. If this bit is not set in the core table, the corresponding
user page is still on mass storage.

KL Mode: Entry was placed into the page table by the EBox.

PUBLIC bit Specifies a public page if bit is set; if bit is cleared the page is
concealed and access from public mode is not permitted unless
access is made via a portal instruction. Referencing the correct
portal instruction causes the processor to switch from public to
concealed mode. In the concealed mode, the public bit is not set.
An instruction that clears the Public flag of the PC word causes
the processor to switch back to the public mode. A reference to
a concealed page that is not a legal entry point (portal) while the
processor is in the public mode, causes a page failure.

WRITABLE bit This bit must be set to be able to write into the page. If the bit is
cleared and a write operation is attempted into this page, a page
fault occurs. This bit is typically used to protect shared
programs.

SOFTWARE bit If a page just brought into core is writable, but has not been
written into, there is no need to write it back out on mass stor-
age. The SOFTWARE bit is used to identify those pages that
are writable but have not been written into and consequently
those that do not have to be swapped out to mass storage.

CACHE bit Specifies that this page should or should not be placed in the
cache. When cleared, the page is not to be placed into the cache
but must be maintained in core. This permits two processors to
use the data in the page. When the bit is set, the page is main-
tained in the cache. The monitor decides whether the cache bit
of a given page is to be set or cleared.

These bits, along with the request qualifiers presented by the EBox, are used to determine whether a
given reference by the user program or executive program is legal.

MBox/3-4

3.2.1 Page Refili
The Page Refill condition is sensed during the KI paging mode when the following conditions are all
true:

a. A paged reference is made.
b. No PT match occurred or the ACCESS bit of the entry in the page table is cleared.
c. No Page Refill error occurred.

A Page Refill condition exists when a paged reference is made by the EBox and an entry is not found in
the page table before a refill cycle is started. After a Page Refill cycle is executed and a valid entry is
still not found, a hardware failure is implied and a page fail trap occurs,

A paged reference can occur in either user or executive mode.

A user paged reference is sensed when the following conditions are all true:
VMA User bit is set

Not a UEBR (User/Exec Base Register) reference

Not an AC (Accumulator) reference
Not an illegal entry

oo os

An executive paged reference is sensed when the following conditions are all true:

VMA User bit is not set

Not a UEBR reference

Not an AC reference

Not an illegal entry

Not an executive unpaged reference (Kernel mode)

oao0 o

A PT match does not occur when the 128-location directory does not have a valid entry (NOT VALID
bit set) that matches the virtual section address and user bit presented by the EBox with the request.

A refill error occurs when a Page Refill cycle, in response to a Page Refill condition, was already
executed and a Page Refill condition is sensed a second time. This implies a hardware failure.

3.2.2 Page OK
A Page OK condition, which is required for all paged references, is sensed when any of the following
conditions are true:

a. The reference is not an illegal entry and it is a UEBR reference.

b. The page was found in the table, the previous reference was not an illegal entry, and the page
is public and writable or it is not being written into, or it is a Kernel mode reference.

¢. The executive page is found, and it is not going to be written into. This condition applies to
references to concealed (not public) pages. The supervisor can read but not write into con-
cealed pages.

NOTE
For cases described in (b) and (c) above, the page
table parity check must also pass to obtain a Page
OK condition.

MBox/3-5

3.2.3 Page Fail
A Page Fail condition is sensed when any of the following conditions are true.

a. The directory does not contain a valid entry during KL paging mode.

b. A non-accessible paged reference is made (ACCESS bit is cleared). During the KI paging
mode, this indicates that the page is not in core and a reference to mass storage is required.
During the KL paging mode, this indicates that the page is not in the hardware page table
and a reference to core is required.

¢. The previous reference was an illegal entry.

d. The reference is a private unpaged executive reference.

¢. A refill error occurred during a paged reference.

f. The referenced page is not writable and a write operation is attempted.

g. The reference page is concealed (not public), and a write operation is attempted in a paged
executive page, or a portal instruction was not used to enter a concealed paged user page.

3.2.4 Page Fault (PF) Codes

Whenever a page fault is sensed, the physical address and five Page Fail (PF HOLD 01-05 IN) bits are
transferred to the EBox, which then stores these bits and the address in the process (user or executive)
table. PF EBOX HANDLE qualifies the meaning of these bits for the KI and KL paging modes. The
logic levels for the PF bits are provided by the PF HOLD combinational logic. Five bits permit the
encoding of 32 different fault conditions. However, only a few codes are meaningful. Refer to the PF
truth table (Table 3-1) for the definition of legal fault codes. After the physical address and PF code is
stored in the process table, the monitor will jump to the appropriate page fault handler (identified by
the PF code) to resolve the fault.

Table 3-1 Page Fault (PF) Code Truth Table

PF PF Code Mode
EBox 01 02 03 04 05 Error Type
Handle F A w S T oCT KI KL
0 0 0 X X X 0X No Access X
0 0 1 0 X 1 11/13 Write Failure X
0 1 0 0 0 i 21 Proprietary Violation X X
0 1 0 0 | 0 22 Page Refill Error X
0 1 0 0 1 1 23 Address Break X X
0 1 0 1 0 1 25 PT Parity Error X X
1 0 0 X X X 0X No PT Entry X
1 0 1 0 X 1 11/13 Write Failure X,
1 1 0 X X X 2X No PT DIR Entry X
Notes: 1. Only meaningful codes are given above

2. X denotes arbitrary (don’t care) conditions

MBox/3-6

3.2.5 Operating Modes

The pager is designed to operate in two different modes: KI and KL paging modes. The EBox specifies
which mode the pager is to operate in, hy asserting or negating CON KI PAGING MODE. When
asserted, the pager will operate in the KI mode; when negated, the pager will operate in the KL mode.
In the KI paging mode, page refills are executed by the MBox using the K110 format page pointers in
the process tables. Extended addressing will not be in effect for this style of paging. In the KL paging
mode, page refills are executed by the EBox in response to a signal from the MBox, using the KL 10
format page pointers. Extended addressing may or may not be in effect for this style of paging (refer to
EBox Unit Technical Description).

3.2.5.1 KI Paging Mode - When the EBox issues a request to read or write paged memory, it also
asserts CON KI PAGING MODE. This allows the MBox to automatically refill the page table when
required.

The page table must be refilled when a valid entry is not found in the directory. When the page table
needs to be refilled, the pager asserts PAGE REFILL and the cache control will then execute a cache
cycle (refer to Cache Page Refill cycle description) to fetch eight page table entries (4 words) from the
process table (executive or user, depending on the EBox request qualifiers). If one or more of the
needed words are in the cache, these words will be taken from the cache instead of core. In either case,
the words are moved into the MBs. From the MBs the words are moved into the page table one at a
time. During the Cache Page Refill cycle, PT ADR bits 24-26 are modified to move the words from the
MBs into the correct page table locations. VMA 26 is blocked to select both halves of the page table
(PT RIGHT and LEFT EN are asserted). VMA 24 and 25 are blocked and are replaced with two bit
codes that correspond to the MB selected (MB SEL 1-2). PT ADR 18-23 remains unchanged for the
duration of the Cache Page Refill cycle. The resulting PT address then changes only when another MB
is selected to move another word into the page table. The page table is written at PAGE REFILL T12.
At the same time the page table is written, the directory is also updated. The directory is updated by
storing the virtual section address and the state of EBOX USER and validating the entry. One entry is
placed in the directory for every two words thiat are written into the page table. When all the words
have been written into the page table, the cache control retries the request.

If the directory contains a valid entry and the EBox requested a legal operation, the pager asserts
PAGE OK. This signal informs the cache control to simply transform the virtual section and page
address into the physical address by selecting the address from the page table. The directory contains a
valid entry if the NOT VALID bit is cleared and the USER bit and the virtual section address in the
table matches the section address and MCL VMA USER signal presented with the request. The refer-
ence is legal if page descriptor bits allow the request (refer to Subsection 3.2.2).

If the directory contains a valid entry and the EBox requested an illegal operation, the pager asserts
PAGE FAIL. The page test logic of the pager senses that the EBox requested an illegal operation by
checking the page descriptor bits of the referenced page. When the pager asserts PAGE FAIL, the
cache control time state generator will assert PAGE FAIL HOLD and will advance through the
PAGE FAIL time states. PAGE FAIL HOLD is asserted to inform the EBox that the page test failed.
The PAGE FAIL time states are entered to transfer the page fail status word into the EBus register
(LOAD EBUS REG) so that the EBox can read the word and evaluate the failure and take remedial
action. The format of the page fail status word is shown in Figure 3-3.

MBox/3-7

2 3 4 5 © 14 8 14 26 27 31 34 35

li - l| i { // o VPAGE G-WORD WD

i |
‘, \ 1 ‘ “ _ J
i X Y
©OPE HOLD 4 PF HOLD PF HOLD PT CACHE PHYSICAL ADDRESS
1IN l @3 IN @5 IN
USER PE HOLD PE HOLD pPT PUBLIC PAGED REF
22 IN 04 IN

10-1494

Figure 3-3 Page Fail Word Format

3.2.5.2 KL Paging Mode - When the EBox issues a request to read or write paged memory it issues
the request with CON KI PAGING MODE negated. This prevents the M Box from executing the refill
operation and forces the MBox to assert PF EBOX HANDLE and PAGE FAIL HOLD in the event a
valid entry is not found in the page table. PF EBOX HANDLE will be asserted by the MBox only
when the EBox specifies the KL paging mode is to be used. Therefore, the EBox knows that it must
execute the refill operation when PF EBOX HANDLE is asserted by the MBox. If the MBox asserts
PAGE FAIL HOLD but not PF EBOX HANDLE, this means that an illegal reference in accordance
with the page descriptor bits of the page table entry was made by the EBox.

NOTE
The pager will never assert PAGE REFILL when the
EBox specifies that the KL paging mode is to be
used.

The page table must be refilled when a valid entry is not found in the directory or when an entry in the
page table is not accessible (ACCESS bit is cleared). When the page table needs to be refilled, the pager
asserts PAGE FAIL and PF EBOX HANDLE and the cache control will then assert PAGE FAIL
HOLD and advance to the PAGE FAIL time states to transfer the Page Fail status word into the EBus
register. The EBox recognizes that the page test failed because a valid entry was not found in the page
table because of the fact that both PF EBOX HANDLE and PAGE FAIL HOLD was asserted by the
MBox. The EBox will then issue a request to read the EBus register. The Page Fail status word will
then be evaluated by the EBox to determine what kind of refill operation is required.

If a valid entry is not found in the Directory (PF code 2X5) the EBox will clear four entry locations in
the page table. Each word in the page table contains two entry locations, therefore, the EBox must
clear two page table words. Bits 25 and 26 of the PT address are set up and CLK PT WRis asserted by
the EBox to select and clear the correct words. The EBox sets up the correct address by presenting a
two-bit code to the M Box via the APR PT WR SELO and 1 control lines. The codes and their functions
are defined in Table 3-2.

Table 3-2 Page Fault (PF) Code Truth Table

APR PT WR SEL
Functions
01
‘00 Select VMA address
1 0 Clear even PT word
01 Clear two directory entries
11 Clear odd PT word

MBox/3-8

After the EBox has cleared the even and odd words in the page table, the EBox will issue process table
read requests and, if necessary, additional read requests to fetch a valid page table entry. When a valid
page table entry is found, it is written (CLK PT WR) into the page table by the EBox. At the same time
the page table entry is written, the virtual section address is also written into the directory by asserting
CLK PT DIR WRITE. During this operation, the tables are addressed by virtual address bits 18-26,
because the EBox will present a code of *00” on the APR PT WR SEL control lines. At this point, one
of the four locations in the page table that corresponds to the validated entry in the directory will have
an accessible entry so that the original request can be retried by the EBox.

If a valid entry is found in the directory, but an accessible entry is not found in the page table (PF code
0X), the EBox will fetch the page table entry and write it into the page table, as previously described,
without initially clearing two page table words.

Before the EBox writes a page table entry, it checks the W bit of the entry. If the EBox intends to read
from this page and the W bit is set, it clears the W and sets the S bit before writing the entry into the
page table. Consequently, a page fail condition will be sensed by the pager if the EBox issues a write
request for that page. When this occurs, the EBox checks the PF code to see if the S bit is set. If the S
bit is set, the EBox clears the S bit, sets the W bit, and writes the entry back into the page table. To
indicate that the page will be written, the EBox also updates the Core Status Table (CST). After these
operations are done, the EBox retries the original request. This scheme speeds up swapping programs
out to mass storage, since only those pages that were written can be identified and swapped out.

If the MBox presents a page fail code other than those indicating that a refill operation is required. or
the write test failed, the EBox will evaluate the failure and take appropriate remedial action.

The EBox can also clear the entire directory. This is done whenever another user program is started.
To clear an entry in the directory, the EBox sets up VMA address bits 18-23, places code 01" on the
APR PT WR SELO and 1 control lines, and asserts CLK PT DIR WR. The EBox must execute this
operation 64 times to clear the entire directory.

3.3 CACHE AND CACHE CONTROL

Basically, the cache control (Figure 3-4) allocates core cycles to the EBox and the integral data chan-
nels by arbitrating EBox and channel requests and executing appropriate cache cycles. Cache cycles
are executed to this end to see if the cache (Figure 3-5) contains any valid words. The channels need
core cycles to fetch CCWs, read and write data, and store status. The EBox needs core cycles to read or
write instructions and data, and to read or write locations in the process tables. If while executing a
cache cycle it is found that a particular request is needed to satisfy a core cycle, a core cycle is then
started. Core read cycles are needed to satisfy channel and EBox requests if the Cache does not contain
the requested word(s). Core read cycles are also initiated to refill the page table when the EBox makes
a paged reference and the page table does not contain a valid entry (KI mode). Core write cycles are
always needed to satisfy a channel write request because the channels do not write into the cache. One
of the reasons for this is that the data file coming from mass storage is not necessarily related to what
the EBox is operating on at the time. Core write cycles are also required to satisfy EBox read or write
requests if the LRU cache contains written words from another part of core. Cache cycles are also
granted to the EBox to load and read internal MBox register, write-check a page of memory, map the
virtual address, execute an SBus diagnostic cycle, or load the cache refill RAM. The page table can be
written by the EBox directly (KL mode), therefore, a cache cycle is not needed.

MBox/3-9

0l-£/xog N

TO CHANNFL CONTRO

Ve R o LA —
’ : .
csH CHAN REQ QUALIFIERS ‘
cmw! * s - R - —— EMB HOLD &
ce| i 3 »,
L ¥ |
CLK EBCX REQ CACHE CYCLE ‘ |
T
i i
! [CLK A
MB REQ Lo PRASE
CLK EBOX SYNC D : S - e
! | : ; i
(F\g 3-8) { . ¢ l 1 ‘
MBOX RESP IN CACHE -
CCA REQ | CLEARER ¢ Eju N CORE 3 BUS CONTROL
CACHE conTroL 1 C i B8 CONTROL CONTROL fa>—"2- 220 722 o
CYCLE, (F ALRIR e — \ (Fig 3-36
<« _PAGE FAIL HOLD | TIME STATE 93-32 . CsH wD B-3va | L(F19 333 8 3-37)
AND PMA I BEEER CSH WD 0-3 WR| ‘
CONTROL * ! ! |
MEM | (Fig 3-6) | CACHE ' 'R : |
REF QUALIFIERS TIME STATE [1 !
1
' ARY VAL MATC ! ; |] !
L H [
REGISTER | 5
REF QUALIFIERS AN MR AR : i ‘ | 5
+ + - i ! |
PAGE OK ; : P ‘
PAGING AND PAGE REFILL i | !
CACHE QUALIFIERS PAGE FAIL ! i |
hd 4
| ‘ s 1 |
b | ! ; ‘ 4
L e ‘; i x i
. i i i ‘ LRU 1-2
+ ; - CACHE USE
; ; ; PAGER | s DIRECTORY TABLE ;
iPMA ! —e Fig 3-1) 1 JFig 358 31— el (Fig 3-30) !
1a-35 ‘ T ‘ | |
SEL _‘ ‘ | Lo PMA (CCA! !
| M8 34-35 i
VMA 14-35 ! . | ‘ - L] | lRO HOLD
CCW CHA 14-35 ?
3 PMA 14-35 ! ADR | S BUS ADR 14-35
i] A i REG
|
. UBR 14-26 | (MTd4
C (Fig 3-7 & 3-8) EBR 14-26 ;
P ! CCA 14-35 i i
f PT 14-26
L CAM 14-26
i
__E BUS D @@-35 E BUS I
REG PAGE DESCRIPTOR BITS |
(MBZ2) 10-1493

Figure 3-4 Cache Control Block Diagram

@ CACHE DATA @0-35 /’\ /\ /\ /\ CACHE DATA 88-35_
o By By| By
2 &R < _SEL — SEL H - SEL_ WORD AODRESS
- csH 1 csH 2
w |3 M8 CH BUF) 2 1 3\ 3 1 2 3 \EM) i 3 & l
MB IN 3@-35 3 p— 2 - ; s T C i
g |4 MEW OATA IN SACHE wRITE 2 : ; | T ! 1 [1 [i | ; :] |
“ls T I T 1 | |
L6 CCw Mux P i —— ;
SR — b — e i —_— : :
: — L — — ! — i
i — — — | H ~WCES AZORI
CE wor | woz | wo3 WDp | wol | wpz | w3 wop | wor | wo2 o oRess !
: - | — e H N D i i '
(CHB1-3) — — (CHB1-3) — b— | (cHZ1-3: — ! i
— | — I . —— | -
N | J— — — — i
| 1 i
T i EN EN | EN ! EN] i
- Y ' i
MEM T CACHE 00-35 1 f 1 1 1 t b 1 1 i ; : i 1 i |
i i i
: CSH 3 VALID MATCH i FORCE vALiD MATCH 3 !
REF yan L2 CSH 2 VALID MATCH __FORCE vALiD MATCH 2 i | ;
lob =2o2 CSH 1 VALID_MATCH FORCE VALID MATCH 1 ; ! |
C5n 0 VALID_MATCH FORCE VALD MAICH 8 : i
b= ! i FORCE NC MATCH |
| |
R0 FOUNT . J ADDRESS !
CACHE CSH 3 ANY VAL g (crxn ;’/”\ i X
ANY vAL MATCH DIRECTORY TSH 2 ANY VAL ! :
AND CSH 1 ANY VAL ! !
ANY WR MaTCH WRITE CSH @ ANY VAL : i
EN H : H :
CSH LRU ANY WR LOGIC CSH 3 ANY WR ; i f i H
[T csn 2 Ay we !
CSH 1 ANY WR 1 i i i i
— (Fig 3-11 CSH @ ANY WR : : i i ! i
1 : iCsH @ OIR CSH 1 DIR | 1CSH 2 DIR CsH 3o - : :
i csH i1a- {1a-26 i1a-26 426 | !
. LRU 1-2 ¥¥*f‘,f”; | | : ‘ ¥¥fl’ i
[.] IREREE T - T e i
| I — RREERS ! . 1 T] b
: — b4 g i E e 44 i : i
- - B 4 - E -+ H i i
i - b P — .
: CACHE Pl *
| - usE fvad a0R ADR twr; | ivaL a Twr: | ivat aue 1,9 - WORD ADDRESS i
| - TABLES (cHx2) (CHAL-3) (CHat-31 Fichas: (CHAL-3) cHad [‘cuxal (cHat-3)
I (FI6 3-32) ‘J - -1 ' i
: . .] w w W - ! :
ololojojp(ocio i
| e pitief3ler 23 : |
I] ust ens - 127
¥ T 3 N
T] | ¥ : i I l t I | Pace avosese
. H I i i .
N . CSH @-3 WR EN T 0 T B T PRI [u:: . .
RO: TiMt STATES e s . W :
_CACHE_CONTRO: Time sTATE - B WRITTEN (WR) BITS ! : PHYSICAL PAGE ADDRESS (BDRI
LSBUS ADR 18 35 . = _ . o - e e e . R - <E

i
G woRD o]

538 PAGE
B rogse M ORERS ARE NOT JMPLEMENTED N "HE LOGIC
SUEPORT TS PERSPECT'VE OF THE CACKHE 14 2827 3334 3%

Bul ARL SwOwWN TC

Figure 3-8 Cache-Biock “Diagram

3.3.1 Cache Control Logic

T'he cache control consists of a priority request grant network to arbitrate and grant pending requests,
4 set of major and minor cycle latches, the address selector (PMA SEL), and a time state generator
(Figure 3-61. To exccute a particular cache cycle, the time state generator is started and then steered by
the following variables:

Granted Request

Cvcle Latch

Request Qualifiers from the Channel or EBox
Contents of the page table (EBox requests only)
Contents of the Cache Directory

cac T

3.3 1.1 Request Arbitration Logic - The priority request grant network arbitrates requests from the
E:Box. channel. MB control, and the CCA control. Requests from these components must be arbi-
trated and granted, one at a time, since each can issue a request independently of the other. However,
the MB control and the CCA control will request cache cycles only after they have been started by a
cache EBox cycle. Cache EBox cycles are granted only in response to EBox requests. The order in
which the requests are serviced is as follows:

MB Request
CHAN Request
EBox Request
CCA Request

£t —

MB requests are issued by the MB control after a core read cycle to refill the cache is started by a cache
EBox cycle. MB requests are issued by the MB control to request a cache cycle tp move a word from
the MB to the cache. Any words in the MBs must be moved out of the MBs before another core cycle
can be started. Consequently, MB requests demand the highest priority for cache cycles.

Channel requests are issued by the channel control to request a cache cycle to move data in or out of
core and invalidate the cache. During channel read operations, channel requests are issued by the
channel control when the Channel Data buffer contains enough empty locations. During the cache
cvele, any valid words in the cache are taken from the cache, instead of core, and a core read cycle is
started to get the words that are not valid from core. However, during channel write operations, the
channel control issues Channel request only when enough words have been accumulated in the Chan-
nel Data buffer. Any valid words in the cache are invalidated and a core write cycle is started when the
cache cycle is executed during a channel write operation. Channel requests demand a higher priority
for cache cycles than EBox requests so that the EBox can be prevented from getting a core cycle as long
as Channel requests are pending. This feature minimizes data overruns.

EBox requests are issued by the EBox to reference memory, load or read internal registers (CCA
control is started by loading the CCA register), write-check a paged location, map the virtual address,
exccute an SBus diagnostic cycle, or load the refill RAM. EBox requests demand a higher priority than
CCA requests so that the EBox will not be locked out from the MBox while the cache control is
validating core and/or invalidating the cache. This permits the EBox to get into the MBox and core
memory to set up the next operation while the cache clearer is running.

CCA requests are issued by the cache clearer control to validate core and/or invalidate the cache. CCA
Requests are granted last in the cache cycle priority scheme. It takes a maximum of 1024 cache cycles
and up to 512 core cycles to clear the cache. Since it is more critical to permit the EBox to reference
memory and internal registers while the cache clearer is running, EBox requests are granted cache
cvcles in preference to CCA requests.

MBox/3-12

£1-€/X0g N

(CSHI)

PRIORITY (CSH1)
REQ GRANT CYCLE
NETWORK LATCHES
MB REQ MB REQ GRANT CSH
0| M8 MB CYC
L CHAN REQ CHAN REQ GRANT H
Eglé';c = ! | CHAN CHACB? cYe
REQ IN { EBOX |CLK EBOX REQ EBOX REQ GRANT CSH
e T 2 |EBOX EBOX CYC
A R RANT
) cca Rea T CCA REQ G ccgsgw
: CACHE CYCLES
— Hee
CORE_BUSY
REQ EN HOLD
CSHI
{CSH2) { REFILL CSH PAGE
REFILL
EBOX cYc
RETRY o (PMAS)
NEXT WRITEBA
EBACK \WRITEBACK|
cYe EBOX REQ
‘ QUALIFIERS
cYe
TYPE HOLD
- PMA 14-26 COMBINATIONAL | PMA 14-26 SEL 1.2,4
LOGIC -
£BOX REQ GRANT s PMA 27 SEL 1,2, 4 ——
SeL | PMA 28-31 SEL 1.2.4 MA
CONTROL. - e
AP £80X ERA [oo | £80X ERA GRANT A | PMA 32-33 SEL 1.2.4 CACHE £BOX
APR EBOX CCA | gaTes | EBOX CCA GRANT PMA 34-35 SEL 1,2,4 DIRECTORY REQ
QUALIFIERS QUALIFIERS
(PMAS) REFILL PT
WRITEBACK QUALIFIERS
1
NON EBOX I l l l
‘]csm\ REQ GRANT , CSH
T9 N CACHE
] CSH5 SiMe
- CACHE CONTROL STATES
EBOX CsH TIME STATE
REQ GRANT | EeoN GENERATOR
S
@—’ (CSH 4 -6,MBC2,4,MBX4)
1
— CYC TYPE HOLD T
PMAS CHAN REQ
(CSH1) — QUALIFIERS
CACHE
IDLE) READY
CSH1
.] T0 GO
1
t (CSH1) MBOX
CLK_EBOX SYNC D MBOX |RESP IN_
RESP
{CsH2)

Figure 3-6 Cache Control Time State and PMA Control Block Diagram

10-1437

A cache cycle can be started only after the cache control enters its idle state (CACHE IDLE). Initially,
the cache control is forced to IDLE by MR RESET: thereafter the cache control returns to IDLE
every time a cache cycle is done. From CACHE IDLE, the cache control advances to READY TO
GO. If a request is pending, the next cache cycle is started at READY TO GO if the priority request
grant network is not pre-empted. If neither a request is pending nor the priority request grant network
is pre-empted. the cache control remains in its READY TO GO state until a request is received. If a
request is received and granted, the cycle and PMA SEL latches are loaded and the time state gener-
ator is started. The cycle and PM A SEL latches will then be held for the duration of the cache cycle.

NOTE
These latches are loaded during READY TO GO or
WRITEBACK T2.

In some cases. the priority request grant network is pre-empted to initiate another cache cycle (page
refill or writeback). These cases are:

a. Ifduring a cache EBox cycle it is found that the page table does not contain a valid entry for
a paged memory reference (read or write) the priority request grant network is pre-empted
(K1 paging mode only) to prevent another pending request from being granted. Instead, a
cache page refill cycle is initiated to refill the page table. After the cache page refill cycle is
done, the cache control returns to IDLE and the EBox request is retried.

b. If during a cache EBox cycle, it is found that the cache does not have a record of the word
and the LRU cache contains one or more written words from another page, the priority
request grant network is pre-empted to prevent another pending request from being granted.
Instead, a cache writeback cycle is initiated to write the written word back to core to free a
cache block. After the cache writeback cycle is done, the cache control returns to IDLE and
the EBox request is retried.

¢. If during a cache clearer cycle to validate core, it is found that the cache block being looked
at contains some written words, the priority request grant network is pre-empted to prevent
another pending request from being granted. Instead, a cache writeback cycle is initiated to
write the written words back to core to update (validate) the core copy. After the cache
writeback cycle is done, the cache control returns to IDLE and READY TO GO, at which
time the highest priority request pending is granted.

3.3.1.2 Request Execution Logic - The cache control time state generator is steered by a number of
variables depending on the particular cache cycle that is being executed. A summary of the variables
that control the operation of the state generator during specific cache cycles is presented in Table 3-3.

T'he state generator is steered to effect specific operations while a cache cycle is being executed. Some
of these operations are: update cache directory, update use table, move valid or written words from the
cache into the MBs, start core cycle, move words from the MBs into the page table and start the cache
clearer control.

Besides setting a cycle latch, the PMA SEL latches are set up every time a new cache cycle is started, as
described previously. The PMA SEL latches control the address mix out of the PMA. The PMA
supplies the address for the cache and if a core cycle is required for the SBus, the cycle latches steer the
state generator to execute a specific cache cycle. Each type of cache cycle performs a different function,
based on the variables that steer the time state generator. A summary of the assigned functions of each
tvpe of cache cycle is presented in Table 3-4.

M Box/3-14

Table 3-3 Time State Generator Control Variables

VARIABLES
PAGE CACHE
EBOX REQ CHAN REQ TABLE DIRECTORY
CACHE CYCLE QUALIFIERS |QUALIFIERS CONTENTS CONTENTS
MB CLK EBOX SYNC D - - -
CHAN - - X
EBOX X X X
CcCA X! X
REFILL (KI ONLY) X X
WRITEBACK X
! These qualifiers are stored in the 3-bit CCA Control Register of the MBox

Table 3-4 Cache Cycle Functions

Cycle

Function

MB

CHAN

EBOX

Move words from MBs to cache. The words are moved into the
MBs by the core control during a core read cycle.

READ: Move the valid words from the cache to the MBs and
start a core read cycle to fetch the words that are not valid. If all
the requested words are in the cache, a core read cycle is not
initiated.

WRITE: Start a core write cycle; if any valid words are in the
cache, clear their valid and written bits.

READ: Page check the read request (paged only) by comparing
the EBox request qualifiers with the contents of the page table
and checks the cache to see if the word is there. If the reference
to the page is OK and the word is in the cache it is simply pre-
sented to the EBox. If the page check is not OK, either a page
refill cycle is initiated or the EBox is informed that a page fail
condition exists. If the desired word is not in the cache but some
of the words in the quadword group are in the cache, a core read
cycle is initiated by the cache cycle to fetch the words that are
not valid in the quadword group. The word the EBox requested
will come in first and will be presented to the Box and be written
into the cache. If none of the words in the quadword group are
in the cache, the the LRU cache is used for the refill operation if
there are no written words from another page in that cache. If
written words are found in the LRU cache, they are written
back to core before the core read cycle is started.

MBox/3-15

Table 3-4 Cache Cycle Functions (Cont)

Cycle Function
I-:Box WRITE: The page table and the cache directory are checked as
(Cont) described for the Read request. Words are always written into

the cache unless the cache is to be bypassed. If the cache has a
record of the quadword (ANY VALID MATCH) the word is
simply written into the cache quarter that has the record. If the
cache has no record of the quadword, the word is written into
the LRU cache if there are no written words from another page
in that cache. If written words are found in the LRU cache, they
are written back to core before the LRU cache is written.

NOTE
Cache cycles are also used to load and read internal
registers, to check a page, and to map the virtual
address.

CCA Invalidate the cache and/or validate core for a single page or
the entire cache. To validate core, writeback cycles are initiated
for all words that are written.

REFILL Move any valid words from the cache to the MBs and start a
core read cycle to fetch the words that are not valid. Then move
the words into the page table. If all the words are in the cache, a
core read cycle is not initiated.

WRITEBACK Move all written words into the MBs, clear their written bits,
, and start a core write cycle.

3.3.1.3 Page Table and Cache Address Logic - The cache cycles that check the cache directory and/or
the page table must allow for logic transit time and RAM address to output access time. Approx-
imately 120 ns (three MBox clock ticks at 25 MHz) are required from the time the address is presented
to the page table and the cache before their contents can be checked to decide the next step in the cache
cycle. The page table is addressed by the VMA when the EBox issues the request. However, the cache
address varies with the cycle to be executed and is presented to the cache when the cycle is started
(Figures 3-7 and 3-8). A summary of the sources that contribute to forming the cache address is
presented in Table 3-5.

The cache is addressed by the nine least significant bits of the 22-bit physical address or the 23-bit
virtual address. These bits point to a word within a page and are not subject to modification by the
paging mechanism in the system; only entire pages can be relocated through the paging mechanism.
All nine address bits are used to address the data portion of the cache, while only the seven high-order
bits address the directory portion of the cache. This has the effect of addressing one data word in each
cache and a directory entry for each cache. Consequently, if one of the directory entries matches the
page address that was presented with the request and the valid bit for the word in the associated cache
is set, then the desired word is in the cache. Note that only one word is addressed in each cache while
the cache directory, in conjunction with the valid bit of the word, specifies which cache has the
requested word. To further edify the addressing scheme, consider that all four words associated with a
given directory entry are in the cache. This means that for all four combinations of the two least
significant address bits (bits 34-35), which address only the data portion of the cache, a word would be
found. since each word would be associated with its own valid bit and the same cache directory.

MBox/3-16

L1-€/X0g N

CSH EBOX T@ IN

MBOX GATE VMA 27-33

VMA 27-33

|

CSH_EBOX CYC
CSH3
—CSH EBOX CYC
E CORE RD RQ REFILL ADR ——FBOX T2 IN |
CSH DATA CLR T3 EN NXT —_— Dt
M8 REQ GRANT csH3
READY TO GO Juexs)— ° 1M K le
—READY TO GO MBx1
ek .
l REFILL_ADR EN
g_ﬁ_
PMA 27-33 1
PMA HOLD 27-33 2
¢
ERA 14-35 PMA 27-35 0
HOLD ERA[——33
ERA
: o]
\(PMAM MB SEL 1-2 ,|—

VMA 13-35

PMA 14-35

N
;/—
—

o

CSH
ADR
PMA
EN

MBX
CSH 27-33

CACHE ADR 27-35

CACHE
USE TABLES

(Fig. 3-30)

CACHE
DIRECTORY
(Fig. 3-5 AND 3-1t)

S BUS ADR 14-35

SN T

14 26
EBR (PMA1)
0UBR (PMAT)
CCA (PMA2)
CCA CYC DONE CCA CTRL (MBX1l }
PT 14-26 2t 33
CAM 14-26

CCW _CHA 14-35

CACHE TO M8 34-35

PMA 14-35 SEL 1-2-4

MT24

CLK
lc H

RQ HOLD

Figure 3-7 Cache Address Simplified Logic Diagram

10-1398

81-€/X0g N

PMA 14-35

l (:rRAI:')Y PMA 14-26 PARV
I oy PMA_ADR PAR
PMA 14-35
SEL 1-2-4 14-26 (PMA 3/4) 27 28~34 32-33 34-;5\PMA
— —
GJT er 3 5 4| 7[1 Er
]] PMA 28-33
| cca 27-35 VMA 18-23
CCW CHA 14-35 CAM 14-26 PT 14-26 BITS BITS 27 AND 28=1 | CACHE
27-35:0 PMA 29-31——VMA 19-21 | TO MB
34-35
ERA 14-35 VMA 14-25 CCA 14-35 UEBR 14-26
3
MCL VMA UPT T—'r‘f
APR EBOX UBR
CCA|UBR|EBR
CSH EBOX CYC BIT|BIT|BIT|(PMAY)
CSH PAGE REFILL CYC w UEBR MIXER 14114 | 14
PERF_UBR COND 1 E TPAT) C W)
LOAD vMA 14
LOAD
APR T
14 35 | EBOX 15 T 26 27 I 35 o 15 26 APR 15 | 26 APR
CCA R EBOX_UBR EBOX EBR
! HOLD ERA =N cea res | |S5E BRG] SEL 1-2 UBR PO gBr |LOAD| /T
i T]ERA REG Pmaz BLOCK [*— | (PmA1) PMAI (PMA1) PMAT
: (PMA 4) l—_J (PAGE NoJ| | B5OGK \ \ esh £80X
x 5 1
(PMA2) (PMAZ2) LOAD REG |yma
14-35
OCTAL CODE FOR | PMA SEL | PMA SEL | PMA SEL | PMA SEL | PMA SEL
MIXER SEL 14-26 27 28-31 32-33 34-35
o VMA ERA ERA ERA ERA
14—26 27 28—32 | 32-33 | 34—35
. UEBR .y VA
14—26 1" 19—21
» VA VA PMA
18—21 | 22—23 X, Y
3 CHA CHA CHA CHA CHA
14— 26 27 28—31 | 32—33 | 34—35
4 CAM cca cCA CCA CcCA
14—26 27 28—31 | 32—33 | 34-35
5 CCA cca CCA ccA ccA
14— 26 27 28—31 | 32—33 | 34—35
R ERA VMA VMA VMA VMA
14—26 27 28—31 | 32—33 | 34—35
PT g . - I -
7 — @ 1] 20 [
14—26 10-1499
Figure 3-8 PMA Mixer Simplified Logic Diagram

Table 3-5 Cache Address Combinations

Address Source
Cache Directory Cache Data

Cycle (27-33) (27-35)
MB PMA HOLD PMA HOLD + MB SEL 1-2
CHAN PMA < CHA PMA < CHA + CTOMB
EBOX VMA PMA < VMA
CCA PMA < CCA PMA < CCA
REFILL PMA <~ QUADWORD PMA < QUADWORD WD

POINTER POINTER + CTOMB

WRITEBACK

CCA REQ PMA < CCA PMA < CCA

EBOX REQ PMA < VMA PMA < VMA + CTOMB

During the cache MB cycle, the cache address is provided by the PMA HOLD register and the MB
control. The seven high-order bits of the nine-bit cache address are supplied by the PMA HOLD
register; the two low-order bits are a function of which MB is selected (MB SEL 1-2) at the time. The
PMA HOLD register is loaded when a core read cycle is started and is held for the duration of the
cycle (CORE RD IN PROG). The MB control provides the two low-order bits of the cache address
(MB SEL 1-2) to move the word into the correct location of the data portion of the cache. The
contents of the PMA HOLD register and the MB SEL 1-2 control lines are selected (REFILL ADR
EN) to address the cache every time a cache MB cycle is executed.

During the cache channel cycle, the cache address is provided by the channel which is selected by the
PMA control when the cycle is started. The two least significant bits of the cache address (Cache To
M B 34-35) are needed only during the channel read operation if some of the requested words are valid
in the cache. These address bits are a function of which words the channel requested and are used to
move the valid word into the MBs (refer to MB Control Description). During a channel write oper-
ation, the two least significant cache address bits are not needed because data is not moved in or out of
the cache.

During the cache EBox cycle, the cache address is provided by the VMA. The seven high-order bits of
the cache address are not passed through the PMA to minimize the transit time, thereby permitting the
cache control to check the contents of the cache directory somewhat earlier than would otherwise be
possible. Consequently, this speeds up the cache EBox cycle.

During the cache CCA cycle, the cache address is provided by the cache clearer control, which is
selected by the PMA control when the cycle is started.

During the cache page refill cycle, the cache address is supplied by the PMA. The seven high-order bits
constitute a quadword pointer into the process table (EPT or UPT) and the two low-order bits are a
function of which words in the cache are not valid. If some of the words in the cache are valid, the low-
order two address bits are used to move the valid words into the MBs (refer to MB Control Descrip-
tion) otherwise; these address bits are not needed.

MBox/3-19

During a cache writeback cycle, the cache address is provided by either the CCA or the VMA, depend-
ing on'which request was granted. If an EBox request was granted, the cache writeback cycle is entered
from a cache EBox cycle; the PMA control, therefore, selects the VMA to address the cache. If a CCA
Request was granted, the cache writeback cycle is entered from a cache clearer cycle; the PM A control,
therefore, selects the CCA register to address the cache. As described before, the two low-order bits of
the cache address are used to move the words of interest (which are the written words in this case) from
the cache to the MBs.

3.3.1.4 Cycle Decision Logic Three MBox clock ticks after a cache EBox cycle is started, the contents
of the page table and the contents of the cache directory are checked (Figure 3-9). For cache CHAN
and CCA cycles, the contents of the cache directory are checked at CSH T3 (Figure 3-10). One more
clock tick is needed for these cycles to compensate for the additional transit that is contributed by the
PMA. The page table and the cache directory supply the following variables which, in conjunction
with the request qualifiers, are used to steer the state generator and control the subsequent operation
of the cache control.

a. Page Table

l. PAGE OK
2. PAGE REFILL
3. PAGEOK

b. Cache Directory

ANY VALID MATCH
RD FOUND

ANY WRITTEN MATCH
LRU ANY WRITTEN
WD 0-3 VAL

WD 0-3 WR

RN -

Besides the variables specified, the Cache Directory Cache Address Mixer (CAM) also presents the
physical page address (CAM 14-26) to the PMA. This address is needed to write the written words in
the cache back to core. «

Figure 3-11 illustrates the control logic for testing and writing the cache directory. Only one page of
the cache directory is shown to simplify this presentation.

NOTE
The cache contains four pages of storage; a given line
of the cache will never contain more than four words
from the same page and all four words will always be
in the same cache quarter. Consequently, only one
page (quarter) of the cache directory will contain a
valid entry.

M Box/3-20

CSH EBOX TO IN

,F

CLK

CSH EBOX TO

i}

F

CLK €BOX AC AEF

CSH EBOX T1

I
J

CLK

CSH EBOX T2

lj

;

.

PAGE REFILL PAGE OK PAGE FAIL
START CACHE SET PAGE FAIL
PAGE REFILL HOLD AND LOAD
CYCLE EBUS REGISTER
10 1 12 3 4 5
1 ! ' i 3 |
READ FROM START CORE WRITE CACHE WRITE LRU START CORE START CACHE
CACHE AND WRITE CYCLE DATA, VAL BIT CACHE DATA WRITE CYCLE. WRITEBACK
UPDATE USE UPDATE USE BITS AND VAL BIT, MOVE ONE WORD CYCLE
BITS SET E CORE RD RQ SET CACHE IDLE CLEAR DATA INTO MB BEFORE
CACHE IDLE MB RQ ALLOW VAL BITS AND STARTING CORE
REFILL HOLD WR BITS AND CYCLE SET
MEM RD RQ WRITE CACHE CACHE IDLE
MEM RQO-3 DIR UPDATE
MEM START A/B USE BITS BE-
FORE WRITING
DATA AND VAL
BIT SET CACHE
IDLE

A
—CACHE BIT ANY VAL MATCH ~ANY VAL MATCH

i !]

UPDATE USE BITS

WAIT FOR WORD AND CLEAR CACHE UPDATE USE BITS.
DATA. WAIT FOR CLEAR CACHE
JWORO DATA VAL BITS

AND WR BITS AND
WRITE DIR. WAIT
FOR WORD.

DATA No |
VALID

YES

fo: EBOX READ A RD FOUND
f1: EBOX READ A -RD FOUND A ANY VALID MATCH

—— EBOX READ A ~ANY VALID MATCH A -ANY WR
CORE — AR CORE M8 MATCH
J e o EBOX READ A CACHE BIT
- f2: EBOX WRITE A ANY VALID MATCH
cont T ws f3: EBOX WRITE A CACHE BIT A ~ANY VALID MATCH
R A-CSH LRU ANY WR
f4: EBOX WRITE A ~CACHE BIT A ~ANY VALID
MB - CSH MATCH
SET VAL BIT 16: CACHE BIT A ~ANY VALID MATCH A CSH LRU ANY
WR

10-1500

Figure 3-9 Cache EBox Cycle Decisions Flow Diagram
For Read and Write Requests

MBox/3-21

CSH TO IN

I,

CLK

CLK

CSHT1

HH

CLK

CSH T2

HH

CLK

i

CSH T3

CSH CHAN CYC
——T_—
{ —_— _L_.. CSH CCA CYC
CHAN TO MEM —~CHAN TO MEM ey
{ } { } _L - _J_
~ANY VAL MATCH ANY VAL MATCH ~ANY VAL MATCH ANY VAL MATCH [f 2
START CORE CLEAR VAL AND START CORE MOVE VALID START CACHE CLEAR VAL AND INCREMENT
WRITE CYCLE WR BITS OF READ CYCLE WORDS FROM WRITEBACK WR BITS AND CACHE
AND SET CACHE REQUESTED ::r?HSEEerLE CACHE TOMB, CYCLE UPDATE USE BITS CLEARER REG
IDLE WORDS, START START CORE SET CACHE IDLE

CORE WRITE READ CYCLE

CYCLE AND SET FOR NON-VALID 0= ANY WR MATCH A CSH CCA VAL CORE

CACHE IDLE WORDS AND SET 1 = ANY VAL MATCH A CS8H CCA IN VAL CACHE

CACHE IDLE 2= -ANY WR MATCH A —~ANY VAL MATCH

10-1501

Figure 3-10 Cache Channel and CCA Cycle Decisions Flow Diagram

The control logic for the cache directory includes steering logic for selecting the variables that will be
tested during the cache cycle and for enabling the write logic for updating the directory. When the
cache is addressed, four data words and four directory entries, comprising one line in the cache are
selected. Each directory entry consists of a page address and the VALID and WRITTEN bits for a
quadword. If the cache contains the requested word, or some of the words in the addressed quadword
group, then the page address presented with the request will match the contents of the directory and
one or more of the valid bits in the quadword group will be set resulting in a CSH n VALID MATCH
condition. The number n corresponds to the page number (or CSH No.) that contained the address
that matched. An Exclusive-OR equality (=) comparator is used to compare the addresses. The result
of this test is ANDed with the OR function of all the VALID bits of the addressed quadword group for
which the address matched to produce the CSH n VALID MATCH. The condition ANY VALID
MATCH is simply an OR function of the outputs from all four equality comparators. One comparator
is used for each page of the cache. RD FOUND is true when a VALID bit of a word in the addressed
cache line (one word in each cache quarter) is set and the address in the corresponding directory
matches.

MBox/3-22

CSH EN CSH LRU 1-2
CSH 3
—PMA 34-35 S::? ENC 1+
TSH i, -
CCA ALL PAGES FORCE VALID MATCH @ | CSH @ VALID MATCH e
CSH @ WR EN o3 1 N
CSH 2] ANY VALID MATCH
1
CSH@ wo 3 vaL [N ! |
csnawo2vaL | [© | i
csnewpivaL| | | i -
csH@wopvaL' ' 1IN i
CSH { WD D VAL f‘ i CSH WD @-3 VAL
CSH 2 WD @ VAL " t
CSH 3 WD @ VAL a | |
PULLICR. LR 0 L ‘\ ANY WRITTEN MATCH
: csH 3 wo @ vaL N { CcsH3
cshawo@vac) |
cshiwopvarl | P i
(CHX1) CSH@ WD @ VAL' ' ' X T2\R0 Founo,
PT 14-26B /7 _CSH B ANY vm_@" CSH 8 WD 5 VAl N |£5H B°3 WO vac csuz
(_\—4 3 1
CCA ALL PAGES
i RO £B0OX_DIAG CYC FORCE NO MATCH
| N FORCE_MATCH EN CSH DIR 14-26 @ : EPMA34‘35
CSH_WRITEBACK CYC C DIR PAR ERR t t } AT e
l -CON CACHE LOOK EN i B % CSH 2 : CAM 14-26
: CSH 3 g)
i \ CSHB WO B WR N !
: | CSH © WD | WR
! (NOTE) . ! ! CsHpwWoZWR || I\
| i : CSH @ WD 3 WR
o ! i : s CSH }l CSH WD 8-3 WR
kil ! i | Jouaz)ANY WR, Lo0 2 4
¢ '
CsH 1 | | : ! M_______}
] - i j
CSH @ - ! (CHX2) ' icHA3Y
ADR 27-33 PAGE {cHat3) T vaL et ¢ . |
1 ADDRESS WD — WD~ WD —~ WD |~ WD k) e WD —— WD sz] S |CSH LRU ANY WR |
23—+ 1— 2 3] LHZ Iy :
127 ¥ T ¥ CSH 3 3 H
oM 14-26 ! (CHX2) MBC3)] (MBXS) (CHA3) (MBC3! ‘
! i SEL | DATA | rsa. ‘ DATA S
{ (0]} {OR) (OR) (AND)
i \ CSH LRU t-2 MATCH
i | cSH WD -3 EN ‘: : HOLD 1-2
! | |
1
CSH VAL gen CSH
SEL ALL DATA WR 4 DATA CACHE
WRITE LR SEL Wi
(CHX2) (cnxz)w DDNE! ALL epam DONE Cve
MEM TO C
wR wr | DIAG EN WwR CLx
‘ t t t
CSH t I 1 l DEC EG
CSHZ .
SH3 MBCs) MBC1}
TCSH ADR WR PULSE CSH VAL WR PULSE, TSH_WR WR PULSE
i -RG
l (MBC2) | | OR" |(MBC2) I © {imacz2) “Zﬂggﬁ | REFILL
Hi
L4 l i 3 HALF oLo
L
i T 1 CSH EBOX WR T4 (N
CSH DATA CLR T1 : | CCA_INVAL T4 A
NOTE —ANY VAL HOLD ! | i CHAN_WR_T5_IN
H

Only CSH @ direciory is shown in detar]

~ONE WORD RO

CSH WR FROM MEM NXT WRITEBACK T2

101502

Figure 3-11 Cache Directory Test and
Control, Simplified Logic Diagram

MBox/3-23

The condition ANY WRITTEN MATCH is the OR function of all the WRITTEN bits of the
addressed quadword in the page of the cache that yielded a CSH n VALID MATCH. As is the case for
the VALID bits, all four WRITTEN bits corresponding to the quadwords that are being addressed in
the cache are selected at the same time. Consequently, a set WRITTEN bit for any word within a
quadword of any cache block can cause the condition ANY WRITTEN MATCH. This condition is
tested to validate core (refer to cache clearer control description). The condition CSH LRU ANY WR
indicates that one or more words in the LRU block of the cache are written and may need to be written
back to core. If the cache directory does not contain an address that matches the address presented
with the request, then the words belong to another page and must be written back to core before the
LRU cache block can be used in refilling the cache. These words will also be written back to core when
a cache clearer cycle to validate core is executed.

The signals CSH WD 0-3 VAL and CSH WD 0-3 WR specify which words of the addressed quad-
word are valid and which words are written. These signals are used to set up the MB 0-3 WR RQ
queue and the CTOMB WD 0-3 RQ queue of the MB control. These queues are set up when valid or
written words are to be moved from the cache into the MBs. Valid words are moved from the cache to
the MBs:

a. During a cache page refill cycle so that the valid words can be moved from the MBs into the
page table.

b. During a cache channel cycle that is executing a channel read request so that the valid words
can be taken by the channel control.

Written words are moved from the cache to the MBs:

a. During a cache writeback cycle that was initiated by a cache EBox cycle to make room in the
cache to permit a cache refill operation to be done.

b. During a cache writeback cycle that was initiated by a cache CCA cycle to validate core.

The complement of CSH WD 0-3 VAL is used to set up the MEM RQ 0-3 lines and in some cases
SBus address bits 34-35 to initiate a core read cycle (refer to Core Control Description).

To update the cache directory the correct cache directory must be selected.

NOTE
The cache address selects one data word in each
cache (a line) and the four corresponding directory
entries, as described before.

The correct cache directory is selected by the CSH n WR EN signal, which is a function of either the
cache directory that produced the matched entry (CSH n VALID MATCH) or the USE bits (LRU 1-2
bits) of the use table if no match occurred. This selection is automatically made by the encoder that
produces MATCH HOLD 1-2 IN. These signals are presented to a decoder via a holding register to
produce a WR EN signal that corresponds to the applied code (0, 1, 2, or 3) which specifies the cache
to be used. The holding register allows the code to be held for the duration of a core read cycle, the
writeback cycle, and for the case where the valid bits are to be cleared. Besides enabling the cache
directory write logic, the CSH n WR EN signals are also used to force a valid match (FORCE VALID
MATCH n) to select the correct cache for writing written words in the LRU cache back to core
(writeback cycle) and for refilling the cache (core read and MB cycles).

When a valid match is forced, as described above, the equality comparators (=) are disabled to avoid
potential conflicts. A valid match is also forced when clearing the cache of all written words from all
pages (PMA 34-35 A CCA ALL PAGES). This function permits the cache control to look into each
cache directory to see if any written words are in the cache.

MBox/3-24

3.3.1.5 Cache Control Time States — Bar charts are presented in the following subsections to illustrate
how the state generator continues from CSH EBOX T2 and CSH T3 to execute the request. All
subsequent branch conditions are shown. A summary of the significant time states-and their functions

are given in Table 3-6.

\

" Table 3-6 "Cache Control Time S.tate”Sumnjary

Time States

Assigned Function

CSH EBOX TO-T3 (CSH4)

PAGE FAIL T2-T3 (CSH4)

CSH EBOX WR T3-T4
(CSH4)

CSH DATA CLR T1-T3
(MBC2) ‘,

Besides serving as a delay to eompensate for transit time associated
with testing the contents of the Page Table and the Cable Directory
for the EBox Read and Write Requests, these time states are also
used to execute the following EBox Requests.

a. Abortthe Cache cycle in the event the EBox references the
ACs. ' :

b. Load CCA, LIBR or UBR Registers.

¢. Read the contents of the Page Table (MAP).

d. Read CCA, EBR, UBR, EBUS ot ERA register.

¢. Write check a page (PAUSL WRITL).

. f. Load Refill RAM.

In addition, CSH EBOX T2 initiates a core read cycle it a Cache
Refill is required and updates the Use Table if the Cache contains
some valid words. = - . ’
Load Page Fail code and Physical Address into EBus register and send
PAGE FFAIL HOLD to EBox if a PAGE FAIL condition from the Page

Table is sensed in response to an EBox Read or- Write Request. -

Write Data into Cache and set VALID.and WRITTEN bits in Cache
Directory in response to an EBox Write Request.

These. time:states initiate operafions to satisfy both Read and Write
request ’from the EBox.

“EBox Write: +Before the data is written into the LRU Cache the

CSH DATA CLR time states_cause the Cache Directory to be updated
as follows: The new page address is written and all the VALID and
WRITTEN bits are cleared in the Cache Directory.

EBox Read: When a core read cycle to refill the Cache is initiated
(by CSH EBOX T2) the CSH DATA CLR time states are also entered
to update the Cache Directory by writing the new page address and
clearing all the VALID and WRITTEN bits.

MBox/3-25

Table 3-6 Cache Control Time State Summary (Cont)

Time States

Assigned Function

CLR WR TO (CSH4)

ONE WORD WR TO (CSH4)

CACHE TO MB T1-T4
(MBX4)

CORE DATA VALID (-1)
(MBC4)

CSH WR DATA RDY
(CSH6)

DATA DLY 1-2 (CSHé6)

CSH T0--CSH T3 (CSH5)

Checks that the EBox is not trying to write into a Cache block for
which a core read cycle has been started and has not been finished.
This test is also made during CSH EBOX WR T3. If this test were

not made, then one or more words in the Cache block could be over
written when the word(s) comes in from core. The test is made by
checking that the contents of the PMA HOLD register (bits 27—-33)
which holds the Cache refill address is not the same as the correspond-
ing address bits presented by the EBox with the request.

Enables the MB control to move a word from the AR into the MB
pointed to be PMA 34 and 35. This time state is entered only when
the Cache bit is cleared when the EBox requests to write or requests
an SBUS DIAG Cycle.

These time states control the MB control and move valid or written
words from the Cache to the MB during a Cache Page Refill Cycle,

a Cache Writeback Cycle or during a Cache Channel Cycle that is
executing a Read operation. CACHE TO MB T2 is held until A or B
PHASE IS COMING is asserted to synchronize the state generator
with the SBus clock so that a core cycle can be started at a later time
state without delay and in synchronism with the SBus clock.

These time states serve as a two-MBox-clock-tick-delay to allow the
data placed on the SBus by core memory during a core read cycle
to stabilize before moving it into the MB.

During a core read cycle, writes the first word that comes in from core
into the Cache and sets the VALID bit in the directory. Subsequent
words coming in from core cause MB Requests to be issued.

Checks parity (in the MB) of the first word that comes in from core
during a core read cycle.

Besides serving as a delay to compensate for transit time associated
with testing the contents of the Cache directory during Cache Page
Refill, Cache CCA and Cache CHAN cycles, CSH TO—T?2 are also
used to execute Cache MB Cycles to move words from the MBs to
the Cache and sct the valid bit in the directory after they come in
from core during a core read cycle.

MBox/3-26

Table 3-6 Cache Control Time State Summary-(Cont)

Time States

Assigned Function

PAGE REFILL T4, T8-T13
(CSH5)

WRITEBACK T1 (CSH4) and
T2 (MBX4)

CCA INVAL T4 (CSH6)
CCA CYC DONE (CSH6)

CHAN RD TS5 (CSH5)

" PAGE REFILL T4 initiates thc Cache page refill cycle by pre-empting

other pending requests. This is done by setting the Cache page refill
cycle latch and setting up a new address without going through the
priority request logic.

PAGE REFILL T8 sets up the MB control to move any valid words
from the Cache to the MBs so that they can be transferred to the
Page Table. PAGE REFILL T8 sets up the core read cycle for those
words the Cache has no valid entries. If all four words in the Cache
are valid a core read cycle is not started.

PAGE REFILL T10--T13 moves the words from the MBs to the
Page Table after ail valid words have been moved from the Cache to
the MBs and a core read cycle for the remaining words has been
started. After all the valid words from the Cache are moved to the
Page Table PAGE REFILL T10 is held until another word is received
from core at which time that word is also moved to the Page Table.
This is repeated until all four words have been moved to the Page
Table.

These time states initiate the Cache writeback cycle by pre-emptmg
other pending requests. This is accomplished by setting the Cache
wrlteback cycle latch and setting up a new-address without going
through the priority request grant logic. The WRITEBACK time
states also clear the written bits in the directory and set up the MB
control to move the written words from Cache to the MBs so that
they can be transferred to core.

Clears the valid and written bits in the Cache Directory and updates
the Use Table during a Cache CCA cycle.

Decrements Cache Clearer address counter (bits 27—35) and clears
CCA REQ when the counter overflows.

Starts the Core Read Cycle for those words the Cache has no valid
entries. If all words requested by the channel control are valid a core
read cycle is not started. CHAN RD TS5 is held for one additional
clock tick if A or B PHHASE COMING is not asserted when the state
generator reaches CHAN RD TS5 to synchronize the start of the core
cycle with the SBus clock. :

MBox/3-27 -

Table 3-6 Cache Control Time State Summary (Cont)

Time States Assigned Function

"CHAN T4 (CSHS) This time state initiates opcrations to satisfy both Read and Write
Requests from the channels.

Chan Read: Sets up the MB Control to move any valid words
from the Cache 1o the MBs so that they can be transferred to the
channel data buffer.

Chan Write: Sets up logic to clear the valid and written bits in
the Cache Directory of those words specified by the channel control.

CHAN WR T5 (CSH5) ‘ Clears the valid and written bits in the Cache Directory of those
: : words the channel control requested to write to core.

NOTE
The core write cycle is not started by the Cache control
but by the channel control when a Cache channel cycle
is started.

3.3.2 Cache EBox Cycle _
Besides granting and executing channel requests, the cache cantrol grants and executes EBox requests.

The EBox request is granted if a higher priority request (MB or CHAN REQ) is not pending. To
execute the request, the cache control enters the cache EBox cycle (Figures 2-6 and 3-12). In many
cases. the request is executed without the cache control having to leave the cache EBox cycle. However,
if a page table entry has to be fetched (KI paging), or written words have to be written back to core, the
cache control enters the appropriate subcycle to execute these operations and then retries the original
request by executing the cache EBox cycle again. Page refills, writebacks, and core reads require a core
cvcle. Therefore, if core is busy, these subcycles cannot be executed. In this case, the cache control
simply retries the request until core is released. The following requests can be issued by the EBox:

L.oad Register
Read Register
Map (Read PT)
Read Memory
Write Memory
Read Pause Write
Write Check
Write Refill RAM
SBus Diag

TSR oeae s

NOTE
If the cache is not implemented, EBox requests to -
read/write memory are serviced by transferring a
single word (one word read/write) from/to memory
* (Subsections 3.3.2.4 and 3.3.2.5).

MBox/3-28

c&.xl ,1 2]3|4|5]e|7|e|9l1o(11l12|13l14’15‘
W LOAD REGISTER
CSH
READY '
5 IDLE 10 60 Eggx lDLE/RESPZ
nla
MAP PAGE REFILL L,
CSH | CSH o
EBOX | EBOX (Fig 3-23)
Ts T2 L,
7/
- PAGE REFILL
CSH
EBOX | IDLE/RESP
T3
READ REG!STER
CSH | CSH | csH
EBOX | EBOX | EBOX | IDLE/RESP
T T2 T3
WRITE CHECK (PAUSE WRITE)
CSH | CSH
EBOX (EBOX | IDLE/RESP
T T2
WRITE CACHE REFILL RAM
csH | csH
EBOX | EBOX | IDLE/RESP
T T2
EBOX READ
gy
7/
(Fig 3~13)
JL
77/
EBOX WRITE
yi
7/
(Fig 3-17)
/L
7/

0-15:7

Figure 3-12 Cache EBox Cycle, Time State Bar Chart

3.3.2.1 EBox Load Register - The MBox contains three operational registers that can be loaded by
the EBox:

EBR - Executive Base Register
UBR - User Base Register
CCA - Cache Clearer Address Register

Thesc registers are loaded using CONO PAG, DATAO PAG, and the Sweep instructions,
respectively.

MBox/3-29

To load these registers, the EBox, in response to the instruction, raises CLK EBOX REQ, APR EBOX
I OAD REG and APR EBOX EBR, APR EBOX UBR or APR EBOX CCA, depending on which
register is to be loaded. The CCA register needs to be loaded with the physical address only when one
page is to be swept from the cache. If the CCA register is to be loaded, the EBox will specify what kind
of cache sweep is to be performed by setting up the following control signals correctly: CSH CCA
INVAL CSH, CSH CCA VAL CORE, and CSH CCA ONE PAGE. These control signals are set up
by IR AC10-12 from the EBox. In addition, the data to be loaded into the register must be in the VM A
(bits 14-26).

This sets up the conditions required for the MBox to service the EBox request to load a register. If the
cache control is IDLE, or when the cache control enters its IDLE state and no higher priority requests
are pending, the cache control will grant the EBox request and start a cache EBox cycle to load the
register. This decision is made as the cache control time state generator advances from IDLE to
READY TO GO. The cache control time state generator then clears the CLK EBOX REQ latch and
advances directly to the CSH EBOX time state branch. At CSH EBOX T, the desired register is
loaded and the cache control asserts MBOX RESP IN and returns to IDLE. If the CCA register was
loaded, the cache control also asserts the CCA request to inform the EBox that the cache clearer cycle
was started and that the EBox should not make another request until the cache is cleared. CCA REQ is
cleared when the operation is done. Asserting CCA REQ also causes the cache control to grant a cache
clearer cycle when no higher priority requests are pending. CCA REQ remains set until the entire
sweep operation is done.

3.3.2.2 EBox Read Register - The MBox contains three operational registers that can be read by the
EBox:

EBR
UBR
ERA

The EBR, UBR, and ERA are read using the CONI PAG, DATAI PAG, and BLKI PI instructions,
respectively. To read these registers, the EBox raises CLK EBOX REQ, APR EBOX READ REG,
and APR EBOX EBR, APR EBOX UBR or APR EBOX ERA, depending on which register is to be
read. The EBox also sets up the appropriate diagnostic function and code (DIAG READ FUNCT
1674) in response to the instruction to connect the output of the EBus register to the AR. This sets up
the conditions required for the MBox to service the EBox request to read a register.

If the cache control is IDLE, or when the cache control enters its IDLE state and the priority request
grant logic is not pre-empted by a subcycle request (page refill or writeback) that may be required in
satisfving the previous EBox request, and if no higher priority requests are pending (CHAN or MB
request), the cache control will grant the EBox request and start a cache EBox cycle to read the
register. This decision is made as the cache control advances from IDLE to READY TO GO. The
cache control time state generator then clears the CLK EBOX REQ latch and advances directly to the
CSH EBOX time state branch. At CSH EBOX T3, the content of the desired register is read into the
AR via the EBus register and the cache control asserts MBOX RESP IN and returns to IDLE.

3.3.2.3 EBox Map - The MAP instruction causes the EBox to generate an EBox request for transfer-
ring the contents of the addressed page table location to the AR via the EBus register in a manner
similar to that described in Subsection 3.3.2.2. The purpose of this instruction is to transform the
virtual page address into the physical page address and transfer this address, with its assigned page
descriptor bits, from the page table to the AR via the EBus register.

MBox/3-30

The physical page address, with its assigned page descriptor keys, is stored in the page table. These
entries are placed in the page table when needed, as described in Subsection 3.3.5. If a valid entry is not
in the page table when the EBox requests to map the address, the MBox will automatically fetch the
entry from core and present it to the EBox (KI paging mode only).

3.3.2.4 EBox Read - The EBox initiates an EBox request to read memory whenever an instruction
that needs to read memory is executed. (Refer to the hardware reference manual for information
relating to classes of instructions.) Note that many instructions do not reference memory.

To read memory, the EBox sets up the request as follows:

a. Loads VMA bits 13-35 with the effective memory address (E) from which the data or
instruction is to be read. The EBox also asserts or negates MCL VMA USER to specify
whether the reference is to the user or executive address space.

b. Sets up the following signals to specify the type of read request.

MCL EBOX CACHE

CON CACHE LOOK EN

MCL EBOX MAY BE PAGED
CON KI PAGING MODE
MCL VMA EPT

MCL VMA UPT

MCL PAGE TEST PRIVATE
MCL PAGE ILLEGAL ENTRY
MCL PAGE ADDRESS COND

BN B LN —

c. Asserts MCL VMA READ and CLK EBOX REQ. MCL VMA WRITE may also be
asserted to write-check the page for paged memory references.

NOTE
The EBox can also issue an advance request where
CLK EBOX REQ is raised one MBox clock tick
before the VMA and the request qualifiers become
valid.

This sets up the conditions required for the MBox to service the EBox request to read memory. If the
cache control is IDLE, or when the cache control enters its IDLE state and if a higher priority request
(MB or CHAN REQ) is not pending, the cache control will grant the EBox request and start a cache
EBox cycle to execute the read request (Figure 3-13). This decision is made as the cache control time
state generator advances from IDLE to READY TO GO. At READY TO GO, the CSH EBOX CYC
latch is set, the CLK EBOX REQ latch is cleared, and the PMA is set up to supply the correct physical
memory address mixture. The PMA provides the desired memory address mix in response to the
request qualifiers from the EBox. The request qualifiers involved in setting up the correct address mix
include: MCL EBOX MAY BE PAGED, MCL VMA UPT and MCL VMA EPT, because the EBox
may make any of the following types of memory read requests:

Read unpaged memory

Read paged memory

Read an entry in the user process table
Read an entry in the executive process table

oo gs

MBox/3-31

| 1 ‘ 2 | 3
READ FROM CACHE
READY| CSH | GSH | CSH
IOLE T0 | EBOX | EBOX | EBOX | TDLE/RESP,
o | Te | T1 | T2

READ FROM CORE

.
~

4|5|s|7[5|9|1o|11|12|13l14|15|

~
N

CSH | CSH | CSH | CSH
EBOX | DATA | DATA | DATA
T3 |CLRTI|CLRT2{CLRT3

CSH DATA/CLR DONE

re—om——— 625ns MON———-——.{

CORE DATA VALID

E3

PAGE FAIL

187ns

PAGE FAiIL HOLD

t

yya
csH WR o READY
DATA | IOLE RESP T0
RDY L, GO
77
DATA | DATA
VALID lvaLio| ouy oLy
{

CORE %

PAGE
FAIL
oLY
,II
PAGE | PAGE READY
FalL | FaiL | RREE 70
T2 | T3 RE! 60
[Aa
CORE BUSY
EBOX
RETRY| IOLE
NXT
PAGE REFILL -
7/
(Fig 3-23)
/L
77
WRITE BACK »
77
(Fig 3-22)
vya
&4

Figure 3-13 EBox Read, Time State Bar Chart

MBox/3-32

10-1504

For an unpaged memory reference, the PMA simply supplies the VM A address unchanged, as shown
in Figure 3-14.

1718 26 27 35

Y
VMA 14 -35
10-15%508

Figure 3-14 PMA Format for Unpaged Memory Read Request

In the case of a paged reference, the valid content of the page table (the physical page addreés) is
combined with (linked with or concatenated) the virtual word address of the page, as shown in Figure

3-15.

070

(. e o
v Y
PT 14-26 VMA 27-35
10-1506

14 17 18 26 27 35

Figure 3-15 PMA Format for Paged Memory Read Request

For references to the process tables, the content of the UBR or EBR (depending on whether MCL
VMA UPT or EPT is asserted) is linked with the virtual word address, as shown in Figure 3-16.

14 17 18 26 27 35

N J\
\ 4

Y
EBOX UPT: UBR 14 - 26 VMA 27-35
EBOX EPT: EBR 14-26

10 - 1507

Figure 3-16 PMA Format for EPT or UPT Read Request

From READY TO GO, the time state generator advances to the CSH EBOX time state branch to
execute the cache EBox cycle.

MCL EBOX CACHE (LOAD) and CON CACHE LOOK EN are set up by the EBox to relate to the
MBox if and how the cache is to be used in satisfying the memory request. Table 3-7 identifies the
cache strategies that can be specified by the EBox as related to EBox read requests. For paged memory
references, the CACHE bit in the page table also affects the use strategy of the cache. If the CACHE
bit is cleared, the page may or may not be cached (depending on the state of CON CACHE LOOK
EN) and the MBox will service the request in the same manner as it would if MCL EBOX CACHE

(LOAD) was cleared.

MBox/3-33

Table 3-7 Cache Strategies for Memory Read Requests

CON mMcL
CACHE EBOX
’ CACHE
Strateg
LOOK EN (LOAD) " flesv
0 0 Bypass the Cache and read the requested word from core memory.
0 | Not used.
1 0 It the requested word is found to be in the Cache (RD FOUND) read the
word from the Cache.
If the requested word is not found but some of the words of the associated
quadword group are in the Cache (ANY VALID MATCH) refill the Cache
from core with the non-valid words (core read cycle) and transfer the
requested word to the EBox.
If the Cache does not contain any of the words of the quadword group
read the requested word from core.
1 1 Read the word from the Cache if it is found, otherwise, refill the Cache
from core and transfer the requested word to the EBox.

Any of the following cache conditions could prevail when the read request is made.

d.

d.

The cache directory has a record of the referenced page in the addressed line and the
addressed word in the cache block for which there is a record is valid. This means that the
requested word is in the cache.

The cache directory has a record of the referenced page in the addressed line and the
addressed word in the cache block for which there is a record is not valid but some of the
words are valid. This means that the requested word is not in the cache but some of the
words of the quadword group are in the cache.

The cache has no record of the referenced page in the addressed line and the LRU cache
block does not have any written words. This means that none of the words of the quadword
group are in the cache and the LRU cache block is not written.

Same as (c¢) except that the LRU cache block is written.

Besides the cache variables described above, the content of the page table also contributes to how a
read request is executed when a paged request is made by the EBox. The execution algorithm for an
EBox request to read a word from a memory area that is not paged is not affected by the content of the
page table.

MBox/3-34

After clearing the CLK EBOX REQ latch and setting up the cycle latch and the PMA, the cache
control time state generator advances from READY TO GO to the CSH EBOX time stage branch to
execute the read request. The state generator advances to the CSH EBOX time state branch because an
EBox request is granted. CSH EBOX TO and CSH EBOX T1 serve as a delay to allow for the logic
transit time associated with addressing the page table and the cache directory and testing their
contents.

NOTE
The cache directory and page table are addressed
with the VMA, not the PMA, thereby avoiding the
PMA transit time.

At CSH EBox T2, a complex decision is made based on the request qualifiers, the content of the cache
directory and, if it is a paged reference, on the content of the page table.

If the EBox requests a word from memory that is paged and the page table contains a valid entry (PT
MATCH), the virtual page address is transformed into a physical page address, the page descriptor
keys are checked to see if the reference is legal and whether to modify the cache strategy. An entry in
the page table is valid if MCL VMA USER and the virtual section address match the content of the
page table directory and the NOT VALID bit is cleared. Five page descriptor bits are associated with
each page table entry.

1. A - ACCESS
2. W - WRITABLE
3. P-PUBLIC
4. S -SOFTWARE
5. C-CACHE

The ACCESS, WRITABLE, and PUBLIC bits serve as the page access keys. The state of these keys is
checked against the EBox request qualifiers to determine if the reference is legal. If the reference is not
legal, the Page Fail word is transferred to the EBus register and PAGE FAIL HOLD is asserted to
inform the EBox that it made an illegal memory reference. The EBox can then read the EBus register
and determine its next course of action. Refer to Subsection 3.3.5 for the case where a valid entry is not
found (-PT MATCH) in the page table.

If the CACHE bit is not set, the cache is bypassed and one word is read from core when the request is
executed, unless the CON CACHE LOOK EN request qualifier is asserted and some of the words of
the quadword group are already in the cache.

a. The following case descriptions apply to those read requests for which CON CACHE
LOOK EN and MCL EBOX CACHE (LOAD) are asserted and the CACHE bit of the valid
page table entry is set for a paged reference:

1. For the case where the requested word is in the cache (RD FOUND) the cache control
updates the use table at CSH EBOX T2, returns to IDLE, and asserts MBOX RESP
IN. The EBox can then strobe the word off the cache data lines. The cache control will
not start another cycle to service another request until the EBox takes the data. To
inform the MBox that the EBox took the data, the EBox asserts CLK EBOX SYNC D,
causing the cache control to advance to READY TO GO to start another cycle if a
request is pending.

NOTE
The cache control time state generator also advances
to CSH EBOX T3 because this state is uncon-
ditional. However, this time state will not evoke
another time state for this and some other cases.

MBox /3-35

The case where the requested word is not in the cache but some of the words in the
quadword group are (ANY VALID MATCH), the time stage generator advances to
CSH EBOX T3 to initiate a core read request and hold the address if core is not busy. If
core is busy, the state generator advances instead to EBOX RETRY NEXT to retry the
request. At CSH EBOX T3 a core read request is initiated to read from core those
words that are not valid in the cache, starting with the word requested by the EBox.

At the same time the core cycle is started, the cache control time state generator contin-
ues with the CSH DATA CLR time state to clear the data in the cache and update the
use table.

NOTE
The use table was also updated at CSH EBOX T2
for the VALID MATCH case.

In addition, the cache block number that contained the valid word and the PMA
(address bits 27-33) are held as a result of REFILL HOLD to facilitate refilling the
cache when the words come in. When the first word comes in from core, it is presented
to the EBox and is written into the cache that provided the earlier match using the refill
address. The remaining words are moved into the same cache block by initiating an
MB ¢vcle as each word comes in.

The MBox recognizes that a word has come in from core when it receives SBUS DATA
VALID. This causes the cache control time state generator to advance sequentially to
CORE DATA VALID-2, CORE DATA VALID-1, and CORE DATA VALID.
Besides controlling the MB write request and MB load (MB HOLD IN) logic, these
time states normalize the transit time difference between the SBUS DATA VALID
control path and the SBUS DATA PATH.

The MB is loaded (-MB HOLD IN) and MBOX RESP IN is asserted at CORE DATA
VALID-1 when the first word comes in to inform the EBox that it can take the word.

NOTE
The word the EBox requested will come in first. At
the CORE DATA VALID time state, a decision is
made to determine if the EBox took the word.

If CLK EBOX SYNC D is asserted at CORE DATA VALID, the EBox took the data
directly from core and the cache control, therefore, can terminate the cache EBox cycle
simply by testing MB parity, moving the word into the cache, validating the directory,
and clearing the appropriate MB WR RQ. The MB WR RQ is cleared at CORE
DATA VALID, the cache is updated at CSH WR DATA RDY, and MB parity is
tested at DATA DLY!. From CSH WR DATA RDY, the cache control returns to
IDLE and then to READY TO GO since CLK EBOX SYNC D is asserted, thereby
allowing another request to be serviced.

If CLK EBOX SYNC D is not asserted at CORE DATA VALID, the EBox did not
take the data. In this case, the data is still moved into the cache, the directory is
-updated, and MB parity is checked at DATA DLY?2 instead of 1 but this is not done,
and the cache EBox cycle is not terminated until the EBox takes the data. The cache
control will then wait in the CSH WR DATA RDY time state until the EBox takes the
data from the MB. At that time, the cache control will return to its READY TO GO
state via IDLE to service another request.

MBox/3-36

3. For the case where the cache does not have a valid directory entry (-VALID MATCH)
and the LRU cache block does not contain any written words (-CSH LRU ANY
WRITTEN), the time state generator advances to CSH EBOX T3 to initiate a core
cycle as in the previous case, but this time a request is made for all four words and these
words will be moved to the LRU cache block.

Another difference in the way the request is executed in this case is that the new address
is written into the cache directory, the valid bits and the data bits are cleared, and the
use table is updated during the CSH DATA CLR time states.

4. For the case where the cache does not have a valid directory entry (-ANY VALID
MATCH) and the LRU cache block contains written words (CSH LRU ANY WRIT-
TEN) the time state generator advances from CSH EBOX T2 to WRITEBACK Tlto
initiate a writeback cycle. After the writeback cycle is done and core becomes not busy,
the EBox request is retried.

When the EBox issues a paged memory read request and the page table does not con-
tain a valid entry (-PT MATCH) to transform the virtual page address to the physical
page address, the cache control will either start a page refill cycle or will inform the
EBox that a page fail condition exists. If the EBox specified KI style paging (KI paging
mode), the time state generator advances from CSH EBOX T2 to CSH EBOX T3 and
then to PAGE REFILL T4 to start a page refill cycle. After the page refill cycle is done
the EBox request is retried (refer to Page Refill Cycle description). If the page table still
does not contain a valid entry after the request is retried, the time state generator steps
through the page fail time states to load the PF HOLD word into the EBus register and
to inform the EBox that a page fail condition exists by asserting PAGE FAIL HOLD.
For the case when the EBox specifies KL style paging (-KI paging mode), the cache
control does not initiate an automatic page refill cycle but informs the EBox that a page
fail condition exists by asserting PAGE FAIL HOLD at PAGE FAIL T1. The PF
HOLD word is loaded into the EBus register at PAGE FAIL T3. PF EBOX HANDLE
is also asserted by the MBox for this case.

The following case description applies to those read requests for which CON CACHE
LOOK EN is not asserted; it also applies if the cache is not implemented:

If CON CACHE LOOK EN is not asserted (or if the cache does not exist) for the EBox read
request, the cache is automatically bypassed and a core read cycle is started to read one word
from core. To initiate the core read cycle, the state generator advances from CSH EBOX T2
to CSH EBOX T3 if core is not busy, as described before for reading non-valid words. If
core is busy, the state generator advances instead to EBOX RETRY NEXT to retry the
request. At CSH EBOX T3, a core read request is initiated to read the word (ONE WORD
RD) the EBox requested from core.

NOTE
At the same time the core read cycle is started, the
cache control state generator steps through the CSH
DATA CLR time states, as described before, but the
use table and the cache directory are not updated at
this time because ONE WORD RD is asserted and
inhibits this operation.

MBox/3-37

The MBox recognizes that the word has come in from core when SBUS DATA VALID is
asserted. This causes the cache control time state generator to step sequentially through the
CORE DATA VALID time states. Besides controlling the MB write request and MB load
(MB HOLD IN) logic, these time states normalize the transit time difference between the
SBUS DATA VALID control path and the SBUS data path. The MB WR RQ queue is set
at CORE DATA VALID-2 to remember which MB is loaded. At CORE DATA VALID-I,
the MB is loaded (-MB HOLD IN) and MBOX RESP IN is asserted to inform the EBox
that it can take the word. At the CORE DATA VALID time state, a decision is made to
determine if the EBox took the word.

If CLK EBOX SYNC D is asserted at CORE DATA VALID, the EBox took the data
directly from core and the cache control therefore, can, derminate the CSH EBOX cycle
simply by clearing the appropriate MB WR RQ and testing MB parity. MB WR RQ is
cleared at CORE DATA VALID; MB parity is checked at DATA DLY 1. At the same time
the cache control state generator advances from CORE DATA VALID to DATA DLY 1|,
the state generator also advances to READY TO GO, allowing another request to be
serviced.

If CLK EBOX SYNC D is not asserted at CORE DATA VALID, the EBox did not take the
data. In this case, the MEM TO C mixer is switched to select the MB instead of core and the
state generator advances to the DATA DLY time state to test MB parity and to wait for the
EBox to take the data from the MB. When the EBox takes the data, the EBox asserts CLK
EBOX SYNC D which will cause the state generator to advance to READY TO GO, there-
by terminating the cache EBox cycle and allowing another request to be serviced.

The following case descriptions apply to those read requests for which EBOX CACHE
LOOK EN is asserted and MCL EBOX CACHE (LOAD) is not asserted, or MCL EBOX
CACHE (LOAD) is asserted but the CACHE bit of the valid page table entry is not set for a
paged reference. '

1. For the case where the requested word is in the cache (RD FOUND), the cache control
updates the use table at CSH EBOX T2, returns to IDLE, and asserts MBOX RESP
IN. The EBox can then strobe the word off the cache data lines. The cache control will
not start another cycle to service another request until the EBox takes the data. To
inform the MBox that the EBox took the data, the EBox asserts CLK EBOX SYNC D
causing the cache control to advance to READY TO GO to start another cycle if a
request is pending.

2. In the case where the requested word is not in the cache but some of the words in the
quadword group are (ANY VALID MATCH), the time state generator advances to
CSH EBOX T3 to initiate a core read request and hold the address if core is not busy. If
core is busy, the state generator advances instead to EBOX RETRY NEXT to retry the
request. At CSH EBOX T3, a core read request is initiated to read from core those
words that are not valid in the cache, starting with the word requested by the EBox.

At the same time the core cycle is started, the cache control time state generator contin-
ues with the CSH DATA CLR time state to clear the data in the cache and update the
use table.]

NOTE
The use table was also updated at CSH EBOX T2
for the VALID MATCH case.

MBox/3-38

In addition, the cache block number that contained the valid word and the PMA
(address bits 27-33) are held as a result of REFILL HOLD to facilitate refilling the
cache when the words come in. When the first word comes in from core, it is presented
to the EBox and is written into the cache that provided the match earlier using the refill
address. The remaining words are moved into the same cache block by initiating an
MB cycle as each word comes in.

The MBox recognizes that a word has come in from core when it receives SBUS DATA
VALID. This causes the cache control time state generator to advance sequentially to
CORE DATA VALID-2, CORE DATA VALID-1, and CORE DATA VALID.
Besides controlling the MB write request and MB load (MB HOLD IN) logic, these
time states normalize the transit time difference between the SBUS DATA VALID
control path and the SBUS DATA path.

The MB is loaded (-MB HOLD IN) and MBOX RESP IN is asserted at CORE DATA
VALID-1 when the first word comes in to inform the EBox that it can take the word.

NOTE
The word the EBox requested will come in first. At
the CORE DATA VALID time state, a decision is
made to determine if the EBox took the word.

If CLK EBOX SYNC D is asserted at CORE DATA VALID, the EBox took the data
directly from core and the cache control therefore, can, terminate the cache EBox cycle
simply by testing MB parity, moving the word into the cache, validating the directory,
and clearing the appropriate MB WR RQ. The MB WR RQ is cleared at CORE
DATA VALID, the cache is updated at CSH WR DATA RDY, and MB parity is
tested at DATA DLY!1. From CSH WR DATA RDY, the cache control returns to
IDLE and then to READY TO GO since CLK EBOX SYNC D is asserted, thereby
allowing another request to be serviced.

If CLK EBOX SYNC D is not asserted at CORE DATA VALID, the EBox did not
take the data. In this case, the data is still moved into the cache, the directory is
updated, and MB parity is checked at DATA DLY2 instead of 1, but this is not done
and the cache EBox cycle is not terminated until the EBox takes the data. The cache
control will then wait in the CSH WR DATA RDY time state until the EBox takes the
data from the MB. At that time the cache control will return to its READY TO GO
state via IDLE to service another request.

For the case where the cache does not have a valid directory entry (-ANY VALID
MATCH), the cache is automatically bypassed and a core read cycle is started to read
one word from core. To initiate the core read cycle, the state generator advances from
CSH EBOX T2 to CSH EBOX T3 if core is not busy, as described before, for reading
non-valid words. If core is busy, the state generator advances instead to EBOX RET-
RY NEXT to retry the request. At CSH EBOX T3, a core read request is initiated to
read the word (ONE WORD RD) the EBox requested from core.

NOTE
At the same time the core read cycle is started, the
cache control state generator steps through the CSH
DATA CLR time states, as described before, but the
use table and the cache directory are not updated this
time because ONE WORD RD is asserted that
causes this operation to be inhibited.

MBox/3-39

"The MBox recognizes that the word has come in from core when SBUS DATA VALID

is asserted. This causes the cache control time state generator to step sequentially
through the CORE DATA VALID time states. Besides controlling the MB write
request and MB load (MB HOLD IN) logic, these time states normalize the transit
time difference between the SBUS DATA VALID control path and the SBUS data
path. The MB WR RQ queue is set at CORE DATA VALID-2 to remember which
MB is loaded. At CORE DATA VALID-I, the MB is loaded (-MB HOLD IN) and
MBOX RESP IN is asserted to inform the EBox that it can take the word. At the
CORE DATA VALID time state, a decision is made to determine if the EBox took the
word.

If CLK EBOX SYNC D is asserted at CORE DATA VALID, the EBox took the data
directly from core and the cache control, therefore, can terminate the cache EBox cycle
simply by clearing the appropriate MB WR RQ and testing MB parity. The MB WR
RQ is cleared at CORE DATA VALID and MB parity is checked at DATA DLY 1. At
the same time the cache control state generator advances from CORE DATA VALID
to DATA DLY/I, the state generator also advances to READY TO GO, allowing
another request to be serviced.

If CLK EBOX SYNC D is not asserted at CORE DATA VALID, the EBox did not
take the data. In this case, the MEM TO C mixer is switched to select the M B instead of
core and the state generator advances to the DATA DLY time state to test MB parity
and to wait for the EBox to take the data from the MB. When the EBox takes the data,
the EBox asserts CLK EBOX SYNC D, which will cause the state generator to advance
to READY TO GO, thereby terminating the cache EBox cycle and allowing another
request to be serviced.

3.3.2.5 EBox Write - The EBox initiates an EBox request to write memory whenever an instruction
that needs to write memory is executed. (Refer to the hardware reference manual for information
relating to classes of instructions.) Note that many instructions do not reference memory.

To write memory, the EBox sets up the request as follows:

d.

Loads VMA 13-35 with the effective memory address (E) into which the data or instruction
is to be written. The EBox also asserts or negates MCL VMA USER to specify whether the
reference is to the user or executive address space.

Sets up the following signals to specify the type of write request.

RN N N —

MCL EBOX CACHE

CON CACHE LOOK EN

MCL EBOX MAY BE PAGED
CON KI PAGING MODE
MCL VMA EPT

MCL VMA UPT

MCL PAGE TEST PRIVATE
MCL PAGE ILLEGAL ENTRY
MCL PAGE ADDRESS COND

Asserts MCL VMA WRITE and CLK EBOX REQ.

NOTE
The EBox can also issue an advance request where
CLK EBOX REQ is raised one MBox clock tick
before the VMA and the request qualifiers become
valid.

M Box/3-40

This sets up the conditions required for the MBox to service the EBox request to write memory. If the
cache control is IDLE, or when the cache control enters its IDLE state and if a higher priority request
is not pending (MB or CHAN REQ), the cache control will grant the EBox request and start a cache
EBox cycle to execute the write request (Figure 3-17). This decision is made as the cache control time
state generator advances from IDLE to READY TO GO. At READY TO GO, the CSH EBOX CYC
latch is set, the CLK EBOX REQ latch is cleared, and the PMA is set up to supply the correct physical
memory address mixture. The PMA provides the desired memory address mix in response to the
request qualifiers from the EBox. The request qualifiers involved in setting up the correct address mix
include: MCL VMA MAY BE PAGED, MCL VMA UPT, and MCL VMA EPT; because the EBox
may make any of the following types of memory write requests:

a. Write unpaged memory

b. Write paged memory

c. Write a location in the user process table

d. Write a location in the executive process table

cuk | | |1|::|3 4|5|6|7|e’9||o[n[12||3||4[15|16|
WRITE CACHE (ANY VALID MATCH A WRITE OK)
f Rg;,;Y CSH | CSH | CSH | CSH | CSH 7# (
IDOLE T0 GO EBOX | EBOX [EBOX { EBOX | EBOX | IDLE/RESP READY TO GO

20l Te | T | T2 |[wR T3|WR T4 .,
i CACHE DATA CLR I;IC;NE J

WRITE LRU CACHE (-ANY VALID MATCH A WRITE OK)

CLEAR| CSH | CSH | cSH | cSH | CSH i
WR | DATA | DATA | DATA | EBOX | EBOX | IDLE/RESP READY TO GO

TO |CLR TiCLR T2|CLR T3WR T3|WR T4

/L
7/
CSH DATA CLR DONE]

WRITE ONE WORD TO CORE

R TQ| T2 T3 T4

ONE |CACHE CACHE |CACHE
WORD [TO M8|HOLD [TO MB|TO MB| IDLE/RESP
wi

PAGE FAIL

PAGE FAIL HOLD

PAGE
FAIL
DLY

/L

PAGE | PAGE o
FAIL | FAIL | IDLE/RESP | READY
T2 | 13 T0 60

7

CORE BUSY

EBOX
RETRY IDLE
NXT

PAGE REFILL

Lo
7/
(Fig 3-23) (

/L
7/

WRITE BACK "

7/
(Fig 3-22) ?

/L

7/

10-15438

Figure 3-17 EBox Write, Time State Bar Chart
MBox/3-41

For an unpaged memory reference, the PMA simply supplize‘s the VMA address unchanged, as shown
in Figure 3-18. ’

14 17 18 26 27 35

v
VMA 14-3%
10-1509

Figure 3-18 PMA Format for Unpaged Memory Write Request

In the case of a paged reference, the valid content of the page table (the physical page address) is
combined with (linked with or concatenated) the virtual word address of the page as shown in Figure

V)

Figure 3-19 PMA Format for Paged Memory Write Request

For references to the process tables, the content of the UBR or EBR, depending on whether MCL
VMA UPT or EPT is asserted by the EBox, is linked with the virtual word address of the referenced

page, as shown in Figure 3-20.

14 17 18 26 27 35

AN I\ J
Y

v
EBOX UPT : UBR 14 - 26 VMA 27-35
EBOX EPT : EBR 14 - 26

10-1511

Figure 3-20 PMA Format for EPT or UPT Write Request

From READY TO GO, the time state generator advances to the CSH EBOX time state branch to
execute the write request. CON CACHE LOOK EN and MCL EBOX CACHE (LOAD) are set up by
the EBox to specify to the MBox if and how the cache is to be used in servicing the memory request.
Table 3-8 identifies the cache strategies that can be specified by the EBox as related to the EBox write
requests. For paged memory references, the CACHE bit in the page table also affects the use strategy
of the cache. If the CACHE bit is cleared, the page may or may not be cached (depending on the state
of the CON CACHE LOOK EN), and the MBox will execute the request in the same manner as it
would if MCL EBOX CACHE (LOAD) was cleared. ”

MBox/3-42

Table 3-8 Cache Strategy for Memory Write Requests

CON MCL
EBOX
CACHE
LOOK EN CACHE
(LOAD) Strategy

0 0 Bypass the Cache and write the word into core memory.

0 1 Not used.

1 0 If one or more words of the quadword group associated with the word to
be written are in the Cache (ANY VALID MATCH), the word is written
into the Cache.

If none of the words of the quadword group are in the Cache (-ANY VALID
MATCH), the word is written into core.
1 1 Write the word into the Cache.

Any of the following cache conditions could prevail when the write request is made.

a. The cache directory has a record of the referenced page in the addressed line and at least one
word in the cache block for which there is a record is valid.

b. The cache directory does not have a record of the page and the LRU cache block does not
contain any written words.

c. The cache directory does not have a record of the page but the LRU cache block contains
some written words.

Besides the cache variables described above, the contents of the page table also contribute to how a
write request is executed when a paged write request is made by the EBox. The execution algorithm for
an EBox request to write a word into a memory area that is not paged is not affected by the content of
the page table.

After clearing the CLK EBOX REQ latch and setting up the cycle latch and the PMA, the cache
control time state generator advances from READY TO GO to the CSH EBOX time state branch to
execute the write request. The state generator advances to the CSH EBOX time state branch because
an EBox request is granted. CSH EBOX T0 and CSH EBOX T1 serve as a delay to allow for the logic
transit time associated with addressing the page table and the cache directory and testing their
contents.

NOTE
The page table and the cache directory are addressed
with the VMA not the PMA thereby minimizing the
transit time.

At CSH EBOX T2, a complex decision is made by the cache control, based on the request qualifiers,
the contents of the cache directory and, if it is a paged reference on the contents of the page tables.

MBox/3-43

If the EBox requests a word from a memory area that is paged and the page tables contains a valid
entry (PT MATCH), the virtual page address is transformed into a physical page address, the page
descriptor keys are checked to see if the reference is legal and whether to modify the cache strategy. An
entry in the PT is valid if MCL VMA USER and the virtual section address match the contents of the
page table directory and the NOT VALID bit is cleared. Five page descriptor keys are associated with
ciach page table entry:

1. A- ACCESS
2. W - WRITABLE
3. P~ PUBLIC
4. §-SOFTWARE
5. C-CACHE

The ACCESS, WRITABLE, and PUBLIC bits serve as page access keys. The state of these keys is
compared with the request qualifiers to determine if the reference is legal. If the reference is not legal,
the Page Fail word is transferred to the EBus register and PAGE FAIL HOLD is asserted to inform
the EBox that it made an illegal memory reference. The EBox can then read the EBus register and
determine its next course of action. Refer to Subsection 3.3.5 for the case where a valid entry is not
found (-PT MATCH) in the page table.

If the CACHE bit is not set, the cache is bypassed and one word is written into core when the request is
executed, unless the CON CACHE LOOK EN request qualifier is asserted and some of the words of
the quadword group are already in the cache (ANY VALID MATCH).

a. The following case descriptions apply to those write requests for which CON CACHE
LOOK EN and MCL EBOX CACHE (LOAD) are asserted and the CACHE bit of the valid
page table entry is set for a paged reference.

. For the case where the cache directory has a record of the referenced page in the
addressed line and at least one word in the cache block for which there is a record is
valid (ANY VALID MATCH), the cache control advances from CSH EBOX T2 to
CSH EBOX T3 and to CSH DATA CLR DONE at the same time and updates the use
table. CSH DATA CLR DONE is set to facilitate setting the VALID and WRITTEN
bits of the cache directory. At CSH EBOX WR T3, a test is made to determine if the
cache can be written (WRITE OK). The cache cannot be written (-WRITE OK) if the
core control is busy fetching words for the same line in the cache. Even though these
words may be moved into another block (there are four blocks per line), the cache
EBox cycle to write the cache is aborted to prevent conflict if these words were to be
moved into the same block that is to be written. To abort the cache EBox cycle, the
state generator advances from CSH EBOX WR T3 to EBOX RETRY NEXT to retry
the request. When the request is retried and the core control and cache control have
finished moving the words into the cache, the state generator will advance from CSH
EBOX WR T3 to WR T4 to write the data in the cache and set the cache directory
VALID and WRITTEN bits associated with the word being written. The correct cache
block and its directory is written by virtue of having a valid entry in the cache. From
CSH EBOX WR T4, the cache control returns to IDLE and asserts MBOX RESP IN.

NOTE
The cache control time state generator also advances
to CSH EBOX T3 bhecause this state is uncon-
ditional. However, this time state will not evoke
another time state for this and some other cases.

MBox/3-44

[]

For the case where the cache directory does not have a record of the referenced page in
the addressed line ((ANY VALID MATCH) and the LRU cache block does not con-
tain any written words (<CSH LRU ANY WRITTEN), the cache control advances
from CSH EBOX T2 to CLEAR WR TO. At this time state, a test is made to determine
if the cache can be written (WRITE OK), as described for the previous case. If the test
passes, the state generator advances from CLEAR WR TO to the CSH DATA CLR
time states to write the address into the cache directory, clear the VALID and WRIT-
TEN bits of the LRU cache block and update the use table. The LRU cache block is
selected by virtue of not having a valid entry ((ANY VALID MATCH) in the cache.
From CSH DATA CLR T3, the state generator advances to both CSH DATA CLR
DONE and CSH EBOX WR T3. The state generator advances to CSH DATA CLR
DONE to select the LRU cache block by forcing a valid match (FORCE MATCH EN)
for that block so that cache can be written. From CSH EBOX WR T3, the state gener-
ator advances to CSH EBOX WR T4 to write the data in the cache and set the cache
directory VALID and WRITTEN bits associated with the word that is being written.
From CSH EBOX WR T4, the cache control returns to IDLE and asserts MBOX
RESP IN.

For the case where the cache directory does not have a record of the referenced page in
the addressed line ((-ANY VALID MATCH) and the LRU cache block contains some
written words (CSH LRU ANY WRITTEN), the cache control time state generator
advances from CSH EBOX T2 to WRITEBACK T to initiate a writeback cycle. After
the writeback cycle is done, the EBox request is retried.

When the EBox issues a paged memory write request and the page table does not
contain a valid entry (-PT MATCH) to transform the virtual page address to the phys-
ical page address, the cache control will either start a page refill cycle or will inform the
EBox that a page fail condition exists. If the EBox specified KI style paging (K1 paging
mode), the time state generator advances from CSH EBOX T2 to CSH EBOX T3 and
then to PAGE REFILL T4 to start the page refill cycle (Subsection 3.3.5). After the
page refill cycle is done, the EBox request is retried. If the page table still does not
contain a valid entry after the request is retried, the time state generator steps through
the PAGE FAIL time states to load the PF HOLD word into the EBus register and to
inform the EBox that a page fail condition exists by asserting PAGE FAIL HOLD. For
the case when the EBox specifies KL style paging (-KI Paging Mode), the cache con-
trol does not initiate an automatic page refill cycle but instead informs the EBox that a
page fail condition exists by asserting PAGE FAIL HOLD at PAGE FAIL T1. The PF
HOLD word is loaded into the EBus register at PAGE FAIL T3. PF EBOX HANDLE
is also asserted by the MBox for this case.

MBox /3-45

The following case description applies to those write requests for which CON CACHE
LOOK EN is not asserted; it also applies if the cache is not implemented:

If CON CACHE LOOK EN is not asserted (or if the cache does not exist) for the EBox
write request, the cache is automatically bypassed and a core write cycle is started to write
the word into core after the word is moved to an MB. A one word write cycle is also started
when APR EBOX SBUS DIAG is asserted. To move the word into an MB and start the core
write cycle, the state generator advances from CSH EBOX T3 to ONE WORD WR TO0 if
core is not busy. If core is busy, the state generator advances instead to EBOX RETRY
NEXT to retry the request. At ONE WORD WR TO, the MB addressed by PMA 34 and 35
is loaded by clearing MB HOLD IN for one clock tick, and the MB WR RQ queue is set to
remember which MB was loaded. The state generator then advances from ONE WORD
WR T0 to the CACHE TO MB time state to align with PHASE CHANGE COMING. At
CACHE TO MB T4, the core write cycle is started and MBOX RESP IN is asserted. The
MB WR RQ queue drives the MB select logic (MB SEL 1-2) to select the MB that contains
the word to be written. At the same time the core write cycle is started, the cache control
state generator advances to CACHE TO MB T!. From this time state, the cache control
returns to IDLE, allowing another request to be serviced. When the memory asserts SBUS
ACKN, the MB WR RQ queue is cleared and the core cycle is terminated.

The following case descriptions apply to those write requests for which CON CACHE
LOOK EN is asserted and MCL EBOX CACHE (LOAD) is not asserted or MCL EBOX
CACHE (LOAD) is asserted but the CACHE bit of the valid page table entry is not set for a
paged reference.

I. For the case where the cache directory has a record of the referenced page in the
addressed line and at least one word in the cache block for which there is a record is
valid (ANY VALID MATCH), the cache control advances from CSH EBOX T2 to
CSH EBOX WR T3 and to CSH DATA CLR DONE at the same time and updates the
use table. CSH DATA CLR DONE is set to facilitate setting the VALID and WRIT-
TEN bits of the cache directory. At CSH EBOX WR T3, a test is made to determine if
the cache can be written (WRITE OK). The cache cannot be written (-WRITE OK) if
the core control is busy fetching words for the same line in the cache. Even though
these words may be moved into another block (there are four blocks per line), the cache
EBox cycle to write the cache is aborted to prevent conflict if these words were to be
moved into the same block that is to be written. To abort the cache EBox cycle, the
state generator advances from CSH EBOX WR T3 to EBOX RETRY NEXT to retry
the request if no higher priority requests are pending. When the request is retried and
the core control and cache control have finished moving the words into the cache, the
state generator will advance from CSH EBOX WR T3 to WR T4 to write the data in
the cache and set the cache directory VALID and WRITTEN bits associated with the
word being written. The correct cache block and its directory is written by virtue of
having a valid entry in the cache. From CSH EBOX WR T4, the cache control returns
to IDLE and asserts MBOX RESP IN.

M Box /3-46

2. For the case where the cache does not have a valid directory entry (-ANY VALID
MATCH), the cache is automatically bypassed and a core write cycle is started to write
the word into core after the word is moved to an MB. A one word write cycle is also
started when APR EBOX SBUS DIAG is asserted. To move the word into an MB and
start the core write cycle, the state generator advances from CSH EBOX T3 to ONE
WORD WR TO if core is not busy. If core is busy, the state generator advances instead
to EBOX RETRY NEXT to retry the request. At ONE WORD WR TO, the MB
addressed by PMA 34 and 35 is loaded by clearing MB HOLD IN for one clock tick,
and the MB WR RQ queue is set to remember which MB was loaded. The state gener-
ator then advances from ONE WORD WR TO to the CACHE TO MB time state to
align with PHASE CHANGE COMING. At CACHE TO MB T4, the core write cycle
is started and MBOX RESP IN is asserted. The MB WR RQ queue drives the MB
select logic (MB SEL 1-2) to select the MB that contains the word to be written. At the
same time the core write cycle is started, the cache control state generator advances to
CACHE TO MB T1. From this time state, the cache control returns to IDLE, allowing
another request to be serviced. When the memory asserts SBUS ACKN, the MB WR
RQ queue is cleared and the core cycle is terminated.

3.3.2.6 EBox Read-Pause-Write — A read-pause-write request from the EBox is serviced by the MBox
by executing a read operation followed by a write operation, into the same location. To issue this type
of request, the EBox asserts MCL VMA READ, MCL VMA PAUSE, MCL VMA WRITE, CLK
EBOX REQ, and the appropriate request qualifiers (refer to EBox read and EBox write descriptions).
After the read operation is completed, the EBox may modify the data and will assert CLK EBOX REQ
and MCL VMA WRITE to write the word back to the same memory location. If the MBox finds that
the cache is to be bypassed, the MBox will read one word from core, present the word to the EBox, and
wait until the EBox issues the write request. When the write request is issued, the MBox will write the
word into core memory. The consequence of bypassing the cache for this type of memory request is
that core remains busy for the entire operation, thereby preventing the channels from getting a core
cycle.

3.3.2.7 EBox Write-Check — The EBox initiates an EBox request to write-check a page whenever an
instruction that will ultimately cause a request to move a word to paged memory is executed. (Refer to
the hardware reference manual for information relating to classes of instructions.)

To write-check a paged memory location, the EBox sets up the request as follows:

a. Loads VMA bits 13-35 with the effective memory address (E) of the location for which the
write-check operation is to be performed. The EBox also asserts or negates MCL VMA
USER to specify whether the reference is to the user or executive address space.

b. Sets up the following signals to specify the type of write request for which the write-check is
to be made.

CON CACHE LOOK EN

MCL EBOX MAY BE PAGED
CON KI PAGING MODE
MCL VMA EPT

MCL VMA UPT

MCL PAGE TEST PRIVATE
MCL PAGE ILLEGAL ENTRY
MCL PAGE ADDRESS COND

SRS

c. Asserts MCL VMA PAUSE, MCL VMA WRITE, and CLK EBOX REQ.

M Box/3-47

[his sets up the conditions required for the M Box to service the EBox request to write-check a memory
tocation. If the cache control is IDLE, or when the cache control enters its IDLE state and a higher
priority request is not pending (MB or CHAN REQ), the cache control will grant the EBox request
and start a cache EBox cycle to execute the write-check operation. This decision is made as the cache
control time state generator advances from IDLE to READY TO GO. At READY TO GO, the CSH
EBOX CYC latch is set. From READY TO GO, the cache control time state generator advances to
the CSH EBOX time state branch because an EBox request is granted. CSH EBOX T0 and CSH
EBOX T serve as a delay to allow for the logic transit time associated with addressmg the page table
and testing its content.

NOTE
The page table is addressed with the VMA, not the
PMA, to avoid the PMA transit time, thereby min-
imizing this time.

At CSH EBOX T2, a decision is made by the cache control based on the request qualifiers and the
content of the page table. If the page table contains a valid entry (PT MATCH), the page descriptor
keys are checked to see whether the reference is legal. An entry in the page table¢ is valid if MCL VMA
USER and the virtual section address match the contents of the page table directory and the NOT
VALID bit is cleared. Associated with each page table entry are five page descriptor keys:

. A - ACCESS

2. W - WRITABLE

¥} P-PUBLIC

b. S-SOFTWARE

5 C - CACHE

The ACCESS., WRITABLE, and PUBLIC bits serve as page access keys. The state of these keys are
compared with the request qualifiers to determine if the page is writable. ‘

If the page has access privileges and is writable, the MBox simply responds by dsserting MBOX RESP
IN. If the page is restricted or is not writable, the Page Fail word is transferred to the EBus Register
and PAGE FAIL HOLD is asserted by the MBox to inform the EBox that the page-check failed. The
EBox can then read the EBus register and determine the next course of action

For the case where a valid entry is not found in the page table (-PT MATCH), refer to Subsection
RIRIRY

3.3.2.8 Write Refill RAM - The Ebox initiates an EBox request to write a word into the refill RAM
whenever the BLKO APR instruction is executed. Each time this instruction is executed one 3-bit data
word is written into the addressed location of the refill RAM.
To write a word into the refill RAM, the EBox sets up the request as follows:

1. Loads VMA bits 18-20 with the data to be written into the refill RAM.

" b. Loads VMA bits 27-33 with the appropriate address to select the desired location in the
Refill RAM. ;

¢. Asserts APR EN REFILL RAM WR, MCL VMA READ, and CL;K EBOX REQ.

MBox/3-48

This sets up the conditions required for the MBox to service the EBox request to load one word into
the refill RAM. If the cache control is IDLE, or when the cache control enters its IDLE state and if a
higher priority request is not pending (MB or CHAN REQ), the cache control will grant the EBox
request and start a cache EBox cycle to execute the request. This decision is made as the cache control
time state generator advances from IDLE to READY TO GO. At READY TO GO, the CSH EBOX
CYC latch is set and the address is gated from the VMA to the refill RAM via the refill RAM address
mixers. These mixers are set up by APR EN REFILL RAM WR to select the correct address. The
APR EN REFILL RAM WR signal also sets up the data input mixer for the lookup table. From
READY TO GO, the cache control time state generator advances to CSH EBOX T0, T1, and T2, in
sequence. At CSH EBOX T2, the CSH USE HOLD flip-flop is set to hold the address and data, and
CSH REFILL RAM WR is asserted to write the data into the addressed location of the lookup table.
From CSH EBOX T2, the cache control returns to IDLE and asserts MBOX RESP IN.

3.3.2.9 SBus Diagnostic Cycle - The EBox initiates an EBox request to execute an SBus diagnostic
cycle when the EBox executes the BLKO PI instruction. Whenever this instruction is executed, a 36-bit
control word is transferred from the EBox AR to the core memory system via the data lines and a
status word, which is specified by the control word, is returned to the EBox from the core memory
system,

To execute an SBus diagnostic cycle, the EBox sets up the request as follows:

a. Loads the AR with the SBus diagnostic control word to be transferred to the core memory
system.

b. Asserts APR EBOX SBUS DIAG and CLK EBOX REQ.

This sets up the conditions required for the MBox to service an EBox request for executing an SBus
diagnostic cycle. If the cache control is IDLE, or when the cache control enters its IDLE state and if a
higher priority request is not pending (MB or CHAN REQ), the cache control will grant the EBox
request and start a cache EBox cycle to execute the SBus diagnostic cycle. This decision is made as the
cache control time state generator advances from IDLE to READY TO GO. At READY TO GO. the
CSH EBOX CYC latch is set. From READY TO GO, the time state generator advances to the CSH
EBOX time state branch to move the control word from the AR to the MB, and to start the SBUS
DIAG CYC counter. To move the control word into an MB. the state generator advances from CSH
EBOX T3 to ONE WORD WR TO, if core is not busy. If core is busy, the state generator advances
instead to EBOX RETRY NEXT to retry the request. At ONE WORD WR TO0, the MB addressed by
PMA 34 and 35 (which may point to any one of the four MBs) is loaded by clearing MB HOLD IN for
one clock tick, and the MB WR RQ queue is set to remember which MB was loaded. The state
generator then advances from ONE WORD WR TO to the CACHE TO MB time states to align with
PHASE CHANGE COMING and start the SBUS DIAG CYC counter. :

MNOTE
The MB WR RQ queue drives the MB select logic
(MB SEL 1-2) to select the MB that contains the
diagnostic control word that is to be transferred to
the core memory system.
As the SBUS DIAG CYC counter steps through its states it causes:
a. SBUS DIAG to be asserted for four MBox clock ticks.
b. MB WR RQ queue to be cleared.

¢. MBOX RESP IN to be asserted at the time the requested word is available on the SBus data
lines.

MBox/3-49

When the EBox senses MBOX RESP IN, it simply strobes the cache data lmes to transfer the data
word from the SBus data lines to the AR. At the same time MBOX RESP IN is asserted, the cache
control also returns to IDLE, allowing another request to be serviced.

3.3.3 (Cache MB Cycle |

MB requests are issued by the core control during a core read cycle to move words that have come in
from core from the MB to the cache. The first word, which is the word the EBox requested, is present-
ed to the EBox and is moved into the cache before the cache EBox cycle is terminated. Subsequent
words, however, are moved into the cache by executing a cache MB cycle (Fxgures 2-6 and 3-21). MB
requests are assigned the highest priority and are granted cache cycles before another EBox request, a
channel request, or a CCA request. This is necessary because the words coming in from core must be
moved into the cache before another core cycle can be started. If an MB request is not pending and
core is still busy because all words have not yet come in, EBox requests will be granted only to read
from or write into the cache but will be aborted if the request results in a core rreference. In this case,
the request will be retried every time a word comes in from core until the rctrled request succeeds,
which will occur when core becomes not busy and a channel request is not pendmg

READY| CSH | CSH | CSH
S IDLE 15 6ol Ta | T1 | T2 IOLE <
7 L

192-1512

Figure 3-21 Cache MB Cycle, Time State Bar Chart .

After the first word is moved into the cache and is taken by the EBox, the cache control returns to
READY TO GO. While core is busy, only EBox and MB requests will be granted by the cache control
because CCA requests and CHAN requests are disabled as long as core is busy. The MB request has
the higher prlonty to move the words from the M B to the cache as fast as p0551ble to free the MBs. The
MBo» recognizes that another word has come in from core when it receives SBUS DATA VALID.
This triggers the core data valid time state chain and causes MB 0-3 WR RQ and MB REQ IN to be
assertzd.

If the cache control is not executing an EBox request at the time MB REQ §N is asserted, the MB
request is granted and the state generator advances to READY TO GO to execute the cache MB cycle.
AtREADY TO GO the CSH MB CYC latch is set. From READY TO GO the cache control advances
to CSH TO because a request other than an EBox request (ANY REQ) is granted (Figure 3-21).

Time states CSH TO, T1, and T2 enable the refill address and match control to write the data and
associated valid bit in the appropriate cache block. The cache block that is written into is either that
block that provided a valid match during the cache EBox cycle or the LRU block if no match
occurred. From CSH T2 the cache control time state generator advances to IDLE and then to
READY TO GO after clearing the MB 0-3 WR RQ since the current cycle is not an EBox cycle. The
cache control is then ready to service another request. As long as core is busy, only EBox and MB
requests will be granted by the cache control.

3.3.4 Cache Writeback Cycle

Words written into the cache by the EBox are written back to core to update the core copy before the
contents of the LRU Cache block is supplanted with a word(s) from another page. Written words in
the cache are also written back to core when the EBox issues a request to clear the cache which occurs
when the EBox executes a “sweep’ instruction to validate core.

MBox/3-50

During the course of executing a cache EBox cycle to service an EBox read or write request, the
decision to start a writeback cycle is made at CSH EBOX T2 (Figure 3-22). CSH EBOX T0 and CSH
EBOX T1 serve as a delay to allow for logic transit time associated with addressing the cache directory
and testing its contents (refer to cache EBox cycle description and EBox Read/Write request
descriptions).

ce | fv]2] s 4[5[e|7%e}s o] n|e|n 14[s5|1e|x7‘m§wa|zo|z1l

WRITE BACK DONE

ya
T 1 TET T3 T4 IDLE 2

e —efe——CACKE TO MB——

ya

/
2 e];'gﬂgg
7

CSH
E£80X
T

CSH

EBOX | T T2
T2

CSH
EBOX
T

CONT DONE

T] T2 J T3 T4 IDLE ?

r¢—-~- CACHE TO MB ———q

CONT DONE

AR l T2] T3 l T4 IDLE 2

te-—--CACHE TO MB —--#

CONT

e

|-~ - CACHE TO MB ~——]

Figure 3-22 Cache Writeback Cycle, Time State Bar Chart

At CSH EBOX T2, the contents of the cache are checked to see if any written words are in the LRU
cache block. The function LRU ANY WRITTENA - ANY VALID MATCH indicates that none of
the four addressed cache blocks contain any words from the referenced page but the LRU cache block
contains one or more words from another page that have been written by the EBox. It is this condition,
if core is not busy, that causes the cache control time state generator to advance from CSH EBOX T2
to WRITEBACK T1, thereby initiating the writeback cycle. If core is busy at CSH EBOX T2, the time
state generator does not advance to WRITEBACK T1 but advances to EBOX RETRY NEXT to retry
the request until core is freed.

From WRITEBACK Tl the state generator advances to WRITEBACK T2, sets the CLK EBOX REQ
latch, loads the CSH WRITEBACK CYC latch, and selects the desired address mixture from the
PMA. Note that the cache control time state generator does not transgress IDLE and READY TO
GO to start the writeback cycle, but instead forces the writeback cycle by setting the CSH WRITE-
BACK CYC latch and selecting the desired address mixture from the PMA, thereby bypassing the
priority request grant logic. The priority request grant logic is inhibited from granting CHAN and
CCA requests during WRITEBACK T1 to block these potential inputs from the cycle latch to start the
writeback cycle. The CLK EBOX REQ latch is set to cause the EBox request to be retried after the
writeback cycle is done. The address mix includes the contents of the cache directory (CAM 14-26).
the quadword address which consists of VMA 27-33 and RQ 1-2.

As the state generator advances from WRITEBACK T2 to CACHE TO MB TI, the cache block
number of interest (LRU cache block in the case of a writeback cycle or the cache block that provided
the match in the case of a CCA cycle) is latched so that the written bits for that cache block can be
cleared. At the same time, the MB WR RQ, core RQ, and CTOMB RQ logic are set up. The state
generator then steps through the CACHE TO MB time states to move the written words from the

MBox/3-51

cache ‘o the associated MBs. The CTOMB WD request logic supplies the word|address (CACHE TO
M B 34-35) for the cache block of interest and drives the MB HOLD IN logic to generate the appropri-
ate MB load pulse at CACHE TO MB T3. At CACHE TO MB T4, the associatead CTOMB WD RQ is
cleared. The MB WR RQ logic is set up to remember which MBs received a word from the cache as the
state generator steps through the CACHE TO MB time state so that they can be presented to the SBus
data lines. After the first written word is moved from the Cache to the M B, the state generator starts
the core write cycle and latches the SBus address at CACHE TO MB T4. !

The SBUS ACKN pulse clears current MB WR RQ to select the next MB that has a word. The core
write cvcle is started after the first written word is moved into the MB. Core can be started at this time
because it takes only four clock ticks to move one word from the cache to the MB which is faster than
the core control can write the words into memory. A fter all the written words are moved into the M Bs,
the cache control time state generator advances to IDLE and to READY TO GO because the CSH
EBOX CYC latch is not set. When the time state generator reaches READY TO GO, core will still be
busv and, therefore, a request requiring a core cycle cannot be executed. Therefore, neither a CHAN
nor CCA request will be granted by the REQ GRANT logic. This allows the EBox request to be
retried immediately. If a core cycle is not needed in executing the request, as|in the case of a write
request, the request is satisfied by writing the cache and asscrtmg MBOX RESP IN. If, however, the
request is an EBox read request, it must be retried again since a core cycle will b¢ needed. When core is
freed. the priority request grant logic is again fully enabled to grant requests on a priority basis. If both
a CHAN and an EBox request are pending at that time, the CHAN request will be granted first,
preventing the EBox from getting two core cycles in a row, thereby, holding up the channels.

During the course of executing a cache CCA cycle to service an EBox cache clear request (LOAD CCA
REG) the decision to start a writeback cycle is made at CSH T3 (refer to cache CCA cycle description).
At CSH T3, the contents of the cache are checked to see if any written words are in the selected cache
block. If any written words are found, and the EBox request to clear the cache included the validate
core qualifier (CSH CCA VAL CORE - IR ACIl = 1), the cache control time state generator
advances from CSH T3 to WRITEBACK TI, thereby initiating the writeback cycle, as described
previously. :

NOTE
The CLK EBOX REQ latch is not set for this case.

3.3.5 Cache Page Refill Cycle (KI Mode Only) !
The page table is refilled automatically in the KI pagmg mode every time the EBox makes a paged
memory reference for which a valid entry is not found in the page table. For ‘KL paging mode, the
EBox executes the refill. A valid entry is in the page table if the virtual sec¢tion address (user or
executive) from the VMA matches the contents of the page table directory and the NOT VALID bit is
cleared. During the course of executing a cache EBox cycle to service an EBox map, EBox read, write
or write-check request, the decision to start a page refill cycle is made at CSH EBOX T2 (Figure 3-23).
CSH EBOX TO0 and CSH EBOX T1 serve as a delay to allow for logic transit time associated with
addressing the page table and directory and testing their contents. If the page table does not contain a
valid entry (-PT MATCH) and a page refill cycle has not yet been executed for the current EBox
request, the page test logic asserts PAGE REFILL instead of PAGE OK. The presence of this condi-
tion is sensed at CSH EBOX T2 to advance the state generator to EBOX RETRY NEXT and to CSH
EBOX T3, simultaneously. If core is busy, the request is retried. If core is not busy, on the next clock
tick the state generator advances to PAGE REFILL T4 and to CACHE IDLE, and the priority
request grant logic is forced to grant a page refill cycle by disabling any CHAN and CCA requests that
may be pending.

NOTE
An MB request will not be pending because this path
is taken only if core is not busy.

MBox/3-52

cox | !]1[2]! sl s te] vl ol ool v]e! 3] 15:mjnﬁm‘u;zo;z\{zzfzxg24{3125,zv{ze[zn}so}sx}sziss}uessiu;sr-s‘ssgmgniu‘uiuQ
CACHE TO w8 PAGE REFILL - "_“ﬁ*
|
REFILL CONT CONT CONT OCNE
T 2 T T T T H 1 ¢ T {] | 1] l
e R0 [T e | o o] con [esn [o Tose [ZMET DT [rajofre I wlrain gl lialnin ‘ sire o jrs ol | me]m [Mot fre [my | mo fan fmz iy fnof e D | iy gaps 1ow0
(o e v e f s [re e frz vy PRy | | ! ! ! l : | ! | ! i I H
§ €80
RETRY | 1oL SAGE REFILL
OONE i
REAOY r T T T - — T T T i
TO 50 ! ! | ! i I ! ! i 1 i
f TOOITIOONTIN T2 T3 LTI | T Tz [T | Tio | T T2 T3) T TI T2 | T3 | T10 | READY TO GO
— 1 i i | I ; : 1 |
] | i l L] L i ! i] ; ! L
i L
. | .
H ! vaLiD i
! i 0 Ao
i
L as MK
CORE DATA vaL:D
REFILL
DONE i
T T T T T T — T t
TSmO Tu Tz Tyl Tio i itz T3 110 LT TERE Y e ST Tl T Reaoy T0 6o
i i i | : ;
L3
; VALID VALIDI v vaLID
6251 MIN :
1 Bl
CORE DATA vALID l CORE DaTa vaLiG i
PAGE REFILL !
DONE (ANY VAL/D MATCH;
T T
i i T T T i \
E]] LTz, T3 e T4 i Ti2 ;T3 TiO DT b T2 1 7o Tre T2 T3 TI0 REATY YO G
i i . L i I ; ; (
T
vaLie vnuo] VALID | vaLip VALY yavip
wiN
CORE DATA VALID —l [CORE DATA vALID 1 CORE DATA waLiD ~,
PAGE REFILL {
DONE (~ANY VALID MATCH)
T T T] T T T T r +
T T10 Pty i LACH L T10 T T2 | T13 l Ti0 T TR Tie T PTiz T3 lTio 1 READY 7D GC
ya 1 1 | H i
¥ L] L3
i
vaLe

P §2503 MIN ————x

CORE DATA VALID [

CORE DATA VALID J

[CORE DATA VALID l

! CORE DATA VALID j

Figure 3-23 Cache Page Refill Cycle,
Time State Bar Chart

MBox/3-53

Because PAGE REFILL T4 is set at the same time the state generator advances to CACHE IDLE, the
state generator advances directly to READY TO GO to force the page refill cycle. At READY TO
GO, the CSH PAGE REFILL CYC latch is set and the PMA is set up to supply the correct memory
address to fetch the page table entry from the appropriate process table. The address mix depends on
whethar the memory reference is to the user or the executive address space. If the memory reference is
to the executive address space, the specific address mix also depends on whether the reference is to the
“per process area,”’ to the upper executive area, or to the lower executive area. Consequently, depend-
ing on the state of MCL VMA USER (1 = User space; 0 = Executive space), and virtual page address
(VMA 18-26), one of four possible addresses will be configured.

For the case where the EBox makes a memory reference to the user address space, all of which is
paged. the SBus address for the page refill cycle is configured as shown in Figure 3-24.

Figure 3-24 SBus Address Format for User Page Refills

UBR 14-26 points to the physical page in core that contains the user process table; VM A 18-23 points
to the quadword in the process table that contains the page table entry of the referenced virtual page
and RQ 1-2 (output of priority encoder E28 on MBX2) points to the first word in the quadword group
that was not found in the cache. Bit 27 of the SBus address is jammed to *‘zero” to select the lower half
(locations 0-3775) of the user process table, which contains the 512 page table ehtnes (two entries per

location) for the user address space.

For the case where the EBox makes a memory reference to the lower executive address space (pages
000-3275), the SBus address for the page refill cycle is configured as shown in Figure 3-25.

1314 17 18 26 27 28 29 3334 35

0 |

\ J \

Y Y ™
EBR 14 - 26 . VMA19-23 RQ 1-2

*IS.NOT SUPPLIED BY THE PMA BUT BY CACHE CONTROL
10-1516

Figure 3-25 SBUS Address Format for Executive Page
(Pages 000-337;)Refills

EBR 14-26 points to the physical page in core that contains the executive process table; VMA 19-23
points to the quadword location in the process table that contains the page table entry of the refer-
enced virtual page; and RQ 1-2 points to the first word in the quadword group that was not found in
the cache. Bits 27 and 28 are jammed to “‘one’ (6XX) to select the upper quarter (locatlons 600-777) of
the executive process table, of which locations 600-757 contain the 224 page table entries (two entries
per location) for the lower executive address space. |

M Box/3-54

For the case where the EBox makes a memory reference to the upper executive address space (pages
400-7775), the SBus address for the page refill cycle is configured as shown in Figure 3-26.

* IS NOT SUPPLIED BY PMA BUT BY CACHE CONTROL

Figure 3-26 SBus Address Format for Executive Page
(Pages 400-777;) Refills

EBR 14-26 points to the physical page in core that contains the executive process table; VMA 18-23
points to the quadword location in the process table that contains the page table entry of the refer-
enced virtual page; and RQ 1-2 points to the first word in the quadword group that was not found in
the Cache. Bit 27 of the SBus address is jammed to “‘zero’ to select the lower half (locations 000-377;)
of the executive process table, of which locations 200-377s contain the 256 page tables entries (two
entries per location) for the upper executive address space.

For the case where the EBox makes a memory reference to the paged executive address space defined
to be the ““per process area” (pages 340-377;), the SBus address for the page refill cycle is configured as
shown in Figure 3-27.

00 13 14 17 18 26 27 28 31 32 3334 35
1|lofolofo
% %
- v J L I, W —
UBR 14-26 VMA RQ
*IS NOT SUPPLIED BY PMA BUT BY CACHE CONTROL 22-23 1-2

10-1518

Figure 3-27 SBus Address Format for Executive Page
(Pages 340-377;) Refills

UBR 14-26 points to the physical page in core that contains the user process table; VMA 22 and 23
point to the quadword location in the process table that contains the page table entry of the referenced
virtual page; and RQ 1-2 points to the first word in the quadword group that was not found in the
“cache. Bits 27-31 are jammed to 4XX; to select the upper half (locations 400-777) of the user process
table, of which locations 400-417; contain the 32 page table entries (two entries per location) for the
paged executive address space defined to be the *“per process area.”

MBox/3-55

From READY TO GO the cache control state generator advances to CSH TO because a request other
than an EBox request (ANY REQ) is granted. The state generator then advances to PAGE REFILL
T8 via CSH TI, T2, and T3; to set up the MB WR RQ, core RQ 1-2, and CTOMB WD RQ logic, and
latch the SBus address. From PAGE REFILL T8, the state generator advances to the CACHE TO
MB time states to move any valid words from the cache to the associated MBs. The CTOMB WD
reques: logic supplies the word address (CACHE TO MB 34-35) for the cache block of interest and
drives the MB HOLD IN logic to generate the approprlate MB load pulse at CACHE TO MB T3. At
CACHE TO MB T4, the associated CTOMB WD RQ is cleared. The MB WR RQ logic is set up to
remember which MBs receive a word from the cache as the state generator steps|through the CACHE
TO M B time states (or from core) so that they can be moved into the page tablle MB SEL HOLD is
asserted if any one MB received a word. After all valid words are moved from the cache to the MBs,
the state generator advances to PAGE REFILL T9 to start a core read cycle for those words in the
quadword group that were not in the cache (RD NON VALID WDS). From PAGE REFILL T9, the
state generator advances to PAGE REFILL TI0. If any valid words were written into the MBs, the
state generator steps through PAGE REFILL Tl1, T12, T13, and back to T10 because MB SEL
HOLD will be asserted. MB SEL HOLD is asserted whenever an MB WR RQ is set. As the state
generator advances through these states, the word from the selected MB is writte¢n into the page table,
the associated MB WR RQ is cleared, and the next highest priority MB that contains a word is selected
so that the process can continue. This continues until all the words in the MBs have been written into
the page table. At the same time, the core control will clear appropriate MB 0+-3 HOLD IN for one
clock tick to move the words coming in from core into the MB and set the associated MB WR RQ to
inform the cache control that another word has arrived and can be written into the page table. After all
the requested words have been received from core (see core control description), iand have been written
into the page table, core is freed (-CORE BUSY) allowing the state generator to advance from PAGE
REFILL T10to READY TO GO. At the same time the state generator advances to READY TO GO,
the REFILL COMP latch is set to remember that a refill cycle for the current EBox request was made.
The fact that a refill cycle was executed must be known when the EBox request is retried to prevent
another refill cycle from being started.

At READY TO GO, a new cycle can be started. If a CHAN REQ is not pending, another cache EBox
cvcle is started to retry the request. If the page test does not pass (PAGE FAIL) during the second pass
through the cache EBox cycle, a page fail signal is sent to the EBox. Several conditions, based on the
current mode the EBox is operating in and the status of the page descriptors, must be met for the page
test to pass (PAGE OK) (refer to Pager description).

3.3.6 Cache CCA Cycle

CCA requests are issued by the cache clearer control after it is initialized to valldatc core and/or
invalidate the cache (Subsection 3.5). The cache clearer is initialized when the OCA register is loaded
by the EBox (cache Sweep instruction is executed by the EBox). CCA requests are assigned the lowest
priority and are granted cache cycles ‘'only if no other requests (MB, CHAN, or EBOX) are pending
and core is not busy. Depending on the cache clearer qualifiers presented to the cache clearer control
by the EBox when the request to load the CCA register was made, the cache control, when executing
the cache CCA cycle, initiates writeback cycles for those words that are written and/or clears the valid
and written bits in the cache and updates the use table for a single page or for the entire Cache. A
summary of CCA cycle variations is presented in Table 3-9.

If the cache control is IDLE, or wh'cn the cache control enters its IDLE state and no higher priority
requests are pending and if core is not busy, the cache control grants the CCA request and starts a
cache CCA cycle (Figure 3-28). This decision is made as the cache control time state generator
advances from IDLE to READY TO GO. The cache control will not advance to READY TO GO if
the previous cycle was a cache EBox cycle and the EBox has not yet asserted CLK EBOX SYNC D.

MBox/3-56

Table 3-9 Cache CCA Cycle Variations

ONE VAL INVAL
PAGE CORE CSH Function

0 0 1 Update Use Table and clear VAL and WR bit for entire
Cache one block at a time.

0 1 0 Writeback all written words in the Cache by initiating a
writeback cycle for each Cache block that is written.

0 1 1 Perform both of the above. First initiate the writeback.
then invalidate the Cache. CCA register is decremented
by 1 to check each block in the Cache.

1 X X Same as above except that only those lines containing
words from a specific page (specified by CCA register
bits 14-26) are effected. It a Cache line does not contain
any words from that page nothing is done. CCA register
is decremented by 4 to check each line in the Cache.

cLk | | | +]2]3] a s | e | 7| s | o] [z | s |s | e]

—ANY VALID MATCH

4 ccA
f READY| CSH | CsH | cSH | CSH)
IoLE To6o| To | Ti | T2 | T3 A
4

ANY VALID MATCH A INVAL CSH

CCA | CCA
INVAL| CYC IDLE
T4 | DONE

WRITE BACK (ANY WRITTEN MATCH A VAL CORE)
7/I
(Fig 3-22)
JL
7

10-1519

Figure 3-28 Cache CCA Cycle, Time State Bar Chart

This exception is necessary to satisfy EBox read requests because the EBox will take data only when
CLK EBOX SYNC Diis asserted. At READY TO GO, the CSH CCA CYC latch is set and the PMA
is set up to select the address from the CCA register. From READY TO GO, the time state generator
advances to the CSH time state branch to execute the cycle. CSH TO, T1, and T2 serve as a delay to
allow for logic transit time associated with addressing the cache directory and testing its contents. One
extra time state is needed to provide adequate delay in this time state branch because the address is
supplied via the PMA instead of the VMA. At CSH T3 a decision is made based on the contents of the
cache directory and the cache clearer control.

MBox/3-57

3.3.6.1 One Page - If the CCA request is for one page (CSH CCA ONE PAGE is asserted) then the
entire cache is checked, one line at a time, to see if the line contains valid entries from the page
specificd by the CCA register. Any valid entries for which the cache directory address matches the
contents of the CCA register (ANY VALID MATCH) are invalidated and/or are written back to core
i thev are also written (ANY WRITTEN MATCH). Two passes through the cache control (cache
cvcles) are required for each cache line to both validate core and invalidate the cache. The first pass
causes a writeback cycle to be initiated at WRITEBACK T for the written words. During the write-
back cycle, the written words are moved to the MBs. The corresponding written bits in the cache
directory are cleared and a core write cycle is started. During the second pass, all the valid bits in the
cache block that contained the valid entries are cleared and the use table is updated after CCA INVAL
T4 if the cache is to be invalidated. The correct cache block in the line is selected by asserting REFILL
HOLD. The cache control then advances to CCA CYC DONE. If the cache is not to be invalidated,
the cache control bypasses CCA INVAL T4 and advances to CCA CYC DONE. At CCA CYC
DONE, the CCA cache line counter is decremented by 1 (CCA register is decremented by 4) to
advarce the address to point to the next cache line in preparation for the next CCA cycle. If the
counter overflows (carry), which means that all 128 cache lines have been taken care of, then the CCA
REQ latch is cleared and no further requests for cache cycles will be initiated.

3.3.6.2 All Pages - If the CCA request is for all pages (-CSH CCA ONE PAGE) then the entire
Cache is checked, one cache block at a time, to see if the cache contains any written entries. Any entries
in the cache that have been written are written back to core and/or all valid entries in the cache are
invalidated. To accomplish this, the CCA register is decremented by | instead of four to permit the
cache control to examine the contents of each cache block by forcing a valid match for the cache that is
pointed to by bits 34 and 35 of the CCA. '

3.3.7 Cache Channel Cycle

Channel requests are issued by the channel control to move data, CCWs, or status information
between the channel buffers in the MBox and core memory. As words are moved from the channel to
core (channel write), a cache cycle is executed to invalidate any valid words in the cache if CON
CACHE LOOK EN is set (Figure 3-29). When words are moved from core to the channel (channel
reads), a cache cycle is executed to pick up any words that are valid in the cache provided CON
CACHE LOOK EN is set. This ensures that mass storage will always get the latest copy of the data.
Valid words in the cache are invalidated when the channel is writing core to clear the cache of any valid
entries that would conflict with the core copy. Channel requests are assigned the highest priority and
are granted cache cycles as soon as the cache control becomes IDLE and core'is not busy. If channel
requests are backed up, the channels will also get the next core cycle.

3.3.7.1 Channel Read - After a channel is started (a channel is started by initializing the drive, setting
up the channel command list, and issuing a Write command), the channel control initiates channel
requests to read from core memory as long as the channel data buffer has enough empty locations to
store the words. Requests to read from memory are also made by the channel control to fetch the
CCWs which then control the transfer of data. Read requests for data are normally made for four
words at a time. To read from core memory, the channel control sets up the request as follows:

a. Transfers the CCW address from the CCW BUF to the CCW register to present the PMA

with the correct address (CCW CHA 14-35). CCL CHAN EPT is asserted only if the refer-
ence is to the EPT which is made to fetch the initial CCW, ' -

b. Sets up CCW WD 0-3 REQ to specify the words in the quadword group that are needed and
sets up CCL CH MB SEL 1-2 to select the MB from which the first word will be taken. Bits
34 and 35 of the channel address point to the first word in the quadword group that is to be
read. CCL CHAN TO MEM will not be asserted when the channel issues a read request.

¢. Asserts CCL CHAN REQ.

MBox/3-58

cx [l 2] s] oa s fe | 7 afo ol w|re]nm|w|wle]w]e|w |2 a2

CHAN WRITE {(—ANY VALID MATCH)

CSH CSH

T2 I T3 | IDLE /

CHAN WRITE (ANY VALIC MATCH)
CHAN

CHAN

we

CHAN READ (ANY VALID MATCH)

F‘ﬂ—__‘__(
RO IDLE

TS

7,

CHAN READ (-ANY VALID MATCH) | DONE

CSH
Tt

L
7

READY

TO GO
4

CSH
e

j IOLE

CHAN

CHAN
14 T2 I T3 T4 J ™ RD TS|

IDLE K
CONT DONE

CHAN
T3 I 4 [Tv RD TS{ 10LE /

r¢- - —- CACHE TQO MB ——-»f

fe———cacHE T0 MB ——sf

T2

CONT OONE

mJ T RCSMTN:;J ToLe (

fe-- - CACHE TO MB—--—

T2 } T3

CONT

i
iz ‘ T3 } LCTR PR LY /
coed i

e CAUHE TO MB >1

Figure 3-29 Cache Channel Cycle, Time State Bar Chart

The channel control must then wait until the cache control grants the request and the requested words
come out of the cache and/or from core.

If the cache control is IDLE, or when the cache control enters its IDLE state and core is not busy, the
cache control will grant the channel request and start a cache CHAN cycle to execute the read request.
This decision is made as the cache control time state generator advances from IDLE to READY TO
GO. The state generator will always advance from IDLE to READY TO GO if the previous cycle was
not a cache EBox cycle. The state generator will not advance to READY TO GO if the previous cycle
was a cache EBox cycle and the EBox has not yet asserted CLK EBOX SYNC D. This condition is
necessary to satisfy EBox read requests because the EBox will take the data only when CLK EBOX
SYNC D is asserted. At READY TO GO, the CSH CHAN CYC latch is set and the PMA is set up to
transfer the channel address (CCW CHA 14-35). From READY TO GO, the time state generator
advances to the CSH time state branch to execute the cycle because a request other than an EBox
request (ANY REQ) is granted. At CSH T3, the contents of the cache are checked to see if any valid
words are in the cache (ANY VALID MATCH). If the cache does not contain any valid words, the
cache control time state generator advances from CSH T3 to CHAN RD TS5 to latch the SBus address
and start a core read cycle for all requested words. However, if the cache contains some valid words,
the state generator advances instead to CHAN T4 and the CACHE TO MB time states to set up the
" MB WR RQ and CTOMB WD RQ logic to move the valid words into the MBs. The CTOMB WD
RQ logic supplies the word address (CACHE TO MB 34-35) for the cache block of interest and drives
the MB HOLD IN logic to generate the appropriate MB load pulse at CACHE TO MB T3. At
CACHE TO MB T4, the associated CTOMB WD RQ is cleared. The MB WR RQ logic is set up to
remember which MBs received a word from the cache as the state generator steps through the CACHE
TO MB time states. After all valid words are moved to the MBs, the state generator advances to
CHAN RD T5 to latch the SBus address and start a core read cycle for those words that are not valid
(RD NON VALID WDS). When the core read cycle is started, the cache control returns to IDLE.

MBox/3-59

While the channel and core controls are busy transferring the words, the cache control will only grant
the EBox cache cycles to read or write the cache. If during this time the channel(s) makes another
request. the channel will also get the next core cycle. The EBox can get a core cycle only when a
channel request is not pending. As the words come in from core, they are moved into the appropriate
MBs bty the core control. As each word comes in, the core control sets the appropriate MB 0-3 WR
RQ latch and clears the appropriate MB 0-3 HOLD IN signal for one clock tick to load the MB. The
channel control will move the requested words from the MBs to the CH BUF, in ascending modulo 4
order. That is, if words 2 and 3 come from the cache and words 0 and | are ¢coming from core, the
channel control waits to take the words until word 0 is placed in the MB. Besides loading the M Bs, the
MB 0-3 HOLD IN signals inform the channel control that the corresponding word has been loaded
into the associated MB. When the lowest numbered word of the requested group is placed in the MB,
the channel control sets up CCL CH MB SEL 1-2 to select that MB and strobes the contents of that
MB into the CH BUF (or the CCW BUF when the channel is fetching a CCW). This operation is
repeated by the channel control until all requested words have been transferred.

As each word is taken by the channel control, the associated MB WR RQ is also. cleared. Core will
remairi busy as long as an MB WR RQ is pending. This prevents another core cycle from being started
until the channel control has taken all the words. |

3.3.7.2 Channel Write - After a channel is started, the channel control initiates channel requests to
write into memory as long as the channel has enough words in its data buffers. Requests to write into
memory are also made by the channel control to store status information at the conclusion of a data
transfer operation or in the event of an error. Write requests for data are normally made for four
words at a time. To write core memory, the channel control sets up the request as follows:

a. Transfers the CCW address from the CCW BUF to the CCW registar to present the PMA
with the correct address (CCW CHA 14-35). CCL CHAN EPT is asqcrted only if the refer-
ence is to the EPT, which is made when storing the status.

b Sets up CCW WD 0-3 REQ to specify the words in the quadword group that are to be
written and sets up CCL CH MB SEL 1-2 to select the MB that will be loaded first. Bits 34
and 35 of the channel address point to the first word in the quadword group that will be
written. CCL CHAN TO MEM will be asserted when the channel issues a write request.

c. Asserts CCL CHAN REQ
The channel control must then wait until the cache control grants the request.,

If the cache control is IDLE, or when the cache control enters its IDLE state and core is not busy, the
cache control will grant the channel request and start a cache channel cycle to execute the write
request. This decision is made as the cache control time state generator advances from IDLE to
READY TO GO. The state generator will always advance from IDLE to READY TO GO if the
previous cycle was not a cache EBox cycle. The state generator will not advance to READY TO GO if
the previous cycle was a cache EBox cycle and the EBox has not asserted CLK EBOX SYNC D. This
condition is necessary to satisfy EBox read requests because the EBox will take the data only when
CLK EBOX SYNC D is asserted. At READY TO GO the CSH CHAN CYC latch is set, a core write
cycle is started, and the PMA is set up to transfer the channel address (CCW CHA 14-35). The core
write cycle is started by the channel control by asserting CCL MEM START and loadmg one word
into an MB when it recognizes that the CSH CHAN CCYC latch is set. After starting the core write
cvcle. the channel control loads the remaining MBs at a rate of one word every four clock ticks by
setting up the CCL CH MB SEL 1-2 lines to select the desired MB and asserting CCL CH LOAD MB.

MBox/3-60

At the same time the MBs arc loaded by the channel control, the cache control state generator
advances from READY TO GO to the CSH time state branch to execute the cache channel cycle
because a request other than an EBox request (ANY REQ) is granted. The cache CHAN cycle is
executed to set up the MB WR RQ queue and to clear the valid and written bits in the cache directory.
if any valid entries are found in the cache. The MB WR RQ queue is set up at CSH T2 to remember
which M Bs the channel is loading so that the core control can place these same words on the SBus data
lines during the core write cycle. As each word is written into core, the corresponding MB WR RQ is
cleared by the SBus ACKN pulse. At CSH T3, the contents of the cache are checked to see if any valid
words are in the cache (ANY VALID MATCH). If the cache does not contain any valid words, the
cache control returns to IDLE. However, if the cache contains some valid words, the state generator
advances instead to CHAN T4 and then to CHAN WR TS5, to clear the valid and written bits. From
CHAN WR TS5, the cache control time state generator advances to IDLE. While the channel and core
controls are busy transferring the words, the cache control will only grant the EBox cache cycle to read
or write the cache. If during this time the channel(s) makes another request the channel will also get the
next core cycle. The EBox can get a core cycle only when a channel request is not pending. As each
word is written into core, the associated MB WR RQ is clearedd and the next MB pointed to by the
MB WR RQ queue is selected. After the last word is written into core, another core cycle may be
started.

NOTE
When reading magtape in the reversed direction,
channel write operations are executed slightly differ-
ently; that is, memory is not started until all the
words have been transferred to the MBs. This is done
5o that the words can be transferred to core in the
correct order.

3.4 CACHE USE LOGIC

The cache use logic (Figure 3-30) keeps track of the order in which the four cache blocks of a given
quadword line are used. Since there are 128 quadword lines, each containing four cache blocks (0, 1, 2,
and 3) in the cache, 128 entries must be maintained to keep track of the order in which all cache blocks
in the cache are used. Consequently, a use table containing 128 locations is employed by the use logic
to maintain the use history of the cache.

The cache use logic consists of two RAMs and a set of mixers. One RAM contains the use information
and is named the use table. The other RAM contains update information for the use table and is
named the lookup table (Refill RAM). The use table contains 128 locations, one for each quadword
line of the cache. The lookup table also contains 128 locations, but not for the same reason. The
lookup table contains entries for all possible history combinations as a function of the four cache
quarters, which turns out to be 128 entries. After the cache is initialized for full cache service, only 96
out of the 128 locations are required to provide the use history update information, because 32 com-
binations are illegal. Although 32 combinations are illegal after initialization, these combinations may
be encountered during initialization and are therefore accounted for in the lookup table.

The use table is five bits wide and is structured into the following three fields:
a. MRU: Bits0 and 1

b. ORDER: Bit2
¢. LRU: Bits 3and 4

MBox/3-61

(CHX3)

2
ADR 27-28 U — ,.__{_ — e ——— .
ANY VALIC MATCH CSH USE IN 2-3-4 3,
cem £BOX T2 csH
CSH EBOX T2 ’ DATA CLR TW2 GH Gsn use 00 2
cshH T3 _@ ANY VAL HOLD e
- CSH3 01—
-READY TN GO _ s 2.3 e :
- CSH3 __AND 1'3 vALID MATCH [LOOKUP
CLK ¢ @ - TABLE
CSH LRU 1-2 (CHX 3
SEHLRO 2
— — e i - SR — 7
{CHX3) /
0
. (CHK3) R
3 < (LRU 1-2) 9 | LAY
aoR27-33 0 AOR29°33 e e £
5
AOR|REGF e ey e
:1 o 2-6 :
LA 127 ‘. CSH REFILL RAM WR
R I UJE TABLE
-3-4
CSH EBOX 1)) CZS IN2-3
- X
. _CSHTZ IN ET. CSH USE HOLD
csHE o 1 -
-READY 10 60
SR CSHE
CLK
4 I
APR EN i
REFILL WR RAM VMA 18-20
0 4
[
USE TABLE
(CHX3)
DR 27-33 A i
[E—— P o
R
CSM EBOX T2 MRU R | LAY
CAGE DK __ . __ R
ANY_VALID WATCH
0 CSH USE, wR
ONE WORD RD WR EN USE @ITS \27
CSH DATA LR T2 S L T I
ALL PAGE CYC o l
ccA ALL
T CLK _
a‘gn,,wyéx_m_ c e

Figure 3-30 Cache Use Logic, Simplified Block Diagram

The Most Recently Used (MRU) field contains a 2-bit code to specify which cache was used most
recently. The LRU field contains a 2-bit code to specify which cache was least recently used. The
ORDER bit specifies the order of use of the other two cache blocks of a given line. A “zero” in this
field indicates the order was ascending; a ‘“‘one” indicates the order was descending. For example, if the
use table contained the bit pattern ““00011,” it means that the order of use is 0, 1, 2, and 3.

The source of the MRU code is either a function of the cache directory that yiel; ed a matched entry, or
the contents of the LRU field of the use table if no match exists. The source of the ORDER and the
LRU codes is the lookup table which is loaded at power up. |

The lookup table is three bits wide and is structured into the following two f'ields:

a. ORDER: Bit0
b. LRU: Bits | and?2

Collectively. the contents of the lookup table represent the refill algorithm of the cache. The refill
algorithm can be adjusted by changing the sequence of the bit patterns to bypass one, two, or three
cache quarters in any combination. Normally, the algorithm is set to use all four cache quarters
equally. Table 3-10 specifies the bit patterns and the sequence of these pattc;rns for using all cache
quarters equally. :

MBox/3-62

Table 3-10 Cache Refill Algorithm

Locations Contents
0-7 0 1 2 3 4 5 6 7
8-15 3 1 2 3 2 1 2 3
16-23 7 1 2 7 1 1 2 7
24-31 6 5 6 7 5 5 6 7
32-39 0 3 2 3 0 2 2 3
40-47 0 1 2 3 4 5 6 7
48-55 0 7 7 7 0 0 0 7
56-63 4 6 6 6 4 4 6 4
64-71 3 1 3 3 1 1 1 3
72-79 0 7 7 7 0 0 0 7
80-87 0 1 2 3 4 5 6 7
88-95 4 5 5 7 4 5 4 7
96-103 0 1 2 2 0 1 2 1
104-111 0 5 6 6 0 5 6 0
112-119 4 5 6 5 4 5 6 4
120-127 0 1 2 3 4 5 6 7

During normal operation the lookup table is addressed by the contents of the use table in conjunction
with a 2-bit code that specifies the cache directory that yielded a match, or a 2-bit code that specifies
the LRU cache block if no match occurred. When the lookup table is loaded (APR EN REFILL RAM
WR), the table is addressed by address bits 27-33, which are the same as those used to address the
cache directory. After the lookup table is loaded by the EBox at power up, a cache sweep instruction to
invalidate the entire cache must be executed by the EBox to initialize the use table to purge all illegal
bit patterns from the table. The illegal patterns for full cache service are those where the contents of the
MRU field is the same as the contents of the LRU field of the use table. After the use table is
initialized, it will contain “00 0 11" in every location, indicating that the order of use of each cache
Lineis0 1 2 3.

3.4.1 Load Lookup Table (Refill RAM)

The lookup table is loaded by the EBox by executing the BLKO APR, E instruction. Each time this
instruction is executed, one 3-bit word of data will be loaded into the lookup table. A total of 128 3-bit
words of data must be loaded into the table.

Each time the BLKO APR instruction is executed the EBox sets up the request as follows:
a. Loads VMA bits 18-20 with the data to be written into the lookup table.

. Loads VMA bits 27-33 with an address to select a location in the lookup table.
¢. Asserts CLK EBOX REQ, APR EBOX READ REG, and APR EN REFILL RAM WR.

MBox/3-63

This sets up the conditions required for the MBox to service the EBox request to load one word into
the lookup table. If the cache control is IDLE, or when the cache control enters its IDLE state and if a
higher priority request is not pending (MB or CHAN request), the cache control will grant the EBox
request and start a cache EBox cycle to execute the request. This decision is made as the cache control
time state generator advances from IDLE to READY TO GO. At READY TO GO, the CSH EBOX
CYC lateh is set and the address is gated from the VMA to the lookup table via the lookup table
address mixers. These mixers are set up by APR EN REFILL RAM WR to select the correct address.
The APR EN REFILL RAM WR signal also sets up the data input mixer for the lookup table. From
READY TO GO, the cache control time state generator advances to CSH EBOX TO, T1, and T2 in
sequence. At CSH EBOX T2, the CSH USE HOLD flip-flop is set to hold the address and data, and
CSH REFILL RAM WR is asserted to write the data into the addressed location of the lookup table.
From CSH EBOX T2. the cache control returns to IDLE and asserts MBOX RESP IN.

3.4.2 Initialize Cache Directory and Use Table ;
The cache directory and the use table are initialized at the same time by the cache clearer control after
the ciache clearer is started by the EBox. In the cache directory, all valid and written bits are cleared; in
the use table. all entries are initialized to reflect the refill algorithm for full cache service. This means
that the use table is initialized to specify a use order of 0, 1, 2, 3. :

NOTE
The use table can also be initialized to provide partial
cache service where one, two, or three cache quarters
are bypassed.

The cache clearer control is started by the EBox by executing a Sweep instruction (refer to Cache
Clearer Control Description) to invalidate all pages in the cache.

[f the cache clearer control is set up to invalidate the cache for all pages, then the CCA INVAL T4 time
state is entered when a cache CCA cycle is executed by the cache control. One clock tick after CCA
INVAL T4, the use table data is written. The cache directory VALID and WRITTEN bits are also
cleared at this time. During the cache CCA cycle, the address for the use table is obtained from the
CCA register via the PMA; the address for the lookup table is the contents of the addressed location of
the use table concatenated with a 2-bit code that indicates which cache is selected (valid match is
forced) for the current cache CCA cycle. The data for the use table is the contents of the addressed
location of the lookup table concatenated with the 2-bit code that indicates which cache is selected
(valid match is forced) for the current cache CCA cycle. This arrangement of address and data selec-
tion will cause the following to occur, one clock tick after CCA INVAL T4;

I. One of four quadrants, depending on which cache is selected (vélid match is forced), is
pointed to while one of 32 locations in that quadrant is addressed by the five bits contained
in the addressed location of the use table. ;

b9

The contents of the addressed location in the lookup table is writtén into the ORDER and
LRU fields of the addressed location of the use table. '

3. The MRU field of the use table will receive the code that indicates which cache is currently
selected by forcing a valid match.

Corsequently, the MRU field of the use table of a given addressed location will be set to the cache
code for which a match is currently forced. Since the cache clearer address register is counted down
frorm 777 to 000 in increments of one, each location will wind up with a code of 00 in the MRU field
and the ORDER and LRU field will wind up set with the contents of the Lookup Table location that is
being addressed at this time which should be O11. : ’

MBox /3-64

3.4.3 Normal Operation

The use table is updated during a cache EBox cycle that is executing an EBox read or write request for
which the cache is to be used. If the cache contains a valid entry (ANY VALID MATCH), even
though the desired word may not be in the cache (-RD FOUND), the use table is updated by asserting
WR USE BITS one clock tick after CSH EBOX T2. If the cache does not contain a valid entry (-ANY
VALID MATCH), the use table is updated by asserting WR USE BITS one clock tick after CSH
DATA CLR T2. The major difference between these two cases, besides the timing, is the way the
lookup table is addressed and the data for the MRU field of the addressed use table location is derived.
For the case where a valid entry is found, ANY VALID MATCH is asserted, which causes the ANY
VAL HOLD latch to be set one clock after CSH EBOX T2. This inhibits the CSH SEL LRU gate to
make sure that the two high-order bits of the lookup table address and the data for the MRU field of
the use table is a two-bit code that identifies the cache that yielded the valid entry. This condition
satisfies the case where the desired word was not in the cache and the CSH DATA CLR time state are
entered to clear the data and update the use table. For the case where a valid entry is not found in the
cache, ANY VALID MATCH is not asserted, which causes ANY VAL HOLD to remain cleared after
CSH EBOX T2. This enables the CSH SEL LRU gate at CSH DATA CLR T1 to make sure that the
two high-order bits of the lookup table address and the data for the MRU field of the use table is a
two-bit code that identifies the LRU cache.

Figure 3-31 illustrates the current state and the next state of the use table as a function of the selected

cache. The selected cache may be the one that yielded a valid entry or the LRU cache. By using this
table, one may determine what the next state of a given use table location should be.

USE BITS STATE TABLE

CURRENT NEXT NEXT NEXT NEXT
STATE STATE STATE STATE STATE
CACHE CACHE CACHE CACHE
mMRU | ORDER | LRU] use [mru|oroer[tRu] use [mRu]oroer]iru] use [wmru]orper|Lru] use [mMRuU|oORDERTLRU
0 12 3 0 0 12 3 1 1 02 3 2 2 o1 3 3 3 01 2
0 13 2 0 0 13 2 1 1 03 2 2 2 01 3 3 3 01 2
0 21 3 0 0 21 3 1 1 02 3 2 2 01 3 3 3 02 1
0 23 1 0 0 23 1 1 1 02 3 2 2 01 3 3 3 02 1
0 31 2 0 0 31 2 1 1 03 2 2 2 03 1 3 3 01 2
0 32 1 0 0 32 1 1 1 03 2 2 2 03 1 3 3 02 1
1 23 0 0 0 12 3 1 1 23 0 2 2 13 0 3 3 12 0
1 20 3 0 0 12 3 i 1 20 3 2 2 10 3 3 3 12 0
1 32 3 0 0 13 2 1 1 32 [} 2 2 13 0 3 3 12 | o
1 30 2 0 0 13 2 1 1 30 2 2 2 13 0 3 3 10 2
1 02 | 3 0 0 12 |03 1 1 02 | 3 2 2 10 | 3 3 3 1o oz .
1 03 2 0 0 13 2 1 1 03 2 2 2 10 3 3 3 10 2 Y
ADR 27-33 | , 30 1 0 0 23 1 1 1 23 0 2 2 30 1 3 3 20 } 1 TABLE
2 31 0 0 0 23 1 1 1 23 i} 2 2 31 0 3 3 2 0
2 03 1 0 0 23 1 1 1 20 3 P 2 03 1 3 3 20 I 1
2 01 3 0 0 21 3 1 1 20 3 2 2 01 3 3 3 20 1
2 13 0 0 0 21 3 1 1 23 0 2 2 13 0 3 3 21 0
2 10 3 0 0 21 3 1 1 20 3 2 2 10 3 3 3 21 o
3 01 2 0 0 31 2 1 1 30 2 2 2 30 1 3 3 o1 | o2
3 02 1 0 0 32 1 1 1 30 2 2 2 30 1 3 3 02 1
3 10 2 0 0 31 2 1 1 30 2 2 2 31 0 3 3 10 2
3 12 0 0 0 31 2 1 1 32 0 2 2 31 0 3 3 12 0
3 20 1 0 0 32 1 1 1 32 0 2 2 30 1 3 3 20 1
3 21 0 0 0 32 1 1 1 32 9 2 2 31 0 3 3 21 0
CSH USE IN 0-1 ' [o
I l | 1
LOOKUP
(ADR 0-4) TABLE
0 1 e 2 3
[¢) 31 32 63 64 93 94 27

Figure 3-31 Cache Use History Update Functions

MBox/3-65

3.5 CACHE CLEARER CONTROL

The cache clearer control (Figure 3-32) requests cache cycles to invalidate the cache and/or validate
core after it is set up by the EBox. When setting up the cache clearer control, the EBox specifies which
of these operations are to be executed and whether the operations are to be dorje for only one page or.
the entire cache. The cache clearer control consists of two binary counters (LINE and BLOCK) for
generating the cache address and a number of control flip- flops Collectively, the LINE and BLOCK
counters are referred to as the CCA register. The cache clearer is set up by the EBox when it executes a
sweep instruction. This instruction causes the EBox to issue a request to load the CCA register and
three control latches that specify what type of cache clear operation is to be performed (refer to EBox
load register and cache CCA cycle descriptions). Before the EBox issues the request to load the CCA
register, it must set up VMA bits 14-26 and IR AC bits 10-12 correctly. VMA bits 14-26 specify the
page for which the cache sweep operation is to be performed. When the entire cache is to be swept, the
VMA does not have to be set up. IR AC bit 10-12 specifies the type of sweep operation that is to be
performed. These bits are interpreted by the cache clearer control as follows:

IR AC10: CSH CCA ONE PAGE
IR ACl11: CSH CCA VAL CORE
IR ACI2: CSH CCA INVAL CACHE

When the EBox Request is granted by the cache control, a cache EBox cycle is executed and the CCA
register and the control latches are loaded at CSH EBOX T1. The CCA regrster receives VMA bits
14-26 and the control latches receive IR AC bits 10-12. The CCA register is loaded by CCA LOAD
and the control latches are loaded by CCA SEL 1. Both these signals are true for only one clock period
when CSH EBOX Tl is asserted. At the same time the CCA register and the control latches are loaded,
the CCA REQ latch is set and the line and block counters are loaded with a ,count of 777 (all nine
counter bits are set to “one”’). The line and block counters are loaded because hoth CCA SEL 1 and 2
are “‘zero” at CSH EBOX T1. On the next clock tick both CCA SEL 1 and 2 réturn to “one” to hold
the counter contents and the MBox asserts MBOX RESP IN to inform the EBox that the cache clearer
control is set up. The EBox will then continue with executing the program. The cache clearer control
will remain in this initialized state until the cache control grants a cache cycle to the cache clearer
control. If no other requests are pending, the CCA request is granted and a cache CCA cycle is
executed (refer to cache CCA cycle description). While the cache CCA cycle is executed, one of several
different operations may be performed, depending on what type of cache sweep operation was
requested and what is found in the cache directory.

At the end of a cycle, the CCA CYC DONE flip-flop is set to decrement the line or block counter and
to check if the counter generated a carry (CCA CRY OUT). The counter generates a carry when the
cache clearer has finished scannmg the entire cache. The block counter is decremented to select each
block of a given line when sweeping the entire cache. The carry from the block counter decrements the
line counter. The line counter is decremented to select each line when sweeping the cache for a given
page. The counters are decremented because CCA SEL 2 is forced to zero and CCA SEL I remains in
the one state when the CCA CYC DONE flip-flop is set. This flip- -flop remains set for one clock
period. When the counter overflows, CCA CRY OUT is asserted causing the CCA REQ flip-flop to be
cleared when CCA CYC DONE is set. This informs the EBox that the cache clearer has completed the
cache sweep operation.

3.6 MB CONTROL

The MB control (Figures 3-33 through 3-35) moves data in and out of the MBs in response to gating
function from the cache control, core control, or the channel control. Two request queues are
employed to facilitate moving data in and out of the MBs in an orderly fashion.

M Box/3-66

L9-€/x0g N

14

PMA 14-35
35

PMA SEL

PMA (PMA3/4)

I

BN

MB X1
CLK

APR EBOX
LOAD REG CSH EBOX T
CSH LOAD REG CCA 14 17 18
CSHE A T -
Esox 1@ [~*7°) PMa2 o280 PAGE (PMA 1/2) Acca
— i
APR EBOX CCA l_ -
VMA 14-27 L] e x)
-MR RESET
{ st o1
- CCA SEL1 ' D—’MB’“
| 27 3334 | 35
A
B | CoA SEL ¢
7~ 8= LOAD
_L-,P/ £2a0 = LINE BLOCK | CCA CRY OUT
! CONT 2=+1 COUNT COUNT MBX1
; 3=HOLD (PMA2) (PMA2)]
: CCA SEL 2
MBX 1 :
~APR EBOX CCA ﬂ
-MR RESET |
1 D
CSH CCA CYC CCA ALL
- PAGES CYC
IR AC1O b | [CSH CCA ONE PaGE ¢ Cp—Cik
MBX1
—ic o
IR ACH 0 CSH CCA VAL CORE
Ma x4 -ANY WRITTEN MATCH CCA
o
—ANY VALID MATCH CSH6 D 1 }—I DONE
CCA T3 1 CSHE
IR AC12 o 1| CCA InvAL T4 e
MBX1
H
L dc) CSH CCA INVAL CS
Figure 3-32 Cache Clearer Control, Simplified Logic Diagram

cC @

SBUS DATA

CH BUF
CBUS SEL
0
, 8 CH BUF IN
ceus—| 3
CCL MIX
i MB SEL
ccuw_q_] N
BUF 1 B CCW MiX
112
, 2 .
! MEMTOC .
ACKN PULSE . SEL 1-2
ar 213
" 1| g |mMEM TO cacHE
MB WR RQ CLR MB SEL
HOLD
(MBX2)
CCL CH M8
SEL 1-2
MB WR
RQ ANY CHAN READ
CORE WD ®-3 COMING *oUTPUT
MB 0-3 SEL CODE /"ME GUTMTX
WRRQ [MB REQIN SEL 1-2 7 M me2) \
CSH TO MB WD @-3 QUEUE :
(MBX2) ;
C TO MB
WD 0-3 RQ MB@
*LoAD C TO MB QUEUE *‘58655 o
(MBX2/3) | xyg POINTERS MB (MBO2)
HOLD IN mMB2
MBX6)
*GATING FUNCTION ¢ mMB83
* MB IN MINPUT T :
ASSERTING FUNCTION] ("5 " SEL CODE / " me 1N MIX \
(M8z1) / (MB@4)|
7

X These functional names are assigned
for the sake of the presentation, they
are not octual signal mnemonics.

NOTE:
Refer tofigures 3-34 and 3-35.

Figure 3-33

23&56

|¢ 1
CACHE DATA

AR

MB CH BUF

MEM DATA IN
CCW MIX

M Box /3-68

10-1524

MB Control, Functional Block Diagram

CcsH cran

~Cgm Cran
WD @ NEEDED
Cow w2 @ REQ

2ow w02 REQ

MEM STA
TACHE wR CYC
oo venresain cvc > |)

Csawozvae
CSM WD 2 wR

CSH WD 3 veL B
C5n w0 3 wR

.
CsHToMB WO B |

ComToMBWDY | |

H uB t WA A0

M6 Wh RQ ANY

N8 SEL A

N6 SEL 1A

—wi 5E 2

W SEL 22

WE 6 WA Ag

i i

CORE WG B CominG; P o8

L uexz FET IR
i . [wemeouon s
j G ge i T
; 9
Pl

8 REC aciw

PRIORITY
i (3

Wa 2 WA RO

M8 3 wR 9

S
nxzi :
lee l |
; "'—}; e se s
‘!2'.’
Gk e !
. ons2s

Figure 3-34 MB WR RQ Queue and

MB SEL Logic, Simplified
Logic Diagram

MBox/3-69

A
) i
MBX 3 CACHE TO M8 CONT ;
ANY b T it
cLK
- TO W8 LOAD L |
o S Toana)roo np| CACHE 1O MB 33 TR |
NRiTEIACK T2 _ Max Doy ||
1
we REsET MOX3 csH 1O ¢ ToMB A N 5
MewD U lp WRLRA 1y, UCHMBSEL23M seL 2 .
come npr3a [| 5 pe
MBx3 . 6
cLk BK DECDER
L =10 4 18 ob ~MB @ HOLD IN
PRIORITY 7
MBX3 woLo | ENCODER | —MB_{ HOLD IN_
(MBX2) | cacHE T MB 35 b =MB 2 HOLD IN_
CsH 1O C a0 Mo e e 0 —~MB 3 HOLD IN
MR WD 2 WD 2 RO 1 3p-
- s "I 02 Pz | :
MEX3 coLcuMBSEL Y Ly M) (MBX6)
CORE_ADR 35 _ X | ="
Cur o 1% 6
i s £
T HOL:
p—t ——- 7
cSH TO C TOMB
wD 3 RQ
MB w3 [IWo 3R) CACHE 0 MB T3 [
MBX 3 1
ONE WORD WR 10 |,
CLK 1e CCL CH LOAD MB | m
H CORE_DATA Bl——do 1|
T T uexs)L VALID -1 4 6
CSH E30X CYC L PRIORITY l 5 MBX6
— ENCODER
APR E30X_S BUS D!AG s CLK
S EBUX_DIAG CYC 08 77 —1¢ |
-CHAN CORE BUSY - o1 L1
~MTR 2CA WRITEBACK
e \ D2 . MB IN SEL 4
) CHAN_BUF TO MB M 04
- =03 g : MB_IN SEL 2
-CHAN_CORE BUSY O\ ONE WORD WR CYC R Q2
. BZ1 CORE_RD_IN PROG z
EcaciEwreve T 1T/ A LT MB IN SEL 1
b —
JDS
CHAN STATUS TO MB| g
D7
H
core oweros [0 1]
MB71
CLK
e
101528

3.6.1

Figure 3-35 CTOMB WD RQ Queue, Load Pulse Generator,
and MB IN Selector Simplified Logic Diagram

MB 0-3 WR RQ Queue

The MB 0-3 WR RQ queue is loaded to remember which MB received data 5o that the data can be
moved to the desired destination in the most expedlent manner. As the contents of an MB are trans-
ferred, the associated MB 0-3 WR RQ in the queue is cleared. ’

The MBs may receive data from the following sources:

AR - While a cache EBox cycle is executed to write one word.

CACHE - Durmg a cache page refill cycle, a cache writeback cycle or during a cache
channel cycle that is executing a read request. |

SBUS - During a core read cycle that was initiated by a cache page refill cycle, a cache
EBox cycle, or a cache channel cycle.

CH BUF or CCW BUF - Words from the CH BUF or the CCW BUF are moved into the
MBs by the channel control independently.

MBox/3-70

‘The MB input selector and load pulse generator control data selection and loading of the MBs.

Data that has been loaded into an MB can be transferred to the following destination:

a.

c.

AR - While a cache EBox cycle is executed to read one word or the words that are non-
valid in the cache from core. Only the first word is transferred to the AR; the remaining
words are transferred only to the cache if it is not a “ONE WORD RD”.

Cache - While a cache EBox cycle is executed to read one or more words from core. Only
the first word is moved into the cache during the cache EBox cycle. The remaining words are
moved into the cache by the cache MB cycle.

SBUS - During a core write cycle that has been initiated by a cache writeback cycle, a
cache EBox cycle, or a cache channel cycle.

CH BUF or CCW BUS - Words are moved from the MBs to the CH BUF or the CCW
BUF by the channel control.

PT - During a cache page refill cycle.

The MB OUTPUT selector and a number of mixers control the output transfer of the data. The MB
0-3 WR RQ queue is loaded whenever the M Bs are loaded. The queue is loaded to:

d.

Remember which MB received the word from the AR for a one-word write or an SBUS
DIAG operation (refer to cache EBox cycle description).

Remember which MBs will receive the valid or written word from the cache (CSH TO MB
WD 0-3). These words will be moved into the MBs by the CSH TO MB time states. At the
same time the MB 0-3 WR RQ queue is loaded, the CTOMB WD 0-3 RQ queue is also
loaded to provide the correct cache address (CACHE TO MB 34-35) and MB load pulse
(-MB 0-3 HOLD). Written words are moved into the MBs for writeback operations to
make room in the cache, or to validate core. Valid words are moved into the MBs for page
refill or channel read operations (refer to cache writeback, cache page refill, and cache
channel cycle descriptions).

Remember which MB received a word from core via the SBus during a core read cycle (refer
to cache EBox, cache MB, and cache page refill cycle descriptions).

Remember which MB received a word from a channel (refer to cache channel cycle
description).

The appropriate request stored in the MB 0-3 WR RQ queue is cleared whenever the contents of an
MB are transferred to the desired destination. The appropriate MB 0-3 WR RQ is cleared when:

a.

The first word that comes in from core during a core read cycle is taken by the EBox (moved
into the AR). Refer to cache EBox cycle description.

A word from the MB is written into the cache (refer to cache EBox and cache MB cycle
descriptions).

Core has accepted a word (by asserting SBUS ACKN) during a core write cycle (refer to
cache EBox and cache writeback cycle descriptions).

MBox/3-71

d. The channel control selects an MB to read its contents (refer to cache channel cycle
description). i

e. A word from the MB is written into the page table (refer to cache page refill cycle
description).

Except during channel read operations, each time an MB 0-3 WR RQ is cleared, the next highest
priority (ascending modulo 4) MB 0-3 WR RQ in the queue causes the corresponding MB to be
selected to get ready for the next transfer. Core is freed (-CORE BUSY) only after all MB 0-3 WR
RQs are cleared (-MB WR RQ ANY).

3.6.2 MB Input Selector and Load Pulse Generator

The source for loading the MBs is selected by the MB IN mixer. This mixer is cmntro]led by the MB IN
SEL 1-2-4 control code which is generated by a priority encoder. Besides selectmg the desired data
source for the MBs, this control code is also used to select the appropriate logm for generating the MB
load oulses (-MB 0-3 HOLD IN). The association between the MB SEL 1-2-4 code, the MB IN mixer
data connections, and the functions that assert a particular code and thereby the desired data source is

defined in Table 3-11.

Table 3-11 MB Input Functions

MB IN SEL 1-24
CODE |
ASSERTING FUNCTION (MIXER INPUT) | DATA SOURCE
124 |
WRITEBACK-PAGE REFILL- X 0 0 CACHE DATA
CHAN READ :
ONE WORD WRITE (-CACHE) 010 AR
OR SBUS DIAG CYC
CHAN WRITE DATA 110 MB CH BUF
CORE READ X 0 1 MEM DATA IN
CHAN WRITE STATUS X 11 CCW MIX |

X = ARBITRARY

Besides controlling the MB IN mixer, the MB SEL 1-2-4 code also selects the desired logic via a set of
mixers for producing the desired MB load pulse (-MB 0-3 HOLD IN) at the correct time. The associ-
ation between the MB SEL 1-2-4 code, the signals that specify which MB is currently to be loaded (MB
Pointer), and the gating function that generates the pulse is defined in Table 3-12.

MBox/3-72

Table 3-12 MB Load Functions

MB IN SEL 1-2-4

CODE
1 2 4 MB POINTER GATING FUNCTION
X 00 CACHE TO MB 34-35 CACHE TOMB T3
010 PMA 34-35 ONE WORD WR TO
1 10 CCL CH MB SEL 1-2 CCL CH LOAD MB
X 0 1 CORE ADR 34-35 CORE DATA VALID -1
X 1 1

CCL CH MB SEL 1-2 CCL CH LOAD MB

X = ARBITRARY

3.6.3 CTOMB WD 0-3 RQ QUEUE

The CTOMB WD 0-3 RQ queue is loaded when data is to be transferred from the cache to the MB
during a writeback, page refill, or a channel read operation. This queue is loaded to remember which
words are to be transferred. The queue also serves as a source for generating the correct cache address
(CACHE TO MB 34-35) and MB load pulse (-MB 0-3 HOLD). As each valid or written word is
moved into the appropriate MB during the CACHE TO MB time states, the associated CTOMB WD
0-3 RQ in the queue is cleared. Clearing a CTOMB WD 0-3 RQ causes the next highest priority
CTOMB WD 0-3 RQ to generate another address and MB load pulse. When the state generator
advances through the CACHE TO MB time states again. This operation will continue until all
CTOMB WD 0-3 RQs in the queue are cleared.

3.6.4 MB Output Selector
After an MB is loaded, the contents of that MB may be transferred to the desired destination by setting
up one or more mixers.

a. The MB OUT mixer selects the desired MB in response to the appropriate MB SEL 1-2
code. The MB SEL 1-2 code is a function of the contents of the MB WR RQ queue, unless
the channel is executing a read request, in which case the channel control selects the MB it
needs to read. The selected data is then distributed to the SBus, the CH BUF IN mixer, the
MEM TO C mixer, the CCW mixer, and the PT IN mixer.

b. The CH BUF IN and CCW mixers are controlled by the channel control when data is
transferred from the MB to the channel.

c. The MEM TO C mixer is controlled by the cache control to direct the MB data to the cache
during a core read cycle to refill the cache.

d. The PT IN mixer is controlled by the cache control to direct the MB data to the page table
during a core read cycle to refill the page table.

3.7 CORE CONTROL
The core control starts and executes core read and write cycles in respponse to requests from the cache
and channel controls. Since either control may request to read or write up to four words, the core

control must keep track of which word has been transferred. To this end the core control employs
counters to keep track of the ACKN pulses and CORE DATA VALID pulses (Figures 3-36 and 3-37).

MBox/3-73

MEM ACKN A

—MR RESET MEM ACKN A

r { L' -~ 3 ACKN PULSE
. e 3

—e T e L[TR
w ac s b TO M8 CONTROL
o 1
MBC3 MEM AGRE B
oK
cx e
A CHANGE COMING
Mi TART R
B CHANGE COMING Ew_START CiR_ [=
RQ @-3 n__JPULSE
COUNT CcONTR o]
' — o
;
N MEM START
MBC3 ! ace ot , . e e MEM START &
CLK o ! !
i '—} maca i
PHASE_HOLD ‘—c @ |
PHASE CHANGE COMING }
HOLD T2 - E MEM START 8
[CYCLE Lo s T
| PR T PO B | MBC MBCa L'h !
j) Te i BC4 M START AC
hL o i o (NOTE} £ CORE RD RQ | —c @ rL_/ vew s &
LS K N Al
CLK ckle g Gkl p| LCu CHAN START G HOLD
axl e) FF
RO 2-3 iN 5 MEM RQ @-3
MBOX CLK : Meca !

{_RQ_HOLD/SBUS "
o apase coun 8 AL 8 D L ADR HOLD °
PHASE HOLD ___—r 1___.._.] l—.—_—r—-— MEM RD RQ IN A MEM RD RQ

| wBca

PHASE CHANGE COMING

—
A CHANGE COMING I l | I 1 @
B CHANGE COMING _‘ | ! MEM WR RQ IN | 5 N MEM WR RQ
, 1 =

—c @
T l l :
PMA 14-33 i PO S5 BUS @-1 ADR 14-33
T2 I |
i imToe
i
T3 J I ——c o
e T T T T e e ——— S - o B B . S BUS ADR 34-35/ j S BUS P-1 ADR 34-35
P
MEM START SET J l MT24

i
|
L—l
MEM START & [c o

10-1827

NOTE
Time stote chain TO- T4 13 (deaized and doas noi
reprasent ocwal lagic

Figure 3-36 Memory Start Control and
Acknowledge Pulse Counter,
Simplified Block Diagram

MBox/3-74

TO MB CONTROL
~

CORE
w0 0-3
COMING

CSH CHAN CYC A
']

-ANY Vi

NOTE- DATA VALID -1 1S USED INSTEAD
BUT IS DELAYED ONE CLK TICK
IN THE M8 CONTRR

MEM DATA
YALD A

MEM DATA
YALID B

A CHANGE
M EN

MBX2| ONE WORD WR TO

CORE RO IN PROG

RQ 0-38

ADVANCE COUNT

RQO-38

SBUS ADR 34 - 35

MEM START RO

B CHANGE |
COMING .

CACHE TO NB T2
R; PA;;; ;N; “A;F . >

MT24;
il SBUS ADR 34-35
CLK
RO HOLD
(MT04)
‘ RQO-3 IN MEM RQ 0-3
CLx
RQ HOLD

10-1528

Figure 3-37 Core Data Valid Pulse
Counter, Simplified Logic Diagram

MBox/3-75

The SBus control dialogue to start and execute a core cycle is synchronized with the SBus clock to
minimize bus latency. Because the propagation time of the SBus control signalg is less than the SBus
clock period (four MBox clock periods), a control signal generated at one end of the SBus can be
sensed at the other end without the need for synchronization logic. This speeds up the control bus
operation. To further speed the operation of the SBus, two sets of SBus control signals are used. One
set is synchronized on the A phase and the other on the B phase of the SBus clock.

A core cycle is started by asserting SBus drive signals in the following manner;

4 MEM START A or B is asserted and held. MEM START A is asserted if phase A of the
SBus clock is coming when the core cycle is ready to be started. However, if phase B is
coming when the core cycle is ready to be started, MEM START B is asserted instead.

b. MEM RD RQ or MEM WR RQ is asserted and held, depending on whether a read or a
write cycle is to be initiated. Both MEM RD RQ and MEM WR RQ are asserted to execute
a read-pause-write cycle. :

¢ MEM RQ 0-3 are asserted and held to specify which words (and ghow many) are to be
transferred. :

d. MEM ADR 14-35 is held to address core. Bits 34 and 35 point to the vaord to be transferred
first. Bits 14-33 point to the quadword (page and line). :

The bus drive signals mentioned above are held by the MBox core control and are transferred to the
SBus as long as MEM START A/B is set. Core memory responds to SBUS START A/B by asserting
SBUS ACKN A /B during core read and core write cycles as each word is addressed if the address is
valid and no address parity error is sensed. Core memory effectively addresses each requested word, in
ascending modulo 4 sequence, starting with the first word requested. After'each requested word
(MEM RQ 0-3) is acknowledged with an SBUS ACKN pulse, MEM START A/B is cleared, allowing
core memory to terminate its cycle after placing the last word on the SBus data lines. The acknowledge
pulses are counted by the acknowledge pulse counter. If the number of acknowledge pulses do not
correspond to the number of words requested, MEM START A/B is not cleared and the NXM Error
flag is set. Reception of the acknowledge pulses also influences the operation of the MB control during
a core write operation to transfer the contents of the appropriate MB to the SBus data lines.

During core read operations, core memory asserts SBUS DATA VALID A/B ias each word is placed
on the SBus data lines. The MBox core control waits two MBox clock ticks| after receiving SBUS
DATA VALID for the data bus drivers to stabilize before loading the data into the appropriate MB.
Another core cycle cannot be started (core remains busy) until each requested word (MEM RQ 0-3) is
received and moved out of the MB into the cache or the channel data buffer. DATA VALID pulses are
counted by the core data valid counter which drives the MB control to load the appropriate MB and
the MB 0-3 WR RQ queue. Loading the MB 0-3 WR RQ queue causes an MB request to be initiated
to move the word from the M B to the cache. The contents of MB 0-3 WR RQ queue select the MB and
address the cache (refer to MB control description).

3.7.1 SBus Dialogue Synchronization

The SBus uses two sets of START, ACKN, and DATA VALID lines. One set is synchronized with the
A phase and the other with the B phase of the SBus clock. The period of the SBus clock is four MBox
clock periods. By synchronizing one set of bus dialogue signals on phase A (trailing edge) and the other
on phase B (leading edge) these signals can be placed on the bus two MBox clock periods earlier than
would otherwise be possible. This, therefore, reduces the bus latency by two MBox clock periods.

MBox/3-76

Since MEM START A or B, depending on which phase is coming, can be asserted when the cache
control time state generator enters one of several time states, a need exists for holding the time state for
one tick to wait for A or B phase coming. Otherwise, the state generator may miss A and B phase
coming.

3.7.2 Acknowledge Pulse Counter (MBC4)

When memory is started (MEM START A/B is asserted) to initiate either a core read or write cycle,
the Acknowledge Pulse counter (RQ 0-3A), which is a shift register, is loaded with a bit pattern (RQ
0-3 IN) that specifies which words (and how many) are to be transferred. This is the same bit pattern
that is transferred to core memory via the SBus RQ 0-3 lines. The counter then initializes itself to shift
out all leading ‘‘zeros” if any (Table 3-13). When the first acknowledge pulse comes in, the leading
“one” is shifted out of the counter. After each acknowledge pulse shifts out the corresponding word
request (RQ 0-3A), the counter again shifts out any leading ‘““zeros’’ to position the next word request
in the most significant position so that it can also be shifted out when the next acknowledge pulse
arrives. This is repeated until all requests (RQ 0-3A) are shifted out of the counter. At the same time
the last request is shifted out MEM START A/B is cleared.

Table 3-13 is the Acknowledge Pulse counter initialization (shift RQ 0-3A until RQ 0A = 1) Truth
table.

Table 3-13 Acknowledge Pulse Counter Initialization Truth Table

RQ 0-3 IN RQO0-3 A
0123 0123
1000 10300
0100 1000
1100 1100
0010 1000
1010 1010
0110 1100
1110 1110
0001 1000
1 001 1001
0101 1010
1101 1101
0011 1100
1011 1011
0111 1110
1111 I 111

MBox/3-77

3.7.3 Data Valid Pulse Counter ;

When memory is started (MEM START A/B s asserted) to initiate a core read cycle, the Data Valid
Pulse counter (RQ 0-3B) is loaded with a bit pattern (RQ 0-3 IN) that specifies which words (and how
many) are to be transferred and the Core Address Counter (CORE ADR 34-35) is loaded with bits 34
and 35 of the MEM ADR, which specifies the word that will be received first. The Data Valid Pulse
counter is a shift register and the Core Address counter is binary up/down counter. RQ 0-3 IN and
MEM ADR 34--35 are also latched and transferred to core memory via the SBUS RQ 0-3 lines and
SBus A DR 34-35 lines, respectively, to specify which words are to be read and the order in which they
are to be transferred. RQ 0-3 IN is derived from RD NON-VALID WDS or RD PMA SINGLE when
the core read cycle is initiated. MEM ADR 34-35 is derived from PMA 34-35 or from RQ 0-3 IN,
depending on which cache cycle initiated the core cycle. When the EBox requests a word and the word
is not in the cache, or the cache is not to be used, the cache EBox cycle initiates a core read cycle to
read the words that are not valid in the cache or read a single word. For this case, MEM ADR 34-35 is
produced from PMA 34-35, which points to the word the EBox requested. If, however, a cache page
refill or a cache CHAN read cycle initiates the core read cycle, then MEM ADR 34-35is derived from
RQ 0-3 IN to generate an address that points to the first word, in ascending modulo 4 order, that is to
be transferred. This is illustrated in Table 3-14. ‘

Table 3-14 MEM ADR 34-35 Derivation Truth Table for Page Refill
and Channel Read Cache Cycles

RQ 0-3 IN MEM ADR
0 1 2 3 34-35
1 X X X 00
0 1 X X 01
0 0 1 X 10
0 0 0 1 11

X = ARBITRARY

After the Data Valid and Core Address counters are loaded, they initialize the@selves automatically.
The counters initialize themselves as follows: 1

4. Core Address counter decrements until its content is 0.

b. The contents of the Data Valid counter are rotated to the left one position for each time the
Core Address counter decremented, for example: f

RQ 0-3IN CORE ADR RQ O3B CORE ADR |
0123 34 35 0123 34 35

1100 01 1001 00

MBox/3-78

Table 3-15 illustrates how RQ 0-3B is rotated and CORE ADR is decremented until it is zero for the
Core Data Valid counter initialization (INT COMP) operation for page refill and channel read cycle.

Table 3-15 Core Data Valid Counter Initialization Truth Table

RQO0-3IN | CORE ADR RQ0-3 B CORE ADR
0123 34 35 0123 34 35

—_—— e O OO, OO OO =0 == OO = - —
»-d»—;—b-ai—h-tp—v—nu—au—-n—n-—ahay—-u—t»ﬂr—b—-dn—oooooooooooo
—_—_—_0 O, O, —, O, S, 000~~~ 00—, —~0000O
O = OO~ 00 —0O =, Om=—0— 0 —~00—=000—~0m=mO0O
s e e b e e e b et b et b e e et bt bk bl bt b bt e b e b i b i e et e
== e O e = OO0 = = O, 00 OO0 = O~0000—~,OO
P = e QO O = = OO0, O 000000~ —=0000O0
— = = = e O O, 00—, 000 —0O—,—~0=0000~R0DOCO

OCOOCOCOCOOODO0OOCODO0OO0OO0OO0OO0O0OOOOO0ODCOCOO0OOOCOOO
=l ejaoloeloleBolsRoelcBaoloNeoNoNoNoNoNoNeoNoNoNoleNoloNeNol ol ol

When the Core Address counter reaches zero, the initialization phase is complete (INIT COMP) and
CORE RD IN PROG is set. At this time, MEM ADR 34-35 is loaded into the Core Address counter
again. The operation modes of these counters are also changed at this time to count the SBUS DATA
VALID pulses. The Core Address counter is set up to increment rather than decrement the core
address and the Data Valid counter is set up to shift instead of rotate left every time an SBUS DATA
VALID pulse is received. Leading zeros are automatically shifted out during this operation. When the
last request is in the RQ OB position of the counter and the last core data valid pulse has come in,
CORE RD IN PROG is cleared. However, core remains busy until all the words have been moved
from the MBs to the Cache, page table, or channel, as the case may be.

MBox/3-79

After the SBUS DATA VALID pulse is received, the M Box core control waits two clock ticks before it
triggers the MB control to transfer the data from the SBus data lines into the, approprlate MB. This
delay is provided by the two CORE DATA VALID time state flip-flops. The correct MB is selected by
CORE ADR 34-35 from the Core Address counter and the load pulse is generated at CORE DATA
VALID time. At this same time, the contents of the Core Data Valid counter are shifted left to shift
out the request and the Core Address counter is incremented to select the next MB Any leading zeros
that may develop are automatically shifted out. Each time a leading zero is shifted out, the Core
Address counter is also incremented to point to the next MB.

The MB 0-3 WR RQ queue in the MB control is set by CORE WD 0-3 COMING at CORE DATA
VALID -2 to remember which MB was loaded. From the MB, the data may be moved to the cache
(sometimes the AR) to the page table or the channel, depending on which cache’ cycle initiated the core
read cvcle.

Under certain conditions the core control operates slightly different for transferrmg the first word than
it does for transferring subsequent words. This difference lies in the fact that the first word may have to
be transferred to the AR in the EBox if the core cycle was initiated by a cache EBox cycle. To satisfy
this requirement, the core control employs the following three special time state flip-flops: CSH WR
DATA RDY, DATA DLY [, and DATA DLY 2. When the first word comes in, these time states are
triggered by the CORE DATA VALID state. They will not be triggered as subsequent words come in
because E CORE RD RQ is cleared after the first word is transferred to the AR. Primarily, the
purpose of these time states is to ensure that the EBox takes the data. These time states also enable the

drn) check logic for the first word. Normally, the EBox will take the data (when CLK EBOX SYNC
D is asserted) directly from the SBus via the MEM TO C mixer. However, if the EBox does not take
the data when it arrives, the EBox must then take the data from the MB into which the data is moved
in anv case. In either case, the data is moved into the cache only when the data is taken by the EBox.
All subsequent words will be moved into the cache by initiating a cache MB cycle.

3.8 CHANNEL CONTROL

The channel logic in the MBox contmuously scans the RH20 Massbus controllers. A given controller
is selected when its select line (0-7) is asserted. After being selected, the controller can issue con-
trol/cdata requests. Since the MBox channel logic will remember which controller was selected at a
given time, it can identify and process requests from all eight channels.

3.8.1 Timing Logic

The timing logic (Figures 3-38 and 3-39) generates the basic timing signals for the MBox channel
control logic and the CBus select signals for enabling the RH20 Massbus controllers in a specific
repetitive sequence. The timing logic includes a state generator, a scanner, a shift register, and a
decoder.

The state generator, which is formed by a shift register with some control and feedback connections,
generates the basic time states (TO-T3) for the channel control. Upon initialization (MR RESET is
asserted), the state generator is synchronized with the EBox clock (CLK A PHASE COMING) After
the initialization sequence, the state generator continues generating the TO-T3 tlme states in synchro-
nism with the MBox clock.

The scanner, which is formed by an arithmetic logic unit (ALU), a 1-bit shlft register, and some
Exclusive OR and AND function feedback logic, generates the count sequence defined in scanner
count sequence truth table shown in Figure 3-38.

Both the ALU and the shift register are cleared when the machine is initialized (MR RESET is

asserted). After initialization (MR RESET is negated) and after the clock 1s started, the scanner
advances from zero and continues through its prescribed sequence. .

MBox/3-80

cLx ™ 18] -2
]
¢ { b : 4
SEL4 B EN SEL4 8 SELa T SEL 4 E
REGISTER | SEL 2 B EN [REGISTER |SEL 2 B _| REGISTER| REGISTER | SEL 2 0 SEL 2 E)
{CHES) (CRCE) (CRC6) (CRCB! 1 =
SEL | B EN SEL 1 B SEL* D SELIE | CHANNEL CONTROL
SEL4 A (CHCS) ‘r;oenc SELECT
ik INES
secaa)] ne—JENC ! CBUS SELDE] | (ADR FOR RAMS
(cBUS SELPE !
NC i
SEL 8 A " seLB A CBUS SEL ! E_ | J
SEL 4 A] |cBus sEL2E, |
44
SEL 1A 4 SEL + | CBUS SEL 3E_ |szo MASSBUS
[DECODER CONTROLLER
L 4E
seLsa 2 | SEL2A L fiches [CBUSSELSEL Teelect Lines
A I
SEL4A . ; SEL t A 1 (CBUS SEL SE_ ;
EL2a N P cBuS SEL 6E, |
< SHIFT T CBUS SEL7E_ |
SEL1A s REGISTER™ ° !] =)
(CHCS) 3IN=3 1 g-L0aD
: 1:@IN—0
| 2:3IN—=3
| 3:=40LD
i SCANNER
| COUNT SEQUENCE
—_—
CH2 MR RESET] “sla 2 1osel
—n 21 SE
Loap o'z o o, =
i 1
coic o .
‘o :o tooie
o] IO t 1 2
73 | I o ’ t 0 o a
T2 | ot o t s
o —————l I———-[L : vjo o oo
I l [i 1 I o o 1.
;
10 |—-| I—I lv.0 1+ olz
[| (e ' z
SHIFT RES STERT f ?3';',51

{CHCN

oLx

Rl St

Figure 3-38 Timing Logic, Simplified
Logic Diagram

MBox/:

START CLK

BURST
MBOXCLKI‘III'II

e, (-
cHz MR RESET _[” |
— s
cHt TiMiNG BLOCK _ | ’ |
CLK PHASE COMING — | 1 1 [] .
CHY EBUS CLK DLY l] 1 | | | | | L

CH2 CLK SYN I
cHt TO M1 [
a Il L 1
o 12 . M1
onTs | | [1 11
CHS SEL 1-2-4-8A [__—_‘;—__13
orosserzoac| o |3
CRCE SEL 1-2-4D I::B
wosseureee [e [3

10-2155

Figure 3-39 Timing Logic, Timing Diagram

MBox/3-82

The output of the scanner is applied to a decoder and a four-state 3-bit shift register. The decoder
converts the three least significant bits of the scanner count to one of eight select signals (CBUS SEL
0-7E) for enabling the corresponding RH20 Massbus controllers one at a time. The contents of the
four-state 3-bit shift register are advanced every four clock ticks at TO to advance the contents (selected
channel number) so that the appropriate RAMs and queues can be addressed for transferring the data.

3.8.2 Control Request Queues

The three control request queues (Figure 3-40) are implemented in the channel control logic to queue
the CBus control requests (RESET, START, and DONE) so that they can be executed in accordance
with a specific order of priority. Since the channel control is designed to handle up to eight separate
RH20 Massbus controllers, each control request queue has eight locations, one for each channel. As
the scanner (Subsection 3.8.1) selects each RH20 Massbus controller in the prescribed order, so are the
individual locations in control request queues also selected. It is this operating characteristic that
causes the control request queues to remember which RH20 asserted a particular CBus control line
(RESET, START, or DONE).

The control request must be queued because the channel control may be busy at the time the request is
made. The channel control may be busy executing a data transfer request (CBUS REQUEST) for the
same channel or it may be busy executing a memory request for the same or another channel.

The queued control requests are executed in a set order of priority. This priority arrangement is:

a. RESET 0-7
b. START 0-7
c. DONE0-7

Further, the priority arrangement is set up to execute the request for a lower numbered channel before
the higher numbered channel. That is, the order of priority is 0, 1, 2, 3, 4, 5, 6, and 7.

If a given RH20 controller does not request to transfer data by asserting CBUS REQUEST after it is
selected, a current or pending CBus control request can be granted and executed (Figure 3-40 and 3-
41). When granted, the request initiates a RAM cycle to update the channel control RAMs (Subsection
3.8.5). If the control request is a reset request, all bits of the control RAM are simply cleared and the
RESET bit is set. If the control request is a start request, the control RAM is cleared as with the reset
request and the MB request queue (Subsection 3.8.7) is set up to fetch the CCW for the requesting
channel.

NOTE
CBUS RESET and START may both be asserted by
the RH20 at the same time. If this is the case, the
channel control executes two separate RAM cycles.
First, it will execute a RAM cycle to satisfy CBUS
RESET; then a second RAM cycle is executed for
CBUS START.

If the control request is a done request, the RAM cycle is executed to set the DONE bit in the control

RAM. Thereafter, this bit is checked everytime another RAM cycle for the same channel is executed to
ensure that the transfer is executed without error.

MBox/3-83

iNTR CH@-7 RESET INTR

OR GATES
{CHC2)

CBUS REQ

CHB-7

caus
RAM CYC CONTR REQ
WR RAM @ CONTR Cve [Trcz MR RESET
T3 cRez CONTR REQ PRIORITY

ENCODER
CHC2)

_LLL .

0,

-T®

RAM 1-2-4
ADR 1-2 ZReS CRCS T1

4
|CONTR 1-2-4

i SEL \‘-2-45

i
/ CH@ RESET INTR CH@ RESET INTR IN /

CH1 \?acm
CH2 i H2

CH3 L H3
REGISTER [*———1q
cHs

; (CHCA4) QL"‘
CHS N HS
CHE | M
CH? ; ¥ cnr
! %

CBUS RESET

DECODER

RESET INTR

/

CONTR 1-2-4 1

V\J\ CHq RESET INTR .
CH@ START INTR HOLD b

CHY

CH2

CH3

p-

AND
CHa GATES
cHS (CHC4)
| cHe

| cH7

~
§
DECODER

\

10- 2107

Figure 3-40 Control Request Queues,
Simplified Logic Diagram
(Sheet | of 4)

MBox . 3-84

|
OR GATES H *
(cHC2) T

CBUS REQ '
CBUS CH@-7
RAM CYC /7 7 CONTR ove 1 MR Ri CONTR REQ : +
wR RAM CRC2| 1 it D CRC2 = 3. i {
CRC5 | 13 N\ crez CONTR REQ PRIORITY
l ENCODER
' 0,¢ (CHC2)
IR

i1

CONTR 1-2-4 H
GLONTR 172" 2,

———s ~T®

RAM ADR 1-2-4R !
r— TO CTOM
P [| AND STORE

i : :
i | i | RAM ADR i-2-4R |

- J
; . : i :
i) cvp sTarT intr [CHO START INTR IN yd
: cH: . L 1‘ cH1
i : et
i cH2 i - . 15 cH2
Tt H « L.CH3 T i I‘ c b+
;o sTaRT TR ENa | § \ : REGISTER 2
! Z l.tHa — (cHCa) g
! RESET INTR IN 3 T t]
- b cHs ‘ N g
START INTR 5 (ccoy }
= cHe i
2 :
CHT i !
(hc2) NC N E i T ! \

i i

{CONTR 1-2-4 _1_|__|T|_t_1_§.
| CHp START INTR

P
L 4

CH@ START INTR HOLD |
CH1 |
cH2
poNE NTR YN @
T @ g caves
o (CHC4)
CHE
cH7

Figure 3-40 Control Request Queues,
Simplified 1.ogic Diagram
(Sheet 2 of 4)

MBox/3-85

WwR Raw

DONE INTR

RAM ADR '-2-4R

CONTR REC

e

<

PRIOR{TY
ENCODER
(CHC2}

ot

1 _DONE INTR IN

DONE INTR ENA

START INTR

CHO-?7 RESET

HB-7 |
ONTR REQ

r
CONTR 1-2-4

CH@ DONE NTR

INTR

CH2 OONE NTR N

X T ?
CHY T [:M
cH2 : ; criz
T T RecisTer [T TR
CHY 1 cHE g
] . ! (CHC31 fad @) &
X | CH4 . . c-q <]
H + + b
IR ‘—’—‘—“"? N 2
CHS e cHs &
1 N T i
ozl "o R I \ ?§CRE
t
cHr N 1 ‘Y o
M T
N e N
| :
ICONTR 1-2-4 N
i ':"n CONE INTR H i |
CHE START INTF 0. ! 2 P!
p-eri! i : .
cH2 I
AND EER
g CH3 GaTES ! b
8 Poua - PPTWSNY A . - Ié i -
w
N H L__ i ll |
CHos i
CHE I
CHT :

Figure 3-40 Control Requesi Queues,
Simplified Logic Diagram
(Sheet 3 of 4)

MBox . 2-86

10105

L8-€/X0gIN

CcBuUS
CONTR CYC

1 STORE ENA

RAM
ADR 1-2-4R

CH@ STORE

CHI

CH2

CH3

STORE
-—

LATCH
MIXER

(CHC2)

RESET INTR
START INTR

NC

DONE INTR

CH4

MIXER

_CHS5

(CHC2)
CHé

CH7

REGISTER
{CHC2)

SEL 1-2-4E

- CH® STORE IN

\T

CH1

~
}__CH2
N

F e
N

'y
_, CH4
~

OECODER

A
Pt
a9

y
_, CH6

_ CH7

CH@ START INTR HOLD

CH1

CH2

DECODER
Q
I
k-3

CONTR {-2-4

AND
GATES

(CHC2)

i

Figure 3-40 Control Request Queues,
Simplified Logic Diagram
(Sheet 4 of 4)

CHX DONE

CHX STORE

/

sy

{(&g)}

0 C

<{CHCS)§ CBUS STORE

19

10-2110

sst.hz-a{ [A 8 ¢ I ° l £ I I %

CBUS START o 1 2z 3
CHC1 CHX START o t 2.3
CHCA CHn START INTR IN r—-——]
CHC4 CHy START INTR] |
CHG2 CONTR REQ/CH2 CONTR 1-2-4 : o 1 2 3
CRC2 CBUS CONTR
CYC/CRCS RAM ADR 1-2-4R t 2 3 4
CHC2 START NTR | | |
+
CHC4 CHu START INTR HOLD : L_Jz
i
CRC2 RAM CYC : t 2370
CRC5 WR RAM | I |

NOTE

This dlagram deplcts the timing for @ CBUS START CONTROL

REQUEST. The timing for CBUS RESET and DONE is identical.
10- 2158

Figure 3-41 Control Request Queue, Timing Diagram%

3.8.3 CTOM Register |

Once a data block transfer is started, the channel logic must remember the dlrectlon of the transfer
(CTOM or NOT CTOM). This is necessary so that the pointers can be updated correctly every time a
CBUS REQUEST to transfer a word is executed. For this reason, the CTOM register (Figure 3-42) is
implemented in the channel logic. The register contains eight bits, one for each channel. Steering lognc
is implemented for loading and reading the appropriate bit of the register. A specxfic bit of the register
is set or cleared depending on the state of the CBUS CTOM line whenever the RH20 asserts CBUS
START, which occurs when a block transfer is started. The actual bit that is loaded depends on the
current position of the scanner (SEL 1-2-4E), which specifies the channel number that asserted CBUS
START. The decoder at the input of the register, which serves as the steering network, is controlled by
the SEL 1-2-4E signals to select the appropriate bit. A mixer at the output of the register serves as a
steering network to select the appropriate bit when the register needs to be read. The mixer is con-
trolled by the CRC RAM ADR 1-2-4R, which specifies the channel number for which a request is
being executed.

3.8.4 CBUS Request Logic ‘

This logic provides timing and control functions for moving 36-bit data words between the MBox CH
BUF and the RH20 data buffer via the CBus (Figure 3-43). The RH20 controller asserts CBUS
REQUEST one scanner time slot (slot B) after it is selected to inform the channel control that it is
ready to send or receive a word. Along with CBUS REQUEST, the RH20 also asserts or negates
CBUS CTOM, although this fact is stored in the CTOM register when the transfer is started (Sub-
section 3.8.3).

MBox,/3-88

RAM
ADR 1-2-4R

CH@ CTOM

MR RESET

SEL 1-2-4E

HB CTOM IN

CHY

T

CH2

~ H2

CH3

¥ _cn3

CTOM

MIXER

CH4

REGISTER
(CHC3)

A H4

DECODER

CH5

b CHS

(CHC3) cHE

H6

CHT

H7

MR CLK
RESET

CH@ CTOM HOLD,

AND
GATES

{CHC3)

_//

DECODER

CHX START ___
CHC3 !cnx CTOM

Cam—

10
CHC!

T
0 C

Figure 3-42 CTOM Register, Simplified Logic Diagram

(")

CBUS CTOM

CBUS START

The timing differs for CTOM and NOT CTOM transfers (Figures 3-44 and 3-45) because:

a. For CTOM transfers, the RH20 places the data on the CBUS data lines at the beginning of
scanner time slot D and, therefore, the channel control logic must strobe the data into the

CH BUF at the beginning of time slot E.

b. For NOT CTOM transfers, the channel control logic places the data on the CBus data lines
at the beginning of scanner time slot D and, therefore, the RH20 must strobe the data into

its buffer at the beginning of time slot E.

In either case, the RAM cycle is executed to load the current CH PTR from the RAM into a shift
register and to update (increment) the CH PTR in the RAM. The CH PTR that is loaded in the shift

register is then used in forming the CH BUF address.

MBox/3-89

RAM ADR 1-2-4R

CRCE SEL i-2-4C

CRC1 DIFF PTRe18

LAST WORD IN CRC3 READY CLR EN

CRCS CTOM
CBUS OUT HOLD { l

CRC5 T3

CH PTR PLUS

CRC3 READY

INHIBIT CBUS CONTR
~-Te AND MB CYC {CRC2)
CRC2 CBUS CONTR CYC

UPDATE RAM _CYC) RAM CYC /cnczt CRC2 MB CYC
POINTERS A\ CBUS REQ CYC TH ol

. CHS DIAG FAST REQ
CHS SLOW MOD STORED

CBUS RECEIVE ENA

ACT FLAG CLR

CBUS REQ CHS FAST REQ
F CHC1
BUFMBSEL [T ere2 REQ D T ob—{cher s crom |\ | CHS BIAG SLOW REQ
N cHet o
CRC2
clcres 1o i o T
|
REQ E] [{
CH BUF ceL Te
CH BUF WR |WR EN CRC2|
BUF w T o coLs Il c|cresTe
cHca CCL4 AF WD READY
s ¢ CLK

SHIFT REGISTERS TO TRANSFER DATA
TO AND FROM CORRECT CH BUF LOCATIONS

CRC5 T@

CH BUF——CBUS

CRC5 T@+T1
ADR 2-6

’ CRC6

CH BUF ADR ¢-6

ADR -6
CRCS T2

CBUS=-CH BUF

CRC2 CBUS REQ CYC

RAM ADR 1-2-4R

RAM ADR 1-2-4R

Figurc 4-43 CBus Data Request Logic,
Simplified Logic Diagram

MBox/3-90

SEL 1-2-4 & [A] B [c D 3

CBUS REQUEST 0 1 2 3

CHY1 REQ C 0o 1 2 3 I

CRC2 RAM CYC I 12 3 0 |

CRCS5 RAM ADR
1-2-4R/CRC1CHPTR 0-3 I l

CRC6E CH ADR 0-3 C I— |

CRCS5 WR RAM | I

CRCE CH ADR 0-3 (D) I | — e
CRC6 CH ADR
O-3E/CRC6 SEL 1-2-4E] |

CH1 REQ D/CH1
CBUS RECEIVE ENA 0

MBS CH REQ HOLD I |

CRC2 REQE o 1 2

CRC& CH BUF ADRO-6 I |

CH4 CH BUF WR | I

Figure 3-44 CBus Data Request (CTOM) Logic, Timing Diagram

10-2'5¢6

SEL |-2—4£ I A I 8 | C | D I E

CBUS REQUEST [« 2 3

CHY REQ C/CH! CBUS OUT EN o 1 2 3 I

CRC2 RAM CYC I 1 2 30 I

CRC5 RAM ADR ,—'—1
1+2-4R/CHY CH PTR 0-3

CRC6 CH BUF ADR 0-6 [

CRC2 CBUS OUT HOLD l I

CRC5 WR RAM I l

Figure 3-45 CBUS Data Request (NOT CTOM) Logic, Timing Diagram

MBox/3-91

10-2157

3.85 Control RAMs | ;
Status and control information for each of the eight channels is maintained in the control RAMs

(Figure 3-46). Every time a RAM cycle is executed, the RAMs are addressed and updated. The RAM
contains eight sets of status and control information, one set for each channel. Included in each set of
status and control information (Table 3-16) is the following:

a. Control Bits b. Status Bits
1. RESET I. MEM PAR ERR
2. READY 2 - ADR PAR ERR
3, LAST WORD 3. - WC=0STORED
4. DONE 4. NXM ERR
5. STORE 5. LAST XFER!ERR
6. ERROR 6. RH20 ERR |
7. OP Code 00 7. LONG WC EjRR
8. OP Code 01 8. SHORT WC ERR
9. OP Code 02 (REVERSE) 9. OVN ERR |
10. CMD TOGGLED
1. CMD STORED
12. ACT CNT 0-2
13. MEM PTR 0-3
14. CH PTR 0-3
CONTROL RAM
¢ — 20 ©1 02 03 94 ©5 @6 ©7 98 29 10 11 12 13 O
Z
7
) PR ot oR |
: 0-3 -2 -3 « o RON 1-2-4R
z [=] @ a / 5 [E
g|s|alg|y HHE 5l 55 | |e
HEHHE HHHI: /figzgsgsggm
N BEL T N R L HEEHZZ 228 R B
(14 1314 : 35
| STATUS | cLp Jecw wo1
CHANNEL @
18 | WwC | ADR Jecw wno} |
o0 0203 13 14 35 t
|
|
I
l
CHANNEL 6
CHANNEL 7
CCW BUF

10-2188

Figure 3-46 Control RAM Structure

MBox/3-92

Table 3-16 Control RAM Bit Description

NAME

DESCRIPTION

Control

Bits — one for each channel

OP CODE 0002 (CRC3)

CMD TOGGLED/STORED (CCL6)

MEM PTR 0-3 (CRC1)

ACT CTR 0-2 (CRC2)

CHAN PTR 0-3 (CRC1)

READY (CRC3/CHC1)

LAST WORD (CRC3/CHC1)

ERROR (CRC3/CHC1)

These bits are loaded with the OP Code of the CCW when it
arrives from memory,

If a memory error occurs, these two bits identify which block
transfer (current or previous) caused the error.

These four bits point to (address) the next location in the CH
BUF for memory transfers. This location is the next empty
location for NOT CTOM transfers or the next word for CTOM
transfers. Everytime an action flag memory request is executed,
these bits are used to address the CH BUF. After the request is
executed, these bits are updated.

These three bits are typically loaded with a function of the two
LSBs of the WC and ADR of the CCW. This function specifies
how many words are to be transferred.

These four bits point to (address) the next location in the CH
BUF for CBUS transfers. This location is the next empty loca-
tion for CTOM transfers or the next word for NOT CTOM trans-
fers. Everytime a CBUS data request is cxecuted, these bits are
used to address the CH BUF. After the request is executed, these
bits are updated. :

Set when the channel control is ready to transfer data, The
channel control is ready to transfer data after it fetches a DATA
XFER CCW. For NOT CTOM transfers, the channel control
must also fetch at Jeast two data words (unless a single word is
to be transferred) before it is ready. This bit is the source for
the CBUS READY line.

Set only for NOT CTOM transfer when the last word is placed
on the CBUS. This bit is the source for the CBUS LAST WORD
line.

Set if any of the following error bits are set:

a. Memory errors
1. NXM ERR
2. MEM PAR ERR
3. ADR PAR ERR
. SHORT WC ERR
. LONG WC ERR
. RH20 ERR
. OVN ERR
f. LAST XFER ERR

This bit is the source of the CBUS ERROR line.

oo o

MBox,/3-93

Table 3-16 Control RAM Bit Description (Cont)

NAME

DESCRIPTION

Control

Bits — one for each channel

STORE (CRC2)

DONE (CRC3)

RESET (CRC3)

Set when a Control RAM cycle is exeécuted in response to CBUS
DONE, providing CBUS STORE was also asserted. After this bit
is set, a memory store request is queyed in the MB Request queue.

Set when a Control RAM cycle is executed in response to CBUS
DONE. This bit is used by the channel control logic in term-
inating the transfer orderly. ’

Set when a Control RAM cycle is exécuted in response to CBUS
RESET. At the same time this bit is set, all other bits in the
control RAM are cleared. The fact that CBUS RESET was
asserted is stored so that the appropriate address for fetching
the initial CCW from the EPT can be formed.

Status Bits — one for each channel

Bit 00

MEM PAR ERR (CCL1) Bit 01

—ADR PAR ERR (CCL1), Bit 02

~WC =0 STORED (CCL6), Bit 03

NXM ERR (CCL1), Bit 04 (CCL1)

Bit 05-08

LAST XFER ERR (CCL6), Bit 09

RH20 ERR (CRC4), Bit 10

LONG WC ERR (CRC4), Bit 11

Always set.

Set when a data parity error is sensed while transferring a CCW
from an MB to the CCW BUF.

Cleared when an address parity errorfis sensed after a Channel
Request for a CCW is issued. :

Cleared when WC reaches zero as a result of action flag CHAN
request (CTOM or NOT CTOM) or when a CCW with a zero
WC field is fetched from memory,

Set if the NXM timer (MBZ3) expireé after a Channel Request
is issued by the channel control and granted by the cache control.

Not Used .

Set if NXM ERR bit 04 is set and a second block transfer was
started. This means that the NXM wds caused by the previous
block transfer.

Set if the RH20 asserts CBUS START even though the channel
control is not ready. The channel control is ready only when
CBUS READY is negated.

Set if the cumulative word count, specified by the channel
command list, was larger than the number of words the RH20
massbus controller transferred.

MBox/3-94

Table 3-16 Control RAM Bit Description (Cont)

NAME DESCRIPTION

Status Bits — one for each channel

SHORT WC ERR (CRC4), Bit 12 Set if the RH20 massbus controller sends more words than are
specified by the cumulative word count of the channel command
list.

OVN ERR (CRC4), Bit 13 Set if the channel control is unable to keep up with the RH20
controller’s demands for data.

The control bits reflect the current state of the channel control logic and the CBus for a given channel.
These bits are tested/set by the channel control during the course of executing a data block transfer
operation to ensure error-free operation.

3.8.6 Action Flag Arithmetic Logic

The action flag arithmetic logic (Figure 3-47) keeps track of the words in the CH BUF for all eight
channels by maintaining a channel pointer and a memory pointer. These pointers are stored in RAM’s
that are updated every time a word is moved in or out of the buffer. The memory pointer is updated
every time a memory request is executed and the channel pointer is updated everytime a CBus request
is executed. The difference between these pointers (PTR DIFF) represents the number of words in the
CH BUF for CTOM transfers or the number of empty locations for NOT CTOM transfers.

Besides the pointers, the action flag arithmetic logic also maintains an action count for each channel.
This count, which is normally a function of the WC and ADR of the CCW, specifies how many words
are to be moved to/from memory. Typically, four words are moved to/from memory at a time. How-
ever, if the address does not fall on the quadword boundary, less than four words must be transferred.
This can only occur at the beginning and at the end of a block transfer specified by a CCW. The action
count is maintained in a RAM, like the pointers, and is updated every time a memory request is
executed or when a new CCW is loaded.

All three RAMs are addressed by a 3-bit code that identifies the channel for which the request is being
executed. In addition to the RAMs and their input logic for maintaining the action count and the
pointers for each channel, the action flag arithmetic logic also includes a number of Arithmetic Logic
Units (ALU’s) and mixers for applying an equation to the action count and the pointers to determine if
a memory request (CRC AF REQ ENA) is needed. Two equations are implemented; one for CTOM
transfers and another for NOT CTOM transfers. They are:

a. CTOM: (CHAN PTR-MEM PTR) - ACT CNT >0 SET CRC AF REQ ENA

b. NOT CTOM: 15+(CHAN PTR-MEM PTR) - ACT CNT >0 SET CRC AF REQ ENA
3.8.6.1 Action Count — The action count specifies the number of words (1, 2, 3, or 4) to be transferred
to/from memory. The action count is used to set up the word request logic and the MB control logic
(Subsection 3.8.7) when a request for memory is initiated. In addition, this count, along with the

memory and channel pointers, is used in an equation to determine whether to set CRC AF REQ ENA,
which indicates that more words must be transferred to/from memory.

MBox/3-95

CCL2 ACT FLAG REQ
CCLS MBREQ T2

CRCZwe Cve|) ACT CTR £-2R MEM PTR £-3
CCL3 MB REQ T8 MEM PTR EN i
OUTPUT
l REGISTER | o]t]2]s]e
RC 2 ! + +
CCL3 COwF 19 oot 040 & (CRC 2} = -
OP LOAD | CRCS RAM| -
ccLt M@ cvc | cee2 ADR 1-2-4R [MEM PTR
| 8]1]z e | — 1 Ram — cRc2
! L - (crRCY) — RAM oxC
CRCS RAM] @ CRCS[— -
CRCTACT FLAG ALLOW ! ADR 1-2-4R [~ ACT CTR_| WRRAMI—, . |]7 a8
CRC3 READY RAM TMEH PTR -3 IN
CRCS5CTOM : [~ (crRc2) —
T L. —
CRCI PTRDIF <@ CoLE Weo N i r .
CRC4 DONE IN CRCSWR RAM I p
CRCI ERR DONE LOAD AC
R, Y
CRC2 RAM CVC CH2 START INTR ST/RES
INTR
CH2 RESET INTR ACT CTR -2 IN
WC= @ i A-B
wC= 1 g : {
CCLS cow BuF 23-13 iN_| DECODER] wc:2 ACTITRE-2 | qamirc
(ccLs)
WwC:=3 2
WCGE4 | CCL2 OF LOAD ;
COMBINATIONAL | ACT CTR @-Z EN(CCL3 MEM PTR EN
CCwW3 CCW BUF 34 IN R ‘LcOclifl;:) i \
[DAT DRt M I . '
CCW3 CCW BUF B2 IN DECODER g i
tccws) |DAT ADR-2 | gi1i2:3 |
DAT ADR=3 , CRC4 ‘ - 1c Tt i
HAN ‘
CCW3 CCW BUF 35 IN ST/RES INTR . CRC5 RAM ADR *-2-4R [T pTR | H .
. CRCORAMACRYZ-ARG
RAM N
CHPTR & ; : [icRCH) i
! CRC* | 0 | :
! CRCS WR RAM |- = |
t
a t
. CHPTRZ-3 N
emey |
;
cn PTRS i
i
i
i CHPTR 3
N 12
1
- 1 .
1
RC4 ST INTR
CRC2 CBUY RES CYC __© BES ck PTR PLUS :
REQ ALLOW i
cs 1@ !
CRC3 READY PTR LATCH
CRC® wR RAM
10-2079

Figure 3-47 Action Flag Arithmetic
Logic. Simplified Logic Diagram

MBox '3-96

On CBUS START/RESET, the action count is set to 7. This is done to initially inhibit CRC AF REQ
ENA. Since a start/reset operation will set the CH PTR and MEM PTR to zero, a non-zero action
count is required to prevent CRC AF REQ ENA from asserting.

When a CCW is loaded into the CCW buffer or when the second RAM cycle for an action flag request
is executed, the action count is set to a function of the WC and the ADR (Table 3-17).

On done for CTOM block transfers, the Action Count is set to the value of the PTR DIF to empty the
CH BUF.

Table 3-17 Action Count Truth Table

CCW ADR DAT ADR CCW WC ACTION COUNT IN
(CCW3) (CCW3) (CCLS) (CRC2)
(BITS 34-35) FORWARD REVERSE FORWARD REVERSE
0 0 3 =4 4]
0 0 3 3 3 1
0 0 3 2 2 1
0 0 3 | 1 1
0 0 3 0 4% 1*
1 1 2 =4 3 2
1 1 2 3 3 2
1 1 2 2 2 2
1 1 2 1 1 1
1 1 2 0 3% 2%
2 2 1 =4 2 3
2 2 1 3 2 3
2 2 1 2 2 2
2 2 1 1 1 1
2 2 1 0 2% 3*
3 3 0 =>4] 4
3 3 0 3 1 3
3 3 0 2 1 2
3 3 0 1 1 1
3 3 0 0 1* 4*

*These cases are not used.

3.8.6.2 Memory Pointer - The memory pointer is used in forming the address for the CH BUF during
- a memory transfer. It points to the CH BUF location which is to receive the next word from memory
for NOT CTOM transfers or from which the next word to be moved to memory is to be taken for
CTOM transfers. This pointer, along with the channel pointer and action count, is also used in an
equation to decide whether to set CRC AF REQ ENA, which indicates that more words must be
transferred to/from memory.

On CBUS START/RESET, the memory pointer is set to 0.

MBox/3-97

When the second RAM cycle for an action flag request is executed, the memory pointer is updated by
adding the action count.

3.8.6.3 Channel Pointer - The channel pointer is used in forming the address for the CH BUF during
CBus transfers. It points to the CH BUF location which is to receive the next word from the RH20 for
CTOM transfers or from which the next word is to be moved to the RH20 for NOT CTOM transfers.
This pointer, along with the memory pointer and the action count, is also used in an equation to
determine whether to set CRC AF REQ ENA, which indicates that more words must be transferred
to,/from memory.

On CBUS START/RESET, the channel pointeg is set to 0.

When a RAM cycle for a CBUS REdUESi‘ is executed, the channdl pointer is updated by
incrementing the pointer by one. :

3.8.6.4 Operation - A number of different functions control the operation of the action flag arithmet-
ic logic. The functions and how these functions effect the operation of the action flag arithmetic logic
are described in the following paragraphs. '

a. Initialization - The action flag arithmetic logic is initialized when the channel control exe-
cutes a CBus control cycle in response to a START or RESET INTR from the control
queues (Subsection 3.8.2). The logic is initialized as follows:

1. The action count is set to seven.
2. The memory pointer is set to zero.
3. The channel pointer is set to zero.

4. CRC AF REQ EN is not set because the result of the appélied equation is not zero
(Subsection 3.8.6 a and b).

b. Fetch CCW - After a channel is started, the CCWs are automatically fetched from memory
and loaded (CCL CCW BUF WR) into the CCW BUF throughout the block transfer. At
the same time the CCW is loaded into the CCW BUF, the action counter RAM is updated
(CCL OP LOAD is asserted) to reflect the WC and ADR of the new CCW. CCL OP LOAD
is asserted to enable the input logic to the action counter RAM to load the new action count
(CCW ACT CTR 0-2 EN). At the same time, the new action count is also transferred to the
ALU, which generates CRC AF REQ EN when the equation is satisfied.

c. Transfer a group of words to/from memory - When the action flag equation (Subsection 3.8.6
a and b) is satisfied, CRC AF REQ ENA is set to request a memory transfer. Subject to the
priority scheme, the action flag request is granted to transfer a group of words to/from
memory (via the MBs). After the words are transferred, the action count and the memory
pointer are updated (CCL MEM PTR EN is asserted). CCL MEM PTR EN is asserted to
enable the input to the action count RAM to load the new action count (CCW ACT CNT
0-2 EN), to add the action count to the memory pointer, and to transfer the action count to
the ALU that generates CRC AF REQ ENA when the equation is satisfied.

MBox/3-98

d. Transfer a single word to/from RH20 - Every time CBUS REQUEST is asserted by the
RH20, a single word is transferred to/from the CH BUF via the CBus from/to the RH20.
When the word is transferred, the channel pointer is also updated (CRC CH PTR PLUS) by
simply adding one to the pointer count. As soon as enough words/empty locations are in the
CH BUF, as computed by the action flag equation, CRC AF REQ EN is set to request
another memory transfer.

e. DONE for CTOM - When the RH20 asserts CBUS DONE, providing the block transfer is
from controller to memory (CTOM), the channel control must continue to empty the CH
BUF. To facilitate this operation, some additional logic is implemented to update the action
counter (CRC DONE LOAD AC) until all the words are transferred. CRC DONE LOAD
AC is asserted to transfer the pointer difference (CRC PTR DIFF 0-2) to the action count
RAM. The pointer difference specifies the number of words still remaining in the CH BUF.

NOTE
This logic is not required for NOT CTOM transfers
because the RH20 will not assert DONE unless it
has received the last word that leaves an empty CH
BUF.

3.8.7 MB Request Queues

The three MB request queues (Figure 3-48) are implemented to queue the MB (memory) requests
(CCWF, ACTION FLAG, and MEM STORE) so that they can be executed in accordance with a
specific order of priority as RAM cycles become available. Since the channel control is designed to
handle up to eight separate channels (RH20 Massbus controllers), each MB request queue has cight
locations, one for each channel.

Each of the three queues are constructed from a pair of 3 by 8 decoders and their associated enabling
(INPUT) logic; an 8-bit register, an 8 by 3 priority encoder, and a set of cight AND gates. The
decoders serve as steering networks for setting and clearing individual bits in the register. The 3-bit
address that is formed when a RAM cycle (CBUS REQ CYC, CONTR CYC,or MBCY(C)is granted,
is used to control the decoders to connect the decoder input logic to the register bit that corresponds 1o
the channel number for which the RAM cycle is executed.

As the individual bits of the M B request queues are selected, so also are the associated control bits in
the control RAM selected. The input logic of the decoder, therefore, receives the control bits for the
channel for which the RAM cycle is being executed.

This operating characteristic of the channel control logic facilitates the testing of the state of each
channel to set/clear the appropriate bits in the MB request queues when required. The AND gates
provide the paths for latching and clearing the register bits. The priority encoder forms a 3-bit address
that corresponds to the lowest number request (highest priority) in the queue. When a RAM cycle for a
pending MB request is executed, the address formed by the priority encoder is selected by the mixer
and is usced to address the M B request queues and the control RAM. These three bits arc also used in
forming the address for the CH BUF and the CCW BUF.

MB requests are granted and executed only when CBus data and control requests are not pending, and
then only in the following order of priority.

a. CCWEF 0-7

b. ACT FLAG 0-7
¢. MEM STORE 0-7

MBox/3-99

M8 REQ

PRIORITY
NETWORK ccL3
~e RiP
ACT FLAG REQ
BUF
ccL2
2 ACT FLAG REQ ENA
EL2 o (SHEET 21
ERR REQ CCL1 ADR PAR ERR EN
* ceur [MEM ERR LATCH TCLY NXM ERR EN
BuF CCLI WMEM PAR ERR EN
SEL (E CCW FAST MODE
-
M8 - CCW BUF —(co2 B: MEM_STORE REQ ENA
; MEM (SHEET 3)
ZC. STORE cow W
MEM STORE REQ 4 ea Cux INPUT LOGIC
CowF REQ 7~} HOLD (SETH
{coz
CCL3 Cowr 12 cowr rEa, CCWO CCWF REQ owe CCWe CoWF IN Cows CRC4 ST/RES INTR B
CLS CCW BUF -— cowt
CCW BUF ADR @-3 CCLS CCWBUF 80 IN ¢
1] cowe
CCW BUF = MB) CCWF ADR 1 =
I cows «
CCWF ADR 2 £ &
2 c
CCWF 2DR 4 hod s Cwe S
= , ?cc“]
CCw1 o t
ccL2 T — ?CC_"‘
{ cowr
R
MEM STORE_ADR 1 f C
MEM STORE ADR
 |Mew sToRe aoRz | o2y MA RESET
MEM STORE aDR 4
COWS, ,CCWO CCWF HOLD (owel INPUT LOBIC
cowt
BUF_ADR 0-2 & p— CCL1 ERR REQ
e 8 Fecws «
CLK | ACT FLAG &DR 1 2
CcRC i P 3 | cowa §
MEM PTR LAG A -
2f——————= L(sHEET 2) cows wr
= ACT F.a6 DR 4| H] ccL2 ccwr Req
< |ACT F-4G aDR 4 | cews
<] cow?
H 2 ERR
1.3 ADR REG
cown i i \
CHBUFSMB oo meacrren '} 2fccmporcre ERRARO ; MR RESET
o [ERR DR b =
BINARY COUNTER ERR a0R2 [— I
FOR SELECTING REQUIRED L
WORD IN CH BUF \ .
CSH CHAN CYC : § |cowe wamng
! H
|
. |
! L X
; -
CRC2 CBUS REQ CYC
’ ’ o CRC6 SEL 1-2-4C
CRC2 MB CYC i
RAM ADR 1-2- 4R j
CRCZ CBUS CONTR GYC (SHEETS 2 AND 3)
CH2 CONTR 1-2-4
CRCS T1

0-2m2

Figure 3-48 MB Request Queues,
Simplified Logic Diagram
(Sheet | of 3)

MBox/3-100

cLx

CCW ACT FLAG REQ CUBL. g CCWB ACT FLAG IN
o ACT FLAG REQ ENA cowt T cowt
«2CT FLAG REQ ENAJ
[4
i _ACT FLAG ADR 1
| § cew2 cowz CRC1 AF REQ ENA
(SHEET 1)-! ACT FLAG ADR 2 2 [cows 5 CCW3 @ CH1 T@ CCLE WC =@ IN
w T FLAG ALLOW CRC2 RAM CYC
{ JACT FLAG ADR4 w s & ACT FL s ‘
[o | cows 2 cewa S JCEWS |AcT FLac Ena TASRE [S=cy oF cooe PO
= | cows b _ ccws 3 ! SRCERRTN
S [e . looxs Loap |
z Lowe . CCwe PAC ;
po i @ ; Peres reas
! it I o= F CRC4 DONE IN
MR RESET CRC2 | CRCIERR
! CRC2 RAM CYC
TCWS] CCWB ACT FLAG HOLD
CCwi
— o CCL! ERR REQ
ceow.
@ cwz — SCLet sout sT/RES INTR
S
o | cowa S
o ﬁ
2 | cews 4
<
cowe
cow?
——
CRCS RAM ADR 1-2-4R
ACT FLAG REQ (SHEET 1)

Figure 3-48 MB Request Queues.
Simplified Logic Diagram
(Sheet 2 of 3)

MBox/3-101

DIAG LOAD FUNCT 78
—_— e -
CH2 MR RESET |

. . I 1
CCW MEM STORE TP BLock

nditd M REQ INn CH2 MR RESET

CRC4 SHORT WC ERR

cLK CRC4 LONG_WC ERR
: A CRC3 | CRCA RH20 ERR
i 4 ! CRC4 OVN ERR
| Fri= COWe MEM STORE REQ CCWO MEM STORE IN ‘ | R S e rr
i r | g e e { g SEW! ! CCL1 ERR REQ
: | _wem sTore apr1 | W | cowe cowz | CCLY NXM ERRIN
] ! g
ISHEET1) - MEM STOREADRZ2| © | cows § cow3 = ‘
w = 3 2 fecws 4 CRCS TO
uew sToRE AoR3) ! | ccws H cCwa g (["E" STORE ENA crca [cRo2 RAM EYC
E cows H 8 N CRC4 ST/RES INTR A
g facows s
ccw? cw?
CRCS OP LAST DATA
CH2 STORE
A RESET CH2 DONE INTR
CCWO MEM
STORE_HOLD
cewt CRC4 ST/RES INTR B
e - —
0w
B fcows [CCW4 MB CYG T3
ccwa 8 @
a 2
2 | cows Y
i ccwe
| ccwr
L
CRCS RAM ADR 1-2-4R
(SHEET 1)
MEM STORE REQ

10-2114

Figure 3-48 MB Request Queues,
. Simplified Logic Diagram
(Sheei 3 of 3)

MBox/3-102

Further, the priority arrangement is set up to execute the request for a lower numbered channel before
a higher numbered channed. That is, the order of priority is 0, 1, 2, 3,4, 5, 6 and 7.

If a given RH20 controller does not request to transfer data by asserting CBUS REQUEST after it is
selected and if a control request is not pending in the control request queues (Subsection 3.8.2), the
highest priority M B request will be granted and executed. When granted, the request initiates a RAM
cycle to set up the request (CCL CHAN REQ) for memory and clear out the request in the queue. The
MB request timing and control logic (Subsection 3.8.8) then takes over to transfer the words between
the channel buffers (CCW BUF or CH BUF) and the MBs. After all the words are transferred, a
second RAM cycle is executed to update the CCW, the pointers, and the control bits in the control
RAM. If an error is sensed during the course of the transfer, a RAM cycle will be initiated after the
transfer to set the error-bit in the control RAM.

3.8.8 MB REQUEST LOGIC
MB requests are initiated to transfer words between main memory via the MB’s and the channel
buffers (CCW and CH). Four basic types of MB requests can be executed. They are:

a. Transfer a CCW from main memory to the CCW BUF.

b. Transfer a group of words (maximum of four) from main memory to the CH BUF.

¢. Transfer a group of words (maximum of four) from the CH BUF to main memory.

d. Transfer the CCW and the CLP/Status Word from the CCW BUF to main memory.

The logic that executes the MB request includes the MB request timing logic, the MB control logic,
and the word request logic (Figures 3-49 through 3-51).

The MB request timing logic, as the name implies, provides the timing signals for executing the
request. Combinational and sequential logic is employed in generating the timing signals.

The MB control logic incorporates three binary counters in addition to some combinational and
sequential logic. The main function of this logic is to keep track of the number of words and their
location in the buffers as they are transferred. The word request logic specifies and remembers how
many words are to be transferred. For NOT CTOM transfers, this logic also keeps track of the words
that are moved into and out of the MBs.

The MB request logic is driven by the MB request queues. As long as requests are pending in the
queue, memory is held and requests are initiated, one after the other, in the prescribed order of priority
(Subsection 3.8.7).

3.8.8.1 CCWEF Request ~ The following description details a CCWF MB request to transfer a CCW
from main memory to the CCW BUF (Figure 3-52).

a. A CCWF request.is queued when:
{. A channel is started (CBUS START).
2. WC reaches zero and the current CCW is a normal data transfer CCW.

3. Ajump CCW waus felched and loaded into the CCW BUF. (The OP code is loaded into
the control RAM))

MBox/3-103

CCLY ADR PAR

CCLY NXM

CCL3 CCwF T2
CCL2 STORE CCW.
CCL3 MEM PTR EN

CCL1 MR RESET

<D

CCw, CCWF R NA
CCWS AC™ FLAG REQ ENA cL2 HOLD

L
CCW6 MEM STORE ENA L/

ERR EN

MEM
ERR EN ERR

MEM ERR
LATCH

CCLt MEM PAR

Figure 3-49 MB Request Timing Logic,
Simplified Logic Diagram

MBox/3-104

ERR EN

CCL4 REQCTR=0
CCLY ZERD FILL @ CCLZ ACT FLAG REG A

CCL3 CCWF TO

ERR REQ |

RIP

. INM

CCLY 2ERQ Fiil

€CL2 MEM STORE REQ |

CCL2 CCWF REQ

CCL3|

=9

RCS T
CCL3 CCWF T2 RAM REQ CRES TO
cCL4
CH1CBUS RES JCRC2 o H
o RiP CWZ CONT REQ c2
' ccLs CHZ MR RESET ale o
INIT R&M REQ
[i I
) | M8 CYC DLY o] :
i T 1
i ceLt !
t o ¢ CLK
L
s M8 REQ T1 I ceLd '
M8 cYe

MB CYC

,M;

! CCie REVERSE

i TERS £y coLs ALU MINUS_ ¢

CCL4 REVERSE
CCL3 ZERO FiLL

* % NOT IMPLEMENTED

REQCYC
ONTR |

WR RAM

N
| M8 tEQ T2 coLa) miT MBCYC B e
ceito (LOAD MB SEL CTR)

~ MBCYC T
LTy \NOT USED:

‘ MBCYC T2 :L0aT REQ CTR aND
ceL1 T2 AF MEM CTR)

MBCYE T {LOAD WD

CCLI T3 REQ CTR}

* IDEALIZED

CC.2 AC* FLACREG

CHAN EPT

CCL2 ACT FLAG REQA
CH3 CTOM
_ CCLI MEM ADR QO

CH3 CTOM
CCL2_ACT FLAG REQ A

CCL2 MEM STORE REQ A CHAN TC MEM
———

CCL6 CSH CHANCYC

w© 2107

REQ CTR=1

CCL2 ACT FLAG REQ A
CCL4 MB SEL SUB -
REVERSE

ccLr M

CCL2 MEM STORE REQ &

START MEM

REQ CTR @2

CCL2 ACT FLAG REQA]

ccLite|)

CCL2 ACT FLAG REQ
CRC2 MB REQ T2
CRC2 MB CYC

CCL4 CHAN TOMEM
CCL6 CSH CHAN CYC

CCL3I MBRIP A
cCL1Ta ccL3

CCL2 CCWF REQ
CCLA WD READY. CLK
EEEE—

JJCCwF T8
CCL3 CCWF

LOAD M8

I H
| |
i

cCLi T

DATA EN

CCLY) coL2 MEM STORE REQ
C @] cCL3 ACT FLAGREQ
CCL4 MBCYC T2

CCL4 CHAN TO MEM

CCL2 CCWF REQ

' CH TEST MB PAR

CRC2 REQ D
MB8X 2 CSH CHAN CYC
CCL2 ACT FLAG REQ
CCL4 CHAN TO MEM d

|
———=m8256

L cCLe
CCLICLK D R
CRC2 ACTCTR @ |MSB REQ CTR &
o
CRC2 ACT CTR 1 \ REQ CTR 1
CRC2 ACTCTR 2 2 REC CTR 2 1
BINA 2 & 5 1
COUNTER
ccLa}
REQ
CTR EN cCcLZ ACT
ADVANCE) fLAG REQ MIXER

(cCcLS)

{TO DATA PATH !

CCL4 MB CYC T

CRCS CLK B CCLtCLk D
CRCY MEM PTR @ [MSB AF MEM PTR & cew2 cHa 34 [wss CH MB SEL 2
2
2
CRC1 MEM TR 4 \ AF MEM PTR 1 CCW2 CHA 35 CH M8 SEL 1
CRC1 MEM PTR 2 AF MEW PTR 2 COUNTER 2)
2 iccLa) !
CRC1 MEM PTR 3 3 AF MEM PTR 3 MB SEL 508
] T
BINARY 2 1
COUNTER % R
(CRC2}

T K]
CCL4 REVERSE

(LOAD}

CCL4 MB CYC T2

{LOAD!}

102101

Figure 3-50 MB Request Control
Logic, Simplified Logic Diagram

MBox/3-105

v

b

o~
8
&

DRun-8

Y
B

m
z

- MIXER 3

CCL2 CCWF REQ

AF WD @ REQ

CCW2 CHAN EPT,

CCW4 MB CYC T3

CSH CHAN CYC

WD @ AVAILABLE

|
CCL3 MB
RIP A

CcCwa
MBX3 MB @ HOLD IN
CCL4 CHAN TO MEM
=

wD @ REQ CCL4 WD TAKEN

WD @ READY

{

AF WD ' REQ i,cW4\WD 1 REQ IN

|

CCL2 MEM |
STORE REQ

NOR AU S
MIXER 2

CCL3 CCW BUF B2 IN

CW3 CH& 34

AF WD 2 Rsomo 2 REQIN

i : WD 3 REQ IN
AF wD 3 REQ cowa

*
T t
1
! |
WD @ TAKEN | |
1 1
! ! I i
i i I !
| wD 1 avaiLABLE !]
- MBX3 MB 1 HOLD IN
|
WD REQ
cowa o tf—oe WO 1
ccwa READY
Wi o .
WD ! TAKEN |
: T 1
i o ‘
i
WD 2 AVAILABLE :
— cewa
| i MBX3 MB 2 HOLD IN
? :
wozreq || Ly
cCwea 0 p— ‘
CCwa, *>
cer |, .
c + 1
WD 2 TAKEN
! P
x i
| .
; WD 3 AVAILABLE HEE
! L Sl MBX3 MB 3 WOLD IN
wo3Reo | | L]
ccwa b If—— .
cowa R
103 M .

WD 3 TAKEN

i : WO READY

o ozer

Figure 3-51 Word Request Logic,
Simplified Logic Diagram

MBox,3-106

cLock Tick o] 1]2]3]o|1]2|3[o]1]2|3|o|1]2|3]olt]|2|3]o|t|2}3]|o]1|2|3|o}1]2|3lo}t|2]3|0]

CCWé CCWF REQ ENA l

CCL2 HOLD MEM I

CCL4 MBRIP IN '

CCL3 MB RIP I

CCL2 CCWF REQ ’ CCW BUF ADR@-3 +— CCWF ADR1-2-4

LRANM

CCl.2 CCW BUF ADR3 I

CCL3 ALU PLUS I I

IO— 1F DATA XFER

CCL2 INIT RAM REQ M

CCL4 RAM REQ r)—l

CCL3 CCW REG LOAD m

ML
[~

CCL3 MB REQ TP |
CRC2 MB CYC |1 23¢|

CRC5 WR RAM [—l

CCL3 COW BUF WR [

CCL3 MB REQ T4 I

CCL3 INIT MB CYC l I

CCL3 MB CYC T3 M

CCL3 CHAN REQ IN I |

cCL4 MB CYC TO M

CCL3 MB REQ T2/CCL6 MIX MB SEL |

MBX2 CSH CHAN CYC

1

s

MBX2 MB n HOLD IN

CCW4 WD READY

CCW3 CCWF T

CCL4 WD TAKEN

CCL3 CCWF T1

CCL4 CH TEST MB PAR

CCL3 CCWF T2

CcCL2 QP LOAD

CCL4 MB RIP CLR

n
11

Figure 3-52

10~ 2152

CCWF MB Request Timing Diagram

MBox/3-107

An MB request (CCL MB RIP is asserted) to fetch a CCW for the highest priority channel is
initiated as soon as the previous MB request is completed.

When the MB request is initiated, the CCW request is granted (CCL CCWF REQ is
asserted), the CCW BUF ADR is formed (bits 0-2 specify the channel number for which the
request is being executed and bit 03 is set to a ““one” to select the CLP for that channel), a
RAM request is initiated, and the contents of the addressed location of the CCW BUF are
loaded into the CCW register.

Providing a higher priority request (CBUS REQUEST or CBUS CONTR REQ) is not
pending, a RAM cycle (MB CYC) is granted and executed to set up the channel request for a
cache cycle and update (increment) the CLP in the CCW BUF. (The contents of the CCW
register are not changed.)

When the RAM cycle is executed, the following operations are performed:

I. CCL CHAN REQ and, if required, CCL CHAN EPT are asserted and the word
- request logic is set up to specify the word number at CCL MB CYC T3.

2. The status and CLP word in the addressed CCW BUF location is updated (CLP is
incremented by one) at CCL MB CYC T0 (CCL CCW BUF WR is asserted).

3. The MB Select (MB SEL) counter is set up (loaded) at CCL MB CYC TO to point to
the MB that will receive the CCW. Bits 34 and 35 of the Channel Address (CHA) in the
CCW register specify the word number and consequently the MB that will receive the
word.

NOTE
The CCW register contains the physical address that
is selected by the PMA when a cache cycle is exe-
cuted. The request and memory pointer counters are
not used for this transfer.

The channel control MB request logic then waits until the cache cycle control grants a cache
cycle to process the channel request.

When a cache channel cycle (CSH CHAN CYC) is executed, a core read cycle is initiated if
the word is not in the cache and the channel control word request logic is enabled to detect
when the CCW is loaded into an MB. If the word is in the cache, the word is simply trans-
ferred to the selected MB.

When the word is loaded into an MB by the cache/core control, the word request logic
asserts WD READY, which initiates the CCL CCWF TO0-T2 timing logic to request a sec-
ond RAM cycle for writing the CCW into the CCW BUF and for writing the OP code into
the control RAM.

If a higher priority request (CBUS REQUEST or CBUS CONTR REQ) is not pending, the
second RAM cycle is granted and executed to write the CCW and op code into the CCW
BUF and control RAM, respectively. The CCW is written into location O if it is a data
transfer CCW, and the right half of location 1 if it is a jump or halt CCW.

After the second RAM cycle is executed, CCL MB RIP is cleared to allow another MB
request to be initiated.

MBox/3-108

3.8.8.2 Action Flag (CTOM) Request - The following description details an action flag MB request to
transfer data from the CH BUF to main memory. This description applies providing the block transfer
is not a zero fill (skip) operation and, in the case of a block transfer from a magtape, the transfer is not
a read-reverse operation (Figure 3-53).

CLK TICK ol t]2|3lo]|t]|2]3]o]s l2]3]0|1]2]3]0|1|2]3lo}1]2}3]o]1|a]3]o|r]2]3}o[1]2|3]0] 1]|2]3]
FacREd A | o L
CCL2 HOLD MEM ____[
CCL4 MBRIP IN _J {

CCLIMB RIP |
)

CCL2 ACT FLAG REQ ICCW BUF AND CH BUF ADR 0-2 ‘—AC\)'? FLAG ADR 1-2-4;CCW BUF ADR 3:0

CCL3 INIT RAM REQ j-“-|
CCL4 RAM REQ j_“'] r“_\

CCL3 CCW REG LOAD o]

CCL3 M8 REQ TQ I L——-
CRC2 MB CYC 1 2 3 0] CRC5 RAM ADR 1-2-4R «— BUF ADR Q0~-2 . I\ 23 0|
——-————e 1

L
LI
L
L

CRC5 WR RAM I I

CCL3I MB REQ T I
CCL3 INIT MB CYC I |

CCL4 MB CYC T2 [2] c BUF ADR 3-6 «—MEM PTR 0-3

CCL4 REQ CTR EN [2] [1] ﬂ [T‘ JT[

CCL3 MB CYC T3 [3]

CCL3/4 CHAN REQ IN,
CHAN TO MEM I L CCL3 CHAN REQ IN

CCL4 MB CYC TP FJ-I

CCL3 MB REQ T2 |

L
CCL3 ALU PLUS [|

MBX2 CSH CHAN CYC J a r I
g

CCLY DATA EN WAIT FOR CACHE CHAN CYG | l
1
CCL4 CH LOAD MB [o] o] [o] o]
CCL4 START MEM J_'I
L

CCL3 CCW BUF WR/
CCL4 MB RIP CLR m

10- 2154

Figure 3-53 Action Flag MB Request (CTOM), Timing Diagram

MBox/3-109

An action flag request is queued when enough words for a given channel have been accumu-
lated in the CH BUF (CRC AF REQ ENA). The action flag arithmetic logic keeps track of
the words in the CH BUF (Subsection 3.8.6). This logic asserts CRC AF REQ ENA when
enough words have been accumulated. :

An MB request (CCL MB RIP is asserted) to transfer a group of words (maximum of four)
for the highest priority channel is initiated as soon as the previous MB request is completed,
providing a CCWF request is not pending.

When the MB request is initiated, the action flag request is granted (CCL ACT FLAG REQ
is asserted), the CCW BUF address and part of the CH BUF address are formed to address
the desired segment of the buffers, a RAM request is initiated, and the contents of the
addressed location of the CCW BUF are loaded into the CCW register. Address bits 0-2 of
both the CH BUF address and the CCW BUF address specify the channel number for which
.the request is being executed. Bit 3 of the CCW BUF address is assured to be zero at this
time so that the CCW in the CCW BUF is addressed and transferred to the CCW register.
The CCW contains the current WC and the current memory address (ADR) of the transfer.

Providing a higher priority request (CBUS REQUEST or CBUS CONTR REQ) is not
pending, a RAM cycle (MB CYC) is granted and executed to set up the channel request for a
cache cycle and to form the rest of the CH BUF address (bits 3-6).

When the RAM cycle is executed, the following specific operations are performed:

I. The Request counter (REQ CTR) and the Action Flag Memory Pointer (AF MEM
PTR) counters are loaded at CCL MB CYC T2. The Request counter receives the
current action count which specifies how many words are to be transferred to memory.
The counter is decremented each time a word is transferred to an MB until its content
reaches zero. The Memory Pointer counter receives the current memory pointer which
specifies the starting location (address) in the CH BUF from which to take the words.
As the words are transferred to the MBs, this counter is incremented to point to the
next word.

2. AtCCL MB CYC T3, CCL CHAN REQ IN and CCL CHAN TO MEM are asserted
and the word request logic is set up to specify the words to be transferred. The number
of words to be transferred is a function of the action count and the memory address
that was loaded into the CCW register.

3. The MB Select (MB SEL) counter is set up (loaded with CCW CHA 34 and 35) at CCL
MB CYC TO to point to the MB that will get the first word. As each word is transferred
to an MB, the MB Select counter is incremented to point to the next MB.

NOTE :
The CCW register contains the physical address that
is selected by the PMA when a cache cycle is
executed. '

The channel control MB request logic then waits until the cache control grants a cache cycle
to process the channel request. »

MBox/3-110

g. When a cache channel cycle is executed (CSH CHAN CYC is asserted), the words are
transferred from the CH BUF to the M Bs one at a time (CCL CH LOAD MB is asserted for
each word), and CCL START MEM is asserted to initiate a memory write cycle. Each time
a word is transferred, the valid words in the cache are invalidated, the request counter is
decremented, and the AF MEM PTR and MB SEL counters are incremented. (CCL REQ
CTR EN is asserted.)

h. When the Request counter reaches zero, a second RAM request is initiated to update the
memory pointer in the control RAM and the CCW in the CCW BUF.

i. Ifa higher priority request (CBUS REQUEST or CBUS CONTR REQ) is not pending, the
second RAM cycle is granted and executed to update the memory pointer and the CCW as
follows:

1. The pointer is updated by adding the action count to the pointer and writing the result
back into the control RAM (CRC WR RAM).

2. The CCW is updated by subtracting the action count from the WC, adding the action
count to the ADR, and writing the result back into the CCW BUF. (CCL CCW BUF

WR). '

J. After the second RAM cycle is executed, CCL MB RIP is cleared to allow another MB
request to be initiated.

If the block transfer is a zero fill operation, a cache and core cycle will not be requested by the channel
control. The words that were placed in the CH BUF are simply ignored. The request for a second
RAM cycle will be made directly after the first RAM cycle has been executed.

If the block transfer is from a magtape and it is a read-reverse operation, the words are transferred to
the MBs in reverse order so that they can be written into main memory in the correct order. In
addition, the address of the CCW is updated by subtracting the action count from the address, instead
of adding it as described in step i (2) above. Also, CCL START MEM is not asserted until all the
words have been transferred to the MBs.

3.8.8.3 Action Flag (NOT CTOM) Request — The following description details an action flag MB
request to transfer data from main memory to the CH BUF. This description applies providing the
block transfer is not a zero fill operation (Figure 3-54).

a. Anaction flag request is queued when enough empty locations have been accumulated in the
CH BUF (CRC AF REQ ENA). The action flag arithmetic logic keeps track of the empty
locations in the CH BUF (Subsection 3.8.6).

b. An MB request (MB RIP is asserted) to transfer a group of words (maximum of four) for the
highest priority channel is initiated as soon as the previous M B request is completed provid-
ing a CCWF request in not pending.

c. When the MB request is initiated, the action flag request is granted (CCL ACT FLAG REQ
is asserted), the CCW BUF address and part of the CH BUF address are formed to address
the desired segments of the buffers, a RAM request is initiated, and the contents of the
addressed location of the CCW BUF are loaded into the CCW register. Address bits 0-2 of
both the CH BUF address and the CCW BUF address specify the channel number for which
the request is being executed. Bit 3 of the CCW BUF address is assured to be zero at this
time so that the CCW in the CCW BUF is addressed and transferred to the CCW register.

MBox/3-111

CLOCK TiCK |0||'2|3|0I||2|3I0|||2|3|0|1I2|3!0|||2|3|0l||2|%(0l||2[3,0I1|2|3|0|'|2|3|0|| HEE |zj|3|o|x‘2]3}0{\|2|3|0|1|z|3[o|t|2|3boi\i

CCWS ACTFLAG REQENA _| J S
CCL2 HOLD MEM _J |
ccLa MBRIPIN __ | J N —

CCL3 MB RIP [r
CCLZ ACTFLAGREQ _____[Ccw BUF AND CH BUF ADR O-2<- ACT FLAG ADR (-2 -4;CCW BUF ADR 310 [T —

CCL2 INIT RAM REQ 1

CCL4 RAM REQ A . |
CCL3 CCW REG LOAD Jol __
CCL3MB REQ TO | i J S
CRC2 M8 CYC 12 3 0| CRCS RAM ADR 1-2-4R~-BUF ADR 0-3 wJrzsol
CRCS5 WR RAM Imi M
CCL3MB REQ Tt | | S
CCL3 INITMB CYC 1

CCLa MBCYC T2 fz].cH BUF ADR 3-6 «— MEMPTR 0-3

CCL4 REQ CTR EN ZL M M . e
CCL3IMB CYC T3 L
CCL3 CHAN REQ "
CCL4 MBCYC TO Jol
CCL3 MB REQ T2 J | S
CCL3ALU PLUS I | I
MBX2 CSH CHAN cve T L
MBX3 MBO-3 HOLD IN i J |) LI
CCW4 WD 0-3 AVAILABLE I“woo T woi I wp2 I"wos L
CCW4 WD READY [woo LJ W1 METEH]_l wod L 00000
CCL4 AF WD READY | LS il
CCL Cr BUF WA B4 oL oL___fol - fol__
CCL4 CH TEST M8 PAR ol m . JTL
CCL3/CRC3 MEM PTR E v

3 []
CCL3 CCW BUF WR/
%CL4 L

MB RIP CLR Jol

z

10-2183

Figure 3-54 Action Flag MB Request (NOT CTOM), Timing Diagram

d. Providing a higher priority request (CBUS REQUEST or CBUS CONTR REQ) is not
pending, a RAM cycle (MB CYC) is executed to set up the channel request for a cache cycle
and to form the rest of the CH BUF address (bits 3-6). ‘

e. When the RAM cycle is executed, the following specific operations are performed:

1. The Request counter (REQ CTR) and the Action Flag Memory Pointer (AF MEM
PTR) counter are loaded at CCL MB CYC T2. The Request counter receives the cur-
rent action count which specifies how many words are to be transferred from memory.
The counter is decremented each time a word is transferred to the CH BUF until its
content reaches zero. The Memory Pointer counter receives the current memory point-
er, which specifies the starting location (address) in the CH BUF in which to write the
words. As the words are written into the CH BUF, the counter is incremented to point
to the next empty location.

MBox/3-112

2. At CCL MB CYC T3, CCL CHAN REQ is asserted and the word request counter is
set up to specify the words to be fetched. The number of words to be fetched is a
function of the action count and the memory address that was loaded into the CCW
register.

3. The MB SEL counter is set up (loaded with CCW CHA 34 and 35) at CCL MB CYC
T1 to point to the MB that will receive the first word. As each word is transferred to the
CH BUF, the MB Select counter is incremented to point to the next MB.

NOTE
The CCW registeér contains the physical address
which is selected by the PMA when a cache cycle is
executed.

f. The MB request logic then waits until the cache control grants a cache cycle to process the
channel request.

g. When a cache cycle is executed (CSH CHAN CYC is asserted), a core read cycle is initiated
if all the words are not in the cache and the channel control word request logic is enabled to
detect when the words are loaded into the MBs. Any words in the cache are simply trans-
ferred to the corresponding MBs.

h. When the lowest number word that was requested is loaded into the corresponding MB by
the cache/core control, the word request logic asserts CCW WD READY. If a CBUS
REQUEST is not being executed (CH REQ D is not asserted), the word is transferred from
the MB to the CH BUF, the Request counter is decremented, and the Memory Pointer and
MB Select counters are incremented (CH BUF WR 00-06 and CCL REQ CTR EN are
asserted). This operation is repeated for each word until all requested words are transferred,
at which time the Request counter will contain zero.

i.- When the Request counter reaches zero, a request for a second RAM cycle (RAM REQ) is
initiated to update the memory pointer in the control RAM and the CCW in the CCW BUF.

j- If a higher priority request (CBUS REQUEST or CBUS CONTR REQ) is not pending, the
second RAM cycle is granted and executed to update the memory pointer and the CCW as
follows:

1. The pointer is updated by adding the action count to the pointer and writing the result
back into the control RAM.

2. The CCW is updated by subtracting the action count from the WC, adding the action
count to the ADR, and writing the result back into the CCW BUF.

k. After the second RAM cycle is executed, CCL MB RIP is cleared to allow another MB
request to be initiated.

If the block transfer is a zero fill operation, the channel request will be initiated to fetch the four zero
fill' words from the EPT. Four locations for all channels are reserved in the EPT (starting at location
60) for storing the zero fill words.

MBox/3-113

3.8.8.4 Memory Store Request — The following description details a memory store MB request to
transfer the current CCW and the status and CLP word, which are maintained in the CCW BUF, to
the EPT in main memory (Figure 3-55). '

a. A memory store request is queued when:

. A store operation is specified by the RH20 Massbus controller at the end of a block
transfer. (Both CBUS STORE and DONE are asserted.)

2. A memory error or a channel error is sensed while the block transfer is being executed.

b. An MB request (CCL MB RIP is asserted) to store the two word$ in the CCW BUF, for the
highest priority channel that has a request pending, is initiated as soon as the previous MB
request is completed, providing a CCWF request and an action flag request are not pending.

¢. When the MB request is initiated, the memory store request is granted (CCL MEM STORE
REQ is asserted), the CCW BUF ADR is formed (bits 0-2 specify the channel number for
which the request is being executed and bit 3 is set to a “one” to select the CLP for that
channel), a RAM request is initiated, and the contents of the addressed location of the CCW
BUF are loaded into the CCW register. These bits, along with the status bits from the
control RAM, which form the first word to be transferred to an MB (word 1 in CCW BUF)
for the channel the request is being executed, are required in computing the parity bit so that
the parity check performed on the contents of the MB is consistent with the data word that
was transferred to the MB. :

NOTE }
The CCW register is loaded only to compute the MB
data parity; its contents are not required in formin%
the PMA because the address is formed exclusive o
the contents of the CCW register. Besides loading
the CCW register and computing a parity bit con-
sistent with the word transferred to the MB, the
CCW BUF is also updated to reflect the status bits
that are maintained by the control RAM. This word,
therefore, is made available so that it can be read
under diagnostic control for diagnostic purposes.

d. Providing a higher priority request (CBUS REQUEST or CBUS CONTR REQ) is not
pending, a RAM cycle (MB CYC) is granted and executed to set up the channel request for a
Cache cycle and to select the appropriate channel status bits which comprise bits 00-13 of
the word to be transferred to the MB. These bits will also be written into the appropriate
CCW BUF location. ,

MBox/3-114

CLOCK TICK

CCWé MEM STORE REQ ENA

[o]r]2{3[o|r|2|3]o|1]2|3]o]|t|2]3lo]1|2|3]0]1|2|3]0]

|

CCL.2 HOLD MEM

|

CCL4 MB RIP IN

CCL3 MB RIP

CCL2 MEM STORE REQ

CCL2 CCW BUF ADR 3

CCL3 INIT RAM REQ

CCL4 RAM REQ

CCL3 CCW REG LOAD

CCL3 MB REQ T@

CRC2 MB CYC

CRCS WR RAM

CCL3 CCW BUF WR

CCL3 MB REQ T

CCL3 INIT MB CYC

]

CCL3 M8 CYC T3

CCL3/4 CHAN REQ IN, CHAN TO MEM, CHAN EPT

CClL4 MB CYC T@

Jecw3 cHan reaiy]

CCL3 MB REQ T2

MBX2 CSH CHAN CYC

—
'Q———J__“__L——-—

CCL1 DATA EN

[

CCL4 CH LOAD MB

LRl

CCL4 START MEM

CCL4 REG CTR EN

CCL4 STORE CCW

CCL4 MB RIP CLR

1

[

[1
I

10-21%0

Figure 3-55 Memory Store MB Request, Timing Diagram

MBox/3-115

e. When the RAM cycle is executed, the following specific opeirations are performed:

[. At CCL MB CYC T3, CCL CHAN REQ IN, CCL CHAN TO MEM, and CCL
CHAN EPT are asserted and the word request logic is set up to specify the words (word
| and 2) to be transferred.

2. The status and CLP word in the addressed CCW BUF location is updated (the status
bits are written) at CCL MB CYC T1 (CCL CCW BUF WR is asserted).

3. The MB SEL counter is set up (loaded) at CCL MB CYC T1 to point to the MB (M BI)
that will receive the status and CLP word. Bit 35 of the channel address (CHA) is
forced to a “one” for this operation to ensure that the MB SEL counter is set up
correctly.

NOTE y

The contents of the CCW register are not used as the
memory address for the memory store operation.
Instead, the CHA address is forced to point to the
correct location in the EPT page. When a cache
cycle is granted, the PMA supplies the base address
for the EPT (contents of EBR). In addition, the
Request and Memory Pointer counters are not used
for the memory store operation.

f. The channel control MB request logic then waits until the cache control grants a cache cycle
to process the channel request. ?

g. When a cache channel cycle is executed (CSH CHAN CYC is asserted), the first word is
transferred from the CCW register to MB1 (CCL CH LOAD MB is asserted) and CCL
START MEM is asserted to initiate a memory write cycle. The second word is then loaded
into the CCW register to compute its parity and then loaded into MB2. If any valid words
are found in the cache, they are invalidated. After the first word is transferred, CCW BUF
ADR bit 3 is cleared (CCL STORE CCW is asserted) to point to the next word (CCW) and
the MB SEL counter is incremented to point to MB2 (CCL REQ CTR EN is asserted).

h. After the second word is loaded into MB2, CCL MB RIP is cleared to allow another MB
request to be initiated. :

3.8.8.5 Error Request - The channel control MB request logic must be guarded against potential
memory errors while an MB request is being executed. When an MB Request is in progress (MB RIP)
and a cache channel cycle is granted in response to the channel request, the Error Address register is
loaded to preserve the address of the channel for which the request is being executed. If a memory
error is detected while the channel request (CCWF request only) is being executed, the CCL MEM
ERROR LATCH is set (Figure 3-56). Then, when CCL MB RIP is cleared on completion of the
request, CCL ERR REQ is asserted to initiate a RAM cycle to update the control RAM error bits and
to set the appropriate bit in the store request queue using the address that was preserved by the Error
Address Register. Another MB request will not be started until a RAM cycle for the error request is
executed. After the RAM cycle is executed, the CCL MEM ERR LATCH is cleared.

MBox/3-116

CLOCK TICK

CCL3 MB RIP

CCLY MEM ERR

CCLY MEM ERR LATCH

CCL1 ERR REQ

CCL4 RAM REQ

CRC2 MB CYC

CCL! MB CYC DLY

CRC5 WR RAM

CRC4 MEM STORE ENA

CCwe MEM STORE N

CCLt MEM ERR CLR

loj1}2)3toft|2|3]o]1|2]3|o|1]|2|3|o}*|2|3|o]1|2]3]

L

| L

[BUF AOR §-2+—ERR ADR 1-2-4 |

| L

N R

1

n
n
1
T

r"—'] CRC5 RAM ADR
1 2 3 0| 1-2-4R+—BUF ADR 0-2

10-2154

Figure 3-56 Memory Error MB Request, Timing Diagram

MBox/3-117

APPENDIX A

ABBREVIATIONS AND MNEMONICS

A CCA
AC Accumulator CCL
AC Action Count CCW
ACKN Acknowledge CCWF
ACT Action
AD Adder CDIRP
ADA Adder A CG
ADB Adder B CH
ADR Address CHA
ADX Adder Extension CHAN
AF Action Flag CHK
ALT Alternate CHX
ALU Arithmetic Logic Unit CLK
APR. Arithmetic Processor CLR
Register COMP
AR Arithmetic Register CON
ARL Arithmetic Register Left COND
ARM Arithmetic Register Mixer CONS
ARMM Arithmetic Register CONTR
Mixer Mixer Ccp
ARR Arithmetic Register CP
Right CPU
ARX Arithmetic Register CR
Extension CRA
ARXL Arithmetic Register CRAM
Extension Left
ARXM Arithmetic Register CRC
Extension Mixer CRM
ARXR Arithmetic Register CRY
Extension Right CS
B CSH
BOOLE Boolean CTL
BR Buffer Register CTOM
BRK Break
BRX Buffer Register Extension CTR
BUF Buffer CWSX
C
CAM Cache Address Mixer CcYC
CBUS Channel Bus

MBox/A-1

Cache Clearer Address
Channel Control Logic
Channel Command Word
Channel Command
Word Fetch

Cache Directory Parity
Carry Generate
Channel

Channel Address
Channel

Check

Cache Extension
Clock

Clear

Complete

Control

Condition

Constant

Control

Carry Propagate
Central Processor
Central Processing Unit
Control RAM

Control RAM Address
Control RAM Address
Mixer

Channel RAM Control
Control RAM

Carry

Controller Select
Cache

Control
Controller-to-Memory
or Cache-to-Memory
Counter

Called With Special
Execute

Cycle

D

DAT
DIAG
DIF
DIR
DIS
DISP
DIv
DRAM

I
EtoT
EBR
EBUS
ECL
EDP
EN

- ENA

ERR

ERA

EPT

EX

EXP

EXT

EXT TRA REC

FE

FLG
FM
FOV
FPD
FPD
FUNC
FXU

G
GE
GEN

IN

INC
INH
INSTR
INT
INTR
INVAL
10T

D
Data
Data
Diagnostic
Difference
Directory
Disable
Dispatch
Divide
Dispatch RAM

E
EBox Cyc
ECLto TTL

Executive Base Register

Execution Bus

Emitter-Coupled Logic

EBox Data Path
Enable

Enable

Error

Error Address

Executive Process Table

Extension
Exponent
External

External Transfer
Receiver

F
Function
Floating Exponent
Front End
Flag
Fast memory
Floating Overflow
First Part Done
Floating Point Divide
Function
Floating Exponent
Underflow

G, H

Gated
Greater or Equal
Generate
High

|
Input
Increment
Inhibit
Instruction
Internal
Interrupt
Invalid
Input/Output
Transfer

IR

J
L
LRU

MB
MBC
MBX
MBZ
MCL
MEM
MHz
MIX
MQ
MQM

MR
MRU
MTR

NICOND

NXM
NXT

OK
opP
OVN

PA
PAG
PAR
PC
PCF#

PCP
PC
PERF
PF
PGRF
P]
PIA

PIH

PMA
PMA

PREV
PT

PTR
PWR

MBox/A-2

Instruction Register
J,K, L
Jump
Low
Least Recently Used
M
Memory Buffer
MBox Control
M Box Control
MBox Control
Memory Control
Memory
Megahertz
Mixer
Multiplier Quotient
Muitiplier Quotient
Mixer
Master
Most Recently Used
Meter
'N
Next Instruction
Condition
Non-Existent Memory
Next,
0
011 Korrect
Operation (code)
Overrun
P
Physical Address
Pager
Parity
Program Counter
Previous Context
Flags from Number
Previous Context Public
Program Counter
Performance
Page'Fault
Page Refill
Priority Interrupt
Priority Interrupt
Assignment
Priority Interrupt
Hold ,
Physical Memory Address
Physical Memory Address
Selector
Previous
Page Table/Process
Table
Pointer
Power

RAM
RD
RE
REC
REF
REG
REL
REQ
RES
RESP
RET
RIP

RQ
SADRP

SBR
SBUS
SC
SCAD
SCADA
SCADB
SCD
SCM
SEL

SH

R

Random Access Memory

Read
Receive ECL
Receive
Reference
Register
Release
Request
Reset
Response
Return
Request In Progress
Request

S
Storage Address
Parity
Subroutine
Storage Bus
Shift Count
Shift Count Adder
Shift Count Adder A
Shift Count Adder B
Shift Count Adder
Shift Count Mixer
Select
Shifter

SHRT
SIM
SP
SPEC
SR

ST
SYNC

TtoE
TE

T
TRA
TTL

UBR
UCODE

VAL
VMA

XFER
XR
WARN
wC
WD
WR

MBox/A-3

Shift Right
Simulate
Special

Special

State Register
Start
Synchronize

T, U

TTL to ECL
Transmit ECL
Time

Transfer
Transistor-Transistor
Logic

User Base Register
Microcode
V,W, X, Y, Z
Valid

Virtual Memory
Address
Transfer

Index Register
Warning

Word Count
Word

Write

A

Address 1-1, 1-8, 2-7, 2-57, 2-61

Cache 3-16

Cache Clearer 1-8, 3-19

Channel 1-8, 3-19

Core 3-76

Error 2-75

Executive Base 1-8, 3-33

Extended 3-7

Hash function 3-3

Match 1-10, 1-13, 1-18, 3-1, 3-16

Pager 3-1, 3-16

Physical 1-8, 2-28, 3-1, 3-16

Refill 3-19

User Base 1-8, 3-33

Virtual 1-8, 3-1, 3-16

Writeback 1-17, 3-20
Address Path 2-8, 2-61
Any Valid Match 3-36

B
Block 1-13, 1-19
Buffers

Cache 1-4, 1-10, 1-13, 2-28, 3-9

Channel Command Word 1-8, 1-19, 2-32,

3-58
Channel Data 1-8, 1-19, 2-32, 3-58
Memory 1-1, 1-18, 2-63, 3-66
Pager 1-4, 1-10, 3-1

C
Cache 1-4, 1-10, 2-1
Address 1-13, 2-28, 3-19
Block 1-13, 1-19
Clearer 1-21, 3-66
Control 1-17, 2-71, 3-12
Cycle 1-18, 2-5, 3-15
Data 1-13, 2-28
Directory Address 1-13, 2-28
Line 1-13
Parity 2-75

Read 2-28, 3-31
Refill Algorithm 3-63
Refill RAM 3-61
Strategy 3-34, 3-43
Structure 1-4, 1-13
Sweep 1-21, 2-7
Use History 1-13
Valid Bit 1-13
Written Bit 1-13
Write 2-28, 3-40
Cache Clearer
Control 1-21, 3-66
Cycle 2-7, 3-56
Request 2-35
Cache Cycles 1-18, 2-5, 3-15
CCA 2-7, 3-56
CHAN 2.7, 3-58
EBox 2-7, 3-28
MB 2-7, 3-50
Refill 2-6, 3-52
Writeback 2-6, 3-50
Cache Use Logic 3-61
CBus Request Logic 3-89
Channel 1-8, 1-19,
Action Count (AC) 1-8, 3-95
Address (ADR) 1-8
Block Count 1-19
Buffers 1-5, 1-8

INDEX

Channel Command Word (CCW) 1-5, 1-8,

1-19

Channel Pointer (CH PTR) 1-8, 3-98

Command List 1-5, 1-19
Command List Pointer (CLP)
Control 1-5, 1-6, 1-20, 2-71
Data 1-8

Memory Pointer (MEM PTR)
Parity 2-76

Program 1-19

Queues 2-51, 2-56

RAM Cycles 2-4

Read 2-32, 3-58

MBox/INDEX-1

1-8, 1-19

1-8, 3-97

Requests 2-30
Starus 1-19
Word Count (WC) 1-8, 1-19
Write 2-34, 3-60
Channel RAM Cycles 2-4
CBus Control 2-4
CBus Request 2-4
MEB 24
Channel Requests 1-20, 2-30
Dialogue 2-32
Fetch CCW 2-32
Parity 2-75
Read Data 2-32, 3-58
Store Status 2-34
Write Data 2-34, 3-60
Configuration, MBox 1-1
CONO PAG 3-29
Control Logic 1-5, 2-64
Core Control 1-21, 2-71, 3-73
Counters 3-73, 3-103
CCA Block 3-66
CCA Line 3-66
Channel Action Count 3-45
Channel Action Flag Channel Pointer 3-98
Channel Action Flag Memory Pointer 3-97
Channel MB Select 3-108, 3-110
Channel Word Request 3-110
Core Address 34-35 3-79
SBus Acknowledge 2-38, 3-77
SBus Data Valid 2-38, 3-78
Cycles '
Cache 1-18, 2-5, 3-5
Channel RAM 2-4
Core 1-5, 1-21
SBus Diagnostic 2-29, 3-49

D
Data 1-1, 1-5, 2-8, 2-57, 2-62
AR 1-18, 2-27
CBus 1-8, 2-40
Diagnostic 2-18
Cache 1-13, 2-5
Channel 1-8, 1-19
EBus 2-9, 2-15
Memory Buffer 1-18, 2-8
Pager 1-4, 1-8, 2-29, 3-1
SBus 1-21, 2-1, 2-36
Use History 1-13
Data Overruns 1-8, 3-12
Data Path 2-9, 2-62 -
Descriptions
Functional Description 2-1
Logic Descriptions 3-1
Overview 1-1

Diagnostic

Bits 2-79
Cycle 2-29
Directory

Page Table 1-9
Cache 1-13

E
EBox Requests 2-9, 3-28
Diagnostic 2-29, 3-49
Dialogue 2-16 |
Read Memory/Cache 2-28, 3-31, 3-47
Read Page Table (MAP) 2-18
Read Register 2-18, 3-30
Sweep Cache 2-27:
Write-Check 3-47 |
Write Memory/Cache 2-28, 3-40, 3-47
Write Page Table 2-27
Write Refill RAM 3-48
Write Register 2-18, 3-29
Errors
Address Parity 2-72
Data Parity 2-75
Error Flags 2-78
Status 2-79 :
Timeout 2-77
Executive 1-4, |-8
Base Register -8
Mode 3-4 ‘
Pages 3-1 ;
Process Table 1-4, 1-8
Program -4

F, G, H
Flows ;
Cache Control 2-6, 2-21
Channel Control 2-5, 2-47
Core Control 2-39
Formats ;
Address 1-9 :
Channel CommandiWord 1-20
Channel Status 1-20
Diagnostic Words ' 2-79
Error Address Word 2-80
Page Fail Code 3-6
Page Fail Word 2-79, 3-8
Functional Description
Address and Data Path Logic 2-57
Address Path Summary 2-7
Cache Cycles 2-5 |
CBus Requests 2-40
CCA Requests 2-35
Channel RAM Cycles 2-4
Channel Requests 2-30

MBox/INDEX-2

Control Logic 2-64

Core Cycles 2-38

Core Requests 2-36

Data Path Summary 2-8

EBox Requests 2-9

Error Checking and Reporting Logic 2-72

I
Instructions

BLKI PI 2-79, 3-30
BLKO APR 3-48, 3-63
BLKO PI 3-49
Channel Command 1-20
CONI PAG 3-30
CONO APR 2-79
CONO PAG 3-29
DATAI PAG 3-30
DATAO PAG 3-29

MAP 3-30

Memory Reference 2-28
Read 3-31
Read-Pause-Write 3-47
Write 3-40

Write-Check 3-47
RDERA (BLKI PI) 2-79
Register Reference 2-18

CCA 3-29

EBR 3-29

EBUS 2-79

ERA 2-79

PT 3-30

REFILL RAM 3-48

UBR 3-29

DIAG 2-79
WRFIL (BLKO APR) 3-63

Interface
Cache/Channel 2-30
CBus 2-40
EBox/MBox 2-9
SBus 2-36

Kernal 3-5

L

Line 1-13

Logic Description 3-1
Cache and Cache Control 3-9
Cache Clearer Control 3-66
Cache Use Logic 3-61
Channel Control 3-80
Core Control 3-73
MB Control 3-66

Pager 3-1

M, N
Map 2-27, 3-30
Memory
Cache 1-4, 1-10, 3-9
Core 1-4, 1-10, 3-76
Pager 1-4, 1-8, 3-1
Use Table 1-13, 3-61
MB Control 1-21
MB Request 3-50
Memory Buffer
Control 1-21, 3-66
Parity 2-75
Read 1-18, 3-66
Write 1-18, 3-66
Mixers 2-61
Cache Address 2-62
Channel Buffer Input 2-64
Channel Command Word Buffer Input
Channel Register 2-64
Diagnostic Bits 2-59
Memory Buffer Input 2-63
Memory Buffer Select (output) 2-63
Memory to Cache 2-62
Page Table Input 2-64
Physical Memory Address 2-61
User/Executive Base Address 2-61
Modes Paging 3-1, 3-4, 3-7
Modules 1-2, 1-3

0
Overview -1
Cache 1-4, 1-10
Cache Clearer Control 1-5, 1-21
Cache Control 1-5, 1-17
Channels 1-5, 1-19
Channel Control 1-5, 1-20
Core Control 1-5, 1-21
MB Control 1-5, 1-21
Pager 1-4, 1-8

P,Q
Pages

Accessable 3-4
Cachable 3-4
Executive 3-4

Public 3-4

User 3-4

Writable
Page Fault 3-6
Pager 1-4, 1-8, 2-29, 2-61
Accessable Pages 3-4
Cachable Pages 3-4
Directory Address 1-9, 3-1
Executive Pages 1-4
KI Mode 3-7

MBox/INDEX-3

2-64

KIL. Mode 3-8

Page Descriptor Bits 3-4

Page Fault 3-6

Page Table Address 1-9, 3-1

Parity 2-72

Public Pages 3-4

Refill Operation 2-6, 3-5

Structure 1-4, 1-8

User Pages 3-4

Valid Pages 2-29, 3-4

Writable Pages 3-4

Paging Mode 3-7

Parity

Address 2-72

Data 2-75

Physical Memory Address Mixer 1-8, 2-7,
2-28, 3-14

Cache Address 3-16

Cache Clearer Address 3-19

Cache Refill Address (PMA HOLD) 3-19
Cache Writeback Address (CAM) 3-20
Channel Address 3-14

Control 3-19

Error Address 2-75

Executive Base Address 3-33

Pager Address 3-1, 3-16

Parity 2-72

Physical Address 1-8, 2-28, 3-1, 3-16
User Base Address 1-8, 3-33

Virtual Address 1-8, 3-1, 3-16

Pointers” 1-8
Channel 1-8, 3-98
Memory 1-8, 3-97

Program

Channel 1-19

Executive 1-4

User 1-4, 1-8

Process Table 1-4, 1-8

Quadword 1-4

Queues

Action Flag 3-99

Cache to MB Word Request 3-73
Channel Command Word Fetch 3-99
Done 3-87

MB Write Request 3-70

Memory Store 3-99

Reset 3.83

Start 3-83

Store 3-83

R

RAM's 2-7, 3-92

Action Count 3-95
Cache 1-10

Channel Buffer 3-95

Channel Control 3-80

Channel Command Word Buffer 3-98
Channel Pointer 3-98

Memory Pointer 3-97

Pager 3-1

RD Found 3-35 _

Read 1-18, 2-18, 2-27, 2-28, 3-31
Cache Clearer Address Register 2-18
Cache Data -5, 1-13, 3-35
Cache Directory (Address) 1-5, 1-13
Cache Use Table 1-13
Cache Valid Bits 1.5, 1-13
Cache Written Bits : 1-5, 1-13
Channel Command Word Buffer 1-8, 2-4
Channel Command Word Register 2-52
Channel Data Buffer 1-8, 2-4
Core 1-21, 2-1, 3-36, 3-37
Diagnostic Reglster 2-18
EBus Register 2-18, 3-35
Error Address Register 2-18
Executive Base Register 1-8, 2-18, 3-30
Executive Process Table 1-4, 2-32, 3-31
Memory 1-21, 2-28, 2-32, 3-28, 3-31
Memory Buffer 1- 18 1-21, 2-7
Page Fail Word 2-79, 3- 35
Page Table 1-4, 2-18, 3-28
Register 3-28 '

User Base Register , 8, 2-18, 3-30

User Process Table = 1-4, 3-31 '
Refill :

Cache 1-4, 3-12, 3-24

Pager [-4, 2-28, 3-5, 3-7, 3-19

Registers 1-8, 2-27, 2-61, 2-79
Action Flag Request 3-99
Cache Clearer Address 3-29, 3-66
CBus Qutput 2-64
Channel Command Word 3-108
Channel (Input) 2-64
Channel Command Word Fetch Request
99
CTOM 3-88
Done Interrupt 3-86
EBus 2-27
Error Address 2-27
Executive Base 3-29
Memory Buffer 1-21
Memory Buffer/Channel 3-103
Memory Store Request 3-99
Physical Memory Address 3-19, 3-31
Physical Memory Address Hold 3-19
Reset Interrupt 3-84
Start Interrupt 3-85
Store 3-87
User Base 3-29

MBox/INDEX-4

Requests 1-5, 2-1 W.X,Y, 7

Cache Clearer (CCA) 2-35 Write 1-18, 2-18, 2-27, 2-28, 3-40
CBus 2-40 Cache Clearer Address Register 2-18, 3-29,
Channel (CHAN) 2-30 3-56
Core 2-36 Cache Data 1-5, 1-13, 3-35
EBox 2-9 Cache Directory (Address) 1-5, 1-13
Cache Use Table 1-13
S Cache Valid Bits 1-5, 1-13
Sweep, Cache 1-21 Cache Written Bits 1-5, 1P%3
Section Channel Command Word Buffer 1-8, 2-4
Executive 3-1 Channel Command Word Register 2-52
User 3-1 Channel Data Buffer 1-8, 2-4
Supervisor 3-5 Core 1-21, 2-1, 2-7, 3-46
System Diagnostic Register 2-27
1080 1-1, 1-3 Executive Base Register 1-8, 2-18, 3-29
1090 1-1, 1-3 Executive Process Table 1-4, 2-34, 3-4]
2040 1-1,1-3 Memory 1-21, 2-28, 2-32, 3-40
2050 1-1, 1-3 Memory Buffer 1-18, 1-21, 2-7, 3-28
Page Table 1-4,2-18
T User Base Register 1-8, 2-18, 3-29
Timing 2-64, 2-71 User Process Table 1-4, 3-41
Cache Control 3-12 Word 1-11

Channel Control 3-80
Core Control 3-13

U,V
User 1-4, 1-8
Base Register 1-8
Mode 3-4
Pages 3-1
Process Table 1-4, 1-8
Program 1-8

MBox/INDEX-5

MBOX STORAGE CONTROLLER ’
UNIT DESCRIPTION Reader’s Comments

EK-MBOX-UD-004

Your comments and suggestions will help us in our continuous effort to improve the quality and usefulness of
our publications.

What is your general reaction to this manual? In your judgment is it complete, accurate, well organized, well
written, etc.? Is it easy to use?

What features are most useful?

What faults do you find with the manual?

Does this manual satisfy the need you think it was intended to satisfy?

Does it satisfy your needs? Why?

Would you please indicate any factual errors you have found.

Please describe your position.

Name Organization

Street o Department

- City —— State Zip or Country

FIRST CLASS
| PERMITNO.33
| MAYNARD, MASS.
BUSINESS REPLY MAIL | —
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES EC———

L
Postage will be paid by:

Digital Equipment Corporation
Technical Documentation Department
Maynard, Massachusetts 01754

	001
	002
	003
	004
	005
	006
	007
	008
	009
	011
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	2-58
	2-59
	2-60
	2-61
	2-62
	2-63
	2-64
	2-65
	2-66
	2-67
	2-68
	2-69
	2-70
	2-71
	2-72
	2-73
	2-74
	2-75
	2-76
	2-77
	2-78
	2-79
	2-80
	2-81
	2-82
	2-83
	2-84
	2-85
	2-86
	2-87
	2-88
	2-89
	2-90
	2-91
	2-92
	2-93
	3-001
	3-002
	3-003
	3-004
	3-005
	3-006
	3-007
	3-008
	3-009
	3-010
	3-011
	3-012
	3-013
	3-014
	3-015
	3-016
	3-017
	3-018
	3-019
	3-020
	3-021
	3-022
	3-023
	3-024
	3-025
	3-026
	3-027
	3-028
	3-029
	3-030
	3-031
	3-032
	3-033
	3-034
	3-035
	3-036
	3-037
	3-038
	3-039
	3-040
	3-041
	3-042
	3-043
	3-044
	3-045
	3-046
	3-047
	3-048
	3-049
	3-050
	3-051
	3-052
	3-053
	3-054
	3-055
	3-056
	3-057
	3-058
	3-059
	3-060
	3-061
	3-062
	3-063
	3-064
	3-065
	3-066
	3-067
	3-068
	3-069
	3-070
	3-071
	3-072
	3-073
	3-074
	3-075
	3-076
	3-077
	3-078
	3-079
	3-080
	3-081
	3-082
	3-083
	3-084
	3-085
	3-086
	3-087
	3-088
	3-089
	3-090
	3-091
	3-092
	3-093
	3-094
	3-095
	3-096
	3-097
	3-098
	3-099
	3-100
	3-101
	3-102
	3-103
	3-104
	3-105
	3-106
	3-107
	3-108
	3-109
	3-110
	3-111
	3-112
	3-113
	3-114
	3-115
	3-116
	3-117
	A-01
	A-02
	A-03
	I-01
	I-02
	I-03
	I-04
	I-05
	replyA
	replyB

