
EK-MBOX-UD-004

MBOX . B

STORAGE CONTROLLER

UNIT DESCRIPTION

digital equipment corporation « marlborough, massachusetts

st Edition, June 1975

nd Edition (Rev), January 1976

3rd Edition (Rev), September 1976

4th Edition (Rev), May 1977

The drawings and specifications herein are the property of Digital Equipment

Corporation and shall not be reproduced o1 copied or used in whole or in part as

the basis for the manufacture or sale of equipment described herein without

written permission.

Copyright ® 1975, 1976, 1977 by Digital Lquipment Corporation

The material in this manual is for informational

purposes and is subject to change without notice.

Digital Iquipment Corporation assumes no respon-

sibilitv for any errors which may appear in this

manual.

Printed in US A

This document was set on DIGITAL’s DECset-8000

computerized typesctting system.

The tollowing are trademarks of Digital Equipment

Corporation. Maynard, Massachusetts:

DEC DECtape PDP

DECCOMM DECUS RSTS

DECsystem-10 DIGITAL TYPESET-$

DECSYSTEM-20 MASSBUS TYPESET-11

UNIBUS

SECTION 1

—

e
t

e
t

e
t

e

e
t

e
t

s

e
c
d

SECTION 2

{
~
J

—
_
—

t
J

[
\
S
I

 S
O

6
 I

o\

I
 O
O

 I
 O

2

B
(
o

—

O

0
0

5
 I

 N
O
T

3

N
N

(
U

o
U
)

Ves

B
L
w
w
w
w
t

»

o

—

S

CONTENTS

OVERVIEW

INTRODUCTION

PAGER

CACHE

CACHL CONTROL

CHANNELSo

CHANNEL CONTROL

CACHE CLEARER CONTROL

MB CONTROL

CORI.CONTROL

FUNCTIONAL DESCRIPTION

INTRODUCTION

CHANNEL RAM CYCLLS

CBus Request Cycele L.

('Bus Control Cycle

Channel MB Cycle S

CACHE CYCLES

Cache MB Cycle

Ciache Channel Cycle

Cache EBox Cycle

Cache CCA Cycle

CORE CYCLES

ADDRESS PATH SUMMARY

DATA PATH SUMMARY

EBOX REQUESTS

E/M Interface Summary

Request Dizlogue

Register References

Memory References

Read Memory

Write Memory . . . 0 L 0L

Read and Write-Check Paged Memory

............... MBox

............... MBox/

............... - MBox:

............... MBox; 2-30

............... MBox

............... MBox/2-32

............... MBox 2-32

............ MBox 234

............... MBox, 2-35

..... MBox/2-30

Writc-Check Paged Memory

Rcad-Modily-Write Memory

SBus Diagnostic Cycle

CHANNEL REQUESTS

Channel/Cache Interface Summary

Request Dialogue

Chuannel Read Operations o .

Channel Write Operations . .

CCA REQUESTS

CORE REQUESTS

SBus Summary

i

.................

.................

.......

.....

.............

.......

.........

..............

.........

........

........

Page

............ MBox/1-1

e MBox 1-&

............... MBox/I-10

............... MBox i-17

............... MBox 1-19

............ . . MBox 1-20

............... MBox '1-21

............... MBox -1

....... L. MBoxt-2I°

................ MBox 2-1

................ MBox/2-4

................ MBox/2-4

........ MBoxl«

................ MBox-

................ MBox.

................ MBox/

.......... MBox:

............. .. . MBox2-

........ MBox’

................ MBox'

............. . . . MBox

e e e e e MBox.

................ MBox/2-9

.......... ... MBox: 29

............... MBox %

............... MBox 21X

............... MBox/2-28

............... MBox, 2-28

............... MB()X/

1

o

g
¥

[

c
d

o
=

'

~
3

1
~

t
2

t
2

1
o
t

t
a

o
t

1
J
d

1
5

1

|
]

1
¢

X

3

MBox-

s
t
t
t
t
a

e

4

~-30

.............. MBox/2-30

CONTENTS (Cont)

Page

2.10.2 Request Dialogue Lo o L MBox;2-36

2.10.2.1 Core Read Cycele oo 0 oo MBox/2-38

2.10.2.2 Core Write Cyclee MBox/2-40

2.10.2.3 Core Read-Pause-Write Cydic . 0 . o . . oo L L. MBox/2-40

211 CBUS REQUESTS S T MBox/2-40

211 CBus Summary o MBox/240

2112 CBus Timing L MBox 2-43

211.3 Functional Description oi Channel Read (NOT CTOM) and

Channel Write (CTOM) MBox 245

2.11.3.1 Channel Write Operation (CTOM) MBox/245

2.11.3:2 Channel Read Operation (NOT CTOMY . . . 0 0 0 0 . . MBox/2-53

2.12 ADDRESS AND DATAPATHS MBox/2-57

213 CONTROL LOGIC SR e MBox/2-64

2.13.1 Cache and Core Cycle Control 0 o MBox/2-71

2.13.2 - Channei Control o oo MBox/2-71

2.14 ERROR CHECKING AND REPORTING LOGIC MBox,2-72

2.14.1 Address Parity Logic o0 Lo MBox/2-72

2.14.2 Data Parity Logic e e MBox/2-75

2.14.3 . Time-out Erroro MBox/2-77

2.144 Error Flags e MBox/2-78

21441 PAGE FAILHOLD Flag MBox/2-78

2.14.4.2 CSHADRPARERR Flag MBox/2-78

2.14.4.3 MBOX ADRPAR ERR Flag MBox 2-78

21444 MBOX MBPARLRR Flag MBox,2-78

21445 MBOX SBUS ERR Flag e e e e MBox/2-78

21446 MBOX NXM ERR Flag e e e e MBox/2-78

2.144.7 CBUSERRFlag MBox/2-79

2.14.5 Status Words e MBox/2-79

2.158 DIAGNOSTIC REGISTERS o o oo MBox/2-79

SECTION 3 LOGIC DESCRIPTIONS

3.1 INTRODUCTION . . . o . e e e e e e MBox/3-1

3.2 PAGER . . ee MBox/3-1

3.2.1 | Page Refill MBox/3-5

32.2 Page OK e MBox/3-5

3.2.3 Page TFatl L MBox/3-6

3.24 Page TFault (PIY Codes . . . 0 o . 0 o o o 0 0o MBox/3-6

3.2.3 Operating Modes 0 0 L. L L MBox/3-7

3.2.5.1 KI Paging Modeo MBox/3-7

3252 KL Paging Mode MBox/3-8

33 CACHE AND CACHE CONTROL MBox/3-9

3.3.1 Cache Control Logic ee e MBox/3-12

3.3.1.1 Request Arbitration Logic oo oL MBox/3-12

3.3.1.2 Roquest Fxecution Logic . . - MBox/3-14

CONTENTS (Cont)

Page

3.3.1.3 Page Table and Cache Address Logic MBox,'3-16

3314 Cycle Decision Logic oL MBox/3-20

3.3.1.5 Cache Control Time States, MBox/3-25

3.3.2 Cache EBox Cycle v MBox/3-2¥

3.3.2.1 FBox Load Register MBox/3-29

3.3.2.2 EBox Read Registero MBox;3-30

3323 EBoxMap e MBox/3-30

3324 FBox Read MBox'3-31

3326 IiBox Read-Pause-Write MBox/3-47

3.3.2.7 EBox Write-Checko MBox/347

33.2.8 Write Refill RAMo . . MBox/348

3.3.2.9 SBus DiagnosticCycle MBox/349

3.3.3 \ Cache MBCycle e e e e MBox,3-50

334 Cache Writeback Cycle o . o . oo o oo MBox/3-50

3.3.5 Cache Page Refill Cycle (KI Mode Only) . . . oo o 0 oL MBox,3-52

3.3.6 Cache CCA Cycle . . o o o o o o oo oo s MBox:3-56

3.3.6.1 One Page e MBox,3-58

3.3.6.2 All Pages o o L MBox/3-58

3.3.7 Cache Channel Cycle R F MBox,3-58

3.3.7.1 Channel Read e e MBox/3-58

3.3.7.2 Channel Write« . v v v e . . . MBox/3-60

34 CACHE USE LOGIC e e e MBox, 3-61

3.4.1 Load Lookup Table (Refil RAM), MBox, 3-63

3.4.2 Initialize Cache Directory and Use Table, MBox,/3-64

343 Normal Operation b e e e MBox/3-65

3.5 CACHE CLEARER CONTROL o v oo o MBox/3-66

3.6 MB CONTROIL. e MBox/3-66

3.6.1 ‘ MBO-3WRRQOQueuc oo MBox.'3-70

3.6.2 MB Input Selector and L.oad Pulse Generator MBox;3-72

3.6.3 CTOMBWD 0-3 RQ Queue v v v v v v v oo e MBox/3-73

3.6.4 MB OQutput Selector Do e e MBox/3-73 .

3.7 CORE CONTROL e e e e e e e MBox/3-73

3.7.1 SBus Dialogue Synchronization e e e e MBox/3-76

3.7.2 Acknowledge Pulse Counter (MBC4) MBox/3-77

3.7.3 Data Valid Pulse Counter« ... MBox/3-7%

3.8 CHANNEL CONTROL oo oo MBox/2-80

3.8.1 Timing Logic« . . . e MBox/3-80

3.8.2 Control Request Queues 0. MBox/3-3

3.8.3 CTOM Register . oo oo o e e e s e . MBox/3-88
3.84 , CBUS Request Logic . . o o o o 0 o0 o0 o o MBox/3-58

3.8.5 Control RAMS e MBox/3-92

38.6 Action Flag Arithmetic Logic MBox/3-95

3.8.6.1 Action Count e e MBox/3-95

3.8.6.2

3.8.6.3

3.8.6.4

3.8.7

3.8.8

3.8.8.1

3.8.8.2

3.8.8.3

3.8.8.4

3.8.8.5

APPENDIX A

Figure No.

1
| I

T
]

]
1

H
[]

| N

)
| R

B
|

—
_
—
—

e

e

e

D

0
0

3

N

K
N
G

L
=

O

.

'

%
)

N
N

L
N

SO

N0
 T

NG

 T

N
T

N5
 T

NG
 T

R
(N

Q
S

U

CU
UN

N

O
\

U
G
G

PS
S
P
O

O

¢
'
s
t

i o

U

&

N
P

 I

SO

 I

(N
 I

(0

Y
 g
8

.
.
_
.
.
_
.
.
l
.
s
,
—
a

CONTENTS (Cont)

Page

Mcmory Pointer . 0 0 0 0 0o MBox/3-97

Channel Pointer MBox/3-98

Operation o0 MBox/3-98

MB Request Queues L MBox/3-99

MB Request Logic, MBox/3-103

CCWF Request 0 .00 oo MBox/3-103

Action Flag (CTOM) Request

Action Flag (NOT CTOM) Request

Memory Store Request

Error Request

..............

...........

.................

......................

ABBREVIATIONS AND MNEMONICS

ILLUSTRATIONS

Title

MBox Simplified Block Diagram

MBox RAM Structures, Interfaces and Controls, Block Diagram

MBox Functional Block Diagram

KI Paging Scheme (User and Exec Mode)

Pager Structure

Address Format for Linear Address Space

Linear Address Space Representation

Two-Dimensional Address Representation

Address Format for Two-Dimensional Address Space

Pscudo Three-Dimensional Address Space Representation

Address Format for Pscudo Three-Dimensional Address Space

Logical Structure of Core and Cache Mcmory

Cache Structurce (Details A and B)

Channel Command Word Formats

MBox Functional Block Diagram

Channel RAM Cycle Control, Simplified Flow Diagram

Cache Cycle Control, Simplified Flow Diagram

MBox Address Paths, Simplified Path Diagram

MBox Data Paths, Simplified Path Diagram

EBox Request Dialogue, Simplificd Flow Diagram

Cache Cycle Control, Functional Flow Diagram

Channel Request Dialogue, Simplificd Flow Diagram

(Data Read and Write)

Core Control Cycle, Functional Flow Diagram

Channel Scanner Timing Diagram

Channel Scanner State Diagram

Channel RAM Cycle Control Functional Flow Diagram

MBox Address and Data Path, Logic Diagram

....................

............................

......

...................

....................

.............

............

........

MBox/3-109

MBox/3-111

MBox/3-114

MBox/3-116

Page

MBox/1-2

. MBox/1-6

MBox/1-7

MBox/1-9

MBox/1-10

MBox/1-11

MBox/1-11

MBox/1-11

MBox/1-12

MBox/1-12

MBox/1-13

MBox/1-14

MBox‘1-15

MBox/1-20

MBox,2-2

MBox/2-5

MBox/2-6

MBox/2-8

MBox/2-9

MBox/2-17

MBox/2-21

MBox/2-33

MBox/2-39

MBox/2-44

MBox/2-46

MBox/2-47

MBox/2-58

3-10

3-11

3-12

3-13

3-14

3-15

3-16

3-17

3-18

3-19

3-20

3-21

3-22

3-23

3-24

3-25

3-26

3-27

3-28

3-29

3-30

3-31

3-32

3-33

3-34

3-35

ILLUSTRATIONS (Cont)

Titie

Cache/Core Control Logic Block Diagram

Channel Control Logic, Block Diagram

MBox Address Parity, NXM, and SBus Error Logic Paths,

Logic Diagram e

MBox Data and Page Table Parity, Path Logic Diagram

Page Fail Word Format e e e e e

ERA Word Format« . .« i e e e

MBox Diagnostic Register Bit Maps o o0

Pager, Simplified Logic Diagram,

Page Table Address Hash Function

Page Fail Word Format e

Cache Control Block Diagram e

Cache Block Diagram oo

Cache Control Time State and PMA Control Block Dlaa,mm e

Cache Address Simplified Logic Diagram

PMA Mixer Simplified Logic Diagram,

Cache EBox Cycle Decisions Flow Diagram For Read and

Write Requests L e e e e e e e e e e

Cache Channel and CCA Cycle Decisions Flow Dmgrdm

Cache Directory Test and Control, Simplified Logic Diagram

Cache EBox Cycle, Time State BarChart

EBox Read, Time State BarChart,

PMA Format for Unpaged Memory Read Request

PMA Format for Paged Memory Read Request,

PMA Format for EPT or UPT Read Request

EBox Write, Time State BarChart

PMA Format for Unpaged Memory Write Request

PMA Format for Paged Memory Write Request

PMA Format for EPT or UPT Write Request

Cache MB Cycle, Time State Bar Charto

Cache Writeback Cycle, Time State Bar Chart

Cache Page Refill Cycle, Time State Bar Chart

SBus Address Format for User Page Refills o

SBus Address Format for Exccutive Page (Pages 000-3374) Refills

SBus Address Format for Exccutive Page (Pages 400-7774) Refills

SBus Address Format for Exccutive Page (Pages 340-3774) Refills . .

Cache CCA Cycle, Time State Bar Chart

Cache Channel Cycle, Time State Bar Chart L

Cache Use Logic, Simplified Block Diagram Do e e e

Cache Use History Update Functions

Cache Clearer Control, Simplitied Logic Diagram

MB Control, Functional Block Diagram

MB WR RQ Quecuc and MB SEL Logic, Simplified Logic Dlagram

CTOMB WD RQ Qucue, Load Pulse Gencrator, and MB IN

Selector Simplified Logic Diagram oL

vii

Page

MBox/2-65

MBox/2-68

MBox/2-73

MBox/2-74

MBox/2-79

MBox/2-80

MBox,/2-80

MBox/3-2

MBox/3-3

MBox/3-8

MBox/3-10

MBox/3-11

MBox/3-13

MBox/3-17

MBox/3-18

MBox/3-22

MBox/3-23

MBox/2-29

MBox/3-32

MBox/3-33

MBox/3-33

MBox, 3-33

MBox/3-41

MBox/342

MBox/3-42

MBox/3-42

MBox/3-50

MBox/3-51

MBox/3-53

MBox/3-54

MBox/3-54

MBox/3-55

MBox/3-55

MBox/3-57

MBox/3-59

MBox/3-62

MBox/3-65

MBox/3-6~

MBox/3-68

MBox/3-69

MBox/3-70

Figure No.

3-36

3-37

3-38

3-39

340

341

342

343

3-44

345

3-46

347

348 -

3-49

3-50

3-51

3-52

3-53

3-54

3-55

3-56

Table No.

V
o

s

W

N

=

)

G
&

:J
FJ

NP
JK

E[
\J

Q\
Jt

J-
—‘

*—
‘

2
0

—

\
O

O
O
0

o

2-11

t
<2

'

i
t 9 t

-
&

2-14

]

|
9
8]

ILLUSTRATIONS (Cont)

Title Page

Memory Start Control and Acknowledge Pulse Counter,

- Simplified Block Diagramo MBox/3-74

Core Data Valid Pulse Counter, Simplified Logic Diagram MBox/3-75

Timing Logic, Simplified Logic Diagram MBox/3-81

Timing Logic, Timing Diagram MBox/3-82

Control Request Queues, Simplified Logic Diagram MBox/3-84

Control Request Queue, Timing Diagram MBox/3-88

CTOM Register, Simplified Logic Diagram MBox/3-89

CBus Data Recquest Logic, Simplified Logic Diagram MBox/3-90

CBus Data Request (CTOM) Logic, Timing Diagram MBox/3-91

CBus Data Request (NOT CTOM) Logic, Timing Diagram MBox/3-91

Control RAM Structure« o v v e e MBox/3-92

Action Flag Arithmetic Logic, Simplificd Logic Diagram MBox/3-96

‘MB Request Qucues, Simplified Logic Diagram MBox/3-100

MB Request Timing Logic, Simplified Logic Diagram MBox/3-104

MB Request Control Logic, Simplified Logic Diagram MBox/3-105

Word Request Logic. Simplified Logic Diagram MBox/3-106

CCWF MB Request Timing Diagram MBox/3-107

Action Flag MB Request (CTOM), Timing Diagram MBox/3-109

Action Flag MB Request (NOT CTOM), Timing Diagram MBox/3-112

-Memory Store MB Request, Timing Diagram MBox/3-115

Memory Error MB Request, Timing Diagram MBox/3-117

TABLES

Title Page

MBox Module Complement MBox/1-3

Cache Cycle TYPES « . v v v v e e e e e e e e e e MBox/1-18

Major Channel Control RAM Cycle Priorities MBox/24

Major Cache Cycle Priorities MBox/2-6

E/M Interface Summary MBox/2-10

Register Reference Requestso oo MBox/2-19

Memory Reference Requests 0 . o Lo MBox/2-20

CHAN/CSH Interface Summary« v v oo v v .. MBox/2-30

SBUS SUMMATY . . . o v e e e e e e e e e e e e e MBox/2-37

CBus Summary e e e e e e e e MBox/2-41

Cache Directory Address Sources o oo MBox/2-61

MEM TO C Mixer Select Codes e e e e e e e e e e e MBox/2-63

Memory Timeoutso e MBox/2-77

Diagnostic Register 1604 Bit Assignments MBox/2-81

Diagnostic Register 1614 Bit Assignments, MBox/2-82

Diagnostic Register 162 Bit Assignments MBox/2-83

viii

r
J

1

—

N

L

t
J

—

p
—

~
-
1

'
'

)
1

[
1

<

A

t
o

o

L
o

—

o
t
y

v

t
a
l

L
2

W
O

19
D

1
9

1
2

M
O

1
w

1
o

I

t
J

1
t
t
t

TABLLES (Cont)

Title

Diagnostic Register 1635 Bit Assignments

Diagnostic Register 1644 Bit Assignments

Diagnostic Register 1655 Bit Assignments

Diagnostic Register 1664 Bit Assignments

Diagnostic Register 1674 Bit Assignments, . ..

Diagnostic Register 170, Bit Assignments

Diagnostic Register 171 Bit Assignments

Diagnostic Register 172, Bit Assignments

Diagnostic Register 1734 Bit Assignments,

Diagnostic Register 1745 Bit Assignments Co

Diagnostic Register 175, Bit Assignments

Diagnostic Register 1764 Bit Assignments

Diagnostic Register 1 77, Bit Assignments

Page Fault (PF) Code Truth Table L

Page Fault (PF) Code Truth Table

Time State Generator Control Variables

Cache Cycle Functions

Cache Address Combinations e

Cache Control Time State Summary

Cache Strategies for Memory Read Requests

Cache Strategy for Memory Write Requests

Cache CCA Cycle Variations

Cache Refill Algorithm

MB Input Functions,. e b e e

MB Load Functions,

Acknowledge Pulse Counter Initialization Truth Table

MIEM ADR 34-35 Derivation Truth Table for Page Refill .md

Channel Read Cache Cycles . . 0 o 0 0 o o ...0. ..

Corc Data Valid Counter Initialization Truth Table

Control RAM Bit Description 0.

Action Count Truth Table

Page

MBox:2-84

MBox/2-84

MBox/2-85

MBox/2-85

MBOX//2—86

MBox/2-86

MBox/2-87

MBox/2-88

MBox/2-89

MBox/2-90

MBox/2-91

MBox/2-92

MBox/2-93

MBox/3-6

MBox/ 3-8

MBox/3-15

MBox/3-15

MBox/3-19

MBox/3-2%

MBox/3-34

MBox/3-43

MBox/3-357

MBox/3-63

MBox/3-72

MBox/3-73

MBox/3-77

MBox/3-7%

MBox/3-79

MBox.'3-93

MBox/3-97

PREFACE

The MBox Technical Description contains three levels (sections) of descriptions as do all other unit

descriptions. The three levels are:

I. Overview

2. Functional Description

3. Logic Descriptions

The Overview section identifies and introduces the major elements of the MBox and provides a brief

description of their individual functions and how they operate collectively to execute the primary

M Box functions which are to service EBox and CBus requests.

The Functional Description section describes the primary MBox functions, To describe these func-

tions, an orderly functional presentation with appropriate introductory and support material, is pro-

vided. The level of detail in this section is limited to a functional perspective: it does not provide

specific details.

The L.ogic Description section contains a detailed logic description ofthe basic elements introduced in

the Overview. These functional clements are further described in the primary functional context in the

Functional Description section. The Logic Description section is the most comprehensive part of the

MBox Technical Description because not only are the basic elements of the MBox described in detail,
they are described in the context of how they execute the primary MBox functions. In addition, this

section provides a direct index into the logic print set and wire lists through the use ofprint prefixes.

SECTION 1

OVERVIEW

1.1 INTRODUCTION

“This section contains an overview of the MBox. The MBox is the storage controller of the KL 10

processor (Figure 1-1). Each functional element in the MBox is introduced in this section. The func-

tional elements are:

Pager

Physical Memory Address selector (PMA)

Data Cache and Use Logic

Memory Buffers (M Bs)

Channel 1/0 Processor (channel controller)

Several Autonomous Controls (Cache/Core/MB/CCA Control)

Besides the functional elements, this section also introduces some of the operational concepts unique

to these elements.

The pager. the PMA, the optional four-segment data cache, and the four MB registers provide the

EBox instruction execution unit access to physical memory. The physical memory address is formed by

the Pager and the PMA, while the data path between main memory and the EBox is created by the

MBs and the cache. .

The MBox can also be equipped with an integral data channel 1/O processor (a multiplexed channel

controller). This 1/0O processor interfaces with the Cache and the MBs to form'a data path from the

physical memory Storage Bus (SBus) to the Channel Bus (CBus). The CBus is multiplexed by the

channel 1/0 processor to orderly select up to eight Massbus controllers (channels). The channel 1,0

processor interacts with the Cache to maintain the integrity of the data flow between physical memory

and mass storage.

. There are several versions of the MBox: for example, one version is implemented in DECsystem-1080;

another is implemented in DECsystem-2040. The MBox implemented in DECsystem-1080 contains a

cache but does not contain an integral channel 1/0 processor; the MBox implemented in DECsystem-

2040 contains the integral channel 1/O processor but does not contain a cache. In both cases, the

interface signals for the functional element that is not implemented are terminated in substitute termi-

nitor boards. Table 1-1 summarizes four variations. The module designator, name, mnemonic, quan-

tity, and used on code are specified.

Besides the four M Box variations, two model: of the CPU (EBox and MBox) have been released. They

are designated KL10-PA and KL.10-PV CPU. The module complements that compose the MBox for

both the KL10-PA and KL10-PV CPUs are also identified in Table 1-1. Except for some minor

changes to facilitate a higher operating clock (MBox clock). the MBox is identical for both CPU

models. The MBox clock for the KL10-PA CPU is 25 MHz while the clock for the KL10-PV CPU is

30 MHz.

When reading this text to gain an understanding ofan MBox without an integral channel 170 process-

or (channel control), as implemented in the DECsystem-1080, simply ignore any reference to the

channel control, CBus requests to the channel control, and channel requests to the cache,/core control.

Although the C H BUF and CCW BUF remain on the MB boards, the four channel control boards ure

not included: instead, the signals that would interface with these boards are terminated on substitution

boards.

MBox/1-1

NOTES.

* These signcis are routed thru SBus Troaslator Boord MB8519

% These boards are repiaced by Cache Substitution Boards it

the Coche is not impiemented

&% Thase boords are reploced by Channei Substitution Boords if

the channels ore not implemented

Figure 1-1 MBox Simplified

Block Diagram

MBox/1-2

CHANNEL

CONTROL
!

CONTROL c
CHAN CONTR LOGIC CHAN CONTR WORD CHAN RAM CONTR HAN CONTR ECL/TTL TRANSLATOR(CCL) MB336 (CCW) MB534 (CRC) MB538 | CHC) MB8S33 (TR@) B8e i 81L | kel (1] »an

DATA g

T

cew CH BUF
CHAN vDATA DATA -
ADR

MEMORY BUFFER BOARDS DATA CACHE / | | A(MBB) M8517 (3) JSE LOGIC
|A 0 518 23 6 24 2912 17 30 35 o] 8 9 \7T 18 28 27 38 i:

_

{CONTR°E T [! T ! 3 ofF T T ' {CONTROL
K- 8 x 16 - CHAN DATA BUF 3 £ F ! | } °
r {CH BUF) 3 v ! ‘ ! :o © | , - , i i

2Tk i { 3J % Ecacne | CACHE CACHE CACHEX
cara® E - - = cama T DATA | DATA DATA DATA

: = 82 "‘A?CESNBT:F;VOR“ BJ* - ad = [Cr@. | (CHO! (CHB. (CHE)— ‘
e l N ! 5 Cuesz2 | masz: - MBs2: . mesa %2 i
L + - A N »* L] * %
s ! o = j = SBUS - CACHE - MB - AR Jata: 4 D = - :- FOUR-WORD MEM BUF B 5 F G oATA

2_ MB) ! < ‘ Z3
a ; | : B 2547 - ; j =

0 " 1 ! 2

CACHE EXTENSION {CHX] MB%15 |
* | b
| : { i 3!

—

£

i
o,

_q?
.

7

i
'- CACHE ADDRESS (CHA) MB514 — 2 i | M

i ol - i i{ 511 3 | M
CONTROL

| Ts ! :
‘ E

s | T : :
v ‘ i | A
S : ‘ ‘ CACHE

g; 'STATUS ICONTROL {Pa DiR
g| : ‘ ADR b

i [i . Y
CORE /MB/ { ! ; |CACHE /CCA

| | ; |
CONTROL* CONTROLS 5BUS TRANS | . MBOX CONTROL 3 | WBOX CONTROL LOGIC | MBOX CONTROL 4 CACHE CONTROL | CONTROL

(MT@) MB519 | (MBC) MB531 (MBX) ME529 (MBZ) MB537 (CSH) Mas13 !

T | “[{

\ I ; !
i

? !
'Pa DIR contR GRAY conTRaL! , PAGE FaiL

|)
aDR* | | PHYS MEM ADR SEL PAGING BOARD VMA

1 (PMA) mssis (PAG) M8520

i
DiAG BITS] EBUS DATA

{/
(SNAPSHOTS}

10- 2482

Table 1-1 MBox Module Complement

Designation Used On

KL10-PA | - KL10-PV Name Miiemonic Quantity 1080 1090 2040 2050

M8513 M&513-YA Cache Control CSH 1 X X X X

M&S514 Mg&s 14 Cache Address CHA 1 X X X

M&51§ M&515 Cache Extension CHX] X X X

M&516 M&S16 ECL/TTL Translator TRO 3 X X X X

(EBus and ('Bus)

M&517 M8517 Memory Buffer MBO 3 X X X X

MEB518 ME518-YA Physical Memory PMA 1 X X X X

) Address Buffer

M&519 M&519 Internal Mem Bus MTO 2 X X X AN
Translator (SBUS)

MB520 M8520-YA Paging Board PAG 1 X X X X

M&521 M&521 Cache Data CHO 4 X X X

M&529 M8529-YA MBox Control Logic MBX 1 X X X X

M&531 M&531-YA MBox Control 3 MBC 1 X X X X

M8533 M&533 Channel Control CHC | X X AN

M8534 M&534 Channel Control CCW | X)¢ X
Word

MK535 M&535 Channel RAM CRC | X X X

Control

M&K536 M8536 Channel Control CClL | X X X

Logic

M&537 M&537 MBox Control 4 MBYZ] X X X X

MR549-YAl M8549-YA Channel Control CHCS] X

Substitute

MB549-YB M&8549.Y A Channel Control CCWS | X }

Word Substitute

M&549-YC M&549-YA Channel RAM CRCS 1 X

Control Substitute

MBox/1-3

Table 1-1 MBox Modul¢ Complement (Cont)

Designation Used On

KL10-PA EKLI 0PV Name Mnemonic Ouantity 1080 1090 2040 2050

MES49.YD | M8549-YD Channel Control CCLS] X

Logic Substitute

MNF4G.YE MR349.YE Cache Address CHAS] X

Substitute

MSSI9.YF MS&S49.YF Cache Extension CHXS 1 X

Substitute

M&S349.YH M&8549-YH Cache Duatu 'POS 4 X

Substiture

W hen reading this text to gain an understanding of an MBox without a cache, as implemented in the

DECsystem-2040, simply disregard any reference to checking the cache in the cache control decision

path and any reference to MB and Cache Clearer (CCA) requests. Even though the cache is not

implemented (six boards which include four data boards, one cache address board, and one cache

extension board), the cache control logic, which is contained on three boards, remains and memory

read. write requests are executed as if the EBox issued a request to bypass the cache; that is, one-word

read /write operations will be executed. The cache control signals that would interface with the six

cache boards are terminated in substitution boards.

The pager is a high-speed, 512-word, set-associative automatic buffer memory where physical page

addresses and page descriptor keys are stored. It serves as a high-speed extension of the page table

portions of the user and executive process tables (UPTs and EPT) (KI paging) or the page table

pointed to by entries in the UPTs and EPT (KL paging). When the EBox issues a request for paged

memory, the MBox automatically checks the contents of the pager to see if it contains a valid physical

page address. If there is a valid address, it simply concatenates the entry with the low-order nine bits of

the virtual address (Q-WORD and WORD No.). This address is then used to look in the cache and, if

necessary, issue a core request. If the pager does not contain a valid physical page address for K1

paging, the MBox automatically issues a core read cycle to refill the hardware page table from the UPT

or EPT. Since four words are typically fetched at a time and since the process table contains two

physical page address entries per word, eight page table entries will be fetched and moved to the Pager

at a time. Consequently, a page refill cycle will be required only when the program addresses pass

through the boundary of every eighth page. For KL paging, the EBox executes the page refill

operation.

The cache is a high-speed, 2048-word, multiple set-associative automatic data buffer memory where
instructions and data are stored and maintained as the EBox issues requests for memory. It serves a

high-speed extension of core memory. When the EBox issues a memory request, the MBox fetches a 4-
word block (quadword) from core, transfers the requested word to the EBox, and stores the words in

the cache (refills the cache). Once instructions and data have been moved from core to the cache, the

EBox can fetch instructions and operands much faster via the cache on subsequent references, sincea

time-consuming core cycle will not have to be executed. By fetching 4-word blocks instead of single
words from memory, and due to the principle that the program may need the next sequential word or

words in the program, results in what is referred to as having the ability to “look ahead.” Another

characteristic of programs is to execute the same instructions many times as in iterative loops. In this
situation, the cache is particularly effective because once the instructions and operands are resident in

the cache. further references to core will not be required in executing the code comprising the loops.

MBox/-4

For write operations, the MBox writes the word directly into the cache instead of core. Write oper-
ations to core are initiated only when core needs to be updated. This feature has the effect of con-
serving core cycles while a user program is running.

The channel 1/0 processor is a multiplexed channel controller that can handle up to eight simultane-
ous high-speed block transfers without program intervention. After being started by a Massbus con-
troller, the channel 1/O processor executes the block transfer under the control ofa channel command
list that is stored in physical memory. The channel 1/O processor employs a set of random access
memories (RAMs) for storing control and status bits, maintaining the channel command list pointer
(CLP) and the channel command word (CCW), and buffering the data.

Besides the functional elements introduced above, the MBox contains several autonomous control
elements to execute operations and maintain order. The controls are:

a. Cache Control

b. Channel Control

¢. MB Control

d. Core Control

e. Cache Clearer Control

These controls operate autonomously in that each can run independent of the other until the requested
operation is completed. Requests are issued by the EBox, the CBus, or by the controls themselves. This
control structure has the effect of compressing time in that several operations can be going on at the
same time.

On a priority basis, the MBox grants and executes all memory requests made by the EBox and up to
cight high-speed multiplexed data channels. The MBox will execute a request whenever the request is
made, unless it is busy executing a previous request. Once a request is granted, the MBox can remain
busy for a number of clock ticks. To ensure the channels adequate service, the EBox is prevented from
getting the next core memory cycle if a channel has requested service in the meantime. If channel
requests are backed up, the channels will continue to get the available core cycles. Although it is not
considered to be its main function, the cache also affords the channels more available core cycles than
would otherwise be possible.

The cache is included in the MBox to provide the EBox with a high-speed buffer memory for instruc-
tions and operands (Figures 1-2 and 1-3). The access speed of this memory is a function of the machine
clock (160 ns at 25 MHz and 133 ns at 30 MHz). As the EBox makes requests for instructions and
operands, memory cycles are granted by the MBox and the cache is filled up four words at a time. Data
is transferred from core to the cache via the four MBs. Considering that it is very likely that the EBox
will request the next consecutive word in a string, the word will already be in the cache and, therefore,
will be available to the EBox sooner, since it will come from the cache rather than from core. When the
EBox makes a request for a word that is not already in the cache, the MBox will grant another core
cycle to place four more words in the cache. To identify each quadword group, the cache contains a
directory that stores the physical page number of the quadword (ADR). The directory also contains
locations for the purpose of identifying which words are valid (VAL bit) and which words were written
by the EBox (WR bits). As the cache is filled with instructions and operands, the associated locations
of the directory are updated to specify the physical page address (ADR) of the quadword and to
specily which words were fetched from core (VAL bits). Words that have been written into the cache
by the EBox are identified by updating directory address, VAL bits, and WR bits, accordingly, so that
they can be moved back to core before they are supplanted.

NOTE

If the cache is not implemented in the MBox, EBox
requests are serviced by transferring a single word

to/from core memory.

MBox/1-5

SEL 1-2-4
SCANNER

-
cLocK

CHANNEL CONTROL RAW AND BUFFERS

0 CH CH CH CH CH cH CcH CH DATA DATA
BUF BUF BUF BUF 8UF BUF BUF BUF c

15
[

MEM MEM MEN MEM WEM MEM WMEM MEM u
PTR PTR PTR PTR PTR PTR PTR PTR s

- . | PTR |]
controL | cr-mB LoDATRgl ACT [CONTR] ACT ICONTR 2CT 1cONTR| ACT |cONTR| ACT |CONTR| ACT |CONTR| ACT |CONTR} ACT ICONTR CONTROL CBUS

INTERFACE o1 1 BITS | CNT I BITS | CNT | BITS | CNT | BITS | CNT | BITS | CNT | BITS CNT | BITS | CNT | BITS INTERFACE
CH CH CH CH cH CH] cH
PTR PTR PTR PTR PTR PTR PTR PTR

A ! CLP cLP P cLP cLP cLP cp cLp HANNEL ADDRESS

ADORESS W BUF Gew Bur|—{{cew BuF}-1—{ccw BuFj——{cow Bur) ——————— e e fe—CONTROL o
s of we T aor| wc [abR| wc | AOR| wC | 40R WC 1 apR 1 WC | aDR | wC | ADR | WC | ADR i
8 | a 6 T
U CONTROL ° 2 ® 5 1
s CONTROL COMTROL |

!
|

CONTROL CH CONTROL CONTROL i
2

[
cONTROL |

i "l
[

DATA DATA ’ i
{CONTROL

i

o}t) ¥ CONTROL

CORE CONTRD: CONTRGL

AND M8 e CSH CONTROL
.

‘ CONTROL :
‘,_—’

3
T

H CONTROL CONTROL CONTROL 1 |
o] | 2 3 ¢

° ADDRESS boof e T 1 2 OREE) IIEREE 2 — =T 3]0] ' | 2. 3 \—_L_—
DATA) ! : ! DATA { DATA

L omipem— DATA DATA DATA . oaTA | ; ‘
B 4 ¢ i

\} CONFTROL! CsH-we 27 ‘ i - ; ; - | _J"'“'I 1 | wBox- €
[INTERFACE [+ i T . TM7 “1 e HE 7

DIRECTORY 8 RECTORY DIRECTORY OIRECTCRY 1 1 ansc s ! SwYSICAL E‘NTERmE CONTROL M
— v W ADR . W AOR VW ADR oW ADR = e oy : PAGE ; \

27 : L L .._.1_|__..__.._|_--_-..|-m5| i N

NOT VA, ‘ TAT-E | : = i ' ee—— I
WMETCH . Vi i i : CLOCK r.Fz

-——Jl ~ALME RECENCY ‘ ‘ REF'L. ADR |--_...I 1] i) ' 2
_J

1 4

¥ 3 1 —L—‘L—‘L\ 1
P-vS.CA_ ADD

: —_—

-....---......_......-_...L_....__...-...._____-.LS.;L.‘:_‘.ESE...-.._...._.._...L....__..--.._..q..-__...4
bua L o g o e LALTUAL ADORESS
S ...# 1

: [

PAGE TABLE -; :

Ofa P lpuysicalL pe=
DATA MlPlS {P?)GE r . | GATA

ADDRESS

— ICle g -
J

i VIRTUAL T
E SECT - v e _PTWRITE
7 ADR A

127 e

i

Figure 1-2 MBox RAM Structures,

Interfaces and Controls, Block Diagram

MBox/i-6

G Tese

CHAN TO MEM CHAN REQCHAN EPT i 2 RA . o 242
RAM CYC

REQUEST MBCYC CHAN
Logic RROR R ., conTRREQw0 R$A0_Y CLR CCWF MB CYC CBUS REQ i

REQUEST
REQCTA =0 P-4 cve | . o PEQUESY| REQCTR 1 ’ MEM STORE READY IN READYi

DATA |__REAQY
i

LAST WORD IN
PTR OiF

REQUESTi AF MEN CHAR RRROR IN SERUENCER ;
:

Fi- ACT FLS REQ POINTER POINTER ja—CTOM ; |ERROR|: fo—— Rau 5 Tcu(0ACT i. CTR|
i -MB RiP we

RAM

i cHAN =TM8 CYC RIP Al RAM DR [CONTROL|, RAM A RAM SELECTOR: . RAM ADDRESS AND
MEM

cLoCK
PTR

I
xACTION i CONTR SEL L cCOUNTER : cve re4e FLO[R H

RAM i CTOM CHO-7 CTOM i g CTCM tsJ

. IRACT CTR T store | TM' l_ CHO-7 STORE STORE
b ReBUESTADR DONE INTR HO-7 INTR UlMEMORY COWFEN sn.:r INTR PRIORITY cuz 7 501?::1 INTR SCANNER D?::TCMB-7 ACT FLG

ACTFLGEN -CCWB-7 MEM STOR REOuEsT MEM START EN RESEY INTR NETWORK | CHO-7 RESET INTR | l, RESET |

CHAY Den E | aoomess mixer J—— - CONTRI-2-4 ol ADDRESS MIXER CBUS REG E
MB SEL

START MEM

— CHA 34 -3 CCW BUF CCW BUF 02- i3 IN__CRA 14-35 CHAN BUF
D@@-35A ;. lcraN cYe

—M8 HOLD

cix

cixCHAN TO MEM 1 A

¥ E£BOX REQ QUALIFIERS
s

RD FOUND - ANY WR MATCH - ANY VALID MATCH CSH EBOX TO IN8 .
CSH_EBOX RETRY REQ

U |, DfR-35 o

CACHES TiME MB (S:ON“]’EROL CLK EBOX SYNC DSTATE ”‘l—r-’ TA[X [— N MBOX RESP INAl svaRt L MB SEL -2
CCA REQN o 3 MBP-3 HOLD IN i

) 3 MBIN SEL I-2-4| TIME
cHa CHAN ok]S jeDATAVALID | R

STATE
14-33 EPT REFILL CYC TYPE cHaN

L] e3 -3
FAIL HOLD pJ“EOCORE - .

PRIORITY
s |, RDRQ CoReo o WD -3 vaL DaTA PMA 27-35

PMA NE TWORK LK SBOX REC1 |,WRRG ICONTROL CACHE
LECT (REQ GRANT) 3. WD@-3 WR

BREQ ’
| ERROR] [*—cveLe

TM
DiAg

VMA 13-35

1
ADR 14-35 PMA [4-35

PMA
EBOX REQ GQUALIFIERS N

Tpmaa-3s R-UBR] I
[CYCLE PMA 14-35 ERA

FERROR ADR REG? PTie-26 | ACORESS AGE FAIL HOLD A
CACHE PF_EBOX MANDLE ¢
(PAGER)

e _U-PF HOLD I-5-P-C [? GLK PT DIR/PTWRl EBUS REG I I ARGE-35
CACHE DATA 5838

EBUS DOF-35

L DIAG READ FUNCT (16X-17X)
DIAG REG

;

MB - CHAN ~ EBOX -REFILL - WRITEBACK - CCA CYC l CACHE I REFILL

DIA EN REFILL RAM WR

_DIAG LOAD FUNGT 047 7 EBOX |

10. 437

Figure 1-3 MBox Functional Block Diagram

MBox/1-7

Channels are granied core cycles it core is not busy or after a core cycle that is started by the EBox is

done. The EBox can get core cvcles only if the channels do not have a request pending. This feature is

incorporated into the MBox to minimize potential data overruns on channel transfers. Channel data is

accumulated by 16-word CH buffers. Each channel has the use of such a buffer to smooth the transfer

of data between the CBus and the MBs. Only 15 locations in each CH buffer are used. This is because a

4-bit code is used to keep track of the buffer contents. On channel writes (controller to memory), four
words mayv have to be accumulated before a core write cycle can be requested; on channel reads

(memory to controller), four empty locations may be needed before a core read cycle can be requested.

As words are moved in and out of the CH buffers, the number of words remaining for channel writes

and the number of empty locations remaining for channel reads can be computed by comparing the

channel pointer (CH PTR) with the memory pointer (MEM PTR). The CH PTR is advanced every

time a word is moved via the CBus into or out of the CH buffer. The MEM PTR is advanced every

time a group of words (maximum of four) is moved into or out of the CH buffer as a result of a request

for a core cyvcle. The WC and ADR in the CCW BUF are also updated every time a core cycle is

completed. The Action Count (ACT CNT) specifies how many words are to be moved to or from core
when a core cycle is started. This count is a function of the Word Count (WC) and Address (ADR)

ctored in the CCW buffer. Besides keeping track of all the words to be transferred, the channels must

keep track of how many words are to be moved to or from core for a given core cycle, because core

control is designed to transfer four words (quadword defined by all but bits 34 and 35 of the address) at

a time and because the starting address and WC may be such that the first or last word to be trans-

ferred may not fall on the quadword boundary of the quadword group. Therefore, it is possible that

the first and last core cycle will have to transfer less than four words. Less than four words must also be

transferred when fetching CCWs and storing status. In addition to holding the WC and ADR, the

CCW BUF also holds the channel CLP. As data is moved to or from core, the WC is decremented by

the value in the ACT CNT to keep track of the number of words. When the WC goes to zero, the CLP

is used to fetch the next CCW.
-

Besides granting memory cycles to the EBox and to the channels, the MBox assembles the desired

physical address to accommodate the type of request. All addresses that may be needed are made
qvailable to the PMA at all times. Then, depending on the type of request the MBox granted, the PMA

is controlled to select the desired address mixture. The PMA gets the entire virtual address from the

EBox virtual memory address register (VMA), the physical page address from the page table, the

physical page address from the cache directory, and the physical channel address from the CCW BUF,

In addition. the PMA has access to the User Base Register (UBR), Executive Base Register (EBR), and

the Cache Clearer Address register (CCA), which are loaded at some point with an appropriate

address from the VM A, The page table is filled as the EBox makes paged requests for words for which

the page table has no valid physical page address. A page refill mechanism is employed to automat-

icallv fetch page table entries from one of the core process tables and write them into the page table (K1

mode) or to alternately inform the EBox that it must perform a page refill operation and write the

phvsical page address into the page table (KL mode).

1.2 PAGER

The pager is a high-speed, set-associative, automatic buffer memory that holds the mapping informa-

tion from the process tables (page tables) in main memory.

User programs reference instructions and data via virtual (or logical) addresses. These addresses are

not absolute (physical core addresses) since any given page can reside anywhere in core when the

program is running. The monitor determines where the entire program will reside and also, if a con-

tiguous segment is not available, it will assign core on a page-by-page basis. Therefore, since user

programs are allocated core dynamically, the transformation from virtual address to physical address

must also be performed dynamically. As the monitor assigns core to a user program, the user process

table and associated page tables are created to specify where in physical core the user program resides.

MBoex/1-8

BASE REGiSTERS
CORE PROCESS TABLES

00 13 194 26 27 As

w7 e L —i G EBR A, . UPT

EPT

00 3 17 18 2627 35
VMA V2777777 0 | PAacE | e]

HARDWARE
HARDWAREPT DIR
PAGE TABLE

00 13 14 I 26 27 33 35
LNy, PAGE | _Q-worD [wD]

Figure 1-4 KI Paging Scheme (User and Exec Mode)

This information is specified on a page-by-page basis. Then, when a given user program is given timeto run by the scheduler, paging data is transferred from the user process table and associated pagetables to the hardware tables in the pager (Figures 1-4 and 1-5). The hardware tables include a pagetable and a directory. The page table contains 512 locations to accommodate translation requirementsfor all 512 pages ofa section. The page table is logically divided into sets of four, which are identifiedby virtual section address entries in the 128-location directory. Both the page table and the directoryare addressed by the virtual page address to store and retrieve translation entries. Consequently, thisstructure of the pager facilitates maintaining translation information for all 512 pages from any sec-tion. The pager may contain a mixture of pages from several sections of both the user and executiveaddress space.

used (Subsection 3.2).

When a given user program runs out of time, all entries in the hardware tables are invalidated bysetting the NOT VALID bits in the directory table and the procedure is then repeated for the nextscheduled program.

The pager transforms the virtual page address into a physical page address and checks the page accesskeys every time the EBox makes a paged read or write request.

MBox/1-9

TPT 14-26€

ADR 25-26_ Sg% Mix _ \

0 | 2 3

DIRECTORY | 1 | [] [l
O ‘l | ' T 1

e { I] 1 R

VMA ADR ' i ; ‘
126 | 8-24 | | L |

- ui N A : A | A A
d: VIRTUAL |V W | PHYS W PHYS W PHYS W PHYS
E| ADR A | P ADR P ACR P ADR P ADR
Bl13-17 L S 14 - 26 sl 14-26 S 14-26 S 14-26

| c C C c
- D

127 I

_._JT PAGE TABLE

ADR 13-17

VMA USER H/\ PT MATCH

12 13 17 18 26 27

VMAWW SECT| PAGE | LINE
10-1461

Figure 1-5 Pager Structure

The transformation, essentially, is the replacement of the virtual section and page address with the
physical page address. Both tables are automatically filled as virtual addresses are referenced by the

user program. These entries are then used to determine if the entries are valid, and if so, to use the
desired entry (addressed entry) as a replacement for the virtual section and page number.

[f the pager does not contain a valid entry, one of two courses of action can take place. For KI paging,

the M Box starts a page refill cycle to fetch four words (8 entries) from the process table and then retries
the request. If, after refilling the page table, the request cannot be honored because of the state of the
access keys, the EBox is informed that a page fail condition occurred. The EBox must then take an

alternate course of action and retry the request. For KL paging, the MBox clears the addressed page
table location and informs the EBox that a page fail condition occurred. The EBox must then calculate

the physical page address, write the address into the page table, and retry the request (Subsection 3.2).

1.3 CACHE

The cache is a high-speed, multiple set-associative, automatic buffer memory. This buffer serves as a

high-speed extension of main memory to hold some selection of words from the main (core) memory

svstem to reduce access time and to cut the percentage of available memory cycles needed by the EBox.

MBox/1-10

Besides reducing the memory access time, this benefits the channels in that they can get a greater
percentage of available memory cycles, thereby minimizing possible data overruns. The basic address-
able clement of core memory is a 36-bit unit called a word. The memory address mechanism generates
a 22-bit physical memory address allowing for up to 22 words (4 million) of main memory (Figure 1-
6). Consequently, main memory can be considered to be a string of words as shown in Figure 1-7.

Core memory can also be viewed as a 2-dimensional array as shown in Figure 1-8.

%
36 BIT WORD Y

////////7/ 7 WORD
7 %,

00 13 14
3

‘O rad

Figure 1-6 Address Format for Linear Address Space

{ (-
{

)
]

5 e
00 Ot 02 03 04 05 06 1022 1023 1024 1025 22224

10- 46l

Figure 1-7 Linear Address Space Representation

PAGE

0 1 2 3 q 5 6 81849 8190 8191
Y L

WORD 4WORD
0 <

//O A pi 1/12 . 1
| 'WORD

513
Z —

2

3

LINE 49

'\v —t - P Ry

509

510

511

TC 1464

Figure 1-8 Two-Dimensional Address Representation

MBox/I1-11

To complement the two-dimensional address space as shown in Figure 1-8, the 22-bit address is inter-

preted as a 13-bit Page number and a 9-bit Line number, as shown in Figure 1-9. For example, word

313 is a word in Page 1. Line 1. This is the convention that is used in the KI10.

Another way of looking at core memory is somewhat 3-dimensional as shown in Figure 1-10.

In this perspective, memory is logically divided into pages of 512 words that are divided into 128 sets of
rour words. A line then contains four words from each page. The 22-bit address is interpreted as a 13-

bit page number, a 7-bit quadword (Q-Word) number. and a 2-bit word number, as shown in Figure 1-

I

It is this perspective of main memory that should be kept in mind when reading about the cache.

- 22 BITS >

e 13 -le 9]

////////?%////%///é/////// PAGE NO. LINE NO.
077 00000
00 13 14 26 27 35

: 10-146%

Figure 1-9 Address Format for Two-Dimensional Address Space

PAGE

0 1 2 3 a 8189 8190 8191

i |

' ; |
l t

2
.

’ | - '

— T ‘ijfid\“fi'flfl T fljfl/fl —T T

f— =
126 | [:

27 | | ! !

©O12301 230123012301 23 012 301230123

WORD 10-1466

Figure 1-10 Pseudo Three-Dimensional Address Space Representation

MBox/1-12

//////////////////////// """R ’*‘“-***

Figure 1-11 Address Format for Pseudo Three-Dimensional Address Space

The cache consists of a data buffer for storing instructions and operands, and a directory buffer for
storing the physical memory address and status (VALID and WRITTEN bits) information (Figures 1-
12 and 1-13). The contents of the Directory buffer identify the contents of the data buffer. The cache
data buffer contains 2048 locations, each of which is associated with a valid and a written bit location
in the directory. These 2048 word data and status bit locations are divided into 512 sets of four, which

are directly associated with corresponding address locations in the directory. In addition, the 512 sets
of data and directory locations are divided further into sets of 128, resulting in four cache quarters

(pages). This results in a cache structure similar to the pseudo 3-dimensional structure described pre-
viously, where the least significant nine bits of the memory address, which are not subject to paging,

can be used to address four blocks (a cache line) of the cache simultaneously. If a copy of a block is
made from main memory, it is always and only stored in one of the four corresponding (addressed)
blocks of the data buffer. The actual block to be used is specified by the contents of a use table. This
table maintains a record of the order in which the four addressed cache blocks are used and maintains
one entry for each of the 128 lines in the cache. The contents of the use table are employed to select the

block that contains the Least Recently Used (LRU) data for storing the new data; thereby, the LRU

data is always supplanted. Besides writing a block of four words into the cache data buffer, the associ-

ated directory locations are also updated to specify the valid words and the physical address of the data

block. The written bits in the cache directory are not set when data is moved from memory to the cache

but are set only when the EBox writes into the cache. When words are written into the cache by the
- EBox, the address and the valid bit in the directory are also updated.

NOTE

Write through to memory is not implemented to con-

serve core cycles while the user program is running.

The convention that a block from main memory is always stored in the LRU block ofthe correspond-
ing data buffer line ensures that a given line in the data buffer will never contain more than one
quadword from a given page. Therefore, a conflict (more than one address in one line matching) will
never occur when comparing the address with the contents of the directory to determine if the desired
word is in the data buffer. This feature of refilling the cache also tends to keep instructions and
operands that are used more frequently stored in the cache for a longer period of time.

At any given time the cache may contain up to 512 quadwords (2048 words). The distribution may
range from four complete pages, from anywhere in core, to four words from every page of any section
of core. A section of core contains 512 pages. Every time the EBox makes a paged request for which
the page test was OK (or an unpaged request) to read or write a word, the cache directory is checked to
see if a record exists for the quadword in which the requested word is located. If an address matches

. and at least one valid bit in that block is set, then the cache has a record of the quadword.

MBox/1-13

PAGE

° 1 2 3 508 509 510 511

H 1

0) i

(|1
‘

I\

3 /

Q-wORD [

t ¢ | — +
126 f { j)\

t t y
127 : , i (‘

L 1 h - i H -

WORD—» 0 { 2 3 01 2 3 01 230123 012 301423012301 2

CORE MEMORY

({ONE SECTION)

—

o1 |

' .

5 E o1
2l o x

= x
L 2. E.

3

4

Q-WORD

00 13 14 26 27 33 3435

I !

PMAW PAGE O -WORD Lfl 123
124

125

126

127 ;
|

USE TABLE

Figure 1-12 Logical Structure of Core

and Cache Memory

MBox/1-14

123

i24

125

126

127

123

124

125

126

127

e

b .

! o : 123

124

I ' 126

i

‘ 127

L . i

01 23 012301230123

CACHE DATA BUFFER

123

124

ied

126

b H

01 230123 012301273

CACHE VALID BITS

(DIRECTORY)

CACHE ADDRESS BUFFER

(DIRECTORY)

0 1 2 3

0 t2301 2301230123

CACHE WRITTEN BITS

(DIRECTORY)

10-1468

CACHE DATA

I 00 -~ 35

ADR 34-35 seL / i x __EN

0 | 2 3

DIRECTORY | 1 1T T |
0 0

PAGE n WD O WD | WD 2 WD 3

PMA | ADR

14-35) 27-33 v v v v

A A A A

fi?,;s L DATA L L L DATA
14~ 26 00-35 BUFFER

W W W w

R R R R

127 127

L\
\._\ "

ADR 14 - 26 ~ CSH MATCH A CSH VALID MATCH _
VU -

NOTE: 00 13 14 26 27 3334 35

PART

R YHE CAGHE DIRECTORYo oAbty PAR PMA L) Pace | a-woro [wo|
1014869

Figure 1-13 Cache Structure (Detail A)

MBox/1-15

SMA 14-35 |

CACHE DATA OC - 33

—
—
f
-

f
J

ADR 34-35 SEL CSH G mix _EN
8

T T T

| | Z* |
L6EeTOR Y]] VT o 1

° | i I Hl i
| | | L R ;

PAGE n TR WO | WO 2 WD 3 :

ADR i | [

7o S v . oS
ouys i a | ' al CSHO
ADR . ; OATa L DATA Li | DATA Li dATa DATA

14 - 26 i 00-35 ; 00 -35 Pl 00-35 I 00-38 BUFFER
' W |w lwi il

R’ R iR \F

' |
i i |

27 | i s ;

: P

KDR 14- 25 _f!\ CSH O MATCH r'\,\ CSk C VALID MATCH ;(=} ——{ A}

ADR 34-35 SEL / CSH 2 Mix EN
i
i

1 I ! i I
of 3 2 3

! | i

CSH 2 | i I 1 f 3 T] :
C.RECTORY ! i : i [;

o e |

il [l | L
PAGE n wo 0 wD 1 WD 2 wh 3 ,

ADR
27-33 oy v v

PHYS A A A
ADR L DATA L DATA L DATA L DATA DATA

z oc - 00-35 00-3% 00-35 |BUFFER
14 - 26 w w

] R R R

12T

CSH 2 MATCH CSH 2 VALID MATCH

¥

i
i
|
!

ADR 14-26 é_

Figure 1-13 Cache Structure (Detail B)

MBox/1-16

i

ADR 34 -35— 2 ———-7/ CSH 1 Mix Y»“-’F}——f—- RN L E 4
' , T ,, ‘
| 1 | | |
: 0 ' 2{ 31

| r f 1 } r CSH
| i : DIRECTORY
‘ T T B

! Ml . ! ! —
: wh 0 WD i WD 2 W33 PAGE r

T T 1

[Pl |

| i - i ADR! ; ! i 27-33

| vi v vi v a—
LoCsHI AL al Al Al ouvs

i DATA|L: | DaTA L SATA L 2472 _ DATA aom

i R} | ' 00-35 : 0G-3%5 2015 20-35 14- 26
B w w

Kl R a

i o L l 127

! ! |

: L \] 1
! ,

% CSH | VALID MATCH /{\4 CSH 1 MATCH /{\4 ADR 14-26
A A

|
EN_/ CSH 3 MiX __SEL ADR 34 -35

et - r . } CSH 3
i i DIRECTORY

H A

I] i |
! | t

. 1] !
wD O WD | WD 2 WD 3 PAGE n

ADR
27-33

Y v v vi fe——

A A A ALy PHYS
DATA|L DATA L DATA L DATA L | pama ADR

BUFFER 00-38 00-35 00-35 i 00-38 - 26
w w w W

R R R R

127

CSH 3 MATCH ADR 14 -26
CSH 3 VALID MATCH

PMA 14-35

10- 1470

When set, the valid bits identify those words that were placed in the cache due to a cache refill oper-
ation or in response to an EBox write request. A cache refill operation is initiated by the MBox cache
control in response to an EBox read request if the requested word is not found in the cache. The
written bits, when set, identify those words that were placed in the cache in response to an EBox write
request. The words that are written into the cache by the EBox are identified so that the core copy can
be updated when necessary.

If the valid bit for the requested word (EBox read request) is set and the directory address matches the
given address, the word is in the cache and the addressed location is simply read.

- If one or more words ofa quadword group are valid, but the requested word is not valid, a cache refill
operation is initiated to fetch all non-valid words of the quadword group. The word requested by the
EBox will come in first to be available for the EBox and the remaining words will come in from core in
ascending modulo four order. Besides making the first word available to the EBox, the words are
moved into the MBs and then into the cache. As each word is placed in the cache, the valid bit for that
word is set to update the cache directory record.

If the cache does not have a record of the quadword (address does not match and/or no valid bits are
set) the LRU cache block is checked to see if any written bits are set. If none of the written bits are set,
then the block is available for use. In the case of an EBox write request, the addressed word in the
selected block is simply written, and the corresponding directory address, valid bit, and written bit
locations are updated. In the case of an EBox read request, the page address is recorded in the cache
directory and a core read cycle is initiated to fetch the desired word first and the three other words of
the quadword group, in ascending modulo four order, as described before. As the words are moved
from the MB to the cache, the corresponding valid bits are set to update the directory.

If one or more written bits are set, the core copy must be updated before the LRU cache block can be
used. Core is updated by initiating a writeback cycle. This cycle causes all written words in the LRU
block to be moved to the MBs and then to core. As each word is moved to the respective MB, the
written bit for the word is cleared. After all words are on their way to core, the EBox request is retried.
This time, no written bits will be set, permitting this block to be used for the current request, as
described before (Subsection 3.3).

1.4 CACHE CONTROL

The cache control executes requests initiated by the EBox and the channel control. Both the EBox and
the channel control can issue data read and data write requests to the cache control. The EBox can also
request to load or read internal MBox registers, check if a given page is writable, map the virtual
address, and sweep the cache.

Data read and write requests from the EBox and from the channel control cause the cache control to

enter a specific cache cycle and step through a set of time states. (The relevant time-state-set varies with

the cycle.) The cache control can execute four major and two minor cache cycles (Table 1-2).

MBox/1-17

Table 1-2 Cache Cycle Types

Cycle Major Minor

CSH FBOX X

CSH PAGE REFILL X

CSH WRITEBACK X

CSH MB X

CSH CCA X

CSH CHAN X

All EBox requests are serviced by the MBox by starting a cache EBox cycle. As the cache control
advances through the relevant states in response to an EBox request the page table (if paged reference)
and cache directory are checked for valid entries. Page table entries are valid when the USER bit and
section address matches the EBOX USER signal and the virtual section address presented by the EBox
and the INVAL bit in the table is cleared. Cache entries are valid if the address of the requested word is

found and the valid bit is set in the cache directory. If a valid entry is found for an EBox request, the

data is simply transferred between the cache and the Arithmetic Register (AR). If a valid entry is not
found and the EBox requested to read a word, the cache control initiates a core read cycle to fetch the

desired word along with adjacent words of the quadword group. For EBox write requests, the cache
control writes the word into the cache block that has a record of one quadword or into the least

recently used cache block; no core cycle is started. Words coming in from core are placed into the MBs
by the core and MB controls and then are individually moved into the cache by the cache and MB
controls. The first word, which will be the word the EBox requested, is placed on cache data lines so

that the EBox can take it. Words are written back into core only when the EBox makes a request to

read or write a word (except for cache sweep) and a valid entry is not found but the written bit is set.

Having the written bit set means that the corresponding data is more up to date than the core copy

and, therefore, core must be validated before that cache location can be used for the pending request.

To write words back to core, the cache and MB controls move the words into the MBs and start a core
write cycle after the first word is placed into an MB.

The channel control does not write into the cache, but moves the words to be written from the channel

buffer to the MBs and causes the cache control to invalidate any valid entries in the cache. On channel
writes, the valid entries in the cache (if any) are invalidated because it is defined that data coming in

from mass storage is more up to date (or is another process) than any data that may still be in core or

in the cache. Therefore, on channel write requests, the cache control always initiates a core write cycle.

On channel reads, any valid entries in the cache will be moved into the MBs and a core read cycle will
be initiated for the remaining words requested, if any. The channel control then moves the words from
the MBs to the channel buffer (Subsection 3.3).

MBox/1-18

1.5 CHANNELS

The channel 1/0 processor (channel contrely, which 1s an integral part of the storage controller

(MBox), is time-divison multiplexed to provide service for up to eight separate synchronous channel

paths simultaneously. A typical disk channel consists of Main Memory (M A20), the channel control in

the MBox, one RH20 Massbus Controller, and one of eight mass storage drives. Each mass storage

drive, implemented on a given channel, is connected to the same RH20 Massbus Controller. The

controller is connected to the EBox via the asynchronous EBus, which allows the EBox to issue control

and data transfer commands to the controller and the associated drives. The controller is also con-

nected to the MBox via the CBus. This path is the synchronous data path, which allows the controller

to access memory via the M Box channel control without having to utilize the EBus and the EBox. This

configuration frees the EBox to perform computation and execute direct 1/O operations to other

controllers and devices while the channels are executing a data block transfer. Memory fetch and store

operations can also be performed by the EBox while the channels are busy executing a block transfer.

provided the cache is implemented. Otherwise, the EBox must compete with the channels for core

cvcles.

Each block transfer between main memory and a mass storage drive must be initiated by the EBox.

This 1s done by the EBox (under program control) by setting up the channel command listin main

memory, and by execcuting DATAO instructions to transfer one or more command words and other

control information to a specific controller. The channel command list serves as a control program for

exccuting the block transfer to/from a series of contiguous segments (buffers) of main memory. The

control information and commands specify one particular drive of those connected to the controller, a

physical starting block address, a block count, a command function (read or write) ¢ode, and other

control bits such as reset CLP and/or store status, if required.

As soon as the block address and command are transferred to the drive, which is done automatically as

soon as the drive 1s not busy, the controller informs both the channel control and the drive to start the

block transfer. To get ready, the channel control fetches the first word in the channel command list. If

the block transfer is a channel read operation (NOT CTOM), which is specified by the RH20, the

channel control also fetches at least two words of data from the locations specified by the address field

of the CCW. This is done because the controller has a two-word data buffer for which words will be

requested as soon as the channel control is ready. The drive, on the other hand, will remain dormant

until it reaches the specified block address. When the block is reached, the drive, the controller, and the

channel control will operate together under the control of the channel command list and the block

counter to transfer the block(s) of data. Both the controller and the channel control contain data

buffers to normalize the transfer speeds ofthe different components in the channel path. As the buffers

are filled/emptied, additional requests will be made via the buses and interfaces in the path to keep the

data moving until the entire block transfer is done. The transfer is done when the channel control

fetches a HALT CCW, or when it is executing a LAST DATA XFER CCW and the WC field of that

"CCW has reached zero and when the block counter in the controller overflows.

The RH20 controller maintains and updates the block count as the block transfer is executed.Up to

1024 blocks can be specified when the read/write command is issued by the EBox. When the block

count overflows, the RH20 interrupts the EBox to inform it that the transfer is done. The RH20 also

informs the channel control that the transfer is done.

The channel control logic maintains a status and CLP word and a CCW. These two words are kept in

the CCW BUF. To keep track of these words for all the channels, the CCW BUF contains two

locations for each of the eight possible channels. The format of the two channel command words is

given in Figure 1-14. The status/CLP word (relative location 1 in the CCW BUF) contains the status

of the channel and the so-called address (program counter or CLP) of the next CCW to be executed.

MBox/1-19

13 14 38

STATUS CLP

CrW

50 33 04 13 14 35

Figure 1-14 Channel Command Word Formats

The initial CCW is kept in the EPT. The status bits of word 1 are updated by the channel control when
the channel logs out, which occurs on an error condition, or when the block transfer is completed

(done) if a store operation was specified when the transfer was initiated by the EBox. The channel

control logs out by writing the appropriate status/CLP and CCW words into the preassigned EPT

locations.

The CCW word (relative tocation 0 in the CCW BUF) contains the current channel command word.

This word specifies the operation (instruction) the channel control is to perform. The word contains a

3-bit op code field that specifies one of the following six operations.

Op code 0 specifies a Halt operation.

Op code 24 specifies a Jump operation.

OP code 44 specifies a Forward Data Transfer operation.

Op code 55 specifies a Reverse Data Transfer operation.

Op code 64 specifies a Forward Last Data Transfer operation.

Op code 74 specifies a Reverse Last Data Transfer operation.e
l

e
BN
 o

 N
NS

ll
eg

After being started, the channel control will continue to fetch CCW until it gets a HALT CCWora

DATA TRANSFER CCW. In response to a HALT CCW, the channel control will simply halt and it

may cause the channel control to log out, if so specified, when the transfer was initiated. In response to

a4 JUMP. the channel control will simply fetch another CCW. The location of the next CCW is speci-

fied by the contents of the ADR field of the JUMP CCW. In response to a DATA TRANSFER CCW,

the channel control will transfer the number of words specified by the WC field from/to the starting

address specified by the ADR field.

1.6 CHANNEL CONTROL

The channel control continuously scans the RH20 Massbus Controllers to see if a data transfer is to be

started. executed. or terminated. A controller is allowed to transmit or receive control information (to

start or terminate a transfer) and data only after it is selected. A RAM is used by the channel control to

buffer the data. and to keep track of the channel status/CLP and CCW words of each channel. When a

controller starts a transfer, the RAM is initialized to remember the type of transfer the controller

requested. As data is transferred between the channel and the controller, the RAM is continually

updated to keep track of various parameters describing the status of the transfer. At the beginning and

at specific times throughout the transfer, the channel control will request to transfer data to or from

memory by initiating an MB request. These requests are made to:

d. Fetch a CCW

b, Transfer data to or from memory

¢. Store status

MBox/1-20

These requests are initiated by monitoring the contents of the RAM as a function of the scanner,

thereby monitoring the status of the selected channel and, when needed, issuing a request for that

channel. When an M B request is initiated, the channel control requests a cache cycle to check the cache

for any valid words, to move the data between the CH BUF and the MB, and to start a core cycle

(Subsection 3.8).

1.7 CACHE CLEARER CONTROL

The cache clearer control executes the cache sweep operation after the EBox executes the “Sweep”

instruction. The Sweep instruction is used in a program to validate core and/or invalidate the cache.

Core must be validated in the event of a power failure to prevent the loss of written data, before

initiating a channel read operation (1080/1090 external channels only), or when rescheduling a job to

another processor in a multiprocessor system. The cache will need to be invalidated when the system is

powered-up and after a channel write operation is executed (1080/1090 external channels only). When

powering the system up, this operation must be done after the cache refill RAM is loaded to initialize

the cache memory (Subsection 3.5).

1.8 MB CONTROL

The MB control moves data in and out of the four M Bs in response to gating functions from the cache

control, core control, or the channel control. It can move data out of the MBs while data is still being

moved into the MBs. The input and output operations are independent of each other to minimize the

transfer time (Subsection 3.6).

1.9 CORE CONTROL

The core control executes core read and write cycles in response to requests from the cache control and

the channel control. Up to four words, in any combination, can be requested by either control. The

number of words to be read or written depends on a number of conditions.

a. Read Request from Cache Control: Requests are made to read a single word or read those

words that are not in the cache. Bits 34 and 35 (LSB) of the SBus address specify which word

is to be fetched first. The remaining words will come back in ascending modulo four order.

As each word comes in, it is placed in the MB by the core and MB controls. Words that were

not in the cache are then written into the cache by the cache control.

b. Write Request from Cache Control: Requests are made to write a single word or write those

words that have been written in the cache by the EBox to make room in the cache or to

validate core. The written words in the cache are moved to the MBs by the cache and MB

controls and then written back to core by the core control.

c. Read and Write Requests from Channel Control: Requests are made to read or write one,

two, three, or four words depending on the current CCW address (ADR) and WC. A given

request is confined to those words that occupy the same quadword. That is, the quadword

boundary cannot be crossed during a request (Subsection 3.7).

MBox/1-21

SECTION 2

FUNCTIONAL DESCRIPTION

2.1 INTRODUCTION

This section contains a functional description of the MBox. Appropriate introductory and supportive
material is included at the beginning of this section and in each functional description subsection. The

following MBox functions are described in this section:

"EBox Requests

Channel Requests

CCA Requests

Core Requests

CBus Requestsc
o
o
g
e

[n addition, this section describes the error checking and reporting functions and the diagnostic regis-

ters implemented in the MBox.

Figure 2-1 illustrates the major functional elements of the MBox. The purpose of this drawing is to

support the functional descriptions contained in this section.

The major data and address paths and the individual controls introduced in the previous section are

shown in Figure 2-1 with some additional detail. Major interfaces are also shown in some detail.

The EBox is shown gutted in Figure 2-1 to provide a better functional perspective of the MBox in the

system.

The interfaces between the EBox and the MBox and between the channels and the cache are not buses,

but are functionally shown and described as such because their operation is similar to that of the

system buses.

As described before, the MBox serves as the storage controller for the EBox and for up to eight

optional integral data channels. Since there is logically only one SBus connected to core memory, the

EBox and the integral channels must share the bus in referencing memory. Therefore, one of the main

functions of the MBox is to allocate core cycles to the EBox and to the channels. This is done by

executing cache cycles on a priority basis. Cache cycles are executed by the cache control in response to

requests issued by the EBox and the channels. If the requested word(s) is not found in the cache, a core

read cycle is started. Core write cycles are always started in response to channel write requests. Core

write cycles are also started when the cache cycle control decides to write written words back to core.

Channels are assigned a higher priority than the EBox to minimize channel data overruns. When

neither the EBox nor the channels have a request pending, the cache clearer control can get a core cycle

if it has a request pending. After a core cycle is started, core will remain busy until all the requested

words have been transferred. This means that another core cycle cannot be initiated until the current

request is satisfied. In satisfying an EBox request, all but the first word of a quadword group coming in

from core will cause MB requests to be issued to request cache cycles for moving the words into the

cache.

MBox/2-1

<

N

Figure 2-1

Diagram (Sheet | of 2)

S
B
u
U
s

0

S
B
U
S

PAN x
C
H
A
N
 7

/
C
S
H

I
N
T
E
R
F
A
C
E

>
<

"%

E
/
M

I
N
T
E
R
F
A
C
E

M8 CH BUF 00-35/PAR

ACHE
[¢ 2 3

0| o]1]12z13lo]flz]3]o]112[3]0]f2]3]oD0OO-35/PAR CACHE DATA 00-35 D‘]" DA]" DAIT“ D‘LA)
M8 127 127

TM To1 2 3 0 ALl lll AL) ikkdI LA] nr II'I 0

i —— —¥V W ADR|V W ADR|V W ADR|V W ADR

127 m]m ninn m[m Labug 127 yMA
2733

PA14-35 WRITE MATCH VALID

CACHE WRITTEN ROFOUND
CHAN START MEM

CHAN MB SEL 1-2 /CHAN LOAD MB

MB 0-3 HOLD IN

CHAN REQ

CHAN WD 0-3 REQ

START A/B CHAN TO MEM
CHAN EPT

RQOC-3 CSH CHAN CYC
CHA 14 -35

MB 0-3RD RQ core LWR RG l CTOME _0AD f
CYCLE M3 > CACHE CYCLE ‘

CONTROL i AND P
WR RQ CONTROL ; CACHE CLEARER g

i CONTROLS } ~
BT VALIDA CORE | AR/CACHE DATA 09 35

WD 0-3 i Req IR 10-12 (AC)
COMING ; MB f

; ; £80X REQ

. ACKN A/8 ! ; REQ QUALIFIERS

i : EBOX SYNC
a T MBOX_RESP
1 T3 i

MEM START SET T | |

DIAG
{

MBOX ERROR PMA SEL CLOCK P
NXM ERROR b

ERROR (DATA) 4 Lo
: | ERROR | HOLD ERA ey b

ADR PAR ERROR LoGic p EBR \
PA 14-35 : PA 14-35 PHYSICAL MEMORY UBR |

! ADDRESS (PMA)} MIXER

LCA :

ADR PAR PARITY i \
GENERATOR PT14-26 |

AR PAGER

1 PHYSICAL l Tl [PrRYsicaL VMA 13-35
A|W{P|S|C | PaGE ADDRESS |A|W|P |S|C | PaGE ADDRESS259 I] (PT26-35) | I] (PT14-35] REQ QUALIFIERS

M8 0 o] VIRTUAL Al / X HA- USER IRTUAL SECTION ADDRESS |\ PAGE FAIL HOLD /EBOX PF HANDLE

P VMA13 -19)
255

€LOCK i T
-K1PAGING :

MODE i

l PF CODE EBUS D0OO-35
DIAG MEM RESET !

, DIAG Ml e

00 l 35
LOAD EBUS REG [

-t £BUS REGISTER FBUS AEG coner

PA 14~-35 J 00-15 DIAG FUNCTIONS

ERROR CLOCK

CODE DIAG MEM RESET

ERROR FLAGS/ ERROR CODE N ERROR FLAGS

.
.

The SBUS mciudes TTL/ECL irarsiators

MBox Functional Block

MBox2-2

o] a8 CH BUF 38

/\ MB CH BUF 00-35/PAR f J l l T, DOO-33-PAR
15 i |

0 i 3 CH BUF 5 6 7

CH ADR O-6 RAM REQ
suF |)| CH BUF WR

WR of [ACT_CNT[MEM PTRI CHPTR
STATUS AND CONTROL BITS

CHAN START MEM DATA

8 1 READY l_reQ CBUS REQUEST REQUEST
E’ CHAN MB SEL 1-2 CHAN LOAD M8 LAST CONTROL LOGIC READY

WORD51 MBO-3HOLDIN CCWwF EN 2 L 1 ERROR TRANSFER CONTROL LAST WORD
£ MEMORY - LoGIC ERROR *E4 CHAN REQ MB MB REQUEST 3 CONTROL
T CONTROL | REQ | QUEUE [ACT FLAGEN RAM

2in |, CHAN WD 0-3 REQ LOGIC ANG MEW J AND —| o4 a

Sl cuan romew CooTy |SSTOREEN A= I/OLOGIE —if agr {PmoRiTY | ao CHANNEL SEL o-7
b b T T AND WR| CONTROL [*7 SCANNERT |, CHAN EPT 5

RESETiCSH CHAN CYC
[I I CONTR STARTY

- = REQ | CONTROL REQUEST CTOM

op CCWBUF WR lcow BuF apRO-3 7 QUEUE I DONE
CODE R L

STORE
o

o 14 3 4 5 3 7
CHA 14-35 : CL i CLP i CLP ; CLP ! CLP i CLP i CLP 1o
e — CCW REG : WC - ADR | wC ADR wC ADR | WC | ADR ; WC | ADR | wC | ADR | wC | ADR | WC | ADR |1t
v 3 ‘ CCW BUF {7

/\ AR/CACHE DATA I _ /\
<+ EBOX

D00-35 .I
| o

IR10-12 (AC) |
!

, s i CLOCK
| {

l L PI15-7
| F

PAGE FAIL HOLD/ l l e~
EBOX PF HANDLE | | tsc5-3e .

- EBOX REQ .L FOG-02 x

o REQ QUALIFIERS §
DEMANG ea

ACKN 2w EBOX SYNC
@

- 'I:J MBOX RESP o | TRANEFER -

g —
RESET -

= VMA 13- 35S A '[PL1-7
y CONTROL .

I 200- 35

ERROR FLAGS
l

DIAG FUNCTION

DOO 3%

leCtoCk .___‘__1 s O frntars

DIAG STHIBE

| REMOVEDS 57aTys |
EBUS DOO-35 J DOC - 35

{/ L S — — By
#* The CBUS 00d EBUS inCludes

ECL /TTL TRANSLATORS ‘\/

Figure 2-1 MBox Functional Bluck

Diagram (Sheet 2 of 23

MBox 2.3

As core cycles are allocated to the EBox and the channels, the MBox also forms the correct physical

memory address. To this end, the MBox contains a number of address registers. The address registers

that are used in forming the address to service an EBox request can be loaded and read by the EBox.

2.2 CHANNEL RAM CYCLES ,

RAM cycles are executed by the channel control to keep the contents of the control RAM up to date

and to move data in and out of the CH BUF and the CCW BUF. RAM cycles are granted and

executed on a priority basis in response to CBus control and data requests, and in response to inter-

nallv generated MB requests. Accordingly, there are three major types of RAM cycles that can be

granted and executed. The types of RAM cycles and their order of priority are given in Table 2-1.

Table 2-1 Major Channel Control RAM Cycle Priorities

‘Request RAM Cycle Priority

CBUS REQUEST MM(TBI.!S RI:Q CYC !

CBUS START: CBUS CONTR CYC 2

RESET/DONL

MEMORY REQUEST MB CYC 3

2.2.1 CBus Request Cycle

CBus request cycles (Figure 2-2) are executed by the channel control in response to CBus requests from

the R H20 Massbus Controllers. These RAM cycles are executed to move 36-bit data words between

the CH BUF of the MBox channel control logic and the data buffers in the RH20 via the 36-bit CBus

data lines.

The controller, when asserting CBUS START, also asserts or negates CBUS CTOM to specify the

direction of the transfer. This information is stored in the channel control and is used by the channel

control to execute the block transfer correctly.

2.2.2 CBus Control Cycle

CBus control cycles are executed by the channel control in response to CBUS START, RESET, or

DONE from the RH20 Massbus Controllers. These RAM cycles are executed to initiate and terminate

data block transfers. Data block transfers are initiated by fetching the initial or next CCW. This
operation is started by an internally generated memory request. Data block transfers are terminated by
emptying the CH BUF and by clearing CBUS READY. A store operation to store the channel status
words (current CCW and status/CLP words) will also be executed if the RH20 controller asserted

CBUS STORE along with CBUS DONE. The store operation is also initiated by an internally gener-

ated memory request.

2.2.3 Channel MB Cycle

MB cycles are executed by the channel control in response to internally generated memory requests

(MB REQ). These RAM cycles are executed to request access to main memory (cache/core) and to
update the control RAM after a memory operation is done. The channel control will request access to
main memory when it needs to fetch a CCW, to fetch or store data, and to store status. Figure 2-2
depicts three types of MB cycles. One type of MB cycle (ADR=0) is shown for the case where the
channel is performing a zero fill /skip operation. Another type of MB cycle (INIT) is shown for setting

up the channel request for main memory. A third MB cycle (REQ CTR=0) is shown for updating the

control RAM after a group (maximum of four) of words is transferred to/from the MBs.

M Box /2-4

C START)

N YES CBUS REQ SET MEM REQ
e cyc

sy) YES CBUS CONTR SET MEM REQ
RESET/ST Py ooy

DONE

SET MEM REQ

MB CYC -

MB CYC

CHAN REQ

MEM REQ
MB CYC

10 2145

Figure 2-2 Channel RAM Cycle Control, Simplified Flow Diagram

2.3 CACHE CYCLES

Cache cycles are executed to move data in and out of internal registers, the cache or the MBs, to

invalidate individual, pages or all pages in the cache, to update core, and to start core cycles. Depend-

ing on the type of request that is granted, a particular type of cache cycle is executed. Requests are

granted on a priority basis (Table 2-2). There are four major cache cycles that can be executed by the

cache cycle control, one to accommodate each type of request.

MBox/2-5

Table 2-2 Major Cache Cycle Priorities

Request Cache Cycle Priority

MB REQ CSH MB (YC 1

(CHAN REQ ¢St CHAN CYC 2

FBOX RLEQ CSH EBOX CYC 3

CCA REQ CSH CCA CYC 4

In addition. there are two secondary cache cycles that can be executed by the cache cycle control.

These cache cycles are:

a. . Cache Page Refill cycle

b. Cache Writeback cycle

A cache page refill cycle can only be started by a cache EBox cycle to refill the page table when KI

paging mode is specified by the EBox. The cache writeback cycle can be started by either the cache

EBox cycle or the cache CCA cycle to move written words back to core (Figure 2-3).

g !] "
MB REQ CHAN REQ EBOX REQ CCA REQ

|

csums || ol
cYe Tl

!
i

RN |s "

SH
EBOX ||
YC

i

CSH

CCA REQ ——f ! CCA
cYe

cyc

10-1472

Figure 2-3 Cache Cycle Control, Simplified Flow Diagram

MBox/2-6

2.3.1 Cache MB Cycle

Cache MB cycles are executed by the cache cycle control in response to MB requests from the core
cycle control to move words, which have come in from core and have been placed in the MBs, out of
the MBs into the cache. MB requests are issued only if a core read cycle was entered from a cache
EBox cycle that is initiated in response to an EBox read request.

NOTE

MB requests are issued only for those words follow-

ing the first word. This permits the cache cycle con-

trol to be freed while core is still busy. The first word

is moved to the EBox and the cache before another

request can be serviced.

2.3.2 Cache Channel Cycle

Cache channel cycles are executed by the cache cycle control in response to channel requests from the
channel control to pick up or invalidate any valid words in the cache and, if necessary, to start a core

cycle. To satisfy a channel read request, any valid words are moved into the MBs so that the channel
control can pick them up. If all the requested words are not in cache, a core read cycle is initiated to

read them for core. To satisfy a channel write request, any valid words in the cache are invalidated and
a core write cycle is started after the channel control moves the first word into an MB. The valid words

in the cache are invalidated during a channel write operation because the strategy is that the words

coming from a mass storage drive are the correct copy. The only case for which a core cycle is not

started is if all requested words are found in the cache for 4 channel read request.

2.3.3 Cache EBox Cycle

Cache EBox cycles are executed by the cache cycle control in response to EBox requests for the EBox

to read and write registers, RAMs, and main memory. The EBox can also issue a request to execute a

memory diagnostic cycle. To satisfy a memory reference request, the cache cycle control can also enter

a cache refill cycle, cache writeback cycle, or a core cycle from the cache EBox cycle. A considerable

amount of decision logic is contained in the cache cycle control to determine which path is to be taken

to satisfy the request.

2.3.4 Cache CCA Cycle

Cache CCA cycles are executed by the cache cycle control in response to CCA requests from the cache

clearer control to invalidate the cache and/or validate core. These operations can be executed for a

single page or the entire physical address space. The cache clearer control is activated when the CCA

register is loaded by the EBox, which is done when the EBox executes a Sweep instruction.

2.4 CORE CYCLES

Core cycles are executed by the core cycle control to move data in and out of core memory. Core read

cycles are executed to read up to four words and core write cycles are executed to write up to four

words. If more than one word is to be transferred, they will be transferred in ascending modulo four

order, starting with the word specified by SBus address bits 34 and 35.

2.5 ADDRESS PATH SUMMARY

All the address paths implemented in the MBox are shown in Figure 2-4. These paths are implemented

to facilitate the formation of the appropriate SBus address and to address the various RAMs in the

MBox. The addressable RAMs include the page table and its directory, the cache and its directory, the

use table and its refill table, the CCW buffer, the CH buffer, the control RAM, and the RAMs for the

pointers and the action count.

MBox/2-7

CHAN SEL
e

 e
 SCANNER

(0-7)

CONTROL O — S

M-L—
CCW BUF -

PAGE TABLI

DIREC TORY,

@
t0-147%

% ADCRESS /DIAGNOSTIC DATA

Figure 2-4 MBox Address Paths, Simplified Path Diagram

Any memory request, whether from the channel or from the EBox, must be accompanied by an

address. The address accompanying EBox requests is supplied by the VMA in the EBox. The CCW

BUF provides the address when the channel makes a request. For EBox requests other than references

to memory, the VMA also serves as an address and/or data source. For example, the VMA serves as a

data source when loading the UBR, EBR, or CCA, and as an address and data source when loading

the cache refill RAM.

The PMA HOLD register supplies the address for cache cycles executing MB requests and the CCA

register supplies the address for cache cycles executing CCA requests.

2.6 DATA PATH SUMMARY

All data paths implemented in the MBox are shown in Figure 2-5. These paths are implemented to

move data from source to destination buses, registers, and RAMs. The desired path is selected by the

cache cycle control when a request is granted, by the core control during a core cycle, and by the

channel control. The MBs serve as a buffer in executing most data transfers.

MBox/2-8

-

GI BUF CCW BUF
N\,

*DATA PARITY IS NOT PROPOGATED OVER THESE PATHS

Figure 2-5 MBox Data Paths, Simplified Path Diagram

2.7 EBOX REQUESTS

Requests are issued by the EBox to:

Read and write memory

Read and load MBox registers

Read and write MBox RAMs

Initiate a diagnostic cycleQ
o

o

To qualify the request, the EBox asserts a set of interface signals along with CLK EBOX REQ to

specify exactly what type of service is desired. From what has been described so far in this section, an

obvious request qualification is to differentiate between reads and writes and between memory and

register references. Besides these basic qualifications, each request is qualified further by asserting

other signals to declare the register of interest in the case of a register reference or declare the type of

addressing to be used and whether the cache is to be used in the case of memory references. After the

MBox executes a cache cycle to process the EBox request, the MBox will always assert MBOX RESP

IN to notify the EBox that the operation is completed.

2.7.1 E/M Interface Summary

A summary of the E/M interface is presented in Table 2-3. The interface signals are grouped into sets

according to their function. The notations in parentheses are field maintenance print set prefixes that

specify the source of the signals.

MBox/2-9

Table 2-3 F./M Interface Summary

Signal

Control Commands

CLK EBOX REQ (CLK4)

CSH EBOX RETRY REQ (CSH?2)

MBOX GATE VMA 27-33 (CSH3)

CSH EBOX TO IN (CSH4)

VMA AC REF A (VMAL)

PT PUBLIC (PAG1)

PAGE FAIL HOLD (CSH6)

PF EBOX HANDLE (PAG4)

MBOX RESP IN (CSH2)

CLK EBOX SYNC D (CLK3)

CCA REQ (MBX1)

Request Qualifiers

1. Memory Reference

MCL VMA READ (MCL2)

MCL VMA WRITE (MCL2)

MCL VMA READ and

WRITE (MCL2)

Description

Issucd by the EBox to request service.

Asserted by the MBox to set CLK EBOX REQ so that request

will be retried.

Asserted by the MBox when a Cache EBox cycle is granted to

service the EBox Request to enable gated VMA bits 2733 for

addressing the Cache directory.

Asserted for one clock period when the cache cycle control

starts processing an EBox Request. This signal is used to clear

CLK EBOX REQ.

Asserted by the EBox when it finds that the reference is to one

of the AC blocks (fast memory) to abort the MBox cache cycle

if it was started. This is done to allow the MBox to start ser-

vicing a request earlier than would otherwise be possible.

Transferred to the EBox to allow the EBox to decide whether

it should assert MCL PAGE ILLEGAL ENTRY for the next

reference or change its mode of operation from public to

private.

Asserted by the MBox if the page test for any paged memory

reference request failed.

Asserted by the MBox if the KL mode page test for a paged

memory request failed.

Asserted by the MBox after the request is processed.

Asserted by the EBox to inform the MBox that the data will be

taken.

Cleared by the MBox to inform the EBox that the cache clear

operation is done.

Read a word from memory. Read check the page for paged

references and assert PAGE FAIL HOLD if page test failed.

Write a word into memory. Write check the page for paged

references and assert PAGE FAIL HOLD if page test failed.

Read a word from memory, read and write check the page for

paged references and assert PAGE FAIL HOLD if page test

failed.

MBox /2-10

Table 2-3 E/M Interface Summary (Cont)

Signal Descriptiom

Request Qualifiers (Cont)

MCL EBOX CACHE

(MCL6)

CON CACHE LOOK

EN (CON3)

CON WR EVEN PAR

" DIR (CON3)

APR WR BAD ADR

PAR (APR2)

APR EBOX SBUS DIAG

(APR6)

Register References

APR EBOX LLOAD REG

(APR6)

APR EBOX READ REG

(APR6)

APR EBOX UBR (APR6)

APR EBOX EBR (APR6)

APR EBOX CCA (APRO)

IR AC10 (IRD1)

Asserted by the EBox for references to those instructions and

operands that may reside in the cache. Instructions and operands

that must be shared by two processors cannot reside in the

cache.

Asserted by the EBox to take the word from the cache if it is

found even if MCI. EBOX CACHE is negated or for paged ref-

erences if PT CACHE is cleared.

Asserted by the EBox to write cven parity into cache directory

during a write request.

Asserted by the EBox to generate even address parity on the

SBUS.

Asserted by the EBox to initiate and execute an SBUS Diag-

nostic cycle. All other request qualifiers must be negated for

this request.

Asserted by the EBox to load a register (UBR, EBR, CCA) in

the MBox. The EBox also specifies which register is to be load-

ed by asserting the appropriate register signal.

Asserted by the EBox to get ready to read a register (UBR,

EBR, CCA, ERA) in the MBox. The EBox also specifies which

register is to be read by asserting the appropriate register signal.

After the Read Register Request is executed by the MBox, the

EBox can read the value of the register by simply asserting the

Read EBus Register diagnostic function,

Asserted by the EBox when the UBR is to be loaded or read.

Asserted by the EBox when the EBR is to be loaded or read.

Asserted by the EBox when the CCA Register is to be loaded

or read.

NOTE

Instruction bits 10—12 (AC field) must be correctly set

or cleared and the VMA bits 27—33 must contain the

page address when clearing one page in the cache,

Instruction bit 10 (AC10) is set when only one page is to be

cleared from the cache and is not set when the entire cache is

to be cleared.

MBox/2-11

Table 2-3 E/M Interface Summary (Cont)

Signal Description

Request Qualifiers (Cont)

MCL VMA READ.

PAUSE and WRITL

(MCL2)

MCL VMA PAUSE and

WRITE (MCL2)

MCL EBOX MAY BE

PAGED (MCLO0)

CON KI PAGING

MODE (CON3)

MCL VMA USER (MCL2)

MCL PAGE UEBR REF

(MCL3)

MCL VMA UPT (MCL3)

MCL VMA EPT (MCL3)

MCL PAGE ILL ENTRY

(MCL3)

MCL PAGE TEST

PRIVATE (MCL2)

MCL PAGE ADDRESS
COND (MCL3)

Execute the read portion of the read-pause-write cycle. Read

and write check the page for paged references and assert PAGE

FAIL HOLD if page test failed. The write portion of the cycle

is started by asserting CLK EBOX REQ a second time.

Write check the page for paged references and assert PAGE

FAIL HOLD if page test failed.

NOTE

When issuing memory reference requests, the EBox must

also set up the VMA and the Paging and Cache Qualifiers

appropriately.

Asserted by the EBox to indicate that the reference is to be

paged. The EBox decides whether the reference is paged or

unpaged.

Indicates KI Paging mode when asserted and KL Paging mode

when negated.

Asserted by the EBox when the memory reference is to the

uscr address space.

Asserted by the EBox when the UPT or the EPT is

referenced to bypass the page check.

Asserted by the EBox when the reference is to the UPT

to inform the MBox that the contents of the UBR must be

used in forming the physical memory address.

Asserted by the EBox when the reference is to the EPT to

inform the MBox that the contents of the EBR must be used

in forming the physical memory address.

Asserted by the EBox to force a page fail condition in the

MBox to abort the current request. The EBox asserts PAGE

ILL ENTRY if the previous instruction was fetched from a

proprietary area and the instruction is not a Portal instruction

(JRST1).

Asserted by the EBox for a non-instruction reference in the

PUBLIC mode to check whether the page is private. PAGE

FAIL HOLD is asserted if the page is not public.

Asserted when the EBox detects an address break condition.

The EBox also asserts PAGE ILL ENTRY at this time to force

a page fail condition in the MBox and cause PAGE FAIL HOLD

to be asserted.

MBox/2-12

Table 2-3 E/M Interface Summary (Cont)

Signal Description

B. Request Qualifiers (Cont)

IR ACI11 (IRD1)

IRD AC12 (IRD1)

APR EBOX ERA (APRO6)

MCL EBOX MAP (MCLO6)

APR EN REFILL RAM

WR (APR6)

Error Reporting Commands

MBOX NXM ERR (MBZ3)

APR NXM ERR (APR1)

MBOX SBUS ERR (MBZ4)

APR SBUS ERR (APR1)

NOTE

The term “Clear The Cache’ means to write back to core

all words that are written in the cache (words that have

their written bits set) and/or invalidate the words in the

cache.

Instruction bit 11 (AC11) is set when the written words in the

Cache are to be written back into core to validate core.

Instruction bit 12 (AC12) is set when the cache entries are to

be invalidated.,

NOTE

The contents of AC bit 10--12 of the instruction is trans-

ferred to the CCA control register in the MBox when the

EBox issues a request to load the CCA register,

Asserted by the EBox when the Error Address (ERA) register

is to be read. This register can only be read. It is frozen when

the MBox senses a parity or a non<¢xistent memory (NXM)

error; othcrwise it tracks.

Asserted by the EBox along with APR EBOX READ REG to

transform the virtual address into the physical address. If the

page table contains a valid entry, this entry will be transferred

to the AR of the EBox. If the page table does not contain a

valid entry, a page refill operation will be initiated.

Asserted by the EBox along with APR EBOX READ REG to

load the Cache refill RAM when the Cache is initialized. Before

this operation can be executed, VMA bits 27—33 must be set

up with the desired address and VMA bits 18—20 must be load-

ed with the data to be loaded in the refill RAM.

This error flag is set when the MBox memory control logic

times out (“hangs’) or when non-existent memory is addressed.

This line serves as the recirculation path for the MBOX NXM

ERR flag.

This error flag is set when the memory system senses a data

parity error or times out (“hangsTM).

This line serves as the recirculation path for the MBOX SBUS

ERR flag.

MBox/2-13

Table 2-3 E/M Interface Summary (Cont)

Signal Description

MBOX MB PAR ERR (MBZ4)

APR MB PAR ERR (APRI1)

MBOX ADR PAR ERR (MBZ4)

APR S ADR P ERR (APR2)

CSH ADR PAR ERR FLG (MBXS5)

APR C DIR P ERR (APR2)

APR ANY EBOX ERR FLG

(APR2)

Direct Commands

APR WR PT SEL 0-1 (APRS)

CLK PT DIR WR (CLK2)

CLK PT WR (CLK2)

DIAG READ FUNCT

16X and 17X (CTL3)

DIAG LOAD FUNCT 071

(CTL3)

This error {lag is set when the MBox senses an MB parity error.

This line serves as the recirculation path for the MBOX MB

PAR ERR flag.

This error tlag is set when the memory system senses an address

parity ervor.

This line serves as the recirculation path for the MBOX ADR

PAR ERR flag.

This error flag is set when the MBox senses a cache directory

parity error.

This line serves as the recirculation path for the CSH ADR PAR

ERR FLG.

This line is true when any APR EBox error flag is set to prevent

the ERA (Error Address Register) in the MBox from being

changed facilitating error recovery procedures.

When writing the Page Table, the EBox places the appropriate

write select code on these lines.

Asserted by the EBox during KL paging mode to write or clear

a page table directory entry.

Asserted by the EBox during KL paging mode to write or clear

a page table entry.

One or the other line is asserted by the EBox to read a Diagnostic

register. The Diagnostic register to be read is specified by the

code presented on DIAG 04—06 (0—7). Also asserted by the

EBox to read the EBus register (167,). Octal code seven must

be presented on the DIAG 04—06 lines to read the EBus register.

This register will contain the contents of the register specified

with the EBox Read Register request or it will contain the

Page Fail Word in the event the MBox Pager sensed a page fail

condition. The EBox is informed that a page fail condition was

sensed by the MBox (PAGE FAIL HOLD is asserted by the

MBox).

Asserted by the EBox to set up the MEM TO C mixer to read

the contents of the memory data register (SBus), the MBs,

the CBus (CH REG), or the cache. The contents of the AR can

also be looped back. The code presented on the EBus Data bits

30-—35 determines which data specified above will be read back

on the cache data lines. '

MBox/2-14

Table 2-3 E/M Interface Summary (Cont)

Signal Description

DIAG 04-06B (CTL3)

MR RESET 05/06 (CLK2)

Address

VMA 13-35A (VMA2)

VMA 27-33G (VMA1)

Data

AR 00-35A (DP01)

SH AR PAR ODD A (SHM1)

CACHE DATA 00--35B (CDO01)

CACHE DATA 00-35C (CDO1)

CSH PAR BIT A/B (MBZ6)

EBUS D00-35 (CRC5, MBZ2,

CCWs, CHCS, CCL1, CHX4,

CSH7, MBCS5, MBX6)

Clocks

CLK CCL (CLK1)

CLK CCW (CLK1)

CLK CH (CLK1)

CLK CRC (CLK1)

CLK CSH (CLK1)

CLK CHX (CLK1)

These lines present a control code to the MBox for selecting

diagnostic and EBus registers,

Asserted to initialize system logic.

Register load data or virtual address from EBox.

Gated address from EBox. This address is gated by the MBox

to address the cache directory when a cache EBox cycle is

started. :

NOTE

Address parity is not propagated.

Data from EBox AR.

Data parity from EBox AR parity generator.

Cache/core data to EBox IR, AR and ARX.

Cache/core data to EBox IR.

Cache/core data parity to EBox.

EBus data lines.

NOTE

Data parity is not propagated from the MBox to the

EBus.

The following clocks are generated on the CLK Module in the

EBox and are distributed to the MBox Boards.

Clock for Channel Control Logic Module M8536

Clock for Channel Control Word Module M8534

Clock for Channel Control Module M8533

Clock for Channel RAM Control Module M8535

Clock for Cache Control Module M8513

Clock for Cache Extension Module M8515

MBox/2-15

Table 2-3 E/M Interface Summary (Cont)

Signal Description

CLK MBC (CLK1) N v(};):,; f;r MB()\ Control Module No. 3 M853]

CLK MBX (CLK1) Clock for MBox Control Module M8529

CLK MBZ (CLK1) Clock for MBox Control Module No. 4 M8537

CLK PMA (CLK1) Clock for PMA Module M8518

CLK MBO0O (CLK1) Clock tor MB Module No. 1 M8517

CLK MBO06 (CLK1) Clock for MB Module No. 2 M8517

| CLK MB12 (CLKI) Clock for MB Module No. 3 MB8517

CLK SBUS CLK (CLK1) Clock ot SBus

DIAG CHANNEL CLK (CTL3) Controllable clock for diagnosing channel logic

2.7.2 Request Dialogue

The FBox issues requests to the MBox by asserting CLLK EBOX REQ (Figure 2-6). At the same time
or one clock tick after CLK EBOX REQ is asserted, the VMA and all request qualifiers become valid.
These signals remain valid until the request has either been processed to completion or aborted. CLK
EBOX REQ is cleared by CSH EBOX TO IN when the MBox starts processing the request.

For the first clock period after CLK EBOX REQ is asserted, the request can be aborted by the EBox
by asserting VMA AC REF. If the EBox aborts the request, CLK EBOX REQ is also cleared by the
EBox if the MBox has not yet started to process the request.

When the MBox starts to process the EBox request, the MBox asserts CSH EBOX TO IN. This signal

causes CLK EBOX REQ to be cleared. This occurs on the clock tick after which the request is made, if
the MBox has no higher priority request pending. If the MBox is busy when the request is made a
number of clock ticks may transpire before the MBox asserts CSH EBOX TO IN. Consequently, CLK
EBOX REQ will remain asserted until the MBox starts processing the request.

After CSH EBOX TO IN is asserted, a number of clock ticks may transpire before the MBox completes
processing the request. The MBox notifies the EBox that is has completed processing the request by
asserting MBOX RESP IN. This signal remains asserted until the EBox asserts CLK EBOX SYNC D.
While MBOX RESP IN is asserted, the instruction or operand requested by the EBox will be valid on

the cache data lines. The MBox holds the data on the cache data lines until CLK EBOX SYNC D is
asserted because the EBox will take the data only when CLK EBOX SYNC D is asserted. One clock
tick after CLK EBOX SYNC D is asserted MBOX RESP IN is cleared.

MBox/2-16

(eeoxrea)

ASSERT EBOXREQ

ASSERT EBOX

REQ QUAL

HOLD VMA

CSH EBOX

T@ IN

{ cLR EBOXREQ |

ASSERT | YES
I eBoXxReQ |* RETRY

NO

CSH
EBOX

CYC

ASSERT J
MEBOX RESP

EBOX SYNC

|cLr MBOX RESP |

C DONE)

10-1475

Figure 2-6 EBox Request Dialogue, Simplified Flow Diagram

MBox/2-17

2.7.3 Register References

The M Box contains a number of registers that can be loaded and read by the EBox. These registers are

address registers for storing the address in the event of an error and for modifying the physical memory

address in response to certain request qualifiers. The registers are:

User Base Register (UBR)

Executive Base Register (EBR)

Cache Clearer Address Register (CCA)

Error Address Register (ERA)Q
o
o

NOTE

The ERA register can only be read by the EBox.

In addition, the EBox can also read the contents of the page table to transform (map) the virtual

address to the physical address and load the cache refill RAM with the cache refill algorithm.

To read and load any of the registers and RAMs previously mentioned, the MBox must execute a

cache cycle in response to the EBox request to prevent potential conflicts with other pending requests.

NOTE

Some registers and RAMs can also be loaded and

read by the EBox directly, without having to execute

a cache cycle. The registers and RAMSs that fall into

this class are those for which a conflict with another

type of request (CHAN REQ, for example) cannot

occur. The MEM TO C diagnostic register and the

page table can be loaded and 16 diagnostic registers

(including the EBus register) can be read directly

from the EBox.

To read or write the registers and R AMs in the MBox, the EBox must assert a specific set of qualifier

signals along with CLK EBOX REQ for each type of reference. When loading registers, the EBox must

also move the data to be loaded into the VMA no later than one clock tick after issuing the request. All

register operations the EBox is capable of requesting, and the required request qualifiers, are given in

Table 2-4. Flows for each type of register operation are shown in Figure 2-7.

MBox/2-18

Table 2-4 Register Reference Requests

EBOX REQUEST QUALIFIERS

CLK APR APR APR APR APR APR IR MCL APREN CLK C1K APR DIAG | DIAG | DIAG
EBOX | EBOX { EBOX | EBOX | EBOX | EBOX | EBOX | AC 1012 | EBOX | REFILL PT DIR PTWR | WR PT READ | LOAD | 0406
REQ LOAD | READ | UBR EBR CCA ERA MAP RAM WR WR SEL 041 FUNCT | FUNCT

Register Operstion REG REG Remarks

Load UBR X X X VMA contains address data

Load EBR X X X VMA contains address data

Load CCA X X X X VMA contains address data

Load REFILL RAM X X X VMA contains address and data

Read UBR X X X
Contents of UBR is transferred to EBUS REG

Reazd EBR X X X Contents of EBR is transferred to EBUS REG

Read CCA X X X Contents of CCA is tansferred to EBUS REG

Read ERA X X ! X Contents of ERA is transferred to EBUS REG

Read PT X X X Contents of PT is transferred to EBUS REG

Load MEM TO C Diag Reg
X X EBUS D30-35 carries the data to be loaded

Write PT Directory X X VMA 13-17 contains the section No. to be written

Write PT
X X VMA 18-26 contains the page No. to be written

Read Diag Registers
X X DIAG 04-06 carries the register No. to be -read

Read EBQs Register ; ; X Ty Contents of EBUS REG is transferred to AR via
§ ! EBUS data lines

MBox 2-19

Table 2-§ Memory Reference Requests

EBOX REQUEST QUALIFIERS

CLK MCL MCL MCL MCL MCL EBOX | CON KI MCL PAGE |MCL PAGE |MCL PAGE |MCL PAGE [MCL MCL |MCL EBOX CON CACHE | APR

EBOX [VMA VMA | VMA VMA MAY BE |PAGING ILLEGAL |TEST ADDRESS |UEBR REF |VMA VMA |CACHE LOOK EN " EBOX |

REQ |READ| PAUSE | WRITE | USER | PAGED MODE ENTRY PRIVATE |COND EPT UPT SBUS
Memory Openation DIAG Remarks

Read EPT X X X X . i * VMA contains address

Read UPT X X X X * * VMA contains address

Read Instructions and Data | X X . . * * . * ' * * VMA contains address

Write EPT X X X X * * VMA contains address

Write UPT X X X X * * VMA contains address

Write Instructions and Data | X X * . * b hd * . * VMA contains address

Write Check X X X b X VMA contains address

Read Modify Write (1st) X X X X . b * o hd . * * VMA contains address

Read Modify Write (2nd) X X d . . * . . . * VMA contains address

SBUS Disg Cyc X X AR contains control word

*These qualifiers may be true or not true depending on the specific type of request the EBox decides to make.

MBoex/2-20

¥

START

EBOX READ REG

!
ESOX UBR

N i

EB0X S8US DIAG

EBOX EBR EBOX ERA DA EN REFILL EBOX MAP
SET EBSOX REQ

j

RAM WR

R
A

M8 REQ CHAN REQ £60X REQ CCA REQ
AEFILL RAN =@ @

EBUS REG <~ UBR EBUS REGe-EBR EBUS REG=-ERA eyt

l
I REFILL RAM ADR “ap

(SHEET 2}
YES & coRe Busy

j

No SET MBOX RESP

CACHE W8 CYC

YES

SHEET 6
CLR MBOX RESP

CACHE CHAN CYC

CLR
EBOX REQ CACHE EBOX CYCHSED CSH EBOX I

T
h 4. EBOX AC REF

EBOX LOAD REG EBOX PAUSE |® —_— A WRITE | EBOX WRITE
SHEET 6

]ABORT
!CAcHE £B0X l
![t
i §EBOX UBR £80X EBR WRITE j WRITE

CACHE CCA CYC

CHECK | (SHEET 5)I l (SHEET 3} : _ N
i—

?]— I UBR=- VMA EBR«-VMA
EBOX REA

DESCRIPTION INDEX i

EBOX READ A wR:TEE o psfgg mrflgFUNCTION

!

] !

KEY UNCTIO SURSECTION
4 i ‘ ;@ M8 REQ 21021.33.1

! '. @ CHAN REQ 28331 i SET MBOX RESP

@ £s0x AEQ 2723130
REaD

@ ccanga 23331
[SHEET 4t

@ CONE REQ 21027 i
|@ csHMBCYC 23333 1

@ CBH CHAN CYC 23331738 : YES

@ C8H EBOX CYC 233323438 , CLR MBOX RESP

@ csuLCACYC 23133635 i

C8H PAQE REFILL CYC 2333538 I

i

0-1478
@ C8H WRITEBACK CYT 2333438 ¢

@ CORE CYC 24210237
i

NOTE Aloo refer tn Figures 2-13 thew 2-17

Figure 2-7 Cache Cycle Control,

Functional Flow Diagram

(Sheet 1 of 6)

MBox/2-21

SET
MBOX RESP

EBUS REG
<PF WORD
SET
FAIL HOLD

EBOX SYRC

SHEET !

SET EBOX REQ

SHEET |

YES

EBOX MAP

(SHEET 1}

c

PT YES

MATCH

KL

PAGING

MODE

CORE BUSY

NO

SET EBOX REQ

0
0

HOLD PAGE REFILL

SEL PMA
TEST CSH ADR PAR

|

START CORE
READ CYC
SET RQ
(Fig. 2-9.

DATA VALID

MB «-CORE

CLR RG

YES

YES

PT YES YES KL YES PAGE WRITE
ACCESS PAGE FAIL it FAILURE

NO NO NO NO
.

£BUS REG=PF WORDl v KL

SET PAGE FAIL HOLD PAGING EBUS REG = PT
ISET PF EBOX MOD!

NO

EBUS REG

SET <PF WORD
MBOX RESP SET PAGE

FAIL HOLD

SET
MBOX RESP

£BOX SYNC

CLR

MBOX RESP

SHEET 1

[YES

ANY

MB < CSH VALID
LEFT

NG

FOUR

NO WORDS
wro

YES

f

|

i

|

PT< MB SET PAGE REFILL

TEST MB PAR (RETRY REQ)

SHEET|

10- 1477

Figure 2-7 Cache Cycle Control,

Functional Flow Diagram

{Sheet 2 of 6)

MBox/2-22

PAGE WRITE YES KL
FAILURE ;%%'36

YES NO

S REG<-PF BUS REGePF
PAGE FAIL HOLD T PAGE RAIL HOLD

T PF EBOX HANDLE] T DIR CLR

i

PAGE FAIL

NO

SET
MBOX RESP

%
EBOX SYNC

YES

CLR
MBOX RESP

SHEET |

SET EBOX REQ

EBOX PALBETA‘)WRITE

)

eT

MATCH

NO

KL YES EBUS REG@PF WORD
PAGING SET PAGE FAN HOLD

MODE PF EBOX HANDLE

R

segIELL YES E‘Egg Eg SET
COMP SET MBOX RESP

NO

:

YES " CORE BUSY

NO

) SET EBOX REQ

HOLD PAGE REFILL

TEST CSH ADR PAR SHEET |
T

‘ YES

ANY ANY
VALID YES MB <—CSH VALID
MATCH

LEFT

NO NO
|
i

FOUR

NO WORDS
Vuo

@ [seT come
READ CYC YES

® SET RQ
(Fig 2~

l YES

] ANY CORE
DATA VALID WORDS RO IN

YES Yes NO

WBe— CORE PTe— NB SET PAGE REFILL
CLR RQ TEST MB PAR = A,

YES 0
u

SHEET !

iQ-t14ala

Figure 2-7 Cache Cycle Control,

Functional Flow Diagram

{Sheet 3 of 6)

MBox/2-23

EROX REAC
ESOX READ A WRITE
EBOX READ A PRUSE A wrITE

WEET¢

SHEET ¢+

NO

SET EBOX REQ

9
SHEET |

I

: JYES

NG

JPDATE USE BITS

l SE”] l 35 pause
=80X AESP 4 DS

: 2ND HALF

vALID

— :

AR - SBUS

. 9} TEST up 4R

AR =— MO AR a— MO —I
TEST MB PAR TEST MB PAR I

T r

!
T

-

1

REQ EN MBOX RESP j er SHEET
T T

MEOX RESF

L

O SMEET !

“YEs

WRITE

ISHEET %)

Figure 2-7 Cache Cycle Control, Functional Flow Diagram

(Sheet 4 of 6)

MBox/2-24

|
g- [

YES S CORE BusY HYES SET €8OX REQ }
T

{sm
aaS8US w8 START . @ BB sSET5RUS DaTMA | FORE whTE CrC SETCSH VAL BTwALID 1206 2v9) @ TEST CSM WRBMT= TEST CSH ADR PRR

+
%

UnOXx ®ESP

YES

CLQ MB0x RESP |

CL® REFILL COMP 1

T

is

SHEET

Figure 2-7 Cache Cycle Control,
Functional Flow Diagram

(Sheet 5 of 6)

MBox/2-25

CACHEM8 CYC

(SHEET 1)

CLRCSH VAL BIT

CLR CSH WR BIT

CACHE CCACYC
SHEET |

CACHE CHAN CYC

SHEET I

!]
~CCL CHAR TO MEM CCL CHAN TO MEM

@ HOLD CHAN C¥C HOLD CHAN CYC
SEL PMA SEL PMA

HOLD
WRITEBACK CYC
SEL PMA

TEST CSH ADA PAR

MB @ CSH

CLR CSH WR BIT

TEST CSH

ELR CoH VALE!'-"
LR CSH WR BiT

{OF REQUESTED
WORDS)

SHEET |
START CORE
READ CYC

(FIG. 2 -

B JNOTE2

SHEET t

{ The chonnei wit toke words out of the WB's o3 *hey come back trom core

€Boa 15 freeto use the coche during this hime However, core remaing

busy ond prevents the EBon from getting a core crcie

2 The channet takes controf oF this point. The chonnel koadso woed inio The

MB's 9ac 81011s @ Core weite cycie The channel then I6ads any remoining

words m10 the MB's €80z o frae 10 use 1he cache Guring this hime

However, Core ramains busy ond prevents the EBor from Qething9 Core cycle

10-tamt

Figure 2-7 Cache Cycle Control,

Functional Flow Diagram

(Sheet 6 of 6)

MBox/2-26

The following is a summary of why and/or when these registers can be loaded or read by the EBox.

d. The cache refill RAM is loaded with the refill algorithm during system initialization. The
refill algorithm specifies the extent to which the cache is used by using all or bypassing some

cache quarters.

The EBR is loaded with the base address of the EPT during system initialization. The regis-
ter can be read for diagnostic purposes.

The UBR is loaded with the base address of the UBR every time another user process is

started. The register can be read for diagnostic purposes.

The CCA register (including the request qualifier bits) is loaded to invalidate the cache
and/or validate core. One page or the entire address space in the cache can be specified for
this operation. The entire address space in the cache is invalidated during system
initialization. Core may be validated for various reasons. One case where core must be

validated is prior to initiating a channel read operation, when external channels (DF10 or

DAS33) are used. When external channels are implemented, one or more pages may also
have to be invalidated in the cache before a channel write operation is executed. The CCA

register can be read for diagnostic purposes.

The ERA register is loaded with the current address and error source code by the MBox

automatically whenever the MBox senses a parity or a non-existent memory (NXM) error.

The register is read by the EBox to determine the cause of the error.

The content of the addressed page table location is read by the EBox when a MAP instruc-

tion is executed. This instruction is executed to obtain the physical address of the I/0 buffer

when building the channel command list. This address is placed into the address field (ADR)

of the Data Transfer CCW.,

The diagnostic register is loaded with a code from the EBus data lines to adjust the MBox
data path during system initialization and for diagnostic purposes. The data path can be
adjusted to read data from MBO, SBUS, addressed cache data location, the CBus via the CH
REG or the AR. '

The section address (VMA 13-17) is written into the addressed page table location when the
EBox writes an entry into the page table (KL paging mode only). The EBox will also write
the directory to clear all entries when switching users.

The physical page address (AR00~-17) is written into the addressed page table location after
it is fetched from the core page table to update the hardware table.

The 15 diagnostic registers in the MBox are read by the front-end processor for diagnostic

purposes.

The EBus register is a holding register for the read register function (APR EBOX READ

REG asserted).

MBox/2-27

2.7.4 Memory References

The EBox can issue requests to read and to write memory. The EBox can request to read or write the
executive and user process tables and user or executive paged and unpaged memory. The EBox will
also specify whether the cache is to be used in servicing the memory request. When the MBox starts
processing a memory request, it automatically forms the correct physical memory adress in response to
the request qualifiers presented with the request. If the EBox requested a reference to paged memory, it
also automatically reads and/or write-checks the referenced page. If the page check fails, the MBox

informs the EBox of this condition by asserting PAGE FAIL HOLD.

To read or write memory, the EBox must set up the address in the VMA and assert a specific set of

qualifier signals along with CLK EBOX REQ for each type of reference. When writing memory, the
EBox must also move the word to be written into the AR when issuing the request. All memory

operations the EBox is capable of requesting and the required request qualifiers are given in Table 2-5.

Flows for each type of memory reference operation are presented in Figure 2-7.

2.7.4.1 Read Memory - To read memory, the EBox asserts CLK EBOX REQ and the appropriate
FBox request qualifiers. When the request is granted, a cache EBox cycle is executed by the cache cycle
control to service the request. In executing a cache EBox cycle for a memory read request, the follow-
ing operations are performed by the cache cycle control:

a. The required physical memory address, as specified by the EBox request qualifiers, is
selected (PMA 14-35 SEL). The virtual section and page addresses will be replaced with the

contents of the EBR, UBR, or the page table, as needed. The resultant address is used to

address the cache and, if necessary, to address core memory if a core read cycle is required.

b. If the EBox issued a request to read paged memory, the contents of the pager are checked to

see if the referenceis permitted. For KI paging mode references, the cache cycle control will

also execute a page refill cycle automatically to update the pager, if required.

¢. Ifsospecified by the EBox, the cache is checked to see if the desired word is in the cache.

d. A core read cycle is initiated if:

1. The réquested word is not found but some of the words of the respective quadword
group are in the cache.

E\
J

. None of the words of the associated quadword group are in the cache and the Least

Recentlv Used (LRU) cache block does not contain any written words. If written
words from another page were found in the LRU cache, the cache cycle control will

initiate a core write cycle to write back the written words to core before starting the

core read cycle.

3. The EBox did not specify the cache to be used or the cache does not exist (is not

implemented).

2.7.4.2 Write Memory - To write memory, the EBox asserts CLK EBOX REQ and the appropriate

FBox request qualifiers. When the request is granted, a cache EBox cycle is executed by the cache cycle

control to service the request. In executing a cache EBox cycle for a memory write request, the follow-
ing operations are performed by the cache cycle control:

a. The required physical memory address, as specified by the EBox request qualifiers, is

selected (PMA 14-35 SEL). The virtual section and page addresses will be replaced with the

contents of the EBR, UBR, or the page table, as needed. The resultant address is used to

address the Cache and, if necessary, to address core memory if a core write cycle is required.

MBox/2-28

b. If the EBox issued a request to write paged memory, the contents of the pager are checked to

see if the reference is permitted. For KI paging mode references, the cache cycle control will

also execute a page refill cycle automatically to update the hardware page table, if required.

c. Ifso specified by the EBox, the word is written into the cache; otherwise, a core write cycle is

initiated to move the word to core.

d. If the addressed cache line does not contain any words from the associated quadword group

and the LRU cache contains written words from another page, the cache cycle control will

initiate a core write cycle to write back the written words before writing the cache.

2.7.4.3 Read and Write-Check Paged Memory - To both read and write-check a paged memory

location, the EBox asserts CLK EBOX REQ and the appropriate request qualifiers. When the request

is granted, a cache EBox cycle is executed by the cache cycle control to write-check (Subsection 2.7.4.4)

and read (Subsection 2.7.4.1) the addressed memory location.

2.7.4.4 Write-Check Paged Memory - To write-check a paged memory location, the EBox asserts

CLK EBOX REQ and the appropriate request qualifiers. When the request is granted, a cache EBox

cycle is executed by the cache cycle control to service the request. In executing a cache EBox cycle for a

write-check request, the following operations are performed by the cache cycle control:

a. The pager is checked to see if it contains a valid entry and if the page is writable.

b. Ifthe pager contains a valid entry and the page is writable, the MBox simply responds in the

normal manner,

c. Ifthe page is not writable, the Page Fail word is loaded into the EBus register and the EBox

is notified that a page fail condition was sensed.

d. If the pager does not contain a valid entry and the EBox specifies the KI paging mode, the

cache cycle control will automatically execute a page refill cycle to update the pager.

e. If the KL paging mode was specified, the MBox will notify the EBox to initiate the refill
cycle.

2.7.4.5 Read-Modify-Write Memory -~ To read, modify and write memory, the EBox asserts CLK

EBOX REQ and the appropriate request qualifiers for each of the read and the write portions of the

operation. This operation is the same as requesting a separate read and a separate write operation if

the cache is specified for use. If the cache is not specified by the EBox, then the cache cycle control, the

core cycle control, and core memory wait for the EBox to request the second half of the operation.

2.7.4.6 SBus Diagnostic Cycle - An SBus diagnostic cycle is issued by the EBox to initialize core

memory and to read core memory status information. To issue an SBus diagnostic cycle, the EBox

moves a diagnostic control word into the AR and asserts CLK EBOX REQ and APR EBOX SBUS

DIAG. When the request is granted by the MBox, a cache EBox cycle is executed by the cache cycle

control to service the request. In executing the cache EBox cycle for an SBus diagnostic cycle request to

read core memory status, the following operations are performed by the cache cycle control:

a. The control word is moved from the AR to the MB.

b. SBUS DIAG is asserted.

c. The contents of the register specified by the control word are transferred to the AR.

The control word transferred to the MB is moved to the core memory system to select a controller and
the function to be performed. The core memory system, in response, will transfer the status of the

selected function to the AR.

MBox/2-29

2.8 CHANNEL REQUESTS

Requests are issued by the channcl control to read and to write memory after a channel is started
(Subsection 2.11). Request qualifiers are used in issuing the request to specify precisely what type of
service is desired by the requesting channel. To write, CCL CHAN TO MEM is asserted; to read CCL
CHAN TO MEM is negated. If a channel needs to fetch a CCW from the EPT, or needs to store the
status in the EPT, then the channel will assert CCL CHAN EPT to qualify the request. After issuing a
request, the requesting channel waits for a cache channel cycle to be initiated by the cache cycle control
to check the cache and/or start a core cycle. When the cache channel cycle is started, the channel
assumes direct control of the MBs to move data in or out. In the case of channel write operations, the
channel will load the MBs and start a core write cycle after the first word is loaded. For a channel write
operation, the cache channel cycle is executed only to invalidate any valid entries in the cache. In the
case of channel read operations, the channel specifies which words are needed and waits for a cache
channel cycle to transfer any valid words in the cache to the appropriate MBs and to initiate a core
read cycle for those words that are not in the cache. After a core read cycle is started (a core read cycle
is started only if all the requested words are not in the cache), the channel continues to wait for the
words to come in from core. As each word is placed into the appropriate M B by the cache cycle control
and.or the core control, the channel moves the word into the channel data buffer (CH BUF) by
selecting the appropriate MB. Words are moved into the CH BUF only in ascending order, starting
with word zero. '

2.8.1 Channel/Cache Interface Summary

A summary of the CHAN/CSH interface is presented in Table 2-6. The interface signals are grouped
into sets according to their function. The notations in parentheses are field maintenance print set
prefixes that specify the source of the signals.

Table 2-6 CHAN/CSH Interface Summary

Signal Description

A. Control Commands

CCL CHAN REQ (CCL3) Issued by the channels to request service.

CCL HOLD MEM (CCLZ) Asserted by the channels if the channels have requests backed up.
By asscrting this signal, the channel is assured the next core cycle

by preventing an EBox Request from initiating a core cycle.

CSH CHAN CYC A (MBX4) Asscrted when the Cache cycle control starts processing the Channel

request. This signal informs the channel that it can start writing

the MBs in the case of channcl write operation or start looking

for words ready to be taken from the MBs in the case of channel

read operations.

CCL START MEM ("(‘CL4) Asserted by the channel during channel write operations after the
first word is loaded into the MBs. Subsequent words are moved

into the MBs at four clock-tick intervals assuring the core control

has a word to move to core when it gets ready. The core control

moves words to core at six clock-tick intervals. During channel read

operations, the Cache cycle control starts the core cycle when it is

ready.

CCL CHMB SEL -2 (CCLA4) The channel places a two bit code on these lines to select the
correct MB to be loaded during channel write operations or read

during channel read operations.

MBox/2-30

Table 2-6 CHAN/CSH Interface Summary (Cont)

Signal Description

CCL CH LOAD MB (CCL4)

MBO—3 HOLD IN (MBX6)

CCL CH TEST MB PAR (CCLA4)

Request Qualifiers

CCL CHAN TO MEM (CCL4)

CCW WDO0-3 RQ (CCW4)

CCL CHAN EPT (CCL3)

Error Reporting Commands

CHAN PAR ERR (MBZ4)

CHAN ADR PAR ERR (MBZ4)

CHAN NXM ERR (MBZ3)

Address

CCW CHA 14-35 (CCW2)

PData

Clocks

Asserted by the channel to load the selected MB during channel

write operations.

Asserted by the Cache cycle control and/or the core cycle control

during a channel read operation to load the MBs and to inform

the channel that the corresponding word is ready to be taken.

Asscrted by the channel to check the parity of the selected word

before it is taken from the MB during channel read operations.

Asserted by the channel to specity a channel write operation is

to be executed. When negated. a channel read operation is

executed.

These four signals are asserted by the channel to specify the

words to be read or written.

Asscrted by the channel to read or write the Executive Process

"Table. The EPT is read to fetch the initial CCW and is written to

store the channel status at the end of a transfer. The Cache cycle

control will automatically select the correct address for referencing

the EPT.

Asserted for onc clock period when the MB parity check fails

during a channel read or channel write operation. During chan-

nel write operations, parity is checked when the channel asserts

CCL CH TEST MB PAR and during channel read operations,

parity is checked when the Cache cycle control or the core cycle

control loads the word into the MB. This signal informs the

channel that a data parity error occurred during the transfer.

Asserted for one clock period when the SBus address parity check

fails during channel read or channel write operations.

Asserted for one clock period when the NXM counter in the

MBox times out. This counter times out if one of the ACKN

pulses for the requested words is not received from the mem-

ory. (Subsection 2.14.3).

Physical memory address from channel.

Data Buffer and path is an integral part of the MB modules.

Clocks are distributed to the channels from the EBox (Table 2-3.

E/M Interface Summary.

MBox/2-31

2.8.2 Request Dialogue

The channels issue requests to the cache cycle control for core cycles by asserting CCL CHAN REQ

and CCL HOLD MEM (Figure 2-8) during an initial MB RAM cycle. Along with asserting CCL

CHAN REQ and CCL HOLD MEM, the channels also set up the channel address (CHA) and the

request qualifiers. The request qualifiers are:

a. CCL CHAN TO MEM

b. CCL CHAN WDO0-3RQ

c. CCL CHAN EPT

These'signals remain valid until the request has been processed to completion. If another request is
ready to be processed, CCL CHAN REQ and CCL HOLD MEM remain asserted while the address

and request qualifiers are adjusted to specify the next request.

When the cache cycle control starts to process a request, the cache cycle control asserts CSH CHAN

CYC. This signal informs the channel that it can start moving words from the CHAN BUF to the

MB:s. in the case of channel data write operations, or can start looking for words that are ready to be

moved out of the MBs into the CH BUF, in the case of channel data read operations.

2.8.2.1 Channel Read Operations - Two types of read requests can be issued by the channels:

a. Read a single word from the EPT. The EPT contains eight locations for storing the initial

CCW. One location is assigned to each channel.

b. Read one, two, three, or four words (instructions and data) from physical core memory.

To read the initial CCW from the EPT, the channel issues and qualifies the request as follows:

Assert CCL CHAN REQ.

Clear CCL CHAN TO MEM.

Assert CCL CHAN EPT.

Assert CCW WDO0 RQ.o
o

g

NOTE

Word 0 is requested because the initial CCW is

stored in location 0 of a quadword group.

e. Setup CCL CH MB SEL 1-2 lines to point to MBO.

f. Assert CCL HOLD MEM.

g. Hold CCW CHA 14-35.

The channel then waits for a cache cycle. When the cache cycle is started, the correct address is formed

by replacing CCW CHA 14-26 with the contents of the EBR. This address is then used to look in the

cache; if the word is not in the cache, the word is read from core (refer to cache channel cycle descrip-

tion). In either case, the word is moved into MBO0. The channel recognizes that MBO was loaded when

M B0 HOLD IN was negated for one clock tick. The channel will then move the word from MBO to the

CCW BUF and cause MB parity to be checked.

MBox /2-32

WRITE

SETCOCL CHAN REQ
SETCCL C

SETCCL HOL
CCL CH MB SEL1-2%-n

HOLD CCW CHA 14-35

ORDER OF WORDS
IS ASCENDING

MODULO 4

SET
CCL CH LOAD
B

YES
ORDER OF WORDS

1S .DESCENDING
MODULO 4 ORDER

DECR
CCL CH MB

SEL (-2

READ

SET CCL CHAN REQ
CLR CCL CHAN TO MEM
SET CCW CHANWD O-3
SET CCL HOLD MEM
CCL CH MB SEL |-2 %0
HOLD CCW CHA 14-35

T

L
]

CHAN LOAD

NOTES:

1. I channel requests are backed up “HOLD MEM"ond "CHAN REQTM

are not cleared , the channe! will then get the nexi core cycle.

The next core cycle can be storted when cli words in the MB's are

written to core on CH WRITE opergtions or after the iost word is

moved from the MB's 1o the CH BUF on CHAN READ operations.

CLR CCL HOLD

CLR CCL. CHAN
REQ

2 Refer 0 subseclion 2.8 ond 3.8.8.

3 Refer 1o figures 2-13 they 2-17.

HAN'R Q

CLR CCL HOLD

CLRCCL CHAN
REQ

w0 2
REQUESTED

CH BUF«— M8
SET CCL CH MB
TEST PAR

INCR CCL. CHAN
MB SEL 1-2

10-1482

Figure 2-8 Channel Request Dialogue,

Simplified Flow Diagram

{Data Read and Write)

MBox/2-33

To read data and instructions from physical core memory, the channel issues and qualifies the request

as follows:

d.

b.

f.

.

Assert CCL CHAN REQ.

Clear CCL CHAN TO MEM.

Clear CCL CHAN EPT.

Set up CCW WDO0-WD3 RQ lines to indicate which words are to be read.

Set up CCL CH MB SEL -2 lines to point to the MB that corresponds to the lowest order

word requested.

Assert CCL HOLD MEM.

Hold CCW CHA 14-35.

The channel then waits for a cache cycle. When the cache cycle is started, the channel address (CCW

CHA 14-35) is used to look in the cache, and if all the requested words are not in the cache, to read

those words from core. In either case, the requested words are moved into the MBs. The channel

recognizes that an MB is loaded when MBO, 1, 2, or 3 HOLD IN is negated for one clock tick. The

channel will start moving the words to the CH BUF as soon as the lowest order requested word is

placed into the corresponding MB. Subsequent words are moved from the MBs to the CH BUF in

ascending order. As each word is transferred, its parity is also checked in the MB.

2.8.2.2 Channel Write Operations — Two types of write requests can be issued by the channels:

d. Write two words into the EPT. The EPT contains 16 locations for storing channel status

information. Two locations are assigned to each channel.

Write one, two, three, or four words (data and instruction) into physical core memory.

NOTE

These words may have been read from a magnetic

tape drive that is capable of reading forward and

reverse.

To write the two status words into the EPT, the channel issues and qualifies the request as follows:

o
o

o

Q
e

Assert CCL CHAN REQ.

Assert CCL CHAN TO MEM.

Assert CCL CHAN EPT.

Assert CCW WDI and WD2 REQ.

NOTE

Word 1 and Word 2 are specified because the status

words are stored in locations 1 and 2 of a quadword

group.

Set up CCL CH MB SEL 1-2 lines to point to MBI.

Assert CCL HOLD MEM.

Hold CCW CHA 14-35.

MBox/2-34

The channel then waits for a cache cycle. When the cache cycle is started, the correct address is formed
by replacing CHA 14-26 with the contents of the EBR. This address is then used to write the words to
core after they are moved to the MBs. The cache is also checked to see if there is a copy of the
referenced EPT locations in the cache, if CON CACHE LOOK EN is set, and if the cache is imple-
mented. If there is, this copy is invalidated because it is assumed to be an old copy. After the first word
is moved into the MB, the channel initiates a core write cycle to move the word to core, The second
word is moved into its MB four clock ticks after the first word, in time for the core control.

To write data and instructions into physical core memory, the channel issues and qualifies the request
as follows: |

a. Assert CCL CHAN REQ.

b. Assert CCL CHAN TO MEM.

c. Clear CCL CHAN EPT.

d. Set up CCW WDO0-WD3 RQ lines to indica.te which words are to be written.

~e. Setup CCL CH MB SEL 1-2 lines to point to the MB that corresponds to the first word to
be transferred by the channel.

NOTE

If the words were read from a magnetic tape drive

operating in the forward mode, the words will be

transferred in ascending modulo four order. How-

ever, if the drive was operating in the reverse mode,

the words will be transferred in descending modulo

four order.

f. Assert CCL HOLD MEM.

g. Hold CCW CHA 14-35.

The channel then waits for a cache channel cycle. When the cache cycle is started, the channel address

(CCW CHA 14-35) is used to write the words into core after they are moved into the M Bs. The cache

is also checked to see if there is a copy of the referenced memory locations in the cache. If there is, this

copy 1s invalidated since it is assumed that this must be an old copy. After the first word (lowest

numbered word) is moved into the MB, the channel initiates a core write cycle to move the word to

core. Subsequent words are moved into the MBs at four clock-tick intervals so that the words will be

available for transfer to core. The core cycle control moves a word to core every six clock ticks once a

core cycle is started.

2.9 CCA REQUESTS

Requests arc issued by the cache clearer control to invalidate the cache and/or validate core. The cache

clearer control is activated by the EBox when it executes a Sweep instruction. While executing a Sweep

instruction, the EBox issues a request to load the CCA register. This request loads the CCA register

and activates the CCA control by latching CCA REQ and loading a 3-bit request qualifier register.

After this operation is done, the CCA control will issue requests, accompanied with the preset request

qualifiers, until the Sweep operation is completed, at which time, the CCA REQ latch is cleared. The

preset request qualifiers include:

a. CSH CCA ONE PAGE

b. CSH CCA VAL CORE

¢. CSH CCA INVAL CSH

MBox/2-35

Whenever an MB, CHAN, or LBox request is not pending, a cache cycle is executed for the cache

clearer control to:

4. Sweep one page, or

b. Sweep entire cache

In either case, depending on the request qualifiers, the cache may be cleared and/or core may be
validated.

When sweeping one page, each line of the cache is checked to see if there is a valid entry. An entry is

valid if the address in the cache directory matches the high-order 14 address bits in the CCA register

and one or more valid bits are set. If there is a valid entry in the addressed cache line then the entry is
invalidated and/or a core cycle is started to move any written words to core. After this operation is
done. the low-order nine cache clearer address bits in the CCA register are decremented by four to
address the next cache line in preparation for the next cache CCA cycle.

W hen sweeping the entire cache, each of the four cache blocks in each cache line is checked to see if

there is a valid entry. An entry is valid if one or more valid bits in the addressed cache block are set.

The high-order 14 cache clearer address bits are not required when sweeping the entire cache because
every entry in the cache, regardless of its address, is subject to the sweep operation. If there is a valid
entry in the addressed cache block, the entry is invalidated and/or a core cycle is started to move any
written words to core. After this operation is done, the low-order nine cache clearer address bits are

decremented by one to address the next cache block in preparation for the next cache CCA cycle.

After the cache clearer control has stepped through the entire cache, CCA REQ is cleared to inform
the FEBox that the Sweep operation is done.

2.10 CORE REQUESTS -

Core requests to read or write main memory are issued by the core cycle in response to a start signal

and appropriate request qualifiers from the cache cycle control or from the channel control. All con-

trol signals. the address, and the data are transferred between the MBox and the main memory system

via the SBus. Both the channel and the cache cycle control can initiate a core cycle to read or write up

(o four words at a time. Once the core cycle control is set up by the channel or cache cycle control, the
core cycle control will execute the requested operation to completion, independently.

NOTE

SBus diagnostic cycles are executed by the cache

cycle control not the core cycle control (Subsection

2.7.4.6).

2.10.1 SBus Summary

A summary of the SBus is presented in Table 2-7. The SBus signals are grouped into sets, according to

their function. The notations in parentheses are field maintenance print set prefixes that specify the
source of the signals.

2.10.2 Request Dialogue

The core cycle control starts a core cycle by asserting SBUS START A or B, asserting the appropriate
SBus request qualifiers and holding the physical memory address (Figure 2-9). The request qualifiers
dAre:) S

4. SBUS RQ 0-3

h. SBUS RD RQ

¢. SBUS WR RQ

MBox/2-36

Table 2-7 SBus Summary

Signal Description

Control Commands

START A/B (MTO1)

ACKN PULSE A/B (SBUS 0/1)

DATA VALID A/B (SBUS 0/1-

MTO1)

DIAG (MTO1)

Request Qualifiers

RQO0-3 (MTO1)

RD RQ (MTO1)

WR RQ (MTO1)

Error Reporting Commands

ADR PAR ERR (SBUS 0/1)

ERROR (SBUS 0/1)

- Address _

ADR 14--35 (MT04)

ADR PAR (MTO1)

Data

D00—35 (SBUS 0/1-MT02-3)

START A or START B is asserted by the core control to start a

core cycle.

ACKN PULSE A or ACKN PULSE B is asserted by the core

memory system to acknowledge the requests.

DATA VALID A or DATA VALID B is asserted by the core

memory system when a word is placed on the data lines of the

SBus. Also asserted by the MBox during the write portion of a

Read-Pause-Write cycle.

NOTE

The above control signals are phase-locked with the leading

or trailing edges (Phase A or B) of the SBus clock to mini-

mize bus latency.

Asserted by the Cache cycle control to start a diagnostic cycle.

These four signals are asserted by the core control to specify the

words to be rcad or written.

Asserted by the core cycle control to specify a core read cycle is

to be executed.

Asserted by the core cycle control to specify a core write cycle is

to be executed.

NOTE

During a Read-Pause-Write Cycle both RD RQ and WR RQ

are asserted.

Asserted by the core memory system when an address parity error

is sensed.

Asserted by the core memory system when a data parity error is

sensed. Data parity is checked on both rcad and write cycles.

Physical address for memory system.

Address and Request Qualifier parity for memory system.

Bidirectional data path between MBox and core memory system.

MBox/2-37

Table 2-7 SBus Summary (Cont)

Signal Description

.. Data (Cont)

DATA PAR (SBUS 0/1-MTO05) Bidirectional data parity line between MBox and core memory

system.

F. Clocks

INT CLK (MTO1) Clock for internal memory system (MA/MB20);

EXT CLK (MTO1) Clock for external memory system (DMA20).

These signals remain valid until all requested words have been acknowledged. All further core requests

from the channels or cache cycle control will be deferred until core is freed at the completion of the

core cycle in progress. Three types of core cycles can be initiated by the core cycle control:

a. Read cycle

b. Write cycle

c. Read-Pause-Write cycle

The read-pause-write cycle will only be initiated in response to an EBox request for which the cache is

not to be used.

2.10.2.1 Core Read Cycle - To read from core, the core cycle control, in response to a command from

the cache cycle control or the channel control, issues and qualifies the request as follows:

a. Assert SBUS START A or B.

b. Assert SBUS RD RQ.

c. Assert SBUS RQ 0-3.

d. Hold SBUS ADR 14-35.

At the same time the core cycle control issues the request, CORE BUSY is set and the acknowledge

and data valid pulse counters are initialized (Subsection 3.7). The counters keep track of the requested

words coming back from core by counting the SBUS ACKN and DATA VALID pulses. After setting

up the request, the core cycle control waits for the words to come in from core. As each request is

acknowledged and each word comes in from core, the associated requests held in the acknowledge and

data valid pulse counters are cleared and the word is moved into the appropriate MB. The first word

may also be moved to the AR in the EBox. When all requested words have been acknowledged, SBUS

START A or B is cleared. CORE BUSY remains set until the channel or the cache cycle control,

depending on which control requested the core cycle, moves the words out of the MBs. If a core read

cycle for more than one word was started by the cache cycle control in response to an EBox request,

the core cycle control will issue M B requests to the cache cycle control for all but the first word. As MB

requests are granted by the cache cycle control, the words that were moved into the MBs by the core

cycle control are moved in the cache. If the core read cycle was initiated to satisfy a channel request,

the channel will take the word in ascending modulo four order after they have come in from core.

M Box,/2-38

I. During Reed eperstionsbeth OATA VALIO end ACKN puises o

o0s counted. The 10t ACKN puind slwers occurs bofore The

last DATA VALIO puise.

2. n * Lowest numberedRQn A .

3 n v Initigly » squeis the number of the word requesied by

he EBox. Thorealier A i NCramentsl moduit4 thipping

WV worde net MQUENINd until @11 wWerds heve Come i oM Cers

4 ANYMB WRAQ remaine 86t wahil a1l worés heve been tehan by the

coche or chonnal controls

5. Refer to subsections 2.10 end 3 7

6. Retero figures 2-13 thew 2-1T

YVES

SET SBUS
START &

SET CORE BUSY

RQ HOLD

{NOTE 1}

SET NXM

DATA VALID

NXM FLG

{NCTE 2}

: j

(NOTE 3)

{

e

~FIRST WORD

SET

W8 REQ

MBr «— AR

TEST MB PAR SHEET &

Fi16.2-T

CLR CORE BUSY 10- 1483

Figure 2-9 Core Control Cycle,

Functional Flow Diagram

MBox/2-39

2.10.2.2 Core Write Cycle - To write into core, the core cycle control, in response to a command

from the cache control or the channel control, issues and qualifies the request as follows:

a. Assert SBUS START A or B.

b. Assert SBUS WR RQ.

¢. Assert SBUS RQ 0-3.

d. Hold SBUS ADR 14-35.

Before the core request is issued, the cache cycle control or the channel control will have moved the

first word to be written into the appropriate MB. '

At the same time, the core cycle control issues the request, it also sets CORE BUSY and initializes the
acknowledge pulse counter. This counter keeps track of which words have been moved to core by
counting the SBUS ACKN pulses. After setting up the request, the core cycle control waits for each
word that is to be written to core to be acknowledged. As each word is acknowledged, the associated
request held in the acknowledge pulse counter is cleared and the next word is placed on the SBus data

lines by selecting the appropriate MB. When all words have been acknowledged, SBUS START A or B
and CORE BUSY are cleared.

2.10.2.3 Core Read-Pause-Write Cycle - To read, modify, and write a core location without releasing
core (PAUSE) between the read and write operation, the core cycle control, in response to a command
from the cache cycle control, issues and qualifies the request as follows:

a. Assert SBUS START A or B.

b. Assert SBUS RD RQ.

c. Assert SBUS WR RQ.

d. Assert SBUS RQ 0-3.

e. Hold SBUS ADR 14-35.

~

At the same time the core cycle control issues the request, CORE BUSY is set and the acknowledge

and data valid pulse counters are initialized. During this type of core cycle, only one word will be

requested from core. Consequently, the acknowledge and data valid pulse counters will be cleared after:

the request is acknowledged and the first word comes in from core. When the word comes in from

core. it is placed in the appropriate MB and is made available to the EBox AR. SBUS START A or B

is also cleared at this time. However, CORE BUSY is not cleared until the EBox issues the write

request and the word is on its way to core memory. When the EBox makes the write request, the word

to be written is moved from the AR to the MB and SBUS DATA VALID is asserted to inform core

memory that it is to write the word.

2.11 CBUS REQUESTS

The CBus is a synchronous bus system that connects the integral channel control logic of the MBox to
a maximum of eight RH20 Massbus controllers. These controllers are selected (scanned) in such a way

that the first four controllers (0-3) can handle a data transfer rate of approximately one 36-bit word

per microsecond, while the second four controllers (4-7) handle a data transfer rate of half that speed.

The MBox is a logical unit that provides the path to the main memory subsystem for both the integral
data channels and the EBox. Each Massbus controller can control up to eight mass-storage disk drives
(fixed-head disks or moving-head disks) or up to eight TM02 or TMO03 magtape controllers with each
controller having up to four TU16 or TU45 drives. The purpose of the CBus is to provide a high-speed
path between the MBox channel control logic and up to eight controllers for control and data
information.

2.11.1 CBus Summary

A summary description of the CBus is given in Table 2-8. The notations in parentheses are field

maintenance print set prefixes that specify the source of the signals.

MBox/2-40

Table 2-8 CBus Summary

Signal Description

SEL 0-7 (TRO5)

RESET (CBUS)

START (TROS)

CTOM (CBUS)

READY (TRO05)

REQUEST (CBUS)

These eight radial lines are controlled by the channel control to select

one Massbus controller at a time every four MBox clock ticks. The
SELECT line of a controller defines the beginning ofits four data trans-

fer cycles (SELECT cycle, REQUEST cycle, WAIT cycle, and DATA

cycle).

This signal may be asserted by a Massbus controller during its DATA

cycle. The channel control logic, upon detecting this signal, will clear

the control RAM location associated with the controller (channel) and

will store the fact that reset has occurred.

A Massbus controller will always begin a block transfer by asserting

this line once during its DATA cycle. The line will be asserted only

when CBUS READY is negated. The channel control logic will assert

READY when it is prepared for data transfer.

A Massbus controller begins a block transfer by asserting START for

exactly one DATA cycle. The controller will inform the channel control

logic during the same cycle of the direction of the block transfer by:

a. Asserting CTOM for an input block transfer (Channel to

Memory).

b. Negating CTOM for an output block transfer (Memory to

Channel).

The channel control logic will assert this line (during the DATA cycle

only) after it detects a START signal sent by a Massbus controller and

after the channel control logic is ready for data transfer. For an output

block transfer, the channel control will have at least two words of data

from memory (if WC > 2) before asserting READY. The READY

signal, once asserted, will normally be negated only after sensing the

DONE signal and after the channel control is prepared to start another

block transfer operation. Errors will also cause READY to be negated.

A Massbus controller will assert REQUEST during its REQUEST

cycle when:

a. One of its data buffers is full (for an input block transfer

operation).

b. One of its data buffers is empty (for an output block transfer

operation).

MBox/2-41

Table 2-8 (Bus Summary (Cont)

Signal Description

REQUEST (CBUYS)

(Cont)

DONE (CBUYS)

STORE (CBUS)

LAST WORD (TRO5)

A Massbus controller will not assert REQUEST if:

a. READY line is not asserted by the channel control.

b. ERROR line has been asserted by the channel control during

the current block transfer.

c. LAST WORD has been asserted by the channel control dur-

ing the current block transfer.

d. DONE has been asserted by the Massbus controller during

the current block transfer.

For an input data transfer, the Massbus controller will place data

(throughout its DATA cycle) on the DATA lines and the channel con-

trol will strobe the DATA lines at the trailing edge of the same data

cycle.

For an output transfer, the above operation is reversed.

The Massbus controller will terminate a block transfer by asserting this

signal once during its DATA cycle. No more data requests will be made

after DONE is asserted. The channel control, after detecting DONE,

will get ready for a new block transfer (empty the input data buffers,

etc.). The error line can still be used to inform the Massbus controller

that an error has been detected in the current block transfer as long as

the READY line is not negated.

The Massbus controller will send STORE to the channel control once

(at the same time the controller sends DONE) when:

a. The current block transfer is terminated due to errors

detected in the Massbus controller and/or

b. The current block transfer command in the Massbus con-

troller specifies that STORE be sent to the channel control at

the conclusion of the block transfer.

The channel control, upon detecting STORE, will write all status infor-

mation associated with the controller into memory.

The channel control will keep READY asserted until it is prepared to

initiate another block transfer.

The channel control (for an output block transfer only) will assert this

line (during the DATA cycle) one cycle after the last data word is sent

to a controller. No more data requests will be made by the Massbus

controller after detecting LAST WORD.

M Box /2-42

Figure 2-8 CBus Summary (Cont)

Signal Description

ERROR (TRO05) The channel control will assert this line (during DATA cycle only) to

inform the controller that the current input/output block transfer must

not continue due to error conditions detected in the channel control.

The Massbus controller, upon sensing the ERROR signal, will termi-

nate the block transfer by not making any more data requests and will

assert DONE exactly once during a subsequent DATA cycle. The

ERROR line will be negated before the channel control negates the

READY line. If the ERROR line is detected after the READY line is

negated, it may be interpreted by a Massbus controller to be an error

associated with the next block transfer.

DATA 00-35 These 36 bidirectional lines carry the high speed data and are valid only

(TRO1/2-CBUS) during DATA cycle. The channel control will apply zeros on the DATA

lines for a Massbus controller (during its DATA cycle) whenever there

is no data transfer request from the Massbus controller.

PAR LEFT/PAR RIGHT | These two bidirectional lines carry the computed parity for the left and

(TROI-CBUYS) right half word of the DATA lines.

2.11.2 CBus Timing

A clock-time-division multiplexing technique is used to control the CBus operations. A free-running

clock exists in the EBox and is sent to the MBox by internal connections. One delay line per Massbus

controller is used to synchronize (deskew) the signals between each Massbus controller and the chan-

nel control logic of the MBox.

The channel control continuously selects one of the eight controllers by generating eight selection lines

in the following sequence: 0,1,2, 3,4,5,0,1,2,3,6,7;0,1,2,3,4,5. . . . (Figure 2-10). The sequence is

stepped with the leading edge of the clock signal.

A Massbus controller is allowed to tr-usmit or receive data and control information only after it has

been selected by the channel control. Fi,-ure 2-10 shows the four cycles used by the channel control and

a Massbus controller during a data transfer operation. Each cycle is asserted by the leading edge of a

clock pulse and is negated by the leading edge of the next clock pulse.

a. SELECT cycle - The SELECT line of a particular Massbus controller is asserted throughout

this cycle.

b. REQUEST cycle - The selected Massbus controller will assert the REQUEST line (if data

request is needed) throughout this cycle.

c. WAIT cycle - This cycle is used by the channel control to prepare data and status for

transmission. Neither data nor status is asserted during this cycle.

d. DATA cycle - Data is placed on the DATA lines either by the MBox (output data transfer)

or by the Massbus controller (input data transfer) during-this cycle. The recipient of the data

will strobe the data lines at the trailing edge of the data cycle. All CBus control lines

(ERROR, READY, LAST WORD, CTOM, START, RESET, DONE, and STORE),

except the REQUEST line, are allowed to be asserted during this cycle only.

MBox/2-43

I LCAUS SEL O I AGI 1 I

1cBUS SEL ! J1

CBUS SEL 2

M

CBUS SEL 3 IA3|
M

CBUS SEL 4 |A4|

CBUS SEL 5§ |A5 | r—-l

cBuUS SEL 6 |A6 l l I

caus sEL 7|

REQUEST]BGl

MBCQ\ wAIT

3

L

(

o e I Im

rDATA I I

CATA

REQUEST

MBC 5 waiT

REQUEST

MBC 4 walrt

]

55
3i
]j
]

:
]

’REOUEST ——l

MBC 6 WwAIT

'k DATA

|

{ ICGI

{. DATA

L
L
A

(REQUEST
|

i

7]

B

I
M

N
MBC?I waiT]

CATA | [or]e7|

NOTES 1 CBUS control signals are asset ted nly duriag the DATA tive slot

The cuntrol signals are: START RESFT. CTOM, READY, LAST WORD. DONE, STORE.

2. CBUS REQUEST s asserted only during the REQUEST time slot.

Figure 2-10 Channel Scanner Timing Diagram

MBox /2-44

10-2076

Controllers 0, 1, 2, and 3 are selected twice as often by the channel control’s selection sequence as

controllers 4, 5, 6, and 7.

a. The maximum transfer rate of Massbus controllers 0, 1, 2, 3 is 1 usec/word.

b. The maximum transfer rate of Massbus controllers 4, 5, 6, and 7 is 2 usec/word.

2.11.3 Functional Description of Channel Read (NOT CTOM) and Channel Write (CTOM)
The following are descriptions of channel read and channel write operations presented in a chronologi-

cal context. Refer to Figure 2-11 and 2-12.

2.11.3.1 Channel Write Operation (CTOM) - A channel write operation transfers data from the drive
(reads from the drive medium) to main memory.

a. A user program will trap to the monitor when I/O is required because the timesharing user
programs I/O using monitor calls.

b. The monitor decides which and how many physical blocks to read. For directory devices
(disks), a file search may need to be done to obtain this information.

c. The monitor sets up the CCW list in main memory. The starting address is EPT + (4 X Phys
No.) + 0.

d. The monitor sets up the Massbus drive and RH20 Massbus controller to execute a READ
operation. This may involve a seek and/or a search operation after which the monitor exe-
cutes a DATAQ instruction to transfer the drive read command to the RH20 and the drive.

e. If the channel control is not busy (CBUS READY is negated), the RH20 asserts CBUS
START/RESET and CTOM during the DATA cycle (time D slot) of the scanner when the
command is transferred from the RH20 to the drive.

f. The channel control responds to CBUS START/RESET and CTOM by fetching the first
CCW and then asserting CBUS READY. The control RAM, CCWF queue, and MB
request logic are all involved in this operation. The address for the memory request is

obtained from the CCW BUF which contains a CLP.

MBox /2-45

€|

3|{D|3

s a|C|s a7,

annt 5|87 <
) R

o\ - o|Ale S €o A

3 19
3 o 00D\ | EVEN ¢ X S\E

6 PASS\ [PASS 7
7 1 X0

SEL 0DD X 1
@ PASS

EVEN

7 ADVANCE 1

SCANNER

u’ START

0ODD

SEL -~ - SEL\.PASS | 2 | !

6 2 JEVEN [2]1]o] 7
PASS

T2

SEL

o\ 3

ovfia
SEL)&

5 NI 3
4 2

3 1

0

4

3

2

1

[of1]z]slo|t]2]3]o]1]2]3]
\ 3]

ADRRAM_:I_-I J—-‘ IE:

LATCH RAM OUT

WRITE RAM I

l n+1

b

-
~

-

-

2RAM CYC

10-2099

Figure 2-11 Channel Scanner State Diagram

M Box /2-46

DESCRIPTION INDEX

CBUS CONTR REQUEST

RESET

START

DONE

STORE

MB REQUEST

CCOWF

ACTION FLAG

CTOM

NOT CTOM

ZERO FILL/SKIP

STOREO
E
O
R
O
E
O
R
O
O
O
O
G
®
O
O
O
O

KEY FUNCTION SUBSECTION

CBUS SEL 211-3.8.1

CBUS DATA REQUEST 2.11-3.8.4-3.86

CTOM 2.11.3.1-3.8.3-3.8.4-3.86

NOT CTOM 2.11.3.2-3.8.3-3.84-3.86

211382385

2.11.3-3.8.2

2113382

2113382

211.338.2

3.7.7-3.88-3.86

3881

38.7.388

3882

3883

3883

38538843885

NOTE: ALSO REFER TO FIGURES 2-13 THROUGH 2-17.

cBUS YES
DATA

HEV :

NO

NO

SET OVN ERA

N STORE
SET CBUS

ERR IN

SET STORE

BUF \NO

UPDATE CH PTR (+1}

CH BUF — CBUS

REQ RAM CYC ACTION FLAG

SET ACT FLG REQ

ENAIF (CHPTR .

MEMPTR] -AC > O)

EMPTY

YES

SET OVN ERR

N STORE
SET CBUS ERR

N

SET STORE

UPDATE CH PTR i+1}

CBUS — CH BUF

REQ RAM CYT

SET ACT FLG REC

ENA iF 15+ (CH PTR

STORE

ACTION FLAG

-MEMPTR! -AC >0

SET CBUS LAST

WORD (FPTR DIFF =

154 WC=0

Ano

REQ RAMCYC

CLR CONTR RAMS

SET RAM RESET FLG

STORE

:

DONEV

DONEA .

READY

YES

SET RH20 ERR IN

SETMEM STORE | STORE

REQ RAM CYC

SET CCWF REQ ENA CCWF

SET EPT (F RESET

FLG ISSET

ENA

SET CBUS ERR

SET LONG WC

ERR IN

SET MEM STORE

EN

SET CBUS ERR

iN

STORE

REQ RAMCYC

UPDATE CONTR RAM

IF . STORE CLR CBUS

READY

IF CH PTR - MEM PTR

>0

SET ACT FLG ENA

IF STORE SET MEM

STORE REQ ENA

STORE

ACTION FLAG

SET LONG WC

ERR IN

SET MEM STORE | STORE

EN

SET CBUS ERR

"~

REQ RAM CYC

UPDATE CONTR RAM

IF - STORE CLR CBUS

READY

IF STORE SET MEM

STORE REQ ENA

STORE

STORE

Figure 2-12

10- 2216

Channel RAM Cycle Control

Functional Flow Diagram (Sheet 1 of 3)

MBox/2-47

ACTION

FLAG

INITIAL

RAM

cYc

REQCNT =0

YES

e EPT WD0 REQ

e EPT WD

e CHAN REQ

SET MB RiP

CCW REG - CCW CLP

COW CLP - CCW CLP

+1

SET CMAN EPT IF

RESET

REQ - AC

TEST M8 PAR

LOAD OP CODE

CCW BUF — M8

1F JUMP SET CCWF

REQ ENA

1F DATAXFER - CTOM

SET ACT FLG REQ

ENA OR SET CBUS

RAEADY IF CTOM

CLR MB RP

CHAN READ

2 CONSECUTIVE RAMCYC -—

2ND 1S FORCED PROVIDED

A HIGHER PRIORITY REQUEST

iS NOT PENDING

e SETMBRIP

CCW REG— CCW

BUF CCw

o COWBUF—WC-AC

e SET CCWF REQ EN

1FWC=0

CLR M8 RIP

UPDATE MEM PTR

o SETMB RiP

* CCW REG - CCW

BUF Cow

s SETUP:
Cowr

REQCTR

M8 SEL LOGIC

WO REQ LOGIC

CH BUF ADR

SET CHAN REQ_ETC

ACTION

FLAG E

CHAN WRITE

* UPDATE MEM PTR

* UPDATE CCW WC

AND ADAR

* SET CCWFREQ ENA

+F WC = 0 AND DONE

o SET ACT FLG REQ

ENA {F {CHPTR -

MEM PTAI -AC >0

& CLRMBAw

INITIAL
naM

cYe

SET MB RiF

COW REG — CCW BUF

cow

. ETUP:

REQCTR

M SEL LOGIC

WD REQ LOGIC

CH BUF ADR

o SET CHAN REQ, ETC

CHAN READ

102903

Figure 2-12 Channel RAM Cycle Control

Functional Flow Diagram (Sheet 2 of 3)

MBox/2-48

\ @

REQCNT =0

UPDATE MEM PTA

UPDATE CCW WC

AND ADR

SET CCNE REQ ENA

IF WC = 0 - DONE

SET ACT FLG REQ

ENA IF 15 + (CH PTR

-MEMPTR) -AC >0

SET CBUS READY

CLR M8 Ri?

REQCTA =0

T SETME AR
CCW REG -~ CCW BUF

ccw

SET UP:

REQCTR

MB SEL LOGIC

WO REQ LOGIC

CH BUF ADR =

60

SET CHAN REQ. ETC

UPDATE MEM PTR

CCW BUF — WC - AC

SET CCWFREQ ENA

IF WC = 0 - DONE

SET ACT FLG REQ

ENA IF 15 + ({CH PTR

-MEMPTRI - AC >0

SET CBUS READY

CLR MB Rif

STORE 4

SET LAST XFER

ERR IN

SET M8 RIP

CCW BUF ~ STATUS

8ITS

SET UP:

REQCTR

MB SEL LOGIC

WD REQ LOGIC

CH BUF ADR

CHAN EPT

CHAN REQ

LOAD MBS WiTH:

STATUS/CLP AND

ccw
CHAN WARITE

ERR REQ

SET M8 RIP

CCW BUF ~ STATUS

BITS

SET MEM STORE

REQ ENA

SET CBUS ERAOR

SAME AS STORE

ABOVE

STORE

162904

Figure 2-12 Channel RAM Cycle Control

Functional Flow Diagram (Sheet 3 of 3)

MBox/2-49

Memory requests (CCL HOL.D MEM) are made by the MB request logic to fetch additional
channel command words as long as DATA XFER CCW is not received. Memory requests
are made as follows:

. Assertion of CBUS START/RESET and CTOM causes the channel control to initiate
a CBUS CONTR CYC to update the control RAM.

!\
)

Thereafter, a memory request is issued to fetch the CCW and load it into the CCW

BUF.

If CBUS RESET was asserted by the RH20, then the first CCW is fetched from the
EPT (EPT + [4 X Phys No.] + 0).

If CBUS RESET was not asserted, then the first CCW is fetched from the location
pointed to by the CLP + 1 in the CCW BUF.

' NOTE

Additional CCWs are fetched until a DATA XFER

CCW is received.

3.7 CBUS READY enables the RH20 to allow it to transfer words from its buffer to the
channel buffer (CH BUF) via the CBUS. CBUS REQUEST is set every time a word is
placed on the CBus.

At this point, the channel control is executing two operations:

I. Fetching CCWs until a DATA XFER CCW is received.

2. Placing a word into the CH BUF every time CBUS REQUEST is asserted by the
RH20.

NOTE

Enough time is assured to receive a DATA XFER

CCW before a memory request is forced to transfer

these words to memory.

CBUS REQUEST causes the channel control logic to execute a REQ CYC to move the
word from the CBus into a CH BUF location. The RH20 asserts CBUS REQUEST only
when it has a word to transfer. Words are assembled in the RH20 in a two-word data buffer,

one half-word at a time. These half-words are received by the RH20 from the Massbus drive
via the Massbus at a rate dependent on the drive characteristics.

Every time a word is placed in the CH BUF, the CH PTR is updated. Also, an arithmetic

algorithm is applied to the CH POINTER, MEM POINTER, and ACT COUNT to see if

enough words are in the CH BUF to warrant a memory request to store the words.

I. ACTION COUNT is a function of CCW CHA 34-35 and the CCW WC. This count

specifies how many words must be in the CH BUF before a memory request can be

started to store up to four more words.

NOTE

Memory requests cannot be made for words that

cross the quadword boundary.

MBox/2-50

2. MEM PTR is advanced by the ACTION CNT when all the words have been moved to

the MBs. -

3. The CH PTR is advanced by one when a CBUS REQ CYC is executed.

4. The difference between the MEM and CH PTRs specifies the number of words in the

CH BUF for a given channel.

5. An action flag is set to initiate a memory request if (CHAN PTR -MEM PTR)

~-ACTION COUNT = 0.

When the above condition is satisfied, the action flag is set and a memory request for the

number of words specified by the action count can be initiated. The memory request will be

executed as follows:

1. Set CCL ACT FLAG REQ.

2. Set CCL HOLD MEM.

3. Request INIT RAM cycle.

NOTE

CBus data requests, CBus control requests, and

memory requests all require at least one RAM cycle

to obtain the necessary information for executing the

request and for reading and writing the RAMs (Con-

trol RAM, CCW BUF, CH BUF, and Pointer

RAMys).

Since there are only a limited number of RAM cycles

available (one every four ticks), an order of priority

has been established for granting RAM cycles. This

order is:

1. CBUS DATA REQ for channels 0-7.

2. CBUS CONTROL. REQ for channesl 0-7.

3. MEMORY REQUESTS for channels 0-7.

Memory requests are made for fetching CCWs,

transfering data, and storing status. To ensure

efficient channel operation, an order of priority also

exists for allocating RAM cycles to memory

requests. The order is:

1. Fetch CCW (CCWF REQ).

2. Data (ACT FLAG REQ).

3. Store Status (MEM STORE REQ).

Since heavy channel activity (CBus requests for data)

can consume many of the available RAM cycles,

control requests and memory requests are queued so

that they are remembered and can be executed in the

proper order of priority when RAM cycles become

available.

MBox/2-51

4.

All channels are assured at least one RAM cycle for

each scanner pass. When there is more than one

request pending, only the higher priority request is

excuted for a given channel. Therefore, a given chan-

nel may have to wait before a pending memory

request or control request gets a RAM cycle. When

initiated, the memory request and type (CCWF,

ACT FLAG, or MEM STORE REQ) are latched.

Then, if a higher priority request comes in, it will not

be granted until the current request is done.

A RAM cycle is needed for an action flag memory request to transfer the appropriate

CCW word (CCW CHA 14-35) from the CCW BUF to the CCW register and to read

the ACT CNT and the MEM PTR. This address is needed to address core/cache. The

ACT CNT, in conjunction with the least two significant bits of the address (bits 34 and

35), is used to set up the word request logic; the MEM PTR, in conjunction with the

channel code of the ACT FLAG REQ, is used to form the CH BUF ADR."

NOTE

After the memory transfer is completed, the CCW

address (ADR) will be incremented and the WC will

be decremented by the value contained in the action

counter and written back into the CCW BUF.

After the action flag memory request gets a RAM cycle, CCL CHAN REQ, along with

the appropriate request qualifiers, is set to request a cache cycle.

If the cache control is not busy (IDLE), if core is not busy, and an MB request is not

pending, the cache control grants a cache channel cycle.

The channel control recognizes that a cache channel cycle is granted by sensing that

CSH CHAN CYC is asserted.

The channel control then asserts CCLL START MEM and CCL CH LOAD MB.

NOTE

CCW WD 0-3 REQ and CCL CHAN TO MEM

where latched, along with CCL CHAN REQ, to

request a Cache cycle. The CCW WD 0-3 REQ sig-

nals are a function of ACTION COUNT, and the

MB SEL 1-2 signals are a function of CHA ADR

34-35.

A word is transferred to an MB every four clock ticks. As each word is transferred, the

MB SEL -2 counter is incremented, the REQ counter is decremented, and the CH

BUF ADR is advanced until all words are transferred.

When the contents of the request counter are 0, a request for a RAM cycle is again

made to update the MEM PTR (MEM PTR « MEM PTR - ACT CNT). The CCW

ADR and WC are also updated (ADR <« ADR + ACT CNT; WC « WC - ACT CNT).

MBox /2-52

11. While the channel control is transferring the words to the MB, the cache control checks
to see if cache has any valid words. If any valid words are found, the VALID and
WRITTEN bits are cleared for these words. Thereafter the cache control returns to

IDLE.

12. CCL START MEM is asserted approximately the same time the first word is trans-

ferred to an MB, assuring that the M Bs have at least one word when the core control is

started. Subsequent words are transferred to the MBs faster than the core control can

move them into core.

13. While the core control is transferring the words to core, the EBox can access the cache,

but a core reference cannot be started until the current reference is done.

14. The core control acknowledge pulse counter keeps track of the number of words trans-

ferred and clears core busy after all words are transferred.

As long as there are enough words in the CH BUF (CHAN PTR - MEM PTR) - ACTION

COUNT=0 and the CCW WC is not zero, additional action flag memory requests are

initiated and executed as described in j and k above.

Each time CBUS REQUEST is asserted by the RH20, another word is moved from the

CBUS to the CH BUF and the pointers are updated as described in j above.

When the WC of the CCW reaches zero, a request to fetch the next CCW, which is pointed

to by the CLP in the CCW BUF, is initiated.

The operations described above are repeated until either a LAST DATA XFER ora HALT

CCW is fetched. If a HALT CCW is fetched, the channel simply halts. If a LAST DATA

XFER CCW is fetched, the channel continues to execute the transfer until the WC reaches

zero. In either case, the RH20 interrupts the processor when the Block Count (BC) reaches

zero to inform it that the channel operation is done.

NOTE

Various error conditions can be sensed throughout

the entire write operation (Paragraph 3.8.5). In addi-

tion, when the channel halts, both the CCW W(,

which is maintained by the channel control logic, and

the BC, which is maintained by the RH20, must be

zero.

2.11.3.2 Channel Read Operation (NOT CTOM) - A channel read operation transfers data from

main memory to the drive (writes on the drive medium). '

a. A user program will trap to the monitor when 1/O is required because the timesharing user

programs I/O using monitor calls.

The monitor decides which and how many physical blocks to write. For directory devices

(disks), a file search may need to be done to obtain this information.

The monitor sets up the CCW list in main memory. The starting address is EPT + (4 X Phys

No.) + 0.

MBox/2-53

The Monitor sets up the Massbus drive and the RH20 Massbus controller to execute a write
operation. This may involve a seek and/or a search operation after which the monitor exe-

cutes a DATAO instruction to transfer the device write command to the RH20 and the

drive.

If the channel control is not busy (CBUS READY is negated), the RH20 asserts CBUS
START/RESET (but not CTOM) during the DATA cycle (time slot D) of the scanner when
the command is transferred from the RH20 to the drive.

The channel control responds to CBUS START/RESET and NOT CTOM by fetching the
first CCW. The control RAM, CCWF REQ queue, and MB request logic are involved in
this operation. The address for the memory request is obtained from the CCW buffer, which
contains a CLP.

Memory requests (CCLL HOLD MEM) are made by the MB request logic to fetch additional
CCW as long as a DATA XFER CCW is not received. Memory requests are made as
follows:

. Assertion of CBUS START/RESET and NOT CTOM causes the channel control to
initiate a CBUS CONTR CYC to update the control RAM.

2. Thereafter, a memory request is issued to fetch the CCW and load it into CCW BUF

If CBUS RESET was asserted by the RH20, then the first CCW is fetched from the
EPT (EPT + 4 X Phys No. + 0).

If CBUS RESET was not asserted, then the first CCW is fetched from the location

pointed to by CLP + 1 in the CCW BUF.

NOTE

Additional CCW are fetched until a DATA XFER

CCW is received.

When a DATA XFER CCW is received, memory requests are made to fetch the data words

from memory specified by the WC and ADR in the CCW. As the words are received, they

are moved into the CH BUF.

When two words are in the CH BUF providing the WC>2, CBUS READY is asserted.

The RH20 responds to CBUS READY by asserting CBUS REQUEST since its two data

buffers are empty.

CBUS REQUEST causes the channel control logic to execute a REQ CYCLE to move a
word from the CH BUF to the CBus. Two requests will be made by the RH20 back-to-back

since the RH20 has a two word buffer. Additional requests will be made every time a buffer

location is empty. The RH20 buffer is unpacked one half word at a time and placed on the

Massbus to be written on the drive medium.

The CH PTR is updated every time a word is taken from the CH BUF. Also, an arithmetic

algorithm is applied to the CH POINTER, MEM POINTER, and ACTION COUNT to see

if there are enough empty locations in the CH BUF to warrant another memory request to

fetch up to four more words from core.

MBox /2-54

ACTION COUNT is a function of CCW CHA 34-35 and the CCW WC. This count

specifies how many empty locations (number of words to be fetched next) must be in

the CH buffer before a memory request for additional words can be made.

NOTE

Memory requests cannot be made for words that

cross the quadword boundary.

The MEM PTR is advanced by the ACTION COUNT when all requested words have

been received.

The CH PTR is advanced by one when a CBUS REQ CYC is executed.

The difference between the MEM and CH PTRS + 15 specifies the number of empty

locations in the CH BUF for a given channel.

An action flag is set to initiate a memory request if:

15 + (CHAN PTR -~ MEM PTR) - ACTION COUNT > 0.

When the above condition is satisfied, the action flag is set and a memory request for the

number of words specified by the ACTION COUNT can be initiated. The memory request

will be executed as follows:

Set CCL ACT FLAG REQ.

2 Set CCL HOLD MEM.
Request INIT RAM cycle.

NOTE

CBus data requests, CBus control requests, and

memory requests all require at least one RAM cycle

to obtain the necessary information for executing the

request and for reading and writing the RAMs (con-

troi RAM, CCW BUF, CH BUF, and pointer

RAMs). Since there are only a limited number of

RAM cycles available (one every four clock ticks),

an order of priority has been established for granting

RAM cycles. This order is:

1. CBUS DATA REQ for channels 0-7.

2. CBUS CONTROL REQ for channels 0-7.

3. MEMORY REQUESTS for channels 0-7.

Memory requests are made for fetching CCW'’s,

transferring data, and for storing status. To ensure

efficient channel operation, an order of priority also

exists for allocating RAM cycles to memory

requests. The order is:

1. Fetch CCW (CCWF REQ).

2. Data (ACT FLAG REQ).

3. Store Status (MEM STORE REQ).

MBox/2-55

Since heavy channel activity (CBus requests for data)

can consume many of the available RAM cycles,

control requests and memory requests are queued so

that they are remembered and can be executed in the

proper order of priority when RAM cycles become

available.

All channels are assured a RAM cycle for each scan-

ner pass. But, when there are more than one request

pending, only the higher priority request is executed.

Therefore, a given channel may have to wait before a

pending memory request or a control request gets a

RAM cycle. The memory request and type (CCWF,

ACT FLAG, MEM STORE REQ) are latched when

made. Then, if a higher request comes in, it will not

be granted until the current request is done.

4. A RAM cycle is needed for an action flag memory request to transfer the appropriate

CCW word (CCW CHA 14-35) from the CCW BUF to the CCW register and to read
the ACT CNT and MEM PTR. This address is needed to address core/Cache. The
ACT CNT, in conjunction with the least two significant bits of the address (bits 34 and

35), is used to set up the word request logic; the MEM PTR, in conjunction with the
channel code of the ACT FLAG REQ, is used to form the CH BUF ADR.

NOTE

After the memory transfer is completed, the CCW

ADR will be incremented and the WC will be decre-

mented by the value contained in the action counter

and written back into the CCW BUF.

5. After the action flag memory request gets a RAM cycle, CCL CHAN REQ), along with

the appropriate request qualifiers, is set to request a Cache cycle.

6. If the cache control is not busy (IDLE), if core is not busy, and an MB request is not
pending, the cache control grants a cache channel cycle.

7. The channel control recognizes that a cache channel cycle is granted by sensing that

CSH CHAN CYC is asserted.

NOTE

The channel control then waits for the cache control

and core control to execute the request.

8. The cache control checks to see if any valid words are in the cache.

If there are valid words in the cache, the cache control moves the valid words into

corresponding MBs and starts a core cycle for those words that are not valid.

If there are no valid words in the cache, the cache control starts a core read cycle for all

requested words.

M Box/2-56

9. As the words are placed in the MB by cache control or core control, MB0-3 HOLD IN

is negated for one clock tick to load the corresponding MB. The channel control senses

this and sets AF WD READY to move the word into the CH BUF and to advance the

REQ CTR, MB SEL CTR, and the CH BUF ADR.

NOTE

The channel control will take the words only in the

order 0, 1, 2, and 3. Therefore, even if some high-

order words are in the cache, the low-order words

have to come in from core first and be transferred to

the CH BUF before the high-order words are

transferred.

10. As each word is taken by the channel, the REW CTR, MB SEL CTR, and the CH BUF

ADR are advanced.

11. When REQ CTR reaches zero, a second request for a RAM cycle is made to update the

MEM PTR (MEM PTR « MEM PTR + ACT CNT). The CCW WC and ADR are

also updated (ADR « ADR + ACT CNT; WC «~ WC - ACT CNT).

12. Core busy is cleared by core data valid counter of the core control when all requested

words have come in.

n. As long as there are cnough empty locations in the CH BUF (15 + [CHAN PTR - MEM

PTR] - ACT CNT > 0), additional action flag memory requests are initiated and executed

as described in 1 and m above.

o. FEach time CBUS REQUEST is asserted by RH20, another word is moved from the CH

BUF to the CBus and the pointers are updated as described in 1 above.

p. When the WC reaches zero, a request to fetch the next CCW, which is pointed to by the CLP

in the CCW BUF, is initiated.

q. The operation described above is repeated until either a LAST DATA XFER or a HALT

CCW is fetched. If a HALT CCW is fetched, the channel simply halts. Ifa LAST DATA

XFER CCW is fetched, the channel continues to execute the transfer until the WC reaches

zero. In either case, the RH20 interrupts the EBox when the BC reaches zero to inform it

that the channel is done.

NOTE

Various error conditions can be sensed throughout

the entire read operation (Subsection 3.8.5). In addi-

tion, when the channel halts both the CCW WC(,

which is maintained by the channel control logic, and

the BC, which is maintained by the RH20, must be

zero.

2.12 ADDRESS AND DATA PATHS

The specific address and data paths in the MBox are shown on Figure 2-13.

MBox/2-57

CH BUF CH BUF 0%
a

) 33

i 1

. I]

CRC CH BUF ADR 0 -6 '.‘ CHM BUFF ADR O-6 CHAN BUF]

) (mey)
1 1

o 1 1
CCL CHAN BUF EN 12 I)|

CLK M8

| CRC2 BUF

MB SEL

i 0 !
; CH REG 00-35

M8 00-3%

s

: _S8US DATA 00- 33 e SE S 33 MB 00-35
i L1-2

pe } ‘ (Me2)
- |

r“" MiX 00 - 38 + ; | luso [me MB2 |we3
| |

| . 1718 6 27 33 0 35 } | ' 4
, CCw REG I , CCL WA REQT2 CCL MIX T ! L 0 2 L 23 24 38
‘ LOAD cewe ! CCL MEM 8 SEL | (MB4) l “BO M .

: TOR]
\) : — STORE REQ o 1 MB! HOLD e |

_ XLATOR

! Cew cHa ~27-30,344 MTO 2/3) B2 HOLD (M8 2) 2

f 31-33,38 f MB3 HOLD :

CCW CHAN EPT - cowz) | . T?Eoo 38 .

CCL ZERO FILL cew2 TMe I - A

aTaTus -] | BINSEL fser | mear | EN AT
| 3 s 5167 2 o

[COW CHA 34- 35 CCL CONS 0-2 ' MB CH BUF ‘ '__J [I CACHE DATA 00-35 @
CCW CHA 14-35

. 14 35 33i S%CL)RE RHEQ N 35 CCW2 ALU MINUS MEM DATA IN OC- 35@

i o | ccL STORE ccw\ {ccws) CCW2 ALU PLUS
{< 4 33 i
il g ; Y T -3, MB 00-35

! € 1 1
MOLD - { F

00 | 02 oy | i i r CCw BUF CCW BUF

CCL MEM 03] 13t J 13 > (uga) ADR 0-3
PTR EN (SUB) tc?fs) ! T ! CCW CHA 00-35@

CCL CCw 1] 15

03 '3 BUF WR

= cCW BUF
OP CODE [xc] 00- 35 IN AR 00:38 (%

N
SBUS ADR HOLD

w
C
o
o
u

\V

Figure 2-13 MBox Address and Data

Path, Logic Diagram

(Sheet 1 of 3)

MBox/2-58

SBUS ADR 14 - 35 XLATOR PMA 14-35
MT04) 0)

SBUS PAR XLATOR PMA ADR PAR
(MT@1)

10-1484-A

@_c_u BUF_00-35
3

CBUS OUT BUF (MBI}

] CBUS D[ITE /7

2]
CH REG @—35 wes CBUS D[IRE @

cn T2 == CH REG HOLD

T IN CH REVERSE PT IN |

cux e

CACHE DATA 00-35% ou| A 1 you|

; 15 O {35 (350 {350 | 3%

MB: | SEL AR 5 — -

[1o | CACRE WRITE | CACWE DATA

CH REG _00-35 | 3 15 (THD 1-3) !
5 e ! ’_ } ; a i

- * - o} l P2 103 : |
@MB 00-35 E MEM CATA IN 00-3%5 2l ¥ : R J i

; i c C ic c !
l i MATCH [MATCH !inc- MATCH |

v AROC-35 © 0 : i2 3 \
5 [¢ |
! ! CSH 0-3 VALID MATCH CHO4) [(CHO4l KCHD4 j

: . |
. ! CsH USE o : !

i 1] HOLD MEMTO CEN ARENEBN T csw_Ew !
i OfzT3Ta !] [: CSW DATA CHX3
P o}

! j !

[N R o .) H :
! oluw M : : ; P

- ! 310 ~ T T ;
- (cmxsy| o [NN, [ST z 3 =
[i ~ h i - _ -0

] 27123314 REFILL i ! 9 . O m G) @ Tia-26 ; PTI4-25 /o

CACHE DATA 00-35 | | | T 3 f Y i .4 x _/”_Hx“ P :
1: e . ! LRU P ! < T { | 3f 2 J26 c v 2 3

C L g3 0-3 | 4 . 264 264 | 2614 | 26 | : [] [[P
oo o bl L J’ v v ; . o ; AM i . i ! i

T\ MEMDATAIN 00-35| | | | o0 2!374;02112;3 olirl2[3] ¢ I SEri-2 'y ‘
() o | CsH USE g{ | ‘ : CSH DR 14-26 CHA1/2 R CACHE ADR 27-35

: WR EN MRUID LRU| VALID | WRITTEN CAC~E ADR DR 7t viay coo AbR 27_33—@
M8 00-35 L i€ ; ; (CHA 1-3) \J—<
O ! ‘ enx3) | ocHx2) 1 (CHA3) | ‘ CAM 146-28

» | 2rl0if2idiel Lol L1t A S, I 2 1 3 |2y
ce

: | ? s ? * H : L CSH O-3 WREN
| ! CSH USE . :

ais 1a-2

! ! I | {PMA {4 - 26 A 6{;)
i i IND- : { ! - e

@ccw CHA 14-35 | ; P P

I | ! Pl ! l — "S5 ADR WR PULSE ;

! ! | CSH VAL WR DATA —-i l L csmo-3 wr wR ! VM4 18-20 @
@AR 00-35 Lo i |

Lo } CSH VAL WD 0O-3 SEL L—— CSe wR WL O-3 SEL
Y

‘ 1 CSH 0-3 VAL WR CSTM WR WR DATA
:

: | vMA 18-20 e i » CACHE DATA 0G-35 OS

L T P oW s a-38
OPMA 14-35 pod i - P T

J —m— — e —— [— e e — — e —— -—_ —_—— - _“

; B I _EBUS EN_J_@
U — —— ¥_______ —_ —_—— - . — e —— - -

.

r l]
i

| A

20 | 2 05 I 10 i 14 i 29 E'UNGC;‘EI‘;UL_
(ccws) (CHS) {CRCS)] {CSHT) DIAG_G4-06

FTERFERT. FIERRERDT Bl EBREELR “FTEFRERT
A"

~
~—

DIAGNOSTIC BITS

Figure 2-13 MBox Address and Data

Path, Logic Diagram

(Sheet 2 of 3)

MBox2-59

CH CBUS

RECEIVE

ENA

@CBUS ol _TE

XLATOR

DATA 00-33

(TRE1-2)
@CBUS D{ 1RE

@PT IN ~CSH PG RFCYC A 1 D
o g kN

VIRTUAL
¥ HRTION aom [N

PAGE FAIL T g&o\’&:" 127 i TL CLK PT OIR WR

PAGE REFILL Ti2 IN St T
v A J\A £B0X REQ QUAL

PT MATCH A .

F AP o NI PAGE FAIL MOLD

Col 1 -] ‘
T O G A : + PF EBOX HANDLE

| ; ! LEFT £ RIGHT
PAGY/2 l ! 0 T REBEE Q—-@:

[A
: PMA A (PAG '-21 e i {1PAGI-2) ‘

i ‘ 14-35 PAGE w | iwl —-—————f
; SE_ TEST e | ip | ____MB SEL -2
‘ - L261C pruvs | || i PHYS _
& x | (PAGA) s| | aprR 1 |si ADR @
- i | 4 - ; i4- —
CAM 14 26 o cp M0 b e 2¢ CLK PT DI WA

— . b | 298 i R
| M i T |

Pl L‘ REF.L. l
ADR EN | : b4

. L M8 SEL -2 CACHE TO MB 35-35 | VM4 3-35

! . . P < <+
K Cacne 1 pua HoLO u UBR SEL . 1

PT 14-26 27-35 {8 2] - or eoas | B UEBR 14 o €80X EBA \
@F wex] < |2 : IPUCICE - R g EBR (PMAI)

» Son 2 1 1 ZGQI UBR (PMA1) EBOX EBA
i nill

27-33 4 :: L i EBOX CCA

Do CSH PAR ; CCA (PMA2) [|e—————
b PMA EN

CACHE ADR 27-35 | | Do , .
|

WMBX CSH ADR 27-33. 27 33 R CN CCA SEL 1-2

REFILL SMA HOLD (MBCII] (PMAZ] ERA SEL

; 58US_ADR cooe 0} ;

PMA 14-26
34-35 : ‘

@ err cooe ‘12 ; i

Oq VMA_18-20 ‘ j ; —

~ AR 00-35 | ole - 33
C\f ! ‘ LOAD E/a EBUS REG

' EBUS REG [; M8C 1)
. T

@ACHE DATA 00-35

()CCW CHA 14-35

()PMA 14-35

__AR 00-35

i i

1

CACHE DATA OC-3%

1AG REA

FUNCT 16X

OAG BITS

DIAG READ
FUNCT 17X

Figure 2-13 MBox Address and Data

Path, Logic Diagram

(Sheet 3 of 3)

MBox. 2-60

___EBUSIN]

M
y

N
0

-
4
 2
0

-

The functional elements in the address path between the EBox VMA, the CBus, and the SBus involved

in forming the physical memory address are:

Physical Memory Address Mixer (PMA)

Page Table and Page Table Directory

User and Executive Base Registers (UBR and EBR)

Cache Clearer Address Register (CCA)

PMA HOLD Register

Cache Directory

Cache Address Mixer (CAM)

Channel Command Word (CCW) Register and CCW BufferS
R

S
0

Q
0

o

The correct physical memory address is formed by the PMA under explicit control of the cache cycle

control. The desired address mixture is selected and held when a particular cache cycle is started. This

address is then used to address the cache and core memory if a core cycle is started.

The PMA is a 22-bit eight-input mixer that receives various types of addresses for forming the desired

physical memory address for a given cache cycle.

The page table contains 512 entries that are associated with (indexed by) entries in the page table

directory. Each page table directory entry identifies four adjacent entries in the page table; con-

sequently, the directory contains 128 entries. Both the page table and the page table directory are

addressed by the virtual address every time a cache EBox cycle is started.

The UBR, EBR, and CCA registers are loaded from the VMA. The contents of these registers are

made available to the PMA so that the correct physical memory address can be formed by the PMA.

The PMA HOLD register is loaded when a core read cycle is started. This address is then used to move

the words coming in from core into the cache. This address needs to be held since the EBox can issue

another request and can get into the cache after the first word comes in from core.

The cache directory contains one physical memory page address location for each corresponding

quadword location in the cache data buffer. This address is made available to the PMA so that the

correct physical memory address can be formed by the PMA for a write-back operation.

The cache directory is addressed by the VMA, PMA, or the refill address from the PMA HOLD

register, depending on the particular cache cycle being executed as outlined in Table 2-9.

Table 2-9 Cache Directory Address Sources

Cache Cycle Address Source

CSH MB CYC PMA HOLD 27-33

CSH CHAN CYC PMA 27--33

CSH EBOX CYC VMA 27-33

CSH CCA CYC PMA 27 -33

CSH PAGE REFILL CYC PMA 27--33

CSH WRITEBACK CYC PMA 27--33

M Box/2-61

The CAM, a 13-bit four-input mixer, provides the means for distributing the address from the appro-

priate cache directory quarter to the PMA during a write-back operation. The mixer is controlled by

the CAM SEL 1-2 code, which is a function of the cache quarter in which the written words are

focated.

The CCW buffer contains two words for each channel. These words supply the channel WC, ADR,

CLP. and status bits. The CLP (or the address) is transferred to the CCW register and held when the

channel issues a request so that the address can be selected by the PMA for distribution to the SBus.

The functional elements in the data path between the EBox AR, the CBus, and the SBus involved in

transferring and storing data are:

MEM TO C mixer

Cache

MB IN mixer

M Bs

MB SEL mixer

PT IN mixer

CH BUF IN mixer

CH BUF

MB CH BUF

CBUS OUT BUF

CH REG mixer-latch

CCW mixer

m. CCW BUF

T
R

o

Q
0

o

—

Some of these functional elements are controlled by the cache cycle control and core cycle control

when a cache cycle is executed and some are controlled by the channel control when channel moves

data between the MBs and the CH BUF or the CCW BUF.

The MEM TO C mixer, a 36-bit four-input mixer, provides a means for adjusting the data path within

the MBox. The MEM TO C mixer is controlled by the MEM TO C SEL 1-2 code produced by the

cache cvcle control when a cache cycle is started. Table 2-10 lists the paths that may be established by

the mixer.

NOTE

MEM TO C SEL 1-2 code 1 is used for transferring

the first word coming in from core if EBOX SYNC is

not seen, and for transferring the words following the

first word (if any). MEM TO C SEL 1-2 code 2 is

used for transferring the first word coming in from

core if EBOX SYNC is seen, and for transferring the

word coming from core when the SBus diagnostic

cycle is executed.

MBox/2-62

Table 2-10 MEM TO C Mixer Select Codes

MEM TO C

SEL 1-2

CODE Data Path Function

0 CSH < AR EBOX WRITE

1 CSH <« MB EBOX READ

AR <« MB

2 CSH < SBUS EBOX READ OR

AR « SBUS EBOX SBUS DIAG

3 CSH « CH REG DIAG Function

The cache data buffer contains 512 quadword locations that are associated with (indexed by) corre-

sponding entries in the cache directory. The cache data buffer is addressed by the PMA or the refill

address from the PMA HOLD register concatenated with the MB SEL 1-2 code. PMA 27-35 are used

for all but the cache MB cycle. When a cache MB cycle is executed, the cache is addressed by the refill

address concatenated with the MB SEL 1-2 code to move a word from the MB into the appropriate

cache location,

The MB IN mixer a 36-bit eight-input mixer, provides a means for adjusting the data path within the

MBox. The MB IN mixer is controlled by the MB IN SEL 1-2-4 code. By adjusting the select code, the

MBs can be loaded with data from the following sources:

a. Cache

b. AR

c. CH Buffer

d. SBus

e. CCW Buffer

The four MBs are 36-bit memory buffer registers for temporarily holding the data as it is moved from

the source to the destination registers or RAMs. In effect, the MBs serve as a buffer to normalize

(compensate for the differences in speed) the transfer of data between the source and destination. The

sources for data are selected by the MB IN mixer and the desired destination is selected by one of the

following mixers:

a. CH BUF IN

b. PTIN

c. MEMTOC

d. CCW

The MB SEL mixer, a 36-bit, four-input mixer, selects the contents of one of the four MBs when

transferring the data to the destination.

The cache cycle, core cycle, and the channel controls all can affect control of the MBs and their input

and output mixers.

MBox/2-63

The CH BUF IN mixer, a 36-bit, two-input mixer, is controlled by the channel control to move data

into the CHAN BUF from the selected MB during a channel read operation, or from the CBus data

lines during a channel write operation.

I'he PT IN mixer, a 36-bit, two-input mixer, is controlled by the cache cycle control to load page table

entries into the page table from the MBs or from the AR.

The CH BUF contains 16 locations of buffer storage for each channel; consequently, there are 128

locations in the CH BUF to accommodate all eight channels. The CH BUF is addressed by CH BUF

ADR 00-06, whichis a function of the selected channel and the buffer location to be read or written.

This addressis formed by the channel control.

The MB CH BUF is a 36-bit register that holds the word to be moved from the CH BUF to the M B via

the MB IN mixer during a channel write operation.

The CBUS OUT BUF is a 36-bit register that holds the word to be moved from the CH BUF to the

CBus,

The CH REG mixer latch is a 36-bit, two-input mixer combined with a 36-bit register (latch). This

mixer latch s controlled by the channel control to adjust the two half words coming in from the CBus

(cach half word is one word from the drive) in the correct order to accommodate both forward and

reverse read operation of a magtape drive before moving the word into the CH BUF.

The CCW mixer, a 36-bit, two-input mixer, is controlled by the channel control in executing the
following operations:

a. Transfer a newly fetched CCW that was placed into an MB by the core cycle control from

the MB to the CCW BUF.

b. Transfer the ADR or the CLP from the CCW BUF to the CCW register when the channel

issues a request to read or write memory.

¢. Transfer the status from the CCW BUF to the MBs when the channel issues a request to

store the status words.

The channel CCW buffer (CCW BUF) contains two locations of storage for each channel; con-

sequently, there are 16 locations in the CCW BUF to accommodate all eight channels. This buffer

contains the WC, the ADR, the CLP, and status information for each channel. The CCW BUF is

addressed by CCW BUF ADR 00-03, which is a function of the selected channel and the buffer

location to be read or written. This address is formed by the channel control.

2.13 CONTROL LOGIC

The MBox control logic is introduced here in two parts:

a. That logic that is involved in controlling the execution of cache cycles and core cycles. This

logic 1s shown in block form on Figure 2-14.

b. That logic that is involved in servicing CBus requests and issuing channel requests for core

cycles. This logic is shown in block form on Figure 2-15.

MBox/2-64

CORE CYCLE CONTROL
MB CONTROL

»

w
o
c
o
n

o
Z
e
p

O

O
o
z
Z
E
r

O

W
C
@
W
W

-

— — A r
—

X SYNC HOLDA78 CHANGE £80 Lo —0)
COMING CLK .
(MBC3) ceL ceL -CCL

CLK INT START CH MB_ CHAN
1 CLK 8US CLK MEM SEL 1-2 TO MEM

K
CLK EXT h CLkt

—0

. | ET DATA VALIC

L |
A i MEM s SH_TI

: MEM START M8 OUTPUT MB SEL CSH WR

sTaRT ag |7 ; START . MB SEL (-2 SELECTOR U CLR FROM MEM
o (MBC4) A (MBX2) (MBX2) AND CLR RQ CHWRFROMMEMNT |.5y

! -CLR {CSH3,6,] | T ? l < MBX2) ¢« CSH_MB CYC

[MEM MEM [} ; MB WR !
[START |START CLR ceL | | tRQ ANY

i ‘ CCW WD CHAN ! | [i
‘ QS‘K”NTP_QLSE i O-3REG TOMEM | | EMa ;

ACKA 4 /8 . L] COUNTER e | ! ‘ , 34-35 j
= = . +———|_(MBC4) ; : i ; | \‘

: : H : i i i

i : ; : ! —ar | PAGE REFILL T8 -

(MBC4) NXM ACKN i) ! - ‘o- | RQO-3IN CORE : -] - e CSH WD 0-3 WRRQO-3 [T o} 1 . REQUESTS ; MB 0-3 WRRQ ‘ —4 Weog WM [—©
;

> WD O-o ol ; [(MBX 4/5) i (MBX2) T MBX1.2) SH WD 0-3 vAL A

! : ONE WORD WR TO ; -CSH CHAN CYC

. * LI CSH WD 0-3 VAL] * T ' i
o L 4l ; I} o ! ‘

[Pa3a-3s ADDRESS y _ i WORD . |coRE wo O-3 s CTOMB 24D
P SELECT BUS ADR 34-35 _ ‘ COUNTER |-CORE ADR 34-35 j&ZHE& g-_gMRBEgvD _ PAGE REFiLL T8 _

(MBX2) . (MBC4) (MBX2) (MBx2.3) ; WRIiTEBACK T2 N

' 5 ! L T ‘: CRAN Ta ‘
_ 1 . MEwR i ' CTom 'I. PAGE REFiLL T8 4

Ll § ‘ — DATS VALID | ; oy leCShchAN cYc i
; S | i 3 : : : . CSH PGRF 2ND CYC ; |

: DATA vALID | COUNTER CONTROL | ; : : C2L CRAN TO MEM P

T ; 2y S £ -35 I L ; D e ;oama ‘ Fsggf\“ CORE ADR 34-35 “ T | csw EEagx CYC CSH CHAN CYC | |

” {) ADINP ! CACHE TC MB T3 RD WR T :CORE_READ IN PROG e ME INPUT C ONE WORD WR TQ -

¥ ¥ cache TomB T2 - MeIN | (MB2I,MBXE) . I
‘ P SEL1,2.47 L] ‘

S \ RD PAUSE 2ND HALF P : T t ‘ MB 0-3 i
(MBC4) R P t | | PMA32-35 ! HOLD IN PRD RQ

NXM DATA VALID READ ' . i | CCL CHAN EPT |[o}— : REQUEST S . . :
: ; (MBX5) — | CCL CHAN TO MEM T :

5 c ' . - . |CORE REAC N PROG “CL CH MB SEL (-2 WRITE Req | E CORE RORY
L: — . AECUEsT ? ICONTRO‘- F

WR RQ : TM - MBXS : {MBC3 MBX5) evelEs

L i oc . ! . : PMA& 14 -35 _@

A [{MBC4) .
i ‘ CACHE TO Mg 34-35T . { | TS - -

ADR PAR 0 | APR WR BAD ADR PAR :
£ PAR i

(PMA4) : i : | .
‘ sBUS ADR 34-35 ! Mo RGN —0

ADR i4-35 TO ERA i
1. PMAI4-33]

DIAG CYCLE |DIAG MEM DIAG e COUNTER R l. s e — e L U '0)
(MBX3}

Figure 2-14 Cache/Core Control Logic

Block Diagram (Sheet 1 of 3)

MBox/2-65

CACHE CYCLE CONTROL

A
<

P

Ou EBOX SYNC HOLD

CSH WDO-3 VAL

CSH LRU ANY WRITTEN

£ BOX SYNC HOLD
—{a)

] RD FOUND-ANY VALID MATCH-ANY WRITTEN MATCH~-CSH LRU ANY WRiTTEN@

®-

@ €

CSH LRU 1-2 CACHE STATUS (CSH3, CHA3, CHX4)

TIME STATES AND CONDIT!ONS
TIME STATES AND CONDITIONS ME E i @

' I(a\:VS@rTE‘EEN CSHO-3 WD 0-3 WR |
1 i i

i CSH O-3 [CSHO-3 :
(CHA3) | 1 (CTS)T i R |

Ylrui- i | csH USE - ! VAL WR |
LRY 1-2 4 | HowD ! : !

CSH WR FROM (CSHE, MRU | LRU 1 : \ :
MEM NXT i cHxdd : | i . WR USE BITS WRITE

!] SE_TABLE t ‘ 1 (CSMB) i

¢ | ADR27-33 | . i
CSH * 1 - - ;

; a8t o + i [CSMO-3 WDO:-3 VAL 4
L ‘

; {CHx4, CSH31 ‘ 4 ADR 02-06 T : : ,_ CSH REFILL RAM WR ::‘;'JE) T
i LK ' ADR Q0-0l OQKUP | CACHE DATA 00-35 !
i i AANY vaL Dl | SELECT LRy . (CAHBXLBE) ! | : '

@csu WDO-3WR | t [HOLD | | (MBCZ.CHX3) e DiA EN REFILL f ’ 4 i |
i i : | | i
fesw LI RAM WH Ma CACHE CATA A Y " PMA

CSH WD 0-3 VAL 52" -— 8-20 wR (CHD 1-3) | (CHMX2) iCHAZ) SEL -2 34-35Oaun 023 LRU1-2 ! . 2 a ;
ImMat ‘ + | i ‘[maTCH CamseL T ‘ I i L3 B I L) CSH WR WD 0-3 EN

| -2 ! i csms—s] AR R CSH WR SELL ALL SELECT
; » 4 ‘ + 4 VALID| | ! CSH VAL WD 0-3 EN {(MBC3)

——-'————l rr———l-\ - FORCE vAL MATCH MATCH Z5K VAl SELL ALL
REFILL HOLD REFILL HOLD !"-AZTCH oo lfi ‘ M ‘ . PT14-26 o= 44~ 26(MBX3) |«cs~3.uec~.5> [FORCE NO MATCH i - ; ; 4- — = (@)

| i ; : : | “ '\fi;cm R CSH WR WR DATA DATA
| Co) 5 : jggguwn ‘64—3 CSH VAL WR DATA (MBC3)

H i : i ' |C - ,

i | |MEM NXT ! _ P: { ! : " PMA (4 -35 - PMA 14 35@

. : ; ADORESS Bl oL -2 i

x f ! | (CHa1-3) _ apR 27-35} § ‘
| ! | ¥

: ‘ REFILL ADR EN i Ik ! R
i ' : ‘ PMA 14-26

; ; WRITE ‘ i WRITE CSHO-3 CSHO-3
P BACK ! VAL WR' WR WR

| cvC ! i

! - WRITE 1
[ANY VAL HOLD 4:]1 IMBC2. CHA3. CHX2! ‘

" ¥ 3 ¥ ‘
ISH{-3WREN . . :

P CYCLES
CYCLES -

1

REFILL HOLD |

PMA {4 - 3%

-

i CYCLES ®

@}

(h\fC“CHE TO MB 34 -3%

—

©
iCACHE TO MB 34-3%5

VMA 18-20 O
h

i

i

MB REQ IN O
i@MB RC IN

@Eeoy__ SBUS DIAG/APR wR BAD AOR PAR

1

| _ PMA (4~ 35)

TIME STATES AND .

CONDITIONS

i
i

|

L L DA A eam s

Figure 2-14 Cache Core Control Logic

Block Diagram (Sheet 2 of 3

MBox 2-66

X -EBOX SBUS U b@

0 T4B8A

CACHE CYCLE CONTROL
_A,

S

@rjeox SYNC HOLD £80X_SYNC HOLD

EBOX SYNC A
@vno FOUND— ANY VALID MATCH — ANY WRITTEN MATCH —~ CSH LRU ANY WRITTEN conziausv HOLO

i —3] CSH E80X REQ QUALIFIERS |
TIME STATES AND CONDITIONS STATE GEN AND REQ EBOXTO IN]

(CSH 4-6, . cCA RE

1 GUALIFIERS

OATA VALID ey ae . S = usox RESP 1M €

"

IDLE I
{CSH I} N

T

€

R
f

READY TO GO CLK EBOX SYNC D |,

(CSHI1) ¢
€

o—
RETRY NEXT CSH _EBOX RETRY REQ

I (CSH2)

CCW CHA £80X REQ QUALIFIERS
14-35 r

PT 14-26 CCL CHAN CCL CHAN REQ
@ PMA EPT RANT PRIORITY £60x REQ|

SELECT “ BEQ SRAN. Sd NETWORK M8 REQ
[(PMAS) (C5HD) et REQ

Goaul e CCA REQ

PMA ;‘#‘u* VMA I3,
® PMA 14 - 35 wa | Eunn 18- 21

CCA R
3-4) o

Ry . REQ ENA
(PMAS fl CCA- CHAN

*) CYC TYPE
! ' ROLD

j *|WRITEBACK T2}

[|

; ; =|‘ REFILL T4 }—‘ i

P + CCA REQ CCA REQ l ¢
[‘] CONTROL ;

: _ i (MBX(, PMA2]

Do i I EBOX REQ QuALIFiERs | ¥

| | :
~ CYCLES ! CYCLES CYCLE LATCH N

® l (CSHI, PMAS) g
R

CACHE TO MB 34-35 o catevma | MBOX GATE VMA& 27-35 |r
® o (CSH3I A

*1 [A

@ VMA 18-20 vMA 13-35 | E

X MB REQ IN

® £80X REQ_QUALIFIERS
PMA 14-35 . PAGE FAIL ROLD

O— : PAGEFAKROLD | | T or £80x HaNDLE
ox SEE ACCESS FAIL : g B

TIME STATES AND CONDITIONS | i
O“ . REFILL e J

. ADDRES

LOAD| | DIAG FaL c:((:)mcE : CLK PT DIR/ PT WR
€eus| | BITS oPAGED4)REG i ! PT CACHE . EBOX REQ QUALIFIERS

i LL PTI4-26

EBUS REG PE HOLD 1-%
AND MIXER T TPTMB2Z PT PUBLIC CACHE

PT IN oo-ss—j
EBUS DOG-35|

@ DIA EN REFILL RAM WR B DA EN REFILL RAM WR

10! EBOX SBUS DIAG APR WR BAD ADR PAR/EBOX SBUS DIAG.
n .

\) 10-14869
Figure 2-14 Cache/Core Control Logic

Block Diagram (Sheet 3 of 3)

MBox2-67

Cccw

BUFCSH COW CHAN

CHAN 14-35 BUF T0 CHAN

cve N WR MEM REQ

w8 REQ CLR S SN S
RAM REQ

] CHAN EPT ‘-7
| N,
1 MB REQUEST

MB CYCH LYo; TIMING LOGIC {0
| {(CCL2 CCLS, CCL4,CRCY)

i TM WF, ACT F

‘ . { MB REQ TiMING CCWF. ACT FLAG, MEM STORE CLEAR 7
i ‘ !]

:

j [i ; ¥ woLo ew ;
! i ! : | | (CORE REQ! ;

; ! : i ! MB RiP ¢ !

i] Lt .

i | b . ! :

' ! : i RAM ADR 1-2-4R

: ' PRIORITY ! -5
| NETWORK MB REQ QUEUES

w0 0-1 REQ o | . ;

-— ICCWFREQ | ¢ : AND o Lot

CSH CHAN CYC T ! @é[g, [L COWF REQ ENA o CCW@-7 CCWE IN | ~e20pER ; CRC CCWF EN
= womp [TMD! @ — ! | : T ' Ox| Cowa-~ cowr REQ | ReciSTER [T cowa- cowr ZowE t

i ! ~ . ENCOD

MB 0-3 noLp iN | REQUEST . | | ACT FLAG | —e ! CCWF ADR -2-41 % “owe. (ccwe: | HOLD P ;
—_— LOGIC l REQ | AND) (CCWE: JEJODER fe—e !

CH BUF WA (CCw4, CHC4, — * GATE 9‘—4—4 ; ACT FLAG cCwg-7 acT =CWwe) CRC ACT
CCL3. CCLAY wpz Lo cce2y ‘ e | REQENAL o FLAG IN 2£20DER FLG EN

cowE T8 <CC‘“§ S MEM ‘ 1 ACT FLAG| pucmpen leoW@7 ACT Fuag REGISTER [ccw@-7 ACT SCWS!
¢ T ' Tl NERE le—— ; a9R 1-2-a| ENCO ccws) | FLAG HOLD

! i | REQ AND jpe— i (CCWS! :
: wo3) H— GATE o il MEM | CoW@-7 MEM CRC MEM

: . (ccLa) |, STOREENA| _ ccwa-7 STORE N S ORE EN

' ! " MEN STORE| prlouTY | MEM STORE REG REGISTER [oW. 7 WEW
T | ' ADR 1-2-4 | ENCIDER =1 (ccwe) | STORE HOLD TE7G0ER

i i ————— tccws zez
! ; cws

‘ %CONTROL w .

‘ :
1 v ¢

| : W BUF]

| t L CCw Bur 82 i CSH CHAN CYC

: H : i MIXER ERR REQ
i ¥ oz LT

START MEM fl oLz cow ERR ADR 0-2 | esisTeR
MB CONTROL[TM ! Cowt ;

MB SEL1-2 AND ; KRN | cow e

* REQUEST i ! R ‘, ASRO-3 o~
CH LOAD MB COUNTER ACT CTR O-2 : ;

.
5

(ccLa | 2 :
— len i ¢ FUNCTION OF MIGHEST PR.ORITY

T [; t ig: Buf MB REQ PENDING, TRUE FOR Lo E‘Nw
! i (o] - -

Pl aF [+ ‘ DURATION OF M8 RiP MEM STORE EN N
8| | wD 0-3 fo—— | —{e

REQ |
T a—

> | coms i
0OP CODE — .osic i acT eTR C-3

{REVERSE} ' cc.2. (L
__

= COWE WA TNGo

CCwF m:t;/)
oW BUF 92 v | | .

£ H

| - | CHA 34
i g ‘

—]

CHA 39

Figure 2-15 Channel Control Logic, Block Diagram

(Sheet 1 of 3)

MBox /2-68

RAM REO@

CBuUs REC CYC

CCW BUF

02-13IN

T

|

|

|

'cBuUS REQ CYC

MB CYC -~

&

READY -
————a{c)

1
i

d
-

; | ' ! 1 ! 1 T s T2 - | LAST WORPQY
i ACTION COUNTER] | MEM POINTER : CHAN POINTER i i :

. ~ ! B
1

! INPUT LOGIC INPUT LOGIC T INPUT LOGIC] : ! ERROR

! (CRC2) ! ICRC1) ! (CRC1) l l ‘ _—___@
i T i |

RAM i : : I | i

ADR 1-2-4R | PTR acT MEM ! CHAN
c:)‘_— lnE2-3 iCTR@-2 PTR §-3 ‘ PTRE-3 1

! N N oy IN : !

- ; i 1R T T T T v T T T

. : T ! : I Ya ICRC2!CRC3ICRCCC.ECCLE CCLY CCL1 COLBiTCLY] L L .00.6 JAC6TRIS IRCACRCAITRCY :ncz‘cflcslcacs‘;cacslcnca o
: ; i . : L : ioHe e ATy x x cHC! L IoHCT enet, WR RAM N
| i H H - . : : =1 z : PN S SIS SV S i ! i /

! ! L . i (I SP ISP L w - s “ - N A - - PR San 1
aCT CNT MEM PTR : CHAN PTR : : E e w2 = 3 TY iR etz D I g = g ¥ . 2z ligA

i i : | a, c 2 = < [4 O e o ~ z -, -
Ram | maw ! 5 | Ram | flo e s . ¥ g0 t g2 g e TR Sy - 2 £ 2 g n @ RAM ADR 1-2-4R

{CRC2: =:CR\.Hi - LITRO - prmm— w D o = « | Yo% L . T © @ > w i A S S 3 et s——d—————]
. ! i i H i : = = b3 w o ! o z ,‘ + ’i P T - 2 [S] [; ~
H i ‘ H | 1 i ; i - i a Iy = b 4 . L P % 3 z ! : i

| o ol | oo : co- = : [- 7 !
i Al ! i : Lo~ S . —t ! .

E BERE ciriz|3f o ol 2.3 ; ; ‘]1| i : s -

| acT [IMEM L mEwM ! o+ 2 3 4 5 ® a9 o 1+ 2 3
! CTR@-2 PTRP-3 | |PTRE-3 |

: [: | [RAM (N -

!
RAM CYL -

i
()

TB+TI (MB —-CH BUF} . i
-G R SR N -i (CBUS —= CHBUF) AF REQ ENA CTOM ,—~

2 3 ACTION FLAG, CHANNEL DIFF PTR GE2
:

T2 JlicHBUF —cBUS? BUFFER POINTER ARITMETIC
T . CH BUF EMPTY| AND CHANNEL BUFFER ADDRESS cr BY STORE ~,

3 i LOGIC PTR DIFF = 0/15 !
i »l-(CHBUF - MB! ¢(CRC1,CRC2, CRCE) cTOoM

CCW BUF : ST/RES INTR

@A_D“_E_.}__. . ERROR REQ_
' CONTROL RAM INPUT AND e ————{ k }
i

&

i MB R T Q6i NE INTR
lcfl BUF “B REQ EN B REQUEST ENABLE LOGIC DONE NTR

COWF EN : ADR 0-6 CCWF EN

ACT FLG EN ‘

3 MEM STORE EN | ACT FLG EN . START NTR

i MEM STORE EN ~
|

ST/RES iINTR AJE_@
!

DU
ACT CTR @-3

RESET INTR .

O—
O

77 COWF_WAITING

C"h CCWF T8
START :

L} L3 L3 }
i i

1
- ' t

CHAN ZHAN LHAN CCW BufF
PAR ERR .-.:.SR:;:.:« NXM ERR 00-13 N

SEL 1-2-4E
SEL 1-2-4F
—5)

i-2087

Figure 2-15- Channel Control Logic,

Block Diagram (Sheet 2 of 3)

MBox/2-69

CONTROL T8

7 RAM REQ COMB. LOGIC RAM REQ @ PRIORITY CONB. LOGIC
< i (ccu NETWORK CBUS REQ Ay REQ C cBUS REQUEST E
C}assugvcso cve TRR REQ (CRC2) ccL3. ceLa -

: 0)
READY READY CBUS READY £@ €40 REGISTER -

(cHC

oty LAST WORD ’_—.IC—C\ CBUS LAST WORDE
LAST WORD ouTPUT HCt

@ REGISTER ‘——j
(cHE)

CBUS ERROR E
E£R/ROR

@ ERROR CHC1

| -T2

3‘ aam CBUS REQ CYC
CONTR CYC

i (CRCE) CH SE. -
WR RAM Trce . MB cYC Yae oeco0er | aore -CRCS i N\ c -

T3 ‘
(CHCS)

1 CLH A PrASE
! RAM ADR fe—r SLHAE

/;\RAM ADR1-2-4R N RAM ADR-2-4R SELECT | - Tl

~ j LOGIC ’ vgoisszfl UK On
* (CRCS} oy ey = cCHTD, 71,72.73 —

¥ (CHC1, CHCS) |- 21AG LOAD
| RAM €UNCT 070

CCW BUF ADR 1-2-4R

ADR 0-2 ‘ CHB-7
;

CBUS CTOM E

! CTOM N DECODER |e CHX CTOM .
CH@-7 CTOM ‘ REGISTER [o (CHC) A CHCS

RAM CYC CHCH | cTOM HOLD | pECODER \ ,
oY i , ! {cHea) .

O‘CTOM i MIXER . j CH@~7 STORE ! CHP-T CHX ceus1 ~ - - o

‘ (T3 _ f Po— REGISTER | STORE IN oECODER — STORE i

store | MixeR- Lo STORE ENA| MIXER : |REQ fcHe2) icHe2) {:"H:z]
@"—- LATCH | o (cHee: CONTR 1-2-4 ;

cnca) [NG 5 CHO-7 ‘ e
. FRIORITY CONTROL REQ QUEUES sTes

L CONTR CYC . PRIORITY NET i S 2

M / (CHC2) CHE-7
@ ERROR REQ 3 DCNREN CCNE INTR ENA | MIXER . CHO-7 DONE INTR ¢——{ REGISTER | DONE INTR :N | DECODER [1- 19

ALES

enco
M@~ |

nen
(oHC 3! CHX DONE

DONE EDONE INTR MIXER *———E) T (CHC3
GD=] LaTCH | | START CH@ -7

PN

feneal = i [iNTRENA| MixER CHB-T START iNTR REGISTER | START INTR i | DECODER [* caus
1NTR N (i 1 "~ T {CHC 4) {CHCa) CHX START START£

@éTART INTR i MA;E‘: CHC2 ‘ {CHC2} ;
N

ST/RES Pl fomcar ez ! cHg-7
INTR A/B i NMIXER ., CH@®-7 RESET INTR REGISTER | RESET INTRIN | DECODER [

LTESET INTR N {cHe2) . (CHC4) cHe S CHX RESET 25,5 PESETCHC2) < St CEUS PESETE

/o) RESET INTR 1 || MXER 2 fencz ol CHCS
/ ! s

~ ! i cheey [N L)
' { CHB-T

i ! 1 CONTR| sTamT cLK T2 2
; : .

1-2-4 INTR
T3G:snm ! : T I MIXER HOLD |

: : (CHCA)

@ DECODER CcHB -7
- (CHC 41 RESET INTR HOLD

DECODER

icucar P
EL 1-2-4E

O

Figure 2-15 Channel Control Logic, Block Diagram

(Sheet 3 of 3)

MBox/2-70

X
L
A
T
O
R

(
T
R
@
}

c
B
U
S

10- 2098

The purposeof this subsection is to provide some insight into the nature of the MBox control logic. It

is not intended to be a detailed description; rather, this subsection attempts to show how the various

control functional elements hang together. Appropriate prefixes are included on the block diagram to

permit a student or reader to jump directly to the logic print that shows the actual logic.

NOTE

Refer to Section 3 for the logic description.

2.13.1 Cache and Core Cycle Control '

The priority network (Figure 2-14, sheet 3) grants a Cache cycle to the pending request having the

highest priority. The assigned priorities are:

1. MBREQ

" 2. CHAN REQ

3. EBOX REQ

4. CCA REQ

When a request is granted, the appropriate cache cycle latch is held, the required physical memory

address is selected, and the time state generator is started. The time state generator will then step

through a specific set of time states depending on the request qualifiers associated with the granted

request and on what, if anything, is found in the cache if it is implemented.

The cache and core cycle control block diagram shows, extending from the time state generator and

from the cycle latches, a time-state bus and a cycle bus, respectively. These buses have been defined for

the sake of this presentation; they are not so defined in the actual logic. As can be seen by reviewing the

block diagram, elements from both the time state and the cycle bus extend to many of the control

elements. For the most part, a control element for the cache and core cycle is simply an AND function

of a particular time state and a particular cycle. .

2.13.2 Channel Control

The channel control consists of essentially two autonomous controls with data, status, and control

buffers (RAMs) in between. One control services CBus data and control requests; the other executes

memory requests.

The priority network (Figure 2-15, sheet 3) grants a RAM cycle to the pending request having the
highest priority. The assigned priorities for a given channel are:

I. CBus Request (for data)

2. Control Request (CBUS RESET, START, or DONE)

3. MB RAM Request (for memory access)

When the request is granted, the appropriate RAM address is selected and the RAM is updated.

Each time the RAM is updated, its contents are also read to generate internal operations for executing

the granted request. -

When a CBus request is granted, one data word is transferred between the CH BUF and the CBus (to
or from the RH20 as specified) and the status bits and pointers in the RAM are updated.

When a control request is granted, appropriate control bits in the control RAM are set, cleared or
updated, and appropriate internal requests are initiated to execute the control operation.

MB RAM requests are issued to initiate a memory operation and to update the control RAM after the

memory operation is completed.

MBox/2-71

2.14 ERROR CHECKING AND REPORTING LOGIC

The following error checking and reporting logic (Figures 2-16 and 2-17) is implemented in the MBox:

a. Address Parity

. Data Parity

¢. Timeout Error

d. Error Flags

¢. Status Words

2.14.1 Address Parity Logic
,

[n the M Box. an address parity bit is generated for the cache directory and the SBus. The parity bit for
the cache directory is generated for physical address bits 14-26 (PA14-26) whenever the cache control

updates the cache directory. The cache directory is updated for EBox read requests in preparation of a
core read cycle. The parity bit for the SBus is generated for the entire physical memory address (bits
14-35) and the SBus request qualifiers whenever a core request is made by the cache control.

[n addition. a parity bit is also written into the page table whenever a page refill operation is executed.
This parity bit is picked up from core memory for K I-style page refills and from the EBox for KL-style

refills.

Address parity is checked in the MBox for paged memory references, references to cache memory, and

references to core memory.
'

Page table parity is checked for all EBox memory requests to paged memory. If the page check fails,
the MBox asserts the PAGE FAIL HOLD flag, transfers the page fail word to the EBus register, and
terminates the cycle. The EBox then traps to the microstore page fail routine to read the EBus register

and evaluate the failure.
. .

Cache directory parity is checked whenever the cache is referenced. The cache is referenced for both
channel and EBox-initiated memory reference requests if CON CACHE LOOK EN is set.

For EBox memory requests the cache is referenced to:

Write a word and its page address into the cache.

Write the page address into the cache in preparation for a core read cycle.

Read a word from the cache.

Pick up any valid words during a KI-style page refill operation.

Pick up all written words during a write-back operation.o
c
a
o

o

For channel memory requests the cache is referenced to:

a. Invalidate any valid entries during channel write operations to memory.

b. Pick up any valid entries during channel read operations from memory.

If the cache address parity check fails for any of the above references, the MBox sets the CSH ADR
PAR ERR FLG which, in turn, disables the cache after the current request is executed to completion.

MBox/2-72

DATA WALID A/8 MTB1 NXM DATA VALID

ACKN &ND
VAN |, PrasE chance coming

PULSE GEN

ACKN PULSE {MBZ3})
AGKN 4/8 MTZ1 COUNTER !

iMBCe) -

Lackn puLsE
j

s TO ERA i
NXM

:

8 TiME i
Ul START a/B MEM START A/B STATE
s MTE1 GEN

(MB24!

J |
NXM CRY A i :

(MB23)]

;
: § > MBIN EN (MB4)) APR NxM ERR

a_CHANGE ; :
: JOMING ! H ?gngNgM

; L R‘ i \ et MBOX NXM ERR
x L q J _I —l_l__l

& NXM CLR DONE ; = CHAN

¢ (MBZ3)
R €

CSH Q-3 ANY vaL p

A \ _ CACHE ACR PAR BAD PYVI— "
T ACHE ADR PAR PAR ERR FLG CSH ADR PAR ERR FLG

s (MBXS} 'I‘
B RQ HOLC PAR CHECK

J ! fxa e : aprc pRpemr |7
s

,_L. L H ! ‘csra iR 1CSk DR :’
MEM_WR RO MEM WR RQ IN 18-26 03 RO-3 "AND" GATE a
e T F § YEEe (MBX: ¢

MEM RD RO MEM RO RQ IN H I L ! HE- 1 i 13
oTieIs[orTzTa[on[arsfol1zis] | 1] T T

MEM RQ3 JEQ3 IN ! Lo
WORD i CACHE 2R | AGR 27-33

MEM RQ2 RQZ IN CACHE VALID BIiT (CHX2: | CACHE DIR ADRICHA 1-3)| ADR PARS, TM fe——rmsse
PAR HOLD CACHE A . (CHAS4}

ADR_PAR wras ::: apR | B8 MEM RQ¢ REG leBOL IN o | v i o2 bt 3 loj:ijz i3 iol: 2 3l wRTE

(MBC4) | MEM RQD mBcal, RQE IN csH DR
PAR 0-3 ;. CON #R_EVEN PAR

MBC ADR 35
N

MBC ADR 34 PMA 16-26 PAR

PMA AOR PAR HOLD PMA ADR PAR PAR GEN I PMA 14 - 25 PAR i PAR GEN
T * a 1 1 i{ 4Bz i‘ | { (Paaa; CAM i4-26 ‘

! @ [P T TN |
J i !

| P& 26-33 1PA26 | m [CACHE TOMB 34 -35

i PA 14 -33 i i 1A VMA i4-35
] ::

31 UEBR 14-26

ADR 14 -35 MTZ4 b ADRI4-35 SBUS ADR 34 3
CCA4-26

SBUS ADR 35 o pEERISCZS,
CCW CHA 14-28

H
APR § ADR F ERR

—{ @ |
ADR PAR ERR e MEM ADR PAR ERR F.S e MB0X ADF PAR ERR

p——————— T2 MBZ4:
ERR

S APR SBUS ERR |

- gBusERR I MBOX SBUS ERR
3

ERROR wipe | MEM ERROR s L]

ABR ANY EBOM FOR FC

L e e e APR WE BAD ADF PAR .

iT-ia8T

Figure 2-16 MBox Address Parity,

NXM, and SBus Error Logic Paths,

Logic Diagram

MBox/2-73

CRC CBUS

CcK TO . . GuT HOLD

1 N F

o7 PAR u CH_BUF 00-17 PAR . _ " CBUS PAR LEFT TE o
TM8 CH BUF | B T 8 PAR LEFY
18-35 PaR_| CH BUF 18 - 35 PAR . H CBUS PAR RIGHT TE o

I J] CBys PARLEFT RE . |
T

CRC CH BUF CHAN BUFF . PAR RIGHMT <
%Bs He oty CHAN REG 00 -17 PAR B e PAR RIGHT_ o

2 CHAN REG 18 - 35 PAR XLATOR b
s

! - 4 (TReM!
CcH

PT PAR LEFT IN _ ReG

PT PAR RIGHT IN 1 HOLD

. CCL
DATA

1_"‘—(REVERSE - ERROR
4 — 3% 4 — 35 % !

A (PAGS) . \}
- PAG MB oo-n; PAR PHYS w, paYS . I PaR | 0% 8-26

PAG MB 00-17 PAR s| | Pae1-2 s| | pagi-2 : CHAN CmaN ADR
C [o} I NXTM caq ERR

‘ ERR

CmAN
PaR ERR

! 1 PAR CHECK PT PAR ODD REQ QUAL
i 4 '] (PAGS) I

M/B TEST PAR 4/B IN

P38 GEN g 067 17 M8 PAR 00D u8 AR EaR : MBOX MB PAR ERR

! ¥B.. |par 000 i MEN TOC ACKN PULSE (WRITE) _J(MBZ46, CSH3 T

: i§ - 35 SELI.2
PAR 00D | { ' : APR MBOX PAR ERR

MB_PAR iDATA ‘
PAR | XLATOR T ol m i 1 PAGE FATL

TR s) i] B SEL 1-2 1 i

/ {MB2} M {MBX3) (MBX3} 3] : cswo L 1 [eswi [2 ‘]rcst U1 leswzr 3 ’ PAGE FAIL PAGE FAIL HOLD
| 1 A A A H CS5H4,! o} |T 21 3T o? T 2? 3T 2% 3 K 2 SELA SELA leEL . SELA CSH £A CSH4,6)

: [} ! 1 1 CSH DATAI i j .
i H HI b MEM ! ; £

T) T A S 1 | e N N l N ’ APR EROX READ REQ | M
T E oaTa DATA CODE I & iM82 HOLD 'Z—F S —+— PAR BIT ——— 2 b ; B 0

MB2 HOLD 15T wmez 7] (apx3) —} (MBX3) | [CAgHE CMIIHE l CACHE CACHE R 27~ ;?
t . PAR BIT PARBIT | PARBIT PAR BT . -

L) MBOO - 35 : sul__(cH@s) (CH@S) | (cHas) cH@s} CACHE £
N : WRITE

. F

2.4 | e
- CH BUF PAR BIT 3| ‘1 & 2 o coyparmiT r1 P l i I r/] i CSk PAR BIT A8 _lE
WEM PAR IN ! \/ \/ VHBEG \/ \/ | fi!

PE_MOLD O1-0% IN :

} . S4_AR PaR 355
T

PT PUBLIC LOAZ EBUS RES

PE_HOLD Qi 00 IN :l Q 3= . EBUS EN /7 [DIAG READ
WTM Nl FUNTT ePAR GEN era MoLvwa usER] ___eacgoREr | ¥ |

(cowe) —MEM RD RO] MEM WRITE PT CACHE ¢ . EBUS REG !
M L 00-08, 14 -35
B EBUS REG 00-06 IN /

— H « [o8

MB DATA CODE (-2 [w8 DATA SOURCE 1-2 a 9

2 joo

_CHAN CORE BUSY - cuan REF 1| joo | €£BUS REG
w8 TEST 0-6 | PMA *4-35 :
PAR | | !

ACKN PULSE A/B IN -wrR ceawmEgack | | [cca Ref ERA SEL PMA SEL
| [T |CCAREF .

NXM FLAG] L | 2505 |
_ - .] ;

MEM START /8 MB SEL 1-2 MB WD SEL i-2 Pai4-38 " | ;

MBOX NXM ERR “AND" GATE LOAD MBS w H : S SEL1.2.4
'l (MBZ4) | — ny

AD® PAR ERR FLG , t :
HOLD ERS SBUS ADP 34-35 ! :

RO HOLD FF i

ERA 14 -35 | i

. . M PAR ERR |

APR ANY EBOX ERR FLG

Figure 2-17 MBox Data and Page Table Parity, Path Logic Diagram

MBox/2-74

When the MBox issues a core read or write cycle, the MBox generates the SBus address parity bit and

transfers this bit with the address to the core memory system via the SBus. Parity of the SBus address is

checked by the core memory system. If the parity check fails, the core memory system asserts SBUS

ADR PAR ERR which, in turn, sets the MBOX ADR PAR ERR flag and holds the ERA register in

the MBox. For core read operations, four words of zeros with bad parity are returned by the

M A /M B20, which causes the MBOX MB PAR ERR flag in the MBox to be asserted. For core write
operations, the data sent to the MA/MB is thrown away, thereby preserving the data in the addressed

locations. The DMA20 will not respond other than asserting SBUS ADR PAR ERR if it senses an

address parity error, This will cause a NXM error to be detected in the M Box if the request was for the
DMA20.

2.14.2 Data Parity Logic

In general, data parity is propagated through the system with the data from source to destination and
is checked along the way at various strategic points. In the MBox, data parity is propagated with the

data for both EBox and channel-initiated transfers (Refer to simplified data path drawing, Figure 2-5).

This figure shows all data sources and destinations for the MBox. Data parity is propagated with the

data for all paths except those noted. Data parity is checked in the MBox only at the output of the

MBs and then only as data is moved out of the MBs by the cache, core, or channel controls. These

controls move data from the MBs to the EBox, cache, page table, CCW buffer, CH buffer, and core

memory via the SBus. A parity splitting network is employed between the MBs and the CH buffer and

page table (Figure 2-17) to convert full word parity to half word parity; a parity folding network is
employed between the CH buffer and the MBs. Each word transferred on the CBus and stored in the
page table is associated with two parity bits, one for each half word, while the data word on the SBus is
associated with only one parity bit. If a word in an MB has bad parity, not only will the MBOX MB

PAR ERR flag set, but the word (or half words) leaving the MB will also contain bad parity when the
word is moved out to the SBus, CCW buffer, CH buffer, page table, cache, or EBox AR.

For EBox write requests, a data parity bit is generated by the EBox for the contents of the AR, which

are transferred with the AR data to the MBox. If the cache is to be used, the parity bit is stored in the

cache along with the data. Parity is not checked in the MBox in this case. However, if a core cycle is

required, then.the parity bit is transferred to core memory via the M Bs along with the data. When core

acknowledges the write request for the addressed word, the MBox checks the parity of the word at the

output of the MB. If MB parity is not odd, the MBOX MB PAR ERR flag is set and the ERA register

is loaded and held. Core memory will then check data parity (DMA20 only), assert SBUS ERROR if

parity is not odd, and write the data and parity bit into core. Asserting SBUS ERROR causes the

MBOX SBUS ERR flagto be set.

NOTE

Data is written into core whether data parity is good

or bad.

If the cache cycle control decides it must execute a write-back cycle, the parity bits associated with the

written words in the cache are picked up and are written along with the data into core memory, as

described previously for the core write cycle.

For EBox read requests, the parity bits associated with the addressed words in core memory are picked

up and transferred to the MBox where they are stored in the cache along with the data. The first word

and its parity bit is also transferred to the AR in the EBox. As each word leaves core memory, its parity

is checked (DMA20 only). If parity is not odd. SBUS ERROR is asserted by core memory which sets

the MBOX SBUS ERR flag in the MBox. As each word and its parity bit is received by the M Box,

they are stored in the MBs. When the EBox takes the first word, parity is checked at the output of the

MB and in the AR of the EBox. Parity for subsequent words is checked at the output of the MBs as the

MBox/2-75

cache cycle control moves the words from the MBs to the cache. If the parity check fails for any of the
remaining words, the MBOX MB PAR ERR flag is set and the ERA register is loaded and held. When
the EBox initiates a read request and the word is found in the cache, the word and its parity bit are

simply transferred to the AR where parity is then checked. If the cache cycle control decides it must

execute a write-back cycle before satisfying the EBox read request, the parity bits associated with the

written words in the cache are picked up and are written along with the data into core memory, as

described previously for the EBox write request.

For a channel read request to fetch a CCW, the parity bit associated with the addressed word in core
memory is picked up and transferred to the MBox, where it is placed into the MB along with the data.

As the word leaves core memory, its parity is checked (DMA20 only). If parity is not odd, SBUS

ERROR is asserted by core memory, which then sets the MBOX SBUS ERR flag in the MBox. The

channel recognizes that the word was placed into an MB; in response, the channel moves the word into

the CCW buffer and causes the MB parity to be checked.

NOTE

Only the CCW is stored in the CCW buffer. The

parity bit is not stored in the CCW buffer with the

data but is dropped after MB parity is checked.

If the MB parity check failed, the MBOX MB PAR ERR flag is set. The ERA register is loaded and
held and CBUS ERROR is asserted. ' :

For a-channel read request to move data from memory to the CH buffer, the parity bits associated with

the addressed words in core memory (or from the cache, if the words are in the cache) are picked up

and transferred to the MBs along with the data. For those words that come from core, parity is
checked as they leave core memory (DMA20 only). If the parity check fails, SBUS ERROR is asserted
bv core memory which, in turn, sets the MBOX SBUS ERR flag in the MBox.

Parity is not checked for those words that are valid in the cache when they are moved from the cache to

the M Bs. The channel recognizes that the requested words and the associated parity bits were placed in

the MBs: in response, the channel moves the words and the parity bits into the CH buffer and causes
M B parity to be checked. If the MB parity check fails on any word as it is moved from the MB to the
CH buffer the MBOX MB PAR ERR flag is set and the ERA register is loaded and held.

NOTE

CBUS ERROR is not asserted for this case.

In the Jata parity path from the M Bs to the CH buffer, the single data parity bit that was received from

core (or the cache) is split into two parity bits, one for each half word. These parity bits are then stored
in the CH buffer and are placed on the CBus with the data when the mass storage system requests a

word. The mass storage system asserts CBUS REQUEST whenever a word is needed. ‘

For a channel write request to move data from the CH buffer to core memory, the parity bits associ-

ated with the addressed words in the CH buffer are picked up and transferred to the MBs along with

the data. The CH buffer contains one parity bit for each half word. The two parity bits and the data
word are moved into the CH buffer from the CBus when the mass storage system sends a word (asserts

CBUS REQUEST). In the data parity path, from the CH buffer to the MBs, the two parity bits are
folded into one bit to accommodate the SBus. From the MBs, each word and the associated parity bit

is moved to core memory. As each word is transferred, parity is checked at the output of the MB and in
core memory. If the parity check fails at the output of the MB, the MBOX MB PAR ERR flag is set

and the ERA register is loaded and held. If the parity fails in core memory, MBOX SBUS ERR is

asserted by core memory, which in turn causes the MBOX SBUS ERR flag in the MBox to be set.

MBox/2-76

For a channel write request to store the two status words, parity for each word is generated by the

channel. The two status words are held by the CCW buffer after a channel transfer terminates. After

the two words and the associated parity bits are transferred to the MBs, they are moved to core

memory. As each word is moved to core, parity is checked at the output of the MBs and in core

memory, as described for the channel data write request.

The page table can be refilled from core or from the AR. During the KL paging mode, the page refill

operation is executed by the EBox microcode. Essentially, the EBox will perform a table lookup to find

a valid page address. When a valid address is found, it is written into the page table from the AR.

During the KI paging mode, the page refill operation is executed by the MBox automatically. In this

case, eight entries are written into the page table from the process table in core memory via the MBs. In

either case, the parity bits associated with the entries are transferred along with the data and are

written into the page table. During the KL paging mode, parity on the contents of the AR is generated
by the EBox and is transferred with the page table entry. The MBox does not check the parity of this
transfer before it is written into the page table. During the KI paging mode, the parity bits associated

with the addressed words in core memory (or the cache for any valid words) are transferred with the
data and parity is checked along the way (in core memory and at the output of the MBs), as described

previously for core read operations. In the parity path from the MBs to the page table, a parity-

splitting network is used to convert full-word parity to half-word parity. This is done to provide a

parity bit for each page table entry. Page table parity is checked whenever the EBox makes a paged

‘memory reference.

2.14.3 Time-out Error

The MBox and the core memory system employ time-out counters to sense incompleted memory

cycles and NXM. The time-out duration and the location of the time-out networks are itemized in

Table 2-11.

Table 2-11 Memory Timeouts

Duration

s

25 MHz 30 MHz Location

10.240 8.448 MA/MB (Internal)

36.000 29.700 DMA (External)

81.900 67.567 MBox

If a core cycle is started by either internal or external core memory, and the cycle is not completed
within the specified time-out duration, the core memory system asserts SBUS ERROR, which in turn

sets the MBOX SBUS ERR flag in the MBox. The time-out is activated whenever the M Box initiates a

core cycle by asserting SBUS START. When SBUS START is cleared at the end of the core cycle, the

time-out is reset. Consequently, if all the requested words are not acknowledged by the core memory

system, the time-out is allowed to expire, which in turn causes the MBOX NXM ERR flag to be set.

Besides reporting errors due to hardware failures in the core memory system, the MBOX NXM ERR

flag can be used to find out how much memory is connected to the system.

MBox/2-77

2.14.4 Error Flags

The following flags are implemented in the MBox for error reporting purposes:

PAGE FAIL HOLD

CSH ADR PAR ERR

MBOX ADR PAR ERR

MBOX MB PAR ERR

MBOX SBUS ERR

MBOX NXM ERR

CBUS ERRB
N

e B
No
W
el

leg

2.14.4.1 PAGE FAIL HOLD Flag - The PAGE FAIL HOLD flag is set when the MBox senses a

page table parity error or when the page test fails. Accessability ofa given page and page table parity is

checked only for EBox memory read and write requests to paged memory. When the flag is set, the

Page Fail Word is also loaded into the EBus register so that it can be read by the EBox. Setting the

PAGE FAIL HOLD flag causes the EBox to trap to the microcode page fail handler. The flag is

cleared automatically when the current cache EBox cycle is completed.

2.144.2 CSH ADR PAR ERR Flag - The CACHE ADR PAR ERR flag is set when the MBox

senses a cache directory parity error. Parity is checked on the address in the directory whenever the

cache is referenced. If the CACHE ADR PAR ERR flag is set, the APR C DIR P ERR flag in the

EBox is set on the next EBox clock tick to interrupt the Priority Interrupt (PI) system if the APR flag is

enabled. The APR flag is cleared by executing a CONO APR instruction. The MBox error flag is

cleared by virtue of setting the EBox APR C DIR P ERR flag.

2.14.4.3 MBOX ADR PAR ERR Flag - The MBOX ADR PAR ERR flag is set when the core

memory system senses an address parity error. Parity is checked on the SBus address and the request

qualifiers whenever the MBox initiates a core cycle. If the MBOX ADR PAR ERR flag is set, the

contents of the ERA is held and the APR S ADR P ERR flag in the EBox is set on the next EBox clock

tick to interrupt the PI system if the APR flag is enabled. The APR flag is cleared by executing a

CONO APR instruction. The MBox error flag is cleared by virtue of setting the EBox APR S ADR P

ERR flag.

2.14.4.4 MBOX MB PAR ERR Flag - The MBOX MB PAR ERR flag is set when the MBox senses

an MB parity error. Parity is checked on the data in the MB whenever data is moved out of the MB to

the AR, cache, page table, CH buffer, or SBus. I[f the MBOX MB PAR ERR flag is set, the contents of

the ERA are held and the APR MB PAR ERR flag in the EBox is set on the next EBox clock tick to

interrupt the PI system, if the APR flag is enabled. The APR flag is cleared by executing a CONO APR

instruction. The MBox error flag is cleared by virtue of setting the EBox APR MB PAR ERR flag.

2.14.4.5 MBOX SBUS ERR Flag - The MBOX SBUS ERR flag is set when the core memory system

senses a data parity error or times out. Parity is checked on the data during both core read and core

write cvcles (DM A20 only). The core memory system times out if all requested words are not acknowl-

edged, which would occur in the event of a hardware failure. If the MBOX SBUS ERR flag is set, the

APR SBUS ERR flag in the EBox is set on the next EBox clock tick to interrupt the PI system, if the

APR flag is enabled. The flag is cleared by executing a CONO APR instruction. The MBox error flag

is cleared by virtue of setting the EBox APR SBUS ERR flag.

2.14.4.6 MBOX NXM ERR Flag - The MBOX NXM ERR flag is set when the MBox times out. The

NXM timer is started when a core cycle is initiated (SBUS START asserted) and is reset when all

requested words are accounted for (SBUS START clears). If all requested words are not acknowledg-

ed by the core memory system, the NXM time-out expires and sets the MBOX NXM ERR flag. If the

MBOX NXM ERR flag is set, the ERA is loaded and held; and APR NXM ERR flag in the EBox is

set on the next EBox clock tick to interrupt the PI system, if the flag is enabled. The flag is cleared by

exccuting a CONO APR instruction. The M Box error flag is cleared by virtue of setting the EBox APR

NXM ERR flag.

MBox/2-78

2.14.47 CBUS ERR Flag - The CBUS ERR flag is asserted if an error is sensed by the MBox or by

the core memory system when a channel request to fetch a CCW is executed. The errors that are sensed

include:

a. MEM ADR PAR ERR

b. MB PAR ERR

¢c. NXM ERR

Asserting CBUS ERR causes a status bit in the controller of the selected channel to be set.

NOTE

Address and data parity are not checked for regular

data transfer operations or for memory store oper-

ations. Only NXM will be sensed and reported on the

CBUS ERROR line for these operations.

2.14.5 Status Words

One of two status words are formed and stored by the MBox in the event an error is sensed:

a. Page Fail Word

b. Error Address (ERA)

One or the other is stored in a register so that the EBox can read the word and evaluate the failure. In

the case of a page test failure, which includes the page table parity check, the PAGE FAIL HOLD flag
is set and the Page Fail Word is loaded into the EBus register. The format of the Page Fail Word is

shown in Figure 2-18. This register is read by the EBox by asserting the diagnostic register read

function for register 167s.

In the case of a parity, time-out, or NXM error, the corresponding error flags are set and the error

address and associated status bits are loaded into the ERA register. The format of this word is shown

in Figure 2-19. This register is read by the EBox when an RDERA (BLKI, PI) instruction is executed.

2.15 DIAGNOSTIC REGISTERS

There are 16 diagnostic registers in the MBox (Figure 2-20 and Tables 2-12 through 2-27). They are

essentially test points for collecting MBox snapshots on a per-clock-tick basis, or to monitor an indi-

vidual signal to determine or validate its individual characteristics versus function. The Diagnostic

registers can be read by the privileged PDP-11 front end processor.

00 Ot 05 06 07 08 14 35

%
4//// 22-BIT PHYSICAL MEMORY ADDRESS

2

~ CACHE

USER PUBLIC PAGED

PF CODE

(para 3.2.4)

10~1489

Figure 2-18 Page Fail Word Format

MBox/2-79

Q0 0l 02 0304 05 06 4

W////{%////f// 22-BIT PHYSICAL MEMORY ADDRESS

35

L WRITE REF (| =WRITE, 0=READ) ,-/
~ R8T e wRITE\ SQURCE | WRI DATA SOURCE

l——————— DATA SOURCE CODE \ CODE

\CHAN REF (1= CHAN, O= —CHAN) \ 00 0 | MEMORY (READ, RPW)

\ | 00 | I |CHAN STORE STATUS (WRITE)

) | | AR(EBOX WRITE)

WHICH WORD Lo O | CACHE (PAGE REFILL,CHAN READ)

whier ort I I | CACHE WRITE
00 = MBO

01 = MBI

| 0 = MB2

| | = MB3

t0-1490

Figure 2-19 ERA Word Format

LEFT HALF RIGHT HALF

1ojtr (12113114 |15 [IGIW |8’|9 lZO] 21 {22[23]24]25!25[27 28[29i30|3| l32!33 | 34|35

N
\

16l

‘/

163 %

164 7%

/.

oA

R

N
N
\

166 ;’-i/é///;”/)/’; ///%/Z//,/f
i’

/ Sl S

7

NOTE | Refer 1o tables 2-12 thry 2-27 for Bit Assignments

2 Register 167 is the EBus Reqister

3.82ZZ70 Denotes bits not used

Figure 2-20 MBox Diagnostic Register Bit Maps

M Box /2-80

Table 2-12 Diagnostic Register 160, Bit Assignments

LEFT HALF RIGHT HALF

Bit No. | Source Signal Name Bit No. Source Signal Name

15 MBZ1 CORE BUSY H 18 MBZ5 MB PAR BIT IN H

16 MBZ4 CHAN PAR ERR L 19 MBZ1 CSH EN CSH DATA L

17 SHDI SH AR PAR ODD A H 20 MBZ1 MB IN SEL 1 H

21 MBZ3 NXM ACKN H

22 MBZ1 CHAN CORE BUSY H

23 MBZ3 NXM ANY L

24 MBZ4 NXM T6-7 L

25 MBZ3 CHAN NXM ERR L

26 PAGS PAG MB 18-35 PAR H

27 MBCS FORCE VALID MATCH O H

28 MBCS FORCE VALID MATCH I H

29 MBCS5 FORCE VALID MATCH 2 H

30 MBCS FORCE VALID MATCH 3 H

31 MBC(C1 WRITE OK H

32 MBC(C?2 CSH ADR WR PULSE H

33 MBC(C?2 CSH DATA CLR DONE IN L

M Box/2-81

Table 2-13 Diagnostic Register 161, Bit Assignments

LEFT HALF RIGHT HALF

Bit No. | Source Signal Name Bit No. Source Signal Name

15 MBZ4 MBOX ADR PAR ERR L 18 MBZo6 CSH PAR BIT H

16 MBZ5 CBUS PAR LEFT TE H 19 MBZ1 MEM TO C DIAG EN L

17 MTOS MEM PAR IN H 20 MBZ1 MB IN SEL 2 H

21 MBZ1 MBZ1 RD-PSE-WR REF L

22 MBZ3 MBOX NXM ERR L

23 MBZ3 CHAN MEM REF L

24 MBZ4 MBOX SBUS ERR L

25 MBZ3 NXM DATA VAL L

26 MBZ6 CSH PAR BIT AH

27 MBC2 CSHDATACLRTIL

28 MBC2 CSHDATACLRT2L

29 MBC2 CSHDATACLRT3L

30 MBC2 CSH SELLRUH

31 MBC2 CSH VAL WR PULSE H

32 MBC2 CSH WR WR PULSE H

33 MBC2 RQ HOLD FF H

MBox/2-82

Table 2-14 Diagnostic Register 162, Bit Assignments

LEFT HALF RIGHT HALF

Bit No. | Source Signal Name Bit No. Source Signal Name

15 MBZ4 CHAN ADR PAR ERR L 18 (Not Use.d)

16 MBZ5 CBUS PAR RIGHT TE H 19 MBZ1 CHAN READ L

17 MBZ5 CSH PAR BIT IN H 20 MBZ1 MB IN SEL 4 H

21 MBZ1 MEM BUSY H

22 MBZ3 HOLD ERA L

23 MBZ4 NXM T2 H

24 MBZ4 MBOX MB PAR ERR L

25 PAGS PAG MB 00-17 PAR H

26 MBZ6 CSH PAR BIT B H

27 MBC2 CACHE WR 00 A H

28 MBC2 CACHE WR 09 A H

29 MBC2 CACHE WR 18 A H

30 MBC2 CACHE WR 27 A H

31 MBC2 SBUS ADR HOLD H

32 MBC3 A CHANGE COMING A L

33 MBC3 ANY SBUS RQ IN L

MBox /2-83

Tabie 2-15 Diagnostic Register 163; Bit Assignments

LEFT HALF RIGHT HALF

Bit No. Source Signal Name Bit No. Source Signal Name

27 MBC3 B CHANGE COMING L

28 MBC(C3 CORE BUSY A H

29 MBC3 CSH VAL SEL ALL H

30 MBC3 CSH VAL WR DATA H

31 MBC3 CSH WR SEL ALL H

32 MBC3 CSH WR WR DATA H

33 MBC3 DATA VALID A OUT H

Table 2-16 Diagnostic Register 164, Bit Assignments

LEFT HALF RIGHT HALF

Bit No. Source Signal Name Bit No. Source Signal Name

27 MBC3 DATA VALID BOUT H

28 MBC3 MBC INH 1ST MB REQ H

29 MBC3 MEM TO C EN L

30 MBC3 PHASE CHANGE COMING L

31 MBC4 ACKN PULSE L

32 MBC4 CORE ADR 34 H

33 MBC4 CORE ADR 35 H

MBox/2-84

Table 2-17 Diagnostic Register 165; Bit Assignments

LEFT HALF RIGHT HALF

Bit No. Source Signal Name Bit No. Source | Signal Name

27 MBC! CAM SELTl H

28 MBC1 CAM SEL 2 H

29 MBC4 CORE DATA VALID -1 L

30 MBC4 ' CORE DATA VALID -2 L

31 MBC4 CORE DATA VALID L

32 MBC4 CORE RD IN PROG H

33 MBC4 MEM ADR PAR H

Table 2-18 Diagnostic Register 166, Bit Assignments

LEFT HALF RIGHT HALF

Bit No. Source Signal Name Bit No. Source Signal Name

27 MBC4 MEM RD RQ B il

28 MBC4 MEM RQ O H

29 MBC4 MEM RQ I H

30 MBC4 MEM RQ 2 H

31 MBC4 MEM RQ 3 H

32 MBC4 MEM START L.

33 MBC4 MEM WR RQ L

MBox/2-85

Table 2-19 Diagnostic Register 167, Bit Assignments

LEFT HALF RIGHT HALF

Bit No. Source Signal Name Bit No. Source Signal Name

00 08 MBZ I'BUS REG 00 08 H 18 26 MBZ1 EBUS REG 18 26 H

417 MBZ 1 FBUS REG 14 17 H 27033 MBCI I'BUS REG 27 33 H

3435 MBZ i LEBUS REG 34, 35 H

Table 2-20 Diagnostic Register 170, Bit Assignments

LEFT HALF RIGHT HALF

Bit No. Source Signal Name Bit No. Source Signal Name

00 CRCO CR(C CH BUF ADR O H I8 CCLS CCL WC GE4 H

0l CRC4 CRC RESET IN L 19 CCLS CCLWC=0L

02 CRC4 CRC MEM STORE ENA L 20 CHX2 (SH 0 ANY VAL L

03 CRC4 CRC DONE IN H 21 CHX3 CSH USE INO H

04 CRC4 CRC STORE IN H 22 CSH5 PAGE REFILL COMP L

0s CCwW4 CCW WD READY H 23 CSH6 CACHE WR IN H

06 CCWe CCW CCWF REQ ENA H 24 CSHo6 MBOX PT DIR WR L

07 CCWo CCW MEM STORE ENA H 25 CSH2 CSH WR TEST L

0¥ CCWS CCW ACT FLAG REQ ENA H | 26 CSH3 ANY VAL HOLD H

09 CCW3a CCW ALU C8 OUTH 27 CSH4 CSH DATA CLR DONE L

10 CCW3 CCW ALU C2 OUT H 2% CSH4 CSH REFILL RAM WR L

I CH1 CHTOH 29 ('SH4 CSH EBOX T3 L

12 CHCS CBUS SEL 0 B H 30 MBX1 CACHE BIT H

R CHC1 CHX RESET H 3 MBX1 CCA REQ L

4 CHC2 CH RESET INTR H 32 MBX4 CSH WR WD 2 ENH

6 CClL5 CCL ODD WC PAR 11 A3 MBXS MB REQ IN H

34 MBX5 MBX MEM TO CENL

35 MBXS RQ 1 INH

M Box /2-86

Table 2-21 Diagnostic Register 171, Bit Assignments

LEFT HALF RIGHT HALF

Bit No. Source Signal Name Bit No. Source Signal Name

00 CRC6 CRC CH BUF ADR 1 H 18 CCL3 CCL ALUMINUS L

01 CRC4 CRC RH20 ERR IN H 19 CCL4 CCLCH TEST MBPAR L

02 CRC4 CRC OVN ERRINH 20 CHX?2 CSH 1 ANY VAL L

03 CRC4 CRC SHORT WC ERR H 21 CHX3 CSHUSEIN1H

04 CRC4 CRC LONG WC ERR H 22 CSHS5 CHANRD TS L

03 CCW4 CCW WDO REQ H 23 CSHé6 CSH WR DATA RDY L

06 CCW4 CCWWDI REQH 24 CSH4 PAGE FAIL T2 L

07 CCw4 CCW WD2 REQ H 25 CSHo6 CSH EBOX LOAD REG I

08 CCW4 CCW WD3 REQH 26 CSH7 CSH FILL CACHE RD 1

09 CCW1 CCWMEM ADR=0H 27 CSHS CHANWR TS5 L

10 CCWo6 CCW CCWF WAITING H 28 CSH3 MB WR RQ CLR NXT L

11 CHC1 CHTIH 20 CSlH4 CSH EBOX T! L

12 CHCS CBUSSEL 1 EH 30 MBX?2 CACHE TOMB 34 H

13 CHC1 CHX STARTH 31 MBX1 CCASEL1H

14 CHC2 CH START INTR H 32 MBX4 CSH WR WD 3 EN H

16 CCL3 CCLMBRIPAH 33 MBX?2 MB SEL I H

34 MBX3 MEM DIAG |

35 MBXS RQ2INH

MBox/2-87

Table 2-22 Diagnostic Register 172, Bit Assignments

LEFT HALF RIGHT HALF

Bit No. | Source Signal Name Bit No. Source Signal Name

00 CRCo CRC CH BUF ADR 2 H 18 CCL3 CCLMBREQT2H

01 CRC3 CRC READY INH 19 CCL4 CCL REVERSE H

02 CRC3 CRC LASTWORD IN H 20 CHX2 CSH 2 ANY VALL

03 CRC3 CRC ERRINH 21 CHX3 CSHUSEIN2H

04 CRC3 CRC REVERSE INH 22 CSH6 CHAN WR CACHE L

05 CCW3 CCW ACTCTR OENH 23 CSH6 CCA CYCDONE L

06 CCW3 CCW ACTCTR 1 ENH 24 CSHS CHANT4 L

07 CCW3 CCW ACTCTR2ENH 25 CHX3 CSH LRU 2 H

08 CCWI CCW BUF ADROL 26 CSH1 READY TOGO AH

09 CCWI CCWBUF ADR 1L 27 CSH6 CSH USE HOLD H

10 CCWI CCW BUF ADR 2L 28 CSHI1 CSHCCACYCL

11 CHCI CHT2H 29 CSH1 CSH EBOX REQEN L

2 CHCS CBUSSEL 2EH 30 MBX2 CACHE TOMB 35S H

13 CHC1 CHX DONE H 31 MBX1 CCASEL2H

14 CHC2 CH DONE INT R H 32 MBX1 FORCE NO MATCHH

16 CCL3 CCLCCWFT2H 33 MBX2 MB SEL 2 H

34 MBX5 MEM RD RQ IN H

35 MBXS5 RQ3INH

MBox /2-88

Table 2-23 Diagnostic Register 173, Bit Assignments

LEFT HALF RIGHT HALF

Bit No. Source Signal Name Bit No. Source Signal Name

00 CRC6 CRC CH BUF ADR 3 H 18 CCL4 CCLCHMBSEL I H

01 CRC2 CRC ACTCTRORH 19 CCL3 CCLAFT21L

02 CRC2 CRC ACTCTR IRH 20 CHX2 CSH 3 ANY VAL L

03 CRC2 CRC ACTCTR 2R H 21 CHX3 CSHUSEIN3H

04 CRC2 CRC RAMCYCH 22 CSH2 ONE WORD RD L

05-10] CCW2 CCW CHA 30-35 H 23 CSH2 MBOX RESP L

11 CHC1 CHT3H 24 CSH2 RD PSE 2ND REQ EN L.

12 CHCS CBUSSEL3 EH 25 CHX3 CSHLRU 1 H

13 CHC1 | CHX STOREH 26 CSHS CSHTI L

14 CHC2 CH STORE H 27 CSH4 WRITEBACK T1 A H

16 CCL4 CCLCHMBSEL 2 H 28 CSH7 CSH CCA WRITEBACK L

29 CSH4 CSHEBOX T2 L

30 MBX4 CACHE TO MB DONE L

31 MBX2 CHAN WR CYC L

32 MBX3 MEM DATA TO MEM H

33 MBX?2 MB SEL HOLD H

34 MBX3 MEM TO C SEL. I H

35 MBX2 SBUS ADR 34 H

MBox,/2-89

Table 2-24 Diagnostic Register 174, Bit Assignments

LEFT HALF RIGHT HALF

Bit No. | Source Signal Name Bit No. Source Signal Name

00 CRC6 CRC CH BUF ADR4 H 18 CCL3 CCL CHAN EPTH

01 CRCl1 CRC ACT FLAG ENAH 19 CCL4 CCL CHAN TO MEM H

02 CRCS CRCWRRAM L 20 CHX4 CSH DIR 0 PAR ODD H

03 CRC3 CRC OP CODE OO H 21 CHX3 CSHUSEIN4H

04 CRC3 CRC OP CODE 01 H 22 CSH2 ECORERDRQL

0510 | CCW2 CCW CHA 24-29H 23 CSHo6 PAGE FAIL HOLD L

11 CHC1 CBUS READY EH 24 CSH5 PAGE REFILLT9,12 L

12 CHCS CBUSSEL4EH 25 CHA3 CSH3 ANYWRL

13 | CHCl | CHXCTOMH 26 CSH5 CSHTOL

14 CHC3 CHCTOM H 27 CSH3 CSH ADR PMA EN H

16 CCL3 CCL CHAN REQH 28 CSH1 CSH EBOX CYCBL

29 CSH1 CACHE IDLE L

30 MBX4 CACHETOMBT2L

31 MBX1 CSH CCA INVAL CSH H |

32 MBX3 MBDATACODE 1 H

33 MBX6 MBO HOLD IN H

34 MBX3 MEM TO C SEL 2 H

35 MBX2 SBUS ADR 35 H

MBox,/2-90

Table 2-25 Diagnostic Register 175; Bit Assignments

LEFTHALF RIGHT HALF

Bit No. | Source Signal Name Bit No. Source Signal Name

00 CRCé6 CRC CH BUF ADR 5 H 18 CCL2 CCL ACT FLAG REQH

01 CRC6 CRCSEL 1D L 19 CCL2 CCL MEM STORE REQH

02 CRCé6 CRCSEL2D L 20 CHX4 CSH DIR 1 PAR ODD H

03 CRCé6 CRC SEL 4D'L 21 CHX3 CSH USE ADR 2 H

04 CRCl1 CRC AF REQENAL 22 CSH2 CSH EBOX RETRY REQ L

05-10 | CCW2 CCW CHA 18—-23 H 23 CSHé6 CSH USE WR ENH

11 CHC1 CBUS LAST WORD E H 24 CSH3 MB TESTPAR AINL

12 CHCS CBUSSELSEH 25 CHA3 CSH 1 ANYWR L

13 CHCS CHSELS8AH 26 CSHS CSHT3 L

14 CHC2 CH CONTR REQ H 27 CSH3 MBOX GATE VMA 27-33 H

16 CCL2 CCL CCWF REQH 28 CSH1 CSHMBCYCL

29 CSH4 ONE WORDWR TO L

30 MBX4 CACHETOMBT3 L

31 MBX1 ~ CSH CCA VAL CORE H

32 MBX3 MB DATA CODE 2 H

33 MBX6 MBI HOLD IN H

34 MBXS MEM WR RQ IN H

35 MBX3 SBUSDIAG 3 L

MBox/2-91

Table 2-26 Diagnostic Register 176, Bit Assignments

LEFT HALF RIGHT HALF

Bit No. | Source Signal Name Bit No. Source Signal Name

00 CRC6 CRC CH BUF ADR 6 H 18 CCL2 CCL BUF ADR3 H

01 CRC1 CRC MEM PTRO H 19 CCL4 CCL STARTMEM L

02 CRC1 CRC MEM PTR1 H 20 CHX4 CSH DIR 2 PARODD H

03 CRC1 CRC MEM PTR2 H 21 CHX3 CSH USE ADR 3 H

04 CRClI CRC MEM PTR3 H 22 CSHé6 CCAINVALT4L

05 CCW3 CCLWC=3H 23 CSHS PAGE REFILL T8 L

06 CCW4 CCL CCW REG LOAD H 24 CSH4 CSH EBOX TOL

07-10 | CCW2 CCW CHA 14—-17H 25 CHA3 CSH 2 ANYWRL

11 CHC1 CBUS ERROREH 26 CSH5 CSHT2L

12 CHCS CBUSSEL6EH 27 CSH2 E CACHE WR CYCH

13 CHC1 CHMB REQ INHH 28 CSH7 CSH E WRITEBACK L

14 CHC1 CH REVERSE H 29 CSH5 PAGE REFILL T4 L

16 CCL4 CCL STORE CCW H 30 MBX4 CACHETOMBT4 AL

31 MBX4 CSHWR WD 0 ENH

32 MBX3 MB PAR H

33 MBX6 MB2 HOLD INH

34 MBX3 REFILL HOLD H

. 35 MBX3 SBUS DIAG CYC L

MBox/2-92

Table 2-27 Diagnostic Register 177, Bit Assignments

LEFT HALF RIGHT HALF

Bit No. | Source Signal Name Bit No. Source Signal Name

00 | CRCI CRCPTRDIF=0H 18 CCL6 CCL CSHCHANCYCL

01 CRC6 CRC CH ADROC L 19 CCL3 CCLMEM PTR ENH

02 CRC6 CRCCHADRICL 20 CHX4 CSH DIR 3 PARODD H

03 CRC6 CRCCH ADR 2C L 21 CHX3 CSH USE ADR 4 H

04 CRC6 CRCCHADR3CL 22 CSH6 PAGE REFILL ERROR L

05 CCW6 CCW RAM ADR 1 H 23 | CSH6 DATADLY I L

06 CCW6 CCW RAM ADR 2 H 24 CSH4 PAGE FAIL DLY H

07 CCW6 CCW RAM ADR 4 H 25 CHA3 CSHO ANY WR L

08 CCW3 CCLWC=1H 26 CSH5 - PAGE REFILL T10 L

09 CCW3 CCLWC=2H 28 CSH2 RD PAUSE 2ND HALF L

10 CCw4 CCW ODD ADR PARH 29 CSH4 'CSH EBOX WR T4 L

11 CHCI1 CH CBUS REQH 30 MBXI1 CCA ALLPAGESCYCH

12 CHC5 CBUSSEL7EH 31 MBX 4 CSHWR WD I ENH

13 CHC2 CH CONTR CYCH 32 MBX2 MB REQ HOLD H '_

14 CHC2 CH START H 33 MBX6 MB3 HOLD IN H

16 CCL1 CCL ERR REQH 34 MBXS5 RQOINH

35 MBX4 WRITEBACK T2 L

MBox,/2-93

SECTION 3

LOGIC DESCRIPTIONS

3.1 INTRODUCTION

This section contains a logic description of each functional element of the MBox. These functional

elements are introduced in Section | and include the following:

Pager

Cache, Cache Control, and Use Logic

Cache Clearer Control

MB Control

Core Control

Channel Control—
0
a
c
o
s

The logic description covers not only the logic itself, but also how the logic operates in the functional

context detailed in Section 2.

3.2 PAGER

The pager consists of two hardware tables, associated address, enable and write drivers and com-

binational logic for detecting illegal page references (Figure 3-1). One table serves as a Directory and

the other as the page table. The directory contains 128 locations for storing virtual section numbers

and the page table contains 512 locations for storing physical page numbers. Each directory entry

implicitly identifies four page table entries. These tables also contain status bits to identify valid entries

and access privileges. If the virtual section address matches the contents in the directory and the NOT

VALID bit is cleared, then the corresponding four entries in the page table are current for the running

process. The entries themselves may show the page to be accessible and legal for transforming the

virtual address to the physical address.

When the EBox makes a paged memory reference, the page table and its directory are addressed by a

function of the virtual user/executive section and page address, resulting in a modified page address.

EBOX USER and bit 17 of the virtual section address are Exclusive-ORed with bits 19 and 20 of the
virtual page address to modify bits 19 and 20 of the PT address as a function of the section number and

the EXEC/USER address space. This modified page address is used to distribute the entries in the

table for different sections (refer to HASH chart, Figure 3-2). This deters identical page entries from
different sections from occupying the same table locations and therefore minimizes conflict and addi-

tional memory references (thrashing) when switching sections during KL paging mode. In the KI

mode, references outside section 0 will not occur. The directory table is addressed by the seven high-

order bits of PT address and the page table is addressed by all nine PT address bits. Therefore, for a

given virtual address, one directory entry and one page tables entry are selected. When the pager is

addressed by the EBox, a comparison is simultaneously made to determine if the directory entry
(virtual section address) is valid and the same as the virtual address presented by the EBox. If a match

occurs, the corresponding four entries in the page table are valid.

MBox/3-1

EBOX REQ QUALIFIERS

: T ‘

PT_PAR ODD ‘(:

|
l PAR GENI(PAGY)

—

PAR GEN (PAGS)

PF EBOY HANDLE/ ~PAGE FAIL HOLD

— - 1

PAGE OK @ £BOX PAGED i PMA 1-2-4 SE¢ |
CSH EBOX CYCA — |

Pt cacnE ——PAGI{ m\j\ _J\

PAGE REFILL @

]

PAGEPAE | PT SOFTWARE i
]

LoGI¢C M

(PAG4: ! — P PMA14 - 38
PAGE FAIL e e . |PT1a-26 4

pT PUBLIC F’AG‘(TO CACHE —_1 A jPAW-35

PF HOLD 01-03 IN ¢ PT WRITABLE PAG‘(;
]

1 PT 14-26 7

ST =z
PT ACCESS PAGH {PAG1/2) 1 PMA 3,41

: ; VMA 18, 21-23

1 | ¢

(PAGI/2) (PAG 1/2) PT ADR 18-23 | PT ADR ,%:('(MCL VMA USER

N VMA 19

NHIE slalfleld 5 PT ADR 20 /7. { YMA 7
¢ c p L‘__"<

ClilulFlaipuysicaL [AICILIY|E A PHYsicAL [A vMa 20
T T Ricit]egr R PT 20R 24

Bl - MB SEL 1
Sicicirlf Y ticlr|E ¥ EL

3 E E CSH PAGE REFILL CYC

PT ADR 25 APR WR PT SEL @

CLK PT WR &
APR WR PT SEL1

L 1 25! 1o) R joojorjo2 josjoalos 17 81320l 21]22{23 35 s : o 25

-CON KI PAGING MODE— PAGE REFILL T12 ¥ | Lt WR BOTH HALVES
PAG MB D@-17 PAR— oacs PT PAR LEFT IN i ;

: : |
CON KI PAGING MODE—i o7 1N SEL AR] : |

' Lo PT RIGHT EN VMA 26
i i t

-
LPP @R PT SEL @

SH AR PAR 000 — AR 09-17—1 M PT @B-35 IN ‘ ' it PT WR BOTH WALVES /2.o L
of 8 : br L2FT EN CSw RAZE REFILL CYC

| Me 8-35— 3 _. [Ty : PAG3 | _p7 ADR 26 i

. PT _PAR RIGHT IN ; : : !

| PAGS : i i

| |

PAG MB 18-35 PAR : ! |
PT MATCH N l

) e
PT ADR 24

PT ADR 24 | N | en PAG3 Fae3
U A

s yiRTdaL Pt aorta-2y |* /
£ 13-17 b -PT ADR 24/

(PAG3} N | En %:t—

PAGE FAIL T3 M BOX PT DIR WR A

WRITE 127 WRITE 127 -4PR WR PT SEL @
PAGE REFILL T12

GE RE CLK PT DIR WR ?D PT DIR CLR APR WR PT SEL

CON KI PAGINGMCDE

PAG]

PAGE FaiL HOLD

VMA 13-17

Figure 3-1 Pager, Simplified Logic Diagram

MBox/3-2

MCL vMA USER w2

m

Q
Q

»

9

000

077

100

177

200

277

300

377

400

477

500

577

600

677

700

777

SECTION
Ve

EXECUTIVE USER
AL

I N r N

X0 X1 X0 X1

X2 X3 X2 X3~

X4 X5 X4 X5

X6 X7 X6 X7

000/77 100/177 | 200/577 300/57;

100/477 000/ 77 300/377 200/,77

400/ 47, 500/g77 600/g77 700/775

500/ 77 400/ 477 700/777 600/77

600/77 700/577 400/ 4,7 500/577

700/ 77 600/¢77 500/g577 400/ 477

10—-1493NOTE: X=0,1,2,0r 3

Figure 3-2 Page Table Address Hash Function

MBox/3-3

The directory table, in addition to containing the virtual section address of the corresponding four

physical addresses in the page table, also contains a USER bit and a NOT VALID bit. The USER bit

indicates whether the corresponding four entries in the page table are for the user mode or for the

executive mode. The NOT VALID bit, when cleared, indicates that the entry is current; that is, it is

valid for the current user program (has been written and validated for current user program). The

NOT VALID bit of all directory entries is set when another user program starts to run and is cleared as

transfers are made to the hardware tables for a given user program.

The first five bits (ACCESS, PUBLIC, WRITABLE, SOFTWARE, and CACHE) of each page table

entry are page descriptor bits that specify what type of entry (what kind of page) it is. These bits, along

with the physical address, are transferred from the core table to the hardware table when the user
program references a page that does not have a valid entry in the directory, or if the ACCESS bit of the

page table entry is cleared.

ACCESS bit KI Mode: Entry has been brought in from core. This bit is set in
the core table by the monitor when that page is brought into

core. If this bit is not set in the core table, the corresponding

user page is still on mass storage.

KL Mode: Entry was placed into the page table by the EBox.

PUBLIC bit Specifies a public page if bit is set; if bit is cleared the page is
concealed and access from public mode is not permitted unless

access is made via a portal instruction. Referencing the correct

portal instruction causes the processor to switch from public to

concealed mode. In the concealed mode, the public bit is not set.

An instruction that clears the Public flag of the PC word causes

the processor to switch back to the public mode. A reference to
a concealed page that is not a legal entry point (portal) while the

processor is in the public mode, causes a page failure.

WRITABLE bit This bit must be set to be able to write into the page. If the bit is
cleared and a write operation is attempted into this page; a page

fault occurs. This bit is typically used to protect shared

programs.

SOFTWARE bit If a page just brought into core is writable, but has not been
written into, there is no need to write it back out on mass stor-

age. The SOFTWARE bit is used to identify those pages that

are writable but have not been written into and consequently
those that do not have to be swapped out to mass storage.

CACHE bit Specifies that this page should or should not be placed in the
cache. When cleared, the page is not to be placed into the cache

but must be maintained in core. This permits two processors to

use the data in the page. When the bit is set, the page is main-

tained in the cache. The monitor decides whether the cache bit

of a given page is to be set or cleared.

These bits, along with the request qualifiers presented by the EBox, are used to determine whether a
given reference by the user program or executive program is legal.

MBox/3-4

3.2.1 Page Refill

The Page Refill condition is sensed during the KI paging mode when the following conditions are all
true:

a. A paged reference is made.

b. No PT match occurred or the ACCESS bit of the entry in the page table is cleared.
c. No Page Refill error occurred.

A Page Refill condition exists when a paged reference is made by the EBox and an entry is not found in
the page table before a refill cycle is started. After a Page Refill cycle is executed and a valid entry is
still not found, a hardware failure is implied and a page fail trap occurs.

A paged reference can occur in either user or executive mode.

A user paged reference is sensed when the following conditions are all true:

VMA User bit is set

Not a UEBR (User/Exec Base Register) reference
Not an AC (Accumulator) reference

Not an illegal entryo
o

o

An executive paged reference is sensed when the following conditions are all true:

VMA User bit is not set

Not a UEBR reference

Not an AC reference

Not an illegal entry

Not an executive unpaged reference (Kernel mode)c
o
e

o

A PT match does not occur when the 128-location directory does not have a valid entry (NOT VALID
bit set) that matches the virtual section address and user bit presented by the EBox with the request.

A refill error occurs when a Page Refill cycle, in response to a Page Refill condition, was already
executed and a Page Refill condition is sensed a second time. This implies a hardware failure.

3.2.2 Page OK

A Page OK condition, which is required for all paged references, is sensed when any of the following
conditions are true:

a. The reference is not an illegal entry and it is a UEBR reference.

b. The page was found in the table, the previous reference was not an illegal entry, and the page
is public and writable or it is not being written into, or it is a Kernel mode reference.

c. The executive page is found, and it is not going to be written into. This condition applies to
references to concealed (not public) pages. The supervisor can read but not write into con-
cealed pages. :

NOTE

For cases described in (b) and (c) above, the page
table parity check must also pass to obtain a Page

OK condition.

MBox/3-5

3.2.3 Page Fail

A Page Fail condition is sensed when any of the following conditions are true.

a. The directory does not contain a valid entry during KL paging mode.

b. A non-accessible paged reference is made (ACCESS bit is cleared). During the KI paging

mode. this indicates that the page is not in core and a reference to mass storage is required.

During the KL paging mode, this indicates that the page is not in the hardware page table

and a reference to core is required.

¢. The previous reference was an illegal entry.

d. The reference is a private unpaged executive reference.

¢. A refill error occurred during a paged reference.

. The referenced page is not writable and a write operation is attempted.

g. The reference page is concealed (not public), and a write operation is attempted in a paged

executive page, or a portal instruction was not used to enter a concealed paged user page.

3.2.4 Page Fault (PF) Codes

Whenever a page fault is sensed, the physical address and five Page Fail (PF HOLD 01-05 IN) bits are

transferred to the EBox, which then stores these bits and the address in the process (user or executive)
table. PF EBOX HANDLE qualifies the meaning of these bits for the KI and KL paging modes. The
logic levels for the PF bits are provided by the PF HOLD combinational logic. Five bits permit the

encoding of 32 different fault conditions. However, only a few codes are meaningful. Refer to the PF
truth table (Table 3-1) for the definition of legal fault codes. After the physical address and PF code is
stored in the process table, the monitor will jump to the appropriate page fault handler (identified by
the PF code) to resolve the fault.

Table 3-1 Page Fault (PF) Code Truth Table

PF PF Code Mode

EBox 01 02 03 04 05 Error Type

Handle F A w S T OCT KI KL

0 0 0 X X X 0X No Access X

0 0] 0 X 1 11/13 Write Failure X

0 1 0 0 0 1 21 Proprietary Violation X X

0 1 0 0 1 0 22 Page Refill Error X

0 1 0 0 1 1 23 Address Break X X

0 1 0 1 0 1 25 PT Parity Error X X

1 0 0 X X X 0X No PT Entry X

1 0 1 0 X 1 11/13 Write Failure X,
1 1 0 X X X 2X No PT DIR Entry X

Notes: 1. Only meaningful codes are given above

2 X denotes arbitrary (don’t care) conditions

MBox/3-6

3.2.5 Operating Modes

The pager is designed to operate in two different modes: KI and KL paging modes. The EBox specifies
which mode the pager is to operate in, by asserting or negating CON KI PAGING MODE. When
asserted, the pager will operate in the KI mode; when negated, the pager will operate in the KL mode.
In the KI paging mode, page refills are executed by the MBox using the KI10 format page pointers in
the process tables. Extended addressing will not be in effect for this style of paging. In the KL paging
mode, page refills are executed by the EBox in response to a signal from the MBox, using the KL 10
format page pointers. Extended addressing may or may not be in effect for this style of paging (refer to
EBox Unit Technical Description).

3.2.5.1 KI Paging Mode - When the EBox issues a request to read or write paged memory, it also
asserts CON KI PAGING MODE. This allows the MBox to automatically refill the page table when
required.

The page table must be refilled when a valid entry is not found in the directory. When the page table
needs to be refilled, the pager asserts PAGE REFILL and the cache control will then execute a cache
cycle (refer to Cache Page Refill cycle description) to fetch eight page table entries (4 words) from the
process table (executive or user, depending on the EBox request qualifiers). If one or more of the
needed words are in the cache, these words will be taken from the cache instead of core. In either case,
the words are moved into the MBs. From the MBs the words are moved into the page table one at a
time. During the Cache Page Refill cycle, PT ADR bits 24-26 are modified to move the words from the
MBs into the correct page table locations. VMA 26 is blocked to select both halves of the page table
(PT RIGHT and LEFT EN are asserted). VMA 24 and 25 are blocked and are replaced with two bit
codes that correspond to the M B selected (MB SEL 1-2). PT ADR 18-23 remains unchanged for the
duration of the Cache Page Refill cycle. The resulting PT address then changes only when another MB
is selected to move another word into the page table. The page table is written at PAGE REFILL T12.
At the same time the page table is written, the directory is also updated. The directory is updated by
storing the virtual section address and the state of EBOX USER and validating the entry. One entry is
placed in the directory for every two words that are written into the page table. When all the words
have been written into the page table, the cache control retries the request.

If the directory contains a valid entry and the EBox requested a legal operation, the pager asserts
PAGE OK. This signal informs the cache control to simply transform the virtual section and page
address into the physical address by selecting the address from the page table. The directory contains a
valid entry if the NOT VALID bit is cleared and the USER bit and the virtual section address in the
table matches the section address and MCL VMA USER signal presented with the request. The refer-
ence is legal if page descriptor bits allow the request (refer to Subsection 3.2.2).

If the directory contains a valid entry and the EBox requested an illegal operation, the pager asserts
PAGE FAIL. The page test logic of the pager senses that the EBox requested an illegal operation by
checking the page descriptor bits of the referenced page. When the pager asserts PAGE FAIL, the
cache control time state generator will assert PAGE FAIL HOLD and will advance through the
PAGE FAIL time states. PAGE FAIL HOLD is asserted to inform the EBox that the page test failed.
The PAGE FAIL time states are entered to transfer the page fail status word into the EBus register
(LOAD EBUS REG) so that the EBox can read the word and evaluate the failure and take remedial
action. The format of the page fail status word is shown in Figure 3-3.

MBox/3-7

2 3 4 5 6 4 8 14 26 27 33 34 35

e

| | i ! //4 PAGE & -WORD WD

L. l] i

| { | N)
! , hd

| b HOLD | PF HOLD PE HOLD | PT CACHE PHYSICAL ADDRESS
o1 IN] 23 N @5 IN

USER PE HOLD PF HOLD P' PUBLIC PAGED REF

22 IN 04 IN
10-1494

Figure 3-3 Page FFall Word Format

3.2.5.2 KL Paging Mode - When the EBox issues a request to read or write paged memory it issues

the request with CON KI PAGING MODE negated. This prevents the MBox from executing the refill
operation and forces the MBox to assert PF EBOX HANDLE and PAGE FAIL HOLD in theevent a
valid entry is not found in the page table. PF EBOX HANDLE will be asserted by the MBox only
when the EBox specifies the KL paging mode is to be used. Therefore, the EBox knows that it must

execute the refill operation when PF EBOX HANDLE is asserted by the MBox. If the MBox asserts

PAGE FAIL HOLD but not PF EBOX HANDLE, this means that an illegal reference in accordance
with the page descriptor bits of the page table entry was made by the EBox.

NOTE

The pager will never assert PAGE REFILL when the

EBox specifies that the KL paging mode is to be

used.

The page table must be refilled when a valid entry is not found in the directory or when an entry in the

page table is not accessible (ACCESS bit is cleared). When the page table needs to be refilled, the pager
1sserts PAGE FAIL and PF EBOX HANDLE and the cache control will then assert PAGE FAIL
HOLD and advance to the PAGE FAIL time states to transfer the Page Fail status word into the EBus

register. The EBox recognizes that the page test failed because a valid entry was not found in the page

table because of the fact that both PF EBOX HANDLE and PAGE FAIL HOLD was asserted by the
M Box. The EBox will then issue a request to read the EBus register. The Page Fail status word will
then be evaluated by the EBox to determine what kind of refill operation is required.

If a valid entry is not found in the Directory (PF code 2Xs) the EBox will clear four entry locations in

the page table. Each word in the page table contains two entry locations, therefore, the EBox must

clear two page table words. Bits 25 and 26 of the PT address are set up and CLK PT WRis asserted by
the EBox to select and clear the correct words. The EBox sets up the correct address by presenting a
two-bit code to the M Box via the APR PT WR SELO and 1 control lines. The codes and their functions

are defined in Table 3-2.

Table 3-2 Page Fault (PF) Code Truth Table

APR PT WR SEL
Functions

01

00 Select VMA address

1 O Clear even PT word

01 Clear two directory entries

1 1 Clear odd PT word

MBox /3-8

After the EBox has cleared the even and odd words in the page table, the EBox will issue process table

read requests and, if necessary, additional read requests to fetch a valid page table entry. When a valid

page table entry is found, it is written (CLK PT WR) into the page table by the EBox. At the same time

the page table entry is written, the virtual section address is also written into the directory by asserting

CLK PT DIR WRITE. During this operation, the tables are addressed by virtual address bits 18-26,

because the EBox will present a code of 00" on the APR PT WR SEL control lines. At this point, one
of the four locations in the page table that corresponds to the validated entry in the directory will have

an accessible entry so that the original request can be retried by the EBox.

Ifa valid entry is found in the directory, but an accessible entry is not found in the page table (PF code

0X5). the EBox will fetch the page table entry and write it into the page table, as previously described,
without initially clearing two page table words.

Before the EBox writes a page table entry, it checks the W bit of the entry. If the EBox intends to read

from this page and the W bit is set, it clears the W and sets the S bit before writing the entry into the

page table. Consequently, a page fail condition will be sensed by the pager if the EBox issues a write

“request for that page. When this occurs, the EBox checks the PF code to see if the S bit is set. If the S

bit is set. the EBox clears the S bit, sets the W bit, and writes the entry back into the page table. To

indicate that the page will be written, the EBox also updates the Core Status Table (CST). After these

operations are done, the EBox retries the original request. This scheme speeds up swapping programs

out to mass storage, since only those pages that were written can be identified and swapped out.

If the MBox presents a page fail code other than those indicating that a refill operation is required. or

the write test failed, the EBox will evaluate the failure and take appropriate remedial action.

The EBox can also clear the entire directory. This is done whenever another user program is started.

To clear an entry in the directory, the EBox sets up VMA address bits 18-23, places code **'01"" on the

APR PT WR SELO and 1 control lines, and asserts CLK PT DIR WR. The EBox must execute this

operation 64 times to clear the entire directory.

3.3 CACHE AND CACHE CONTROL

Basically, the cache control (Figure 3-4) allocates core cycles to the EBox and the integral data chan-

nels by arbitrating EBox and channel requests and executing appropriate cache cycles. Cache cycles

are exccuted to this end to see if the cache (Figure 3-5) contains any valid words. The channels need

core cycles to fetch CCWs, read and write data, and store status. The EBox needs core cycles to read or

write instructions and data, and to read or write locations in the process tables. If while executing a

cache cycle it is found that a particular request is needed to satisfy a core cycle, a core cycle 1s then

started. Core read cycles are needed to satisfy channel and EBox requests if the Cache does not contain

the requested word(s). Core read cycles are also initiated to refill the page table when the EBox makes

a paged reference and the page table does not contain a valid entry (KI mode). Core write cycles are

always needed to satisfy a channel write request because the channels do not write into the cache. One

of the reasons for this is that the data file coming from mass storage is not necessarily related to what

the EBox is operating on at the time. Core write cycles are also required to satisfy EBox read or write

requests if the LRU cache contains written words from another part of core. Cache cycles are also

granted to the EBox to load and read internal MBox register, write-check a page of memory, map the

virtual address, execute an SBus diagnostic cycle, or load the cache refill RAM. The page table can be

written by the EBox directly (KL mode), therefore, a cache cycle is not needed.

MBox/3-9

0
1
-
€
/
x
o
gN

Figure 3-4 Cache Control Block Diagram

TO CHANNFL CONTROL

. " - N - e~ P N —

s 1)
(‘QH) L. !
el CHAN REQ QUALIFIERS ‘

CHAN | * - - —— S [MB HOLD

cvey , | E
i ¥ i

CLK EBOX REQ CACHE CYCLE [i
Lo
Lo CLK A

; MB REQ . PHASECLK EBOX SYNC D o YA

(Fig 3-8) « 3 | ¢ ¢

MBOX RESP IN CACHE _—
CCA REQ | CLEARER ciE| Ul MB TM CORE 3 BUS CONTROL

CACHE e ContROL TM C ! BB CONTROL CONTROL -

CYCLE, F AR |R far — \ (Fig 3-36
<_PAGE FAIL HOLD | TIME STATE 193-32) i csH WD 03 vaL| LLFi9 333 8 3-37)

AND_PMA AR CSH WD -3 WR| !
CONTROL L | |

MEM | (Fig 3-6) | CACHE T ! |
REF QUALIFIERS TIME STATE i : ;

i

ANY VAUN?MATC o | ‘REGISTER - H ' ; | 1 @
REF QUALIFIERS AN R AR ; | i '

PAGE OK ; ' P Q |
PAGING AND PAGE REFILL ; % P |

CACHE QUALIFIERS PAGE FAIL i i L i

i i { i ! i

', 5 f i l ! LRU 1-2 Y
‘ 1 ' ; CACHE le—. USE

i ; PAGER |— | DIRECTORY TABLE ;

iPMa ‘ LFig 3-1) ‘ ; {Fig 35 & 3-11) iFig 3-30) ?
ha-35 | T) L TM |
i | | Lo PMA (CCA} ;|SEL | : (

VMA 14-35 ! . | Me 1] 34-35 | |RQ HOLD

T I
CCW CHA 14-35 i

PolPMa 14-35 ! ADR | S BUS ADR 14-35

; W | REG >
f |

L u UBR 14-26 | (MT@4)
! L (Fig 3-7 & 3-8) EBR 14-26 !
A ! CCA 14-35 j

. PT 14-26
iL CAM 14-26

_ E BUS D 00-35 E BUS

- REG PAGE DESCRIPTOR BITS

(MBZ2) 10-1495

@ CACHE DATA @@-35 /’\ //\) /\ /\ CACHE DATA B@-35

2 4R WORD ADDRE = SEL - SEL . m SEL A . SEL _ wORD ADDRESS
_——__3ws on BoF | 1 csH @ L\ ‘ CSH 1 \ 5 \ex CSH 2 en CSH 3 N]

MB IN BB-35 - 2 T 2 2 2 ! 2! 3 ? ! 4 3 i
-— ~ : T T

g L MEWDATAIN CACHE WRITE B r | | |] | I : i | : | | !
4 lg T ; T T 1 T T T |

§ CCw MUX T ; | N . i i
—_— —_— ' —_— o 1 —_— i

- L L T — TSI ‘ J— S ——

— I] ; i — 1 | Q-WCRC ACDRESS
. oo . : . | - ~ - = i Q-wC oo

wE N SEL s-2-a Woe | wor | woz | wD3 WDD wD1 wD2 wb3 wop | wor | w2 w31 wDD o b owee LEEN '.

I tena1-3 — —— (CHB1-3) — b | tcH@1-3: — i CHE1-3 — i

- — — — — a— | — — t —

I] r 1 T — r— | 1 ‘
I ‘ ! —_—

;

t e i

‘27 EN _ EN s e | ‘ e ‘

_MEM TO CACHE 80-35 1 { i 1 1 i ! i : i ; i i ! 1 ! ! |
T T ! ; i

i CSH 3 VALID MATCH B i FORCE vALID MATCH 3 1

REFILL =2.2 L CSH 2 VALID MATCH . FORCE VALID MATCH 2 r i i
sk Aees CSH_1_vALID MATCH FORCE VALID MATCH 1 ° : | |

CSH @ VALID MATCH FORCE VALID MAICH ‘ : i

H i ‘\

RD FOUNED - fKA J{A !
cache © cem 3 ANY VAL . (Al (cHX1 X//"\ (MK

ANY VAL MATCH DIRECRY TS 2 ANY VA ! :
AND CSH_1_ANY VAL

T

ANY WR_MAaTCH WRITE CSH @ ANY VAL : ! i

CsH LRU ANY WR Loeic CSH 3 ANY WR : ; ; L
CSH 2 ANY WR T) ‘ g

CSH 1 ANY WR - i ! : ; H : ; :

—————1 (Fig 310 [Cst @ ANY WR :; ; ! i ! ; . : i
: 1 : {CSH 0 DIR {CSH 1 DIR ! : 1CSM 2 DIR | : TLSH 3 DIR i :
i csH {1a-26 |14-26 flLrF IR R | 14-26 rTer L1426 i i
; LRUY 1-2 | R | ! R) H I i i

2 - IRERRE - TTI]TTT 7 T 8 i |
i - e i = § —_— = t * i |
} — — - [~ 1——.——\ i —t 1 —1 + 4 ' I
; -1 1 . it . — 17 ; |
: - T ; — B $ -4 -+ 3 : i

§ . L « J FEp .
' CACHE 1 [t .

| - UsE FTwR | | fvadl a0R ADR fwr | jvac, ADR 1 Twa: | ivau ape O WORDADDRESS | 4 |
! - TABLES a— [FiCHA3Z) | (CHX2) {CHA1-3) (CrAt-3) © [FICHAS) | (CHxX3) (CHAL-3) [(CHad) | (CHx2) {CHA1-3)

I (FI16 3-38) — L - 1 1 % i g ;

:] wiww W iw Wiw 1 - wwgw,w W] iww i i wjw|wjweiww !
pioiojojpioioio oloipiD olmo.o piD:DD[D'DID!D i

T we giijeisiey 273 B @jri2'3]e1:2:3 @12 3j@r 2.3 i

=] ust Bi1s 1 ie .] IR I I * DA B _ jaer
TFy 3 ¥ IR ERERR] ¥ - I ZEERRR) ¥ Y)

T | : ’- - - .I - »—14:»—4- REEIE I 4 1 B S SR 4 I .. lPfi(;t ADGRE S |
. i — P L i il ; i i i .

L R s @ ! St ¢ i com ¢ i FECI jo1R)

TRO. TiMe STATES I s : : PWRTE . ;
_CACHE CONTRO: Time nTAE . . _ WRITTER (WR) BITS i VALID (VALY BITS] . PHYSICAL PAGE ADDRESS 1ADRY : '

i
i

s BUS ADR 14 35 (F16 3-11} 1

ag v l
L G WORD Iw

vof W XERS ARE NOT iMPLEWMENTED :N THE LOGIC . - 0 aJ
. s 2627 33438

Ut ARE SHOWN 10 SUEPCRT Twi§ PERSPECTVE QF THE CACKHE o aek

Figure 3-8 Cache-Biock “‘Dragram

3.3.1 Cache Control Logic

T'he cache control consists of a priority request grant network to arbitrate and grant pending requests,
1 set of major and minor cycle latches, the address selector (PMA SEL), and a time state generator
(Figure 3-6). To excecute a particular cache cycle, the time state generator is started and then steered by
the following variables:

Granted Request

Cvcle Latch

Request Qualifiers from the Channel or EBox

Contents of the page table (EBox requests only)

Contents of the Cache Directory[N

o
l
¢
e
g
l

3.3.1.1 Request Arbitration Logic - The priority request grant network arbitrates requests from the
E-Box. channel. MB control, and the CCA control. Requests from these components must be arbi-

trated and granted, one at a time, since each can issue a request independently of the other. However,
the MB control and the CCA control will request cache cycles only after they have been started by a
cache EBox cvele. Cache EBox cycles are granted only in response to EBox requests. The order in
which the requests are serviced is as follows: |

MB Request

CHAN Request

EBox Request

CCA RequestO
O

MB requests are issued by the M B control after a core read cycle to refill the cache is started by a cache
EBox cycle. MB requests are issued by the M B control to request a cache cycle to move a word from
the MB to the cache. Any words in the MBs must be moved out of the MBs before another core cycle
can be started. Consequently, MB requests demand the highest priority for cache cycles.

Channel requests are issued by the channel control to request a cache cycle to move data in or out of
core and invalidate the cache. During channel read operations, channel requests are issued by the
channel control when the Channel Data buffer contains enough empty locations. During the cache
cycle, any valid words in the cache are taken from the cache, instead of core, and a core read cycle is
started to get the words that are not valid from core. However, during channel write operations, the
channel control issues Channel request only when enough words have been accumulated in the Chan-
nel Data buffer. Any valid words in the cache are invalidated and a core write cycle is started when the
cache cycle is executed during a channel write operation. Channel requests demand a higher priority
for cache cycles than EBox requests so that the EBox can be prevented from getting a core cycle as long
as Channel requests are pending. This feature minimizes data overruns.

F-Box requests are issued by the EBox to reference memory, load or read internal registers (CCA
control is started by loading the CCA register), write-check a paged location, map the virtual address,
exccute an SBus diagnostic cycle, or load the refill RAM. EBox requests demand a higher priority than
CCA requests so that the EBox will not be locked out from the MBox while the cache control is
validating core and/or invalidating the cache. This permits the EBox to get into the MBox and core
memory to set up the next operation while the cache clearer is running.

CCA requests are issued by the cache clearer control to validate core and /or invalidate the cache. CCA
Requests are granted last in the cache cycle priority scheme. It takes a maximum of 1024 cache cycles
and up to 512 core cycles to clear the cache. Since it is more critical to permit the EBox to reference
memory and internal registers while the cache clearer is running, EBox requests are granted cache
cvcles in preference to CCA requests.

MBox/3-12

£
1
-
¢
/
X
0
d
I
N

(CSHI)
PRIORITY (CSH1)
REQ GRANT CYCLE
NETWORK LATCHES

MB REQ MB REQ GRANT CSH

0| MB M8 CYC

L CHAN R CHAN REQ GRANT

Egg; = el 1 | can CHACI\? Hcvc
REQ IN | EBOX |CLK EBOX REQ EBOX REQ GRANT CSH
N EBO 2 |EBOX

EBOX CYC

A RE A R RANT
(CLK® CCA REQ} 5 | cca CCA REQ G cetyve

- CACHE CYCLES

EN cve
CORE BUSY TYPE

REQ EN HOLD
1

CSHI(CSH2) (CSHI REFILL CSH PAGE
REFILL

EBOX cYc

RETRY (PMAS)
NEXT WRITEBACK : CSH

WRITEBACK|
cYGC EBOX REQ

QUALIFIERS

cYe

TYPE HOLD

- PMA 14-28 COMBINATIONAL | PMA 14-26 SEL 1,2,4_
LOGIC >

EBOX REQ GRANT omA PMA 27 SEL 1.2.4
SEL | PMA 28-31 SEL 1.2.4 (PMAS)

»| CONTROL -APR EBOX ERA —] £80x ERA GRANT A PMA 32-33 SEL 1,2,4_ CACHE .

APR EBOX CCA GATES | EBOX CCA GRANT R PMA 34-35 SEL 1,2,4= DIRECTORY REQ
QUALIFIERS QUALIFIERS

{PMAS) : : REFILL PT
WRITEBACK QUALIFIERS

it 1

NON EBOX

A . \\REQ GRANT, CSH l l L l
)CSHt TP IN CACHE
i~ CSHd TIME

— CACHE CONTROL STATES

EBOX CSH TIME STATE
REQ GRANT f EBO]{] GENERATOR

TOH@—' {CSH4—-6,MBC2,4,MBX4)

— \ CYC TYPE HOLD T
PMAS CHAN REQ

(CSH1) —~— J QUALIFIERS

CACHE

IDLE) READY
CSH1

‘] TO GO

} (CSHN 1
: MBOX

CLK EBOX SYNC D MB0ox |RESP IN
— RESP >

{CSH2) 10-1437

Figure 3-6 Cache Control Time State and PMA Control Block Diagram

A cache cycle can be started only after the cache control enters its idle state (CACHE IDLE). Initially,

the cache control is forced to IDLE by MR RESET: thereafter the cache control returns to IDLE

every time a cache cycle is done. From CACHE IDLE, the cache control advances to READY TO

GO. If a request is pending, the next cache cycle is started at READY TO GO if the priority request

grant network is not pre-empted. If neither a request is pending nor the priority request grant network

is pre-empted. the cache control remains in its READY TO GO state until a request is received. If a

request is received and granted, the cycle and PMA SEL latches are loaded and the time state gener-

ator is started. The cycle and PMA SEL latches will then be held for the duration of the cache cycle.

NOTE

These latches are loaded during READY TO GO or

WRITEBACK T2.

In some cases. the priority request grant network is pre-empted to initiate another cache cycle (page

refill or writeback). These cases are:

4. If during a cache EBox cycle it is found that the page table does not contain a valid entry for

a paged memory reference (read or write) the priority request grant network is pre-empted

(K1 paging mode only) to prevent another pending request from being granted. Instead, a

cache page refill cycle is initiated to refill the page table. After the cache page refill cycle is

done, the cache control returns to IDLE and the EBox request is retried.

b. If during a cache EBox cycle, it is found that the cache does not have a record of the word

and the LRU cache contains one or more written words from another page, the priority

request grant network is pre-empted to prevent another pending request from being granted.

Instead, a cache writeback cycle is initiated to write the written word back to core to free a

cache block. After the cache writeback cycle is done, the cache control returns to IDLE and

the EBox request is retried. |

¢. If during a cache clearer cycle to validate core, it is found that the cache block being looked

at contains some written words, the priority request grant network is pre-empted to prevent

another pending request from being granted. Instead, a cache writeback cycle is initiated to

write the written words back to core to update (validate) the core copy. After the cache

writeback cycle is done, the cache control returns to IDLE and READY TO GO, at which

time the highest priority request pending is granted.

3.3.1.2 Request Execution Logic - The cache control time state generator is steered by a number of

variables depending on the particular cache cycle that is being executed. A summary of the variables

that control the operation of the state generator during specific cache cycles is presented in Table 3-3.

I'he state generator is steered to effect specific operations while a cache cycle is being executed. Some

of these operations are: update cache directory, update use table, move valid or written words from the

cache into the MBs, start core cycle, move words from the MBs into the page table and start the cache

clearer control.

Besides setting a cycle latch, the PMA SEL latches are set up every time a new cache cycle is started, as

described previously. The PMA SEL latches control the address mix out of the PMA. The PMA

supplies the address for the cache and if a core cycle is required for the SBus, the cycle latches steer the

state generator to execute a specific cache cycle. Each type of cache cycle performs a different function,

based on the variables that steer the time state generator. A summary of the assigned functions of each

tvpe of cache cycle is presented in Table 3-4.

M Box/3-14

Table 3-3 Time State Generator Control Variables

VARIABLES

PAGE CACHE

EBOX REQ CHAN REQ TABLE DIRECTORY

CACHE CYCLE QUALIFIERS |[QUALIFIERS CONTENTS CONTENTS

MB CLK EBOX SYNC D - - -

CHAN - X - X

EBOX X X X

CCA X! X

REFILL (KI ONLY) X X

WRITEBACK X

! These qualifiers are stored in the 3-bit CCA Control Register of the MBox

Table 3-4 Cache Cycle Functions

Cycle Function

MB

CHAN

EBOX

Move words from MBs to cache. The words are moved into the

MBs by the core control during a core read cycle.

READ: Move the valid words from the cache to the MBs and

start a core read cycle to fetch the words that are not valid. If all

the requested words are in the cache, a core read cycle is not

initiated.

WRITE: Start a core write cycle; if any valid words are in the
cache, clear their valid and written bits.

READ: Page check the read request (paged only) by comparing

the EBox request qualifiers with the contents of the page table

and checks the cache to see if the word is there. If the reference

to the page is OK and the word is in the cache it is simply pre-

sented to the EBox. If the page check is not OK, eithera page

refill cycle is initiated or the EBox is informed that a page fail

condition exists. If the desired word is not in the cache but some

of the words in the quadword group are in the cache, a core read

cycle is initiated by the cache cycle to fetch the words that are

not valid in the quadword group. The word the EBox requested

will come in first and will be presented to the Box and be written

into the cache. If none of the words in the quadword group are

in the cache, the the LRU cache is used for the refill operation if

there are no written words from another page in that cache. If

written words are found in the LRU cache, they are written

back to core before the core read cycle is started.

MBox/3-15

Table 3-4 Cache Cycle Functions (Cont)

Cycle Function

EBox W RITE: The page table and the cache directory are checked as

(Cont) described for the Read request. Words are always written into
the cache unless the cache is to be bypassed. If the cache has a

record of the quadword (ANY VALID MATCH) the word is

simply written into the cache quarter that has the record. If the

cache has no record of the quadword, the word is written into

the LRU cache if there are no written words from another page

in that cache. If written words are found in the LRU cache, they

are written back to core before the LRU cache is written.

NOTE

Cache cycles are also used to load and read internal

registers, to check a page, and to map the virtual

address.

CCA Invalidate the cache and/or validate core for a single page or
the entire cache. To validate core, writeback cycles are initiated

for all words that are written.

REFILL Move any valid words from the cache to the MBs and start a

core read cycle to feteh the words that are not valid. Then move

the words into the page table. If all the words are in the cache, a

core read cycle is not initiated.

WRITEBACK Move all written words into the MBs, clear their written bits,
: and start a core write cycle.

3.3.1.3 Page Table and Cache Address Logic ~ The cache cycles that check the cache directory and/or

the page table must allow for logic transit time and RAM address to output access time. Approx-

imately 120 ns (three MBox clock ticks at 25 MHz) are required from the time the address is presented

to the page table and the cache before their contents can be checked to decide the next step in the cache

cycle. The page table is addressed by the VMA when the EBox issues the request. However, the cache
address varies with the cycle to be executed and is presented to the cache when the cycle is started

(Figures 3-7 and 3-8). A summary of the sources that contribute to forming the cache address is
presented in Table 3-5.

The cache is addressed by the nine least significant bits of the 22-bit physical address or the 23-bit
virtual address. These bits point to a word within a page and are not subject to modification by the

paging mechanism in the system; only entire pages can be relocated through the paging mechanism.
All nine address bits are used to address the data portion of the cache, while only the seven high-order
bits address the directory portion of the cache. This has the effect of addressing one data word in each
cache and a directory entry for each cache. Consequently, if one of the directory entries matches the
page address that was presented with the request and the valid bit for the word in the associated cache
is set, then the desired word is in the cache. Note that only one word is addressed in each cache while

the cache directory, in conjunction with the valid bit of the word, specifies which cache has the
requested word. To further edify the addressing scheme, consider that all four words associated with a
given directory entry are in the cache. This means that for all four combinations of the two least
significant address bits (bits 34-35), which address only the data portion of the cache, a word would be
found. since each word would be associated with its own valid bit and the same cache directory.

MBox/3-16

L
1
-
€
/
X
o
gN

CSH EBOX TO IN VMA 27-33

MBOX GATE VMA 27-33

CSH EBOX CYC D

CSH3

CLK
—c

—CSH EBOX CYC

E CORE RD RQ, REFILL ADR S Eox TN

CSH DATA CLR T3 EN NXT D 1 —

MB REQ GRANT CSH3

READY TO GO _Mifif 0 1 CLK |,

—READY TO GO, MBX1

K}‘ cLK |

‘ REFILL ADR EN

g_jL

PMA 27-33 1] m

PMA HOLD 27-33 2 g
3 1

¢_—

ERA 14-35 PMA 27-35 8
M

8

L\(PMAM MB SEL 1-2 V

VMA 13-35

YMA1\ VMA 27-33 G

___4/747

CSH

ADR

PMA

EN

MBX

CSH 27-33

CACHE ADR 27-35

CACHE

USE TABLES

(Fig. 3-30)

CACHE

DIRECTORY

(Fig. 3-5 AND 3-tt)

CACHE

DATA

5
]

{Fig 3-

14 26

EBR (PMA1)

UBR (PMAT) o

M

CCA CYC DONE con P ::l—- A PMA 14-35) S BUS ADR 14-35_
Sl CCA CTRL (MBX1) 3

-
/

o7 14-26 27 35 a MT24

CAM 14-26
axle

CCW _CHA 14-35

CACHE TO MB 34-35 RQ HOLD

PMA 14-35 SEL 1-2-4

Figure 3-7 Cache Address Simplified Logic Diagram

10-1398

8
1
-
¢
/
X
o
g

PMA 14-35_
, (PMAZ)

ATy PMA 14-26 PAR_

{ d
N PMA ADR PAR

PMA 14-35

SEL 1-2-4 14-26 (PMA 3/4) 27 28~31 32-33 34—3RPMA
—

_

el orL 3 5 4 7 sJ zT

[XK PMA 28-33<«
lcca 27-35 VMA 18-23

CCW CHA 14-35 CAM 14-26 PT 14-26 BITS BITS 27 AND 28:1 CACHE

27-35:0 PMA 29-31——VMA 19-21 | TO MB

34-35

ERA 14-35 VMA 14-25 CCA 14-35 UEBR 14-26

3

MCL VMA UPT T'—ir'f

APR EBOX UBR) PMAS
CCA|UBRI|EBR

CSH EBOX CYC BIT|BIT|BIT] (PMmA1)
CSH PAGE REFILL CYC UEBR MIXER 14|14 | 14

EERF UBR COND]| TPVAT)]m T

LOAD VMA 14

LOAD

APR
14 35 | EBOX 15 ', 26 27 l 35 A 15 26 APR 15 26 APR

cca CCA REG EBOX UBR EBOX_EBRHOLD ERA == N\ - A Loap| /7| ——— ERA REG PMA2 CCA REG | |LINE AND|SEL 1°2 (PMAD) PMA1 RS PMAS
; {PMA 4) l— / (PAGE No.) COUNT ‘\ \. TCSH EBOX

b(PMA2) (PMA2) l LOAD REG |yma
14-35

OCTAL CODE FOR | PMA SEL | PMA SEL | PMA SEL | PMA SEL | PMA SEL
MIXER SEL 14-26 27 28-31 32-33 34-35

o VMA ERA ERA ERA ERA

14 —26 27 28—32 3233 34—-35

) UEBR - VA

14— 26 "1" 19 —21

> VA VA PMA

18—21 22—23 X,Y

3 CHA CHA CHA CHA CHA
14—26 27 28—31 32—33 | 34—35

a CAM CCA CCA cca CCA
14— 26 27 28—31 32—33 | 34—135

5 CCA cca CCA CCA CCA

14— 26 27 28—34 32—33 | 34—35

R ERA VMA VMA VMA VMA

14— 26 27 28—31 32—33 | 34—35

PT . " . e o
7 —_] s 7] 20 2014—26

10-1499

Figure 3-8 PMA Mixer Simplified Logic Diagram

Table 3-5 Cache Address Combinations

Address Source

Cache Directory Cache Data

Cycle (27-33) (27-35)

MB PMA HOLD PMA HOLD + MB SEL 1-2

CHAN PMA < CHA PMA < CHA + CTOMB

EBOX VMA PMA < VMA

CCA PMA < CCA PMA < CCA

REFILL PMA < QUADWORD PMA < QUADWORD WD
POINTER POINTER + CTOMB

WRITEBACK

CCA REQ PMA < CCA PMA < CCA

EBOX REQ PMA < VMA PMA < VMA + CTOMB

During the cache MB cycle, the cache address is provided by the PMA HOLD register and the MB

control. The seven high-order bits of the nine-bit cache address are supplied by the PMA HOLD

register; the two low-order bits are a function of which MB is selected (MB SEL 1-2) at the time. The

PMA HOLD register is loaded when a core read cycle is started and is held for the duration of the

cycle (CORE RD IN PROG). The MB control provides the two low-order bits of the cache address

(MB SEL 1-2) to move the word into the correct location of the data portion of the cache. The

contents of the PMA HOLD register and the MB SEL 1-2 control lines are selected (REFILL ADR

EN) to address the cache every time a cache MB cycle is executed.

During the cache channel cycle, the cache address is provided by the channel which is selected by the

PMA control when the cycle is started. The two least significant bits of the cache address (Cache To

M B 34-35) are needed only during the channel read operation if some of the requested words are valid

in the cache. These address bits are a function of which words the channel requested and are used to

move the valid word into the MBs (refer to MB Control Description). During a channel write oper-

ation, the two least significant cache address bits are not needed because data is not moved in or out of

the cache.

During the cache EBox cycle, the cache address is provided by the VMA. The seven high-order bits of

the cache address are not passed through the PMA to minimize the transit time, thereby permitting the

cache control to check the contents of the cache directory somewhat earlier than would otherwise be

possible. Consequently, this speeds up the cache EBox cycle.

During the cache CCA cycle, the cache address is provided by the cache clearer control, which is

selected by the PMA control when the cycle is started.

During the cache page refill cycle, the cache address is supplied by the PMA. The seven high-order bits

constitute a quadword pointer into the process table (EPT or UPT) and the two low-order bits are a

function of which words in the cache are not valid. If some of the words in the cache are valid, the low-

order two address bits are used to move the valid words into the MBs (refer to MB Control Descrip-

tion) otherwise; these address bits are not needed.

MBox/3-19

During a cache writeback cycle, the cache address is provided by either the CCA or the VMA, depend-

ing on'which request was granted. If an EBox request was granted, the cache writeback cycle is entered

from a cache EBox cycle; the PMA control, therefore, selects the VMA to address the cache. If a CCA

Request was granted, the cache writeback cycle is entered from a cache clearer cycle; the PMA control,

therefore, selects the CCA register to address the cache. As described before, the two low-order bits of

the cache address are used to move the words of interest (which are the written words in this case) from

the cache to the MBs.

3.3.1.4 Cycle Decision Logic Three MBox clock ticks after a cache EBox cycle is started, the contents

of the page table and the contents of the cache directory are checked (Figure 3-9). For cache CHAN

and CCA cycles, the contents of the cache directory are checked at CSH T3 (Figure 3-10). One more

clock tick is needed for these cycles to compensate for the additional transit that is contributed by the

PMA. The page table and the cache directory supply the following variables which, in conjunction

with the request qualifiers, arc used to steer the state generator and control the subsequent operation

of the cache control.

a. Page Table

. PAGE OK

2. PAGE REFILL

3. PAGE OK

b. Cache Directory

ANY VALID MATCH1.

2. RD FOUND

3. ANY WRITTEN MATCH

4. LRU ANY WRITTEN

5. WD 0-3 VAL

6. WD 0-3 WR

Besides the variables specified, the Cache Directory Cache Address Mixer (CAM) also presents the
physical page address (CAM 14-26) to the PMA. This address is needed to write the written words in

the cache back to core. ‘

Figure 3-11 illustrates the control logic for testing and writing the cache directory. Only one page of
the cache directory is shown to simplify this presentation.

NOTE

The cache contains four pages of storage; a given line

of the cache will never contain more than four words

from the same page and all four words will always be

in the same cache quarter. Consequently, only one

page (quarter) of the cache directory will contain a

valid entry.

M Box/3-20

CSH EBOX TO IN

CLK

|
L CSH EBOX TO]

I
—

¥

CLK CBOX AC ARF

—

!
ABORT

CACMHE CYCLE

T
CLK

[CSH EBOX T2 I

l l
PAGE REFILL PAGE OK PAGE FALL

i :

CYCLE

START CACHE

PAGE REFILL

SET PAGE FAIL

HOLD AND LOAD

EBUS REGISTER

| l l |
0 1 12 3 f4 5

I 1 t 1 ! |
READ FROM START CORE WRITE CACHE WRITE LRU START CORE START CACHE
CACHE AND WRITE CYCLE DATA, VAL BIT CACHE DATA WRITE CYCLE. WRITEBACK
UPDATE USE

UPDATE USE BITS
AND VAL BIT. MOVE ONE WORD

CYCLE

BITS SET E CORE RD RQ SET CACHE IDLE CLEAR DATA INTO MB BEFORE

CACHE IDLE MB RQ ALLOW VAL BITS AND STARTING CORE

REFILL HOLD WR BITS AND CYCLE SET

MEM RD RQ WRITE CACHE CACHE IDLE
MEM RQO-3 DIR UPDATE

MEM START A/B USE BITS BE-

FORE WRITING

DATA AND VAL

BIT SET CACHE

IDLE

A Y

—CACHE BIT ANY VAL MATCH ~ANY VAL MATCH

UPDATE USE BITS

WAIT FOR WORD AND CLEAR CACHE UPDATE USE BITS.
DATA. WAIT FOR CLEAR CACHE

RD DATA VAL BITS

AND WR BITS AND

WRITE DIR. WAIT

FOR WORD.

NO I
DATA

VALID

vES f0: EBOX READ A RD FOUND

f1: EBOX READ A -RD FOUND A ANY VALID MATCH

EBOX A= A -P —— BOX READ A ~ANY VALID MATCH A ~ANY WR

CORE — AR CORE — MB MATCH
CORE CSH EBOX READ A CAGHE BIT

on f2: EBOX WRITE A ANY VALID MATCH

CORE - MB 3: EBOX WRITE A CACHE BIT A ~ANY VALID MATCH

MB - AR A-CSH LRU ANY WR

f4: EBOX WRITE A ~CACHE BIT A -ANY VALID
MB — CSH MATCH

SET VAL BIT 65: CACHE BIT A ~ANY VALID MATCH A CSH LRU ANY
WR

10-1500

Figure 3-9 Cache EBox Cycle Decisions Flow Diagram

For Read and Write Requests

MBox/3-21

CSH TO IN-

CLK

CSH TO

CLK

CSH T1 HH

CLK

CSH T2 HH

CLK

iCSH T3

CORE WRITE

CYCLE AND SET

CACHE IDLE

READ CYCLE

FOR NON-VALID

WORDS AND SET

f0= ANY WR MATCH A CSH CCA VAL CORE

CSH CHAN CYC _ ‘

I N —Jcs,, —ccAacYe
CHAN TO MEM ~CHAN TO MEM e

{ i ' ? : i }
~ANY VAL MATCH ANY VAL MATGH —~ANY VAL MATCH ANY VAL MATCH 10 f1 12

START CORE CLEAR VAL AND START CORE MOVE VALID START CACHE CLEAR VAL AND INCREMENT
WRITE CYCLE WA BITS OF READ CYCLE WORDS FROM WRITEBACK WA BITS AND CACHE
AND SET CACHE REQUESTED AND SET CACHE TOMB, CYCLE UPDATE USE BITS CLEARER REG
IDLE WORDS, START CACHE IDLE START CORE SET CACHE IDLE

f1 = ANY VAL MATCH A CSH CCA IN VAL CACHE

CACHE IDLE f2= -ANY WR MATCH A ~ANY VAL MATCH

10-1501

Figure 3-10 Cache Channel and CCA Cycle Decisions Flow Diagram

The control logic for the cache directory includes steering logic for selecting the variables that will be

tested during the cache cycle and for enabling the write logic for updating the directory. When the

cache is addressed, four data words and four directory entries, comprising one line in the cache are

selected. Each directory entry consists of a page address and the VALID and WRITTEN bits for a

quadword. If the cache contains the requested word, or some of the words in the addressed quadword

group, then the page address presented with the request will match the contents of the directory and

one or more ofthe valid bits in the quadword group will be set resulting in a CSH n VALID MATCH

condition. The number n corresponds to the page number (or CSH No.) that contained the address

that matched. An Exclusive-OR equality (=) comparator is used to compare the addresses. The result

of thistest is AN Ded with the OR function of all the VALID bits of the addressed quadword group for

which the address matched to produce the CSH n VALID MATCH. The condition ANY VALID

MATCH is simply an OR function ofthe outputs from all four equality comparators. One comparator

is used for each page of the cache. RD FOUND is true when a VALID bit of a word in the addressed

cache line (one word in each cache quarter) is set and the address in the corresponding directory

matches.

MBox/3-22

—PMA 34-35

CCA ALL PAGES

CSH @ WR EN

CSH EN CSH LRU 1-2

CSH 3

CSH 2L
LS o)

CSM 1§ ENC -

FORCE VALID MATCH @ CSH @ VALID MATCH S C5A) NAEBN'_Z

ANY VALID MATCH

IN

CcsH 3

CSH 2 3

| csH csw
CSH@ WD 3 vaL >

CSH @ WD 2 VAL _r
csngwotvac[|[

CSH { WD @ VAL

VAL 1

CSH 2 WD @ VAL

CSH WD @-3 VAL

CSH 3 WD @ VAL ax
IO
o
/

CSH 3 WD @ vaL >

ANY WRITTEN MATCH

CAM 14-26

CSH WD 8-3 WR_

MATCH

HOLD -2

NOTE

Omy CSH @ direciory s shown in deigrl

CSH 2 WD @ VAL

_LSH{ WD @ VAL
(CHX1) CSH @ WD @ VAL k RO FOUND

- > CSH @ WD! VAL e g e o T oewa)L RO _FOUND_
i4-26B 7\ CSH B ANY VAL/C;;J 5 § | C5H B-3 WO vaL 4CSn3

(_\—l 3 1
CCA ALL PAGES

E CORE RO RQ EBOX DIAG CYC MBXA FORCE NO MATCH

REFILL _ADR EN \ L FORCE_MATCH EN] CSH DIR 14-26 @ IPMA 34-35

CSH WRITEBACK CYC J C DIR PAR ERR } ZSh1

-CON CACHE LOOK EN § CSH 2
i CSH 3

{ CSH @ WO @ WR
| CSH ® WD 1| WR

(NOTE) ! CSH @ WD 2 WR

TR ; gg: :a WD 3 WR

cSH 2 | ; ,) Ry % csHz
i | JCHA3 ' TEH 3

CSH 1 l ,

.}
CSH @ 1-3 (CHX2) iCHA3

ADR 27-33 PAGE {cHA13) VAL CSH 1 1_4 [od o
- ADDRESS -wo_j—WD —= WD ——wp WD el WD~ WD — Tsn2] S LCSH LRU ANY WR

—— 2T 3@ 12— 3] =2Rc 1y
T T CSH 3 3

PMA 14-26 ! (MBC3)] (MBX5) (MBC3!

! DATA l rSEL DATA{ {ORY (OR) (AND
1 CSH LRYU -2

! CSH WD B-3 EN : :

{

| © CS CSH CSH s
! DATA MB :EL 40ATA CACHE

L

WRITE 81~ ix2) (cflxz)mor«\‘a1 ALL (epas) OONE Cxe

MEM TO C

WR wRr | DIAG EN

4 Fy ’ 3

l ! P
CSH 1 1 1 L
CSH 2

“CSH 3

« CSH ADR WR PULSE CSH VAL _WR PULSE CSH WR WR PULSE_

-RC

@(Maczx R {(MBC2) I “or” |{MBC2) °;U€E
N

] ‘ HALF

1 ! ! i CSH EBOX WR T4 (N
CSH DATA CLR T1] | | i CCA _INVAL T4 A

-ANY VAL HOLD b i CHAN WR TS (N
t 1

J i

R
S
N

S

.

~ONE WORD RD H WR FROM MEM NXT WRITEBACK T2

REG

MBC1)

REFILL

HOLO

101502

Cache Directory Test and

Control, Simplified Logic Diagram

MBox/3-23

The condition ANY WRITTEN MATCH is the OR function of all the WRITTEN bits of the

addressed quadword in the page of the cache that yielded a CSH n VALID MATCH. As is the case for

the VALID bits, all four WRITTEN bits corresponding to the quadwords that are being addressed in

the cache are selected at the same time. Consequently, a set WRITTEN bit for any word within a

quadword of any cache block can cause the condition ANY WRITTEN MATCH. This condition is

tested to validate core (refer to cache clearer control description). The condition CSH LRU ANY WR

indicates that one or more words in the LRU block of the cache are written and may need to be written

back to core. If the cache directory does not contain an address that matches the address presented

with the request, then the words belong to another page and must be written back to core before the

LRU cache block can be used in refilling the cache. These words will also be written back to core when

a cache clearer cycle to validate core is executed.

The signals CSH WD 0-3 VAL and CSH WD 0-3 WR specify which words of the addressed quad-

word are valid and which words are written. These signals are used to set up the MB 0-3 WR RQ

queue and the CTOMB WD 0-3 RQ queue of the MB control. These queues are set up when valid or

written words are to be moved from the cache into the M Bs. Valid words are moved from the cache to

the MBs:

a. During a cache page refill cycle so that the valid words can be moved from the MBs into the

page table.

b. During a cache channel cycle that is executing a channel read request so that the valid words

can be taken by the channel control.

Written words are moved from the cache to the MBs:

a. During a cache writeback cycle that was initiated by a cache EBox cycle to make room in the

cache to permit a cache refill operation to be done.

b. During a cache writeback cycle that was initiated by a cache CCA cycle to validate core.

The complement of CSH WD 0-3 VAL is used to set up the MEM RQ 0-3 lines and in some cases

SBus address bits 34-35 to initiate a core read cycle (refer to Core Control Description).

To update the cache directory the correct cache directory must be selected.

NOTE

The cache address selects one data word in each

cache (a line) and the four corresponding directory

entries, as described before.

The correct cache directory is selected by the CSH n WR EN signal, which is a function of either the

cache directory that produced the matched entry (CSH n VALID MATCH) or the USE bits (LRU 1-2

bits) of the use table if no match occurred. This selection is automatically made by the encoder that

produces MATCH HOLD 1-2 IN. These signals are presented to a decoder via a holding register to

produce a WR EN signal that corresponds to the applied code (0, 1, 2, or 3) which specifies the cache

to be used. The holding register allows the code to be held for the duration of a core read cycle, the

writeback cycle, and for the case where the valid bits are to be cleared. Besides enabling the cache

directory write logic, the CSH n WR EN signals are also used to force a valid match (FORCE VALID

MATCH n) to select the correct cache for writing written words in the LRU cache back to core

(writeback cycle) and for refilling the cache (core read and MB cycles).

When a valid match is forced, as described above, the equality comparators (=) are disabled to avoid
potential conflicts. A valid match is also forced when clearing the cache of all written words from all

pages (PMA 34-35 A CCA ALL PAGES). This function permits the cache control to look into each

cache directory to see if any written words are in the cache.

MBox/3-24

3.3.1.5 Cache Control Time States — Bar charts are presented in the following subsections to illustrate

how the state generator continues from CSH EBOX T2 and CSH T3 to execute the request. All

subsequent branch conditions are shown A summary ofthe significant time states-and thelr functions

are given m Tdble 3-6.

" Table 3-6 Cache Control Time State Summary

Time States Assigned Function

CSH EBOX TO-T3 (CSH4)

PAGE FAIL T2--T3 (CSH4)

CSH EBOX WR T3--T4

(CSH4)

CSH DATACLR T1 -T3

(MBC2) <

Besides serving as a delay to eompensate for transit time associated

with testing the contents of the Page Table and the Cable Directory

for the EBox Read and Write Requests, these time states are also

used to execute the' following EBox Requests. -

a. Abort the Cache cycle in the event the EBox references the

ACs.

b. Load CCA, LIBR or UBR Registers. ‘

¢. Read the contents of the Page Table (MAP).

d. Read CCA, EBR, UBR, EBUS of ERA regpister.,

e. Write check a page (PAUSL WRITL).

. f. Load Refill RAM..

In addition, CSH EBOX T2 initiates a core rcad cycle if a Cache
Refillis required and upddtes the Use Table if the Cache contains

some valid words. - : :

Load Page Fail code and Physical Address into EBus register and send

PAGE FAIL HOLD to EBox if a PAGE FAIL condition from the Page

Table is sensed in response to an EBox Read or- Write Request.

Write Data into Cache and set VALID. and WRITTEN bits in Cache

- Directory in response to an LEBox Write Request.

Ihcsc, Lime states initiate operdtlom to satisfy both Read and Write

xcqucstlrum thc EBox.

‘EBox Write: Bel'ore; the data is written into the LRU Cache the

CSH DATA CLR time states cause the Cache Directory to be updated

as follows: The new page addressis written and all the VALID and

WRITTEN bits arc cleared in the Cache Directory.

EBox Read: When a core read cycle to refill the Cache is initiated

(by CSH EBOX T2) the CSH DATA CLR time states are also entered

to update the Cache Directory by writing the new page address and

clearing all the VALID and WRITTEN bits.

MBox/3-25

Table 3-6 Cache Control Time State Summary (Cont)

Time States Assigned Function

CLR WR TO (CSH4) Checks that the EBox is not trying to write into a Cache block for

: which a core read cycle has been started and has not been finished..

This test is also made during CSH EBOX WR T3. If this test were

not made, then one or more words in the Cache block could be over

written when the word(s) comes in from core. The test is made by

checking that the contents of the PMA HOLD register (bits 27—33)

which holds the Cache refill address is not the same as the correspond-

ing address bits presented by the EBox with the request.

ONE WORD WR TO (CSH4) Enables the MB control to move a word from the AR into the MB
pointed to be PMA 34 and 35. This time state is entered only when

the Cache bit is cleared when the EBox requests to write or requests

an SBUS DIAG Cycle.

CACHE TOMBTI-T4 These time states control the MB control and move valid or written

(MBX4) words from the Cache to the MB during a Cache Page Refill Cycle,
a Cache Writeback Cycle or during a Cache Channel Cycle that is

-executing a Read operation. CACHE TO MB T2 is held until A or B

PHASE IS COMING is asserted to synchronize the state generator

with the SBus clock so that a core cycle can be started at a later time

state without delay and in synchronism with the SBus clock.

CORE DATA VALID (-1) These time states serve as a two-MBox-clock-tick-delay to allow the

(MBC4) data placed on the SBus by core memory during a core read cycle

to stabilize before moving it into the MB.

CSH WR DATA RDY During a core read cycle, writes the first word that comes in from core

(CSHé) into the Cache and scts the VALID bit in the directory. Subsequent

words coming in from core cause MB Requests to be issued.

DATA DLY 1--2 (CSH6) Checks parity (in the MB) of the first word that comes in from core

during a core rcad cycle.

- CSH TO-CSH T3 (CSHS) Besides serving as a delay to compensate for transit time associated

with testing the contents of the Cache directory during Cache Page

Refill, Cache CCA and Cache CHAN cycles, CSH TO—T?2 are also

used to execute Cache MB Cycles to move words from the MBs to

the Cache and sct the valid bit in the directory after they come in

from core during a corc read cycle.

MBox/3-26

Table 3-6 Cache Control Time State Summary (Cont)

Time States Assigned Function

PAGE REFILL T4, TS-T13
(CSH5)

WRITEBACK T1 (CSH4) and

T2 (MBX4)

CCA INVAL T4 (CSH6)

CCA CYC DONE (CSH6)

CHAN RD TS5 (CSHS)

" PAGE REFILL T4 initiates thc Cache page refill cycle by pre-empting

other pending requests. Thisis done by sctting the Cache page refill

cycle latch and setting up a new address without going through the

priority request logic.

PAGE REFILL T8 sets up the MB control to move any valid words
from the Cache to the MBs so that they can be transferred to the

Page Table. PAGE REFILL T8 sets up the core read cycle for those

words the Cache has no valid entries. If all four wordsin the Cache

are valid a core read cycle is not started.

PAGE REFILL T10--T13 moves the words from the MBs to the
Page Table after ail valid words have been moved from the Cache to

the MBs and a core read cycle fot the remaining words has been

started. After all the valid words from the Cache are moved to the

Page Table PAGE REFILL T10 is held until another word is received
from core at which time that word is also moved to the Page Table.

This is repeated until all four words have been moved to the Page

Table.

These time states initiate the Cache writeback cycle by pre-emptmg

other pending requests.'Thisis accomplished by setting the Cache

wrlteback cycle latch and setting up a new-address without going
through the priority request grant logic. The WRITEBACK time

states also clear the written bits in the directory and set up the MB

control to move the written words from Cache to the MBs so that

they can be transferred to core.

Clears the valid and written bits in the Cache Directory and updates
the Use Table during a Cache CCA cycle.

Decrements Cache Clearer address counter (bits 27-35) and clears

CCA REQ when the counter overflows.

Starts the Core Read Cycle for those words the Cache has no valid

entries. If all words requested by the channel control are valid a core

read cycle is not started. CHAN RD TS5 is held for one additional

clock tick if A or B PITASE COMING is not asserted when the state

generator reaches CHAN RD TS5 to synchronize the start of the core

cycle with the SBus clock. :

MBox/3-27 -

Table 3-6 Cache Control Time State Summary (Cont)

Time States

-

Assigned Function

-CHAN T4 (CSHS)

CHAN WR T35 (CSHS5)

This time state initiates operations to satisfy both Read and Write

Requests from the channels.

Chan Read: Sets up the MB Control to move any valid words

from the Cache to the MBs so that they can be transferred to the

channel data buffer.

Chan Write: Sets up logic to clear the valid and written bits in

the Cache Directory of those words specified by the channel control.

Clears the valid and written bits in the Cache Directory of those
words the channel control requested to write to core.

NOTE

The core write cycle is not started by the Cache control

but by the channel control when a Cache channel cycle

is started.

3.3.2 Cache EBox Cycle

Besides granting and executing channel requests, the cache control grants and executes EBox requests.

The EBox request is grantedif a higher priority request (MB or CHAN REQ) is not pending. To

execute the request, the cache control enters the cache EBox cycle (Figures 2-6 and 3-12). In many
cases, the request is executed without the cache control having to leave the cache EBox cycle. However,

if a page table entry has to be fetched (KI paging), or written words have to be written back to core, the

cache control enters the appropriate subcycle to execute these operations and then retries the original

request by executing the cache EBox cycle again. Page refills, writebacks, and core reads require a core

cvcle. Therefore, if core is busy, these subcycles cannot be executed. In this case, the cache control

simply retries the request until core is released. The following requests can be issued by the EBox:

[.oad Register

Read Register

Read Memory

Write Memory

Write Check

-
I
m

e

a
0

e

SBus Diag

Map (Read PT)

Read Pause Write

Write Refill RAM

NOTE

If the cache is not implemented, EBox requests to -

read/write memory are serviced by transferring a

single word (one word read/write) from/to memory

~ (Subsections 3.3.2.4 and 3.3.2.5).

MBox/3-28

CLK, ,1 2'3'4'5'6'?lBIQI10’11lv12|13l14‘15l

y: LOAD REGISTER

CSH
READY .5 IDLE 10 60 E$8x IDLE/RESPZ

ryi

A4

MAP PAGE REFILL »

CSH | CSH &4
EBOX | EBOX (Fig 3-23)
T4 T2

S L
—

- PAGE REFILL

CSH

EBOX | IDLE/RESP
T3

READ REGISTER

cSH | cSH | CSH
EBOX | EBOX |{EBOX | IDLE/RESP
T T2 T3

WRITE CHECK (PAUSE WRITE)

CSH | CSH

EBOX {EBOX | IDLE/RESP

T T2

WRITE CACHE REFILL RAM

CSH | ¢sH

E£BOX | EBOX | IDLE/RESP
T T2

EBOX READ
J L
7/

(Fiqg 3-13)

JL
7/

EBOX WRITE
ryi
7/

(Fig 3-17)

ya
7/

M-15:2

Figure 3-12 Cache EBox Cycle, Time State Bar Chart

3.3.2.1 EBox Load Register - The MBox contains three operational registers that can be loaded by
the EBox:

EBR - Executive Base Register

UBR - User Base Register

CCA - Cache Clearer Address Register

These registers are loaded using CONO PAG, DATAO PAG, and the Sweep instructions,
respectively.

MBox/3-29

To load these registers, the EBox, in response to the instruction, raises CLK EBOX REQ, APR EBOX

[OAD REG and APR EBOX EBR, APR EBOX UBR or APR EBOX CCA, depending on which

register 1s to be loaded. The CCA register needs to be loaded with the physical address only when one

page is to be swept from the cache. If the CCA register is to be loaded, the EBox will specify what kind

of cache sweep is to be performed by setting up the following control signals correctly: CSH CCA

INVAL CSH, CSH CCA VAL CORE, and CSH CCA ONE PAGE. These control signals are set up

by IR AC10-12 from the EBox. In addition, the data to be loaded into the register must be in the VMA

(bits 14-26).

This sets up the conditions required for the MBox to service the EBox request to load a register. If the

cache control is IDLE, or when the cache control enters its IDLE state and no higher priority requests

are pending, the cache control will grant the EBox request and start a cache EBox cycle to load the

register. This decision is made as the cache control time state generator advances from IDLE to

READY TO GO. The cache control time state generator then clears the CLK EBOX REQ latch and

advances directly to the CSH EBOX time state branch. At CSH EBOX T, the desired register is

loaded and the cache control asserts MBOX RESP IN and returns to IDLE. If the CCA register was

loaded, the cache control also asserts the CCA request to inform the EBox that the cache clearer cycle

was started and that the EBox should not make another request until the cache is cleared. CCA REQ is

cleared when the operation is done. Asserting CCA REQ also causes the cache control to grant a cache

clearer cycle when no higher priority requests are pending. CCA REQ remains set until the entire

sweep operation is done.

3.3.2.2 EBox Read Register - The MBox contains three operational registers that can be read by the

EBox:

EBR

UBR

ERA

The EBR, UBR, and ERA are read using the CONI PAG, DATAI PAG, and BLKI PI instructions,

respectively. To read these registers, the EBox raises CLK EBOX REQ, APR EBOX READ REG,

and APR EBOX EBR, APR EBOX UBR or APR EBOX ERA, depending on which register is to be

read. The EBox also sets up the appropriate diagnostic function and code (DIAG READ FUNCT

1674) in response to the instruction to connect the output of the EBus register to the AR. This sets up

the conditions required for the MBox to service the EBox request to read a register.

If the cache control is IDLE, or when the cache control enters its IDLE state and the priority request

grant logic is not pre-empted by a subcycle request (page refill or writeback) that may be required in

satisfying the previous EBox request, and if no higher priority requests are pending (CHAN or MB

request), the cache control will grant the EBox request and start a cache EBox cycle to read the

register. This decision is made as the cache control advances from IDLE to READY TO GO. The

cache control time state generator then clears the CLK EBOX REQ latch and advances directly to the

CSH EBOX time state branch. At CSH EBOX T3, the content of the desired register is read into the

AR via the EBus register and the cache control asserts MBOX RESP IN and returns to IDLE.

3.3.2.3 EBox Map - The MAP instruction causes the EBox to generate an EBox request for transfer-

ring the contents of the addressed page table location to the AR via the EBus register in a manner

similar to that described in Subsection 3.3.2.2. The purpose of this instruction is to transform the

virtual page address into the physical page address and transfer this address, with its assigned page

descriptor bits, from the page table to the AR via the EBus register.

MBox/3-30

The physical page address, with its assigned page descriptor keys, is stored in the page table. These

entries are placed in the page table when needed, as described in Subsection 3.3.5. If a valid entry is not

in the page table when the EBox requests to map the address, the MBox will automatically fetch the

entry from core and present it to the EBox (KI paging mode only).

3.3.2.4 EBox Read - The EBox initiates an EBox request to read memory whenever an instruction

that needs to read memory is executed. (Refer to the hardware reference manual for information

relating to classes of instructions.) Note that many instructions do not reference memory.

To read memory, the EBox sets up the request as follows:

a. Loads VMA bits 13-35 with the effective memory address (E) from which the data or

instruction is to be read. The EBox also asserts or negates MCL VMA USER to specify

whether the reference is to the user or executive address space.

b. Sets up the following signals to specify the type of read request.

MCL EBOX CACHE

CON CACHE LOOK EN

MCL EBOX MAY BE PAGED

CON KI PAGING MODE

MCL VMA EPT

MCL VMA UPT

MCL PAGE TEST PRIVATE

MCL PAGE ILLEGAL ENTRY

MCL PAGE ADDRESS CONDW
X

A
W

=

c. Asserts MCL VMA READ and CLK EBOX REQ. MCL VMA WRITE may also be
asserted to write-check the page for paged memory references.

NOTE

The EBox can also issue an advance request where

CLK EBOX REQ is raised one MBox clock tick

before the VMA and the request qualifiers become

valid.

This sets up the conditions required for the MBox to service the EBox request to read memory. If the
cache control is IDLE, or when the cache control enters its IDLE state and if a higher priority request
(MB or CHAN REQ) is not pending, the cache control will grant the EBox request and start a cache
EBox cycle to execute the read request (Figure 3-13). This decision is made as the cache control time
state generator advances from IDLE to READY TO GO. At READY TO GO, the CSH EBOX CYC
latch is set, the CLK EBOX REQ latch is cleared, and the PMA is set up to supply the correct physical
memory address mixture. The PMA provides the desired memory address mix in response to the
request qualifiers from the EBox. The request qualifiers involved in setting up the correct address mix
include: MCL EBOX MAY BE PAGED, MCL VMA UPT and MCL VMA EPT, because the EBox
may make any of the following types of memory read requests:

Read unpaged memory

Read paged memory |

Read an entry in the user process table

Read an entry in the executive process tablea
e
c

o

MBox /3-31

READ FROM CACHE

READY| CSH | CSH | CSH

IDLE TO | EBOX | EBOX | EBOX | TOLE/RESF,
GO TQ T T2

READ FROM CORE

a | 5 | 6 | 7 | 8 | 9 | 10 ' 1 | 12 i 13 ‘ 14 i 15 |

J L

CSH | cSH | ¢csH | ¢SH ”
EBOX | DATA | DATA | DATA CSH DATA/CLR DONE
T3 [CLRTI|CLRT2[CLRT3|

77

ryi
77

ICSH WR!
DATA | IDLE RESP

RDY 42

READY
TQGO /

-

VALID
VALID] DLY DléY

DATA | DATA

[625 118 MiN————"

CORE DATA VALID CORE

e 187ns -

PAGE FAIL

PAGE FAIL HOLD

PAGE

FAIL

oLY

[II/[
PAGE | PAGE READY
FaiL | FaiL | RDLE T0
T2 | T3 RE: 60

77

CORE BUSY

EBOX

RETRY| IDLE

NXT

PAGE REFILL »

7/

(Fig 3-23)

i
7l

WRITE BACK »

&4

(Fig 3-22)

vy

7/

10-1504

Figure 3-13 EBox Read, Time State Bar Chart

MBox/3-32

For an unpaged memory reference, the PMA simply supplies the VMA address unchanged, as shown

in Figure 3-14.

1718 26 27 35

v

VMA 14 -35

10- 1505

Figure 3-14 PMA Format for Unpaged Memory Read Request

In the case of a paged reference, the valid content of the page table (the physical page addreSs) is
combined with (linked with or concatenated) the virtual word address of the page, as shown in Figure

3-15.

14 17 18 26 27 35

AN FANS J
Y Y

PT 14-26 VMA 27-35

10-1506

Figure 3-15 PMA Format for Paged Memory Read Request

For references to the process tables, the content of the UBR or EBR (depending on whether MCL

VMA UPT or EPT is asserted) is linked with the virtual word address, as shown in Figure 3-16.

\— AN
\4 Y

EBOX UPT: UBR 14- 26 VMA 27-35

EBOX EPT: EBR 1426

14 17 18 26 27 35

t0 - 1507

Figure 3-16 PMA Format for EPT or UPT Read Request

From READY TO GO, the time state generator ddvances to the CSH EBOX time state branch to

execute the cache EBox cycle.

MCL EBOX CACHE (LOAD) and CON CACHE LOOK EN are set up by the EBox to relate to the

MBox if and how the cache is to be used in satisfying the memory request. Table 3-7 identifies the

cache strategies that can be specified by the EBox as related to EBox read requests. For paged memory

references, the CACHE bit in the page table also affects the use strategy of the cache. If the CACHE

bit is cleared, the page may or may not be cached (depending on the state of CON CACHE LOOK

EN) and the MBox will service the request in the same manner as it would if MCL EBOX CACHE

(LOAD) was cleared.

MBox/3-33

Table 3-7 Cache Strategies for Memory Read Requests

CON MCL

CACHE EBOX
‘ CACHE

StrategyLOOK EN (LOAD) rleg\

0 0 Bypass the Cache and read the requested word from core memory.

0] Not used.

1 0 Itthe requested word is found to be in the Cache (RD FOUND) read the

word from the Cache.

If the requested word is not found but some of the words of the associated

quadword group are in the Cache (ANY VALID MATCH) refill the Cache

from core with the non-valid words (core read cycle) and transfer the

requested word to the EBox.

If the Cache does not contain any of the words of the quadword group

read the requested word from core.

1 Read the word from the Cache if it is found, otherwise, refill the Cache

from core and transfer the requested word to the EBox.

Any of the following cache conditions could prevail when the read request is made.

d.

d.

The cache directory has a record of the referenced page in the addressed line and the

addressed word in the cache block for which there is a record is valid. This means that the

requested word is in the cache.

The cache directory has a record of the referenced page in the addressed line and the

addressed word in the cache block for which there is a record is not valid but some of the

words are valid. This means that the requested word is not in the cache but some of the

words of the quadword group are in the cache.

The cache has no record of the referenced page in the addressed line and the LRU cache

block does not have any written words. This means that none of the words of the quadword

group are in the cache and the LRU cache block is not written.

Same as (c) except that the LRU cache block is written.

Besides the cache variables described above, the content of the page table also contributes to how a
read request is executed when a paged request is made by the EBox. The execution algorithm for an

EBox request to read a word from a memory area that is not paged is not affected by the content of the

page table.

MBox/3-34

After clearing the CLK EBOX REQ latch and setting up the cycle latch and the PMA, the cache

control time state generator advances from READY TO GO to the CSH EBOX time stage branch to

execute the read request. The state generator advances to the CSH EBOX time state branch because an

EBox request is granted. CSH EBOX TO0 and CSH EBOX T1 serve as a delay to allow for the logic

transit time associated with addressing the page table and the cache directory and testing their

contents.

NOTE

The cache directory and page table are addressed

with the VMA, not the PMA, thereby avoiding the

PMA transit time.

At CSH EBox T2, a complex decision is made based on the request qualifiers, the content of the cache

directory and, if it is a paged reference, on the content of the page table.

If the EBox requests a word from memory that is paged and the page table contains a valid entry (PT

MATCH), the virtual page address is transformed into a physical page address, the page descriptor

keys are checked to see if the reference is legal and whether to modify the cache strategy. An entry in

the page table is valid if MCL VMA USER and the virtual section address match the content of the

page table directory and the NOT VALID bit is cleared. Five page descriptor bits are associated with

each page table entry.

1. A - ACCESS

2. W - WRITABLE

3. P-PUBLIC

4. S -SOFTWARE

5. C-CACHE

The ACCESS, WRITABLE, and PUBLIC bits serve as the page access keys. The state of these keys is

checked against the EBox request qualifiers to determine if the reference is legal. If the reference is not

legal, the Page Fail word is transferred to the EBus register and PAGE FAIL HOLD is asserted to

inform the EBox that it made an illegal memory reference. The EBox can then read the EBus register

and determine its next course of action. Refer to Subsection 3.3.5 for the case where a valid entry is not

found (-PT MATCH) in the page table.

If the CACHE bit is not set, the cache is bypassed and one word is read from core when the request is

executed, unless the CON CACHE LOOK EN request qualifier is asserted and some of the words of

the quadword group are already in the cache.

a. The following case descriptions apply to those read requests for which CON CACHE

LOOK EN and MCL EBOX CACHE (LOAD) are asserted and the CACHE bit of the valid

page table entry is set for a paged reference:

1. For the case where the requested word is in the cache (RD FOUND) the cache control

updates the use table at CSH EBOX T2, returns to IDLE, and asserts MBOX RESP

IN. The EBox can then strobe the word off the cache data lines. The cache control will

not start another cycle to service another request until the EBox takes the data. To

inform the MBox that the EBox took the data, the EBox asserts CLK EBOX SYNC D,

causing the cache control to advance to READY TO GO to start another cycle if a

request is pending.

NOTE

The cache control time state generator also advances

to CSH EBOX T3 because this state is uncon-

ditional. However, this time state will not evoke

another time state for this and some other cases.

MBox /3-35

The case where the requested word is not in the cache but some of the words in the
quadword group are (ANY VALID MATCH), the time stage generator advances to

CSH EBOX T3 to initiate a core read request and hold the address if core is not busy. If
core is busy, the state generator advances instead to EBOX RETRY NEXT to retry the
request. At CSH EBOX T3 a core read request is initiated to read from core those
words that are not valid in the cache, starting with the word requested by the EBox.

At the same time the core cycle is started, the cache control time state generator contin-

ues with the CSH DATA CLR time state to clear the data in the cache and update the

use table.

NOTE

The use table was also updated at CSH EBOX T2

for the VALID MATCH case.

In addition, the cache block number that contained the valid word and the PMA

(address bits 27-33) are held as a result of REFILL HOLD to facilitate refilling the

cache when the words come in. When the first word comes in from core, it is presented

to the EBox and is written into the cache that provided the earlier match using the refill

address. The remaining words are moved into the same cache block by initiating an
MB c¢vcle as each word comes in.

The MBox recognizes that a word has come in from core when it receives SBUS DATA

VALID. This causes the cache control time state generator to advance sequentially to

CORE DATA VALID-2, CORE DATA VALID-1, and CORE DATA VALID.
Besides controlling the MB write request and MB load (MB HOLD IN) logic, these
time states normalize the transit time difference between the SBUS DATA VALID

control path and the SBUS DATA PATH.

The MB is loaded (-MB HOLD IN) and MBOX RESP IN is asserted at CORE DATA

VALID-1 when the first word comes in to inform the EBox that it can take the word.

NOTE

The word the EBox requested will come in first. At

the CORE DATA VALID time state, a decision is

made to determine if the EBox took the word.

If CLK EBOX SYNC D is asserted at CORE DATA VALID, the EBox took the data

directly from core and the cache control, therefore, can terminate the cache EBox cycle

simply by testing MB parity, moving the word into the cache, validating the directory,

and clearing the appropriate MB WR RQ. The MB WR RQ is cleared at CORE

DATA VALID, the cache is updated at CSH WR DATA RDY, and MB parity is

tested at DATA DLY!. From CSH WR DATA RDY, the cache control returns to

IDLE and then to READY TO GO since CLK EBOX SYNC D is asserted, thereby

allowing another request to be serviced.

If CLK EBOX SYNC D is not asserted at CORE DATA VALID, the EBox did not

take the data. In this case, the data is still moved into the cache, the directory is

-updated, and MB parity is checked at DATA DLY?2 instead of 1 but this is not done,

and the cache EBox cycle is not terminated until the EBox takes the data. The cache

control will then wait in the CSH WR DATA RDY time state until the EBox takes the

data from the MB. At that time, the cache control will return to its READY TO GO

state via IDLE to service another request.

MBox/3-36

3. For the case where the cache does not have a valid directory entry (-VALID MATCH)
and the LRU cache block does not contain any written words (-CSH LRU ANY
WRITTEN), the time state generator advances to CSH EBOX T3 to initiate a core
cycle as in the previous case, but this time a request is made for all four words and these
words will be moved to the LRU cache block.

Another difference in the way the request is executed in this case is that the new address
is written into the cache directory, the valid bits and the data bits are cleared, and the
use table is updated during the CSH DATA CLR time states.

4. For the case where the cache does not have a valid directory entry (-|ANY VALID
MATCH) and the LRU cache block contains written words (CSH LRU ANY WRIT-
TEN) the time state generator advances from CSH EBOX T2 to WRITEBACK T1 to
initiate a writeback cycle. After the writeback cycle is done and core becomes not busy,
the EBox request is retried.

When the EBox issues a paged memory read request and the page table does not con-
tain a valid entry (-PT MATCH) to transform the virtual page address to the physical
page address, the cache control will either start a page refill cycle or will inform the
EBox that a page fail condition exists. If the EBox specified KI style paging (KI paging
mode), the time state generator advances from CSH EBOX T2 to CSH EBOX T3 and
then to PAGE REFILL T4 to start a page refill cycle. After the page refill cycle is done
the EBox request is retried (refer to Page Refill Cycle description). If the page table still
does not contain a valid entry after the request is retried, the time state generator steps
through the page fail time states to load the PF HOLD word into the EBus register and
to inform the EBox that a page fail condition exists by asserting PAGE FAIL HOLD.
For the case when the EBox specifies KL style paging (-KI paging mode), the cache
control does not initiate an automatic page refill cycle but informs the EBox that a page
fail condition exists by asserting PAGE FAIL HOLD at PAGE FAIL T1. The PF
HOLD word is loaded into the EBus register at PAGE FAIL T3. PF EBOX HANDLE
is also asserted by the MBox for this case.

The following case description applies to those read requests for which CON CACHE
LOOK EN is not asserted; it also applies if the cache is not implemented:

If CON CACHE LOOK EN is not asserted (or if the cache does not exist) for the EBox read
request, the cache is automatically bypassed and a core read cycle is started to read one word
from core. To initiate the core read cycle, the state generator advances from CSH EBOX T2
to CSH EBOX T3 if core is not busy, as described before for reading non-valid words. If
core is busy, the state generator advances instead to EBOX RETRY NEXT to retry the
request. At CSH EBOX T3, a core read request is initiated to read the word (ONE WORD
RD) the EBox requested from core.

NOTE

At the same time the core read cycle is started, the

cache control state generator steps through the CSH

DATA CLR time states, as described before, but the

use table and the cache directory are not updated at

this time because ONE WORD RD is asserted and

inhibits this operation.

MBox/3-37

The MBox recognizes that the word has come in from core when SBUS DATA VALID is

asserted. This causes the cache control time state generator to step sequentially through the

CORE DATA VALID time states. Besides controlling the MB write request and MB load

(MB HOLD IN) logic, these time states normalize the transit time difference between the

SBUS DATA VALID control path and the SBUS data path. The MB WR RQ queue is set

1t CORE DATA VALID-2 to remember which MB is loaded. At CORE DATA VALID-1,

the MB is loaded (-MB HOLD IN) and MBOX RESP IN is asserted to inform the EBox

that it can take the word. At the CORE DATA VALID time state, a decision is made to

determine if the EBox took the word.

If CLK EBOX SYNC D is asserted at CORE DATA VALID, the EBox took the data

directly from core and the cache control therefore, can, derminate the CSH EBOX cycle

simply by clearing the appropriate MB WR RQ and testing MB parity. MB WR RQ is

cleared at CORE DATA VALID; MB parity is checked at DATA DLY 1. At the same time

the cache control state generator advances from CORE DATA VALID to DATA DLY I,
the state generator also advances to READY TO GO, allowing another request to be

serviced.

If CLK EBOX SYNC D is not asserted at CORE DATA VALID, the EBox did not take the
data. In this case, the MEM TO C mixer is switched to select the MB instead of core and the

state generator advances to the DATA DLY time state to test MB parity and to wait for the

EBox to take the data from the MB. When the EBox takes the data, the EBox asserts CLK

EBOX SYNC D which will cause the state generator to advance to READY TO GO, there-
by terminating the cache EBox cycle and allowing another request to be serviced.

The following case descriptions apply to those read requests for which EBOX CACHE
LOOK EN is asserted and MCL EBOX CACHE (LOAD) is not asserted, or MCL. EBOX

CACHE (LOAD) is asserted but the CACHE bit of the valid page table entry is not set for a
paged reference. :

1. For the case where the requested word is in the cache (RD FOUND), the cache control
updates the use table at CSH EBOX T2, returns to IDLE, and asserts MBOX RESP

IN. The EBox can then strobe the word off the cache data lines. The cache control will
not start another cycle to service another request until the EBox takes the data. To
inform the MBox that the EBox took the data, the EBox asserts CLK EBOX SYNCD
causing the cache control to advance to READY TO GO to start another cycle if a
request is pending.

2. In the case where the requested word is not in the cache but some of the words in the
quadword group are (ANY VALID MATCH), the time state generator advances to
CSH EBOX T3 to initiate a core read request and hold the address if core is not busy. If
core is busy, the state generator advances instead to EBOX RETRY NEXT to retry the
request. At CSH EBOX T3, a core read request is initiated to read from core those
words that are not valid in the cache, starting with the word requested by the EBox.

At the same time the core cycle is started, the cache control time state generator contin-
ues with the CSH DATA CLR time state to clear the data in the cache and update the
use table. "

NOTE

The use table was also updated at CSH EBOX T2

for the VALID MATCH case.

MBox/3-38

In addition, the cache block number that contained the valid word and the PMA
(address bits 27-33) are held as a result of REFILL HOLD to facilitate refilling the
cache when the words come in. When the first word comes in from core, it is presented
to the EBox and is written into the cache that provided the match earlier using the refill

address. The remaining words are moved into the same cache block by initiating an
MB cycle as each word comes in.

The MBox recognizes that a word has come in from core when it receives SBUS DATA

VALID. This causes the cache control time state generator to advance sequentially to

CORE DATA VALID-2, CORE DATA VALID-1, and CORE DATA VALID.

Besides controlling the MB write request and MB load (MB HOLD IN) logic, these

time states normalize the transit time difference between the SBUS DATA VALID

control path and the SBUS DATA path.

The MB is loaded (-MB HOLD IN) and MBOX RESP IN is asserted at CORE DATA

VALID-1 when the first word comes in to inform the EBox that it can take the word.

NOTE

The word the EBox requested will come in first. At

the CORE DATA VALID time state, a decision is

made to determine if the EBox took the word.

If CLK EBOX SYNC D is asserted at CORE DATA VALID, the EBox took the data

directly from core and the cache control therefore, can, terminate the cache EBox cycle

simply by testing M B parity, moving the word into the cache, validating the directory,

and clearing the appropriate MB WR RQ. The MB WR RQ is cleared at CORE

DATA VALID, the cache is updated at CSH WR DATA RDY, and MB parity is

tested at DATA DLY1. From CSH WR DATA RDY, the cache control returns to

IDLE and then to READY TO GO since CLK EBOX SYNC D is asserted, thereby

allowing another request to be serviced.

If CLK EBOX SYNC D is not asserted at CORE DATA VALID, the EBox did not

take the data. In this case, the data is still moved into the cache, the directory is

updated, and MB parity is checked at DATA DLY2 instead of I, but this is not done

and the cache EBox cycle is not terminated until the EBox takes the data. The cache

control will then wait in the CSH WR DATA RDY time state until the EBox takes the

data from the MB. At that time the cache control will return to its READY TO GO

state via IDLE to service another request.

For the case where the cache does not have a valid directory entry (-ANY VALID

MATCH), the cache is automatically bypassed and a core read cycle is started to read

one word from core. To initiate the core read cycle, the state generator advances from

CSH EBOX T2 to CSH EBOX T3 if core is not busy, as described before, for reading

non-valid words. If core is busy, the state generator advances instead to EBOX RET-

RY NEXT to retry the request. At CSH EBOX T3, a core read request is initiated to

read the word (ONE WORD RD) the EBox requested from core.

NOTE

At the same time the core read cycle is started, the

cache control state generator steps through the CSH

DATA CLR time states, as described before, but the

use table and the cache directory are not updated this

time because ONE WORD RD is asserted that

causes this operation to be inhibited.

MBox /3-39

‘The MBox recognizes that the word has come in from core when SBUS DATA VALID
is asserted. This causes the cache control time state generator to step sequentially
through the CORE DATA VALID time states. Besides controlling the MB write
request and MB load (MB HOLD IN) logic, these time states normalize the transit
time difference between the SBUS DATA VALID control path and the SBUS data
path. The MB WR RQ queue is set at CORE DATA VALID-2 to remember which

MB is loaded. At CORE DATA VALID-1, the MB is loaded (-MB HOLD IN) and

MBOX RESP IN is asserted to inform the EBox that it can take the word. At the

CORE DATA VALID time state, a decision is made to determine if the EBox took the
word.

If CLK EBOX SYNC D is asserted at CORE DATA VALID, the EBox took the data

directly from core and the cache control, therefore, can terminate the cache EBox cycle

simply by clearing the appropriate MB WR RQ and testing MB parity. The MB WR

RQ is cleared at CORE DATA VALID and MB parity is checked at DATA DLY 1. At

the same time the cache control state generator advances from CORE DATA VALID

to DATA DLY!, the state generator also advances to READY TO GO, allowing

another request to be serviced.

If CLK EBOX SYNC D is not asserted at CORE DATA VALID, the EBox did not

take the data. In this case, the MEM TO C mixer is switched to select the M B instead of
core and the state generator advances to the DATA DLY time state to test MB parity

and to wait for the EBox to take the data from the MB. When the EBox takes the data,

the EBox asserts CLK EBOX SYNC D, which will cause the state generator to advance

to READY TO GO, thereby terminating the cache EBox cycle and allowing another

request to be serviced.

3.3.2.5 EBox Write - The EBox initiates an EBox request to write memory whenever an instruction

that needs to write memory is executed. (Refer to the hardware reference manual for information
relating to classes of instructions.) Note that many instructions do not reference memory.

To write memory, the EBox sets up the request as follows:

d. Loads VMA 13-35 with the effective memory address (E) into which the data or instruction

is to be written. The EBox also asserts or negates MCL VMA USER to specify whether the

reference is to the user or executive address space.

Sets up the following signals to specify the type of write request.

X
N

R
N

= MCL EBOX CACHE

CON CACHE LOOK EN

MCL EBOX MAY BE PAGED

CON KI PAGING MODE

MCL VMA EPT

MCL VMA UPT

MCL PAGE TEST PRIVATE

MCL PAGE ILLEGAL ENTRY

MCL PAGE ADDRESS COND

Asserts MCL VMA WRITE and CLK EBOX REQ.

NOTE

The EBox can also issue an advance request where

CLK EBOX REQ is raised one MBox clock tick

before the VMA and the request qualifiers become

valid.

M Box /3-40

This sets up the conditions required for the MBox to service the EBox request to write memory. If the
cache control is IDLE, or when the cache control enters its IDLE state and if a higher priority request
is not pending (MB or CHAN REQ), the cache control will grant the EBox request and start a cache
EBox cycle to execute the write request (Figure 3-17). This decision is made as the cache control time
state generator advances from IDLE to READY TO GO. At READY TO GO, the CSH EBOX CYC
latch is set, the CLK EBOX REQ latch is cleared, and the PMA is set up to supply the correct physical
memory address mixture. The PMA provides the desired memory address mix in response to the
request qualifiers from the EBox. The request qualifiers involved in setting up the correct address mix
include: MCL VMA MAY BE PAGED, MCL VMA UPT, and MCL VMA EPT; because the EBox
may make any of the following types of memory write requests:

a. Write unpaged memory

b. Write paged memory

c. Write a location in the user process.table

d. Write a location in the executive process table

cLk | | v 2] 3] a]s|e] 7|8 s]| | oo [2 |3 e | s | e |

WRITE CACHE (ANY VALID MATCH A WRITE OK)
/L / L

S| csh | csh [csk | csH | csH 7
1oLe [READY] eBOX | EBOX | EBOX | EBOX | EBOX | 1DLE/RESP READY TO GO

ol Te | T1 | T2 [WR T3|WR T4 L,

7/

CACHE DATA CLR DONE J

WRITE LRU CACHE (-ANY VALID MATCH A WRITE,C‘)K)

CLEAR| CSH CSH | CSH | CSH CSH i
WR [DATA | DATA | DATA | EBOX | EBOX | IDLE/RESP READY TO GO
T9 |[CLR TICLR T2|CLR T3WR T3|WR T4

/L
7/

CSH DATA CLR DONE |
WRITE ONE WORD TO CORE

ONE CACHE CACHE|CACHE
WORD |TO MB|HOLD |TO MB|TO MB| IDLE/RESP
WR T@Q| T2 T3 T4

PAGE FAIL

PAGE FAIL HOLD

PAGE

FALL

DLY

S L
77

PAGE | PAGE

FAIL | FAIL | IDLE/RESp | READY
T2 | T3 L, T0 GO

l 7/

CORE BUSY

EBOX

RETRY IDLE

NXT

PAGE REFILL
ya
7/

(Fig 3-23) (
/L

7/l

WRITE BACK 4y,

7/

(Fig 3-22) g
A
7/

10-45538

Figure 3-17 EBox Write, Time State Bar Chart

MBox/3-41

For an unpaged memory reference, the PMA simply suppli;‘s the VMA address unchanged, as shown

in Figure 3-18. : :

14 17 18 26 27 35

~—

VMA 14-35

10-1509

Figure 3-18 PMA Format for Unpaged Memory Write Request

In the case of a paged reference, the valid content of the page table (the physical page address) is

combined with (linked with or concatenated) the virtual word address of the page as shown in Figure

3-19.

14 17 18 26 27 35

Y Y

PT14-26 VMA 27-35

10— 1510

Figure 3-19 PMA Format for Paged Memory Write Request

For references to the process tables, the content of the UBR or EBR, depending on whether MCL

VMA UPT or EPT is asserted by the EBox, is linked with the virtual word address of the referenced

page, as shown in Figure 3-20.

17 18 26 27 35

Y

EBOX UPT : UBR 14 ~ 26 VMA 27 -35

EBOX EPT : EBR 14 ~ 26

10-1511

Figure 3-20 PMA Format for EPT or UPT Write Request

From READY TO GO, the time state generator advances to the CSH EBOX time state branch to

execute the write request. CON CACHE LOOK EN and MCL EBOX CACHE (LOAD) are set up by

the EBox to specify to the MBox if and how the cache is to be used in servicing the memory request.

Table 3-8 identifies the cache strategies that can be specified by the EBox as related to the EBox write

requests. For paged memory references, the CACHE bit in the page table also affects the use strategy

of the cache. If the CACHE bit is cleared, the page may or may not be cached (depending on the state

of the CON CACHE LOOK EN), and the MBox will execute the request in the same manner as it
would if MCL EBOX CACHE (LOAD) was cleared. |

MBox/3-42

Table 3-8 Cache Strategy for Memory Write Requests

CON MCL

EBOX
CACHE

LOOK EN CACHE(LOAD) Strategy

0 0 Bypass the Cache and write the word into core memory.

0 1 Not used.

1 0 If one or more words of the quadword group associated with the word to

be written are in the Cache (ANY VALID MATCH), the word is written

into the Cache.

If none of the words of the quadword group are in the Cache (-ANY VALID
MATCH), the word is written into core.

1 | Write the word into the Cache.

Any of the following cache conditions could prevail when the write request is made.

a. The cache directory has a record of the referenced page in the addressed line and at least one

word in the cache block for which there is a record is valid.

b. The cache directory does not have a record of the page and the LRU cache block does not

contain any written words.

c. The cache directory does not have a record of the page but the LRU cache block contains

some written words.

Besides the cache variables described above, the contents of the page table also contribute to how a

write request is executed when a paged write request is made by the EBox. The execution algorithm for

an EBox request to write a word into a memory area that is not paged is not affected by the content of

the page table.

After clearing the CLK EBOX REQ latch and setting up the cycle latch and the PMA, the cache

control time state generator advances from READY TO GO to the CSH EBOX time state branch to

execute the write request. The state generator advances to the CSH EBOX time state branch because

an EBox request is granted. CSH EBOX T0 and CSH EBOX T1 serve as a delay to allow for the logic

transit time associated with addressing the page table and the cache directory and testing their

contents.

NOTE

The page table and the cache directory are addressed

with the VMA not the PMA thereby minimizing the

transit time.

At CSH EBOX T2, a complex decision is made by the cache control, based on the request qualifiers,

the contents of the cache directory and, if it is a paged reference on the contents of the page tables.

MBox/3-43

If the EBox requests a word from a memory area that is paged and the page tables contains a valid

entry (PT MATCH), the virtual page address is transformed into a physical page address, the page

descriptor keys are checked to see if the reference is legal and whether to modify the cache strategy. An

entry in the PT is valid if MCL VMA USER and the virtual section address match the contents of the

page table directory and the NOT VALID bit is cleared. Five page descriptor keys are associated with

ciach page table entry:

I. A-ACCESS

2. W - WRITABLE

3. P-PUBLIC

4. §-SOFTWARE

5. C-CACHE

The ACCESS, WRITABLE, and PUBLIC bits serve as page access keys. The state of these keys is

compared with the request qualifiers to determine if the reference is legal. If the reference is not legal,

the Page Fail word is transferred to the EBus register and PAGE FAIL HOLD is asserted to inform

the EBox that it made an illegal memory reference. The EBox can then read the EBus register and

determine its next course of action. Refer to Subsection 3.3.5 for the case where a valid entry is not

found (-PT MATCH) in the page table.

If the CACHE bit is not set, the cache is bypassed and one word is written into core when the request is
executed, unless the CON CACHE LOOK EN request qualifier is asserted and some of the words of

the quadword group are already in the cache (ANY VALID MATCH).

a. The following case descriptions apply to those write requests for which CON CACHE

[LOOK EN and MCL EBOX CACHE (LOAD) are asserted and the CACHE bit of the valid
page table entry is set for a paged reference.

. For the case where the cache directory has a record of the referenced page in the
addressed line and at least one word in the cache block for which there is a record is
valid (ANY VALID MATCH), the cache control advances from CSH EBOX T2 to
CSH EBOX T3 and to CSH DATA CLR DONE at the same time and updates the use
table. CSH DATA CLR DONE is set to facilitate setting the VALID and WRITTEN

bits of the cache directory. At CSH EBOX WR T3, a test is made to determine if the

cache can be written (WRITE OK). The cache cannot be written (-WRITE OK) if the

core control is busy fetching words for the same line in the cache. Even though these
words may be moved into another block (there are four blocks per line), the cache

EBox cycle to write the cache is aborted to prevent conflict if these words were to be

moved into the same block that is to be written. To abort the cache EBox cycle, the

state generator advances from CSH EBOX WR T3 to EBOX RETRY NEXT to retry

the request. When the request is retried and the core control and cache control have
finished moving the words into the cache, the state generator will advance from CSH
EBOX WR T3 to WR T4 to write the data in the cache and set the cache directory
VALID and WRITTEN bits associated with the word being written. The correct cache

block and its directory is written by virtue of having a valid entry in the cache. From
CSH EBOX WR T4, the cache control returns to IDLE and asserts MBOX RESP IN.

NOTE

The cache control time state generator also advances

to CSH EBOX T3 because this state is uncon-

ditional. However, this time state will not evoke

another time state for this and some other cases.

M Box/3-44

[
\ For the case where the cache directory does not have a record of the referenced page in

the addressed line (-<ANY VALID MATCH) and the LRU cache block does not con-

tain any written words (-=CSH LRU ANY WRITTEN), the cache control advances

from CSH EBOX T2 to CLEAR WR T0. At this time state, a test is made to determine

if the cache can be written (WRITE OK), as described for the previous case. If the test

passes, the state generator advances from CLEAR WR TO to the CSH DATA CLR

time states to write the address into the cache directory, clear the VALID and WRIT-

TEN bits of the LRU cache block and update the use table. The LRU cache block is

selected by virtue of not having a valid entry ((-ANY VALID MATCH) in the cache.

From CSH DATA CLR T3, the state generator advances to both CSH DATA CLR

DONE and CSH EBOX WR T3. The state generator advances to CSH DATA CLR

DONE to select the LRU cache block by forcing a valid match (FORCE MATCH EN)

for that block so that cache can be written. From CSH EBOX WR T3, the state gener-

ator advances to CSH EBOX WR T4 to write the data in the cache and set the cache

directory VALID and WRITTEN bits associated with the word that is being written.

From CSH EBOX WR T4, the cache control returns to IDLE and asserts MBOX

RESP IN.

For the case where the cache directory does not have a record ofthe referenced page in

the addressed line (|-ANY VALID MATCH) and the LRU cache block contains some

written words (CSH LRU ANY WRITTEN), the cache control time state generator

advances from CSH EBOX T2 to WRITEBACK T! to initiate a writeback cycle. After

the writeback cycle is done, the EBox request is retried.

When the EBox issues a paged memory write request and the page table does not

contain a valid entry (-PT MATCH) to transform the virtual page address to the phys-

ical page address, the cache control will either start a page refill cycle or will inform the

EBox that a page fail condition exists. If the EBox specified KI style paging (K1 paging

mode), the time state generator advances from CSH EBOX T2 to CSH EBOX T3 and

then to PAGE REFILL T4 to start the page refill cycle (Subsection 3.3.5). After the

page refill cycle is done, the EBox request is retried. If the page table still does not

contain a valid entry after the request is retried, the time state generator steps through

the PAGE FAIL time states to load the PF HOLD word into the EBus register and to

inform the EBox that a page fail condition exists by asserting PAGE FAIL HOLD. For

the case when the EBox specifies KL style paging (-KI Paging Mode), the cache con-

trol does not initiate an automatic page refill cycle but instead informs the EBox that a

page fail condition exists by asserting PAGE FAIL HOLD at PAGE FAIL T1. The PF

HOLD word is loaded into the EBus register at PAGE FAIL T3. PF EBOX HANDLE

is also asserted by the MBox for this case.

M Box /3-45

The following case description applies to those write requests for which CON CACHE

LOOK EN is not asserted; it also applies if the cache is not implemented:

If CON CACHE LOOK EN is not asserted (or if the cache does not exist) for the EBox

write request, the cache is automatically bypassed and a core write cycle is started to write

the word into core after the word is moved to an MB. A one word write cycle is also started

when APR EBOX SBUS DIAG is asserted. To move the word into an MB and start the core

write cycle, the state generator advances from CSH EBOX T3 to ONE WORD WR T0 if

core is not busy. If core is busy, the state generator advances instead to EBOX RETRY

NEXT to retry the request. At ONE WORD WR TO, the MB addressed by PMA 34 and 35

is loaded by clearing MB HOLD IN for one clock tick, and the MB WR RQ queue is set to

remember which MB was loaded. The state generator then advances from ONE WORD

WR TO to the CACHE TO MB time state to align with PHASE CHANGE COMING. At

CACHE TO MB T4, the core write cycle is started and MBOX RESP IN is asserted. The

MB WR RQ queue drives the M B select logic (MB SEL 1-2) to select the MB that contains

the word to be written. At the same time the core write cycle is started, the cache control

state generator advances to CACHE TO MB T1. From this time state, the cache control

returns to IDLE, allowing another request to be serviced. When the memory asserts SBUS

ACKN, the MB WR RQ queue is cleared and the core cycle is terminated.

The following case descriptions apply to those write requests for which CON CACHE

LOOK EN is asserted and MCL EBOX CACHE (LOAD) is not asserted or MCL EBOX

CACHE (LOAD) is asserted but the CACHE bit of the valid page table entry is not set for a

paged reference.

I. For the case where the cache directory has a record of the referenced page in the

addressed line and at least one word in the cache block for which there is a record is

valid (ANY VALID MATCH), the cache control advances from CSH EBOX T2 to

CSH EBOX WR T3 and to CSH DATA CLR DONE at the same time and updates the

use table. CSH DATA CLR DONE is set to facilitate setting the VALID and WRIT-

TEN bits of the cache directory. At CSH EBOX WR T3, a test is made to determine if

the cache can be written (WRITE OK). The cache cannot be written (-WRITE OK) if

the core control is busy fetching words for the same line in the cache. Even though
these words may be moved into another block (there are four blocks per line), the cache

EBox cycle to write the cache is aborted to prevent conflict if these words were to be
moved into the same block that is to be written. To abort the cache EBox cycle, the
state generator advances from CSH EBOX WR T3 to EBOX RETRY NEXT to retry

the request if no higher priority requests are pending. When the request is retried and

the core control and cache control have finished moving the words into the cache, the

state generator will advance from CSH EBOX WR T3 to WR T4 to write the data in

the cache and set the cache directory VALID and WRITTEN bits associated with the
word being written. The correct cache block and its directory is written by virtue of

having a valid entry in the cache. From CSH EBOX WR T4, the cache control returns
to IDLE and asserts MBOX RESP IN.

M Box/3-46

2. For the case where the cache does not have a valid directory entry (-ANY VALID

MATCH), the cache is automatically bypassed and a core write cycle is started to write

the word into core after the word is moved to an MB. A one word write cycle is also

started when APR EBOX SBUS DIAG is asserted. To move the word into an MB and

start the core write cycle, the state generator advances from CSH EBOX T3 to ONE

WORD WR TO if core is not busy. If core is busy, the state generator advances instead

to EBOX RETRY NEXT to retry the request. At ONE WORD WR T0, the MB

addressed by PMA 34 and 35 is loaded by clearing MB HOLD IN for one clock tick,

and the MB WR RQ queue is set to remember which MB was loaded. The state gener-

ator then advances from ONE WORD WR TO to the CACHE TO MB time state to

align with PHASE CHANGE COMING. At CACHE TO MB T4, the core write cycle

is started and MBOX RESP IN is asserted. The MB WR RQ queue drives the MB

select logic (MB SEL. 1-2) to select the MB that contains the word to be written. At the

same time the core write cycle is started, the cache control state generator advances to

CACHE TO MB T1. From this time state, the cache control returns to IDLE, allowing

another request to be serviced. When the memory asserts SBUS ACKN, the MB WR

RQ queue is cleared and the core cycle is terminated.

3.3.2.6 EBox Read-Pause-Write — A read-pause-write request from the EBox is serviced by the MBox

by executing a read operation followed by a write operation, into the same location. To issue this type

of request, the EBox asserts MCL VMA READ, MCL VMA PAUSE, MCL VMA WRITE, CLK

EBOX REQ, and the appropriate request qualifiers (refer to EBox read and EBox write descriptions).

After the read operation is completed, the EBox may modify the data and will assert CLK EBOX REQ

and MCL VMA WRITE to write the word back to the same memory location. If the MBox finds that

the cache is to be bypassed, the MBox will read one word from core, present the word to the EBox, and

wait until the EBox issues the write request. When the write request is issued, the MBox will write the

word into core memory. The consequence of bypassing the cache for this type of memory request 1S

that core remains busy for the entire operation, thereby preventing the channels from getting a core

cycle.

3.3.2.7 EBox Write-Check — The EBox initiates an EBox request to write-check a page whenever an

instruction that will ultimately cause a request to move a word to paged memory is executed. (Refer to

the hardware reference manual for information relating to classes of instructions.)

To write-check a paged memory location, the EBox sets up the request as follows:

a. Loads VMA bits 13-35 with the effective memory address (E) of the location for which the

write-check operation is to be performed. The EBox also asserts or negates MCL VMA

USER to specify whether the reference is to the user or executive address space.

b. Sets up the following signals to specify the type of write request for which the write-check 1s

to be made.

CON CACHE LOOK EN

MCL EBOX MAY BE PAGED

CON KI PAGING MODE

MCL VMA EPT

MCL VMA UPT

MCL PAGE TEST PRIVATE

MCL PAGE ILLEGAIL ENTRY

MCL PAGE ADDRESS CONDR

c. Asserts MCL VMA PAUSE, MCL VMA WRITE, and CLK EBOX REQ.

MBox/3-47

['his sets up the conditions required for the M Box to service the EBox request tg write-check a memory

location. If the cache control is IDLE, or when the cache control enters its IDLE state and a higher

priority request is not pending (MB or CHAN REQ), the cache control will grant the EBox request

and start'a cache EBox cycle to execute the write-check operation. This decision is made as the cache

control time state generator advances from IDLE to READY TO GO. At READY TO GO, the CSH

EBOX CYC latch is set. From READY TO GO, the cache control time state generator advances to

the CSH EBOX time state branch because an EBox request is granted. CSH EBOX T0 and CSH

FBOX T1 serve as a delay to allow for the logic transit time associated with addressmg the page table

and testing its content.

NOTE

The page table is addressed with the VMA, not the

PMA, to avoid the PMA transit time, thereby min-

imizing this time.

At CSH EBOX T2, a decision is made by the cache control based on the request qualifiers and the

content of the page table. If the page table contains a valid entry (PT MATCH), the page descriptor

kevs are checked to see whether the reference is legal. An entry in the page table is valid if MCL VMA

USER and the virtual section address match the contents of the page table directory and the NOT

VALID bit is cleared. Associated with each page table entry are five page descriptor keys:

[. A - ACCESS

2. W - WRITABLE

3. P-PUBLIC

b, S-SOFTWARE

5. C- CACHE

The ACCESS. WRITABLE, and PUBLIC bits serve as page access keys. The state of these keys are

compared with the request qualifiers to determine if the page is writable.

If the page has access privileges and is writable, the MBox simply responds by dsserting MBOX RESP

IN. If the page is restricted or is not writable, the Page Fail word is transferred to the EBus Register

and PAGE FAIL HOLD is asserted by the MBox to inform the EBox that the page-check failed. The

EBox can then read the EBus register and determine the next course of action

For the case where a valid entry is not foundin the page table (-PT MATCH) refer to Subsection

3.5

3.3.2.8 Write Refill RAM- The Ebox initiates an EBox request to write a word into the refill RAM

whenever the BLKO APR instruction is executed. Each time this instruction is executcd one 3-bit data

word is written into the addressed location of the refill RAM. -

To write a word into the refill RAM, the EBox sets up the request as follows:

1. Loads VMA bits 18-20 with the data to be written into the refill RAM.

" b, Loads VMA bits 27-33 with the appropriate address to select the desired location in the

Refill RAM. :

¢. Asserts APR EN REFILL RAM WR, MCL VMA READ, and CI;K EBOX REQ.

MBox/3-48

This sets up the conditions required for the MBox to service the EBox request to load one word into
the refill RAM. If the cache control is IDLE, or when the cache control enters its IDLE state and if a
higher priority request is not pending (MB or CHAN REQ), the cache control will grant the EBox
request and start a cache EBox cycle to execute the request. This decision is made as the cache control
time state generator advances from IDLE to READY TO GO. At READY TO GO, the CSH EBOX
CYC latch is set and the address is gated from the VMA to the refill RAM via the refill RAM address
mixers. These mixers are set up by APR EN REFILL RAM WR to select the correct address. The
APR EN REFILL RAM WR signal also sets up the data input mixer for the lookup table. From
READY TO GO, the cache control time state generator advances to CSH FBOX TO, T1,and T2, in
sequence. At CSH EBOX T2, the CSH USE HOLD flip-flop is set to hold the address and data. and
CSH REFILL RAM WF is asserted to write the data into the addressed location of the lookup table.
From CSH EBOX T2, the cache control returns to IDLE and asserts MBOX RESP IN.

3.3.2.9 SBus Diagnostic Cycle - The EBox initiates an EBox request to execute an SBus diagnostic
cycle when the EBox executes the BLKO PI instruction. Whenever this instruction is executed, a 36-bit
control word is transferred from the EBox AR to the core memory system via the data lines and a
status word, which is specified by the control word, is returned to the EBox from the core memory
system.

To execute an SBus diagnostic cycle, the EBox sets up the request as follows:

a. Loads the AR with the SBus diagnostic control word to be transferred to the core memory
system.

b. Asserts APR EBOX SBUS DIAG and CLK EBOX REQ.

This sets up the conditions required for the MBox to service an EBox request for executing an SBus
diagnostic cycle. If the cache control is IDLE, or when the cache control enters its IDLE state and if a
higher priority request is not pending (MB or CHAN REQ), the cache control will grant the EBox
request and start a cache EBox cycle to execute the SBus diagnostic cycle. This decision is made as the
cache control time state generator advances from IDLE to READY TO GO. At READY TO GO. the
CSH EBOX CYC latch is set. From READY TO GO, the time state generator advances to the CSH
EBOX time state branch to move the control word from the AR to the MB, and to start the SBUS
DIAG CYC counter. To move the control word into an MB, the state generator advances from CSH
EBOX T3 to ONE WORD WR TO, if core is not busy. If core is busy, the state generator advances
instead to EBOX RETRY NEXT to retry the request. At ONE WORD WR T0, the MB addressed by
PMA 34 and 35 (which may point to any one ofthe four MBs) is loaded by clearing MB HOLD IN for
one clock tick, and the MB WR RQ queue is set to remember which MB was loaded. The state
generator then advances from ONE WORD WR T0 to the CACHE TO MB time states to align with
PHASE CHANGE COMING and start the SBUS DIAG CYC counter. :

NOTE

The MB WR RQ queue drives the MB select logic
(MB SEL 1-2) to select the MB that contains the

diagnostic control word that is to be transferred to

the core memory system.

As the SBUS DIAG CYC counter steps through its states it causes:

a. SBUS DIAG to be asserted for four MBox clock ticks.

b. MB WR RQ queue to be cleared.

¢. MBOXRESP IN to be asserted at the time the requested word is available on the SBus data
lines.

MBox/3-49

When the EBox senses MBOX RESP IN, it simply strobes the cache data lmes to transfer the data
word from the SBus data lines to the AR. At the same time MBOX RESP IN is asserted, the cache
control also returns to IDLE, allowing another request to be serviced. .

3.3.3 Cache MB Cycle '

MB requests are issued by the core control during a core read cycle to move words that have come in

from core from the MB to the cache. The first word, whichis the word the EBox requested, is present-

ed to the EBox andis moved into the cache before the cache EBox cycleis termmated Subsequent

words, however, are moved into the cache by executing a cache MB cycle (Figures 2-6 and 3-21). MB

requests are assigned the highest priority and are granted cache cycles before another EBox request, a

channel request, or a CCA request. Thisis necessary because the words coming in from core must be

moved into the cache before another core cycle can be started. If an MB request is not pending and
core is still busy because all words have not yet come in, EBox requests will be granted only to read
from or write into the cache but will be aborted if the request resultsin a core reference. In this case,

the request will be retried every time a word comes in from core until the retried request succeeds,

which will occur when core becomes not busy and a channel request is not pendmg

S L
7/

READY| CSH | CSH | CSH§ IDLE 1y co| 100 | T1 | T2 IDLE <
/L
7/

171512

Figure 3-21 Cache MB Cycle, Time State Bar Chart

After the first word is moved into the cache and is taken by the EBox, the cache control returns to

READY TO GO. While core is busy, only EBox and MB requests will be granted by the cache control
because CCA requests and CHAN requests are disabled as long as core is busy. The MB request has
the higher priority to move the words from the M B to the cache as fast as possxble to free the MBs. The
M Box recognizes that another word has come in from core when it receives SBUS DATA VALID.
This triggers the core data valid time state chain and causes MB 0-3 WR RQ and MB REQ IN to be
assertzd.

If the cache control is not executing an EBox request at the time MB REQ EN is asserted, the MB
request is granted and the state generator advances to READY TO GO to execute the cache M B cycle.
At READY TO GO the CSH MB CYC latchis set. From READY TO GO the cache control advances

to CSH TO because a request other than an EBox request (ANY REQ) is granted (Figure 3-21).

Time states CSH TO, T1, and T2 enable the refill address and match control to write the data and
associated valid bitin the appropriate cache block. The cache block thatis written into is either that
block that provided a valid match during the cache EBox cycle or the LRU block if no match

occurred. From CSH T2 the cache control time state generator advances to IDLE and then to

READY TO GO after clearing the MB 0-3 WR RQ since the current cycleis not an EBox cycle. The
cache control is then ready to service another request. As long as core is busy, only EBox and MB

requests will be granted by the cache control.

3.3.4 Cache Writeback Cycle

Words written into the cache by the EBox are written back to core to update the core copy before the

contents of the LRU Cache blockis supplanted with a word(s) from another page. Written wordsin

the cache are also written back to core when the EBoxissues a request to clear the cache which occurs
when the EBox executes a ““sweep’ instruction to validate core.

MBox/3-50

During the course of executing a cache EBox cycle to service an EBox read or write request, the
decision to start a writeback cycle is made at CSH EBOX T2 (Figure 3-22). CSH EBOX T0 and CSH
EBOX T1 serve as a delay to allow for logic transit time associated with addressing the cache directory
and testing its contents (refer to cache EBox cycle description and EBox Read/Write request
descriptions).

cuk | [v] 2| s a s e | 7! 8l 9 o | n| 2] 14[15[16|17|18§19|20]21[|

/-
CSH

READY) I0LE lm 50}55’8*
/ fm

i

WRITE BACK OONE
/L

CSH T
ggox | T | 12 | v | 12 | T3 | 14 10LE

T2 p !
7

o——"aCK >+~ CACHE TO MB——

CSH

EBOX
T

CONTY DONE

T } T2 J T3 T4 IDLE ?
1

l#——-- CACHE TO MB ~———s{

CONT DONE

T I T2] T3 Ta IDLE 2
A

te-———CACHE TO MB — o

T] T2 T3] T4 I IDLE 2

[- CACHE TO MB ~——

Figure 3-22 Cache Writeback Cycle, Time State Bar Chart

At CSH EBOX T2, the contents of the cache are checked to see if any written words are in the LRU

cache block. The function LRU ANY WRITTENA - ANY VALID MATCH indicates that none of

the four addressed cache blocks contain any words from the referenced page but the LRU cache block

contains one or more words from another page that have been written by the EBox. It is this condition,

if core is not busy, that causes the cache control time state generator to advance from CSH EBOX T2

to WRITEBACK T, thereby initiating the writeback cycle. If core is busy at CSH EBOX T2, the time

state generator does not advance to WRITEBACK T1 but advances to EBOX RETRY NEXT to retry

the request until core is freed.

From WRITEBACK T1 the state generator advances to WRITEBACK T2, sets the CLK EBOX REQ

latch, loads the CSH WRITEBACK CYC latch, and selects the desired address mixture from the

PMA. Note that the cache control time state generator does not transgress IDLE and READY TO

GO to start the writeback cycle, but instead forces the writeback cycle by setting the CSH WRITE-

BACK CYC latch and selecting the desired address mixture from the PMA, thereby bypassing the

priority request grant logic. The priority request grant logic is inhibited from granting CHAN and

CCA requests during WRITEBACK T1 to block these potential inputs from the cycle latch to start the

writeback cycle. The CLK EBOX REQ latch is set to cause the EBox request to be retried after the

writeback cycle is done. The address mix includes the contents of the cache directory (CAM 14-26).

the quadword address which consists of VMA 27-33 and RQ 1-2.

As the state generator advances from WRITEBACK T2 to CACHE TO MB TI, the cache block

number of interest (LRU cache block in the case of a writeback cycle or the cache block that provided

the match in the case of a CCA cycle) is latched so that the written bits for that cache block can be

cleared. At the same time, the MB WR RQ, core RQ, and CTOMB RQ logic are set up. The state

generator then steps through the CACHE TO MB time states to move the written words from the

MBox/3-51

cache "o the associated MBs. The CTOMB WD request logic supplies the word|/address (CACHE TO
MB 34-35) for the cache block of interest and drives the MB HOLD IN logic to generate the appropri-
ate M B load pulse at CACHE TO MB T3. At CACHE TO MB T4, the associated CTOMB WD RQis
cleared. The MB WR RQ logicis set up to remember which MBs received a word from the cache as the
state generator steps through the CACHE TO MB time state so that they can be presented to the SBus

data lines. After the first written wordis moved from the Cache to the MB, the state generator starts
the core write cycle and latches the SBus address at CACHE TO MB T4. F

The SBUS ACKN pulse clears current MB WR RQ to select the next MB that has a word. The core
write cvcleis started after the first written wordis moved into the MB. Core can be started at this time

because it takes only four clock ticks to move one word from the cache to the MB whichis faster than
the core control can write the words into memory. After all the written words aré moved into the M Bs,
the cache control time state generator advances to IDLE and to READY TO /GO because the CSH
EBOX CYC latchis not set. When the time state generator reaches READY T(D GO, core will still be
busv and, therefore, a request requiring a core cycle cannot be executed. Therefore, neither a CHAN
nor CCA request will be granted by the REQ GRANT logic. This allows the EBox request to be
retried immediately. If a core cycle is not needed in executing the request, as in the case of a write

request, the request is satisfied by writing the cache and asserting MBOX RESP IN. If, however, the
request is an EBox read request, it must be retried again since a core cycle will b¢ needed. When core is

freed. the priority request grant logicis again fully enabled to grant requests on a priority basis. If both
a CHAN and an EBox request are pending at that time, the CHAN request will be granted first,

preventing the EBox from getting two core cycles in a row, thereby, holding up the channels.

During the course of executing a cache CCA cycle to service an EBox cache clear request (LOAD CCA

REG) the decision to start a writeback cycle is made at CSH T3 (refer to cache CCA cycle description).
At CSH T3, the contents of the cache are checked to see if any written words are in the selected cache
block. If any written words are found, and the EBox request to clear the cache included the validate

core qualifier (CSH CCA VAL CORE - IR ACI11= 1), the cache control time state generator
advances from CSH T3 to WRITEBACK TI, thereby initiating the wrlteback cycle, as described

previously. ‘

NOTE

The CLK EBOX REQ latch is not set for this case.

3.3.5 Cache Page Refill Cycle (KI Mode Only) ‘

The page tableis refilled automaticallyin the KI paging mode every time the EBox makes a paged

memory reference for which a valid entry is not found in the page table. For _KL paging mode, the

EBox executes the refill. A valid entry is in the page table if the virtual section address (user or

executive) from the VMA matches the contents of the page table directory and the NOT VALID bit is

cleared. During the course of executing a cache EBox cycle to service an EBox map, EBox read, write

or write-check request, the decision to start a page refill cycle is made at CSH EBOX T2 (Figure 3-23).

CSH EBOX T0 and CSH EBOX T1 serve as a delay to allow for logic transit time associated with

addressing the page table and directory and testing their contents. If the page table does not contain a

valid entry (-PT MATCH) and a page refill cycle has not yet been executed for the current EBox

request, the page test logic asserts PAGE REFILL instead of PAGE OK. The presence of this condi-

tion is sensed at CSH EBOX T2 to advance the state generator to EBOX RETRY NEXT and to CSH

EBOX T3, simultaneously. If core is busy, the request is retried. If core is not busy, on the next clock

tick the state generator advances to PAGE REFILL T4 and to CACHE IDLE, and the priority

request grant logicis forced to grant a page refill cycle by disabling any CHAN emd CCA requests that

may be pending.

NOTE

An MB request will not be pending because this path

is taken only if core is not busy.

MBox/3-52

! { i : i 1 i '] : [. , . | ¢ok | | v lz2]s | Pelrlel ol | 12 P e [ooe be 20 o2 |22 | B | e s |26 22|28 28 | 30| 3t | 32| 33| se ;35| 36} 37 8 35| 404t || a1 ac|

CACHE TO MB PAGE REFILL - -———.1

REFILL CONT CONT 0ONE

T CSH | CSK | PAGE 7 T T ToaE] 7 T H v i] 1 : i | i i ! I| READY [CSH | CSH CSH j CSM 1 OSH| CSM wepii] T2 1 LETRIE 20 B YR N U R R PO 12 {13 {ra lTols lmo | thn| Tz T3 To T lre [Ty e |t fretey fno |t D fons READY 1000
1DLE i 10 go {EBOX [EBOX | EBOX | €BOX {REFRL| 0" | [T2 | T | ! 1 J | ; i | { | :L /A bid T T2 T Te L e T8 A ! 1 i l | > A i { L - i i ki i 1 i H L I” E8OX ’

ReTRY| 10LE

5MXT AGE RESILL

DONE
READY

[1 ; y r T v T : T } T TT0 60 LT | | | : ; | - ol ftadr| T3 | T0 i T {nz ; T3 I T l T } T2 | T3 ‘ TtO 51'\1 : T2 ; TM3 : 10 : 2 ! 3 | 10 READY TO GO
i i i i i ! i i 3

L]

LD AL|
I
k 625 ns NIk

CORE DATA vAL:D

PAGE REFILL f

DONE

;
T T T T T T —7 =TT . r 'Te L oTIo P Tt T2 ! oTiy } TIO P Tie i T2 [Ti3) T10 ESTRRIE SESR AR JEY T T T2 0TI T:0 | READY TO GO
: : | i ; ; i i

13

; VALID VALID]

— 625ns MIN
‘

CORE DATA vaLm | CORE DaTa vaLIc |

PAGE REFiLL
‘

DONE (ANY VALiD MATCH;)
;

] T T
7 j T 1 1 1

3TS | TIO | Ti | Tiz , Ti5 ne THO Tz TS Ti0 DT T2 Ty 7o TP Tz Tin T | REAT S 60 f
; i ! ; . H i I j :‘

T

|] SN
vALID| vaLio VALID | vaio VALID vaci

| J |— 625 MIN

CORE DATA VALID [CORE DATA vALID 1 l CORE DATA VALID fll

PAGE REFILL o

DONE (~ANY VALID MATCH)

\ T T |] I i ! ” ! iTMo T RARRCARTYE T10 Lo | mz | s J Tio TMo e STt vz w3l tio | oeeaoy moaeyE : i 4 |] ; i " . ; H— T ¥
*

M 62503 MIN ~—————

VAL'D
-3 YALID

1

fvaLip !57 jvauie
‘VA‘\JD‘
N

CORE DATA VALID] f CORE DATA VALID J [CORE DATA VALID CORE DATA VALID

01510

Figure 3-23 Cache Page Refill Cycle,
Time State Bar Chart

MBox/3-53

Because PAGE REFILL T4 is set at the same time the state generator advances to CACHE IDLE, the

state generator advances directly to READY TO GO to force the page refill gycle. At READY TO

GO, the CSH PAGE REFILL CYC latch is set and the PMA is set up to supply the correct memory

address to fetch the page table entry from the appropriate process table. The address mix depends on

whether the memory reference is to the user or the executive address space. If the memory reference is

to the executive address space, the specific address mix also depends on whether the reference is to the

“per process area,’”’ to the upper executive area, or to the lower executive area. Consequently, depend-

ing on the state of MCL VMA USER (1 = User space; 0 = Executive space), and virtual page address

(VMA 18-26), one of four possible addresses will be configured.

For the case where the EBox makes a memory reference to the user address space, all of which is

paged. the SBus address for the page refill cycle is configured as shown in Figure 3-24.

¥ IS NOT SUPPLIED BY PMA BUT BY CACHE CONTROL

10-15158

Figure 3-24 SBus Address Format for User Page Refills

UBR 14-26 points to the physical page in core that contains the user process table; VMA 18-23 points

to the quadword in the process table that contains the page table entry of the referenced virtual page

and RQ 1-2 (output of priority encoder E28 on MBX2) points to the first word in the quadword group

that was not foundin the cache. Bit 27 of the SBus address is jammed to ‘‘zero’ to select the lower half

(locations 0-3775) of the user process table, which contains the 512 page table chtnes (two entries per

location) for the user address space.

For the case where the EBox makes a memory reference to the lower cxccutivé address space (pages
000-327,), the SBus address for the page refill cycle is configured as shown in [Figure 3-25.

13 14 17 18 26 27 28 29 3334 35

Y i\
AN v J - W, N _J*

EBR 14 - 26 i VMA19-23 RQ 1-2

¥ IS.NOT SUPPLIED BY THE PMA BUT BY CACHE CONTROL
10- 1516

Figure 3-25 SBUS Address Format for Executive Page

(Pages 000-3375)Refills ;

EBR 14-26 points to the physical page in core that contains the executive process table; VMA 19-23

points to the quadword location in the process table that contains the page table entry of the refer-

enced virtual page; and RQ 1-2 points to the first word in the quadword group that was not found in

the cache. Bits 27 and 28 are jammed to “one” (6XX) to select the upper quarter (locatlons 600-777) of

the executive process table, of which locations 600-757 contain the 224 page table entries (two entries

per location) for the lower executive address space. .

MBox/3-54

For the case where the EBox makes a memory reference to the upper executive address space (pages

400-7773), the SBus address for the page refill cycle is configured as shown in Figure 3-26.

* IS NOT SUPPLIED BY PMA BUT BY CACHE CONTROL

Figure 3-26 SBus Address Format for Executive Page

(Pages 400-777;) Refills

EBR 14-26 points to the physical page in core that contains the executive process table; VMA 18-23

points to the quadword location in the process table that contains the page table entry of the refer-

enced virtual page; and RQ 1-2 points to the first word in the quadword group that was not found in

the Cache. Bit 27 of the SBus address is jammed to “zero” to select the lower half (locations 000-3775)

of the executive process table, of which locations 200-377s contain the 256 page tables entries (two

entries per location) for the upper executive address space.

For the case where the EBox makes a memory reference to the paged executive address space defined

to be the “per process area’ (pages 340-377;), the SBus address for the page refill cycle is configured as

shown in Figure 3-27.

10-1518

Figure 3-27 SBus Address Format for Executive Page

(Pages 340-377;) Refills

UBR 14-26 points to the physical page in core that contains the user process table; VMA 22 and 23

point to the quadword location in the process table that contains the page table entry of the referenced

virtual page; and RQ 1-2 points to the first word in the quadword group that was not found in the

"cache. Bits 27-31 are jammed to 4XXj; to select the upper half (locations 400-777) of the user process

table, of which locations 400-4175 contain the 32 page table entries (two entries per location) for the

paged executive address space defined to be the “‘per process area.”

MBox/3-55

From READY TO GO the cache control state generator advances to CSH TO because a request other

than an EBox request (ANY REQ)is granted. The state generator then advances to PAGE REFILL

T8 via CSH T1, T2, and T3; to set up the MB WR RQ, core RQ 1-2, and CTOMB WD RQ logic, and

latch the SBus address. From PAGE REFILL T8, the state generator advances to the CACHE TO

MB time states to move any valid words from the cache to the associated MBs. The CTOMB WD
reques: logic supplies the word address (CACHE TO MB 34-35) for the cache block of interest and
drives the MB HOLD IN logic to generate the appropriate MB load pulse at CACHE TO MB T3. At

CACHE TO MB T4, the associated CTOMB WD RQis cleared. The MB WR RQ logicis set up to

remember which MBs receive a word from the cache as the state generator steps|through the CACHE

TO MB time states (or from core) so that they can be moved into the page tabfie MB SEL HOLDis

asserted if any one MB received a word. After all valid words are moved from the cache to the MBs,

the state generator advances to PAGE REFILL T9 to start a core read cycle for those words in the

quadword group that were not in the cache (RD NON VALID WDS). From PAGE REFILL T9, the

state generator advances to PAGE REFILL T10. If any valid words were written into the MBs, the

state generator steps through PAGE REFILL TI1, T12, T13, and back to T10 because MB SEL

HOLD will be asserted. MB SEL HOLD is asserted whenever an MB WR RQ is set. As the state

generator advances through these states, the word from the selected MB is written into the page table,
the associated MB WR RQis cleared, and the next highest priority MB that contains a wordis selected

so that the process can continue. This continues until all the wordsin the MBs have been written into

the page table. At the same time, the core control will clear appropriate MB 0+3 HOLD IN for one

clock tick to move the words coming in from core into the MB and set the assoeiated MB WR RQ to

inform the cache control that another word has arrived and can be written into the page table. After all

the requested words have been received from core (see core control description), iand have been written

into the page table, core is freed (-CORE BUSY) allowing the state generator to,advance from PAGE

REFILL T10 to READY TO GO. At the same time the state generator advances to READY TO GO,

the REFILL COMP latchis set to remember that a refill cycle for the current EBox request was made.

The fact that a refill cycle was executed must be known when the EBox request is retried to prevent

another refill cycle from being started.

At READY TO GO, a new cycle can be started. If a CHAN REQ is not pending, another cache EBox

cvcle is started to retry the request. If the page test does not pass (PAGE FAIL) during the second pass

through the cache EBox cycle, a page fail signal is sent to the EBox. Several conditions, based on the

current mode the EBoxis operating in and the status of the page descriptors, must be met for the page

test to pass (PAGE OK) (refer to Pager description).

3.3.6 Cache CCA Cycle |

CCA requests are issued by the cache clearer control after it is initialized to vahdate core and/or

invalidate the cache (Subsection 3.5). The cache cleareris initialized when the CCA register is loaded

by the EBox (cache Sweep instruction is executed by the EBox). CCA requests are assigned the lowest

priority and are granted cache cycles ‘only if no other requests (MB, CHAN, or EBOX) are pending

and core is not busy. Depending on the cache clearer qualifiers presented to the cache clearer control

by the EBox when the request to load the CCA register was made, the cache control, when executing

the cache CCA cycle, initiates writeback cycles for those words that are written and/or clears the valid

and written bits in the cache and updates the use table for a single page or for the entire Cache. A

summary of CCA cycle variations is presentedin Table 3-9. |

If the cache control is IDLE, or wh-'en the cache control enters its IDLE state and no higher priority

requests are pending and if core is‘not busy, the cache control grants the CCA request and starts a

cache CCA cycle (Figure 3-28). This decision is made as the cache control time state generator

advances from IDLE to READY TO GO. The cache control will not advance to READY TO GO if

the previous cycle was a cache EBox cycle and the EBox has not yet asserted CLK EBOX SYNC D.

MBox /3-56

Table 3-9 Cache CCA Cycle Variations

ONE VAL INVAL

PAGE CORE CSH Function

0 0 1 Update Use Table and clear VAL and WR bit for entire

Cache one block at a time.

0 1 0 Writeback all written words in the Cache by initiating a

writeback cycle for each Cache block that is written.

0 _ 1 1 Perform both of the above. First initiate the writeback.

then invalidate the Cache. CCA register is decremented

by 1 to check each block in the Cache.

1 X X Same as above except that only those lines containing

words from a specific page (specified by CCA register

bits 14-20) are effected. If a Cache line does not contain

any words from that page nothing is done. CCA register

is decremented by 4 to check each line in the Cache.

CLK | | | + | 2] 3| 4 s | e | 7| s | o0 ||z |3 [a |5 | e]

—ANY VALID MATCH

a4 CCAYIDLE READY| CSH | CsH | csH | csH | &SR [OLE 8
TOGo| Te | TI | T2 | T3 |pone

ANY VALID MATCH A INVAL CSH

CCA | CCA

INVAL | CYC IDLE

T4 | DONE

WRITE BACK (ANY WRITTEN MATCH A VAL CORE)
- f

(Fig 3-22)

L
7/

10-1519

Figure 3-28 Cache CCA Cycle, Time State Bar Chart

This exception is necessary to satisfy EBox read requests because the EBox will take data only when

CLK EBOX SYNC D is asserted. At READY TO GO, the CSH CCA CYC latch is set and the PMA

is set up to select the address from the CCA register. From READY TO GO, the time state generator

advances to the CSH time state branch to execute the cycle. CSH TO, T1, and T2 serve as a delay to

allow for logic transit time associated with addressing the cache directory and testing its contents. One

extra time state is needed to provide adequate delay in this time state branch because the address is

supplied via the PMA instead of the VMA. At CSH T3 a decision is made based on the contents of the

cache directory and the cache clearer control.

MBox/3-57

3.3.6.1 One Page - If the CCA request is for one page (CSH CCA ONE PAGE is asserted) then the

entire cache is checked, one line at a time, to see if the line contains valid entries from the page

specified by the CCA register. Any valid entries for which the cache directory address matches the

contents of the CCA register (ANY VALID MATCH) are invalidated and/or are written back to core

if thev are also written (ANY WRITTEN MATCH). Two passes through the cache control (cache

cvcles) are required for each cache line to both validate core and invalidate the cache. The first pass

causes a writeback cycle to be initiated at WRITEBACK T1 for the written words. During the write-

back cycle, the written words are moved to the MBs. The corresponding written bits in the cache

directory are cleared and a core write cycle is started. During the second pass, all the valid bits in the

cache block that contained the valid entries are cleared and the use table is updated after CCA INVAL

T4 if the cache is to be invalidated. The correct cache block in the line is selected by asserting REFILL

HOLD. The cache control then advances to CCA CYC DONE. If the cache is not to be invalidated,

the cuche control bypasses CCA INVAL T4 and advances to CCA CYC DONE. At CCA CYC

DONE, the CCA cache line counter is decremented by 1 (CCA register is decremented by 4) to

advarce the address to point to the next cache line in preparation for the next CCA cycle. If the

counter overflows (carry), which means that all 128 cache lines have been taken care of, then the CCA

REQ latch is cleared and no further requests for cache cycles will be initiated.

3.3.6.2 All Pages - If the CCA request is for all pages (-CSH CCA ONE PAGE) then the entire

Cache is checked, one cache block at a time, to see if the cache contains any written entries. Any entries

in the cache that have been written are written back to core and/or all valid entries in the cache are

invalidated. To accomplish this, the CCA register is decremented by | instead of four to permit the

cache control to examine the contents of each cache block by forcing a valid match for the cache that is

pointed to by bits 34 and 35 of the CCA. |

3.3.7 Cache Channel Cycle

Channel requests are issued by the channel control to move data, CCWs, or status information

between the channel buffers in the MBox and core memory. As words are moved from the channel to

core (channel write), a cache cycle is executed to invalidate any valid wordg in the cache if CON

CACHE LOOK EN is set (Figure 3-29). When words are moved from core to the channel (channel

reads), a cache cycle is executed to pick up any words that are valid in the cache provided CON

CACHE LOOK EN is set. This ensures that mass storage will always get the latest copy of the data.
Valid words in the cache are invalidated when the channel is writing core to clear the cache of any valid
entries that would conflict with the core copy. Channel requests are assigned the highest priority and

are granted cache cycles as soon as the cache control becomes IDLE and corelis not busy. If channel
requests are backed up, the channels will also get the next core cycle. ’

3.3.7.1 Channel Read - After a channel is started (a channel is started by initializing the drive, setting
up the channel command list, and issuing a Write command), the channel control initiates channel
requests to read from core memory as long as the channel data buffer has enough empty locations to
store the words. Requests to read from memory are also made by the channel control to fetch the
CCWs which then control the transfer of data. Read requests for data are normally made for four
words at a time. To read from core memory, the channel control sets up the request as follows:

a. Transfers the CCW address from the CCW BUF to the CCW registhr to present the PMA
with the correct address (CCW CHA 14-35). CCL CHAN EPT is asserted only if the refer-

ence is to the EPT which is made to fetch the initial CCW. ’ -

b. Sets up CCW WD 0-3 REQ to specify the words in the quadword group that are needed and
sets up CCL CH MB SEL 1-2 to select the MB from which the first word will be taken. Bits
34 and 35 of the channel address point to the first word in the quadword group that is to be
read. CCL CHAN TO MEM will not be asserted when the channel issues a read request.

¢. Asserts CCL CHAN REQ.

MBox/3-58

cu(]l]z|3a|4 5[6'7[a[9|10|n|12|13|(4|15!|s!|7|ta|19|2052<i22,23

CHAN WRITE {(—ANY VALID MATCH)

CSHT3 IDLE /

CHAN WRITE (ANY VALID MATCH)

J L
7/

READY

TO GO
/L
7/

CSH

T

CSH

T2

CSH

To
f 10LE

CHAN

T

CHAN
4 WR IDLE

s

CHAN READ (ANY VALID MATCH)

CHAN)
RO IDLE
TS

CHAN READ (-ANY VALID MATCH) | DONE

CHANT4 } TM lrp 5CHAN

T4
I0LE /

7

T2[T3
ya

7

f+—— CACHE TO MB ——»

CONT DONE

i CHANT2 ’ T3 J T4 [n o Tsl IOLE /

fe-— — CACHE TO MB ——]

CONT | pone

| 12 | 13 | Ta | RC;ATN51 IDLE /

la— - CACHE TO MB~—--—w|

CONT .

(e b

Tz ‘ T3 } Ta | g /

e CACHE TO MB »]

Figure 3-29 Cache Channel Cycle, Time State Bar Chart

The channel control must then wait until the cache control grants the request and the requested words
come out of the cache and/or from core.

If the cache control is IDLE, or when the cache control enters its IDLE state and core is not busy, the
cache control will grant the channel request and start a cache CHAN cycle to execute the read request.

This decision is made as the cache control time state generator advances from IDLE to READY TO
GO. The state generator will always advance from IDLE to READY TO GO if the previous cycle was

not a cache EBox cycle. The state generator will not advance to READY TO GO if the previous cycle

was a cache EBox cycle and the EBox has not yet asserted CLK EBOX SYNC D. This condition is

necessary to satisfy EBox read requests because the EBox will take the data only when CLK EBOX

SYNC D is asserted. At READY TO GO, the CSH CHAN CYC latch is set and the PMA is set up to
transfer the channel address (CCW CHA 14-35). From READY TO GO, the time state generator
advances to the CSH time state branch to execute the cycle because a request other than an EBox

request (ANY REQ) is granted. At CSH T3, the contents of the cache are checked to see if any valid

words are in the cache (ANY VALID MATCH). If the cache does not contain any valid words, the

cache control time state generator advances from CSH T3 to CHAN RD TS5 to latch the SBus address

and start a core read cycle for all requested words. However, if the cache contains some valid words,

the state generator advances instead to CHAN T4 and the CACHE TO MB time states to set up the

" MB WR RQ and CTOMB WD RQ logic to move the valid words into the MBs. The CTOMB WD

RQ logic supplies the word address (CACHE TO MB 34-35) for the cache block of interest and drives

the MB HOLD IN logic to generate the appropriate MB load pulse at CACHE TO MB T3. At

CACHE TO MB T4, the associated CTOMB WD RQ is cleared. The MB WR RQ logic is set up to

remember which MBs received a word from the cache as the state generator steps through the CACHE

TO MB time states. After all valid words are moved to the MBs, the state generator advances to

CHAN RD T5 to latch the SBus address and start a core read cycle for those words that are not valid

(RD NON VALID WDS). When the core read cycle is started, the cache control returns to IDLE.

MBox /3-59

While the channel and core controls are busy transferring the words, the cache control will only grant

the EBox cache cycles to read or write the cache. If during this time the channel(s) makes another

request, the channel will also get the next core cycle. The EBox can get a core cycle only when a

channel request is not pending. As the words come in from core, they are moved into the appropriate

MBs by the core control. As each word comes in, the core control sets the appropriate MB 0-3 WR

RQ latch and clears the appropriate MB 0-3 HOLD IN signal for one clock tick to load the MB. The

channel control will move the requested words from the MBs to the CH BUF, in ascending modulo 4

order. That is, if words 2 and 3 come from the cache and words 0 and | are ¢oming from core, the

channel control waits to take the words until word 0 is placed in the MB. Besides loading the M Bs, the

MB 0--3 HOLD IN signals inform the channel control that the corresponding:’word has been loaded

into the associated MB. When the lowest numbered word of the requested group is placedin the M B,

the channel control sets up CCL CH MB SEL 1-2 to select that MB and strobes the contents of that
MB into the CH BUF (or the CCW BUF when the channel is fetching a CCW). This operation is

repeated by the channel control until all requested words have been transferred.

As each word is taken by the channel control, the associated MB WR RQ is also. cleared. Core will
remain busy as long as an MB WR RQis pending. This prevents another core cycle from being started

until the channel control has taken all the words.

3.3.7.2 Channel Write - After a channel is started, the channel control initiates channel requests to

write into memory as long as the channel has enough words in its data buffers. Requests to write into

memory are also made by the channel control to store status information at the conclusion of a data

transfer operation or in the event of an error. Write requests for data are narmally made for four

words at a time. To write core memory, the channel control sets up the request as follows:

a. Transfers the CCW address from the CCW BUF to the CCW register to present the PMA

with the correct address (CCW CHA 14-35). CCL CHAN EPTis asqerted only if the refer-

ence is to the EPT, which is made when storing the status.

b Sets up CCW WD 0-3 REQ to specify the words in the quadword@ group that are to be

written and sets up CCL CH MB SEL 1-2 to select the MB that will be loaded first. Bits 34

and 35 of the channel address point to the first word in the quadword group that will be

written. CCL CHAN TO MEM will be asserted when the channel issues a write request.

c. Asserts CCL CHAN REQ

The channel control must then wait until the cache control grants the request.é

If the cache control is IDLE, or when the cache control enters its IDLE state and core is not busy, the

cache control will grant the channel request and start a cache channel cycle to execute the write

request. This decision is made as the cache control time state generator advances from IDLE to

READY TO GO. The state generator will always advance from IDLE to READY TO GO if the

previous cycle was not a cache EBox cycle. The state generator will not advance to READY TO GO if

the previous cycle was a cache EBox cycle and the EBox has not asserted CLK EBOX SYNC D. This

condition is necessary to satisfy EBox read requests because the EBox will take the data only when

CLK EBOX SYNC D is asserted. At READY TO GO the CSH CHAN CYC latch is set, a core write

cycle is started, and the PMA is set up to transfer the channel address (CCW CHA 14-35). The core

write cycle is started by the channel control by asserting CCL MEM START and loading one word

into an MB when it recognizes that the CSH CHAN CCYC latch is set. After starting the core write

cycle. the channel control loads the remaining MBs at a rate of one word every four clock ticks by

setting up the CCL CH MB SEL 1-2 lines to select the desired MB and asserting CCL CH LOAD MB.

MBox /3-60

At the same time the MBs are loaded by the channel control, the cache control state generator
advances from READY TO GO to the CSH time state branch to execute the cache channel cycle
because a request other than an EBox request (ANY REQ) is granted. The cache CHAN cycle is
executed to set up the MB WR RQ queue and to clear the valid and written bits in the cache directory,
if any valid entries are found in the cache. The MB WR RQ queue is set up at CSH T2 to remember
which MBs the channel is loading so that the core control can place these same words on the SBus data
lines during the core write cycle. As each word is written into core, the corresponding MB WR RQ is
cleared by the SBus ACKN pulse. At CSH T3, the contents of the cache are checked to see if any valid
words are in the cache (ANY VALID MATCH). If the cache does not contain any valid words, the
cache control returns to IDLE. However., if the cache contains some valid words, the state generator
advances instead to CHAN T4 and then to CHAN WR TS5, to clear the valid and written bits. From
CHAN WR TS5, the cache control time state generator advances to IDLE. While the channel and core
controls are busy transferring the words, the cache control will only grant the EBox cache cycle to read
or write the cache. If during this time the channel(s) makes another request the channel will also get the
next core cycle. The EBox can get a core cycle only when a channel request is not pending. As each
word is written into core, the associated MB WR RQ is clearedd and the next MB pointed to by the

MB WR RQ queue is selected. After the last word is written into core, another core cycle may be
started.

NOTE

When reading magtape in the reversed direction,

channel write operations are executed slightly differ-

ently; that is, memory is not started until all the

words have been transferred to the MBs. This is done

so that the words can be transferred to core in the

correct order.

3.4 CACHE USE LOGIC

The cache use logic (Figure 3-30) keeps track of the order in which the four cache blocks of a given

quadword line are used. Since there are 128 quadword lines, each containing four cache blocks (0, 1, 2,

and 3) in the cache, 128 entries must be maintained to keep track of the order in which all cache blocks

in the cache are used. Consequently, a use table containing 128 locations is employed by the use logic

to maintain the use history of the cache.

The cache use logic consists of two RAMs and a set of mixers. One RAM contains the use information

and is named the use table. The other RAM contains update information for the use table and is

named the lookup table (Refill RAM). The use table contains 128 locations, one for each quadword

line of the cache. The lookup table also contains 128 locations, but not for the same reason. The

lookup table contains entries for all possible history combinations as a function of the four cache

quarters, which turns out to be 128 entries. After the cache is initialized for full cache service, only 96

out of the 128 locations are required to provide the use history update information, because 32 com-

binations are illegal. Although 32 combinations are illegal after initialization, these combinations may

be encountered during initialization and are therefore accounted for in the lookup table.

The use table is five bits wide and is structured into the following three fields:

a. MRU: Bits0 and 1

b. ORDER: Bit?2

C. LRU: Bits 3 and 4

MBox/3-61

(CHX3)

| ADR 27-28 e e s

ANY VALID MATCH CSH JUSE IN 2-3-4 v

N T T CCH

CSH EBOX T2 DATA CLR T2 CSH csHuse © 2
B SEL LRU INO-1 o}

€sH T3 ANY VAL HOLD |MBC?2 S ADR T
- CSH3 D 1 SRS d

-RgADY TOGO CSH 2.3

. CSH3 AND 1.3 VALID MATC L?OK%P

LK ABLE
ek aprb-—o i

c @ CSH LRU 1-2 H (CHX 3
By | | 7

. |7

0

(CHX3) R

H J ¢ 2 0| wru
ADR 27-33 ADR 29-33 T B (LRU 1-2) £
ADR 27-33 g ADR 9 4

3

5

ADR|REG keSeg g7 1
5 2-6 :

L ‘ CSH REFILL RAM WR
P 127 | .

S UdE TABLE
INl 2-3-4Lo EBOX 1) [CSH 2-3

- 0x !

- GSHTEZ N & CSH USE HOLD
CSHB 0 4 i

-READY TO GO

e C5HB ‘

CLK

APR EN
!

REFILL WR RAM VMA 18-20

0 f 4

L1
USE TABLE

{CHX3)

ADR 27-33 A
e y I

o

R

oS EBOX T2 MRULR WY
PAGE 0K . R
ANY_VALID MATCH

R CSH USE, WRONE WORD RO Csh us VR T .
CSH DATA TLR T2 |CSHe — et T I

PAGE CYC CHX3 l
CCA ALL PAGE CY
e CLK _

=JEL.1NY!-“ c°

Figure 3-30 Cache Use Logic, Simplified Block Diagram

The Most Recently Used (MRU) field contains a 2-bit code to specify which cache was used most

recently. The LRU field contains a 2-bit code to specify which cache was least recently used. The

ORDER bit specifies the order of use of the other two cache blocks of a given line. A *“zero” in this

field indicates the order was ascending; a “‘one” indicates the order was descending. For example, if the

use table contained the bit pattern 00011, it means that the order of use is 0, 1, 2, and 3.

The source of the MRU code is either a function of the cache directory that yielcf;led a matched entry, or
the contents of the LRU field of the use table if no match exists. The source of the ORDER and the
LRU codes is the lookup table which is loaded at power up. ;

The lookup table is three bits wide and is structured into the following two f‘ields:

a. ORDER: Bit0

h. LRU: Bits| and 2

Collectively. the contents of the lookup table represent the refill algorithm of the cache. The refill

algorithm can be adjusted by changing the sequence of the bit patterns to bypass one, two, or three
cache quarters in any combination. Normally, the algorithm is set to use all four cache quarters

equally. Table 3-10 specifies the bit patterns and the sequence of these patterns for using all cache

quarters equally.

MBox/3-62

Table 3-10 Cache Refill Algorithm

Locations Contents

0-7 0 1 2 3 4 5 6 7

8-15 3 1 2 3 2 | 2 3

16-23 7 1 2 7 1 | 2 7

24-31 6 5 6 7 5 5 6 7

32-39 0 3 2 3 0 2 2 3

40-47 0 1 2 3 4 5 6 7

48-55 0 7 7 7 0 0 0 7

56-63 4 6 6 6 4 4 6 4

64-71 3 I 3 3 1 1 | 3

72-79 0 7 7 7 0 0 0 7

80-87 0 1 2 3 4 5 6 7

88-95 4 5 5 7 4 5 4 7

96-103 0 | 2 2 0 1 2 1

104-111 0 5 6 6 0 5 6 0

112-119 4 5 6 5 4 5 6 4

120-127 0 1 2 3 4 5 6 7

During normal operation the lookup table is addressed by the contents of the use table in conjunction
with a 2-bit code that specifies the cache directory that yielded a match, or a 2-bit code that specifies
the LRU cache block if no match occurred. When the lookup table is loaded (APR EN REFILL RAM
WR), the table is addressed by address bits 27-33, which are the same as those used to address the
cache directory. After the lookup table is loaded by the EBox at power up, a cache sweep instruction to
invalidate the entire cache must be executed by the EBox to initialize the use table to purge all illegal
bit patterns from the table. The illegal patterns for full cache service are those where the contents of the
MRU field is the same as the contents of the LRU field of the use table. After the use table is
initialized, it will contain “00 0 11"’ in every location, indicating that the order of use of each cache
LineisO 1 2 3,

3.4.1 Load Lookup Table (Refill RAM)
The lookup table is loaded by the EBox by executing the BLKO APR, E instruction. Each time this
Instruction is executed, one 3-bit word of data will be loaded into the lookup table. A total of 128 3-bit
words of data must be loaded into the table.

Each time the BLKO APR instruction is executed the EBox sets up the request as follows:

a. Loads VMA bits 18-20 with the data to be written into the lookup table.
. Loads VMA bits 27-33 with an address to select a location in the lookup table.

c. Asserts CLK EBOX REQ, APR EBOX READ REG, and APR EN REFILL RAM WR.

MBox /3-63

This sets up the conditions required for the MBox to service the EBox request to load one word into

the lookup table. If the cache control is IDLE, or when the cache control enters its IDLE state and if a
higher priority request is not pending (MB or CHAN request), the cache control will grant the EBox

request and start a cache EBox cycle to execute the request. This decision is made as the cache control

time state generator advances from IDLE to READY TO GO. At READY TO GO, the CSH EBOX

CYC latch is set and the address is gated from the VMA to the lookup table via the lookup table
address mixers. These mixers are set up by APR EN REFILL RAM WRto select the correct address.
The APR EN REFILL RAM WR signal also sets up the data input mixer for the lookup table. From

READY TO GO, the cache control time state generator advances to CSH EBOX TO, T1, and T2 in
sequence. At CSH EBOX T2, the CSH USE HOLD flip-flop is set to hold the address and data, and
¢'SH REFILL RAM WR is asserted to write the data into the addressed location of the lookup table.

From CSH EBOX T2. the cache control returns to IDLE and asserts MBOX RESP IN.

3.4.2 [Initialize Cache Directory and Use Table |

The cache directory and the use table are initialized at the same time by the cache clearer control after
the cache clearer is started by the EBox. In the cache directory, all valid and written bits are cleared; in

the use table. all entries are initialized to reflect the refill algorithm for full cache service. This means
that -he use table is initialized to specify a use order of 0, 1, 2, 3. |

NOTE

The use table can also be initialized to provide partial

cache service where one, two, or three cache quarters

are bypassed.

The cache clearer control is started by the EBox by executing a Sweep instruction (refer to Cache
Clearer Control Description) to invalidate all pages in the cache. |

[f the cache clearer control is set up to invalidate the cache for all pages, then the CCA INVAL T4 time

state is entered when a cache CCA cycle is executed by the cache control. One clock tick after CCA

INVAL T4, the use table data is written. The cache directory VALID and WRITTEN bits are also

cleared at this time. During the cache CCA cycle, the address for the use table is obtained from the

(C A register via the PMA; the address for the lookup table is the contents of the addressed location of

the use table concatenated with a 2-bit code that indicates which cache is selected (valid match is
forced) for the current cache CCA cycle. The data for the use table is the contents of the addressed

location of the lookup table concatenated with the 2-bit code that indicates which cache is selected
(valid match is forced) for the current cache CCA cycle. This arrangement of address and data selec-

tion will cause the following to occur, one clock tick after CCA INVAL T4

{. One of four quadrants, depending on which cache is selected (vélid match is forced), is
pointed to while one of 32 locations in that quadrant is addressed By the five bits contained

in the addressed location of the use table. |

9 The contents of the addressed location in the lookup table is writtén into the ORDER and
LRU fields of the addressed location of the use table. |

3 The MRU field of the use table will receive the code that indicateséwhich cache is currently

selected by forcing a valid match.

Corsequently, the MRU field of the use table of a given addressed location will be set to the cache

code for which a match is currently forced. Since the cache clearer address register is counted down

fror 777 to 000 in increments of one, each location will wind up with a code of 00 in the MRU field

and the ORDER and LRU field will wind up set with the contents of the Lookup Table location that is’

being addressed at this time which should be O11. ? |

MBox /3-64

3.4.3 Normal Operation

The use table is updated during a cache EBox cycle that is executing an EBox read or write request for
which the cache is to be used. If the cache contains a valid entry (ANY VALID MATCH), even

though the desired word may not be in the cache (-RD FOUND), the use table is updated by asserting

WR USE BITS one clock tick after CSH EBOX T2. If the cache does not contain a valid entry (-ANY

VALID MATCH), the use table is updated by asserting WR USE BITS one clock tick after CSH

DATA CLR T2. The major difference between these two cases, besides the timing, is the way the

lookup table is addressed and the data for the MRU field of the addressed use table location is derived.
For the case where a valid entry is found, ANY VALID MATCH is asserted, which causes the ANY
VAL HOLD latch to be set one clock after CSH EBOX T2. This inhibits the CSH SEL LRU gate to

make sure that the two high-order bits of the lookup table address and the data for the MRU field of
the use table is a two-bit code that identifies the cache that yielded the valid entry. This condition
satisfies the case where the desired word was not in the cache and the CSH DATA CLR time state are

entered to clear the data and update the use table. For the case where a valid entry is not found in the

cache, ANY VALID MATCH is not asserted, which causes ANY VAL HOLD to remain cleared after
CSH EBOX T2. This enables the CSH SEL LRU gate at CSH DATA CLR T1 to make sure that the
two high-order bits of the lookup table address and the data for the MRU field ofthe use table is a

two-bit code that identifies the LRU cache.

Figure 3-31 illustrates the current state and the next state of the use table as a function of the selected
cache. The selected cache may be the one that yielded a valid entry or the LRU cache. By using this
table, one may determine what the next state of a given use table location should be.

USEBITSSTATE TABLE

CURRENT NEXT NEXT NEXT NEXT

STATE STATE : STATE STATE STATE

CACHE CACHE CACHE CACHE

MRU | ORDER | LRU] use [mru|orDER]LRU] use [MRUJORDER]LRU| use [MrRU[ORDER|LRU| ust [MRU]ORDER!LRU

0 12 3 0 0 12 3 1 1 02 3 2 2 01 3 3 3 01 2

0 13 2 0 0 13 2 1 1 03 2 2 2 01 3 3 3 01 2

0 21 3 0 0 21 3 1 1 02 3 2 2 01 3 3 3 02 1

0 23 1 0 0 23 1 1 1 02 3 2 2 01 3 3 3 02 1

0 31 2 0 0 31 2 1 1 03 2 2 2 03 1 3 3 01 2

0 32 1 0 0 32 1 1 1 03 2 2 2 03 1 3 3 02 1

1 23 0 0 0 12 3 1 1 23 0 2 2 13 0 3 3 12 0

1 20 3 0 0 12 3 1 1 20 3 2 2 10 3 3 3 12 0

1 32 3 0 0 13 2 1 1 32 0 2 2 13 0 3 3 12 [o

1 30 2 0 0 13 2 1 1 30 2 2 2 13 0 3 3 10 2

1 02 3 0 0 12 3 1 1 02 3 2 2 10 3 3 3 1o, 2 o
or 2733 | 03 2 0 0 13 2 1 1 03 2 2 2 10 3 3 3 10 e

AUR 729 0 » 30 1 0 0 23 1 1 1 23 0 2 2 30 1 3 3 20 |0
2 31 o] 0 23 1 1 1 23 n 2 2 31 0 3 3 21 |0

2 o3 1 0 0 23 1 1 1 20 3) 2 03 1 3 3 20 ' 3
2 01 3 0 0 21 3 1 1 20 3 2 2 01 3 3 3 20 1

2 13 0 0 0 21 3 1 1 23 9 2 2 13 0 3 3 21 0

2 10 3 0 0 21 3 1 1 20 3 2 2 10 3 3 3 21 1 0

3 01 2 0 0 31 2 1 1 30 2 2 2 30 1 3 3 o1 | o2

3 02 1 0 0 32 1 1 1 30 2 2 2 30 1 3 3 02 1
3 10 2 0 0 39 2 1 1 30 2 2 2 30 0 3 3 10 2

3 12 0 0 0 31 2 1 1 32 0 2 2 31 0 3 3 12 0

3 20 1 0 0 32 1 1 1 32 0 2 2 30 1 3 3 20 1

3 21 0 0 0 32 1 1 1 32 9 2 2 31 0 3 3 21 0

|
CSH USE IN 0-1 _ . . L

I I | 1
LOOKUP

(ADR 0-4)
TABLE

0 1 e 2 3

¢] 31 32 63 64 93 94 127

Figure 3-31 Cache Use History Update Functions

M Box/3-65

3.5 CACHE CLEARER CONTROL

The cache clearer control (Figure 3-32) requests cache cycles to invalidate the cache and/or validate

core after it is set up by the EBox. When setting up the cache clearer control, the EBox specifies which

of these operations are to be executed and whether the operations are to be dorle for only one page or.
the entire cache. The cache clearer control consists of two binary counters (LINE and BLOCK) for

generating the cache address and a number ofcontrol flip- flops Collectively, the LINE and BLOCK

counters are referred to as the CCA register. The cache cleareris set up by the EBox when it executes a

sweep instruction. This instruction causes the EBox to issue a request to loadithe CCA register and

three control latches that specify what type of cache clear operation is to be performed (refer to EBox

load register and cache CCA cycle descriptions). Before the EBox issues the request to load the CCA

register, it must set up VMA bits 14-26 and IR AC bits 10-12 correctly. VMA bits 14-26 specify the

page for which the cache sweep operation is to be performed. When the entire cacheis to be swept, the

VMA does not have to be set up. IR AC bit 10-12 specifies the type of sweep operation thatis to be

performed. These bits are interpreted by the cache clearer control as follows: |

IR AC10: CSH CCA ONE PAGE

IR ACIl: CSH CCA VAL CORE

IR AC12: CSH CCA INVAL CACHE

When the EBox Requestis granted by the cache control, a cache EBox cycleis executed and the CCA

register and the control latches are loaded at CSH EBOX T1. The CCA reglster receives VMA bits

14-26 and the control latches receive IR AC bits 10-12. The CCA register is loaded by CCA LOAD

and the control latches are loaded by CCA SEL 1. Both these signals are true for only one clock period
when CSH EBOX T is asserted. At the same time the CCA register and the control latches are loaded,
the CCA REQ latchis set and the line and block counters are loaded with a count of 777 (all nine
counter bits are set to “‘one”’). The line and block counters are loaded because both CCASEL 1 and 2
are “zero” at CSH EBOX T1. On the next clock tick both CCA SEL 1 and 2 return to “one’ to hold
the counter contents and the MBox asserts MBOX RESP IN to inform the EBox that the cache clearer
controlis set up. The EBox will then continue with executing the program. The cache clearer control
will remain in this initialized state until the cache control grants a cache cycle to the cache clearer

control. If no other requests are pending, the CCA request is granted and a cache CCA cycle is
executed (refer to cache CCA cycle description). While the cache CCA cycleis executed, one of several
different operations may be performed, depending on what type of cache,sweep operation was
requested and what is foundin the cache directory.

At the end of a cycle, the CCA CYC DONE flip-flopis set to decrement the lme or block counter and
to check if the counter generatcd a carry (CCA CRY OUT). The counter generates a carry when the
cache clearer has finished scannmg the entire cache. The block counter is decremented to select each
block of a given line when sweeping the entire cache. The carry from the block ¢ounter decrements the
line counter. The line counter is decremented to select each line when sweeping the cache for a given
page. The counters are decremented because CCA SEL 2 is forced to zero and CCA SEL 1 remains in
the one state when the CCA CYC DONE flip-flop is set. This flip--flop remains set for one clock
period. When the counter overflows, CCA CRY OUTis asserted causing the CCA REQ flip-flop to be
cleared when CCA CYC DONEis set. This informs the EBox that the cache clearer has completed the
cache sweep operation.

3.6 MB CONTROL

The MB control (Figures 3-33 through 3-35) moves datain and out of the MBsin response to gating
function from the cache control, core control, or the channel control. Two request queues are

employed to facilitate moving data in and out of the MBs in an orderly fashion.

MBox/3-66

L
9
-
€
/
X
0
gN

PMA 14-35

14 35

PMA SEL PMA (PMA3/4)

LT T BT
APR EBOX

LOAD REG {SH EBOX T

CSH LOAD REG CCA 14 17 18 26 27 35
CSH6 A T psEBOX T | J pma2 o240 : PAGE (PMA 1/2) ECCA

APR EBOX CCA '
l_

cca
VMA 14-27 ; REQ

—

-MR RESET |MBX1 ,j '

—

) CCA SEL1 - : 1_)—}Msm

CCA SEL 1 27 . 3334 35

__Msm —
MBX1 [} 11—

1

. CCA 1z—1 LINE BLOCK | CCA CRY 0UT MB X1

! CONT 2=+1 COUNT COUNT CLK
; 3=HOLD (PMA2) (PMA2) | flMqu c o
! CCA SEL 2 :

. MEX 1 .

~APR EBOX CCA

-MR RESET i ;L_ .

CSH CCA CYC | CCA ALL
PAGES CYC

I8 ACiO b \ CSH CCA ONE PAGE ¢ Cr—Cik

MBX1

—ic 0

IR ACH o A1 CSH CCA VAL CORE

M8 X1 -ANY WRITTEN MATCH cea

——C) - cYc
~ANY VALID MATCH DONE

CCA T3

IR ACI12 0 e CCA INVAL T4

MBX1

¢ 0 CSH CCA INVAL CSH

—

Figure 3-32 Cache Clearer Control, Simplified Logic Diagram

SBUS DATA_

CH BUF

C BUS SEL

0

c BUS—‘—

CH BUF IN

CCW MIX

MEM TO C

ACKN PULSE SEL 1-2

MEM TO CACHE_

MB WR RQ CLR MB SEL ‘ -
HOLD

(MBX2)

CCL CH MB

SEL 1-2

MB WR

RQ ANY l—— CHAN READ PT IN

CORE WD ©-3 COMING *OUTPUT _

MB @-3 SEL CODE /= TMTX
WR RQ |——»MB REQIN SENLAE:—z // MB(,,?g’Q,Z,f X

CSH TO MB WD ¢-3 QUEUE :

TM1 (MBX2)

C TO MB
. —* w5 0-3 Ra * MB@
LOAD C TO MB QUEUE ‘IS?JCQE .

HOL.D N MB2

(MBX6)
*GATING FUNCTION mB3

. MB IN b YNPUT T :
ASSERTING FuncTio] "5 7 SEL CODE__/ *MB IN MIX \

(MB21) / (MBB4).
g1 2 i3 |4 5 |6 |7
}—J —4

*These functional names are ossigned CACHE DATA
for the soke of the presentation, they AR
are not octual signal mnemonics.

MB CH BUF —————

NOTE: MEM DATA IN

Refer tofigures 3-34 and 3-35. CoW MIX

10-1524

Figure 3-33

M Box/3-68

MB Control, Functional Block Diagrafln

CSH CHaN {YC
CHAN WR CYC

SIL Cman YO MEM [MBX2

PAGE REFI.. "8

~CSm CHAN CY

MEM START

€ CACME wR CY(
S

-CSn WRITEBACK (YC

‘

CSH TO MB WD B |

& SEL 14

—8 SE._2A

—We SEL 1A

MB SEL 2a

MB 8 WR RQ _‘

1

:@
CCw wO @ REQ

{
|

L5K WO1 vaL B
i TO MB Witon w €S TO MBWD {

COREWD # COMING

wax2}Witcew wpiREQ b HEEDED

CSH W02 vAL B

CSMwp 2 wi

CORE WO1 COMING.

Mexz

[1

T

Mgt WR RQ

CSH WO 3 vaL 8
— CSH 7O WB WD 3

CSHWD 3 WR

WD 3 NEEDED

MB 3 WR RQ

~MR RESET

CSM MB CYC

Q13

M8 SEL HOLD FF i

~CSHM8 O

N[wercosor I"" | _—
jRa e ey

;“1_/_1 ez |

M Ine 150 W6 REQ

8 REC & LOW

MEMAT RC

i ME WR RQ SNY

p- eA

-CORE 3ATA vALD A

i
N W RO LR NXT ‘la B

Im

D1 i

cn»-fit [
ME WR A

BRIQRITY

NCODER

{waxz)

w8 SEL 2 EN

MB WR RO Pt i
M8 SEL1 EN

R}

PoCuK

5 ¥ H

MB SEL 1t

CLL CH MB SEL ¢

o I3 =

1001323

Figure 3-34 MB WR RQ Queue and

MB SEL Logic, Simplified

Logic Diagram

MBox/3-69

R % _ _ i

CSH TO ¢ TO MB

me wo o [JwooeroI o |

MBX 3 ANY .C_A{_‘.HE TO MBMC_OVIST’

CLX B

1w |
5 TO wB LOAD . -~ ;

T fl%lfl ap} -CACHE 10 M8 3¢ | :

e RESET JMEX3 CSH TO c To M8 At ;
MBWO L fp (PWRLRO . CCi CH MB SEL 2 el 2 ‘

(ORE ADR34 | B 2
MBX 3 .

GLK. L DE CADER
L =C

ob ~MB© HOLD IN_

PRIORITY
] -@1&91 ENCODER b MB 1 HOLD IN_

MBX2) 1 cacHE TO MB 35 b ~MB 2 HOLD IN_
CSH TO C TO MB L e 1 _MB 3 HOLD IN
MB WD 2 WD 2 RO 1 1p- -

- {0 i 02 _
PA3S) :

MBX3 CCL _CH MB SEL 1 | 3 SEL 1 (MBXE)
[l B—— | | H

cun) CORE ADR 35 | | a |

i 5 EN

— HOLD]

g — e 7

csH TO C TO MB
wD 3 RQ

Me wo3 I (EYRCRR s CACHE 10 MB T3 |

MBX 3 1
ONE_WORD WR 10 |,

CLk 1e CCL CH LOAD MB_ |

H CORE _DATA S[S .
T T wex3} HOLD VALID 1 -~ 4

CSH E30X CYC L PRIORITY 5 MBX6
ENCODER Lde

APR E30X S BUS C!AG CLK
EBUXDIAGCYC] 7 =c |

~-CHAN CORE_BUSY) L1
~MTR 2CA WRITEBACKT T e \\ ~D2 , MB IN SEL 4I: CHAN BUF TO MB L M 04

) =103 g ’ MB IN SEL 2
-CHAN_CORE BUSY ONE WORD WR CYC Q2 ; -

€ CACIiE WR CYC MBZ! CORERD IN PROS 154 2CACHEWRCYC] / T MB IN SEL !
D5

CHAN STATUS TO. M.B.} D6

D7

H

core RONPROG [1]

MB?4

cikle
101528

Figure 3-35 CTOMB WD RQ Queue, Load Pulse Generator,

and MB IN Selector Simplified Logic Diagram

3.6.1 MB 0-3 WR RQ Queue

The MB 0-3 WR RQ queue is loaded to remember which MB received data s0 that the data can be
moved to the desired destination in the most expedlent manner. As the contents of an MB are trans-
ferred, the associated MB 0-3 WR RQ in the queue is cleared.

The MBs may receive data from the following sources:

1. AR - While a cache EBox cycle is executed to write one word.

5. CACHE - Durmg a cache page refill cycle, a cache writeback cycle or during a cache
channel cycle thatis executing a read request. E

c. SBUS - During a core read cycle that was initiated by a cache page refill cycle, a cache
EBox cycle, or a cache channel cycle.

4. CH BUF or CCW BUF - Words from the CH BUF or the CCW BUF are moved into the

MBs by the channel control independently.

MBox/3-70

‘The MB input selector and load pulse generator control data selection and loading of the MBs.

Data that has been loaded into an MB can be transferred to the following destination:

a.

c.

AR - While a cache EBox cycle is executed to read one word or the words that are non-

valid in the cache from core. Only the first word is transferred to the AR; the remaining

words are transferred only to the cache if it is not a “ONE WORD RD”.

Cache - While a cache EBox cycle is executed to read one or more words from core. Only

the first word is moved into the cache during the cache EBox cycle. The remaining words are

moved into the cache by the cache MB cycle.

SBUS - During a core write cycle that has been initiated by a cache writeback cycle, a

cache EBox cycle, or a cache channel cycle.

CH BUF or CCW BUS - Words are moved from the MBs to the CH BUF or the CCW
BUF by the channel control.

PT - During a cache page refill cycle.

The MB OUTPUT selector and a number of mixers control the output transfer of the data. The MB

0-3 WR RQ queue is loaded whenever the M Bs are loaded. The queue is loaded to:

a. Remember which MB received the word from the AR for a one-word write or an SBUS

DIAG operation (refer to cache EBox cycle description).

Remember which MBs will receive the valid or written word from the cache (CSH TO MB

WD 0-3). These words will be moved into the MBs by the CSH TO MB time states. At the

same time the MB 0-3 WR RQ queue is loaded, the CTOMB WD 0-3 RQ queue is also

loaded to provide the correct cache address (CACHE TO MB 34-35) and MB load pulse

(-MB 0-3 HOLD). Written words are moved into the MBs for writeback operations to

make room in the cache, or to validate core. Valid words are moved into the MBs for page

refill or channel read operations (refer to cache writeback, cache page refill, and cache

channel cycle descriptions).

Remember which MB received a word from core via the SBus during a core read cycle (refer

to cache EBox, cache MB, and cache page refill cycle descriptions).

Remember which MB received a word from a channel (refer to cache channel cycle

description).

The appropriate request stored in the MB 0-3 WR RQ queue is cleared whenever the contents of an

MB are transferred to the desired destination. The appropriate MB 0-3 WR RQ is cleared when:

a. The first word that comes in from core during a core read cycle is taken by the EBox (moved

into the AR). Refer to cache EBox cycle description.

A word from the MB is written into the cache (refer to cache EBox and cache MB cycle

descriptions).

Core has accepted a word (by asserting SBUS ACKN) during a core write cycle (refer to

cache EBox and cache writeback cycle descriptions).

MBox/3-71

d. The channel control selects an MB to read its contents (refer to cache channel cycle

description).

e. A word from the MB is written into the page table (refer to ¢achc page refill cycle

description).

Except during channel read operations, each time an MB 0-3 WR RQ is cleared, the next highest

priority (ascending modulo 4) MB 0-3 WR RQ in the queue causes the corresponding MB to be

selected to get ready for the next transfer. Coreis freed (-CORE BUSY) only after all MB 0-3 WR

RQs are cleared (-MB WR RQ ANY).

3.6.2 MB Input Selector and Load Pulse Generator |

The source for loading the MBs is selected by the MB IN mixer. This mixer is controlled by the MB IN

SEL 1-2-4 control code which is generated by a priority encoder. Besides selecting the desired data

source for the MBs, this control code is also used to select the appropriate logic for generating the MB

load pulses (-MB 0-3 HOLD IN). The association between the MB SEL 1-2-4 code, the MB IN mixer

data connections, and the functions that assert a particular code and thereby the desired data source is

definedin Table 3-11.

Table 3-11 MB Input Functions

MB IN SEL 1-2-4

CODE i

ASSERTING FUNCTION (MIXER INPUT) DATA SOURCE

1 2 4 |

WRITEBACK-PAGE REFILL- X 0 0 CACHE DATA

CHAN READ ;

ONE WORD WRITE (-CACHE) 010 AR

OR SBUS DIAG CYC

CHAN WRITE DATA 1 1 0 MB CH BUF

CORE READ X 0 1 MEM DATA IN

CHAN WRITE STATUS X 1 1 CCW MIX |

X = ARBITRARY

Besides controlling the MB IN mixer, the MB SEL 1-2-4 code also selects the desired logic via a set of

mixers for producing the desired MB load pulse (-MB 0-3 HOLD IN) at the correct time. The associ-

ation between the MB SEL 1-2-4 code, the signals that specify which MB is curréntly to be loaded (MB
Pointer), and the gating function that generates the pulse is defined in Table 3-12.

MBox/3-72

Table 3-12 MB Load Functions

MB IN SEL 1-2-4

CODE

1 2 4 MB POINTER GATING FUNCTION

X 0 0 CACHE TO MB 34-35 CACHE TOMB T3

01 0 PMA 34-35 ONE WORD WR TO

1 1 0 CCL CH MB SEL 1-2 CCL CH LOAD MB

X 0 1 CORE ADR 34-35 CORE DATA VALID -1

X 1 1 CCL CH MB SEL 1-2 CCL CH LOAD MB

X = ARBITRARY

3.6.3 CTOMB WD 0-3 RQ QUEUE

The CTOMB WD 0-3 RQ queue is loaded when data is to be transferred from the cache to the MB

during a writeback, page refill, or a channel read operation. This queue is loaded to remember which

words are to be transferred. The queue also serves as a source for generating the correct cache address

(CACHE TO MB 34-35) and MB load pulse (-MB 0-3 HOLD). As each valid or written word is

moved into the appropriate MB during the CACHE TO MB time states, the associated CTOMB WD

0-3 RQ in the queue is cleared. Clearing a CTOMB WD 0-3 RQ causes the next highest priority

CTOMB WD 0-3 RQ to generate another address and MB load pulse. When the state generator

advances through the CACHE TO MB time states again. This operation will continue until all

CTOMB WD 0-3 RQs in the queue are cleared.

3.6.4 MB Qutput Selector

After an MB is loaded, the contents of that MB may be transferred to the desired destination by setting

up one or more mixers.

a. The MB OUT mixer selects the desired MB in response to the appropriate MB SEL 1-2

code. The MB SEL 1-2 code is a function of the contents of the MB WR RQ queue, unless

the channel is executing a read request, in which case the channel control selects the MB it

needs to read. The selected data is then distributed to the SBus, the CH BUF IN mixer, the

MEM TO C mixer, the CCW mixer, and the PT IN mixer.

b. The CH BUF IN and CCW mixers are controlled by the channel control when data is

transferred from the MB to the channel.

¢. The MEM TO C mixer is controlled by the cache control to direct the MB data to the cache

during a core read cycle to refill the cache.

d. The PT IN mixer is controlled by the cache control to direct the MB data to the page table

during a core read cycle to refill the page table.

3.7 CORE CONTROL

The core control starts and executes core read and write cycles in respponse to requests from the cache

and channel controls. Since either control may request to read or write up to four words, the core

control must keep track of which word has been transferred. To this end the core control employs

counters to keep track of the ACKN pulses and CORE DATA VALID pulses (Figures 3-36 and 3-37).

MBox/3-73

MEM ACKN A

-MR RESET

—(A A BLAEE AALK IR~ e m— A

we mac3 p- J:acjs“"" A THAST COMING , ACKNPULSE_ 1o B CONTROL
I macH—1o 1 f— ' 1 wmacs }—{o 1

|
-

MBC3, MBC3 b MBC3 MEM ACAB
CLK CLK o ———t——

¢ c i 1 CLK ¢ @

A CHANGE COMING

8 CHANG] MEM STARTac}—o 1 CHANGE COMING Ew_sTaRT cir [—n

RQ @~ PULSE

M8C3 RO B-3 N FonT ke—tcontr beed

Cile o - mec, (MBC4)

r SHIFT

‘ D 1

!
i

; MBC3 ! MEM START A

é _J | MBC4 | ;
3 N

] :
; PHASE HGLD

S P |

PHASE CHANGE COMING
|

HOLD T2 L !

[CYCLE wsca——lo 1 i MEM START B

i s START l

Te ‘—J) T2 ot D9 { ET MBC4 w
0 . ° ! {NOTE} € CORE RD RQ | | —ic @ MEM START AC

CLK CLK CCL CHAN STARTLRie p] =Hc o ——————JLK
RQ HOLD

LS PR =1 ¢ FF

I RO2-3 i o 1 MEM RQ ©-3

MBOX CLK i I
; Mac4 :

CLK A PHASE COMING A 8 A RO noLO/seus |,
ADR HOLD

PHASE HOLD MEM RD RO IN N MEM RD RO

PHASE CHANGE COMING | |wBCa

A CHANGE COMING l l ! i I I b—-c @

8 CHANGE COMING —] ! | l l MEM WR RQ IN o 1 MEM WR RQ

T2 I l
MBC4

—c @

T ! l :
J.__[__l PMA 14-33 L 5 BUS B-1 ADR 14-33

T2 ;
Lo iwTos

T3 _J l q»—-ic)

T4] I :
e T e e e s sBusapr3es [S BUS #-1 ADR 34-33

MEM START SET PMEM START A
10-1%27

NQTE

Time slate chain TO- T4 18 1deaiized ond doas not

reprasent ochct 10giC.

Figure 3-36 Memory Start Control and

Acknowledge Pulse Counter,

Simplified Block Diagram

MBox/3-74

TO MB CONTROL
"

NOTE- DATA VALID -1 1S USED INSTEAD

CORE

w0 0-3

COMING

—

BUT IS DELAYED OWE CLK TICK

IN THE M8 CONTROC{SEE MDY

(CSHE)
CSH WR =

DATA ROY {

{CSHE)
DATA DLY 2 B3 DATA DLY

X

ENABLE DEC
MBX21 . coRE BUSY 1A

CORE RO IN PROGPl

MEM DATA
CORE DATA

YLD A) VALID -

MEM DATA
]

VALID BchLLK !
;

1{MBC4) E i !

i A CHANGE ! { ;i COMING bd (MBC3) |

|

B CHANGE
COMING

¥

CACHE TO MB T2 :

RD PAUSE 2ND HALF b)"_“CORE ADR 34 -38 RQ 0-38 SORE ADVANCE COUNT c MEM START ROi

VALID |
CTRL !:

COUNT MBc4) |j

1

L
RQG-38]

CSH CHAN CYC A 'MBC 40R

:

(MT24;

.
SBUS ADR 34 - 35

i SBUS ADR 34- 135

cLk

RQ HOLD

t

(MTo4)
i

RQ 0-3 IN

e MEM RQ 0-3

cLx I ,
i

RO HOLD

1G-1528

Figure 3-37 Core Data Valid Pulse
Counter, Simplified Logic Diagram

MBox/3-75

The SBus control dialogue to start and execute a core cycle is synchronized with the SBus clock to

minimize bus latency. Because the propagation time of the SBus control signalg is less than the SBus

clock period (four MBox clock periods), a control signal generated at one end of the SBus can be

sensed at the other end without the need for synchronization logic. This speeds up the control bus

operation. To further speed the operation of the SBus, two sets of SBus control signals are used. One

set is synchronized on the A phase and the other on the B phase of the SBus ¢lock.

A core cycle is started by asserting SBus drive signals in the following manner;

a4 MEM START A or B is asserted and held. MEM START A is asserted if phase A of the
SBus clock is coming when the core cycle is ready to be started. However, if phase B is

coming when the core cycle is ready to be started, MEM START B is asserted instead.

b. MEM RD RQ or MEM WR RQ is asserted and held, depending on whether a read or a
write cycle is to be initiated. Both MEM RD RQ and MEM WR RQ are asserted to execute

a read-pause-write cycle. |

¢ MEM RQ 0-3 are asserted and held to specify which words (and ;how many) are to be
transferred.

d. MEM ADR 14-35is held to address core. Bits 34 and 35 point to the fword to be transferred
first. Bits 14-33 point to the quadword (page and line).

;

The bus drive signals mentioned above are held by the MBox core control and are transferred to the

SBus as long as MEM START A/B is set. Core memory responds to SBUS START A/B by asserting

SBUS ACKN A/B during core read and core write cycles as each word is addressed if the address is
valid and no address parity error is sensed. Core memory effectively addresses each requested word,in

ascending modulo 4 sequence, starting with the first word requested. Afterieach requested word
(MEM RQ 0-3) is acknowledged with an SBUS ACKN pulse, MEM START A/B is cleared, allowing

core memory to terminate its cycle after placing the last word on the SBus data lines. The acknowledge

pulses are counted by the acknowledge pulse counter. If the number of acknowledge pulses do not

correspond to the number of words requested, MEM START A/B is not cleared and the NXM Error

flag is set. Reception of the acknowledge pulses also influences the operation of the M B control during

a core write operation to transfer the contents of the appropriate MB to the SBus data lines.

During core read operations, core memory asserts SBUS DATA VALID A /B as each word is placed

on the SBus data lines. The MBox core control waits two MBox clock ticks after receiving SBUS

DATA VALID for the data bus drivers to stabilize before loading the data into the appropriate MB.

Another core cycle cannot be started (core remains busy) until each requested word (MEM RQ 0-3) is

received and moved out of the M B into the cache or the channel data buffer. DATA VALID pulses are

counted by the core data valid counter which drives the MB control to load the appropriate MB and

the MB 0-3 WR RQ queue. Loading the MB 0-3 WR RQ queue causes an MB request to be initiated

to move the word from the MB to the cache. The contents of MB 0-3 WR RQ queue select the MB and

address the cache (refer to MB control description).

3.7.1 SBus Dialogue Synchronization | :

The SBus uses two sets of START, ACKN, and DATA VALID lines. One set is synchronized with the

A phase and the other with the B phase of the SBus clock. The period of the SBus clock is four MBox

clock periods. By synchronizing one set of bus dialogue signals on phase A (trailing edge) and the other

on phase B (leading edge) these signals can be placed on the bus two MBox clock periods earlier than

would otherwise be possible. This, therefore, reduces the bus latency by two MBox clock periods.

MBox /3-76

Since MEM START A or B, depending on which phase is coming, can be asserted when the cache

control time state generator enters one of several time states, a need exists for holding the time state for

one tick to wait for A or B phase coming. Otherwise, the state generator may miss A and B phase

coming.

3.7.2 Acknowledge Pulse Counter (MBC4)

When memory is started (MEM START A /B is asserted) to initiate either a core read or write cycle,

the Acknowledge Pulse counter (RQ 0-3A), which is a shift register, is loaded with a bit pattern (RQ

0-3 IN) that specifies which words (and how many) are to be transferred. This is the same bit pattern

that is transferred to core memory via the SBus RQ 0-3 lines. The counter then initializes itself to shift

out all leading ‘‘zeros” if any (Table 3-13). When the first acknowledge pulse comes in, the leading

“one” is shifted out of the counter. After each acknowledge pulse shifts out the corresponding word

request (RQ 0-3A), the counter again shifts out any leading “‘zeros’ to position the next word request

in the most significant position so that it can also be shifted out when the next acknowledge pulse

arrives. This is repeated until all requests (RQ 0-3A) are shifted out of the counter. At the same time

the last request is shifted out MEM START A/B is cleared.

Table 3-13 is the Acknowledge Pulse counter initialization (shift RQ 0-3A until RQ 0A = 1) Truth
table.

Table 3-13 Acknowledge Pulse Counter Initialization Truth Table

RQ 0-3 IN RQO3A

o123 0123

1 000 1000

0100 1000

1100 1100

0010 1000

10160 1010

0110 1100

1110 1110

0001 1000

1 001 1 001

0101 1010

1101 1101

0011 1100

1 011 1 o11

0111 1110

1111 1 111

MBox/3-77

3.7.3 Data Valid Pulse Counter
5

When memory is started (MEM START A/B s asserted) to initiate a core read cycle, the Data Valid
Pulse counter (RQ 0-3B) is loaded with a bit pattern (RQ 0-3 IN) that specifies which words (and how
many) are to be transferred and the Core Address Counter (CORE ADR 34-35)is loaded with bits 34

and 35 of the MEM ADR, which specifies the word that will be received first. The Data Valid Pulse
counter is a shift register and the Core Address counter is binary up/down counter. RQ 0-3 IN and
MEM ADR 34--35 are also latched and transferred to core memory via the SBUS RQ 0-3 lines and

SBus A DR 34-35 lines, respectively, to specify which words are to be read and the order in which they
are to be transferred. RQ 0-3 IN is derived from RD NON-VALID WDS or RD PMA SINGLE when
the core read cycle is initiated. MEM ADR 34-35 is derived from PMA 34-35 or from RQ 0-3 IN,
depending on which cache cycle initiated the core cycle. When the EBox requests a word and the word
is not in the cache, or the cache is not to be used, the cache EBox cycle initiates a core read cycle to

read the words that are not valid in the cache or read a single word. For this case, MEM ADR 34-35 is
produced from PMA 34-35, which points to the word the EBox requested. If, however, a cache page

refill or a cache CHAN read cycle initiates the core read cycle, then MEM ADR 34-35 is derived from
RQ 0-3 IN to generate an address that points to the first word, in ascending modulo 4 order, that is to

be transferred. This is illustrated in Table 3-14. |

Table 3-14 MEM ADR 34-35 Derivation Truth Table for Page Refill
and Channel Read Cache Cycles

RQ 0-3 IN MEM ADR

0 1 2 3 34-35

1 X X X 00

0 1 X X 01

0 0 1 X 10

0 0 0 1 11

X = ARBITRARY

After the Data Valid and Core Address counters are loaded, they initialize thejmselves automatically.
The counters initialize themselves as follows: ?

.. Core Address counter decrements until its content is 0.

b. The contents of the Data Valid counter are rotated to the left one position for each time the

Core Address counter decremented, for example: f

RQ 0-3IN CORE ADR RQO-3B CORE ADR '

0123 34 35 0123 34 35

1100 01 1001 00

MBox/3-78

Table 3-15 illustrates how RQ 0-3B is rotated and CORE ADR is decremented until it is zero for the

Core Data Valid counter initialization (INT COMP) operation for page refill and channel read cycle.

Table 3-15 Core Data Valid Counter Initialization Truth Table

RQO0-3IN | CORE ADR RQ0-3 B CORE ADR

0123 34 35 0123 34 35

e

=
B

=
o

B

=
R

=
I

=
=

 T

=

T

S

R
o

Y
<=
 S

S

G
I
p
C
N

'
—
"
—
"
—
"
'
—
“
—
‘
"
'
—
"
—
"
—
"
—
“
—
"
—
‘
O
O
O
O
O
O
O
O
'
—
"
—
"
—
"
—
"
—
"
-
“
—
"
—
‘
O
O
O
O

_
—

O
O

O
O

=
0
0
0

0
=
~

0
0
~

0
O
=
-
0
=
~
0
0
0
0

O

=

0O

0
O

=
0
0
~

Q
0
O
—
m
Q
O
m
m
m

0
~

0
0
—

0
0
—

0
0
0

=
0

—
0
O

=

e

e

e

e

e
l

e

b

e

b

g

e
t

e

e

b

b

b

b
l

b
t

b
k

b
k

e
k

h
e
d

e

b

e
l

e

i

e
k

e
t

e

—

=

e

O

e

=

=

O
O

=

=

O
~

0
0
0

0
0
0

=
=

O
O
0

0
0
0
—
0
O
0

b
t

b

e

e

e

O

e

O

=

=

O
O
0

=

=

O

=

0
0
0
~

O
O
0
~

=
0
0
0

0
0

s

=

e

e

O

O

=

=

0
0

=

=

0
0
0

—
~

0O

=

=
0

—
=
0
0
0
0
~
0
0
0

=

e
l
e
i
e
l
e
l
o
e
l
o
l
o
B
o
l
a
o
l
o
l
o
l
o
R
o
N
o
N
o
N
o
N
o
N
o
N
o
N
o
N
o
l
e
o
N
o
l
o
N
o
N
o
N
o

o
l

 o
o
l

(
=
l
e
e
l
e
l
o
l
e
l
e
l
e
N
o
l
o
l
o
B
o
B
e
l
o
N
o
l
o
N
o
N
o
N
o
N
o
N
o
N
e
o
N
o
N
o
l

o
l
 o
l
 o
l
 o
l
l
o
l

 o
o
l

 o
)

When the Core Address counter reaches zero, the initialization phase is complete (INIT COMP) and

CORE RD IN PROG is set. At this time, MEM ADR 34-35 is loaded into the Core Address counter

again. The operation modes of these counters are also changed at this time to count the SBUS DATA

VALID pulses. The Core Address counter is set up to increment rather than decrement the core

address and the Data Valid counter is set up to shift instead of rotate left every time an SBUS DATA

VALID pulse is received. Leading zeros are automatically shifted out during this operation. When the

last request is in the RQ OB position of the counter and the last core data valid pulse has come in,

CORE RD IN PROG is cleared. However, core remains busy until all the words have been moved

from the MBs to the Cache, page table, or channel, as the case may be.

MBox/3-79

After the SBUS DATA VALID pulseis received, the M Box core control waits two clock ticks before it
triggers the MB control to transfer the data from the SBus data lines into the appropriate MB. This
delay is provided by the two CORE DATA VALID time state flip-flops. The correct M B is selected by
CORE ADR 34-35 from the Core Address counter and the load pulseis generated at CORE DATA
VALID time. At this same time, the contents of the Core Data Valid counter are shifted left to shift

out the request and the Core Address counter is incremented to select the next MB Any leading zeros

that muy develop are automatically shifted out. Each time a leading zero is shlftcd out, the Core
Address counter is also incremented to point to the next MB.

The MB 0-3 WR RQ queue in the MB control is set by CORE WD 0-3 COMiNG at CORE DATA
VALID -2 to remember which MB was loaded. From the MB, the data may be moved to the cache

(sometimes the AR) to the page table or the channel, depending on which cachecyclc initiated the core
read cvcle.

Under certain conditions the core control operates slightly different for trdnsferrmg the first word than
it docs for transferring subsequent words. This difference liesin the fact that the first word may have to
be traunsferred to the AR in the EBox if the core cycle was initiated by a cache EBox cycle. To satisfy
this requirement, the core control employs the following three special time state flip-flops: CSH WR
DATA RDY, DATA DLY |, and DATA DLY 2. When the first word comes in, these time states are
triggered by the CORE DATA VALID state. They will not be triggered as subsequent words come in
because E CORE RD RQ is cleared after the first word is transferred to the AR. Primarily, the
purpose of these time states is to ensure that the EBox takes the data. These time states also enable the
dl‘lt) check logic for the first word. Normal]y, the EBox will take the data (when CLK EBOX SYNC
D is asserted) dlrcctly from the SBus via the MEM TO C mixer. However, if the EBox does not take
the data when it arrives, the EBox must then take the data from the MB into which the datais moved
in anv case. In either case, the datais moved into the cache only when the datais taken by the EBox.
All subsequent words will be moved into the cache by initiating a cache MB cycle.

3.8 CHANNEL CONTROL

The channel logic in the MBox contlnuously scans the RH20 Massbus control]ers A given controller
is selected when its select line (0-7) is asserted. After being selected, the controller can issue con-
trol /data requests. Since the MBox channel logic will remember which controller was selected at a
given time, it can identify and process requests from all eight channels.

3.8.1 Timing Logic

The timing logic (Figures 3-38 and 3-39) generates the basic timing signals for the MBox channel
control logic and the CBus select signals for enabling the RH20 Massbus controllers in a specific

repetitive sequence. The timing logic includes a state generator, a scanner, a shift register, and a

decoder.

The state generator, which is formed by a shift register with some control and feedback connections,

generates the basic time states (T0-T3) for the channel control. Upon initialization (MR RESETis

asserted), the state generator is synchronized with the EBox clock (CLK A PHASE COMING) After
the initialization sequence, the state generator continues generating the TO-T3 time states in synchro-

nism with the MBox clock.

The scanner, which is formed by an arithmetic logic unit (ALU), a 1-bit Shlft register, and some

Exclusive OR and AND function feedback logic, generates the count sequence defined in scanner

count sequence truth table shown in Figure 3-38.

Both the ALU and the shift register are cleared when the machine is initialized (MR RESET is.
asserted). After initialization (MR RESET is negated) and after the clock is started, the scanner

advances from zero and continues through its prescribed sequence. .

MBox/3-80

cLx 8 7 0 -2
|
1

I SEL 4 B EN SEL4 B SEL4 C SEL4 D SEL 4 £

! REGISTER |SEL 2 B EN _|REGISTER |SEL 2 B_| REGISTER| SEL 2 C REGISTER | SEL 2 D SEL 2 € 3

| {CHCS) (CRCE) {CRC6) {CRCE :
i - SEL| B EN SEL1 B SEL1C SEL‘ D SEL1E | CHANNEL CONTROL

] | | LOGIC SELECT

] SEL 4 A (CHCS) | [LinES

SEL2 A l@ CLx CBUS SEL @ E 14 { {ADR FOR RAMS!
o T - . i

SEL 8 A l seL 8 A CBUS SEL t E J
SEL 4 A — 8 — CBUS SEL 2 E

SEL 4 A
SEL 1 & 4 {CBUSSEL 3E_ | RH20 MASSBUS

! DECODER © + CONTROLLER
SEL8A A 2 SEL2 A i cres) [COUS SELSEL Foe ket Lines

d I

SEL4A)i ; seLia | cBUSSEL SE,
US SEL &SEL 2 A , B P |CBUSSEL SE_

SHIFT T |cBus SEL 7 ESEL1A 1 REGISTER. ° If‘ >
(CHCS) 31“*3’ ?Hé(;AD .

: : PIN—

i i 2:3IN—-3
: i 3:40LD

} ‘ SCANNER
i | COUNT SEQUENCE

CHZ MR RESET) ? “sla 2 1 se.
’ i

LOAD olz o0 o =z

co0lo o i

DIAG LOAD | 00 v oi2
FUNCT 070 |

ojo 1t 11

TIMING BLOCK T3 l—l fl "0 ‘1 0 o a

‘ T2 i ojt O v 5! i n r-l_ Pt o 0 ci g

; ; : vtpe oo
CLRSYNL o . T8 I [| I v 0o 1+ olz

T P
SHIFT REGC STER f FB‘}'NFT - .

ICHCY) cLx ot G &

1 ' 1 ’

oJ 0o 0 0o

Figure 3-38 Timing Logic, Simplified

Logic Diagram

BURST

START CLK

4’]’

fgd

+7

CH2 MR RESET _[

e,{
LR

CH1 TIMING BLOCK _l

“CLK A PHASE COMING -

CH1 EBUS CLK DLY

CH2 CLK SYN

r

CHt T©

CHY Tt

CH1 T2

CHI T3 _J

=

I [L T

CH5 SEL 1-2-4-8A l A IJ

CH5 SEL 1-2-4B ENF 8 EN ‘ {

CRC6 SEL 1-2-48 l -] T[i

CRC6 SEL 1-2-4C l C I}

CRC8& SEL 1-2-4D I] L i

CRC& SEL 1-2-4E l L

Figure 3-39 Timing Logic, Timing Diagram

MBox/3-82

10-2155

The output of the scanner is applied to a decoder and a four-state 3-bit shift register. The decoder

converts the three least significant bits of the scanner count to one of eight select signals (CBUS SEL
0-7E) for enabling the corresponding RH20 Massbus controllers one at a time. The contents of the

four-state 3-bit shift register are advanced every four clock ticks at TO to advance the contents (selected

channel number) so that the appropriate RAMs and queues can be addressed for transferring the data.

3.8.2 Control Request Queues

The three control request queues (Figure 3-40) are implemented in the channel control logic to queue

the CBus control requests (RESET, START, and DONE) so that they can be executed in accordance
with a specific order of priority. Since the channel control is designed to handle up to eight separate

RH20 Massbus controllers, each control request queue has eight locations, one for each channel. As

the scanner (Subsection 3.8.1) selects each RH20 Massbus controller in the prescribed order, so are the

individual locations in control request queues also selected. It is this operating characteristic that

causes the control request queues to remember which RH20 asserted a particular CBus control line

(RESET, START, or DONE).

The control request must be queued because the channel control may be busy at the time the request is

made. The channel control may be busy executing a data transfer request (CBUS REQUEST) for the
same channel or it may be busy executing a memory request for the same or another channel.

The queued control requests are executed in a set order of priority. This priority arrangement is:

a. RESET 0-7

b. START 0-7

c. DONE0-7

Further, the priority arrangement is set up to execute the request for a lower numbered channel before

the higher numbered channel. That is, the order of priority is 0, 1, 2, 3, 4, 5, 6, and 7.

If a given RH20 controller does not request to transfer data by asserting CBUS REQUEST after it is

selected, a current or pending CBus control request can be granted and executed (Figure 3-40 and 3-

41). When granted, the request initiates a RAM cycle to update the channel control RAMs (Subsection

3.8.5). If the control request is a reset request, all bits of the control RAM are simply cleared and the

RESET bit is set. If the control request is a start request, the control RAM is cleared as with the reset
request and the MB request queue (Subsection 3.8.7) is set up to fetch the CCW for the requesting
channel.

NOTE

CBUS RESET and START may both be asserted by

the RH20 at the same time. If this is the case, the

channel control executes two separate RAM cycles.

First, it will execute a RAM cycle to satisfy CBUS

RESET; then a second RAM cycle is executed for

CBUS START.

If the control request is a done request, the RAM cycle is executed to set the DONE bit in the control
RAM. Thereafter, this bit is checked everytime another RAM cycle for the same channel is executed to
ensure that the transfer is executed without error.

MBox/3-83

RAM CYC (cllamusWR RAM R CYC
CRC5 | 1y

CH@-7 RESET INTR

CBUS REC

OR GATES

(CHC2)

CH@-7

CONTR REC

PRIQRITY

ENCOOER

(CHC2)

4
RAM ADR t-2-4R . . CRCS T1-y

RESET INTR

Figure 3-40 Control Request Queues,
Simplified Logic Diagram

(Sheet 1 of 4)

MBox . 3-84

|CONTR 1-2-4

/ CHP RESET INTR
CHI

CH2

CH3

CH4

M
I
X
E
R

CHS

KCHC2)
CHE6

CHT

{CONTR 1-2-4

\cm START INTR HOLD

t I

REGISTER

(CHCA)

CH@ RESET INTR IN

SEL 1~2-
]

e

D
E
C
O
D
E
R

CHqy RESET INTR

CH!

AND

GATES

D
E
C
O
D
E
R

(CHC4)

¥_onn
[H2

1

LY _cH3

S .-

F1Y _cHs

; EHE

TflCHT
9 /

4E

T2

(CHC4)| CHX RESET CBUS RESET

10- 07

CH@-7

START

INTR

cHp-T |
DONE

INTR CH@-7 START INTR

OR GATES I *
(CHC2) 1 ;

b) t
cous CBUS REQ] CHE-7 P :

RAM CYC 1 CONTR ove MR RESET 1 CONTR REQ
wR RAM ¥ Corea (20 it o ESE e} grant

CRCS |73 cRC2 PRIGRITY L - g |-3TAET
! ENCODER i — s

{CHC2) H : !

,._______i ~TQ ! Coi L

| [ORAM ADR 1-2-4R : CONTR 1-2-4 [/
’ | CEE—— A TO CTOM

| i . AND STORE

{ RAM ADR 1-2-4R |
; : e i SEL '-2-4E

! . ! [.

H
i P ‘

| /M CH@ START INTR | . | | | CHO START INTR IN e
fi CHt p oLt o CHI

z cH2 s o @’ciz‘_

Ty ; & L CH3 | CH3 z
! START INTR ENA | & ; REGISTER &t =
; x CH4 Lot : il CH4 ¢

RESET INTR IN = feHea) 4 2
r] x P CHS = CHS =1

START INTR < w {CHC2,
Y I ; CHé ; _CHE

| o e i L ¥ o
e NC \ ; | EEREE §|———~\

i 1 H ; |

I 1 | PR HE

| CONTR 1-2-4 _u_r_:_ri_u_i_ L
} CH,y START INTR P

]

L 4
o s
it i

CH@ START INTR HOLD IR l

R

sobb

boNE (NTR TN x | i
3 ANT P

P eB D B oaTEs oo
w (CHC4) I

CH7 - - e

5o

Figure 3-40 Control Request Queues,

Simplified [.ogic Diagram

{Sheet 2 of 4)

MBox/3-85

START

INTR

CHB-7

DONE

INTR CHQ-? RESET INTR

| ,
L 1

OR GATES

(o)
!

CBUS REQ a7 | ||

CONTR REQ R

PRIORITY 1 !
ENCODER .

(CHC2?

T T : t

FREY L
CONTR 1-2-4 . .

! !t Pl

CHE DONE NTR .

cHY)

cH2 ? : ; cHz
i DONE INTR ENA . ! N REGISTER [~ gtscuz <

T , i - ; —! {CHC3) — S
1 DONE INTR IN ,E‘ CH4 ;) R fi AR, e 8

CHS o L ; cHS &
—r i :

DONE TR boc2) e B ‘—'_—__—?—E—
H H v N 1?
! cHY : T N (f:}:n-

| {CONTR 1-2-4 teyrrevd R B
| ; Ik GONE INTR I
s H ‘ i [

EEE
E

l AND — i R
R GATES . !

- P " [ou. 8 . g ; LR - S—

START (NTR! F 1

- _ i |

S S

10- 0%

Figure 3-40 Control Request Queues,

Simplified Logic Diagram

{Sheet3 of4)

MBox. 1-86

L
8
-
€
/
X
O
g
I
N

RAM

ADR 1-2-4R SEL 1-2-4E

\TCH@ STORE : — CH® STOREIN

CH1 CH1
cBUS - <

CONTR CYC CH2 4 @ tH2

CH3 : ‘F‘ CH3
REGISTER <t

CH4 by
{CHC2) . CH4

_CHS . . — CH5

{CHC2) CHE) 5

1 STORE ENA CHX _DONE
)] CHX STORE R{cHes) CBUS STORE

T——

CHC

M
I
X
E
R

D
E
C
O
D
E
R

fi\
]

o

STORE
-—

} .
s

CH6 o ¢l—L
A
T
C
H

M
I
X
E
R

O

0

(CHC2) —NC CHY

/

) /

CH@ START INTR HOLD

CH

CH2

CH3 R

AND
CH4 - GATES

CH5 (CHC2)

RESET INTR
P

START INTR

]

DONE INTR[2_1 CJ- o]

D
E
C
C
D
E
R

CONTR {-2-4

10-2110

Figure 3-40 Control Request Queues,

Simplified Logic Diagram

(Sheet 4 of 4)

SEL‘—Z-“{ I A 8 c l ° I € [I }

CBUS START 0o 1 2 3

CHC! CHX START o t 2.3

CHC4 CHn START INTR IN r—-———-—|i

CHC4 CHn START INTR I |

CHC2 CONTR REQ/CH2 CONTR 1-2-4 : o'+ 2 3

CRC2 CBUS CONTR
:

CYC/CRCS RAM ADR 1-2-4R t 2 3 4

CHC2 START iNTR | |

.]

1

CHC4 CHu START INTR HOLD
: 2

CRC2 RAM CYC t 2 30

CRC5 WR RAM
I_]

NOTE

This diagram deplcts the timing for @ CBUS START CONTROL

REQUEST. The timing for CBUS RESET and DONE is Identical.
10- 2158

Figure 3-41 Control Request Queue, Timing Diagram?

3.8.3 CTOM Register '

Once a data block transferis started, the channel logic must remember the dlrectlon of the transfer

(CTOM or NOT CTOM). Thisis necessary so that the pointers can be updated correctly every time a

CBUS REQU EST to transfer a wordis executed. For this reason, the CTOM register (Figure 3-42)is

implementedin the channel logic. The register contains eight bits, one for each channel. Steering loglc

is implemented for loading and reading the appropriate bit of the register. A specific bit of the register

is set or cleared depending on the state of the CBUS CTOM line whenever the RH20 asserts CBUS

START, which occurs when a block transfer is started. The actual bit that is loaded depends on the

current position of the scanner (SEL 1-2-4E), which specifies the channel number that asserted CBUS

START. The decoder at the input of the register, which serves as the steering network, is controlled by

the SEL 1-2-4E signals to select the appropriate bit. A mixer at the output of 'the register serves as a

steering network to select the appropriate bit when the register needs to be read. The mixer is con-

trolled by the CRC RAM ADR 1-2-4R, which specifies the channel number for which a request is

being executed.

3.8.4 CBUS Request Logic

This logic provides timing and control functions for moving 36-bit data words between the MBox CH

BUF and the RH20 data buffer via the CBus (Figure 3-43). The RH20 controller asserts CBUS

REQUEST one scanner time slot (slot B) after it is selected to inform the channel control that it is

ready to send or receive a word. Along with CBUS REQUEST, the RH20 also asserts or negates

CBUS CTOM, although this factis storedin the CTOM register when the transferis started (Sub-

section 3.8.3). _

MBox/3-88

RAM

ADR 1-2-4R

CH@ CTOM

MR RESET SEL 1-2-4E

H@ CTOMN

CH1

o£
D

H

CH2
S
_CH2

CH3 H3
o

CTOM
CH4

REGISTER

(CHC3)

M
I
X
E
R

CH5

CHX START

H4 [CHC3!CHX CTOM o
CHS CHC!D

E
C
O
D
E
R

CHC3)
CH6 HE o) cT

_CHT

G
- H7

7
/

P
MR CLK

RESET

. |CHE CTOM_HOLD

L

RSN

AND e

eGATES

(CHC3) D
E
C
O
D
E
R

Figure 3-42 CTOM Register, Simplified Logic Diagram

@

CBUS CTOM

CBUS START

1

The timing differs for CTOM and NOT CTOM transfers (Figures 3-44 and 3-45) because:

a. For CTOM transfers, the RH20 places the data on the CBUS data lines at the beginning of

scanner time slot D and, therefore, the channel control logic must strobe the data into the

CH BUF at the beginning of time slot E.

b. For NOT CTOM transfers, the channel control logic places the data on the CBus data lines

at the beginning of scanner time slot D and, therefore, the RH20 must strobe the data into

its buffer at the beginning of time slot E.

In either case, the RAM cycle is executed to load the current CH PTR from the RAM into a shift

register and to update (increment) the CH PTR in the RAM. The CH PTR that is loaded in the shift

register is then used in forming the CH BUF address.

MBox /3-89

RAM ADR 1-2-4R
CRCS CRC6 SEL i-2-4C

L lcres T

CRC1 DIFF PTR=18

LAST WORD IN CRC4 STORE IN CRC3 READY CLR EN
CRC3

1 CRCS CTOM
CBUS OUT HOLD /cncz I CRCS T3

CRC4 ST/RES INTR B

CH PTR PLUS
CRC3 READY

REQ ALLOW

INHIBIT CBUS CONTR

CRC2 CBUS CONTR CYC -T0 AND MB CYC (CRC2)

UPDATE RAM CYC RAM CYC /cncz CRC2 MB CYC
POINTERS AN CBUS REQ CYC ‘ T ol

YR BAR CRCS T3 { RC2 ¢
CHS DIAG FAST REQ e c

CBUS RECEIVE ENR ['CH5 SLOW MQD STORED |
| _cBusouT ena HEt

ACT FLAG CLR 7 ['CCL2 ACT FLAG REQ ENA
| 0\ [ccriTs : REQ C [5l.CBUS ReQUEST

CBUS REQ { CH5 FAST REQBUF MB SEL [(1 BEQ D CHC1 etY o eRe2 - CcHEl H3 cTom __\ CH5 DIAG SLOW REQ To
cRe2 \._l CHCY o 2 C

T

o | CRCS TO
o T2

T |
REG E —

|1 D {
CH Béls CCLI TO crc

H BUF WR WRe aErS ces | o cleResTe
CHCa CCL4 AF WD READY L

CLK

8 c SHIFT REGISTERS TO TRANSFER DATA
TG AND FROM CORRECT CH BUF LOCATIONS

FCH BUF WR .Im o
CRCS T@

crca cLK CH BUF=——CBUS
o | =&KX

SEL 1-2-4E CH5 SEL 1-2-48 ENSE——

CRCS T@+T1 CRCS TQ‘ —{crce [aoR 0-6 | CRC5 T2

CH PTR 9-3 C":‘:MTR CRC1 CH PTR @-3 IN 'SEL 1-2-4C

(CRCY)
CH ADR -3 Y A . !

H F - -<EH BUF ADR 8-6 ADR @-6 GRC2 CBUS REQ CYC
RAM ADR 1-2-4R AM ADR 1-2-4F

CBUS<-CH BUF

Figure 4-43 CBus Data Request Logic,
Simplified Logic Diagram

MBox/3-90

JRAM ADR 1-2-4R

CRCS T1

seL1-2-4 Q| A | B] c D

CBUS REQUEST [0'1'2'31.

CHY REQ C fo 12"3]

CRC2 RAM CYC [172 370

CRCS5 RAM ADR

1-2-4R/CRC1 CH PTR 0-3] L

CRC6 CH ADRO-3C | 1

CRCS5 WR RAM I I

CRC6 CH ADR 0-3 (D)
I

CRC6 CH ADR
0-3E/CRC6 SEL 1-2-4E]

CH1 REQ D/CH1 T
CBUS RECEIVE ENA ERERERER!

MBS CH REQ HOLD I | _

CRC2 REQE Jo'n'z'sl

CRC6 CH BUF ADRO-6 I |

CH4 CH BUF WR

Figure 3-44 CBus Data Request (CTOM) Logic, Timing Diagram

10-215¢

Y e S N N S S A

CBUS REQUEST Jo'r 2 3]

CHY REQ C/CHI CBUS OUT EN o'+ 2"3]

I | !CRC2 RAM CYC f1'2"3" 0]

CRC5 RAM ADR 1
1-2-4R/CHI CH PTR 0-3 l

CRC6 CH BUF ADR 0-6 []

CRC2 CBUS OUT HOLD L]

CRC5 WR RAM I l

Figure 3-45 CBUS Data Request (NOT CTOM) Logic, Timing Diagram

MBox/3-91

10-2157

3.8.5 Control RAMs , :

Status and control information for each of the eight channels is maintained in the control RAMs

(Figure 3-46). Every time a RAM cycle is executed, the RAMs are addressed and updated. The RAM

contains eight sets of status and control information, one set for each channel. Included in each set of

status and control information (Table 3-16) is the following:

a. Control Bits b. Status Bits |

I. RESET . MEM PAR ERR

2. READY 2. - ADR PAR ERR

3. LAST WORD 3. - WC=0STORED

4. DONE 4, NXM ERR

5. STORE 5. LAST XFER'ERR

6. ERROR 6. RH20 ERR |

7. OP Code 00 7. LONG WC ERR

8. OP Code 01 8. SHORT WC ERR

9. OP Code 02 (REVERSE) 9. OVN ERR .

10. CMD TOGGLED

11. CMD STORED

12. ACT CNT 0-2

13. MEM PTR 0-3

14. CH PTR 0-3

CONTROL RAM

. — oomozoaufis}/s;;gazsmn 12 13 :o

%7%%
[MEM ACT CH ////2 PTR CNT PTR ' %/%%
s 0-3 e-2 0-3 Z’ééé o ROR 1-2-4R
g a x| 8 / / E x| &glslale|d AHE %éé/fi E|u o

w S8 cla|t x%%/%h— z | 8
HHRSE HEH 7 sHHHRR

7%&%aao.nzlaelnzo.l.zls ¥<$§//////j§_,§353558§7

00 13414 : 38

{ STATUS | cLP ~Jcow wot

CHANNEL@5 WC | ADR Jccwwoa} |
00 0203 314 z 35 |

|

CHANNEL 6

I CHANNEL 7

CCW BUF

10-2188

Figure 3-46 Control RAM Structure

MBox /3-92

Table 3-16 Control RAM Bit Description

NAME DESCRIPTION

Control Bits — one for each channel

OP CODE 0002 (CRC3)

CMD TOGGLED/STORED (CCL6)

MEM PTR 0-3 (CRC1)

ACT CTR 0-2 (CRC2)

CHAN PTR 0-3 (CRC1)

READY (CRC3/CHC1)

LAST WORD (CRC3/CHC1)

ERROR (CRC3/CHCI)

These bits are loaded with the OP Code of the CCW when it

arrives from memory,

If a memory error occurs, these two bits identify which block

transfer (current or previous) caused the error.

These four bits point to (address) the next location in the CH

BUF for memory transfers. This location is the next empty

location for NOT CTOM transfers or the next word for CTOM

transfers. Everytime an action flag memory request is executed,

these bits are used to address the CH BUF. After the request is

executed, these bits are updated.

These three bits are typically loaded with a function of the two

LSBs of the WC and ADR of the CCW, This function specifies

how many words are to be transferred.

These four bits point to (address) the next location in the CH

BUF for CBUS transfers. This location is the next empty loca-

tion for CTOM transfers or the next word for NOT CTOM trans-

fers. Everytime a CBUS data request is executed, these bits are

used to address the CH BUF. After the request is executed, these

bits are updated. :

Set when the channel control is ready to transfer data. The

channel control is ready to transfer data after it fetches a DATA

XFER CCW. For NOT CTOM transfers, the channel control

must also fetch at least two data words (unless a single word is

to be transferred) before it is ready. This bit is the source for

the CBUS READY line.

Set only for NOT CTOM transfer when the last word is placed

on the CBUS. This bit is the source for the CBUS LAST WORD

line.

Set if any of the following error bits are set:

a. Memory errors

1. NXM ERR

2. MEM PAR ERR

3. ADR PAR ERR

. SHORT WC ERR

. LONG WC ERR

. RH20 ERR

. OVN ERR

f. LAST XFER ERR

This bit is the source of the CBUS ERROR line.

o

o
o
o

MBox/3-93

Table 3-16 Control RAM Bit Description (Cont)

NAME DESCRIPTION

Control Bits — one for each channel

STORE (CRC2)

DONE (CRC3)

RESET (CRC3)

Set when a Control RAM cycle is executed in response to CBUS

DONE, providing CBUS STORE was also asserted. After this bit

is set, a memory store request is queued in the MB Request queue.

Set when a Control RAM cycle is executed in response to CBUS
DONE. This bit is used by the channel control logic in term-

inating the transfer orderly.

Set when a Control RAM cycle is exécuted in response to CBUS

RESET. At the same time this bit is sf.et, all other bits in the

control RAM are cleared. The fact that CBUS RESET was

asserted is stored so that the appropriate address for fetching

the initial CCW from the EPT can be;formed.

Status Bits — one for each channel

Bit 00

MEM PAR ERR (CCL1) Bit 01

—ADR PAR ERR (CCL1), Bit 02

~WC = 0 STORED (CCL#), Bit 03

NXM ERR (CCL1), Bit 04 (CCL1)

Bit (5-08

LAST XFER ERR (CCL#), Bit 09

RH20 ERR (CRC4), Bit 10

LONG WC ERR (CRC4), Bit 11

Always set.

Set when a data parity error is senseci while transferring a CCW
from an MB to the CCW BUF.

Cleared when an address parity errorgis sensed after a Channel
Request for a CCW is issued. :

Cleared when WC reaches zero as a result of action flag CHAN

request (CTOM or NOT CTOM) or when a CCW with a zero

WC field is fetched from memory,

Set if the NXM timer (MBZ3) expireé after a Channel Request
is issued by the channel control and granted by the cache control.

Not Used.

Set if NXM ERR bit 04 is set and a sécond block transfer was
started. This means that the NXM was caused by the previous

block transfer. :

Set if the RH20 asserts CBUS START even though the channel
control is not ready. The channel control is ready only when

CBUS READY is negated. :

Set if the cumulative word count, specified by the channel

command list, was larger than the number of words the RH20

massbus controller transferred. '

MBox/3-94

Table 3-16 Control RAM Bit Description (Cont)

NAME DESCRIPTION

Status Bits — one for each channel

SHORT WC ERR (CRC4), Bit 12 Set if the RH20 massbus controller sends more words than are

specified by the cumulative word count of the channel command

list,

OVN ERR (CRC4), Bit 13 Set if the channel control is unable to keep up with the RH20

controller’s demands for data,

The control bits reflect the current state of the channel control logic and the CBus for a given channel.

These bits are tested/set by the channel control during the course of executing a data block transfer

operation to ensure error-free operation.

3.8.6 Action Flag Arithmetic Logic

The action flag arithmetic logic (Figure 3-47) keeps track of the words in the CH BUF for all eight

channels by maintaining a channel pointer and a memory pointer. These pointers are stored in RAMs

that are updated every time a word is moved in or out of the buffer. The memory pointer is updated

every time a memory request is executed and the channel pointer is updated everytime a CBus request

is executed. The difference between these pointers (PTR DIFF) represents the number of words in the

CH BUF for CTOM transfers or the number of empty locations for NOT CTOM transfers.

Besides the pointers, the action flag arithmetic logic also maintains an action count for each channel.

This count, which is normally a function of the WC and ADR of the CCW, specifies how many words

are to be moved to/from memory. Typically, four words are moved to/from memory at a time. How-

ever, if the address does not fall on the quadword boundary, less than four words must be transferred.

This can only occur at the beginning and at the end of a block transfer specified by a CCW. The action

count is maintained in a RAM, like the pointers, and is updated every time a memory request is

executed or when a new CCW is loaded.

All three RAMs are addressed by a 3-bit code that identifies the channel for which the request is being

executed. In addition to the RAMSs and their input logic for maintaining the action count and the

pointers for each channel, the action flag arithmetic logic also includes a number of Arithmetic Logic

Units (ALU’s) and mixers for applyingan equation to the action count and the pointers to determine if

a memory request (CRC AF REQ ENA) is needed. Two equations are implemented; one for CTOM

transfers and another for NOT CTOM transfers. They are:

a. CTOM: (CHAN PTR-MEM PTR) - ACT CNT >0 SET CRC AF REQ ENA

b. NOT CTOM: 15+(CHAN PTR-MEM PTR) - ACT CNT >0 SET CRC AF REQ ENA

3.8.6.1 Action Count — The action count specifies the number of words (1, 2, 3, or 4) to be transferred

to/from memory. The action count is used to set up the word request logic and the MB control logic

(Subsection 3.8.7) when a request for memory is initiated. In addition, this count, along with the

memory and channel pointers, is used in an equation to determine whether to set CRC AF REQ ENA,

which indicates that more words must be transferred to/from memory.

MBox/3-95

CCL2 ACT FLAG REQ

CCL3 MBREQ T2

cRczme cvc|) ACT CTR 0-2R MEM PTR 8-3
CCL3I MB REQ T& MEM PTR EN

]V
oUTPUT
REGISTER | ol lzlale(CRC 2)

T

[

i

eT (oa0 ac | uCCL3 CCWF 1@ 0P LOAD E_ | cres RaM | _
CCL1 M@ Cvc | CCL2 ADRYZ-4RL MER AT’ —— RAM

§

2]1]2]e CRC4 ST RES INTR] CRC2
LA (CRCY} RAM CYC

CRCS RAM |] | .
CRCYACT FLAG ALLOW_ ADR 1-2-4R [ACT cTR] ; e . i 7 A-8

CRC3 READY] —T Ram] SRCZ RAM CYC T MEM PTR @3 1N
CRCSCTOM 2 ! [~ (crC2) A 2

Y (&1 — —CRCI PTRDIF+0 CcLe weeam i [~ 7] (CRCY)

CRC4 DONE IN CRCS WR RAM L 7 A+8)

CRC3 ERR N DONE LOAD AC
5 R

cRez rAm eveo o2) b
LRCCRAMCYC | CH?2 START INTR 5;;RES 3 Co

. ! CRCHCH2 RESET INTR b ACT CTR @-2 IN 8 CRC4 ST. RES INTR . PTR
ATCHCoL3 MEM PTREN .—’ LaTe

A-B

wC= @ oo !

g :
WC= 1

ACT STR 9- 2 CRC2
CCLS CCW BUF R3-13 {N | DECODER] wgs 2 — RAMIYC

(ccLs)
wes3 2

WCGE4 ‘ CCLZ OF LOAD ;

COMBINATIONAL ACT CTR 2-2 EN! CCL3I MEM PTR EN

CCW3 CCW BUF 34 IN (LCOCGVJBC) ——

‘ DAT ADR:!) L ; ;
CCW3 CCW BUF @2 IN DECODER ——rz i

tccws) | DAT ADR-2 g egl1i2:3 |

DAT ADR:3 , CRCA ’ [| LA | .

CCW3 CCW BUF 35 1N ST/RES INTR . CRCS5 RAM ADR *-2-4R [~ C:TARN f :
' RAM !

CHPTR 2 : [~ {CRCY) i

| > f — 1
- CRC* | | .H PTR1) . [CRCS WR RAM |- =R i |

CRCY - . i ‘
2 & !

‘ CH PTR 1 S| chpraa-3 N i
1 . :

' CH PTR 2 ,m CRC# S :

P

CH PTR 2
§

]

!
i CH PTR 3
F

CRC2 CBU!t REG CYC CH PTR PLUS

CRCS T i

{ PTR LATCH
CRCS WR RAM

CRC3 READY

iQ-2079

Figure 347 Action Flag Arithmetic

Logic. Simplified Logic Diagram

MBox '3-96

On CBUS START/RESET, the action count is set to 7. This is done to initially inhibit CRC AF REQ

ENA. Since a start/reset operation will set the CH PTR and MEM PTR to zero, a non-zero action

count is required to prevent CRC AF REQ ENA from asserting.

When a CCW is loaded into the CCW buffer or when the second RAM cycle for an action flag request

is executed, the action count is set to a function of the WC and the ADR (Table 3-17).

On done for CTOM block transfers, the Action Count is set to the value of the PTR DIF to empty the

CH BUF.

Table 3-17 Action Count Truth Table

CCW ADR DAT ADR CCW WC ACTION COUNT IN

(CCW3) (CCW3) (CCLS) (CRC2)

(BITS 34-35) FORWARD REVERSE FORWARD REVERSE

0 0 3 24 4 1

0 0 3 3 3 1

0 0 3 2 2 1

0 0 3 1 1 1

0 0 3 0 4* 1*

1 1 2 =24 3 2

| 1 2 3 3 2

1] 2 2 2 2

1 | 2 1 1 1

1 1 2 0 3% 2%

2 2 1 24 2 3

2 2 1 3 2 3

2 2 1 2 2 2

2 2 1 1 1 1

2 2 1 0 2% 3

3 3 0 =4] 4

3 3 0 3 | 3

3 3 0 2 1 2

3 3 0 1] 1

3 3 0 0 1* 4%

*These cases are not used.

3.8.6.2 Memory Pointer - The memory pointer is used in forming the address for the CH BUF during

- a memory transfer. It points to the CH BUF location which is to receive the next word from memory

for NOT CTOM transfers or from which the next word to be moved to memory is to be taken for

CTOM transfers. This pointer, along with the channel pointer and action count, is also used in an

equation to decide whether to set CRC AF REQ ENA, which indicates that more words must be

transferred to/from memory.

On CBUS START/RESET, the memory pointer is set to 0.

MBox/3-97

When the second RAM cycle for an action flag request is executed, the memory pointer is updated by
adding the action count.

3.8.6.3 Channel Pointer - The channel pointer is used in forming the address for the CH BUF during
CEBus transfers. It points to the CH BUF location which is to receive the next word from the RH20 for

CTOM transfers or from which the next word is to be moved to the RH20 for NOT CTOM transfers.
This pointer, along with the memory pointer and the action count, is also used in an equation to

determine whether to set CRC AF REQ ENA, which indicates that more words must be transferred

to,/from memory. |

On CBUS START/RESET, the channel pointeg is set to 0.

When a RAM cycle for a CBUS REQ:UES’i" is executed, the channdl pointer is updated by
incrementing the pointer by one. |

3.8.6.4 Operation - A number of different functions control the operation of the action flag arithmet-
ic logic. The functions and how these functions effect the operation of the action flag arithmetic logic

are described in the following paragraphs. |

a. Initialization - The action flag arithmetic logic is initialized when the channel control exe-

cutes a CBus control cycle in response to a START or RESET INTR from the control

queues (Subsection 3.8.2). The logic is initialized as follows:

I. The action count is set to seven.

2. The memory pointer is set to zero.

3. The channel pointer is set to zero.

4. CRC AF REQ EN is not set because the result of the app.élied equation is not zero
(Subsection 3.8.6 a and b). |

b. Fetch CCW - After a channel is started, the CCWs are automatically fetched from memory

and loaded (CCL CCW BUF WR) into the CCW BUF throughout the block transfer. At

the same time the CCW is loaded into the CCW BUF, the action counter RAM is updated

(CCL OP LOAD is asserted) to reflect the WC and ADR of the new CCW. CCL OP LOAD

is asserted to enable the input logic to the action counter RAM to load the new action count

(CCW ACT CTR 0-2 EN). At the same time, the new action count is also transferred to the

ALU, which generates CRC AF REQ EN when the equation is satisfied.

c. Transfer a group of words to/from memory - When the action flag equation (Subsection 3.8.6

a and b) is satisfied, CRC AF REQ ENA is set to request a memory transfer. Subject to the

priority scheme, the action flag request is granted to transfer a group of words to/from

memory (via the MBs). After the words are transferred, the action count and the memory

pointer are updated (CCL MEM PTR EN is asserted). CCL MEM PTR EN is asserted to

enable the input to the action count RAM to load the new action count (CCW ACT CNT

0-2 EN), to add the action count to the memory pointer, and to transfer the action count to

the ALU that generates CRC AF REQ ENA when the equation is satisfied.

MBox/3-98

d. Transfer a single word to/from RH20 - Every time CBUS REQUEST is asserted by the

RH20, a single word is transferred to/from the CH BUF via the CBus from/to the RH20.

When the word is transferred, the channel pointer is also updated (CRC CH PTR PLUS) by

simply adding one to the pointer count. As soon as enough words/empty locations are in the

CH BUF, as computed by the action flag equation, CRC AF REQ EN is set to request

another memory transfer.

e. DONE for CTOM - When the RH20 asserts CBUS DONE, providing the block transfer is

from controller to memory (CTOM), the channel control must continue to empty the CH

BUF. To facilitate this operation, some additional logic is implemented to update the action

counter (CRC DONE LOAD ACQC) until all the words are transferred. CRC DONE LOAD

AC is asserted to transfer the pointer difference (CRC PTR DIFF 0-2) to the action count

RAM. The pointer difference specifies the number of words still remaining in the CH BUF.

NOTE

This logic is not required for NOT CTOM transfers

because the RH20 will not assert DONE unless it

has received the last word that leaves an empty CH

BUF.

3.8.7 MB Request Queues

The three MB request queues (Figure 3-48) are implemented to queue the MB (memory) requests

(CCWF, ACTION FLAG, and MEM STORE) so that they can be executed in accordance with a

specific order of priority as RAM cycles become available. Since the channel control is designed to

handle up to eight separate channels (RH20 Massbus controllers), cach MB request queue has cight

locations, one for each channel.

Each of the three queues are constructed from a pair of 3 by 8 decoders and their associated enabling

(INPUT) logic; an 8-bit register, an 8 by 3 priority encoder, and a set of cight AND gates. The

decoders serve as steering networks for setting and clearing individual bits in the register. The 3-bit

address that is formed when a RAM cycle (CBUS REQ CYC, CONTR CYC, or MB CY () is granted,

is used to control the decoders to connect the decoder input logic to the register bit that corresponds to

the channel number for which the RAM cycle is executed.

As the individual bits of the M B request queues are selected, so also are the associated control bits in

the control RAM selected. The input logic of the decoder, therefore, receives the control bits for the

channel for which the RAM cycle is being executed.

This operating characteristic of the channel control logic facilitates the testing of the state of each

channel to set/clear the appropriate bits in the MB request queues when required. The AND gates

provide the paths for latching and clearing the register bits. The priority encoder forms a 3-bit address

that corresponds to the lowest number request (highest priority) in the queue. When a RAM cycle for a

pending MB request is executed, the address formed by the priority encoder is selected by the mixer

and is uscd to address the MB request queues and the control RAM. These three bits arc also used in

forming the address for the CH BUF and the CCW BUF.

M B requests are granted and executed only when CBus data and control requests are not pending, and

then only in the following order ofpriority.

a. CCWEF 0-7

b. ACT FLAG 0-7

¢. MEM STORE 0-7

MBox/3-99

MB e CCw BUF

Ciw BUF

2

CCu STORE CCw

MEM STORE REQ A

M8 REQ

PRIORITY

NETWORK ccL3
M8 RIP

ACT FLAG REG

BUF

SEL 2 ceLe ACT FLAG REQ ENA
cows (SHEET 2)

R
LRRREQ | Lo r

BUF

—@Eq

MEM ERR LATCH

MEM STORE REQ ENA

CCWF REQ

CCW BUF ADR @-3

CCW BUF «—MB

CCL3 CCWF T2

CCLS CCW BUF 89 IN

BUF ADR 8-2

M8 = CH BUF

CH BUF =~ MB
CCL REQ CTR EN

cac aF L% cRe
MEWM PTR MEW PTR

3 ®

T o M

2
3

3.1 3

'} 2bceL ms o T2

BINARY COUNTER

FOR SELECTING REQUIRED

WORD IN CH BUF

Figure 3-48 MB Request Queues,

Simplified Logic Diagram

(Sheet 1 of 3)

MBox/3-100

CCL1 ADR PAR ERR EN

CCLY NXM ERR EN

CCL1 WMEM PLR ERR EN

CCW FAST MODE

MEM (SHEET 3)

ea
cLK

INPUT LOGIC

/ F HOLD (SET)
cee2 | !i

cowe rea St £CW COWF REQ ccwe CCWO COWF IN Ccwel CRC4 ST/RES INTR B
* CCWE REQ ENA « faSEW L r?ccm

>

b CCWE ADR 1 g .fgz": . ccw2
w. Cew3 «

CCWF ADR 2 z e g i
> | Scwa 2 CCw4 S

CCWF ADR 4 r e 4

= loccws o ficcws P

e 2 [ccws . ccws
& | cowr L f Cew? ‘

| MEM STORE ADR o

MEM STORE ADR 2
t f———————— L (SHEET 3) MR RESET

MEM STORE ADR 4[MEM STORE DR 4 INPUT LOGICCCWECCWD COWF HOLD (Eowe) T L

« cewt

2
cow2

w ‘—c

w | cews «
ACT FLAG 2DR 1 5 ue ¥

i o
ACT FLAG ADR 2 | 3

z b (SHEET 2) 2 |.cows & CCL2 CCWF REQACT F.AG ADR 4 |
— cews

cew?
E£RR

ADR REG

{cowh ! N
ERR ADR 0 ! MR RESET

ERR ADR 1 T : L WE

ERR 4DR2 f— L

-4
CSH CHAN CYC g CCWF WAITING

3

e

CRC2 CBUS REQ CYC

CRC2 MB CYC

CRCE SEL 1-2-4C

RAM ADR 1-2-4R

CH2 CONTR 1-2-4

CRCS T1

|

T J (SHEETS 2 AND 3)

CCL3
M8 RiP

CLK

ccL2 j.CCWE CCWF REQ ENA

T TWS1.COW@ ACT FLAG REG ey CCW@ ACT FLAG IN
FoACT FLAG REG ENA . | cowt

_ CCW1
: ACT FLAG ADR 1 § cow?

_ CCw2(SHEET 1)“Il ACT FLAG ADR 2 g CCW3
5 - CCW3 @;
A

8

i JACT FLAG ADR4 9L cows
o . CCwa

3- = CCWS o h cCws e
«

@
ol

=]g cowe
1 . CCWe

%

HCCW?
- CCW? ‘J

P N

! ! 1 i A[o MR RESET ‘
P | TCWS] CCWB ACT FLAG HOLD

:
)

‘
i)I =

i

<

]|N

:

o

[P z

CHY T@

CCWS | ACT FLAG ENA
ACT FLAG ALLOW

[DoNE LoaD
iAC

!
|

CRC1 AF REQ ENA

CCLE WC = 2 IN

CRC2 RAM CYC
CRC1 {

L.CRC ERR IN
{

Peres Reass
CRCS CTOM

Ci
DCRC‘I PTRD'7F=0

CRC2

NCRC3 OF CODE B9

CLb WC=Q IN

CRC4 DONE IN

D
E
C
O
D
E
R

CCWE

CCWT

ACT FLAG REQ

CRCS RAM ADR 1-2-4R

(SHEET 1

CCL! ERR REQ

SCL4i ccit ST/RES INTR

CRC3 ERR

CRC2 RAM CYC
——Co L

Figure 3-48 MB Request Queues.
Simplified Logic Diagram

(Sheet 2 of 3)

MBox/3-101

CCW MEM STORE TP

ccLs

u8 RIP

|
CCWF REQ EMA * cLK

ACT FLAG REQ ENA :

MEM STORE REQ ENA —&—5- CCW@ MEM STORE REQ ? CCWO MEM STORE IN
r B cowi - cowit
H o

| JMEM STORE ADR ! | &8 | cowz cew?2
¢ o

ISHEET1) — MEM STOREADR2| C | cows E < CCW3
R IR rl

MEM STORE AOR 3| © | cows 2 cocwa

T |cews H < CCWS

S [cows [ocws
a CCWT CCWT

MR RESET

CCWO MEM

STORE_HOLD

cowt c

cow2
o= ccw3

o CcCwW4

2 | cows
< =

| cowe o

i cowr c

MEM STORE REQ

\
D
E
C
O
D
E
R

D
E
C
O
D
E
R

CRCS RAM ADR 1-2-4R

(SHEETN

M8 REQ INH

CCW4 MB CYC T3

TIMING

‘BLOCK

DIAG LOAD FUNCT 78
e

CH2 MR RESET 1

CHZ MR RESET
CRC4 SHORT WC ERR

CRC4 LONG WC ERR

CRC3 { CRC4 RH20 ERR

i {CRC4 OVN ERR

JCRC6 LAST XFER ERR
fERes

cCL1 ERR REQ

T ccLt NXM ERR IN

ccul ' CCL1 MEM PAR ERR IN

CCL1 ADR PAR ERR IN

CRCS5 TO

CRC2 RAM CYC

CRC4 ST/RES INTR A

CH2 STORE

CH2 DONE INTR

10-2114

Figure 3-48 MB Request Queues,

Simplified Logic Diagram

{Sheei 3 ui 3)

MBox/3-102

Further, the priority arrangement is set up to execute the request for a lower numbered channel before

a higher numbered channed. That is, the order of priority is 0, 1, 2, 3,4, 5, 6 and 7.

If & given RH20 controller does not request to transfer data by asserting CBUS REQUEST after it is

selected and if a control request is not pending in the control request queues (Subsection 3.8.2). the

highest priority M B request will be granted and executed. When granted, the request initiates a RAM

cycle to set up the request (CCL CHAN REQ) for memory and clear out the request in the queue. The

MB request timing and control logic (Subsection 3.8.8) then takes over to transfer the words between

the channel buffers (CCW BUF or CH BUF) and the MBs. After all the words are transferred, a

second RAM cycle is executed to update the CCW, the pointers, and the control bits in the control

RAM. If an error is sensed during the course of the transfer, a RAM cycle will be initiated after the

transfer to set the error-bit in the control RAM.

3.8.8 MB REQUEST LOGIC

MB requests are initiated to transfer words between main memory via the MB’s and the channel

buffers (CCW and CH). Four basic types of MB requests can be executed. They are:

a. Transfer a CCW from main memory to the CCW BUF.

b. Transfer a group of words (maximum of four) from main memory to the CH BUF.

¢. Transfer a group of words (maximum of four) from the CH BUF to main memory.

d. Transfer the CCW and the CLP/Status Word from the CCW BUF to main memory.

The logic that executes the MB request includes the MB request timing logic, the MB control logic,

and the word request logic (Figures 3-49 through 3-51).

The MB request timing logic, as the name implies, provides the timing signals for executing the

request. Combinational and sequential logic is employed in generating the timing signals.

The MB control logic incorporates three binary counters in addition to some combinational and

sequential logic. The main function of this logic is to keep track of the number of words and their

location in the buffers as they are transferred. The word request logic specifies and remembers how

many words are to be transferred. For NOT CTOM transfers, this logic also keeps track of the words

that are moved into and out of the MBs.

The MB request logic is driven by the MB request queues. As long as requests are pending in the

queue, memory is held and requests are initiated, one after the other, in the prescribed order ofpriority

(Subsection 3.8.7).

3.8.8.1 CCWF Request - The following description details a CCWF MB request to transfer a CCW

from main memory to the CCW BUF (Figure 3-52).

a. A CCWF request.is queued when:

!. A channel is started (CBUS START).

2. WC reaches zero and the current CCW i1s a normal data transfer CCW,

3. A jump CCW wus feiched and loaded into the CCW BUF. (The OP code is loaded into

the control RAM))

MBox/3-103

cCLl cCwr T2)

€CL2 STORE CCw|
CCL3 MEM PTR EN

CCL1 MR RESET JCCL4

cCw, CWF R NA

CCWS5 ACTM FLAG REQ ENA

CCL TO

HOLD MEM
cCL2

CCW6 MEM STORE ENA

CCLY ADR PAR ERR EN

CCLY NXM ERR EN

MEM

ERR

Figure 3-49 MB Request Timing Logic,

Simplified Logic Diagram

MBox/3-104

CCLt MEM PAR ERR EN

MEM_ ERR

LATCH

CCL4 REQCTR=0

CCL3 ZERD FILL @ CCLZACT FLAG REQA
CCL3 CCWF T0

CCL3 CCWF T2

ceLée

M8 RIP

[ceLy
INIT RAM REQ

ERR REQ |

CCL! ST/RES INTR

RAM REQ

CH1AUS REQ

CH2 MR RESET

CRCS TO

I

NB REQ T1)i

MB CYC !

Y Y HMB CYC DL ['__D' “E

ccu

o clSX

| MB tEQ Te , EQ T2

! i MB CYC

! CTCl4 REVERSE

SZERQ FiLl o
C

CCL4 REVERSE

CCL3 ZERO FiiL

.
4
,
_
.
.
.

P [x
]

i

z '
l

=
4
2 T
M

Z

CC.2 AC" FLACREG

é

*

i
cLa JALU MiNUS

RAM Jr(

1239

NITM MTecus INIT MB CYC e cve o

i ccuiTo | [CCL4 (LOAD MB SEL CTR)

MB CYZ T@—‘ 0T usED:
‘ MBCYL T

cout T2 ; =

coLt T3 I » }LBCV"’B

* IDEALIZED

* % NOT IMPLEMENTED

1< 0AT REQ CTR aND

AF MEM CTR)

{LOAD WD

‘I"REQ CTR}

CCLY 2ERQ Fiil

CCL2 MEM STORE REQ

CCL2 CCWF REQ

CRC3 RESET

CHAN EPT
e

CCL2 ACT FLAG REGA

CH3 CTOM
—_—

CCL2 MEM STORE REQ A
CHAN TC MEM
———————

CCLY MEM ADR:Q

£H3 CTOM

CCL2 ACT FLAG REQ A

CCL6 CSH CHAN CYC

10 21972

CCL2 ACT FLAG REQ A

REQ CTR=1

CCL4 MB SEL Sus

CLL3 MB RIP

CiL' M

CCL2 MEM STORE REQA]CCL‘ A

[olarTe0 n

CCL3 MB REQ T@

CCL2 ACT FLAG REQ

CRC2 MB REQ T2

CRC2 MB CYC

ceLs casf

5 ¢ g c

CCL2 ACT FLAG REQA

ccL T8

CCL2 MEM STORE REQ A

ccLl T3

MEM PTR EN

CCL4 CHAN TOMEM

START MEM

REQ CTR =@

o

ceesmarie |)

CCL6 CSH CHAN CYC

CCL3 MBRIPA

CCL1Ta

CRC2 REQ D

MBX2 CSH CHAN CYC

CCLZ2 ACT FLAG REQ

ccLs

CCLA CHAN TO MEM
—

CCL3|ceLa riP I
CCL2 CCWF REQ

CCLA WD READY CLK]

Sl—

CCWF T2

CCL3 CCWFT

coLt 19 '-

CCLYTH

CCLICLK D

CRC2 ACTCTR @ MSB REQ CTR &

CCL4 MBCYC T2 |

CRC2 ACT CTR 1 REQ CTR 1 >—]

CRC2 ACTCTR 2 REQ CTR 2)

%mA 158 e @ 1
COUNTER

ccLa} -9
REQ 1

CTR EN ccL2 ACT

FLA
(ADVANCE} 4G REQ o

CCid4 CHAN TO MEM

CCL2 CCWF REQ

CH TEST MB PAR

CH BUF

i
———=mMB256

WR 20 -26

CCL4 M8 CYC T9

cCcL2

MB REQ T2

{TO DATA PATH !

CRCS Cik B

CRCY1 MEM PTR @

CRC1 MEM PTR 1
pib bl mN

CRC1 MEM PTR 2
—

CRC1 MEMPTR 3
e2

Clutdix o

CH MB SEL 2

CH M8 SEL1
e ————

2

MSB AF MEM PTR & CCw2 CHA 34 |MSB

2 2
, AF MEM PTR 1 CCW2 CHA 35
i ———— e errr————————— 4

LSE
NAF MEMR PTR 2 CSUNeFRE;

{CCLa)

AF MEM PTR 3 TMMB SEL 3UB |
— .____Y_JLS8 3

1

BINARY

COUNTER

{CRCZ2}

N

.
-

]

-

S

D

|N

T i

; CCL4 REVERSE

(LOAD}

CCL4mB CYC T2

{LOAD}

102101

Figure 3-50 MB Request Control

Logic, Simplified Logic Diagram

MBox/3-105

CCL2 ACT FLAG REQ

CCL2 CCWF REQ

CCL3 CHAN EPT

CCL1 MB CYC

CCLY MR R|

CRC2 ACTM CTR ¢

CRC2 ACT CTR 2

CCLZ ACTM F.A3 RED

[

CRC2 ACT CTR 1

CRC2 ACT CTR 2

O
B

-
S

M
I
X
E
R

~

m Z[

CCL2 CCWF REQ CCw4 MB CYC T3
D—

WD @ REQ IN

CSH CHAN CYC

CCL4 WD TAKEN

WD @ READY

cewe

|

CCL3 MB
RIPA

MBx3 MB@ HOLD IN

i

WD @ TAKEN | i

M
I
X
E
R

CRC2 ACT CTR ¢

CRC2 ACT CTR 2R

R
 L

I
N
N

) m

AF WD) REQ).. NWD 1 REQ IN

CCL2 MEM

STORE REQ

CCwa

CCL4 THAN TO MEM

A

ki
l AF WD 2 REQ) N\ WD 2 REQINfeewed

— cewa

D2
READY' CCwa

. WD 2 TAKEN i

CCL3 CCW BUF B2 IN

CCW3 CHA 34

CCW3 CHA 35

2
1 EN]

4
&)——.g g AF WD3 Rgoi/Sccm\wD 3 REQ IN

: 3
?

S
R
—
—

[

MEBX3 MB 3 ~OLD IN

. WD 3 TAKEN

Word Request Logic,

Simplified Logic Diagram

3 : w0 READY

e

cLock Tick [o|1]2|3fo|1|2|3|o]1|2f3lo]1]2|3]ol1]2|3]0|1|2]3|o]1]|2|3|o}1]|2|3]o}1|2]3|0]

CCW6 CCWF REQ ENA ' L

ccLz Hous MEM | L

coL4 MBRPIN | | | - - L1

L

LI

COL3 MB RIP |

CCL2 CCWF REQ [[Cow BUF ADR @3+ CCWF ADR 1-2-4

coL2 COW BUF ADR3 [| [+ 17 DaTa xFER

ces awpws []

CCL2 INIT RAM REQ M

CCL4 RAM REQ TM TM
_

CCL3 CCw REG LOAD ,-EI

CCL3 MB REQ TP | | L____

ez weoe __ [1238] SR R

[

'L

I

CRC5 WR RAM l I

CCL3 CCW BUF WR fl

CCL3 MB REQ T1 |

CCL3 INIT MB CYC | I

CCL3 MB CYC T3 1

CCL3 CHAN REQ IN] |

CCL4 MB CYC TO 1

CCL3 MB REQ T2/CCL6 MIX MB SEL | ' |

MBX2 CSH CHAN CYC e |

MEX2 MB n HOLD N) i

CCW4 WD READY ‘ I |

CCW3 CCWF T@ | |

CCL4 WD TAKEN 1

CCL3 CCWF T | I

CCL$ CH TEST MB PAR [

CCL2 OP LOAD

COL3 COWF T2] |

CCL4 MB RIP CLR

10~ 2182

Figure 3-52 CCWF MB Request Timing Diagram

MBox/3-107

An MB request (CCL MB RIPis asserted) to fetch a CCW for the highest priority channelis
initiated as soon as the previous MB request is completed.

When the MB request is initiated, the CCW request is granted (CCL CCWF REQ is
asserted), the CCW BUF ADR is formed (bits 0-2 specify the channel number for which the
request is being executed and bit 03 is set to a ‘““‘one” to select the CLP for that channel), a
RAM request is initiated, and the contents of the addressed location of the CCW BUF are
loaded into the CCW register.

Providing a higher priority request (CBUS REQUEST or CBUS CONTR REQ) is not
pending, a RAM cycle (MB CYC) is granted and executed to set up the channel request for a

cache cycle and update (increment) the CLP in the CCW BUF. (The contents of the CCW

register are not changed.)

When the RAM cycle is executed, the following operations are performed:

1. CCL CHAN REQ and, if required, CCL CHAN EPT are asserted and the word

- request logic is set up to specify the word number at CCL MB CYC T3.

2. The status and CLP word in the addressed CCW BUF location is updated (CLP is
incremented by one) at CCL MB CYC T0 (CCL CCW BUF WR is asserted).

3. The MB Select (MB SEL) counter is set up (loaded) at CCL MB CYC TO to point to

the MB that will receive the CCW. Bits 34 and 35 of the Channel Address (CHA) in the

CCW register specify the word number and consequently the MB that will receive the

word.

NOTE

The CCW register contains the physical address that

is selected by the PMA when a cache cycleis exe-

cuted. The request and memory pointer counters are

not used for this transfer.

The channel control MB request logic then waits until the cache cycle control grants a cache

cycle to process the channel request.

When a cache channel cycle (CSH CHAN CYC) is executed, a core read cycle is initiated if

the word is not in the cache and the channel control word request logic is enabled to detect

when the CCW is loaded into an MB. If the word is in the cache, the word is simply trans-

ferred to the selected MB.

When the word is loaded into an MB by the cache/core control, the word request logic

asserts WD READY, which initiates the CCL CCWF T0-T2 timing logic to request a sec-

ond RAM cycle for writing the CCW into the CCW BUF and for writing the OP code into

the control RAM.

If a higher priority request (CBUS REQUEST or CBUS CONTR REQ) is not pending, the

second RAM cycle is granted and executed to write the CCW and op code into the CCW

BUF and control RAM, respectively. The CCW is written into location O if it is a data

transfer CCW, and the right half of location 1 if it is a jump or halt CCW,

After the second RAM cycle is executed, CCL MB RIP is cleared to allow another MB

request to be initiated.

MBox/3-108

3.8.8.2 Action Flag (CTOM) Request - The following description details an action flag MB request to

transfer data from the CH BUF to main memory. This description applies providing the block transfer

is not a zero fill (skip) operation and, in the case of a block transfer from a magtape, the transfer is not

a read-reverse operation (Figure 3-53).

CLK TICK]o|1|2|3|o|1|2|3|o|1[2]3|o|1|z[3|o|||2|3|o|||2;3|o]1|2lsloi1|2|3|o|1|2|3|o||]2|3|

CCWS ACT
{ b

FLAG REQ ENA ' l____
1

CCL2 HOLD MEM | o ' |

)

CCL4 MB RIP IN |) | |

- -

CCL3 MB RIP | _ l I
))

CCL2 ACT FLAG REQ ICCW BUF AND CH BUF ADR 0-2 ‘—Aé¥ FLAG ADR t-2-4;CCW BUF ADR 3:¢ ‘ l

CCL3 INIT RAM REQ | l—l

CCL4 RAM REQ J’-”’_] r-' |

CCL3 CCW REG LOAD ng
r

CCL3 MB REQ T@ L

CRC2 MB CYC)mcacs RAM ADR 1-2-4R«— BUF ADR Q-2 : |1 23 o|
‘ .

CRC5 WR RAM [M

CCL3 MB REQ T J |__

CCL3 INIT MB CYC J—_—__|

CCL4 MB CYC T2 [2] cv BUF ADR 3-6 «—MEM PTR 0-3

CCL4 REQ CTR EN [2] [JT] [1] fl

CCL3 MB CYC T3 : [3]

CoL3/a AN e | [CCL3 CHAN REQ IN |

CCLA MB CYC TP [o]

CCL3 MB REQ T2 1B L

CCL3 ALU PLUS 1B |
}_

MBX2 CSH CHAN CYC ., I I
\

CCLY DATA EN WAIT FOR CACHE CHAN CYC | |
LY

CCL4 CH LOAD MB [o] o] fo] [o]

CCL4 START MEM |] '

CCL3/CRC3 r'——L___
MEM PTR EN

CCL3 CCW BUF WR/CCL4 MB RIP CLR . m
10- 21954

Figure 3-53 Action Flag MB Request (CTOM), Timing Diagram

MBox/3-109

An action flag request is queued when enough words for a given channel have been accumu-
lated in the CH BUF (CRC AF REQ ENA). The action flag arithmetic logic keeps track of
the words in the CH BUF (Subsection 3.8.6). This logic asserts CRC AF REQ ENA when
enough words have been accumulated. :

An MB request (CCL MB RIP is asserted) to transfer a group of words (maximum of four)
for the highest priority channel is initiated as soon as the previous MB request is completed,
providing a CCWF request is not pending.

When the MB request is initiated, the action flag request is granted (CCL ACT FLAG REQ
is asserted), the CCW BUF address and part of the CH BUF address are formed to address
the desired segment of the buffers, a RAM request is initiated, and the contents of the
addressed location of the CCW BUF are loaded into the CCW register. Address bits 0-2 of
both the CH BUF address and the CCW BUF address specify the.channel number for which
.the request is being executed. Bit 3 of the CCW BUF address is assured to be zero at this
time so that the CCW in the CCW BUF is addressed and transferred to the CCW register.
The CCW contains the current WC and the current memory address (ADR) of the transfer.

Providing a higher priority request (CBUS REQUEST or CBUS CONTR REQ) is not
pending, a RAM cycle (MB CYC) is granted and executed to set up the channel request for a
cache cycle and to form the rest of the CH BUF address (bits 3-6).

When the RAM cycle is executed, the following specific operations are performed:

I. The Request counter (REQ CTR) and the Action Flag Memory Pointer (AF MEM
PTR) counters are loaded at CCL MB CYC T2. The Request counter receives the
current action count which specifies how many words are to be transferred to memory.
The counter is decremented each time a word is transferred to an MB until its content
reaches zero. The Memory Pointer counter receives the current memory pointer which
specifies the starting location (address) in the CH BUF from which to take the words.
As the words are transferred to the MBs, this counter is incremented to point to the
next word.

2. AtCCL MB CYC T3, CCL CHAN REQ IN and CCL CHAN TO MEM are asserted
and the word request logic is set up to specify the words to be transferred. The number
of words to be transferred is a function of the action count and the memory address
that was loaded into the CCW register. :

3. The MB Select (MB SEL) counter is set up (loaded with CCW CHA 34 and 35)at CCL
MB CYC TO to point to the MB that will get the first word. As each word is transferred
to an MB, the MB Select counter is incremented to point to the next MB.

NOTE |

The CCW register contains the physical address that

is selected by the PMA when a cache cycle is
executed. |

The channel control MB request logic then waits until the cache control grants a cache cycle
to process the channel request. |

MBox/3-110

g. When a cache channel cycle is executed (CSH CHAN CYC is asserted), the words are

transferred from the CH BUF to the MBs one at a time (CCL CH LOAD MB is asserted for

each word), and CCL. START MEM is asserted to initiate a memory write cycle. Each time

4 word is transferred, the valid words in the cache are invalidated, the request counter is

decremented, and the AF MEM PTR and MB SEL counters are incremented. (CCL REQ

CTR EN is asserted.)

h. When the Request counter reaches zero, a second RAM request is initiated to update the

memory pointer in the control RAM and the CCW in the CCW BUF.

i. Ifa higher priority request (CBUS REQUEST or CBUS CONTR REQ) is not pending, the

second RAM cycle is granted and executed to update the memory pointer and the CCW as

follows:

. The pointer is updated by adding the action count to the pointer and writing the result

back into the control RAM (CRC WR RAM). :

2. The CCW is updated by subtracting the action count from the WC, adding the action

count to the ADR, and writing the result back into the CCW BUF. (CCL CCW BUF

WR). '

J. After the second RAM cycle is executed, CCL MB RIP is cleared to allow another MB

request to be initiated.

If the block transfer is a zero fill operation, a cache and core cycle will not be requested by the channel

control. The words that were placed in the CH BUF are simply ignored. The request for a second

RAM cycle will be made directly after the first RAM cycle has been executed.

If the block transfer is from a magtape and it is a read-reverse operation, the words are transferred to

the MBs in reverse order so that they can be written into main memory in the correct order. In

addition, the address of the CCW is updated by subtracting the action count from the address, instead

of adding it as described in step i (2) above. Also, CCL START MEM is not asserted until all the

words have been transferred to the MBs.

3.8.8.3 Action Flag (NOT CTOM) Request — The following description details an action flag MB

request to transfer data from main memory to the CH BUF. This description applies providing the

block transfer is not a zero fill operation (Figure 3-54).

a. An action flag request is queued when enough empty locations have been accumulated in the

CH BUF (CRC AF REQ ENA). The action flag arithmetic logic keeps track of the empty

locations in the CH BUF (Subsection 3.8.6).

b. An MB request (MB RIP is asserted) to transfer a group of words (maximum offour) for the

highest priority channel is initiated as soon as the previous M B request is completed provid-

ing a CCWF request in not pending.

c. When the MB request is initiated, the action flag request is granted (CCL ACT FLAG REQ

is asserted), the CCW BUF address and part of the CH BUF address are formed to address

the desired segments of the buffers, a RAM request is initiated, and the contents of the
addressed location of the CCW BUF are loaded into the CCW register. Address bits 0-2 of

both the CH BUF address and the CCW BUF address specify the channel number for which

the request is being executed. Bit 3 of the CCW BUF address is assured to be zero at this

time so that the CCW in the CCW BUF is addressed and transferred to the CCW register.

MBox/3-111

cvoor rien Jo[1[2lfo] 2[efof[zlfo|s 2[sfo]|elso] efofol | zsfo s [lo]|2lso] [ffe] [zl fo] e[l [elsol: [efslo]s 2ol
CCWS ACTFLAG REQENA _|

{ .

CCL2 HOLD MEM _ | o | —

CCLaMBRIPIN __ | — . L1 -

CCL3 MB RIP f —t L [—

CCL2 ACT FLAG REQ [cCw BUF AND CHBUF ADR 0-2+ ACT FLAG ADR (-2 -4,CCW BUF ADR 3 -0 |

CCL2 INIT RAM REQ ninil

CCL4 RAM REQ nial . [~

CCL3 CCW REG LOAD fol_

CCL3MB REQ TO f
JS

CRC2 M8 cYC)‘JTWRCS RAM ADR 1-2-4R~=-BUF ADR 0-3 ()_’W?é'l_____

CRCS5 WR RAM 1 M

CCL3 MB REQ T+t f
] _

CCL3 INITMB CYC 1

CCLA MBCYC T2 J2]lcH BUF ADR 3-6 «— MEM PTR 0-3

CCL4 REQ CTR EN IR L N M

CCL3IMB CYC T3 l l

CCL3 CHAN REQ l l

CCL4 MBCYC TO Jol

]

I

CCL3IMBREQ T2

CCL3 ALU PLUS

MBX2 CSH CHAN cve o et \

MBX3 MBO-3 HOLD IN
R LJ LJ .|_!

CCW4 WD O-3 AVAILABLE
| woo | woi I woz I woaL

CCW4 WD READY
I woo LJ wD1 Y woz L wD3 {

CCL4 AF WD READY
| | U |

CCLA WD TAKEN/
CCL3CH BUF WR EN

Jol ol o __

CCL4 CH TEST MB PAR
M |3 N 1

CCL3 /CRC
'

3

CCL3 C
ccL4

5
2

MEM PT RE

CWBUF WR
MB RIP CL

N

[ol__
10-21%83

N
Z

Figure 3-54 Action Flag MB Request (NOT CTOM), Timing Diagram

d. Providing a higher priority request (CBUS REQUEST or CBUS CONTR REQ) is not
pending, a RAM cycle (MB CYC) is executed to set up the channel request for a cache cycle
and to form the rest of the CH BUF address (bits 3-6). |

e. When the RAM cycle is executed, the following specific operations are performed:

I. The Request counter (REQ CTR) and the Action Flag Memory Pointer (AF MEM
PTR) counter are loaded at CCL MB CYC T2. The Request counter receives the cur-
rent action count which specifies how many words are to be transferred from memory,
The counter is decremented each time a word is transferred to the CH BUF until its
content reaches zero. The Memory Pointer counter receivesthe current memory point-
er, which specifies the starting location (address) in the CH BUF in which to write the
words. As the words are written into the CH BUF, the counter is incremented to point
to the next empty location.

MBox/3-112

2. At CCL MB CYC T3, CCL CHAN REQ is asserted and the word request counter is
set up to specify the words to be fetched. The number of words to be fetched is a
function of the action count and the memory address that was loaded into the CCW
register.

3. The MB SEL counter is set up (loaded with CCW CHA 34 and 35) at CCL MB CYC
T1 to point to the MB that will receive the first word.As each word is transferred to the
CH BUF, the MB Select counter is incremented to point to the next MB.

NOTE

The CCW register contains the physical address

which is selected by the PMA when a cache cycle is

executed.

f. The MB request logic then waits until the cache control grants a cache cycle to process the
channel request.

g. When a cache cycle is executed (CSH CHAN CYC is asserted), a core read cycle is initiated
if all the words are not in the cache and the channel control word request logic is enabled to
detect when the words are loaded into the MBs. Any words in the cache are simply trans-
ferred to the corresponding MBs.

h. When the lowest number word that was requested is loaded into the corresponding MB by
the cache/core control, the word request logic asserts CCW WD READY. If a CBUS
REQUEST is not being executed (CH REQ D is not asserted), the word is transferred from
the MB to the CH BUF, the Request counter is decremented, and the Memory Pointer and
MB Select counters are incremented (CH BUF WR 00-06 and CCL REQ CTR EN are
asserted). This operation is repeated for each word until all requested words are transferred,
at which time the Request counter will contain zero.

i.- When the Request counter reaches zero, a request for a second RAM cycle (RAM REQ) is
initiated to update the memory pointer in the control RAM and the CCW in the CCW BUF.

). If a higher priority request (CBUS REQUEST or CBUS CONTR REQ) is not pending, the
second RAM cycle is granted and executed to update the memory pointer and the CCW as
follows:

1. The pointer is updated by adding the action count to the pointer and writing the result
back into the control RAM.

2. The CCW is updated by subtracting the action count from the WC, adding the action
count to the ADR, and writing the result back into the CCW BUF.

k. After the second RAM cycle is executed, CCL MB RIP is cleared to allow another MB
request to be initiated.

If the block transfer is a zero fill operation, the channel request will be initiated to fetch the four zero
fill words from the EPT. Four locations for all channels are reserved in the EPT (starting at location
60) for storing the zero fill words.

MBox/3-113

3.8.84 Memory Store Request - The following description details a meinory store MB request to
transfer the current CCW and the status and CLP word, which are maintained in the CCW BUF, to
the EPT in main memory (Figure 3-55). ‘

a. A memory store request is queued when:

I. A store operation is specified by the RH20 Massbus controller at the end of a block
transfer. (Both CBUS STORE and DONE are asserted.)

2. A memory error or a channel error is sensed while the block transfer is being executed.

b. An MB request (CCL MB RIP is asserted) to store the two word$ in the CCW BUF, for the
highest priority channel that has a request pending, is initiated as soon as the previous MB
request is completed, providing a CCWF request and an action flag request are not pending.

c. When the MB request is initiated, the memory store request is granted (CCL MEM STORE
REQ is asserted), the CCW BUF ADR is formed (bits 0-2 specify the channel number for

- which the request is being executed and bit 3 is set to a “one” to select the CLP for that
channel), a RAM request is initiated, and the contents of the addressed location of the CCW
BUF are loaded into the CCW register. These bits, along with the status bits from the
control RAM, which form the first word to be transferred to an MB (word 1in CCW BUF)
for the channel the request is being executed, are required in computing the parity bit so that
the parity check performed on the contents of the MB is consistent with the data word that
was transferred to the MB. :

NOTE .

The CCW register is loaded only to compute the MB
data parity; its contents are not required in formin%
the PMA because the address is formed exclusive o
the contents of the CCW register. Besides loading
the CCW register and computing a parity bit con-
sistent with the word transferred to the MB, the
CCW BUF is also updated to reflect the status bits
that are maintained by the control RAM. This word,
therefore, is made available so that it can be read
under diagnostic control for diagnostic purposes.

d. Providing a higher priority request (CBUS REQUEST or CBUS CONTR REQ) is not
pending, a RAM cycle (MB CYC) is granted and executed to set up the channel request for a
Cache cycle and to select the appropriate channel status bits which comprise bits 00-13 of
“the word to be transferred to the MB. These bits will also be written into the appropriate
CCW BUF location. .

MBox/3-114

CLOCK TICK

CCW6é MEM STORE REQ ENA

[o]1|2]3]o|r|2|3]o|1]|2]3|o]1]|2]3]o|1|2|3]|0|t|2|3]0]

|

CCL2 HOLD MEM |

CCL4 MB RIP IN

CCL3 MB RIP

CCL2 MEM STORE REQ

CCL2 CCW BUF ADR 3

CCL3 INIT RAM REQ

CCL4 RAM REQ

CCL3 CCW REG LOAD

CCL3 MB REQ T® |

CRC2 MB CYC

CRC5 WR RAM

CCL3 CCW BUF WR

CCL3 MB REQ TH]

CCL3 INIT MB CYC

CCL3 MB CYC T3

CCL3/74 CHAN REQ IN, CHAN TO MEM, CHAN EPT

CCL4 MB CYC T¢

| JecLs can reain|

CCL3 MB REQ T2

MBX2 CSH CHAN CYC

CCL1 DATA EN

CCL4 CH LOAD MB

CCL4 START MEM

CCL4 REG CTR EN

CCL4 STORE CCw

CCL4 MB RIP CLR [
10-21%0

Figure 3-55 Memory Store MB Request, Timing Diagram

MBox/3-115

e. When the RAM cycle is executed, the following specific opeirations are performed:

.. At CCL MB CYC T3, CCL CHAN REQ IN, CCL CHAN TO MEM, and CCL
CHAN EPT are asserted and the word request logic is set up to specify the words (word
| and 2) to be transferred. :

2. The status and CLP word in the addressed CCW BUF iocation is updated (the status
bits are written) at CCL MB CYC T1 (CCL CCW BUF WR is asserted).

3. The MB SEL counter is set up (loaded) at CCL MB CYC Tl to point to the MB (M BI)
that will receive the status and CLP word. Bit 35 of the channel address (CHA) is
forced to a “one” for this operation to ensure that the MB SEL counter is set up
correctly.

NOTE 5
The contents of the CCW register are not used as the
memory address for the memory store operation.

Instead, the CHA address is forced to point to the
correct location in the EPT page. When a cache
cycle is granted, the PMA supplies the base address
for the EPT (contents of EBR). In addition, the
Request and Memory Pointer counters are not used
for the memory store operation.

f. The channel control MB request logic then waits until the cache control grants a cache cycle
to process the channel request. |

g. When a cache channel cycle is executed (CSH CHAN CYC is asserted), the first word is
transferred from the CCW register to MB1 (CCL CH LOAD MB is asserted) and CCL
START MEM is asserted to initiate a memory write cycle. The second word is then loaded
into the CCW register to compute its parity and then loaded into MB2. If any valid words
are found in the cache, they are invalidated. After the first word is transferred, CCW BUF
ADR bit 3 is cleared (CCL STORE CCW is asserted) to point to the next word (CCW) and
the MB SEL counter is incremented to point to MB2 (CCL REQ CTR EN is asserted).

h. After the second word is loaded into MB2, CCL MB RIP is blcared to allow another MB
request to be initiated. |

3.8.8.5 Error Request — The channel control MB request logic must be guarded against potential
memory errors while an M B request is being executed. When an MB Request is in progress (MB RIP)
and a cache channel cycle is granted in response to the channel request,the Error Address register is
loaded to preserve the address of the channel for which the request is being executed. If a memory
error is detected while the channel request (CCWF request only) is being executed, the CCL MEM
ERROR LATCH is set (Figure 3-56). Then, when CCL MB RIP is cleared on completion of the
request, CCL ERR REQ is asserted to initiate a RAM cycle to update the control RAM error bits and
to set the appropriate bit in the store request queue using the address that was preserved by the Error
Address Register. Another MB request will not be started until a RAM cycle for the error request is
executed. After the RAM cycle is executed, the CCL MEM ERR LATCH is cleared.

MBox/3-116

CLOCK TICK

CCL3 MB RIP

CCL1 MEM ERR

CCL1 MEM ERR LATCH

CCL1 ERR REQ

CCL4 RAM REQ

CRC2 MB CYC

CCL! MB CYC OLY

CRC5 WR RAM

CRC4 MEM STORE ENA

CCW6 MEM STORE (N

CCL1 MEM ERR CLR

Figure 3-56

lol112|3]0l1|213(0]1]2|3[0|1]2]3]0|* 2]3]o|1]2]3|
J)
A4

I Ly

| L

o
~

—
~
~
—

I BUF ADR @-2+—ERR ADR 1-2-4 |

i L

I

CRC5 RAM ADR
12 3 0| 1-2-4R+—BUF ADR 0-2

A T

1

[1

.

[l

11
10-2154

Memory Error MB Request, Timing Diagram

MBox/3-117

AC

AC

ACKN

ACT

AD

ADA

ADB

ADR

ADX

AF

ALT

ALU

APR.

AR

ARL

ARM

ARMM

ARR

ARX

ARXL

ARXM

ARXR

BOOLE

BR

BRK

BRX

BUF

CAM

CBUS

A

Accumulator

Action Count

Acknowledge

Action

Adder

Adder A

Adder B

Address

Adder Extension

Action Flag

Alternate

Arithmetic Logic Unit

Arithmetic Processor

Register

Arithmetic Register

Arithmetic Register Left

Arithmetic Register Mixer

Arithmetic Register

Mixer Mixer

Arithmetic Register

Right

Arithmetic Register

Extension

Arithmetic Register

Extension Left

Arithmetic Register

Extension Mixer

Arithmetic Register

Extension Right
B .

Boolean

Buffer Register

Break

Buffer Register Extension

Buffer

C

Cache Address Mixer

Channel Bus

CCA

CCL

CCW

CCWF

CDIRP

CcG

CH

CHA

CHAN

CHK

CHX

CLK

CLR

COMP

CON

COND

CONS

CONTR

CP

CP

CPU

CR

CRA

CRAM

CRC

CRM

CRY

CS

CSH

CTL

CTOM

CTR

CWSX

CYC

MBox/A-1

APPENDIX A

ABBREVIATIONS AND MNEMONICS

Cache Clearer Address

Channel Control Logic

Channel Command Word

Channel Command

Word Fetch

Cache Directory Parity

Carry Generate

Channel

Channel Address

Channel

Check

Cache Extension

Clock

Clear

Complete

Control

Condition

Constant

Control

Carry Propagate

Central Processor

Central Processing Unit

Control RAM

Control RAM Address

Control RAM Address

Mixer

Channel RAM Control

Control RAM

Carry

Controller Select

Cache

Control

Controller-to-Memory

or Cache-to-Memory

Counter

Called With Special

Execute

Cycle

D

DAT

DIAG

DIF

DIR

DIS

DISP

DIV

DRAM

EtoT

EBR

EBUS

ECL

EDP

EN

- ENA

ERR

ERA

EPT

EX

EXP

= XT

EXT TRA REC

FE

FLG

FM

FOV

FPD

FPD

FUNC

FXU

G

GE

GEN

H

IN

INC

INH

INSTR

INT

INTR

INVAL

10T

D

Data

Data

Diagnostic

Difference

Directory

Disable

- Dispatch

Divide

Dispatch RAM

E

EBox Cyc

ECLto TTL

Executive Base Register

Execution Bus

Emitter-Coupled Logic

EBox Data Path

Enable

Enable

Error

Error Address

Executive Process Table

Extension

Exponent

External

External Transfer

Receiver

F

Function

Floating Exponent

Front End

Flag

Fast memory

Floating Overflow

First Part Done

Floating Point Divide

Function

Floating Exponent

Underflow

G, H

Gated

Greater or Equal

Generate

High

|

Input

Increment

Inhibit

Instruction

Internal

Interrupt

Invalid

Input/Output

Transfer

IR

J

L

LRU

MB

MBC

MBX

MBZ

MCL

MEM

MHz

MIX

MQ
MQM

MR

MRU

MTR

NICOND

NXM

NXT

OK

0]

OVN

PA

PAG

PAR

PC

PCF#

PCP

PC

PERF

PF

PGRF

Pl

PIA

PIH

PMA

PMA

PREV

PT

PTR

PWR

MBox/A-2

Instruction Register

J, K, L

Jump

Low

Least Recently Used

M

Memory Buffer

MBox Control

M Box Control

M Box Control

Memory Control

Memory

Megahertz

Mixer

Multiplier Quotient

Multiplier Quotient

Mixer

Master

Most Recently Used

Meter

'N

Next Instruction

Condition

Non-Existent Memory

Next,

0

011 Korrect

Operation (code)

Overrun

P

Physical Address

Pager

Parity

Program Counter

Previous Context

Flags from Number

Previous Context Public

Program Counter

Performance

Page Fault
Page Refill

Priority Interrupt

Priority Interrupt

Assignment

Priority Interrupt

Hold |

Physical Memory Address

Physical Memory Address

Selector

Previous

Page Table/Process

Table

Pointer

Power

RAM

RD

RE

REC

REF

REG

REL

REQ

RES

RESP

RET

RIP

RQ

SADRP

SBR

SBUS

SC

SCAD

SCADA

SCADB

SCD

SCM

SEL

SH

R

Random Access Memory

Read

Receive ECL

Receive

Reference

Register

Release

Request

Reset

Response

Return

Request In Progress

Request

S

Storage Address

Parity

Subroutine

Storage Bus

Shift Count

Shift Count Adder

Shift Count Adder A

Shift Count Adder B

Shift Count Adder

Shift Count Mixer

Select

Shifter

UBR

UCODE

VAL

VMA

XFER

XR

WARN

wC

WD

WR

MBox/A-3

Shift Right

Simulate

Special

Special

State Register

Start

Synchronize

T, U

TTL to ECL

Transmit ECL

Time

Transfer

Transistor-Transistor

Logic

User Base Register

Microcode

V., W, X, Y, Z

Valid

Virtual Memory

Address

Transfer

Index Register

Warning

Word Count

Word

Write

A

Address 1-1, 1-8, 2-7, 2-57, 2-61

Cache 3-16

Cache Clearer 1-8, 3-19

Channel 1-8, 3-19

Core 3-76

Error 2-75

Executive Base 1-8, 3-33

Extended 3-7

Hash function 3-3

Match 1-10, 1-13, 1-18, 3-1, 3-16

Pager 3-1, 3-16

Physical 1-8, 2-28, 3-1, 3-16

Refill 3-19

User Base 1-8, 3-33

Virtual 1-8, 3-1, 3-16

Writeback 1-17, 3-20

Address Path 2-8, 2-61

Any Valid Match 3-36

B

Block 1-13, 1-19

Buffers

Cache 1-4, 1-10, 1-13, 2-28, 3-9

Channel Command Word 1-8, 1-19, 2-32,

3-58

Channel Data 1-8, 1-19, 2-32, 3-58

Memory 1-1, 1-18, 2-63, 3-66

Pager 1-4, 1-10, 3-1

C

Cache 1-4, 1-10, 2-1

Address 1-13, 2-28, 3-19

Block 1-13, 1-19

Clearer 1-21, 3-66

Control 1-17, 2-71, 3-12

Cycle 1-18, 2-5, 3-15

Data 1-13, 2-28

Directory Address 1-13, 2-28

Line 1-13

Parity 2-75

INDEX

Read 2-28, 3-31

Refill Algorithm 3-63

Refill RAM 3-61

Strategy 3-34, 3-43

Structure 1-4, 1-13

Sweep 1-21, 2-7

Use History 1-13

Valid Bit 1-13

Written Bit 1-13

Write 2-28, 3-40

Cache Clearer

Control 1-21, 3-66

Cycle 2-7, 3-56

Request 2-35

Cache Cycles 1-18, 2-5, 3-15

CCA 2-7, 3-56

CHAN 2.7, 3-58

EBox 2-7, 3-28

MB 2-7, 3-50

Refill 2-6, 3-52

Writeback 2-6, 3-50

Cache Use Logic 3-61

CBus Request Logic 3-89

Channel 1-8, 1-19,

Action Count (AC) 1-8, 3-95

Address (ADR) 1-8

Block Count 1-19

Buffers 1-5, 1-8

Channel Command Word (CCW) 1-5, 1-8,

1-19

Channel Pointer (CH PTR) 1-8, 3-98

Command List 1-5, 1-19

Command List Pointer (CLP) 1-8, 1-19

Control 1-5, 1-6, 1-20, 2-71

Data 1-8

Memory Pointer (MEM PTR) 1-8, 3-97

Parity 2-76

Program 1-19

Queues 2-51, 2-56

RAM Cycles 2-4

Read 2-32, 3-58

MBox/INDEX-1

Requests 2-30

Status 1-19

Word Count (WC) 1-8, 1-19

Write 2-34, 3-60

Channel RAM Cycles 2-4

CBus Control 2-4

CBus Request 2-4

ME 2-4

Channel Requests 1-20, 2-30

Dialogue 2-32

Fetch CCW 2-32

Parity 2-75

Read Data 2-32, 3-58

Store Status 2-34

Write Data 2-34, 3-60

Configuration, MBox I-1

CONO PAG 3-29

Control Logic 1-5, 2-64

Core Control 1-21, 2-71, 3-73

Counters 3-73, 3-103

CCA Block 3-66

CCA Line 3-66

Channel Action Count 3-45

Channel Action Flag Channel Pointer 3-98

Channel Action Flag Memory Pointer 3-97

Channel MB Select 3-108, 3-110

Channel Word Request 3-110

Core Address 34-35 3-79

SBus Acknowledge 2-38, 3-77

SBus Data Valid 2-38, 3-78

Cycles |

Cache 1-18, 2-5, 3-5

Channel RAM 2-4

Core 1-5, 1-21

SBus Diagnostic 2-29, 3-49

D

Data 1-1, 1-5, 2-8, 2-57, 2-62

AR 1-18, 2-27

CBus 1-8, 2-40

Diagnostic 2-18

Cache 1-13, 2-5

Channel 1-8, 1-19

EBus 2-9, 2-15

Memory Buffer 1-18, 2-8

Pager 1-4, 1-8, 2-29, 3-1

SBus 1-21, 2-1, 2-36

Use History 1-13

Data Overruns 1-8, 3-12

Data Path 2-9, 2-62 -

Descriptions

Functional Description 2-1

Logic Descriptions 3-1

Overview -1

Diagnostic

Bits 2-79

Cycle 2-29

Directory

Page Table 1-9

Cache 1-13

E

EBox Requests 2-9, 3-28

Diagnostic 2-29, 3-49

Dialogue 2-16

Read Memory/Cache 2-28, 3-31, 3-47

Read Page Table (MAP) 2-18

Read Register 2-18, 3-30

Sweep Cache 2-27:

Write-Check 3-47

Write Memory/Cache 2-28, 3-40, 3-47

Write Page Table 2-27
Write Refill RAM 13-48

Write Register 2-18, 3-29

Errors

Address Parity 2-72

Data Parity 2-75

Error Flags 2-78

Status 2-79 .

Timeout 2-77

Executive 1-4, [-8

Base Register 1-8

Mode 34 ‘

Pages 3-1

Process Table 1-4, 1-8

Program 1-4

F,G, H

Flows

Cache Control 2-6, 2-21

Channel Control 2-5, 2-47

Core Control 2-39

Formats :

Address 1-9 |

Channel CommandiWord 1-20

Channel Status 1-20

Diagnostic Words '2-79

Error Address Word 2-80

Page Fail Code 3-6

Page Fail Word 2-79, 3-8

Functional Description

Address and Data Path Logic 2-57

Address Path Summary 2-7

Cache Cycles 2-5

CBus Requests 2-40

CCA Requests 2-35

Channel RAM Cycles 2-4

Channel Requests 2-30

MBox/INDEX-2

Control Logic 2-64 M, N
Core Cycles 2-38 Map 2-27, 3-30
Core Requests 2-36 Memory
Data Path Summary 2-8 Cache 1-4, 1-10, 3-9
EBox Requests 2-9 Core 1-4, 1-10, 3-76
Error Checking and Reporting Logic 2-72 Pager 1-4, 1-8, 3-1

Use Table 1-13, 3-61

I MB Control 1-21

Instructions MB Request 3-50

BLKI PI 2-79, 3-30 Memory Buffer

BLKO APR 3-48, 3-63 Control 1-21, 3-66
BLKO PI 3-49 Parity 2-75

Channel Command 1-20 Read 1-18, 3-66
CONI PAG 3-30 Write 1-18, 3-66

CONO APR 2-79 | Mixers 2-61
CONO PAG 3-29 Cache Address 2-62
DATAI PAG 3-30 Channel Buffer Input 2-64
DATAO PAG 3-29 Channel Command Word Buffer Input 2-64
MAP 3-30 Channel Register 2-64

Memory Reference 2-28 Diagnostic Bits 2-59
Read 3-31 Memory Buffer Input 2-63
Read-Pause-Write 3-47 Memory Buffer Select (output) 2-63

Write 3-40 Memory to Cache 2-62

Write-Check 3-47 Page Table Input 2-64
RDERA (BLKI PI) 2-79 Physical Memory Address 2-61

Register Reference 2-18 User/Executive Base Address 2-61
CCA 3-29 Modes Paging 3-1, 3-4, 3-7

EBR 3-29 Modules 1-2, 1-3

EBUS 2-79

ERA 2-79 _ 0

PT 3-30 Overview 1-1

REFILL RAM 3-48 Cache 144, 1-10
UBR 3-29 Cache Clearer Control 1-5, 1-21

DIAG 2-79 Cache Control 1-5, 1-17

WRFIL (BLKO APR) 3-63 Channels [-5, 1-19
Interface Channel Control 1-5, 1-20

Cache/Channel 2-30 Core Control 1-5, 1-21
CBus 2-40 MB Control 1-5, 1-21

EBox/MBox 2-9 Pager 1-4, 1-8
SBus 2-36

P,Q

K Pages

Kernal 3-5 Accessable 3-4
Cachable 3-4

Executive 3-4

. L Public 3-4
Line 1-13 User 3-4
Logic Description 3-1 Writable

Cache and Cache Control 3-9 Page Fault 3-6
Cache Clearer Control 3-66 Pager 1-4, 1-8, 2-29, 2-61

Cache Use Logic 3-61 | Accessable Pages 3-4
Channel Control 3-80 Cachable Pages 3-4

Core Control 3-73 Directory Address 1-9, 3-1
MB Control 3-66 Executive Pages 1-4
Pager 3-1 KI Mode 3-7

MBox/INDEX-3

KIL. Mode 3-8

Page Descriptor Bits 3-4

Page Fault 3-6

Page Table Address 1-9, 3-1

Parity 2-72

Public Pages 3-4

Refill Operation 2-6, 3-5

Structure 1-4, 1-8

User Pages 3-4

Valid Pages 2-29, 3-4

Writable Pages 3-4

Paging Mode 3-7

Parity

Address 2-72

Data 2-75

Physical Memory Address Mixer 1-8, 2-7,

2-28, 3-14

Cache Address 3-16

Cache Clearer Address 3-19

Cache Refill Address (PMA HOLD) 3-19
Cache Writeback Address (CAM) 3-20

Channel Address 3-14

Control 3-19

Error Address 2-75

Executive Base Address 3-33

Pager Address 3-1, 3-16

Parity 2-72

Physical Address 1-8, 2-28, 3-1, 3-16
User Base Address 1-8, 3-33
Virtual Address 1-8, 3-1, 3-16

Pointers 1-8

Channel 1-8, 3-98

1-8, 3-9Memory 1-8, 3-97

Program

Channel 1-19

Executive 1-4

User 1-4, 1-8

Process Table 1-4, 1-8

Quadword 1-4

Queues

Action Flag 3-99

Cache to MB Word Request 3-73
Channel Command Word Fetch 3-99
Done 3-87

MB Write Request 3-70

Memory Store 3-99

Reset 3-83

Start 3-83

Store 3-83

R

RAM's 2-7, 3-92

Action Count 3-95

Cache 1-10

Channel Buffer 3-95

Channel Control 3-80

Channel Command Word Buffer 3-98

Channel Pointer 3-98

Memory Pointer 3-97

Pager 3-1

RD Found 3-35

Read 1-18, 2-18, 2-27, 2-28, 3-31

Cache Clearer Address Register 2-18

Cache Data 1-5, 1-13, 3-35

Cache Directory (Address) 1-5, 1-13

Cache Use Table 1-13

Cache Valid Bits 1.5, 1-13

Cache Written Bits = 1-5, 1-13

Channel Command Word Buffer 1-8, 2-4

Channel Command Word Register 2-52

Channel Data Buffer 1-8, 2-4

Core 1-21, 2-1, 3-36, 3-37

Diagnostic Register 2-18

EBus Register 2-18, 3-35

Error Address Register 2-18

Executive Base Register 1-8, 2-18, 3-30

Executive Process Table 1-4, 2-32, 3-31

Memory 1-21, 2-28, 2-32, 3-28, 3-31

Memory Buffer 1-18, 1-21, 2-7

Page Fail Word 2-79, 3-35

Page Table 1-4, 2-18, 3-28

Register 3-28 i

User Base Register ,8, 2-18, 3-30

User Process Table. 1-4, 3-31 '

Refill

Cache 1-4, 3-12, 3-524
Pager 1-4, 2-28, 3-5, 3-7, 3-19

Registers 1-8, 2-27, 2:61, 2-79

Action Flag Request 3-99

Cache Clearer Address 3-29, 3-66

CBus Output 2-64

Channel Command Word 3-108
Channel (Input) 2-64

Channel Command Word Fetch Request 3-

99

CTOM 3-88

Done Interrupt 3-86

EBus 2-27

Error Address 2-27

Executive Base 3-29

Memory Buffer [-21

Memory Buffer/Channel 3-103

Memory Store Request 3-99

Physical Memory Address 3-19, 3-31

Physical Memory Address Hold 3-19

Reset Interrupt 3-84

Start Interrupt 3-85

Store 3-87

User Base 3-29

MBox/INDEX-4

Requests 1-5, 2-1

Cache Clearer (CCA) 2-35

CBus 2-40

Channel (CHAN) 2-30

Core 2-36

EBox 2-9

Sweep, Cache 1-21

Section

Executive 3-1

User 3-1

Supervisor 3-5

System

1080 1-1

1090 1-1

2040 1-1

2050 1-1

Timing 2-64, 2-71

Cache Control 3-12

Channel Control 3-80

Core Control 3-13

U,V

User 1-4, 1-8

Base Register 1-8

Mode 3-4

Pages 3-1

Process Table 1-4, 1-8

Program 1-8

W, X,Y,Z
Write 1-18, 2-18, 2-27. 2-28. 3-40
Cache Clearer Address Register 2-18, 3-29,

3-56

Cache Data 1-5, 1-13, 3-35
Cache Directory (Address) 1-5, 1-13
Cache Use Table 1-13
Cache Valid Bits 1-5, 1-13

Cache Written Bits 1-5, 1P%3
Channel Command Word Buffer 1-8, 2-4
Channel Command Word Register 2-52
Channel Data Buffer 1-8, 2-4
Core 1-21, 2-1, 2-7, 3-46
Diagnostic Register 2-27

Executive Base Register 1-8, 2-18, 3-29
Executive Process Table 1-4, 2-34, 3-4]
Memory 1-21, 2-28, 2-32, 3-40
Memory Buffer 1-18, 1-21, 2-7, 3-28
Page Table 1-4,2-18 .
User Base Register 1-8, 2-18, 3-29
User Process Table 1-4, 3-41

Word [-1]

MBox/INDEX-5

MBOX STORAGE CONTROLLER ’

UNIT DESCRIPTION Reader’s Comments
EK-MBOX-UD-004

Your comments and suggestions will help us in our continuous effort to improve the quality and usefulness of

our publications.

What is your general reaction to this manual? In your judgment is it complete, accurate, well organized, well

written, etc.? Is it easy to use?

What features are most useful?

What faults do you find with the manual?

Does this manual satisfy the need you think it was intended to satisfy?

Does it satisfy your needs? Why?

Would you please indicate any factual errors you have found.

Please describe your position.

Name Organization

Street o Department

- City — State Zip or Country

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

|

Postage will be paid by:

Digital Equipment Corporation

Technical Documentation Department

Maynard, Massachusetts 01754

	001
	002
	003
	004
	005
	006
	007
	008
	009
	011
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	2-58
	2-59
	2-60
	2-61
	2-62
	2-63
	2-64
	2-65
	2-66
	2-67
	2-68
	2-69
	2-70
	2-71
	2-72
	2-73
	2-74
	2-75
	2-76
	2-77
	2-78
	2-79
	2-80
	2-81
	2-82
	2-83
	2-84
	2-85
	2-86
	2-87
	2-88
	2-89
	2-90
	2-91
	2-92
	2-93
	3-001
	3-002
	3-003
	3-004
	3-005
	3-006
	3-007
	3-008
	3-009
	3-010
	3-011
	3-012
	3-013
	3-014
	3-015
	3-016
	3-017
	3-018
	3-019
	3-020
	3-021
	3-022
	3-023
	3-024
	3-025
	3-026
	3-027
	3-028
	3-029
	3-030
	3-031
	3-032
	3-033
	3-034
	3-035
	3-036
	3-037
	3-038
	3-039
	3-040
	3-041
	3-042
	3-043
	3-044
	3-045
	3-046
	3-047
	3-048
	3-049
	3-050
	3-051
	3-052
	3-053
	3-054
	3-055
	3-056
	3-057
	3-058
	3-059
	3-060
	3-061
	3-062
	3-063
	3-064
	3-065
	3-066
	3-067
	3-068
	3-069
	3-070
	3-071
	3-072
	3-073
	3-074
	3-075
	3-076
	3-077
	3-078
	3-079
	3-080
	3-081
	3-082
	3-083
	3-084
	3-085
	3-086
	3-087
	3-088
	3-089
	3-090
	3-091
	3-092
	3-093
	3-094
	3-095
	3-096
	3-097
	3-098
	3-099
	3-100
	3-101
	3-102
	3-103
	3-104
	3-105
	3-106
	3-107
	3-108
	3-109
	3-110
	3-111
	3-112
	3-113
	3-114
	3-115
	3-116
	3-117
	A-01
	A-02
	A-03
	I-01
	I-02
	I-03
	I-04
	I-05
	replyA
	replyB

