
EK-OKL10-TM-002

KL10-Based

Technical Manudl

EK-OKL410-TM-002

‘KL10-Based

Technical Manual

Prepared by Educational Services

of

Digital Equipment Corporation

1st Edition, August 1983

2nd Edition, July 1984

o Digital Equipment Corporation 1983, 1984

All Rights Reserved.

Printed in U.S.A.

The material in this manual is for informational purposes and is sub-

ject to change without notice.

Digital Equipment Corporation assumes no responsibility for any er-

rors that may appear in this manual.

The manuscript for this book was created on a DIGITAL Word

Processing System and, via a translation program, was automatically

typeset on DIGITAL’s DECset Integrated Publishing System. Book

production was done by Educational Services Development and

Publishing in Marlboro, MA.

The following are trademarks of Digital Equipment Corporation:

dlilgli{t]all] MASSBUS TOPS-20
DEC PDP UNIBUS

DECmate P/OS VAX

DECsystem-10 Professional VMS

DECSYSTEM-20 Rainbow VT

DECUS RSTS Work Processor

DECwriter RSX

DIBOL TOPS-10

PREFACE

This manual contains the system-level technical description of the DECsystem-10/DECSYSTEM-20

computer, the KL10-R-based machine. The manual provides an integrated hardware/software system

display with appropriate overviews of timesharing/batch operation and system features. The chapters of

this system-level description are as follows.

Introduction

System Features

The Hardware

The Software=

CHAPTER 1

INTRODUCTION

1.1 DECsystem-10/DECSYSTEM-20 TECHNICAL INTRODUCTION

1.1.1 Purpose and Use

The KL10-R is a version of the present KL-based DECsystem-10/DECSYSTEM-20 system. It offers a
complete system with large capacity memories and increased disk, tape, and user capability. The software,

which supports extended addressing, provides service for 40 to 80 users. Ongoing support and development

for current customers protect their investment in TOPS-20 and application software already developed.
Figure 1-1 shows a typical DECsystem-10/DECSYSTEM-20 configuration.

RH20 MAG TAPE

0 SUBSYSTEM
F ooe e -

| {

RH20 DISK | CARD |

1 SUBSYSTEM | READER '

! ' ASYNCHRO- '
6 ADDITIONAL | H Nous |

RH20s

MF20 | LINES l

mos @ p— @ 7 - = - - 1
KL10-R 1 |
CENTRAL MEMORY BTE 11/40 COMMUNICATION T | LINE |

PROCESSOR [=~~ 7 0 CONSOLE | AND | PRINTER(S)
MF20 FRONT END | UNIT RECORD | |

mos = "+ L J e= — 4 L]

memory |+ dA'onw0 | rFe=e————DTE DN20

1 SECONDARY

FRONT END

2 ADDITIONAL

DTEs

DIB 20 - — — —JOPTIONAL1/0

*DMA20

i

EXTERNAL

MEMORY

*OPTIONAL ON 1091 MR.2857

Figure 1-1 DECsystem-10/DECSYSTEM-20 Configuration

1-1

1.1.2 General Description

The DECsystem-10/DECSYSTEM-20 is a large-scale, high-performance system (DECsystem-10/DEC-
SYSTEM-20 family) using a KL10-R central processing unit (see Figure 1-2). It contains at least 512 K
words of memory, TOPS-20 extended features, and both hardware and software support for MOS

memory. :

The following features are included within the mainframe.

® Microprogrammed KL10-R CPU

e Minimum memory size of 512 K words MOS (except 1091)

e Internal data channels

® Internal Massbus controllers

e Integral PDP-11/40 front-end processor (supports asynchronous communication and unit-

record equipment)

e Optional secondary front-end communications

1.1.3 Related Documents

1.1.3.1 Hardware Documentation - The following documents are available only on microfiche except

where identified. Hard copy documents can be ordered from:

Digital Equipment Corporation

444 Whitney Street

Northboro, Massachusetts 01532

Attention: Printing and Circulating Services (NR2/M15)

Customer Services Section

Title Document Number

ANI10/AN20 ARPANET Interface Technical Manual EK-AN1/2-TM

CD20 Maintenance Manual ED-CDI11-TM

DECsystem-10/DECSYSTEM-20 Front End EK-FE-ID

(Console Channel Interface Description)

DIA20 I1Bus Adapter Unit Description | EK-DIA20-TM

DTE20 Unit Description* EK-DTE20-UD

DN200 Remote Batch Station, Terminal Concentrator EK-DN200-TM

(DECSYSTEM-10, -20) Remote Station

DX20/DX20F Programmed Device Adapter Technical Manual EK-ODX20-TM

*Microfiche and hard copy

tHard copy only

]1-2

BS8ZBW (TJo1109yS)werderqyooig[edtdA1,0Z-WALSASOAA/01-WwaasksDAQ¢-12InSi]
F—————————e——\A&TOHL

NOD.
snag/t

\sngo/l\

Z\\fiom:v““
PN

SNAINN

Lok

ON3
LNOY4SNO{

1VDANAW
WOD

XYW
(129N)

SNEINM

GN3
LNOY4JT0S

NOD
TOYLNGCTSNGINN0c¢3ia{oo8n)

SNa
INN

T0YLNODSN8INN0Z3ia
TOHLNOD

SN8SSY

Sa
s

sne3sn
g3

advosg415
130200
70X080/l

sn
a3

sng3sn
a3

> <

SNGS
SYW

— — — CE— e G IR e Gw— ww— S—

0ZHY

Y1vdANYTOH81INOD
{108

07
3s

TOYLNODSNESSYi
V1v¥3dGNYTOHLNOD

tXVIA8
%ZALO8N)7

_1

Is

NgSS
vinN

Ldd
_|bo
etowmomnw

[E
N

210YLNODSNESSYIN
V.1vaONVTOHLNOD£1

3S

\ _SYILIW_od

YINd

YAW
aNv

m
439Vd

w[w=XzIH0ISsng3|&OHOIW
3IHOYD

ODw

SY31S
ID3Y

HLI
YY

S3

X0
9320jew—

l

X

¥1vQANV1045LNODz\Zw

0135Nv“=
£

RSG4eoZ13sY£1
3s¥135

S
RER5

B
913s21387SNgTINNVHD

STINNYHD
XOo

aw

SHOLVISNYH.L SNAX/S

\v

SNOi1dOs

SNEx/sN

AHOW
IW

sow
fivNEXS0Z4Wforadla]

x|0LoaflaAHOWIWSOWo | SNax
0C4n

o

d0SS300
dd

NIV

1-3

r '
1YNOILJO

713
NV

£0dY10443S1090dH

SLHOJSN
VYL

8|

RSP|_—e—-

TTTIT

!UTIOHINGD

!

]

!

IdVL
8LNL

!

3dv.18LN1
XYWTll-_

3dvli8
iNnit

€LYOdSNVYYL

Advieint|y

AdvLB
8LNL

39vHOl1STYNOILTQgY

_

1-4

EBox Unit Description*

Hardware Reference Manualt

KLI10-Based Site Preparation, Power System, and

Installation Manualt

KL10 Maintenance Guidet

KLINIK User's Guide for KL10-Based Systems

MBox Unit Description*®

MF20/MF20F MOS Memory Subsystem Technical Manual*

Packet Switching System Layout Kitt

Packet Switching System Site Prep Guidet

RH20 Unit Description*

1.1.3.2 Software Documentation — Software documents can be ordered from:

Software Distribution Center

Digital Equipment Corporation

444 Whitney Street

Northboro, Massachusetts 01532

Title

Operator’s Guide

Operator’s Guide Update

RSX-20F System Specifications

Software Installation Guide

SPEAR Manual

SPEAR Reference Card

System Manager’s Guide

User Environment Test Package Reference Manual (UETP)

*Microfiche and hard copy

tHard copy only

1-5

EK-EBOX-UD

AA-H391A-TK

EK-0KL10-SP

EK-OKL10-MG

EK-KLIN-UG

EK-MBOX-UD

EK-OMF20-TM

EK-PACSS-LK

EK-PACSS-SP

EK-RH20-UD

Document Number

AA-4176C-TM

AD-4176C-TM

AA-H213A-TK

AA-4195F-TM

AA-J833A-TK

EY-SPEAR-RC

AA-4169E-TM

AA-D606A-TM

1.2 DECsystem-10/DECSYSTEM-20 SITE PREPARATION AND PLANNING

1.2.1 DECsystem-10/DECSYSTEM-20 Installation

The KL10-Based Site Preparation, Power System, and Installation Manual applies to this installation.

The mechanical, environmental, and power requirements of various units that may be configured into a
DECsystem-10/DECSYSTEM-20 are found in this manual. For information about equipment not includ-

ed in these procedures, refer to the appropriate option manual, field service print set, and engineering
installation/test specifications.

1.2.2 DECsystem-10/DECSYSTEM-20 Operation/Programming

Field service diagnostic software support for the DECsystem-10/DECSYSTEM-20 is provided by the

KLAD-10/20 diagnostic pack. The version required for this system must contain the diagnostics that

support minimum revision level 4.

For system-level diagnostic support of most peripheral devices, the normal exec mode diagnostic method is
used in addition to user mode diagnostics. User mode diagnostics are restricted to memory, disk, and tape

subsystems, and secondary communication front ends.

The TOPS-20 operating system provides entries in the system’s SPEAR log file and the TGHA files. In

addition to the previously explained devices, SPEAR supports error logging information relative to

network environments.

1.2.3 DECsystem-10/DECSYSTEM-20 Service

The maintenance philosophy for DECsystem-10/DECSYSTEM-20s using the KL10-R processor is the
same as for previous DECsystem-10/DECSYSTEM-20s. There have been no major logic changes.

Maintenance manuals for Digital manufactured equipment are available only on microfiche (except as
identified in the list of related documents). Vendor manuals for purchased options will be sent with the

system.

Field service engineering print sets are provided with the system. These print sets contain the unit assembly
drawings for Digital manufactured subassemblies and show any features unique to the DECsystem-

10/DECSYSTEM-20.

1.2.4 DECsystem-10/DECSYSTEM-20 Engineering Drawing Sets

Title Print Number

KL10-R Field Maintenance Print Set MPO01708

DX20F Field Maintenance Print Set MPO1709

DC20F Field Maintenance Print Set MPO1710

MF20F Field Maintenance Print Set MPO1711

DNZ20F Field Maintenance Print Set MPO1712

1-6

CHAPTER 2

SYSTEM FEATURES

2.1 INTRODUCTION

The central processing unit (CPU) uses high-speed ECL logic, a microprogrammed instruction set, an
automatic paging buffer, an automatic data buffer, and up to eight high-speed integral data channel
processors. The system also features up to four front-end processing channels and up to 1.5 megawords of
internal MOS memory. All of these functional elements are housed in three cabinets.

Besides the state-of-the-art hardware, the DECsystem-10/DECSYSTEM-20 features an advanced
timesharing/batch operating system that allows both timesharing and batch users to have the benefit of
system resources as if it were a system dedicated to each user. The software system also features advanced
high-level languages, data base management facilities, and utilities.

2.2 INSTRUCTION SET

The DECsystem-10/DECSYSTEM-20 offers 398 instructions, a very large set that provides the flexibility
required for special computing problems. The instruction set is microprogrammed; that is, each instruction
is actually a series of microinstructions that perform various logical functions such as processor state
control, data path control, and the actual execution of each instruction. The microcode is loaded into a2k
words by 84-bit RAM (random-access memory) through the PDP-11 front-end processor. Since the set
provides so many instructions to select from, fewer instructions are needed to perform a given function.
Assembly language programs are, therefore, shorter than with other computers; and the instruction set
simplifies the monitor, language processors, and utility programs. For example, compiled programs on a
DECsystem-10/DECSYSTEM-20 are often 30 percent to 50 percent shorter, require less memory, and
execute faster than those of corresponding computers.

In addition to the instructions, the DECsystem-10/DECSYSTEM-20 features 64 programmable opera-
tors, 33 of which trap to the monitor (monitor calls) and 31 of which trap to the user’s area. An attempt to
execute one of these unimplemented instructions results in a trap to the monitor.

The instruction set, regardless of its size, is easy to learn. It is logically arranged into families of
instructions and the mnemonic code is constructed modularly (Figure 2-1). All instructions are capable of
directly addressing a full 256 K words (36-bit) of memory without sorting again to base registers,
displacement addressing, or indirect addressing. Instructions may, however, use indirect addressing with
indexing to any level. Most instruction classes, including floating-point, allow immediate mode addressing,
where the result of the effective address calculation is used directly as an operand in order to save storage
and speed execution.

Although there are a large number of instructions, they may be broken into easily learned, logically
completed groups (Figure 2-1). To show this, the group to move full words (36 bits) takes the form shown
in Figure 2-2.

2-1

E

¢ Negative

MOV e Magmitude o AC ADD
e Swapped Immediate to ac SUBract

no effect to Memory MULu N
. ply

Half word fig.'"} 10 EET'") (Z)"“ to Selt Integer MULuply ~
fr f eros DIVide Immediate

Extend sign Integer DIVide to Memory
BLock Transter and Round to Both

EXCHange ac and memory Floating AdD ~

use present pomler} . LoaD Byte into ac 22::::3 :qulllt‘iglcl (lfi;ig
Increment pointer DePosit Byte in memory floalin: DiVidey t?) B;tmhory

Increment Byte Pointer)
Floating SCale

ADJust Byte Pointer
FXTFNDW Double Floating Negate
e never Unnormalized Floating Add

Less

Equal FIX

CoMPare String and Skip if Less or Equal FIX and Round

Greater or Equal FLoaTand Round
Not equal

Greater ‘/S-\l]])l?
. tract

Double integer .

EDIT ¢ MULtiply
DiVide

Decimal to Binary by
VerTConVer {Binary to Decimal by } ng

Double Floating MuBt.ract
Offset ultiPly
Translation DiVide

E ~

, Double MOV { . } {
MOVe String { vt Nt i Left Justification ¢ Negative f | to Memory

Right Justification

PUSH down| { ~

POP up and Jump 10 SubRoutine
ADJust Stack Pointer and Save Pc

Ze and Save Ac

On'eoss and Restore Ac
Ac if Find First One

SET 1o Memory on Flag and CLear it

Complement of Ac Jump¢ g: 8:;{:&03/ ((JJ:(S‘IE‘ 4|())')
Complement of Memory AC on CaReY 1 (JFCL 5

N %m ac Immediate on CaRrY (JFCL 6.)
AND with Complement of Ac Memory on Floating OVerflow (JFCL 1)
inclusive OR | | with Complement of Memory _1 Both and ReSTore

Complements of Both and ReSTore Flags (JRST 2,)

Inclusive OR {and ENable i channel (JRST 12,

eXciusive OR HALT (JRST 4,)

EQuiVal !
QuiValence : PORTAL (JRST)

ver

SKIP if memory} rl_i‘si eXeCuTe

Add One 1o {mcmory and Skip . J Less or Equal
Subtract One from § | ac and Jump ! Always

ate Greater
Compare Ac lrpmcdmu. } and skip il ac¢ Greater or Equal DATA

with Memory
Not equal BLocK In

Add One to Both hal "acand J f Positive CONditions Out
dd One to Both halves of ac and Jump Negative § all masked bits Zero

Arithmetic SHift

Logical SHiftROTate {C«)mhincd
in and Skip It”{some: masked bit One

No modificatio

set masked bits

set masked bits

Complement m

with Direct mask

with Swapped mask

Right with #

Left with #

Test ac |
n

to Zeros

to Ones

asked bits

and skip

never

i all masked bits Equal 0

if Not all masked bits equal 0

Always

Figure 2-1

10-1914

Instruction Set Constructs

2-2

To form a useful instruction, the following steps are taken.

1. The basic operator MOV is chosen. This specifies a full-word move.

2. One of four modifiers is chosen from the operator 1 group. This group specifies how the word is
to be modified while being moved, where:

e E = No modification

¢ N = Take two’s complement

® M = Take magnitude

® S = Swap left and right halves.

7]
E

N

BASIC OPERATOR » MOV M T

OPERATOR 1 > | s M

OPERATOR 2 »| s

10-1915

Figure 2-2 Move Instruction Construct

3. One of four modifiers is selected from the operator 2 group. This group specifies where the

word is fetched from and where it is placed, therefore:

(Blank) = No memory to the accumulator

I = Take the 18-bit address as operand (immediate mode)

M = Accumulator to memory

S = Memory to memory (self).

This simple example illustrates the power and flexibility of the entire DECsystem-10/DECSYSTEM-20

instruction set. With one instruction class, a total of 16 instructions has been made. For example:

MOVE AC, ADR moves the content of ADR to the specified AC.

MOVEM AC, ADR moves the content of the specified AC to ADR.

MOVEI AC, 5 moves the number 5 to AC.

MOVNM AC, ADR moves the complemented content of AC or ADR.

A complete specification for the DECsystem-10/DECSYSTEM-20 instruction set is given in the Hard-

ware Reference Manual.

2.2.1 Full-Word Data Transmission

The full-word data transmission instructions move one or more full words of data from one place to

another. The instructions may perform minor arithmetic operations, such as making the negative (two’s

complement) or the magnitude of the word being processed.

2-3

2.2.2 Half-Word Data Transmission

The half-word data transmission instructions move a half word and may modify the contents of the other
half of the destination location. There are 16 instructions that differ in the direction that they move the

chosen half word and in the way in which they modify the other half of the destination location.

2.2.3 Block-Transfer Instruction

The block-transfer instruction facilitates the saving of accumulators or moving of blocks of memory from

one set of contiguous locations to another. This instruction works for any block size, moving the block

from any location to any other location.

2.2.4 Byte Manipulation

The five byte manipulation instructions pack or unpack bytes of any length anywhere within a word. In

some systems, byte manipulation refers to 6-bit or 8-bit bytes. For the DECsystem-10/DECSYSTEM-20,
byte manipulation refers to bytes of any size from 0 bits to a full word (36 bits). Note that ASCII is a 7-bit

code, and on the DECsystem-10/DECSYSTEM-20, 7-bit bytes are efficiently stored 5 to a word. All the

byte instructions on the DECsystem-10/DECSYSTEM-20 use a byte pointer that allows addressing of

any size byte in any position in any of the 262,144 addressable words. Furthermore, both load and deposit
byte instructions have a condition for automatic byte incrementation.

2.2.5 Business Instruction Set

Five instructions make up the business instruction set in the DECsystem-10/DECSYSTEM-20 central
processor. Four of these are new arithmetic instructions to add, subtract, multiply, and divide using
double-precision, fixed-point operands. The new extend (string) instruction is capable of performing nine
separate functions.

These functions include an edit capability; decimal-to-binary and binary-to-decimal conversion in both
offset and translated mode; move string in both offset and translated mode; and compare string in both
offset and translated mode. Offset mode is byte modification by addition of the effective address of the
string instruction to the source byte string; translated mode is byte modification by translation through a
table of half words located at the effective address of the string instruction. This also occurs in edit. In
addition to providing the translation function, those instructions that use translation can control the flags in
ACs and can detect special characters in the source string.

This business instruction set provides faster processing since there are specific instructions for doing more
comprehensive string operations. These instructions can be used on a series of code types including ASCII,
EBCDIC, and so on.

2.2.6 Logic Instructions

The logic instructions provide for shifting and rotating, as well as performing the complete set of 16
Boolean functions on two variables.

2.2.7 Fixed-Point Arithmetic

Fixed-point arithmetic is handled in two’s complement notation with 36-binary-bit accuracy (10 decimal
digits). Mode options include immediate to accumulator, to memory, or to both with a result. Three classes
of shifting include arithmetic, logical, and rotating operations to single- or double-word accumulators.

2.2.8 Floating-Point Arithmetic

The floating-point arithmetic instructions include instructions to perform scaling, negating (form two’s
complement), addition, subtraction, multiplication, and division upon numbers in single- and double-
precision, floating-point format. In the single-precision, floating-point format, 1 bit is reserved for the sign,
8 bits are used for the exponent, and 27 bits are used for the fraction. In double-precision, floating-point
format, 1 bit is used for the sign, 8 bits are used for the exponent, and 62 bits are used for the fraction.

2-4

2.2.9 Arithmetic Operation Modes

All of the DECsystem-10/DECSYSTEM-20 arithmetic operations — floating-point as well as fixed —
and Boolean (logical) operations have options allowing the storage location for the result of the operation to
be specified in the selected accumulator, in the addressed memory location, or in both. All may take their
immediate address as an operand.

2.2.10 Fixed/Floating Conversions

Special instructions provide for converting fixed-point formats to or from floating-point formats. Two sets
of instructions are provided to perform this function, one set optimized for FORTRAN and a second set
optimized for ALGOL.

2.2.11 Compare and Modify

The compare and modify instruction set is large (128 instructions) and extremely flexible. Half of these
are arithmetic compare and modify instructions, which may compare two numbers or compare the content
of an accumulator or a memory word to zero and skip or jump accordingly. It is also possible to increment
or decrement the word being tested and copy the modified word into an accumulator, all in a single
instruction. In all cases of arithmetic comparisons, any one of the eight possible ordering relations on two
variables may be specified, namely, if X and Y are the variables, X =Y, X # YV, X>Y,X =Y, X <Y,
X =Y, true, and false.

The remaining 64 codes are logical compare and modify instructions that allow a variety of choices
governing the way in which a bit selection mask is to be obtained, what the test condition is to be, and what
modification is to be made on the selected bits.

2.2,12 Program Control

Program control instructions include several types of jump instructions and the subroutine control PUSH.J
and POPJ instructions.

Pushdown stacks are handled by the PUSH and POP instructions, which, through a stack pointer, process
data on a first-in, last-out basis. Subroutine entry and return is accomplished by jump instructions (PUSHJ
and POPJ) that insert return addresses on a pushdown stack. These instructions are vital to the efficient
operation of the timeshared monitor and all of the reentrant system’s programes.

2.2.13 Input/Output

Input/output over the EBus is handled by eight straightforward instructions. Each instruction may
reference one of 126 devices. In addition to reading status, writing status, reading data, and writing data,
there are block-in and block-out instructions to handle blocks of data to and from memory and to a device
in an efficient manner.

2.2.14 Unimplemented User Operations (UUOs)
Many of the codes not assigned as specific instructions are executed as unimplemented user operations,
where the word given as an instruction is trapped and must be interpreted by a routine included for this
purpose by the programmer. Those UUOs reserved for use by the monitor are called monitor UUOs
(MUUO:s), while user UUOs are called local UUOs (LUUOs). Instructions that are illegal in user mode
also trap in the same manner as MUUQs.

2.2.15 Trap Handling

The DECSYSTEM-20 provides facilities for handling arithmetic overflow and underflow conditions,
pushdown list overflow conditions, and page failures directly by the execution of programmed trap
instructions. This trap capability avoids recourse to the program interrupt system. A trap instruction is
executed in the same address space as the instruction that caused the trap.

2-5

2.3 INSTRUCTION FORMAT

In all the non-input/output instructions, the nine high-order bits (0-8) specify the operation, and bits 9-12

usually address an accumulator but are sometimes used for special control purposes such as addressing
flags (Figure 2-3). The rest of the instruction word always supplies information for calculating the effective
address, which is used for immediate mode data or is the actual address used to fetch the operand or alter
program flow. Bit 13 specifies the type of addressing (direct or indirect), bits 14-17 specify an index
register for use in address modification (zero indicates no indexing), and the remaining eighteen bits
(18-35) contain a memory address.

The instruction codes that are not assigned as specific instructions are performed by the processor as so-

called “unimplemented operations.”

An input/output instruction is designated by three 1s in bits 0-2. Bits 3-9 address the input/output device

to be used in executing the instruction, and bits 10-12 specify the operation. The rest of the word is the
same as in non-input/output instructions.

00 08 09 12 13 14 17 18 35

NON

170

ACCUMULATOR TNDEX

ADDRESS (AC) REGISTER

INSTRUCTION ADDRESS MEMORY
CODE XR) ADDRESS

ADDRESS y)
TYPE (@)

00 0203 09 10 (2 13 14 17 18 35

I/0

DEVICE ADDRESS MEMORY
CODE TYPE (@) ADDRESS

INSTRUCTION INSTRUCTION INDEX (¥)
CODE CODE REGISTER

ADDRESS

(XR)

10=-1916

Figure 2-3 Instruction Format

2.4 NUMBER SYSTEM

The standard arithmetic instructions in the DECsystem-10/DECSYSTEM-20 use two’s complement,
fixed-point conventions to do binary arithmetic. In a word used as a number, bit 0 (the leftmost bit)
represents the sign; 0 for positive, 1 for negative. In a positive number, the rest of the 35 bits represent the
magnitude in typical binary notation. The negative of a number is found by taking its two’s complement.
Zero is represented by a word containing all Os.

2.4.1 Fixed-Point Arithmetic Conventions

Two common conventions are to consider a number as an integer (binary point at the right) or as a proper

fraction (binary point at the left); in these two cases, the range of numbers represented by a single word is

—235t0 235 —1 or —1 to 1 — 2-35, Since multiplication and division make use of double-length numbers,
there are special instructions for performing these operations to get results that can be represented by a

single word.

2-6

The format for double-length, fixed-point numbers is an extension of the single-length format. The
magnitude (or its two’s complement) is the 70-bit string in bits 1-35 of the high- and low-order words. Bit
0 of the high-order word is the sign, and bit 0 of the low-order word is ignored. The range for double-length
integer and proper fractions is, therefore, —270 to 270 — 1 or —1 to 1 — 2-70.

2.4.2 Floating-Point Arithmetic Conventions

The DECsystem-10/DECSYSTEM-20 has firmware for processing both single- and double-precision,
floating-point numbers. .

Included in the arithmetic instruction set are eight double-precision instructions and three fixed/ floating
conversion instructions. A double-precision word consists of the sign, an 8-bit exponent, and a 62-bit
fraction. This gives a precision in the fraction of 1 part in 4.6 X 10!8 and an exponent of 2 to a power of
from —128 to +127. '

The same format is used for a single-precision number and the high-order word of a double-precision
number. A single-precision, floating-point instruction interprets bit O as the sign, but interprets the rest of
the word as an 8-bit exponent and a 27-bit fraction. Normalized single-precision, floating-point numbers
have a fraction that ranges in magnitude from 1/, to 1 — 2-27. Increasing the length of a number to two
words does not change the range but instead increases the precision; in any format, the magnitude range of
the normalized fraction is from 1/, to 1, decreased by the value of the least significant bit. In all formats,
the exponent range is from —128 to +127.

2.5 EFFECTIVE ADDRESS CALCULATION

All instructions in the DECsystem-10/DECSYSTEM-20, without exception, calculate an effective
address using bits 13-35 in exactly the same way. The steps are as follows.

I. Get the number in address field Y, bits 18-35. Any one of 262,144 locations can be specified.

2. If index field X, bits 14-17, is not zero, add the contents of the specified index register to the
number found in step 1.

3. Get the indirect bit, I, bit 13. If it is O, the calculation is done and the result of steps 1 and 2 is
the effective address. If it is 1, then go to step 4.

4. Use the address calculated by steps 1 and 2 to get a new word from memory, and go back to
step 1.

The effective address calculation continues until a word is found with a 0 in bit 13. At that point, the result
of steps 1 and 2 is taken as the effective address for the instruction.

The calculation is done for all instructions, including those specifying immediate mode. As an example, it
is possible in one immediate mode instruction to load an accumulator with the address of a particular entry
within an indexed table for use as a subroutine argument.

2.6 GENERAL-PURPOSE REGISTER BLOCKS

General-purpose registers are another DECsystem-10/DECSYSTEM-20 feature that help improve pro-
gram execution. These sets of fast integrated circuit registers can be used as accumulators, as index
registers, and as the first 16 locations in memory. Since the registers can be addressed as memory
locations, they do not require special handling instructions.

Eight sets of 16 fast registers are included. Program switching time between register stacks is 500
nanoseconds.

2-7

Different register blocks can be used for the operating system and individual users. This eliminates the

need for storing register contents when switching from user mode to executive mode. Also, a critical real-

time program is able to maintain its own register block for handling data and interrupt sequences at

maximum speed.

2.7 MEMORY SYSTEM

2.7.1 MOS Memory

The DECsystem-10/DECSYSTEM-20 memory system can provide storage for up to 3,145,728 44-bit

words (36 data bits, 6 ECC bits, 1 ECC parity bit, and 1 spare bit) in increments of 256 K (262,144)
words, 1.5 megawords internal, 1.5 megawords external.

2.7.2 DMA

The DMA memory bus adapter adapts the KL10 storage bus (SBus) to the external memory bus structure.

The DMA also separates the SBus into four separate buses (KBus 0-3) to allow 4-word transfers and 4-

way interleaving of storage modules.

2.7.3 Cache Memory

A DECsystem-10/DECSYSTEM-20 can also be equipped with a 150 nanosecond access time data cache

or buffer memory. Data being read from memory is usually found already in the cache 90 percent to 95

percent of the time, therefore giving the DECsystem-10/DECSYSTEM-20 an effective memory access

time of approximately 300 nanoseconds. Another feature of the state-of-the-art design cache memory is

that unlike contemporary designs, it does not require write-through to memory. Instead, words to be

written are written into the cache memory. This eliminates, for example, the necessity of writing back into

main memory each value of an index in a loop made up of only a few instructions.

The cache is paged and words from one or more pages are written back to main memory from the cache

only when it is necessary to make room for words from new pages. A cache sweep feature allows main

memory to be updated with all or selected pages of the cache.

2.8 PROCESSOR MODES

Instructions are executed in one of two modes depending on the state of a mode bit. Programs operate in

either user mode or executive mode. In executive mode operations, all implemented instructions are legal.

The monitor operates in executive mode and is able to control all system resources and the state of the

processor. In user mode operations, certain instructions such as direct I/O are illegal, causing a trap to the

monitor. Users are required to issue monitor calls for system services such as I/0.

Executive and user mode operations are each divided into two submodes. User mode is divided into public

and concealed submodes and executive mode into supervisor and kernel submodes. For each 512 word

page in the system, information is stored in a table (page map) maintained by the operating system that

specifies whether or not a page can be accessed or changed and if it is defined to be public or concealed.

The executive and user modes divide according to whether the active program is running in a public or

concealed area.

If a program is running in public submode, pages within the user’s addressing space are accessible only if

they are listed in the user’s page map and are defined to be accessible from public mode. Pages defined as

public are, by definition, accessible. Pages defined as concealed may be accessed only at specific entry

points; that is, portals that permit entry from public submode programs. In concealed submode operations,

programs can access all of the virtual addressing space. However, if a program running in concealed

submode executes an instruction from an area defined as public, the state of the processor transfers over

into public submode. Typical user programs operate in public submode. Concealed areas can be used for

proprietary coding that can be executed but not changed or examined by users operating in public mode.

2-8

The supervisor and kernel submodes are similar but not identical to the public and concealed submodes.
Supervisor submode programs can access but cannot modify areas defined as concealed. Also, any
instruction executed out of a public area from either supervisor or kernel submode returns the processor to
supervisor submode. In kernel submode operations, all of memory is accessible and can be modified.
Programs operating in kernel submode can address portions of memory directly, without paging; and it is
through the kernel submode program that page restrictions are made. Functions that go to supervisor
submode generally include those affecting individual users as opposed to the whole system management of
input/output, priority interrupts, page map accounting, and so on, which are handled by kernel submode
programs. The ability of kernel submode programs to supply information that supervisor submode
programs can read but not change, allows portions of the operating system to be hardware-protected from
other portions having adjustments or design changes.

2.9 PROCESS TABLES

There are two types of process tables in memory that are used by the hardware for both system and user
management. These are the Exec Process Table (EPT) and the User Process Table (UPT). Each is one
page long (Figures 2-4 and 2-5). One EPT is used for the monitor and one UPT for each user process in the
system. The following is a partial list of the types of information that are maintained in these tables.

1. User Process Table

a. Arithmetic overflow vector address. Overflow affects only the user and not the system so
it is handled in the user address space.

b. Memory and instruction processor convention accounting clocks. This information is kept
for each user to help in exact user resource accounting.

2. Exec Process Table

a. Channel recording area. Information about integrated channel status, which affects the
entire system, is maintained here.

b. Front-end processor communications area. Used in communications between the central
processor and the front-end processor.

While the monitor is providing services for a user, such as I/O requests, it must be able to reference the
user address space. There are two mechanisms provided to do this.

1. A special instruction called PXCT, which has bit settings to indicate which of the specified
addresses are in the current address space and which are in the previous address space.

2. . The Exec Page Table contains “indirect pointers” through the User Page Table. These are used
to provide a per process area for each process in the system.

2.10 MEMORY ADDRESS MAPPING
The memory address mapping hardware has been developed in conjunction with the software so that
memory management is transparent to the user. Physical memory is divided into 512 word segments
called pages. All addresses — both monitor and user — are translated from the program’s address space
(referred to as the virtual address) to the physical memory address space. This facilitates protection of the
monitor and allows efficient use of physical memory. For example, only a portion of the monitor need be
permanently memory-resident, resulting in more available user memory.

2-9

USER PROCESS TABLE

(ADDRESSED FROM UBR)

of
|

| |

I I
] |

l |
| NOTE: |

ASTERICKS INDICATE

| LOCATIONS WHOSE |

! SINGLE-SECTION I
| PROCESS TABLE |

LISTED ON THE

| NEXT PAGE. '
| |

| |

| |

1 |

1 |

417

420 | ADDRESS OF LUUO BLOCK *

421 | USER ARITHMETIC OVERFLOW TRAP INSTRUCTION

422 | USER STACK OVERFLOW TRAP INSTRUCTION

423 [USER TRAP 3 TRAP INSTRUCTION

424 [muuo FLAGS | MUUO OP CODE, A *

425 MUUO OLD PC *

426 [E OF MUUO *

427 | MUUO PROCESS CONTEXT WORD

430 | KERNEL NO TRAP MUUO NEW PC *

431 | KERNEL TRAP MUUO NEW PC *

432 | SUPERVISOR NO TRAP MUUO NEW PC *

433 [SUPERVISOR TRAP MUUO NEW PC *

434 | CONCEALED NO TRAP MUUO NEW PC *

435 [CONCEALED TRAP MUUO NEW PC *

436 | PUBLIC NO TRAP MUUO NEW PC *

437 [PUBLIC TRAP MUUO NEW PC *

440

| RESERVED '

477

500 | PAGE FAIL WORD *

501 [PAGE FAIL FLAGS *

502 | PAGE FAIL OLD PC *

503 | PAGE FAIL NEW PC *

504

USER PROCESS EXECUTION TIME
505

%06 | * UsER MEMORY REFERENCE COUNT
507

510

: RESERVED E

537

540 | USER SECTION 0 POINTER

! |
577 | USER SECTION 37 POINTER |

600 [1

: RESERVED :
777 | |

EXTENDEDTOPS - 20 PROCESS TABLE

CONFIGURATION MR-3701

Figure 2-4 User Process Table

2-10

37

40

41

42

57

60

63

64

137

140

177

200

420

421

422

423

424

507

510

511

512

513

514

515

537

540

577

600

777

EXECUTIVE PROCESS TABLE

(ADDRESSED FROM EBR)

rEIGHT CHANNEL LOGOUT AREAS
t EACH: 0 INITIAL CHANNEL COMMAND
! 1 GETS CHANNEL STATUS WORD

: 2 GETS LAST UPDATED COMMAND

3 RESERVED

RESERVED

{ STANDARD PRIORITY INTERRUPT INSTRUCTIONS

I

' FOUR CHANNEL BLOCK FILL WORDS -
1
_

I RESERVED

FOUR DTE20 CONTROL BLOCKS

EACH: 0 TO11BYTE POINTER

TO10 BYTE POINTER

DTE INTERRUPT INSTRUCTION

RESERVED

EXAMINE PROTECT

EXAMINE RELOCATION

DEPOSIT PROTECT

DEPOSIT RELOCATIONN
O
O
H
L
H
W
N
=

RESERVED

EXECUTIVE ARITHMETIC OVERFLOW TRAP INSTRUCTION

EXECUTIVE STACK OVERFLOW TRAP INSTRUCTION

EXECUTIVE TRAP 3 TRAP INSTRUCTION

RESERVED

TIME BASE

PERFORMANCE ANALYSIS COUNT

INTERVAL COUNTER INTERRUPT INSTRUCTION

RESERVED

: EXECUTIVE SECTION O POINTER

‘ EXECUTIVE SECTION 37 POINTER

| RESERVED

L

SINGLE—SECTION TOPS-20 PROCESS

TABLE CONFIGURATION

Figure 2-5 Exec Process Table

MR-3702

The high-order nine bits of an 18-bit virtual address make up the virtual page number and are used toindex into a hardware page map. If the 13-bit physical page number is found in the hardware page map,then the low-order nine bits of the virtual address are appended to the 13-bit physical page number to formthe complete physical address. If the entry in the hardware page map is not there, the memory processorgets the entry from the individual page map in memory and updates the hardware page map.

There is a page map in memory for the monitor and one for each user. These maps contain storage addresspointers that identify either a page in memory or on disk. They may be of three basic types.

. Private - The page is owned by one user.

2. Shared - The page is shared by more than one user.

3. Indirect - Points to another page map page where the pointer may again be one of the threetypes.

In addition to the physical page numbers in the page map, control bits are present to serve variousfunctions. For example, one bit is used to indicate that the page is read-only; another to indicate that nophysical page at that time agrees to this virtual address slot.

Page level sharing among users is supported by a hardware Shared Page Table, which holds the physicaladdress of the shared page. This table, which is addressed through a hardware register, enables thesoftware memory management routines to maintain only one pointer to a page no matter how manyprocesses are sharing it.

Information about how long a page has been in memory and the number of processes sharing it is alsostored by the hardware in a Core Status Table to help the monitor in core management.

2.11 DIRECT I/0

The EBus is used as a control and data path to/from a large number of low-speed 1/0 devices. Transfersare performed for 36-bit words at speeds of 370 K words/s. Therefore, each 1/0 instruction moves oneword of data between memory and the buffer of the device controller (DTE20 or RH20). When blockinput or output instructions are used, entire blocks of data are moved to or from the device with a singleinstruction.

To initiate high-speed data channel transfers directly between memory and a device connected to theMassbus, a control word is first transferred over the EBus to the command register of a Massbus controller(RH20). Then, entire data blocks are moved between a drive and memory under the control of a channelcommand list.

2.12 CHANNEL 1/0

2.12.1 Integrated Massbus Controller
The integrated Massbus controllers are high-speed mass storage controllers that interface the RP06, RP0O7,and RP20 disk drives and the TU72, TU77, and TU78 magnetic tape drives to the integrated datachannels in the memory controller. The controllers have been designed to provide high throughput byfeatures such as the following.

1. All controllers can transfer data simultaneously since each controller is connected to the
memory system with its own channel.

2. While one device on a controller is transferring data, control operations such as seek or rewind

2-11

may be issued to another device on the same controller. The operation can be initiated and an

interrupt generated when it is complete.

3 Each controller has a lookahead command register, which enables the software to preload the

next transfer request during the current transfer. Therefore, the next transfer can start with the

next sector on the same device with no rotational delay.

4. When the controller has completed an operation it interrupts the central processor via a

vectored interrupt so the central processor does not have to poll a series of devices to determine

which device caused the interrupt.

Error checking is provided for both the channel and device data paths. The controller will terminate a

command if certain errors are detected.

The connection between the controller and its devices is called the Massbus and contains parallel data and
control paths. These parallel paths permit simultaneous data transfer and control operations.

2.12.2 Integrated Channels

Within the storage controller there is one channel control for each device controller. Each channel control

has a 15 word data buffer, a channel command word register, and a control word location pointer; or each

has a program counter. A channel consists of a channel control, a device controller, and its associated

drives.

The channels perform data transfer by executing channel programs, which are loaded into memory by the

device service routines. The channel ioads a channel command word into the command register and then

executes it. The direction of transfer is specified in the instruction sent to each controller.

Channel instructions contain a memory address, a word count, and function control bits to facilitate
efficient 1/0 programming. Each time a word is transferred, the word count is decremented.

If the initial address is 0 and the operation is a read, the number of words indicated by the word count is

skipped. If the operation is a write, the channel transmits software-specified block-fill words for the

required count.

If the initial word count is 0, the channel will jump to the address indicated in the instruction, where a new

command word will be selected and decoded.

System I/O programs can select between two ways of halting, depending on which is more efficient for the

device. They may use a channel program chaining technique in which a halt instruction, which contains

the address of the next channel program, is the last command word. Alternatively, if the last data transfer

command word has the halt control bit set, the channel will halt when the word count is decremented to 0.

This saves time because it saves a halt command memory fetch.

If a channel detects an error, it stores two channel status words in the appropriate controller location in the
Exec Process Table. The first status word contains bits to indicate what type of error occurred and the

control word location pointer. The second status word contains the command word that was being

executed with the up-to-date word count and address.

2.13 PRIORITY INTERRUPT SYSTEM

The DECsystem-10/DECSYSTEM-20 interrupt facility does not require devices to be hardwired to a
particular level. Instead, devices are assigned under program control to any one of seven priority levels

through the dynamic loading of device registers. Therefore, the monitor can change the priority level of

any device or disconnect the device from the system and later reinstate it at another level. This is an

2-12

advantage over permanently hardwired systems, which require a large number of levels, often operate at

very high overhead, and cannot change device priorities without system shutdown and rewiring.

Priority level 0 is above the seven programmable levels and is reserved for the front-end processor, which is

therefore able to interrupt the system at any time for console or diagnostic operations.

2.14 TRAP FACILITY

The system also provides a trapping mechanism to handle certain conditions that affect a single job.

Conditions that are detected by the trapping hardware include:

Address violation

Arithmetic overflow

Pushdown overflow

Illegal instruction

Monitor calls

Page faults.

2.15 ACCOUNTING AND PERFORMANCE METERS

The meters built into the DECsystem-10/DECSYSTEM-20 provide a number of timing and counting

functions, as follows.

1. Interval timer - A programmable source of interrupts with a range from 10 microseconds to

40.96 milliseconds.

2. Time base — A one microsecond relative time-of-day clock that is used by the monitor for

system accounting.

3. Performance analysis counter — Designed as a tool for testing and evaluating the system, this

counter monitors either duration or rate of occurrence of various hardware conditions and

events.

4, Two accounting meters — The first is an instruction processor meter, which measures the

amount of the instruction processor time used. This information is stored in the User Process

Table. While the default count is user time only, the monitor may also include interrupt time

and/or exec mode time in this accounting. The second is a memory reference meter, which

measures user program accesses to core memory. This information is also stored in the User

Process Table.

2.16 FRONT-END PROCESSOR

2.16.1 Functions

One of the significant features of the DECsystem-10/DECSYSTEM-20 architecture is the PDP-11 front-

end processor. It has the following uses.

1. Control of low-speed peripherals such as card readers, line printers, and asynchronous communi-

cations devices

2. Console operations for the central processor including push-button functions such as load, start,

and stop

3. On-line and remote diagnostic analysis

4. Microcode loading and system startup

2-13

The front-end processor communicates with the central processor through an interface that permits

concurrent two-way data transfers.

As a diagnostic computer, the front-end processor can examine the data paths and control logic of the

central processor even if that unit is completely unable to operate. A diagnostic bus linkage permits

automated testing procedures that allow a larger number of diagnostic tests to be run than would be

possible with conventional techniques. Accuracy is increased since not only is there less chance for human

error, but maintenance engineers do not have to rely upon a malfunctioning central processor to help

diagnose itself. Other capabilities include remote and timesharing diagnosis.

If system power fails, a detection circuit senses the condition and causes an interrupt. The interrupt can

trigger the operation of a program that saves changing registers and provides an orderly system shutdown

so that the system can be restarted with a minimum amount of lost time.

All three phases of ac power are monitored. Low voltage on any phase will initiate the power-down

sequence. A program-selectable automatic restart capability is provided to allow resumption of operation

when power returns. Alternatively, a manual restart may be used.

Temperature sensors strategically placed within the equipment detect high temperature conditions and

cause power shutdown. This, in turn, initiates the power failure interrupt.

The front end boots the DECsystem-10/DECSYSTEM-20 by reading in an initial program from the

front-end disk (via the RHI11) attached to the Unibus. This in turn brings the main bootstrap program

from the dual-ported disk, which boots the system into operation.

2.16.2 Components

2.16.2.1 DTE20 - The DTE20 console processor interface connects the central processor and the front-

end processor to provide capabilities to interrupt, examine, deposit, and transfer data during timesharing

and diagnostic operations.

2.16.2.2 Console - The console provides the operator with a direct system interface by simulating the

control switch and display indicator functions for the central processor. Therefore, the operator is provided

with control of normal program and diagnostic operations, which allows him to start, stop, load, modify, or

continue a program. The console is connected for simultaneous two-way transmission to the PDP-11

Unibus, through an asynchronous line interface.

2.16.2.3 PDP-11 - The heart of the PDP-11 system is the Unibus, which is an asynchronous bidirection-

al bus interconnecting the front-end processor components. The front-end processor is connected to the

Unibus as a subsystem and controls time allocation of the Unibus for peripheral devices. In addition, the

front-end processor performs arithmetic and logic operations through instruction decoding and execution.

The instruction set is implemented through a group of hardware subroutines stored within a read-only

memory (ROM). Memory is read/write, random-access magnetic core with a maximum cycle time of 980

nanoseconds and a maximum access time of 425 nanoseconds. Storage capacity is 28 K words having an

18-bit word length (16 data bits plus two parity bits).

2-14

CHAPTER 3

THE HARDWARE

3.1 INTRODUCTION

The DECsystem-10/DECSYSTEM-20 includes the following subsystems.

1. A KLI10-based main processor subsystem with up to 1.5 megawords of internal MOS memory

and 1.5 megawords of external MOS memory (except with the 1091)

2. A PDP-I11-based front-end processor subsystem

3. A mass storage subsystem

3.2 THE MAIN PROCESSOR SUBSYSTEM

The main processor subsystem of the DECsystem-10/DECSYSTEM-20 contains the following units

(Figure 3-1).

EBox

MBox

Meter board

MF20 MOS memory

DTE20 ten-eleven data interface (up to four)

RH20 Massbus controller (two at least, but there can be up to eight)S
U
u
s
L
N-
~

T'he EBox, MBox, and meter board are designed with high-speed, nonsaturating emitter-coupled logic

‘ECL) and are housed on the same assembly. These functional units make up the central processing unit

‘CPU). The DTE20 and RH20 are designed with TTL logic and serve as the interface controllers to the

front-end processor and Massbus-compatible storage devices, respectively. An internal X/SBus serves as

‘he control and data path between the CPU and its memory. An internal EBus serves as the control and

Jata path between the CPU and the controllers (DTE20 and RH20). Since both ECL and TTL logic are

1sed in the main processor, logic level translators are included in the CPU assembly to convert from one

ogic level to the other.

3.2.1 The EBox

3.2.1.1 Hardware — The EBox is the instruction execution unit of the central processor. Basically, the

nstruction execution unit consists of the following logic.

Memory request logic

72-bit arithmetic logic

23-bit address logic

10-bit arithmetic logic

Eight general register blockso
l

3-1

8u8Z
-HW (ZJo1199yS)uresgeiqYoolg[eoldA]OZ-WALSASOAA/01-WAasAsDA
@_mAm:mo:

\ONg1dOmhzoosSng0/1

@_“—m:m_z:QN3
LNOHHSNOI

LVYD“INNW
IWOD

SNaINN

aN3
INOH4JI0S

NOD

7TOYLNODSNEINN\\\\\\\\\\\omeX@.fi!.:q
(1o8n}

TJOYINODSNAINN0c31a{oo8an)

w

TOY1INODSNYINN0z3ia{008}

e e Em— —

SNAS
SvYA

Sad

sn
g3

sn
g3

ayv
os

g1s
iq

plelo
gle}X08O/1

sng3sna3sn
g3

VAN

T0HLINOJSNASsSvYin0ZHY
V1vQaONVYT041NOD

-

(12
8W)

SNESSVIN

01
3s

0ZHY

V1ivQaANVTOHINOD
—1X(E82\Bms:\

SNESSYW|
F——

11
3s

JOY8LNOD
SNPSSYIN/]

Y1VQaNV10H1NOD£71
3S

NV

SNTINNVHI ad

vi
d

YIA"
aNvm¥3IOVd

CcwlP43HOLSsne3|OYIIN3IHIVIopurlw

SY315193YH11yv

2
X0
83

20
CwI—o)

v1v0aNYTOH1INODz%\w013sCQL7138o\=z13s\%\\\£13s

v13s\&73S\\\\ERED
\

2713\\m..wZZ(IU
SHOLVISNVYHL SNEX/S

[-€
2In31

][¢x@AHOW3WSOWfilG|snex/s0ZdW0Zv¥Wa

x]©

@ | snax
0z41n

ov

HOSS3304dNIVA
——e

)

3-2

6S8T'HW (¢JoT19yS)weidelqoo[d[eddAL0T-INHISASOIA/01-WAsAsHHQ
r———==-=(WNWIXVYI8Z1)STYNINYITL

435NILOW3IYANVTvI0101
[-€

2InF
1o/lI¥YNO

ILdO

TTT
W

-—e———————————————_Gl----10_TTVNOILLdO_0/134.TvNOI
LIGaY

430v3YQuvD||HILNIYd3NITY31NIHd3NIT3AI8Q1vYNaIYNIWEIL04
.H/2704D9zd19zdve-MLOXH0ZLY1

S3NIT96!II¥¥(LLHA)6290¥30v3IYayvd||43LNIgdINIT||9IINId3NMSIAAddOT4TYNIWEILTVYNOILIGaY_r.0zad0Zd10241I._(9¥8LIN)LIXH21110_404—_——e—p—[—————__HSNgINNH30v01WOy320193108800|NddAHOW3WAHOWIW1ouLNOS_
_FAELSINE_LMLLAMLLOYLLIANLLIWAt_i

¥0SS3J08dAN3-LNOYA
TIN

Vd
—HOLIMSTII"I'II"IIIIIIL£3AINA13AI8Q{L40d-1vNna}—l.lllco——A4ASIAF——WNWIXYA8—AMOVdMSIa0JAIEAMOVd

——£0dd1044NSIQ90dYW3LSASE
NS

M¥sia
[———.———eo—————eee

_wowixviw|Tuoasnvar1TT1ouiNod0ZHYJWVSNOHLOSSLYOdSNYHL18|3IdvLiZiAL[34viZoXLi|LON“TVNOILJO
—eooeeeoe-'_I‘—b1

fl
H

SNESSYW

UT0H1NOD
01041NOD

3dV18ZINL
3dVL8LW1

HT“!I¥IOVHOLSSSVINAYNOILIgAY

€1HOJSNVHLT1HOdSNYHL|XYW||140dSNYYL0LHOJSNYHL€LHOdSNVHLTLYOJSNVHL|XVIN|L1HOJSNVHL01HOJSNVYLokmmm
3dvl8intagvienL[T3dvleLnl3dv1sint3dvL8ini3dvisinl[y3dvL18iNnL3dv18intW31SASE

NS
3dvl

(WNWIXYWB)W3LSASENS3dVL

_

3-3

6. EBus control logic

7. Microprogrammed instruction dispatch and control store

In addition, the EBox contains the master clock, meters, a processor status register, and the diagnostic

control logic.

All operations in the DECsystem-10/DECSYSTEM-20 are synchronized to the master clock, which runs

at 50 MHz. The master clock can be started, stopped, single-stepped, and otherwise controlled by the

front-end processor via the diagnostic control logic. This logic is distributed between the EBox and the

DTE. Besides being able to control the master clock, the diagnostic control logic provides a means for

monitoring the processor status and diagnostic registers in both the EBox and the MBox. The master clock

supplies a 30 MHz clock to the MBox, a 12.5 MHz clock for the EBox control store, and a 6.25 MHz

clock to the EBus and SBus.

The program counter (PC), virtual memory address adder (VMA AD), virtual memory address register

(VMA), and arithmetic adder (AD) form the basic address manipulation path in the EBox. This path is 23

bits wide to accommodate a virtual address space of 8 million words. (Only 18 bits of the virtual address

are implemented for DECsystem-10/DECSYSTEM-20 to provide a virtual address space of 256 thousand

words.) During the course of calculating the effective address for an instruction, AD will contain the value

of Y, Y + XR, Y@, or (Y + XR)@ and pass it to the VMA. The source for Y, XR, and @ are specified by

the corresponding fields of the instruction. The VMA can also receive PC + 1 and PC + 2 via the VMA

AD. This is normally done for main line instruction fetches or for skip-type instructions.

The arithmetic register (AR) and arithmetic register extension (AR X), the buffer register (BR) and buffer

register extension (BRX), and the adder (AD) and adder extension (ADX) form a 72-bit data path for

manipulating data. This data path is implemented so that half words, full words, and double words can be

manipulated with ease. The AD and ADX are implemented with arithmetic logic units (ALU), which are

capable of performing 16 arithmetic and 16 logical operations. Words fetched from memory may be

moved into the AR, ARX, and IR. Usually data (operands) is placed in the AR and ARX, while

instructions are moved to the ARX and IR. Words to be moved to memory are placed in the AR when a

memory request is made. Data transfers to and from the EBus are made via the AD and AR, respectively.

The shift count adder (SCAD), floating exponent register (FE), and shift count register (SC) form the 10-

bit arithmetic logic, which is used in performing shift operations and operations on byte pointers and

floating-point exponents.

The shifter (SH) is used in performing shift, rotate, and byte pointer operations. The shifter is also used in

aligning a particular field of a word (such as the API function word) for dispatching into the control store

as a function of the contents of that field.

The multiplier quotient register (MQ) is primarily used in performing floating-point and double-precision

integer arithmetic operations. The MQ is also used as a temporary storage register for saving the API

function word.

Each of the eight general register blocks (AC blocks 0-7) consists of a set of 16 general-purpose, high-

speed registers. Block 0 is permanently assigned to the monitor and blocks 6 and 7 to the microcode. The

monitor uses its AC block in the same way as the user program described in the following paragraphs. The

microcode uses the assigned AC block when executing complex instruction algorithms. Of the remaining

blocks, two can be assigned under program control (DATAO PAG) to the user as the current and previous

context AC blocks. The current context AC block is used by the user program for indexing, for general

storage as specified by the AC field of the instruction and/or by the effective virtual address (location

0-17), and for instruction execution if desired.

3-4

The previous context AC block is used by the monitor to allow the monitor to reference the previous user’s
address space to pass arguments, data, or status information between the previous user’s program and the
monitor. This is normally done when the user program executes a monitor call for some type of service.

The instruction register (IR), dispatch RAM (DRAM), and control RAM (CRAM) form the instruction
dispatch control and execution logic. Essentially, the IR holds the instruction’s operation code (000-777),
which is used to address the DRAM. The DRAM contains a dispatch address into the CRAM, and the
CRAM contains the microcode for executing the instruction. Along with the dispatch address, the DRAM
also contains control bits for initiating an operand fetch, instruction prefetch, and the store operation. The
dispatch address and associated control bits in the DRAM vary in accordance with the requirements of the
dispatching instruction. The contents of both the DRAM and the CRAM are the assembled and formatted
object code of the KL10 microprogram.

When an instruction is fetched from memory, it is normally placed into the ARX and the IR. The
microcode detects that an instruction has been received and if no traps, interrupts, or errors are sensed, will
start calculating the effective address. If indexing is specified by the instruction, the microprogram will
access the assigned general register block at the location addressed by ARX bits 14-177 (the XR field).
The initial address portion of the instruction word in ARX is the Y field, consisting of bits 18-35 of ARX.
This is added to the contents of the addressed general register, and the result will enter VMA and AR. The
effective address calculation continues; if the instruction specifies indirect addressing [ARX bit 13 (1)], a
memory cycle is required. The fast memory is addressed by VMA bits 32-35 if VMA bits 18-31 = 0. If
this is the case, then the indirect reference will access fast memory. As before, the word will pass via the
adder into AR and VMA. If the indirect reference is not to fast memory, the microprogram generates a
request via the memory request logic, which performs all the handshaking. When the word is available, it
is passed via the MBox cache data lines and enters the AR and ARX. The DECsystem-10/DECSYS-
TEM-20 is capable of multilevel indirect addressing; indexing may be specified at each level. The process
continues until the indirect bit in a word entering ARX is zero. At this point only one level of indexing is
possible and having completed this operation the VMA and AR will contain the effective address (E).

After computing the effective address, the microprogram uses the op code of the instruction in IR to
address the dispatch RAM. The word fetched from the dispatch RAM is loaded into a register (dispatch
register) where it will be available while the instruction is processed. The dispatch register word contains
the equivalent of a fetch field, a store field, and an address field. This equivalent points to the location in
the microprogram where the execution portion of the cycle for the instruction starts. The fetch and store
fields are sampled by the microprogram at the appropriate time to initiate fetch and store operations where
required. The microprogram consists of many microinstructions, cach of which is composed of discrete
fields. Some of these fields control the data path; others control the microprogram branching mechanism;
still others control the clock, and so on.

If an operand is to be fetched or if a write operation is to be performed, the address is page-checked after
the effective address has been calculated. After issuing the appropriate request, the microprogram diverts
to a point where it will wait for the operand to be loaded into AR and ARX if an operand was to be
fetched, or it will wait for the page check to be verified.

When this phase is completed, the microprogram uses the address portion of the dispatch word to enter the
microprogram at a point that will start the execution of the particular instruction.

Once the execution part of the cycle is entered, the branching mechanism is controlled dynamically by
conditions given by the specific instruction. Some instructions cause a prefetch of the next instruction in
the sequence; others do not; and some instructions, such as jumps, cause instruction fetches by their very
nature. The last part of the microprogram cycle implements the storage of those operands developed
during the execute part of the cycle. Remember that a write paging check was made previously and it is
only necessary at this point to pass the data to the MBox via the E/M interface. The writing is done via the

3-5

AR register together with the correct request qualifier signals. This having been done, the microprogram

branches back to a point where it will start the effective address calculation for the next instruction.

In general, an EBox request for memory requires that the EBox set up the correct effective virtual address

in the VMA, set up the data path for accepting or providing the word, and set up the appropriate request

qualifiers. Most memory requests are initiated by a 4-bit field (MEM field) in the microinstruction. This

field may be used alone or in conjunction with the DRAM fetch or store fields. The contents of these fields

control the operation of the memory request logic to initiate and execute the following types of request.

1. Fetch instruction

2. Fetch indirect address

3. Fetch operands

4. Store results

Besides these basic memory operations, the memory request logic can also initiate a request to write-check

a page, map the virtual address, load and read internal MBox registers, and so on.

The EBus control logic consists of two sections. One section handles programmed 1/O operations; the other

handles priority interrupt (PI) I/O operations. To facilitate the transfer of control and data between the

EBox and a specific controller, each controller on the EBus is permanently assigned a device code and a

physical number. In addition, each controller can also be assigned to a priority channel under program

control.

The section of the EBus control logic that handles programmed 1/O operations is controlled by a field

(SKIP/COND-EBUS CTRL) in the microinstruction to which the instruction dispatched. Specific pat-
terns in this field, in conjunction with another field in the microinstruction, cause the EBus sequence for

transferring control, status, or data between the EBox and the desired controller (or internal device) to be

executed. Bits 03-09 of the IR (I/O instruction device code field) are used to select the controller, and IR

bits 10~12 (I/O instruction function code) specify the type of 1/O operation (CONO, CONI, DATAO,

DATALI and so on) to be executed. If the fetched 1/O instruction specifies output operation to the device

(CONO, DATAO, BLKO), the EBox issues a memory request to fetch the operand before executing the

EBus dialog. If, however, the instruction specifies an input operation from the device (CONI, DATAI,

CONSO, CONSZ, BLKI), the EBus dialog is executed to fetch the word first. After the word is received

by the EBox, a store operation is initiated by the EBox.

The section of the EBus control logic that handles priority interrupt I/O operations (PI control) runs

concurrently with the instruction execution logic to fetch the API function word in response to a PI request

(P10-7) from the controller on the EBus. After the API function word is received, an INT request is

issued by the PI control to dispatch to the execution microcode as a function of the API word. Included in

the interrupt control are several control and status registers (PI) that can be loaded and read using the
standard 1/O instructions. These registers, therefore, make up an internal processor device. The purpose of

these registers is to control and maintain the current status of the PI system.

Besides the PI internal device for controlling and maintaining the status of the PI system, the EBox also

contains an arithmetic processor status register (APR) and a set of meter/timer registers (MTR and TIM).

These registers are also internal processor devices. Standard I/O instructions are used to access these
devices for setting up control function, for monitoring status, and for transferring data.

3.2.1.2 Firmware ~ The heart of the EBox is a high-speed 2 K word control random-access memory
(CRAM). This memory is initialized to contain the microcode. The microcode is loaded into the EBox

from the front-end disk subsystem or the RX11 floppy disk subsystem. These devices are used for booting,
diagnosing, and dumping functions. They are not supported as system devices. The basic program modules

of the microcode are shown in Figure 3-2. The modules are:

3-6

DATA EBUS
STORAGE DRIVER

MANAGER

PRIORITY
INTERRUPT

HANDLER

HALT

EXECUTOR |} HANDLER

PAGE FAULT

DATA

FETCH -

MANAGER A,B

‘_l 777

700

— —1677
5 DISPATCH— TRAP

— TABLE —— HANDLER

K 000

EFFECTIVE

1 ADDRESS
00 12 L MANAGER |l
INSTRUCTION EAMOD

IR ® [} "A\REGISTER DISP CONDS

0 89 121314 1718 35

ARX| OP | AC |I| XR Y

START UP

AND STOP

INTERFACE

"IR, ARX "CONDS"

LOADING"
(BEGIN) NICON) VARIOUS

DI HARDWARE
CONDI TIONS

Major dispatches 10-1538

Figure 3-2 Microprogram Structure

Start-up and stop interface

Effective address manager

Data fetch manager

Executor

Data storage manager

Priority interrupt handler

Page fault handler

Halt handler

Input/output handler.W
b

w
h

—~

Each word of the microcode in the CRAM contains up to 84 bits of control information (Figure 3-3).

Initial entry into the microcode for a given instruction is a function of the instruction op code via the

3-7

INSTRUCTION

Q0 08 09 12_13 14 17 18 35

IR[OP COOE (IR) AC (IR} I @ [XR EFFECTIVE ADDRESS (Y)

0-7774

ISPATCH_RAM

o]

0-1777¢

230 02

o.777.l FETCH (A)

CONTROL RAM

00 0l a2 17 18 20 21 22 23 24 26 27 29 30 31 32 33 35 36 38 39

01777, OISPATCH ADR (J) AD ADA % ADB l AR ARX ‘BR {BRX[MQIV FM ADR l SCAD ‘ SCAD A

0-3777

4 42 43 44 45 46 47 48 49 50 51 %2 8354 8% 56 59 60 85 86 67 7H72 T3 74 78 83

Y /Al) E R R R/ .
10~ 1924

Figure 3-3 Instruction Dispatch and Control Formats

dispatch RAM (DRAM). Thereafter, the microcode sequences as a function of the J field of the

microinstruction word.

The start-up and stop interface evaluates initial hardware conditions and dispatches to the appropriate

handler. The nature of the condition could be a pending priority interrupt, a halt condition, and so on.

Upon completion, all instructions must pass through this process.

The effective address manager evaluates the indirect address flag (bit 13) and the index field (bits 14-17)

in the arithmetic register extension (which contains the current instruction) together with certain hardware

conditions such as PIs or page failures. It either dispatches to the appropriate handler or calculates the

effective address by requesting the necessary fast memory (index) cycles or MBox indirect (@) cycles.

The data fetch manager evaluates the 3-bit A (fetch) field (for the current instruction), which is in the

dispatch table. The code in the 3-bit field defines the type of data fetch or write or combination operation

(if any) required. The data fetch manager takes the proper action required; that is, it enables the EBox

clock to stop as appropriate, dispatches directly to the executor, or initiates an instruction prefetch. Note

the instruction register is used to address the proper location in the dispatch table (DRAM) based on the

op code for the instruction.

3-8

The executor routine is the bulk of the microprogram. It contains a number of somewhat independent

routines, which are used to execute the instruction-specific function; for example, move a half word from

one register to another or push a word onto a subroutine stack and so on.

The data storage manager dispatches on the DRAM B field. In addition, when called from the executor as

a subroutine only, (MEM/WRITE for example), it defines the appropriate MBox control signals and

dialog and initiates the write operation. When the data storage manager is entered in the context of a store

cycle, that control generally passes to the process from the executor. Then finally, control will pass to the

start-up and stop interface.

The priority interrupt handler is dispatched to or from discrete points in the microprogram. Interrupts are

looked at while computing the effective address and during certain longer instructions, such as BLT.

Control is passed to the page fault handler from the effective address manager or data storage manager

when the MBox asserts PF HOLD and EBOX PF HANDLE prior to MBOX RESP during a memory

request. The implication is that a memory address violation, such as an access failure, write protection

violation, or some similar violation, occurred and that the paging address translation should be done by the

microprogram. In addition, this handler is used for certain error conditions.

The halt handler routine is entered from the start-up and stop interface when the run flip-flop is found

clear at the next instruction dispatch time. The run flip-flop can be cleared by various mechanisms. For

example, when a halt instruction is executed, run is disabled. On power up, run must be set by a diagnostic

function initiated from the DTE20.

The input/output handler is dispatched through IR dispatch from the dispatch table on DATAO, CONO

after the data or status has already been fetched from memory, or directly on DATAI, CONI, CONSO,

or CONSZ. The handler calls the EBus driver, which generates the necessary EBus dialog with the device.

For BLKI or BLKO instructions, the pointer has been fetched but must be updated and stored back at E,

and the required word must then be fetched. This is performed by the input/output handler first. When

the data has been fetched, the EBus driver is called. On DATAI, CONI, the EBus driver is called to

negotiate the transfer from the selected device over the EBus to the EBox. Then the input/output handler

passes control to the data storage manager, which issues a request to store the data.

3.2.2 The MBox

The MBox is the storage controller of the DECsystem-10/DECSYSTEM-20. The MBox contains a pager,

a physical memory address selector (PMA), and four memory buffer (MB) registers. These functional

clements provide the EBox instruction execution unit access to physical memory. The physical memory

address is created by the pager and the PMA, while the data path between main memory and the EBox is

created via the MBs.

The MBox also contains an integral data channel I/O processor (a multiplexed channel controller). This

I/O processor interfaces with the MBs to form a data path from the physical memory storage bus

(SBus/XBus) to the channel bus (CBus). The CBus is multiplexed by the channel I/O processor to orderly

select up to eight Massbus controllers (channels).

The pager is a high-speed, 512-word, set-associative automatic buffer memory where physical page

addresses and page descriptor keys are stored. It serves as a high-speed extension of the page tables pointed

to by entries in the User and Executive Process Tables. When the EBox issues a request for paged

memory, the MBox automatically checks the contents of the pager to see if it contains a valid physical

page address. If there is a valid address it simply concatenates the entry with the low order nine bits of the

virtual address. This address is then used to issue a memory request. If the pager does not contain a valid

physical page address, the MBox informs the EBox that a page refill operation is required.

3-9

When the EBox issues a memory request, the MBox fetches a single word from memory and transfers the

word to the EBox. For write operations the MBox writes the word directly into memory.

The channel 1/0 processor is a multiplexed channel controller that can handle up to eight simultaneous

high-speed block transfers without program intervention. After being started by a Massbus controller, the

channel I/O processor executes the block transfer under the control of a channel command list, which is

stored in physical memory. The channel I/O processor uses a set of RAMs for storing control and status

bits, for maintaining the channel command list pointer and the channel command word, and for buffering

the data.

For both CTOM (control to memory) and NOT CTOM operations, the channel controller will transfer

blocks of four words to or from memory via the four MBs. The CBus transfers the data to or from the

appropriate Massbus controller one word at a time.

3.2.3 Channel/Cache Interface Description

The channel/cache (CHAN/CSH) bus is an internal interface connecting the channel control logic and

the cache/memory control logic portions of the MBox. This group of signals does not actually make up a

bus; however, the signal-sequencing characteristics are similar to a bus. As such, this signal group is

described as a bus. Table 3-1 describes each CHAN/CSH line. Figure 3-4 illustrates the CHAN/CSH bus

configuration.

Table 3-1 CHAN/CSH Line Descriptions

Signal Line Description

Control Commands

Channel request Asserted by the channels to request service.

(CCL3 CHAN REQ)

Hold memory Asserted by the channels if the channels have requests

(CCL2 HOLD MEM) backed up. Asserting this signal assures the channel the

next core cycle by preventing an EBox request from

initiating a core cycle.

Channel cycle Asserted when the cache cycle control starts processing

(CSH CHAN CYCQO) the channel request. This signal informs the channel

that it can start writing the memory buffers (MB) in the

case of channel write operation or start looking for

words ready to be taken from the MBs in the case of

channel read operations.

Start memory Asserted by the channel during channel write operations

(CCL START MEM) after the first word is loaded into the MBs. During

channel read operations, the cache cycle control starts

the core cycle when it is ready.

3-10

Table 3-1 CHAN/CSH:Line Descriptions (Cont)

Signal Line Description

Memory buffer select 1-2

(CCL CH MB SEL 1-2)

Load memory buffer

(CCL CH LOAD MB)

Hold in

(MB0-3 HOLD IN)

Memory buffer test parity

(CCL CH MB TEST PAR)

Request Qualifiers

Channel to memory

(CCL CHAN TO MEM)

Channel word 0-3 request

(CCW CHAN WDO0-3 RQ)

Exec Process Table

(CCL CHAN EPT)

Error Reporting Commands

Channel parity error

(CHAN PAR ERR)

The channel places a 2-bit code on these lines to select

the correct MB to be loaded during channel write opera-
tions or read during channel read operations.

Asserted by the channel to load the selected MB during

channel write operations.

Asserted by the cache cycle control and/or the core

cycle control during a channel read operation to load

the MBs and to inform the channel that the correspond-

ing word is ready to be taken.

Asserted by the channel to check parity of the selected

word before it is taken from the MB during channel

read operations.

Asserted by the channel to specify an execution of a

channel write operation. When negated, a channel read

operation is executed.

These four signals are asserted by the channel to specify

the words to be read or written.

Asserted by the channel to read or write the Exec Pro-

cess Table (EPT). The EPT is read to fetch the initial

CCW and is written to store the channel status at the

end of a transfer. The cache cycle control will automati-

cally select the correct address for referencing the EPT.

Asserted for one clock period when the MB parity

check fails during a channel read or channel write oper-

ation. During channel write operations, parity is

checked when the channel asserts CCL CH MB TEST

PAR. During channel read operations, parity is checked

when the cache cycle or the core cycle control loads the

word into the MB.

Table 3-1 CHAN/CSH Line Descriptions (Cont)

Signal Line Description

Address parity error

(CHAN ADR PAR ERR)

Nonexistent memory error

(CHAN NXM ERR)

Address

Physical memory address

(CCN CHA 14-35)

DATA

CLOCKS

Asserted for one clock period when the SBus address

parity check fails during channel read or channel write

operations.

Asserted for one clock period on detection of a nonexis-

tent memory error.

Physical memory address from channel.

Data buffer and path is an integral part of the MB

modules (MB CH BUF 00-35).

Clocks are distributed to the channels from the EBox.

CHAN/CSH INTERFACE

MBOX

CACHE/

CORE

CONTROL

LOGIC

¢ CHA 14-35 (MEMORY ADDRESS)

MB CH BUF 00-35 (MEM BUFFER DATA) >
CHAH REQ (CHANNEL REQUEST)

HOLD MEM (HOLD MEMORY)

CHS CHAN CYC (CACHE CHANNEL CYCLE)

START MEM (START MEMORY)

CH MB SEL 1-2 (MEMORY BUFFER SELECT)

CH LOAD MB (LOAD MEMORY BUFFER)

MBOX

MBO-3 HOLD IN (MEM BUFFER HOLD IN) Ctggfl‘lgL

CH MB TEST PAR (MEM BUFFER PARITY)

CH TO MEM (CHANNEL TO MEMORY)

CH WDO-3 REQ (WORD 0-3 REQUEST)

CHAN EPT (CHANNEL TO EPT)

CHAN PAR ERR (CHANNEL PARITY ERROR)

CHAN ADR PAR ERR (CHAN ADR PARITY ERROR)

CHAN NXM ERR (NONEXISTANT MEM ERROR)

CLOCKS

10-2123

Figure 3-4 CHAN/CSH Configuration

3-12

3.2.3.1 Request Dialog — The channels issue requests to the cache cycle control for memory cycles by

asserting CCL CHAN REQ and CCL HOLD MEM (see Figure 3-5). The channels also set up the channel

address (CHA) and the following request qualifiers.

1. CCL CHAN TO MEM

2. CCL CHAN WDO0-3RQ

3. CCL CHAN EPT

These signals stay valid until the request has been processed to completion. If another request is ready to

be processed, CCL CHAN REQ and CCL HOLD MEM stay asserted while the address and request

qualifiers are modified to specify the next request.

When the cache cycle control starts to process a request, the cache cycle control asserts CSH CHAN

CYCLE. This signal informs the channel that it can start moving words from the CHAN to the MBs in

the case of channel data write operations, or it can start looking for words that are ready to be moved out

of the MBs into the channel buffer (CH BUF), in the case of channel data read operations.

3.2.3.2 Channel Read Operations — Two types of read requests can be issued by the channels.

1. Read a single word from the Executive Process Table (EPT). The EPT contains eight locations

for storing the initial channel command words (CCW). One location is assigned to each channel.

2. Read one, two, three, or four words (instructions and data) from physical core memory.

To read the initial CCW from the EPT, the channel issues and qualifies the request as follows.

I. Assert CCL CHAN REQ, CCL CHAN EPT, CCW CHAN WDO RQ.

2. Clear CCL CHAN TO MEM.

NOTE

Word 0 is requested because the initial CCW is

stored in location 0 of a quadword group.

1. Set up CCL CH MB SEL 1-2 lines to point to MBO.

2. Assert CCL HOLD MEM.

3. Hold CHA 14-35.

The channel then waits for a cache cycle. When the cache cycle is started, the correct address is made by

replacing CHA 14-26 with the contents of the EBR. This address is then used to look in the cache and if

the word is not in the cache, to read the word from core. In either case, the word is moved into MBO. The

channel recognizes that MBO was loaded when MBO HOLD IN is negated for one clock tick. The channel

will then move the word from MBO to the CCW BUF and cause MB parity to be checked.

To read data and instructions from physical core memory, the channel issues and qualifies the request as

follows.

1. Assert CCL CHAN REQ and CCL HOLD MEM.

2. Clear CCL CHAN TO MEM and CCL CHAN EPT.

3. Set up CCW CHAN WDO0-WD3 lines to indicate which words are to be read.

3-13

28vi1-0t

031S3
N03y

2amO 3oper(y1sonboypPuuey)§-¢2InLyY3QHO0v
0NCONONIONID

S3a
SI

SQHOM240Y3GHO

o
WoSBPN

Q047208710

“SuoLBId0GVIYNVHDU038HOUlOFSI34iwosjpawow

S1PIONSOt4JB3J020SUONIDIIIOJ|IHMHDVO2202OfUL1im4W00Jxaugy136UYL(LIPRI0YDYL°PIIOHI10U3D¥
0ING

ONONIGNI
ISY

SI
SQUIOM40HIGHO

O34NYHO100138—
tay3y—

o

‘S31ON

3-14

4. Set up CCL CH MB SEL 1-2 lines to point to the MB that corresponds to the lowest order
word requested.

5. Hold CHA 14-35.

The channel then waits for a cache cycle. When the cache cycle is started, the channel address (CHA
14-35) is used to look in the cache and if all the requested words are not in the cache, to read those words
from core. In either case, the requested words are moved into the MBs. The channel recognizes that an MB
is loaded when MBO, 1, 2, or 3 HOLD IN is negated for one clock tick. The channel will start moving the
words to the CH BUF as soon as the lowest order requested word is placed into the corresponding MB.
Subsequent words are moved from the MBs to the CH BUF in ascending modulo four order. As each word
is transferred, its parity is also checked in the MB.

3.2.3.3 Channel Write Operations — Two types of write requests can be issued by the channels.

1. Write two words into the Executive Process Table (EPT). The EPT contains 16 locations for
storing channel status information. Two locations are assigned to each channel.

2. Write one, two, three, or four words (data and instruction) into physical core memory.

NOTE

These words may have been read from a magnetic

tape drive that is capable of reading in forward and

reverse mode.

To write the two status words into the EPT, the channel issues and qualifies the request as follows.

1. Assert CCL CHAN REQ and CCL CHAN EPT.

2. Assert CCL CHAN TO MEM and CCW CHAN WDI1 and WE2 REQ.

NOTE

Words 1 and 2 are specified since the status words

are stored in locations 1 and 2 of a quadword group.

3. Set up CCL CH MB SEL 1-2 lines to point to MB1.

4. Assert CCL HOLD MEM.

5. Hold CHA 14-35.

The channel then waits for a cache cycle. When the cache cycle is started, the correct address is made by
replacing CHA 14-26 with the contents of the EBR. This address is then used to write the words to core
after they are moved to the MBs. The cache is also checked to see if there is a copy of the referenced EPT
locations in the cache, if EBOX CACHE LOOK EN is set. If there is, this copy is invalidated because it is
assumed to be an old copy. After the first word is moved into the MB, the channel initiates a core write
cycle to move the word to memory. The second word is moved into its MB 125 ns after the first word, in
time for the memory control.

To write data and instructions into physical memory, the channel issues and qualifies the request as
follows.

3-15

1. Assert CCL CHAN REQ and CCL CHAN TO MEM.

2. Clear CCL CHAN EPT.

3. Set up CCW CHAN WD0-WD3 RQ lines to indicate which words are to be written.

4, Set up CCL CH MB SEL 1 2 lines to point to the MB that corresponds to the first word to be

transferred by the channel.

5. Assert CCL HOLD MEM.

6. Hold CHA 14-35.

NOTE

If the words were read from a magnetic tape drive

operating in the forward mode, the words will be

transferred in ascending modulo four order. Howev-

er, if the drive was operating in the reverse mode, the

words will be transferred in descending modulo four

order.

The channel then waits for a cache channel cycle. When the cache cycle is started, the channel address

(CHA 14-35) is used to write the words into core after they are moved into the MBs. The cache is also

checked to see if there is a copy of the referenced memory locations in the cache. If there is, this copy is

invalidated, since it is assumed that this must be an old copy. After the first word (lowest numbered word)

is moved into the MB, the channel initiates a core write cycle to move the word to core. Subsequent words

are moved into the MBs at four clock-tick intervals so that the words will be available for transfer to core.

Once a core cycle is started, the core cycle control moves a word to core every six clock ticks.

3.2.4 Meter Board

This board contains the following programmable clocks, each of which provides a different timing or

counting function.

1. Interval timer

2. Time base

3. Accounting meters

4. Performance analysis counter

This board uses ECL logic and is housed on the ECL CPU assembly along with the EBox and the MBox.

The clocks are considered to be internal processor 1/O devices (TIM and MTR) and are programmable

using the standard I/O instructions.

The interval timer provides a programmable source of interrupts having 10 us resolution and a choice of

2121 possible time intervals ranging from 10 us to 40950 us.

The readable time base is a long term clock for measuring elapsed time with 1 us resolution. (Long term

power line frequency time base is provided by the front-end processor.) It uses a 1.0 MHz (+0.005

percent) frequency source, derived and down-counted from the basic 50 MHz machine clock. The time

base has less than 5 seconds of drift over a 24 hour period.

The accounting meters have an EBox busy meter, which counts when the EBox is executing microcode,

and a memory cycle meter, which counts the number of EBox memory references. The two meters provide

3-16

a reproducible measure of the processor resources used by a program, and they can be used for billing

users and for benchmark or comparison purposes.

The performance analysis counter serves as a tool for testing and evaluating the DECsystem-10/DEC-

SYSTEM-20. It monitors either the duration or the rate of occurrence of several hardware signals from

various parts of the main processor. The signals, chosen for their usefulness in evaluating system perform-

ance, define machine states and conditions that are not easy to measure by software techniques. The

signals to be monitored are selected by means of a Boolean expression loaded by the program.

3.2.5 EBox/MBox (E/M) Interface Description

The EBox/MBox interface connects the EBox and MBox portions of the central processor. This group of

signals does not actually make up a bus; however, the signal-sequencing characteristics are similar to a bus.

As such, this signal group will be described as a bus.

The EBox asserts a set of interface signals (request qualifiers) along with EBox request to specify what

type of service is required. Request qualification is required to show the difference between reads and

writes and between memory and register references. In addition to these basic qualifications, each request

is qualified by asserting other signals to identify the register of interest for a register reference, and to

indicate the type of addressing to be used and whether the cache is to be used for memory references.

After the MBox executes a cache cycle to process an EBox request, the MBox asserts MBox response to

inform the EBox that the operation is complete.

The E/M interface lines are described in Table 3-2. Figure 3-6 shows the E/M interface configuration.

Major bus line sequencing is described in the following paragraphs in the context of a specific operation.

Table 3-2 E/M Interface Line Descriptions

Signal Line Description

Control Commands

EBox request

(EBox REQ)

MBox gate virtual memory

address 27-35

(MBOX GATE VMA 27-35)

Cache EBox to in

(CSH EBOX TO IN)

EBox accumulator reference

(EBOX AC REF)

Issued by the EBox to request service from the MBox.

Asserted by the MBox when a cache EBox cycle is

granted to service the EBOX REQ to enable VMA bits

27-35 for addressing the cache directory.

Asserted for one clock period when the cache cycle

control starts processing an EBox request. This signal is

used to clear EBOX REQ.

Asserted by the EBox when it finds that the reference is

to one of the AC blocks (fast memory) to abort the

MBox cache cycle if it was started. This is done to allow

the MBox to start servicing a request earlier than would

otherwise be possible.

3-17

Table 3-2 E/M Interface Line Descriptions (Cont)

Signal Line Description

Page table public

(PT PUBLIC)

EBox page fail handle

- (EBOX PF HANDLE)

MBox page fail hold

(MBOX PAGE FAIL HOLD)

MBox response

(MBOX RESP)

EBox sync

(EBOX SYNC)

Memory Reference Request Qualifiers

EBox read

(EBOX READ)

EBox write

(EBOX WRITE)

EBox read and EBox write

(EBOX READ and EBOX WRITE)

EBox read, EBox pause, and

EBox write

EBox pause and EBox write

Transferred to the EBox to allow the EBox to determine

whether it should assert PAGE ILLEGAL ENTRY for

the next reference or change its mode of operation from

public to private.

Asserted by the MBox, this is a page test for a paged

memory request failed, and KL paging mode is speci-

fied by the EBox.

Asserted by the MBox, this is the page test for a paged

memory reference request failed.

Asserted by the MBox after a request is processed.

Asserted by the EBox to inform the MBox the data will

be taken.

Read a word from memory. Read-check the page for

paged references and assert MBOX PAGE FAIL

HOLD if page test failed.

Write a word into memory. Write-check the page for

paged references and assert MBOX PAGE FAIL

HOLD if page test failed.

Read a word from memory, read- and write-check the

page for paged references and assert MBOX PAGE

FAIL HOLD if page test failed.

Execute the read portion of the read-pause-write cycle.

Read- and write-check the page for paged references

and assert MBOX PAGE FAIL HOLD if page test

failed. The write portion of the cycle is initiated by

asserting EBOX REQ a second time.

Write-check the page for paged references and assert

MBOX PAGE FAIL HOLD if page test failed.

3-18

Table 3-2 E/M Interface Line Descriptions (Cont)

Signal Line Description

EBox may be paged

(EBOX MAY BE PAGED)

EBox KI paging mode

(EBOX KI PAGING MODE)

EBox user

(EBOX USER)

EBox user executive base

register reference

(EBOX UEBR REF)

EBox User Process Table

(EBOX UPT)

EBox Exec Process Table

(EBOX EPT)

Page illegal entry

(PAGE ILL ENTRY)

Page test private

(PAGE TEST PRIVATE)

Page address condition

(PAGE ADDRESS COND)

Asserted by the EBox indicating the reference may be

paged. The MBox determines whether the reference is

paged. In the KL paging mode, all core is paged; in KI

paging mode, part of the executive address space is not

paged.

Indicates KI paging mode when asserted and KL paging

mode when negated.

Asserted by the EBox when the memory reference is to

the user address space.

Asserted by the EBox when the User or Exec Process

Table is referenced to bypass the page check.

Asserted by the EBox when the reference is to the User

Process Table to inform the MBox that the contents of

the user base register must be used in forming the physi-

cal memory address (PMA).

Asserted by the EBox when the reference is to the Exec

Process Table to inform the MBox that the contents of

the executive base register must be used in forming the

PMA.

Asserted by the EBox to force a page fail condition in

the MBox to abort the current request. The EBox

asserts PAGE ILL ENTRY if the previous instruction

was fetched from a proprietary area and the instruction

is not a portal instruction (JRSTO).

Asserted by the EBox for a noninstruction reference in

the public mode to check whether the page is private.

MBOX PAGE FAIL HOLD is asserted if the page is

not public.

Asserted when the EBox detects an address break con-

dition. The EBox also asserts PAGE ILL ENTRY at

this time to force a page fail condition in the MBox and

cause MBOX PAGE FAIL HOLD to be asserted.

3-19

Table 3-2 E/M Interface Line Descriptions (Cont)

Signal Line Description

EBox cache

(EBOX CACHE)

Cache look enable

(CACHE LOOK EN)

Write even parity

(CON WR EVEN PAR)

SBus diagnostic

(SBUS DIAG)

Register Reference Request Qualifiers

EBox load register

(EBOX LOAD REQG)

EBox read register

(EBOX READ REGISTER)

EBox user base register

(EBOX UBR)

EBox executive base register

(EBOX EBR)

EBox cache clearer register

(EBOX CCA)

Asserted by the EBox for references to those instruc-

tions and data that may reside in the cache. Instructions

and data that are shared by two processors cannot reside

in the cache.

Asserted by the EBox to take the word from the cache

if it is found, even if EBOX CACHE is clear, or for

paged references if PT CACHE is cleared.

Asserted by the EBox to write even parity into the

cache directory during a write request.

Asserted by the EBox to initiate an SBus diagnostic

cycle. All other request qualifiers must be clear for this

request.

Asserted by the EBox to load the UBR, EBR, or CCA

in the MBox. The EBox also specifies which register is

to be loaded by asserting the appropriate register signal.

Asserted by the EBox to prepare to read a register

(UBR, EBA, CCA, ERA) in the MBox. The EBox also

specifies which register is to be read by asserting the

appropriate register signal. After the READ REG

request is executed by the MBox, the EBox can read the

value of the register by asserting EBOX READ EBUS

REG.

Asserted by the EBox when the UBR is to be loaded or

read.

Asserted by the EBox when the EBR is to be loaded or

read.

Asserted by the EBox when the CCA is to be loaded or

read.

3-20

Table 3-2 E/M Interface Line Descriptions (Cont)

Signal Line Description

EBox accumulator bit 10

(EBOX ACI10)

EBox accumulator bit 11

(EBOX ACI11)

EBox accumulator bit 12

(EBOX AC12)

EBox error address register

(EBOX ERA)

EBox map

(EBOX MAP)

DIA enable refill RAM write

(DIA EN REFILL RAM WR)

Error Reporting Commands

MBox nonexistent memory error

(MBOX NXM ERROR)

MBox SBus error

(MBOX SBUS ERR)

MBox memory buffer parity error

(MBOX MB PAR ERR)

MBox address parity error

(MBOX ADR PAR ERR)

Cache address parity error flag

(CACHE DIR PAR ERR)

Accumulator bit 10 (AC10) is set when only one page is

to be cleared from the cache; it is reset when all of

cache is to be cleared.

Accumulator bit 11 (AC11) is set when the cache

entries are to be invalidated.

Accumulator bit 12 (AC12) is set when the written

words in the cache are to be written back into core to

validate core.

Asserted by the EBox when the ERA register is to be

read. This register is a read-only registers.

Asserted by the EBox along with EBOX READ REG

to transform the virtual address into the physical

address.

Asserted by the EBox along with EBOX READ REG

to load the cache refill RAM when the cache is

initialized.

Asserted by the MBox when an NXM is detected.

Asserted by the MBox when SBUS ERR is detected on

SBus. SBUS ERROR is asserted by memory

subsystem:.

Asserted by the MBox when an MB parity error is

detected.

Asserted by the MBox when an address parity error is

detected by the memory system.

Asserted by the MBox when a cache directory parity

error is detected.

3-21

Table 3-2 E/M Interface Line Descriptions (Cont)

Signal Line Description

APR any EBox error flag

(APR ANY EBOX ERR FLG)

Direct Commands

EBox page table directory write

(EBOX PT DIR WRITE)

EBox page table write

(EBOX PT WRITE)

Diagnostic read function

(DIAG READ FUNCT 16X-17X)

Diagnostic load function

(DIAG LOAD FUNCT 071)

Diagnostic lines

(DIAG 04-06)

Address Lines

Virtual memory address 13-35A

(VMA 13-35A)

Virtual memory address 27-35G

(VMA 27-35QG)

Serves as an accumulative error flag for the APR

register.

Asserted by the EBox during KL paging mode to write

or clear a page table directory entry.

Asserted by the EBox during KL paging mode to write

or clear a page table entry.

Asserted by the EBox to read a diagnostic register. The

diagnostic register to be read is specified by the code

presented on DIA 04-06. Also asserted by the EBox to

read the EBus register. Octal code seven must be

presented on the DIAG 04-06 lines to read the EBus

register. This register will contain the contents of the

register specified with the EBox READ REG request or

it will contain the PAGE FAIL WORD in the event the

MBox pager sensed a page fail condition. The EBox is

informed that a page fail condition was sensed by the

MBox (PAGE FAIL HOLD is asserted by the MBox).

Asserted by the EBox to set up the MEM TO C mixer

to read the contents of the memory data register (SBus)

the MBs or the cache. The contents of the AR can also

be looped back. The code presented on the EBus data

bits 30-33 determines which data specified above will

be read back on the cache data lines.

These lines present a control code to the MBox for

selecting diagnostic and EBus registers.

Register load data or virtual address from the EBox.

Address parity is not propagated.

Gated address from EBox. This address is gated by the

MBox when a cache EBox cycle is started. Address

parity is not propagated.

3-22

Table 3-2 E/M Interface Line Descriptions (Cont)

Signal Line Description

Data Lines

Arithmetic register 00-35 Transfers data from the EBox AR to the cache, memo-

(AR00-35) ry buffers, or page table in the MBox.

Arithmetic register parity Transfers data parity from the AR parity generator,

(AR PAR) together with AR00-35.

Cache data 00-35B Transfers data from the MBox cache to the EBox IR,

(CACHE DATA 00-35B) AR, and ARX.

Cache data 00-35C Transfers data from the MBox cache to the EBox IR.

(CACHE DATA 00-35C)

EBus data 00-35 Transfers data from the EBus register and mixer to the

(EBUS D00-35) EBus.

Clock 13 clocks are generated on the EBox CLK module and

distributed to the MBox boards.

3.2.5.1 Basic Request Dialog — The EBox issues requests to the MBox by asserting EBOX REQ (Figure

3-7). At the same time EBOX REQ is asserted, the request qualifiers become valid. These signals stay

valid until the request has either been processed to completion or aborted. The request can be aborted by

the EBox by asserting EBOX AC REF. If the EBox aborts the request, EBOX REQ is also cleared by the

EBox (if the MBox has not started to process the request).

When the MBox starts to process the EBox request, the MBox asserts CSH EBOX TO IN. This signal

causes EBOX REQ to be cleared. This occurs after the request is made if the MBox has no higher priority

request pending. If the MBox is busy when the request is made, a number of clock ticks may transpire

before the MBox asserts CSH EBOX TO IN. Therefore, EBOX REQ will stay asserted until the MBox

starts processing the request.

After CSH EBOX TO IN is asserted, a number of clock periods may occur before the MBox completes

processing the request. The MBox informs the EBox that it has completed processing the request by

asserting MBOX RESP. This signal stays asserted until the EBox asserts EBOX SYNC. While MBOX

RESP is asserted, the data or instruction requested by the MBox will be valid on the cache data lines. The

MBox holds the data on the cache data lines until EBOX SYNC is asserted, since the EBox will take the

data only when EBOX SYNC is asserted. One clock tick after EBOX SYNC is asserted, MBOX RESP is

cleared.

3.2.5.2 Register References — The MBox contains a number of registers that can be loaded and read by

the EBox. These registers are address registers for storing the address in the event of an error and

3-23

E/M INTERFACE

EBOX REQ (EBOX REQUEST)

<MBOX GATE VMA 27-35 (GATE VIRTUAL MEM 27-35)

CSH EBOX TO IN (CACHE EBOX TO IN)

MBOX PAGE FAIL HOLD (MBOX PAGE FAIL HOLD)

MBOX PF HANDLE (MBOX PAGE FA(L HANDLE)

MBOX RESP (MBOX RESPONSE)

EBOX SYNC (EBOX SYNC)

EBOX READ (EBOX READ)

EBOX WRITE (EBOX WRITE)

EBOX READ AND EBOX WRITE (EBOX READ AND EBOX WRITE)

EBOX READ EBOX PAUSE EBOX WRITE

EBOX PAUSE EBOX WRITE

EBOX MAY BE PAGED

EBOX KI PAGING MODE

EBOX USER

EBOX UEBR REF (USER EXECUTIVE BASE REGISTER REF)

EBOX UPT (EBOX USER PROCESS TABLE)

L%Beon)é ' EBOX EPT (EBOX EXECUTIVE PROCESS TABLE) LEOBGOI)((:

ECT PROT BYPASS (EXECUTIVE PROPRIETARY BYPASS)

PAGE ILL ENTRY (PAGE ILLEGAL ENTRY)

PAGE TEST PRIVATE

PAGE ADDRESS COND (PAGE ADDRESS CONDITION)

EBOX CACHE

DIA CACHE LOOK EN (DIA CACHE LOOK ENABLE)

SBUS DIAG (SBUS DIAGNOSTIC)

EBOX LOAD REG (EBOX LOAD REGISTER)

EBOX READ REGISTER

EBOX UBR (EBOX USER BASE REGISTER)

EBOX EBR (EBOX EXECUTIVE BASE REGISTER)

EBOX CCA (EBOX CACHE CLEARER REGISTER)

EBOX AC 10 (EBOX ACCUMULATOR BIT 10)

EBOX AC i (EBOX ACCUMULATOR BIT 1)

EBOX AC 12 (EBOX ACCUMULATOR BIT 12)

EBOX ERA (EBOX ERROR ADDRESS REGISTER)

EBOX MAP

DIA EN REFILL RAM WR (ENABLE REFILL RAM WRITE)

10-2118

Figure 3-6 E/M Interface Configuration (Sheet 1 of 2)

3-24

E/M INTERFACE

MBOX NXM ERROR (NONEXISTANT MEMORY ERROR)

MBOX SBUS ERR (MBOX SBUS ERROR)

MBOX MB PAR ERR (MEM BUFFER PARITY ERROR)

MBOX ADR PAR ERR (MBOX ADDRESS PARITY ERROR)

CSH ADR PAR ERR (CACHE ADDRESS PARITY ERROR)

EBOX PT DIR WRITE (WRITE PAGE TABLE DIRECTORY)

EBOX PT WRITE (WRITE PAGE TABLE ENTRY)

DIAG READ MBOX (DIAGNOSTIC READ MBOX)

DIAG LOAD MBOX (DIAGNOSTIC LOAD MBOX)

DIAG 04-06 (DIAGNOSTIC LINES 04-06)

/
\

4
|

MBOX K VMA t3-35A (VIRTUAL MEMORY ADDRESS 13-35A) EBOX

LOGIC LOGIC

< VMA 27-35G (VIRTUAL MEMORY ADDRESS 27-35G)

< AROO-35 (ARITHMETIC REGISTER 00-35)

AR PAR (ARITHMETIC REGISTER PARITY)

CACHE DATA 00-35B >

CACHE DATA 00-35C >

EBUS DOO -35 (EBUS DATA 00-35 >
CLOCKS

10-2119

Figure 3-6 E/M Interface Configuration (Sheet 2 of 2)

3-25

(esox req)

ASSERT EBOXREQ

ASSERT EBOX

REQ QUAL

HOLD VMA

ASSERT

EBOX REQ

CSH EBOX

T@ IN

| cLr eBOX REQ |

YES
RETRY

NO

CSH
EBOX

Cyc

ASSERT
MBOX RESP

EBOX SYNC

| cLR MBOX RESP |

(oone)

t0-1478

Figure 3-7 EBox Request Dialog

3-26

modifying the physical memory address in response to certain request qualifiers. The registers are:

User base registers — UBR

Executive base register - EBR

CCA cache clearer address - CCA

Error address — ERA.-

NOTE

The ERA register can only be read by the EBox.

In addition, the EBox can also read the contents of the page table to map the virtual address to the
physical address and load the cache refill RAM with the cache refill algorithm.

To read and load any of the registers and RAM:s previously listed, the MBox must execute a cache cycle in
response to the EBox request; this prevents potential conflicts with other pending requests. Some registers
and RAMs can also be loaded and read directly by the EBox without executing a cache cycle. A conflict
with another type of request (e.g., CHAN REQ) cannot occur with these registers and RAMs.

The MEM TO C diagnostic register and the page table can be loaded, and seven diagnostic registers plus
the EBus register can be read directly from the EBox.

To read or write the registers and RAMs in the MBox, the EBox must assert a specific set of qualifier
signals along with EBOX REQ for each type of reference. When loading registers, the EBox must also
move the data to be loaded into the VMA before issuing the request.

3.2.5.3 Memory Reference — The EBox can issue requests to read and write memory. The EBox can
request to read or write the Executive and User Process Tables and user or executive paged and unpaged
memory. The EBox will also specify whether the cache is to be used in servicing the memory request.
When the MBox starts processing a memory request, it automatically forms the correct physical memory
address in response to the request qualifiers displayed with the request. If the EBox requested a reference
to paged memory, it automatically read/write-checks the referenced page. If the page check fails, the
MBox informs the EBox of this condition by asserting PAGE FAIL HOLD.

To read or write memory, the EBox must set up the address in the VMA and assert a specific set of
qualifier signals along with EBOX REQ for each type of reference. When writing memory, the EBox must
also move the data (or instruction) to be written into the AR before issuing the request.

3.2.5.4 Basic Cache Strategy ~ The MBox is the storage controller in the KIL-based DECsystem-
10/DECSYSTEM-20. The MBox contains a cache, four memory buffers (MBs), the pager, and the PMA.
These functional elements provide the EBox access to core memory. The PMA and the pager form the
physical memory address. The data path between core memory and the EBox is created by the MBs and
the cache. The cache is a high-speed, 2048 word data buffer where instructions and data are stored and
maintained as the EBox issues requests over the E/M interface for memory.

It is characteristic of programs executed by the EBox to execute the same instructions many times, as in
iterative program loops. The cache serves its function in these cases. Once instructions and data have been
moved from memory to cache, the EBox can fetch instructions and store results much faster on subse-
quent references, since a time-consuming memory cycle will not have to be executed. Therefore, the cache
can be considered a high-speed, high-usage extension of memory.

As the EBox makes requests for instructions and data, memory cycles are granted by the MBox; and the
cache is filled up with four words at a time (a quadword). Data is transferred from core to the cache via
the four MBs. Considering that it is probable the EBox will request the next consecutive word in a string,

3-27

the word will already be in the cache. It will be available to the EBox sooner, since it will come from the

cache instead of from memory.

When the EBox makes a request for a word that is not already in the cache, the MBox will grant another
memory cycle to place another quadword (four words) in the cache. To identify each quadword group, the
cache contains a directory that stores the physical page number of the quadword (ADR). The directory
also contains locations for the purpose of identifying which words are valid (VAL bit) and which words
were written by the EBox (WR bits). As the cache is filled with data and instructions, the associated

locations of the directory are updated to specify the physical page address (ADR) of the quadword and to
specify which words were fetched from core (VAL bits). This continues until the cache is filled. Therefore,
the least recently used quadwords are replaced by new instructions and data as they are needed. Words
that have been written into the cache by the EBox are identified by updating directory WR bits

accordingly so that they can be moved back to core before they are replaced.

3.2.6 XBus Description

The XBus connects the MBox to the MF20 MOS memory system. It consists of a 36-bit wide data path
with associated control and diagnostic lines. The basic memory system consists of two controllers and their
associated storage modules to provide storage for up to 3,145,728 44-bit words in increments of 256 K
words. Table 3-3 describes each XBus line and Figure 3-8 illustrates the XBus configuration.

During diagnostic cycle execution, all communication (including addressing) between the MBox and the
MF20 is performed over the XBus data lines and associated diagnostic and error reporting lines. There are
eleven diagnostic functions implemented in the MF20 hardware. The diagnostic functions permit the
program to access the MF20 logic in a nonstandard way for one or more of the following purposes.

Loading a control RAM to configure the memory after power up

Reading error history flip-flops to log and analyze memory errors

Reading the state of key logic signals to diagnose memory faults

Setting up and starting the spare bit mechanismo
=

The diagnostic functions are described under Paragraph 3.2.6.5. Examples are also provided to explain
function use.

Table 3-3 XBus Signal Summary

Signal Name Print Function

ADR 14-35 These 22 lines transfer the physical address from the

ADR 14-21 SYNO MBox to the MF20 MOS memory subsystem. Used to
ADR 22-33 ADTO uniquely identify a specific block within a specific
ADR 34-35 CTLO group in a specific MF20.

ADR PAR ADTO A single line that is controlled by the MBox whenever

a memory reference is started. It is used to establish

overall odd parity for the following lines.

ADR 14-35

RD RQ

WR RQ

RQ 0-3

The MF20 checks the parity and asserts the XBus

signal, ADR PAR ERR if an error is detected.

3-28

Table 3-3 XBus Signal Summary (Cont)

Signal Name Print Function

RQ 0-3

RD RQ

WR RQ

START A-B

ACKN A-B

D00-35

DATA PAR

DATA VALID A-B

CTLO

CTLO

CTLO

CTLO

CTLO

WRPO, 1

WRPI1

CTLO

Four lines that are asserted by the MBox to specify

which words in a quadword group are to be accessed.

RQO request word 0

RQ1 request word 1

RQ2 request word 2

RQ3 request word 3

If more than one word is requested, ADR 34-35 will

specify the order in which the words will be processed.

The MBox asserts this line to specify that the request is

a read request.

The MBox asserts this line to specify that the request is

a write request.

Note

During a read-modify-write both RD RQ and WR RQ

are asserted by the MBox.

The MBox asserts one of these two signals to signal the

MF20 to start executing the read/write function speci-

fied by the state of the RD RQ, WR RQ, and RQ 0-3

lines.

The selected MF20 responds to the MBOX START

A-B signal by asserting the corresponding ACKN A

or ACKN B signal to acknowledge the request. If no

memory unit asserts ACKN within a specified time

limit, the MBox will abort the request and set a nonex-

istent memory (NXM) flag.

These 36 lines are used to transport a single KL10 data

word either from the MF20 to the MBox during a read

or from the MBox to the MF20 during a write.

This line is used to establish odd parity on the data

bus, D00-35, during any read or write operation.

Read — The MF20 generates the parity, and the MBox

checks it.

Write — The MBox generates the parity, and the

MF20 checks it.

Two lines asserted by either the MF20 (read) or the

MBox (write portion of read-modify-write) to signal

when data is valid on the data bus.

3-29

Table 3-3 XBus Signal Summary (Cont)

Signal Name Print Function

DIAG ADTO The MBox asserts this line to signal the MF20 selected
by D00-04 that it is to perform the diagnostic function

specified by D31-35.

ERROR ADTO This line is asserted by the selected MF20 to signal the
MBox that one of the following types of errors has

been detected.

RD ERR

WR PAR ERR

ADR ERR

TIM RAM ERR

SUB RAM ERR

BLK RAM ERR

INC ERR

The MBox can execute a subsequent diagnostic func-

tion 1 or 2 to determine which of the above errors has

occurred.

ADR PAR ERR ADTO This line is asserted by the MF20 to signal that bad
address parity was detected during a read-write

operation.

MEM RESET CTLO The MBox can assert this signal to place the MF20 in
a known initial state.

CROBAR WRPO This signal clears the MF20 control logic to its initial
state during power-up or power-down.

CLK INT CTLO XBus clock used to synchronize all operations within
the MF20 to the MBox timing.

VREF CTLO A single line that establishes a common voltage refer-
ence for the XBus transceivers at both ends of the

XBus.

3.2.6.1 Read Dialog - When the MBox prepares to retrieve information from the MF20, it initiates the
following XBus sequence.

1. It asserts the address lines, XBus ADR 14-35, to specify the location of the first word it wants

to retrieve.

2. It asserts the XBUS RD RQ line to instruct the MF20 to initiate a read cycle.

3. It asserts up to four request lines, XBUS RQ 0-3, to specify which words within a quadword

group it wants to retrieve.

3-30

10.

MF20/ MBOX

DMA20 22 ADDRESS LINES

ADR PAR

RD REQ

< WORD REQ (0 — 3)
WR REQ

STARTA-B

ACKNA-B
o

< DATA (D00 —35) >
DATA PAR

DATAVALIDA - B

DIAG

ERROR

ADR PAR ERR

MEM RESET

CROBAR

CLK INT o

VREF (NOT DMA20)

MR-4826

Figure 3-8 XBus Signals

It calculates odd parity based on the state of all address and request lines and either asserts or

negates the XBUS ADR PAR signal to reflect this parity.

It then asserts either XBUS START A or XBUS START B to command the MF20 to execute

the read request.

The selected MF20 uses XBUS START A/B to store the address and request information and

initiates a MOS memory timing sequence to access and retrieve the information from the MOS

storage array.

The MF20 responds immediately to the MBox START by asserting the signal XBUS ACKN

A/B and keeps it asserted for N number of XBUS INT CLK periods, where N is the number of

words requested. The MBox drops START and negates all other control lines after the last

ACKN period.

As the words from the MOS array become available, the MF20 gates the information back on

the XBUS D00-35, DATA PAR lines along with the control signal XBUS DATA VALID A,B.

The MBox uses DATA VALID to strobe the data lines into the appropriate memory buffer

register where they are subsequently checked for parity and distributed to their destination

(EBox, MBox, channel buffer, cache, and so on).

After all the words have been processed, the MF20 returns to its initial state (if a refresh request

is not pending) and is ready to accept a new command.

3-31

3.2.6.2 Write Dialog - When the MBox prepares to store information in the MF20, it initiates the

following XBus sequence.

1.

10.

It asserts the address lines, XBus ADR 14-35, to specify the location of the first word to be

written,

It asserts the XBUS WR RQ line to instruct the MF20 to initiate a write cycle.

It asserts the XBUS RQ 0-3 lines to specify which words within the referenced quadword group

are to be written.

It asserts XBUS ADR PAR to generate odd parity based on the state of all address and control

lines (ADR 14-35, WR RQ, RQ 0-3).

It asserts the XBUS D00-35, DATA PARITY lines to reflect the first word to be written.

It asserts XBUS START A/B to command the MF20 to execute the write request.

Upon receiving START, the MF20 responds by asserting XBUS ACKN and maintains it

asserted for N number of XBUS CLK INT periods, where N is equal to the number of request

lines asserted. It also gates the XBUS D00-35, DATA PAR lines to store the first word to be

written in the MF20’s port data buffer.

During subsequent XBUS INT CLK periods, the MBox gates the rest of the words to be written

onto the XBUS DATA lines where they are taken and stored by the MF20.

After receiving all the words (up to a maximum of four), the MF20 negates XBUS ACKN and
initiates a MOS write timing sequence to store the words in the MOS storage array.

After writing the MOS, the MF20 returns to its initial state and is ready to accept another
command.

3.2.6.3 Read-Pause-Write Dialog - When the MBox prepares to retrieve a single word from the MF20,
modify it in the EBox, and then store the result back in the MF20, it initiates the following XBus
sequence.

1.

2.

It asserts the XBUS ADR 14-35 lines to specify the location of the word to be modified.

It asserts both the XBus RD RQ and XBUS WR RQ lines to instruct the MF20 to execute both
a read and a write cycle.

It asserts one of the XBUS RQ 0-3 lines to specify which word in the quadword group is to be
modified.

It asserts or negates XBUS ADR PAR to generate odd parity for all the address and control

lines.

It asserts XBUS START A/B to command the MF20 to execute the read-modify-write
operation.

On receiving START, the selected MF20 responds by asserting XBUS ACKN A/B and
initiates a MOS storage array timing sequence to retrieve the word from MOS.

3-32

10.

11.

12.

13.

When the word is available, it is gated out of the MF20 back to the MBox on XBUS DATA
DO00-35, DATA PAR along with the control signal XBUS DATA VALID A/B.

The MBox uses DATA VALID to gate the data lines into the appropriate memory buffer

register (MBR) where it is sent to the EBox for manipulation.

The MF20 stops at this point and waits for the MBox to respond.

When the data is ready to be stored back in memory, it is loaded into the appropriate MBR and

gated out onto the XBUS D00-35, DATA PAR lines.

At this time the MBox asserts XBUS DATA VALID A/B to signal the MF20 to continue.

When the MF20 receives DATA VALID, it gates in the data and initiates a MOS write

sequence to store the word in the MOS storage array.

At this time, the cycle ends with the MF20 in its initial state ready to execute a new command.

3.2.6.4 Diagnostic Cycle Dialog - When the EBox decodes an XBus diagnostic function instruction

(BLKO PI, E), it initiates the following XBus sequence.

1. It retrieves the contents of the location specified by E and instructs the MBox to gate this 36-bit

word onto XBUS D00-35.

Then the MBox asserts the XBUS DIAG signal to initiate a diagnostic cycle.

On receiving the DIAG signal, the selected MF20 (specified by XBUS D00-04) stores the 36

bits of data in its port data buffer where the bits are used to start the control logic signals as

specified by the particular function to be performed (XBUS D31-35).

After executing the specified function, the MF20’s port data buffer is loaded with the pertinent

status/error information and gated out onto the XBUS D00-35 lines.

After the MBox ends four XBUS CLK INT periods after asserting XBUS DIAG, the MBox

strobes in the data and stores it at the address E+1.

At this point the diagnostic cycle ends and the MF20 returns to its initial state, ready to accept

a new command.

3.2.6.5 Diagnostic Function Descriptions — In the following paragraphs, each diagnostic function is

described in general, with MACRO 10 examples included to show how it could be used by the program-

mer. Figure 3-9 describes the general format of the diagnostic function instructions.

Tables 3-4 through 3-14 in the following paragraphs provide a detailed description of the bit encoding for

-each of the eleven functions. Each table is separated into two groups. The first group describes the bit

encoding for E, the control information sent to the MF20; and the second group describes the E + 1 bit

encoding, the status information returned from the MF20. Column 1 lists the bit position number, column

2 lists the logic print numbers where the function is implemented, and column 3 gives a short statement of

the purpose of the bit. Since the diagnostic programs detect most hardware faults using diagnostic

functions, the information in column 2 will be very valuable to the service engineer to key the software to

the physical hardware function.

3-33

00 04 05 30 31 35

CE)N?I:ROTL‘ER N B LA B 1 T 1 1 1 1 L 1§ Al ¥) | S | | 1 1 1] ¥ 1 v ¥ D|‘AG‘

E NUMBER CONTROL INFORMATION TO MF20 FON NO

L 1 1 1 1 1 1 i 1 1 1 1 1 1 i L I 1 A 1 1 | | | | 1 [41 [1 L

00 35

] 1]] ¥] R 1] 1)] v L)] T 1 T T v 0 L] 1 Aj 1 1 ¥ 1 1 T)] 1 T

E+1 STATUS INFORMATION FROM MF20

1 1 i 1 1 i 1 11 [[l 1 | T N i L | D R | A J 1 L 1 1] 1 [L 1 |

S DIAGE

WHERE: ® THE CONTENT OF LOCATION

E ISSET UP BY THE PROGRAM

TO CONTAIN CONTROL INFOR-

MATION TO BE SENT TO THE

MF20.

BITS 0005 = 01bbb WHERE bbb

IS THE

MF20 UNIT

NUMBER.

BITS 3135 = AN OCTAL NUM-

BER 00—12 THAT

SPECIFIED THE NOTES:

DIAGNOSTIC
FUNCTION TO 1. UNUSED BITS IN E GET LOADED

INTO THE MF20S PORT BUFFER,
BE EXECUTED. BUT HAVE NO EFFECT ON MF20

® LOCATION E + 1 RECEIVES OPERATION.

STATUS INFORMATION FROM 2. UNUSED BITS IN E + 1 READ BACK

THE MF20. AS 0S FROM THE MF20.

MR-1766

Figure 3-9 Diagnostic Function Format

Diagnostic Function 0 (Table 3-4)

This function permits starting an error-clear signal that clears all MF20 error flags and retrieving 36 bits

of .error/status information. The following example illustrates its use.

NOTE

All examples assume MF20 number 0.

HRLZI 0,210000 ;ACO = 210000,,0

SETZM 1 ACL =0

SBDIAG 0 ;execute the function 0

TLNE 1,770000 ;skip if all flags cleared

PUSHJ P,ERROR ;20 service error

continue

Table 3-4 Diagnostic Function 0

Bit Print(s) Description

[E] Control Information to MF20

05 ADT9 Generates ADT9 CLR ERR that is used to clear MF20 error flags.

[E+1] Status Information from MF20

00 ADT7,9 Asserted when one of the following RAM control errors occurs.

BLK RAM ERR - Parity error when accessing the address

response RAM.

3-34

Table 3-4 Diagnostic Function 0 (Cont)

Bit Print(s) Description

TIM RAM ERR - Parity error when accessing the timing RAM.

SUB RAM ERR - Parity error when accessing the spare bit RAM.

A diagnostic function 2 is used to retrieve the individual error flag.

01 ADT7,9 Asserted to indicate a RD PAR ERR that is a correctable error

SYNS5 detected during a read cycle — this flag may be inhibited by
setting the ICE bit in the spare bit RAM.

02 INCOMPLETE MEM CYCLE.

03-05 ADT17,9 A 3-bit field that indicates many types of data-related errors.

03 RD PAR ERR - Either a correctable read error or a double-bit
error (DBE).

04 WR PAR ERR - A data parity error was detected during a
write.

05 ADR ERR - Overall XBus address parity error — includes RQ

0-3 RD RQ, WR RQ.

06-07 CTL7 A 2-bit field hardwired to always read back as 11, to indicate 4-
way interleave mode.

08-11 CTLA4,7 ERR RQ 0-3 - A 4-bit field that indicates which words were being
requested when an error was detected.

12-13 CTLA4,7 A 2-bit field that indicates the type of memory request in progress
when an error was detected.

<12-13> = 01 Write cycle

10 Read cycle

11 Read-pause-write cycle

14-35 SYN7,9 These 22 bits indicate the XBus address being accessed when an
CTL4 error was detected.

ADT1,9 ~

3-35

Diagnostic Function 1 (Table 3-5)

Function 1 is used to enable looping back data for diagnostic testing of the MF20 data path. It also permits
controlling a pair of status flip-flops that log the current state of the MF20. Ten bits of status are returned
that specify controller type, loopback group enabled, and MF20 state. The following example illustrates
how a program might use a function 1.

HRLZI 0,200000

ADDI 0,1 ;ACO = 200000,,1

SETZM 1 ;ACL =0

SBDIAG 0 ;execute the function 1

MOVS 2,1 ;set up ac2 to test it

ANDI 2,500

CAIE 2,500 ;skip if it is an MF20

JRST NOMF20 ;jump if not an MF20

continue

Table 3-5 Diagnostic Function 1

Bit Print(s) Description

[E] Control Information to MF20

12-14 WRP4 Used to activate storage module loopback mode.

<12> = 1 enable loopback

<13-14> =nn =0, 1, 2 - The group number to loopback

25-28 ADT7,9 <28> = 1 Enables bits 26-28 to set conditions within the MF20.

<26~-27> = 00 MF20 has powered up.

01 - All RAMS except the address response RAM have been

loaded.

10 - Same as 01 but address response RAMs have been loaded to

configure the MF20.

11 - Same as 10 except THGA has been run and completed its

initialization tasks.

<25> - Used to permit software to place the MF20 off-line.

<25> = 0 Enable MF20

<25> =1 Disable MF20

[E+1] Status Information from MF20

08-11 WRP7 Hardwired to respond with a code of 053 to indicate the memory

type is an MF20.

12-14 WRP7,4 Indicates the state of the loopback control signals set in the first

half of the diagnostic cycle.

3-36

Diagnostic Function 2 (Table 3-6)

Function 2 permits reading the personality PROM and also provides special diagnostic control for

hardware fault analysis. The following example illustrates its use to access the PROM in MF20 number 0,

group 0, field 0, to test MOS chip size.

HRLZI 0,200030 ;ACO = 200030,,2

ADDI 0,2

SETZM ‘1 ACL =0

SBDIAG 0 ;execute the function 2

MOVS 2,1 ;mask chip size bits

ANDI 2,300

TRC 2,300 ;complement chip size bits

TRNN 2,300 ;4K chips

PUSHJ P, X4K ;yes

TRNN 2,200 ;16K chips?

PUSHJ P, X16K ;yes

TRNN 2,100 ;32K chips?

PUSHJ P,X32K ;yes

X64K: ;must be 64K

Table 3-6 Diagnostic Function 2

Bit Print(s) Description

[E] Control Information to MF20

09-12 CTL9 PROM select field used to select one of 12 possible PROM chips to

SM14 be read.

<9-10> Group select 0, 1, or 2

<11-12> Field select 00, 01, 10, or 11

13-14 CTL9 PROM word select — A 2-bit field used to select one of the first

SM14 four locations in the PROM chip selected by <9-12>.

23-27 CTLA4,7 When all Os, this field indicates that the contents of bits D07-14

during the second half of the diagnostic cycle will be PROM data.

When not all Os, the bits are used to select which MF20 control

signals will appear in DO7-14 during the second half of the diagnos-

tic cycle (diagnostic data).

[E+1] Status Information from MF20

05-06 CTL4,7 ERR WD 2,1 - This 2-bit field specifies which word in the
quadword group caused an error.

07-14 CTLA4,7 This 8-bit field displays either PROM data or diagnostic data

depending on the setting of D23-27 during the first half of the

diagnostic cycle.

20-27 ADT2,9 This 8-bit field displays the contents of the MOS ADR 0-7 register

during single-step diagnostic operations.

3-37

Table 3-6 Diagnostic Function 2 (Cont)

Bit Print(s) Description

28-30 ADT17,9 This 3-bit field displays the type of control RAM error flagged by

bit 00 in a diagnostic function 0.

28 = 1 Timing RAM error

29 = 1 Spare bit RAM error

30 = 1 Address response RAM error

Diagnostic Function 3 (Table 3-7)

Function 3 is used to load the required bit patterns into the fixed value RAMs. The following example

illustrates how a diagnostic might write and read back a RAM location for testing ls.

HRLZI 0,200374 :ACO = 200374,,3

ADDI 0,3

SBDIAG 0 ;execute the function 3

HRLZI 0,200000 ;ACO = 200000,,3

ADDI 0,3

SETZM 1 AC1=0

SBDIAG 0 ;read back loc. 000

TLC 1,360 ;complement RAM data

TLNE 1,360 ;skip if data all 1s

PUSHJ P,RAMERR ;80 service error

continue

Table 3-7 Diagnostic Function 3

Bit Print(s) Description

[E] Control Information to MF20

10-15 CTLA4,5 Used by the program to load or access the fixed value RAMs as

follows.

14 = 1 Enable loading ACKN RAM (bit 10)

15 = 1 Enable loading DATA VALID RAM (11-13)

10 PACKN EN bit

11 Set DATA VALID bit

12-13 P RD ADR 34-35 bits

20-27 CTL4,5,7 Used by the program to establish the correct RAM addresses when

loading or accessing the fixed value RAMs.

[E+1] Status Information from MF20

10-13 CTLA4,5,7 This 4-bit field displays the contents of the fixed value RAM

address specified by D20-27 during the first half of the diagnostic

cycle.

10 CTL4 PACK EN 1

11 CTL5 SET DATA VALID RAM H

12-13 CTL5 P RD ADR 34-35 H

3-38

Diagnostic Function 4 (Table 3-8) |
Function 4 permits testing the MF20 control logic using single-step operations. It also allows the program
to set up and monitor the refresh control logic. This is the function used by the diagnostic program to start
port loopback mode. The following example would be used to set up the refresh interval.

HRLI 0,200000 ;ACO = 200000,,021644
HRRI 0,021644

SBDIAG 0 ;execute function 4

;set interval = 29

Table 3-8 Diagnostic Function 4

Bit Print(s) Description

[E] Control Information to MF20

05 WRPO Enables port data loopback mode of operation in the selected
MF20.

09-12 CTL2,3 Provides program control of MF20 clocking during single-step diag-
ADTS nostic operations.

09-CTL2 SIM A PHS COM

10-CTL2 SIM B PHS COM

11-CTL3 P DATA VALID IN

12-ADT5 REFRESH NOW

14-15 ADT6 Used to enable single-step mode and gated clocks.

CTL2

14 ADT6 CLK GO

15 CTL2 SINGLE STEP

20 ADTS Enables activating the refresh logic timing chain by asserting the

signal ADT5 REFRESH NOW L.

21 ADT3 Enables refresh logic.

22 ADT3 Enables loading refresh interval latches.

24-30 ADT3 This 7-bit field permits the program to establish the refresh inter-
val. It is loaded into the refresh interval latches if bit 22 = 1.

[E+1] Status Information from MF20

09-10 CTL7 Used to display the states of the simulated A and B phase clocks set

up during the first half of the diagnostic cycle.

15 ADT9 Used to display the state of the single-step mode control signal.

1 = On, 0 = Off

3-39

Table 3-8 Diagnostic Function 4 (Cont)

Bit Print(s) Description

21 ADT9 Used to display the state of the refresh control logic.

1 = On, 0 = Off

23-30 ADT9 il‘in; 8-bit field displays the current contents of the refresh interval

atches.

Diagnostic Function 5 (Table 3-9)

A function 5 would be used in conjunction with a function 4 to allow the diagnostic program to single-step

the MF20 control logic. After stepping to the desired test point, the function 5 returns the state of the row

address strobe (RAS) signals. The following example tests to verify that all RAS signals are inactive.

HRLZI 0,200000 ;ACO = 200000,,5

ADDI 0,5

SETZM 1 ACL =0

SBDIAG 0 ;execute function 5

TLNE 1,7400 ;skip if all RAS = 0

PUSHJ P,RASERR ;jump if any are on

continue

Table 3-9 Diagnostic Function 5

Bit Print(s) Description

[E] Control Information to MF20

06-13 CTLI An 8-bit field used during diagnostic single-step operations to acti-

vate the MF20 control and timing logic.

06 CTO1 DIAG START A

07 CTO01 DIAG START B

08-11 CTO01 P RQ 0-3

12 CTO01 P RD RQ

13 CT01 P WR RO

15 CTL7 Enables generating CTL7 DIAG CYC RQ HLD to hold control

information during single-step diagnostic mode.

20-27 SYN7 This 8-bit field is used to provide the address to the address

response RAM during single-step diagnostic control operation.

29-30 CTLI This 2-bit field selects which word in a quadword group is being

referenced during the current step of a diagnostic single-step

operation.

[E+1] Status Information from MF20

24-27 ADT6,9 This 4-bit field is used to display the state of the row address strobe
(RAS) signals ADT6 MOS RAS 0-3.

3-40

Diagnostic Function 6 (Table 3-10)
Like functions 4 and 5, this function is used strictly for hardware diagnosis. It provides seven diagnostic
functions that permit many diagnostic operations to be executed under program control. The following
example illustrates how the diagnostic might verify the ECC complement register.

HRLI 0,207774 ;ACO = 203774,,2006
HRRI 0,2006

SETZM 1 ;ACL =0
SBDIAG 0 ;execute function 6
TLC 1,3770 ;complement ECC data
TLNE 1,377 ;skip if ECC = 1Is
PUSHJ P,ECCERR ;jump if not all 1s
continue

Table 3-10 Diagnostic Function 6

Bit Print(s) Description

[E] Control Information to MF20

07-14 WRP7 An 8-bit field used to set up the diagnostic data used to control

SYN2 SYN2 M TO CHK ECC 32, 16, 8, 4, 2, 1, PAR to be used as

specified by the diagnostic subfunction specified in D25-27.

25-217 WRP7 Specifies one of eight subfunctions performed by a diagnostic func-
tion 6.

25-27 = 0 Read the ECC register on WRP7.

25-27 = 1 Read the syndrome buffer register on the SYN board.

25-27 = 2 Select diagnostic bits 07-13 in place of MOS bits 3642,
force Os on 00-35 run a correction pass, and return 00-35.

25-27 = 3 XNU.

25-27 = 4 Write the ECC complement register. If D15 = 1, then
read it back.

25-27 = 5 Write the ECC complement register, then enable it to be

sent to memory in place of D36-42 on the next write cycle.

25-27 = 6 Read the output of the D36-42 mixer.

25-27 = 7 Enable latching of D36-42 mixer after next write.

[E+1] Status Information from MF20

07-14 SYNI9 This 8-bit field displays diagnostic data as a function of the sub-
function specified by D25-27 in the first half of the diagnostic
cycle.

24-27 ADTS5,9 A 4-bit field that displays the state of the column address strobe
(CAS) signals ADT5 MOS CAS 0-3.

3-41

Diagnostic Function 7 (Table 3-11)

This function permits controlling the bit substitution RAM. It also returns the state of the MOS write
enable signals during single-step diagnostic operations. The following example loads location 0213 in the
bit substitution RAM to specify bit position 15g and inhibit reporting errors that can be corrected.

HRLI 0,200674 ;ACO = 200674,,2407

HRRI 0,002407

SBDIAG 0 ;execute function 7
continue

Table 3-11 Diagnostic Function 7

Bit Print(s) Description

[E] Control Information to MF20

07-14 WRPS This 8-bit field specifies the information to be written into the spare

bit RAM.

07-12 Bit position number.

13 Flag to inhibit reporting correctable errors (ICE bit).

14 Parity bit (odd).

15 When set, enables write to the spare bit RAM.

21-27 An 8-bit field that holds the address of the spare bit RAM location

to be accessed.

[E+1] Status Information from MF20

07-14 WRP8 An 8-bit field that displays the contents of the addressed spare bit

RAM location.

24-27 ADTS5,9 A 4-bit field that displays the current state of the write enable

signals to the MOS chips ADT5 MOS WE 0-3.

Diagnostic Function 10 (Table 3-12)

Function 10 is primarily concerned with setting up and monitoring the power supply margin control logic.

It is also used to clear the dc bad flip-flop on initial power-up, which lights a LED on the MF20 backplane.

The following example tests the state of the power supply flag and clears it if it is set.

HRLZI 0,200000 ;ACO0 = 200000,,10

ADDI 0,10

SETZM 1 ACl1 =0

SBDIAG 0 ;read flag

TLNE 1,400 ;skip if off

PUSHJ P,OK

IORI 0,400 ;ACO = 200000,,410

SBDIAG 0 ;clear it - light LED

3-42

Table 3-12 Diagnostic Function 10

Bit Print(s) Description

[E] Control Information to MF20

07-10 SYNA A 4-bit field that specifies the direction of voltage margining.

1 = Margin high, 0 = Margin low

07 + 12 V MARG

08 + 5 VMARG

09 -2 V MARG

10 =5.2 V MARG

11-14 SYNA A 4-bit field that enables voltage margining.

11 +12 MARG EN

12 +5 MARG EN

13 —2 MARG EN

14 —5.2 MARG EN

15 SYNA Enables loading D07-14.

26 SYNO9 Inhibits ECC correction when set.

27 SYNA Enables clearing the DC CHK PWR BAD flip-flop, which also

lights a LED on the backplane.

[E+1] Status Information from MF20

07-10 SYNA Displays the state of the margin control direction flip-flops set up

during the first half.

11-14 SYNA Displays the state of the margin control enable flip-flops set up

during the first half.

26 SYNS Displays the state of the ECC correction disable flip-flop.

SYNA Displays the state of the DC CHK PWR BAD flip-flop.

3-43

Diagnostic Function 11 (Table 3-13)

This function is used to set up and monitor the timing RAM. The following example illustrates how the
diagnostic might use it to test the RAM.

HRLI 0,200000 ;ACO = 200000,,777411
HRRI 0,777411

SBDIAG 0 ;execute function 11
HRRI 0,600011 ;ACO = 200000,,600011
SETZM 1 ;ACL =0
SBDIAG 0 ;read back loc. 003
TLC 1,077400 ;complement RAM data
TLNE 1,77400 ;skip if data was 1s

PUSHJ P,RAMERR ;jump if not
continue

Table 3-13 Diagnostic Function 11

Bit Print(s) Description

[E] Control Information to MF20

13-19 ADT4 A 7-bit field used to specify a timing RAM address to be accessed.

20 ADT4 Enables writing D21-27 into the timing RAM location addressed by
D13-19.

21-27 ADT4 A 7-bit field that contains the data to be written into the timing
RAM.

21 RAS

22 CAS

23 RAM PAR

24 WE

25 ADR 2nd HALF

26 DATA RDY

27 RAM BUSY CLR

The bit patterns loaded into the timing RAM control the MOS
read/write cycle timing when accessing the MF20.

[E+1] Status Information from MF20

21-27 ADT4 A 7-bit field that displays the contents of the addressed timing
RAM location.

29 ADT2,9 This bit is activated by a backplane jumper to specify relative MOS
chip size.

30 ADTS5,9 This bit displays the state of the signal DESELECT CYC EN.

3-44

Diagnostic Function 12 (Table 3-14)

This function is used to set up and monitor the address response RAM. The following example illustrates

how the program would set the deselect bit in RAM location 5.

HRLI 0,201014 :ACO = 201014,,2412

HRRI 0,2412

SBDIAG 0 ;execute function 12

Table 3-14 Diagnostic Function 12

Bit Print(s) Description

{E] Control Information to MF20

08-14 SYN7 An 8-bit field that contains the data to be loaded into the address

response RAM.

8 BLK ADR PAR set to establish odd parity on D8-14.

9 TYPE SELECT used to specify one of two possible MOS chip

sizes (16 K words or 4 K words, 64 K words, or 16 K words and so

on).

10-11 Group number 0-2

12-13 Block number 0-3

14 BOX SELECT set to inhibit response to specific XBus
addresses.

20-27 SYN7 An 8-bit field that contains the address of the address response

RAM location being accessed.

[E+1] Status Information from MF20

08-14 SYN7 An 8-bit field that displays the contents of the location being

accessed in the address response RAM.

3.2.7 The Storage Bus |

The storage bus (SBus) connects the MA20 internal memory to the MBox. The memory system consists of

one to four controllers interfaced to the SBus. Each controller connects to and controls two or four storage

modules. The SBus consists of a 36-bit wide data path and its associated control and diagnostic lines. Table

3-15 describes each SBus line. Figure 3-10 illustrates the SBus configuration and Figure 3-11 shows a

functional operation flow.

3-45

Table 3-15 SBus Line Descriptions

Signal Line Description

SBus data

(SBUS D00-35)

SBus data parity

(SBUS DATA PAR)

SBus address

(SBUS ADR 14-35)

SBus address parity

(SBUS ADR PAR)

SBus clock

(SBUS CLK EXT)

SBus read request

(SBUS RD RQ)

SBus write request

(SBUS WR RQ)

SBus start

(SBUS START A)

Transfers data words to the MBox during a read cycle and the

read portion of a read/modify/write cycle. Also, the lines transfer

data words to the MA20 during a write cycle and the write

portion of a read/modify/write cycle.

Transfers odd parity as computed on the associated data words

during read/write cycles. The MA20 does not compute data pari-

ty, only stores it with the associated word.

Designates the specific address (physical location) to read/write in

the selected storage module. Bits 14-33 address a quadword; bits

34-35 address the first word to be accessed within the quadword.

Transfers odd parity with the read/write cycle address. The

MA20 checks for odd parity. Should an address parity error be

detected, the read/write currents in the storage module are

inhibited.

This 125 ns square wave drives the internal MA20 clock genera-

tor, which in turn provides phased (deskewed) 125 ns and 62 ns

clock signals. The phase A clocks are generated on the fall time of

the external clock. Equivalent phase B clocks are generated in the

control logic on the subsequent rise of the external clock.

Asserted when the MBox is requesting a memory read cycle. The

signal is applied to the MA20 request and address latches, which

initiate a read request to the addressed storage module. With both

SBUS RD RQ and SBUS WR RQ asserted, the MBox is request-

ing a read/modify/write cycle from the addressed storage

module.

Asserted when the MBox is requesting a memory write cycle. The

signal is applied to the MA20 request and address latches, which

initiate a write request to the addressed storage module. With

both SBUS RD RQ and SBUS WR RQ asserted, the MBox is

requesting a read/modify/write cycle from the addressed storage

module.

Asserted by the MBox on its phase A clock. START A is applied

to the MA20 bus and cycle control logic, which initiates a request

for a memory cycle from the addressed storage module. Memory

cycle type is determined by the SBUS RD RQ/WR RQ line

asserted.

3-46

Table 3-15 SBus Line Descriptions (Cont)

Signal Line Description

SBus start B

(SBUS START B)

SBus word requests

(SBUS RQ 0-3)

SBus acknowledge A

(SBUS ACKN A)

SBus acknowledge B

(SBUS ACKN B)

SBus data valid A

(SBUS DATA VALID A)

SBus data valid B

(SBUS DATA VALID B)

SBus error

(SBUS ERROR)

SBus address error

(SBUS ADR ERR)

SBus diagnostic

(SBUS DIAG)

Identical to SBUS START A except it is asserted by the MBox on
its phase B clock.

The four request lines (0-3), in conjunction with the operational
mode andstarting address (SBUS ADR 34-35), determine MA20
bus selection and data word accessing.

The address acknowledge as returned from the storage module,
indicating that the storage module has accepted the memory cycle
requested. ACKN A is returned to the MBox on the phase A
clock.

Identical to SBUS ACKN A, except that it is returned to the
MBox coincident with the phase B clock.

Transfers an equivalent memory-generated read restart signal

from the MA20 in sync with the phase A clock. When true, it

indicates that data and parity are valid and have been transferred

to the MBox during a read cycle or read portion of a

read/modify/write cycle. Only during the write portion of a

read/modify/write cycle is DATA VALID sent to the MA20. In

this case, it represents an equivalent write restart signal that initi-

ates the write portion of the cycle in the MA20.

DATA VALID B is functionally identical to SBUS DATA VAL-
ID A, except that it is in sync with the phase B clock.

Indicates detection of an incomplete memory request.

Asserted on detection of an address parity error.

DIAG is used only in diagnostic mode. When true, DIAG initiates
a diagnostic operation in the MA20. The particular diagnostic
function executed is determined by the diagnostic information
placed on the SBus.

3-47

SBUS

DOO -35 (DATA) >

DATA PAR (DATA PARITY)

< ADR 14-35 (ADDRESS)

ADR PAR (ADDRESS PARITY)

CLK EXT (EXTERNAL CLOCK)

RD RQ (READ REQUEST)

WR RQ (WRITE REQUEST)

MA20 START A (START A) MBOX

STARTB (START B8)

RQ O0-3 (WORD REQUESTS)

ACKN A (ACKNOWLEDGE A)

ACKN B (ACKNOWLEDGE B)

DATA VALID A (DATA VALID A)

DATA VALID B (DATA VALID B)

ERROR (ERROR)

DIAG (DIAGNOSTIC)

10- 2124

Figure 3-10 SBus Configuration

Core requests to read or write main memory are issued by the MBox core cycle control in response to a

start signal and appropriate request qualifiers from the cache cycle control. All control signals, address,

and data are transferred between the MBox and the memory system through the SBus. The cache cycle

control can initiate a core cycle to read up to four words at a time. Once the core cycle control is set up by

the cache cycle control, the core cycle control will execute the requested operation to completion,

independently.

3-48

D39w138QHOM1SHId-—_—
ASNE3402Y10

QITVAY1VQ
$NBS

LY3ISSYHvdB1S31
Yy—»UGN

QYAvivgWXN
13§ ON|ER

ano
i

(2ILON)

T950ON

OYUMVBNoN—>3800

ON

SoYILmav3y—T—¥

ONS200y

NMOVWXN
ONINOD

13§

(1310N)

*$04jU0D[IUUDYDSOIO

Y1AQUMD}UIIQIA0YSPIOM|ID(1jUNJISSUIDWADYUMBWANYP
“3I03WYUlJWODIADYSPIOM|[D1SNDISINDA[OUSPIOMIR0BuiddinsHO|RPOW(DJUFLIIONL51LJAYDRIIY)X0GTWiCYUDYPAIIGWNU(SMOT=U2@sI1ndQYAYLYQ15D

131042QSN0SADMIGI5i0dNIDJYISOiYLPAUNOD34D
‘S340N

ASN8W00138

g1yvisSNBs13S

v
iy¥vi

S

SNgsL3SONINOD

ONINODSE-tYN—»GE-biMOVSN8SNI€—-00H—»8E-0DYNIE-0D8—»¥C-0DY
J.

[
|

—DY¥mSNESfiQY¥MSNESL3SoY(MSNESL3SDYQ¥sngsL3S138
3llymLU~-3SNVYd—Qvay3yLhi¥JAD380D1uvisS

3-49

3.2.8 The EBus

The EBus connects the EBox to the DECsystem-10/DECSYSTEM-20, KL-based front-end subsystem

controller (DTE20), and the mass storage controllers (RH20). The EBus transfers both control informa-

tion and data over the 36-bit wide data path and associated control lines (Figure 3-12). The EBus is

controlled by the EBox during input/output instruction execution or by the priority interrupt system

during interrupt handling service.

Each EBus controller is assigned a unique device select code used to address a particular controller. This

device code is hardwired on the backplane. In addition, each controller is assigned a physical number that

allows the EBox to identify an interrupting controller.

EBOX

EBUS

- DOO -35 (DATA) v
—

DATA PARITY

CS00-06 (CONTROLLER SELECT) %
FOO-02 (FUNCTION)

DEM (DEMAND) ?
PIO-7 (PRIORITY INTERRUPT)

ACK (ACKNOWLEDGE)

XFER (TRANSFER)

RESET (RESE)

DSO00-06 (DIAG SELECT)

DIAG STROBE (DIAG STROBE)

~

DFUNC (DIAG FUNCTION)

Figure 3-12 EBus Configuration

3-50

RH20

DTE20

10-2117

The DTE20 is the communication link between the main processor and the PDP-11 front-end processor. It

is designed to facilitate implementation of the following console functions.

1. Deposit into memory

2. Examine memory

3. Direct memory access (DMA) type byte transfer operations between KLL10 memory and PDP-

11 memory or any PDP-11 NPR-type device

4. Diagnostic operations for getting processor status and diagnostic information and for controlling

the processor from the console

The RH20 provides a programmable data link between the MBox channel controller and the secondary

storage subsystem (mass storage drives). Its functions include:

1. Execute nondata transfer commands for setting up a mass storage drive

2. Execute data transfer commands to transfer data over the CBus in cooperation with the channel

control logic of the MBox

The back panel in which the controllers are housed is hardwired in such a way that each controller is

associated with its own physical number causing the controllers to be module-slot dependent. The RH20s

are assigned physical numbers 0 and 1; the DTE20 is assigned physical number 10. This design facilitates

replacement without having to rewire the physical number on the controller.

The following paragraphs summarize how output, input, and interrupt operations are performed over the

EBus. Table 3-16 shows the EBus line descriptions.

Table 3-16 EBus Line Descriptions

Signal Line Description

Data Transfers

Data lines (D00-34) Bidirectional lines used to transfer data control and

diagnostic information between the EBox and the con-

trollers. Controller select (CS00-06) selects the needed

controller for a data transfer. Each controller has a

unique select code hardwired on the backplane.

Function (F00-02) Specifies the type of data or control transfer that is to

take place. The command coding is listed below.

Data Transfer Command Coding

FOO FO01 F02 Definition

0 Control out (CONO)

| Control in (CONI)

0

1

Data out (DATAOQO)

Data in (DATAI)S
O
O
O

i
t

i

O

O

3-51

Table 3-16 EBus Line Descriptions (Cont)

Signal Line Description

Demand (DEM)

Acknowledge (ACK)

Transfer (XFER)

Priority Transfers

00-06

Controller select (CS04-06)

Controller select (CS00-03)

Function (F00-02)

Function (F00-02)

Acknowledge (ACK)

Transfer (XFER)

Causes the addressed controller to monitor and decode

the CS and F lines. After implementing the specified

function, TRANSFER and ACKNOWLEDGE are

asserted as a response along with data placed on or

removed from the EBus.

Required to inform the DIB20 not to respond to the

current operation. If the DIB does not see ACK some

time after DEM is asserted, it will try to execute the

transfer.

Asserted by the selected controller when it is ready to

execute the required function as specified in F00-02.

During normal input/output operation these lines

reflect the device code of a particular controller.

During interrupt arbitration, these lines represent the

octal encoding of the interrupting channel with a range

of 0-7.

Specifies the controller the EBox will honor during the

interrupt sequence. The code corresponds to the

hardwired physical device number of the interrupting

controller.

Supplies the two functions specified below during an

interrupt sequence. The first is coded 4g and directs

those controllers addressed by the channel number in

CS04-06 to assert their physical controller number on

the data lines on sensing DEM. The second is coded 5g

and specifies that an interrupting controller has been

selected as determined by the physical controller num-

ber coded in CS00-03.

Priority Transfer Command Coding

FOO F01 F02 Definition

1 0 0 Priority interrupt (PI) served

1 0 1 Priority interrupt (PI) address in

Identical to data transfer function.

Asserted to indicate to the EBox that the interrupting

controller has placed a special function on the data lines.

3-52

3.2.8.1 CONO/DATAO Operation — This output operation transfers data (DATAO) or control

(CONO) words from the EBox to the controllers. The EBox/EBus control places the appropriate device

select code on CS00-06, the data or control word on D00-35, and encodes F00-02 as 0 or 2g

(CONO/DATADO, respectively). The EBus control then allows a line settling and decode delay time and

asserts DEM. The controllers compare the CS lines with their hardwired device code. If a true comparison

results, the controller asserts ACK and simultaneously decodes the F lines. It then asserts XFER after

strobing the data lines. ‘

After receiving XFER, the EBus control resets DEM. The trailing edge of DEM causes resetting of ACK

a_nd XFER in the controller, terminating the output transfer. The EBus control must wait for a specified

time prior to changing the select, function, and data lines. Figure 3-13 provides a functional timing

diagram for the CONO/DATAO operation.

CONTROLLER

SELECT (CS00-06)

DATA (000-35) _|

[
T

FUNCTION

(F0O- 02)

DEMAND /19

ACKNOWLED GE / <q

TRANSFER N

10-1942

Figure 3-13 CONO/DATAO Operation Sequence

3.2.8.2 CONI/DATAI Operation - This input operation transfers control (CONI) and data (DATAI)
words from a controller to the EBox. The EBus control places the appropriate device select code on
CS00-06, allows a line settling and decode delay time, and asserts DEM. The controller compares the CS
lines with the hardwired device code. If a true comparison results, the controller asserts ACK and
simultaneously decodes the F lines. It then asserts XFER at the same time it places the input data on
DO00-35.

After detecting XFER, the EBus control allows a data line skew time, strobes the data lines, and resets
DEM. The trailing edge of DEM causes resetting of ACK and XFER in the controller, terminating the
output transfer. As in the output operation, the EBox must wait for a specified time prior to changing the
select and function lines. Figure 3-14 provides a functional timing diagram of the CONI/DATAI
operation.

3.2.8.3 Interrupt Operation — A controller requests an interrupt whenever it needs service from the EBox

on one of the eight priority interrupt lines (PI0-7). When the conditions for initiating an interrupt request
are met, the controller asserts its assigned interrupt line (PI0-7). The EBox PI request control detects the
interrupt and determines the interrupt priority. When ready, the PA logic asserts the interrupt channel
number or CS04-06 (e.g., CS04-06 = 110 for priority channel 6). It then encodes 4g (PI served) on
F00-02 and after a time delay, asserts DEM.

3-53

CONTROLLER

SELECT (CS00-06) l

DATA (DOO -35) I l

FUNCTION

{FOO -02) I

DEMAND /4]\

/
ACKNOWLEDGE \.I

TRANSFER

10-1943

Figure 3-14 CONI/DATAI Operation Sequence

PRIORITY

INTERRUPT (P10X) I

CONTROLLER

SELECT (CS00-03) | PHYSICAL No.|

CONTROLLER

SELECT (CS04-06) l CHANNEL NO.)

DATA (D00-35) I I I I I

FUNCTION (F00-02) | PISERVED | PI ADR IN]

DEMAND __J_—]

ACKNOWLEDGE

TRANSFER

10-1944

Figure 3-15 Priority Interrupt Operation Sequence

3-54

Each controller decodes the F lines and compares the CS lines with the channel on which it is interrupting.

If a true comparison results (several controllers may have a true comparison), the controller will assert a

data line corresponding to its physical controller number. For example, controller 0 and controller 15

(physical 0 and 15) will assert bits 1 and 15 on the data lines. No ACK or XFER is asserted by any

controller. The PA logic waits at least 400 ns, strobes the data lines, and resets DEM. The data stays valid

until DEM resets. The EBox will not change the CS or F lines for 150 ns after resetting DEM.

After determining which physical controller’s interrupt request to serve, the PA logic places the interrupt

channel number on CS00-03 (for example, CS00-03 = 1010 for physical controller 10). It then encodes

5g (PI address in) on FO0-02, waits 200 ns, and asserts DEM. Each controller decodes the F lines and

compares the interrupt channel number and physical number with its own. If a true comparison results

(only one controller will have a true comparison), the controller asserts ACK.

If the controller is a DTE20, it places the interrupt function index (if any) and interrupt address on the

data lines and asserts XFER. The EBox strobes the data lines and resets DEM. The resetting of DEM

causes resetting of ACK and XFER in the controller. Figure 3-15 provides a functional timing diagram of

the interrupt operation.

3.2.8.4 Diagnostic Bus - All KL10 diagnostic functions are performed over the diagnostic bus portion of

the EBus. The diagnostic lines are described in Table 3-17.

Table 3-17 Diagnostic Line Descriptions

Signal Line Description

Diagnostic select (DS00-06) Transfers encoded diagnostic functions to the KL10.

These lines can be read by the PDP-11 at any time,

even while the rest of the EBus is active for other

devices.

Diagnostic strobe (DIAG STROBE) Asserted to indicate that the diagnostic select lines are
(Run flag, EBOX halted, CLOCK stable and that the indicated function should
ERR stop) be performed.

Diagnostic function (DFUNC) When true, causes the KLL10 to disable the basic CPU

status from the DS lines, switch the translation (only for

DS lines) to convert TTL to ECL, and put the EBus

translator under control of DS00-01.

3.2.9 Channel Bus Description

The channel bus (CBus) is a synchronous bus that connects the integral data channel logic of the MBox to

a maximum of eight RH20 mass storage controllers. The CBus is composed of a 36-bit wide data path and

its associated control lines and transfers high-speed data and control information between the channel logic

and RH20 controllers. Each CBus line is described in Table 3-18. Figure 3-16 illustrates the CBus

configuration.

3-55

Table 3-18 CBus Line Descriptions

Signal Line Description

Data (D00-35)

Par left/par right

Select (SEL 0-7)

Reset (RESET)

Start (START)

Controller to memory (CTOM)

Ready (READY)

Transfers high-speed data. The lines are valid only dur-

ing a data cycle (see Paragraph 3.2.9.2). The MBox will

place zeros on the data lines for an RH20 (during its

data cycle) whenever there is no data transfer request
from that RH20.

Transfers the computed parity for the left and right half

words of the data lines.

Continuously selects an RH20 each 138 ns. SELECT

for an RH20 defines the beginning of its four data

transfer cycles (see Paragraph 3.2.9.2).

Asserted by an RH20 during its data cycle, causing the

MBox to:

® (lear the data buffers associated with the selected

RH20.

® Reset the command list pointer associated with the

selected RH20 to the initial address.

e Negate all status and data lines associated with the

selected RH20 after a and b are complete.

Asserted by an RH20 to start a transfer. START is

asserted once during its data cycle and only when
READY is negated.

Asserted by an RH20 for one data cycle to indicate the

transfer direction to the MBox. For a controller-to-
memory transfer (CTOM), CTOM is asserted; for a
memory-to-controller (not CTOM), CTOM is negated.

Asserted by the MBox (during the data cycle) after it

detects START from the RH20 and after the MBox is
ready for a data transfer. The MBox is required to have

at least two data words from memory in its buffer
before asserting READY. READY will be negated only
after sensing DONE and after the MBox is prepared to

start another transfer.

3-56

Table 3-18 CBus Line Descriptions (Cont)

Signal Line Description

Request (REQUEST)

Done (DONE)

Store (STORE)

| Asserted by an RH20 during its request cycle when:

® One of its data buffers is full, for a CTOM transfer.

o One of its data buffers is empty, for a not CTOM

transfer.

An RH20 will not assert REQUEST if:

¢ READY is not asserted by the MBox.

e ERROR is asserted by the MBox during the cur-

rent transfer.

e LAST WORD is asserted by the MBox during the

current transfer.

e DONE is asserted by the RH20 during the current

transfer.

For an input data transfer, the RH20 places data

(throughout its data cycle) on the data lines, and the

MBox will strobe the lines at the trailing edge of the

same data cycle. For an output transfer, the above oper-

ation is reversed.

Asserted by an RH20 during its data cycle to terminate

a data transfer. No further data requests will be made

after DONE is asserted.

The MBox, after detecting DONE, will get ready for a

new transfer (empty the input data buffers, and so on).

ERROR can be used to inform the RH20 that an error

has been detected in the current transfer as long as

READY is not negated.

Asserted by an RH20 together with DONE when:

e The current transfer is terminated due to errors

detected in the RH20.

® The current transfer command in the RH20 speci-

fies that STORE be sent to the MBox at the con-

clusion of the transfer.

3-57

Table 3-18 CBus Line Descriptions (Cont)

Signal Line Description

Last word (LAST WORD)

Error (ERROR)

Asserted by the MBox during the data cycle (for not

CTOM transfer only) at the same time the last data
word is sent to a controller. No further data requests
will be made by the RH20 after detecting LAST

WORD.

Asserted by the MBox (during the data cycle) to inform

the RH20 that the current data transfer must terminate

due to an error in the MBox. On sensing ERROR, the
RH20 terminates the transfer by not issuing any further

requests. The RH20 also asserts DONE during a subse-

quent data cycle. ERROR is negated before the MBox
negates READY. If ERROR is detected after READY

is negated, it may be interpreted by an RH20 as an

error associated with the next transfer.

MBOX

CBUS

D00 -35 (DATA)<
PAR LEFT (LEFT PARITY)

%
PAR RIGHT (RIGHT PARITY)

SELO-7 (SELECT)

RESET (RESET)

START (START)

CTOM (CONTROLLER TO MEM)

READY (READY)

REQUEST (REQUEST)

LAST WORD (LAST WORD)

ERROR (ERROR)

DONE (DONE)

STORE (STORE)

Figure 3-16 CBus Configuration

3-58

RHZ20

10-21214

3.2.9.1 Controller Selection — The RH20 selection order is on a set priority basis using a time division

multiplexing technique. Selection is of the following order: 0, 1, 2, 3, 4, 5; 0, 1, 2, 3, 6, 7. Each channel is

assigned a specific time slot within a fixed repetition rate. A channel is selected during the same time slot

in each of the following successive repetition cycles.

Time slot and repetition rate are determined by the 7.25 MHz EBox clock, which is distributed to the

RH20 through the EBus, and to the MBox through the E/M interface. The controller select line sequence

is stepped with the leading edge of the clock. Since only six out of a maximum of eight channels are

selected during any one repetition cycle, the EBox clock provides a 138 us time slot for each channel, with

a repetition rate of 828 us (that is, 138 us time X 6 successively-selected channels).

3.2.9.2 Transfer Cycle Definitions — In addition to showing basic channel selection timing, Figure 3-17

shows timing for the four cycles (select, request, wait, and data) used by the MBox and a controller during

a data transfer operation.

1. Select cycle — The select line for a particular controller is asserted through this cycle.

2. Request cycle — The selected controller will assert its request line (if data request is needed)

during this cycle.

3. Wait cycle - This cycle is used by the MBox to prepare data and status for transmission.

Neither data nor status is asserted during this cycle.

4. Data cycle — Data is placed on the data lines either by the MBox or the controller during this

cycle. The receiver will strobe the data lines on the trailing edge of the data cycle. All control

lines, except the request line, are allowed to be asserted only during this cycle.

3.2.10 DTE20

The DTE20 ten-eleven data interface serves as the interface between the KL.10 main processor and the

PDP-11 front-end processor. To the main processor, the DTE20 appears to be a standard EBus-compatible

device controller; and to the front-end processor, the DTE20 appears to be a standard Unibus peripheral

device. Therefore, either processor can access the DTE20 for transferring status, control, and data using

the normal I/O instructions of the respective machines.

The DTE20 consists of bus control and interrupt logic for interfacing with both the EBus and the Unibus;

a 16 X 16 RAM for storing status, control, and data information required in executing a transfer; and

diagnostic control logic. The bus control logic responds to the processor-initiated dialog to load or read

internal DTE registers. The processors initiate their respective bus sequences when they execute 1/0

instructions for the DTE. The interrupt logic is included in the DTE to allow the processors to interrupt

each other in passing status information and in executing data transfers. The diagnostic control logic in the

DTE operates in conjunction with the diagnostic control logic in the EBox to gain direct access to various

registers and status and control bits in the EBox and the MBox. The EBus dialog is not initiated in

executing diagnostic functions, but the EBus data lines may be used in transferring the data between the

DTE and the EBox and MBox.

The DTE20 is capable of executing the following operations.

1. Ring -10 and -11 doorbell

2. Deposit

3. Examine

4. Byte transfer

5. Diagnostic

6. Reload 11

3-59

CLOCK I I I l I | I I I l I I I | I | I I l l I | I I I | I l l | I | I I l I I l l

CYOLE 6]]SEL O ‘-r___1
SEL

CYCLE f [L [[1
SEL

SEL

CYCLE 2 [] [1 1
SEL 2

SEL

CYCLE 3] | []
SEL3

SEL

CYCLE 4 I | I |
SEL 4

SEL

CYCLE S I I I |
SEL S

SEL

CYCLE 6 I I
SEL 6

SEL

CYCLE 7 I I
SEL7

MBC O

REQUEST [[] [
CYCLE

meC O

WAIT [1 [1 [
CYCLE

mMBC O

DATA [1 [L []
CYCLE

MBC {

REQUEST [1 [[]
CYCLE

mMBC1

WAIT [] [[L
CYCLE

MBC1

CYCLE

t0-2122

Figure 3-17 Basic RH20 Selection Timing

The doorbell function permits the processors connected to the DTE to interrupt each other on the

assignable interrupt channels to report a change of status as in the case of reporting a power failure. This

facility is also used to report that the byte transfer operation is done. The assignable channels are PI1-7 on

the -10 side and BR4-7 on the -11 side.

The examine and deposit functions are included in the DTE20 so that the front-end processor can fetch or

change any location in the physical memory (MF20) while the EBox is running or executing a halt

instruction. After being initiated by the PDP-11 front-end processor, the examine and deposit functions

are handled as a special PI request to the EBox. The PI request is referred to as PI0. This request will be

honored and executed even when the PI system is turned off. To execute these functions, the front-end

processor must assemble the address and assemble or disassemble the data in the DTE because of the

difference in the length of the address and data words between the two machines.

3-60

The byte transfer function is included in the DTE20 so that the front-end and the main processors can

initiate high-speed, DMA-type data transfers between each other’s memories or between KL10 main

memory and any NPR-type PDP-11 device. Once initiated, the DTE uses the processor’s high priority

interrupt facility without further intervention by the program to execute that transfer. On the -10 side, the

special PIO request is used to fetch or store a byte into -10 memory; and on the -11 side, the nonprocessor

interrupt request (NPR) is used to fetch or store a byte in -11 memory or an NPR-type device. Interrupt

requests PI0 and NPR are issued until the byte count is zero, at which time an interrupt request is issued

on the assignable priority channel(s).

During the byte transfer operation, the DTE transfers fields of information between -11 memory and -10

memory via the EBox. On the -10 side, the fields are of variable lengths and are accessed through DTE

byte pointers in the EPT. On the -11 side, fields are either 8 bits wide and are stored in consecutive bytes

or are 16 bits wide and are stored in consecutive words. If the field into which the information is stored is

narrower than the field from which it was read, as many of the rightmost bits as will fit are stored. If the

field into which the information is being stored is wider than the field from which it was read, the

information is right-justified and filled with zeros on the left.

The diagnostic facilities are included in the DTE20 so that the front-end processor can execute various

diagnostic and console functions. The diagnostic part of the EBus is used in implementing these functions.

In addition, if the function includes the transfer of data (as is the case for load and read functions) the

EBus data lines are also used in executing the diagnostic functions. In general, the following diagnostic

functions are implemented.

1. Clock control functions to start, stop, or single-step the clock; to initiate a clock burst of 1 to

255 clock ticks; or to select the desired clock source.

2 EBox control functions to start and stop (HALT and CONTINUE) the microcode and to

control the decoding of some special op codes.

3. Various load functions to facilitate the following.

Load DRAM in the EBox

Load CRAM in the EBox

Load AR in the EBox

Load the MBox control functions

Enable the EBus register

Reset DMA

Load the channel control functionsR

-
0

&
0

O

4. Various read functions to facilitate reading all diagnostic registers and RAMs of the EBox,

MBox, and meters.

3.2.10.1 UNIBUS Description — The Unibus is a single, common set of signal wires that connect the
PDP-11 processor, memory, and all its peripheral devices to the DTE20. Address, data, and control

information are transferred over the 56 lines of the bus. Communication between two devices on the bus is

in a master-slave relationship. The device in control of the bus is considered the master; the device being

addressed is the slave. Communication on the bus is interlocked; that is, each control signal issued by the

master device must be acknowledged by a corresponding response from the slave to complete the transfer.

When no other device requires the bus, control automatically reverts to the CP.

3-61

Bus Request Levels

Each device uses one of two levels for requesting bus control: nonprocessor requests (NPR) and bus

requests (BR). The NPR is used when a device requires a direct memory or device access data transfer

(that is, a transfer not requiring CP intervention). Normally, NPR transfers are made between the

memory and a mass storage device, such as a disk drive. Because NPRs are executed between bus cycles,

the CP can give up bus control while an instruction is being executed. Two bus lines are associated with the

NPR priority level. The device issues its request on the NPR line; the CP responds by issuing a grant on

the NPR grant (NPG) lines.

The BR level is used when a device interrupts the CP for a service requiring CP intervention. The service

required may be to inform the CPU to initiate a transfer or that an error condition has occurred. Unlike

NPRs, BR level interrupts are not serviced until the processor has completed executing its current

instruction. Two lines are associated with each BR level. The bus request is issued on a BR line (BR7-

BR4); the bus grant is issued on the corresponding bus grant line (BG7-BR4).

When a device service program is to be run, the task being performed by the CP is interrupted and the

device service routine is started. After the device request is satisfied, the processor returns to its former

task. Note that interrupt requests can only be made if bus control is gained through a BR priority level.

The NPR level is never used for an interrupt request.

Priority Structure and Chaining

When a device requests use of the bus, the handling of that request depends on the location of that device

in a two-dimensional device priority structure. Priority is controlled by the priority arbitration (PA) logic

of the KD11.

The device priority structure consists of five priority levels: NPR, BR7-4. Bus requests from external

devices can be made on any one of the request lines. The NPR has highest priority, BR7 is the next highest

priority, and BR4 is the lowest. The PA is structured such that if two devices on different BR levels issue

simultaneous requests, the PA grants the bus to the device with the highest priority. However, the lower

priority device keeps its request up and will gain bus control when the higher priority device is through

with the bus (providing no other higher priority device issues a BR).

In addition, the KD11 has a programmable priority, which can be set to any one of eight levels (0-7). The

CP priority is dynamic and can be raised/lowered by the program running at that time. For example, the

CP priority can be raised from level 4 to level 6 when the CP completes service on a BR4 device and

initiates service on a BR6 device. This programmable priority design permits masking of device requests.

When the CP is set to a specific level, all bus requests on that level and below are ignored.

Since there are only five priority levels, more than one device is connected to a specific request level. If

more than one device makes a request at the same level, the device closest (electrically) to the KD11 has

highest priority. The grant bus for the NPR level is connected to all devices on that level in a daisy-chain

arrangement (chaining). When an NPG is issued, it goes to the device closest to the CP. If that drive did

not make the request, it permits the NPG to pass to the next closest device. When the NPG reaches the

device making the request, that device captures the grant and prevents it from passing on to any

subsequent device in the chain.

Functionally, BR chaining is identical to NPR chaining. However, each BR level has its own BG chain.

Therefore, the grant chain for BR7 is the BG7 line, which is chained through all devices at the BR7 level.

3-62

Device Register Organization) ‘

The actual transfer of data and status information over the Unibus is done between status, control, and
data buffer registers located within the peripheral devices and their control units. All device registers are
assigned addresses similar to memory. Therefore, all -11 instructions that address memory locations can
become I/0O instructions.

Control and status functions are assigned to the individual bits within the corresponding addressable
registers. Since the register content can be controlled, setting and clearing register bits can control service
operations. For example, the command to make the paper-tape reader read a frame of tape is provided by
setting the reader enable bit in the control register in the device control unit. Internal device status may be
loaded into the appropriate register and retrieved when a program instruction addresses that register.
Depending on the function, register bits may be read/write, read-only, or write-only. The number of
addressable registers in a device (and control unit) change depending on the device’s function.

Peripheral device registers are assigned an address within the bus address allocations from
760000g-777777g (program addresses 160000g—177777g); however, only 16 bits are normally provided
by programs as memory reference addresses. Whenever the processor tries to reference an address
between 160000g—177777g (when A15-13 = 1) address bits A17-16 are forced to ones. Therefore, the
16-bit address is converted to a full 18-bit address and references a device register. Device register
addresses are always even, although byte operations may address either half of the register.

Unibus Line Definitions

The Unibus consists of 56 signal lines, which may be divided into three function groups: bus control, data

transfer, and miscellaneous signals. The 13 lines of the bus control group make up those signals required to
gain bus control through an NPR/BR or for a priority transfer to select the next bus master while the
current bus master is still in control of the bus. The 40 bidirectional lines of the data transfer group are
those signals required during data transfers to or from a slave device. The miscellaneous signals are the
initialization and power-fail signals required on the bus. Table 3-19 describes the bus signals within each
group. Figure 3-18 illustrates the Unibus configuration.

Table 3-19 Unibus Line Descriptions

Signal Line Description

Bus Control Group

Bus request (BR7-BR4) Used by peripheral devices to request control of the bus
as determined by the priority structure.

Bus grant (BG7-BG4) Processor’s response to a bus request. They are asserted
only at the end of an instruction execution as deter-

mined by the priority structure.

Nonprocessor request (NPR) Is a bus request from a device to the processor for an
access not needing CP intervention (that is, direct mem-

Ory access).

Nonprocessor grant (NPG) Is the processor’s response to an NPR. It can occur
whenever the CP is not in control of the bus (that is,

between bus cycles).

3-63

Table 3-19 Unibus Line Descriptions (Cont)

Signal Line Description

Slave acknowledge (SACK) Asserted by a bus-requesting device after having
received a grant from the processor. Bus control passes

to this device when the current bus master completes its

~ operation.

Interrupt (INTR) Asserted by the master to initiate a program interrupt in
the processor. Bus busy (BBSY) is asserted by the new

master device to indicate that the bus is being used. No
other device can become bus master while BBSY is

asserted.

Data Transfer Group

Address lines (A17-00) Used by the master device to select the slave (actually a
unique memory or device register address). A17-01

specifies a unique 16-bit word; AOO specifies a byte
within the word.

Data Lines (D15-00) Used to transfer information between master and slave.

Control (C01-00) Coded by the master device to control the slave in one of
the four possible data transfer operations specified
below. Note that the transfer direction is always defined

with respect to the master device.

Data Transfer Designation

Cl1 Co Description

0 0 Data in (DATI) - A data word or byte

transferred into the master from the

slave.

0 1 Data in, pause (DATIP) - Used with

core memory, similar to DATI except

data is not restored back into the

addressed memory location.

1 0 Data out (DATO) - A data word is

transferred out of the master to the

slave.

1 1 Data out, byte (DATOB) - Identical to

DATO except a byte is transferred

instead of a full word.

Parity A-B (PA, PB) Transfer Unibus parity information. PA indicates that
the transferring device is generating parity. PB contains

the computed odd parity. Bit configurations for PA and
PB are specified below.

3-64

Table 3-19 Unibus Line Descriptions (Cont)

Signal Line Description

Master synchronization (MSYN)

Slave synchronization (SSYN)

Miscellaneous Group

Initialize (INIT)

AC line low (AC LO)

DC line low (DC LO)

Parity Line Definitions

PA PG Definition

0 0 - Sender not generating parity.

1 1 Sender generating parity, parity bit = 1.

1 0 Sender gencrating parity, parity bit = 0.

0 1 Core memory parity error, no Unibus

parity checking in effect.

Is asserted by the master to indicate to the slave that

valid address and control (data in DATI) information is

present on the bus.

Is asserted by the slave in response to MSYN from the

master.

Is asserted by the processor when the START key on

the console is depressed, when a RESET instruction is

executed, or when the power-fail sequence occurs.

Is an anticipatory signal that initiates the power-fail trap

sequence and may also be issued in peripheral devices to

terminate operations in preparation for power loss.

Is available from each system power supply and stays

clear as long as all dc voltages are within the specified

limits. If an out-of-voltage condition occurs, DC LO is

asserted.

3-65

UNIBUS

AOO-1{7 (ADDRESS)

<r DOO-15 (DATA) >
CO0-01 (CONTROL)

MSYN (MASTER SYNC)

SSYN (SLAVE SYNC)

PA-PB (PARITY)

BR4-7 (BUS REQUEST)

POP- 11
DTE20 BG4-7 (BUS GRANT) FRONT END

NPR (NONPROCESSOR REQUEST)

NPG (NONPROCESSOR GRANT)

SACK (SLAVE ACKNOWLEDGE)

INTR (INTERRUPT)

BBSY (BUS BUSY)

INIT (INITIALIZE)

AC LO (AC LINE LOW)

DC LO (DC LINE LOW)

10-2116

Figure 3-18 Unibus Configuration

Unibus Operation Sequencing

The following sections provide a summary description of the bus operation sequences. The timing dia-

grams provided in the descriptions do not reflect actual timing, only general signal relationships. If

additional detail is required (such as, skew times, logic structures, and so on), refer to the appropriate -11

device maintenance manual or the Unibus section of the Peripherals Handbook 1973-74.

Priority Transfer — The priority transfer operation is the signal sequence that selects the next bus master.

The operation does not actually transfer bus control but only selects the next bus master.

The device requiring service asserts its BR (or NPR) line. In practice, the processor may be receiving

several simultaneous BR signals. These signals enter the PA of the KD11, which compares BR levels with

the CP priority level and against the NPR. If the PA system determines that the request has highest

priority and the SACK line is clear, the processor asserts the corresponding BG (or NPG) line. The grant is

propagated through each device on the asserted BG line. The first device on the line having BR asserted

acknowledges the grant by asserting SACK, blocks the grant from following devices, and clears its BR.

The processor responds to SACK by clearing BG. If SACK is not received within 5-10 us, a time-out

occurs and BG is automatically cleared.

3-66

The device will keep SACK asserted until the current bus master gives up bus control by clearing its

BBSY. SACK asserted prevents another device on the same priority level (or lower) from gaining bus

control. Priority arbitration can be performed at the same time that a data transaction or interrupt is being

serviced. While one device is using the bus, the PA is able to monitor other requests and to issue an

appropriate grant. '

Figure 3-19 provides a functional timing diagram for the priority transfer sequence.

sssv _| L

sack | |

contOORES VTV =

wn _ [L1

g R |
t0-1938

Figure 3-19 Priority Transfer Sequence

Data Transfer — The 40 bidirectional data transfer lines are used for all data transfers. In a data transfer,

one device is the bus master and controls the transfer of data to or from a slave device.

Once the device has become bus master through an NPR or BR (asserting BBSY and clearing SACK), the

master places the appropriate address and control information and data on the bus. The address selects the

desired slave device register or memory location, the C1-0 control lines select the transfer type (in this

case DATO). Following a delay to allow bus line settling and address decoding, the master asserts MSY N.

MSYN is a strobe signal for the address and control lines and is always cleared before these lines are

changed. The slave acknowledges MSYN by asserting SSYN, indicating that the address has been

decoded and data has been strobed from the bus. The master responds to SSYN by clearing MSYN.

Following a specific time delay, the master clears the address and control lines. With the clearing of

MSYN the slave responds by clearing SSYN.

During multiple word (or byte) transfers the master again asserts the correctly coded address and control

lines. Again, the master allows a settling and decoding time and asserts MSYN. The sequence continues as

described in the previous paragraph. Note that during multiple transfers the master and slave have kept

BBSY and SACK asserted. Prior to the last bus cycle, the slave clears SACK, allowing the PA to issue the

next grant. When the slave has asserted SSYN (for the last bus cycle), the master again responds by

clearing MSYN. As before, the master clears the address and control lines following the time delay. With

the last bus transfer complete, the master clears BBSY, allowing a new master to assume bus control.

Figure 3-20 provides a functional timing diagram for the multiple DATAO/DATOB transfer.

3-67

BR/NPR

BG/ NPG

SACK

8BSY

10-1937

Figure 3-20 Multiple Data Transfer Sequence

The bus sequence for a DATI is essentially the same as a DATO, with the following exceptions.

1.

2.

3.

4.

The master asserts only address and control information.

The slave gates data onto the bus simultaneously with the assertion of SSYN.

The master allows a time delay (for skew between SSYN and the data) before clearing MSYN
and strobing the data.

The slave clears the data when it clears SSYN.

Multiple transfers are functionally the same as the DATO (considering the exceptions). Figure 3-21
provides a functional timing diagram for the DATI bus sequence.

ADDRESS

CONTROL I

MSYN !

SSYN f I

DATA I ;fl

10-1939

Figure 3-21 DATI Bus Sequence

Interrupt Sequence — A device may cause an interrupt operation each time it gains bus control on a BR

priority level. It is usually done immediately upon becoming bus master; however, it may follow one or

more data transactions on the bus.

If an interrupt operation is to be initiated and the device has control of the bus, the master (interrupting

device) asserts BBSY and clears SACK. At the same time, the master asserts INTR and places a vector

address on the data lines. The vector directs the CPU to a memory location that contains the starting

address of the interrupt service routine.

3-68

The KD11 receives INTR and after a time delay to make sure that all bits of the interrupt vector address

are valid, asserts SSYN when the address is strobed in. The bus master receives SSYN and releases the

bus to the CP by clearing INTR, removing the vector from the data lines, and clearing BBSY. The CP

acknowledges by clearing SSYN and stores the required breakpoint information to return to the interrupt-

ed program. The CP then enters the interrupt handling sequence. When the interrupt operation is

completed, the CP retrieves the stored breakpoint information and continues the program at the point

where it was interrupted.

Figure 3-22 provides a functional timing table for the interrupt sequence.

BBSY

(INTERRUPTING I I
DEVICE)

INTR | |

VECTOR

ADDRESS I |

S ACK _]

SSYN | |

10-~1940

Figure 3-22 Interrupt Sequence

Breakpoint Information Handling — The interrupt vector from the interrupting device is a location whose

content points to the first of two words in core. The first word is the program counter (PC), which is the

starting address of the service routine. The second word is the processor status word (PSW), which

contains the processor priority and condition codes for the service routine.

When the KD11 is interrupted for service, it retrieves the interrupt vector from the data lines, terminates

the current program, and stores the breakpoint information (current PC and PSW words) in the hardware

stack. The stack — located in core — allows the CP to return to the program when the interrupt has been

serviced. KD11 general-purpose register R6 is the hardware stack pointer and contains the address of the

latest stack entry.

The CP then retrieves the new PC and PSW words as directed by the interrupt vector and proceeds to

execute the required service routine. When the service routine is terminated, the CP reloads the previous

PC and PSW words from the stack (via R6) and continues the interrupted program.

Emulator Trap Handling - The emulator (EMT) trap instruction is a software-generated interrupt and is

used for identification and tracking of variable input calls to a program. Operation codes 104000-104377

are EMT instructions and may be used to transmit information to the emulating routine. The format of

the EMT, shown in Figure 3-23, allows a large number of variables to be assigned in the low-order byte.

When an EMT call is found, the program traps to location 30, which is a permanently assigned address in

the trap vector area of core. The contents of the current PC and PSW are pushed onto the hardware stack

and replaced by the content of the two-word EMT trap vector (locations 30-32) containing the new PC

and PSW. This action causes a jump into the EMT handling routine.

3-69

15 08 o7 ' 00

OP CODE OFFSET

OP CODE =107

OFFSET=000-377

10~2139

Figure 3-23 EMT Instruction Format

The handler locates and stores the EMT instruction through the stack pointer. It then retrieves the low-

order byte of the instruction, which is used as an entry number into the EMT dispatch table. The low-order

byte is added to the starting address of the EMT dispatch table. The resulting dispatch table location

contains a pointer to a subroutine that agrees to the trap number. This pointer is used in a branch to the

starting address of the required subroutine. At termination of the EMT subroutine, the previous PC and

PSW are restored from the stack and the interrupted program is continued.

Register/Vector/Priority Assignments — Table 3-20 lists the device register, vector addresses, and

priority levels assigned to the console processor options in a KL10 system. The assignments follow the

standard -11 configuration rules for all options except the DL11-C and the DTE20.

The DL11-C is the console terminal controller and has the standard terminal controller address and vector

assignments, since all standard software will access this terminal. The DTE20 is not a standard -11 option

and as such, has been assigned to the floating vector area along with the DL11-E. The DTE register

address assignments are those of the DP11, since this device will never appear in a configuration using the

DTE.

Table 3-20 Register/Vector/Priority Assigmfients

Equipment Register Vector Interrupt Physical

Option Address Address Priority Unibus
Assignment Assignment Level Position

DL11-C 777566 (XBUF) 60 (XMIT) BR4 1

777564 (XCSR) 64 (REC)

777562 (RBUF)

777560 (RCSR)

KWI11-L 777546 (LKS) | 100 BR6 Internal to KD11

LP20 777476 200 BR4 14

NPR

777460

RX11/RX01/RX02 777172 (RXCS) 264 BR5 6

777170 (RXDB)

CD20 (CD11) 777166 (CDDB) 230 BR4 12

777164 (CDDA) NPR

777162 (CDCC)

777160 (CDST)

3-70

Table 3-20 Register/Vector/Priority Assignments (Cont)

Equipment Register Vector Interrupt Physical

Option Address Address Priority Unibus

Assignment Assignment Level Position

RH11/RP04/

RP06/RP0O7 776746 (RPEC2) 254 BRS 3

776744 (RPEC1) NPR

776742 (RPER3)

776740 (RPER?2)

776736 (RPCC)

776734 (RPDC)

776732 (RPOF)

776730 (RPSN)

776726 (RPDT)

776724 (RPMR)

776722 (RPDB)

776720 (RPLA)

776716 (RPAS)

776714 (RPER1)

776712 (RPDS)

776710 (RPCS2)

776706 (RPDA)

776704 (RPBA)

776702 (RPWC)

776700 (RPCS1)

DL11-E 775616 (XBUF) 300 (XMIT) BR4 5
775614 (XCSR) 304 (REC)

775612 (RBUF)

775610 (RXCSR)

DTE20 774436 774 BR6 7
NPR

774400

3.2.11 RH20

The RH20 Massbus controller (MBC) is the mass storage interface (data channel) for the DECsystem-

10/DECSYSTEM-20. Each MBC is capable of controlling up to eight Massbus-compatible devices (disks,

drives, or magnetic tapes). The MBC can be interfaced with single- or dual-ported drives and will allow

timeshared swapping and paging software to operate the system efficiently with minimum latency. Up to

eight MBCs can be connected to a DECsystem-10/DECSYSTEM-20, and one or more MBCs can operate

(reading or writing) simultaneously. However, only one drive per MBC can transfer data at a time.

Nondata transfer commands (such as seek and rewind) can overlap and can be issued to any drive at any

time as long as the drive is not included in executing a read or write command.

For addressing purposes, each controller is permanently assigned one unique controller select (CS) code. A

total of eight controller select codes have been assigned, since up to eight controllers can be implemented

in the DECsystem-10/DECSYSTEM-20.

3-71

Each controller is also assigned a physical number according to the physical slots in which the controller

modules reside. Both the device code and the physical number of a controller are hardwired on the KL10

backplane. The device code is used to address the controller and the physical number is used to identify the

interrupting controller.

Since each controller can accommodate up to eight drives, each drive is permanently assigned a unique

drive select (DS) code for addressing purposes. The drive select code is permanently hardwired in the

drive.

To permit any type of mass storage device (disk, drum, or magnetic tape) to be interfaced with the same

controller, the working registers (status control, address, command, and data) are divided between the

controller and the drive. Registers required for all drives reside in the controller; registers required to

operate a given drive are implemented in that drive. Accordingly, registers that are implemented in the

controller are referred to as internal registers, and registers that are implemented in the drive are referred

to as external registers. Up to 32 internal registers can be implemented in the drive. The RH20 controller

and available drives only use a subset of the available register address space.

Each controller has two command (internal) registers. They are the secondary transfer command and

primary transfer command registers. A command in the primary command register will be executed

immediately provided no transfer error condition is detected in the controller. The secondary command

register serves as a command lookahead facility.

The command in the secondary command register will be executed as soon as the command in the primary

command register is terminated (done) and no transfer error is detected in the controller.

CAUTION |

Only data transfer (read/write) commands can be

loaded into the command registers. The program

should load nondata transfer (seek, rewind, and so

on) commands directly into the drive’s (internal) con-

trol register.

The secondary command register allows the software to specify the next command to be executed before
the controller has completed the current command.

This means that the controller can start the next command immediately after the current command is

done — instead of waiting for a software interrupt routine to supply the next command and miss the next

sector. Without this lookahead feature, the software can only transfer every other block or page for

different users.

The controller will interrupt the EBox when any of the following conditions occur.

1. A data transfer (read/write) command is done (with or without a transfer error).

2. An attention signal from the drive (caused by SEEK COMPLETE, and so on) is detected on

the Massbus by the controller, provided that the attention interrupt enable control (CONO) bit

is set.

3. A register access error is detected in the controller when a drive is loaded or read.

Commands are arranged into two groups: nondata transfer and data transfer. The nondata transfer
commands do not cause data channel transfers. These commands are generally used to set up the drive for

a subsequent read or write command. The drive will assert the MBus attention line to inform the MBC and
the EBox that the setup is completed.

3-72

Data transfer commands are those that cause data channel transfers over the CBus. These commands are
limited to read and write operations.

3.2.11.1 MASSBUS Description - The Massbus provides the interface between the RH20 controller
and the disk pack and tape mass storage devices. The Massbus is composed of two separate, independent
buses: the control bus and data bus. These independent buses allow synchronous and asynchronous
communication between the RH20 and its drives. Each Massbus line is described in Table 3-21. Figure 3-
24 illustrates the Massbus configuration.

Table 3-21 Massbus Line Descriptions

Signal Line Description

Control Bus

Control and status (C00-15) ~ Transfers 16 parallel control or status bits to or from

the drive.

Control bus parity (CPA) Transfers odd control bus parity to or from the drive.

Parity is simultaneously transferred with control bus

data.

Drive select (DS0-2) Transfers a 3-bit binary code from the RH20 to select a

drive. The drive responds when the (unit) select switch

in the drive corresponds to the transmitted binary code.

Register select (RS0-4) .~ Transfers a 5-bit binary code from the RH20 to select a

particular drive register.

Controller to drive (CTOD) Indicates which direction information is to be trans-

ferred on the control bus. For a controller-to-drive

transfer, the RH20 asserts CTOD; for a drive-to-con-

troller transfer, the RH20 negates CTOD.

Demand (DEM) Asserted by the RH20 to indicate a transfer is to take

place on the control bus. For a controller-to-drive trans-

fer, DEM is asserted by the RH20 when data is present.

For a drive-to-controller transfer, DEM is asserted by

the RH20 to request data and is negated when the data

has been strobed from the control bus. In both cases, the

RS, DS, and CTOD lines are asserted and allowed to

settle before assertion of DEM.

Transfer (TRA) Asserted by the drive in response to DEM. For a con-

troller-to-drive transfer, TRA is asserted when the data

is strobed and negated when DEM is removed. For a

drive-to-controller transfer, TRA is asserted when the

data is asserted on the bus and negated when the nega-

tion of DEM is received.

3-73

Table 3-21 Massbus Line Descriptions (Cont)

Signal Line Description

Attention (ATTN)

Initialize (INIT)

Fail (FAIL)

Data Bus

Data (D00-17)

Data bus parity (DPA)

Sync clock (SCLK)

Write clock (WCLK)

Run (RUN)

End-of-block (EBL)

Exception (EXC)

Occupied (OCC)

The drive asserts this line to signal the RH20 of any

change in drive status or an abnormal condition. ATTN

is asserted any time a drive’s ATA status bit is set.

ATTN is common to all drives and may be asserted by

more than one drive at a time.

Asserted by the RH20 to initialize all drives on the bus.

This signal is transmitted at system startup or whenever

the RH20 issues an initialize command.

When asserted, this line indicates a power-up fail condi-

tion has occurred in the RH20.

These bidirectional lines transfer 18 parallel data bits

between the RH20 and drives.

Transfers an odd parity bit to or from the drive. Parity

is simultaneously transferred with bits on the data bus.

Asserted by the drive during a read operation to indi-

cate when data on the data bus is to be strobed by the
RH20. During a write operation SCLK is asserted to the

RH20 to indicate the rate at which data should be
presented on the data bus.

Asserted by the RH20 to indicate when data to be

written is to be strobed.

Asserted by the RH20 to initiate data transfer com-

mand execution. During a data transfer, the drive sam-
ples run at the end of each sector. If run is still asserted,
the drive continues the transfer into the next sector; if

run is negated the drive terminates the transfer.

Asserted by the drive at the end of each sector. For

certain error conditions where it is necessary to termi-

nate operations immediately, EBL is asserted preceding

to the normal time. In this case, the transfer is terminat-

ed before the end of the sector.

Asserted by the drive to indicate an error condition

during a data transfer command. EXC stays asserted
until the trailing edge of the last EBL pulse.

Asserted by the drive to indicate that the drive has

accepted a valid data transfer command.

3-74

MASSBUS

CONTROL BUS

<L COO -15 (CONTROL /STATUS)
CPA (CONTROL BUS PARITY)

DS00-02 (DRIVE SELECT)

RSO0-04 (REGISTER SELECT) V
A
V

AV
,

CTOD (TRANSFER DIRECTION)

DEM (DEMAND)

TRA (TRANSFER)

MASSBUS

ATTN (ATTENTION) DEVICE

INIT (INITIALIZE)

DATA BUS

< DOO-17 (DATA) >
DPA (DATA BUS PARITY)

SCLK (SYNC CLOCK)

WCLK (WRITE CLOCK)

RUN (START,CONTINUE,STOP)

EBL (END OF BLOCK)

EXC (EXCEPTION)

OCC (OCCUPIED)

RH20

10-2120

Figure 3-24 Massbus Configuration

Command Initiation

Commands are of two types: data transfer commands (read, write) and nondata transfer commands (drive,
clear, search). Data transfer commands are initiated through the RH20 control register. All nondata
transfer commands to this register are illegal and will result in an error condition.

Nondata transfer commands affect only the state of the drive. The RH20 writes the command word into
the drive control register. At completion of command execution, the drive asserts ATTN, indicating
command completion. In addition, if the nondata transfer command is not recognized as a valid command,
the drive will immediately signal an error by asserting ATTN.

To initiate a data transfer command in a drive, the RH20’s control register is loaded through a DATAO
instruction, which causes the command word to be written into the drive’s control register. If the command
is valid, the addressed drive executes the command. With the command loaded, the channel is started and
a control bus cycle is initiated. The RH20 asserts DEM; the drive returns TRA. The RH20 then asserts
RUN, and the drive responds with OCC on the data bus portion of the Massbus. It is over this bus that the
data transfer will occur.

3-75

Control Bus Write Operation

For a write operation to a drive register, the RH20 asserts:

The C lines with the register data to be transferred

The DS lines, to specify a particular drive

The RS lines, to specify the register to which the data must be transferred

The CTOD line, to indicate that transfer direction is to the drive.b

After these signals have settled on the bus, the RH20 asserts DEM to cause the drive to load the data on

the C lines into the addressed register. The drive asserts TRA, indicating that the register has been loaded.

The RH20 then negates DEM. At the same time, it negates the C, RS, and CTOD lines, terminating the

operation (see Figure 3-25).

DRIVE SELECT

(DS00-02)

CONTROL

(CO0-15)

i
DATA VALID

REGISTER SELECT

(RS00-04)

CONTROLLER
TO DRIVE

(CTOD) =

DEMAND (DEM) N\\\‘ //’b\

TRANSFER (TRA) — N

|

DATA STROBED

10-2178

Figure 3-25 Control Bus Write Operation

Control Bus Read Operation

The register read operation sequence is similar to the write sequence. The DS and RS lines are asserted by

the RH20; the CTOD line is negated, indicating that the transfer direction is from the drive. The RH20

then asserts DEM, causing the drive to place the register data on the C lines. When the C lines have

settled, the drive asserts TRA causing the RH20 to strobe the data from the C lines. The RH20 then

negates DEM, causing the drive to negate TRA and the C lines and terminating the operation (see Figure

3-26).

Data Bus Write Operation

In executing a write command, the desired address and write function are set in the drive. The RH20

asserting RUN initiates an address search operation. When the desired sector is found, the drive starts

issuing SCLKs. The SCLKs are echoed back to the drive by the RH20 as WCLKs. On the leading edge of
WCLK, the drive strobes DO0-17 into its data buffer. On the trailing edge, the RH20 displays another
word on D00-17.

3-76

DRIVE SELECT

(DS00-02)

CONTROL

(CO0 -15)

REGISTER SELECT

(RSO0 -04)

CONTROLLER

TO DRIVE

(CTOD)

DEMAND (DEM)

TRANSFER (TRA)

Figure 3-26 Control Bus Read Operation

|

DATA VALID -

(NEGATED)

/X —
_
—
—
—

e

—
e
—

e

e

e

—

s

—
—

L

!

DATA STROBED

10-2176

During write (and read) operations, the drive asserts EBL after the last word of each sector is transferred.

At the end of each sector (EBL time) the drive samples RUN; if it is still asserted, it continues the transfer

into the next sector. If RUN is negated, the drive terminates the transfer (see Figure 3-27).

Data Bus Read Operation

To execute a read command, the RH20 sets the desired address and read function to the drive. It then

asserts RUN, causing the drive to search for the desired address. Once the address is found, the data

transfer starts.

The drive places the first data word on the D lines with the assertion of SCLK. The RH20 interprets the

leading edge of SCLK to indicate that data has been placed on DO0-17. It uses the trailing edge of SCLK

to strobe the data into its data buffer. As in the write operation, the drive samples RUN at the end of each
sector, and continues transferring sectors until RUN is negated (see Figure 3-28).

RUN

SYNC CLOCK

(SCLK)

WRITE CLOCK

(WCLK)

DATA (DOO-17)

N

]

STROBE DATA

Figure 3-27 Data Bus Write Operation

TRANSFER

TERMINATES

STROBE DATA

!

DATA VALID

3-77

|
DATA VALID

10~2177

TRANSFER
RUN

TERMINATES

SYNC CLOCK

(SCLK) L

: STROBE DATA I STROBE DATA

DATA (DOO- 17) I_
| | -

DATA VALID DATA VALID

10-2178

Figure 3-28 Data Bus Read Operation

Data Transfer Condition

Under certain abnormal conditions, the RH20 may require termination of a data transfer prior to the end

of the current sector. In such a case, the RH20 asserts EXC (which is recognized only by the drive

transferring data) causing that drive to immediately assert EBL and terminate the transfer. EXC is

asserted by the drive to indicate to the RH20 that an error condition has occurred during a data transfer.

In addition, the ATTN line is used to indicate an error condition or status change in the drive. ATTN may

be asserted under any of the following conditions.

1. An error detected while no data transfer is taking place (asserted immediately)

2. Completion of a data transfer command if an error occurred during the data transfer

3. Completion of a nondata transfer command (such as search)

3.2.12 Interrupt Facility

The KL10 main processor has an eight level priority interrupt facility. Seven levels (levels 1-7) are
programmable and one level (level 0) is permanently assigned to the DTE. The order of priority is from 0

to 7.

Each I/0 device on the EBus (including internal processor devices) can be assigned one of the program-

mable priority levels (channel) and can then interrupt the processor on that channel when it requires

service or when it has completed a programmed operation. When a device issues an interrupt on level n,

the next instruction is taken from location 40 + 2*n of the Exec Process Table. This instruction is then

executed in the exec mode. After the interrupt is serviced, control is restored to the interrupted program.

All processor flags, PC, and ACs are saved and restored when servicing an interrupt.

Priority level 0, the highest priority level, is not assignable but is reserved for the front-end processor
interface (DTE) in executing deposit, examine, and byte transfer operations. The DTE can also be assigned

a programmable interrupt level for reporting status information and for requesting service.

3.2.13 Trap Facility

The direct I/O and priority interrupt facilities permit the processor to maintain system status and to effect

control. To add to these facilities, the main processor also includes a trapping mechanism. This mechanism

allows certain conditions resulting from an executing program to interrupt the program sequence without

having to go to the direct I/O or priority interrupt facilities, which would be time consuming. The

conditions that are sensed by the trapping mechanism are:

I. Address violation

2. Arithmetic overflow

3-78

Pushdown overflow

Page faults

Illegal instructions in user mode (I/0)

Monitor calls (UUO and MUUO).S
k
w

3.2.14 Internal Devices .

The main processor contains several internal devices that can be accessed under program control using the
appropriate I/O instructions. These devices provide the means for initiating internal processor functions
and for providing ready access to processor status information. The internal devices are:

APR - Arithmetic processor registers

PI - Priority interrupt registers

PAG - Pager registers

CCA - Cache clearer address and control registers

TIM - Timer registers

MTR - Meter registers.S
n
h
w
o
=

These registers are considered to be internal I/O devices because they can be accessed under program
control in the same way that conventional I/O devices are accessed using the standard DECsystem-
10/DECSYSTEM-20 I/0 instructions.

3.2.14.1 APR - The APR device facilitates programmable access and control of processor identification
information, the address break facility, the cache refill RAM, and the processor status and error flags.

3.2.14.2 PI - The PI device facilitates programmable access and control of the error address (ERA)
register, the SBus diagnostic cycle control, and the priority interrupt facility status and control bits.

3.2.14.3 PAG - The PAG device facilitates programmable access to the pager in the MBox for setting
up the executive and user base registers and for invalidating desired entries in the pager. This device also
provides the means for selecting the desired mapping mode (KI or KL paging), for selecting the desired
cache use strategy and for context switching.

3.2.144 CCA - The CCA device provides programmable access to the cache clearer control in the
MBox for clearing the cache.

3.2.14.5 TIM and MTR - The meter (TIM and MTR) device facilitates access to the following clocks.

. The 1 microsecond interval timer, which is a source of programmable interrupts with a
maximum period of 32 milliseconds

2. The 1 microsecond readable time base

3. The accounting meter, which counts EBox clock ticks and MBox references with two separate
counters

4. The performance analysis counter, which is used in evaluating the performance of the system

3.2.15 External and Internal I/O Controllers and Devices (Typical) - Every device has a 7-bit device
selection network; a priority interrupt assignment; and at least two flags, busy and done, or some
equivalent. The selection network decodes bits 03—-09 of the instruction so that only the addressed device
responds to signals sent by the KL10 main processor over the EBus. To use the device with the priority
interrupt facility, the program must assign a channel to it. Then whenever an appropriate event occurs in
the device, it requests an interrupt on the assigned channel.

379

The busy and done flags together indicate the basic state of the device. When both are clear, the device is

idle. To place the device in operation, a CONO or DATAO sets busy. If the device will be used for output,

the program must give a DATAO that sends the first unit of data — a word or character depending on

how the device handles information. When the device has processed a unit of data, it clears busy and sets

done to indicate that it is ready to receive new data for output or that it has data ready for input. In the

former case, the program would respond with'a DATAO to send more data; in the latter, with a DATAI to

bring in the data that is ready. If an interrupt channel has been assigned to the device, the setting of done

signals the program by requesting an interrupt; otherwise the program must keep testing done to determine

when the device is ready.

3.3 FRONT-END PROCESSOR SUBSYSTEM

The front-end processor is a hardware/software subsystem that replaces typical control and indicator

panels. To replace this hardware, the front-end processor provides an automatic bootstrap mechanism and

a console command facility. Besides these functions, the front-end processor also handles low-speed,

asynchronous I/O operations for unit-record and communications equipment using the byte transfer

facility. The front-end processor, which includes a PDP-11 minicomputer system, interfaces with the main

processor through the DTE ten-eleven interface.

The bootstrap facility automatically initializes the dispatch and control RAMs in the EBox, places a small

sequence of code into the memory of the main processor, and starts its execution to load the system.

Several bootstrap options, including an operator/software dialog, are available. The console command

facilities are available through the console terminal (CTY) to permit the operator to examine or deposit

main processor memory locations and otherwise control and monitor the processor in the same way given

through the typical operator console and indicator panels.

The PDP-11 used as the front-end processor is a 16-bit, general-purpose, microprogrammed minicomputer

that uses single- and double-operand instructions and two’s complement arithmetic. Included in the front-

end processor are the associated -11 controllers and peripheral devices.

The instruction word format is such that the processor can directly address up to 32 K words (64 K bytes)

of core memory. Only 28 K words are available for program storage. The continuing 4 K words are

reserved for peripheral and register addresses. All communication among system components (including

processor, core memory, and peripherals) is performed over the Unibus. Because of the Unibus concept, all

peripherals are compatible, and device to device transfers can be done at the rate of 2.5 million 16-bit

words or 8-bit bytes per second. All system components and peripherals are linked by the Unibus, and all

peripherals are in the basic system address space. Most instructions applied to data in memory can also be

applied to data in peripheral device registers, enabling peripheral device registers to be manipulated as

flexibly as memory.

3.3.1 Devices

The following paragraphs provide a short description of each component that is part of the front-end

processor subsystem.

3.3.1.1 KD11-A Central Processor — This device is the basic component of the front-end processor. The

KD11 is connected to the Unibus as a subsystem. It controls time allocation of the Unibus for peripheral

devices and performs arithmetic and logic operations through instruction decoding and execution. The

instruction set is implemented through a group of hardware subroutines stored within the 256 by 56-bit

read-only memory (ROM).

3.3.1.2 KY11-D Programmers Console — This device is an important part of the PDP-11 system. It

provides the operator a direct system interface through the control switches and display indicators. The

control switches provide the operator with real-time control of normal program and diagnostic operations,

therefore allowing the operation to start, stop, load, modify, or continue a program.

3-80

3.3.1.3 KWI1I1-L Line Clock Option — This device provides a method of referencing real-time intervals

by generating a repetitious interrupt request to the KD11. The rate of interrupt is derived from the ac line

frequency.

3.3.1.4 MF11-UP Memory - This device is a read/write, random-access, coincident current, magnetic

core type memory with a maximum cycle time of 980 ns and a maximum access time of 425 ns. It is

organized in a 3D, 3-wire planer configuration. Storage capacity is 16,384 words (32,768 bytes) with an

18-bit word length (16 data bits plus two parity bits).

3.3.1.5 MM11-UP Memory - This device is a 16 K word expansion memory having characteristics

identical to the MF11-UP.

3.3.1.6 BM873-YJ ROM Loader Module — This module is an essential part of the front-end processor.

It provides 256 words of read-only memory, which are blasted to contain a number of routines to facilitate

bootstrap, power-fail, and dump operations.

In addition to these routines, the ROM module contains four locations that serve as entry points for these
routines. The routines in the ROM facilitate bootstrapping and dump operations; you initiate these from

the -10 via the DTE 10/11 interface and by pressing a physical load push button on the switch panel.

Either the -11 based floppy disk or the -11 based RP06 disk may be specified for the bootstrap or dump

procedure.

NOTE

These storage devices are not supported as system

devices.

3.3.1.7 DL11-C Asynchronous Line Interface — This device provides simultaneous two-way transmission

between the console terminal and the Unibus. The DL11-C is a character-buffered interface that controls

and translates serial bit flow data from the terminal to parallel character data for transfer over the Unibus.

The interface also provides parallel to serial translation from the Unibus to the terminal.

3.3.1.8 DL11-E Asynchronous Line Interface — This device has identical characteristics as the DL11-C

and in addition, provides control functions for a communication modem (such as, Bell Model 103) that

interfaces with the KLINIK diagnostic facility.

3.3.1.9 LA120 Keyboard Terminal - This is a high-speed data communications terminal. The terminal

consists of a bidirectional, 180 character/second printer with up to 9,600 baud serial data communication

capability and an operator’s console that includes a typewriter-type keyboard.

3.3.1.10 DC20F Asynchronous 16-Line Multiplexer — The DC20 asynchronous 16-line programmable

multiplexer (similar to the DH11) connects the PDP-11 with up to 16 asynchronous serial communications

lines operating with the following individually programmable parameters.

1. Character length: 5-, 6-, 7-, or 8-bit

2. Number of stop bits: 1 or 2 for 6-, 7-, 8-bit characters

I or 1.5 for 5-bit characters

3. Parity generation and detection: odd, even, or none

4. Operating mode: half-duplex or full-duplex

3-81

5. Transmitter speed and receiver speed: 0, 50, 75, 110, 134.5, 150, 200, 300, 600, 1200, 1800,

2400, 4800, or 9600 baud plus Ext A, Ext B

6. Breaks: May be detected or generated on each line

The DC20 multiplexer uses 16 double-buffered MOS/LSI receivers to assemble the incoming characters.

An automatic scanner takes each received character and the line number and deposits that information in

a first-in, first-out buffer memory referred to as the silo. The bottom of the silo is a register that is

addressable from the Unibus.

The transmitter in the DC20 also uses double-buffered MOS/LSI units. They are loaded directly from

message tables in the PDP-11 memory by means of single-cycle direct memory transfers (NPR). The

current addresses and byte counts for each line’s message table are stored in semiconductor memories

located in the DC20. This decreases the Unibus time taken for the NPR transfers to one NPR cycle per

character transmitted. The NPR cycle used is extended slightly.

3.3.1.11 CD20 Card Readers - The CD20 card readers are rated and designed to meet changing

throughput requirements and provide reliable, quiet, trouble-free operation. These low-cost card readers

accept 80-column EIA/ANSI standard cards.

For fast throughput, the user can select the console model CD20-B, which processes 1200 cards/minute,

or the table model CD20-A, which processes 300 cards/minute and has a smaller hopper while still

including the same basic features as the higher speed model.

CD20 card readers are designed to prevent card jams and keep card wear to a minimum. The readers have

a high tolerance to cards that have been subjected to high humidity or to rough handling and are worn,

scratched, warped, bent, or otherwise damaged.

To keep cards from sticking together, the readers use a special “riffle air” feature. The bottom half-inch of

cards in the input hopper are subject to a current of air that separates the cards and air cushions them

from the deck and from each other. This action unsticks those cards attached electrostatically and loosens

those cards attached through torn webs or hole locking. It also separates cards that are swollen and stuck

from high humidity.

Cards entering the reader are selected through an advanced design vacuum picker. The picker and its

associated throat block prevent the unit from double selecting, so that cards that have been stapled or

taped together (unless such taping is on the leading edge) will not enter the card track. To lower the

chances of jamming, the card track is short (less than four inches) so that only one card at a time is in

motion,

The “riffle air” and vacuum picker features greatly extend card life. Stoppages are also decreased since

the reader automatically tries six times before it determines that a card cannot be selected.

The read station of the CD20 card readers uses infrared light emitting diodes as its light source and

phototransistors as its sensors to provide complete dependability. No adjustments are needed during the

ten years of life expectancy of the diodes. Typical incandescent sources, on the other hand, need continu-

ous adjustments with age.

3.3.1.12 LP26 Line Printer — The LP26 line printer produces hard copy with a maximum line length of

132 columns. It prints at a speed of 600 lines/min using the ASCII 64-character set or at a speed of 445

lines/min using the AXCII 96-character set.

3-82

The LP26 includes the direct-access vertical format unit (DAVFU) and is driven by the LP20 line printer
controller through the long line interface (LLI).

3.3.1.13 RP06 Disk File System - This system consists of an RP06 disk drive and an RH11 device
controller. The RP06 is a dual Massbus port, moveable head, disk pack drive used as the -11 diagnostic
and bootstrap load routines. The RH11 provides the control and parallel data path interface between the
Unibus and RP06 through the Massbus. In addition to communicating with the KD11, the controller has
access to -11 memory to fetch and store data.

NOTE

The drive is not supported as a system device from
the -11 side but is supported as a system storage
device from the -10 side.

3.3.1.14 RX11 Floppy Disk Subsystem — The RX11 floppy disk subsystem is a very dependable, low-
cost, mass storage system capable of storing up to 256,256 8-bit bytes per drive in an industry-compatible
format. The RX11 provides a data interchange and software distribution medium for critical I/0 applica-
tions. In addition, the RX11’s random-access capability allows configuring very low-cost, disk-based
systems with small PDP-11 processors. Such systems can meet the needs of applications that could never
before afford random-access storage.

The RX11 floppy disk system consists of an RX01W-BA (RX02) model of a floppy disk drive unit and a
PDP-11 quad interface module that requires a single SPC slot. The RX11 includes either one or two
drives, a microprogrammed controller module, and a read/write electronics module, all housed in a 101/,
inch, rack-mountable chassis. Up to two drives can be supported by each controller for a total storage
capacity of 512,512 bytes.

Given an absolute sector address, the RX01W-BA (RX02) locates the desired sector and performs the
indicated function. It automatically verifies head position and generates and verifies the cyclic redundancy
check (CRC) character.

Track-to-track moves require 10 milliseconds for the move plus 20 milliseconds for settling time if the
head is loaded for a read or write. The rotational speed of the diskette is 360 r/min, which results in an
average latency time of 83 milliseconds. The track-to-track move, head settling, and latency time produce
an average access time of 483 milliseconds. During a sequential access, the complete diskette can be read
in about 30 seconds.

The RX01W-BA (RX02) floppy disk uses the industry-standard “diskette” or “floppy” media. These are
thin, flexible, oxide-coated disks similar in size to a 45 r/min phonograph record. The disk is recorded on
one side only and is permanently contained in an square, 8 inch, flexible envelope.

The envelope has a large center hole for the drive spindle, a small hole for track index sensing, and a large
slit for the read/write head. A solenoid contact load pad is located on the opposite side of the envelope.
The inside of the envelope is covered with a soft material, designed to wipe the disk surface clean right
before reading.

The diskette contains 77 tracks and 26 sectors per track. Each sector can store 128 8-bit bytes for a total
formatted capacity of 256,256 8-bit bytes.

The diskette is a good storage, interchange, and software distribution medium, Compared to disk cartridg-
es or disk packs, it is less expensive. Because it is flat and thin, the diskette is compact, enabling large
amounts of data to be stored in a small space. Diskettes can also be transported with ease in a briefcase or
in a manila envelope.

3-83

Because the diskette is preformatted in the industry-standard format, it conforms to industry compatibility
and drive-to-drive interchangeability. The RX01W-BA (RXO02) can read diskettes written on other
standard floppy disk equipment and vice versa. Preformatted diskettes also decrease hardware costs by
deleting the circuitry needed to generate the correct format.

NOTE

The floppy disk is not supported as a system device.

3.3.1.15 BC11-A Unibus - The Unibus is a 120-conductor ribbon cable connecting the front-end
processor system components. The Unibus consists of 56 signal and 64 ground lines assembled alternately
within the cable to minimize crosstalk.

On the EBus, the DTE appears in a way as a DECsystem-10/DECSYSTEM-20 device controller. On the

Unibus it connects as a standard -11 peripheral device, using the direct memory access and vector

interrupt features of the -11.

3.3.2 Interdevice Transfers

Communication between two devices on the Unibus is done in a master-slave relationship. During any bus
operation only one device has control of the bus. This device (master) controls the bus when communicat-
ing with another device on the bus (slave). For example, the KD11, as the master, transfers data to the
MF11 or MM11, which operate as the slave. Master-slave relationships are dynamic. The KD11, for
example, can pass bus control to a disk. The disk, as master, may then communicate with the slave
memory.

Since the Unibus is used by the KD11 and all its I/O devices, a priority structure determines which device
gets control of the bus. Therefore, every device capable of becoming bus master has an assigned priority
level. When two devices having identical priority levels simultaneously request use of the bus, the device
electrically closest to the KD11 receives control. The KD11 performs priority arbitration and when no
other device has bus control, assumes bus control.

Full 16-bit words or 8-bit bytes can be transferred over the bus between master and slave. The data in
(DATI) and data in pause (DATIP) operations transfer data into the master; data out (DATO) and data
out byte (DATOB) operations transfer data out of the master. When a device requests control of the bus, it
is for one of two purposes.

1. To make a direct memory access (DMA) transfer of data directly to/from another device or

memory without processor intervention

2. Tointerrupt program execution and force the processor to branch to an interrupt service routine

Bus control is found under a nonprocessor request (NPR) for the direct memory access or under a bus

request (BR) for an interrupt.

Requests for the bus can be made any time on the BR and NPR lines. Transfer of bus control from one

device to another is made by the KD11 priority arbitration logic, which grants control of the bus to the
device having the highest priority. NPRs are granted higher priority than BRs. The NPRs are serviced
between bus cycles, in addition to specific times during wait or trap sequences. BRs are serviced on

completion of the current instruction if the requesting priority exceeds that of the processor.

3.3.3 Functions

One of the major functions of the front-end processor is to provide the typical console functions for the

KL10 main processor. The front-end processor is programmed to accept console commands to display and

change locations in the KL10 memory, to start and stop the main processor, and to affect many other

3-84

operations. The functions, initiated through the terminal connected to the front-end processor, are imple-

mented by the following hardware implemented operations.

Examine

Deposit

TOI10 transfer

TO11 transfer

System bootstrap

Interprocessor interrupts

Diagnostic and miscellaneous console functlonsN
k

w
—

3.3.3.1 Examine/Deposit Operations — The examine and deposit functions allow the front-end processor
to fetch or modify any location in KL10 memory while the main processor is running or executing a halt.
Examine and deposit are handled as a priority interrupt (PI) request with a priority higher than any

programmed PI level. Note that these functions are completed even when the PI system is off and the

main processor is halted.

The deposit operation accesses and writes a 36-bit data word into a -10 memory location. Both the data
word and 23-bit addresses are entered through the console terminal. The examine operation accesses and
retrieves a 36-bit data word from a -10 memory location for display on the console terminal. As with the

deposit, the examined memory location is specified through the console terminal.

An examine or deposit starts when the -11 program writes the -10 address into the DTE20. No program
interrupts are generated on the -10 or -11 side to indicate completion of the operation. Therefore, the -11

program must check for completion by monitoring the appropriate flag in the status register of the DTE.

The DTE logic is structured such that once the address and data is written into the DTE it stays the same

after an operation. The -11 may now perform repeated examines and deposits by changing the -10 address
each time.

3.3.3.2 TO10/TO11 Byte Transfer Operations — TO10/TO11 transfers are multlple bus operations
(including both the EBus and Unibus) transferring fields of information between the -10 and -11. Multiple
transfers are executed for both byte transfers, only the source and destination differ. In the TO11 transfer
the source of information is the -10 and the destination is the -11. In the TO10 transfer source and
destination are reversed; that is, the source is the -11 and destination is the -10.

The fields of information that are transferred between the processors differ at the 10/11 interface

(DTE20). At the -10 side of the DTE, the fields are of variable length and are accessed through a -10 byte

pointer. At the -11 side of the DTE, the fields are either 8 bits wide and stored in consecutive byte

locations in -11 memory, or 16 bits wide and stored in consecutive (even) word locations in -11 memory. If

the field into which the information is being stored is narrower than the field from which it was read, as

many rightmost bits as will fit are stored. If the field into which the information is being stored is wider

than the field from which it was read, the information is right-aligned and padded with zeros in the high-

order bits.

Prior to the actual transfer, several parameters are provided by both processors to the DTE. First (possibly
at system startup) the -11 determines the transfer rate and the Unibus address bits 17 and 16. The

transmitting processor specifies the source address. The receiving processor specifies the destination

address for the data and a byte count equivalent to the length of the data string. In addition, the receiving
processor determines whether it alone, or both processors will receive the normal termination interrupt.

When the transfer is initiated the receiving processor’s byte count is decremented as each word (or byte) is

transferred. At zero byte count the transfer is complete and the receiving processor (and transmitting
processor, if specified) is interrupted. Note that in operation, the actual interrupt is issued from the DTE.

3-85

'3.3.3.3 System Bootstrap Function - First both systems must be loaded by the bootstrap function in
order to start operation. Bootstrapping can be initiated in several ways.

1. A power-fail restart

2. The operator pressing a bootstrap button (floppy disk, disk pack, or switch register) on the

system switch panel

3. The KL10 initiating a bootstrap of the -11

4. The operator entering appropriate commands to the console command facility via the console

terminal

Generally the bootstrap is initiated from the -11 ROM loader module, which provides a minimum number

of instructions to load the absolute loader program from a selected storage media. The absolute loader in

turn loads the initialization, handling, and device support routines required by the -11. The bootstrap then

loads the -10 control RAM and dispatch RAM with enough code to start the -10 running. As more code is

transferred, the -10 will configure its memory, load the resident monitor, set up communications with the

front-end processor, and relinquish control to the resident DECsystem-10/DECSYSTEM-20 monitor.

3.3.3.4 Interprocessor Interrupts — These interrupt operations provide the interprocessor communication

function; that is, the capability of either processor to interrupt the other. The interprocessor interrupts

(doorbell feature) allows the -10 to interrupt the -11 as well as the -11 to interrupt the -10. The doorbell

consists of a programmable interrupt and status flags located in the -10 and -11 status registers of the

DTE20.

For the -11 to interrupt an interfaced -10, the -11 sets an interrupt flag in its associated DTE status

register using a DATO. With the flag set, the DTE generates an interrupt to the -10. The -10 then

executes a CONI, which informs the -10 that the -11 has programmed an interrupt to the -10 for it to

initiate appropriate action.

The procedure is executed in a reversed but similar way for the -10 interrupting the -11. The -10 sets an

interrupt flag by executing a CONO to the DTE, which in turn generates an interrupt to the -11. The -11

finds the cause for the interrupt by monitoring the flag in the DTE status register and initiating appropri-

ate action.

3.3.3.5 Diagnostic and Miscellaneous Console Functions — Other console functions, such as displaying the

contents of certain -10 registers or memory locations, require the cooperation of the operating systems.

The operating system must regularly store the quantities to be displayed in the communication areas.

Displayed information may include the PI system state, current job being run, number of active jobs,

program counter on the last clock interrupt, and so on. It is also possible to simulate all of the typical

console indicators used while the system is in normal operation.

Major -10 CPU state information is continuously available on the diagnostic bus while the system is

running. In addition, for the case of a -10 crash, the -11 can use the diagnostic bus to determine additional

hardware status information. However, the front-end processor is not allowed to use the diagnostic bus for

data transfers during normal system operation since this would interfere with normal traffic on the EBus.

3.3.4 Modes

The front-end processor system has two operating modes: privileged and restricted. They are switch-

selectable from the DTE20.

3-86

The privileged processor has access to the diagnostic bus and the capability to execute unprotected
examines and deposits. Unprotected examines and deposits are unique in that they require special software
and may address any of the following areas in -10 memory: Exec Process Table and executive virtual
address spaces; User Process Table and user virtual address spaces; and the actual physical address space.
Although a privileged processor normally executes protected examines and deposits, it does have the
capability to override the normal protection checks defined in the Exec Process Table (EPT). Because of
the relatively unlimited access allowed, a privileged front-end processor may degrade system operation or
crash the associated KILL10 main processor. :

The restricted front-end processor can only access -10 memory provided the -10 has executed a CONO
instruction and enabled the associated PIO level. After PIO is enabled, the restricted processor can then
only examine in a -10 owned region and deposit in its own -11 owned region. In addition, the processor is
prohibited from using the diagnostic bus. Since the restricted processor cannot violate the -10’s system
security, it has no more privileges or capabilities than a user program. Because of its limited access, it does
not have the capability to degrade the -10’s operation.

3.3.5 Interprocessor Communication

Interprocessor communication is necessary to allow -11 and -10 to execute those functions required during
timesharing, bootstrapping and diagnostics. This communication is implemented by special communica-
tion areas allocated in -10 memory. These areas are used to coordinate status, prepare byte transfer
operations, and process limited amounts of data. Communication areas are allocated to each processor in
the system such that each processor can read or write its own allocated area (that is, -10 owned region, -11
owned region) but only read the other area owned by the system. These areas reflect the hardware and
software states of the owning processor to its associated processor.

In addition to the communication area functions, the majority of control information and data transferred
between a -10 and -11 is through software processing queues. A TO11 queue is maintained in -10 memory
by the monitor. The -11 will access this queue using byte transfers through the DTE20. The TO10 queue is
maintained in the -11 memory and is accessed by the -10 in a similar way. Since the processing queues are
not part of the communication areas and are accessed only by byte transfer operations, they are protected
from modification by any processor other than the making processor. When a queue is made and ready for
transfer operations, the transmitting processor will interrupt its associated processor. At this point the
interrupted processor starts processing the queue.

The -10 is also able to communicate with a console terminal directly through the communication areas,
independent of queue processing. Normally, it is only used during bootstrap, diagnostic operations, or
when the monitor finds it inconvenient to output an error message using queue processing.

3.3.5.1 Communication Areas — First the -10 will set up the communication areas at load time with each
processor responsible for protecting itself from the other. Since interprocessor communication is through
the DTE20, a pair of communication areas is associated with the DTE (that is, -10 owned and -11 owned
areas).

The -11 owned area is defined in -10 memory by the deposit relocation and protection word in the EPT
(EPT DPW). The area is written by the -11 using protected deposits and read by the -10. Each -11 in the
system has a separate area that it alone can modify. The -10 owned area is defined purely in software and
is separate from the -11 owned area. It is written by the -10 and read by the -11 using protected examines.

Each processor’s communication area is divided into two zones. The first zone contains 16 (36-bit) words
with identification and hardware and software status information specific to the owning processor. The
second zone contains an additional eight words of communication status information for each processor
that is in communication with the owning processor. Therefore, the size of each communication area is
variable depending on the number of processors in the system.

3-87

3.3.5.2 Queue Processing/Messages — Information transferred between processors is stored in variable

length queues and accessed using byte transfer operations. Each processor maintains a queue of messages

waiting for transmission to the associated processor. Each queue has an associated word in the transmitting

processor’s communication area indicating to the receiving processor the size of the collected queue.

After a transmitting processor places information in its queue, it interrupts the receiving processor

informing it to start processing queue entries using byte transfers. With the DTE20 hardware, executing

byte transfers in either direction requires cooperation of both processors. For example, to perform a TO10

byte transfer the following general parameters are required.

1. The -11 provides the DTE with the source address of the queue to be transferred.

2. The -11 specifies how the queue is stored in -10 memory (that is, 8-bit bytes or 16-bit words).

3. The -10 sets the EPT byte pointer word to a byte pointer location where the queue is to be

stored.

Queue content is varied, containing control information as well as data. Each queue content (or message)

contains the length of that message (in bytes) in its first entry. Most messages will contain information

indicating the -11 device inputting data, or the -11 device for which the data is destined. Message content

may contain information about queue processing. For example, it may contain information indicating the

end of a queue and resetting the DTE to start processing the next queue. In some cases, the queue message

may be in the form of a pointer that defines data not in the queue but located elsewhere in the transmitting

processor’s memory. This type of messages is used when it is more efficient to change the byte pointers to

point to another area of memory than to copy that memory area in the queue.

3.4 MASS STORAGE SUBSYSTEMS

Several types of mass storage subsystems are included in the DECsystem-10/DECSYSTEM-20.

The system supports mass storage subsystems to serve as large file storage and swapping areas. Both disk

and magnetic tape storage drives can be attached to a channel I/O processor, which is an integral part of

the main processor.

The channel I/O processor (channel control), is time-division multiplexed to provide service for up to eight

separate synchronous channel paths simultaneously. A typical disk channel consists of main memory, the

channel control in the MBox, one RH20 Massbus controller, and up to eight mass storage drives. Each

mass storage drive implemented on a given channel, is connected to the same RH20 Massbus controller.

The controller is connected to the EBox via the asynchronous EBus, which allows the EBox to issue control

and data transfer commands to the controller and the associated drives. The controller is also connected to

the MBox via the CBus. This path is the synchronous data path that allows the controller to access

memory via the MBox channel control without having to use the EBus and the EBox. This configuration

lets the EBox perform computation and execute direct I/O operations to other controllers and devices

while the channels are executing a data block transfer. Memory fetch and store operations can also be

performed by the EBox while the channels are busy executing a block transfer, provided the cache is

implemented. Otherwise, the EBox must compete with the channels for core cycles.

Each block transfer between main memory and a mass storage drive must be initiated by the EBox. This is

done by the EBox by setting up the channel command list in main memory and by executing DATAO

instructions to transfer one or more command words and other control information to a specific controller.

The channel command list serves as a control program for executing the block transfer to/from a series of

contiguous segments of main memory. The control information and commands specify one particular

drive of those connected to the controller, a physical starting block address, a block count, a command

function (read or write) code, and other control bits, such as reset command list pointer and/or store

status, if required.

3-88

As soon as the block address and command are transferred to the drive, which is done automatically as

soon as the drive is not busy, the controller informs both the channel control and the drive to start the

block transfer. To get ready, the channel control fetches the first word in the channel command list. If the

block transfer is a channel read operation (NOT CTOM) that is specified by the RH20, the channel

control also fetches at least two words of data from the locations specified by the address field of the

CCW. This is done because the controller has a two word data buffer for which words will be requested as

soon as the channel control is ready. The drive, on the other hand, will stay dormant until it reaches the

specified block address. When the block is reached, the drive, the controller, and the channel control will

operate together under the control of the channel command list and the block counter to transfer the

block(s) of data. Both the controller and the channel control contain data buffers to normalize the transfer

speeds of the different components in the channel path. As the buffers are filled or emptied, additional

requests will be made via the buses and interfaces in the path to keep the data moving until the entire

block transfer is done. The transfer is done when the channel control fetches a HALT CCW, when it is

executing a LAST DATA XFER CCW and the WC field of that CCW has reached zero, or when the

block counter in the controller overflows.

The RH20 controller maintains and updates the block count as the block transfer is executed. Up to 1024

blocks can be specified when the read/write command is issued by the EBox. When the block count

overflows, the RH20 interrupts the EBox to inform it that the transfer is done. The RH20 also informs the

channel control that the transfer is done.

The channel control logic maintains a status and command list pointer (CLP) word and a channel

command word (CCW). These two words are kept in the CCW BUF. To keep track of these words for all

the channels, the CCW BUF contains two locations for each of the eight possible channels. The sta-

tus/CLP word (relative location 1 in the CCW BUF) contains the status of the channel and the address

(program counter or CLP) of the next channel command word to be executed. The initial CCW is kept in

the EPT. The status bits of word 1 are updated by the channel control when the channel logs out, which

occurs on an error condition or when the block transfer is completed if a store operation was specified

when the transfer was initiated by the EBox. The channel control logs out by writing the appropriate

status/CLP and CCW words into the preassigned EPT locations. The CCW (relative location O in the

CCW BUF) contains the current channel command word. This word specifies the operation (instruction)

the channel control is to perform. The word contains a 3-bit op code field that specifies one of the

following six operations.

Op code 0 specifies a halt operation.

Op code 23 specifies a jump operation.

Op code 43 specifies a forward data transfer operation.

Op code 53 specifies a reverse data transfer operation.

Op code 6g specifies a forward last data transfer operation.

Op code 7g specifies a reverse last data transfer operation.A
N

b
l

b
i

After being started, the channel control will continue to fetch CCW until it gets a HALT CCW or a

DATA TRANSFER CCW. In response to a HALT CCW, the channel control will simply halt; and it

may cause the channel control to log out, if so specified, when the transfer was initiated. In response to a

JUMP, the channel control will simply fetch another CCW. The location of the next CCW is specified by

the contents of the ADR field of the JUMP CCW. In response to a DATA TRANSFER, the channel

control will transfer the number of words specified by the WC field from/to the starting address specified

by the ADR field.

3.4.1 TXO02 Tape Control Unit

The TXO02 connects to the Massbus via the DX20f. The TXO02 tape control unit (TCU) contains the logic

required to operate the TU72-E series tape units. The basic TCU can perform tape operations at 6250 or

1600 bits/inch.

3-89

During 6250 bits/inch write operations, data is assembled in data groups, translated, formatted into

storage groups, and recorded. The TCU will, at specified intervals, insert control characters for error

correction, record detection, data check, and read circuit resynchronization. A complete readback check

of the write data is performed to verify proper recording.

The 6250 bits/inch read operations convert GCR data to standard characters, which are then transmitted

as bytes to the channel interface. Errors that can be corrected are determined and corrected while running.

Control commands are included for rewinding, unloading, spacing, erasing, tape marking, status recording,

and diagnostic assistance.

The features available on the TX02 tape control unit are described in the following paragraphs.

3.4.1.1 Nine-Track NRZI - Nine-track NRZI is like the nine-track features of the TX02, with tapes

written and read in 800 bits/inch NRZI. For proper operation, a TU70 tape unit and dual density is

required.

3.4.1.2 Seven-Track NRZI - The seven-track NRZI feature for the TX02 compares with the seven-

track feature of the TX01 TCU. Seven-track operation can be at 800, 556, or 200 bits/inch on a seven-

track TU70 tape unit.

The seven-track feature also includes the data convert and data translate functions. Data convert causes

four tape characters (24 bits) to be written for every three characters (24 bits) transmitted across the

channel. Data translate causes the translation of each character to a 6-bit binary character. There are 64

possible character combinations in translate mode.

NOTE

Data convert, data translate, density, and parity

functions are started by mode set 1 commands.

Mode set 1 commands can be used at any time;

therefore, they must be issued under strict control.

Incorrect use may result in tapes being written at

various settings for density, parity, and so on within

the same tape. Use of data convert decreases the

operating data rate by 25 percent.

3.4.1.3 Two-Channel Switch - TX03 - The addition of this feature permits a second channel to access

the TX02. The two channels may be from the same or separate CPUs, and use of the two-channel switch

can be under manual or program control.

3.4.1.4 2 X 8 Tape Switch — TX05 - This feature permits two tape control units to access any one of

sixteen tape drives. The tape switch feature allows tape units to be dynamically switched among the

control units. Any or all units may be rendered inaccessible to a given control unit or control units by

switches located on the TCU operator panel.

Those TCUs marked “Switch” contain the 2x, 3x, or 4x switching feature. The ‘“Remotes” contain

communication paths to the switching circuitry and therefore do not need the switch feature. In a 4x

configuration, if four drives are selected via four different control units, data may be transmitted

simultaneously on all four paths.

3.4.2 TU72 Tape Units

The TU72 tape units are attached to the TXO02 tape control units in configurations of from one to sixteen.

Tape unit models may be intermixed within the same string provided that the TCUs are properly featured.

TU70 series tape units may also be intermixed with TU72 series tape units in the subsystem. Each TCU

3-90

has power and signal connections for eight tape units. The address of the individual tape unit is determined

by the port to which the tape unit signal cable is attached and by pluggable jumpers within the control

unit. '

The TU72 tape unit is a self-loading, single capstan unit. The features that are standard on all TU72
model tape units are described in the following paragraphs.

3.4.2.1 Self-Loading — Tape mounts in the file reel position will be automatically threaded to the
machine reel, then loaded in the columns, and the beginning-of-tape (BOT) label brought to ready position.

3.4.2.2 Automatic Reel Hub — Operator action is not necessary to secure the file reel to the reel hub. The
reel hub is automatically started by pressing the LOAD/REWIND push button on the operator panel.

3.4.2.3 Capstan - All in-column tape motion is controlled by a single capstan. Contact between tape and
capstan is restricted to a nonoxide surface, thereby minimizing recording surface damage.

3.4.2.4 Dynamic Amplitude Control - During 6250/1600 read operations, the read bus is continuously
monitored to ensure correct signal amplitude. Decreases or increases beyond defined limits will start the

dynamic amplitude control (DAC) circuitry, which will adjust read amplifier gain accordingly. Continuous
monitoring and adjustment of individual records by the DAC feature improves the unit’s ability to handle
variations in signal strength because of differences in media.

3.4.2.5 Backside Tape Cleaner — The backside tape cleaner removes loose particles from the nonoxide
tape surface to prevent contamination of the recording surface when the tape is rewound. Cleaners are

located at the top of each vacuum column and are operational whenever tape is in the columns.

3.4.2.6 Tape Storage Pocket — The pocket is located to the right of the vacuum column door and
provides storage for two cartridges or three open reels.

3.4.2.7 Power Window - Window operation is automatic during load and unload operations. The
window may be opened at any time by putting the tape unit in the not ready condition and pressing the

HUB/WINDOW-UP push button.

3.4.2.8 Data Density Option - Any TU72 model tape unit can be equipped to perform either 1600 or
6250 bits/inch operations.

3.4.3 TU77 Magnetic Tape

The TU77 is a nine-track, freestanding, magnetic tape storage system that connects to the processor via
the Massbus controller/adapter. The TU77 was designed to operate at high speeds in high usage environ-
ments in a wide range of applications, such as fast disk-to-tape backup, data acquisition, heavy transaction

processing/journaling, and tape interchange.

The TU77 has the following features.

e Program-selectable recording at 1600 bits/inch (PE) or 800 bits/inch CNRZI)

o Read/write speed of 125 inches/s

e Automatic tape threading of 10.5 inch tape reels as well as IBM Easy Load No. 1 and No. 2TM

type tape cartridges

e Automatic density select on a read operation (1600 bits/inch or 800 bits/inch)

e Expandable up to a total of four tape transports per subsystem

Direct memory access (DMA) data transfers

e Vacuum column tape buffering

3-91

3.4.4 TU78 Magnetic Tape

The TU78 magnetic tape subsystem consists of a master TU78 tape transport, up to three slave TU78

transports, and an RH20 Massbus controller. The master transport consists of a TU78 transport and a
TM78 formatter contained in a single cabinet. The RH20 Massbus controller is ordered separately to

avoid redundancy for systems previously configured with the necessary RH20 channels.

Up to two master TU78 transports may be connected to a single RH20 controller. The master TU78 may

only be connected to a high-speed RH20 (controller number 0, 1, 2, or 3).

The TU78 subsystem is supported by the TOPS-20 operating system, which can support up to 16 tape

transports.

The TU78 has the following features.

® Program-selectable recording at 6250 bits/inch (GCR) or 1600 bits/inch (PE)

Storage capacity of 145 megabytes (8 K bytes blocks at 6250 bits/inch on a 2400 ft reel)

Transfer rate of 781 K bytes/s (at 6250 bits/inch)

Dual-access capability

125 inches/s read and write tape speed

Automatic density select on a read operation (6250 or 11600 bits/inch)

Automatic tape threading

Two-track “on-the-fly”” error correction at 6250 bits/inch

Internal microprocessor-controlled diagnostics

Front access to all modules

3.4.5 RPO06 Disk Pack Drive

The RPO06 disk pack drive is a direct-access, single-head-per-surface drive, with 8§15 cylinders, 18

read/write heads, and 1 servo head. The RP06 has a removable pack, and has dual-ports as configured on

the KL10 system. These features fill two requirements for diagnosing and operating the KL10 system.

First, the front-end processor performs CPU diagnostic testing, which requires a mounted diagnostic pack
called the KLAD pack (KL advanced diagnosis).

The KL10 system needs the front-end processor because it brings up the operating system and runs front-

end task files used for the CPU. To expedite information needed to perform these operations, one RP06

port is connected to the RH11 Massbus controiler, controlled by the front-end processor over the Unibus.

This port is used only by the front-end processor and not as a system device.

The other port on the RP06 drive is connected to an RH20 Massbus and is supported by the system.

The front-end processor files are not accessible by the CPU, and the CPU files are not accessible by the

front-end processor.

3.4.6 RPO07 Disk Drive

The RPO7 disk drive is a fixed-media, direct-access, mass-storage device attached to an RH20 Massbus
controller. The drive has a moving carriage that positions 32 read/write and 1 servo head over 17 disk

surfaces. These surfaces have 630 customer-usable cylinders and 2 FE cylinders. The Massbus can have a

maximum of eight RP07s attached to it. There is one exception to this: one Massbus requires a dual-port

RPO06.

3.4.7 RP20 Disk Subsystem

The RP20 is a fixed-media, dual-spindle disk subsystem with a capacity of 1200 megabytes unformatted.

It consists of a disk control unit (DCU) and a master drive. Up to three slave drives may be added to each

master drive. The RP20 is interfaced to a DECsystem-10 or DECSYSTEM-20 (except for 2020) through

a DX20 Massbus-to-channel adapter.

3-92

The disk subsystem can be configured as either single-port, dual-port, or dual-port-dual-CPU. When
formatted for TOPS-10, the RP20 has a capacity of 107.5 megawords (36-bit). Under TOPS-20, the
capacity is 103.2 megawords.

3.4.8 DX20 MASSBUS-To-IBM Adapter

The DX20 is a microprocessor-based 1/O adapter that interfaces the Massbus-to-IBM channel pulse code
modulation (PCM) bus. Microcode allows the DX20 to emulate selector channel operation for PCM disk
units. In response to commands issued by the host CPU over the control portion of the Massbus, the DX20
executes the appropriate PCM channel protocol to effect the requested action. A high-speed data path
with formatting capabilities facilitates the transport of data between the buses. Tapes and disks cannot be
connected to the same DX20 because of the differences between tape and disk functional microcode.

3-93

CHAPTER 4

THE SOFTWARE

4.1 INTRODUCTION

The DECsystem-10/DECSYSTEM-20 provides the following features.

1. A powerful batch system that is completely compatible with the interactive timesharing mode.

The batch system offers an extensive complement of languages including a comprehensive

COBOL. This allows commercial applications to be run efficiently and smoothly with a mini-

mum of personnel training.

2. Many kinds of people can use a system with interactive timesharing. The system features a

flexible command language that includes many tutorials to help the beginning user; but it also

allows the expert to use it quickly and efficiently. It supports a full range of languages and

interactive on-line editing and debugging facilities.

3. A secure file system that needs no preallocation or special formatting, that encourages file

transport between languages, and that permits controlled sharing of data and programs.

4. A state-of-the-art central processor that supports a demand paged virtual memory system,

therefore providing all users with the power and dependability needed for their applications.

5. Extensive language capabilities including ALGOL, APL, BASIC, COBOL, FORTRAN, and

MACRO, with such support systems as the Data Base Management System (DBMS) and a

powerful sort facility.

4.2 TOPS-10/20 OPERATING SYSTEM

Certain common problems are faced by most computer users. Data must be organized, up-to-date, and

accessible but secure. Monthly, quarterly, and yearly reports must be generated, so the data base must be

simple to maintain but flexible enough to meet unforeseen needs.

Consider the following inventory control example. A small manufacturing company maintains an invento-

ry of finished goods. A combination of actual and forecast orders determines the quantity on hand at any

one time. Control of this quantity is critical because too much means working capital is tied up unneces-

sarily. Too little means lost customer orders. The key to tight inventory management is accurate, timely

information. Order entries, status inquiries, customer and vendor lists, forecast data — these are but a few

of the types of information that must be handled by the inventory management system if it is to be

effective.

4-1

The TOPS-10/20 operating system has been designed to handle this range in a simple, flexible, and
efficient way. It includes:

A flexible file system

A common command language and processor for both timesharing and batch modes

The monitor

Separate front-end software

System reporting and control features.o
le
l

e

4.2.1 The File System

The TOPS-10/20 file system provides controlled, secure, flexible access to large quantities of data. Major
design features are:

1. File security

2. Automatic but controlled sharing of data

3. Convenient read and write access methods — by characters, strings, and blocks.

4.2.1.1 Files - Files are collections of data that are identified by a file name and a qualifier such as

SALES.DAT, where SALES is the file name and .DAT is the qualifier. Because programs are also files,

applications may be grouped by giving the same name to a data file and the program that processes it,

while distinguishing between them by the qualifier. For example, SALES.DAT is a data file for the

program SALES.EXE.

Device independence is provided by allowing the user to specify a logical device name within his program.

At execution time he may specify the physical device or allow the system to supply a default. Normally

the default device is a disk.

All files are assigned protection codes for each of three classes of users: the owner, users within a common

group or project, and all other system users. Members of each class may be granted none, some, or all of

the following privileges.

Read access

Write access

Authorization to append data to the end of the file

Acknowledgement that the file appears when listing the directoryW
—

When a file is created, the owner may either assign a protection code or take the system default protection.

The owner is permitted to change the protection code at any time.

A file descriptor block that completely describes the file’s characteristics to the system is associated with

each file. The information given includes the file’s protection code, who the owner is, who last wrote in it,

the date created, the date last changed, and its size. This information block points to an address table that

contains pointers to the location of each block of the file.

4.2.1.2 PNNs - The PPN (project-programmer number) identifies the user’s file storage area on the
structure. It is made up of two octal numbers separated by a comma. The first number is the project
number and the second number is the programmer number. The project number identifies a specific group
of users whose programmer numbers all are part of that group.

4-2

4.2.1.3 Directory Files for TOPS-10 -

Master File Directory

A structure contains two types of files: your data files and the directory files, which tell the operating
system where to find the data files. The directory files are the master file directory (MFD), user file
directories (UFDs), and subfile directories (SFDs).

Each structure has one MFD. When a disk pack is mounted, TOPS-10 reads the home blocks and finds

the MFD, which makes the complete file system on the structure available. Home blocks exist on every
disk pack. They identify the structure to which the unit belongs, they contain parameters about the unit
and structure, and they contain a pointer to a retrieval information block (RIB) for the MFD. The RIB

points to the MFD.

The entries contained in the MFD are the names of all the UFDs on the structure. The MFD points to a

RIB, which points to the UFD.

User File Directory

Each user with access to a structure has a UFD that contains a list of all the files in that user’s directory.

The UFD is synonymous with the PPN. The UFD points to the first RIB for each file.

Subfile Directory

An SFD is a subgroup of files within a specific UFD. Subfile directories are logically separated from each

other in the way that PPN UFDs are separated from each other. You may have up to five nested levels of

SFDs per UFD. When you are working in a subdirectory, all defaults and commands act upon the files in

that subdirectory unless you state otherwise with a different file specification.

4.2.1.4 Directories for TOPS-20 - The system maintains a file directory for each user. It contains the

names of all the user’s files, pointers to the user’s file information blocks, and general information about

the user. This information includes the user’s password, his privileges, his disk space quota, how much disk

space he has used, and the system default protection code. All directories are themselves named files, and

information about them is contained in a master directory called the root directory. There are two copies

of this root directory to increase file system integrity.

As files in the system are protected by specific access codes, so each directory has its own protection code.

In addition, each directory has a password that controls who may get or gain owner access rights. This

permits a flexible but protected system where a user who has password privileges may become the

temporary owner of other directories.

4.2.1.5 Groups on TOPS-20 - A group is a set of cooperating users created by the system administrator.

It is the second class of users in the file protection design previously discussed. The directory for each user

contains two group membership lists: the list of groups that may have group level access to the files and

the list of groups to which the owner of this file belongs.

If files in a directory are needed by a user other than the owner, you can assign a directory group number

to it. Each directory on the system may be a member of one or more directory groups.

Once directory groups are created, you select the users who may need to access specific directories. You

assign them one or more numbers, user group numbers, that indicate the directory groups they can access.

(Group privileges apply to disk files only; they do not apply to tape files.)

For example, if you are a member of user groups 200 and 300 you have group privileges to directories with

directory group numbers 200 and 300. If your directory is in group 299, then only users with a user group

number of 200 have group privileges to your directory.

4-3

4.2.1.6 File Usage — A prime concern for users of a file system is the mechanism that permits controlled

sharing of programs and data. The design of TOPS-20 ensures that two users with access to the same

program will share it automatically. When either user modifies a page of the program, the system will give

him his own copy of the page (unless the two users specify that they also want to share such pages). This

makes memory use far more efficient because many users may share a single physical copy of any

program. For example, the DECSYSTEM-20 COBOL compiler has common code that is shared by all

users, but each user has his own data area for his specific program statements.

Although program sharing is important, data sharing is even more important when it comes to building

effective multiuser data base systems, specifically when on-line interaction is needed. When more than one
user is accessing a specific file at any one time, there is a chance of confusion if one user is changing the

file while another is reading it. For example, imagine the possible effects if one user were updating a file at

the same time it was being used to produce a quarterly report.

To prevent this confusion the system offers several methods to share access.

1. Shared reading (one or more users reading, none writing)

2. Writing (one user writing, none reading)

3. Shared updating (one or more users reading and writing at the same time, using the DECSYS-
TEM-20 queueing facility for coordination)

4. Restricted updating (one user writing, any number reading)

For more protection, if a user has opened a file for reading only or is executing a shared program and tries
to write in a page that other users believe is not changing, the user who wants to write is given a private
copy of the page and the write proceeds. This copy-on-write facility is automatic.

The system also helps the programmer by providing a large and flexible group of file access calls. Through
these calls, the user can address characters, strings of data, complete pages, or preedited input text.
Sequential and random-access calls enable the programmer to build any access method he wants; for
example, COBOL’s powerful application-oriented indexed sequential access method (ISAM).

4.2.2 The Command Processor

The DECSYSTEM-20 command processor makes the system resources available to the terminal user. It
runs in user mode, which has the advantage of protecting the monitor and allowing installations to write
special application-tailored command processors.

Simple English verbs are used to perform system functions. Each command starts with a keyword and
may be followed by parameters to completely describe the function requested by the user. Prompting is
available to make the DECSYSTEM-20 easy for new users and to provide a readable typescript for later
reference.

If only a part of a command is typed followed by the escape key (ESC), a nonprinting character, the
command processor will try to recognize the abbreviation and print the rest of the command. This will be
followed by a guide word, which requests the next input parameter needed. For example, the command
interaction to make a copy of a file would be:

COPY § (from) OLD.FIL $ (to) NEW.FIL

In the example above, the user typed the uppercase, boldface letters and the escape key (represented by $).
The command processor responds by completing the remaining part of the command name, followed by a

4-4

guide word (shown in parentheses), which logically leads to the next field needed to complete the
command. As can be seen, the combination of command completion and the automatic typing of
prompting makes the command language very easy to use.

If a command is typed erroneously, the command processor responds with an error message that starts
with a question mark. The user must then enter the command again. If the user needs more help, he can
type ?, which results in the typing of a list of all commands beginning with the characters he has typed.
More information that describes command functions is also available interactively, providing available on-
line documentation.

The user may select to type only enough of a command to uniquely distinguish it from any other
command, followed by a space. For most commands only the first three letters are enough to uniquely
identify one command from another. The abbreviated mode of the copy command as described above
would be:

COP OLD.FIL NEW.FIL

Additional flexibility is available by allowing use of both prompting and abbreviations in the same
command line.

In addition to prompting and help information, there is a pair of commands to save a current program
address space and start another. For example, a user starts a program and later finds that he forgot to
supply a necessary file. Instead of having to start over, he can return to command level and save the
current program address space. Next he creates the file, restores the saved address space, and continues
the original program.

TOPS-20 has one user command language that is used in both batch and timesharing modes. Therefore a
timesharing user can make a job from the same statements he would use under timesharing, although with
different options, and then submit the job to run under batch. Concurrent with the processing of that job,
he may then continue interactive work under timesharing.

4.2.2.1 Timesharing — The DECsystem-10/DECSYSTEM-20 takes maximum advantage of system

throughput capabilities by allowing many independent users to share system facilities at the same time.

Because of the conversational, rapid-response nature of DECsystem-10/DECSYSTEM-20 timesharing, it

is well suited for tasks ranging from student homework problems to data processing applications such as

order entry and status inquiries and general data base management. A wide range of CRT and hard copy

terminals are supported and are capable of operating at speeds of 10 to 240 characters per second.

Terminal users can be found at the computer center or at remote locations connected to the computer
center by communications. Timesharing on the DECsystem-10/DECSYSTEM-20 is designed in such a
way that the command language, input/output processing, file processing, and process scheduling are
independent of the programming language being used. This allows timesharing users to concurrently
compile and execute programs using a wide range of languages such as COBOL, FORTRAN, BASIC,
APL, and MACRO.

Extensive terminal handling capability provides the terminal user with access to all system resources. From
his terminal, the user controls the running of a program; creates, edits and deletes files; and compiles,
executes, and debugs programs.

In addition, the user can request assignment of a peripheral device, such as magnetic tape, for exclusive
use. When the request for assignment is received, the operating system verifies that the device is available
to this user and if so, the user is granted its private use until he relinquishes it. The operator can control
and terminate such assignments as needed.

4-5

4.2.2.2 Batch - Batch software enables the DECSYSTEM-20 to execute batch jobs concurrently with

timesharing jobs. The batch user has two ways in which he enters his job into the batch subsystem: card

mode, wherein he punches his job on cards, inserts necessary control cards, and then leaves the job for an

operator to run; terminal mode, in which he creates a batch control file containing normal terminal

commands and then submits it to the batch subsystem from his terminal. Therefore a user can debug a

program while timesharing and then submit it to batch either from the terminal or from cards.

The batch software has a series of programs: the input spooler, the batch controller, the centrallzcd queue

manager and task scheduler, and the output spoolers.

The input spooleris responsible for reading from the input device and for requesting the queue manager to

enter jobs into the batch controller’s input queue. Although the input spooler is oriented toward card

reader input, disk and magnetic tape can also be handled. The input data is then separated according to the

control commands in the input deck and placed into disk files, either user data files or the batch

controller’s control file, for subsequent processing. In addition, the input spooler creates the job’s log file

and enters a report of its processing of the job, with a record of any operator intervention during its

processing. The log file is part of the standard output that a user receives when his job terminates.

The batch controller processes a batch job when the queue manager passes it a request from the batch
queue. The control file previously created by the input spooler is read by the batch controller, and

commands from this file are passed to the command language processor for action. During the processing

of the job and the control file, the batch controller records job processing history in the log file as a record

for the user.

The queue manager is responsible for scheduling jobs and maintaining both the batch controller’s input

queue and the output spooling queues. A job is scheduled to run according to external priorities, processing

time limits, and parameters specified by the user for his job, such as start and deadline time limits for

program execution. The queue manager makes an entry for the job in the batch input queue based on its

priorities. After the job is completed, the queue manager schedules it for output by placing an entry in an

output queue. When the output is finished, the job’s entry in the output queue is deleted by the queue

manager.

The output spooling program improves system throughput by allowing the output from a job to be written

temporarily on the disk for later transfer instead of being written immediately on the printer. The log file
and all job output are placed by the queue manager into one or more output queues to wait for printing.

When the printer is available, the output is then processed by the line printer spooler. The line printer

spooler also includes such facilities as special forms control and character sets, multiple copies, and
accounting information. The system administrator may request a guaranteed percentage of CPU time for

batch jobs.

Normal operating functions performed by programs in the batch system need little or no operator
intervention; however, the operator can exercise a large amount of control if necessary. He can specify the

system resources to be dedicated to batch processing. He can also limit the number of programs as well as

the core and processor time for individual programs. He can stop a job at any point, requeue it, and then

change its priorities. By examining the system queues, he can determine the status of all batch jobs. In

addition, the batch system can communicate information to the operator and record a disk log of all

messages printed on the operator’s console. All operator intervention during the running of the input

spooler, the batch controller, and the output spooler causes a message to be written in the user’s log file, as

well as in the operator’s log file, for later analysis.

Although jobs are entered sequentially into the batch system, they are not necessarily run in the order in

which they are read because of priorities either set by the user in a batch control command or computed

by the queue manager when determining the scheduling of jobs. Sometimes, the user may want to submit
jobs that must be executed in a specific order; in other words, the execution of one job may depend on
another. To make sure that such jobs are executed in the correct order, the user may specify many initial
dependency counts in control command of the dependent jobs. Control commands in each job on which
the dependent jobs depend must in turn decrement the count. When the count for a dependent job
becomes zero, it becomes eligible to be executed.

The batch system allows the user great flexibility. The input spooler normally reads from the card reader
but can read from magnetic tape or disk. In the command string, the user can include switches to define
the operation and set priorities and limits on core memory and processor time.

The user can control handling of error conditions by including special commands in his job. These
commands, copied into the control file by the input spooler, specify the action to be taken when a program
gets a fatal error; for example, skip to the next program or transfer to a special user-written error handling
routine.

Although the batch system allows a large number of parameters to be specified, it is capable of operating
with very few user-defined values. Therefore, if a user wants to specify the normal choice for the
installation, he may do so by omitting the parameters. These defaults can be modified by the individual
installations.

The batch system may run multiple batch jobs concurrently, a feature that enhances both system and user
throughput because the user can break his job up into several parallel job steps. Periodic reports, such as
year-to-date sales figures, may be efficiently run under batch at the same time order inquiries are being
processed under timesharing,

4.2.3 The Monitor

The TOPS-20 Monitor is divided into two sections: the resident section and the nonresident section.

4.2.3.1 Resident - The resident section contains the system control modules including:

1. Scheduler-processor scheduler. Defines storage for all system tables and variables for processes
and the balance set. Contains routines for balance set and process management.

2. Disk routines necessary for paging. Includes initialization for the Core Status Table and Shared
Pages Table; routines for setting, changing, and reading all process tables and the index block
and core management routines.

3. Basic interrupt and system call handlers. Contains routines for dispatching device interrupts,
central processor interrupts, and system accounting meters and the initial dispatch and return
code for the JSYS monitor calls.

4. Peripheral device error reporting and recovery routines. These increase system availability by
recording exactly what error conditions occurred, then trying specific recovery procedures in
order to continue processing. Errors recovered from in this way are completely transparent to
the users. Complex on-line diagnostic capabilities are provided in order to diagnose problems
while the system is in normal operation.

5. Monitor tables.

These routines are mapped through the operating system process table and the code is write-protected.

4.2.3.2 Nonresident — The swappable section of the operating system is demand-paged into available

memory (similar to user programs) so that only those functions in use need memory. This allows a high

capability operating system to operate in constrained memory environments, which was not possible

before. The swappable or nonresident section of the operating system contains:

1. The operating system call service routines (called JSYSs for Jump to SYStem) provide the
system support programs with an extensive sharable library of functions to simplify device I/O,
interprocess communication, cooperation, and control, terminal interaction. They generally

have an extensive, flexible, easy-to-use set of functions.

2. The job and process status in pageable tables. The job status block (JSB) and process status
block (PBS) contain data needed in order to run a process. Other data pertaining to the files a

user is accessing also is paged with the process. Finally, the process map is itself a page

necessary to run a process.

3. The file service user interface is a named, multiuser file system with extensive user security
features, cooperative sharing techniques, extreme dependability, and efficient operation.

4.2.3.3 Communication with the Monitor for TOPS-20 — The JSYS handler is responsible for accepting

requests for services provided by the operating system. Support programs, such as the COBOL compiler or

user programs, issue these requests through monitor calls known as JSYSs. All JSYSs are reentrant in

order to maximize system dependability by isolating JSYS processing from operating system processing.

The operating system services include communicating with I/O devices, including terminals; getting or

changing status information about either the computing system as it applies to the user process, such as

controlling execution by creating a new process or interrupting the user program when a predefined

hardware or software event occurs; and communicating and transferring control between processes. There

are also special privileged capabilities that are limited to authorized users. Authorization is granted by the

system installation manager, and the operating system makes sure that only the appropriate privileged
users can execute special JSYSs.

Contained in the calling program is a JSYS operation code that, when executed, causes the hardware to
transfer control to the JSYS handler for processing. The processing routine gets arguments from the

program that completely define the operation requested. After the JSYS request has been processed,

control is returned to the calling program along with any indication of error conditions.

4.2.4 The Front-End Software (RSX20-F)

4.2.4.1 Introduction - The purpose of the front-end computer is to increase the amount of work that the
central processor can do for the user by moving certain overhead tasks to the front-end processor. To do
this, it has four major processors.

1. Console processor

2. Communication processor

3. Peripheral processor

4, Diagnostic/maintenance processor

4.2.4.2 Console Processor — Two major functions of the console processor are system initialization and

system operator communications. The operator need only push a button to start the following automatic

program. The front-end processor loads and verifies the microcode, configures and interleaves memory,

and loads and starts execution of the central processor bootstrap program from a device specified by the

operator.

4-8

There is a hardware confidence check of not only the microcode but also disk and memory. Any problems

that are found are reported to the operator in clear English error messages.

The operator may request a memory configuration list indicating which memory controller is on-line, what

is the highest memory address configured, and how the memory is interleaved.

All normal console capabilities, such as lights, start, stop, reset, and load, are provided by the front-end

processor. In addition, there is a straightforward English operator command language that allows the

beginner to communicate with the system.

System protection is extended by separating the privileges needed by the operator for normal system

operations from the full-scale privileges needed by the system administrator.

4.2.4.3 Communication Processor — The front-end processor operates as an intelligent data link and

buffer for the interactive terminals, thereby relieving the central processor of this overhead.

The front-end processor buffers the characters received and interrupts the central processor only when it

has a group of characters to send. The central processor also sends groups of characters for terminal output

to the front-end processor, increasing the efficiency of both processors. Another feature is the program-

mable terminal speed setting capability, which allows terminal speeds to be changed dynamically at

command or program level.

4.2.4.4 Peripheral Processor — The unit-record spooling programs in TOPS-10/20 communicate with

the front-end processor by the same buffering mechanism described for the communication processor.

Both the central processor and the front-end processor maintain buffers for data and interrupt only once

per buffer transmission, therefore greatly increasing the amount of useful work each processor can do.

4.2.4.5 Diagnostic/Maintenance Processor — An important part of the DECsystem-10/DECSYSTEM-

20 is a remote diagnosis capability (KLINIK) that lowers mean time to repair (MTTR) and increases

system availability to the customer.

This capability provides the facility for Field Service to isolate most system failures to the correct option or

subsystem — maybe even to the failing component — before leaving the local office. By running his

diagnostic tests using telephone dial-up facilities, the Field Service representative selects which spares, test

equipment, and so on should go with him on the call. These tests may be run during either general

timesharing or standalone operation even when the main CPU is completely inoperative.

Also, this facility provides help in system reconfiguration to remove defective devices from the available

stock of resources, thereby allowing less time for repair. Daily remote access to the system performance

and error file provides an automatic preventive maintenance technique, which decreases the requirement

for standalone preventive maintenance periods.

Total system security is maintained because the on-site system operator must enable the communication

link, and only the on-site personnel may specify the specific password to the system each time remote

diagnosis is used. Time limits for system access may also be imposed, and the remote link may never

operate at a higher privilege level for commands other than the local console terminal. Also, all input and

output to the diagnostic link is copied to the local terminal so that on-site personnel have a record of all

steps taken.

4.2.5 The System Reporting and Control Facilities

One of the major system design goals for the DECSYSTEM-20 has been to provide a high degree of

control and a simple to operate system. Areas of specific interest include the following.

4.2.5.1 Accounting - Files are maintained by the system to provide information on resource usage (CPU,

disk space, and so on). This provides the basis for charging individual users as well as providing a year-to-

date summary and usage statistics.

4.2.5.2 System Control - The system administrator can control access rights and privileges to the system

in general, as well as batch system usage. One important feature here is the hierarchical level of privileges

whereby the operator can function at a lower level of system access than the system administrator. This

helps protect the system from an inexperienced operator. In addition, the separation of the highest level

privileges from normal operation privileges gives a higher degree of system production.

The system administrator sets resource allocation rules: disk quotas for each individual user to control disk

usage, the amount of resources for batch and timesharing, and the maximum size of spooled output files.

4.2.5.3 System Generation — There is no complex system generation procedure necessary. Digital

provides the monitor, which can simply be initialized and started as soon as the hardware has been

installed. In addition, initialization routines will dynamically reconfigure the system should any device be

unavailable. There is a parameter file provided to allow the user to change such things as maximum

number of users allowed to access the system at the same time. Normally, no change will be necessary.

4.2.5.4 Error Reporting - The TOPS-10/20 operating system includes an extensive error detection and

recovery package to ensure maximum system availability to the user. It also includes complete error

recording facilities for use by Digital maintenance engineers and support personnel and the customer

operating department.

When an error is detected, the TOPS-10/20 monitor collects all pertinent hardware and software informa-

tion including whether the error is recoverable or not, and the recovery procedure is invoked and adds this

information to a disk file for storage. Later, a user mode program may be run to read this file and generate

reports about the complete system or individual items.

Also, significant operational events such as system reloads and changes in system configuration are

recorded to assist the operations department in monitoring system performance.

On a periodic basis, maintenance engineers collect summary information from this error file and can

detect early indications of possible problems. Detailed reports about specific errors often allow diagnosis of

a problem without having to run exhaustive diagnostics standalone. In other cases, user-mode diagnostics

will identify failing components after the error reports have pointed out the failing option. In this way, a

system is efficiently maintained with minimum interruption to the customer’s operating schedule.

The error file can be saved on magnetic tape to provide a complete history of system operation and can

identify slowly degrading parts of a system long before serious problems are caused.

This facility of TOPS-10/20 increases system availability by decreasing mean time to repair.

4.2.5.5 Backup Facilities — User’s data and programs become the most valuable part of any installation;

it is essential to protect them against unforeseen human errors as well as hardware or software errors. This

protection is provided by a facility that can be used to save all files or selected files and that can later be

used to reload any files that are needed.

4.3 THE PROCESS

4.3.1 Structure

A process is an independent task or job that is capable of being run by the monitor. By this definition we

can see that the terms program, task, and process may be used interchangeably. In the TOPS-20 operating

system, however, processes have attributes that are very useful in solving complex problems.

A process has its own environment including a 256 K word virtual address space that is divided into 512

pages of 512 words each. Core management is totally automatic, and only active process pages need be in

memory for execution.

A process may create other processes; the new processes are said to be inferior to the creating process. Two

processes that have been created by another process are called parallel processes; such processes can be

very useful when there are tasks that can run at the same time as in a reservation system when multiple

requests must be handled at the same time. The superior, or creating process has control over its inferior

processes and may give or withhold privileges and suspend, continue, or terminate them.

The simplest example of a process is a single task such as a program to solve an engineering problem. It

reads in some data, performs calculations on it, then prints an answer and exits. Other applications can be

much more complex. For example, an inventory control system may have one task to receive requests

from terminals and send them to subtasks for processing. These processes in turn may want to start other

tasks to write update reports as a data base is updated. Figure 4-1 shows such an application.

INPUT

PROCESS

WRITER WRITER

PROCESS PROCESS

to-221

Figure 4-1 Parallel and Inferior Processes

It is important to stress that all five of these processes can be run at the same time (although they do not
have to be), thereby greatly increasing throughput. Response time to the input terminals may be enhanced
because the top level process must only receive input requests.

e I e R ool

INPUT

PROCESS

C T)UPDATE
PROCESS PROCESS |

{ROCESS | MAP A MAP B
SHARED

PAGE'S TABLE

REPORT

WRITER

PROCESS PROCESS
.

T / \ !|
! |
' PRIVATE PRIVATE |
' PROGRAM PROGRAM |
: PAGE PAGE I
| |

| DATA DATA I

[BASE BASE :
[

10-2213

Figure 4-2 Process Mapping

Each process has a one-page process map (Figure 4-2) containing 512 map slots, one for each possible

process page in use. Each map slot provides the information needed for the central processor to access

instructions or data in the corresponding page of the user’s address space. Although there are potentially

512 pages in each process address space, in practice fewer pages are usually used. The process map may be

sparse (some slots null).

The Shared Pages Table (SPT) helps page sharing for programs and data by allowing the software to

maintain only one pointer to a page that is shared by multiple processes. Both the process map and SPT

are interpreted by the hardware as a part of the memory mapping process. In the example shown in Figure

4-2, while only the search and update process maps are shown, each process will have its own map. As the

example shows, direct sharing allows equal sharing of data or programs. This sharing is generalized to

more than two processes.

4.3.2 Interprocess Communication Facility (IPCF)

Although each process is basically independent, the advantage of a multiprocess job structure is that

output of some processes can be taken as input to others. The Interprocess Communication Facility (IPCF)

allows such communication among processes. This communication occurs when processes send and receive

information in the form of packets (messages). Each sender and receiver has a unique process ID (PID)

assigned to it to allow this communication to work.

When one process sends information to another process, it is placed into the receiver’s input queue, where

it stays until the receiver retrieves it. Instead of regularly checking its input queue, the receiver can enable
the software interrupt system to generate an interrupt when information arrives in its queue.

In order to use IPCF, the system administrator must assign a user two quotas that define the number of

sends and receives his process may have left at any time. For example, if a user has a send quota of two

and has sent two messages, he cannot send any more until at least one has been retrieved by its receiver. A
user cannot use the facility if his quotas are zero.

An example of the use of this facility could be the inventory data base update process communication with

the report writer process.

4.3.3 Enqueue/Dequeue (ENQ/DEQ)

Although TOPS-20 makes program and data sharing very easy while preventing any user from changing a

file that others are using in read-only mode, some more complex applications, such as reservation or

inventory systems, need updating of the data base.

Consider the inventory data base used by different departments of a company. When order status inquiries

are being processed, users may access the file at the same time because no one is changing any part of the

data. However, when someone wants to modify or replace an individual record, that portion of the file

should be accessed exclusively by that person. No one wants to access records that are being changed until

after the changes are complete.

By using the ENQ/DEQ facility, cooperating processes can make sure that such resources are shared

correctly and that one user’s changes do not interfere with another user’s. Examples of resources that can

be controlled by this facility are devices, files, operations on files (READ, WRITE), records, and memory

pages.

4.3.4 Software Interrupt System

The software interrupt system provides a mechanism for a process to respond to several types of interrupts

generated by other processes, hardware and error conditions, and terminal interactions. It may be enabled

by both the user and the system. The system provides 36 software interrupt channels of which 18 have

reserved functions. The primary types of interrupts are:

Terminal character interrupts

IPCF interrupts

ENQ/DEQ interrupts

Hardware error condition interrupts

Interrupt error condition interrupts

Program errors such as arithmetic overflow.A
R

There are three interrupt priority levels assignable to each software interrupt channel, therefore providing

priority ordering. A call is provided for interrupt dismissal to continue the interrupted code.

Terminal character interrupts are used in the implementation of the command processor and by interac-

tive debugging tools. IPCF interrupts are used in the batch system. ENQ/DEQ interrupts are used by the

COBOL system to implement simultaneous file updating by cooperating processes.

4.3.5 Virtual Memory

The TOPS-10/20 software system has been designed for efficient memory allocation and takes into
account well-known characteristics of typical programs. One such characteristic is locality; that is, that at
any time only certain areas of a process address space are active — those instructions near the current
locus of execution and the data referenced by those instructions. Therefore, only a few process pages need

to be in memory at any time, and sections not used do not tiec up memory.

4-13

The system is responsible for balancing the requirements for both memory and central processor time

among all users. To do this efficiently, two key concepts are used.

4.3.5.1 Working Set — The working set for a process is the set of pages referenced in a recent interval of

time. This interval is a constant and is selected to provide a high chance that memory references in the

next interval will be to the same pages and not to pages outside the current set (which causes page faults).

However, this constant should minimize the number of pages needed. Often some compromise between all

and no pages are selected.

4.3.5.2 Balance Set — The balance set is the set of processes that are most eligible to run and whose

working sets fit in core at the same time. This setting of the eligibility of a process is event driven and

occurs when the state of the process changes. To ensure good response, interactive processes tend to get a

higher eligibility than compute-bound processes. However, if a compute-bound process has been blocked

by interactive processes for a long period, its eligibility is changed to allow it to run.

The scheduler regularly defines the balance set. Working set sizes are modified dynamically as a process

runs and are regularly monitored by the scheduler to adjust balance set membership. Conditions exist to

guarantee a percentage of the processor to a specific user. This guarantee operates both as a ceiling (the

maximum if the system is loaded) and a floor (guaranteed minimum) and is controlled by the system

administrator.

Paging is on a demand basis. A recently started process may start with no pages in core. As it makes

memory references, page faults occur (temporary failures caused by referencing pages that are not in

core), and a working set is built up. File input and output is done via demand paging as well; the desired

page is mapped into the system or user address space and is then referenced.

The DECsystem-10/DECSYSTEM-20 supports memory management in several important ways through

hardware and microcode. Memory mapping and page level access protection are provided, including

sharing of pages between processes and efficient context switching. Page status and age information are

automatically updated for each core page by the microcode from information that has been set up by the

software. This minimizes overhead while maximizing the amount of accuracy of information available to

the system for decision making. Therefore intelligent decisions can be made at a very low overhead cost.

44 LANGUAGES AND UTILITIES

4.4.1 ALGOL

The algorithmic language, ALGOL, is a scientific language designed for describing computational process-

es, or algorithms. It is a problem-solving language in which the problem is shown as complete and exact

statements of a procedure.

The DECSYSTEM-20 ALGOL system is based on the ALGOL-60 specifications. It has the ALGOL

compiler and the ALGOL object time system. The compiler is responsible for reading programs written in

the ALGOL language and converting these programs into machine language. The user may specify a

parameter at compile time, which produces a sequence numbered listing with cross-referenced symbol

tables.

The ALGOL object time system provides special services, including the input/output service for the

compiled ALGOL program. Part of the object time system ALGOL library is a set of routines that the

user’s program can call in order to perform different functions including mathematical functions and

string and data transmission routines. These routines are loaded with the user’s program when needed; the

user need only make a call to them. The remainder of the object time system is responsible for the running

of the program and providing services for system resources, such as core allocation and management and

assignment of peripheral devices.

4-14

Source level, interactive debugging is provided through ALGDDT. The user may stop his program at any

point, may examine and change the contents of data locations, may insert connected code, and then

continue execution to test his changes.

4.4.2 APL

APL (a programming language) is a concise programming language made for numeric and character data

that can be collected into lists and arrays. The conciseness with which APL expressions can be written,

greatly increases programmer productivity and allows for very compact and readable code that can be

executed in a very efficient way. APL finds applications not only in mathematics and engineering but also

in financial modeling and text handling situations.

APL is a completely interactive system with both immediate (desk calculator) and function (program)

modes of operation. It includes its own editor as well as debugging tools, tracing of function execution,

type out of intermediate values, setting break points, and so on. APL for the DECSYSTEM-20 includes

many extensions not normally found in other APL implementations. Some of these features include a

flexible file system that supports both ASCII sequential and binary direct-access files, the dyadic format

operator, expanded command formations that allow the user to take advantage of the DECSYSTEM-20

file system, the execute operator, and tools for error analysis and recovery. In addition, work space is

dynamically variable in size up to 512 K bytes, and the system supports double-precision calculations that

allow up to 18 decimal digits of precision.

Finally, APL on the DECSYSTEM-20 is available to all users at all times without the need to run a

separate subsystem. This provides extra terminal handling, work space swapping, and so on. These tasks

are all done by the TOPS-20 operating system.

4.4.3 BASIC

BASIC is a conversational problem solving language that is well suited for timesharing and easy to learn. It

has wide application in the scientific, business, and educational markets and can be used to solve both

simple and complex mathematical problems from the user’s terminal.

The BASIC user types in computational procedures as a series of numbered statements that have common

English terms and standard mathematical notation. After the statements are entered, a run-type command

starts the execution of the program and returns the results.

If there are errors during execution, the user, from his terminal, simply changes the line or lines in error by

deleting, modifying, or inserting lines.

The beginning user has many facilities at his disposal to help in program creation.

1. Program editing facilities — An existing program or data file can be edited by adding or deleting

lines, by renaming it, or by resequencing the line numbers. The user can combine two programs

or data files into one and request either a listing of all or part of it on the terminal or a listing of

all of it on the high-speed line printer.

2. Help in documentation — Documenting programs by the insertion of statements within proce-

dures helps the user remember needed information at some later date and is invaluable in

situations in which the program is shared by other users.

3. Asa BASIC user, you type in a computational procedure as a series of numbered statements by

using simple common English syntax and familiar mathematical notation. You can solve any

problem by taking an hour or so learning the necessary basic commands.

4-15

4. Functions - Sometimes, you may want to calculate a function, (for example, the square of a

number). Instead of writing a program to calculate this function, BASIC provides functions as

part of the language.

More advanced users will want to take advantage of some of the more complex computation and data

handling tools which BASIC provides.

e File input — The user may create a named data file using the BASIC editing facilities. This file

may now be referenced within a program.

e Qutput formatting — The user can control the format of his output to the terminal or printer.

e Data access — Data files may be read and written either sequentially or randomly.

e String manipulation — Alphanumeric strings may be read, printed, concatenated, and searched.

444 COBOL

The common business oriented language, COBOL, is an industry-wide data processing language that is

designed for business applications, such as payroll, inventory control, and accounts receivable.

Because COBOL programs are written in terms that are familiar to the business user, he can describe the

formats of his data and the processing to be performed in simple English-like statements. Therefore,

programmer training is minimal, COBOL programs are self-documenting, and programming of needed

applications is done quickly and with ease.

4.4.4.1 Features - Major features include:

1. On-line editing and debugging — The programmer may create and modify the source program

from his terminal using an easily learned editing facility. After the program has been submitted

to the compiler — again from the terminal — any syntax errors may be immediately corrected

using the editor and the program resubmitted. The program listing is sequence numbered with

symbols cross-referenced to show when they are defined and where used. COBDDT, the on-line,

interactive COBOL debugging package, allows the programmer to check out the program:

a. By selectively displaying a paragraph name

b. By causing the program to pause at any needed step during execution

c. By allowing the program to examine and modify data at will before continuing execution.

Easy program development and debugging increases programmer productivity by deleting

tedious waiting periods.

2. Batch - Using the same commands he used for timesharing, the programmer may submit the

program via a control file to the batch system. This increases his efficiency because other

terminal work may be done concurrent with the batch processing.

3. Access methods — The programmer has a choice of three access methods: sequential, indexed

sequential, and random.

4.4.4.2 Indexed Sequential Access Mode (ISAM) - ISAM needs a minimum amount of programming

while providing a large data file handling capacity. It is supported by the COBOL object time system,

which automatically handles all of the searching and movement of data.

4-16

All reading and writing of an index file (ten levels of indexing) are performed by the run-time operating

system (LIBOL). This does not include the user. When using the indexed sequential files, the programmer

need only specify which record is to be read, written, or deleted.

When records are added to the file, the index is automatically updated. Additions to the file will not lower

the file as with other computers. The common way of using overflow areas for added records has been

prevented. When records have been deleted from the file, the empty space is used again for later additions.

The net effect of the addition and deletion methods increases the time between major “repairs” of the data

files because the time needed to access a file is independent of the number of changes made to it.

1. Sorting — The SORT package permits a user to rearrange records or data according to a set of

user-specified keys. The keys may be ascending or descending, alpha or numeric, and any size

or location within the record. Multireel file devices may be specified.

2. Source library maintenance system - This system lists file entries or adds, replaces, and/or

deletes source language data on a file. It can also add, replace, or get a complete file from the

library.

3. Device independence — The operating system allows the programmer to reference a device with

a user-assigned logical name as well as its physical name, therefore allowing dynamic assign-

ment of peripheral devices at run time.

4. Data base management system interface — The programmer may call on the data base manage-

ment system facilities from within his program. This system, which follows the CODASYL

specifications, allows data files to be consolidated into one or more data bases. Application

programs are then permitted to access the data in the way best suited to their needs.

4.4.5 EDIT

Edit allows on-line creation and modification of programs and data files. The user may insert, delete, or

print lines, as well as modify lines without having to type them over. Advanced methods include string

searches, substitutions, and text manipulations.

The beginner finds the system easy to use due to the user-oriented syntax and extensive helping facilities.

At the same time, the more advanced user may perform complex text manipulation with equal ease.

4.4.6 MACRO

MACRO is the symbolic assembly language on the DECSYSTEM-20. It makes machine language

programming easier and faster for the user by:

1. Translating symbolic operation codes in the source program into the binary codes needed in

machine language instructions

2. Relating symbols specified by the user to stored addresses or numeric values

3. Assigning relative core addresses to symbolic addresses of program instructions and data

4. Providing a sequence numbered listing with symbols cross-referenced to show where they are

defined and where used.

MACRO programs have a series of free format statements that can be prepared on the user’s terminal

with a system editing program. The elements in each statement can be entered in free format. The

assembler interprets and processes these statements, generates binary instructions or data words, and

processes a listing that may contain cross-reference symbols for ease in debugging. MACRO is a device-

independent program,; it allows the user to select, at run time, standard peripheral devices for input and

output files. For example, input of the source program can come from the user’s terminal, output of the

assembled binary program can go to a magnetic tape, and output of the program listing can go to the line

printer. Usually, the source program input and the binary output are disk files.

The MACRO assembler contains powerful macro capabilities that allow the user to create new language

elements. This capability is useful when a sequence of code is used several times with only certain

arguments changed. The code sequence is defined with dummy arguments as a macro instruction.

Therefore, a single statement in the source program referring to the macro by name, along with a list of

the actual arguments, generates the complete sequence needed. This capability allows for the expansion

and adjustment of the assembler in order to perform special functions for each programming job.

4.4.7 DDT

The on-line symbolic debugging tool, DDT (dynamic debugging technique), enables the user to perform

rapid checkout of a new program by making a change resulting from an error detected using DDT and

then immediately executing that section of the program for testing and loading. The user may enter DDT

at any time, either before execution or after an error has occurred. After the source program has been

assembled, the binary object program, with its table of defined symbols, is loaded with DDT. Through

command strings to DDT, the user can specify locations in his program, called breakpoints, where DDT is

to suspend execution in order to accept more commands. In this way, the user can check out his program

section-by-section and if an error occurs, insert the corrected code immediately. Either before DDT starts

execution or at breakpoints, the user can examine and modify the contents of any location. Insertions or

deletions can be in source language code or in different numbered text modes. DDT also performs

searches, gives conditional dumps, and calls user-coded debugging subroutines at breakpoint locations. The

important feature of DDT is that user communication with DDT is in terms of the original symbolic

location names; instead of the machine-assigned locations.

4.4.8 Dumper/Backup

Dumper/Backup provides file backup for the disk file structure. Installations may use it to dump and

restore all files in all directories, to dump and restore only those files that have been changed since last

dump, and to dump and restore individual user directories.

449 FORTRAN

The formula translator language, FORTRAN, is a widely-used and procedure-oriented programming

language. It is designed for solving scientific problems and is therefore made up mathematical-like

statements made in accordance with precisely formulated rules. Therefore, programs written in FOR-

TRAN have meaningful sequences of these statements that are designed to direct the computer to

perform the specified computations.

FORTRAN has a different use in every segment of the computer market. Universities find that FOR-

TRAN is a good language with which to instruct students how to solve problems via the computer. The

scientific market relies on FORTRAN because of the ease with which scientific problems can be shown. In

addition, FORTRAN is used as the primary data processing language by many timesharing utilities.

Because of this wide market, DECSYSTEM-20 FORTRAN is designed to meet the needs of all users.

FORTRAN is a superset of ANSI standard. FORTRAN also provides many extensions and additions to

this standard that greatly enhance its usefulness and increase its compatibility with other FORTRAN

language implementations. The compiler produces optimized object code to decrease execution time.

FOROTS, the FORTRAN object time system, implements all program data file functions and provides

the user with an extensive run-time error reporting system. Device independence is provided to allow the

programmer or operator to determine the physical device at run time.

4-18

The FORTRAN system is easy to use in both timesharing and batch processing environments. Under

timesharing, the user operates in an interactive editing and debugging environment. FORDDT, an interac-

tive program that is used to help in debugging FORTRAN programs, uses the language constructions and

variable names of the program itself — thereby eliminating the need to learn another language in order to

do on-line debugging. Under batch processing, the user submits his program through the batch software in

order to have the compiling, loading, and executing phases performed without his intervention.

FORTRAN programs can be entered into the FORTRAN system from a number of devices: disk,

magnetic tape, user terminal, and card reader. In addition to data files created by FORTRAN, the user

can submit data files or FORTRAN source files created by the system editor. The data files contain the

data needed by the user’s object program during execution. The source files contain the FORTRAN

source text to be compiled by the FORTRAN compiler. Output may be received on the user’s terminal,

disk, or magnetic tape. The source listing cross references all symbols to show where they are defined and

where used.

4.4.10 Data Base Management System

4.4.10.1 Introduction — Certain data, such as that within commercial, accounting, inventory control, and
administrative systems, is used in computer applications that have common relationships and processing
requirements with data in other applications. This can be a problem because as file organizations are
defined in one application or program, restructuring, redundant format, and even repetitive processing of
the same data are often needed in another application.

To complicate the problem, on-line processes (for example, customer order entry, shipment planning, and
student information retrieval systems) use different data structures than the processes used to create and
maintain primary data files. This means that as new applications for existing data are determined and
additional data is defined, program development personnel must change existing data file forms and
programs or create and maintain redundant copies of previously recorded data.

Digital offers a solution to the problem in the Data Base Management System, DBMS. It enables
DECSYSTEM-20 users to organize and maintain data in forms more acceptable to the integration of a
number of related but separate processes and applications. DBMS is ideal in situations where data
processing control and program development functions need structures and methods not satisfied by
typical data management facilities.

4.4.10.2 DBMS Features - The DECSYSTEM-20 Data Base Management System is based on the
proposals of the CODASYL Data Base Task Group (DBTG), which appear in their report of April, 1971.
Digital’s goal for DBMS is to provide features that help users in getting the most significant objectives
stated in the CODASYL DBTG report. These features include:

1. Hierarchical data structures — In addition to sequential structures, simple tree structures, and
more complex network structures can be created and maintained. Data items can be related
within and between different levels of the structure created. Figure 4-3 shows these basic
structures.

2. Nonredundant data occurrence — Data items may appear in a number of different structural
relationships without needing multiple copies of the data. Data structures may be created and
modified in a way most suitable to a given application without changing the occurrence of the
data in structures maintained for other applications.

3. Variety of access and search designs — Data records can be maintained in chains, as shown in
Figure 4-4. Access may be through DIRECT, CALCULATED, or VIA set location modes.
Sort keys, in addition to the normal storage key, may be defined.

4-19

SEQUENTIAL STRUCTURES

TREES

~J NETWORKS

10-2214

Figure 4-3 Basic Data Structures

SET MODES

CHAIN

OWNER

P N

0

MEMBER

P [N]

10]
MEMBER _J

P [N]

N =NEXT POINTER

P = PRIOR POINTER

O = OWNER POINTER

10-2218

Figure 4-4 Chaining of Data Records

4-20

4. Concurrent access — Multiple run units (or programs) that use the same reentrant code module

add to the DECSYSTEM-20 monitor’s extensive centralized file handling capabilities. Any

number of concurrent retrievals to the same data areas can be handled. Concurrent updates to

the same area can be handled by a multiple update queueing mechanism.

5. Protection and centralized control — Usage of a common data definition language creates data

base structures maintained on direct-access storage devices that are selectively referenced by

individual application programs through privacy lock and key mechanisms. Physical placement

of data is specified by a centrally-controlled data definition processor.

6. Device independence — The common input/output and control conventions of the DECSYS-

TEM-20 monitor provide basic device independence. Applications programs have logical areas

instead of physical devices. Data base arcas may reside on the same or different direct-access

storage devices as nondata base files.

7. Program independence of data — Significant steps toward program independence are achieved

by using the SCHEMA and SUB-SCHEMA concepts of data definition. Individual programs

reference only user-selected data elements instead of complete record formats. Program

changes caused by adding new data and relationships are minimized. Changes of the original

form (for example, binary, display) and element sizes need program recompilations.

8. User interaction without structural maintenance responsibilities — Individual users, applications,

and programs may access data structures without the responsibility of maintaining detailed

linkage mechanisms that are internal to the data base software. Common and centralized

authorization error recovery, and building techniques decrease individual activity to maintain

data structures.

9. Multiple language usage — The DBMS data manipulation language is available to both COBOL

and FORTRAN as host languages.

10. DBMS software modules — Consistent with the CODASYL Data Base Task Group report, the

body of DECSYSTEM-20 data base management software includes:

a. DDL - Data description language and its processor

b. DML - Data manipulation language for COBOL and FORTRAN programs

c. DCBS - Data base manager module of reentrant run-time routines

d. DBU - Group of data base system support utilities.

4.4.11 LINK

LINK, the DECSYSTEM-20 linking loader, merges independently translated modules of the user’s

program and any necessary system modules into a single module that can be executed by the operating

system,

The primary output of LINK is the executable version of the user’s program. The user can also request

auxiliary output in the form of map, log, save, symbol, overlay plot, and expanded core image files by

including appropriate instructions in his command strings to LINK. The user can also gain exact control

over the loading process by setting different loading parameters and by controlling the loading of symbols

and modules. Also, by setting parameters in his command strings to LINK, the user may specify the core

sizes and starting addresses of modules, the size of the symbol table, the segment into which the symbol

table is placed, the messages he will see on his terminal or in his log file, and the severity and detail of any

error messages. Finally, he can accept the LINK defaults for items in a file specification or he can set his

own defaults that will be used automatically when he omits an item from his command string.

4-21

4.4.12 RUNOFF

RUNOFF is the DECSYSTEM-20 documentation preparation program. It provides line justification,

page numbering, titling, indexing, formatting, and case shifting. The user creates a file that includes text

and information for formatting and case shifting, with an editor. RUNOFF processes the file and produces

the final formatted file to be output to the terminal, the line printer, or to another file.

With RUNOFF, large amounts of material can be inserted into or deleted from the file without retyping

the text that is unchanged. After a group of changes have been added to a file, RUNOFF produces a new

copy of the file that is correctly paged and formatted.

4.4.13 SORT

The TOPS-20 SORT arranges the records of one or more files according to a user-specified sequence. The

user names the keys on which the records are sorted from one or more fields within a record. The keys can

be in either ascending or descending order. SORT compares the key fields values of all records. Then it

arranges the records in the specified sequence and merges them into a single output file. SORT may be

used under timesharing and batch and may be called from within a COBOL program.

4-22

APPENDIX A

MCA25 KL CACHE/PAGING UPGRADE

A.1 INTRODUCTION

The KL Cache/Paging Upgrade provides performance improvement for the KL10 CPU. The KL Cache
Upgrade improves the cache hit ratio by doubling the cache size. There are currently four caches in the

KL10 CPU.

The KL Paging Upgrade improves the performance of TOPS-20 paging in three ways.

1. Expands the hardware page table from 512 to 1024 entries.

2. Makes the page table two-way associative (two 512-entry page tables).

3. Adds the KEEP bit, allowing the translation of certain pages to be retained in the hardware

page table during context-switch.

A.2 CURRENT KL10 TOPS-20 PAGING

All memory, physical and virtual, is divided into pages of 512 words each. Physical memory can contain

8,192 pages. The locations in physical memory are specified by 22-bit addresses, where the left 13 bits

(14-26) specify the page, and the right 9 bits (27-335) specify the location within the page. The virtual

memory space addressable by a program is 16,384 pages and requires 23-bit addresses, where the left 14

bits (13-26) are the extended page number. However, the virtual space is usually regarded as 32 sections,

512 pages cach. With this view, the extended page number has two parts: the left 4 bits (13-17) specify

the section, and the right 9 bits (18-26) specify the page number. The hardware maps each section of the

virtual address space into a part of the physical address space by transforming the 18-bit addresses into 22-

bit addresses. In this transformation, the right 9 bits of the virtual page is the same location in the

corresponding physical page. The translation maps a virtual page into a physical page by substituting a 13-

bit physical page number for the 9-bit virtual page number, The mappings are different for each section by

virtue of each section having a separate page map. The procedure is carried out automatically by the

pager, but the maps that supply the necessary substitutions are set up by the monitor. The formats for

these maps are shown in Figures A-1 and A-2.

USER PROCESS TABLE

o 1
| 1

1 |

| |

I |
| NOTE:]

ASTERICKS INDICATE

| LOCATIONS WHOSE |

| SINGLE-SECTION |
i PROCESS TABLE I

LISTED ON THE

! NEXT PAGE. !
| |

{ |

i |

| [

(I

417

420 | ADDRESS OF LUUO BLOCK

421 | USER ARITHMETIC OVERFLOW TRAP INSTRUCTION

422 | USER STACK OVERFLOW TRAP INSTRUCTION

423 [USER TRAP 3 TRAP INSTRUCTION

424 [MUUO FLAGS | MUUO OP CODE, A

425 [MUUO OLD PC

426 [E OF MUUO

427 | MUUO PROCESS CONTEXT WORD

430 | KERNEL NO TRAP MUUO NEW PC

431 [KERNEL TRAP MUUO NEW PC

432 [SUPERVISOR NO TRAP MUUO NEW PC

433 | SUPERVISOR TRAP MUUO NEW PC

434 [CONCEALED NO TRAP MUUO NEW PC

435 | CONCEALED TRAP MUUO NEW PC

436 [PUBLIC NO TRAP MUUO NEW PC

437 [PUBLIC TRAP MUUO NEW PC

440

| RESERVED !

477

500 | PAGE FAIL WORD

501 | PAGE FAIL FLAGS

502 [PAGE FAIL OLD PC

503 | PAGE FAIL NEW PC

504

USER PROCESS EXECUTION TIME

505

506 | sER MEMORY REFERENCE COUNT
507

510

l]

| RESERVED !

537 1
540 | USER SECTION 0 POINTER

! l
577 | USER SECTION 37 POINTER |

600 1 |

| RESERVED :
777 | |

Figure A-1

*
*

¥

¥

¥

*

¥

*

*

*

*

¥

*

0

37

40

41

a2

57

60

63

64

137

140

177

200

420

421

422

423

424

507

510

511

512

513

514

515

537

540

577

600

777

EXECUTIVE PROCESS TABLE

EIGHT CHANNEL LOGOUT AREAS

EACH: 0O INITIAL CHANNEL COMMAND

1 GETS CHANNEL STATUSWORD

2 GETS LAST UPDATED COMMAND

3 RESERVED

RESERVED

{ STANDARD PRIORITY INTERRUPT INSTRUCTIONS |

r I
! FOUR CHANNEL BLOCK FILL WORDS ;

| RESERVED JI

| FOUR DTE20 CONTROL BLOCKS |

| EACH: 0 TO11BYTE POINTER]

1 TO10 BYTE POINTER)

! 2 DTE INTERRUPT INSTRUCTION |

! 3 RESERVED |

! 4 EXAMINE PROTECT i

I 5 EXAMINE RELOCATION I

| 6 DEPOSIT PROTECT !

' 7 DEPOSIT RELOCATION)

| |
1 |

[I
| RESERVED |

! 1

EXECUTIVE ARITHMETIC OVERFLOW TRAP INSTRUCTION

EXECUTIVE STACK OVERFLOW TRAP INSTRUCTION

EXECUTIVE TRAP 3 TRAP INSTRUCTION

RESERVED

TIME BASE

PERFORMANCE ANALYSIS COUNT

INTERVAL COUNTER INTERRUPT INSTRUCTION

RESERVED

! EXECUTIVE SECTION O POINTER
|

i EXECUTIVE SECTION 37 POINTER
{
! RESERVED

| [

I

S
,

MR-12640

Extended TOPS-20 Process Table Configuration

424

426

427

430

431

432

433

434

435

436

437

440

477

500

501

502

503

504

505

506

507

510

537

540|

USER PROCESS TABLE

NOTE:

ASTERISKS INDICATE

LOCATIONS WHOSE

USE DIFFERS FROM

THOSE IN THE

EXTENDED PROCESS

TABLE LISTED ON

THE PRECEDING

PAGE.

RESERVED

USER ARITHMETIC OVERFLOW TRAP INSTRUCTION

USER STACK OVERFLOW TRAP INSTRUCTION

USER TRAP 3 TRAP INSTRUCTION

RESERVED

MUUO STORED HERE

MUUO OLD PC WORD

MUUO PROCESS CONTEXT WORD

KERNEL NO TRAP MUUO NEW PC WORD

KERNEL TRAP MUUO NEW PC WORD

SUPERVISOR NO TRAP MUUQO NEW PC WORD

SUPERVISOR TRAP MUUO NEW PC WORD

CONCEALED NO TRAP MUUO NEW PC WORD

CONCEALED TRAP MUUO NEW PC WORD

PUBLIC NO TRAP MUUO NEW PC WORD

PUBLIC TRAP MUUO NEW PC WORD

RESERVED

PAGE FAIL WORD

PAGE FAIL FLAGS

PAGE FAIL OLD PC WORD

PAGE FAIL NEW PC WORD

USER PROCESS EXECUTION TIME

USER MEMORY REFERENCE COUNT

RESERVED

USER SECTION 0 POINTER

I

577 | USER SECTION 37 POINTER

600

7177 |

RESERVED

*
*

¥

X

¥

¥

¥

¥

*

*

¥

¥

¥

37

40

41

42

57

60

63

64

137

140

177

200

420

421

422

423

424

507

510

511

512

513

514

515

537

540

577

600

777

EXECUTIVE PROCESS TABLE

EIGHT CHANNEL LOGOUT AREAS

EACH: 0 INITIAL CHANNEL COMMAND

1 GETS CHANNEL STATUS WORD

2 GETS LAST UPDATED COMMAND

3 RESERVED

-

-

A

o
—

-
o

—

RESERVED

STANDARD PRIORITY INTERRUPT INSTRUCTIONS|

F

! FOUR CHANNEL BLOCK FILL WORDS i

| |
| RESERVED :
I]
{ B
: FOUR DTE20 CONTROL BLOCKS !

EACH: 0 TO11 BYTE POINTER !
| 1 TO10BYTE POINTER |
| 2 DTE INTERRUPT INSTRUCTION |

I 3 RESERVED |

| 4 EXAMINE PROTECT

5 EXAMINE RELOCATION !
| 6 DEPOSIT PROTECT |
| 7 DEPOSIT RELOCATION I

| 1
[1

|)

| !
| RESERVED]

| !

EXECUTIVE ARITHMETIC OVERFLOW TRAP INSTRUCTION

EXECUTIVE STACK OVERFLOW TRAP INSTRUCTION

EXECUTIVE TRAP 3 TRAP INSTRUCTION

RESERVED

TIME BASE

PERFORMANCE ANALYSIS COUNT

INTERVAL COUNTER INTERRUPT INSTRUCTION

RESERVED

EXECUTIVE SECTION 0 POINTER

EXECUTIVE SECTION 37 POINTER

| RESERVED

L—
_—

—J
I—

_.
—.

—a
—

-—

MR-12641

Figure A-2 Single-Section TOPS-20 Process Table Configuration

A-3

A.3 TOPS-20 PAGING MICROCODE

To determine mapping for a virtual page, the microcode carries out a pointer-evaluation procedure that

starts at the appropriate entry in the section table. If it is discovered during this procedure that any of the

following conditions exist, then microcode traps to the monitor to handle the situation.

1. The section or page table is inaccessible.

2. The page map or referenced page is not in memory.

3. The program is attempting to write in a write-protected page.

A trap to the monitor for a reason of this sort is produced by generating a “soft-page failure.” If no
problems arise, the procedure is carried out entirely by the microcode with no need to call the software,

and mapping is generated for the specified virtual page. The procedure requires access to:

1. Both the section table and page map.

2. A memory status table in which the microcode keeps track of the page map.

3. The program-referenced page, and perhaps to other predefined or software-defined tables as

well.

If the complete procedure were to be carried out in every instance, the processor would require at least five

memory references for every one done by the program. To avoid this, each mapping generated by the

procedure is placed in a hardware page table. Then the pager makes its virtual-to-physical translations

from the mappings held in the table. Therefore, it is only necessary to perform the evaluation procedure

when mapping is not available in the hardware page table. Since the object of the procedure is to place

mapping in the table, it is referred to as a “page refill.”

A.4 KEEP BIT

Currently the KL10 hardware forces the monitor to sweep all entries of the entire page table each time it

changes users. The sweep is done when a DATO page is executed to set up the user base register for the

new user’s pages. Sweeping the entire page table clears the user’s pages, and the executive page table

entries. The result is that the executive pages must be refetched by the microcode even though they have

not changed. The KL 10 needlessly spends an estimated 10 percent of the average program execution time

evaluating and refetching executive page table entries. ‘

A.4.1 Maps With KEEP Bit

The upgrade adds the KEEP bit and eliminates the need to refetch the executive page table entries. Pages

with the KEEP bit set are protected when a page table sweep is done.

To set the KEEP bit in the hardware page table, the monitor must set the KEEP bit (bit 5) of all of the

section and map pointers used to evaluate the translation of a virtual reference. Refer to Figures A-3

through A-8.

IMMEDIATE SECTION POINTER

00 02 03 04 05 06 07 11 12 17 18 22 23 35
T T T 71 1 T T 1 1T T 1 T T T LI N A |

STORAGE

1

PAGE NUMBER
1 Plw]klic RESERVED MEDIUM RESERVED OF PAGE MAP

1 i l | i ! i i i 1 1 I 1 i i i l i 1 i i i 1 1 i 1 1

MR-12642

Figure A-3 Immediate Section Pointer

A-4

SHARED SECTION POINTER

00 02 03 04 05 06 07 17 18 35
| T 7 T T TT7T 71 T T T T T T T T T T

INDEX TO SPT LOCATION CONTAINING
2 PIwW]K|C RESERVED PAGE ADDRESS FOR MAPPING

1 1 1 1 I 1 | 1 1 i L 1 1 1 i 1 { | ! 1 1 i | L 1 1 1 1 I

MR-12643

Figure A-4 Shared Section Pointer

INDIRECT SECTION POINT

00 02 03 04 05 06 07 08 09 17 18 35
1 I 1 1 1 1 1 I 1 1 1 1) 1 ! 1] 1 1 1 1 Bl 1 T |

3 plwlklc NOT SECTION TABLE INDEX TO SPT LOCATION CONTAINING

USED INDEX ADDRESS OF ANOTHER SECTION TABLE
- | i i I i 1] 1 i | 1 i 1 | I i [1 1 L i 1 1 i H || 1 |

MR-12644

Figure A-5 Indirect Section Pointer

IMMEDIATE MAP POINTER

00 02 03 04 05 06 07 11 12 17 18 22 23 36
|} T T I LI ! SI]'OF'{AG'E ¥ LI 1 1 1 L} PA{GElNU'MB'ER 1 1 I

1 PIW]K]|C RESERVED MEDIUM RESERVED OF PAGE MAP

L L i 1 L] 1 | L 1 1 1 1 l 1 I} 1} 1 i] 1 1 1 1 i i |

MR-12645

Figure A-6 Immediate Map Pointer

SHARED MAP POINTER

00 02 03 04 05 06 07 17 18 35
| — T T T 7T T 1T T 177 1T T T _ T T T 1T 1T T T 71

INDEX TO SPT LOCATION CONTAINING

2 "IV C RESERVED PAGE ADDRESS FOR MAPPING
| | 1 | } | 1 1 1 1 1 | | |] 1] 1] i 1 l ! 1 1] l i

MR-12646

Figure A-7 Shared Map Pointer

INDIRECT MAP POINTER

00 02 03 04 05 06 07 08 09 17 18 35
1 I T I 1 I 1 ¥ T I I 1 | | 1 1 1 1 LU 1 i T 1 1 1 T ¥

3 plwlkle NOT PAGE MAP INDEX TO SPT LOCATION CONTAINNG

USED INDEX ADDRESS CF ANQTHER PAGE TABLE
1 | 1 I] 1 1 i 1 i 1 | 1 bod { i |] I | 1 L } 1 1] 3

MR-12647

Figure A-8 Indirect Map Pointer

A5 TWO-WAY ASSOCIATIVE

Each new release of the monitor requires more virtual address space and more extended sections. As more

sections are used, the chance of the virtual addresses requiring the same hardware page table space

increases. Since the KL10 has only one hardware page table, any time two references require the same

page but a different section, a page refill must be done. Some programs or even instructions can cause the

pager to constantly refill back and forth between two sections. This is called “page table thrashing.” To

reduce the number of references that require the same page table reference, the KLL Page Table Upgrade

expands the number of page tables in the KL10 from one to two. Two page tables, or a two-way

associative page table, reduces “thrashing.”

A.6 DATA OUT PAGER (DATAO PAG)

The DATAO PAG instruction has been modified to allow the page table to be swept while retaining

entries with the KEEP bit. See Figure A-9.

Set up the process-oriented elements of the pager according to the conient of location E. The format of
word E is shown in Table A-1.

00 12 13 14 17 18 . 35

70114 | X Y

MR-12648

Figure A-9 DATAO Page Instruction

Table A-1 Word E Format

Bit Description

00 Select the current and previous context AC blocks specified by bits 6-8 and 9-11 of E,

respectively.

01 Select previous context section specified by bits 13-17 of E.

02 Load User Base Register (UBR).

03 Invalidate entire page table if bit 3 is reset; invalidate only non-keep entries in page table if

bit 3 is set.

06-08 Current AC block number.

09-11 Previous context AC block number.

13-17 Previous context section number.

18 Do not update user’s accounts, loc 504-507 of UPT.

23-35 User base register.

A-6

A.7 THE MAP INSTRUCTION |

If the pager is on and the processor is in kernel or user I/O mode, map the page number of the virtual

effective address E and place the resulting physical address and other map data in AC. See Figure A-10.

The information loaded into AC for a true mapping is shown in Table A-2.

Failure of the instruction to generate a valid mapping is indicated by the AC receiving a page-fail word.

(Refer to Paragraph A.8.)

0 _ o802 4 w7es 3

257 A | X Y

Figure A-10 Map Instruction

Table A-2 AC Format

Bit Description

00 USER'’s page=1, EXEC’s page=0

01 0

02 1

03 MODIFIED (indicates page has been written)

04 WRITABLE (indicates page is writable)

05 0

06 PUBLIC

07 CACHEABLE

08 KEEP bit (page will not be invalidated on DATAO PAGE)

09-13 0

14-35 PHYSICAL ADDRESS

A.8 PAGE FAILURE

When the pager is unable to make a desired reference, a “page failure” occurs. The pager terminates the

instruction immediately without disturbing the PC or storing any results in memory or the accumulators.

It then executes a page fail trap. The trap operation uses four locations in the user processor table.

KL-Style Paging

500 page fail word

page fail flags

502 page fail old PC

501

KI-Style Paging

page fail word

503 page fail new PC

page fail old PC word

page fail new PC word

The processor then resumes operation in the new state at the location now addressed by the PC. The page-

fail word supplies the information.

00 01 05 06 07 08 09 12 13 35

L L OIT T N(3T T T T T T T T T T T T T T T T T T

FAILURE N
u TYPE USED K USED VIRTUAL ADDRESS

[N DO i L1 NS TR DU TN SR NN N NN OO U FUUUU NN SN SRS S NN N N SR E B

Figure A-11 Page Fail Word

Table A-3 Page Fail Word Format

MR-12650

Bit Description

00 USER’s page=1, EXEC’s page=0

01-05 Failure type (see DECSYSTEM-20 Processor Reference Manual)*

06-07 Not used

08 KEEP bit

09-13 0

14-35 Virtual address

*<01:05> Page Fail Codes

21 Proprietary violation 36 EXEC Mode AR data parity error
23 Address Failure 37 EXEC Mode ARX data parity error
24 lHlegal/Indirect 76 User Mode AR data parity error
25 Page Table Parity Error 77 User Mode ARX data parity error
27 lllegal Address - Section>37

A-8

A.9 CONDITIONS OUT, PAGER (CONO PAG)

The CONO PAG instruction executes exactly the same as the current KL10. Entire page tables will be

invalidated, including KEEP entries.

A.10 MICROCODE

The KL10 microcode will be changed for DATAO PAG to sweep the entire page table and the KEEP

bits. Changes to the page-refill microcode are also required to move the KEEP bit from bit 5 of the map

pointer to bit 23 of AR in the hardware. The following is an estimate of the number of additional

microcode words.

Three words to move the KEEP bit in the refill routine.

Three words to allow DATAO PAG to clear the KEEP bits.

One word to honor the KEEP bit.

No additional words required to cause CONO PAGE to clear the page table.B

The Mbox hardware sweeps the page table. Mbox hardware invalidates the page table according to the

code in the number field and the assertion of COND/MBOX CTL. The number field is decoded as shown

in Table A-4.

Table A-4 Number Field Format

Bit Description

00 Normal

01 Enable/invalidate entire page table

02 Enable right-half and left-half of page table

10 Write translation buffer

20 Write page table directory, set valid bit

31 Invalidate entire page table

33 Write page table directory, set valid bits for even and odd page

41 Enable/invalidate non-KEEP entries of page table

61 Invalidate non-KEEP entries of page table

70* Select both page table 0 and page table 1

T1% Select page table O only

73% Select page table 1 only

100 Set I/O PF ERR

200 Set PAGE FAIL

* Indicates that these codes are not currently used in KL. Code 70, 71, and 73 are used by diagnostics and KLINIT only.

A-9

A.11 PAGE REFILL ALGORITHM

Prior to the O.S. executing CONO PAG to turn on paging, the page table is invalidated by clearing all

VALID bits in the translation buffers.

When the Ebox issues a request to the Mbox, the pager checks the USER bit and section number in both
page table directories, and the VALID bits in the translation buffers. A mismatch in both page table
directories or a non-valid translation buffer causcs a page-refill trap.

Microcode then evaluates the section pointers and map pointers. Each access bit (P,W,K,C) of each
pointer is ANDed with the same access bit of all the pointers evaluated. The pager then writes the
resulting section information into the page table directory. Two translation buffer entries are then cleared
in the least-recently refilled (LRR) page table associated with the current page table directory. Only two
entries are cleared, rather than four as in the current KL10, because there are twice as many directory
entries per directory, or four times as much directory space as in the current KL10.

Microcode places paging information in the Arithmetic Register (AR), ACCESS bit (A,P,W,S,C) in
AR<00:04>, physical page number in AR<05:17>, and KEEP bit in AR<23>. The rest of the bits in AR

should be zero to generate correct parity in the hardware page table. Microcode then writes the paging

information into the translation buffer of the LRR page table. The hardware updates the LRR bit when
the translation buffer is written.

On a context-switch, the monitor may choose to sweep both page tables except those entries that have the

KEEP bit set. DATAO PAG with bit 3 set clears the VALID bits in both translation buffers for those

entries that do not have the KEEP bit. However, both page table directories and LRR information remain

as they were before the context-switch.

After the sweep, the entries in the translation buffers with the KEEP bit are still valid. References to the

kept pages will not cause refills. If after the sweep, one page table translation buffer has the KEEP bit set,

and the other page table is not valid, the LRR bit is forced to indicate that the empty page table is least-

recently refilled. The next refill then goes into the unused translation buffer. After both page tables are

valid, the next refill goes into the page table that is least-recently refilled.

A.12 APRID WORD

Bit 23 of the APRID word is used to identify the hardware option of the keep feature in the paging board.

A.13 CACHE STRUCTURE

The cache consists of a data buffer for storing instructions and operands, and a directory buffer for storing

the physical memory address and status (VALID and WRITTEN bits) information (Figure A-12). The

contents of the directory buffer identify the contents of the data buffer. The cache data buffer contains

4096 locations, each of which is associated with a valid and a written bit location in the directory. The

4096-word data and status bit locations are divided into 1024 sets of four, which are directly associated

with corresponding address locations in the directory. In addition, the 1024 sets of data and directory

locations are divided further into sets of 256, resulting in four cache quarters. If a copy of a block is made

from main memory, it is always and only stored in one of the four corresponding (addressed) blocks of the

data buffer. The actual block to be used is specified by the contents of a use table. The use table maintains

a record of the order in which the four addressed cache blocks are used and maintains one entry for each

of the 256 lines in the cache. The contents of the use table are used to select the block that contains the

least-recently used (LRU) data for storing the new data.

Besides writing a block of four words into the cache data buffer, the associated directory locations are also

updated to specify the valid words and the physical address of the data block. The written bits in the cache

directory are not set when data is moved from memory to the cache, but set only when the EBox writes

into the cache. When words are written into the cache by the EBox, the address and the valid bits in the

directory are also updated.

A-10

aIm_NNgJYde))diseqJosdwexy71-VY93]ALIHVdANVS1189€QHOMHOV3ALIYYdONVS1ig21
<-Slgv—»«Slgv—»-SAYOM¥>D—

anva
NILLIYM

€a4OMZa4OMLQHOMOQHOM
elzlti]oelejL|o

££-92ss3vaaynd
d

NOILYOO01NOILVO0TJHOVDJHOVD
NOILYDO1

NOILYD01
JHOVD

3HOVD/3S€‘vESSIVAA
Y

NdD
SE'vE

e

viva

YAXOlQITvAXGMHSDAFTVAXaMHSOaNNO4aH{_aInvAANVGzlHOLVINHOLVHY4INODvivdJHOVO

A-11

The convention that a block from main memory is always stored in the LRU block of the corresponding

data buffer line ensures that a given line in the data buffer will never contain more than one quadword

from a given page. Therefore, a conflict (more than one address in one line matching) will not occur when

comparing the address with the contents of the directory to determine if the desired word is in the data

buffer. This feature of refilling the cache also tends to keep frequently used instructions and operands

stored in the cache for a longer period of time.

At any given time, the cache may contain up to 1024 quadwords (4096 words). The distribution may

range from cight complete pages, from anywhere in core, to four words from every page of any section of

core. When the EBox makes a paged or unpaged request to read or write a word (for which the page test

has passed), the cache directory is checked to see if a record exists for the quadword in which the

requested word is located. If an address matches and at least one valid bit in that block is set, then the

cache has a record of the quadword.

A.13.1 Cache Control

The cache control executes requests initiated by the EBox and the channel control. Both the EBox and the

channel control can issue data-read and data-write requests to the cache control. The EBox can also

request to load or read internal MBox registers, check if a given page is writable, map the virtual address,

and sweep the cache.

Data-read and data-write requests from the EBox, and from the channel control, cause the cache control to

enter a specific cache cycle and step through a set of time states. (The relevant time-state-set varies with

the cycle.) The cache control can execute four major and two minor cache cycles (Table A-5).

Table A-5 Cache Cycle Types

Cycle Major Minor

CSH EBOX X

CSH PAGE REFILL

CSH WRITEBACK

CSH MB

CSH CCA

CSH CHAN

All EBox requests are serviced by the MBox by starting a cache EBox cycle. As the cache control

advances through the relevant states in response to an EBox request, the page table (if paged reference)

and cache directory are checked for valid entries. Page table entries are valid when the USER bit and

section address matches the EBOX USER signal and virtual section address presented by the EBox and

the INVAL bit in the table is cleared. Cache entries are valid if the address of the requested word is found

and the VALID bit is set in the cache directory. If a valid entry is found for an EBox request, the data is

simply transferred between the cache and the AR. If a valid entry is not found and the EBox requested to

read a word, the cache control initiates a core read cycle to fetch the desired word along with adjacent

words of the quadword group. For EBox write requests, the cache control writes the word into the cache

A-12

block that has a record of one quadword or into the least-recently used cache block; no core cycle is
started. Words coming in from core are placed into the memory buffers (MBs) by the core and MB
controls and then are individually moved into the cache by the cache and MB controls. The first word,
which will be the word the EBox requested, is placed on cache data lines so that the EBox can take it.
Words are written back into core only when the EBox makes a request to read or write a word (except for
cache sweep) and a valid entry is not found but the written bit is set (Table A-5).

Having the written bit set means that the corresponding data is more up to date than the core copy and,
therefore, core must be validated before that cache location can be used for the pending request. To write
words back to core, the cache and MB controls move the words into the MBs and start a core write cycle

after the first word is placed into an MB.

The channel control does not write into the cache, but moves the words to be written from the channel

buffer to the MBs and causes the cache control to invalidate any valid entries in the cache. On channel
writes, the valid entries in the cache (if any) are invalidated because it is defined that data coming in from

mass storage is more up to date (or is another process) than any data that may still be in core or in cache.

Therefore, on channel-write requests, the cache control always initiates a core-write cycle. On channel

reads, any valid entries in the cache will be moved into the MBs and a core-read cycle will be initiated for

the remaining words requested, if any. The channel control then moves the words from the MBs to the

channel buffer.

A.13.2 Cache Sweep Instruction

A cache data sweep for a one-page instruction (SWPIO, SWPVO, and SWPUO) will now sweep two

pages. Both even and odd pages are swept when this instruction is executed.

t KL10-Based Technical Manual Reader’s Comments

EK-OKL10-TM-002

Your comments and suggestions will help us in our continuous effort to improve the quality and usefulness of our

publications.

What is your general reaction to this manual? In yourjudgmént is it complete, accurate, well organized, well
written, etc.? Is it easy to use?

What features are most useful?

What faults or errors have you found in the manual?

Does this manual satisfy the need you think it was intended to satisfy?

Does it satisfy your needs? Why?

O Please send me the current copy of the Technical Documentation Catalog, which contains information on

the remainder of DIGITAL’s technical documentation.

Name Street

Title City

Company State/Country

. Department Zip

Additional copies of this document are available from:

Digital Equipment Corporation

444 Whitney Street

Northboro, MA 01532

Attention: Printing and Circulating Service (NRO2/M15)

Customer Services Section

* Order No. _EK-OKL10-TM MRO

Do Not Tear — Fold Here and Staple

Eflaflnau | || " | No Postage
Necessary

if Mailed in the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD. MA.

POSTAGE WILL BE PAID BY ADDRESSEE

Digital Equipment Corporation

Educational Services/Quality Assurance

12 Crosby Drive (BUO/E08)

Bedford, MA 01730

Digital Equipment Corporation « Bedford, MA Q1730

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	00a
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	3-69
	3-70
	3-71
	3-72
	3-73
	3-74
	3-75
	3-76
	3-77
	3-78
	3-79
	3-80
	3-81
	3-82
	3-83
	3-84
	3-85
	3-86
	3-87
	3-88
	3-89
	3-90
	3-91
	3-92
	3-93
	3-94
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	reply_1
	reply_2
	xx_back

