ULTRIX

Reference Pages Section 1: Commands M -Z

Order Number: AD-PCOWA-T1
June 1980

Product Version: ULTRIX Version 4.0 or higher

This manual describes commands from M to Z that are available to all ULTRIX users for
both RISC and VAX platforms.

digital equipment corporation
maynard, massachusetts

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c) (1) (i) of the Rights in Technical Data and Computer Software clause of DFARS 252.227-7013.

© Digital Equipment Corporation 1984, 1986, 1988, 1990
All rights reserved.

Portions of the information herein are derived from copyrighted material as permitted under license agreements with
AT&T and the Regents of the University of California. © AT&T 1979, 1984. All Rights Reserved.

Portions of the information herein are derived from copyrighted material as permitted under a license agreement with
Sun MicroSystems, Inc. © Sun MicroSystems, Inc, 1985. All Rights Reserved.

Portions of this document © Massachusetts Institute of Technology, Cambridge, Massachusetts, 1984, 1985, 1986,
1988.

The information in this document is subject to change without notice and should not be construed as a commitment
by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital or its
affiliated companies.

The following are trademarks of Digital Equipment Corporation:

Engnan DECUS ULTRIX Worksystem Software
DECwindows UNIBUS

CDA DTIF VAX

DDIF MASSBUS VAXstation

DDIS MicroVAX VMS

DEC Q-bus VMS/ULTRIX Connection

DECnet ULTRIX VT

DECstation ULTRIX Mail Connection XUl

Ethernet is a registered trademark of Xerox Corporation.

Network File System and NFS are trademarks of Sun Microsystems, Inc.

POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers.
System V is a registered trademark of AT&T.

Tektronix is a trademark of Tektronix, Inc.

Teletype is a registered trademark of AT&T in the USA and other countries.

UNIX is a registered trademark of AT&T in the USA and other countries.

About Reference Pages

The ULTRIX Reference Pages describe commands, system calls, routines, file
formats, and special files for RISC and VAX platforms.

Sections

The reference pages are divided into eight sections according to topic. Within each
section, the reference pages are organized alphabetically by title, except Section 3,
which is divided into subsections. Each section and most subsections have an
introductory reference page called int ro that describes the organization and
anything unique to that section.

Some reference pages carry a one- to three-letter suffix after the section number, for
example, scan(lmh). The suffix indicates that there is a ‘family’’ of reference
pages for that utility or feature. The Section 3 subsections all use suffixes and other
sections may also have suffixes.

Following are the sections that make up the ULTRIX Reference Pages.

Section 1: Commands

This section describes commands that are available to all ULTRIX users. Section 1 is
split between two binders. The first binder contains reference pages for titles that fall
between A and L. The second binder contains reference pages for titles that fall
between M and Z.

Section 2: System Calls

This section defines system calls (entries into the ULTRIX kernel) that are used by
all programmers. The introduction to Section 2, intro(2), lists error numbers with
brief descriptions of their meanings. The introduction also defines many of the terms
used in this section.

Section 3: Routines

This section describes the routines available in ULTRIX libraries. Routines are
sometimes referred to as subroutines or functions.

Section 4: Special Files

This section describes special files, related device driver functions, databases, and
network support.

Section 5: File Formats

This section describes the format of system files and how the files are used. The files
described include assembler and link editor output, system accounting, and file
system formats.

Section 6: Games

The reference pages in this section describe the games that are available in the
unsupported software subset. The reference pages for games are in the document
Reference Pages for Unsupported Software.

Section 7: Macro Packages and Conventions

This section contains miscellaneous information, including ASCII character codes,
mail addressing formats, text formatting macros, and a description of the root file
system.

Section 8: Maintenance

This section describes commands for system operation and maintenance.

Platform Labels

The ULTRIX Reference Pages contain entries for both RISC and VAX platforms.
Pages that have no platform label beside the title apply to both platforms. Reference
pages that apply only to RISC platforms have a “RISC”’ label beside the title and the
VAX-only reference pages that apply only to VAX platforms are likewise labeled
with ““VAX.”’ If each platform has the same command, system call, routine, file
format, or special file, but functions differently on the different platforms, both
reference pages are included, with the RISC page first.

Reference Page Format

Each reference page follows the same general format. Common to all reference pages
is a title consisting of the name of a command or a descriptive title, followed by a
section number; for example, date(l). This title is used throughout the
documentation set.

The headings in each reference page provide specific information. The standard
headings are:

Name Provides the name of the entry and gives a short description.
Syntax Describes the command syntax or the routine definition. Section 5
reference pages do not use the Syntax heading.

Description Provides a detailed description of the entry’s features, usage, and
syntax variations.

Options Describes the command-line options.

Restrictions Describes limitations or restrictions on the use of a command or
routine.

Examples Provides examples of how a command or routine is used.

iv About Reference Pages

Return Values Describes the values returned by a system call or routine. Used in
Sections 2 and 3 only.

Diagnostics Describes diagnostic and error messages that can appear.

Files Lists related files that are either a part of the command or used
during execution.

Environment Describes the operation of the system call or routine when
compiled in the POSIX and SYSTEM V environments. If the
environment has no effect on the operation, this heading is not
used. Used in Sections 2 and 3 only.

See Also Lists related reference pages and documents in the ULTRIX
documentation set.

Conventions

The following documentation conventions are used in the reference pages.

% The default user prompt is your system name followed by a right
angle bracket. In this manual, a percent sign (%) is used to
represent this prompt.

A number sign is the default superuser prompt.

user input This bold typeface is used in interactive examples to indicate
typed user input.

system output This typeface is used in text to indicate the exact name of a
command, routine, partition, pathname, directory, or file. This
typeface is also used in interactive examples to indicate system
output and in code examples and other screen displays.

UPPERCASE The ULTRIX system differentiates between lowercase and

lowercase uppercase characters. Literal strings that appear in text,
examples, syntax descriptions, and function definitions must be
typed exactly as shown.

rlogin This typeface is used for command names in the Syntax portion
of the reference page to indicate that the command is entered
exactly as shown. Options for commands are shown in bold
wherever they appear.

filename In examples, syntax descriptions, and routine definitions, italics
are used to indicate variable values. In text, italics are used to
give references to other documents.

[1] In syntax descriptions and routine definitions, brackets indicate
items that are optional.

{1} In syntax descriptions and routine definitions, braces enclose lists

from which one item must be chosen. Vertical bars are used to
separate items.

About Reference Pages v

0. In syntax descriptions and routine definitions, a horizontal ellipsis
indicates that the preceding item can be repeated one or more
times.

A vertical ellipsis indicates that a portion of an example that
would normally be present is not shown.

cat(l) Cross-references to the ULTRIX Reference Pages include the
appropriate section number in parentheses. For example, a
reference to cat(1) indicates that you can find the material on the
cat command in Section 1 of the reference pages.

Online Reference Pages

The ULTRIX reference pages are available online if installed by your system
administrator. The man command is used to display the reference pages as follows:

To display the 1s(1) reference page:

% man 1ls

To display the passwd(1) reference page:

% man passwd

To display the passwd(5) reference page:

% man 5 passwd

To display the Name lines of all reference pages that contain the word ‘‘passwd’’:
% man -k passwd

To display the introductory reference page for the family of 3xti reference pages:
% man 3xti intro

Users on ULTRIX workstations can display the reference pages using the
unsupported xman utility if installed. See the xman(1X) reference page for details.

Reference Pages for Unsupported Software

The reference pages for the optionally installed, unsupported ULTRIX software are in
the document Reference Pages for Unsupported Software.

vi About Reference Pages

m4 (1)

Name

m4 — macro processor

Syntax
md [options] [files]

Description

The m4 macro processor is intended as a front end for Ratfor, C, and other languages.
Each of the argument files is processed in order; if there are no arguments, or if an
argument is hypen (-), the standard input is read. The processed text is written on the

standard output.
Options

The options and their effects are as follows:

-e Operate interactively. Interrupts are ignored and the output is
unbuffered.

-s Enable line sync output for the C preprocessor (#line ...)

-Bint Change the size of the push-back and argument collection buffers
from the default of 4,096.

-Hint Change the size of the symbol table hash array from the default of
199. The size should be prime.

=Sint Change the size of the call stack from the default of 100 slots.
Macros take three slots, and non-macro arguments take one.

~Tint Change the size of the token buffer from the default of 512 bytes.

To be effective, these flags must appear before any file names and before any -D or

-U flags:

=Dname[=val]
Defines name to val or to null in val’s absence.

-Uname undefines name.

Macro calls have the following form:

name (argl,arg2, . . . , argn)

The left parenthesis (() must immediately follow the name of the macro. If a
defined macro name is not followed by a left parenthesis, it is deemed to have no
arguments.

Leading unquoted blanks, tabs, and new lines are ignored while collecting arguments.
Potential macro names consist of alphabetic letters, digits, and underscore (_), where
the first character is not a digit.

Left and right single quotes (") are used to quote strings. The value of a quoted
string is the string stripped of the quotes.

Commands 1-389

m4(1)

When a macro name is recognized, its arguments are collected by searching for a
matching right parenthesis. Macro evaluation proceeds normally during the
collection of the arguments, and any commas or right parentheses which happen to
turn up within the value of a nested call are as effective as those in the original input
text. After argument collection, the value of the macro is pushed back onto the input
stream and rescanned.

The m4 makes available the following built-in macros. They may be redefined, but
once this is done the original meaning is lost. Their values are null unless otherwise
stated.

define The second argument is installed as the value of the macro
whose name is the first argument. Each occurrence of $z in
the replacement text, where n is a digit, is replaced by the
n-th argument. Argument O is the name of the macro;
missing arguments are replaced by the null string. $# is
replaced by the number of arguments; $+ is replaced by a list
of all the arguments separated by commas; $@ is like $*,
but each argument is quoted (with the current quotes).

undefine removes the definition of the macro named in its argument.

defn returns the quoted definition of its argument(s). It is useful
for renaming macros, especially built-ins.

pushdef like define, but saves any previous definition.

popdef removes current definition of its argument(s), exposing the
previous one, if any.

ifdef If the first argument is defined, the value is the second
argument, otherwise the third. If there is no third argument,
the value is null. The word unix is predefined on UNIX
versions of m4 .

changequote Change quote characters to the first and second arguments.
The changequote without arguments restores the original
values (that is, *).

changecom change left and right comment markers from the default #
and new-line. With no arguments, the comment mechanism
is effectively disabled. With one argument, the left marker
becomes the argument and the right marker becomes new-
line. With two arguments, both markers are affected.
Comment markers may be up to five characters long.

divert The m4 maintains 10 output streams, numbered 0-9. The
final output is the concatenation of the streams in numerical
order; initially stream O is the current stream. The divert
macro changes the current output stream to its (digit-string)
argument. Output diverted to a stream other than 0 through
9 is discarded.

undivert causes immediate output of text from diversions named as
arguments, or all diversions if no argument. Text may be
undiverted into another diversion. Undiverting discards the
diverted text.

1-390 Commands

divhum
dnl

ifelse

incr

decr
eval

len

index

substr

shift
translit
include
sinclude
sysemd

sysval
maketemp

mdexit

m4(1)

returns the value of the current output stream.

reads and discards characters up to and including the next
new line.

has three or more arguments. If the first argument is the
same string as the second, then the value is the third
argument. If not, and if there are more than four arguments,
the process is repeated with arguments 4, 5, 6 and 7.
Otherwise, the value is either the fourth string, or, if it is not
present, null.

returns the value of its argument incremented by 1. The
value of the argument is calculated by interpreting an initial
digit-string as a decimal number.

returns the value of its argument decremented by 1.

evaluates its argument as an arithmetic expression, using
32-bit arithmetic. Operators include +, —, *, /, %, *
(exponentiation), bitwise &, |, A, and ~; relationals;
parentheses. Octal and hex numbers may be specified as in
C. The second argument specifies the radix for the result;
the default is 10. The third argument may be used to specify
the minimum number of digits in the result.

returns the number of characters in its argument.

returns the position in its first argument where the second
argument begins (zero origin), or —1 if the second argument
does not occur.

returns a substring of its first argument. The second
argument is a zero origin number selecting the first
character; the third argument indicates the length of the
substring. A missing third argument is taken to be large
enough to extend to the end of the first string.

is an unimplemented macro. Using shift generates an error
message.

transliterates the characters in its first argument from the set
given by the second argument to the set given by the third.
No abbreviations are permitted.

returns the contents of the file named in the argument.

is identical to include, except that it says nothing if the file is
inaccessible.

executes the UNIX command given in the first argument.
No value is returned.

is the return code from the last call to syscmd.

fills in a string of XXXXX in its argument with the current
process id.

causes immediate exit from m4. Argument 1, if given, is the
exit code; the default is 0.

Commands 1-391

m4(1)

mdwrap

errprint
dumpdef

traceon

traceoff

See Also

argument 1 will be pushed back at final EOF. For example:

mdwrap(‘cleanup()’)

prints its argument on the diagnostic output file.

prints current names and definitions, for the named items, or
for all if no arguments are given.

with no arguments, turns on tracing for all macros (including
built-ins). Otherwise, turns on tracing for named macros.

turns off trace globally and for any macros specified.
Macros specifically traced by traceon can be untraced only
by specific calls to traceoff.

"The M4 Macro Processor,” ULTRIX Supplementary Documents Vol. II:Programmer

1-392 Commands

machine(1)

Name

machine — return architecture type of machine

Syntax

machine

Description

The machine command prints on the standard output the architecture of the
machine. Legal values are either mips or vax depending upon your hardware. The
machine command is used within shell procedures to tailor the results to a specific
architecture.

The exit value of machine is always zero.

Commands 1-393

mail (1)

Name

mail — send or read mail
Syntax

mail [-v] [-i] [-n] [—e] [-s subject] [user...]

mail [-v] [-i] [-n] —f [name]

mail [-v] [=i] [-n] -u user

mail nodename::username (If DECnet is installed.)
Description

The mail utility is an intelligent mail processing system which has a command
syntax similar to ed. However, in mail lines are replaced by messages.

If DEChnet is installed on your system, you can also send and receive mail from other
DECnet users. See mailaddr(7) for information on DECnet addressing.

Sending mail. To send a message to one or more persons, type mail and the names
of the people receiving your mail. Press the RETURN key. Note that if you use
other arguments, the names of the recipients should always be the last element on the
command line. For example,

mail -v -s "mail message" users

If you do not specify a subject on the command line, you are prompted for a subject.
After entering a subject, and pressing the RETURN key, type your message. To send
the message, type a period (.) or CTRL D at the beginning of a new line.

You can use tilde (~) escape sequences to perform special functions when composing
mail messages. See the list of options for more on tilde escape sequences.

Reading mail. In normal usage mail is given no arguments and checks your mail
out of the mail directory. Then it prints out a one line header of each message there.
The current message is initially the first message and is numbered 1. It can be
displayed using the print command.

The —e option causes mail not to be printed. Instead, an exit value is returned. For
the exit status, see RETURN VALUES. You can move among the messages by
typing a plus sign (+) followed by a number to move forward that many messages, or
a minus sign (-) followed by a number to move backward that many messages.

Disposing of mail. After reading a message you can delete (d) it or reply (r) to it.
Deleted messages can be undeleted, however, in one of two ways: you can use the
undelete (u) command and the number of the message, or you can end the mail
session with the exit (x) command. Note that if you end a session with the quit (q)
command, you cannot retrieve deleted messages.

Specifying messages. Commands such as print and delete can be given a list of
message numbers as arguments. Thus, the command

delete 1 2
deletes messages 1 and 2, while the command
delete 1-5

deletes messages 1 through 5. The asterisk (*) addresses all messages, and the dollar
sign ($) addresses the last message. For example, the top command, which prints

1-394 Commands

mail (1)

the first few lines of a message, can be used in the following manner to print the first
few lines of all messages:

top *

Replying to or originating mail. Use the reply command to respond to a message.

Ending a mail processing session. End a mail session with the quit (q)
command. Unless they were deleted, messages that you have read go to your mbox
file. Unread messages go back to the mail directory. The —f option causes mail to
read in the contents of your mbox (or the specified file) for processing. When you
quit, the mail utility writes undeleted messages back to this file. The —u flagis a
short way of specifying: mail -f /usr/spool/mail/user.

Personal and systemwide distribution lists. You can create a personal distribution
list that directs mail to a group of people. Such lists can be defined by placing a line
similar to the following in the .mailrc file in your home directory:

alias cohorts bill ozalp jkf mark kridle@ucbcory

Cohorts is the name of the distribution list that consists of the following users: bill,
ozalp, jkf, mark, and kridle@ucbcory. A list of current aliases can be displayed with
the alias (a) command in mail.

System wide distribution lists can be created by editing /usr/lib/aliases.
The syntax of system wide lists differs from that of personally defined aliases.

Personal aliases are expanded in mail you send. When a recipient on a personally
defined mailing list uses the reply (r) option, the entire mailing list receives the
response automatically. System wide aliases are not expanded when the mail is sent,
but any reply returned to the machine will have the system-wide alias expanded as all
mail goes through sendmail.

Forwarding is also a form of aliasing. A .forward file can be set up in a user’s
home directory. Mail for that user is then redirected to the list of addresses in the
.forward file. See aliases(5) and sendmail(8) for more information.

Network mail (ARPA, UUCP, Berknet, DECnet) See mailaddr(7) for a description
of network addresses.

Options

- Causes mail not to be printed. Instead, an exit value is returned.

-f Causes mail to read in the contents of your mbox file (or another file you
specify) for processing.

—i Causes tty interrupt signals to be ignored. This is useful when using mail
on noisy phone lines.

-n Inhibits the reading of /usr/lib/Mail.rc.

~S Specifies a subject on the command line. Note that only the first argument
after the —s flag is used as a subject and that you must enclose subjects
containing spaces in quotes.

-u Specifies a short hand for expressing the following:

mail -f /usr/spool/mail/user

Commands 1-395

mail (1)

-v Prints the mail message. The details of delivery are displayed on the
user’s terminal.

The following options can be set in the .mailrc file to alter the behavior of the mail
command.

Each command is typed on a line by itself and may take arguments following the
command word and the command abbreviation. For commands that take message
lists as arguments, if no message list is given, then the next message forward which
satisfies the command’s requirements is used. If there are no messages forward of
the current message, the search proceeds backwards. If there are no good messages
at all, mail cancels the command, displaying the message: No applicable messages.

- Prints out the previous message. If given a numeric argument n, prints
n-th previous message.

? Prints a brief summary of commands.
! Executes the ULTRIX shell command which follows.
alias (a) Prints out all currently-defined aliases, if given without arguments.

With one argument, prints out that alias. With more than one
argument, creates a new or changes an old alias. These aliases are in
effect for the current mail session only.

alternates (alt)
Informs mail that you have several valid addresses. The
alternates command is useful if you have accounts on more than
one machine. When you reply to messages, mail does not send a
copy of the message to any of the addresses listed on the alternates
list. If the alternates command is given with no argument, the
current set of alternate names is displayed.

chdir (ch) Changes the user’s working directory to that specified. If no directory
is given, then the chdir command changes to the user’s login
directory.

copy (co) Takes a message list and file name and appends each message to the
end of the file. The copy command functions in the same way as the
save command, except that it does not mark the messages that you
copy for deletion when you quit.

delete (d) Takes a list of messages as argument and marks them all as deleted.
Deleted messages are not saved in mbox, nor are they available for
most other commands.

dp (or dt) Deletes the current message and prints the next message. If there is no
next message, mail returns a message: at EOF.

edit (e) Takes a list of messages and points the text editor at each one in turn.
On return from the editor, the message is read back in.

exit (ex or x) Returns to the Shell without modifying the user’s system mailbox,
mbox file, or edit file in - £.

file (fi) Switches to a new mail file or folder. If no arguments are given, it
tells you which file you are currently reading. If you give it an
argument, it writes out changes (such as deletions) you have made in
the current file and reads in the new file. Some special conventions are

1-396 Commands

folders
folder (fo)

from (f)

headers (h)

help

mail (1)

recognized for the name. A pound sign (#) indicates the previous file,
a percent sign (%) indicates your systemb mailbox, %user indicates
the user’s system mailbox, an ampersand (&) indicates your ~/mbox
file, and +folder indicates a file in your folder directory.

List the names of the folders in your folder directory.

Switches to a new mail file or folder. The folder command
functions in the same way as the £ile command.

Takes a list of messages and prints their message headers in the order
that they appear in the mail directory, not in the order given in the list.

Lists the current range of headers, which is an 18 message group. Ifa
plus sign (+) is given as an argument, then the next message group is
printed. If a minus sign (<) is given as an argument, the previous
message group is printed.

Prints a brief summary of commands. Synonymous with ?.

hold (ho, also preserve)

ignore

mail(m)

mbox

Takes a message list and marks each message in it to be saved in the
user’s system mailbox instead of in mbox. The hold command does
not override the delete command.

Adds the list of header fields named to the ignored list. Header fields
in the ignore list are not printed on your terminal when you print a
message. This command is frequently used to suppress certain
machine-generated header fields. The type and print commands
are used to print a message in its entirety, including ignored fields. If
ignore is executed with no arguments, it lists the current set of
ignored fields.

Takes login names and distribution group names as arguments and
sends mail to those people.

Indicates that a list of messages should be sent to mbox in your home
directory when you quit. This is the default action for messages if you
did not set the hold option.

next (n, + or CR)

Goes to the next message in sequence and types it. With an argument
list, it types the next matching message.

preserve (pre)

print (p)

Print (P)
quit (q)

Takes a message list and marks each message in it to be saved in the
user’s system mailbox instead of in mbox . Synonymous with the
hold command.

Takes a message list and types out each message on the user’s
terminal, without printing any specified ignored fields.

Prints a message in its entirety, including specified ignored fields.

Terminates the session. All undeleted, unsaved messages are saved in
the user’s mbox file in his login directory; all messages marked with
hold or preserve or that were never referenced are saved in his

* system mailbox; and all other messages are removed from his system

mailbox. If new mail arrives during the session, the user receives the

Commands 1-397

mail (1)

reply (r)
Reply (R)
respond

save (s)

set (se)

shell (sh)

size

source (so)
top

type (t)

type (T)
unalias

undelete (u)

unset

visual (v)

write (w)

1-398 Commands

message: You have new mail. If given while editing a mailbox file
with the — £ flag, then the edit file is rewritten. A return to the Shell is
effected, unless the rewrite of the edit file fails, in which case the user
can escape with the exit command.

Takes a message list and sends mail to the sender and all recipients of
the specified message. The default message must not be deleted.

Replies to originator of the message. Does not reply to other recipients
of the original message.

Takes a message list and sends mail to the sender and all recipients of
the specified message. Synonymous with reply.

Takes a message list and a file name and appends each message to the
end of the file. The messages are saved in the order in which they
appear in the mail directory, not in the order given in the message list.
The filename, which is enclosed in quotes, followed by the line count
and character count, is displayed on the user’s terminal.

Prints all variable values when no arguments are given. Otherwise,
the set command sets the specified option. Arguments either take the
form

option=value
or

option

Invokes an interactive version of the shell.

Takes a message list and prints out the size (in characters) of each
message. The size of the messages are printed in the order that they
appear in the mail directory, not in the order given in the list.

Reads mail commands from a file.

Takes a message list and prints the top few lines of each. The number
of lines printed is controlled by the variable toplines and defaults
to five.

Takes a message list and types out each message on the user’s
terminal, without printing any specified ignored fields. Synonymous
with print.

Prints a message in its entirety, including specified ignored fields.
Synonymous with print.

Takes a list of names defined by alias commands and cancels the
list of users. The group names no longer have any significance.

Takes a message list and marks each one as not being deleted.

Takes a list of option names and discards their remembered values; the
inverse of set.

Takes a message list and invokes the display editor on each message.

Takes a message list and a file name and appends each message to the
end of the file. Synonymous with save.

xit (x)

mail (1)

Returns to the Shell without modifying the user’s system mailbox,
mbox , or edit file in —f. Synonymous with exit.

Presents message headers in windowfulls as described under the
headers command. You can move forward to the next window with
the z command. Also, you can move to the previous window by using
z-.

The following is a summary of the tilde escape functions that you can use when
composing mail messages. Note that you can only invoke these functions from
within the body of a mail message and that the sequences are only executed if they

are placed at the beginning of lines.

~icommand Executes the indicated shell command, then returns to the message.

~2
Prints a brief summary of tilde commands.

~ Executes the mail commands. (For example, the command ~:10
prints out message number 10 while ~ : - prints out the previous
message.

~cname ... Adds the given names to the list of carbon copy recipients.

~d Reads the file named dead letter from your home directory into the
message.

~e Invokes the text editor on the message you are typing. After the
editing session is finished, you may continue appending text to the
message.

~f messages Reads the named messages into the message being sent. If no
messages are specified, reads in the current message.

~h Edits the message header fields by typing each one in turn and

~m messages

~p
~q

~r filename
~s string
~t name ...

~v

~w filename

~| command

allowing the user to append text to the end or to modify the field by
using the current terminal erase and kill characters.

Reads the named messages into the message being sent, shifted one
tab space to the right. If no messages are specified, reads the current
message.

Prints the message on your terminal, prefaced by the message header
fields.

Aborts the message being sent, copying the message to dead.letter in
your home directory if the save option is set.

Reads the named file into the message.
Causes the named string to become the current subject field.
Adds the given names to the direct recipient list.

Invokes an alternate editor (defined by the VISUAL option) on the
message. Usually, the alternate editor is a screen editor. After you

‘quit the editor, you can resume appending text to the end of your

message.
Writes the message onto the named file.

Pipes the message through the command as a filter. If the command

Commands 1-399

mail (1)

gives no output or terminates abnormally, retains the original text of
the message. The command fmt(1) is often used as command to
rejustify the message.

~~string Inserts the string of text in the message prefaced by a single tilde (~).

If you have changed the escape character, then you should double that

character in order to send it.

Options are controlled via the set and unset commands. Options may be either
binary or string. If they are binary you should see whether or not they are set; if they
are string it is the actual value that is of interest.

The binary options include the following:

append Causes messages saved in mbox to be appended rather than
prepended. (This is set in /ust/lib/Mail.rc on version 7 systems.)

ask Causes mail to prompt you for the subject of each message you
send. If you simply respond with a new line, no subject field is
sent.

askce Asks you at the end of each message whether you want to send a
carbon copy of the message to additional recipients. Responding
with a new line indicates your satisfaction with the current list.

autoprint Causes the delete command to behave like dp — thus, after
deleting a message, the next one is typed automatically.

debug Causes mail to output information useful for debugging mail.
Setting the binary option debug is the same as specifying —d on
the command line.

dot Causes mail to interpret a period alone on a line as the terminator
of a message you are sending.

hold Holds messages in the system mailbox by default.

ignore Causes interrupt signals from your terminal to be ignored and
echoed as at signs (@).

ignoreeof Causes mail to refuse to accept a control-d as the end of a
message.

msgprompt Prompts you for the message text and indicates how to terminate
the message.

metoo Includes the sender in the distribution group receiving a mail
message.

nosave Prevents mail from copying aborted messages into the dead.letter
file in your home directory.

quiet Suppresses the printing of the version when first invoked.

verbose Displays the details of each message’s delivery on the user’s

terminal. Setting the verbose option is the same as typing —v on
the command line.

The string options include the following:

EDITOR

1-400 Commands

Pathname of the text editor to use in the edit command and ~e
escape. If not defined, then a default editor is used.

SHELL
VISUAL
crt
escape

folder

record

toplines

Return Values

If mail is invoked

mail (1)

Pathname of the shell to use in the ! command and the ~! escape.
A default shell is used if this option is not defined.

Pathname of the text editor to use in the visual command and
~V escape.

Threshold to determine how long a message must be before more
is used to read it.

The first character of this option gives the character to use in the
place of tilde (~) to denote escapes, if defined.

Directory name to use for storing folders of messages. If this name
begins with a backslash (/) mail considers it an absolute
pathname; otherwise, the folder directory is found relative to your
home directory.

Pathname of the file used to record all outgoing mail. If it is not
defined, then outgoing mail is not so saved.

The number of lines of a message that is printed out with the top
command; normally, the first five lines are printed.

with the —e option, the following exit values are returned:

0 the user has mail
1 the user has no mail
Files
fusr/spool/mail/* mail directory
~/mbox your read mail
~/.mailrc file giving initial mail commands
/tmp/R# temporary for editor escape
/usr/lib/Mail.help* help files
/usr/lib/Mail.rc system initialization file
Message* temporary for editing messages
See Also

binmail(1), fmt(1), newaliases(1), aliases(5), mailaddr(7), sendmail(8)

Commands 1-401

make (1)

Name

make, sSmake — maintain, update, and regenerate groups of programs

Syntax

make [-f makefile] [options] [names]

sSmake [-f makefile] [options][names |

Description

This is the SYSTEM YV version of the make command with some Berkeley
compatibility added.

Options

-b
—d

—e

—f makefile

-n

1-402 Commands

Compatibility mode for old makefiles.

Debug mode. Displays detailed information on files and times
examined.

Causes environment variables to override assignments within
makefiles.

Uses the specified description file name. A file name of — denotes
the standard input. The contents of the file specified as makefile
override the built-in rules.

Ignores error codes returned by invoked commands. This mode is
entered if the special target name .IGNORE appears in the
description file.

Stops work on the current entry, but continues on other branches
that do not depend on that entry.

Displays a memory map showing text, data, and the stack. Does
not operate on systems without the getu system call.

No execute mode. Displays commands, but does not execute
them. Even lines beginning with an at sign (@) are printed.

Displays the complete set of macro definitions and target
descriptions.

Question mode. Returns a zero or nonzero status code depending
on whether the target file is or is not up to date.

Does not use the built-in rules.

Silent mode. Suppresses the display of command lines before
executing. This mode is also entered if the special target name
SILENT appears in the description file.

Abandon work on the current entry if it fails; the opposite of the -k
option. If both options are specified, the last one specified on the
command line is used.

Touches target files (causing them to be up to date) rather than

make (1)

issuing usual commands.
Special Names

.DEFAULT If a file must be made but there are no explicit commands or
relevant built-in rules, the commands associated with the name
.DEFAULT are used if it exists.

PRECIOUS Dependents of this target are not removed when quit or interrupt is

hit.
SILENT Same effect as the —s option.
JIGNORE Same effect as the —i option.

.SUFFIXES Dependencies of the .SUFFIXES special target are added to the
table of known suffixes.

Discussion

The make program executes commands in makefile to update one or more target
names . The name argument is typically a program. If no —f option is present,
makefile, Makefile, s.makefile, and s.Makefile are tried in order. If makefile is —,
the standard input is taken. You can specify more than one —f makefile argument.

The make program updates a target only if its dependents are newer than the target.
All prerequisite files of a target are added recursively to the list of targets. Missing
files are deemed to be out of date.

The makefile argument contains a sequence of entries that specify dependencies. The
first line of an entry is a blank-separated, non-null list of targets, then a colon (),
then a (possibly null) list of prerequisite files or dependencies. Text following a
semicolon (;) and all following lines that begin with a tab are shell commands to be
executed to update the target. The first line that does not begin with a tab or number
sign (#) begins a new dependency or macro definition. Shell commands can be
continued across lines with the backslash followed by a new-line (RET) sequence.
Everything printed by make (except the initial tab) is passed directly to the shell.
For example:

echo a\
b

These entries produce the following:
ab

This output is exactly the same as what would have been produced by the shell.
Number sign (#) and new-line surround comments.

The following makefile says that pgm depends on two files a.o and b. o, and that
they in turn depend on their corresponding source files (a.c andb.c) anda
common file incl.h:

pgm: a.o b.o

cc a.o b.o -o pgm
a.o: incl.h a.c

cc -c a.c
b.o: incl.h b.c

cc -c b.c

Commands 1-403

make (1)

Command lines are executed one at a time, each by its own shell. The first one or
two characters in a command can be the following: —, @, -@, or @-. If @ is
present, printing of the command is suppressed. If — is present, make ignores an
error. A line is printed when it is executed unless the —s option is present, or the
entry .SILENT: is in makefile, or unless the initial character sequence contains a @.
The —n option specifies printing without execution. However, if the command line
has the string $(MAKE) in it, the line is always executed (see discussion of the
MAKEFLAGS macro under Environment). The ~t (touch) option updates the
modified date of a file without executing any commands.

Commands returning nonzero status normally terminate make. If the —i option is
present, or the entry .IGNORE: appears in makefile, or the initial character sequence
of the command contains —, the error is ignored. If the -k option is present, work
stops on the current entry, but continues on other branches that do not depend on that
entry.

The —b option allows old makefiles (those written for the old version of make) to run
without errors. The difference between the old version of make and this version is
that this version requires all dependency lines to have a (possibly null or implicit)
command associated with them. The previous version of make assumed, if no
command was specified explicitly, that the command was null.

Interrupt and quit cause the target to be deleted unless the target is a dependent of the
special name .PRECIOUS.

Environment

The environment is always read by make. All variables are assumed to be macro
definitions and processed as such. The —e option causes the environment to override
the macro assignments in a makefile.

The make command operates in three compatibility modes. The type of mode is
determined by value of the PROG_ENV environment variable and by the way that
make is executed. The PROG_ENV variable has three valid values:

o BSD
. POSIX
. SYSTEM_FIVE

In BSD mode, make executes with Berkeley compatibility. This means that
/bin/sh is always used as the command interpreter regardless of the value of
SHELL, and the commands are echoed to standard out without a prefixed <tab>.

In POSIX mode, make executes with POSIX compatibility, such that the SHELL
environment variable is always ignored, SHELL is always overridden by
MAKESHELL, the shell is always used to execute commands, and commands are
echoed to standard out with a prefixed <tab>.

SYSTEM_FIVE mode causes make to run with SYSTEM V compatibility such that
SHELL is used to execute commands and commands are echoed to standard out with
a prefixed <tab>.

For all modes, SHELL has a default value of / bin/ sh. When make is executed
with the command name s5make, it always executes in SYSTEM_FIVE mode and
ignores the environment variable PROG_ENV.

1-404 Commands

make (1)

The MAKEFLAGS environment variable is processed by make as containing any
legal input option (except ~f, —p, and —d) defined for the command line. Further,
upon invocation, make invents the variable if it is not in the environment, puts the
current options into it, and passes it on to invocations of commands. Thus,
MAKEFLAGS always contains the current input options. This proves very useful for
super-makes. In fact, as noted above, when the -n option is used, the command
$(MAKE) is executed anyway. Hence, one can perform a make —n recursively on a
whole software system to see what would have been executed. This is because the
-n is put in MAKEFLAGS and passed to further invocations of $(MAKE). This is
one way of debugging all of the makefiles for a software project without actually
doing anything.

Macros

Macros can be defined in four different ways. Some macros are defined by default by
make internally. All environment variables are assumed to be macro definitions and
macros can be defined in the makefile as well as on the make command line. By
default, the internal default macros are overridden by environment variables, macros
defined in the makefile override environment variables and macros defined on the
command line override macros defined in the makefile. The -e option changes this
such that environment variables override macros defined in the makefile.

Entries of the form stringl = string2 are macro definitions. String?2 is defined as all
characters up to a comment character or an unescaped new-line. Subsequent
appearances of $(stringl [: substl =[subst2]]) are replaced by string2 . The
parentheses are optional if a single character macro name is used and there is no
substitute sequence. The optional : subst] = subst2 is a substitute sequence. If it is
specified, all non-overlapping occurrences of subst! in the named macro are replaced
by subst2. The occurrence of subst] must be a suffix at the end of the word stringl.
Strings (for the purposes of this type of substitution) are delimited by blanks, tabs,
new-line characters, and beginnings of lines. An example of the use of the substitute
sequence is shown under Libraries.

The MACHINE macro is defined by make to allow for machine independent
makefiles. The legal values are: vax or mips.
Internal Macros

There are five internally maintained macros which are useful for writing rules for
building targets.

$= The macro $* stands for the file name part of the current
dependent with the suffix deleted. It is evaluated only for
inference rules.

$@ The $@ macro stands for the full target name of the current target.

It is evaluated only for explicitly named dependencies.

$< The $< macro is only evaluated for inference rules or the
.DEFAULT rule. It is the module which is out-of-date with
respect to the target (that is, the manufactured dependent file
name). Thus, in the .c.o0 rule, the $< macro would evaluate to the
.c file. An example for making optimized .o files from .c files is:

.C.0:
cc -c -0 $*.c

or:

Commands 1-405

make (1)

.C.O:
cc -¢c -0 $<

$? The $? macro is evaluated when explicit rules from the makefile
are evaluated. It is the list of prerequisites that are out of date with
respect to the target; essentially, those modules which must be
rebuilt.

$% The $% macro is only evaluated when the target is an archive
library member of the form lib(file.o). In this case, $@ evaluates
to lib and $% evaluates to the library member, file.o.

Four of the five macros can have alternative forms. When an upper case D or F is
appended to any of the four macros, the meaning is changed to directory part for D
and file part for F. Thus, $(@D) refers to the directory part of the string $@. If
there is no directory part, ./ is generated. The only macro excluded from this
alternative form is $2. The reasons for this are debatable.

Suffixes

Certain names (for instance, those ending with .0) have prerequisites such as .c, .s,
which can be inferred. If no update commands for such a file appear in makefile, and
if an inferable prerequisite exists, that prerequisite is compiled to make the target. In
this case, make has inference rules which allow building files from other files by
examining the suffixes and determining an appropriate inference rule to use. The
current default inference rules are:

.c .c~ .sh .sh~ .c.o .c~.0 .c~.C .S.0 .S8~.0 .y.O
.y~.o0 .1.0 .l~.0 .y.c .y~.c .l.c .c.a .c~.a .s~.a .h~.h

The internal rules for make are contained in the source file rules.c for the make
program. These rules can be locally modified. To print out the rules compiled into
make in a form suitable for recompilation, the following command is used from
/bin/sh:

make -fp - 2>/dev/null </dev/null

The only peculiarity in this output is the (null) string which print £(3s) prints when
handed a null string.

A tilde in the above rules refers to an SCCS file. Thus, the rule .c~.0 would
transform an SCCS C source file into an object file (.0). Because the s. of the SCCS
files is a prefix, it is incompatible with the make suffix point-of-view. Hence, the
tilde is a way of changing any file reference into an SCCS file reference.

A rule with only one suffix (that is, .c:) is the definition of how to build x from x.c.
In effect, the other suffix is null. This is useful for building targets from only one
source file (for example, shell procedures, simple C programs).

Additional suffixes are given as the dependency list for .SUFFIXES. Order is
significant; the first possible name for which both a file and a rule exist is inferred as
a prerequisite. The default list is:

.SUFFIXES: .o .c .y .1 .s

Here again, the above command for printing the internal rules display the list of
suffixes implemented on the current machine. Multiple suffix lists accumulate;
.SUFFIXES: with no dependencies clears the list of suffixes.

1-406 Commands

make (1)

Inference Rules

The first example can be done more briefly.

pgm: a.o b.o
cc a.o b.o -o pgm
a.o b.o: incl.h

This is because make has a set of internal rules for building files. The user may add
rules to this list by simply putting them in the makefile.

Certain macros are used by the default inference rules to permit the inclusion of
optional matter in any resulting commands. For example, CFLAGS, LFLAGS, and
YFLAGS are used for compiler options to cc(1), 1lex(1), and yacc(l), respectively.
Again, the previous method for examining the current rules is recommended.

The inference of prerequisites can be controlled. The rule to create a file with suffix
.0 from a file with suffix .c is specified as an entry with .c.0: as the target and no
dependents. Shell commands associated with the target define the rule for making a
.0 file from a .c file. Any target that has no slashes in it and starts with a dot is
identified as a rule and not a true target.

Libraries

If a target or dependency name contains parentheses, it is assumed to be an archive
library, the string within parentheses referring to a member within the library. Thus
lib(file.0) and $(LIB)(file.0) both refer to an archive library which contains file.o.
(This assumes the LIB macro has been previously defined.) The expression
$(LIB)(filel.o file2.0) is not legal. Rules pertaining to archive libraries have the form
XX.a where the XX is the suffix from which the archive member is to be made. An
unfortunate byproduct of the current implementation requires the XX to be different
from the suffix of the archive member. Thus, one cannot have lib(file.o) depend
upon file.o explicitly. The most common use of the archive interface follows. Here,
we assume the source files are all C type source:

1ib: lib(filel.o) lib(file2.0) lib(file3.o0)
@echo lib is now up-to-date
.c.a:
$(CC) -c $(CFLAGS1) $<
ar rv $Q@ $*.o
rm -f $*.0

In fact, the .c.a rule listed above is built into make and is unnecessary in this
example. A more interesting, but more limited example of an archive library
maintenance construction follows:
lib: lib(filel.o) lib(file2.o0) lib(file3.0)

$(CC) -c $(CFLAGS) $(?:.0=.c)

ar rv lib $?

rm $?

@echo lib is now up-to-date
.C.az:;

Here the substitution mode of the macro expansions is used. The $? list is defined
to be the set of object file names (inside lib) whose C source files are out-of-date.
The substitution mode translates the .0 to .c. (Unfortunately, one cannot as yet
transform to .c~; however, this may become possible in the future.) Note also, the
disabling of the .c.a: rule, which would have created each object file, one by one.
This particular construct speeds up archive library maintenance considerably. This

Commands 1-407

make (1)

type of construct becomes very cumbersome if the archive library contains a mix of
assembly programs and C programs.

Restrictions

Some commands return non-zero status inappropriately; use —i to overcome the
difficulty. File names with the characters = : @ do not work. Commands that are
directly executed by the shell, notably cd(1), are ineffectual across new-lines in
make. The syntax (lib(filel.o file2.0 file3.0) is illegal. You cannot build lib(file.o)
from file.o. The macro $(a:.0=.c~) does not work.

Files
[Mm]akefile and s.[Mm]akefile

See Also
cc(1), cd(1), lex(1), sh(l), yacc(1), sSmake(1)

1-408 Commands

man(1)

Name

man — displays manual pages online

Syntax

man -k keyword...

man —f page_title...

man [options 1 [—roff_options ... [section] page_title...
man [options][section page_title...]...

/usr/bin/man [option] [section] page _title...
/usr/bin/man [options] [section page _title...]...

Description

There are two man commands: /usr/ucb/man, and /usr/bin/man. For most
users, /usr/ucb/man is the default man command. The command

which man

shows you which man command is the default. The recommended default is
/usr/ucb/man.

Both the man commands provide online displays of specified reference pages.

The /usr/ucb/man Command.

The basic function of this command is to provide online displays of reference pages.
You can use options, however, to direct the man command to display one line
summaries of reference pages which contain specific keywords, to display one line
summaries of specific reference pages, to use special formatting options when
preparing the reference page for display or printing, and to search alternate reference
page directories for specified reference pages.

If an option is not used, the man command formats and displays one or more
specified reference pages. If there are multiple reference pages which match a
specified name, only the first matching reference page is displayed. If there are
multiple matches in a section for a specified name, the matching page in the first
alphabetically occurring subsection is displayed.

If you specify the man command with a section argument, the man command looks
in that section of the reference pages for the specified page titles. A section consists
of a number in the range 0 to 9, optionally followed by an alphanumeric subsection,
or section can be the name ‘local’, ‘new’, ‘old’, or ‘public’. Numbers 0 and 9 are
non-standard. If a section is omitted, the man command searches all sections of
the reference pages. The man command displays commands (both standard and
local) over subroutines in system libraries, and displays the first occurrence it finds, if
any. If Section 1 is specified, the sections n, 1, and o are also searched, if they exist.

The section and page_title... arguments can be paired, so that multiple pages can be
searched for in a section, and multiple sections can be searched for a page or pages.

All displays are directed to standard out, unless redirected, or unless the —t option is
specified. If the standard output is a teletype device, the man command completes
the following: pipes the output through the cat(1) command using the option —s to
eliminate unnecessary blank lines and invokes the page(1l) command using the

Commands 1-409

man(1)

option -s to display a screen at a time.

If a specified reference page is not already formatted, but the source file exists, the
man command preprocesses the file through the tb1(1) command. The command
next pipes the output to the nrof£(1) command, or to the t roff command if the
-t option was specified, using the man(7) macros package. If the tbl output was
directed to the nrof f command, the output is then piped through the co1(1)
postprocessor, then directed to standard out. If the appropriate /usr/man/cat?
directory exists, the formatted display is saved there.

The /usr/bin/man Command

The /usr/bin/man command performs the same basic function as the
/usr/ucb/man command, that is, formats and displays or prints specified reference
pages. It does not provide all the functions of /usr/ucb/man, and there are some
differences in common functions.

The /usr/bin/man command searches for the specified reference pages, and
formats and displays all reference pages matching the specified names. If no section
is specified, all sections 1 through 8 are searched. In the case of multiple matches,
the display order is in numeric section order, and ASCII subsection order within a
section.

All displays are directed to standard out, unless redirected, or unless an option is used
which requests processing through the t rof £ command. If a troff option was not
specified, then the standard output is to a teletype device. If the standard output is a
teletype device, the /usr/bin/man pipes the output through the col(1)
postprocessor, then directs the output to standard out.

The /usr/bin/man command does not use preformatted files. It searches only the
/usr/man/man[1-8] directories for source files.

If a specified file exists, it is always preprocessed through the tb1(1) command.

If an option is not used, the /usr/bin/man command formats and displays
specified reference pages using the nrof £ command.

If multiple options are specified, only the last one is executed, except that multiple
~roff options are accepted and executed.

Options

/usr/ucb/man Options

The following options are recognized only by the /usr/ucb/man command. Note
that the options — and ~k do not have the same functionality as the corresponding
/usr/bin/man options.

- Squeeze multiple blank lines from output.

£ Display one line summaries of each page title specified on the
command line.

-k Display one line summaries of each reference page that contains the
specified keyword or keywords.

~P manpath Search the specified manpath directory instead of /usr/man.
- Remove unnecessary blank lines.

1-410 Commands

man(1)

Phototypesets the output through the t rof £ command.

This option requires the installation of the t rof £ command, which is
unsupported. When the —t option is specified, the t rof £ output is
directed, by 1pr’s —t option, to the printer or typesetter specified by
the PRINTER environment variable. PRINTER must be set to a
printer which is capable of handling t rof £ output files. The default
is the 1p printer (see 1pr(1) description of the —t option for more
information).

/usr/bin/man Options

The following options are recognized by the /usr/bin/man command. Note that
the options — and —k do not have the same functionality as the corresponding
/usr/ucb/man options.

—roff_options Inserts the specified roff_option in front of the —man option when the

- | —et | -te

—ek | -ke

-k

Restrictions

appropriate *roff text formatter is called (the other options determine
which *roff formatter is called). Multiple roff options can be
specified. If a null value is specified, the results are unpredictable.

Preproceses the display with the eqn command, then performs the
same steps as the —t option.

This option requires the installation of the eqn and troff
commands, which are unsupported.

Preproceses the display with the eqn command, then performs the
same steps as the —k option.

This option requires the installation of the eqn, tc, and troff
commands, which are unsupported.

Formats the display through the t rof £ command, using troff’s -t
option, then directs the output to the tc command.

This option requires the installation of the tc and troff commands,
which are unsupported.

Formats the display through the nroff command. This is the default.

Preproceses the display with the neqn command, then performs the
same steps as the —n option.

This option requires the installation of the neqn command, which is
unsupported.

Photypesets the output through the t rof f command.

This option requires the installation of the t rof £ command, which is
unsupported.

Shows where the specified reference pages are located, relative to the
/usr/man directory.

The reference pages are reproducible on phototypesetters or on hardcopy devices.
However, some devices do not properly handle special characters which causes
information to be lost.

Commands 1-411

man (1)

Some options require the installation of unsupported software. Use of these options
is at your own risk.

Options which call the negn or egn commands will generally fail when used with
the ULTRIX reference pages, because any ULTRIX reference pages which use *eqn
commands were preprocessed through the neqn text formatter before being packaged
for shipment to you. *eqn text preprocessors generally report numerous errors when
attempts are made to reprocess files a second time through an *eqgn text
Preprocessor.

Both /usr/ucb/man and /usr/bin/man commands cd to the /usr/man
directory before searching for and formatting files. Some reference pages assume that
this happens. Therefore, an attempt to format some reference pages manually with a
*rof f text formatter may fail if you are not sitting in the /usr/man directory.

/usr/ucb/man Restrictions

If a specified reference page exists in the appropriate /usr/man/man? directory,
but there is no appropriate /usr/man/cat? directory, you will not be able to
scroll backwards in the display.

The man directories for sections n, 1, 0, p, 0 and 9 are optional directories. They must
be created by the system administrator.

The /usr/man/cat? directories are not required to exist. They must be created
by the system administrator. This is generally done through the catman(8)
command.

Examples

/usr/ucb/man Examples

The following examples all assume the use of the default command:
/usr/ucb/man.

The following example shows how to locate reference pages containing the keyword
‘graph’:
% man -k graph
The following example shows how to display the graph(1g) reference page:
% man lg graph
The following example shows how to display plot reference pages:
$ man 1 plot 3 plot
The following example shows how to display chmod and chown reference pages:

% man 1 chmod chown 2 chmod chown

The following example shows how to display a reference page test in the
/usr/man/manl directory. In order to locate the test reference page here, it
must have the file name test . 1, so its reference page title would be test(l).

% man local test

To locate the test reference pages in Section 1:
% man 1 test 1sh5 test

1-412 Commands

Files

man (1)

If you have a directory /usr/local/man which contains man? subdirectories,
which also contain reference pages, then the following example shows how to display
a reference page games located somewhere in a subdirectory of
/usr/local/man:

% man -P /usr/local games

/usr/bin/man Examples
The following example shows how to display chmod reference pages:

% /usr/bin/man chmod

The above displays all the chmod reference pages from all sections of the installed
reference pages.

The following example shows how to display all the test reference pages in
Section 1:

% /usr/bin/man 1 test

The following example shows how to locate all the test reference pages:

% /usr/bin/man -w test

The following example shows how to locate all the intro reference pages in
Section 3:

% /usr/bin/man -w 3 intro

The following example displays the man(1) reference page with a starting page
number of 10.

% /usr/bin/man -nl0 1 man

/usr/ucb/man The default man command.
/usr/bin/man The alternate man command.

/usr/man/man?/* These directories contain the online reference pages which
are divided into sections 1 through 8, n, 1, 0, and p. Sections
0 and 9 can also exist but these are non-standard sections.

/usr/man/cat?/* These directories contain the files generated by the man and
catman commands.

/usr/lib/whatis This file contains the summary lines of each reference page.

Commands 1-413

man (1)

manpath/man/man?/*
These directories contain reference pages to be searched by
the man command when the —P manpath option is specified.
These directories must have the same organization and
format as /usr/man.

See Also
apropos(1), col(1), man(7), nroff(1), page(1), tbl(1), whatis(1), whereis(1), catman(8)

1-414 Commands

mark (1mh)

Name

mark — mark messages

Syntax

mark [+foldername] [msgs] [-sequence name...] [-add] [-delete] [-list] [-public]
[-nopublic] [-zero] [-nozero] [-help]

Description

Use the mark command to assign a name to a sequence of messages within the
current folder. You can then use this message sequence with any MH command that
takes a msg or msgs argument.

The following example shows how you can create a message sequence called “‘out’’
containing messages 10-20 in the current directory. The second part of the example
shows how this sequence can be used in conjunction with the rmm command, to
delete all the messages in the sequence.

% mark 10-20 -sequence out

% rmm out

You can specify a folder other than the current folder, by using the <+folder>
argument.

Sequences still point to the same messages even if you sort all the messages in the
folder with sortm.

If you delete a message or refile it in another folder, it is also deleted from the
sequence.

You can use mark in conjunction with pick to give you a very powerful and
flexible way to manipulate messages. The following example shows how you can
combine the two commands together to select all messages from Adrian and put them
in a sequence named Ateam. See pick(1mh) for more details of the power of
pick.

mark ‘pick -from Adrian' -sequence Ateam

Note that you cannot use special characters, such as hyphens, in sequence names.
Sequence names can consist of alphanumeric characters, but the first character must
be alphabetic.

If you create a sequence using mark, the ordering of messages within the folder
remains unchanged. So if messages 3, 7 and 9 are put into the sequence, they are
still shown as messages 3, 7 and 9 if you use scan after incorporating them into the
sequence. The scan command does not show any differences between messages
that are in sequences and ordinary messages within a folder.

Options
If you use mark on its own without specifying —sequence name, it displays the
sequences that have been created in the current folder. The following example shows

how this works. It also illustrates that one message can be in more than one
sequence at the same time.

Commands 1-415

mark (1mh)

$ mark
cur: 19
one: 2 7 9
Two: 2-4

An identical result can be obtained if you use mark-list

A message sequence is a keyword, just like one of the reserved message names,
such as first or next. Unlike the reserved message names, you can define,
modify, and remove the semantics of a message sequence. Message sequences are
folder-specific, for example: the sequence name seen in folder +inbox need not
have any relation whatsoever to the sequence of the same name in a folder of a
different name.

You can manipulate sequences with three options:

-add
-delete
-list

These switches are mutually exclusive: the last occurrence of any of them overrides
any previous occurrence of the other two.

The -add switch tells mark to add messages to sequences or to create a new
sequence. For each sequence named via the ~sequence <name> argument the
messages named in <msgs> (which defaults to the current message if no msgs are
given), are added to the sequence. The messages to be added need not be absent
from the sequence. If you specify the —zero option, all messages in the sequence
are removed from the sequence, before the new messages are added to it. Note the
messages are removed from the sequence only. They are not deleted or removed
from your folder.

If you specify —add-nozero the specified messages are appended to the sequence.

The —-delete switch tells mark to delete messages from sequences, and is the
opposite of —add. For each of the specified sequences, the named messages are
removed from the sequence. These messages need not be already present in the
sequence. If the —zero switch is specified, then all the messages in the folder are
appended to the sequence prior to the removal of the messages. The following
example shows how this works in a folder with sixteen messages.

% mark -delete -zero 7 -sequence notseven

% mark
notseven: 1-6 8-16

Hence, -delete -zero means that each sequence should contain all messages
except those indicated, while ~-delete -nozero means that only the indicated
messages should be removed from each sequence. As expected, the command
mark -sequence seen -delete all deletes the sequence seen from the
current folder.

When creating (or modifying) a sequence, the ~public switch indicates that the
sequence should be made readable for other MH users. In contrast, the —-nopublic
switch indicates that the sequence should be exclusive to your MH environment.

The —1ist switch tells mark to list the sequences defined for the folder and the
messages associated with those sequences.

1-416 Commands

Files

mark (1mh)

You can list each sequence named by using the —sequence name switch. If you
do not specify the sequence name, —1ist lists all sequences, and the messages
associated with those sequences, in the specified folder. The —zero switch does not
affect the operation of -1ist.

The name used to denote a message sequence must consist solely of alphabetic

characters, and cannot be one of the reserved message names (such as, first cur
and so forth).

You can define up to a maximum of 10 sequences in any one folder.

The name used to denote a message sequence cannot occur as part of a message
range: for example, constructs like seen: 20 or seen —10 are forbidden.

The defaults for this command are:

+folder defaults to the current folder

-add if msgs is specified, —1ist otherwise

msgs defaults to cur (or all if —1ist is specified)
-nopublic if the folder is read—only, ~public otherwise
—nozerxro

$HOME/.mh_profile ~ Your user profile

Profile Components

Path: To your MH directory
Current-Folder: To find the default current folder

See Also

folder(1mh), pick(1mh), sortm(1mh)

Commands 1-417

VAX

mdtar(1)

Name

mdtar — multivolume archiver

Syntax

mdtar [key] [name...]

Description

The mdt ar command saves multiple files on multiple archives (usually an RX50
diskette, but any file/device may be specified). mdtar actions are controlled by the
key argument. The key is a string of characters containing one function letter and
one or more function modifiers. Other arguments to mdtar are file or directory
names specifying which files to dump or restore. In all cases, appearance of a
directory name refers to the files and, recursively, subdirectories of that directory.
mdtar also saves special files.

Options
-C

Changes directory to specified name. This allows multiple directories
not related by a close common parent, to be archived using short relative
path names. For example, to archive files from /usr/include and
from /etc, one might use

tar ¢ -C /usr include . -C /etc .

The function portion of the key is specified by a letter.

C

Creates a new archive. Writing begins at the beginning of the archive
instead of after the last file.

Writes the named files to the end of the archive.

If no file argument is given, all Generates archive table of contents. If
no argument is given, all of the names on the archive are listed. Produce
a Table of contents.

Updates the current archive. Adds the named files to the archive, if they
are not there already or if they have been modified since last put on the
archive,

Extracts each specified file from the archive. If the named file matches a
directory whose contents had been written onto the archive, this directory
is recursively extracted. The owner, modification time, and mode are
restored if you are the superuser and if you have also specified the p
switch. If no file argument is given, the entire content of the archive is
extracted. If multiple entries specifying the same file are on the archive,
the last one overwrites previous versions.

The following characters may be used to qualify the function desired in addition to
one or more of the above letters.

0..9

A

1-418 Commands

Selects unit number of the drive as an alternate disk drive. The default
disk drive is the device named /dev/rrala.

Uses the specified number (next argument) as archive with which to

mdtar (1) VAX

begin the output. This switch is intended for error recovery. mdtar
outputs files in terms of Archives. Each Archive contains a number of
files. If mdtar has been requested to dump a path (set of files) that
consist of (for example) 10 archives and there is an error writing the nth
Archive, then the A modifier may be used to restart mdtar at the nth
Archive.

CAUTION

You must issue the same path (set of files) as in the first command. This
will guarantee that mdtar will begin at the correct file on Archive n.

If the v mode is specified, mdtar outputs informational messages to inform the user
of progress. For example, the following command will dump the entire directory

structure:

mdtar cv

If an error occurs on Archive 7, to restart at the 7th Archive, without having to re-
dump the first 6 Archives, issue the following command:

mdtar cvA 7

mdtar will tell you it is skipping the first 6 Archives and will resume output with
the data that begins Archive 7.

b

B
f

F[F]

Uses the specified number (next argument) as the blocking factor. The
default is 20 (the maximum is 20).

Forces output blocking to 20 blocks per record.

Uses the specified file (next argument) as the name of the archive. If the
name of the file is —, tar writes to standard output (piping).

Operates in fast mode. When F is specified, mdtar skips all SCCS
directories, core files, and errs files. When FF is specified, mdtar also
skips all a.out and *.o files.

Saves a copy of the file (excludes symbolic links). The default action of
mdtar is to place symbolic link information on the output device. A
copy of the file IS NOT saved on the output device.

Ignores checksum errors found in the archive.

Displays an error message if all links to the files dumped cannot be
resolved. If -1 is not specified, no error messages are printed.

Does not restore file modification times. The modification time is the
time of extraction. Normally, mdtar restores modification times of
regular and special files.

Suppresses the normal directory information. On output, mdtar
normally places information specifying owner and modes of directories
in the archive. Former versions of tar, when encountering this
information will give the error message

<name>/: cannot create.
Restores the named files to their original modes, ignoring the present

umask(2). Setuid and sticky information will also be restored to the
super-user. You must be Superuser to perform this option. For further

Commands 1-419

VAX

mdtar(1)

Restrictions

information, see stat(2), S_ISVTX.

Uses specified number (next argument) as size of media in 512-byte
blocks. This enables mdtar to be used with devices of different
physical media sizes. The default is 800 blocks (assumption is an RX50
output Archive).

Displays detailed (verbose) information as it archives files. Normally
mdtar does its work silently. With the t function, the verbose option
gives more information about the archive entries than just their names.

#cd
#tar cvf tar-out vmunix

Produces the output ‘‘a vmunix 1490 blocks’’ where 1490 is the number
of 512 byte blocks in the file ‘‘vmunix’’.

#tar xvf tar-out

Produces the output ‘‘x vmunix, 762880 bytes, 1490 blocks’’ where
762880 is the number of bytes and 1490 is the number of 512 byte
blocks in the file ‘‘vmunix’’ which was extracted.

Displays action to be taken for each file and prompts for confirmation. If
a word beginning with ‘y’ is given, the action is done. Any other input
means do not do it.

The u option can be slow.

The current limit on file name length is 100 characters.

There is no way to follow symbolic links selectively.

Diagnostics

Indicates bad key characters and archive read/write errors.

Indicates if enough memory is not available to hold the link tables.

Files

/tmpf/tar*
See Also

stat(2), tar(1)

1-420 Commands

mesg (1)

Name
mesg — allow or disallow messages

Syntax
mesg [n][y]

Description
The mesg command with argument n forbids messages via write and talk by
revoking non-user write permission on the user’s terminal. The mesg command with
argument y reinstates permission. All by itself, mesg reports the current state
without changing it.

Diagnostics
Exit status is 0 if messages are receivable, 1 if not, 2 on error.

Files
[dev/tty*

See Also

talk(1), write(1)

Commands 1—-421

mh (1mh)

Name
mh — Message Handler

Description

MH consists of a collection of fairly simple single-purpose programs to send, receive,
save, and retrieve messages. See the individual MH reference pages for descriptions
of the programs that make up MH.

Unlike mail, MH is an optionally installed basesystem component. You can freely
intersperse MH commands with other shell commands that allow you to read and
answer your mail while you are performing another task.

To get started using MH, edit either the .profile, .login, or .cshrc files in
your home directory to add the pathname /usr/new/mh to your $PATH. Check
the manual entry for the shell you use, if you do not know how to do this. Run the
inc command, if you have never used MH before. The inc command creates the
necessary default files and directories after prompting you. It also moves mail from
your system maildrop into your MH +inbox folder. Each message is converted to
MH format and stored as separate files in your +inbox folder until you read it.
When you read a message, you can refile it in another file that you create.

Folders are directories in which messages are stored; the folders themselves are
stored in your Mail directory. They are similar to folders in a normal office filing
system. See refile(lmh)and folder(lmh) for more details. For each message
it processes, inc prints one line only. The one-line display contains the From:
field, the Subject: field and as much of the first line of the message as it can
accommodate. The first message that inc processes becomes your current message.
The current message is the message that all MH commands operate on unless you
have specified the msg argument. You must run inc each time you want to
incorporate new mail into your MH file.

The scan command prints a list of the messages in your current folder.

The commands show, next and prev are used to read specific messages from the
current folder. Of these, show displays the current message. You can also display a
specific message by specifying its number, which you pass as an argument to show.
In the following example, the contents of message number 10 in the current folder
will be displayed.

% show 10

The commands next and prev respectively display, the message numerically
following or preceding the current message. In all cases, the message displayed
becomes the current message. If there is no current message, show may be called
with an argument, or next may be used to advance to the first message. The
command rmm (remove message) deletes the current message.

You can delete messages other than the current message by specifying the message
number or the message numbers. When you specify more than one message, you
separate each message number by a space. In the following example, messages 2, 4
and 6 in the current folder are deleted.

$ rmm246

1-422 Commands

mh (1mh)

The command repl is used to respond to the current message (by default). It places
you in the editor with a prototype response form. While you are in the editor, you
may peruse the item you are responding to by reading the file @.

The comp command allows you to compose a message by putting you in the editor
on a blank message header form, and then lets you send it.

All the MH commands may be run with the single argument, ~help, which causes
them to print a list of the arguments with which they may be invoked.

Commands which take a message number as an argument (scan, show, repl, also
take one of the following words: first, prev, cur, next, or last to indicate
(respectively) the first, previous, current, next, or last message in the current folder.

Commands, such as rmm, scan, or show, which take a range of message numbers
also take any of the following abbreviations:

numl-num2 — Indicates all messages in the range numl to num2, inclusive. The
specified range must contain at least one message.

num:+n

num:—n — Up to n messages beginning with (or ending with) message num. The
value of num may be any of the MH message keywords: first, prev,
cur, next or last.

first: n
prev: n
next: n

last: n - The first, previous, next or last n messages, if they exist.

There are many other possibilities, such as creating multiple folders for different
topics, and automatically refiling messages according to subject, source, destination,
or content. See the individual Reference Pages for more details of the rest of the MH

commands.

Following is a list of all the MH commands:

ali(1mh) ~list mail aliases

anno(1mh) —annotate messages

burst(1mh) —explode digests into messages

comp(1mh) —compose a message

dist(1mh) —redistribute a message to additional addresses
folder(1mh) —set/list current folder/message

folders(1mh) ~list all folders

forw(1mh) —forward messages

inc(1mh) —incorporate new mail

mark(1mh) —mark messages

mhl(1mh) —produce formatted listings of MH messages
mhmail(1mh) —send or read mail

mhpath(1mh) —print full pathnames of MH messages and folders
msgchk(1mh) —check for messages

msh(1mh) ~MH shell

next(1mh) —show the next message

packf(1mh) —compress a folder into a single file
pick(1mh) —select messages by content

prev(1mh) —show the previous message

Commands 1-423

mh (1mh)

Files

prompter(1mh)
rcvstore(1mh)
refile(1mh)
repl(1mh)
rmf(1mh)
rmm(1mh)
scan(1mh)
send(1mh)
slocal(1mh)
show(1mh)
sortm(1mh)
whatnow(1mh)
whom(1mh)

mh-alias(Smh)
mh_format(5mh)
mh-mail(Smh)
mh-profile(Smh)
mtstailor(Smh)

ap(8mh)
conflict(8mbh)
dp(8mh)
install-mh(8mh)
post(8mh)

fusr/new/mh
fusr/new/lib/mh

1-424 Commands

—prompting editor front end

—incorporate new mail asynchronously

~file messages in other folders

—reply to a message

—remove folder

—remove messages

—produce a one line per message scan listing
—send a message

—receive mail hooks

—show (list) messages

—sort messages

~prompting front—end for send

—report who will receive a message when it is sent

—alias file for MH message system

—format file for MH message system
—message format for MH message system
—user customization for MH message system
—system customization for MH

—parse addresses RFC 822—style
—search for alias/password conflicts
—parse dates RFC 822-style
—initialize the MH environment
—deliver a message

directory containing commands
MH library

mhl (1mh)

Name
mhl — produce formatted listings of MH messages

Syntax

/usr/new/lib/mh/mhl [-bell] [-nobell] [-clear] [-noclear] [-folder +foldername]
[—form formfile] [-length lines] [-width columns] [-moreproc program]
[-nomoreproc] [files ...] [-help]

Description

The mh1 command is a program for listing formatted messages and it can be used as
a replacement for more (the default showproc).

As with more, each of the messages specified as arguments (or the standard input)
are output. If more than one message file is specified, you are prompted prior to each
one, and a <RETURN> or <EOT> begins the output, with <KRETURN> clearing the
screen (if appropriate), and <EOT> (usually CTRL-D) suppressing the screen clear.
An <INTERRUPT> (usually CTRL-C) aborts the current message output, prompting
for the next message, if there is one, and a <QUIT> (usually CTRL-E) terminates the
program without generating a core dump.

Options

The -bell option tells mh1 to ring the terminal bell at the end of each page, while
the —clear option tells mhl to clear the screen at the end of each page, or output a
formfeed after each message. Both of these switches, and their inverse counterparts,
take effect only if the profile entry moreproc is defined but empty, and if mh1 is
outputting to a terminal. If the moreproc entry is defined and non-empty, and mhl
is outputting to a terminal, then mh1 causes the moreproc to be placed between the
terminal and mh1, and the switches are ignored. Furthermore, if the ~clear switch
is used and mh1’ s output is directed to a terminal, then mh1 consults the $STERM
and STERMCAP environment variables to determine your terminal type in order to
find out how to clear the screen. If the —~clear switch is used and mh1’ s output is
not directed to a terminal (for example, a pipe or a file), then mh1 sends a formfeed
after each message.

To override the default moreproc and the profile entry, use the
-moreproc program switch. Note that mh1l never starts a moreproc if
invoked on a hardcopy terminal.

The -length length and —width width switches set the screen length and
width, respectively. These default to the values indicated by $TERMINFO, if
appropriate; otherwise they default to 40 and 80, respectively.

The default format file used by mh1 is called mhl . format (which is first searched
for in your MH directory, and then sought in the /usr/new/1ib/mh directory).
This can be changed by using the ~form formatfile switch.

Finally, the ~-folder +folder switch sets the MH folder name, which is used for
the -messagename switch described below. The environment variable
$mhfolder is consulted for the default value which show, next, and prev
initialize appropriately.

Commands 1-425

mhl(1mh)

The mh1 command operates in two phases: read and parse the format file then
process each message (file). During the first phase, an internal description of the
format is produced as a structured list. In the second phase, this list is traversed for
each message, outputting message information under the format constraints from the
format file.

The ““mhl.format’” form file contains information controlling screen clearing, screen
size, wrap-around control, transparent text, component ordering, and component
formatting. Also, a list of components that should be ignored may be specified, and
a couple of special components are defined to provide added functionality. Message
output is in the order specified by the order in the format file.

Each line of mhl.format has one of the formats:

; comment

:cleartext

variable [variable...]
component : [variable,...]

A line beginning with a semi colon (;) is a comment, and is ignored. A line
beginning with a colon (:) is clear text, and is output exactly as is. A line containing
only a colon (:) produces a blank line in the output. A line beginning with
‘‘component:’’ defines the format for the specified component, and finally, remaining
lines define the global environment.

For example, the line:
width=80,length=40,clearscreen,overflowtext="+**" overflowoffset=5

defines the screen size to be 80 columns by 40 rows, specifies that the screen should
be cleared prior to each page, that the overflow indentation is 5, and that overflow
text should be flagged with *“##*’,

If variables or arguments follow a component, they apply only to that component,
otherwise, their affect is global. Since the whole format is parsed before any output
processing, the last global switch setting for a variable applies to the whole message
if that variable is used in a global context (bell, clearscreen, width, length). All of
the current variables and their arguments are shown in the following table.

Variable Type Semantics

width integer screen width or component width

length integer screen length or component length

offset integer positions to indent ‘‘component: *’

overflowtext string text to use at the beginning of an
overflow line

overflowoffset integer positions to indent overflow lines

compwidth integer positions to indent component text
after the first line is output

uppercase flag output text of this component in all
upper case

nouppercase flag do not use uppercase

clearscreen flag/G clear the screen prior to each page

noclearscreen flag/G do not clear the screen

bell flag/G ring the bell at the end of each page

nobell flag/G disable bell

1-426 Commands

mhl(1mh)

component string/L name to use instead of ‘‘component’’ for
this component

nocomponent flag do not output ‘‘component: ’* for this
component

center flag center component on line (works for
one-line components only)

nocenter flag do not center

leftadjust flag strip off leading white-space on each
line of text

noleftadjust flag do not leftadjust

compress flag change newlines in text to spaces

NOCOmpress flag do not compress

formatfield string format string for this component

addrfield flag field contains addresses

datefield flag field contains dates

To specify the value of integer-valued and string-valued variables, follow their name

with an equals-sign and the value. Integer-valued variables are given decimal values,
while string-valued variables are given arbitrary text bracketed by double-quotes. If a
value is suffixed by /G or /L, then its value is useful in a global-only or local-only

context (respectively). A line of the form:

ignores=component, ..
specifies a list of components which are never output.

The component ‘‘MessageName’” (case-insensitive) outputs the actual message name
(file name) preceded by the folder name if one is specified or found in the
environment. The format is identical to that produced by the ~header option to
show.

The component ‘‘Extras’’ outputs all of the components of the message which were
not matched by explicit components, or included in the ignore list. If this component
is not specified, an ignore list is not needed since all non-specified components are
ignored.

If -nocomponent is not specified, then the component name is output as it appears
in the format file.

The default format is:

: —— using template mhl.format - -

overflowtext="#*x" overflowoffset=5

leftadjust, compwidth=9

ignores=msid, msgid,message-id, received

Date; formatfield="%<(nodate{text})%{text}%|% (pretty{text})s>"
To:

cc:

From:

Subject:

extras:nocomponent

body:nocomponent,overflowtext=,overflowoffset=0,noleftadjust

The variable formatfield specifies a format string (see mh-format(Smh)). The
variables addrfield and datefield (which are mutually exclusive), control the
interpretation of the escapes.

Commands 1-427

mhl(1mh)

Files

By default, mh1 does not apply any formatting string to fields containing address or
dates (see mh-mail(Smh) for a list of these fields). Note that this results in faster
operation since mh1 must parse both addresses and dates in order to apply a format
string to them. If desired, mh1 can be given a default format string for either address
or date fields (but not both). To do this, on a global line specify either the variable
addrfield or the variable datefield, along with the variable formatfield.

The defaults for mh1 are:

-bell
-noclear
-length 40
-width 80

/usr/new/lib/mh/mhl.format The message template
or <mh—-dir>/mhl. format Rather than the standard template
$HOME/.mh_profile The user profile

Profile Components

Path: To determine your MH directory
moreproc: Program to use as interactive front-end

See Also

more(1), show(1mh), ap(8mh), dp(8mh)

1-428 Commands

Name

Syntax

mhmail (1mh)

mhmail — send or read mail

mhmail [addrs ...] [-body text] [-cc addrs ..] [from addr] [-subject subject]
[~help]

Description

mhmail is intended as a replacement for the standard mail programs, bellmail and
ucbmail. See binmail(1l) and mail(1l) for more details of these mail programs.
When invoked without arguments, it simply invokes inc to incorporate new
messages from the user’s maildrop. When one or more users is specified, a message
is read from the standard input and spooled to a temporary file. mhmail then
invokes post with the name of the temporary file as its argument to deliver the
message to the specified user.

Options

The —subject subject switch can be used to specify the Subject: field of the
message. The -body text switch can be used to specify the text of the message;
if it is specified, then the standard input is not read. Normally, addresses appearing
as arguments are put in the To: field. If the —cc switch is used, all addresses
following it are placed in the cc: field.

By using ~from addr, you can specify the From: header of the draft. post
fills in the Sender: header correctly.

Normally, people will use comp and send to send messages.

Files
Jusr/new/mh/inc Program to incorporate a maildrop into a folder
fusr/new/lib/mh/post Program to deliver a message
/tmp/mhmail/* Temporary copy of message
Profile Components
None
See Also

inc(1mh), post(8mh)

Commands 1-429

mhpath (1mh)

Name

mhpath — print full pathnames of MH messages and folders
Syntax

mhpath [+foldername] [msgs] [-help]
Description

Use the mhpath command to display the full pathname of the specified folder. If
you do not specify a folder, mhpath will display the pathname of the current folder.

If you specify a message with its message number, mhpath displays the pathname
of the specified message. In the following example, mhpath displays message
number three in the folder +inbox.

$ mhpath +inbox 3
/r/phyl/Mail/inbox

You can also specify a number of messages, or a range of messages. The following
examples demonstrate mhpath displaying the path name for messages two and five
and also two to five, in the current folder.

$ mhpath 2 5
/r/phyl/Mail/inbox/2
/r/phyl/Mail/inbox/5

$ mhpath 2-5

/r/phyl/Mail/inbox/2
/r/phyl/Mail/inbox/3
/r/phyl/Mail/inbox/4
/r/phyl/Mail/inbox/5

If the top of the range that you specify is greater than the last message in the folder,
mhpath displays as much of the specified range as possible. Additionally mhpath
can take a keyword or a sequence name. The following keywords are acceptable:
new, first, last, next, cur and all. The keywords first and last
display the pathnames for the first or last message in the specified folder. Both these
keywords can be used in conjunction with a number to display the pathnames for the
first or last n messages. The following example displays the pathnames for the first 2
messages in the current folder.

$ mhpath first:2

/r/phyl/Mail/test/3
/r/phyl/Mail/test/5

The keyword new displays the pathname for the message after the last message in
the folder. You cannot use new as part of a message range.

The keywords prev and next display the pathname for either the last message or
the next message relative to the current message of the specified folder. The
keyword cur displays the pathname of the current message in the specified folder.

You can use more than one keyword in the same mhpath command line. See the
following example.

$ mhpath +test last new
/r/phyl/Mail/test/6
/r/phyl/Mail/test/7

1-430 Commands

mhpath (1mh)

Files
$HOME/.mh_profile =~ The user profile

Profile Components

Path: To determine the user’s MH directory
Current-Folder: To find the default current folder

See Also
folder(1mh)

Commands 1-431

mkdir (1)

Name
mkdir — make a new directory

Syntax
mkdir -p dirname...

Description
The mkdir command creates specified directories in mode 777. The directories are
then modified by umask(2), according to how you have set up umask. Standard
entries, ‘", for the directory itself, and ©..” for its parent, are made automatically.
The mkdir command requires write permission in the parent directory.

Options
-p Create intermediate directories as required. If this option is not specified,

the full path prefix of dirname must already exist.
See Also

rm(1)

1-432 Commands

mkfifo (1)
Name
mkfifo — make fifo special files
Syntax
mkfifo filename ...
Description

The mk £ifo command creates the ‘fifo special files’ named by its operand list. The
operands are taken sequentially, in the order specified, and each ‘fifo special file’ is
either completed or, in the case of an error or signal, not created at all. Unless
interrupted, mk £ i fo will attempt to create all files specified. Error messages are
written to standard error.

Each “fifo file’ is created with a mode of 666, read and write privileges for the user,
group and other. The mode is modified by clearing those bits set in the process’s file
mode creation mask. See umask(2) for more information.

See Also
mknod(2), stat(2), umask(2)

Commands 1-433

mkstr (1)

Name

mKstr — create an error message file

Syntax
mkstr [-] messagefile prefix file...

Description

The mkstr command is used to create files of error messages. Its use can make
programs with large numbers of error diagnostics much smaller, and reduce system
overhead in running the program as the error messages do not have to be constantly
swapped in and out.

The mkst r command will process each of the specified files, placing a massaged
version of the input file in a file whose name consists of the specified prefix and the
original name. A typical usage of mkstr would be:

mkstr pistrings xx *.c

This command would cause all the error messages from the C source files in the
current directory to be placed in the file pistrings and processed copies of the source
for these files to be placed in files whose names are prefixed with xx.

To process the error messages in the source to the message file mk st r keys on the
string ‘error("’ in the input stream. Each time it occurs, the C string starting at the
" is placed in the message file followed by a null character and a new-line character.
The null character terminates the message so it can be easily used when retrieved, the
new-line character makes it possible to sensibly cat the error message file to see its
contents. The massaged copy of the input file then contains a 1seek pointer into
the file which can be used to retrieve the message, that is:

char filename[] = "/usr/lib/pi_strings";
int file = -1;

error(al, a2, a3, a4)
{
char buf[256];

Bif (efil < 0) {
efil = open(efilname, 0);
if (efil < 0) {
oops:
perror (efilname) ;
exit(2);
}
}
if (lseek(efil, (long) al, 0) || read(efil, buf, 256) <= 0)
goto oops:;
printf (buf, a2, a3, a4):;

Options

- Places error messages at the end of specified message file.

1-434 Commands

mkstr(1)

See Also
xstr(1), 1seek(2)

Commands 1-435

mktemp (1)

mktemp — make a name for a temporary file

mktemp [~c] [~d directory_name][—p prefix]

The mktemp command makes a name for the pathname of a temporary file and
writes that name to standard output. The name will not duplicate that of an existing
file. Subsequent calls to mktemp will only generate a new file name if all previously
generated file names have been created by the user and still exist. Error messages are
written to standard error.

The directory_name generated by mktemp is the concatenation of a directory name,
a slash (/), a file prefix, a dot (.), a four digit number and a unique character.

The directory name is chosen as follows:

If the —d option is specified, directory name is used.

Otherwise, if the TMPDIR environment variable is set and a string that
would yield a unique name can be obtained using the value of that variable
as a directory name, this value is used.

Otherwise, /tmp is used.

The prefix is chosen as follows:

Name
Syntax
Description
(1)
(2)
(3
(1)
(2)
(3)
Options
-

If the —p option is specified, prefix is used.
Otherwise, if the LOGNAME environment variable is set, it is used as the

prefix.

Otherwise, the user’s login name is used.

Causes mktemp to attemp to create a regular file using the generated
(or created) name string. If file creation is successful, a zero length file
is created with access permissions derived from the process’s file
mode creation mask, see umask(2). No attempt is made to create a
file if the length of the generated (or created) name string exceeds
1023 characters. It is the user’s responsibility to remove files created
by use of this option.

—d directory_name

~p prefix

1-436 Commands

Causes directory_name to be used as the directory portion of the
pathname. In this case, directory_name is used instead of TMPDIR
and /tmp.

Causes the string prefix to be used as the file’s prefix. It is used instead
of LOGNAM and the user’s login name. If the prefix is longer the 249
characters, it will be silently truncated to that length before the
concatenation of the suffix.

mktemp (1)

Environmental Variables
LOGNAME When the —p prefix option is not specified, the value of this variable is
used as the prefix of the filename, if it exists.
TMPDIR When the ~d directory_name option is not specified, the value of this
variable is used instead of /tmp.
Restrictions

If the user does not have write permission in the directory specified, and error
message is reported and /tmp is used in its place. The entire path name can not
exceed 1023 characters, and the temporary file name can not exceed 255 characters. If
the generated file name is too long it is truncated to fit before the suffix is added.

See Also
stat(2), umask(2), mktemp(3)

Commands 1-437

more(1)

more, page — display file data at your terminal

more [—cdflsu] [-n] [+/inenumber | [+/pattern] [name...]

page more options

The more filter allows you to examine a file one screenful of text at a time on a
soft-copy terminal. It normally pauses after each screenful, printing --More-- at the
bottom of the screen. If the user then types a carriage return, one more line is
displayed. If the user presses the space bar, another screenful is displayed.

+linenumber Start up at linenumber.

Name
Syntax
Description
Options
+/pattern
_c
|
—f
-1
-n
-S
-u

1-438 Commands

Start up two lines before the line containing the regular expression
pattern. The command line options are:

Begins each page at the top of the screen and erases each line just
before it draws on it. This avoids scrolling the screen, making it
easier to read while more is writing. This option is ignored if the
terminal does not have the ability to clear to the end of a line.

Displays extended continuation prompt at end of each display. The
more command prompts the user with the message "Press space to
continue, “q” to quit." at the end of each screenful, and responds to
subsequent illegal user input by printing "Press “h” for instructions."
instead of ringing the bell. This is useful if more is being used as a
filter in some setting, such as a class, where many users may be
unsophisticated.

Counts logical text lines (does not fold long lines). This option is
recommended if nroff output is being piped through ul, since the
latter may generate escape sequences. These escape sequences contain
characters which would ordinarily occupy screen positions, but which
do not print when they are sent to the terminal as part of an escape
sequence. Thus more may think that lines are longer than they
actually are, and fold lines erroneously.

Ignores line feeds (CTRL/Ls) and normally, pauses at line feeds. If
this option is not given, more pauses after any line that contains a AL,
as if the end of a screenful had been reached. Also, if a file begins
with a form feed, the screen is cleared before the file is printed.

Specifies number of line more displays.

Squeezes multiple blank lines from the output, producing only one
blank line. Especially helpful when viewing nroff output, this
option maximizes the useful information present on the screen.

Ignores all underlining in the data. If the terminal can perform

more (1)

underlining or has a stand-out mode, more outputs appropriate escape
sequences to enable underlining or stand-out mode for underlined
information in the source file. The —u option suppresses this
processing.

If the program is invoked as page, then the screen is cleared before each screenful is
printed (but only if a full screenful is being printed), and k — 1 rather than k — 2 lines
are printed in each screenful, where k is the number of lines the terminal can display.

The more command looks in the file /etc/termcap to determine terminal
characteristics, and to determine the default window size. On a terminal capable of
displaying 24 lines, the default window size is 22 lines.

The more command looks in the environment variable MORE to pre-set any flags
desired. For example, if you prefer to view files using the — mode of operation, the
csh command setenv MORE -c or the sh command sequence MORE="-c’ ; export
MORE would cause all invocations of more, including invocations by programs
such as man and msgs, to use this mode. Normally, the user places the command
sequence which sets up the MORE environment variable in the .cshrc or .profile file.

If more is reading from a file, rather than a pipe, then a percentage is displayed
along with the --More-- prompt. This gives the fraction of the file (in characters, not
lines) that has been read so far.

Other sequences which may be typed when more pauses, and their effects, are as
follows (i is an optional integer argument, defaulting to 1) :

i <space> Display i more lines, (or another screenful if no argument is given)

AD Display 11 more lines (a *‘scroll’”). If i is given, then the scroll size is
settoi.

d Same as AD (control-D)

iz Same as typing a space except that i, if present, becomes the new
window size.

is Skip i lines and print a screenful of lines

if Skip i screenfuls and print a screenful of lines

iboriMB Skip back i screenfuls and print a screenful of lines
qorQ Exit from more.

= Display the current line number.

v Start up the editor vi at the current line.
hor? Help command; give a description of all the more commands.
i /expr Search for the i -th occurrence of the regular expression expr. If there

are less than i occurrences of expr, and the input is a file (rather than a
pipe), then the position in the file remains unchanged. Otherwise, a
screenful is displayed, starting two lines before the place where the
expression was found. The user’s erase and kill characters may be
used to edit the regular expression. Erasing back past the first column
cancels the search command. of the last regular expression entered.

in Search for the i -th occurrence

’ (single quote) Go to the point from which the last search started. If no

Commands 1-439

more(1)

search has been performed in the current file, this command goes back
to the beginning of the file.

!command Invoke a shell with command. The characters ‘%’ and ‘!’ in
"command" are replaced with the current file name and the previous
shell command respectively. If there is no current file name, ‘%’ is
not expanded. The sequences "\%" and "\!" are replaced by "%" and
"I" respectively.

i:n skip to the i-th next file given in the command line (skips to last file if
n doesn’t make sense)

i:p Skip to the i -th previous file given in the command line. If this
command is given in the middle of printing out a file, then more goes
back to the beginning of the file. If i doesn’t make sense, more skips
back to the first file. If more is not reading from a file, the bell is
rung and nothing else happens.

of Display the current file name and line number.
:qor:Q Exit from more
. (dot) Repeat the previous command.

The commands take effect immediately, that is, it is not necessary to type a carriage
return. Up to the time when the command character itself is given, the user may hit
the line Kill character to cancel the numerical argument being formed. In addition,
the user may hit the erase character to redisplay the --More--(xx%) message.

At any time when output is being sent to the terminal, the user can hit the quit key
(normally control-\). The more command stops sending output, and displays the
usual --More-- prompt. The user may then enter one of the above commands in the
normal manner. Unfortunately, some output is lost when this is done, due to the fact
that any characters waiting in the terminal’s output queue are flushed when the quit
signal occurs.

The terminal is set to noecho mode by this program so that the output can be
continuous. What you type not show on your terminal, except for the / and !
commands.

If the standard output is not a teletype, then more acts just like cat, except that a
header is printed before each file (if there is more than one).

A sample usage of more in previewing nrof £ output would be

nroff -ms +2 doc.n | more -s

Files
[etc/termcap Terminal data base
/usr/lib/more.help Help file

See Also

csh(1), man(1), msgs(1), script(1), sh(1), environ(7)

1-440 Commands

msgchk (1mh)

Name

msgchk — check for messages

Syntax
msgchk [-nodate] [-notify all/mail/nomail] [users ...] [-help]

Description

The msgchk program checks all known mail drops for mail that is waiting for you.
msgchk displays whether you have mail waiting to be read or not and shows the
date that you last read your mail. You can suppress this display by specifying
-nodate with msgchk. The following example shows msgchk in use.

$ msgchk
You have new mail waiting; last read on Tue, 07 Jun 88 17:21:49 WET

Options

The -notify type switch indicates under what circumstances msgchk should
produce a message. The type switch can take values of all, mail, nomail.
The default is —notify all which says that msgchk will report the status of the
maildrop regardless of whether it has mail in it or not. The mail switch sets
msgchk to report the status of the maildrop only if there is mail waiting. The
—nomail switch sets msgchk to report the status of the maildrop only if there is no
mail in it.

You can use msgchk to check on the status of other users’ maildrops by specifying
their user names. The following example illustrates this.

$ msgchk Rabb Jones
Rabb doesn’t have any new mail waiting;
last read on Tue 07 Jun 13:22:25 WET
Jones has new mail waiting; last read on Tue, 07 Jun 17:30:05 WET

Restrictions
msgchk does not understand the $MAILDROP envariable.

Files

$HOME/.mh_profile The user profile
Jusr/new/lib/mh/mtstailor Tailor file
[usr/spool/mail/$SUSER Location of mail drop

Profile Components
None

See Also
inc(1mh)

Commands 1-441

msh (1mh)

Name

msh - MH shell
Syntax

msh [-prompt string] [-scan] [-noscan] [-topcur] [-notopcur] [file] [=help]
Description

The command msh is an interactive program that implements a subset of the normal
MH commands operating on a single file in packf format. That is, msh is used to
read a file that contains a number of messages, as opposed to the standard MH style of
reading a number of files, each file being a separate message in a folder.

The chief advantage of msh is that, unlike the normal MH style, it allows a file to
have more than one message in it. In addition, msh can be used on other files, such
as message archives which have been packed (see packf(1mh)).

When invoked, msh reads the named file, and enters a command loop. You can type
most of the normal MH commands. The syntax and semantics of these commands
typed to msh are identical to their MH counterparts. In cases where the nature of msh
would be inconsistent with the way MH works (for example, specifying a +folder
with some commands), msh will duly inform you. The commands that msh
currently supports are:

ali burst comp dist folder
forw inc mark mhmail msgchk
next packf pick prev refile
repl rmm scan send show
sortm whatnow whom

In addition, msh has a help command which gives a brief overview of all the msh
options. To terminate msh, either type CTRL-D, or use the quit command.

If the file is writable and has been modified, then using quit will ask you if the file
should be updated.

Options
The -prompt string switch sets the prompting string for msh.

You may wish to use an alternative MH profile for the commands that msh executes;
see mh-profile(Smh) for details of the H envariable.

A redirection facility is supported by msh. Commands may be followed by one of
the following:

[Open an interprocess channel —
connect output to another ULTRIX
command

> Write output to file

>> Append output to file

If file starts with a tilde (~), then a Cshell-like expansion takes place. Note that
command is interpreted by sh(l). Also note that msh does not support history
substitutions, variable substitutions, or alias substitutions.

1-442 Commands

Files

msh (1mh)

When parsing commands to the left of any redirection symbol, msh will honor the
backslash (\) as the quote next-character symbol, and double quote (") as quote-
word delimiters. All other input tokens are separated by whitespace (spaces and
tabs).

The following defaults are used by msh:

file defaults to . /msgbox
—prompt {(msh)
—-noscan

—notopcur

The argument to the ~-prompt switch must be interpreted as a single token by the
shell that invokes msh. Therefore, you should place the argument to this switch
inside double-quotes.

There is a strict limit of messages per file in packf format which msh can handle.
Usually, this limit is 1000 messages.

Please remember that msh is not the cshell, and that a lot of the facilities
provided by the latter are not present in the former.

In particular, msh does not understand back-quoting, so the only effective way to use
pick inside msh is to always use the ~seq select switch. If you put the line

pick: -seq select -list

in your mh_profile file, pick will work equally well from both the shell and msh.

OME/.mh_profile The user profile
fusr/new/lib/mh/mtstailor tailor file

Profile Components

Path: To determine your MH directory
Msg-Protect: To set mode when creating a new CW file
fileproc: Program to file messages

showproc: Program to show messages

Commands 1-443

mt(1)

Name
mt — magnetic tape manipulating program

Syntax

mt [-f tapename] command [count]

Description
The mt command permits the operation of a magnetic tape drive.

Options

The —f flag option uses the specified tape device (next argument) in plaée of either
that tape device defined by your TAPE environment variable (.login or .profile) or
/dev/nrmtOh.

Some operations may be performed multiple times by specifying count. By default,
mt performs the requested operation once.

The command argument defines the operation to be performed. Only as many
characters as are required to uniquely identify a command need be specified.

The following is a list of commands:

bsf Backspace count files.
bsr Backspace count records.
cache Allows mt to use the cache buffer on a tape drive that has

the cache buffer feature.

clhrdsf Clear hardware/software problem. Works with tape drives
which use the TMSCP tape controller interface tms(4).
This command is restricted to root access only.

clserex Clear serious exception. Works with tape drives which use
the TMSCP tape controller interface tms(4).

clsub Clear subsystem. Works with tape drives which use the
TMSCP tape controller interface tms(4). This command is
restricted to root access only.

eof, weof Write count end-of-file marks at the current position on the
tape.
eotdis Disable end-of-tape detection. When the end of tape is

reached, the tape will run off the reel. Only the superuser
can issue this command. The command remains in effect for
the device until end-of-tape detection is enabled with the
eoten command.

eoten Enable end-of-tape detection. When the end-of-tape markers
are reached, the tape is halted on the reel, between the two
end-of-tape markers. Only the superuser can issue this
command. The command remains in effect for the device
until end-of-tape detection is disabled with the eotdis
command. This is the default mode after a system boot.

1-444 Commands

mt(1)

fsf Forward-space count files.
fsr Forward-space count records.
nocache Disables the use of the cache buffer for any tape drive that
has the cache buffer feature.
offline, rewoffl Rewind the tape and place the tape unit off-line.
rewind Rewind the tape.
status Print status information about the tape unit.
Examples

This example shows how to rewind the tape rmt 01:
mt -f /dev/rmt0l rewind

This example shows how to backspace the tape nmtlh three files:
mt -f /dev/nrmtlh bsf 3

This example shows how to write two end-of-file marks at the current position on
tape nmt6h:

mt -f /dev/nrmt6h eof 2

Return Value

In shell scripts, mt returns a 0 exit status when the operation(s) were successful, 1 if
the command was unrecognized, and 2 if an operation failed.

Files
/dev/rmt?h or /dev/rmt?]
Raw magnetic tape interface with rewind when closed
/dev/inmt?h or /dev/nmt?l
Raw magnetic tape interface with no rewind when closed
See Also

dd(1), tar(1), ioctl(2), mtio(4), tms(4), environ(7)

Commands 1-445

mv (1)

Name

mv — move or rename files

Syntax
mv [-i] [-f][-] filel file2
mv [-i] [-f][-] file... directory

Description
The mv command moves (changes the name of) file! to file2.

If file2 already exists, it is removed before filel is moved. If file2 has a mode which
forbids writing, mv prints the mode and reads the standard input to obtain a line. If
the line begins with y, the move takes place. If it does not, mv exits. For further
information, see chmod(2).

In the second form, one or more files (plain files or directories) are moved to the
directory with their original file-names.

The mv command refuses to move a file onto itself,
Options
- Interprets all following arguments as file names to allow file

names starting with a minus.

-f Force. This option overrides any mode restrictions or the —i
switch.

—i Interactive mode. If a move is to supersede an existing file,
the system prompts youw with the name of the file followed
by a question mark. If you type a string that begins with y,
the move occurs. If you type any other response, the move
does not occur.

Restrictions

If filel and file2 lie on different file systems, mv must copy the file and delete the
original. In this case the owner name becomes that of the copying process and any
linking relationship with other files is lost.

See Also
cp(1), In(1)

1-446 Commands

nawk (1)

Name

nawk — data transformation, report generation language
Syntax

nawk [—f programfile 1 [-Fs][program][var=value... 1] file ...]
Description

The nawk language is a file-processing language which is well-suited to data
manipulation and retrieval of information from text files. This reference page
provides a full technical description of nawk; if you are unfamiliar with the
language, you will probably find it helpful to read the Guide to the nawk Utility
before reading the following material.

A nawk program consists of any number of user-defined functions and ‘rules’ of the
form:

pattern {action}
There are two ways to specify the nawk program:

(a) Directly on the command line. In this case, the program is a single
command line argument, usually enclosed in apostrophes (’).

(b) By using the —f programfile option (where programfile contains the nawk
program). More than one —f option can appear on the command line. The
program will consist of the concatenation of the contents of all the specified
programfiles. You can use — in place of a file name, to obtain input from the
standard input.

The input data manipulated by the nawk program is provided in files specified on the
command line. If no such files are specified, data is read from the standard input.
You can also specify a file name of — to mean the standard input.

Input to nawk is divided into records. By default, records are separated by new-line
characters; however, you can specify a different record separator if you wish.

One at a time, and in order, each input record is compared with the pattern of every
‘rule’ in the nawk program. When a pattern matches, the action part of the rule is
performed on the current input record. Patterns and actions often refer to separate
fields within a record. By default, fields are separated by white space (blanks, new-
lines, or horizontal tab characters); however, you can specify a different field
separator string using the —Fs option (see Input).

You can omit the pattern or action part of a nawk rule (but not both). If pattern is
omitted, the action is performed on every input record (as if every record matches).
If action is omitted, every record matching the pattern will be written to the standard
output.

If a line in a nawk program contains a ‘#’ character, the ‘#’ and everything after it is
considered to be a comment.

Program lines can be continued by adding a backslash *\’ to the end of the line.
Statement lines ending with a comma °,’, double or-bars ‘I’, or double ampersands
‘&&’, are automatically continued.

Commands 1-447

nawk (1)

Options
~f programfile
Tells nawk to obtain its program from the specified file. There can be
more than one of these on the command line.
-Fs Says that s is the field separator character within records.

Variables and Expressions
There are three types of variables in nawk: identifiers, fields, and array elements.

An identifier is a sequence of letters, digits, and underscores beginning with a letter
or an underscore.

Fields are described in the Input subsection.

Arrays are associative collections of values called the elements of the array. Array
elements are referenced with constructs of the form

identifier [subscript}]

where subscript has the form expr or expr,expr,... Each such expr can have any string
value. Arrays with multiple expr subscripts are implemented by concatenating the
string values of each expr with a separator character SUBSEP separating multiple
expr. The initial value of SUBSEP is set to \034’ (ASCII field separator).

Fields and identifiers are sometimes called scalar variables to distinguish them from
arrays.

Variables are not declared and need not be initialized. The value of an uninitialized
variable is the empty string. Variables can be initialized on the command line using

var=value

Such initializations can be interspersed with the names of input files on the command
line. Inmitializations and input files will be processed in the order they appear on the
command line. For example, the command

nawk -f progfile A=1 fl1 f2 A=2 £3
sets A to 1 before input is read from f1 and sets A to 2 before input is read from f3.

Certain built-in variables have special meaning to nawk, as described in later
sections.

Expressions consist of constants, variables, functions, regular expressions and
‘subscript in array’ conditions (see below) combined with operators. Each variable
and expression has a string value and a corresponding numeric value; the value
appropriate to the context is used. If a string is used in a numeric context, and the
contents of the string cannot be interpreted as a number, the ‘value’ of the string is
taken to be zero.

Numeric constants are sequences of decimal digits.

String constants are quoted, as in "x". Escape sequences accepted in literal strings

are:
Escape ASCI Character
\a audible bell
\b backspace
\f formfeed

1-448 Commands

nawk (1)

\n new-line

\r carriage return

\t horizontal tab

\v vertical tab

\ooo octal value ooo

\xdd hexadecimal value dd
\" quotation mark

\¢ any other character ¢

The regular expression syntax understood by nawk is the extended regular
expressions of the egrep utility described in grep(1). Characters enclosed in slash
characters ‘/> are compiled as regular expressions when the nawk program is read.
In addition, literal strings and variables are interpreted as dynamic regular
expressions on the right side of a ‘~’ or ‘!~’ operator, or as certain arguments to
built-in matching and substitution functions. Note that when literal strings are used
as regular expressions, extra backslashes are needed to escape regular expression
metacharacters because the backslash is also the literal string escape character.

The ‘subscript in array’ condition is defined as:
index in array

where index looks like expr or (expr,....expr). This condition evaluates to 1 if the
string value of index is a subscript of array, and to 0 otherwise. This is a way to
determine if an array element exists. If the element does not exist, this condition will
not create it.

Symbol Table

The symbol table can be accessed through the built-in array SYMTAB.
SYMTABR [expr]

is equivalent to the variable named by the evaluation of expr. For example,
SYMTAB("var"]

is a synonym for the variable var.

Environment

A nawk program can determine its initial environment by examining the ENVIRON
array. If the environment consists of entries of the form:

name=value

then

ENVIRON [name]

has string value

"value"

For example, the following program is equivalent to the default output of env(1):

BEGIN {
for (i in ENVIRON)
printf ("$s=%s\n", i, ENVIRON[il)
exit

Commands 1-449

nawk(1)

Operators

The usual precedence order of arithmetic operations is followed unless overridden
with parentheses; a table giving the order of operations appears at the end of the
Guide to the nawk Utility. The unary operators are

- Negation

+ Nothing (place holder)
-~- Decrement by one

++ Increment by one

where the ‘++’ and ‘—-’ operators can be used as either postfix or prefix operators, as
in C.
The binary arithmetic operators are

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

~ Exponentiation

The conditional operator
expr ? exprl : expr2
evaluates to exprl if the value of expr is non-zero, and to expr2 otherwise.

If two expressions are not separated by an operator, their string values are
concatenated.

The operator ‘~’ yields 1 (true) if the regular expression on the right side matches the
string on the left side. The operator ‘!~ yields 1 when the right side has no match
on the left. To illustrate:

$2 ~ /[0-91/

selects any line where the second field contains at least one digit. Any string or
variable on the right side of ‘~’ or ‘!~ is interpreted as a dynamic regular expression.

The relational operators are the usual ‘<’, ‘<=", >’, ‘>=’, ‘==", and ‘!=".
The boolean operators are ‘lI’ (or), ‘&&’ (and), and ‘!’ (not).

Values can be assigned to a variable with

var = expr

If op is a binary arithmetic operator,

var op= expr

is equivalent to

var = var op expr

Command Line Arguments

The built-in variable ARGC is set to the number of command line arguments. The
built-in array ARGV has elements subscripted with digits from zero to ARGC-1,
giving command line arguments in the order they appeared on the command line.

1-450 Commands

nawk (1)

The ARGC count and the ARGV vector do not include command line options
(beginning with ‘=’) or the program file (following —£f). They do include the name
of the command itself, initialization statements of the form

var=value

and the names of input data files.

The nawk language actually creates ARGC and ARGV before doing anything else.

It then walks through ARGV processing the arguments. If an element of ARGV is
the empty string, it is simply skipped. If it contains an equals sign ‘=’, it is
interpreted as a variable assignment. If it is a minus sign ‘-, it stands for the
standard input and input is immediately read from the standard input until end-of-file
is encountered. Otherwise, the argument is taken to be a file name; input will be read
from that file until end-of-file is reached. Note that the program is executed by
‘walking through’ ARGV in this way; thus if the program changes ARGV, different
files can be read and assignments made.

Input

Input is divided into records. Each record is separated from the next with a record
separator character. The value of the built-in variable RS gives the current record
separator character; by default, it begins as the new-line “n’. If you assign a different
character to RS, nawk will use that as the record separator character from that point
on.

Records are divided into fields. Each field is separated from the next with a field
separator string, given by the value of the built-in variable FS. You can set a
specific separator string by assigning a value to FS or by specifying the —Fs option
on the command line. FS can be be assigned a regular expression. For example,
FS = "[,:$]"

says that fields can be separated by commas, colons, or dollar signs. As a special
case, assigning FS a string containing only a blank character sets the field separator
to white space. In this case, any sequence of contiguous space and/or tab characters
is considered a single field separator. This is the default for FS. However, if FS is
assigned a string containing any other character, that character designates the start of
a new field. For example, if we set

FS="\t"
(the tab character),
texta \t textb \t \t \t textc

contains five fields, two of which only contain blanks. With the default setting, the
above would only contain three fields because the sequence of multiple blanks and
tabs would be considered a single separator.

Various pieces of information about input are provided by the built-in variables listed
below.

NF Number of fields in the current record
NR Number of records read so far
FILENAME Name of file containing current record
FNR Number of records read from current file

Commands 1-451

nawk (1)

Field specifiers have the form $i where i runs from 1 through NF. Such a field
specifier refers to the ith field of the current input record. $0 (zero) refers to the
entire current input record.

The getline function can read a value for a variable or $0 from the current input,
from a file, or from a pipe. The result of getline is an integer indicating whether the
read operation was successful. A value of 1 indicates success; 0 indicates end-of-file
encountered; and —1 indicates that an error occurred. Possible forms for getline are:

getline Reads next input record into $0 and splits the record into fields. NF, NR,
and FNR are set appropriately.

getline var
Reads next input record into the variable var. The record is not split into
fields (which means that the current $i values do not change). NR and FNR
are set appropriately.

getline <expr
Interprets the string value of expr to be a file name. The next record from
that file is read into $0 and split into fields. NF is set appropriately.

getline var <expr
Interprets the string value of expr to be a file name, and reads the next record
from that file into the variable var. The record is not split into fields.

expr | getline
Interprets the string value of expr as a command line to be executed. Output
from this command is piped into getline, and read into $0 in a manner
similar to getline <expr. See the SYSTEM FUNCTION section for
additional details.

expr | getline var
Executes the string value of expr as a command and pipes the output of the
command into getline. The result is similar to getline var <expr.

close(expr)
Only a limited number of files and pipes can be open at one time. This
function will close open files or pipes. The expr must be one that came
before ‘I’ or after ‘>’ in getline, or after ‘>’, >>’, or ‘I’ in print or printf as
described in the Output section. By closing files and pipes that are no
longer needed, you can use any number of files and pipes in the course of
executing a nawk program.

Built-In Arithmetic Functions

int(expr)
Returns the integer part of the numeric value of expr. If (expr) is omitted, the
integer part of $0 is returned.

exp(expr), log(expr), sqrt(expr)
Returns the exponential, natural logarithm, and square root of the numeric
value of expr. If (expr) is omitted, $0 is used.

sin(expr), cos(expr)
Returns the sine and cosine of the numeric value of expr (interpreted as an
angle in radians).

atan2(exprl, expr2)

1-452 Commands

nawk (1)

Returns the arctangent of exprl/expr2 in the range of —x through 7.

rand()
Returns a random floating-point number in the range O through 1.

srand(expr)
Sets the seed of the rand function to the integer value of expr. If (expr) is
omitted, nawk sets a default seed (which is the same each time nawk is
invoked).

Built-In String Functions

len = length(expr)
Returns the number of characters in the string value of expr. If (expr) is
omitted, $0 is used.

n = split(string, array, regexp)
Splits the string into fields. The expression regexp is a regular expression
giving the field separator string for the purposes of this operation. The
elements of array are assigned the separated fields in order; subscripts for
array begin at 1. All other elements of array are discarded. The result of
split is the number of fields into which string was divided (which is also
the maximum subscript for array). Note that regexp divides the record in
the same way that the FS field separator string does. If regexp is omitted
in the call to split, the current value of FS will be used.

str = substr(string, m, len)
Returns the substring of string that begins in position m and is at most len
characters long. The first character of the string has m equal to one. If len
is omitted, the rest of string is returned.

pos = index(s!, s2)
Returns the position of the first occurrence of string s2 in string s/; if s2 is
not found in s/, index returns zero.

pos = match(string, regexp)
Searches string for the first substring matching the regular expression
regexp, and returns an integer giving the position of this substring. If no
such substring is found, match returns zero. The built-in variable
RSTART is set to pos and the built-in variable RLENGTH is set to the
length of the matched string. These are both set to zero if there is no
match. The regexp can be enclosed in slashes or given as a string.

n = gsub(regexp, repl, string)
globally replaces all substrings of string that match the regular expression
regexp, and replaces the substring with the string repl. If string is
omitted, the current record ($0) is used. The notation gsub returns the
number of substrings that were replaced or zero if no match occurred.

n = sub(regexp, repl, string)
Works like gsub except that at most one match and substitution is
attempted.

str = sprintf(fmt, expr, expr...)
Formats the expression list expr, expr, ... using specifications from the
string fmt, then returns the formatted string. The fmt string consists of
conversion specifications which convert and add the next expr to the

Commands 1-453

nawk (1)

string, and ordinary characters which are simply added to the string.
Conversion specifications have the form

$[-1[x1(.ylc

where

— left justifies the field

x is the minimum field width
y is the precision

¢ is the conversion character

In a string, the precision is the maximum number of characters to be
printed from the string; in a number, the precision is the number of digits
to be printed to the right of the decimal point in a floating point value. If
xoryis ‘*’ (asterisk), the minimum field width or precision will be the
value of the next expr in the call to sprintf.

The conversion character c is one of following:

Decimal integer

Unsigned octal integer

Unsigned hexadecimal integer

Unsigned decimal integer

Floating point

Floating point (scientific notation)

The shorter of e and f (suppresses non-significant zeros)
Single character of an integer value

String

uO0Q o Hho X 0O Q

n = ord(expr)
Returns the integer value of first character in the string value of expr.
This is useful in conjunction with ‘%c’ in sprintf.

str = tolower(expr)
Converts all letters in the string value of expr into lower case, and returns
the result. If expr is omitted, $0 is used.

str = toupper(expr)
Converts all letters in the string value of expr into upper case, and returns
the result. If expr is omitted, $0 is used.

The System Function

Status = system(expr)
Executes the string value of expr as a command. For example,

system("tail " $1)

calls the tail(1l) command, using the string value of $1 as the file that
tail should examine. See the Restrictions section for a discussion of
the execution of the command.

1-454 Commands

nawk (1)

User-Defined Functions

You can define your own functions using the form

function name (parameter-list) {
statements

}

A function definition can appear in the place of a pattern {action} rule. The
parameter-list contains any number of normal (scalar) and array variables separated
by commas. When a function is called, scalar arguments are passed by value, and
array arguments are passed by reference. The names specified in the parameter-list
are local to the function; all other names used in the function are are global. Local
scalar variables can be defined by adding them to the end of the parameter list.
These extra parameters are not used in any call to the function.

A function returns to its caller either when the final statement in the function is
executed, or when an explicit return statement is executed.

Patterns and Actions

A pattern is a regular expression, a special pattern, a pattern range, or any arithmetic
expression.

BEGIN is a special pattern used to label actions that should be performed before any
input records have been read. END is a special pattern used to label actions that
should be performed after all input records have been read.

A pattern range is given as

patternl , pattern2

This matches all lines from one that matches patternl to one that matches pattern2,
inclusive.

If a pattern is omitted, or if the numeric value of the pattern is non-zero (true), the
resulting action is executed for the line.

An action is a series of statements terminated by semicolons, new-lines, or closing
braces. A condition is any expression; a non-zero value is considered true, and a zero
value is considered false. A statement is one of the following:

expression

if (condition)
Statement
[else
statement]

while (condition)
statement

do
Sstatement
while (condition)

for (expressionl; condition; expression2)
statement

The for statement is equivalent to:

expressionl
while (condition) {

Commands 1-455

nawk (1)

statement
expression2
}

The for statement can also have the form

for (i in array)
statement

The statement is executed once for each element in array; on each repetition, the
variable i will contain the name of a subscript of array, running through all the
subscripts in an arbitrary order. If array is multi-dimensional (has multiple
subscripts), i will be expressed as a single string with the SUBSEP character
separating the subscripts. The following simple statements are supported:

break Exits a for or a while loop immediately.

continue
Stops the current iteration of a for or while loop and begins the next
iteration (if there is one).

next Terminates any processing for the current input record and immediately
starts processing the next input record. Processing for the next record will
begin with the first appropriate rule.

exit[(expr)]
Immediately goes to the END action if it exists; if there is no END action,
or if nawk is already executing the END action, the nawk program
terminates. The exit status of the program is set to the numeric value of
expr. If (expr) is omitted, the exit status is 0.

return [expr]
Returns from the execution of a function. If an expr is specified, the value
of the expression is returned as the result of the function. Otherwise, the
function result is undefined.

delete arrayli]
Deletes element i from the given array.

print expr, expr, ...
Described below.

printf fimt, expr, expr, ...
Described below.
Output

The print and printf statements write to the standard output. Output can be
redirected to a file or pipe as described below.

If >expr is added to a print or printf statement, the string value of expr is taken to
be a file name, and output is written to that file. Similarly, if >RI >> expr is added,
output will be appended to the current contents of the file. The distinction between
>’ and ‘>>’ is only important for the first print to the file expr. Subsequent outputs
to an already open file will append to what is there already.

In order to eliminate ambiguities, statements such as

print a > b ¢

are syntactically illegal. Parentheses must be used to resolve the ambiguity.

1-456 Commands

nawk (1)

If lexpr is added to a print or printf statement, the string value of expr is taken to be
an executable command. The command is executed with the output from the
statement piped as input into the command.

As noted earlier, only a limited number of files and pipes can be open at any time.
To avoid going over the limit, you should use the close function to close files and
pipes when they are no longer needed.

The print statement prints its arguments with only simple formatting. If it has no
arguments, the current input record is printed in its entirety. The output record
separator ORS is added to the end of the output produced by each print statement;
when arguments in the print statement are separated by commas, the corresponding
output values will be separated by the output field separator OFS. ORS and OFS are
built-in variables whose values can be changed by assigning them strings. The
default output record separator is a new-line and the default output field separator is a
space. The format of numbers output by print is given by the string OFMT. By
default, the value is ‘%.6g’; this can be changed by assigning OFMT a different
string value.

The printf statement formats its arguments using the fint argument. Formatting is
the same as for the built-in function sprintf. Unlike print, printf does not add
output separators automatically. This gives the program more precise control of the
output.

Restrictions

The longest input record is restricted to 20,000 bytes and the maximum number of
fields supported is 4000. The length of the string produced by sprintf is limited to
1024 bytes.

The ord function may not be recognized by other versions of awk. The toupper and
tolower functions and the ENVIRON array variable are found in the Bell Labs
version of awk; this version is a superset of ‘New AWK’ as described in The AWK
Programming Language by Aho, Weinberger, and Kernighan.

The shell that is used by the functions
getline print printf system

and the return value of the system function is described in system(3).

Examples

The following example outputs the contents of the file input1 with line numbers
prepended to each line:

nawk ’‘{print NR ":" $0}’ inputl

The following is an example using var=value on the command line:
nawk ’{print NR SEP $0}’ SEP=":" inputl

The nawk program script can also be read from a file as in the command line:

nawk -f addline.nawk inputl

This example produces the same output as the previous example when the file
addline.nawk contains

{print NR ":" $0}

Commands 1-457

nawk (1)

The following program appends all input lines starting with ‘January’ to the file jan
(which can already exist or not), and all lines starting with ‘February’ or ‘March’ to
the file febmar:

/~January/ {print >> "jan"}

/*February|~March/ {print >> "febmar"}

This program prints the total and average for the last column of each input line:
{s += $NF}

END {print "sum is", s, "average is", s/NR}

The following program interchanges the first and second fields of input lines:

{

tmp = $1
$1 = $2
$2 = tmp
print

}

The following example inserts line numbers so that output lines are left-aligned:
{printf "%-6d: %s\n", NR, $0}

This example prints input records in reverse order (assuming sufficient memory):

{
a[NR] = $0 # index using record number
}
END {
for (i = NR; i>0; --i)
print a[i]
}

The next program determines the number of lines starting with the same first field:

{
++a[$1] # arra<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>