
PRELIMINARY

KDF11-AA USER’S GUIDE

PRELIMINARY

EK-KDF11-UG-PR2

KDF11-AA

USER’'S GUIDE

digital equipment corporation ¢ marlboro, massachusetts

Preliminary Edition, January 1979

Revised Preliminary, March 1979

Copyright © 1979 by Digital Equipment Corporation

The material in this manual is for informational purposes and

is subject to change without notice.

Digital Equipment Corporation assumes no responsibility for

any errors which may appear in this manual.

Printed in U.SA,

The following are trademarks of Digital Equipment Corporation,

Maynard. Massachusetts:

DIGITAL

DEC

PDP

DECUS

UNIBUS

DECsystem-10

DECSYSTEM-20

DIBOL

EDUSYSTEM

VAX

VMS

MASSBUS

OMNIBUS

0S/8

RSTS

RSX

IAS

6580 15

PREFACE

This manual describes the KDFll-AA processor. The following

versions of the KDF1ll exist.

1. KDF11-AA processor with memory management unit (MMU)

2. KDF11-AB processor with MMU and floating point

3. KDF11-AC processor without MMU or floating point

The LSI-11/23 processor consists of one of the above KDF1ll

versions and can be ordered in conjunction with memory modules or

in system boxes.

iii

PREFACE

CHAPTER 1

0
0
 ~
J
O
V

 U
T
 i

>

i

D

D

b

B

D
D

W
N

-

[

g
t
k
w
h

-

*

]

®

[
[]

L d

»
L]

]
[

e
&

[

[]

[

»

S
T

W
N

-

b
t

e

b
t
 b

b

e

e

e

e

e

CHAPTER

®
L4

]
[

]
[

[
.

o
@

®

[]

]
3

]
[]

]
[]

[J

[
[

A
L
k

W
W
W
W
W
N

[]

L]

[
[}

B

w

-

N
N [

]
»

o

o

o

o

[S
w
W
w
h
N
o
N
D
N
D
D
N
D
D
D
N
D
N
D
N
D

N
N

s

&

*

@

[

[]

[]

»
*

n
N
d
e
d
w
W
w
n
H

W

N

=

N
N

N
D
D
O
D
N
D
N
D
D
N
O
N

[

[

o
o
t
t
t
o
t
n

CONTENTS

SPECIFICATIONS /

INTRODUCTION. e ceeseccsscssccsaas

FEATURES i ittt e ccacsascssccssncansa

SPECIFICATIONS. ctceeaccassccascs

PROCESSOR HARDWARE. ...« .

General-Purpose Registers.....

Bus CyCleS.iiciieiieacaacsnnnns

Addressing Memory and Peripherals.....

Memory Management...ceceeceoscacceaccacns

Processor Status Word (PS).cececececaacs

Condition Codes (PS bits <3:0>).....

Trace Bit (PS bit 4) .iiiciiiiacacecans

(PS bits <7:5>)..c...

(PS bit 8).

Priority Level

Suspended Instruction (SI)

4 & & 6 ¢ & & & & &8 & & & & 8 & &

Previous Mode (PS bits <13:12>)......

Current Mode (PS bits <15:14>)....

INSTRUCTION SET. ® & &6 &6 & & ¢ & ¢ & & & & & & & & & & & o o

MEMORIES AND PERIPHERALS........

RELATED DOCUMENTS‘.....‘...‘.‘I‘

INSTALLATION

INTRODUCTION..ll.‘......‘...“.

JUMPER CONFIGURATIONS.:cceaceacaacacas

Master Clock - Wl..c.eeese

LI

e 86 &6 & & & & & & & o

Event Line _‘W4..l....C........l.“‘

e 6 6 & ¢ & o

»
[)

[}

[

L[]

[
[3

*
[

.

Y

3

Power-Up Mode Selection - W5 and Wé6....

POwer—Up MOde 0 e 6 6 6 06 6 6 6 6 6 a0 600080 0o s e

Power—Up MOde 1 4 6 6 4 6 6 068606068660 060aea00saascs

Power-Up Mode 2.......

Starting Address 173000

e

® 6 & ¢ 6 & &8 ¢ & & & & 8 8 8 & o

Power—Up MOde 3.....‘l.l..ll..."‘l.“l.

Halt/Trap OptiOl’l - W7.-.cccoocc-occoooo-cc-occ

—W8¢c.co..ooccc-oo¢-

Selectable Starting Address - W9 through WI15..

MODULE CONTACT FINGER IDENTIFICATION..ccceceesas

Page

L]

e &8 ¢ & & & & o

s ¢ & &6 & & 8 o

e &6 & 8 & & o o

e 6 & & & & & o

e & 6 & &4 & & o

¢ & & & 5 & & o

e & & & & & & o

e & & & & & & o

e & & & 5 & & @

® @ & & & & & o

® &6 & & & & & o

& &6 6 & & & o

s &6 6 & & & & o

L]

[]

[]

»

[
]

[

[

[

[

»

®

o

[
]

=

e

e

[

[

[

[
]

®

[

[

®

[

[

'y

L]

®

[

[
[)

.

.

*

»

»

[

BACKPLANE PIN ASSIGNMENTS AND THEIR KDF1ll-AA

UTILIZATION.¢ ettt s aesccssssscssssssssaccasccas

HARDWARE OPTIONS . :ccccececccsccancancasns

BaCKpPlaneS.iieesseseeeaessasesacssccascancsas

H9270 Backplan€...ceeececeacaacaanas

H9273-A BacKkplane..iecieeeeeteescsasacossenans

H9281 BacCKPlanE.:.cecaeeeeseasssssscscscasscs

DDV11-B BacKkplane.:.ieceeseeeascecascacscacanas

Device Priority Within Backplanes............2

PoOwer SUPPlieS.iciiceicacscaascscacnscascanaans

ENClOSUrEeS . cececeecsascessccssssasscsssacscsas

...... . & & &

e & & o

. & & & & 8 o

e & & 9

.

D
N

N
N

b
t

e

b

R
T

I
B
b
W

T
o

e
t

s
l

 o
i

I

=
=

|

C
O
o
O
O
O
W
V
W
W
Y
W
W
O
W
E
W
W
O

N
I

 ~
J
O
0

W

b
l —

N
N

D
N
N
D
N
N
D
N
O
D
N
D
N
D
O
N

|
N

I

Y

I
A
B
W
W
N
N
O

G
T
O
U

U
L

&
 &
R
N
N

-16

c.co2—17

ce...2-18

CONTENTS (Cont)

Page

2.5.4 Memory MoOdUleS..iiiiititeeeceaaeaacacacanen - .2-18
2.5.5 Peripheral OpPtioNS.iiieeeeeeeeeeeeoeeaeenannnes 2-18
2.6 SYSTEM DIFFERENCES..ttt teeeeeeececeecssncacscesns ..2-18

2.7 MODULE INSTALLATION PROCEDURE. ¢t ettt eeescecocnnes 2-19

CHAPTER 3 CONSOLE ODT

3.1 INT RODUCTION. ¢ttt eeasenaeeaseeaseanccancsassaansesld-l
3.2 TERMINAL INTERFACE . .ttt teeseeteescscscscssssssaceas 3-1

3.2.1 Receiver Control and Status Register (RCSR).....3-1

3.2.2 Receiver Buffer Register (RBUF) «ueiceeeeeeeeceeaeald=2

3.2.3 Transmitter Control and Status Register (XCSR)..3-2

3.2.4 Transmitter Buffer Register (XBUF) ¢..ieeeeeeeaan 3-3

3.3 CONSOLE ODT OPERATION. .« tteeeeeecnceenascsccanaasseal—3
3.3.1 Console ODT Entry Conditions...... B

3.3.2 Console ODT INput SEQUENCE...ceiteeeccacacnseadsal—d

3.3.3 Console ODT Output Sequence...... I|

3.4 CONSOLE ODT COMMAND SET .« cteteeacacacncacsenss «eee3-5

3.4.1 /(ASCITI 057) Slash.iiiiieieeeaaosccananeas ceeeeaa 3-7

3.4.2 <CR> (ASCII 15) Carriage RetUIN...ciceececeancas 3-8

3.4.3 KLF> (ASCII 12) Line Feed...eeeeeeeecanacanns «es.3-8

3.4.4 $ (ASCII 044) or R (ASCII 122) Internal

Register DesSignator.cuiieeeeeseeeescccasasocsnsses 3-9

3.4.5 S (ASCII 123) Processor Status Word..... cet e e 3-9

3.4.6 G (ASCII 107) GOeeveenoenaenossnoanncnnass ceeasesa3-10

3.4.7 P (ASCII 120) ProcCeed. e .eceeeececcsesacsncaacaasasald=1l0

3.4.8 Control-Shift-S (ASCII 23) Binary DUMP.««......3-11

3.4.9 Reserved CoOmMmMaAnNdS .. eceeeeeeeaosessceaceanneanasald—1ll

3.5 ADDRESS SPECIFICATION..ttt teeccoasscocssaasnssccsas 3-11

3.5.1 Processor I/0 AQAreSSeS.uiueeeeecenacaascaaneansald=1ll
3.5.2 Stack Pointer SeleCtioN...ceicieeeeecaceasaceeaasald—l?

3.6 ENTERING OF OCTAL DIGITS . et eeeeeeeaecsceacancaneaaedld—1l2
3.7 ODT TIMEOUT . ittt eeeenetacastsosassssascsasssaaccacs 3-13

3.8 INVALID CHARACTERS. ittt teeecanannes cs e st e aan «e.3-13

CHAPTER ¢4 LSI-11 BUS

4.1 INTRODUCTION. ¢ttt s eeaoestoaacscescassossncanaasaaeeasd=l
4.2 DATA TRANSFER BUS CYCLES....... c e s eacass e N

4.2.1 Bus Cycle ProtoCOl.iiieieeieeeeeeeaceacancncnasnes ..4-3
4.2.1.1 Device AdAresSSiNg...icieeeeeeececeeeaeaanannanna 4-3

4.2.1.2 32 -

4.2.1.3 DATO(B)¢ e vt et eeneeaeanesesncsssacanasenes cees.d-5

4.2.1.4 DATIO(B) ettt teeeeaeeatsasssasoscascdascancseaasacd=9
4.2.2 Parity ProtoCOl.uieiieeeeeeaeeeeeaeceaaassannesedsd=9

4.3 DIRECT MEMORY ACCESS . it tetteeeesescaasaacnes ceassd-=-12
4.4 INTERRUP TS . ¢ttt ittt eaeaeeaetsscancescnceancccncecas .4-14

4.4.1 DEeViCe Priority.eeieieeseeeeeeeeaaensesaeaeanssad=15
4.4.2 Interrupt ProtoCOl..iiiieiieeesacacescnncscasaasd—1b

vi

w

o
»®

®
L[]

*
[

.
[

[
[

[J

o

[3

]
[}

]
»

.
[]

3
]

[}
W

N

e

&

o

@

e

o

[

=

W
+

O
O

~
I
O
Y
y

N
N

W
N

H

S

N

N
G

N
N

N
O

O
N

A
L

N
N

i
I

R
N

e
 X

X
X
A
 R

o
A
 R

A
N

a
R
A
N

A
N
 A

 M

RS

S

L

* —

CHAPTER 5

o
@

]
[

[}

.
o

o
e

&
e

@
[I

s

&

[

]

[

3

o

o

A
U

B

b
W
N

]

»

[
N

BSYNCLLOGIC........Q....‘

S
 N
G
E
G
E
G
E
G
E
S
 R

S
R
S

N
G
N
S

N
,
 N
S

RO

R
S

R
S

S,

 R
O
R
O
 R
O

R

R
N

L
o
V
O
w
w
o
o
m
o
o
m
~
T
o
a
o
a
o
o
a
n
o
a
o
h

o
U
W

CONTENTS (Cont)

4-Level Interrupt Configurations.........

CONTROL FUNCTIONS.“OQ“...O.“I

Memory Refresh....... Ceecessssenn

Halt.l‘..“.‘.‘.

InitializatioN.eeeieceeeeoscasas ceeceaas « oo

Power StatlUS.cieesceaececcasoscaccssscscaans

BUS ELECTRICAL CHARACTERISTICS. ccieeaacass

Signal Level Specification....ceeceeeces

AC Load DefinitioON.ieeeeceesscccasccasacsasn

DC Load DefinitiONeececceeeaacsacconacnas

120 Ohm LSI-1] BUS:tteeetecccccscacscecses

Bus Drivers. [] [] [] L} L] . @ L] - ® e & e o * & L] []

Bus Receivers..Q...‘....‘.‘l..‘.Ol“l

BUS TerminNatioON.e ceeeeeseescoes

[*

Bus Interconnecting Wiring....soeeeceeeses

Backplane Wiring..e.cceeeesecasaccnsocsns

Intra-Backplane Bus Wiring......cceeee

Power and Ground........ cessasecsanace

Maintenance and Spare PiNS...ceeecceees

SYSTEM CONFIGURATIONS. . e e eteaaceccasscsssccscs

Rules for Configuring Single Backplane

SyStemS..ciieienseaanns

Rules for Configuring Multiple Backplane

SYSteMS .t eiieeeeceanneacneannas

Power Supply Loading..ccceeeeeccecaaocasnas

PROCESSOR FUNCTIONAL DESCRIPTION

INTRODUCTION..« cteeesssensassccssansscccsacs

DATA CHIP. ...t eeeteeaasessscnnnans

CONTROL CHIP... it eeeeeetsscctsssassaccssscns

MMU CHIP..cctteeeettasecctsacsssccasanss

e &6 ¢ & & & & &

DATA-ADDRESS LINES (DAL) ccttetsecccennsanns

MICROINSTRUCTION BUS (MIB) ¢ ¢cccecececaancsscses

MIB15/Memory Management Enable (MME)....

MIBl4/Initialize (INIT F) i ceeeeacaaans

MIB13/Interrupt Acknowledge (IAK) «ccececaoasaans

MIB12, 9, 8/Address-Input-Output (AIO) Codes...

BUS CYC Huteooooaoaosaoassosssacssassssscassssascssas

SYNC/DMA ENA H.....cc.. .

MIB03/GPO 3.‘.'.‘.““...‘0.“‘..‘..‘I..

MIB02, 01, 00/GPO 2, 1, Occiieeennecaanns

& & & & & & & 85 & & & &

DIRECT MEMORY ACCESS (DMA) ¢ttt ceceecassascns

DMA LOGiC.iceeeeeceaaaacesasosssascasancas

DMA LatenCyieceecescesccccssoscscsscacaaacacs

CLOCK GENERATOR CIRCUITRY.....

Initialization..i.icieiiieieeeenecscsacccacans

e & &6 & &6 & ¢ & & & o

]] [» LJ L[
]

»] [

[

L]

Ld [[* * [*

[

...................5-12

a
n
c
n
f
i
w
m

I
b

I
N
O
W
A
R
C
U

U
T
d

&
b

b

D
W
W

3 * L] ® [

[

.

* L] [

L]

L]

L]

L]

L]

2
[]

»

I
o
o
0
t
y

L

o

|

e & &

L]

L]

(
1
I
N

&)

L

e & o o

oe & & & s

ceeedb-12

Wake-Up CirCUit.................-.-............5"'13

vii

CHAPTER 6

»

*

W
W
W
L
W
w
W
W
w
W
w
w
W
w
w

W
W
W
w
w
W
w
w
w
i
w
w

W
+

[

[
*

[J

[]

[
*

»
[

»
»

»
[

[
*

»

[
*

[
»

)
»

[
Y

»
[

[]

»
[

[
s

»

2

[

[

=

W

-

A
N

A
N

N

O

H
H
E
M
H
E
F
H
F
O
W
O
W
O
O
Y

O

U
L
W
D

W
N
H
H

O

CHAPTER 7

3

[

»

»

»

&

»

»

»

]

»

3

'}

[]

»
[

[
»

»
[]

[
[

»
»

[]

*

®

&

]
»

[]

(3

[

D
W
W

N

B
l

B
B

W

W
W

W

W

N
N

N

w

N
+

N
N

N
N

N
N

N
N

N
S
N
S

N

N

T

e

e

e
l

J
o

Sy

S
y
 S
y

 G

g
P
y
 S

»

[

CONTENTS (Cont)

Single-Step Circuit....eiieean.
CLOCK GENERATOR CYCLES......v...

Normal CycCle..eeieieeieeennanns

Clock Stutter Cycle......

Clock Stop Cycle.iieenn..
Memory Management Cycle..

Reset Cycleiiiiieienannnn »

*

*

'y

[]

[}

d
.

[

.

»

[

[
[)

L4

[
L3

[

)

.

[

L]

]

e

o

]

]

-

.

[

[

[

[

]
3

.
.

L4

[3

L4

[
[}

.
[

[

]
Y

[

[

[]

®
[]

[
*

Ld

[J

L
»

2

L
.

[4

[
[

[
[

ADDRESSING MODES

INT RODUC T ION . ¢ 4t et e ot eneececcesesennens

INSTRUCTION FORMATS. vttt eeeeea

ADDRESSING MODES. ¢ et teeoeceens

Register Mode....iveeewnenn.
Register Deferred Mode...

Autoincrement MOA€ ... eeeeeaos.
Autoincrement Deferred Mode..

Autodecrement Mode€....eeeeeeae. .

Autodecrement Deferred Mode.......

IndeX MOAE . ittt ieeeeeeancanencnsens
Index Deferred MOA€ .. .ueeeeoeeeenn

Use of the PC as a General Registe
PC Immediate MOAE€ .. vieeeceeecaeas

PC Absolute MoOde...veeeeeeaeasen

[[] * ® . [J » [

»

-

[]

]

[d

[

Ld

]
*

o
[4

®
e

o

o

o

o

&

o

o

o

¢

o

e
o

I
t

o
.

&
o

o
o

o
.

»
]

L4

]
®

[l

®
L]

Ld

[
L]

2
*

[]

[
®

L]

.
L]

.

e
[

Ld

L4

PC Relative MOde‘.‘...‘.‘...“l.‘.‘

PC Relative Deferred Mode€..........
Direct Addressing Modes Summary......
Indirect Addressing Modes Summary....
PC Register Addressing Modes Summary.
Graphic Summary of Addressing Modes..

INSTRUCTION SET

INT RODUCTION . ¢ ¢ttt teeeeeensecasesececees

Single Operand InstructionS..........
Double Operand InstructionS..........

Double Operand Instruction Format..
Byte Instructions...iiieieeeeeeeeees

Program Control InStructionS....ceee..

Branch InstructionsS...e.eeeeeeeeee..
Jump and Subroutine Instructions...

Condition Code InstructionS........
Miscellaneous InstructionS.........

0= 1) o = =

Single Operand Instruction Example..
Double Operand Instruction Example..
Branch Instruction Example.....oeeee..

INSTRUCTION SET.vt eeeenn S et e s ecc et escseacae

viii

[3

[4

[}

»
[

[

.

[

[

[}

L]

®
[]

[
L]

[]

[]
[

[

»

[

.

[

.

s

.
[

L4

*

L]

[

~
l i

Page

«e.5-13

..5-14

..5-14

.5-14

.5-15

.5-16

.5-16

I
S

O
O

N
N

O
O

|
(
I

»
[]

[
.

[]

[

L)

L4

®
*

[
4

®
[

[]

®
[

®

1
1

|
O
O
C
W

W
O

I
O

U
T
U
T
b
W
N

=

|

CONTENTS (Cont)

Page

CHAPTER 8 MEMORY MANAGEMENT

INTRODUCTION.¢« ettt s eacecosnastsssscscsstsssssccsans

ProOgramming.ceeececeeesesessssescssscascacassaans

Basic AQdressing........ Cesteceseeesactaanana

Active Page Registers....... Cecsetseseaaeas

Capabilities Provided by Memory Management.

MEMORY RELOCATION...«c«.. C e eececsst et cet s

Program RelocCationN..iiiieeeeeaeseasosncacacas

MemMOry UnitS.iiceeaoseascaaccascsanans ceeaan

PROTECTION . ¢t et teetteeostsacoscssecsssasasacsssesnaase

Inaccessible MEMOIY it cetiaeaoascnasscacasoacas

Read-0Only MemOI Y. ceeeeaeeaaesocasssocscsosscscacasas

Multiple AddressS SPACE:ccctctescasssscscsssssascs

Mode Specification in Processor Status Word.

Processor Status Word Protection....eeeeeces

User Mode ReStriCtioONS.iieeeeeesoseacassanasas

Interrupt and Trap ProCcesSinNg...cccecececees

PAGE ADDRESS REGISTER (PAR)¢t e ecaeeas

PAGE DESCRIPTOR REGISTER (PDR)

e

&

&

o

W

O
C
O
N
N
N
N
N
N
U
N
Y
N
I
N

O
O

W
w
W
W
w
W
w
w
w
w
w
w
h
N
d
N
D
H
E
H
E
E
E
E

L] N
N

*

[

»

*

»

[d

[

[

L
]

[]

]
®

®

*

L]

»

]

»

[

[

[l

®

]

®

o

I

C
O
o
O
V
O
m
M
~
I
~
N
O
O
O
A
A
D

W
N
N
N
D
K
H
F
H

o

o

o

o

¢

o

o

o

W
w
w
w
w
i
h
h
H
-
+

.

¢

o

o

o

s

o

o

o

I
|

|
0
O

C
o
 0
O

C
o

o

C
O
 0
o

O
O

0O

O

O
O

O
O

o

C
o

o

|

3

e

&

>

W
+

* [J

*

0
0
0

O

e

[
[o

|

o

[)

4
»

]

Access Control Field (ACF) ¢ee.eec.. .

Expansion Direction (ED).cicacaana .

Written INto (W) ciieeeieienosearseasocasosaaneasead=12

Page Length Field (PLF) citttieeeateccascnasssesad—13

PLF For an Upward-Expandable Page....eceeee..8-13

PLF For a Downward-Expandable Page...........8-14

VIRTUAL AND PHYSICAL ADDRESSES.. it iieeeccccseceesad-14

Construction of a Physical AddresS....ccceee...8-15

Determining the Program Physical Address.......8-16

STATUS REGISTERS...... Ps e X

Status Register 0 (SRO)...

Halt Nonresident........

Halt Page Length........

Halt Read Only..ceeeeaas

Mode of Operation....ieceeeeens

Page NUmber....cceeceeeeceoacs « e

Enable Relocation and ProtectioN...cciceeeeeese8=19

Status Register 1 (SR1) .iciieeecanns Cecesescseasad-19

Status Register 2 (SR2) iieceeeacanen cesecsacase8—-19

Status Register 3 (SR3) tceienesesencncans ceeess8-19

MEMORY MANAGEMENT INSTRUCTIONS..t ccceescccsaassss8—=20

PROGRAMMING EXAMPLES .. it cteeeascasssssssseansesasesd—=20

[

»

o

]

e

o

]

®

®

®

[]

[
]

[
[3

L]

[
[

N

b
W

N

]

L]

N
S

.

.

s

o

[

[J

*

@

]

3

*

o

*

L4

[J

*

*

L4

[

*

[J

*

»

S

W

N

] » ® [L] [L . » [J o
 0
]

|
= O

R

e

e

©
0

00

0O

00

0O

0O

OO

0
00

0
0

CO

0O

OO

CO

0
0

00

00

00

CO

0O

OO

OO

0O

00

0
O

00

0O

OO
0
CO

OO
0
00

0O

0
O

OO

0
CO

C
O

Co

GO

O

0O

GO

CHAPTER 9 FLOATING POINT

1 INTRODUCTION. ¢t e et tseeecceasasasccsscassaccss .9-1

2 FLOATING POINT DATA FORMATS... ccceeececcccaacsscs ..9-1

2.1 Nonvanishing Floating Point Numbers.............9-1

2.2 Floating Point Z€r0...eeecicanaaas ceceacaeae ceeea9d-2\
©

O
O
\

ix

W
O

W
O

W
O

L]

.

]

*

S
N

o
t
k

W
D

[

[

W

CHAPTER 10

10.1

10.2

10.2.1

10.2.2

10.3

10.3.1

10.3.2

10.3.3

10.3.4

10.3.5

10.3.6

10.3.6.1

10.3.6.2

10.3.7

10.3.7.1

10.3.7.2

10.3.8

10.3.8.1

10.3.8.2

10.3.9

10.3.9.1

10.3.9.2

10.3.9.3

10.3.10

10.3.11

10.3.11.1

10.3.11.2

10.3.12

10.4

10.5

10.6

10.7

APPENDIX A

APPENDIX B

CONTENTS (Cont)

e o)
)
Q o

The Undefined Variable.....cieveeenn Ce e e ca e 9-

Floating Point Data..ccceeeeeeannens ceesesscassal

FLOATING POINT STATUS REGISTER (FPS):ceeeeeeceseasad-

FLOATING EXCEPTION CODE AND ADDRESS REGISTERS.....9

FLOATING POINT PROCESSOR INSTRUCTION ADDRESSING...9

ACCURACY..ttt eeetosscacsssssaccas c e e s s e s e e s s e s s s 9-

FLOATING POINT INSTRUCTIONS...ttt eeeeertasascaccscas 9-1

|

H
O
W
Y
W
E

W
k

N

PROGRAMMING TECHNIQUES

INTRODUCTION.¢ ettt eeeaecccccccseos C e et e e e st e s e 10-1

POSITION-INDEPENDENT CODE..¢eetveeeses eL R

Use of Addressing Modes in the Construction

of Position-Independent Code€.seevevereaneaeassall-1

Position-Dependent/Postion-Independent

Comparative Example...cieeeceerssaseascaosnseaessl0=3

STACKS .ttt sttt eesasssccassssssccssas cecescssessal0=5

Pushing Onto a Stack. i it eeeteteoescsanaacneseaasll=5

Popping From a Stack......c... ce et « oo

Deleting Items From a StacK.eieieeeeoeeceaasessl0=-6

Stack USeS.iiiieereseeccoccecacens oo e .

Stack Use ExamplesS..ceieeeeseseasssascacscacocses 10-8

Subroutine Linkage....iveeeeettoceaasccsasecessal0-9

Return from a Subroutine.....¢ieceeeeeeeeses10-10

Subroutine AdvantagesS....ccesceeaascccasessasl0-10

InterruptsS.. e e iieeeeesessssossstssossssnssassssslO-11

Interrupt Service RoutineS.......e... ce e e 10-11

Nesting.....-.--........... ooooooo 00.1000000.10-12

REENEIANCY¢ttt et enessosseossscsssacosssssscsas 10-12

Reentrant Code...o.......lltllv000000000‘000010-12

Writing Reentrant Code.....eeeee.e

COFOULINES.ttt etetsessosastscssoscotsosssssosasase 10-15

Coroutine CallS.eeeeeeeeeeascsssosossossccaans 10-15

Coroutines Versus SubroutineS....ceeeeeeeeas 10-17

Using COroUtineS...ceeeececestassssacacseessl0-17

RECUL SI1O0MNM e ¢t et oeecssosassssososscsasssasssascesas 10-19

ProCceSSOr TraApPSeececsssccscsscsssscaassoscssassssssl0=21

Trap INStruCtionNS.i ceeeesesescscscscsnnessasl0=22

Use of Macro Calls..iceeeeeoeececeecans ceeees10-23

Conversion ROULINES..cieetcoscsconcscacssscsosscs 10-24

PROGRAMMING THE PROCESSOR STATUS WORD:.:.::teeoea...10-28
PROGRAMMING PERIPHERALS. . ¢ ¢t tceesacosaossaesaeessl0—28

PDP-11 PROGRAMMING EXAMPLES .. ¢ cctoeesseasessaseasal0-29

LOOPING TECHNIQUES . .t e eeeeesecossnssssnsassasssasl0=35

GENERAL REFERENCE INFORMATION

INSTRUCTION TIMING

CONTENTS (Cont)

APPENDIX C KDF11/PDP-11 PROGRAM AND OPERATION DIFFERENCE

APPENDIX D INTEGRATED CIRCUITS

APPENDIX E BOOTSTRAP PROGRAMS (CONSOLE ENTRY)

APPENDIX F ODT DIFFERENCES

APPENDIX G KD11-F/KD11-HA/KDFl1l~-AA DETAILED COMPARISON

APPENDIX H PARITY ON THE LSI-11 BUS

FIGURES

Figure No. Title Page

1-1 KDF11-AA Processor Module (M8186)

(Shown with Optional Floating Point)...eeececeaeaal=2

1-2 General RegiSter..icieeseeeecessoesssscscssoaacsaseassl=h

1—3 High and Low.... @ & & & 5 & & & & ¢ & O & 5 & O 2 6 & & & S 0 0 o 1—6

1-4 Word and Byte Addresses for First 4K....eeieeeesesl=6

2-1 KDF11-AA Jumper LOCAtiONS.:iccesscscsescscesoscssasel=3

2-2 Double-Height Module Contact Finger

IdentificatiOn..o.................................2—6

2-3 H9270 Backplane Pin Identification

(Pin Side View Shown) @ 0 ¢ ¢ 0 2 0 ¢ 9 0 06 0 0 00 000000006000 00 02_7

2-4 H9270 Options POSitiONS..ceeietecesesscscscsoaesal2—13

2-5 H9273-A Option POSitiONS.cieeeeasecesecsosascsnssesl=l4

2-6 H9281 Option and Connector Locations (Module

SI1dE) tvvetrarrrsstnscssscassssseccassassssccnessasa=l5

2-7 DDV11-B Module Installation and Slot

ASSIgNMENtS. e e eeesoesocncososs T e V|

3-1 Receiver Status Register.......... .R |

3-2 Receiver Buffer Register...eceeeeesecssessccacssessld=2

3-3 Transmitter Control and Status Register....eeceee.3-2

3-4 Transmitter Buffer Register....cceieeeestecacsoesald=3

4-1 DATI BuS CYCle.cieieeessssnososssssssssscscncsssedsd=5

4-2 DATI Bus CycCle TiMiNge.cieeeencsestscscccescsancecaseosd—6

4-3 DATO or DATOB BUS CYCle.iieteseaeacassasasasscscaes .4-7

4-4 DATO or DATOB Bus Cycle TiminNg...ceceeeoscscscasesd=8

4-5 DATIO or DATIOB Bus CyCle.ceiieieneencsssecaseaseard=10

4-6 DATIO or DATIOB Bus Cycle Timing....eeeeesseessead=11

4-7 DMA Request/Grant SEQUENCE .. «ctteetsesrsoasecassasad=13

4-8 DMA Request/Grant TiminNg....ceeeeeeeesccecaceeaasd=14

4-9 Interrupt Request/Acknowledge Sequence.......e...4-16

4-10 Interrupt Protocol TiminNg...ieeeeeecoscensscceasecd=17

4-11 Position-Independent Configuration........eeec...4-20

X1i

Figure No.

O
O

B
W
N
H
E
F
E
R
E
R
F
R
O
O
I
O
U
E

&

W
N
H

s

O

T
R

R
R
T

 T

T

T
T

T
T

T
T

T
T

O
A

b W
O

N

O

e

e

X

e

A
N

A
R

A
N

A

A R
 A
R

AR

 A
R

A
R
A
N

 =
2
2

 N
 E

W
O

I

G,

T

S
O

i

R
O
,
 I
O

RE

 O
 R
O

RN

) R

)

— <

o
0

0
0
0
0

0
0
N
~

1
1

[
U

T
O

N
R

I
N

W
O

W
N

-

o

O

o
o

0

@

|

0

~
J

O

U
l

b

FIGURES (Cont)

Title Page

Position-Dependent Configuration........... ceeescd-21

Power-Up/Power-Down Timing........ Ce e s e e e 4-23
Bus Line TerminatioONnS.cecesceseesssssscaacsasenas 4-25

Single Backplane Configuration.......... ceeeeesesd-29

Multiple Backplane ConfigurationN.:...ceceeeeeaess.4=-30

Processor Functional Block Diagram....ceceeeeeeeeas 5-2

Bus Control PROM....eeceaeonncos C e e e e et e e et 5-5

GPO Decode LOgiCeveeacaaasca ceesesas e ea e ceesseasad—b
BUS SYNC LOGiCiteeseancanasan c et er s et e 5-8

DMA LOgiC.i:eeresancas Cec e e C i etac e e e 5-11

Clock Generator.... Ce e e e es e e e 5-13

Clock Generator Inltlallzatlon Circuitry.........5-14

Normal Clock Cycle. C e e et et ec et s e e e s «e.5-15

Clock Stutter Cycle... oel B2

Clock Stop CycCle.. ieiiietieeeenosesnsonasonans ceeaead=16

Relocation Timing Circuit........ Ce e e e e «.5=-17

Reset Circuit...ceeeaes c e et et ee e e -

Single Operand Instruction Format.......ccoceeeeees 6-2
Double Operand Instruction Format....... c et e e e e 6-3

Register Mode Increment Example......cccieeeeceens 6-4

Register Mode Add Example.....ceeeeeeacanas ceeeaeab-5

Register Deferred Mode Example.....ceeciaececceans 6-5

Autoincrement Mode ExampPle...ccieeieeeeeecaccscancas 6-6

Autoincrement Deferred Mode Example......ceeeeenn 6-7

Autodecrement Mode Example......... c e e e e e .«6-7

Autodecrement Deferred Mode Example.....ccecesee..6-8

Index Mode ExampPle.ciiieetaseccoccanoceces I

Index Deferred Mode Example....ceeeeeescoances «..6-10

PC Immediate Mode EXAmMpPle...icceesesescecanccscans 6-11

PC Absolute Mode Example........... RN Y

PC Relative Mode ExXampPle..icececeeesassasssseassasb=-1l3

PC Relative Deferred Mode Example........ et e e 6-13

General Register Addressing ModeS.....cieeeeresas 6-16

Program Counter Addressing MOdeS......eeeeesessesb6-17

Single Operand Instruction Format.......cccecauees 7-2

Double Operand Instruction Format......ccceeeeecnen 7-3

Branch Instruction Format...eeeeeieeeeeicecenanans 7-5

JSR Instruction Format.......... i eeteeseesssecassl—b

RTS Instruction FOrmat..ceeeeecececescsnccsasonneeel=]

Condition Code Operators Format........... c et e 7-8

Active Page RegiSterS..eieeecteesctoessasasssnossos 8-3

Simplified Memory Relocation..... cee e et acaasenes 8-4

Relocation of a 32K-Word Program into 124K—Word

Physical MeMOIY..eeeseseresoaoesscansasssasasasssssB=D

Page Address RegiSter.i..iiieeeeessoaacsosnonnnoasassd=T

Page Descriptor RegisSter....cceeeitecssscoacccconns 8-8

Example of an Upward-Expandable Page...... et e e e 8-12

Example of a Downward-Expandable Page....ceceeeen 8-13

Interpretation of a Virtual Address....ceeeeeeens 8-15

Xxii

FIGURES (Cont)

Figure No. Title Page

8-9 Displacement Field of Virtual AddresS.......s....8=15
8-10 Construction of a Physical AddresSS..ccceecasecsecses.8-16

8-11 Format of Status Register 0 (SRO).:ieeeeeecaaasasa8-17
8-12 Format of Status Register 2 (SR2) cciceceescasaseasd-19

8-13 Format of Status Register 3 (SR3).iesteeacaccessa8-19
-1 Single Precision FOrmat.....eeeeeecaacoscaasccsssesd—2

- Double Precision Format....... SR
- 2's Complement FOrmMaAt...eeeeseeaseasossscascsacssecd—4

Floating Point Status RegisSter...c.ieessascccccsssad=4

Floating Point Addressing ModeS....ccteeseeaaseasad-1l

W
O

W
O

W
O

[

i
W
N

0-1 Word and Byte StacKS....eeeestsscassassssssaceessl0—6
0-2 Illustration of Push and Pop OperatiOnS.....c.e.. 10-7

10-3 Byte Stack Used as a Character Buffer........ ...10-10
10-4 JSR EXxample..cceecesccacoaes ceccscscasssscscseasal0=-10

10-5 Nested Interrupt Service Routlnes and
SUDFOULEINES.t eeteesnesseeascacseassssoscsssaseaseall-13

10-6 Reentrant RoutineS........ cee e O N 0 & A
10-7 Sharing Control of a ROUtiINE€.::icetessosasoaseaasal0-14

10-8 Coroutine Example...cceeeeeoses ceecsrnssenacessal0-16
10-9 Coroutines vs. Subroutines.....cceceeeseeeseesessl0-16

10-10 Coroutine Path.....eeeeessesseessssasoccesaaassssl0-18
10-11 Coroutine InteractionN.e..cecesscas BL E R

10-12 Recursive ROUtINE FlOW....eoeessasoscaasosaaassesesl0-20

TABLES

Table No. Title Page

2-1 Jumper ConfigurationsS....seceeecoceaca J A|

2-2 Backplane Pin Assignments/KDF11-AA Processor

UtilizatioN.ieeeeeeeoosaaeaananse C e et eacs et aaasan e

Console Power-Up Printout (or Display).ceeeeees

Console ODT COMMANAS e e s et aosoesscsoscsssacsssssssaose

Console ODT States and Valid Input Characters.....

General-Purpose Output SignalsS.:..eceeeeeacecess .o

Direct AAAressing MOAES .. ceseseeteascsscacsassscasesbd

Indirect Addressing MOdeS..ieieeeoscacacsesassssb—14

PC Register Addressing ModeS.....ceeeeeeeeeaecsasaab6-15

Instruction Symbols..... ceeeeseessseseane cesceseesl=13

Processor Status Word ProtectiOn.....eeceesecescesss8-9

PAR/PDR Address ASSIigNMEeNtS..cceteesoeoscscccscas 8-10

Access Control Field KeYS:ieeeteeeoeasesassnsesasesd—1ll

FPS Register BitS..ieiieeieieeeseassscscscscssancassasd=hO
W
O
O
O
J
O
A
A
A
A
N
U
T
W
W
N

|

H
F
W
N
H
F
W
N
H
E
F
N
D
F
W

x1ii

CHAPTER 1

SPECIFICATIONS

1.1 INTRODUCTION

The KDF1ll-AA is a 16-bit, high-performance microprocessor

contained on one dual-height multilayer module (M8186). Figure

1-1 shows the module with 1its major components highlighted.

Utilizing the latest MOS/LSI technology, the KDF1l1l-AA brings the

full PDP-11/34 functionality to a microprocessor that communicates

along the LSI-11 bus. The KDF1l1l-AA contains memory management as

a standard feature and offers floating point as an option

(KEF11-A).

The processor uses the LSI-11 bus with a new 4-level interrupt bus

protocol and parity check feature. The KDFll-AA 1is compatible

with existing LSI-11 processors and devices.

The LSI-11 bus was built around LSI technology requirements

consistent with low cost, high performance and small board form

factors. Low cost and high performance are realized, in part, by

using multifunction 1lines such as the data/address 1lines (DAL)

that reduce the number of pins to the bus. Other lines, such as

the I/0 page address decode line, eliminate hardware by removing

the need for identical page decoders on each interface module. A

detailed description of the LSI-11 bus is contained in Chapter 4.

The KDF11-AA 1is software-compatible with the PDP-11 family. A

wide range of software is available, including programming

languages, diagnostic software, and operating systems.

1.2 FEATURES

The KDF11-AA contains the following features.

o) Four-level vectored interrupts provide for fast interrupt

response without device polling.

o) Memory management for 128K of protected, multiuser

program space.

o Memory parity errors are recognized during every data-in

bus cycle.

o) Over 400 1instructions for powerful and convenient

programming.

o) 16-bit word or 8-bit byte addressable locations.

o) Eight internal general-purpose registers for use as

accumulators and for operand addressing.

o) Stack processing for easy handling of structured data,

subroutines, and interrupts.

DATA/CONTROL UNITFLOATING

(BASIC PROCESSOR)POINT

OPTION

MEMORY

-ZwPLQ<z<=

=)=2-zS

9562-2 BW-A0493

(M8186)1-1 KDF11-AA Processor Module

(Shown with Optional Floating Point)

Figure

o

Asynchronous bus operation allows processor and system

components (memory and peripherals) to run at their

highest possible speed.

Direct memory access (DMA) allows peripherals to access

memory without interrupting processor operation.

Modular component design allows systems to be easily
configured and upgraded.

Power fail and automatic restart hardware detect and

protect against ac power fluctuations.

Compact, double-height module size for versatile

packaging.

ODT console emulator for ease of program debugging.

1.3 SPECIFICATIONS

Identification M8186

Size Double

Dimensions 13.34 cm X 21.59 cm

(5.25 in X 8.5 in)

Power Requirements +5 V + 5%, 2.0 A

Bus Loads

+12 V + 5%, 0.2 A

ac 2 unit loads

dc 1 unit load

Environmental

Storage 40° ¢ to 65° C (104° F to 149° F)
10% to 90% relative humidity, noncondensing

Operating 5° ¢ to 60° c, (41° F to 140° F)

Maximum 8utlet tSmperature rise of 5° ¢ (9° F)
above 60 C (140" F)

Derate maximum temperature by 1° ¢ (1.8° F)
for each 305 m (1000 ft) above 2440 m (8000

ft).

10% to 90% relative humidity, noncondensing

Timing (Based on 300 ns CPU microcycle time)

(Refer to Appendix B for detailed 1listing of instruction

times.)

Interrupt Latency (based on MSV11-D without parity, add 500 ns

worst case with parity)

Worst Case 55.7 microseconds (for infrequently used

instructions)

10.8 microseconds (for more frequently used

group)

Typical 6.0 microseconds

Interrupt Service

Time 8.2 microseconds

DMA Latency 3.49 microseconds (worst case)

1.4 PROCESSOR HARDWARE

The KDF11-AA processor 1is 1implemented using three chips. Two

MOS/LSI chips, data and control, implement the basic processor.

The memory management unit (MMU), the third chip, provides a

PDP-11/34 software-compatible memory management scheme.

The data chip (DC302) performs all arithmetic and 1logical

functions, handles data and address transfers with the external

world, and coordinates most interchip communication. The control

chip (DC303) does microprogram sequencing for PDP-11 instruction

decoding and contains the control store ROM. The data and control

chips are both contained in one 40-pin package (refer to Figure

1-1). The MMU chip (DC304) contains the registers for 18-bit

memory addressing and also includes the FP1ll floating point

registers and accumulators. Optional floating point requires the

MMU chip. Data and control chips do not need the MMU chip for

16-bit addressing.

1.4.1 General-Purpose Registers

The data chip contains eight 16-bit general-purpose registers that

provide for a variety of functions. These registers can serve as

accumulators, index registers, autoincrement registers,

autodecrement registers, or as stack pointers for temporary

storage of data. Arithmetic operations can be from one general

register to another, from one memory location or device register

to another, between memory locations, or between a device register

and a general register. Figure 1-2 identifies the eight 16-bit

general registers RO through R7.

Registers R6 and R7 are dedicated. R6 serves as the stack pointer

(SP) and contains the location (address) of the last entry in the

stack. Register R7 serves as the processor's program counter (PC)

and contains the address of the next instruction to be executed.

It is normally used for addressing purposes only and not as an

accumulator. Register operations are internal to the processor

and do not require bus cycles (except for instruction fetch); all

memory and peripheral device data transfers do require bus cycles

and longer execution time. Thus, general registers used for

processor operations result in faster execution times. The bus

cycles required for memory and device references are described 1in

Paragraph 1.4.2.

GENERAL

REGISTERS RO
R1

R2

R3

R4

R5

R6 | tsP)
STACK POINTER

o R7] rc)

PROGRAM COUNTER

MR-3635

Figure 1-2 General Register

1.4.2 Bus Cycles

The bus cycles (with respect to the processor) are as follows.

DATI Data word transfer input Equivalent to read operation

DATO Data word transfer output Equivalent to word write

operation

DATOB Data word transfer output Equivalent to byte write

operation

DATIO Data word transfer input Equivalent to word read/

followed by word transfer modify/write

output

DATIOB Data word transfer input Equivalent to byte read/

followed by byte transfer modify/write

output

Every processor instruction requires one or more bus cycles. The

first operation required is a DATI, which fetches an instruction

from the location addressed by the program counter (R7). If no

further operands are referenced in memory or in an I/0 device, no

additional bus cycles are required for instruction execution. If

memory or a device is referenced, however, one or more additional

bus cycles 1is required. DMA operations may occur between

individual bus cycles, since these operations do not change the

state of the processor.

Note the distinction between interrupts and DMA operations:

interrupts, which may change the state of the processor, can occur

only between processor instructions. For more details on bus

operations refer to Chapter 4.

1.4.3 Addressing Memory and Peripherals

The KDF11-AA processor uses 16-bit data paths throughout. These

same data paths are also used to construct operand and instruction

addresses. Octal notation is used to describe information on the

data paths.

A processor word 1is divided into a high byte and a low byte as

shown in Figure 1-3.

15 08 07 00

HIGH BYTE LOW BYTE

1 1 1 i ! 1 i 1 1 1 1 1 1 1

MR-3636

Figure 1-3 High and Low

Word addresses are always even—-numbered. Byte addresses can be

either even- or odd-numbered. Low bytes are stored at

even-numbered memory locations and high bytes at odd-numbered

memory locations. Thus, it 1is convenient to view the memory as

shown in Figqure 1-4.

16-BIT WORD

BYTE BYTE 8-BITBYTE

HIGH LOW 000000 LOW 000000

HIGH LOW 000002 HIGH 000001

HIGH LOW 000004 LOW 000002

HIGH 000003

LOW 000004

—T N

—L~ R A~
(\fiM

HIGH LOW 017772 HIGH 017775

HIGH LOW 017774 LOW 017776

HIGH LOowW 017776 HIGH 017777

WORD ORGANIZATION BYTE ORGANIZATION

MR-3637

Figure 1-4 Word and Byte Addresses for First 4K

The full 16-bit data path allows a program to specify operand

addresses (i.e., virtual addresses) anywhere within a 64K byte

range or 32K word range. This virtual address range is fixed by

the instruction format and cannot be changed by the user.

For applications that require more than 32K words of physical

address, such as multiprogramming and/or timesharing applications,

two additional addressing bits are available. These bits allow up

to 128K memory words to be physically addressed by the processor.

This additional addressing capability is part of the standard

memory management within the KDF11-AA architecture.

1.4.4 Memory Management

Memory management has the following three major features.

1. Two software modes that are wuseful for multiuser
(timesharing) systems

2. Extended physical addressing (greater than 32K words, up

to 128K words) for allowing more than one program to

reside in memory at the same time

3. Memory protection for controlling user program access to

system resources (e.g., memory, I/0)

The first feature has two software modes, kernel and user. Kernel

mode 1is employed by the operating system to control system

resources and allows full privileges, while user mode is employed

for executing a user program and restricts processor privileges

(e.g., HALT instruction cannot be executed). The second feature

utilizes mapping registers to map the 32K-word virtual address

space anywhere in the 128K-word physical address space. The third
feature allows restricted access go virtual memory pages (a page
is between 0 and 4K words 1long). This permits the operating

system software rather than user programs to control system

resources. Chapter 8 contains a complete discussion of memory

management.

1.4.5 Processor Status Word (PS)

The processor status word (PS) is in the data chip and contains

information on the current processor status. As shown in Figure

1-5, this includes: the condition codes describing the arithmetic

or logical results of the last instruction, a trace bit that

forces a trap at the end of instruction execution (used during
program debug), the current processor priority, an indicator of

the previous memory management mode, and an indicator of the

current memory management mode.

1.4.5.1 Condition Codes (PS bits <3:0>) - The condition codes

contain information on the result of the last CPU operation. The

bits are set after execution of all arithmetic or 1logical

single-operand or double-operand instructions. The bits are set
as follows.

N =1 if the result was negative.

Zz =1 if the result was 0.

vV =1 if the operation resulted in an arithmetic overflow.

c =1 if the operation resulted in a carry from the MSB
(most significant bit) or a 1 was shifted from MSB or
LSB (least significant bit).

15 14 13 12 1 09 08 07 05 04 03 02 01 00

PRIORTY
cM PM S| LEVEL T N z v | ¢

L [| | I
1 . y Ar 3 3R4

RESERVED TRACE — ‘
PREVIOUS MEMORY NEGATIVE —
MANAGEMENT MODE ZERO

CURRENT MEMORY OVERFLOW

MANAGEMENT MODE CARRY

MR-3638

Figure 1-5 Processor Status Word (PS)

1.4.5.2 Trace Bit (PS bit 4) - The trace bit is used in debugging
programs since it allows programs to be single-instruction
stepped.

1.4.5.3 Priority Level (PS bits <7:5>) - These bits are used by
software to determine which interrupts will be processed.

Octal Value of PS<7:5> Interrupt Level Acknowledged*

7 none

6 7,

5 7, 6,

4 7, 6, 5,

3 7, 6, 5, 4
2 7, 6, 5, 4

1 7, 6, 5, 4
0 7, 6, 5, 4

*Higher levels acknowledged first.

1.4.5.4 Suspended Instruction (SI) (PS bit 8) - This bit 1is
reserved for DIGITAL use and 1is intended for future optional
instruction sets. This bit is read/write and has no protection
mechanism. Refer to Paragraph 8.3.3.2 for more details.

1.4.5.5 Previous Mode (PS bits <13:12>) - These bits are used with

memory management to indicate what the last memory management mode

was. They are read/write bits and are present even without the

memory management option.

1.4.5.6 Current Mode (PS bits <15:14>) - These bits indicate what

the present memory management mode is. They are read/write and

are present even without the memory management option.

1.5 INSTRUCTION SET

The KDF11l-AA instruction set provides over 400 powerful
instructions. As a comparison, consider that most other (i.e.,

accumulator-oriented) 16-bit processors require three separate

instructions to execute a common double-operand instruction (e.g.,

ADD) .

Conventional Approach

LDA A Load contents of memory location A into accumulator.

ADD B Add contents of memory location B to accumulator.

STA B Store result at location B.

By contrast, the KDFll-AA can fetch both operands, execute, and

store the result in one instruction.

KDF1l1-AA Approach

ADD A, B Add contents of location A to location B; store results

at location B.

This greater efficiency not only saves memory space and time, but

also improves processor speed since fewer instruction fetches are

required.

Another major advantage to the KDF1l1l-AA instruction set is the

absence of special-purpose input/output instructions. Special I/0

instructions are unnecessary since peripheral device registers are

accessed 1in the same way as main memory locations. This approach

to handling I/0 devices allows the normal instruction set to be

used to test and/or manipulate the various I/0 device register

bits. For example, a compare instruction can test status bits

directly in the I/0O device register without bringing them into

memory or disturbing any of the general registers; control bits

can be set, cleared, or shifted as 4s most convenient; and

peripheral data can be arithmetically or 1logically altered when

received at the device register and before being stored in memory.

Refer to Chapter 7 for a complete description of the instruction

set and its utilization. :

Addressing Modes

Much of the flexibility of the KDF1ll-AA is derived from its wide

range of addressing capabilities. Addressing modes 1include

sequential forward or backward addressing, address 1indexing,

indirect addressing, absolute 16-bit word and 8-bit byte

addressing, and stack addressing. Variable-length instruction

formatting allows a minimum number of words to be used for each

addressing mode. The result is efficient use of program storage

space. For more details on addressing modes refer to Chapter 6.

1.6 FLOATING POINT OPTION

Forty-six floating point instructions are available as a microcode

option (KEFll-A) on the KDFll-AA processor. These instructions
supplement the integer arithmetic instructions (e.g., MUL, DIV,

etc.) in the basic instruction set. The floating point option

allows floating point operations to be executed 5 to 10 times

faster than equivalent software routines and provides for both

single precision (32-bit) and double precision (64-bit) operands.

This option also conserves memory space, since floating point

routines are executed in microcode 1instead of software. This

option implements the same floating point instruction set found on

the PpDP-11/34, -11/60, and -11/70. For a complete description

refer to Chapter 9.

1.7 MEMORIES AND PERIPHERALS

DIGITAL provides a wide range of memories and peripherals to allow

maximum flexibility when configuring systems. A detailed list and
description can be found in the Memories and Peripherals handbook

in the Microcomputer Handbook Series.

1.8 RELATED DOCUMENTS

The following is a list of documents containing additional

information of possible interest to KDF1l1l-AA microprocessor users.

Title Document Number

Memories and Peripherals Handbook EB 15114 78
Microcomputer Processors Handbook EB 15115 78

PDP-11 Processor Handbook EB-09340-20

PDP-11 Software Handbook EB-09798-20

These documents can be ordered from:

Digital Equipment Corporation

444 Whitney Street

Northboro, MA 01532

Attention: Communications Services (NR2/M15)

Customer Services Section

CHAPTER 2

INSTALLATION

2.1 INTRODUCTION

Items that must be considered when installing a KDF11-AA processor
include the following.

1. Configuration of jumpers for operation of user-selectable
features

2. Selection of an LSI-11 bus-compatible backplane,
mounting, and installation

3. Selection of LSI-11 bus-compatible options and
accessories

4, Knowledge of system differences if replacing an LSI-11 or
LSI-11/2 with a KDF11-AA

This chapter discusses these procedures in detail. Refer to
Paragraph 1.8 for the order number of documents referred to in
this chapter.

2.2 JUMPER CONFIGURATIONS
Several jumpers on the processor module provide user-selectable
features. Table 2-1 lists the jumper configurations and Figure
2-1 shows the location of these jumpers. Paragraphs 2.2.1 through
2.2.6 describe the jumper functions. Jumpers not discussed are
reserved for use by DIGITAL and should not be used.

Table 2-1 Jumper Configurations

Jumper Name In Out

Wl Master clock Enable internal Do not remove
master clock Manufacturing

use only

W2 Reserved for Factory-installed Do not remove
DIGITAL use

w4 Event line enable Disabled Enabled

W5, W6 Power-up See text See text
mode selector

W7 Halt/trap option Trap to 108 Enter console

on halt ODT on halt

Table 2-1 Jumper Configurations (Cont)

Jumper Name In Out

w8 Conventional Power—-up to Power-up to

bootstrap start bootstrap address boootstrap

address, enable 1730008 address selected

if power-up mode by jumpers

2 is selected W9-W15

W9-W15 User-selectable See text See text

bootstrap starting

address for power-

up mode 2

W16 Reserved for Must be installed Do not remove

DIGITAL use

wWl7 Reserved for Must be installed Do not remove

DIGITAL use

wl8 Reserved for Must be installed Do not remove

DIGITAL use

2.2.1 Master Clock - Wl

The internal 13.8 MHz oscillator is disconnected from the clock

circuitry if W1l 1is removed. This jumper is used by DIGITAL

manufacturing and is not to be removed by the user.

2.2.2 Event Line - W4

The bus signal BEVENT L causes the event line flip-flop to be set.

When the processor enters the service state the request will be

honored if the PS<07:05> is 5 or less. (BEVENT is a level 6

interrupt.) This causes the microcode to clear the request

flip-flop and trap to the line clock vector (location 100,) . If

W4 is inserted, the request flip-flop is disabled and therefore

the BEVENT signal is disabled. Users would disable BEVENT, which

is normally used as a 60 Hz real-time clock, if they have a

programmable clock on the LSI-11 bus.

NOTE

The LSI-11 and LSI-11/2 processors

treat a BEVENT interrupt at a different

priority level than the KDF11-AA. Refer

to Paragraph 2.6.

) R

wi1s

O—0

O

—— TM — r— W17

O

2| 15| [&g |&= w 92 aYe) Ico
. Q §

o—o W15
W14 0——0

O——0 W13

W12 0—o0
OO0 W11

W10 0——0
O——0 W9

W8 0=——0 W2
o—0 W7 OO

W6 o———0 wa
O——0 W5 O

H
[

H

MR-2318

Figure 2-1 KDF11-AA Jumper Locations

2.2.3 Power-Up Mode Selection - W5 and W6

Four power-up modes are available for user selection. Selection

is made by removal or insertion of jumpers W5 and W6 as shown in

the following listing.

Mode Name Wo* W5*

0 PC@24, PS@26 R R

1 Console ODT R I

2 Bootstrap I R

3 Extended microcode I I

Only the power-up mode is affected, not the power-down sequence.

The following paragraphs describe the sequence of events after

executing common power-up, when selecting each of the four modes.

The state of bus signal BHALT L is significant in power-up mode

operation.

2.2.3.1 Power-Up Mode 0 (PC@24, PS@26) - This mode causes the

microcode to fetch the contents of memory locations 24, and 26

and loads their contents into the PC and PS, respectively. Thg
microcode then examines BHALT L. If BHALT L is asserted, the

processor enters console ODT mode. If BHALT L is not asserted,

the processor begins program execution by fetching an instruction

from the location pointed to by the PC. This mode is useful when

power fail/auto restart capability is desired.

2.2.3.2 Power-Up Mode 1 (Console ODT) - This mode causes the

processor to enter console ODT mode immediately after power-up

regardless of the state of any service signals. This mode 1is

useful in a program development or hardware debug environment,

giving the user immediate control over the system after power-up.

2.2.3.3 Power-Up Mode 2 (User Bootstrap Starting Address Shown by

W8-W15) - This mode causes the processor to internally generate a

bootstrap starting address by looking at Jjumpers W8 through W15

(see Paragraphs 2.2.5 and 2.2.6). This address is loaded into the

PC. The processor sets the PS to 3408 (PS<07:05> = 7,) to inhibit

interrupts before the processor is ready for them. ?f BHALT L 1is
asserted, the processor enters console ODT mode. If not, the

processor begins execution by fetching an instruction from the

location pointed to by the PC. This mode is useful for turnkey

applications where the system automatically begins operation

without operator intervention.

2.2.3.4 Power-Up Mode 3 (User Microcode - For Future Use) - This

mode causes the microcode to jump to optional control chip 378,

location 76,, and begin microcode execution. This mode 1s

reserved fof future DIGITAL use and 1is not recommended for

customer usage. If it is erroneously selected, the processor will

treat it as a reserved instruction trap to location 108.

*R = jumper removed; I = jumper installed.

2.2.4 Halt/Trap Option - W7

If the processor is in kernel mode and decodes a HALT instruction,

BPOK H 1is tested. If BPOK H 1is negated, the processor will

continue to test for BPOK H. The processor will perform a normal

power—-up sequence 1if BPOK H becomes asserted sometime later. If

BPOK H 1is asserted after the HALT instruction decode, the

halt/trap jumper (W7) 1is tested. If the jumper is removed, the

processor enters console ODT mode. If the jumper is installed a

trap to location 108 will occur.

NOTE

In user mode a HALT instruction

execution will always result in a trap

to location 108.

This feature 1is intended for situations, such as unattended

operation, where recovery from erroneous HALT instructions 1is

desirable.

2.2.5 Starting Address 173000, - W8

When power-up mode 2 is selecteg, the processor examines jumper W8
to determine the starting address for program execution. If W8

and a compatible bootstrap module such as BDV-1l1l are installed in

the system, the microcode will begin execution at 173000

(conventional starting address for DIGITAL systems). If W8 1is

removed, a trap to 48 (nonexistent address) will occur. If W8 1is

removed, the processor looks at Jjumpers W9 through W15 for the

starting address.

2.2.6 Selectable Starting Address - W9 through W15

If the user wishes to start execution from an address other than

1730005, jumpers W9 through W15 can be used to specify the high

byte 5&5:09> of the starting address. Jumpers W15 through W9
correspond to address bits <15:09>, respectively. Bits <08:00> of

the starting address are set to 0 by the processor. Jumpers are

installed for logic 1, removed for logic 0. The starting address

can reside on any 256-word boundary in the lower 32K of memory

address space.

2.3 MODULE CONTACT FINGER IDENTIFICATION

DIGITAL plug-in modules, including the KDF1l1l-AA, all use the same

contact finger (pin) identification system. The LSI-11 bus is

based on the use of double-height modules that plug into a 2-slot

bus connector. Each slot contains 36 lines (18 each on component

and solder sides of the circuit board).

Slots, shown as row A and row B in Figure 2-2, include a numeric

identifier for the side of the module. The component side 1is

designated side 1 and the solder side 1is designated side 2.

Letters ranging from A through V (exclduding G, I, O, and Q)

identify a particular pin on a side of a slot. ‘A typical pin is

designated as follows.

PIN AA1 PIN AA2

ROW A

PIN AV PIN Av2

~ -

.
) -~

PIN BA1 PIN BA2

i

e
i
y

a

SIDE 1 ROw B SOLDER SIDE
COMPONENT SIDE

\ N

) d
PIN BV

PIN Bv2

Figure 2-2 Double-Height Module Contact Finger Identification

BE2

Slot (Row) Identifier l ' Module Side Identifier
"Slot B" "Side 2" (solder side)

Pin Identifer

"Pin E"

The positioning notch between the two rows of pins mates with a

protrusion on the connector block for correct module positioning.

2.4 BACKPLANE PIN ASSIGNMENTS AND THEIR KDF11-AA UTILIZATION

When configuring a system with the KDF1l1l-AA, the module may be
inserted in one of several available backplanes. Refer to

Paragraph 2.5 for information on the types available. Using the
H9270 backplane as an example, Figure 2-3 shows the backplane pin

identification. Individual connector pins shown are viewed from

the underside (wiring side). Only pins for one bus location (two

slots) are shown in detail. This pin pattern is repeated eight

times on this backplane, allowing the user to install several

double-height modules.

Table 2-2 lists the backplane pin assignments and describes their

use by the KDF11-AA processor module.

H9270 POWER AND

SIGNAL CONNECTIONS

ROW IDENTIFIER LOCATION
TYPICAL MODULE MODULE SIDE IDENTIFIER

1 = COMPONENT SIDE

2 = SOLDER SIDE

\

WIRE-WRAP PINS

PASS THROUGH

(SLOTS A1-8B1) H9270 PC BOARD

N\
B3l D __1_________fgL_ . B * A \¥?\

| o oo | o, o |<53on0zorocomonome | <ouomozerocsmosome | |
r__Oo__ _____o _J_O_ _____o _OOOOOOOOO {NOOOOOOOOO

| % | , | 2

I I ==
Lo | | | 3

o _' ______ __+ _______ | ________

| o | l I 4
LoS e I I

—\ | | ' /
MR-2320

Figure 2-3 H9270 Backplane Pin Identification

(Pin Side View Shown)

Table 2-2 Backplane Pin Assignments/

KDF11-AA Processor Utilization

Bus

Pin Mnemonic Description

AAl BIRQS5 L Interrupt Request priority level 5

AB1 BIRQ6 L Interrupt Request priority level 6

ACl BDAL16 L Extended address bits (also used for parity)
AD1 BDAL17 L

AE]1l SSI Single-step input (Reserved for DIGITAL use)

AF1 SRUN L Run light signal

AH1 SRUN L Run light signal

AJl GND Ground - System signal ground and dc return.

AK1 MSPAREA Maintenance Spare - Normally connected
ALl MSPAREB together on the backplane at each option

location (not bused connection).

AM1 GND Ground - System signal ground and dc return.

Table 2-2 Backplane Pin Assignments/

KDF11-AA Processor Utilization (Cont)

Bus

Pin Mnemonic Description

AN1

APl

AR1

AS1

AT1

AUl

AV1

BA1l

BB1

BC1

BD1

BE1

BF1

BH1

BDMRL

BHALT L

BREF L

+12B

GND

PSPARE1

+5B

BDCOK H

BPOK H

MMU DAL18

MMU DAL19

MMU DALZ20

MMU DAL21

Direct Memory Access (DMA) Request - A device

asserts this signal to request bus mastership.

The processor arbitrates bus mastership

between itself and all DMA devices on the bus.

If the processor is not bus master (it has

completed a bus ¢&ycle and BSYNC L is not being
asserted by the processor), 1t grants bus

mastership to the requesting device by

asserting BDMGO L. The device responds by

negating BDMR L and asserting BSACK L.

Processor Halt - When BHALT L is asserted, the

processor responds by going into console ODT

mode.

Memory Refresh - This signal 1is not used by

KDF11-AA; however, it is terminated.

+12 V Battery Power - Secondary +12 V power

connection. Battery power can be used with

certain devices. Not used by KDF1l1l-AA.

Ground - System signal ground and dc return.

Spare (Not assigned. Customer usage not

recommended.)

+5 V Battery Power - Secondary +5 V power

connection. Battery power can be used with

certain devices. Not used on KDF1l1l-AA.

DC Power OK - Power supply-generated signal

that is asserted when there is sufficient dc

voltage available to sustain reliable system

operation. This signal is also driven by the

"wake-up" circuit on the KDF1l1l-AA.

Power OK - Asserted by the power supply when

primary power is normal. When negated during

processor operation, a power fail trap

sequence 1is initiated.

(Reserved for DIGITAL use)

Clock Disable - Reserved for DIGITAL use

Table 2-2

KDF1l1-AA Processor Utilization (Cont)

Backplane Pin Assignments/

Bus

Pin Mnemonic Description

BJ1 GND Ground - System signal ground and dc return.

BK1 MSPAREB Maintenance Spare - Normally connected

BL1 MSPAREB together on the backplane at each option

location (not a bused connection).

BMll GND Ground - System signal ground and dc return.

BN1 BSACK L This signal 1is asserted by a DMA device in

response to the processor's BDMGO L signal,

indicating that the DMA device is bus master.

BP1 BIRQ7 L Interrupt request priority level 7

BR1 BEVNT L External Event Interrupt Request - When

asserted, the processor arbitrates as a level

6 interrupt. A typical use of this signal is

a line time clock interrupt.

BS1 PSPARE 4 Spare (Not assigned. Customer wuse not

recommended.

BT1 GND Ground - System signal ground and dc return.

BU1l PSPARE?2 Spare (Not assigned. Customer wuse not

recommended.)

BV1 +5 +5 V Power - Normal +5 Vdc system power

AA2 +5 +5 V Power - Normal +5 Vdc system power

AB2 -12 -12 V Power - =12 Vdc (optional) power for

devices requiring this voltage.

NOTE

Modules that require negative voltages contain

an inverter circuit (on each module) which

generates the required voltage(s). Hence, -12

V power is not required with DIGITAL-supplied

options including the KDF1l1l-AA processor.

AC2 GND Ground - System signal ground and dc return

AD2 +12 +12 V Power - +12 Vdc system power

Table 2-2 Backplane Pin Assignments/

KDF11-AA Processor Utilization (Cont)

Bus

Pin- Mnemonic Description

AE?2

AF2

AH2

AJ2

AK?2

BDOUT L

BRPLY L

BDIN L

BSYNC L

BWTBT L

Data Output - BDOUT, when asserted, implies

that valid data is available on BDALKO0:15> L

and that an output transfer, with respect to

the bus master device, is taking place. BDOUT

L is deskewed with respect,to data on the bus.
The slave device responding to the BDOUT L

signal must assert BRPLY I to complete the

transfer.

Reply - BRPLY L 1is asserted in response to

BDIN L or BDOUT L and during IAK transaction.

It is generated by a slave device to indicate

that it has placed its data on the BDAL bus or

that it has accepted output data from the bus.

Data Input - BDIN L is used for two types of

bus operation:

1. When asserted during BSYNC L time, BDIN L

implies an input transfer with respect to

the current bus master, and requires a

response (BRPLY L)._ BDIN L 1is asserted

when the master device is ready to accept

data from a slave device.

2. When asserted without BSYNC L, it

indicates that an interrupt operation 1is

occurring.

The master device must deskew input data from

BRPLY L.

Synchronize - BSYNC L is asserted by the bus

master device to indicate that it has placed

an address on the bus. The transfer 1is 1in

process until BSYNC L is negated.

Write/Byte - BWTBT L is used in two ways to

control a bus cycle:

l. It is asserted during the leading edge of

BSYNC L to indicate that an output

sequence is to follow (DATO or DATOB),

rather than an input sequence.

2. It is asserted during BDOUT L, in a DATOB

bus cycle, for byte addressing.

Table 2-2 Backplane Pin Assignments/

KDF11-AA Processor Utilization (Cont)

Bus

Pin Mnemonic Description

AL2

AM2

AN2

AP2

AR2

AS2

AT?2

BIRQ4 L

MMU STR H

BIAKO L

BBS7 L

gwfiv
UB MAP L

BDMGO L

BINIT L

1

Interrupt request priority level 4

(Reserved for DIGITAL use)

Interrupt Acknowledge Output - This signal is

generated by the processor in response to an

interrupt request (BIRQ L). The processor

asserts BIAKO L, which is routed to the BIAKI

L pin of the first device on the bus. Refer

to Chapter 3 for the ©proper interrupt

protocol.

Bank 7 Select - The bus master asserts BBS7 L

when an I/O device address (upper 4K address

range) 1is placed on the bus. BSYNC L is then

asserted and BBS7 L remains active for the

duration of the addressing portion of the bus

cycle.

(Reserved for DIGITAL use)

DMA Grant Output - This 1is the processor-

generated daisy-chained signal that grants bus

mastership to the highest priority DMA device

along the bus. The processor generates BDMGO

L, which is routed to the BDMGI L pin of the

first device on the bus. 1If it is requesting

the bus, it will inhibit passing BDMGO L. 1If

it is not requesting the bus, it will pass the

BDMGI L signal to the next (lower priority)

device wvia its BDMGO L pin. The device

asserting BDMR L is the device requesting the

bus, and it responds to the BDMGI L signal by

negating BDMR, asserting BSACK L, assuming bus

mastership, and executing the required bus

cycle.

Initialize -~ BINIT 1is asserted by the
processor to initialize or clear all devices

connected to the I/0O bus. The signal 1is

generated in response to a power-up condition

(the negated condition of BDCOK H), or by

executing a RESET instruction.

Table 2-2 Backplane Pin Assignments/

KDF11-AA Processor Utilization (Cont)

Bus

Pin Mnemonic Description

AU2 BDALO L Data/Address Lines - These two lines are part

AV2 BDAL1l L of the 8-1line data/address bus over which

: address and data information are communicated.

Address information is first placed on the bus

by the bus master device. The same device

then either receives 1input data from, or

outputs data to the addressed slave device or

memory over the same bus lines.

BA2 +5 +5 V Power - Normal +5 Vdc¢ system power

BB2 -12 -12 V Power - =12 Vdc (optional) power for

devices requiring this voltage. Not used by

KDF11-AA.

BC2 GND Ground - System signal ground and dc return

BD2 +12 +12 V Power - +12 Vdc system power

BE2 BDAL2 L Data/Address Lines - These 14 lines are part

BF 2 BDAL3 L of the 8-1line data/address bus previously

BH2 BDAL4 L described.

BJ 2 BDALS L

BK2 BDAL6 L

BL2 BDAL7 L

BM2 BDALS8 L

BN2 BDALY9 L

BP2 BDAL10 L

BR2 BDAL1ll L

BS2 BDALl12 L

BT 2 BDALl13 L

BU2 BDALl14 L

BV2 BDAL1S L

2.5 HARDWARE OPTIONS

KDF11-AA systems can be configured using a variety of backplanes,

power supplies, enclosures, memories, peripherals, etc.

2.5.1 Backplanes

Any of the following LSI-11 bus-compatible backplanes can be used

with the KDF1l1l-AA.

H9270 - Accepts quad- or double-height modules

H9273-A - Accepts quad- or double-height modules

H9281 - Accepts double-height modules only

DDV11-B - Accepts quad- or double-height modules>

W
N
-

Refer to the Memories and Peripherals handbook for a complete

description of each backplane and installation information.

2.5.1.1 H9270 Backplane - The H9270 consists of an 8-slot

backplane with a card guide assembly. As shown 1in Figure 2-4,

this backplane is designed to accept up to eight double-height

modules (including processor), four quad modules, or.a combination

of quad- and double-height modules. When used for bus expansion

in multiple backplane systems, the H9270 provides space for up to

six option modules, plus the required expansion cable connector
module(s) and/or terminator module.

VIEW FROM MODULE SIDE OF BACKPLANE

PROCESSOR
1(HIGHEST PRIORITY LOCATION}) PROCESSOR OR OPfl_ON 1

OPTION 3 OPTION 2 2

OPTION 4 OPTION 5 3

OPTION 7 OPTION 6 4
(LOWEST PRIORITY LOCATION)

MR- 1152

Figure 2-4 H9270 Options Positions

2.5.1.2 H9273-A Backplane - The H9273-A backplane logic assembly
consists of a 9 X 4 backplane (nine rows of four slots each) and a
card frame assembly. Power and signals are supplied to the
backplane through connectors J7 and J8.

The H9273-A backplane is designed to accept both double-height and

quad-height modules with the exception of the MMV11-A core memory
module. The backplane structure is unique in that it provides two
distinct buses: the LSI-11 bus signals (slots A and B) and the CD
bus (slots C and D). The connectors that comprise this backplane
are arranged in nine rows. Each connector has two slots, each of

which contains 36 pins, 18 on either side of the slot.

Three jumpers (W1, W2, and W3) are shown in Figure 2-5. Jumper Wl
enables the line-time clock when inserted and disables it when

removed.

NOTE

Only one BAll-N mounting box in any

system may have the line-time clock

enabled.

CONNECTOR 1 CONNECTOR 2
Al _A

' N\ 7 \

SLOT A SLOT B SLOT C SLOT D

owiTM owpo owgo

PROCESSOR
R 1

MODULE ow

OPTION 1 ROW 2

(HIGHEST PRIORITY)

OPTION 2 ROW3

OPTION 3 ROW4

OPTION 4 ROW 5

OPTION 5 ROW6

OPTION 6 ROW 7

OPTION 7 ROW8

OPTION 8 ROW9

(LOWEST PRIORITY)

VIEW IS FROM MODULE SIDE OF BACKPLANE

MR.2880

Figure 2-5 H9273-A Option Positions

When inserted, jumpers W2 and W3 allow the LSI-11 quad-height CPU
to run in row 1. Jumpers W2 and W3 are removed when the backplane

is used as an expansion backplane in a system.

The connectors designated "Connector 1" in Figure 2-5 are wired

according to the LSI-11 bus specification. Slots A and B carry

the LSI-11 bus signals and are termed the LSI-11 bus slots. The
connectors designated "Connector 2" are wired for +5 V and ground,

and have no connections to the LSI-11 bus; instead, C- and D-slot

pins on side 2 of ‘each row are connected to the C- and D-slot pins
on side 1 1in the next lower row. For details of the CD

interconnection scheme see the Memories and Peripherals handbook.

2.5.1.3 H9281 Backplane (Figure 2-6) - The H9281 backplanes are

designed to accept double-height modules only. The H9281 2-slot

backplane is available in six options as listed below. These

backplanes allow the user to configure compact LSI-11 bus systems

that most efficiently utilize available system space.

H9281-AA, -BA

4 SLOT BACKPLANE

H9281-AB, -BB

8-SLOT BACKPLANE

H9281-AC, -BC

12-SLOT BACKPLANE

Figure 2-6

POWER CONNECTOR

BLOCK (J1)

r A h)
a SIGNAL

> z > o

- L e RS (J2
A

Oooooo0oo0 [~3

J 1 — PROCESSOR MODULE
L]

\ 2 < OPTION1 (HIGHEST PRIORITY)

; 3 < OPTION 2

; 4 — OPTION 3 (LOWEST PRIORITY)

J J~ ~ LROWNUMBER
A B ——SLOT LETTER

O OO0 OO0 OO0

1 ~PROCESSOR MODULE

2 < OPTION 1 (HIGHEST PRIORITY)

3 < OPTION 2

4 — OPTION 3

5« OPTION 4

6 —OPTION 5

7 <~ OPTION 6

e
R

e

s

R

R

S

 T
R

8 <~ OPTION 7 (LOWEST PRIORITY)

OOE—

N~
120 OHM BUS TERMINATION RESISTORS

OOOO0 O0O0OO0
-

R|

1 <~ PROCESSOR MODULE

2~ OPTION 1 (HIGHEST PRIORITY)

3 <~ OPTION 2

4~ OPTION 3

5 OPTION 4

6 — OPTION 5

7 —OPTION 6

8 —< OPTION 7

9 —OPTION 8

10— OPTION 9

11 OPTION 10

e

e

e

e

_4
_

JW
 R

 S
U

N

12 <~ OPTION 11 (LOWEST PRIORITY)

Ch1 A

120 OHM BUS TERMINATION RESISTORS

H9281 Option and Connector Locations

MR-0463

(Module Side)

Backplane

Option

Designation Description

H9281-AA 4-module backplane

H9281-AB 8-module backplane

H9281-AC 12-module backplane

H9281-BA 4-module backplane and card cage assembly

H9281-BB 8-module backplane and card cage assembly

H9281-BC 12-module backplane and card cage assembly

NOTE

Some options are too large to be

installed in an H9281 backplane. Refer

to Memories and Peripherals handbook for

a complete list.

Bus Terminations

Backplane models H9281-AB, -BB, -AC, and -BC include 120 ohm bus

termination resistors at the electical end of the bus; therefore,

it is not necessary to install a separate 120 ohm bus terminator

module in these backplanes.

2.5.1.4 DDV11-B Backplane - The DDV11l-B is an optional LSI-11 bus

expansion backplane for use when additional 1logic space 1is

required. The DDV11l-B is a 9 X 6, 54-slot backplane with a 9 X 4

slot section (18 individual double-height or 9 gquad-height module

slots) prebused specifically for LSI-11 bus signal and power and

ground connections. The remaining 9 X 2 slot section is provided

with +5 Vdc, GND, and -12 Vdc power connections only; this leaves

the remaining pins free for use with any special double-height

logic modules to be used in conjunction with the LSI-11 family of

modules and bus requirements.

Module Slot Assignments

Figure 2-7 shows the slot 1location assignments of the DDV11l-B.

Rows A, B, C, and D are dedicated to the LSI-11 bus. Any module

that conforms to the LIS-11 bus specifications may be used in this

portion of the DDV11-B. The position numbers indicate the bus

grant wiring scheme with respect to the processor module. The bus

grant signals propagate through the slot locations in the position

order shown in Figure 2-7 until they reach the requesting device.

To provide bus grant signal continuity, any unused slots must be

jumpered or unused locations must occur only in the highest

position-numbered locations.

Rows E and F contain the 18 user-defined slots with power and

ground connections provided.

2.5.1.5 Device Priority Within Backplanes - All LSI-11 bus

backplanes are priority-structured. Daisy-chained grant signals

for DMA and interrupt requests propagate away from the processor

from the first (highest priority device) to successively lower

priority devices. Processor module locations and device (option)

priorities are shown in Figures 2-4, 2-5, 2-6, and 2-7. For

further discussion, see Paragraph 2.5.5.

(1-+4] PROCESSOR PROCESSOROROPTION 1 | | | |

2-4] posmon3 | |[opmionposmionz | || |

3— 41 POSITION 4 | POSITION § 111 B

a—4{ positon? | [POSITION 6 [1[|

power 15— 11 POSITION 8 | 1] POSITION 9 I |

TERMINAL

BLOCK f6-— PoSITION 11 | | | posiTioN10 | || |

7- 14 posiToNn12 ||| Pposimion1sa ||| |

8-+ posimiont1s | [[posimonta] || |

-1 posiToN1s | [{ posmon1z ||| |

ROW — A : B | c : D i E : F |
MODULE INSERTION SIDE ’

USER DEFINED SLOTS

MODULE (COMPONENTS MOUNTED ON OPPOSITE SIDE)

PC BOARD :

N I R R
n, —n e —n Sl

D E\%fiBHIMcW'IWT—T—W—mQ
WIRE WRAP PINS

TERMINAL STRIP
POWER SIGNAL PINS

MR- 1156

Figure 2-7 DDV11-B Module Installation and Slot Assignments

2.5.2 Power Supplies

Both the H780 and the H786 power supplies can be used when

configuring a KDF11-AA system. The H780 power supply is described

in detail in the Memories and Peripherals handbook. The H786 is

not available separately, only as part of the BAll-N enclosure.

2.5.3 Enclosures

The BAll-M mounting box, which includes an H9270 backplane and an

H780 power supply, or the BAll-N mounting box, which includes an

H9273 backplane and an H786 power supply, can be used in a system

with the KDFll-AA processor. The Memories and Peripherals

handbook contains details on both boxes.

2.5.4 Memory Modules

Several memory modules are available for use with the KDF1l1l-AA

systems. However, modules such as MSV11-C or MSV11-D that perform

memory refresh locally are required, since the KDF1ll-AA does not

perform memory refresh itself. MSV11-C memories will work 1if

provision is made for refresh with some other bus option such as

REV11l; however, this will degrade system performance and 1is not

recommended. The Memories and Peripherals handbook contains

further information on LSI-11 bus-compatible memories.

2.5.5 Peripheral Options

All LSI-11 bus-compatible peripheral devices may be used 1in

KDF11-AA systems. DMA peripherals should be installed with the

faster throughput devices physically closest to the processor and

slower ones farther away. The user must ensure that faster

devices have adequate access to the bus; otherwise, data drop

errors may occur. Interrupt-driven peripherals can be installed

in one of the following ways. If all peripherals use the

single-level scheme, they must be installed with faster

interrupting devices physically closest to the processor. All

current DIGITAL LSI-11 bus peripheral devices must use this
method. Future peripheral devices, or customer-designed devices,

can take advantage of the new 4-level interrupt scheme. With the
new scheme, peripherals that are designed to perform distributed

interrupt arbitration, and that are on different interrupt levels,

can be installed in any order. Multiple peripherals on the same

request level and peripherals that do not perform distributed

arbitration must be installed with the highest priority, or

faster, devices <closest to the processor. The Memories and

Peripherals handbook contains more information on available

devices and their installation. For further discussion of the

4-level interrupt system, see Paragraphs 4.4.2 and 4.4.3.

2.6 SYSTEM DIFFERENCES

A number of minor differences exist between the KDF11l-AA processor

and the LSI-11 (KD1ll-F) or LSI-11/2 (KDll-HA) processor. The
following is a list of system differences that exist because of

the KDF1l1l-AA's advanced design.

1. KDF11-AA has no boot loader in microcode.

2. Console ODT functions are different in the KDF1l1l-AA.

3. KDF11-AA does not perform memory refresh.

4. The EVENT 1line is on level 6 in KDF1l1l-AA; KD1ll-F and

KD11-HA have it on level 4.

The following paragraphs contain more details on these

differences. Also refer to Appendixes C, F, and G for additional

comparison information.

In systems that used the KD1l1l-F, the ODT command "L" could be used

to automatically enter the bootstrap loader. Console ODT in the

KDF11-AA does not contain a bootstrap loader command. Users who

are down-line loading to KDFll-AAs must change their host software

to enter the 14 memory-word bootstrap loader via console ODT. The

REV1l refresh/boot module cannot be used to boot a KDFll-AA

system. However, the refresh portion of the REV1l can be used to

perform refresh for older MSV11-B type memories. This will cause

a degradation of system performance and is not recommended. If

this method of refreshing memories is employed, the

bootstrap/diagnostic functionality of the REV11l must be disabled

by removing/installing the appropriate jumpers. The BDV11

bootstrap/diagnostic module may be employed for automatic

bootstrap function. The "L" command in the KD1ll-F also

automatically sizes memory. KDF11-AA users whose memory size

varies will have to create a program to self-size the system or

use console ODT.

For improved performance the KDF1ll-AA was designed without memory

refresh (as was the KD1ll1-HA). The newer memories such as MSV11l-C

and MSV11-D perform refresh locally.

In the KDFll-AA, as in all multi-level interrupt PDP-11 systems,

the event line is on 1level 6. In the KD1ll-F it is on level 4.

Users whose own software locked out the event line by just setting

PS<07:05> to 4 (priority 1level 4) will have to modify their

software to set PS<07:05> to 6 (priority level 6) when installing

a KDFll-AA into their present system. DIGITAL software 1is

unaffected.

2.7 MODULE INSTALLATION PROCEDURE

Proceed as directed below.

l. Ensure that there is no dc power applied to the

backplane.

2. Remove all modules from the backplane.

3. It is recommended that a single switch be used to apply

+5 V and +12 V to the backplane. Simultaneous

application of +5 V and +12 V is recommended.

4. Turn power on.

5. At the backplane, check for the following voltages with
respect to GND (pin C2 in any backplane slot):

Row 1, Slot A, Pin A2: +5 V

Row 1, Slot A, Pin D2: +12 V

Row 1, Slot A, Pin V1: +5 V

11.

12.

CAUTION

Do not plug in modules with power

applied to backplane.

Turn power off.

Ensure that the system 1is properly configured as

described in Paragraphs 2.2 - 2.6.

Insert module into backplane.

Turn on system power. Observe that the console device

responds as described in Table 2-3.

If the BDV-1l1l 1is used as a system bootstrap/diagnostic

device, the user must consider the following.

a. The diagnostic portion of the BDV-1l1l will exercise

most legal PDP-11 basic instructions at least once.

b. The diagnostics were originally created for the

KD11-F. 1In the KDF1ll-AA the BDV-11] diagnostics will

not:

(1) Perform any memory management or floating

point-related tests

(2) Exercise any memory present above 32K words.

Significant differences exist between console ODT

responses generated by the KDll-F and the KDF1l1l-AA (see

Appendix F). Users familiar with the KD11-F (LSI-11) or

users not familiar with the operation of console ODT

should refer to Chapter 3.

As a qguick check of proper system operation, the

following short exerciser program can be used. It prints

a continuous stream of ASCII characters on the terminal.

Use console ODT to enter the following program.

Location Data Macro Code

1000 005000 CLR RO

1002 12701 MOV #177564, R1

1004 177564

1006 105711 LOOP: TSTB (R1)

1010 100376 BPL LOOP

1012 110061 MOVB RO, 2 (R1)

1014 2

1016 005200 INC RO

1020 000137 JMP @#1006

1022 001006

13.

Enter "1000 G" to console ODT and a continuous stream of

ASCII characters should be printed on the terminal.

For a more thorough check of the KDFll-AA, processor

diagnostics are available to do the following.

a. Exercise the basic instruction set

b. Exercise the traps and interrupts

c. Exercise the memory management and extended

addressing functions

d. Exercise the floating point hardware registers and

the floating point instruction set.

The diagnostics are as follows.

a. Basic Instruction Set, EIS, Traps and Interrupts Test

- CJKDBA

b. MMU Diagnostic - CJKDAA

c. Floating Point Tests

Test 1 - CJKDCA

Test 2 - CJKDDA

¢
Z
-
¢

Table 2-3 Console Power-Up Printout (or Display) (Note 3)

Conditions Mode 0 Mode 1 Mode 2 Mode 3

BHALT L (unas-

serted)

BHALT L (as-

serted)

Processor will ex-

ecute program

using contents of

location 24 as the

PC value.

Terminal will

print out contents

of memory loca-

Terminal will print

out a random 6-

digit number, which

is the contents of

the program counter.

Terminal will print

out a random 6-

digit number, which

Processor will ex-

ecute program at

location 173000.

(See Note 2.)

Terminal will

print out

"173000."

No printout at

terminal. (See

Note 1.)

No printout at

terminal. (See

Note 1.)

tion 024. is the contents of (See Note 2.)

the program counter.

NOTES

l. If mode 3 1is selected, and user

microcode is not implemented, the

processor will trap to memory

location 010 and start program

execution using the contents of

location 10 as the PC wvalue and

location 12 as the PS value.

Normal mode for use with the BDV-11

option. If jumpers W15 through W9

are used, that address will be

printed.

The terminal printout will consist of

6 octal digits as specified in the

table, followed by a carriage return,

line feed, and "@" prompt character

in all cases.

CHAPTER 3

CONSOLE ODT

3.1 INTRODUCTION

Console octal debugging technique (ODT) exists as a portion of the

processor microcode that allows the processor to respond to
commands and information entered via the terminal. The terminal

addresses are 777560 through 777566,. They are generated in
microcode and cannot be changed. Console ODT is very useful as an
aid in running and debugging programs. Communication between the
user and processor is via a stream of ASCII characters interpreted
by the processor as console commands. These commands are a subset
of ODT-11. The differences in use of console ODT in the KDF11-AA
as compared to the LSI-11 are listed in Appendix F.

3.2 TERMINAL INTERFACE

The minimum hardware requirements for a serial 1line interface
permitting a terminal to communicate with console ODT are
contained in the following paragraphs. The intent is to describe
the minimum hardware for users who design their own serial line
interface. The necessary console ODT hardware is a subset of that
needed to operate system software. For system software/hardware
requirements refer to the DLV11l section in the Memories and
Peripherals handbook of the Microcomputer Handbook Series.

3.2.1 Receiver Control and Status Register (RCSR)
The RCSR (Figure 3-1) must exist at address 777560, for character
input to console ODT. Console ODT does not exeécute DATO bus
cycles to this address; therefore, the RCSR only needs to respond
to DATI bus cycles. However, system software causes DATO cycles
in order to affect certain bits, such as Interrupt Enable (bit 6),
which console ODT does not use.

15 08 07 06 00

NOT USED D NOT USED 7775608
l | | i | 1 1 1 1 1 1 | 1

MR-3639

Figure 3-1 Receiver Status Register

Bit Description

<7> Done flag. After a character is assembled and exists in
the receiver buffer register (RBUF), the Done flag must
be set to a 1. When a DATI is performed to the RBUF
(i.e. - to pick up the character), the Done flag must be
cleared by hardware. Also bus signal BINITL must clear
this bit.

Bit Description

<6:0> Unused. These bits are don't cares and can be 1in any

<15:8> state since console ODT mode does not use them. In

DIGITAL interfaces, these bits may be defined.

3.2.2 Receiver Buffer Register (RBUF)

The RBUF (Figure 3-2) must exist at address 777562 for character

input to console ODT. This register only needs to respond to DATI

bus cycles since console ODT does not execute DATO bus cycles to

this address. System software interfaces similarly but DIGITAL

diagnostics may cause a DATO cycle and not operate properly.

15 08 07 00

NOT USED DATA 7775628

| | ! | 1 i 1 l l | l 1 1 1

Figure 3-2 Receiver Buffer Register

Bit Description

<7:0> ASCII character. These eight bits are read by the

processor and interpreted as a console ODT command. When

bit 7 of RCSR is a 1, the processor does a DATI to the

RBUF. After the DATI, the hardware must clear bit 7 of

RCSR to 0.

<15:8> Unused. These bits are don't cares and can be in any

state since console ODT does not use them. In DIGITAL

interfaces, these bits may be defined.

3.2.3 Transmitter Control and Status Register (XCSR)

The XCSR (Figure 3-3) must exist at address 777564 for character

output from console ODT. ODT does not execute DAT% bus cycles to
this address; therefore, the XCSR only needs to respond to DATI

bus cycles. However, system software causes DATO cycles to affect

certain bits (e.g., Interrupt Enable).

15 08 07 06 00

NOT USED D NOT USED 7775648

1 | 1 | | 1] | | | |] 1

MR-3641

Figure 3-3 Transmitter Control and Status Register

Bit Description

<7> Done flag. In the idle state, this bit is a 1 indicating

that the hardware is ready to print a character. After a

DATO to the transmitter buffer register by the processor

(i.e., a character loaded), this bit must be cleared to O

by the hardware. After the character is printed, the

hardware sets this bit to 1. During power-up this bit is

set to 1. Bus signal BINIT L must set this bit to 1.

<6:0> Unused. These bits are don't cares and can be in any

<15:8> state since console ODT mode does not use them. In

DIGITAL interfaces, these bits may be defined.

3.2.4 Transmitter Buffer Register (XBUF)

The XBUF (Figure 3-4) must exist at address 7775664, for character

output from console ODT. This register only needs to respond to

DATO bus cycles since console ODT does not execute DATI bus cycles

to this address. System software interfaces similarly but DIGITAL

diagnostics may cause a DATI cycle and not operate properly.

15 08 07 00

NOT USED DATA 7775668

| | 1 | 1 I | 1 | 1 |] 1 1

Figure 3-4 Transmitter Buffer Register

Bit Description

<7:0> ASCII character. These eight bits are written by the

processor with the ASCII character to be printed. When
bit 7 of XCSR is a 1, the processor does a DATO to the

XBUF. After the DATO, the hardware must clear bit 7 of

XCSR to 0.

<15:8> Unused. These bits are don't cares and can be 1in any

state since console ODT does not use them. In DIGITAL

interfaces, these bits may be defined.

3.3 CONSOLE ODT OPERATION

The processor's microcode operates the serial line interface in

half-duplex mode. Program I/0 techniques are used rather than
interrupts. When the console ODT microcode 1is busy printing

characters using the transmit side of the interface, the microcode

is not monitoring the receive side for incoming characters. Any

characters coming in at this time are lost. The interface may

post overrun errors, but the microcode does not check for any

error bit in the interface. Therefore users should not type ahead

to ODT because those characters are not recognized. In addition,

if another processor is at the other end of the interface, 1t must

obey half-duplex operation. No 1input characters should be sent

until console ODT has finished outputting.

3.3.1 Console ODT Entry Conditions

ODT may be entered as follows.

1. Execution of a HALT instruction in kernel mode, provided

the HALT TRAP jumper is not installed.

2. Assertion of the BHALT L signal on the LSI-11 bus. BHALT

L is a level, not edge-triggered. The signal must be

asserted long enough so that it is seen at the end of a

macroinstruction by the service state in the processor.

3. If option 1 has been selected, ODT 1is entered upon

power-up.

NOTE

Unlike the KDll-F and KD1l1l-HA, the

KDF11-AA does not enter console ODT upon

occurrence of a double bus error (i.e.,

R6 points to nonexistent memory during a

bus timeout trap). The KDFl1l-AA creates

a new stack at location 2 and continues

to trap to 4. Since the KDFll-AA does

not perform memory refresh, a bus

timeout during refresh cannot take

place. This differs from the KD1l1l-F,

which enters console ODT upon such an

occurrence. If a bus timeout occurs

while getting an interrupt vector, the

KDF11-AA ignores 1t and <continues

execution of the program, whereas the

KD11-F and KDll-HA enter console ODT.

Refer to Appendix F for a listing of

console ODT differences.

3.3.2 Console ODT Input Sequence

Upon entry to console ODT, the RBUF register is read using a DATI

and the character present in the buffer is ignored. This is done

so that erroneous characters or user program characters are not

interpreted by console ODT as a command, especially when a program

is halted.

The input sequence for console ODT is as follows.

1. Read and ignore character in RBUF.

2. Output a <CR>}XLF> to terminal.

3. Output contents of PC (program counter R7) in six digits
to terminal.

4. Output a <CR>XLF> to terminal.

5. Output the prompt character, @, to terminal.

6. Enter a wait loop for terminal input. The Done flag, bit

7 in RCSR, is tested using a DATI. If it is 0, the test

continues.

7. If RCSR bit 7 is a 1, then low byte of RBUF is read using

a DATI.

3.3.3 Console ODT Output Sequence

The output sequence for ODT is as follows.

1. Test XCSR bit 7 (Done flag) using a DATI and if a O,

continue testing.

2. If XCSR bit 7 is a 1, write character to low byte of XBUF

using a DATO (high byte is ignored by interface).

3.4 CONSOLE ODT COMMAND SET

The console ODT command set, listed in Table 3-1, is described in
the following paragraphs. The commands are a subset of ODT-11 and

use the same command character. Console ODT has ten 1internal
states. For each state only specific characters are recognized as
valid inputs; other inputs invoke a "?" response. These states

are described in Table 3-2.

Table 3-1 Console ODT Commands

Command Symbol Use

Slash / Prints the contents of a

specified location.

Carriage Return <CR> Closes an open location.

Line Feed <LF> Closes an open location and
then opens the next

contiguous location.

Internal Register| $ or R Opens a specific processor

Designator register.

Processor Status S Opens the PS - must follow

Word Designator an $ or R command.

Go G Starts program execution.

Proceed P Resumes execution of a
program.

Binary Dump Control-sSshift-S Manufacturing use only.

H Reserved for DIGITAL use.

Table 3-2 Console ODT States and Valid Input Characters

Example of Valid

State Terminal Output Input Comment

1 @ 0-7

R, S

G

P

Control-Shift-S

2 @R or @S 0-7

S

3 @1000/123456 0~-7

CR

LF

4 @R1/123456 0-7

CR

LF

5 @1000 0-7

/
G

6 @RI or @RS 0-7

S

/

7 @1000/123456 1000 0-7

CR

LF

8 @R1/123456 1000 0-7

CR

LF

9 @ / Previous location

was opened

10 @ Control-Shift-S 2 binary bytes

The parity bit (bit 7) on all input characters is ignored (i.e.,

not stripped) by console ODT and if the input character is echoed,

the state of the parity bit is copied to the output buffer (XBUF).

Output characters 1internally generated (e.g., <CR>) by ODT have

the parity bit equal to 0. All commands are echoed except for

<LF>. Where applicable, upper- and 1lowercase of command

characters are recognized.

In order to describe the use of a command, other commands are

mentioned before they have been defined. For the novice user,

these paragraphs should be scanned first for familiarization and

then reread for detail. The word "location," as used 1in this
paragraph, refers to a bus address, processor register, or

processor status word (PS).

NOTE

In the examples the response from the

processor 1is underlined, while the

user's entry is not.

3.4.1 /(ASCII 057) Slash

This command is used to open an LSI-11 bus address, processor

register, or processor status word and is normally preceded by

other characters which specify a location. In response to /,

console ODT prints the contents of the 1location (i.e., six

characters) and then a space (ASCII 40). After printing 1is

complete, console ODT waits for either new data for that location
or a valid close command. The space character is issued so that

the location's contents and possible new contents entered by the

user are legible on the terminal.

Example: @001000/012525<SPACE>

where:

@ = console ODT prompt character.

001000 = octal location in the LSI-11 bus address

space desired by the user (leading Os

are not required).

/ = command to open and print contents of

location.

012525. = contents of octal location 1000.

<SPACE> = space character generated by console
ODT.

The / command can be used without a location specifier to verify

the data just entered into a previously opened location. The /
is recognized only if it entered immediately after a prompt

character. A / issued immediately after the processor enters ODT

mode causes a ?<CR>XLF> to be printed because a location has not

been opened.

Example: @1000/012525<SPACE> 1234 <CR><CR><LF>

@/001234<SPACE>

where:

first line = new data of 1234 entered into location

1000 and location closed with <CR>

second line = a / was entered without a 1location

specifier and the previous location was

opened to reveal that the new contents

were correctly entered into memory.

3.4.2 <CR> (ASCII 15) Carriage Return

This command is used to close an open location. If a location's
contents are to be changed, the user should precede the <CR> with

the new data. If no change is desired, <CR> closes the location
without altering its contents.

Example: @R1/004321<SPACE> <CR> <CR>KLF>

Processor register Rl was opened and no change was desired so the

user 1issued<CR>. In response to the <CR>, console ODT printed
<CR><LF>@.

Example: R1/004321<SPACE> 1234 <CR> <CR>XLF>a
e

In this case the user desired to change R1l, so new data, 1234, was

entered before issuing the <CR>. Console ODT deposited the new

data in the open location and then printed <CR><LF>@.

Console ODT echoes the <CR> entered by the user and then prints

an additional <CR>, followed by a <LF>, and Q.

3.4.3 <LF> (ASCII 12) Line Feed

This command is used to close an open location and then open the

next contiguous 1location. LSI-11 bus addresses and processor

registers are incremented by 2 and 1 respectively. If the PS 1is

open when a <KLF> 1is issued, it 1is closed and a <CR><XLF>Q 1is

printed; no new 1location is opened. If the open 1location's
contents are to be changed, the new data should precede the <LF>.

If no data 1is entered, the location 1is closed without being

altered.

Example: @R2/123456<SPACE> <LF> <CR><KLF>

@R3/054321<SPACE>

In this case, the user entered <LF> with no data preceding it. 1In

response, console ODT closed R2 and then opened R3. When a user

has the 1last register, R7, open, and 1issues <LF>, console ODT

opens the beginning register, RO. When the user has the last

LSI-11 bus address open of a 32K word segment and issues <LF>,

console ODT opens the first location of that same segment. If the

user wishes to cross the 32K word boundary, he must reenter the

address for the desired 32K word segment (1.e., console ODT is

modulo 32K word). This operation is the same as that found on all

other PDP-11 consoles.

Example: @R7/000000<SPACE> <LF> <CR><LF>

@R0/123456<SPACE>

or

@577776/000001<SPACE> <KLF> <CR><LF>

@477776/125252<SPACE>

Unlike other commands, console ODT does not echo the

<LF>. Instead it prints <CR>, then <LF> so that
terminal printers operate properly. In order to make

this easier to decode, console ODT does not echo ASCII

0, 2 or 10, but responds to these three characters with

?2<CR><KLF>Q.

3.4.4 $ (ASCII 044) or R (ASCII 122) 1Internal Register

Designator

Either character when followed by a register number, 0 to 7, or PS

designator, S, will open that specific processor register.

The $ character is recognized to be compatible with ODT-11. The R

character was introduced for the convenience of one key stroke and
because it is representative of what it does.

Example: @$0/000123<SPACE>

or

@R7/000123<SPACE> <LF>

@R0/054321<SPACE>

If more than one character is typed (digit or S) after the R or §,

console ODT uses the last character as the register designator.

There is an exception, however: if the last three digits equal 077

or 477, ODT opens the PS rather than R7.

3.4.5 S (ASCII 123) Processor Status Word

This designator is for opening the PS (processor status word) and
must be employed after the user has entered an R or $ register

designator.

Example: @RS/100377<SPACE> 0 <CR> <CR><ZLF>

@/000010<SPACE>

Note the trace bit (bit 4) of the PS cannot be modified by the

user. This is done so that PDP-11 program debug utilities (e.g.,

ODT-11), which use the T bit for single-stepping, are not

accidentally harmed by the user.

If the user issues a <LF> while the PS is open, the PS is closed

and ODT prints a <CR><LF>@. No new location is opened in this
case.

3.4.6 G (ASCII 107) Go

This command is used to start program execution at a location

entered immediately before the G. This function is equivalent to

the LOAD ADDRESS and START switch sequence on other PDP-11

consoles.

Example: @ 200 <NULL><NULL>

The console ODT sequence for a G, after echoing the command

character, is as follows.

1. Print two nulls (ASCII 0) so the LSI-11 bus initialize

that follows does not flush the G character from the

double-buffered UART chip in the DLV1l serial line

interface.

2. Load R7 (PC) with the entered data. If no data 1is

entered, 0 1is used. (In the above example, R7 is equal

to 200 and that is where program execution begins).

3. The PS, and floating point status register if the MMU is

present, is cleared to 0.

4, The LSI-11 bus is initialized by the processor asserting

BINIT L for 12.6 microseconds (at 300 ns microcycle),

negating BINIT L, and then waiting for 110 microseconds

(at 300 ns microcycle).

5. The service state is entered by the processor. If there

is anything to be serviced, it 1is processed. If the

BHALT L bus signal is asserted, the processor reenters

the console ODT state. This feature 1is wused to

initialize a system without starting a program (R7 is

altered). If the user wants to single-step his program

he issues a G and then successive P commands, all done

with the BHALT L bus signal asserted.

3.4.7 P (ASCII 120) Proceed

This command is used to resume execution of a program and
corresponds to the CONTINUE switch on other PDP-11 consoles. No

programmer-visible machine state is altered using this command.

Example: @ P

Program execution resumes at the address pointed to by R7. After

the P is echoed, the console ODT state is left and the processor

immediately enters the state to fetch the next instruction. I1f

the BHALT L bus signal is asserted, it is recognized at the end of

the instruction (during the service state) and the processor

enters the console ODT state. Upon entry, the content of the PC

(R7) 1is printed. In this fashion, a user can single-instruction

step through a program and get a PC "trace" displayed on his

terminal.

W

| 10

3.4.8 Control-Shift-S (ASCII 23) Binary Dump

This command is used for manufacturing test purposes and is not a

normal user command. It 1is described here to explain the

machine's response if accidentally invoked. It is intended to

more efficiently display a portion of memory compared to using the

"/" and <LF> commands. The protocol is as follows.

1. After a prompt character, console ODT receives a

control-shift-S command and echoes 1it.

2. The host system at the other end of the serial line must

send two 8-bit bytes which console ODT interprets as a

starting address. These two bytes are not echoed.

The first byte specifies starting address <15:08> and the

second byte specifies starting address <07:00>. Bus

address bits <17:16> are always forced to be 0; the dump

command 1is restricted to the first 32K words of address

space.

3. After the second address byte has been received, console

- ODT outputs 12 octal bytes to the serial line starting at

the address previously specified. When the output 1is

finished, console ODT prints <CR><LF>@.

If a user accidentally enters this command, it 1is

recommended, in order to exit from the command, that two

@ characters (ASCII 100) be entered as a starting

address. After the binary dump, an @ prompt character is

printed.

3.4.9 Reserved Commands

An ASCII H 1is reserved for future DIGITAL use. If it 1is

accidentally typed, console ODT will echo the H and print a prompt

character rather than a "?" which 1is the 1invalid <character

response. No other operation is performed.

3.5 ADDRESS SPECIFICATION

All I/0 addresses (124K to 128K) must be entered by users with all

18 bits specified, regardless of whether the MMU is present or

not. For example, if a user desires to open the RCSR of the

DLV1l, he must enter 777560, not 177560. With an MMU present,

18-bit addresses must be used to access memory greater than 32K

words.

3.5.1 Processor I/0 Addresses

Certain processor and MMU registers have I/0 addresses assigned to

them for programming purposes. If referenced in console ODT, the

PS responds to its bus address, 777776. Processor registers RO

through R7 do not respond (i.e., timeout occurs) to bus addresses

777700 through 777707 if referenced in console ODT.

The MMU contains status registers and PAR/PDR pairs. Any of these

registers can be accessed from console ODT by entering 1its bus

address.

Example: @777572/000001<SPACE>

In this case, memory management status register 0 is opened and

the memory management enable is set.

Accessing kernel and user stack pointer registers is accomplished

in the following way. Whenever R6 1is referenced in ODT, it

accesses the stack pointer specified by the PS current mode bits

(PS<15:14>) . This 1is done for convenience. If a program

operating in kernel mode (PS<15:14> = 00) is halted and R6 1is

opened, the kernel stack pointer is accessed.

3.5.2 Stack Pointer Selection

Similarly, if a program is operating in user mode, "R6" accesses

the user stack pointer. If a specific stack pointer is desired,

PS<15:14> must be set by the user to the appropriate value and

then the "R6" command can be used. If an operating program has

been halted, the original value of PS<15:14> must be restored in

order to continue execution.

Example: PS = 140000

@R6/123456<SPACE>

The user mode stack pointer has been opened.

@RS/140000<SPACE> 0 <CR> <CR><LF>

@R6/123456<SPACE> <CR> <CR><LF>

@RS/000000<SPACE> 140000<CR> <CR>LLF>

@p

In this case, the kernel mode stack pointer was desired. The PS

was opened and PS<15:14> were set to 00 (kernel mode). Then R6
was examined and closed. The original value of PS<15:14> was

restored and then the program was continued using the P command.

If PS<15:14> are set to 01, another unique register exists in the

processor, but is reserved for future DIGITAL use.

The floating point accumulators, which are also in the MMU chip,

cannot be accessed from console ODT. Only floating point
instructions can access these registers.

3.6 ENTERING OF OCTAL DIGITS

When the user is specifying an address or data, console ODT will
use the last six octal digits if more than six have been entered.

The user need not enter leading 0s for either address or data;

console ODT forces 0Os as the default. If an odd address 1is

entered, the low-order bit is ignored and full 16-bit words are

displayed.

3.7 ODT TIMEOUT

If the user specifies a nonexistent address or causes a parity

error, console ODT responds to the error by printing ?<CR><LF>d.

3.8 INVALID CHARACTERS

Console ODT will recognize upper- and lowercase characters as

commands. Any character that console ODT does not recognize
during a particular sequence is echoed (with the exception of

ASCII 0, 2, 10, or 12 as noted earlier) and console ODT prints a

?<CR><KLF>@. Console ODT has ten internal states, each of which

has its own set of valid input characters. When in a particular

state, only commands specific to that state are valid (see Table

3-2). This was done to lower the probability of a user

unintentionally destroying a program by pressing the wrong Kkey.

CHAPTER 4

LSI-11 BUS

4.1 INTRODUCTION

The processor, memory and I/0 devices communicate via 38
bidirectional signal 1lines that constitute the LSI-11 bus.
Addresses, data, and control information are sent along these
signal lines, some of which contain time-multiplexed information.
The lines are functionally divided as follows.

18 Data/address lines - BDAL<17:00>

6 Data transfer control lines - BBS7, BDIN, BDOUT, BRPLY,
BSYNC, BWTBT

3 Direct memory access control lines - BDMG, BDMR, BSACK

6 Interrupt control lines - BEVNT, BIAK, BIRQ4, BIRQS5,
BIRQ6, BIRQ7

5 System control lines - BDCOK, BHALT, BINIT, BPOK, BREF

Most LSI-11 bus signals are bidirectional and use terminations for
a negated (high) signal level. Devices connect to these lines via
high-impedance bus receivers and open collector drivers. The
asserted state is produced when a bus driver asserts the line low.
Although bidirectional 1lines are electrically bidirectional (any
point along the line can be driven or received), certain lines are
functionally unidirectional. These lines communicate to or from a
bus master (or signal source), but not both. Interrupt
Acknowledge (BIACK) and Direct Memory Access Grant (BDMG) signals
are physically unidirectional in a daisy-chain fashion. These
signals originate at the processor output signal pins. Each 1is
received on device input pins (BIAKI or BDMGI) and conditionally
retransmitted via device output pins (BIAKO or BDMGO) . These
signals are received from higher priority devices and are
retransmitted to 1lower priority devices along the bus.
(Priorities are discussed in Paragraphs 4.3 and 4.4.1.)

Master/Slave Relationship

Communication between devices on the bus is asynchronous. A
master/slave relationship exists throughout each bus transaction.
At any time, there is one device that has control of the bus.
This controlling device is termed the "bus master." The master
device controls the bus when communicating with another device on
the bus, termed the "slave." The "bus master” (typically the
KDF11-AA processor or a DMA device) initiates a bus transaction.
The "slave device" responds by acknowledging the transaction in
progress and by receiving data from, or transmitting data to, the
bus master. LSI-11 bus control signals transmitted or received by
the bus master or bus slave device must complete the sequence
according to bus protocol.

The processor controls bus arbitration (i.e., who becomes bus

master at any given time). A typical example of this relationship

is the processor, as master, fetching an instruction from memory

(which is always a slave). Another example is a disk, as master,

transferring data to memory as slave. Any device except the

processor can be master or slave depending on the circumstances.

Communication on the LSI-11 bus is interlocked so that for each

control signal issued by the master device, there must be a

response from the slave in order to complete the transfer. It 1is

the master/slave signal protocol that makes the LSI-11 bus

asynchronous. The asynchronous operation precludes the need for

synchronizing with, and waiting for, clock pulses.

Since bus cycle completion by the bus master requires response

from the slave device, each bus master must include a timeout

error circuit that will abort the bus cycle if the slave device

does not respond to the bus transaction within 10 microseconds.

The KDF11-AA has a bus timer to restart the clock when no device

responds to BDIN L or BDOUT L within 10 microseconds. An

immediate trap to location 48 occurs.

The actual time before a timeout error occurs must be longer than

the reply time of the slowest peripheral or memory device on the

bus.

4.2 DATA TRANSFER BUS CYCLES

Data transfer bus cycles are as follows.

Bus Cycle Function (with respect

Mnemonic Description to the bus master)

DATI Data word input Read

DATO Data word output Write

DATOB Data byte output Write byte

DATIO Data word input/output Read-modify-write

DATIOB Data word input/byte output Read-modify-write byte

These bus cycles, executed by bus master devices, transfer 16-bit

words or 8-bit bytes to or from slave devices. The following bus

signals are used in a data transfer operation.

Mnemonic Description Function

BDAL<17:00> L 18 Data/address lines BDAL<15:00> L are used for
word and byte transfers.

BDAL<17:16> L are used for

extended addressing,

memory parity error, and

memory parity error enable

functions.

Mnemonic Description Function

BSYNC L Synchronize Strobe signals
BDIN L Data input strobe

BDOUT L Data output strobe

BRPLY L Reply

BWTBT L Write/byte control Control signals
BBS7 L Bank 7 select

Data transfer bus cycles can be reduced to three basic types;
DATI, DATO(B) and DATIO(B). These transactions occur between the
bus master and one slave device selected during the addressing
portion of the bus cycle.

4.2.1 Bus Cycle Protocol

Before initiating a bus cycle, the previous bus transaction must
have been completed (BSYNC L negated) and the device must become
bus master. The bus cycle can be divided into two parts, an
addressing portion, and a data transfer portion. During the
addressing portion, the bus master outputs the address for the
desired slave device (memory location or device register) . The
selected slave device responds by latching the address bits and
holding this condition for the duration of the bus cycle (until
BSYNC L becomes negated). During the data transfer portion, the
actual data transfer occurs. Paragraphs 4.2.1.2 through 4.2.1.4
describe the data transfer portion of the bus cycle.

4.2.1.1 Device Addressing - The device addressing portion of a
data transfer bus cycle comprises an address setup and deskew time
and an address hold/deskew time. During the address setup and
deskew time the bus master does the following.

1. Asserts BDALK17:00> L with the desired slave device
address bits

2. Asserts BBS7 L if a device in the I/O page is being
addressed

3. Asserts BWTBT L if the cycle is a DATO(B) bus cycle

During this time the address, BBS7 L, and BWTBT L signals are
asserted at the slave bus receiver for at least 75 ns before BSYNC
goes active. Devices in the I/O page ignore the five high-order
address bits BDAL<17:13> and instead decode BBS7 L along with the
thirteen low-order address bits. An active BWTBT L signal
indicates that a DATO(B) operation follows, while an inactive
BWTBT L indicates a DATI or DATIO(B) operation.

The address hold/deskew time begins after BSYNC L is asserted.

The slave device uses the active BSYNC L bus receiver output to

clock BDAL address bits, BBS7 L and BWTBT L, into its internal

logic. BDALK17:00> L, BBS7 L, and BWTBT L will remain active for

25 ns (minimum) after the BSYNC L bus receiver goes active. BSYNC

I remains active for the duration of the bus cycle.

Memory and peripheral devices are addressed similarly except for

the way the slave device responds to BBS7 L. Addressed peripheral

devices must not decode address bits on BDAL<K17:13> L. Addressed

peripheral devices may respond to a bus cycle only when BBS7 L is

asserted (low) during the addressing portion of the cycle. When

asserted, BBS7 L indicates that the device address resides in the

1/0 page (the upper 4K address space). Memory devices generally

do not respond to addresses in the I/O page; however, some system

applications may permit memory to reside in the I/0 page for use

as DMA buffers, read-only-memory bootstraps or diagnostics, etc.

4.2.1.2 DATI (Figures 4-1 and 4-2) - The DATI bus cycle is a read

operation. During DATI data is input to the bus master. Data

consists of 16-bit word transfers over the bus. During the data

transfer portion of the DATI bus cycle the bus master asserts BDIN

L 100 ns minimum after BSYNC L 1is asserted. The slave device

responds to BDIN L active in the following ways.

1. Asserts BRPLY L after receiving BDIN L and 125 ns

(maximum) before BDAL bus driver data bits are valid

2. Asserts BDAL<17:00> L with the addressed data and error

information

When the bus master receives BRPLY L, it does the following.

1. Waits at least 200 ns deskew time and then accepts input

data at BDAL<17:00> L bus receivers. BDAL<K17:16> L are

used for transmitting parity errors to the master. Refer

to Paragraph 4.2.2 for more details.

2. Negates BDIN L 150 ns (minimum) to 2 microseconds

(maximum) after BRPLY L goes active.

The slave device responds to BDIN L negation by negating BRPLY L

and removing read data from BDAL bus drivers. BRPLY L must be

negated 100 ns (maximum) prior to removal of read data. The bus

master responds to the negated BRPLY L by negating BSYNC L.

Conditions for the next BSYNC L assertion are as follows.

1. BSYNC [must remain negated for 200 ns (minimum).

2. BSYNC [must not become asserted within 300 ns of

previous BRPLY L negation.

NOTE

Continuous assertion of BSYNC L retains

control of the bus by the bus master,

and the previously addressed slave

device remains selected. This is done

for DATIO(B) bus cycles where DATO or

DATOB follows a DATI without BSYNC L

negation and a second device addressing

operation. Also, a slow slave device

can hold off data transfers to itself by

keeping BRPLY L asserted, which will

cause the master to keep BSYNC L

asserted.

BUS MASTER SLAVE

{PROCESSOR OR DEVICE) (MEMORY OR DEVICE)

ADDRESS DEVICE MEMORY

* ASSERT BDAL <15:00> LWITH

ADDRESS AND

e ASSERT BBS7 IF THE ADDRESS

ISIN THE 124 - 128K WORD RANGE

e ASSERT BSYNC L
T

—_—

—_—

—

T

DECODE ADDRESS

e STORE”DEVICE SELECTED"”

OPERATION

-

/ /
- -

REQUEST DATA

*« REMOVE THE ADDRESS FROM

BDAL < 15:00> L AND NEGATE BBS7

L

+ ASSERT BDIN L —_—

—
\
\

INPUT DATA

e PLACE DATA ON BDAL < 15:00:- L

___-* ASSERTBRPLY L

/
—

—

TERMINATE INPUT TRANSFER

e ACCEPT DATA AND RESPOND

BY NEGATING BDIN L —_—

\
—_—

\

T

TERMINATE BUS CYCLE OPERATION COMPLETED

s NEGATE BSYNC L - « NEGATE BRPLY L

MR.2321

Figure 4-1 DATI Bus Cycle

4.2.1.3 DATO(B) (Figures 4-3 and 4-4) - DATO(B) 1is a write

operation. Data is transferred in 16-bit words (DATO) or 8-bit

bytes (DATOB) from the bus master to the slave device. The data

transfer output can occur after the addressing portion of a bus

cycle when BWTBT L had been asserted by the bus master, or

immediately following an input transfer part of a DATIO(B) bus

cycle.

T/R DAL (4)X T ADDR >< (4) >< R DATA ><7 (4)

100ns L—— 200 ns MAX
15005 o4 MIN o

T SYNC MIN /
CLOCK

DATA

— ! 100ns MIN o2000nsMAX
8us MAX 200ns MIN —»

T DIN / /\

V—300ns MIN —

R RPLY JL—/ \

15 M -—"‘ Ons MIN | l-—lOOns MIN

T BS7 (4) X (4)

T WTBT (4) X\ /< (4)

TIMING AT MASTER DEVICE

R/T DAL (4) XR ADDR x (4) X T DATA X (4)
25ns | le—125

—1 MIN —» ns MAX —> 100 ns MAX, O ns MIN

R SYNC F \ // Oons MIN— |———»

75ns l—————-——150ns MIN—

MIN 150ns MIN

R DIN \

\ ’4———300 ns MIN ————»

T RPLY \)\

4-] fe— 75ns MIN

R BS7 (4) X X (4)

- L 25ns MIN
R WTBT (4) X (4)

NOTES:

1

TIMING AT SLAVE DEVICE

Timing shown ot Master and Slave Device

Bus Driver inputs and Bus Receiver Outputs.

T Bus Driver Input

R

. Signal name prefixes are defined below:

Bus Receiver Qutput

Bus Driver Output and Bus Receiver Input

signal names include a "B'' prefix.

Don't care condition.

Figure 4- 2 DATI

MR-2322

Bus Cycle Timing

BUS MASTER SLAVE

(PROCESSOR OR DEVICE) (MEMORY OR DEVICE)

ADDRESS DEVICE/MEMORY

¢ ASSERT BDAL «<15:00> L WITH

ADDRESS AND

* ASSERT BBS7 L IF ADDRESSIS

IN THE 124 - 128K WORD RANGE

» ASSERT BWTBT L (WRITE

CYCLE)

¢ ASSERT BSYNC L
\

—

—_—

e
DECODE ADDRESS

* STORE"”DEVICE SELECTED”
/_— OPERATION

/
/

/ /

OUTPUT DATA

» REMOVE THE ADDRESS FROM

BDAL < 15:00> L AND NEGATE BBS7 L

AND BWTBT L

e PLACE DATA ONBDAL < 15:00> L

ASSERT BDOUT L

—_—

T~
TAKE DATA

e RECEIVE DATA FROM BDAL

LINES

— * ASSERT BRPLY L
e

/
e

- -
TERMINATE OQUTPUT TRANSFER

* NEGATE BDOUT L {AND BWTBT L

IF ADATOB BUS CYCLE)

e« REMOVE DATA FROM BDAL <15:00> L\ _

—_—

T -
OPERATION COMPLETED

__—* NEGATEBRPLY L

/ /
——

TERMINATE BUS CYCLE -
e NEGATE BSYNC L

MR-2323

Figure 4-3 DATO or DATOB Bus Cycle

The data transfer portion of a DATO(B) bus cycle comprises a data
setup and deskew time and a data hold and deskew time.

During the data setup and deskew time, the bus master outputs the
data on BDAL<16:00> L at least 100 ns after BSYNC L is asserted if
the transfer is a word transfer. If it is a word transfer, the
bus master negates BWTBT L at least 100 ns after BSYNC L
assertion. BWTBT L remains negated for the 1length of the bus
cycle. If the transfer is a byte transfer, BWTBT L remains
asserted. If it is the output of a DATIOB, BTWBT L becomes

asserted and lasts the duration of the bus cycle. During a byte

T DAL

T SYNC

T DOUT

R RPLY

T BS7

T WTBT

R DAL

R SYNC

R DOUT

T RPLY

R BS7

R WTBT

(4)

4’1 Ons MIN l‘—

X (4)
150ns

MIN

X T ADDR X T DATA

l__ 100ns ’. 100ns

MIN
-"I/M«N

8us

" MAX }

150ns MIN

175 ns MIN/Z—F— 200ns MIN ———
/

—’1/\|‘—
~

100ns MIN

\7[—-——— 300 ns MIN ~————

(4)

] 150 ns MIN

m
(4)

L150 ns MIN{ 100ns L—
\ ASS ERTION = BYTE

MIN

TIMING AT MASTER DEVICE

——’l 100 ns MIN L—

(4) X R ADDR X R DATA

—— 25ns MIN —— L725nsM|N

/ J \
25ns75ns MIN lfe—— 100 ns MIN —AfiL———ISOnsMIN—v

MIN \

25ns . ———| 150 ns MIN 4—\\ le———— 300ns MIN ———+
MIN \\\

‘bl 75 ns MIN -—

(4) >< (4)

25ns MIN + L —>

ML—
MIN

NOTES:

\/ ASSERTION = BYTE

r—ZS ns MIN

X (4)

75ns 25ns MIN

TIMING AT SLAVE DEVICE

Timing shown at Master and Slave Device

Bus Driver Inputs and Bus Receiver Outputs.

Signal nam

T =

R =

e prefixes are defined below:

Bus Driver Input

Bus Receiver Output

signal names include a "B" prefix.

Figure 4-4

. Don't care condition.

. Bus Driver Qutput and Bus Receiver Input

DATO or DATOB Bus Cycle Timing

transfer, BDAL 00 L selects the high or low byte. This occurs

while in the addressing portion of the cycle. If asserted, the

high byte (BDAL<15:08> L) 1is selected; otherwise, the low byte

(BDALK07:00> L) 1is selected. An asserted BDAL 16 L at this time

will force a parity error to be written into memory if the memory

is a parity-type memory. BDAL 17 L is not used for write

operations. The bus master asserts BDOUT L at least 100 ns after

BDAL and BWTBT L bus drivers are stable. The slave device

responds by asserting BRPLY L within 10 microseconds to avoid bus

timeout. This completes the data setup and deskew time.

During the data hold and deskew time the bus master receives BRPLY

L and negates BDOUT L. BDOUT L must remain asserted for at least

150 ns from the receipt of BRPLY L before being negated by the bus

master. BDAL<17:00> L bus drivers remain asserted for at least

100 ns after BDOUT L negation. The bus master then negates BDAL

inputs.

During this time, the slave device senses BDOUT L negation. The

data 1s accepted and the slave device negates BRPLY L. The bus

master responds by negating BSYNC L. However, the processor will

not negate BSYNC L for at least 175 ns after negating BDOUT L.

This completes the DATO(B) bus cycle. Before the next cycle BSYNC

L must remain unasserted for at least 200 ns.

4.,2.1.4 DATIO(B) (Figures 4-5 and 4-6) - The protocol for a

DATIO(B) bus cycle 1is identical to the addressing and data

transfer portions of the DATI and DATO(B) bus cycles. After

addressing the device, a DATI cycle is performed as explained in

Paragraph 4.2.1.2; however, BSYNC L is not negated. BSYNC L

remains active for an output word or byte transfer [DATO(B)]. The

bus master maintains at least 200 ns between BRPLY L negation

during the DATI cycle and BDOUT L assertion. The cycle 1is

terminated when the bus master negates BSYNC L, which is the same

as described for DATO(B).

4.2.2 Parity Protocol

The KDF11-AA recognizes memory parity errors and traps to location

114, if one occurs. A parity error detection occurs during every

DAT? or DATI portion of a DATIO(B) cycle. The processor samples
BDAL 16 L and BDAL 17 L after the 200 ns REPLY deskew time similar

to BDALK15:00> L. BDAL 16 L is interpreted as a parity error

signal from memory and BDAL 17 L is interpreted as a parity error

enable signal from an external parity controller module. BDAL 17

L is used by software to enable parity detection which is done by

addressing a parity status register on the LSI-11 bus. Parity

status register hardware then asserts BDAL 17 L during the BDIN L

portion of DATI cycles to inform the processor or bus master that

detection 1is enabled. BDAL 16 L is used to indicate a parity

error and is asserted by the selected memory at REPLY time. Upon

system power—-up, memory may contain random data and erroneous

parity error signals may be issued (BDAL 16 L asserted). Until

known data 1is written into memory, software keeps BDAL 17 L

negated, to avoid false traps. After known data and correct

parity have been written into memory, software can enable parity

detection in the parity status register. If both BDAL 16 L and

BDAL 17 L are asserted at REPLY time, an abort and trap to

location 114, will occur. The assertion of BDAL 16 L during BDOUT

L will cause memory to write wrong parity as a diagnostic tool for

maintenance purposes.

BUS MASTER SLAVE

(PROCESSOR OR DEVICE} (MEMORYOR DEVICE)

ADDRESS DEVICE/MEMORY

® ASSERT BDAL < 15:00> LWITH

ADDRESS

® ASSERT BBS7 L AND IF THE

ADDRESS IS IN THE 124 - 128K WORD RANGE

® ASSERT BSYNC L
—

———
——

B ECODE ACDRESS
e STORE “DEVICE SELECTED"

_ OPERATION

-
REQUEST DATA

e REMOVE THE ADDRESS FROM

BDAL < 15:00 > L

e ASSERT BDIN L ——

— % uPUT DATA
e PLACE DATA ON BDAL < 15:00 > L

e ASSERT BRPLY L

TERMINATE INPUT TRANSFER -
e ACCEPT DATA AND RESPOND BY

TERMINATING BDIN L
— —_ _

COMPLETE INPUT TRANSFER

e REMOVE DATA

e NEGATE BRPLY L
o —

-
OUTPUT DATA

e PLACE OUTPUT DATA ON BDAL < 15:00> L

e (ASSERT BWTBT L IF AN OUTPUT

BYTE TRANSFER)

e ASSERT BDOUT L -

\\\;

TAKE DATA

e RECEIVE DATA FROM BDAL LINES

e ASSERT BRPLY L

//

-
TERMINATE OUTPUT TRANSFER

e REMOVE DATA FROM BDAL LINES

e NEGATE BDOUT L
\\ \\

OPERATION COMPI_ETED

® NEGATE BRPLY L

. am—

a—

- -
TERMINATE BUS CYCLE

e NEGATEBSYNC L

(AND BWTBT L IFIN

A DATIOB BUS CYCLE)

MR.-2324

Figure 4-5 DATIO or DATIOB Bus Cycle

R/T DAL

T SYNC

T DOUT

T DIN

R RPLY

T BS7

R SYNC

R DOUT

R DIN

T RPLY

R BS7

R WTBT (4>\

,.,]-—150 ns MIN 4-‘ r—Ons MIN

(4)><TADDR >< (4) >(R DATA y (4) X T DATA >((4)
100ns 200ns L !MIN_’ [— —fi MA X ‘ — 100 ns MIN

100 ns MIN‘—l r— N RS
l@— 200ns MIN

d/ 200 ns MIN —

N\

la— |50 ns MIN—-I \

300ns\/ / MIN 1
/ \ /L/ 2

150 ns

"] MIN [*

— l¢— {00 ns MIN —| 100 ns MIN ‘4—

(4)A X ASSERTION=BYTE (4)X
[¢— 150 ns MIN

TIMING AT MASTER DEVICE

RADDRX (4) X T DATA X (4) Y R DATA >((4)

-T l<—25ns MIN ‘ I — LZSns MIN
/ ‘4—100ns MAXJ \ /

- 75nsMIN125 25ns MIN l‘— —»{ 100ns MIN

— "s \ 150ns MIN eMAX [* o

lfe—| 5O ns MIN —

‘\\.\

\

ld-—150ns MIN—> /4—3oonsM|N——>

Q\ \
re— 75ns MIN

le— 75 ns MIN le— 25ns MIN —

(4}

’)1(
ASSERTION = BYTE

|<725ns MIN

>< (4)

NOTES:

25ns MIN

TIMING AT SLAVE DEVICE

i. Timing shown at Requesting Device

Bus Driver Inputs and Bus Receiver Outputs.

2. Signal name prefixes are defined below:

T =

R =

3. Bus Driver Output and Bus Receiver Input

Bus Driver Input

Bus Receiver Qutput

signal names include a "B" prefix.

4. Don't care

Figur

condition

e 4-6

>

| 11

DATIO or DATIOB Bus Cycle

4.3 DIRECT MEMORY ACCESS

The direct memory access (DMA) capability allows direct data

transfers between I/0 devices and memory. This 1is useful when

using mass storage devices (e.g., disks) that move large blocks of

data to and from memory. A DMA device only needs to know the

starting address in memory, the starting address in mass storage,

the length of the transfer and whether the operation is read or

write. When this information is available the DMA device can

transfer data directly to (or from) memory. Since most DMA

devices must perform data transfers in rapid succession or lose

data, DMA devices are provided the highest priority.

DMA 1is accomplished after the processor (normally bus master) has

passed bus mastership to the highest priority DMA device that is

requesting the bus. The processor arbitrates all requests and

grants the bus to the DMA device located electrically closest to

the processor. A DMA device remains bus master indefinitely until

it relinquishes its mastership. The following control signals are

used during bus arbitration.

BDMGI L DMA Grant Input

BDMGO L DMA Grant Output

BDMR L DMA Request Line

BSACK L Bus Grant Acknowledge

DMA Protocol (Figures 4-7 and 4-8)

A DMA transaction can be divided into three phases: the bus

mastership acquisition phase, the data transfer phase, and the bus
mastership relinquish phase.

During the bus mastership acquisition phase, a DMA device reguests

the bus by asserting BDMR L. The processor arbitrates the request

and initiates the transfer of bus mastership by asserting BDMGO L.

The maximum time between BDMR L assertion and BDMGO L assertion is

DMA latency. This time 1is processor-dependent and 1is 3.5

microseconds for the KDF11-AA. BDMGO L/BDMGI L is one signal that

is daisy-chained through each module 1in the backplane. It 1is

driven out of the processor on the BDMGO L pin, enters each module

on the BDMGI L pin and exits on the BDMGO L pin. This signal

passes through the modules in descending order of priority until

it is stopped by the requesting device. The requesting device

blocks the output of BMDGO L and asserts BSACK L. If no device

responds to the DMA grant the processor will clear. the grant and

rearbitrate the bus. If BDMR L is continuously asserted, the bus
will be hung (the grant signal will keep passing down the bus, be

cleared after no BSACK L occurs, and be driven again after the bus

is rearbitrated).

NOTE

The KDF1l1-AA uses a no-SACK timer which

clears BDMGO L after 12 microseconds if

no BSACK L. has been received.

KDF11-AA PROCESSOR BUS MASTER

(MEMORY IS SLAVE) (CONTROLLER)

REQUEST BUS

—— o ASSERT BDMR L
—

GRANT BUS CONTROL _—
¢ NEAR THE END OF THE = o —

CURRENT BUS CYCLE

(BRPLYL IS NEGATED),

ASSERT BDMGO L AND ~— __

INHIBIT NEW PROCESSOR —~

GENERATED BYSNC L FOR —~ ACKNOWLEDGE BUS
THE DURATION OF THE > MASTERSHIP
DMA OPERATION, * RECEIVE BDMG

_— '« WAIT FOR NEGATION OF

- BSYNCL AND BRPLYL

_ » ASSERT BSACK L

TERMINATE GRANT L * NEGATE BDMR L
SEQUENCE

o NEGATE BDMGO L AND

WAIT FOR DMA OPERATION TM —_

TO BE COMPLETED o~
— _, EXECUTE A DMA DATA

TRANSFER

« ADDRESS MEMORY AND

TRANSFERUP TO 4 WORDS

OF DATA AS DESCRIBED

FOR DATI, OR DATO BUS

CYCLES

_— « RELEASE THE BUS BY

.~ TERMINATING BSACK L

- (NO SOONER THAN

FESUME PROCESSOR — NEGATION OF LAST BRPLY

OPERATION o - L) AND BSYNC L.

ENABLE PROCESSOR-

GENERATED BSYNC L

(PROCESSOR IS BUS WAIT 4 us OR UNTIL

MASTER) OR ISSUE ANOTHER FIFO TRANSFER

ANOTHER GRANT |F BDMR IS PENDING BEFORE

L IS ASSERTED. REQUESTING BUS AGAIN

MR .3689

Figure 4-7 DMA Request/Grant Sequence

During the data transfer phase, the DMA device continues asserting
BSACK L. The actual data transfer is performed as described in

Paragraphs 4.2.1.2 through 4.2.1.4.

NOTE

If multiple-data transfers are performed

during this phase, consideration must be

given to the use of the bus for other

system functions, such as memory refresh

(if required).

SECOND
REQUEST

—-I le— DMA LATENCY

7"‘7_/_/'_7"7‘7"7"7 =7 =7 7‘7"7
T DMR VA / / /

L yl Vi / Z / / / /

—> L-Ons MIN.
R DMG au

\ Vi
<

AN
T SACK U

—<<<s\m\~.——\; \ I-— r\— 300 ns MAX

R/T SYNC \ ——_J

O ns MIN-—DI fe—

\

R/T RPLY \\\ \\\ / \

O ns MIN —» 100 ns MAX—» 0 ns MIN "_ ns

T DAL /< ADDR X DATA \
(ALSO BS7,

WTBT, REF) NOTES -

1. Timing shown at requesting device bus driver inputs and bus receiver outputs.

2. Signal name prefixes are defined below:

T = Bus Driver Input

R = Bus Receiver Qutput

Figure 4-8 DMA Request/Grant Timing

The DMA device can assert BSYNC L for a data transfer 250 ns

(minimum) after it receives BDMGI L and its BSYNC L bus receiver

becomes negated.

During the bus mastership relingquish phase the DMA device
relinquishes the bus by negating BSACK L. This occurs after
completing (or aborting) the last data transfer cycle (BRPLY L

negated). BSACK L may be negated up to 300 ns (maximum) before
negating BSYNC L.

4.4 INTERRUPTS

The interrupt capability of the LSI-11 bus allows any 1/0 device

to temporarily suspend (interrupt) current program execution and

divert processor operation to service the requesting device. The
processor inputs a vector from the device to start the service
routine (handler). Like the device register address, hardware

fixes the device vector at locations within a designated range

(below location 001000). The vector indicates the first of a pair
of addresses. The content of the first address is read by the

processor and 1is the starting address of the interrupt handler.

The content of the second address is a new processor status word

(PS). The new PS can raise the interrupt priority level, thereby

preventing lower level interrupts from breaking into the current

interrupt service routine. Control is returned to the interrupted
program when the interrupt handler 1is ended. The original

(interrupted) program's address (PC) and its associated PS are
stored on a "stack." The original PC and PS are restored by a
return from interrupt (RTI or RTT) instruction at the end of the
handler. The use of the stack and the LSI-11 bus interrupt scheme
can allow interrupts to occur within interrupts (nested
interrupts), depending on the PS.

Interrupts can be caused by LSI-11 bus options. Interrupt
operations can also originate from within the processor. These
interrupts are called "traps." Traps are caused by programming
errors, hardware errors, special instructions and maintenance
features.

The LSI-11 bus signals that are used in interrupt transactions are
the following.

BIRQ4 L Interrupt request priority level 4
BIRQS5 L Interrupt request priority level 5
BIRQ6 L Interrupt request priority level 6
BIRQ7 L Interrupt request priority level 7

BIAKI L Interrupt acknowledge input

BIAKO L Interrupt acknowledge output

BDAL<K15:00> L Data/address lines

BDIN L Data input strobe

BRPLY L Reply

4.4.1 Device Priority

The LSI-11 bus supports the following two methods of device
priority.

1. Distributed arbitration - Priority levels are implemented
on the hardware. When devices of equal priority level
request an interrupt, priority is given to the device

electrically closest to the processor.

2. Position-defined arbitration - Priority is determined
solely by electrical position on the bus. The closer a
device is to the processor, the higher its priority is.

The KDF11l-AA uses both the distributed arbitration method with
four levels of priority and position-defined arbitration within
each 1level. Interrupts on these priority 1levels are

enabled/disabled by bits in the processor status word (PS<07:05>).

Single-level interrupt (position-defined) devices can also be used

in KDF11-AA systems.

4.4.2 Interrupt Protocol (Figures 4-9 and 4-10)

Interrupt protocol has three phases: interrupt request phase,
interrupt acknowledge and priority arbitration phase, and

interrupt vector transfer phase.

PROCESSOR DEVICE

INITIATE REQUEST

.—* ASSERT BIRQ L

——

I

STROBE INTERRUPTS -

e ASSERT BDIN L —_
——

e—
\\

\ S—
~

l RECEIVE BDIN L
» STORE “INTERRUPT SENDING

‘ IN DEVICE

GRANT REQUEST

¢ PAUSE AND ASSERT BIAKO L —__
T
\

\\

\ —
-

RECEIVE BIAKI L

e RECEIVE BIAKI L AND INHIBIT

BIAKO L

e PLACE VECTORON BDAL < 15:00> L

e ASSERT BRPLY L

__* NEGATE BIRC L
-

-

i

J—

RECEIVE VECTOR & TERMINATE

REQUEST

e INPUT VECTOR ADDRESS

o NEGATE BDIN L AND BIAKO L

\
\

\-

\ —
.

COMPLETE VECTOR TRANSFER

e« REMOVE VECTOR FROM BDAL BUS

_ e NEGATZBRPLY L
-

/
[

-

PROCESS THE INTERRUPT

e SAVE INTERRUPTED PROGRAM

PC AND PS ON STACK

e LOAD NEW PC AND PS FROM

VECTOR ADDRESSED LOCATION

e EXECUTE INTERRUPT SERVICE

ROUTINE FOR THE DEVICE

MH 1182

Figure 4-9 Interrupt Request/Acknowledge Sequence

INTERRUPT LATENCY

MINUS SERVICE TIME

T IRQ

‘>1 150ns MIN. j&—

R DIN /

R TAKI ////////,,,___

T RPLY j\\i

——4 125 ns MAX. fe— kAOOnsMAx

T DAL (4 ><7 VECTOR j}((4)

R SYNC (UNASSERTED)

R BS7 (UNASSERTED)

NOTES:

1. Timing shown at Requesting Device Bus Driver Inputs and Bus Receiver Qutputs.

2. Signal Name Prefixes are defined below:

T = Bus Driver Input

R = Bus Receiver Qutput

3. Bus Driver Output and Bus Receiver Input signal names include a "B" prefix.

4. Don't care condition

MR 1187

Figure 4-10 Interrupt Protocol Timing

The interrupt request phase begins when a device meets its

specific conditions for interrupt requests. For example, the

device 1is "ready," "done," or an error has occurred. The

interrupt enable bit in a device status register must be set. The

device then initiates the interrupt by asserting the interrupt

request line(s). BIRQ4 L 1is the lowest hardware priority level

and is asserted for all interrupt requests for compatibility with

previous LSI-11 processors. The level a device is configured at

must also be asserted. A special case exists for level 7 devices

which must also assert level 6. See item 2 of the arbitration

discussion involving the 4-level scheme (below) for an

explanation.

4-17

Interrupt Level Lines Asserted by Device

BIRQ4 L

BIRQ4 L, BIRQ5 L

BIRQ4 L, BIRQ6 L

BIRQ4 L, BIRQ6 L, BIRQ7 L~
I

O

U

W

The interrupt request line remains asserted until the request is

acknowledged.

During the interrupt acknowledge and priority arbitration phase

the KDF11l-AA will acknowledge interrupts under the following

conditions.

1. The device interrupt priority 1s higher than the

current PS<07:05>.

2. The processor has completed instruction execution and no

additional bus cycles are pending.

The processor acknowledges the interrupt request by asserting BDIN

L, and 150 ns (minimum) later asserting BIAKO L. The device

electrically closest to the processor receives the acknowledge on

its BIAKI L bus receiver.

At this point the two types of arbitration must be discussed

separately. If the device that receives the acknowledge uses the
4-level interrupt scheme,it reacts as follows.

1. If not requesting an interrupt, the device asserts BIAKO

L. and the acknowledge propagates to the next device on

the bus.

2. If the device is requesting an interrupt it must check to

see that no higher level device is currently requesting

an interrupt. This is done by monitoring higher level

request lines. The table below lists the lines that need

to be monitored by devices at each priority level.

In addition to asserting levels 7 and 4, level 7 devices

must drive level 6. This is done to simplify the

monitoring and arbitration by level 4 and 5 devices. 1In

this protocol, level 4 and 5 devices need not monitor

level 7 since level 7 devices assert level 6. Level 4

and 5 devices will become aware of a level 7 reguest

since they monitor the 1level 6 request. This protocol
has been optimized for levels 4, 5, and 6 devices, since

level 7 devices very seldom are necessary.

Device Priority Level Line(s) Monitored

4 BIRQ5, BIRQ6

5 BIRQ®6

6 BIRQ7
7 -

3. If no higher level device is requesting an interrupt, the

acknowledge is blocked by the device. (BIAKO L is not

asserted). Arbitration logic within the device uses the

leading edge of BDIN L to clock a flip-flop that blocks

BIAKO L. Arbitration is won and the interrupt vector

transfer phase begins.

4. If a higher level request 1line 1is active, the device

disqualifies itself and asserts BIAKO L to propagate the

acknowledge to the next device along the bus.

Signal timing must be <carefully considered when implementing

4-level interrupts. Refer to Figure 4-10 for interrupt protocol

timing.

If a single-level interrupt device receives the acknowledge, it
reacts as follows.

1. If not requesting an interrupt, the device asserts BIAKO

L and the acknowledge propagates to the next device on

the bus.

2. If the device was requesting an interrupt, the

acknowledge is blocked using the leading edge of BDIN L

and arbitration is won. The interrupt vector transfer

phase begins.

The interrupt vector transfer phase is enabled by BDIN L and BIAKI

L. The device responds by asserting BRPLY L and its BDAL<K15:00> L

bus driver inputs with the vector address bits. The BDAL bus

driver inputs must be stable within 125 ns (maximum) after BRPLY L

is asserted. The processor then inputs the vector address and

negates BDIN L and BIAKO L. The device then negates BRPLY L and

100 ns (maximum) later removes the vector address bits. The

processor then enters the device's service routine.

NOTE

BSYNC L and BBS7 L are not asserted by

the processor during the interrupt

arbitration and vector address transfer

operations.

The device must assert BRPLY L within 10

microseconds (maximum) after the

processor asserts BDIN L. If the device

does not reply, the KDF1ll-AA aborts the

interrupt transaction and resumes

program execution. The aborted

transaction 1is transparent to the

program. LSI-11 and LSI-11/2 processors

halt in this situation.

4.4.3 4-Level Interrupt Configurations

Users who have high-speed peripherals and desire better software

performance can use the 4-level 1interrupt scheme. Both

position-independent and position-dependent configurations can be

used with the 4-level interrupt scheme.

The position-independent configuration is shown 1in Figqure 4-11.

This allows peripheral devices that use the 4-level interrupt

scheme to be placed in the backplane in any order. These devices

must send out interrupt requests and monitor higher level request

lines as described in Paragraph 4.4.2. The level 4 request 1is

always asserted by a requesting device regardless of priority, to

allow compatibility if an LSI-11 or LSI-11/2 processor 1is 1in the

same system. If two or more devices of equally high priority

request an interrupt, the device physically closest to the

processor will win arbitration. Devices that use the single-level

interrupt scheme must be modified or placed at the end of the bus

for arbitration to properly function.

BIAK (INTERRUPT ACKNOWLEDGE) LEVEL4 | BiaK LEVELB |giak LEVELS5 | BIAK LEVEL7
DEVICE * DEVICE DEVICE DEVICEKDF11 A A A

b 4 4 B [

BIRQ 4 (LEVEL 4 INTERRUPTREQUEST) 1 1

BIRQ S5 (LEVELS INTERRUPT REQUEST) y

BIRQ 6 (LEVEL 6 INTERRUPT REQUEST) |

BIRQ 7 (LEVEL 7 INTERRUPT REQUEST)

ME DHHH

Figure 4-11 Position-Independent Configuration

The position-dependent configuration is shown in Fiqure 4-12.
This configuration is simpler to implement. A constraint is that

peripheral devices must be inserted with the highest priority
device located closest to the processor and the remaining devices

placed in the backplane in decreasing order of priority, with the

lowest priority devices farthest from the processor. With this

configuration each device only has to assert its own level and
level 4 (for compatibility with an LSI-11 or LSI-11/2).

Monitoring higher level request lines is unnecessary. Arbitration
is achieved through the physical positioning of each device on the

bus. Single-level interrupt devices on level 4 should be

positioned last on the bus.

BIAK (INTERRUPT ACKNOWLEDGE) LEVEL7 | BIAK LEVEL6 | BIAK LEVELS | BIAK LEVEL 4
DEVICE DEVICE DEVICE DEVICEA

KDF11 A

b 4 3 &

BIRQ 4 (LEVEL 4 INTERRUPT REQUEST) 1 }
BIRQ5 (LEVEL 5 INTERRUPT REQUEST)]

BIRQ 6 (LEVEL 6 INTERRUPT REQUEST)

BIRQ 7 (LEVEL 7 INTERRUPT REQUEST) 1

MR 2889

Figure 4-12 Position-Dependent Configuration

4.5 CONTROL FUNCTIONS

The following LSI-11 bus signals provide control functions.

BREF L Memory refresh

BHALT L Processor halt

BINIT L Initialize

BPOK H Power OK

BDCOK H dc power OK

4.5.1 Memory Refresh

If BREF is asserted during the address portion of a bus data

transfer cycle, it causes all dynamic MOS memories to be

simultaneously addressed. The sequence of addresses required for

refreshing the memories is determined by the specific requirements
for each memory. The complete memory refresh cycle consists of a

series of refresh bus transactions. A new address 1is used for

each transaction. A complete memory refresh cycle must be

completed within 1 or 2 ms. Multiple data transfers by DMA

devices must be avoided since they could delay memory refresh

cycles. The KDF11l-AA does not perform memory refresh. For
systems needing memory refresh, an REV11-A or -C may be used to

perform this function.

4.5.2 Halt

Assertion of BHALT L stops program execution and forces the

processor unconditionally into console ODT mode.

4.5.3 Initialization

Devices along the bus are initialized when BINIT L is asserted.

The processor can assert BINIT L as a result of executing a RESET

instruction or as part of a power-up sequence. BINIT L 1is
asserted for approximately 10 microseconds when RESET is executed.

4.5.4 Power Status

Power status protocol is controlled by two signals, BPOK H and

BDCOK H. These signals are driven by some external device

(usually the power supply) and are defined as follows.

BDCOK H

The assertion of this line indicates that dc power has been stable

for at least 3 ms. Once asserted this line remalins asserted until

the power fails.

The negation of this line is the first event in the power-fail

sequence. It indicates that only 5 microseconds of dc power

reserve remains. Once BDCOK H is negated it must remain in this

state for at least 1 microsecond before being asserted again.

BPOK H

The assertion of this line indicates that there is at least an 8

ms reserve of dc power and that BDCOK H has been asserted for at

least 70 ms. Once BPOK H has been asserted, it must remain

asserted for at least 3 ms.

The negation of this line indicates that power is failing and that
only 4 ms of dc power reserve remains.

Power-Up/Down Protocol (Figure 4-13)

Power-up protocol for the KDF1ll-AA begins when the power supply

applies power with BDCOK H negated. This forces the processor to

assert BINIT L. When the dc voltages are stable, the power supply

or other external device asserts BDCOK H. The processor responds

by clearing the PS, floating point status register (FPS), and

floating point exception register (FEC). BINIT L is asserted for

12.6 microseconds and then negated for 110 microseconds. The

processor continues to test for BPOK H until it is asserted. The

power supply asserts BPOK H 70 ms (minimum) after BDCOK H 1is

asserted. The processor then performs its power-up sequence.

Normal power must be maintained at 1least 3.0 ms before a

power-down sequence can begin. The KDF1l1l-AA has four power-up

jumper options. Refer to Paragraph 2.2 for details.

A power-down sequence begins when the power supply negates BPOK H.

When the current instruction is completed, the processor traps to

a power-down routine. The KDF1ll-AA traps to 1location 24,.

Location 24 contains the PC that points to the power-down

routine. f%e end of the routine 1is terminated with a HALT
instruction to avoid any possible memory corruption as the dc
voltages decay.

When the processor executes the HALT instruction, 1t tests the

BPOK H signal. If BPOK H is negated, the processor enters the
power-up sequence. It clears internal registers, generates BINIT

L and continues to check for the assertion of BPOK H. If it is

asserted and dc voltages are still stable, the processor will

perform the rest of the power-up sequence.

“*4-20#5

BINIT L \ / \ /
3ms 1us L7

t——3 ms MIN MAX 1 MAX

BPOK H]r

70msMIN fe 4 ms MIN —» —-I 70ms MIN L-
BDCOK H \ /

_t; 3ms e -.
MIN 8 ms MIN 5 us MIN l4—

DC POWER / _f

POWER UP NORMAL POWER DOWN POWER UP NORMAL

SEQUENCE - POWER ~TM SEQUENCE SEQUENCE " POWER

NOTE:

Once a power down sequence is started,

it must be completed before a power-up

sequence is started.

Figure 4-13 Power-Up/Power-Down Timing

4.6 BUS ELECTRICAL CHARACTERISTICS

This paragraph contains information about the electrical
characteristics of the LSI-11 bus.

4.6.1 Signal Level Specification

Input Logic Levels

TTL Logical Low: 0.8 Vdc maximum

TTL Logical High: 2.0 Vdc minimum

Output Logic Levels

TTL Logical Low: 0.4 Vdc maximum

TTL Logical High: 2.4 Vdc minimum

4.6.2 AC Load Definition

AC loads comprise the maximum capacitance allowed per signal line

to ground, as specified in Paragraph 4.7. A unit load is defined

as 9.35 pF of capacitance.

4.6.3 DC Load Definition

DC loads are defined as maximum current allowed with a signal line

driver asserted or unasserted. These limitations are specified in

Paragraph 4.7.

4.6.4 120 Ohm LSI-11 Bus

The electrical conductors interconnecting the bus device slots are

treated as transmission 1lines. A uniform transmission 1line,

terminated in its characteristic impedance, will propagate an

electrical signal without reflections. Insofar as bus drivers,

receivers and wiring connected to the bus have finite resistance

and nonzero reactance, the transmission 1line impedance becomes

nonuniform, and thus introduces distortions into pulses propagated

along it. ©Passive components of the LSI-11 bus (such as wiring,

cabling and etched signal conductors) are designed to have a

nominal characteristic impedance of 120 ohms.

The maximum 1length of interconnecting cable excluding wiring

within the backplane is limited to 4.88 m (16 ft).

NOTES

l. The KDFll-AA processor (as well as

all standard DIGITAL-supplied LSI-11

interfaces) connects to the bus via

special drivers and receivers,

described in Paragraphs 4.6.5 and

4.6.6.

2. The KDFll-AA processor provides

resistive (220 ohm) pull-up (on all

bused 1lines) to 3.4 Vdc for this

wired-OR interconnecting scheme.

4.6.5 Bus Drivers

Devices driving the 120 ohm LSI-11 bus must have open collector

outputs and meet the following specifications.

DC Specifications

Output 1low voltage when sinking 70 mA of current: 0.7 V

maximum

Output high leakage current when connected to 3.8 Vdc: 25 uA

(even if no power is applied to them, except for BDCOK H and

BPOK H)

These conditions must be met at worst-case supply voltage,

temperature, and input signal levels.

AC Specifications

Bus driver output pin capacitive load: Not to exceed 10 pF

Propagation delay: Not to exceed 35 ns

Skew (difference in propagation time between slowest and

fastest gate): Not to exceed 25 ns

Rise/Fall Times: Transition time from 10% to 90% for positive

transition, and from 90% to 10% for negative transition, must

be no faster then 5 ns.

4.6.6 Bus Receivers

Devices that receive signals from the 120 ohm LSI-11 bus must meet

the following requirements.

DC Specifications

Input low voltage (maximum): 1.3 V

Input high voltage (minimum): 1.7 V

Maximum input current when connected to 3.8 Vdc: 80 uA even if

no power is applied to them.

These specifications must be met at worst-case supply voltage,

temperature, and output signal conditions.

AC Specifications

Bus receiver input pin capacitance load: Not to exceed 10 pF

Propagation delay: Not to exceed 35 ns

Skew (difference in propagation time between slowest and

fastest gate): Not to exceed 25 ns

4.6.7 Bus Termination (Figure 4-14)

The 120 ohm LSI-11 bus must be terminated at each end by an

appropriate terminator. This is to be done as a voltage divider

with its Thevenin equivalent equal to 120 ohms and 3.4 V nominal.

This type of termination is provided by an REV11-A

refresh/boot/terminator, or the BDV11-AA.

+5V +5V

3300 1788

1%

25048 12080
BUS LINE BUS LINE

TERMINATION TERMINATION

38346800 S

- i MR-2325

Figure 4-14 Bus Line Terminations

Each of the several LSI-11 bus lines (all signals whose mnemonics

start with the letter B) must see an equivalent network with the

following characteristics at each end of the bus, except BIAKI

L/BIAKO L and BDMGI L/BDMGO L, which do not require termination.

Input impedance (with respect to ground): Z = 120 ohm +5%, -15%

Open circuit voltage: 3.4 Vdc +5%

Capacitance Load: Not to exceed 30 pF

NOTE

The resistive termination may Dbe

provided by the combination of two

modules (i.e., the processor module

supplies 220 ohms to ground). Both of

these two terminators must be physically

resident within the same backplane.

4.6.8 Bus Interconnecting Wiring

This paragraph contains the electrical characteristics of the bus

interface.

4.6.8.1 Backplane Wiring - The wiring that interconnects all

device interface slots on the LSI-11 must meet the following

specifications.

1. The conductors must be arranged such that each 1line

exhibits a characteristic impedance of 120 ohms (measured

with respect to the bus common return).

2. Crosstalk between any two lines must be no greater than

5%. Note that worst-case crosstalk 1is manifested by

simultaneously driving all but one signal 1line and

measuring the effect on the undriven line.

3. DC resistance of signal path, as measured between

near-end terminator and far-end terminator module

(including all intervening connectors, cables, backplane

wiring, connector-module etch, etc.) must not exceed 2

ohms.

4. DC resistance of common return path, as measured between

near-end terminator and far-end terminator module

(including all intervening connectors, cables, backplane

wiring, connector-module etch, etc.) must not exceed an

equivalent of 2 ohms per signal path. Thus, the

composite signal return path dc resistance must not

exceed 2 ohms divided by 40 bus lines, or 50 milliohms.

Note that although this common return path is nominally

at ground potential, the conductance must be part of the

bus wiring; the specified low impedance return path must

be provided by the bus wiring as distinguished from

common system or power ground path.

4.6.8.2 Intra-Backplane Bus Wiring - The wiring that

interconnects the bus connector slots within one contiguous

backplane is part of the overall bus transmission line. Due to

implementation constraints, the nominal characteristic impedance

of 120 ohms may not be achievable. Distributed wiring capacitance

in excess of the amount required to achieve the nominal 120 ohm

impedance may not exceed 60 pF per signal line per backplane.

4.6.8.3 Power and Ground - Each bus interface slot has connector

pins assigned for the following dc voltages.*

+5 Vdc - Three pins (4.5 A maximum per bus device slot)

+12 Vdc - Two pins (3.0 A maximum per bus device slot)

Ground - Eight pins (shared by power return and signal return).

NOTE

Power is not bused between backplanes on

any interconnecting bus cables.

4.6.8.4 Maintenance and Spare Pins

Maintenance Pins - There are four MSPARE pins per bus device slot

assigned to maintenance (AKl1l, ALl, BK1l, BL1l). The maintenance

pins on the basic LSI-11 system are not bused from module to

module. Instead, at each bus device slot, the maintenance pins

are shorted together as pairs. These pins must be shorted

together for any module to operate. This allows the module to use

these pins during initial testing as two separate points. This is

used by DIGITAL for manufacturing tests only.

Spare Pins - Spare pins are allocated on the backplane as follows.

SSPARE - These eight pins are reserved for the particular use

of a module or set of modules, either as test points or as

intermodule communication. For intermodule communication,

appropriate wires must be added to the backplane since these

pins are not interconnected in any way. SSPARE lines cannot

be used as bus connections.

PSPARE - These four pins are similar to SSPARE, except that

they are located in a manner such that dc voltages will appear

on the pins if a module is inserted backwards. Use of these

pins is not recommended.

4.7 SYSTEM CONFIGURATIONS

LSI-11 bus systems can be divided into two types.

1. Systems containing one backplane

2. Systems containing multiple backplanes

*The maximum allowable current per pin is 1.5 A. +5 Vdc must be

regulated to +5%; maximum ripple: 100 mV pp. +12 Vdc must be

regulated to +3%; maximum ripple: 200 mV pp.

Before configuring any system, three characteristics for each
module in the system must be known. These characteristics

include:

1. Power consumption - +5 Vdc and +12 Vdc current

requirements.

2. AC bus 1loading - the amount of capacitance a module

presents to a bus signal line. AC loading is expressed

in terms of act loads where one ac load equals 9.35 pF of

capacitance.

3. DC bus 1loading - the amount of dc 1leakage current a

module presents to a bus signal when the line 1is high

(undriven). DC loading is expressed in terms of dc loads

where one dc load equals 105 microamperes (nominal).

Power consumption, ac loading, and dc loading specifications for

each module are included in the Memories and Peripherals handbook.

NOTE

The ac and dc loads and the power

consumption of the processor module,

terminator module, and backplane must be

included in determining the total

loading of a backplane.

Rules for Configuring Single Backplane Systems (Figure

b = U
l
e

—

1. The bus can accommodate modules that have up to 20 ac

loads (total) before an additional termination 1is
required. The processor has on-board termination for one

end of the bus. If more than 20 ac loads are included,

the other end of the bus must be terminated with 120

ohms.

2. A terminated bus can accommodate modules comprising up to

35 ac loads (total).

3. The bus can accommodate modules up to 20 dc loads

(total).

4. The bus signal lines on the backplane can be up to 35.6

cm (14 in) long.

BACKPLANE WIRE |

35.6 cm (14in) MAX

) |]

ONE ONE ONE

UNIT UNIT UNIT

2209 LOAD LOAD LOAD
+

3.4V — —

- 20 AC LOADS
= 20DC LOADS

PROCESSOR

MR-2326

Figure 4-15 Single Backplane Configuration

Rules for Configuring Multiple Backplane Systems (Figure

a. Up to three backplanes may compose the system.

b. The signal lines on each backplane can be up to 25.4
cm (10 in) 1long.

Each backplane can accommodate modules that have up to 20
ac loads (total). Unused ac loads from one backplane may
not be added to another backplane if the second backplane
loading will exceed 20 ac loads. It is desirable to load
backplanes equally, or with the highest ac loads in the
first and second backplanes.

DC loading of all modules in all backplanes cannot exceed
20 loads (total).

Both ends of the bus must be terminated with 120 ohms.
This means that the first backplane must have an
impedance of 120 ohms (obtained via the processor 220 ohm
terminations and a separate 220 ohm terminator), and the
last backplane must have a termination of 120 ohms.

a. The cable(s) connecting the first two backplanes 1is
61 cm (2 ft) or greater in length.

b. The cable(s) connecting the second backplane to the
third backplane is 22 cm (4 ft) longer or shorter
than the cable(s) connecting the first and second
backplanes.

C. The combined length of both cables cannot exceed 4.88
m (16 ft).

d. The cables used must have a characteristic impedance
of 120 ohms.

[BACKPLANE WIRE

[25.4cm (10in) MAX '|

[]
ONE ONE

2208 UNIT UNIT 2208
LOAD LOAD

+ +

3.4V N v S 3.4V

- 20 AC LOADS MAX -

PROCESSOR CABLE/TERM

BACKPLANE WIRE ‘

] 25.4cm(10in) MAX

[]
ONE ONE

UNIT UNIT

LOAD LOAD

CABLE N — , CABLE

ADDITIONAL 20 AC LOADS MAX
CABLES

8 BACKPLANE l BACKPLANE WIRE

25.4cm (10in) MAX

{{

L
ONE ONE

UNIT UNIT 1208

LOAD LOAD

-+

CABLE o ~ B 3.4V

20 AC LOADS MAX

NOTES :

1. TWO CABLES (MAX.) 4.88m {16 ft) (MAX)

TOTAL LENGTH. TERM

2. 20 DC LOADS TOTAL (MAX)

MR-2328

Figure 4-16 Multiple Backplane Configuration

4.7.3 Power Supply Loading

Total power requirements for each backplane can be determined by

obtaining the total power requirements for each module in the

backplane. Obtain separate totals for +5 V and +12 V power.

Power requirements for each module are specified in the Memories

and Peripherals handbook.

When distributing power in multiple backplane systems, do not

attempt to distribute power via the LSI-11 bus cables. Provide

separate, appropriate power wiring from each power supply to each

backplane. Each power supply should be capable of asserting BPOK

H and BDCOK H signals according to bus protocol; this is required

if automatic power fail/restart programs are implemented, or if

specific peripherals require an orderly power-down halt sequence.

The proper use of BPOK H and BDCOK H signals 1is strongly

recommended.

>

i 30

CHAPTER 5

PROCESSOR FUNCTIONAL DESCRIPTION

5.1 INTRODUCTION

A function block diagram of the KDF11-AA is shown in Figure 5-1.
The heart of the processor is contained on three MOS/LSI chips.
They are the data chip, the control chip and the memory management
unit (MMU). The data and control chips are combined in a single
40-pin package. The MMU is packaged as one 40-pin chip.

The MOS chips communicate over two internal buses: the
microinstruction bus (MIB) and the data address lines (DAL) . The
MIB 1is used for communication and control among the three MOS

chips and to control the logic circuitry on the processor board.
The DAL are used for transferring data between the MOS chips, and
for transferring data to and from the processor and the LSI-11
bus.

This chapter discusses the functions of the logic contained on the
processor board.

5.2 DATA CHIP

The data chip contains the PDP-11 general registers, the processor
status word (PS), several working registers, the arithmetic and
logic unit (ALU), and conditional branching logic. The data chip

does the following.

1. Performs all arithmetic and logical functions

2. Handles all data and address transfers with the LSI-11

bus (except relocation, which is handled by the MMU; see
Paragraph 5.4)

3. Generates most of the signals used for interchip
communication and external system control

A typical microinstruction cycle starts when the data chip
receives a 16-bit microinstruction from the control chip on the
time-multiplexed, bidirectional MIB. During the first half of the
cycle the register file 1is precharged, and the selected

register(s) are read and sent part way through the ALU chain
(i.e., operands are latched into the propagate and generate

latches). Also during the first half of the cycle, control
information is decoded from the microinstruction and output on the
MIB for use by other chips and external logic. During the second
half of the cycle the ALU operation is completed and the result is
written into the appropriate register.

Output operations occur during the first half of the cycle when
the contents of the selected source register are bused around the
ALU logic directly to the output buffers. Input data is strobed
into the data chip during the first half of the cycle, although it
is not written into the register file until the second half.

PWR UP OPTIONS

FAST
USEC SEL, DATA

wODT - 15.08 IN

DRIVERS

HALT TRAP OPTION

FDIN ENA

K -15:00.-

_ POKL

uODT

BSIO

LOGIC

AF2

MMU

CHIP

X <15.00>

CHIP

RESET

LOGIC

«'17-00tJ~>|>

PAR

ERR

BUS

ERR

DAL

RECI IVER/

DRIVER

AU2Z

AV?2 D

BE?

BF2

BH?2

BJ2

BK2

BL2

{7

o
]

19
23
N

o
o

B2

BV?2

ACH

AD1

AK?2

;

BF1 .

BR1 Y

BD1 d

BC1 ;

AM2

B
D
A
L
 C
O
N
T
R
O
L

d

A2

MREPLY L r

1
5
:
0
0
.
~

M
i
B

B
U
S
-

D
A
L

B
U
S

<
1
7
:
0
0
~

DATA

CHIP

C
S
E
L

L

R
E
S
E
T

BUS

CONTRGOL

LOSIC

.

AH2

AE2

_AF2
AN2

AHY, AF1

=

DM

COMTROL

AN1

O

BN1

AS2 e

SVC ‘
ENA

ABORT L

<12:00.

~.15:00>

CONTROL

CHIP

- —

BUS ERR

CLK HLD/RESTART

SERVICE

LATCH

AL?2

‘”———A;TDD
AB1

AP2

T
AP D

BRI D

MI314/INITF
PONER

UP DOWN

LCGIC

EB1

-]
BA1

AT?2

o]
BHI

MOSCLKe
y

e

Figure 5-1

CL+

CONTROL

Processor Functional Block Diagram

BBS7 L

BDALOL

BDALT L

BDAL2 L

BDAL3

BDAL4A L

BDALS L

BDALGL

BDAL7 L

BDALSB L

BDALY L

BDALTO L

BDALYY L

BDAL12L

BDAL13 L

BDAL14A L

BDAL1S L

BDALIG L

BDALTZ L

BWTBTL

DAL 21

DAL 20

DAL 19

DAL 18

MMU STR H

BSYNC L

BDIN{

BDOUT L

BRPLY L

BIAKO L

SRUN L

BDMR L

BSACK L

BDMGO L

BIRQ4 L

BIRQS L

BIRQ6L

BIRQ7L

BHALT|

BEVNT|

BPOK H

BOCOK H

BINIT L

INT CLK DISABL

MAN CLK INPUT

[EITERTSIN

5.3 CONTROL CHIP

The control chip contains the microprogram sequence logic and 552

words of microprogram storage in programmable logic arrays (PLA)

and read-only memory (ROM) arrays.

During the course of a normal microinstruction cycle, the control

chip accesses the appropriate microinstruction in the PLA or ROM,

sends it along the MIB to the data and MMU chips for execution,

and then generates the address for the next microinstruction to be

accessed. The next address is constructed from either a next

address field associated with the current microinstruction or, if

a microprogrammed branch is to be executed, the target address

contained within the microinstruction itself. The control chip

operation 1is pipelined for better performance so that the next

microinstruction is being accessed while the current one is being

executed. This next address is then used in conjunction with

various internal status and external service inputs to determine

the microprogram sequence. The control chip accesses only its

local storage. However, multiple chips (up to 32) can be cascaded

with external buffering to provide additional microstore.

Chip Select (CSEL)

CSEL is an open collector line with a pull-up resistor. CSEL is

routed to all MOS chips on the board except the MMU. The active

control chip holds the line low. If a nonexistent control chip is

selected by the microcode, the line is pulled high. This causes a

control chip error and a trap to location 108.

5.4 MMU CHIP

The MMU chip serves two purposes: it provides the memory

management function, and it provides storage for the FP1ll floating

point accumulators and status registers. This chip provides dual

mode (user and kernel) address relocation of 18 bits. Sixteen-bit

virtual addresses are received from the data chip via the data
address lines (DAL), relocated to the appropriate 18-bit physical

address, and then sent on the DAL to replace the original virtual
address for transmission to the external system bus. The MMU chip

contains the status registers and active page registers (PAR/PDR

register pairs), as well as access protection and error detection

capability. The MMU chip also provides the thirty-six 16-bit
registers needed for operand storage, scratchpad areas, and status

information storage during floating point operations.

The MMU chip 1is controlled by information received on the

microinstruction bus (MIB) from both the data chip and the control
chip, and by several discrete control inputs.

The KDF1l1l-AA can operate without the MMU chip; however, the memory
would be limited to 32K words and the floating point registers

would not be available. For complete details of memory management

capabilities refer to Chapter 8.

5.5 DATA-ADDRESS LINES (DAL)

The DAL bus 1is routed between all the MOS chips, along the
processor board, and to the LSI-11 bus transceivers. The 16-bit

DAL bus is time-multiplexed. During clock-high time, the DAL bus

transfers data from the data chip to the other MOS chips or

between the processor board and the MOS chips. During clock-low

time, the DAL bus transfers service data (external and 1internal

interrupt requests) from the board to the control chip. (The

control chip receives service information and determines whether

to interrupt or fetch the next instruction.)

5.6 MICROINSTRUCTION BUS (MIB)

The 16-bit microinstruction bus is common to all data and control

chips. A subset of the MIB is routed to the MMU because it does

not need access to all MIB control signals. A different subset of

the MIB controls the processor board 1logic. These control

functions are discussed in Paragraphs 5.6.1 - 5.6.6.

The MIB is time-multiplexed and is used for different functions

during clock high and low times. During clock-high time, the MIB

transfers control information from the data chip to all control

chips, the MMU and the board logic. During clock-low time, the

MIB transfers microinstructions from the active control chip to

other control chips and the data chip.

5.6.1 MIBl15/Memory Management Enable (MME)

During clock-high time, MIB15 carries MME from the MMU chip. MME

is an active low signal. After being pulled low by the MMU chip,
MME indicates to the processor board logic that a

relocated-address microcycle should be performed. MME 1is also
asserted low by the processor board during console ODT to allow

access to greater than 32K words of memory without using the MMU

chip.

5.6.2 MIBl4/Initialize (INIT F)

During clock-high time, MIBl14 contains an active low initialize

signal (INIT F) used by the board logic to generate BINIT L. At

the end of every clock-high time, the processor monitors INIT F.

If INIT F is asserted low, the processor generates BINIT L onto

the LSI-11 bus. DINIT L holds the INIT F flip-flop in the 0 state

during power-up so that BINIT L is constantly driven onto the

LSI-11 bus until DCOK H from the power supply goes high. (Refer

to Paragraph 4.5.4 for power protocol.)

5.6.3 MIBl13/Interrupt Acknowledge (IAK)

MIB13 contains IAK during clock-high time, and is used to generate

BIAK L onto the LSI-11 bus. The highest priority device that is

requesting an interrupt uses BIAK L and BDIN L as a signal to

assert its interrupt vector on the LSI-11 bus. IAK occurs only

during an input vector microcycle.

5.6.4 MIB12, 9, 8/Address-Input-Output (AIO) Codes

These three control lines along with two other signals, BUS CYC H

and SYNC/DMA ENA H, are fed into the bus control PROM (Figure

5-2). The PROM decodes them to determine the type of microcycle

currently executing within the MOS chips. The PROM outputs

control various signals and perform the following functions.

1. CLK HOLD H stops the clock generator in the high state

for asynchronous data transfers. This signal is used to

free up the bus during DMA or when bus cycle 1is in

progress.

2. BUS ENA H enables LSI-11 bus drivers during address and

data-out bus cycles only.

3. DIN CYC H drives the BDIN L bus driver.

4. DOUT CYC H drives the BDOUT L bus driver.

5. WTBT H drives BWTBT L bus signal whenever an address

microcycle 1is followed by a data-out microcycle and

whenever a byte data transfer is in progress.

6. CLK STUT H, for clock control, is used to extend the

clock-high time of address microcycles and nonbus data-in

and data-out microcycles (refer to Paragraph 5.10.2.).

A102 CLK HOLD H

AI01 BUS ENA H

00| BYS DIN CYC H

PROM
BUS CYC H WIBT H

SYNC/DMA ENA H CLK STUT H

MR-3693

Figure 5-2. Bus Control PROM

5.6.4.1 BUS CYC H - This signal is a function of the sync signal
from the data chip (SYNCF). If a data transfer to or from the
data chip is internal to the MOS chip set, then BUS CYC H is low.
If it is an external bus transfer, then BUS CYC H is high. 1In the
case of internal data transfers, the clock is lengthened one clock
tick to allow the chip set more time to complete its internal
transfer. 1In the case of bus-type data transfers, the bus drivers
(DOUT transfers) or receivers (DIN transfers) are enabled, and the
master clock is halted in the high state, waiting for BREPLY L
from the bus.

5.6.4.2 SYNC/DMA ENA H - SYNC/DMA ENA H indicates that another
peripheral is still bus master or that the last bus cycle 1is not
yet complete. Its function is to prevent the MOS chip set from
attempting to use the LSI-11 bus when the bus is still being used.

The master clock is halted during LSI-11 bus data transfers while
transferring data to the peripheral or receiving data from the
peripheral. Once this is accomplished the master clock starts up

again and microinstructions are again executed. Concurrently, the

processor 1is terminating the previous bus cycle. Because the

processor cannot terminate the cycle until BREPLY has been

deasserted by the peripheral (there is no time 1limit on this

action taking place according to LSI-11 bus protocol), it 1is

possible for the previous bus cycle to still be active when the

chip set is ready for the next bus cycle. SYNC/DMA ENA H causes

the clock to stop in the address cycle in this case and halts the

chip set in the address microcycle until the previous bus cycle is

properly completed (BSYNC L negated).

5.6.5 MIB03/GPO 3

Control code GPO 3, driven by the data chip, is detected by the

GPO decode logic (Figure 5-3) and properly timed to produce FDIN

ENA L. This signal 1is used to gate power-up information from

jumpers on the processor board. Refer to Chapter 2 for

information on jumpers.

MiB02/GPO?2 ~} DGPO7 L

MIBO1/GPO1 5 GDGPOB L

MIBOO/GPOO 5 loDGPOS5 L

E130 H

MCLK L

9 SRUN L
110

MIBO3/GPO3 '

E130 H FDIN ENAL

E33 H

MR-3694

Figure 5-3 GPO Decode Logic

5.6.6 MIB02, 01, 00/GPO 2, 1, O

GPO 2, 1, and 0 are driven by the data chip during clock-high time

and perform control functions on the processor board. These

signals are decoded by the logic shown in Figure 5-3. The decoded

output is shown in Table 5-1.

5.7 BSYNC L LOGIC

The logic shown in Figure 5-4 controls the assertion of B SYNC L

onto the LSI-11 bus. The start of all bus cycles <DATI, DATO(B),

DATIO(B)> 1is signaled by SYNCF L going low on MIB07 of the data

chip during clock-high time. SYNCF L is clocked into both the BUS

CYC flip-flop and the SYNCF flip-flop at the end of clock-high

time. A set BUS CYC flip-flop indicates to the DMA logic that the

processor is going to use the bus, and therefore a DMA request

cannot be granted.

Table 5-1 General-Purpose Output Signals

Output

GPO2 GPO1 GPOO Name Function

1 1 1 DGP07 L Loads the two highest order address

bits into a latch while in micro-

ODT. This allows 18-bit addressing

to be accomplished without wusing

the memory management unit while in

ODT.

1 1 0 DGP06 L Clears the power-fail flip-flop

after the power-fail sequence has

been executed in microcode.

1 0 1 DGPO5 L Clears the event flip-flop after

the event interrupt has been
serviced in microcode.

0 0 1 SRUN L Generates a low-going pulse that is
routed directly to edge fingers

AFl, AH1 whenever an instruction

fetch occurs. The pulse also

occurs whenever a character is

received from the serial line unit

while in micro-ODT. This signal

can be used to cause a steady RUN
indication while the processor is

executing microinstructions and a

flashing indication when typing

characters in console-ODT.

The SYNCF flip-flop feeds the BSYNC flip-flop. This flip-flop is
strobed every microcyle, 33 ns after the start of clock-high time.
Thus, the BSYNC flip-flop will be set 33 ns into clock-high time
of the microcycle after the address microcycle. This delay is
necessary to allow sufficient address set-up time on the bus.

Once the BSYNC flip-flip is set, it drives the bus transceiver and
asserts BSYNC L onto the LSI-11 bus.

Once the BSYNC flip-flop is set, it remains set until changed by a
low level from the BSYNC RESET logic on its reset line. The SYNCF
signal from the data chip clears on the data-in or data-out
microcycle that completes the bus cycle. The BSYNC flip-flop is
cleared by BRPLY from the LSI-11 bus. SYNC REP L and RESTART END
are both functions of BRPLY L. The BSYNC RESET logic uses SYNC
REP L and RESTART END to generate a pulse on the rising edge of
BRPLY L. BUS CYC L and DOUT BLOCK L block the BSYNC flip-flop
from being cleared after the DATI portion of a DATIO cycle. These

SYNC (1) H

BSYNC L
-

—>
SYNCF

F/F

—] CLK

J Q

BSYNC

E33 L F/FSR L] L] L3 fi

r fl O CLK
_— Q KCOMREP L I

/ PS R
l ACCESS o]

F/F

I PS ACCESS I BSYNC RESET
LOGIC LOGIC |

L —— AEEEE—— SEE—— oES—— —— J

MIBO7/SYNCF L BUS RESTART END

o CYCH BUS CYC L I
MIB12/A102

BUS

CYC F/F

CLK L I -
SYNC REP L SYNC RESET L

DOUT L DOUT BLOCK L
- ||

65 CLK H
CLK CLK] CcLK —— CLK

65 CLK L l—

Figure 5-4 BUS SYNC Logic

| : RSYNC H

MR-3695

signals also prevent the BSYNC flip-flop from being cleared for at

least 175 ns after BDOUT L is cleared (as per bus specifications).

SYNC RESET L clears the BSYNC flip-flop on power-up 1if a bus

timeout occurs, and prevents it from setting when an MMU abort

occurs.

PS Access Logic

The PS (processor status word) access logic feeds the K input of

the BSYNC flip-flop and is used only when the PS is accessed. The

PS 1is contained in the data chip. When 777776 (the address of

the PS in the data chip) appears on the DAL guring an address
microcycle, the data chip decodes the address and access to the PS

is allowed. The bus cycle is terminated by deasserting the SYNCF

line without allowing a DATI or DATO AIO code.

The PS access flip-flop stores this condition until the start of

the next clock-high time. This signal is fed to the K input of

the BSYNC flip-flop and resets BSYNC at the start of the next

microcycle.

5.8 DIRECT MEMORY ACCESS (DMA)

DMA on the KDF1ll1-AA board allows peripherals to gain control of

the LSI-11 bus from the processor and transfer data directly

between a peripheral and memory. In this way, data transfers can

occur at the full memory speed rather than having the processor

transfer data words one at a time between the peripheral and

memory. A speed gain of about 12 to 1 over regqular programmed

transfers is gained by this technique.

The signals required for the DMA logic are the following.

BDMR L This is the DMA request signal. A peripheral

device asserts this line when it is ready to use

the bus for a DMA transfer. This line 1is common

to all peripheral devices.

BDMGO L This DMA grant signal is issued by the processor

in response to a DMA request. By asserting this

line, the processor indicates that it will halt

processing as soon as the current bus cycle is

completed. The processor will also disable all

bus control lines and data-address lines (BDAL)

so that the peripheral device can use them to

control the bus. The BDMR line is common to all

peripheral devices. BDMGO L is a daisy-chained

signal. Any memory or peripheral device that

does not want to use the bus simply passes the

signal on. The first (physically closest to the

processor) device on the bus desiring to use the

bus "takes the grant;" i.e., blocks the signal

from being passed on. Therefore the peripheral

closest to the processor requesting the bus at

the time the grant is issued gets to use the

bus. 1In order to prevent hogging of the bus by

peripheral devices nearest the processor, DMA

transfer time must be as short as possible.

BSACK L This DMA acknowledge signal is issued by the

peripheral device taking control of the bus.

This signal completes the handshake between the

processor and the peripheral device and

indicates to the processor that a device has

taken the bus.

No SACK Timeout In LSI-11 bus systems there 1is a possibility

that a device can request use of the bus and

then not take the DMA grant signal. The no SACK

timeout feature clears the DMA grant signal and

returns bus mastership to the processor if no

peripheral device has issued BSACK L within 18

microseconds after the processor has issued a

grant. This prevents a potential bus lockup

problem in which the processor has given up the

bus but no one has taken the grant.

5.8.1 DMA Logic

The DMA logic is shown in Figure 5-5. BDMR L signals are received

from the bus on edge pin AN 1 and synchronized with the processor

high-frequency clock through a high-speed synchronizer. This

signal is called SYDMR for "synchronized DMR." The SYDMR signal

is gated with the signal BUS CYC L to block DMA requests from

reaching the DMA ENA flip-flop when a bus cycle is in progress.

The gated signal is called GADMR for "gated DMR." The DMA ENA

flip-flop samples the GADMR line at the beginning of every

clock-high time (about every 290 ns). When a valid GADMR 1is

latched into the DMA ENA flip-flop, the DMA cycle is started.

Note that DMA request is always taken unless the processor 1is

currently in a bus cycle. This 1s necessary to provide fast

response to DMA reguests. (Refer to Paragraph 5.8.2, DMA

Latency.)

Once DMA ENA 1is latched, DMA grant is issued on the LSI-11 bus

approximately 65 ns later by the DMA ENA H being clocked into the

DMA grant flip-flop. Granting the DMA request also starts the

timer which is set for 18 microseconds. At exactly the same time

DMA grant 1is enabled, the DMA bus disable flip-flop disables the

BDAL bus drivers on the processor board. The DMA ENA (1) L signal

also blocks any further clock restarts from occurring until the

DMA cycle that 1is just starting is completed. It does this by

blocking the AND inputs to the clock restart logic.

Once DMA grant is issued, the processor board waits for a BSACK L

signal indicating that a peripheral device has taken the DMA

grant. The BSACK L line is monitored by a bus receiver; an active

BSACK L resets the no SACK timeout timer which clocks a 1 into the

DMA restart flip-flop. The DMA restart flip-flop is now armed.

bus master.

As soon as the bus is given up by the current DMA master, this
flip-flop will allow the DMA rearbitration process to restart.

This occurs when BSACK L and BSYNC L are deasserted as the bus

master gives up the bus. These signals, along with the armed DMA
restart flip-flop, satisfy the logic which feeds the rearbitration

logic and a restart/rearbitration takes place.

REARB DO_CL

BUS CYC L
GADMR | | DMA |ENA (1) H >:BD'V'GOL

DMA DMA]
MCLK O ENABLE CLK GRANT

BDMR FF (DELAYED | g

NIZING —1 K
CLK1 \oaic L]]

SYDMR ?
REARB J‘q}

DMA ENA (1) L

{ L DMA
TIMEOUTTO CLOCK]

STOP LOGIC LOGIC

BUS DISABL (1) L
‘ BSACK L

BUS

DISABLE TO BUS
CLK FF LOGIC

(DELAYED 65 NS)

DMA

RESTART

FF

BSYNC L [> ORSYNG »TOO
BSACK H O REARB

CLK | LOGIC |> C

REARB

INIT L [

MR-3696

Figure 5-5 DMA Logic

According to system protocol the processor is the lowest priority

' When a bus master gives up the bus, the processor

should immediately check for another pending request. If another

request is pending, another BDMGO is reissued and a new peripheral

takes control. In the KDF1ll-AA, rearbitration takes place each

time the bus is given up. If DMA requests are arriving at too
great a rate, it 1is possible to have the processor constantly

arbitrating among bus masters. This effect can be illustrated by
holding the BDMR L 1line low which blocks any instruction fetches

by the processor.

The rearbitration 1logic synchronizes the input signal with the

high-frequency clock. The output 1is inverted to become REARB.

Low-going REARB 1is gated with the synchronized DMA request

(SYDMR) . If there is no new DMA request, SYDMR is low and the

REARB signal clears the DMA enable flip-flop. This event allows
MCLK to be restarted (if stopped) on the next tick of the high-

frequency clock. Since the DMA enable flip-flop is cleared, the

next clock pulse does not set the DMA grant flip-flop and the

processor 1s bus master again.

If a new DMA reguest is pending, the sequence is different. REARB

is blocked from clearing the DMA enable flip-flop by a high SYDMR

signal. Sixty-five ns later the DMA grant flip-flop is set and

the DMA sequence starts again. Since the DMA enable flip-flop is

never reset, the DMA ENA (1) L signal is constantly low and MCLK

is never restarted.

5.8.2 DMA Latency

DMA latency is the time from when the DMA request arrives at the

processor until BDMGO is put on the bus. The maximum DMA latency

is important because of data loss problems. For example, once the

heads of a disk drive are over the proper sector, the disk

controller must become bus master within a certain period of time.

If it does not, information will overflow the temporary data

buffers in the disk drive interface and cause data-late errors.

Since the KDF11-AA does not grant bus mastership during ongoing
bus cycles, worst-case DMA latency occurs when the DMA request

arrives just before the start of the longest bus cycle (DATIO).

In this case the grant will be 1issued after the <cycle has

completed.

5.9 CLOCK GENERATOR CIRCUITRY

The KDF1ll chip set clock can be suspended in the high state

indefinitely, but can only remain in the clock low state for a

limited period of time to avoid loss of internal chip data. A

twisted ring oscillator, shown in Figure 5-6, 1is used with a

high-frequency crystal clock input to generate the required clock

signals that control the MOS/LSI chips. The TTL level output of

the ring oscillator (MCLK H) 1is driven through a high-voltage

clock buffer/driver to produce the high-voltage CHIP CLK that

drives the MOS chips.

5.9.1 Initialization

When the processor receives +5 Vdc and +12 Vdc, the ring

oscillator is initialized and held in this state until BDCOK H is

asserted by the power supply (or the wake-up circuit). The

initialization circuitry is shown in Figure 5-7. The output of

the second stage of the DCOK H synchronizer circuit holds START H
low. The processor board initializes with MCLK H = 1 and all

three stages of the ring oscillator also equal 1 (E65H, E130H,

E195H). When DCOK H goes high, it is first synchronized with the
high-frequency clock (65CLK H) and then releases the ring

oscillator from its initialized state. The synchronizer 1is
necessary because DCOK H is asynchronous to any circuitry on the

processor board and feeding DCOK H directly into the ring
oscillator could lead to a truncated first cycle of the processor.

Once the oscillator 1is freed, it immediately causes MCLK H to go

low and enters the clock-low state.

voe
MME HOLD

RESET H

CLKSTUTHI, CLK STOP
START H L

MCLK H c 3

CHIP

CLK

E65 H E130 H

MCLK H l E195 H
D Q D Q D Q

CLK CLK CLK

XTAL ADC ‘ ‘ l
0sC 65CLK H

MR-3697

Figure 5-6 Clock Generator

5.9.2 Wake-Up Circuit

The "wake-up" circuit on the KDF11-AA module consists of a diode,

a resistor, a capacitor, and a Schmidt trigger inverter, all shown

at the 1left in Figure 5-7. This circuit provides automatic

generation of BDCOK H 50 ms after the +5 V supply is turned on.

For the circuit to function, the +12 V must be applied before or
at the same time the +5 V is applied, and the rise time of the +5

V supply must be no greater than 50 ms.

5.9.3 Single-Step Circuit

The single-step circuit is shown in the lower portion of Figure

5-7. This circuit can be used in conjunction with an external
circuit to stop the processor (i.e., hold the clock indefinitely

high) in the bus data-in or data-out part of the cycle at a

selected address. The external circuit must monitor the BDAL

lines and compare the address issued by the processor at BSYNC L

time with a desired stop address or addresses. If a valid compare

occurs, the external circuit should pull SINGLE STEP to a logic

low level as soon as BDIN L or BDOUT L appears on the bus. The
processor will then stop in the bus data-in or data-out microcycle
and the data driven from the processor (in the case of data-out
transfers) or received from the selected address (in the case of

data-in transfers) can be observed on the BDAL lines and any other
internal points of the system can be procbed manually. The
processor can be released from this state by releasing the

single-step line and will resume executing instructions.

BDCOK H

BA1

—£:>OL—::::>0J D Q D

I 65CLK H —
|WAKE{W(HRCUH' l G l G ap)STARTH

| AE1 % |
L

I SINGLE STEP l

I 65CLK H G G l

| SINGLE STEP CIRCUIT l MR.2458

Figure 5-7 Clock Generator Initialization Circuitry

5.10 CLOCK GENERATOR CYCLES

The clock generator is capable of producing a normal cycle and
four variations of the normal cycle used for special functions.

5.10.1 Normal Cycle

The normal cycle consists of two cycles of the high-frequency

clock in the high state and two cycles in the low state. For this

type of cycle, START H is constantly high, RESET H is low, and CLK

STOP is low. Figure 5-8 shows this cycle.

5.10.2 Clock Stutter Cycle

The clock stutter cycle is generated on all address microcycles

and for all internal data transfers among the MOS chips. It 1is

the same as the normal cycle discussed above except .that the
clock-high time is extended from two cycles of the high-frequency
clock to three. This stretched or "stuttered" clock time allows

the DAL lines to settle before the address is driven out onto the
bus. The cycle also allows extra time for data transfers between
MOS chips.

65CLKH||||||||||I

MCLKH_]__—_—L____[_—

MR-2459

Figure 5-8 Normal Clock Cycle

The c¢ycle 1is generated by the CLK STUT H signal from the bus

control PROM (see Paragraph 5.6.4) being fed through a transparent

latch that is enabled during phase time. The output of the latch

inhibits the E130 H input to the feedback loop from causing MCLK H

to go low. Instead, the ring oscillator output drops when E195 H

goes high, one cycle of the high-frequency clock later. The

stutter cycle is shown in Figure 5-9.

65CLK H | | | | | | | | | | | | |

MCLK H J I |

CLK STUT H | |

E65 H | |

E130 H | |

E195 H [L

MR-2460

Figure 5-9 Clock Stutter Cycle

5.10.3 Clock Stop Cycle

The clock stop cycle is generated during bus data-in and bus

data-out transfers when the chip set must wait for a REPLY from

the LSI-11 bus before it can continue. It is also used to prevent

the chip set from continuing past the address microcycle portion
of a bus cycle when a DMA device has bus "mastership." For a

clock stop cycle the bus control PROM generates CLK STUT H and CLK

HOLD H. The CLK STUT H signal stretches the clock-high time from

two to three high-frequency clock cycles. The CLK HOLD H signal

is clocked into a flip-flop (the CLK STOP flip-flop) every cycle

after two cycles of the high-frequency clock. The output of this

flip-flop, CLK STOP, goes low and holds MCLK H in the high state

until the CLK STOP flip-flop 1is cleared. In the case of a bus

data-in or data-out cycle, the flip-flop is cleared 200 ns after

REPLY has been received from the addressed device, or, in the DMA

case, 130 ns after the DMA device has given bus mastership back to
the processor. This cycle is shown in Figure 5-10.

65CLK H | | | | | | | | | | I | | | | I | | |

MCLK H _l 1 |

E65 H |

E130 H J

E195 H B

CLK STUT H |

CLK STOP |]

{(
)} I

_{C
LR

I
~

T

J
~
-

MR-.:461

Figure 5-10 Clock Stop Cycle

5.10.4 Memory Management Cycle

This cycle occurs during address microcycles when the memory

management chip is present and is enabled to do address relocation
(enabling of the MMU is under software control). The MMU chip

signals to the processor board that it wants to do address

relocation by asserting the MIB 1line MME L at the end of

clock-high time of an address microcycle. The relocation circuit,
shown in Figure 5-11, detects the MME L signal and causes MME HOLD

to be asserted high 65 ns into clock-low time of the address
microcycle. MME HOLD holds MCLK in the clock low state for a

total of five high-frequency clock periods or 325 ns. A pulse 1is

produced 195 ns into clock-low time which passes through the OR

gate and causes DALFF CLK to latch the relocated address, driven
out of the MMU chip onto the DAL bus at this time, into the DAL

driver flip-flops. Since the BDAL bus 1is continuously enabled

during this time, the relocated address is immediately driven onto

the BDAL lines. The relocation timing circuitry automatically

clears itself after five high-frequency clock periods and releases

MME HOLD which immediately allows MCLK H to go high, ending

clock-low time.

5.10.5 Reset Cycle

The final variation of the basic cycle 1is when a CHIP RESET

occurs. CHIP RESET is generated by the circuit shown in Figure
5-12 and occurs for any one of five error conditions that warrant

immediate attention by the chip set. RESET H is enabled 65 ns

into clock-low time and causes the ring oscillator to stretch

clock-low time from two periods of the high-frequency clock to

three. This extended clock-low time allows CHIP RESET to

initialize the MOS/LSI chips.

MME HOLD

MiB15/

MMEL

MCLK L o
l

CLR CLR CLR

T 65CLKH[7 7 ‘7 Q J— T

MR-2462

Figure 5-11 Relocation Timing Circuit

A
A

CTLERRH

PAR ERR H

BUSERRH

DCLOH

ABORT H

Y
Y
V
Y
V
Y
Y

RESET H

E65 H
—="g

MR-2463

Figure 5-12 Reset Circuit

Chip Reset/RESET

RESET is routed to all MOS chips except the MMU. 1If an interrupt

requiring immediate attention occurs, the line is asserted high.
The following five interrupts require immediate attention.

1. Control error - Nonexistent control chip selected by the

microcode. A trap to location 104 occurs.

Bus error - Nonexistent memory location accessed. A trap

to location 48 occurs.

Parity error - A parity error detected on a current read

from memory. A trap to location 1148 occurs.

MMU abort - The MMU has aborted a mapped reference. A

trap to location 2508 occurs for any of the following

reasons.

o) The memory location referenced is not present in the
current user's protected address space.

o) An attempt is made to modify a write-protected
location.

o) The user is exceeding his allotted page boundary.

DC Power-Up - Upon power-up the processor forces two

sequential RESETS to the chip set to initialize all

internal chip registers. The dc power-up 1line then
clears and is not activated again while dc power is on.

(Refer to Paragraph 4.5.4 for power protocol.)

CHAPTER 6

ADDRESSING MODES

6.1 INTRODUCTION

In the KDF1ll-AA all memory reference addressing is accomplished
using the eight general-purpose registers. In specifying an

address of the data (operand address), one of the eight registers

and one of several addressing modes are selected. Each memory

reference instruction specifies the following.

1. Function to be performed (operation code)

2. General-purpose register to be used when 1locating the

source and/or destination operand

3. Addressing mode, which specifies how the selected

registers are to be used.

Many capabilities are provided by the combination of the

addressing modes and the instruction set. The KDF1ll-AA 1is

designed to handle structured data efficiently and with

flexibility. The general-purpose registers implement these

functions in the following ways.

1. Act as accumulators: they hold the data to be manipulated

2. Act as pointers: the content of the register 1is the

address of the operand rather than the operand 1itself,

allowing automatic stepping through memory locations.

3. Act as index registers: the content of the register 1is

added to the second word of the instruction to produce

the address of the operand. This capability allows easy

access to variable entries in a list.

Utilization of the registers for both data manipulation and

address calculation results in a variable 1length instruction

format. If registers alone are used to specify the data source,

only one memory word is required to hold the instruction. In

certain modes, two or three words may be utilized to hold the

basic instruction components. Special addressing mode

combinations enable temporary data storage for convenient dynamic

handling of frequently accessed data. This 1is known as stack

addressing. Programming techniques utilizing the stack are

discussed 1in Chapter 10. Register 6 1is always used as the

hardware stack pointer, or SP. Register 7 1is used by the

processor as 1its program counter (PC) . Thus, the register

arrangement to be considered in conjunction with instructions and

with addressing modes 1is: registers 0-5 are general-purpose

registers, register 6 is the hardware stack pointer, and register

7 is the program counter. The full KDF1ll-AA instruction set and

instruction formats are explained in Chapter 7.

For the purpose of clearly illustrating the use of the various

addressing modes, the following instructions and symbols are used

in this chapter.

Mnemonic Description Octal Code

CLR Clear (Zero the specified destination.) 0050DD

CLRB Clear Byte (Zero the byte in the specified 1050DD

destination.)

INC Increment (Add 1 to contents of destination.) 0052DD

INCB Increment Byte (Add 1 to the contents of the 1052DD

destination byte.)

COM Complement (Replace the contents of the 0051DD

destination by their logical 1's

complements; each 0 bit is set and each

1 bit is cleared.)

COMB Complement Byte (Replace the contents of the 1051DD

destination bytes by their logical 1's

complements; each 0 bit is set and each 1

bit is cleared.)

ADD Add (Add source operand to destination 06SSDD

operand and store the result at destination

address.)

DD = destination field (6 bits)

SS = source field (6 bits)

() = contents of

6.2 INSTRUCTION FORMATS

The instruction format for the first word of all single operand

instructions (such as clear, increment, test) is shown in Figure
6-1.

MODE @ Rn

* % * * % %

OP CODE J | T
DESTINATION ADDRESS

LEGEND

*SPECIFIES DIRECT OR INDIRECT ADDRESS

** SPECIFIES HOW REGISTER WILL BE USED

*** SPECIFIES ONE OF 8 GENERAL PURPOSE REGISTERS

MR-3643

Figure 6-1 Single Operand Instruction Format

The instruction format for the first word of the double operand

instruction is shown in Figure 6-2.

15 12 11 10 09 08 06 05 04 03 02 00

OP CODE MODE @ Rn MODE @ Rn

1 l 1 1 L L 1 1 L

* % * * %% * % * * % *

— I R J
Y hd

SOURCE ADDRESS T T
DESTINATION ADDRESS

LEGEND

* SPECIFIES DIRECT OR INDIRECT ADDRESS

**SPECIFIES HOW SELECTED REGISTERS ARE TO BE USED

*** SPECIFIESA GENERAL REGISTER

MR-3644

Figure 6-2 Double Operand Instruction Format

6.3 ADDRESSING MODES

Instruction bits <5:3> specify the binary code of the addressing

mode chosen. The four direct addressing modes are the following.

1. Register

2. Autoincrement

3. Autodecrement

4. Index

When bit 3 of the instruction is set, indirect addressing is

specified and the four basic modes become deferred modes. In a

register-deferred mode, the content of the selected register is

taken as the address of the operand. 1In the other deferred modes,

the content of the register specifies the address of the operand,

rather than the operand itself. Prefacing the register operand(s)

with an @ sign or placing the register in parentheses indicates to

the MACRO-11 assembler that deferred addressing mode is being

used.

The indirect addressing modes are as follows.

1. Register deferred

2. Autoincrement deferred

3. Autodecrement deferred

4. Index deferred

Program counter (PC or register 7) addressing modes are as

follows.

Immediate

Absolute

Relative

Relative deferredW
-

[

The KDF11l-AA addressing modes are explained and shown in examples

in the following pages. They are summarized in Paragraphs 6.3.10

- 6.3.13.

6.3.1 Register Mode MODE O Rn

Register mode provides faster instruction execution. There 1is no

need to reference memory to retrieve an operand. Any of the

general registers can be used as accumulators. The operand 1is

contained in the selected register. Assembler syntax requires

that a general register be defined as follows.

RO = 30

R1 = %1

R2 = %2

$ sign indicates register definition.

Register Mode Examples

Instruction

Symbolic Octal Code Description

INC R3 005203 Add 1 to the contents of R3.

The example is shown in Figure 6-3.

RO

R1

15 06 05 04 03 02 00 -

} SELECT
o o o 0 1 o 1 o 1+ o0olo o lo 0 1 N - R3

I J L -l 1 I 1 1 1 i i L . REGISTER R4

\ v J o\ v J R5

JA R6(SP)

OP CODE (INC{0052)) R7(PC)
DESTINATION FIELD

MR 3674

Figure 6-3 Register Mode Increment Example

Instruction

Symbolic Octal Code Description

ADD R2, R4 060204 Add the contents of R2 to the

contents of R4, replacing the

original contents of R4 with

the sum.

The example is shown in Figure 6-4.

BEFORE AFTER

rR2[oooooz2 | R2[ooooo2 |

R4 [“ooooo4a | R4 000006 1

MR-3675

Figure 6-4 Register Mode Add Example

6.3.2 Register Deferred Mode MODE 1 (Rn)

In register deferred mode, the address of the operand is stored in

a general-purpose register. The address contained 1in the
general-purpose register directs the CPU to the operand. The

operand is located outside the CPU, either in memory, or in an I/O
register.

This mode is used for sequential lists, indirect pointers in data

structures, top of stack manipulations, and jump tables.

Register Deferred Mode Example

Instruction

Symbolic Octal Code Description

CLR (R5) 005015 The contents of the 1location
specified in R5 are cleared.

The example is shown in Figure 6-5.

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1677 rRs| 001700 | 1677 rRs| 001700 |

1700 000100 1700 000000

MR-3676

Figure 6-5 Register Deferred Mode Example

6.3.3 Autoincrement Mode MODE 2 (Rn)+

In autoincrement mode, the register contains the address of the

operand, and the address is automatically incremented after the

operand 1is retrieved. The address then references the next

sequential operand. This mode allows automatic stepping through a

list or series of operands stored in consecutive locations. When

an instruction calls for mode 2, the address stored 1in the

register is autoincremented each time the instruction is executed.
It is autoincremented by 1 if byte instructions are being used, by
2 if word instructions are being used.

Autoincrement Mode Example

Instruction

Symbolic Octal Code Description

CLR (RS5)+ 005025 Contents of R5 are used as the

address of the operand. Clear

selected operand and then

increment the contents of R5 by

2.

The example is shown in Figure 6-6.

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

20000 005025 | ms| 030000 | 20000] 005025] ms| osoo02 |

30000 111116 | 30000{ 000000 |

MR-3677

Figure 6-6 Autoincrement Mode Example

6.3.4 Autoincrement Deferred Mode MODE 3 Q@ (Rn)+

In autoincrement deferred mode, the register contains a pointer to

an address. The.+ indicates that the pointer in R2 is incremented

by 2 after the address is located. Mode 2, autoincrement, is used

to access operands that are stored in consecutive locations. Mode

3, autoincrement deferred, is used to access lists of operands

stored anywhere in the system; i.e., the operands do not have to

reside in adjoining locations. Mode 2 is used to step through a

table of volumes; mode 3 is used to step through a table of

addresses.

Autoincrement Deferred Example

Instruction

Symbolic Octal Code Description

INC @ (R2)+ 005232 Contents of R2 are used as the

address of the address of the

operand. The operand is

increased by 1, and contents of

R2 are incremented by 2.

The example is shown in Figqure 6-7.

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

rR2| 010300 | rR2| o10302 |

1010 000025 1010 000026

1012 1012

010300{ 001010 10300 001010

MR-3678

Figure 6-7 Autoincrement Deferred Mode Example

6.3.5 Autodecrement Mode MODE 4 - (Rn)

In autodecrement mode, the register contains an address that is

automatically decremented; the decremented address 1is used to

locate an operand. This mode is similar to autoincrement mode,

but allows stepping through a list of words or bytes in reverse

order. The address is autodecremented by 1 for bytes, by 2 for

words.

Autodecrement Mode Example

Instruction

Symbolic Octal Code Description

INCB - (RO0O) 105240 The contents of RO are

decremented by 1, then used as

the address of the operand.

The operand byte 1is increased

by 1.

The example is shown in Figure 6-8.

BEFORE AFTER

ADDRESS SPACE REGISTERS ADDRESS SPACE REGISTER

1000| 005240 | ro| 017776 | 1000] oos240 | RO] 017774 |

17774 oooo00 | 17774 ooooo1 |

MR-3679

Figure 6-8 Autodecrement Mode Example

6.3.6 Autodecrement Deferred Mode MODE 5 @- (Rn)

In autodecrement deferred mode, the register contains a pointer.

The pointer 1is first decremented by 2, then the new pointer is
used to retrieve an address stored outside the CPU. This mode is

similar to autoincrement deferred, but allows stepping through a
table of addresses in reverse order. Each address then redirects
the CPU to an operand. Note that the operands do not have to
reside in consecutive locations.

Autodecrement Deferred Mode Example

Instruction

Symbolic Octal Code Description

COM @-(RO) 005150 The contents of RO are

decremented by 2 and then used

as the address of the address

of the operand. The operand is

l's complemented.

The example is shown in Figure 6-9.

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

10100 012345 RO[010776 j 10100 165432 Rol 010774]

10102 10102 ‘/

I2
10774 010100 10774 010100

10776 10776

MR-3680

Figure 6-9 Autodecrement Deferred Mode Example

6.3.7 Index Mode MODE 6 +X (Rn)

In index mode, a base address is added to an index word to produce

the effective address of an operand; the base address specifies

the starting location of table or 1list. The index word then

represents the address of an entry in the table or list relative

to the starting (base) address. The base address may be stored in

a register. In this case, the index word follows the current

instruction. The locations of the base address and index word may

be reversed (index word in the register, base address following

the current instruction).

Index Mode Example

Instruction

Symbolic Octal Code Description

CLR 200 (R4) 005064 The address of the operand is

000200 determined by adding 200 to

the contents of R4. The

location is then cleared.

The example is shown in Figure 6-10.

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1020 005064 rRa| 001000 | 1020 oos064 rRa| ootoo0 |

1022 | 000200 1022 000200

1024 1024

1000

1200
1200 177777 1200 000000

1202

MR-3681

Figure 6-10 Index Mode Example

6.3.8 Index Deferred Mode MODE 7 @X (Rn)

In index deferred mode, a base address is added to an index word.

The result is the address of a pointer to the address of the

source operand, rather than the address of the source operand.

This mode is similar to mode 6, except that it produces a pointer

to an address. The content of that address then redirects the CPU

to the desired operand. Mode 7 provides for the random access of

operands using a table of operand addresses.

Index Deferred Mode Example

Instruction

Symbolic Octal Code Description

Add @1000(R2), R1 067201 1000 and the contents of R2 are

001000 summed to produce the address

of the source operand, the

contents of which are added to

the contents of Rl1. The result

is stored in R1l.

The example is shown in Figure 6-11.

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1020 067201 R1[001234] 1020 067201 R1| 001236 |

1022 001000 2 | 00] 1022 001000 a2 | 200700]

1024 1024

1050 000002 1050 000002

1100 001050 1000 1100 001050

+100

1100

Figure 6-11 Index Deferred Mode Example

MR-3682

6.3.9 Use of the PC as a General Register

Register 7 is both a general-purpose register and the program
counter. When the CPU uses the PC to access a word from memory,

the PC is automatically incremented by 2 to contain the address of

the next word in the instruction being executed or the address of
the next instruction to be executed. When the program uses the PC

to access byte data, the PC is still incremented by 2.

The PC can be used with all the addressing modes. There are four

modes in which the PC can provide advantages for handling

position-independent code (see Chapter 10) and unstructured data.

These modes are termed immediate, absolute (or immediate

deferred), relative, and relative deferred. The remaining modes

operate normally when used with the PC. However, they have no

practical use in normal programming.

6.3.9.1 PC Immediate Mode MODE 2 #n

Immediate mode is equivalent to using the autoincrement mode with

the PC. It provides time improvements for accessing constant

operands by 1including the constant in the memory location

immediately following the instruction word.

PC Immediate Mode Example

Instruction

Symbolic Octal Code Description

ADD #10, RO 062700 The wvalue 10 is located in the

000010 second word of the instruction

and is added to the contents of

RO. Just before this

instruction is fetched and

executed, the PC points to the

first word of the instruction.

The processor fetches the first

word and increments the PC by

2. The source operand mode

is 27 (autoincrement the PC).

Thus, the PC is used as a

pointer to fetch the operand

(the second word of the

instruction) before being

incremented by 2 to point to

the next instruction.

The example is shown in Figure 6-12.

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1020 062700 rRo[oooo20 | 1020 062700 ro | 000030 |

1022 000010 \pc 1022 000010 PC
1024 1024 /

MR-3683

Figure 6-12 PC Immediate Mode Example

6.3.9.2 PC Absolute Mode MODE 3 Q#A

This mode is the equivalent of immediate deferred or autoincrement

deferred mode wusing the PC. The contents of the 1location

following the instruction are taken as the address of the operand.

Immediate data 1is interpreted as an absolute address (i.e., an
address that remains constant no matter where in memory the

assembled instruction is executed).

PC Absolute Mode Example

Instruction

Symbolic Octal Code Description

CLR @#1100 005037 Clears the contents of location

001100 1100.

The example is shown in Figure 6-13.

6.3.9.3 PC Relative Mode MODE 6 A

This mode is index mode 6 using the PC. The operand's address 1is
calculated by adding the word that follows the instruction (called

an "offset") to the updated contents of the PC.

BEFORE AFTER

ADDRESS SPACE ADDRESS 3PACE

20 005037 N 20 005037

22 001100 PC 22 001100 / PC

/ ”
1100 177777 1100 000000

1102 1102

MR-3684

Figure 6-13 PC Absolute Mode Example

PC+2 directs the CPU to the offset that follows the instruction.

PC+4 is summed with this offset to produce the effective address

of the operand. PC+4 also represents the address of the next

instruction in the program.

With the relative addressing mode, the address of the operand is

always determined with respect to the updated PC. Therefore, when

the instruction 1is relocated, the operand remains the same

relative distance away.

The distance between the updated PC and the operand is called an

offset. After a program is assembled, this offset appears in the

first word location that follows the instruction. This mode 1is

useful for writing position-independent code (see Chapter 10).

PC Relative Mode Example

Instruction

Symbolic Octal Code Description

INC A 005267 To increment location A,

000054 contents of memory location 1in

the second word of the

instruction are added to PC to

produce address A. Contents of

A are increased by 1.

The example is shown in Figure 6-14.

6.3.9.4 PC Relative Deferred Mode MODE 7 @A

This mode is index deferred (mode 7), using the PC. A pointer to

an operand's address 1is calculated by adding an offset (that

follows the instruction) to the updated PC.

This mode is similar to the relative mode, except that it involves

one additional level of addressing to obtain the operand. The sum

of the offset and updated PC (PC+4) serves as a pointer to an

address. When the address is retrieved, it can be used to locate

the operand.

BEFORE AFTER

ADDRESS SPACE ADDRESS SPACE

1020 005267 1020 0005267

1022 000054 \ 1022 000054
1024 PC 1024 <+— PC

1026 1026

L .\ 1024 . ,

1100 [000000 | +54 1oo[ooooor |

MR-3685

Figure 6-14 PC Relative Mode Example

PC Relative Deferred Mode Example

Instruction

Symbolic Octal Code Description

CLR @A 005077 Adds the second word of the

000020 instruction to PC to produce

the address of the address of

the operand. Clears operand.

The example is shown in Figure 6-15.

'BEFORE AFTER

ADDRESS SPACE ADDRESS SPACE

1020 [005077 ~ 1020 005077

1022] 000020 PC 1022 000020 | G

1024 1024

. 1024 .

1044 [010100 | +20 1044 010100 |
— 1044 —

Y — .
10100 | 100001 | 10100 [oooooo |

MR-3686

Figure 6-15 PC Relative Deferred Mode Example

6.3.10 Direct Addressing Modes Summary
Table 6-1 summarizes the four basic modes used with direct
addressing.

6.3.11 Indirect Addressing Modes Summary
Table 6-2 summarizes the same four basic modes used with indirect
addressing.

Table 6-1 Direct Addressing Modes

Binary

Code Mode | Name Symbolic | Function

000 0 Register Rn Register contains operand.

010 2 Autoincrement | (Rn)+ Register 1is used as a

pointer to sequential data,

then incremented.

100 4 Autodecrement | - (Rn) Register is decremented and
then used as a pointer to

sequential data.

110 6 Index X (Rn) Value X is added to (Rn) to
produce address of operand.

Neither X nor (Rn) 1is

modified.

Table 6-2 Indirect Addressing Modes

Binary

Code Mode | Name Symbolic | Function

Code

001 1 Register @Rn or Register contains the

Deferred (Rn) address of the operand.

011 3 Autoincrement | @(Rn)+ Register is first used as

Deferred a pointer to a word

containing the address of

the operand, then

incremented (always by 2,

even for byte

instructions).

101 5 Autodecrement | @-(Rn) Register is decremented

Deferred (always by 2, even for byte

instructions) and then used

as a pointer to a word

containing the address of

the operand.

111 7 Index @X (Rn) Value X (located in a word

Deferred contained in the

instruction) and (Rn) are

added and the sum 1is used

as a pointer to a word

containing the address of

the operand. Neither X

nor (Rn) is modified.

6.3.12 PC Register Addressing Modes Summary

When used with the PC, these modes are termed immediate, absolute
(or immediate deferred), relative, and relative deferred. They
are summarized in Table 6-3.

Table 6-3 PC Register Addressing Modes

Binary

Code Mode | Name Symbolic | Function

010 2 Immediate #n Operand is contained in the

instruction.

011 3 Absolute Q#A Absolute address 1is

contained in the

instruction.

110 6 Relative A Address of A, relative to

the instruction, is

contained in the

instruction.

111 7 Relative @A Address of location
Deferred containing address of A,

relative to the

instruction, is contained

in the instruction.

6.3.13 Graphic Summary of Addressing Modes
Figures 6-16 and 6-17 provide a graphic summary of general
register addressing modes and program counter addressing modes.

Mode 0 Register OPR R R contains operand.

R

FNSTRUCTIONHOPERAND

Mode 1 Register deferred OPR (R) R contains address.

R

FNSTRUCTION j-————[ADDRESS

Mode 2 Autoincrement OPR (R)+ R contains address,

then increment (R).

R

FNSTRUCTlON }-———I ADDRESSJ—— OPERAND
[

[2 FORWORD,
* {1 FORBYTE :l

Mode 3 Autoincrement OPR @(R)+ R contains address of address,

deferred then increment (R) by 2.

R

|INSTRUCTIONH ADDRESLI—-—-»{ ADDRESSH OPERAND J

> -2 -—]

Mode 4 Autodecrement OPR -(R) Decrement (R), then

R contains address.

R

"2 FOR WORD,INSTRUCTIONH ADDRESSH_1 PR B —-F OPERAND J

Mode 5 Autodecrement OPR @- (R) Decrement (R) by 2, then R

deferred contains address of address.

INSTRUCTIONH ADDRESH -2 ADDRESSH OPERAND J

Mode 6 Index OPR X(R) (R)+X is address, second
word of instruction.

R

PC IT\ASTRUCNONH ADDRESS
OPERAND J

PC+2 [R J'

Mode 7 index deferred OPR @X(R) (R)+X is address (second
word) of address.

R

PC rINSTRUCTIONH ADDRESS

PC+2 r X Jl

ADDRESS OPERAND

R is a general register, 0 to 7.

(R) is the contents of that register.

MR.-3687

Figure 6-16 General Register Addressing Modes

Mode 2 immediate OPR #n Literal operand n is con-

tained in the instruction.

PC [INSTRUCTIOM

PC+2 I n |

Mode 3 Absolute OPR @#A Address A is contain-

ed in the instruction.

PC rINSTRUCTION I

PC+2r A l—.l OPERAND]

Mode 6 Relative OPR A PC+4+X is address.

PC+4 is updated PC.

PC [INSTRUCTIONJ

PCH2 [X A

OPERAND

PC+4 UEXT INSTR]

Mode 7 Relative deferred OPR @A PC+4+X is address of ad-

dress PC+4 is updated PC.

PC hNSTRUCTION]

PC+2 [X A

ADDRESS l—.{ OPERAND I

PC+4 [NEXT INSTR]

I

Register =7

MR-3688

Figure 6-17 Program Counter Addressing Modes

17(o
)) |

CHAPTER 7

INSTRUCTION SET

7.1 INTRODUCTION

The KDF11l-AA instruction set and addressing modes produce over 400

unique instructions. The instruction set offers a wide choice of
operations, so that a single instruction will frequently
accomplish a task that would require several instructions in a
traditional computer. KDF11-AA instructions allow byte and word
addressing in both single and double operand formats. This saves
memory space and simplifies the implementation of control and

communications applications. The use of double operand
instructions makes it possible to perform several operations with
a single instruction. For example, ADD A,B adds the contents of
location A to location B and stores the result in location B.
Traditional computers would implement this instruction in the
following way.

LDA A

ADD B

STR B

The instruction set contains a full set of conditional branches,
eliminating excessive use of jump instructions. All instructions
fall into one of three categories.

1. Single Operand - One part of the word specifies the
operation, referred to as "op code," and the second part
provides information for locating the operand.

2. Double Operand - The first part of the word specifies the
operation to be performed; the remaining two parts
provide information for locating two operands.

3. Program Control - The first part of the word specifies
the operation to be performed; the second part indicates
where the action is to take place in the program.

7.1.1 Single Operand Instructions

The following is a list of single operand instructions.

General

Mnemonic Instruction

CLR(B) clear destination

COM (B) 1's complement destination

INC (B) increment destination

DEC (B) decrement destination

NEG (B) 2's complement negate destination

TST (B) test destination

Shift and Rotate

Mnemonic Instruction

ASR (B) arithmetic shift right

ASL (B) arithmetic shift left

ROR (B) rotate right

ROL (B) rotate left

SWAB swap bytes

Multiple Precision

Mnemonic Instruction

ADC (B) add carry

SBC (B) subtract carry

SXT sign extend

Processor Status

Mnemonic Instruction

MFPS move byte from processor status

MTPS move byte to processor status

Instruction Format - The instruction format for single operand

instructions, as shown in Figure 7-1, is described as follows.

1. Bits 15-6 indicate the operation code, which specifies
the operation to be performed. (Bit 15 indicates word or

byte operation.)

2. Bits 5-0 indicate the destination address, which provides

information for locating the operand.

MODE @ Rn

~—

OP CODE J T
DESTINATION ADDRESS

" LEGEND

*SPECIFIES DIRECT OR INDIRECT ADDRESS

SPECIFIES HOW REGISTER WILL BE USED

*** SPECIFIES ONE OF 8 GENERAL PURPOSE REGISTERS

MR-3643

Figure 7-1 Single Operand Instruction Format

7.1.2 Double Operand Instructions

The following is a list of double operand instructions.

General

Mnemonic Instruction

MOV (B) move source to destination

ADD add source to destination

SUB subtract source from destination
ASH shift arithmetically

ASHC arithmetic shift combined

MUL integer multiply

DIV integer divide

Logical

Mnemonic Instruction

BIT (B) bit test

BIC (B) bit clear

BIS (B) bit set

XOR exclusive OR

7.1.2.1 Double Operand Instruction Format - The format of most

double operand instructions (see Figure 7-2) is similar to that of

single operand instructions except that they have two fields for

locating operands. One field 1is called the source field, the
other is called the destination field. Each field 1is further

divided into addressing mode and selected register. Each field is

completely independent. The mode and register used by one field

may be completely different than the mode and register used by
another field.

15 12 11 10 09 08 06 05 04 03 02 00

OP CODE MODE @ Rn MODE @ Rn

1 I 1 1 1 1 1 i i

* * * * %% * * * * % *

— — \ J
Y A g

SOURCE ADDRESS T T
DESTINATION ADDRESS

LEGEND

* SPECIFIES DIRECT OR INDIRECT ADDRESS

** SPECIFIES HOW SELECTED REGISTERS ARE TO BE USED

*** SPECIFIESA GENERAL REGISTER

MR-3644

Figure 7-2 Double Operand Instruction Format

Bit 15 indicates word or byte operation except when used with op

code 6. Then it indicates an ADD or SUBtract instruction.

Bits 14-12 indicate the op code, which specifies the operation to
be done.

Bits 11-6 indicate the source address, which contains information
for locating the source operand.

Bits 5-0 indicate the destination address, which contains
information for locating the source operand.

7.1.2.2 Byte Instructions - Byte instructions are specified by
setting bit 15. Thus, in the case of the MOV instruction, bit 15
is 0; when bit 15 is set, the mnemonic is MOVB. There are no byte
operations for ADD and SUB; i.e., no ADDB or SUBB. In order to
perform the equivalent of an ADDB or SUBB, the MOVB instruction

can be used along with an ADD or SUB. The MOVB instruction, when
the destination address mode is 0, sign-extends the byte operand
through the high byte of the register. This feature can be used
by executing a MOVB to get the first byte operand and place it in
one general register, and another MOVB to get the second byte
operand and place it in a second general register. Then an ADD or

SUB is performed on both general registers.

Example: MOVB A,RO

MOVB B,R1

ADD RO,R1

The condition codes will be affected based upon the byte result.

7.1.3 Program Control Instructions

This paragraph discusses program control instructions.

7.1.3.1 Branch Instructions - The following is a list of branch

instructions and a discussion of the branch instruction format.

Branch

Mnemonic Instruction

BR branch (unconditional)

BNE branch if not equal to 0

BEQ branch if equal to 0

BPL branch if plus

BMI branch if minus

BVC branch if overflow is clear

BVS branch if overflow is set

BCC branch if carry is clear

BCS branch if carry is set

Signed Conditional Branch

Mnemonic Instruction

BGE branch if greater than or equal to 0

BLT branch if less than 0

BGT branch if greater than 0

BLE branch if less than or equal to 0

SOB subtract one and branch if not equal to 0

Unsigned Conditional Branch

Mnemonic Instruction

BHI branch if higher

BLOS branch if lower or same

BHIS branch if higher or same

BLO branch if lower

Branch Instruction Format (Figure 7-3)

The high byte (bits 8-15) of the instruction is an op code

specifying the conditions for the branch to take place.

Y Y

OP CODE 1 T
BYTE OFFSET

MR .3645

Figure 7-3 Branch Instruction Format

The low byte (bits 0-7) of the instruction is the offset value in

words that determines the new program location if the branch is

taken. The low byte is treated as an 8-bit signed integer and

since the CPU is byte-organized, the integer must be converted

from words to bytes. This 1s done during execution by sign-

extending the low byte and then shifting the 16-bit word left one

position to create the offset in bytes. Then the offset is added

to the current value of the PC to form the new program location if

the branch is taken. Since the PC is always incremented by two

bytes immediately after the instruction is fetched, the current

value of the PC, when the new program location is formed, points

to the next 1location after the branch. Hence an unconditional

branch to its own 1location is 0007778, rather than 000408, which

is a branch to the next location.

7.1.3.2 Jump and Subroutine Instructions - The following is a

list of jump and subroutine instructions, amd a discussion of

their formats. A list of related interrupt and trap instructions

is also provided along with a list of ways to exit from a main

program.

Jump and Subroutine

Mnemonic Instruction

JMP jump

JSR jump to subroutine

RTS return from subroutine

JSR Instruction Format (Figure 7-4)

Bits 9-15 are always octal 004 indicating the op code for JSR.

0 0 0 0 1 0 0 Rn MODE @ Rn

Y

OP CODE J T
LINKAGE REGISTER

DESTINATION ADDRESS

MR.3646

Figure 7-4 JSR Instruction Format

Bits 6-8 specify the link register. Any general purpose register

may be used in the link, except R6.

Bits 0-5 designate the destination address that consists of

addressing mode and general register fields. This specifies the

starting address of the subrroutine.

Register R7 (program counter) is frequently used for both the link

and the destination. For example, JSR R7, SUBR, which 1is coded

004767 may be used. R7 is the only register that can be used for

both the link and destination, the other general-purpose registers

(GPRs) cannot. Thus, if the link is R5, any register except R5

can be used in the destination field.

RTS Instruction Format (Figure 7-5)

The RTS (return from subroutine) instruction uses the 1link to

return control to the main program once the subroutine 1is

finished.

Bits 3-15 always contain octal 00020, which is the op code for

RTS.

Bits 0-2 specify any one of the general-purpose registers.

15 03 02 00

v

OP CODE J T
LINKAGE REGISTER

MR-3647

Figure 7-5 RTS Instruction Format

The register specified by bits 0-2 must be the same register as

the one used in the JSR which called the subroutine.

Interrupts and Traps

Mnemonic Instruction

EMT emulator trap

TRAP trap

BPT breakpoint trap

I0T input/output trap

RTI return from interrupt

RTT return from trace trap

Exiting from a Main Program

There are three ways of leaving a main program.

1. Software Exit - The program specifies a jump to some

subroutine.

2. Trap Exit - Internal processor hardware executes certain

instructions (e.g., EMT) which cause a jump to special
software routines.

3. Interrupt Exit - External hardware forces a jump to an

interrupt service routine.

In all of the above cases, there is a jump to another program.

Once that program has been executed, control is returned to the

proper point in the main program.

7.1.3.3 Condition Code Instructions - The following is a list of

instructions that affect the condition codes in the PS, and their
format. How the condition codes are affected is also discussed.

Mnemonic Instruction

cLc,CcLv,CcLZ,CLN,CCC clear selected condition code

SEC,SEV,SEZ,SEN,SCC set selected condition code

Instruction Format

The format of the condition code operators, shown in Figure 7-6,
is as follows.

1. Bits 15-5 - The operation code.

2. Bit 4 - The "operator" which indicates set or clear with
the values 1 and 0 respectively. If set, any selected
bit is set; if clear, any selected bit is cleared.

3. Bits 3-0 - The "select" field. Each of these bits
corresponds to one of the four condition code bits. When

one of these bits is set, then the corresponding
condition code bit is set or cleared depending on the

state of the "operator" (bit 4).

CONDITION CODE OPERATORS

15
05 04 03 02 01 00

0/1 N Z Vv o

i | 1 1 1 i i 4 1 1

- — J — ~ J

OP CODE T
OPERATOR

SELECT FIELD

MR 3648

Figure 7-6 Condition Code Operators Format

More than one condition code can be set by a particular

instruction. For example, both a carry and an overflow condition

may exist after instruction execution.

Condition Codes

There are four condition code bits.

indicates a negative condition when set to 1.

indicates a zero condition when set to 1.

indicates an overflow condition when set to 1.

indicates a carry condition when set to 1.W

N

N

N
2

These four bits are part of the processor status word (PS). The

result of any single operand or double operand instruction affects

one or more of the four conditicn code bits. A new set of

condition codes 1is usually created after execution of each
instruction. Some condition codes are not affected by the
execution of certain instructions. Branch instructions may test
the condition codes after execution of single or double operand

instruction. The condition codes are used by the various
instructions to check software conditions.

N Bit

The CPU looks only at the sign bit of the result. 1If the sign bit

is set, indicating a negative value, the CPU sets the N bit. If

the sign bit is clear, indicating a positive value, then the CPU

clears the N bit. When an overflow occurs (V bit is set), the N

bit does not indicate the true sign of the result since the N bit

is equal to bit 15 of the result.

Z Bit

Whenever the CPU sees that the result of an instruction is 0, it

sets the Z bit. If the result is not 0, it clears the 2 bit.

There are a number of ways of obtaining a 0 result.

1. Adding two numbers equal in magnitude but different 1in

sign

2. Comparing two numbers of equal value

3. Using the CLR instruction.

V Bit

The V bit is set to indicate that an overflow condition exists.
An overflow means that the result of an instruction is too large

to be represented in 2's complement format. There are two methods

the hardware used to check for an overflow condition.

One way is for the CPU to test for a change of sign.

1. When using single operand instructions, such as INC, DEC,

or NEG, a change of sign indicates an overflow condition.

2. When using double operand instructions, such as ADD, SUB,

or CMP, in which both the source and destination have

like signs, a change of sign in the result indicates an

overflow condition.

Another method used by the CPU is to test the N bit and C bit when

dealing with shift and rotate instructions.

1. If only the N bit is set, an overflow exits.

2. If only the C bit is set, an overflow exists.

3. If both the N and C bits are set, there is no overflow

condition.

C Bit

The CPU sets the C bit automatically when the result of an

instruction has caused a carry-out of the most significant bit of

the result. When the instruction results in a carry-out of the

most significant bit of the result, the carry itself is usually

moved into the C bit. Othewise, the C bit is cleared. Dur ing

rotate instructions (ROL and ROR), the C bit forms a buffer
between the most significant bit and the least significant bit of
the word. A carry of 1 sets the C bit while a carry of 0 clears
the C bit. However, there are exceptions.

1. SUB and CMP set the C bit when there is no carry to
indicate that a borrow occurred.

2. Logical operations (e.g., BIT) do not affect the C bit
since they are not arithmetic in nature.

3. COM always sets the C bit, TST always clears the C bit.

7.1.3.4 Miscellaneous Instructions - The following is a list of
miscellaneous program control instructions.

Mnemonic Instruction

HALT halt

WAIT wait for interrupt

RESET reset I/0

MTPD move to previous data space

MTPI move to previous instruction space
MFPD move from previous data space

MFPI move from previous instruction space
MTPS move byte to processor status word
MFPS move byte from processor status word

7.1.4 Examples

The following examples and explanations illustrate the use of the
various types of instructions in a program.

7.1.4.1 Single Operand Instruction Example - This routine uses a
tally to control a loop, which clears out a specific block of
memory. The routine has been set up to clear 308 byte locations
beginning at memory address 600.

(RO) = 600

(R1) = 30

LOOP: CLRB (RO) +

DEC R1

BNE LOOP

HALT

Program Description

The CLRB (RO)+ instruction clears the contents of the location
specified by RO.

RO is the pointer.

Because the autoincrement addressing mode is used, the pointer
automatically moves to the next memory location after execution of
the CLRB instruction.

~
l | 10

Register Rl indicates the number of locations to be cleared and

is, therefore, a counter. Counting is performed by the DIGITAL Rl

instruction. Each time a location is cleared, it 1is counted by

decrementing R1.

The Branch If Not Zero, BNE, instruction checks for done. If the

counter 1s not 0, the program branches back to start to clear

another location. If the counter is 0, indicating done, then the

program executes the next instruction, HALT.

7.1.4.2 Double Operand Instruction Example - This routine prints

out a portion of a payroll program for review by the supervisor.

It is known that 76 locations are to be printed and the locations

start at address 600.

INIT: MOV #600,RO

MOV #76,R1

START: TSTB 1I/0

BPL START

MOVB (RO)+,I/0+2

DEC Rl

BNE START

HALT

Program Description

MOV 1is the instruction normally used to set up the initial

conditions. Here, the first MOV places the starting address (600)

into RO, which will be used as a pointer. The second MOV sets up

Rl as a counter by loading the desired number of locations (76) to

be printed.

The TSTB instruction tests the Done or Ready flag (bit 7) of the

printer. The BPL instruction causes a loop to start if the state

of the printer-ready flag is cleared.

The MOVB instruction moves a byte of data to the printer (I/0) for
printing. The data comes from the location specified by RO. The

pointer RO is then incremented to point to the next sequential

location.

The counter (R1l) is then decremented to indicate one byte has been

transferred.

The program then checks the 1loop for done with the BNE

instruction. If the counter has not reached 0, this indicates

that more transfers must take place. The BNE causes a branch back

to START and the program continues.

When the counter (R1l) reaches 0, indicating all data has been

transferred, the branch does not occur and the program executes

the next instruction, HALT.

7.1.4.3 Branch Instruction Example

NOTE

Branch instruction offsets are limited

from +1778 to —2008 words.

A payroll program has set up a series of words to identify each
employee by his badge number. The high byte of the word contains

the employee's badge number; the low byte contains an octal number

ranging from 0 to 13 which represents his salary. These numbers

represent steps within three wage classes to identify which

employees get paid weekly, monthly, or quarterly. It is time to

make out weekly paychecks. Unfortunately, employee information

has been stored ina random order. The problem is to extract the

names of only those employees who receive a weekly paycheck.

Employee payroll numbers are assigned as follows: 0 to 3 - wage

class I (weekly), 4 to 7 - wage class II (monthly), 10 to 13 -

wage class III (quarterly).

600 1is the starting address of memory block containing the

employee payroll information. 1264 is the final address of this

data area. The following program searches through the data area

and finds all numbers representing wage class I, and, each time an

appropriate number is found, stores the employee's badge number

(just the high byte) on a "last-in/first-out" stack which begins

at location 4000.

INIT: MOV #600, RO

MOV #400, R1

START : CMPB(RO) +,#3

BHI CONT

STACK: MOVB (RO) ,-(R1)

CONT: INC RO

CMP # 1264, RO

BHIS START

HALT

Program Description

RO becomes the address pointer, Rl the stack pointer.

Compare the contents of the first low byte with the number 3 and

go to the first high byte. If the number is more than 3, branch

to continue. If no branch occurs, it indicates that the number is
3 or less. Therefore, move the high byte containing the

employee's number onto the stack as indicated by stack pointer RIl.

RO is advanced to the next low byte.

If the last address has not been examined (1264), this instruction
produces a result equal to or greater than zero. If the result is

equal to or greater than zero, examine the next memory location.

~
J | 12

7.2 INSTRUCTION SET

The KDF11l-AA instruction set is described in this paragraph. For
ease of reference, the instructions are presented alphabetically.

A number of special symbols are used to describe certain features

of individual instructions. The commonly used symbols are
explained in Table 7-1.

Table 7-1 Instruction Symbols

Symbol Meaning

SO Single operand instruction

DO Double operand instruction

PC Program control instruction

MS Miscellaneous instruction

CC Condition code

() Indicates the contents of. For example, (R5) means

"the contents of R5."

src Source address

dst Destination address

<- Becomes, or moves 1into. For example, (dst) <- (src)

means that the source becomes the destination or that

the source moves into the destination location.

(SP) + Popped or removed from the hardware stack

- (SP) Pushed or added to the hardware stack

Logical AND

v Logical inclusive OR (either one or both)

v Logical exclusive OR (either one, but not both)

~ Logical NOT

Reg or R Register

B Byte

NOTE

Condition code bits are considered to be

cleared unless they are specifically

listed as set.

ADC/ADCB

Add Carry 0055DD

1055DD

Type:

Operation:

Condition Codes:

Description:

SO

(dst) <-- (dst) + C

N: set if result < O

Z: set 1f result = 0

V: set if (dst) 1is 077777 and C 1

C: set if (dst) is 177777 and C 1

Adds the contents of the C bit 1into the

destination. This permits the carry from the

addition of the 1low-order words/bytes to be

carried into the high-order result, such as in

performing double precision arithmetic.

ADD

Add 06SSDD

15 12 M 06 05 00

0 1 1 0 S S S S S S D D D D D D

1 L] 1 1 | 1 | | . i 1

Type: DO

Operation: (dst) <-- (src) + (dst)

Condition Codes:

Description:

N: set if result < 0

Z: set if result = 0

V: set if there 1is arithmetic overflow as a

result of the operation; that 1is, both

operands were of the same sign and the

result is of the opposite sign

C: set if there 1is a <carry from the most

significant bit of the result

Adds the source operand to the destination

operand and stores the result at the

destination address. The original contents of

the destination are lost. The contents of the

source are not affected. 2's complement

addition is performed.

ASH

Arithmetic Shift 072RSS

09 08 06 05 00

Type:

Operation:

Condition Codes:

Description:

N D700

DO

R <-- R shifted arithmetically NN places to the

right or left where NN = (src)

set i1f result < O

set if result = 0

set if sign of register changed during shift

loaded from last bit shifted out of registerN
<
T
M
N
Z

The contents of the register are shifted right

or left the number of times specified by the

source operand. The shift count 1is taken as

the low-order 6 bits of the source operand.

This number ranges from -32 to +31. Negative

is a right shift and positive is a left shift.

ASHC

Arithmetic Shift Combined 073RSS

Type:

Operation:

Condition Codes:

Description:

DO

R, Rvl <-- R, Rvl

The double word is shifted NN places to the

right or left, where NN = (src).

N: set if result < 0

Zz: set if result = 0

V: set if sign bit changes during the shift

C: loaded with high-order bit when left; loaded

with low-order bit when right shift (loaded

with the last bit shifted out of the 32-bit

operand)

The contents of the register and the register

OR-ed with 1 are treated as one 32-bit word.

Rvl (bits 0-15) and R (bits 16-31) are shifted

right or left the number of times specified by

the shift count. The shift count is taken as

the low-order six bits of the source operand.

This number ranges from -32 to +31. Negative

is a right shift and positive is a left shift.

When the register chosen is an odd number, the

register and the register OR-ed with 1 are the

same. In this case, the right shift becomes a

rotate. The 16-bit word is rotated right the

number of bits specified by the shift count.

ASL/ASLB

Arithmetic Shift Left 0063DD

1063DD

Type:

Operation:

Condition Codes:

Description:

SO

(dst) <-- (dst) shifted one place to the left

N: set if high-order bit of the result < 0

Z: set 1f the result = 0

V: loaded with the exclusive OR of the N bit

and C bit (as set by the completion of the

shift operation)

C: loaded with the high-order bit of the

destination

Shifts all bits of the destination 1left one

place. The low-order bit is loaded with a 0.

The C bit of the status word is loaded from the

high-order bit of the destination. ASL

performs a signed multiplication of the

destination by 2 with overflow indication.

Arithmetic Shift Right

ASR/ASRB

0062DD

1062DD

06 05 00

1 0 0] 1 0 D D D D b D

Type:

Operation:

Condition Codes:

Description:

SO

MR.2723

(dst) <-- (dst) shifted one place to the right

N:

Z:

V:

C:

set 1f the high-order bit of the result 1is

set (result < 0)

set if the result = 0

loaded from the exclusive OR of the N bit

and C bit (as set by the completion of the

shift operation)

loaded from low-order bit of the destination

Shifts all bits of the destination right one

place. The high-order bit is replicated. The

C bit is loaded from the low-order bit of the

destination. ASR performs signed division by

2.

BCC

Branch if carry clear 103000

08 07 N0

0 1 1 0 CFFSET

A " Il i i | i 1 i 1 L

Type:

Operation:

Condition Codes:

Description:

MR 2724

il

oPC <-- PC + (2 X offset) if C

N: unaffected

Z: unaffected

V: unaffected

C: unaffected

Tests the state of the C bit and causes a

branch if C is clear.

BCS

Branch if carry set 103400

08 07 00

0 0 1 1 1 OFFSET

| 1 I l L i i | i I i

Type:

Operation:

Condition Codes:

Description:

MR.2725

PC

PC <-- PC + (2 X offset) if C =1

N: unaffected

Z: unaffected

V: unaffected

C: unaffected

Tests the state of the C bit and causes a
branch if C is set. Used to test for a carry
in the result of a previous operation.

BEQ

Branch if equal
001400

08 07 00

0 0 0 0 0 0 1 1 OFFSET

L | 1 | | b | |] i 1 I\)|

Type: PC

Operation: PC <-- PC + (2 X offset) if Z =1

Condition Codes: N: unaffected
Z: unaffected

V: unaffected

C: unaffected

Description: Tests the state of the 2 bit and causes a

branch if Z is set. As an example, it is used

to test equality following a CMP operation, to

test that no bits set in the destination were

also set in the source following a BIT

operation, and, generally, to test that the

result of the previous operation was 0.

BGE

Branch if greater than or equal 002000

08 07 00

0 0] 1 0 0 OFFSET

1 L L | A L | i i 1 L

Type:

Operation:

Condition Codes:

Description:

MR.2727

PC

PC <-- PC + (2 X offset) if NwV = 0

N: unaffected

Z: unaffected

V: unaffected

C: unaffected

Causes a branch if N and V are either both

clear or both set. BGE 1is the complementary

operation to BLT. Thus, BGE always causes a

branch when it follows an operation that caused

addition of two positive numbers. BGE also

causes a branch on a 0 result.

BGT

Branch if greater than 003000

08 07 00

0 1 1 0 OFFSET

L] J I | 1 1 L L 1 L

Type:

Operation:

Condition Codes:

Description:

MR.2728

U O
d @ <=— PC + (2 X offset) if Z2v (N ¥ V) =0

unaffected

unaffected

unaffected

unaffectedN
<

N
2

Causes a branch if the exclusive OR of the N

and V bits is 1. Thus, BGT always branches

following an operation that added two negative

numbers, even 1if overflow occurred. In

particular, BGT always causes a branch if it

follows a CMP instruction operating on a

negative source and a positive destination

(even if overflow occurred). Further, BGT

never causes a branch when it follows a CMP

instruction operating on a positive source and

negative destination. BGT does not cause a

branch if the result of the previous operation

was 0 (without overflow).

Branch if higher

BHI

101000

08 07 00

OFFSET

1 | I I 1 1] i 1 1 l

Type:

Operation:

Condition Codes:

Description:

MR.-2729

PC

PC <-=- PC + (2 X offset) if C = 0 and 2 = 0

N: unaffected

Z: unaffected

V: unaffected

C: unaffected

Causes a branch if the previous

causes neither a carry nor a 0 result. This

will happen in comparison (CMP) operations as

long as the source has a higher unsigned value

than the destination.

operation

BHIS

Branch if higher than the same 103000

15 08 07 00

1 0 0 0 0 1 1 0 OFFSET

i [1 I L L 1 Il | i 1 1 L

Type: PC

Operation:

Condition Codes:

Description:

PC <-- PC + (2 X offset) if C = 0

unaffected

unaffected

unaffected

: unaffectedO
<
<
N
Z

Tests the state of the C bit and causes a

branch if C 1is cleared.

Bit Clear

BIC/BICB

04SSDD

14SSDD

15 12 1M 06 05 00

0N 1 0 0 S S S S S S D D D D D D

1 1 L 4 ! | 1 L | . L | 1

Type: DO

Operation: (dst) <=- = (src) ~ (dst)

Condition Codes:

Description:

N: set if high-order bit of result set

Z: set if result = 0

V: cleared

C: not cleared

Clears each bit 1in the destination that

corresponds to a set bit in the source. The

original contents of the destination are 1lost.

The contents of the source are unaffected.

BIS/BISB

Bit Set 05SSDD
15SSDD

15 12 1 06 05 00

0/1 1 0 1 S S S S S S D D D D D D

1 I} b | |)i 1 I i L b

Type: DO

Operation: (dst) <-- (src) v(dst)

Condition Codes:

Description:

N: set if high order bit of result set

Z: set if result = 0

V: cleared

C: not affected

Performs 1inclusive OR operation between the

source and destination operands and leaves the

result at the destination address; 1i.e.,

corresponding bits set in the source are set in

the destination. The original contents of the

destination are lost.

Bit Test

BIT/BITB

03SSDD

13SSDD

12 11 06 05 00

Type:

Operation:

Condition Codes:

Description:

MR 2733

DO

(dst) ~ (src)

N: set if high-order bit of result set

Z: set if result = 0

V: cleared

C: not affected

Performs 1logical AND comparison of the source

and destination operands and modifies condition

codes accordingly. Neither the source nor

destination operands and modifies condition

codes accordingly. Neither the source nor

destination operands are affected. The BIT

instruction may be used to test whether any of

the corresponding bits that are set 1in the

destination are clear in the source.

BLE

Branch if less than or equal to 003400

08 07 00

0 0 1 1 1 OFFSET

{ " L A 1 L) L 1 i i

Type:

Operation:

Condition Codes:

Description:

MR.2734

d
J

@
)

o
)

@
) <-- PC + (2 X offset) 1if Zv(NwV) =1

unaffected

unaffected

unaffected

unaffected<
N
z

Causes a branch if the exclusive OR of the N

and V bits 1is 1. Thus, BLE always branches
following an operation that added two negative

numbers, even 1f overflow occurred. In

particular, BLE always causes a branch 1f it

follows a CMP instruction operating on a

negative source and a positive destination

(even 1if overflow occurred). Further, BLE

never causes a branch when 1t follows a CMP

instruction operating on a positive source and

negative destination. BLE does not cause a

branch if the result of the previous operation

was 0 (without overflow).

Branch if lower

BLO

103400

08 07 00

0 0 1 1 1 OFFSET

| 1 L L . L 1 i i 1 L

Type:

Operation:

Condition Codes:

Description:

MR.2735

PC <-- PC + (2 X offset) if C =1

N: unaffected

Z: unaffected

V: unaffected

C: unaffected

Tests the state of the C bit and causes a

branch 1f C is set. Used to test for a carry

in the result of a previous operation.

BLOS

Branch if lower or same 101400

08 07 00

0 0] 0 1 1 OFFSET

1 L 1 | i i 1 1 1 i |

Type:

Operation:

Condition Codes:

Description:

MR.2736

g @
)

d @
) {== PC + (2 X offset) if CvZ =1

unaffected

unaffected

unaffected

unaffectedA
<

N
2

Causes a branch if the previous operation

caused either a carry or a 0 result. BLOS 1is

the complementary operation to BHI. The branch

occurs in comparison operations as long as the

source 1is equal to or has a 1lower unsigned

value than the destination.

Branch if less than

BLT

002400

08 07 00

0 0 1 0 1 OFFSET

| 1 I\ i L 1 1 1 I i 1

Type:

Operation:

Condition Codes:

Description:

MR.2737

PC

PC <-- PC + (2 X offset) if N¥V = 1

N: unaffected

Z: unaffected

V: unaffected

C: unaffected

Causes a branch if the exclusive OR of the N

and V bits is 1. Thus, BLT always branches
following an operation that added two negative
numbers, even if overflow occurred. In
particular, BLT always causes a branch if it
follows a CMP instruction operating on a
negative source and a positive destination
(even 1f overflow occurred). Further, BLT
never causes a branch when it follows a CMP

instruction operating on a positive source and
negative destination. BLT does not cause a
branch if the result of the previous operation
was 0 (without overflow).

BMI

Branch if minus 100400

08 07 00

0 0 0 0 1 OFFSET

Type:

Operation:

Condition Codes:

Description:

MR-2738

PC <-- PC + (2 X offset) if N =1

N: unaffected

Z: unaffected

V: unaffected

C: unaffected

Tests the state of the N bit and causes a

branch if N 1is set. Used to test the sign

(most significant bit) of the result of the

previous operation.

Branch if not equal

BNE

001000

08 07 00

0 0 1 0 OFFSET

I i ! l j]] 1] I 1

Type:

Operation:

Condition Codes:

Description:

MR.-2739

PC

PC <-- PC + (2 X offset) if 2 = 0

N: unaffected

Z: unaffected

V: unaffected

C: unaffected

Tests the state of the Z bit and causes a

branch 1f the Z bit is clear. BNE 1is the

complementary operation to BEQ. It is used to

test inequality following a CMP, to test that

some bits set in the destination were also in

the source, following a bit, and, generally, to

test that the result of the previous operation

was not 0.

BPL

Branch if plus 100000

08 07 00

0 0 0 0 0 CFFSET

Type:

Operation:

Condition Codes:

Description:

MR 2740

PC <-- PC + (2 X offset) if N = 0

N: unaffected

Z: unaffected

V: unaffected

C: unaffected

Tests the state of the N bit and causes a

branch if N is clear. BPL is the complementary

operation of BMI.

Breakpoint Trap

BPT

000003

00

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

| | | 1 1 1 i | 4 1 1 1 L

Type: PC

Operation: - (SP) <-- PS

- (SP) <-- PC

PC <-- (14)

PS <-- (16)

Condition Codes: N: loaded from trap vector

Z: loaded from trap vector

V: loaded from trap vector

C: loaded from trap vector

Description: Performs a trap sequence with a trap vector

address of 14.

The user

000003

aids.

byte.

Used to call debugging aids.

37

is cautioned against employing code

in programs run under these debugging

No information is transmitted in the low

BR

Branch 000400

0 0 0 0 1 OFFSET

Type:

Operation:

Condition Codes:

Description:

MR.2742

PC <-- PC + (2 X offset)

N: unaffected

Z: unaffected

V: unaffected

C: unaffected

Provides a way of transferring program control

within a range of -128 to +127 words with a

l-word instruction. An unconditonal branch.

BVC

Branch if V bit clear 102000

08 07 00

0 0 1 0 0 OFFSET

Il L L] L 1 1 i L | 1

Type:

Operation:

Condition Codes:

Description:

MR.2743

PC <-- PC + (2 X offset) if V = 0

N: unaffected

Z: unaffected

unaffected

: unaffected<

Tests the state of the V bit and causes a

branch 1if the V bit 1is clear. BVC 1s the

complementary operation to BVS.

BVS

Branch if V bit set 102400

08 07 00

0 1 0 1 OFFSET

1 A ! |) L 1 1 L L l

Type:

Operation:

Condition Codes:

Description:

MR 2744

PC <-- PC + (2 X offset) if V =1

N: unaffected

Z: unaffected

V: unaffected

C: unaffected

Tests the state of V bit (overflow) and causes

a branch if the V bit is set. BVS 1s used to

detect arithmetic overflow in the previous

operation.

CCC

Clear all condition code bits 000257

00

Type:

Description:

MR.-2745

CC

Sets and clears condition code bits.

Selectable combinations of these bits may be

cleared or set together. Condition code bits

corresponding to bits in the condition code
operator (bits 0-3) are modified according to

the sense of bit 4, the set/clear bit of the
operator; i.e., the program sets the bit

specified by bit 0, 1, 2, or 3, if b1t 4 is a
1. Clears corresponding bits if bit = 0.

CLC

Clear C 000241

00

Type:

Description:

MR 2746

CC

Sets and clears condition code bits.

Selectable combinations of these bits may be

cleared or set together. Condition code bits

corresponding to bits in the condition code

operator (bits 0-3) are modified according to

the sense of bit 4, the set/clear bit of the
operator; 1i.e., the program sets the bit

specified by bit 0, 1, 2, 3, if bit 4 is a 1.

Clears corresponding bits if bit 4 = 0.

42~
J |

Clear N

CLN

000250

00

0 0 0 0 1 0 1 0 1 0] 0 0

Type:

Description:

MR-2747

CC

Sets and clears condition code bits.

Selectable combinations of these bits may be

cleared or set together. Condition code bits
corresponding to bits in the condition code
operator (bits 0-3) are modified according to

the sense of bit 4, the set/clear bit of the
operator; i.e., the program sets the bit
specified by bit 0, 1, 2, or 3, if bit 4 is a

1. Clears corresponding bits if bit 4 = 0.

CLR/CLRB

Clear 0050DD
1050DD

15 06 05 00

0/1 0 0 0 1 0 1 0 0 0 D D D D D D

| I} |] 1 | i | | | | e I\ i

Type: SO

Operation: (dst) <-- 0

Condition Codes: N: cleared
Z: set

V: cleared

C: cleared

Description: Contents of specified destination are replaced

with Os.

NOTE

As a performance optimization, the last

bus cycle of a CLR (or CLRB) is a DATO

(or DATOB). Previous LSI-11 processors

performed a DATIO cycle for the last bus

cycle as a "don't care" for hardware

minimization.

Clear V

CLV

000242

00

Type:

Description:

MR-2749

CC

Sets and clears condition code bits. Selectable

combinations of these bits may be cleared or

set together. Condition code bits

corresponding to bits in the condition code

operator (bits 0-3) are modified according to

the sense of bit 4, the set/clear bit of the

operator; 1i.e., the program sets the bit

specified by bit 0, 1, 2, or 3, if bit 4 is a

1. Clears corresponding bit 4 = 0.

CLZ

Clear Z 000244

Type:

Description:

CC

Sets and clears condition code bits.

Selectable combinations of these bits may be

cleared or set together. Condition code bits

corresponding to bits in the condition code

operator (bits 0-3) are modified according to

the sense of bit 4, the set/clear bit of the

operator; 1i.e., the program sets the bit

specified by bit 0, 1, 2, or 3, if bit 4 is a

1. Clears corresponding bits if bit 4 = 0.

CMP/CMPB

Compare 02SSDD

12SSDD

15 12 1M 06 05 00

0/1 0 1 0 S S S S S S D D D D D D

. | 1] | i i | | Il i 1

Type: DO

Operation: (src) - (dst) [in detail (src) + (dst) + 1]

Condition Codes:

Description:

N: set if result < 0

Z: set if result = 0

V: set if there is arithmetic overflow; i.e.,

operands of opposite signs and the sign of

the destination are the same as the sign of

the result

C: cleared if there is a carry from the most

significant bit of the result

Compares the source and destination operands

and sets the condition codes, which may then be

used for arithmetic and 1logical conditional

branches. Both operands are unaffected. The

only action is to set the condition codes. The

compare is customarily followed by a

conditional branch instruction.

COM/COMB

Complement 0051DD

1051DD

15 06 05 00

0/1 0 1 0 1 0 0 1 D D D D D D

| | | 1 1 1 [A I L i 1)\

Type: SO

Operation: (dst) <-- 7 (dst)

Condition Codes: N: set if most significant bit of result = 0
Z: set if result = 0

V: cleared

C: set

Description: Replaces the contents of the destination

address by their logical complements (each bit

equal to 0 set and each bit equal to 1

cleared).

DEC/DECB

Decrement 0053DD

1053DD

15 06 05 00

0N 0 0 0 1 1 0 1 1 D D D D D D

i | | 1 i 1 1 L " | 1 i’ L

Type: SO

Operation: (dst) <-- (dst) -1

Condition Codes: N: set if result < 0

Z: set if result = 0

V: set if (dst) was 100000

C: not affected

Description: Subtract 1 from the contents of the

destination.

DIV

Divide 071RSS

15 09 08 06 05 00

0 1 1 1 0 0 1 R R R S S S S S S

L i L . L i i 1 1 1 1 L

Type: DO

Operation: R, Rvl <-- R, Rvl/(src)

Condition Codes: N: set if quotient < O

Z: set if quotient = 0

V: set if source = 0 or if the absolute value

of the register is larger than the absolute

value of instruction 1is the source. (In

Description:

this case the instruction is aborted because

the quotient would exceed 15 bits.)

C: set if divide by 0 attempted

The 32-bit 2's complement integer in R and Rvl

is divided by the source operand. The quotient

is left in R; the remainder is of the same sign

as the dividend. R must be even.

EMT

Emulator Trap 104000

15 08 07 00

1 0 0 0 1 0 0 0

L I\ 1 I L 1 i 1 1 L

Type: PC

Operation: - (SP) <-- PS

-(SP) <-- PC

PC <-- (30)

PS <-- (32)

Condition Codes: N: loaded from trap vector

Z: loaded from trap vector

V: loaded from trap vector

C: loaded from trap vector

Description: All operation codes from 104000 to 104377 are

EMT instructions and may be used to transmit

information to the emulating routine (e.g.,

function to be performed). The trap vector for

EMT is at address 30. The new PC is taken from

the word at address 30; the new processor

status (PS) 1s taken from the word at address

32.

CAUTION

EMT is used frequently by DIGITAL system

software and is therefore not

recommended for general use.

HALT

000000

Type:

Condition Codes:

Description:

MS

N: unaffected

Z: unaffected

V: unaffected

C: unaffected

Causes program execution to cease and enters

console ODT (if memory management is present,

program execution ceases only 1if 1in kernel

mode; a trap to location 10 occurs 1if 1in user

mode). Additionally if jumper W7 on the KDF1ll

module 1is inserted, a trap to 10 will occur

unconditionally.

INC/INCB

Increment 0052DD

1052DD

15 06 05 00

0/1 0 0 0 1 1 0 1 0 D D D D D D

1 1 1 1 L iy L 1 1 1 Il i 1

Type: SO

Operation: (dst) <-=- (dst) + 1

Condition Codes: N: set if result < O

Z: set if result = 0

V: set 1f dst was 077777

C: not affected

Description: Adds 1 to the contents of the destination.

IOT

I/0 Trap 000004

00

0 0 0 0 0 0 0 0] 0 1 0 0

Type:

Operation:

Condition Codes:

Description:

MR 2758

PC

-(SP) <-- PS

- (SP) <-- PC

PC <-- (20)

PS <-- (22)

N: loaded from trap vector

Z: loaded from trap vector

V: loaded from trap vector

C: loaded from trap vector

Performs a trap sequence with a trap vector

address of 20. Used to call the I/0 executive

routine IOX in the paper tape software system

and for error reporting in the disk operating

system. No information is transmitted in the

low byte.

JMP

Jump 0001DD

15 06 05 00

0 0 0 0 0 0 0 0 0 1 D D D D D D

d 1 L L L | ! 1 1 | | | 1

Type: PC

Operation: PC <-- (dst)

Condition Codes:

Description:

N: unaffected

7Z: unaffected

V: unaffected

C: unaffected

JMP provides more flexible program branching

then provided with the branch instruction. It

is not limited to +177, and -200, words as are

branch instructions. JMP does generate a

second word, which makes it slower than branch

instructions. Control may be transferred to

any location in memory (no range limitation)

and can be accomplished with the full

flexibility of the addressing modes with the

exception of register mode 0. Execution of a

jump with mode 0 will cause an 1illegal

instruction condition and a trap to location 4.

(Program control cannot be transferred to a

register.) Register-deferred mode is legal and

will cause program control to be transferred to

the address held in the specified register.

NOTE

Instructions are word data and therefore

must be fetched from an even-numbered

address.

JSR

Jump to Subroutine 004RDD

Type:

Operation:

Condition Codes:

Description:

PC

(tmp) <-- (dst) (tmp is an internal processor

register) -(SP) <-- reg

(push reg contents onto processor stack)

reg <-- PC (PC holds 1location following JSR;

this address now put in regq)

PC <-- (tmp) (PC now points to subroutine

address)

N: unaffected

Z: unaffected

V: unaffected

C: unaffected

In execution of the JSR, the o0ld contents of

the specified register (the 1linkage pointer)

are automatically pushed onto the processor

stack and new linkage information placed in the

register. Thus, subroutines nested within

subroutines to any depth may all be called with

the same linkage register. There 1is no need

either to plan the maximum depth at which any

particular subroutine will be called or to

include 1instructions in each routine to save

and restore the 1linkage ©pointer. Fur ther,

since all linkages are saved in a re-entrant

manner on the processor stack, execution of a

subroutine may be interrupted, and the same

subroutine re-entered and executed by an

interrupt service routine. Execution of the

initial subroutine can then be resumed when

other requests are satisfied. This process

(called nesting) can proceed to any level.

JSR PC, dst is a special case of the subroutine

call suitable for subroutine calls that

transmit parameters. JSR PC saves the use of

an extra register.

In both JSR and JMP the address is used to load

the program counter, R7. Thus, for example, a

JSR 1is destination mode 1 for general register

R1 (where (R1l) = 100) will access a subroutine

at location 100. This is effectively one level

less of deferral than operate instructions such

as ADD.

A JSR with mode 0 will result in an 1illegal

instruction and a trap through the trap vector

address 4.

MARK

0064NN

06 05 00

Type:

Operation:

Condition Codes:

Description:

MR.2761

SP <-- PC + 2 X NN

PC <-- R5

R5 <-- (spP) +

nn = number of parameters

unaffected

unaffected

unaffected

unaffectedN
n
N
<
N
a
Z

Used as part of the standard subroutine return

convention. MARK facilitates the stack
clean-up procedures involved in subroutine
exit. Assembler format is: MARK N

MFPD/MFPI

Move from Previous Data Space 0065SS

Move from Previous Instruction Space 1065SS

15 06 05 00

0N 0 0 0 1 1 0 1 0 1 S S S S S S

Type:

Operation:

Condition Codes:

Description:

MR.2762

MS

(tmp) <-- (src)

-(SP) <-- (temp)

N: set if the source < 0

Z: set if the source = 0

V: cleared

C: unaffected

Pushes a word onto the current stack from an

address in previous space. The source address

is computed using the current registers and

memory map. Since data space does not exist in

the KDF1l1l, MFPD executes the same as a MFPI.

MFPS

1067DD

06 05 00

Type:

Operation:

Condition Codes:

Description:

MR 2763

MS

(dst) <-- PS

dst lower 8 bits

set if PS bit 7

set if PS <0:7>

cleared

unaffected
o

(
o

o

<
N

Z

The 8-bit contents of the PS are moved to the

effective destination. If destination mode 1is

0, PS bit 7 is sign-extended through upper byte

of the register. The destination operand 1is
treated as a byte address.

The KDF1ll implements the PS address, 777776,

which can be used as another method of

accessing the PS. This method can be used on

all PDP-11ls except previous LSI-11 processors.

MFPT

Move From Processor Type 000007

1 L 1 L L 1 | . L 1 1 | 1 1

Type: MS

Operation: RO <-- 000003

Condition Codes:

Description:

N: unaffected

Z: unaffected

V: unaffected

C: unaffected

A unique number assigned to each PDP-11

processor model is loaded into general register

RO. The KDF1l1l-AA processor number is 000003

and can be used to indicate which processor a

program 1s being executed on. LSI-11 and

LSI-11/2 processors treat this opcode as a

reserved instruction trap.

MOV /MOVB

Move 01SSDD

11SSDD

15 12 11 06 05 00

01 0 0 S S S S S S D D D D D D

. 1 I 1 . | | 1 1 L 1 .

Type: DO

Operation: (dst) <-- (src)

Condition Codes:

Description:

N: set if (src) <

Z: set if (src) =

V: cleared

C: not affected

0

0

Moves the source operand to the destination

location. The previous contents of the

destination are lost. The source operand 1s
not affected.

Byte: Same as MOV.

(mode 0) (unique

extends the most

The MOVB to a register

among byte instructions)

significant bit of the

low-order byte (sign extension) into the high

byte of the selected register. Otherwise MOVB

operates on bytes exactly as MOV operates on

words.

NOTE

As a performance optimization, the last

bus cycle of a MOV

(or DATOB).

(or MOVB) 1is a DATO

Previous LSIi=11 processors
performed a DATIO cycle for MOVB as a

"don't care" for hardware minimization.

MTPD/MTPI

Move to Previous Data Space 1066SS

Move to Previous Instruction Space 0066SS

15 06 05 00

0/1 0 0 0 1 1 0 1 1 0 D D D D D D

1 |] . 1 L | \ 1 1 i 1 |

Type:

Operation:

Condition Codes:

Description:

MS

(temp) <-- (SP) +

(dst) <-- (temp)

N: set if the source < 0

Z: set 1f the source = 0

V: cleared

C: unaffected

This instruction pops a word off the current

stack determined by PS (bits 15, 14) and stores

that word into an address in previous space PS

(bits 13, 12). The destination address is

computed using the current registers and memory

map.

Since data space does not exist in the KDFll,

MTPD executes the same as MTPI.

NOTE

As a performance optimization, the last

bus cycle of a MTPD and MTPI is a DATO.

This instruction was not implemented on

previous LSI-11 processors.

MTPS

1064SS

06 05 00

Type:

Operation:

Condition Codes:

Description:

MK 2766

PS <-- (SRC)

: set according to effective src operand 0-3

: same

: same

same

The eight bits of the effective operand replace

the current low byte contents of the PS, 1if 1in

kernel mode. Only PS bits 0 through 3 are

affected if in user mode. The source operand

address 1s treated as a byte address. Note

that PS bit 4 (T bit) cannot be set with this

instruction in either kernel or user mode. The

src operand remains unchanged.

The KDF1ll implements the PS address, 777776,

which can be used as another method of

accessing the PS. This method can be used on

all PDP-1ls except previous LSI-11 processors.

~

[64

MUL

Multiply 070RSS

15 09 08 06 05 00

0 1 1 0 0 0 R R R S S S S S S

I 1 1 _l L 1 i i L L 1 i

Type: DO

Operation: R, Rvl <-- R X (src)

Condition Codes:

Description:

N: set if product < 0

Z: set if product = 0

V: cleared 15

C: set 1if the result is lfi%s than -2 or

greater than or equal to 2 -1.

The contents of the destination register and

source taken as 2's complement integers are

multiplied and stored in the destination

register and the succeeding register (if R 1is

even). If R is odd, only the low-order product

is stored. Assembler syntax 1is: MUL S, R.

(note that the actual destination 1is R, Rvl,

which reduces to just R when R is odd.)

NEG/NEGB

Negate 0054DD

1054DD

06 05 00

01 0 0

Type:

Operation:

Condition Codes:

Description:

MR.2768

SO

(dst) <-- (dst)

N: set if result < O

Z: set 1f result = 0

V: set if result = 100000

C: cleared if result = 0

Replaces the <contents of the destination

address by 1its 2's complement. Note that

100000 is replaced by itself.

RESET

000005

00

0 0 0 0 0 0 0 0 0 0 1 0 1

Type:

Operation:

Condition Codes:

Description:

MR.2769

MS

PC (SP)

PS (SP)

N: unaffected

Z: unaffected

V: unaffected

C: unaffected

Causes bus signal BINITL to be asserted for 10

microseconds and then unasserted for 90

microseconds. Used to initialize I/0 devices

attached to the bus. In addition, memory

management status registers SRO and SR3 are

cleared.

ROL/ROLB

Rotate Left 0061DD

1061DD

Type:

Operation:

Condition Codes:

Description:

SO

(dst) <-- (dst)

rotate left one place

N: set if the high-order bit of the result word

is set (result > 0)

Z: set 1f all bits of the result word = 0

V: loaded with the exclusive OR of the N bit

and C bit (as set by the completion of the

rotate operation)

C: loaded with the high-order bit of the

destination

Rotates all bits of the destination 1left one

place. The high-order bit is loaded into the C

bit of the status word and the previous

contents of the C bit are 1loaded 1into the

low-order bit of the destination.

Rotate Right

ROR/RORB

0060DD

1060DD

06 05 00

0/1 0 0 1 1 0 0 0 0 D D D D D D

Type:

Operation:

Condition Codes:

Description:

MR 2771

SO

(dst) <-- (dst)

rotate right one place

N: set if high-order bit of the result is set

Z: set if all bits of result are 0

V: loaded with the exclusive OR of the N bit

and the C bit as set by ROR

C: loaded with the 1low-order bit of the

destination

Rotates all bits of the destination right one

place. The low-order bit is loaded into the C

bit and the previous contents of the C bit are

loaded into the high-order bit of the

destination.

RTI

000002

00

Type:

Operation:

Condition Codes:

Description:

MR 2772

PC <-- (SP) +

PS <-- (SP) +

N: loaded from processor stack

Z: loaded from processor stack

V: loaded from processor stack

C: loaded from processor stack

Used to exit from an interrupt or trap service

routine. The PC and PS are restored (popped)

from the processor stack. If the RTI sets the

T bit in the PS, a trace trap will occur prior

to executing the next instruction.

RTS

Return from Subroutine 00020R

15 03 02 00

0 0 0 0 0 0 0 0 1 0 0 0 0 R R R

. i 1 1 i | i Il 4 |] i .

Type: PC

Operation: PC <-- (regq)

Condition Codes:

Description:

(reg) <-- SP +

N: unaffected

Z: unaffected

V: unaffected

C: unaffected

Loads contents of register into PC and pops the

top element of the processor stack into the

specified register. Return from a

non-reentrant subroutine is typically made

through the same register that was used in 1its

call. Thus, a subroutine called with a JSR PC,

dst exits with an RTS PC, and a subroutine

called with a JSR R5, dst may pick up

parameters with addressing modes (R5)+, X (R5),

or @X (R5) and finally exit, with an RTS R5.

RTT

000006

Type:

Operation:

Condition Codes:

Description:

PC <-- (SP) +

PS <-- (SP) +

loaded from processor stack

loaded from processor stack

loaded from processor stack

loaded from processor stackO

<
N

Used to exit from a trace trap (T bit) service

routine and executes the same as the RTT

instruction with one exception. If the RTT

sets the T bit in the PS, the next instruction

will be executed and then the trace trap will

be processed. However, if an RTI sets the T

bit in the PS, a trace trap will occur before

the next instruction is executed.

Subtract Carry

SBC/SBCB

0056DD

1056DD

06 05 00

0/1 0 0 1 0 1 1 1 0 D D D D D D

| 1 1 1)| 1 I i 1 . | 1 .

Type: SO

Operation: (dst) <-- (dst) - C

Condition Codes:

Description:

N: set if result < O

Z: set if result = 0

V: set if (dst) = 100000 and C =1

C: cleared if (dst) = 0 and C = 1

Subtract the contents of the C bit from the

destination. This permits the carry from the

subtraction of the low-order words/bytes to be

subtracted from the high-order part of the

result in order to perform double precision
subtraction.

SCC

Set all Condition Code Bits 000277

00

Type:

Description:

MR.2776

CC

Sets and clears condition code bits. Selectable

combinations of these bits may be cleared or

set together. Condition code bits

corresponding to bits in the condition code

operator (bits 0-3) are modified according to

the sense of bit 4, the set/clear bit of the

operator; 1i.e., the program sets the bit

specified by bit 0, 1, 2, or 3, if bit 4 is a

1. Clears corresponding bits if bit 4 = 0.

Set C

SEC

000261

00

Type:

Description:

MR 2777

CC

Sets and clears condition code bits.

Selectable combinations of these bits may be

cleared or set together. Condition code bits

corresponding to bits in the condition code
operator (bits 0-3) are modified according to

the sense of bit 4, the set/clear bit of the

operator; 1i.e., the program sets the bit

specified by bit 0, 1, 2, or 3, if bit 4 is a

1. Clears corresponding bits if bit 4 = 0.

SEN

Set N 000270

Type:

Description:

CC

Sets and clears condition code bits.

Selectable combinations of these bits may be

cleared or set together. Condition code bits

corresponding to bits in the condition code

operator (bits 0-3) are modified according to

the sense of bit 4, the set/clear bit of the

operator; 1i.e., the program sets the bit

specified by bit 0, 1, 2, or 3, if bit 4 is a

1. Clears corresponding bits if bit 4 = 0.

Set V

SEV

000262

00

0 0 0 0 0 1 0 1 1 0 0 1 0

Type:

Description:

MR.2779

CC

Sets and clears condition code bits.

Selectable combinations of these bits may be

cleared or set together. Condition code bits

corresponding to bits in the condition code
operator (bits 0-3) are modified according to

the sense of bit 4, the set/clear bit of the

operator; 1i.e., the program sets the bit

specified by bit 0, 1, 2, or 3, if bit 4 is a

l. Clears corresponding bits if bit 4 = 0.

SEZ

Set Z 000264

00

Type:

Description:

MR 2780

CC

Sets and clears condition code bits.

Selectable combinations of these bits may be

cleared or set together. Condition code bits

corresponding to bits in the condition code
operator (bits 0-3) are mecdified according to

the sense of bit 4, the set/clear bit of the

operator; 1i.e., the program sets the bit

specified by bit 0, 1, 2, 3, if 4 is a 1.

Clears corresponding bits if bit 4 = 0.

SOB

Subtract one and branch if not equal to 0 077R00

plus offset

09 08 06 05 00

i 1 1 1 R R R OFFSET

| | | I\ I i L I\ i L

Type:

Operation:

Condition Codes:

Description:

MR-2781

PC

R <--— R - 1; if this result does not = 0 then

PC <-- PC - (2 X offset)

N: unaffected

Z: unaffected

V: unaffected

C: unaffected

The register 1is decremented. If it 1is not

equal to 0, twice the offset is subtracted from

the PC (now pointing to the following word).

The offset is interpreted as a 6-bit positive

number. This instruction provides a fast

efficient method of 1loop control. Assembler

syntax is:

SOB R, A

where A is the address to which transfer is to

be made if the decremented R is not equal to 0.

Note that the SOB instruction cannot be used to

transfer control in the forward direction.

SUB

Subtract 16SSDD

15 12 11 06 05 00

1 | 0 S S S S S S D D D D D D

1 1 i | 1 i | i . 1 I\

Type: DO

Operation: (dst) <-- (dst) - (src)

Condition Codes:

Description:

N: set if result < 0

Z: set if result = 0

V: set 1if there 1is arithmetic overflow as a

result of the operation, 1i.e., 1f the

operands were of opposite signs and the sign

of the source is the same as the sign of the

result

C: cleared if there is a carry from the most

significant bit of the result

Subtracts the source operand from the

destination operand and leaves the result at

the destination address. The original contents

of the destination are 1lost. The contents of

the source are not affected. For double

precision arithmetic, the C bit, when set,

indicates a borrow.

Swap Byte

SWAB

0003DD

06 05 00

0 0 0 0 1 1 D D D D D D

Type:

Operation:

Condition Codes:

Description:

MR.2783

SO

Byte 1/Byte O

Byte 0/Byte 1

N: set if high-order bit of low-order byte (bit
7) of result is set

Z: set if low-order byte of result = 0

V: cleared

C: cleared

Exchanges high-order byte and low-order byte of

the destination which must be a word address.

SXT

Sign Extend

o

0067DD

06 05 00

Type:

Operation:

Condition Codes:

Description:

MR.2784

SO

(dst) <-- 0 if N 1is clear

(dst) <-- - 1 if N bit is set

N: unaffected

Z: set if N bit clear

V: cleared

C: unaffected

If the condition code bit N is set, then a -1

is placed in the destination operand; if N bit

is clear, then a 0 is placed in the destination

operand. This instruction 1is particularly

useful in multiple precision arithmetic because

it permits the sign to be extended through

multiple words.

NOTE

As a performance optimization, the last

bus cycle of a SXT is a DATO. Previous

LSI-11 processors performed a DATIO

cycle for the last bus cycle as a "don't

care" for hardware minimization.

TRAP

104400 - 104777

00

1 0 0 0 1

| i 1 1 . | | | 1 1 Il | 1 1

Type: PC

Operation: - (SP) <-- PS

- (SP) <-- PC

PC <-- (34)

PS <-- (36)

Condition Codes: N: loaded from trap vector

Z: loaded from trap vector

V: loaded from trap vector

C: loaded from trap vector

Description: Operation codes from 104400 to 104777 are TRAP

instructions.

operation,

is at address 34.

Since DIGITAL

use of EMT,

NOTE

TRAPs and EMTs are identical in

except that the trap vecotr for TRAP

software makes frequent

the TRAP instruction 1is

recommended for general use.

TST/TSTB

Test 0057DD

1057DD

06 05 00

Type:

Operation:

Condition Codes:

Description:

MR 2786

SO

(dst) <-- (dst)

N: set if result < 0

Z: set 1f result = 0

V: cleared

C: cleared

Sets the condition codes N and Z according to

the contents of the destination address.

WAIT

000001

0 0 0 0 0 0 0 0 0 0 0 0 o] 0 1

L | 1) | H L | | 1 | Il 1 |

Type: MS

Operation:

Condition Codes: N: unaffected

Z: unaffected

V: unaffected

C: unaffected

Description: Provides a way for the processor to relinquish

use of the bus while it waits for an external

interrupt. Having been given a WAIT command,

the processor will not compete for the

instructions or operands from memory. This

permits higher transfer rates between device

and memory, since no processor-induced

latencies will be encountered by bus requests

from the device. In WAIT, as 1in all

instructions, the PC points to the next

instruction following the WAIT operation.

Thus, when an interrupt causes the PC and PS to

be pushed onto the stack, the address of the

next instruction following the WAIT is saved.

The exit from the interrupt routine (i.e.,

execution of an RTI instruction) will cause

resumption of the interupted process at the

instruction following the WAIT.

XOR

074RDD

09 08 06 05 00

Type:

Operation:

Condition Codes:

Description:

MR 2788

DO

(dst) <-- Rv(dst)

N: set if the result < 0

Z: set if result = 0

V: cleared

C: unaffected

The exclusive OR of the register and

destination operand is stored in the

destination address. Contents of register are

unaffected. Assembler format is XOR R, D.

CHAPTER 8

MEMORY MANAGEMENT

8.1 INTRODUCTION

The KDF1ll-AA processor implements a 128K word physical address

space. This improves the 32K word maximum physical address space

previously available in LSI-11 processors. The mapping or

translation of 16-bit virtual addresses to 18-bit physical

addresses is implemented in one MOS/LSI integrated circuit. This

chip is designated the memory management unit (MMU). The memory

management functionality is software-compatible with other PDP-11

processors (e.g. PDP-11/34, -11/60 and -11/70). Eight

programmable relocation registers are used to accomplish the

mapping function. These registers are added to the 16-bit virtual

address to form an 18-bit physical address. The actual

transformation occurs transparently to an executing program.

8.1.1 Programming

The memory management hardware has been designed for a

multiprogramming environment. The processor can operate 1in two

modes, kernel and user.

When in kernel mode, software has complete control and can execute

all instructions. Monitors and supervisory programs are executed

in this mode.

In a multiprogramming environment several user programs are

resident in memory at any given time. The Kkernel software

normally does the following.

1. Controls execution of the various user programs

2. Allocates memory and peripheral device resources

3. Safeguards the integrity of the system as a whole by

careful control of each user program

When 1in user mode, software 1is executed 1in a restricted

environment and 1is prevented from executing certain instructions

that could be destructive to the entire software system. Some

restricted instructions could cause the following.

1. Modification of the kernel program

2. Halting the computer

3. Using memory space assigned to the kernel or to other

users

In a multiprogramming system, the memory management unit assigns

pages (relocatable memory segments) to a user's program and

prevents the user from making any unauthorized access to those

pages outside his assigned area. Thus, a user can effectively be

prevented from accidental or willful destruction of any other user

program or of the system executive program.

Hardware-implemented features enable the operating system to

dynamically allocate memory upon demand while a program is being

run.

8.1.2 Basic Addressing

The PDP-11 family word length is 16 bits wide; however, the LSI-11

bus and the KDF11-AA addressing logic are 18 bits wide. While a

l6-bit word can generate virtual address references up to 32K

words (64K bytes), the CPU and LSI-11 bus can reference physical

18-bit addresses up to 128K words (256K bytes). The extra two

bits of addressing logic provide the basic framework for expanding

memory references.

The uppermost 4K of address space 1is reserved for I/0 device

registers. The 128K physical words that can be referenced with

memory management consist of 124K words of user memory and 4K

words of I/0O device registers.

8.1.3 Active Page Registers

The memory management unit uses two sets of eight 32-bit active

page registers (APR) (see Figure 8-1). An APR is actually a pair

of 16-bit registers: a page address register (PAR) and a page

descriptor register (PDR). These registers are always used as a

pair and contain all the information needed to describe and

relocate the currently active memory pages.

One set of APRs is used in kernel mode, and the other 1in user

mode. The set to be used is determined by the current CPU mode

contained in the processor status word, bits 15 and 14.

8.1.4 Capabilities Provided by Memory Management

Memory Size (words): 128K (124K words plus 4K for I/0 Page)

Address Space: Virtual (16 bits)

Physical (18 bits)

Modes of Operation: Kernel and User

Stack Pointers: 2 (one for each mode)

Memory Relocation

Number of Pages: 16 (8 for each mode)

Page Length: 32 to 4,096 words

Memory Page Protection: NoO access

Read-only

Read/write

15 14 13 12 11 00

PROCESSOR STATUS WORD

1 | 1 1 I j| 1]] 1 | 1 |

KERNEL (00) USER (11)

APR 0 APR0O

APR 1 APR1

APR 2 APR 2 cTIvE

» ACTI
APR 3 APR 3 PAGE

APR 4 APR 4 REGISTERS

APR 5 APR5

APR 6 APR6

APR 7 APR 7 PAR | PDR

P A oo
// I\ \\

- ~

~ ! \ ~
-~ ~

- / \ ~

- ~

P ! \ ~

15 _ 7 00 / \ 15 = 00

PAR |- PDR

PAGE ADDRESS REGISTER PAGE DESCRIPTION REGISTER

MR-3649

Figure 8-1 Active Page Registers

8.2 MEMORY RELOCATION

When the memory management unit is operating, the normal 16-bit

direct byte address is no longer interpreted as a direct physical

address (PA) but as a virtual address (VA) containing information

to be used in constructing a new 18-bit physical address. The

information contained in the virtual address is combined with

relocation and description information contained 1in the active

page register to yield an 18-bit physical address.

Because addresses are relocated automatically, the computer may be

considered to be operating in virtual address space. This means

that regardless of where a program is loaded into physical memory,

it will not have to be relinked; it always appears to be at the

same virtual location in memory.

The virtual address space is divided into eight 4K-word pages.

Each page 1is relocated separately. This is a useful feature 1in

multiprogrammed timesharing systems. It permits a new 1large

program to be loaded into discontinuous blocks of physical memory.

A basic function is to perform memory relocation and provide

extended memory addressing capability for systems with more than

32K words of physical memory. Two sets of page address registers

are used to relocate virtual addresses to physical addresses in

memory. These sets are used as hardware relocation registers that

permit several users' programs, each starting at virtual address

0, to reside simultaneously in physical memory.

8.2.1 Program Relocation

The page address registers are used to determine the starting

physical address of each relocated program in physical memory.

Figure 8-2 shows a simplified example of the relocation concept.

RELOCATION

CONSTANT

A = 6400

B = 100000 PHYSICAL MEMORY

a/w

e =

VIRTUAL

ADDRESS

(VA}) =0

PROGRAMB

100000g

|——~——

PHYSICAL ADDRESS PROGRAM A

006400g

\/\/w

000000

MR 3650

Figure 8-2 Simplified Memory Relocation

Program A starting address 0 is relocated by a constant to provide

physical address 64008.

If the next program virtual address is 2, the relocation constant

will then cause physical address 6402,, which is the second item

of program A, to be accessed. When program B 1is running, the

relocation constant is changed to 100000,. Then program B virtual

addresses starting at 0 are relocated to access physical addresses

starting at 100000,. Using the active page address registers to

provide relocation eliminates the need to relink a program each

time it is loaded into a different physical memory location. The

program always appears to start at the same address.

A program 1is relocated in pages consisting of from 1 to 128

blocks. Each block 1is 32 words in length. Thus, the maximum

length of a page is 4096 (128 X 32) words. Using all of the eight

available active page registers in a set, a maximum program length

of 32,768 words can be accommodated. Each of the eight pages can

be relocated anywhere in the physical memory, as long as each

relocated page begins on a boundary that is a multiple of 32

words. However, for pages that are smaller then 4K words, only

the memory actually allocated to the page may be accessed.

The relocation example shown in Figure 8-3 illustrates several

points about memory relocation.

VIRTUAL ADDRESS PAGE|{ RELOCATION PHYSICAL MEMORY

RANGES NO | CONSTANT SPACE

160000177776 7 150000 340000357776

140000-157776 6 000000 330000347776

120000137776 5 100000 310000-327776

100000117776 4 020000 220000237776

060000077776 3 060000 »] 140000-157776

040000~057776 2 250000 7 \ 120000137776
020000037776 1 320000 040000057776

000000017776 0 400000 /
MR-3651

Figure 8-3 Relocation of a 32K-Word Program into 124K-Word

Physical Memory

1. Although the program appears to the processor to be 1in

contiguous address space, the 32K-word physical address

space 1s actually scattered through several separate

areas of physical memory. As long as the total available

physical memory space 1is adequate, a program can be

loaded.

2. Pages may be relocated to higher or 1lower physical

addresses with respect to their virtual address ranges.

In the example in Figure 8-3, page 1 is relocated to a

higher range of physical addresses, page 4 is relocated

to a lower range, and page 3 1is not relocated at all

(even though its relocation constant is non-0).

3. All the pages shown in the example start on 32-word

boundaries.

4. Each page is relocated independently. There 1s no reason

why two or more pages could not be relocated to the same

physical memory space. Using more than one page address

register in the set to access the same space would be one

way of providing different memory access rights to the

same data, depending on which part of the program was

referencing that data.

8.2.2 Memory Units

Block: 32 words

Page: 1 to 128 blocks (32 to 4,096 words)

No. of pages: 8 per mode

Size of relocatable

memory: 32,768 words, max. (8 X 4,096)

8.3 PROTECTION

A timesharing system performs multiprogramming; i.e., it allows

several programs to reside in memory simultaneously and to execute

sequentially. Access to these programs, and the memory space they

occupy, must be strictly defined and controlled. A timesharing

system requires several types of memory protection.

1. User programs must not be allowed to expand beyond their

allocated space unless authorized by the system.

2. Users must be prevented from modifying common subroutines

and algorithms that are resident for all users.

3. Users must be prevented from gaining control of or

modifying the operating system software.

4. Users must be prevented from accessing or modifying

memory occuplied by other users.

Memory management provides the hardware facilities to implement

all the above types of memory protection.

8.3.1 Inaccessible Memory

Each page has a 2-bit access control key associated with it. The

key 1s part of the page descriptor register (PDR). The key 1is

assigned under operating system control. When the key is set to

0, the page 1is defined as nonresident. Any attempt by a user

program to access a nonresident page is prevented by an immediate

halt. Using this feature to provide memory protection, only those

pages associated with the current program are set to legal access

keys. The access control keys of all other program pages are set

to 0, which prevents illegal memory references.

8.3.2 Read-Only Memory

The access control key for a page can be set to 2, which allows

read (fetch) memory references to the page, but immediately halts

any attempt to write into that page. This read-only type of

memory protection can be afforded to pages that contain common

data, subroutines, or shared algorithms. This type of memory

protection allows the access rights to a given memory area to be

user-dependent. That is, the access right to a memory area may be

varied for different users by altering the access control key.

A page address register in each of the sets (kernel and user

modes) may be set up to reference the same physical page in memory

and each may be keyed for different access rights. For example,

the user access control key might be 2 (read-only access for user

programs), and the kernel access control key might be 4 (allowing

complete read/write access for the operating system).

8.3.3 Multiple Address Space

There are two complete PAR/PDR sets provided, one set of registers

for kernel mode and one set for user mode. This affords the

operating system software another type of memory protection. The

mode of operation 1is specified by the processor status word

current mode field, or previous mode field, as determined by the

current instruction. Each mode has its own corresponding stack

pointer (R6) for protection as well as software considerations.

A user mode program 1is relocated by its own PAR/PDR set, as is a

kernel programs. This makes it impossible for a program running

in one mode to reference space allocated to another mode

accidentally when the active page registers are set correctly.

For example, a user cannot transfer to kernel space. The kernel

mode address space may be reserved for resident system monitor

functions, such as the basic input/output control routines, memory

management trap handlers, and timesharing scheduling modules. By

dividing the types of timesharing system programs functionally

between the kernel and user modes, a minimum of space control

housekeeping 1is required as the timeshared operating system

sequences from one user program to the next. For example, only

the user PAR/PDR set needs to be updated as each new user program

is serviced. The two PAR/PDR sets implemented in the memory

management unit are shown in Figure 8-~4 and Figure 8-5.

15 12 11 00

Figure 8-4 Page Address Register

MR3652

8.3.3.1 Mode Specification in Processor Status Word - PS<15:14>

specify the current memory management mode. These bits are used

to select the corresponding PAR/PDR set to be wused for the

currently executing program. PS<13:12> specify the previous

memory management mode. These bits are used by the memory

management instructions to communicate between kernel and user

address spaces. When an implicit mode change occurs, the previous

mode bits (PS<13:12>) are loaded by hardware with the contents of

the current mode bits (PS<15:14>). This change can occur whenever

an 1lnterrupt or trap is processed. PS<15:12> are cleared when

power 1is applied. Clearing these bits selects kernel mode.

PS<15:12> are encoded as shown below.

15 14 08 07 06 05 04 03 02 01 00

7 / / 7' / PLF w ED ACF)

| L 1 1 L i 1 . y

NOTE: ALLUNIMPLEMENTED BITS READ AS ZEROS.

MR- 3653

Figure 8-5 Page Descriptor Register

PS<15:14>

or

PS<13:12> PAR/PDR Set Enabled Stack Pointer Selected

00 Kernel Kernel (KSP)

01 Reserved for future DIGITAL Supervisor (SSP) -

use. Specifies supervisor Reserved for future

mode on some PDP-lls. Does DIGITAL use.

not cause a halt.

10 Illegal. Does not cause a Reserved for future

halt. DIGITAL use.

11 User USER (USP)

Each mode selects its own corresponding stack pointer. Thus all

program references to register R6 use a different register as

specified by PS<15:14>. Stack pointer selection occurs whether

the MMU is enabled or not (SRO bit 0 is a 1). The different stack

pointers are initialized by loading the appropriate mode value in
PS<15:14>, and can be examined by console ODT.

8.3.3.2 Processor Status Word Protection - There are various

software methods of affecting PS<15:00>. Since kernel mode 1is

defined to allow software access to all hardware features, free

access to the PS 1is allowed. Since user mode 1is defined for

operating user programs and thus protecting the operating system

software, certain PS bits such as the mode and priority level

fields are protected. Table 8-1 shows how all PS bits are

affected.

Table 8-1 Processor Status Word Protection

RTI, RTI Traps & Interrupts Explicit PS Access MTPS Power

PS Bits User Kernel | User Kernel | User Kernel User Kernel Up

Condition | Loaded Loaded | Loaded | Loaded | Loaded Loaded Loaded Loaded

Code From From From From From From From From Cleared

PS (3:0» Stack Stack Vector Vector | Source Source Source Source

Trap Bit Loaded Loaded | Loaded | Loaded

PS 4 From From From From Unchanged | Unchanged | Unchanged | Unchanged | Cleared

Stack Stack Vector Vector

Interrupt Loaded | Loaded | Loaded | Loaded Loaded Loaded

Priority Unchanged | From From From From From Unchanged | From Cleared

PS(7:5) Stack Vector Vector | Source Source Source

Sl Loaded Loaded | Loaded | Loaded | Loaded Loaded MTPS Non- Cleared

PS § From From From From From From Non- Accessible

Stack Stack Vector Vector | Source Source Accessible

Previous Loaded | Copied | Copied | Loaded Loaded Non- Non-

Mode Unchanged | From From From From From accessible accessible | Cleared

Stack PS PS Source Source

15:14) | (A5:14

Current Loaded | Loaded | Loaded | Loaded Loaded Non- Non-

Mode Unchanged | From From From From From accessible accessible | Cleared

Stack Vector Vector | Source Source

8.3.3.3 User Mode Restrictions - User mode 1is 1intended for

executing user programs. While 1in user mode the program 1is

restricted from using those hardware features that could disrupt

system integrity.

in user mode.

1. HALT

HALT

The intent

operating system.

instruction

instruction causes a trap to kernel location 10

is not to allow a user

The following hardware features are protected

- Instead of entering console ODT, a

program to halt tge

RESET instruction - Instead of causing a BUS initialize,

a RESET

The

instruction

intent is to

initializing I/0O devices.

Access to PS<03:00> only.

the user

system operations and cannot be affected.

program

is executed as an NOP instruction.

prevent from

Al]l other PS bits are vital to

8.3.3.4 Interrupt and Trap Processing - All interrupt and trap

vectors are forced by hardware to always be used 1in kernel mode

when the new PC and PS are fetched. The processor's first step in

processing the interrupt or trap is to fetch the new PS value from

the interrupt or trap 1location plus 2. This determines which

mode, and consequently which stack pointer, to use for pushing the

old PC and PS. The KDF1ll-AA copies the o0ld PS into a temporary

register and then loads the new PS value. PS<15:14> are loaded

from the memory 1location to select the new current mode.

PS<13:12> (previous mode) are 1loaded with the o0ld wvalue 1in

PS<15:14>, to keep a record of what the previous mode was. This

is the only place where the PS previous mode bits copy the current

mode bits.

This process allows communication between mode address spaces

using the memory management instructions. The remaining PS bits

are loaded from the memory 1location. Thus, interrupt and trap

service routines can be executed in either kernel or user mode,

depending on the contents of the vector plus 2 locations.

8.4 PAGE ADDRESS REGISTER (PAR)

The page address register (PAR), shown in Figure 8-4, contains the

12-bit page address field (PAF) that specifies the base address of

the page.

Bits 15-12 are implemented but are reserved for future DIGITAL

use.

The page address register may be thought of a relocation constant,

or a base register <containing a base address. Either
interpretation indicates the basic function of the page address

register (PAR) in the relocation scheme.

8.5 PAGE DESCRIPTOR REGISTER (PDR)

The page descriptor register (PDR), shown in Figure 8-5, contains
information relative to page expansion, page 1length, and access

control. Table 8-2 shows PAR/PDR address assignments.

Table 8-2 PAR/PDR Address Assignments

Kernel Active Page Registers User Active Page Registers

No. PAR PDR No. PAR PDR

0 772340 772300 0 777640 777600

1 772342 772302 1 777642 777602

2 772344 772304 2 777644 777604

3 772346 772306 3 777646 777606

4 772350 772310 4 777€50 777610

5 772352 772312 5 777652 777612

6 772354 772314 6 777€54 777614

7 772356 772316 7 777656 777616

10

8.5.1 Access Control Field (ACF)

This 2-bit field, bits 2 and 1 of the PDR, describes the access

rights to this particular page. The access bits specify the

manner in which a page may be accessed and whether or not a given

access should result in a halt of the current operation. A memory

reference that causes a halt is not completed and 1is terminated

immediately. Halts are caused by attempts to access nonresident

pages, by page length errors, or by access violations such as

attempting to write into a read-only page.

In the context of access control, the term "write" indicates the

action of any instruction that modifies the contents of any

addressable word. Table 8-3 1lists the ACF keys and their

functions. The ACF is written into the PDR under program control.

Table 8-3 Access Control Field Keys

ACF Key Description Function

00 0 Nonresident Halt any attempt to

access this nonresident

page

01 2 Resident Halt any attempt to

read-only write into this page.

10 4 Unused Halt all accesses.

11 6 Resident Read or write allowed.

read/write No halt occurs.

8.5.2 Expansion Direction (ED)

The ED bit located in PDR bit position 3 indicates the authorized

direction in which the page can expand. A logic 0 in the bit (ED

= 0) indicates the page can expand upward from relative zero. A

logic 1 in this bit (ED = 1) indicates the page can expand

downward toward relative zero. The ED bit is written into the PDR

under program control. When the expansion direction is upward (ED

= 0), the page length 1is increased by adding blocks with higher

relative addresses. Upward expansion 1is usually specified for

program or data pages to add more program or table space. An

example of page expansion upward is shown in Figure 8-6.

When the expansion direction is downward (ED = 1), the page length

is 1increased by adding blocks with 1lower relative addresses.

Downward expansion is specified for stack pages so that more stack

space can be added. An example of page expansion downward 1is

shown in Figure 8-7.

PAR PDR

000 001 111 00O 0 010100tO0COO0C 0 110

— - \—_'W_JY
L.Y_J

PAF = 0170 T |
PLF =51g =4119= NUMBER OF BLOCKS

ED =0=UPWARD EXPANSION

ACF =6= READ/WRITE

NOTE: To specify a block length of 42 for an up-

ward expandable page, write highest authorized

block number directly into high byte of PDR. Bit

15 is not used because the highest allowable block

number is 177g.

7 h

BLOCK 177g

N

% i;;//
BLOCK 1768 ANY BLOCK NUMBER

AE%SESSRANGE ” GREATER THAN 411q(51g)
0O TENTIAL PAGE > (VA<12:06> 518)
EXPANSION BY

WILL CAUSE A PAGE
CHANGING THE PLF LENGTH ABORT.

N\

' BLOCK 52g

F
A
R

241

BLOCK 51g

024100 |

AUTHORIZE PAGE

OROTHRUb51g= BLOCK2

52g BLOCKS 017200

017176

BLOCK 1
017100

017176

BLOCK O

017000

<«+— BASE ADDRESS OF PAGE

MR-3655

Figure 8-6 Example of an Upward-Expandable Page

8.5.3 Written Into (W)

The W bit located in PDR bit position 6 indicates whether the page

has been written into since it was loaded into memory. W = 1 1is

affirmative. The W bit is automatically cleared when the PAR or

PDR of that page is written into. It can be set only by the

control logic.

i 036776
BLOCK 177g

036700

036676
BLOCK 176g

036600

AUTHORIZED PAGE 036576
LENGTH = 4219 BLOCKS BLOCK 175g

036500

0311676
BLOCK 126g

’ 0311600

Z / A

| BLOCK 125¢ /

/BLOCK 1248
ADDRESS RANGE A N MBERREFERENCE LESS
OF POTENTIAL PAGE %oF v

THAN 126g

CHA)IA\JNSIII\JON BH (VA<12:06> LESS THAN 126g)
GING THE PLF % WILL CAUSEA PAGE

/// 0131767 LENGTH ABORT.

[BLOCK 1 22277,
7 017100

Z
77 7

7 //017076/
BLOCK 0 000

| /017000 |

<— BASE ADDRESS OF PAGE

Figure 8-7 Example of a Downward-Expandable Page

In disk swapping and memory overlay applications, the W bit (bit
6) can be used to determine which pages in memory have been

modified by a user. Those that have been written into must be

saved in their current form. Those that have not been written
into (W = 0) need not be saved and can be overlayed with new
pages, if necessary.

8.5.4 Page Length Field (PLF)

The 7-bit PLF located in PDR<14:08> specifies the authorized

length of the page in 32-word blocks. The PLF holds block numbers

from 0 to 177,, thus allowing any page length from 1 to 128lO

blocks. The PEF is written into the PDR under program control.

8.5.4.1 PLF For an Upward-Expandable Page - When the page expands
upward, the PLF must be set to one less than the intended number

of blocks authorized for that page. For example, if 528 (42, ,)
blocks are authorized, the PLF is set to 51 (4110) (Figure 8—%9.
The hardware compares the virtual address bfock number, VA<12:06>
with the PLF to determine if the virtual address is within the
authorized page length.

When the virtual address block number is less than or equal to the

PLF, the virtual address is within the authorized page length. 1If

the virtual address 1is greater than the PLF, a page length fault

(address too high) is detected by the hardware and a halt occurs.

In this case, the virtual address space legal to the program is

noncontiguous because the three most significant bits of the

virtual address are used to select the PAR/PDR set.

8.5.4.2 PLF For a Downward-Expandable Page - The capability of

providing downward expansion for a page is intended specifically

for those pages that are to be used as stacks. A stack starts at

the highest location reserved for it and expands downward toward

the lowest address as items are added to the stack.

When the page is to be downward expandable, the PLF must be set to

authorize a page 1length, in blocks, that starts at the highest

address of the page. That is always block 177,. Refer to Figure

8-7, which shows an example of a downward-expandable page. A page

length of 42 blocks is arbitrarily chosen so that the example

can be compared with the upward-expandable example shown in Figure

8-6.

NOTE

The same PAF is used in both examples.

This is done to emphasize that the PAF,

as the base address, always determines

the lowest address of the page, whether

it is upward- or downward-expandable.

To specify page length for a downward-expandable page, write the

complement of the blocks required into high byte of PDR.

In this example, a 42-block page is required.

PLF is derived as follows:

42lo = 528; 2's complement = 1268

The calculation for complementing the number of blocks required to

obtain the PLF 1is as follows:

Max imum Required

Block No. Minus Length Equals PLF

177 - 52 = 125
8 8 _ 8

127lO - 4210 = 85lO

8.6 VIRTUAL AND PHYSICAL ADDRESSES

The memory management unit 1is located between the central

processor unit and the LSI-11 bus address 1lines. When memory

management 1is enabled, the processor ceases to supply physical

address information to the bus. Instead, virtual addresses are

sent to the memory management unit where they are relocated by

various constants computed within the memory management unit.

8.6.1 Construction of a Physical Address

The basic information needed for the construction of a physical

address (PA) comes from the wvirtual address (VA), which 1is

illustrated in Figure 8-8, and the appropriate APR set.

APF DF

i I 1 1 1] 1 1 1 1 i 1 1 L

ACTIVE PAGE FIELD DISPLACEMENT FIELD

MR-3656

Figure 8-8 Interpretation of a Virtual Address

The virtual address consists of the following.

1. The active page field (APF) - This 3-bit field determines

which of eight active page registers (APRO-APR7) will be

used to form the physical address (PA).

2. The displacement field (DF) - This 13-bit field contains

an address relative to the beginning o§3a page. This

permits page lengths up to 4K words (2 = 8K bytes)

The DF 1is further subdivided into two fields as shown in

Figure 8-9.

12 06 05 00

BN DiB

1 it 1 | 1 i 1 1 1 1 i

BLOCK NUMBER DISPLACEMENT IN BLOCKS

MR-3657

Figure 8-9 Displacement Field of Virtual Address

The displacement field (DF) consists of the following.

1. The block number (BN). This 7-bit field is interpreted

as the block number within the current page.

2. The displacement in block (DIB). This 6-bit field

contains the displacement within the block referred to by

the block number.

The remainder of the information needed to construct the physical

address comes from the 12-bit page address field (PAF) (part of

the active page register) and specifies the starting address of

the memory which that APR describes. The PAF is actually a block

number in the physical memory; e.g., PAF = 3 indicates a starting

address of 96 (3 X 32 = 96) in physical memory.

The formation of the physical address is 1illustrated in Figure

8-10.

The logical sequence involved in constructing a physical address

is as follows.

1. Select a set of active page registers depending on

current mode specified by PS<15:14>.

2. The active page field of the virtual address is used to

select an active page register (APRO-APR7).

3. The page address field of the selected APR contains the

starting address of the currently active page as a block

number in physical memory.

4, The block number from the virtual address is added to the

block number from the page address field to yield the

number of the block in physical memory which will contain

the physical address being constructed.

5. The displacement in blocks from the displacement field of

the wvirtual address 1is Jjoined to the physical block

number to yield an 18-bit physical address.

8.6.2 Determining the Program Physical Address - A 16-bit

virtual address can specify up to 32K words, in the range from

000000, to 177776 (word boundaries are even numbers). The three

most significant Virtual address bits designate the PAR/PDR pair

to be referenced during page address relocation. Table 8-4 lists

the virtual address ranges that specify each of the PAR/PDR sets.

Table 8-4 Relating Virtual Address to PAR/PDR Set

Virtual Address Range PAR/PDR Set

000000-17776

020000-37776

040000-57776

060000-77776

100000-117776

120000-137776

140000-157775

160000-177776 S
N

O

b

W
w
W
w
N
H
O

NOTE

Any use of page lengths of less than 4K

words causes unaddressable holes in the

virtual address space.

L
T
-
8

]] 1 |]] ! |] | 1 | |

15 13 12 06 05 00

APF BLOCK NO DIB

] 1] !] 1] |]] 1]

15 12 11 00

/////////// PAGE ADDRESS FIELD
/ l]]]]]] | I]

17 l 06 05 v 00
PHYSICALBLOCKNO bo] DIB

Figure 8-10

{DISPLACEMENT iN BLOCKS)

Construction of a Physical Address

VIRTUAL

ADDRESS

ACTIVE PAGE

REGISTER

PHYSICAL

ADDRESS

MR-3658

8.7 STATUS REGISTERS

Halts generated by protection hardware are vectored through kernel

virtual address 250. Status registers are used to determine why

the halt occurred. Note that a halt to a location which is itself

an 1invalid address will cause another halt. Thus the kernel

program must ensure that kernel virtual address 250 is mapped

into a wvalid physical address, otherwise an 1infinite 1loop

requiring operator intervention will occur.

8.7.1 Status Register 0 (SRO)

SRO contains halt error flags, memory management enable, and other

essential information required by an operating system to recover

from a halt or service a memory management trap. The SR0O format

is shown in Figure 8-11. Its address is 777572,. This register

is cleared by application of power or a RESET instruction.

06 05 03 01 00

7708 UL 1
ABORT-NON-__T v—' e — 4
RESIDENT

ABORT- PAGE

LENGTH ERROR

ABORT- READ ONLY

ACCESS VIOLATION

MODE

PAGE NUMBER

ENABLE MANAGEMENT

<

MR 36549

Figure 8-11 Format of Status Register 0 (SRO)

Bits 15-13 are the halt flags. They may be considered to be in

priority order in that flags to the right are less significant and

should be ignored. For example, a nonresident halt service
routine would ignore page length and access control flags. A page

length halt service routine would ignore an access control fault.

NOTE

Bit 15, 14, or 13, when set (halt

conditions) cause the logic to freeze

the contents of SRO bits 1 to 6 and

status register SR2. This 1is done to

facilitate recovery from the halt.

Note that only SRO bit 0 can be set under program control to

provide memory management control information. Only that

information which is automatically written into the remaining bits
as a result of hardware actions is useful as a monitor of the

status of the memory management unit. Setting bits 15-13 under

program control will not cause traps to occur. These bits,

however, must be reset to 0 by software after a halt or trap has

occurred in order to resume monitoring memory management.

8.7.1.1 Halt Nonresident - Bit 15 is the halt nonresident bit.

It is set by attempting to access a page with an access control

field (ACF) key equal to 0 or 4.

8.7.1.2 Halt Page Length - Bit 14 is the halt page-length bit.

It is set by attempting to access a location in a page with a

block number (virtual address bits 12-6) that is outside the area

authorized by the page length field (PLF) of the PDR for that

page.

8.7.1.3 Halt Read Only - Bit 13 is the halt read-only bit. It is

set by attempting to write in a read-only page, access key 2.

NOTE

There are no restrictions against halt

bits being set simultaneously by the

same access attempt.

8.7.1.4 Mode of Operation - Bits 5 and 6 indicate the CPU mode

(user or kernel) associated with the page causing the halt (kernel

= 00, user = 11).

8.7.1.5 Page Number - Bits 3-1 contain the virtual page number

referenced. Pages, like blocks, are numbered from 0 upwards. The

page number field 1is wused by the error recovery routine to

identify the page being accessed if a halt occurs.

8.7.1.6 Enable Relocation and Protection - Bit 0 is the enable

bit. When it is 1, all addresses are relocated and protected by

the memory management unit. When bit 0 is set to 0, the memory

management unit is disabled and addresses are neither relocated

nor protected.

8.7.2 Status Register 1 (SR1)

SR1 is implemented on some PDP-11 computers to provide additional

capability. The KDF11l-AA does not implement this register but

does respond to its bus address, 777574,, and reads it as all Os.

This information is provided here for clarity only.

8.7.3 Status Register 2 (SR2)

SR2 1is 1loaded with the 16-bit wvirtual address (VA) at the

beginning of each instruction fetch, but is not updated if the
instruction fetch fails. SR2 is read-only; a write attempt will

not modify 1its contents. SR2 1is the wvirtual address program

counter. Upon an halt, the result of SRO bits 15, 14, or 13 being

set will freeze SR2 until the SRO halt flags are cleared. The

address of SR2 is 7775768. (See Figure 8-12.)

8.7.4 Status Register 3 (SR3)

SR3 is implemented on some PDP-11 computers to provide additional

capability. The KDF1l1-AA implements a portion of SR3 which is

reserved for future DIGITAL use. SR3 bit 4 enables I/0 mapping

and SR3 bit 5 enables 22-bit mapping. The address of SR3 is
7725168. Figure 8-13 shows the format of SR3.

ADDRESS
16-BIT VIRTUAL ADDRESS

777576g
1 1 1 -l ! 1 1 1 i 1 1 - - -

MR-3660

Figure 8-12 Format of Status Register 2 (SR2)

05 04 00

T ENABLE /O MAPPING
ENABLE 22 BIT MAPPING

MR-3661

Figure 8-13 Format of Status Register 3 (SR3)

8.8 MEMORY MANAGEMENT INSTRUCTIONS

Memory management provides communication between two spaces, as

determined by the current and previous modes of the processor

status word (PS). The following instructions are directly

applicable to memory management.

Mnemonic Instruction Op Code

MFPI move from previous instruction space 0065SS

MTPI move to previous instruction space 0066DD

MFPD move from previous data space 1065SS

MTPD move to previous data space 1066DD

Refer to Chapter 7, the instruction set, for a more detailed

description. These instructions are directly compatible with
other PDP-11 computers.

8.9 PROGRAMMING EXAMPLES

MTPI and MFPI, mode 0, register 6 are unique 1in that these

instructions enable communications to and from the previous user

stack.

;MFPI, MODE 0, NOT REGISTER 6

MOV #KM+PUM, PSW s KERNEL MODE, PREV USER

MOV #-1,-2(6) sMOVE -1 ON KERNEL STACK -2

CLR %0

INC @#SRO ; ENABLE MEM MGT

MFPI 30 ;— (KSP) €R0 CONTENTS

The -1 in the kernel stack is now replaced by the contents of RO

which is 0.

;MFPI, MODE 0, REGISTER 6

MOV #UM+PUM, PSW

CLR %6 ;SET R16 = 0

MOV #KM+PUM, PSW + KERNEL MODE, PREV USER

MOV #-1, -2 (6)

INC @#SRO ; ENABLE MEM MGT

MFPI %6 ;— (KSP) €R16 CONTENTS

The -1 in the kernel stack is now replaced by the contents of the

user stack pointer which is 0.

To obtain information from the user stack if the status is set to

kernel mode, previous user, two steps are needed.

MFPI %6 ;GET CONTENTS OF USER POINTER

MFPI @(6)+ ;GET USER POINTER FROM KERNEL

; STACK

;USE ADDRESS OBTAINED TO GET DATA

; FROM USER MODE USING THE PREVIOUS

; MODE

The desired data from the user stack is now in the kernel stack

and has replaced the user stack address.

;MTPI, MODE 0 ,NOT REGISTER 6

MOV #KM+PUM, PSW ; KERNEL MODE, PREV USER

MOV #TAGX, (6) ; PUT NEW PC ON STACK

INC @#SRO ; ENABLE

MTPI %7 ;1%7€(6)+

HLT ; ERROR

TAGX:CLR @#SRO ;DISABLE MEM MGT

The new PC is popped off the current stack, and since this is mode

0 and not register 6, the destination is register 7.

;MTPI, MODE 0, REGISTER 6

MOV #UM+PUM, PSW ;USER MODE, PREVIOUS USER

CLR %36 ; SET USER SP=0 (R16)

MOV #KM+PUM, PSW ; KERNEL MODE, PREV USER

MOV #-1, -(6) ;MOVE -1 INTO K STACK (R6)

INC @#SRO ; ENABLE MEM MGT

MTPI %6 ;%316 <(6)+

The 0 in R16 is now replaced with -1 from the contents of the

kernel stack.

To place information on the user stack if the status 1s set to

kernel mode, previous user mode, three separate steps are needed.

MFPI %6 ;GET CONTENT OF R16=USER POINTER

MOV #DATA, -(6) ; PUT DATA ON CURRENT STACK

MTPI @(6)+ :@(6)+ (FINAL ADDRESS RELOCATED) <€

: (R6)+

The data desired is obtained from the kernel stack, then the

destination address 1is obtained from the kernel stack and

relocated through the previous mode.

o
 o
)

| 22

CHAPTER 9

FLOATING POINT

9.1 INTRODUCTION

The floating point processor (FPP) is a microcode option (KEF1l1l-A)

for use with the KDF1l1l-AA. The KEF1ll-A FPP 1is completely

software-compatible with the FPll-A used on the PDP-11/34, the

FP11-E used on the PDP-11/60 and the FP11-C used on the PDP-11/70.

Both single and double precision floating point capability are

available together with other features including

floating-to-integer and integer-to-floating conversion.

The FPP microcode resides in two MOS/LSI chips contained in one

40-pin package. The FPP requires the MMU chip, in addition to the

base MOS/LSI chips, because all the floating point accumulators

and status registers reside in the MMU.

9.2 FLOATING POINT DATA FORMATS

Mathematically, a floating point number may be defined as having

the form (2 ** K) * f, where K is an integer and f is a fraction.

For a nonvanishing number, K and f are uniquely determined by

imposing the condition 1/2 < f < 1. The fractional part (f) of

the number is then said to be normalized. For the number 0, £

must be assigned the value 0, and the value of K is indeterminate.

The FPP floating point data formats are derived from this

mathematical representation for floating point numbers. Two types

of floating point data are provided. In single precision, or

floating mode, the data is 32 bits long. In double precision, or

double mode, the data is 64 bits long. Sign magnitude notation 1is

used.

9.2.1 Nonvanishing Floating Point Numbers

The fractional part (f) is assumed normalized, so that its most

significant bit must be 1. This 1 is the "hidden" bit: it is not

stored explicitly in the data word, but the microcode restores it

before carrying out arithmetic operations. The floating and

double modes reserve 23 and 55 bits, respectively, for £f. These

bits, with the hidden bit, imply effective word lengths of 24 bits

and 56 bits.

Eight bits are reserved for storage of the exponent K in excess

128 (200,) notation (i.e., as K + 2004), giving a biased exponent.

Thus exponents from -128 to +127 could be represented by 0 to

3774, or 0 to 255,.,. For reasons given below, a biased exponent
of % (true exponent of -2004), is reserved for floating point 0.
Thus exponents are restricted to the range -127 to +127 inclusive

(—1778 to +1778) or, 1n excess 2008 notation, 1 to 3778.

The remaining bit of the floating point word is the sign bit. The

number is negative if the sign bit is a 1.

9.2.2 Floating Point Zero

Because of the hidden bit, the fractional part is not available to

distinguish between 0 and nonvanishing numbers whose fractional

part is exactly 1/2. Therefore the FPP reserves a biased exponent

of 0 for this purpose and any floating point number with a biased

exponent of 0 either traps or is treated as if it were an exact 0

in arithmetic operations. An exact or clean 0 is represented by a

word whose bits are all Os. A dirty 0 is a floating point number

with a biased exponent of 0 and a nonzero fractional part. An

arithmetic operation for which the resulting true exponent exceeds

2778 is regarded as producing a floating overflow; if the true

exponent 1is less than -177,, the operation is regarded as

producing a floating underflow. A biased exponent of 0 can thus

arise from arithmetic operations as a special case of overflow

(true exponent = —2008). (Recall that only eight bits are

reserved for the biased exponent.) The fractional part of results

obtained from such overflow and underflow is correct.

9.2.3 The Undefined Variable

The undefined variable is defined as any bit pattern with a sign

bit of 1 and a biased exponent of 0. The term "undefined

variable" is used, for historical reasons, to indicate that these

bit patterns are not assigned a corresponding floating point

arithmetic value. Note that the undefined variable is frequently

referred to as -0 elsewhere in this specification.

A design objective of the FPP was to assure that the undefined

variable would not be stored as the result of any floating point

operation 1in a program run with the overflow and underflow

interrupts disabled. This 1is achieved by storing an exact 0 on

overflow and underflow, if the corresponding interrupt is

disabled. This feature, together with an ability to detect

reference to the undefined variable (implemented by the FIOV bit

discussed later), is intended to provide the user with a debugging

aid: if the presence of -0 occurs, it did not result from a

previous floating point arithmetic instruction.

9.2.4 Floating Point Data

Floating point data is stored in words of memory as illustrated in

Figures 9-1 and 9-2.

F FORMAT, FLOATING POINT SINGLE PRECISION

15 00

+2 FRACTION <15:0>

1 | |)| 1 1 I i i J. 1 1 | I |

15 14 07 06 00

MEMORY +0 S EXP FRACT <22:16>

i | | 1 i] i | l 1 1 1 .

MR.3604

Figure 9-1 Single Precision Format

D FORMAT, FLOATING POINT DOUBLE PRECISION

15 00

+6 FRACTION <15:0>

4 1 1 1 1 | 1 1 1 1 1 1 L 1 1

15 00

+4 FRACTION <31:16>

L 1 L [1] 1 i | 1 1 1 i 1 1

15 00

+2 FRACTION <47:32>

1 1 1 1 1 1 1 1 1 L 1 | 1 1]

15 07 06 00

MEMORY +0 S EXP FRACT <54:48>

1 1 1 1 1 1 1 1 1 1 1 ! 1

S =SIGN OF FRACTION

EXP = EXPONENT IN EXCESS 200 NOTATION, RESTRICTED TO 1 TO 377 OCTAL

FOR NON-VANISHING NUMBERS.

FRACTION = 23 BITSIN F FORMAT, 55 BITS IN D FORMAT + ONE HIDDEN

BIT (NORMALIZATION). THE BINARY RADIX POINT ISTO THE LEFT.

MR.-3605

Figure 9-2 Double Precision Format

The FPP provides for conversion of floating point to integer

format and vice-versa. The processor recognizes single precision

integer (I) and double precision integer long (L) numbers, which

are stored in standard 2's complement form. (See Figure 9-3.)

9.3 FLOATING POINT STATUS REGISTER (FPS)

This register provides mode and interrupt control for the floating

point unit and conditions resulting from the execution of the

previous instruction. (See Figure 9-4.)

For the purposes of discussion a set bit = 1, and a reset bit = 0.

Three bits of the FPS register control the modes of operation.

Single/Double: Floating point numbers can be either single or

double precision.

Long/Short: Integer numbers can be 16 bits or 32 bits.

Chop/Round: The result of a floating point operation can be

either chopped or rounded. The term "chop" is used instead of

"truncate" 1in order to avoid confusion with truncation of

series used in approximations for function subroutines.

| FORMAT, INTEGER SINGLE PRECISION

15 14 00

S NUMBER <15:0>

A L 1 1 1 Il 1] i 1 1 | 1 1

L FORMAT, DOUBLE PRECISION INTEGER LONG

15 14 00

MEMORY +0 S NUMBER <30:16>

1 L L 1 1 1 1 1 i 1 1 i 1 L

15 00

+2 NUMBER <15:0>
1 ! 1 1 1 i | L | 1] 1 | 1 1

WHERE S = SIGN OF NUMBER

NUMBER = 15 BITS IN | FORMAT, 31 BITS IN L FORMAT.

MR-3606

Figure 9-3 2's Complement Format

15 14 13 12 11 10 09 08 07 06 05 04 03 02 o1 00

L ", |

FER FID / 4 ;/ FIUV| FiU FIv FIC FD FL FT FN | FZ FV FC
j 2

RESERVED RESERVED

MR-3607

Figure 9-4 Floating Point Status Register

The FPS register contains an error flag and four condition codes

(5 bits): carry, overflow, zero, and negative, which are analogous

to the processor status condition codes.

The FPP recognizes six floating point exceptions:

Detection of the presence of the undefined variable in memory

Floating overflow

Floating underflow

Failure of floating to integer conversion

Attempt to divide by 0

Illegal floating opcode.

For the first four of these exceptions, bits in the FPS register

are available to individually enable and disable interrupts. An

interrupt on the occurrence of either of the last two exceptions

can be disabled only by setting a bit which disables interrupts on

all six of the exceptions, as a group.

Of the thirteen FPS bits, five are set by the FPP as part of the

output of a floating point instruction: the error flag and

condition codes. Any of the mode and interrupt control bits may

be set by the user; the LDFPS instruction is available for this

purpose. These thirteen bits are stored in the FPS register as

shown in Figure 9-4. The FPS register bits are described in Table

9-1.

Table 9-1 FPS Register Bits

Bit Name Description

15 Floating Error The FER bit is set by the FPP if

(FER)

l. Division by zero occurs

2. Illegal opcode occurs

3. Any one of the remaining occurs and

the corresponding interrupt is

enabled.

Note that the above action is

independent of whether the FID bit is

set or clear.

Note also that the FPP never resets the

FER bit. Once the FER bit is set by the

FPP, it can be cleared only by an LDFPS

instruction (note the RESET instruction

does not clear the FER bit). This means

that the FER bit is up to date only if

the most recent floating point

instruction produced a floating point

exception.

14 Interrupt Disable If the FID bit 1is set, all floating

(FID) point interrupts are disabled.

NOTES

1. The FID bit is primarily a

maintenance feature. It should

normally be clear. 1In particular, it

must be clear if one wishes to assure

that storage of -0 by the FPP is

always accompanied by an interrupt.

2. Throughout the rest of this chapter,

it is assumed that the FID bit is

clear in all discussions involving

overflow, underflow, occurrence of

-0, and integer conversion errors.

Table 9-1 FPS Register Bits (Cont)

Bit Name Description

13 Reserved for future DIGITAL use.

12 Reserved for future DIGITAL use.

11 Interrupt on

Undefined Variable

(FIUV)

10 Interrupt on

Underflow

(FIU)

9 Interrupt on

Overflow

(FIV)

An interrupt occurs if FIUV is set and a

-0 is obtained from memory as an operand

of ADD, SUB, MUL, DIV, CMP, MOD, NEG,

ABS, TST, or any LOAD instruction. The

interrupt occurs before execution on the

KEF11-A except on NEG, ABS, and TST for

which it occurs after execution. When

FIUV is reset, -0 can be loaded and used

in any FPP operation. Note that the

interrupt is not activated by the
presence of -0 in an AC operand of an

arithmetic instruction; in particular,

trap on -0 never occurs in mode 0.

The KEFll-A will not store a result of

-0 without the simultaneous occurrence

of an interrupt.

When the FIU bit 1is set, floating

underflow will cause an interrupt. The

fractional part of the result of the

operation causing the interrupt will be

correct. The biased exponent will be

too large by 400,, except for the

special case of 0, which is correct. An

exception is discussed later in the

detailed description of the LDEXP

instruction.

If the FIU bit is reset and if underflow

occurs, no interrupt occurs and the

result is set to exact 0.

When the FIV bit 1s set, floating

overflow will cause an interrupt. The

fractional part of the result of the

operation causing the overflow will be

correct. The biased exponent will be

too small by 4008.

If the FIV is reset and overflow occurs,

there is no interrupt. The FPP returns

exact 0.

Table 9-1 FPS Register Bits (Cont)

DescriptionBit Name

8 Interrupt on Integer

Conversion Error

(FIC)

7 Floating Double

Precision Mode

(FD)

6 Floating Long

Integer Mode

(FL)

5 Floating Chop Mode

(FT)

3 Floating Negative

(FN)

2 Floating Zero

(FZ)

Special cases of overflow are discussed

in the detailed descriptions of the MOD

and LDEXP instruction.

When the FIC bit is set and a conversion

to integer instruction fails, an

interrupt will occur. 1If the interrupt

occurs, the destination is set to 0, and

all other registers are left untouched.

If the FIC bit is reset, the result of

the operation will be the same as

detailed above, but no interrupt will

occur.

The conversion instruction fails if it

generates an integer with more bits than

can fit in the short or 1long integer

word specified by the FL bit (bit 6).

The FD bit determines the precision that

is used for floating point calculations.

When set, double precision is assumed;

when reset, single precision is used.

The FL bit 1is active 1in conversion

between integer and floating point

format. When set, the integer format

assumed is double precision 2's

complement (i.e., 32 bits). When reset,

the integer format is assumed to be

single precision 2's complement (i.e.,

16 bits).

When the FT bit is set, the result of

any arithmetic operation is chopped (or

truncated). When reset, the result is

rounded.

Reserved for future DIGITAL use.

FN 1is set 1if the result of the 1last

operation was negative, otherwise it is

reset.

FZ 1is set if the result of the last

operation was 0, otherwise it is reset.

Table 9-1 FPS Register Bits (Cont)

Bit Name Description

1 Floating Overflow FV is set if the last operation

(FV) resulted 1in an exponent overflow,

otherwise it is reset.

0 Floating Carry FC is set if the last operation resulted
(FC) in a carry of the most significant bit.

This can only occur in floating or

double to integer conversions.

9.4 FLOATING EXCEPTION CODE AND ADDRESS REGISTERS

One interrupt vector is assigned to take care of all floating

point exceptions (location 244,). The six possible errors are

coded in the 4-bit floating exception code (FEC) register as

follows:

2 Floating opcode error

4 Floating divide by O

6 Floating to integer conversion error

8 Floating overflow

10 Floating underflow

12 Floating undefined variable.

The address of the instruction producing the exception 1is stored

in the floating exception address (FEA) register.

The FEC and FEA registers are updated only when one of the

following occurs:

1. Divide by 0

2. Illegal opcode

3. Any of the other four exceptions with the corresponding

interrupt enabled.

This implies that when and only when the FER bit is set by the FPP

are the FEC and FEA registers updated.

NOTES

1. If one of the last four exceptions

occurs with the corresponding

interrupt disabled, the FEC and FEA

are not updated.

2. Inhibition of interrupts by the FID

bit does not inhibit updating of the

FEC and FEA, if an exception occurs.

3. The FEC and FEA do not get updated if

no exception occurs. This means that

the STST (store status) 1instruction

will return current information only

if the most recent floating point

instruction produced an exception.

4, Unlike the FPS register, no

instructions are provided for storage

into the FEC and FEA registers.

9.5 FLOATING POINT PROCESSOR INSTRUCTION ADDRESSING

Floating point processor instructions use the same type of

addressing as the central processor instructions. A source oOr

destination operand 1is specified by designating one of eight

addressing modes and one of eight central processor gdeneral

registers to be used in the specified mode. The modes of

addressing are the same as those of the central processor except

mode 0. In mode 0 the operand is located in the designated

floating point processor accumulator, rather than in a central

processor dgeneral register. The modes of addressing are as

follows.

0 = FPP accumulator

1l = Deferred

2 = Autoincrement

3 = Autoincrement deferred

4 = Autodecrement

5 = Autodecrement deferred

6 = Indexed

7 = Indexed deferred

Autoincrement and autodecrement operate on 1increments and

decrements of 4 for F format and 108 for D format.

In mode 0, the user can make use of all six FPP accumulators

(ACO-AC5) as his source or destination. Specifying FPP

accumulators AC6 or AC7 will result in an illegal opcode trap. 1In

all other modes, which involve transfer of data to or from memory

or the general registers, the user is restricted to the first four

FPP accumulators (ACO0-AC3). When reading or writing a floating

point number from or to memory, the low memory word contains the

most significant word of the floating point number and the high
memory word the least significant word.

9.6 ACCURACY

General comments on the accuracy of the FPP are presented here.

The descriptions of the individual instructions 1include the

accuracy at which they operate. An instruction or operation is

regarded as "exact" if the result is identical to an infinite

precision calculation involving the same operands. The a priori

accuracy of the operands is thus 1ignored. All arithmetic
instructions treat an operand whose biased exponent is 0 as an

exact 0 (unless FIUV is enabled and the operand is -0, in which

case an interrupt occurs). For all arithmetic operations, except

DIV, a 0 operand implies that the instruction is exact. The same

statement holds for DIV if the 0 operand is the dividend. But if

it is the divisor, division is undefined and an interrupt occurs.

For nonvanishing floating point operands, the fractional part is

binary normalized. It contains 24 bits or 56 bits for floating
mode and double mode, respectively. For ADD, SUB, MUL, and DIV,

two guard bits are necessary and sufficient for the general case

to guarantee return of a chopped or rounded result identical to

the corresponding infinite precision operation chopped or rounded
to the specified word 1length. Thus, with two guard bits, a

chopped result has an error bound of one least significant bit
(LSB); a rounded result has an error bound of 1/2 LSB. These

error bounds are realized by the KEFll-A of all instructions.

Both the FPll-A and the FPll-E have an error bound greater than

1/2 LSB for ADD and SUB.

In the rest of this specification, an arithmetic result is called

exact if no nonvanishing bits would be 1lost by chopping. The

first bit lost in chopping is referred to as the "rounding" bit.

The value of a rounded result is related to the chopped result as

follows.

1. If the rounding bit 1is 1, the rounded result 1is the

chopped result incremented by an LSB.

2. If the rounding bit is 0, the rounded and chopped results

are identical.

It follows that:

1. If the result is exact,

rounded value = chopped value = exact value

2. If the result is not exact, its magnitude

a. 1is always decreased by chopping

b. 1is decreased by rounding if the rounding bit is 0

c. 1is increased by rounding if the rounding bit is 1.

Occurrence of floating point overflow and underflow is an error

condition: the result of the calculation cannot be correctly

stored because the exponent is too large to fit into the eight

bits reserved for it. However, the internal hardware has produced
the correct answer. For the case of underflow, replacement of the

correct answer by 0 is a reasonable resolution of the problem for
many applications. This is done by the KEFll-A if the underflow

interrupt is disabled. The error incurred by this action is an

absolute rather than a relative error; it is bounded (in absolute

value) by 2**(-128). There is no such simple resolution for the

case of overflow. The action taken, if the overflow interrupt is

disabled, is described under FIV (bit 9) of Paragraph 9.3.

The FIV and FIU bits (of the floating point status word) provide

the user with an opportunity to implement his own correction of an

overflow or underflow condition. If such a condition occurs and

the corresponding interrupt is enabled, the microcode stores the

fractional part and the low eight bits of the biased exponent.

The interrupt will take place and the user can identify the cause

by examination of the FV (floating overflow) bit of the FEC

(floating exception) register. The reader can readily verify that

(for the standard arithmetic operations ADD, SUB, MUL, and DIV)

the biased exponent returned by the instruction bears the

following relation to the <correct exponent generated by the

microcode.

1. On overflow, it is too small by 4008.

2. On underflow, if the biased exponent is 0, it is correct.

If it is not 0, it is too large by 4008.

Thus, with the interrupt enable, enough information is available

to determine the correct answer. The user may, for example,

rescale his variables (via STEXP and LDEXP) to continue a

calculation. Note that the accuracy of the fractional part is

unaffected by the occurrence of underflow or overflow.

9.7 FLOATING POINT INSTRUCTIONS

Each instruction that references a floating point number can

operate on either single or double precision numbers depending on

the state of the FD mode bit. Similarly, there is a mode bit FL

that determines whether a 32-bit integer (FL = 1) or a 1l6-bit

integer (FL = 0) 1is used 1in conversion between 1integer and

floating point representations. FSRC and FDST operands use

floating point addressing modes (see Figure 9-5); SRC and DST

operands use CPU addressing modes.

DOUBLE OPERAND ADDRESSING

oC FOC AC FSRC,FDST,SRC,DST

J !] !] J]] !] | 1

SINGLE OPERAND ADDRESSING

15 12 1 06 05 00

ocC FOC FSRC, FDST, SRC, DST

l] 1] ! J]]] L] l)

OC = OPCODE =17

FOC = FLOATING OPCODE

AC = FLOATING POINT ACCUMULATOR (ACO-AC3)

FSRC AND FDST USE FPP ADDRESSING MODES

SPC AND DST USE CPU ADDRESSING MODES

MR-3608

Figure 9-5 Floating Point Addressing Modes

Terms Used in Instruction Definitions

XL = largest fraction that can be represented:

1 - 2 ** (-24), FD 0; single precision

l1 - 2 ** (-56), FD l; double precision

XLL = smallest number that is not identically zero =

2 ** (-128) - (2 ** (=127)) * 1/2

XUL = largest number that can be represented =

2 ** (127) * XL

JL = largest integer that can be represented:

2 ** (15) - 1; FL = 0; short integer

2 ** (31) - 1; FL = 1; long integer

ABS (address) absolute value of (address)

EXP (address) = biased exponent of (address)

.LT. = "less than"

.LE. = "less than or equal to"

.GT. = "greater than"

.GE. = "greater than or equal to"

LSB = least significant bit

LDF/LDD

Load Floating/Double 172 (AC+4) FSRC

12 1 08 07 06 05 00

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

Special Comment:

MR-3609

LDF FSRC,AC

AC <-- (FSRC)

FC <-- 0

FV <-- 0

FZ <-- 1 if (AC)

FN <-- 1 if (AC) K< else FN <-- 0

0, else FZ <-- 0

0,

Load single or double precision number into AC.

If FIUV is enabled, trap on -0 occurs before AC

is loaded. However, the condition codes will

reflect a fetch of -0 regardless of the FIUV

bit.

Overflow and underflow cannot occur.

These instructions are exact.

These instructions permit use of -0 1in a

subsequent floating point instruction if FIUV is

not enabled and (FSRC) = -0.

STF/STD

Store Floating/Double 174 (AC)FDST

12 11 08 07 06 05 00

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

‘Special Comment:

MR-3610

STF AC,FDST

(FDST) <-- AC

FC <-- FC

FV <{-- FV

FZ <-- FZ

FN <-- FN

Store single or double precision number from AC.

These instructions do not interrupt if FIUV is

enabled, because the -0, if present, is in AC,

not in memory.

Overflow and underflow cannot occur.

These instructions are exact.

These instructions permit storage of a -0 1in
memory from AC. There are two conditions in

which -0 can be stored in AC of the KEFll-A.
One occurs when underflow or overflow 1is present

and the corresponding interrupt is enabled. A

second occurs when an LDF, LDD, LDCDF, or LDCFD

instruction is executed and the FIUV bit is
disabled.

ADDF/ADDD

Add Floating/Double 172 (AC) FSRC

12 11 08 07 06 05 00

1 1 1 0 1 0 0 AC FSRC

l [1 | | 1 1 | | 1 1

Format: ADDF FSRC,AC

Operation: Let SUM = (AC) + (FSRC).

Condition Codes:

Description:

Interrupts:

If underflow occurs and FIU is not enabled, AC

<-- exact 0.

If overflow occurs and FIV 1is not enabled, AC
<{-- exact 0.

For all others cases, AC <-- SUM.

FC <-- 0

FV <-- 1 if overflow occurs, else FV <-- 0

FZ <-- 1 if (AC) = 0, else FZ <-- 0

FN <-- 1 if (AC) < 0, else FN <-- 0

Add the contents of FSRC to the contents of AC.
The addition is carried out in single or double
precision and is rounded or chopped in
accordance with the values of the FD and FT bits

in the FPS register. The result is stored in AC
except for:

l. Overflow with interupt disabled

2. Underflow with interrupt disabled.

For these exceptional <cases, an exact 0 is

stored in AC.

If FIUV is enabled, trap on -0 in FSRC occurs
before execution.

If overflow or underflow occurs and if the

corresponding interrupt is enabled, the trap
occurs with the faulty result in AC. The
fractional parts are correctly stored. The
exponent part is too small by 400, for overflow.

It is too large by 400, for underflow, except
for the special case of 8, which is correct.

Accuracy:

Special Comment:

Errors due to overflow and underflow are

described above. If neither occurs, then: for

oppositely signed operands with exponent

difference of 0 or 1, the answer returned 1is

exact if a loss of significance of one or more

bits can occur. Note that these are the only

cases for which 1loss of significance of more

than one bit can occur. For all other cases the

result is inexact with error bounds of:

1. LSB in chopping mode with either single or

double precision

2. 1/2 LSB in rounding mode with either single

or double precision.

The undefined variable -0 can occur only in

conjunction with overflow or underflow. It will

be stored in AC only if the corresponding

interrupt is enabled.

SUBF/SUBD

Subtract Floating/Double 173 (AC) FSRC

12 1 08 07 06 05 00

Format:

Operation:

Condition Codes:

Description:

Interrupts:

1 1 1 0 1 1 0 AC FSRC

| 1 1 L i i 1 | i | L

SUBF FSRC,AC

Let DIFF = (AC) - (FSRC).

If underflow occurs and FIU is not enabled, AC

<{-- exact 0.

If overflow occurs and FIV is not enabled, AC

<-- exact 0.

For all others cases, AC <-- DIFF.

FC <-- 0

FV <-- 1 if overflow occurs, else FV <-- 0

FZ <-- 1 if (AC) = 0, else FZ <-- 0

FN <-- 1 if (AC) < 0, else FN <-- 0

Subtract the contents of FSRC from the contents

of AC. The subtraction is carried out in single
or double precision and is rounded or chopped in

accordance with the values of the FD and FT bits

in the FPS register. The result is stored in AC

except for:

l. Overflow with interrupt disabled

2. Underflow with interrupt disabled.

For these exceptional cases, an exact 0 1is

stored in AC.

If FIUV is enabled, trap on -0 in FSRC occurs

before execution.

If overflow or wunderflow occurs and if the

corresponding interrupt is enabled, the trap

occurs with the faulty result in AC. The
fractional parts are correctly stored. The
exponent part is too small by 400, for overflow.

It is too large by 400, for underflow, except
for the special case of 6, which is correct.

9-17

Accuracy:

Special Comment:

Errors due to overflow and underflow are

described above. If neither occurs, then: for

like signed operands with exponent difference of

0 or 1, the answer returned is exact if a loss

of significance of one or more bits can occur.

Note that these are the only cases for which

loss of significance of more than one bit can

occur. For all other cases the result |is

inexact with error bounds of:

1. LSB in chopping mode with either single or

double precision

2. 1/2 LSB in rounding mode with either single

or double precision.

The undefined variable -0 can occur only 1in

conjunction with overflow or underflow. It will

be stored in AC only if the corresponding

interrupt is enabled.

NEGF/NEGD

Negate Floating/Double 1707 FDST

15 12 11 06 05 00

1 1 1 0 0 0 1 1 1 FDST

i 1 1 i L L i i 1 1 i] 1

Format: NEGF FDST

Operation: (FDST) <-- (FDST) if (FDST) <> 0, else (FDST)

<{-- exact 0.

Condition Codes: FC <-- 0

FV <-- 0

Description:

Interrupts:

Accuracy:

Special Comment:

FZ <-- 1 if (FDST) = 0, else FZ <-- 0

FN <-- 1 if (FDST) < 0, else FN <-- 0

Negate single or double precision number, store

result in same location (FDST).

If FIUV is enabled, trap on -0 occurs after

execution.

Overflow and underflow cannot occur.

These instructions are exact.

If a -0 is present in memory and the FIUV bit is

enabled, then the KEF1ll-A stores an exact 0 in

memory. The condition codes reflect an exact

0 (FZ <--1).

MULF/MULD

Multiply Floating/Double 171 (AC) FSRC

12 11 08 07 06 05 00

Format:

Operation:

Condition Codes:

Description:

Interrupts:

MR-3614

MULF FSRC,AC

Let PROD = (AC) * (FSRC).

If underflow occurs and FIU is not enabled, AC

<-- exact 0.

If overflow occurs and FIV 1is not enabled, AC

<-- exact 0.

For all others cases, AC <-- PROD.

FC <-- 0

FV <-- 1 if overflow occurs, else FV <-- 0

FZ <-- 1 if (AC) = 0, else FZ <-- 0

FN <-- 1 if (AC) < 0, else FN <-- 0

If the biased exponent of either operand 1is

0, (AC) <-- exact 0. For all other cases PROD

is generated to 32 bits for floating mode and 64

bits for double mode. The product is rounded or

chopped for FT = 0 and 1, respectively, and 1is

stored in AC except for:

1. Overflow with interrupt disabled

2. Underflow with interrupt disabled.

For these exceptional cases, an exact 0 1is

stored in AC.

If FIUV is enabled, trap on -0 in FSRC occurs

before execution.

If overflow or underflow occurs and 1f the

corresponding interrupt is enabled, the trap

occurs with the faulty result 1in AC. The

fractional parts are correctly stored. The

exponent part is too small by 400, for overflow.

It is too large by 400, for uné%rflow, except
for the special case of 6, which is correct.

Accuracy:

Special Comment:

Errors due to overflow and underflow are

described above. If neither occurs, the error
incurred is bounded by 1 LSB in chopping mode
and 1/2 LSB in rounding mode.

The wundefined variable -0 can occur only in

conjunction with overflow or underflow. It will
be stored in AC only if the corresponding
interrupt is enabled.

DIVF/DIVD

Divide Floating/Double 174 (AC+4)FSRC

12 I 08 07 06 05 00

Format:

Operation:

Condition Codes:

Description:

MR-3615

DIVF FSRC,AC

If EXP(FSRC) = 0, (AC) {==- (AC) and the

instruction is aborted.

If EXP(AC) = 0, (AC) <-- exact 0.

For all other cases, let QUOT = (AC)/(FSRC).

If underflow occurs and FIU is not enabled, AC

<-- exact 0.

If overflow occurs and FIV is not enabled, AC

<-- exact 0.

For all others cases, AC <-- QUOT.

FC <-- 0

FV <-- 1 if overflow occurs, else FV <-- 0

FZ <-— 1 if (AC) = 0, else FZ <-- 0

FN <-- 1 if (AC) < 0, else FN <-- 0

If either operand has a biased exponent of 0, it

is treated as an exact O. For FSRC this would

imply division by 0; in this <case the

instruction is aborted, the FEC register 1is set

to 4 and an interrupt occurs. Otherwise the

guotient 1is developed to single or double

precision with two guard bits for correct

rounding. The quotient is rounded or chopped in

accordance with the values of the FD and FT bits

in the FPS register. The result is stored in

the AC except for:

1. Overflow with interrupt disabled

2. Underflow with interrupt disabled.

For these exceptional cases, an exact 0 is

stored in AC.

22[X
e) {

Interrupts:

Accuracy:

Special Comment:

If FIUV 1is enabled, trap on -0 in FSRC occurs

before execution.

If (FSRC) = 0, interrupt traps on attempt to

divide by 0.

If overflow or underflow occurs and 1if the

corresponding interrupt 1is enabled, the trap

occurs with the faulty result in AC. The

fractional parts are <correctly stored. The

exponent part is too small by 400, for overflow.

It is too large by 400, for uné%rflow, except
for the special case of 8, which is correct.

Errors due to overflow and underflow are

described above. If none of these occurs, the

error in the quotient will be bounded by 1 LSB

in chopping mode and by 1/2 LSB in rounding

mode.

The undefined variable -0 can occur only in

conjunction with overflow or underflow. It will

be stored in AC only if the corresponding

interrupt is enabled.

CMPF/CMPD

Compare Floating/Double 173 (AC+4)FSRC

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

Special Comment:

MR-3616

CMPF FSRC,AC

(FSRC) =-- (AC)

FC <-- 0

FV <-- 0

FZ <-- 1 if (FSRC) = 0, else FZ <-- 0

FN <-- 1 if (FSRC) < 0, else FN <-- 0

Compare the contents of FSRC with the

accumulator. Set the appropriate floating point

condition codes. FSRC and the accumulator are

left unchanged except as noted below.

If FIUV 1is enabled, trap on -0 occurs before

execution.

These instructions are exact.

An operand which has a biased exponent of 0 is

treated as if it were an exact 0. In this case

where both operands are 0, the FPP will store an

exact 0 in AC.

MODF /MODD

Multiply and Separate Integer

and Fraction Floating/Double 171 (AC+4) FSRC

15 12 11 08 07 06 05 00

1 1 1 0 0 1 1 AC FSRC

1 1 L 1 1 i 1 L 1 L 1

Format: MODF FSRC ,AC

Description

and Operation:

This instruction generates the product of its

two floating point operands, separates the

product into integer and fractional parts and

then stores one or both parts as floating point

numbers.

Let PROD = (AC) * (FSRC) so that in

Floating point: ABS (PROD) = (2 ** K) * f

where

1/2 .LE. £ .LT. 1 and

EXP (PROD) = (200 + K) octal

Fixed point binary: PROD = N + g with

n INT (PROD) = the integer part of PROD and

g = PROD - INT(PROD) = the fractional part of

PROD with 0 .LE. F .LT. 1.

Both N and f have the same sign as PROD. They

are returned as follows:

If AC is an even-numbered accumulator (0 or

2), N is stored in AC+l1] (1 or 3), and f is

stored in AC.

If AC is an odd-numbered accumulator, N 1is

not stored and g is stored in AC.

The two statements above can be combined as

follows:

N is returned to ACvl and g is returned to

AC, where v means OR.

Five special cases occur, as indicated in the

following formal description with L = 24 for

floating mode and L = 56 for double mode.

1. If PROD overflows and FIV is enabled, ACvl

{-- N, chopped to L bits, AC <-- exact O

Note that EXP(N) is too small by 4008 and

that -0 can get stored in ACvl.

If FIV is not enabled, ACvl <-- exact 0, AC

<-- exact 0, and -0 will never be stored.

If 2 ** [, .LE. ABS(PROD) and no overflow,

ACvl <-- N, chopped to L bits, AC <-- exact 0

The sign and EXP of N are correct, but

low-order bit information, such as parity, is

lost.

If 1 .LE. ABS(PROD) .LT. 2 ** I, ACvl <-- N,

AC <-- g

The integer part N is exact. The fractional

part g is normalized, and chopped or rounded

in accordance with FT. Rounding may cause a

return of +/-unity for the fractional part.

For L = 24, the error in g 1is bounded by 1

LSB in chopping mode and by 1/2 LSB 1in

rounding mode. For L = 56, the error in g

increases from the above 1limits as ABS(N)

increases above 8 because only 64 bits of

PROD are generated.

If 2 ** p .LE. ABS(N) .LT. 2 ** (p+l), with

p>7, the low order p-7 bits of g may be in

error.

If ABS(PR)D) .LT. 1 and no underflow, ACvl

<-- exact 0 and AC <-- g.

There is no error in the integer part. The

error in the fractional part is bounded by 1
LSB in chopping mode and 1/2 LSB in rounding

mode. Rounding may cause a return of

+/-unity for the fractional part.

If PROD underflows and FIU is enabled, ACvl

<{(-- exact 0 and AC <-- g.

Errors are as in case 4, except that EXP (AC)

will be too large by 400g (if EXP = 0, it is

correct). Interrupt will occur and -0 can be

stored in AC.

Condition Codes:

Interrupts:

Accuracy:

Applications:

FC

FV

FZ

FN

If

If FIU is not enabled, ACvl <-- exact 0 and

AC <-- exact 0.

For this case the error in the fractional

part is less than 2 ** (-128).

<-=- 0

<-— 1 if PROD overflows, else FV <-- 0

<=- 1 if (AC) = 0, else FZ <-- 0

<-- 1 if (AC) < 0, else FN <-- 0

FIUV 1is enabled, trap on -0 in FSRC occurs

before execution.

Overflow and underflow are discussed above.

Discussed above.

1. Binary to decimal <conversion of a proper

fraction. The following algorithm, using

MOD, will generate decimal digits D(1), D(2)

... from left to right.

Initialize: I <-- 0;

X <-- number to be converted;

ABS (X) < 1;

While X <> 0 do

Begin PROD <-- X * 10;

I <-—- 1 + 1;

D(I) <=- INT(PROD);

X <-- PROD -- INT (PROD) ;

End;

This algorithm is exact. It is case 3 in the

description because the number of

nonvanishing bits in the fractional part of

PROD never exceeds L, and hence neither

chopping nor rounding can introduce error.

To reduce the argument of a trigonometric

function.

ARG * 2/PI = N + g. The low two bits of N

identify the quadrant, and g is the argument

reduced to the first quadrant. The accuracy

of N+g is limited to L bits because of the
factor 2/PI. The accuracy of the reduced

argument thus depends on the size of N.

To evaluate the exponential function e ** x,

obtain x * (log e base 2) = N + g,

then e ** x = (2 ** N) * (e ** (g * 1ln 2)).

The reduced argument is g * 1n2 < 1 and the

factor 2 ** N is an exact power of 2, which

may be scaled in at the end via STEXP, ADD N

to EXP and LDEXP. The accuracy of N+g is

limited to L bits because of the factor (log

e base 2). The accuracy of the reduced

argument thus depends on the size of N.

LDCDF/LDCFD

Load and Convert from Double to Floating

and from Floating to Double 177 (AC+4) FSRC

12 LA 08 07 06 05 00

Format:

Operation:

Condition Codes:

Description:

Interrupts:

MR-3618

LDCDF FSRC ,AC

If EXP(FSRC) = 0, AC <—-- exact 0.

I1If FD = 1, FT = 0, FIV = 0 and rounding causes

overflow, AC <-- exact 0.

In all other cases, AC <-- Cxy(FSRC), where Cxy

specifies conversion from floating mode x to

floating mode vy.

x =D, y=F if FD = 0 (single) LDCDF

y =F, y =D if FD = 1 (double) LDCFD

FC <-- 0

FV <-- 1 if conversion produces overflow, else

FV <-- 0

FZ <-- 1 if (AC) = 0, else FZ <-- 0

FN <-- 1 if (AC) < O, else FN <-- 0

If the current mode is floating mode (FD = 0),

the source is assumed to be a double precision

number and is converted to single precision. If

the floating chop bit (FT) is set, the number is

chopped, otherwise the number is rounded.

If the current mode is double mode (FD = 1), the

source 1is assumed to be a single precision

number and is loaded left-justified in AC. The

lower half of AC is cleared.

If FIUV is enabled, trap on -0 occurs before

execution. However, the condition codes will

reflect a fetch of -0 regardless of the FIUV

bit.

Overflow cannot occur for LDCFD.

A trap occurs if FIV is enabled, and if rounding

with LDCDF causes overflow. AC <-- overflowed

result. This result must be +0 or -0.

Underflow cannot occur.

Accuracy: LDCFD 1is an exact instruction. Except for

overflow, described above, LDCDF incurs an error

bounded by 1 LSB in chopping mode and by 1/2 LSB
in rounding mode.

STCFD/STCDF

Store and Convert from Floating to Double

and from Double to Floating 176 (AC) FDST

12 " 08 07 06 05 00

1 1 1 0 0 AC FDST

1 L 1 I 1 J J |]

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

MR-3619

STCFD AC,FDST

If (AC) = 0, (FDST) <-- exact 0.

If FD = 1, FT = 0, FIV = 0 and rounding causes

overflow, (FDST) <-- exact 0.

In all other cases, (FDST) <-- Cxy(AC), where

Cxy specifies conversion from floating mode x to

floating mode vy.

x =F, y=D if FD = 0 (single) STCFD

Xx =D, y=F if FD = 1 (double) STCDF

FC <-- 0

FV <-- 1 if conversion produces overflow, else

FV <-- 0

FZ <-- 1 if (AC) = 0, else FZ <-- 0

FN <-- 1 if (AC) < O, else FN <-- 0

If the current mode 1is single precision, the

accumulator is stored left-justified in FDST and

the lower half is cleared.

If the current mode is double precision, the

contents of the accumulator are converted to

single precision, chopped or rounded depending

on the state of FT, and stored in FDST.

Trap on -0 will not occur even 1if FIUV 1is

enabled because FSRC 1is an accumulator.

Underflow cannot occur.

Overflow cannot occur for STCFD.

A trap occurs if FIV is enabled, and if rounding

with STCDF causes overflow. (FDST) {—--

overflowed result. This must be +0 or -0.

STCFD 1is an exact instruction. Except for

overflow, described above, STCDF incurs an error

bounded by 1 LSB in chopping mode and by 1/2 LSB

in rounding mode.

LDCIF/LDCID/LDCLF/LDCLD

Load and Convert Integer or Long Integer

to Floating or Double Precision 177 (AC) SRC

15 12 1M 08 07 06 05 00

1 1 1 1 1 1 1 0 AC SRC

L 1 1 l 1 1 1 1 1 1 I L

Format: LDCIF SRC,AC

Operation: AC <-- Cjx(SRC), where Cjx specifies conversion

from integer mode j to floating mode vy.

I if FL

F if FD

0, 1

0, 1

L if FL

D if FD
J
X

j
X

Condition Codes: FC <-- 0

FV <-- 0

FZ <-- 1 if (AC) = 0, else FZ <-- 0

FN <-- 1 if (Ac) < 0, else FN <-- 0

Description: Conversion 1is performed on the contents of SRC

from a 2's complement integer with precision j

to a floating point number of precision x. Note

that j and x are determined by the state of the

mode bits FL and FD.

If a 32-bit integer 1is specified (L mode) and

(SRC) has an addressing mode of 0 or immediate

addressing mode is specified, the 16 bits of the

source register are left-justified and the

remaining 16 bits loaded with O0s before

conversion.

In the case of LDCLF, the fractional part of the

floating point representation 1is chopped or

rounded to 24 bits for FT = 1 and O

respectively.

Interrupts: None; SRC is not floating point, so trap on -0

cannot occur.

Accuracy: LDCIF, LDCID, and LDCLD are exact instructions.

The error incurred by LDCLF is bounded by 1 LSB

in chopping mode and by 1/2 LSB in rounding

mode.

STCFI/STCFL/STCDI/STCDL

Store and Convert from Floating or Double

to Integer or Long Integer 175 (AC+4)DST

15 12 " 08 07 06 05 00

1 1 1 1 1 0 1 1 AC ST

1 1 L 1 | J 1 1 1 L 1 L

Format: STCFI AC,DST

Operation: (DST) <-- Cxj(AC) if -JL-1 < Cxj(AC) < JL+1,
else (DST) <-- 0, where Cjx specifies conversion

from floating mode X to integer mode 7j.

L if FL

D if FD

I if FL

F if FD
J 0, 3
X 0, x

1

1

4

[

JL. is the largest integer.

2 ** 15 - 1 for FL 0

2 ** 32 - 1 for FL 1

Condition Codes: C, FC <-- 0 if -JL-1 < Cxj(AC) < JL+1, else C,

FC <--1

V, FV <-- 0

Z, Fz <-- 1 if (DST) = 0, else 2, FZ <-- 0

N, FN <-- 1 if (DST) < 0, else N, FN <-- 0

Description: Conversion is performed from a floating point

representation of the data in the accumulator to

an integer representation.

I1f the conversion is to a 32-bit word (L mode)

and an addressing mode of 0 or 1immediate

addressing mode 1is specified, only the most

significant 16 bits are stored in the

destination register.

If the operation 1is out of the 1integer range

selected by FL, FC is set to 1 and the contents

of the DST are set to 0.

Numbers to be converted are always chopped

(rather than rounded) before conversion. This

is true even when the chop mode bit FT 1is

cleared in the FPS register.

Interrupts: These instructions do not interrupt 1if FIUV 1is

enabled, because the -0, if present, is in AC,

Accuracy:

not in memory.

If FIC is enabled, trap on conversion failure

will occur.

These instructions store the integer part of the

floating point operand, which may not be the

integer most closely approximating the operand.

They are exact if the integer part is within the

range implied by FL.

LDEXP

Load Exponent 176 (AC+4)SRC

12 L 08 07 06 05 00

Format:

Operation:

Condition Codes:

Description:

Interrupts:

MR.3622

LDEXP SRC,AR

Note: 177 and 200, appearing below, are octal

numbers.

If -200 < SRC < 200, EXP(AC) <-- SRC + 200 and

the rest of AC is unchanged.

If (SRC) > 177 and FIV is enabled, EXP(AC) <--

[(SRC) + 200]1<7:0>. »

If (SRC) > 177 and FIV is disabled, AC <-- exact

0.

If <SRC) < =177 and FIU is enabled, EXP(AC) <--

[(SRC) + 200])<7:0>.

If (SRC) < =177 and FIU is disabled, AC <--

exact O.

FC <-- 0

FV <-- 1 if (SRC) > 177, else FV <-- 0

FZ <-- 1 if (AC) = 0, else FZ <-- 0

FN <-- 1 if (AC) < 0, else FN <-- 0

Change AC so that its unbiased exponent = (SRC).

That 1is, convert (SRC) from 2's complement to

excess 200 notation and insert it in the EXP

field of AC. This 1s a meaningful operation

only if ABS(SRC) LE 177.

If SRC > 177, the result is treated as overflow.

If SRC < =177, the result 1is treated as

underflow. Note that the KEF1ll-A does not treat

these abnormal conditions the same as the FPI11C

and FPl11B but it does treat them the same as the

FP11A and FPllE.

No trap on -0 in AC occurs, even 1if FIUV is

enabled.

If SRC > 177 and FIV 1is enabled, trap on

Accuracy:

overflow will occur.

If SRC < =177 and FIU 1is enabled, trap on

underflow will occur.

Errors due to overflow and underflow are

described above. If EXP(AC) = 0 and (SRC) <>

-200, AC changes from a floating point number

treated as 0 by all floating arithmetic
operations to a non-0 number. This is because

the insertion of the "hidden" bit 1in the

microcode implementation of arithmetic

instructions is triggered by a nonvanishing

value of EXP.

For all other cases, LDEXP implements exactly

the transformation of a floating point number (2

** Ky * f into (2 ** (SRC)) * f where 1/2 .LE.

ABS (f) .LT. 1.

STEXP

Store Exponent 175 (AC)DST

15 12 1M 08 07 06 05 00

1 1 1 1 1 0 1 0 AC DST

i Il 1 1 | i | 1 1 L 1 1

Format: STEXP AC,DST

Operation: (DST) <-- EXP (AC) —2008

Condition Codes: C, FC <-- 0

V, FV <-- 0

Z, FZ <-- 1 if (DST) = 0, else Z, FZ <-- 0

N, FN <-- 1 if (DST) < 0, else N, FN <-- 0

Description: Convert AC's exponent from excess 200 notation

to 2's complement and store the result in DST.

Interrupts: This instruction will not trap on -0.

Overflow and underflow cannot occur.

Accuracy: This instruction is always exact.

Clear Floating/Double

CLRF/CLRD

Format:

Operation:

Condition Codes:

1704 FDST

15 12 1 06 05 00

1 1 1 0 0 0 1 0 0 FDST

l 1 1 | 1 ! | | 1 1 i 1

CLRF FDST

(FDST) <-- exact 0

FC <-- 0

FV <-- 0

FZ <-- 1

FN <-- 0

Description:

Interrupts:

Accuracy:

Set FDST to 0. Set FZ condition code and clear

other condition code bits.

No interrupts will occur.

Overflow and underflow cannot occur.

These instructions are exact.

ABSF/ABSD

Make Absolute Floa

Format:

Operation:

Condition Codes:

ting/Double 1706 FDST

15 12 B! 06 05 00

1 1 1 1 0 0 0 1 1 0 FDST

i J | 1 H 1 | | 1 | 1 1 i

ABSF FDST

If (FDST) < 0, (FDST) <-- - (FDST).

If EXP(FDST) = 0, (FDST) <-- exact 0.

For all other cases, (FDST) <-- (FDST).

FC <-- 0

FV <-- 0

FZ <-- 1 if (FDST) = 0, else FzZ <-- 0

FN <-- 0

Description:

Interrupts:

Accuracy:

Special Comment:

Set the contents of FDST to its absolute value.

If FIUV 1is -0 occurs after

execution.

enabled, trap on

Overflow and underflow cannot occur.

These instructions are exact.

If a -0 is present in memory and the FIUV bit is

enabled, then an exact 0 is stored 1in memory.

The condition codes reflect an exact 0 (FZ <--

l)o

TSTF/TSTD

Test Floating/Double 1705 FDST

12 1 06 05 00

1 0 0 0 1 0 1 FDST

| L | 1 J L ! 1] L

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

MR-3626

TSTF FDST

(FDST)

FC <-- 0

FV <-- 0

FZ <-- 1 if (FDST) = 0, else FZ <-- 0

FN <-- 1 if (FDST) < 0, else FN <-- 0.

Set the FPP condition codes according to the

contents of FDST.

If FIUV 1is set, trap on -0 occurs after

execution.

Overflow and underflow cannot occur.

These instructions are exact.

SETF

Set Floating Mode 170001

15 12 11 00

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1

1 1])| |] i | 1 1 | i 1 1

MR-3627

Format: SETF

Operation: FD <-- 0

Description: Set the FPP in single precision mode.

SETD

Set Floating Double Mode 170011

15 12 1" 00

1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 1

L | Il 1 1 1 1 1 1 L L i 1 L

Format: SETD

Operation: FD <-- 1

Description: Set the FPP in double precision mode.

SETI

Sett Integer Mode 177002

15 12 M 00

1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0

d 1 1 1 i 1 | | 1 1 1 i 1 L

Format: SETI

Operation: FL <-- 0

Description: Set the FPP for Short Integer Data.

SETL

Set Long Interger Mode 177012

15 12 11 00

1 1 1 1 0 0 0 0 0 0 0 0 1 0 1 0

1 1 1 1 L 1 | I} | 1 1 1 1 L

Format: SETL

Operation: FL <--1

Description: Set the FPP for long integer data.

9-45

LDFPS

Load FPP's Program Status 1701 SRC

Format:

Operation:

Description:

Special Comment:

MR-3631

LDFPS SRC

FPS <-- (SRC)

Load FPP's status register from SRC.

The user 1is cautioned not to use bits 13, 12,
and 4 for his own purposes, since these bits are
not recoverable by the STFPS instruction.

\Y
e) i46

STFPS

Store FPP's Program Status 1702 DST

15 12 11 06 05 00

1 0 0 0 0 1 0 DST

1 | | 1 I 1 | | 1 L

Format:

Operation:

Description:

Special Comment:

MR-3632

STFPS DST

(DST) <-- FPS

Store FPP's status register in DST.

Bits 13, 12, and 4 are loaded with 0. All other

bits are the corresponding bits in the FPS.

STST

Store FPP'g 1703 DST

1 0 0 0 0 1 1 DST

. L) J 1] 1 | | J

Format:

Operation:

Description:

MR-3633

STST DST

(DST) <-- FEC

(DST + 2) <-- FEA

Store the FEC and FEA in DST and DST+2.

NOTES

1. If the destination mode specifies a general

register or immediate addressing, only the

FEC is saved.

2. The information in these registers is current

only 1f the most recently executed floating

point instruction caused a floating point

exception.

Copy Floating Condition Codes

CFCC

170000

00

0 0 0

Format: CFCC

Operation: C <-- FC

V <-- FV

Z <——- F2Z

N <-- FN

Description: Copy the

condition codes.

FPP condition

49

MR-3634

into the CPU's

CHAPTER 10

PROGRAMMING TECHNIQUES

10.1 INTRODUCTION

The KDF11-AA offers a great deal of programming flexibility and
power . Utilizing the combination of the instruction set, the

addressing modes, and the programming techniques makes it possible

to develop new software or to utilize old programs effectively.

The programming techniques in this chapter show the capabilities

of the KDF11-AA. The techniques discussed are:
postition-independent coding (PIC), stacks, subroutines,

interrupts, reentrancy, coroutines, recursion, processor traps,

programming peripherals, and conversion.

10.2 POSITION-INDEPENDENT CODE

The output of a MACRO-11 assembly is a relocatable object module.

The task builder or linker binds one or more modules together to

create an executable task image. Once built, a task can only be

loaded and executed at the virtual address specified at link time.
This is because the linker has had to modify some instructions to

reflect the memory locations in which the program is to run. Such
a body of code is considered position-dependent (i.e., dependent
on the virtual addresses to which it was bound).

The KDF11-AA processor offers addressing modes that make it

possible to write instructions that are not dependent on the

virtual addresses to which they are bound. This type of code is

termed position-independent and can be loaded and executed at any

virtual address. Position-independent code can improve system

efficiency, both in use of virtual address space and in

conservation of physical memory.

In multiprogramming systems like RSX-11M, it is important that

many tasks be able to share a single physical copy of common code;
for example, a library routine. To make the optimum use of a

task's virtual address space, shared code should be position-
independent. Code that 1is not position-independent can also be
shared, but it must appear in the same virtual locations in every

task using it. This restricts the placement of such code by the

task builder and can result in the loss of virtual addressing
space.

10.2.1 Use of Addressing Modes in the Construction of

Position-Independent Code

The construction of position-independent code is closely linked to

the proper use of addressing modes. The remainder of this
explanation assumes the reader is familiar with the addressing

modes described in Chapter 6.

10-1

All addressing modes involving only register references are

position-independent. These modes are as follows.

R register mode

(R) register deferred mode

(R)+ autoincrement mode

@*R) + autoincrement deferred mode

- (R) autodecrement mode

@- (R) autodecrement deferred mode

When employing these addressing modes, the user 1is guaranteed

position independence, providing the contents of the registers

have been supplied independent of a particular virtual memory

location.

The relative addressing modes are position-independent when a

relocatable address is referenced from a relocatable instruction.

These modes are as follows.

A relative mode

@A relative deferred mode

Relative modes are not position-independent when an absolute

address (that is a nonrelocatable address) is referenced from a

relocatable instruction. In this case, absolute addressing (i.e.,

@#A) may be employed to make the reference position independent.

Index modes can be either position-independent or position-

dependent, according to their use in the program. These modes are

as follows.

X (R) index mode

@X (R) index deferred mode

If the base, X, is an absolute value (e.g., a control block

offset), the reference is position-independent. The following is

an example.

MOV 2(SpP),R0O ; POSITION-INDEPENDENT

N=4

MOV N(SP) ,R0 ; POSITION-INDEPENDENT

If, however, X 1is a relocatable address, the reference 1is

position-dependent, as the following example shows.

CLR ADDR (R1) ; POSITION-DEPENDENT

Immediate mode can be either position-independent or not,

according to its use. Immediate mode references are formatted as

follows.

#N immediate mode

10-2

When an absolute expression defines the value of N, the code 1is

position-independent. When a relocatable expression defines N,

the code 1is position-dependent. That 1is, immediate mode

references are position-independent only when N is an absolute

value.

Absolute mode addressing is position-independent only 1in those

cases where an absolute virtual 1location is being referenced.

Absolute mode addressing references are formatted as follows.

@#A absolute mode

An example of a position-independent absolute reference is a

reference to the processor status word (PS) from a relocatable

instruction, as in this example.

MOV @#PSW,RO ;sRETRIEVE STATUS AND PLACE IN REGISTER

10.2.2 Position-Dependent/Position-Independent Comparative

Example

The RSX-11 1library routine, PWRUP, 1is a FORTRAN-callable

subroutine. to establish or remove a user power failure

asynchronous system trap (AST) entry point address. Imbedded

within the routine is the actual AST entry point which saves all

registers, effects a call to the user-specified entry point,

restores all registers on return, and executes an AST exit

directive. The following examples are excerpts from this routine.

The first example has been modified to illustrate

position-dependent references. The second example 1is the

position-independent version.

Position-Dependent Code

PWRUP::

CLR - (SP) ;sASSUME SUCCESS

CALL .X.PAA ; PUSH (SAVE)

;sARGUMENT ADDRESSES

;sONTO STACK

.WORD 1l.,$PSW ;sCLEAR PSW, AND
:SET R1=R2SP

MOV SOTSV,R4 :GET OTS IMPURE

;AREA POINTER

MOV (SP) +,R2 +:GET AST ENTRY

; POINT ADDRESS

BNE 108 +IF NONE SPECIFIED,

;SPECIFY NO POWER

CLR - (SP) s RECOVERY AST SERVICE

BR 208 ;

10S: ;

MOV R2,F.PF (R4) ;SET AST ENTRY POINT

MOV #BA,- (SP) : PUSH AST SERVICE

: ADDRESS

10-3

20S$: ;

CALL . X.EXT ; ISSUE DIRECTIVE, EXIT.

.BYTE 109.,2. ;

BA: MOV RO,-(SP) ; PUSH (SAVE) RO

MOV R1,-(SP) ; PUSH (SAVE) R1

MOV R2,-(SP) ; PUSH (SAVE) R2

Position-Independent Code

PWRUP::

CLR - (SP) ;ASSUME SUCCESS

CALL .X.PAA ; PUSH ARGUMENT

; ADDRESSES ONTO

; STACK

.WORD l.,SPSW ;CLEAR PSW, AND

;SET R1=R2-SP.

MOV @#50TSV,R4 ;GET OTS IMPURE

;AREA POINTER

MOV (SP)+,R2 ;GET AST ENTRY

; POINT ADDRESS

BNE 108 ;IF NONE SPECIFIED,

;SPECIFY NO POWER

CLR -(5P) ; RECOVERY AST SERVICE

BR 208

10S$: :

MOV R2,F.PF (R4) ;SET AST ENTRY POINT

MOV PC,-(SP) ; PUSH CURRENT LOCATION

ADD #BA-., (SP) ;COMPUTE ACTUAL LOCATION

; OF AST

20S:

CALL . X.EXT ; ISSUE DIRECTIVE, EXIT.

.BYTE 109.,2.

;ACTUAL AST SERVICE ROUTINE:

; 1) SAVE REGISTERS

2) EFFECT A CALL TO SPECIFIED SUBROUTINE

3) RESTORE REGISTERS

4) ISSUE AST EXIT DIRECTIVE

L
0

~
e

~e
o

~e
o

~
o

3
> MOV RO,-(SP) ; PUSH (SAVE) RO

MOV R1,-(SP) ; PUSH (SAVE) RI1

MOV R2,-(SP) ; PUSH (SAVE) R2

The position-dependent version of the subroutine contains a

relative reference to an absolute symbol (SOTSV) and a literal

reference to a relocatable symbol (BA). Both references are bound

by the task builder to fixed memory locations. Therefore, the

routine will not execute properly as part of a resident library if

its location in wirtual memory is not the same as the 1location

specified at 1link time.

10-4

In the position-independent version, the reference to S$OTSV has

been changed to an absolute reference. 1In addition, the necessary

code has been added to compute the virtual location of BA based

upon the value of the program counter. In this case, the value 1is

obtained by adding the value of the program counter to the fixed

displacement between the current location and the specified

symbol. Thus, execution of the modified routine is not affected

by its location in the image's virtual address space.

10.3 STACKS

The stack is part of the basic design architecture of the

KDF11-AA. It is an area of memory set aside by the programmer or

by the operating system for temporary storage and linkage. It is

handled on a LIFO (last-in/first-out) basis, where items are

retrieved in the reverse of the order in which they were stored.

A stack starts at the highest location reserved for it and expands

linearly downward to a lower address as items are added to the

stack.

It is not necessary to keep track of the actual 1locations into

which data is being stacked. This is done automatically through a

stack pointer. To keep track of the last item added to the stack,

a general register is used to store the memory address of the last

item in the stack. Any register except register 7 (the PC) may be

used as a stack pointer under program control; however,

instructions associated with subroutine 1linkage and interrupt

service automatically use register 6 as a hardware stack pointer.

For this reason, R6 1is frequently referred to as the system SP.

Stacks may be maintained in either full word or byte units. This

is true for a stack pointed to by any register except R6, which

must be organized 1in full word units only. Byte stacks (Figure

10-1) require instructions capable of operating on bytes rather

than full words.

10.3.1 Pushing Onto a Stack

Items are added to a stack using the autodecrement addressing

mode. Adding items to the stack 1is called PUSHing, and 1is

accomplished by the following instructions.

MOV Source,-(SP) +MOV contents of source word

;onto the stack

or

MOVB Source, - (SP) ;MOVB source byte onto

;the stack

Data is thus PUSHed onto the stack.

10.3.2 Popping From a Stack

Removing data from the stack is called a POP (popping from the

stack) . This operation is accomplished using the autoincrement

mode.

10-5

MOV (SP)+,Destination

MOVB (SP)+,Destination

After an item has been popped,

free and available for other use.

last-used location,

:MOV destination word

;off the stack

or

;MOVB destination byte

;off the stack

locations. (See Figure 10-2.)

007100

007076

007074

007072

007070

007066

007064

007100

007077

007076

007075

WORD STACK

ITEM #1

ITEM# 2

ITEM# 3

its stack location is considered

The stack pointer points to the

implying that the next lower location is free.

Thus, a stack may represent a pool of sharable temporary storage

ITEM#4 <« spP | 007072 _1

BYTE STACK

ITEM#1

ITEM# 2

ITEM#3

ITEM#4 <« sp | 007075

NOTE:

BYTES ARE

ARRANGEDIN

WORDSAS FOLLOWING:

BYTE3 BYTE2

BYTE1 BYTEO

J

WORD

Figure 10-1

N R-3662

Word and Byte Stacks

10.3.3 Deleting Items From a Stack

The following techniques may be used to delete from a stack.

To delete one item use the following.

INC SP or TSTB(SP)+ for a byte stack

To delete two items use the following.

ADD#2,SP or TST(SP)+ for word stack

10-6

To delete fifty items from a word stack use the following.

ADD#100.,SP

HIGH MEMORY

«— SP

sTack ¥ EO «—5p EO

AREA v E1 <SP

LOW MEMORY

1 AN EMPTY STACK AREA 2 PUSHING A DATUM 3 PUSHING ANOTHER
ONTO THE STACK DATUM ONTO THE

STACKS

EO EO A E2 EO

E1 E1 <SP E1

v E2 -—sp ¢ E3 <SP

4 ANOTHER PUSH 5 POP 6 PUSH

E3

EO

E1 <SP

7 POP

MR-3663

Figure 10-2 Illustration of Push and Pop Operations

10.3.4 Stack Uses

Stacks are used in the following ways.

1. Often one of the general purpose registers must be used

in a subroutine or interrupt service routine and then

returned to its original value. The stack can be used to

store the contents of the registers involved.

2. The stack 1is used in storing linkage information between

a subroutine and 1its «calling program. The JSR

instruction, used in calling a subroutine, requires the

specification of a linkage register along with the entry

address of the subroutine. The content of this linkage

register is stored on the stack, so as not to be lost,
and the return address 1is moved from the PC to the

linkage register. This provides a pointer back to the

calling program so that successive arguments may be

transmitted easily to the subroutine.

10-7

10.3.5

When a subroutine returns, it is necessary to "clean up"

the stack by eliminating or skipping over the subroutine
arguments. One way this can be done is by insisting that

the subroutine keep the number of arguments as its first
stack item. Returns from subroutines then 1involve

calculating the amount by which to reset the stack
pointer, resetting ,the stack pointer, then storing the

original contents of the register which were used as the
copy of the stack pointer.

Stack storage is used in trap and interrupt linkage. The

program counter and the processor status word of the

executing program are pushed on the stack.

When the system stack 1is being used, nesting of

subroutines, interrupts, and traps to any level can occur

until the stack overflows its legal limits.

The stack method is also available for temporary storage

of any kind of data. It may be used as a LIFO list for

storing inputs, intermediate results, etc.

Stack Use Examples

As an example of stack use, consider this situation: a subroutine

(SUBR) wants to use registers 1 and 2, but these registers must be

returned to the calling program with their contents unchanged.

The subroutine could be written as follows.

Not using the Stack:

Assembler

Address Octal Code Syntax Comments

076322 010167 SUBR: MOV R1,TEMP1 ;save R1

076324 000074 *

076326 010267 MOV R2,TEMP2 ;save R2

076330 000072 *

076410 016701 MOV TEMP1,R1 ;restore Rl

076412 000006 *

076414 0167902 MOV TEMP2,R2 ;jrestore R2

076416 000004 *

076420 000297 RTS PC

076422 000000 TEMP1:0

076424 0000060 TEMP2:0

*Tndex constants

10-8

Using the Stack:

R3 has been previously set to point to the end of an unused block

of memory.

Assembler

Address Octal Code Syntax Comments

010020 010143 SUBR: MOV R1l,-(R3) ;push R1

010022 010243 MOV R2,-(R3) ;push R2

010130 012302 MOV (R3)+,R2 ;pop R2

010132 012301 MOV (R3)+,R1 ;pop R1
010134 000207 RTS PC

Note: In this case R3 was used as a stack pointer.

The second routine uses four fewer words of instruction code and

two words of temporary "stack" storage. Another routine could use

the same stack space at some later point. Thus, the ability to

share temporary storage in the form of a stack is a way to save on
memory use.

As another example of stack use, consider the task of managing an

input buffer from a terminal. As characters come in, the user may

wish to delete characters from the line; this is accomplished very

easily by maintaing a byte stack containing the input characters.

Whenever a backspace is received, a character is "popped" off the

stack and eliminated from consideration. In this example,

"popping" characters to be eliminated can be done by using either

the MOVB (MOVE BYTE) or INC (INCREMENT) instructions.

Note that in this case the 1increment instruction (INC) 1is
preferable to MOVB, since it accomplishes the task of eliminating

the unwanted character from the stack by readjusting the stack

pointer without the need for a destination location. Also, the

stack pointer (SP) used in this example cannot be the system stack

pointer (R6) because R6 may point only to word (even) locations.

(See Figure 10-3.)

10.3.6 Subroutine Linkage

The contents of the linkage register are saved on the system stack

when a JSR 1is executed. The effect 1is the same as if a MOV

reg,-(R6) had been performed. Following the JSR instruction, the

same register is loaded with the memory address (the contents of
the current PC), and a jump is made to the entry 1location
specified.

Figure 10-4 gives the before and after conditions when executing

the subroutine instructions JSR R5, 1064.

10-9

001011 c C

001010 U U

001007 S INC R3 S

001006 T T

001005 0 0

001004 M M

001003 E E

001002 R R <«R3[001002 |

001001 z <R3 | 001001 |

MR-3664

Figure 10-3 Byte Stack Used as a Character Buffer

BEFORE AFTER

(R5) = 000132 (R5) = 001004

(R6) = 001776 (R6) = 001774

(PC) = (R7) = 001000 {PC) = (R7) = 001064

002000 nnnnnn 002000 nnnnnn

001776 mmmmmm -SSP I 001776 j 001776 mmmmmm

001774 001774 000132 <«sp| 001774 |
001772 001772

MR -3665

Figure 10-4 JSR Example

Because hardware already uses general-purpose register R6 to point

to a stack for saving and restoring PC and PS (processor status

word) information, it is convenient to use this same stack to save

and restore intermediate results and to transmit arguments to and

from subroutines. Using R6 this way permits nesting subroutines

and interrupt service routines.

10.3.6.1 Return from a Subroutine - An RTS instruction provides

for a return from the subroutine to the calling program. The RTS

instruction must specify the same register as the one the JSR

instruction wused 1in the subroutine call. When the RTS 1is

executed, the register specified is moved to the PC, and the top

of the stack to be placed in the register specified. Thus, an RTS

PC has the effect of returning to the address specified on the top

of the stack.

10.3.6.2 Subroutine Advantages - There are several advantages to

the subroutine calling procedure affected by the JSR instruction.

1. Arguments can be passed quickly between the <calling

program and the subroutine.

10-10

2. If there are no arguments, or the arguments are in a

general register or on the stack, the JSR PC,DST mode can

be used so that none of the general-purpose registers are

used for linkage.

3. Many JSRs can be executed without the need to provide any

saving procedure for the linkage information, since all

linkage information is automatically pushed onto the

stack 1in sequential order. Returns can be made by

automatically popping this information from the stack in

the order opposite to the JSRs.

Such linkage address bookkeeping is called automatic "nesting" of

subroutine calls. This feature enables construction of fast,

efficient linkages in a simple, flexible manner. It also permits

a routine to call itself.

10.3.7 Interrupts

An interrupt is similar to a subroutine call, except that it is

initiated by the hardware rather than by the software. An

interrupt can occur after the execution of an instruction.

Interrupt-driven techniques are used to reduce CPU waiting time.

In direct program data transfer, the CPU loops to check the state

of the Done/Ready flag (bit 7) in the peripheral interface. Using

interrupts, the CPU can handle other functions until the

peripheral initiates service by setting the Done bit in 1its

control status register. The CPU completes the instruction being

executed and then acknowledges the interrupt, and vectors to an

interrupt service routine. The service routine will transfer the

data and may perform calculations with it. After the interrupt

service routine has been completed, the computer resumes the

program that was interrupted by the peripheral's high-priority

request.

10.3.7.1 1Interrupt Service Routines - With interrupt service

routines, linkage information is passed so that a return to the

main program can be made. More information is necessary for an

interrupt sequence than for a subroutine call because of the

random nature of interrupts. The complete machine state of the

program immediately prior to the occurrence of the interrupt must

be preserved in order to return to the program without any

noticeable effects. This information is stored in the processor

status word (PS). Upon interrupt, the contents of the program

counter (PC) (address of next instruction) and the PS are

automatically pushed onto the R6 system stack. The effect is the

same as if:

MOV PS,-(SP) ;Push PS

MOV PC,-(SP) ; Push PC

had been executed.

10-11

The new contents of the PC and PS are loaded from two preassigned

consecutive memory locations which are called "vector addresses."

The first word contains the interrupt service routine entry

address (the address of the service routine program sequence), and

the second word contains the new PS which will determine the

machine status, including the operational mode and register set to

be used by the interrupt service routine. The contents of the

vector address are set under program control.

After the interrupt service routine has been completed, an RTI
(return from interrupt) is performed. The top two words of the
stack are automatically "popped" and placed in the PC and PS
respectively, thus resuming the interrupted program.

Interrupt service programming is intimately involved with the
concept of CPU and device priority levels.

10.3.7.2 Nesting - Interrupts can be nested in much the same
manner that subroutines are nested. It is possible to nest any
arbitrary mixture of subroutines and interrupts without any
confusion. When the respective RTI and RTS instructions, are

used, the proper returns are automatic. (See Figure 10-5.)

10.3.8 Reentrancy

Other advantages of the KDF11l-AA stack organization occur in

programming systems that handle several tasks. Multi-task program

environments range from simple single-user applications which
manage a mixture of I/0O interrupt service and background data

processing, as in RT-11], to large complex multi-programming

systems that manage an intricate mixture of executive and

multi-user programming situations, as in RSX-11. In all these

situations, using the stack as a programming technique provides

flexibility and time/memory economy by allowing many tasks to use
a single copy of the same routine with a simple straightforward

way of keeping track of complex program linkages.

The ability to share a single copy of a program among users oOr

among tasks 1s called reentrancy. Reentrant program routines

differ from ordinary subroutines in that it is not necessary for

reentrant routines to finish processing a given task before they

can be used by another task. Multiple tasks can exist at any time

in varying stages of completion in the same routine. Thus the
situation as shown in Figure 10-6 may occur.

10.3.8.1 Reentrant Code - Reentrant routines must be written in

pure code, (any code that consists exclusively of instructions and

constants). The value of using pure code whenever possible is

that the resulting code has the following characteristics.

1. It is generally considered easier to debug.

2. It can be kept 1in read-only memory (is read-only

protected).

- 10-12

1. PROCESS 01S RUNNING: SP IS SP e PO 7. SUBROUTINE A RELEASES THE PO

POINTING TO LOCATION PO. TEMPORARY STORAGE HOLDING PSO

TA1 AND TA2. PCO

0 TEO

TE1

2. INTERRUPT STOPS PROCESS O WITH PO PS1

PC = PCO, AND STATUS = PSO; STARTS 730 PC1

PROCESS 1, SP —a PCO 5P —e Pc2

0 0

3. PROCESS 1 USES STACK FOR TEM- PO 8. SUBROUTINE A RETURNS CONTROL PO)

PORARY STORAGE (TEOQ, TE1). PSO TO PROCESS 2WITH AN RTS R7; PC e

PCO IS RESET TO PC2. PCO

TEO TEO

SP ~—» TE1 TE1

PS1

0 SP—e PC1

4. PROCESS1 INTERRUPTED WITH PC PO 0

=PC1 AND STATUS = PS1; PROCESS PSO

2 1S STARTED. PCO 9. PROCESS 2 COMPLETES WITH AN PO

TEO RT1 INSTRUCTIONS (DISMISSES PSO

TE] INTERRUPT) PC IS RESET OT PC (1) - PCO
PS1 AND STATUS IS RESET TO PS1; TEO

SP — PC1 PROCESS1 RESUMES' SP —a TET

0 0

5. PROCESS 2 1S RUNNING AND DOES PO 10. PROCESS 1 RELEASES THE TEMPO- PO
A JSR R7,A TO SUBROUTINE A WITH PSQ RARY STORAGE HOLDING TEO AND PSO
PC = PC2. PCO TE1. SP — PCO

TEO

TE1 0

PS1

PC1 11. PROCESS 1 COMPLETES ITS SP — PO

SP—s Pc2 OPERATION WITH AN RT1,PC IS
RESET TO PCO, AND STATUS IS 0

0 RESET TO PSO.

6. SUBROUTINE A IS RUNNING AND PO

USES STACK FOR TEMPORARY PSO

STORAGE. PCO
TEO

TE1

PS1

PC1

PC2

TA1

SP —» TA2

0

MR-3666

Figure 10-5 Nested Interrupt Service Routines and Subroutines

MEMORY MEMORY

PROGRAM 1 PROGRAM 1 //S{JBROUTINE/A/
PROGRAM 2 SUBROUTINE A s 2 4

PROGRAM 3

o

PROGRAM 2 SUBROUTINE A
g4 g4

PROGRAM 3 V/S/UBROU/TINE A

KDF11-AA APPROACH CONVENTIONAL APPROACH

PROGRAMS 1, 2, AND 3 CAN SHARE A SEPARATE COPY OF SUBROUTINE A

SUBROUTINE A. MUST BE PROVIDED FOR EACH PROGRAM.

MR-3667

Figure 10-6 Reentrant Routines

10-13

Using reentrant code, control of a routine can be shared as

follows. (See Figure 10-7.)

1. Task A requests processing by reentrant routine Q.

2. Task A temporarily relinquishes control of reentrant

routine Q before it completes processing.

3. Task B starts processing the same copy of reentrant

routine Q.

4. Task B completes processing by reentrant routine Q.

5. Task A regains use of reentrant routine Q and resumes

where it stopped.

TASK A

REENTRANT

1 ROUTINEQ

TASK 8

MR-3668

A

Figure 10-7 Sharing Control of a Routine

10.3.8.2 Writing Reentrant Code - In an operating system

environment, when one task is executing and 1is interrupted to

allow another task to run, a context switch occurs which causes

the processor status word and current contents of the

general-purpose registers (GPRs) to be saved and replaced by the

appropriate values for the task being entered. Therefore,

reentrant code should use the GPRs and the stack for any counters,

pointers, or data that must be modified or manipulated 1in the

routine.

The context switch occurs whenever a new task 1is allowed to

execute. It causes all of the GPRs, the PS, and often other
task-related information to be saved in an 1impure area, then

reloads these registers and locations with the appropriate data

for the task being entered. Notice that one consequence of this

is that a new stack pointer value is loaded into R6, thereby

causing a new area to be used as the stack when the second task 1is

entered.

The following should be observed when writing reentrant code.

1. All data should be in or pointed to by one of the general
purpose registers.

10-14

2. A stack can be used for temporary storage of data or

pointers to impure areas within the task space. The

pointer to such a stack would be stored in a GPR.

3. Parameter addresses should be used by indexing and

indirect reference rather than by putting them 1into

instructions within the code.

4, When temporary storage is accessed within the program, it

should be by indexed addresses, which can be set by the

calling task in order to handle any possible recursion.

10.3.9 Coroutines

In some programming situations it happens that several program

segments or routines are highly interactive. Control 1is passed

back and forth between the routines, each going through a period

of suspension before being resumed. Since the routines maintain a

symmetric relationship with each other, they are called

coroutines.

Coroutines are two program sections, either subordinate to the

other, which can call each other. The nature of the call is "I

have processed all I can for now, so you can execute until you are

ready to stop, then I will continue.”

The coroutine call and return are identical, each being a jump to

subroutine instruction with the destination address being on top

of the stack and the PC serving as the 1linkage register, as

follows.

JSR PC,@(R6)+

10.3.9.1 Coroutine Calls - The coding of coroutine calls is made

simple by the stack feature. Initially, the entry address of the

coroutine is placed on the stack and from that point the

JSR PC,@*R6)+

instruction is used for both the call and the return statements.

The result of this JSR instruction is to exchange the contents of

the PC and the top element of the stack, and so permit the two

routines to swap control and resume operation where each was

terminated by the previous swap. An example 1is shown in Figure

10-8.

Notice that the coroutine linkage cleans up the stack with each

transfer of control.

10-15

JSR PC

JSR PC

J e

ROUTINE A STACK

MOV #LOC,-(SP} LOC —SP

JSR PC,@{SP)+ PCO <SP

(PCO)

PC1 SP

Figure 10-8

COROQUTINES

@ {SP)+ —>

v

JSR PC,@ (SP)+

,@ (SP)+

AN

\J

JSR PC,® (SP)+
I

Figure 10-9 Coroutines vs.

ROUTINE B

LOC:

JSR PC,@(SP)+

(PCT)

COMMENTS

LOC IS PUSHED

ONTO THE STACK

TO PREPARE FOR

THE COROUTINE

CALL.

WHEN THE CALL

IS EXECUTED,

THE PC FROM

ROUTINE A IS

PUSHED ON THE

STACK AND EXE-

CUTION CONTIN-

UES AT LCC.

ROUTINE B8 CAN

RETURN CONTROL

TO ROUTINE A

BY ANOTHER

COROQUTINE CALL.

PCO IS POPPED

FROM THE STACK

AND EXECUTION

RESUMES IN

ROUTINE A JUST

AFTER THE CALL

TO ROUTINE B,

I.E., AT PCO.

PC1 1S SAVED

ON THE STACK

FOR A LATER

RETURN 70

ROUTINE B.

MR-3669

Coroutine Example

MAIN PROGRAMS

JSR Rn, LOC

JSR Rn, LOC

10-16

SUBROUTINES

1ST LOC:

\v
RTS

/

MR-3670

Subroutines

10.3.9.2 Coroutines Versus Subroutines - Coroutines can be

compared to subroutines in the following ways.

1.

2.

10.3.9.3

A subroutine can be considered to be subordinate to the

main or calling routine, but a coroutine is considered to

be on the same level, as each coroutine calls the other

when it has completed current processing.

A subroutine executes, when called, to the end of 1its

code. When called again, the same code will execute

before returning. A coroutine executes from the point

after the last call of the other coroutine. Therefore,

the same code will not be executed each time the

coroutine is called. An example is shown in Figure 10-9.

The call and return statements for coroutines are the

same, as follows.

JSR PC,@(SP)+

This one instruction also cleans up the stack with each

call.

The 1last coroutine call will leave an address on the

stack that must be popped if no further calls are to be

made.

Each coroutine call returns to the coroutine code at the

point after the last exit with no need for a specific

entry point label, as would be required with subroutines.

Using Coroutines - Coroutines should be used 1in the

following situations.

1. Coroutines should be used whenever two tasks must be

coordinated in their execution without obscuring the

basic structure of the program. For example, in decoding

a line of assembly language code, the results at any one

position might indicate the next process to be entered.

Where a label is detected, it must be processed. If no

label is present, the operator must be located, etc.

Coroutines should be employed to add clarity to the

process being performed, to ease in the debugging phase,

etc.

An assembler must perform a lexicographic scan of each assembly

language statement during pass 1 of the assembly process. The

various steps in such a scan should be separated from the main

program flow to add to the program clarity and to aid in debugging

by isolating many details. Subroutines would not be satisfactory

10-17

here, as too much information would have to be passed to the

subroutine each time it was called. This subroutine would be too

isolated. Coroutines could be effectively used here with one

routine being the assembly-pass-one routine and the other

extracting one item at a time from the current input line. Figure

10-10 illustrates this example.

ROUTINE A ROUTINE B

START AND SKIP

BLANKS

NONBLANK

READ NAME »1 PROCESS NAME

)

SKIP BLANKS

y y

PROCESS MNEMONICS | READ MNEMONICS

4

READ ADDRESSES
LINE

SEMI-COLON TERMINATOR

y

SKIP COMMENT 1 END

MR-3671

Figure 10-10 Coroutine Path

Coroutines can be utilized in I/O processing. The example above

shows coroutines used in double-buffered I/O using IOX. The flow

of events might be described as:

Write 01

Read I1 concurrently

Process 12

then

Write 02

Read 12 concurrently.

Process Il

Figure 10-11 illustrates a coroutine swapping interaction.

10-18

ROUTINE #1 IS OPERATING, IT THEN

EXECUTES:

MOV #PC2,-(R6)

JSR PC,@(R6)+

WITH THE FOLLOWING RESULTS:

1. PC2I1SPOPPED FROM THE STACK

AND THE SP AUTOINCREMENTED. P —)

2. SPIS AUTODECREMENTEDAND

THE OLD PC (I.E., PC1) IS PUSHED. l
3. CONTROLIS TRANSFERRED TO THE 5P —» v PC2

LOCATION PC2 (I.E.. ROUTINE #2).

ROUTINE #2 IS OPERATING, IT THEN

EXECUTES: l
JSR PC.@(R6)+

WITH THE RESULT THAT PC2 IS T = I

EXCHANGED FOR PC1 ON THE

STACK AND CONTROL IS

TRANSFERRED BACK TO ROUTINE #1.

MR-3672

Figure 10-11 Coroutine Interaction

Routine #1 is operating, it then executes:

MOV #PC2,-(R6)

JSR PC,Q@(R6)+

with the following results.

1. PC2 is popped from the stack and the SP autoincremented.

2. SP 1is autodecremented and the o0ld PC (i.e. PCl) 1is

pushed.

3. Control 1is tranferred to the location PC2 (i.e. routine

2) .

Routine 2 is operating, it then executes:

JSR PC,Q@(R6)+

with the result that PC2 is exchanged for PCl on the stack and

control is transferred back to routine 1.

10.3.10 Recursion

An interesting aspect of a stack facility, other than 1its

providing for automatic handling of nested subroutines and

interrupts, is that a program may call on itself as a subroutine

just as it can call on any other routine. Each new call causes

10-19

the return linkage to be placed on the stack, which, as it is a
last-in/first-out queue, sets up a natural unraveling to each

routine just after the point of departure.

Typical flow for a recursive routine might be something like that

shown in Figure 10-12.

MAIN PROGRAM

SUB 1

SuB 2

SUB 2

MR-3673

Figure 10-12 Recursive Routine Flow

The main program calls function 1, SUB 1, which calls function 2,

SUB 2, which recurses once before returning.

Example:

DNCF: ’

r

r

BEQ 1S ;TO EXIT RECURSIVE LOOP

JSR R5,DNCF s RECURSE

1$ '

[4

[4

RTS RS ;RETURN TO 1S FOR

;EACH CALL, THEN TO

sMAIN PROGRAM

The routine DNCF calls itself until the variable tested becomes

equal to 0, then it exits to 1$ where the RTS instruction 1is

executed, returning to the 1$ once for each recursive call and one

final time to return to the main program.

In general, recursion techniques will lead to slower programs than

the corresponding interactive techniques, but the recursion will

give shorter programs in memory space used. Both the brevity and

clarity produced by recursion are important in assembly language

programs.

10-20

Uses of Recursion - Recursion can be used in any routine in which

the same process 1is required several times. For example, a

function to be integrated may contain another function to be

integrated, i.e., to solve for XM

where:

SM =1 + F(X)

and:

F(X) = G (X)

Another use for a recursive function could be in calculating a

factorial function because

FACT (N) = FACT(N-1)*N

Recursion should terminate when N = 1.

The macroprocessor within MACRO-11, for example, 1is itself

recursive, as it can process nested macrodefinitions and calls.

For example, within a macrodefinition, other macros can be called.

When a macro call is encountered within definition, the processor

must work recursively; i.e., to process one macro before it is

finished with another, then to continue with the previous one.

The stack is used for a separate storage area for the variables

associated with each call to the procedure.

As 1long as nested definitions of macros are available, it 1is

possible for a macro to call itself. However, unless conditionals

are used to terminate this expansion, an infinite loop could be

generated.

10.3.11 Processor Traps

Certain errors and programming conditions cause the KDF1l1-AA

processor to enter the "service" state and trap to a fixed

location. A trap is an interrupt generated by software. Pending

conditions are arbitrated according to a priority. The following

list describes the priority from highest to lowest.

Condition Description

Memory Management Violation* A memory management violation causes

(MMUERR) an abort and traps to location 2508.

Timeout Error¥* No response from a bus device during

(BUSERR) a bus transaction causes an abort

and traps to location 48.

Parity Error* A parity error signal received by

(PARERR) the processor during a bus

transaction causes an abort and

traps to location 1148.

10-21

Trace (T) Bit* If PSW bit 4 is set at the end

instruction execution, the processor

traps to location 148.

Stack Overflow* If the kernel stack pointer was

(STKOVF) pushed below 400 dur ing an

instruction execution, the processor

traps to location 48 at the end of

the instruction.

Power Fail* If bus signal Power OK (BPOKH)

(PFAIL) : became negated during instruction

execution, the processor traps to

location 248 at the end of the

instruction.

Interrupt Level 7 (BIRQ7) If device 1interrupt requests are

(Maskable by PS<07:05>) asserted and PS<07:05> are properly

Interrupt Level 6 (BIRQ6) set, the processor at the end of

(Maskable by PS<07:05>) the present instruction execution

Interrupt Level 5 (BIRQ5) will initiate an interrupt vector

(Maskable by PS<07:05>) sequenced on the bus.

Interrupt Level 4 (BIRQ4)

(Maskable by PS<07:05>) PS<07:05> Levels Inhibited

7 All

6 6, 5, 4

5 5, 4

4 4

0->3 None

Halt line If BHALTL bus signal 1is asserted

during the service state, the

processor will enter ODT mode.

*Nonmaskable-software cannot inhibit the condition. CTLERR,

MMUERR, BUSERR, PARERR are mutally exclusive when the processor

is executing a program.

10.3.11.1 Trap Instructions - Trap instructions provide for calls

to emulators, I/O0O monitors, debugging packages, and user-defined
interpreters. When a trap occurs, the contents of the current

program counter (PC) and program status word (PS) are pushed onto

the processor stack and replaced by the contents of a 2-word trap

vector containing a new PC and new PS. The return sequence from a

trap involves executing an RTI or RTT instruction which restores

the o0ld PC and o0ld PS by popping them from the stack. Trap

vectors are located at permanently assigned fixed addresses.

The EMT (trap emulator) and TRAP instructions do not use the

low-order byte of the word in their machine language

representation. This allows user information to be transferred in

the low-order byte. The new value of the PC loaded from the

10-22

vector address of the TRAP or EMT instructions is typically the

starting address of a routine to access and interpret this

information. Such a routine is called a trap handler.

The trap handler must accomplish several tasks. It must save and

restore all necessary GPRs, interpret the low byte of the trap

instruction and call the indicated routine, serve as an interface

between the calling program and this routine by handling any data

that needs to be passed between them, and, finally, cause the

return to the main routine.

The trap handler can be useful as a patching technique. Jumping

out to a patch area is often difficult because a 2-word jump must

be performed. However, the l-word TRAP instruction may be used to

dispatch to patch areas. A sufficient number of slots for

patching should first be reserved in the dispatch table of the
trap handler. The jump can then be accomplished by placing the

address of the patch area into the table and inserting the proper

TRAP instruction where the patch is to be made.

10.3.11.2 Use of Macro Calls - The trap handler can be used in a
program to dispatch execution to any one of several routines.

Macros may be defined to cause the proper expansion of a call to

one of these routines, as in this example.

.MACRO SUB2 ARG

MOV ARG, RO

TRAP +1]

. ENDM

When expanded, this macro sets up the one argument required by the
routine in RO and then causes the trap instruction with the number

1 in the lower byte. The trap handler should be written so that
it recognizes a 1 as a call to SUB2. Notice that ARG here is

being transmitted to SUB2 from the calling program. It may be
data required by the routine or it may be a pointer to a longer
list of arguments.

In an operating system environment like RT-11, the EMT instruction

is used to call system or monitor routines from a user program.

The monitor of an operating system necessarily contains coding for

many functions, such as I/O, file manipulation, etc. This coding

is made accessible to the program through a series of macro calls
which expand into EMT instructions with low bytes, indicating the

desired routine or group of routines to which the desired routine
belongs. Often a GPR 1is designated to be used to pass an

identification code to further indicate to the trap handler which
routine is desired. For example, the macro expansion for a resume

execution command in RT-11 is as follows.

.MACRO .RSUM

CM3, 2.

. ENDM

10-23

CM3 is defined as follows.

+MACRO CM3 CHAN, CODE

MOV #CODE *400,RO0

.ITF NB CHAN,BISB CHAN,RO

EMT 374

. ENDM

Note that the EMT low byte is 374. This 1is interpreted by the EMT

handler to indicate a group of routines. Then the contents of RO

(high byte) are tested by the handler to identify exactly which

routine within the group is being requested, in this case routine

number 2. (The CM3 call of the .RSUM 1is set up to pass the

identification code.)

10.3.12 Conversion Routines

Almost all assembly language programs require the translation of

data or results from one form to another. Coding that performs

such a transformation will be called a conversion routine in this

manual. Several commonly used conversion routines are included in

the following pages.

Almost all assembly language programs 1involve some type of

conversion routines: octal to ASCII, octal to decimal, and decimal

to ASCII are a few of the most widely used.

Arithmetic multiply and divide routines are fundamental to many

conversion routines.

Division is typically approched in one of two ways.

1. The division can be accomplished through a combination of

rotates and subtractions.

Examples:

Assume the following code and register data; to make the

example easier, also assume a 3-bit word.

DIV: MOV #3,-(SP) sSET UP DIGIT COUNTER

CLR - (SP) ; CLEAR RESULT

1s ASL (SP)

ASL R1

ROL RO

CMP RO,R3

BLT 2$

SUB R3,R0 :R0 CONTAINS REMAINDER

INC (SP) : INCREMENT RESULT

2$ DEC 2 (SP) ; DECREMENT COUNTER

BNE S1

10-24

Therefore, to divide 7 by 2:

R0=000 remainder

R1=111 7-multiplicand

R3=010 2-multiplier

C bit=0

STACK

011 counter

000 quotient

Following through the coding, the quotient, remainder,
and dividend all shift left, manipulating the most

significant digit first, etc.

At the conclusion of the routine:

R0=001 remainder

R1=000

R3=010

STACK

000 counter

011 quotient

A second method of division occurs by repeated

subtraction of the powers of the divisor, keeping a count

of the number of subtractions at each level.

Example:

To divide 22110 by 10, first try to subtract powers of 10

until a nonnegative value 1is obtained, counting the

number of subtractions of each power.

221

-1000

negative so go to next lower power, count for lO3 = 0.

221

-100

121 count for 102 = 1.
-100

21 count = 2

-100

10-25

negative, sozreduce power.

count for 10° = 2

21

-10

|

(
-

o11 count for 10l =

11

-10

1 count = 2

-10

negative, so count for 10l = 2.

No lower power, so remainder is 1.

Answer = 022, remainder 1.

Multiplication can be done through a combination of rotates and

additions or through repetitive additions.

Example:

Assume the following code and a 3-bit word.

CLR RO ;HIGH HALF OF ANSWER

MOV #3,CNT ;SET UP COUNTER

MOV R1,MULT; s MULTIPLICAND

MORE: ROR R2

BCC NOW

ADD MULT,RO ;IF INDICATED,

ADD

;sMULTIPLICAND

NOW ; ROR RO

R0O4 R1

DEC CNT

BNE MORE

MULT: 0

CNT: 0

The following conditions exist for 6 times 3:

RO = 000 - high-order half of result

Rl = 110 - multiplicand

R3 = 011 - multiplier

10-26

After the routine is executed:

RO = 010 - high-order half of result

Rl = 010 - low-order half of result

R2 = 100

CNT = 0

MULT = 110

Example:

Multiplication of RO by 508(101000).

MUL50: MOV RO,-(SP)

ASL RO

ASL RO

ADD (SP)+,R0

ASL RO

ASL RO

ASL RO

RETURN

If RO contains 7:

RO = 111

After execution:

RO = 100011000

(7*508 = 4308).

ASCII Conversions - The conversion of ASCII characters .to the

internal representation of a number as well as the conversion of
an internal number to ASCII in I/0 operations presents a

challenge. The following routine takes the 16-bit word in R1l and

stores the corresponding six ASCII characters 1in the buffer

addressed by R2.

OUT: MOV #5,R0 ; LOOP COUNT

LOOP: MOV R1,-(SP) ; COPY WORD INTO STACK

BIC #177770,@SP ;ONE OCTAL VALUE

ADD #'0,@SP ; CONVERT TO ASCII

MOVB (SP)+,-(R2) ;STORE IN BUFFER

ASR R1 ; SHIFT

ASR R1 ; RIGHT

ASR R1 ; THREE

DEC RO ;TEST IF DONE

BNE LOOP ;NO, DO IT AGAIN

BIC #177776,R1 ;GET LAST BIT

ADD #'0,R1 ; CONVERT TO ASCII

MOVB R5,-(R2) ;STORE IN BUFFER

RTS PC ; DONE, RETURN

10-27

10.4 PROGRAMMING THE PROCESSOR STATUS WORD
The current processor status can be read and written using several
prcgramming techniques on the PS. The PS has an I/0 address of
777776 . The KDF1ll and other PDP-11 processors implement this
address, whereas LSI-11 and LSI-11/2 processors do not.

One technique is to use the I/0 address as a source or destination
address with any instruction.

CLR Q@#177776

MOV @#177776, RO

The first instruction clears the PS and the second instruction
moves the contents of the PS to general register RO.

The PS explicit address (777776) can be accessed on a word or byte
basis. The KDF1ll will recognize the PS odd address (777777) and
the access result will be identical to an odd memory address
reference.

Another technique is to use the two dedicated PS instructions,
MTPS and MFPS. These instructions only reference the even byte.

If memory management is enabled certain PS bits are protected.
Refer to Paragraph 8.3.3.2 for more details.

10.5 PROGRAMMING PERIPHERALS

Programming of LSI-11 bus compatible modules (devices) is simple.
A special class of instructions to deal with input/output

operations is unnecessary. The bus structure permits a unified
addressing structure in which control, status, and data registers

for devices are directly addressed as memory locations.
Therefore, all operations on these registers, such as tranferring
information into or out of them or manipulating data within them,
are performed by normal memory reference instructions.

The use of all memory reference instructions on device registers

greatly increases the flexibility of input/output programming.

For example, information in a device register can be compared

directly with a value and a branch made on the result.

CMP RBUF, #101

BEQ SERVICE

In this case, the program looks for 101 in the DLV1l receiver data
buffer register (RBUF) and branches if it finds it. There is no
need to transfer the information into an intermediate register for
comparison.

10-28

When the character is of interest,

the charactercan transfer

another peripheral device.

transfers a character from the DRV11l Data Input Buffer

into a user buffer

The instruction:

a memory reference instruction

in memory or to

MOV DRINBUF LOC

into a user-defined location.

(DRINBUF)

All arithmetic operations can be performed on a peripheral device

register. For example, the instruction ADD #10, DROUT BUF will

add 10 to the DRV11l's Output Buffer.

All

There

accumulator registers.

10.6

set,

the

the addressing modes,

techniques can be used to solve some simple problems.

on

read/write device registers can be treated as accumulators.

is no need to funnel

operations,

all data transfers, arithmetic

and comparisons through a single or small number of

PDP-11 PROGRAMMING EXAMPLES

The programming examples

instruction

following pages show how the

and the programming

The format
used is either PAL-11 or MACRO-11.

Program Program

Address Contents Label

000500

000504

000510

000514

000520

000524

000526

000000

000001

000002

000003

000004

000005

000006

000007

000500

012706

000500

012701

000700

012702

000712

012703

001000

012704

001012

005000

005005

START:

Op Code Operand Comments

; PROGRAMMING EXAMPLE

s SUBTRACT CONTENTS OF LOCS 700-710

s FROM CONTENTS OF LOCS 1000-1010

R0O=%0

R1-%1

R2=%2

R3=%3

R4=%4

R5=%5

SP=%6

PC=%7

.=500

MOV

MOV

MOV

MOV

MOV

CLR

CLR

#.,SP s INIT STACK POINTER

#700,R1

#712,R2

#1000,R3

#1012,R4

RO

R5

10-29

000430

000532

000534

000536

000540

000542

000544

000546

000700

000702

000704

000706

000710

001000

001002

001004

001006

001010

START:

062105 SUM1l: ADD (R1)+,R5 ; START ADDING

020102 CMP R1,R2 ; FINISHED ADDING?

001375 BNE SUM1 ; IF NOT BRANCH BACK

062300 SUM2: ADD (R3)+,R0 ; START ADDING

020304 CMP R3,R4 ; FINISHED ADDING?

001375 BNE SUM2 ; IF NOT BRANCH BACK

160500 DIFF: SUB R5,R0 ; SUBTRACT RESULTS

000000 HALT ; THAT'S ALL FOLKS

000700 =700

000001 WORD 1,2,3,4,5

000002

000003

000004

000005

001000 =1000

000004 WORD 4,5,6,7,8

000005

000006

000007

000010

A-30

000500 END

; PROGRAM TO COUNT NEGATIVE NUMBERS

; IN A TABLE

;20. SIGNED WORDS

; BEGINNING AT LOC VALUES

; COUNT HOW MANY ARE NEGATIVE IN RO

R0O=%0

R1l=%1

R2=%2

SP=%6

PC=%7

.=500

MOV#.,SP ;SET UP STACK

MOV #VALUE,R1 ;SET UP POINTER

MOV #VALUES+40.,R2 ;SET UP COUNTER

CLR RO

10-30

CHECK:

NEXT:

VALUES:

START:

CHECK:

NO:

AVERAGE:

SCORES*

TST (R1l)+

BPL NEXT

INC RO

CMP R1,R2

BNE CHECK

HALT

0

.END

; TEST NUMBER

; POSITIVE?

;NO, INCREMENT

; COUNTER

; YES, FINISHED?

;NO, GO BACK

;YES, STOP

s PROGRAM TO COUNT ABOVE AVERAGE QUIZ SCQRES

;LIST OF 16. QUIZ SCORES

;BEGINNING AT LOC SCORES

; KNOWN AVERAGE IN LOC AVERAGE

;COUNT IN RO SCORES ABOVE AVERAGE

R0=%0

R1=%1

R2=%2

R3=%3

SP=%6

PC=%7

.=500

MOV #.,SP

MOV #16.,R1

MOV #SCORES,R2

MOV #AVERAGE,R3

CLR RO

CMP (R2)+, (R3)

BLE NO

INC RO

DEC Rl

BNE CHECK

HALT

65.

25.,70.,100.,60

55.,75.,100.,65

.END

; SET UP STACK

; SET UP COUNTER

; SET UP POINTER

; COMPARE SCORE AND AVERAGE

; LESS THAN OR EQUAL

;TO AVERAGE?

; NO, COUNT

;YES, DECREMENT COUNTER

;FINISHED? NO, CHECK

;:YES, STOP

.,80.,80.,40.

.,90.,70.,65.,70.

10-31

START:

IN:

ECHO:

OuT:

SAVE:

; PROGRAMMING EXAMPLE

;ACCEPT (IMMEDIATE ECHO) AND

;STORE 20. CHARS

;FROM THE KEYBOARD, OUTPUT CR & LF

; ECHO ENTIRE STRING FROM STORAGE

R0O=%0

R1=%1

SP=%6

CR=15

LF=12

TKS=177560

TKB=TKS+2

TPS=TKB+2

TPB=TPS+2

.TITLE ECHO

.=1000

MOV #.,SP ;s INITIALIZE STACK POINTER

MOV #SAVE+2,R0 :SA OF BUFFER

;BEYOND CR & LF

MOV #20.,R1 :CHARACTER COUNT

TSTB @#TKS :CHAR IN BUFFER?

BPL IN s IF NOT BRANCH BACK

;AND WAIT

TSTB @#TPS +CHECK TELEPRINTER

s READY STATUS

BPL ECHO

MOVB @#TKB,@#TPB +:ECHO CHARACTER

MOVB @#TKB, (RO) + +STORE CHARACTER AWAY

DEC R1

BNE IN :FINISHED INPUTTING?

MOV #SAVE ,RO :SA OF BUFFER INCLUDING

;CR & LF

MOV $#22.,R1 ; COUNTER OF BUFFER

; INCLUDING CR & LF

TSTB @#TPS +:CHECK TELEPRINTER

: READY STATUS

BPL ouT

MOVB (RO)+,Q@#TPB ;OUTPUT CHARACTER

DEC R1

BNE ouT +sFINISHED OUTPUTTING?

HALT

.BYTE CR,LF

.=.+20,

.END

10-32

INPUT:

IN:

OouT:

SORT:

NEXT:

LOOP:

LT:

GT:

INSERT:

COUNT:

LINE]l:

LINE2:

BUFFER:

; PROGRAMMING EXAMPLE

; SUBROUTINE TO INPUT TEN VALUES

MOV #BUFFER,RO :SET UP SA OF

: STORAGE BUFFER

MOV #-10.,R1 ;SET UP COUNTER

TSTB @#TKS ;TEST KYBD READY STATUS
BPL IN

TSTB @#TPS : TEST TTO READY STATUS

BPL OUT

MOVB @#TKB,@#TPB ; ECHO CHARACTER

MOVB @#TKB, (RO) + ; STORE CHARACTER

INC R1 ; INC COUNTER

BNE IN

RTS PC ;EXIT

; PROGRAMMING EXAMPLE

; SUBROUTINE TO SORT TEN VALUES

MOV #-10.,R4

MOV COUNT,R3

MOV #BUFFER+9.,R0

ADD R3,RO0

MOVB (RO)+,R1

CMPB (RO)+,R1

BGE GT

MOVB - (R0O) ,R2

MOVB R1, (RO)+

MOV R2,R1

INC R3

BNE LOOP

MOVB R1,BUFFER+10.(R4)

INC R4

INC COUNT

BNE NEXT

MOV #-9.,COUNT ; RESTORE LOCATION COUNT

RTS PC ; EXIT

.WORD -9.

.ASCII/INPUT ANY TEN SINGLE-DIGIT VALUES (0-9); I'LL/

.ASCII/SORT AND OUTPUT THEM IN/

.ASCII/SMALLEST TO LARGEST ORDER./

.END INITSP ;FINISHED!!!

10-33

INITSP:

; PROGRAMMING EXAMPLE

; SUBROUTINE EXAMPLE

; INPUT TEN VALUES, SORT, AND

;OUTPUT THEM IN SMALLEST TO LARGEST ORDER

R0O=%0

R1=%1

R2=%2

R3=%3

R4=%4

R5=%5

SP=%6

PC=%7

TKS=177560

(address of terminal control status register)

TKB=TKS+2 - (terminal data buffer register)

TPS=TKB+2

(terminal output control and status registers)

TPB=TPS+2 - (terminal output data buffer)

.=3000

MOV #.,SP ; INITIALIZE STACK POINTER

JSR PC,CRLF ;GO TO CRLF SUBROUTINE

JSR R5, OUTPUT ; GOT TO OUTPUT SUBROUTINE

LINE1 ;SA OF LINE 1 BUFFER

69. ;NUMBER OF OUTPUTS

JSR PC,CRLF ;GO TO CRLF SUBROUTINE

JSR R5,0UTPUT ;GO TO OUTPUT SUBROUTINE

LINE?2 ;SA OF LINE 2 BUFFER

26. ;NUMBER OF OUTPUTS

JSR PC,CRLF ;GO TO CRLF SUBROUTINE

JSR PC, INPUT ;GO TO INPUT SUBROUTINE

JSR PC,SORT ;GO TO SORT SUBROUTINE

JSR PC,CRLF ;GO TO CRLF SUBROUTINE

JSR R5,0UTPUT ;GO TO OUTPUT SUBROUTINE

BUFFER ; INPUT BUFFER AREA

10. ; NUMBER OF OUTPUTS

JSR PC,CRLF

HALT ;THE END!!!

10-34

; PROGRAMMING EXAMPLE

; SUBROUTINE TO OUTPUT A CR & LF

CRLF: TSTB @#TPS ; TEST TTO READY STATUS

BPL CRLF

MOVB #15,@#TPB ;OUTPUT CARRIAGE RETURN

LNFD: TSTB @#TPS ;TEST TTO READY STATUS

BPL LNFD

MOVB #12,Q@#TPB ;OUTPUT LINE FEED

RTS PC ; EXIT

; SUBROUTINE TO OUTPUT A

s VARIABLE LENGTH MESSAGE

OUTPUT: MOV (R5)+,R0 ;PICK UP SA OF DATA BLOCK

MOV (R5)+,R1 ; PICK UP NUMBER OF OUTPUTS

NEG R1 ;NEGATE IT

AGAIN: TSTB Q@#TPS ; TEST TTO READY STATUS

BPL AGAIN

MOVB (RO)+,Q@#TPB ; OUTPUT CHARACTER

INC R1 ;BUMP COUNTER

BNE AGAIN

RTS RS5

10.7 LOOPING TECHNIQUES

Looping techniques are illustrated in the program segments below.
The segments are used to clear a 50-word table.

1. AUTOINCREMENT (POINTER ADDRESS IN GPR)

RO = %0

MOV #TBL,RO

LOOP: CLR (RO)+

CMP RO, #TBL+100.

BNE LOOP

2. AUTODECREMENT (POINTER AND LIMIT VALUES IN GPR)

R0O=%0

R1=%1

MOV #TBL,RO

MOV #TBL+100.,R1

LOOP: CLR -- (R1)

CMP R1,RO

BNE LOOP

10-35

3.

LOOP:

INDEX VALUE)

LOOP:

FASTER INDEX REGISTER

GPR)

LOOP:

ADDRESS MODIFICATION

ADDRESS)

6.

LOOP:

COUNTER (DECREMENTING A GPR CONTAINING COUNT)

R0O=%0

R1=%1

MOV

MOV

CLR

DEC

BNE

INDEX REGISTER MODIFICATION

#TBL,RO

#50.,R1

(RO)+

R1

LOOP

(INDEXED MODE; MODIFYING

R0O=%0

CLR

CLR

ADD

CMP

BNE

MODIFICATION

RO

TBL (RO)

#2,R0

RO, #100.

LOOP

(STORING VALUES 1IN

R0O=%0

R1=%1

R2=%2

MOV

MOV

CLR

CLR

ADD

CMP

BNE

(INDEXED MODE;

#2,R1

#100. ,R2

RO

TBL (RO)

R1,R0O

RO,R2

LOOP

MODIFYING BASE

RO=%0

MOV

CLR

ADD

CMP

BNE

10-36

#TBL, RO

0 (RO)

#2,LO0OP+2

LOOP+2,#100.

LOOP

APPENDIX A

GENERAL REFERENCE INFORMATION

A.1 SUMMARY OF KDF11 INSTRUCTIONS

WORD FORMAT

09 08 06 05 03 02 00

BINARY-OCTAL

REPRESENTATION

M 288!

Mode

N
O
O
~
r
W
N
+
H
O

Name Symbolic

register R

register deferred (R)

auto-increment (R)+

auto-incr deferred @ (R)+

auto-decrement —(R)

auto-decr deferred @ —(R)

index X(R)

index deferred @X(R)

MODE R

1 { 1 1

MR 2886

Description

(R) is operand [ex. R2 = 9,2]

(R) is address

(R) is adrs; (R) +(1 or 2)

(R) is adrs of adrs; (R) 42

(R) —(1 or 2); is adrs

(R) —2; (R) is adrs of adrs

(R) + X is adrs

(R) + X is adrs of adrs

PROGRAM COUNTER ADDRESSING Reg =7

MODE 7

1 b } 1

MR 2887

2 immediate #n operand n follows instr

3 absolute @ #A address A follows instr

6 relative A instr adrs + 4 4+ X is adrs

7 relative deferred @A instr adrs + 4 + X is adrs of adrs

LEGEND

Op Codes Operations

[] = O for word/1 for byte () — contents of

SS — source field (6 bits) S — contents of source

DD = destination field (6 bits) d — contents of destination

R = gen register (3 bits), r — contents of register

Oto7

XXX = offset (8 bits), +127 , <« — becomes

to —128

Op Codes Operations

N — number (3 bits) X — relative address

NN = number (6 bits) % — register definition

Boolean Condition Codes

< = AND — conditionally set/cleared

> = inclusive OR —_ — not affected

> — exclusive OR 0 — cleared

~ = NOT 1 — set

SINGLE OPERAND: OPR dst

19 . : l r : I r . 06 05 . — - 00

OP CODE SSQOR DD

Mne-

monic Op Code Instruction dst Result N ZV

General

CLR(B) @ 050DD clear 0 010

COM(B) W 051DD complement (1’s) ~d 0

INC(B) W 052DD increment d+1 :

DEC(B) W 053DD decrement d—1

NEG(B) N 054DD negate (2's compl) —d

TST(B) W 057DD test d 0

Rotate & Shift

ROR(B) m 060DD rotate right -C,d

ROL(B) ® 061DD rotate left C,d«

ASR(B) B 062DD arith shift right d/2

ASL(B) ® 063DD arith shift left 2d

SWAB 0003DD swap bytes 0

Multiple Precision

ADC(B) W 055DD add carry d+ C * g

SBC(B) MW 056DD subtract carry d—-C *

SXT 0067DD sign extend Oor—1 - 0

Processor Status (PS) Operators

MFPS 1067DD move byte from PS d <PS 0

MTPS 1064SS move byte to PS PS <s *

DOUBLE OPERAND: OPR src, dst

06 05
T

OPR src, R or OPR R, dst

T

OpP CODE

06 05

Mne- N zV C

monic Op Code Instruction Operation

General

MOV(B) B 1SSDD move d<s = % 0 -

CMP(B) W 2SSDD comapare s —d ®ooR k%

ADD 06SSDD add des+d *

SUB 16SSDD subtract de<d—s '

Logical

BIT(B) W 3SSDD bit test (AND) s d 0 -

BIC(B) W 4SSDD bit clear d<(~s) d 0 -

BIS(B) W 5SSDD bit set (OR) de<svd 0 -

XOR 074RDD exclusive (OR) d<rvd ¥ 0% 0 -

EIS :

MUL O70RSS multiply re<rxs 0

DIV 071RSS divide r<r/s

ASH 072RSS shift arithmetically

ASHC 073RSS arith shift combined wooE X

BRANCH: B-—location

If condition is satisfied

Branch to location,

New PC < Updated PC + (2 x offset)

adrs of brinstr 4+ 2

08 07 00
T T TT T

BASE CODE XXX

T I T T T

Op Code = Base Code 4+ XXX

Mne- Base

monic Code Instruction Branch Condition

Branches

BR 000400 branch (unconditional) (always)

BNE 001000 br if not equal (to 0) 0 Z =0

BEQ 001400 br if equal (to 0) =0 Z =1

BPL 100000 branch if plus + N =0

BMI 100400 branch if minus — N =1

BVC 102000 br if overflow is clear V =0

BVS 102400 br if overflow is set V =1

Mne- Base

monic Code Instruction Branch Condition

BCC 103000 br if carry is clear C =0

BCS 103400 br if carry is set C =1

Signed Conditional Branches

BGE 002000 br if greater or =0 Nvv=0

equal (to 0)

BLT 002400 br if less than (0) <0 NvVvV=1

BGT 003000 br if greater than (0) >0 Zv(NvV)=0

BLE 003400 br if less or equal (to0) <O Zv(NvV)=1

Unsigned Conditional Branches

BHI 101000 branch if higher > CvZ=0

BLOS 101400 branch if lower or same < CvZ=1

BHIS 103000 branch if higher or same > C =0

BLC 103400 branch if lower < C =1

JUMP & SUBROUTINE

Mne-

monic Op Code Instruction Notes

JMP 0001DD jump PC <« dst

JSR O004RDD jump to subroutine l

RTS 0O0020R return from ; use same R

subroutine J

MARK O064NN mark aid in subr return

SOB 077RNN subtract 1 & br (R) — 1, then if (R) =« O:

(if -« 0) PC « Updated PC —

(2 x NN)

TRAP & INTERRUPT:

Mne-

monic Op Code Instruction Notes

EMT 104000 emulator trap PC at 30, PS at 32

to 104377 (not for general use)

TRAP 104400 trap PC at 34, PS at 36

to 104777

BPT 000003 breakpoint trap PC at 14, PS at 16

10T 000004 input/output trap PC at 20, PS at 22

RTI 000002 return from interrupt

RTT 000006 return from interrupt inhibit T bit trap

MISCELLANEOUS:

Mnemonic Op Code Instruction.

HALT 000000 halt

WAIT 000001 wait for interrupt

RESET 000005 reset external bus

NOP 000240 (no operation)

MFPI 0065SS move from previous instr space

MTPI 0066DD move to previous instr space

MFPD 1065SS move from previous data space

MTPD 1066DD move to previous data space

CONDITION CODE OPERATORS:

15 : 5 4 3 2 1 0

OP CODE BASE=000240 N V4 Vv C

O — CLEAR SELECTED COND. CODE BITS

1 — SET SELECTED COND. CODE BITS

Mnemonic Op Code Instruction N Z v C

CLC 000241 clear C - - = 0

CLV 000242 clear V - - 0 -

CLZ 000244 clear Z - 0 - -

CLN 000250 clear N 0O - - -

cCC 000257 clear all cc bits O O O O

SEC 000261 set C - - =1

SEV 000262 set V - -1 -

SEZ 000264 setZ -1 - -

SEN 000270 set N 1 - - -

SCC 000277 set all cc bits 1 1 1 1

OPTIONAL FLOATING POINT:

Data Formats

F FORMAT, FLOATING POINT SINGLE PRECISION

15 00

+2 FRACTION- 1560

15 14 Q7 06 00

MEMORY +0 S EXP FRACT - 22:16

L 1 1 i L L i L 1 1 I 1 |

OPTIONAL FLOATING POINT:

Data Formats (Cont)

+6

+4

+2

MEMORY +0

MEMORY +0

D FORMAT, FLOATING POINT DOUBLE PRECISION

15 00

FRACTION <15:0>

1 i i Il 1 L 1 L i 1 1 1 1

15 00

FRACTION <31:16>

1 1 I i 1 i 1 Il I 1 1 | -

15 00

FRACTION <47:32>

1 1 1 i 1 1 1 1 i 1 1 1 L

15 07 06 00

S EXP FRACT -°94:48 -

i L 1 1 L 1 ! 1 1 1 L

S = SIGN OF FRACTION

EXP = EXPONENT IN EXCESS 200 NOTATION, RESTRICTED TO 1 TO 377 OCTAL

FOR NON-VANISHING NUMBERS

FRACTION = 23 BITSiIN F FORMAT, 55 BITS IN D FORMAT + ONE HIDDEN

BIT (NORMALIZATION). THE BINARY RADIX POINT [STO THE LEFT

M 3RO

| FORMAT, INTEGER SINGLE PRECISION

15 14 00

N NUMBER <215:0>

1 1 i J 1 L L 1 1 1). 1

L FORMAT, DOUBLE PRECISION INTEGER LONG

15 14 00

S NUMBER <<30:16>

Il L L L Il L 1 i i L il I\

15 00

NUMBER <2165.0>

1 1 1 1 1 i i 1 1 1 1 1 i

WHERE S = SIGN OF NUMBER

NUMBER = 15 BITS IN | FORMAT, 31 BITS IN L FORMAT
MR 3606

Addressing Formats

DOUBLE OPERAND ADDRESSING

07 06 05 00

A | |

AC FSRC,FDST,SRC,DST

L i L

SINGLE OPERAND ADDRESSING

15 12 1 06 05 00

| | 1 i H

FSRC, FDST, SRC, DST

1 1

OC = OPCODE =17

FOC = FLOATING OPCODE

AC = FLOATING POINT ACCUMULATOR (ACO-AC3)

FSRC AND FDST USE FPP ADDRESSING MODES

SPC AND DST USE CPU ADDRESSING MODES

MR 3608

Mnemonic

CFCC

SETF

SETI

SETD

SETL

LDFPS

STFPS

STST

CLRF, CLRD

TSTF, TSTD

ABSF, ABSD

NEGF, NEGD

MULF, MULD

MODF, MODD

ADDF, ADDD

LDF, LDD

SUBF, SUBD

CMPF, CMPD

STF,STD

DIVF, DIVD

STEXP

STCFI, STCFL

STCDI, STCDL

STCFD, STCDF

LDEXP

LDCIF, LDCIF

LDCLF, LDCLD

LDCDF, LDCFD

Op Code

170000

170001

170002

170011

170012

1701 src

1702 dst

1703 dst

1704 fdst

1705 fdst

1706 fdst

1707 fdst

171 (AC) fsrc

171 (AC + 4) fsrc

172 (AC) fsrc

172 (AC + 4) fsrc

173 (AC) fsrc

173 (AC + 4) fsrc

174 (AC) fdst

174 (AC + 4) fsrc

175 (AC) dst

} 175 (AC+ 4) dst {

176 (AC) fdst

176 (AC + 4) src

177 (AC) src

177 (AC + 4) fsrc

Instruction

copy fl cond codes

set floating mode

set integer mode

set fl dbl mode

set long integer mode

load FPP prog status

store FPP prog status

store (exc codes & adrs)

clear floating/double

test fl/dbl

make absolute fl/dbl

negate fl/dbl

multiply fl/dbl

multiply & integerize

add fl/dbl

load fl/dbl

subtract fi/dbl

compare fl/dbl (to AC)

store fl/dbl

divide fl/dbl

store exponent

store & convert fl or

dbl to int or long int

store & convert (dbl-fl)

load exponent

load & convert int or

fong int to fl or dbl

load & convert (dbl-fi)

Notes

FD <0

FL<0

FD« 1

FL<1

fdst < 0

fdst « fdst

fdst « —fdst

AC < AC x fsrc

AC < AC + fsrc

AC < fsrc

AC < AC - fsrc

fdst <« AC

AC < AC/fsrc

A.2 NUMERICAL OP CODE LIST

Mne-

Op Code monic

00 00 00 HALT

00 00 01 WAIT

00 00 02 RTI

00 00 03 BPT

00 00 04 10T

00 00 05 RESET

00 00 06 RTT

00 00 07

00 00 10 MFPT

00 00 77 (unused)

00 01 DD JMP

00 02 OR RTS

00 02 10

(reserved)

00 02 27

00 02 40 NOP

00 02 41

cond

codes

00 02 77

00 03 DD SWAB

07 7R NN SOB

10 00 XXX BPL

10 04 XXX BMI

10 10 XXX BHI

10 14 XXX BLOS

10 20 XXX BVC

10 24 XXX BVS

10 30 XXX BCC,

BHIS

10 34 XXX BCS,

BLO

10 40 00

EMT

10 43 77

Op Code

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

10

10

10

10

10

10

10

10

10

10

10

10

04

10

14

20

24

30

34

4R

50

51

52

53

54

55

56

57

60

61

62

63

64

66

66

67

44

47

50

51

52

53

54

56

57

60

62

XXX

XXX

XXX

XXX

XXX

XXX

XXX

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

NN

SS

DD

DD

00

77

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

Mne-

monic

BR

BNE

BEQ

BGE

BLT

BGT

BLE

JSR

CLR

COM

INC

DEC

NEG

ADC

SBC

TST

ROR

ROL

ASR

MARK

MFPI

MTPi

SXT

TRAP

CLRB

COMB

INCB

DECB

NEGB

ADCB

SBCB

TSTB

RORB

ROLB

ASRB

Op Code

00 70 00

00 77

DD

DD

DD

DD

DD

DD

SS

SS

SS

SS

DD

OR

1R

2R

3R

40

07 67 77

10

10

10

10

10

63

64

65

66

67

SS

11

12

13

14

15

16

SS

SS

SS

SS

DD

SS

17 00 00

17 77 77

Mne-

monic

(unused)

MOV

CMP

BIT

BIC

BIS

ADD

MUL

DIv

ASH

ASHC

XOR

> (reserved)

Jv (reserved)

DD ASLB

SS MTPS

MFPD

DD MTPD

DD MFPS

MOVB

DD CMPB

DD BITB

DD BICB

DD BISB

DD SUB

floating

point

A.3 PROCESSOR STATUS WORD

15 14 13 12 1M 09 08 07 05 04 03 02 01 00

CTMm PM

] 1 1

Sl

PRIORTY

LEVEL
T

N Z Y C

L
- J

PREVI

~

RESERVED

OUS MEMORY

MANAGEMENTMODE

CURR

MANA

ENT MEMORY

GEMENT MODE

b] 3

TRACE——j fl
NEGATIVE

ZERO

OVERFLOW

CARRY

SUSPENDED

INSTRUCTION

MR 3638

Contents

016 701

000 026

012 702

000 352

000 211

105 711

100 376

116 162

BOOTSTRAP LOADER

Address Contents

— 764

— 766

— 770

— 772

— 774

— 776

000 002

— 400

005 267

177 756

000 765

177 560 (TTY)

or 177 550 (PC11).

Ad

ABSOLUTE LOADER

Address

Starting Address: — 500 — 744

Memory Size: — 746

4K 017 — 750

8K 037 — 752

12K 057 — 754

16K 077 — 756

20K 117 — 760

24K 137 — 762

28K 157

(or larger) 773 000 Paper Tape Bootstrap

773 100 Disk/DECtape Bootstrap

773 200 Card Reader Bootstrap

773 300 Cassette Bootstrap

773 400 Floppy Disk Bootstrap

A.5 DEVICE REGISTER ADDRESSES

Device

Console Terminal

Registers

Line Time Clock

(external event)

interrupt

Input Control/Status

input Buffer

Output Control/Status

Output Buffer

LAV11 High-Speed Printer

Printer Status

Printer Buffer

High-Speed Paper Tape

Reader/Punch

Reader Status

Reader Buffer

Punch Status

Punch Buffer

RXV11 Floppy Disk

System

Status

Buffer

REV11 ROM Programs

RCSR

RBUF

XCSR

XBUF

RXCS

RXDB

Device Interrupt

Address Vector

100

177560 60

177562

177564 64

177566

177514 200

177516

177550 70

177552

177554 74

177556

177170 264

177172

165000-165776,

173000-173776

A.6 CONSOLE ODT COMMANDS

Command Symbol Description

Slash / Prints the contents of a specified

location.

Carriage Return <CR> Closes an open location.

Line Feed <LF> Closes an open location and then

opens the next contiguous

location.

Internal Register $orR Opens a specifiec processor register.

Designator

Processor Status S Opens the PS, must follow an ““$"’

Word Designator or R’ command.

Go G Starts program execution.

Proceed P Resumes execution of a program.

Binary Dump Control-Shift-S Manufacturing use only.

H Reserved for DIGITAL use.

A.7 7-BIT ASCIl CODE

Octal Octal Octal Octal

Code Char Code Char Code Char Code Char

000 NUL 040 SP 100 @ 140 h

001 SOH 041 ! 101 A 141 a

002 STX 042 “ 102 B 142 b

003 ETX 043 # 103 C 143 C

004 EOT 044 $ 104 D 144 d

005 ENQ 054 A 105 E 145 e

006 ACK 046 & 106 F 146 f

007 BEL 047 ‘ 107 G 147 g

010 BS 050 (110 H 150 h

011 HT 051) 111 | 151 i

012 LF 052 112 J 152 j

013 VT 053 + 113 K 153 k

014 FF 054 ! 114 L 154 I

015 CR 055 - 115 M 155 m

016 SO 056) 116 N 156 n

017 Sl 057 / 117 0] 157 o}

020 DLE 060 0 120 P 160 p

021 DC1 061 1 121 Q 161 q

022 DC2 062 2 122 R 162 r
023 DC3 063 3 123 S 163 S

024 DC4 064 4 124 T 164 t

025 NAK 065 5 125 U 165 u

026 SYN 066 6 126 Vv 166 v

027 ETB 067 7 127 w 167 w

030 CAN 070 8 130 X 170 X

031 EM 071 9 131 Y 171 y

032 SUB 072 : 132 V4 172 y4
033 ESC 073 : 133 [173 {

034 FS 074 < 134 AN 174 |
035 GS 075 — 135 Jor 1 175 }

036 RS 076 > 136 A 176 —~

037 us 077 ? 137 — Oor « 177 DEL

APPENDIX B

INSTRUCTION TIMING

B.1 BASIC INSTRUCTION TIMING

The following are the assumptions used to calculate instruction

times.

Instruction times, are calculated using this equation

Instruction Time = Basic Time + Source Time + Destination Time

If memory management is enabled, add .16 microseconds for each

memory reference. To arrive at incremental value to add to the

above instruction time, use the following equation (select numbers

from memory cycle column).

Increment = .16 (Reads + Writes) + .32 (RMW)

All timing is based on the MSV11-D memory (no parity) with the

following characteristics. Typical times are shown for a 300 ns

microcycle +10%.

Access Cycle

Bus Cycle Time (ns) Time (ns)

DATI 210 500

DATO (B) 100 545

DATIO (B) 630 1075

B.1l.1 Source Address Time

Source Memory Time

Instruction Mode Cycles (Microseconds)

0 0 0

1 1 1.12

2 1 1.12

Double Operand 3 2 2.25

4 1 1.42

5 2 2.55

6 2 2.55

7 3 3.67

B.1.2

B.1.3

Destination Time

Instruction

MOV, CLR, SXT,

MFPS, MTPI (D)

CMP, BIT,

TST

MTPS, MFPI (D)

MUL, DIV,

ASH, ASHC

BIC, BIS, ADD, SUB,

SWAB, COM, INC,

DEC, NEG, ADC,

SBC, ROR, ROL,

ASR, ASL, XOR

Execute and Fetch

Instruction

MOV,

ADD,

BIS,

TST,

INC,

ADC,

ROL,

MFPS

CMP, BIT,

SUB, BIC,

SXT, CLR,

DEC, NEG,

SBC, ROR,

ASR, ASL,

SWAB, COM,

Destination Memory

Mode Cycles

0 0

1 1

2 1

3 2

4 1

5 2

6 2

7 3

0 0

1 1

2 1

3 2

4 1

5 2

6 2

7 3

0 0

1 1

2 1

3 2

4 1

5 2

6 2

7 3

0 0

1 1

2 1

3 2

4 1

5 2

6 2

7 3

. e 3 {
]

Memory Time

Cycles (Mic

1 1.72

Time

(Microseconds)

0

1.84

1.84

2.66

1.84

2.96

2.96

4.09

0

1.42

1.42

2.25

1.42

2.55

2.55

3.67

0

0.22

0.22

1.05

1.22

1.35

1.35

2.47

0

2.66

2.66

3.49

2.66

3.79

3.79

4.91

roseconds)

Memory Time

Instruction Cycles (Microseconds)

MTPS 1 4.72

MFPI (D) 1 4.12

MTPI (D) 2 2.85

MUL 1 24.52

DIV 1 50.62

ASH 1 30.8

ASHC 1 47.02

All branch instructions 1 1.72

SOB (branch) 1 2.62

(no branch) 1 2.32

RTS 2 3.15

MARK 2 4.65

RTI, RTT 3 5.17

Set or Clear N, 2, V, C 1 2.62

HALT 5 -

WAIT 1 2.92

RESET 1 -

EMT, TRAP 5 7.98

IOT, BPT 5 8.85

JUMP INSTRUCTIONS

Memory Time

Instruction Mode Cycles (Microseconds)

1 1 2.02

2 1 2.32

JMP 3 2 2.85

4 1 2.32

5 2 3.15

6 2 3.15

7 3 4.27

1 2 3.86

2 2 4.16

JSR 3 3 4.69

4 2 4.16

5 3 4.99

6 3 4.99

7 4 6.11

B.1l.4 Latency

Interrupts (BR requests) are acknowledged at the end of the

current instruction. Interrupt latency, which is the time from

when an interrupt is requested to when it is granted, is 10.79

microseconds (max) (non-EIS) and 55.65 microseconds (max) (EIS)

for the KDF1ll-AA.

Interrupt service time, which is the time from BR acknowledgement

to the first subroutine instruction, is 8.18 microseconds max.

NPR (DMA) 1latency, which 1is the time from request to bus

mastership for the first NPR device, is 3.34 microseconds max.

B.2 FLOATING POINT INSTRUCTION TIMING (OPTION)

The execution time of a floating point instruction is dependent on

the following:

1. Type of instruction

2. Type of addressing mode specified

3. Type of memory.

In addition, the execution time of many instructions, such as

ADDF, are dependent on the data.

Table B-1 provides the basic instruction times for addressing mode

0 with a microcycle time of 300 ns. Tables B-2 through B-5 show

the additional time required, using the MSV11-D memory with parity

enabled, for instructions with other than mode 0. Refer to the

notes for the execution time variations for the data-dependent

instructions.

Table B-1 Instruction Times

Mode 0

Time

Micro- | (Micro-

Instruction | cycles | seconds) Notes Modes 1-7

LDF 28 9.15 1,2,19 Use Table 8-2

LDD 36 11.55 1,2,23

LDCFD 40 12.75 1,4

LDCDF 55 17.25 1,5

CMPF 65 20.25 14,15

CMPD 71 22.05 14,15

DIVF 301 91.05 1,29,41,43,44

DIVD 795 239.25 1,30,42,43,44

ADDF 121 37.05 1,16,17,18,20,25,27,28,41,43,44

ADDD 139 42.45 1,16,21,22,24,26,27,28,42,43,44

SUBF 124 37.95 1,16,17,18.20,25,27,28,41,43,44

SUBD 142 43.35 1,16,21,22,24,26,27,28,42,43,44

MULF 264 79.95 1,29,31,41,43,44

MULD 641 193.05 1,30,32,42,43,44

MODF 682 205.35 1,26,30,32,33,34,35,41,43,44

MODD 693 208.65 1,26,30,32,33,34,36,42,43,44

TSTF 28 9.15 1,2,37
TSTD 32 10.35 1,2,37

Table B-1 Instruction Times (Cont)

Mode 0

Time

Micro- | (Micro-

Instruction | cycles | seconds) Notes Modes 1-7

STF 18 6.15 Use Table 8-3

STD 26 8.55

STCDF 65 20.25 1,38

STCFD 48 15.15 1,4

CLRF 36 11.55

CLRD 40 12.75

ABSF 43 13.65 37 Use both Tables

8-2 and 8-3

ABSD 51 16.05 37

NEGF 42 13.35 1,37

NEGD 50 15.75 1,37

LDFPS 11 4.05 Use Table 8-4

LDEXP 38 12.75 1,2,3,37

LDCIF 60 18.75 6,8

LDCID 55 17.25 6,8

LDCLF 60 18.75 6,7,8,9

LDCLD 55 17.25 6,7,8,9

STFPS 16 5.55 Use Table 8-5

STST 17 5.85

STEXP 34 10.95 1,2

STCFI 58 18.15 11,12,39

STCDI 59 18.45 11,12,39

STCFL 55 17.25 10,11,13,40

STCDL 56 17.55 10,11,13,40

CFCC 12 4,35 No operands

SETF 14 4.95

SETD 14 4,95

SETI 14 4,95

SETL 14 4.95

Table B-2 Instruction Times

Read/Write Time

Microcycles* Memory Cycles (Microseconds)

Addressing |Single Double Single Double Single Double

Mode Precision|Precision|Precision|Precision|Precision|Precision

1 6,8,11 8,10,13 2/0 4/0 4.81 6.92

2 7,9,11 9,11,14 2/0 4/0 5.11 7.22

2 Immediate|6,8,11 2,4,7 1/0 1/0 4.05 2.85

3 7,9,11 9,11,14 3/0 5/0 5.86 7.97

4 7,9,11 9,11,14 2/0 4/0 5.11 7.22

5 8,10,13 10,12,15 |3/0 5/0 6.16 8.27

6 8,10,13 10,12,15 |3/0 5/0 6.16 8.27

7 10,12,15 [12,14,17 (4/0 6/0 7.52 9.63

*Note: The three numbers

three different

(of microcycles)

conditions:

in each set represent

l. 1If the floating point number is positive

2. If the floating point number is negative and non-0

3. If the floating point number is a negative 0 with FIUV flag

clear.

Table B-3 Instruction Times

Read/Write Time

Microcycles Memory Cycles (Microseconds)

Addressing |Single Double Single Double Single Double

Mode Precision|{Precision|Precision|Precision|Precision|{Precision

1 3 5 0/2 0/4 2.56 4.82

2 6 8 0/2 0/4 3.46 5.72

2 Immediate| -2 -6 0/1 0/1 0.23 -0.97

3 4 6 1/2 1/4 3.61 5.87

4 6 8 0/2 0/4 3.46 5.72

5 5 7 1/2 1/4 3.91 6.17

6 5 7 1/2 1/4 3.91 6.17

7 7 9 2/2 2/4 5.27 7.53

Table B-4 Instruction Times

Read/Write Time

Microcycles Memory Cycles (Microseconds)

Addressing [Single Double Single Double Single Double
Mode Integer Integer Integer Integer Integer Integer

1 2 4 1/0 2/0 1.35 2.71
2 3 5 1/0 2/0 1.65 3.01
2 Immediate|l 1 1/0 1/0 1.05 1.05
3 3 5 2/0 3/0 2.41 3.76
4 3 5 1/0 2/0 1.65 3.01
5 4 6 2/0 3/0 2.71 4.06
6 4 6 2/0 3/0 2.71 4.06
7 6 8 3/0 4/0 4.06 5.42

Table B-5 Instruction Times

Read/Write Time

Microcycles Memory Cycles (Microseconds)

Addressing [Single Double Single Double
Mode Integer Integer Short Long Integer Integer

1 2 4 0/1 0/2 1.43 2.86
2 3 5 0/1 0/2 1.73 3.16
2 Immediate|l 1 0/1 0/1 1.13 1.13
3 3 5 1/1 1/2 2.48 3.91
4 3 5 0/1 0/2 1.73 3.16

5 4 6 1/1 1/2 2.78 4.21

6 4 6 1/1 1/2 2.78 4.21

7 6 8 2/1 2/2 4,13 5.57

NOTES

l. Add 300 ns if result is positive.

2. Add 300 ns if result is non-0.

3. Add 900 ns if SRC > 177 or SRC < -177.

4. Add 900 ns if floating point number = 0.

5. Add 3.3 microseconds if overflow on rounding.

6. Add 300 ns if integer is negative.

7. Add 1.5 microseconds if absolute value

65, 536.

of integer <

10.

11.

L2.

L3.

14.

15.

16.

17.

18.

Add 1.2 microseconds n times where n = 240 - exp and 1if

absolute value of integer > = 65,536.

Add 600 ns if exp < 20.

Add 2.1 microseconds n times where n is the smaller of

the two absolute values: (310 - exp) or (230 - exp).

Add 600 ns if integer is negative.

Add 900 ns if integer is negative.

Add 1.2 microseconds if floating point numbers are equal.

Add 2.1 microseconds if numbers are unequal but the signs

are the same.

Add 600 ns if FPACC > FPSRC.

Add 2.4 microseconds if FPSRC > FPACC.

Add 600 ns if adding opposite signs or subtracting like

signs.

Add 2.4 microseconds if trapped on undefined variable.

Add 900 ns and 1.2 microseconds n times where n = exp

difference.

Add 3.6 microseconds if FPSRC > FPACC.

Add 1.2 microseconds if adding opposite signs or

subtracting like signs.

Add 1.2 microseconds if trapped on undefined variable.

Add 900 ns and 1.8 microseconds n times where n = exp

difference.

shifts toAdd 1.2 microseconds n times where n

normalize.

Add 1.8 microseconds n times where n shifts to

normalize.

Add 3.3 microseconds if underflow.

Add 600 ns if overflow.

Add 600 ns if need to normalize after multiply or divide.

Add 1.2 microseconds if heed to normalize after multiply
or divide.

31. Add 600 ns for every "1" bit in multiplier (FPSRC).

32. Add 1.2 microseconds for every "1" bit in multiplier

(FPSRC).

33. Add 900 ns times n where n = exp module 16 (calculate

integer and fraction).

34. Add 300, 600, or 900 ns if exp = 21-40, 41-60 or > 100,

or 61-100 respectively.

35. Add 1.8 microseconds if the fractional part 0.

36. Add 1.2 microseconds if the fractional part 0.

37. Add 4.5 microseconds if trapped on any of the FPll

interrupts.

38. Add 5.4 microseconds if trapped on overflow.

39. Add 24.3 microseconds if trapped on conversion error.

40. Add 24.9 microseconds if trapped on conversion error.

41. Add 1.2 microseconds if rounding.

42, Add 1.8 microseconds if rounding.

43. Add 8.1 microseconds if trapped on overflow.

44. Add 9.9 microseconds if trapped on underflow.

B.2.1 Interrupt Latency '

For all floating point instructions except ADD, SUB, MUL, DIV, and

MOD, the interrupt latency is the length of the instruction. The

longest execution times for each of the FPP instructions are shown

in Table B-6.

In the floating point arithmetic instructions, interrupts may be

serviced while in the midst of their execution. Table B-7 shows

the longest times between checking for interrupt requests during

the floating point instructions. If an interrupt 1is to be

serviced before execution is complete, the instruction is aborted

and all the PDP-11 general registers and floating point registers

are restored to their original values. After the interrupt 1is

serviced, the floating point instruction is restarted from

scratch. This interrupt restore routine takes 6.9 microseconds

and the time must be added to the interrupt latency times where

execution of an instruction is aborted.

Table B-6 Longest Execution Times

Worst Case (Mode 7) Time

Instruction No. of Microcycles (Microseconds)

LDF 50 18.77

LDD 56 22.08

LDCFD 57 20.87

LDCDF 91 33.48

CMPF 86 29.57

CMPD 96 34.08

DIVF 350 108.77

DIVD 849 259.98

ADDF 310 96.77

ADDD 596 184.08

SUBF 313 97.67

SUBD 599 184.98

MULF 361 112.07

MULD 919 280.98

MODF 1166 353.57

MODD 1311 398.58

TSTF 58 21.17

TSTD 64 24.48

STF 25 11.42

STD 35 16.08

STCDF 98 34.98

STCFD 54 20.12

CLRF 43 16.82

CLRD 49 20.28

ABSF 72 28.54

ABSD 80 34.11

NEGF 72 28.54

NEGD 80 34.11

LDFPS 17 8.11

LDEXP 64 22.21

LDCIF 127 41.11

LDCID 122 39.61

LDCLF 134 43.97

LDCLD 129 42.47

STFPS 22 9.68

STST 25 11.42

STEXP 42 15.68

STCFI 143 45.98

STCDI 144 46 .28

STCFL 145 47.42

STCDL 146 47.72

Table B-6 Longest Execution Times (Cont)

Worst Case (Mode 7) Time

Instruction No. of Microcycles (Microseconds)

CFCC 12 4.35

SEIF 14 4.95

SETD 14 4.95

SETI 14 4.95

SETL 14 4.95

Table B-7 Longest Interrupt Request Checking Times

Max.

Max. Max. Latency

No. of Time Time

Micro- (Micro- (Micro-

Instruction From To cycles seconds) seconds)*

ADDF/SUBF fetch end 95 32.27 32.27

ADDF/SUBF fetch lst svcpt 83 28.67 35.57

ADDF/SUBF lst svcpt 2nd svcpt 42 12.60 19.50

ADDF/SUBF fetch 3rd svcpt 71 25.07 31.97

ADDF/SUBF lst svcpt 3rd svcpt 48 14.40 21.30

ADDF/SUBF 2nd svcpt 3rd svcpt 11 3.30 10.20

ADDF/SUBF 3rd svcpt 4th svcpt 6 1.80 8.70

ADDF/SUBF 3rd svcpt end 80 24.00 24.00
ADDF/SUBF 4th svcpt end 79 23.70 23.70

ADDD/SUBD fetch end 105 36.78 36.78
ADDD/SUBD fetch lst svcpt 103 36.18 43.08

ADDD/SUBD lst svcpt 2nd svcpt 56 16.80 24.70

ADDD/SUBD fetch 3rd svcpt 83 30.18 37.08

ADDD/SUBD 1st svcpt 3rd svcpt 64 19.20 26.10

ADDD/SUBD 2nd svcpt 3rd svcpt 13 3.90 10.80

ADDD/SUBD 3rd svcpt 4th svcpt 8 2.40 9.30

ADDD/SUBD 3rd svcpt end 88 26.40 26.40

ADDD/SUBD 4th svcpt end 87 26.10 26.10

MULF fetch end 89 30.47 30.47

MULF fetch svcpt 82 28.37 35.27

MULF svcpt end 93 27.90 27.90

MULD fetch end 101 35.58 35.58
MULD fetch svcpt 91 32.58 39.48

MULD svcpt end 106 31.80 31.80

DIVF fetch end 89 30.47 30.47

DIVF fetch svcpt 73 25.67 32.57

DIVF svcpt end 96 28.80 28.80

Table B-7 Longest Interrupt Request Checking Times (Cont)

Max.

Max. Max. Latency

No. of Time Time

Micro- (Micro- (Micro-

Instruction From To cycles seconds) | seconds)*

DIVD fetch end 101 35.58 35.58

DIVD fetch svcpt 85 30.78 37.68

DIVD svcpt end 112 33.60 33.60

MODF fetch end 93 31.67 31.67

MODF fetch lst svcpt 86 29.57 36.47

MODF 1st svcpt 2nd svcpt 29 8.70 15.60

MODF 2nd svcpt 3rd svcpt 51 15.30 22.20

MODF 2nd svcpt end 125 37.50 37.50

MODF 3rd svcpt end 86 25.80 25.80

MODD fetch end 107 37.38 37.38

MODD fetch lst svcpt 91 32.58 39.48

MODD 1st svcpt 2nd svcpt 29 8.70 15.60

MODD 2nd svcpt 3rd svcpt 49 14.70 21.60

MODD 2nd svcpt end 135 40.50 40.50

MODD 3rd svcpt end 96 28.80 28.80

*Note: These times include the register restore time.

12w I

APPENDIX C

KDF11/PDP-11 PROGRAM AND OPERATION DIFFERENCE

The following pages contain a chart comparing the programming and

operational features of the KDF1l1l-AA, LSI-11 and PDP-11

processors.

ACTIVITY PDP-11/

LSI-11 KDF1l1 04 34 05/10 15/20 35/40 45

OPR%R, (R)+ or OPR%R, -(R) using the same register

as both source and destination: contents of R are

incremented (decremented) by 2 before being used as
the sgource onerand

C c.SYwL VT s G

OPR%R, (R)+ or OPR%R, - (R) using the same register

as both register and destination: initial contents

of R are used as the source operand.

OPR%R, @(R)+ or OPR%R, @-(R) using the same register

as both source and destination: contents of R are

incremented (decremented) by 2 before being used as

the source operand.

OPR%R, @(R)+ or OPR%R, @-(R) using the same register

as both source and destination: initial contents of

R are used as the source operand.

OPR PC, X(R); OPR PC, @ X(R); OPR PC, @ A; OPR PC,

A: Location A will contain the PC of OPR +4.

OPR PC, X(R); OPR PC, @ X(R), OPR PC, A; OPR PC, @ A

Location A will contain the PC of OPR +2.

JMP (R) + or JSR reg, (R)+:

Contents of R are incremented by 2, then used as the

new PC address.

JMP (R)+ or JSR reg, (R)+:

Initial contents of R are used as the new PC.

JMP %R or JSR reg, %R traps to 4 (illegal

instruction).

JMP %R or JSR reqg, $R traps to 10 (illegal

instruction).

SWAB does not change V.

SWAB clears V.

Register addresses (177700 - 177717) are valid

Program addresses when used by CPU.

ACTIVITY PDP-11/

LSI-11 KDF1l1 04 34 05/10 15/20 35/40 45

Register addresses (177700 - 177717) time-out when

used as a program address by the CPU. Can be ad-

dressed under console operation. Note addresses

cannot be addressed under Console for LSI-11 or

KDF1ll1.

Basic instructions noted in PDP-11 processor hand-

book.

SOB, MARK, RTT, SXT instructions.

ASH, ASHC, DIV, MUL

XOR instruction.

The external option KE1ll-A provides MUL, DIV and

SHIFT operation in the same data format.

The KE1l1l-E (Expansion Instruction Set) provides the

instructions MUL, DIV, ASH, and ASHC. These new

instructions are 11/45 compatible.

The KEll-F adds unique stack ordered floating point

instructions: FADD, FSUB, FMUL, FDIV.

The KEV-11 adds EIS/FIS instructions.

SPL instruction

Power fail during RESET instruction is not recog-

nized until after the instruction is finished (70

milliseconds). RESET instruction consists of 70

millisecond pause with INIT occurring during first

20 milliseconds,

Power fail immediately ends the REST instruction

and traps if an INIT is in progress. A minimum

INIT of 1 microsecond occurs if instruction aborted.

Power fail acts the same as 11/45 (22 milliseconds

with about 300 nanoseconds minimum). Power fail

during RESET fetch is fatal with no power down

sequence.

RESET instruction consists of 10 microsecond of INIT

followed by a 90 microsecond pause. Power fail is

not recognized until the instruction is complete.

ACTIVITY PDP-11/

LST-11 KDF11 04 341 05/10 15/20 35/40 45

10.

11.

12.

13.

14,

15.

16.

No RTT instruction

If RTT sets the T bit, the T bit trap occurs after

the instruction following RTT.

If TI sets "T" bit, "T" bit trap is acknowledged

after instruction following RTI.

ets "T" bit, "T" bit trap is acknowleIf KR S

ately following RTI.

TI

immedi

If an interrupt occurs during an instruction that

has the "T" bit set, the "T" bit trap is acknowl-

edged before the interrupt.

If an interrupt occurs during an instruction and

the "T" bit is set, the interrupt is acknowledged

before "T" bit trap.

"T" bit trap will sequence out of WAIT instruction.

"T" bit trap will not sequence out of WAIT instruc-

tion. Waits until an interrupt.

Explicit reference (direct access) to PS can load

"P" bit. Console can also load "T" bit

Only implicit references (RTI, RTT, traps and in-

terrupts) can load "T" bit. Console cannot load

"T" bit.

0dd address/nonexistent references using the SP

cause a HALT. This is a case of double bus error

with the second error occurring in the trap serv-

icing the first error. 0dd address trap not in

LSI-11 or F-11.

0dd address/nonexistent references using the stack

pointer cause a fatal trap. On bus error in trap

service, new stack created at 0/2.

The first instruction in an interrupt routine will

not be executed if another interrupt occurs at a

higher priority level than assumed by the first

interrupt.

The first instruction in an interrupt service 1is

guaranteed to be executed.

< > »

ACTIVITY PDP-11/

LSI-11| KDF11 | 04 | 34 | 05/10 | 15/20 | 35/40] 45

17. 8 General purpose registers X X X X X X X

16 General purpose registers X

18. PSW address, 177776, not implemented must use new X

instructions, MTPS (Move to PS) and MFPS (Move from

PS) .

PSW address implemented, MTPS and MFPS not imple- X X X X X

mented.

PSW address and MTPS and MFPS implemented. X X

19. Only one interrupt level (BR4) exists. X

Four interrupt levels exist. X X X X X X X

20. Stack overflow is not implemented. X

Stack overflow below 400 is implemented. X X X X X

Red and yellow zone stack overflow is implemented. X X

21. 0dd address trap is not implemented. X X

0dd address trap is implemented. X X X X X X

22. FMUL and FDIV instructions implicitly use R6 (one X

push and pop); hence R6 must be set up correctly.

FMUL and FDIV instructions do not implicitly use R6. X

23. Due to their execution time, EIS instructions can X

abort because of a device interrupt.

EIS instructions do not abort because of a device X X X

interrupt.

24, Due to their execution time, FIS instructions can X X

abort because of a device interrupt.

25. EIS instructions do a DATIP and DATO bus seguence X

when fetching source operand.

EIS instructions do a DATI bus sequence when X

fetching source operand.

26. MOV instruction does just a DATO bus sequence for X X X X X

the last memory cycle.

ACTIVITY PDP-11/

LSI-11 KDF1l1 04 34 05/10 15/20 35/40 45

27.

28.

29.

30.

31.

32,

33.

MOV instruction does a DATIP and DATO bus sequence

for the last memory cycle.

If PC contains nonexistent memory address and a

bus error occurs, PC will have been incremented.

If PC contains nonexistent memory address and a
11DM i

e i
hives v v
MUuO e \ L wrror be unchanged(SS9 4 B9 ¥4 b A2

If register contains nonexistent memory address

in mode 2 and a bus error occurs, register will

be incremented.

Same as above but register is unchanged.

If register contains an odd value in mode 2 and a

bus error occurs, register will be incremented.

If register contains an odd value in mode 2 and a

bus error occurs, register will be unchanged.

Condition codes restored to original values after

FIS interrupt abort (EIS does not abort on 35/40).

Condition codes that are restored after EIS/FIS
interrupt abort are indeterminate.

Op codes 075040 through 075377 unconditionally

trap to 10 as reserved Op codes.

If KEV-11 option is present, Op codes 75040

through 075377 perform a memory read using the

register specified by the low order 3 bits as a

pointer. 1If the register contents are a non-

existent address, a trap to 4 occurs. If the

register contents are an existent address, a

trap to 10 occurs if user microcode is not

present. If no KEV-11l option is present, a

trap to 10 occurs.

Op codes 210 through 217 trap to 10 as reserved

Op codes.

Op codes 210 through 217 are used as maintenance

instruction. '

Op codes 75040 through 75777 trap to 10 as

reserved Op codes.

X X

ACTIVITY PDP-11/

LSI-11 KDF11 04 34 05/10 15/20 35/40 45

34,

Only if KEV-11 option is present, Op codes 75040

through 75377 can be used as escapes to user

microcode. Op codes 75400 through 75777 can

also be used.

Used as escapes to user microcode, and KEV-11

option need not be present. If no user microcode
exists, a trap to 10 occurs.

Op codes 170000 through 177777 trap to 10 as

reserved instructions.

Op codes 170000 through 177777 are implemented

as floating point instructions.

Op codes 170000 through 177777 can be used as

escapes to user microcode. If no user microcode

exists, a trap to 10 occurs.

APPENDIX D

INTEGRATED CIRCUITS

This appendix contains reference information for the 9643

TTL-to-MOS driver (DIGITAL part number 19-16028-01) and the 2908

bus transceiver (DIGITAL part number 19-15305-00). These two
integrated circuits are used on the KDF11-AA processor board.

D.1 9643

The 9643 is a dual positive logic "AND" TTL-to-MOS driver. This
device has separate driver address inputs with common strobe and
accepts standard TTL and DTL input signals. Provision is made for
high-current and high-voltage outputs levels suitable for driving
MOS <circuits. Figure D-1 shows the chip 1layout and pin
nomenclature.

D.2 2908

The 2908 1is an open-collector bus tranceiver with 3-state
receivers and parity. Figure D-2 shows the terminal connection
diagram and defines the functional terms. Figure D-3 is the logic
diagram and Figure D-4 is the associated truth table. Table D-1
lists the parity output functions.

,

INAE] vees

2

E[3: —_;_] OuT A

INBE D——] vee2
4 5

GNDE —:] ouUT B

MR 2925

Figure D-1 9643 Connection Diagram

Table D-1 2908 Parity Output Functions

BE O0dd Parity Output

L 0odd

H 0dd n
n

L
&

o

3

2

|@
)

—

4 @
)

[
\ &

o

o

»

w

w

(N~)

(m [Ree vee [(20

@ []ro DRCP [(19)

3 [] Ao R3 :‘ (18)

(4[] 8uso A3 _7_‘_] (17)

(5) [onos BUsz [] (16)

© []BUs GND2 [] (18)

@ [A BUS2 [] (14)

® [R A2 [] 03

(9 [8€ R2] (12)

(10)[] ooo OE]

NOTE: . -
Pin 1 is Marked for Orientation Purposes. Numbers in {) Denote Terminal Numbers.

LEGEND:

BE: Bus Enable. When the Bus Enable is LOW, the Four Drivers are in the

High Impedance State.

BUSq BUS, BUS, BUS3: The Four Driver Outputs and Receiver Inputs (Data

' ' ' is Inverted).

DRCP: Driver Clock Pulse. Clock Pulse for the Driver Register.

ODD: Odd Parity Output. Generates Parity With the Driver Enabled, Checks

Parity With the Driver in the High-Impedance State.

OE: Output Enable. When the OE Input is HIGH, the Four Three-State Recciver

Outputs are in the High-impedance State.

Ro R4 Ro R3 : The Four Receiver Qutputs. Data From the Bus is Inverted

" " 7" 7" While Data From the A or B Inputs is Noninverted.

RLE: Receiver Latch Enable. When RLE is LOW, Data on the BUS Inputs is

Passed Through the Receiver Latches. When RLE is HIGH, the Receiver

Latches are Closed and Will Retain the Data Independent of all Other

Inputs.

M1:-2926

Figure D-2 2908 Connection Diagram,

and Definition of Functional Terms

D-2

BUSg BUS; BUSy B C w
3
w

~—— OUTPUT

<}3 O OF conTROL
[Do Qg Ro

Aoo—D D Q { f D Q

— CP Ccp

D Q1 R1A1 o—{> [D of— 11 f {>—- DQ
L cp cp

R2D Q2A2 O—-> I D Q 2 —{ ii %—D Q O
cp cp

l D3 Q3 R3 —_)A3O———i > D Q DQ

cp cp J PARITY
A

DRIVER)
CLOCK Do
DRCP

BUS

ENABLE
__ RECEIVER

BE O— fiJ:{>— %<} O RLE LATCH
ENABLE

MR.2927

Figure D-3 2908 Logic Diagram

INPUTS ITI\(I)TSS\'\/IQLE BUS | OUTPUT
: FUNCTION

A |DRcP | BE|RLE | OE | D; Qi B; R;

N X H | x x| x |x H X DRIVER OUTPUT DISABLE

X X X | x Hl x |x X z RECEIVER OUTPUT DISABLE

H
X X HooL L Xt L DRIVER OUTPUT DISABLE AND
x X - o u . . RECEIVE DATA VIA BUS INPUT

X X X | H x| x [NC X X LATCH RECEIVED DATA

L 1 x | x x| L |x X X

" r < | x < | u Ix x « LOAD DRIVER REGISTER

X L X | x X | NC|x X X

NO DRIVER CLOCK RESTRICTIONS

X H X | x X | NC|[x X X

X X L | x x| L |x H X

DRIVE BUS

X X L | X X | H [x L X

H=HIGH Z=HIGH IMPEDANCE X = DON'T CARE i=0,1,23

L= LOW NC = NO CHANGE = LOW-TO-HIGH TRANSITION

Figure D-4

MR.2928

2908 Truth Table

D-4

E.1 RXV11 BOOTSTRAPS

Full Length Version

@1000/000000 12702 <LF>

001002/000000 1002n7 <LF>*

001004/000000 12701 <LF>

001006/000000 177170 <LF>

001010/000000 130211 <LF>

001012/000000 1776 <LF>

001014/000000 112703 <LF>

001016/000000 7 <LF>

001020/000000 10100 <LF>

001022/000000 10220 <LF>

001024/000000 402 <LF>

001026/000000 12710 <LF>

001030/000000 1 <LF>

001032/000000 6203 <LF>

001034/000000 103402 <LF>

001036/000000 112711 <LF>

001040/000000 111023 (LF)

001042/000000 30211 <LF>

001044/000000 1776 <LF>

001046/000000 100756 <LF>

001050/000000 103766 <LF>

001052/000000 105711 <LF>

001054/000000 100771 <LF>

001056/000000 5000 <LF>

001060/000000 22710 <LF>

001062/000000 240 <LF>

001064/000000 1347 <LF>

001066/000000 122702 <LF>

001070/000000 247 <LF>

001072/000000 5500 < LF>

001074/000000 5007 <CR>

BOOTSTRAP PROGRAMS (CONSOLE ENTRY)
APPENDIX E

Axo)

Abbreviated Version

(DRIVE 0 ONLY):

@1000/000000 5000 <LF>

001002/000000 12701 <LF>

001004/000000 177170 <LF>

001006/000000 105711 <LF>

001010/000000 1776 <LF>

001012/000000 12711 <LF>

001014/000000 3 <LF>

001016/000000 5711 <LF>

001020/000000 1776 <LF>

001022/000000 100405 <LF>

001024/000000 105711 <LF>

001026/000000 100004 <LF>

001030/000000 116120 <LF>

001032/000000 2 <LF>

001034/000000 770 <LF>

001036/000000 0 <LF>

001040/000000 5007 <CR>

*n =4 for Unit O

n =6 for Unit 1

<LF> = Line Feed

< CF> = Carriage Return

Starting address — 1000

E.2 RKV11 BOOTSTRAP (Drive 0 only)

(terminal response underlined)

START @001000/000000 6<LF>

001002/000000 10061 <LF>

001004/000000 6<LF>

001006/000000 12761 <LF>

001010/000000 177400<LF>

001012/000000 2<LF>

001014/000000 12711 <LF>

001016/000000 5<LF>

001020/000000 105711 <LF>

001022/000000 100376 <LF>

001024/000000 5007 <LF>

001026/000000 O<CR>

@RO/XXXXXX O<LF>

R1/XXXXXX 177404<CR>

APPENDIX F

ODT DIFFERENCES

A number of differences exist between console ODT for the KDF1l1l-AA

and console ODT for the KDll-F. The following 1list describes

these differences.

KD11-F KDF11-AA

10.

11.

12.

13.

All characters that are input are echoed except

when in the APT command mode where no characters are

echoed. An echoed line feed <LF> will be followed

by a carriage return <CR> only (no second <LF> or

padding nulls). This method creates a potential

timing problem with a TTY ASR33 which types the next

character before the print head has completely

returned.

When an address location is open, another location

can be opened without explicitly closing the first

location, e.g., 1000/123456 2000/054321.

nrn

n@n

will open the previous location.

will open a location using indirect addressing.

"€" will open a location using relative addressing.

"M" will print the contents of an internal CPU register.

Rubout (ASCII 177) will delete the last character typed in.

"L" is the boot loader command which will load the

absolute loader.

Control-shift-S command mode (ASCII 23) accepts 2 bytes

forming a 16-bit address and dumps 10 bytes in binary

format. The 2 input bytes are not echoed.

Up to a 16-bit address and 16-bit data may be entered.

Leading 0Os are assigned.

Incrementing (LF) the address 177776 results in the

address 000000.

Incrementing a PDP-11 register from R7 prints out "R8"

and the contents of RO.

The 10 page is in the address group 17XXXX.

All characters that are input in any command mode, except

the APT mode, are echoed except the octal codes 0, 2, 10,

12, 200, 202, 210, and 212. This suppresses echoing LFs

fand nulls (0), STXs (2), BSx (10)] because an automatic

<CR> and LF> follow. 1In the APT command mode, no input

characters are echoed.

An address location must be explicitly closed by a <CR>

or <LF> command before another is opened or else an error

(?) will occur and any open location will automatically

be closed without altering its contents.

"T" is illegal and micro-ODT prints "?", <CR>, <LF>, "@"

"@" is illegal and micro-ODT prints "?", <CR>, <LF>, "@"

"?" is illegal and micro-ODT prints "?", <CR>, <LF>, "e"

"M" is illegal and micro-ODT prints "?", <CR>, <LF>, "@e"

Rubout is illegal and micro-ODT prints "?", <CR>, <LF>, "@"

"L" is illegal and micro-ODT prints "?", <CR>, <LF>, "@"

Control-Shift-S command mode (ASCII 23) accepts 2

bytes forming an 18-bit address with bits <17:15>

always 0Os and dumps 10 bytes in binary format. The

2 input bytes are not echoed.

Up to an 18-bit address and 16-bit data may be entered.

Leading 0s are assumed.

Incrementing (LF) the addresses 177776, 377776, 577776

and 777776 result in the addresses 000000, 200000,

400000 angd 600000 respectively, i.e., the upper 2 bits

of the 18-bit address are not affected; they must be

explicitly set.

Incrementing a PDP-11 register from R7 prints out "RO"

and the contents of RO.

The 10 page is in the address groupt 77XXXX where

address bits <17:12> must be explicitly ls.

KD11-F KDF11-AA

14. The micro-ODT mode can be entered from the following The micro-ODT mode can be entered from the following

sources: sources:

a. A PDP-11 HALT instruction. a. A PDP-11 HALT instruction when in kernel mode,

the POKL line is low and the HALT jumper option

strap is present.

b. A double bus error. b. An asserted HALT line.

C. An asserted HALT line. C. A power-up option.

d. A power up option. d. An asserted HALT line caused by a DLV11l framing error.

e. An asserted HALT line caused by a DLV1l framing error.| e. A micro-ODT bus error.

f. A micro-ODT bus error.

g. A memory refresh bus error.

h. An interrupt vector time-out.

i. A nonexistent micro-PC address.

15. A carriage return <CR> is echoed and followed by just a A carriage return <CR>. is echoed and followed by another

line feed <LF>. <CR> and line feed <LF>.

APPENDIX G

KD11-F/KD11-HA/KDF11-AA DETAILED COMPARISON

The KDF1ll-A module uses five bused spare lines that were reserved

for future expansion to implement 18-bit addressing (two lines)

and 4-level interrupts (three lines). 1In addition, the processor

uses several of the SSPARE lines for test points or for control

functions required during manufacturing testing of the boards.

These lines should not cause users any problems unless they have

inadvertently bused user signals across the backplane on these

pins. For a backplane pin assignment comparison, see Table G-1.

The KDF11l-AA uses the LSI-11 bus closer to its specified limits

than either the KD1l1l-F or KDll-HA. These bus timing differences,

listed in Table G-2, should have no effect on any user of LSI-11
peripherals or memories since a safety margin still exists between

actual times and bus limits.

Table G-1 Backplane Pin Assignment Comparison

Backplane

Line | Name KDF11-AA KD11-F KD11-HA

AAl BSPARE1 BIRQSL Reserved* Reserved*

AB1 BSPARE?2 BIRQ6L Reserved* Reserved*
BP1 BSPARE® BIRQ7L Reserved* Reserved*

ACl BAD16 BDALl6L Reserved* Reserved*

AD1 BAD17 BDAL17L Reserved* Reserved*

AE1 SSPARE1 Single Step | Not Used STOP L

AF1 SSPARE 2 SRUNL SRUNL SRUNL

AH1 SSPARE3 SRUNL Not Used SRUNL

AK1 MSPAREA Not Used Not Used MTOEL

ALl MSPAREA Not Used Not Used GND

AM2 BIAKIL MMU STRH Not Used Not Used

AR1 BREFL Not Used+ BREFL Not Used+

AR2 BDMGIL UBMAAPL Not Used Not Used

BC1 SSPARE4 MMU DAL18H Not Used SCLK3H

BD1 SSPARES MMU DAL19H Not Used SWMIB18H

BE1 SSPAREG6 MMU DALZ20H Not Used SWMIB19H

BF1 SSPARE7 MMU DALZ21H Not Used SWMIB20H

BH1 SSPARES CLK DISL Not Used SWMIB21H

BK1 MSPAREB Not Used 4K RAM BIAS | Not Used

BL1 MSPAREB Not Used 4K RAM BIAS | Not Used

*Even though these lines are not used on the KD1ll-F and KDl1l-HA,

they are bused on the backplane and terminated for future bus

expansion.

+Not used on the KDF1l1-AA and KDl1l-HA but terminated

inactive state to prevent problems with older memories.

in

All remaining pins are identical among all three processors.

the

Table G-2 Comparison of KDll-F, KDll-HA, and KDF1l1l-AA Bus Timing

Bus

Specifi-

cation KD11-F DK11-HA KDF11-AA

Interval (ns) (ns) (ns) (ns)

BSYNC L - BDIN L 100 200 188 144

BSYNC L - BDOUT L 200 300 281 288

BSYNC L - BIAK L 325 600 562 435

Address setup time 150 300 281 180

on bus

Address hold time 100 100 100 108

on bus

Replay to DIN/DCUT 200 700+400/-0 | 675+375/-0 | 225+72/-0

inactive time

APPENDIX H

PARITY ON THE LSI-11 BUS

H.1 INTRODUCTION

This appendix describes the method for reporting parity errors to

the KDF11-AA or DMA devices, and parity control information to the

MSV11-DE memory boards. Two different control circuits are

suggested which implement parity error reporting.

The first design emulates the parity registers in a (PDP-11) MS-11

memory. This relatively complicated circuit can be tested with a

standard parity diagnostic which also completely exercises the

parity memory. This design also allows parity memories and

nonparity memories to be mixed in a system.

The second circuit presents a simpler parity controller design.

This circuit is sufficient if mixed memories are not present, and

there 1is no need to run a standard parity controller/memory

diagnostic.

Both options provide a "write wrong parity" diagnostic feature.

H.2 PARITY CONTROL AND STATUS ON THE LSI-11 BUS

BDAL<17:16>, which are time-multiplexed signals (see Chapter 4),

report parity errors to both the KDFll-AA processor and DMA

devices, and control information to the MSV11-DE. During the

address phase of all bus cycles (150 ns before T SYNC until 100 ns

after T SYNC), BDALK17:16> represent the two highest address bits

of an address. BDAL<K17:16> only have parity significance during

the data phase of a reference (read operations: 200 ns after R

REPLY until 25 ns after T DIN; write operation: 100 ns before T

DOUT until 100 ns after T DOUT). The MSV11-DE asserts BDAL 16

during the data portion of a read operation to report a parity

error to the KDF11-AA or DMA device, and the parity controller

asserts BDAL 16 during the data portion of a write operation to

send control information (write wrong parity) to the MSV11-DE*.

BDAL 17 1is only used by the KDF11l-AA. The assertion of this bit

by the parity controller during the data phase of a read operation

will enable processor parity trapping (see Chapter 10). When

BDAL<17:16> are both asserted during the data phase of a KDF11l-AA

read operation, the processor will abort the bus cycle and

immediately trap to 1location 114,. The actual sampling of

BDAL<17:16> by the KDFll-AA is done 250-300 ns after receiving

BRPLY from the memory. Table H-1 summarizes the parity control

and status information sent on the LSI-11 Bus.

H.3 MS-11 PARITY CONTROL REGISTER EMULATION

The MS-11 1is a PDP-11 Unibus MOS memory with parity. It is

desirable to emulate this memory since a comprehensive MS-11

parity diagnostic exists to test the memory and parity control

*Care must be taken to make sure that DAL 16 1is asserted in a

manner that does not violate LSI-11 Bus timing.

logic. The diagnostic can be run in a system that contains

nonparity memory. In this case, the parity subtests are bypassed

in each nonparity memory bank.

Table H-1 Parity Control and Status Information

on the LSI-11 Bus (Data Phase)

Read Operation Write Operation

From Function From Function

BDAL 16 MSV11-DE Parity error Parity Write wrong
status for KDF1ll-AA | controller parity on

or DMA devices. MSV11-DE

BDAL 17 Parity Enable KDF11l-AA X No MSV11-DE

controller | parity trap function

through location

114, (if bus

masger).

Each MS-11 memory contains 8K words of memory and a parity control

register. There can be a maximum of 128K words of memory;
therefore, a system can have 16 parity control registers. Each

register has the format shown in Figure H-1.

15 00

0 ¢ 0 0 0 0 0 0 0 0 0 0 0

] J _1]] 1 1 Il]] |]] | !

|—- PARITY ERROR FLAG WRITE WRONG PARITY ——J
ENABLE PARITY TRAPS

MR 2R72)

Figure H-1 Parity Control Register Format

These registers respond to addresses 772100-772136. The 8K bank

number selects the control register.

The following functionality is designed into the LSI-11 Bus MS-11
parity circuit. When a parity error is detected, the parity error

flag is set in the control register that controls the bank of

memory in which the parity error occurred. This bit can only be

cleared by writing a 0. If the enable parity trap bit is set in
the selected control register when the error is detected, BDAL 17

is asserted by the circuit. This causes the KDF1l1l-AA to trap. If

bit 2 (write wrong parity) 1is enabled in the selected register

during a write operation, BDAL 16 will be asserted on the LSI-11

Bus and wrong parity will be set in the MSV11-DE. An indication
of the memory address that caused the parity error can be obtained
by looking at the address pushed onto the stack during the trap.
The address on the stack will point to the instruction or data
reference that caused the error.

As shown in Figure H-2, a 16 X 4 RAM is used to store the parity
control registers. A major portion of the logic is used to clear
the RAM at power-up, and every time a bus reset (BINIT) is issued
on the LSI-11 bus. Once the initialization is started, the logic
sequences a 4-bit counter (Init Address Generation) and, pausing
at each count, writes 0s into the selected RAM cells (Init
Control).

Following this process, the RAM 1is explicitly or implicitly
involved in every memory cycle. Explicit addressing occurs when
any of the parity control registers (772100 through 772136) are
accessed. This causes DAL<4:1> to be switched to the RAM address
(Implicit/Explicit RAM Address MUX) and DAL<1S5, 2, 0> to be
directed to the RAM input (CSR 15 MUX). The logic detects this
mode (Explicit Address Detection) by examining the LSI-11 bus
address lines, BBS7 L, and 16 switches which mark each 8K word
memory bank as either a parity or nonparity memory. If the
selected memory contains no parity, the explicit addressing mode
is not generated.

Implicit cycles (nonexplicit) connect address bits<17:14>
(Implicit/Explicit RAM Address MUX) to the RAM. This selects the
parity control register which controls the addressed memory. In
an implicit read cycle, bit 15 of the register is flagged with an
error if the selected memory has previously been marked with an
error, or if DAL 16 of the current cycle signals a parity error
(CSR 15 MUX).

DAL<17:16> are asserted when appropriate (DAL<17:16> Drivers) in

the manner previously described.

H.4 SIMPLE PARITY CONTROLLER (Figure H-3)

This circuit is a simplified version of the circuit shown in
Figure H-2. The 16 X 4 RAM is replaced by a simple latch. This
eliminates all the RAM initialization circuitry (Init Control and
Init Address Generation). The explicit addresses of the registers
do not have to be decoded. This reduces the complexity by
simplifying the decode logic and eliminating the Implicit/Explicit
RAM Address MUX. The control logic is simplified as a result.

[— —— ———

l DAL 16
l —_—

| DIN
Y

rIMPLICIT/
EXPLICIT RAM!

|ADR MUX

DAL ADR <17:14>>\ |

DAL ADR <04:01>

L | |—
r—

II-I-NIT ADDRESS
' l |GENERATION \ D gyt MD Q TS> DAL ~02:00> J>

MUX

CSR 15 MUX-' DIN WRITE 1
1

I | DpaTAPHASE > BPALTE \ronG|
I | PARITY |

CSRO2 |
CSR 15

MuX . | | HD BDAL 17 531555&]
L} CSH 00 PARITY

l I TRAPS |

DAL <17:16> DRIVERS
S— b — ——)

DAL <02.00> > Dy 1674
1 RAM

CSR 4-BiT

> ADR! I
| 4-BIT

I COUNTER

MUX WRITE CLR CSR 15 DAL 15

Y * DATA PHAEE T_I
3

d L
-

—I_

|

DAL ADR < 11:05>

BS7

8K BANK

I PARITY

SELECT

NONPARITY

1

1

> DECODE I

| EXPLICIT ADDRESSING
DECODING

- -

| |

| | | BUS |

L INIT mMTE conTROL |
—1 conTROL [T TTM ! - T = =

CONTROL :

7 | |Loy
| |

Lo . - J

BUS CONTROL

BDAL - 17:00 DAL- 17.00- e — — — — »

TS

MR DB 7§

Figure H-2 LSI-11 Bus MS-11 Emulation

s|
CSR 15 MUX

DAL 16

—»D DAL 15
___—’

DIN
BDAL16 WRITE

DATA PHASE WRONG
PARITY

CSR 02

BDAL 17 ENABLE

CSR 00 PARITY

TRAPS I

DAL <17:16> DRIVERS
— — —— —_—— —

I DIN 1LAl Q MUX CSR 15

I DAL 15

S —

F__7§__j
|

|

on T

|

|

|e
|

'l

DAL <02:00> D Q TS> DAL <02:00> >
Lol D DAL 15 > |28BIT

CSR 15 LATCH I

CLR CLR

) Nsuscontror | waten | I i
CONTROL I !

|[} ! I BUS CONTROL

DAL ADR <11:05> > DECODE

.

|
o) i |

|
d

| EXPLICIT ADDRESSING
DECODING

BUS CONTROL
BDAL <17:00> DAL <17:00> e — - — — »

TS

MR 2879

Figure H-3 Simple Parity Cohtroller

KDF11-AA USER’S GUIDE Reader’s Comments

EK-KDF11-UG-PR2

Your comments and suggestions will help us in our continuous effort to improve the quality and usefulness of our

publications.

What is your general reaction to this manual? In your judgment is it complete, accurate, well organized, well

written, etc.? s it easy to use?

What features are most useful?

What faults or errors have you found in the manual?

Does this manual satisfy the need you think it was intended to satisfy?

Does it satisfy your needs? Why?

[0 Please send me the current copy of the Technical Documentation Catalog, which contains information on

the remainder of DIGITAL’s technical documentation.

Name Street

Title City

Company State/Country

Department Zip

Additional copies of this document are available from:

Digital Equipment Corporation

444 Whitney Street

Northborough, Ma 01532

Attention: Printing & Circulation Services (NR2/M15)

Customer Services Section

Order No. EK-KDF11-UG

-~--—-——-— — — —— —— —— —— —— Do Not Tear - Fold Here and Stapl¢ — — — — — — — —

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Digital Equipment Corporation

Communications Development and Publishing

200 Forest Street (MR1-2/T17)

Marlboro, Massachusetts 01752

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	07-35
	07-36
	07-37
	07-38
	07-39
	07-40
	07-41
	07-42
	07-43
	07-44
	07-45
	07-46
	07-47
	07-48
	07-49
	07-50
	07-51
	07-52
	07-53
	07-54
	07-55
	07-56
	07-57
	07-58
	07-59
	07-60
	07-61
	07-62
	07-63
	07-64
	07-65
	07-66
	07-67
	07-68
	07-69
	07-70
	07-71
	07-72
	07-73
	07-74
	07-75
	07-76
	07-77
	07-78
	07-79
	07-80
	07-81
	07-82
	07-83
	07-84
	07-85
	07-86
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40
	09-41
	09-42
	09-43
	09-44
	09-45
	09-46
	09-47
	09-48
	09-49
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	F-01
	F-02
	F-03
	G-01
	G-02
	H-01
	H-02
	H-03
	H-04
	H-05
	replyA
	replyB

