VAX 9000 Family
SCU Technical Description
Order Number EK-KAS0J-TD-001

digital equipment corporation
maynard, massachusetts

DIGITAL INTERNAL USE ONLY

First Edition, May 1990

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

Restricted Rights: Use, duplication, or disclosure by the U. S. Government is subject to restrictions as set
forth in subparagraph (c¢) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS

252.227-7013.
Copyright © Digital Equipment Corpbration 1990

All Rights Reserved.
Printed in U.SA.

The postpaid Reader’s Comment Card included in this document requests the user’s critical evaluation to
assist in preparing future documentation.

FCC NOTICE: The equipment described in this manual generates, uses, and may emit radio frequency
energy. The equipment has been type tested and found to comply with the limits for a Class A computing
device pursuant to Subpart J of Part 15 of FCC Rules, which are designed to provide reasonable protection
against such radio frequency interference when operated in a commercial environment. Operation of this
equipment in a residential area may cause interference, in which case the user at his own expense may be
required to take measures to correct the interference.

The following are trademarks of Digital Equipment Corporation:

BI KDM RSTS VAX FORTRAN
CI KLESI RSX VAX MACRO
DEC MASSBUS RT VAXBI
DECmate MicroVAX RV20 VAXcluster
DECUS NI RVé64 VAXELN
DECwriter PDP TA VMS

DHB32 P/OS TK VT

DIBOL Professional ULTRIX Work Processor
DRB32 RA UNIBUS XMI

EDT Rainbow VAX : -
KDB50 RD VAX C dilgli]t]al1]

® IBM is a registered trademark of International Business Machines Corporation.
® Intel is a registered trademark of Intel Corporation.
™ Hubbell is a trademark of Harvey Hubbel, Inc.

® Motorola is a registered trademark of Motorola, Inc.

This document was prepared and published by Educational Services Development and Publishing, Digital
Equipment Corporation.

DIGITAL INTERNAL USE ONLY

Contents

About This Manual

1

General Description

1.1 Overview
SCU Logical Units
JBOX it
Array Control Unit

1.1.1

1.1.1.1
1.1.1.2
1.1.13

I/0 Control Unit

1.2 Physical Organization

1.2.1
1.2.2
1.2.3
124

JBox Port Arbitration

2.1 Overview

2.2 JBox Control
CTLA MCA
Port State Controllers
Pipeline Stages
Monitoring the States of a Request
Load Command — Pipeline Stage
Arbitration

2.2.1
2211
2212
2.2.13
2.2.14
2.2.15
2.2.1.6
2.2.1.7
2.2.1.8
2.2.19
2.2.1.10
22111
2.2.2
2.2.2.1
2.2.2.2

CCU MCU

Tag MCU

CTLB MCA
PAMM/CMD Stage
CTLB MCA — Inputs and Outputs

Arbitration Index
PAMM STRAMs

NPAMMcinitinenennnns

.........................

...............

...............

...............

......................

.....................

.....................

......................

.........................

......................

.....................

..............

...............

.....................

xxiil

iv Contents

2.2.3 CTLC MCA . .. e, 2-26
2.2.3.1 Resource Check Stage 2-28
2.2.3.2 Resources Required — Examples 2-32
2.2.3.3 Memory Segment Controllers 2-33
2.2.34 Command Class Typesc.uuuurinninnni.. 2-34
2.2.3.5 Retire Decode Stage 2-35
2236 PAMMDataDecodecouuummiinnnnnooo .. 2-35
2.2.3.7 CTLCMCA — Inputsand Outputs. 2-36
2.24 CTLD MCA . . . e, 2-37
2.3 JBox Data Paths and Data Path Control (DSXX and DSCT MCAs) ... 2-39
24 JBoxAddressPaths 242
241 ADRXMOCAS . ..o 2-42
242 Address Receive Latches.................................. 244
2.4.2.1 CPU Receive Latches 244
2.4.2.2 I/O Address Receive Latches 246
243 JBox-to-Memory Address Interface 2-47
243.1 DRAM Addressingcouuununan . 247
2.43.2 PAMM STRAMs Addressing 249
25 JBoxInterfaces 2-50
26 CPUMBox)PortInterface................... i i .. 2-50
26.1 JBoxKeySignals 2-55
262 JBoxCommandsuiuiii 2-57
2.6.3 MBox Key Signals. 2-58
2.64 MBox Commands00 . 2-60
27 ACUPortInterfaceuouue i 2-61
271 JBoxKeySignals, 2-69
2.7.2 JBox Commands 269
2.7.3 ACURey Signals, 2-69
2.74 ACUCommandsouuuuin et 2-69
2.7.5 Read Refill —Example, 2-69
28 ICUPortInterface, 2-70
28.1 dBox Key Signals 2-75
2.8.2 JBox Commands 2-75
2.8.3 ICUKeySignals i 2-75
284 ICUCommands. i 2-76
29 SPUPortInterfaceuuuuuumaann i, 2-76
2.9.1 JBox Key Signals 0. 2-77
29.2 dBox Commands 2-77
293 SPUKeySignals..............cuuuiiiuneiniinnii. 2-78

294 SPUCommandsuuiimn 2-78

Contents v

3 JBox Cache Consistency

3.l OVEIVIEW . ittt et e et e 3-1
3.2 CPUCacheData STRAMSccuiuinniniiiiinannennannenn 3-2
3.2.1 Cache Block . ..o ittt i i i e i e e e 3-2
322 CacheSetOand 1...........ciiuiuiiiiiiiiniiienneennnans 3-3
3.2.3 CPUCache LooKUD .+« v oo i ee e et et e e e ee e it i iinaans 34
824 CPUGCacheRefill 34
325 CPUCacheWriteBack 34
33 CPUCacheTagSTRAMSc.tiniiiiiniiiiiiiiaiannnnnns 3-5
34 SCUGIobalTagSTRAMScoiiiniiiiiaen, e 3-6
34.1 Global TagContentstiiniiiiiiiiinieennnn.. 3-7
3.4.2 Global Tag Address Bits, 3-8
343 GlobalTagStatus Bitso, 3-8
344 Global TagParity Bits 3-9
35 SCUGIbal Tag LoOKUD . .. vvveieeeeet ettt aneneennnns 3-9
3.5.1 Addressing the Global TagSTRAMs 3-10
36 ReadingGlobal Tags ittt 3-13
3.6.1 SCUMICrocode . . oo vttt it i et e et ettt eae s 3-16
3.6.2 Writing Tag Status 3-17
3.7 BITOTS .« oottt et e 3-18
3.8 Maintaining Consistent Global Tag Status 3-19 .
3.9 Handling Inconsistent Global Tag Status 3-19
3.9.1 Written Full and Written Partial Examples 3-25
.10 Interlocks ..o vttt e e 3-25
3.10.1 Interlock INnStructionso i i i i 3-26
3.10.2 SCU Supporting Interlocks i 3-26
3.10.3 TypesoflInterlockst 3-26
3.10.3.1 Interlock Reads00t 3-27
3.10.3.2 Interlock Writesottt omeiiiiiiinaaeeenennn 3-27
3.11 Interlock Storage.o iuiiiiiiminiieenaanenn 3-27
3.11.1 Lock Status Bits o ittt e 3-28
3.12 Global Tag Lookup for Lock Request. 3-28
3.12.1 ReadingLock Statuso 3-30
3.12.2 WritingLock Status i 3-30
3.13 Lock Request Timeoutst e 3-31
314 Lok EIrors . ..o ittt ittt ittt it e e 3-31
3.15 CPU Interlock Requestsottt iiimininnnnnnnn. 3-31
3.15.1 Lock Request — Cache Block Is Not Locked 3-33
3.15.2 Lock Request — Cache Block Is Locked 3-34
3.15.3 Lock Request — Cache Block Partially Written or Written Full 3-35
3.16 CPU Lock Acknowledge 3-35

vi Contents

3.17 CPUUnlock Requests S 3-36
3.18 XJAInterlock Requests.coouiinininiiiin. 3-36
3.18.1 Interlock Commandsc.coviniiiminniiieennennn 3-36
3.18.2 Lock Request — Cache Block Is Not Locked 3-37
3.18.3 Lock Request — Cache Block Is Locked 3-38
3.18.4 Lock Request — Cache Block Partially Written or Written Full 3-39
3.19 XJAUnlock Requestsciuuutiiimininiennnnnnnns. 339
3.19.1 Cycles ..ot e e e e 339
3.20 SPU Interlock Requestscuouinniminnn s 3-39
3.20.1 Interlock Commands............. .. i iiinunennnnn. 340
3.20.2 Lock Request — Cache Block Is Not Locked 341
3.20.3 Lock Request — Cache Block IsLocked 342
3.20.4 Lock Request — Cache Block Partially Written or Written Full 3-43
3.21 SPUUnlock Requestst 343
3211 Cyeles ..ottt e 343

4 Micromachine Control

0 I © 10 v - 4-1
42 JBox Control Store e e 4-1
421 Control Store STRAMSttt it 4-1
42.1.1 Space Allocation i 4-1
4.2.2 Control Store Data 4-5
423 Control Store Parity Checking 4-6
424 Control Store Addressingot 4-6
4241 Branch Address.ottt i e 4-7
4242 MICR AdAress. . . . oo it et et et et i 4-7
4.2.4.3 Fixup Queue Addressc i, 4-8
4.2.5 Control Store Loadingo vetiiee et 4-9
4.3 MICR MCA .. . e e e 4-11
4.4 Microword Definition 4-14
441 Microword Format i 4-14
44.2 Microcoding Examples i, 4-28
4421 CPU Read Refill — No Fixup Required..................... 4-28
4422 CPU Read Refill — With Fixup Required 4-31
4423 CPU Write Refill — Without Fixup............... 4-39
4424 DMA Read — Without Fixup 4-40

44.25 DMARead —With Fixup 441

Contents vii

5 Array Control Unit and Main Memory Unit

Bl OVEIVIEW . o ot ottt et e e et et camae e 5-1
52 Memory Subsystem 5-2
5.2.1 Array Control Unit oo 5-2
522 MainMemoryUnit it 54
5.2.2.1 Memory Moduleooorirmiiiiiii 5-17
5.2.2.2 Dynamic RAMSoiiientiie i eees 5-9
5.2.2.3 CLOCKS & o vt e et et et et 5-11
5.2.2.4 MainArray Card.coiiiiniie s 5-11
5.2.25 Daughter Array Cardt 5-12
5.2.2.6 DRAM Data Path Gate Arrayo vovi oo 5-13
5.2.2.7 DRAM Control and Address Gate Array 5-21
5.2.2.8 Interleavingouuineneiritinnt e 5-23
5.2.2.9 ADRX Row and Column Address Bits for Interleaving 5-24
5.2.2.10 DataOrganizationttt 5-30
5.2.2.11 Memory Module Bit Configuration 5-30
52212 StoringQuadwordsl 5-33
5.2.3 Service Processor Unitttt 5-35
5.2.3.1 Initializing MMUSot 5-35
5.2.3.2 Modes of Operationuiiitninnnnaaene s 5-35
5.3 Array Control Unit — Functional Description 5-36
54 MMCXMCA . ittt ittt e 5-37
54.1 Command Buffer Controliiiianineenn. 5-38
5.4.1.1 Command Buffer Controller 5-39
542 Segment Controllerottt 540
5421 Starting the Segment Controller...............c.oionnen 5-42
5.4.2.2 Loading the Row and Column Addresses 542
5.4.3 Command Latchttt s 544
544 Read Buffer Controlottt 545
5441 Read Data Latch Controller ey 547
5.4.4.2 Data Output Latch Controller. 548
54.4.3 Error Report Controller.y 5-51
545 WriteBufferControlo 5-52
5.4.5.1 Segment Data Latch Controllerccovinnnnnn 5-53
5.4.5.2 Read-Modify-Write Status Bit e 5-53
5.4.6 Mode Transition Controller ity 5-53
54.7 MMU INEETTACE . o v oo ie e et e iiee et e neeeeons 5-56
54.7.1 MMCX-to-MMU Interfaceo i 5-56
5.4.7.2 MMU-to-MMCX Interfaceovvevnviiinneeeeenonannnns 5-59
548 MCDXMCAINnterface........coiiuimmeneeeenonnneneeeenn 560
5.4.8.1 MCDX-to-MMCX Interfacec.coviirmnnnnennnnennnn 5-60
5.4.8.2 MMCX-to-MCDX Interfaceot 5-62
5.4.9 MDPX MCAINtEerface . . . oo vt e e e iiieeaa e 564
5.49.1 MMCX-to-MDPX Interfaceccuuuiiimmnnannenenecnn 5—64

5.4.9.2 MDPX-to-MMCX Interfacecovvviiiniininnneens 5-68

viii

Contents

5410 CCUMCUlInterfaceouiiiinin ... 5-69
54.10.1 CCU-to-MMCX Interface.............oouvuiiununn. ... 5-69
54102 MMCX-to-CCU lInterface............cunn ... 5-73
5411 TagMCUInterface 5-74
5.4.11.1 ADRX-to-MMCX Interface uinnn... 5-74
54.11.2 MMCX-to-ADRX Interface oo, 5-75
5412 DSXXMCAInterfacecuiiriin i, 5-75
5413 JDAXMCAInterface 5-77
5414 JDBXMCAInterfacecuiuiuuiinnsannan. 5-77
5.4.15 Service Processor UnitInterface 5-77
5.5 MCDX MCA ... e 5-78
5.5.1 Generating RAS,CAS,and WE 5-78
5.5.2 MCDXMCA Controllerscoviiii i, 5-80
5.5.3 DRAM Sequencinguuuiinunn i, 5-81
5.5.3.1 Read States.c. i 5-81
5.5.3.2 Write States e 5-81
5.5.3.3 Write Pass States 5-83
5534 Write Read States 5-84
5.5.3.5 RefreshStates......... 5-85
56 MDPX MCA e 5-85
5.6.1 LFSR — Data Pattern Generatorccuiiunnun.... 5-91
5.6.2 ECClInitialization 00ttt 5-92
57 ACU-to-JBoxInterface 5-92
5.8 Modes of Operation —Timingo iuinennun... 5-93
5.8.1 Normal Mode i, 5-93
5.8.2 StepModeo 5-93
5.8.2.1 Entering Step Mode from Normal Mode 5-94
5.8.2.2 ExitingStepMode 0. i . 5-96
5.8.3 Standby Mode 5-96
5.8.3.1 Initiating Standby Operation 5-96
5.8.3.2 ExitingStandby 5-97
5.8.4 APG Mode it 5-97
5.8.5 Switching from One Mode to Another 5-98
59 Memory Operations.t enneninneeennnn. 5-99
59.1 Read Operation it 5-100
59.1.1 Wrapon Read Sequence it 5-101
59.2 Write Operationttt 5-103
5921 Loading the CAS Mask Register 5-104
5.9.3 Read-Modify-Write Operation 5-106
594 WriteRead Operation 5-108
5.9.5 Write Pass Operation 5-109
5.9.6 Refresh Operation. 5-110
5.9.7 EEPROM Operationsc.ouuiiiuuiunneneinnnnnn. 5-111
510 Memory Module Testing 5-112

5.10.1 BIST Controller.t e 5-113

Contents ix

5.10.2 BIST DAbA.vverrnrrronnnnnnresssmnmenesnrrrsens 5-113
5.10.8 BIST AQAIesscoveeeennmnnnnessssnsiomennercrens 5-114
5.10.4 BIST Mode Switching Orderccovvrrererererenrene 5-114
5.10.4.1 Standby-to-StepMode 5-114
5.10.42 Step-to-Standby Modeooiian e 5-114
5.105 BIST Registerscoouvreeeenennnnrmeeernrsecr ns 5-115
51051 ADRX Address Latchesoovnereenmnreene e 5-115
5.105.2 MCD BIST Registers.covonnnnvnnrreerrrrrcrns 5-116
51053 MMC BIST ReIStErononneeneermmnnnnenssssssee: 5-117
5.105.4 MDPBIST Registers..........coooooionerrmerrrerenes 5-118
5.10.6 BISTTESES . .vvvvvrnrrennmnneessnnnrmessrsesenssns 5-120
5.10.6.1 DDP TeSt. . o oev e eeecaaemeans e 5-120
5.10.6.2 DRAMTESt ..o ovvvvrnnemneenecunnnneeeemmn s 5-121
5.10.6.3 Data Path Testovvrreet e 5-121
5.10.64 DCA Control Parity.........covenrnrnmrrramaerrenrenrs 5-121
5.10.6.5 DCACAS Mask Test ovvvvenerienee o ees 5-121
5.10.6.6 DCA DRAM Control Testooovrererrerrrrermens 5-121
I/0 Control Unit

B.1 OVEIVIEW . o vvv e ce e s a st 6-1
6.2 1/O Subsystem — Physical DesCription . .. cvvveenencaranae e 6-2
6.2.1 O Control Ut .. oo vveeiiieca e 6-3
622 XJAModuleooiiii 6-5
6.2.3 JXDI . ..t 66
6.2.4 XMI BUS .« .+ o eooeeeeeee e ma e 66
6.2.5 SPU ottt 6-7
6.2.6 Data Transfers (Packets). 6-7
6.3 ICU — Functional Descriptionoovevrerrrrrrerenes 6-8
631 JDCXMCA .. .oooiiiineae e 6-8
6.3.1.1 Receive from XJA Control ovivee e 6-11
6.3.1.2 Transmit to CCU Controloovovnrermeneree s 6-14
6.3.1.3 Receive from CCU Controlcovrnnevrrncn e 6-16
6.3.14 Transmit to XJA Controlo 6-18
6.3.1.5 SPU CONEIOY -« v ot veeviiemane e 6-18
6.3.2 JDAX MCA . ..ttt man e 6-21
6.3.2.1 XJA Receive Buffersooneennannnrnmenneres 6-25
6.3.2.2 SPU Receive Buffer.ciuiinenevronnnenrerones 627
6.3.2.3 Selecting XJA or SPU Command and Address oo 629
6.3.24 Sending DAtA ... coovovreeanaa 6-30
6.3.25 Loading an XJA Buffer oiianeiieees 6-30
6.3.2.6 Unloading the XJA Buffer.................. fe e 6-31
6.3.2.7 Loading the SPUBufferouvverrnererenees 6-31

6.3.2.8 Unloading the SPU Bufferc.ooverrrrmrrerreees 6-32

x Contents

6.33 JDBXMCA 6-32
6.3.3.1 Loading a Transmit Bufferfor XJA............... 6-36
6.3.3.2 Unloading a Transmit Buffer for XJA 637
6.3.3.3 Unloading a Transmit Buffer for SPU........... 6-37
6.4 JBox-to-ICUInterface......................... 637
6.5 ICU-to-dBoxInterface......................... 6-39
6.6 XJA and ICU Communication Using Packets 6—40
6.6.1 JXDICycle 1..o 6—40
6.6.1.1 Command Field Coding. 6—40
6.6.1.2 Length Field Coding 6—40
6.6.1.3 IPLFieldCoding. 641
6.6.1.4 IDFieldCoding. 6—42
662 JXDICycles2and3 643
6.6.2.1 Address Field Coding 6—43
6.6.3 JXDICycled........ 6—44
6.6.3.1 Mask Field Coding 6—44
664 JXDICycle5...........oe 6-45
6.6.4.1 DataField Coding.................. 6—45
6.7 ICU-to-XJAlInterface 6—48
6.7.1 KeySignals............. 6—49
6.7.2 Commands 6-50
6.7.3 Transferring a Packet from ICUto XJA 6-51
6.8 XJAto-ICUInterface _ 6-52
6.8.1 KReySignals......... 6-52
6.8.2 Commands 6-53
6.8.3 Transferring a Packet from an XJAto ICU. 6-55
6.9 XJATransactions 6-56
6.9.1 CPU Read Transaction RIS 6-56
6.9.2 CPU Write Transaction 6-58
6.9.3 DMA Read Transaction 6—60
6.9.4 DMA Write Transaction 6—-62
6.9.5 Interrupt Transactions 6—63
6.10 SPU-to-ICU Communication Using Packets 664
6.10.1 DMAPacket 6-64
6102 TOPacket.............cooiiiuninnn 6-66
6.103 ECCPacket.....................ooi 667
6.10.4 Interrupt Packet............................. 6-67
6.11 ICU-to-SPUInterfacecouuuiinunonn o 669
6.11.1 Commands 669
6.11.2 Transferring a Packet from the JBox (ICU) to the SPU 6-70
6.12 SPU-to-ICU Interfacec.oiuuiio i 6-70
6.121 ReySignals................ 6-70
6.122 Commands 6-71

6.12.3 Transferring a Packet from the SPU to the JBox (ICU) 6-73

Contents xi

6.13 SPUTransactionscouuiueerneereneeennneaneeeneesonns 6-73

6.13.1 CPURead Transactionccuueinrinnnieancennnns 6-74
6.13.2 CPU Write Transactionovvneentinieen e e 6-75
6.13.3 VO Read Transactionceoeeennonnrananecnnenne.s 6-76
6.134 I/O Write Transactioncooeenurimnanenneenennenns 6-78
6.135 DMARead Transactionccouvimnmneaneeecenenn 6-80
6.13.6 DMA Write Transactioncceoouuenenienenneenenns 6-81
6.13.7 Interrupt Transactionsceeeirnirneenannnnnes 682
6.138 ECCTransactionsceeeeeeeeenuenrneaeanarcnanns 6-82
6.14 INLEITUPLS - oot vv e e i cneaaas e a e et 6-83
6.14.1 InterruptCodeciiimiiiiiiiin e 6-85
6.14.1.1 EBox HandlingKeep Aliveot 6-86
6.142 IRCXMCA ..\ iititeeti e aasaea e 6-86
6.14.3 IRCX RegIStersovvvrmuuennrunraenaceamuannannnens 6-88
6.14.3.1 CPU Configuration Registero 6-88
6.14.3.2 Interprocessor Interrupt Register 6-90
6.14.3.3 Error Summary Register........... ... i 6-91
6.144 XJATINLEITUPES . ..ot v et iiii it 6-92
6.14.4.1 XJA-Vectored Interruptst 6-93
6.1442 Fatal XJAInterrupts 6-93
6.145 Console Interrupts coiieeniiiinranns 6-93
6.14.6 Interprocessor Interruptsoiiiiiiia 6-94

Error Detection and Reporting

Tl DeteCtiOon . . oot ee s e 7-1
72 Fault Isolationceintinironeme i 7-1
73 ErrorCorrection Codeottt 7-3
731 Error Syndromes.oeenniii e 7-3
7.3.2 Error Syndromes on Marked BadData.o.vvnnn 74
7.3.3 (Ol e e o) « N 74
7.3.4 ECCREPOTHING . .ot oiiiee i 7-5
7.3.5 SPU Assistance for ECCHandling 7-5
74 MCUError Detectionoiiiriiiiieinnananens 7-6
7.4.1 DAXMCUEITOTS « ot tveveeetvamaanasees e enn 7-7
742 DBXMCU. ...ttt it 7-8
743 TagMCUEITOISoiitti et 7-8
7.43.1 Stop on Address Match 7-9
7432 Force Attention Logic civ it 7-10
744 COUMOCUETTOTS « vt teeeeeeeininninaeeseeanaesessenns 7-10
7441 History Bufferot .- 1-10
7.44.2 Error Detectors . . o oo v it it 7-11
VIR Y0) 4 o T I 7-12
7.5.1 Dynamic Error Recoveryooonenenninncnen 7-12

752 SPU-Assisted ReCOVETYt viee e 7-12

xii Contents

7.5.3 Operating System Implications 7-12
754 KeySignals......... ... 7-12
7.6 Typesof Error Detection........... 7-13
7.6.1 DRAM Control Error Detection. 7-14
7.6.2 JBox-to-MMU Address Error Detection. 7-14
7.6.3 Protocol Error Detection iiiirennnn.. 7-14
7.6.4 Incidental Error Detection 7-14
7.7 Typesof Brrors i e e 7-15
7.71 Fatal Errorst ittt 7-15
7.7.2 Write Data Errors i ittt 7-15
7.73 ReadData Errors0t iiininnnnnnnns 7-16
7.8 ErrorRegisters i e e 7-16
7.8.1 MDPX Data Error Register. 7-16
7.8.2 MMCError Register i 7-18
7.8.3 MCD Error Register 7-19

Index

Examples
4-1 Read Refill Symbolic Encoding 4-29
4-2 Read Refill — With Fixup Symbolic Encoding. 4-33
4-3 DMA Read SymbolicEncoding 4-40
4—4 DMA Read — With Fixup Symbeolic Encoding. 443

Figures
1-1 System Block Diagram i, 1-2
1-2 SCU POrts . .. e e e e 1-3
1-3 SCUBlock Diagramciituiiiiiiiiinnnn.. 14
14 SCUPlanarModule 1-6
108 SCU MOCUS ..o et e et e e e e e 1-7
2-1 JBoxBlockDiagram 2-2
2-2 CTLABlock Diagramouiniiiiiiiinn. 2-4
2-3 CPU Port State Controllers Inputs and Qutputs................ .. 25
24 ACU Port State Controllers Inputsand OQutputs 2-6
2-5 ICU Port State Controllers Inputs and Qutputs 2-6
26 PortStateController......... 2-7
2-T Pipeline Stageso ii ittt it e e e 2-7
2-8 Request States i 2--8
2-9 CPUStateMachines.............c. it 2-9
2-10 ACU State Machines.ttt 2-10
2-11 ICU State Machinesc. 0t 2-10
2-12 LoadingCommand Buffer A 2-11
2-13 LoadingCommand Buffer B 2-12
2-14 Latching the Port Command and Address 2-13

2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23
2-24
2-25
2-26
2-27
2-28
2-29
230
2-31
2-32
2-33
2-34
2-35
2-36
2-37
2-38
2-39
240
241
2-42
243
244
2-45
246
247
248
249
2-50
2-51
2-52
2-53
2-54

2-56
2-57
2-58
2-59
2-60

Contents Xxiii

Arbitrating Requests i 2-14
Polling the New Request List and the Reserved Request List........ 2-15
Generating the Request Bitso it 2-16
Generating the Arbitration Vector and Index 2-17
MPAMM FOrmat . . oo oo ii ittt e i iiiiie ettt aaieseeans 2-19
IPAMM Address Allocationot innneeeneeannnns 2-20
IPAMM FOrmat . . oo oivet e tee it e et iniieniananeeaenannens 2-21
CTLB Block Diagram JR 2-23
PAMM/CMD Pipeline Stagec.iuiiiiiinnnn 2-24
CTLC Block Diagram eiiiiieietneeninnnnanns 2-27
Resource Checkingc.ouitiniimirnaenennennennann 2-28
Memory Segment Controllers it 2-33
Controlling the Memory Segments oivanny 2-33
Retire Request Decodety 2-35
CTLD Block Diagramiiiiiinininneneneneeennennn 2-38
MICR Queue DataFields it 2-39
Data SWiteh . ..o it it e e e e e 240
MBox-to-JBox Data Format 2-40
JBox-to-MBox Data Formatcciiiiineennns 241
JDAX-to-DSXX Data Format 241
DSXX-to-JDBX Data Format oo 241
ADRX Address Outputsc..ouiuiuiirieninennnneeennnn 2-43
ADRX Receive Latches e 245
DRAM Addressingcovuveueraenennenn. S 247
ADRX Row and Column Address Selection 2-48
JBOX INterfaces oo vttt e e e 2-50
MBox-to-JBox Command Format ann. 2-51
CTLA Receiving Command Bits from CTMV 2-51
CTLB Receiving Command Bits to WBBX 2-52
JBox-to-MBox Command Formatoy 2-53
CTLA Generating Command Bits to WBBX 2-54
CTLB Generating Command Bits to WBBX 2-54
CTLC Generating Command Bits to WBBX 2-55
JBox-t0-ACU Interface iiinnnnnaenneneennns 2-61
Memory-to-JBox Command Format 2-62
CTLA Receiving the MMCX Command Bits 2-64
CTLB Receiving the MMCX Command Bits 2-64
CTLC Receiving the MMCX Command Bits 2-65
JBox-to-Memory Command Formato 2-66
CTLB Generating the MMCX Command Bits 2-67
CTLC Generating the MMCX Command Bits 2-68
JBox-to-ICU Interfaceo o iii ittt 2-70
ICU-to-dBox Command Format.t eeinnn 2-71
CTLA Receiving the ICU Command Bits 2-72
CTLB Receiving the ICU Command Bits 2-72

JBox-to-ICU Command Format.o 2-73

xiv Contents

2-61
2-62
2-63
2-64
2-65
2-66
3-1

3-2

3-3

34

3-5

3-6

3-17

3-8

3-9

3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28

LLTTIILE

4-9.

4-10
4-11
4-12

CTLA Generating the ICU Command Bits 2-73
CTLB Generating the ICU Command Bits 2-74
CTLC Generating the MMCX Command Bits 2-74
SPU-to-CCU Handshaking Format 2-76
CCU-to-SPU Handshaking Format 2-76
SPU Command Interface iiiiiiinnnnn. 2-77
Data Sizes (Cache Block) [3-2
Cache Data (Quadword) it iiennnnnn 3-3
Cache Tag Store and Cache Set 0, 1ccuvvun.... 3-3
SCU Global Tag STRAMs Status Locations for Cache Set 0,1 3-3
CPUCacheTagDataottt 3-5
Global Tag STRAMs for CPUs Cache Set 0,1.................... 3-6
Global TagContents00ttt itiiinnnnnn 3-7
Global Tag Datac.uiitnttitnnennnnannnnns 3-8
Global Tag Status Bits 3-8
Global Tag Parity Bits 3-9
ADRX MCA Outputst i ittt ittt e ettt e e 3-11
MTCH MCA ... et e e e e 3-12
Sixteen Status Bits and Four Parity Bits 3-13
Set 0, Set 1, and Lock Status Latches. 3-15
Microword Fix Command and Tag Status Fields e 3-16
Writing Global Tag Status. 3-17
CPU Local Cache STRAMs After Read Refill 3-21
CPU Local Cache STRAMs After SCU Updates Cache 3-21
CPU Write Refill Request i, 3-23
Lock Status Storageottt 3-27
Lock Status Bits it i e e et 3-28
CPU Lock Request for a Block Written Partial 3-29
Generating a Microaddress for a Lock Request 3-30
Lock Reservationsttt ittt e i iieen e 3-34
XJA Lock Requestottt it e e 3-37
XJADeny Lock . ..ot e e 3-38
SPU Lock ReqUESt . oot ottt et et ettt e e e 3-41
Deny SPU Lockot et i 3-42
Control Store STRAMS Arrayottt it iinieeenenn 4-2
Control Store Space Allocation, 4-2
Base Address — 100 ittt i i e 4-4
Control Store Data Latch and Parity Checking................... 4-5
Microaddress Sourcesc.vii ettt e 4-6
TagQueue Data i i e 4-7
Loading the Control Store i ... 4-10
MICRMCABlock Diagram 4-12
Microword Format 4-15
Read Refill Flow i 4-29
Read Refill — With Fixup Flow 4-32
DMARefill — With Fixup Flow 4-42

LLLLILEE

5-9

5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
531
5-32
5-33

Contents xv

Memory Subsystems it 5-2
SCUPlanarModulecovi e it innnns 5-3
ACU-to-MMU Data Interfaceoitiineeeininnn 5-5
ACU-to-MMU Command, Status, and Control Interface 5-6
Memory Module — Physical Characteristics 5-7
Memory Module — Conceptual Level Functional Block Diagram 5-8
DRAM Arrays — DAC1 Array 1ot 5-9
DRAM Arrays —DACOArray 0oovniiieiinnenennnn. 5-10
Daughter Array Card Inputs.o 5-12
DRAM Data Bits for DACOand DACL o ovnnente 5-13
DDPs on the Memory Moduleottt 5-14
DDPO Functional Block Diagramcooninneennn 5-15
DDP1 Functional Block Diagramcoieainn.- 5-16
DDP2 Functional Block Diagramoiieanrnenn 5-17
DDP3 Functional Block Diagramo, 5-18
DDPRead DataPathttt 5-19
DDPWriteDataPatht 5-20
DCA Functional Block Diagramc.cvviiiiieaennn 5-21
DCA Miscellaneous Control Logic oo 5-22
Interleaving Segments within the Memory Subsystem 5-23
Data Partitioningoconintitrn i 5-31
DDPs Sending Eight 20-Bit Slices oot 5-32
Quadword Bit Configurationo 5-32
Distribution of Quadword Data Bits oo 5-33
DRAMs Storing Bits [19:00]ot 5-34
ACU Block Diagramoouiiienenennenmnnneneaen o 5-36
MMOCX COntrol ATEAS . . o v vvme e e ctnnniaeer e 5-37
Command Buffer Controlt 5-38
Command Buffer Controller i 5-39
Read and Write Data Paths in the Memory Module 5-41
Starting the Segment Controller States 5-42
Loading the Row Address for the Segment Controller States 543
Loading the Column Address for the Segment Controller States 5-44
Command Latch ... v it e e 545
Read Buffer Controlottt 5-46
Read Buffer Controller States, 547
Data Output Latch Controller Statesccovvnninnn 548
Error Report Controller Statesooiiiuerernnennn 5-51
Write Buffer Controlco it iiiii et 5-52
Segment Data Latch Controller Statesc.cvvvnn 5-54
Read-Modify-Write Status Bit Statesoconnvnn 5-55
Mode Transition Controller Stateso 5-55
MMCX-to-MMU Control Format oot 5-56
MMU-to-MMCX Status Format, 5-59
MCDX-to-MMCX Control Formatoty 5-60
MMCX-to-MCDX Control Formatooviveen iy 5-62

XVi

Contents

547
548
549
5-50
5-51
5-52
5-53
5-54
5-55
5-56

5-65
5-66
5-67
5-68
5-69
5-70
5-71
5-72
6-1

6-2

6—4
6-5
6-6
6-7

6-9

6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20

MMCX-to-MDPX Control Format 5-65
MDPX-to-MMCX Control Format 5-68
CCU-to-MMCX Control Formatcciiiivnennn. 569
MMCX-to-CCU Control Formatc00 5-73
ADRX-to-MMCX Control Format 5-74
MMCX-to-ADRX Control Formatc.cuu.... 5-75
MCDXMCABlock Diagramoiiiiiiinnannnnn. 5-79
Read States.t i i e e e 5-81
Write Statesttt i e e e 5-82
Write Pass States ittt it 5-83
Write Read States i, 5-84
Refresh States.ttt 5-85
MDPX MCABlock Diagram0iitiirrnnnnn.. 5-86
MDPX MCAs Receiving Data from the DSXX MCAs 5-88
MDPX MCAWrite DataPath c...... 5-89
MDPX MCAReadDataPath 5-90
Step Mode Logic on the Memory Module 5-94
Step Mode Command Signals, .. 5-94
Mode Switching Logic in the Memory Module. 5-98
Loading the CAS Mask Register 5-105
EEPROMDataFormat0 it iiiiiiennnnenn 5-111
Address Pattern Generator in the Memory Module 5-112
MCD BIST Control Register0 ittt ininnnnnn.. 5-116
MCD EOP BIST Registercouiiiniinenenninennnnnnns 5-117
MMC BIST Registert ii ittt e e et e e e i 5-117
MDP BIST Registerc.cuiiiiinii it 5-118
ICUBlock Diagram. vttt ie it e 62
/O Subsystem e 6-3
SCUPlanarModule it 6—4
XJAModule MCAS ittt ittt i eieaiaann 6-5
13 € 6-6
Packets e e 67
JDCX MCA Control Areasouiiniinninennnnnnnnns 6-9
ICU-to-CCU Interfaceot et ettt it i e e e eennn, 6-10
Receivefrom XJA Logicottt 6-11
Buffer Empty, Acknowledge, and Load Command................. 6-13
Transmit-to-CCU Logicttt ittt i 6-15
Receive from CCU Logic oo ittt it i e i i e e 6-17
Transmit-to-XJA Logic oottt i i e i eeeannn 6-19
SPU Control Logicccoiiiiiiiiiiiiiiiieiennnn, 6-20
Receive Buffer — Byte-Slices 6-22
JDAX MCA Block Diagram iiiiininnnnnnn. 6-23
XJAO Receive Buffers0ttt 6-25
XJAReceive Buffer 6-26
SPUReceive Buffer. i, 6-27
Selecting the XJACommand. i, 6-29

6-21
6-22
6-23
6-24
625
6-26
6-27
6-28
6-29
630
6-31
6-32
6-33
6-34
635
6-36
637
6-38
6-39
6—40
641
642
6—43
6—44

646

Contents xvi

JDAX Sending Data to the DSXX MCAs...............oooininen 630
JDBX Transmit Buffer — Byte-Slices ovnnn 6-32
JDBX MCABlock Diagramcooiueiiennniiiaann.. 6-33
JDBX Transmit Buffer e 635
Loading Data from the DSXX MCAs........ot 6-36
Writeand Read Pointerso ottt eee s 636
CCU Command SUMMATYt vtetnnraenee e eaanans 6-39
B)40 (62 30 A 641
IDField Coding. . ..o oottt 6—42
Address Field Codingot 6—43
Mask Fieldooonnii s 6—44
Mask Field to MMCX MCAttt i eees e 6—45
Data Field Coding oottt 645
Quadword Format ovininnn i 6—46
Data Path from the Receive Buffer to the Data Switch............. 647
Data Path from JDAX to the Data Switch 647
Data Path from Data SwitchtoJDBXt 648
ICU-to-XJA Handshaking Signals.t 6—48
Transferring a Packet fromthe ICUto XJA 6-51
ICU-to-XJA Control Interface, 6-51
XJA-to-ICU Handshaking Signals. it 6-52
XJA Command SUMMATY . ..o\ i vttt e e 6-53
Transferring a Packet from XJAto ICUot 6-55
CPU Read Operation.ouiiinuennneneenienmnennenens 657
CPURead Packetttt e ettt ieeee e e 6-57
CPU Read Data Return Packeto 6-58
CPU Read Error Status Packeto, 6-58
CPU Write Operationc.uiitennmenennranennenens 6-59
CPUWrite Packeto oo ittt it i et e it ciaan s 6-59
DMA Read Operationc.ooueniinnnninnnenennnn 6—60
DMA Read Packet oo ii it it e e e e ieiiiaaaameamna e 661
DMA Read Return Packeto viii it it 6-61
DMA Read Error Packeto oottt 661
DMA Write Operationttt 6—62
DMA Write Packet vviiiiiieeiiiiiieeeetnneeeannnenns 663
Interrupt Operationc.ouieieinnrnearen e 6-63
Interrupt Packet i 6-64
SPUDMAPacketcoiii ittt iiiiiiee et 6—65
SPU IO Packet . . o oo v ettt e ieee e ieeiaaaees e eneneans 666
SPUECC Packet.o iieie i eiee i iiianeeeteanaian e e 667
SPU Interrupt Packet citiitieii i 6—68
ICU-to-SPU Handshaking Signals it 6—-69
SPU-t0-ICU Handshaking Signalso it 6-70
SPU Command SUMMATY . .« oo vttt it e e 6-72
CPU Read SPU Register Operationcoveennnonnn 6-74
CPU Writetoan SPU Register e 6-75

xviii Contents

667
6-68
669
6-70
6-71
6-72
6-73
6-74
6-75
6-76
6-77
6-78
6-79
680
7-1
7-2
7-3
74
7-5
7-6
7-7
7-8
7-9
7-10
7-11

Tables
1-1
2-1
2-2
2-3
24
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18

SPUTO Read Operationc.cuiuiinnninennannennnnnnn. 6-76
SPU Read IRCX Registeruriiininnniennnnnn... 6-77
SPU I/O Write Operationc..ouutiitmnennnennnnnenn. 6-78
SPU Write IRCX Register i, 6-79
SPUDMA Read Operation0tiiiiiinnnnnnn. 6-80
SPUDMA Write Operationciiiiiiineennnnn. 6-81
SPU Interrupt Operationt iiinnnenn. 6-82
ECC Operationttt 6-83
Interrupt Arbiter Inputsand Qutputs. 6-84
IRCXBlock Diagram.ccttitiiieiinninnnnnnnnn 6-87
CPU Configuration Register 6-88
Interprocessor Interrupt Register 6-90
Error Summary Register. it 6-91
XJAInterruptsot e e e 6-92
Data Parity e e 7-2
SCU Error Reporting 7-6
DAX Errors . o ittt e e e e -7
DBX Errors . . ooi ittt e e e e 7-8
B V=g O) of T 7-9
StoponAddressMatch 7-9
Force Attention Logic i, 7-10
History Buffer. i e ieeee 7-11
MDPX Register vttt it ittt ettt 7-17
MMOC Register. it et e e 7-18
MCD Registert i e et e e 7-19
SCU MCUS ..ottt e e e e e et e e e 1-8
JBoXx MCUS e e e 2-3
Port Numbers it i i e e 2-5
State Requestst e 2-9
Port Priority Levels. L 2-17
Indexo e e e e e 2-18
CTLAMCAInputsandQutputs, 2-22
CTLBMCAInputsand Qutputs, 2-25
Resource List for Arbitration i, 2-29
Resources Needed for Commandsciivven.. 2-30
Segment Controller Bit Descriptions. 2-34
(0] F 1T ' =T O 2-34
CTLCMCAInputsandOutputs, 2-36
MICR Queue Data Field Descriptions 0., 2-39
ADRX PA Bitsttt ittt ittt e 243
MapDIng .. o e e e e 2-44
Row and Column Address Bits 249
Mapping of Row/Column Lines to Physical Address Bits 249

MBox-to-JBox Command Field Deseriptions 2-51

2-19
2-20
2-21
2-22
2-23
2-24
2-25
2-26
2-27
2-28
2-29
2-30
2-31
2-32
2-33

4-9

4-10
4-11
4-12

Contents xix

JBox-to-MBox Command Field Descriptions 2-53
JBox-to-MBox Signals 2-55
JBox-t0-MBOXx Commandso vvee i ineenanaaneiieaaes 2-57
MBox-to-JBox Signals 2-58
MBox-to-JBox Commandso v vnee it 2-60
DBX-to-CCU Command Field Descriptionso0n.. 2-63
CCU-to-DBX Command Field Descriptions 266
JBox-to-ACU Signals.o cv i 2-69
ACU-to-dBox Signals.c.vviiiii i 2-69
DAX-t0-CCU (ICU-to-JBox) Command Field Descriptions 2-71
CCU-to-DAX (JBox-to-ICU) Command Field Descriptions 2-73
JBox-to-ICU Signalsot 2-75
ICU-to-dBox Signalsvonvnieiee i 2-75
CTLD-to-SPUSignals ooviiiiiiiee it 2-77
SPU-to-CTLD Signalso ot it eiieiee e i 2-78
Cache Tag Bit Descriptionscoiiiiiiinnnnnn 3-5
Cache Block Status . . . oo vevveae i tiiiennnaeasion e 3-7
Global Tag Status Bit Descriptionso 3-8
Global Tag Parity Bit Descriptionscooooieee e, 3-9
Global Tag Lookup Cycles 3-10
TAE SEALUS . « « « v v et v e ie e 3-14
Microcode Fix Command — Examplest 3-16
CONSISEENCY « « o vt et et ia e 3-19
Fixup Operationscouireeenunenannaeeenneeennns 3-20
Status of Tag STRAMs for CPU Write Refill Requests 3-22
Interlock INStructions i oo 3-26
Lock Status Bit Descriptionc.eveueiniiireanee e 3-28
Status of Tag STRAMs for CPU Write Refill Lock Request 3-32
Status of Tag STRAMs for CPU Write Refill Unlock Request 3-32
Status of Tag STRAMs for CPU Write Refill Linked Lock Request 3-33
DMA Read Lock Request — Cache Status 3-36
DMA Write Unlock — Cache Statusoovviiinie.. 3-36
SPU Read Lock Request — Cache Status e 340
SPU Write Unlock — Cache Status 340
Base AAAresses . v oo o v oot iiie e et 4-3
Cache Status Combinations for Microaddresses 44
Error ENtIies . o oot et it e it ee i cnienanean s onasansssns 44
Tag Queue Data Bit Descriptionscoiviivennen 4-8
Fixup Microaddress. vt neetiiiuernre s 4-9
Branch Select [13:10] ..o oot ittt ittt 4-14
Branch Enable [17:14]. . . . oottt ittt it e et anaee e 4-14
Branch Select and Enable [17:10] o 4-16
Done 18] ..ttt ittt e e 4-17
MIC RS 10] . ottt e e e e e e 4-17
Fix Command [24:20] oo it ittt 4-18
Tag Status [28:25] oot 4-20

xx Contents

4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-23
4-24
4-25
4-26
4-27
4-28
4-29

5-10
5-11
5-12
5-13

5-14

5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22

Writing TagStatus,
Inhibit Fixup Queue [29].
CTLD Control Bits [40, 56,301,
Index [833:31]ot

Arbitration [38]
MIC Control Bits [49,43,39] 0.
Memory [42:41]
Command Mask [47:44]
CTLD Fix [48]o o i,
CTLA Parity [51] e
CTLB Parity [52] e
CTLC Parity [53] e e e
CTLD Parity [54] e e e
MIC Parity [65].
VOCommand [59].......
Microaddress 100 CPU Read Refill Microword Bits
Microaddress 107 CPU Read Refill (With Fixup) Microword Bits
Microaddress 03B CPU Read Refill (With Fixup) Microword Bits
Microaddress 032 CPU Read Refill (With Fixup) Microword Bits
Microaddress 036 CPU Read Refill (With Fixup) Microword Bits
Power Requirements for the Memory Subsystem
Block Boundaries
Degreesof Interleaving
Noninterleaving
Two-Way Interleaving
Four-Way Interleaving,
Noninterleave Mapping.t
Four-Way Interleave Mapping.0 v iuunnn...
Two-Way Interleave Mapping i innn...
Two MMUs, Four-Way Interleaved
One MMU, Two-Way Interleaved
Two MMUs, One Bank Broken — No Interleaving Between Banks . . .

Two MMUs, One Bank Broken — Two-Way Interleaving Between
Banks.

Two MMUs, One Bank Broken — Four-Way Interleaving Between
Banks.

Two MMUs, 4-Mbit MMUO and 1-Mbit MMU1
One MMU, Three Banks Used — Noninterleaved.................
One MMU, Two Banks Used — Two-Way Interleaved
MMCX-to-MMU Control Field Descriptions
MMCX_MAC_CASMSKCTL_HI[03:00].,
CAS Mask Control Field Descriptions.
Address Strobe Field Descriptionsc0uuuroo...
Write Strobe Field Descriptions0uiuu.....

5-23
5-24
5-25
5-26
5-27
5-28
5-29

6-9

6-10
6-11
6-12

Contents xxi

Write Flip-Flop Enable Field Descriptionsco0vn0n. 5-58
Write Select Field Descriptionsvve i 5-58
Data Output Latch Enable 5-59
Read Select Field Descriptionscoeuviiine e 5-59
MMU-to-MMCX Status Field Descriptionsoonnens 5-59
MCDX-to-MMCX Field Descriptionscviveinnenennn 5-60
MMCX-to-MCDX Field Descriptionsoiiinnianeeenns 562
MMCX-to-MDPX Control Field Descriptions.ocovenns 565
MDPX-to-MMCX Control Field Descriptions.c.vvnens 569
CCU-to-MMCX Field Descriptionscciiiieeenrnrans 5-70
MMCX-to-CCU Field Deseriptionsc.ooeiuveecneaenns 5-73
ADRX-to-MMCX Field Deseriptionscoooneenennennn 5-75
MMCX-to-ADRX Field Descriptionscooureneonanees 5-75
" DSXX-to-MMCX Field Descriptionscovievnencneennns 5-76
JDAX-to-MMCX Control Field Descriptionsconnven 5-77
JDBX-to-MMCX Control Field Descriptionsocovneen 5-77
SPU Control Field Descriptionsoueotennrnenns 5-77
Step Mode Commands.cvvvvvrmaar ettt 5-95
SPU Handshakingoouirienninmninen s 5-97
T/O Boundarieso vvvviieeeenunenenennonusese s mansncs 5-101
I/O Cycles for Wrap on Read (Quadwords 0, 1,2,and 3). 5-102
/O Cycles for Wrap on Read (Quadwords 4,5,6,and 7). 5-102
CPU Cycles for Wrapon Reads ovvvnvinnnnene e 5-102
BIST Self-Test Commandsouoeveneanennansneooennns 5-113
BIST Step Mode Commandsc.ovvrevnennnennrecn e 5-113
ADRX 12-Bit AdAress ..o vovvvvr e 5-115
MMU SZE . o e ettt et e e e e 5-115
MCD BIST Register Field Descriptions.c.coooneenenennn 5-116
MCD BIST[05:03] ..o v it eeiiiin e mm s mens 5-116
MCD EOP BIST Register Field Descriptions00v0-. 5-117
MMC BIST Register Field Descriptionsooonvenenenns 5-117
CAS Mask Register Field Descriptionscoooveeennnens 5-118
MDP BIST Register Field Descriptionsc.cooovnnernnens 5-119
LESR Configurationc.oovrvenreenerananscnennenns 5-119
TRANS [10:00] . . oo oo eeeeiiaa e canasam e 6-16
SPUIPLS vt teeteittae e iae e 6-21
SEND SPU [02:00] « o vvv et iieaeea s 6-21
TXDI CYEleS ..o eeetiiiiiie e 6-22
JDCX Transmit Buffer Selectciiiaernnaneennn 6-24
Retry MOdes .. covvvnvnneercmanneeen e 6-24
JDC_JDA_TRX_SEL_H[02:00] Decodecononeerenens 6-28
JBox-t0-ICU Commandsouvvmemeeurmnanrecarsaasenes 6-38
ICU-t0-dBox Commandsuoevuemeeneeomnnneensennsens 6-39
JXDI Length Codes oovvvnneiiin e 641
IPL Priority Levelo 6—41

Mask Field .. oot i et et 644

xXii

Contents

6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24
6-25
626
6-27
7-1

7-2

7-3

7—4

7-5

7-6

ICU-to-XJA Signals. ...t 6—49
ICU-to-XJACommandsouuuununnen . 6-50
XJAto-ICU Signals.......... .. 6-52
XJAto-ICU Commands. ..., 6-54
DMAMask 665
Address Mask 6-66
CPUIDS . ..ottt e e e 668
ICU-t0-SPU Commandscouuuumiuniunnnnn . 6—69
SPU-to-ICU Signals 6-70
SPU-to-ICU Commandsouuuninunin . 6-71
Interrupt Priority Level Assignments 6-85
Interrupt Protocol, 6-86
CPU Configuration Register Field Descriptions 6-89
Interprocessor Interrupt Register Fields 6-90
Error Summary Register Fields 6-91
Syndromes 7-3
MCU Attentionsiuiniu i -6
Error Signals 7-12
MDPX Error Register i, 7-17
MMC Error Registert 7-18
MCD Error Registero, 7-19

About This Manual

This manual describes the operation of the system control unit (SCU). It is a reference
document for Customer Services personnel as well as a training resource for Educational
Services.

Intended Audience
The content, scope, and level of detail in this manual assumes that the reader:
e Is familiar with the VAX architecture and VMS operating system at the user level

e Has experience maintaining midrange and large VAX systems

Manual Structure
The manual has seven chapters.

o Chapter 1, General Description, provides an introduction to and general description
of the system control unit (SCU). This chapter includes an overview of the physical
organization and briefly describes the logic implementation.

e Chapter 2, JBox Port Arbitration, provides a physical and functional description of
the JBox. This chapter describes the data, address, and control paths for the access
control unit (ACU), /O control unit (ICU), and MBox interfaces.

o Chapter 3, JBox Cache Consistency, defines cache consistency concepts and describes
how the SCU resolves cache conflicts. This chapter describes the contents of the
global tag STRAMs and how and when the STRAMs are accessed.

e Chapter 4, Micromachine Control, describes the SCU control store. This chapter
describes how the microcode is loaded into the control store and how the control store
is addressed. Chapter 4 also describes the microword fields.

e Chapter 5, Array Control Unit and Main Memory Unit, describes the ACU interfaces
to main memory. This chapter describes how the ACU controls the main memory
unit’s data, address, and DRAMs during normal and test operations.

Chapter 5 includes the MMU logic, memory modes of operation, dynamic RAM
organization, and memory interleaving. This chapter also describes the refresh
operation, memory system initialization, and test descriptions.

¢ Chapter 6, /O Control Unit, describes how the ICU interfaces to the XJA. This
chapter describes how XJA and SPU requests are handled and how the ICU controls’
data and address paths to and from the receive and transmit buffers.

e Chapter 7, Error Detection and Reporting, describes the error detection and
reporting. This chapter identifies fatal errors and how they are handled.

DIGITAL INTERNAL USE ONLY xxiii

xxiv About This Manual

¢ The index contains entries, subentries, and cross-references that support the reader
of the technical description. Figures, tables, and text are indexed. Figure references
are listed with the letter f appended to the page number. Table references are listed
with the letter ¢ appended to the page number.

DIGITAL INTERNAL USE ONLY

1

General Description

This chapter provides a general physical and functional description of the system control
unit (SCU). It identifies the MCUs, MCAs, and STRAMs in the three major units of the
SCU: the JBox, the array control unit (ACU), and the /O control unit (ICU). The chapter
also describes how the units support CPU, main memory, and /O requests.

1.1 Overview

In the VAX 9000 family computer system (Figure 1-1), the system control unit (SCU)
connects several major subsystems (Figure 1-2). These subsystems are the CPU, service
processor unit (SPU), /O, and memory. If the CPU, the SPU, or an I/O device needs data
from main memory or needs to write to main memory, it sends a request to the SCU. The
SCU contains the ACU that interfaces to memory.

If the CPU or the SPU needs to read I/O data or needs to write to an 1/0 register, it sends
a request to the SCU. The SCU contains the ICU that interfaces to I/O. If the CPU needs
to read data in an SPU register or needs to write data into an SPU register, it sends a
request to the SCU. The SCU uses the ICU to handle these requests.

The SCU has a cache consistency unit that contains the global tag STRAMs. Each CPU
cache set, 0 and 1, has a corresponding section in the global tag STRAMs. Each cache
block within the cache set can have read, written full, written partial, or invalid status.
Each cache block can have lock status.

If a CPU sends a request to the SCU, it is referred to as a requester. If a requester needs
refill data that is written full or written partial in another CPU cache, it doesn’t have to
know that another CPU has the data. The requester sends a read refill request to the
SCU, and the cache consistency unit updates the global tag STRAMs in the JBox. The
cache consistency unit then gets the data from the data cache STRAMs of the other CPU,
returns the data to the requester, and writes the cache block into main memory.

DIGITAL INTERNAL USE ONLY 1-1

U8 G100X HAW

1-2 Genera! Description

188 INX'VOX
NVOS
ovrx
Irs nds

{00:20ld’[00:€9]lvLva 4ngdl

[00:€0ld'[00: LElVivA NdO
nol .

foo:z0ld'to0’e9lviva ‘83
e 3ISNOdSIH LHOJ &
Yy
xo8ar
ndo
- Xxo8n X08| » X083 XO8A
loo:eslivaar ELED
— <
loo:¢9liva an
nov
3) 1
» [oo:€ola‘loo:9tluav anw ar loo:eold [oo:telviva 83 x083
Pl
> foo:9tluav™ar anw looeold’loo 1elva B3
<
® foo:€o0ld'[00:+ElvA NdO {00:e0ld'f00: LEIVA "XO8BA
C
® loo:eold'feo 1elva dnai
AHOW3IW
NIV

System Block Diagram

DIGITAL INTERNAL USE ONLY

Figure 1-1

General Description 1-3

MMUO MMU1

ACUO ACU1

CcPUO cPU2

JBOX
cPU1 CPU3

SPU tCuUo 1cu1

XJAO, 1 XJAZ, 3

MR_X*235_89

Figure 1-2 SCU Ports

1.1.1 SCU Logical Units

The SCU contains three logical units: the JBox, ACU, and ICU. Figure 1-3 is the SCU
block diagram.

1.1.1.1 JBox

The JBox logic is in the CCU, DAX, DBX, and tag MCUs. It contains the SCU control
in the CCU MCU, the data switch in the DAX and DBX MCUs, and the address receive
latches in the tag MCUs. JBox logic interfaces to the MBox, memory, ICU, and SPU.
The JBox arbitrates requests from the memory subsystem, /O subsystem, and up to four
CPUs. It contains the cache consistency unit that ensures cache consistency for the CPU
write back cache, and checks for cache blocks that require invalidating as a result of I/O
writes to memory. The cache consistency unit contains the global tag STRAMs and the
MTCH and ADRX MCAs.

DIGITAL INTERNAL USE ONLY

1-4 General Description

suTveran bn

SOVA
WOY 301

“NIN NJD VIA SIVYNDIS DNINVHSUNVH NdS (310N

viva no
Yivo No
sH34in8
U woaw |
— — LINSNVN L (1,0N)
nai Nds ONV Swrx
! ! AOY 4101
R S e e
" w " $83800V N31
[S)
1 S334A0Y NI
i sAvHLS t
R i av1 fe- —- HILW
[} SNLViS OVI YHOD]
1 -]
H !
\ $3H01¥1 | $93¥00¥ Nad
,,,,,,,, T T DR 3
8 1]
" S5 15UCY NWN 102/MOY § 954B0av N4
AYN OL
1]
1 1 ——
1 UNYNNOD
- - s-u:MvZ_OD nai
] .
FYEITILEN
1 Xour | ANVIROD
1 ovi | 1 noi
D o h T T Ly Sy,
“ HOLY W ﬂ ﬂ UNYANOD]
yiva 118 109 X 10N 61 GNVANDD 1
i noi
h]
1 e —]
1]
viva Hivd t 30018 ONYWAQD Nad 30v4 g
'
Qvid viva) HOLIMS V1VE 104:n09 fe—d 108iN00 fo—o] an4no ONIND 11D NOTLYHL 104 180D HIUNI 1 n40
AHOWIN 1 xour HOIN ovy i2uN0S Iy oYY 104 ndd] MO /01
“ve H ONVAROD N4 ¥
3lium 1]
1]
1 1
] uNVAROD ONYAKOD]
- nov nav Xoer -
B e e e e e e e o e e o e e e o e e e (o o e o e o] o ol
. 1211 1081NOD
el B3RO0 e e UNVAROD AYOWIN
dNX3 1 ININD 38 NIV
fe—
B 7 - T T
Yivu Nud

Figure 1-3 SCU Block Diagram

DIGITAL INTERNAL USE ONLY

General Description 1-5

The JBox contains the micromachine that consists of the control store STRAMs and the
MICR MCA. The control store STRAMs hold the JBox microcode, and the MICR MCA
contains the microcontrol logic. Most of the logic within SCU is controlled either directly
or indirectly by bits within the microword. The MICR MCA contains three fixup queues
that handle cache inconsistencies, nonexistent memory errors, and lock busy and lock
deny requests.

The JBox connects nine ports, using address receive latches and a data switch, and
allows simultaneous transactions. The JBox latches a request, sends it to arbitration,
and determines which SCU resources are needed to complete the request. The JBox
compares available resources with required resources, placing the request either in a
tag queue for execution, or on a reserve list until resources become available. The SCU
resources include source and destination data paths, command buffers, and address
receive latches. :

When the JBox receives a request, it transfers control to a port controller that monitors
the status of the request from load, arbitration, and retire. The JBox also latches the
physical address in address latches and holds onto this address until the request is
retired. The address latches are available to the microcode, memory, and the JBox itself.

1.1.1.2 Array Control Unit

The ACU logic is located in the DAX and DBX MCUs. It provides command, data, and
address control, and it also maintains the status interface to the JBox. ACU sends
DRAM control signals (RAS, CAS, and WE) to the memory modules, and supports built-
in self-test (BIST) operations. ACU uses the main memory control and DRAM control
located in the DBX MCA to control the write buffers, the read buffers, and the read bus
on the memory modules. It also provides the SCU memory data path in the DAX and
DBX MCUs that is used to receive and send DRAM data to the JBox data switch.

1.1.1.3 /O Control Unit

The ICU logic is located in the DAX and DBX MCUs. It provides command, data, and
address control, and it also maintains the status interface to the JBox. ICU supports
the SPU and the XJAs. It contains the receive buffers and transmit buffers in the DAX
and DBX MCUs that receive and send SPU and XJA commands to and from the JBox.
ICU uses I/O control in the DAX MCU to control loading and unloading of the receive
and transmit buffers in the DAX and DBX MCUs. (CCU interfaces to SPU and sends the
command, address, and data to ICU.)

ICU provides the interface between the JBox (CCU MCU) and the interrupt arbiter and
JBox registers on the DAX MCU. The JBox can read the contents of three registers and
send write data to the registers by interfacing with ICU.

When the ICU receives a request, it loads a receive buffer with the command, address,
and data. When the JBox signals the ICU to unload the buffer, ICU sends the command
to the JBox, the address to the address receive latches, and the data to the JBox data
switch. When the ICU sends a request, it loads a transmit buffer with the command,
address, and data from the JBox.

DIGITAL INTERNAL USE ONLY

1-6 General Description

1.2 Physical Organization
SCU logic resides on a module that is slightly smaller than the CPU module. Figure 14

shows the SCU planar module.

FRONT
ocliell=H=Il > =R IE=3 1] 2 : :
- ~ <ll<ll<l <]l & 2zl < @ <
SR REHIEHIEIEE aflall 2| %% %] |8] |8
HEHEHIBHIHE N HHEHEEEERE
2 2 allalfelle allztlzll & 2 2
(&) [&] (&) (6]
| psoo | [1rco | | upao | | psos | | ey | | uoaz |
ed 0
(=3 i~
S S
s pAo | JDBO | [oso7 | Dpar |Joe2 s
s 3
S S
[psez | | mopo| | ubco | | psos | | mpez | | uocr |
] L]
T
— x| lero] {cTis | | apRs | | abro | e —
=3 =4 = -
= - - el
of |= ccu I cTLC | 4K TAG ‘MTCH I ol o
> > p 2
o a o o
[3) o ! o o
L 1K | DScT i [CTLA I I ADR2 I [ADR3 | 4K L
|
[osos | [mmco]| [apat] [osos | [mmcr| [upas]
- o~
3 3
. o [m5] | |[m]) oe :
3 E
= =
0505 | | MDP1 BcooJ [ps11 | rmopsl [Mcm]
CLOCK
_ CONTROL —
XJAO P14 P17 l XJAZ P19 |
o - n 0
=] |3 ol |3
=] - XJA1 P15 | XJA3 P20 | o« o~
2 [2 2! |2
S| 1% LOGIC ANALYZER Sl (S
CONNECTOR J17 I XJA3 P21 i
MR_X1130_89

Figure 1-4 SCU Planar Module

DIGITAL INTERNAL USE ONLY

General Description 1-7

SCU can have up to six MCUs for logic. The remaining space on the module
accommodates the connectors that carry signals to and from the SCU, CPUs, SPU,
1/0, and main memory unit (MMU).

SCU requires four MCUs (DAO, CCU, tag, and DBO) for the basic configuration

(Figure 1-5). This configuration supports two CPUs (CPUO and CPU1), one ACU (ACU0),
and one ICU (ICU0). ACUO supports one main memory unit (MMUO) that consists of four
memory array cards. ICUO supports two XMI-to-JBox adapters (XJAO and XJAL).

With two additional MCUs, DA1 and DB1, the SCU can support two additional CPUs
(CPU2 and CPU3), an additional ACU (ACU1), and an additional ICU (ICU1). ACU1
supports MMU1. ICU1 supports XJA2 and XJA3.

COMMAND
ccu I\/l
CTLA MICROCODE DAX
STRAMS
ARBITRATION IRCX DSXX
JBoX DATA
REGISTERS SWITCH
CTLA cTLe MICR
PORT MICROMACHINE
CONTROLLERS MEMORY CONTROL
SEGMENT JDAX MDPX IRCX
CONTROL 1
RECEIVE gcc INTERRUPT
cTLs BUFFERS CONTROL
CTLD
COMMAND
LATCH TAG QUEUE
JOBX Joex MDPX
cTLe DscT TRANSMIT ICU CONTROL MEMORY m
DATA SWITCH PATH
RESOURCE CHECK CONTROL
‘ MBOX l
<
=
<
(=]
ADRX TAG STRAMs MPAMM umcx DSXX
I STRAM
CPU ADDRESS : MAIN DATA SWITCH
LATCHES MEMORY
NPAMM CONTROL
STRAMs /\
ADRX MTCH wpamm | M MCDX MDPX MDPX
STRAMs
/0 PORT ADDRESS PA AND TAG DRAM CONTROL ECC MEMORY
LATCHES COMPARE DATA PATH
LOGIC
ADRX ADRX JDAX JDBX
MACs PAMM
ROW AND COLUMN ADDRESSING RECEIVE TRANSMIT
ADDRESS BITS BUFFERS BUFFERS
COMMAND

MR_X0835_89

Figure 1-5 SCU MCUs

DIGITAL INTERNAL USE ONLY

1-8 General Description

The SCU MCUs (Table 1-1) are as follows:

DAO and DA1 — These MCUs control and monitor the I/O control units and contain
byte-slices of the data switch, the memory data path, and the I/O transmit and
receive buffers. DAO contains the MDPO (memory data path), JDCO (I/O control),
IRCO (JBox interrupt arbiter and registers), JDAO (I/O receive buffer), JDBO (I/0
transmit buffer), and DS00, DS01, and DS02 (data switch) MCAs. DA1 contains the
MDP2 (memory data path), JDC1 (I/O control), IRC1 (JBox interrupt arbiter and
registers), JDA2 (I/O receive buffer), JDB2 (I/O transmit buffer), and DS06, DS07,
and DS08 (data switch) MCAs.

These MCUs control the following data and address slices:

Bytes 0 through 3 of the data to the DSXX MCAs
Two of the four address bytes to the tag MCU
One of the two nibbles of the SPU interface

One of the two bytes of the JXDI interface

DBO0 and DB1 — These MCUs control and monitor the memory array cards and
contain byte-slices of the data switch, the memory data path, and the I/O transmit
and receive buffers. DBO contains the MDP1 (memory data path), MCD0 and MMC0
(memory control), JDA1 (I/O receive buffer), JDB1 (I/O transmit buffer), and DS03,
DS04, and DS05 (data switch) MCAs. DB1 contains the MDP3 (memory data path),
MCD1 and MMC1 (memory control), JDA3 (I/O receive buffer), JDB3 (I/O transmit
buffer), and DS09, DS10, and DS11 (data switch) MCAs.

Each MCU controls the following slices of address, data, and control lines:

Bytes 4 through 7 of the data to the DSXX MCAs
Two of the four address bytes to the tag MCU
One of the two nibbles of the SPU interface

One of the two bytes of the JXDI interface

CCU — This MCU contains the JBox control logic in the CTLA, CTLB, CTLC, and
CTLD MCAs. These MCAs control the command, data, and address paths. CCU
contains the micromachine control (MICR MCA), which sends microaddresses to the
JBox control store STRAMs.

Tag — This MCU contains the ADRO, ADR1, ADR2, ADR3, and MTCH MCAs, and
the physical address memory mapping (PAMM) STRAMs and global tag STRAMs.
This MCU receives and transmits addresses to and from the ports and controls the
global tag STRAMs. It compares the port addresses to the addresses in the global tag
STRAMSs, determining if an address match has occurred. The ADRO, ADR1, ADR2,
and ADR3 MCAs contain the I/O and CPU address receive latches, and send physical
address bits to memory, MTCH MCA, CPU, ICU, and the PAMMs.

Table 1-1 SCU MCUs

MCU MCA

CCU CTLA, CTLB, CTLC, CTLD, MICR, DSCT

DAO JDAO, JDBO, JDCO0, IRCO, MDP0, DS00, DS01,DS02
DA1 JDA2, JDB2, JDC1, IRC1, MDP2, DS06, DS07, DS08
DBO JDA1, JDB1, MMCO0, MCDO, MDP1, DS03, DS04, DS05
DB1 JDAS, JDB3, MMC1, MCD1, MDP3, DS09, DS10, DS11
Tag ADRO, ADR1, ADR2, ADR3, MTCH

DIGITAL INTERNAL USE ONLY

General Description 1-8

1.21 CCUMCU

The CCU MCU contains six MCAs, fifteen 1K x 4-bit control store STRAMSs, and three
1K x 4-bit history buffer STRAMs. The MCAs are as follows:

CTLA — Receives requests (load command) for data movement, contains the port
arbitration logic, and generates an index that points to a command (in CTLB) and an
address (in tag).

CTLB — Receives and stores 20 port commands and then sends the commands to
other ports.

CTLC — Sends commands to DSCT (data switch controller), cache consistency
information to a queue (in CTLD), and commands to ports.

CTLD — Contains the tag queue. The microcode accesses the queue and uses the
entries to form microaddresses.

DSCT — Controls the DSXX that is a block multiplexer (64 bytes).
MICR — Controls the microcode.
Microcode STRAMs

1.2.2 DAX MCUs

There are two DAX MCUs: DAO and DA1. Each MCU contains eight MCAs. The MCAs
on DAO are as follows:

JDAO — Receives one byte of the interface from each of the two XJAs and one nibble
of the SPU interface. JDAO sends half of the address bits to the tag MCU, buffers
and sends the data from the XJAs (using a 4-byte wide path) to the group of DSXX
MCAs, and sends commands from the 1/0 to CCU.

JDBO — Similar to the JDAX; deals with signals in the reverse direction.

JDCO — Controls the operation of the JDAX and JDBX and monitors their errors.
JDCO coordinates the handshaking signals to and from the JXDI and to and from the
CCU. It also sources the clocks that are transmitted to the XJAs.

DS00, DS01, and DS02 — Provide crossbar capability for four bytes of data. They
support CPUO, CPU1, ACUQ, and ICUO (XJAO and XJA1). For register reads and
writes, they have a 4-byte wide path to and from the IRC.

IRCO — Contains the SCU registers and interfaces to the crossbar. IRCO contains
the interrupt logic for /O to CPU interrupts and inter-CPU interrupts. IRCO also
handles the handshaking signals for the SPU interface.

MDPO — Provides a 4-byte wide path between the data crossbar and the memory
array cards and handles ECC and read-modify-write operations. MDPO provides
check bit generation for write data, detects and corrects single-bit errors, detects
double-bit errors, and generates data patterns during BISTs. It also contains the byte
merge logic.

The DA1 MCU contains MCAs that are similar to the MCAs on DAO.

DIGITAL INTERNAL USE ONLY

1-10 General Description

1.2.3 DBXMCUs

The SCU can have two DBX MCUs: DB0 and DB1. Each contains eight MCAs. The
MCAs on DBO are as follows:

JDA1 — Receives one byte of the interface from each of the two XJAs and one nibble
of the SPU interface. JDA1 sends half of the address bits to the tag MCU, buffers
and sends the data from the XJAs (using a 4-byte wide path) to the group of DSXX
MCAs, and sends commands from the I/0 to CCU.

JDB1 — Similar to the JDA1; deals with signals in the reverse direction.

MCDO — Controls the dynamic RAMs (DRAMs) on the memory modules. This
MCA receives and decodes the segment, and the command for the segment, from the
MMCX MCA. To read the data from memory and write the data into memory, the
MCDO MCA sends RAS, CAS, and write enable control signals. MCDO sends read
bus control signals, such as bypass, to control the flow of data on the read bus in the
memory module. :

DS03, DS04, and DS05 — Provide crossbar capability for four bytes of data. They
support CPU0, CPU1, ACUO, and ICUO (XJAO and XJA1). For register reads and
writes, they have a 4-byte wide path to and from the IRCX MCA, which contains the
JBox registers.

MMCO — Provides the control signals to the memory array cards and receives status
from them. MMCO provides the command, control, and status interface to the JBox,
the data path control and DRAM control commands to the MCD, and the error
detection on all MMC control lines. MMCO also supports BIST operations.

MDP1 — Provides a 4-byte wide path between the data crossbar and the memory
array cards and handles ECC and read-modify-write operations. MDP1 provides
check bit generation for write data, detects and corrects single-bit errors, detects
double-bit errors, and generates data patterns during BIST. It also contains the byte
merge logic.

The DB1 MCU contains MCAs that are similar to the MCAs on DBO.

DIGITAL INTERNAL USE ONLY

General Description 1-11

1.2.4 Tag MCU

The tag MCU contains five MCAs and twenty-four 4K x 4-bit global tag STRAMs and 1K
% 4-bit PAMM STRAMs. They are as follows:

e MTCH — Drives the addresses and data to the tag STRAMs. MTCH receives
addresses from the global tag STRAMs and matches these addresses with the
addresses received from the ports. This MCA sends address match signals to the
MICR MCA. '

e ADRO, ADR1, ADR2, and ADR3 — Receives one-quarter of the address field from
the four CPU ports and two I/O ports. These MCAs also transmit one-quarter of the
address field to the same ports, and source row and column addresses to the MMUs.
The address signals from each port are double buffered to accommodate the frequent
occurrence of a write back accompanying a refill. :

e Tag STRAMs — Each CPU cache set, 0 and 1, has a corresponding 1K section in
the SCU global tag STRAMs. The global tag STRAMs consist of twenty-four 4K x
4-bit STRAMs and contain 16K locations. Two 1K sections of the 4K STRAMs are
used for cache set 0 and 1. The remaining 2K sections are used for interlock status
reservations for CPUs and I/O devices.

e PAMM STRAMs — The JBox control logic receives memory mapping information
from three types of physical address memory mapping STRAMs:

— MPAMM. Memory physical address memory mapping; points to a unit, segment,
and bank of memory.

— TPAMM. /O physical address memory mapping; points to an adapter, ICUO or
ICU1, or an I/O register.

— NPAMM. Nonexistent physical address memory mapping; generates the
nonexistent memory (NXM) bit.

DIGITAL INTERNAL USE ONLY

2

JBox Port Arbitration

The system control unit (SCU) contains three logical units: the JBox, the array control
unit (ACU), and the I/O control unit (ICU). This chapter discusses the JBox in four major
sections, as follows:

¢ JBox control

¢ JBox data paths

s JBox address paths

e Port interfaces for the CPU (MBox), memory, I/O, and service processor unit (SPU)

2.1 Overview

The JBox (Figure 2-1) arbitrates requests from the memory subsystem port, /O
subsystem port, and up to four CPU ports. The JBox controls the data and address
paths, contains the cache consistency unit that ensures cache consistency for the CPU
write back cache, and checks for cache blocks that require invalidation as a result of /O
writes to memory.

The JBox connects the following nine ports using address receive latches and a data
switch, allowing simultaneous transactions:

e One to four CPUs — Each CPU is partitioned into four units: MBox, IBox, EBox,
and VBox. The JBox interfaces with the CPU through the MBox and connects the
CPU with main memory, /O, console, and other CPUs. The JBox provides a high
transfer rate for blocks of data between main memory and the CPU cache data
STRAMs.

¢ One to two ACUs — Each ACU controls the main memory units (MMUs), and
provides dynamic timing signals to the memory array cards (MACs) and daughter
array cards (DACs). Each ACU controls one MMU. The JBox interfaces with ACU
to send and receive memory commands and to address the DRAMs. (The JBox
addresses the DRAMSs under the control of the main memory control logic in ACU.)

e One to two ICUs — Each ICU handles one or two XMI buses. The JBox interfaces
with ICU to send and receive /O commands from the XMI bus to JBox adapter (XJA)
and SPU.

e One SPU — SPU performs console functions and handles errors. The JBox interfaces
with SPU to send and receive console commands. The JBox sends the SPU commands
to ICU and receives SPU commands from ICU. '

DIGITAL INTERNAL USE ONLY 2-1

2-2 JBox Port Arbitration

COMMAND,
ADDRESS,
AND DATA

FROM
THE
MBOX

COMMAND,
ADDRESS,
AND DATA

FROM
THE
icu

COMMAND
AND DATA

FROM
THE
ACU

Figure 2—1

DATA TO MBOX,
SWITCH ICU.
MEMORY
COMMAND TO MBOX,
LATCHES 1cu
MCMD, MEMORY
ICMD,
MCMD
INDEX MEMORY SEGMENT
ARBITRATION CONTROLLERS
AND PORT
CONTROLLERS
TAG
QUEUE
FIX
PAMMS FIXUP COMMAND
QUEUE
MPAMM,
IPAMM,
o CONTROL
STRAMs STORE
STRAMs
ADDRESS MATCH MICROMACHINE
MATGH CONTROL
TAG
STRAMs

LATCHES

MBOX AND ICU
ADDRESS RECEIVE

JBox Block Diagram

DIGITAL INTERNAL USE ONLY

TO MBOX,
IcuU

MR_X0655_89

JBox Port Arbitration 2-3

Table 2—1 lists the MCAs that comprise the JBox MCUs.

Table 2-1 JBox MCUs

MCU MCA

CCU CTLA, CTLB, CTLC, CTLD, DSCT, MICR

DAX IRCO, IRC1, DS00, DS01, DS02, DS06, DS07, DS08
DBX DS03, DS04, DS05, DS09, DS10, DS11

Tag ADRO, ADR1, ADR2, ADR3, MTCH

2.2 JBox Control

The JBox control logic is located in the CCU MCU, which contains the CTLA, CTLB,
CTLC, and CTLD MCAs. These MCAs control the command, data, and address paths.
The CCU MCU contains the cache consistency unit and manages data to and from the
ports.

2.2.1 CTLAMCA

The CTLA MCA receives requests for data movement, contains the port arbitration logic,
and generates an index that points to a command in CTLB and an address in ADRX.
Figure 2-2 shows the CTLA MCA. This MCA contains the following:

© Port input command latches for CPU, ACU, and ICU command fields. CPU sends
load command and buffer available fields. ACU sends DBX fatal, load command,
and buffer available fields. ICU sends DAX fatal error, load command, and buffer
available fields.

Port state controllers for four CPUs, two ACUs, and two 1CU:s.
Arbitration vector decoder for 8 ports (20 requests).
Arbitration index encoder for 8 ports (20 command buffers).

CTLB and ADRX control encoder, which generates control lines that are sent to the
CTLB and ADRX MCaAs.

Port output command latches for CPU, ACU, and ICU command fields. CTLA sends
the CPU buffer available and fatal error fields, the ACU buffer available field, and
the ICU the buffer available field.

@ 0000

DIGITAL INTERNAL USE ONLY

2-4 JBox Port Arbitration

6979590X W

loo:22lH™1L07 8110

4

100:61I1H "HOLO3ABYHY

[

[12JH71107 0110

{o2lH 11970110

300930 SaNi 3Q09%3a
- ——— TOHLINOD 8110 Q10H
[00:02]H™ 110" XHaQY GNY Xdav anva
foo:¥0lH ™ X3QNIBYY
H Q1H8dY
H 3AHISIHANY
H 370A03AH3S3Y [XX:XXIH"ANQ03ABHY
¥3009N3 X3ANI 300234 TOHLINOD 100:20]H~a31104 H aWoa1x
NOILVHLigHY oIV Hauy 1od _ _
H O3HIVA 3009030 [o0:10lH"ANNOOX
— 1s3no3y —
[00:61]JH HOLD3ABUY LX3N [00: 10l 2LxaANX
{00:20lH" Q1 1d loo6tlH 03Y loo:tolH™ tixanx
- {00:20]H ¥N3 LHd 00N [00: +OIH ™ LX3INX
H QTHadY [XXIH LLXNX HON3NVL
3go923a i
HOLO3A 6
300930 : -
NOILVHLIBYHY Lsanoay 100:20]H "3LV1SOXMIN zwmmwwm
— [o0:20lH™a1v1S8XM3IN M3N
foo:61lH 03y —
[00:20]H " 34VLISYXM3IN SH3I1IOHINOD NINVL
EFCE
140d
a3AH3S3H
o [asnussau |
— AHVWIHd . 1404
H7iddx H GWOQIX
[00:£0]H 150X
{00 £0]H _1SGX
[00:20]H "LSVX
HOLY €NdO '2NdD 'tNdD '0NdD 200930
AQv3Y ;
LHOd 1noi ‘'onol | Aav3y
HOIW voas swam 0035 waw | 19%¢ S3HOLY = =
2z 1elH 110 0110 |INVWWOO[[r0:Z0IH™AWOXNW XOWW
) . - " ; LNdNI
{00:80]H AQHLHA™OT1LD " HOIN +938 OW3W 0938 OWINW 1H0d [20:80lH " awoxni"xoar
° [90:20lH"AWOXNd AWLD
B : S3IHOLY
[PLIH "AWOXIN X OWIW ANYWNOD 3009N3 200530 ‘
- - - 1ndLno 3GV UVAY -
{so:0tlH awoxi xoar | ~ Hol Ha44n8 EREIVED] [0064LIH 110 07110
g80:60]lH” QWO Xd xa8M

Figure 2-2 CTLA Block Diagram

DIGITAL INTERNAL USE ONLY

JBox Port Arbitration 2-5

2.2.1.1 Port State Controllers

Each port sends

requests to the JBox, which loads the requests into command buffers.

Each port state controller monitors the states of two or three requests. ICU and ACU
can have two requests per port state controller. CPU can have three requests per port

state controller.

Figures 2-3, 2—4, and 2-5 show the inputs and outputs of the CPU,

ACU, and ICU port state controllers, respectively. Each CPU, ICU, and ACU port has
a state controller. The JBox has four CPU state controllers. Each controller contains
three request state machines. Four CPU controllers contain 12 request state machines.
Table 2-2 lists each port and its corresponding number.

Each ACU port state controller contains two request state machines. SCU can have two
ACU controllers.

Each ICU port state controller contains two request state machines. Two ICU port state
controllers contain four request state machines.

Table 2-2 Port

Numbers

Port

Number

CPUO
CPU1
ICUO
CPU2
CPU3
ICU1
MEMO
MEM1

2 Ut b W N - O

XAST_H[07 00}

NEWXAST_H[07:00)

XBST_H[07:00)

NEWXBST_H[07:00]

XCST_H[07.00]

NEWXCST_H[07:0C)

XLDCME_H

S0 81 S3 S4

ARBVECTOR_H[XX XX]

CPU 1 CPU] CPU] CPU
PORT PORT PORT PORT

RETIRE_H[XX'XX]

STATE 1 STATE — STATE] STATE
CONTROLLER CONTROLLER CONTROLLER CONTROLLER

ARBVECDLY_H[XX:XX]

RESERVED_H

TAKEN_H

IRCO_PRTENA_H|XX]

Figure 2-3 CP

CTLA 1 CTLA 1 CTLA 1 CTLA

MR_X0657_89

U Port State Controllers Inputs and Outputs

DIGITAL INTERNAL USE ONLY

2-6 JBox Port Arbitration

XAST_H[07:00])

NEWXAST_H{07.00} o

NEWXBST_H[07:00] -

XBST_H[07:00)
XLDCMD_H S6 s7
ACU ACU
ARBVECTOR_R[XX:XX] PORT PORT
STATE STATE
RETIRE_H[XX:XX] CONTROLLER CONTROLLER
ARBVECDLY_H[XX XX]
RESERVED_H
TAKEN_H
IRCO_PRTENA_H[XX]
CTLA CTLA

Figure 2-4

XAST_H[07:00]

XBST_H[07:00]

XLDCMD_H

ARBVECTOR_H[XX:XX]

RETIRE_H[XX XX]

ARBVECDLY_H[XX:XX]

RESERVED_H

TAKEN_H

IRCO_PRTENA_H[XX]

MR_X0658_88

ACU Port State Controllers Inputs and Outputs

NEWXAST_H[07:00]

NEWXBST_H[07:00}

\

Figure 2-5

§2 §5
ICU ICU
PORT PORT
STATE STATE
CONTROLLER CONTROLLER
CTLA CTLA

MR_X0655_89

ICU Port State Controliers Inputs and Outputs

Figure 2-6 shows how a port state controller receives status from CTLA and CTLC.

DIGITAL INTERNAL USE ONLY

JBox Port Arbitration 2-7

COMMAND RESERVE
BUFFER LIST
STATUS DECODE

cTLA cTLC

INPUT LOAD
DECODE PORT LI

STATE
CONTROLLER
FOR
CTLA COMUAND cTLC
BUFFER
CONTROL
ARBITRATION ARBITRATION
VECTOR VECTOR
DECODE DELAY
CTLA DECODE
CTLA CTLA
RETIRE
DECODE
cTLC

MR_X066C_83

Figure 2-6 Port State Controller

2.2.1.2 Pipeline Stages
In the JBox pipeline, three requests can be in progress at a given time. Figure 2-7 shows
the pipeline stages. The following describes the pipeline stages:

Load — The port is notified that a command buffer is available. The port sends a
load command to the JBox when sending a valid command.

Arbitration — The JBox arbitrates requests from the CPU, ACU, and ICU ports. If
the port is the next port, the JBox assigns an arbitration vector and an arbitration
index to the request. The index identifies the port and the command buffer associated
with the request that won arbitration.

If necessary resources are not available when a request is made, the request is placed
on a reserved list, where it is arbitrated later by the JBox.

PAMM/command — After generating an arbitration index, the JBox control logic
sends control lines to CTLB and ADRX. CTLB latches the port’s command and ADRX
latches the port’s physical address associated with the request.

Resource check — The JBox performs a resource check for each request. Resources
include a data path (source and destination), address paths, and a microcode tag
queue.

LOAD COMMAND ARBITRATION PAMM/COMMAND RESOURCE CHECK

MR_X0661_89

Figure 2-7 Pipeline Stages

DIGITAL INTERNAL USE ONLY

2-8 JBox Port Arbitration

2.2.1.3 Monitoring the States of a Request
A request can be in only one of seven states. Figure 2-8 shows the seven request states.

RETIRED

IN
PROGRESS

\110

TAKEN

RESERVED
IN
PROGRESS

000

MR_X0662_89

Figure 2-8 Request States

DIGITAL INTERNAL USE ONLY

JBox Port Arbitration 2-9

Table 23 lists the state requests and their descriptions.

Table 2-3 State Requests

Machine

State State Description

1 Load Request is waiting to load its buffers.

2 Valid Request is loaded but not started into pipeline.

3 In Progress Request has been started into pipeline.

4 Reserved Resources are reserved for this request.

5 Reserved in progress Request has been started into pipeline.

6 Taken Request has been removed from the list of requests to be
started into pipeline.

0 Retired Request buffers are available.

Depending on arbitration, polling, and available resources, each request moves from the
first state (load) to the last state (retire).

Each request in the command buffer is controlled by a state machine. Figure 2-9 shows a
CPU port state controller monitoring the state of three requests in CPU command buffers
A, B, and C. Each port controller can have only one command buffer in the load state.
For a CPU having three command buffers, only one command buffer can have a request
in the load state. However, all three command buffers can simultaneously retire requests.
The MBox can send up to three commands before having to wait for a command buffer.

(o] O COMMAND BUFFER A

REQUEST
O o O 'sTates

O
cpu oo COMMAND BUFFER 8
PORT o o
STATE REQUEST
CONTROLLER O 5 O ‘STaTes
o%o COMMAND BUFFER C
O (o]

REQUEST
O o © 'sTates

MR_X0663_88

Figure 2-9 CPU State Machines

DIGITAL INTERNAL USE ONLY

2-10 JBox Port Arbitration

Figure 2-10 shows an ACU port state controller monitoring the state of two requests in
command buffers A and B.

Figure 2-11 shows an ICU port state controller monitoring the state of two requests in
command buffers A and B.

(o] (o] COMMAND BUFFER A

REQUEST
O o O states

o]
ACU o] @] COMMAND BUFFER B
PORT @) lo)
STATE REQUEST
CONTROLLER 0 o5 O 'sTates

MR_X066¢_89

Figure 2-10 ACU State Machines

O O COMMAND BUFFER A

REQUEST
050 STATES

U o’o COMMAND BUFFER B
PORT o) lo)
STATE REQUEST
CONTROLLER O 5 O 'Srares

MR_X0665_89

Figure 2-11 ICU State Machines

DIGITAL INTERNAL USE ONLY

JBox Port Arbitration 2-11

If more than one command buffer is available, the port state controller decides which
command buffer to load when the port sends a new request. The port state controller
selects the CPU command buffer with the lowest number. For example, if all three
buffers were available, the port state controller would select the buffers in the following
order:

Command buffer A=0
Command buffer B=1
Command buffer C = 2

If two buffers were available, the port state controller would select the buffers in the
following order:

Command buffer A= 0
Command buffer B=1

Figure 2-12 shows the loading of command buffer A. The port state controller performs
the following activities:

© Determines that command buffers A and C are available and selects command buffer
A

® Loads command buffer A with the command.

‘ LOAD A
NEXT PORT °

PORT LOAD COMMAND

PORT
STATE
CONTROLLER COMMAND BUFFER B

CTLA

MR_X0666_89

Figure 2-12 Loading Command Buffer A

DIGITAL INTERNAL USE ONLY

2—-12 JBox Port Arbitration

Figure 2-13 shows the loading of command buffer B.

Command buffers can retire requests simultaneously. For example, the CPU port state
controller can retire requests in command buffers A, B, and C simultaneously. The CPU
port state controller can retire command buffers out of order as well. The port state
controller performs the following activities:

© Determines that command buffers B and C are available and selects command
buffer B.

® Loads command buffer B with the command.

PORT
STATE
CONTROLLER
NEXT PORT COMMAND BUFFER A

PORT LOAD COMMAND

CTLA

MR_X0667_89

Figure 2-13 Loading Command Buffer B

2.2.1.4 Load Command — Pipeline Stage
Figure 2-14 shows the latching of the port command and address. The sequence is as

follows:

@ The CTLA port state controller receives a load command.

® CTLA sends CTLA_CTLB_CTL_H{27:00] and parity to CTLB. CTLB latches the
command and uses the index field of the control lines to determine the command that
wins arbitration.

©® CTLA sends CTLA_ADRX_CTL_H[20:00] and parity to ADRX. ADRX latches the port
address in one of the 16 receive latches. The 4 CPUs have 12 address receive latches

and the 2 ICUs have 4 address receive latches for a total of 16. The JBox does not
have to latch the address for the 4 ACU requests.

DIGITAL INTERNAL USE ONLY

JBox Port Arbitration 2-13

68 0990X HW

0110

3009034/HOLV

SWVYLS

SWVHLS WAVAN

1NdinNO WRVd

'WINVdl TWAVOWN

'
I
|
|
| xHav
|
i
SWVHLS HOLW 1 $53HQQV 1HOd
HOIN | S3IHOLVY °
2110 i ss3naav
HOLVW
S
HOLVHINIO nyeLs ss3Haav i TWOlSAHd
—_—— $S3BAAVOHOIW _ s
[
I
|
2110 X
H3110HLNOD
a1Lo 8110 8119) X110 e
SHI110HLINOD | LHod
LNIWOIS AHOWIW 30093a viva HOLV1 VLVQ
Inano 3N3aNo @110 i
|
NOILVHLIBHY I S3IHOLVY
8110 ANVWINOD | ANVWWOO
2110 | XYY I S —
HOLV1 AWOBHY ONVAWOD 1HOd
300030 SSV10 01190 I
ANV ONVIWWNOD 1
|
'
NOIHO 30HNOSIH | ANVWWOOI/WWVd NOILVHLIBHY

avol 14od

Figure 2-14 Latching the Port Command and Address

DIGITAL INTERNAL USE ONLY

2-14 JBox Port Arbitration

2.2.1.5 Arbitration
As shown in Figure 2-15, CTLA contains the following arbitration logic:

© Polling

® Port state controller

© Arbitration vector and index generator

The JBox uses the foliowing logic to arbitrate port requests:
¢ Polling logic

¢ Valid request decode logic

¢ Next request logic

* Priority logic

¢ Arbitration vector and index logic

LOAD COMMAND PAMM/COMMAND RESOURCE CHECK

NEW REQUEST
LIST

C7LC

l

POLLING RESOURCE :SARTYE agvéblgbsr ——
CHECHK | CONTROLLER | DECODE
| | ARBINDEX_H{04.00]
cTLC l CTLA] CTLA ARBITRATION
l i VECTOR
AND
i 1 INDEX
| | GENERATOR
L RESERVED i NEXT PORT
REQUEST ———] DECODE [—]
LIST | !
| !
CTLA CTLC | ; CTLA CTLA
1
T
]

MR_XCE70_8%

Figure 2-15 Arbitrating Requests

DIGITAL INTERNAL USE ONLY

JBox Port Arbitration 2-15

2.2.1.5.1 Polling Logic

The JBox uses the polling logic to poll and examine two lists for requests, the new
request list and the reserved request list. The JBox adds requests from eight ports to the
new request list. The JBox polls the new request list and performs a resource check. If
the resources are not available, the JBox denies the request and moves the request to the
reserved request list (only on the first polling sequence).

If resources are available, the JBox places the request in the tag queue. The
micromachine control logic removes the entry, using the information to form the
microaddress that is sent to the control store for the microword needed to handle the
request. Figure 2-16 shows the new request and reserved request lists.

The JBox alternates between the two request lists. First, JBox removes the port requests
and continues to poll the new request list until the last request is examined. Then the
JBox polls the reserved requests until the last request on that list is examined. The JBox
does the following:

e Does not process the last request of the new request list and the last request of the
reserved request list back-to-back.

e Cannot add another request to the reserved request list for a port until the
reservation list for all ports are empty.

POLLING

CTLA

LAST ENTRY
DECODE

CcTLC

NEW REQUEST LIST RESERVED REQUEST LIST

MR_X0669_89

Figure 2-16 Polling the New Request List and the Reserved Request List

2.2.1.5.2 Valid Request Decode Logic

The JBox uses the valid request decode logic to indicate that a new request is in the load
or valid state (machine states 1 or 2) or that a reserved request is in the reserved state
(machine state 4). The JBox arbitrates requests from the new request list or the reserved
request list.

2.2.1.5.3 Next Request Logic

The JBox uses the next request logic to identify the next request to win arbitration. The
next request logic enables a valid request to be sent for arbitration. Figure 2-17 shows
(@) the CPUS3 port state controller and the request bits REQ_H[13:11] associated with
CPU3’s three command buffers. Valid request decode examines the current state of each
command buffer for reserve status (4CST_H[04] - 4 = CPU3, CST = current state, [04] =
reserved state). As shown (@), the output of the valid request decode logic can generate
any request bit for CPU3 to generate OPRI_H (priority level = 0).

DIGITAL INTERNAL USE ONLY

2-16 JBox Port Arbitration

6871290X " HW

[evlH o3y

[++IH O3y

[+t0lH LIXNY

H 1vAgYy

[00)H LLXNY

H IVAVYY

V110 viLo
200334 [volH 1sVY uwwm
153n03Y :
_ FIELTY [volH ‘LSEY M3IN
[20IH LLXNY [volH LSOV
HIVAOY H aWwoav

l00:20]H 3LvLiSOY¥

L AT]

[00:20lH 31visuy

3Q00ON3

{00:20lH " 31VLSYY

3LVis
M3N

l0o0:20lH"1SOMIN

[00:20JH LS EBMIN

[00:20]H LSVMIN

viLo
{volH ¥NILHd 00YI
HONINVL
H703AY3S3Y
f11:e1]H"AT003A8HY
H3171041NOD —

31V1S [+1:€4IH IHILIY

140d -
€Nndod [+1:€1]lH HOLO3ABHY

H awoay

[oo:20lH™ 180V

[00:20lH" LSEY

[00:20lH” LS VY

Figure 2-17 Generating the Request Bits

DIGITAL INTERNAL USE ONLY

JBox Port Arbitration 2-17

2.2.1.5.4 Priority Logic
Priority levels range from 7 (highest) to 0 (lowest). Table 24 lists the ports and priority
levels.

The ports’ request decode logic determines the priority level.

Table 2-4 Port Priority Levels

Port Priority

ACUO0
ACU1
ICUO

ICU1

CPUO
CPU1
CPU2
CPU3

S = N W s

2.2.1.5.5 Arbitration Vector and Index Logic

The arbitration vector decode logic receives inputs from priority logic and valid request
logic, generating ARBVECTOR_H[19:00] as shown in Figure 2-18. The JBox sends
ARBVECTOR_H[19:00] to the priority encoder and generates ARBINDEX_H[04:00). The
arbitration index identifies the port and command buffer that has won arbitration and
whose request is in the pipeline. (In this example, CPU3 command buffers A, B, and C
have index values B, C, and Dlhex].)

ARBVECTOR_H[19'16] ARBINDEX_H[04:00)
REQ_H{13.11] ARBITRATION ARBITRATION >
VECTOR ARBVECTOR_H[15:08} INDEX
OPRI_H OPRISEL_H DECODE
— ARBVECTOR_H[07:00} PRIORITY
ENCODER
CTLA CTLA

MR_X0672_88

Figure 2-18 Generating the Arbitration Vector and Index

2.2.1.6 Arbitration Index

The arbitration index is a unique value that identifies a port and command buffer
associated with a request that has won arbitration. The JBox sends the arbitration index
to ACU. However, while the index value remains unchanged, the index name changes as
follows:

e Arbitration index — This name identifies the request that has won port arbitration.

e Primary index — The memory segment controllers latch the arbitration index as
the primary index.

DIGITAL INTERNAL USE ONLY

2-18 JBox Port Arbitration

e ECC index — The ACU latches the primary index for ECC as the ECC index.

¢ Return index — The JBox sends the arbitration index with a memory read
command to ACU. If the memory segment is available, ACU sends the index to
the ADRX MCAs. The index selects the buffer holding the address bits for the
request. The JBox uses the bits to generate row and column address bits to the main
memory array for the read data. ACU sends back a return data read command and
the arbitration index as a return index to the JBox.

Table 2-5 lists each port and command buffer and the corresponding index value.

The JBox stores the addresses for 12 CPU requests and 4 ICU requests. The JBox uses 4
index bits to address 1 of 16 locations. Memory requests have index bit [05] set to 1 and
do not need to have the addresses stored.

Table 2-5 Index

Port and
Command Buffer Index Value

(=4

CPUO A
CPUO B
CPUO C
CPU1L A
CPU1 B
CPU1C
ICUO A
ICUOB
CPU2 A
CPU2 B
CPU2 C
CPU3 A
CPU3 B
CPU3 C
ICU1 A
ICU1I B
MEMO A
MEMO B
MEM1 A
MEM1 B

LS I o I o B T v« B (=2 - BT B S~ B Y LR R

—_ e e e
w N - o

DIGITAL INTERNAL USE ONLY

JBox Port Arbitration 2-19

2.2.1.7 PAMM STRAMs
The JBox control logic receives memory mapping information from three types of
STRAMs, as follows:

e Memory physical address memory mapping (MPAMM)
e I/O physical address memory mapping (IPAMM)
e Nonexistent physical address memory mapping (NPAMM)

SPU issues an initialize memory command and determines the memory configuration
from the self-test results. SPU configures the results and loads MPAMM and NPAMM.
The following list summarizes the steps required for SPU to load the MPAMM and
NPAMM:

1. Initialize the control stores and control STRAMs.

2. Start system clocks, with the JBox beginning in the idle loop. The memory subsystem
begins executing the autosize routine and tests main memory (built-in self-test).

3. Read the results from the memory control registers through the logical interface. The
JBox PAMM data is constructed from these results.

4. Load MPAMM and NPAMM using the PAMSCAN_DATA_A_H[07:00] to the ADRX
MCAs.

SPU issues an initialize VO command to reset all XJAs and scan the XMI interface for
1O adapters. SPU configures the results and loads IPAMM.

2.2.1.8 MPAMM

Figure 2-19 shows the MPAMM format. ADRX latches the port’s physical address and
addresses MPAMM. The output of MPAMM points to a physical unit, segment, and bank
of memory.

MPAMM maps every memory addrvess into a specific physical memory bank. For example,
address 1000 can reside in any one of the eight memory banks. The JBox sends address
1000 to MPAMM, which decodes the address and generates a code identifying the memory
bank.

The MPAMMs allow the following:

e Reconfigurations to accommodate different chip sizes for upgrades or for MMU having
different chip sizes.

e Patches around bad or suspect areas in memory, accomplished either manually or by
means of software intervention.

03 02 01 00

PAR UNIT SEGMENT| BANK

MR_X0673_89

Figure 2-19 MPAMM Format

DIGITAL INTERNAL USE ONLY

2-20 JBox Port Arbitration

2.2.1.9 IPAMM
Figure 2-20 shows the I/O PAMM (IPAMM) address allocation.

3 E000 0000

XMI0 NODE SPACE 16 X 512
3 E080 0000

XM!1 NODE SPACE 16 X 512
3 E100 0000

XMi2 NODE SPACE 16 X 512
3 £180 0000

XMI3 NODE SPACE 16 X 512
3 E200 0000

XBIO WINDOW SPACE 32 MBYTES (64 X 512)
3 E400 0000

XBI1 WINDOW SPACE 32 MBYTES
3 E600 0000

XBI2 WINDOW SPACE 32 MBYTES
3 E800 0000

XBI3 WINDOW SPACE 32 MBYTES
3 EA0O 0000

XBi4 WINDOW SPACE 32 MBYTES
3 EC00 0000

XBI5 WINDOW SPACE 32 MBYTES
3 EE00 0000

XBI6 WINDOW SPACE 32 MBYTES
3 FO00 0000 - .

XBI7 WINDOW SPACE 32 MBYTES
3 F200 0000

XBi8 WINDOW SPACE 32 MBYTES
3 F400 0000

XBIS WINDOW SPACE 32 MBYTES
3 F600 0000

XBIA WINDOW SPACE 32 MBYTES
3 F800 0000

XBIB WINDOW SPACE 32 MBYTES
3 FAOO 0000

XBIC WINDOW SPACE 32 MBYTES
3 FC00 0000

X8ID WINDOW SPACE 32 MBYTES
3 FEOO 0000

XJAO PRIVATE SPACE 512 KBYTES
3 FEO8 0000 .

XJA1 PRIVATE SPACE 512 KBYTES
3 FE10 0000

XJA2 PRIVATE SPACE 512 KBYTES
3 FE18 0000

XJA3 PRIVATE SPACE 512 KBYTES
3 FE20 0000

JBOX/SPU REGISTER SPACE 24 MBYTES
3 FFFF FFFF

MR_X0675_89

Figure 2-20 IPAMM Address Allocation

DIGITAL INTERNAL USE ONLY

JBox Port Arbitration 2-21

The exact physical location of a device at an XMI node address is defined by the contents
of the /O PAMM STRAM. IPAMM has 1K locations.

The operating system determines the exact mapping by reading every XMI node device
register starting with the first XMI bus, node 0. Each IPAMM location defines where a
512-Kbyte section of I/O space resides.

The I/O mapping PAMM STRAMs decode PA [28:19] of the address field to determine
whether the /O address points to an adapter, ICUO, or ICUL. The IPAMMs determine
whether the address is a JBox or an SPU register. Figure 2-21 shows the IPAMM format
at each location.

The starting addresses defined by the contents of the IPAMM STRAMs are as follows:

XJAO = 3 E000 0000
XJA1 = 3 E080 0000
XJA2 = 3 E100 0000
XJA3 = 3 E180 0000
IRCX = 3 E200 0000
SPU = 3 E300 0000

03 02 01 00

TAG_CCU_SPARE_STRAM_H[01°00] ,

TAG_CCU_NXM_PAR_H

TAG_CCU_NXM_H

MR_X0674_89

Figure 2-21 IPAMM Format

2.2.1.10 NPAMM

NPAMM outputs the nonexistent memory (NXM) bit. This bit is sent to the CTLD MCA
and inserted in the tag queue entry associated with the request. This bit forces the MICR
MCA to form a microaddress to send to a microword in the control store that handles a
nonexistent memory address and to notify the requesting port that this condition has
occurred.

2.2.1.11 CTLA MCA — Inputs and Outputs

Table 2—6 lists the inputs and outputs that CTLA receives from and sends to the MCAs
and ports.

DIGITAL INTERNAL USE ONLY

2-22 JBox Port Arbitration

Table 2-6 CTLA MCA Inputs and Outputs

MCAs or Ports Inputs Outputs
CPU Buffer available Buffer available
Load command Fatal error
Parity Parity
IcU Buffer available Buffer available
Load command Parity
DAX fatal error
Parity)
ACU Buffer available 0 and 1 Buffer available
Load command Parity
DBX fatal error
Parity
CTLB PPARIN[07:00] Hold command [19:00]
PPAROUT{02:00] Arbitration index
PARERR_L Valid request
Valid reserve
Last
Parity
CTLC Retire [19:00] Port ready [09:00]
Reserved Parity
Taken
Load command {09:00]
PARERR_L
PPARIN{[01:00]
PPAROUT[07:00]
Parity
ADRX - Hold address [15:00]
Arbitration hold
PAMM index
Parity
CDXX - Set attention
IRCX Port enables [07:00] -
Parity
MICR PARERR_L Port ready [09:00]
Parity
Control store Arbitration hold -
Parity

DIGITAL INTERNAL USE ONLY

JBox Port Arbitration 2-23

222 CTLBMCA

The CTLB MCA receives and stores 20 port commands. CTLB also sends the commands
to the ports. Figure 2-22 shows the CTLB MCA. This MCA includes the following:

® 00

Port input command latches for CPU, ACU, and ICU command fields. CTLB receives
the CPU data ready, which cache set, and command fields. CTLB receives ACU
segment number and memory command fields, as well as ICU ID, data size, and
command fields.

Command latch that latches the port commands that win arbitration. CTLB latches
and decodes input commands received from, and determines the corresponding output
commands to send to, the ports. For example, if a CPU sends read refill or write
refill to the JBox, CTLB latches and decodes the refill command and sends a read
command to memory. Another example, if a CPU sends /O register read to the JBox,
CTLB latches and decodes the I/O command and sends a CPU read command to I/O.

CTLC and CTLD control encoder that generates control lines for the CTLC and

CTLD MCAs. CTLC decodes the control lines to determine the type of command and
to check available resources. CTLD decodes the control lines to determine tag queue
data to send to the MICR MCA. MICR uses the queue data to form the microaddress

for the microcode.
MICR command decoder that decodes control lines sent from the MICR MCA.
MRMXX control decoder that decodes the fields of the microword.

Port output command latches for CPU, ACU, and ICU command fields. CTLB sends
which cache set and command fields to CPU. CTLB sends segment number, index,
length, and command fields to ACU, as well as ID, destination value, and command
fields to ICU.

° ARBIDXD_H[04:00] e
MICR_CTLX_CTL_H[05°00] CTLC_CTL_H[05:00]] PCMD |
- MICR .
WBBX_PXCMD_K[04:00]
COMMAND -
MICR_CTLB_CTL_H[00] S EUDE PORT
OUTPUT JDCX_IXCMD_H[06°00]
[_'ﬂD_I] COMMAND >
e LATCH MMCX_MXCMD_H{0s:00]
MRMXX_CTLX_CTL_K[04:00]
l MCMD l
MRMXX_CTLY_CTL_H[04] MICROCODE
FIELD
MRMXX_CTLZ_CTL_H[00] DECODE
DATA SWITCH .
CONTROLLER DSCT_LEN_H[01:00] R
LENGTH >
ENCODE.
CTMV_PUXCMD_H[05:00] G
PORT -
JDCX_IUXCMD_H[06:00] INPUT COMMAND ARBCMD_K[06:00]
COMMAND
MMCX_MUXCMD_H[01:00] LATCH ARBITRATION
CTLA ARBIDX_H[04:00] CTLC AND | CTLC_ARBCMD_H[11:00)
CTLA_CONTROL_H[27:00} CONTROL CTLD >
LATCH VAL_H[02:00} CONTROL | CTLD_OUEUE_H[11:00)
AND LINES —
DECODE ENCODE

MR_X0676_8%

Figure 2-22 CTLB Block Diagram

DIGITAL INTERNAL USE ONLY

2-24 JBox Port Arbitration

2.2.2.1 PAMM/CMD Stage

CTLB receives the command field and arbitration index and determines the CTLD queue
data. CTLB sends VAL_H[02:00], ARBIDX_H{[04:00], and ARBCMD_H[03:00] to CTLC.
CTLC performs a resource check, builds the reservation list, and decodes the command
and class. Figure 2-23 shows the ADRX and CTLB control lines encoded during the
PAMM/CMD pipeline stage.

LOAD COMMAND ARBITRATION RESOURCE CHECK
PAMM COMMAND
VALID REQUEST
ARB INDEX [03:00] ADRO CTL [20:00] [25]
ADRX ——————————> ARB INDEX [04:00] CTLB CTL {27:00]
MRMX CTLX CONTROL CONTROL ADR2 CTL [20:00) [24:20] CTLB —»
ENCODE — VALID HOLD [19:00} CONTROL
VALID HOLD [15:00] [19:00]) ENCODE
RESERVE CYCLE
28]
CTLA VALID REQUEST
127}
cTLe

¥R_Xce77_9

Figure 2-23 PAMM/CMD Pipeline Stage
2.2.2.2 CTLB MCA — Inputs and Outputs

Table 2-7 list the inputs and outputs that CTLB receives from and sends to the MCAs
and ports.

DIGITAL INTERNAL USE ONLY

Table 2-7 CTLB MCA inputs and Outputs

JBox Port Arbitration

2-25

MCAs or Ports Inputs Outputs
CPU Command Command
Which set Which set
Data ready
ICU Command Command
Length Destination
ID ID
ACU Command Command
Memory segment Length
Index
Memory segment
CTLA Hold command [19:00] PPARIN{07:00]
Arbitration index PPAROUT{02:00]
Valid request PARERR_L
Valid reserve
Last
Parity
CTLC Original index Command
Memory segment Arbitration index
Memory bank Valid request
Parity Valid reserve
Last
Parity
CTLD - Command
Arbitration index
Length
Which set
Parity
DSCT - Length
Parity
MICR Index value Data ready [03:00]
Memory segment Parity

Control store

Memory bank
Which set
Parity

Arbitration hold
Command
Parity

DIGITAL INTERNAL USE ONLY

2-26 JBox Port Arbitration

2.23 CTLC MCA

The CTLC MCA sends commands to the data switch controller, cache consistency
information to a tag queue in CTLD, and cache consistency commands to ports.
Figure 2-24 is a block diagram of the CTLC MCA. This MCA includes the following:

© Port input command latch for ACU, which sends read OK fields for each memory
segment.

Reservation register that holds reserved resources waiting to become available.

Resource check logic that compares required resources with available resources to
determine whether a request can be taken.

Memory segment controllers that monitor the states for each memory segment.

CTLB, CTLD, ADRX, and DSCT control encoder that generates control lines to the
CTLB, CTLD, ADRX, and DSCT MCAs.

CTLA control encoder that generates control lines to the CTLA MCA. These control
lines indicate the status of a request as reserved, taken, or retired.

© © 06 o600

Port output command latches for sending commands to the CPUs, ICUs, and ACUs.

DIGITAL INTERNAL USE ONLY

JBox Port Arbitration 2-27

68 290X UW

Py

- — =
[os:€t]H OWO XN XOWW

S3IHOLV
GNVAWOO

'3

[20:80]H”AWOXI~X2ar

1Nd1lN0o
1H0d

s

90:20}JH AWOXd X88M

HOLVY {00:10JH 1107 01LO HOIN
104LINOO — — —
30000HOIN [00:€0]H 1LD X1LO HOIN

x3ani (03s)
NHNni3d

[50:90lH L0 ATAD HOIN

HOLV1 [00:50]H 1LD 0110 XXWHW
10HLINOD - - —
3000042IN [00]H 140 X110 XXWHW

[50:901H LD "ATLO XXWHW

[oo:1HIH"aWO 8110

[00:60JH”AQHLYd V1LO

H AYSHON

H AHSHLSI

{00}H 1LOXWHW

HONINVL

{50:20lH™xQiI8HY

[oo: +tEIH S3VAUSYH

[oo:1€lH S3HOY

HOLV1 X3aNI
AHVIWIHG o
EIN 'ZW N CON oh%&nwo
SH3I110HLNOD
LNIWD3S
AHOW3NW 3Q09%134a
p 300030
mmr»%%p.momumv 0050} SSV10 lco'eel | GNVAWOD
H SSVI0 H 03GWD
(ndo 'o/l
e AHOWIN)
30093d
ay113Y X3aNI
AHVWIHd 40 3dAL
H 3AH3S3Y
HOLY1 e ° {00]H 1LOXWHW - 6
< 10HLINOD -
- - — VL0 WOIAHD [solH xa1a4v H 13S$%HD s
{00:2€lH 110 V11D — 30HN0S3Y -
HONINVL {00:10lH 13SAUSHS NOILVAHISAH
{00 LEIH SAHAUSHW - H GTHAYSH
100. +€lH "S3HOY “loo telH AuSHOIY
= [zo.04H 11071980 S3HOLVY] {00:20lH ivAv LOSa
< S 10H1NOD 300030 — -
{o0:50lH 1107 XHAY 1950 . $30HNOS Y {00:20IH WVdN OV HOLY1
- - - anv loo:telH SIHNVAY | “3hav VAV - - GNVAWOD
H73n3IND @110 xuayv loc:20lH WVdI DVL L0dNi
- X110 _ _ 1Hod
[00:50]H 11078110 100:20]H WVJIW OVL

{20:€01H AWOXNW ™ XONW

Figure 2-24 CTLC Block Diagram

DIGITAL INTERNAL USE ONLY

2-28 JBox Port Arbitration

2.2.3.1 Resource Check Stage

The JBox uses command buffers, data paths (source and destination), address paths, and
memory segments as resources. Table 28 lists the resources. At any given time, the
status of each resource is in one of the following categories:

* Required — Needed to complete the command
¢ Available — Not being used

* Reserved — Allocated for commands that previously have won arbitration but were
unable to be executed because required resources were not available

CTLC decodes the command and performs a resource check to determine whether the
resources needed by the request are available. Figure 2-25 shows the inputs to the
resource check logic. Usually, if the resources are not available, the request cannot be
taken and the JBox moves it onto the reservation list.

The startup logic and microcode share the resources. ARBHOLD is a signal that
determines whether the startup logic or microcode has control of the resources. The
microcode generates ARBHOLD when it needs the resources. The CTLC resource check
logic compares the available resources with the resources requested for the new or
reserved requests.

The resource check logic generates TAKEN_H and sends it to the CTLA state controllers
for each request taken.

LOAD COMMAND ARBITRATION PAMM/COMMAND

AVAILABLE RESOURCES [31:00)

REQUEST RESOURCES [31:00) TAKEN_H
—
MICR RESERVED RESOURCES [31:00]
RESOURCE
SELECTED RESERVED RESOURCES [31:00] CHECK

ARB INDEX [05]

MRMX CONTROL

CTLC

MR_X0679_89

Figure 2-25 Resource Checking

DIGITAL INTERNAL USE ONLY

Table 2-8 Resource List for Arbitration

JBox Port Arbitration 2-29

Number Resource

00 CPUO command buffer

01 CPU1 command buffer

02 CPU2 command buffer

03 CPU3 command buffer

04 MEMO0 SEGO command buffer
05 MEMO SEG1 command buffer
06 MEM1 SEG0 command buffer
07 MEM1 SEG1 command buffer
08 100 command buffer

09 101 command buffer

10 CPUO data source

11 CPU1 data source

‘12 CPU2 data source

13 CPU3 data source

14 MEMO data source

15 MEM]1 data source

16 100 data source

17 101 data source

18 IRC data source

19 CPUO data destination

20 CPU1 data destination

21 CPU2 data destination

22 CPU3 data destination

23 MEMO data destination

24 MEM1 data destination

25 100 data destination

26 101 data destination

27 IRC data destination

28 From DX0 to DX1 cross

29 From DX1 to DXO cross

30 Address out source 0

31 Address out source 1

DIGITAL INTERNAL USE ONLY

2-30 JBox Port Arbitration

Table 2-9 lists the resources needed by SCU to complete memory, CPU, and I/O

requests.

Table 2-9 Resources Needed for Commands

Command

Resource Number!

Memory Commands

Memory read data return (CPU) 00, 01, 02, or 03 Primary index
14,15 Arbitration index
19, 20, 21, or 22 Primary index
28, 29 Data crossing
30, 31 Address out

Memory read data return (I/O) 08 or 09 Primary index
14, 15 Arbitration index
25, 26, 27 Primary index

Memory ECC report 14,15 Primary index

I/0 Commands

IRC return data (CPU) Register index

IRC return data (/O)

SPU write I/O register

SPU read I/O register

I/O register response

Nonexistent device address

DMA write unlock
DMA write
SPU write unlock

Read V/O register return data (CPU)

DMA read lock
DMA read

00, 01, 02, or 03
18

19, 20, 21, or 22
28, 29
30, 31

08 or 09
18

25 or 26
28, 29
30, 31

08, 09

16 or 17

25, 26, or 27
28, 29

30, 31

08 or 09

None of the resources
listed in Table 2-8.

00, 01, 02, or 03
30, 31

04, 05, 06, or 07
04, 05, 06, or 07
04, 05, 06, or 07

00, 01, 02, or 03
18,17, 16

19, 20, 21, or 22
28, 29

30, 31

04, 05, 06, or 07
04, 05, 06, or 07

Register index
Data crossing

Register index

IPAMM
Arbitration index
IPAMM

Data crossing

IPAMM

Register index

MPAMM
MPAMM
MPAMM

Register index
IPAMM

Register index

Data switch crossing

MPAMM
MPAMM

IThe resource numbers in this table correspond to the resource numbers in Table 2-8.

DIGITAL INTERNAL USE ONLY

JBox Port Arbitration 2-31

Table 2-9 (Cont.) Resources Needed for Commands

Command Resource Number!

CPU Commands

Unlock 04, 05, 06, or 07 MPAMM

Write refill link lock 04, 05, 06, or 07 MPAMM

Cache block invalidate 04, 05, 06, or 07 MPAMM

Longword write update link 04, 05, 06, or 07 MPAMM

Write back linked 04, 05, 06, 07 MPAMM
10, 11,12, or 13 Arbitration index
23,24 MPAMM
28, 29 Data switch crossing
30, 31 Address

CPU write /O register 08, 09 IPAMM
10, 11, 12, 13 Arbitration index
25, 26, 27 IPAMM
28, 29 Data switch crossing
30, 31 Address

CPU read /O register 08, 09 IPAMM

Longword write update 04, 05, 06, or 07 MPAMM

Write back 04, 05, 06, or 07 MPAMM
10, 11, 12, or 13 Arbitration index
23,24 MPAMM

Write refill unlock

28, 29
04, 05, 06, or 07

Data switch crossing
MPAMM

Write refill lock 04, 05, 06, or 07 MPAMM
Write refill link 04, 05, 06, or 07 MPAMM
Read refill link 04, 05, 06, or 07 MPAMM
Write refill 04, 05, 06, or 07 MPAMM
Read refill 04, 05, 06, or 07 MPAMM

1The resource numbers in this table correspond to the resource numbers in Table 2-8.

DIGITAL INTERNAL USE ONLY

2-32 JBox Port Arbitration

2.2.3.2 Resources Required — Examples
This section provides examples to show what resources are needed for memory, CPU, and
1/0 requests. Refer to Tables 2-8 and 2-9. ‘

2.2.3.2.1 Resources Needed for a Memory Request
For a memory read data return command from ACU in response to a CPU request, the
resource checking logic checks for the following resources:

¢ CPUn output command buffer to send return data read or written to the CPU that
requested the read data.

* MEMn data source lines to send the data to the data switch.

* CPUn data destination lines to receive the data from the data switch.
* Data switch crossing lines (DX1 to DX0 or DX0 to DX1, if applicable).
* Address out source to return the address with the data to the CPU.

2.2.3.2.2 Resources Needed for a CPU Request

For a CPU read refill link command, the resource checking logic checks for the MEMn
SEGn command buffer in order to send ACU a read command. (This information is
provided by the MPAMMs.) The CTLB command latch receives and decodes the read
refill link command, loads the ACU output command buffer, and sends a read command
to ACU. A read refill link command is followed by a write back command. The read refill
link command is loaded into one command buffer, and the write back command is loaded
into another command buffer. Although the MBox sends the commands separately, the
JBox handles them as though they were linked. The JBox executes the read refill link
command and then the write back command.

The MBox moves the cache block (with valid and written data) into the write back buffer
to make the block available for refill data, which allows the JBox to return the read data
to the MBox first. To avoid the error condition that would result if the MBox requested
read data for an address that the JBox has marked as written full or partial, the MBox
sends the refill command as refill link. Link indicates that the MBox knows that a valid
and written block exists and must be written back to main memory. This command
notifies the JBox that this is not an error condition.

The JBox processes the commands in order, ensuring that the commands are not
interrupted through the JBox consistency logic.

For the write back command, the resource checking logic checks for the following
resources:

¢ MEMn SEGn command buffer that sends the read command from the JBox command
lateh in CTLB.

e CPUn data source lines that the CPU uses to hold the write back data.

* MEMn data destination lines that send the data to memory from the data switch.
(MPAMM identifies the memory unit, segment, and bank.)

* Address out source lines for the address that ACU uses to address the DRAM:s.

DIGITAL INTERNAL USE ONLY

JBox Port Arbitration 2-33

2.2.3.2.3 Resources Needed for an SPU Write I/O Register Request
For an SPU write I/O register, the resource checking logic checks for the following
resources:

e ICUn command buffer to receive the write I/O register command. (The IPAMM
identifies the I/O device and determines which I/O command buffer is needed.)

e IOn data source lines to send the data to the data switch.
e IOn data destination lines to send the write data from the data switch.

« Data crossing lines (DX0 to DX1 or DX1 to DXO, if applicable). (IPAMM identifies the
/O device and determines which /O command buffer is needed.)

2.2.3.3 Memory Segment Controllers
The main memory units have four memory segments that can be cycled independently:

MEMO SEGO
MEMO0 SEG1
MEM1 SEGO
MEM1 SEG1

Each segment has a memory segment controller. The memory segment controllers are
shown in Figures 2-26 and 2-27.

MXSTAT_H{03:00] MXST_H[03:00]
- |—7 — L
MXCLASS_H[0500] LD_PRX_L
MICR_DONE_H|XX] LD_SECX_L
MRMCCTL_H[05] RETIREPRIX_L
Mo - M1 -] M2 — M3 ——————>
CTLA_PRTRDY_H[XX] RETIRERTNX_L
MEMO - MEMO - MEM1 — MEM1 EE——
RTN_DATA_H[XX] SEGO SEG1 SEGO SEG1

LINK_WRT_H[XX]

MRMXXCCTL_H[04]

MUXCMD_H[XX]

ECC_RPT_H[XX]

MR_X0680_B3

Figure 2-26 Memory Segment Controllers

CONTROL g CONTROL CONTROL CONTROL
MO M1 M2 M3
MEMORY MEMORY MEMORY MEMORY
SEGMENT SEGMENT SEGMENT SEGMENT
CONTROL CONTROL CONTROL CONTROL

MR_X0681_89

Figure 2-27 Controlling the Memory Segments

DIGITAL INTERNAL USE ONLY

2-34 JBox Port Arbitration

The segment controllers are bit-specific state controllers that receive and send a 4-bit
state field. Table 2-10 lists the bits and their descriptions.

Table 2-10 Segment Controller Bit Descriptions

Bit Name Description

00 MICR Memory segment controller is waiting for microcode MICR_DONE.
When the memory segment controller receives microcode done, the
address stored in that tag is released.

01 RTN Memory segment controller is waiting for memory to send the return
data request for that segment. This is for reads only.

02 PRTRDY Memory segment controller is waiting for the port ready logic to send
port ready for that segment. The memory segment has completed
using the address in the tag.

03 LINK Depends on interleave mode. The memory segment controller needs
this to order the requests for link commands. The read is done before
the write. The microcode handles the read portion first and the link
bit indicates that the information must be held to handle the write
request. The microcode knows there is a link request and that the
command buffers for the CPU should have the read portion in one
and the write portion in the other. This bit is reset when write is
completed.

If two or more memory commands have an address in the same segment, the JBox
handles the requests sequentially. While the JBox accesses a segment for a command,
the segment is inaccessible to other commands.

The memory segment controllers receive inputs from the present state, the class decode,
MICR, microcode, port ready for the four ports (4, 5, 6, 7), command decode, memory
command field read OK, and the ECC report for that segment. The segment controllers
control the primary and secondary index load and retire decode logic. CTLC determines
the return index.

2.2.3.4 Command Class Types

Port commands fall into one of five command class types. Table 2-11 lists the classes of
requests and their descriptions.

Table 2-11 Class Types

Class Description

Wait for microcode
Memory read

CPU write to memory
DMA write to memory
Link, read refill
Longword write link

o b W N - O

DIGITAL INTERNAL USE ONLY

JBox Port Arbitration 2-35

2.2.3.5 Retire Decode Stage

CTLC contains the retire logic shown in Figure 2-28. When the JBox retires a request,
the address that is held in the ADRX address receive latches is no longer needed. The
JBox can retire a request as a result of the following:

e MICR_DONE_H — The memory segment controller receives MICR_DONE_H,
indicating that an index value can be retired. The memory segment controller keeps
track of two index values, primary and secondary (ECC). The memory segment
controller latches the primary index value, which the JBox sends to ACU. The
JBox retires primary index values for write operations. The secondary index field
corresponds to the index value ACU sends to the JBox when an ECC SBE or DBE is
detected. The JBox retires secondary index values for ECC reports.

o T/O register read and write operations — The JBox can retire I/O register read
and write operations immediately.

« JBox encodes an output load command — The JBox encodes an output load
command and makes a command buffer available to the port.

¢ TAKEN_H — The resource check logic generates TAKEN_H.

¢ Return data — A port receives return data, a memory segment becomes available,
or the microcode sends MICR_DONE_H.

MOPRIRET_H[15:00]

A_H[15:00]

M1PRIRET_H[15'00] OLDCMD_H{08 00]
bt i I

M2PRIRET_H[15:00] TAKEN_H

A B i RETIRE : RETIRE .
M3PRIRET_H[15:00] akra RETCTL Hi1s:00] | RETIRE RET_CTL_H[31:00] | RETIRE CTLA_CTL_H[31:00]
RETIRE RESERVE_H DECODE LATCH
MORTNRET_H[15:00] —_—]
B_H[15:00] IMMRT_H[18:16]
M1RTNRET_H[15:00] —_—]
cTLC cTLC cTLC

M2RTNRET_H[15:00)

M3RTNRET_K[15:00}

WMR_X0822 83§

Figure 2-28 Retire Request Decode

2.2.3.6 PAMM Data Decode

ADRX addresses the PAMM STRAMs, which send the following data to CTLC:
e TAG_MPAM_H[02:00] and parity

e TAG_NPAM_H and parity

e TAG_IPAM_H[02:00] and parity

CTLC decodes the PAMM data as follows:

1. MPAM_H[02:01] is used for write refill linked with a write back command. MPAM_
H[02:01] or IPAM_H[02:01] is selected to determine resources that are being used for
the current request.

9. CTLC latches the MPAMM, NPAMM, and IPAMM data. The control logic selects
IPAM_H[01:00] or MPAM_H[01:00] to determine CTLB_CTL_H[05:04], which is sent
to the ICMD, PCMD, and MCMD command encoders. The output of the encoders
contains the command for the ICU, CPU, or memory. '

3. IPAM_H[02:00] determines which I/O device, IODEV_H[07:00], is involved. NPAM_H
determines whether nonexistent memory was accessed.

DIGITAL INTERNAL USE ONLY

2-36 JBox Port Arbitration

2.2.3.7 CTLC MCA — Inputs and Outputs
Table 2-12 lists the inputs and outputs that CTLC receives from and sends to the MCAs
and ports.

Table 2-12 CTLC MCA inputs and Outputs

MCAs or Ports Inputs Outputs
CPU - Load command
Send data
ICU - Load command
Send data
ACU Read OK Load command
Send data
OK
Abort
Tag IPAMM [02:00] with parity -
NPAMM [02:00] with parity
MPAMM [02:00] with parity
CTLA Arbitration index Retire {19:00]
Valid request Reserve
Valid reserve Taken
Last Load command [09:00]
Parity PPARIN{01:00]
PPAROUT{07:00]
PARERR_L
Parity
CTLB Command Original index
Arbitration index Memory segment
Valid request Memory bank
Valid reserve Parity
Last
Parity
CTLD Tag queue available Valid tag entry
Parity Parity
ADRX - Address out
Cycle out
Parity
DSCT - Destination [03:00]
Source [03:00]
Valid
Parity
MICR Command buffer [09:00] -

MBox source
Memory segment
Memory bank
Memory unit

DSCT control

ICU source
Address out 0 and 1
Index

Parity

DIGITAL INTERNAL USE ONLY

JBox Port Arbitration 2-37

Table 2-12 (Cont.) CTLC MCA Inputs and Outputs

MCAs or Ports Inputs Outputs

Control store Stop arbitration -

Out cycle
Send data
1/0 command
Done

Memory OK
Memory abort
Read abort
Parity

2.2.4 CTLD MCA

The CTLD MCA contains the tag queue in which the microcode access obtains cache
check information. Figure 2-29 is a block diagram of the CTLD MCA. This MCA includes
the following logic:

e

Tag queue that contains entries used by the micromachine control logic to form a
microaddress to be sent to the control store. The tag queue generates the cycle count
for tag cycles.

Queue data decoder that latches and decodes the queue data from the CTLB MCA.
CTLB sends command and index values that form the fields of the tag queue data.

© MICR queue data latch that latches the output of the tag queue and queue data

decoder. The tag queue data is shown in Figure 2-30. Table 2-13 lists the fields.

SPU interface for handshaking signals CTLD receives from and sends to SPU. CTLD
sends the command, address, and data from SPU to ICU. ICU decodes the SPU
commands and loads the SPU receive buffer with the command, address, and data.

To send the command, address, and data to SPU, ICU loads a transmit buffer. Under
ICU control, the transmit buffer is unloaded, sending the command, address, and
data to the CTLD MCA. CTLD sends handshaking signals to SPU.

Microcode address generator that is used during system initialization. The address
generator addresses the control store when the microcode is loaded.

Microcode data and write enable logic that is used during system initialization. The
enable logic allows data to be written to the control store.

DIGITAL INTERNAL USE ONLY

2-38 JBox Port Arbitration

60 °€890X UN

HOLVY1 Lndino

- HOLYY LNdNI
ONDIVHSANVH nds | ONINVHSANVH nds e ONDIVHSANVH NdS | 51yNDIS DNINVHSONVH NdS
- HOLV1 LNdL1nO 3JOVIHILNI HOLVT LNdN!
AONVANWOD Xoar ANVWWOD Xo4ar nds GNVWWOOD xoar ANVIWWOD X2ar
- HOLiV1 LNdL1NO HOLVT LNdNI
viva xvar viva xvar viva xgar viva xear
- — ~ 318vN3
[00:30177 VNI LUM TXXWHW Q11D 3L1HM - - - -~
AGNV VLiva H V1VQ NVOS Q11D HOIW
- - - — 300004HOIN
[00:6LIH NIVLYA XXWHN ™ Q1LO -
loo:zolH " Wvd!)
a 3a0923a - 3Q0ON3 BVL
WWVd H WVdN Q1vA o/l
M
[o0:20lH "WvdI °
3Q0ON3 VL >
QITVA AHOWIW
[3go9o3a
" viva
32009N3 DVL —* anano
o QITVA NdO
[00:1LIHTVLIVQD 8110
< — - HO1V1 3009%3a -
[00:51IH"V1VAO HOIW viva 103738 WWVd
3Inano
HOIW
- 10HLINOD
[SiIH V1VaO HOIW 1383y
\ vrx
< HOLVHINID A L+
100:60/H"LND Havn Wy | SSIUAAVONOIN 17145 o 10 inuay
l00:60lH '8 LNO wav - 1NO viva
N SNivis In3no | = 4naN0 OVL
TOHLNOD WHW e
SHILNIOD L0DINO | | - 31040 OV
LINVLISNOD
(NOW BYL NI SL18 Wit ANy wigy) | (ANIWD3S 1) 3nano
o 300930 ovi
- (00 10lH HaV "~ - NOILVYD01 ss3waav ovi |] "3LNIOd LNdNI
H HOL1W @110 SWVHLS DYL
. TOHLNOD SS3IHAAY
HOIN LINNOD 310A0 |—] —1 0ot HotvN
- 10HINOD _
H dWNa dolLs dNd dOoLs

Figure 2-23 CTLD Block Diagram

DIGITAL INTERNAL USE ONLY

JBox Port Arbitration 2-39

15 14 13 12 11 10 09 08 07 04 03 [+]¢]

MEMORY

VAL | RESERVED UNIT

NXM| LENGTH INDEX COMMAND

MR_X068¢_88

Figure 2-30 MICR Queue Data Fields

Table 2-13 MICR Queue Data Field Descriptions

Bit Name Description

03:00 Command Holds the command for the port that has won arbitration.

07:04 Index Identifies the port and its command buffer for the request.

09:08 Length _ Specifies the data size for the data transfer to or from
memory (as indicated by the command field).

10 Nonexistent memory Indicates that NPAMM has detected nonexistent memory

(NXM) for the address latched in the ADRX address hold latches.

12:11 Memory unit 1dentifies the memory unit and segment as indicated by
MPAMM.

14:13 - Reserved.

15 Valid entry (VAL) Indicates that the tag queue has a valid entry.

2.3 .':’IBCO&(I;)ata Paths and Data Path Control (DSXX and DSCT
S

The JBox uses a multipath data switch to connect CPUs, ACUs, and ICUs. The data
switch consists of the DSXX MCAs. DS00, DS01, DS02, DS03, DS04, and DS05 support
CPUO, CPU1, ACUO, and ICUO. DS06, DS07, DS08, DS09, DS10, and DS11 support
CPU2, CPU3, ACU1, and ICU1. Data switch crossing is required when all DSXX MCAs
are used to provide paths for all inputs to be switched to any output.

The data switch allows multiple CPU, IO, and SPU transactions to be executed
simultaneously, as long as the transactions do not involve the same port. The CPUs,

/O units, and SPU can exchange data with main memory using the data switch.

The DSCT MCA receives, buffers, and decodes data transaction commands and
determines the source ports (data switch inputs) and destination ports (data switch
outputs). DSCT monitors the availability of data paths and sends the status to the JBox
resource checking logic. The DSCT MCA also receives clock control signals from the clock
module and sends these control signals to the MCUs.

The JBox keeps the ports active and resolves cache conflicts by handling communication
between the ports and main memory. SCU handles a number of requests that may
require the same data switch paths. These paths are considered resources. The JBox
arbitration of port requests uses SCU resources in the most efficient manner and reserves
previously unavailable resources for subsequent processing.

DIGITAL INTERNAL USE ONLY

2-40 JBox Port Arbitration

The JBox has 64-bit-wide data interfaces to the ACUs, CPUs, and ICUs. Figure 2-31
shows the inputs and outputs of the data switch. Inputs to the data switch can be
switched to any output.

There are independent 8-byte-wide data interfaces in each direction. Data is transmitted
over these interfaces every 16 ns (500 Mbytes/s). The data interfaces between the CPU
and SCU originate and terminate at the MBox in the CPU. Figures 2-32 and 2-33 show
the MBox-to-JBox and JBox-to-MBox data formats, respectively.

The data interfaces between the ACUs and JBox originate and terminate at the MDPX
MCAs and DSXX MCAs. Write data flows from the DSXX MCAs to the MDPX MCAs.
Read data flows from the MDPX MCAs to the DSXX MCA:s.

The data interfaces between the ICUs and JBox terminate and originate at the JDBX
and JDAX MCAs and the DSXX MCAs. Write data flows from the JDAX MCAs to the
DSXX MCAs. Read data flows from the JDBX MCAs to the DSXX MCAs. Figures 2-34
and 2-35 show the JDAX-to-DSXX and DSXX-to-JDBX data formats, respectively.

MBXO_JBX_DAT_H[31:00] JBX_MBX0_DAT_H[31:00]
MBX1_JBX_DAT_H[31:00] JBX_MBXO_DAT_H[31:00] :
JDAX_JBX_DAT_H[31:00] DATA JBX_JDBX_DAT_H[31 :oo;t
DA1_DAO_DAT_K(31:00] S(‘?I)IAT)%H DAO_DA1_DAT_H[31:00} t
IRCX_JBX_DAT_H[31:00] JBX_IRCX_DAT_H[31 -oot
ECC_JBX_DAT_H[03:00] JBX_MDPX_DAT‘H(M‘OO]:
MBXO0_JBX_DAT_H|[63:32] JBX_MBXO_DAT_H[63:32] _
MBX1_JBX_DAT_H[63:32] JBX_MBXCADAT_HIGZ«!:aZ]t
JDAX_JBX_DAT_H[63.32] sefnréH JBX_JDBX_DAT_H{63:32] :
DAO_DA1_DAT_H[63:32] (08X} DA1_DAO_DAT_H[63.32) T
ECC_JBX_DAT_H[03 00} JBX_MDPX_DAT_H[G3.32]:

MR_X0687_89

Figure 2-31 Data Switch

63 56 55 48 47 40 39 32
DBX MCU BYTE 7 BYTE 6 BYTE & BYTE 4
LONGWORD MASK1
BOD1
31 24 23 16 15 08 07 00
DAX MCU: BYTE 3 BYTE 2 BYTE 1 BYTE 0
LONGWORD MASKO BODO

DAX: MBOX TO JBOX DATA, LONGWORD MASK BITS, AND BEGINNING OF DATA BITS
MA_X0568_88

Figure 2-32 MBox-to-JBox Data Format

DIGITAL INTERNAL USE ONLY

DBX MCU;

DAX MCU:

63

56 55

48

BOD1

31

24 23

BYTE 3

BYTE 2

Figure 2-33 JBox-to-MBox Data Format

JBox Port Arbitration 2—41

47

40 39 32

15

08 07 00

BYTE 1

. BYTE O

soDo

DAX: JBOX TO MBOX DATA, JBOX TO MBOX DATA PARITY

MR_X0685_09

33 32 31 26 25 16 15 13 12 00
DATA |P1|PO] M[03:00] DATA DATA DATA
| ! | I | |
BOD
| I | I | |
|12 1110 07 06 05 00['12 03 02 ool |12 ool
Dsos DS04 DSso3
MR_X0690_89
Figure 2-34 JDAX-to-DSXX Data Format
33 32 3¢ 26 25 16 15 13 12 00
DATA |P1|PO NC DATA DATA DATA
I s |
| 80D | | i |]
! | | ‘ | |
|1211 10 07 06 05 00| l12 03 02 oof I12 00‘
Dsos bso4 Dso03

DBX: DSXX TO JDB DATA [38:00]

Figure 2-35 DSXX-to-JDBX Data Format

MR_X0881_88

DIGITAL INTERNAL USE ONLY

2-42 JBox Port Arbitration

2.4 JBox Address Paths

The tag MCU contains the ADRX and MTCH MCAs, the PAMMs, and global tag
STRAMs. The tag MCU receives and transmits addresses to and from the ports. The
ADRX MCAs contain the address switch and send physical address bits to the following
seven destinations:

¢ Memory — The address switch sends row and column address bits (scan determines
row and column [32:26, 07, 06]). The row and column address bits address the
following:

Block and quadword within memory
Unit, segment, and bank as defined by MPAMM

¢ MTCH — The address switch sends PA [32:06]. MTCH drives the addresses and data
of the tag STRAMs. MTCH also compares the physical address with the contents of
the tag STRAMs and determines if there is a match.

¢ MBox — Each ADRX MCA sends two 4-bit address slices to each MBox. This
requires two cycles.

e I/O controller — The address switch sends two 4-bit address slices to each I/O
controller. This requires two cycles.

¢ MPAMM — The address switch (two ADRX MCAs) sends a 10-bit address to
MPAMM. ADRO sends bits [09:02], which are PA [33:26]. ADR1 sends bits [01:00],
which are PA [07, 06].

¢ NPAMM — Same as MPAMM.

¢ TIPAMM — The address switch (three ADRX MCAs) sends a 10-bit address to
IPAMM. ADRO sends bits [09:07] which are PA [28:26]. ADR1 sends bits [02:00],
which are PA [21:19], and ADR3 sends bits [06:03] which are PA [25:22].

2.4.1 ADRX MCAs

ADRO, ADR1, ADR2, and ADR3 each deal with one-quarter (eight bits) of the address
bits. Each receives one-quarter (eight bits) of the address field from the four CPU ports
and two I/0 ports and transmits one-quarter (eight bits) of the address fields to the same
ports. Figure 2-36 shows the outputs of ADRX.

The ADRX MCAs source row and column addresses to the main memory units. ADRX
receives addresses from MBox and I/O in two cycles. The row and column addresses
sent to MMU also require two cycles. Row address is sent first, then column. ADRS3, for
example, receives PA bits [25:22] on the second cycle of the transfer from the MBox or
I/0. Using row and column addresses [08, 07], ADRX transmits the bits to MMU in two
cycles.

During the first cycle of the transfer, ADRX sends PA bits [22] and [24] and uses row and
column 7 and 8, respectively. During the second cycle of the transfer, ADRX sends PA
bits [23] and [25] to MMU, and again uses row and column 7 and 8, respectively.

Table 2-14 lists the ADRX MCAs and the corresponding physical address bits generated
during the two cycles.

ADR1 sends PA bits [07, 06] and [32:26] to ADRO. These bits are programmable row and
column bits [11:09] that ADRO sends.

DIGITAL INTERNAL USE ONLY

ADR3

ROW/COL [08, 07]

JBox Port Arbitration 2-43

MTCH ADDRESS [25:22]

CPU ADDRESS [11:08)
/O ADDRESS [11:08]

>

\PAMM ADDRESS [25:22]

ADR2

ROW/COL [06, 05, 02, 01]

MTCH ADDRESS {21:18, 13:10)

CPU ADDRESS [07:04]

1/0 ADDRESS [07:04]

NPAMM WRITE DATA [03:00]

IPAMM ADDRESS [21:19]

ADR1

ROW/COL {04, 03, 00}

MMU

MTCH ADDRESS [17°14, 09:06]

CPU ADDRESS [03:00]

170 ADDRESS [03:00]

—>

MPAMM ADDRESS [07:06]

NPAMM ADDRESS [07:06]

ADRO

ROW/COL [11, 10, 09]

MTCH ADDRESS [32:26]

CPU ADDRESS [15:12]

1/0 ADDRESS [15:12]

MPAMM ADDRESS [33:26]

MPAMM WRITE DATA [03:00]

NPAMM ADDRESS [33:26)

IPAMM ADDRESS [28:26]

MPAMM NPANM iPAMM MTCH
Figure 2-36 ADRX Address Outputs
Table 2-14 ADRX PA Bits
MCA 1st Cycle 2nd Cycle
ADRO 29:26 33:30
ADR1 06:09 17:14
ADR2 13:10 21:18
ADR3 05:02 25:22

DIGITAL INTERNAL USE ONLY

2-44 JBox Port Arbitration

2.4.2 Address Receive Latches

Each ADRX MCA contains three address receive latches for each CPU port and two
address receive latches for each I/O port. The ADRX MCAs have a total of 16 address
receive latches. Figure 2-37 shows the address receive latches in the ADRX MCA. Each
latch receives four address bits and one parity bit. The ADRX MCA receives the 32-bit
physical address in two cycles.

The 16 latch addresses are wired in parallel to address memory, PAMM, CPU, and MTCH
MCA. '

CTLA receives the load command from the port and sends CTLA_ADRX_HLD_RLAT_
H[15:00] to latch the address corresponding to that command. Each ADRX MCA receives
CTLA_ADRX_HLD_RLAT_H[15:00] and sends a 3-bit field to each of the four CPU
address receive latches and a 2-bit field to each of the /O address receive latches.

2.4.2.1 CPU Receive Latches

The address interface between the JBox and MBox is 2 bytes wide, and the complete
address is transferred during two cycles. The address bits transmitted across this
interface are PA [33:02].

Table 2-15 describes the mapping between the signal names and the physical address
bits in the two address cycles.

Table 2-15 Mapping

Signal 1st Cycle PA Bit 2nd Cycle PA Bit
15 29 33
14 28 32
13 27 31
12 26 30
11 05 25
10 04 24
09 03 23
08 02 22
07 13 21
06 12 20
05 11 19
04 10 18
03 09 17
02 08 16
01 07 15
00 06 14

DIGITAL INTERNAL USE ONLY

JBox Port Arbitration 2-45

68°€690X HN

<<

T 4 1\ Iy

-

-

<

-

- - - -
H "4l Wvd 034 UOi

[00:60JH ¥V H{p+u)8 LYI WAV

HOLW
ol xHav
[00:£0]H HAV HOLW XHaVv
B A — - -— -
[00:€0]H HVd HAV UXOBW XHaV
[00:€0)H HAV EXOBW XHAV (@)
[00:€0lH HAV Z2XOBW XHAV ndo
—~ — — Ol XHaVv
[00:€0)H HAV ™ IXOBN XHAV
loo:g0lH HQVY UXOBW XHaV
@)
[00:€0lvO 10OMOH OV XHAV AHOW3IW
— — 0l xHav
[00:€0l¥D100MOH DV XHAV
[00:20lH vV VLVG NVOSWVd
SWIWVd
Ol xdav

-«

[00:20}H HAV WWVAN XHQV

-

-+

[00:€0JH YAV WAVJOI XHav

-

{00:20JH HAV WA VAWNIW XHAY

[00:60lH Vv 0(p+uly LV1 HAV

<

140d Ol
HOV3 404 |

u o/l
HOLV1 AOH

[00:+0IH™LV1H QTH XHAV VLD

H HVd WAV XHQV vOI

-

HH3 "vd 034 undO

[00:601H v 2ud LV1 HAV

{00:60]H v tuyd 1V1 HAV

S1i8 ALIYVd 2 S3ANTONL.
[00:60]H ¥ ‘oud "LV1 HAV

(371040 319NIS)

NdO HOV3
Hod ¢

U Ndd
HOLV1 ADYH

{00:€0lH HAY XHAVY VO

[00:20lH" LV14 QTOH XHAV V110

H'HVd HAV XHOV XO8W

[00:€0]H WAV XYQV UXOBW

(319A0 318n0Q)

Figure 2-37 ADRX Receive Latches

DIGITAL INTERNAL USE ONLY

2-46 JBox Port Arbitration

The ADRX MCA contains CPU receive latches that accept four address bits and one
parity bit from the MBox. The ADRX MCA has three CPU hold latches that correspond
to CPU command buffers A, B, and C. Each hold latch is 8 bits wide and latches the
address in two cycles. Each CPU receive latch outputs three 8-bit address slices plus
parity.

The following steps summarize how the ADR3 MCA receives and latches PA bits from
CPUO during a single transaction involving CPUO:

1. ADRS3 receives PA [05:02] and [25:22], MBOX0_ADRX_ADR_H, L[03:00], and
associated parity bits (receivers are enabled by scan if CPU is present) from MBox 0.
ADRS3 latches the PA bits in the CPUO receive latch in consecutive cycles.

2. Parity is checked at the receive latch and an error is reported as an input address
parity error. An identical set is also provided in both I/O receive latches, for a total of
six sets per ADRX MCA.

3. From the receive latches, the buffered address and parity bits are sent as ADR_
LAT_ROn_A_H[09:00], where n = 0 — 2 and corresponds to the three CPUO command
buffers. ADRX receives bits [04:00], which are the four PA bits and one parity bit in
the second cycle, and bits [09:05], which are the four PA bits and one parity bit in
the first cycle. ADRX sends bits [09:00] to memory, PAMMs, MTCH MCA, and ADRX
MCAs.

4. Bits [04:00] carry PA bits [25:22], plus byte parity, and bits [09:05] carry PA bits
[05:02], plus byte parity. Only PA bits [25:22] are converted to row/column addresses
on ADR0O. MMC sends MMC_ADRX_INDEX_H to row and column selectors to
select 1 of 16 addresses. That address (next memory address) is sent to the row and
column multiplexer controlled by MMC_ADRX_COL_SEL_H to produce first row,
then column, addresses, as MUX_RCO, 1, 2, and 3.

5. The next memory address is also sent to the row and column select multiplexer
controlled by scan and the MMCX. These are not used by ADRS3, but ADRO uses the
selectors to provide MUX_RC9, 10, and 11 (initialized by scan). The MUX_RCn bits
are then sent to the row and column output multiplexer, controlled by SEL_HIGH_
ORDER_RC_H (set by scan). Scan selects either physically mapped row/column bits
or those initialized by scan. ADRX sends the row and column bits to memory.

6. On each ADRX MCA, the row and column output select multiplexer generates ADRX_
MACn_ROWCOL_CA_H[03:00], the row address, and ADRX_MACn_ROWCOL_CB_
H[03:00], the column address. In ADRXS3, lines 0 and 3 are not connected. Lines 1
and 2 are connected, transmitting row and column bits [07] and [08], respectively, to
MMU.

2.4.2.2 1/O Address Receive Latches

The I/O address interface is 2 bytes wide, and the complete address is transferred in two
cycles. The ADRX MCAs in the JBox send and receive address bits to and from the JDBX
and JDAX MCAs, respectively.

The ADRX MCAs have an /O receive latch. Each latch receives four address bits and
one parity bit from ICU. The ADRX MCAs have two hold latches in the I/O receive latch
that correspond to the two ICU command buffers. Each hold latch is 8 bits wide and
latches the address in two cycles.

DIGITAL INTERNAL USE ONLY

JBox Port Arbitration 2-47

2.4.3 JBox-to-Memory Address Interface
The address from the JBox to the memory system is divided into two parts:

e Multiplexed row and column address — JBox sends row and column addresses
to the MACs in the MMUX. The address field can be up to 12 bits wide [11:00],
depending on the dynamic RAM size.

e Memory port select, segment select, and bank select fields — JBox sends these
fields to the MMCX MCAs.

The memory does not send return addresses to the JBox. The memory returns an index
field that allows the JBox to associate the return data with 1 of 16 addresses in the
ADRX receive latches.

2.4.3.1 DRAM Addressing

SCU initiates a memory read by setting the load command bit and sending the read
command when the memory segment becomes available. ACU initiates a read command
by selecting the row address from the address buffers in the tag MCU and then asserting
row address strobe to the DRAMs. After asserting the row address strobe, ACU selects
the column address from the address buffers and asserts the column address strobe to
the DRAMs. Figure 2-38 shows how DRAM is addressed.

The JBox stores DRAM row and column addresses for all memory operations. The MMC
provides control signals to the JBox for transmitting the row or column address at the
correct time within the DRAM cycle. The following signals are used by the memory for
this purpose:

e Index — Loaded into the segment command buffer.
e Column address select — Selects row or column address.
e Index parity — Indicates odd parity on the index and column address select lines.

ADRX MCAs provide the row and column address sent to MMU. Figure 2-39 shows
MMC_ADRX_COL_SELECT_H selecting the row and column address bits. Row and
column address lines can be either of two kinds of mapping: fixed or programmable. Two
PA bits can be initialized to permit the two MMUs to have different DRAM sizes and to
allow the memory to be reconfigured.

ROW/COL SELECT

INDEX ADDRESS | ROW/COL
BUFFERS
LOAD COMMAND
Jpox | CoMMAND ADRX
STATUS MEMORY DRAM
COMMAND
DECODE | gramt RAS, CAS, WE
(ACU)
CTLX COMMAND DRAM
sTaTuS CONTROL
MMCX
ADRX

MR_X0694_88

Figure 2-38 DRAM Addressing

DIGITAL INTERNAL USE ONLY

2-48 JBox Port Arbitration

68 690X HN NVOS A8 138,

_\ x€ 135 Hvd oy3z

— [zolH"HOIH WAV 2 XN

- - €04 XN — —

- — - ON [€0]H LNO 102" MOYH b [90IH HDIH HAV 24XNIN
[so:€0lH 807100" MOl \ \ «€ 135 Hvd 0oHaz

[00:€0]H”"8"1NO 100" MOY

N
- _ \I? _\ L\
1S0:80]H V0 T100" MOH — " T
{00:€0lH"87LNO 10D " MOY HOLV -
R — 60H XNW — —
20lH 10100 MOY - {vOlH" MO HAV 2IXNNW
Z2oH XN — —
4 {eolH" MO Hav 2 xni
v\ /
/ _\ L\
109 - - - - 2oy XN — - -
13871007 XHAAY OWNW [10]H 1nO 102 MmoOY — [2olH" MO HaV 2iXNN
1od XN Trom™ ——
L0JH" MO HAY 2EXNIW
b ~
N
— — «H 0138 Hvd 043z
[£0]H"LNdNI"2 97 vd

(0 xHav) [90]H " LNdNI" 2797 vd

{0 x »0H H30H07IHI3S
LL'0L 6=y

- HT1037387 100 XHAV OWNW
HOXNN

«00:20lH uLIg T3S " MOY

110 XNW

XL

{00JH 'LnO 100 " MOY

[60lH HDIH HAV ZIXNW

00" XNW

- = = [80JH"HOIH HAV 2IXNW
[90:60JH HDIH HAY 2I1XNW

[Lo:p0lH MO "HaV "Zixnw -
4 «H 07138 "vd ouaz

Figure 2-39 ADRX Row and Column Address Selection

DIGITAL INTERNAL USE ONLY

JBox Port Arbitration 2-49

Table 2-16 lists the ADRX MCAs and corresponding row and column address bits.

Table 2-17 lists the row and column bit number and the corresponding PA bit number for

row and column bits.

Table 2-16 Row and Column Address Bits

MCA ~ Row/Column
ADRO 11:09

ADR1 04:03, 00
ADR2 06:05, 02:01
ADR3 08:07

Table 2-17 Mapping of Row/Column Lines to Physical Address Bits

Row/Column

Bit Number PA Bit for Row PA Bit for Column
00 08 09

01 10 11

02 12 13

03 14 15

04 16 17

05 18 19

06 20 21

07 22 23

08 24 25

09 Any of [32:26, 07, 06] Any of [32:26, 07, 06]
10 Any of [32:26, 07, 06] Any of [32:26, 07, 06]
11 Any of [32:26, 07, 06] Any of [32:26, 07, 06]

2.4.3.2 PAMM STRAMs Addressing

ADRX MCAs send ADRX_MPAMM_ADR_H[09:00], which addresses MPAMM. The JBox
sends CCU_ADRX_INDEX_PAM_H[03:00] to ADRX and controls the addressing of the
PAMMs. ADRO sends [09:00], and ADR1 sends [01:00]. The ADRX-to-PAMM logic
accepts 16 addresses, 3 from each of the 4 CPUs and 2 from each of the 2 ICU receive
latches. The CCU index selects which address is to be sent to PAMM.

The ADRX MCAs have two dedicated scan latches for loading the PAMM STRAMs. One
is for data, and the other is for the write enable. ADRO sends MPAMM data and write
enable. ADR2 sends NPAMM data and write enable. ADR1 sends IPAMM data and write

enable.

CCU_ADRX_INDEX_PAM_H[03:00] controls the addressing of the PAMMs.

I/O mapping PAMM STRAMs decode bits PA [28:19] of the address field and determine
if the /O address points to an adapter on ICUO or an adapter on ICU1. The PAMM
STRAMs decode logic determines whether the address is a JBox or SPU register address.

DIGITAL INTERNAL USE ONLY

2-50 JBox Port Arbitration

2.5 JBox Interfaces

The JBox interfaces are as follows:

CPU (MBox)

ACU

ICU

SPU

MMU

ADRX MCAs

Figure 2-40 illustrates the JBox interfaces.

@0060000

MEMORY ARRAY CARDS

ARRAY CONTROL UNIT

i P - - -
CPU | 4
(MBOX) |] JBOX JADRX MCAs

1

i I
TAG

o b stRams pamms I

I I

d

sPu |1 4
- ’;_’xl oo oo oo - -

170 CONTROL UNIT

e B

XJA

MR_X0696_89

Figure 2-40 JBox Interfaces

2.6 CPU (MBox) Port Interface

From the perspective of a CPU, SCU looks like a memory controller. CPUs implement
write back caches, and SCU must ensure cache data consistency. SCU accomplishes this
through the use of duplicate cache tag stores for each of the four CPUs. The JBox portion
of SCU implements the cache consistency algorithm.

Figure 2—41 shows the MBox-to-JBox command format. Table 2-18 lists the command
fields and descriptions.

DIGITAL INTERNAL USE ONLY

JBox Port Arbitration 2-51

07 06 05 04 03 00

COMMAND

LOAD COMMAND
BUFFER AVAILABLE
DATA READY

CACHE SET

MR_X0697_88

Figure 2-41 MBox-to-JBox Command Format

Table 2-18 MBox-to-JBox Command Field Descriptions

Field Description

Load command Notifies the JBox that a command is going to be sent.

Buffer available Indicates ready to receive a command from the JBox.

Data ready Indicates that data is in the write back buffer, ready to be transferred to
SCU when SCU transmits send data.

Cache set Indicates which cache set, 0 or 1, is involved.

Command See Table 2-23.

CTLA latches the load command and sends it to the port state controller. Figure 242
shows CTLA receiving command bit fields from CTMV.

CTLB latches the command field and sends the command to the command arbitration
logic. Figure 2—43 shows CTLB receiving command bit fields from WBBX. CTLB sends
the command information to CTLC and CTLD. CTLC performs a resource check. CTLD
forms queue data to send to MICR to determine the microaddress sent to the microcode
and MICR command field controlling the CTLA, CTLB, CTLC, and CTLD MCAs for
memory operations.

CTMV_PU3CMD_H[07 06} COMMAND 4LDCMD_H SP_PAF;‘L
LATCH CONTROLLER
CTLA CTLA

MR_X0698_289

Figure 2-42 CTLA Receiving Command Bits from CTMV

DIGITAL INTERNAL USE ONLY

2-52 JBox Port Arbitration

6876690X HNW

-

8110

<

l00.0tlH"3N3NO Q11D

HO1vV1
viva

anano
aio

8110

100+ HIH”QWOBHY 0110

HOLVY1
ANVANOO
NOILVHLIgHY
21490

8110

loo:90lH awogYyY

GNVAWOD
NOIlvHli18HY

81192

" [10JH AGHLYA HOIN

{00 v0lH aWod

L\

[00:¥0]H OQWOEd

HOLV1
ANVAWWOD

{oo:s0lH aWoENd AWLD

Figure 2-43 CTLB Receiving Command Bits to WBBX

DIGITAL INTERNAL USE ONLY

JBox Port Arbitration 2-53

Figure 2—44 shows the JBox-to-MBox command format. Table 2-19 lists the command
fields and descriptions.

09

o8

07

086 05 04 03 00

COMMAND

FATAL ERROR
BUF AVLO

SEND DATA

LOAD COMMAND

BUF AVL1

CACHE SET

MR_X0700_89

Figure 2-44 JBox-to-MBox Command Format

Table 2-19 JBox-to-MBox Command Field Descriptions

Field

Description

Fatal error

Buffer available 0

Send data
Load command

Buffer available 1

Cache set

Command

Indicates that JBox has detected a fatal error and has asserted the
attention line to SPU.

Indicates the number of requests the JBox has retired. Works with buffer
available 1 field. The output of the retire logic becomes buffer available.
Simultaneously, a port can have three requests retire. This is a count of
retired requests.

Unloads the data in the write back buffer.
Notifies the MBox that a command has been sent.

Indicates the number of requests that the JBox has retired. Works with
the buffer available 0 field.

Indicates which cache set, 0 or 1, is involved.
See Table 2-21.

DIGITAL INTERNAL USE ONLY

2-54 JBox Port Arbitration

CTLA detects a fatal error, sets the fatal error status bit, and notifies CPU. Figure 2-45
shows CTLA generating command bit fields to WBBX. CTLA decodes the buffer available
bits based on the retire logic output. CTLA latches the buffer available bits and sends
these bits to CPU, indicating the buffers available.

CTLB contains the CPU port command generator. Figure 2—46 shows CTLB generating
command bit fields to WBBX. PCMD receives the arbitration index, port command,
control signals from CTLC based on the results of resource check, and the command field
from the MICR field, which contains the unit, bank, segment, index, and cache set. CTLB
generates the command field and the which cache field portion of the command.

CDCX_ATTENTION_L |
FATALERR_H FATAL WBBX_P3CMD_H[09]
PORTERR_H[07:00] ‘ ™\ ERROR >
LATCH :
z / SETATTENTION_H |

CTLA

RETIRE_H[11]
BUFAVAIL4_H[00] BUFFER WBBX_P3CMD_H[08]
410R2_H AVAILABLE >
LATCH

CTLA

BUFFER WBBX_P3CMD_H[05]
AVAILABLE >
LATCH
CTLA
MR_X070'_89
Figure 2-45 CTLA Generating Command Bits to WBBX
OUTPUT
ARBIDXD_H[04:00] CTLB_CMDOUT_H[03:00] JCOMMAND| WBBX_P3CMD_H[03:00]
LATCH >
PCMD_H[04:00]
cTLB
CTLC_CTL_B_H{05:00] PCMD
MICR_CMD_H[11:00] CTLB_CMDOUT_H[04] WHICH WBBX_P3CMD_H[04]
SET >
LATCH
CTLB
CcTLB

MR_X0702_89

Figure 2-46 CTLB Generating Command Bits to WBBX

DIGITAL INTERNAL USE ONLY

JBox Port Arbitration 2-55

CTLC generates the send data feld of the command interface. Figure 2—47 shows CTLC
generating command bit fields to WBBX. TAKEN_H and bit [00] of the microcode enables
the output send data bit to be decoded. The send data bit is latched and sent through the
command interface.

CTLC also sends the output load command to CPU. The retire control logic looks at the
primary, secondary, and immediate retire status, determines the command for the port,
and sends the load command. This notifies CPU that a command field is sent.

RQRES_H[18:10]

MSENDAT_H[07:00] OUTPUT SEND
SEND SENDAT_H([00] DATA WBBX_P3CMD_H{07]
TAKEN_H DATA LATCH —>
DECODE
MRMXCTL_H[00]
cTLC CcTLC
PRIMARY RETIRE
SECONDARY RETIRE RETIRE CTLA_CTL_H[25] LOAD WBBX_P3CMD_H[08]
CONTROL COMMAND —
IMMEDIATE RETIRE LATCH
cTLC CTLC

MR_X070C5_89

Figure 2-47 CTLC Generating Command Bits to wBBX

2.6.1 JBox Key Signals
Table 2—20 lists the key JBox-to-MBox signals and their descriptions.

Table 2-20 JBox-to-MBox Signals

Name Description

JBX_MBXx_DAT_H[63:00] Quadword of data. This data path transmits refill data and /O
register read data.

JBX_MBX_DPAR_H{03:00] This is the data parity bit per word. The parity bits maintain odd
parity and are asserted if an even number of data bits is asserted.
The beginning of the data signals are included in two of the four
parity bits. These parity bits are valid and checked on every cycle.
The parity bits are as follows:

Parity Bit Signals

JBOX_MBOX_DPAR_H[03] D[63:48], BOD
JBOX_MBOX_DPAR_H[02] D[47:32]
JBOX_MBOX_DPAR_H([01] Di31:16]
JBOX_MBOX_DPAR_H[03] D[15:00], BOD

JBX_MBXx_CMD_H[03:00] This contains the JBox command that is sent to the MBox to be
decoded.

DIGITAL INTERNAL USE ONLY

2-56 JBox Port Arbitration

Table 2-20 (Cont.) JBox-to-MBox Signals

Name

Description

JBX_MBXx_CPAR_H

JBX_MBXx_ WCHSET_
H[00]

JBX_MBXx_LDCMD_H

JBX MBXx_CMD_AVAIL_
H[01:00]

JBX_MBXx_SENDAT_H

JBX_MBXx_ADR_H[15:00]

JBX_MBXx_APAR_H[03:00]

JBX_MBX_BOD_A, B, C_H

JBX_MBXx_FATAL_
ERROR_H

This parity bit is valid, is checked on every cycle, and reflects odd
parity over the command and control lines. The parity bit checks
parity across the following signals:

JBOX_MBOX_CMD_HJ[03:00]
JBOX_MBOX_WCHSET H[00]
JBOX_MBOX_LD_CMD_H
JBOX_MBOX_CMD_BUF_AVAIL_H
JBOX_MBOX_SENDAT H
JBOX_MBOX_SPARE_H
JBOX_MBOX_FATAL_ERROR_H

This bit indicates which set of the two sets in a given CPU cache
is involved in the command. If equal to 0, set 0 and if equal to 1,
set 1.

The JBox sends a valid command and first half of the address to
the MBox. The JBox is allowed to assert this signal if a suitable
MBox buffer is available. The JBox sets a flag when it issues
LDCMD to the MBox, and this prevents the JBox from sending
another LDCMD, since the MBox has only one command and
address buffer.

The MBox receives this signal, indicating the status of the three
command and address buffers in the JBox that are assigned to
this particular MBox.

JBox forces the MBox to start sending data from its write back
buffer or, in certain cases, directly from the cache.

These are double-cycled, enabling 32 address bits to be sent with
each command. The first half of the address is sent in the same
cycle as the command, and the second half of the address is sent
in the following cycle. Mapping is shown in Table 2_15.

These are parity bits across the 16 address bits. The parity bits
check odd parity across the following signals:

Parity Bit Signal

JBOX_MBOX_APAR_H[03] JBOX_MBOX_ADR_H[15:12]

JBOX_MBOX_APAR_H[02]
JBOX_MBOX_APAR_H[01]
JBOX_MBOX_APAR_H[03]

JBOX_MBOX_ADR_H[12:08]
JBOX_MBOX_ADR_H[07:04]
JBOX_MBOX_ADR_H[03:00]

This is asserted during the first of eight refill cycles. Eight bytes
of data are transferred during each cycle, for a total of 64 bytes.

This is asserted when the JBox detects a fatal error and sends the
attention line to SPU.

DIGITAL INTERNAL USE ONLY

2.6.2 JBox Commands
Table 2-21 lists the JBox-to-MBox commands and their descriptions.

NOTE
Written, read, an
refer to the ending cache status in

JBox Port Arpitration 2-57

d invalidate qualifiers to get data and return data commands
the MBox and JBox tag stores.

Table 2-21 JBox-to-MBox Commands

Code

Name

Description

0
1

Get data written
Get data read

Get data invalidate

Return data read

Return data written

OK to write

Invalidate read block

Return VO register data
Return read error status

Lock acknowledge

Memory read nonexistent
memory

1/0 read nonexistent
memory

Lock denied

Not used.

SCU sends this command to get data from the MBox
that is needed by another CPU or VO. The JBox and
MBox mark the status of the cache block as read.

SCU sends this command to get data from the MBox
that is needed by another CPU or 1/0. The JBox and
MBox mark the cache block as invalid.

SCU sends this command to return data as a result of
a read refill command. SCU and the MBox mark the
cache block as read.

SCU sends this command to return data as a result of
a write refill command. SCU and the MBox mark the
cache block as written full.

SCU sends this command in response to an aligned
longword write update command or write refill and
gives the MBox permission to write into the cache
block (the MBox already has the cache block). SCU
and the MBox mark the cache block as written partial
or written full, respectively.

SCU sends this command to invalidate the cache
block and change the status from read to invalid. For
example, if the MBox has a cache block that has read
status and another CPU needs to write to the same
cache block, SCU sends this command to invalidate the
cache block.

SCU sends this command and the register data in
response to a read VO register command.

SCU sends this command to send read error status to
the MBox.

SCU sends this command to acknowledge an MBox
lock command in which the MBox already has the data
but now needs to lock the cache block.

SCU sends this command to notify the MBox that the
address the MBox sent with the command does not
exist.

SCU sends this command to notify the MBox that the
address the MBox sent with an VO register command
does not exist.

SCU sends this command in response to & lock
command to indicate that the address sent by the
MBox is already locked by another port.

DIGITAL INTERNAL USE ONLY

2-58 JBox Port Arbitration

Table 2-21 (Cont.) JBox-to-MBox Commands

Code Name Description

D Invalidate written block SCU sends the command to invalidate a cache block
that has written full status.

E Unused -

F Unused -

2.6.3 MBox Key Signals
Table 2-22 lists the key MBox-to-JBox signals and their descriptions.

Table 2-22 MBox-to-JBox Signals

Name

Description

MBXx_JBX DATA_H[63:00]

MBXx_JBX_LWMSK_
H[01:00]

MBXx_JBX_DPAR_H[03:00]

MBXx_JBX_CMD_H[03:00]

MBXx_JBX_CPAR_H

Quadword of data. This data path transmits write back data and
I/O register write data.

This contains longword mask information for MBXx_JBX_DAT_
H[63:00]. The longword mask bit was originally the valid bit in
the cache tag store in the CPU. Written blocks can be partially
valid. The MBox alerts the JBox as to which longwords should
be written back to main memory. If the MBox is doing a write to
an I/0O register, the MBox must assert MBX_JBX_LWMSK_H[00].
[00] is the mask for [63:32] and [01] is the mask for [31:00].

This is the data parity bit per word. The parity bits are odd parity
and are asserted if an even number of data bits is asserted. The
beginning of the data signals is also included in two of the four
parity bits. These parity bits are valid and checked on every cycle.
The parity bits check odd parity across the following signals:

Parity Bit Signals

MBOX_JBOX_DPAR_H[03] D[63:48], BOD, LWMSK [01]
MBOX_JBOX_DPAR_H[02] D[47:32]
MBOX_JBOX_DPAR_H[01] DI31:16], LWMSK [00]
MBOX_JBOX_DPAR_H[03] D[15:00}, BOD

This contains the MBox command that is sent to the MBox to be
decoded. The commands are listed and described in Table 2-23.

This parity bit is valid and is checked on every cycle. It reflects
odd parity over the the command and control lines. The parity bits
check odd parity across the following signals:

MBOX_JBOX_CMD_H[03:00]
MBOX_JBOX_WCHSET_H[00]
MBOX_JBOX_LD_CMD_H
MBOX_JBOX_DATRDY_H

DIGITAL INTERNAL USE ONLY

JBox Port Arbitration 2-59

Table 2-22 (Cont.) MBox-to-JBox Signals

Name

Description

MBXx_JBX_WCHSET_
H{00]

MBXx_JBX_LDCMD_H

MBXx_JBX_CMD_AVAIL_
H[01:00]

MBXx_JBX_ADR_H[15:00]

MBXx_JBX_APAR_H[03:00]

MBX_JBX_BOD_A, B_.H

MBXx_JBX_DATRDY_H

This bit indicates which set of the two sets in a given CPU cache
is involved with this command. If equal to 0, set 0 and if equal to
1, set 1.

The MBox sends a valid command and the first half of the address

to the JBox. The MBox is allowed to assert this signal if an MBox

buffer is available. The JBox sets a flag when it issues LDCMD

to the MBox, and this prevents the JBox from sending another

{;Df?MD, since the MBox has only one command and address
uffer.

The MBox receives this information, indicating the status of the
three command and address buffers in the JBox that are assigned
to this particular MBox.

These are double-cycled, enabling 32 address bits to be sent with
each command. The first half of the address is sent in the same
cycle as the command, and the second half of the address is sent
in the following cycle. Mapping is shown in Table 2-15.

These are parity bits across the 16 address bits. The parity bits
check odd parity across the following signals:

Parity Bit

Signal

MBOX_JBOX_APAR_H[03]
MBOX_JBOX_APAR_HI[02]
MBOX_JBOX_APAR_HI[01]
MBOX_JBOX_APAR_H[03]

MBOX_JBOX_ADR_H[15:12]
MBOX_JBOX_ADR_H[12:08]
MBOX_JBOX_ADR_H[07:04]
MBOX_JBOX_ADR_H[03:00]

This signal deals with write back data. The MBox sends data to
the JBox in 64-byte packets. This is asserted during the first of
eight write back cycles.

MBox asserts this when it has the data ready in response to a get
data command from the JBox. SCU does not reserve the resources
required for the get data write back until receipt of the data ready
signal, which implies that the MBox is now ready to send the data.

DIGITAL INTERNAL USE ONLY

2-60 JBox Port Arbitration

2.6.4 MBox Commands
Table 2-23 lists the commands that the MBox can send to the JBox.

NOTE

Written, read, and invalidate qualifiers to the get data and return data
commands refer to the ending cache status in the MBox and JBox tag stores.

Table 2-23 MBox-to-JBox Commands

Name

Description

Read refill

Write refil]

Read refill linked with
a write back

Write refill linked with
a write back

Write refill lock

Write refill unlock

Write refill linked lock

Write back

Longword write update

The MBox sends this command when a read miss has occurred.
After SCU returns the data to the MBox, the MBox has a read-only
block. If the MBox subsequently wants to write to this block, it must
obtain permission by using the write refill or longword write update
commands.

There are two reasons for the MBox to issue this command: a block
miss on a write or a block hit, write miss. In the first case, the MBox
issues the write refill command, and SCU responds with refill data.
The data is written after the fill is completed. The MBox now has
write ownership of this block and can write to it at any time.

In the second case, the MBox already has a read-only copy of the
block but wants to write to it. The MBox issues the write refill
command, but when SCU looks up the address of the cache block

in the consistency tag STRAMs and discovers that the MBox status
is read, SCU does not send refill data. SCU returns the OK to write
response, which gives the MBox permission to proceed with the write.

The MBox issues this command for the same reason it issues read
refill, but in this case, the refill includes a write back. That is,

both sets have written data but neither set matches the requested
address. The JBox associates the write back command the MBox sends
(which follows) with the read refill command. The memory segment
controllers contain logic that coordinates the read refill and write back
operations.

This command is issued by the MBox when it block misses on a write
because a write back is associated with the refill. SCU assumes that
the next write back received from this MBox is the associated write
back.

This is the command that the MBox issues when it wants to do the
read part of an interlock instruction. This is true regardless of the
state of the cache block in the MBox. SCU does the tag lookup for this
command, checking to see if the block is locked by another CPU. If

it is, it returns lock denied, and the MBox tries again until the other
CPU unlocks it.

If the MBox has lost write ownership of the cache block it issues a
write refill unlock. Loss of write ownership is due to a get data or
invalidate command from SCU.

This command is the same as write refill lock but must also do a write
back to free a block for the requested refill.

The MBox sends this command to notify SCU that written and valid
data in the cache block must be written back to main memory. The
JBox marks the cache block as invalid.

The MBox sends this command to notify SCU that a new cache block
with only one longword with valid and written status has been created.

DIGITAL INTERNAL USE ONLY

JBox Port Arbitration 2-61

Table 2-23 (Cont.) MBox-to-JBox Commands

Name

Description

Read I/O register
Write I/O register

Longword write update

linked

Invalidate

The MBox sends this command to read the contents of an /O register.
The MBox sends this command to write data into an I/O register.

The MBox sends this command to link the longword write update with
a write back command. The longword write update notifies SCU that a
new cache block with only one longword with valid and written status
has been created. The cache block originally had valid and written
data that must be written back to main memory. The MBox sends
this command to notify SCU that an aligned longword (in the cache
block that has read status) has been modified and that this command
is linked with a write back command.

The MBox sends this command to SCU during a cache sweep. When
the MBox detects a cache block that is valid with read status, the
MBox invalidates the block and notifies SCU.

2.7 ACU Port Interface

Each ACU is part of a separate memory subsystem and has its own JBox interface.
Figure 2—48 shows the JBox-to-ACU interface.

JBOX

ROW/COLUMN ADDRESS
CMD'STATUS/INDEX CONTROL/CMD
MAIN
CMD'STATUS/INDEX STATUS MEMORY
UNIT
ARRAY
DATA CONTROL | DATA
> UNIT MMUO
DATA DATA
ACUD CTL
CTL STATUS ‘
SPU
CTL STATUS
CTL
ARRAY
DATA CONTROL | CONTROL/CMD
UNIT
DATA STATUS MAIN
MEMORY
CMD/STATUS/INDEX ACU1 DATA UNIT
DATA
CMD/STATUS/INDEX MMU1
ROW/COLUMN ADDRESS

MR_X0704_88

Figure 2-48 JBox-to-ACU Interface

DIGITAL INTERNAL USE ONLY

2-62 JBox Port Arbitration

A JBox-t0-ACU interface permits the JBox to accept memory requests from CPUs or I/O
and to send the requests to the memory segment controllers.

The ACU provides all communication between the JBox and main memory. The ACU
performs the following functions:

Accepts memory commands.

Processes the commands to determine the availability of memory segments addressed
by the commands.

Sends commands to DRAM control.

Determines the direction of data movement.

The ACU communicates with the JBox when any of the following conditions exist:

A read request was made and the data is ready to send.
An error was detected during the transfer of read data.
An error was detected during the transfer of write data.

A command buffer is available.

Figure 249 shows the DBX-to-CCU (memory-to-JBox) memory command format.

WRITE OK
DB FATAL ERROR

08 07 06 0s 04 03 02 01 00

LOAD COMMAND

BUFFER AVAILABLE"

BUFFER AVAILABLEO

READ OK?1

READ OKO

MEMORY SEGMENT

COMMAND

MR_XC7C5_89

Figure 2-49 Memory-to-JBox Command Format

DIGITAL INTERNAL USE ONLY

JBox Port Arbitration 2-63

Table 2-24 lists the DBX-to-CCU command field descriptions.

Table 2-24 DBX-to-CCU Command Field Descriptions

Field Description

Write OK Not used.

DB fatal error " Indicates that DBX has detected a fatal error.

Load command Notifies the JBox that a command is coming. JBox uses this to load

command and segment information. This signal is asserted when the
memory subsystem is sending a valid command.

Buffer available 1 Indicates that memory segment 1 is available.

Buffer available 0 Indicates that memory segment 0 is available.

Read OK 0 Implies that no ECC errors occurred during transfer of read data through
the MDP for memory segment 0.

Read OK 1 Implies that no ECC errors occurred during transfer of read data through
the MDP MCAs for memory segment 1.

Memory segment Identifies the segment number. '

Command Uses a 1-bit field. If 0, means return read data, and if 1, means error
report.

CTLA latches the load command and controls the command buffers for the memory
command interface. Figure 2-50 shows the CTLA receiving the MMCX command bit
fields.

CTLA latches the port ready field and sends it to the MICR port ready latch, which is
then sent to the MICR. CTLA decodes the fatal error status sent by the memory.

CTLB latches and decodes the write OK. Figure 2-51 shows CTLB receiving the MMCX
command bit fields. CTLB latches the command and segment fields of the command
interface, sending them to command arbitration. The arbitration index selects the
command.

CTLC latches OK to read status from MMC1 and MMCO. Figure 2-52 shows CTLC
receiving the MMCX command bit fields. This status is sent to the MO, M1, M2, and M3
segment controllers.

DIGITAL INTERNAL USE ONLY

2-64 JBox Port Arbitration

9CNT_H[00]
MMC1_MUICMD_H[05:04]
8CNT_H[00) MICR MICR_CTLC_PRTRDY_H[07:40]
PORT PORT >
READY 7CNT_H[00] | READY
CONTROL LATCH
MMCO_MUOCMD_H[05:04] 6CNT_H[00]
COMMAND BUFFERS
CTLA CTLA NEWG6AST_H[07:00]
S6 CTL >
6LDCMD_H MMCO STATE NEW6EBST_H[07:00]
MMCO_MUOCMD_H[06] CONTROL >
INPUT CTLA
LOAD
COMMAND COMMAND BUFFERS
MMC1_MU1CMD_H[06} LATCH NEW7AST_K[07:00]
7LDCMD_H S7CTL >
MMC1 STATE NEW7BST_H[07:00)
CONTROL >
CTLA
cTLA
MMCO_MUOCMD_H[07]
SET SET_ATTENTION_H
ATTENTION \ FATALERA_H
MMC1_MU1CMD_H[07) DECODE COX_ATTENTION_L / —»
CTLA
MR_Xp706_89
Figure 2-50 CTLA Receiving the MMCX Command Bits
MMCO_MUOCMD_H[08] PARITY
CHECK
MMC1_MU1CMD_H[08] WRITE
OK
MMC1_MUTCMD_H[01:00] MMC1
COMMAND N CTLB
CTLA_CTL_H[19, 18] AND M1CMDB_H[01°00]
SEGMENT
LATCH
PCMD_H[04:00)
M1CMDA_H{01:00]
cTLB ICMD_H|[06:00]
ARBCMD_H
COMMAND -
MCMD_H[01:00] ARBITRATION
MOCMDB_H[01:00]
ARBIDX_H[04:00]
MMCOC_MUOCMD_H[01:00] MMCO
COMMAND
CTLA_CTL_H[17, 16} AND MOCMDA_H[01:00]} CTLB
SEGMENT
LATCH
//
CTLB

ARBIDX_H[01:00]

MR_X0707_89

Figure 2-51 CTLB Receiving the MMCX Command Bits

DIGITAL INTERNAL USE ONLY

JBox Port Arbitration 2-65

69780/0X N

21190

(SR PRe)

HOLVT
X3aNI|
AHVANOD3S

0719

[00:S1IH 13UNLHUN

<

300034
X3AANI
AHVWIHd
3”iL3Y

[R Fie]

{oo:€0lH™ xaiibd

HOLV
X3IANI
AHVWIHC

77uo3s AN

[oo:€0lH "xaIaHY

1 uied a0

2710

{00-G1IH "LIUNLIHUW

33009034
X3AANI
NHNL13Y
3dlL3d

7 uiyd3yll3y

{00:€0}H UXQINLY

1 uNLY3YIL3Y

-
[00:€0JH LSUN

T0HLNOD
LNIWD3IS
€'2't 0N

[00lH "LdH¥ 003

[70lH T 1LOXXWHW

{00IH LHM YN

[xxIH viva NLH

[xxIH AQYidd V110

[SOIH TLOOWHW

[xx]4 INOG HOIN

{00 S0JH SSVIOUW 07149
[00 €0JH LVLSUN

- HOLV1

(zo:e0lH™ awoonw avad

Ol %O

feo:e0lH awornw

[20:€0JH GWOONW 0OWW

[20'€0lH QWO INW 1 OWN

Figure 2-52 CTLC Receiving the MMCX Command Bits

DIGITAL INTERNAL USE ONLY

2-66 JBox Port Arbitration

Figure 2-53 shows the CCU-to-DBX (JBox-to-memory) memory command format.
Table 2-25 lists the command fields and descriptions.

14 13 12 11 10 09 08 07 04 03 02 01 00
MEMORY
OK SEGMENT INDEX LENGTH [COMMAND

BUFFER AVAILABLE

ABORT

SEND DATA

LOAD COMMAND

MR_X0709_89

Figure 2-53 JBox-to-Memory Command Format

Table 2-25 CCU-to-DBX Command Field Descriptions

Field

Description

Buffer available

Abort

OK

Send data

Load command

Memory segment
Index

Length

Command

Indicates that a request has been retired and the buffer is available. The
JBox can accept another command.

Indicates that the memory operation has been aborted. Cycle status

bit specifies if a request should be canceled. When the memory cycle is
started, the JBox determines where the latest copy of the data is located.
If the latest copy of data is in another CPU cache (written cache block),
the JBox sends abort status to the memory controller.

Indicates that the memory operation should complete. Cycle status bit
specifies if a request should continue. When the memory cycle is started,
the JBox determines if the latest copy of the data is in main memory. If
the latest copy of data is in main memory, the JBox sends OK status to
the memory controller.

Notifies memory to send the data to the destination. Memory can
transmit read data.

Indicates whether the command bits are valid. Notifies ACU that a
command is coming. The JBox sets a flag to prevent the JBox from
sending another load command. This flag is cleared when the memory
system sends buffer available.

Specifies the memory segment involved with the memory request.
Indicates segment and bank number.

Identifies the request and the corresponding address associated with the
request. The index is used to locate the address in the ADRX MCAs.

Specifies the length of the data involved as the number of quadwords in
the transfer. 0 = 4 quadwords, 1 = 8 quadwords, 2 = 1 quadword, and 3 =
2 quadwords.

Specifies the ACU command. Command can be read, write, write read, or
write pass.

DIGITAL INTERNAL USE ONLY

JBox Port Arbitration 2-67

CTLB generates the command sent to MMCX. Figure 2-54 shows CTLB generating the
MMCX command bit fields. CTLB decodes the control lines sent by the CTLC, MICR,
and arbitration index, before encoding the command.

CTLC decodes the retire logic and sends the output load command. Figure 2-55 shows
CTLC generating the MMCX command bit fields. CTLC receives the microcode control
that determines the status. The status of abort or OK is latched and sent to MMCX.
CTLC decodes the requested resources and memory send data information to determine
the send data field of the command interface to MMCX.

MMC1_M1CMD_H[09:00]

MMCO_MOCMD_H[OQ:OO];

CTLC_CTL_B_H|05:00) MCMD
MICR_CMD_H[13:00]
MEMORY
MICIOCMDO_H[06:00) COMMAND
ENCODER
ARBIDXD_H[04:00]
cTLB
*NOTE"
BIT INPUTS USED

101:00] | MICR

[03:02] | 1/0 CMD LENGTH FIELD OR MICR
{07°04] | MICR OR ARBIDX

{0908} | MICR OR CTLC_CTLB_H[05:00]

MR_X0710_89

Figure 2-54 CTLB Generating the MMCX Command Bits

DIGITAL INTERNAL USE ONLY

2-68 JBox Port Arbitration

8971 420X U
0110
LOWN 0L «— - —
(il anoww " 1onnw |HoLva
viva
0OWN OL - an3s

[HslH"amwoon "oonm

_\v

H72'9"1vaNas

81 "2y .e:z,mmmoml_

[20 '90]H LvaN3sw

{oolH™ 1L0XWHN

HN3NVL

leolH 1L0XHOIN
H LVAN3SOIN

2110
HO LV P
$30HNOS3Y e e H™Xa101
153no3y [s0 "20lH 'LHdO3UM 3N ~
[eolH ™ xqiaUY
2119 29110
IOWN 0L <— — - HOLYT - T0HINOD
[2v:etlH awo W 1onN %O [oo10lH Lvisinw 2110
/1408v NaW
ODWN 01 «— - - — HOLVY -
[z1:e1lH awoon oonw [oo:10lH ™ Lvisonw lzo:e0lH 01L00WHN
2110
IOKNW Ol = . { ‘ f62lH 110 v1o
[odJH awoiw 1oww \ \ —
[gzlH 110 viio 341134 NENL3Y
TOHLINOD
- 3HiL3Y
OONN OL «— — - [¢2lH7 110 viLD
losIH"awoon oonw \ \ —
[9zlH™ 110 v1D 341134 AYVNIHG

Figure 2-55 CTLC Generating the MMCX Command Bits

DIGITAL INTERNAL USE ONLY

JBox Port Arbitration 2-69

2.7.1 JBox Key Signals
Table 2-26 lists the key signals between the JBox and ACU.

Table 2-26 JBox-to-ACU Signals

Signal Description
CTLX_MMCX_MOCMD_H[14:00] Contains the command.
CTLA_MMCX_MOCMD_PAR_H Contains the parity for the command.

2.7.2 JBox Commands
See Chapter 5.

2.7.3 ACU Key Signals
Table 2—27 lists the key signals between the ACU and JBox.

Table 2-27 ACU-to-JBox Signals

Signal Description

MMCX_CTLX_MUOCMD_H[08:00] Contains the command.
MMCX_CTLA_MUOCMD_PAR_H Contains the parity for the command.

2.7.4 ACU Commands
See Chapter 5.

2.7.5 Read Refill — Example

To complete a read refill request, the JBox sends commands to and receives commands
from the following:

CPU (MBox)
ACU

The following steps summarize a CPU read refill request:

1.

The CPU (MBox) sends the load, cache set, and read refill commands over the MBox-
to-JBox command interface.

The JBox starts the state machine for the next available command buffer and, after
arbitration, generates an index that identifies the port (CPU) and command buffer
(A, B, or C).

CTLA tells CTLB to latch and store the CPU command. CTLA tells ADRX to latch
and hold the CPU physical address.

ADRX addresses MPAMM using the CPU physical address bits. The MPAMM output
is sent to CTLA, CTLB, CTLC, and CTLD and is decoded into memory unit, segment,
and bank.

CTLC checks for available resources for the JBox-to-ACU command and then for the
JBox-to-MBox data transfer (for write).

DIGITAL INTERNAL USE ONLY

2-70 JBox Port Arbitration

6. The JBox sends the load, index, and memory read commands to ACU (MMCX).

CTLD forms the MICR queue data (index, memory unit, and command). The MICR
MCA uses the MTCH status and queue data to form the microaddress sent to the
microcode for the location corresponding to the CPU request (read refill).

8. ADRX sends PA bits to MTCH, which addresses the tag STRAMs. MTCH receives
the address stored in the tag STRAMs and compares it to the CPU physical address.
MTCH sends the results of the match to MICR. The status bits of the tag STRAMs
are sent to MICR.

9. MICR command bits and microcode fields determine memory operation and status.
These bits control the CTLA, CTLB, CTLC, and CTLD MCAs and memory segment
controllers.

10. MMCX sends start, command, and status to DRAM control and the index to ADRX.
DRAM control sends row address select, column address select, and write enables to
the memory arrays. The index selects the address buffer that corresponds to the CPU
command. The output of the address buffer addresses the memory array. MMCX
sends write OK, load command, and return data read to the JBox.

11. The memory segment controller receives MICR_DONE_H and releases the memory
segment for another request.

12. The JBox sends the load, which cache set, and return data read commands to CPU.
The JBox sends the beginning of data bit followed by eight quadwords of data in eight
cycles.

2.8 ICU Port Iinterface

Each ICU is part of a separate I/O subsystem and has its own JBox interface.
Figure 2-56 shows the JBox-to-ICU interface.

CMD/STATUS/INDEX CONTROL/CMD
CMD'STATUS/INDEX STATUS

11C
DATA CONTROL DATA XJAD. 1

UNIT !
DATA DATA

icuo IL.

CTL
STATUS
JBOX SPU
CTL STATUS
1
CTL

[¥{e]
DATA CONTROL CONTROL/CMD

UNIT
DATA u

STATUS XJA2, 3

CMD/STATUS/INDEX ICuU1 DATA
CMD/STATUS/INDEX DATA

MR_X07+2_89

Figure 2-56 JBox-to-ICU Interface

DIGITAL INTERNAL USE ONLY

JBox Port Arbitration 2-71

The ICU port serves as an interface to the XJAs (over the JBox XMI data interface
[JXDI] cable) and SPU, implementing the central system interrupt arbiter.

XJA and ICU provide an information path between the JBox and /O devices. The SCU
can have up to two ICUs, each capable of handling up to two XMI buses. To communicate
with the XMI bus, a JXDI connects an XJA module to the ICUs. The JXDI has 16 data
lines in each direction and cycles every 16 ns. It has a total bandwidth of 125 Mbytes/s
in both directions. Address, command, and data are time multiplexed onto these wires.

JDCX MCA controls the operation of JDAX and JDBX and coordinates the handshaking
signals to and from JXDI and the JBox.

Figure 2-57 shows the ICU-to-JBox command format. Table 2-28 lists the command
fields and descriptions.

CTLA checks fatal error, load command, and buffer available fields of the command
interface. Figure 2-58 shows CTLA receiving the ICU command bit fields.

CTLB latches the ID, length, and command. Figure 2-59 shows CTLB receiving the ICU
command bit fields. The ID is saved until the ID is sent with the return data. The length
field is decoded, determining the data switch control for transferring the data through
the data switch. The command is sent to command arbitration, where it determines the

queue data sent to MICR and the command information sent to CTLC for the resource
check.

09 08 07 06 0s 04 03 00

1D LENGTH COMMAND

DAX FATAL ERROR

LOAD COMMAND

BUFFER AVAILABLE

MR_XC7:3_89

Figure 2-57 ICU-to-JBox Command Format

Table 2-28 DAX-t0-CCU (ICU-to-JBox) Command Field Descriptions

Field Description

DAX fatal error DAX detected a fatal error.

Load command DAX sent a command. ICU is sending a valid command.

Buffer available The ICU command buffer has been unloaded and is available for another
command.

D This field identifies the origin of the request.

Length This field specifies the length of data as quadword or octaword.

Command See Table 6-9.

DIGITAL INTERNAL USE ONLY

2-72 JBox Port Arbitration

JDCO_IUOCMD_H[09]

JDCY1_IU1CMD_H[09]

JDCO_IUOCMD_H[08]

SETATTENTION_H

JDC1_IU1CMD_H[08]

JDCO_IUOCMD_H[07]

CDCX_ATTENTION_L

JDC1_IUICMD_H[07]

PORTERROR[07:00}
DA MMCX_MUXCMD[07] \ \
FATAL } /
ERROR JDCX_IUXCMD_H[08]
LATCH
CTLA
2LDCMD_H
LOAD PORT
COMMAND SLDCMD_H STATE
LATCH CONTROLLERS
CTLA CTLA
BUFFER PORT
AVAILABLE READY
LATCH DECODE
CTLA CTLA

Figure 2-58 CTLA Receiving the ICU Command Bits

JDC1_IUICMD_H[06]

JDCO_IUGCMD_H[06]

JDC1_IU1CMD_K[05:04)

JDCO_IUOCMD_H[05 04]

JOC1_IU1CMD_K[03:00]

FATALERR_H

MR_XC712_89

DSCT_LEN_H[01:00)

JDCO_IUOCMD_H[03:00]

CTLC_ARBCMD_H[11:00]

CTLD_QUEUE_H[10:00)

1)
LATCH
CTLB
ICMDO_H[0504] [~
LENGTH LEN_H[0100] LENGTH
LATCH CONTROL
MICIOCMDO_H[05:04]
CTLB ”J cTLB
COMMAND| ICMD_H[06:00] ARB ARBCMD_H[06:00] cTLe
LATCH COMMAND ARBCMD
LATCH
CTLB cTLB cTLB
CTLD
QUEUE
DATA
LATCH
cTLB

Figure 2-59 CTLB Receiving the ICU Command Bits

DIGITAL INTERNAL USE ONLY

MR_X0715_88

JBox Port Arbitration 2-73

Figure 2-60 shows the JBox-to-ICU command format. Table 2-29 lists the JBox-to-ICU
command fields and descriptions.

CTLA decodes the retire information sent from CTLC and the buffer available.
Figure 2-61 shows the CTLA generating the ICU command bit fields.

10 08 08 07 06 05 04 03 00

D COMMAND

BUFFER AVAILABLE

SEND DATA

LOAD COMMAND

DESTINATION

MR_X0716_89

Figure 2-60 JBox-to-ICU Command Format

Table 2-29 CCU-to-DAX (JBox-to-ICU) Command Field Descriptions

Field Description

Buffer available Command has been retired and the command buffer is now available.
Send data This field signals the ICU buffer to unload.

Load command This field notifies ICU that a command is coming. The JBox asserts this

signal when an ICU buffer is available and can accept a command that
the JBox wants to send either to SPU or XJA. The JBox sets a flag when
it sends a load command to prevent the JBox from sending another load
command. This flag is cleared when ICU sends buffer available.

ID ICU uses this field to track the original request and to identify the
requester.
Destination This field identifies the IO device that is to receive the data.
Command See Table 6-8.
— JDC1_I1CMD_H[10:08]
caRoL AVAILABLE JDCO_IOCMD_H[10:09] ;
CTLA cTLA

MR_X0717_89

Figure 2-61 CTLA Generating the ICU Command Bits

DIGITAL INTERNAL USE ONLY

2-74 JBox Port Arbitration

CTLB generates the command field of the command interface. Figure 262 shows CTLB
generating the ICU command bit fields. CTLB receives command arbitration, arbitration
index, control from the CTLC, and MICR determines the ICU command.

CTLC sends the output load and send data commands. Figure 2—-63 shows CTLC
generating the ICU command bit fields.

ICMDO_H[06:00} JOC1_I1CMD_H[06:00]%

ARBIDXD_H[04:00] JDCO_lOCMD_H[OG:OOI*:

CTLC_CTL_B_H[05:00} "
ICMD

MICR_CMD_H|11:00]

MICIOCMDO_H[06)
cTLB

*NOTE:

BIT INPUTS USED

[03:00} | MICR OR ARBIDX
{05:04] | CTLC_CTLB
{08] MICR, ICMD, OR MICI/O CMD

MR_XC7:8_89

Figure 2-62 CTLB Generating the ICU Command Bits

OLDCMD_H{09:00] CTLA_CTL_H[31] JDC1_I1CMD_H[07]
JDCO_I0CMD_H[07]
TAKEN_H CTLA_CTL_H[30]
RETIRE
RESERVE_H CONTROL

v

MO, M1, M2, M3 [15:00] ouTPUT
IORET_H[15:00) COMMAND
cTLC
MRMX
CONTROL
cTLe
MIOSENDAT_H ‘ ™
\ MSENDAT H{07]
MICRXCTL_H[03) OSENDAT_H[07] JDG1_ICMD_H[08]
/ mares_kj17) .
ouTPUT
SEND DATA
I LATCH
\ MSENDAT_Hio6]
}- OSENDAT_H[06] JDCO_I0CMD_H[08]
cTLC
RQRES_H[18]

RORES_H[16]

TAKEN_H
MRMXCTL_H[00] i)

Figure 2-63 CTLC Generating the MMCX Command Bits

MR_X0719_88%

DIGITAL INTERNAL USE ONLY

JBox Port Arbitration 2-75

2.8.1 JBox Key Signals
Table 2-30 lists the key JBox-to-ICU signals.

Table 2-30 JBox-to-ICU Signals

Signal

Description

CCU_JDCX_CMD_
H[03:00]

CCU_JDCX_IOSEL_
H[01:00]

CCU_JDCX_ID_H

CCU_JDCX_BUF_
AVAIL_H[01:00]

CCU_JDCX_
SENDAT_H

CCU_JDCX_LDCMD

CCU_JDCX_CTL_
PAR

Contains the command.
Contains the I/O device selected.

Contains the ID that XJA uses to track the original request.
As requests are retired, SCU sends the number of the buffer available.

JBox sends this to begin unloading the output buffer in which the data is
stored.

JBox wants to send a command to ICU.
A parity bit is sent with the control lines.

2.8.2 JBox Commands

See Chapter 6.

2.8.3 ICU Key Signals
Table 2-31 lists the key ICU-to-JBox signals.

Table 2-31 ICU-to-JBox Signals

Signal

Description

JDCX_CCU_CMD_
H(03:00]

JDCX_CCU_DAX_
FATAL_L

JDCX_CCU_
LENGTH_H[01:00]

JDCX_CCU_ID_H

JDCX_CCU_BUF_
AVAIL_H

JDCX_CCU_CTL_
PAR_H

Contains the command.

Indicates that a fatal error has occurred in either the JDAX, JDBX, or
JDCX MCAs.

Indicates the length of the data.

Identifies one of two possible ID fields latched in the JDCX MCA. XJA
sends an ID field with each packet that the JDCX MCA latches. The
JDCX MCA sends a single bit (JDCX_CCU_ID_H) to CCU. 0 =one ID
field, and 1 = the other ID field. When CCU sends a return command to
the JDCX MCA, it sends the JDCX_CCU_ID_H to identify which ID field
should be included in the packet. XJA uses the ID field to identify the
original requester.

Indicates that the command buffer has been unloaded.

Contains the parity bit for the JDCX-to-CCU control lines.

DIGITAL INTERNAL USE ONLY

2-76 JBox Port Arbitration

2.8.4 ICU Commands
See Chapter 6.

2.9 SPU Port Interface

SPU’s primary means of communication with the CPU is through the logical interface
that connects SCU to CPU. These paths are unidirectional, byte-wide paths capable
of transferring one byte every 128 ns. This provides about 3.5-Mbyte throughput for
quadword transfers.

SPU is MicroVAX system-driven, and BI interface-based, providing service and
maintenance support for the computer system. SPU serves as the operator console.
SPU monitors the system and tests and diagnoses hardware faults.

ICU interfaces with the XJAs (over the JXDI cable) and SPU, implementing the central
system interrupt arbiter.

SCU connects the service processor (console) to the rest of the system. Communication
uses SCU registers. These registers have /O space addresses that configure memory and
1/0. They also contain status about interrupts and exceptions.

CTLD receives inputs from SPU, JDCO, and JDBX and sends outputs to JDAX, JDCO,
and SPU. CTLD receives SPU data and sends the data to the JDAX ICU input buffers.
CTLD receives SPU handshaking signals and sends this to JDCX for control decode.

Figure 264 shows the SPU-to-CCU handshaking format. Figure 2—65 shows the CCU-
to-SPU handshaking format.

03 02 01 00

BUFFER FULL

REQUIRE

ERROR

CLOCK OFF

MR_X072C_89

Figure 2-64 SPU-to-CCU Handshaking Format

02 01 00

XMIT FRAME

BUFFER GRANT
ERROR

MR_X072:_89

Figure 2-65 CCU-to-SPU Handshaking Format

DIGITAL INTERNAL USE ONLY

JBox Port Arbitration 2-77

Figure 2-66 shows CTLD receiving and generating the SPU interface. When ICU sends
command, address, and data with parity to SPU, JDCO sends handshaking signals to
CTLD, JDBX sends data and address with parity to CTLD, and CTLD passes this onto

SPU.
SPU_CTLD_DATA_H[07:00] CTLD_JDAX_DATOUT_H[07:00]
» | 7o
SPU_CTLD_DATA_PAR_H CTLD_JDAX_DATOUT_PAR_H[01:00] JDAX
FROM >
sPU SPU_CTLD_HNDSHK_H[03:00]
SPU_CTLD_HNDSHK_PAR_H CTLD_JDCO_HNDSHK_H[03:01]
» | vo
CTLD_JDCO_HNDSHK_PAR_H Jpco
JDCO_CTLD_SPU_CLK_H cofnmuo g
FROM J 4DCO_CTLD_HNDSHK_HI02:00) INTERFACE | o b SPU GLK_H
JDCO_CTLD_HNDSHK_PAR_H CTLD_SPU_HNDSHK_H[02:00]
CTLD_SPU_HNDSHK_PAR_H -
» | 7o
JDBX_CTLD_DATIN_H[07:00] SPU
FROM
JDBX) JDBX_CTLD_DATIN_PAR_H[01:00] CTLD_SPU_DATA_K[07:00]
CTLD_SPU_DAT_PAR_H
cTLD

MR_XC722_89

Figure 2-66 SPU Command Interface

2.9.1 JBox Key Signals

Table 2-32 lists the key CTLD-to-SPU signals.

Table 2-32 CTLD-to-SPU Signals

Signal

Description

CTLD_SPU_DATA_H, L{07:00]
CTLD_SPU_DATA_PAR H, L
CTLD_SPU_HNDSHK_H, L[03:00]
CTLD_SPU_HNDSHK_PAR_H, L
CTLD_SPU_CLK_H

Contains the data.

Contains the parity for the data.

Contains the handshaking signals.

Contains the parity for the handshaking signals.
Provides the SPU output clock.

2.9.2 JBox Commands
See Chapter 6.

DIGITAL INTERNAL USE ONLY

2-78 JBox Port Arbitration

2.9.3 SPU Key Signals

Table 2-33 lists the key SPU-to-CTLD signals.

Table 2-33 SPU-to-CTLD Signals

Signal

Description

SPU_CTLD_DATA_H, L[07:00]
SPU_CTLD_DATA_PAR H, L
SPU_CTLD_HNDSHK_H, L{03:00]
SPU_CTLD_HNDSHK_PAR_H, L
JDCO_CTLD_SPU_CLK_H
CTLD_JDAX_DATOUT_H[07:00]
CTLD_JDCO_HNDSHK_H[03:01]

CTLD_JDCO_HNDSHK_PAR_H

Contains the data.

Contains the parity for the data.

Contains the handshaking signals.

Cdntajns the parity for the handshaking signals.
Provides the SPU input clock.

Passes the data to the XJA buffer in JDAX.

Passes the handshaking signals to the JDC command
buffer.

Passes the parity for the handshaking signals to the
JDC command buffer.

2.9.4 SPU Commands
See Chapter 6.

DIGITAL INTERNAL USE ONLY

3

JBox Cache Consistency

This chapter defines cache consistency and inconsistency. It describes the CPU data
cache, cache tags, SCU global tag STRAMs, and global tags. It describes how the system
control unit (SCU) performs a global tag lookup and how SCU writes tags into the global
tag STRAMs.

3.1 Overview

SCU ensures that if multiple copies of a cache block exist, the data in the cache blockis
consistent or identical within multiple CPU cache sets 0 or 1, and that a port (CPU or KO)
receives the most recent copy of the data.

SCU performs either normal operations or exceptions. A normal operation is performed
when SCU receives a request for which memory has the most recent copy of the data. A
copy of this data may reside in another CPU cache set 0 or 1, but the global tag status of
the requester and other CPUs are consistent, in that copies of the data are identical.

An exception occurs when SCU receives a data request for which the data in memory is
not the most recent, has been modified, and resides in either cache set 0 or 1 of another
CPU. The tag status of the requester and the other CPUs are inconsistent. An exception
operation must be performed in which the SCU:

e Obtains a copy of the most recent data from the other CPU cache
e Sends a copy of the data to the requester (if applicable)
e Writes the tag status into the global tag STRAMs

e Writes the data inte main memory

DIGITAL INTERNAL USE ONLY 3-1

3-2 JBox Cache Consistency

3.2 CPU Cache Data STRAMs

The MBox contains the CPU data cache. The data cache capacity is 128 Kbytes. The
data cache consists of eighty 4K x 4-bit STRAMs.

3.2.1 Cache Block

Each CPU has a two-way set associative, write back cache. The two sets are set 0 and
set 1. Each set contains 64 Kbytes of data.

Figure 3-1 shows a cache block. Each cache block is 64 bytes long and has:
¢ One valid bit for each longword, for a total of 16 valid bits
* One written bit for the entire block

The valid and written bits are stored in a cache tag in the cache tag store.

OCTAWORD I
VIRTUAL
INSTRUCTION
CACHE
BLOCK
(32 BYTES)
(HEXWORD)
1024 1020
CACHE
BLOCK
{64 BYTES)
102C 1028
1034 1030
103C 1038
—b| BYTE j&—
[¢— WORD —¥
f&——— | ONGWORD —
QUADWORD

MR_X0021_88

Figure 3-1 Data Sizes (Cache Block)

DIGITAL INTERNAL USE ONLY

JBox Cache Consistency 3-3

3.2.2 Cache Set0 and 1

Each of the two data caches contains 64 Kbytes of data including byte parity. Each set is
8K lines deep and 8 bytes wide. Figure 3-2 shows the cache data found at each location
in the data cache STRAMs. Each location contains 8 bytes (byte 0 through byte 7, or
quadword), byte parity [07:00] and ECC [07:00].

Figure 3-3 shows the cache tag store, cache sets 0 and 1, and cache block.

For each CPU cache set, SCU has a 1K section in the global tag STRAMs that contains
1K cache block addresses and corresponding status bits. Figure 3—4 shows the locations
in the SCU global tag STRAMs used for each cache set.

BYTE | ecc
BYTE 7| BYTE 6 | BYTE 5 | BYTE 4 | BYTE 3 | BYTE 2| BYTE 1| BYTE 0| PARITY | 00"
o7.00) |107:00)
MR_X0723_89
Figure 3-2 Cache Data (Quadword)
PHYSICAL
CACHE TAG ADDRESS CACHE DATA
CACHE TAG
132740535 DATA CACHE DATA CACHE
SET 1 SET 1 SET 0
— 84 KBYTES 64 KBYTES
TAG | CACHE HIT ORMISS
MATCH g
CACHE TAG [| CACHE
STORE BLOCK
1024 X 36 64 BYTES
SET 0

MR_X0724_89

Figure 3-3 Cache Tag Store and Cache Set 0, 1

CPUO cPU1 cpPu2 CcPU3
1K SET O SET O SETO SET O
1K SET 1 SET 1 SET 1 SET 1
1K LOCK RES 1 RES 2 RES 3
1K

MR_X0725_89

Figure 3-4 SCU Global Tag STRAMs Status Locations for Cache Set 0, 1

DIGITAL INTERNAL USE ONLY

3-4 JBox Cache Consistency

3.2.3 CPU Cache Lookup

A CPU cache lookup follows the successful translation of the virtual address into a
physical address. The MBox addresses the cache tag STRAMs and determines whether
the data is in either cache set 0 or 1 (hit) or a refill must take place to get the data from
main memory (miss).

A cache miss results from a read miss or a write miss. A read miss occurs when an
attempt to read cache results in a miss. The MBox sends a read refill command to the
JBox, and the JBox responds with a return data read command and sends the data to the
MBox. The MBox sets the valid bits in the CPU cache tag, and SCU writes read status
from cache into the SCU global tag STRAMs,

A write miss occurs when an attempt to write to cache results in a miss. The MBox sends
a write refill command, and the JBox responds with a return data written command and
sends the data. The MBox sets the written bit in the cache tag, and SCU writes written

full status into its global tag STRAMs.

3.2.4 CPU Cache Refill

When the IBox, EBox, or MBox (TB fixup unit) generates a read or write request
resulting in a cache miss and the cache lookup fails to find the requested data in either
set 0 or 1, the MBox sends either a read refill or a write refill command for a block of
data (64 bytes) from SCU.

The read refill or write refill may be linked (read refill linked or write refill linked) with
the write back command, if valid, and written data is found in the cache block needed for
the refill. The read refill may also be part of a lock request (read refill linked lock or read
refill lock), if the EBox (through the MBox) needs to notify SCU to lock a cache block and
prevent other processors from writing to the block. To unlock the cache block, the MBox
sends the write refill unlock command to SCU.

As the MBox receives data in the refill buffer, the data is wrapped; SCU sends the
requested quadword first (return data read or return data written), followed by the seven
remaining quadwords in the cache block. The MBox sends the data to the IBox or EBox,
while unloading the refill buffer into the cache and updating the CPU cache tag store.

3.2.5 CPU Cache Write Back

Data is copied back to main memory from the MBox write back cache if another CPU
requests the cache block and the block has valid, written data or if the CPU requests a
cache sweep. The cache block may be needed when a CPU detects a cache miss during a
read or write request and the cache lookup fails to find the requested data. This condition
requires refilling the data cache and updating the cache tag store.

The MBox loads the valid, written data found in the cache block into the write back
buffer and sends data ready and write back to SCU. SCU issues send data, get data read
or get data invalidate, depending on the original refill request, unloads the write back
buffer, and writes the data into main memory.

DIGITAL INTERNAL USE ONLY

JBox Cache Consistency 3-5

3.3 CPU Cache Tag STRAMs

The cache tag store is two-way set associative. Each of the tag stores for cache sets 0
and 1 contains 1024 tag entries. Figure 3-3 shows the cache tag stores. Each of the tag
entries describes a 64-byte block in the data cache. Each tag entry is associated with a
cache block and contains physical address bits, a written bit, and valid bits. Figure 3-5
shows the cache tag indicating the status for each address in the cache data STRAMs.
Table 3—-1 lists the cache tag bits and descriptions.

VALID [15:00]

ADDRESS [32:16]

W BIT
PARITY
UNUSED

MR_X0726_89

Figure 3-5 CPU Cache Tag Data

Table 3-1 Cache Tag Bit Descriptions

Bit

Description

Valid

Parity

W bit

Address

This 16-bit field marks the validity of each of the 16 longwords in the associated
data block: VAL 0 for LWO, VAL 1 for LW1, VAL 2 for LW2, and so on.

All 16 bits are usually set when the block is refilled and checked during lookup
to determine if the longword requested is valid in that cache (cache hit).

Parity bit for the tag. During refills it is generated and written, and during
lookups it is read and checked. Odd parity is calculated on the entire contents of

the tag.
This bit is set whenever one of the longwords in the associated cache block is

modified. It is used during write backs to determine the need to write back the
cache block to the arrays.

This 16-bit physical address field is loaded with PA [32:16] during a cache refill.
During lookup, these bits are compared with PA [32:16] to determine if the block
being accessed is currently stored in that cache.

DIGITAL INTERNAL USE ONLY

3-6. JBox Cache Consistency

3.4 SCU Global Tag STRAMs

Each CPU cache set, 0 and 1, has a corresponding 1K section in the SCU global tag
STRAMs. Figure 3—-6 shows the global tag STRAMs containing the tag status for each
CPU cache set. Each cache block within the cache set can have any status listed in
Table 3-2. The global tag STRAMs consist of twenty-four 4K x 4-bit STRAMs, containing
16K locations. Two 1K sections of the 4K STRAMs are used for cache set 0 and 1. Of the
remaining 2K sections, 1K is used for locks for interlock status and interlock reservations
for CPUs and V/O devices (also shown in Figure 3-6), and the other 1K is unused.

SCU maintains the tag STRAMs. Whenever any CPU or I/O device makes a memory
reference, SCU examines the global tag STRAMs and initiates the appropriate action to
maintain cache consistency.

1K SET 1 CPUO SET 1 CPUO SET 1 CPUO SET 1 CPUD SET 1 CPUO SET 1 CPUO j&—— SET 1 CPUO

1K SET 1 CPUL2 SET 1 CPU2 SET 1 CPU2 SET 1 CPU2 SET 1 CPU2 SET 1 CPU2 j&—— SET 1 CPU2

1K

1K

1K SET 0 CPUO SET 0 CPUO SET 0 CPUO SET 0 CPUC SET 0 CPUO SET 0 CPUO j@&—— SET 0 CPUO

1K SET 0 CPU2 SET 0 CPU2 SET 0 CPU2 SET 0 CPU2 SET 0 CPU2 SET 0 CPU2 pj&—— SET 0 CPU2

1K

1K

1K SET1 CPU1 SET 1 CPU1 SET 1 CPU1 SET 1 CPU1 SETt CPU1 SET 1 CPU1 j@&—— SET1 CPU1

1K SET 1 CPU3 SET 1 CPU3 SET 1 CPU3 SET1 CPU3 SET 1 CPU3 SET t CPU3 j&—— SET 1 CPU3

1K

1K

1K SET 0 CPU1 SET 0 CPU1 SET 0 CPU1 SET 0 CPU1 SET 0 CPU1 SET 0 CPU1Y j&—— SET 0 CPU1

1K SET 0 CPU3 SET 0 CPU3 SET 0 CPU3 SET 0 CPUS SET 0 CPU3 SET 0 CPU3 j&—— SET 0 CPU3

1K

1K

MR_X0727_8¢

Figure 3-6 Global Tag STRAMs for CPUs Cache Set 0, 1

DIGITAL INTERNAL USE ONLY

JBox Cache Consistency 3-7

Table 3-2 Cache Block Status

Status

Description

Read (RD)

Written full (WRTF)

Written partial (WRTP)

Invalid (INV)

The cache block is marked as read as a result of a return data
read or get data read. All the valid bits in the cache tag store are
set.

The local cache block is marked as written full as a result of a
return data written command. The CPU modifies the data in the
cache block. If another CPU requests this block, SCU gets the
data from the CPU and sends it directly to the port, without first
writing the data into main memory. After sending the data, SCU
writes it into memory.

The written and valid bits are set for the 16 longwords in the
cache block as a result of longword write updates. This block is
marked as written partial and requires a merge of memory array
data and the valid, modified longwords before the block can be
sent to the requester.

Valid bits in the local cache are marked zero. This block is marked
invalid as a result of a write back initiated by the CPU, a get data
invalidate by the JBox, or a simple invalidate request.

3.4.1 Global Tag Contents

Each tag STRAM location contains address, parity, and status bits. Figure 3-7 shows the
global tag contents at one location in the global tag STRAMs.

Global tag STRAMs contain copies of each of the CPU cache tag stores. The global tag
STRAMs indicate read, written partial, written full, invalid, and lock status of cache

blocks.

ADDRESS BITS

AP

LP

8P

STATUS BITS

MR_X0728_89

Figure 3-7 Global Tag Contents

DIGITAL INTERNAL USE ONLY

3-8 JBox Cache Consistency

3.4.2 Global Tag Address Bits

Figure 3-8 shows the address bits in the global tag STRAMs. The address match logic
writes the address bits during a tag status write cycle and reads the address bits during
a tag lookup read cycle.

ADDRESS BITS [32:16)) AP

ADDRESS PARITY

MR_X0729_89

Figure 3-8 Global Tag Data

3.4.3 Global Tag Status Bits

Each tag location contains four status bits that define the state of that cache block in the
CPU cache. Figure 3-9 shows the global tag status bits and parity. Table 3-3 lists the
global tag status bits and their descriptions.

SP S0 | St §2 ; S3

STATUS BITS

STATUS PARITY

MR_X0730_89

Figure 3-9 Global Tag Status Bits

Table 3-3 Global Tag Status Bit Descriptions

Status Bit Description

01:00 Indicates the status of the cache block for the address:

0 = Invalid

1 = Read

2 = Written partial
3 = Written full

02:00 Used for interlocks. See Figure 3—21 and Table 3-12.

DIGITAL INTERNAL USE ONLY

JBox Cache Consistency 3-9

3.4.4 Global Tag Parity Bits

As shown in Figure 3-10, each tag location has three parity bits. Table 3—4 describes
each parity bit.

ADDRESS LOCATION STATUS

PARITY PARITY PARITY STATUS

ADDRESS

MR_X0731_88%

Figure 3-10 Global Tag Parity Bits

Table 3-4 Global Tag Parity Bit Descriptions

Parity Bit Generated and Checked By Description

Address MTCH MCA A 1-bit parity bit. This parity is
calculated across the PA [32:16], which
becomes tag address [32:16]. See
Figure 3-12.

Location MTCH MCA A 1-bit parity bit. This parity is
calculated across the STRAM address
bits used to look up the global tag
location. See Figure 3-12.

Status MICR MCA A 1-bit parity bit. This parity is
calculated across status bits [03:00].

3.5 SCU Global Tag Lookup

A global tag lookup follows port arbitration. SCU addresses the global tag STRAMs to
determine whether the data is in one or more CPU caches. SCU also determines the
status of the CPU caches (invalid, written full, written partial, read, or locked). An
address match occurs when the port’s physical address matches the address bits stored
in the global tag STRAMs. SCU determines the microcode address to handle the request
using the result of the tag lookup.

When a port requests data from SCU or when a CPU writes to a cache block for the first
time, the port sends a physical address to SCU. The SCU passes the physical address
through the address crossbar and writes the address and corresponding cache status into
the global tag STRAM:s.

Memory reads may be initiated immediately, without waiting for the tag lookup results.

During the global tag lookup, SCU reads status for eight cache sets (sets 0 and 1 for each
CPU) in two read cycles. Table 3-5 lists the read cycles for the tag lookup and the write
cycles for the tag status. For lock requests, the tag lookup requires three read cycles (one
for set 0, one for set 1, and one for lock).

SCU performs global tag lookups for both data and nondata requests.

Table 3-5 lists the tag lookup cycles for CPU and I/O requests. For example, a CPU refill
has three cycles: 0, 1, and 2. In cycle 0, the MBox requests refill data and SCU examines
set 0. In cycle 1, SCU examines the other global tag location for cache set 1. In cycle 2,
SCU writes the global tag status into the requester’s set 0 or 1 tag STRAMs.

DIGITAL INTERNAL USE ONLY

3-10 JBox Cache Consistency

Table 3-5 Global Tag Lookup Cycles

Cycles
Command 0 1 2 3
Sweep Read global tag Read global tag Write tag status -
(write back and STRAMs STRAMs
invalidate) for set 0 for set 1
DMA read, Read global tag Read global tag Write tag status -
DMA write STRAMs STRAMs

for set 0 for set 1
Refill (link), Read global tag Read global tag Write tag status -
longword update STRAMs STRAMs

for set O for set 1
DMA read lock, Read global tag Read global tag Read lock status Write lock
DMA write STRAMs STRAMSs status
unlock for set O for set 1
CPU read lock, Read global tag Read global tag Read lock status Write lock
CPU write STRAMs STRAMs status
unlock for set 0 for set 1

3.5.1 Addressing the Global Tag STRAMs
The following steps summarize the global tag lookup operation:

1. ADRX receives the physical addresses from each CPU and I/O port and sends PA
[32:16] to the MTCH MCA.

2. MTCH addresses the global tag STRAMs and receives the global tag data.
Figure 3-11 shows the inputs and outputs of the ADRX MCAs, MTCH MCA, and

global tag STRAMs.
MTCH compares PA [32:16] and global tag [32:16] for each CPU (four global tag

entries are read in each of two tag lookup cycles). If an address match occurs, MTCH

sends address match [03:00] and the address match parity to MICR. Figure 3-12

shows the MTCH MCA, containing the address match, parity generator, and checker

logic.

3. MTCH checks parity across PA [32:06].

MTCH generates and checks address parity for the global tags [32:16].
5. MTCH generates and checks location parity for the global tag locations.

DIGITAL INTERNAL USE ONLY

CPUD

CPU1

cPU2

CPU3

10_o1

10_23

ADDRESS LATCH
AND CROSSBAR
ADRX MCA

ADRo

cPUO
L
cPUI
e
CPU2
>
cPU3
>

[32:06)

CcPUO
CPUY
cpPuU2
CPU3

10_01

i0_23

ADR1

MMUO

By
MMU1

iy
10_01

L - »
10_23

e

cPUL
——»

cPU1

CPU2
e—

CPU3
l——

ADR2 .

MMUD
MMU1

10_0t

SR
10_23

Bty

CPUC
fre—eeernp>
CPU1Y
|
cPU2
e
CPUL3
IRy

£

JBox Cache Consistency 3-11

CONTROL

MTCH MCA

ERRORS

DATA

ADDRESS MATCH [03:00]

ADR DATA
R/W

WRITE ENABLE

GLOBAL CACHE
STRAMS

STATUS TO BE WRITTEN [03:00]
AND PARITY

244K X 4

STATUS OF CACHE [15:00)
AND FOUR PARITY

[33:26,

20

MPAMM
07:06]

10

10_23

ADR3

MMUC
|

MMU1
10_01
10_23

CPUO
|
CPU1
e
CPU2
| ———
CPU3
—

i

{33:26,

1K X 4
STRAM

NPAMM
07:06]

“10

ya

[28:19]

1K X 4
STRAM

IPAMM

rg

10

Figure 3-11

MMUO
l——

MMU1
ey

10_01
10_23

ADRX MCA Outputs

1K X 4
STRAM

ccu

ccu

CCU

MR_X0792_88

DIGITAL INTERNAL USE ONLY

3-12 JBox Cache Consistency

697 CCLOX HN

SWYHLS OVL

ALIMVd NOILYVOO1 ss3vaav ALlHVd SWVHILS BV1
SNVHLS Ol SWVHIS OL 8019 Woud s$sS3¥0av vE01D OL
A,
A A e Y A A
2L
|37 4
y ¥ 6l
40103130 v, v uly
' TE] 7“—] 3uvdwoo 1 41 1
118¥ p2 m
] — 3 3 [
HOLvVi @
HLEL 'HLO ‘[90:61) I od 94 od od los:2€l
HOUUI ALINVE NOILVOOT od
HOLV1 V >
[§
/]
40103130 v,
Houu3 —~ od od od od
L8 b
« /
HLbL V\
[91:2€] . Hiol | ©d , L » "
HOHH3I ALIHVd SSIHAAY lo0:51] L4 44 4 L4 L4
- v\ 38vanoo | | 3uvdwoo auvawoo | | 3uvdwoo
HOLYN SSa8aQY 118-21 8-t 18-t 118-21
Y 1 1 1 1
- od T
ALIBVd HOLYW SS3HQQY
_ 9l HOLV1 8 2€ _
\
«— At “ Houy3 _ a
vouu3 [& HOLV V e |
el
A
HLLL ‘H104 '190:5H] los:2el

Figure 3-12 MTCH MCA

DIGITAL INTERNAL USE ONLY

JBox Cache Consistency 3-13

3.6 Reading Global Tags

The MTCH MCA addresses the global tag STRAMs, as shown in Figure 3-11. MTCH
receives 19 data bits from each of 4 CPU global tag STRAMs, for a total of 76 data bits,
as follows:

Seventeen address bits per CPU per cache set
One address parity bit per CPU per cache set
One location parity bit per CPU per cache set

Figure 3-13 shows the 16 status bits and 4 status parity bits. MICR receives 5 data bits
from each CPU’s global tag STRAMs, for a total of 20 data bits:

Four status bits per CPU per cache set
One status parity bit per CPU per cache set

! ccu Mcu
| MICR Mca

| B_INDEX[01:00]

TAG MCU STRAMS |
CACHE_STAT[03:00] o_}‘_&csun[o:;oo] REQ_STAT[03:00]
]
cPUD 1 J
STRAMs
sPos) | OTHO_IDX[01:00)
.
— seTo
] status
| 4 “Losic
CACHE_STAT[08:05) y CSTATB([03:00) OTHO_STAT[03:00] LATCHES
cPu | L]
STRAMs I ~ REQUEST |— ser1
STATUS {— sTaTus
SP[09] | OTH1_IDX[01:00] L1 “logic
——
| l — LATCHES
CACHE_STAT[13:10] | CSTATC{03:00] OTH1_STAT[03:00]
| — INTLK
cpu2 — staTus
L~ —] LoGiC
STRAMs | 1 LATCHES
SP[14] | OTH2_IDX[01:00]
-
CACHE_STAT[12:15] CSTATD[03:00] | OTH2_STAT[03:00]
cpus J
STRAMs |

SP[19] !

WR_X0734_99

Figure 3-13 Sixteen Status Bits and Four Parity Bits

DIGITAL INTERNAL USE ONLY

3-14 JBox Cache Consistency

MICR selects and latches the four sets of status bits (one for each CPU). MICR can select
any CPU as requester and refers to the three remaining CPUs as other 0, 1, and 2:

REQ_STAT{03:00]

OTHO_STAT{03:00]
OTH1_STAT([03:00]
OTH2_STAT[03:00]

Each CPU port can have up to three commands, and each 1/0 port can have up to two
commands, in their respective command buffers. As shown in Figure 3-13,
B_INDEX[01:00] and OTHx_IDX[01:00] select status bits CSTATA, B, C, and D[03:00],
which determine REQ_STAT[03:00] and OTHx_STAT{[03:00]. Table 3—6 lists the CSTATA
code and corresponding port and command buffer.

Table 3-6 Tag Status
Code Port Command Buffer

CPUO
CPUO
CPUO
CPU1
CPU1
CPU1
100

100

CpU2
CPU2
CPU2
CPU3
CPU3
CPU3
101

101

Wy OoOwer oWk W oW oW

HoE DO W > 0O ® a0 kWD O

MICR latches and decodes the four sets of status bits to determine status for the
following:

e STATO — Represents cache set 0 for all CPUs.
e STAT1 — Represents cache set 1 for all CPUs.

¢ Lock and lock reserve — An address can have lock status or lock reserve status.
If the address has lock status, SCU sends lock deny for other lock requests until the
address is unlocked. When reserve lock status has been written into the global tag
STRAMs for a port, SCU sends the port lock deny, and the port must send another
lock request for the address. When SCU receives subsequent lock requests, MICR
checks the lock reserve status and grants the lock if the port has the highest priority
reserve status.

DIGITAL INTERNAL USE ONLY

JBox Cache Consistency 3-15

As shown in Figure 3-14, MIC match receives STATO0 and STAT1 from the set status
latches. With this information, plus address match [03:00] from MTCH, MIC match
determines which status bits are from the global tag STRAM location in which the match
occurred. MICR match decodes the set status output, generates valid status, and sends
STATO and STAT1 to MIC tag.

MIC tag receives the valid status signal and generates fork status bits for the fork
address, which determines the SCU microaddress. MIC tag also checks for illegal status
conditions. MIC lock decodes the set status output and generates lock status and lock
error.

ADDRESS MATCH

FORK_STAT[03]
VALID STATUS | e ———
MIC MATCH MIC TAG | FORK_STAT[02:00}

REQ_STATO[01:00]

SET O | OTHO_STATO[01:00]
LoGIC VADRA[09:00]
OTH1_STATO0[01:00] -

OTH2_STATO0[01:00]

REQ_STAT1[01:00)

SET 1)
i1 | oTHO_STAT1[01:00) . S RANGH
LOGIC | oTH1_STAT1[01:00] ADDRESS
LOGIC
OTH1_STAT1[01:00)
REQ_BSTAT2{03:00]
LOCK_STAT{02:00}
SET 2
STATUS | R1_STAT[02:00]
LOGIC

R2_STAT[02:00]
R3_STAT[02:00)

BRANCH_SEL_H[01:00]

LOCK ERRORS
MIC
LOCK LOCK STATUS
——>

MR_X0735_89

Figure 3-14 Set 0, Set 1, and Lock Status Latches

DIGITAL INTERNAL USE ONLY

3-16 JBox Cache Consistency

3.6.1 SCU Microcode

Figure 3-15 shows the fix command and tag status fields of the microword. SCU uses
these fields to send commands to memory, JBox, and tag logic during fixup operations,
in which a memory request results in an inconsistent cache status. Examples of some
of the fix commands that SCU uses during fixup operations are listed in Table 3-7. See
Chapter 4 for more details.

30 29 28 25 24 201918 00

TAG
STATUS

FiIX

FIX COMMAND TO MICR

TAG WRITE ENABLE

60 59 58 48 47 44 43 42

170 COMMAND SEND DATA

FIX COMMANDS TO PORTS

MR_X0736_89

Figure 3-15 Microword Fix Command and Tag Status Fields

Table 3-7 Microcode Fix Command — Examples

Request Requester Other Fix Command
Write Invalid Written Write pass invalidate. The JBox assembles get data
refill full invalidate/get data read and sends the command to

the other CPU. The CPU responds with the data,
and memory performs a write pass operation. This
operation sends the data to the JBox, which then
sends the data to the requester. SCU writes the tag

status into the tag STRAMs.
Read Invalid Written Write pass read. The JBox assembles get data
refill full invalidate and sends the command to the other

CPU. The CPU responds with the data, and memory
performs a write pass operation. This operation sends
the data to the JBox, which then sends the data to
the requester. SCU writes the tag status into the tag

STRAMs.
Write Invalid Written Write read invalidate. The JBox assembles get data
refill partial invalidate and sends the command to the other

CPU. The CPU responds with the data, and memory
performs a write read operation. This operation
merges the data received from the other CPU with
data in the memory arrays and sends the data to the
JBox, which then sends the data to the requester.
SCU writes the tag status into the tag STRAMs.

DIGITAL INTERNAL USE ONLY

JBox Cache Consistency 3—17

3.6.2 Writing Tag Status

Figure 3-16 shows the write enable, address, and status inputs to the global tag
STRAMs. As MTCH addresses the global tag STRAMs, MICR uses the tag status, tag
write enable, and address [01:00] fields of the microcode to write the cache status and
lock status and to select the set number.

ADDRESS MATCH

MTCH

[

ADDRESS DATA DATA
72 BITS 18 BITS 76 BITS

SELECT {01:00] (FROM CTLD)

WRITE ENABLE (FROM MICR)

R/IW

STATUS [03:00] (FROM MICR)

(WRITE)
5 BITS
STATUS [15:00]
(READ) AND PARITY (TO MICR) -
20 BITS >

GLOBAL TAG STRAMs

MR_X0737_89

Figure 3-16 Writing Global Tag Status

The following steps summarize a read refill request in which the requester (cache status
is invalid) sends a read refill command to SCU and the data is in another CPU cache
block (cache status is written partial). SCU must get the data from the other cache and
send the data to the requester. To do this, SCU first reads the global tag STRAMs and,
before retiring the request, writes the tag status in the global tag STRAMs.

DIGITAL INTERNAL USE ONLY

3-18 JBox Cache Consistency

In this example:

1.
2.

SCU receives the read refill, address, and cache set to be refilled from the MBox.

MTCH compares the requester’s physical address with the contents of the global
STRAM:s to determine if there is a match.

MTCH sends the match information to MICR.

MICR reads the status bits of the global tag STRAMs. MICR uses the command and
status bits to form a microaddress to send to the microcode. The microword loads the
fixup queue and determines which commands the JBox sends to memory and MBox.
Microcode flows and fixup flows cannot occur simultaneously. Microcode notifies
CTLC when to retire the request and continue arbitration.

MICR writes the tag status into the tag STRAMs for the requester as read and for
the other CPUs as invalid.

JBox sends get data invalidate to the other CPU to get the data for the requester.
The CPU invalidates the cache block by clearing the valid and written bits when it
loads the buffer for a write back.

CPU sends data ready to MICR.
MICR starts the memory write.

JBox sends return data written to the requester. The CPU sets the written bit in the
local cache tag store for the block.

3.7 Errors
The following is a list of global tag lookup errors:

JBox tag error — If more than one CPU has written data for the same address or if
one CPU has read, while another CPU has written, data for the same address.

Other set valid — If the other set from the requester has valid data and match.

Request status error — If the data is written in the requested set, and no address
matches. (A linked command should have been sent.)

MBox error — If a CPU requests read refill and already has read status or if the
CPU requests write refill and already has written full status for that address.

Lock error — If a CPU requests lock refill and already has that address locked or if
a CPU requests unlock refill and has unlocked that address already.

Other status error — If another CPU has both sets valid and match.

DIGITAL INTERNAL USE ONLY

JBox Cache Consistency 3-19

3.8 Maintaining Consistent Global Tag Status

All requests for data are made to SCU, which must retrieve the latest copy of the data
and return it in response to read refill or write refill. SCU maintains cache status for
every address in each CPU cache. For example, if the MBox sends write refill, SCU
examines the cache status of all CPUs to check whether the data is in main memory or
another CPU cache. If the data is in main memory, SCU reads the data from the memory
arrays, sends the cache block to the MBox (return data written), and marks the cache
block as written full.

If the data is in the other CPU’s cache, SCU does the following:

1. Sends get data invalidate to the other CPU to get the data and invalidate the cache
block.

2. Marks the cache block in the other CPU invalid.
3. Sends return data written to the requester.
4. Marks the requester cache block as written full.

Table 3-8 lists the requests and cache conditions in which no cache conflicts exist.

Table 3-8 Consistency

Request Requester Other
Write refill Invalid Invalid
Read refill Invalid Invalid
Read refill Invalid Read

3.9 Handling Inconsistent Global Tag Status

Two factors control SCU’s handling of cache inconsistency. One factor is write back
caches, and the other is having multiple copies of data available. SCU maintains global
tag STRAMs, checks status on memory accesses, and ensures that processors are not
sharing written status for the same cache block simultaneously.

Inconsistency exists when a request, a requester’s cache status, and another cache status
result in the possibility of different copies of data existing for the same cache block.
Table 3-9 lists requests and cache conditions for the requester and other CPUs that
result in inconsistency.

DIGITAL INTERNAL USE ONLY

3-20 JBox Cache Consistency

Table 3-9 Fixup Operations

Before After

Request Requester Other Requester Other Fixup Operations

Read refill Invalid Written Read Read Fix command: Write
full pass invalidate.

Memory: Write
pass. JBox: Get data
invalidate to other,
return data read to
requester. MICR:
Writes tag status for
requester as read and
other as read.

Read refill Invalid Written Read Invalid Fix command: Write
partial read invalidate.

Memory: Write
read. JBox: Get data
invalidate to other,
return data read to
requester. MICR:
Writes tag status for
requester as read and
other as invalid.

Write refill Invalid Read Written Invalid Fix command: Read.
full Memory: Memory read.

JBox: Invalidate to
other, merge data in
memory, return data
written to requester.
MICR: Writes tag
status for requester as
written full and other
as invalid.

Write refill Invalid Written Written Invalid Fix command: Write
full full pass invalidate.

Memory: Write
pass. JBox: Get data
invalidate to other,
return data written
to requester. MICR:
Writes tag status for
requester as written
full and other as
invalid.

Write refill Invalid Written Written Invalid Fix command:
partial full Invalidate other, OK
to write to requester.
Memory read aborted,
no return data.

DIGITAL INTERNAL USE ONLY

JBox Cache Consistency 3-21

The following is an example of how SCU handles inconsistent global tag status:

1. In Figure 3-17, as a result of a read refill request, CPUO has a cache block containing
location 1000. :

CPU1 has the same cache block as a result of a read refill request.
CPUO and CPU1 share a cache block with status as read in the SCU tag STRAMs.

4. CPU2 detects a write miss and requests the same cache block. CPU2 needs a copy of
the cache block to write data into.

5. In Figure 3-18, SCU updates the cache status of CPUO and CPU1 to invalid and of
CPU2 to written full.

CPUD CPU1 CPU2 cPU3
LOCAL
CACHE 100008 | [1000a | | 1000ixxx | | 1000/xxx
DATA
CPUD CPU1 cPU2 CPU3
scu 1000/READ 1000/READ 1000/INV 1000/INV
TAG
STRAMS

MR_X0738_88

Figure 3-17 CPU Local Cache STRAMs After Read Refill

CPUO

cPuU1 CPU2 cpPus
LOCAL
CACHE 1000/XXX l I 1000/XXX l I 1000/8 I [1000/XXX
DATA
CPUO CPU1 CcPU2 CPU3

SCU

TAG 1000/INV 1000/iINV 1000/WRTF 1000/INV
STRAMs

MR_X0739_8%

Figure 3-18 CPU Local Cache STRAMs After SCU Updates Cache

DIGITAL INTERNAL USE ONLY

3-22 JBox Cache Consistency

Figure 3—-19 shows how SCU handles inconsistent tag status for a CPU write refill
request. The following sequence summarizes the events:

CPUO sends write refill, address, and which cache set, 0 or 1, is to be refilled.
ADRX selects the CPUOQ physical address.

ADRX sends the CPUO physical address to MTCH.

MTCH addresses the global tag STRAMs.

MTCH receives the address bits from the tag location.

MTCH compares the physical address from CPUO with the tag contents, and if there
is a match, MTCH sends address match [03:00] to MICR.

MICR receives the address match and tag status.

MTCH addresses the global tag STRAMs and provides the address bits. MICR writes
the tag status bits into the tag location.

MICR generates a microaddress for the microcode.

The microword contains tag status, commands for the CTLX (such as get data
invalidate), and a command for memory (write pass). The microcode loads a command
into the fixup queue to handle the inconsistency.

MICR generates write enable and tag status bits.

The MICR sends the get data invalidate command to CPU1. CPU1 sends data ready
and the data to SCU. After MICR sends send data and write to memory, CTLC sends
the return data written command to CPUOQ with the data.

Table 3-10 lists the status of the requester and other CPUs before and after a CPU write
refill request is sent to SCU.

Table 3-10 Status of Tag STRAMs for CPU Write Refill Requests

Before After

Requester Other Requester Other
Invalid Invalid Written full Invalid
Read Invalid Written full Invalid
Written full Invalid Error

Read Read Written full Invalid
Invalid Read Written full Invalid
Invalid Written partial Written full Invalid
Invalid Written full Written full Invalid

DIGITAL INTERNAL USE ONLY

JBox Cache Consistency 3-23

‘mcnowono MICROADDRESS ’
MICROCODE

‘ STATUS AND WRITE ENABLE
ADDRESS MATCH e | aND sTATUS .
‘ e
cPUO cPU1
BEFORE INV 3’&’: BEFORE WRTP
AFTER WRTP ' AFTER INV

ADDRESS
ADDRESS | wmrCH MATCH
MoA)
WRTF INV ‘
WRITE ENABLE
AND STATUS
STATUS .
cPUO cpu1 cPu2 cPu3

WR_Xo740_89

Figure 3-19 CPU Write Refill Request

The following list describes how the SCU updates the status of the tag STRAMs for CPU
write refill requests. See Table 3-10.

Requester: Read/Other: Invalid — MMCX receives memory abort. MICR asserts
tag write enable. The status bits are written into the cache set block indicated by the
index pointer. The tag MCU updates the tag status of the requester, changing it from
read to written full. '

Requester: Invalid/Other: Read — MMCX receives OK to read the block from
main memory. The fixup logic executes an invalidate command to the other CPUs
that have a read status. The fixup logic handles the fixup sequence. MICR loads the
fix queue. The tag MCU writes invalid status for each CPU having a read status for
that block.

Earlier in the fork cycle, the JBox sends an invalidate command to each MBox to
change the status for the block from read to invalidate. The microcode sends an
index value and notifies the tag MCU that an address must accompany the invalidate
command. The tag MCU uses the index value to select the address in one of the
address receive latches. JBox sends a return data written to the requester. The tag
MCU updates the requester’s tag status from invalid to written full.

DIGITAL INTERNAL USE ONLY

3-24 JBox Cache Consistency

When the last invalidate is sent to the other CPUs and when the tag status for
both the requester and other CPUs has been updated, CTLC receives CTLC done
and determines that MICR has completed the required tag write. CTLC retires the
request and arbitration continues. CTLD, after receiving fixup, proceeds to the next
tag lookup.

* Requester: Invalid/Other: Written Partial — Memory abort is sent to MMCX to
stop the memory read from being completed. MICR loads the fixup queue. The fixup
logic handles the fixup sequence, and executes a write read invalidate command.
CTLC stops arbitration.

The fixup logic also executes a write read data ready command. The fixup queue
starts the memory write. MMCX performs a read and merges the written partial
data with the memory read data. JBox sends the data to the CPU or ICU, which
then sends the data to XJA.

CTLC stops arbitration. The tag MCU replaces invalid status with the written partial
status for the other CPU in the fork cycle. If the other CPU has posted a write back,
it is aborted by MICR when the write back arbitrates after the get data command

is completed. The JBox sends an invalidate command to the other CPU to change
the status from written full to invalidate. The microcode sends an index value and
notifies the tag MCU that an address must accompany the invalidate command. The
tag MCU uses the index value to select the appropriate address in one of the address
receive latches. JBox sends a return data written to the requester. The tag MCU
changes the requester’s tag status from invalid to written full.

When the last invalidate is sent to the other CPUs and when the tag status for
both the requester and other CPUs has been updated, CTLC receives CTLC done
and determines that MICR has completed the required tag write. CTLC retires
the request and arbitration continues. CTLD, after receiving fix hold/yes and fix
increment/yes, proceeds to the next tag lookup.

e Requester: Invalid/Other: Written Full — Memory abort is sent to MMCX to stop
the memory read from being completed. SCU selects the index of the other CPU that
has the WRTF block needed by the requester. MICR loads the fixup queue. The fixup
logic handles the fixup sequence and executes a write pass invalidate command.

The fixup logic also executes a write read data ready command. The branch select
field contains data ready. The microcode flow branches when MBox sends data ready
during the get data flow. The data switch passes written full data to the requester.

CTLC stops arbitration. MICR replaces invalid status with the written partial status
for the other CPU. The JBox sends an invalidate command to each MBox to change
the read status for the block to invalidate. As a nonmemory command, the tag MCU
is notified that an address must accompany the invalidate command. When the
invalidate is sent to the MBox, CTLC receives CTLC done and determines that MICR
has completed the required tag write. CTLC retires the request and arbitration
continues. CTLD, after receiving fix hold/yes and fix increment/yes, proceeds to the
next tag lookup.

DIGITAL INTERNAL USE ONLY

JBox Cache Consistency 3-25

3.9.1 Written Full and Written Partial Examples

The following steps summarize fixup operations in which the requester has a cache block
with invalid status and the other cache block has written partial cache status:

1. CTLA arbitrates the command.

2. If the memory is ready, CTLC starts the memory read and sends the command to
CTLD.

3. CTLD starts the tag lookup and sends the command to MICR.

MICR generates a fork address for the microcode (command and status). If an error
is detected (that is, a JBox tag error), the fork address (118) causes the microcode to
send a fatal error command to the MICR MCA.

5. The microcode aborts the memory read. At the same time, the microcode writes the
tag status (request = written full) and loads the fixup queue in MICR with the write
read and invalidate fix commands.

6. As soon as the other CPU command buffer is available, the fixup queue interrupts
the tag lookup microcode fork pipeline for one cycle.

7. The microcode sends a get data invalidate fix command to the other CPU by
interrupting CTLC arbitration and startup for one cycle. The microcode writes the
tag (other = invalid) and loads the fixup queue with the new command, write read
data ready.

8. The fixup queue now waits for a data ready command from the other CPU. When
data ready arrives in MICR, the fixup queue again interrupts the pipeline for one
cycle.

9. The microcode loads a new fix command into the fixup queue, write read send data.
This command tells the fixup queue to start reserving the data path resources needed.

10. As soon as the paths and memory command buffer are available, the fixup queue
again interrupts the pipeline.

11. The microcode sends send data to the CPU, which unloads its write back buffer, stops
CTLC arbitration, and sends the write read command to memory. The microcode
sends a CTLC done bit to CTLC. The fixup operation is completed.

12. Some time later, memory sends a return data read command to the CTLA MCA.

3.10 Interlocks

The memory system services multiple CPUs and I/O processors. If these processors share
data structures stored in main memory, the access must be controlled to guarantee the
correct sequences of operation. One mechanism for reading from and writing to shared
data structures is the use of memory interlocks. The interlocked read operation sets the
interlock status, and the interlock write releases it.

When a processor does an interlocked read to memory, no other port can get interlocked
access to the same location until the first processor does a write unlock to release it.
Using interlocks, the processors can share data structures in a controlled manner without
race conditions.

Physically, interlocks are implemented in SCU with interlock status bits associated with
the locked memory locations.

DIGITAL INTERNAL USE ONLY

3-26 JBox Cache Consistency

3.10.1 Interlock Instructions
Interlock instructions control access to shared writeable data.

VAX architecture supports seven interlock instructions. The instructions are listed in
Table 3-11. :

Table 3—-11 Interlock Instructions

Instructions Description

BBSSI, BBCCI These instructions read a single byte, test and modify a bit
within that byte, and then write the byte in an interlocked
sequence.

ADAWI This instruction performs a read and then a write operation
to a single, aligned sequence.

INSQHI, INSQTI, REMQHI, These instructions manipulate interlock queue headers,

REMQTI allowing queues to be maintained in a multiprocessor
system.

3.10.2 SCU Supporting interlocks

SCU is the only unit that sees all memory traffic and monitors lock traffic. SCU supports
interlock reads and writes from CPUs and I/O devices. SCU uses the cache block, which
is the unit of memory data allocation, as the unit for interlocks. SCU does not monitor
memory accesses of finer granularity than a cache block. SCU can lock up to 1000 cache
blocks and deny lock requests from other ports until the blocks are unlocked by the port
that owns the lock.

The SCU hardware allows memory to be interlocked by a write refill transaction and
unlocked by a write transaction and allows synchronization of processes in quad-CPU
and dual-ICU configurations that access shared areas of memory. When SCU receives an
interlock read transaction, SCU writes the lock status in the tag STRAMs and performs
the usual read function. However, SCU does not accept any further interlock read
transaction for addresses in the locked cache block, until the interlock has been removed
by a write unlock transaction. When SCU receives a write interlock transaction, it clears
the lock status and performs the usual write transaction. SCU tracks the interlocked
addresses by storing them in the upper 2K area of the tag STRAMs.

During the time the cache block is interlocked, SCU accepts typical read transactions
and all write transactions. However, when SCU receives a read interlock request for the
locked block, it denies the request and writes a reserve status into the tag STRAMs. SCU
can have up to three reservations for addresses in a locked cache block.

3.10.3 Types of Interlocks

SCU receives two types of interlock requests, read and write. A write interlock request is
preceded by a nonlock refill.

DIGITAL INTERNAL USE ONLY

JBox Cache Consistency 3-27

3.10.3.1 Interlock Reads

CPU read interlocks either require a refill or do not. When SCU receives a CPU read
interlock requiring a refill, SCU performs a tag lookup in three cycles and writes the
tag status in two cycles. Table 3-5 shows the tag lookup and the tag status cycles for a
CPU read lock and write unlock. In cycle 0, when the MBox requests refill data, SCU
examines cache set 0. In cycle 1, SCU examines the cache set 1 tag. In cycle 2, SCU
examines the lock status.

If the cache block is not already locked, SCU accepts the read lock and, in cycle 4, writes
the lock status into the tag STRAMs.

If the address in the lock request matches the contents of the lock portion of the global
tag STRAMs and the valid bit is set (hit), SCU denies the read lock. In cycle 3, SCU
writes reserve status in the tag STRAMs. In cycle 4, SCU writes the cache block global
tag status. SCU continues to deny a read lock request until the port sends a write unlock
for the cache block.

An unlock that does not require a refill has four cycles, three read cycles, and one cycle
in which SCU writes the lock status.

3.10.3.2 Interlock Writes

The CPU write interlock requires five cycles, and the /O write interlock requires four
cycles. Table 3-5 shows the tag lookup and the tag writing status cycles for a CPU read
lock and write unlock. If SCU receives a write unlock, it clears the lock status in the tag
STRAMs. An interlock error occurs if no lock was granted previously.

3.11 Interlock Storage
Figure 3-20 shows the location of the lock status in the tag STRAMs.

1K SET 1 CPUO SET 1 CPUO SET 1 CPUO SET 1 CPUO SET1 CPUO SET 1 CPUO
1K SET 1 CPU2 SET 1 CPU2 SET 1 CPU2 SET 1 CPU2 SET1 CPU2 SET 1 CPU2

1K j¢— LOCK

1K

1K SET 0 CPUO SET 0 CPUO SET O cPUD SET 0 CPUD SET 0 CPUO SET 0 CPUO
1K SET 0 CPU2 SET 0 CPU2 SET 0 CPU2 SET 0 CPU2 SET 0 CPU2 SET 0 CPU2

1K

iK

1K SET 1 CPU1 SET 1 CPUt SET 1 CPU1 SET 1 CPU1 SET1 CPU1 SET1 CPU1
1K SET 1 CPU3 SET 1 CPU3 SET 1 CPU3 SET 1 CPU3 SET 1 CPU3 SET 1 CPU3
1K
1K

1K SET 0 CPU1 SET 0 CPU1 SET 0 CPUY SET 0 CPU1 SET 0 CPU1 SET 0 CPU1

1K SET 0 CPU3 SET 0 CPU3 SET 0 CPU3 SET 0 CPU3 SET 0 CPU3 SET 0 CPU3
1K

1K

MR_X0741_89

Figure 3-20 Lock Status Storage

DIGITAL INTERNAL USE ONLY

3-28 JBox Cache Consistency

3.11.1 Lock Status Bits
Figure 3-21 shows the lock status bits. The lock status bits are described in Table 3-12.

023 02 01 00

ADDRESS AP | LP | SP STATUS

LOCKED
DATA CACHE
BLOCK

MR_X0742_89

Figure 3-21 Lock Status Bits

Table 3-12 Lock Status Bit Description

Status Bits Description

1 01:00 Indicate the cache status, as follows:

0 = Invalid

1 = Read

2 = Written partial
3 = Written full

02:00 Indicate which port is locked, as follows:

0 = Not reserved or locked
1 = ICUO

2 = Reserved

3=ICU1

4 = CPUO

5 = CPU1

6 = CPU2

7 = CPU3

03 Reserved.

3.12 Global Tag Lookup for Lock Request

After a port wins arbitration, SCU addresses the global tag STRAMs, determining first
where the most up-to-date copy of the data is and then whether any ports have a lock

on that data. SCU determines the status of the requester and other CPU cache blocks
(invalid, written full, written partial, or read) at that address.

When a port requests a read lock, the port sends a physical address to SCU. The SCU
passes the physical address through the address crossbar and writes the address bits and
lock status bits to the global tag STRAMs.

For lock requests, the typical global tag lookup requires two cycles to read the cache
status for the eight cache sets (sets 0 and 1 for each CPU) and a third read cycle for the
lock portion.

DIGITAL INTERNAL USE ONLY

JBox Cache Consistency 3-29

Figure 3-22 shows CPUO sending a read refill lock request for a cache block that is in
CPU1 and is written partial.

MICROCODE

° MICROWORD MICROADDRESS o

STATUS AND
\cr | WRITE ENABLE
‘ ADDRESS MATCH ":‘gA AND STATUS ‘
>

CPUO CTLX CPU1

CPUO PA
ADRX MCAs
ADDRESS
ADDRESS | MTCH MATCH
MeA - | @

READ INV .

WRITE ENABLE
AND STATUS

STATUS ‘

LOCK

v

CPUO cPU1 CPU2 CPU3

MR_X0743_89
Figure 3-22 CPU Lock Request for a Block Written Partial

CPUO sends read refill, address, and which cache set, 0 or 1, is being refilled.

ADRX selects CPUO physical address.

ADRX sends the CPUO physical address to MTCH.

MTCH addresses the global tag STRAMs.

MTCH receives the address bits from the tag location.

MTCH compares the CPUO physical address with the tag contents. MTCH sends
address match [03:00] to MICR.

MICR receives the address match and tag status.

MICR generates a microaddress to be sent to the microcode. SCU generates a
microaddress using the lock information shown in Figure 3-23.

The microword contains the tag status and memory command (write read). The
microcode loads the fixup queue, which handles any inconsistency.

DIGITAL INTERNAL USE ONLY

3-30 JBox Cache Consistency

@ MICR generates write enable and tag status bits.

@ CTLX sends get data invalidate to CPU1. CPU1 sends the data. CTLX sends return
data read to CPUQ with the data.

@ MTCH addresses the global tag STRAMs and provides the address bits. MICR writes
the tag status bits for CPUO as read, CPU1 as invalid, and the block in the CPUO
cache as locked.

LOCK COMMAND
REQUESTOR STATUS
OTHER STATUS LOCK MICROADDRESS
COMMAND MICROCODE MICROWORD
LOCK RETRY DECODE STRAMs
MICR

MR_X0745_8%

Figure 3-23 Generating a Microaddress for a Lock Request

3.12.1 Reading Lock Status

The MTCH MCA addresses the global tag STRAMs. MTCH receives 17 address bits, 1
address parity bit, and 1 location parity bit from each of 4 STRAMs. MICR receives 4
lock status bits and 1 status parity bit from each of 4 sets of global tag STRAMs. The 4
sets include lock status and three levels of lock reservation status.

3.12.2 Writing Lock Status

MTCH addresses the global tag STRAMs. MICR uses the tag status and tag write enable
fields of the microcode to write the cache status and lock status into the global tag
location.

DIGITAL INTERNAL USE ONLY

JBox Cache Consistency 3-31

3.13 Lock Request Timeouts

The CPU (EBox) requesting the lock either receives the data from the MBox or times
out. If another CPU or I/O port fails to unlock the block that is now being requested,
the CPU experiences a keep-alive failure when attempting to read lock that cache block.
SPU polls the EBox. If the EBox is executing instructions, it responds to SPU at the end
of the next instruction. If SPU receives no response, it declares that a keep-alive failure
has occurred. A CPU times out 1000 cycles after the EBox makes a memory request and
does not receive the data.

SCU does not track timeouts. SCU sends lock deny to the MBox if the cache block

is locked or reserved. Receiving lock deny, the MBox restarts the command as a new
request. XJA also restarts the command and sends a new request. SCU continues to
update the global tag STRAMs with reserve lock status and grants the lock to the port
with the highest reserve status at the time the lock becomes available.

If a DMA lock is not cleared within the time expected, SPU sends an SPU write unlock
command to SCU. The SCU clears the lock status and accepts the lock request.

3.14 LockErrors
SCU detects the following types of lock errors:

¢ Lock error — SCU detects a write unlock to an unlocked address. SCU forces the
microcode to branch to a location to handle the lock error or send the lock request to
an address already locked by that CPU.

¢ Lock nonexistent memory — SCU detects a port’s attempt to lock an address in
an area in memory that does not exist.

3.15 CPU Interlock Requests

A lock request can be a part of a read refill or write refill. The EBox issues a read lock
command to the MBox, followed by a write unlock command, when executing an interlock
instruction. The MBox translates the read lock command into a write refill request. The
CPU (EBox) can lock only one cache block at a time. The MBox sends one of the following
interlock requests to SCU:

CPU write refill lock
CPU write refill unlock
CPU write refill linked lock

DIGITAL INTERNAL USE ONLY

3-32 JBox Cache Consistency

Table 3-13 lists the status of the requester and other CPUs before and after a CPU write
refill lock request.

Table 3-14 lists the status of the requester and other CPUs before and after a CPU write
refill unlock request.

Table 3-13 Status of Tag STRAMs for CPU Write Refill Lock Request

Before After

Requester Other Requester Other
Invalid Invalid Lock, written full Invalid
Read Invalid Lock, written full Invalid
Written partial Invalid Lock, written full Invalid
Written full Invalid Lock, written full Invalid
Read Read Lock, written full Invalid
Invalid Read Lock, written full Invalid
Invalid ’ Written partial Lock, written full Invalid
Invalid Written full Lock, written full Invalid

Table 3-14 Status of Tag STRAMs for CPU Write Refill Unlock Request

Before After

Requester Other Requester Other
Lock invalid Invalid Unlock, written full Invalid
Lock read Invalid Unlock, written full Invalid
Lock written partial Invalid Unlock, written full Invalid
Lock written full Invalid Unlock, written full Invalid
Lock read Read Unlock, written full Invalid
Lock invalid Read Unlock, written full Invalid
Lock invalid Written partial Unlock, written full Invalid
Lock invalid Written full Unlock, written full Invalid

DIGITAL INTERNAL USE ONLY

JBox Cache Consistency 3-33

Table 3-15 lists the status of the requester and other CPUs before and after a CPU write
refill linked lock request.

Table 3-15 Status of Tag STRAMs for CPU Write Refill Linked Lock Request

Before After

Requester Other Requester Other
Invalid Invalid Lock, written full Invalid
Read Invalid Error -

Written partial Invalid Error -

Read Read Error -

Invalid Read Lock, written full Written full
Invalid Written partial Lock, written full Invalid
Invalid Written full Lock, written full Invalid

3.15.1 Lock Request — Cache Block Is Not Locked

The following sequence summarizes the CPU lock request when the block is not locked
by any other processor or I/O device:

1. CPUO sends the following:
a. Read refill lock MBXx_JBX_CMD_H[03:00])
b. Address (MBXx_JBX_ADR_H[15:00])
c. Cache set MBXx_JBX_WCHSET_H[00]) to be refilled
d. Load command (MBXx_JBX_LDCMD_H)

2. ADRX selects the CPUO physical address and sends the address to MT'CH, which
compares the physical address with the contents of the cache consistency STRAMs
containing the lock status and cache status. If the block in which the address resides
is not locked and no cache conflicts exist, MICR writes the lock status bits into the
lock status STRAMs and writes the appropriate cache status into the requester’s tag
STRAM location.

3. CTLX receives send data and the command mask and sends the following commands
and information to CPUO:

a. Return data read (JBX_MBXx_CMD_H[03:00])

b. Cache set (JBX_MBXx_WCHSET_HI[00)) to be refilled
¢. Load command (JBX_MBXx_LDCMD_H)

d. Beginning of data (JBXX_MBXx_BOD_A, B, C, D)

e. Refill data (JBX_MBXx_DAT_H[63:00])

DIGITAL INTERNAL USE ONLY

3-34 JBox Cache Consistency

3.15.2 Lock Request — Cache Block Is Locked

If the block is locked by another processor or 1/O device, SCU sends lock denied to the
port, and MICR writes reserve lock status bits into the reserve lock status STRAMs.
MICR can write up to three lock reservations. Figure 3-24 shows how SCU writes the
lock status and reservation status. The following sequence summarizes the process:

© SCU accepts the CPUO lock request and writes a 3-bit code specifying that CPUO has
locked the cache block.

@® When CPU3 sends a lock request for the same cache block, SCU examines the status
of the block and finds that the lock is busy. SCU sends lock denied to the port and
uses the first write cycle to write a reserve value specifying CPU3 in the global tag
STRAMSs.

© When CPU2 sends a lock request for the same cache block, SCU examines the status
of the block, finds that the lock is busy, and uses the first write cycle to write a
reserve value for CPU2 and CPUS3 in the global tag STRAMs. The CPU3 reserve
status shifts into the next reserve STRAM, and when CPUO releases the lock, SCU
accepts the CPU3 request before the CPU2 request.

. LOCK RESERVE RESSRVE RESERVE

CPUO

° LOGK RESERVE nssgnvs nssgnvg
1 1
CcPUO cPU3
‘ LOCK Rssr;:nvs Rssgnvs Rssgnvg
1 1 1
CPUO cPu2 cPu3

MR_X0746_089

Figure 3-24 Lock Reservations

DIGITAL INTERNAL USE ONLY

JBox Cache Consistency 3-35

3.15.3 Lock Request — Cache Block Partially Written or Written Full

The following sequence summarizes a CPU lock request in which the block is written
partial or written full in another CPU:

1. CPUO sends read the refill lock, address, which cache set is to be refilled, and load
command.

2. ADRX selects the CPUQ address and sends it to MT'CH, which compares it with the
contents of the cache consistency STRAMs. MTCH sends the address match (MTCH_
MICR_ADR_MATCH_H[03:00]) to MICR. The cache tag STRAMs send status bits to
MICR. The status of CPUOQ is invalid, and the status of CPU1 is written partial.

3. CTLX sends get data invalidate to CPU1, which loads the write back buffer with the
data Gf the write back buffer is full, SCU receives data directly from the cache over
the bypass path).

4. CTLX sends JBX_MBXx_SEND_DAT H. CPU1 unloads the write back buffer and
sends the data to DSXX.

5. The microcode sends a write read command to memory for a partially written block
and sends a write pass for a written full block. For a write read, memory control
merges the written partial block coming from CPU1 with valid memory data. For a
write pass, SCU sends the data directly to the port first and then writes the data into
main memory. CTLX sends the data to CPUO. MICR writes the lock status as locked
for CPUO, cache status for CPUO as read, and the cache status for CPU1 as invalid.

3.16 CPU Lock Acknowledge

When the MBox issues a lock request, the JBox can send:
¢ Return data if status is invalid or written partial

¢ OK to write if status is read

¢ Lock acknowledge if status is written full

¢ Lock deny if lock is not available

Lock acknowledge originates in the microword corresponding to the lock request. The
JBox sends lock acknowledge when the MBox sends write refill lock or write refill linked
lock, the lock is available, and the MBox has the block as written full. For a written
partial block, merged data is returned to the MBox.

SCU updates the global tag with lock status and continues to update the tag STRAMs
with reserve lock status for lock requests for the same address.

DIGITAL INTERNAL USE ONLY

3-36 JBox Cache Consistency

3.17 CPU Unlock Requests

CPU sends write refill unlock or write refill linked unlock to SCU. MICR clears the lock
status. SCU releases the lock and accepts the lock request from the port with the highest
level of lock reservation. -

3.18 XJA Interlock Requests

XMI transactions that select SJA as the responder node are forwarded to ICU as DMA-
type transactions. The DMA transactions can be reads, writes, read locks, or write
unlocks.

3.18.1 Interlock Commands
The XJA sends one of the following interlock commands:

DMA read lock
DMA write unlock

Table 3—16 lists the lock and cache status before and after a DMA read lock request.
Table 3—17 lists the lock and cache status before and after a DMA write unlock request.

Table 3-16 DMA Read Lock Request — Cache Status

Before Read Lock Request After Read Lock Request
Written full Lock, read

Written partial Lock, invalid

Read Lock, read

Invalid Lock, invalid

Table 3-17 DMA Write Unlock — Cache Status

Before Write Unlock Request After Write Unlock Request
Lock, read Unlock, invalid
Lock, invalid Unlock, invalid
Lock, written full Unlock, invalid
Lock, written partial Unlock, invalid

DIGITAL INTERNAL USE ONLY

JBox Cache Consistency 3-37

3.18.2 Lock Request — Cache Block Is Not Locked

XJA sends the DMA read lock to SCU to lock a cache block. Figure 3-25 shows the DMA
lock request and the following steps summarize the request:

© XJA sends XJA_COMDAVAIL_H to SCU and sends DMA read lock and the address
(XJA_DAT_H[15:00]).

@® ADRX selects the XJA physical address and sends the address to MT'CH, which
compares the physical address with the contents of the global tag STRAMs containing
the lock status and the cache status.

© If the block in which the address resides is not locked and no cache conflict exists,
MICR writes the lock status bits into the lock status portion of the global tag
STRAM:s.

® ICU sends ICU_COMDAVAIL_H, the return read lock data command, and the
address (ICU_DAT_H[15:00]) to XJA.

© XJA sends XJA_CLKx_H[02:00] and unloads the output buffer. After XJA receives
the data, it sends XJA_BUFEMPTD_H to SCU.

MAIN MEMORY

E DATA STRUCTURE

SCu

CPU2 [CPU3
]
b
] CPU1

MICR MTCH
MCA ° MCA
CTLX ADRX
MCAs MCA

— @
| am—

IJDBX MCAl [JDAX M‘.‘,All=

(2]
v
[
o

XJAO

»
€=
® O:
-

MR_X0747_89

Figure 3-25 XJA Lock Request

DIGITAL INTERNAL USE ONLY

3-38 JBox Cache Consistency

3.18.3 Lock Request — Cache Block Is Locked

If the block is locked by another processor or /O device, MICR writes reserve lock status
bits into the reserve lock status STRAMs. MICR can write up to three lock reservations.
Figure 3—-24 shows how SCU writes the lock status and reservation status. Figure 3-26

shows the lock denied response.
© XJA sends DMA read lock to SCU.
@® ADRX sends the XJA physical address to MTCH.

© MTCH compares the contents of the global tag STRAMs to the XJA physical address
and sends the results to MICR. MICR receives the cache and lock status from the tag
STRAMs. MICR uses the cache status, lock status, and command to generate a fork
address for the microcode (lock busy).

©® CTLX decodes the microword fields and sends lock deny to XJA.

MAIN MEMORY

E DATA STRUCTURE

SCuU
CPU2 [] . CPU3
]
cPUO [] CPU1Y
3 -
MICR MTCH
MCA ° MCA
CTLX ADRX
MCAs MCA
XJAD \ / / \ XJA1

{]
FDBX MCAl [JDAX MCA}: ‘
|)

MR_X0748_89

Figure 3-26 XJA Deny Lock

DIGITAL INTERNAL USE ONLY

JBox Cache Consistency 3-39

3.18.4 Lock Request — Cache Block Partially Written or Written Full

The following sequence summarizes an XJA lock request in which the block is written
partial or written full in the cache of another CPU:

1. XJA sends XJA_CMDAVAIL_H and DMA read lock (XJA_DAT_H[15:00]).

2. ADRX selects the XJA address and sends the address to MTCH, which compares the
XJA address with the contents of the global tag STRAMs. MTCH sends an address
match (MTCH_MICR_ADR_MATCH_H[03:00]) to MICR. The cache tag STRAMs send
status bits to MICR. MICR finds that the cache block requested by XJA is partially
written or written full and is locked by the CPU.

3. CTLX sends a get data invalidate command to the CPU that owns the cache data.

The microcode sends a write read command to memory for a partially written block,
and sends write pass for a fully written block.

For a write read, memory merges the written partial block from the CPU with valid
memory data. For a write pass, SCU sends the data directly to the XJA, and then
writes the data into main memory. ICU sends the data to XJA. MICR writes the lock
status as locked and the cache status for the CPU as invalid.

3.19 XJA Unlock Requests

XJA sends DMA write unlock and address (XJA_DATA_H[15:00]) to SCU. MICR clears
the lock status. SCU releases the lock and accepts the lock request from the port with
the highest lock reservation. ‘

3.19.1 Cycles

A DMA read request requires four cycles: three read cycles and one lock status cycle. A
DMA write unlock also requires four cycles. Table 3-5 lists the DMA read request cycles.

3.20 SPU Interlock Requests

SPU sends an interlock request when it needs to manipulate a queue for communication
between the operating system and SPU. The SPU can also release a memory lock that
was obtained for an I/O device that has since failed.

DIGITAL INTERNAL USE ONLY

3-40 JBox Cache Consistency

3.20.1 Interlock Commands
The SPU sends the following interlock commands:

SPU read lock
SPU write unlock

Table 3-18 lists the lock and cache status before and after an SPU read lock request.
Table 3-19 lists the lock and cache status before and after an SPU write unlock request.

Table 3-18 SPU Read Lock Request — Cache Status

Before Read Lock Request After Read Lock Request
Written full Lock, read

Written partial Lock, invalid

Read Lock, read

Invalid Lock, invalid

Table 3-19 SPU Write Unlock — Cache Status

Before Write Unlock Request After Write Unlock Request
Lock, read Unlock, invalid
Lock, invalid Unlock, invalid
Lock, written full Unlock, invalid
Lock, written partial Unlock, invalid

DIGITAL INTERNAL USE ONLY

JBox Cache Consistency 3—41

3.20.2 Lock Request — Cache Block Is Not Locked

SPU sends an SPU read lock command to SCU to lock a cache block. Figure 3-27 shows
the SPU lock request. The following steps summarize the request:

©® SPU sends SPU_JBOX_BUF_RQST_H, command (SPU read lock), and address bytes
on SPU_CTLD_DATA_H[07:00] to SCU.

@® The JBox, receiving the SPU command and address, sends the following:

The SPU physical address sent to ADRX, which selects the SPU physical address
and sends the address to MTCH. The MTCH compares the physical address with
the contents of the global tag STRAMs containing the lock status and the cache

a.

b.

status.

The SPU command is sent to CTLX.

@© If the block in which the address resides is not locked and no cache conflict exists,
MICR writes the lock status bits into the lock status STRAMs and writes the
appropriate cache status into the global tag STRAMs of the CPUs.

© All CCU MCU-to-SPU commands go to ICU first. The data and command use the
same wires. SCU sends JBOX_SPU_CLK, the return read lock data command, data,
and an address on JBOX_SPU_DATA_H[07:00].

cPU2

CPUO

MAIN MEMORY

E DATA STRUCTURE

SCu

58E

3

e
MICR MTCH
MCA ° MCA
y 1
CTLX ADRX
MCAs ‘ MCA
- l
SPU \ /[l A
. luioex mcal [upax mca]

XJA1

Figure 3-27 SPU Lock Request

MR_X0749_88%

DIGITAL INTERNAL USE ONLY

3-42 JBox Cache Consistency

3.20.3 Lock Request — Cache Block Is Locked

If the block is locked by another processor or I/O device, MICR writes reserve lock status
bits into the reserve lock status STRAMs. MICR can write up to three lock reservations.
Figure 3—24 shows how SCU writes the lock status and reservation status. Figure 3-28

shows the lock denied response.
© SPU sends the SPU read lock command to SCU (CTLD).

@® ADRX sends the SPU physical address to MTCH.

© MTCH compares the contents of the global tag STRAMs to the SPU physical address
and sends the results to MICR. The MICR receives the cache and lock status from
the tag STRAMs. MICR uses the cache status, lock status, and command to generate
a fork address for the microcode (lock busy).

© CTLX decodes the microword fields and sends a lock deny command to SPU.

MAIN MEMORY

E DATA STRUCTURE

sSCu
CPU2 1 CPU3
]
B
CPUO L] CPU1
- -
MICR MTCH
MCA ‘ MCA
CTLX ADRX
MCAs MCA
SPU XJA1
I iCU J

MR_X0750_89

Figure 3-28 Deny SPU Lock

DIGITAL INTERNAL USE ONLY

JBox Cache Consistency 3-43

3.20.4 Lock Request — Cache Block Partially Written or Written Full

The following sequence summarizes an SPU lock request in which the block is written
partial or written full in a CPU cache:

1
2.

SPU sends the command and address on SPU_CTLD_DATA_H[07:00].

ADRX selects the SPU address and sends the address to MT'CH, which compares the
SPU address with the contents of the global tag STRAMs. MTCH sends an address
match (MTCH_MICR_ADR_MATCH_H[03:00]) to MICR. The cache tag STRAMs send
status bits to MICR. MICR finds that the cache block that SPU needs is partially
written or fully written and locked by the CPU.

CTLX sends get data invalidate to the CPU that owns the cache data.

The microcode sends a write read command to memory for a partially written block
and sends a write pass command for a written full block.

For a write read, memory merges the written partial block coming from CPU with
valid memory data. For a write pass, SCU sends the data directly to ICU and then
writes the data into main memory. (The JBox sends the data to SPU.) MICR writes
the lock status as locked and the cache status for the CPU as invalid.

3.21 SPU Unlock Requests

SPU sends a SPU write unlock command and address (XJA_DATA_H[15:00]) to SCU.
MICR clears the lock status. SCU releases the lock and accepts the lock request from the
port with the highest lock reservation, if any are pending.

3.21.1 Cycles

An SPU read and unlock requires four cycles: three read cycles and one lock status cycle.
Table 3-5 lists the DMA lock cycles.

DIGITAL INTERNAL USE ONLY

4

Micromachine Control

This chapter describes the micromachine control. It describes the physical features of the
control store STRAMs array and covers control store space allocation, addressing, and
data format.

This chapter describes how the control store is loaded at initialization and how it is
usually accessed. A detailed description of the microword field definitions is included.
The structure and organization of the microcode listing are described, including
microcoding examples of symbolic, hex, and bit encoding. This chapter also explains
how to analyze information using bit field description tables.

4.1 Overview
The micromachine consists of the control store STRAMs array and the MICR MCA.

4.2 JBox Control Store

This section describes how the JBox loads and addresses the control store STRAMs.
It identifies the fields of the microword. It describes how the JBox distributes the
microword bits and checks parity.

4.2.1 Control Store STRAMs

The control store consists of a fifteen 1K x 4-bit STRAMs array that stores one
thousand 60-bit microwords. The control store also includes a three 1K x 4-bit STRAMs
array, which stores microword addresses of the last 1K microwords addressed by the
micromachine. Figure 4-1 shows the control store STRAMs array.

4.2.1.1 Space Allocation
Figure 4-2 shows the control store space allocation.

Each CPU and ICU port request, such as a CPU read refill or a DMA read, has eight
entries into the control store and uses the base addresses listed in Table 4-1.

DIGITAL INTERNAL USE ONLY 4-1

4-2 Micromachine Control

CTLDMCA 20
———-—7L DATA IN
CTLD MCA 6

24 paTA NN

CONTROL STORE
15 1K X 4-BIT
STRAMs

DATA
ouT

NEXT
ADDRESS

BRANCH_CTL_H[07:00]

TO
1 42/ p MICR, CTLA,
CTLB, CTLC,

ADDRESS
MICR MCA 4o, l
’ l__

DATA

CTLDMCA 10
——— 4| aDDRESS
CTLD MCA 1, | waite

7] enasLe

VISIBILITY
3 1K X 4-BIT

STRAMs
{HISTORY BUFFER) DATA

ouT

cTLD
——<—% MICR CTL
LOGIC
8 TO
——4— MICR CTL
LOGIC
T0
—-%L-b VISIBILITY
out

Figure 4-1 Control Store STRAMs Array
2FF
DMA AND SPU REQUESTS

200
1FF

CPU REQUESTS
100
OFF

FIXUP REQUESTS
000

MR_X0644_89

MR_X0643_8%

Figure 4-2 Control Store Space Allocation

DIGITAL INTERNAL USE ONLY

Table 4-1 Base Addresses

Micromachine Contro! 4-3

Address Request

000 Idle

001-0FF Addressable by fixup queue only
100 - CPU read refill

110 CPU wrrite refill

120 CPU read refill linked
130 CPU write refill linked
140 CPU write refill lock
150 CPU write refill unlock
160 CPU write back

170 CPU longword write update
180 CPU read I/O register
190 CPU write back link
200 DMA read

210 DMA read lock

230 SPU write unlock

240 DMA write

250 DMA write unlock
260-270 Illegal DMA

280 SPU read I/O register
290 SPU write I/O register
2A0-2F0 Illegal DMA

DIGITAL INTERNAL USE ONLY

4-4 Micromachine Control

For example, in the case of a CPU read refill, the microcode has nine fork addresses that
use 100 as a base address. Figure 4-3 shows the CPU read refill fork addresses.

e Four addresses, 100, 105, 106, and 107, correspond to the status combinations listed
in Table 4-2.

e Six addresses correspond to the error conditions listed in Table 4-3.

108 CP.READ.REFILL NXM

108 CP.READ.REFILL.ERROR
107 CP.READ.REFILL INV. WRTF
106 CP.READ.REFILL INV.WRTP
105 CP.READ.REFILL INV.RD
104 CP.READ.REFILL.RD.RD
103 CP.READ.REFILL WRTF.INV
102 CP.READ.REFILLWRTP.INV
101 CP.READ.REFILL.RD.INV
100

MR_X0645_89.DG

Figure 4-3 Base Address — 100

Table 4-2 Cache Status Combinations for Microaddresses

Address Requester Other CPUs
107 Invalid Written full
106 Invalid Written partial
105 Invalid Read

100 Invalid Invalid

Table 4-3 Error Entries

Address Error Description

109 NXM NPAMM detects nonexistent memory for the
address that was sent with the request.

108 ERROR An MBox error has occurred. There are two

types of MBox errors: more than one CPU has
the same cache block with written status or the
lock bit is already set for that address and port.

104 RD.RD The CPU sends a read refill request for a cache
block that already has read status.

103 WRTFE.INV The CPU sends a read refill request for a cache
block that already has written full status.

102 WRTP.INV The CPU sends a read refill request for a cache
block that already has written partial status.

101 RD.INV The CPU sends a read refill request for a cache

block that already has read status.

DIGITAL INTERNAL USE ONLY

Micromachine Control 4-5

4.2.2 Control Store Data

The CTLA, CTLB, CTLC, CTLD, and MICR MCAs latch the control store data as shown
in Figure 44.

CTLA PAR [51] PARITY
GENERATOR
AND
ARB [38] CHECKER
DATA oA
LATCH
CTLB PAR [52] CTLA
ARB [38 PARITY
138] GENERATOR
WRT STRT [36] cuegzsn
10 CMD {59} e

CMD MSK [47:44] CTLB

CONTROL STORE
CcTLB PARITY
/ CTLC PAR [53) GENERATOR
AND

1/0 CMD {59) CHECKER
MEM [42:41]
STRAMs cTiC
RD ABRT [37]
DATA
WRT STRT [36) LATCH

CTLC DONE {18}

MIC CTL1 [39]
cTLC
s ook
MICRO ADR PAR [57] OH,E.ngR
CTLD FIX {48]
SET {56} CTLD
FIX HLD [40] &ATI:‘L
LOCK [30}
ARB [38]
CTLD
on AR GENERATOR
BRANCH PC {09:00] cHQEEEa
BRAN SEL {03:10]
BRAN EN [17:14] DATA MICR
C LATCH
DONE [50)
MIC FiX [19]
MICR

MR_X0646_89.0G

Figure 4-4 Control Store Data Latch and Parity Checking

DIGITAL INTERNAL USE ONLY

4-6 Micromachine Control

4.2.3 Control Store Parity Checking

The CTLA, CTLB, CTLC, CTLD, and MICR MCAs perform the parity checking for the
control store data shown in Figure 44. Each microword contains the following six 1-bit
parity fields that the MCAs use when latching the control store data:

CTLA parity
CTLB parity
CTLC parity
CTLD parity
MICR parity
Microaddress parity

4.2.4 Control Store Addressing

MICR_FORK_SEL_HI[01:00] selects one of the following sources of microaddresses.
Figure 4-5 shows the microaddress selection.

¢ MICR branch address [09:00] — From the results of the branch select and enable
microword fields, MICR samples the logic signals for available resources or status
and uses the result to modify the least significant bits of the microaddress.

e MICR fork fix command [09:00] — The microcode loads one of three fixup queues
with a fix command. The fixup queue uses the fix command bits to form the low-order
bits of the microaddress. The MICR fork fix command [09:00] addresses the fixup
microcode in the lower section of the control store.

e MICR fork address [09:00] — MICR receives the tag queue data, match results,
and the tag STRAMs cache and lock status bits. MICR then forms a fork address into
the microcode.

CONTROL STORE
STRAMs
MIC_BRANCH_ADR_H[09:00]
MIC_FORK_FIXCMD_H[09:00] UADR_H[09:00] DATA | MICROWORD
ADDRESS ouT
MIC_FORK_ADDR_H[09:00}

FORK MIC_FORK_SEL_H[01:00 VISIBILITY
ADDRESS = -SELH ! STRAMS
CONTROL (HISTORY BUFFER)

DATA
IN

MR_X0647_89

Figure 4-5 Microaddress Sources

DIGITAL INTERNAL USE ONLY

Micromachine Control 4-7

4.2.4.1 Branch Address

The branch enable, select, and PC fields of the microword determine the next
microaddress. If the enable bits are set, the MICR branch logic tests the selected signal
and branches to the microaddress specified in the branch PC field. The microcode uses
the branch field logic to handle a fourth request that requires a fixup microcode (three
fixups are in progress).

4.2.4.2 MICR Address

For each port request, the JBox places an entry into the tag queue in the CTLD

MCA. The MICR MCA addresses the control store for each entry in the tag queue and
increments the input pointer for the next entry. If the MICR sends a fork address for a
microword indicating a fixup is required, MICR loads one of three fixup queues with a fix
command. The microcode flow returns to idle or branches to another microword.

The microcode and fixup queues alternate sending addresses to the control store. In this
way, more than one request can be in progress. When the microcode flow returns to idle,
MICR takes the next tag entry and addresses the control store, while the fixup queue
handles the previous request.

MICR uses the tag STRAMs status bits, MTCH results, and CTLD tag queue data to
form the microaddress. During a tag lookup, MICR receives status bits from the tag
STRAMs, match from MTCH MCA, and CTLD_MICR_QDATA_H[15:00] from the tag
lookup queue.

MICR uses the tag status to form the low-order bits of the microaddress and uses the
queue data to form the high-order bits. Figure 4-6 shows the queue data.

Table 4—4 lists the tag queue data fields and their descriptions.

15 14 13 11 10 09 08 07 04 03 00

LENGTH INDEX COMMAND

VALID

NOT USED

MEMORY UNIT, SEGMENT, BANK

NONEXISTENT MEMORY

MR_X0648_89

Figure 4-6 Tag Queue Data

DIGITAL INTERNAL USE ONLY

4-8 Micromachine Control

Table 4-4 Tag Queue Data Bit Descriptions

Bit Name Description

03:00 Command Holds the command for the port that has won arbitration.

07:04 Index Identifies the port and its command buffer for the request.

09:08 Length Specifies the data size for the data transfer to or from
memory (as indicated by the command field).

10 Nonexistent memory Indicates that NPAMM has detected nonexistent memory
for the address latched in the ADRX address hold latches.

13:11 Memory unit Identifies the memory unit and segment as indicated by
MPAMM.

14 - Not used.

15 Valid Indicates that the tag queue has a valid entry.

CTLD sends CTLD_MICR_QDATA_H[15] one cycle after the tag lookup begins. MICR
addresses the.control store after every tag lookup. MICR reads QDATA[03:00] (command)
and QDATA[04:07] (index) to determine how many cycles the tag lookup takes, as well as
the type of request. Due to the STRAM cycle time, the match signal and status bits do
not arrive until two cycles after the tag lookup.

When the tag lookup is complete, MICR generates a fork address for a microword that
specifies load the fixup queue, return to idle or branch.

4.2.4.3 Fixup Queue Address

The fixup queue loads the fix command of the previous microword to form the low-order
bits of the microaddress that handles the fixup. Requests that require fixup include the
following cases:

¢ A CPU has a cache block, written full or partial, that is needed by another CPU. The
JBox must get the data, send it to the requester, and update the tag STRAMs.

¢ One of two CPUs, sharing the same cache block with read status, wants to write to
the cache block. The JBox must change the status of both CPUs’ cache blocks from
read to written full and invalid.

¢ NPAMM has detected nonexistent memory or a nonexistent device for either a CPU
or DMA request, respectively.

The fixup queue interrupts the usual flow of microaddressing. (The microcode returns to
idle after each microword is addressed so that microaddresses for different requests in
progress can be sent to the control store.) The fixup queue forms a microaddress using
the bits listed in Table 4-5. The fixup microwords never initiate a branch and force the
microcode to idle.

DIGITAL INTERNAL USE ONLY

Micromachine Control 4-9

Table 4-5 Fixup Microaddress

Bit Name

Description

04:00 Next address

05 Last CPU

06 Request CPU

07 DMA request

The fixup queue uses the fix command field of the previous
microword to form the 5-bit next address field of the microcode.
The fixup queue accesses 001 through OFF of the control store for
fixup handling.

This bit indicates that the last CPU, in a series of at least two
CPUs, has a cache block that must be invalidated. If more than
one CPU cache must be invalidated, this bit remains 0, until the
last CPU.

0 = Not the last CPU, another CPU has a cache block that
must be invalidated.

1 = This is the last CPU.

This bit indicates that the CPU involved in the fixup is the
requesting CPU.

0 = Not the requesting CPU.

1 = Requesting CPU.
This bit indicates that the request is a DMA request.

0 = Not a DMA request.
1 = A DMA request.

4.2.5 Control Store Loading
Figure 4-7 shows how the control store is loaded at system initialization.

© CTLD receives SCAN_DATA_IN from SPU and sends the control store data to the
data input of the control store STRAMs array. CTLD also latches the write enable as
scan data and sends it to the control store.

® BRANCH_ADR[09:00] from the MICR control logic determines the the microaddress
for the STRAMSs. The addresses to the control store are also sent to the data inputs

of the visibility STRAMs.

© Using a counter, CTLD addresses the three 1K x 4-bit visibility STRAMs and sends
write enable. As the MICR MCA generates the microaddress, the visibility STRAMs
store the microaddress. The visibility STRAMs store the last 1K microaddresses.

DIGITAL INTERNAL USE ONLY

4-10 Micromachine Control

88 030X b

[00:£0lH™110

THONVHE

-
1
|
)
i
|
I
1
|
I
i
i
i
1
I
]

01907 149 HOIN |

Qo aLo
378VN3
EFRL-T l1o]
ssauaay HOLV1 H3ILINNOD
loo:s0l
(43434n8 AHOLSIH) ‘
L1i18-¥ X ML € i
ALIIBISIA 1 d
1no 1n0 HOIW HOIN
ALITIBISIA A,.._Il..ﬂn Viva viva 1
oL 00: 4}
103138 _ _ “ [00:60]
. 00:10 §s3daaqy
loo:e0l |— M AX3N
HOLWVY | ¥ 5060
viva loo:60] i HOIW
ss3yaav i
1
21901 o e | § {00:€ol
L0 HOIN @——— [00:0]JHTILO HONVYE §s3HAav | 10313s
oL loo: 2ol] HONVHE | HONvUE
QLo 1
21901
1o o ———] S5 |
ol {oo:60])]
~_auo B LU AP SE— |
01109110 g 100 viva NI"VIVAQ NVOS]
<.:.WVPKO_§ 100: 19} viva foo:61) iy e g— |
SWVHLS
L118-% X M1 S

JHOLS T0HINOD

Figure 4-7 Loading the Control Store

DIGITAL INTERNAL USE ONLY

Micromachine Control 4-11

4.3 MICRMCA

The MICR MCA contains the microcontrol logic. Figure 4-8 shows the MICR MCA block
diagram. The MICR MCA contains the following:

© Tag STRAMs cache status latch and decode — The MICR latches MIC_REQ_

STATn_H[01:00] and MIC_OTHn_STATn_H[01:00] from the tag STRAMs. MICR
uses the status bits to determine the status of the requester and to determine the
status of each of the other CPUs for the address corresponding to the request.

Tag STRAM:s lock status latch and decode — The MICR MCA latches and
decodes the command to determine whether the lock bit should be set or cleared,
or whether an error has occurred. MICR MCA uses the status bits to determine the
lock status.

MTCH MCA tag match results latch and decode — The MICR MCA latches
and decodes MIC_MATCHn_H[03:00). MTCH MCA compares the port’s physical
address with the address stored in the tag STRAMs to determine whether a match
has occurred. MTCH sends the match results to MICR.

Error latch and decode — The MICR MCA detects cache status, lock status, and
parity errors. MICR checks parity across:

DSCT_AVAIL_H[31:00]
MIC_REQ_STATn_H[01:00]
MIC_OTHn_STATn_H[01:00]
MIC_MATCHn_H[03:00]
CTLC_RSRV_H[32:00]
CTLD_QDATA_H[15:00]

Tag cycle and fork address control — The MICR MCA tag cycle and fork address
control generate MIC_LOOKUP_H and MIC_CYC_INC_HI03:00] to control the tag
lookup and tag status write cycles and MIC_FORK_SEL_H[01:00] to control the
microaddress selection.

Available resources latch and decode — The MICR MCA latches and decodes
available resources.

e PRTRDY_H[09:00] — The MICR MCA decodes the port ready status and
determines if the /O, requester, memory, or other port command buffer is
available.

e DSCT_AVAIL_H[32:00] — The MICR MCA decodes the data switch control lines
and determines whether the data paths, source and destination, are available.

e CTLC_USB_H[02:00] — The MICR MCA decodes the unit, segment, and bank
control lines to determine if the memory segment is available.

DIGITAL INTERNAL USE ONLY

4-12 Micromachine Control

6970590X N

H HLYd 1M OITOIN
HTHIVd LM XEN 21N

{00:12lH AHUSH 011D

[00:€0JH”LvQ Q1OH™ DIN
H™AYSH 03U OIN
foo:20n"awo avor o
loo:20n"x13"avo1"OIN
HT1IN407 QLD

H 'AN3Q 3201 01 JIN

foo:20lH™ @SN " W3N

300930
zwu«._ lo0:2e)H 1IVAY LOSQ
$30HNOS 3 [00:60]H”AGHLYd
318V UVAY
<
. -
loo:60}H vuavn
HYd 141071080
HINDIHD _ .
any HYd IHLIO XD
YOLVHINI®
ALluvd 1V1S OYL

[00:10JHT138 ™ HHOA ™ DIN

H™ dNX0O01 OIN

H IHO4 OIN

A 4 A

[00:€0)H ONITOAD OIN

100:60]H HAV " HHO4 OIN

[00:60JH™QTOH " HHO4 " OIN

[00:60JH AWOXII™HHOA OIN

[00:60JH"HAY HONYHE OIN

$30HNOS 3
ELVERET]

TOHLNOD
SS34QQvV
NHOJ ANV
370A0
ovy

0LV1S ¥D301_HIO
1LVIS™N00T HLO

H3 NANDOY
3090030
ANY HOLY H3 LViS BVL
Houu3
HH3 NXN

H N0 LHM OIN

T73LHMTOVLTOIN

[00:10JH™138™X3ANITOIN

A Ar A A

[00:€0IH™LYLISTOVI OIN

HOLV1
SNLVLS

an3ano

dnXxid

3009034
3001

DIN
JIN

HOLV1

[00:€0IH UHOLY N DI

TOHLINOD
3114M
ovi

H YLVON3S WHW

[o0:€0lH AQH VIVQ DIN

HTGNOXI14™ Q1 WHN

H LNOHAV WHW

$3Nnano
dNXxid

H_aNoa

T

100:201H 1387 X147 01

[00: 20]H " aWOXI14724 DI

(00:£0JH GWOX14 714 01N

loo: 2olH aWOX13 047 OIN

39q023Q
SNivLs
ovyi

HOLVA
SNLVLS

100: 10IHTULYLETUHLO T OIN

ovli

foo:10lH vivis O3 OIN

HILVA
viva
3HOLS
JOHLNOD

31002340
AONYANRNOO

[{00:20]H-13S"HONVHE WUHR
[00:€0)1 VNI THONVHE WUN

[00:60)JH"YAY HONYHE DIN

[00:20)"H VAVQOTGILO

ANVANOD O/t
H344N8 ONYWNOD
SHiVYd 3L1HM
AQY3d viva
SN1VLS BYL

Figure 4-8 MICR MCA Block Diagram

DIGITAL INTERNAL USE ONLY

Micromachine Control 4-13

Reserve latch and decode — The MICR MCA determines if the data path is in use
and sends CTLC_RSRV_H([21:00] to CTLC reserve resources logic.

@ Tag status latch and write enable — The MICR MCA decodes the command to

determine its type. If the command is a lock command, the MICR MCA reads the
lock status and determines if there is a lock or unlock error, or if the lock is busy.
MICR sends this information to the tag status latch and write enable logic. MICR
generates MIC_TAG_STAT_H[03:00] (tag status), MIC_TAG_WRITE_L (tag STRAMs
write enable), MIC_INDEX_SEL_H[01:00] (CPU 0, 1, 2, or 3), and MIC_WRT_LOCK_
H (write lock status).

Command decode — The MICR MCA latches CTLD_QDATA_H[07:00], MIC_VAL _
CMD_H[03:00], and MIC_VAL_INDEX_H[03:00], decodes the command, determines if
the command is valid, and generates MIC_FORK_ADR_H[09:04].

Fixup queue status latch — The MICR MCA has three fixup queues. MICR latches
and decodes MRM_LD_FIXCMD_H (load the fixup queue), MRM_FIXUP_CMD_
H[03:00] (fixup command), and MIC_FIX_SEL_H[02:00] (fixup queue 0, 1, or 2).

The MICR MCA also latches MRAM_DONE_H (clear fixup queue), MRM_ADROUT_
H (reserve the address out resources), MIC_B_DATA_RDY_H[03:00] (port has data in
its output buffer), and MRM_SENDATA_H (port has received send data).

Branch address, select, and enable latch and decode — The MICR MCA latches
and decodes (determines the microword address for) the branch address, select, and
enable fields of the microword and checks parity across these fields.

Three fixup queues — The MICR MCA has three fixup queues that handle cache
inconsistencies, nonexistent memory errors, and lock busy and lock deny requests.
The fixup queue latches the fix command field from the microword and generates a
microaddress to address the fixup microcode in the control store.

Microaddress generator — The MICR MCA selects one of the following
microaddresses to the control store STRAMs array:

e MIC_BRANCH_ADR_H[09:00]
e MIC_FORK_FIXCMD_H[09:00]
¢ MIC_FORK_ADR_H[09:00]

DIGITAL INTERNAL USE ONLY

4-14 Micromachine Control

4.4 Microword Definition

Most of the logic within SCU is controlled directly or indirectly by bits within the
microword. All functions executed by SCU are controlled by generating specific
microwords.

4.4.1 Microword Format
The JBox microword is 60 bits wide. Figure 4-9 shows the format of the microword.

Branch PC [09:00] — This 10-bit field is sent to the MICR MCA and is used to
determine the next address in the microcode flow. It specifies the base address of the
next microword to be accessed. This address may be modified by the microcontrol logic
as a result of the next two fields. Table 4-8 lists the branch select and enable values and
their descriptions.

Branch select [13:10] — This 4-bit field is sent to the MICR MCA and selects a bit
to sample. Table 4-6 lists the values and their descriptions. Table 4-8 lists the branch
select and enable values and their descriptions.

Table 4-6 Branch Select [13:10]

Value Name Description
0 Status Reserved.
Branch select Identifies and selects a logical bit to determine its status.

Branch enable [17:14] — This 4-bit field is sent to MICR to enable the current
microword to sample the state of specific logic signals and modify the low-order bits
of the next microaddress. The next microaddress is based on the state of the selected
signals. Table 4-7 lists the values and their descriptions. Table 4-8 lists the branch
select and enable values and their descriptions.

Table 4-7 Branch Enable [17:14]

Value Name Description
00 None The branch select is not enabled.
OF All Reserved.

DIGITAL INTERNAL USE ONLY

Micromachine Control 4-15

14 13 10 09 00

BRANCH SELECT BRANCH PC

BRANCH ENABLE

29 28 25 24 20 19 18 17 15
MiC BRANCH
TAG STATUS FIX COMMAND FIX ENABLE
INHIBIT FIXUP DONE
44 43 42 41 40 39 38 37 36 35 34 33 31 30
MIiC CTLD| MIC WRT CTLD
cTio| MEM |cria|cris|ARB STRT INDEX cTio
COMMAND MASK ARBITRATION CTLC DONE
READ ABRT MARK
s9 S8 S§7 56 55 S4 53 52 51 S0 49 48 47 45
CTLD MIC |CTID| COMMAND
cTL cTL2|FiX MASK
110 COMMAND CSSE DONE
RESERVED CTLA PARITY
MICROADDRESS CTLB PARITY
PARITY "
CTLC PARITY
CTLD PARITY
MIC PARITY

MR_X0651_89

Figure 4-9 Microword Format

DIGITAL INTERNAL USE ONLY

4-16 Micromachine Control

Branch select and branch enable [17:10] — This 8-bit field is sent to MICR and is
used for forks and branching. Table 4-8 lists the branch select and enable values and
their descriptions. "

Table 4-8 Branch Select and Enable [17:10]

Value Name Description
10 Read done Determines if memory has return data available.
11 Request write path and Determines if the requester’s write path and memory
memory segment are available.
12 Address out or data Determines if the address path is available or if the port
ready has sent data ready.
13 Other command buffer Determines if the other port’s command buffer is
) available to receive a command.
14 Memory write path Determines if the memory write path is available.
15 Memory command buffer Determines if the memory command buffer is available
to receive a command. _
16 Request command buffer Determines if the requester’s command buffer is
» available to receive a command.
17 I/O command buffer Determines if the I/O port command buffer is available
to receive a command.
20 DMA command Determines if the request is an I/0O command.
38 DMA status Determines the DMA status.
41 Request write path Determines if the requester’s write path is available.
70 Status Determines the status of the request.
82 Write pass path Determines if the write pass path is available.
84 Other write path Determines if the other write path is available.
80 Memory unit number Determines the memory unit number.
86 Request read path Determines if the requester’s read path is available.
El Index Determines if the index information is available.
F8 Request status Determines if the request status is available.
F9 Other 0 status Determines if the other 0 status is available.
FA Other 1 status Determines if the other 1 status is available.
FB Other 2 status Determines if the other 2 status is available.
FC Request lock status Determines if the requester lock status is available.
FD Other 0 lock status Determines if the other 0 lock status is available.
FE Other 1 lock status Determines if the other 1 lock status is available.
FF Other 2 lock status Determines if the other 2 lock status is available.

DIGITAL INTERNAL USE ONLY

Micromachine Control 4-17

Done [18] — This 1-bit field is sent to the MICR MCA to indicate that this is the last
cycle of the flow. Done allows MICR to start reading the status for the next request.
The microcode is going to the idle state. Table 4-9 lists the values for this field and
the corresponding descriptions. The next cycle is idle. Tag control increments the input
pointer to the tag queue. This bit also controls the fixup queue.

Table 4-9 Done [18]

Value Name Description

0 No Not the last cycle of the flow. The request cannot be retired. The
fixup queue sends additional microaddresses to handle the fixup.

1 Yes Last cycle of the flow. The MICR can obtain another entry from
the tag queue and load the fixup queue with a fix command Gf
applicable).

MIC fix [19] — This 1-bit field is sent to the MICR MCA to indicate that the fixup queue
is active. When MIC fix [19] is first set in the flow, it indicates that the fixup queue is to
be loaded. When bit 19 is again set in the flow, it indicates that the fixup queue is to be
cleared. Table 4-10 lists the values for this field and the corresponding descriptions.

Table 4-10 MIC Fix [19]

Value Name Description
0 No Do not load or clear the fixup queue. Fixup queue is not active.
1 Yes Load or clear the fixup queue (depending on where the microword is

located in the fixup flow). Fixup queue is active.

Fix command [24:20] — This 5-bit field is sent to the MICR MCA and holds the fix

command that is loaded into one of three fixup queues. The fix command field is used to
encode the low-order address bits of the next fixup microword to perform the fix command
in a previous microword. Table 4-11 lists the fix command values and their descriptions.

DIGITAL INTERNAL USE ONLY

4-18 Micromachine Controtl

Table 4-11 Fix Command [24:20]

Code Command Description

0 " Clear Clears the fixup queue.

1,2 Reserved Reserved for no tag fixes.

3 Write retire Loads the memory command buffer with a write
command, sends write start to the memory segment
controller and CPU send data, and retires the request.

4,5,6,7 Reserved Reserved for the send data command.

9,A,B Reserved Reserved for the get data command.

0A Write invalidate Stops arbitration, writes invalid status, places the
invalidate command into the CPU’s command output
buffer, and sends the address latched in ADRX for the
request to the CPU.

0C Invalidate Stops arbitration, loads the CPU command output
buffer with invalidate, sends the address latched in
ADRX for the request, and writes invalid status.

0D OK to write Stops arbitration, loads OK to write into the CPU
command output buffer, sends address, and writes
written partial status.

OE Lock deny Denies lock request.

OF Lock acknowledge Stops arbitration, loads port command output buffer
with lock acknowledge, sends address, and retires the
request.

10 Write data ready Samples the CPU port’s data ready line and loads the
fixup queue with the write send data command for the
next fixup microaddress.

11 Write read data Samples the CPU’s port data ready and loads the fixup

ready queue with the write read send data command for the
next fixup microaddress.

12 Write pass data Samples the CPU’s port data ready line and loads the

ready fixup queue with the write pass data ready command
for the next fixup microaddress.

13 DMA write data Samples the /O port’s data ready line and loads the

ready fixup queue with the DMA write send data command
for the next fixup microaddress.

14 Write send data Stops arbitration, loads the memory command output

DIGITAL INTERNAL USE ONLY

buffer with the write command, sends the CPU
send data, sends write start to the memory segment
controller, and retires the request.

Micromachine Control 4-19

Table 4-11 (Cont.) Fix Command [24:20]

Code

Command

Description

15

16

17

18

19

1A

1B

1C

1D

1E

1F

Write read send data
Write pass send data
DMA write send
data

Write inva]idate
Write read invalidate
Write pass invalidate
Write pass read
Invalidate write
Read written

Memory read
nonexistent memory

/O read nonexistent
memory

Stops arbitration, loads the memory command output
buffer with the write read command, sends the CPU
send data, sends write start to the memory segment
controller, and retires the request.

Stops arbitration, loads the memory command output
buffer with the write pass command, sends the CPU
send data, sends write start to the memory segment
controller, and retires the request.

Stops arbitration, loads the memory command output
buffer with the write command, sends the 1/O port
send data, sends write start to the memory segment
controller, and retires the request.

Stops arbitration, writes invalid status, loads get data
invalidate into the CPU command output buffer, sends
the address, and loads the fixup queue with the write
data ready command for the next fixup microword
address.

Stops arbitration, writes invalid status, loads get data
invalidate into the CPU command buffer, and loads the
fixup queue with the write read data ready command
for the next fixup microword address.

Stops arbitration, writes invalid status, loads get data
invalidate into the CPU command output buffer, and
loads the fixup queue with the write pass data ready
command for the next fixup microword address.

Stops arbitration, writes read status, loads get data
read into CPU command output buffer, and loads the
fixup queue with the write pass data ready command
for the next fixup microword address.

Stops arbitration, loads the fixup queue with the
invalidate write command for the next fixup microword
address, writes invalid status, and loads the port
command output buffer with invalidate.

Stops arbitration, loads the fixup queue with the OK to
write command for the next fixup microword address,
and loads the command output buffer with invalidate.

Loads the port command output buffer with the
memory read NXM command, sends address, and
retires the request.

Loads the port command output buffer with the /O
read NXM command, sends address, and retires the
request.

DIGITAL INTERNAL USE ONLY

4-20 Micromachine Control

Tag status [28:25] — In this 4-bit field, which is sent to the MICR MCA, [28] is the
write enable, [27:25] is lock status, and [26:25] is cache status. If [28] is asserted, MICR
updates the tag STRAMs as soon as the lookup in progress has finished. The MICR MCA
writes the tag status bits into the cache set block as indicated by the index field [33:31].
Table 4-12 lists the tag status values and their descriptions. Table 4-13 lists the tag
status [28] and index [33] values and their descriptions.

Table 4-12 Tag Status [28:25]

Value Name Description

0 NOP No operation.

8 Invalid or unlock Indicates invalid when writing cache status and indicates
unlock when writing lock status.

9 Read Indicates read when writing cache status.

WRTP or 100 Indicates written partial when writing cache status and

indicates IO0 when writing lock status.

B WRTF or 101 Indicates written full when writing cache status and
indicates I01 when writing lock status.

C CPUO Indicates CPU0O when writing lock status.

D CPU1 Indicates CPU1 when writing lock status.

E CPU2 Indicates CPU2 when writing lock status.

F CPU3 Indicates CPU3 when writing lock status.

Table 4-13 Writing Tag Status

Tag [28] Index [33] Description
0 No write.
0 1 Index [32:31] defines the CPU. Use the MIC_LOCK_
STATUS to write the lock status.
1 0 Tag [27:25] is written. Index [32:31] is not used.
1 1 Tag [27:25] is written using index [32:31].
0 = Write RAMO
1 = Write RAM1
2 = Write RAM2
3 = Write RAM3

DIGITAL INTERNAL USE ONLY

Micromachine Control 4-21

Inhibit fixup queue [29] — This 1-bit field inhibits fixups but does not stop lookups.
This is used in two-cycle operations. Table 4-14 lists the values for this field and the
corresponding descriptions.

Table 4-14 Inhibit Fixup Queue [29]

Value Name Description
0 No Do not inhibit fixups.
1 Yes Inhibit fixup in the next cycle.

CTLD CTLO [80] — This 1-bit field works with CTLD CTL1 [56] and CTLD CTL2 [40].
Table 4-15 lists the values for this field and the corresponding descriptions.

Table 4-15 CTLD Control Bits [40, 56, 30]
CTLD CTL2 CTLD CTL1 CTLD CTLO

[40] [56] (80] Description
0 0 0 NOP.
0 0 1 INC SET. Indicates an interrupted read,

which can resume from where it left off
when the microcode is finished. Writes the
inverse of the set number that MICR sends
to CTLD.

0 1 0 INC LOCK. Indicates an interrupted read,
which can resume from where it left off
when the microcode is finished. Writes lock
status in the section of the tag STRAMs
that is reserved for lock bits.

0 1 1 INC. Indicates an interrupt read, which
can resume from where it left off when the
microcode is finished.

1 0 0 Unused.

1 0 1 HOLD SET. Indicates an interrupt read,
which must start over when the microcode
is finished. Writes the inverse of the set
number that MICR sends to CTLD.

1 1 0 HOLD LOCK. Indicates an interrupt read,
which must start over when the microcode
is finished. Writes lock status in the section
of the tag STRAMs that is reserved for lock
bits.

1 1 1 HOLD. Indicates an interrupt read, which
must start over when the microcode is
finished.

DIGITAL INTERNAL USE ONLY

4-22 Micromachine Control

Index [33:31] — This 3-bit field indicates in which CPU tag location, requester or other,
to write the tag status field [28:25]. If [33] = 0, then [32:31] indicates the following: 0 =
all CPUs with valid status, 1 = requester only, 2 = fixup queue (refresh), 3 = fixup queue
increment (refresh minus the selected or taken CPU). If [33] = 1, [32:31] indicates the
following: write 0 = RAMO, 1 = RAM1, 2 = RAM2, and 3 = RAM3. Table 4-16 lists the
values for this field and the corresponding descriptions. Table 4—13 lists tag status [28]
and index [33] values and their descriptions.

Table 4-16 Index [33:31]

Value Name Description

0 Requester Uses the index field to identify the command buffer and port.

1 Fix Uses the index field to identify the command buffer and port.

2 - Reserved.

3 - Reserved.

4 Lock Sets or clears the bit using the index field to identify the command
buffer and port.

5 Reserve 1 Sets or clears the bit using the index field to identify the command
buffer and port.

6 Reserve 2 Sets or clears the bit using the index field to identify the command
buffer and port.

7 Reserve 3 Sets or clears the bit using the index field to identify the command
buffer and port.

CTLC done [34] — This 1-bit field is sent to the memory segment controllers in the
CTLC MCA. Table 4-17 lists the values of this field and the corresponding descriptions.
Each of the four memory segment controllers uses [34] as a qualifier for write start [36]
and read abort [37]. The microword sends either [36] or [37], along with [34], to indicate
the status of the memory operation.

The memory segment controller uses CTLC to do the following:

Retire the request.
e Determine if the tag status has been written.
¢ Allow arbitration to continue.

¢ Determine if fixup is done (if applicable).

Table 4-17 CTLC Done [34]

Value Name Description

0 No Request is still in progress. The port command buffer and ADRX
address latch still hold the command and address.

1 Yes Done. Retires the request.

DIGITAL INTERNAL USE ONLY

Micromachine Control 4-23

Mark [85] — Reserved.

Write start [36] — This 1-bit field is sent to the CTLC MCA. CTLC receives [36] and
CTLC done [34] to indicate the beginning of a memory write operation. The memory
segment controller sends this information to MMCX for DRAM to send RAS, CAS, and
write enable when ADRX sends row and address bits to the memory array. Table 4-18
lists the values for this field and the corresponding descriptions. Bit [36] is set for
longword updates and DMA write requests and forces the JBox to send a get data
command.

Table 4-18 Write Start [36]

Value Name Description
0 NOP No operation.
1 Yes Starts memory write operation.

Read abort [37] — This 1-bit field is sent to the CTLC MCA when the JBox must stop
a read that has already started. CTLC receives [37] and CTLC done [34] to indicate
that the JBox has detected a cache inconsistency or parity error. If [37] = 1, the JBox
does not perform a get data. The requester already has the cache block and wants to
change the status from read to written (write refill). The JBox responds with OK to write
with no data transfer. Table 4-19 lists the values for this field and the corresponding
descriptions.

Table 4-19 Read Abort [37]

Value Name Description
0 NOP No operation.
1 Yes Aborts memory read operation.

Arbitration [88] — This 1-bit field controls port arbitration. The microcode and startup
logic share resources (address and data paths). If [38] is set, the microcode controls

the address and data paths (source and destination). When the microcode completes
the request, it releases the address and data paths by resetting [38] in the microword.
Table 4-20 lists the values for this field and the corresponding descriptions.

Table 4-20 Arbitration [38]

Value Name Description
0 OK Continues arbitration.
Stop Stops arbitration.

DIGITAL INTERNAL USE ONLY

4-24 Micromachine Control

MIC CTL1 [39] — This 1-bit field works with MIC CTLO [43] and MIC CTL2 [49].
Table 4-21 lists the values for this field and the corresponding descriptions.

Table 4-21 MIC Control Bits [49, 43, 39]

MIC CTL2 [49] MIC CTL1{39] MIC CTLO [43] Description

0 0 0 NOP

0 0 1 Requesters command buffer
0 1 0 CPU send data

0 1 1 Clear data ready

1 0 0 Address out

1 0 1 Error

1 1 0 I/O send data

1 1 1 Tag status [03]

CTLD CTL2 [40] — This 1-bit field works with CTLD CTL 0 [30] and CTLD CTL 1 [56].
Table 4—15 lists the values for this field and the corresponding descriptions.

Memory [42:41] — This 2-bit field is sent to the memory segment controllers in CTLC.
Table 4-22 lists the values for this field and the corresponding descriptions.

Table 4-22 Memory [42:41]

Value Name Description
.0 NOP No operation.
OK Indicates the request status. The microword sends OK when

a memory operation is in progress that allows the memory
operation to continue until completed.

2 Abort Indicates the request status. The microword sends abort
when a memory operation is in progress to stop the memory
operation.

3 - Reserved.

MIC CTLO [43] — This 1-bit field works with MIC CTL1 [39] and MIC CTL2 [49].
Table 4-21 lists the values for this field and the corresponding descriptions.

DIGITAL INTERNAL USE ONLY

Micromachine Control 4-25

Command mask [47:44] — This 4-bit field is sent to CTLB to form the command field of
the port’s command interface. The JBox samples the port buffer’s available lines before
loading the command [47:44] into the port’s output buffer. Table 4-23 lists the command
mask values and their descriptions.

Table 4-23 Command Mask [47:44]

Value Name Description
0 Get data write Loads the CPU command output buffer with the get data
write command.
1 Get data read Loads the CPU command output buffer with the get data
read command.
2 Get data invalidate Loads the CPU command output buffer with the get data
invalidate command.
5 Read to written Loads the CPU command output buffer with the OK to write
command.
6 Invalidate Loads the CPU command output buffer with the invalidate
command.
7 SPU read Loads the I/O command output buffer with the SPU NXM
nonexistent memory command.
9 Lock acknowledge Loads the port command output buffer with the lock
acknowledge command.
A Memory read Loads the CPU command output buffer with the memory
nonexistent memory read NXM command.
B 1/O read nonexistent Loads the I/O command output buffer with the I/O read
memory NXM command.
C Lock deny Loads the port command output buffer with the lock deny
command.
D Write read Loads the memory port output command buffer with the
write read command.
E Write Loads the memory port output command buffer with the
write command.
F Write pass Loads the memory port output command buffer with the

write pass command.

CTLD fix [48] — This 1-bit field notifies the CTLD not to send queue data to MICR.
Bit [48] is set when the fixup queue is loaded and is set again when the fixup queue is
cleared. Table 4-24 lists the values for this field and the corresponding descriptions.

DIGITAL INTERNAL USE ONLY

4-26 Micromachine Control

Table 4-24 CTLD Fix [48]

Value Name Description
0 No Do not send tag queue data to MICR.
1 Yes Send tag queue data to MICR.

MIC CTL2 [49] — This 1-bit field works with MIC CTLO [43] and MIC CTL1 [39].
Table 4-21 lists the values for this field and the corresponding descriptions.

CSSE done [50] — This 1-bit field is another copy of the done bit and is sent to
the CSSE connector. Table 4-9 lists the values for this field and the corresponding
descriptions.

CTLA parity [51] — This 1-bit field contains the odd parity sent to the CTLA MCA for
the microbits listed in Table 4-25. CTLA uses [51] to check the parity across the control
store data.

Table 4-25 CTLA Parity [51]
Bit Field

38 ARB

CTLB parity [52] — This 1-bit field contains the odd parity sent to the CTLB MCA for
the microbits listed in Table 4-25. CTLB uses [52] to check the parity across the control
store data. Table 4-26 lists the values for this field and the corresponding descriptions.

Table 4-26 CTLB Parity [52]

Bit Field

38 ARB

36 WRT STRT

59 1I/0 command
47:44 Command mask

CTLC parity [53] — This 1-bit field contains the odd parity sent to the CTLC MCA for
the microbits listed in Table 4-27. CTLC uses [53] to check the parity across the control
store data.

DIGITAL INTERNAL USE ONLY

Micromachine Control 4-27

Table 4-27 CTLC Parity 53]

Bit Field

59) I/0 command
42:41 MEM

37 - Read abort
36 Write start
18 CTLC done
39 CTL1

CTLD parity [54] — This 1-bit field contains the odd parity sent to the CTLD MCA for
the microbits listed in Table 4-28. CTLD uses [54] to check the parity across the control
store data it latches. :

Table 4-28 CTLD Parity [54]

Bit Field

57 ADR PAR
48 CTLD fix
56 Set

40 Fix hold
30 Lock

38 ARB

MIC parity [55] — This 1-bit field contains the odd parity sent to the MICR MCA for
the microbits listed in Table 4-29. MICR uses [55] to check the parity across the control
store data.

Table 4-29 MIC Parity [55]

Bit Field

13:10 Branch select
17:14 Branch enable
9:0 Branch PC

50 Done

19 MIC fix

CTLD CTL1 [56] — This 1-bit field works with CTLD CTLO [30] and CTLD CTL2 [40].
Table 4-15 lists the values for this field and the corresponding descriptions. If (MICR_

SET = 1 and MRM_SET = 0) or MICR_SET = 0 and MRM_SET = 1), then set 0 = 1. If
lock, set 1 = 1.

Microaddress parity [57] — This 1-bit field is the parity across the microaddress of
this microword.

Reserved [58].

DIGITAL INTERNAL USE ONLY

4-28 Micromachine Contro!

IO command [59] — This 1-bit field is sent to CTLB and CTLC and indicates if
the microword is for an I/O request. Table 4-30 lists the values for this field and the
corresponding descriptions.

Table 4-30 1/0 Command [59]

Value Name Description
0 No Not an I/0 command.
1 Yes 1/0 command.

4.4.2 Microcoding Examples

This section examines microcoding examples and shows how to analyze the information
contained in the JBox microcode listing. The bit description tables in this chapter support
the examples. Each example includes the following:

¢ Request definition

¢ Flowchart

e Symbolic encoding

¢ Hex encoding

¢ Bit encoding

4.4.2.1 CPU Read Refill — No Fixup Required

In this example, CPUO sends a read refill to JBox for the cache block starting at address

1000. The global tag STRAMS’ status indicates that this block is invalid in all four CPU
caches. The following steps summarize the read refill request operation:

1. CPUO sends a load command, read refill command, address 1000, cache set 0 in the
first cycle, and in the second cycle, the remainder of address 1000.

2. MICR latches and decodes the tag STRAM status bits, MTCH MCA match results,
and CTLD tag queue data. MICR then generates microaddress 100.

3. The microword specifies a memory read from the memory unit, segment, and bank
identified by MPAMM. It also specifies which address in the address latches in ADRX
is to generate the row and column address bits to the memory array cards.

4. The microword specifies to write the tag status as read. MICR writes the tag status
for the cache block status for address 1000 as CPUO = read; CPU1, 2, and 3 = remain
invalid.

Figure 4-10 shows the microcode flow for the read refill request. Example 41 shows the
symbolic encoding for the read refill request.

DIGITAL INTERNAL USE ONLY

CP.READ.REFILL.INV.INV:

J100 178, 0204, 5204, 0000 WRITE REQUESTER TAG STATUS

Micromachine Control 4-29

INCREMENT TAG QUEUE INPUT
POINTER FOR NEXT ENTRY.

AS READ. RETIRE REQUEST.

MR_X0652_89

Figure 4-10 Read Refill Flow

HEX ENCODING: Ji00 178,0204,5204,0000

SYMBOLIC ENCODING:

CP.READ.REFILL.INV.INV: INCG,

TAG STAT/RD,
CTLC DONE/YES,
GO TO [IDLE]

Example 4-1 Read Refill Symbolic Encoding
The symbolic encoding can be interpreted as follows:

MEM/OK — Continue the memory read operation.

INC — The tag is being written. Increment the tag queue input pointer for the
next entry. If not a tag write, the CTLD tag queue input pointer is incremented
automatically.

TAG STAT/RD — Write read tag status for CPUO.
CTLC DONE/YES — Retire the request.
GO TO [IDLE] — Return to the idle state.

The bit encoding is shown in Table 4-31.

DIGITAL INTERNAL USE ONLY

4-30 Micromachine Control

Table 4-31 Microaddress 100 CPU Read Refill Microword Bits

Bit Name Value Description

09:00 Branch PC 00 0000 0000 -

13:10 Branch select 0000 -

17:14 Branch enable 0000 NOP.

18 Done 1 Indicates that MICR can obtain another
request from the tag queue.

19 MIC fix 0 Does not load the fixup queue.

24:20 Fix command 0 0000 NOP.

28:25 Tag status 1001 Writes read status using the requester’s
index.

29 Inhibit fixup 0 Does not inhibi’;; fixups.

30 CTLD CTLO Allows a read in progress to resume from
where the microcode left off.

33:31 Index 000 -

34 CTLC done 1 Retires request.

35 Mark 0 -

36 Write start 0 NOP.

37 Read abort 0 NOP.

38 ARB 0 Does not stop arbitration.

39 MIC CTL1 0 NOP.

40 CTLD CTL2 0 Allows a read in progress to resume from
where the microcode left off.

42:41 MEM 01 -Status OK.

43 MIC CTLO 0 NOP.

47:44 Command mask 0000 NOP.

48 CTLD fix 0 Sends tag queue data to MICR.

49 MIC CTL2 0 NOP.

50 CSSE done 0 -

51 CTLA parity 1 -

52 CTLB parity 1 -

53 CTLC parity 1 -

54 CTLD parity 1 -

55 MIC parity 0 -

56 CTLD CTL1 1 Allows a read in progress to resume from
where the microcode left off.

57 ADR parity 0 -

58 - - Reserved.

59 /O command 0 Signifies that this is not an /O request.

DIGITAL INTERNAL USE ONLY

Micromachine Control 4-31

4.4.2.2 CPU Read Refill — With Fixup Required

In this example, the cache block with the starting address 1000 has written full status
in the CPUO global tag STRAM and invalid status for CPU1, CPU2, and CPU3. CPU1
sends a read refill to the JBox for the cache block. The CPU1 tag STRAM status for
location 1000 is changed from invalid to read. The CPUO tag STRAM status for location
1000 is changed from written full to read. The following steps summarize the read refill
request operation when a fixup is required:

1. CPU1 sends a load command, read refill command, address 1000, and cache set 0 in
the first cycle, and in the second cycle, the remainder of address 1000.

2. MICR latches and decodes the tag STRAM status bits, MTCH MCA match results,
and CTLD tag queue data. MICR then generates microaddress 107.

3. The microword at 107 specifies that a fixup is required, aborting the memory read
operation that has already started (memory read is already in progress to optimize
performance). The cache tag status informs MICR that more recent data is in the
CPUO cache and loads the fixup queue with the write pass read command. The fixup
queue uses the fix command to form the low-order bits of the next microword address,
03B. The microword also specifies that the CPU1 tag status is to be written as read.

4. The microword at 03B specifies that arbitration is to be stopped, the CPUO status is
to be written as read, and a get data read command is to be sent to CPUQ with the
address latched in ADRX. When CPUO needs to write to the cache block (now with
read status), it sends a write refill command. The JBox sends CPUO an OK to write
command and changes the cache status from read to written. The JBox also loads
the fixup queue with a write pass data ready command to form the next microword
address, 032.

5. The microword at 032 samples the data ready line from CPUOQ and sends a write pass
send data fix command to the fixup queue. CPUO loads the write back buffer and
sends the JBox data ready.

6. The microword at 036 specifies that the memory port is to receive a write pass
memory command. The JBox unloads CPUO’s cache block at address 1000, passes it
to the CPU1 data switch lines, and then writes the data into memory. The microcode
needs the data paths (source and destination) and stops port arbitration (until the
data transfer is complete). The tag queue input pointer is incremented to point to
the next entry in the tag queue. The fixup queue is cleared and the CTLC retire logic
retires the request.

A memory write is performed using the memory unit, segment, and bank identified
by MPAMM. The address in ADRX generates the row and column address bits for the
memory array cards.

Figure 4-11 shows the microcode flow for the read refill request. Example 4-2 shows the
symbolic encoding for the read refill request.

DIGITAL INTERNAL USE ONLY

4-32 Micromachine Control

CP.READ.REFILL.INV.WRTF:
J 107 199, 0400, S3BC, 0000
(CPU1 REQUEST)

WRITEPASS.RD.FQ:
J 03B 112, 1041, 5324, 0000
(CPUO REQUEST)

DAT.RDY.WRITEPASS FQ.
J 032 078, 0881, 0164, 0000

MEM.WRT.WRITEPASS . FQ:
J 036 041, F845, 800C, 0000

O

ABORT MEMORY READ. LOAD
FIXUP QUEUE WITH WRITE

PASS READ COMMAND.
INCREMENT THE TAG QUEUE.
INPUT POINTER FOR NEXT ENTRY.

19;

STOP ARBITRATION. LOAD
FIXUP QUEUE WITH WRITE PASS
DATA READY COMMAND. SEND
GET DATA READ TO CPU PORT.
SEND ADDRESS IN ADRX.

(O

SAMPLE THE CPU DATA READY
LINE. LOAD THE FIXUP QUEUE
WITH THE WRITE PASS. SEND.
DATA COMMAND.

19;

STOP ARBITRATION. INCREMENT
THE TAG QUEUE INPUT POINTER
TO POINT TO THE NEXT ENTRY.
SEND WRITE PASS COMMAND TO
MEMORY PORT.

Oy

MR_X0653_8¢

Figure 4-11 Read Refill — With Fixup Flow

DIGITAL INTERNAL USE ONLY

Micromachine Control 4-33

HEX ENCODING: J 107 199,043C,53BC, 0000

SYMBCLIC ENCODING:

CP.READ.REFILL.INV.WRTF: FIXUP,

INC,

TAG STAT/RD,
MEM/ABORT,
INDEX/VAL,
FIXCMD/WRITEPASS RD,
GO TC [IDLE}

HEX ENCODING: J 03B 112,1041,5324,0000

SYMBOLIC ENCODING:

WRITEPASS.RD.FQ: INC,

INDEX/FIX,

ARB/STOP,

TAG STAT/RD,

CMDMSK/GET DATA RD
FIXCMTC/WRITEPASS DATRDY,
ADROUT,

GO TO [IDLE}

HEX ENCODING: J 032 078,0881,0164,0000

SYMBCLIC ENCODING:

DAT.RDY.WRITEPASS.FQ: [DCATRDY,

FIXCMD/WRITEPASS SENDAT,
INDEX/FIX,
GC TO ([IDLE]

HEX ENCODING: J (36 041,F84%,800C,000C

SYMBCLIC ENCCDING:

MEM.WRT ,WRITEPASS.FQ: ARB/STOP,

CMDMSK/WRITEPASS,
INDEX/FIX INC,
CLEAK FIX,

CTLC DONE/YES,

CP SENDATA,

GC TC [IDLE]

Example 4-2 Read Refill — With Fixup Symbolic Encoding

The symbolic encoding for microaddress 107 can be interpreted as {ollows:

FIXUP — CPU1 needs the cache block (written full) in the CPUO cache set. The
microcode indicates that the fixup queue needs to resolve the conflict.

INC — The tag is being written. Increment the tag queue input pointer for the
next entry. If not a tag write, the CTLD tag queue input pointer is incremented
automatically. The JBox can have four fixup requests in progress.

TAG STAT/RD — Write read tag status for CPU1.

MEM/ABORT — Stop the memory read already started. The latest copy of the data
that CPU1 needs is not in memory but in CPUO cache set 0.

INDEX/VAL — This is used to load the fixup queue with the CPU number to be
reserved, CPUO in this example.

FIXCMD/WRITEPASS RD — The microcode loads a write pass read fix command
into the fixup queue. The fixup queue uses this command field and generates the
low-order bits of the next microaddress (03B).

GO TO [IDLE] — Return to idle.

DIGITAL INTERNAL USE ONLY

4-34 Micromachine Control

The bit encoding for microaddress 107 is shown in Table 4-32.

Table 4-32 Microaddress 107 CPU Read Refill (With Fixup) Microword Bits

Bit Name Value Description

09:00 Branch PC 00 0000 0000 -

13:10 Branch select 0000 -

17:14 Branch enable 0000 Does not enable branch select logic.

18 Done 1 Indicates that MICR can read the next entry
in the tag queue.

19 MIC fix 1 Loads the fixup queue.

24:20 Fix command 11011 Indicates that write pass read is the fix
command loaded into the fixup queue
and forms the low-order bits of the next
microaddress.

28:25 Tag status 1001 Writes read status (CPU1).

29 Inhibit fixup 0 Does not inhibit fixup queue.

30 CTLD CTLn 1 Allows an interrupted read to resume from
where it left off when the microcode is
finished.

33:31 Index 000 Uses the requester’s index value (CPU1).

34 CTLC done 0 Indicates that a request is still in progress.

35 Mark 0 NOP.

36 Write start 0 NOP.

37 Read abort 0 NOP.

38 ARB 0 Does not stop arbitration.

39 MIC CTL1 0 NOP.

40 CTLD CTLn 0 Allows an interrupted read to resume from
where it left off.

42:41 MEM 10 Indicates abort status.

43 MIC CTLO 0 NOP.

47:44 Command mask 0000 NOP.

48 CTLD fix 1 Loads fixup queue with the fix command.

49 MIC CTL2 0 NOP.

50 CSSE done 0 NOP.

51 CTLA parity 1 -

52 CTLB parity 1 -

53 CTLC parity 0 -

54 CTLD parity 0 -

55 MIC parity 1 -

56 CTLD CTLn 1 Allows an interrupted read to resume from
where it left off.

57 ADR parity 0 -

DIGITAL INTERNAL USE ONLY

Micromachine Control 4-35

Table 4-32 (Cont.) Microaddress 107 CPU Read Refill (With Fixup) Microword Bits

Bit Name Value Description
58 - - Reserved.
59 I/0 command 0 Signifies that this is not an I/0 command.

The symbolic encoding for microaddress 03B can be interpreted as follows:

¢ INC — The tag is being written. Increment the tag queue input pointer for the
next entry. If not a tag write, the CTLD tag queue input pointer is incremented
automatically.

e INDEX/FIX — This reloads the reserved CPU number into the fixup queue. It also
generates the write enable for the tag write (CPUO).

e ARB/STOP — Data and address paths are now controlled by the microcode. Port
arbitration stops.

¢ TAG STAT/RD — Write the read tag status for CPUO.

e CMDMSK/GET DATA READ — Get the data from CPUO and leave the cache block
in the cache data STRAMs with read status. If CPUO needs to write to this cache
block, it sends a write refill. JBox knows that CPUO already has the cache block and
can send an OK to write command and that the MICR can change the cache status
from read to written full.

e FIXCMD/WRITEPASS DATRDY — The fixup queue uses the fix command to form
the low-order bits for the next microword (032).

¢ ADROUT — The JBox uses the address in the ADRX hold latches when it sends a
get data read command to CPUO. CPUO decodes the get data read command and uses
the address to address the cache block in the cache data STRAMs in the MBox.

¢ GO TO [IDLE] — Return to the idle state.
The bit encoding for microaddress 03B is shown in Table 4-33.

Table 4-33 Microaddress 03B CPU Read Refill (With Fixup) Microword Bits

Bit Name Value Description

09:00 Branch PC 00 0000 0000 -

13:10 Branch select 0000 -

17:14 Branch enable 0000 Does not enable branch select logic.

18 Done 1 Indicates that MICR can get an entry from
the tag queue.

19 MIC fix 0 NOP.

24:20 Fix command 10010 Loads fixup queue with write pass data ready
command.

28:25 Tag status 1001 Writes tag status as read.

29 Inhibit fixup 0 Does not inhibit fixups.

DIGITAL INTERNAL USE ONLY

4-36 Micromachine Control

Table 4-33 (Cont.) Microaddress 03B CPU Read Refill (With Fixup) Microword Bits

Bit Name Value Description

30 CTLD CTLn 1 Allows an interrupted read to resume from
where it left off when the microcode is
finished.

33:31 Index 001 Writes the status for the other (CPU1).

34 CTLC done -0 Indicates that a request is still in progress.

35 Mark 0 NOP.

36 Write start 0 NOP.

317 Read abort 0 NOP.

38 ARB 1 Stops arbitration.

39 MIC CTL1 0 Sends the address in the ADRX hold latch
with the port command (get data read).

40 CTLD CTLn 0 Allows an interrupted read to resume from
where it left off when the microcode is
finished.

42:41 MEM 00 Indicates OK status.

43 MIC CTLO 0 Sends the address in the ADRX hold latch
with the port command.

47:44 Command mask 0001 Loads CPUO command output buffer with the
get data read command.

48 CTLD fix 0 NOP.

49 MIC CTL2 1 Sends the address in the ADRX hold latch
with the port command.

50 CSSE done 0 NOP.

51 CTLA parity 0 -

52 CTLB parity 1 -

53 CTLC parity 0 -

54 CTLD parity 0 -

55 MIC parity 0 -

56 CTLD CTLn 1 Allows an interrupted read to resume from
where it left off when the microcode is
finished.

57 ADR parity 0 -

58 - - Reserved.

59 I/O command 0 Signifies that this is not an I/O command.

DIGITAL INTERNAL USE ONLY

Micromachine Contro! 4-37

The symbolic encoding for microaddress 032 is as follows:
¢ DATRDY (CLEAR) — This tells the fixup queue not to wait for data ready any

longer.

¢ FIXCMD/WRITEPASS SENDAT — The microcode loads the fixup queue with write
pass send data fix command. The fixup uses the fix command and generates the next
microaddress (036).

¢ INDEX/FIX — Generates the write enable for the tag write.
e GO TO [IDLE] — Return to idle.
The bit encoding for microaddress 032 is shown in Table 4-34.

Table 4-34 Microaddress 032 CPU Read Refill (With Fixup) Microword Bits

Bit Name Value Description

09:00 Branch PC 00 0000 0000 -

13:10 Branch select 0000 -

17:14 Branch enable 0000 Does not enable branch select logic.

18 Done 1 Indicates that MICR can get an entry from
the tag queue.

19 MIC fix 0 NOP.

24:20 Fix command 10110 Loads fixup queue with write pass send data
command.

28:25 Tag status 0000 NOP.

29 Inhibit fixup 0 Does not inhibit fixups.

30 CTLD CTLn 0 NOP.

33:31 Index 010 Invalidates the next CPU if applicable.

34 CTLC done 0 Indicates that a request is still in progress.

35 Mark 0 NOP.

36 Write start 0 NOP.

37 Read abort 0 NOP.

38 ARB 0 Does not stop arbitration.

39 MIC CTL1 1 Clears the data ready line.

40 CTLD CTLn 0 NOP.

42:41 MEM 00 Indicates OK status.

43 MIC CTLO 1 Clears the data ready line.

47:44 Command mask 0000 NOP.

48 CTLD fix 0 NOP.

49 MIC CTL2 0 Clears the data ready line.

50 CSSE done 0 NOP.

51 CTLA parity 1 -

52 CTLB parity 1 -

53 CTLC parity 1 -

DIGITAL INTERNAL USE ONLY

4-38 Micromachine Control

Table 4-34 (Cont.) Microaddress 032 CPU Read Refill (With Fixup) Microword Bits

Bit Name Value Description

54 CTLD parity 1 -

55 MIC parity 0 -

56 CTLD CTLn 0 NOP.

57 ADR parity 0 -

58 - - Reserved.

59 /O command 0 Signifies that this is not an I/O command.

The symbolic encoding for microaddress 036 is as follows:

ARB/STOP — Stop arbitration.
CMDMSK/WRITEPASS — Send a write pass command to the memory port.

INDEX/FIX INC — Generates the write enable for the tag write and increments the
tag queue input pointer.

CLEAR FIX — Clear the fixup queue.
CTLC DONE/YES — Retire the CPU1 read refill request.
CP SENDATA — Send a send data command to CPUO.

The bit encoding for 036 is shown in Table 4-35.

Table 4-35 Microaddress 036 CPU Read Refill (With Fixup) Microword Bits

Bit Name Value Description

09:00 Branch PC 00 0000 0000 -

13:10 Branch select 0000 -

17:14 Branch enable 0000 Does not enable branch select logic.

18 Done 1 Indicates that MICR can get an entry from
the tag queue.

19 MIC fix 1 Clears the fixup queue.

24:20 Fix command 0 0000 Clear.

28:25 Tag status 0000 NOP.

29 Inhibit fixup 0 Does not inhibit fixups.

30 CTLD CTLn 0 NOP.

33:31 Index 011 -

34 CTLC done 1 Retires a request.

35 Mark 0 NOP.

36 Write start 0 NOP.

37 Read abort 0 NOP.

38 ARB 1 Stops arbitration.

DIGITAL INTERNAL USE ONLY

Micromachine Control 4-39

Table 4-35 (Cont.) Microaddress 036 CPU Read Refill (With Fixup) Microword Bits

Bit Name Value Description

39 MIC CTL1 0 Reserves the requester’s output command
buffer.

40 CTLD CTLn 0 NOP.

42:41 MEM 00 Indicates OK status.

43 MIC CTLO 1 Reserves the requester’s output command

: buffer.

47:44 Command mask 1111 Loads the memory port command buffer with
the write pass command.

48 CTLD fix 1 Clears the fixup queue.

49 MIC CTL2 0 Reserves the requester’s output command
buffer. '

50 CSSE done 0 NOP.

51 CTLA parity 0 -

52 CTLB parity 0 -

53 CTLC parity 0 -

54 CTLD parity 1 -

55 MIC parity 0 -

56 CTLD CTLn 0 NOP.

57 ADR parity 0 -

58 - - Reserved.

59 /0 command 0 Signifies that this is not an I/O command.

4.4.2.3 CPU Write Refill — Without Fixup

In this example, the cache block with the starting address 1000 has invalid status in the
CPUO, CPU1, CPUZ2, and CPU3 tag status STRAMs. CPUO sends a write refill to the
JBox to request the cache block. The following steps summarize the write refill request
operation:

1. CPUO sends a load command, write refill command, address 1000, cache set 0 in the
first cycle, and in the second cycle, sends the remainder of address 1000.

2. MICR latches and decodes the tag STRAMs status bits, MTCH MCA match results,
and CTLD tag queue data to generate microaddress 110.

3. The microword specifies a memory write from the memory unit, segment, and bank
identified by MPAMM, and specifies that the address in ADRX is to generate the row
and column address bits to be sent to the memory array cards.

4. The microword specifies that the tag status is to be written as written full for the
cache block at address 1000 for CPUO.

DIGITAL INTERNAL USE ONLY

4-40 Micromachine Control

The symbolic encoding can be interpreted as follows:

¢ INC — The tag is being written. Increment the tag queue input pointer for the
next entry. If not a tag write, the CTLD tag queue input pointer is incremented
automatically.

¢ TAG STAT/WRTF — Write written full tag status for the requester.
¢ MEM/OK — Continue the memory read operation.

¢ WRT — Reserved.

¢ CTLC DONE/YES — Retire the request.

e GO TO [IDLE] — Return to the idle state.

4.4.2.4 DMA Read — Without Fixup

In this example, the cache block with the starting address 1000 has invalid status in the

CPUO, CPU1, CPU2, and CPU3 tag status STRAMs. ICUO has received an XJA0 DMA

read command, for address 1000, for 32 bytes (hexword) of data. Example 4-3 shows the

symbolic encoding for the read refill request. The following steps summarize a DMA read

request operation:

1. XJAO sends a DMASREAD_REQUEST, address 1000, XMI ID, and length (octaword).
ICU sends an acknowledgment to XJAOQ.

2. ICU sends the JBox the load command, DMA read command, and address 1000. ICU
sends a buffer available command to XJAO.

3. MICR latches and decodes the tag STRAMs status bits, MTCH MCA match results,
and CTLD tag queue data to generate microaddress 200.

4. The microword specifies a DMA read from the memory unit, segment, and bank
identified by MPAMM and specifies that the address in ADRX (in the /O address
latch) is to generate the row and column address bits to be sent to the memory array
cards.

5. ICU sends DMASREAD_DATA_RETURN, return address 1000, length (hexword),
and four quadwords, 0, 1, 2, and 3, to XJAO. XJAO sends an acknowledgment to
ICU. When XJAO unloads its command/address/data receive buffer, it sends a buffer
available command to ICU.

HEX ENCODING: J 200 07c, 0204, 0004, 0000

SYMBOLIC ENCODING:

DMA.READ.INV.INV: SEG,
MEM/OK,
CTLC DONE/YES,
GO TO [IDLE]

Example 4~-3 DMA Read Symbolic Encoding

The symbolic encoding can be interpreted as follows:

¢ SEG — Reserved.

e MEM/OK — The memory read operation can continue.
¢ CTLC DONE/YES — Retire the request.

¢ GO TO [IDLE] — Return to the idle state.

DIGITAL INTERNAL USE ONLY

Micromachine Control 4-41

4.4.2.5 DMA Read — With Fixup

In this example, the cache block with the starting address 1000 has written full status
in the CPU1 tag status STRAM and invalid status in CPUO, CPU2, and CPU3. ICUO
sends a DMA read to the JBox. Figure 4-12 shows the microcode flow for the DMA
read request. Example 44 shows the symbolic encoding for the read refill request. The
following steps summarize the DMA read request operation when a fixup is required:

1
2.

ICUO sends a load command, DMA read command, and address 1000.

MICR latches and decodes the tag STRAMs status bits, MTCH MCA match results,
and CTLD tag queue data to generate microaddress 207.

The microword at 207 specifies an abort memory read (memory read is already in
progress to optimize performance; the cache tag status informs MICR that more
recent data is in the CPUO cache) and loads the fixup queue with write pass
read command. The fixup queue uses the fix command field to generate the next
microaddress, 0BB.

The microword at 0BB writes the CPU1 status as read. If CPU1 has to write to the
cache block, it sends write refill. The tag STRAMs indicate that CPU1 has the cache
block with read status. The JBox sends OK to write to the CPU and changes the tag
status from read to written full. The microcode loads the fixup queue with a write
pass send data command to generate the next microword address, 0B2.

The microword at 0B2 samples the data ready line from CPU1 and sends write pass
send data fix command to the fixup queue. The fixup queue uses the fix command to
form the next microword address, 0B6. CPU1 loads the write back buffer and sends
the JBox data ready.

The microword at 0B6 specifies that the memory port receives a write pass memory
command. The JBox unloads CPU1’s cache block at address 1000, passes it to the
ICUO data switch lines, and then writes the data into memory. The microcode needs
the data paths (source and destination) and stops port arbitration until the data
transfer is completed. The tag queue input pointer is incremented to point to the
next entry in the tag queue. The fixup queue is cleared and the CTLC retire logic
retires the request.

A memory write is performed using the the memory unit, segment, and bank
identified by MPAMM, and the address in ADRX generates the row and column
address bits sent to the memory array cards.

DIGITAL INTERNAL USE ONLY

4-42 Micromachine Control

DMA READ.INV.WRT:
J 207 098, 0400, 01BC, 0000

DM.WRITEPASS.RD.FQ:
J 0BB 116, 1041, 5324, 0000

DAT.RDY.DM.WRITEPASS FQ:
J 0B2 078, 0881, 0164, 0000

MEM WRT.DM WRITEPASS . FQ:

J 0B6 041, F84S, 800C, 0000

()

ABORT MEMORY READ. LOAD
FIXUP QUEUE WITH WRITE PASS
READ COMMAND. INCREMENT

TAG QUEUE INPUT POINTER FOR
NEXT ENTRY. WRITE WRTF STATUS.

(O

STOP ARBITRATION. SEND GET
DATA READ TO CPU PORT. LOAD
FiXUP QUEUE WITH WRITE PASS
DATA READY COMMAND. SEND
ADDRESS FROM IO ADDRESS LATCH
TO CPU.

(O

SAMPLE THE CPU DATA READY
LINE. LOAD FIXUP QUEUE WITH
WRITE PASS SEND DATA COMMAND.

(O

STOP ARBITRATION. SEND MEM
PORT A WRITE PASS COMMAND.
CLEAR FIXUP QUEUE. SEND CPU
SEND DATA. RETIRE REQUEST.

Oy

MR_X0854_89

Figure 4-12 DMA Refill — With Fixup Flow

DIGITAL INTERNAL USE ONLY

HEX ENCODING: J 207
SYMBOLIC ENCODING:
DMA.READ.INV.WRTF:

Micromachine Contro!

099,0400,01BC, 0000

MEM/ABORT,

INDEX/VAL,
FIXCMD/WRITEPASS RD,

FIXUP,

GO TO [IDLE]

HEX ENCODING:
SYMBOLIC ENCODING:
DM.WRITEPASS.RD.FQ:

SEG,
INC,

J OBB,116,1041,5324,0000

INDEX/FIX,

ARB/STOP,

TAG STAT/RD,

CMDMSK/GET DATA RD,
FIXCMD/WRITEPASS DATRDY,
ADROUT,

GO TO [IDLE]

HEX ENCODING:
SYMBOLIC ENCODING:
DAT.RDY.DM.WRITEPASS.FQ:

HEX ENCODING: J O0OBS6,
SYMBOLIC ENCODING:
MEM.WRT.DM.WRITEPASS.FQ:

J 0B2,078,0881,0164,0000

DATRDY,
FIXCMD/WRITEPASS SENDAT,
INDEX/FIX,

GO TO [IDLE]

041,F845,800C, 0000

ARB/STOP,

CMDMSK /WRITEPASS,
INDEX/FIX INC,
CLEAR FIX,

CTLC DONE/YES,

CP SENDATA,

GO TO [IDLE]

Example 4-4 DMA Read — With Fixup Symbolic Encoding

4-43

DIGITAL INTERNAL USE ONLY

5

Array Control Unit and Main Memory Unit

The SCU can have two array control units (ACUs), ACUO and ACU1. ACUO, located

on the DAO and DBO MCUs, consists of the MMC0, MCD0, MDP0, and MDP1 MCAs
and supports main memory unit 0 (MMUOQ). ACU1, located on the DA1 and DB1 MCUs,
consists of the MMC1, MCD1, MDP2, and MDP3 MCAs and supports main memory unit
1 (MMUL).

5.1 Overview

Each ACU contains built-in self-test (BIST) logic to support the service processor unit
(SPU) during self-tests. The ACUs send and receive commands and data to and from the
following:

e SPU — Using a cable that connects SPU to the SCU planar module, the two ACUs
receive SPU control signals for testing the memory modules.

¢ Two main memory units — Using cables that connect the SCU planar module with
MMU, the two ACUs send and receive commands and data to and from main memory
units 0 and 1.

e JBox — Using the logical interface on the SCU planar module, ACU sends and
receives memory commands, control, and status information to and from the CCU
MCU in the JBox. The JBox receives CPU and I/O memory requests and sends the
requests to ACU. The JBox contains a port controller that controls two command
buffers for commands received from ACU and the four memory segment controllers to
which ACU sends the status of each memory segment in each MMU. In the JBox, the
tag MCU holds the row and column addresses for the DRAMs. The ACU selects the
appropriate address latch in the tag MCU. :

The memory communicates with the JBox when any of the following events occur:
¢ A read request is made and the data is ready to be sent.

¢ An error is detected during the transfer of read data.

s An error is detected during the transfer of write data.

¢ A command buffer is available.

DIGITAL INTERNAL USE ONLY 5-1

5-2 Array Control Unit and Main Memory Unit

5.2 Memory Subsystem

The memory subsystem consists of the following logic:

Array control unit — ACUO supports MMUO. ACU1 supports MMU1.

Main memory unit — MMUO contains four memory modules: M0, M1, M2, and M3.
MMU1 contains four memory modules: M0, M1, M2, and M3.

Service processdr unit — SPU controls testing the memory modules.

Figure 5-1 shows the two memory subsystems, MMUO and MMU1.

ROW/COLUMN ADDRESS

CMD/STATUS/INDEX CONTROL/CMD

MAIN
CMD/STATUS/INDEX STATUS MEMORY
UNIT
ARRAY
DATA CONTROL] DATA
UNIT MMUO
DATA DATA -

ACUO

CTL
CTL STATUS l

JBOX SPU

CTL STATUS
CcTL
ARRAY
DATA CONTROL | CONTROL/CMD
L UNIT
DATA STATUS MAIN
MEMORY

CMD/STATUS/INDEX ACU1 DATA UNIT

DATA
CMD/STATUS/INDEX MMU1
ROW/COLUMN ADDRESS

MR_X0704_89

Figure 5-1 Memory Subsystems

5.2.1 Array Control Unit

ACU resides on the SCU planar module and consists of the following MCAs and MCUs
(Figure 5-2 shows the SCU planar module and its MCAs, MCUs, STRAMs, and cable
connections):

MMCX (main memory control) MCA — This MCA provides the command, data,
and address control and the status interface to the JBox. MMCX sends data path
control signals and DRAM control commands to the MCDX MCA. The MMCX MCA
provides error detection on all MMCX MCA control lines and supports the BIST
operation. MMCO, located on DBO, supports ACU0. MMC1, located on DB1, supports
ACUL

MCDX (memory control DRAMs) MCA — This MCA provides DRAM control
signals, RAS, CAS, and WE, for the data path and memory modules. MCDX provides
DRAM control timing (except in step mode), sends commands to MMCX during BIST
operations, and provides error detection on all MCDX MCA control lines. While in
step mode, this MCA translates memory commands into DCA (DRAM control and
address) step mode commands.

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-3

¢« MDPX (memory data path) MCA — This MCA provides a 4-byte path in each
direction, check bit generation for write data, and a byte merge path. MDPX detects
and corrects single-bit errors on read data, but it can only detect, not correct, double-
bit errors. This MCA contains a linear feedback shift register (LFSR) that generates
data patterns during BIST operations. LFSR is also called an address and data
pattern generator.

FRONT
HEHIE HIEIE 2|l SHERE
S— S
[osoo] [irco | | upao] [psos | [1rc1 | | uoaz |
1) ©
o o
§ DAO | JDBO | { bsoz | pas g
3 S
ES s
[psoz | [moro | [oco | [osos | [mor2| | uocr |
— 1!,([cTuo | [cTie | | Ao | [aoro |k —
IRE i R E
g g ccu [Tm.c | 4K TAG 5 g
Sl |6] I
- ‘i" [oscr | [oTea | | aDR2 | [aoRa || EK -
| osos I IMMCOJ [JDMJ psos | IMMC;I] JDA3J
- o~
% pso [Jos1 | [os10] oe1 é
s S
l DSOS | IMDP1 [lmcno] [DS 11 | IMDPSI [Mcm]
—
o [+ P17 I XJAZ P19| o
g g | XJA3 onl g
o o (-5
© i ONRECTOR 555 ©
MR_X1130_89
Figure 5-2 SCU Planar Module

DIGITAL INTERNAL USE ONLY

5-4 Array Control Unit and Main Memory Unit

5.2.2 Main Memory Unit

The main memory subsystem is a nonbussed, block-oriented, high-bandwidth system
using application-specific integrated circuits (ASIC) and board technologies. Cables
connect MMU to the SCU planar module. The ACUs provide the data path between the
JBox and MMUs. The tag MCU on the SCU planar module provides the address path
between SCU and the MMUs.

Parameters for a fully configured (MMUO and MMU1) memory include:
¢ Four-way interleaving.

¢ Maximum capacity of 512 Mbytes using 1-Mbit DRAMs. (Each MMU provides 256
Mbytes using 1-Mbit DRAMs.)

¢ Read and write bandwidth of 500 Mbytes/s.
e 280-ns read latency (from receipt of command to transmission of data to the JBox).
¢ Memory expansion support.

Figure 5-3 shows the ACU and MMU data interface, and Figure 54 shows the ACU and
MMU address, command, control, and status interfaces.

Table 5-1 lists the power requirements for the memory subsystem.

Table 5-1 Power Requirements for the Memory Subsystem

Maximum Maximum Minimum
Active Standby Standby
Description Voltage (Vdc) Current Current Current
BBU +5.0 26.23 5.98 1.223
VCC +5.0 5.00 NA NA
VEE -5.2 5.00 NA NA

MMU has four extended hex memory modules that reside in a card cage. Each memory
module consists of a main array card (MAC) and two daughter array cards (DACs). The
MAC is 15.688 in x 11.9 in. The DAC is 7.4 in x 5.6 in.

The two DACs plug onto each MAC using two 260-pin, four row-in-line connectors, and
are positioned below the MAC DRAMs.

Each MMU has two segments. Each segment contains two banks, 0 and 1. Control and
address lines operate independently across segments. The write path and read data path
are common to both segments. The paths are separated into a read and write path of
20-bits per memory module (four memory modules = 80 bits). Each segment receives 11
control signals from the MCDX MCA and 12 row and column [00:11] address lines from
the ADRX MCAs.

DIGITAL INTERNAL USE ONLY

r
1

1
1
i
}
I
i
1
1
1
1
1
1
i
|
1
[
I
i
|
i
1
i
I
1
I
I
1
i
1
1
|
1
|
1
1
l
|
1
|
|
i
I
1
!
8

Figure 5-3 ACU-to-MMU Data Interface

R . S S R G G R AP W G S R E S e 6

Array Control Unit and Main Memory Unit 5-5

LDDPO —DDPS-]

MEMORY MODULE MM2

LDDPD - DDP3—]

MEMORY MODULE MM3

MEMORY INTERFACE 1
1 i] 1 EMORY MODULE UNIT 0 (MMUO) i
Birs | MEMORY 1 boama g | 1
0-33 DATA
: PATH T Toara T 72 i
(MDPO) — 7%
I 11] As s As 4 Xs As As s :
I [[] 1
b arpay controLuwir | 1 ! ‘Ollillzllal |0| 1 |1”3| 1
1 (ACU0) 1] 1
: : 1 1 LDDPO—DDP:—' Lonpo—DoPaJ I
1 i : : WMEMORY MODULE MMO MEMORY MODULE MM1 1
irs | MEMORY | goata 4]
34-67 9 DATA 1 75 1
i PATH 7 boata g ¢ 1
(MDP1) } >
26
1] : : As As As As Ns As As As 1
= o - 1
I] Cj Cj Ej
I l 0 1 2 3] 1 2 3 I
]
JBOX 1 1
1 i I—DDPO-DDPs—J Lnopo-oops—']
i 1 MEMORY MODULE MM2 MEMORY MODULE MM3 :
1]
\ e o o o o o o e o o o
I ——— o o]
i |] 1 MEMORY MODULE UNIT 1 (MMU1) 1
ams | MEMORY) boata g 1
0-33 DATA
: PATH ! : pata § 720 I
(MDP0) 4 5 1
1 1t 1 Ns Ns As As As As As As i
i [| 1 1
I arrav controL unit ¥ 1 1 IOl 1 lzllsl |o||1||zH3l 1
i (ACU1; 11 1 i
: [| 1 L oore - porad Looro- popst i
I 1 MEMORY MODULE MM MEMORY MODULE MM1
I 1]]
pits | MEMORY 1§ DATA 1
34-67 DATA T T]
| PGTH H I pata | 1
(MDP1) § re
26
[} 1 : : s As As As Ls s s As]
[——— 1
1 1
I 1 :
I 1 1
| 1 i
I | i
1 1
4 .

—————-——-——-————————-——J

MR_X1138_89

DIGITAL INTERNAL USE ONLY

5-6 Array Control Unit and Main Memory Unit

17X YN

[P e e S S D G S S R I R SR G e G S e = .

0o o M e e S0 e e e e e R S R WD G D =m e Em e Em e . e

(onWW) LINN 37NGOW AHONINW |

S M o e e Gw G S e G G n S S G e S e s G o)

| (4nWW) LINN 3Tnaon Avowaw | 1
i ! [
" " ss3uaav | ssadaay
1
1 ! I
1 | 1
1 1 ; ; (OWW) TOHLNOD
| " SNLVLS 'T0HLINOD 'ANVANOD | AHOWIW NIVIV OV SNLVLS
| (aoW) swvua
] 1 | JOHLNOD AHOWIN
" l] JOHINOD
1
0 vaa _ voa _ vaa _ — <oo_ i 108iN0D “ (LNOV) LINN TOBLNOD AVHEY
| 1
i N Znn e own | “
1 1
LI R P W SR S RESRY S Ui S S— | “
1
snivis I
[- i
(NdS) LINN
J0HINOD 4OSS300Hd |
HIAHIS 1
fe——
JOHINOD]
|
»
b snivis 1
1"." i N N R NN N N N N N N _¥N_ N N ¥ N ¥ N] -lll‘ "
| ! |
| | |
I
_ voa _ — vaa _ voa voa ! I
| ! I
| ! 1
“ ENW NN N oW I T >n.oozzw, JouINoD
W3IW NIVW ON
1 |) (QoN) SWvua snivis
1 cmemeooop | gl TOHINOD AHOWIW
1 1 SALVLS "IOHLNOD 'ONVAWOD "
| N 10H1NOD
1] 1 (0NOV) LINN TOULNOD AVHHY xyay
1 1 1 SdIHO
i i 1 ssadaay
“ " ss3Haav " ss3uoav
1 1 1
1 I
. L

FOVIHILNI AHOWIN

- e N S G S e D W M = s G G e oo

Figure 5-4 ACU-to-MMU Command, Status, and Control interface

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-7

5.2.2.1 Memory Module

The memory module is a nonstandard, hex size module with a 480-pin, right-angle
connector at the edge of the card. Each module stores 640 million data bits. Figure 5-5
shows the physical layout of the memory module. The memory module has the following

hardware:
Six hundred forty double-sided, surface-mounted DRAMs

Four DRAM data path (DDP) gate arrays
One DRAM control and address (DCA) gate array

MEMORY MODULE (MM0 OR MM2)

DAUGHTER ARRAY CARD DAUGHTER ARRAY CARD
DAC 1 DAC O

MAIN ARRAY CARD (MAC)

CAP CAP
DDP2 DDP1
DDP3 D [10°14) DCA D {05:09] DDPO
D [15) D [00:04]
AND
_CHK 103:00])

ol
>4

20-BIT SLICE TO MMO OR MM2

MEMORY MODULE (MM1 OR MM3)

DAUGHTER ARRAY CARD DAUGHTER ARRAY CARD
DAC 1 DAC 0

MAIN ARRAY CARD (MAC)

CAP CAP
DOP2 DDP1
DDP3 D [30:26] DCA D [25:21} DDPO
D [31] D [15:20]
CHK {06:04]
_AND MARK -

20-BIT SLICE TO MM1 OR MM3

MR_X1140_89

Figure 5-5 Memory Module — Physical Characteristics

DIGITAL INTERNAL USE ONLY

5-8 Array Control Unit and Main Memory Unit

The parameters of a memory module are as follows:

Two-way interleaving (across segments)

Two segments
Two banks to a segment

Maximum 64-Mbyte memory size (1-Mbit DRAM)
Figure 5-6 shows a conceptual level functional block diagram of the memory module.

| CONTROL { DRAM ARRAYS i
ADDRESS 1 | DRAM ADDRESS 1 1
7
controL 21 V' pram contrOL | 1
i DCA 1 1 I
STATUS 1 g REVISION NUMBER H
- 74— DAG 1 1
i i 1 1
1 1 I 1
I | | 1
| MISCELLANEOUS l 1 i
1 LOGIC : I) i
] T 1 1
I 1 1 i
S " ARRAY 1 |
] |
I 1
| i
Ais A5 i I
I > i
DATA PATH CONTROL DISTRIBUTION I |
FSRG WRITE DATA | i
I DAC 0 i
FSRG READ DATA i I
| |
1 1
| L] |
1 |
ot ol o ——— - i 1
| DATA PATH I
| arravo ||
WRITE DATA]] DRAM WRITE DATA | i
7
reapoata 20 | I 71s0 DRAM READ DATA | |
- i DOP3 e
READ cLOck 20 e e ! |
! cLK | N
i |
I 1
|] —1 |1
1 DDP2 1
1 CLK I
1 i
1 I
1 - — |1
1 DOP1 i
: CLK :
| |
I L — | 1
: DDPO :
' CLK l
O
MR_X3141_89

Figure 5-6 Memory Module — Conceptual Level Functional Block Diagram

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-9

5.2.2.2 Dynamic RAMs

The MMU contains 4 x 640 (2560) DRAMs. On each of the 4 main array cards, there
are 320 DRAMs, and 160 DRAMs are on each of the 8 DACs. Figures 5-7 and 5-8
show the DRAM arrays functional block diagrams for DAC1 array 1 and DACO array 0,
respectively, on the memory module.

| DAC 1 |
DDP_DAC1_WTDAT_H[39:00] | | DRAM_DAC1_RDDAT_H[38:00}
DCA_SEGO_ADR_H[10:00} | :
L}
DCA_RAS_H[01:00} LN i
STBY_RAS_H[02} i |
DRAMSs
DCA_SEGO_ODD_CAS_H[03:00] | 1
STBY_CAS_H[02] : |
—{ 1
STBY_WE_L[00] t i
I]
| A R |
| |
I L] || 1
DCA_SEG1_ADR_H[10:00]] 1
DCA_RAS_H{03:02] [N :
STBY_RAS_H[03) :
[DRAMs i
DCA_SEG1_ODD_CAS_H[03:00]) | i
STBY_CAS_H[03] i 1
STBY_WE_L[01] ! L i
} | DRAM_DACI_REV_H[03:00]
i I >
S |
P ————————
I ARRAY 1 i
DDP_ARY1_WTDAT_H[39:00} 1 | DRAM_ARY1_RDDAT_H[39:00]
DCA_SEGO_ADR_H[10:00] | :
]
DCA_RAS_H[01:00] | N i
STBY_RAS_H{02] 1 I
DRAMs
DCA. SEGO_EVEN_CAS_H[03:00] | |
STBY_CAS_H[02] : |
} J 1
STBY_WE_L[00] 1 “ |
| i
L_l_l_ L1
1 i
i L] NS |
DCA_SEG1_ADR_H[10:00}]]
DCA_RAS_H[03:02] | ~ :
1
STBY_RAS_H[03) '
DRAMSs 1
DCA_SEG1_EVEN_CAS_H[03:00] | i
STBY_CAS_H[03] i |
g
STBY_WE_L[01] e |
§ |
| 1
L ~y N ¥ N K N N N __J ‘

STBY_SELON_H[01]

MR_X1142_89

Figure 5-7 DRAM Arrays — DAC1 Array 1

DIGITAL INTERNAL USE ONLY

5-10 Array Control Unit and Main Memory Unit

- - ———————

DAC O I
] DRAM_DACO_RDDAT_H{39:00}

DDP_DACO_WTDAT_H]39:00)

>

DCA_SEGO_ADR_H[10:00}
DCA_RAS_H[01:00]

STBY_RAS_H[00]

DRAMs
DCA_SEGO_ODD_CAS_H|03:00]

STBY_CAS_H[00]

STBY_WE_L[00]

R .

DCA_SEG1_ADR_H[10:00]

DCA_RAS_H[03:02)

STBY_RAS_H[01]
DCA_SEG1_ODD_CAS_H[03.00]

DRAMs

STBY_CAS_H[01]

STBY_WE_L[01]

DRAM_DACO_REV_H[03:00)

ARRAY 0

DDP_ARYO_WTDAT_H[39:00] DRAM_ARYO_RDDAT_H{39:00]

DCA_SEGO_ADR_H[10.00]

DCA_RAS_HK[01.00]

STBY_RAS_R[00]

DRAMs
DCA_SEGO_EVEN_CAS_H[03:00]

STBY_CAS_H[00]

STBY_WE_L[00]

|
"

DCA_SEG1_ADR_H[10:00]

DCA_RAS_H[03:02]
STBY_RAS_H|01}

DRAMs

DCA_SEG1_EVEN_CAS_H[03:00]

STBY_CAS_H[01]

STBY_WE_L[01]

1
1
i
i
!
I
1
i
i
i)
|
I
i
i
i
I
1
1
1
t
I
o
P -
I
I
I
I
1
1
|
|
|
|
I
i |
I
{
!
1
I
1
I
1
1
1
1
4

o - — e g o o] - —— . g o |- i dheae Rl ke | [el i fmad (ol ol o B N —-qh-———-|
I
1

STBY_SELON_H[00]

MR_X1143_89

Figure 5~8 DRAM Arrays — DACO Array 0

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-11

5.2.2.3 Clocks
Three types of clocks exist in the memory subsystem: gated write clocks, a free-running
read clock, and an on-board memory module clock.

The memory module receives gated write clocks, called write buffer strobes, from the
MMCX control lines [16:13]. MMCX asserts write buffer strobes when write data is
loaded into the data input latch (write buffer 0) of the memory module.

The read clock is a free-running, differential clock. The 8 memory modules receive 16
read clocks from SCU. The CDCX MCA generates read clocks (also called STRAM clocks)
in groups 0, 1, 2, and 3, and each memory module receives two read clocks. (Two DDPs
receive one read clock.) The leading edge of the read clock opens the data output latch
(read buffer 0) in the memory module, while the trailing edge clocks the read select and
read latch enable signals in the memory module. Figure 5-30 shows the data output
latch, read select logic, and read latch enable logic.

The STRAM clocks are programmable and originate in the following MCUs (DAX and
DBX MCUs do not generate the STRAM clock groups):

¢ Tag MCU — This MCU provides four STRAM clocks from group 1.

e CCU MCU — This MCU provides six STRAM clocks from group 0 and six STRAM
clocks from group 2.

Each memory module contains its own clock. A 10-MHz oscillator provides the clock
reference for the following logic:

e DCA step mode clock logic — DCA uses the clock during step mode. DCA does not
use the on-board clock during any other mode.

e MMCX MCA and DCA refresh clock logic — The memory module uses clock
circuitry to provide a refresh signal to MMCX and DCA. MMCX uses the refresh
signal during normal operation but not during step mode. The DCA uses the refresh
signal when in step mode and not during normal operation.

e Standby clock logic — The standby logic on the memory module uses the clock as a
reference. The standby circuit provides CAS signals before RAS signals to refresh the
DRAMs at 12.5-ns intervals. This circuit is engaged during standby mode.

5.2.2.4 Main Array Card

MMUO contains four MACs: MM0, MM1, MM2, and MM3. MMU1 contains four MACs:
MM4, MM5, MM6, and MM7. MAC is an extended hex module that contains surface-
mounted DRAMs on both sides. MAC contains five gate arrays (four DDPs and one
DCA), an EEPROM (for serial number, revision level, and manufacturing support), some
MSI logic (for standby operation), electrolytic capacitors, and resistor terminations. Each
MAC does the following:

¢ Provides 32 Mbytes of DRAM storage.

e Buffers write data.

¢ Buffers read data.

e Ensures DRAM data integrity during power loss.

e Performs read and write cycles independently of ACU (during single-step operations).

e Provides connections and logic support for two DACs.

DIGITAL INTERNAL USE ONLY

5-12 Array Control Unit and Main Memory Unit

5.2.2.5 Daughter Array Card

The DAC contains surface-mounted DRAMs on both sides. The DAC provides 16 Mbytes
of DRAM storage. Each MAC has two DACs, DACO and DAC1. Figure 5-9 shows the
inputs to the daughter array card. Figure 5-10 shows the DRAM data path bits across
the DACO and DAC1 for each quadword in a cache block.

SO_RASO
S0_CAS[03:00] .
7
SEGOADR_H[10:00] 4
SEGOWE_L{00] [\ . SEGMENT 0
7
l// 12 BANK 0
WTDAT[28:00] .
. 740
RDDAT[39:00] 4
740
SEGOADREN_L{00]
SO_RAS1
 E—
SEGMENT 0
BANK 1
S1_RASO
. SEGMENT 1
$1_CAS[03:00] .
7 BANK 0
SEG1ADR_H[10:00]
SEG1WE_L[00] I\ |
712
SEG1ADREN_L[00]
S1_RAS1
e
SEGMENT 1
BANK 1

MR_X1144_839

Figure 5-9 Daughter Array Card Inputs

DIGITAL INTERNAL USE ONLY

DRAM DATA PATH (DDP)

10 BITS 1 10 BITS
T
MAC

DAC 1 DAC O
MAC

DAC 1 DAC O
MAC

DAC 1 DAC 0
MAC

DAC 1 DAC O

MAC = MAIN ARRAY CARD
DAC = DAUGHTER ARRAY CARD

QUADWORD 0
QUADWORD 1
QUADWORD 2
QUADWORD 3
QUADWORD 4
QUADWORD 5
QUADWORD 6

QUADWORD 7

MR_X1145_89

Array Control Unit and Main Memory Unit 5-13

Figure 5-10 DRAM Data Bits for DACO and DAC1

5.2.2.6 DRAM Data Path Gate Array
Each MAC has four DDPs: DDP0, DDP1, DDP2, and DDP3. Figure 5-11 shows the four
DDPs on the memory module. Figures 5-12 through 5-15 show each of the DDP gate

arrays.

The DDP performs the following activities:

Translates ECL to TTL and TTL to ECL.
Provides a read data path (Figure 5-16).

Buffers read data.

Provides a write data path (Figure 5-17).
Buffers write data.

Provides a DRAM bypass path (used during BIST mode and the transfer of cache
blocks having written full status).

Provides single-step control timing and address pattern generations for self-tests.

DIGITAL INTERNAL USE ONLY

5-14 Array Control Unit and Main Memory Unit

MEMORY MODULE (MMO0 OR MM2)

DAC 0 DAC 1
DCA
DDPO DDP1 DDP2 DDP3
D [04:00) D (09:05] D [14:10} D {15] AND
CHK [03:00]
- J
20-BIT SLICE TO MMO OR MM2
MEMORY MODULE (MM1 OR MM3)
DAC 0 DAC 1
DCA
DDPO DDP1 pDP2 DDP3
D {20:16] D [25:21] D [30:26) D [31] AND
CHK [06:04]
AND MARK
1\ J

r-,

20-BiT SLICE TO MM1 OR MM3

MR_X1146_89

Figure 5-11 DDPs on the Memory Module

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unif 5-15

o= e e e - -

I DDPO |
MAC_WRITEDATA_H[04:00) 1 § DDP_ARYO_WTDAT_H[04:00]
RITE PATH 1 >
i WRITE . DDP_DACO_WTDAT_H{04:00]
DCA_WRTSEL_0_H[02:00} : DDP_ARYO_WTDAT_H[14:10]
DDP_WRTFFEN_L[00) I T bor_paco_wTDAT_H[14:10]
| I bop_aRYo_WTDAT_H{24:20]
DCA_WRTBSTROBE_L[00) I cLK T opr_pAcO_WTDAT_H{24:20]
| T oor_arvo_wtpaT_Hiza:30]
| | ooP_baco_wTDAT Hi34:30)
DRAM_ARYO_RDDAT_H[04:00] ! I MAG_READDATA_H[04:00]
{1 READ PATH } >
DRAM_DACO_RDDAT_H[04:00}
DRAM_ARYO_RDDAT_H[14:10] | I
DRAM_DACO_RDDAT_H[14:10] | |
DRAM_ARYO_RDDAT_H[24:20] | |
DRAM_DACO_RDDAT_H[24:20] |]
DRAM_ARYO_RDDAT_H[34:30] |]
DRAM_DACO_RDDAT_H[34:30] | |
DDP_DRAMBYP_L[00] |
DCA_RDLATEN_L[02] ; |
DDP_0_RDLATEN_L{07:00)] ; |
DDP_0_RDSEL_H[02:00] :
1 I
MAC_READCLK_L{00] | |
CLK
MAC_READCLK_H[00] I 1
H | l 5or_s:0_roseL_mioz
MAC_RDSEL_H[02] | DISTRIBUTIONS 1:4 I — Al >
| DISTRIBUTIONS 1:4 I

L-——————-—J

MR_X1147_38g

Figure 5-12 DDPO Functional Block Diagram

DIGITAL INTERNAL USE ONLY

5-16 Array Control Unit and Main Memory Unit

MAC_WRITEDATA_H[{08:05]

DCA_WRTSEL_1_H[02:00}

DOP_WRTFFEN_L{00]

DCA_WRTBSTROBE_L[01]

DRAM_ARYO_RDDAT_H[09:05)

DDP_ARYO_WTDAT_H[08.:05]

DDP_DACO_WTDAT_H[09:05]

DDP_ARYO_WTDAT_H|19:15]

DDP_DACO_WTDAT_H[19:15]

DDP_ARYO_WTDAT_H[29:25]

DDP_DACO_WTDAT_H[29:25]

DDP_ARYO_WTDAT_H[39:35]

DRAM_DACO_RDDAT_H[09:05]

DRAM_ARYO_RDDAT_H[19:15]

DRAM_DACO_RDDAT_H[19:15]

DRAM_ARYO_RDDAT_H[29:25]

DRAM_DACO_RDDAT_H[29:25]

DRAM_ARYO_RDDAT_H{39:35]

DRAM_DACO_RDDAT_H[39:35]

DDP_DRAMBYP_L[01]

DCA_RDLATEN_L[02]

DDP_1_RDLATEN_L{01:00}

DDP_1_RDSEL_H[02:00]

MAC_READCLK_L[00]

MAC_READCLK_H[00]

MAC_RDSEL_H[01]

DDP_DACO_WTDAT_H[39:35]

MAC_READDATA_H[09:05]

MAC_RDSEL_H[00]

Figure 5-13 DDP1 Functional Block Diagram

DDP_3:0_RDSEL_H[01]

DDP_3:0_RDSEL_H[00]

o= ———— e ——n
DOP1

|

H write paTH

I

I

|

| CLK

|

I

I

H rEAD PATH

|

|

|

|

l

|

|

!

1

L]

1

L]

']

i

i

i CLK

|

l

I :

l DISTRIBUTIONS 1:4

: [—Dls:RIB_UTl—(;NS—1 i;—

L——_-—————J

DIGITAL INTERNAL USE ONLY

MR_X1148_8%

Array Control Unit and Main Memory Unit 5-17

r—-—--—_—-1
i DDP2 I
MAC_WRITEDATA_H[14:10) 1 g DDP_ARY1_WTDAT_H[04:00]
1 WRITE PATH 1 4 >
I 4 DDP_DAC1_WTDAT_H[04:00]
DCA_WRTSEL_2_H[02:00]} 1 oy
I } DDP_ARY1_WTDAT_H[14:10]
DDP_WRTFFEN_L[02] DDP_DAC1_WTDAT_H[14:10]
] 1 DDP_ARY1_WTDAT_H[24:20]
DCA_WRTBSTROBE_LI%2! I CLK DDP_DAC1 wmu_mza:zo;
I 1 DDP_ARY1_WTDAT_H[34:30]
i i DDP_DAC1_WTDAT_H[34:30]
DRAM_ARY1_RDDAT_H[04:00] . MAC_READDATA_H[14:10]
{{ READ PATH] >
DRAM_DAC1_RDDAT_H[04:00] _
DRAM_ARY1_RDDAT_H[14:10) I I
DRAM_DAC1_RDDAT_H[14:10] l 1
DRAM_ARY1_RDDAT_H[24:20) 1 |
DRAM_DAC1_RDDAT_H[24:20] |
DRAM_ARY1_RDDAT_H[34:30] | |
DRAM_DAC1_RDDAT_H|34:30] | i
DDP_DRAMBYP_L{02] 1 |
DCA_RDLATEN_L[02] 1L I
L
DDP_2_RDLATEN_L|01:00] L I
L]
DDP_2_RDSEL_H[02:00] s
i |
MAC_READCLK_L|[01] I |
I e« i
MAC_READCLK_H[01]
I |
MAC_WRTFF 0 I [P_WRTFFEN 00
AC_ EN_L{00}) DISTRIBUTIONS 1:4 bOP_W EN_LI03:00)
__________ P_3:0 AT
MAC_RDLATEN_L[00] 1 DISTRIBUTIONS 1:4 1 DDP_3:0_ROLATEN_L[00]

L-—-—-——-—J

MR_X1149_89

Figure 5-14 DDP2 Functional Block Diagram

DIGITAL INTERNAL USE ONLY

5-18 Array Control Unit and Main Memory Unit

r—————————1

I DDP3 l
MAC_WRITEDATA_H[19:15] 'Y e—— §__ DDP_ARY1_WTDAT_H[05:05]
, DDP_DACI_WTDAT_H[09:05]
DCA_WRTSEL_3_H[02:00] | . DDP_ARY1_WTDAT_H[19:15]:
DDP_WRTFFEN_L|03] ! ! DDP_DAC1_WTDAT_H(19:15]:
| 1 DDP_ARY1_WTDAT_H[29:25]:
DCA_WRTBSTROBE_LI03) I CLK DDP__DAC1_WTDAT_H[29:25]:
i 1 DDP_ARY‘I_WTDAT_H[SS:SS]:
| | DDP_DAC‘!_WTDAT_H[E)S:GS]:
DRAM_ARY1_RDDAT_H[09:05] ! I MAC_READDATA_H[18:15]
| READ PATH t >
DRAM_DAC1_RDDAT_H[09:05] '
DRAM_ARY1_RDDAT_H[19:15] 1 |
DRAM_DAC1_RDDAT_H[18:15] 1 i
DRAM_ARY1_RDDAT_H[29.25] | |
DRAM_DAC1_RDDAT_H[20:25] | |
DRAM_ARY1_RDDAT_H[39:35] |]
DRAM_DAC1_RDDAT_H[39:35]} l |
DDP_DRAMBYP_L{03] ! :
DCA_RDLATEN_L[02] I I
DDP_3_RDLATEN_L[01 00} " I
DDP_3_ADSEL_H[02 00} .
} |
MAC_READCLK_L[01] i |
MAC_READCLK_H[01] e~ I
| |
| |
MAC_DRAMBYP_L{00] 1 TSTRIBUTIONS 1.4 I DDP_DRAMBYP_L{0300]
MAC_RDLATEN_L[01] : - _Els:ms_u-rBN;r.z_] ; DDP_3:0_RDLATEN_L[O1] .

| S

MR_X1150_89

Figure 5-15 DDP3 Functional Block Diagram

DIGITAL INTERNAL USE ONLY

5-19

Array Control Unit and Main Memory Unit

687 1S1IX UN

4« OVY
wivt
w2V oy »

21 saHOLVY oF sawouvior | o 7 viva avad

4||\.It||.||m SIHOLVI S m\ «EVH \
viva av3y >a 8 XS viva v344ng av3y | | ¥344na avad _/ ov ,

yvd 7
*
S 1 0 wa44ne avay VLVG H334N8 ILIHM

«SVH

9vH
(-
vy

DIGITAL INTERNAL USE ONLY

Figure 5-16 DDP Read Data Path

5-20 Array Control Unit and Main Memory Unit

B8 261X UN

71 8HLSELHM OV

[oo:¥0la [00:20luam

loo:vola [00:20lam

foo:vola too:L0lvm

bk
43009230
(00177 343LUM OV
foo:volivam
A0

H30090340

[00:20]H 13SLHM OVN

Figure 5-17 DDP Write Data Path
DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-21

5.2.2.7 DRAM Control and Address Gate Array
One DCA is located on the MAC. The DCA contains the step mode controller. Figures
5-18 and 5-19 show the DCA gate array.

MAC_RAS_L[03:00]

r—-—————-———--——-—---‘

| bca

MAC_STEPCYCBSY_H[00]

MAC_CAS_L[01:00]

MAC_WE_L[01:00]

MAC_STEPCTLEN_L[00]

STBY_SYNCTLEN_L

COMMAND BUFFER

STBY_BUSY_L

STBY_TTLRFSHFLAG_H

STBY_CLK_H

FSRG_PROMBUSY_L

DCA_STEPCTLOK_H[00]

DCA_STBY_EN_H

MAC_CTLINIT_L]0O])

MAC_WRTSEL_H{02:00}

DCA_PROMTIMCLR_L

DCA_FSRG_IOEN_H

A

DCA_RDLATEN_L[02]

v

DCA_RAS_H{03:00]

DCA_WE_H[01:00]

v

DCA_SEGO_CAS_H[07:00]

MAC_CASMASKCTL_H[01:00]

DDP_WRTEFEN_L[01:00]

DCA_SEG1_CAS_H[07:00]

MAC_MSKDIRSEGO_L[00]

MAC_WRTBSTROBE_L[00]

CLK
T
MISCELLANEOUS LOGIC
SEQUENCER

CLK
STEP MODE MULTIPLEXER
CAS MASK LOGIC
CLK

MAC_ADRINIT_L[00]

v

MAC_CTLPAR_H[01:00]

CONTROL PARITY

DCA_WRTSEL_3:0_H{02:00}

DISTRIBUTIONS

DCA_WRTBSTROBE_L{C3:00]

MAC_ADRBSTROBE_L[01:00]

ADDRESS PATTERN GENERATOR

MAC_ADR_H[11:00]

DCA_SEGO_ADR_H[10:00]

MAC_ADRPAR_H[33:00]

v

DCA_SEG1_ADR_H[10:00])

ADDRESS PARITY

MAC_ADRPARTOG_H[00]

r-———-l-indl-————-———— b o ol o e e e = e e o e e (e e S e e e S W S b G U |

Figure 5-18 DCA Functional Block Diagram

1
i
1
1
4

MR_X1163_89

DIGITAL INTERNAL USE ONLY

5-22 Array Contro! Unit and Main Memory Unit

P e - -

1
| MISCELLANEOUS LOGIC I
1
4

MAC_STBYCTLEN_L{00] STBY_SYNCTLEN_L

STANDBY SYNCHRONIZERS

DCA_STBY_EN_H

i
I sTey_sBusy_L
]

STBY_RAS_H[03:00]
STBY_CAS_H[03:00]

STBY_SELON_H[01:00]

-]
Y

MAC_RFSHFLAG_H[00]

STANDBY REFRESH FLAGS MAC_RFSHFLAG_L[00]

 J

STBY_TTLRFSHFLAG_H

DCA_WE_H[01:00] STBY_WE_L{01:00]

WRITE ENABLE LOGIC

DRAM_DAC1_REV_H[03:00] FSRG_RDDAT_H[15:00]

DRAM_DACO_REV_H[03:00]

FSRG_WTDAT_H[07:00] FSRG_PROMBUSY_L

v

DCA_SEGO_ADR_H[10:00]

DCA_FSRG_IOEN_H FIELD SERVICE REGISTER LOGIC

DCA_PROMTIMCLR_L

TEST_MAC_FSRGEN_L{00}

MFG_FSRG_WE_L

DCA_STEPCTLOK_H[00] MAC_STEPCTLOK_H|[00]

MM_STEPCTLOKIN_H[00] STEP CONTROL OK LOGIC

MM_STEPOKBUSY_L[00}

MM_STPOKBSYIN_L[00]

TEST_MAC_OSC_H|[00] STBY_CLK_H

TEST_MAC_OSCSEL_L[00] TEST OSCILLATOR SELECT LOGIC

MAC_STERMIN_HK[00] MAC_STERMOUT_H[00]

MAC_SENSE_H{03:00]

[eadanlien dhandinal padls ool dln oy Lot hoow wan ot e coh] - e o e e e e e o e e e W S S ED G e R e D SRR G WSS Gms Gas e

[1) QU R Eeyp— Sa— S —————————— v Yy SRR Y S s i

MR_X1154_89

Figure 5-19 DCA Miscellaneous Control Logic
The DCA does the following:

Translates ECL to TTL and TTL to ECL.

Contains the CAS mask registers.

Executes step mode commands (read, write, EEPROM, revision read).
Buffers control signals to the DDPs.

Executes handshaking sequences when switching between timing modes.
Supports standby and Customer Services operations.

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-23

5.2.2.8 Interleaving

The SCU can interface to two completely independent memory subsystems. One
subsystem consists of ACUO and MMUQO, the other of ACU1 and MMU1. If the DRAMs
are the same size in both subsystems, the two subsystems can be interleaved and can
have alternating addresses.

The two segments within each memory subsystem can also be interleaved. Figure 5-20
shows how the segments within the memory subsystem can be interleaved.

Each MMU has its own port on SCU. Each port has two segments. The two segments are
interleaved on block boundaries. SCU can cycle four segments in parallel and can permit
four simultaneous memory references. ACU can accept a memory request from the JBox
on behalf of any of the CPU or I/O devices and can pass the request to the designated
segment in memory.

The interleaving of segments is based on matching the memory access block size to

the size of the cache blocks used in the system CPUs. Each memory module has two
segments, 0 and 1. Each segment has two banks, 0 and 1. The memory addresses for the
memory banks are interleaved on block boundaries, as listed in Table 5-2.

A
4 N\
SEGMENT 0 SEGMENT 1
A A

4 hY r N
00-63 BLOCK 0 64-124 BLOCK 1 128 - 191 BLOCK 2 192 -255 BLOCK 3
256 - 319 BLOCK 4 320383 BLOCK 5 384 - 447 BLOCK 6 448 ~511 BLOCK 7
512~575 BLOCK 8 576639 BLOCK 9 640-703 BLOCK 10 704 -767 BLOCK 11
768 —... ~ 832-.. ~ 896 — 960 -... ~~ nd

T BLOCK n T
I

L A
BLOCK n + 1
|1

...~ Vad ~
IBLOCKn+2l lBLOCKn43I

N

TO DATA PATH

SEGMENT/BLOCK ADDRESS
MRA_X1155_89%

Figure 5-20 Interleaving Segments within the Memory Subsystem

Table 5-2 Block Boundaries

Block Bytes Segment Bank
0 0-63 0 0
1 64-127 0 1
2 128-191 1]
3 192-255 1 1

DIGITAL INTERNAL USE ONLY

5-24 Array Control Unit and Main Memory Unit

Table 5-3 lists the types of interleaving. Four-way is the maximum degree of
interleaving, which can be used with MMUO and MMU1. If the system has only one
MMU, two-way interleaving is the maximum interleaving that is possible.

All banks in the same MMU must be interleaved in the same way. If one bank in an
MMU is two-way interleaved, then the other three banks in that MMU must also be
two-way interleaved. If one bank in an MMU is noninterleaved, the other used banks in
that MMU must be noninterleaved.

Table 5-3 Degrees of Interleaving

Degree Description

Noninterleaved A bank is defined as noninterleaved if consecutive block addresses in that
bank are 64 bytes apart.

Two-way interleaved A bank is defined as two-way interleaved if consecutive block addresses
in that bank are 2 x 64 bytes apart.

Four-way interleaved A bank is defined as four-way interleaved if consecutive block addresses
in that bank are 4 x 64 bytes apart.

5.2.2.9 ADRX Row and Column Address Bits for Interleaving

The ADRX MCAs latch and hold physical address bits. Under MMCX control, the ADRX
MCAs address the MPAMM (for unit, segment, and bank) and send row and column
address bits to the MMU. Tables 5—4 through 5-6 show how PA [32:26, 07, 06] are used
to address unit, segment, and bank for non-, two-, and four-way interleaving. These
tables use the following conventions:

B = Bit selecting the segment’s bank
Cxx = Column bit xx

Rxx = Row bit xx

S = Bit selecting the unit’s segment
U = Unit

Table 5-4 Noninterleaving

PA Bit 64 Mbytes 256 Mbytes 1024 Mbytes
06 R9 R9 R9

07 C9 C9 C9

26 Bank R10 R10

27 Segment Ci0 C10

28 Unit Bank R11

29 - Segment C11

30 - Unit Bank

31 - - Segment

32 - - Unit

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-25

Table 5-5 Two-Way Interleaving

One Unit Two Units
PA 64 256 1024 64 256
Bit Mbytes Mbytes Mbytes Mbytes Mbytes 1024 Mbytes
06 Segment Segment Segment Unit Unit Unit
07 C9 C9 C9 Cc9 C9 Cc9
26 R9 R9 RO R9 R9 R9
27 Bank C10 C10 Bank C10 C10 .
28 Unit R10 R10 Segment R10 R10
29 - Bank Cc11 - Bank C1l
30 - Unit ' R11 - Segment R11
31 - - Bank - - Bank
32 - - Unit - - Segment

Table 5-6 Four-Way Interieaving

PA Bit 64 Mbytes 256 Mbytes 1024 Mbytes
06 Unit Unit Unit

07 Segment Segment Segment

26 R9 R9 R9

27 C9 C9 C9

28 Bank R10 R10

29 - C10 C10

30 - Bank R11

31 - - C11

32 - - Bank

Table 5-7 shows the mapping for row and column bits for a noninterleave.

Table 5-7 Noninterleave Mapping

Row/Column PA Bit PA Bit

Bit for Row for Column
09 . 06 07

10 26 27

11 28 .29

DIGITAL INTERNAL USE ONLY

5-26 Array Control Unit and Main Memory Unit

Table 5-8 shows the mapping for the row and column bits for a four-way interleave.

Table 5-9 shows the mapping for the row and column bits for a two-way interleave.
Table 5-10 lists the addresses for two MMUs that are four-way interleaved.

Table 5-8 Four-Way Interleave Mapping

Row/Column PA Bit PA Bit

Bit for Row for Column
09 26 27

10 28 29

11 30 31

Table 5-9 Two-Way Interieave Mapping

Row/Column PA Bit PA Bit

Bit for Row for Column
09 26 07

10 28 27

11 30 29

Table 5-10 Two MMUSs, Four-Way Interieaved

Memory Address

MMUO SEG0O BANKO 0,4 .. 3FFFFC
MMU1 SEGO BANKO 1,5 ... 3FFFFD
MMUO SEG1 BANKO0 2, 6 ... 3FFFFE
MMU1 SEG1 BANKO 3, 7.. 3FFFFF

MMUO SEGO BANK1
MMU1 SEGO BANK1
MMUO SEG1 BANK1
MMU1 SEG1 BANK1

400000, 400004 ... 7FFFFC
400001, 400005 ... 7TFFFFD
400002, 400006 ... TFFFFE
400003, 400007 ... 7FFFFF

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-27

Table 5-11 lists the addresses for one MMU that is two-way interleaved.

Table 5-11 One MMU, Two-Way Interleaved

Memory Addresses

MMUO0 SEGO BANKO 0,2 ... 1IFFFFE

MMUO SEG1 BANKO 1, 3 ... 1FFFFF

MMUO SEG0 BANK1 200000, 200002 ... 3SFFFFE
MMUO SEG1 BANK1 200001, 200003 ... 3FFFFF

If the system has two MMUs, and one MMU has a broken bank, the remaining seven
good banks can be configured in several alternative ways. These alternative ways range
from minimum interleaving with maximum usable memory to maximum interleaving
with considerably reduced usable memory.

To maintain maximum memory bandwidth for a memory subsystem in which a bank is
only partly broken and one-fourth of its address space is bad, the following sequence of
events occurs:

1. Retain four-way interleaving.

2. Map out the bad one-fourth bank.

3. Map out the corresponding one-fourth in three other banks.
Mapping out parts of banks is done by the SPU, not the SCU hardware.

Table 5-12 lists the addresses for two MMUs in which one bank is broken. MMUO
uses four banks that are two-way interleaved and MMU1 uses three banks that are
noninterleaved. No interleaving exists between MMUO and MMU1.

Table 5-12 Two MMUSs, One Bank Broken — No Interleaving Between Banks

Memory Interleave Address

MMUO SEGO BANKO Two-way 0,2 ... IFFFFE

MMUO SEG1 BANKO Two-way 1, 8 ... 1FFFFF

MMUO SEG0 BANK1 Two-way 200000, 200002 ... 3FFFFE
MMUO SEG1 BANK1 Two-way 200001, 200003 ... 3FFFFF
MMU1 SEGO BANKO One-way 400000, 400001 ... 4FFFFF
MMU1 SEG0 BANK1 One-way 500000, 500001 ... SFFFFF
MMU1 SEG1 BANKO One-way 600000, 600001 ... 6FFFFF
MMU1 SEG1 BANK1 Broken

DIGITAL INTERNAL USE ONLY

5-28 Array Control Unit and Main Memory Unit

Table 5-13 lists the addresses for two MMUs in which one bank is broken. MMUQ uses
three banks that are two-way interleaved and MMU1 uses three banks that are two-way
interleaved. One good bank is not used so that two-way interleaving can be maintained
across the remaining six banks.

Table 5-14 lists the addresses for two MMUs in which one bank is broken. MMUO
uses two banks that are four-way interleaved and MMU1 uses two banks that are four-
way interleaved. Three good banks are not used so that four-way interleaving can be
maintained across the remaining four banks.

Table 5-13 Two MMUs, One Bank Broken — Two-Way Interleaving Between Banks

Memory Address

MMUO SEGO BANKO 0,2 ... 1FFFFE

MMU1 SEG0 BANKO 1, 3 ... 1FFFFF

MMUO SEG0 BANK1 200000, 200002 ... 3FFFFE
MMU1 SEG0 BANK1 200001, 200003 ... 3FFFFF
MMUO SEG1 BANKO 400000, 400002 ... SFFFFE
MMU1 SEG1 BANKO 400001, 400003 ... 5FFFFF
MMUO SEG1 BANK1 Not used

MMU1 SEG1 BANK1 Broken

Table 5-14 Two MMUs, One Bank Broken — Four-Way Interleaving Between Banks

Memory Address
MMUO SEGO BANKO 0, 4 ... 3FFFFC
MMU1 SEG0 BANKO 1,5 ... 3FFFFD
MMUO SEG1 BANKO 2, 6 ... 3FFFFC
MMU1 SEG1 BANKO 3,7 ... 3FFFFF
MMUO SEGO BANK1 Not used
MMU1 SEGO BANK1 Not used
MMUO SEG1 BANK1 Not used
MMU1 SEG1 BANK1 Broken

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-29

Table 5-15 lists the addresses for two MMUs that are two-way interleaved. MMUO uses
4-Mbit chips and MMU1 uses 1-Mbit chips. No interleaving exists between MMUO and

MMUL

Table 5-16 lists the addresses for one MMU with one broken bank. The MMU uses three

banks that are noninterleaved.

Table 5-17 lists the addresses for one MMU with one broken bank. The MMU uses two
banks that are two-way interleaved. One good bank is not used.

Table 5-15 Two MMUs, 4-Mbit MMUO and 1-Mbit MMU1

Memory Address

MMUO SEGO BANKO 0,2 ... TFFFFE

MMUO SEG1 BANKO 1, 8 ... TFFFFF

MMUO SEG0 BANK1 800000, 800002 ... FFFFFE

MMUO SEG1 BANK1
MMU1 SEGO BANKO
MMU1 SEG1 BANKO
MMU1 SEGO BANK1
MMU1 SEG1 BANK1

800001, 800003 ... FFFFFF

1000000, 1000002 ...
1000001, 1000003 ...
1200000, 1200002 ...
1200001, 1200003 ...

11FFFFE
11FFFFF
13FFFFE
13FFFFF

Table 5-16 One MMU, Three Banks Used — Noninterieaved

Memory

Address

MMUO SEGO BANKO
MMUO SEGO BANK1
MMUO SEG1 BANKO
MMUO SEG1 BANK1

0, 1... FFFFFF

100000, 100001 ... 1FFFFF
200000, 200001 ... 2FFFFF

Broken

Table 5-17 One MMU, Two Banks Used — Two-Way Interleaved

Memory

Address

MMUO SEGO BANKO
MMUO SEG1 BANKO
MMUO SEG0 BANK1
MMUO SEG1 BANK1

0,2 ... 1FFFFE
1, 3 ... 1FFFFF
Not used

Broken

DIGITAL INTERNAL USE ONLY

5-30 Array Control Unit and Main Memory Unit

5.2.2.10 Data Organization

The memory module is divided into two segments, 0 and 1. Each segment contains two
banks, 0 and 1. Each of the four banks contains 160 DRAMs. Figure 5-21 shows the
partitioning of the DRAM data on the MAC and DAC. Bank 0 of segment 0 consists of 80
MAC DRAMs, 40 DACO DRAMs, and 40 DAC1 DRAMs.

The memory subsystem simultaneously accesses the same bank in all four MACs. When
bank 0 of segment 0 is accessed in MMO, bank 0 of segment 0 in MM1, MM2, and
MMS3 are also accessed. One-fourth of the DRAMs in each memory module are accessed
simultaneously.

Each memory module processes 20-bit slices of the eight quadwords (640 bits) in a 64-byte
block transfer. (Four modules simultaneously write 640 DRAMs.) For memory writes,
the MDPX MCA sends 20-bit slices to the memory module DDP gate arrays, which buffer
the write data. DDPs on each memory module store eight 20-bit transfers and send all
160 bits to the DRAMs. For memory reads, the DRAMs send 160 bits to the DDPs, which
send eight 20-bit slices to the MDPX MCAs. Figure 5-22 shows how these slices are sent.

5.2.2.11 Memory Module Bit Configuration

The memory subsystem stores slices of a quadword in four memory modules. Figure 5-23
shows bit positions for a 20-bit slice of a quadword within a memory module. Bit [00]
corresponds to the following:

Data bit [00] of the lower longword (even longword)
Data bit [16] of the upper longword (odd longword)

Bit [19] corresponds to the following:

Check bit [03] of the lower longword
Mark bit on the upper longword

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-31

68796LIX HN

ENW 37NAOW AHOWIW

oo

NN 3INAOW AHOWINW

T

AW 3TNAON AHOWANW

b LN3WO3S

0 LNIWO3S

L Ova 0 ova OV
(ov) swvHa | (ov) swvua (08) sWvHQ 09t
L ova 0 ova OV 10INNOOHIINI €'2'L'0
(ov) swvda | (o¥) SWvHQ (08) sWvyQ Hivd av3y
HLvd
L ova 0 ova IV viva
{ov) swvda | (ov) swvya (08) sWvya 091, Wvda
1 0va 0 ova OVA 103INNOOHILINI ~
{ov) swvua | (ov) swvua {08) spvHaQ Hivd 31idM
QyYO AVHUY
e HILHONYA ———pa— QHVO AVHHY NIV

(ov9) sWvHa

OWN 3INAON AHONIN

tdAW
WOH3/0L

LdOW
WOH4/01

0daW
WOHd4/0L

Odaw
WOHd4/0L

Data Partitioning

Figure 5-21

DIGITAL INTERNAL USE ONLY

5-32 Array Control Unit and Main Memory Unit

FOUR DDPs ON ONE-FOURTH OF THE DRAMs
MEMORY MODULE ON MEMORY MODULE
— 20 BITS FROM QUADWORD 0 755
l— 20 BITS FROM QUADWORD 1 73 —
— 20 BITS FROM QUADWORD 2 743
— 20 BITS FROM QUADWORD 3 73
To/FROM 8 TRANSPERS . (nEPn’EG:E%?sngE OF
L
MDPO 20 . FOUR BANKS ON MM0)
L 20 BITS FROM QUADWORD 4 73
—1 20 BITS FROM QUADWORD 5 55
—1 20 BITS FROM QUADWORD & 75
L1 20 BITS FROM QUADWORD 7 75
—~
TO/FROM 8 TRANSFERS 8 x20
MDPO %5 DDPs ON MM1 1 OF 4 BANKS ON MM1
TO/FROM 8 TRANSFERS Tax20
MDP1 75 DDPs ON MM2 1 OF 4 BANKS ON MM2
~
8 TRANSFERS 8 X 20
ToERoM s DDPs ON MM3 1 OF 4 BANKS ON MM3

MR_X1157_89

Figure 5-22 DDPs Sending Eight 20-Bit Slices

BIT POSITIONS WITHIN A MEMORY MODULE SLICE

18 18 17 16 18 14 13 12 11 10 08 os 07 06 0s 04 03 02 01 00

BITS ON MEMORY MODULES MMO AND MM2 (LOWER LONGWORD)

i8 18 17 16 15 14 13 12 11 10 09 08 o7 06 05 04 03 02 01 00

c03 |co2 | cot|coo|Dis| D14/ D13 | D12 | D11 | D10 | DOS | DOB | DO7 | D06 | DOS | DO4 | DO3 | DO2 [DO1 | DOO

Y A
CHECK BITS DATA BITS

BITS ON MEMORY MODULES MM1 AND MM3 (UPPER LONGWORD)

19 18 17 16 15 14 13 12 11 10 08 08 07 06 [:H] 04 03 02 01 00

MK | C06| CO5 | C04 | D31{ D30 | D28 | D28| D27 | D26 | D25 | D24 | D23 | D22 | D21 | D20 { D19 [D18 | D17 | D16

|\ A J
Y Y
MARK BIT,
CHECK BITS DATA BITS
MR_X1158_88

Figure 5-23 Quadword Bit Configuration

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-33

Figure 5-24 shows how the quadword data bits are distributed in the MACs and DACs.

5.2.2.12 Storing Quadwords

Figure 5-24 shows the even and odd longwords. MMO and MM1 store the odd longword.
MM2 and MMS3 store the even longword. MMO and MM2 store the same bits within
their respective longwords. MM1 and MM3 store the same bits within their respective
longwords.

For quadword 0, MMO receives a 20-bit slice and MM1 receives a 20-bit slice of the odd
longword’s 40 bits. MM2 receives a 20-bit slice and MM3 receives a 20-bit slice of the
even longword’s 40 bits.

For quadword 1, MMO and MM1 receive the even longword (40 bits). In MMO and in
MM1, DACO receives 10 bits and DAC1 receives 10 bits. MM2 and MM3 receive the odd
longword (40 bits). In MM2 and in MM3, DACO receives 10 bits and DAC1 receives 10
bits.

QUADWORD (80 BITS)

ODD LONGWORD (40 BITS) EVEN LONGWORD (40 BITS)
2081TS | 20BITS 20BITS | 20BITS
»re ore
MAC 3 MAC 2 MAC 1 MAC © QUADWORD 0
MAC3 | MAC3 | MAC2 | MAC2 | MAC1 | MAC 1 | MACO | MAC O
DAG1 | DACO | DAG1 | DACO | DAC1 | DACO | DAC 1 { DAC 0 | QUADWORD 1
MAC 3 MAC 2 MAC 1 MAG 0 QUADWORD 2
MAC3 | MAC3 | MAC2 | MAC2 | MAC1 | MAC 1 | MAC 0O | MAC 0
DAG1 | DAC O | DACT | DACO | DAG1 | DAC O | DAC1 | DAC O | QUADWORD 3
MAC 3 MAC 2 MAC 1 MAC 0 QUADWORD 4

MAC 3 MAC 3 MAC 2 MAC 2 MAC 1 MAC 1 MAC 0 MAC 0

BAC T | DACO | DAC: | DAGG | DAG1 | DAGO | DAC 1 | DAC o | QUADWORD S

MAC 3 MAC 2 MAC 1 MAC 0 QUADWORD 6

MAC 3 MAC 3 MAC 2 MAC 2 MAC 1 MAC 1 MAC 0 MAC 0

BAc: | DACO | DAG1 | DAGO | DAC1 | DAC O | DAC 1 | DAC ¢ | QUADWORD 7

MR_X-*59_89

Figure 5-24 Distribution of Quadword Data Bits

DIGITAL INTERNAL USE ONLY

5-34 Array Control Unit and Main Memory Unit

Figure 5-25 shows [19:00] of a 20-bit slice. MAC DRAMs store [19:00] of quadwords 0,
2, 4, and 6. DACO stores [09:00] of quadwords 1, 3, 5, and 7. DAC1 stores [19:10] of
quadwords 1, 3, 5, and 7.

DDPO, DDP1, DDP2, and DDP3 each send five bits of data to the DRAMs. For example,
DDPO sends [04:00] of quadwords 0, 2, 4, and 6 to the MAC DRAMs. DDPO sends [04:00]
of quadwords 1, 3, 5, and 7 to DACO DRAMs.

DDP3 sends [19:15] of quadwords 0, 2, 4, and 6 to the MAC DRAMs. DDP3 sends [19:15]
of quadwords 1, 3, 5, and 7 to the DAC1 DRAMs.

The DDP gate arrays contain independent read and write buffers that allow a read data
transfer to occur in one segment while a write data transfer occurs in another segment.
Figure 5-30 shows the independent read and write buffers, the DRAM bypass path, and
the write select decoder.

20-BIT SLICE R

DDP3 N DDP2 DDP1 DDPO

[18:16] [14:10] [09:06] {04:00]
MAC MAC MAC MAC QUADWORD 0
DAC 1 DAC 1 DAC 0 DAC 0 QUADWORD 1
MAC MAC MAC MAC QUADWORD 2
DAC 1 DAC 1 DAC 0 DAC 0 QUADWORD 3
MAC MAC MAC MAC QUADWORD 4
DAC 1 DAC 1 DAC 0 DAC 0 QUADWORD 5
MAC MAC MAC MAC QUADWORD 6
DAC 1 DAC 1 DAC 0 DAC 0 QUADWORD 7

MR_X1160_88

Figure 5-25 DRAMSs Storing Bits [19:00]

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-35

5.2.3 Service Processor Unit

The SPU is based on a BI MicroVAX system installed in a single BI card cage. The
processor consists of a service processor module (SPM), 2 Mbytes of ECC memory, KFBTA
(AIQ — disk controller), DEBNT (AIE — NI/TK50 controller), and a scan control module
(SCM).

SPM contains the SPU-to-JBox adapter (SJA) MCA. Two cables, one for the logical (test)
interface and the other for the scan interface, plug onto the front edge of the SPM module
and the SCM module and are connected to the SCU planar module. Figure 5-2 shows
the SPU connectors on the SCU planar module. SPU asserts the following signals:

e Request step — The memory modules enter the step mode. This supports single-
stepping of the system clocks.

e Request standby — The memory modules enter standby mode. This mode supports
the scan operation and powerfail.

5.2.3.1 Initializing MMUs
SPU initializes each MMU by sending an SPU_MAC_CTLINIT_L signal to the memory
modules. The following summarizes the initializing sequence:

1. Power is applied to the machine. The memory modules are placed in standby mode.
2. Scan-based testing of ACU is performed.

3. ACU is initialized into step mode.
4

SPU releases MMU from standby by way of a handshake sequence. MMU and ACU
are both in step mode.

ACU and MMU exit step mode using a handshake sequence.
MMU and ACU enter their usual operating mode.

5.2.3.2 Modes of Operation
The memory subsystem is in one of the following timing modes:

Normal

Step

Standby

Address pattern generation

These timing modes support the following levels of system operation:

Normal — Normal timing

Burst clocking — Step mode timing

Scan — Standby mode timing

Power loss — Standby mode timing

Built-in self-test — Address pattern generation timing

SPU can switch between modes. To preserve data integrity, mode switching must be done
in a specific order. For more detail, see Section 5.8.

DIGITAL INTERNAL USE ONLY

5-36 Array Control Unit and Main Memory Unit

5.3 Array Control Unit — Functional Description

This section provides a functional description of the ACU MCUs (DAX and DBX) and and
the ACU MCAs (MMCX, MCDX, and MDPX). The ACU controls the main memory unit,

DRAMs, and DRAM data paths on the memory modules. ACU also provides the SCU
memory data path from the memory modules to the JBox data switch. For addressing
the DRAMs, the JBox holds the row and column addresses in the ADRX MCAs. ACU

uses an index value that the JBox sends with the command to select the appropriate
address in the ADRX MCA. Figure 5-26 shows the ACU block diagram.

FROM
JBOX

FROM
JBOX
DATA

FROM
MMU
DATA

CMD/CNTL

CMD LATCH
AND
START LOGIC

el LATCH

SEGMENT 0
DRAM
CONTROL

MMU

SEGMENT 1
DRAM
CONTROL

MMU

COMMAND DECODE AND CMD/STATUS
EXECUTION
SEGMENT 0
DATA PATHS ADDRESS PATHS | TO
CONTROL CONTROL JBOX
; COMMAND DECODE AND CMD/STATUS
- EXECUTION
i SEGMENT 1
I
i
LATCH}—
| CHECK BIT | WRITE DATA 10
i GENERATION | MNU
| 1 MARK BIT
I CONTROL LOGIC l—
MERGE 4|
ECC
—{ DECODE AND
CORRECTION
READ DATA T0
LATCH JBOX

Figure 5-26 ACU Block Diagram

DIGITAL INTERNAL USE ONLY

MR_X:-€°_88

Array Control Unit and Main Memory Unit 5-37

54 MMCXMCA

The MMCX MCA provides the main memory control for the memory operations described
in Section 5.9. MMCO, located on the DBO MCU, controls the receipt and transmission
of memory commands to and from the CCU MCU, MMUO memory modules, and SPU.
MMC1, located on the DB1 MCU, controls the receipt and transmission of memory
commands to and from the CCU MCU, MMU1 memory modules, and SPU. Figure 5-27
shows the the major control areas in the MMCX MCA.

The MMCX MCA contains the following logic:

Input buffer — The input buffer receives the CCU command, tag starting address,
data switch mask bits, MMUX and MDPX status, and MCU fatal errors. The input
buffer decodes the status and commands, sending internal commands to the command
latch, command buffer control, read buffer control, write buffer control, and output
buffer. ’

Command buffer control — The command buffer control logic contains the segment
0 and 1 controllers, segment 0 and 1 address strobe enables, and segment 0 and

1 command start controls. The command buffer control also contains the refresh
control, column address select, and step mode controller.

Command latch — The command latch contains the segment 0 and 1 command
buffers. The command latch sends the index to CCU, the read command to the read
buffer control, the write command to the write buffer control, the EEPROM read
command to the read buffer control, and the EEPROM write command to the write
buffer control.

Write buffer control — The write buffer control logic contains the segment 0 and 1
write controllers, the CAS mask control, and the write select control.

Read buffer control — The read buffer control logic contains the read data latch
controller (read buffer 1), data output latch controller (read buffer 0), error controller,
quadword counter, read select control, and read-modify-write select control.

Output buffer — The output buffer sends commands to the CCU MCU; control
information to the MDPX, MCDX, and ADRX MCAs; and set attention to the CDCX
MCA.

MMUX_MMCX_STATUS_H[05:00
= = Hl ! — C?_“A".“r“a:‘“’ —T MMCX_MMUX_CTL_H[47:00)
CTLX_MMCX_GMD_H[14:00] he—] >
MMCX_CCU_CMD_H[08:00]
ADRX_MMCX_CMD_H[03:00) >
MMCX_ADRX_CTL_H[04:00]
MDPA_MMCX_STATUS_H[01:00] WRITE [>
—»! BUFFER MMCX_MDPA_CTL_H[15:00]
DSA2_MMCX_CTL_H[01:00] CONTROL e >
INPUT OUTPUT | MMCX_MDPB_CTL_H[16:00]
MCDX_MMCX_STATUS_H[19:00] | BUFFER — —»{ BUFFER >
MMCX_MCDX_CTL_H[22:00]
MDPB_MMCX_STATUS_H[06:00] READ > - >
—» BUFFER MMCX_CDCX_ATTENTION_H
DSB2_MMCX_CTL_H{02:00] CONTROL je&— >
FATAL ERRORS
ERROR ATTENTION COMMAND |
—® BUFFER
SPU_MMCX_CTL_H CONTROL je—

MR_X1162_89

Figure 5-27 MMCX Control Areas

DIGITAL INTERNAL USE ONLY

5-38 Array Control Unit and Main Memory Unit

5.4.1 Command Buffer Control

The command buffer control inputs and outputs are shown in Figure 5-28. The command
buffer control in the MMCX MCA receives the following internal MMCX signals:

e Write done, read bus busy, read data ready, single-step mode, and BIST from the
MMCX input buffer

¢ Commands from the MMCX command latch

e Data received in the data input latch, write data ready, and read-modify-write status
from the MMCX write buffer control

e Read latch busy and single-step status from read buffer control

The command buffer control in the MMCX MCA sends the following:

e Address parity error to the input buffer control

e Address select, command latch select, and single-step mode to the command latch
e Command buffer status to the write buffer control

e Single-step mode, OK received status, and command buffer status to the read buffer
control

Through the MMCX output buffer, the command buffer control in the MMCX MCA sends
the following:

e Address strobe and step control enable to the MMUX
s Column address select to the ADRX MCA
¢ Normal buffer available to the CCU MCU

e Refresh required, segment abort, single-step mode, start, and BIST buffer available
to the MCDX MCA

r
MMCX MCA

RBF WBF COMMAND INPUT OUTPUT
CONTROL CONTROL LATCH BUFFER BUFFER

COMMAND

1
SEGMENT 0 SEGMENT 1 STEP MODE [couweu |
I > CONTROLLER —l [" CONTROLLER ‘1 r STanT ’_l CONTROLLER l gcu mey
I
I
I
I

1

1

]

1

]

1

]

! COMMAND BUFFER CONTROL

i |
] 1
1

1

!

1

1

1

Figure 5-28 Command Buffer Control

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-39

5.4.1.1 Command Buffer Controlier

Each segment has a command buffer controller in the MMCX MCA. The command buffer
controller controls the segment’s command latch. Figure 5-29 shows the states for the
command buffer controller.

IDLE

)
D,

CYCLE
STATUS
PENDING

1

CYCLE
STATUS
EXPECTED

2

ABORT
RECEIVED

6

OK
RECEIVED

T3

BUFFER
AVAILABLE
SENT

4

TO IDLE

0
MR_X1164_89

Figure 5-29 Command Buffer Controller

DIGITAL INTERNAL USE ONLY

5-40 Array Contro! Unit and Main Memory Unit

For reads and writes, the controller enters the following states:
1. Idle state.

2. Cycle status pending or cycle status expected states — The MMCX monitors
read and match the status with the appropriate read command. Each segment can
have an outstanding return data read command. CCU sends cycle status to MMC.

3. OK received state or abort state — CCU can send OK or abort cycle status to the
MMCX.

4. Buffer available sent state — The MMCX sends buffer available for each segment.

For more detail on the memory operations, see Section 5.9.

5.4.2 Segment Controller

The segment controller starts the segment in the memory module during memory
operations. The segment receives row and column addresses for each operation from
the ADRX MCAs. The segment controller controls the loading of the row and column
addresses into the DRAM control and address gate arrays in the memory module.

The states of the controller can be divided into the following three areas:

Starting the segment controller
Loading the row address
Loading the column address

The MMCX MCA sends the following signals:

¢ Index value, row, and column select to the ADRX MCA — The ADRX MCA
uses the index value to select an address receive latch in which a physical address
is stored. The ADRX MCA uses the physical address to generate row and column
addresses to MMU,

¢ Address strobes to the MMUX — The DCA in the memory module uses the address
strobes to latch the row and column address bits coming from the ADRX MCA.

e Start to the MCDX MCA — MCDX receives the command and start from the
MMCX, decodes the command, and generates RAS (for bank and segment), CAS (for
segment), and WE (for segment) to address the DRAMs.

Figure 5-30 shows the segment address lines addressing the DRAMs in each segment of
the memory module.

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 541

687 S94IX HA

3INAON AHOW3W H3d ¥ 40
(daq) H1vd Y1Va WvHa

SH3IJSNVHL 8
1NO viva daa

sL1a s
HOLV1

%0010 avay 0 HOlV1 Qv3y
{00:20] (TOHLNOD YOW XGOW)
13s ad 2 HOLVY avayd

(10HLNOD v2Q)
L HO1V1 Qv3y
—siig s sl s
—{sii18 s}—{sue s u
| 1s11as}—]sue s|—]
—]sue sl suasp—
L {siash—{suasl—{ 7
15118 s}—{s1ia s |—
g40t b—{siias}—isiid s}—
L{s1i8 s}—{s1ia s}—
(HOLVY (HO1Vv1
1no viva) avay)
0 4344n8 | ¥Iddna
av3d av3d

$$34aav LN3WO3S

N3 dd LtHM

h S1S 1UMm

ov| swvua | soLe
7 ob ¥300%3a
L WNVE aa
_ 4300030 [*" oo 201
135 1um
or | swvea —{s1a s}—{s1ie s}—
L
7| oxunva 0%, L {siig s|—{siia s }—]
I PYYIFY B PYTTY]
t LNIND3S
ov, —{stie sp—{simsf—
—{sua s}—]suie s}
ov,| swvea | tsnas|—{sue s}—
L.
71 v wnve 17 L—{s1i8 s}—{s1ie s }—
L 1siia s}—{suas S 4
SHIASNVHL 8
ov,| swvea H (v34in8 (W3Idneg NI vivd daa
7 ov 311HM) NI Viva)
0 NVE 7 } 4344n6 0 ”H344N8
LM 3LiEM
0 LNIWD3S

SSVdAB WVHa

(sna av3y)

Figure 5-30 Read and Write Data Paths in the Memory Module

DIGITAL INTERNAL USE ONLY

§-42 Array Control Unit and Main Memory Unit

5.4.2.1 Starting the Segment Controller

If the segment is ready and the MMCX command latch has received a command,
the segment controller starts the operation. Figure 5-31 shows the starting segment
controller states.

For reads, the segment controller moves from the idle state to the load row address state.

For writes, the segment controller moves from the idle state to the waiting for resources
state. The source and destination data paths to and from the data switch must be
available.

MCDX generates the DRAM control signals (RAS, CAS, WE) and determines when the
data is valid. MCDX sends read data ready several clock ticks before the data is actually
valid because of the necessary protocol between MMCX and CCU. MMCX sends the
return data (or error) command to the JBox. The JBox responds with send data.

Do

TO T0

WAITING LOAD LOAD WAITING

FOR ROW ROW TO START

RESOURCE ADDRESS ADDRESS REFRESH
1 2 3 12

T0
SET UP IDLE

ROW
ADDRESS
2

STARTING
REFRESH

13

' }

TO TO T0
IDLE LOAD IDLE
ROW
ADDRESS

3

MR_X1166_89

Figure 5-31 Starting the Segment Controller States

5.4.2.2 Loading the Row and Column Addresses

For reads and writes, if the segment is not busy, the segment controller moves from the
load row address states to the set up column address states. If the segment is busy, the
controller moves from the load row address state to the hold row address state.

The DCA in the memory module uses the address strobe signals from the MMCX MCA to
latch the row and address bits from the ADRX MCA.

The MCDX asserts RAS and WE when MMCX sends start. MMCX sends write data
ready to MCDX. MCDX uses write data ready to send CAS to MMU.

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-43

Figure 5-32 shows the loading row address segment controller states. Figure 5-33 shows
the loading of the column address for the segment controller.

LOAD
ROW
ADDRESS

3

v v '

TO0 TO T0
HOLD IDLE SET UP
ROW COLUMN
ADDR4

ADDRESS
8

TO IDLE
HOLD
ROW
ADDR2

TO
IDLE

TO
IDLE

TO
IDLE

v v

T0 T0

IDLE SET UP
COLUMN
ADDRESS

8

MR_X1187_89

Figure 5-32 Loading the Row Address for the Segment Controller States

DIGITAL INTERNAL USE ONLY

5-44 Array Control Unit and Main Memory Unit

SET UP
COLUMN
ADDRESS

8

TO
IDLE LOAD
COLUMN

ADDRESS

9

T

IDSE WAITING
FOR
READ

STATUS
10

- To
WAITING ADDRESS IDLE
FOR LOADED
READ
DATA 1
15
TO TO
IDLE WAITING IDLE

FOR
SEGMENT

ADDRESS
2

MR_X1168_89

Figure 5-33 Loading the Column Address for the Segment Controller States

5.4.3 Command Latch

The inputs and outputs of the command latch are shown in Figure 5-34. The command
latch receives the following internal MMCX inputs:

e Starting address, read select, command latch select, and BIST from the input buffer

¢ Address select, read command latch, single-step read select, and single-step mode
from the command buffer control

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-45

r
MCDX MCA 1

] ADRX MCA
INPUT ——'IRBF CONTROLI
BUFFER Tox oA
-—| Y] M I
LATCH WBF CONTROL|

GONTROL g |

OUTPUT
BUFFER ’_l—

———-—--——---—————-J

1
|
I
i
1
| CBF
1
I
I
1
-

Figure 5-34 Command Latch
The command latch sends the following:

Command to the command buffer control
Read command to the read buffer control
Write command to the write buffer control

Through the output buffer, the command latch sends the following:

Index to the ADRX MCAs
Command and bank address to the MCDX MCA

5.4.4 Read Buffer Control

The inputs and outputs of the read buffer control are shown in Figure 5-35. The read
buffer control receives the following internal MMCX inputs:

e Buffer available, send data, read data ready, lower longword read error, high
longword read error, single-step request, cycle status, and BIST from the input buffer

e Command buffer status, single-step mode, and read latch OK from the command
buffer control

e Command from the command latch

e Read-modify-write status bit from the write buffer control

The read buffer control sends:

e Read latch busy and read buffer single-step read to the command buffer control

e Read-modify-write select and read-modify-write beginning of data bit to the write
buffer control

Through the output buffer, the read buffer control sends the following:
e Command, segment, load command, and read OK to the CCU MCU

o Buffer select, merge select, buffer latch, mask select, error log select, read latch hold,
beginning of data bit, quadword error address, and ECC enable to the MDPX MCA

¢ Read latch busy and latch read error to the MCDX MCA
e MAC read select and data output latch enable to MMU

DIGITAL INTERNAL USE ONLY

5-46 Array Control Unit and Main Memory Unit

687041 iX N

"
1
i
1
i
1
I
i
i
1
i
I
I
1
i
1
I
|
1
i
|
I
I
|
1
1
I
|
I
1
I
1
!
i
I
I
1
I
1
i
t
i
!
1
i
1
1
1
I
|
I
I
I
1
1
1
I
4

]
1
1
]
]
]
]
1
I
1
]
i
1
]
1
VOW XGON ;
1
"H34d4ng
1| indino
VON XdJOW “
1
1
VOW 1950 !
1
1
|
1
1
[9

i
1
|
1
|
1
318VIIVAY 1
EEFLT |
|
loo:s0]H "sD1AVE]
- 1
TOHLNOD 380 | |
> |
I
1
le—1 u3ddna NI I
1
I
HITIOUINOD H3TIOHLNOO e—{ HOLY1 QWO |
HITIOHINGD HOLYY HOLV 1
Houu3 1no viva 1
viva avay "
" |
- - - - TOHLNOD JaM
loo:+0lH "$00H3 loo:voln"s00100 loo:20lH™s0010H -]
1
TOULNOD H3d4NA av3l |
I

vow xown |

N T G R G GE G R GEN SR N S G R S RSN WSS R SED D D G N G G EEG GED GMD GED She Swa GMb SED NN GMR GED GNS G AR MM NN S G SND SUS GNe MY Sun G G S e s e s of

Figure 5-35 Read Buffer Control

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-47

5.4.4.1 Read Data Latch Controller

The read data latch controller controls the read data latch (read buffer 1). Figure 5-30
shows the read data latch in the memory module. Figure 5-36 shows the states of the
read data latch controller.

For reads, the controller moves from the idle to the command sent state. While in this
state, MMCX sends the load command, segment number, and return data (or error)
command to the JBox.

For read-modify-write operations, the controller moves from the idle state to the pending
read-modify-write state. The data output latch (read buffer 0) loads the read data for
the merge operation that takes place in the MDPX MCA. Section 5.9.3 describes a read-
modify-write operation.

IDLE

WAITING
FOR
STATUS

1

=

TO
IDLE

TC
IDLE

WAITING
TO SEND
COMMAND

2

TO

IDLE COMMAND
SENT

3

TO

WAITING tOLE

MR_X1171_89

Figure 5-36 Read Buffer Controller States

DIGITAL INTERNAL USE ONLY

548 Array Control Unit and Main Memory Unit

5.4.4.2 Data Output Latch Controller

The data output latch controller controls the data output latch (read buffer 0) in the
memory module. Figure 5-30 shows the data output latch in the memory module. Figure
5-37 shows the states of the data output latch controller. For read operations, the data
output latch controller moves from the idle state to the load starting address states.
Eight quadwords are read from the DRAMs regardless of the context. The controller
returns to idle.

For read-modify-write operations, the data output latch controller moves through the
following sequence of states:

1. Idle state.
2. Read-modify-write pending states.

3. Load write data states — Write data is loaded into the data output latch and is
sent to MDPX.

4. Load read data states — Read data is loaded into the data output latch and is sent
to MDPX.

Merge data states — The read and write data is merged in MDPX.
Idle state.

v

TO LOAD
STARTING
ADDRESS

WAITING
FOR
STATUS

8
1

!

TO IDLE

WAITING
TO SEND

RMW
PENDING COMMAND

2

COMMAND
SENT

3

TO LOAD
STARTING
ADDRESS

TO IDLE TO LOAD 8
WRITE DATA
ADDR1

17

MR_X:72_89

Figure 5-37 (Cont.) Data Output Latch Controller States

DIGITAL INTERNAL USE ONLY

LOAD
STARTING
ADDRESS

8

TO LOAD
IDLE ADDR2
26

Array Contro! Unit and Main Memory Unit 549

LOAD
ADDR3

11

LOAD
ADDRS

13

LOAD
ADDRS8

14

TO LOAD
STARTING
ADDRESS

8

Figure 5-37 (Cont.)

TO
IDLE

Data Output Latch Controller States

DIGITAL INTERNAL USE ONLY

5-50 Array Control Unit and Main Memory Unit

TO

STARTING 1DLE

ADDRESS

18

AD
HSE[I;ODATA TO LOAD ADDR1
STARTING

ADDRESS

23

LOAD
READ DATA
ADDR1Y

19

TO LOAD

READ DATA
STARTING ADDRESS

'

TO LOAD
READ DATA
STARTING ADDRESS

TO LOAD MERGE TO IDLE
READ DATA HOLD

STARTING

ADDRESS 22

l l

TO IDLE

TO LOAD
READ DATA
STARTING
ADDRESS

23
MR_X1174_89

Figure 5-37 Data Output Latch Controller States

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-51

5.4.4.3 Error Report Controlier
The error report controller controls how the ACU ECC error logic reports an error. The
following steps summarize how ACU detects and handles an error:

1. MDPX detects and latches an ECC error as a result of a write data error or a read
data error.

92 MMCX sends the error command to the JBox. The JBox sends a send data command
to ACU for the error data.

3. The MDPX data error register latches all data errors except for a write parity error.
MDPX sends the ECC error data to the JBox. The JBox sends the error data to the
ICU transmit buffer and then to SPU.

Figure 5-38 shows the states of the error report controller.

ECC
ERROR
DETECTED

1

SEND
ERROR
COMMAND

2

MR_X1175_89

Figure 5-38 Error Report Controller States

DIGITAL INTERNAL USE ONLY

5-52 Array Control Unit and Main Memory Unit

5.4.5 Write Buffer Control

The inputs and outputs of the write buffer control are shown in Figure 5-39. The write
buffer control receives the following MMCX internal inputs:

Load command, bank address, beginning of data bit, write done, mask status, and
BIST from the input buffer

Command buffer status from the command buffer control

Read-modify-write select and read-modify-write beginning of data bit from the read
buffer control

Command from the command latch

The write buffer sends the following:

Read-modify-write required, data received in the data input latch, and wnte data
ready to the command buffer control

Read-modify-write required and merge abort to the read buffer control V

Through the output buffer, the write buffer sends the following:

Write OK to the CCU MCU

CAS mask control, MSKDIRSEG, write buffer strobes, write flip-flop enables, and
write select to MMU

Read-modify-write required, write data ready, low longword mask parity, and high
longword mask parity to the MCDX MCA

Mask latch select and write address parity to the MDPX MCA

r ¥ X K X K F x ¥ N E N N _ N N N N N N N N N N N N &N N _§N_ J 1
| MMCX MCA I
1 WRITE BUFFER CONTROL 1
| I
| I
i iNeuT | 1 GCU McU
BUFFER
| i
] i
I SEGMENT 0 SEGMENT 1 i
eMD WRITE WRITE .
1 - CONTROL CONTROL -4 MMU
LATCH
| !
| I
! RBF ™ !
I CONTROL || i MCDX MCA
] i
] |
I I
i CBF N CONTROL LATCH t MDPX MCA
CONTROL |q | 1
] I
I I
| OUTPUT !
I BUFFER i
1 I
] I
. 4

MR_X1176_88

Figure 5-39 Write Buffer Control

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-53

5.4.5.1 Segment Data Latch Controller
The segment data latch controller controls the data input latch (write buffer 0) and write
buffer 1. Figure 5-30 shows write buffers 0 and 1 in the memory module.

MMCX receives the load command, write command, index field, and length field from the
CCU. MMCX looks at the index to determine whether it is a CPU or an VO device write.
If it is a CPU write, the length equals eight quadwords. MMCX monitors the beginning
of the data from the data switch to determine when the data transfer starts, counts clock
ticks to determine when the data transfer completes, and asserts write data ready.

Figure 540 shows the states of the segment data latch controller. For writes, the
controller moves through the following sequence of states:

1. Idle state.

2. Write data expected state — Data switch sends the beginning of the data bit to
mark the first valid quadword.

3. Loading last data quadword state — The data input latch continues to load
quadwords until the last quadword is loaded.

Input data ready state — MMCX sends write data ready status to MCDX.

Write data ready state — MMCX sends write select, write strobes, CAS mask
control, and write flip-flop enables. The controller remains in this state until MCDX
sends write done to MMCX. MMCX sends command buffer available to the JBox.

For read-modify-writes, the controller enters the merge data states.

5.4.5.2 Read-Modify-Write Status Bit

The read-modify-write required status bit remains asserted until MCDX sends write done
to the MMCX MCA. Figure 5-41 shows the states of the read-modify-write status bit
controller.

5.4.6 Mode Transition Controller

The mode transition controller controls how the SPU switches from step to normal mode
during BISTs. Figure 5-42 shows the states of the mode transition controller.

DIGITAL INTERNAL USE ONLY

5-54 Array Control Unit and Main Memory Unit

2

IDLE
0
WRITE l
DATA TO
PENDING LOAD
LAST
y DATA
QUADWORD
WRITE
DATA
EXPECTED

UPDATE
SEQUENCER

4

LOADING
FIRST
QUADWORD

£

OCTALWORD
5

LOADING
LAST
DATA

QUADWORD

5

v

TO
WAIT
FOR
WRITE
BUFFER

3

TO
WRITE
DATA
READY

MR_X1177_89

Figure 5-40 Segment Data Latch Controlier States

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-55

RMW
REQUIRED

1

MR_X1178_89

Figure 5-41 Read-Modify-Write Status Bit States

STEP
MODE

SECOND
WAIT
STATE

3

NORMAL
MODE

4

MR_X1179_88

Figure 5-42 Mode Transition Controlier States

DIGITAL INTERNAL USE ONLY

5-56 Array Control Unit and Main Memory Unit

5.4.7 MMU Interface
This section describes the interface between the MMU and the MMCX MCAs.

5.4.7.1 MMCX-to-MMU Interface
Figure 5—43 shows the MMCX_MMUX_CTL_H[47:00] fields. Table 5-18 lists the control
fields and their descriptions.

16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

WRITE BUFFER . CAS MASK
STROBE ADDRESS STROBE CONTROL

MASK DIR SEGMENT 0

34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17
WRITE FLIP-FLOP
ENABLE

WRITE SELECT

DATA OUT LATCH ENABLE

47 46 45 44 43 42 41 40 38 38 37 36 35

READ SELECT

STEP CONTROL ENABLE

MR_X1180_89
Figure 5-43 MMCX-to-MMU Control Format
Table 5-18 MMCX-to-MMU Control Field Descriptions
Bits Name Description
03:00 CAS mask control This field specifies the chip select mask control

signals for the four main array cards. MMCX_
MAC_CASMSKCTL_H[03:00] sets the state of the
bits in the mask control register. Table 5-19 lists
the bits and their descriptions. Table 5-20 lists
the the CAS mask control lines for the main array
cards, segments, and banks.

04 Mask direct segment This field specifies the segment to which the
current CAS mask bits are directed.
12:05 Address strobe This field contains the address hold control signals

for the four main array cards. Table 5-21 lists
the address strobes for the main array cards,
segments, and banks.

16:13 Write buffer strobe This field contains the data latch strobe bits for
each of the two data buffers across the four main
array cards. The strobe signals strobe the selected
data into the buffer. A strobe is sent when write
selects are to be loaded or when data and mask
bits are to be loaded into the data input or write
data latch. Table 5-22 lists the write strobe bits
for the main array cards, segments, and banks.

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-57

Table 5-18 (Cont.) MMCX-to-MMU Control Field Descriptions

Bits Name Description

20:17 Write flip-flop enable This field contains the write flip-flop enable bits for
the write data buffer across four main array cards.
These bits enable the strobing of data and mask
bits into the write data buffer. Table 5-23 lists
the write flip-flop bits for the main array cards,
segments, and banks.

32:21 Write select This field contains the write select bits that select
one of the eight input data buffers of write buffer
0. Table 5-24 lists the write select bits for the
MAGCs, segments, and banks.

34:33 Data out latch enable This field contains the data out latch enable bits
that open the data output latches to receive new
data. Table 5-25 lists the data output latch enable
bits for the MACs, segments, and banks.

46:35 Read select This field contains the read select bits that select
one of eight output data buffers in read buffer 0
for transmission to the data path. Table 5-26 lists
the read select bits for the MACs, segments, and
banks.

47 Step control enable This field contains the step control enable bit that
switches the four MACs to single-step mode. It
must be asserted before executing any single-step
or burst-mode operations. While it is asserted, the
DRAMs are controlled by the MACs local controller
and normal DRAM control lines are interpreted
as follows: MMCX_MAC_RAS_L[03:00] — Strobe
mode commands into the DCA command buffer;
MMCX_MAC_CAS_L{01:00} and MMCX_MAC_
WE_L{01:00] — The CAS and write lines are
encoded with the step mode command. When the
bit is reset, any cycle in progress is completed by
the local DRAM controller and control then returns
to the normal system timing.

Table 5-19 MMCX_MAC_CASMSKCTL_H[03:00]

Bits Description

00 Reset all mask latch locations.

01 Set selected mask latch location, reset all other locations.

10 No change to any location.

11 Set selected mask latch location, no change to other locations.

Table 5-20 CAS Mask Control Field Descriptions

CAS Mask

Control Lines MAC Segment Bank
01:00 0,1 0,1 0,1
03:02 2,3 0,1 0,1

DIGITAL INTERNAL USE ONLY

5-58 Array Control Unit and Main Memory Unit

Table 5-21 Address Strobe Field Descriptions

Address Strobe MAC Segment Bank
00 0 0 0,1
01 0 1 0,1
02 1 0 0,1
03 1 1 0,1
04 2 0 0,1
05 2 1 0,1
06 3 0 0,1
07 3 1 0,1

Table 5-22 Write Strobe Field Descriptions

Write Strobe Bit MAC Segment Bank
00 0 0,1 0,1
01 1 0,1 0,1
02 2 0,1 0,1
03 3 0,1 0,1

Table 5-23 Write Flip-Flop Enable Field Descriptions

Write Flip-

Flop Enable MAC Segment Bank
00 0 0,1 0,1
01 1 0,1 0,1
02 2 0,1 0,1
03 3 0,1 0,1
Table 5-24 Write Select Field Descriptions

Write Select ~ MAC Segment Bank
02:00 0 0,1 0,1
05:03 1 0,1 0,1
08:06 2 0,1 0,1
11:09 3 0,1 0,1

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-59

Table 5-25 Data Output Latch Enable

Data Output

Latch Enable MAC Segment Bank
00 0,1 0,1 0,1
01 2,3 0,1 0,1

Table 5-26 Read Select Field Descriptions

Read Select MAC Segment Bank
02:00 0 0,1 0,1
05:03 1 0,1 0,1
08:06 2 0,1 0,1
11:09 3 0,1 0,1

5.4.7.2 MMU-to-MMCX Interface
MMUX sends status information to MMCX MCA. Figure 5-44 shows the MMU-to-MMCX
status fields. Table 5-27 lists the status bits and their descriptions.

06 05 04 03 02 01 00

REFRESH FLAG ADDRESS PARITY ERROR

REFRESH FLAG STEP CYCLE BUSY

MR_X-187_89

Figure 5-44 MMU-to-MMCX Status Format

Table 5-27 MMU-to-MMCX Status Field Descriptions

Bits Name Description

03:00 Address parity error This field indicates that an address parity
error has been detected on MAC. Each of these
signals is received from a different MAC.

04 Step cycle busy This field indicates that a single-step or burst-
mode cycle is in progress. No new request
can be sent to the MACs while this signal is
asserted.

06:05 Refresh flag This field indicates that a refresh is due.
(differential) :

DIGITAL INTERNAL USE ONLY

5-60 Array Control Unit and Main Memory Unit

5.4.8 MCDX MCA Interface

This section describes the interface between MCDX and the MMCX MCAs.

5.4.8.1 MCDX-to-MMCX Interface

Figure 545 shows the control fields. Table 5-28 lists the bits and their descriptions.

15141312 1110 09 08 07 06 05 04 03 02 01 00

PARITY

MCD FATAL ERROR

STOP TEST
BIST BEGINNING OF DATA

BIST LOAD COMMAND

SEGMENT 0 BUSY
SEGMENT 1 BUSY

SEGMENT 0 READ DATA READY
SEGMENT 1 READ DATA READY
SEGMENT 0 WRITE DONE

SEGMENT 1 WRITE DONE

SEGMENT 0 READ BUS BUSY

BIST COMMAND [01:00]

SEGMENT 1 READ BUS BUSY

LINEAR FEEDBACK SHIFT REGISTER HOLD

STEP CYCLE BUSY

REQUIRED NORMAL MODE

MR_Xx1182_89

Figure 5-45 MCDX-to-MMCX Control Format

Table 5-28 MCDX-to-MMCX Field Descriptions

Signal Field

Description

MCDX_MMCX_
STATUS_H[00]

SGOBUSY_H
Segment 0 busy

MCDX_MMCX_
STATUS_H[01]

SG1BUSY_H
Segment 1 busy

MCDX_MMCX_ SGORDDRDY_H
STATUS_H[02] Segment 0 read data
ready
MCDX_MMCX_ SG1RDDRDY_H
STATUS_H[03] Segment 1 read data
ready
MCDX_MMCX_ SGOWTDONE_H
STATUS_H[04] Segment 0 write
done
MCDX_MMCX_ SG1WTDONE_H
STATUS_H[05] Segment 1 write
done
MCDX_MMCX_ SGORBSBSY_H
STATUS_H[06} Segment 0 read bus
busy

DIGITAL INTERNAL USE ONLY

The assertion of this line indicates that segment
0 is busy. No new command is initiated to the
segment while this line is asserted.

The assertion of this line indicates that segment
1 is busy. No new command is initiated to the
segment while this line is asserted.

The assertion of this line indicates that segment
0 read data will be latched into the read buffer
in two clock periods.

The assertion of this line indicates that segment
1 read data is latched into the read buffer in
two clock periods.

The assertion of this line indicates that the
segment O data in the write buffer may be
overwritten.

The assertion of this line indicates that the
segment 1 data in the write buffer may be
overwritten.

The assertion of this line indicates that segment
0 controller has asserted CAS and is using the
output bus to load read data into the read data
latch.

Array Control Unit and Main Memory Unit 5-61

Table 5-28 (Cont.) MCDX-to-MMCX Field Descriptions

Signal

Field

Description

MCDX_MMCX_
STATUS_HI[07]

MCDX_MMCX_
STATUS_H[08]

MCDX_MMCX_
STATUS_H[09]

MCDX_MMCX_
STATUS_H[10]

MCDX_MMCX_
STATUS_H[12:11]

MCDX_MMCX_
STATUS_H[13]

MCDX_MMCX_
STATUS_H{14]

MCDX_MMCX_
STATUS_HI[15]

MCDX_MMCX_
FATALERR_L

MCDX_MMCX_
STATUS_PAR _H

SG1RBSBSY_H
Segment 1 read bus
busy

STEPCYCBSY_H
Step cycle busy

REQNRMODE_H
Required normal
mode

LFSRHLD_H
Linear feedback shift
register hold

BISTCMD_HI[01:00]
BIST command.
[01:00]

BISTLDCMD_H
BIST load command

BISTBOD_H
BIST beginning of
data

STOPTEST_H
Stop test

MCDFTLERR_H
MCD fatal error

Parity

The assertion of this line indicates that segment
1 controller has asserted CAS and is using the
output bus to load read data into the read data
latch.

The assertion of this line indicates that the
single-step controller in DCA is busy. No new
request can be sent to the MACs while this
signal is asserted. This signal is not valid and
must be ignored in normal mode.

The assertion of this line indicates to MMCX
that the subsequent BIST commands should
be executed in normal mode. When it is not
asserted, BIST commands are executed in step
mode. It is enabled only during BIST.

The negation of this line in BIST enables the
MAC’s address B strobe 0. In BIST, this causes
DCA to select the next test address. It is
ignored except in BIST normal mode.

The lines are encoded with the commands to be
executed during self-test. They are valid only
during self-test. They are encoded as follows:

1 0 Function
0 0 Read
0 1 Write/read
1 0 Write
1 1 Write pass

When this line‘is asserted during self-test, the
command encoded on the STMCMD lines is
executed. It is ignored except during self-test.

The assertion of this line simulates the
beginning of data during some BIST tests.

The assertion of this line indicates completion of
a BIST test. It may be due to an error or to the
normal completion of the test.

The assertion of this line indicates that a fatal
error has been detected in - MCD.

The assertion of this line indicates parity across
the signals received from MCD. This parity bit
includes the fatal error line.

DIGITAL INTERNAL USE ONLY

5-62 Array Control Unit and Main Memory Unit

5.4.8.2 MMCX-to-MCDX Interface

Figure 546 shows the control fields. Table 5-29 lists the bits and their descriptions.

PO 2120191817 1615141312 1110 09 08 07 06 05 04 03 02 0100

PARITY

BIST END OF PATTERN

BIST ERROR
BIST BUFFER AVAILABLE
SEGMENT 1 HIGH LW CAS MASK PARITY

SEGMENT 1 LOW LW CAS MASK PARITY

SEGMENT 0 HIGH LW CAS MASK PARITY
SEGMENT O LOW LW CAS MASK PARITY

START

COMMAND

BANK ADDRESS

REFRESH REQUIRED
SEGMENT 0 RMW REQUIRED

SEGMENT 1 RMW REQUIRED

READ LATCH BUSY
SEGMENT 0 WRITE DATA
SEGMENT 0 WRITE LATCH READY

SEGMENT 0 ABORT

SEGMENT 1t ABORT

SINGLE STEP ON

MR_X1183_8%

Figure 5-46 MMCX-to-MCDX Control Format

Table 5-29 MMCX-to-MCDX Field Descriptions

Description

Signal Field
MMCX_MCDX_ CMD_H{02:00]
CTL_H[02:00] Command

DIGITAL INTERNAL USE ONLY

These bits are encoded with the type of cycle
to be executed. The encoding in step mode is
different from that in normal mode. The two
types of encodings are as follows:

Normal Mode
2 1 0 Function
0o 0 © Read
o 0 1 Write read
0 1 0 Masked write
0 1 1 Write pass
Step Mode
1 0 Function
0o 0 O Memory read
0 0 1 Memory write read
0 1 0 Memory masked write
0 1 1 Write pass
1 0 0 EEPROM read
1 1 0 EEPROM write

Array Control Unit and Main Memory Unit 5-63

Table 5-29 (Cont.) MMCX-to-MCDX Field Descriptions

Signal Field Description
MMCX_MCDX_ BANKADDR_ These bits contain the encoded bank address
CTL_H[04:03] H[01:00] of the command to be executed. Bit 1 indicates
Bank address one of two segments and bit 0 indicates one of
two banks within that segment.
MMCX_MCDX_ RFSHRQRD_H This line is asserted when a refresh is due. No
CTL_H[05] Refresh required new memory command is sent to a segment
after the assertion of this signal until a segment
busy cycle (assertion and negation) has been
detected for that segment. It is negated when
both segments have completed their refresh.
MMCX_MCDX_ SGORMWRQRD_H The assertion of this line indicates that the
CTL_H[06] Segment 0 RMW current segment 0 write command must be
required converted to a read-modify-write. It is asserted
simultaneously with or before SGOWTDRDY. It
is negated after SGOWTDONE is received.
MMCX_MCDX_ SG1RMWRQRD_H The assertion of this line indicates that the
CTL_H[07] Segment 1 RMW current segment 1 write command must be
required converted to a read-modify-write. It is asserted
simultaneously with or before SGIWTDRDY. It
is negated after SGIWTDONE is received.
MMCX_MCDX_ RDLATBSY_H The assertion of this line indicates that the read
CTL_H[08] Read latch busy latch is busy.
MMCX_MCDX_ SGOWTDRDY_H The assertion of this line indicates that the data
CTL_H[09] Segment 0 write for the current segment 0 write is in the write
data data latch.
MMCX_MCDX_ SG1WTDRDY_H The assertion of this line indicates that the data
CTL_H[10] Segment 0 write for the current segment 1 write is in the write
latch ready data latch.
MMCX_MCDX_ SGOABRT_H The assertion of this line indicates that the
CTL_H[11] Segment 0 abort received status for the current segment 0
command is an abort. When abort is received,
the cycle should be terminated as quickly as
possible.
MMCX_MCDX_ SG1ABRT_H The assertion of this line indicates that the
CTL_H[12] Segment 1 abort received status for the current segment 1
command is an abort. When abort is received,
the cycle should be terminated as quickly as
possible.
MMCX_MCDX _ SNGLSTPON_H The assertion of this line indicates that the
CTL_H[13] Single stop on DRAM controller should switch to step mode
as soon as any cycles in progress have been
completed. No new cycles are initiated in
normal mode. When this line is negated, the
DRAM controller should switch immediately to
normal mode.
MMCX_MCDX_ START H The assertion of this line indicates that the
CTL_HI[14} Start command encoded on the command lines should

be executed at the address on the address lines.
The selected segment should be determined
from the MSB of the bank address.

DIGITAL INTERNAL USE ONLY

5-64 Array Control Unit and Main Memory Unit

Table 5-29 (Cont.) MMCX-to-MCDX Field Descriptions
Signal Field Description
MMCX_MCDX_ SGOLLWCASMSKPAR_ This line reflects the parity of the CAS mask
CTL_H{15] H bits contained in the last block of data written
Segment 0 low LW to the segment 0 lower longword.
CAS mask parity
MMCX_MCDX_ SGOHLWCASMSKPAR_ This line reflects the parity of the CAS mask
CTL_H[16] H bits contained in the last block of data written
Segment 0 high LW to the segment 0 higher longword.
CAS mask parity
MMCX_MCDX_ SG1LLWCASMSKPAR_ This line reflects the parity of the CAS mask
CTL_H[17] H bits contained in the last block of data written
Segment 1 low LW to the segment 1 lower longword. -
CAS mask parity
MMCX_MCDX_ SG1HLWCASMSKPAR_ This line reflects the parity of the CAS mask
CTL_H[18] H bits contained in the last block of data written
Segment 1 high LW to the segment 1 higher longword.
CAS mask parity
MMCX_MCDX_ BISTBUFAVL_H The assertion of this line indicates that the
CTL_H[19] BIST buffer segment 0 command has finished and that its
available command latch is now available to receive a
new command.
MMCX_MCDX_ BISTERR_H The assertion of this line indicates that a data
CTL_HI[20] BIST error error was detected in the read data that has
just passed through MDP.
MMCX_MCDX_ BISTEOP_H The assertion of this line indicates that the
CTL_H([21] BIST end of pattern pseudo-random data pattern generator in
MDPX has reached its last pattern. It is used
only in BIST.
MMCX_MCDX_ PARITY H This line is the parity across all the lines sent
CTL_PAR_H Parity from MMCX to MCD.

5.4.9 MDPX MCA Interface
This section describes the interface between MDPX and the MMCX MCAs,

5.4.9.1 MMCX-to-MDPX Interface
Figure 547 shows the control fields. Table 5-30 lists the bits and their descriptions.

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit

PO 15141312 111009 08 0706 05 04 03 02 0100

PARITY
WRITE ADDRESS PARITY

MASK LATCH

ECC ENABLE

QUADWORD ERROR ADDRESS

READ ADDRESS PARITY

BUFFER SELECT
MERGE SELECT
BUFFER LATCH

LINEAR FEEDBACK
SHIFT REGISTER SELECT

MASK SELECT

BEGINNING OF DATA

ERROR LOG SELECT

READ LATCH HOLD

MR_X1184_88

Figure 5-47 MMCX-to-MDPX Control Format

Table 5-30 MMCX-to-MDPX Control Field Descriptions

Signal

Field

Description

MMCX_MDPA_CTL_
H[00]

MMCX_MDPA_CTL_
H[01]

MMCX_MDPA_CTL_
H[02]

MMCX_MDPA_CTL_
H[03]

MMCX_MDPA_CTL_
H[04]

MMCX_MDPA_CTL_
HI[05]

MMCX_MDPA_CTL_
H{o06]

BUFSEL_H[00]
Buffer select

MRGSEL_H[00]
Merge select

BUFLAT H[00]
Buffer latch

LFSRSEL_HI[00]
Linear feedback shift
register select

MSKSEL_H[00]
Mask select

ERRLOGSEL_H[00]
Error log select

RDDATHLD_H[00]
Read latch hold

This is the multiplexer select signal that
controls whether mask data is sourced from
the first or second QW. Assertion of the signal
selects the second QW.

This signal enables the latched byte mask to
control whether bytes of data are sourced from
VO data buffers or from data read that is from
memory during read-modify-write operations.

This signal is used during merge operations. It
latches the write data to be merged into the I/O
data buffer. As the read data passes through
MDP, the bytes to be written are selected
according to the mask that has previously been
latched and merged with nonselected bytes of
read data. As soon as the merged data exits
from MDPX, this signal may be negated.

This signal switches the source of write data
from ECC data latches to pseudo-random
pattern generator data latches for test purposes
(B latch source).

This is the multiplexer select signal that
controls whether the data to be latched into
the data buffer latch is to be sourced from the
first or second LW of input data. Bits [01:00]
control the upper and lower longwords of the
first /0 QW buffer, respectively. Bits [03:02]
control the upper and lower longwords of the
second /O QW buffer, respectively.

This signal switches the source of read data to
the error log (B latch source).

The data output latch control signal temporarily
holds read data being output to the crossbar in
data output latches (B latch source).

DIGITAL INTERNAL USE ONLY

5-66 Array Control Unit and Main Memory Unit

Table 5-30 (Cont.) MMCX-to-MDPX Control Field Descriptions

Signal Field Description

MMCX_MDPA_CTL_ BOD_H[00] This signal is asserted when the first data word

H[07] Beginning of data of returning read data is transferred to the
memory data path.

MMCX_MDPA_CTL_ RDADRPAR_HI[00] This is the parity bit generated on address bits

H{o08} Read address parity [05:03]. It is supplied to each MDPX as each
read data longword is received from the MACs.
These three bits determine the relative position
of the longword in the read data buffer.

MMCX_MDPA_CTL_ QWERRADR_ These lines carry the address of the quadword

H[11:09] H{02:00] that is currently being checked for correctness

MMCX_MDPA_CTL_
H[12]

MMCX_MDPA_CTL_
H[14:13]

MMCX_MDPA_CTL_
H[15]

MMCX_MDPA_CTL_
PAR H

Quadword error
address

ECCENB_H[00]
ECC enable

MSKLAT H[01:00]
Mask latch

WRTADRPAR_H[00]
Write address parity

PARITY_H[00]
Parity

by MDP. It is logged by MDPX if an ECC error
is detected. It can then be read by accessing the
ECC error log.

This is the static ECC enable signal (B latch
source).

The data output latch control signals
temporarily hold /O data from crossbar in
data buffer latches in MDPX (B latch source).
See the following table for usage:

Segment
Signal Bytes Lw Number
MSKLAT[00] 0-3 LLW 0
MSKLATI011] 4-7 HLW 0
MSKLAT[02] 0-3 LLW 1
MSKLATY{03] 4-7 HLW 1

The parity bit generated on address bits [05:03]
is supplied to each MDPX along with the write
data longword. These three bits determine the
relative position of the longword in the write
data buffer.

This parity bit is generated across the control
signals from MMCX to MDP.

MMCX_MDPB_CTL_
H{00]

MMCX_MDPB_CTL_
Hlo1]

BUFSEL_H[00]
Buffer select

MRGSEL_HJ[00]
Merge select

DIGITAL INTERNAL USE ONLY

This is the multiplexer select signal that
controls whether mask data is sourced from
the first or second QW. Assertion of the signal
selects the second QW.

This signal enables the latched byte mask to
control whether bytes of data are sourced from
I/O data buffers or from data that is read from
memory during read-modify-write operations.

Table 5-30 (Cont.)

Array Control Unit and Main Memory Unit 5-67

MMCX-to-MDPX Control Field Descriptions

Signal

Field

Description

MMCX_MDPB_CTL_
H[02]

MMCX_MDPB_CTL_
H{03]

MMCX_MDPB_CTL_
H[04]

MMCX_MDPB_CTL_
HI[05]

MMCX_MDPB_CTL_
H{[06]

MMCX_MDPB_CTL_
HI[07]

MMCX_MDPB_CTL_
H(08]

MMCX_MDPB_CTL_
H[11:09]

MMCX_MDPB_CTL_
H[12]

BUFLAT_H[00]
Buffer latch

LFSRSEL_H[00]
Linear feedback shift
register select

MSKSEL_H[00]
Mask select

ERRLOGSEL_H[00]
Error log select

RDDATHLD_H[00]
Read latch hold

BOD_H[00]
Beginning of data

RDADRPAR_H[00]
Read address parity

QWERRADR _
H[02:00]
Quadword error
address

ECCENB_H[00]
ECC enable

This signal is used during merge operations. It
latches the write data to be merged into the /O
data buffer. As the read data passes through
MDP, the bytes to be written are selected
according to the mask that has previously been
latched and merged with nonselected bytes of
read data. As soon as the merged data exits
from MDPX, this signal may be negated.

This signal switches the source of write data
from ECC data latches to the pseudo-random
pattern generator data latches for test purposes
(B latch source).

This is the multiplexer select signal that
controls whether the data to be latched into
the data buffer latch is to be sourced from the
first or second LW of input data. Bits [01:00]
control the upper and lower longwords of the
first /O QW buffer, respectively. Bits [03:02]
control the upper and lower longwords of the
second I/O QW buffer, respectively.

This signal switches source of read data to the
error log (B latch source).

The data output latch control signal temporarily
holds read data being output to the crossbar in
the data output latches (B latch source).

This signal is asserted when the first data word
of returning read data is transferred to the
memory data path.

The parity bit generated on address bits [05:03]
is supplied to each MDPX as each read data
longword is received from the MACs. The
three bits determine the relative position of the
longword in the read data buffer.

These lines carry the address of the quadword
that is currently being checked for correctness
by the MDP. It is logged by MDPX if an

ECC error is detected. It can then be read

by accessing the ECC error log.

This is the static ECC enable signal (B latch
source).

DIGITAL INTERNAL USE ONLY

5-68 Array Control Unit and Main Memory Unit

Table 5-30 (Cont.) MMCX-to-MDPX Control Field Descriptions

Signal Field Description

MMCX_MDPB_CTL._ MSKLAT H[01:00] The data output latch control signals

H[14:13] Mask latch

temporarily hold I/O data from crossbar in

data buffer latches in MDPX (B latch source).

See the following table for usage:

Segment
Signal Bytes LW Number
MSKLAT[00] 0-3 LIW 0
MSKLAT[01} 4-7 HLwW 1]
MSKLAT[02] 0-3 LILW 1
MSKLAT[03] 4-7 HLW 1

MMCX_MDPB_CTL_. WRTADRPAR_H[00] The parity bit generated on address bits [05:03]

HI[15] Write address parity is supplied to each MDPX along with the write
data longword. These three bits determine the
relative position of the longword in the write

data buffer.
MMCX_MDPB_CTL_ PARITY_H[01] This parity bit is generated across the control
PAR_H Parity signals from MMCX to MDP.

5.4.9.2 MDPX-to-MMCX Interface

Figure 548 shows the control fields. Table 5-31 lists the bits and their descriptions.

MDPA TO MMCX

PO o1 00

PARITY READ DATA ERROR

WRITE DATA ERROR

MDPB TO MMCX

PO 03 02 01 00

PARITY READ DATA ERROR

WRITE DATA ERROR

END OF PATTERN

FATAL ERROR

MR_X1185_88

Figure 5-48 MDPX-to-MMCX Control Format

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-69

Table 5-31 MDPX-to-MMCX Control Field Descriptions

Signal

Field

Description

MDPA_MMCX_
STATUS_H{00]

MDPA_MMCX_
STATUS_H][01]

RDATERR_H
Read data error

WDATERR_H
Write data error

This signal indicates that a data (nonfatal) error
has been detected during the transfer of read
data through MDPX on DAX.

This signal indicates that a data (nonfatal) error
has been detected during the transfer of write
data through MDPX on DBX.

MDPA_MMCX _ Parity This parity bit is generated across the control

STATUS_PAR H signals from MDPX to MMC and includes the
fatal error line.

MDPB_MMCX_ RDATERR_H This signal indicates that a data (nonfatal) error

STATUS_H{00] Read data error has been detected during the transfer of read
data through either of the MDPX MCAs.

MDPB_MMCX _ WDATERR_H This signal indicates that a data (nonfatal) error

STATUS_H][01]

Write data error

has been detected during the transfer of write
data through either of the MDPX MCAs.

MDPB_MMCX_ EOP_H The assertion of this line indicates that the
STATUS_HI[02] End of pattern pseudo-random data pattern generator in the
MDPX has reached its last pattern. It is used
only in BIST. This signal is received only from
MDPX on the same MCU as MMCX.
MDPB_MMCX_ FTLERR_L This signal indicates that a control or other type
FATALERR_L Fatal error of fatal error has been detected in one of the
MDPX MCAs. The signal is received only from
MDPX on the same MCU as MMCX.
MDPB_MMCX_ Parity This parity bit is generated across the control
STATUS_PAR_H signals from MDPX to MMC and includes the

fatal error line.

5.4.10 CCU MCU Interface
This section describes the interface between CCU and the MMCX MCAs.

5.4.10.1 CCU-to-MMCX Interface
Figure 549 shows the control fields. Table 5-32 lists the bits and their descriptions.

PO 14 13 12 11 10 09 08 07 ©06 05 04 03 02 01 00

CYCLE BANK
STATUS ADDRESS INDEX

LENGTH |COMMAND

PARITY
BUFFER AVAILABLE

SEND DATA
LOAD COMMAND

MR_X3186_8%

Figure 5-49 CCU-to-MMCX Control Format

DIGITAL INTERNAL USE ONLY

5-70 Array Control Unit and Main Memory Unit

Table 5-32 CCU-to-MMCX Field Descriptions

Signal Field

Description

CCU_MMCX_CMD_ CMD_H{01:00]
H[01:00] Command

DIGITAL INTERNAL USE ONLY

These bits contain the encoded operation. The
following table defines the supported types of
operations:

1 0 Operation

0 0 Read

0 1 Write/read

1 0 Masked write
1 1 Write pass

The memory system supports the following
types of cycles. Decoding the CMD lines
uniquely determines which of these operations
is to be performed. The supported operations
and their sizes are as follows:

Size
Type CPU ro
Read 8 QW -
Read - 1,2,4QW
Masked write 8 QW -
Masked write - 1,2QW
Write/read 8 QW of write data received

from a CPU and 8 QW of
read data returned to a
different CPU or 1, 2, or 4
QW of read data returned to
an I/O device.

Write/pass All 8 QW of write data
received from a CPU and
returned to a different
CPUor1, 2, or 4 QW of
the received 8 QW returned
to an I/O device.

Array Control Unit and Main Memory Unit 5-71

Table 5-32 (Cont.) CCU-to-MMCX Field Descriptions

Signal Field Description
CCU_MMCX_CMD_ Length These bits determine the size of the current
H[03:02] I/O operation in quadwords and are valid only

during I/O transactions. The following table
defines the coding of these bits:

Reads Writes

1 0 Size 1 0 Size

0 0 4QW 0 0 4QW

01 8QW 01 8QW

1 0 1QW 1 0 1QW

11 2QW 11 2QW
CCU_MMCX_CMD_ Index These lines identify the command buffer and
H[07:04] corresponding CPU or I/O port. They are

encoded as follows:

Source Command

3210 (Port) Buffer

0000 CPUO A

0001 CPUO B

0010 CPUO Cc

0011 CPU1 A

0100 CPU1 B

0101 CPU1 C

0110 1/00 A

0111 1/00 B

1000 CPU2 A

1001 CPU2 B

1010 CPU2 C

1011 CPU3 A

1100 CPU3 B

1101 CPU3 Cc

1110 /01 A

1111 /01 B

SCU uses the index bits to distinguish between

CPU and /O commands.
CCU_MMCX_CMD_ Bank address These lines contain the address bits that are
H[09:08] decoded to determine the memory bank selected.

DIGITAL INTERNAL USE ONLY

5-72 Array Control Unit and Main Memory Unit

Table 5-32 (Cont.) CCU-to-MMCX Field Descriptions

Signal Field Description
CCU_MMCX_CMD_ LDCMD_H This signal indicates that a new command and
HI10] Load command address are ready to be loaded into one of the
two memory command buffers.
CCU_MMCX_CMD_ Send data This signal indicates the crossbar is ready to
H[11] receive data from the MDPs.
CCU_MMCX_CMD_ CYCLESTAT_ These bits contain information on how the read
H[13:12] H[01:00] cycle should be completed based on the results
Cycle status of the consistency check. The following table

defines the results for read cycles:

Read Cycles

1 0 Action

0 0 NOP

01 Read OK

1 0 Read cancel

11 Reserved
CCU_MMCX_CMD_ BUFAVAIL_H This line is asserted for one clock cycle
H14] Buffer available whenever a command is retired. If two MMCX_

CTLB_CMD_Hs are sent before a CTLB_
MMCX_BUFSTAT H is received, the CCU
buffer is considered full and no more CMDs are
sent until a BUFAVAIL is received.

CCU_MMCX_CMD_ Parity This line is a parity bit generated on the
PAR_H received command, length, index, bank address,

LDCMD, send data, status, and BUFAVAIL
fields received from CCU.

A brief explanation of the memory operations follows:

Read — A read cycle returns the requested number of quadwords with an index that
identifies the requester. A read may be halted by sending read cancel on the cycle
status lines. Read data is not returned to the JBox until the JBox sends read OK on
the cycle status lines.

Masked write — If the write is eight quadwords in length, indicating that it has
been initiated by a CPU, each longword that has its mask bit asserted is written.
If the write is one or two quadwords in length, indicating that it is initiated by
an /O device, each byte that has its mask bit asserted is written. The contents of
the unwritten bytes must be read from memory and merged with the write data.
New ECC check bits are generated for the merged longwords, and then the merged
longwords and their associated ECC check bits, are written to memory.

Write read — A read from either a CPU or an I/O device may be determined to
have write partial status in a cache by the consistency check. In this case, the initial
read is canceled, and a write read command with the block of cache data is issued
to memory. The data is written to memory, and the merged data is returned to the
requesting device.

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-73

e Write pass — A read from either a CPU or an I/O device may be determined to have
write full status in a cache by the consistency check. In this case, the initial read is
canceled, and a write read command with the block of cache data is issued to memory.
The full block of data is written to memory and returned to the requesting device.

5.4.10.2 MMCX-to-CCU Interface
Figure 5-50 shows the control fields. Table 5-33 lists the bits and their descriptions.

PO 08 07

06 05 04 03 02

00

PARITY
MCU FATAL ERROR

WRITE OK

LOAD COMMAND

COMMAND
SEGMENT

SEGMENT 0 READ OK

SEGMENT 1 READ OK

BUFFER AVAILABLE 1

BUFFER AVAILABLE O

Figure 5~50 MMCX-to-CCU Control Format

MR_X1187_88

Table 5-33 MMCX-to-CCU Field Descriptions

Signal Field Description

MMCX_CCU_CMD_ CMD_H This bit is encoded as follows:

H[00] Command
0 Function
0 Return ECC error data
1 Return read data

MMCX_CCU_CMD_ SEG_H Assertion of this signal indicates that the

H[01] Segment LDCMD currently being transmitted to CCU is
for a segment 1 command.

MMCX_CCU_CMD_ SGORDOK_H This signal indicates that the read data from

H[02] Segment 0 read OK the latest segment 0 read command has passed
through MDPX and that no error has been
detected. It indicates to CCU that the address
of the just-completed read command is not
required for error reporting. It is asserted for
one clock period.

MMCX_CCU_CMD_ SG1RDOK_H This signal indicates that the read data from

H[03]

MMCX_CCU_CMD_
H{04]

Segment 1 read OK

BUFAVAILO_H
Buffer available 0

the latest segment 1 read command has passed
through MDPX and that no error has been
detected. It indicates to CCU that the address
of the just-completed read command is not
required for error reporting. It is asserted for
one clock period.

This line indicates the availability of the CCU
memory command segment 0 buffer register.
This signal is asserted for one clock period when
the segment 0 buffer is available to receive a
new command.

DIGITAL INTERNAL USE ONLY

5-74 Array Control Unit and Main Memory Unit

Table 5-33 (Cont.) MMCX-to-CCU Field Descriptions

Signal Field Description
MMCX_CCU_CMD_ BUFAVAIL1_H This line indicates the availability of the CCU
H[05] Buffer available 1 memory command segment 1 buffer register.

This signal is asserted for one clock period when
the segment 1 buffer is available to receive a
new command.

MMCX_CCU_CMD_ LDCMD_H This signal is asserted for one clock period when

H[06] Load command memory has read data ready to be returned.

MMCX_CCU_CMD_ WRTOK_H This signal indicates that the write data has

H[07] Write OK been received without error. It is asserted for
one clock period.

MMCX_CCU_CMD_. MCUFTLERR_H This signal is asserted when a fatal error is

H[08] MCU fatal error detected on the DBX MCU. It is just the OR of
the fatal error signal received from each MCA
on the MCU.

MMCX_CCU_CMD_ Parity This line is a parity bit on the full set of signals

PAR H transmitted from MMCX to CCU. It is valid

every clock cycle.

5.4.11 Tag MCU Interface
This section describes the interface between the tag MCU and the MMCX MCAs.

5.4.11.1 ADRX-to-MMCX Interface

Memory address decoding is taken care of by the JBox. For every command sent to
MMCX, the JBox sends an index. If the requested memory segment is ready, MMCX
transmits the index plus a row and column select bit to the ADRX chips in the JBox.
The ADRX chips use the index to select the row and column address. ADRX sends the
address to MMU through the address lines.

The ADRX row and column multiplexer select logic, which is controlled by the MMCX
MCA, determines whether the lines have row or column addresses on them. The ADRX
MCAs have two independent multiplexers, one for MMUO and one for MMU1.

The ADRX chips source 12 row and column addresses, which are demultiplexed into 12
row plus 12 column addresses on the MACs. This supports the 16-Mbit chips (2**24 =
16M).

Figure 5-51 shows the control fields. Table 5-34 lists the bits and their descriptions.

PO 03 02 01 00

STARTING
ADDRESS

STARTING ADDRESS PARITY
ADDRESS PARITY

MR_X1188_8%

Figure 5-51 ADRX-to-MMCX Control Format

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-75

Table 5-34 ADRX-to-MMCX Field Descriptions

Signal Field Description
ADRX_MMCX_ STADDR_H[02:00] These bits determine the starting quadword
CMD_H[02:00] Starting address address of the current operation. These bits are

valid for /O as well as CPU operations. They
should be received with a load command.

ADRX _MMCX_ STADDRPAR_H This signal indicates parity on the preceding
CMD_H[03] Starting address three starting address bits. It is received

parity simultaneously with the starting address bits.
ADRX MMCX_ ADDRPAR H This signal is always forced to zero.
CMDPAR_H[00] Address parity

5.4.11.2 MMCX-to-ADRX Interface
Figure 5-52 shows the control fields. Table 5-35 lists the bits and their descriptions.

PO 04 03 02 01 00

INDEX

COLUMN ADDRESS SELECT

ADDRESS PARITY

MR_X1189_89

Figure 5-52 MMCX-to-ADRX Control Format

Table 5-35 MMCX-to-ADRX Field Descriptions

Signal Field Description
MMCX_ADRX_CTL_ Index These lines contain the index to the command
H[03:00] whose address is currently required by the

memory controller. They are used to select the
appropriate memory address.

MMCX_ADRX CTL_ COLADRSEL_H The assertion of this line causes the MAC

H{04] Column address address lines to be switched from row to column
select addresses.

MMCX_ADRX_CTL_ ADRPAR_H This line is a parity bit on the index field and

PAR_HI00] Address parity the column address select signal.

5.4.12 DSXX MCA Interface
Table 5-36 lists the bits and their descriptions.

DIGITAL INTERNAL USE ONLY

5-76 Array Control Unit and Main Memory Unit

Table 5-36 DSXX-to-MMCX Field Descriptions

Signal Field

Description

DSAX _MMCX_
STATUS_H[01:00]

MSKSTAT_H[01:00]

DSAX_MMCX_ MSKSTAT_PARITY_
STATUS_PAR H H[00]

This signal is received from DSXX and
indicates certain information about the byte
mask received with the current data word.
The information is encoded as follows:

10 Number of 1s in Mask
0 0 0

01 1,2,0r3

1 0 Reserved

11 4 '

This signal is transmitted with the mask
status bits to indicate parity.

DSB0_MMCX_STATUS_H[02:00]

DSBO_MMCX_ MSKSTAT_H[03:02]
STATUS_H[01:00]
DSB0_MMCX_ BOD_H

STATUS_H[02]

DSBO_MMCX_ MSKSTAT_PARITY_
STATUS_PAR_H H[01]

DSB0_MMCX __ DSBFTLERR_L[00]
FATALERR_L

This signal is the same as the mask status
above.

This signal indicates that the first word of
write data has been transmitted from DSXX to
MDPX.

This signal is transmitted with the above
mask status bits to indicate parity.

This signal indicates that a fatal error has
been detected in DSB0, which is on the same
MCU as MMCX.

DSB1_MMCX_STATUS_H

DSB1_MMCX_ DSBFTLERR_L{01]
FATALERR_L

This signal indicates that a fatal error has
been detected in DSB1, which is on the same
MCU as MMCX.

DSB2_MMCX_STATUS_H

DSB2_MMCX_ DSBFTLERR_L[02]
FATALERR L

This signal indicates that a fatal error has
been detected in DSB2, which is on the same
MCU as MMCX. i

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit

5.4.13 JDAX MCA Interface
Table 5-37 lists the bits and their descriptions.

Table 5-37 JDAX-to-MMCX Control Field Descriptions

5-77

Signal Description

JDAX_MMCX_FATALERR_ Indicates that a fatal error has been detected in JDAX.
L{o0]

JDAX_MMCX_ERRATTEN_ Indicates that a nonfatal error has been detected in JDAX.
L{00]

5.4.14 JDBX MCA Interface
Table 5-38 lists the bits and their descriptions.

Table 5-38 JDBX-to-MMCX Control Field Descriptions

Signal Description

JDBX_MMCX_FATALERR_ Indicates that a fatal error has been detected in JDBX.
L[00]

5.4.15 Service Processor Unit Interface
Table 5-39 lists the bits and their descriptions.

Table 5-39 SPU Control Field Descriptions

Signal Field Description

SPU_MMCX_CTL_ REQSTEPCTL_H, L Assertion of this differential signal indicates

H[00] that the service processor wants the memory to
go to step mode. The memory must be assured
of a number of clock cycles after the assertion
of this signal. During this transition period, all

pending transactions must be completed.

SPU_MMCX_ - Assertion of this differential signal indicates
REQSTEPCTL._ that the service processor wants the memory to
H L go to step mode. The memory must be assured

of a number of clock cycles after the assertion
of this signal. During this transition period, all

pending transactions must be completed.

DIGITAL INTERNAL USE ONLY

5-78 Array Control Unit and Main Memory Unit

5.5 MCDXMCA

The MCDX MCA controls the memory DRAMs (Figure 5-53). The MCD0O MCA, located
on the DBO MCU, supports MMUO memory modules. The MCD1 MCA, located on the
DB1 MCU, supports MMU1 memory modules. The MMCX receives command information
from the JBox and, after decoding the information, sends commands, bank and segment
addresses, and start to MCDX. The MCDX decodes the segment and the command (read,
refresh, write, write read, and write pass) for the segment.

For step mode, MMCX sends single-step on, and the command (read, write, write read
and write pass). MCDX decodes single-step on, and the command.

To read the data from memory and to write data into memory, MCDX sends row address
strobe (RAS), column address strobe (CAS), and write enable (WE) control signals to
access the data in the DRAMs on the memory module. MCDX sends read bus control
signals, such as bypass, to control the flow of data on the read bus in the memory module.
MCDX sends read latch enable to load the data from the read bus into the read latch. To
coordinate memory events with SCU events, MCDX sends status information to MMCX.

5.5.1 Generating RAS, CAS, and WE

For each access to memory, the memory module activates 160 DRAMs on each memory
module. A total of 640 DRAMs are activated on all four memory modules. The two
segments operate independently and share a common data path called the read bus. The
address lines are not common between segments. This organization permits two-way
interleaving. Both segments can be accessed simultaneously.

Each segment has eight unique CAS signals. The WE signal determines if a write
operation is permitted. The following steps summarize a write operation to bank 0 in
which the MCDX MCA does the following:

1. Applies row address to all DRAMs in segment 0.

2. Sends RAS 0 to strobes in the row address.

3. Applies column address to all DRAMs in segment 0.
4. Applies WE to all DRAMs.
5

Sends CAS 0 through 7, depending on the data mask bits sent with the data. Data is
written into the DRAMs where RAS, CAS, and WE are applied.

6. Deasserts RAS, CAS, and WE.

On the first module, the MCDX MCA sends each CAS line to 20 DRAMs per bank. (The
20 DRAMs represent a 20-bit slice of the data.)

On the second module, the same CAS signal is sent to the same 20 DRAMs. Each CAS
line controls 40 DRAMs (longword), ECC check bits, and a mark bit. MCDX controls
individual CAS lines only during write operations. During read operations, all eight CAS
lines are logically tied together. MCDX sends the same RAS signal to the same 160 bits
on all four memory modules. MCDX also sends the WE signal to the same 640 DRAMs
on all four modules.

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-79

SR 08LIX HN

HOLV1
- indino

- etln- SN1VLS
loo:s1lH SNLVLS XQON

XONN XAOW

} 319VN3 IQOW d3Ls

0 3718VYN3 3QON d3is

SNLVLS 3GOW d31S GONW

-+

SANVAWOD IQON d31S DANW

SANVAWOD isi8

1Nd1N0
- _ — 10HINOD
1°N31V17QY 1 SSVdAS XNWW

1

+—— 3768VNI 3LIUM

1

17am" 108 } LNIWO3S
103138
4——————————1 §83HQAV NNN10D
17svo 108 + LNIWO3S
103138

D e e—— §534AaVY MmOy
17 SVH_I%NE]1OS + LNINO3S
1 8VH 0XNE DS

—ll SAGNVNIWOD d31S-31DNIS

-«

SNLV1S 1935 IGON 434S

<

SN1VLS 0935 IAON d3LS

SNivis
| ANIWO3S

SNLvViS 3AOW
d31S dON

| 3T8YN3
JGOW d3is

SANVWWOD 1938

378VYN3 3LIUM

1

-———— 0 LNIWO3S
17am7oos
103138
<+————————————1 §53HQAY NWN10D
178v0 09§ 0 LNIWO3S
103138

<+———————{ $53H0AV MOH
17SvH_I%NE 098 0 LN3NO3S
17SVH 0)NB 09§

SANVANOO 300N d3Ls

SNivis
0 LN3IWO3IS

8N1V.lS JGONW
d31S AONW

0 378V¥N3
3QON d3Ls

SANVAWOD 0938

SANVWN OO 3QON d3Ls

[00:80]H "SNLVLS XQON XNWW

10HINOD
H3ION3NO3S
1831-4738 4
TOHLINOD
H3IONINOIAS
d31S-31ONIS HOLV
iNdNI
SNiVLS
XNWN
TOYLINOD
¥3ON3NO03S Jaoo3a
- GNYWWNOO
nwvda anv
} IN3WD3S N e
NOlivdligdy HOLVY LNdNI
sna avau 10ULNOD
XAOOW
JOHLINOOD
30N3NO3IS
WYHa
0 IN3WO3S

(007121H 110 "XQON XONN

Figure 5-53 MCDX MCA Block Diagram

DIGITAL INTERNAL USE ONLY

5-80 Array Control Unit and Main Memory Unit

5.5.2 MCDX MCA Controllers
The MCDX MCA contains the following controllers:

Segment 0 DRAM sequence controller — For read, write, read-modify-write, and
refresh operations, the MCDX MCA uses the segment 0 DRAM sequence controller
to generate the RAS, CAS, and WE control signals and to monitor the status of the
read and write path in the memory module for segment 0. The controller receives
the commands, read bus acknowledge, read-modify-write status bit, read latch busy,
refresh required, and write data ready from the MCDX internal logic. The controller
generates RAS, CAS, WE, segment busy, read bus busy, ready data ready, read latch
enable, write done, and the current state of the DRAM controller.

Segment 1 DRAM sequence controller — For read, write, and read-modify-
write operations, the MCDX MCA uses the segment 1 DRAM sequence controller to
generate RAS, CAS, and WE control signals and to monitor the status of the read
and write path in the memory module for segment 1. The controller receives and
generates similar signals for segment 1 as the segment 0 DRAM sequence controller.

Single-step sequence controller — For single-step operations, the MCDX MCA
uses the single-step sequence controller to generate the DCA commands and to
monitor the status of the read and write path in the memory module during the
single-step operation. The controller receives read latch busy, read-modify-write
status bit, commands, step cycle busy, write data ready, and bank address from

the MCDX internal logic. The controller generates single-step bypass, read latch
enable, read data ready, write done, segment busy, command strobe signals, and DCA
commands.

Self-test (BIST) sequence controller — For self-test operations, the MCDX MCA
uses the self-test sequence controller to generate the BIST and DCA commands and
to monitor the status of the read and write path in the memory module during the
DRAM data path test and DRAM control and address test. The controller receives
BIST buffer available, BIST end of pattern, BIST error, and step cycle busy from the
internal MCDX MCA logic. The controller generates linear feedback shift register
hold, request read-modify-write mode, stop test, BIST beginning of data bit, command
strobe, BIST command, and DCA commands.

MCDX receives the following:

Control signals MMCX_MCDX_CONTROL_H[21:00] from the MMCX MCA.
Figure 5-46 shows the control signals from MMCX. Table 5-29 lists the control
signals and their descriptions.

Status signals MMUX_MCDX_STATUS_H[08:00] from the MMUX. The MMUX sends
segment 0 and 1 control parity bits to the MCDX MCA.

MCDX sends the following DRAM control signals to each segment in MMU:

Two RAS (row address strobe) — Selects one bank of 160 bits within a segment.

Eight CAS (column address strobe) — For a read operation, all eight CAS lines
are asserted, allowing all 160 bits to be read. The DRAM data path is structured to
allow eight transfers of 20 bits to unload the data from the data output latch. If a
write is in progress, SCU sends mask bits to control assertion or deassertion of the
appropriate CAS lines for correct data capture into the DRAMs. The mask bits can
mask out selected bytes and prevent them from being written into the DRAMs.

One WE (write enable) — Selects a read or write operation.

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-81

o Bypass read latch enable — Enables loading the read data latch with I/O write
data for merging during byte writes or CPU (cache block) having written full status.

The MCDX MCA sends status information to the MMCX MCA. MCDX sends read bus
busy and step cycle busy, normal mode or BIST mode, and hold LFSR data to the MMCX
MCA. For BIST testing, MCDX sends the BIST command to MMCX. Figure 545 and
Table 5-28 show the MCDX status information that the MCDX MCA sends to the MMCX
MCA.

5.5.3 DRAM Sequencing

The DRAM sequence controller generates states for read, write, write read, write pass,
and refresh operations. This section describes when the RAS, CAS, and WE control
signals are generated during these operations. Section 5.9 describes the memory
operations.

5.5.3.1 Read States
Figure 5-54 shows the read states and corresponding RAS and CAS signals for a read
operation. Section 5.9.1 describes a read operation.

BUSY_H BUSY_H
CAS_L CAS_L

TOO0

MR_X1191_89

Figure 5-54 Read States

5.5.3.2 Write States
Figure 5-55 shows the write states and corresponding RAS, CAS, and WE signals for a
write operation. Section 5.9.2 describes a write operation.

DIGITAL INTERNAL USE ONLY

5-82 Array Control Unit and Main Memory Unit

BUSY_H
CAS_L
BUSY_H WE L
CAS_L
TO 0
BUSY_H
TOO0

WRITE_H

TO 64

MR_X1192_88

BUSY_H
RAS_L
CAS_L

BUSY_H
RAS_L
CAS_L

BUSY_H
RAS_L
CAS_L

BUSY_H
RAS_L
CAS_L

BUSY_H
RAS_L
CAS_L

BUSY_H
RAS_L
CAS_L

BUSY_H
RAS_L
CAS_L

MR_X1236_89

Figure 5-55 Write States

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-83

5.5.3.3 Write Pass States

Figure 5-56 shows the write pass states and corresponding RAS, CAS, and WE signals
for a write pass operation. Section 5.9.5 describes a write pass operation.

BUSY_H
BUSY_H CAS_L
CAS_L WE_L

WRPASS_H

T0
WRITE
STATES
(24)

MR_X1193_89

Figure 5-56 Write Pass States

DIGITAL INTERNAL USE ONLY

5-84 Array Control Unit and Main Memory Unit

5.5.3.4 Write Read States
Figure 5-57 shows the write read states and corresponding RAS, CAS, and WE signals
for a write read operation. Section 5.9.4 describes a write read operation.

WRREAD_H

WRITE
STATES
(24)
MR_X1194_88

Figure 5-57 Write Read States

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-85

5.5.3.5 Refresh States
Figure 5-58 shows the refresh states and corresponding RAS and CAS signals for the
refresh operation. Section 5.9.6 describes a refresh operation.

MR_X1195_88

Figure 5-58 Refresh States

5.6 MDPXMCA

The MDPX MCA provides the data path for memory data to and from the data switch
(Figure 5-59). The MDPX MCA sends JBox write data to the memory modules and
receives JBox read data from the memory modules. The memory modules have an
internal data path. Figure 5-30 shows the memory data path in the memory module.
The MDPX MCA contains three data paths (read, write, and merge) and performs error
checking and correction on data sent to and from the memory modules. This MCA
contains BIST logic to support module testing.

DIGITAL INTERNAL USE ONLY

586 Array Control Unit and Main Memory Unit

697964 1X HN

193138
viva avau
10313s
NSV
v touiNoo | | TOHINGD 1031358
¢ ININDIS b/l NSV 093§
|vdb|||l.|.|
YSYW 31A8
touiNog || OO 103138
Sovn | 0 IN3WD3s il NSV 003§
31A8 14
0938 7 WSVA 31A8
103138
-usa1
HOLVYINIO
NH3Llvd N
soas 2, viva H Q10H S
7
P a10H
2 { H344n8
\\
viva o/l avon 1L
oM3ddna NOILO3YHOD XNWW
ViV ouAN | Hae No1Lo3uHoo | 28, | awouanas any ob Wou3
7 viva > 300030 [~ %23HO . viva o
0013 AHOWINW _fooieelH 1va
XdGN XNWN
e
IWOHANAS
Houy3
193138
907 HouH3
380/385
D ALivd
viva 7 o ave
- ————] avay a0u04
mﬂﬂmw;wukm — ¢ HOLVT IAVS HOYB3
H~qo8~ay 7 goun3a | .
loo:2gt] e
viva avay 1NdN) HOHY3

MDPX MCA Block Diagram

Figure 5-59 (Cont.)

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-87

69 rEZIX HN

HOHY3 TVLIV4
- loo:20] HOWH3
< _ HOLVY " 378YN3 103HHOO 19373 901 HOYY3
H HOHYI IVLV4 XOWW XdaW HouYH3 21901
iv4 3AVS HOoHH3 | 10HINOO HOHYI ALIHVd ILIHM
aNv < Houy3
SNLVLS ALidVd Qv 30H04 HoHY3
7 9v1d viva ave 39Q/38S
- [00:90]H SNLVLS XOWW XdAW HOHH3 viva 148 MHVN
103135 viva avad
10373 IOHIN
- 0oY3zZ 30403
1@ 031D LHIANI
< TOHLNOD 103138 39H3IN
V1ivVa LHIANI isi9
oav ~ a710H viva avay G10H HOLV1 avay
< d
« T LINIDAV XNWIWN XdaW | 3ZIVILINI 9dV IZITVILINI HoHH3 Viva
o 19313s °sd 403
103738 39H3IN
NOILVYINID
ne m \ _
viva NOIHD HOLV1 vivVa 393N
- — ~ 3114M - anv - viva
[00:6€lH LVQ XN AHOW3NW 118 31IHM
HHVN
203 ViVQ 3LIHM
HOLV
%OIHO viva
- ALIHVd adOm |1 3Lium
HOHYI ALIBVd ILIBM xo8f | {o0:8elH LV XdGW XXSQ

H ao8 HM _

ANSVW 31A8

Figure 5-59 MDPX MCA Block Diagram

DIGITAL INTERNAL USE ONLY

5-88 Array Cohtrol Unit and Main Memory Unit

For write operations, MDPX receives DSXX_MDPX_DAT_H[38:00] from the data switch.
Bits [38:37] are parity bits, [36:33] contain the mask data, [32] contains the write
beginning of data signal, and [31:00] contain the data. MDPX latches the data from the
data switch, appends check bits and a mark bit to the data, and sends MDPX_MMUX _
DAT_H[39:00] to memory. Bit [39] contains the mark bit, [38:32] contain the check bits,
and [31:00] contain the data.

During write operations, two MDPX MCAs receive data. Each MDPX operates on a
longword and provides ECC check bits on write data. MDPX passes the data to MMU,
which stores the data in the data input latch (write buffer 0). Figure 5-60 shows the
MDPX MCAs receiving data from the DSXX MCAs and sending the data to MMU.

On write operations, data passes through MDPX and is stored in MMU. Figure 5-61
shows the MDPX MCA write path. Once the transfer is complete, data can be written to
the DRAMs. On read operations, a block of data is read into the MMU read buffer. The
data is transferred out, eight bytes at a time, through a pair of MDPX MCAs until the
entire block of data has been transferred.

MMy DATA[12:00)
DATA[15:00], CHECK[03:00] DATA[12:00] DS00/7
MMo DATA[15°00]. CHECK[03:00]
DATA[25:13]
MDPO/2 DATA[25:13] DSO01/8
DATA[31:16], CHECK[06:04], MARK[00]
MM DATA[31:16], CHECK[06:04], MARK{00] DATA[31:26], BOD[00], MASK[03:00], PAR|01:00]
DATA[31:26]. BOD[00], MASK[03:00], PAR[01:00] | DSo2/9
DATA[47:32], CHECK[05:00] DATA[44:32)
MMz DATA[47:32], CHECK[05:00) DATA[44:32] DSo3s10 |
DATA[45:57)
DATA[63 48], CHECK[06 :04], MARK[00] MDP1/3
M3 DATA[45:57] DSO04/11
DATA[63 48], CHECK{06:04], MARK[00)
DATA[63:58], BOD[0O0], MASK[03:00], PAR[01:00)
DATA[63:58], BOD[00], MASK([03:00], PAR[01:00] | DS05/12

MR_X187_98

Figure 5-60 MDPX MCAs Receiving Data from the DSXX MCAs

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-89

r
1 1
] |
1 WORD | ERROR i
[] Ao PARITY |]
CHECK
1]
| DATA !
§ 13200 | para i
LATCH
1 1
I READ DATA 32 g:sgg’g; AT]
4 LATCH
: 32 32 LOGIC (3 —r'
i MARK BIT] i
HOLD DATA)
—— 1 PATTERN
! GENERATOR |32 I ‘80
1 1 ‘
80
b e e o e L 0
1 1 a0 80 .
MDP1 WRITE
1 I DEMUX 74— WRITE | , DATA
1 1 WRITE BUFFER 0 |, BUFFER 117760
i WORD | ERROR 1 . 80
£ PARITY |——s z
| 4 1 CHECK 1 40 80
b para !)
b 167:34) | para Ll o] n
] LATCH[732 1
b cea oata 32 CHECK BIT ! OW SEL [02:00 I
| — 4 GENERATE fg]uaten|—H fo2:001
1 LoGIC 1
I MARK BIT I
j Houd DATA i
PATTERN
1 GENERATOR |32 1
| |
b o o o o = - = - — 4 MAIN MEMORY UNIT

Figure 5-61 MDPX MCA Write Data Path

For read operations, MDPX receives MMUX_MDPX_DAT_H([39:00] from memory. Bit
[39] contains the mark bit, [38:32] contain the received check bits, and [3 1:00] contain the
data. The MDPX latches the data, checks and corrects single-bit errors, detects double-
bit errors, detects write data errors, and sends MDPX_DSXX_DAT_H[34:00] to the data
switch. Bit [34] contains the high longword parity bit, [33] contains the low longword
parity bit, [32] contains the beginning of data signal, and [31:00] contain the data.

During read operations, data is received by the MDPX MCAs from MMU. Figure 5-62
shows the MDPX MCA read path. MDPX decodes the seven check bits, correcting single-
bit errors and detecting double-bit errors. Data is then passed to the JBox.

MMU contains all data buffering needed, storing 128 bytes of write data in two 64-byte
write buffers and 128 bytes of read data in two 64-byte read buffers.

For read-modify-write operations, MDPX receives the write data from the data switch
and sends the data to memory. The data moves from the write buffers to the read bus
and read buffers. MDPX receives the write data as if it were read data. MDPX holds this
data, which is merged with read data in a holding buffer. MDPX receives the read data,
performs the ECC checking and correcting, merges the read data with the write data in
the holding buffer (regenerating ECC check bits), and sends the data as write data to
memory.

DIGITAL INTERNAL USE ONLY

5-90 Array Control Unit and Main Memory Unit

(TN IN T)

)

T e e e G G e e G G M GE W S W W G SR S S M M P SR A R G M e e M M SE S S e e .

] 1
| > i

138
] 3iA8]
i ce H1Vd 311HM !
] XOW 54 OL 118 XHvw []
le2e, | 3u3n [}
1 Hiva | 3148 1433408 | ou3sana | .o 21901 }
| LMol { aouan Jouan o] 31VH3INIO i

vivo oil on 116 YUV . | yoivuanao
1 avay 118 1
" t #93HD .
1 1934400 1
vive
08
_n vE, Howvt |28 1 o4 |2l ee ey av, Holv fov 1 7~
17 xcer 61 TeoeeTvava 4 4 771 3iouanis 7 viva |7 1 08,
I 1 08,
7
1 A-|I||_ | Xnw 08,
1 XOWNN Ol HOHH3I I og, | dvam 5 ° ovs,
i 7 anv s, | ¥3dine >
| y3d4na |— avay

1 raam | ovay 08,
b o o e e e e e e e o e o e e fm e o] o,
1 I LV
] L/ 1 an\h
i 13s |

EYPY]
- eg Hivd 311HM -
1 xom 2. OL 118 XHYW i
_Alww\l,l Ipan ! LINN AHOW3N NIVW
i Hivd 1434408 | 0133ING | 4 21901]
§ 3mmol SEELED aouan |54 31V43INID i

viva on ol 118 XHYW .| vorvuanas
[] avad # 118 -]
I * %03HD |
1 1034400 1
viva

“4 S | — T B o4 |-l £ 300930 | S ee— TN £322 !

XO8f 04 4 4 4 INOHANAS viva 1
1 Ive:28l viva]
1 . 1
1 XOWW O1 HOMY3 I
1 odaw |

b v o o o w0 e G S G G G S Gme Eme M GNP W G S e G B S GMe SR e G G . G e o

viva avad

viva 3item

Figure 562 MDPX MCA Read Data Path

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-91

For write read operations, MDPX receives data from the data switch and sends the data
to memory where the data (selected by the write strobes) is merged with the data in the
DRAMs. MDPX receives the merged data from memory and sends the data to the data
switch.

For write pass operations, MDPX receives data from the data switch and sends the data
to memory. While the data is written into the DRAMs, the same data, using the read bus
as a bypass path around the DRAMs, is loaded into the read buffer. MDPX receives the
data from memory and sends the data to the data switch.

5.6.1 LFSR — Data Pattern Generator

LFSR in the MDPX is a data pattern generator that generates and applies a pattern
to the data path during three BIST tests: DDP, data path, and DRAM. Section 5.10
describes the BIST operations.

The memory module DCA also contains an LFSR that is used as an address pattern
generator. The DCA LFSR has direct access to the address path and generates addresses
only in the DRAM test that exercises every address. Scan loads the addresses for other
tests into the ADRX MCAs, which send the row and column address bits to MMU.
(During normal operations, the tag MCU’s ADRX MCA generates the address bits.)

Each LFSR cycles through every address before repeating the addresses. Both LFSRs are
initialized to zero and are then forced to their initial address. The contents of the LFSRs
are incremented so that every address is tested.

The MDPX LFSR is synchronized to the DCA LFSR, in that the data pattern written
equals the address or another pattern derived from the address. SPU can examine the
contents of only the MDPX LFSR by scanning and determine which address failed, if the
stop on error bit is set.

The DDP and data path test uses the MDPX LFSR to generate random data patterns.
The LFSR hold signal is deasserted during the tests so that the data pattern is
continuously changing. The DRAM test uses both the MDPX LFSR and the DCA LFSR.
The following steps summarize how the DRAM test uses the MDPX LFSR and DCA
LFSR to test 1-Mbit DRAMs:

1. The SPU uses a scan to load 80000 into the MDPX LFSR. The 80000 is the last
pattern for the 1-MByte DRAM.

2. The MCDX BIST controller deasserts the LFSR hold signal for one clock tick.
Whenever the BIST controller deasserts the LFSR hold signal, DCA receives either
an APGINIT from MDPX (if the last pattern is asserted) or an APG increment signal
from MMCX Gf the last pattern is not asserted). MCDX sends the LFSR hold signal
to MMCX, which forwards it to MDPX.

3. MDPX asserts the last pattern signal (because the last pattern is loaded into LFSR)
and asserts APGINIT. MDPX uses the last pattern signal to set the next data pattern
generator to 100000, in which the lower 20 bits define the address as 0.

4. DCA receives APGINIT, which clears the DCA LFSR. (APGINIT also sets a bit in a
flip-flop, which later forces a 1 into LFSR.)

Both LFSRs are effectively at 0.
The MCDX BIST controller initiates a write to address 0.

When the write is completed, the BIST controller again deasserts the LFSR hold
signal for one clock tick.

DIGITAL INTERNAL USE ONLY

5-92 Array Control Unit and Main Memory Unit

8. MMCX receives the LFSR hold again and sends it to the MDPX MCA.
9. MDPX uses LFSR hold to advance LFSR to its next pattern, 200001.

10. The MMCX MCA sends an APG increment over the address strobe line to DCA. The
DCA now has 00001, and the LFSRs are again equal. Address 1 is written and the
process is repeated.

11. The next time that the BIST controller deasserts LFSR hold, the existing pattern
shifts left one bit and becomes 0002. After 2**20-1 deassertions of LFSR hold, LFSR
returns to the last pattern (80000), and having passed through all possible addresses
except O.

For 4- and 16-Mbit DRAMs, the LFSR contents are 22 and 24 bits long.

5.6.2 ECC Initialization

Three bits can be set during scan initialization to control ECC logic operation. These bits
are independent of the BIST operation and do not have any effect on the force bad data
logic that is used during a write and a read-modify-write operation.

5.7 ACU-to-JBox Interface

The JBox sends command and status to the MMCX MCA, data to the MDPX MCAs, and
row and column addresses to the memory module’s DRAM control and address (DCA)
chips. For more details on the ACU-to-JBox interface, see Chapter 2.

Each ACU has two input command buffers and an output command buffer in the JBox.
To communicate with the JBox, MMCO can load commands (return data read or error
command) into one of two input ACUO command buffers and MMC1 can load commands
into one of two ACU1 input command buffers..

To communicate with the ACU, the JBox loads commands into the memory command
output buffer (in CTLB) and sends the commands (read, write, write read, and write
pass) to the MMCX.

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-93

5.8 Modes of Operation — Timing
The memory module has the four following modes of operation:

¢ Normal mode — In this mode, the SCU controls DRAM and the DRAM data paths.
The SCU also generates refresh cycles.

¢ Step mode — In this mode, the SCU sets up write data, transfers read data,
and sends commands to the DRAM command and address gate array (DCA). The
DCA executes the command using an on-board, 10-MHz oscillator as a clock. DCA
performs the refresh cycles. In this mode, accesses to the field service register
(FSREG) can be made.

¢ Standby mode — In this mode, using a 10-MHz oscillator as a clock, the standby
logic continually refreshes the DRAMs. No DRAM accesses are allowed in standby
mode.

e Address pattern generation mode — In this mode, DCA redefines control lines
from the SCU. The lines control the address pattern generator (APG). The SCU logic
performs all the refresh and normal cycles. The memory system self-test uses this
mode.

5.8.1 Normal Mode

In normal mode, the DRAM control signals (RAS, CAS, and WE) are derived from the
system A and B clocks. This allows optimum memory performance. These signals can be
generated in increments of 16 ns and are closely coordinated with system events such as
load commands for reads and the arrival of data for writes. DRAM control signals cannot
be generated this way in step mode.

5.8.2 Step Mode

During system debug, the system can be placed into a single-step mode of operation in
which the system can be stepped through a program or hardware operation. Because the
system clocks may be off or running at very reduced speeds, normal memory functions
cannot be maintained. The MAC modules are placed in a mode in which they maintain
memory refresh and perform memory accesses for the system.

The purpose of step mode is primarily to support burst clocking. Control is passed to the
MMU. The MMU does not use the system clocks and is not affected by their stopping
and starting. The step mode is only used for debug, system maintenance, and to access
standby mode. While in step mode, the system clock must be at a cycle time greater than
21 ns before any read operations can take place.

In step mode, the system clocks can stop anytime. If the clock stops in the middle of a
memory cycle with RAS and CAS asserted for a long time, data can be lost or the DRAMs
damaged. In step mode, the DRAM control signals are derived from a free-running
oscillator on the memory modules.

DIGITAL INTERNAL USE ONLY

5-94 Array Control Unit and Main Memory Unit

5.8.2.1 Entering Step Mode from Normal Mode
The following steps summarize entering step mode from normal mode:

1

I SN

SPU sends REQSTEPCTL to MMCX.

MMCX inhibits DRAM control commands from MCDX.
MMCX waits for not busy from MCDX.

MMCX transmits STEPCTLEN to each DCA. (See Figure 5-63.)
Each DCA starts the step mode controller.
When each DCA sends STEPCTLOK to SPU, the system is in step mode.

In step mode, the MCDX DRAM segment control is disabled. MMCX transmits the
memory command to MCDX. The MCDX translates the command into a series of DCA
step mode commands. DCA latches the DRAM control signals as a command.

DCA uses the RAS lines to select the bank of DRAMs and start the command cycle.

CAS and WE lines carry a 4-bit command to DCA. DCA stores the command in the DCA
command buffer. Figure 5-64 shows the 4-bit control field. Table 5-40 lists the values for
and descriptions of the control field.

MMC_MAC_RAS_L[03:00] s
MMC_MAC_WE_L[01:00) 4 6 MMC_MAC_STEPCYCBSY_H[00]
MMC_MAC_CAS_L[01:00] 3] coMMAND
MMC_MAC_STEPCTLEN_L[00] 2| BUFFER |, 7
3 DDP_RDLATEN_L
BBU_DCA_BBUSEL_ON_L[00] 1 8 >
— 4 DCA_MAC_BBUEN_H
SEQUENGER | 5 DCA_MAC_PRMTIMCLR_L[00]
BBU_DCA_CLK100_H 2 6 MAC_SPU_STEPCTLOK_H[00]
SPU_MAC_BBUCTLEN_L{00] 1 8 DCA_MAC_IOEN_H
STEPON
—
4
,/
4 2
Z
72
1 DCA_AA_RAS[03:00]
/2 DRAM 75 >
CONTROL DCA_AA_WE_H[01:00]
SEQ_WEEN_L MUX 7 >
SEQ_CASEN_L DRAM CONTROL LINES SCM_CAS_L{01:00]
SEQ_RASEN_L 75 >
SEQ_REFCYC_L 2
ya Z
74 78

FROM LAT_RAS_L{03:00]

1

MISCELLANEOQUS
LOGIC
BLOCK

COMMAND
BUFFER

Figure 5-63 Step Mode Logic on the Memory Module

SB

LsB

CAS1 CASO WE1

WEO

MR_X1201_8%

Figure 5-64 Step Mode Command Signals

DIGITAL INTERNAL USE ONLY

MR_X1200_89

Table 5-40 Step Mode Commands

Array Control Unit and Main Memory Unit 5-95

Value

Name

Description

0000
0001

0010

0011

0100
0101
0110
0111
1000

1001

1010

1011

1011-1111

Self-test 16 enable

Self-test 4 enable

Self-test 1 enable

EEPROM write

EEPROM read

Memory write

Memory read

Reserved.

This command performs two functions. One function is
to configure the APG to 24 bits. This implies that the
memory module is configured with 16-Mbit DRAMs. The
second function puts DCA into APG mode.

This command performs two functions. One function is
to configure the APG to 22 bits. This implies that the
memory module is configured with 4-Mbit DRAMs. The
second function puts DCA into APG mode.

This command performs two functions. One function
configures the APG to 20 bits. This implies that the
memory module is configured with 1-Mbit DRAMs. The
second function puts DCA into APG mode.

Reserved.
Reserved.
Reserved.
Reserved.

This command instructs DCA to perform a byte write of
EEPROM at the address defined by the contents of the
segment 0 address latch. Data [07:00] from the 160-bit
write buffer 1 contains the data to be written.

This command instructs DCA to perform a read of
EEPROM at the location pointed to by the segment 0
address latch. The DCA loads the data (Figure 5-67)
into the 160-bit DDP read buffer 0.

DCA performs a write to the DRAMs. This command
requires that the data be preloaded into the DDP

write buffer 1, the row address be preloaded into the
segment 0 address latch, and the column address be
preloaded into the segment 1 address latch. DCA signals
completion of this command by deasserting step cycle
busy.

DCA performs a read of the DRAMs. This command
requires that the row address be preloaded into the
segment 0 address latch and the column address be
preloaded into the segment 1 address latch. DCA signals
completion of this command by deasserting step cycle
busy, at which time the read data is available in the
DDP read buffer 0.

Reserved.

DIGITAL INTERNAL USE ONLY

5-96 Array Control Unit and Main Memory Unit

5.8.2.2 Exiting Step Mode
The following steps summarize how the memory system exits step mode and returns to
normal mode:

1. SPU deasserts SPU_MMC_REQSTEPCTL_H and sends the signal to MMCX.

2. MMCX receives the deassertion of SPU_MMC_REQSTEPCTL_H and deasserts
MMC_MAC_STEPCTLEN_H to the DCAs.

3. Each DCA monitors MMC_MAC_STEPCTLEN_H and, on negation, exits step mode
after any memory cycle in progress is complete.

4. Each DCA continues to assert MAC_MMC_STEPCYCBSY_H while any memory
cycles are in progress.

5. MMCX monitors MAC_MMC_STEPCYCBSY_H from each DCA and resumes control
immediately after MAC_MMC_STEPCYCBSY_H is deasserted.

5.8.3 Standby Mode

During a scan operation or system power loss, the memory modules go into standby
operation. Standby operation continues to refresh the DRAMs, ensuring that the contents
of memory are not compromised. The standby logic provides RAS, CAS, and WE to the
DRAMs during the power loss or scan operation. Standby mode is usually entered using
a handshake sequence initiated by SPU.

The memory subsystem cycles into step mode before it can enter standby mode. With one
exception, this is always the case. During the DRAM BIST, DCA receives one of three
self-test enable step mode commands. The command puts DCA into a state in which

it cannot accept any more step mode commands. The contents of the address pattern
generator in the DCA is placed into the address path. (Normally, DCA strobes the
address bits coming from the ADRX MCAs onto the address lines.) This state between
step and normal is called the APG mode.

When DCA is in APG mode, SPU can initiate standby mode by asserting STBYCTLEN.
This activity is useful during BIST and keeps DCA in APG mode so that the APG
contents are not affected. Therefore, when using a stop on error function, the test can be
restarted where it left off.

5.8.3.1 Initiating Standby Operation

Standby operation is initiated by the SPU as part of the power-down sequence. Standby
can be entered only after the SPU has switched the memory system into step mode.
After each DCA has entered step mode, the SPU sends SPU_MAC_STBYCTLEN_L to
the memory subsystem. The memory subsystem switches into standby operation if no
DRAM cycles are in progress. Otherwise, the memory subsystem enters standby mode
after completing the DRAM cycle.

Table 5-41 lists the SPU handshaking signals and their descriptions.

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-97

Table 5-41 SPU Handshaking

Signal Description
SPU_MAC_CTLINIT_L DCA performs a complete initialization of all its circuitry.
SPU_MMC_REQSTEPCTL_H MMCX completes any memory cycle in progress and brings

all memory cycles to a halt. MMCX sends MMC_MAC_
STEPCTLEN_H to DCA. The negation of SPU_MMC_
REQSTEPCTL_H results in the negation of MMC_MAC_
STEPCTLEN_H, sent to the DCA.

MMC_MAC_STEPCTLEN_H The control logic on each memory module switches to
a local DRAM control mode. The DRAM control lines
between MMCX and the DCAs change function to become
command lines. DCA completes any DRAM cycles in
progress when MMC_MAC_STEPCTLEN_H is negated.
MMCX engages in normal system timing upon the negation
of MAC_MMC_STEPCYCBSY_H.

MAC_SPU_STEPCTLOK_H This signal is asserted after all memory modules have
switched into step mode. This signal deasserts under two
conditions. One, if the memory modules are switched into
standby mode from step mode. Two, if the memory modules
are switched into normal mode from step mode.

MAC_MMC_STEPCYCBSY_H The DCA is executing a DRAM timing cycle.

SPU_MAC_STBYCTLEN_L The memory module enters standby operation. This signal
can be asserted only during step mode. In standby mode,
the memory modules ignore all external signals except
this one. The negation of this signal switches the memory
modules out of standby.

5.8.3.2 Exiting Standby

After power is restored, the memory modules remain in standby mode until after
initialization. Each memory module is initialized by the SPU with SPU_MMC_CTLINIT_
L signal. As part of the initialization, the SPU sets conditions so that MMCX is in

step mode. After scan operations to MMCX are complete, the SPU negates SPU_MAC_
STBYCTLEN_L to the memory modules. At this point, each memory module responds
with MAC_SPU_STEPCTLOK_H. Each memory module is then in step mode.

5.8.4 APG Mode

Address pattern generation (APG) mode supports memory self-tests and can be entered
only through the step mode. A step mode command (SLFTESTxEN) is issued on the
CAS and WE lines. This command enables DCA to enter APG mode and to select the AP
sequence to test the DRAMs. The address strobe lines increment the address generator
and select between row and column addresses. For more detail, see Sections 5.6.1 and
5.8.3.

DIGITAL INTERNAL USE ONLY

5-98 Array Control Unit and Main Memory Unit

5.8.5 Switching from One Mode to Another

The SPU can switch the memory subsystem from one mode to another mode. However,
the mode switching must be done in a specific order to preserve data integrity in the
DRAMs. The switch operations are as follows:

Standby to step
Step to standby
Step to normal
Normal to step
Step to APG
APG to standby

Figure 5-65 shows the mode switching logic in the memory module.

r
§ MISCELLANEOUS LOGIC

MM_STEPCTLOKIN_H]

MM_STPOKBSYIN_L =

MAC_STEPCTLOK_H

| Y L L L

1 STEP
CONTROL
1 oK
MAC_STBYCTLEN_L | | STANDBY TO STANDBY
I DCA - BUSY
i SYNC LOGIC MM_STEPOKBUSY_L
I
-

- e ---———-——————-h-—--——- - e e

STBY_BUSY_L DCA_STBYEN_H

F Lk

L]
1 DCA i
STBY_SYNCTLEN_L I]

I i

STEPCTLOK 1 DCA_STEPCTLOK_H
MAC_CTLINIT_L i AND STBYEN [—7 >

LOGIC

1 i

] i

1 1

i i

. i MAC_STEPCYCBSY_H

] STEP CYCLE } — Ay
MAC_STEPCTLEN_L 1 BUSY LOGIC i :

I I

] i

(8 F]

MR_X1202_89

Figure 5-65 Mode Switching Logic in the Memory Module

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-99

From power-on to normal system operation, the mode switching order is as follows:
1. Standby to step
2. Step to normal

From normal system operation to standby (battery backup or scanning), the mode
switching order is as follows:

1. Normal to step
2. Step to standby

From normal system operation to an operation that stops the system clocks, the mode
can switch from normal to step.

From an operation that allows system clocks to stop to a normal system operation, the
mode can switch from step to normal.

The mode switching operations do not apply during the BIST operation. During the BIST
operation, the MCDX BIST controller directs the mode switching functions normally
executed by the SPU. The linear feedback shift register in the MDPX MCA supplies

the test data during the DRAM test, and the linear feedback shift register in the DCA
supplies the address.

During the BIST operation, the mode can switch as follows:
1. From standby to step to APG
2. From APG to standby

5.9 Memory Operations

This section describes the memory operations performed by the memory subsystem.
These operations are as follows:

Read

Write

Read-modify-write

Write read

Write pass

Refresh

EEPROM read and write

DIGITAL INTERNAL USE ONLY

5-100 Array Control Unit and Main Memory Unit

5.9.1 Read Operation

When a read data cycle executes, MMU reads 640 DRAMs and loads the data into read
buffer 0. Figure 5-30 shows the read path in the memory module. The DRAMs load
data into read buffer 0, and the memory module transfers the data to read buffer 1. This
allows a second read operation from the other segment to continue. Read buffer 1 feeds
into a 8:1 selector used to wrap data 80 bits per clock cycle. The first 80-bit word to be
transferred is determined by the starting quadword field in the command buffer.

The transfer of the 80-bit data word is from four memory modules to two MDPs. Each
MDPX operates on 40 bits, performing single-bit error correction and double-bit error
detection as necessary. Each MDPX then transmits a longword per clock cycle to the
JBox using the control/command interface between the JBox and MMCX. A summary of
the sequence is as follows:

1. The JBox logic transfers command information to the MMCX segment command
buffer. A

The MMCX and MCDX do the following:

a. Decode command and index information and determine if the data is for a CPU
or I/O operation.

b. Decode bank select.

c. Strobe the address from JBox into MMU.

d. Perform DRAM cycle timing through DCA.

e. Latch data from the DRAMs into MMU read buffer 0.
f. Transfer data to MMU read buffer 1.

g. Complete the DRAM timing sequence.

h. Transmit the return data read command to the JBox.

Receive the send data command from the JBox.
j. Transfer each quadword through the MDPX MCAs.

2. The MDPX MCA under MMCX control does the following:
a. Receives one quadword per clock cycle from MMU.

|
.

b. Checks for errors and corrects if necessary (single bit).
¢. Generates word parity.
Sends one quadword per clock cycle to the data switch in the JBox.
3. The MMCX updates segment command buffer available status for the JBox.

The read data transfers from MMU to MDPX use free-running STRAM clocks.
Consequently, MMU constantly returns data to MDPX. However, the data is not always
valid. When read data is requested from memory, a read cycle is initiated. A block of
64 bytes is always accessed from memory, regardless of the length of the transfer. When
the data becomes valid at the DRAM outputs, it is latched into the read data buffer 1.
The data is then transferred to the data output latch when the latch becomes available.
MMCX sends one, two, four, or eight valid read selects to MMU, depending on the length.

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-101

As the read data enters MDPX, MMCX sends a signal called ECCENB_H to MDPX to
enable the comparison of expected check bits with received check bits for error detection.
This signal is asserted only for the length of the data transfer. The read data from MMU
constantly flows from MMU to MDPX, and the beginning of data bit is appended only to
the first quadword of a valid data transfer. Error detection is enabled only for valid data
quadwords.

5.9.1.1 Wrap on Read Sequence

Wrap on read sequences can occur for I/O and CPU read requests. A wrap on read
is defined as an octaword or hexword operation (for I/O), and a cache block operation
(for CPU) in which the quadwords are returned in a specific pattern. The specifically
addressed quadword is returned first, independent of alignment. The remaining
quadwords are returned in a specific pattern.

If the index value indicates that the data is for an I/O request, MMCX uses the length
field [03:02] of CCU_MMCX_CMD_H[14:00] to determine the number of quadwords to
return. If the index value indicates that the data is for a CPU request, the length is
eight quadwords. MMCX uses the index value and three starting bits from the ADRX
MCA and sends the appropriate sequence of read select values to the data output latch
in the memory module. MDPX receives the quadwords and ECC check bits in the correct
order and sends the quadwords and word parity to the data switch. The data switch
sends the data to the CPU or ICU.

XMI protocol requires that all octaword and hexword reads, both normal and interlocked,
be delivered in a specific wrapped order. Table 5-42 shows the quadword, octaword, and
hexword boundaries on which I/O can request data. A hexword read is made up of two
octaword reads, and the addressed octaword read data are returned first. Within each of
the octawords, the wrapping order is the same; the quadwords in the second octaword are
in the same order as the quadwords in the first.

Table 5-42 1/0 Boundaries

Quadword Octaword Hexword
0 - -
1 0 -
2 - -
3 1 0
4 - -
5 2 -
6 - -
7 3 1

For I/O requests, the wrap order for read data follows the XMI bus specification. Tables
5-43 and 544 list the possible wrap sequences for each cycle.

The CPU request to memory is for eight quadwords of data, and the requested quadword
is returned in the first cycle. The possible CPU wrap sequences are listed in Table 5-45.

DIGITAL INTERNAL USE ONLY

5-102 Array Control Unit and Main Memory Unit

Table 5-43 /O Cycles for Wrap on Read (Quadwords 0, 1, 2, and 3)

1st 2nd 3rd 4th
0 1 - -
1 0 - -
2 3 - -
3 2 - -
0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

Table 5-44 1/0 Cycles for Wrap on Read (Quadwords 4, 5, 6, and 7)

Ist 2nd Srd 4th
4 5 - -
5 4 - -
6 7 - -
7 6 - -
4 5 6 7
5 4 6 7
5 4 7 6
6 7 4 5
7 6 5 4

Table 5-45 CPU Cycles for Wrap on Reads

1st 2nd 3rd 4th 5th 6th 7th 8th
0 1 2 3 4 5 6 7
1 2 3 4 5 6 7 0
2 3 4 5 6 7 0 1
3 4 5 6 7 0 1 2
4 5 6 7 0 1 2 3
5 6 7 0 1 2 3 4
6 7 0 1 2 3 4 5
7 0 1 2 3 4 5 6

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-103

5.9.2 Write Operation

The memory subsystem can write from 1 to 16 longwords. The JBox transfers data in
8-byte wide (quadword) increments. ACU splits the data path into two 4-byte (longword)
paths. Each 4-byte path feeds into an MDPX.

The check bit generation logic appends a 7-bit ECC code to the 32-bit data path. The
fortieth bit (mark bit), used in conjunction with the ECC code, is also appended to the
data. ACU sends 80 bits (40 bits from each MDPX) to MMU.

MMU loads the 80 bits into the data input latch (write buffer 0) through a 1:8
demultiplexer. Figure 5-30 shows the write path in the memory module. The encoding
starts at 000 (binary) and increments to a number determined by the number of
quadwords specified by the command information received from the JBox.

During the transfer of data, MMCX sets the CAS mask register bits using the two CAS
mask control signals. For each valid longword in write buffer 1, a CAS mask bit is set.

The CAS mask bit, if set, allows CAS to be applied to the set of 40 DRAMs that enables
writing.

The following steps summarize a write operation:

1. The JBox transfers command information to the selected segment command buffer in
MMCX.

2. The JBox logic transfers data to the memory subsystem as follows:
a. Data to the MDPX MCAs
b. Mask and BOD to MMCX
¢. Beginning of data bit set during first and fourth transfer
3. The MMCX and MCD do the following:
a. Decode command information.
b. Decode index to determine CPU or I/O operation.
c. Decode bank select information.
d. Strobe the address into the selected segment.
e. Initiate DRAM cycle timing.
4. Two MDPs under MMCX control do the following:
a. Receive one quadword per clock cycle.
b. Check longword parity on each quadword transfer.
¢. Generate seven check bits for each longword.
d. Send one quadword per clock cycle to MMU.

DIGITAL INTERNAL USE ONLY

5-104 Array Control Unit and Main Memory Unit

5. MMU, under MMCX and MCDX control, does the following:
a. Receives 80 data bits per clock cycle.

b. Loads data into write buffer 0 through a 1:8 demultiplexer.
c. Transfers data to write buffer 1.

d. Transfers data from write buffer 1 to the DRAMs.

e. Completes the DRAM timing sequence.

f. Updates data and segment command buffer status for the JBox.

MMCX does not forward the length field to either MMU or the MDPX MCAs. The length
is used in MMCX by the read data controller and write data controller state machines.
The length field determines how long certain control signals from MMCX to MMU and
MDPX should be asserted.

During writes, MDPX has no knowledge of the length of the data transfer. Whatever
data enters MDPX from the data switch emerges from MDPX two clock ticks later with
the appropriate check bits appended. It does not matter if the data is valid write data. If
it is valid write data, MMCX sends the appropriate control signals to MMU to load the
data into the data buffer. The length is conveyed to the MMU by the number of write

- buffer strobe (WRTBSTROBE) pulses. A write buffer strobe accompanies each quadword
and loads the quadword into the data input latch (write buffer 0). After the memory
module loads the last quadword into write buffer 0, MMCX sends one write buffer strobe
pulse and transfers the data from the data input latch (write buffer 0) into the write data
buffer (write buffer 1). When the data is in the write data buffer, MMCX concurrently
transmits the write flip-flop enable (WRTFFEN_L) with the write select lines.

5.9.2.1 Loading the CAS Mask Register
MMCX receives the following two byte mask bits per longword from the data switch:

DSB2_MMCX_CTL_H[01:00] from the DBX MCU (upper longword)
DSA2_MMCX_CTL_H[01:00] from the DAX MCU (lower longword)

MDPX receives the full byte mask bits [36:33] with the data DSXX_MDPX_DAT_
H[38:00]. The MDPX on DAX receives the lower longword, and the MDPX on DBX
receives the upper longword. Each segment has a mask bit register in the MDPX MCA
that holds the mask bits until the data is merged with the read data from memory.

The three following mask registers exist in the memory subsystem:

CAS mask build register
CAS mask operation register 0
CAS mask operation register 1

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-105

Figure 5-66 shows how the CAS mask register is loaded.

The CAS mask build register receives the mask bits with the data. This register is
analogous to the data input latch (write buffer 0) in the DDPs. The CAS mask operation
registers, 0 and 1, receive the 8-bit mask field from the build register in parallel. The
contents of CAS mask operation registers 0 and 1 remain constant until the CASs have .
been deasserted. The CAS mask operation registers are analogous to the write data
buffer 1 in the DDPs.

As the data is received a quadword at a time, the write selects are incremented and sent
to the CAS mask build register. The CAS mask build register is clocked by a series of
write strobes as the data is received and loaded into the data input latch. The write
strobes arriving at the build register sample the write select and CAS mask control
signals and cause the appropriate modification of the contents of the CAS mask build
register.

Write flip-flop enable is asserted concurrently with write select for the last quadword in
the data transfer and is stored in the build register. The next write strobe transfers
the eight bits in the build register to one of the CAS mask operation registers.
(MSKDIRSEGO determines which of the CAS mask operation registers gets loaded.)
The mask operation register gates CAS to enable the corresponding longwords to be
written.

SYS_WRTSEL_H[02:00] 3:8
CAS
SYS_WRTFFEN_H[00] MASK LAT_WRTSEL{02:00]_H MSKSEL[07:00]_L
INPUT I CAS Y
SYS_CASMSKCTL_H[01:00] | REGISTER | LAT_WRTFFEN_L xagrx
> \TE
SYS_WRTSTRB_L oLk LAT_CASMASKCTL[01:00]_L _ |DECODER
P ————-— -
1 CAS MASK BUILD LOGIC 1
I
1
1
! MSEL[07:00]_L CAS
t MASK MSKBIT[07:00]_L
i LAT_WRTFFEN_L BUILD >
—————{ REGISTER CMSK_WRTFFEN_H
} sYS_WRTSTRB_L >
D CLK
I
i .
I CMSK_MSKLOAD_H
SYS_WRTSTRB_H >
LAT_CASMASKCTL[O1]_L ool om o oo o o oo o o wmn of ——] }

LAT_CASMASKCTL[0O0]_L

MR_X1283_88

Figure 5-66 Loading the CAS Mask Register

DIGITAL INTERNAL USE ONLY

5-106 Array Control Unit and Main Memory Unit

5.9.3 Read-Modify-Write Operation

A read-modify-write data operation begins as a write command to the memory subsystem.
MMCX decodes the index to determine whether the write operation is for I/O or CPU.
Because an I/O write can be a byte, MMCX examines the mask bits and determines
whether a byte write (partial longword) must be written. If so, MMCX executes a read-
modify-write cycle.

During the initial stages of the read-modify-write operation, the memory module
transfers the /O write data through the data input latch (write buffer 0), write data
latch (write buffer 1), and DRAM bypass (read bus) path, into the read data latch (read
buffer 1) and then the data output latch (read buffer 0). The memory module transfers
the data from read buffer 0, through the wrap multiplexer and into the I/O merge buffer
in the MDPX MCAs. The I/O merge buffer holds the I/O write data until the bytes needed
to generate ECC check bits can be read from the DRAMs.

When read data from the DRAMs is ready, it is loaded into read buffer 1 and is moved
to the data output latch (read buffer 0). Figure 5-30 shows read and write paths in the
memory module. One or two quadwords are transferred from read buffer 1, through the
wrap multiplexer and into the MDPX for byte merging with the I/O write data.

The MDPX MCA combines the I/O write data bytes with the read data bytes, generating
new check and mark bits to be appended to the data. The merged data is now ready to
be loaded into write buffer 0 in the memory module.

The following steps summarize a read-modify-write operation:

1. The JBox logic transfers command information to the segment command buffer in
MMC.

2. MMCX and MCD do the following:
a. Decode LDCMD_H and CMD_H[01:00] as a write masked command.

b. Decode BANKADDR_H[01:00], in which bit 1 specifies the segment command
buffer to load and bit 0 specifies the bank.

¢. Strobe the address from the ADRX MCAs into MMU (row, then column).
d. Receive and decode cycle status bits from the JBox.

e. Receive and decode DSB2_MMCX_CTL_H[01:00] (upper word from DBX MCU)
and DSA2_ MMCX_CTL_H[01:00] (lower word from DAX MCU) mask bits from
the data switches.

f. Initiates DRAM read cycle timing.
3. The MDPX, under MMCX control, passes I/O write data through to the MMU.

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-107

4. The MMU, under MMCX and MCDX control, does the following:

=

R opoe

Receives I/0 write data through a 1:8 demultiplexer and into write buffer 0.
Moves data to write buffer 1.

Moves data through the DRAM bypass to read buffer 0.

Moves data to read buffer 1.

Moves data through the wrap multiplexer to the MDPX I/O merge buffer.
Loads read data from the DRAMs into read buffer 0.

Moves read data from read buffer O to read buffer 1.

Transfers the read data through the wrap multiplexer to MDPX for byte
merging.

5. The MDPX, under MMCX control, does the following:

a.
b.

C.

d.

e.

f.

Receives read data from the MMU.
Checks for errors and corrects if necessary.
Marks data bad if necessary.

Merges the read data bytes with the I/O write data bytes in the I/O merge buffer
to generate a valid longword.

Generates seven check bits for each longword and sets the mark bit.
Transfers data to the MMU (one or two quadwords).

6. The memory unit, under MMCX and MCDX control, does the following:

a.
b.
c.
d.

Receives one data quadword per clock cycle.
Loads each quadword into write buffer 0 through a 1:8 demultiplexer.
Moves the write data to write buffer 1.

At the correct DRAM timing, loads all valid longwords in write buffer 1 into the
DRAMs.

7. MMCX and MCD do the following:

a.
b.

Complete the DRAM timing sequence.
Update data and segment command buffer status for the JBox.

DIGITAL INTERNAL USE ONLY

5-108 Array Contro! Unit and Main Memory Unit

5.9.4 Write Read Operation

A write-read data operation is a mixed operation. Data is first written to a location and
then read from the same location. During the write cycle of the operation, not all 640
DRAMs are written. Invalidated longwords from CPU are not written. During the read
phase of the operation, all of the 640 DRAMs are read.

The following steps summarize a write read operation:

1

The JBox transfers command information to the selected segment command buffer in
the MMC.

The JBox transfers data to the memory subsystem as follows:

a.
b.

Passes data to MDPX.

Passes mask information to MMC.

MMCX and MCD do the following:

a.
b.

C.

d.

e.

Decode write read command information.

Decode index.

Decode bank select (0 or 1).

Strobe an address into the selected memory segment.
Initiate DRAM cyecle timing.

The MDPX, under MMCX control, does the following:

a.
b.

C.

d.

Receives one quadword per clock cycle.

Checks longword parity on each quadword transfer.
Generates seven check bits for each longword.
Sends one quadword per clock cycle to the MMU.

The MMU, under MMCX and MCDX control, does the following:

a.
b.

= C T O ~ I o

Receives 80 data bits per clock cycle.

Loads data into the write data 0 buffer through a 1:8 demultiplexer. (Figure 5-30
shows the read and write path in the memory module.) For each valid longword
transferred, MMCX sets a bit in the CAS mask register.

Moves data to write buffer 1.

Loads DRAM data from write buffer 1 into the DRAMs.
Completes the write part of the DRAM cycle.

Begins the read part of the DRAM cycle.

Makes DRAM read data available (from the DRAMs).
Loads read data into read buffer 0.

DIGITAL INTERNAL USE ONLY

6.

7.

8.

Array Control Unit and Main Memory Unit 5-109

The MMCX and MCD do the following:

a. Complete the DRAM timing sequence.

b. Transmit a return data read command to the JBox.

c. Receive a send data command from the JBox.

d. Transfer each quadword through the MDPX MCAs to the JBox.
The MDPX, under MMCX control, does the following:

a. Receives one quadword per clock cycle from the MMU.
b. Checks for errors and corrects if necessary (single bit).
c. Generates longword parity.

d. Sends one quadword per clock cycle to the JBox.

The MMCX updates segment command buffer status.

5.9.5 Write Pass Operation

A write-pass data operation uses the same write timing as a normal write cycle.
Immediately after the write buffers are loaded, the memory module uses the DRAM
bypass path and sends the data directly to the read buffers. Figure 5-30 shows the
bypass path in the memory module. During the write cycle, all data is valid and all 640
DRAMs are written. The memory module unloads the data in the read buffers the same
way as in a read operation.

The following steps summarize a write pass operation:

1.

The JBox transfers command information to the selected segment command buffer in
MMCX.

The JBox transfers the following to the mémory subsystem:

a. Data switch data to the MDPX MCAs

b. Data switch mask data to MMCX

The MMCX and MCD do the following:

a. Decode command information.

b. Decode index. |

c¢. Decode bank select information.

d. Strobe the address into the selected memory segment.
. Initiate DRAM cycle timing.

The MDPX, under MMCX control, does the following:

a. Receives one quadword per clock cycle.

b. Checks longword parity on each quadword transfer.

c. Generates seven check bits for each longword.

d. Sends one quadword per clock cycle to the MMU.

DIGITAL INTERNAL USE ONLY

5-110 Array Contro! Unit and Main Memory Unit

5. The MMU, under MMCX and MCDX control, does the following:
Receives data 80 bits per clock cycle.
Loads data into write buffer 0.
For each valid longword loaded, MMCX sets a bit in the CAS mask register.
Moveé data to write buffer 1.
Transfers data through the bypass path to read buffer 0.
" At the correct time, loads DRAM data from write buffer 1 into the DRAMs.
6. The MMCX and MCD do the following:
a. Complete the DRAM timing sequence.

b. Transmit a return data read command to the JBox.

S

™ e poo

¢. Receive a send data command from JBox.

d. Transfer each quadword through the MDPX MCAs to the JBox.
7. The MDPX, under MMCX control, does the following:

a. Receives one quadword per clock cycle from the MMU.

b. Generates word parity.

c. Sends one quadword per clock cycle to the JBox.
8. The MMCX updates segment command bgﬁ'er status.

5.9.6 Refresh Operation

Three sources of logic provide DRAM refresh support: SCU, DRAM control and address
(DCA) gate array, and standby. The mode of operation determines the source of the
refresh logic. The standby logic generates the refresh interval and sends the interval to
the SCU and DCA. During powerfail or scan operation, standby refreshes are used.

The memory modules initiate the refresh operations. A refresh signal originates on each
of the memory modules. MMCX receives one of these signals and uses it as a command
request for refresh. Upon completion of active cycles, MMCX executes a refresh cycle to
all 2560 DRAMSs in MMU. The refresh logic uses the CAS and RAS control signals and
does the data and address paths.

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-111

5.9.7 EEPROM Operations

Each memory module has an EEPROM that stores information about the memory
module. Figure 5-67 shows the EEPROM data.

MAC /0 READ DATA

191817161514 1312111008 08 07 06 05 04 03 02 01 00

MBZ REV DATA PROM DATA

EEPROM DATA

07 06 05 04 03 02 01 00

P ASCll BITS

MR_X1204_89

Figure 5-67 EEPROM Data Format

The storage in the EEPROM is divided into two areas of equal size. Manufacturing has
read and write access to both storage areas. SPU has read access to all locations and
can write to only the lower half addresses. When initiating the DRAM test, SPU reads
the EEPROM, collects DRAM size information, and passes the information to the MCDX
MCA.

The SPU performs EEPROM read and write operations at initialization or power-down.
The following steps summarize reading and writing to the EEPROM:

1. Sequences the memory into standby timing.
2. Stops system clocks to SCU.

3. Sets EEPROM operation bit in MMCX through scan. With the bit set, MMCX
interprets all I/O requests as EEPROM reads or writes.

4. Turns on system clocks.

5. Reads or writes the EEPROM through the /O channel.

To turn off access to the EEPROM, the SPU performs the following steps:
Stops the system clocks to SCU.

2. Clears the EEPROM operation bit in MMCX using the scan.
3. Turns on the system clocks.
4. Sequences the memory into normal timing.

DIGITAL INTERNAL USE ONLY

5-112 Array Control Unit and Main Memory Unit

5.10 Memory Module Testing

The memory subsystem can self-test its memory modules. This self-test uses BIST
logic located in the memory module DCA and the ACU’s MDPX, MCDX, and MMCX
MCAs. The SPU initiates the self-test, and the ACU provides the means to test the
memory modules. The testing of the DRAMs emulate the random activity normally seen
during system operation. Random data patterns are written to the DRAMs at randomly
generated addresses.

The self-test logic is as follows:

e BIST controller — The controller is located in the MCDX MCA. This logic issues
commands to MMCX and receives status. MMCX places the BIST commands on the
CAS and WE lines.

¢ BIST command — The command interface is located in the MMCX MCA. The
commands are identical to the commands MMCX receives from the JBox. MMCX
acts on them in an identical manner.

e BIST control logic and data pattern generator — The BIST control logic and
data pattern generator are located in the MDPX MCA. The data pattern generator is
described in more detail in Section 5.6.1.

¢ BIST command decode and address pattern generator — The command decode
and address pattern generator is located in the DCA on each memory module.
Figure 5-68 shows the address pattern generator in the memory module. The address
pattern generator is described in more detail in Section 5.6.1.

LATO_ADR[11:00]

SYS_ADRBSTRB[01:00] LAT1_ADR[11:00]
S LATO_ADRPAR[03:00]
| 2 LAT1_PARADR[03:00]
SPU_MAC_CTLINIT
MDP_MAC_ADRINIT
—————_—— | ADDREss AG M
CMMD_SLFTSTEN PATTERN AC_MMC_
———————— GENERATOR | , 1AB[11:00] , || aooress | ADRPARTGGO0]
CMMD_GTiM 73 e PATH —
—_—_— a2 PARITY
CMMD_GT4M |
SLFTSTEN
ADDRESS
PATH
LOGIC

ADR_MAC_ADR[11:00) B DCA_AA_ADR[11:00] _

rg v >
SPU_MAC_CTLINIT 12 12 DCA_BB_ADR[11:00]

7 >

ADR_MAC_ADRPAR[03:00] . 12

7,
CMMD_APGSTEN 4
MMG_MAC_ADRBSTRB{01:00} .
MISC_COLADRSEL 2
MISC_SEG[01:00]_ARDSEL .

72
SYS_CTLINIT

MR_X1205_89

Figure 5-68 Address Pattern Generator in the Memory Module

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-113

5.10.1 BIST Controller
The BIST controller is located in the MCDX MCA. The controller sends the following:

e Self-test mode commands (using STM_CMD_H[02:00]) to MMCX. The MMCX
executes the BIST command when MCDX sends a load command. Table 546 lists
the BIST commands.

¢ Step mode commands to DCA. The DCA switches the address pattern generator into
APG mode. Each step mode command listed in Table 540 determines the length
(count) for the APG contents.

Table 5-46 BIST Self-Test Commands

Value Description
00 Read

01 Write read
10 Write

11 Write pass

Table 5-47 BIST Step Mode Commands

Name Description

SLFTSTI1EN Self-test 1-Mbit DRAMs enable
SLFTST4EN Self-test 1-Mbit DRAMSs enable
SLFTST16EN Self-test 1-Mbit DRAMs enable

5.10.2 BIST Data

MDPX provides the data patterns through a 32-bit data pattern generator (also called
LFSR). The data patterns are random and no two data patterns written to a memory
bank are the same. The lower order bits of the data pattern generator are identical to
the contents of the address pattern generator in DCA. This allows the address pattern to
be scannable in MDPX. The MDPX provides data manipulation during the DRAM test.

DIGITAL INTERNAL USE ONLY

5-114 Array Control Unit and Main Memory Unit

5.10.3 BIST Address

Addresses are provided by one of the following:

ADRX MCAs in the tag MCU
Address pattern generator in the DCA

The DRAM test uses the address pattern generator in DCA. All other tests rely on an
address scanned into the ADRX MCAs during test initialization. The MMCX and MDPX
BIST logic controls the address pattern generator in DCA and sends the following signals:

¢ MMCX_MAC_ADRBSTROBEO_L — DCA clocks the address pattern generator
to the next test address. The system mode function of this signal is to strobe the
address from the JBox into the segment 0 address latch. '

e MMC_MAC_ADRBSTROBE1_L — DCA toggles between row and column of the
generated test address. The system mode function of this signal is to strobe the
address from the JBox into the segment 1 address latch.

e MDP_MAC_ADRINIT_L — DCA initializes the address pattern generator to its
starting address. This signal has no function during system mode.

For more detail, see Section 5.6.1.

5.10.4 BIST Mode Switching Order

During the BIST operation, the memory switches between standby-to-step, and step-
to-standby modes. Switching between modes is different in BIST than in normal mode
because the MCD BIST controller takes over mode switching functions normally executed
by the SPU.

5.10.4.1 Standby-to-Step Mode

In step mode, the service processor should not switch to standby until signaled by the
MCD BIST controller. The SPU ignores the signal MAC_SPU_STEPCTLOK_H from
the MMU when the memory is in step mode. When the MCD BIST controller puts the
memory into normal mode, MAC_SPU_STEPCTLOK_H is deasserted.

5.10.4.2 Step-to-Standby Mode

The MCD BIST controller signals a mode switch to standby by sending a stop signal to
MMCX. The MMCX pulls the attention line on the CDCX MCA. The SPU switches the
memory into standby mode by asserting SPU_MAC_STBYCTLEN_L.

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-115

5.10.5 BIST Registers
The self-tests use the following BIST registers:

ADRX address latches
MCD BIST registers

MMCX BIST registers
MDPX BIST registers

5.10.5.1 ADRX Address Latches

During DCA tests, a known-good address is required. The four ADRX MCAs located in
the tag MCU supplies the address. Each ADRX supplies three address bits, plus one
parity bit. The four ADRX supply a 12-bit address (Table 5-48). Table 5-49 lists the
address bits that are dependent on memory size.

Table 5-48 ADRX 12-Bit Address

ADRX Bit Description

ADRO BIST [02:00] Row and column MMU address bits [02:00]
ADRO BIST [03] Parity on MMU address bits [02:00]

ADR1 BIST [02:00] Row and column MMU address bits [05:03]
ADR1 BIST [03] Parity on MMU address bits [05:03]

ADR2 BIST [02:00] Row and column MMU address bits [08:06]
ADR2 BIST [03] Parity on MMU address bits [08:06]

ADRS3 BIST [02:00] Row and column MMU address bits [11:09]
ADR3 BIST [03] Parity on MMU address bits [11:09]

Table 5-49 MMU Size

Row/Column
MMU Size Address Bits Not Used
256 Mbytes 09:00 11:10
1 Gbytes 10:00 11
4 Gbytes 11:00 -

DIGITAL INTERNAL USE ONLY

5-116 Array Control Unit and Main Memory Unit

5.10.5.2 MCD BIST Registers

The MCD BIST register can be written to and read by the SPU through scan. It is
used only during BIST operations, which is signaled by the BIST enable bit being
set. Figure 5-69 shows the MCD BIST register. Table 5-50 lists the fields and their

descriptions.
06 0s 04 03 02 01 00
TEST TO
EXECUTE
BIST ENABLE

OR START

STOP ON SUCCESS

STOP ON ERROR

NORMAL MODE ENABLE

MR_X1206_89

Figure 5-69 MCD BIST Control Register

Table 5-50 MCD BIST Register Field Descriptions

Description

Bit Name

00 Stop on success

01 Stop on error

02 Normal mode enable (NME)
05:03 Test to execute

06 BIST enable or start

This signal is active when both MMCX and MDPX do
not detect an error.

MCD halts the test when no error is detected.

MMCX provides a BIST error signal to MCD. This
error signal is active when MMCX or MDPX detects
an error. MCD halts the test whenever a BIST or
MCD error is detected. Sampling for errors is done at
the end of each memory cycle. Some flexibility is also
available. Parity error detectors can be individually
disabled using scan initialization.

This function allows the DCA test to be used more
than once. When this bit is set the DRAM cycles are
executed in normal mode. When not set, the DRAM
cycles are executed in step mode.

This field identifies the tests that MCD is to execute.
Table 5-51 lists the tests that can be executed.

This bit engages the BIST controller in the operation
defined by the MCD BIST register.

Table 5-51 MCD BIST [05:03]

Value Test

000 DDP

001 DCA

010 Data path

011 Reserved

100 Reserved

101 16-Mbit DRAM
110 4-Mbit DRAM
111 1-Mbit DRAM

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-117

Figure 5-70 shows the MCD EOP BIST register. Table 5-52 lists the fields and their
descriptions.

01 0o

END OF PATTERN COUNT

MR_X1207_89

Figure 5~70 MCD EOP BIST Register

' Table 5-52 MCD EOP BIST Register Field Descriptions

Bit Name Description
MCD EOP [01:00] End of pattern End of pattern count is read-only. These two
(EOP) count bits indicate the state of the data produced by
MDPX.

5.10.5.3 MMC BIST Register

The MMC BIST register can be written to and read by only the SPU using a scan during
BIST operation, which is signaled by the BIST enable bit being set. Figure 5-71 shows
the MMC BIST register. Table 5-53 lists the fields and their descriptions.

02 01 00 03 02 0t 00

STARTING CAS MASK
QUADWORD REGISTER

MMU BANK REFRESH DISABLE

MMU SEGMENT BIST ENABLE

MR_X1208_89

Figure 5~71 MMC BIST Register

Table 5-53 MMC BIST Register Field Descriptions

Value Name Description
00 Refresh disable This bit disables refresh.
02:01 CAS mask register This field defines how MMC sets up the

CAS mask register in DCA during the test.
This field controls all write operations that
occur. Table 5-54 lists the values and their
descriptions.

03 BIST enable This bit substitutes SPU_MMC_REQSTEPCTL_
H with MCD_MMC_STMRQSMCTL_H from
MCD and the JBox command and status field
with the MCD command and status field.

MMC STQW [02:00] Starting quadword This field sets the starting quadword. At the
start of each BIST test, this field equals zero.

MMC SEG MMU segment This bit defines the memory segment.

MMU BANK MMU bank This bit defines the memory bank.

DIGITAL INTERNAL USE ONLY

5-118 Array Control Unit and Main Memory Unit

Table 5-54 CAS Mask Register Field Descriptions

Value » Description

00 Sets CAS mask = 00000000
01 Sets CAS mask = 10000000
10 . Reserved

11 Sets CAS mask = 11111111

5.10.5.4 MDP BIST Registers
The MDPX MCA has three BIST registers: the MDP BIST register, linear feedback shift
register, and data input register.

MDP BIST register — The MDP BIST register can be written to and read by only
the SPU using a scan. It is used only during BIST operations, which are signaled by
the BIST enable bit being set. Figure 5-72 shows the MDP BIST register. Table 5-55
lists the fields and their descriptions.

MDP linear feedback shift register — The linear feedback shift register, MDP
LFSR [31:00], holds the BIST data pattern. The lower 24 bits equal the address
pattern in the DCA address pattern generator.

MDP input data register — The input data register, MDP INDAT [39:00], contains
the error data received by the MDPX MCA that caused a SBE or DBE.

00 04 03 02 01 00

FORCE BAD DATA

DRAM TEST SETUP

ERROR DATA
HOLD FUNCTION

LINEAR FEEDBACK SHIFT
REGISTER CONFIGURATION

SET BIT ON ERROR

MA_X1209_8%

Figure 5~-72 MDP BIST Register

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-119

Table 5-55 MDP BIST Register Field Descriptions

Description

Bit Name

00 Force bad data

01 - DRAM test setup

02 Error data hold function

04:03 Linear feedback shift
. register configuration

MDP SBOE Set bit on error
[00]

This bit is used by MDPX during the DCA CAS
mask test. This bit enables writing error data
into MMU, depending on the state of the CAS
mask bits.

This bit is used by MDPX during the DRAM
test to switch read data into the data path after
the first phase. During the first phase, LFSR
supplies the data.

This field locks the input data register in
MDP at the occurrence of the first ECC error.
The ECC register holds the data transferred
from MMU that caused the error. This bit

is initialized by a scan. By setting this bit,
the data in error is held for later scan. This
function is used during the DDP test.

The MDP LFSR is 32 bits wide. During pattern
generation, the lower 24 bits equal the address
pattern produced by LFSR in DCA. The DCA
LFSR uses 20, 22, or 24 bits, depending on the
size of the DRAMs. In this way, the address
pattern used during DRAM testing can be
scanned out. Table 5-56 lists the values for the
LFSR configuration.

This bit is used only during the isolation routine
and functions to modify bit O or the read data.
When set, MDP forces data bit 0 to a 1 if an
ECC error is detected.

Table 5-56 LFSR Configuration

Value Configuration

00 1-Mbit DRAM patterns
01 4-Mbit DRAM patterns
10 16-Mbit DRAM patterns

DIGITAL INTERNAL USE ONLY

5-120 Array Control Unit and Main Memory Unit

5.10.6 BIST Tests

The BISTs ensure the correct operation of the MMU. The BIST tests include the
following:

DDP

DRAM

Data path

DCA control parity
DCA CAS mask
DCA DRAM control

Each test begins with a wake-up sequence and ends with a stop sequence, as follows:

e Wake-up sequence — This sequence puts the memory system into step mode. The
SPU does the following:

1. Initializes the system.

2. Turns on system clocks.

3. Takes memory out of standby.

For BIST tests, the memory system starts out in step mode.

¢ Stop sequence — This sequence follows the BIST test. The following steps
summarize the stop sequence:

1. BIST test completes.

2. Memory transitions into the step mode. MCD deasserts request normal mode to
MMC (MMC in step mode).

3. MCD asserts attention on CDCX chip and calls for the SPU.
SPU places memory into standby and asserts standby control enable to MMU.
SPU scans the data.

5.10.6.1 DDP Test

This test checks for opens, stuck at, and shorts on the data path. It does this by toggling
every data bit high and low. It does require the DRAMs to have been tested. This test
routes the data around the DRAMs using the DRAM bypass path.

The MDPX LFSR supplies the data patterns for this test. Each pattern moves through
the normal write path (the write path for JBox write data). ECC check bits are appended
to the write data, and the quadword address parity is put in place of the mark bit.

The data moves through the normal read path in the MDPX. If the MDPX detects an
error, the data is held in the MDPX input read buffer and testing stops. At this point,
scan is required to retrieve the data and error information.

If no errors are detected, MDPX generates an EOP signal. This signal marks the last
pattern and forces data inversion as the patterns repeat. The process is repeated except
that the original data pattern is inverted before being processed through ECC. The
process is repeated one more time so that the ECC check bits are the opposite of what
they were for the previous set of patterns.

DIGITAL INTERNAL USE ONLY

Array Control Unit and Main Memory Unit 5-121

5.10.6.2 DRAM Test

DRAM testing is done one bank at a time. Each bank must be initialized before testing.
As there are two segments with two banks per segment, this test must be initialized
through scan and executed four times. DRAM testing uses the pseudo random pattern
generators (LFSR) located in MDP and DCA.

The DRAM test performs the following activities:
e Writes a data pattern to all addresses.
¢ Reads the data pattern, checks the data, and writes a complimented data pattern.

¢ Reads the data pattern, checks the data, and writes. a modified data pattern that
generates complimented check bits.

¢ Reads the data pattern, checks the data, and writes zeros.

5.10.6.3 Data Path Test

This test runs four times, once for each bank. The data path test ensures that the
DRAMs can correctly perform a write read operation. In addition, the test checks the
data lines by using many different random data patterns.

The test uses the MDP LFSR. The patterns from LFSR are routed to the DRAM array
and out (through the write read command) to the MDP for error checking. When the
LFSR reaches the last pattern, testing stops.

5.10.6.4 DCA Control Parity

This test runs twice, once for each segment. This DCA control parity test checks the
control parity logic in DCA and checks the DCA CAS mask parity generation logic. Each
DCA generates a parity signal made up of the received RAS, CAS, WE, FFEN (write
flip-flop enables), and the bits in the segment CAS mask register received from MMC.
MCDX receives and checks the control parity from each DCA.

5.10.6.5 DCA CAS Mask Test

This test runs twice, once for each segment. The DCA CAS mask test checks the CAS
MASK register. The CAS mask for the selected segment is set to all 0s. This test disables
writing to DRAM locations, attempts to write forced bad data into DRAM locations, and
reads back the DRAM locations, looking for errors. An error indicates that the CAS mask
function failed.

5.10.6.6 DCA DRAM Control Test

This test runs twice in each bank. The first pass uses an LFSR pattern having all 1s.
The second pass uses an LFSR pattern having all 0s. The test writes all 1s and reads
the data back, writes all Os and reads the data back, and ensures that DCA provides the
correct control signals to the DRAMs.

DIGITAL INTERNAL USE ONLY

6

I/O Control Unit

The SCU can have two I/O control units (ICUs), ICUO and ICU1. ICUO, located on the
DAO and DB0O MCUs, consists of the JDAX, JDBX, JDCX, and IRCX MCAs and supports
the XJAQ and XJA1 modules and the service processor unit (SPU). ICU1, located on the
DA1 and DB1 MCUs, consists of the JDAX, JDBX, JDCX, and IRCX MCAs and supports
the XJA2 and XJA3 modules.

6.1 Overview

The ICUs, shown in Figure 6-1, exchange commands, addresses, and data with the
following:

SPU — Using a cable, ICUO sends register read and write, ECC, and I/O read and
write commands to, and receives them from, SPU. The SPU also sends DMA read

and write requests to ICU. In addition, the ICU receives and arbitrates powerfail,

keep-alive, halt CPU, console terminal, and console storage device interrupts from

the SPU.

Four XJA modules — Using two JXDI cables, the two ICUs send register read
and write commands to, and receive them from, the XJAQ, XJA1, XJA2, and XJA3
modules. The XJAs also send DMA read and write requests to the ICUs. In addition,
the ICUs also receive and arbitrate interrupts for recoverable and nonrecoverable
XMI errors, and fatal XJA and XMI errors.

JBox — Using the logical interface on the SCU planar module, the ICU loads its
receive buffers with commands, addresses, and data from the XJAs or SPU. The ICU
then sends the commands to the CCU MCU (port controller), the addresses to the tag
MCU (I/O address receive latches), and the data to the data switches on the DA0/DBO
and DA1/DB1 MCUs.

The ICU loads its transmit buffers with commands from the CCU command latch,
addresses from the I/O address receive latches, and data from the data switch. The
ICU then sends commands, addresses, and data to either the XJA or SPU. The IRCX
MCA sends and receives data and addresses to and from the CCU MCU and DSXX
MCAs.

Four CPUs — Using a single pair of differential cables to connect the SCU planar
module to each CPU planar module, the ICU provides the interrupt interface

and arbitrates I/O (XJA) interrupts, SPU (console) interrupts, and interprocessor
interrupts. The ICU determines which interrupt has the highest interrupt priority
level (IPL) and sends an interrupt code to the EBox. The EBox executes an interrupt
service routine and handles the interrupt (if the interrupt has a higher IPL than the
current one).

DIGITAL INTERNAL USE ONLY 6-1

6-2 {/0 Control Unit

AND DATA
LATCHES

RECEIVE
cCcu |
CONTROL

TRANSMIT
TO CCU @¢———1 cCu

CONTROL

j¢———————FROM CCU

SPU
CONTROL

fg—
FROM SPU
SPU RECE!IVE
(CTLD) BUFFER

TRANSMIT : > TO SPU VIA
:I“‘ >5UFFER A CTLD OR XJA

1

FROM DATA SWITCH TO DAmﬂs}wwcH
AND 1/O ADDRESS LATCHES ADDRESS, 110 ADDRE S LATCHES
MASK,
ht—
—_—

XJAn TRANSMIT
RECEIVE XJA
BUFFER O CONTROL
FROM
XJA 1)
(JXDI)
| RECAE TRANSMIT 0 SPU VIA
CONTROL BUFFER B CTLD OR XJA
! INTERRUPT -
XJAn — ARBITER » IPL TO EBOX
RECEIVE
BUFFER 1
FROM CCU AND TAG
:: JRCX REGISTERS I—b TO DSXX MCAs
MR_X1128_89

Figure 6-1 ICU Block Diagram

6.2 1/0 Subsystem — Physical Description
The I/0 subsystem consists of the following components:

e ICU

e XJA module
¢ JXDI bus

e XMI bus

e XMI devices
s SPU

Figure 6-2 shows the I/O subsystem.

DIGITAL INTERNAL USE ONLY

1/0 Control Unit 6-3

I MMU1 | I MMUQ |

SCuU

x

[N

>
x
g

SCU SYSTEM CONTROL UNIT

MMU MAIN MEMORY UNIT

ACU ARRAY CONTROL UNIT

icy 1/0 CONTROL UNIT

XJA XMI-TO-JBOX ADAPTER

JBOX JUNCTION BOX

sSPU SERVICE PROCESSOR UNIT
JXDt JBOX-TO-XJA DATA INTERFACE

MR_X1129_88

Figure 6-2 /O Subsystem

6.2.1 /O Control Unit
The ICU resides on the SCU planar module and consists of the following MCAs:

JDCX — This MCA contains the SPU, CCU, and XJA control. JDCO0 (ICUQ) is
located on DAQ MCU and JDC1 (ICU1) is located on DA1 MCU.

JDAX — This MCA contains the SPU and XJA receive buffers. JDAO and JDA1 are
located on DAO and DBO MCUs. JDA2 and JDA3 are located on the DA1 and DB1
MCU:s.

JDBX — This MCA contains the transmit buffers that transmit command, address,
and data for either XJAO, XJA1, or the SPU. JDB0 and JDB1 (ICUO) are located
on DAO and DBO MCUs. JDB2 and JDB3 (ICU1) are located on the DA1 and DB1
MCUs.

IRCX — This MCA contains the central system interrupt arbiter. IRC0O (ICUO) is
located on the DA0 MCU and IRC1 (ICU1) is located on the DA1 MCU.

Figure 6-3 shows the SCU planar module and its MCAs, MCUs, STRAMs, and cable
connections.

DIGITAL INTERNAL USE ONLY

6-4 /O Control Unit
FRONT
SRR HEAIE sfefl el 2| 2| 2] (3] |3
(3] (3] [+ (3]
| : : |
[psoo | [irco | | upao | [osos | | tret | | upaz |
" @
o (=3
% pao | Joso | [bso7 | oas é
s H
[osoz2 | [moro | | Joco | osos | [mopz | | yoc1 |
— m!K [crio | [cmis | | apas | | aoRo |Mog —
ARE ! g| |2
§ g mcr | ccu [cric| 4K TAG 5 5
a o a o
o o ! [5
L 1fK | oscT I [CTLA] [ApR2 | | ADRa || (¥ [|
[0so3 | [mmco| | uoar | [psos | {mmct| | uDA3 |
- o~
§ oso | Jos1 | [osi0]| Da1 ;
S 3
ES s
[Dsos] [MDMJ [mcoo | [os11| [mora] | mcD1 |
S— —
o
_— —
o] [« P17 | XJA2 P19| ol [e
ik
a o o a
°l11° CONNECTOR 317 °11°
MR_X1130_89
Figure 6-3 SCU Pianar Module

DIGITAL INTERNAL USE ONLY

/0 Control Unit 6-5

6.2.2 XJA Module

The XMI-to-JBox adapter (XJA) module and ICU provide an information path between
the JBox and the I/O devices connected to the XMI bus.

Figure 64 shows the XJA MCAs. The XJA is implemented on an extended T-series
module and conforms to XMI specifications. The XJA module plugs into the XMI card
cage. The JBox-to-XJA data interconnect (JXDI), located in the rear of the cabinet,
consists of four cables and runs from the slot in which the XJA resides (slot 8 next to the
CCARD module) to the SCU planar module. Figure 6-3 shows the XJA0, XJA1, XJA2,
and XJA3 connectors on the SCU planar module.

The XJA communicates with the ICU using the following three types of transactions:

e DMA transactions — DMA transactions are reads, writes, read locks, or write
unlocks. DMA transactions can be a quadword or octaword in length.

e CPU transactions — CPU transactions access the I/O portion of the VAX physical
address space. CPU transactions are a longword in length, and the XJA can accept
only a single CPU transaction at a time.

e Interrupt transactions — Interrupt transactions notify the operating system of
recoverable and nonrecoverable XMI errors or of fatal XMI and XJA errors.

For more details, see Section 6.9.

DATA

_ CBi

XDE1

DATA
XCl XM
- XDEO XDC CORNER XM1 BUS

CONTROL

XCE

<

MR_X1131_89

Figure 6-4 XJA Module MCAs

DIGITAL INTERNAL USE ONLY

6-6 1/0 Control Unit

6.2.3 JXDI

The JXDI is a ten-foot cable that connects the ICU and XJA. Most signals are
unidirectional and differential. Figure 6-5 shows the JXDI data, handshake, and clock
interface. The ICU and XJA contain the JXDI transmitter and receiver logic.

The JXDI is, in general, symmetrical, in that the the ICU and XJA send and receive the
same data and handshake signals.

TO RECEIVER
SOURCE DATA BUFFER o o DATA SYCHRONOUS
TA PAT
BUF D O }— REGISTER FILE DA ATH
ON
OND
— CLK
—1 CLK
SOURCE CONTROL o HANDSHAKE
o l\
BUF o] Q CONTROL
ON P
OND
— CLK
et CLK

crock
SOURCE 16 ns CLOCK 4> X BUF

TRANSMITTER

RECEIVER

! 10 FEET l

MR_X1132_8%

Figure 6-5 JXDI

6.24 XMl Bus

The XMI bus is a synchronous, 64-bit wide, multidrop, pended bus with a cycle time of 64
ns. (In a pended bus, the nodes do not hold up the bus while waiting for a response.) The
XMI bus is a limited length bus with centralized arbitration, which can support multiple
processors, multiple memory subsystems, up to eight I/O adapters, and a 40-bit physical

address. Operating at 64 ns, the XMI bus has a bandwidth of 125 Mbytes.

The XMI bus consists of a card cage, transceivers, an arbitration chip, protocol, and
signal integrity error checking. The XMI card cage supports the electrical environment of
the bus and backplane, housing the logic (on the XJA modules) that implements the bus
protocol.

The XMI bus allows several transactions to be in progress at once and provides a highly

efficient use of bus bandwidth. The XMI bus multiplexes data and address lines, which
allows arbitration and data transfers to occur simultaneously.

The XMI bus supports quadword and octaword reads and writes to memory. In addition,
the bus supports longword read and write operations to I/O space. These longword
operations can implement the byte and word modes required by certain I/O devices.

DIGITAL INTERNAL USE ONLY

/O Control Unit 6-7

6.2.5 SPU

The service processor unit (SPU) is based on a BI MicroVAX system installed in a single
VAXBI card cage. The processor consists of a service processor module (SPM), 2 Mbytes
of ECC memory, KFBTA (AIO — disk controller), DEBNT (AIE-NI/TK50 controller), and
a scan control module (SCM).

The SPM contains the SPU-to-JBox adapter (SJA) MCA. Two cables, one for the logical
interface and the other for the scan interface, plug onto the front edge of the SPM and
SCM modules at one end, and the SCU planar module at the other end. Figure 6-3
shows the SPU connectors on the SCU planar module.

6.2.6 Data Transfers (Packets)

The XJA, XMI bus, and SPU communicate using packets. Figure 6—6 shows the
interconnects and buses that use packets. XJA modules communicate with the ICU
by means of packets. JXDI packets contain command, length, IPL, address, mask, and
data information. '

DMA TRANSACTIONS
/0 TRANSACTIONS
INTERRUPT TRANSACTIONS

cCu TAG DAX/DBX
sPU > COMMAND ADDRESS DATA
CTLX ADRX DSXX
DMA TRANSACTIONS I\ /l i i
170 TRANSACTIONS
DAX
} JbCX

ECC TRANSACTIONS DBX
JDBX JDAX JDBX JDAX

0 ==

CPU TRANSACTIONS CPU TRANSACTIONS
DMA TRANSACTIONS JXDI1) JXD10 DMA TRANSACTIONS

INTERRUPT
XJA1 :

TRANSACTIONS
DMA TRANSACTIONS
CPU TRANSACTIONS

INTERRUPT TRANSACTIONS

XJAO

>
o

CH/NI NI/CI
DEVICE DEVICE

MR_X1133_89

Figure 66 Packets

DIGITAL INTERNAL USE ONLY

6-8 |/0 Control Unit

XMI devices communicate with XJA and transfer large amounts of data by the use of
packets. XMI packets contain synchronizing information, sending and destination node
addresses, packet type and length, data, and error checking information.

The SPU communicates with the ICU by means of packets. See Section 6.10 for more
detail. SPU packets contain command, length, CPU ID, address, mask, and data
information. See Section 6.6 for more detail.

6.3 ICU — Functional Description

This section provides the functional description of the ICU.

6.3.1 JDCX MCA

JDCO, located on the DAO MCU, controls transmissions to and from the SPU and the
IRCX MCA, CCU MCU, and XJAO and XJA1 modules. JDC1, located on the DA1 MCU,
controls transmissions to and from the CCU MCU, and XJA2 and XJA3 modules.

Figure 67 shows how major control areas in the JDCX MCA interface with the SCU
MCUs. The JDCX MCA controls loading and unloading of buffers in the JDAX and JDBX
MCAs, and also provides the command interface with the CCU. JDCX sends commands
to CCU for arbitration and receives commands to be sent to either SPU, XJA0/XJAL, or
XJA2/XJA3.

The JDC0 MCA contains the following areas of control:
e Receive XJAO — Receive from XJAQ

e Receive XJA1 — Receive from XJA1l

¢ Transmit XJAO — Transmit to XJAO

e Transmit XJA1 — Transmit to XJA1l

e Receive CCU — Receive from CCU MCU

e Transmit CCU — Transmit to CCU MCU

e SPU Control — Receive from and transmit to SPU
The JDC1 MCA contains the following areas of control:
¢ Receive XJA2 — Receive from XJA2

e Receive XJA3 — Receive from XJA3

¢ Transmit XJA2 — Transmit to XJA2

¢ Transmit XJA3 — Transmit to XJA3

e Receive CCU — Receive from CCU MCU

e Transmit CCU — Transmit to CCU MCU

DIGITAL INTERNAL USE ONLY

TO CPUs AND FROM CPUs AND
MEM (ACU) MEM (ACU)
DAO/DBO
DATA SWITCH
TAG

PHYSICAL ADDRESS LATCH

N/

ccu

PORT COMMAND LATCHES

DAO/DBO

XJAO BUFFER 0
| XJAQ BUFFER 1 I

JDBX

L e

COMMAND DATA

XJA1 BUFFER 0

XJA1 BUFFER 1

r-—------------1
IJDCX MCA
]
DAO/DBO 1
TRANSMIT ccu || RECEIVE ccu
1 CONTROL CONTROL
l BUFFER A l L T
]
BUFFER B '
sPU
1 CONTROL
I_|TransmiT RECGEIVE
1 XJAO XJAD
1
I [Ranswi RECEIVE
1 XJA1 XJA1
]

il

SPU BUFFER

JXD! CONTROL

| B o

JDAX

JXDI

r XJAO

XJA1 1

Figure 6-7 JDCX MCA Controtl Areas

1/0 Control Unit 6-9

COMMAND, ADDRESS, DATA

MR_X1134_89

DIGITAL INTERNAL USE ONLY

6-10

/0 Contro! Unit

Figure 6-8 shows how the JDCX MCA interfaces with the CTLA, CTLB, and CTLC
MCAs on the CCU MCU. Chapter 2, JBox Port Arbitration, details these interfaces.

JDCX receives the JXDI handshaking signals, which include command available, buffer

empty, retry, acknowledge, and the XJA fatal signals.

JDCX sends JDCX_CCU_DAX_FATAL _L to the CCU. The following error conditions can

initiate a DAX fatal error:

e XJA retry (if retry mode is 2)

¢ Transmit XJAOQ, XJA1 fatal error

e XJAO, XJA1 handshaking parity error
e JRCX fatal error

¢ CCU-to-JDCX parity error

¢ SPU fatal error

JBOX

CTLA CTLB cTLC

icu

Jocx

-
DAX
T

Y| _LoAD BUFFER
ERR | COMMAND | AVAILABLE

BUFFER
AVAILABLE

SEND
DATA

LOAD

] i LENGTH lcowmo CONMAND

TO CTLA
FAOM JDCX

Figure 6-8

D j DESTINATION COMMAND

TO CTLE
FROM JDCX

TO JOCX TO 4DCX

ICU-to-CCU Interface

DIGITAL INTERNAL USE ONLY

FROM CTLB
TO JDCX

WA_X1135_88

6.3.1.1 Receive from XJA Control

The JDCX has two receive XJA control areas, one for each XJA. Each receive XJA
receives the following signals:

¢ JDAX_JDCX_XJA0_CMD_H[06:00]

and ID [06] from the receive buffer in JDAX.
* XJAO_CMDAVAIL_H — The load command bit from the XJA handshaking signals.
¢ JDAX XJA parity error — JDAX has detected a parity error.
¢ ICU_XJA_XFERACK_H — ICU has received a packet successfully.
¢ ICU_XJA_BUFEMPTED_H — ICU has emptied one buffer.
¢ ICU_XJA_XFERRETRY_H — ICU has been unsuccessful in receiving a packet
Figure 6-9 shows the receive XJA logic.

FATAL

RCV_XJA_FATAL_H ERROR

LATCH AND
DECODE

JDA_JDC_XJA_CMD_H[06:00}

PACKET
LOAD COUNTER

COMMAND AND
PACKET LENGTH
DECODE

XJA_CNT_TB_H[04:00]

XJA_PACK20_H
XJAZPACK12_H

COMPARATOR

XJAZPACKS_H

/0O Control Unit 6-11

— The XJA command [03:00], length [05:04],

JDCX_IRCX_XJA_IPL_H[02:00]

PACK_RCV_DONE_H

Loop

JDC_XJA_LOOP_H
JDC_XJA_CLKJ_ H

AND
CLOCK

JDC_XJA_XFERRETRY_H

JDAX_CERR_H

—

JDC_XJA_BUFEMPTD_H

GET
SETOR | :> au’%’s‘sn
CLEAR |

DECODE

JDCX_C7_C8_H

PARITY
ERROR LATCH

JDCX_IRCX_RETRY_H

) >
|/
l——\ JDC_XJA_X_PERACK H
|/

JDCX_JDAD_GET_XJA_H[01:00]

XJA_FULL_H[00]

JDCX_JDA1_GET_XJA_H[01:00}

BUFFER
—»l EMPTY
DECODE
CLR_XJA_FULL_TB_H[01:00] | GLEAR
FULL
JXIAFULL | pecone
SET_FULL
FROM_XJA_CMDAVAIL_H o=
COMMAND
AVAILABLE

XJA_FULL_H[O1]

XJA_HNDSHK_ERR_H

U

Figure 6-9 Receive from XJA Logic

wa_xos1s_se

DIGITAL INTERNAL USE ONLY

6—12 /0 Contro! Unit

Each receive XJA control sends the following signals:

JDCX_JDAO_GET XJAn_H[01:00] and JDCX_JDA1_GET_XJAn_H[01:00] are sent to
JDAO and JDAL, respectively.

XJA sends command available to the receive XJA control in the JDCX MCA.
Command available and the current buffer status determine JDC_JDA_GET _XJA_
H[01:00], which JDCX sends to the JDAX MCA to select the XJA buffer, 0 or 1, to
be loaded. The packet load counter begins to count and continues until PACK_RCV_
DONE_H. The JDCX MCA resets JDC_JDA_GET_XJA_H[01:00].

XJAn. FULL_TB_H[01:00] are sent to the XMIT CCU control logic.

JDCX sets the buffer status as full when the JDAX MCA loads the packets into the
receive buffer. JDCX sends retry to XJA, if JDAX detects a parity error. JDCX sends
acknowledge to XJA if JDAX does not detect a parity error.

JDCX tracks the number of buffers available for each XJA. Each XJA sends command
available when one or both buffers are empty. JDCX detects a command available
error when both receive buffers are full and XJA sends command available.

XJA handshaking, retry, acknowledge, buffer empty, error, and loop are sent to the
transmit CCU control logic. Figure 6-10 shows the buffer empty, acknowledge,
and load command signals. The following steps summarize how SCU and XJA
communicate using the load command, acknowledge, and buffer empty signals:

© Device unloads its command buffer and sends command over the XMI bus to the
XJA.

XJA loads its command buffer and responds with acknowledge.
XJA sends load command followed by command to the ICU.
ICU sends acknowledge to XJA. A

XJA sends buffer empty to the device to signify that the XJA can accept another
command.

ICU sends load command followed by the command to the command buffer in the
CCu. -

ICU sends buffer empty to the XJA to signify that the ICU can accept another
command.

CCU arbitrates and the command is executed.
CCU retires command when operation completes.

CCU sends buffer available to the ICU. For write operations, CCU sends a send
data signal to the ICU to unload the buffer holding the data.

JDCX_IRCX_XJAn_IPL_H[02:00], JDCX_IRCX_SPUT_INT_H[07:00], and retry mode
(JDCX_IRCX_RETRY_H[01:00]) are sent to the IRCX MCA. JDCX decodes either an
XJA or SPU interrupt and sends IPL to the IRCX MCA.

DIGITAL INTERNAL USE ONLY

/0 Control Unit 6-13

CTLA cTLD MICR L Joox cTLC
ONTROL
r———o 146G UADR
ARBITRATION STORE |
° QUEUE GENERATOR RETIRE
STRAMs LoGic
COMMAND
BUFFER
LOAD BUFFER AVAILABLE

COMMAND SEND DATA

COMMAND
BUFFER
LOAD ACKNOWLEDGE BUFFER
COMMAND EMPTY
v v
XJA
(XDE, XCE)

COMMAND
BUFFER

COMMAND ACKNOWLEDGE | BUFFER

EMPTY

cixcop

MR_X0918_89

Figure 6-10 Buffer Empty, Acknowledge, and Load Command

DIGITAL INTERNAL USE ONLY

6-14 1/O Control Unit

6.3.1.2 Transmit to CCU Control

The transmit CCU control contains a CCU buffer counter that determines how many
command buffers are available for the ICU port. The ICU port has two input command
buffers, A and B, which send commands to port arbitration in the CCU. The ICU can
send XJA or SPU commands to the input command buffers.

As JDCX sends the data from the receive buffer to CCU, transmit CCU tracks the three
following major ICU-t0o-CCU states:

e T1 — JDCX starts a CCU MCU sequence and sends a buffer select command to
JDAX.

e T2 — JDCX decodes the command in the selected buffer.

e T8 — JDCX sends a load command to CCU, updates the least recently used status of
the XJA buffers, sets XJA_BUF_BUSY_H for commands involving data transfers, and
clears XJA_BUF_FULL_H for nondata commands.

The transmit CCU control receives the following:

e XJAO, XJA1 buffer 0 and 1 full status, 64 bytes, and sequence bit from the receive
XJA logic

e Clear XMID field from the receive CCU for a DMA read command

¢ Read and write IRCX registers from the CCU MCU

¢ 1/O tag [06:00] (ID field) from JDAX MCA

e Command [06:00] from JDAX MCA (XJA command [03:00], length [05:04])

¢ Number of ICU port command buffers (1 or 2) available from the CCU MCU
¢ The send data signal from the CCU MCU

Figure 6-11 shows the transmit-to-CCU logic.

The transmit CCU control sends the following commands:

e JDC_JDA_TRX_SEL_H[02:00] to JDAX to select one of five receive buffers.

e A send data command to IRCX for a CPU read IRCX register request. The IRCX
MCA sends the data to the data switch.

¢ A send data command to JDAX to send buffer data to the data switch.

e CLR_XJAO_FULL_TB_H[01:00], CLR_XJA1_FULL_TB_H[01:00], and CLEAR_SPU_
BUF_H to JDAX to clear buffer full status.

The JDCX uses JDCX_BUF_TRXSEL_H[02:00] to send the data to the CCU MCU.
The JDCX clears the XJA buffer full status using JDCX_BUF_TRXSEL_H[02:00]

to identify the buffer and SEND_BUF_SEL_H[02:00] to determine when the buffer
is empty. JDCX clears buffer full status for SPU, XJAO buffers 0 and 1, and XJA1
buffers 0 and 1. JDCX_BUF_TRXSEL_H[02:00] determines the type of request: SPU,
XJAOQ, or XJA1.

DIGITAL INTERNAL USE ONLY

1/0 Contro! Unit 6-15

XJAO_XA_TB_FULL_H JDCX_JDA_TRXSEL_H[02:00]
XJAO_XB_TB_FULL_H JDCX_JDAO_SENDAT_H
BUFFER JDAX
xJa1_xa_TB_FuLL_n | BYFFE JDCX_JDA1_SENDAT_H BUFFER
N SEND DATA | | SELECT
XJA1_XB_TB_FULL_H JDCX_IRCO_SENDAT_H | DECODE |-
SPU_BUF_FULL_H JDCX_{RC1_SENDAT_H

XJAOA_REQ_H
XJAX XJAOB_REQ_H
AND XJA1A_REQ_H
SPU XJA1B_REQ_H
REQUEST SPU_REQ_H
DECODE
JDAX_JDCX_IOTAG_H[06:00]
READ_IRCX_PEND_H
JDAX_JDCX_CMD_H[06:00} /0 TAG SPECIAL WRITE_IRCX_PEND_H
AND COMMAND WRITE_SPU_PEND_H
COMMAND DECODE
READ_IRC LATCH
REQUEST TRANS1_TB_H[10:00]
— JDBX TRANSACTION | TRANS2_TB_H[10:00}
WRITE_IRC SPECIAL LATCH >
REQUEST
REQUEST
warte <o | LATCH JDCX_CCU_CMD_H[03:00]
WRITE_SPU JDCX_CCU_LENGTH_H[01:00]
———eeel LOAD JOCX_CCU_LDCMD_H
" COMMAND, JDCX_CCU_ID_H _
ceu COMMAND >
CCU_JDCX_BUF_AVAIL_H[01:00} BUFFER . LENGTH ‘
AVAILABLE D LATCF'! CLR_XJAO_XA_TB_FULL_H
DECODE CLR_XJAO_XB_TB ;ULL H
ULL_H

SEND DATA DECODE

CLR_XJA1_XA_TB_ :
CLR_XJA1_. - _

Figure 6-11 Transmit-to-CCU Logic

XB_TB_FULL H
CLEAR CLR_SPU_BUF_FULL_H
BUFFER FULL >

MR_X0917_89

e JDCX_CCU_CMD_HI[03:00] to CCU MCU.
¢ JDCX_CCU_LENGTH_H[01:00] to CCU MCU.
e JDCX_CCU_LDCMD_H to CCU MCU.

e JDCX_CCU_ID_H to CCU MCU to specify which ID field in the JDCX MCA to use.
XMIT CCU has two transaction latches that hold TRANS1 and TRANS2 for two read

commands.

e TRANS1, TRANS2 [10:00] to the RCV CCU control logic. Table 6-1 lists the fields
and descriptions for TRANSn [10:00].

DIGITAL INTERNAL USE ONLY

6-16 /0 Control Unit

Table 6-1 TRANS [10:00]

Bit Name Description

05:00 XMIID XM1 ID of DMA read command from the XJA

07:06 Length The length field of the DMA read data return
' command:

00 = Hexword (32 bytes, reserved)
01 = Block (64 bytes, reserved)

10 = Quadword (8 bytes)

11 = Octaword (16 bytes)

09:08 DMA read The command field of the DMA read data return
data return command:

00 = XJAO (DA0), XJA2 (DA1)
01 = XJA1 (DA0), XJA3 (DA1)
Ix = SPU

10 Valid Valid entry in the transaction latch

6.3.1.3 Receive from CCU Control
The receive CCU receives the following commands:

e TRANS1 [10:00] or TRANS2 [10:00] from transmit CCU logic
e CCU_JDCX_CMD_H[03:00] from CCU (CCU-to-ICU command)
e CCU_JDCX_IOSEL_H[01:00] from CCU:

00 = XJAO (ICUO) or XJA 2 (ICU1)
01 = XJA1 (ICUO) or XJA3 (ICU1)
10 = IRCX (ICU0)

11 = SPU (ICU0)

e CCU_JDCX_ID_H from CCU to specify which ID field to use, TRANS1 or TRANS2,
for a DMA read command

e CCU_JDCX_LDCMD_H from CCU to load the command
e DSW_JDB_BOD_H from CCU to mark the beginning of data
e Clear SPU buffer A, B from SPU control ‘

e Clear XJAO buffer A, B from the transmit XJAO and clear XJA1 buffer A, B from the
transmit XJA1 control

Figure 6-12 shows the receive from CCU logic.
The receive CCU sends the following commands:

e JDC_JDB_RCV_SEL_H[01:00] to JDBX to select the transmit buffer, A or B, to load
for SPU, XJAOQ, or XJA1

e JDCX_JDB_CMD_H[05:00] to JDBX to specify the XJA or SPU command
e JDCX_JDB_IOTAG_H[05:00] to JDBX for ID field information

DIGITAL INTERNAL USE ONLY

/0 Control Unit 6-17

CCU_JDCX_ID_H
TRANS1_TB_H[10:00] Xom JDCX_JDB1_IOTAG_H[05:00]
TRANS2_TB_H[10:00] DECODE
CCU_JDCX_CMD_H[03:00] CCU_XJA_CMD_H[03:00] \l
e JDCX_JDBO_CMD_H[05:00
CCU_JOCX_LDCMD_H CCU_SPU_CMD_H]03:00] L .
CCU_JDCX_IOSEL_H[01:00] comOND /l
DECODE CLEAR
TRANS1
SPECIAL READ IRCX TRARS2
COMMAND |~~~) DECODE
DECODE WRITE IRCX
(IRCX OR >
spU EOMMAND) | WRITE SPU WDATA | BUFA_BLOC DATRTN.H
DECODE | BUFB_BLOC_DAT_RTN_H

XJAO_CLR_BUFA_FULL_H
XJAO_CLR_BUFA_FULL_H

JDC_JDB_RCV_SEL_H[01:00]

XJA1_CLR_BUFA_FULL_H >
S g
XJA1_CLR_BUFB_FULL_H DEFch)%E E‘ééé’sg XJAO_BUFA_FULL_H _
SPU_CLR_BUFA_FULL_H XJAO_BUFB_FULL_H
SPU_CLR_BUFB_FULL_H BUT&ED" A | xJA1_BUFA_FULL_H N
L) BUEFER B | xua1_BUFB_FULL_H

DATA STATUS | Spy_BUFA_FULL_H _
DSXX_JDBX_BOD_H Béggﬁ:G SPU_BUFB_FULL_H
OF DATA o

DECODE

MR_X0818_00

Figure 6-12 Receive from CCU Logic

JDCX_CCU_BUF_AVAIL_H to notify CCU that the ICU receive command buffer is
available

Clear TRANS1, TRANS2 to XMIT CCU

Read and write IRCX register request to XMIT CCU

Write SPU register complete to transmit CCU

Buffer full, command, and block data return to SPU control and transmit XJA control

As the CCU MCU sends command and data to the buffers in the ICU, the receive from
CCU logic control tracks the following two major CCU-to-ICU states:

TO — During this state, JDCX receives load command, command, and destination
from CCU.

T1 — During this state, JDCX does the following:

— Decodes the CCU command as XJA or SPU.

— For a DMA read data return, sends command and ID field to JDBX.

— Determines the buffer full status for XJAO, XJA1, and SPU (loading the buffers).

— Sends JDC_JDB_RCV_SEL_H[01:00] to JDBX. The DSXX MCAs send DSXX_
JDBX_BOD_H.

DIGITAL INTERNAL USE ONLY

6-18 /0 Control Unit

6.3.1.4 Transmit to XJA Control
The transmit XJA control receives the following:

¢ Buffer full, command, and block data return from RCV CCU
o Acknowledge, retry, and buffer empty from XJAO, XJA1

Figure 613 shows the transmit-to-XJA logic. (The Al and A2 state machines control
transmit buffer A. The B1 and B2 state machines control transmit buffer B. These state
machines are reserved for hexword DMA read operations.)

The transmit XJA control sends the following commands:

e JDC_JDB_SEND_XJAn_H[01:00] to JDBX to enable the data to the differential XJA_
DAT_H[07:00]. Each transmit buffer in JDBX, A and B, has a state machine that
controls loading, unloading, and sending data.

¢ JDC_JDB_XMIT_BUFn_H[02:00] to JDBX to select a transmit buffer, A or B, and
send the data to SPU, XJAOQ, or XJAl.

e JDCX_XJAn_CMDAVAIL_H to XJA.

¢ (lear XJA buffer A, B to receive CCU control.
6.3.1.5 SPU Control

The SPU control receives the following signals:

1. CTLD_JDCX_REQUEST H, CTLD_JDCX_BUFFULL_H, and CTLD_JDCX_ERR_H
(handshaking signals) from CTLD MCA '

2. JDAO_JDCX_SPU_CMD_H[03:00] (command) and JDA1_JDCX_SPU_ID_H[03:00]
CPU ID from JDAX

Clear SPU buffer from transmit CCU control
Buffer full status from receive CCU control

SPU buffer A and B commands (JDCX_JDB0_SPU_CMD_H[03:00]) from receive CCU
control, which are loaded into a transmit buffer in JDBX and sent to the SPU

Figure 6-14 shows the SPU control logic.
The SPU control sends:

¢ JDCX_CTLD_BUF_GRANT _H (grant), XMIT_SPU_FRAME_TA_H (frame), and
JDCX_CTLD_SPU_ERR_H (error) to CTLD, which sends the handshaking signals to
SPU.

¢ JDC_JDA_GET_SPU_H to the JDAX MCA.

¢ " JDCX_IRCX_SPU_INT_H[07:00] to the IRCX MCA, which decodes the interrupt
command, determines the type of interrupt, sets the corresponding IPL, and sends a
request to the arbiter. Table 6-2 lists the interrupt types and IPLs.

e JDC_JDB_SEND_SPU_H[02:00] to JDBX. Table 6-3 lists the bits and their
descriptions.

¢ (Clear buffer A and B full status to receive CCU control.

DIG!fAL INTERNAL USE ONLY

I/0 Contro! Unit 6-19

LT

[y

loo:zolH™ 1ana LINX "@ar oar

foo:zoJH 0ane”LiNx"8ar oar

300030
H3dine
LINSNVHL

(anoa)

H aNoa vrx | 3HYdNOD

3009230
GNVAROOD
vrx

lo0:50)H 81 aNO84NB VFX 0L

ANNOD

“l00:v0ln NI 035 wrx | LIWSNYHL

3

378V1IVAY
ANYWIWOO

|

HTUVAVAND vexTXoar

3009234
iHvis

{oo:s0lH™ @1 aWO vana vrx oL

“loo:+0lHT¥rX"aN3s @ar oar _

H1IN4784na" 8127 vrX
T HTINATVANG HI0TYAX

loo:e0lH™ 3000307 3LVLIS 28

[00:£0JH"30003073LVLIS I8

loo:e0lH"300030731VLS 2V

[oo:€0lH 3000307 31vis IV

H OLdWIVYrX~AOH
H™AYLIY VIX“ADY
H MOV VPX“AOY

SNLVLS HN1W LVa™0018784n8

NOVTVrX

3009230
anas S3HOLVY
ISPTEREEETE:]
_ ‘AH13Y
‘3903 TMONNOY
300930
H3d4dne 103138
yv3ato AHVWIHd
300ON3
3INIHOVI
lvisee HLluvis 28
INHIVI H 1Ind" 2@
alvis e HLHV1S™ 1@ = " | gu34dne
3009030 H™1In471a
LUVLS
INIHOVW
Jlvisav HLWVLS 2V
HN472Y SNIVLS
3ANIHOVW TR v 4344ne
Lvis v HTLHY1S 1Y

H NLHTLV0T20187¥4dng

Figure 6-13 Transmit-to-XJA Logic

DIGITAL INTERNAL USE ONLY

6—20 I/O Control Unit

e XJA ON from the scan latches to the differential receiver for XJAO and XJA1 to
enable the handshaking signals error, command available, retry, and acknowledge to
be sent to XJAO and XJA1.

e JDCX_CTLD_SPU_CLKJ_H to SPU to synchronize transfers to and from the JBox.

1320 XJAO_ON_H JDAX_JDCX_SPU_ERR_H[01:00} sPU JDCX_CTLD_SPU_ERROR_H

o -

SCAN ERROR

LATCH
sPU JDEX_CTLD_SPU_CLKJ_H x’f,ﬁ, XJA1_ON_H
cLOCK > scan |~

GENERATOR CATeH
o o = = = - = = = e =
| TRANSMIT TO SPU CONTROL]
1 1
' spu_sura_FuLL_H }
| ————=——{ BUFFERA SEND | JDC_JDB_SEND_SPU_H[02:00} 1

SPU_BUFB_FULL_H | ANDBUFFERB | JDCX_CTLD_XMIT_FRAME_H WHICH —
| ——— FULL » | BUFFER 1
1]
] i
] 1
1 TRANSMIT i
SPU

i XMIT_SPU_FRAME _TA_H SEQUENCE 1
' COUNTER i
TRANSMIT | TO_SPU_XMIT_DONE_H |

1 COUNT
1 COMPARE 1
H SPU_BUFA_CMD_H[03:00] . seu. 1

u A

1 SPU_BUFB_CMD_H[03:00} |on BUFFER B i
] COMMAND]
| I

L———-——————--——--————————-—--—-———--—----————--—-——-J

r———-————-—-——--.—————-—-——————'—.——.—-——-—————-——————-———1

| RECEIVE FROM SPU CONTROL
1

1

1

| l I
I]
I erep sne es GET_SPU_H oy i

CTLD_JDCX_REQUEST_H
- - - SPU SEQUENCE

i combr | SOCX_CTLD_BUF_GRANT H P I I
! RECEIVE SPU_BUF_USED_H 1
} COUNT i
1 COMPARE |
I JDAO_JDCX_SPU_CMD_H[03:00] JOAX I i
1 JDA1_JDCX_SPU_iD_#03:00] cﬂng?gb JDCX_IRCX_SPU_INT_H[03:00] i
I LATCH !
1 1
1 1
: SPU CONTROL IN THE JDCX MCA :
b e e o o - - — - = - - - - = e o

WR_X0521_88

Figure 6-14 SPU Control Logic

DIGITAL INTERNAL USE ONLY

1/O Control Unit 6-21

Table 6-2 SPU IPLs

Interrupt IPL (Hex)
Halt 20
Spare 20
Spare 1E
Powerfail 1E
Keep alive 16
Terminal receive 14
Terminal transmit 14
Console block storage receive 17
Console block storage transmit 17

Table 6-3 SEND SPU [02:00]

Bit Name Description

00 Buffer B JDBX transmits buffer B.

01 ECC JDBX loads the ECC SPU command, ECC address, and
syndrome data into the buffer.

02 Go JDBX unloads the buffer and sends XMIT SPU_FRAME _

TA_H with the data.

6.3.2 JDAX MCA

JDAO, located on the DA0 MCU, and JDA1, located on the DBO MCU, support XJAO,
XJA1, and SPU by providing two receive buffers for each XJA and one receive buffer for
SPU, for a total of five receive buffers, as follows:

XJAO buffer 0
XJAO buffer 1
XJA1 buffer 0
XJA1 buffer 1
SPU buffer

JDA2, located on the DA1 MCU, and JDA3, located on the DB1 MCU, support XJA2 and
XJA3 by providing two receive buffers for each XJA, for a total of four receive buffers, as
follows:

XJA2 buffer 0
XJA2 buffer 1
XJA3 buffer 0
XJA3 buffer 1

DIGITAL INTERNAL USE ONLY

6-22 /O Contro! Unit

Each JDAX MCA has a front receiver and receives XJAn_JDA_DATA_H[07:00]. For
example, JDAQ receives XJAO_JDA_DATA_H[07:00] and JDA1 receives XJAO_J DA_
DATA_H[15:08].

Under JDCX control, JDAX loads the data into a receive buffer. Each buffer is byte-sliced
across MCAs and can hold up to four quadwords. For each JXDI cycle, two JDAX MCAs
receive and load one byte at a time into a receive buffer. For example, JDAO receives
XJA data bits [07:00] and a parity bit, and JDA1 receives data bits [15:08] and a parity
bit. Figure 6-15 shows the byte-slices across MCAs and MCUs for receive buffer 0.

DBO DAO
RECEIVE RECEIVE
BUFFER 0 BUFFER O
JDA1 JDAO
XJA DATA [15:08] XJA DATA [07:00]
FROM XJA MODULE

MR_X0922_389

Figure 6-15 Receive Butfer — Byte-Slices

JDAO and JDA1 each have a counter that increments by one each time a byte of the
packet is loaded into the receive buffer. Together, JDAO and JDA1 load one word of the
packet each cycle. Table 6—4 lists the number of cycles, bytes, and data sizes for the JXDI

packets.

Table 6-4 JXDI Cycles
Number of Number of

Cycles Bytes Data Size

20 32 Hexword

12 16 Octaword
8 8 Quadword

Figure 6-16 shows the JDAX MCA block diagram. The JDAX MCA receives the
following:

¢ XJA command, address, and data
e JDC_JDA_TRX_SEL_H[02:00] (buffer select) from the JDCX (Table 6-5)

DIGITAL INTERNAL USE ONLY

I/0 Control Unit 6-23

¢ Send data from JDCX

* Get XJA and get SPU control signals from JDCX
¢ SPU command, address, and data from CTLD

¢ Retry mode [01:00] from SCAN

JDAX_ATTEN
© - JDA_JIDC_XJAO_
REQ_L . CERR_L
HeovEsT) i oA _soc_xamo.
REQUEST/ _JDC_XJAO_
FATAL LDAX FATAL PC | bera_L
ERROR - >
SPU_TO_CCU_
CMD_H{06:00] ™
XJAD_CMD_1D_ N JDA_JDC_CMD_
XJA0_JDA_DATA_ A_H[06:00} XoAX CMD 1D TA_R[06:00)
07:00 _CMD_ID_
Hiozzool | A_H{66:00]
B N XJAO XJAT_CMD_ID_
XJAO_JDA_ BUFFER 0 A_H[06:00}
DATA_PAR_H o
bt b S Nt |—
XUA0 JDA RECEIVER L~ .s‘rot;_;rg_nc_
0 R
CLKX_H :iu’o;r;:_ne_ N :I?A’_TO]_TAG_
— 07:00, 07.00]
XJAX_TO_TAG_
B_H{07:00]
I . XJAO XJA1_TO_TAG_
JDC_JDA_GET_ BUFFER 1 H[07:30}
XJAD_H[01:00]
GET L~ CSL_MASK_
JOC_JDA_GET_ XJAX H[03700)
XJAT_H[G1:00] DECODE MUXED_XJAO I JDA_DSW_MASK_
—_— MASK_H[03:00] MUXED XUAX H{03:00)
MASK_H[03:00)
I . XJA1 MUXED_XJA1_
XJA1_JDA_DATA_ BUFFER 0 MASK_H[03:00]
H{07:00]
.~ CSL_DATA_ i
XJA1_JDA_DATA_ XJA1 H[31700]
PAR_H MUXED_XJAO_ JDA_DSW_DATA_
FRONT | | DAT_H[31:001 N H{31700]
RECEIVER = MUXED_XJAX_ -
XJAT_JDA_ DATA_H[31:00]
CLKX_H L] s XJA1 MUXED_XJAT_
—_——] BUFFER 1 DAT_H[31:00]
CTLD_JDA_DATA_ .~
H[03:60]
_ I SPU BUFFER
sPU
CTLD_JDA_DATA_ |[RECEIVER
PAR_A
JDC_JDA_TRX_SEL_H[02:00]
JDC_JDA_GET_ DECODE
csiH GET
CONSOLE
DECODE
JDC_JDA_SENDAT_H | sewnp
DATA
DECODE
WR_X0823_88

Figure 6-16 JDAX MCA Biock Diagram

DIGITAL INTERNAL USE ONLY

6-24 /O Control Unit

Table 6-5 JDCX Transmit Buffer Select

Value Buffer
011 SPU
100 XJAO
101 XJAO
110 XJAl
111 XJAl

Table 6-6 lists each mode and the corresponding MCU attention lines. For more details
on the JBox error summary register in the IRCX MCA, see Section 6.14.3.3.

Mode 0 — The ICU does not report the retry by pulsing an attention line. The ICU
stores information about the error in scan latches and sets bits in the error summary
register in the IRCX MCA.

Mode 1 — The MCU detects the retry error pulses on its attention line. An XJA retry
report occurs when SPU determines that the DAX or DBX attention lines, and not the
CCU attention line, were pulsed. The ICU stores information about the error in scan
latches and sets bits in the error summary register in the IRCX MCA.

Mode 2 — The MCU detects the retry error pulses on its attention line. In addition

to DAX or DBX pulsing its attention line, DAX or DBX asserts one of the error lines

to CCU. A possible XJA retry report has occurred and the SPU determines if the error
register contains retry information by analyzing the DAX or DBX attention lines and the
CCU attention line.

The SPU uses scan to determine if the error was due to an XJA retry. The ICU stores
the XJAX parity error data and information about the error in scan latches and sets bits
in the error summary register in the IRCX MCA.

Table 6-6 Retry Modes

DAX/DBX CCU CCU Error Enter Code into JBox
Mode Attention Attention Signal Error Summary Register
0 N N N Y
1 Y N N Y
2 Y Y Y Y

DIGITAL INTERNAL USE ONLY

110 Control Unit 6-25

The JDAX MCA sends the following:

Physical address to the ADRX MCAs
XJAO and XJA1 command to the JDCX MCA
SPU command to the JDCX MCA

XJAOQ, XJA1, and SPU parity errors, JDAX fatal error, and JDAX attention request to
JDCX MCA

Mask, data, and beginning of data to the data switch (DSXX MCAs)

The JDAX MCA has parity checkers for the control and data lines and generates the
following error signals when detecting a parity error:

CTLD control parity error — JDAX detects a parity error across the CTLD_JDA_
XJAO_INIT, CTLD_JDA_XJA1_INIT using parity lines CTLD_JDA_XJAO, 1 _INIT_
PAR_H. B)

JDC control parity error — JDAX detects a parity error across the JDCA_
JDA_GET_XJAOQ_H[01:00], JDCA_JDA_GET XJA1_H[01:00], JDC_JDA_TRX_SEL_
H[02:00], JDC_JDA_SENDAT_H, and JDC_JDA_GET_CSL_H using JDC_JDA_CTL_
PAR_H.

JDAX_ATTEN_REQ — JDAX detects an XJA data error.
JDAX _FATAL_ERROR_L — JDAX detects any of the following errors:

CTLD control parity error (CTLD_CTRL_PE_H)
JDC control parity error (JDC_CTRL_PE_H)
XJAX fatal error XJAX_FATAL_REQ_L)
Receive console error (RCV_CSL_ERR_TB_L)

6.3.2.1 XJA Receive Butfers
Each XJA has two receive buffers, 0 and 1. Figure 6-17 shows the receive buffers for

XJAO.
BUFFER 1
DBO DAO
XJAO XJAD XJAD XJAO
BUFFER 1 BUFFER 0 BUFFER 1 BUFFER O
JDA1 JDAO
| BUFFER 0 _I

MR_X0024_89

Figure 6-17 XJAO Receive Buffers

DIGITAL INTERNAL USE ONLY

6-26 /O Control Unit

Figure 6-18 shows the receive buffer.
Each XJA buffer receives the following signals:
e CLOCK_A_L and CLOCK_B_L.

e JDC_JDA_GET_XJAn[00] (buffer 0), JDC_JDA_GET_XJAn[01] (buffer 1) from the
JDCX receive XJA logic. Buffer full and command available determine which buffer
JDAX selects.

e XJAn_CHK_DAT_H[07:00] from the parity checkers.

{00]
— COMMAND
-
' -
LU} sppress (FIRST)
02 —
Ho4) aopress (LasT)
103 —
— MASK XJA BUFFER
e
JOC_JDA_GET_XJA_H | {o4] | [
wwosyteo | COMMAND
BUF_PACKET_CNT_TB_H[03:00]
o5 o ADDRESS XJA_BUF_CMD_A_H{07:00]
—— LWO BYTE 1 XJA_BUF_ADDR_A_H[15:00} _
-
ey BUEFER LWo BUF_LWO_DATA_A_H[31:00]
SEQUENCE DECODE BUF_LW1_DATA_A_H[31:00]
06) || >
1 LWo0 BYTE 2 Wi XJA_BUF_MASK_A_H[07:00}
w2
o -
L1071 | LWO BYTE 3
w3
08, —
1081 LW1 BYTE 0
iR LW1 BYTE 1
. -
RLLE B Y
-
" -
LS LW1 BYTE 3

MR_X0825_98

Figure 6-18 XJA Receive Buffer

DIGITAL INTERNAL USE ONLY

i/0 Controt Unit 6-27

Each XJA receive buffer sends the following signals:

XJAnBUFn_CMD_A_H[07:00] to the command buffer selector logic
XJAnBUFn_ADDR_A_H[15:00] to the address buffer selector logic
XJAnBUFn_MASK_A_H[07:00] to the mask buffer selector logic
XJAnBUFn_LWO_DAT_A_H[31:00] to the data selector logic
XJAnBUFn_LW1_DAT_A_H[31:00] to the data selector logic

6.3.2.2 SPU Receive Buffer
The SPU buffer receives a quadword of data. Figure 6-19 shows the SPU receive buffer.

JDC_JDA_GET_CSL_H

] COMMAND

—— ADDRESS (FIRST)

fo2) —

——y ADDRESS (LAST)

03
o MASK

L

[04) SPU BUFFER

DATA O

RCV_SPU_CYC_H[15:00]

[os] COMMAND CSL_CMD_ID_B_H[03:00]
— DATA 1

T
o
-
o

1

STATE — CSL_TAG_ADDR_B_H[15:00]
cLs DECODE
LOAD ADDRESS CSL_DATA_H[31:00]
SEQUENCE

CSL_MASK_H[03:00]

CONTROL) {06)

DATA 2 ->
Lwo

07,
'l—]' DATA 3

08,
-(—]— DATA ¢

09
109] DATA S

| LT 1

10,
__.[} DATA &

1
——{ DATA 7NIBBLE

uA_xos2e_9%

Figure 6-19 SPU Receive Buffer

DIGITAL INTERNAL USE ONLY

6—28 /O Control Unit

The SPU buffer receives the following signals:

e CLOCK_A, CLOCK_B

e CTLD_JDA_DATA_H[03:00] and parity from the CTLD SPU interface

e JDC_JDA_GET_CSL_H from the JDC SPU control logic

The SPU buffer sends the following signals:

e CSL_ADDR_B_H[15:00] to the address buffer selector logic

e CSL_MASK_H[03:00] to to the mask buffer selector logic

e CSL_DAT_H[31:00] to the data buffer selector logic

e JDA_JDC_CSL_CMD_TA_HI[03:00] to the command buffer selector logic

The JDAX MCA decodes JDC_JDA_TRX_SEL_H[02:00] and selects an XJA or SPU
command, address, mask, and data. Table 6-7 lists the JDC_JDA_TRX_SEL_H[02:00]
codes and their corresponding buffers selected.

Table 6-7 JDC_JDA_TRX_SEL_H[02:00] Decode

Code Buffer Selected

IRCX
Reserved
Reserved
SPU

XJAO buffer 0
XJAO buffer 1
XJA1 buffer 0
XJA1 buffer 1

S 0O Nk W N - O

DIGITAL INTERNAL USE ONLY

1/0 Control Unit 6-29

6.3.2.3 Selecting XJA or SPU Command and Address
The command/address buffer selector (Figure 6—20) selects one of the following, and sends
the command as XJAX_CMD_ID_A[06:00] to the CCU:

¢ XJAOBUF0_CMD_A_H[06:00]
¢ XJAOBUF1_CMD_A_H[06:00]
* XJA1BUF0_CMD_A_H[06:00]
¢ XJA1BUF1_CMD_A_H[06:00]
¢ SPU_TO_CMD_H[06:00]

Otherwise, the command/address buffer selector (Figure 6-20) selects one of the following
and sends the address in two cycles as XJAn_TO_TAG_H[07:00] or SPU_TO_TAG_
H[07:00] to the tag MCU:

* XJAOBUFO_ADDR_A_H[07:00], XJAOBUFO_ADDR_A_H[15:08]
* XJAOBUF1_ADDR_A_H[07:00], XJAOBUF1_ADDR_A_H[15:08]
+ XJA1BUFO_ADDR_A_H[07:00], XJAIBUFO_ADDR_A_H[15:08]
+ XJA1BUF1_ADDR_A_H[07:00], XJA1BUF1_ADDR_A_H[15:08]
+ SPU_TO_TAG_H[07:00]

o

| COMMAND SELECT LOGIC 1
| 1
XJAOBUFO_CMD_A_H[07:00

| !] \ XJAX_CMD_ID_B_H[07:00] |

| XJADBUF1_CMD_A_H[07:00] i

i CMD_B_H[06:00] JDA_JDC_CMD_TA_H[06:00]

XJA1BUF1_CMD_A_H[07:00} JOA_JDC_CSL_CMD_ LATCH >

1 8_H[07:00} 1

| XJAIBUFO_CMD_A_H[07:00] 1

|]

| I

b oo o > | o - .- -

o - - —— | - —— - - ——-— -

| ADDRESS SELECT LOGIC 1

] 1

I xJA0BUFO_ADDR_A_H[15:00]]

! XJAOBUF1_ADDR_A_H[15:00] XJAX_TO_TAG_H[07:00] 4

[] JDA_TAG_ADDR_B_H[07:00]
| XJA1BUF1_ADDR_A_H[15:00] SPU_TO_TAG_H[07:00] LATCH >
: XJATBUFO_ADDR_A_H[15:00] :

1]

o e o o o o o o o e | e — e - - - - -

CMD_TRXSEL_H[02:00] ’\I
JDC_JDA_TRXSEL_H[02:00] J

Figure 6-20 Selecting the XJA Command

WR_X0027_89

DIGITAL INTERNAL USE ONLY

6-30 /0 Control Unit

6.3.2.4 Sending Data

JDC_JDA_SENDAT B_H generates JDA_DSW_BOD_H (beginning of data transfer to
the data switch). Each buffer, XJAO buffer 0, XJAO buffer 1, XJA1 buffer 0, and XJA1l
buffer 1, sends two longwords, LW0 and LW1, and a parity bit for each longword to the
data buffer selector.

JDAX sends the output of the XJA data select (MUXED_XJAO_DAT_H[31:00] and
MUXED_XJA1_DAT H[31:00]) or CSL_DATA_H[31:00] to the data switch as JDA_
DSW_DATA_H[31:00). JDC_JDA_TRX_SEL_H[02:00] selects the buffer and longword.
Figure 6-21 shows how the JDAX MCAs send longwords to the DSXX MCAs.

Each buffer, XJAO buffer 0, XJAO buffer 1, XJA1 buffer 0, and XJA1 buffer 1, sends two
mask field, [07:04] and [03:00], to the mask buffer selector. ‘ ’

JDAX sends the output of the XJA mask select (MUXED_XJAO_MASK_H([03:00] and
MUXED_XJA1_MASK_H[03:00]) or CSL_MASK_H[03:00] to the data switch as JDA_
DSW_MASK_H[03:00]. JDC_JDA_TRX_SEL_H[02:00] and JDC_JDA_SENDAT_B_H

determine which mask the JDAX MCAs select.

[osos] [osos | [osos | | osoo | [osor | | osoz |
| | i I | |

DBO DAO
RECEIVE RECEIVE
BUFFER 0 : BUFFER 0

(4 BYTES OF DATA) (4 BYTES OF DATA)

JDA1 JDAO

MR_X0928_8¢%

Figure 6-21 JDAX Sending Data to the DSXX MCAs

6.3.2.5 Loading an XJA Butffer
The following steps summarize the loading of XJAO buffer 0 with a DMA write command,
address 2000, and 16 bytes (octaword) of data. In consecutive cycles, XJAQ sends:

1. XJA_CMDAVAIL_H, which JDCX latches and uses to generate JDC_JDA_GET _XJA_
HI[01:00]. JDCX tracks the status of buffers 0 and 1. Buffer 0 is available.

JXDI receiver sequencer uses JDC_JDA_GET_XJA_H[01:00] to enable and start the
packet counter. BUF_PACKET_INC_H[03:00] becomes BUF_PACKET_DECODE_
L{15:00]. Figure 6-18 shows the buffer packet decode logic.

2. BUF_PACKET_DECODE_L[00], which enables JDAX to load the command, DMA
write command, and quadword data size.

3. BUF_PACKET DECODE_L{01] and [02], which enable JDAX to load the address, the
first half of address 2000 and then the second half of address 2000.

BUF_PACKET_DECODE_L{03], which enables JDAX to load the mask.

5. BUF_PACKET DECODE_L{04], [05), [06], [07], [08], [09], [10] and [11], which enable
JDAX to load bytes 0 through 3 as LWO [31:00]. Bytes 4 through 7 are loaded into
buffer 0 as LW1 [63:32].

6. XJA waits for retry or acknowledge.
XJA waits for buffer empty.

DIGITAL INTERNAL USE ONLY

1/0 Control Unit 6-31

6.3.2.6 Unloading the XJA Buffer
The following steps summarize the unloading of XJAO buffer 0:

1.

JDC_JDA_TRX_SEL_H[02:00] generates CMD_TRX_SEL_TA_H[02:00], which selects
XJAO_BUF0_CMD_A_H[06:00]. JDAX sends this to JDCX as JDA_JDC_CMD_TA_
H[06:00] (Figure 6-16).

ADR_MUX_SEL_TB_H[01:00] selects XJAOBUF0_ADDR_A_H[07:00] and
XJAOBUFO_ADDR_A_H[15:08]. The address is loaded into the ICUQ address receive
buffer in ADRX. ADRX sends physical address bits to MTCH, which addresses the
global tag STRAMs and compares the physical address bits stored with the ICU0Q
address. MTCH sends the match results to MICR. Also stored in the tag STRAMs
are the status bits for that address. MICR latches the status bits.

The command is arbitrated and placed in the tag queue in CTLD. The MICR MCA
takes the entry from the tag queue (queue data contains the command, arbitration
index, and results from NPAMM). The MICR MCA uses the results (match and status
bits) of the tag lookup and queue data to form a microaddress to send to the control
store.

The microword sends a fix command to the fixup queue. The fixup queue sends
another microword address to a fixup microword to do the following:

a. Send SENDAT to JDCX. JDC_JDA_SENDAT_B_H generates JDA_DSW_BOD_H
(the beginning of data transfer to the data switch). LWO and LW1 are sent to the
data switch. The data switch sends the data to MDPX, which sends the data to
main memory.

b. Determine the index (assigned at arbitration) sent to ADRX to identify which I/O
address buffer is to be used to drive the row and column lines for the memory
arrays.

c. Send a write command to the memory port.

6.3.2.7 Loading the SPU Bufter
The following steps summarize the loading of the SPU buffer:

1

CTLD receives CTLD_JDA_DATA_H[03:00] and CTLD_JDA_DATA_PAR_H, and
sends them to JDAX. The SPU receiver sequencer uses JDC_JDA_GET_CSL_H to
enable and start the packet counter. STATE_B_H[06:00] becomes RCV_SPU_CYC_
H[15:00] (Figure 6-19).

RCV_SPU_CYC_H[00] enables JDAX to load the command, SPU write command, and
quadword data size.

RCV_SPU_CYC_HI[01], [02], [03], and [04] enable JDAX to load the address.

RCV_SPU_CYC_H[05] enables JDAX to load the mask. Figure 6-58 shows the SPU
DMA packet.

RCV_SPU_CYC_HI[061], [07], [08], [09], [10], [11], [12], and [13] enable JDAX to load
the data into the SPU BUFFER as ARRAY_DATO0_H[31:00] through ARRAY DAT7_
H[31:00]. Figure 6-58 shows the SPU DMA packet.

DIGITAL INTERNAL USE ONLY

6-32 /O Control Unit

6.3.2.8 Unloading the SPU Buttfer
The following steps summarize the unloading of the SPU buffer:

1. JDC_JDA_GET_CSL_H unloads the SPU buffer. JDC_JDA_TRX_SEL_H[02:00]
generates CMD_TRX_SEL_TA_H[02:00], which selects SPU_TO_CCU_CMD_H[06:00]
and sends this to JDC as JDA_JDC_CMD_TA_H[06:00] (Figure 6-16).

2. ADR_MUX_SEL_TB_H[01:00] selects and sends SPU_TO_TAG_H[07:00] to the tag
MCU (ADRX MCAs I/O receive address latches). ADRX sends physical address bits
to MTCH, which addresses the global global tag STRAMs and compares the physical
address bits stored with the XJAO address. MTCH sends the match results to MICR.
Also stored in the global tag STRAM:s are the status bits for that address. MICR
latches the status bits. :

3. ICU sends the command to CCU command arbitration. When the command wins
arbitration, CCU places an entry onto the tag queue. The MICR MCA takes the
entry from the tag queue (queue data contains the command, arbitration index, and
results from the NPAMM), uses the results (match and status bits) of the tag lookup
and queue data, and forms a microaddress to send to the control store.

4. The microword sends a fix command to the fixup queue. The fixup queue then sends
another microword address to a fixup microword to do the following:

a. Send SENDAT to JDCX. JDC_JDA_SENDAT_B_H generates JDA_DSW_BOD_H
(the beginning of data transfer to the data switch). CSL_DATA_HI3 1:00] are sent
to the data switch. The data switch sends the data to MDPX, which sends the
data to main memory.

b. Determine the index (assigned at arbitration) set to ADRX to identify which I/O
address buffer is to be used to drive the row and column lines for the memory
arrays.

¢. Send a write command to the memory port.

6.3.3 JDBX MCA

JDBO, located on the DA0 MCU, and JDB1, located on the DBO MCU, support the XJAQ,
XJA1, and SPU transmit command, address, and data buffers. JDB2, located on the DA1
MCU, and JDB3, located on the DB1 MCU, support XJA2 and XJA3.

Each JDBX MCA contains transmit XJA logic. For example, JDB0 sends JDB_XJAOQ_
DATA_H[07:00] and JDB_XJA1_DATA_H[07:00], and JDB1 sends JDB_XJAO_DATA_
H[15:08] and JDB_XJA1_DATA_H[15:08]. Figure 6-22 shows the byte-slices for a
transmit buffers command. Figure 6-23 shows the JDBX MCA block diagram.

DBO DAO
TRANSMIT TRANSMIT
BUFFER A BUFFER A
JOBO JDB1
XJA DATA [15:08) XJA DATA [07:00]

MR_X0929_39

Figure 6-22 JDBX Transmit Buffer — Byte-Slices

DIGITAL INTERNAL USE ONLY

1/0 Control Unit 6-33

6970C60X UM

<

<

_ (ivrx "o ovrx)
[00:20lH " viva xvrx aar

L
I

- _ (nds)
l00:€0lH viva 01107 8ar

loo:10lH™XVrX aN3S @GN 2Qr

9
H344n8

\J
H344ng

loo:20lH"xang " LINX BOr 0ar

123138
3AI1303d

] (avol
aHomavno)
1NNOD
avol

loo:10lH™ 138 ADY BAr 0Qr

]
H a1 1va o04nE@

S3IHOLVT
viva
ss3uaav
ANVINWOD

|

-

H™@Y Lva tdng

H34dNng
HOIHM

(avo)
HILINIOd
avay

l[oo:1e]lH " viva aar msa

foo: 20l waav aar ovi

[0o0:s0lH " OViAWD "8Ar 0ar

foo:2olH "nds ‘aN3as sar oar

loo:zolH "x4na”Linx 8ar oar

(avoInNn)
H3ILNIOd
3L14M

aog aar msa

foo:10lH ™38 " x0W 8ar 0ar

Figure 6-23 JDBX MCA Block Diagram

DIGITAL INTERNAL USE ONLY

6-34 /O Control Unit

Unlike the JDAX MCA receive buffers, the two JDBX MCA transmit buffers can be
used for sending a command, address, and data to either XJAO/XJAZ2, XJA1/XJA3, or
SPU. The transmit buffers are called buffer A and buffer B. However, signal names and
references may refer to buffer A as buffer 0 and buffer B as buffer 1. Figure 6-24 shows
the transmit buffer.

The JDBX MCA receives the following:

e JDC_JDB_RCV_SEL_H[01:00] (buffer select) from the JDCX MCA to control the
loading of buffers. Figure 6-25 shows how the JDBX MCAs receive longwords from
the DSXX MCAs.

JDC_JDB_RCV_SEL_H[01:00] generates BUFO_CMDTAG_ENA_H, BUF1_
CMDTAG_ENA_H, BUF0_BOD_PEND_H, and BUF1_BOD_PEND_H.

e Send data control to enable buffer data onto the differential lines.

e Transmit buffer to control unloading the buffers.

e Data from the DSXX MCAs.

e Physical address from the ADRX MCAs.

* Clocks.

The JDBX MCA sends the following:

e XJA command, address, and data.

e Fatal error to JDCX MCA when detecting any of the following parity errors:
— Hold data switch parity error (DSW_PE_H)
— JDCX control parity error (JDC_CTL_PE_H)
— Tag address parity errors (TAG_JDBX_PE74_H, TAG_JDBX_PE30_H)
— SPU command, address, and data.

JDBX has the following four pointers (Figure 6-26):

e Write pointer — Indirect pointer, points to one of two buffers for the command with
data.

* Read pointer — Indirect pointer, points to one of two buffers to write the data
corresponding to the command and address already loaded there.

e Pointer 1 — Points to the buffer for one of two data commands.
e Pointer 0 — Points to the buffer for one of two data commands.

The CCU sends two commands to JDBX. Each time JDBX receives a command, it
uses the write pointer to determine where to write the command and address, with

or without data. If CCU sends the command and address without data, and sends a
second command before sending the data for the first command, JDBX uses the write
pointer to select the other buffer. JDBX loads the second command and its address into
the other buffer.

When CCU sends the data (JDBX receives the data in the same order as the read
commands), JDBX uses the read pointer to determine where the data is to be written.
Pointer 0 points to the buffer for one command, and pointer 1 points to the buffer for the
second command.

DIGITAL INTERNAL USE ONLY

110 Control Unit 6-35

6971C60X UW

[v2:1elH viva zexnw 4nea

[9t:gelH viva 2exnW 4ne

[80:SEIH ViVa 2exnNW ™ 4nA

[00:20]JH VLVA 2EXNN 4NE

loo:1elH vLvVaA EMT

00: telH Viva zm
HOLV

i

[00: tEIH VLVG ™ 1M

N0 teln viva omt

" (ndS 3HL ¥O03) [00: LElH Viva 4ne

“l00:20JH”LNO VivVa dna

[00:20]H "HQQvV " 4na

[00:€0]H ©Vi aWO 4n8

Igo:stlH vaav~4ne

300034
"u3LINIOd
avno
300923Q
LINSNVHL
€M1
Zml
loo:SEIH VLVA XXSQ
M1
om1
ss3dvaav = -
[oo:2tlH Haav ovL
ANVYWNNOD - -
loo:solH oviawo
(8 HO V)
4344ne
LIWSNYHL
xaar

Figure 6-24 JDBX Transmit Butfer

DIGITAL INTERNAL USE ONLY

6-36 /O Control Unit

'——-—-——---——--—v—------—---—---‘

] DBO] DAO

[osos | [osos | [osos |

i |

i |

i])
i (4 BYTES OF DATA) |} (4 BYTES OF DATA)
1 |joso I |oao
1 TRANSMIT i TRANSMIT
] |
1 1
1 I
-

BUFFER A BUFFER A

JDB1 JDBO

------——-—--——-‘-------—-------‘

MR_X0932_8%9

Figure 6-25 Loading Data from the DSXX MCAs

WHICH BUFFER

FOR COMMAND WHICH BUFFER

AND ADDRESS WRITE HAS COMMAND 1
———————1 POINTER POINTER 0 >
WHICH

BUFFER FOR

RETURNED WHICH BUFFER
READ DATA READ HAS COMMAND 2
——————— poINTER POINTER 1 >

MR_X0933_88

Figure 6-26 Write and Read Pointers

" 6.3.3.1 Loading a Transmit Buffer for XJA

The pointers are decoded and generate the load buffer 1 and 0 control commands (BUF1_
DAT _LD_H, L and BUFO_DAT LD_H, L). JDCX sends the command JDC_JDB_CMD_
TAG_H[05:00]. The data switch sends DSW_JDB_BOD_H and the data, DSW_JDB_
DATA_H[35:00]. The ADRX MCAs send TAG_ADDR_H[15:00] to the transmit buffer
(Figure 6-23). .

The JDBX buffer A and B load counters send the following:

e BUFO_DAT LD_H starts the load counter for buffer 0. BUF0_LOAD_CNT_TB_
H[01:00] is decoded as BUFO_QW_LOAD_L[03:00]. BUF1_DAT_LD_H starts the
load counter for buffer 1. BUF1_LOAD_CNT_TB_H[01:00] is decoded as BUF1_QW_
LOAD_L{03:00].

e The output, BUFO_DATA_TB_HI[07:00] and BUF1_DATA_TB_H[07:00], along with
parity, are sent to XJAO and XJA1 through the differential transceivers.

The following steps summarize loading buffer 0:

1. JDC_JDB_RCV_SEL_H[01:00] controls the loading of the buffer. 'Each buffer receives
the data from the data switch, DSXX_DATA_H([31:00], address from the tag address
buffer, TAG_ADDR_H[15:00), and command from JDCX CMDTAG_H{05:00].

2. JDC_JDB_RCV_SEL_H[01:00] starts the load counter, generates BUFn_CMDTAG_
ENA_H, L to load the command and tag address, and generates BUFn_QW_LOAD_
L[03:00] to load the DSXX_DATA_H[31:00].

DIGITAL INTERNAL USE ONLY

/0 Control Unit 6-37

6.3.3.2 Unloading a Transmit Buffer for XJA
The following steps summarize unloading buffer 0 and sending the data to XJAO and
XJA1 (Figure 6-23):

1.

JDBX decodes JDC_JDB_XMIT_BUFO0_H[02:00] and JDC_JDB_XMIT_BUF1_
H[02:00], starts the counter, and generates BUF_CAD_SEQ_TB_H[01:00], which
selects:

a. Command
b. Address
¢. Data

JDCX sends command available to XJA. In the next cycle, JDBX begms to send the
packet.

JDC_JDB_SEND_XJAn_H[01:00] enables the BUFO_DAT TB_H[07:00] through the
differential transceivers to the JDB_XJAn_DATA_H[07:00] lines.

JDCX waits for retry or acknowledge.

5. JDCX waits for buffer empty.

6.3.3.3 Unloading a Transmit Buffer for SPU
The following steps summarize unloading the transmit buffer for the SPU (Figure 6-23):

1.

JDBX decodes JDC_JDB_SEND_SPU_H[02:00], starts the counter, and generates
SPU_BUF1_H, which selects:

a. Command, TO_SPU_CMD_H[03:00]
b. Address, TO_SPU_ADDR_H[15:00]
¢. Data, TO_SPU_DATA_H[31:00]

JDC_JDB_SEND_SPU_H[01:00] enables the SPU command, address, and data to
JDB_CTLD_DATA_H[03:00].

6.4 JBox-to-ICU Interface

Table 68 lists the JBox commands and their descriptions. Figure 6-27 shows which
commands the JBox sends to XJA, SPU, or IRCX.

DIGITAL INTERNAL USE ONLY

6-38

170 Contro! Unit

Table 6-8 JBox-to-ICU Commands

Code

Command

Description

0

10

11
12

13-15

CPU read

DMA read data
return

DMA read lock data
return

CPU write

SPU read data
return

Incomplete /O read

Register 0 write to
SPU

DMA read
nonexistent memory

DMA lock denied

JBox sends the CPU read to access registers in.the XJAs,
SPU, and IRCX MCA. One of four CPUs or SPU can read
a register in XJA, SPU, or IRC. CCU_DAX_IOSEL{[01:00]
indicates where this request is to be sent.

Reserved.

JBox sends the DMA return read data command in response
to a previous DMA read request from XJA or SPU. CCU_
DAX_ID comes with the load command so that the JDCX
MCA can send the data to the XJA or SPU that made the
request.

JBox sends the DMA read lock data return command in
response to a previous DMA read lock request from an XJA

- or SPU. CCU_DAX_ID comes with the load command so that

JDCX MCA sends the data to the XJA or SPU that made the
request. .

JBox sends the CPU write command to write data into
registers in XJAs, SPU, and IRCX. It can be longword or
byte access. CCU_DAX_IOSEL_H[01:00] indicates to which
XJA this request is sent.

Reserved.

JBox sends the SPU read data return command in response
to a previous SPU read I/O register request.

JBox sends the incomplete /O read command when either
IPAMM detects a nonexistent memory condition for an
SPU read I/O request (ICU forwards it to SPU) or an XJA
responds with read error status to ICU for an SPU read I/O
request.

JBox sends the register 0 write to SPU command when SCU
sends memory ECC information to SPU.

Reserved.

JBox sends the DMA read nonexistent memory command
when MPAMM detects a nonexistent memory condition for
a DMA read request. ICU forwards this command to the
requester.

Reserved.

JBox sends the DMA lock denied command when the
memory data cannot be obtained for a previous DMA read
lock command in which the requested data was previously
locked.

Reserved.

DIGITAL INTERNAL USE ONLY

11O Control Unit 6-39

CCuU MCU
(JBOX)

CPU READ WRITE REGISTER CPU READ
CPU WRITE WRITE ERROR REGISTER CPU WRITE
DMA READ RETURN READ REGISTER
DMA READ RETURN LOCK 1/0 READ RETURN
DMA LOCK DENIED RETURN READ ERROR
NONEXISTENT MEMORY DMA READ RETURN LOCK
DMA LOCK DENIED
IRCX
XJA SPU MCA

MR_X0934_89

Figure 6-27 CCU Command Summary

6.5 ICU-to-JBox Interface
Table 69 lists the ICU-to-JBox commands.

Table 6-9 I1CU-to-JBox Commands

Code Command Description

0 DMA read ICU sends the DMA read command to read data from main
memory.

1 DMA read lock ICU sends the DMA read lock command to read and
interlock data from main memory.

2 CPU read data ICU sends the CPU read data return command in response

return to a previous CPU read for an SPU, XJA, or IRCX register
read. ICU sends the contents of the I/O register to CCU.

3 SPU write unlock ICU sends the SPU write unlock command to write and
unlock a main memory address previously locked by any
port.

4 DMA write ICU sends the DMA write command to write 8 or 16 bytes of
data.

5 DMA write unlock ICU sends the DMA write unlock command to write and
unlock a memory address. ICU sends 8 or 16 bytes and
unlocks an address requested by a previous DMA read lock
request.

6 Incomplete IO read ICU sends the incomplete I/O read command if an XJA
responds with read error status to ICU for CPU read request.
The 1/O register data is not obtained for the initial CPU read
request command.

7 L/O register response ICU sends the IO register response command to inform
CCU that the last CPU write request has been completed.

8 SPU read I/0 The ICU sends SPU read /O command to access I/O

registers in the XJAs or IRCX MCA.

DIGITAL INTERNAL USE ONLY

6-40 /O Control Unit

Table 6-8 (Cont.) ICU-to-JBox Commands

Code Command Description

9 SPU write /O ICU sends the SPU write I/O request to write data into
request registers in an XJA or IRCX.

10 IRCX return data ICU sends the IRCX return data command, with the contents

of an IRCX register, to CCU in response to a previous CPU
read or SPU read /O register command.

11-15 - Reserved.

6.6 XJA and ICU Communication Using Packets

An XJA packet is the basic unit of data transfer on JXDI. XJA sends and receives a
complete packet (16 bits or 1 word) in each JXDI cycle. The number of cycles depends on
the type of command and the data context (length field — quadword or octaword) in word
0.

Table 64 lists the number of bytes and cycles for quadword and octaword packets. DMA
packets have one command cycle and two address cycles. The mask field determines the
number of data cycles. CPU packets have one command cycle, two address cycles, one
mask cycle, and four data cycles.

In JXDI cycle 1, the command, length, IPL, sequence, and ID fields are transferred in
word 0. In JXDI cycles 2 and 3, the first and then second halves of the address are
transferred in words 2 and 3. In JXDI cycle 4, the mask bits are transferred in word 4.
In the remaining JXDI cycles, the data is transferred.

6.6.1 JXDI Cycle 1

Figure 6-28 shows the fields sent in the first JXDI cycle. Tables 6-14 and 6-16 list the
ICU and XJA commands.

6.6.1.1 Command Field Coding
Figure 6-28 shows the coding of the command field.

6.6.1.2 Length Field Coding
Figure 6-28 shows the coding of the length field. Table 6-10 lists the possible JXDI
length codes encoded in the DATA_H[05:04] field in word 0.

Longword-length XMI transactions that reference main memory are translated into
quadword transactions. All CPU-type JXDI transactions are longword in length and do
not have the length field defined.

DIGITAL INTERNAL USE ONLY

WORD | 1< 14 13 12 11 10 0 o8 [o7 08 05 04 03 02 01 03
0
1 A [29:26, 05:02] A [13:10] [09:06]
2 A [33:30, 25:22) A [21:18] [17:14]
s |rlefolcl7]e]s]e]]a]o]a]a]2]1]0
4 BYTE 4 BYTE 0O
5 BYTE 5 BYTE 1
s BYTE 6 BYTE 2
7 BYTE 7 BYTE 3
s BYTE C BYTE 8
) BYTE D BYTE o
10 BYTE E BYTE A
1 BYTE F BYTE B

R = RESERVED
S = SEQUENCE BIT NOT USED

Figure 6-28 JXDI Cycle 1

MR_X0935_89

Table 6-10 JXDI Length Codes

I/0 Control Unit 6—41

Code Size

00 Hexword (32 bytes, reserved)
01 Block (64 bytes, reserved)
10 Quadword (8 bytes)

11 Octaword (16 bytes)

6.6.1.3 IPL Field Coding
Figure 6-57 shows the IPL field in the interrupt packet. During interrupt-type JXDI

transactions, XJA encodes DATA_H[07:04], as shown in Table 6-11.

Table 6-11 [IPL Priority Level
[05:04] IPL (Hex)

00 14

01 15

10 16

11 17

DIGITAL INTERNAL USE ONLY

6—42 /O Control Unit

6.6.1.4 1D Field Coding ;

Figure 628 shows the ID field. The DATA_H[13:08] field of word 0 contains a unique ID
that identifies the source of the request. ICU receives a DMA command and stores the ID
field in the JDCX MCA. JDCX sends a single ID bit to the CCU MCU (CTLB MCA). The
CTLB MCA stores the command in the /O command latch. The CCU MCU returns the
ID bit to ICU (JDCX MCA) with the DMA returned data read. ICU can receive two DMA
read requests. The ID bit (CCU_ID_H) specifies which of the two DMA read commands
corresponds to the returned read data. ICU sends one of two ID fields to the transmit
buffer (in the JDBX MCA). Figure 629 shows how the ID is passed from XJA to ICU.

During DMA-type JXDI transactions, DATA_H[13:08] contains the value of the XMI_
ID[05:00] field. This field is encoded as follows:

e DATA_H[13:10] identifies the XMI node ID.
e DATA_H[09:08] identifies one of four outstanding commands.

ccu

1D = A (BIT) ID = A (BIT)

T

!
(o] [omx] | [oex] [oorx

1D« A (FIELD) § tm.unsm)
< JXD1 >
XJAD

ID CONTROL

T
T =

110 CONTROLLER 1/0 CONTROLLER
B c

MR_X0936_89

Figure 6-29 ID Field Coding

DIGITAL INTERNAL USE ONLY

/0O Control Unit 6-43

6.6.2 JXDI Cycles 2and 3
This section describes cycles 2 and 3 of a JXDI transfer.

6.6.2.1 Address Field Coding
Figure 6-30 shows the address fields.

The JBox supports wrapped read requests on quadword boundaries.

For longword-length transactions, ADDR[01:00] is only significant when dealing with a
VAXBI word-mode or byte-mode transaction in I/O space. ADDR[01] is required for word
mode, and ADDR[01:00] is required for byte mode.

Quadword and octaword write transfers are quadword-aligned, and the lower bits of the
address are ignored.

Reads, however, use the lower three bits of the address when main memory does a
wraparound read on a quadword boundary. Wraparound reads allow the SCU to return
the requested quadword first, followed by the remaining quadwords in the block.

On longword reads to I/O space, ADDR[01] is used for explicit read word functions on
the XMI bus. When a read is directed toward a word-oriented device, ADDR[01] specifies
which word is read from the XMI device. If ADDR[01] is set, the high word, D[31:16], is
read. If ADDR[01] is zero, the low word, D[15:00], is read.

The data returned on the opposite word of that specified has correct parity, although its
data is unspecified. In the case of a longword-oriented device, ADDR[01] is ignored. An
address bit and a full longword of data are returned for a read operation.

BIT BIT
WORD 15 14 13 12 11 10 09 08{07 06 05 04 03 02 01 00
0 10 R s] LEN] cMD
! > XJA BUFFER
2
3 n[c|7]e[s]4 s]A]9|e|a|z|1
4 BYTE 4 BYTE © JDAX
5 BYTE 5 BYTE 1
6 BYTE 6 BYTE 2
7 BYTE 7 BYTE 3

R = RESERVED
S « SEQUENCE BIT NOT USED

[dadi e I N -— - . .- - L R R S - e s e .- o -—— am -

I ADRX MCAs i

ADRO ADR3 ADR2 ADR1]

o [[B & K
(] BllE=lRE [FRE O EEEN e

1
1
!
1 i
! i
i 1
. 4

MR_X0837_0s

Figure 6-30 Address Field Coding

DIGITAL INTERNAL USE ONLY

6—44 /O Control Unit

XJA asserts ADDR[01:00] based on the contents of the mask field in the DATA_H[15:12]
field of word 2 of the CPU-type transaction as listed in Table 6-12. The mask field is
valid and significant for both CPU write- and read-type transactions.

Table 6-12 Mask Field

Mask Bit XMI Address [01:00]
0000 00
0001 00
0010 01
0100 10
1000 11
0011 00
1100 10
1111 00

6.6.3 JXDI Cycle 4
This section describes cycle 4 of a JXDI transfer.

6.6.3.1 Mask Field Coding

Word 3 of a DMA write packet contains the byte mask bits for the write data. Bits
{001, [01], [02], and [03] correspond to bytes 0, 1, 2, and 3. Bits [04], [05], [06], and [07]
correspond to bytes 8, 9, A, and B. Figure 6-31 shows the mask field. Figure 6-32 shows
how the MMCX MCA receives the mask bits from the data switch.

When DMA write transactions are less than 16 bytes in length, the unused mask bits are
deasserted. In all packets, the JXDI parity bits reflect the correct parity over the JXDI
data fields.

BIT BIT
WORD | .. 44 43 12 11 10 08 08|07 06 05 04 03 02 01 00
rlRr| 0 Rls|ien | cmo
A [29:26, 05:02] A [13:10} [09:06]

A[21:18] [17:14]

olojvljlo|jw|lalwjnv| o

-
o

1

R = RESERVED
S « SEQUENCE BIT NOT USED

WR_X0938_8%

Figure 6-31 Mask Field

DIGITAL INTERNAL USE ONLY

1/0 Control Unit 6-45

DBX
MMCX BYTE

—"
l l | L 11 | l
l;sgi] |osos| [osos| |osoz] l%sro_ﬂ Lojsﬂ

~_

BYTE

DBO MASK DAO
RECEIVE BITS RECEIVE
BUFFER BUFFER
JDAT JOAD

MR_X0939_89

Figure 6-32 Mask Field to MMCX MCA

The DATA_H[15:12] field of word 2 of a CPU write transaction contains the byte mask for
the longword of write data in the packet. DATA_H[15] is the mask bit for byte 3, [14] for
byte 2, [13] for byte 1, and [12] for byte 0.

6.6.4 JXDICycle 5
This section describes cycle 5 of a JXDI transfer.

6.6.4.1 Data Field Coding
Figure 6-33 shows how longword 0 is encoded in the DMA write packet.

WORD 15 14 13 1Bz»IT11 10 09 08|07 06 05 ofl;:a 02 01 00
0 n]al D nlsILENl CMD
1 A [29:26, 05:02) A {13:10} [09:08]
2 A [33:30, 25:22) A [21:18] [17:14)
2 |rlefofclrfe]s]a |8]

4 BYTE 4
5 BYTE 5
6 BYTE 6
7 BYTE 7
8 BYTE C BYTE 8
9 BYTD D BYTE 9
10 BYTE E BYTE A
1 BYTE F BYTE B

R = RESERVED
S = SEQUENCE BIT NOT USED

MR_X0940_89

Figure 6-33 Data Field Coding

DIGITAL INTERNAL USE ONLY

646 1/0 Control Unit

Figure 6-34 shows how the quadwords are encoded in the packet.
Figure 6-35 shows how the data is sent to the data switch MCAs.

Figure 6-36 shows how JDAX sends the data to the data switch MCA data-slices. Each
DSXX MCA receives slices of the data, beginning of the data bits, mask bits [03:00], and
longword parity bits coming from the JDAX MCA.

WORD | 15 14 13 152”11 10 09 08|07 06 05 ofrcr)a 02 01 00
o |r[R] D Rls|en | cmo
1 A [29:26, 05:02] A [13:10] [09:06]
2 A [33:30, 25:22] A [21:18] [17:14]
3 D c] 7] 3
p ~N
5
- » QUADWORD 0
7
8 BYTE C .<
9 8YTD D BYTE 8
> QUADWORD 1
10 BYTE E BYTE A
1 BYTE F BYTE B y

R = RESERVED
S = SEQUENCE BIT NOT USED

MR_X0941_89

Figure 6-34 Quadword Format

DIGITAL INTERNAL USE ONLY

LONGWORDS 1, 3, 5, 7 (ODD)

MEMORY ARRAY CARDS

-

oBO

MDP1

Kt:

MDPO

=

DBO
DS03, DS04, DSOS

2

DS00, DSO1, DSO2

=

DBO

I/0 Control Unit 647

@ LONGWORDS 0, 2, 4, 6 (EVEN)
DAO

I JDB1 | I JDA1 I

I JDBO l | JDAO l

-

[15:08] @ [07:00)

XJAD

MR_X0842_89
Figure 6-35 Data Path from the Receive Buffer to the Data Switch
33 32 31 26 25 1312 00
t ! '
BOD I | |
M([03:00] ! I I
—_ | | |
| {]
12 00'12 00’
DSO01 MCA DS00 MCA
JDAO_DSXX_DAT_H[12:00] JDAO_DSXO_DAT_H[12:00]
JDAO_DSXX_DAT_H[25:13] JDAO_DSX1_DAT_H[12:00}
JDAO_DSXX_DAT_H[31:26] JDAO_DSX2_DAT_H[05:00]
MR_X0943_89

Figure 6-36 Data Path from JDAX to the Data Switch

DIGITAL INTERNAL USE ONLY

6-48 /0 Control Unit

Figure 6-37 shows how the data switch MCAs send data to JDBX. Each DSXX MCA
sends slices of the data, beginning of the data bits, mask bits [03:00], and longword
parity bits to the JDBX MCA.

33 32 31 26 25 1312 00

DATA P1|PO| NC

BOD

12 00'12 00

DS01 MCA DS00 MCA

DSO00_JDBX_DAT_H[12:00) DSXX_JDBO_DAT_H[12:00]
DS01_JOBX_DAT_H[12:00] DSXX_JDBO_DAT_H[25:13]
DS02_JDBX_DAT_H{05:00] DSXX_JDBO_DAT_H[31:26]
DS02_JDBX_DAT_H{10:07] NC{03:00}
MR_X0944_89

Figure 6-37 Data Path from Data Switch to JDBX

6.7 ICU-to-XJA Interface
Figure 6-38 shows the ICU-to-XJA handshaking signals.

04 03 02 01 00

JDCX_XJAO_HNDSHK_H[04:00]

ICU
CONTROL

JDCX

JDCX_XJAO_LOOP

JDCX_XJAO_XFERRETRY_H

JDCX_XJAO_XFERACK_H

JDCX_XJAO_BUFEMPTD_H

JDCX_XJAO_CMDAVAIL_H

MR_X0945_89

Figure 6-38 ICU-to-XJA Handshaking Signals

DIGITAL INTERNAL USE ONLY

/0O Control Unit 649

6.7.1 Key Signals
Table 6-13 lists the ICU-to-XJA signals.

Table 6-13 ICU-to-XJA Signals

Signal Description

SPU_XJA_STOPPED_L This signal is generated by SPU and is sent to XJA through the ICU.
It informs XJA of impending clock stoppage. Upon receiving this
signal, XJA completes the current JXDI transmission (if any) and
does not initiate new transmissions until the signal is negated. XJA_
SPU_STOPPED_L informs SPU that XJA is quiet and that clocks can

be stopped.

ICU_DAT _H[15:00] This is the data word transferred from ICU to XJA that carries
command, address, and data information.

ICU_PAR_HJ[01:00] This field is the odd parity over ICU_DATA_H[15:00]. PAR_H[00]

corresponds to DATA_H[07:00], and PAR_H[01] corresponds to
DATA_H[15:08]. A parity bit is asserted when the number of bits
in the data field is even.

ICU_CMDAVAIL_H This signal is asserted on the cycle before ICU starts transmitting a
transaction packet of information. ICU asserts ICU_CMDAVAIL only
if an XJA buffer is available, as indicated by XJA_BUFEMPTD_H.

ICU_XFERACK_H This signal is asserted following the last transfer to indicate that
an XJA-t0-ICU transaction packet was received without error. This
signal allows XJA to purge the corresponding transmit buffer.

ICU_XFERRETRY_H This signal is asserted following the last transfer of a transaction.
This indicates that a parity error was detected by the ICU receive
logic during an XJA-to-ICU transaction and that a retry is required.

ICU_BUFEMPTD_H This signal indicates that ICU has successfully emptied a JXDI
receive buffer by sending the transaction to the JBox. ICU asserts
this signal for exactly one JXDI cycle every time it has emptied a

JXDI receive buffer.
ICU_CLKJ_H[02:00] This signal is a system clock, a 50% duty cycle clock signal that ICU
sends to XJA for receiving the JXDI data wires. _
ICU_LOOP_H This signal, when asserted, forces XJA to loopback directly all JXDI

signals sourced by ICU. For example, ICU_CLKJ_H[02] loops as
XJA_CLKX_H[02]. In addition, SPU_RESET_H loops to become
XJA_FATALERR_H.

DIGITAL INTERNAL USE ONLY

6-50 /O Control Unit

6.7.2 Commands

Table 6—14 lists the possible JXDI command codes encoded in the DATA_H[03:00] field of
word 0 of a JXDI transaction.

Table 6-14 ICU-to-XJA Commands
Code Command Description

0000 CPU read ICU sends the CPU read command to access registers
in the XJAs. One of the four CPUs or the SPU wants
to read a register in the XJA IRCX. The CCU_DAX_
IOSEL{01:00] indicates where this request is to be

sent.
0001 - Reserved.
0010 DMA read data ICU sends a DMA read data return command in
return . response to a previous DMA read request from an XJA.
0011 - Reserved.
0100 CPU write ICU sends the CPU write command to write to

registers in the XJAs. It can be a longword or byte
access. The CCU_DAX_IOSEL_H[01:00] indicates to
which XJA this request is to be sent.

0101 - | Reserved.

0110 - Reserved.

0111 - Reserved.

1000 - Reserved.

1001 DMA read lock ICU sends the DMA read lock status command to
status notify the XJA or SPU that memory data was not

obtained for a previous DMA read lock request.

1010 DMA read error ICU sends the DMA read error status command when
status IPAMM detects a nonexistent memory condition.

1011 - Reserved.

1100 - Reserved.

1101 - Reserved.

1110 - Reserved.

1111 - Reserved.

DIGITAL INTERNAL USE ONLY

110 Control Unit 6-51

6.7.3 Transferring a Packet from ICU to XJA
Figure 6-39 shows the sequence of steps in the transfer of a packet from ICU to an XJA.
©® JDCX sends command available to the XCE MCA in the XJA.

©® In the next cycle, J DCX sends word 0 of the packet. JDCX continues to transfer each
word of the packet until the transfer is complete. JDCX sends parity in each transfer
for parity checking. The parity is sent in the same cycle as the data.

© XCE in the XJA sends transfer acknowledge upon successful receipt of the packet.
XCE sends transfer retry if the XJA was busy transmitting a packet or if a parity
error was detected.

© XJA unloads its receive buffer, sends its contents to an XMI device, and sends buffer
empty to ICU.

Figure 6—40 shows the ICU-to-XJA control interface.

Icu XJA

ICU_CMDAVAIL_H
°

ICU_DAT_H[15:00]

JDBX ‘ XDE

ICU_PAR_H[01:00]

XJA_XFERACK_H

XJA_XFERRETRY_H ‘
JDCX XCE

XJA_BUFEMPTD_H ‘

MR_X0g948_89

Figure 6-39 Transferring a Packet from the ICU to XJA

1CU_CLKJ_H[02:00]

XJA_CLKX_H[02:00]

SPU_RESET_L XJA

JXDI
CONTROL
INTERFACE

tcu
CONTROL SPU_CLK_STOP_L
INTERFACE

XJA_FATAL_ERR_H

ICU_LOOP_H

JOCX XCE

MR_X0947_89

Figure 6-40 ICU-to-XJA Control Interface

DIGITAL INTERNAL USE ONLY

6-52 /0 Control Unit

6.8 XJA-to-ICU Interface
Figure 6—41 shows the XJA-to-ICU handshaking signals.

XJAO_JDCX_FATALERR_H

XJAO_JDCX_XFERRETRY_H

XJAO_JDCX_XFERACK_H -

XJAO_JDCX_BUFEMPTD_H

JDCX_CCU_DAX_FATAL_H

JDCX_CCU_ID_H

XJAO_JDCX_CMDAVAIL_H
|
04 03 02 o1 00
XJAO_JDCX_HNDSHK_H[04:00] 1y JDCX ere | xrer | xFER | BUF | cmD
CONTROL |—{HANDSHAKE
o YA ERR | RTRY | ACK | EMTD | avAIlL
JDCX JDCX
Icu
CONTROL

OUTPUT
LATCH

JDCX_CCU_BUF_AVAIL_H

JDCX_CCU_LDCMD_H

z

J0CX

Figure 6-41 XJA-to-ICU Handshaking Signals

6.8.1 Key Signals
Table 6-15 lists the signals from XJA to ICU.

Table 6-15 XJA-to-ICU Signals

MR_X0048_88

Signal Description

XJA_DAT_H[15:00] This is the data word transferred from XJA to ICU that carries

command, address, and data information.

XJA_PAR_H[01:00] This field is the odd parity over XJA_DATA_H[15:00]. XJA_PAR_
H[00] corresponds to XJA DATA_H[07:00], and XJA_PAR _H[01]
corresponds to XJA DATA_H[15:08]. A parity bit is asserted when
the number of bits asserted in the data field is even.

XJA_CMDAVAIL_H This signal is asserted on the cycle before XJA starts transmitting a
packet of information to ICU. XJA asserts XJA_CMDAVAIL only if an
ICU buffer is available, as indicated by ICU_BUFEMPTD_H.

XJA XFERACK_H This signal is asserted following the last transfer to indicate that
an ICU-to-XJA transaction packet was received without error. This
signal allows ICU to purge the corresponding transmit buffer, if XJA_

XFERACK_H is asserted.

XJA_XFERRETRY_H This signal is asserted following the last transfer of a transaction.
This indicates that a parity error was detected by the XJA receive
logic during an ICU-to-XJA transaction and that a retry is required.

XJA_BUFEMPTD_H This signal indicates that XJA has successfully emptied a JXDI
receive buffer either by initiating the appropriate XMI transaction or
by carrying out the specified internal operation (register write, and so
on). XJA asserts this signal for exactly one JXDI cycle every time it

empties a JXDI receive buffer.

DIGITAL INTERNAL USE ONLY

Table 6-15 (Cont.) XJA-to-ICU Signals

110 Control Unit 6-53

Signal

Description

XJA_SPU_STOPPED_L

XJA_FATALERR H

This signal is a response to SPU_CLKSTOP_L. XJA sends XJA_SPU_
STOPPED_L when the current transaction is completed. SPU does
not stop the ICU clocks until XJA_SPU_STOPPED_L is received.

This signal, when asserted, indicates to ICU that this XJA has
detected a fatal error and may not be capab]e of responding to
further CPU requests.

6.8.2 Commands

Table 6-16 lists the possible JXDI command codes encoded in the DATA_H[03:00] field of
word 0 of a JXDI transaction. Figure 6—42 shows the commands that XJA sends to the

CCU and IRCX MCA.

ICU
(XJA COMMANDS)

DMA READ

DMA READ LOCK

DMA WRITE

DMA WRITE UNLOCK
CPU_READ DATA RETURN
INCOMPLETE 1/0 READ
170 REGISTER RESPONSE

CcCcu
MCU

IRCX
MCA

ENCODED IPL CODE

MR_X0949_389

Figure 6-42 XJA Command Summary

DIGITAL INTERNAL USE ONLY

6-54

Table 6-16 XJA-to-ICU Commands

1/0 Control Unit

Code Com_mand Description
0000 DMA read XJA sends the DMA read command to read data from
main memory.
0001 DMA read lock XJA sends the DMA read lock command to read data and
‘ to interlock the address in main memory.
0010 CPU read data XJA sends the CPU return read data command with the
return data, in response to a previous CPU read request or SPU
read IO register command.
0011 - Reserved.
0100 DMA write XJA sends the DMA write command to write 8 or 16 bytes
to main memory.
0101 DMA write unlock XJA sends the DMA write unlock request to write and
request unlock an address in main memory. XJA can send 8 or 16
bytes of data.
0110 - Reserved.
0111 - Reserved.
1000 Interrupt request XJA sends an interrupt request and corresponding IPL to
the IRCX MCA. IRCX sends the interrupt to the arbiter.
If the interrupt has the highest priority, IRCX sends
an interrupt code to the EBox, where the corresponding
interrupt service routine is executed.
1001 - Reserved.
1010 CPU read error XJA sends a CPU read error status command that
status contains a valid XMI read error, an XMI timeout, or a
read XJA register error for an SPU read I/O request, or
CCU sends a CPU read error status for an incomplete /O
read.
1011 CPU write complete ICU sends the CPU write complete command to the CCU
MCU upon the completion of a CPU write request.
1100 - Reserved.
1101 - Reserved.
1110 - Reserved.
1111 - Reserved.

DIGITAL INTERNAL USE ONLY

/O Control Unit 6-55

6.8.3 Transferring a Packet from an XJA to ICU
Figure 643 shows the sequence of steps in the transfer of a packet from an XJA to ICU.
XCE MCA sends command available to ICU.

In the next cycle, XCE in the XJA sends word 0 of the packet. XCE continues to
transfer each word of the packet until the packet transfer is complete. XCE sends
parity for the parity checking of each data transfer.

® JDCX sends transfer acknowledge upon successful receipt of the packet. JDCX sends
transfer retry if ICU or JBox detects a parity error.

©® JDCX unloads its receive buffer and sends buffer empty to XJA.

Icu

JDAX

JDCX

XJA_CMDAVAIL_H

XJA_DAT_H[15:00]

XJA_PAR_H[01:00]

ICU_XFERACK_H

ICU_XFERRETRY_H

{CU_BUFEMPTD_H

XJA

o=

XDE

XCE

MR_X0950_89

Figure 6-43 Transferring a Packet from XJA to ICU

DIGITAL INTERNAL USE ONLY

6-56 /O Contro! Unit

6.9 XJA Transactions

This section describes the sequences for CPU, DMA, and interrupt transactions.

6.9.1 CPU Read Transaction

The following steps summarize a CPU read operation in which the CPU reads the
contents of an I/O register in the XJA module. Figure 644 shows the sequence.

© EBox sends the 1/O register read command, along with the address of the register, to

MBox.

MBox determines that the address is for /O space and sends the I/O register read
and the address to JBox (CCU MCU).

CCU sends the CPU read command, the I/O select specifying which XJA, and the
address of the register to ICU.

ICU sends the CPU read and address to XJA. Figure 6-45 shows the CPU read
packet.

XJA responds with the CPU read data return, address, and contents of the register
to ICU. Figure 6—46 shows the CPU read data return packet. If an error occurs, the
XJA responds with the CPU read error status. Figure 647 shows the CPU read
error status packet.

ICU sends the CPU read data return to the CCU MCU.
CCU sends the return /O register read and the contents of the register to CPU.

MBox receives the command, loads the refill buffer with the data, and sends the data
to EBox.

DIGITAL INTERNAL USE ONLY

o e v e == e e

} CPU

10 REGISTER
READ COMMAND

EBOX
/0 DATA

1/O REGISTER
READ

/0 Control Unit 6-57

170 REGISTER
READ RETURN

I
}
1
MBOX !
1
1
1
I

Figure 6-44 CPU Read Operation

WORD BIT BIT
15 14 13 12 11 10 09 08|07 06 05 04 03 02 01 00
0 R|r| 1D rlr[r|R] cowp
1 A [29:26, 05:02) A [13:10] [0806]
2 mask* | aj2si2z) A[2118] [17:14]

R = RESERVED
*SPECIFIES ADDRESS BITS [01:00]

MR_X0952_89

Figure 6-45 CPU Read Packet

JBOX
CPU CPU READ
READ DATA RETURN
Icu
CcPU CPU READ
READ DATA RETURN
XJA

MR_X095+_88

DIGITAL INTERNAL USE ONLY

6-58 1/0 Control Unit

WORD BIT BIT
15 14 13 12 11 10 09 08 (07 06 05 04 03 02 0t 00
0 RIR] 1D R|R|RIRI CMD
1 RESERVED RESERVED
2 RESERVED " RESERVED
3 RESERVED RESERVED
4 RESERVED BYTE 0
5 RESERVED BYTE 1
6 RESERVED BYTE 2
7 RESERVED BYTE 3

R = RESERVED

MR_X0953_89

Figure 6-46 CPU Read Data Return Packet

BIT BIT
WORD 15 14 13 12 11 10 09 0807 06 05 04 03 02 01 00
0 rlr| 1D rRlr|R|[R] omp

R = RESERVED
MR_X0954_89

Figure 6-47 CPU Read Error Status Packet

6.9.2 CPU Write Transaction

The following steps summarize a CPU write operation in which CPU writes to an 1/O
register in the XJA module. Figure 6—48 shows the sequence.

EBox sends the I/O register write, address of an XJA register, and data to MBox.
MBox sends the I/O register write, address, and data to JBox.

CCU sends the CPU write, tag sends the address, and DAX/DBX sends the data to
ICU.

ICU sends the CPU write, address, and data to XJA. Figure 6—49 shows the CPU
write packet.

ICU sends the CCU write complete to CCU.

DIGITAL INTERNAL USE ONLY

/O Control Unit 6-59

o ————— e = ———— =
i cCPU !
1 i
1 /0 REGISTER { /O REGISTER
I ‘ WRITE e , WRITE
1 I
| EBOX MBOX i JBOX
| i
i | 0
| |
! | CPU WRITE, CPU WRITE
R L DATA COMPLETE
Icu
CPU WRITE,
DATA
Y
XJA
MR_X0855_89
Figure 6-48 CPU Write Operation
WORD BIT BIT
15 14 13 12 11 10 09 08{07 06 05 04 03 02 01 0D
) RIR| 1D RirRIR[R] cmo
1 A [29:26, 05.02) A [1310] [09:06]
2 MASK j A (25 22] A (21:18] [17:14]
3 c 00 00 0 0 O BYTE 0
4 0 6 0 60 0 0 O BYTE 1
s 6 00 00 0 0 0 BYTE 2
6 0 0 0 0 00 o BYTE 3

R = RESERVED

MR_X0956_89

Figure 6-49 CPU Write Packet

DIGITAL INTERNAL USE ONLY

6-60 1/0 Contro! Unit

6.9.3 DMA Read Transaction

The following steps summarize a DMA read operation in which an XMI device reads data
from main memory. The XMI device sends a DMA read command, address, and length to
the XJA. Figure 6-50 shows the DMA read sequence.

XJA sends the DMA read, address, and length to ICU. Figure 6-51 shows the DMA
read packet.

ICU sends the DMA read and length to the CCU MCU and the address to the tag
MCU.

CCU sends the DMA read data return, the tag MCU sends the address, and
DAX/DBX sends the data to ICU. CCU sends the DMA read nonexistent memory
to ICU if JBox detects a nonexistent memory condition for the address sent with
the DMA read command. CCU sends the DMA lock deny to ICU if the address is
previously locked by another port.

ICU sends a DMA read data return command and the data to XJA. Figure 6-52
shows the DMA read data return packet.

ICU sends the DMA read nonexistent memory status if the JBox detects a
nonexistent memory condition for the address sent with the DMA read command.
Figure 6-53 shows the DMA read error status packet.

ICU sends the DMA lock deny status if the JBox determines that the address is
locked by another port.

JBOX

DMA DMA READ
READ DATA RETURN

IcU

DMA DMA READ
READ DATA RETURN

XJA

MR_X0957_8%

Figure 6-50 DMA Read Operation

DIGITAL INTERNAL USE ONLY

BIT BIT

WORD |,5 44 13 12 11 10 09 08 [07 06 05 04 03 02 01 00
0 rlr| 1D rRlr[r|r] cmp
1 A [29:26, 05:02] A [13:10] [09:06)
2 MASKx | A ([25:22] A [21:18] [17:14)

R = RESERVED
*SPECIFIES ADDRESS BITS [01:00]

MR_X0958_89
Figure 6-51 DMA Read Packet
WORD BIT BIT
15 14 13 12 11 10 09 08|07 06 05 04 03 02 01 0O
) RIR| ™ Ris|Len | cm
1 BYTE 4 BYTE O
2 BYTE § BYTE 1
3 BYTE & BYTE 2
4 BYTE 7 BYTE 3
5 BYTE C BYTE 8
6 BYTE D BYTE 9
7 BYTE E BYTE A
8 BYTE F BYTE B

R = RESERVED
S = SEQUENCE BIT NOT USED

MR_X0958_8¢

Figure 6-52 DMA Read Return Packet

BIT BIT
WORD .o 44 43 12 11 10 08 08 |07 06 05 04 03 02 01 0O
) Rlr| 10 R]s‘n]n] cMD

R = RESERVED
S = SEQUENCE BIT NOT USED

MR_X0960_89

Figure 6-53 DMA Read Error Packet

/0 Control Unit 6-61

DIGITAL INTERNAL USE ONLY

6-62 /O Control Unit

6.9.4 DMA Write Transaction

The following steps summarize a DMA write operation in which an XMI device writes
data to main memory. The XMI device sends the DMA write, address, and data to XJA.
Figure 6-54 shows the sequence for a DMA write operation.

1. XJA sends the DMA write, address, and data to ICU. Figure 6-55 shows the DMA
write packet.

2. ICU sends the DMA write to the CCU MCU, the address to the tag MCU, and the
data to the DAX/DBX MCUs.

A DMA write unlock operation is similar to a DMA write, except that the previously
acquired lock is released for a DMA write command.

MMU

DATA

ACU

DATA

JBOX

DMA WRITE,
DATA

IcyU

DMA WRITE,
DATA

XJA

MR_X0961_89

Figure 6-54 DMA Write Operation

DIGITAL INTERNAL USE ONLY

WORD BIT BIT
15 14 13 12 11 10 09 08]07 06 05 04 03 02 01 00

0 R]RI tD RIS]LENI CMD

1 A [29:26, 05:02] A [13:10] {09:06]

2 A [33:30, 25:22) A[21:18) [17:14]

s [rlelole] s ls [«]~ls s sz o
4 BYTE 4 BYTE O

5 BYTE S BYTE 1

[BYTE 6 BYTE 2

7 BYTE 7 BYTE 3

8 BYTE C BYTE 8

9 BYTE D BYTE 9

10 BYTE E BYTE A
1 BYTE F BYTE B

R = RESERVED
S = SEQUENCE BIT NOT USED

MR_X0862_

Figure 6-55 DMA Write Packet

6.9.5 Interrupt Transactions

The following steps summarize an interrupt operation for a vectored interrupt.

Figure 6-56 shows the sequence. See Section 6.14 for more details.

8s

/O Control Unit 6-63

© XJA sends the interrupt and IPL to ICU. Figure 6-57 shows the interrupt packet.
® ICU sends the interrupt and IPL to IRCX.
© IRCX sends IPL to the EBox.

IPL iPL
A
INTERRUPT
XJA
MR_X09863_89
Figure 6-56 Interrupt Operation

DIGITAL INTERNAL USE ONLY

6-64 1/0 Control Unit

WORD

BIT BIT
15 14 13 12 11 10 08 08|07 06 OS 04 03 02 01 0C

0 RESERVED R| Rl 1PL I CMD

R =« RESERVED

MR_X0964_89

Figure 6-57 Interrupt Packet

6.10 SPU-to-ICU Communication Using Packets

SPU communicates with ICU using the DMA, ECC, I/O, and interrupt transactions. The
transactions use packets in which addresses are quadword-aligned, and parity must be
correct for all valid and invalid bytes. Byte wrapping is not supported. The packets

are transferred in 14 cycles, 1 byte at a time, and data context cannot be longer than a
quadword.

The four kinds of transactions are as follows:

DMA transactions are reads, writes, read locks, or write unlocks. DMA transactions
can be up to a quadword in length.

I/O transactions access the I/O portion of the VAX physical address space.

Interrupt transactions notify the operating system of a console terminal receive,
console terminal transmit, console storage device receive, console storage device
transmit, powerfail, halt CPU, or keep-alive interrupt.

ECC transactions notify SPU that the error checking and correction logic has detected »
an error and that SCU is sending the ECC address and the syndrome bits for error
reporting and logging.

6.10.1 DMA Packet
Figure 6-58 shows the SPU DMA packet.
The fields of the SPU DMA write packet are as follows:

Command field — This 4-bit field defines the action taken on receipt of the packet.
Tables 6-20 and 6-22 list the SPU and ICU DMA commands.

Address field — This field consists of the high 32 bits of a 34-bit address (quadword-
aligned). For reads, this field indicates the location to be read. For writes, this field
indicates the location to be written. For data packets returned in response to a read
request, this field is not used.

DMA mask field — For writes, this 8-bit field indicates which of the 8 bytes of a
quadword are to be written. For all other transactions, this field is not used.

Data byte field — For writes or packets returning requested read data, this field
contains the quadword of data. This field is not used for read, return read error, or
read lock deny messages.

Table 617 illustrates the DMA mask field.

DIGITAL INTERNAL USE ONLY

00
01
02
03
04
0s
06
07
o8
09
10
1
12
13

07 04 03 00
DON'T CARE CMD [03:00]
ADDR [29:26} ADDR [13:10}
ADDR {05:02) ADDR [09:06)

ADDR [33:30])

ADDR [21:18]

ADDR [25:22)

ADDR [17:14]

MASK [07:04]

MASK [03:00)

DATA [35:32) DATA [03:00)
DATA [39:36) DATA [07:04]
DATA [43:40] DATA [11:08]

DATA [47:44)

DATA [15:12)

DATA [S1:48)

DATA [19:16]

DATA [55:52) DATA (23:20)
DATA [59:56] DATA [27:24]
DATA [63:60) DATA [31:28]

MR_X0441_83

Figure 6-58 SPU DMA Packet

Table 6-17 DMA Mask

1/0 Control Unit 6-65

Mask Code

Valid Byte

QOO b W N - O

DATA 07:00
DATA 15:08
DATA 23:16
DATA 31:24
DATA 39:32
DATA 47:40
DATA 55:48
DATA 63:56

DIGITAL INTERNAL USE ONLY

6-66 /0O Control Unit

6.10.2 1/O Packet
Figure 6-59 shows the SPU I/O packet.
The fields of the SPU I/O packet are as follows:

Command field — This 4-bit field defines the action taken on receipt of the packet.
Tables 6—20 and 6-22 list the SPU and ICU commands.

Address field — (Address [29:02]). For reads, this field indicates the location to
be read. For writes, this field indicates the location to be written. For data packets
returned in response to a read request, this field is unused.

Mask field — (Address [33:30]). The high four bits of the address provide byte
masking for word- or byte-oriented I/O devices.

Data byte field — For writes or packets returning requested read data, this field
contains the longword of data. In the case of nonlongword transfers, any masked
bytes may be used. For read requests, this field is not used.

Table 6-18 illustrates the address masks.

07 04 03 00
DON'T CARE CMD [03:00}
ADDR [29:26] ADDR [13:10}
ADDR [05:02) ADDR [09:06]

ADDR/MASK [33:30] ADDR [21:18]
ADDR [25:22] ADDR [17°14]
DON'T CARE DON'T CARE
DON'T CARE DATA [03:00]
DON'T CARE DATA [07:04)
DON'T CARE DATA [11:08]
DON'T CARE DATA [15:12)
DON'T CARE DATA [19:16)
DON'T CARE DATA [23°20]
DON'T CARE DATA [27:24]
DON'T CARE DATA [31:28)

MR_X0442_89

Figure 6-59 SPU 1/O Packet

Table 6-18 Address Mask

Mask Valid Byte
30 DATA 07:00
31 DATA 15:08
32 DATA 23:16
33 DATA 31:24

DIGITAL INTERNAL USE ONLY

6.10.3 ECC Packet

Figure 6—60 shows the SPU ECC packet.
The fields of the SPU ECC packet are as follows:

e Command field — This 4-bit field defines the action taken on receipt of the packet.
¢ ECC address field — This field consists of the high 32 bits of the 34-bit address in

which an ECC error has been detected.

I/O Contro! Unit 6-67

e ECC syndrome field — The 32-bit error syndrome for the address where ECC
failed. This packet type is only sent by the JBox.

07

04

03

00

DON'T CARE

CMD [03:00]

ECC ADDR [29:26)

ECC ADDR [123:10)

ECC ADDR {05:02]

ECC ADDR [09:06}

ECC ADDR [33.30]

ECC ADDR [21:18]

ECC ADDR [25:22]

ECC ADDR [17:14]

DON'T CARE

DON'T CARE

ECC ADDR [29:26]

ECC ADDR [13:10]

ECC ADDR [05:02]

ECC ADDR [09:06]

ECC ADDR (33°30]

ECC ADDR [21:18]

ECC ADDR [25:22]

ECC ADDR [17:14]

10 MDP1 ECC SYN {07.04] MDPO ECC SYN {07:04]
11 MDP1 ECC SYN [03:00) MDPO ECC SYN [03:00]
12 MDP1 ECC SYN [1512] MDPO ECC SYN [15:12)
13 MDP1 ECC SYN [11:08] MDPO ECC SYN [11:08]

MR_X0443_89

Figure 6-60 SPU ECC Packet

6.10.4 Interrupt Packet
SPU sends seven types of interrupts to the CPU in response to any of the following

events:

¢ Interrupt terminal receive

e Interrupt terminal transmit

e Interrupt console receive

¢ Interrupt console transmit

e Powerfail
* Console halt

o Keep alive
Figure 6-61 shows the SPU interrupt packet.

DIGITAL INTERNAL USE ONLY

6-68 /0 Control Unit

07 04 03 00
00 ID [03:00} CMD [03:00]
01 DON'T CARE DON'T CARE
02 DON'T CARE DON'T CARE
03 DON'T CARE DON'T CARE
04 DON'T CARE DON'T CARE
05 DON'T CARE DON'T CARE
06 DON'T CARE DON'T CARE
07 DON'T CARE DON'T CARE
o8 DON'T CARE DON'T CARE
09 DON'T CARE DON'T CARE
10 DON'T CARE DON'T CARE
11 DON'T CARE DON'T CARE
12 DON'T CARE DON'T CARE
13 DON'T CARE DON'T CARE

MR_X0444_89

Figure 6-61 SPU Interrupt Packet

The SPU uses two receive registers, RXCS and RXDB, to initiate console terminal receive
interrupts. The SPU uses two transmit registers, TXCS and TXDB, to initiate console
terminal transmit interrupts.

The SPU uses two receive registers, RXFCT and RXPRM, to initiate console storage
receive interrupts. The SPU uses two transmit registers, TXFCT and TXPRM, to initiate
console storage transmit interrupts.

The fields of the SPU interrupt packet are as follows:

¢ Command field — This 4-bit field defines the action taken upon receipt of the
packet. This packet type is only sent by the SPU.

¢ ID field — This 4-bit field indicates which of the four CPUs to interrupt. Table 6-19
lists the ID bits and corresponding CPUs.

Table 6-19 CPU IDs

ID Bit CPU

0 CPUO
1 CPU1
2 CPU2
3 CPU3

DIGITAL INTERNAL USE ONLY

I/0 Control Unit 6-69

6.11 ICU-to-SPU Interface
Figure 6—62 shows the ICU-to-SPU handshaking signals.

02 01 00

XMIT BUF

FRAME | GRANT | ERROR

MR_X0965_89%

Figure 6-62 ICU-to-SPU Handshaking Signals

6.11.1 Commands
Table 6-20 lists the ICU-to-SPU commands.

Table 6-20 ICU-to-SPU Commands

Command Code JBox Action

0000 Read register Sends the read register command to read a console
register that resides physically in the console
subsystem. The JBox can only have a single read
request outstanding at a given time. The I/O packet is
used.

0001 Write register Sends the write register command to write a console
register that resides physically in the console
subsystem. The I/O packet is used.

0010 Return DMA read Sends the return DMA read command to deliver read
data that was requested by a previous read request
referencing memory space. The DMA packet is used.

0011 Return I/O read Sends the return I/O read command to deliver read
data that was requested by a previous read request
referencing I/O space. The /O packet is used.

0100 Return read error Sends the return read error command to notify SPU
that read data, requested by a previous read request
(I/O or memory space), encountered an error condition.
This may be due to PAMMs detecting nonexistent
memory, memory detecting a double-bit error, or the
JBox detecting a fatal XJA or memory error. The DMA
packet is used.

0101 Write register 0 Sends the write register 0 command to report an ECC
write error register incident involving a memory access requested by SPU.
The data block includes the address of the error and an
error syndrome (total of eight bytes). The ECC packet
is used.

0110 Read lock denied Sends the read lock denied command to notify SPU
that a read lock request referencing memory space
encountered an existing lock. The requested data will
not be returned. The DMA packet is used.

DIGITAL INTERNAL USE ONLY

6-70 /O Control Unit

6.11.2 Transferring a Packet from the JBox (ICU) to the SPU

All transfers from ICU to SPU are synchronous with JDCX_CTLD_SPU_CLKJ_H. Before
sending a packet, the JBox monitors the buffer full status. When buffer full is deasserted,
the JBox asserts the transmit frame and places the first byte of the packet on DATA_
IN[07:00] and parity on PAR_IN[00] on the rising edge of the JBOX_CLK_H.

On the falling edge of JBOX_CLK_H, the SPU samples the transmit frame. If it is
asserted, the SPU clocks in the data and the parity bit. On each rising edge of the clock,
the JBox (receiving data from ICU) places a new data byte and parity bit on DATA_IN
and PAR_IN{00]. On each falling edge of the clock, the SPU reads in the data and the
parity bit.

The JBox deasserts transmit frame on the fifteenth rising edge of JBOX_CLK_H. The
state of the DATA_IN and PAR_IN lines is ignored. The SPU samples the transmit frame
on the next falling edge of the clock. On the next rising edge of the JBOX_CLK_H, the
SPU asserts buffer full, and if a parity error has been detected, also asserts PAR_ERR_
OUT_H. On the next falling edge of the clock, the JBox samples PAR_ERR_OUT_H to
verify that the transfer was successful. The SPU deasserts PAR_ERR_OUT_H on the first
rising edge of the JBOX_CLK_H, after the SPU has emptied its receive buffer (minimum
assertion is one clock period).

6.12 SPU-to-ICU Interface
Figure 6-63 shows the SPU-to-ICU handshaking signals.

03 02 [} 00

CLOCK

BUF
REQ ERR OFF

FULL

MR_X0966_89

Figure 6-63 SPU-to-ICU Handshaking Signals

6.12.1 Key Signals
Table 6-21 lists the SPU-to-ICU signals.

Table 6-21 SPU-to-ICU Signals

Signal Description

SPU_RESET_H A single-ended TTL level signal sourced by the service processor.

SPU_CLKSTOP_H A single-ended TTL level signal sourced by the service processor. It
warns XJA of impending SCU clock stops. Upon receiving this signal,
XJA finishes the current JXDI transmit transaction, if there is one, but
does not transmit new ones to ICU, even if signaled to retry through
ICU_XJA_XFERRETRY_H.

DIGITAL INTERNAL USE ONLY

6.12.2 Commands . :
‘Table 6-22 lists the SPU-to-ICU commands. Figure 6-64 shows the commands the SPU

sends to CCU, XJA, and IRCX.

/O Control Unit 6-71

Table 6-22 SPU-to-ICU Commands

Code Command SPU Action

0000 DMA read Sends the DMA read command and a quadword-aligned
address to read a valid memory space address. The SPU can
have only a single read request outstanding at a given time.

_ The DMA packet is used. :

0001 DMA write Sends the DMA write command to write to a valid memory
address. The DMA packet is used.

0010 DMA read lock Sends the DMA read lock command to read lock a valid

_ memory space. The SPU can have only a single read request
outstanding at a give time. The DMA packet is used.

0011 DMA write unlock Sends the DMA write unlock command to a valid memory
address. This must match a previous DMA read lock
request. The DMA packet is used.

0100 I/O read Sends the I/O read command to read a valid I/O space
address. The SPU can have only a single read request
outstanding at a given time. The IO packet is used.

0101 /O write Sends the VO write command to a valid I/O address. The 1/0
packet is used.

0110 Register return read Sends the register return read command to deliver read
data requested by a previous read register request. The I/O
packet is used.

0111 Interrupt terminal Sends the interrupt terminal receive command to interrupt

receive (TRX) the operating system due to console terminal receive. SPU
can select which CPU to interrupt using the ID field. The
interrupt packet is used.

1000 Interrupt terminal Sends the interrupt terminal transmit command to interrupt
transmit (TTX) the operating system due to console terminal transmit. SPU

can select which CPU to interrupt using the ID field. The
interrupt packet is used.

1001 Interrupt console Sends the interrupt console block storage receive command
block storage receive to interrupt the operating system due to console block
(SRX) storage receive. SPU can select which CPU to interrupt

using the ID field. The interrupt packet is used.

1010 Interrupt console Sends the interrupt console block storage transmit command
block storage to interrupt the operating system due to console block
transmit (STX) storage transmit. SPU can select which CPU to interrupt

using the ID field. The interrupt packet is used.

1011 Interrupt powerfail Sends the interrupt powerfail command to interrupt the
operating systems due to an impending power failure. SPU
can select which CPU to interrupt using the ID field. The
interrupt packet is used.

1100 Console halt Sends the console halt command to interrupt the operating

system in order to halt one or more of the CPUs. SPU
can select which CPU to interrupt using the ID field. The
interrupt packet is used.

DIGITAL INTERNAL USE ONLY

6-72 1/O Control Unit

Table 6-22 (Cont.) SPU-to-ICU Commands
Code Command SPU Action

1101 Keep alive Sends the keep-alive command to interrupt the operating
. system to prevent a keep-alive timeout. SPU can select
which CPU to interrupt using the ID field. The EBox helps
the console determine when the CPU is in a hung state. The
interrupt packet is used.

1110 - Spare.
1111 - Spare.

Icu -
(SPU COMMANDS)

REGISTER RETURN READ READ 110 INTERRUPT
170 WRITE WRITE 170 READ 10
DMA READ WRITE 1/0
DMA READ LOCK

DMA WRITE

DMA WRITE UNLOCK
1/0 REGISTER READ

ccu
MCuU

IRCX

XJA MCA

MR_X0967_89

Figure 6-64 SPU Command Summary

DIGITAL INTERNAL USE ONLY

/0 Contro! Unit 6-73

6.12.3 Transferring a Packet from the SPU to the JBox (ICU)

All transfers from the SPU to the JBox are synchronous with JDCX_CTLD_SPU_CLKJ_
H. The SPU sends all packets in 14 cycles (1 byte at a time). When the SPU sends

a packet, it asserts the buffer request on the rising edge of J BOX_CLK_H. The JBox
samples the buffer request on the falling edge of JBOX_CLK_H. If it is asserted, the
JBox asserts JDCX_CTLD_BUF_GRANT_H on the first rising edge of JBOX_CLK_H
after a buffer is available.

The SPU samples the buffer grant on the falling edge of JBOX_CLK_H. If it is asserted,
the SPU deasserts buffer request on the next rising edge of JBOX_CLK_H and places the
first data byte on DATA_OUT_H and parity on PAR_OUT[00]_H. The JBox sees buffer
request deasserted on the falling edge of JBOX_CLK_H and reads in the data and parity
bits on DATA_OUT and PAR_OUT.

On the next rising edge of JBOX_CLK_H, the JBox deasserts buffer grant. On the same
rising edge, the SPU clocks the next data byte and its parity bit. On the next 12 rising

edges of JBOX_CLK_H, the SPU sends the remaining data bytes and parity bit. On the
falling edges, the JBox reads the data and parity bits.

On the fifteenth rising edge of JBOX_CLK_H after the JBox deasserts the buffer grant, if
a parity error is detected, the JBox asserts PAR_ERR_IN_H and deasserts PAR_ERR_IN_
H on the next rising edge of the clock. The SPU samples PAR_ERR_IN_H on the falling
edge of JBOX_CLK_H to verify that the transfer was successful.

6.13 SPU Transactions

This section describes DMA, I/0, ECC, and interrupt transactions. CPU read and
write SPU register commands are also described. For more details on SPU packets,
see Section 6.10.

DIGITAL INTERNAL USE ONLY

6-74 1/0O Contro! Unit

6.13.1 CPU Read Transaction

The following steps summarize a CPU read in which the EBox reads the contents of an
SPU register. Figure 6—65 shows the sequence.

EBox sends the I/0 read register and the address of an SPU register to the MBox.
MBox sends the I/O read register and the address to the JBox.

CCU MCU sends the CPU read, and the tag MCU sends the address to ICU.

ICU sends the read register and the address to SPU.

SPU sends the register return read to ICU.

ICU sends the CPU read data return to CCU.

JBox sends the I/O register return and data to the MBox.

MBox loads the data into the refill buffer and sends it to the EBox.

P00 0000F0Q

/O REGISTER
READ

{10 REGISTER
‘ READ COMMAND °

|
|
1
}
|
£80OX MBOX : JBOX
1
I
I

1/0 REGISTER
170 DATA e READ RETURN ‘ o
__________________ 3 CPU CPU READ
READ DATA REGISTER

icu

REGISTE

READ R
REGISTER RETURN READ

SPU

MR_X0968_89

Figure 6-65 CPU Read SPU Register Operation

DIGITAL INTERNAL USE ONLY

IO Control Unit 6-75

6.13.2 CPU Write Transaction

Figure 666 shows the sequence of steps for a CPU write in which the EBox writes to an
SPU register.

© EBox sends the I/O register write, the address of an SPU register, and data to MBox.

® MBox sends the I/0 register write, address, and data to JBox.

©® CCU MCU sends the CPU write, the tag MCU sends address, and the DAX/DBX
MCUs send the data to ICU.

O ICU sends the register write, address, and data to SPU.

© ICU sends the write complete to CCU.

Fees T TTTTTTT 1

E ‘ |vIvORi8rEEGISTER e i I\,/VC;“F:_EEGISTER

I 1

: EBOX MBOX : JBOX

| I o

!' ————————————————— ‘l SJF;%LIJTE ggh'ATFELETE

Icu

REGISTER
WRITE

SPU

MR_X0969_89

Figure 6-66 CPU Write to an SPU Register

DIGITAL INTERNAL USE ONLY

6-76 /O Control Unit

6.13.3 1/O Read Transaction

Figure 6—67 shows the sequence of steps in an I/O read operation in which SPU reads the
contents of an XJA register.

SPU sends the I/O read and the address of the XJA register to ICU.

ICU sends the SPU read I/O to the CCU MCU and the address to the tag MCU.
CCU sends the SPU read 1/0, and the tag MCU sends the address to ICU.

ICU sends the CPU read and address to XJA.

XJA sends the CPU read data return with the data to ICU.

ICU sends the CPU read data return with the data to CCU.

CCU sends the SPU read data return, the tag MCU sends the address, and the
DBX/DAX MCUs send data to ICU.

ICU sends the return I/O read, address, and data to SPU.

®@ 0909060000 F0OC

JBOX

SPU SPU CPU SPU
READ READ READ READ
110 DATA DATA 110

RETURN | RETURN

icuU

1/0 SPU CPU CPU
READ READ READ READ
DATA DATA

RETURN | RETURN

SPU XJA

MR_X0970_8¢

Figure 6-67 SPU /O Read Operation

DIGITAL INTERNAL USE ONLY

1/0 Control Unit 6-77

Figure 6—-68 shows the sequence of steps in an I/O read operation in which SPU reads the
contents of an IRCX register.

SPU sends the I/O read and the address of the IRCX register to ICU.

ICU sends the SPU read I/O to the CCU MCU and the address to the tag MCU.
CCU sends the SPU read /O, ahd the tag MCU sends the address to ICU.

ICU sends the CPU read and address to the IRCX MCA.

IRCX sends the CPU read data return to the JBox.

CCU sends the SPU read data return, the tag MCU sends the address, and the
DBX/DAX MCUs send the data to ICU.

ICU sends the return I/O read, address, and data to SPU.

CPU READ
° DATA RETURN
JBOX

sPU SPU SPU
READ READ READ
110 DATA (e]
RETURN

© o
READ
o o

10 o
READ READ
DATA

SPU

MR_X08972_88

Figure 6-68 SPU Read IRCX Register

DIGITAL INTERNAL USE ONLY

6—-78 /O Control Unit

6.13.4 /O Write Transaction

Figure 6-69 shows the sequence of steps in an I/O write operation in which SPU writes
data to an XJA register.

© SPU sends the I/O write, the address of the XJA register, and the data to ICU.

ICU sends the CPU write to the JBox. JBox sends the CPU write to the CCU MCU,
the address to the tag MCU, and the data to the DAX/DBX MCUs.

(2]

©® CCU sends the CPU write, the tag MCU sends the address, and the DAX/DBX MCUs
send the data to ICU.

(4]

(5]

ICU sends the CPU write, address, and data to XJA.
ICU sends the write complete to CCU.

JBOX
cPU CPU WRITE
WRITE WRITE COMPLETE
icu
1o} CPU
WRITE WRITE
SPU XJA

MR_X097°_89

Figure 6-69 SPU /O Write Operation

DIGITAL INTERNAL USE ONLY

110 Control Unit 6-79

Figure 6-70 shows the sequence of steps in an I/O write operation in which SPU writes
data to an IRCX register.

© SPU sends the I/O write, the address of the IRCX register, and the data to ICU.

ICU sends the CPU write to the CCU MCU, the address to the tag MCU, and the
data to the DAX/DBX MCUs.

CCU sends the CPU write, the tag MCU sends the address, and the DAX/DBX MCUs
send the data to ICU.

(2]
(3]
® ICU sends the CPU write, address, and data to IRCX.
© ICU sends the write complete to CCU.

° CPU WRITE
JBOX
CPU WRITE CPU
WRITE COMPLETE WRITE
IRCX
Icu MCA
170 WRITE,
DATA

SPU

MR_X0973_8%

Figure 6-70 SPU Write IRCX Register

DIGITAL INTERNAL USE ONLY

6-80 /O Control Unit

6.13.5 DMA Read Transaction

Figure 6-71 shows the sequence of steps a DMA read operation in which SPU reads data

from main memory.

© SPU sends the DMA read and address to ICU.
® ICU sends the DMA read to the CCU MCU and the address to the tag MCU.

© CCU sends the SPU read data return, the tag MCU sends the address, and the
DAX/DBX MCUs send the data to ICU. CCU sends the return read error, if the JBox
detects a nonexistent memory condition for the address sent with the DMA read.
CCU sends the read lock denied, if the JBox detects an address that is locked by

another port.
® ICU sends return the DMA read, address, and data to SPU. ICU sends the return

read error, if the JBox detects a nonexistent memory condition for the address sent
with the DMA read. ICU sends the read lock deny, if the address is locked by another

port.

JBOX

DMA
READ

SPU READ
DATA RETURN

Icu

DMA
READ

DMA READ,
DATA

SPU

Figure 6-71

MR_X0974_89

SPU DMA Read Operation

DIGITAL INTERNAL USE ONLY

110 Contro! Unit 6-81

6.13.6 DMA Write Transaction

Figure 6-72 shows the sequence of steps in a DMA write operation in which SPU writes
data to main memory.

© SPU sends the DMA write, address, and data to ICU.

® ICU sends the DMA write to the CCU MCU, the address to the tag MCU, and the
data to the DAX/DBX MCUs.

The DMA write unlock is similar to a DMA write, except that the address lock is
released.

MMU

DATA

ACU

DATA

JBOX

DMA WRITE
DATA

Icu

DMA WRITE
DATA

SPU

MR_X0975_88

Figure 6-72 SPU DMA Write Operation

DIGITAL INTERNAL USE ONLY

6-82 1/0 Control Unit

6.13.7 Interrupt Transactions

Figure 6-73 shows the sequence of steps in an interrupt operation. See Section 6.14 for
more details.

© SPU sends the interrupt and the CPU ID to ICU.
® JDCX decodes the interrupt and the CPU ID and sends IPL to the IRCX MCA.

© IRCX MCA sends IPL to the EBox.

PL IRCX 1PL
{{2V] ° MCA EBOX

INTERRUPT,
CPUID

SPU

MR_X0976_89

Figure 6-73 SPU Interrupt Operation

6.13.8 ECC Transactions

The MDPX MCAs in the array control unit (ACU) perform error checking and correction
for data read from main memory. For successful reads from memory, the ACU sets read
OKO or read OK1 (for segments 0 and 1, respectively) in the JBox-memory interface.

If the ACU does not set the read OK bit, the JBox decodes read OKO and read OK1,
determines that an ECC error has occurred, and notifies the SPU for error reporting and
logging.

When an ECC error occurs, the CCU MCU sends a write register 0 command, the tag
MCU sends the ECC address, and the MDPX MCA sends the syndrome bits to the ICU.
Figure 6-74 shows the sequence of steps in a JBox ECC operation.

© The CCU MCU sends the write register 0, the tag MCU sends ECC address, and the
MDPX MCA sends syndrome bits to ICU.

@® ICU sends the write register 0, address, and syndrome bits to SPU.
© ICU sends the write complete to CCU.

DIGITAL INTERNAL USE ONLY

I/0 Control Unit 6-83

ACU
ECC
ERROR
JBox
WRITE WRITE
ERROR COMPLETE
SYNDROME ' ° ECcC
BITS - cu | aDDRESS
MDPX a ADRX
WRITE
ERROR

SPU

MR_X0977_89

Figure 6-74 ECC Operation

6.14 Interrupts

The IRCX MCA receives, decodes, and prioritizes hardware interrupts. The priority
associated with an interrupt is called its interrupt priority level (IPL). Interrupt requests
come from the SPU, XMI devices, XJAs, and CPUs.

The CPU has 31 priority levels, divided into 15 software levels, 01 through OF(hex), and
16 hardware levels, 10 through 1F(hex). IPLs from 10 through 17(hex) are reserved for
devices and controllers. IPLs from 18 through 1F(hex) are reserved for urgent conditions.
User applications, system calls, and system services interrupt at IPL 0.

Interrupt levels with higher numbers have higher priority. The IRCX MCA contains an
interrupt arbiter mapping mechanism that determines which interrupt has the highest
priority. IRCX sends the interrupt with the highest priority to the EBox. If IRCX sends
an interrupt request with an IPL higher than that of the current EBox IPL, the interrupt
is handled immediately. IRCX sends the IPLs in descending order. IRCX latches and
holds interrupt requests having lower IPLs.

Figure 6—75 shows the hardware interrupt arbiter in the IRCX MCA.

DIGITAL INTERNAL USE ONLY

1/0 Controi Unit

6-84

69 9200X HNW

xoa3 oL 7+

1dNYHILNI

XOHlt
4
4 evrx
ya
] 2vrx
{o0:¥0} 1dt ONINNIM (dVn) HINI HOSS300HdHILNI
CEREITY
LdNHHI LN
nas
¢
ENdO X083
-—] y
Zndd X083 75 tvrx
-—————
1ndo X083
-+ /.
0Nd0 X083 7] ovrx
ova

[o0:20)H di” EVPX

[00:20lH 1dI72VrX

{00:20lH 1d1 " NdS

foo:2olH dIT IYEX

[00:20]H ™ 1d1 "OVrX

roar
HOLVY EVrX
2vrx
va
ooar
HOHHI 1VLVi ovrX
nds
HOLV
LYrX
ovrx
ova

Iinterrupt Arbiter Inputs and Outputs

Figure 6-75

DIGITAL INTERNAL USE ONLY

/O Control Unit 6-85

6.14.1 Interrupt Code

The IRCX MCA sends the IPL that has won arbitration to the EBox (the IPL with the
highest priority wins arbitration). IRCX uses a single differential signal between the
SCU and EBox. This signal serially transmits the start bit, followed in subsequent cycles
by the interrupt code (containing the IPL), parity, and stop bit. Table 6-23 lists the IPLs
and their descriptions. The stream of bits on this single signal uses the interrupt protocol
shown in Table 6-24.

The start bit for the next interrupt may happen at cycle 8. The quiescent state of the
signal is 0.

Table 6-23 Interrupt Priority Level Assignments

IPL (Hex) Interrupt

00 Reserved for software

20 Console halt

20 Console spare

20 JBox hardware error

1E Console spare

1E Powerfail

16 CPU keep-alive/interval timer
16 CPU interrupt

14 Console receive

14 Console transmit

17 Console block storage receive
17 Console block storage transmit
1D XJAO fatal error

1D XJA1 fatal error

1D XJA2 fatal error

1D X.JA3 fatal error

14 XJAO /O

14 XJA1 /O

14 XJA2 /O

14 XJA3 /O

15 XJAO /O

15 XJA1 VO

15 XJA2 /O

15 XJA3 /O

16 XJAO /O

16 XJA1 /O

16 XJA2 VO

16 XJA3 IO

DIGITAL INTERNAL USE ONLY

6-86 1/O Control Unit

Table 6-23 (Cont.) Interrupt Priority Level Assignments

IPL (Hex) Interrupt
17 XJAO /O
17 XJA1 VO
17 ‘XJA2 /O
17 XJA3 /O

Table 6-24 Interrupt Protocol

Protocol

Start bit = 1

Interrupt code bit 4

Interrupt code bit 3

Interrupt code bit 2

Interrupt code bit 1

Interrupt code bit 0

0Odd parity across interrupt code bits [04:00]
Stop bit = 0

N ok W= o
8,
&

6.14.1.1 EBox Handling Keep Alive

The EBox helps the console determine whether the CPU is in a hung state. The console
initiates a keep-alive sequence by sending an interrupt packet to ICU. The ICU sends
the winning interrupt code to the EBox. The EBox receives the serial code, passes the
interrupt to the microsequencer logic, and decodes the keep-alive request.

The EBox holds the request until the current macroinstruction is completed. When

the next macroinstruction is complete, the EBox generates EBOX_KEEP_ALIVE_H (or
QUEUE_INSTRUCTION_DONE_H and A_ KEEP_ALIVE_H) to interrupt the console. If
the console fails to receive a keep-alive interrupt within the timeout period, a hung CPU
condition has occurred. The timeout period is long enough to allow the EBox to complete
lengthy macroinstructions.

6.14.2 IRCX MCA

IRCO, located on the DAO MCU, contains three registers: the CPU configuration register,
interprocessor interrupt register, and error summary register. IRCO interfaces to the data
switch (DSXX MCAs). The IRCX MCA sends data to and receives data from the DSXX
MCAs during SPU or CPU register reads and writes to IRCX registers.

The IRCO MCA contains the interrupt logic for /O-to-CPU interrupts from XJAO, XJAl,
and SPU, and the inter-CPU interrupts. The IRC1 MCA, located on DA1, supports
I/O-to-CPU interrupts from XJA2 and XJA3. Figure 6-76 shows the IRCX MCA block
diagram.

DIGITAL INTERNAL USE ONLY

1/0 Control Unit 6-87

JDCX_IRCX_XJAX_IPL_H{07:00]
JDCO_INTR_DIS_H
XJAX PRIORITY
CLEAR IRCX MAP
DECODE
PRIORITY WINNING_IPL_H[04:00]
HALT_TO_CPU_H[03:00)
\ INTERRUPT | SHIFT_OUT_H
KPALIVE_TO_CPU_H|[03:00] CODE SHIFT P
REGISTER
SPARE
SPARE
SPU INTR_RCVR_
PF_TO_CPU_H[03:00] CPU_TA_H[03:00]
CODE_08_TO_CPU_H[03:00]
CODE_09_TO_CPU_H[03.00}
CODE_10_TO_CPU_H[{03:00}
CODE_11_TO_CPU_H[03:00)
JDCX_IRCX_IPL_SPU_H[07:00}
JDCO_INTR_DIS_H cPU
DESTINATION IPL_SYS_CODE_H[31:00]
CLEAR
DECODE
MR_X0979_8%
REG_ADR_MISSED_1_H
TAG_JDB_ADDR_H[15:00] AD;;%SS ADDRESS | REG_ADR_MISSED 2. H}| yym
LATCH COMPARE [e anm_ TR DECODE
JDAX_IRCX_FATALERR_L
JDBX_IRCX_FATALERR_L JRCX_JDCK_FATALERR_L
> ROUND
DS60_IRCX_FATALERR_L — ROBIN
FATAL |L/IRCX_DET_NXM_H DECODE
DSB2_IRCX_FATALERR_L EARORS
MDPX_IRCX_FATALERR_L || eroabcasT
DS71_IRCX_FATALERR L CCU_JDCX_SENDAT_H DECODE
IRCX REGISTERS IRCO_CTLA_PRTENA_
CCU_READ_ nEAD SPU H[07:00]
€CU_JDCX_IOSEL_H[01:00) €MD_H ResioTER | T
CCU_JDCX_LDCMD_H cdoan CONTROL CPU CONFIGURATION
MA REGISTER
CCU_JDCX_CMD_KH[03:00] DECODE ‘é&%—ﬁ“”s- |
= WRITE
DSXX_IRCX_BOD_H REGISTER INTERPROCESSOR IRCX_DSXX_DAT_H[31:00]
CONTROL INTERRUPT REGISTER

RC_WR_ENB_H

RO_WR_ENB_H
ERAROR SUMMARY
REGISTER

R4_WR_ENB_H

DSXX_IRCX_DAT_H[31:00] DSXX
DATA

MR_X1215_83

Figure 6-76 IRCX Block Diagram

DIGITAL INTERNAL USE ONLY

6-88 /O Control Unit

The IRCX MCA receives the following:

The load command, command, and I/O select from JDCX MCA
Register addresses from the ADRX MCAs

Fatal errors from the JDAX, JDBX, DSXX, and MDPX MCAs
Data (and beginning of data signal) from the DSXX MCAs
IPL and interrupt commands from JDCX MCA

The send data signal from JDCX MCA

The IRCX MCA sends the following:

Port enables to the CTLA MCA
Register read data to the DSXX MCAs
Winning IPL code to the EBox

Fatal error to JDCX MCA

6.14.3 IRCX Registers

The IRCX MCA has three registers. IRCX has two interrupt registers, the CPU
configuration register and the interprocessor interrupt register, and one error register,
the JBox error summary register.

6.14.3.1 CPU Configuration Register
Figure 6-77 shows the CPU configuration register. Table 6-25 lists the fields and their

descriptions.

3130292827 26252423222120191817161514131211100908 07 060504 0302 0100
CPU3 IO INTRPT ENA VBOX3
CPU3 AVAILABLE CPU3 ENA
CPU2 I/O INTRPT ENA VBOX2
CPU2 AVAILABLE CPU2 ENA
CPU1 /O INTRPT ENA VBOX1
CPU1 AVAILABLE CPUt ENA
CPUO IVO INTRPT ENA VBOXO
CPUO AVAILABLE CPUOD ENA
ICU1 ENABLED
ICUO ENABLED
MMU1 ENABLED
MMUO ENABLED
ROUND ROBIN INTRPT

Figure 6-77 CPU Configuration Register

DIGITAL INTERNAL USE ONLY

MR_X0980_89

I/0 Control Unit 6-89

Table 6-25 CPU Configuration Register Field Descriptions

Bit Description

00 CPUO enable

01 VBox0 available for CPU0
02 CPU1 enable

03 VBox1 available for CPU1
04 CPU2 enable

05 VBox2 available for CPU2
06 CPUS3 enable

07 VBox3 available for CPU3
18:08 Reserved

19 Round-robin interrupt

20 MMUO enable

21 MMU1 enable

22 ICUO enable

23 ICU1 enable

24 CPUO available

25 CPUO I/O interrupt enable
26 CPU1 available

27 CPU1 /O interrupt enable
28 CPU2 available

29 CPU2 I/O interrupt enable
30 CPU3 available

31 CPUS /O interrupt enable

For XJA interrupts, if [19] (round-robin interrupt) is set, IRCX evenly distributes
interrupts to the available CPUs (as defined by [30], [28], [26], and [24]) and can be
interrupted (defined by [31], [29], [27], and [25]). If [19)], is cleared, IRCX broadcasts

interrupts.

For SPU interrupts, if [19] is set and the interrupt packet has CPU_ID_H[03:00] cleared,
no interrupts are sent to the CPUs.

For SPU interrupts, CPU_ID_H[03:00] indicates which CPUs IRCX interrupts for this

request.

DIGITAL INTERNAL USE ONLY

6-90 /O Contro! Unit

6.14.3.2 Interprocessor Interrupt Register

Figure 6-78 shows the interprocessor interrupt register. Table 6-26 lists the fields. A
write request to this register initiates an interprocessor interrupt to the CPUs coded in
[03:00]. If these bits are cleared, no CPU receives an interrupt.

If multiple CPUs are writing to the interprocessor interrupt register before arbitration,
IRCX delivers interprocessor interrupts to the CPUs with bits set. For example, CPUO
writes [03] and CPU1 writes [02], IRCX sends an interprocessor interrupt to CPU2 and
CPU3 when the interprocessor interrupt register wins arbitration.

The CPUs and SPU can read this register. If the contents of this register are nonzero,
the arbiter has a pending interrupt. IRCX delivers the interprocessor interrupt to the
destination CPUs and clears the register.

03 02 01 00

CcPU3 cPU2 CPU1 CcPUO

MA_xoue1_83

Figure 6-78 Interprocessor Interrupt Register

Table 6-26 Interprocessor Interrupt Register Fields

Bit Name
00 CPUO
01 CPU1
02 CPU2
03 CPU3
31:04 Reserved

DIGITAL INTERNAL USE ONLY

I/0 Control Unit 691

6.14.3.3 Error Summary Register

The SPU and CPU can read to and write from this register. Each of the four XJAs
has a retry bit in the register. ICU detects bad parity, sends retry to XJA, and sets
the corresponding bit in the register. Figure 6-79 shows the error summary register.
Table 6-27 lists the fields.

3 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XJA2 XJA1 XJAO
RETRY | RETRY | RETRY

MA_X0022_89

Figure 6-79 Error Summary Register

Table 6-27 Error Summary Register Fields

Bit Name

00 XJAO retry
01 XJA1 retry
02 XJA2 retry
03 XJAS3 retry
31:04 Reserved

DIGITAL INTERNAL USE ONLY

6-92 1/0 Contro! Unit

6.14.4 XJA Interrupts

The XJA error handling implementation centers on its error status registers (stored in
the XJA module). XJA detects and recovers from most transient bus transmission errors
on both JXDI and XMI bus.

XJA sends two types of interrupts, vectored interrupts at IPL 14 through 17(hex) and
fatal interrupts at IPL 1D(hex). Figure 6-80 shows the two types of XJA interrupts.

XJA reports errors from which it recovered to the operating system using IPL 17(hex).
Nonrecoverable errors are separated into two categories: nonfatal (vectored interrupts)
and fatal.

XJA FATAL ERROR

a
1 ICu [}
1 I
1 i
1 XJA INTERRUPT COMMAND COMMAND XJA IPL INTERRUPT I INTERRUPT CODE
| %EUCFEF'E\'; ngcgng&gg ARBITER EBOX
IPL EN
|
: JDAX JDCX IRCX
]
I
[S

< —

XJA MODULE

MR_X0883_83

Figure 6-80 XJA Interrupts
The following steps summarize how IRCX sends the interrupt code to the EBox:
1. The XJA, console (SPU), or CPU sends an interrupt request to ICU.

2. ICU decodes the request and sends the interrupt, IPL (XJA), interrupt, and CPU ID
(SPU) to IRCX. The IRCX determines which IPL has the highest priority and sends
the winning IPL to the EBox.

3. The EBox completes the current instruction or reaches a well-defined point where an
instruction can be interrupted (if the interrupt has a higher priority than the current
IPL).

4. The EBox microcode initiates the interrupt sequence. Hardware interrupts are
serviced from the interrupt stack in the EBox. The microcode examines the vector
in the system control block (SCB). The SCB contains vectors that the EBox uses to
dispatch all interrupts. Each device controller has a separate set of interrupt vector
locations in the SCB.

5. The EBox uses the SCB vector, creates a new PC, uses the IPL associated with the
interrupt (from the interrupt code sent by the IRCX MCA), and creates a new IPL.

6. The EBox executes the interrupt service routine identified by the SCB vector (new
PC) and completes the routine with a return from exception or interrupt instruction.

7. The EBox restores the PC and PSL and continues from where it left off when the
IRCX MCA sent the interrupt.

DIGITAL INTERNAL USE ONLY

/10 Control Unit 6-93

6.14.4.1 XJA-Vectored Interrupts

XJA delivers vectored interrupts to the ICU using the XJA interrupt packet format over
JXDI. The interrupt packet contains the IPL in [05:04]. The JDAX MCA encodes [05:04]
on JDA_IRC_INTR_H[01:00]. IRCX decodes the JDA_IRC_INTR_H[01:00] and sends the
interrupt to an EBox. IRCX uses the CPU configuration register, not XJA, to determine
which EBox(es) to interrupt.

Upon receiving the interrupt request from the interrupt arbiter, as soon as its IPL is
lower than the IPL of the requested interrupt, the EBox issues a read request to one
of four XJA SCB offset registers corresponding to the four IPLs. The data returned in
response to this read request is the offset into the SCB, where the EBox can find the
vector that points to the interrupt service routine.

6.14.4.2 Fatal XJA Interrupts
The XJA asserts the JXDI signal XJA_FATAL_ERROR_H when any of the following

errors occur:
¢ Fatal XMI errors:

Node reset

Node halt

XMI fault

Write error interrupt
XMI powerfail

XMI arbitration timeout

¢ Fatal XJA errors:

XCE MCA internal state machine error
ICU buffer count error

CPU request overrun

JXDI receive buffer overrun

JXDI receive command error

XJA CBI (CMOS to bipolar interconnect)

The JDCX MCA passes this signal to the IRCX MCA, which delivers the requested
interrupt IPL 1D(hex) to the EBox(es). The EBox calculates the SCB offset and points
to an XJA fatal error routine. XJA_FATALERR does not necessarily indicate that XJA is
incapable of responding to further CPU requests.

6.14.5 Console Interrupts

The console subsystem consists of a BI MicroVAX system, one RD54 disk drive, one TK50
tape console block storage devices, a console terminal, and a remote diagnosis port.

IRCX distinguishes between terminal operations and block storage device operations

by decoding the command field in the interrupt packet that the SPU sends to the ICU.
(SPU sends an interrupt packet to ICU through the CTLD MCA.) When the JDCX MCA
decodes the SPU command and finds that the command is an interrupt, it generates an
IPL and sends the command and IPL to the IRCX MCA for interrupt arbitration.

Transfers to console devices are made through internal processor registers and device
drivers in I/O space. No direct memory transfer is made between a VAX CPU and console
device; instead the SPU sends an interrupt to the CPU, which executes an interrupt
service routine and reads the appropriate registers in the SPU internal register area.

DIGITAL INTERNAL USE ONLY

6-94 1/O Control Unit

The console subsystem contains the following four internal SPU processor registers for
communication with a console terminal:

RXCS — Console receive control and status register
RXDB — Console receive data buffer register

TXCS — Console transmit control and status register
TXDB — Console transmit data buffer register

The SPU supports three console terminal devices: local terminal (CTY), remote terminal
(RTY), and the logical console port. The SPU uses the RXCS and RXDB registers to
enable the terminals and to hold the data entered at the terminal. The SPU loads the
RXCS and RXDB registers and sets the interrupt enable bit in RXCS. The SPU builds
the interrupt packet with the interrupt command (console receive — IPL 14[hex]) and
CPU ID, sending the packet to the IRCX MCA.

The SPU uses the TXCS and TXDB registers to determine which of the three terminals
(CTY, RTY, or logical) is enabled and to hold the data to be transferred to the terminal.
The SPU loads the TXCS and TXDB registers and sets the interrupt enable bit in TXCS.
The SPU builds the interrupt packet with the interrupt command (console transmit —
IPL 14[hex]) and CPU ID, sending the packet to the IRCX MCA.

The console subsystem contains four internal SPU processor registers for communication
with a console storage device:

RXFCT — Receive function request register

RXPRM — Receive parameters register (data or address)
TXFCT — Transmit function request register

TXPRM — Transmit parameters register (data or address)

The SPU uses the RXFCT and RXPRM registers to operate system and diagnostic
functions. The SPU loads the RXFCT and RXPRM registers with a function and
parameter, setting the interrupt bit in RXFCT. The SPU builds the interrupt packet
with an interrupt command (console storage receive — IPL 17[hex]) and CPU ID. RXFCT
functions include receive block of data, halt CPU, send error log entry, get error log entry,
and set keep-alive state.

The SPU uses the TXFCT and TXFCT registers to operate system and diagnostic
functions. The SPU loads the TXFCT and TXPRM registers with a function and
parameter, setting the interrupt bit in TXFCT. The SPU builds the interrupt packet with
an interrupt command (console storage transmit — IPL 17[hex]) and CPU ID. Functions
include transmit block of data, keep alive, reboot system, boot secondary system, reset
the XJA, halt CPU, set interrupt mode, set margin clock, set margin power, and get
IPAMM and PAMM configurations.

The console subsystem also sends interrupts for powerfail, CPU halt, and EBox keep
alive.

6.14.6 Interprocessor Interrupts

Using the interprocessor interrupt register, a CPU can interrupt one or more CPUs,
including itself, to support applications involving more than one processor. Using
interprocessor interrupts, processors can share data or send information from one
processor to another. The CPU initiates an I/O register write to the interprocessor
interrupt register, and sets the corresponding CPU’s bits (Section 6.14.3.2). The IRCX
encodes the CPU interrupt, IPL 16, and sends the interrupt to the CPUs with bits set.

DIGITAL INTERNAL USE ONLY

7

Error Detection and Reporting

The SCU error logic provides maximum error detection coverage on address, data, and
control interfaces. The basic intent of the error detection logic is to detect all single
intermittent failures. This is accomplished with the use of parity, ECC, and handshaking
protocol. The types of errors reported include fatal, read data, and write data errors.

7.1 Detection

The error detection policy in the JBox provides error detectors wherever a bundle of
signals for data, address, or control enters a new physical entity (an MCA or MCU).

In most cases, a bundle of signals passing between an MCA and any other MCA is
accompanied by a parity bit covering those signals. This permits the receiving MCA to do
a parity check across these signals, ensuring detection of broken paths between the two
MCAs. Figure 7—1 shows the parity checking on data lines in SCU.

7.2 FaultIsolation

The quantity and positioning of the error checkers in SCU implicate the minimum
number of components whenever an error is detected. In general, each bundle of signals
from an MCA to any other MCA is accompanied by a parity bit covering those signals. To
minimize the number of parity signals required to do this, all signals from one MCA to
another are grouped together, even if they are logically dissimilar, and are covered by one
parity bit. The logic is designed so that all parity bits are true, and therefore checked, on
all cycles. Consequently, grouping the signals is straightforward.

Wherever the number of MCAs implicated is unusually high, extra error status latches,
such as select logic, help provide better isolation given several instances of the same
intermittent failure. Usually, any error detected, other than single-bit errors (SBEs),
causes SCU to assert the attention line to SPU. Every location that has duplicate error
checkers has a scan latch, which can optionally inhibit the parity error signal from
asserting the attention line. This ensures that if the only problem is that the duplicate
error checker is broken, the system still runs normally.

DIGITAL INTERNAL USE ONLY 7-1

7-2 Error Detection and Reporting

DO'68-2694-HN

XOgW

0 e e am em e A G Em e me e M e e e em oy

nds

1 I
] 1
H344n8 H3d4n8

I | suaisioay 3A1303Y LINSNYHL J oo

| [

1 |

] 1

L] I

1 not |

| IS Q) N U i | S T a i — P S — |
o] —— -y
|
|

HOLIMS V1iva “ XdOW je—{ XOWW
I
| !
— HHVYIN
| ‘¥03HO OIHO
I 203 203 aow
|
i ‘|||||_
NN

Data Parity

Figure 7-1

DIGITAL INTERNAL USE ONLY

Error Detection and Reporting 7-3

7.3 Error Correction Code

A modified Hamming code protects data written to memory. This code operates on 32
data bits and produces 7 check bits. Another bit, the mark bit, is used with the ECC code
to enhance error detection. The mark bit is set when bad data is purposely written to
memory. This can occur during read-modify-write operations when a multiple-bit error is
detected, or during a write operation when parity detection indicates that bad data has
been received from the JBox.

7.3.1 Error Syndromes

In all cases except marked bad data, the syndromes listed in Table 7—-1 are calculated
for single-bit errors (SBEs) and double-bit errors (DBEs). For more than two errors,
syndromes calculated could be interpreted as a multiple-bit error (MBE) or single-bit
error.

Table 7-1 Syndromes

Mark Data Corrected Bit Syndrome Error

0 o 0 All 0s No error
0 1 0 Three 1s SBE

0 0 1 One 1 SBE

0 2 0 Two, four, or six 1s MBE

0 0 2 Two 1s MBE

0 1 1 Two or four 1s MBE

1 0 0 All 0s No error
1 1 0 Three 1s MBE

1 0 1 One 1 SBE

DIGITAL INTERNAL USE ONLY

7-4 Error Detection and Reporting

7.3.2 Error Syndromes on Marked Bad Data

During a read-modify-write operation, ECC-detected errors are not reported. If there is a
multiple-bit error, marked bad data is loaded into the memory location.

In a read-modify-write operation, the following actions occur:
s SBE
Correct data.
Merge with new data (as defined by mask bits).
Generate ECC check bits on good data.
Set mark bit to zero.
Write good data, mark bit, and check bits.
e DBE
1. Generate new ECC check bits on old data.
2. Invert new ECC check bits.
3. Set mark bit to one.
4. Write old data, mark bit, and check bits.

o e

In a read operation, the following actions occur:
* SBE
Correct data.
Generate ECC check bits on good data.
Set mark bit to zero.
4. Write good data, mark bit, and check bits.
e DBE
1. Generate new ECC check bits on received bad data.
2. Invert new ECC check bits.
3. Set mark bit to one.
4. Write bad data, mark bit, and check bits.

Because the check bits written to memory are inverted on DBEs, a different set of
syndromes (for example, XOR of read check bits and new check bits) is generated.
Syndromes are dependent on both the previous double-bit error and a single-bit error
if it occurs.

7.3.3 Correction

ECC is maintained across 4-byte quantities in memory. The most frequent ECC incident
is an SBE, which is dynamically corrected. The syndrome and address are sent to SPU,
through the ICU. The data requester (MBox) is unaware of this occurrence.

If a DBE occurs, the syndrome and address are sent to SPU in the same way, but in this
case, the consumer of the data (MBox) is informed when the JBox sends a return read
error status command to the MBox.

DIGITAL INTERNAL USE ONLY

Error Detection and Reporting 7-5

7.3.4 ECC Reporting

The following sequence describes how SCU deals with SBEs and reports them to SPU
(which behaves like an I/0O controller connected to ICU in this context):

1. MDPX MCA detects an SBE.
MDPX MCA locks its error register.
MDPX MCA informs MMCX MCA of the SBE.
MMCX sends a return memory data command and index field to CCU.
MMCX sends a return syndrome command and index field to CCU.
CCU checks for a free buffer in the CPU waiting for the memory data.
CCU sends an index field to the address crossbar.
CCU sends a send data bit to MMCX.
MMCX tells MDPX to send out the memory data.
. CCU sends a command to DSCT MCA to move the memory data.
. CCU checks for a free buffer in the ICU to which the console is connected.
. CCU sends an index field to the address crossbar.
. CCU sends a send data bit to MMCX.
. MMCX tells MDPX to send out the ECC syndrome.
. CCU sends a command to DSCT to move the ECC syndrome.
. MDPX unlocks its error register.

© ® N o oe W

b e e
S b W N O

17. JDBX MCA sends a write to console register command.

Each MMU is supported by two MDPX chips: one for bytes 7 through 4 and the other for
bytes 3 through 0. Each MDPX includes its own check and correction network.

A 4-bit register in IRCX masks SBE reporting from each MDPX. This register is
dynamically writeable, through the write to JBox register command, without stopping
the clocks.

The MDPX error lock is set when MDPX detects an error, and it is cleared when MDPX
has dispatched the ECC syndrome to ICU. If MDPX detects another SBE while its error
lock is set, it sets a bit to imply this, but the ECC syndrome is lost. This bit is included
in the report the next time an error is flagged.

7.3.5 SPU Assistance for ECC Handling

SCU does not interrupt the VMS operating system directly in the event of SBEs, although
SCU does send syndrome and failing address information to SPU. The SPU correlates
successive SBE events, determining whether the events have any systematic relationship,
(for example, many of the SBE incidents may be in the same page, or group of pages, in
physical memory). SPU notifies the VMS operating system that certain pages should no
longer be used. Therefore, SPU acts as the first level of filtering for SBE information.

DIGITAL INTERNAL USE ONLY

7-6 Error Detection and Reporting

7.4 MCU Error Detection

Figure 7-2 shows the SCU error reporting logic. Table 7-2 lists events and the

corresponding MCU set attention signals.

TAG MCU DAX MCUY

MTCH_MICR_ERR_B_L

DBX MCU

DBXFATLERRA_H

JDCX_CCU_DAX_FATAL_L

CCu MCU

MICR_PAR_ERR
CTLD MICR

MICR_CTLA_FATALERR_L

CTLE

CTLA_PPAR_H[11]

bsct CTLC_FATALERR_L oTLC

CTLA_CTL_H{32]

r

Figure 7-2 SCU Error Reporting

Table 7-2 MCU Attentions

CTLA

CTLA_CDC_ATTENTION_H

P ———— A

MR_X0636_89

Event CCU DAO DAl DBO DB1 Tag
Error detected in CCU Y N N N N N
Error detected in DAO Y Y N N N N
Error detected in DA1 Y N Y N N N
Error detected in DBO Y N N Y N N
Error detected in DB1 Y N N N Y N
Error detected in Tag Y N N N N Y
XJAO or XJA1 retry N Y N N N N
XJA2 or XJA3 retry N N Y N N N
End of BIST MMUO N N N Y N N
End of BIST MMU1 N N N N Y N

DIGITAL INTERNAL USE ONLY

Error Detection and Reporting 7-7

7.41 DAX MCU Errors
Figure 7-3 shows the DAX errors.

On the DAX MCU, six MCAs report their errors to IRCX, which sends FATAL_ERROR_
L to JDCX. JDCX sends JDCX_CCUX_DAX_FATAL_L to CTLA, resulting in attention
being asserted by CDC on CCU. JDCX also asserts ERR_ATTEN_H to CDC on DAX,
resulting in attention being asserted by that CDC.

Each DSXX MCA sends a fatal error signal to either the IRCX MCA (DAX MCU) or the
MMCX MCA (DBX MCU). The signal is asserted only when a DSXX detects a parity
error on control lines from the data switch controller DSCT.

The data switch MCAs also check parity on incoming data but do not assert fatal error

- parity errors. When DSXX detects a data parity error from MDPX, MBox, or JDAX, it
generates and latches an error signal. For MDPX, the signal is MDPLATPARERR. The

latched error signal is held in its latch while the error is allowed to propagate to the next

MCA, where it is detected again. Error data is sent to the following:

e ICU — An error is flagged in JDBX and results in attention to the SPU.
e TRCX — An error is flagged and results in set attention.

e Memory — An error is flagged in MDPX but not reported, and the bad data is
written into memory. :

Data received from the other data switch is handled in the same manner.

CCU MCU

NONFATAL ERRORS (NOTE) JDCX_CCU_DAX_FATAL_L

CTLA

JDAX

JDAX_{RCX_FATAL_ERR_L

DSOO_IRCX_FATALERR_L
DS XX JDCX

JDCX_CDC_ERR_ATTEN_H

COXX

JDBX_IRCX_FATAL_ERR_L

JDBX

IRCX_JDCX_FATAL_ERR_L

IRCX
DSO1_IRCX_FATALERR_L
DSXxX

MDPX_IRCX_FATAL_ERR_L
MDPX =

DS02_IRCX_FATALERR_L
DSXX

NOTE: JDAX_JDCX_XJAO_CERR_L
JDAX_JDCX_XJA1_CERR_L
JDAX_JDCX_XJAO_DERR_L
JDAX_JDCX_XJA1_DERR_L

JDAX_JDCX_CTLD_ERR_H

JDAX_JDCX_ATTEN_REO_L

MR_X0637_88

Figure 7-3 DAX Errors

DIGITAL INTERNAL USE ONLY

7-8 Error Detection and Reporting

7.4.2 DBXMCU
Figure 7—4 shows the fatal errors sent to the MMCX MCA on the DBX MCU.

MCDX

MCDX_MMCX_FATALERR_L

DSXX

DSBO_MMCX_FATALERR_L

MDPX

MDPX_MMCX_FATALERR_L

DSXX

DSB1_MMCX_FATALERR_L

JDAX

JDAX_MMCX_FATALERR_L

DSXX

DSB2_MMCX_FATALERR_L

JDBX

JDBX_MMCX_FATALERR_L

Figure 7-4 DBX Errors

7.4.3 Tag MCU Errors

Figure 7-5 shows the tag MCU errors.

MMCX

MMCX_CTLX_MUnCMD_H[07]

CCU MCU

CTLA

(DBXFTLERRA_H)

MMCX_CDC_ATTENTION_H

CDXX

MR_X0£38 89

On the tag MCU, the MTCH chip collects error signals from the four ADRX MCAs and
reports them to CTLA using MTCH_MICR_ERR_B_L. The STRAMs on the tag MCU do
not report errors to MTCH. Instead, parity bits are written into the global tag STRAMs
with the data and are checked on MTCH when the data is read. The MTCH MCA also
has the ability to assert MTCH_CDC_EXCEPTION_B_H to the CDC chip on the tag

MCU.

DIGITAL INTERNAL USE ONLY

Error Detection and Reporting 7-9

ADRO_MTCH_ERROR_A_L CCU Mcu
ADRO
MTCH_MICR_ERR_B_L
MICR
ADR1_MTCH_ERROR_A_L
ADR1
MTCH
MTCH_ERROR
ADR2 ADR2_MTCH_E _A_L
MTCH_CDC_EXCEPTION_B_H
cDXX
ADR3_MTCH_ERROR_A_L
ADR3

MR_X0638_89

Figure 7-5 Tag Errors

7.4.3.1 Stop on Address Match

The MTCH MCA contains stop on address match logic, which compares PA [32:06] from
the ADRX MCA and the tenth and eleventh bits from CTLD, with an address supplied
by scan. Figure 7—6 shows the stop on address match logic. If a match occurs, STOP_
MATCH_B_H can be sent to the CSSE connector, if enabled by scan. Scan determines
whether a match on PA [32:06], the tenth and eleventh bits, or both sets STOP_MATCH
B_H.

STOP_MATCH_B_H can be used to send an attention to SPU as an error condition. The
SPU takes the appropriate action for the address match condition.

COMPARE
PA [3206] CMP 27
ADRX A
CcMP 2
CMP 27
A=B
SCAN [26:00]
s 1
SCAN [01:00)
COMPARE
10TH AND 11TH BITS
CTLD A
CMP 2
A-
SCAN {01:00]
it AL I N

MR_X0642_89

Figure 7-6 Stop on Address Match

DIGITAL INTERNAL USE ONLY

7-10 Error Detection and Reporting

7.4.3.2 Force Attention Logic

MTCH receives CSSE_TAG_FORCE_ATTN_H from the CSSE connector on the SCU
planar module. Figure 7-7 shows the force attention logic. This signal is asserted by
a logic analyzer or other test equipment in response to a predefined combination of
signals output to the connector. This signal forces the error conditions, MTCH_CDC_
EXCEPTION and MTCH_MICR_ERROR_B_H, when selected to do so by scan, which
tests to see if MICR detects that it is set.

CSSE_FORCE_B_H

T\ MTCH_MIC R_ERROR _B_H
u MTCH_MICR_ERROR_B_L

CSSE_TAG_FORCE_ATTN_H CSSE
ERROR ERROR M_M_ERROR_B_H SCAN

ouTPUT MTCH ERRORS | CONTROL LATCH
judbditalilibbhdi

SCAN INPUTS

ADRO ERROR

ADR1 ERROR

ADR2 ERROR SCAN \ MTCH_CDC_EXCEPTION_B_K

}r_. LATCH "J
|

SCAN H

ADR3 ERROR

WR_X0E41_89

Figure 7-7 Force Attention Logic

7.4.4 CCU MCU Errors

Errors other than SBEs are handled by invoking SPU, in its capacity as a scan controller,
to assist in evidence collection and recovery activities.

7.4.4.1 History Buffer

The control store STRAMs include a 1K visibility section that stores the last 1K
microaddresses. The history buffer can be stopped by a scan, address match, or CSSE
connector.

The history buffer is a free-running FIFO and can be locked by any of the following
mechanisms:

e Directly by scan, by the assertion of SCAN_DUMP_H.

e Directly by the CSSE connector, by the assertion of CSSE_STOP_DUMP_H. A logic
analyzer at the connector can be set up to assert this signal on any combination of
other signals.

e Microaddress match, by the assertion of MATCH_STOP_H. Scan defines a
microaddress (SCAN_MATCH_H[09:00]). When each microaddress appears at
the output of the microcode STRAM as the next microaddress to be accessed, it is
compared with the scan input. If a match occurs between the two, UADR_MATCH _
H[09:00] is asserted. As a result, MATCH_H is asserted and causes MATCH_STOP_
H to be asserted if enabled by scan.

Figure 7-8 shows the signals that can stop the history buffer.

DIGITAL INTERNAL USE ONLY

Error Detection and Reporting 7-11

SCAN_MATCH_H[08:00)
MATCH_UADR_OUT_H[09:00] \ UADR_MATCH_H[09:00] STOP_DUMP_H

SCAN UADR_OUT_A_H[09:00} }

MATCH_H

CSSE_STOP_DUMP_H

SCAN_DUMP_H TaGo

ENABLE_MATCH_STOP
MATCH_STOP_H
MATCH_H MATCH_B_H
LATCH
cTLD

Figure 7-8 History Buffer

MR_X168%_88

7.4.4.2 Error Detectors
All of the MCAs in SCU have some number of error detectors. In general, each MCA ORs
its error signals and sends one line to the CCU logic.

The CCU ORs all error signals and sends the resulting signal to the clock chip on the
CCU MCU. This clock chip asserts the attention line to the scan controller in SPU. Note
that the CTLC MCA contains the logic that interfaces to the scan controller.

CTLA receives composite error signals from other MCAs on the CCU MCU and from
other MCUs in SCU. CTLA sends attention to CDCX. CDCX asserts SCAN_BUS_DATA_
OUT_H, which alerts the scan control module in SPU.

Following receipt of the attention line, the scan controller does a dynamic scan, with the
system clocks running, of the loop containing the attention bits and determines which
MCU asserted the attention line. Next SPU stops the system clocks, and uses the scan
mechanism to extract error information from various registers within SCU. Once this
has been done, SPU restarts the system clocks. Then SPU examines the error evidence
to diagnose the problem and the appropriate corrective action. There are then two ways
that SPU can affect error recovery as follows:

e Stop the system clocks again and use its scan capability to fix the problem. Then
restart the system clocks.

e Use its capability as an I/O controller to fix the problem without stopping the system
clocks.

If an interlock bit is stuck set in SCU, perhaps due to a faulty I/O controller, SPU uses
its capability as an I/O controller to issue a cancel lock command to SCU, which clears
the problem.

DIGITAL INTERNAL USE ONLY

7-12 Error Detection and Reporting

7.5 Recovery

This section describes the types of error recovery mechanisms. Key error signals involved
with the error detection mechanism are also described.

7.5.1 Dynamic Error Recovery

Dynamic error recovery is provided for single-bit memory errors only. Other types of
errors require the assistance of SPU and the scan system to support error recovery.

7.5.2 SPU-Assisted Recovery

When SCU detects an error, it asserts the attention line to SPU, logs error status, and
sends error signals to other units (MBox), if appropriate. SPU stops the clocks, scans out
the error evidence, and clears the error flags and status register locks. SPU then restarts
the system clocks. The SPU examines the error evidence to diagnose the problem and the
appropriate corrective action.

7.5.3 Operating System Implications

During the SPU-assisted recovery process, the system clocks have been stopped for a
period of time. Depending on how long the clocks have been stopped, some I/O transfers
may have timed out.

If this happens frequently when the error recovery strategy is invoked, the operating
system must be able to deal with the I/O timeouts and to reinitiate I/O transfers if
necessary.

7.5.4 Key Signals

Table 7-3 lists the signal groups and the corresponding error detection mechanisms.

Table 7-3 Error Signals

Signal
Group Detection Fatal Description
MMCX 1 parity Y JBox command, control, and status to MMCX
1 parity Y JBox mask to MMCX
1 parity Y MCDX command, control, and status to MMCX
Toggle Y JBox address to MMU and toggle to MMCX
1 parity Y MMCX command, control, and status to MCDX
1 parity Y MMCX control to MDPX
1 parity Y MMCX command and status to JBox
1 parity Y MMCX index row and column select to JBox

DIGITAL INTERNAL USE ONLY

Error Detection and Reporting 7-13

Table 7-3 (Cont.) Error Signals

Signal
Group Detection Fatal Description
MCDX 1 parity Y MMCX command, control, and status to MCDX
2 parity Y MCDX DRAM control to MMU, parity back
1 parity Y MCDX command, control, and status to MMCX
MDPX 1 parity Y MMCX control to MDPX
2 parity N JBOX data to MDPX
ECC N MMU data to MDPX
2 parity Y MDPX data to JBox
DSXX 1 parity Y DSCT control to DSXX
DSCT 1 parity Y DSCT control to DSXX
1 parity Y DSCT status to CTLX
1 parity Y DSCT status to MICR

7.6 Types of Error Detection
The types of detection include the following:

DRAM control errors
JBox-to-MMU address errors
Protocol errors

Incidental errors

Forced errors

DIGITAL INTERNAL USE ONLY

7-14 Error Detection and Reporting

7.6.1 DRAM Control Error Detection

Each of the two memory segments receives a group of DRAM control signals. DRAM
control includes the RAS, CAS, WE, and CAS mask signals. The MCDX MCA supplies
the RAS, CAS, and WE signals. The MMCX supplies the CAS mask signals.

The CAS mask control signals are used to set bits in the CAS mask segment register in
the DRAM control and address (DCA) gate array on the memory module. During a write
operation, DCA generates odd parity across the eight bits in this register, along with the
RAS, CAS, and WE signals. This odd parity is transmitted to MCDX.

MCDX receives the odd parity (CTLPAR) bit from each DCA for each segment. MCDX
also receives CAS mask parity from MMCX. The MCDX then checks the parity against
the expected parity at distinct times. The parity check is done at the third clock cycle
after CAS is asserted and when the cycle is inactive. Waiting three cycles allows for the
round-trip delay. If MCDX does not receive correct parity, it signals a fatal error.

7.6.2 JBox-to-MMU Address Error Detection

The JBox transmits the row and column address from four ADRX MCAs. Each ADRX
transmits four address bits and one parity bit. Therefore, a total of 16 signals are
received by each DCA.

DCA performs a parity check on the address lines. If parity error is not detected, the
DCA toggles the ADRPARTOG line to MMCX. This technique checks both the address
lines and control lines used by MMC to strobe the address. If MMCX does not receive the
ADRPARTOG signal when expected, it signals a fatal error.

7.6.3 Protocol Error Detection

The following protocol errors are detected by MMCX:

e MMOC receives BOD without first getting a write command from the JBox.
e MMC does not receive a BOD after receiving a write command.

e Timeout occurs before receiving cancel/OK status.

Protocol errors are reported as fatal errors.

7.6.4 Incidental Error Detection

Incidental errors do not affect normal system operation, but these errors do imply that a
failure has occurred. The following incidental errors are detected:

e A parity error is detected by MMCX on inactive command lines from the JBox.
e A parity error is detected by MDPX on inactive write data lines.

Incidental errors are picked up during scan operation.

DIGITAL INTERNAL USE ONLY

Error Detection and Reporting 7-15

7.7 Types of Errors
The following are types of errors:

Fatal
Write data
Read data
Forced

7.7.1 Fatal Errors

Each MCA on ACU dedicates one signal out to report fatal errors. On each MCU, all

of the fatal error signals from the MCAs are connected to one MCA. MMCX serves this
purpose on the DB0O and DB1 MCUs. The OR of the fatal error signals then routes to the
CCU MCU in the JBox. CCU, in turn, pulls the attention line on the CDCX chip, which
signals the service processor to take action.

7.7.2 Write Data Errors

Write data is split between two MDPs. Each MDPX receives data grouped with odd
parity, which is assigned as follows:

¢ 1 parity bit for 16 data bits, 2 mask bits, and 1 BOD bit
¢ 1 parity bit for 16 data bits and 2 mask bits

MDPX checks the write data parity from the data switch and generates LWPARERR_H,
HWPARERR_H, or both if it detects bad parity on the low word, high word, or both.
LWPARERR_H or HWPARERR_H sets the mark bit (bad merge data can also set the
mark bit) and error data [13]. The error is not reported until the data is read back
from memory. Bad parity and bad merge data cause the check bits to be inverted. The
combination of inverted check bits and an asserted read mark bit ensures that the
decoder detects the data as uncorrectable even if a double-bit error occurs when the
address being written is eventually read.

The MDPX calculates odd parity on each group of signals and compares it to the received
parity signal. If an error is detected, MDPX latches the error in the MDPX data error
register. In addition, MDPX signals MMCX over the MDPX-to-MMCX status lines.

In response to the write data error, MMCX inhibits transmission of WRT_OK to the JBox,
and writes the data to memory, marked bad. Marking the data is done by MDPX.

MDPX marks bad data as follows:

1. Bad data is passed through the check bit to generate logic. Seven check bits are
produced.

The seven check bits are inverted.
The mark bit is set.

Bad data, inverted check bits, and the mark bit are written to the addressed memory
location.

When the bad data is read back, the ECC checking logic detects the double-bit error and
reports it.

DIGITAL INTERNAL USE ONLY

7-16 Error Detection and Reporting

When MDPX detects an ECC error on memory read data, it reports the condition to
MMCX using MDPX_MMCX_STATUS_H[00], when enabled to do so. Error handling
software may disable the error reporting function temporarily when correctable error
thresholds are exceeded, in order to minimize the impact on system performance.

7.7.3 Read Data Errors

A read data error is defined as a single- or double-bit error occurring in the read data
from MMU. Read data from MMU is split between two MDPX MCAs, with each MDPX
receiving 32 data bits, 7 check bits, and 1 mark bit. Read data is sent to the generate
syndrome logic. This logic generates new check bits on the received data bits and XOR
with the received check bits. The result is a syndrome. An all-zero syndrome indicates
there is no error. An even number of ones indicates a double- or multiple-bit error. An
odd number of ones is used to indicate a single-bit error.

If an error is detected, MDPX does the following:

1. Latches the error in the MDPX data error register.

2. Signals MMCX of the error over the MDPX-to-MMCX status lines.

3. Corrects the SBE.

4. If a DBE, forces bad parity on the output to JBox.

The last three events can be disabled by scan during initialization.

When MMC receives the error report over the status lines, it does the following:
1. Transmits to the JBox that a read error occurred.

2. Receives send data bit from the JBox.

3. Transfers the contents of the MDPX data error register through the JBox to SPU
(this is a one-cycle transfer).

7.8 Error Registers

The SCU has three error registers:

¢« MDPX data error register — Latches the occurrence of control and data errors.

e MMC error register — Latches the occurrence of data, address, and protocol errors.

e MCD error register — Latches the occurrence of DRAM control errors.

7.8.1 MDPX Data Error Register

The MDPX latches the occurrence of control and data errors. All data errors, except for
write parity errors, are logged into an error register. If a data error occurs, the contents
of this register are transmitted to the service processor.

Parity errors on write data received from the JBox and parity errors on control signals
received from MMC are latched and can be read only by a scanning operation.

When an ECC error occurs, the error information is latched in the data error register.
The contents of this register are transferred to SPU. The register is shown in Figure 7-9;
the contents are listed in Table 74.

DIGITAL INTERNAL USE ONLY

Error Detection and Reporting 7-17

12 11 09 08 07 06 00
QWERRADRA SYNDROME BITS
RDMRKBIT I ECCERR
DBERR

MR_X0640_89

Figure 7-9 MDPX Register

Table 7-4 MDPX Error Register

Bit Error Type Description

MDP_ERR[12] Error flag When set, this bit indicates that the ECC logic
has detected an SBE or DBE.

MDP_ERR[11] 0 = SBE, 1 = DBE A DBE overwrites an SBE. Otherwise, the first

error detected is latched and remains latched
until the register contents are read.

MDP_ERR[10:04] Syndrome The error syndrome bits indicate which bit is
in error for an SBE. SBEs can be a data bit
or check bit, or can indicate an address parity
error.

MDP_ERR[03] Bad data flag This bit indicates that the mark bit was set
when read. There are two conditions under
which this bit is set. In one, data was purposely
marked bad when last written. In this case,
the error flag is also set, along with an SBE or
DBE indication. The second condition is when
the mark bit itself is bad. In this case, the error
flag is not set.

MDP_ERR[02:00] Quadword address Up to eight quadwords can pass through ACU
as part of a read request. When MDP signals
an error, MMC loads the associated quadword
address.

The mark bit is used to identify bad write data. Write data errors are not reported
unless the data is read. The disadvantage of this method is that the time of the error
occurrence cannot be known. MDP does check parity on write data coming from the data
switch latching LWPARERR_H or HWPARERR_H on detection of an error on the low
word and high word, but the error is not reported at that time. These signals are used to
generate the mark bit. Also, the ECC check bits are inverted before the data is written
into memory.

DIGITAL INTERNAL USE ONLY

7-18 Error Detection and Reporting

7.8.2 MMC Error Register

The MMC error register latches the occurrence of data, address, and protocol errors. The
register is shown in Figure 7-10. Table 7-5 lists the error bits and their description.

MDP1 MDPO

MCD COMMAND INCIDENTAL PARITY ERROR
AND STATUS PARITY ON JBOX COMMAND

————————
PROTOCOL INCIDENTAL PARITY ERROR
ON JBOX WRITE DATA

MM3 ADDRESS PARITY
MM2 ADDRESS PARITY

MM 1 ADDRESS PARITY

MMO ADDRESS PARITY

MR_X2245_89

Figure 7-10 MMC Register

Table 7-5 MMC Error Register

Bit Error Type

MMC_ERR[00] Incidental parity error on JBox command
MMC_ERR[01] Incidental parity error on JBox write data
MMC_ERR[03:02] MDPO!

MMC_ERR[05:04] MDP1?

MMC_ERR[06] MMO address parity

MMC_ERR[07] MM]1 address parity

MMC_ERR[08] MM2 address parity

MMC_ERR[09] MM3 address parity

MMC_ERRI[10] Protocol

MMC_ERRI[11] MCD command and status parity

10x = No error, 10 = SBE/DBE, 11 = Write parity
20x = No error, 10 = SBE/DBE, 11 = Write parity

DIGITAL INTERNAL USE ONLY

Error Detection and Reporting 7-19

7.8.3 MCD Error Register

The MCD error register latches the occurrence of DRAM control errors. The register is
shown in Figure 7-11. Table 76 lists the errors in the MCD error register.

04 03 02 01 00

MMO DRAM CONTROL
MM1 DRAM CONTROL

MM2 DRAM CONTROL
MM3 DRAM CONTROL
MMC COMMAND AND STATUS PARITY

MR_X2246_89

Figure 7-11 MCD Register

Table 7-6 MCD Error Register

Bit Error Type

MCD_ERR[00] MMO0 DRAM control
MCD_ERR[01] MM1 DRAM control
MCD_ERR[02] MM2 DRAM control
MCD_ERR[03] MM3 DRAM control
MCD_ERR[04] MMC command and status parity

DIGITAL INTERNAL USE ONLY

Index

ACU
See also Memory

See Array control unit
arbitration index values for, 2-18t
command buffers in the JBox, 2-10
communicating with the JBox, 2-62
general description of, 1-1 to 1-11
interfacing to the JBox, 2-61 to 2-68
memory to JBox command bitmap,
2-62f
memory to JBox command bitmap
definitions, 2-63t
port state controllers in the JBox, 2-5
Address pattern generation mode
address pattern generator in the
memory module, 5-112
in the memory subsystem, 5-35, 5-93,
5-97
ADRX
inputs and outputs, 3-10
ADRX MCA
ADRX-t0-MMCX control field, 5-75t
ADRX-to-MMCX control format, 5-74f
MMCX-to-ADRX control field, 5-75t
MMCX-to-ADRX control format, 5-75f
APG mode
See Address pattern generation mode
Arbiter
receiving interrupts, 6-93
Arbitration
as a pipeline stage, 2-7
description of arbitration index, 2-17
generating arbitration index, 2-17f
generating arbitration vector, 2-17f
generating request bits, 2-15f
index values, 2-18t
JBox arbitrating requests from the
request lists, 2-15
MCAs involved with arbitration, 2-14f
of ports, 2-1
Array control unit
See ACU
ACU-to-MMU command, status, and
control interface, 5-6f
ACU-to-MMU data interface, 5-4f

Array control unit (cont'd.)
block diagram, 5-36f
cabling between the SCU planar
module and memory array cards,
5-1
functional description of, 5-36
general description of, 5-1
interfacing to the JBox, 5-1, 5-92
main memory control, 5-2
MCDX MCA, 5-2
MDPX MCA, 5-3
memory control DRAMs, 5-2
memory data path, 5-3
memory operations, 5-99
CPU cycles for wrap on reads,
5-102t
EEPROM operations, 5-111
I/O boundaries, 5-101t
I/O cycles for wrap on read,
5-102t
loading the CAS mask register,
5-104, 5-105f
read-modify-write operation,
5-106
read operation, 5-100
refresh operation, 5-110
wrap on read sequences, 5-101
write operation, 5-103
write pass operation, 5-109
write read operation, 5-108
MMCX MCA, 5-2
read and write data paths on the
memory module, 5-40f
residing on the SCU planar module,
5-2, 5-3f
selecting addresses in the address
latches in the tag MCU, 5-1
SPU supporting the memory
subsystem, 5-35
testing the memory module, 5-112

B
BIST
See Built-in self-tests
Built-in self-tests
BIST address, 5-114
BIST data, 5-113

Index 1

2 Index

Built-in self-tests (cont’d.)

BIST mode switching order, 5-114

commands, 5-113t

data path test, 5-121

DCA CAS mask test, 5-121
DCA control parity, 5-121
DCA DRAM control test, 5-121
DDP test, 5-120

Command buffers
for the ACU, 2-10
for the CPU, 2-9
for the ICU, 2-10

Consistency
cache consistency definition, 3-1
fixup operation, 3-1
maintaining consistent global tag

DRAM test, 5-121

MCD BIST register, 5-116f, 5-116t Console tatus, 319

MCD EOP register, 5-117f, 5-117¢t See SPU

MDP BIST register, 5-118f, 5-119t Control store

MMC BIST register, 5-117f, 5-117t addressing the control store, 4-6 to
registers defined, 5-115 49

starting out in step mode, 5-120 base addresses, 4-3t

step mode commands, 5-113t data. 45

using the ADRX address latches,
5-115

C

Cache
block, 3-2, 3-2f
block valid bit, 3-2
block written bit, 3-2
cache miss definition, 3—4
cache refill definition, 34
cache set 0 and 1, 3-3
consistency definition, 3-1

control store entries corresponding to

cache status, 4-4t
CPU cache data STRAMs, 3-2
CPU cache tag fields, 3-5f, 3-5t
CPU cache tag STRAMs, 3-5
fixup operations, 3-1
global tag STRAMs containing the

status for CPU cache sets, 3-6

inconsistency, 3-1
lookup, 3-3f
MBox addressing the cache tag
STRAMs, 34
status
invalid, 3-7t
read, 3-Tt
status, 3-7t
written full, 3-7t
tag bit definitions, 3-5t
Cache tag
bit definitions, 3-5t
CCU

interfacing to the ACU, 2-61 to 2-68

CCU MCU

cache consistency unit MCAs, 2-3

CCU MCU-to-MMCX control field,
5-70t

CCU MCU-to-MMCX control format,
5-69f

error detection logic, 7-10

MMCX-to-CCU MCU control field,
5-73t

MMCX-to-CCU MCU control format,
5-73f

data latch and parity checking, 4-6

error entries, 4—4t

fixup queue using the fix command
of the microword to form
microaddress, 4-6

loading the control store, 4-9

locations addressable by fixup queue,
4-3t

microcoding examples, 4-28 to 4-42

micromachine definition, 4-1
microword field definitions, 4-14
microword format, 4-14 to 4-28
nonexistent memory entry, 44
space allocation, 4-1, 4-2f
storing microwords, 4-1
STRAMs array, 4-1f
STRAMs description, 4-1

CPU
See also MBox
arbitration index values for, 2-18t

port state controllers in the JBox, 2-5

CTLA MCA
block diagram, 2-1f
description of, 2-3 to 24
receiving the MMCX command bits,
2-64f
CTLB MCA
block diagram, 2-23f
definition of, 2-23 _
receiving the MMCX command bits,
2-64f
CTLC MCA
block diagram, 2-26f
definition of, 2-26
receiving the MMCX command bits,
2-65f
CTLD
loading the control store, 4-9

D
DAC
See Daughter array card
Data switch
receiving data from JDAX, 6-30
Daughter array card

Daughter array card (cont’d.)

See also Main memory unit

See also Memory module

description of, 54

description of 20-bit slices, 5-34

description of the memory module, 5-7

DRAM arrays, 5-9f, 5-10f

DRAM data bits for DAC, 5-13f

initializing the main memory unit,
5-35

inputs, 5-12f

MAC containing daughter array cards,
5-12

modes of operation, 5-35

quadword bit configuration, 5-30

read and write data paths on the
memory module, 5—40f

storing quadwords, 5-33

DAX MCU
DSXX MCA-to-MMCX control field,
5-75t
error detection logic, 7-7
DBE
See Double-bit errors
DBX MCU
DSXX MCA-to-MMCX control field,
5-75t
error detection logic, 7-8
DCA
See DRAM control and address gate
array
DDP

See DRAM data path gate array
Double-bit errors '
handling double-bit errors, 7—4
DRAM control address gate array
using an LFSR as an address pattern
generator, 5-91
DRAM control and address gate array
description of, 5-21
functional block diagram, 5-21f
functions perform by, 5-21
miscellaneous control logic, 5-22f
DRAM data path gate array
data partitioning, 5-30
description of data slices, 5-34
distribution of quadword data bits,
5-33f
functional block diagram, 5-15f,
5-16f, 5-17f, 5-18f
functions performed by, 5-13
MAC containing DRAM data path gate
arrays, 5-13
on the memory module, 5-13f
read data path, 5-19f
sending eight 20-bit slices, 5-32
write data path, 5-20f

Index 3

E
ECC
See Error checking and correction
SPU ECC transactions, 6-67, 6-82
EEPROM
data field, 5-111t
data format, 5-111f
reading and writing the EEPROM,
5-111
Error checking and correction

See ECC
initializing error checking and
correction, 5-92
Error detection
See also Error handling
asserting an attention line, 7-1
description of parity coverage, 7-1
error correction code, 7-3
error syndromes, 7-3
fault isolation, 7-1
MCU error detection
conditions for sending set
attention, 7-6t
in the CCU MCU, 7-10
in the DAX MCU, 7-7
in the DBX MCU, 7-8
in the tag MCU, 7-8
SCU error reporting logic, 7-6
parity checking on data lines in the
SCU, 7-1
types of error detection, 7-13
DRAM control errors, 7-14
incidental errors, 7-14
JBox-to-MMU address errors,
7-14
protocol errors, 7-14
types of errors detected, 7-15
fatal errors, 7-15
read data errors, 7-16
write data errors, 7-15
Error handling
Error checking and correction, 7—4
reporting single-bit errors and double-
bit errors, 7-5
single-bit errors, 74
SPU assistance, 7-5
SPU.-assisted recovery, 7-12
Error registers
identified, 7-16
MCD error register, 7-19
MDP data error register, 7-16
MMC error register, 7-18

4 Index

F
Fixup
examples, 3-16
Fixup queues
control store locations addressable by
fixup queues, 4-3t
description of, 4-13
interrupting the normal flow of
microaddressing, 4-8
MICR loading the fix command into the
fixup queues, 4-7
using the fix command field of the
microcode to form microaddress,
4-6

G
Global tag STRAMs

address bits, 3-8

addressing the tag STRAMs, 3-10

address matching, 3-9

cache block status definitions, 3-T7t

containing the status for CPU cache
sets, 3-6

errors, 3-18

for CPUs cache sets, 3-6f)

global tag lookup for lock request,
3-28

handling inconsistent global tag status,
3-19 to 3-24

in the SCU, 3-3

locations for cache set 0 and 1, 3-3f

lock status bits, 3-28

lock status storage, 3-27

lookup operation, 3-9

maintaining consistent global tag
status, 3-19

MICR receiving status bits, 3-13

MTCH comparing physical addresses
with global tag addresses, 3-10

MTCH reading global tags, 3-13

reading lock status bits, 3-30

reading status for eight cache sets,
3-9

status codes and corresponding ports,
3-14t

tag contents, 3-7f

tag status bits, 3-8, 3-8t

writing lock status bits, 3-30

writing tag status, 3-17

|
/0
See also ICU
I/O control unit
See ICU
I/0 physical address memory mapping

1/O physical address memory mapping
(cont’d.)
See IPAMM
I/O register
MBox reading an I/O register, 2-60
MBox writing to an I/O register, 2-61
1/0 subsystem
block diagram, 6-5f
/O devices communicating with
packets, 6-7
JXDI interconnect description, 66
physical description, 6-2
SCU planar module, 6-3f
SPU interaction in the I/O subsystem,

6-7
XJA connecting to the SCU planar
module, 6-5

XJA description, 6-5
XMI bus description, 6-6
ICU

See also SPU

arbiter receiving interrupts, 6-93

arbitration index values for, 2-18t

command buffers in the JBox, 2-10

description of, 6-1

functional description of, 6-8 to 6-37

general description of, 1-1 to 1-11

ICU-to-SPU interface, 6-69 to 6-73

ICU-to-XJA commands, 6-50t

JBox-to-ICU interface, 6-37 to 640

key ICU-to-XJA signals, 649t

key SPU-to-ICU signals, 6-70t

key XJA-to-ICU signals, 6-52t

physical description of, 6-3

port state controllers in the JBox, 2-5

receiving commands from the JBox,
6-38t

receiving commands from XJA, 6-54t

sending commands to SPU, 6-69t,
6-71t

sending commands to the JBox, 6-39t

SPU-t0-ICU communication using

packets, 6-64

transferring a packet from ICU to SPU,
6-70

transferring a packet from SPU to ICU,
6-73

transferring a packet from XJA to ICU,
6-55

XJA and ICU communication using
packets, 6—40

Inconsistency

fixup required, 3-1
handling inconsistent global tag status,
3-19 to 3-24
Index value
using the index to distinguish between
CPU and I/O commands, 5-71
Interleaving
block boundaries, 5-23t
definition of, 5-23
degrees of, 5-24t

Interleaving (cont’d.)

four-way interleaving, 5-25t, 5-26t

interleaving segments within the
memory subsystem, 5-23f

mapping out parts of banks, 5-27

MMUI1, two banks used, two-way
interleaved, 5-29t

MMUT1 three banks used, n- interleave,
5-29t

n- interleaving, 5-25t

noninterleaving, 5-24t

one MMU, two-way interleaved, 5-27t

two MMUs, four-way interleaved,
5-26t

two MMUs, one bank broken, 5-27t

two MMUs, one broken bank, 5-28t

two MMUs, two banks using four-way
interleaving, 5-28t

two MMUs with different DRAM sizes,
5-29t

two-way interleaving, 5-25t, 5-26t

Interlocks

See also Locks

CPU interlock requests, 3-31 to 3-35
instructions, 3-26t

SCU supporting interlocks, 3-26
sharing data structures, 3-25

SPU interlock requests, 3-39 to 3-43
SPU unlock requests, 3—43

types of
read, 3-27
write, 3-27

XJA interlock requests, 3-36 to 3-39

index 5

Interrupts (cont’d.)
XJA interrupts, 6-92
XJA interrupt transactions, 6-63
XJA vectored interrupts, 6-93
Invalidate
MBox invalidate command, 2-61
IPAMM
definition of, 2-19
space allocation, 2-20
IPL
See Interrupt priority levels
IPLs
thirty-one priority levels defined, 6-83
winning code protocol sent to the EBox,
6-86
IRCX
arbiter receiving interrupts, 6-93
block diagram, 6-87f
CPU configuration register, 6—88f,
6-89t
description of, 6-86
distinguishing between terminal
operations and block storage device
operations, 6-93
error summary register, 6-91f, 6-91t
interprocessor interrupt register,
6-90f, 6-90t
interprocessor interrupts, 6-94
receiving, decoding, and prioritizing
interrupts, 6-83
receiving interrupt information from
the JDCX MCA, 6-88
registers, 6—88

XJA unlock requests, 3-39 sending the EBox the interrupt code,
Interrupt priority levels 6-92

defined, 641t

Interrupts

arbiter receiving interrupts, 6-93

console halt interrupt, 6-67

console receive interrupt, 6-67

console transmit interrupt, 6-67

defining 31 priority levels, 6-83

EBox initiating the interrupt sequence,
6-92

interprocessor interrupts, 6-94

interrupt priority levels, 6-85t

IRCX receiving, decoding, and
prioritizing interrupts, 6-83

IRCX sending the EBox the interrupt
code, 6-92

IRCX sending the winning IPL to the
EBox, 6-85

keep alive interrupt, 6-67

powerfail interrupt, 6-67

SPU interrupt transactions, 6-67,
6-82

terminal receive interrupt, 6-—67

terminal transmit interrupt, 6-67

types of SPU interrupts, 6-67

winning code protocol sent to the EBox,
6-86t

XJA fatal interrupts, 6-93

sending the winning IPL to the EBox,
6-85
winning code protocol sent to the EBox,

6-86
XJA fatal interrupts, 6-93
XJA vectored interrupts, 6-93

J
JBox
CCU MCU control, 2-3
commands from the MBox, 2-60t
commands sent to the MBox, 2-57
conditions for communicating with the
main memory unit, 5-1
general description of, 1-1 to 1-11
interfacing to the ACU, 2-61 to 2-68,
5-1
interfacing to the array control unit,
5-92
JBox-to-ICU Interface, 6-37 to 640
longword write update, 2-60
longword write update linked
operation, 2-61
MBox invalidate command, 2-61
MBox read I/O register, 2-60

6 Index

JBox (cont’d.)
MBox write I/O register, 2-61
memory to JBox command bitmap
definitions, 2-63t
PAMM STRAMs, 2-19
performing a resource check for a read
refill link command, 2-32
polling the new request list, 2-15
polling the reserved request list, 2-15
ports, 2-1
port state controllers, 2-5
read refill, 2-60
read refill linked with a write back,
2-60
receiving commands from the ICU,
6-39t
sending commands to the ICU, 6-38t
sharing resources with the microcode,
2-28
write back, 2-60
write refill, 2-60
write refill linked lock, 2-60
write refill linked with a write back,
2-60
write refill lock, 2-60
write refill unlock, 2-60
JDAX
block diagram, 6-23f
description of, 6-21
loading an XJA receive buffer with
write data, 6-30
loading the SPU receive buffer, 6-31
receive buffer byte-slices, 6-22f
receive buffers, 6-21
retry modes defined, 6-24
selecting a receive buffer, 6-28t
selecting SPU command and address,
6-29
selecting XJA command and address,
6-29
sending data to the data switch, 6-30
SPU receive buffers, 6-27f
unloading an XJA receive buffer, 6-31
unloading the SPU receive buffer,
6-32
XJA receive buffers, 6-25, 6-26f
JDAX MCA
interface to MMCX MCA, 5-77
JDBX
block diagram, 6-33f
description of, 6-32
inputs and outputs of the transmit
buffer, 6-34f
loading a transmit buffer for the XJA,
6-36
transmit buffer byte slices, 6-32
unloading a transmit buffer for the
SPU, 6-37
unloading a transmit buffer for the
XJA, 6-37
using pointers for DMA read
commands, 6-34

JDBX MCA
interface to MMCX MCA, 5-77
JDCX
description of major control areas, 6-8
major control areas, 6-8f
receive from CCU control, 6-16
receive from XJA control, 6-11
SPU control, 6-18
transmit to CCU control, 6-14
XMIT to XJA control, 6-18
JXDI ‘
cycle 1
command field coding, 6—40f
ID field coding, 642, 6-42f
IPL field coding, 6-41f
length field coding, 6—40f
cycle 4
mask field coding, 644
cycle 5
data field coding, 645
cycles 2 and 3, 643
address field coding, 6—43
data sizes and cycle counts, 6-22t
interconnect description, 6-6
interconnection description, 6-6f
IPL levels defined, 6-—41t

L
LFSR
See Linear feedback shift register
Load command
as a pipeline stage, 2-7, 2-12 to 2-13
as a state, 2-9
Lock
write refill linked lock operation, 2-60
write refill lock, 2-60
Locks
CPU lock acknowledge, 3-35
CPU unlock requests, 3-36
detecting lock errors, 3-31
example, 3-29 to 3-30
global tag lookup for lock request,
3-28
global tag STRAMs lock status storage,
3-27
lock status bits, 3-28
reading lock status bits, 3-30
timeouts, 3-31
writing lock status bits, 3-30
Longword write update linked operation,
2-61
Longword write update operation, 2-60

M
MAC
See Memory array card

Main array card
MMU containing MACs, 5-11
Main memory

Main memory (cont’d.)

cabling between the SCU planar
module and memory array cards,
5-1

Main memory unit

See also Array control unit

See also Memory module

ACU-to-MMU command, status, and
control interface, 5-6f

ACU-to-MMU data interface, 5-4f

conditions for communicating with the
JBox, 5-1

containing four main array cards,
5-11

definition of interleaving, 5-23

description of daughter array card,
54

description of hex memory modules,
54

description of memory array card, 54

description of segments and banks,
54

description of the memory module, 5-7

dynamic RAMs description, 5-9

initializing, 5-35

main memory control, 5-2

memory control DRAMs, 5-2

memory data path, 5-3

memory module data organization,
5-30

MMCX-to-MMU control field, 5-56t

MMCX-to-MMU control format, 5-56

MMU-to-MMCX MCA interface, 5-59

modes of operation, 5-35

parameters for a fully configured
memory, 54

power requirements, 5-4t

quadword bit configuration, 5-30

SPU controlling modes of operation,
5-35

status field, 5-59t

status format, 5-59f

storing quadwords, 5-33

testing the memory module, 5-112

MBox

See also CPU

command buffers, 2-9

interlock requests, 3-31

longword write update, 2-60

longword write update linked
operation, 2-61

read I/O register, 2-60

read refill, 2-60

read refill linked with a write back,
2-60

sending invalidate to JBox, 2-61

write back, 2-60

write.I/0 register, 2-61

write refill, 2-60

write refill linked lock, 2-60

index 7

MBox (cont’d.)

write refill linked with a write back,
2-60

write refill lock, 2—-60

write refill unlock, 2-60

MCDX MCA

BIST controller, 5-113

block diagram, 5-79f

controllers
BIST sequence controller, 5-80
DRAM sequence controller, 5-80
single-step sequence controller,

5-80

DRAM sequencing, 5-81

functional description of, 5-78

generating RAS, CAS, and WE, 5-78

MCDX-to-MMCX control field, 5-60t

MCDX-to-MMCX control format, 5-60f

MCDX-to-MMCX interface, 5-60

memory control DRAMs, 5-2

MMCX-to-MCDX control field, 5-62t

MMCX-to-MCDX control format, 5-62f

read-modify-write operation, 5-106

read operation, 5-100

read states, 5-81f

refresh states, 5-85f

sending DRAM control signals, 5-80

sending status information to MMCX
MCA, 5-81

write operation, 5-103

write pass operation, 5-109

write pass states, 5-83f

write read operation, 5-108

write read states, 5-84f

write states, 5-81f

MDPX MCA

block diagram, 5-85f

description of the linear feedback shift
register, 5-91

during read-modify-write operations,
5-89

during read operations, 5-89

during write operations, 5-88

functional description of, 5-85

initializing error checking and
correction, 5-92

MDPX-to-MMCX control field, 5-69t

MDPX-to-MMCX control format, 5-68f

memory data path, 5-3

MMCX-to-MDPX control field, 5-65t

MMCX-to-MDPX control format, 5-64f

read data path, 5-89f

read-modify-write operation, 5-106

read operation, 5-100

receiving data from the DSXX MCAs,
5-88f

synchronizing the DCA LFSR, 5-91

write data path, 5-88f

write operation, 5-103

write pass operation, 5-109

write read operation, 5-108

Memory

10 Index

N

Nonexistent memory

See NPAMM

entry into the control store, 4—4
Normal mode

in the memory subsystem, 5-35, 5-93
NPAMM

definition of, 2-19

generating the nonexistent memory bit,

2-21

NXM bit

See NPAMM

P
Packets
corresponding to the interconnects and
buses, 6-7
CPU read data return packet, 6-58f
CPU read error status packet, 6-58f
CPU read packet, 6-57f
CPU write packet, 6-59f
data path from the receive buffers to
the data switch, 6-46
definition of, 6-7
DMA read error packet, 6-61f
DMA read packet, 6-61f
DMA read return packet, 6-61f
DMA write packet, 6-63f
ECC packet, 6-67f
JXDI data sizes and cycle counts,
622t
SPU communicating with packets, 6-8
SPU DMA packet, 6-65f
SPU 1/O transaction packet, 6-66f
SPU interrupt packet, 6-67f
SPU-t0-ICU communication using
packets, 6-64
transferring a packet from the ICU to
the SPU, 6-70
transferring a packet from the SPU to
the ICU, 6-73
transferring a packet from the XJA to
the ICU, 6-55
XJA and ICU communication using
packets, 6—40
XJA communicating with packets, 6-7
XJA interrupt packet, 6—64f
PAMM
as a pipeline stage, 2-7, 2-24
PAMM STRAMs
addressing the MPAMM, 2-19
definition of, 2-19
generating the nonexistent memory bit,
2-21
space allocation of the IPAMM, 2-20
SPU initializing the PAMMs, 2-19
Pipeline stages
description of, 2-7

Pipeline stages (cont’d.)
load command, 2-12 to 2-13
PAMM and command, 2-24
resource check, 2-28
Polling
JBox polling the new request li:
2-15
JBox polling the reserved reque
2-15
Port controllers
deciding which command buffer
2-11
for the ACU (memory), 2-10
for the ICU (VO), 2-10
for the MBox (CPU), 2-9
monitoring the states of request
receiving arbitration index valu
2-18t
states of, 2-9t
Port state controller
description of, 2-5

R
Read-modify-write operation, 5-1(
Read operation, 5-100
Read refill link command
resources needed for, 2-32
Read refill linked with a write bac
operation, 2-60
Read refill operation, 2-60
Receive buffers
for the SPU, 6-27f
for the XJA, 6-25, 6-26f
in the JDAX MCA, 6-21
loading an XJA receive buffer w
write data, 6-30
loading the SPU receive buffer,
selecting a receive buffer, 6-28i
sending data to the data switch,
unloading an X.JA receive buffer,
unloading the SPU receive buffe
6-32
Refresh operation, 5-110
Register
MBox read I/0 register operatio
2-60
MBox write I/O register operatic
2-61
Registers
CPU configuration register, 6-£
6-89t
error summary register, 6-91f,
interprocess interrupt register,
interprocessor interrupt register,
6-90f
Reserve
as a state, 2-9
Reserved
JBox polling the reserved reques
2-15

Reserve in progress
as a state, 2-9
Resource check
as a pipeline stage, 2-7, 2-28
JBox performing a resource check,
2-15
resource list, 2-29t
sharing resources, 2-28
types of resources, 2-28
Retired
as a state, 2-9
Retry modes
definitions of, 6-24

S
SBE

See Single-bit errors
Service processor unit

See SPU
Single-bit errors
handling single-bit errors, 7—4
SPU
cabling between the SCU planar
module and memory array cards,
5-1
clearing lock status, 3-31
communicating with packets, 6-8
CPU ID defined, 6-68t
ICU-to-SPU interface, 6-69 to 6-73
initializing the main memory unit,
5-35
initializing the PAMMs, 2-19
interface to MMCX MCA, 5-77
interlock requests, 3-39 to 3-43
interrupt levels, 6-—85t
interrupts
console interrupts, 6-93
in the IO subsystem, 6-7
IPL levels defined, 6-41t
key SPU signals to ICU, 6-70t
loading the SPU receive buffer, 6-31
MMU modes of operation, 5-35
modes of operation, 5-35, 5-93
address pattern generation, 5-93
normal mode, 5-93
standby mode, 5-93
step mode, 5-93
modes of operation in the memory
subsystem
address pattern generation, 5-35
normal, 5-35
standby, 5-35
step, 5-35
timing, 5-35
receive buffers, 6-27f
receive registers RXCS and RXDB,
6-68 ,
receiving commands from the ICU,
6--69t

index 11

SPU (cont’d.)
selecting a transmit buffer for the SPU,
6-24t
selecting the SPU command and
address in the receive buffer,
6-29
selecting the SPU receive buffer, 6-28t
sending commands to the ICU, 6-71t
SPU-to-ICU communication using
packets, 6-64
supporting the array control unit,
5-35
testing the memory module, 5-112
transactions
CPU transactions, 6-74
DMA transactions, 6-64, 6-80
ECC transaction, 6-67
ECC transactions, 6-82
T/O transactions, 666, 6-76
interrupt transactions, 6-67, 6-82
types of, 6-64, 6-73
transferring a packet from the ICU to
the SPU, 6-70
transferring a packet from the SPU to
the ICU, 6-73
transmit buffers in the JDBX MCA,
6-34
transmit registers TXCS and TXDB,
668
types of interrupts, 6-67
unloading a transmit buffer for the
SPU, 6-37
unloading the SPU receive buffer,
6-32
Standby mode
in the memory subsystem, 5-35, 5-93,
5-96
exiting standby, 5-97
initiating standby, 5-96
SPU handshaking, 5-97t
Step mode
built-in self-tests, 5-113t
in the memory subsystem, 5-35, 5-93,
5-94f
commands, 5-95t
command signals, 5-94f
exiting step mode, 5-96
System control unit
See SCU

T

Tag MCU
ACU selecting addresses in the address

latches in the tag MCU, 5-1

ADRX-to-MMCX control field, 5-75t
ADRX-to-MMCX control format, 5-74f
error detection logic, 7-8
MMCX-to-ADRX control field, 5-75t
MMCX-t0-ADRX control format, 5-75f
tag MCU-to-MMCX interface, 5-74

12 Index

Transmit buffers

in the JDBX MCA, 6-34

loading a transmit buffer for the XJA,
6-36

selecting a transmit buffer, 6-24t

unloading a transmit buffer for the
SPU, 6-37

unloading a transmit buffer for the
XJA, 6-87

U

Unlock
write refill unlock operation, 2-60

v
Valid
as a state, 2-9
Valid bit
in the cache tag, 3-5

w

Wrap on read sequences, 5-101

Write back operation, 2-60

Write operation, 5-103

Write pass operation, 5-109

Write read operation, 5-108

Write refill linked lock operation, 2-60

Write refill linked with a write back
operation, 2-60

Write refill lock, 2-60

Write refill operation, 2-60

Write refill unlock operation, 2-60

X
XJA

command summary, 6-53f

communicating with ICU using
packets, 6-7

connecting to the SCU planar module,
6-5

error handling, 6-92

fatal errors, 6-85t

ICU-to-XJA commands, 6-50t

interlock requests, 3-36 to 3-39

interrupt levels, 6-85t

interrupts
fatal interrupts, 6-92, 6-93
vectored interrupts, 6-92, 6-93

in the I/O subsystem, 6-5

IPAMM locations, 2-21

IPL levels defined, 641t

JXDI cycle 1
address field coding, 6—43
command field coding, 6-40f
ID field coding, 6-42, 6—42f
IPL field coding, 6-41f

XJA

JXDI cycle 1 (cont’d.)
length field coding, 6—40f

JXDI cycle 4
mask field coding, 6-44

JXDI cycle 5
data field coding, 6-45

JXDI cycles 2 and 3, 643

key ICU-to-XJA signals, 6-49t

key signals XJA to ICU, 6-52t

loading an XJA receive buffer with
write data, 6-30

loading a transmit buffer for the XJA,
6-36

module MCAs, 6-5

receive buffers, 6-25, 6-26f

receive buffers in the JDAX MCA,
6-21

reporting errors to the operating
system, 6-92

retry modes defined, 6-24

selecting an X.JA receive buffer, 6-28t

selecting a transmit buffer for the SPU,
6-24t

selecting the XJA command and
address in the receive buffer,
6-29

sending commands to the ICU, 6-54t

transactions
CPU transactions, 6-56
DMA transactions, 6-60
interrupt transactions, 6-63
types of, 6-56

transferring a packet from the XJA to
the ICU, 6-55

transmit buffers in the JDBX MCA,
6-34

types of transactions, 6-5

unloading an XJA receive buffer, 6-31

unloading a transmit buffer for the
XJA, 6-37

XMI

bus description, 6-6
IPAMM locations, 2-21

Main memory (cont’d.)

cabling between the SCU planar
module and memory array cards,
5-1

Main memory unit

See also Array control unit

See also Memory module

ACU-to-MMU command, status, and
control interface, 5-6f

ACU-to-MMU data interface, 5-4f

conditions for communicating with the
JBox, 5-1

containing four main array cards,
5-11

definition of interleaving, 5-23

description of daughter array card,
54

description of hex memory modules,
54

description of memory array card, 54

description of segments and banks,
54

description of the memory module, 5-7

dynamic RAMs description, 5-9

initializing, 5-35

main memory control, 5-2

memory control DRAMs, 5-2

memory data path, 5-3

memory module data organization,
5-30

MMCX-to-MMU control field, 5-56t

MMCX-to-MMU control format, 5-56

MMU-to-MMCX MCA interface, 5-59

modes of operation, 5-35

parameters for a fully configured
memory, 5—4

power requirements, 5—4t

quadword bit configuration, 5-30

SPU controlling modes of operation,
5-35

status field, 5-59t

status format, 5-59f

storing quadwords, 5-33

testing the memory module, 5-112

MBox

See also CPU

command buffers, 2-9

interlock requests, 3-31

longword write update, 2-60

longword write update linked
operation, 2-61

read I/O register, 2-60

read refill, 2-60

read refill linked with a write back,
2-60

sending invalidate to JBox, 2-61

write back, 2-60

write I/0 register, 2-61

write refill, 2-60

write refill linked lock, 2-60

Index 7

MBox (cont’d.)
write refill linked with a write back,
2-60
write refill lock, 2-60
write refill unlock, 2-60
MCDX MCA
BIST controller, 5-113
block diagram, 5-79f
controllers
BIST sequence controller, 5-80
DRAM sequence controller, 5-80
single-step sequence controller,
5-80
DRAM sequencing, 5-81
functional description of, 5-78
generating RAS, CAS, and WE, 5-78
MCDX-to-MMCX control field, 5-60t

MCDX-to-MMCX control format, 5-60f

MCDX-to-MMCX interface, 5-60
memory control DRAMs, 5-2
MMCX-to-MCDX control field, 5-62t

MMCX-to-MCDX control format, 5-62f

read-modify-write operation, 5-106

read operation, 5-100

read states, 5-81f

refresh states, 5-85f

sending DRAM control signals, 5-80

sending status information to MMCX
MCA, 5-81

write operation, 5-103

write pass operation, 5-109

write pass states, 5-83f

write read operation, 5-108

write read states, 5-84f

write states, 5-81f

MDPX MCA

block diagram, 5-85f

description of the linear feedback shift
register, 5-91

during read-modify-write operations,
5-89

during read operations, 5-89

during write operations, 5-88

functional description of, 5-85

initializing error checking and
correction, 5-92

MDPX-to-MMCX control field, 5-69t

MDPX-to-MMCX control format, 5-68f

memory data path, 5-3
MMCX-to-MDPX control field, 5-65t

MMCX-to-MDPX control format, 5-64f

read data path, 5-89f

read-modify-write operation, 5-106

read operation, 5-100

receiving data from the DSXX MCAs,

5-88f

synchronizing the DCA LFSR, 5-91

write data path, 5-88f

write operation, 5-103

write pass operation, 5-109

write read operation, 5-108
Memory

Index

Memory (cont’d.)

SPU supporting self-tests, 5-1

Memory array card

See also Main memory unit

See also Memory module

accessing the same bank in all four
MACs, 5-30

description of, 54

description of 20-bit slices, 5-34

description of daughter array card,
54

description of the memory module, 5-7

initializing the main memory unit,
5-35

MAC containing daughter array cards,
5-12

modes of operation, 5-35

quadword bit configuration, 5-30

read and write data paths on the
memory module, 5-40f

storing quadwords, 5-33

Memory module

See also Main memory unit

address pattern generator, 5-112f

conceptual level functional block
diagram, 5-8f

data organization, 5-30

data partitioning, 5-30

definition of interleaving, 5-23

description of, 5-7

DRAMs storing bits, 5-34f

main memory control (MMCX MCA),
5-37

MCDX generating RAS, CAS, and WE,
5-78

MCDX MCA sending DRAM control
signals, 5-80

modes of operation, 5-35, 5-93

parameters of, 5-8

physical characteristics of, 5-7f

read and write data paths on the
memory module, 5-40f

SPU controlling modes of operation,
5-35

SPU initializing the main memory unit,
5-35

switching from one mode to another,
5-98

testing the memory module, 5-112

testing the memory module using the
BIST controller, 5-113

Memory physical address memory

mapping
See MPAMM

Memory subsystem

See also Array control unit
See also Daughter array card
See also Main memory unit
See also Memory array card
See also Memory module

Memory subsystem (cont’d.)
See also SPU
accessing the same bank in all four
MACs, 5-30
general description of, 5-2, 5-2f
main memory control (MMCX MCA),
5-37
MCDX generating RAS, CAS, and WE,
5-78
MCDX sending DRAM control signals,
5-80
memory operations, 5-99
CPU cycles for wrap on reads,
5-102t
EEPROM operations, 5-111
I/O boundaries, 5-101t
I/O cycles for wrap on read,
5-102t
loading the CAS mask register,
5-104, 5-105f
read-modify-write operation,
5-106
read operation, 5-100
refresh operation, 5-110
wrap on read sequences, 5-101
write operation, 5-103
write pass operation, 5-109
write read operation, 5-108
modes of operation, 5-93
modes of operation in the memory
subsystem
timing, 5-35
read and write data paths on the
memory module, 5—40f
types of clocks, 5-11
MICR
block diagram, 4-11f
control store definition, 4-1
loading the fix command into the fixup
queues, 4-7
microcontrol logic, 4-11
receiving status from the global tag
STRAMs, 3-13
tag queue data bit definitions, 4-8t
tag queue data bitmap, 4-7f
Microcode
See Control store
sharing resources with the JBox, 2-28
Micromachine
See Control store
Microwords
field definitions, 4-14
format, 4-14
in the control store, 4-1
MM
See Memory module
MMCX MCA
address strobe field definitions, 5-57t
ADRX-to-MMCX control field, 5-75t
ADRX-to-MMCX control format, 5-74f
CAS mask control, 5-57t

MMCX MCA (cont’d.)

CAS mask control field definitions,
5-57t

CCU MCU-to-MMCX control field,
5-70t

CCU MCU-to-MMCX control format,
5-69f

command buffer control, 5-38, 5-38f

command buffer controller, 5-39,
5-39f

command latch, 5—44, 5-45f

control areas, 5-37f

controlling the ADRX row and column
select logic, 5-74

CTLA receiving the MMCX command
bits, 2-64f

CTLB receiving the MMCX command
bits, 2-64f

CTLC receiving the MMCX command
bits, 2-65f

data output latch controller, 548

data output latch controller states,
5-48f to 5-50f

data output latch enable, 5-58t

DSXX-to-MMCX control field, 5-75t

error report controller, 5-51

error report controller states, 5-51f

functional description of, 5-37

interface to SPU, 5-77

JDAX MCA interface, 5-77

JDBX MCA interface, 5-77

Joading the column address for the
segment controller states, 5-44f

loading the row address and column
address, 5—42

loading the row address for the
segment controller states, 5—43f

logic description
command buffer control, 5-37
command latch, 5-37
input buffer, 5-37
output buffer, 5-37
write buffer control, 5-37

main memory control, 5-2

MCDX-to-MMCX control field, 5-60t

MCDX-to-MMCX control format, 5-60f

MCDX-to-MMCX interface, 5-60
MDPX-to-MMCX contro! field, 5-69t

MDPX-to-MMCX control format, 5-68f

MMCX-to-ADRX control field, 5-75t

MMCX-to-ADRX control format, 5-75f

MMCX-t0-CCU MCU control field,
5-73t

MMCX-to-CCU MCU control format,
5-73f

MMCX-to-MCDX control field, 5-62t

MMCX-to-MCDX control format, 5-62f

MMCX-to-MDPX control field, 565t

MMCX-to-MDPX control format, 5-64f

MMCX-to-MMU control field, 5-56t

MMCX-to-MMU control format, 5-56f

MMU-to-MMCX MCA interface, 5-59

index 9

MMCX MCA (cont’d.)
mode transition controller, 5-53
mode transition controller states,
5-55f
read buffer control, 545, 5—45f
read buffer controller states, 5—47f
read data latch controlier, 547
read-modify-write operation, 5-106
read-modify-write status bit, 5-53
read-modify-write status bit states,
5-55f
read operation, 5-100
read select field definitions, 5-59t
receiving status information from
MCDX MCA, 5-81
segment controller, 540
segment data latch controller, 5-53
segment data latch controller states,
5-53f
starting the segment controller, 5-42
starting the segment controller states,
5—42f
status field, 5-59t
status format, 5-59f
tag MCU-to-MMCX interface, 5-74
write buffer control, 5-52, 5-52f
write flip-flop enable field definitions,
5-58t
write operation, 5-103
write pass operation, 5-109
write read operation, 5-108
write select field definitions, 5-58t
write strobe field definitions, 5-58t
MMU
See Main memory unit
Modes of operation
address pattern generation, 5-35
during built-in self-tests, 5-114
exiting step mode, 5-96
mode switching during BIST tests,
5-114
mode transition controller, 5-53
normal, 5-35
standby, 5-35
step, 5-35
switching from one mode to another,
5-98
Modify bit
in the cache tag, 3-5
MPAMM
addressing the, 2-19
definition of, 2-19
MTCH
block diagram, 3-12f
comparing physical addresses with
global tag addresses, 3-10
reading global tags, 38-13

10 Index

Nonexistent memory

See NPAMM

entry into the control store, 4—4
Normal mode

in the memory subsystem, 5-35, 5-93
NPAMM

definition of, 2-19

generating the nonexistent memory bit,

2-21

NXM bit

See NPAMM

P
Packets
corresponding to the interconnects and
buses, 6-7
CPU read data return packet, 6-58f
CPU read error status packet, 6-58f
CPU read packet, 6-57f
CPU write packet, 6-59f
data path from the receive buffers to
the data switch, 6-46
definition of, 6-7
DMA read error packet, 6-61f
DMA read packet, 6-61f
DMA read return packet, 6-61f
DMA write packet, 6-63f
ECC packet, 6-67f
JXDI data sizes and cycle counts,
6-22t
SPU communicating with packets, 6-8
SPU DMA packet, 6-65f
SPU I/O transaction packet, 6-66f
SPU interrupt packet, 6-67f
SPU-t0-ICU communication using
packets, 6-64
transferring a packet from the ICU to
the SPU, 6-70
transferring a packet from the SPU to
the ICU, 6-73
transferring a packet from the XJA to
the ICU, 6-55
XJA and ICU communication using
packets, 6-40
XJA communicating with packets, 6-7
XJA interrupt packet, 6—64f
PAMM
as a pipeline stage, 2-7, 2-24
PAMM STRAMs
addressing the MPAMM, 2-19
definition of, 2-19
generating the nonexistent memory bit,
2-21
space allocation of the IPAMM, 2-20
SPU initializing the PAMMs, 2-19
Pipeline stages
description of, 2-7

Pipeline stages (cont’d.)
load command, 2-12 to 2-13
PAMM and command, 2-24
resource check, 2-28
Polling
JBox polling the new request list,
2-15
JBox polling the reserved request list,
2-15
Port controllers
deciding which command buffer to load,
2-11
for the ACU (memory), 2-10
for the ICU (IV0), 2-10
for the MBox (CPU), 2-9
monitoring the states of requests, 2-8
receiving arbitration index values,
2-18t
states of, 2-9t
Port state controller
description of, 2-5

R
Read-modify-write operation, 5-106
Read operation, 5-100
Read refill link command
resources needed for, 2-32
Read refill linked with a write back
operation, 2-60
Read refill operation, 2-60
Receive buffers
for the SPU, 6-27f
for the XJA, 6-25, 6-26f
in the JDAX MCA, 6-21
loading an XJA receive buffer with
write data, 6-30
loading the SPU receive buffer, 6-31
selecting a receive buffer, 6-28t
sending data to the data switch, 6-30
unloading an XJA receive buffer, 6-31
unloading the SPU receive buffer,
6-32
Refresh operation, 5-110
Register
MBox read I/0 register operation,
2-60
MBox write I/O register operation,
2-61
Registers
CPU configuration register, 6-88f,
689t
error summary register, 6-91f, 6-91t
interprocess interrupt register, 6-90t
interprocessor interrupt register,
6-90f
Reserve
as a state, 2-9
Reserved
JBox polling the reserved request list,
2-15

Reserve in progress
as a state, 2-9
Resource check
as a pipeline stage, 2-7, 2-28
JBox performing a resource check,
2-15
resource list, 2-29t
sharing resources, 2-28
types of resources, 2-28
Retired
as a state, 2-9
Retry modes
definitions of, 6-24

S
SBE
See Single-bit errors
Service processor unit
See SPU
Single-bit errors
handling single-bit errors, 7-4
SPU
cabling between the SCU planar
module and memory array cards,
5-1
clearing lock status, 3-31
communicating with packets, 6-8
CPU ID defined, 6-68t
ICU-to-SPU interface, 6-69 to 6-73
initializing the main memory unit,
5-35
initializing the PAMMs, 2-19
interface to MMCX MCA, 5-77
interlock requests, 3-39 to 3-43
interrupt levels, 6-85t
interrupts
console interrupts, 6-93
in the /O subsystem, 6-7
IPL levels defined, 641t
key SPU signals to ICU, 6-70t
loading the SPU receive buffer, 6-31
MMU modes of operation, 5-35
modes of operation, 5-35, 5-93
address pattern generation, 5-93
normal mode, 5-93
standby mode, 5-93
step mode, 5-93
modes of operation in the memory
subsystem
address pattern generation, 5-35
normal, 5-35
standby, 5-35
step, 5-35
timing, 5-35
receive buffers, 6-27f
receive registers RXCS and RXDB,
6-68 |
receiving commands from the ICU,
6-69t

Index 11

SPU (cont’d.)

selecting a transmit buffer for the SPU,
6-24t

selecting the SPU command and
address in the receive buffer,
6-29

selecting the SPU receive buffer, 6-28t

sending commands to the ICU, 6-71t

SPU-to-ICU communication using
packets, 6-64

supporting the array control unit,
5-35

testing the memory module, 5-112

transactions
CPU transactions, 6-74
DMA transactions, 6-64, 6-80
ECC transaction, 6-67
ECC transactions, 6-82
I/O transactions, 666, 6-76
interrupt transactions, 667, 6—82
types of, 6-64, 6-73

transferring a packet from the ICU to
the SPU, 6-70

transferring a packet from the SPU to
the ICU, 6-73

transmit buffers in the JDBX MCA,
6-34

transmit registers TXCS and TXDB,
6-68

types of interrupts, 6—67

unloading a transmit buffer for the
SPU, 6-37

unloading the SPU receive buffer,
6-32

Standby mode

in the memory subsystem, 5-35, 5-93,
5-96
exiting standby, 5-97
initiating standby, 5-96

SPU handshaking, 5-97t

Step mode

built-in self-tests, 5-113t
in the memory subsystem, 5-35, 5-93,
5-94f
commands, 5-95t
command signals, 5-94f
exiting step mode, 5-96

System control unit

See SCU

Tag MCU

ACU selecting addresses in the address
latches in the tag MCU, 5-1
ADRX-to-MMCX control field, 5-75t
ADRX-to-MMCX control format, 5-74f
error detection logic, 7-8
MMCX-to-ADRX control field, 5-75t
MMCX-to-ADRX contro! format, 5-75f
tag MCU-to-MMCX interface, 5-74

12 Index

Transmit buffers

in the JDBX MCA, 6-34

loading a transmit buffer for the XJA,
6-36

selecting a transmit buffer, 6-24t

unloading a transmit buffer for the
SPU, 6-37

unloading a transmit buffer for the
XJA, 6-37

U
Unlock
write refill unlock operation, 2-60

'
Valid
as a state, 2-9
Valid bit
in the cache tag, 3-5

w

Wrap on read sequences, 5-101

Write back operation, 2-60

Write operation, 5-103

Write pass operation, 5-109

Write read operation, 5-108

Write refill linked lock operation, 2-60

Write refill linked with a write back
operation, 2-60

Write refill lock, 2-60

Write refill operation, 2-60

Write refill unlock operation, 2-60

X
XJA

command summary, 6-53f

communicating with ICU using
packets, 6-7

connecting to the SCU planar module,
6-5

error handling, 6-92

fatal errors, 6-85t

ICU-to-XJA commands, 6-50t

interlock requests, 3-36 to 3-39

interrupt levels, 6-85t

interrupts
fatal interrupts, 6-92, 6-93
vectored interrupts, 6-92, 6-93

in the I/O subsystem, 6-5

IPAMM locations, 2-21

IPL levels defined, 6-41t

JXDI cycle 1
address field coding, 6-43
command field coding, 6-40f
ID field coding, 6-42, 6-42f
IPL field coding, 6—41f

XJA

JXDI cycle 1 (cont’d.)

length field coding, 6—40f

JXDI cycle 4
mask field coding, 6—44

JXDI cycle 5
data field coding, 6—45

JXDI cycles 2 and 3, 643

key ICU-to-XJA signals, 649t

key signals XJA to ICU, 6-52t

loading an XJA receive buffer with
write data, 6-30

loading a transmit buffer for the XJA,
6-36

module MCAs, 6-5

receive buffers, 6-25, 6-26f

receive buffers in the JDAX MCA,
6-21

reporting errors to the operating
system, 6-92

retry modes defined, 6-24

selecting an XJA receive buffer, 6-28t

selecting a transmit buffer for the SPU,
6-24t

selecting the XJA command and
address in the receive buffer,
6-29

sending commands to the ICU, 6-54t

transactions
CPU transactions, 6-56
DMA transactions, 6-60
interrupt transactions, 6-63
types of, 6-56

transferring a packet from the XJA to
the ICU, 6-55

transmit buffers in the JDBX MCA,
6-34

types of transactions, 6-5

unloading an XJA receive buffer, 6-31

unloading a transmit buffer for the
XJA, 6-37

XMI

bus description, 6-6
IPAMM locations, 2-21

