
VAX 9000 Family

XJA Technical Description

Order Number EK-KA90A-TD-001

digital equipment corporation

mayhard, massachusetts

DIGITAL INTERNAL USE ONLY

First Edition, May 1990

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

Restricted Rights: Use, duplication, or disclosure by the U. S. Government is subject to restrictions as set
forth in subparagraph (c¢) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013.

Copyright © Digital Equipment Corporation 1980

All Rights Reserved.

Printed in U.S.A.

The postpaid Reader’s Comment Card included in this document requests the user’s critical evaluation to
assist in preparing future documentation.

FCC NOTICE: The equipment described in this manual generates, uses, and may emit radio frequency
energy. The equipment has been type tested and found to comply with the limits for a Class A computing

device pursuant to Subpart J of Part 15 of FCC Rules, which are designed to provide reasonable protection

against such radio frequency interference when operated in a commercial environment. Operation of this
equipment in a residential area may cause interference, in which case the user at his own expense may be
required to take measures to correct the interference.

The following are trademarks of Digital Equipment Corporation:

BI KDM RSTS VAX FORTRAN

CI KLESI RSX VAX MACRO
DEC MASSBUS RT VAXBI
DECmate MicroVAX RV20 VAXcluster
DECUS NI RV64 VAXELN

DECwriter PDP TA VMS
DHB32 P/OS TK VT

DIBOL Professional ULTRIX Work Processor
DRB32 RA UNIBUS XMI

EDT Rainbow VAX

KDB50 RD VAX C BHEMII'"

® IBM is a registered trademark of International Business Machines Corporation.

® Intel is a registered trademark of Intel Corporation.

TM Hubbell is a trademark of Harvey Hubbel, Inc.

® Motorola is a registered trademark of Motorola, Inc.

This document was prepared and published by Educational Services Development and Publishing, Digital
Equipment Corporation.

DIGITAL INTERNAL USE ONLY

Contents

About This Manual xiii

1 General Description

1.1 T/O Configurationttt iiiiiniineneeneenn, 1-1

1.1.1 JXDI BUS .t ittt i e e e e e e 1-1

11,2 XA . e e e e 1-3

1.1.3 XM BUS vttt it i e e e e e e e e e e 14

1.14 XMI Node Adapterso ittt ittt ittt 14

1.2 Physical Configuration i i 1-5

1.3 XJA Registers . .o ov ittt 1-7

1.4 XJA Transactionsv it i ii et eeet ettt oo 1-8

14.1 DMA Transactions . .. v vttt it eee s eeteneanenennenson 1-11

1.4.2 CPU Transactions . . . v v ittt ittt ettt te et en et 1-16

14.2.1 CPU Transactions to XMI Nodes (Excluding XJA) 1-16

1.4.2.2 CPU Transactions to XJA Private Registers 1-20

1.4.2.3 CPU Transactions to XMI Space Registers 1-21

1.4.3 Interrupt Transactions 1-21

1.43.1 XJAINterruptsottt i it e e e 1-21

1.4.3.2 XMIInterruptsotttittt ianses 1-23

144 Add-On Self-Test LN 1-24

1.5 System Address Spacee 1-24

1.5.1 System I/0 Space Allocation 1-25

1.5.2 XJA Private Register Space i, 1-27

1.5.3 XMI I/O Space Allocationciiiiin i 1-28

1.5.4 XMI Address to VAX 9000 System Address 1-28

1.5.5 VAX 9000 System Address to XMI Address 1-30

1.5.5.1 VAX 9000 System Address to XMI Node Space Address 1-31

1.5.5.2 VAX 9000 System Address to BI Window Space Address 1-33

iv Contents

2 JXDIBus

2.1 JXDIDescriptionu ittti i e 2-1

2.1.1 DMA Transactionso v vvtnetneeetnseneeneaetaeneennsns 2-5

2.1.2 CPU Transactions . .« oot v v vttt ee et oneneenesnsansnosss 2-5

2.1.3 Interrupt Transactionsc0 ittt nnns 2-5

2.1.4 JXDI Transfer Functions. ot P 2-5

22 DMA Read ... e e e e e e e 2-6

2.2.1 Command Available Cycle. 2-9

2.2.2 Read Request Command Cycle 2-9

2.2.2.1 Command Field. it i it 2-9

2.2.2.2 Length Field i, PR 2-9

2.2.2.3 ID Field. . ..ote et e e e 2-10

2.23 Address Cyeles iiei it e e 2-10

2.24 Memory Address Wrapsccoiiiiiniiiniinnnennns 2-10

2.2.5 Data Parity ie 2-12

2.2.6 Acknowledge Cycle and Retry Cycle 2-12

2.2.7 ICU Buffer Emptied Cycle i, 2-12

2.2.8 Command Available Cycle. L. 2-12

2.2.9 Return Data Command Cycle, 2-13

2.2.9.1 Command Field. ittt 2-13

2.2.9.2 Length Field i i i i 2-13

2.2.9.3 ID Field. ... e e e e e 2-14

2210 DataCycles.ottti i i e 2-14

2.2.11 Data Parityte e 2-14

2.2.12 Acknowledge Cycleand Retry Cycle 2-14

2.2.13 XJA Buffer EmptiedCycle 2-14

2.2.14 Read Locked Status or Read Error Status 2-15

2.8 DMA WIIE .. ittt et e e e e e 2—-15

2.3.1 Command Available Cycle. iy - 2-17

2.3.2 Write Command Cycle. ittt 2-17

2.3.2.1 Command Field. i i 2-18

2.3.2.2 Length Field i 2-18

2.3.2.3 ID Field.o e e e e 2-18

2.3.3 Address Cyclesttti e 2-18

234 Mask Cycle ... ov vttt i i e st 2-18

2.3.5 DataCycles.ti e e 2-18

2.3.6 Data Parity it i i e e e s 2-19

2.3.7 Acknowledge Cycle and Retry Cycelet 2-19

2.3.8 ICU Buffer Emptied Cycle i, 2-19

24 CPUReadtttit e e i 2-19

2.4.1 Command Available Cycle. i, 2-19

2.4.2 Read Request Command Cycle 2-23

2.4.2.1 Command Field. i, 2-23

2.4.2.2 ID Field. ..o e i i e e e e e e 2-23

2.4.3 Address Cycles i i 2-23

Contents v

2.4.4 Data Parityoe e 2-24

2.45 Acknowledge Cycle and Retry Cycle 2-24

2.4.6 XJA Buffer Emptied Cycle e e e 2-24

247 Command Available Cycle.ccviirrtetrnnennns . 2-24

2.4.8 Return Data Command Cycley 2-25

2.4.9 DataCycles.iii it it i it i 2-25

2410 DataParityti i i e 2-25

2.4.11 Acknowledge Cycleand Retry Cycle 2-25

2.4.12 ICU Buffer Emptied Cycleo iiiinenns 2-26

2.4.13 Read Error Status............oiiiiiiiitittt innennsns 2-26

P> R 0 54 8" v X OO N 2-26

2.5.1 Command Available Cycle. i i 2-29

2.5.2 WriteCommand Cycle.t 2-29

2.5.3 Address/Mask Cycles. iti i 2-29

2.5.4 Data Cyclesot i i i et e e e 2-30

255 Data Parityo i e e e 2-30

2.5.6 Acknowledge Cycle and Retry Cycle 2-30

2.5.7 XJA Buffer Emptied Cycle i, 2-30

2.5.8 Write Complete Transactioncc0iriinnreneenn. 2-31

2.6 Interrupt Transactionst nrneennnnn 2-31

2.7 DataEnvelopeso e e 2-34

XMI Bus

3.1 XMI Deseription i ittt e e e e 3-1

3.1.1 XMI Clock/Arbiter Module (CCARD)............... 3-2

3.1.2 D, €% O s =3 3-2

3.2 XMI Signal Descriptionscov ittt 33

3.2.1 Arbitration Signals e 34

3.2.1.1 XMI_CMD _REQ ...ettt et e e 34

3.2.1.2 XMI_ RES _REQotttet e i e 34

3.2.1.3 XML GRANT . . . it i et i e e e e 34

3.2.14 XML _HOLD . . i e e e 34

3.2.1.5 XML SUP .. i e e e i e e e 3—4

3.2.2 Information Signals 3-5

3.2.2.1 XMI_FUNCTIONI[03:00] . ..o vttt it i i it 3-5

3.2.2.2 XMI_DATA[63:00], e 3-5

3.2.2.3 XMI_IDI05:00] .. vi ittt ettt ettt et e 3-5

3.2.24 XMI_PARITY[02:00] . ..ottt ittt ettteine e 3-6

3.2.3 Response Signal: XMI_CNF[02:00]............ ..oty 3-6

3.24 Control Signals i i it 3-17

3.2.4.1 XML BAD ...e e e 3-7

3.2.4.2 XML FAULT ... i i et et 3-7

3.2.4.3 XMI_ DEFAULT i et et e 3-7

3.2.44 XMIRESET ie 3-7

vi Contents

3.2.4.5 XMI_TIME e e et e e e 3-7

3.2.4.6 XMI PHASE . . . i e e e 3-7

3.2.4.7 XMLAC _LO ..oe e e 3-7

8248 XMIDC_LO ..otttettt ittt . 8-7

3.2.5 Miscellaneous Signal: XMI_NODE_ID[03:00] 3-7

3.3 Read and Read Lock Transactions0iieiiiunennnn 3-8

3.3.1 Longwordand QuadwordRead 3-9

3.3.1.1 Arbitration e e e e e 3-9

3.3.1.2 Command Cycleco ittt ittt 3-9

3.3.1.3 Acknowledge Cycle i, 3-10

3.3.14 Arbitration e e e e e 3-11

3.3.1.5 Read Data Cyclet it 3-11

3.3.1.6 Acknowledge Cycle i, 3-11

3.3.2 Octaword Read itit i ian 3-11

3.3.2.1 Arbitration e e e 3-11

3.3.2.2 Command Cyclet 3-12

3.3.2.3 Acknowledge Cycle ie 3-12

3.3.24 ArbItration e e 3-12

3.3.2.5 Read Data Cycles i, 3-12

3.3.2.6 Acknowledge Cycles i 3-13

3.3.3 Hexword Read. ittti e i ie i 3-13

3.3.4 Read Error Responsestttity 3-13

3.34.1 Correctable Read Error i 3-13

3.3.4.2 Uncorrectable Read Error 3-14

3.3.4.3 Read-Locked Error i, 3-14

3.3.5 Multiple Read-Data-Return Transfers. 3-15

3.4 Masked Write and Write Unlock Transactions 3-15

3.4.1 Longword and Quadword Write 3-15

3.4.1.1 Arbitration e e e e e e 3-17

3.4.1.2 Command Cyclet iiiiiiinnnnn. vee. 317

3.4.1.3 Write DataCycle. i i i i i 3-18

3.4.14 Acknowledge Cycle i i, ... 9-18

3.4.2 Octaword Write o it i it e it et it i e 3-18

3.4.3 Hexword Write itttittt i te e 3-19

3.5 XMIAddress Mappingc.iiiiiiiiirennenennnenns ... 3-19

3.6 Interrupt Transactionsc.0uiiitiinnreneeneennns 3-20

3.6.1 BasicInterrupts i i i e 3-20

3.6.1.1 INTR Transactionc.0 it ineneeneneeennnnn. 3-20

3.6.1.2 IDENT Transaction.ottt intnnenneenernnean 3-22

3.6.2 IVINTR INLETTUDES « v ot ot o te e et ettt et e e e e e ... 3-22

Contents vii

XJA

. T 17V2 1= 2NN 4-1

4.1.1 DMA Read ootttittt ittt 4-5

4.1.2 |9)Y N %25 o £ < 4-6

4.1.3 CPU Read of XMI Registers Excluding XMI Space Registers in XJA 4-6

4.14 CPU Write of XMI Registers Excluding XMI Space Registers in XJA 4-6

4.1.5 CPU Read of XMI Space Registersin XJA 4-6

4.1.6 CPU Write of XMI Space Registersin XJA 4-7

4.1.7 CPU Read of XJA Private Registerso.... 4-7

4.1.8 CPU Write of XJA Private Registers. 4-8

4.1.9 XMI Bus Initiated Normal Interrupts 4-8

4.1.10 XMI Implied Vector Interrupts — Interprocessor Interrupts....... 4-8

4.1.11 XMI Implied Vector Interrupts — Write Error Interrupts......... 4-9

4.1.12 XJA Generated Nonfatal Interrupts 4-9

4.1.13 XJA Generated Fatal Interrupts i, 4-10

42 XJAClock Systemtttit i e 4-10

4.2.1 Crossing Asynchronous Boundaries Between Clock Systems 4-11

4.2.2 XCI_CClock Systemttt 4-11

4.2.3 CLKJ Clock System ottt 4-13

4.2.4 CLKX Clock Systemituiiiinertiiineennnnn. 4-13

43 XDEData Flow.ttt ittt 4-16

4.3.1 Transmit Data Flow iy 4-16

4.3.2 Receive Data Flow i i ittt 4-17

4.3.3 Alignment of Received Data 4-19

4.4 XCE Data Flow Control Logic.ty 4-22

441 Transmit Logict [P 4-22

4.4.2 Receive Logicttti e i 4-27

45 XML COorner. . ittt it it e e e e e e e e 4-31

45.1 Physical Descriptiono, 4-31

452 XCL CloCKS v v vttt ittt et et et e e e e e 4-31

46 XDCReceive LOZiC v ittt it e e e s 4-33

4.6.1) 4-33

4.6.2 3 4-38

4.6.3 Packet Processinguiuntintininini ennennns 4-39

4.6.3.1 DMA Read/Write Packet Processing 4—40

4.6.3.2 CPU Read Data Return and CPU Read Status Return......... 4-43

4.6.3.3 XMI Read/Write of XMI Space Register Packet Processing 445

4.6.3.4 Basic Interrupt and WEI Implied Vector Interrupt Packet
Processingte i e e 447

4.6.3.5 IDENT Command Cyclet 4-48

4.6.4 CPUWrite Complete.ottt 4-48

4.6.5 CPU Read of an XJA Private Register 449

4.7 XDCTransmit Logic oo ittt it it e e e 449

4.7.1 Transmit Register File i, 4-51

viii Contents

4.7.2 DMARead DataReturn 4-54

4.7.3 Read Locked Response and Read Error Response 4-57

4.7.4 CPU Read/Writetttit it e e et e i e 4-58

4.7.4.1 Access to XJA Private Registerovvvevnnn.... 4-61

4.7.4.2 Accessto XMI Registertttittt e 4-62

4.7.5 Read Register DataReturn.................... . . s, 4-63

4.7.6 IDENT .e e e e e e e 4-65

48 XJARegisters (REG).ttt 4-65

48.1 XMI Space Registersotttit it et it e e 465

482 XJAPrivate Registers.c0iiiiiiiiinnernennenenn 4-65

4.8.3 REGDataFlow.ttt it 4-66

4.8.3.1 XMI Space Register Read 4-68

4.8.3.2 XMI Space Register Write. s, 4-68

4.8.3.3 CPU Register Read of XJA Private Register 4-68

4.8.3.4 CPU Register Write of XJA Private Register 4-68

4.8.3.5 XMI Failing Address Register. 4-68

4.8.3.6 DMA Failing Command/Address Registers 4-69

4.9 Interrupts . ..o e e e e e e e e e 4-69

4.9.1 Nonfatal Interrupts. o ittt i et e e 4-69

4.9.1.1 XMI Normal Interrupt i i i 4-69

49.1.2 XMI IPINTR (Interprocessor Implied Vector Interrupt) 4-70

4.9.1.3 Nonfatal Errors Detected by XJA 4-70

4.9.2 Fatal Interruptsotttittt et e 4-71

4.10 Add-On Self-Test ittt - 4-T71

4.10.1 AOST Implementationcc0iiiiuennernn, ... 471

4.10.2 XJA Register Read Transaction. v, 4-77

4.10.3 XJA Register Write Transaction 4-80

Register Descriptions

5.1 XJA Register Overview 0ttt itttenneenns 5-1

52 XMISpace Registers0, 5-3

5.2.1 Device Register i 5-3

5.2.2 XMI Bus Error Register 0. 54

5.2.3 Failing Address Register i, 5-11

5.2.4 Failing Address Extension Register 5-12

5.2.5 XJA General-Purpose Register 5-13

5.2.6 Full System Emulation Mode Control Register 5-13

5.2.7 Add-On Self-Test Status Register 5-14

5.2.8 XJA Serial Number Register 5-15

53 XJA Private Registers i 5-17

53.1 Error Summary Register i, 5-18

5.3.2 Force Command Register 5-21

5.3.3 Interprocessor Interrupt Source Register 5-23

534 XJA Diagnostic Control Register 5-24

5.3.5

5.3.6

5.3.7

5.3.8

5.3.9

5.3.10

5.3.11

5.3.12

5.3.13

5.3.14

5.3.15

Index

Figures

| 1-1

1-2

1-3

14

1-5

1-6

1-7

1-8

1-9

1-10

1-11

1-12

1-13

1-14

2-10

2-11

2-12

2-13

2-14

2-15

2-16

Contents ix

DMA Failing Address Register 5-28

DMA Failing Command Register 5-29

Error Interrupt Control Register 5-30

Configuration Register i, . 5-32
XBIID ARegistercuiiiiiiiiiiiinnreiennnnnnnnn 5-33

XBIIDB Registercoitiiiniinnniinnioneennsansnn 5-34

Error SCB Offset Registerottt iiinneennnn. 5-35

SCB Offset IPL 14(Hex) Register 5-36

SCB Offset IPL 15(Hex) Register, 537

SCB Offset IPL 16(Hex) Register 5-38

SCB Offset IPL 17(Hex) Register, 5-39

System I/O Block Diagram, 1-2

XJA Simplified Block Diagram 1-3

XMICard Cageo i it it et et i e e e 1-6

XJABlock Diagram.ttti i s 1-9

Flow Diagram of DMA Transactions 00 1-12

Flow Diagram of CPU Transactions, 1-17

Flow Diagram of Interrupt Transactions. 1-22

System Address Space i e 1-24

System I/O Space Allocation, 1-25

Address of XMI Space Registers iiiieeiniennnnn 1-26

Address of XJA Private Registers 1-27

XMI I/O Space Allocationciiieiie i, 1-29

System VO Address Bits i, 1-30

Flow Diagram of CPU Request Address Processing 1-32

JXDI Signals i e e e e 2-1

ICU and XJA Transmit and Receive Buffers..................... 2-4

Flow Diagram of JXDI DMA Reador Read Lock 2—6

DMA Read Request or Read Lock Request Bus Cycles 2-9

Octaword and Hexword Wraparound Reads 2-11

DMA Read Data Return or Read Lock Data Return Bus Cycles 2-13

DMA Read Locked Status or Read Error Status Command Cycle. 2-15

Flow Diagram of JXDI DMA Write or Write Unlock 2-16

DMA Write or Write Unlock DataCycles 2-17

Flow Diagram of JXDICPUReadt 2-20

CPU Read Request Bus Cycleso, 2-23

CPU Read Data Return Bus Cycles 2-25

CPU Status Command Cyclety 2-26

Flow Diagram of JXDICPU Write iy 2-27

CPUWrite Data Cyclesotttit c i 2-29

Flow Diagram of Interrupt Transactions. 2-32

x Contents

2-17

3-1

3-2

3-3

34

3-5

3-6

3-7

3-8

3-9

3-10

L
L
L
L
I
E
E
E

4-9

4-10

4-11

4-12

4-13

4-14

4-15

4-16

4-17

4-18

4-19

4-20

4-21

4-22

4-23

4-24

4-25

4-26

4-27

4-28

4-29

4-30

4-31

-1

5-2

Interrupt Request Command Cycle............................ 2-33

Read or Read Lock Transactionscoviiiiniin.. 3-8

Command and Data Cycles for a Read or Read Lock Transaction. 3-9

Uncorrectable Read Error in a Hexword Read Transaction......... . 3-14

Read Lock Transaction to a Locked Location 3-14

Octaword Read Transaction with Multiple Read-Data-Return Transfers 3-15

Write or Write Unlock Transactions 3-16

Command and Data Cycles for a Write or Write Unlock Transaction .. 3-17

Basic Interrupt Transactions. i nen.. 3-21

Interrupt Node Specifier Field 3-21

Implied Vector Interrupt Transaction IVINTR) 3-22

XJA Block Diagram.0 ittt it 4-1

Data Communication Across Asynchronous Boundaries 4-11

XCICClock Systemttt ittt 4-12

CLKJ Clock Systemc..iiiiiiiiniitiiniiinneneeas 4-14

CLKX Clock Systemcoiiiiiiitin ittty 4-15

XDE Transmit Data Path 4-16

XDE Transmit Timing Diagram, 4-17

XDE Receive Data Path 4-18

Assembly of Data Longwords 4-20

Alignment of Received Data 4-21

XCE Transmit Logic vttt i i ittt it e e e 4-23

Flow Diagram of XCE Transmit Sequence 4-24

XCE Receive Logicotttit i e et et e et e et e e 4-28

Flow Diagram of XCE Receive Sequence........................ 4-29

XMI Corner Block Diagram i, 4-31

D, (07 10T 0 G ')1 oV 4-32

Receive Logic Block Diagram 0 iiiiiiene.n 4-34

Reception of DMA Command/Address Packets and CPU Return

Data/Status Packets from XMIBus 441

Reception of XMI Space Register Read/Write Command/Address

Packets from XMI Bus it i it i i 446

Transmit Logic Block Diagram, 4-49

Transmission of DMA Read Data/Status Return to XMI Bus 4-55

Transmission of CPU Read/Write Command/Address Packet to XMI

BUS. . i i i e e e e e e e e e 4-58

Transmission of Read Register Data Returnto XMIBus 4-64

REG DData Flow. ittt ittt 4-67

Add-On Self-Test Implementation, 4-72

Flow Diagram of Add-On Self-Test, 4-74

AOST Control Register it 4-75

Format of CPURead Request 4-77

Format of CPURead DataReturn 4-79

Format of CPU Write Request 4-80

Format of CPU Write Complete 4-81

Device Register i it i e 5-3

XMI Bus Error Register i 5-5

5-3

54

5-6

5-7

5-8

5-9

5-10

5-11

5-12

5-13

5-14

5-15

5-16

5-17

5-18

5-19

5-20

5-21

5-22

5-23

Tables

1-1

1-2

Contents xi

Failing Address Registercccuiiiiiiiiiiiiiinnnenn.. 5-11

Failing Address Extension Register 5-12

XJA General-Purpose Register i 5-13

Full System Emulation Mode Control Register 5-13

Add-On Self-Test Status Register 5-14

XJA Serial Number Register i, 5-15

Error Summary Register i, 5-18

Force Command Register i, 5-21

Interprocessor Interrupt Source Register 5-23

XJA Diagnostic Control Register 5-24

DMA Failing Address Register i, 5-28

DMA Failing Command Register, 5-29

Error Interrupt Control Register 5-30

Configuration Register i, 5-32

XBIID A Register ...ttt it 5-33

XBIID BRegister0 ittt 5-34

Error SCB Offset Register 5-35

SCB Offset IPL 14(Hex) Register e e e 5-36

SCB Offset IPL 15(Hex) Register 5-37

SCB Offset IPL 16(Hex) Register 5-38

SCB Offset IPL 17(Hex) Register i, 5-39

Types of XMI Devicesot in ittte enas 1-5

VAX 9000 system I/O Adapter leltatlons 1-5

XJA Registers . ..o ittt i it i i e 1-7

XJA MNEMONICS . v vttt ittt ettt ae et e oo enenenens 1-8

JXDI Signal Functions i, 2-2

JXDI Transfer Functions.ottty 2-5

Length Field Codesc it e 2-9

ID Code for DMA Transaction Commanderscvou... 2-10

ID Code for CPU Transaction Commanders 2-23

Address Bits [01:00] Versus Mask Field e 2-24

P Codes . vttt i e e e et e e 2-33

JXDI Data Envelopesco ittt ittt 2-34

XMI Signalse e e 3-3

Function Codes, [3-5

XMINodeIDCodescviiiiiinimeiin e, 3-6

Parity Coverageottt itttennnnnny 3—-6

Confirmation Codes. v ittt ittt it ettt i 3-7

Command Codesiiii ittt ittt 3-10

Length Codes i i i 3-10

XMI Address Mapping . ..o vttt it ettte 3-19

IPL Codes .. oo i e e e 3-20

XJA Clocks .. o i e e e 4-10

RRF Buffer Select Codetttet ii e e eee e 4-22

Xii Contents

L
L
L
L
I
E

4-9

4-10

4-11

4-12

4-13

4-14

4-15

4-16

4-17

4-18

4-19

4-20

5-1

5-2

5-3

54

5-5

56

517

5-8

59

5-10

5-11

5-12

5-13

5-14

5-15

5-16

5-17

5-18

5-19

5-20

5-21

5-22

523

5-24

5-25

5—26

5-27

Data Packet Length Code o ... ve. . 4-22

Command/Address Cycle Type ce.. 437

Data Cycle Typeti e ettt e e e i 4-37

Write Length e 4-37

Buffer Status Code it 4-38

Force Command Code it iiiiiiinnnenn. 444

Status of Pending Interrupts 4-47

DataType Code. itttittt i e 4-52

XMICycle Type Codeiiiii ittt i e 4-52

TCM Status Codeoii it i et et e e 4-53

TRF Buffer Select Code. i, 4-54

XJA Registers . ..ottti i e e e e e e 4-66

Nonfatal Interrupts.o ii it i i it et et e e e 4-69

Nonfatal Errors Detected bythe XJA 4-70

Fatal Errors Detected by the XJA 4-71

8096 Memory Map ...ttte e e 4-73

AOST Control Register i it 4-76

CBI Command Codesc0iiiiiiimtinieinnnennnnn. 4-78

XJA Registers ittt i e e e e 5-2

XMI Space Registerstttit e e i e 53

Device Register it i i it i e 54

VAX 9000 XMI Device Types ...ttt 54

XMI Bus Error Register ity 5-6

Failing Address Register i ... 5-11

Failing Address Extension Register 5-12

XJA General-Purpose Register 5-13

Add-On Self-Test Status Register v, 5-14

XJA Serial Number Register 5-15

XJA Private Registers i i i e e 5-17

Error Summary Registerc0i iiiiiiiiinnnnn. 5-18

Force Command Register it nenn.n 5-21

Force Command Implementation 5-22

Interprocessor Interrupt Source Register 5-23

XJA Diagnostic Control Register 5-24

DMA Failing Address Register 5-28

DMA Failing Command Register 5-29

Error Interrupt Control Register 5-30

Configuration Register (CNF) 5-32

XBIID A Register i ittt ity 533

XBIID B Register ittt 534

Error SCB Offset Register 0. 5-35

SCB Offset IPL 14(Hex) Register 5-36

SCB Offset IPL 15(Hex) Register 5-37

SCB Offset IPL 16(Hex) Register 5-38

SCB Offset IPL 17(Hex) Register, 5-39

About This Manual

This manual describes the operation of the VAX 9000 system XJA adapter, the JXDI bus

that connects the XJA with the system control unit (SCU), and the XMI bus that connects

the XJA to the various /O adapters.

This manual is a reference manual for Customer Services personnel as well as a training

resource for Educational Services.

Intended Audience

The content, scope, and level of detail in this manual assumes that the reader:

o Is familiar with the VAX architecture and VMS operating system at the user level

e Has experience maintaining midrange and large VAX systems

Manual Structure

The manual has five chapters and an index.

e Chapter 1, General Description, provides an overview of the I/0 channel. It briefly

describes the functions of the JXDI bus, the XJA, and the XMI bus; and the physical

makeup of the I/O channel. Also described are interrupts and the various types of I/O

transactions. The chapter closes with a discussion of VAX 9000 system 1/O space.

¢ Chapter 2, JXDI Bus, provides a detailed description of the JXDI bus. DMA, CPU,

and interrupt transactions are described along with the data formats used for each

type of transaction. The chapter includes a detailed description of all the bus signals.

e Chapter 3, XMI Bus, provides a detailed description of the XMI bus, including a

description of all the signals transferred on the bus. Read, write, and interrupt

transactions are described along with the data formats used for each type of

transaction. XMI address mapping is also discussed.

e Chapter 4, XJA, provides a detailed functional description of the XJA adapter. The

functional areas of the XJA are identified, followed by a description of DMA, CPU,

and interrupt transactions, and how the functional areas operate during the various

types of transactions. Each functional area is then described in detail to explain how

the area accomplishes its roll in the various transactions. Other areas described are

the XJA registers, the XJA clock system, and the add-on self-test (AOST) logic.

o Chapter 5, Register Descriptions, provides a detailed description of the XJA registers.

It includes a description of the bits in each register and the function each bit serves.

DIGITAL INTERNAL USE ONLY Xiii

xiv About This Manual

* The index provides an alphabetical list of topics and subjects described in this

manual. An entry with an f appended to the page number (for example: XMI bus,

card cage slot assignments, 1-8f) indicates a figure reference. An entry with a ¢

appended to the page number (for example: XRC, definition of, 1-11t) indicates a

table reference.

DIGITAL INTERNAL USE ONLY

1

General Description

This chapter provides an overview of the XJA I/O channel and the types of /O and

interrupt transactions that execute through the channel. The parts of the channel (JXDI

bus, XJA, XMI bus) are described along with a brief explanation of how the parts function

during the various transactions. A brief discussion of the XJA registers is also included.

The latter part of the chapter discusses system address space.

1.1 /0 Configuration

Figure 1-1 is an overview of the VAX 9000 system I/O section. The system can have up

to four I/O channels that interface with the I/O control unit (ICUs) in the system control

unit (SCU). The SCU can have up to two ICUs, each capable of interfacing with up to two

I/0 channels.

An 1/0 channel consists of the following components:

e JXDI bus

e XJA

e XMI bus

e XMI node adapters

1.1.1 JXDI Bus

The JBox-to-XJA data interconnect (JXDI) is a bus that interfaces the ICU with the XMI-

to-JBox adapter (XJA). The bus is composed of four cables each with 30 lines. Of the 120

total lines, 107 are signal and 13 are ground. Most of the signal lines are in differential

pairs. The JXDI cables are about 4 meters (12 feet) long.

DIGITAL INTERNAL USE ONLY 1-1

1-2 General Description

JXDI0 XMI0
XJAO

I XBl+ I I XCD I | XNA] I HSX I IDASH

R
Bl Cl NI DSA DSSI

BUS BUS BUS DISK/TAPE DISK

JXDI1 XMI1
XJA1 I I I I I -

JXDI2 XMi2
XJA2 >

JXDI3 XMI3
XJA3

T T
MR_X1694_89

Figure 1-1 System /O Block Diagram

DIGITAL INTERNAL USE ONLY

General Description 1-3

1.1.2 XJA

The XJA is the interfacing adapter between the SCU and the XMI bus. The XJA:

Transfers data between the JXDI and the XMI bus

Formats the data as required for the JXDI and the XMI bus

Checks data and reports any errors

Generates interrupts resulting from I/O errors

Contains the registers required to monitor and control the I/O system

Figure 1-2 is a simplified block diagram of the XJA. The XJA has 12 chips plus some

board mounted discrete components. The 12 chips are:

One XDC chip (XJA data path CMOS gate array)

Two XDE chips (XJA data path ECL gate array)

One XCE chip (XJA JXDI control ECL gate array)

Seven XLATCH chips

¢ One XCLOCK chip

_____ |

| XM |

[CORNER

DATA cBl XCl | i

BUS BUS
- - -l XLATCH et ») i

XDE1 I 7 I BUS

e ! |
| |

| i

JXDI _ DATA I I
BUS - XDEO || xcLocke

XDC ! I

| S - o

\ “CONTROL — xcé AOST
- LOGIC

MR_X1695_89

Figure 1-2 XJA Simplified Block Diagram

DIGITAL INTERNAL USE ONLY

1-4 General Description

The XDC chip is an LCA10129 series CMOS gate array. The chip implements LSI logic

and contains most of the XJA logic. The XDC chip controls and formats the data flowing

between the XMI corner and XDE chips, generates interrupts, and contains all the XJA

registers.

The XDE and XCE chips are AMMC Q3500 series bipolar gate arrays. The XDE chips

provide bidirectional data paths between the JXDI and the XDC chip, and they perform

parity checking of the data received from the JXDI. The XCE chip provides the control

interface with the JXDI and controls the data flow through the XDE chips.

The XLATCH chips (DC530) and the XCLOCK chip (DC531) comprise the XMI corner.

The XMI corner is a standard XMI interface required of all XMI nodes. The seven

XLATCH chips provide a bidirectional data path between the XDC and the XMI bus.

The XCLOCK chip generates clocks that are supplied to the XLATCH chips and the XDC

chip.

The XJA contains add-on self-test (AOST) logic that interfaces with the XDC chip. The

logic provides test inputs that check XJA operation and reports any test failures.

The XJA has two internal buses, the CBI and XCI. The CBI bus (CMOS to bipolar

interconnect) is a bidirectional data bus connecting the XDE chips to the XDC chip. The

XCI bus XMI to CMOS interconnect) is a bidirectional data bus connecting the XMI

corner to the XDC chip.

1.1.3 XMI Bus

The XMI bus is a standard bus used by the VAX 9000 system as an I/O bus. The XMI

bus is a pended, synchronous bus with centralized arbitration. Bus node adapters are

housed in an XMI card cage (Figure 1-3) with the higher numbered slots having a higher

arbitration priority than the lower numbered slots.

The bus has a clock card (CCARD) module containing the arbitration logic and the clock

generation logic for the bus clocks. The XMI bus has a 64-ns cycle.

1.1.4 XMI Node Adapters

The XMI node adapters are all passive adapters. That is, no CPUs interface to the XMI

bus through any of these adapters. The VAX 9000 system CPUs are the only CPUs that

exist in the entire system configuration.

Five types of adapters are supported on the XMI bus. These are identified in Table 1-1

along with the device to which they interface.

There are some physical and address space limitations on the number and types of

adapters that can be used. A summary of these limitations is given in Table 1--2.

DIGITAL INTERNAL USE ONLY

General Description 1-5

Table 1-1 Types of XMl Devices

Adapter Adapter

Device Description Mnemonic Module(s)

KFMSA DSSI'disk interface DASH T2036

DEMNA XMI-to-NI adapter XNA T2020

CIXCD XMI-to-CI adapter XCD T2080

KDM70 Local DSA disk/tape interface HSX T2022 and T20232

DWMJA XMI-to-JBox adapter XJA T1061

DWMBB XMI-to-BI adapter XBI+ T2018 (XBIA) and
T1043°(XBIB)

1Djgital storage system interconnect.

2The HSX adapter requires two slots in the XMI card cage.

8The T1043 module is in the VAXBI expander cabinet.

Table 1-2 VAX 9000 system 1/0O Adapter Limitations

Limitation Reason

Maximum of 12 adapters per card Only 12 physical slots available (Section 1.2).

cage

Maximum of 8 XBI+ adapters per Maximum of 8 BI units accessible per I/O cabinet

XMI card cage (Section 1.2).

Maximum of 14 XBI+ adapters per System /O space has room for only 14 BI windows

system (Section 1.5.1).

1.2 Physical Configuration

The XJA is an extended T-series module (T1061) that is housed in the XMI card cage

located in the I/O cabinet. In the VAX 9000 model 210 system, there is one XMI card

cage per I/O cabinet, resulting in a limitation of one XJA I/0 channel per VAX 9000

model 210 system. In the VAX 9000 model 400 systems, there are two XMI card cages

per I/O cabinet, allowing up to the maximum of four XJA I/0O channels per system. The

JXDI cables are located in the rear of the cabinets and connect the ICU in the SCU

cabinet to the XJA module in the I/O cabinet.

Another physical limitation exists with regard to the XBI+ (XMI-to-BI adapter). Up to

eight BI units may be located in two VAXBI expander cabinets (four BI units per cabinet)

with one XBI+ adapter required per BI unit. Consequently, no more than eight XBI+

adapters per I/O cabinet can be used. This limits models 410 and 420 to eight XBI+

adapters. In the model 430 and 440, a third and a fourth VAXBI expander cabinet house

additional BI units that connect to the XBI+ adapters in the XMI card cages in the

second I/O cabinet (Table 1-2).

NOTE

A third BI expander cabinet cannot be used with models 410 and 420 due to
cabling limitations. Model 210 has only one VAXBI expander cabinet.

DIGITAL INTERNAL USE ONLY

1-6 General Description

Figure 1-3 shows the XMI card cage. The cage has 14 slots, 2 of which are used by the

XJA and the CCARD modules, and the remaining 12 are for other XMI adapter modules.

The CCARD module contains the XMI arbitration and clock generation logic and is an

integral part of the XMI bus. The CCARD is centrally located in the card cage (slot

7) to distribute the XMI clocks radially to the XMI adapters. This radial distribution

minimizes clock skew between the adapters and improves signal integrity. The XJA

can fit on the left side of the CCARD but not on the left side of any of the other XMI

adapters. Therefore, the XJA is always located in slot 8 beside the CCARD. The only

other restriction on placement of the XMI card cage adapter modules is that slot 1 or 14

must be used to implement the XMI_DEFAULT function on the XMI bus (Section 3.2.4).

After the first XMI adapter is placed in slot 1 or 14, other adapters may be located in any

slot. Adapters in the higher numbered slots have a higher arbitration priority than those

in the lower numbered slots.

Each slot in an XMI card cage has a 4-bit, hardwired, node ID number that identifies

the slot and the adapter in the slot. XMI adapters match the node ID against selected

address bits to determine if an XMI transaction is directed to their node (Sections 1.5.5.1

and 1.5.5.2).

SLOT 14

SLOT 8 (XJA)

MR_X1313_89A

Figure 1-3 XMl Card Cage

DIGITAL INTERNAL USE ONLY

1.3 XJA Registers

General Description 1-7

The 23 registers in the XJA are used for monitoring and controlling XJA operations.

The registers and their functions are listed in Table 1-3. The XJA registers fall into two
groups: XMI space registers and XJA private registers. The XMI space registers are

accessed from the XMI bus. If a system CPU wishes to access an XMI space register, it

places its command/address on the XMI bus with the XJA as the addressed XMI adapter.

The XJA private registers cannot be accessed from the XMI bus. Only the system CPU
can access the XJA private registers and this is done completely within the XJA.

Table 1-3 XJA Registers

Register Mnemonic Description

XMI Space Registers

Device XDEV Describes the node device.

Bus error XBER Contains a summary of the XMI status
and errors.

Failing address XFADR Saves the low-order four bytes of a
failing XMI command/address.

Failing address extension XFAER Saves the high-order four bytes of a
failing XMI command/address.

XJA general purpose XJAGPR Used for diagnostic testing.

Full system emulation mode control FAEMC Controls XJA operation in full system
emulation mode.

Add-on self-test status AOSTS Contains the results of various tests
run by AOST logic.

XJA serial number SERNUM Contains the year and week of
manufacture, manufacturing plant,

and serial number of the XJA.

XJA Private Registers

Error summary ERRS Contains summary of errors detected
by the XJA.

Force command FCMD Forces XJA transactions for testing
purposes.

Interprocessor interrupt source IPINTRSRC Identifies the source of interprocessor
interrupts.

XJA diagnostic control DIAG Controls diagnostic testing of the XJA.

DMA failing address DMAFADDR Saves address and length information
of a failing DMA or interrupt

_ transaction.

DMA failing command DMAFCMD Saves command, mask, and address
information of a failing DMA or

interrupt transaction.

Error interrupt control ERRINTR Disables various error interrupts
during diagnostic testing.

DIGITAL INTERNAL USE ONLY

1-8 General Description

Table 1-3 (Cont.) XJA Registers

Register Mnemonic Description

Configuration CNF Contains the XJA number and node

ID, and main memory size and starting

address.

XBIID A XBIIDA Contains 4-bit node ID of BI adapters 0
through 7.

XBIIDB XBIIDB Contains 4-bit node ID of BI adapters 8
through D(hex). _

irror SCB offset ERRSCB Contains SCB offset for XJA detected
errors at IPL 17(hex).

SCB offset IPL 14(hex) IDENT4 Contains SCB offset for XMI generated
interrupts at IPL 14(hex).

SCB offset IPL 15(hex) IDENTS Contains SCB offset for XMI generated

interrupts at IPL 15(hex).

SCB offset IPL 16(hex) IDENT®6 Contains SCB offset for XMI generated
interrupts at IPL 16(hex).

SCB offset IPL 17(hex) IDENT7 Contains SCB offset for XMI generated

interrupts at IPL 17(hex).

1.4 XJA Transactions

Figure 14 is a block diagram of the XJA. Table 14 defines the mnemonics of XJA chips,

buses, and logic areas used in Figure 1—4 and in the following discussion.

Table 1-4 XJA Mnemonics

Mnemonic Definition

AOST Add-on self-test

CBI CMOS to bipolar interconnect

JXDI JBox to XJA data interconnect

RCM Receive control machine

REG XJA registers

RRF Receive register file

TCM Transmit control machine

TRF Transmit register file

XCE XJA JXDI control ECL gate array

XCI XMI bus to CMOS interconnect

XDC X.JA data path CMOS gate array

XDE XJA data path ECL gate array

XJA XMI to JBox adapter

XMI General-purpose memory interconnect

XRC XMI receive logic

DIGITAL INTERNAL USE ONLY

we
is
be
iq

 ¥
oo

1g
 v
r
X

-
1
 a
in

bi
d

| il ol B it e B B |

| XbC I

i i
| DATA DATA

I -———7§5—Iiiiila—7é;1r~————|!ii!l‘—————— '

cBI BUS | | XC! BUS
DATA - — L— DATA M

- CTIn L, 64 CORNER
DATA _

ICU XFERACK

ICU_XFERRETRY

ICU BUFEMPTD

1ICU CMDAVAIL

XJA XFERACK

XJA_XFERRETRY

XJA BUFEMPTD

AOST

—— e . - e e = v e e o ol

.

] { 64

Icu JXDI XDEO
8 L__1 16 | i

16 | pata | DATA |
CONTROL i 745 TRF 77 "

CONTROL i i

1 TEST
i DATA l

* XJA_CMDAVAIL . _ |conTroL controL |
| |

| I
| 9

MR_X1314_89

A
T
N
O
 3
S
N

T
V
N
Y
I
L
N
I

T
v
L
i
D
I
d

u
o
n
d
u
o
s
a
(
 |
e
J
a
u
s
n

6
6
—
t

1-10 General Description

Data packets that flow between the JXDI bus and the XMI bus undergo format, timing,

and data length changes as they pass through the XJA. Packets from the XMI bus have

data lengths of 64 bits per cycle and are clocked at a 64-ns rate. From the XMI bus, the

64-bit data packets pass through the XMI corner and the XRC, and then into the RRF

where the data length is changed to 32 bits per cycle. The 32-bit data cycles are clocked

at a 32-ns rate. The 32-bit data packets cross the CBI bus and then split into two 16-bit

sections that are applied to the XDE chips. The XDE chips change the data lengths from

16 to 8 bits per cycle clocked at a 16-ns rate. The 8-bit outputs of the XDE chips are

combined to form a 16-bit data length per cycle for the JXDI data packets. The 16-bit

JXDI data cycles are clocked at the 16-ns rate.

Data packets traversing the XJA in the other direction undergo a similar change in

timing and data length. JXDI packets from the ICU have a 16-bit data length and are

clocked at a 16-ns rate. The data is split into two 8-bit sections and applied to the XDE

chips. In the XDE, the data is assembled into 16-bit data lengths clocked at a 32-ns rate.

The 16-bit data outputs from the XDE chips are combined into 32-bit longwords and

clocked across the CBI bus at a 32-ns rate. The 32-bit data packet is sent to the TRF

where it is changed into a 64-bit data length clocked at a 64-ns rate. The 64-bit data

packet is transmitted through the XMI corner to the XMI bus. '

Three separate clock systems are used in the XJA. One is a 64-ns clock system to control

the 64-bit data interfacing with the XMI bus. A second controls the movement of data

from the XJA to the ICU. This clock system includes a 32-ns clock to transfer data from

the RRF, across the CBI bus, and into the XDE chips; and a 16-ns clock to transfer data

from the XDE to the JXDI. A third clock system controls the movement of data from the

ICU to the XJA. This clock system includes a 16-ns clock to transfer data from the JXDI

into the XDE, and a 32-ns clock to transfer data from the XDE across the CBI and into

the TRF.

Four types of transactions occur within the XJA:

e DMA (direct memory access) — This transaction is a read or write of the VAX

9000 system main memory by an XMI device.

e CPU — This transaction is a read or write of an I/O register by the VAX 9000 system

CPU. The I/O register may be in an XMI device or in the XJA.

* Interrupts — This transaction may be initiated by the XJA or by an XMI device.

An interrupt initiated by the XJA is transferred over the JXDI to the system CPU

for processing. An interrupt initiated by an XMI device is received by the XJA and

passed on to the system CPU over the JXDI.

e AOST (add-on self-test) — This transaction consists of a test packet injected into

the XJA by the AOST logic. The test packet is processed as a CPU transaction and

the results are checked in the AOST logic.

DIGITAL INTERNAL USE ONLY

General Description 1-11

1.4.1 DMA Transactions

Figure 1-5 is a flow diagram of a DMA transaction. Refer to the flow diagram and to the

XJA block diagram (Figure 1-4) during the following discussion.

DMA transactions are initiated by XMI devices to the VAX 9000 system main memory.

The DMA command/address is contained in one 64-bit XMI cycle. If the transaction is

a write, the write data follows the command/address cycle. Write transactions can be

quadword writes (one XMI cycle of write data) or octaword writes (two XMI cycles of

write data).! Read transactions can be quadword, octaword, or hexword. A hexword

transaction is four XMI cycles of read data.

A DMA request packet on the XMI passes through the XMI corner and is received by the

XRC logic. The XRC checks parity and checks that the address is valid. If either of these

checks fails, the packet is not acknowledged to the XMI commander (the XMI node that

transmitted the command/address packet). If the XRC accepts the packet, it returns an

acknowledgment to the XMI commander and notifies the RCM, which then controls the

processing of the packet.

The RCM places the packet in a receive buffer in the RRF and notifies the XCE that a

packet is ready to be sent to the ICU. The ICU has two receive buffers that receive data

from the XJA. The XCE contains an ICU buffer available counter with which it monitors

the status of the two ICU receive buffers. If an ICU receive buffer is available, the XCE

commands the RRF to unload the packet from the RRF receive buffer. The RRF unloads

the packet, assembles it into a 32-bit format, and sends it across the CBI to the XDEs.

The 32-bit data from the RRF is split into two halves with one half going to each XDE.

The XCE controls the transfer of data through the XDEs and the disassembly of the data

from 16-bit words into 8-bit bytes. At the same time, the XCE asserts XJA_CMDAVAIL

to the ICU, informing it that a packet is to follow starting with the next cycle. The 8-bit

outputs of the XDEs are combined to form 16-bit words for the JXDI. The packet is sent

to the ICU in the 16-bit word format.

The ICU checks parity on the packet data and if an error is detected, it asserts ICU_

XFERRETRY to the XCE, commanding the XCE to retry the transfer. The XCE once

again unloads the packet from the RRF receive buffer and repeats the transmission

process to the ICU. The ICU also asserts ICU_BUFEMPTD to the ICU buffer available

counter in the XCE, informing the XCE that the ICU buffer reserved for the packet is

still available.

! The XJA also supports hexword writes, but the SCU does not.

DIGITAL INTERNAL USE ONLY

1-12 General Description

START

v
XMl NODE SENDS DMA

REQUEST PACKET

THROUGH THE XMi

CORNER, TO XRC. DATA

IS IN 64-BIT FORMAT,

XRC NO

ACCEPTS REQUEST

PACKET

XRC RETURNS XRC RETURNS NO-ACK
ACKNOWLEDGMENT TO TO XMI COMMANDER
XMI COMMANDER AND '

NOTIFIES RCM

OF PACKET.

v
RCM PLACES REQUEST END

PACKET IN RRF

RECEIVE BUFFER

AND NOTIFIES XCE.

1CU

RECEIVE BUFFER

AVAILABLE v

XCE ASSERTS

XJA_CMDAVAIL TO ICU
YES SIGNIFYING A DATA

PACKET IS TO FOLLOW.

Y

XCE COMMANDS RRF

TO UNLOAD PACKET.

Icu NORRF UNLOADS PACKET,

ASSEMBLES DATA INTO ACCEPTSEOATA
32-BIT FORMAT, AND

PLACES PACKET ONTO

CBI BUS

T

THIRTY-TWO-BIT DATA ICU ASSERTS ICU ASSERTS
SPLIT INTO 16-BIT ICU_XFERACK TO XCE ICU_XFERRETRY TO XCE

WORDS AND SIGNIFYING COMMANDING XCE TO
TRANSMITTED THROUGH ACCEPTANCE OF DATA RETRY TRANSFER.
XDE1 AND XDEO. XDE{ PACKET. XCE INFORMS

AND XDEO DISASSEMBLE RCM THAT AN ¢
DATA INTO RARF RECEIVE BUFFER

8-BIT BYTES. 1S AVAILABLE ICU ASSERTS

FOR NEW DATA. ICU_BUFEMPTD TO XCE
v SIGNIFYING

l AVAILABILITY OF THE
OUTPUT OF XDE1 AND UNUSED RECEIVE
XDEO ASSEMBLED INTO 1CU ASSERTS BUFFER IN THE ICU.

16-BIT WORDS AND
ThansmiTER Yo ICU_BUFEMPTD TO XCE I

ICU OVER JXDI SIGNIFYING
: AVAILABILITY OF THE

[RECEIVE BUFFER

IN THE ICU.

MR_X1315_89

Figure 1-5 (Cont.) Flow Diagram of DMA Transactions

DIGITAL INTERNAL USE ONLY

General Description 1-13

READ NO
TRANSACTION l

WRITE TRANSACTION

YES COMPLETED

NO READ DATA END
OBTAINED FROM

MAIN MEMORY

YES

BUFFER

AVAILABLEIN

TRF TO ACCEPT

DATA

YES

ICU ASSERTS

ICU_CMDAVAIL TO XCE

SIGNIFYING A DATA

PACKET IS TO FOLLOW.

!
READ DATA SENT 7O

XJA ON JXDI1 IN

16-BIT FORMAT.

!
XCE ASSERTS

XJA_XFERRETRY

YES COMMANDINGICU
{ TO RETRY TRANSFER

XCE ASSERTS SIXTEEN-BIT DATA ¢
XJA_XFERACK TO ICU SPLIT INTO 8-BIT

SIGNIFYING BYTES FOR XDE1 AND XCE ASSERTS
ACCEPTANCE OF XDEQO. XDE1 AND XDEOQ XJA_BUFEMPTD
DATA PACKET. ASSEMBLE DATA INTO SIGNIFYING

16-B1T WORDS. AVAILABILITY OF THE
UNUSED RECEIVE

BUFFER IN TRF.

MR_X1600_89

Figure 1-5 (Cont.) Flow Diagram of DMA Transactions

DIGITAL INTERNAL USE ONLY

1-14 General Description

OUTPUT OF XDE1 AND

XDEQO ASSEMBLED INTO

32-BIT LONGWORDS
FOR CBI BUS.

v
XCE LOADS 32-BIT

LONGWORDS INTO

TRANSMIT BUFFER IN

TRF AND

NOTIFIES TCM.

TCM ARBITRATES

FOR XMI BUS.

YES

TCM UNLOADS TRF

BUFFER ONTO XCI BUS

IN 64-BIT FORMAT.

DATA TRANSMITTED

THROUGH XMi CORNER

TO XMI BUS

TCM

RECEIVES XM!I

ACKNOWLEDGMENT

NO

XJA GENERATES ERROR

TCM NOTIFIES XCE. INTERRUPT TO CPU.
TCM NOTIFIES XCE.

/

XCE ASSERTS

XJA_BUFEMPTD TO 1CU

SIGNIFYING

AVAILABILITY OF THE

TRF BUFFER.

=

Figure 1-5 Flow Diagram of DMA Transactions

MR_X1681_89

DIGITAL INTERNAL USE ONLY

General Description 1-15

If the ICU finds no parity error in the packet, it asserts ICU_XFERACK to the XCE,

indicating that the packet is accepted. The XCE then informs the RCM that the receive

buffer in the RRF is available to receive another packet from the XRC.

The RRF has five receive buffers allowing packets to queue up while waiting to be sent

to the ICU. The RCM monitors the status of these buffers and suppresses XMI traffic

if these buffers become full. Once buffers become available, the RCM removes the XMI

suppress command and allows XMI traffic to resume.

When the ICU transfers the packet from its receive buffer to the SCU, it asserts ICU_

BUFEMPTD to the ICU buffer available counter in the XCE, informing the XCE that the

receive buffer in the ICU is available to receive another packet.

If the DMA transaction was a write, the transaction is completed. If the transaction was

a read, the ICU obtains the read data from main memory and then checks if a TRF buffer

is available in the XJA to receive the data. The ICU contains an XJA buffer available

counter similar to the ICU buffer available counter in the XCE. The counter monitors

the status of the XJA buffers that receive the data packets from the ICU. There are

three such XJA buffers in the TRF. If a TRF buffer is available, the ICU asserts ICU_

CMDAVAIL to the XCE, informing the XCE that a packet is to follow starting with the

next cycle. The read data packet is then sent to the XJA in 16-bit word format over the

JXDI bus.

The XDE checks parity on the packet data and informs the XCE if an error is detected.
If an error is detected, the XCE asserts XJA_XFERRETRY to the ICU commanding it to

retry the transfer. The XCE also asserts ICU_BUFEMPTD to the XJA buffer available

counter in the ICU, informing the ICU that the TRF buffer reserved for the packet is still

available.

If the XDE finds no parity error in the packet, it notifies the XCE, which then asserts

XJA_XFERACK to the ICU, indicating that the packet is accepted.

The 16-bit data cycles from the ICU are split into two 8-bit halves, with one half going

to each XDE. Under control of the XCE, the XDEs assemble the 8-bit bytes into 16-bit

words. The 16-bit outputs of the XDEs are combined into 32-bit longwords, transferred

over the CBI, and loaded into one of the three TRF buffers by the XCE. The XCE then

notifies the TCM that a packet is in the TRF buffer ready to be transmitted to the XMI

bus.

The TCM arbitrates for the XMI bus and, when it wins the bus, unloads the read data

packet from the TRF buffer, assembles the data into a 64-bit format, and transmits the

data through the XMI corner to the XMI bus where it is returned to the XMI commander

that initiated the transaction. When the commander successfully receives the packet,

it returns an acknowledgment to the TCM, which informs the XCE of the successful

transmission of the packet. The XCE then asserts XJA_BUFEMPTD to the XJA buffer

available counter in the ICU, informing it that the TRF buffer is available to receive

another packet from the ICU. :

If no acknowledgment is received from the XMI commander, the XJA generates an error

interrupt to the VAX 9000 CPU. The TCM notifies the XCE that the transaction has

ended so that the XCE can assert XJA_BUFEMPTD, signifying the availability of the

TRF buffer.

DIGITAL INTERNAL USE ONLY

1-16 General Description

1.4.2 CPU Transactions

Figure 1-6 is a flow diagram of CPU transactions. CPU transactions are initiated by the

system CPU or service processor unit (SPU) to read or write a register in an XMI device

or in the XJA. As such, the read or write data is longword only. '

Basically, the RCM controls the reception of packets from the XMI bus and the TCM

controls the transmission of packets to the XMI bus. In executing CPU transactions,

control is frequently transferred back and forth between the RCM and the TCM.

CPU transactions (both reads and writes) can be divided into three types. Transactions

to:

e XMI nodes (other than the XJA)

e XJA private registers

¢ XMI space registers (XMI space registers are in the XJA.)

Refer to the flow diagram Figure 1-6 and to the XJA block diagram (Figure 1-4) during

the following discussion of CPU transactions.

1.4.2.1 CPU Transactions to XMi Nodes (Excluding XJA)

By means of the XJA buffer available counter described in Section 1.4.1, the ICU

determines if a buffer is available in the TRF to accept the CPU command/address

packet. If a buffer is available, the ICU asserts ICU_CMDAVAIL to the XCE, informing

it that a packet follows, starting with the next cycle. The CPU packet is placed on the

JXDI in 16-bit format.

The XDE checks parity on the packet data and informs the XCE if an error is detected.

If an error is detected, the XCE asserts XJA_XFERRETRY to the ICU, commanding it to

retry the transfer. The XCE also asserts ICU_BUFEMPTD to the XJA buffer available

counter in the ICU, informing the ICU that the TRF buffer reserved for the packet is still

available.

If the XDE finds no parity error in the packet, it reports this information to the XCE,

which then asserts XJA_XFERACK to the ICU, indicating that the packet is accepted.

The 16-bit data cycles from the ICU are split into two 8-bit halves, with one half going

to each XDE. Under control of the XCE, the XDEs assemble the 8-bit bytes into 16-bit

words. The 16-bit outputs of the XDEs are combined into 32-bit longwords, transferred

over the CBI, and loaded into one of the three TRF buffers by the XCE. The XCE then

notifies the TCM that a packet is in the TRF buffer and is ready to be processed.

The TCM arbitrates for the XMI bus and, when it wins the bus, unloads the TRF buffer,

assembles it into 64-bit format, and transmits it through the XMI corner to the XMI bus.

When the target node successfully receives the packet, it returns an acknowledgment to

the TCM, which informs the XCE of the successful packet transmission. The XCE then

asserts XJA_BUFEMPTD to the XJA buffer available counter in the ICU, informing it

that the TRF buffer is now available to receive another packet from the ICU.

If no acknowledgment is received from the target node, the XJA generates an error

interrupt to the VAX 9000 CPU. The TCM notifies the XCE that the transaction has

ended so that the XCE can assert XJA_BUFEMPTD, signifying the availability of the

TRF buffer. The transaction is then aborted.

DIGITAL INTERNAL USE ONLY

General Description 1-17

U

AB
C

‘
ICU ASSERTS

ICU_CMDAVAIL TO XCE

SIGNIFYING A DATA
PACKET IS TO FOLLOW.

'
CPU REQUEST PACKET

SENT TO XJA ON JXDI

IN 16-B!T FORMAT.

NOXJA

ACCEPTS DATA

PACKET

v !
SIXTEEN-BIT DATA XCE ASSERTS XCE ASSERTS

Bfi:gl;ggrg&?gm XJA_XFERACK TO XJA_XFERRETRY

ICU SIGNIFYING COMMANDING IcU T0
XDEO. XDE1 AND XDEO ACCEPTANCE OF RETRY TRANSFER.

ASSEMBLE DATA INTO DATA PACKET
16-BIT WORDS. ‘

v XCE ASSERTS
XJA_BUFEMPTD

QUTPUT OF XDEY AND SIGNIFYING THE
XDEO ASSEMBLED INTO AVAILABILITY OF THE
32-BIT LONGWORDS RECE!VE BUFFER

FOR CB! BUS. IN TRF.

XCE LOADS 32-8IT

LONGWORDS INTO

TRANSMIT BUFFER IN
TRF AND NOTIFIES TCM.

TCM

READ RECEIVES XM!
TRANSACTION ACKNOWLEDGMENT

TCM ARBITRATES
FOR XMI BUS.

TCM UNLOADS SELECTED TCM WRITES SELECTED XJA GENERATES ERROR
REGISTER TO RRF AND REGISTER AND TCM NOTIFIES XCE. INTERRUPT TO CPU.

NOTIFIES xce NOTIFIES XCE. TCM NOTIFIES XCE.

XCE ASSERTS XCE ASSERTS XCE ASSERTS XCE ASSERTS
XJA_BUFEMPTD TO XJA BUFEMPTD TO XJA_BUFEMPTD TO XJA_BUFEMPTD TO
ICU SIGNIFYING CU SIGNIFYING IcU SIGNIFYING ICU SIGNIFYING

AVAILABILITY OF THE AVAILABILITV OF THE AVAILABILITY OF THE AVAILABILITY OF THE
TRF BUFFER. TRF BUFFER. TRF BUFFER. TRF BUFFER.

TCM UNLOADS TRF
BUFFER omo xcn BUS l

IN 64-BIT

DATA TRANSMITTED

THROUGH XMI CORNER

TO XMI BUS. END

MA_X1318_88

Figure 1-6 (Cont.) Flow Diagram of CPU Transactions

DIGITAL INTERNAL USE ONLY

1—-18 General Description

ACCESS IS TO YES

XM! SPACE REGISTER
IN XJA

NO

READ TRANSACTION

NOC READ DATA
OBTAINED FROM XMt

NODE

Y

XRC NOTIFIES RCM T

HAS ACCEPTED PACKET.

REG WRITES

SELECTED REGISTER.

h 4

XRC ACCEPTS DATA

THAT TRANSACTION HAS

TCM NOTIFIES RCM

BEEN COMPLETED.

|

!
|
i

v
XRC RETURNS

ACKNOWLEDGMENT 70O

XM! NODE AND

NOTIFIES RCM.

RCM COMMANDS RRF TO

COMPLETE TRANSACTION
tSSUE A WRITE

TO ICU AND

NOTIFIES XCE

Y
RCM PLACES READ DATA

tN RRF RECEIVE BUFFER

AND NOTIFIES XCE.

Z} >
e

ICU

RECEIVE BUFFER

AVAILABLE

i YES

O

Figure 1-6 (Cont.) Fiow Diagram of CPU Transactions

DIGITAL INTERNAL USE ONLY

READ TRANSACTION

TCM UNLOADS SELECTED

REGISTER TO TRF.

!
TCM ARBITRATES FOR

XMI BUS AND

TRANSMITS REGISTER

DATA THROUGH XMI

CORNER TO XMI BUS.

v
XRC RECEIVES

REGISTER DATA.

MAR_X1886_9%

{
-

General Description

XCE COMMANDS RRF

TO UNLOAD PACKET.

v
RRF UNLOADS PACKET,

ASSEMBLES DATA INTO

32-BIT FORMAT, AND

PLACES PACKET ONTO

CBl BUS.

A

THIRTY-TWO-BIT DATA

SPLIT INTO 16-BIT

WORDS AND

TRANSMITTED THROUGH

XDE1 AND XDEO. XDE1

AND XDEO DISASSEMBLE

DATA INTO

8-B!IT BYTES.

v
OUTPUT OF XDE1 AND

XDEO ASSEMBLED INTO

16-BIT WORDS AND

TRANSMITTED TO ICU

OVER JDXI.

ICU NO

.
XCE ASSERTS

XJA_CMDAVAIL TO ICU

SIGNIFYING A DATA

PACKET 1S TO FOLLOW.

ACCEPTS DATA

PACKET !
ICU ASSERTS

ICU_XFERRETRY TO XCE

COMMANDING XJA

TO RETRY TRANSFER.

ICU ASSERTS ‘
ICU_XFERACK TO XCE

SIGNIFYING

ACCEPTANCE OF DATA

PACKET. XCE INFORMS

RCM THAT AN RRF

RECEI!VE BUFFER IS

AVAILABLE FOR

NEW DATA.

!
XRC RETURNSE NO-ACK

TO XMI NODE.
ICU_BUFEMPTD TO XCE

ICU ASSERTS

SIGNIFYING THE

AVAILABILITY OF THE

RECEIVE BUFFER

AN THE ICU.

Figure 1-6 Flow Diagram of CPU Transactions

ICU ASSERTS

ICU_BUFEMPTD TO XCE

SIGNIFYING THE

AVAILABILITY OF .THE

RECEIVE BUFFER

IN THE ICU

MR_X1687_89

DIGITAL INTERNAL USE ONLY

1-19

1-20 General Description

For a write transaction, a write complete packet must now be sent to the ICU. Unlike a

DMA write transaction, a CPU write transaction requires that a write complete packet

be returned to the transaction commander (the CPU), informing the commander that

the transaction is complete. This packet is necessary because only one CPU transaction

can be outstanding at a time. When the CPU initiates a transaction, it must know that

the transaction is complete before it can initiate another transaction. The CPU knows a

transaction is complete when it receives the read data for a read transaction or a write

complete packet for a write transaction.

To initiate the write complete transaction, the TCM notifies the RCM that the write data
is successfully transmitted to the XMI target node. The RCM commands the RRF to
assemble the write complete packet and notifies the XCE that the packet is to be sent to

the ICU.

For a read transaction, the read data packet from the XMI target node is received

through the XMI corner and checked by the XRC. If the packet is not accepted by the

XRC, a no-ack is returned to the target node and the transaction is aborted. If the packet

is accepted, the XRC returns an acknowledgment to the XMI node and notifies the RCM.

The RCM loads the packet into a receive buffer in the RRF and notifies the XCE.

The XCE, being notified of either a read data packet or a write complete packet in the

RRF, checks for the availability of a receive buffer in the ICU by means of its ICU buffer

available counter. If the XCE finds that a receive buffer is available, it commands the

RRF to transfer the packet to the ICU. The RRF unloads the packet, assembles it into

32-bit format, and sends the packet across the CBI to the XDEs.

The 32-bit data from the RRF is split into two halves, with one half going to each XDE.

The XCE controls the transfer of data through the XDEs and the disassembly of the data

from 16-bit words into 8-bit bytes. At the same time, the XCE asserts XJA_CMDAVAIL

to the ICU, informing the ICU that a packet is to follow, starting with the next cycle. The

8-bit outputs of the XDEs are combined to form 16-bit words for the JXDI. The packet is

sent to the ICU in the 16-bit word format.

The ICU checks parity on the packet data and if an error is detected, it asserts ICU_

XFERRETRY to the XCE, commanding the XCE to retry the transfer. The XCE once

again unloads the packet from the RRF receive buffer and repeats the transfer process to

the ICU. The ICU also asserts ICU_BUFEMPTD to the ICU buffer available counter in

the XCE, informing the XCE that the ICU buffer reserved for the packet is still available.

If the ICU finds no parity error in the packet, it asserts ICU_XFERACK to the XCE,

indicating that the packet is accepted. The XCE then informs the RCM that the receive

buffer in the RRF is available to receive another packet from the XRC.

When the ICU transfers the packet from its receive buffer to the SCU, the ICU asserts

ICU_BUFEMPTD to the ICU buffer available counter in the XCE, informing the XCE

that the receive buffer in the ICU is available to receive another packet.

1.4.2.2 CPU Transactions to XJA Private Registers

Figure 1-6 shows a CPU transaction to an XJA private register. The transaction is

identical to a CPU transaction to an XMI node up to where the CPU request packet is
loaded into the TRF buffer and it is determined that the access is to an XJA private

register (third diamond in the flow diagram).

DIGITAL INTERNAL USE ONLY

General Description 1-21

If the CPU request is to write the private register, the TCM selects the register, loads
it with the write data, then notifies the XCE, which asserts XJA_BUFEMPTD back to
the ICU. XJA_BUFEMPTD informs the XJA buffer available counter in the ICU that the

TRF buffer is available for another packet.

The TCM also notifies the RCM that the write transaction is complete. The RCM then
commands the RRF to assemble a write complete packet for transfer to the ICU, and
notifies the XCE that a packet is to be transferred to the ICU. The packet is transferred

to the ICU in the same manner as a CPU read of an XMI node.

If the CPU request is to read the private register, the TCM selects the register, unloads
the register data to the RRF, then notifies the XCE, which asserts XJA_BUFEMPTD

back to the ICU. XJA_BUFEMPTD informs the XJA buffer available counter in the ICU

that the TRF buffer is available for another packet. The read data return packet is

transferred to the ICU in the same manner as for a CPU read of an XMI node.

1.4.2.3 CPU Transactions to XMI| Space Registers

Figure 1-6 shows a CPU transaction to an XMI space register in the XJA, which is

identical to a CPU transaction to an XMI node up to where the CPU request packet is

transmitted onto the XMI bus (sixth diamond in the flow diagram).

In this case, the XJA is the target node. When the XRC receives the request packet,

it notifies the RCM, which determines if the request is to read or write the XMI space

register. If the request is to write an XMI space register, the XRC notifies REG, which

selects the register and loads it with the write data. The RCM then commands the RRF

to assemble a write complete packet for transfer to the ICU, and notifies the XCE that a

packet is to be transferred to the ICU. The packet is transferred to the ICU in the same

way as for a CPU read of an XMI node.

To request a read of an XMI space register, the RCM notifies the TCM, which selects the

register, unloads the register data into the TRF, and then arbitrates for the XMI bus.

When the TCM wins the XMI bus, it transmits the register data packet through the XMI

corner to the XMI bus. The register data packet is then received by the XRC just as any

read data packet is received from any XMI node. The packet is processed and sent to the

ICU in the same way as any other XMI read return packet.

1.4.3 Interrupt Transactions

Figure 1-7 is a flow diagram of interrupt transactions within the VAX 9000 /O

subsystem. Interrupts within the VAX 9000 I/O subsystem are generated by the XJA

or by a device on the XMI bus.

1.4.3.1 XJA Interrupts

XJA generated interrupts result from a data or protocol error on the JXDI, on the XMI

bus, or within the XJA. Some XJA errors are classified as fatal, that is, operation of the

XJA is unpredictable and the XJA may not be able to respond to CPU commands. If the

error is nonfatal, operation of the XJA is predictable and the XJA can respond to CPU

commands; however, some CPU transactions may fail.

If the error detected by the XJA is fatal, the XJA asserts an XJA_FATALERR line on

the JXDI. The SCU responds by interrupting the system CPU at an IPL of 1D(hex). The

CPU then proceeds to service the interrupt by executing the appropriate service routine.

DIGITAL INTERNAL USE ONLY

1-22 General Description

START

YES

!
XJA DETECTED

AN ERROR

INITIATES

XJA NO

INTERRUPT y
XJA RECEIVES

INTERRUPT COMMAND

ON XM! BUS FROM

INTERRUPTING NODE.

IMPLIED

OVER JXDI.

Y

YES YES

XJA SENDS AN IPL XJA ASSERTS XJA SENDS AN IPL

17(HEX) INTERRUPT XJA_FATALERR LINE 16(HEX) INTERRUPT

PACKET TO ICU ON JXD1 PACKET TO ICU
VIA JXDI.

|
CPU READS IDENT7

REGISTER IN XJA.

SCU INTER

AT A

OF 1D

RUPTS CPU

N IPL

(HEX).

CPU READS IDENT6

REGISTER IN XJA,

y
XJA SENDS CONTENTS

OF ERRSCB TO ICU

OVER JXDI.

y
XJA RETURNS AN

OFFSET VECTOR OF

80(HEX) TO ICU.

VECTOR

INTERRUPT

XJA TRANSFERS

INTERRUPT COMMAND

TO ICU VIA JXDI.

|
CPU READS IDENT

REGISTER IN XJA

CORRESPONDING TO IPL.

v
XJA INITIATES IDENT

TRANSACTION TO

INTERRUPTING NODE

ON XMi BUS.

'
XJA RECEIVES §CB

OFFSET IN XM! IDENT

RESPONSE FROM

INTERRUPTING NODE.

|
XJA TRANSFERS §CB

OFFSET TO ICU

OVER JXDI.

y
!

SYSTEM CPU EXECUTES

SERVICE ROUTINE.

Figure 1-7 Flow Diagram of Interrupt Transactions

DIGITAL INTERNAL USE ONLY

MR_X1317_89

General Description 1-23

If the error detected is nonfatal, the XJA sends an interrupt packet to the ICU. The

interrupt packet is a one-cycle packet specifying an IPL of 17(hex)!. The CPU responds
by reading the system control block (SCB) offset IPL register in the XJA, corresponding

to the IPL of the interrupt IDENT7 register). The IDENTY7 register is read using a CPU

read transaction. Reading the IDENT7 register while an XJA-detected error is pending

causes the XJA to return the contents of the error SCB offset register (ERRSCB) to

the ICU. The ERRSCB register contains the vector required by the CPU to locate the

appropriate service routine. When the system CPU receives the SCB offset, it proceeds to

service the interrupt.

1.4.3.2 XMI Interrupts

XMI interrupts are generated by an XMI device requiring service by the system CPU.

XMI interrupts fall into two classes: normal interrupts and implied vector interrupts.

Normal XMI interrupts require communication between the XJA and the interrupting

device to obtain the SCB offset vector required to service the interrupt. In an implied

vector interrupt, the SCB offset (vector) is implied by the type of interrupt, therefore, no

communication is required with the interrupting device.

If the XMI interrupt is a normal interrupt, the XJA sends an interrupt packet to the

ICU, specifying the IPL of the interrupt. The CPU responds by reading the contents of

the SCB offset IPL register IDENT register) in the XJA, corresponding to the IPL of the

interrupt. The XJA responds to the CPU read request by initiating an IDENT (identify)

transaction to the interrupting node on the XMI bus. The interrupting node returns an

IDENT response containing the SCB offset vector, to the XJA. The XJA passes the offset

vector to the CPU as read data return for the CPU read transaction. The CPU then uses

the vector to locate the required service routine.

If the XMI interrupt is an implied vector interrupt, the XJA determines whether the

interrupt is fatal or nonfatal. If the interrupt is fatal, the XJA_FATALERR line on the

JXDI is asserted, causing the SCU to interrupt the CPU at an IPL of 1D(hex). The CPU

then proceeds to service the interrupt.

If the interrupt is nonfatal, the XJA transfers the interrupt to the CPU by sending an

interrupt packet at an IPL of 16(hex) to the ICU. The CPU responds by reading the

IDENT register corresponding to the interrupting IPL (IDENT®6 register). When the

IDENTS register is read while an implied vector interrupt is pending, the XJA returns

an offset vector of 80(hex), which the CPU uses to locate the appropriate service routing.

Note that an XMI IDENT transaction was not required for the implied vector interrupt.

1 XJA-detected nonfatal interrupts are always at an interrupt priority level (IPL) of 17(hex). See

Section 4.9 on /O interrupts.

DIGITAL INTERNAL USE ONLY

1-24 General Description

1.4.4 Add-On Self-Test

The add-on self-test (AOST) logic (Figure 1—4) is a built-in self-test feature that aids in

checking the XJA logic and buses. It is not a 100% check of XJA functionality. It is used

in association with XJA diagnostics and power-up tests to ensure reliable operation of the

XJA.

In AOST mode, the AOST logic inserts a test packet into the TRF. The test packet is

a CPU read or write of an XJA register. The packet is processed by the XJA and the

response data is sent through the XDE as it would be for a normal read data return

transfer. However, in AOST mode, the output of the XDE is not transferred to the JXDI.

The response data is looped back into the XDE and returned to the TRF, where it is

transferred to the AOST logic. The logic checks the response data and reports any errors.

1.5 System Address Space

Figure 1-8 shows the VAX 9000 address space. Thirty-four address bits are used to

specify 15.5 Gbytes of main memory (0 0000 0000 to 3 DFFF FFFF) and 512 mbytes of

I/0 space (3 E000 0000 to 3 FFFF FFFF). DMA transactions to main memory are checked

in the XRC for a valid memory space address. DMA addresses outside the correct range

are not acknowledged. CPU transactions to I/0 space are addressed to the 512 Mbyte I/O

space region.

0 0000 0000

15.5-GBYTE PHYSICAL

MEMORY SPACE

3 DFFF FFFF

3 E000 0000

512-MBYTE 170 SPACE

3 FFFF FFFF

MR_X13+8_89

Figure 1-8 System Address Space

DIGITAL INTERNAL USE ONLY

General Description 1-25

1.5.1 System I/O Space Allocation

System I/O space divides into three regions:

XMI node space

BI window space

XJA private register space

Figure 1-9 is a breakdown of the VAX 9000 I/O space. The first four 8-Mbyte segments

are designated as XMI node space for the four XMI I/O channels. Each segment has

sixteen 512-Kbyte address slots for the XMI adapters (including XBI+ adapters). Address

slots 0 and 15 are not used. The remaining 14 address slots correspond to the 14 physical

slots in the XMI card cage (Figure 1-3). Address slot 7 is not used as physical slot 7 is

taken by the XMI CCARD. (The CCARD is not a node on the XMI bus.) Address slot 8

(node 8) is used for the XJA. This leaves 12 address slots (1 through 6 and 9 through 14)

available for XMI adapters.

3 E000 0000
SLOT 0~ NOT USED

3 E008 0000

SLOT t— XMI NODE 1

3 E000 0000 3 EO10 0000
XM! 0 NODE SPACE 8 MBYTES (16 X 5§12 KBYTES) SLOT 2 — XM! NODE 2

3 E080 0000 3 E018 0000
XMl 1 NODE SPACE 8 MBYTES (16 X 512 KBYTES) SLOT 3— XM! NODE 3

3 E100 0000 3 E020 0000
XMI 2 NODE SPACE 8 MBYTES (16X 5§12 KBYTES) SLOT 4 — XMI NODE 4

3 E180 0000 3 E028 0000
XMi3 NODE SPACE 8 MBYTES (16X 512 KBYTES) SLOT § — XMi NODE 5

3 E200 0000 3 E030 0000
XBi 0 WINDOW SPACE 32 MBYTES SLOT 6 — XMI NODE 6

3 E400 0000 3 E038 0000
XBi 1 WINDOW SPACE 32 MBYTES SLOT 7— NOT USED

3 E600 0000 3 E040 0000
XBl 2 WINDOW SPACE 32 MBYTES SLOT 68— XM| NODE 8 (XJA)

3 E800 0000 3 E048 0000
XBl 3 WINDOW SPACE 32 MBYTES SLOT 9— XMI NODE ¢

3 EA00 0000 3 E050 0000
XB! 4 WINDOW SPACE 32 MBYTES SLOT 10 — XMI NODE 10

3 EC00 0000 3 E058 0000
XBl 5 WINDOW SPACE 32 MBYTES SLOT 11 — XMI NODE 11

3 EE00 0000 3 E060 0000
XBl 6 WINDOW SPACE 32 MBYTES SLOT 12 — XMI NODE 12

3 F000 0000 3 E068 0000
XB1 7 WINDOW SPACE 32 MBYTES SLOT 13 — XMI NODE 13

3 F200 0000 3 E070 0000
XBt 8 WINDOW SPACE 32 MBYTES SLOT 14 — XMI NODE 14

3 F400 0000 S 3 E078 0000
XBl 9 WINDOW SPACE 32 MBYTES . -

3 F600 0000 3 E080 0000 S§LOT 15 —NOT USED
XBi 10 WINDOW SPACE 32 MBYTES

3 F800 0000

XBi 11 WINDOW SPACE 32 MBYTES

3 FA0O 0000

XB1 12 WINDOW SPACE YT
3 FC00 0000 32 MBYTES

XB1 13 WINDOW SPACE MBY
3 FE00 0000 32 MBYTES

XJA 0 PRIVATE SPACE 0.5 MBYTE (512 KBYTES)
3 FE08 0000

3 FE10 0000 XJA 1 PRIVATE SPACE 0.5 MBYTE (512 KBYTES)

3 FE18 0000 XJA 2 PRIVATE SPACE 0.5 MBYTE (512 KBYTES)

3 FE20 0000 XJA 3 PRIVATE SPACE 0.5 MBYTE (512 KBYTES)

3 FFFF FFEF SCU/SPU REGISTER SPACE 30 MBYTES

MR_X1316_09

Figure 1-9 System 1/0 Space Allocation

DIGITAL INTERNAL USE ONLY

1-26 General Description

Located within each of the adapter address slots are the adapters XMI space registers.

Figure 1-10 shows the address of the eight XMI space registers. The base block (bb)

address is the address of the first XMI node space segment (3 E000 0000) plus 80 0000 for

each XMI node segment, plus 8 0000 for each XMI node adapter. The register addresses

are the bb address plus the address specified by bits [04:02].

Following the XMI node space is the XBI+ adapter space (windows). Space is allocated

for 14 XBI+ adapters. The BI window segments are 32 Mbytes.

Following the Bl window space, are four 512-Kbyte address segments for the XJA private

registers.

The final 30 Mbytes of /O space is allocated to SCU and SPU registers. These registers

are located in the SCU and SPU, respectively, therefore, access to these registers is not

through the VAX 9000 I/0 channels.

31 00

bb + 00

XDEV

bb + 04

XBER

bb + 08

XFADR

bb + 0C

XFAER*

bb + 10

XJAGPR

bb + 14

FAEMC

bb + 18

AOSTS

bb + 1C

SERNUM

bb = 3 EQ00 0000 + (XJA NUMBER X 80 0000) + (XMI NODE NUMBER X 8 0000)

*XFAER IS ALSO ACCESSED AT ADDRESS bb + 2C.

MR_X1320_89

Figure 1-10 Address of XMI Space Registers

DIGITAL INTERNAL USE ONLY

General Description 1-27

1.5.2 XJA Private Register Space

CPU access to the XJA private registers does not involve an XMI transaction. The XJA

recognizes the address as being XJA private space and proceeds to access the specified

register directly within the XJA. The address specifies the XJA channel as well as the

register itself. Figure 1-11 shows the address of the 15 XJA private registers. The bb

address is the address of the first XJA private register space segment (3 FE00 0000) plus

8 0000 for each XJA private register segment. The register addresses are the bb address

plus the address specified by bits [06:02].

The SCU performs the function of determining which XJA is being referenced by the CPU

request. Each XJA channel receives only the CPU requests for its own private registers.

This function is described in more detail in Section 1.5.5.

31 00
bb+ 00

ERRS

bb+ 04

FCMD

bb+ 08

IPINTRSRC

bb+ 0C

DIAG

bb+ 10

DMAFADDR

bb+ 14

DMAFCMD

bb+ 18

ERRINTR

bb+ 1C

CNF

bb+ 20

XBIIDA

bb+ 24

XBIIDB

bb+ 28

ERRSCB

bb+ 2C

RESERVED

bb+ 40

IDENT4

bb+ 44

IDENTS

bb+ 48

IDENT®E

bb+ 4C

. IDENT?

bb+ S0

bb = 3 FEOO 0000 + (XJA NUMBER X 8 0000)

MR_X1321_89

Figure 1-11 Address of XJA Private Registers

DIGITAL INTERNAL USE ONLY

1-28 General Description

1.5.3 XMI I/O Space Allocation

The XMI bus is a standard bus used in system configurations other than the VAX 9000

system. As such, the XMI bus must conform to XMI standard protocol. One of the XMI

standards is a 40-bit addressing scheme with the MSB (bit [39]) dividing the XMI space

into memory space (bit [39] = 0) and I/O space (bit [39] = 1). Figure 1-12 is a breakdown

of XMI I/0 space for XMI channel 0, starting at address 80 0000 0000 (bit [39] = 1).

XMI protocol designates the first 24 Mbytes of XMI I/O space as XMI private space. This

space is not used by the VAX 9000 system.

The next 8 Mbytes is the node space for the XMI adapters. The node space has 16

512-Kbyte address slots comparable to the 16 address slots of Figure 1-9.

The node space is followed by fifteen 32-Mbyte segments of XBI+ window space. The VAX

9000 system has only 14 BI windows in its I/O space, therefore the last BI window in

XMI I/O space is not used.

1.5.4 XMI Address to VAX 9000 System Address

In executing a DMA transaction, a data packet goes from an XMI address to a VAX 9000

system address. As previously mentioned, the XRC functions to check the XMI address

for a valid reference to the VAX 9000 main memory. To do this, the XRC checks that the:

e XMI address bit [39] (the MSB) is 0, signifying that the XMI reference is to memory

space.

o XMI address bits [38:34] are all 0s. Otherwise, the reference is above VAX 9000

system space.

e XMI address bits {33:29] are not all 1s. If address bits [33:29] are all 1s, the reference

is to VAX 9000 I/O space (Figure 1-8).

If the preceding is true, the DMA reference is to VAX 9000 memory space and XMI

address bits [33:02] specify the target location in main memory.

DIGITAL INTERNAL USE ONLY

\/\/’

S§CuU

ICUOI ICU 1
T

General Description 1-29

XJA O

XM! PVT SPACE 24 MBYTES

XM! NODE SPACE 0 512 KBYTES

1 512 KBYTES

2 512 KBYTES

3 512 KBYTES

4 512 KBYTES

5 512 KBYTES

6 512 KBYTES

CCARD —» 7 512 KBYTES

XJA ———» 8 512 KBYTES

9 512 KBYTES

10 512 KBYTES

11 512 KBYTES

12 512 KBYTES

13 512 KBYTES

14 512 KBYTES

15 512 KBYTES

B! WINDOW SPACE 0 32 MBYTES

1 32 MBYTES

2 32 MBEYTES

3 32 MBYTES

4 32 MBYTES

5 32 MBYTES

6 32 MBYTES

7 32 MBYTES

8 32 MBYTES

9 32 MBYTES

10 32 MBYTES

11 32 MBYTES

12 32 MBYTES

13 32 MBYTES

14 32 MBYTES

80 0000 0000

80 0180 0000

80 0188 0000

80 0180 0000

80 0198 0000

80 01A0 0000

80 01A8 0000

80 01B0 0000

80 01B8 0000

80 01C0 0000

80 01C8 0000

80 01D0 0000

80 01D8 0000

80 01E0 0000

80 01E8 0000

80 01F0 0000

80 01F8 0000

80 0200 0000

80 0400 0000

80 0600 0000

80 0800 0000

80 0A00 0000

80 0C00 0000

80 0E00 0000

80 1000 0000

80 1200 0000

80 1400 0000

80 1600 0000

80 1800 0000

80 1A00 0000

80 1C00 0000

80 1E00 0000

80 2000 0000

Figure 1-12 XMI I/O Space Allocation

IXJA1| IXJAZJ |XJA3]

MR_X1322_8%9

DIGITAL INTERNAL USE ONLY

1-30 General Description

1.5.5 VAX 9000 System Address to XMI Address

Figure 1-13 shows the VAX 9000 I/O space allocation given in Figure 1-9 but with

the addition of binary address bits [33:16]. Refer to Figure 1-13 during the following

discussion of VAX 9000 system to XMI addressing.

All CPU transactions are to one of the three VAX 9000 I/O space regions previously

mentioned:

Node space containing all /O adapters (including the BI adapter’s XMI space

registers)

BI window space containing all the BI adapters

XJA private register space

MBYTES BINARY HEX

33 16

0 11 1110 0000 0000 0000 3 E000 0000

XM! 0 NODE SPACE 8 MBYTES

8 11 1110 0000 1000 0000 3 E080 0000

XMi 1 NODE SPACE 8 MBYTES
16 11 1110 0001 0000 0000 3 E100 0000

XM! 2 NODE SPACE 8 MBYTES
24 11 1110 0001 1000 0000 3 E180 0000

XM! 3 NODE SPACE 8 MBYTES
a2 11 1110 0010 0000 0000 3 E200 0000

XBl 0 WINDOW SPACE 32 MBYTES
64 11 1110 0100 0000 0000 3 E400 0000

XBl 1 WINDOW SPACE 32 MBYTES

96 11 1110 0110 0000 0000 3 E600 0000
XBI 2 WINDOW SPACE 32 MBYTES

128 11 1110 1000 0000 0000 3 EB00 0000

XBI 3 WINDOW SPACE 32 MBYTES
160 11 1110 1010 0000 0000 3 EA0O 0000

XB! 4 WINDOW SPACE 32 MBYTES
192 11 1110 1100 0000 0000 3 EC00 0000

X8l § WINDOW SPACE 32 MBYTES

224 11 1110 1110 0000 0000 3 EE00 0000

XBi 6 WINDOW SPACE 22 MBYTES
256 11 1111 0000 0000 0000 3 FO00 0000

XB1 7 WINDOW SPACE 32 MBYTES
288 11 1111 0010 0000 0000 3 F200 0000

XBI 8 WINDOW SPACE 32 MBYTES
320 11 1111 0100 0000 0000 3 F400 0000

XBl 9 WINDOW SPACE 32 MBYTES

352 11 1111 0110 0000 0000 3 F600 0000
XB1 10 WINDOW SPACE 32 MBYTES

384 11 1111 1000 0000 0000 3 FB0O 0000

XBl 11 WINDOW SPACE 32 MBYTES
418 11 1111 1010 0000 0000 3 FAOO 0000

XBl 12 WINDOW SPACE 32 MBYTES
448 11 1111 1100 0000 0000 3 FCOO 0000

XBl 13 WINDOW SPACE 32 MBYTES
480 11 1111 1110 0000 0000 3 FEOO 0000

XJA 0 PRIVATE SPACE 512 KBYTES
480.5 11 1111 1110 0000 1000 3 FE08 0000

XJA 1 PRIVATE SPACE 512 KBYTES
481.0 11 1111 1110 0001 0000 3 FE10 0000

XJA 2 PRIVATE SPACE 512 KBYTES
481.5 11 1111 1110 0001 1000 3 FE18 0000

XJA 3 PRIVATE SPACE 512 KBYTES
482.0 11 1111 1110 0010 0000 3 FE20 0000

SCU/SPU REGISTER SPACE 30 MBYTES
512.0 11 1111 1111 1111 1111 3 FFFF FFFF

MR_X1323_89

Flu‘re 1-13 System /O Address Bits

DIGITAL INTERNAL USE ONLY

General Description 1-31

When a CPU transaction is initiated, the SCU determines which XJA channel is being

addressed and transmits the CPU request packet to the correct channel. When an XJA

receives a CPU request, the XJA knows that the SCU makes this determination and the
request packetis for that XJA channel.

The SCU first checks that address bits [33:29] are all 1s to verify that the CPU reference

is to I/O space. The SCU then strips ofl‘ address bits [33:30] as not required and transfers

an address field of [29:02] to the XJA.l

The SCU then checks address bits [28:25] to determine to what I/O area the CPU is

directing its request. If address bits [28:25] are all Os, the CPU request is for XMI node
space. In this case, address bits [24:23] specify the XJA channel being referenced and the
SCU directs the request to that channel.

If address bits [28:25] are all 1s, the CPU request is for XJA private register space. In

this case, address bits [20:19] specify the XJA channel being referenced and the SCU
directs the CPU request to that channel.

When address bits [28:25] are neither all 1s nor all 0s, the CPU request is to BI window

space. In this case, address bits [28:25] specify which BI window is being referenced.
The VAX 9000 operating system (and the SCU) knows the physical location of all the
BI adapters and how they map into VAX 9000 I/O space. Therefore, the SCU knows to
which XJA channel to direct the CPU request for a specific BI window.

Figure 1-14 is a flow diagram of address processing of CPU requests to the three regions

of VAX 9000 I/O space (XMI node space, XMI BI window space, and XJA private register

space). Address processing of CPU requests to XJA private register space was already
described in Section 1.5.2.

Address processing of CPU requests to XMI node space or XMI BI window space involve
going from a VAX 9000 system address to an XMI address. Because the XMI I/O address
space shown in Figure 1-12 applies to all four XMIs, address translation is required to

convert the VAX 9000 system address from that shown in Figure 1-9 to the XMI I/O

space address of Figure 1-12.

1.5.5.1 VAX 9000 System Address to XMI Node Space Address

When the CPU reference is to XMI node space (CPU address bits [28:25] = 0s), the XJA

must translate the CPU address to the base block address for XMI node space. It can be

seen in Figure 1-12 that this address is 80 0180 000. The XJA does this by:

e Setting XMI address bit [39] to 1. This is done by placing CPU address bit [29]
(which is always a 1) onto XMI address bit [39].

e Setting XMI address bits [38:25] to Os.

e Setting XMI address bits [24:23] to 1s.

The preceding establishes an XMI address of 80 0180 0000. CPU address bits [22:02] are

used directly for XMI address bits [22:02] to reference the specific XMI adapter and the

XMI space register within the adapter. The adapteris locatedin the XMI card cage by

matching address bits [22:19] to the 4-bit node ID number. Address bits [18:02] select the

register location within the adapter.

1 Although bit [29] is always a 1, it is transferred to the XJA to be used as XMI address bit [39] to

address the XMTI’s I/O space (Section 1.5.5.1).

DIGITAL INTERNAL USE ONLY

1-32 Genefal Description

YES

START

!
CPU ISSUES

COMMAND/ADDRESS

FOR CPU 11O

TRANSACTION.

ADDRESS

BITS {28'25] ALL

EROS

ADDRESS

BITS [28.25] ALL

ONES

ADDRESS BITS [24:23]

SPECIFY WHICH XJA

CHANNEL

CPU ACCESS IS TO A Bi

WINDOW IDENTIFIED BY

ADDRESS BITS [28:25]).

ADDRESS BITS [20:19]

SPECIFY WHICH XJA

CHANNEL.

y ! !
ACCESS I8

TO XMI

NCDE SPACE.

v

SCU DIRECTS CPU

REQUEST TO XJA

CHANNEL WITH
SPECIFIED BI ADAPTER.

SET XMI ADDRESS

BiT [39] = 1.

SET XM!I ADDRESS

BITS (38:25] = ©

SET XM! ADDRESS

BITS [24:23) = 1.

v
SET XMI ADDRESS BIT

39] = 1.

SET XMI ADDRESS BITS
{38:29} = 0.

v
v

USE CPU ADDRESS BITS

{22:02) AS XMI ADDRESS

BITS [22:02) TO ACCESS

XMl ADAPTER AND XMI

SPACE REGISTER IN

THE ADAPTER. ADDRESS

BITS [22:19] LOCATE

THE XM| ADAPTER.

CPU ADDRESS BITS

[28:25] ACCESS XBI

ID A'OR XBI ID B

REGISTER TO SELECT

4-BIT NODE 1D THAT

SPECIFIES LOCATION OF

81 ADAPTER ON XMI BUS.

v
FOUR-BIT NODE ID USED

AS XMI ADDRESS

BITS [28:25].

v
USE CPU ADDRESS BITS

[24:02) AS XMI ADDRESS

BITS [24:02] TO ACCESS

LOCATION IN

Bl ADAPTER.

ACCESS IS TO

AN XJA

PRIVATE REGISTER.

!
USE CPU ADDRESS BITS

[06:02) TO ACCESS

PRIVATE REGISTER

IN XJA.

Figure 1-14 Flow Diagram of CPU Request Address Processing

DIGITAL INTERNAL USE ONLY

MRA_X1324_88

General Description 1-33

1.5.5.2 VAX 9000 System Address to Bl Window Space Address

When the CPU reference is to BI window space (CPU address bits [28:25] are both 1s and

0s), the XJA must translate the CPU address into the XMI address for the referenced

BI adapter. The SCU knows which of the 14 window segments of Figure 1-9 is being

referenced by means of address bits [28:25]. The VAX 9000 operating system has mapped

the location of all the BI adapters and assigned each of them a window in the system I/O

space. Therefore, the SCU knows the XMI channel that contains the referenced window

and directs the CPU request to that XJA. In addition, the operating system has already

loaded the XBI ID A and XBI ID B registers in each XJA with the 4-bit node ID for all

the BI adapters in the system.

Referring to the XMI I/O space shown in Figure 1-12, notice that BI window space starts

at XMI address 80 0200 0000 and increases by 200 0000 for each BI window. The XJA

assembles this address on the XMI by:

e Setting XMI address bit [39] to 1.

* Setting XMI address bits [38:29] to Os.

e Using address bits [28:25] (which identify the number of the BI adapter within the

system) to reference the XBI ID A or XBI ID B register and unload the 4-bit node ID

specifying the location of the referenced adapter within the XMI card cage. The 4-bit

node ID is placed on the XMI bus as address bits [28:25], which are matched to the

4-bit node ID number of the referenced Bl adapter.

CPU address bits [24:02] are then used to reference the desired location within the BI

window.

DIGITAL INTERNAL USE ONLY 1-33

2
JXDI Bus

This chapter provides a detailed description of the JXDI bus. It provides a description of

all the JXDI signals and all the transactions that execute over the JXDI. This includes
DMA, CPU, and interrupt transactions. Data packet formats for the various types of

transactions are also described.

2.1 JXDI Description

The JXDI interfaces 19 signals between the XJA adapter and the ICU portion of the SCU
(Figure 2-1).

ICU XJA_CMDAVAIL XJA

XJA_DAT[15:00]

XJA_PAR{01:00]

XJA_BUFEMPTD

XJA_XFERACK

XJA_XFERRETRY

XJA_FATALERR

XJA_SPU_STOPPED

XJA_CLKX[02:00]*

iICU_CMDAVAIL

ICU_DAT[15:00]

ICU_PAR[01:00]

{CU_BUFEMPTD

ICU_XFERACK

ICU_XFERRETRY

ICU_CLKJ[02:00]

SPU_XJA_CLKSTOP

ICU_LOOP

SPU_RESET

*USED ONLY FOR LOOPBACKTESTING

MR_X0348_89

Figure 2-1 JXDI Signals

DIGITAL INTERNAL USE ONLY 2-1

2-2 JXDI Bus

All JXDI signals are unidirectional. Signals going from the XJA to the ICU are prefixed

with XJA. Those signals going from the ICU to the XJA are prefixed with ICU. Two

signals not prefixed (SPU_RESET and SPU_XJA_CLKSTOP) are generated by the SPU

and transmitted to the XJA through the ICU. Table 2-1 describes the functions of the

JXDI signals.

Six of the JXDI signals are symmetrical. That is, six signals going from the XJA to

the ICU have identical signals going from the ICU to the XJA. The XJA or ICU prefix

identifies the source of the symmetrical signals.

Table 2-1 JXDI Signal Functions

Signal Function

XJA to ICU

XJA_CMDAVAIL!

XJA_DAT{15:001*

XJA_PAR[01:00]!

XJA_XFERACK!

XJA_XFERRETRY'

XJA_BUFEMPTD!

XJA_SPU_STOPPED

XJA_FATALERR

XJA_CLKX[02:00]

The XJA command available signal informs the ICU that a

data packet is to follow, starting with the next cycle. The XJA

monitors the state of the ICU receive buffers (there are two).

XJA_CMDAVAIL cannot assert (and a data packet cannot be

sent) unless the ICU has a buffer available to receive the packet.

The XJA data signal transfers command, address, mask, ID,

length, interrupt priority level (IPL), and read/write data over

the 16 data lines.

The XJA parity signal transfers odd parity over XJA__DAT{15:00].

XJA_PAR[01] is parity for XJA_DAT{15:08] while XJA PAR[00] is

parity for XJA_DAT{07:00].

The XJA transfer acknowledge signal is asserted to the ICU after

a data packet is accepted by the XJA. The signal informs the ICU

that the associated transmit buffer can now be cleared.

The XJA transfer retry signal is asserted to the ICU after a data

packet is rejected by the XJA due to a parity error or the XJA

being busy. The signal requests the ICU to retransmit the packet

that is still in the ICU transmit buffer.

The XJA buffer emptied signal informs the ICU that an XJA

receive buffer (there are three) has just been emptied, or a data

packet sent by the ICU was not accepted due to a parity error

or the XJA being busy. If the data packet was not accepted, the

buffer emptied signal means that the receive buffer reserved for

the unaccepted data packet is still available.

This signal is in response to SPU_XJA_CLKSTOP from the

SPU (through the ICU). XJA_SPU_STOPPED informs the SPU

(through the ICU) that no XJA transmissions are in progress and

the XJA will not transmit any data packets onto the JXDI until

SPU_XJA_CLKSTOP negates.

The XJA fatal error signal is asserted when the XJA detects a
fatal error. During a fatal error, the XJA cannot be relied upon

to act in a predictable manner. It may not be able to respond to

CPU requests. XJA_FATALERR results in the CPU initiating a

fatal-error service routine.

This signal line is used only for loopback testing. (See ICU_

LOOQP description in this table.)

1Symmetrical

DIGITAL INTERNAL USE ONLY

JXDI Bus 2-3

Table 2-1 (Cont.) JXDI! Signal Functions

Signal Function

ICU to XJA

ICU_CMDAVAIL!

ICU_DAT{15:00]*

ICU_PAR[01:00]*

ICU_XFERACK!

ICU_XFERRETRY'

ICU_BUFEMPTD'

ICU_CLKJ[02:00]

SPU_RESET

SPU_XJA_CLKSTOP

ICU_LOOP

The ICU command available signal informs the XJA that a

data packet is to follow, starting with the next cycle. The ICU

monitors the state of the XJA receive buffers (there are three).

ICU_CMDAVAIL cannot assert (and a data packet cannot be

sent) unless the XJA has a buffer available to receive the packet.

The ICU data signal transfers command, address, mask, ID,

length, and read/write data over the 16 data lines.

The ICU parity signal transfers odd parity over ICU_DAT{15:00].

ICU_PAR[01] is parity for ICU_DAT[15:08] while ICU_PAR[00]

is parity for ICU_DAT{07:00].

The ICU transfer acknowledge signal is asserted to the XJA after

a data packet is accepted by the ICU. The signal informs the XJA

that the associated transmit buffer can now be cleared.

The ICU transfer retry signal is asserted to the XJA after a data

packet is rejected by the ICU due to a parity error. The signal

requests the XJA to retransmit the packet that is still in the XJA

transmit buffer.

The ICU buffer emptied signal informs the XJA that an ICU

receive buffer (there are two) has just been emptied, or a data

packet sent by the XJA was not accepted due to a parity error. In

the latter case, the buffer emptied signal means that the receive

buffer reserved for the unaccepted data packet is still available.

This signal is a 3-line fanout of a 16-ns clock that the ICU sends

to the XJA for clocking data into the XJA receive buffers and

signals into the XJA receive logic (Figure 2-2). ICU_CLKJ[02:00]

is the same clock used for the ICU transmit buffers and transmit

logic, therefore obtaining signal synchronization on both ends of

the JXDI. ‘

This signal is generated by the SPU and sent to the XJA through

the ICU. It is used during system initialization.

This signal is generated by the SPU and sent to the XJA through

the ICU. It informs the XJA of impending clock stoppage. Upon

receiving this signal, the XJA completes the current JXDI

transmission (if any) and does not initiate any new transmissions

until the signal is negated. XJA_SPU_STOPPED informs the

SPU (through the ICU) that the XJA is quiet and clocks can be

stopped.

This is a test command that loops back all symmetrical, ICU- |

sourced JXDI signals onto the corresponding XJA lines. For

example, ICU_CMDAVAIL loops back to the ICU on the XJA_

CMDAVAIL line. In addition, SPU_RESET loops back onto XJA_

FATALERR, and ICU_CLKJ[02:00] loops back onto a signal line

no longer used, called XJA_CLKX[02:00]. SPU_XJA_CLKSTOP

does not loop back.

1Symmetrical

DIGITAL INTERNAL USE ONLY

2-4 JXDI Bus

The XJA and the ICU have transmit buffers from which to transmit data to the JXDI,

and receive buffers that receive data from the JXDI (Figure 2-2). The master clock

module (MCM) supplies an ICU clock that controls the transmit buffers and transmit

logic in the ICU. This clock is transferred to the XJA as ICU_CLKJ[02:00], where it

controls the receive buffers and receive logic in the XJA. The ICU data, signals, and clock

(ICU_CLKI02:00]) experience the same delay over the JXDI. Therefore, ICU_CLKZJ[02:00]

arrives at the XJA at the correct time to clock in the ICU data and signals. However, due

to the JXDI delay, the data clocked into the XJA is asynchronous with the system clocks

and must be synchronized later in the XJA.

Another clock from the MCM (XJA_CLKB) is supplied to the XJA where it controls the

transmit buffers and transmit logic. XJA_CLKB is delayed with respect to the ICU clock

that clocks the ICU receive buffers and receive logic. The delay compensates for the XJA

to ICU skew and time delay resulting in the XJA data and signals being clocked into the

ICU synchronously with respect to the system clocks.

The JXDI bus cycle time is equal to the nominal CPU cycle time of 16 ns.

The transfers executing over the JXDI are part of DMA, CPU, or interrupt transactions.

IcU JXDI XJA

| | I I
ICU DATA

| TRANSMIT \'\ Jd RECEIVE |
| BUFFERS /I/ /I>—"’ BUFFERS |

I CLK I I CLK I

| | | |
ICU SIGNALS

1
| T’Eg'é?g” W L RECEIVE [
I ’I’ /l/ LOGIC I

l CLK | l CLK l

| | I I

| J ICU_CLKJ[02:00] § i

DRV > P>
| | | |

I | [
XJA DATA

RECEIVE . .

CLK

I oL I I I

| | | |
XJA SIGNALS

| RECEIVE ,'< 3 TRANSMIT |
, LOGIC \I \I\ LOGIC I

CLK CLK

| | | I

| | | i

.l -¢§ -------- J L ----- L] - -‘k- J

ICU CLOCK XJA_CLKB

]

MASTER CLOCK

MODULE (MCM)

MR_X0349_89

Figure 2-2 ICU and XJA Transmit and Receive Buffers

DIGITAL INTERNAL USE ONLY

JXDI Bus 2-5

2.1.1 DMA Transactions

DMA transactions are reads and writes of VAX 9000 main memory from the XMI bus.

A DMA transaction may be quadword, octaword, or hexword in length. Up to four DMA

transactions may be outstanding at a time. '

2.1.2 CPU Transactions

CPU transactions are system CPU reads and writes of registers in the XJA or out on

the XMI bus. CPU transactions are longwords only. Only one CPU transaction can be

outstanding at a time.

2.1.3 Interrupt Transactions

Interrupt transactions notify the system CPU of errors detected by the XJA, faults on the

XMI bus, or interrupts generated by the XMI nodes.

2.1.4 JXDI Transfer Functions

Ten transfer functions (Table 2-2) execute on the JXDI. The table shows the 4-bit

command code for each function. The table also indicates if the function executes in

both directions or only in one direction, and whether the function is executing in a DMA

or a CPU transaction. Note that an interrupt request from the XJA to the ICU can occur

during a DMA transfer or a CPU transfer. The functions are described in the following

sections where the application of the JXDI signals listed in Table 2-1 are illustrated.

Table 2-2 JXDI Transfer Functions

Transfer Type

XJA_DAT([03:00] Command XJA to ICU ICU to XJA

0000 READ_REQUEST DMA CPU

0001 READ_LOCK_REQUEST DMA -

0010 READ_DATA_RETURN CPU DMA

0011 READ_LOCK_DATA_RETURN — DMA

0100 WRITE_REQUEST DMA CPU

0101 WRITE_UNLOCK_REQUEST DMA -

0110 Reserved — -

0111 Reserved — -

1000 INTERRUPT_REQUEST! DMA, CPU R

1001 READ_LOCKED_STATUS — DMA

1010 READ_ERROR_STATUS CPU DMA

1011 WRITE_COMPLETE CPU .-

1100 Reserved — . -

1101 Reserved — -

1110 Reserved — -

1111 Reserved — -

1An interrupt can occur during a DMA or a CPU transaction.

DIGITAL INTERNAL USE ONLY

2-6 JXDI Bus

2.2 DMA Read

Figure 2-3 is a flow diagram of the transfer functions that execute on the JXDI during a

DMA read or read lock transaction. Refer to the flow diagram throughout the following

discussion.

ICU

BUFFER

AVAILABLE

NO

YES

Y
XJA_CMDAVAIL

COMMAND AVAILABLE

CYCLE. AN XJA TO ICU

TRANSFER WILL START

ON NEXT BUS CYCLE.

:
XJA_DAT[15:00)

COMMAND CYCLE.

! ! :
COMMAND FIELD. LENGTH FIELD. 10 FIELD.
READ REQUEST SPECIFIES IDENTIFIES XM

OR READ QUADWORD, OCTAWORD, COMMANDER WHO IS
LOCK REQUEST. OR HEXWORD TRANSFER. TO RECEIVE DATA.

IDENTIFIES WHICH

COMMAND FROM THAT

COMMANDER.

XJA_DAT[15:00)

ADDRESS CYCLES (2).

YES 1cu

DETECTED AN

ERROR

IGU_XFERRETRY ICU_XFERACK

|

READ

COMMAND

TRANSFERRED

TO JBOX

ICU_BUFEMPTD

S

ICU_BUFEMPTD

O
Figure 2-3 (Cont.) Flow Diagram of JXDI DMA Read or Read Lock

MA_X0751_88

DIGITAL INTERNAL USE ONLY

JXDI Bus 2-7

YES LOCATION

ALREADY

LOCKED

READ

LOCK
TRANSACTION

READ DATA NO

OBTAINED FROM
MAIN MEMORY WITH

NO ERRORS

XJA

BUFFER

AVAILABLE

1 YES
h]

ICU_CMDAVAIL

COMMAND AVAILABLE
CYCLE. AN ICU TO XJA
TRANSFER WILL START

ON NEXT BUS CYCLE.

Y

1CU_DAT[15:00]

COMMAND CYCLE.

l I !
COMMAND FIELD. LENGTH FIELD. 1D FIELD.

READ DATA RETURN SPECIFIES IDENTIFIES XM

OR READ QUADWORD, OCTAWORD, COMMANDER WHO 18

LOCK DATA RETURN. OR HEXWORD TRANSFER. TO RECEIVE DATA.
IDENTIFIES WHICH

COMMAND FROM THAT

COMMANDER.

ICU_DAT{15:00]

DATA CYCLES.

YES XJA

DETECTED ERROR
OR IS BUSY

XJA_XFERRETRY XJA_XFERACK

READ DATA NO
TRANSMITTED

TO XMt BUS
XJA_BUFEMPTD

L

XJA_BUFEMPTD

-

Figure 2-3 (Cont.) Flow Diagram of JXDI DMA Read or Read Lock

MA_X0752_89

DIGITAL INTERNAL USE ONLY

2-8 JXDI Bus

XJA

BUFFER

AVAILABLE

NO

ICU_CMDAVAIL

COMMAND AVAILABLE

CYCLE. AN ICU TO XJA

TRANSFER WILL START

ON NEXT BUS CYCLE.

:
ICU_DAT[15:00]

COMMAND CYCLE.

COMMAND FIELD.

READ LOCKED STATUS

R

READ ERROR STATUS.

YES XJA

DETECTED ERROR

OR I8 BUSY

XJA_XFERRETRY XJA_XFERAC K

XJA_BUFEMPTD
TO XMl BUS

READ STATUS

TRANSMITTED

NO

XJA_BUFEMPTD

Figure 2-3 Flow Diagram of JXDI DMA Read or Read Lock

DIGITAL INTERNAL USE ONLY

'D FIELD.

IDENTIFIES XMI

COMMANDER WHO 1§

TO RECEIVE DATA.

IDENTIFIES WHICH

COMMAND FROM THAT

COMMANDER.

MR_X0753_89

JXDI Bus 2-9

2.2.1 Command Available Cycle

The XJA asserts XJA_CMDAVAIL (command available) to inform the ICU that a transfer

follows starting with the next cycle. The XJA is allowed to assert XJA_CMDAVAIL only

if an ICU buffer is available to receive the transmitted information. The availability of

an ICU buffer is indicated by a buffer empty counter in the XJA that monitors the state

of the ICU receive buffers (Section 2.2.7).

2.2.2 Read Request Command Cycle

The XJA data lines XJA_DAT[15:00]) carry information to the ICU in three bus cycles: a

command cycle followed by two address cycles (Figure 2—4). The command cycle contains:

A command field

A length field

An ID field

CYCLE TYPE 15 14 13 12 11 10 09 08|07 06 05 04 03 02 01 00

0 coMMAND | R|R | D M{R| Len | comD

1 ADDRESS 0 A [29:26, 05:02] A 113:08]

2 ADDRESS 1 A (33:30, 25:22) A [21:14]

R = RESERVED

NOTE: BIT 7 IS THE M (MORE) BIT IN A READ COMMAND CYCLE.

IT MUST BE ZERO IN A READ LOCK COMMAND CYCLE.

THE M BIT IS CURRENTLY NOT USED BY THIS SYSTEM.

MR_X0350_89

Figure 2-4 DMA Read Request or Read Lock Request Bus Cycles

2.2.2.1 Command Field

The command field occupies data lines XJA_DAT[03:00]. Table 2-2 defines the command

field code. The command code for this transfer is 0000 (read request) or 0001 (read lock

request).

2.2.2.2 Length Field

The length field occupies data lines XJA_DAT[05:04]. Table 2-3 specifies the length codes

with ICU_DAT{05:04] replacing XJA_DAT[05:04].

Table 2-3 Length Field Codes

XJA_DAT[05:04] Length

00 Hexword (32 bytes)

01 Reserved

10 Quadword (8 bytes)

11 Octaword (16 bytes)

DIGITAL INTERNAL USE ONLY

2-10 JXDI Bus

2.2.2.3 ID Field

The ID field occupies data lines XJA_DAT[13:08]. The field contains a unique code used

to identify the node ID of the XMI commander, and with which of the commander’s

transactions the command cycle is associated. (An XMI commander can have four

transactions outstanding at one time.) The node ID of the XMI commander is the

destination for the returned read data.

The ID field is encoded as shown in Table 2-4.

Table 2-4 ID Code for DMA Transaction Commanders

XJA_DAT(13:08] Function

[13:10] Identifies XMI node of transaction commander

{09:08] Identifies transaction

2.2.3 Address Cycles

The second and third bus cycles are address cycles. Each address cycle carries 16 address

bits as shown in Figure 2—4. Address bits [01:00] are not used as bytes and words are not

supported as valid DMA transaction lengths. Therefore, the 32 address bits transferred

are [33:02].

2.2.4 Memory Address Wraps

All reads to main memory are aligned on quadword boundaries. Octaword and hexword

reads are wrapped, if not addressed to an octaword or hexword boundary, respectively.

For example, in part A of Figure 2-5, an octaword read to address 18(hex) reads

quadword 3 at address 18(hex) and then wraps back to read quadword 2 at address

10¢hex). Therefore, the octaword read is entirely in an octaword boundary. The read does

not cross over a boundary into the next octaword.

Part B of Figure 2-5 illustrates a hexword read to address 18(hex). With regard to

wrapping, a hexword read is treated as two octaword reads with the second octaword

read in the same sequence as the first. The first quadword read is quadword 3 at address

18(hex). Considering this as the first octaword read, the wrap goes back to address

10(hex) to read quadword 2 (the second half of the first octaword read). The second

octaword, in the hexword boundary, consists of quadwords 0 and 1. This octaword is

read in the same sequence as the first octaword resulting in quadword 1 being the third

quadword read and quadword O being the last.

Part C of Figure 2-5 illustrates a hexword read to address 14(hex). Note that the read

is made to a nonquadword boundary. In this case, the reference backs up to the next

quadword boundary, which is 10(hex). The first octaword is read in order with quadword

2 read first followed by quadword 3 at address 18(hex). The read wraps back to the

second octaword within the hexword boundary, which is read in order as was the first.

Therefore, quadword 0 becomes the third quadword read and quadword 1 becomes the

fourth.

DIGITAL INTERNAL USE ONLY

A
T
N
O
 3
S
N
 T
V
N
Y
I
L
N
I
 T
V
L
i
D
I
d

s
p
e
a
y
 p
un

os
ed

ei
y
P
I
O
M
X
S
H
 p
ue

 p
IO

Me
ld

0
-
2

 a
in

bi
d

00

08

20

28

30

38

40

ADDRESS (HEX)

QUADWORD 0

QUADWORD 1

(2ND) QUADWORD 2

{1S7T) QUADWORD 3

QUADWORD 4

QUADWORD 5

QUADWORD 6

QUADWORD 7

BOUNDARIES

QW, OW, HW

ow

oW, oW

ow

QW, OW, HW

aw

QW, OW

ow

oW, OW, HW

A. OCTAWORD READ AT ADDRESS 18(HEX)

00

08

20

28

30

38

40

B. HEXWORD READ AT ADDRESS 18(HEX)

ADDRESS (HEX)

(4TH) QUADWORD ©

(3RD) QUADWORD 1

(2ND) OUADWORD 2

(1ST) QUADWORD 3

QUADWORD 4

QUADWORD 5

QUADWORD 6

QUADWORD 7

BOUNDARIES

Qw, Ow,

aw

Qw, OwW

aow

aw, ow,

aw

oW, Ow

ow

Qw, Ow,

HW

HW

HW

00

08

20

28

30

38

40

C. HEXWORD READ AT ADDRESS 14(HEX)

ADDRESS (HEX)

(3RD) QUADWORD 0

(4TH) QUADWORD 1

(1ST) QUADWORD 2

{2ND) QUADWORD 3

QUADWORD 4

QUADWORD 5

QUADWORD 6

QUADWORD 7

BOUNDARIES

Qaw,

aw

ow

ow

ow

ow

aw,

ow

ow

OW, HW

. OW

, OW, HW

ow

. OW, HW

MR_X0351_8¢

L
i
—
¢

s
n
g

1
a
x
r

2-14 JXDI Bus

2.2.9.3 ID Field

The ID field occupies data lines ICU_DAT{[13:08]. The field contains the code used to

identify the node of the XMI commander and the specific command being executed. (An

XMI commander can have four transactions outstanding at a time.) The node ID of the

XMI commander is the destination for the returned read data.

The ID field code is shown in Table 2—4 with ICU_DAT{13:08] replacing XJA_DAT{13:08].

2.2.10 Data Cycles

Data bus cycles follow the command cycle with each cycle carrying one word of data.

There will be 4, 8, or 16 data cycles, depending on the length of the read transaction.

2.2.11 Data Parity

ICU_PAR[01:00] provides odd parity for each bus cycle (command and data). Parity bit
[01] is parity over data bits [15:08]. Parity bit [00] is parity over data bits [07:00]. The

parity bit is asserted when the number of bits asserted in the data field is even.

2.2.12 Acknowledge Cycle and Retry Cycle

The XJA checks parity on each cycle of received data. If no parity error is found in

the data packet, and the XJA is not busy, the XJA asserts XJA_XFERACK (transfer

acknowledge) to the ICU indicating that the entire data packet was received by the XJA

without parity errors. XJA_XFERACK allows the ICU to clear the data from its transmit

buffer.

If a parity error is found or the XJA is busy, the XJA asserts XJA_XFERRETRY (transfer

retry) to the ICU, and the ICU must retry the failed transfer. XJA_XFERRETRY asserts

as soon as the parity error is detected. It does not wait for the end of the data packet. If

the retry also experienced a parity error, more retries are executed. If subsequent retries

also fail, the SCU experiences a timeout for failing to move the data packet across the

JXDI. The timeout results in a system interrupt and execution of the appropriate service

routine.

2.2.13 XJA Buffer Emptied Cycle

When the XJA empties its receive buffer, it returns XJA_BUFEMPTD to the ICU. XJA_

BUFEMPTD indicates that the XJA has emptied the receive buffer and can accept new

data from the ICU. The XJA has three receive buffers. The ICU monitors the status of

these buffers by means of a buffer empty counter. The counter is preset to a count of

three and is decremented by one for each ICU transmission. If the counter reaches zero,

all the XJA receive buffers are full, the ICU is inhibited from asserting ICU_CMDAVAIL,

and no ICU transmission can occur (Section 2.2.8).

If the XJA did not accept the data packet, it asserts XJA_BUFEMPTD to inform the ICU

that the receive buffer reserved for the unaccepted data packet is still available.

DIGITAL INTERNAL USE ONLY

JXDI Bus 2-15

2.2.14 Read Locked Status or Read Error Status

If this is a read lock transaction and the read location in main memory was already

locked, or the read data obtained from main memory had an uncorrectable error, an error

status transfer is initiated.

If an XJA receive buffer is available, the ICU asserts ICU_CMDAVAIL informing the XJA

that a transfer follows. The ICU then transmits a command cycle (Figure 2-7) with the

command field specifying a read locked status (1001) or a read error status (1010) as the

case may be (Table 2-2).

The ID field identifies the XMI commander and the command number (Table 2—4).

As is the case for all JXDI data transfers, parity bits (ICU PAR[01:00]) are generated for

the data bits and parity is checked by the XJA. If no parity error is found, and the XJA

is not busy, the XJA returns XJA_XFERACK to the ICU to clear its transmit buffers.

If the XJA encountered a parity error or is busy, it returns XJA_XFERRETRY to the ICU,

which retries the transfer. If more retries are required and also fail, the SCU experiences

a timeout for failing to move the status word across the JXDI. The timeout results in a

system interrupt and execution of the appropriate service routine.

When the XJA empties its receive buffer (or asserts XJA_XFERRETRY), it asserts XJA_

BUFEMPTD to the ICU to inform the ICU of the availability of an XJA receive buffer

(Section 2.2.13).

CYCLE TYPE 15 14 13 12 11 10 09 08[07 06 05 04 03 02 01 00

0 COMMAND Rif—'\l 1D RlSlRlRl cMD

R = RESERVED

8§ = SEQUENCE BIT

NOTE: THE SEQUENCE BIT IS CURRENTLY NOT USED BY THIS SYSTEM.

MR_X0353_89

Figure 2-7 DMA Read Locked Status or Read Error Status Command Cycle

2.3 DMA Write

NOTE

DMA hexword writes are not currently supported by the SCU. The XJA does

support hexword writes, so they are included in the following description.

Figure 2-8 is a flow diagram of the transfer functions that execute on the JXDI during

a DMA write or write unlock transaction. Refer to the flow diagram throughout the

following discussion.

DIGITAL INTERNAL USE ONLY

2-16 JXDI Bus

ICU BUFFER NO
AVAILABLE

YES

XJA_CMDAVAIL

COMMAND AVAILABLE

CYCLE AN XJA TO ICU

TRANSFER WILL START

ON NEXT BUS CYCLE.

l
a
—
-

XJA_DAT[15:00

COMMAND CYCLE.

: l l
COMMAND FIELD. LENGTH FIELD. ID FIELD.
WRITE OR WRITE SPECIFIES IDENTIFIES XMI
UNLOCK COMMAND. QUADWORD, OCTAWORD, TRANSACTION

OR HEXWORD TRANSFER. COMMANDER.

y

XJA_DAT[15:00]

ADDRESS CYCLES (2).

l
XJA_DAT[15:00]

MASK CYCLE.

;
XJA_DAT[15:00]

DATA CYCLES.

YES ICU

DETECTED AN

ERRQR

ICU_XFERRETRY ICU_XFERACK

WRITE DATA

TRANSFERRED

TO JBOX

ICU_BUFEMPTD

L|

ICU_BUFEMPTD

MA_X0383_03

Figure 2-8 Flow Diagram of JXDI DMA Write or Write Unlock

DIGITAL INTERNAL USE ONLY

JXDI Bus 2-17

2.3.1 Command Available Cycle

The XJA asserts XJA_CMDAVAIL (command available) to inform the ICU that a transfer

follows starting with the next cycle. The XJA is only allowed to assert XJA_CMDAVAIL

if an ICU buffer is available to receive the transmitted information. The availability of

an ICU buffer is indicated by the XJA buffer empty counter (Section 2.3.8).

2.3.2 Write Command Cycle

The XJA data lines (XJA_DAT{15:00]) carry command, address, mask, and data

information to the ICU. The format of the information is illustrated in Figure 2-9.

The command cycle contains:

A command field

A length field

An ID field

CYCLE TYPE 15 14 13 12 11 10 09 08j07 06 05 04 03 02 01 00

0 COMMAND R l R i 1D Ml S l LEN I CMD

1 ADDRESS 0 A [29:26, 05:02] A [13:08)

2 ADDRESS 1 A [33:30, 25:22] A[21:14)

3 MASK BITS FIEID‘CI7]6|514 B|A|9|8|3l2]1lo

4 DATA BYTE 4 BYTE O

5 DATA BYTE' S BYTE 1

6 DATA BYTE 6 BYTE 2

7 DATA BYTE 7 BYTE 3

8 DATA BYTE C) BYTE 8

9 DATA BYTE D BYTE 9

10 DATA BYTE E BYTE A

1" DATA BYTE F BYTE B

12 DATA BYTE 14 BYTE 10

13 DATA BYTE 15 BYTE 11

14 DATA BYTE 16 BYTE 12

15 DATA BYTE 17 BYTE 13

16 DATA BYTE 1C BYTE 18

17 DATA BYTE 1D BYTE 19

18 DATA BYTE 1E BYTE 1A

18 DATA BYTE 1F BYTE 1B

R = RESERVED

S = SEQUENCE BIT

NOTE: THE SEQUENCE BIT IS CURRENTLY NOT USED BY THIS SYSTEM.

BIT 7 18§ THE M (MORE) BIT IN A WRITE COMMAND CYCLE.

IT MUST BE ZERO IN A WRITE UNLOCK COMMAND CYCLE.

THE M BIT IS CURRENTLY NOT USED BY THIS SYSTEM.

MR_X0354_89

Figure 2-8 DMA Write or Write Unlock Data Cycles

DIGITAL INTERNAL USE ONLY

2-18 JXDI Bus

2.3.2.1 Command Field

The command field occupies data lines XJA_DAT[03:00]. Table 2-2 defines the command

field code. The command code for this transaction is 0100 (write request) or 0101 (wnte

unlock request).

2.3.2.2 Length Field

The length field occupies data lines XJA_DAT[05:04]. Table 2-3 specifies the length

codes.

2.3.2.3 ID Field

The ID field occupies data lines XJA_DAT[13:08]. The field contains a unique code used

to identify the XMI commander as the source of the request. The ID field code is shown

in Table 2—4.

2.3.3 Address Cycles

The second and third bus cycles are address cycles. Each address cycle carries 16 address

bits as shown in Figure 2-9. Bits [01:00] are not used as bytes and words are not

supported as valid DMA transaction lengths. Therefore, the 32 address bits transferred

are [33:02].

All writes to main memory are aligned on quadword boundaries. Quadword, octaword,

and hexword writes are done on quadword, octaword, and hexword boundaries,

respectively (Figure 2-5). Therefore, address bits [02:00] can be ignored on quadword

writes, bits [03:00] can be ignored on octaword writes, and bits [04:00] can be ignored on

hexword writes. .

2.3.4 Mask Cycle

The fourth bus cycle contains the byte mask field for the write data that is to follow. Bit 0

corresponds to byte 0, bit 1 corresponds to byte 1, and so on. When the write transaction

is a quadword, the unused mask bits (bits [F:C] and [B:08]) are deasserted. When the

write transaction is an octaword, all 16 mask bits are used to specify the mask status of

their associated bytes. When the write transaction is a hexword, the mask bits are all 1s

since in a hexword transaction there is no masking; all 32 bytes are valid.

2.3.5 Data Cycles

Data cycles are next, with each cycle carrying one word of data. There will be 4, 8, or 16

data cycles, depending on the length of the write transaction.

DIGITAL INTERNAL USE ONLY

JXDI Bus 2-19

2.3.6 Data Parity

XJA_PAR[01:00] provides odd parity for each bus cycle (command, address, mask, data).

Parity bit [01] is parity over data bits [15:08]. Parity bit [00] is parity over data bits

[07:00]. The parity bit is asserted when the number of bits asserted in the data field is

even.

2.3.7 Acknowledge Cycle and Retry Cycle

The ICU checks parity on each cycle of the received data. If the data packet was received

without any parity errors, the ICU asserts ICU_XFERACK (transfer acknowledge) to the

XJA indicating that all the write data was received by the ICU without parity errors.

ICU_XFERACK allows the XJA to clear the write data from its transmit buffer.

If a parity error was found, the ICU asserts ICU_XFERRETRY (transfer retry), indicating

that a parity error was detected by the ICU and the XJA must retry the failed transfer.

If more retries are required and also fail, the SCU notes the continuous parity errors,

interrupts the CPU, and executes a service routine.

2.3.8 ICU Buffer Emptied Cycle

When the ICU transfers the write data from its receive buffer to the JBox, it returns

ICU_BUFEMPTD to the XJA. ICU_BUFEMPTD indicates that the ICU has emptied the

receive buffer and can accept new data from the XJA. The ICU has two receive buffers.

The XJA monitors the status of these buffers by means of a buffer empty counter. The

counter is preset to a count of two and is decremented by one for each XJA transmission.

If the counter reaches zero, all the ICU receive buffers are full, the XJA is inhibited from

asserting XJA_CMDAVAIL, and no XJA transmission can occur (Section 2.3.1).

If the ICU commanded a retry, it also asserts ICU_BUFEMPTD to increment the buffer

empty counter in the XJA.

2.4 CPU Read

Only one CPU transaction can be outstanding at a time. All CPU transactions are

longwords only. Figure 2-10 is a flow diagram of the transfer functions that execute

on the JXDI during a CPU read transaction. Refer to the flow diagram throughout the

following discussion.

2.4.1 Command Available Cycle

The ICU asserts ICU_CMDAVAIL (command available) to inform the XJA that a transfer

follows starting with the next cycle. The ICU is only allowed to assert ICU_CMDAVAIL

if an XJA buffer is available to receive the transmitted information (Section 2.2.8).

DIGITAL INTERNAL USE ONLY

2-20 JXDI Bus

XJA BUFFER NO
AVAILABLE

4

ICU_CMDAVAIL

COMMAND AVAILABLE

CYCLE. AN ICU TO XJA

TRANSFER WILL START

ON NEXT BUS CYCLE.

4

ICU_DAT[15:00]

COMMAND CYCLE

, Y !
ICU_DAT([15:00]

ADDRESS CYCLES (2)

COMMAND FIELD.

READ REQUEST.

XJA

DETECTED AN ERROR

|

XJA_XFERRETRY

XJA_BUFEMPTD

Figure 2-10 (Cont.)

OR IS BUSY

XJA_XFERACK

READ REQUEST

TRANSMITTED

TO XM BUS

XJA_BUFEMPTD

NO
READ DATE

OBTAINED WITH

NO ERRORS

Flow Diagram of JXDI CPU Read

DIGITAL INTERNAL USE ONLY

1D FIELD.

IDENTIFIES

TRANSACTION

COMMANDER

AS CPU OR SPU.

MR_X0364_89

VA

ICU

BUFFER

AVAILABLE

YES

YES

XJA_CMDAVAIL

COMMAND AVAILABLE

CYCLE. AN XJA TO ICU

TRANSFER WILL START

ON NEXT BUS CYCLE.

XJA_DAT[15:00]

COMMAND CYGLE

NO

JXDI Bus 2-21

! !
XJA_DAT{15:00]

DATA CYCLES.

COMMAND FIELD.

READ DATA RETURN.

ICU

!

ICU_XFERRETRY

ICU_BUFEMPTD

Figure 2-10 (Cont.)

DETECTED AN

ERROR

ICU_XFERACK

READ DATA

TRANSFERRED
TO JBOX

ICU_BUFEMPTD

NO

Fiow Diagram of JXDI CPU Read

ID FIELD.

IDENTIFIES

TRANSACTION

COMMANDER

AS CPU OR SPU.

MR_X0385_89

DIGITAL INTERNAL USE ONLY

2-22 JXDI Bus

ICU

BUFFER

AVAILABLE

YES

YES

XJA_CMDAVAIL

COMMAND AVAILABLE

CYCLE. AN XJATO ICU

TRANSFER WILL START

ON NEXT BUS CYCLE.

XJA_DAT[15:00])

COMMAND CYCLE

v

ICU_XFERRETRY

ICU_BUFEMPTD

Figure 2-10

NO

ICU

DETECTED AN

ERROR

ICU_XFERACK

v v
COMMAND FIELD.

READ ERROR STATUS.

READ STATUS

TRANSFERRED

TO JBOX

ICU_BUFEMPTD

C END

Flow Diagram of JXDI CPU Read

‘

D

DIGITAL INTERNAL USE ONLY

NO

1D FIELD.

IDENTIFIES

TRANSACTION

COMMANDER

AS CPU OR SPU.

MR_X0366_89

JXDI Bus 2-23

2.4.2 Read Request Command Cycle

The ICU data lines (ICU_DAT[15:00]) carry information to the XJA in three bus cycles:

a command cycle followed by two address cycles (Figure 2-11). The command cycle

contains:

A command field

An ID field

CYCLE TYPE 15 14 13 12 11 10 09 08 [07 06 05 04 03 02 01 00

0 commano | Rr|R| D R|r{r|R| cmD

1 ADDRESS 0 A [29:26, 05:02) A [13:086]

2 ADDRESS 1 MASK* | A [25:22] A [21:14]

R = RESERVED

*SPECIFIES ADDRESS BITS [01:00]

MR_X0355_8¢9

Figure 2-11 CPU Read Request Bus Cycles

2.4.2.1 Command Field

The command field occupies data lines ICU_DAT[03:00]. Table 2—2 defines the command

field code. The command code for this transfer is 0000 (read request).

2.4.2.2 ID Field .

The ID field occupies data lines ICU_DAT{13:08]. The ID code is used to identify the

source of the request as either the CPU or the service processor unit (SPU) (Table 2-5).

Table 2-5 |ID Code for CPU Transaction Commanders

ICU_DAT[13:8] Transaction Commander

000000 CPU

000001 SPU

NOTE

The ID field is currently not used as the system control unit (SCU) knows the

commander for all CPU type transactions. The six ID bits are always 0.

2.4.3 Address Cycles

The second and third data cycles are address cycles. The first address cycle carries 16

address bits as shown in Figure 2-11. The second address cycle earries 12 address bits in

locations ICU_DAT([11:00). Bits ICU_DAT[15:12] of the second address cycle comprise the

mask field that specifies which bytes are to be read as shown in Table 2—6. The XJA uses

the mask field to determine address bits [01:00] as shown in the table. These address

bits are required when the CPU read is dealing with a VAXBI word-mode or byte-mode

transaction.

DIGITAL INTERNAL USE ONLY

2-24 JXDI Bus

Table 2-6 Address Bits [01:00] Versus Mask Field

ICU_DAT[15:12] Read Byte/Word Address Bits [01:00]

0000 None 00

0001 Byte 1 00

0010 Byte 2 01

0011 Bytes 1 and 2 (word 1) 00

0100 Byte 3 10

1000 Byte 4 11

1100 Bytes 3 and 4 (word 2) 10

1111 All bytes (longword) 00

1An asserted bit reads the associated byte.

2.4.4 Data Parity

ICU_PARI[01:00] provides odd parity for each bus cycle (command and address). Parity

bit [01] is parity over data bits [15:08]. Parity bit [00] is parity over data bits [07:00].

The parity bit is asserted when the number of bits asserted in the data field is even.

2.4.5 Acknowledge Cycle and Retry Cycle

The XJA checks parity on each cycle of the received data. If the data packet was received

without any parity errors, and the XJA was not busy, the XJA asserts XJA_XFERACK

(transfer acknowledge) to the ICU indicating that the read request was received by the

XJA without parity errors.

If a parity error was found or the XJA was busy, the XJA asserts XJA_XFERRETRY

to the ICU. In either case, the ICU must retry the failed transfer. If more retries are

required and also fail, the SCU experiences a timeout for failing to move the data

packet across the JXDI. The timeout results in a system interrupt and execution of the

appropriate service routine.

2.4.6 XJA Buffer Emptied Cycle

When the XJA transfers the read request data from its receive buffer, it returns XJA_

BUFEMPTD to the ICU. XJA_BUFEMPTD indicates that the XJA has emptied the

receive buffer and can accept new data from the ICU (Section 2.2.13). If the XJA

commanded a retry, it also asserts XJA_BUFEMPTD.

2.4.7 Command Available Cycle

If the read data was obtained by the XJA with no uncorrectable errors and an ICU

receive buffer is available, the transaction continues with the XJA asserting XJA_

CMDAVAIL. XJA_CMDAVAIL informs the ICU that the requested read data transfers to

the ICU starting with the next cycle. The XJA is only allowed to assert XJA_CMDAVAIL

if an ICU buffer is available to receive the transmitted information.

DIGITAL INTERNAL USE ONLY

JXDI Bus 2-25

2.4.8 Return Data Command Cycle

The XJA data lines XJA_DAT([15:00]) carry information to the ICU in one command

cycle, followed by three reserved cycles, then four data cycles with each data cycle

carrying one byte of data (Figure 2—-12). The use of three reserve cycles and four data

cycles to transmit the read longword is dictated by the ICU receive logic, which accepts

only one data format. Note in Figure 2-9 that a DMA write data packet starts sending

data to the ICU in the fourth bus cycle with the first longword (bytes 0 through 3) spread
over the next four cycles.

The command cycle contains a command field and an ID field. The command field

occupies data lines XJA_DAT[03:00]. Table 2-2 defines the command field code, which for
this transfer is 0010 (read data return).

The ID field occupies data lines XJA_DAT[13:08]. The field is used to identify the
transaction commander as the CPU or the SPU. The ID field is currently all Os

(Table 2-5).

cycLe | Tvee 15 14 13 12 11 10 09 08|07 06 05 04 03 02 01 00

0 commano | R |R| D RIrR{R|R| omD

1 DATA RESERVED RESERVED

2 DATA RESERVED RESERVED

3 DATA RESERVED RESERVED

4 DATA RESERVED BYTE 0

5 DATA RESERVED BYTE 1

6 DATA RESERVED BYTE 2

7 DATA RESERVED BYTE 3

R = RESERVED

MR_X0356_89

Figure 2-12 CPU Read Data Return Bus Cycles

2.4.9 Data Cycles

Following the command cycle are three reserved cycles, followed by four data cycles each
carrying one byte of data. The data byte is in the lower order bits (bits [07:00]) with the
higher order bits (bits [15:08]) being reserved.

2.4.10 Data Parity

XJA_PAR[01:00] provides odd parity for each bus cycle (command and data). Parity bit

[01] is parity over data bits [15:08]. Parity bit [00] is parity over data bits [07:00]. The
parity bit is asserted when the number of bits asserted in the data field is even.

2.4.11 Acknowledge Cycle and Retry Cycle

The ICU checks parity on each cycle of received data. If no parity error is found in the

data packet, the ICU asserts ICU_XFERACK (transfer acknowledge) indicating that the
entire data packet was received by the ICU without parity errors. ICU_XFERACK allows

the XJA to clear the data from its transmit buffer.

DIGITAL INTERNAL USE ONLY

2-26 JXDI Bus

If a parity error is found, the ICU asserts ICU_XFERRETRY indicating that a parity

error was detected by the ICU. In this case, the XJA must retry the failed transfer. If

more retries are required and also fail, the SCU notes the continuous parity errors,

interrupts the CPU, and executes a service routine.

2.4.12 ICU Buffer Emptied Cycle

When the ICU transfers the read data from its receive buffer to the JBox, it returns

ICU_BUFEMPTD to the XJA. ICU_BUFEMPTD indicates that the ICU has emptied

the receive buffer and can accept new data from the XJA (Section 2.2.7). If the ICU

commanded a retry, it also asserts ICU_BUFEMPTD.

2.4.13 Read Error Status

If the read data obtained by the XJA had an uncorrectable error, an error status transfer

is initiated.

The XJA asserts XJA_CMDAVAIL informing the ICU that a transfer follows. The XJA

then transmits a CPU status command cycle (Figure 2-13) with the command field

specifying a read error status (1010) (Table 2-2). The ID field identifies the transaction

commander as the CPU or the SPU. The ID field is currently all 0s (Table 2-5).

Parity bits (XJA PAR[01:00]) are generated for the data bits and parity is checked by the

ICU. If no parity error is found, the ICU returns ICU_XFERACK to the XJA to clear its

transmit buffers.

If the ICU encountered a parity error, it returns ICU_XFERRETRY to the XJA, which
retries the transfer. If more retries are required and also fail, the SCU notes the

continuous parity errors, interrupts the CPU, and executes a service routine.

When the ICU transfers the status word from its receive buffer to the JBox, it asserts

ICU_BUFEMPTD to the XJA to inform the XJA of the availability of an ICU receive

buffer. ICU_BUFEMPTD is also asserted if the ICU commands a retry.

CYCLE TYPE 15 14 13 12 11 10 09 08}07 06 05 04 03 02 01 00

0 COMMAND RlRl iD R]RIR[RI CMD

R = RESERVED

MR_X0357_88

Figure 2-13 CPU Status Command Cycle

2.5 CPU Write

Only one CPU transaction can be outstanding at a time. All CPU transactions are

longwords only. Figure 2-14 is a flow diagram of the transfer functions that execute on

the JXDI during a CPU write transaction. Refer to the flow diagram throughout the

following discussion.

DIGITAL INTERNAL USE ONLY

JXDI Bus 2-27

NOXJA

BUFFER

AVAILABLE

» YES

ICU_CMDAVAIL

COMMAND AVAILABLE

CYCLE. AN ICU TO XJA

TRANSFER WILL START

ON NEXT BUS CYCLE.

ICU_DAT{15:00)

COMMAND CYCLE.

ICU_DAT[15:00]

ADDRESS CYCLE.

ICU_DAT[15:00) COMMAND FIELD. ID FIELD.
ADDRESS/MASK WRITE COMMAND. IDENTIFIES

CYCLE. TRANSACTION
COMMANDER

AS CPU OR SPU.

ICU_DAT[15:00]

DATA CYCLES (4)

YES XJA

DETECTED ERROR

OR IS BUSY /

XJA_XFERRETRY XJA_XFERACK

A

WRITE DATA

TRANSMITTED

TO XMI BUS

NO

XJA_BUFEMPTD

XJA_BUFEMPTD

MR_X0367_69

Figure 2-14 (Cont.) Flow Diagram of JXDI CPU Write

DIGITAL INTERNAL USE ONLY

2-28 JXDI Bus

WRITE

TRANEACTION NO
HAS SUCCESSFULLY

COMPLETED

YES

ICU

BUFFER

AVAILABLE

YES

XJA_CMDAVAIL

COMMAND AVAILABLE

CYCLE. AN XJATO ICU

TRANSFER WILL START

ON NEXT BUS CYCLE.

XJA_DAT[15:00]

COMMAND CYGLE.

AN XJA ERROR

INTERRUPT WILL OCCUR

YES COMMAND FIELD.ICU

DETECTED AN

ERROR
WRITE COMPLETE.

ICU_XFERRETRY

ICU_XFERACK

ICU_BUFEMPTD

WRITE

COMPLETE COMMAND

TRANSFERRED

TO JBOX

ICU_BUFEMPTD

1D FIELD.

IDENTIFIES

TRANSACTION

COMMANDER

AS CPU OR SPU.

Figure 2-14 Flow Diagram of JXDI CPU Write

DIGITAL INTERNAL USE ONLY

MR_X0368_89

JXDI Bus 2-29

2.5.1 Command Available Cycle
The ICU asserts ICU_CMDAVAIL (command available) to inform the XJA that a transfer

follows starting with the next cycle. The ICU is only allowed to assert ICU_CMDAVAIL

if an XJA buffer is available to receive the transmitted information (Section 2.2.8).

2.5.2 Write Command Cycle

The ICU data lines (ICU_DAT{15:00]) carry command, address, mask, and data
information to the XJA. The format of the information is illustrated in Figure 2-15.

The command cycle contains a command field and an ID field.

The command field occupies data lines ICU_DAT[03:00]. Table 2-2 defines the command
field code which for this transaction is 0100 (write request).

The ID field occupies data lines ICU_DAT[13:08]. The field is used to identify the

transaction commander as the CPU or the SPU. The ID field is currently all Os

(Table 2-5).

CYCLE TYPE 15 14 13 12 11 10 08 0807 06 05 04 03 02 01 00

0 COMMAND RIRI ID RlRlRlRl CMD

1 ADDRESS 0 A [29:26, 05:02] A [13:06)

2 ADDRESS 1 MASK | A [25:22) A[21:14)

3 DATA 0 00 06 0 0 0 O BYTE 0

4 DATA 0 0 0 0 0 0 0 O BYTE1

5 DATA 0 00 0 0 0 0 O BYTE 2

6 DATA 0O 00 0 0 0 0 O BYTE 3

R = RESERVED

MR_X0356_89

Figure 2-15 CPU Write Data Cycles

2.5.3 Address/Mask Cycles

The second data cycle is an address cycle carrying 16 address bits as shown in

Figure 2-15. The third data cycle has address bits in the lower 12 bit locations (ICU_
DAT[11:00]) and mask bits in locations ICU_DAT[15:12]. Mask bits 15, 14, 13, and 12

are associated with bytes 3, 2, 1, and 0, respectively, of the write data longword and are
used by the XJA to determine address bits [01:00] (Section 2.4.3 and Table 2-6).

DIGITAL INTERNAL USE ONLY

2-30 JXDI Bus

2.5.4 Data Cycles

The address cycles are followed by four data cycles with each cycle carrying one byte of

data. The use of four bus cycles to transfer a data longword is dictated by the XJA receive

logic that accepts only one data format. Note in Figure 2—6 that the first longword of data

received by the XJA (bytes 0 through 3) is spread over four bus cycles.

The data byte is in the lower order bits (bits [07:00]). The higher order bits ([15:00]1) are

reserved.

2.5.5 Data Parity

ICU_PAR[01:00] provides odd parity for each bus cycle (command, address, mask, data).

Parity bit [01] is parity over data bits [15:08]. Parity bit [00] is parity over data bits

[07:00]. The parity bit is asserted when the number of bits asserted in the data field is

even.

2.5.6 Acknowledge Cycle and Retry Cycle

The XJA checks parity on each cycle of the received data. If no parity error is found

in the data packet, and the XJA is not busy, the XJA asserts XJA_XFERACK (transfer

acknowledge) indicating that all the write data was received by the XJA without parity

errors. XJA_XFERACK allows the ICU to clear the write data from its transmit buffer.

If a parity error is found or the XJA is busy, the XJA asserts XJA_XFERRETRY (transfer

retry). In either case, the ICU must retry the failed transfer. If more retries are required

and also fail, the SCU experiences a timeout for failing to move the data packet across

the JXDI. The timeout results in a system interrupt and execution of the appropriate

service routine.

2.5.7 XJA Buffer Emptied Cycle

When the XJA has transfers the write data from its receive buffer, it returns XJA_

BUFEMPTD to the ICU. XJA_BUFEMPTD indicates that the XJA has emptied the

receive buffer and can accept new data from the ICU (Section 2.2.13). If the XJA

commanded a retry, it also asserts XJA_BUFEMPTD.

DIGITAL INTERNAL USE ONLY

JXDI Bus 2-31

2.5.8 Write Complete Transaction

If the CPU write transaction completed successfully, the XJA notifies the ICU with a

write complete transaction. After the ICU receives the write complete status word, it

is free to send another CPU request to the XJA. (Only one CPU transaction may be

outstanding at a time.)

The write complete transaction starts with the XJA asserting XJA_CMDAVAIL to inform

the ICU that a transfer starts on the next cycle.

On the next bus cycle, the XJA transmits the CPU status command (Figure 2-13) on the

XJA_DAT{15:00] data lines. The command field contains a write complete command code

(1011) as listed in Table 2-2. The ID field identifies the transaction commander as the

CPU or the SPU. The ID field is currently all 0s (Table 2-5).

XJA_PAR[01:00] provides odd parity for the write complete command cycle.

The ICU checks parity on the received data and asserts ICU_XFERACK (transfer

acknowledge) if the data was received by the ICU with no parity errors. ICU_XFERACK

allows the XJA to clear the data from its transmit buffer.

If the ICU detected a parity error, it asserts ICU_XFERRETRY (transfer retry) to the

XJA which must retry the failed transfer. If more retries are required and also fail,

the SCU notes the continuous parity errors, interrupts the CPU, and executes a service

routine.

When the ICU transfers the write complete data from its receive buffer to the JBox,

it returns ICU_BUFEMPTD to the XJA. ICU_BUFEMPTD indicates that the ICU has

emptied the receive buffer and can accept new data from the XJA. If the ICU commanded

a retry, it also asserts ICU_BUFEMPTD.

If the CPU write transaction did not complete successfully, the XJA notifies the SCU by

initiating an error interrupt transaction (Section 2.6).

2.6 Interrupt Transactions

When a condition occurs in the XJA or on the XMI bus, requiring the generation of

a CPU error interrupt, the XJA transmits an interrupt command to the ICU. If the

interrupt is fatal, the XJA asserts the XJA_FATALERR line on the JXDI. If the interrupt

is nonfatal, the interrupt takes the form of an interrupt transfer. See Chapter 4 for a

detailed description of system interrupts.

The interrupt transfer executes in the same manner as other JXDI transfers

(Figure 2-16).

DIGITAL INTERNAL USE ONLY

JXDI Bus 2-33

The XJA asserts XJA_CMDAVAIL to the ICU.

In the next bus cycle, the XJA transmits the interrupt command word over the XJA_

DAT{15:00] data lines. The command cycle is shown in Figure 2—-17. The command field

(XJA_DAT{[03:00]) contains an interrupt request code (1000) as shown in Table 2-2. An

interrupt priority level (IPL) field (XJA_DAT{05:04]) contains the priority level code for

the specific type of interrupt. Table 2-7 gives the IPL codes.

The ICU checks parity on the received data and asserts ICU_XFERACK (transfer

acknowledge) if the interrupt cycle was received by the ICU with no parity errors.

ICU_XFERACK allows the XJA to clear the data from its transmit buffer.

If the ICU detected a parity error, it asserts ICU_XFERRETRY (transfer retry) to the

XJA which must retry the failed transfer. If more retries are required and also fail,

the SCU notes the continuous parity errors, interrupts the CPU, and executes a service

routine.

When the ICU transfers the interrupt request data from its receive buffer, it returns

ICU_BUFEMPTD to the XJA. ICU_BUFEMPTD indicates that the ICU has emptied the

receive buffer and can accept new data from the XJA (Section 2.2.7). ICU_BUFEMPTD

also asserts if a retry is commanded.

CYCLE TYPE 15 14 13 12 11 10 09 08}07 06 05 04 03 02 0t 00

0 COMMAND RESERVED R I RL IPL I CMD

R = RESERVED

MR_X0359_89

Figure 2-17 Interrupt Request Command Cycle

Table 2-7 IPL Codes

XJA_DAT[05:04] IPL

00 14

01 15

10 16

11 17

DIGITAL INTERNAL USE ONLY

2-34 JXDI Bus

2.7 Data Envelopes

Information is transferred over the JXDI in data packets ranging from one bus cycle
(DMA and CPU status packets and interrupt packets) to 20 bus cycles (DMA write

request/data packet). To optimize performance for the various packet sizes, packet

envelopes are used to enclose the data packets. The envelopes need not be filled with
data; however, good parity must be provided over the entire envelope. The ICU and the
XJA check parity on all envelope cycles, whether or not the cycle contains data.

The envelope should enclose the data packet as tightly as possible to minimize traffic on

the JXDI. Sufficient gaps between packets must be provided to allow the XJA and the
ICU to respond when one transfer follows immediately after another.

Table 2-8 lists the five transactions discussed in this chapter, the transfer(s) that execute

over the JXDI for each transaction, and the direction of each transfer. Also listed is the

packet size and envelope size for each transfer. The figures referenced for each transfer
illustrate the particular data packet being transferred.

Note that for XJA-to-ICU transfers, 3 envelope sizes are used (8, 12, and 20 cycles). For
ICU-to-XJA transfers, 2 envelope sizes are used (12 and 20 cycles).

Table 2-8 JXDI Data Envelopes

Figure Packet Envelope

Transaction Transfer Direction Number Size Size

DMA read Read request ICU ~ XJA 24 3 8

Read data return, QW ICU — XJA 2-6 5 12

Read data return, OW ICU — XJA 2-6 9 12

Read data return, HW ICU — XJA 2-6 17 20

Status ICU — XJA 2-7 1 12

DMA write Write request/data, QW ICU ~ XJA 2-9 8 8

Write request/data, OW ICU « XJA 2-9 12 12

Write request/data, HW ICU « XJA 2-9 20 20

CPU read Read request ICU — XJA 2-11 3 12

Read data return ICU « XJA 2-12 8 8

Status ICU ~ XJA 2-13 1 8

CPU write Write request/data ICU — XJA 2-15 7 12

Status ICU « XJA 2-13 1 8

Interrupt Interrupt request ICU «~ XJA 2-17 1 8

2-34 DIGITAL INTERNAL USE ONLY

3
XMi Bus

This chapter provides a detailed description of the XMI bus. It describes the XMI signals

and the transactions that execute over the XMI bus, including read, write, and interrupt

transactions. Data packet formats for the various types of transactions are also described.

XMI address mapping to the VAX 9000 system is also discussed.

NOTE

Chapter 3 is not a complete description of all aspects of the XMI bus. It

describes the bus only as it is used within the VAX 9000 system — as the system

/O bus. It does not cover all features and characteristics of the XMI bus nor

does it describe XMI signals that are not used by the VAX 9000 system. For

example, the XMI bus used as the VAX 9000 I/O bus can have up to 14 nodes,

whereas the XMI bus can have up to 16 nodes.

Hexword writes to main memory are not currently supported by the SCU. The
XJA does support hexword writes, so they are included in the description of the

XMI bus.

3.1 XMI Description

The XMI bus is a limited-length, pended,! synchronous bus with centralized arbitration

and a 64-ns bus cycle. Several transactions can be in progress at a time, allowing highly

efficient use of bus bandwidth. Arbitration and data transfers occur simultaneously. In

addition, the bus data lines are multiplexed to carry both data and command/address

information. The bus supports quadword, octaword, and hexword reads and writes to

memory. In addition, the bus supports longword length read and write operations to /O

space. These longword operations implement byte and word modes required by certain

I/0 devices.

1 Nodes do not hold the bus while waiting for a response.

DIGITAL INTERNAL USE ONLY 3-1

3-2 XMl Bus

3.1.1 XMI Clock/Arbiter Module (CCARD)

Slot 7 of the XMI card cage contains a clock/arbiter module (CCARD) that:

* Arbitrates among the nodes requesting use of the bus

¢ Supplies a standard XMI clock to all the nodes

When a node wants to use the XMI bus, it issues a request that the arbiter honors

with a grant signal XMI_GRANT). There are two types of XMI requests, a command

request and a response request. A command request asks for the bus to initiate a new

transaction. A response request asks for the bus to respond to a previous request; for

example, a response request to place read data on the XMI that was requested by a

previous read request. The arbiter has two queues: one for command requests and one

for response requests. The queues use an algorithm that approximates round-robin. The

arbiter gives the response queue priority over the command queue. Therefore, an XMI

response request has priority over an XMI command request. Priority is also affected by

the position of the XMI adapter in the XMI card cage. The higher numbered slots have a

higher priority.

The arbiter also responds to a hold signal (XMI_HOLD) and a suppress signal (XMI_

SUP). XMI_GRANT gives the XMI bus to the requesting node for only one cycle. If the

node needs the bus for another cycle, it asserts the hold signal and the arbiter allows the

node to use the XMI for another cycle. The node can continue holding the bus by keeping

XMI_HOLD asserted up to a maximum of four consecutive cycles.

If a node is momentarily unable to keep up with bus traffic, it asserts the suppress

signal (XMI_SUP). When XMI_SUP is asserted, the arbiter does not respond to any new

command requests until the node has caught up and removes the suppress signal.

The CCARD generates time and phase clock signals that are distributed radially to all

the nodes (that is, individual clock signals go to each node). By centrally locating the

CCARD on the XMI bus, and by distributing the clocks radially, skew is reduced between

nodes and good signal integrity is assured.

3.1.2 XMl Corner

Each module on the XMI bus has a standard interface between the module and the

XMI bus called the XMI corner. The corner uses a predefined etch and consists of seven

latches and a clock chip. The corner interfaces all the control and data signals going to

and coming from the XMI bus.

The clock chip receives two clock signals (XMI_TIME and XMI_PHASE) from the XMI

CCARD. The clock chip generates a set of subclocks that are used to control the corner

latches. The subclocks are also made available to the node-specific logic on the module.

Refer to Chapter 4 for a more detailed description of the XMI corner.

DIGITAL INTERNAL USE ONLY

XMI Bus 3-3

3.2 XMI Signal Descriptions

XMI signals used by the VAX 9000 system are listed in Table 3-1.

Table 3-1 XMI Signals

XJA
Class Signal Description Input/Output

Arbitration XMI_CMD_REQ Command request Output

XMI_RES_REQ Response request Output

XMI_GRANT Request granted Input

XMI_HOLD Hold the bus Output

XMI_SUP Suppress new requests Input/output

Information XMI_FUNCTION[03:00] Command function Input/output

XMI_DATA[63:00] Data (address, mask, Input/output
command)

XMI_ID[05:00] Commander ID Input/output

XMI_PARITY[02:00] Parity over information Input/output
lines

Response XMI_CNF{02:00] Confirmation Input/output

Control XMI_BAD Node failure Input/output

XMI_FAULT ~ Uncorrectable error Input

XMI_DEFAULT Idle XMI cycles Input

XMI_RESET Initialize system Input/output

XMI_TIME Clock reference Input

XMI_PHASE Phase reference Input

XMI_AC_LO Low ac line voltage Input/output

XMI_DC_LO Impending loss of dc Input

Miscellaneous XMI_NODE_ID[03:00] Node ID Input

DIGITAL INTERNAL USE ONLY

3-4 XMI Bus

3.2.1 Arbitration Signals

This section describes the signals that control arbitration for the XMI bus.

3.2.1.1 XMI_CMD_REQ

XMI_CMD_REQ is asserted by an XMI node (including the XJA) when it wants access

to the XMI bus to initiate a transaction. The asserting node is the XMI commander.
XMI_CMD_REQ is received by the XMI central arbiter.

3.2.1.2 XMI_RES_REQ

XMI_RES_REQ is asserted by an XMI node when it wants access to the XMI bus to

respond to a previous command. The asserting node is the XMI responder. The node

could have read data requested by an XMI commander, or a vector requested in an

interrupt transaction. The XMI central arbiter receives XMI_RES_REQ. The arbiter

gives a higher priority to an XMI_RES_REQ response request than to an XMI_CMD_
REQ command request.

3.2.1.3 XMI_GRANT

XMI_GRANT is asserted by the XMI arbiter to an XMI node that is granted the bus. The

node starts its transfer on the next bus cycle.

3.2.1.4 XMI_HOLD

XMI_HOLD is a wired-OR signal used to implement multicycle transfers. When an XMI

node is granted the bus, it controls the bus for the next cycle to transfer its data. The

node can assert XMI_HOLD to hold the bus for another cycle regardless of command
requests or response requests asserted by other nodes. XMI_HOLD can be asserted

for a maximum of four consecutive cycles. It cannot be used to hold the bus for a new

transaction.

3.2.1.5 XMI_SUP

XMI_SUP is a wired-OR signal used to suppress the initiation of new transactions on

the XMI. XMI_SUP blocks all commander requests. It is used by a node when it is

momentarily unable to keep up with bus traffic.

DIGITAL INTERNAL USE ONLY

XMi Bus 3-5

3.2.2 Information Signals

This section describes the signals that carry information over the XMI bus.

3.2.2.1 XMI_FUNCTION[03:00]

The XMI_FUNCTIONI[03:00] lines specify the function being performed on the XMI bus

for the current cycle. Table 3-2 lists all the possible functions.

Table 3-2 Function Codes

XMI_FUNCTION[03:00] Function

0000 Null

0001 Command cycle

0010 Write data cycle

0011 Reserved!

0100 Locked response

0101 Read error response

0110 Reserved!

0111 Reserved!

10 nn? Good read data

11nn? Corrected read data

lInterpreted as a null function

2n n = Data cycle number

0 0 = Data cycle 0

0 1 = Data cycle 1.

1 0 = Data cycle 2

1 1 = Data cycle 3

3.2.2.2 XMI_DATA[63:00]

The XMI_DATA[63:00] data lines are multiplexed between command and data

information. On data cycles the lines carry 64 bits of read or write data; on command

cycles the lines carry command, address, mask, and length information.

3.2.2.3 XMI_ID[05:00]

The XMI_ID[05:00] lines identify the node commander on the XMI bus and the

transaction being referenced. The node ID is the upper four bits of the ID field (XMI_

ID[05:02]) as shown in Table 3-3. The lower two bits of the ID field (XMI_ID[01:00])

identify the transaction number. An XMI node can have up to four transactions

outstanding at one time. The transaction number is used to relate a response to the

command associated with the response. For example, the transaction number associates

a read-data-return transfer with the command that requested the data.

DIGITAL INTERNAL USE ONLY

3~6 XMI Bus

Table 3-3 XMi Node ID Codes

XMI_ID[05:00] XMI Node Number

0001nn 1

0010nn 2

0011nn 3

6100nn 4

0101nn 5

0110nn 6

0111lnn 7

1000nn 8

1001nn 9

1010nn 10

1011nn 11

1100nn 12

1101nn 13

1110nn 14

nn = Transaction number

3.2.2.4 XMI_PARITY[02:00]}

XMI_PARITY[02:00] are three parity bits providing even parity over the other three

information signals. Table 3—4 shows the information signals covered by each parity bit.

Table 3-4 Parity Coverage

Parity Bit Signal

XMI_PARITY([02]

XMI_PARITY[01]

XMI_PARITY[00]

XMI_FUNCTION[03:00] and XMI_ID[05:00]

XMI_DATA[63:32]

XMI_DATA[31:00]

3.2.3 Response Signal: XMI_CNF[02:00]

XMI_CNF[02:00] are three lines used by a receiving node to notify the transmitting

node of the status of the information transfer. Every transfer bus cycle must have a

confirmation response. There are two confirmation responses as shown in Table 3-5.

Acknowledge means that a receiving node has accepted the transmitted information. No

response means that no node has accepted the information. No response may be due to

the target node detecting a parity error or being too busy to accept the information at

this time.

DIGITAL INTERNAL USE ONLY

XMi Bus 3-7

Table 3-5 Confirmation Codes

XMI_CNF[02:00] Response

000 No response

111 Acknowledge (accepted data)

3.2.4 Control Signals

This section describes signals that control operations on the XMI bus.

3.24.1 XMI_BAD

XMI_BAD reports the failure of a node to pass its self-test. XMI_BAD remains asserted

by a node until the node passes its self-test. On power-up, all nodes must pass their

self-test before this line negates.

3.2.4.2 XMI_FAULT .

XMI_FAULT is a wired-OR signal line that is asserted by a node (except the XJA) when

it detects an uncorrectable error of a catastrophic system-wide nature. The XJA monitors

" but does not drive this line. XMI_FAULT is asserted for one cycle during which all other

nodes latch the signal.

3.2.4.3 XMI_DEFAULT

XMI_DEFAULT is generated by the XMI arbiter during idle XMI cycles, to default the

bus. It is routed only to the adapters in slot 1 (first slot) and slot 14 (last slot).

3.2.4.4 XMI_RESET

XMI_RESET is asserted by any node that needs to initialize the system to the power-up

state. The initialization is done by the CCARD and involves the sequencing of XMI_AC_

LO and XMI_DC_LO.

3.2.4.5 XM_TIME

XMI_TIME is a 21.3-ns square wave clock (46.9 MHz) generated by the CCARD. XMI_

TIME provides a time reference for the XMI nodes.

3.2.4.6 XMI_PHASE

XMI_PHASE is generated by the CCARD and is used to reference the XMI_TIME clock

to the beginning of an XMI cycle.

3.2.4.7 XMI_AC_LO

XMI_AC_LO indicates that the ac line voltage is below specifications.

3.2.4.8 XMI_DC_LO

XMI_DC_LO warns of the impending loss of dc power. It is also used for initialization on

power-up.

3.2.5 Miscellaneous Signal: XMI_NODE_ID[03:00]

Each slot on the XMI backplane is wired with a unique 4-bit ID code. This code (XMI_

NODE_ID[03:00]) is used by the node as XMI_ID[05:02] to identify the node during XMI

_ transactions (Section 3.2.2.3).

DIGITAL INTERNAL USE ONLY

3-8 XMI Bus

3.3 Read and Read Lock Transactions

This section shows — cycle by cycle — the various types of read transactions. Figure 3-1

is a bus cycle diagram for longword, quadword, octaword, and hexword read (or read lock)

transactions.

CYCLE 0 1 3 4 5 6 7 8 9 10

XMi_CMD_REQ REQ

XMI_RES_REQ RES

XMI_GRANT GRNT GRNT

XMI_HOLD

XMI_FUNCTION[03:00] CMD GRDO

XMi_DATA[63:00) READ DATO

XMI_iD[05:00] CMDR CMDR

XMI_PARITY[02:00) PAR PAR

XMI_CNF[02:00] ACK ACK

A. LONGWORD OR QUADWORD READ

CYCLE 0 1 3 4 5 6 7 8 9 10

XMI_CMD_REQ REQ

XMI_RES_REQ RES

XMI_GRANT GRNT GRNT

XMi_HOLD HOLD

XMI_FUNCTION[03:00] CMD GRDO |GRD1

XMI_DATA[{63:00) READ DATO |DATH

XMI_ID[05:00] CMDR CMDR [CMDR

XMI_PARITY{02:00] PAR PAR |[PAR

XMI_CNF[02:00] ACK ACK | ACK

B. OCTAWORD READ

CYCLE 0 1 3 4 5 6 7 8 9 10

XMI_CMD_REQ REQ

XMi_RES_REQ RES

XMI_GRANT GRNT GRNT

XMI_HOLD HOLD |HOLD [HOLD

XMI_FUNCTION[03:00] CMD GRDO |GRD1 |GRD2 |GRD3

XMI_DATA[63:00] READ DATO |DAT1 |[DAT2 |[DATS

XMI_ID{05:00] CMDR CMDR |CMDR [CMDR {CMDR

XMI_PARITY[02:00] PAR PAR |PAR [PAR |PAR

XMI_CNF[02:00] ACK ACK |ACK JACK |ACK

Figure 3-1

DIGITAL INTERNAL USE ONLY

C. HEXWORD READ

Read or Read Lock Transactions

MR_X0259_89

XMl Bus 3-9

3.3.1 Longword and Quadword Read

Part A of Figure 3—1 shows the bus cycles involved in a longword or quadword read

(or read lock) transaction. Longword transactions are to I/O space only. Quadword

transactions are to memory space only.

3.3.1.1 Arbitration _

The commander node asserts XMI_CMD_REQ to request the XMI bus. When the arbiter

returns XMI_GRANT (cycle 0), the commander begins its transfer in the next cycle (cycle

1). XMI_GRANT gives the commander control of the bus only for the next cycle.

3.3.1.2 Command Cycle .

The function lines (XMI_FUNCTIONI[03:00]) specify cycle 1 as a command cycle (0001)

(Table 3-2).

The data lines (XMI_DATA[63:00]) contain the command, length, and address fields as

shown in part A of Figure 3-2.

D [63:00]

F [03:00] ID {05:00] 63 60 59 58 57 48 47 32 N 30 29 00 P [02:00)

0001 CMDR CMD M 0 ADDR EXT XXX LEN ADDRESS PAR

A. READ OR READ LOCK COMMAND CYCLE (CYCLE 1)

F [03:00] tD [05:00] 63 D {63:00) 00 P [02:00]

* CMDR READ DATA PAR

B. READ DATA CYCLE (CYCLE 5)

*10nn (GOOD READ DATA) OR 11nn (CORRECTED READ DATA)

nn = CYCLE NUMBER

X = DON'T CARE

NOTE: B!T 59 1S THE M (MORE) BIT IN A READ COMMAND CYCLE.
IT MUST BE ZERO IN A READ LOCK COMMAND CYCLE.

THE M BIT IS CURRENTLY NOT USED IN THIS SYSTEM.

MR_X0260_89

Figure 3-2 Command and Data Cycles for a Read or Read Lock Transaction

DIGITAL INTERNAL USE ONLY

3-10 XMl Bus

Data bits [63:60] comprise the command field specifying this transaction to be a read or.

a read lock operation. Table 3—6 lists the command codes. Bits [63:60] are 0001 (read) or

0010 (read lock).

Table 3-6 Command Codes

XMI DATA[63:60] Command

0001 Read

0010 Read lock

0110 Write unlock

0111 Write

1000 Interrupt

1001 Identify

1111 Vector interrupt

Data bits [31:30] comprise the length field specifying the size of the read transaction.

Table 3-7 lists the length codes. For this transfer, bits [31:30] are 01 (longword) or 10

(quadword).

Table 3-7 Length Codes

XMI_DATA[31:30] Length

00 Hexword

01 Longword

10 Quadword

11 Octaword

The address of the read data is specified by data bits [29:00] with bits [57:48] as the

address extension (Section 3.5).

The ID lines XMI_ID[05:00]) identify the transmitting node as the transaction

commander. Table 3-3 lists the node ID codes.

The commander generates parity over the function, data, and ID lines as shown in

Table 3—4. The parity bits are placed on the XMI bus in cycle 1 as XMI_PARITY[02:00].

3.3.1.3 Acknowledge Cycle

All the XMI nodes monitor the address placed on the XMI bus by the commander. When

a node recognizes its address, it latches the bus data and executes the read function.

The receiving node, in addition to receiving the information off the function, data, and ID

lines, also receives the three XMI parity bits (XMI_PARITY[02:00]). Parity is checked; if

no error is found and the receiving node is able to accept the data at this time, the node

returns an acknowledge code (Table 3-5) to the transmitter. Otherwise, a no response

code is returned. The acknowledge cycle (cycle 3) is the second cycle after the command

cycle. An acknowledge cycle is always the second cycle after the information cycle it is

acknowledging.

DIGITAL INTERNAL USE ONLY

XMI Bus 3-11

3.3.1.4 Arbitration

When the responder is ready to send the requested read data to the commander, it

arbitrates for the XMI bus by asserting XMI_RES_REQ. The arbiter gives a higher

priority to a response request than to a new transaction request. When the arbiter

grants the bus to the responder, it returns XMI_GRANT (cycle 41) to the responder,
which begins its transfer in the next cycle (cycle 5). XMI_GRANT gives the responder

control of the bus for only one cycle.

3.3.1.5 Read Data Cycle

In cycle 5 (part B of Figure 3-2), the responder asserts a 1000 code on the XMI function

lines, specifying cycle 5 as a good read-data-return cycle (Table 3-2). If the data is

corrected read data, the function lines carry a 1100 code (Section 3.3.4.1).

The data lines (XMI_DATA[63:00]) contain the requested read data. If the transaction

length is a longword, the longword is contained in bits [31:00]. Bits [63:32] are

unspecified but must give good parity. If the transaction length is a quadword, all 64

data bits are used.

The responder places the commander ID on the ID lines XMI_ID[05:00]). The

commander monitors the bus traffic waiting for its return data. When the commander

detects its ID, it latches the data lines that contain the read data requested.

XMI_PARITY[02:00] provides parity for the function, data, and ID lines.

3.3.1.6 Acknowiedge Cycle

The transaction commander, in addition to receiving the information from the function,

data, and ID lines, also receives the three XMI parity bits (XMI_PARITY[02:00]). Parity

is checked; if no error is found and the commander is able to accept the data at this time,

the commander returns an acknowledge code (Table 3-5) to the responder. Otherwise, a

no response code is returned. The acknowledge cycle (cycle 7) is the second cycle after

the good read-data-return cycle.

3.3.2 Octaword Read

Part B of Figure 3-1 shows the bus cycles involved in an octaword read transaction.

Octaword transactions are to memory space only.

The first half of an octaword read transaction (arbitration, command cycle, and

acknowledge cycle) is identical to the first half of a longword or quadword read

transaction except that the length field of the command data word specifies an octaword

length instead of a longword or quadword length.

3.3.2.1 Arbitration

The commander node asserts XMI_CMD_REQ to request the XMI bus. When the arbiter

returns XMI_GRANT (cycle 0), the commander begins its transfer in the next cycle (cycle

1). XMI_GRANT gives the commander control of the bus only for the next cycle.

1 Plus the cycles that passed while the responder was obtaining the read data.

DIGITAL INTERNAL USE ONLY

3-12 XMI Bus

3.3.2.2 Command Cycle

The function lines (XMI_FUNCTIONI[03:00]) specify cycle 1 as a command cycle (0001)

(Table 3-2).

The data lines (XMI_DATA[63:00]) contain the command, length, and address fields as
shown in Figure 3-2. Bits [63:60] comprise the command field specifying this transaction

to be a read or a read lock operation. Table 3-6 lists the command codes. Bits [63:60] are

0001 (read) or 0010 (read lock).

Data bits [31:30] comprise the length field specifying the size of the read transaction.

Table 3—7 lists the length codes. For this transfer, bits [31:30] are 11 (octaword).

The address of the read data is specified by data bits [29:00] with bits [57:48] as the

address extension (Section 3.5).

The ID lines (XMI_ID[05:00]) identify the transmitting node as the transaction

commander. Table 3-3 lists the node ID codes.

The commander generates parity over the function, data, and ID lines as shown in

Table 3—4. The parity bits are placed on the XMI bus as XMI_PARITY[02:00].

3.3.2.3 Acknowledge Cycle

The receiving node, in addition to receiving the information from the function, data, and

ID lines, also receives the three XMI parity bits (XMI_PARITY[02:00]). Parity is checked;

if no error is found and the receiving node is able to accept the data at this time, the node

returns an acknowledge code (Table 3-5) to the transmitter. Otherwise, a no response

code is returned.

3.3.2.4 Arbitration

When the responder is ready to send the requested read data to the commander, it

arbitrates for the XMI bus by asserting XMI_RES_REQ. When the arbiter grants the

bus to the responder, it returns XMI_GRANT (cycle 4) to the responder, which begins its

transfer in the next cycle (cycle 5). XMI_GRANT gives the responder control of the bus

for only one cycle.

3.3.2.5 Read Data Cycles

In cycle 5, the responder asserts XMI_HOLD to keep the bus for the second read data

return cycle. XMI_HOLD holds the bus only for the cycle after which it is asserted.

In cycle 5, the responder asserts a 1000 code on the XMI function lines, specifying cycle 5

as data cycle 0 of good return-read data (or a 1100 code specifying the data as corrected

read data). In cycle 6 the responder asserts a 1001 code on the function lines, specifying

cycle 6 as data cycle 1 of good return-read data (or a 1101 code specifying the data as

corrected read data) (Table 3-2).

The data lines (XMI_DATA[63:00]) contain the requested read data. Each data cycle

carries a quadword of data.

The responder places the commander ID on the ID lines for each of the data cycles. This

is necessary as the two quadwords may be returned to the transaction commander in

separate transfers (Section 3.3.5). When the commander detects its ID, it latches the

data lines that contain the read data requested.

XMI_PARITY[02:00] provide parity for the function, data, and ID lines in each of the

data cycles.

DIGITAL INTERNAL USE ONLY

XMI Bus 3-13

3.3.2.6 Acknowledge Cycles

The transaction commander checks parity for each data cycle; if no error is found and

the commander is able to accept the data at this time, the commander returns an

acknowledge code (Table 3-5) to the responder for each data cycle. The acknowledge

code occurs in the second cycle after its associated data cycle. If a parity error is detected

by the commander, a no response code is returned for that data cycle.

3.3.3 Hexword Read

The bus cycles involved in a hexword read are shown in part C of Figure 3-1. Hexword

transactions are to memory space only.

The first half of a hexword read is identical to the first half of a longword, quadword,

or octaword read, except that the length field (XMI_DATA[31:30]) of the command data

longword in cycle 1 specifies a hexword code of 00 (Table 3-7).

The bus cycles in the second (response) half of a hexword read have the following

differences from those in the response half of an octaword read:

1. Four read-data-return cycles, instead of two, transfer the four quadwords of the

hexword.

9. The function code on the XMI_FUNCTION[03:00] lines for the four data cycles are as

follows (Table 3-2):

Cycle 0 = 1000 (good read data) or 1100 (corrected read data)

Cycle 1 = 1001 (good read data) or 1101 (corrected read data)

Cycle 2 = 1010 (good read data) or 1110 (corrected read data)

Cycle 3 = 1011 (good read data) or 1111 (corrected read data)

3. XMI_HOLD is asserted for three cycles to hold the XMI bus long enough to transfer

all the data quadwords. .

4. An acknowledge confirmation code is placed on the XMI bus for four cycles, one for

each of the data quadwords transmitted.

3.3.4 Read Error Responses

This section describes the three types of errors that can occur during a read transaction:

Correctable read error

Uncorrectable read error

Read-locked error

3.3.4.1 Correctable Read Error

When a responder corrects an error in the read data, it places a corrected read data

response code (11nn) on the function lines (Table 3-2). As shown in the table, nn

indicates the data cycle that has the corrected data. Otherwise, the transaction continues

as a normal read.

DIGITAL INTERNAL USE ONLY

3-14 XMI Bus

3.3.4.2 Uncorrectable Read Error

Figure 3-3 shows the bus cycles involved in a read transaction where an uncorrectable

error is detected. When the responder detects an uncorrectable error in the read data,

it places a read error response (0101) on the function lines (Table 3-2), the commander

ID on the ID lines, and parity bits on the parity lines. The data lines are unspecified but

must provide good parity. The transfer is terminated at this point and no further read

data is transmitted. Figure 3-3 is a hexword read transaction that terminates on the

third data cycle (cycle 7) when an uncorrectable error is detected. The third and fourth

data quadwords are not transmitted.

CYCLE 0 1 2 3 4 5 6 7 8 9 10

XMI_CMD_REQ REQ

XMI_RES_REQ RES

XMI_GRANT GRNT GRNT

XMIi_HOLD HOLD [HOLD

XMI_FUNCTION[03:00] CMD GRDO |GRD1 |RERR

XMI_DATA[63:00] READ DATO |DATH

XMI_iD[05:00] CMDR CMDR | CMDR | CMDR

XMI_PARITY[02:00) PAR PAR |PAR [PAR

XMI_CNF[02:00] ACK ACK |ACK |ACK

MR_X0261_89

Figure 3-3 Uncorrectable Read Error in a Hexword Read Transaction

3.3.4.3 Read-Locked Error

Figure 3—4 shows the bus cycles involved in a read-lock transaction made to a location

that is already read-locked. In the command cycle (cycle 1), data bits XMI_DATA[63:60]

specify a read lock transaction (0010) (Table 3—6). When the responder determines that

the addressed location is already read-locked, it places a locked response (0100) on the

function lines (Table 3-2), the commander ID on the ID lines, and parity bits on the

parity lines. The data lines are unspecified but must provide good parity.

CYCLE 0 1 2 3 4 5 6 7 8 9 10

XMI_CMD_REQ REQ

XMI_RES_REQ RES

XMI_GRANT GRNT GRNT

XMI_HOLD

XMI_FUNCTION[03:00] CMD LOCK

XMI_DATA[63:00] READ

XMI_ID[05:00] CMDR CMDR

XMI_PARITY[02:00] PAR PAR

XMI_CNF[02:00] ACK ACK

MR_X0282_89

Figure 3-4 Read Lock Transaction to a Locked Location

DIGITAL INTERNAL USE ONLY

XM! Bus 3-15

3.3.5 Multiple Read-Data-Return Transfers

When a responder is not able to return all the requested read data in consecutive data

cycles, it returns the data in separate transfers. The responder rearbitrates for the bus

for each transfer. Each data cycle contains the commander ID because the commander

must be able to recognize each transfer as part of the data it requested.

Figure 3—5 shows an octaword read transaction with the data quadwords returned in

two separate transfers. Note that the second data cycle (cycle 9) has a function code

specifying the data as the second quadword of good read data (1001) (Table 3-2). Each

data quadword is thereby identified in the data transaction.

CYCLE 0 1 2 3 4 5 6 7 8 9 10 11

XMI_CMD_REQ REQ

XMI_RES_REQ RES RES

XMI_GRANT GRNT GRNT GANT

XMI_HOLD

XMI_FUNCTION[03:00] CMD GRDO GRD1

XMI_DATA[63:00) READ | DATO DAT1

XMI_ID[05:00] CMDR | CMDR CMDR

XMI_PARITY[02:00] PAR : PAR PAR

XMI_CNF[02:00] ‘ ACK . ACK ACK

MR_X0263_88

Figure 3-5 Octaword Read Transaction with Multiple Read-Data-Return Transfers

3.4 Masked Write and Write Unlock Transactions

This section shows — cycle by cycle — the various types of masked write transactions.

All write transactions on the XMI bus are masked writes. Those transactions where

all the data is written, have all their mask bits asserted (no bytes are masked). In the

following discussion, masked writes are referred to as writes. '

Write bus cycles are similar to read bus cycles. The commander gains the XMI bus

through arbitration and then sends a command cycle, specifying a command, mask

field, length, and address. Following the command cycle, the commander transmits one,

two, or four cycles of write data. Unlike the read return data, the write data must be

transmitted in consecutive cycles with no null cycles between.

Figure 3—6 is a bus cycle diagram for longword, quadword, octaword, and hexword write

(or write unlock) transactions.

3.4.1 Longword and Quadword Write

Part A of Figure 3—6 shows the bus cycles involved in a longword or quadword write

(or write unlock) transaction. Longword transactions are to I/O space only. Quadword

transactions are to memory space only.

DIGITAL INTERNAL USE ONLY

3-16 XMI Bus

CYCLE 0 1 2 3 4 5 6 7 8 .9 10

XMI_CMD_REQ REQ

XMI_RES_REQ

XMI_GRANT GRNT

XMIi_HOLD HOLD

XMI_FUNCTION[03:00] CMD | WDAT

XMI_DATA[63:00] WRT |DATO

XMI_ID[05:00) CMDR

XMi_PARITY[02:00] PAR |PAR

XMI_CNF[02:00] ACK | ACK

A. LONGWORD OR QUADWORD WRITE

CYCLE 0 1 2 3 4 5 6 7 8 9 10

XMI_CMD_REQ REQ

XMI_RES_REQ

XMI_GRANT GRNT

XMI_HOLD HOLD |HOLD

XMI_FUNCTION[03:00] CMD | WDAT | WDAT

XMI_DATA[63:00] WRT |DATO [DAT1

XMI_ID[05:00] CMDR

XMI_PARITY[02:00) PAR |PAR |PAR

XMI_CNF[02:00) ACK |ACK |ACK

B. OCTAWORD WRITE

CYCLE 0 1 2 3 4 5 6 7 8 9 10

XMI_CMD_REQ REQ

XMI_RES_REQ

XMI_GRANT GRNT

XMI_HOLD HOLD |HOLD |HOLD |[HOLD

XMI_FUNCTION[03:00] CMD |WDAT | WDAT | WOAT | WDAT

XMI_DATA[63:00] WRT |DATO |[DATY |DAT2 [DAT3

XMI_ID[05:00] CMDR

XMI_PARITY[02:00] PAR |PAR |PAR |PAR |PAR

XMI_CNF[02:00] ACK [ACK |ACK |ack |Ack

C. HEXWORD WRITE

MR_X0264_89

Figure 3-6 Write or Write Unlock Transactions

DIGITAL INTERNAL USE ONLY

XMl Bus 3-17

3.4.1.1 Arbitration

The commander node asserts XMI_CMD_REQ to request the XMI bus. When the arbiter

returns XMI_GRANT (cycle 0), the commander begins its transfer in the next cycle (cycle

1). XMI_GRANT gives the commander control of the bus only for the next cycle. -

3.4.1.2 Command Cycle

During the command cycle (cycle 1), the commander asserts XMI_HOLD to hold the bus

for the data cycle that is to follow.

The function lines (XMI_FUNCTIONI[03:00]) specify the cycle as the command cycle

(0001) (Table 3-2).

The data lines (XMI_DATA[63:00]) contain the command, length, mask, and address

fields as shown in part A of Figure 3-7.

Data bits [63:60] comprise the command field specifying this transaction to be a write

or a write unlock operation. Table 3-6 lists the command codes. Bits [63:60] are 0111

(write) or 0110 (write unlock).

Data bits [47:32] comprise the 16-bit mask field. Bits 32 through 47 are respectively

associated with bytes 0 through 16 for longword, quadword, and octaword length

transactions. An asserted mask bit (1) writes the corresponding byte. A negated mask

bit (0) masks the corresponding byte. Unused mask bits in a longword or quadword

transaction are 0. All the mask bits are used in an octaword transaction. In a hexword

transaction, the mask bits are ignored and all 32 bytes are written.

Data bits [31:30] comprise the length field specifying the size of the write transaction.

Table 3—7 lists the length codes. For this transfer, bits [31:30] are 01 (longword) or 10

(quadword).

D [63:00)

F [03:00]) 1D [05:00] 63 60 59 58 57 48 47 32 31 30 29 00 P [02:00)

0001 CMDR CMD M 0 ADDR EXT MASK LEN ADDRESS PAR

A. WRITE OR WRITE UNLOCK COMMAND CYCLE (CYCLE 1)

F 103:00] ID [05:00] 63 D [63:00] .00 P [02:00)

0010 WRITE DATA PAR

B. WRITE DATA CYCLE (CYCLE 2)

NOTE: BIT 50 1S THE M (MORE) BIT IN A WRITE COMMAND

CYCLE. IT MUST BE ZERO IN A WRITE UNLOCK COMMAND

CYCLE. THE M BIT IS CURRENTLY NOT USED BY THIS

SYSTEM.

MR_X0265_8¢%

Figure 3-7 Command and Data Cycles for a Write or Write Unlock Transaction

DIGITAL INTERNAL USE ONLY

3-18 XMI Bus

The address of the write data is specified by data bits [29:00] with bits [57:48] as the

address extension (Section 3.5).

The ID lines (XMI_ID[05:00]) identify the transmitting node as the transaction

commander. Table 3-3 lists the node ID codes.

The commander generates parity over the function, data, and ID lines as shown in

Table 3—4. The parity bits are placed on the XMI bus in the command cycle as XMI_

PARITY([02:00].

3.4.1.3 Write Data Cycle

In cycle 2 (part B of Figure 3-7), the commander asserts a write-data cycle code (0010) on

the XMI function lines (Table 3-2). The data lines (XMI_DATA[63:00]) contain the write

data. If the transaction length is a longword, the longword is contained in bits [31:00].

Bits [63:32] are unspecified but must give good parity.

The commander does not place its ID on the bus during the write data cycle. This was

already done in the command cycle.

XMI_PARITY[02:00] provides parity for the function and data lines.

3.4.1.4 Acknowledge Cycle

All the XMI nodes monitor the address placed on the XMI bus by the commander. When

a node recognizes its address, it latches the bus data and executes the write function.

The receiving node, in addition to receiving the information from the function, data, and

ID lines, also receives the three XMI parity bits (XMI_PARITY[02:00]) for the command

cycle and the write data cycle. Parity is checked; if no error is found and the receiving

node is able to accept the data at this time, the node returns an acknowledge code

(Table 3-5) to the transmitter. Otherwise, a no response code is returned. Cycles 3 and 4

are the respective acknowledge cycles for the command and data cycles. An acknowledge

cycle is always the second cycle after the information cycle it is acknowledging.

3.4.2 Octaword Write

Part B of Figure 3-6 shows the bus cycles involved in an octaword write transaction.

Octaword transactions are to memory space only.

An octaword write is identical to a quadword write except for the following:

e XMI_HOLD is asserted for two cycles, instead of one, to hold the XMI bus for another

data cycle to transfer the second quadword.

* The length field XMI_DATA[31:30]) in cycle 1 specifies an octaword code (11) instead

of a quadword code (Table 3-7).

e Two write data cycles, instead of one, transfer the two quadwords of the octaword.

* An acknowledge confirmation code is placed on the XMI bus for three cycles, instead

of two: one for the command cycle, and one each for the two data cycles.

Note that the function code on the XMI_FUNCTIONI[03:00] lines for the two data cycles

is the same (write data = 0010). The data cycles are not numbered (as they are for read

return data) because all the write data must follow the command cycle with no null cycles

between.

DIGITAL INTERNAL USE ONLY

XMI Bus 3-19

3.4.3 Hexword Write

Part C of Figure 3—6 shows the bus cycles involved in a hexword write transaction.

Hexword transactions are to memory space only.

A hexword write is identical to an octaword write except for the following:

e XMI_HOLD is asserted for four cycles, instead of two to hold the XMI bus for two

more data cycles to transfer the third and fourth quadwords.

e The length field (XMI_DATA[31:30]) in cycle 1 specifies a hexword code (00) instead

of an octaword code (Table 3-7).

e Four write data cycles, instead of two, transfer the four quadwords of the hexword.

e An acknowledge confirmation code is placed on the XMI bus for five cycles, instead of

three: one for the command cycle, and one each for the four data cycles.

The function code on the XMI_FUNCTION[03:00] lines for the four data cycles is the

same (write data = 0010). The data cycles are not numbered.

3.5 XMI Address Mapping

The XMI bus has 40 bits of physical address space. When the MSB of an XMI address

(bit 39) is 0, the XMI address is to memory. When bit 39 is 1, the XMI address is to I/O

space. /O space includes the XJA along with other nodes on the XMI bus.

The XMI data lines are multiplexed to carry both data and the XMI address as shown

in Figures 3-2 and 3-7. XMI addresses are carried on data lines XMI_DATA[29:00] and

XMI_DATA[57:48). The XMI address bits are mapped to the XMI data lines as follows:

XMI_ADDRESS[28:00] — XMI_DATA[28:00]

XMI_ADDRESS[38:29] — XMI_DATA[57:48]

XMI_ADDRESS([39] — XMI_DATA[29]

XMI address bit 39 is mapped to data line 29 for system compatibility. An earlier version

of the XMI bus had 30 address bits with bit 29 being the MSB. Systems using the 30-bit

XMI bus used bit 29 (the MSB) for separation of memory space and I/O space. To make

the 40-address-bit XMI bus compatible with these systems, data line 29 still carries the

most significant address bit — now address bit 39.

The XMI address bits are directly mapped to the VAX 9000 address bits as follows:

XMI_ADDRESS[33:00] — VAX 9000 ADDRESS[33:00]

Table 3-8 illustrates the mapping between the JXDI address bits, the XMI address bits,

and the XMI data bits. See Chapter 1 for a detailed description of I/O space addressing.

Table 3-8 XMl Address Mapping

JXDI Address Bits XMI Address Bits XMI Data Bits

28:00 28:00 28:00

33:29 33:29 52:48

- 38:34 57:53

- 39 29

DIGITAL INTERNAL USE ONLY

3-20 XMI Bus

3.6 Interrupt Transactions

Any device on the XMI bus can send an interrupt command to the system CPU by
directing the interrupt to the XJA node. Two types of interrupts execute on the XMI bus:
basic interrupts and implied vector interrupts (IVINTR).

A basic interrupt involves two XMI transactions:

° An interrupt (INTR) transaction where the interrupting node transmits an INTR

cycle to the XJA requesting an interrupt of the CPU

* An identify (IDENT) transaction where the XJA issues an IDENT command
requesting a vector from the interrupting node, and the interrupting node responds

with an IDENT response containing the requested vector

An IVINTR transaction consists of one XMI transfer where the interrupting node sends a
specific type of interrupt to the XJA. The required starting vector is implied by the type
of interrupt.

All of the transfers involved in interrupts are single-cycle transfers. For each transfer,

the transmitting node must arbitrate for the bus and receive XMI_GRANT before
transmitting its data. In the second cycle after transmitting its data, the node receives

an acknowledgment on the XMI confirmation lines. Parity is generated and checked on
all interrupt transfers.

3.6.1 Basic Interrupts

Figure 3-8 shows the bus cycles that execute for the basic interrupt transactions.

3.6.1.1 INTR Transaction

An XMI device wishing to interrupt the CPU arbitrates for the bus with a command

request (XMI_CMD_REQ). Upon receiving XMI_GRANT from the arbiter, it places

function, ID, data, and parity bits on the XMI bus (part A of Figure 3-8).

The function bits specify a command cycle (Table 3-2). The ID bits identify the

transmitting node (node 14 in this example, Table 3-3). The command field of the data
longword specifies an interrupt command (Table 3-6). Bits [19:16] of the data longword
are the interrupt priority level (IPL) field specifying the IPL of the interrupt. Table 3-9
gives the IPL codes for bits [19:16]. The example shows an interrupt priority level of 14.

Table 3-9 IPL Codes

XMI_DATA[19:16] IPL

0001 14

0010 15

0100 16

1000 17

Bits [15:00] of the data word are the interrupt node specifier field (Figure 3-9), which

selects the XMI node that is to receive the interrupt. For an interrupt command, the node
specifier field is an interrupt destination mask. The field selects the destination of the

interrupt command by masking out all nodes except the interrupt command destination.

DIGITAL INTERNAL USE ONLY

XMl Bus 3-21

In the example of part A of Figure 3-8, the mask is selecting node 8 (the XJA) to receive

the interrupt.!

The interrupting node receives an acknowledge cycle from the XJA two cycles after the

command cycle.

INTR

DEST

CMD MASK

F [03:00) 1D [05:00] 63 60 59 48 47 32 31 20 19 18 17 16 15 00 P [02:00]

0001 1110nn 1000 MBZ XXXX MBZ 0 0 0 1 0000000100000000 PAR

{PL 17(HEX) IPL 14(HEX)

IPL 16(HEX) IPL 15(HEX)

A. INTR COMMAND CYCLE

INTR

SRC

CMD MASK

F [03:00] ID [05:00] 83 60 59 48 47 a2 31 20 19 18 17 16 15 00 P [02:00]

0001 1000nnN 1001 MBZ XXXX MBZ 0 0 o} | 0100000000000000 PAR

IPL 17(HEX) {PL 14(HEX)

IPL 16(HEX) IPL 15(HEX)

8. IDENT COMMAND CYCLE

F {03:00] ID [05°00) 63 16 15 : 02 01 00 P [02:00]

1000 1110nn MBZ VECTOR 0 0 PAR

C. IDENT RESPONSE CYCLE

X = DON'T CARE

nn = TRANSACTION NUMBER

MR_X02€6_09

Figure 3-8 Basic Interrupt Transactions

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

NODE NODE NODE NODE NODE NODE NODE NODE NODE NODE NODE NODE NODE NODE

14 13 12 11 10 9 8 7 6 [4 3 2 1

MA_X0287_89

Figure 3-9 Interrupt Node Specifier Field

1 All XMI interrupts are transmitted to the XJA.

DIGITAL INTERNAL USE ONLY

3-22 XMl Bus

3.6.1.2 IDENT Transaction

The XJA relays the interrupt to the CPU, which responds by requesting the XJA for

an interrupt vector. This causes the XJA to initiate an IDENT transaction to the

interrupting node, requesting the interrupt vector.

The XJA arbitrates for the bus with a command request (XMI_CMD_REQ). Upon

receiving XMI_GRANT, it places function, ID, data, and parity bits on the XMI bus

(part B of Figure 3-8).

The function bits specify a command cycle. The ID bits identify the transmitting node,

which is the XJA (node 8). The command field of the data longword specifies an IDENT

command (Table 3—6). Bits [19:16] of the data longword are the IPL field that specifies

the interrupt priority level of the interrupt request (level 14).

Bits [15:00] of the data word (the interrupt node specifier field) are the interrupt source

mask that identifies the node that issued the interrupt (node 14).

The interrupting node, upon receiving the IDENT command, returns the requested vector

to the XJA in an IDENT response transfer. The IDENT response transfer is an XMI

read-data-return function specifying good read data.

The interrupting device at node 14, arbitrates for the bus with a response request (XMI_

RES_REQ). Upon receiving XMI_GRANT, it places function, ID, data, and parity bits on

the XMI bus (part C of Figure 3-8).

The function bits specify a good read-data-return function (Table 3-2). The ID bits

identify the transmitting node (node 14). The requested data (the vector) is contained in

bits [15:02] of the data word. Bits [01:00] are 0 as the vectors are longword aligned.

3.6.2 IVINTR Interrupts

The implied vector interrupt (IVINTR) transaction is a single-cycle interrupt transaction.

The interrupt priority and the value of the interrupt vector are implied by bits in the

interrupt type field of the command data longword. Figure 3-10 shows the command

cycle for the IVINTR transaction.

INTR

DEST

CMD MASK

F [03:00] ID [05:00] 63 80 59 20 19 18 17 16 15 00 P [02:00]

0001 1110nn 1111 MBZ o | o 1 | 0o | 0000000100000000 PAR

RESERVED IPINTR [IPL 16(HEX)] *

RESERVED WEI [IPL 1D(HEX)]

nn = TRANSACTION NUMBER

®NOT APPLICABLE TO THIS SYSTEM

MR_X0268_89

Figure 3-10 Implied Vector Interrupt Transaction (IVINTR)

DIGITAL INTERNAL USE ONLY

XMi Bus 3-23

The function bits specify a command function. The ID bits identify the transmitting

(interrupting) node as node 14. The command field of the data longword specifies a vector

interrupt command (Table 3-6). Bits [19:16] of the data longword specify the type of

interrupt.

Only two types of interrupts are specified in the type field: an interprocessor interrupt

(IPINTR) or a write error interrupt (WEI). An IPINTR interrupts the system CPU at an

IPL of 16(hex). The XJA supplies the required vector [80(hex)] to the CPU.

NOTE

The VAX 9000 system does not have other processors on the XMI bus. Therefore,

interprocessor interrupts are not applicable, even though the XJA supports this

type of interrupt.

A WEIis a fatal error and the XJA notifies the system of the fatal error by asserting

XJA_FATALERR on the JXDI. The system interrupts the CPU at an IPL of 1D(hex) and

then supplies it a vector of 60(hex). See Chapter 4 for a more detailed description of

system interrupts.

Bits [15:00] (the interrupt node specifier field) are the interrupt destination mask

that selects the XMI node that is to process the interrupt. The destination mask in

Figure 3-10 is selecting node 8 (the XJA).

Since the value of the interrupt vector is indicated by the type of interrupt, an IVINTR

transaction does not require an associated IDENT transaction.

DIGITAL INTERNAL USE ONLY 3-23

4

XJA

This chapter provides a detailed description of the XJA adapter. It describes what the

functional areas of the XJA do during various transactions. Included are discussions of

data path, data formats, and data timing throughout the XJA. Also described is the XJA

self-test logic and the three clock systems used by the XJA.

4.1 Overview

Figure 4-1 is a block diagram of the XJA. The mnemonics used for the chips and

functional logic areas are defined in Table 1-4.

The XDE chips function to transfer data packets between the JXDI and the XDC under

control of the XCE chip. The XMI corner functions to transfer data packets between the

XMI bus and the XDC through a standard XMI interface.

The XDC chip is divided into functional areas similar to those shown in the simplified

block diagram of Figure 1-4. The XRC, RRF, and RCM work together to receive data

packets from the XMI corner, process them, and when applicable, supply the packets to

the CBI. These areas are described in Section 4.6, XDC Receive Logic. The TRF and TCM

work together to accept data packets from the XDEs, process them, and when applicable,

transmit the packets to the XMI corner. These areas are described in Section 4.7, XDC

Transmit Logic. The REG interfaces with both the transmit and receive logic.

DATA
Z. y4

CBiI BUS

DATA

16

DATA
ya 7z
78 XDEOQO 716

CONTROL

CONTROL .CONTROL

XCE

MR_X1309_8¢9

Figure 4-1 (Cont.) XJA Block Diagram

DIGITAL INTERNAL USE ONLY 4-1

4-2 XJA

r———-——-————————————_————
———

| XDC

DMA RD C/A

DMA WRT C/A + DAT

CPU RD XMl DAT RET

CPU RD ERR RESPONSE

CPU RD LOCK RESPONSE

CPU RD REG DAT RET

CPU RD ERR STATUS RET

WRT COMPLETE

INTR

DMA RD C/A

DMA WRT C/A + DAT
CPU RD XM| DAT RET

CPU RD ERR RESPONSE

RARF

DMA RD DAT RET

DMA RD LOCK STATUS RET

DMA RD ERR STATUS RET

CPU RD REG C/A

CPU WRT REG C/A + DAT

CPU RD XMI C/A

CPU WRT XM! C/A + DAT

CPU RD LOCK RESPONSE‘U
3

CPU RD REG DAT RET U
4

RRF XRC TRF

REG

PR g SN
» RCM

TCM

XMI BUS

"
'
"
'
"
"
"
"
—
"
"
'
"
_
-
"
"
"
—
"
'
"
"
"
"
"
-
_
"
'
"
'
_
"
_
"
_
r
"
h
_
_
"
"
_
"
'
-

L--l-——-_-_-----—--_——---_'—
—-

Figure 4-1 (Cont.) XJA Block Diagram

DIGITAL INTERNAL USE ONLY

MR_X1310_89

XJA 4-3

XDC

DMA RD C/A

DMA WRT C/A + DAT

CPU RD XMi DAT RET

CPU RD ERR RESPONSE
CPU RD LOCK RESPONSE

XMl RD REG C/A

XM!I WRT REG C/A + DAT

CPU RD REG DAT RET

XMl RD REG DAT RET
I 4 Ll: REG

CPU RD REG C/A

CPU WRT REG C/A + DAT

XMI RD REG DAT RET
TRF _.@

MR_X1311_89

Figure 4-1 (Cont.) XJA Block Diagram

DIGITAL INTERNAL USE ONLY

4-4 XJA

-_-_-—--_---—---q

XDC

DMA RD C/A

DMA WRT C/A + DAT

CPU RD XMI| DAT RET

CPU RD ERR RESPONSE

CPU RD LOCK RESPONSE

XM! RD REG C/A

XMI WRT REG C/A + DAT

INTR

IVINTR

{IDENT CMD

U-:lDENT RESPONSE
6

DMA RD DAT RET

DMA RD LOCK STATUS RET

DMA RD ERR STATUS RET

XMI RD REG DAT RET

CPU RD XMI C/A

CPU WRT XMI C/A + DAT

O IDENT CMD

7

N
N

5
P
P

DATA

--——----!--_—---—J

Figure 4-1 XJA Block Diagram

DIGITAL INTERNAL USE ONLY

XCi BUS

XMI

CORNERT

MR_X1312_89

XJA 4-5

Thirteen specific types of transactions execute through the XJA:

* DMA read

¢ DMA write

¢ CPU read of XMI registers excluding XMI space registers in XJA

¢ CPU write of XMI registers excluding XMI space registers in XJA

¢ CPU read of XMI space registers in XJA

* CPU write of XMI space i'eg'isters in XJA

e CPU read of XJA private registers

¢ CPU write of XJA private registers

e XMI normal interrupts

e XMI implied vector interrupts — interprocessor interrupts

e XMI implied vector interrupts — write error interrupts

* XJA generated nonfatal interrupts

* XJA generated fatal interrupts

Each of these transactions is summarized in a brief step-by-step description in the

following paragraphs. The XDC transmit and receive logic process the various packet

types differently. These differences are described in the XDC receive and transmit

sections of this chapter. These descriptions provide the details of packet processing

but lack the overall continuity provided by the following transaction summaries. The

summary can be used to follow a transaction from start to finish while the XDC receive

and transmit sections can provide the details of the transaction steps when desired.

Figure 4-1 lists the various types of transaction packets that are input to and output

from the XDC functional areas.

4.1.1 DMA Read

This transaction occurs as follows:

1. XRC receives the DMA read C/A from the XMI bus. XRC notifies RCM.

2. RCM loads the DMA read C/A into the RRF buffer. RCM notifies XCE.

3. XCE unloads the DMA C/A from the RRF buffer and transfers it through the XDEs

to the JXDI.

4. XCE transfers the DMA read data return from the JXDI, through the XDEs, and

loads the data into the TRF buffer. XCE notifies TCM.

5. TCM unloads the DMA read data return from the TRF buffer and transmits it to the

XMI bus.

DIGITAL INTERNAL USE ONLY

4-6 XJA

4.1.2 DMA Write

This transaction occurs as follows:

1.

2.

3.

XRC receives the DMA write C/A and data from the XMI bus. XRC notifies RCM.

RCM loads the DMA write C/A and data into the RRF buffer. RCM notifies XCE.

XCE unloads the DMA C/A and data from the RRF buffer and transfers it through

the XDEs to the JXDI.

4.1.3 CPU Read of XMI Registers Excluding XMl Space Registers in XJA

This transaction occurs as follows:

1.

o
o

XCE transfers the CPU read C/A from the JXDI, through the XDEs, and loads it into

the TRF buffer. XCE notifies TCM.

TCM unloads the CPU read C/A from the TRF buffer and transmits it to the XMI

bus.

XRC receives the CPU read data return from the XMI bus. XRC notifies RCM.

RCM loads the CPU read data return into the RRF buffer. RCM notifies XCE.

XCE unloads the CPU read data return from the RRF buffer and transfers it through

the XDEs to the JXDI.

4.1.4 CPU Write of XMI Registers Excluding XMl Space Registers in XJA

This transaction occurs as follows:

1. XCE transfers the CPU write C/A and data from the JXDI, through the XDEs, and

loads it into the TRF buffer. XCE notifies TCM.

TCM unloads the CPU write C/A and data from the TRF buffer and transmits it to

the XMI bus. TCM notifies RCM.

RCM forces the generation of a write complete packet in the RRF. RCM notifies XCE.

XCE unloads the write complete packet from the RRF and transfers it through the

the XDEs to the JXDI.

4.1.5 CPU Read of XMI Space Registers in XJA

This transaction occurs as follows:

1. XCE transfers CPU read C/A from the JXDI, through the XDEs, and loads it into the

TRF buffer. XCE notifies TCM.

TCM unloads CPU read C/A from the TRF buffer and transmits it to the XMI bus.

XRC receives the CPU read C/A from the XMI bus. XRC notifies RCM.

DIGITAL INTERNAL USE ONLY

©

©

=
N

o

o
o
k

XJA 4-7

'RCM notifies TCM.

TCM unloads the XMI space register to TRF.

TCM transmits the XMI space register data from the TRF to the XMI bus.

XRC receives the CPU read data return from the XMI bus. XRC notifies RCM.

RCM loads the CPU read data return into the RRF buffer.

RCM forces the generation of a read data return packet in the RRF. RCM notifies

XCE.

. XCE unloads the CPU read data return from the RRF buffer and transfers it through

the XDEs to the JXDI.

4.1.6 CPU Write of XMI Space Registers in XJA

This transaction occurs as follows:

1.

N
e

o
k

W

XCE transfers the CPU write C/A and data from the JXDI, through the XDEs, and

loads it into the TRF buffer. XCE notifies TCM.

TCM unloads the CPU write C/A and data from the TRF buffer and transmits it to

the XMI bus.

XRC receives the CPU write C/A and data from the XMI bus.

XRC notifies REG and RCM.

REG loads the XMI space register with write data.

RCM forces the generation of a write complete packet in the RRF. RCM notifies XCE.

XCE unloads the write complete packet from the RRF and transfers it through the

XDEs to the JXDI.

4.1.7 CPU Read of XJA Private Registers

This transaction occurs as follows:

1. XCE transfers the CPU read C/A from the JXDI, through the XDEs, and loads it into

the TRF buffer. XCE notifies TCM.

TCM unloads the XJA private register to the RRF. TCM notifies RCM.

RCM forces the generation of a read data return packet in the RRF. RCM notifies

XCE.

XCE unloads the CPU read data return from the RRF buffer and transfers it through

the XDEs to the JXDL

DIGITAL INTERNAL USE ONLY

4-8 XJA

4.1.8 CPU Write of XJA Private Registers

This transaction occurs as follows:

1. XCE transfers the CPU write C/A and data from the JXDI, through the XDEs, and

loads it into the TRF buffer. XCE notifies TCM.

TCM unloads the TRF buffer, transfers the write data from the TRF to REG, and

loads the data into the XJA private register. TCM notifies RCM.

RCM forces the generation of a write complete packet in the RRF. RCM notifies XCE.

XCE unloads the write complete packet from the RRF buffer and transfers it through

the XDEs to the JXDI.

4.1.9 XMI Bus Initiated Normal Interrupts

This transaction occurs as follows:

1.

10.

11.

12

XRC receives normal interrupt from the XMI bus at an IPL of 14, 15, 16, or 17. XRC

notifies RCM of the interrupt.

RCM forces an interrupt packet in the RRF at the specified IPL. RCM notifies XCE.

RCM notifies TCM that an interrupt is pending and a CPU read XJA private register

is coming. TCM posts a pending interrupt at the specified IPL.

XCE unloads the interrupt packet from the RRF and transfers it through the XDEs

to the JXDI.

CPU initiates a read of the specified IDENT register.

XCE transfers the CPU read C/A from the JXDI, through the XDEs, and loads it into

the TRF buffer. XCE notifies TCM.

TCM assembles an IDENT command packet in the TRF and transmits it to the XMI

bus.

XRC receives the IDENT response data return from the XMI bus. XRC notifies RCM.

RCM loads the IDENT response into the RRF buffer.

RCM forces the generation of a read data return packet in the RRF. RCM notifies

TCM and XCE.

TCM clears the posted interrupt at the specified IPL.

XCE unloads the CPU read data return from the RRF buffer and transfers it through

the XDEs to the JXDI.

4.1.10 XMI Implied Vector Interrupts — Interprocessor Interrupts

NOTE

This type of interrupt does not currently occur in the VAX 9000 system as there

are no CPUs on the XMI bus.

This transaction occurs as follows:

1.

2.

XRC receives IPINTR from the XMI bus. XRC notifies RCM.

RCM notifies TCM. TCM posts a pending IPL 16 interrupt.

DIGITAL INTERNAL USE ONLY

XJA 4-9

RCM forces the generation of an IPL 16 interrupt packet in the RRF. RCM notifies

XCE.

XCE unloads the interrupt packet from the RRF and transfers it through the XDEs

to the JXDI.

CPU initiates a read of the IPL 16 SCB offset register IDENT®).

XCE transfers the CPU read C/A from the JXDI, through the XDEs, and loads it into

the TRF buffer. XCE notifies TCM. TCM notifies RCM.

RCM forces the generation of a read data return packet in the RRF with an SCB

offset vector of 80(hex). RCM notifies TCM and XCE.

TCM clears the posted IPL 16 interrupt.

XCE unloads the CPU read data return from the RRF buffer and transfers it through

the XDEs to the JXDI.

4.1.11 XMl Implied Vector Interrupts — Write Error Interrupts

This transaction occurs as follows: .

1.

2.

3.

XRC receives WEI from the XMI bus. XRC notifies REG.

REG asserts FATALERR to XCE.

XCE asserts XJA_FATALERR to the JXDI.

4.1.12 XJA Generated Nonfatal Interrupts

This transaction occurs as follows:

1.

2

3

4.

5

o

10.

11.

REG detects a nonfatal interrupt error bit set.

REG notifies TCM and RCM.

RCM posts IPL 17 interrupt pending. TCM looks for the next IDENT7 transaction.

RCM forces the generation of an IPL 17 interrupt packet. RCM notifies XCE.

XCE unloads the interrupt packet from the RRF and transfers it through the XDEs

to the JXDI.

CPU initiates a read of the IPL 17 SCB offset register IDENT7).

XCE transfers the CPU read C/A from the JXDI, through the XDEs, and loads it into

the TRF buffer. XCE notifies TCM.

TCM unloads the error SCB offset register into the RRF buffer.

RCM clears the posted IPL 17 interrupt. TCM notifies RCM.

RCM forces the generation of a read data return packet in RRF. RCM notifies XCE.

XCE unloads the CPU read data return from the RRF buffer and transfers it through

the XDEs to the JXDI.

DIGITAL INTERNAL USE ONLY

4-10 XJA

4.1.13 XJA Generated Fatal Interrupts

This transaction occurs as follows:

1. REG detects a fatal interrupt error bit set.

2. REG asserts FATALERR to XCE.

3. XCE asserts XJA_FATALERR to the JXDI.

4.2 XJA Clock System

The XJA uses three separate, asynchronous, clock systems. The three systems are as

follows: '

o An XCI_C clock system to send and receive data from the XMI bus

e A CLKJ clock system to receive data from the ICU

e A CLKX clock system to send data to the ICU

Table 4-1 lists the signals, with their times, for each of the three clock systems.

Table 4-1 XJA Clocks

Clock System Signal Period (ns)

XCI_C XCI_C12 64

XCi_C23 64

XCI_C34 64

XCI_C45 64

XCI_C56 64

XCI_C61 64

MCLK 32

CLKJ ICU_CLKJ 16

SCLKJ 32

CLKX CLKX 16

SCLKX 32

UNLOAD_CLK 32

DIGITAL INTERNAL USE ONLY

XJA 4-11

4.2.1 Crossing Asynchronous Boundaries Between Clock Systems

Each clock system drives a specific area of synchronous logic. When a given area of logic

needs to communicate with another area of logic running on a different clock system,

synchronizing logic must be used. The basic scheme that the XJA uses to communicate

across asynchronous boundaries is shown in Figure 4-2 and described in the following

three steps:

1. Logic A and logic B run on different clocks.

2. The data buffer is unidirectional and is loaded by CLKA (logic A’s clock) and unloaded

by CLKB (logic B’s clock).

3. Control lines from logic A inform logic B that the data is completely loaded into the

data buffer and can now be unloaded. Data is never loaded and unloaded at the same

time.

DATA DATA DATA

BUFFER

LOGIC A LOGIC B

CLK A CLK B

CONTROL

MR_X1238_898

Figure 4-2 Data Communication Across Asynchronous Boundaries

4.2.2 XCL_C Clock System

Figure 4-3 is a block diagram of the XCI_C clock system.

The logic that interfaces to the XMI bus runs off the XCI_C clock system. There are six

XCI_C clocks all with a time period of 64 ns. The XCI_C clocks are obtained from the

XCLOCK chip in the XMI corner. The XCLOCK generates the XCI_C clocks from the

XMI_TIME and XMI_PHASE clocks obtained from the XMI bus. Section 4.5.2 describes

the function of XCLOCK and Figure 4-16 illustrates the six XCI clocks.

The XCI_C clock system:

e Clocks the receive data from the XMI bus, through the XRC, and into the RRF

o Supplies 64-ns clocks to the RCM to synchronize that portion of the RCM that

controls the reception of the XMI data in the XRC and RRF

e (Clocks the transmit data out of the TRF to the XMI bus

o Supplies 64-ns clocks to the TCM to synchronize that portion of the TCM that controls

the transmission of data from the TRF to the XMI bus

e Clocks data into and out of the XJA registers

All the receive and transmit data synchronized by the 64-ns XCI_C clocks are in 64-bit

format except register data, which is longword in length.

Two XCI_C clocks (XCI_C34 and XCI_C61) are ORed to generate an asymmetrical 32-ns

clock called MCLK. MCLK is supplied to the XCE to clock in control signals from the

RCM and the TCM that are synchronized to the XCI_C clock system.

DIGITAL INTERNAL USE ONLY

A
I
N
O
 3
S
N

T
V
Y
N
Y
I
3
L
N
I

1
v
L
I
D
I
a

W
a
I
S
A
S
 %
0
0
1
0

D

 1
0
X

€

 a
in
bB
i4

VAN

J
X
D
}

cBiBUS

RECEIVE DATA

%

LEGEND

cBi BUS

TRANSMIT DATA

& = o o ¢ = s 2 u e 2 e m B e s s E e mee ..

KDES

XDE1

XJA DATA
g— —

CLK CLK

ICU DATA

— ~»

CLK CLK

XCE

= = cLOCK

RRF XRC XM
XCl 8US CORNER

RECEIVE DATA RECEIVE DATA
lg- — ———lge — 4 leeel—e———————evemteey. - . . .

CLK ClKiqu b ala= o o & CLK =

- L]

. L]

. -

. |]

a a

HCM;....--..-..---: .

L] L

* ® XCI_C CLOCKS
REG g » sene o o & - e * wes @m a = sfe XCLOCK L

L]
« .

. L]

TCM ¢ s som s n 2 5 v o &) s
.

-

-

L]

.
L]

TRF . .
* XCi BUS ¢
. TRANSMIT DATA .

- _l._.
——————

CLK "s® CLK .

-

.

MCLK *
-MCLK g o a o a s

LOGIC

XMI_TIME

XMI_PHASE
s s7e v &

X
M
|

B
U
S

4

MR_X1233_98

v
r
x
X

2e
ik

-v

XJA 4-13

4.2.3 CLKJ Clock System

The logic that receives data from the ICU, by way of the JXDI, is clocked by the CLKJ

clock system (Figure 4—4). ICU_CLKJ is received from the ICU as a 16-ns (nominal

system cycle time) square wave. ICU_CLKJJ is derived in the ICU from the system

CLOCK_B. The XJA uses the 16-ns ICU_CLKJ to clock data from the JXDI into the

XDEO and XDE1 chips. ICU_CLKJ also synchronizes the portion of the XCE logic that

controls the data flow into the XDE chips and the portion that processes the ICU control

signals associated with the data flow from the ICU. The JXDI data that is transferred
into the XDE chips is in 16-bit word format.

ICU_CLKJ is divided by two in the XCE to form a 32-ns clock called SCLKJ (slow CLKJ).

SCLKJ is used to:

e (Clock the transmit data out of the XDEO and XDE1 chips onto the CBI bus

e Clock the transmit data off the CBI bus into the TRF |

o Synchronize that portion of the TCM that controls the transfer of the transmit data

from the CBI bus to the TRF

o Synchronize that portion of the XCE logic that controls the data flow from the XDE

chips to the TRF.

4.2.4 CLKX Clock System

The logic that transmits data to the ICU, by way of the JXDI, is clocked by the CLKX

clock system (Figure 4-5). CLKX is derived from a B phase clock (CLKB) obtained from

the master clock module (MCM). It is used to clock data from the XDEO and XDE1

chips to the ICU by way of the JXDI. CLKX synchronizes the portion of the XCE logic

that controls the data flow out of the XDE chips and the portion that processes the ICU

control signals associated with data flow to the ICU. The data that is transferred from

the XDE chips to the ICU is in 16-bit word format.

The 16-ns CLKB is divided by two to produce two 32-ns waveforms (SCLKX and

UNLOAD_CLK). UNLOAD_CLK is used to clock the 32-bit receive data from the RRF

to the XDE chips over the CBI bus, and to synchronize the XCE logic that controls

unloading of the receive data onto the CBI bus from the RRF. SCLKX is used to load

the 32-bit data into the XDE chips, and to synchronize the XCE logic that controls the

loading of the data into the XDE chips.

DIGITAL INTERNAL USE ONLY

A
T
N
O
 3
I
S
N

T
V
Y
N
Y
3
L
N
I

T
v
1
I
D
i
d

W
a
I
s
A
S
 2
0
1
D
 M
M
1
D

v
—
v
 2
un

bi
4

XCl BUS

RECEIVE DATA

XDEO

RRF XRC
CBI BUS

XJA DATA RECEIVE DATA RECEIVE DATA
q— — €— — - - —

CLK CLK CLK CLK CLK

2 CBI BUS
- ICU DATA TRANSMIT DATA

F — —

ICU_CLKJ . o
" " = e me LI) LK L] CLK

- - - L RCM
[] L]

[] []

L] -
REG

E-. XCE i » a0 5

® SCLKJ*---E "= = ses = o u m m s s s am ek p TCM

L]

* TRF
. XCi1 BUS
.

TRANSMIT DATA

. F— —

= » o » e s pp pCLK CLK
LEGEND

» s u s s s CLOCK

XM
CORNER

_XCLOCK

X
M
1

8
U
S

N
NA_X1240_89

v
r
x
X

v
i
—
v

A
T
N
O

3
S
N

T
Y
N
Y
I
L
N
I

1
V
L
I
D
I
d

W
o
I
S
A
S
 %
0
0
1
0
 X
M
1
D

S
—
t
 9
4
n
b
i
d

XRC

CLK

XCi BUS

RECEIVE DATA

XDEQ

A XDE1
CBI BUS RAF

XJA DATA RECEIVE DATA RECEIVE DATA
a— — - < le— — -

CLKjese CLK[® " CLiklg. » CLK
-— L

2 “eeseesan "} cBIBUS .

5| tcupata . *] TRANSMIT DATA J
SE— > .

. .
CLK cLK . .

. . RCM

- L]

v g 2 . A
L]

.) . REG
»

XCE -
* 9 » = » &« a g -

s m ame . L] L] - » - 4 » - L] - L] » - -

. g v ¢« w o ? [P TCM

g []
L] - .

* cLkx | CLKX_LOGIC . .
o GEROLECT

. . . TRF XCl1 BUS
- - TRANSMIT DATA

» . [= _.
CLK CLK

CLKB
MCMe » =

LEGEND

”» = = = 3 cLocK

-

SCLKX
. -

UNLOAD CLK
| UNLOAD_CLK

Xwi

CORNER

XCLOCK

X
M
I

B
U
S

N

MR_X12¢1_89

S
l
-
v

V
r
X

4-16 XJA

4.3 XDE Data Flow

NOTE

Transmit and receive as described in the XDE data flow, is with respect to the

JXDI as opposed to the rest of the XJA data flow that is with respect to the XMI

bus. _

4.3.1 Transmit Data Flow

Data to be transmitted to the JXDI, along with four bits of byte parity, is received from

the CBI in longword format at a clock rate of 32 ns. The data is split into two channels

(one channel per XDE chip) with a data word and two parity bits going to each channel.

The two channels are identical, therefore only one channel is described. Figure 4-6 is a

block diagram of one channel of the XDE transmit data path.

Data words are enabled from the CBI into the XDE channel by the asserted state of DIR

from the XCE receive logic. The data word is split into two bytes with each byte and its

associated parity bit clocked into a transmit buffer (TRANSMIT BUFFER 1) by the 32-ns

SCLKX clock. Sixteen ns later, byte 1 is clocked into transmit buffer 2 by the opposite

phase of SCLKX. A byte multiplexer is switched at a 16-ns rate to select alternately byte

0 and byte 1. The multiplexer output is clocked into a transmit register at a 16-ns rate

by CLKX. The register output is routed to the JXDI. The data byte and parity bit from

each channel are combined to form a 16-bit data word and two parity bits on the JXDI

(Figure 4-1). The JXDI bus cycles are 16-ns.

r ----- q

| TRANSMIT

IBUFFER1 I

I i CBI_P[00]

BYTE

] i) | CBI_D[07:00]

r ----- , l]
| TRANSMIT | CLK fe—} celtz:00l o

9 |w| [BUFFER2 1 |
XJA_PAR TRANS- ol i . CBI_P[01]
XJA_DAT[07:00] MIT | | 1] BYTE b}

JXDI - FiFs i 1 1 1 1 CBI_D{15:08]

CLK jat— 1 | 1 i
CLK CLK XCE

~J] | T RECEIVE
b o=- < b o o 4 LOGIC

SCLKX

CLK

CLKX

MR_X1242_89

Figure -6 XDE Transmit Data Path

DIGITAL INTERNAL USE ONLY

XJA 4-17

Figure 4-7 shows the timing of the transmit data. At TO, byte 0 and byte 1 are clocked
into buffer 1 by SCLKX. Byte 1 is then clocked into transmit buffer 2 at time T2, by
the opposite phase of SCLKX. The byte 0 output of buffer 1 and the byte 1 output of

buffer 2 are applied to a byte multiplexer which functions to alternately select the two

inputs at a 16-ns rate. The multiplexer switching is accomplished by a flip-flop clocked

by the negative phase of the 16-ns CLKX with the 32-ns SCLKX being the D input.

The multiplexer switching is shown in the timing diagram where it alternately selects

between byte 0 and byte 1 at a 16-ns rate. The diagram shows data to the JXDI bus as

it is clocked into the transmit register and output from the XDE transmit data path as

XJA_PAR and XJA_DAT([07:00].

32 ns N

16 ns —|

To T T2 T3 T4 T6 Te Tz TYe Te Tio Tn Tiz T3 Ti4 Ti5 Tie

I I
er e r e rerer

TRANSMIT BUFFER 1] BYTE 0, BYTE 1 | BYTE 2, BYTE 3 l BYTE 4, BYTE 5 | BYTE 6. BYTE 7 |

TRANSMIT BUFFER 2 [BYTE 1] BYTE 3 . BYTE 5 [BYTE 7

TRANSIT TRANMIT TRANSMIT

BYTE MULTIPLEXER TRANSMIT BUFFER 2 TRANSMIT BUFFER 2 TRANSMIT BUFFER 2 TRANSMIT
BUFFER 1 BUFFER 1 BUFFER 1 BUFFER 1

DATA TO JXD! [eyreo| BYTEs | BYTE2 | BYTE3 | BYTEs | BYTES | BYTE6 |

MR_X1243_ 89

Figure 4-7 XDE Transmit Timing Diagram

4.3.2 Receive Data Flow

Data received from the JXDI is in word format and at a clock rate of 16-ns. The data

is split into two channels (one channel per XDE chip) with a data byte and one parity

bit going to each channel. The channels function to assemble the bytes into data words,

which are then combined into longwords for the CBI bus. The two channels are identical

(except for decoding the length bits), therefore only one channel is described. Figure 4-8

is a block diagram of one channel of the XDE receive data path.

The data byte and its associated parity bit is clocked into receive flip-flops by the 16-ns

CLKJ clock from the JXDI. The output of the receive flip-flops is applied to a parity

checker, which asserts PERR to the XCE receive logic if a parity error is detected on any

of the data cycles.

DIGITAL INTERNAL USE ONLY

A
T
N
O

3
S
N

T
Y
N
Y
3
L
N
I

T
v
L
1
I
9
I
d

U
l
e
d
 e

je
qg

 9
Aj

19
99

d
3
0
X

8
P

 a
i
n
b
i
4

JXDI_LEN[02:00])

XCE

> RECEIVE
LOGIC

LEN

DECODER*

9 PERR

// PC >

ICU_PAR o ALIGNMENT
Jx0I 'CUmDA”°7°°1}‘7"necavE

F/Fs

gj—] CLK b LATCH

ALIGNMENT | 9, 9
REGISTER 7 EN

CLK

WORD

SEL[00] 1 LATCH ASSEMBLY

FIF EN S
STARTRCV

CLK 18
CLK

L LATCH

9
EN -

CLKJ CLK

L LATCH

EN ;L

CLK

LATCH SEL[01:00]
SELECT

GENERATOR

STARTRCV XCE

RECEIVE

LOGIC

*BYTE 0 CHANNEL ONLY

CBI_PAR[01:00]

CBI_DATA[15.00] cBi

DIR XCE
RECEIVE

LOGIC

MR_X1244_89

v
r
x
X

8
i
-
v

XJA 4-19

The flip-flops in the byte 0 channel apply the length bits of the first data word

(command/address word) to a length decoder. The decoder outputs JXDI_LEN[02:00]
to the XCE receive logic, specifying the length of the data packet that is being received.

The output of the receive flip-flops is also applied to an alignment multiplexer and an

alignment register. Sixteen ns later the data is clocked into the alignment register whose

output is also applied to the alignment multiplexer. The multiplexer selects the direct

data or the delayed data (using the alignment register) depending on the alignment of
the input data.

If no alignment is required, the alignment multiplexer selects the data bytes from the

receive flip-flops and applies them to four latches clocked by the CLKJ clock (Figure 4-9).

The latches are enabled by SEL[01:00] from a latch select generator. The generator

functions to produce two square waves (SEL[01:00]) as shown in Figure 4-9. The four bit

states of SEL[01:00] select the four latches in order. The latches are loaded with bytes

0, 1, 2, and 3 and then cycled through again with the next four bytes. While latch 2 and

3 are being loaded, latch 0 and 1 are unloaded through a multiplexer and then onto the

CBI. The multiplexer unloads latches 0 and 1 when SEL[01:00] is 11 (T4 through T6) and

unloads latches 2 and 3 when SEL[01:00] is 01 (T8 through T10).

The data words are enabled onto the CBI by the negated state of DIR from the XCE

receive logic. DIR is negated by the XCE when a data packet is being received from the

ICU. The data words output from each channel are combined on the CBI to form data

longwords (Figure 4-1).

4.3.3 Alignment of Received Data

Data alignment is shown in Figure 4-10. Word data from the JXDI is synced to the 16-ns

CLKJ clock. The longword data on the CBI is synced to the 32-ns SCLKJ clock. Part A

of Figure 4-10 shows the aligned data case where word 0 and word 1 are clocked in at

T4 and T6, respectively. The next cycle of SCLKJ, clocks longword 0 (composed of word -

0 and word 1) at time T8. Word 2 and word 3 make up longword 1 clocked at T12, and

so on. In the aligned case, the first data word is clocked on an even cycle of CLKJ (with

respect to SCLKJ).

The alignment multiplexer is switched by the ANDing of SELO and STARTRCV in a

flip-flop. STARTRCYV is received from the XCE receive logic where it is derived from

ICU_CMDAVAIL. Therefore, STARTRCV precedes the received data by one cycle. SELO

is a 32-ns clock used to assemble the data longwords for the CBI bus. In the aligned case

(part B of Figure 4-10), STARTRCV asserts at T2 and data word 0 is clocked on the next

data cycle (T4), resulting in an aligned state. SELO and STARTRCV do not AND, the

multiplexer is not switched, and the direct data is used.

In the unaligned case, the first data word is clocked in on an odd cycle of CLKJ causing

the situation shown in part C of Figure 4-10. Here longword 0 contains only the first

word of received data (word 0) while longword 1 contains word 1 and word 2. The word
data is unaligned with respect to the longword data. The alignment multiplexer corrects

the misalignment by selecting the delayed data (delayed one 16-ns cycle), therefore

placing the word data in alignment with the longword data. The alignment multiplexer

is switched as seen in part D of Figure 4-10. STARTRCV asserts at T0O and data word 0

is clocked in at T2 resulting in an unaligned state. SELO and STARTRCV do AND, the

multiplexer is switched, and the delayed data from the alignment register is used.

DIGITAL INTERNAL USE ONLY

A
T
N
O
 3
S
N
 T
Y
N
Y
3
I
L
N
I

T
V
1
i
O
I
d

s
p
i
o
m
b
B
u
o
r
 e
l
e
q
 j
o
A
l
q
u
a
s
s
y

66
—t

 a
i
n
b
i
4

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

| L
CLK IN

SEUL1

e e—
—
—

h
r
e
a
r
e
m
a
v
m
a
y

p
e
s
n
—

~

LATCH STATES [LATCH 0 EN | LATCH 1 EN] LATCH 2 EN | LATCH 3 EN | LATCH 0 EN | LATCH 1 EN] LATCH 2 EN | LATCH 3 EN | LATCH 0 EN

LOAD LATCHES _IBYTEOI I BYTE1| |BYTE2| |BYTE3| IBYTE 0] |BYTE1| IBYTE2| IBYTE3| IBYTEOI

MULTIPLEXER SELECT I l l WORD 0 I I WORD 1 | l WORD 2 | I WORD 3

MR_X1246_89

v
r
x
X

0
c
-
v

A
T
N
O
 3
I
S
N
 T
V
N
Y
I
L
N
I
 v
L
i
D
I
d

e
l
e
d
 P
aA

|9
da

dY
y
jo

 J
u
d
w
u
b
l
l
y

0
o
L

 a
in

bi
4 A. ALIGNED DATA

32 ns J

TO T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T T12 T3 T14 T15 Ti6 T17 T18

SCLKJ
LWO : LW1 LW2

CLKJ _J_—l___l L_I WDO L I wml l w;I I w031 I wo4]__| WD5 L I wos—L r—

B. ALIGNED DATA

STARTRCV | I

C. UNALIGNED DATA

SCLKJ LWo Lw1 Lw2 Lw3

e | L_Twol Twol _Tweel [wee| [woel [wos]l [weel [wor]l I

D. UNALIGNED DATA

STARTRCV | I

MR_X1245_89

l
e
-
v

v
r
X

4-22 XJA

4.4 XCE Data Flow Control Logic

NOTE

Transmit and receive as described in the XDE data flow, is with respect to the
JXDI as opposed to the rest of the XJA data flow that is with respect to the XMI
bus.

4.4.1 Transmit Logic

The XCE transmit logic controls the transmission of data from the RRF, through the

XDEs to the JXDI. Figure 4-11 is a block diagram of the XCE transmit logic. A

transmit state machine (TSM) controls the transmission sequence and allows up to

two transmissions to be outstanding at the same time. That is, a data packet can

be transmitted before an ICU acknowledgment or retry command is received from

the preceding transmission. Three identical transmit entry machines (TEMs) process

transmit commands received from the RCM. A TEM is selected (in sequential order) to

initiate a transmission. No TEM has priority over another. The block diagram shows

only one TEM (TEM1).

Figure 4-12 is a flow diagram of an XCE transmit sequence. The sequence is the same

regardless of which TEM initiates the transmission. TEM1 is used in the flow diagram to

correspond with the block diagram.

A transmit sequence is initiated by the RCM when there is data in one of the RRF

buffers. The RCM initiates the sequence by asserting STARTXMIT, SBUFNUM[02:00],
and LENGTH[01:00] to the XCE.

SBUFNUMI02:00] (send buffer number) identifies which of the RRF buffers has the data
packet that is to be transmitted. The SBUFNUM/[02:00] code is given in Table 4-2.

LENGTHI[01:00] specifies the length of the data packet as shown in Table 4-3.

Table 4-2 RRF Buffer Select Code

SBUFNUM][02:00] Buffer Selected

000 DMA read/write buffer 0

001 DMA read/write buffer 1

010 DMA read/write buffer 2

011 DMA read/write buffer 3

100 CPU read and force command buffer

101 DMA read/write buffer 4

Table 4-3 Data Packet Length Code

Length

LENGTH[01:00] (CBI Cycles) Function

00 3 CPU read return, status, or DMA read C/A

01 4 DMA write, quadword

10 6 DMA write, octaword

11 10 DMA write, hexword

DIGITAL INTERNAL USE ONLY

A
T
N
O
 3
S
N
 T
Y
N
Y
I
3
L
N
I

v
L
I
D
I
d

L
L
—
p
 a
i
n
B
i
4

9
1
6
0
7
 y
w
s
u
e
s
]
 3
9
X

JXDI <

UBUFNUM[02:00]I I
: »

|
I SBUFNUM{02:00] |

| e LENGTH[01:00] |

| r TEM1| I 1
'

s
BUFFER

I

! > LD feq |
I oA XMIT_LEN[01:00] I

| UNLD_CLK 1
I DEC "

LD_LEN_TO_GO

i LD i
| DONEXMIT 1
" ICU_XFERACK »

s |
I DONE | DBUFNUM[02:00] T

] TO_GO_GTR_2 Loaic 1_GO_GTR 2~ !

I icu_cmpavan xcnggclzgwe |

. REV_IN_PROG i
' XCE RCV > XMlT_lN_PROGT [DONE_TEM_l '
i LoGIe COLLI_XMIT > CONDITIONS ¥ "
I > UNLD_TEM[01:00] l

LOAD_TEM_1

i FREE_ _TEM_ |
I FREE ICU | ICU_ TSM | XMIT_TEM_1 |

BUFFER | BUF

I COUNTER [— XMIT_TEM_2 STARTXMIT !
ICU_BUFEMPTD AWAIT TEM_1_RDY TEM! je————1

| INC XMIT_TEM_3 COUNTER I

DEC_FREE_ICU_BUF

I DEC INC_AWAIT_CNT 1
I INC ~» "

| XJA_CMDAVAIL | COMMAND LD_C_A_DLY UNLOAD i
i AVAILABLE >

| LOGIC |
|

" ICU_XFERRETRY aetay | RETRY_TEM_1 "

LOGIC

! |
.

RRF

RCM

CLKX

LOGIC

> RCM

RRF

MR_X1247_89

g
c
-
v

V
v
r
X

4-24 XJA

Y
STARTXMIT

FROM RCM.

SBUFNUM[02:00]

LENGTH[01:00}

FROM RCM.

TEM GOES FROM

IDLE STATE

TO READY STATE.

!

XMIT_TEM_1 LOAD_TEM_1

ALL

CONDITIONS

OK

YES

y | '

UNLD_TEM{01:00] DEC_FREE_iCU_BUF

XMIT_IN_PROG

NOTIFIES RECEIVE

LOGIC.

LD_C_A_DLY

INC_AWAIT_CNT

NEXT TEM SELECTED.
UNLOAD TO RRAF. XJA_CMDAVAIL

y
TEM GOES FROM

READY STATE

TO SENT STATE.

UBUFNUM[02:00]
TO RRF.

y '
XMIT_LEN[01:00]

LOADED INTO

LENGTH COUNTER.

LD_LEN_TO_GO

LOADS LENGTH

COUNTER.

Figure 4-12 (Cont.)

DIGITAL INTERNAL USE ONLY

Flow Diagram of XCE Transmit Sequence

MR_X1248_86

0

UNLD_CLK

DECREMENTS

LENGTH COUNTER.

XJA

DATA

PACKET ACCEPTED

8Y ICU

ICU_XFERACK

ICU_BUFEMPTD

INCREMENTS FREE ICU_XFERRETRY

ICU BUFFER.

DONEXMIT DBUFNUM[02:00]
DONE_TEM_1 TO BEM. 70 RCM- RETRY_TEM_1

TEM GOES FROM

SENT STATE

TO IDLE STATE.

{CU_BUFEMPTD

INCREMENTS FREE

ICU BUFFER.

:

=D

Figure 4-12 Flow Diagram of XCE Transmit Sequence

TEM GOES FROM

SENT STATE

TO READY STATE.

MRA_X12498_00

DIGITAL INTERNAL USE ONLY

4-25

4-26 XJA

SBUFNUMI[02:00] and LENGTH[01:00] are applied to three TEM buffers associated with

the three TEMs.

STARTXMIT is applied to the three TEMs (TEM1 shown in the block diagram). The

TEMs have three states: idle, ready, and sent. STARTXMIT moves TEM1 from the idle

state to the ready state, causing the assertion of TEM_1_RDY to an await counter, and

LOAD_TEM_1 to the TEM1 buffer. LOAD_TEM_1 loads the buffer number and length

information into the TEM1 buffer.

The await counter sequences through the asserted ready inputs from the TEMs selecting

the next one in order. When TEM_1_RDY asserts, the counter asserts a corresponding

transmit command to the TSM XMIT_TEM_1). XMIT_TEM_1 informs the TSM that a

transmit request is pending and the buffer number and length information are loaded

into the TEM1 buffer.

The TSM executes the transmission provided the following conditions are true:

e No data packet is on its way to the XJA from the ICU (ICU_CMAVAIL false).

¢ No data packet received from the ICU is still being transferred through the XDE to

the TRF (RCV_IN_PROG false).

e No collision has occurred on the CBI for which the ICU has not initiated a retry

(COLLI_XMIT false). A collision occurs when a data packet from the ICU is not

accepted because the CBI is being used to transmit data.

e No transmit operation is already in progress (TO_GO_GTR_2 false).

e An ICU receive buffer is available to accept the data (FREE_ICU_BUF true).

If all the conditions are met, the TSM responds to XMIT_TEM_1 by unloading the RRF

buffer and executing the transmission. To accomplish this, the TSM:

e Asserts XMIT IN_PROG to the XCE receive logic to notify it that a transmit

operation is executing.

e Asserts DEC_FREE_ICU_BUF, which decrements a free ICU buffer counter. The

ICU now has one less free buffer as one of its buffers is now used to receive the data

packet being transmitted.

e Asserts UNLOAD to the RRF to unload the selected buffer over the CBI and into the

XDE.

o Asserts LD_C_A_DLY causing XJA_CMDAVAIL to output to the ICU, informing it

that a data packet is to follow.

o Asserts INC_AWAIT_CNT to the await counter, which then selects the next TEM in

the ready state. The TSM does not respond to the next XMIT signal from the await

counter until it completes the current transmission as indicated by TO_GO_GTR_2

(one of the conditions before a transmission is initiated).

e Asserts UNLD_TEMI[01:00], which identifies the TEM (TEM1) selected for this

transmission. UNLD_TEM][01:00] is applied to a buffer multiplexer, which then

selects the TEM1 buffer for output. The buffer number output (UBUFNUM[02:00])

is sent to the RRF to select the buffer that is to be unloaded. The length output

(XMIT_LEN[01:00)) is loaded into the length counter to control the length of the

transmission.

e Asserts LD_LEN_TO_GO to the length counter to load in the length value from the

TEM1 buffer.

DIGITAL INTERNAL USE ONLY

XJA 4-27

UNLD_TEMJ[01:00] is also applied to TEM1, causing it to move from the ready state to

the sent state where it remains until the transmission is completed.

Done and retry logic also receive UNLD_TEM][01:00] to identify which transmission the
next ICU acknowledge, or retry, is associated with.

UNLD_CLK, from the CLKX logic, decrements the length counter for each data cycle that

executes. When the data packet is sent, the length counter informs the TSM of this by

the negated state of the signal TO_GO_GTR_2. The TSM is now free to execute another
transmission from one of the other TEMs provided all the correct conditions exist. This is

true even though an acknowledge or retry signal is not yet received from the ICU for the

data packet just sent.

If the data packet was accepted by the ICU, ICU_XFERACK is received by the XCE done
logic. The done logic then:

* Asserts DONE_TEM_1 to TEM1, moving it from the sent state to the idle state.

* Asserts DBUFNUM[02:00] to the RCM to specify which RRF buffer was unloaded.

The DBUFNUMI[02:00] code is identical to the SBUFNUMI[02:00] code shown in
Table 4-2.

* Asserts DONEXMIT to the RCM, informing it that the data is accepted by the ICU

and the RRF buffer specified by DBUFNUM[02:00] is available for new data.

When the ICU transfers the data from its receive buffer, it asserts ICU_BUFEMPTD to
‘the XCE, which then increments the free ICU buffer counter, indicating that another ICU
buffer is available to receive data.

If the data packet was not accepted by the ICU, ICU_XFERRETRY is received by the

XCE retry logic. The retry logic then asserts RETRY_TEM_1 to TEM1, moving it from
the sent state to the ready state for another try at transmitting the data. The ICU also
sends ICU_BUFEMPTD to increment the free ICU buffer counter as the ICU buffer

reserved for the transmit data was not used.

4.4.2 Receive Logic

The XCE receive logic controls the reception of data from the ICU, and the transfer of the

data through the XDEs to the CBI. Figure 4-13 is a block diagram of the XCE receive

logic. Figure 4-14 is a flow diagram of the XCE receive sequence.

A receive sequence is initiated when ICU_CMDAVAIL is received from the ICU,

indicating that a data packet is to follow starting with the next cycle. ICU_CMDAVAIL is

applied to start receive logic along with XMIT_IN_PROG from the XCE transmit logic.

DIGITAL INTERNAL USE ONLY

A
I
N
O
 3
S
N
 T
V
N
Y
3
L
N
I
 V
1
I
O
I
d

91
60

17
 a
A
@
9
9
Y
 3
0
X

€
1
—
 a
un

bi
4

JXDI <

.

XDE

PERR[01:00] DIR

N\

JXDI_LEN[02:00]

JXDIPE[01:00]

F/F REG

RCV_IN_PROG XCE

ICU_CMDAVAIL TRANSMIT
LOGIC LOAD

START
» TRF

RECEIVE | STARTRCV

XMIT_IN_PROG | LOGIC

COLLI_XMIT XCE

> TRANSMIT LEN

LOGIC L LoGIc | RCY_LEN[04:00]

XCE

TRANSMIT EN
LOGIC cLR

" CYCLE

COUNTER
CMDRCV "

> T

- : COMPARATOR LOGIC
RCV_PE

FIF EN

CLK

XJA_XFERACK

RCV_ERR

1CU_CLKJ COLL_RETRY J

FIF

CLR

XJA_XFERRETRY T
-« FIF

XJA_BUFEMPTD

- BUFEMPTD
\\ \ TCM

MR_X1250_88

V
X

8
¢
V

XJA 4-29

ICU_CMDAVAIL

YESXMIT

IN PROGRESS

:
ACV_LEN[04:00]

DATA CYCLE

RECEIVED BY

XDE.

PARITY YES
ERROR

NO

LOAD
STARTRCV TO TRF. RCV_IN_PROG

INFORMS TRANSMIT

LOGIC.

COLLI_XMIT

:
COLL_RETAY

DIR NEGATES ENABLING

XDE DATA ONTO CBI.

CEIVED

ERRCYC_EQ

CMDRCYV

TO TCM.

TRF

TRANSMITS
DATA PACKET

TO XM

BUFEMPTD
FROM TCM.

:
XJA_BUFEMPTD

i
y

D

I

RCV_PE

XJA_XFERACK

RCV_ERR

XJA_XFERRETRY

I

L

XJA_BUFEMPTD

Figure 4-14 Flow Diagram of XCE Receive Sequence

MRA_X1261_80

DIGITAL INTERNAL USE ONLY

4-30 XJA

If a transmit sequence is executing in the XCE transmit logic, XMIT_IN_PROG will

be true. In this case the start receive logic asserts COLLI_XMIT indicating that a

collision state exists. COLLI_XMIT is sent to the transmit logic where it inhibits

any new transmissions from initiating until the ICU has retried the transmission. In

addition, COLLI_XMIT asserts COLL_RETRY, which asserts RCV_ERR and then XJA_
XFERRETRY. XJA_XFERRETRY commands the ICU to retry the transfer. RCV_ERR

also asserts XJA_BUFEMPTD to inform the ICU that the TRF buffer reserved for the

data packet is still available.

If a transmit sequence is not executing in the XCE transmit logic, XMIT_IN_PROG will
be false. In this case, the start receive logic asserts:

e RCV_IN_PROG to the XCE transmit logic, informing it that a data packet is being
received and inhibiting the transmit logic from initiating a new transmit sequence.

When RCV_IN_PROG asserts, it causes DIR to negate. DIR is sent to the XDE where
its negated state enables the XDE data path onto the CBI.

* LOAD to the TRF, informing it to prepare to receive a data packet over the CBL.

e STARTRCV to the XDE where it controls the alignment of the data being received

from the JXDI (Section 4.3.3).

In addition, STARTRCV enables length logic, which receives JXDI_LEN[02:00] from the

XDE. JXDI_LEN[02:00] is obtained from the command/address word of the data packet

and indicates the size of the packet.

The length logic outputs the data packet length as RCV_LEN[04:00], which is loaded into
a length comparator where the length is compared with the number of error-free data
cycles as described in the following.

Each data cycle that passes through the XDE is checked for parity. The XCE is informed

of any parity errors by means of PERR[01:00]. (Each byte is checked separately resulting

in two parity error bits.) The parity error bits are sent to REG as JXDIPE[01:00], where
they set parity error bits in the error summary register (ERRS).

In addition, PERR[01:00] are applied to a flip-flop, which then outputs RCV_PE. So
long as there are no parity errors, RCV_PE remains false enabling a cycle counter. The
counter is reset by STARTRCV at the beginning of the data packet and incremented by
ICU_CLKJ from the JXDI. Therefore, with each error-free data cycle, the counter output

(ERR_CYC[04:00]) is incremented. The error-free cycle count is compared to the length

count in the length comparator. When the two counts are equal, the comparator asserts
ERRCYC_EQ indicating that the entire data packet is received without any parity errors.

ERRCYC_EQ is applied to acknowledge logic, which in turn asserts XJA_XFERACK to
the ICU and CMDRCYV to the TCM. CMDRCYV informs the TCM that the data transfer
from the JXDI to the TRF has completed successfully,. CMDRCV also resets the start

receive logic negating RCV_IN_PROG and asserting DIR.

When the TRF successfully transmits the data packet to the XMI bus, the TCM sends
BUFEMPTD to the XCE, which then asserts XJA_BUFEMPTD to the ICU. XJA_
BUFEMPTD informs the ICU that a TRF buffer is emptied and is available for new

data.

If a parity error is detected during the reception of the data packet, the associated error

bit from the XDE is asserted, causing RCV_PE to assert. RCV_PE disables the cycle

counter, stopping the ERR_CYC[04:00] count. RCV_PE also asserts RCV_ERR, which
then sends a retry command and a buffer empty signal to the ICU. It also resets the start

receive logic.

DIGITAL INTERNAL USE ONLY

XJA 4-31

4.5 XMI Corner

Figure 4-15 is a block diagram of the XMI corner.

Each node on the XMI bus has a standard interface called the XMI corner that connects

the node-specific logic to the XMI bus. The XMI corner assures a standard electrical and

logical interface to the XMI bus.

XJA NODE

XMI CORNER A

XLATCHES >
XCl

CONTROL 4
XJA-SPECIFIC CLOCKS @

LOGIC XCl =
CLOCKS s

XMI_TiME x

XCLOCK
CONTROL Loc XMI_PHASE

MR_X1252_89

Figure 4-15 XMI Corner Block Diagram

4.5.1 Physical Description

The XMI corner consists of seven XLATCH chips and one XCLOCK chip. The

XLATCHES interface the data paths and the XMI bus control signals to the XJA. The

bus that interconnects the XJA specific logic to the XLATCHES is called the XCI (XMI

bus to Corner Interface). The XCLOCK generates clocks to control the data flow through

the XLATCHES and to provide the XJA logic with XCI clocks synchronized to the XMI

bus.

The XMI corner has no control logic. All control signals are provided by the XJA logic.

4.5.2 XCI Clocks

The XMI bus is a synchronous bus with a cycle time of 64-ns. Timing of the XMI bus

is controlled by clock signals XMI_TIME and XMI_PHASE. These two signals are

distributed radially to the XMI corner of each node, thereby reducing skew and ensuring

good signal integrity. XCLOCK receives XMI_TIME and XMI_PHASE and uses them

to generate six subcycle clocks to clock data through the XLATCHES. The six subcycle

clocks are also used in the XJA.

Timing of the XCI clocks is shown in Figure 4-16. XMI_TIME is a 21.3-ns clock. XMI_

PHASE is a 64-ns asymmetrical clock. The rising edge of XMI_TIME that coincides

with the negative phase of XMI_PHASE is selected to generate the first subcycle XCI_

C12. The XCLOCK functions to generate another subcycle every 10.7 ns, resulting in

six subcycles across a 64-ns cycle, with a phase relationship as shown in Figure 4-16.

The subcycles generated in each XMI corner are synchronized to XMI_TIME and XMI_

PHASE and are in sync with each other.

DIGITAL INTERNAL USE ONLY

A
T
N
O
 3
S
N
 T
V
Y
N
Y
3
I
L
N
I

T
V
L
I
O
I
d

B
u
j
w
i
l
 ¥
D
0
1
0
X

9
L
+
 a
In

bi
d

XMI_TIME

XMI_PHASE

XCl_c12

XCi_C23

XCI_C34

XCI_C45

XC!_C56

XCl_Cs1

[S R S [v
r
x

e

XJA 4-33

4.6 XDC Receive Logic

The XDC receive logic (Figure 4-17) consists of the XRC (XMI receive logic), the RRF

(receive register file), and the RCM (receive control machine). The XRC interfaces

with the XMI bus (through the XMI corner) and receives data packets from the XMI

bus. It informs the RCM of the reception of the packets, which then control the packet

processing.

DMA and CPU packets are transferred to the RRF where they are loaded into buffers.

Upon command from the XCE, the buffers are unloaded and the data assembled into

JXDI format.

XMI read/write register packets access the XJA registers under control of the RCM.

A general description of the XRC and RRF is given followed by a description of how the

various types of data packets are processed through the XDC receive logic.

4.6.1 XRC

Data, ID, parity, and function information is received from the XMI corner latches

as XCI_DI[63:00], XCI_ID[05:00], XCI_P[02:00], and XCI_F[03:00], respectively. The

information is latched and then output as D[63:00], ID[05:00], P[02:00], and F[03:00].

The signals are applied to a parity checker, which asserts XMIPE[02:00] and PE if an

error is detected. XMIPE[02:00] identifies the location of the parity error as shown

in Table 3—4. XMIPE[02:00] is sent to REG where it sets a bit in the XMI bus error

register XBER) and the error summary register (ERRS). PE is sent to the RCM where it

terminates the receive process, and to confirmation logic that generates a no-ack response

(XCI_TCNF) for the XMI bus. The preceding occurs for every XMI cycle.

An XRC decoder receives the function and data bits that identifies all the input

cycles. The decoder transfers this information to RCM as CACYCTYP[03:00],
DATCYCTYP[01:00], and WRLEN{[01:00].

DIGITAL INTERNAL USE ONLY

('
1u

o)
)
L
i
—
p
 a
i
n
b
y
4

A
T
N
O
 3
S
N

T
V
N
Y
I
L
N
I

T
V
L
I
D
I
g

w
e
s
b
e
;
q
 x
o
0
i
g
 2

16
07

7
a
A
1
9
0
9
Y

i XRC

|
EgglEéVE ' RCV_D[63:00} D[63:00] XCI_D[63:00] =~

BLOCK RCV_ID[05:00] | [LATCH 10{05:00] XCI_ID[05:00}
DIAGRAM { =

SHEET 2 | Pl02:00] JLATCH XCl_P[02:00)

HEG{ -« XMIPE[02:00) F[03:00] XCI_F[03:00]
- le—

, XMI
O= PE PC LATCHES

i

XCI_TCNF

CONFIRMATION >
° ,_SG,C TCNF XCI_TSUP

S

MEMSIZE[07:00] D({33:00]

REG MEMSTART[07:00 XMI_NODE_ID[03:00L l ADDRESS = -0t !
DECODE MEMSEL

LOGIC

REGADR[03:00 REGSELM -« l l

S

G
R
S

N
I

I

S

—
—
—

N

p
—
—
—
—
—
S

R

S
R
S

 S
R
S

. 10[05:00]

TRE <MD 1D105:00) CO"“IGNDE“ CACYCTYP([03:00} D[63:00}

o CRD Floa:00]

: RER

; CACYCTYP[03:00] DATCYCTYP[01:00] IDMAT D XMI_NODE_ID[03:00) . o

REG « __ DATCYCTYP[01:00) WSE MATCH

" wsE RSE
- XRC
LF-ISE INTRREG([83:00) DECODER

" WRLEN[01:00]

INTRIPL{03:00]

IDENTIPL{03:00]

BUFSTAT[01:00]

TSUP

EXPECTRD

L Lo UG U U — . P iy B i iy L

YYVYVYYY

\ J
v

RECEIVE LOGIC BLOCK DIAGRAM
SHEET 3

MA_X1258_89

12
5m

i%
v
r
X

A
T
N
O

3
S
N

T
V
Y
N
Y
H
I
L
N
I

T
V
L
I
D
I
]

(
'
u
o
)
)

2
1
—
 a
in

bi
4

w
e
l
b
e
i
q
 %
2
0
1
9
 2
1
6
0
7
 a
n
l
e
d
9
y

XCE

CB'J

--—————-—_——————————-——————-———-————————-—--—————1

RRF

UNLOAD

UBUFNUM[02:00]
\ CB1_PAR[03:00)

4

XCE

FIF

CLK

P[03:00]

-

CBI_DATA[31:00]

f! FIF

CLK

PG

JXDI

ASSEMBLY
0[31:00] LOGIC

UNLOAD_CLK {32 ns)

r
-
—
-
—
-
—
-
—
—
—
-
l
-
-
l
-
—
—
_
—
—
~

W
D

MN

E
GN

P
SE

R
EE

R
NG

TR

SR

e
 W

RCV_D[63:00]

63

RCV_iD[05:00]

RECEIVE LOGIC

BLOCK DIAGRAM

LDRCVCA

SHEET1

J

+ 0

C/AO Qw EN

C/A1 Qw EN

C/A2 ow EN

C/A3 Qw EN

C/A4 ow EN

SELCA[02:00]C/A

DECODER

63

LDRCVDAT

DATO HW ADR

DAT1 HW ADR

DAT2 HW ADR
SELDAT{02:00]

RECEIVE LOGIC

> BLOCK DIAGRAM
SHEET 3

DAT3 HW ADR

DAT4 HW ADR

31

CPU RD DAT LW

LD
LDCPURD

REGULDAT[31:00]

CPURDSRC

INTRIPL[01:00)

1
-

G

vE
e
W

s
hE

Er
GE
D

GE
D

GE
D

ME
D

GE
D

EE
D

SN

qU
S

GN
P

GU
D

SE
R
SR

 G
ED
 M

UGN

MR

 (
NN

G
EN
e
WA
 S

em

FORCECMD[02:00]

CPUID[05:00]
F D ——————

\

REG

b
 o
o
n

o
n
f
o
s

MR_X1254_89

G
e
-
¥

V
r
X
x

A
I
N
O
 3
S
N
 T
V
v
N
Y
3
I
L
N
I

T
V
1
I
O
I
d

w
e
s
b
e
|
g
 B
o
o
i
g
 2
1
6
0
7
 a
A
l
@
d
9
Y

Z
L
—

 2
in

bi
d

RECEIVE LOGIC

BLOCK DIAGRAM <

SHEET 2

XCE4

\

PE 01

EXPECTRD

LDRCVCA BUFSTAT[01:00]

SELCA[02:00] WRLEN[01:00]

LDRCVDAT DATCYCTYP[01:00)

SELDAT{02:00] CACYCTYP{03:00]

A
4

A
4

A
N

LDCPURD WSE

CPURDSRC RSE

INTRIPL[01:00]) INTRIPL[03:00]

3

FORCECMD{[02:00] IDENTIPL[03:00]

Y
s

REG

RECEIVE LOGIC

> BLOCK DIAGRAM

SHEET 1

> TCM

RCM
STARTXMIT INTERREG]63:00]

SBUFNUM[02:00] TSUP

LENGTH[01:00] ~
< TCMSTATUS[02:00] ~

DONEXMIT

RCMSTATUS[00]

DBUFNUM[02:00]
RCMSTATUS[01)

IPINTR

KRESPONSE

ERRINTR

INTRPEND[03:00]

-

EXPECTRD

IDENTID[15:00) TRF

MR_X1255_8%

v
r
x

9
e
-
v

XJA 4-37

CACYCTYPI[03:00] identifies the command/address cycles as shown in Table 4-4.

Table 4-4 Command/Address Cycle Type

CACYCTYP[03:00] Cycle Type

0000 Not a command/address cycle

0001 DMA write command/address

0010 DMA read command/address

0011 Interrupt command

0100 Implied vector interrupt command

0111 Identify command

1001 XJA register write command/address

1010 XJA register read command/address

1100 Read locked response

1101 Read error response

DACYCTYP[01:00] identifies the data cycles as shown in Table 4-5.

Table 4-5 Data Cycle Type

DATCYCTYP[01:00] Cycle Type

00 Not a data cycle

01 Read data return (including IDENT responses)

10 Write data

WRLEN[01:00] specifies the length of write data as shown in Table 4-6.

Table 4-6 Write Length

WRLEN[01:00] Length

00 1 quadword

01 2 quadwords (octaword)

10 4 quadwords (hexword)

DIGITAL INTERNAL USE ONLY

4-38 XJA

Address decode logic examines the address bits from the XMI (D[33:00]) to determine if

a data packet is accessing main memory or XJA registers. If data bit [29] is 0, access

is to main memory. The decode logic receives MEMSIZE[07:00] and MEMSTART{07:00]

from REG. MEMSIZE[07:00] specifies the number of 64-Mbyte sections of main memory

available. MEMSTART[07:00] specifies the starting address of the available 64-Mbyte

sections. If the access is to available main memory, the logic asserts MEMSEL to the

XRC decoder.

If data bit [29] is 1, access is to /O space. If data bits [22:19] equal XMI_NODE_

ID[03:00], then the access is to an XMI space register in the XJA. In this case, the

address decode logic asserts REGSEL to the decoder.

Confirmation logic provides ack or no-ack returns to the XMI bus for each cycle received.

The XRC decoder checks conditions associated with the specific type of data packet and

commands the confirmation logic (using TCNF) to ack the data cycle if the conditions are

met. Otherwise, a no-ack response is returned to the XMI bus. As already mentioned,

parity errors also result in XMI no-acks.

4.6.2 RRF

The RRF (receive register file) buffers data packets from the XRC and, under control of

the RCM, restructures the data into the format required by the JXDI. The reformatted

data is output to the CBI.

The RRF contains five DMA read/write C/A buffers, five hexword write data buffers,

and one CPU read data buffer. The five write data buffers are associated with the five

DMA read/write C/A buffers. If a write C/A is loaded into one of the DMA read/write C/A

buffers, the write data is loaded into the associated write data buffer. Each write data

buffer is entirely dedicated to its associated C/A buffer. If the write length is quadword,

the quadword is loaded into the write buffer and the other three quadword locations are
not used. A hexword write completely fills a write data buffer. If a read C/A is loaded

into one of the DMA read/write C/A buffers, the associated write data buffer is not used.

The CPU read data buffer is 32 bits wide. It receives CPU read data return from the

XRC.

RCM monitors the state of the RRF DMA buffers and informs the XRC decoder of buffer
availability by use of BUFSTAT[01:00]. The buffer status code is shown in Table 4-7.

Table 4-7 Buffer Status Code

BUFSTAT[01:00] Status

00 Less than two DMA buffers are full

10 Two DMA buffers are full

11 More than two DMA buffers are full

DIGITAL INTERNAL USE ONLY

XJA 4-39

The XRC uses BUFSTAT[01:00] and the suppress line on the XMI bus to ensure that

the XJA does not receive a DMA data packet for which there is no RRF buffer available.

If the XRC decoder receives a DMA packet while BUFSTAT{01:00] is 10 (two RRF

DMA buffers are full), it asserts XCI_TSUP to the XMI to suppress all XMI traffic. If

BUFSTAT[01:00] indicates that more than two DMA buffers are full, the XRC keeps

XCI_TSUP asserted until two or less buffers are full. The XRC asserts the suppress line

when three buffers are full because it is possible to receive two more DMA C/As from the

time that XCI_TSUP is asserted and the XMI bus is suppressed.!

The JXDI assembly logic functions to select the buffer to be unloaded and assembles the

unloaded data into the format required by the JXDI. The data unloaded from the buffer

is in 64-bit quadword format. The output from the assembly logic is in 32-bit longword

format. The data longwords are clocked onto the CBI by the 32-ns UNLOAD_CLK from

the XCE. The data appears on the CBI as CBI_DATA[31:00]. Byte parity is generated on

the data, which then is clocked onto the CBI as CBI_PAR[03:00].

The assembly logic also functions to assemble data returns to the ICU other than

DMA packets. Under control of the RCM, the assembly logic formats interrupt, error

status, write complete, and other packets into JXDI format for the ICU. These cases are

individually described in Section 4.6.3, Section 4.6.4, and Section 4.6.5.

4.6.3 Packet Processing

Data packets received from the XMI bus fall into eleven categories as seen in Figure 4-1.

* DMA read command/address cycle

e DMA write command/address cycle plus the associated data

* CPU read data return cycle received in response to a previous CPU read XMI

command

* CPU read lock response cycle in response to a previous CPU read XMI command

* CPU read error response cycle in response to a previous CPU read XMI command

e XMI read of XMI space register command/address cycle

e XMI write of XMI space register command/address cycle plus the associated data

* Interrupt command cycle

* IDENT command cycle

¢ Implied vector interrupt command cycle

¢ IDENT response

The following describes the steps involved in processing the eleven types of data packets.

! There is not enough time to receive two DMA write data packets. At least one of the two would
have to be a DMA read C/A packet.

DIGITAL INTERNAL USE ONLY

4-40 XJA

4.6.3.1 DMA Read/Write Packet Processing

Figure 4-18 is a flow diagram of packet processing for DMA read and DMA write packets.

For a DMA cycle to be accepted (acknowledged) and processed, the following must be

true:

¢ There must be no parity error.

e The XRC decoder must see a command function code for a C/A cycle or a write data

function code for write data.

¢ The XRC decoder must see a write (or write unlock) or a read (or read lock) command

in the command field of the command/address longword.

o For a write data cycle, the write data must follow a write command\ address cycle

and there must be the correct number of write data cycle(s) as specified in the

WRLEN[01:00] code issued to the RCM. If this does not occur, a write sequence error

(WSE) is issued to REG and RCM.

e The XRC decoder must know that the address field of the command/address longword

specifies available main memory as indicated by MEMSEL from the address decode

logic.

If the above conditions are met, the XRC decoder does the following:

e Asserts TCNF to the confirm logic, which then acknowledges receipt of the cycle to

the XMI bus by asserting XCI_TCNF.

¢ Specifies to the RCM, a DMA read/write command/address cycle by using

CACYCTYP[03:00] (Table 4—4) or a write data cycle by using DATCYCTYP[01:00]

(Table 4-5).

¢ If a DMA write command/address cycle, specifies to the RCM the length of the write

data by using WRLEN[01:00] (Table 4-6).

o Sends CACYCTYP[03:00] and DATCYCTYP[01:00] to REG to indicate the type of

data currently on the RCV_D([63:00] and ID[05:00] lines. REG automatically saves

C/A data for use in error analysis in the event of an error interrupt.

The data and ID are transferred to the RRF buffers as RCV_D[63:00] and RCV_ID[05:00],

respectively. The RCM loads the C/A data and ID into a C/A buffer using SELCA[02:00]
and LDRCVCA. SELCA[02:00] is decoded to enable one of the C/A buffer. LDRCVCA

loads the command/address into the selected buffer.

If this is a write operation, the RCM loads the next data quadword (write data) into the

write data buffer associated with the selected C/A buffer. The RCM selects the associated
buffer using the SELDAT[02:00] select code. LDRCVDAT from the RCM is the loading

command. SELDAT[02:00] enables the associated buffer while an internal counter selects

the first quadword location in the buffer for the write data. If the write is octaword or

hexword in length, SELDAT[02:00] holds the buffer enabled while the counter increments

to the next quadword location(s) and LDRCVDAT loads in the write data quadword(s)
that follow. .

DIGITAL INTERNAL USE ONLY

DATA PACKET RECEIVED
FROM XM] BUS.

XCI_TCNF

NO-ACK TO XMI BUS.

XJA

ACCEPTS
PACKET

NO

YES

NO

SELDAT[02:00]
TCNF LDRCVDAT

RCM LOADS WRITE DATA
INTO DATA BUFFER.

XCI_TCNF

ACK TO XMI BUS. STARTRMIT

SBUFNUM[02:00]
v LENGTH[O01:00]

RCM NOTIFIES XCE OF
CACYCTYP[03:00) RRF BUFFER LOADED
DATCYCTYP[01:00] WITH DATA PACKET,
WRLEN]01:00)

DECODER INFORMS RCM

AND REG OF

PACKET TYPE.

UNLOAD

UBUFNUM[02:00)

PACKET.

XCE UNLOADS DATA

DMA

PACKET
DONEXMIT

DBUFNUM[02:00)

THAT PACKET

XCE INFORMS RCM

WAS SUCCESSFULLY

TRANSMITTED TO ICU.

SELCA[02:00]

LDRCVCA

RCM LOADS C/A BUFSTAT[01:00)

INTO C/A BUFFER. RCM INFORMS XRC OF

BUFFER STATUS IN RRF.

(END)
MR _X1257_89

XJA 4-41

Figure 4-18 (Cont.) Reception of DMA Command/Address Packets and CPU Return
Data/Status Packets from XM| Bus

DIGITAL INTERNAL USE ONLY

4-42 XJA

CPU READ DATA RETURN

OR STATUS RETURN

CcPU

READ DATA

RETURN

NQ

LDCPURD

RCM LOADS READ

RETURN LONGWORD

INTO CPU

READ DATA BUFFER.

FORCECMD([02:00) FORCECMD{02:00]
ASSEMBLE CPU READ ASSEMBLE CPU

DATA RETURN STATUS LONGWORD.
C/A LONGWORD.

CPURDSRC

RRF MUX SELECTS

DATA FROM CPU

READ DATA BUFFER.

STARTXMIT

SBUFNUM[02:00]

LENGTH[01:00]

RCM NOTIFIES XCE

THAT DATA PACKET I8

READY TO BE TAKEN

UNLOAD

UBUFNUM[02:00}

XCE UNLOADS

DATA PACKET.

DONEXMIT

DBUFNUM[02:00]

XCE INFORMS RCM

THAT PACKET

WAS SUCCESSFULLY

TRANSMITTED TO ICU.

RCMSTATUS|[O01)

RCM NOTIFIES TCM

THAT CPU TRANSACTION

1S COMPLETED.

MR_X1325_89

Figure 4-18 Reception of DMA Command/Address Packets and CPU Return

Data/Status Packets from XMI Bus

DIGITAL INTERNAL USE ONLY

XJA 4-43

When the data packet is loaded into the RRF, the RCM asserts STARTXMIT and

SBUFNUM[02:00] to the XCE, informing it that a data packetis available in the buffer

specified by SBUFNUMI[02:00]. If the packet contains DMA write data, the RCM informs

XCE of the size of the packet using LENGTH[01:00].

When the XCE is ready to take the data packet, it asserts UNLOAD and

UBUFNUM[02:00]. UNLOAD transfers the data from the buffer selected by

UBUFNUM[02:00], into the JXDI assembly logic which then assembles the data into

the format required by the JXDI.

When the data packet is successfully transmitted to the ICU, the XCE notifies the RCM

by asserting DONEXMIT and DBUFNUMI[02:00]. DBUFNUM][02:00] identifies the buffer

whose data was unloaded and sent to the ICU. This buffer is now available for another

DMA data packet. This allows the RCM to monitor the status of the RRF C/A buffers

and inform XRC of the status by means of BUFSTAT{01:00].

4.6.3.2 CPU Read Data Return and CPU Read Status Return

Figure 4-18 is also a flow diagram of the CPU read data return and CPU read status

return packet processing.

The command/address or read data cycle is received by the XRC decoder, which then

determines if the cycle is to be accepted. For a CPU read data return cycle or status

return cycle to be received and processed, the following must be true:

¢ There must be no parity error.

* The XRC decoder must see a good read data return (or corrected read data return) or

a read error response or read locked response function code for the C/A cycle.

* The XRC decoder must see an asserted IDMAT from ID match logic in the XRC. This

occurs when the XJA node ID (XMI_NODE_ID[03:00]) matches the ID associated

with the return read data (ID[05:02]), thereby identifying the XJA as the commander

that requested the read data.

¢ The XRC decoder must see an asserted EXPECTRD from the TCM in the transmit

logic. EXPECTRD was asserted to the RCM from the TCM, when a CPU read request

was transmitted to the XMI bus. EXPECTRD indicates to the XRC decoder that read

return data is expected. If EXPECTRD is not asserted, a read sequence error (RSE)

is asserted to REG and RCM.

If the above conditions are met, the XRC decoder does the following:

* Asserts TCNF to the confirm logic which acknowledges receipt of the cycle to the XMI

bus using XCI_TCNF.

* Specifies to the RCM, a read data return cycle using DATCYCTYP[01:00].

¢ If the function code spécified corrected read return data, CRD is asserted to REG
informing it of such.

* For a read lock response, specifies to the RCM a read locked response cycle using

DATCYCTYP[01:00].

¢ For a read error response, specifies to the RCM a read error response cycle using

DATCYCTYP[01:00]. In this case, the decoder also asserts RER to REG, indicating a

read error response was received.

DIGITAL INTERNAL USE ONLY

4-44 XJA

For a CPU read data return packet, the read data is loaded into the 32-bit CPU read

data buffer in the RRF by LDCPURD from the RCM. The buffer output is applied to the

JXDI assembly logic through a multiplexer.

The JXDI assembly logic forces the generation of some command/addresses as required

for the JXDI. The command/address to be generated is specified by RCM using

FORCECMDI[02:00]. Table 4-8 gives the force command codes.

Table 4-8 Force Command Code

FORCECMD/{02:00}] Command

000 INTR (from XMI bus)

001 CPU read return data

010 CPU read locked data return

011 Read error status

100 Read locked status

101 CPU write complete

110 IVINTR

111 ERRINTR (from XJA)

For a CPU read data return cycle, the RCM asserts a 001 force command code to the
JXDI assembly logic, which generates a CPU read data return command/address as

shown in Figure 2-12. The commander ID is obtained from TRF as CPUID[05:00]. TRF

saved the commander ID when the CPU request was transmitted to the XMI bus. The

RCM uses CPURDSRC to select the read data in the CPU read data buffer. The selected

data is input to the assembly logic, which outputs the data after the command/address.
The assembly logic outputs the data longword so it appears on the JXDI one byte per

word as shown in Figure 2-12.

For a read error status return or a read lock status return, the RCM commands the

assembly logic to format the correct command/address (Figure 2-13) again using the

commander ID from the TRF.

The RCM asserts STARTXMIT and SBUFNUM[02:00] to the XCE, informing it that a

data packet is available in the buffer specified by SBUFNUM[02:00]. In this case the

command/address longword is in the JXDI assembly logic and, for a CPU read data

return packet, the CPU read data buffer is specified as the source for the data longword.

The XCE responds by asserting UNLOAD and UBUFNUM[02:00]. UNLOAD transfers
the data from the assembly logic and, in the case of a CPU read data return packet,

from the CPU read data buffer as selected by UBUFNUMI02:00]. The assembled data is

output from the assembly logic in the format required by the JXDI.

DIGITAL INTERNAL USE ONLY

XJA 4-45

When the data packet is successfully transmitted to the ICU, the XCE notifies the RCM

by asserting DONEXMIT and DBUFNUMI[02:00]. DBUFNUM][02:00] identifies the buffer

whose data was unloaded and sent to the ICU. The CPU read data buffer is now available

for another CPU read data return longword. This allows the RCM to monitor the status

of the forced commands and delete those commands that are successfully transmitted

from its command queue, or resubmit a forced command to the TRF.

The RCM then asserts RCMSTATUS[01] to the TCM, informing it that the CPU

transaction associated with the forced command, is completed. All the forced commands,

except the three interrupts, result from transmissions from the transmit logic to the

XMI bus. Therefore, when a noninterrupt force command is transferred to the ICU, the

transmit logic is notified by the assertion of RCMSTATUS[01].

4.6.3.3 XMI Read/Write of XMI Space Register Packet Processing

Figure 4-19 is a flow diagram of packet processing for the read and write of XMI space

registers.

For an XMI space register read/write cycle to be accepted and processed, the following

must be true:

¢ There must be no parity error.

e The XRC decoder must see a command function code for a C/A cycle, or a write data

function code for write data.

¢ The XRC decoder must see a write (or write unlock), or a read (or read lock) command

in the command field of the command/address longword.

e For an XMI write register packet, the write data cycle must follow the write register

command/cycle. If this does not occur, a write sequence error (WSE) is asserted to

REG and RCM.

e The XRC decoder must know that the address field of the command/address longword

specifies an XJA register location as indicated by REGSEL from the address decode
logic.

If the above conditions are met, the XRC decoder does the following:

e Asserts TCNF to the confirm logic that acknowledges receipt of the cycle to the XMI

bus.

e Specifies to the RCM, an XMI write register or an XMI read register

command/address cycle using CACYCTYP[03:00], or a write data cycle using

DATCYCTYP[01:00].

e Sends CACYCTYP[03:00] and DATCYCTYP[01:00] to REG to indicate the type of

data currently on the RCV_D[63:00] and ID[05:00] lines. REG automatically saves

C/A data for use in error analysis in the event of an error interrupt.

e For a read XMI space register C/A, specifies a read XJA register command to

commander ID logic in the XRC. The logic passes the commander ID (ID[05:00])

to the TRF as CMDR_ID[05:00]. The TRF uses it for the ID (address) of the return

read data to the XMI bus.

DIGITAL INTERNAL USE ONLY

4-46 XJA

D
DATA PACKET RECEIVED

FROM XM! BUS.

XJA NO

ACCEPTS

PACKET

ACK TO XM! BUS.

Y
CACYCTYP[03:00]

DATCYCTYP[01:00]

DECODER INFORMS RCM

AND REG OF REGISTER

READ/WRITE

PACKET TYPE.

REGISTER

READ

CMDR_ID[05:00)

XRC TRANSFERS

COMMANDER ID TO TRF

TO ACCOMPANY READ

DATA RETURN

TO XMI BUS.

I
REGADR[03:00]

XRC INFORMS TCM

OF REGISTER ADDRESS.

|

REG LOADS SELECTED

REGISTER WITH WRITE

DATA (RCV_D[31:00]).

I

ULREGSEL[04:00)

TCM INFORMS REG OF

REGISTER TO BE READ.

'
REGULDAT(31.00]

READ DATA TO TRF

FOR TRANSMISSION

TO XMI BUS.

!
RCMSTATUS[00]

RCM COMMANDS

TCM TO

TRANSMIT REGISTER

DATA TO XM! BUS.

)

REG DECODES XCI TCNF

TCNF COMMAND/ADDRESS TO _
ANDIADDRE NO-ACK TO XMI BUS.

SPACE REGISTER

l TO BE WRITTEN.

XCI_TCNF v

MR_X1258_89

Figure 4-19 Reception of XMl Space Register Read/Write Command/Address Packets

from XMl Bus

DIGITAL INTERNAL USE ONLY

XJA 4-47

The address decode logic extracts the XJA target register from the command/address
and outputs it as REGADR[03:00] to TCM. The read access to the XMI space registers is
controlled by the TCM.

For a read of an XMI space register, the TCM uses REGADRI[03:00] to generate

ULREGSEL[04:00], which selects the register to be unloaded (read). The data from the
selected register (REGULDAT([31:00]) is transmitted to the TRF where it is transmitted
to the XMI bus by the TCM (Figure 4-23). The RCM commands the transmit logic to
transmit the register data to the XMI bus by asserting RCMSTATUS([00] to the TCM.

For a write of an XMI space register, REG uses CACYCTYP[03:00] from XRC to identify

the data cycle as a command/address cycle. REG uses the command/address data to
select the XMI space register, which is loaded with the write data contained in the
following data cycle.

4.6.3.4 Basic Interrupt and WEI Implied Vector Interrupt Packet Processing

For a basic interrupt or WEI implied vector interrupt command cycle to be accepted and

processed, the following must be true:

¢ There must be no parity error.

¢ The XRC decoder must see a command function code.

e The XRC decoder must see an interrupt command or an implied vector interrupt

command in the command field of the command/address longword.

e The XRC decoder must see that the interrupt destination field D[15:00] matches the
node ID of the XJA (XMI_NODE_ID{03:00]).

If the above conditions are met, the XRC decoder does the following:

e Asserts TCNF to the confirm logic that acknowledges receipt of the cycle to the XMI

bus.

* Specifies to the RCM, a basic interrupt command cycle or an implied vector interrupt

command cycle through CACYCTYP[03:00].

e For a basic interrupt command, specifies to the RCM the IPL of the interrupt through
INTRIPL[03:00].

e For a basic interrupt command, specifies to the RCM the status of pending interrupts

using INTRREGI{63:00]. The status of pending interrupts is shown in Table 4-9. If

more than one IPL is set, RCM asserts XCT_TSUP to the XRC decoder and no more

commands are acknowledged until the interrupts are serviced.

Table 4-9 Status of Pending Interrupts

INTRREGI[63:00] Pending Interrupt Levels

[15:00] IPL 14, node 0 to 15

[31:16] IPL 15, node 0 to 15

[47:32] IPL 16, node 0 to 15

[63:48] IPL 17, node 0 to 15

DIGITAL INTERNAL USE ONLY

4-48 XJA

The RCM forces an interrupt or an implied vector interrupt to the JXDI assembly

logic by asserting a FORCECMD[02:00] code of 000 or 110, respectively (Table 4-8).

Both codes result in the same interrupt command format from the assembly logic as

shown in Figure 2-17. The IPL used for the interrupt command is supplied by RCM as

INTRIPL[01:00].

Sixty-four flip-flops in the XRC reflect the status of pending interrupts from the XMI bus

(excluding implied vector interrupts). Sixteen flip-flops are assigned to each of the four

IPLs. The sixteen flip-flops at each IPL correspond to the XMI nodes. This results in

four flip-flops for each XMI node, one for each IPL. The VAX 9000 system has only 12

adapters on the XMI bus (excluding the XJA), so there would be only 48 flip-flops used to

indicate the status of XMI pending interrupts.

When a normal interrupt is received by the XRC, it sets one of the flip-flops according to

the interrupting node number and the IPL of the interrupt. When a pending interrupt

is serviced (as indicated by an IDENT command on the XMI bus), the pending flip-flop

associated with the interrupt is reset.

The XRC informs the RCM of the status of pending interrupts with the signal

INTERREG[63:00]. When the RCM is not doing a DMA or CPU transfer and interrupt(s)

are pending, it initiates an interrupt transfer to the XJA using the higher IPL interrupt

first. When more than one interrupt exists at the same IPL, the higher numbered nodes

have priority.

4.6.3.5 IDENT Command Cycle

IDENT commands are received by the XJA for the purpose of updating the status

of pending interrupt levels. Nothing is transferred to the ICU and there is no

acknowledgment returned to the XMI bus.

For a valid identify command cycle to be received and processed, the following must be

true:

¢ There must be no parity error.

¢ The XRC decoder must see a command function code.

¢ The XRC decoder must see an identify command in the command field of the

command/address longword.

If the above conditions are met, the XRC decoder does the following:

¢ Specifies to the RCM, an identify command cycle using CACYCTYP[03:00].

¢ Resets the associated pending interrupt level in the XRC decoder (Table 4-9). RCM

is notified of the new interrupt status using INTERREGI[63:00].

4.6.4 CPU Write Complete

When any CPU write transaction is completed, the TCM notifies the RCM of this using

TCMSTATUS[02:00] (Table 4-12). The RCM then forces a CPU write complete command

to the JXDI assembly logic in the RRF using FORCECMD[02:00] (see Table 4-8). The

assembly logic assembles a CPU status return command cycle (Figure 2-13) using the

CPUID[05:00] from the TRF and a CPU write complete code in the command field.

DIGITAL INTERNAL USE ONLY

XJA 4-49

4.6.5 CPU Read of an XJA Private Register

Another function handled by the RRF is a CPU return of read data from an XJA

private register. The processing of the CPU read request and the reading of the

register is handled by the TCM in the transmit logic. The read data is made available

to the multiplexer in the RRF and the RCM is notified of the available data by

TCMSTATUS[02:00] from the TCM (Table 4-12). The RCM then forces a CPU read

return data command (FORCECMD[02:00] = 001, Table 4-8) with the ID again being

provided from TRF as CPUID[05:00]. For the data longword that follows, the RCM

asserts CPURDSRC to select the register data (REGULDAT(31:00]) for the JXDI

assembly logic, which assembles it into the JXDI required format.

4.7 XDC Transmit Logic

The XDC transmit logic (Figure 4-20) consists of a transmit control machine (TCM)

and a transmit register file (TRF). The TRF receives data from the CBI, buffers it, and

formats it for the XMI bus. The TCM controls the TRF, arbitrates for the XMI bus, and

communicates with the XDC receive logic as required. CPU access to the X.JJA private

registers is also handled by the transmit logic.

~ ERRINTR XMI_CMD_REQ -

IPINTR XMI_RES_REQ _} ;rj‘é
_XMIARBTO

RIDNACK XGI_GRANT

RETO XCiI_RCNF } XCi
CNAK

WDNACK REGADR[03:00)

REG < = XRC
_TTO

~_LDREGSEL[04:00] CBIPE ~

LDREG JXDITYPE[02:00] TRANSMIT
- LOGIC
ULREGSEL[04:00] TcM | LOADBUFSEL[01:00) § BLOCK

- » [DIAGRAM
CBIPE TRXBUFSEL[01:00] SHEET 2

_ LDTRXDAT ~

. SELREG[04:00] ~

~ RCMSTATUS[01:00] SELTRX[03:00] TRANSMIT
> LOGIC

KRESPONSE LDCPUCA > BLOCK
» | DpiAGRAM

RCM TCMSTATUS[02:00) LDCPUDAT ~ | SHEET 3

ad [

INTRPEND[03:00) ~

CMDRCV

XCE {‘BUFEMPTD

Figure 4-20 (Cont.)

MR_X1250_89

Transmit Logic Block Diagram

DIGITAL INTERNAL USE ONLY

4-50 . XJA

r_—-—--------_--------------—-—------’--—---

TR
i

: CBIPE
| CBI_PAR[03:00]

PC BUFFER 1

cBI i CBI_DATA[31:00} ~

1 iD LEN |cMD - T0
CPU/CA

| WORD 1 | WORD © > BUFFER

1) WORD 3 | WORD 2 > YO
I LOADBUFSEL[01:00] CPU WRITE

I EN WORD S | WORD 4 > BUFFER

] LD WORD 7 | WORD 6

TRANSMIT : WORD 9 WORD 8
LOGIC)
BLOCK < . H JXDITYPE[02:00] COMMAND f— WORDB | WORD A I

IAGRAM | * T

%ngr 1] DECODER WORD O | WORD ¢ |

i UNLD | WORD F | WORD E |

|

: TRXBUFSEL[01:00] BUFFER 2

~ | o [enfemo
i WORD 1 | WORD 0
| LOAD TRAANSMIT

XGE —» D WORD 3 | WORD 2 LOGIC
I > BLOCK
| e EN WORD & | WORD 4 DIAGRAM

SHEET 3

i LD WORD 7 | WORD 6

: WORD 9 | WORD 8

I WORD B | WORD A M1

I WORD D | WORD ¢ HH

| UNLD | WORD F | woRrD E 1

i

|
i BUFFER 3

| 1D LEN [cuc -
| WORD 1 | WORD © >

: —TM D WORD 3 | WORD 2 >
l el EN WORD 5 | WORD 4 To

. ASSEMBLY

1 LD WORD 7 | WORD 6 > > NCELECT

: WORD 9§ | WORD 8 > Loaic

I WORD B | WORD A —

I WORD D | WORD C >

I UNLD | WORDF | WORDE J
i
L_----_--—----—------—--—----—--—-_—--_I--—-

WR_X1280_08

Figure 4-20 (Cont.) Transmit Logic Block Diagram

DIGITAL INTERNAL USE ONLY

XJA

TRF

TRANSMIT

LOGIC

BLOCK

DIAGRAM

SHEET1

r’

f

FROM

RECEIVE

BUFFERS

1,23

TRANSMIT

LOGIC .
BLOCK <

DIAGRAM

SHEET 2 r

FROM

RECEIVEJ

BUFFERS

1,23

.
XRC

RCM

REG {

TRANSMIT

LOGIC

-

»_l
"'

4-51

RAF

XB11D[03:00} EXPECTRD

SELTRX[03:00)
XMI_NODE_ID{03:00)

- RCM

XM

LDCPUCA
= LOAD CPUID[05:00] i
LDCPUDAT >—— XBINUM{03:00]] A} REG

CPU-C/A SELREG[04:00] }~ BUFFER |
CAREG([39:00} i

|

—»! LOAD REGLDDAT[31:00] I .

—————» cPU WRITE !
BUFFER N | AEG

—_ TRX_D(63:00}|

|

|

o 1

g 1
S —» pa | Pl02:00) XCI_D[63:00) 1~

- — >~

o1 pres:00) XCI_F[03:00] 1
-l >

@l F(03:00) xcl | XCi_iD{05:00] !
- LATCH = { xci

CMDRA_ID[05:00] % |_1o108:00) XCI_P[02:00] 1 _ (BuUs
) = >

IDENT_1D[15:00]

0 CLK !
REGULDAT[31:00] @ xcl_c12 |

|
|'

| |

|

|

|

]

Figure 4-20 Transmit Logic Block Diagram

4.7.1 Transmit Register File

The TRF contains:

* Three buffers to store DMA read return data. Each of the buffers is capable of storing

a read data return command/address and up to a hexword of read data.

e A CPU command/address buffer to store CPU command/addresses.

¢ A CPU write data buffer to store CPU write data.

e Assemble/select logic to assemble data into XMI format.

Data and parity are received from the CBI as CBI_DATA[31:00] and CBI_PAR[03:00],

respectively. On each cycle, the data and parity bits are applied to a parity checker,

which outputs CBIPE to the TCM if a parity error is found. The TCM terminates the

data transfer and sends CBIPE to the error summary register (ERRS) in REG.

A command decoder decodes each command/address cycle from the CBI to determine

the data type. The decoder outputs JXDITYPE[02:00] to the TCM, informing it of the

type of data being loaded into the TRF buffer. The JXDITYPE[02:00] code is shown in

Table 4-10.

BUS

MA_X1281_89

DIGITAL INTERNAL USE ONLY

4-52 XJA

Table 4-10 Data Type Code

JXDITYPE[02:00] JXDI Transaction Type

000 No-op

001 Quadword read data return

010 Octaword read data return

011 Hexword read data return

100 CPU write

101 CPU read

110 Read locked status

111 Read error status

The assembly/select logic is controlled by SELTRX[03:00] from the TCM. Knowing

the type of data in the TRF buffer, the TCM uses SELTRX[03:00] to command the

assembly/select logic to generate the correct function code, obtain the commander ID, and

format the buffer data as required for the XMI bus. The SELTRX[03:00] code is shown in

Table 4-11.

Table 4-11 XMIi Cycle Type Code

XM

SELTRX[03:00] Function Cycle Type

0000 GRDO Return good read data 0

0001 GRD1 Return good read data 1

0010 GRD2 Return good read data 2

0011 GRD3 Return good read data 3

0100 LOC Return locked response

0101 RER Return error response

0110 GRDO Return XMI space register good read data to XMI bus

0111 No-op -

1000 CMD CPU C/A (read or write) to XMI bus

1001 WDAT CPU write data to XMI bus

1010 No-op -

1011 No-op -

1100 CMD IDENT command at IPL 14

1101 CMD IDENT command at IPL 15

1110 CMD IDENT command at IPL 16

1111 CMD IDENT command at IPL 17

DIGITAL INTERNAL USE ONLY

XJA 4-53

All data packets transmitted from TRF to the XMI bus, are also sent to REG as TRX_
D[63:00] and loaded into failing address register XFADR and failing address extension
register XFAER. In the event of an error interrupt, data stored in XFADR and XFAER is
used for error analysis. TRX_D[63:00] is loaded into XFADR and XFAER by LDTRXDAT
from TCM.

Transactions processed by the transmit logic and discussed in the following are as follows:

DMA read data return

DMA read lock status return

DMA read error status return

CPU read XJA private register C/A
CPU write XJA private register C/A + write data
CPU read XMI C/A (including XMI space registers in XJA)
CPU write XMI C/A + write data (including XMI space registers in XJA)
XMI read XMI space register data return
IDENT command to the XMI bus

In controlling the transmission of data packets to the XMI bus, the TCM communicates
with the RCM because many transmissions to the XMI bus have associated actions
required in the receive logic. For example, when the TCM has transmitted a CPU
write packet from the TRF to the XMI bus, it must notify the RCM to force a write
complete packet back to the ICU. The TCM communicates with the RCM using
TCMSTATUS[02:00]. Table 4-12 lists the types of communications the TCM sends to
the RCM.

Table 4-12 TCM Status Code

TCMSTATUS[02:00] Informs RCM of

000 No-op

001 XJA private register read completed

010 ERRINTR IDENT received

011 XMI space register read completed

100 Read error

101 Write transaction completed

110 - No-op

111 IPINTR IDENT received

DIGITAL INTERNAL USE ONLY

4-54 XJA

4.7.2 DMA Read Data Return

Figure 4-21 is a flow diagram of the DMA read data return, read lock status return, and
read error status return to the XMI bus.

LOADBUFSEL[01:00] from the TCM selects the TRF buffer to be loaded with the data

packet. Buffer 1 is selected first as seen in Table 4-13.

Table 4-13 TRF Buffer Select Code

LOADBUFSEL/[01:00]
TRXBUFSELI[01:00] Buffer Selected

00 1

01 2

10 3

11 Reserved

The XCE loads a CBI data packet into buffer 1 by asserting LOAD for the duration of

the data packet. The first data longword (command/address) is decoded by the command
decoder, which then informs the TCM of the type of data packet using JXDITYPE[02:00]
(Table 4-10). The command/address longword is loaded into the first location of buffer

1. As the next two cycles of read data are received from the CBI, the buffer increments

its address to load the data longwords into the next two locations. If the length of the

transfer is octaword, the XCE keeps LOAD asserted to hold the buffer in the load mode,
enabling it to increment through the next two locations loading in two more longwords.
If the transfer length is hexword, four more longwords are loaded into the buffer filling it

to capacity.

When the packet is completely loaded into the buffer, the XCE notifies the TCM of this

by asserting CMDRCV. The TCM then:

e Increments LOADBUFSEL[01:00] to enable buffer 2 for the next data packet.

e Asserts TRXBUFSEL[01:00] to select the buffer to be unloaded to the assembly/select

logic. Buffer 1 is selected as seen in Table 4-13.

The TCM checks to see if a register read request was received from the XMI bus by
checking RCMSTATUS[00] from the RCM (asserted means a register read request

is pending). If an XMI register read is pending, it has priority and executes first
(Figure 4-23).

If no XMI register read is pending, the TCM arbitrates for the XMI bus by asserting

XMI_RES_REQ. If the TCM does not receive an XMI bus grant before 256 XMl

cycles pass (approximately 16.4 ns), it asserts XMIARBTO to REG, indicating that

an arbitration timeout error has occurred. XMIARBTO sets a bit in the error summary

register (ERRS).

DIGITAL INTERNAL USE ONLY

y

LOADBUFSEL[01.00]

TCM ENABLES

TRF BUFFER 1.

LOAD

XCE LOADS CBI DATA

PACKET INTO TRF
BUFFER 1.

JXDITYPE[02:00]

TRF INFORMS TCM

THAT CBI DATA 1S DMA

READ DATA RETURN OR

READ STATUS RETURN.

CMDRCV

XCE NOTIFIES TCM THAT

DATA PACKET IS LOADED

INTO TRF BUFFER.

LOADBUFSEL[01:00]
TCM ENABLES TRF

BUFFER 2 FOR NEXT

PACKET.

TRXBUFSEL[01:00])

TCM ENABLES OUTPUT

OF TRF BUFFER 1.

XMt READ YES

REGISTER C/A

PENDING

FROM CPU

TRANSMISSION

TO XMI FLOW

DIAGRAM.

Figure 4-21 (Cont.)

EXECUTE XMI

REGISTER READ.

MR_X1237_89

XJA 4-55

Transmission of DMA Read Data/Status Return to XMl Bus

DIGITAL INTERNAL USE ONLY

4-56 XJA

§

y

XMI_RES_REQ

TCM ARBITRATES

FOR XM! BUS.

NO

XCGI_GRANT

YES

SELTRX[03:00) :

TCM COMMANDS TRF NO

TO ASSEMBLE XMI

DATA CYCLE AND

OUTPUT TO XMI BUS.

XCI_D[63:00]

XCI_F[03:00]

XCI_1D[05:00] XMIARBTO

XC1_P[02:00] ARBITRATION TIMEOUT
TRF OUTPUTS DATA ERROR TO REG.

TO XMI BUS.

BUFEMPTD

TCM INFORMS XCE

OF EMPTY

BUFFER IN TRF.

NO

XM ACK

YES ENTER RIDNACK
FROM CPU TCM INFORMS REG

TRANSMISSION TO OF NO-ACK.
XM! BUS FLOW

RETURN TO CPU

TRANSMISSION TO XMI NO

BUS FLOW DIAGRAM.

=

Figure 4-21 Transmission of DMA Read Data/Status Return to XM! Bus

MR_X1528_890

DIGITAL INTERNAL USE ONLY

XJA 4-57

If the TCM receives XCI_GRANT, it commands the select/assembly logic to generate a

return read good data bus cycle (Figure 3-1) for the XMI bus. The TCM does this by

asserting a SELTRX[03:00] code of 0000 (Table 4-11). The select/assembly logic:

e Selects the first quadword of data from buffer 1 and outputs it as D[63:00],

e Assembles and outputs a 4-bit function code (F[03:00]), specifying good return read

data 0,

o Selects the commander ID from the C/A in buffer 1 and outputs it as ID[05:00].

Parity is generated on the function, ID, and déta bits and added to the output as P[02:00].
The signals are synchronized with the XMI clock and output to the XMI bus.

For octaword and hexword read-data-return functions, the preceding is repeated with

SELTRX[03:00] specifying the read-data-return cycle and the data quadwords being

extracted from buffer 1. The function codes from the assembly/select logic (F[03:00])

specify good read data 1, good read data 2, and good read data 3 as required.

When the data packet is placed on the XMI bus, the TCM asserts BUFEMPTD to the

XCE, informing it that a TRF buffer is emptied and can be used to accept another data

packet from the CBL. '

Each cycle of return-read-data transmitted to the XMI bus should receive an

acknowledgment (XCI_RCNF). If the TCM does not receive an acknowledgment for a

transmitted data cycle, it asserts RIDNACK to REG, which records the error in the XMI

bus error register (XBER). The TCM does not retry the transmission.

A portion of Figure 4-21 is used as an extension of the flow diagram of Figure 4-22. This

is discussed in Section 4.7.4.

4.7.3 Read Locked Response and Read Error Response

The read locked response and read error response transactions execute basically the same

as a DMA read-data-return transaction (Figure 4-21).

The command/address decoder decodes the read locked (or read error) response from the

CBI, and notifies the TCM of the cycle type via JXDITYPE[02:00]. The command/address

is loaded into the enabled TRF buffer for the purpose of storing the commander ID. When

the TCM gains access to the XMI bus, it asserts the read locked (or read error) code

(Table 4-11) to the select/assembly logic by using SELTRX[03:00]. The select/assembly

logic: -

e Zeroes all the data bits (D[63:00])

¢ OQutputs a 4-bit function code (F[03:00]), specifying a read locked (or read error)

response (Figure 3—4 or Figure 3-3)

e Selects the commander ID from the C/A longword in buffer 1 and outputs it as

ID[05:00]

Parity is generated on the function, ID, and data bits and added to the output as P{02:00].

The signals are synchronized with the XMI clock and output to the XMI bus.

DIGITAL INTERNAL USE ONLY

4-58 XJA

When the locked response (or error response) is placed on the XMI bus, the TCM asserts

BUFEMPTD to the XCE, informing it that a TRF buffer is emptied and can be used to

accept another data packet from the CBI.

After the response data cycle is transmitted to the XMI bus, an acknowledgment should

be received. If the TCM does not receive an acknowledgment (XCI_RCNF), it asserts

RIDNACK to REG, which records the error in XBER. The TCM does not retry the

transmission.

4.7.4 CPU Read/Write

Figure 4-22 is a flow diagram of a CPU read/write transmission to the XMI bus.

=
LOADBUFSEL[01:00] NO

TCM ENABLES

TRF BUFFER 1.

LOAD YES
XCE LOADS CBI DATA

PACKET INTO

RECEIVE BUFFER 1. LDCPUDAT
TCM TRANSFERS CPU

i WRITE DATA FROM TRF
BUFFER 1 TO

JXDITYPE[02:00] CPU WRITE
TRF INFORMS TCM DATA BUFFER.

THAT CBI DATA
IS GPU C/A.

CMDRCV BUFEMPTD
XCE NOTIFIES TCM TCM INFORMS XCE OF
THAT DATA PACKET EMPTY

TRF BUFFER 1.

|
LOADBUFSEL[01.00]

TCM ENABLES TRF

BUFFER 2 FOR

NEXT PACKET.

|
TRXBUFSEL[01:00]

TCM ENABLES OUTPUT

OF TRF BUFFER 1.

y
LDCPUCA

TCM TRANSFERS CPU

C/A FROM TRF

BUFFER 1 TO

CPU C/A BUFFER.

XMi READ YES

REGISTER C/A

PENDING l

EXECUTE XM! REGISTER

READ FLOW DIAGRAM.

|

CPU ACCESS

TO XJA PRIVATE

REGISTER

MR _X1262_89

Figure 4-22 (Cont.) Transmission of CPU Read/Write Command/Address Packet to

XMI Bus

DIGITAL INTERNAL USE ONLY

SELREG[04.00]

TRF SPECIFIES

REGISTER ADDRESS

TO TCM.

NO

CPU WRITE

YES

LDREGSEL[04:00]

TCM INFORMS REG

OF REGISTER TO

BE WRITTEN.

!
REGLDDAT[31:00}

TRF SENDS REGISTER

WRITE DATA TO REG.

!
LDREG

TCM LOADS WRITE

DATA INTO

SELECTED REGISTER.

|
TCMSTATUS{02:00]

TCM INFORMS RCM THAT

CPU WRITE REGISTER

18 COMPLETE.

ULREGSEL[04:00])

TCM INFORMS REG OF

REGISTER TO BE READ.

READ DATA SENT TO

RRF FOR TRANSFER

TO [CU.

v
TCMSTATUS[02:00)

TCM INFORMS RCM THAT

CPU READ REGISTER

IS COMPLETE.

=

Figure 4-22 (Cont.)

XMl Bus

MR_X1263_889

XJA 4-59

Transmission of CPU Read/Write Command/Address Packet to

DIGITAL INTERNAL USE ONLY

4-60 XJA

Fa

XMI_CMD_REQ

TCM ARBITRATES FOR

XMl BUS.

NO
XCI_GRANT

YES

SELTRX[03:00]

TCM COMMANDS TRF TO

ASSEMBLE XMI DATA

CYGCLE AND OUTPUT

TO XMI BUS.

4

XC1_D[63:00]

XCIF[03:00]

XCI_ID[05:00]

XCI_P[02:00]

TRF OUTPUTS DATA

TO XMI BUS.

NO

YES

XMIARBTO
ARBITRATION TIMEOUT

ERAOR TO REG.

NO

XMI ACK

NO

CPU READ

EXPECTRD

INFORMS RECEIVE

LOGIC TO EXPECT

READ DATA RETURN.

READ DATA

RECEIVED FROM

XM| WITHIN

131,072

XM! CYCLES

TTO

TCM INFORMS REG OF

TRANSACTION TIMEOUT.

DMA

READ
PENDING

TRANSMIT PENDING

DMA READ TO XMI BUS.

CNAK IF C/A.

WDNACK IF WRITE

DATA. TCM INFORMS

REG THAT C/A

(OR WRITE DATA)

NOT ACKED.

'
RETO

TCM INFORMS REG OF

RETRY TIMEOUT.

Figure 4-22 Transmission of

DIGITAL INTERNAL USE ONLY

MR_X1520_89

CPU Read/Write Command/Address Packet to XM| Bus

XJA 4-61

LOADBUFSEL[01:00] from the TCM enables TRF buffer 1. The XCE loads a CBI data

packet into buffer 1 by asserting LOAD. The first data longword (command/address) is

decoded by the command decoder, which then informs the TCM of the type of data packet

using JXDITYPE[02:00] (Table 4-10).

When the packet is completely loaded into the buffer, the XCE notifies the TCM of this

by asserting CMDRCV. The TCM then:

e Increments LOADBUFSEL[01:00] to enable buffer 2 for the next data packet.

o Asserts TRXBUFSEL[01:00], which outputs the data in buffer 1 to the CPU

command/address buffer and the CPU write buffer (if the transaction is a CPU

write).

e Asserts LDCPUCA to load the CPU command/address from buffer 1 into the CPU

command/address buffer.

e If the CPU transaction is a write, the TCM asserts LDCPUDAT to load the

CPU write data from buffer 1 into the CPU write buffer. Transferring the CPU

command/address and write data to their own buffers frees buffer 1 to accept DMA

read data.

The TCM checks to see if a register read request was received from the XMI bus by

looking at RCMSTATUS[00] from the RCM. If RCMSTATUS[00] is asserted, an XMI

register read transaction is pending. An XMI register read transaction has priority and

executes first (Figure 4-23).

The TCM determines if the CPU access is to an XJA private register or to the XMI bus,

by looking at SELREG[04:00] from the CPU command/address buffer. If the CPU access

is to an XJA private register, SELREG[04:00] specifies the register. If the CPU access is

to the XMI bus, the SELREG{04:00] code is all 1s.

4.7.4.1 Access to XJA Private Register

If the CPU read/write is directed toward an XJA private register, the CPU

command/address buffer specifies the selected register to the TCM, using SELREG{04:00].

If the CPU function is a write, the TCM asserts LDREGSEL[04:00] to REG to select the

register to be written. The write data is transferred to REG from the CPU write buffer

as REGLDDAT[31:00]. The TCM loads the write data by asserting LDREG to REG. The

TCM informs the RCM that the write operation is complete using TCMSTATUS[02:00]

(Table 4-12). The RCM then forces a write complete transaction in the RRF to be sent

back to the ICU.

If the CPU function is a read, the TCM asserts ULREGSEL[04:00] to REG to select the

register to be read. The read data is sent to the RRF for transmission back to the ICU.

The TCM uses TCMSTATUS[02:00] (Table 4-12) to inform the RCM that a CPU register

read operation has occurred. The RCM then functions to force a read data return packet

in the RRF. The packet (including the register data) is sent to the ICU.

DIGITAL INTERNAL USE ONLY

4-62 XJA

4.7.4.2 Access to XMl Register

If the CPU read/write is directed toward the XMI bus, the CPU command/address buffer

specifies this with a SELREG[04:00] code of all 1s.

The TCM arbitrates for the XMI bus by asserting XMI_CMD_REQ. If the TCM does

not receive an XMI grant before 256 XMI cycles have passed (approximately 16.4 ps),

it asserts XMIARBTO to REG, indicating that an arbitration timeout error occurred.

XMIARBTO sets a bit in the error summary register (ERRS).

If the TCM receives XCI_GRANT, it commands the select/assembly logic to assemble a

CPU cycle to the XMI bus by asserting a SELTRX[03:00] code of 1000 (Table 4-11). The

select/assembly logic:

o Selects the command/address longword from the CPU C/A buffer and assembles

the command longword for the XMI bus as shown in Figure 3-2 for a CPU read or

Figure 3-7 for a CPU write. The command longword outputs the assembly/select

multiplexer as D[63:00]. If the CPU C/A is directed to BI window space, address

bits [28:25] from the CPU C/A buffer are sent to the REG as XBINUM[03:00] to

specify which BI window is being addressed. REG responds with XBIID[03:00]

which is the XMI node ID of the BI adapter associated with the selected BI window.

The select/assembly logic places XBIID[03:00] into address bits [28:25] of the

command/address longword.

e Qutputs a 4-bit function code (F[03:00]), specifying a command cycle.

e Selects the XMI_NODE_ID[03:00] hardwired input as the commander (XJA) ID. The

ID is output to the XMI bus as ID[05:00].

Parity is generated on the function, ID, and data bits and added to the output as P[02:00].

The signals are synchronized with the XMI clock and output to the XMI bus.

If the CPU function is a read, the TRF asserts EXPECTRD to the RCM to inform the

receive logic to expect read data return from the XMI bus.

If the CPU function is a write to the XMI bus, the write data (REGLDDAT{31:00]) is

transferred from the CPU write buffer to the select/assembly logic where it is selected for

the next XMI cycle by the TCM (using SELTRX[03:00]). The select/assembly logic:

¢ Selects the longword of write data (REGLDAT[31:00]) from the CPU write buffer and

outputs it in the lower 32 bits of D[63:00].

¢ Outputs a 4-bit function code (F[03:00]) specifying a write data cycle.

¢ Selects the commander ID as the hardwired XMI_NODE_ID[03:00], which specifies

the XJA as the commander, and outputs it as ID[05:00].

Parity is generated on the function, ID, and data bits and is added to the output as

P[02:00].

DIGITAL INTERNAL USE ONLY

XJA 4-63

After the data cycle(s) is transmitted to the XMI bus, an acknowledgment should

be received. If the TCM does not receive an acknowledgment (XCI_RCNF) for the

command/address cycle, it checks for a pending DMA read transmission. If there is

DMA read data in the TRF to be transmitted to the XMI bus, it has priority and executes

(Figure 4-21) before the CPU transmission is retried. A check is made for a pending

DMA read transmission before each retry of the CPU transmission. The TCM retries the

CPU transmission for 131,072 XMI cycles (approximately 8.4 ms) after which it asserts

CNACK (C/A no-ack) and RETO (retry timeout) to REG. If the TCM does not receive

an acknowledgment for the write data cycle, it retries the transmission just as for the

C/A cycle. If an acknowledgment is not received in 131,072 XMI cycles (approximately

8.4 ms), the TCM asserts WDNACK (write data no-ack) and RETO to REG. CNACK,

WDNACK, and RETO set bits in the XMI bus error register (XBER).

In a CPU read XMI operation, the TCM is notified that the XJA received the read data

by the assertion of KRESPONSE by the RCM. If the XJA receive logic does not receive

the read data after 131,072 XMI bus cycles (approximately 8.4 ms), the TCM asserts TTO

(transaction timeout) to REG. TTO sets a bit in the XMI bus error register (XBER).

4.7.5 Read Register Data Return

Figure 4-23 is a flow diagram of the read register data return function to the XMI bus.

RCM informs TCM (by asserting RCMSTATUS[00]) that the XJA receive logic received an

XMI read register command from the XMI bus. The XRC identifies the selected register

to the TCM using REGADR[03:00]. The TCM responds by asserting ULREGSEL[04:00]

to REG, identifying the register to be read. REG unloads the read data from the selected

register and transfers it to the TRF as REGULDAT[31:00].

The TCM arbitrates for the XMI bus by asserting XMI_RES_REQ. If the TCM does not

receive an XMI grant before 256 XMI cycles has passed (approximately 16.4 ns), it asserts

XMIARBTO to REG, indicating that an arbitration timeout occurred. XMIARBTO sets a

bit in the error summary register (ERRS).

When the TCM receives XCI_GRANT, it commands the select/assembly logic to

assemble a read good data return bus cycle for the XMI bus. It does this by asserting a

SELTRX[03:00] code of 0000 (Table 4-11). The select/assembly logic:

¢ Selects the longword of register read data (REGULDAT[31:00]) from REG and

outputs it in the lower 32 bits of D[63:00]

* Outputs a 4-bit function code (F[03:00]) specifying cycle 0 of good read return data.

¢ Selects the commander ID that was received from the XRC as CMDR_ID[05:00] when

the XRC received the read request from the XMI bus. The commander ID was stored

in the TRF select/assembly logic for use when the read data is transmitted to the

XMI bus.

Parity is generated on the function, ID, and data bits and is added to the output as

P[02:00].

After the read data cycle is transmitted to the XMI bus, an acknowledgment should

be received. If the TCM does not receive an acknowledgment (XCI_RCNF), it asserts

RIDNACK to REG, which records the error. RIDNACK sets a bit in the XMI bus error

register (XBER). The TCM does not retry the transmission.

DIGITAL INTERNAL USE ONLY

4-64 XJA

START

RCMSTATUS(00]

RCM INFORMS TCM

OF XMI READ

REGISTER COMMAND.

REGADR([03:00]

XRC IDENTIFIES

SELECTED REGISTER

TO TCM.

ULREGSEL[04:00]

TCM INFORMS REG

OF REGISTER

TO BE READ.

REGULDAT[31:00]

REG SENDS REGISTER

DATA TO TRF.

XMi_RES_REQ

TCM ARBITRATES

FOR XMI BUS.

NO

XCI_GRANT

SELTRX[03:00]

TCM COMMANDS TRF

TO ASSEMBLE XMI

READ REGISTER DATA

RETURN CYCLE.

256

XMl

CYCLES

NO

XC1_D[63:00}

XCI_F{03:00)

XC1_ID[05:00] XMIARBTO

XC!_P[02:00] ARBITRATION TIMEQUT
TRF QUTPUTS DATA ERROR TO REG.

TO XM! BUS.

NO

XMi ACK

RIDNACK

TCM INFORMS REG

OF NO-ACK.

END

MR_X1284_80

Figure 4-23 Transmission of Read Register Data Return to XMl Bus

DIGITAL INTERNAL USE ONLY

XJA 4-65

4.7.6 IDENT

The RCM informs the TCM of pending interrupts and their IPL using INTRPEND([03:00].

The TCM initiates an IDENT function by asserting a SELTRX[03:00] code to the

select/assembly logic, specifying an IDENT command cycle to the XMI at the specified

IPL. The select/assembly logic:

e Assembles an IDENT command cycle (Figure 3-8) at the specified IPL. The logic
uses IDENTID[15:00] from the RCM as the interrupt source mask in the command

longword. The RCM saved the node ID of the XMI interrupting node for this purpose.

The assembled IDENT command is output from the select/assembly logic as D[63:00].

e Qutputs a 4-bit function code (F[03:00]), specifying a command cycle.

e Selects the commander ID as the hardwired XMI_NODE_ID[03:00], which specifies

the XJA as the commander, and outputs it as ID[05:00].

Parity is generated on the function, ID, and data bits and is added to the output as

P[02:00].

After the IDENT command cycle is transmitted to the XMI bus, an acknowledgment is

received. If the TCM does not receive an acknowledgment (XCI_RCNF), it asserts CNAK

to REG and retries the transmission for 131,072 bus cycles (approximately 8.4 ms) after

which it asserts RETO (retry timeout) to REG. CNAK and RETO set bits in the XMI bus

error register (XBER).

4.8 XJA Registers (REG)

The XJA registers Table 4-14 are used for error reporting and diagnostic functions. All

XJA registers ignore masking information on writes. Masked writes to these registers are

treated as longword writes. All XJA registers ignore locking information on read locks
and write unlocks. No logical locking mechanism is set and these transactions complete
as if they were generic reads and writes.

Registers in the XJA can be broken down into two main groups: XMI space registers and

XJA private registers.

4.8.1 XMI Space Registers

The XMI space registers (Table 4-14) are those registers that are accessed from the

XMI bus. When the system CPU accesses XMI space registers, it places its read/write

request on the XMI bus with the XJA as the target node and the location of the XMI

space register as the specified address. When running system diagnostics, it is possible to

access the XMI space registers directly without going out onto the XMI bus. This feature

is useful when the XMI bus is faulty and the system needs the information in the XMI

space registers.

4.8.2 XJA Private Registers

The XJA private registers (Table 4-14) contain information that is specific to the XJA.
The private registers are only accessible by the system CPU directly in the XJA. They
are not accessible from the XMI bus. ,

DIGITAL INTERNAL USE ONLY

4-66 XJA

Table 4-14 XJA Registers

Register Mnemonic

XMI Space Registers

Device XDEV

Bus error XBER

Failing address XFADR

Failing address extension XFAER

XJA general purpose XJAGPR

Full system emulation mode control FAEMC

Add-on self-test status AOSTS

XJA serial number SERNUM

XJA Private Registers

Error summary ERRS

Force command FCMD

Interprocessor interrupt source IPINTRSRC

XJA diagnostic control DIAG

DMA failing address DMAFADDR

DMA failing command DMAFCMD

Error interrupt control ERRINTR

Configuration CNF

XBIID A XBIIDA

XBIIDB XBIIDB

Error SCB offset ERRSCB

SCB offset IPL 14 IDENT4

SCB offset IPL 15 IDENTS5

SCB offset IPL 16 IDENT6

SCB offset IPL 17 IDENT7

4.8.3 REG Data Flow

Figure 4—24 shows the XJA registers divided into two groups: those registers loaded

from the XMI bus and those not loaded from the XMI bus. The registers loaded from the

XMI bus include the eight XMI space registers plus the IPINTRSRC, DMAFCMD, and

DMAFADR registers. Although the IPINTRSRC, DMAFCMD, and DMAFADR registers

are loaded with XMI data, control of these registers is done from the XJA. They are

not accessible from the XMI; that is, an XMI device cannot read or write these three

registers.

Figure 4-24 illustrates the various data paths in and out of REG and the loading and

unloading controls. These are described in the remainder of this section. A complete

description of the registers, their bit fields, and a detailed description of each bit, is

provided in Chapter 5.

DIGITAL INTERNAL USE ONLY

XJA 4-67

CBi_DATA { RRF XRC XCi_D N
[31:00] " ACV_D[63:00] [63:00]

| CACYCTYP[03:00}

! DATCYCTYP[01:00]
csl

> XLATCHES
CBI_DATA

[37:00)

XCI_D

//I (63:00)

o

| |

| TRX_D I |
(63:60]

: XFADR TM :
|—> XFAER

1 i
| DATCYCTYP I

, l01:00) XDEV
J i
I XBER i
CACYCTYP

| [03:00} - XJAGPR]
[

| w FAEMC 1
| wreveo |@ I

1 {63:00) | ¥ AQSTS
! a |
I b SERNUM i

-

1 IPINTRSRC 1
| REGLDDAT I
I (31200) DMAECMD

DMAFADR !
i L) ReauLDAT |
1 [3t:00) g

| |
—

: ERRS :
" FCMD "

I DIAG |

| ERRINTA i

l 5 CNF |
JREGLDOAT |3 I

y [31:00] 2 XBIIDA

1 |
i 2 XB1I1DB I

l ° ERRSCB 1

: IDENT4 :

I IDENTS "

i IDENT6 1

i IDENT?7 1

i i
] LOREG | LDTRXDAT l

ULDREGSEL

i {04:00) |

I LoreoseL |
I [04:00} }

REGADR

(03:00)

TCM

SELREG{04:00]

TRF

REGULDAT[31:00] XC1_D[63:00]

REGLDDAT([31:00] -‘F
-—-

CBI_DATA[31:00] 1 !
e e o uf

MA_X1285_08

Figure 4-24 REG Data Fiow

DIGITAL INTERNAL USE ONLY

4-68 XJA

Reading all the XJA registers is controlled by the TCM. ULDREGSEL{04:00] from the

TCM, selects a register and unloads the data onto the REGULDAT{31:00] output lines.

Writing the lower 12 registers in Figure 4-24 (those not loaded from the XMI bus) is

also controlled by the TCM. LDREGSEL[04:00] from the TCM, selects the reglster and

LDREG loads it with input data.

Writing the upper two registers in Figure 4-24 is controlled by the TCM, which asserts

LDTRXDAT each time a command/address is transmitted to the XMI bus. LDTRXDAT

loads the command/address into the two registers (XFADR and XFAER). Two 32-bit

registers are required to receive the 64-bit command/address.

Writing the nine upper registers remaining in Figure 4-24 is controlled by REG. REG

uses CACYCTYP[03:00] and DATCYCTPY[01:00] from XRC to identify the RCV_D[63:00]

data cycles from the XRC. When the REG load-select logic detects a write register

command/address, it uses the address to select the register to be written. It loads the

selected register with write data in the write data cycle that follows.

4.8.3.1 XMl Space Register Read

The XMI read command/address comes from the XLATCHES in the XMI corner

as XCI_D[63:00] and enters the XRC. The register address is extracted from the

command/address and sent to the TCM as REGADRI[03:00]. TCM outputs the register

address as ULDREGSEL[04:00]. The read data outputs REG as REGULDAT{31:00],

which is sent to the TRF. The TRF outputs the XMI read data to the XLATCHES as the

low-order 32 bits of XCI_D[63:00].

4.8.3.2 XMi Space Register Write

The XMI write command/address, followed by the write data, comes from the

XLATCHES in the XMI corner as XCI_D[63:00] and enters the XRC. From the XRC,

the command/address data is sent to REG along with CACYCTYP[03:00], which identifies

the data as the command/address. REG uses the command/address data to select the

register to be written with the write data that follows in the next cycle. The write data

outputs XRC as the low-order 32 bits of RCV_D[63:00]. RCV_D[63:00] is sent to REG

where the low-order bits (RCV_D[31:00]) are loaded into the selected register.

4.8.3.3 CPU Register Read of XJA Private Register

The CPU read command/address comes off the CBI as CBI_DATA[31:00] and enters the

TRF. The register address is extracted from the command/address and sent to the TCM

as SELREG[04:00]. TCM outputs the register address as ULDREGSEL[04:00]. The read

data outputs REG as REGULDAT{31:00], which is sent to the RRF. The RRF outputs the

CPU read data onto the CBI as CBI_DATA[31:00].

4.8.3.4 CPU Register Write of XJA Private Register

The CPU write command/address, followed by the write data, comes off the CBI as

CBI_DATA[31:00] and enters the TRF. The register address is extracted from the

command/address and sent to the TCM as SELREG[04:00]. TCM outputs the register

address as LDREGSEL{04:00]. The write data outputs TRF as REGLDDAT[31 00], which

is sent to REG and loaded into the selected register by LDREG.

4.8.3.5 XMl Falling Address Register

Another data input to REG is TRX_D[63:00]. TRX_D[63:00] is the command/address

being sent to the XMI bus. TRX_D[63:00] is loaded into the XMI failing address register

XFADR and failing address extension register XFAER where they can be accessed for

error analysis if the XMI transaction fails. LDTRXDAT from TCM loads the data into

XFADR and XFAER on each command/address transmission to the XMI bus.

DIGITAL INTERNAL USE ONLY

XJA 4-69

4.8.3.6 DMA Failing Command/Address Registers

A DMA failing command register (DMAFCMD) and DMA failing address register
(DMAFADR) are loaded with the command/address data of each DMA packet received
from the XMI bus. The REG load-select logic uses CACYCTYP[03:00] from XRC to
recognize the RCV_D[63:00] data as being a DMA command/address cycle, and loads the

data into DMAFCMD and DMAFADR. Two 32-bit registers are required to receive the
64-bit command/address. The register data is accessed for error analysis in the event the
DMA transaction fails.

4.9 Interrupts

There are two basic types of interrupts sent to the system CPU on the JXDI: nonfatal
and fatal.

A nonfatal interrupt appears as an interrupt command on the JXDI data lines (XJA_
DAT{15:00]). The interrupt command contains the interrupt priority level (IPL) of

the interrupt, which can be 14(hex), 15(hex), 16(hex), or 17(hex). During a nonfatal
interrupt, operation of the XJA is predictable. The XJA is still capable of responding to
CPU requests but transactions can fail.

A fatal interrupt asserts the XJA_FATALERR line on the JXDI. During a fatal interrupt,
operation of the XJA is unpredictable. The XJA may not be able to respond to CPU
requests.

4.9.1 Nonfatal Iinterrupts

In nonfatal interrupts, the CPU is interrupted at the IPL contained in the JXDI interrupt
command. The CPU responds by initiating a CPU read of the associated IDENT register

in the XJA, to obtain the SCB offset (vector). The XJA obtains the vector by various
means, according to the source of the interrupt as shown in Table 4-15.

Table 4-15 Nonfatal interrupts

IPL
Source of Interrupt (Hex) XJA Gets Vector by

XMI normal interrupt 14-17 Issuing an IDENT

XMI IPINTR 16 Supplying 80(hex) to ICU

Nonfatal error detected by the XJA 17 Unloading contents of ERRSCB to ICU

4.9.1.1 XMl Normal Interrupt

Normal interrupts from the XMI bus are at an IPL of 14(hex), 15(hex), 16(hex), or
17(hex). The interrupt is passed onto the JXDI at the same IPL. The CPU reads the

corresponding IDENT register to get the offset vector. The IDENT registers do not
physically exist in the XJA. When the CPU reads the pseudo IDENT register, the
XJA issues an IDENT command to the interrupting node on the XMI bus. The data

returned in the IDENT response is the offset vector. This is passed on to the CPU as a

read-data-return transfer.

DIGITAL INTERNAL USE ONLY

4-70 XJA

4.9.1.2 XMI IPINTR (Interprocessor Implied Vector interrupt)

NOTE

IPINTR interrupts do not occur in the VAX 9000 system as there are currently

no CPUs on the XMI bus.

IPINTR interrupts received from the XMI bus cause the XJA to place an interrupt

command on the JXDI at an IPL of 16(hex). The CPU responds to the interrupt by

reading the IDENT®6 register. When the IDENT®6 register is read with an IPINTR

pending, the XJA returns an interrupt vector of 80(hex) to the CPU.

4.9.1.3 Nonfatal Errors Detected by XJA

Nonfatal errors detected by the XJA, interrupt the CPU by asserting an interrupt

command on the JXDI at an IPL of 17(hex). The CPU responds to the interrupt by

reading the IDENT7 register. When the IDENT7 register is read with an XJA error

interrupt pending, the XJA returns the contents of ERRSCB to the CPU as a read-data-

return transfer.

The nonfatal errors detected by the XJA and where they were detected, are shown in

Table 4-16.

Table 4-16 Nonfatal Errors Detected by the XJA

Error

Detected on Error Register/Bit IPL (Hex)

XMI Corrected confirmation code XBER([27] 17

XMI Parity error XBER[23] 17

XMI Corrected read data XBER([19] 17

XMl1 Write sequence error XBER[22] 17

XMI Read/IDENT data no-ack XBER[21] 17

XMI Write data no-ack XBER/[20] 17

XMI Reattempt timeout XBER[18] 17

XMI Read sequence error XBERI[17] 17

XMI Read error response XBER[16] 17

XMI Command no-ack XBER([15] 17

XMI Transaction timeout XBER[13] 17

XMI XMI power-up ERRS[20] 17

XMI XMI arbitration timeout ERRS[22] 17

JXDI Parity error ERRS[31:30] 17

XJA internal None - -

DIGITAL INTERNAL USE ONLY

4.9.2 Fatal Interrupts

Fatal errors detected by the XJA interrupt the CPU by asserting XJA_FATALERR on

the JXDI. The SCU interrupts the CPU at an IPL of 1D(hex). The CPU responds by

executing a fatal error routine.

The fatal errors detected by the XJA and where they were detected are shown in

Table 4-17.

Table 4-17 Fatal Errors Detected by the XJA

XJA 4-71

Error

Detected on Error Register/Bit IPL (Hex)

XMI Node reset XBER[30] 1D

XMI Node halt XBER([29] 1D

XMI XMI fault XBER[26] 1D

XMI WEI (write error ihterrupt) XBERI[25] 1D

XMI XMI power fail (AC or DC LO) ERRS[21] 1D

JXDI XCE transmit entry machine error ERRS[28] 1D

JXDI ICU buffer count error ERRS[27] 1D

JXDI CPU request overrun ERRS[26] 1D

JXDI JXDI receive buffer overrun ERRS[25] 1D

JXDI JXDI received command error ERRS[24] 1D

XJA internal Received CBI parity error ERRS[23] 1D

4.10 Add-On Self-Test

The add-on self-test (AOST) function provides a way of testing the XJA logic and of

checking reliability of all the XJA internal buses. It does this by reading and writing the

XJA registers and then checking the results. AOST does not completely check all aspects

of the XJA. That is, an XJA that passes AOST is basically functional, but error logic and

interaction of the XJA with the CPU is not checked. AOST runs during power-up, console

reset, or XMI node reset.

4.10.1 AOST Implementation

Figure 4-25 is a block diagram of the AOST implementation. The AOST logic consists

of an 8096 microcontroller, an electrically erasable programmable read-only memory

(EEPROM), and an address latch. The EEPROM stores the self-test microcode (EWCLD)

used to run the 8096 microcontroller. The address latch is used by the 8096 to extract

instructions from the EEPROM. A serial port in the 8096 allows for optional external

control from a test terminal. The port is used to input test commands and output test

results to the terminal.

DIGITAL INTERNAL USE ONLY

A
T
N
O
 3
S
N
 T
V
Y
N
Y
3
L
N
I
 T
V
L
I
D
I
A

u
o
j
i
e
l
u
a
w
e
i
d
w
i
 1
S
a
L
-
4
9
S
 U
Q
-
P
P
Y

G
2

 u
n
b
i
d XDE/XCE

A

4

TRANSMIT

CHANNEL Y

(P D ea AR S R R M G e R SR SR A GED G A RS M M W GEn TR R O G M Gme G R M G MM W B GND M AR G e G A o

1 XDC

| XRC

LOOP RESET

TES

TERWINAL l CONTROL/DATA
sode

MICAD-

[CONTROLLER

SERIAL

PORT

PACK_READY

AEAD_EN

-

BUFFER

-~ LD

UNLD

WRITE_EN

5T_INDAT(15:00}

ST_OUTDAT(15:00])

4

|

1

1

Recewve | i TRE
l CBI_DATA[31:60

Cramme t — : ! - AFCEIVE
1 BUFFER

&)
! LOADBUFSEL[01:00) o

! TAXBUFEEL|D1:00]
i uNLD

1
t ey

1 AORT_GO

AOET
} 87_NODE . b4 AEBPONSE

BUFFER

' PACK_READY CONTROL
t = AFGISTER LD

LOOPBACK

1 UNLD

|
'}
}

1 ADST
1 — COMMAND

I

1

1

1

1

|
s

XMI_NODE_ID{63:00)

ADDRESS

LATCH EEPROW

wA_n1eese

V
X

2
e
l
—
v

XJA 4-73

Within the TRF is an AOST control register, an AOST octaword read-only response
buffer, and an AOST octaword write-only command buffer. The control register and the
two buffers are associated with the AOST logic. The 8096 microcontroller maps to the
control register and the two buffers as shown in Table 4-18.

Table 4-18 8096 Memory Map

Item Address (Hex) Contents

Control register FFDE AOST control bits

Response buffer FFEO Word 0 (CBI longword 0)
(read only) FFE2 Word 1 (CBI longword 0)

FFE4 Word 2 (CBI longword 1)
FFE6 Word 3 (CBI longword 1)
FFES8 Word 4 (CBI longword 2)
FFEA Word 5 (CBI longword 2)
FFEC Word 6 (CBI longword 3)
FFEE Word 7 (CBI longword 3)

Command buffer FFFO Word 0 (CBI longword 0)
(write only) FFF2 Word 1 (CBI longword 0)

FFF4 Word 2 (CBI longword 1)
FFFé6 Word 3 (CBI longword 1)
FFF8 Word 4 (CBI longword 2)
FFFA Word 5 (CBI longword 2)
FFFC Word 6 (CBI longword 3)
FFFE Word 7 (CBI longword 3)

The EWCLD microcode simulates CPU transactions by writing the command buffer
with a read or write test command, signaling the XJA to process the test command, and
checking for the correct results in the response buffer. The microcode implements these
functions by means of the 8096 microcontroller. Figure 4-26 is a flow diagram of AOST
transactions. Refer to it in the following discussion.

A self-test mode bit is set in the AOST control register, asserting ST_MODE to the TCM
and the XDE/XCE chips. A loopback bit is also set in the control register, asserting
LOOPBACK to the XDE/XCE to place the XDEs into the loopback mode required for a
self-test transaction. In loopback mode, the output of the XDE transmit channel does not
go out to the JXDI, but loops back to a multiplexer where it is selected as the input to
the XDE receive channel.

DIGITAL INTERNAL USE ONLY

4-74 XJA

ST_MODE
XJA GOES INTO

SELF-TEST MODE.

WRITE_EN

8096 PLACES COMMAND LOOPBACK
PACKET INTO COMMAND {INTERNAL LOOPBACK

BUFFER AS PATH ENABLED IN XDEs.
ST_INDAT[15:00].

AOST_GO

TRF INFORMS TCM

THAT COMMAND PACKET
IS LOADED AND

READY TO GO.

TRXBUFSEL[01:00]
TCM UNLOADS

COMMAND BUFFER.

PACKET PROCESSED

BY XJA.

RESPONSE PACKET

PASSES THROUGH XDE
TRANSMIT CHANNEL AND

LOOPS BACK INTO XDE

RECEIVE CHANNEL.

LOADBUFSEL[01:00]

TCM LOADS RESPONSE

PACKET INTO

RESPONSE BUFFER.

PACK_READY

TRF INFORMS 8096 AND

TCM THAT RESPONSE

PACKET IS READY

TO BE READ.

READ_EN

8096 READS RESPONSE

PACKET AS

ST_OUTDAT[15:00].

8096 CHECKS ACTUAL

RESPONSE AGAINST

EXPECTED RESPONSE.

=

Figure 4-26 Flow Diagram of Add-On Self-Test

MR_X1267_8%

DIGITAL INTERNAL USE ONLY

XJA 4-75

The 8096 asserts WRITE_EN to the AOST command buffer to load the command packet
on the ST_INDAT{15:00] data lines. The microcode uses the node ID of the XJA in
the generation of the address of the XMI space registers. The node ID (XMI_NODE_
ID[03:00]) is applied to the 8096 microcontroller from the XMI backplane. When the
command packet is loaded, the control register asserts AOST_GO, commanding the TCM
to start the test.

The TCM unloads the command buffer using TRXBUFSEL[01:00] and the XJA proceeds
to process the test packet as a normal command packet. If the test command is to an
XMI space register, the packet goes out to the XMI bus and back in through the XRC. If
the test command is to an XJA private register, the packet processes within the XJA.

In either case, a response packet leaves the RRF, passes through the XDE transmit
channel, and loops back into the XDE receive channel. From the receive channel, the
packet traverses the CBI and enters the TRF where it is loaded into the AOST response
buffer by LOADBUFSEL[01:00] from the TCM.

When the response packet is loaded into the response buffer, the AOST control register
asserts PACK_READY to the TCM and the 8096. The 8096 then asserts READ_EN to
unload the response packet from the response buffer. The response packet is unloaded on
the ST_OUTDAT{15:00] data lines. The microcode then checks the response packet and
reports the results.

The bits of the AOST control register are shown in Figure 4-27 and described in
Table 4-19.

15 14 13 12 11 10 08 08 07 06 05 04 03 02 01 00

RESERVED R

LOOP RESET

PACKET READY FLAG

PACKET GO BIT

JXD! LOOPBACK MODE

R = RESERVED XJA SELF-TEST MODE

MR_X1268_89

Figure 4-27 AOST Control Register

DIGITAL INTERNAL USE ONLY

4-76 XJA

Table 4-19 AOST Control Register

Initial

Bit Name Type State’ Description

15-06 - - -

05 Loop reset R/W 0

04 Packet ready RW 1 0

flag to clear

03 Packet go bit R/W 0

02 - - -

01 JXDI R'W 0
loopback

mode

00 XJA self-test RW 0
mode

Reserved.

When set, resets the XCE and XDE gate arrays.

This bit must be set each time JXDI loopback

mode or self-test mode is changed, to ensure

correct timing when the loopback multiplexers

are switched.

When set, indicates that a response packet

is loaded into the response buffer and can be

read by the AOST firmware. In an AOST XJA

register read transaction, the packet ready flag

is set when the read data return loops back

into the TRF response buffer. In an AOST XJA
register write transaction, the packet ready flag

is set when the write complete packet loops back

into the TRF response buffer.

The packet ready flag must be cleared after each

read of the XJA response buffer.

NOTE

When the AOST test is a write of the XJA’s

force command register, the write complete

packet is overwritten in the response

buffer by the forced command packet

since both loop back into the buffer. The

packet ready flag is set only after the

forced command packet is loaded into the

buffer.

When set, initiates an AOST test transaction by

commanding the TCM to start processingthe

test packet in the AOST command buffer. This

bit is self-clearing.

Reserved.

When set, selects internal loopback within the

XCE and XDEs. During internal loopback, data

passing through the XDE transmit channel and

control signals in the XCE transmit logic, are

looped back into the XDE receive channel and
XCE receive logic, respectively. Signals sent to

the XJA on the JXDI are not selected by the

XDE loopback multiplexer. The XDEs and XCE
allow packet sizes up to an octaword in length

to loop back. This translates to a maximum of 8

JXDI word-length cycles.

If this bit is cleared, the JXDI operates normally.

When set, indicates that the XJA is in AOST

mode. This bit must be set for AOST functions

to work.

1Reset or power-up

Legend

RO = Read only

R/W = Read/write

DIGITAL INTERNAL USE ONLY

4.10.2 XJA Register Read Transaction

A CPU read request on the CBI bus has the format shown in part A of Figure 4-28. To

match this format, the AOST command buffer must be loaded in the format shown in

part B of Figure 4-28

XJA 4-77

CSCBII_E 3130292827 262524|232221201918 1716]15141312 1110 09 08J07 06 05 04 03 02 0100

0 A [29:26, 05:02) RIR 1D A [13:06] R|R|R{R CMD

1 DON'T CARE M [03:00] A {25:22] DON'T CARE A [21:14]

R = RESERVED

A. FORMAT ON CBI

ADDRESS (HEX) CONTENTS BY BYTE

FFFO A [13:08] , CMD

FFF2 A [29:06, 05:02] , ID

FFF4 0 . A[21:14)

FFF6 0 , M[03:00] - A [25:22]

FFF8 - -

FFFA - -

FFFC - -

FFFE - -

B. FORMAT IN AOST COMMAND BUFFER

Figure 4-28 Format of CPU Read Request

MR_X1268_89

DIGITAL INTERNAL USE ONLY

4-78 XJA

Table 4-20 lists the command codes as they appear on the CBIL.

Table 4-20 CBI Command Codes

CBI_DATA[03:00] Command

0000 Read request

. 0001 Read lock request

0010 Read data return

0011 Read lock data return

0100 Write request

0101 Write unlock request

0110 No-op

0111 No-op

1000 Interrupt request

1001 Read locked status

1010 Read error status

1011 Write complete

1100 No-op

1101 No-op

1110 No-op

1111 No-op

DIGITAL INTERNAL USE ONLY

XJA 4-79

When the read data loops back into the TRF response buffer, the packet ready flag is set

in the AOST control register and the response buffer may be unloaded and checked for

the correct response.

The format of a CPU read data return packet on the CBI is shown in part A of

Figure 4-29. A packet in this format loads into the response buffer in the format shown

in part B of Figure 4-29.

An XJA register contains a longword of data, therefore the response packet contains only

four bytes of read data. After this data has been read and compared with the expected

data, the packet ready flag must be cleared before another test transaction may be

started.

ng:.E 3130 29 28 27 26 25 2412322 21201918 17 16'15 141312 1110 09 08'07 06 05 04 03 02 01 00

0 RESERVED R|R D RESERVED RIRIRIR CMD

1 RESERVED RESERVED RESERVED RESERVED

2 RESERVED RESERVED BYTE 1 BYTE O

3 RESERVED RESERVED BYTE 3 BYTE 2

R = RESERVED

A. FORMAT ON CBI

ADDRESS (HEX) CONTENTS BY BYTE

FFEO 0 COMMAND

FFE2 0 1D

FFE4 0 0

FFE6 0 , 0

FFES BYTE1 , BYTEO

FFEA 0 .0

FFEC BYTE 3, BYTE 2

FFEE 0 ., 0

B. FORMAT IN AOST RESPONSE BUFFER

MR_X1270_089

Figure 4-29 Format of CPU Read Data Return

DIGITAL INTERNAL USE ONLY

4-80 XJA

4.10.3 XJA Register Write Transaction

A CPU write request (plus the write data) packet on the CBI has the format shown in

part A of Figure 4-30. To match this format, the AOST command buffer must be loaded

in the format shown in part B of Figure 4-30. Table 4-20 lists the command codes as

they appear on the CBI.

[#1-1
313029 28 27 26 25 24 23222120191817 16 15141312 111009 08 07 06 0504 03 02 0100

CYCLE

0 A[29:26, 05:02] RI|R 1D A[13:08] RIR|R{R| cCMD

1 0000 OO O Of M[03:00)]A([25:22) BYTE 0 A [21:14]

2 0000O0O0OGO|OOO®OOOOO BYTE 2 BYTE1

3 DON'T CARE 0000O0COOO DON'T CARE BYTE3

R =« RESERVED

A. FORMAT ON CBI

ADDRESS (HEX) CONTENTS BY BYTE

FFFO

FFF2

FFF4

FFF6

FFF8

FFFA

FFFC

FFFE

A [13:06]

BYTE O

0

BYTE 2

, COMMAND

A [29:06, 05:02] , ID

, A[21:14]

, M[03:00] - A [25:22]

, BYTE 1

. 0

, BYTE 3

B. FORMAT IN AOST RESPONSE BUFFER

Figure 4-30 Format of CPU Write Request

DIGITAL INTERNAL USE ONLY

MR_X1271_89

XJA 4-81

The response to a CPU write request packet is a write complete packet. When the write
complete packet loops back into the TRF response buffer, the packet ready flag is set and
the response buffer may be unloaded and checked for the correct response. The format of
a CPU write complete packet on the CBI is shown in part A of Figure 4-31. A packet in
this format loads into the response buffer in the format shown in part B of Figure 4-31.

After this data is read and compared with the expected data format, the packet ready
flag must be cleared before another transaction can be started.

For writes to the XJA's force command register, the write complete packet in the response
buffer is overwritten by the forced command.

OsgtE 313028 28 27 26 2524)23 2221201918 17 161514 1312 11 10 08 08J07 06 05 04 63 02 01 00

0 DON'T CARE R|R ID DON'T CARE RIR|R|R CMD

R = RESERVED

A. FORMAT ON CBI|

ADDRESS (HEX) CONTENTS BY BYTE

FFEO 0 , CMD

FFE2 0 . 1D

FFE4 - .

FFE6 - -

FFES - .

FFEA - .-

FFEC - v

FFEE - v

B. FORMAT IN AOST COMMAND BUFFER

MR_X1272_89

Figure 4-31 Format of CPU Write Complete

DIGITAL INTERNAL USE ONLY | 4-81

D
Register Descriptions

This chapter describes the purpose and the contents of the XJA registers. The register

fields are defined, and the action that results from setting the register bits is described.

Loading and unloading of the registers, and the associated data paths, are described in

Chapter 4.

5.1 XJA Register Overview

The XJA has 23 registers. Eight are XMI space registers (normally accessed from the

XMI bus) and fifteen are XJA private registers (cannot be accessed from the XMI bus).

Table 5-1 lists the registers and briefly describes their function.

All XJA registers ignore masking information on writes. Masked writes to these registers

are treated as longword writes. They ignore locking information on read locks and write

unlocks. Read locks and write unlocks execute as basic reads and writes.

Registers in the XJA are divided into two groups: XMI space registers and XJA private

registers. The XMI space registers are accessible from the XMI bus and directly within

the XJA. The system CPU can access the XMI space registers either directly within the

XJA or by executing a transaction on the XMI bus with the target node being the XJA.

The method used during normal operation is by using an XMI transaction. Direct access

is done in diagnostic mode when the XMI bus may be faulty.

The XJA private registers are accessible only from the system CPU. (See Chapter 1 for

I/0 space addressing.) They are always accessed directly within the XJA.

DIGITAL INTERNAL USE ONLY 51

5-2 Register Descriptions

Table 5-1 XJA Registers

DescriptionRegister Mnemonic

XMI Space Registers

Device XDEV Describes the node device.

Bus error XBER Contains a summary of the XMI status and errors.

Failing address XFADR Saves the low-order four bytes of a failing XMI
command/address.

Failing address extension XFAER Saves the high-order four bytes of a failing XMI
command/address.

XJA general purpose XJAGPR Used for diagnostic testing.

Full system emulation mode control FAEMC Controls XJA operation in full system emulation

mode.

Add-on self-test status AOSTS Controls the XJA self-test.

XJA serial number SERNUM Contains the manufactuing plant, year and week
of manufacture, and serial number of the XJA.

XJA Private Registers

Error summary ERRS Contains a summary of errors detected by the XJA.

Force command FCMD Forces XJA transactions for testing purposes.

Interprocessor interrupt source IPINTRSRC Identifies the source of interprocessor interrupts.

XJA diagnostic control DIAG Controls diagnostic testing of the XJA.

DMA failing address DMAFADDR Saves address and length information of a failing
DMA or interrupt transaction.

DMA failing command DMAFCMD Saves command, mask, and address information of
a failing DMA or interrupt transaction.

Error interrupt control ERRINTR Disables error interrupts during diagnostic testing.

Configuration CNF Contains the XJA number and node ID, and main

memory size and starting address.

XBIID A XBIIDA Contains node ID of XBI 7 through XBI 0.

XBIID B XBIIDB Contains node ID of XBI D(hex) through XBI 8.

Error SCB offset ERRSCB Contains SCB offset for XJA detected errors at IPL

17(hex).

SCB offset IPL 14 IDENT4 Contains SCB offset for XMI generated interrupts
at IPL 14(hex).

SCB offset IPL 15 IDENT5 Contains SCB offset for XMI generated interrupts
at IPL 15(hex).

SCB offset IPL 16 IDENT6 Contains SCB offset for XMI generated interrupts
at IPL 16(hex). :

SCB offset IPL 17 IDENT? Contains SCB offset for XMI generated interrupts
at IPL 17(hex).

DIGITAL INTERNAL USE ONLY

Register Descriptions 5-3

5.2 XMI Space Registers

Table 5-2 lists the XMI space registers. Each XMI node is required to implement specific

registers contained in specific locations within the node’s address space. The first two

registers listed in Table 5-2 (XDEV and XBER) are required of all XMI nodes. The next

two registers listed (XFADR and XFAER) are required of all XMI commander nodes. The

remaining four registers listed are optional XMI space registers used by the XJA.

Table 5-2 XMl Space Registers

Register Mnemonic Address' = Node Requirements

Device? XDEV bb + 00 All nodes

Bus error? : XBER bb + 04 All nodes

Failing address? XFADR bb + 08 Commander nodes only

Failing address extension? XFAER bb + 0C3 Commander nodes only

XJA general purpose XJAGPR bb + 10 Optional

Full system emulation mode control FAEMC bb + 14 Optional

Add-on self-test status AOSTS bb + 18 Optional

XJA serial number SERNUM bb + 1C Optional

IThe bb refers to the base address of a node (the address of the first location in node space).

2XMI bus required.

SXFAER is also accessed at address bb + 2C.

5.2.1 Device Register

The device register (XDEV) has two fields containing information about the node device.

Both fields are loaded during node initialization. (See Figure 5-1 and Table 5-3.)

313029282726252423222120191817161514131211100908 07060504 0302 0100

DEVICE REVISION DEVICE TYPE

A. REGISTER FIELDS

CLASS

06 05 04 03 02 01 00

XCOMM REGISTER PRESENT

110 DEVICE

BUS WINDOW (MEMORY)

BUS WINDOW (1/0)

MEMORY DEVICE

CPU DEVICE

B. DEVICE TYPE FIELD

e RESERVED

MR_X0875_89

Figure 5-1 Device Register

DIGITAL INTERNAL USE ONLY

5-4 Register Descriptions

Table 5-3 Device Register

Description

Initial

Bit Name Type State!

31:16 Device revision RO 1

(DREV)

15:00 Device type RO 1001(hex)

(DTYPE)

Initialized by XJA. Identifies the revision level of the

XJA. Because this register is physically contained in
the XDC gate array, this field indicates the revision

level of the XDC gate array.

Initialized by XJA. Identifies the type of device on

this node. The device type field is broken into two

subfields: class and ID. The class field indicates the

major category into which the node falls. The currently

defined classes are CPU, memory, /O bus window,

memory bus window, and I/0. In addition, bit 10 is

used to indicate the presence of an XMI communication

(XCOMM) register. The XCOMM register is not used in

this system.

The ID field uniquely identifies a particular device in a

specified class.

1Reset or power-up

Legend

RO = Read only

The devices currently supported on the VAX 9000 XMI bus are listed in Table 5-4.

Table 5-4 VAX 9000 XMI Device Types

Adapter Adapter

Device Description Mnemonic = Module(s) XDEV{15:00]

KFMSA DSSI! disk interface DASH T2036 0810

DEMNA XMI-to-NI adapter XNA T2020 0C03

CIXCD XMI-to-CI adapter XCD T2080 0C05
KDM70 Local DSA disk/tape interface HSX T2022 and T20232 0C22

DWMJA XMI-to-JBox adapter XJA T1061 1001

DWMEBB XMI-to-BI adapter XBI+ T2018 and T10433 2001

1Digital storage system interconnect.

2The HSX adapter requires two slots in the XMI card cage.

3The T1043 module is located in the VAXBI expander cabinet.

5.2.2 XMI Bus Error Register

The XMI bus error register (XBER) contains error information for errors that the XJA

detects on XMI bus-related transactions. (See Figure 5-2 and Table 5-5.)

DIGITAL INTERNAL USE ONLY

A
I
N
O
 3
S
N
 T
V
Y
N
Y
H
I
L
N
I
 T
V
L
I
D
I
d

1
9
1
8
1
6
9
y
 1
04
43

 s
SN

Q
I
N
X

2
-
6
 a
4
n
b
i
4

MISCELLANEOUS «

3130292827262524232221201918171615141312 111009 08 07 06 05 04 03 02 0100

FCID

¢~ ERROR SUMMARY (ES)

NODE RESET (NRST)

NODE HALT (NHALT)

XMI BAD (XBAD)

CORRECTED CONFIRMATION (CC)

XMI FAULT (XFAULT)

ENABLE MORE PROTOCOL (EMP)

DISABLE XM! TO (DXTO})

ENABLE HW WRITE (EHWW)

FAILING COMMANDER ID (FCID)

SELF-TEST FAIL (STF)

EXTENDED TEST FAIL (ETF)

WRITE ERROR INTERRUPT (WEI)

RESPONDER

ERRORS

INCONSISTENT PARITY (IPE)

NODE-SPECIFIC ERROR SUMMARY

(NSES)

PARITY ERROR (PE)
TRANSACTION TIMEOUT (TTO))

WRITE SEQUENCE ERROR (WSE)

COMMAND NO-ACK (CNAK)

READADENT DATA NO-ACK (RIDNAK)

READ ERROR RESPONSE (RER)

= RESERVED

COMMANDER
READ SEQUENCE ERROR (RSE) > ERRORS

REATTEMPT TIMEOUT (RETO)

CORREGTED READ DATA (CRD)

WRITE DATA NO-ACK {(WDNAK)

MR_Xo0876_39

G
-

s
u
o
n
d
u
o
s
a
q
 J
e
s
i
b
a
y

5-6 Register Descriptions

Table 5-5 XMI Bus Error Register

Description
Initial

Bit Name Type Statel

31 Error summary RO 0

(ES)

30 Node reset RW 0
(NRST)

29 Node halt RW 0

(NHALT)

28 XMI BAD R/W 1

(XBAD)

27 Corrected con- RW 0
firmation (CC) 1to

clear

26 XMI_FAULT RO 0

(XFAULT)

25 Write error R/W 0

interrupt (WEI) 1to

clear

24 Inconsistent RO 0
parity error as 0

(IPE)

23 Parity error R/W 0
(PE) 1to

clear

Represents the logical-OR of error bits XBER [27:13].

Writing a 1 to this location initiates reset of the XJA
and start of the self-test. If FAEMC[31] is set, the

XJA will not initiate self-test. When this bit is set,

the XJA asserts XJA_FATALERR, requesting an IPL
1D(hex) interrupt of all the system CPUs.

When this bit is set, the XJA asserts XJA_

FATALERR, requesting an IPL 1D(hex) interrupt

of all the system CPUs.

Initialized by SPU/AOST. On reads, this bit indicates

the state of the XMI_BAD signal; a 1 indicates XMI_
BAD is asserted. Writes to this location establish the
state of the wired-OR XMI_BAD line. Writing a 1

asserts XMI_BAD, while writing a 0 negates it. When
the XJA self-test completes successfully, XMI_BAD is
reset to 0.

Set when the XJA detects a single-bit confirmation

error. (Single-bit confirmation errors are

automatically corrected by the XCLOCK chip in the

XJA XMI corner.) The XJA requests an IPL 17(hex)
error interrupt if ERRINTR [27] is set.

When set, indicates the XMI_FAULT backplane
signal is asserted for at least one cycle. The XJA

asserts XJA_FATALERR, requesting an IPL 1D(hex)
interrupt of all the system CPUs.

When set, indicates that the XJA received a write

error interrupt transaction. The XJA asserts XJA_

FATALERR, requesting an IPL 1D(hex) interrupt of

all the system CPUs.

The XJA does not implement the IPE bit.

When set, indicates that the XJA detected a parity

error on an XMI cycle. All XMI nodes ignore XMI
cycles that have bad parity. The XJA no-acks an XMI
cycle that has bad parity and sets this bit.

The XJA requests an error interrupt at an IPL of

17(hex) if ERRINTR [23] is set. The command/address

is saved in DMAFADDR [31:00} and DMAFCMD
[31:00], and the commander ID is saved in XBER

[09:04).

IReset or power-up

Legend

RO = Read only

R/W = Read/write

DIGITAL INTERNAL USE ONLY

Register Descriptions 5-7

Description

Table 5-5 (Cont.) XMI Bus Error Register

Initial

Bit Name Type State’

22 Write sequence R/W 0
error (WSE) 1to

clear

21 Read/IDENT data RW 0
no-ack (RIDNAK) 1to

clear

20 Write data R/W 0
no-ack (WDNAK) 1to

clear

When set, indicates that the XJA aborted a DMA

write transaction due to a missing data cycle. Write

sequence errors occur when the number of data cycles

specified in a write command/address cycle, do not

follow the command/address cycle on the XMI bus.

Upon detection of a write sequence error on a DMA

XMI transaction, the XJA no-acks the offending cycle,

sets this bit, frees the assigned DMA write buffer,

and prevents the transmission of the write data to the

ICU. The command/address is saved in DMAFADDR

and DMAFCMD, and the commander ID is saved in

XBER [09:04].

The XJA requests an error interrupt at an IPL of

17(hex) if ERRINTR [22] is set.

When set, indicates that a DMA read data cycle

(GRDn, CRDn, LOC, or RER) transmitted by the XJA

has received a no-ack confirmation. Upon detection of

a read/IDENT data no-ack, the XJA sets this bit and

clears the return read data buffer.

If the no-ack was on return read lock data, the

original requester of the data interrupts the system

on the no-ack or times out. The system can free the

now stuck lock using the physical address stored in

the original node’s XBER/XFADR.

The XJA does not respond to IDENT command

transactions from the XMI bus.

The command/address currently in DMAFADDR

[81:00] and DMAFCMD (31:00], and the commander
ID currently in XBER [09:04] are saved. If no

intervening transaction is received from the XMI

bus, the saved command/address and commander ID

is that of the XMI commander that initiated the read
transaction.

The XJA requests an error interrupt at an IPL of
17(hex) if ERRINTR [21] is set.

When set, indicates that a CPU write data
cycle transmitted by the XJA received a no-ack

confirmation. Upon receipt of a no-ack confirmation

code on a write data cycle, the XJA retries the entire
transaction until it either completes successfully or

a RETO is encountered. In this case, the bit is set.

The command/address is saved in XFADR [31:00] and
XFAER [31:00), and the CPU ID is saved in ERRS

[05:00].

The XJA requests an error interrupt at an IPL of
17(hex) if ERRINTR [20] is set.

1Reset or power-up

Legend

RO = Read only

R/W = Read/write

DIGITAL INTERNAL USE ONLY

5-8 Register Descriptions

Table 5-5 (Cont.) XMI Bus Error Register

Initial

Bit Name Type State! Description

19 Corrected read RW 0 When set, indicates that the XJA received a
data (CRD) 1to CRD read response to a CPU read request. The

clear command/address is saved in XFADR (31:00] and

XFAER [31:00], and the CPU ID is saved in ERRS

[05:00].

The XJA requests an error interrupt at an IPL of

17(hex) if ERRINTR [19] is set.

18 Reattempt R'W 0 When set, indicates that a transaction initiated by
timeout (RETOQ) 1to the node failed due to a reattempt timeout. The XJA

clear sets this bit when it retries a given transaction

and receives a no-ack response on a read/write

command/address cycle or a write data cycle for

more than 131,072 XMI cycles (approximately 8.4 ms).

The command/address is saved in XFADR [31:00] and

XFAER {31:00}, and the CPU ID is saved in ERRS

[05:00].

The XJA requests an error interrupt at an IPL of

17(hex) if ERRINTR [18] is set.

NOTE

The function of bit XBER [18] on the VAX 9000

system XMI bus is different from that of other

XMI buses where XBER [18] is designated as

no read response (NRR) and serves a different

purpose.

17 Read sequence R/'W 0 When set, indicates that an XMI transaction, initiated
error (RSE) 1to by the XJA to service a CPU read request, failed due

clear to a read sequence error. The XJA does not reattempt

the CPU read transaction if it encounters an RSE on

the returned data. The XJA sets this bit if it receives

any return read data function code other than GRDO

or CRDO.

When the XJA detects a read sequence error, it sends

a CPU read error status JXDI transaction back to

the ICU. The command/address is saved in XFADR

[81:00] and XFAER [31:00], and the CPU ID is saved

in ERRS [05:00].

The XJA requests an error interrupt at an IPL of

17(hex) if ERRINTR [17] is set.

1Reset or power-up

Legend

RO = Read only

R/W = Read/write

DIGITAL INTERNAL USE ONLY

Table 5-5 (Cont.) XMI Bus Error Register

Register Descriptions 5-9

Bit Name

Initial

Type State! Description

16 Read error

response (RER)

15 Command no-ack

(CNAK)

14 -

13 Transaction

timeout (TTO)

12 Node-specific

error summary

(NSES)

11 Extended test

fail (ETF)

R/W 0
1to

clear

RO -

as 0

1to

clear

RO 0

RO 0

as 0

When set, indicates that an XMI transaction, initiated

by the XJA to service a CPU read request, failed
due to the receipt of a read error response. The XJA

does not reattempt the CPU read transaction if it

encounters an RER.

When the XJA receives an RER, it sends a CPU read

error status JXDI transaction back to the ICU. The

command/address is saved in XFADR [31:00] and

%(FAEI]Q [31:00), and the CPU ID is saved in ERRS

05:00].

The XJA requests an error interrupt at an IPL of
17(hex) if ERRINTR [16] is set.

When set, indicates that a read/write command
cycle transmitted by the XJA received a no-ack
confirmation. This confirmation can result from
a reference to a nonexistent memory location or

a command cycle parity error. The XJA sets this
bit when it receives the no-ack confirmation for a

given command/address cycle for 131,072 XMI cycles
(approximately 8.4 ms).

If the attempted transaction is a CPU write type

transaction,the XJA will send a CPU write complete
JXDI transaction back to the ICU. If the attempted
transaction is a CPU read type transaction, the XJA
sends a CPU read error response JXDI transaction

back to the ICU. The command/address is saved in

XFADR [31:00] and XFAER [31:00], and the CPU ID
is saved in ERRS [05:00].

The XJA requests an error interrupt at an IPL of

17(hex) if ERRINTR [15] is set.

Reserved.

When set, indicates that an XMI read or IDENT
transaction, initiated by the XJA, failed due to

a transaction timeout. The XJA sets this bit if
it fails to receive a response to an acked read or

IDENT command cycle within 131,072 XMI cycles

(approximately 8.4 ms).

The XJA requests an error interrupt at an IPL of

17(hex) if ERRINTR [13] is set. The command/address
is saved in XFADR [31:00] and XFAER [31:00], and

the CPU ID is saved in ERRS [05:00].

Set when any of ERRS [31:20] are set.

The XJA does not implement extended self-test and

returns O for this bit. ‘

1Reset or power-up

Legend

RO = Read only

R/W = Read/write

DIGITAL INTERNAL USE ONLY

5-10 Register Descriptions

Table 5-5 (Cont.) XMI Bus Error Reglster

Initial

Bit Name Type State! Description

10 Self-test fail R/W 1 When set, indicates that the XJA has not yet passed
(STF) its self-test. XJA add-on self-test (AOST) logic clears

this bit upon the successful completion of the XJA
self-test. AOST status is reported in the AOSTS
register (Section 5.2.7).

09:04 Failing com- RO 0 Used to log the commander ID of a failing DMA or
mander ID (FCID) interrupt transaction. Locked when any of the XBER

[23:21] bits are set.

03 Enable hexword RO 0 The XJA does not generate hexword length

writes (EHWW) as 0 transactions and, therefore, does not implement
this bit.

02 Disable XMI RO 0 The XJA does not implement this bit.

timeout (DXTO) as 0

01 Enable MORE RO 0 The XJA does not support the MORE protocol and

protocol (EMP) as 0 does not implement this bit.

00 - RO - Reserved.

as 0

IReset or power-up

Legend

RO = Read only

R/W = Read/write

DIGITAL INTERNAL USE ONLY

5.2.3 Failing Address Register

Register Descriptions 5-11

The failing address register (XFADR) is used to log the low-order four bytes of an XMI

command/address cycle associated with a failing CPU transaction. (See Figure 5-3 and

Table 5-6.)

3130202827262524232221201918171615141312 11100908 07 06 0504 03 02 0100

LEN XMi ADDRESS {28:00]

XM ADDRESS [39]

Figure 5-3 Failing Address Register

Table 5-6 Failing Address Register

MR_X0877_89

Description

Initial

Bit Name Type State’

31:30 Failing length RO Undefined

(FLN)

29 Failing RO Undefined

address [39]

28:00 Failing RO Undefined

address [28:00]

Used to log the value of XMI D [31:30] during the

command cycle of a failing CPU transaction. Locked

when any of the XBER [20:15] bits or XBER [13] is

set.

Used to log the value of XMI D [29] during the

command cycle of a failing CPU transaction. Locked

when any of the XBER [20:15] bits or XBER [13] is
set.

Used to log the value of XMI D [28:00] during the

command cycle of a failing CPU transaction. Locked

when any of the XBER [20:15] bits or XBER [13] is

set.

1Reset or power-up

Legend

RO = Read only

DIGITAL INTERNAL USE ONLY

5-12 Register Descriptions

5.2.4 Failing Address Extension Register

The failing address extension register (XFAER) is used to log the high-order four bytes

of an XMI command/address cycle associated with a failing CPU transaction. (See

Figure 54 and Table 5-7.)

3130292827262524232221.201918171615141312 11100908 07 06 0504 03 02 0100

CMD XMI ADDRESS [38:29]

"

MASK [156:00]

E5}= RESERVED

MR_X0878_89

Figure 5-4 Faliling Address Extension Register

Table 5-7 Failing Address Extension Register

Initial

Bit Name Type State! Description

31:28 Failing RO Undefined Used to log the command code of a failing CPU
command (FCMD) transaction. Locked when any of the XBER [20:15]

bits or XBER [13] is set.

27:26 - RO - Reserved.
as 0

25:16 Failing RO Undefined Used to log the value of XMI D [57:48] during the
address [38:29] command cycle of a failing CPU transaction. Locked

when any of the XBER [20:15] bits or XBER [13] is

set.

15:00 Failing mask RO Undefined Used to log the value of XMI D [47:32] during the
command cycle of a failing CPU transaction. XMI D

[47:32] are mask bits on an XMI write transaction.

This field is locked when any of the XBER [20:15] bits

or XBER [13] is set.

1Reset or power-up

Legend

RO = Read only

DIGITAL INTERNAL USE ONLY

Register Descriptions 5-13

5.2.5 XJA General-Purpose Register

The XJA general-purpose register (XJAGPR) is a longword length register in XJA

XMI node space used for diagnostic testing of the XJA data path. (See Figure 5-5

and Table 5-8.)

XJAGPR is a read/write register used as a source for write data when XMI write

transactions are initiated using the FCMD register. It is also used to contain the

returned read data when XMI read transactions are initiated using the FCMD register

(Table 5-14).

3130292827262524232221201918171615141831211100908 07 06 05 04 03 02 0100

GENERAL-PURPOSE REGISTER

& 4 M 4 FUUITTSN WIRUR TN S T S S S R S S G S S S S G S

MR_X0879_89

Figure 5-5 XJA General-Purpose Register

Table 5-8 XJA General-Purpose Register

Initial

Bit Name Type State’ Description

31:00 XJA GPR RW Undefined Test data.

1Reset or power-up

Legend

R/W = Read/write

5.2.6 Full System Emulation Mode Control Register

The full system emulation mode control (FAEMC) register controls operation of the XJA

in a special emulation mode; another system is used to simulate the VAX 9000 to the XJA

(Figure 5-6). This mode of operation is not described in this manual.

3130292827262524232221201918171615141312 11100908 07 06 05 04 03 02 0100

XBlI WINDOW SPACE MASK 0

L

SLEEP MODE

FAEM ENABLE

5= RESERVED

MR_X0880_89

Figure 5-6 Full System Emulation Mode Control Register

DIGITAL INTERNAL USE ONLY

5-14 Register Descriptions

5.2.7 Add-On Self-Test Status Register

The add-on self-test status (AOSTS) register (Figure 5-7 and Table 5-9) contains the

results of various tests run by the AOST logic in the XJA. The register contents depend

on the test just run. See Chapter 4 for a description of the AOST logic.

31302028 2726252423222120191817 1615141312 1110090807 06 0504 03 02 0100

N N " " 4 e —,————

MR_Xo8g_89

Figure 5-7 Add-On Seli-Test Status Register

Table 5-9 Add-On Self-Test Status Register

Initial

Bit Name Type State! Description

31:00 AOQOST status RW Undefined Test data.

(AOSTS)

1Reset or power-up

Legend

R/W = Read/write

DIGITAL INTERNAL USE ONLY

Register Descriptions 5-15

5.2.8 XJA Serial Number Register

The XJA serial number (SERNUM) register (Figure 5-8 and Table 5-10) is loaded with

the contents of a serial number PROM by the AOST logic at the completion of self-test.

The serial number PROM is programmed with the serial number of the XJA module

using a bar code reader wand.

3130292827 262524232221201918171615141312 11100908 07 06 050403 02 0100

PLANT YEAR WEEK FIFTH DIGIT LOWER FOUR DIGITS

& J\L J
Y Y

MANUFACTURE DATE UNIQUE PART OF SERIAL NUMBER

MR_X0882_89

Figure 5-8 XJA Serial Number Register

Table 5-10 XJA Serial Number Register

Initial

Bit Name Type State! Description

31:29 Plant code R/W Loaded by Contains a code that corresponds to a specific Digital
AOST manufacturing facility as follows:

SERNUM Site

[31:29] Code Location

000 ASO Augusta manufacturing

001 COM Caribbean operations

: manufacturing

010 BTO Burlington manufacturing

011 GAO Galway manufacturing

Else - Reserved

28:25 Year of R/W Loaded by Contains the last digit of the year of manufacture in
manufacture AOST binary format.

24:19 Week of R/W Loaded by Contains the week of manufacture in binary format.
manufacture AOST

1Reset or power-up

Legend

RO = Read only

R/W = Read/write

DIGITAL INTERNAL USE ONLY

5-16 Register Descriptions

Table 5-10 (Cont.) XJA Serial Number Register

Initial

Bit Name Type State’ Description

18:14 Fifth digit R/'W Loaded by Contains the fifth digit of the unique portion of the serial
AOST number. The digit could be a number or a letter as

shown in the following:

SERNUM Fifth SERNUM Fifth

[18:14] Digit [18:14] Digit

00000 0 10000 G

00001 1 10001 H

00010 2 10010 I

00011 3 10011 Jd

00100 4 10100 K

00101 5 10101 L

00110 6 10110 M

00111 7 10111 N

01000 8 11000 0

01001 9 11001 P

01010 A 11010 Q

01011 B 11011 R

01100 C 11100 S

01101 D 11101 T

01110 E 11110 U

01111 F 11111 vV

13:00 Last four R/W Loaded by Contains the last four digits of the unique portion of the
digits AOST serial number in binary format.

TReset or power-up

Legend

RO = Read only

R/W = Read/write

DIGITAL INTERNAL USE ONLY

5.3 XJA Private Registers

The XJA private registers (Table 5-11) are used for error reporting and diagnostic

functions. These registers are accessible only from the system CPU. They cannot be

accessed from the XMI bus.

Table 5-11 XJA Private Registers

Register Descriptions 5-17

Register Mnemonic Address’

Error summary ERRS bb + 00

Force command FCMD bb + 04

Interprocessor interrupt source IPINTRSRC bb + 08

XJA diagnostic control DIAG bb + 0C

DMA failing address DMAFADDR bb + 10

DMA failing command DMAFCMD bb + 14

Error interrupt control ERRINTR bb + 18

Configuration CNF bb + 1C

XBIID A XBIIDA bb + 20

XBIID B XBIIDB bb + 24

Error SCB offset ERRSCB bb + 28

SCB offset IPL 14 IDENT4 bb + 40

SCB offset IPL 15 IDENT5 bb + 44

SCB offset IPL 16 IDENTé6 bb + 48

SCB offset IPL 17 IDENT?7 bb + 4C

1bb = 3 FE00 0000 + (XJA number x 8 0000)

DIGITAL INTERNAL USE ONLY

5-18 Register Descriptions

5.3.1 Error Summary Register

The error summary (ERRS) register (Figure 5-9 and Table 5-12) contains information on

errors that the XJA detected on JXDI and XMI transactions.

413029282726252423222120191817161514131211100808 0706 050403020100

CPU ID

XMI_PE[00]

XMI_PE[01]

XMI_PE[02]

XM POWER-UP

XMI POWER FAIL

XM!I ARBITRATION TIMEOUT

CBI PARITY ERROR

JXDI COMMAND/LENGTH ERROR

JXDI RECEIVE BUFFER OVERRUN

CPU REQUEST OVERRUN

ICU BUFFER COUNT ERROR

XCE TRANSMIT ENTRY MACHINE ERROR

MULTIPLE JXDI PARITY ERRORS

JXD! PARITY ERROR ON JXDI BYTE O

JXDI PARITY ERROR ON JXDI BYTE 1

)= RESERVED

Figure 5-9 Error Summary Register

Table 5-12 Error Summary Register

MR_Xx0883_8¢

Description

Initial

Bit Name Type State'

31 JXDI parity error RW 0
on JXDI byte 1 1to

clear

When set, indicates that the XJA detected a parity

error on received JXDI [15:08]. When this bit is

set, ERRS [30] is locked. When this bit is set and

ERRINTR [01] is set, the XJA initiates an IPL 17(hex)

error interrupt to the system CPU.

If ERRS [31] is set, ERRS [30] cannot set. Both ERRS

[31:30] can be set at the same time if parity errors

occur simultaneously on both JXDI [15:08] and {07:00].

1Reset or power-up

Legend

RO = Read only

R/W = Read/write

DIGITAL INTERNAL USE ONLY

Register Descriptions 5-19

Table 5-12 (Cont.) Error Summary Register

Initial

Bit Name Type State! Description

30 JXDI parity error R/W 0 When set, indicates that the XJA detected a parity

on JXDI byte 0 1to error on received JXDI [07:00]. When this bit is

clear set, ERRS [31] is locked. When this bit is set and

ERRINTR [01] is set, the XJA initiates an IPL 17(hex)

error interrupt to the system CPU.

If ERRS [30] is set, ERRS [31] cannot set. Both ERRS

[31:30] can be set at the same time if parity errors

occur simultaneously on both JXDI [15:08] and [07:00].

29 Multiple JXDI RW 0 When set, indicates that a receive JXDI parity error
parity errors 1to was detected when either ERRS [31] or ERRS [30]

clear was set. This indicates that JXDI parity errors are

occurring at a high rate and further operation of the

JXDI interface may be unreliable.

28 XCE transmit RW 0 When set, indicates that the XCE array detected
entry machine 1to an illegal state of one of its internal transmit entry

error clear machines. Asserts XJA_FATALERR on the JXDI,

indicating that further operation of the JXDI interface

, is unreliable.

27 ICU buffer count R/W 0 When set, indicates that the XJA received too many

error 1to ICU_BUFEMPTD assertions. This means that the
clear ICU indicated it has more than two receive buffers

available. Asserts XJA_FATALERR on the JXDI,

indicating that further operation of the JXDI interface

is unreliable.

26 CPU request R/W 0 When set, indicates that the XJA received more than

overrun 1to one CPU request before it sent completion information

clear (read data, read status, or write complete) to the ICU.

Asserts XJA_FATALERR on the JXDI, indicating that

further operation of the JXDI interface is unreliable.

25 JXDI receive R/W 0 When set, indicates that the XJA received more JXDI

buffer overrun 1to transactions than it has available buffers. This bit

clear indicates that the ICU is faulty or is seeing too many

XJA_BUFEMPTD assertions. Asserts XJA_FATALERR

on the JXDI, indicating that further operation of the

JXDI interface is unreliable.

24 JXDI RW 0 When set, indicates that the XJA received an illegal
command/length 1to JXDI command/length combination with good parity.
error clear This indicates either a double-bit JXDI error occurred

or the ICU or XJA is faulty. Asserts XJA_FATALERR

on the JXDI, indicating that further operation of th

JXDI interface is unreliable. '

23 CBI parity error RW 0 When set, indicates that the XDC gate array detected

1to bad parity on data received from the CBI while the

clear XDE gate arrays detected good parity on the data when

received from the ICU.

This bit asserts XJA_FATALERR on the JXDI,

indicating that further operation of the XJA is

unreliable. .

1Reset or power-up

Legend

RO = Read only

R/W = Read/write

DIGITAL INTERNAL USE ONLY

5-20 Register Descriptions

Table 5-12 (Cont.) Error Summary Register

Initial

Bit Name Type State! Description

22 XMI arbitration W 0 When set, indicates that the XJA asserted its XMI
timeout lto commander or responder request lines and failed

clear to receive XMI bus grant within 256 XMI cycles
(approximately 16.4 ps). The failing command/address

is locked in XFADR [31:00] and XFAER [31:00].

An IPL 17(hex) interrupt is initiated to the system

CPU if ERRINTR [00] is set. Further CPU requests

can be initiated to allow error handling software to

access error information.

If the failing XMI arbitration request is a DMA

read data return transaction, the data is dropped.

If the failing transction is a CPU write transaction,

the XJA saves the command/address in XFADR

[31:00] and XFAER [31:00), and sends a JXDI
write complete transaction to the ICU to allow

another CPU transaction to be initiated. If the

failing transction is a CPU read transaction, the

XJA saves the command/address in XFADR [31:00]

and XFAER [31:00], and sends a JXDI read error

response transaction to the ICU to allow another CPU

transaction to be initiated.

21 XMI power fail R/W 0 When set, indicates that the XMI bus, defined by the
lto XJA, is about to lose power. The system CPU is notified
clear by the assertion of XJA_FATALERR on the JXDI. This

bit is set upon the assertion of XMI_AC_LO or XMI_

DC_LO.

20 XMI power-up RW 1 When set, indicates that the XMI bus, defined by the
Ito XJA, completed the XMI reset sequence. When the

clear self-test has completed successfully, the system CPU is
notified by an IPL 17(hex) interrupt.

19:17 XMI parity error R'W 0 Represents which parity bit fails when XBER [23] is
[02:00] ito set.

clear

16:06 - RO 0 Reserved.
as 0

05:00 Failing CPU ID RO Undefined Contains the 6-bit CPU ID supplied by the ICU during
the most recent CPU type operation. Locked whenever

any of XBER [20:15] or XBER [13] are set.

1Reset or power-up

Legend

RO = Read only

R/W = Read/write

DIGITAL INTERNAL USE ONLY

5.3.2 Force Command Register

Register Descriptions 5-21

The force command (FCMD) register (Figure 5-10 and Table 5-13), together with the

DIAG and XJAGPR registers, provides a means by which diagnostic software can exercise

the XJA.

3130292827262524232221201918171615141312 11100908 07 06 05 04 03 02 0100

LEN CMD XMI ADDRESS [25:01)

Figure 5-10 Force Command Register

Table 5-13 Force Command Register

FORCE COMMAND

MR_X0884_89

Description

Initial
Bit Name Type Statel

31:30 Length R/W 0

29:26 Command R'W 0

25:01 XMI address R'W 0

00 Force R/'W 0
command

Initialized by diagnostic. Contains the XMI length code for

the desired transaction. The XJA asserts this field onto

XMI D [31:30] when FCMD [00] is set.

Initialized by diagnostic. Contains the XMI command code

for the desired transaction. The XJA asserts this field onto

XMI D [63:60] when FCMD [00] is set.

The force command field allows a diagnostic to force any

legal or illegal command/address onto the XMI bus. The

implementation of the force command field is shown in

Table 5-14.

Contains the value that is asserted on XMI D [25:01] during

the command/address cycle of the given transaction. XMI D

[00] will always be 0.

Initialized by diagnostic. Initiates an XMI

command/address cycle for the transaction specified in

FCMD [29:26]. The XJA arbitrates for the XMI bus

and transmits the given transaction. Upon successful

completion of the transaction, the XJA clears this bit. If

the system clears this bit before the XJA can complete the

transaction, the XJA continues the transaction without

interruption.

1Reset or power-up

Legend

R/W = Read/write

DIGITAL INTERNAL USE ONLY

5-22 Register Descriptions

Table 5-14 Force Command Implementation

FCMD [29:26] XJA Action

0000 Undefined.

0001 Initiate XMI read command with address from FCMD [25:01] and length from FCMD
[31:30]. If the read address selects the XJA, a read data return longword (as selected by

DIAG [10:08]) is loaded into XJAGPR.

0010 Initiate XMI read lock command with address from FCMD [25:01] and length from FCMD
[31:30]. If the read address selects the XJA, a read data return longword (as selected by

DIAG [10:08)) is loaded into XJAGPR.

0011 Undefined.

0100 Undefined.

0101 Undefined.

0110 Initiate XMI write unlock command with address from FCMD {25:01) and length from
FCMD [31:30]. The value of the 16-bit mask field is derived from the absolute decode of

FCMD {04:01]. The data for the required succeeding cycles is derived from XJAGPR as

follows:

Cycle - Data [63:32] Data [31:00]

0 Not (XJAGPR) XJAGPR

1 Not (XJAGPR sl 1) XJAGPR 51 1

2 Not (XJAGPR sl 2) XJAGPR sl 2

3 Not (XJAGPR sl 3) XJAGPR sl 3

sl = Shift left (toward the MSB) and rotate. (MSB goes to LSB)

0111 Initiate XMI write command with address from FCMD [25:01] and length from FCMD

[31:30]. The value of the 16-bit mask field is derived from the absolute decode of FCMD

[04:01]. The data for the required succeeding cycles is derived from XJAGPR as shown

above for the write unlock command.

1000 Initiate XMI interrupt command with IPL from FCMD [19:16] and destination from
FCMD [15:01].

1001 Initiate XMI IDENT command with IPL from FCMD [19:16] and destination from FCMD
[15:01]. IDENT commands initiated using the FCMD register do not perform functionally

identical to reads of the SCB offset register.

1010 Undefined.

1011 Undefined.

1100 Undefined.

1101 Undefined.

1110 Undefined.

1111 Initiate implied vector interrupt on the XMI bus, with the type of interrupt specified by
FCMD [19:16], and the destination specified by FCMD [15:01].

DIGITAL INTERNAL USE ONLY

Register Descriptions 5-23

5.3.3 Interprocessor Interrupt Source Register

NOTE

The XJA supports interprocessor interrupts, therefore, the content of this

register is described. However, because the VAX 9000 CPU is the only CPU
within the entire system configuration, no interprocessor interrupts occur on

the XMI bus.

The interprocessor interrupt source IPINTRSRC) register is shown in Figure 5-11 and

described in Table 5-15.

3130202827262524232221201918171615614131211100908 0706 0504 03020100

IPINTR SOURCE

PO 4

= RESERVED

MR_X0885_89

Figure 5-11 Interprocessor interrupt Source Register

Table 5-15 Interprocessor Interrupt Source Register

Initial

Bit Name Type State! Description

31:16 - RO 0 Reserved.
as 0

15:00 IPINTR source R/W 0 The XJA loads the IPINTR source field with the
1to decoded XMI node ID of any node that sends

clear an interprocessor interrupt to the XJA. The bit

corresponding to the interrupting commander’s ID

is set when an interprocessor interrupt is received

whose destination matches the node ID of the XJA.

An IPL 16(hex) interrupt is sent to the system CPU

only when the IPINTRSRC register transitions from

a value of zero to nonzero. This means that after the

receipt of an interprocessor interrupt from the XMI

bus and the transmission of an IPL 16(hex) interrupt

to the CPU, the IPINTRSRC register must be cleared

before another IPL 16(hex) interrupt will be accepted

by the CPU. This is true regardiess of the number of

additional interprocessor interrupts that are received in

the interim.

IReset or power-up

Legend

RO = Read only

R/W = Read/write

DIGITAL INTERNAL USE ONLY

5-24 Register Descriptions

5.3.4 XJA Diagnostic Control Register

The XJA diagnostic (DIAG) control register is shown in Figure 5-12 and described in

Table 5-16.

313029282726252423222120191817161514131211100908 07 06 05 04 03 02 0100

FRCXBSY | FRC PER

LWRDSEL

READ RESPONSE

FORCE CONFIRMATION ERROR

DIAGNOSTIC MODE FORCE ARB TIMEOUT

FLIP ADDRESS BIT 29 FORCE RECEIVE BUFFER OVERRUN

FORCE DIRECT ACCESS
FORCE CBI PARITY ERROR

TO XMi SPACE REGISTERS FORCE XM! RECEIVE BUFFER BUSY

F3- RESERVED

MR_X0886_89

Figure 5-12 XJA Diagnostic Control Register

Table 5-16 XJA Diagnostic Control Register

Description

Initial

Bit Name Type State!

31 Force local XJA R/W 0

register access

30 Flip address bit RW 0

[29)

29 Diagnostic mode RW 0

When set, forces all XMI space registers (Table 5-2) to

be accessed directly within-the XJA instead of by an

XMI transaction (Section 5.1). Accessing the XMI space

registers directly allows diagnostics and error handling

software to gather error information in the event of a

faulty XMI bus.

When set, forces the XJA to invert the state of XCI_D

[29] and XCI_P [00] during command/address cycles

initiated by the XJA. This bit, along with DIAG [10:04],

allows diagnostic software to turn I/O space references

into memory space references to test the XJA’s DMA

logic.

When set, forces the XJA to load the XJAGPR register

with any read return data received from the XMI bus.

Used with DIAG [10:08] and the FCMD register to

allow a diagnostic program to test the XJA data paths.

NOTE

During normal operation, this bit must be 0.

TReset or power-up

Legend

nn = Cycle number

RO = Read only

R/W = Read/write

DIGITAL INTERNAL USE ONLY

Register Descriptions 5-25

Table 5-16 (Cont.) XJA Diagnostic Control Register

Initial

Bit Name Type State’ Description

28:18 - RO - Reserved.
as 0

17 Force XMI receive RW 0 See DIAG [07:04].
buffer busy

16 Force CBI parity RO 0 When set, causes the XJA to detect a CBI parity error

error as on the next packet received from the ICU. The XJA
o'W clears DIAG [16] and asserts XJA_FATALERR to the

ICU.

15 Force receive RO 0 When set, forces ERRS [25] to set. The XJA clears
buffer overrun as DIAG [15] and asserts XJA_FATALERR to the ICU.

oW

14 Force arb timeout R/W 0 When set, forces a negated XMI_CMD_REQ from the
XJA to the XMI bus. CPU reads and writes to the XMI

bus will never win the bus, XMI timeout will occur, and
ERRS [22] will set.

13 Force CNF error R/W 0 When set, forces the XJA to assert XCI_TCNF [01:00]
so that a single-bit error is induced on the XMI

. confirmation lines.

12:11 Read response R/W 0 Allows diagnostic software to force the assertion of
mode all the various responses to read commands. When

selected, the XJA returns the following response codes

when returning read data (DMA read data or register

read data):

XMI Read Response

DIAG [12:11] Function Code

00 GRDnn (good read data)

01 CRDnn (corrected read data)

10 Locked response

11 Read error response

10:08 Longword read RW 0 Allows diagnostic software to select which longword

select out of the eight possible longwords will be returned
to the XJA when an XMI read transaction is initiated

using the FCMD register. Table 5-14 describes how the

selected longword is loaded into XJAGPR.

NOTE

During normal operation, DIAG [10:08] must be 0.

1Reset or power-up

Legend

nn = Cycle number

RO = Read only

R/W = Read/write

DIGITAL INTERNAL USE ONLY

5-26 Register Descriptions

Table 5-16 (Cont.) XJA Diagnostic Control Register

Initial

Bit Name Type State! Description

07:04 Force XMI receive R'W 0 Allows diagnostic software to test operation of the

buffer busy five XMI command/address buffers in the TRF by

setting various buffers to a busy state. If set busy, a

command/address buffer is not available for use by the

XJA in fielding XMI transactions. When DIAG [17]

or any of the DIAG [07:04] bits are set, the associated

DMA write buffer is bound to the command/address

buffer and is therefore also busy.

The coding of this field is as follows:

Force Bit Busy Buffer

DIAG [17] C/A buffer 4

DIAG [07] C/A buffer 3

DIAG [06] C/A buffer 2

DIAG [05] C/A buffer 1

DIAG [04] C/A buffer 0

NOTE

If three command/address buffers are forced busy,

all transactions on the XMI bus are suppressed.

The system CPUs can still access XMI space

registers directly by asserting bit DIAG [31].

1Reset or power-up

Legend

nn = Cycle number

RO = Read only

R/W = Read/write

DIGITAL INTERNAL USE ONLY

Table 5-16 (Cont.) XJA Diagnostic Control Register

Register Descriptions 5-27

Initial

Bit Name Type State’ Description

03:00 Force parity error R/W 0 Allows diagnostic software to force the XJA to assert
incorrect parity on the various interfaces that it drives.

The coding of this field is as follows:

DIAG

[03:00] Parity Test

0000 No parity error is forced.

0001 Force parity error, XCI_P{00], C/A cycle.

0010 Force parity error, XCI_P{01], C/A cycle.

0011 Force parity error, XCI_P[{02], C/A cycle.

0100 Force parity error, XCI_P{00], data cycle.

0101 Force parity error, XCI_P{01], data cycle.

0110 Force parity error, XCI_P[02], data cycle.

0111 Reserved.

1000 11"or0e parity error, JXDI_P{00], cycles 0 and

1001 Il*‘oroe parity error, JXDI_P[01], cycles 0 and

1010 Force parity error, JXDI_P{00], cycle 2.

1011 Force parity error, JXDI_P{01], cycle 2.

1Reset or power-up

Legend

nn = Cycle number

RO = Read only

R/W = Read/write

DIGITAL INTERNAL USE ONLY

5-28 Register Descriptions

5.3.5 DMA Failing Address Register

The DMA failing address (DMAFADDR) register (Figure 5-13 and Table 5-17) is used

to log address and length information associated with a failing DMA or interrupt

transaction. The following bit field definitions apply only to DMA transactions. This

register is locked if any of the XBER [23:21] bits are set.

313029282726252423222120191817161514 1312111009808 07 06 05 04 03 02 0100

AAAAAAAAAAAAAAAAAA

DMA FAILING ADDRESS [39]

FAILING LENGTH

MR_X0887_89

Figure 5-13 DMA Failing Address Register

Table 5-17 DMA Failing Address Register

Initial

Bit Name Type State! Description

31:30 DMA failing RO Undefined Used to log the value of XMI D [31:30] during

length the command cycle of a failing DMA or interrupt

transaction.

29 DMA failing RO Undefined Used to log the value of XMI D [29] during the

address [39] command cycle of a failing DMA or interrupt

transaction. ‘

28:00 DMA failing RO Undefined Used to log the value of XMI D [28:00] during

address [28:00] the command cycle of a failing DMA or interrupt

transaction.

1Reset or power-up

Legend

RO = Read only

DIGITAL INTERNAL USE ONLY

Register Descriptions 5-29

5.3.6 DMA Failing Command Register

The DMA failing command (DMAFCMD) register (Figure 5-14 and Table 5-18) is used to

log command information associated with a failing DMA or interrupt transaction, along
with the balance of the address field. The following bit field definitions apply only to

DMA transactions. This register is locked if any of the XBER [23:21] bits are set.

3130292827262524232221201918171615141312 11100908 07 06 050403020100

CMD XMi ADDRESS [38:29]

— " a N POy " PO

[5)- RESERVED
MR_Xoss8_o89

Figure 5-14 DMA Failing Command Register

Table 5-18 DMA Failing Command Register

Initial

Bit Name Type Statel Description

31:28 DMA failing RO Undefined Used to log the value of XMI D [63:60] during

command the command cycle of a failing DMA or interrupt

transaction.

27:26 - RO - Reserved.
as 0

25:16 Failing address RO Undefined Used to log the value of XMI D [57:48] during

[38:29] the command cycle of a failing DMA or interrupt

transaction.

15:00 Failing mask RO Undefined Used to log the value of XMI D [47:32] during
the command cycle of a failing DMA or interrupt

transaction. XMI D [47:32] are mask bits for a DMA
write transaction.

1Reset or power-up

Legend

RO = Read only

DIGITAL INTERNAL USE ONLY

&-30 Register Descriptions

5.3.7 Error Interrupt Control Register

The error interrupt (ERRINTR) control register (Figure 5-15 and Table 5-19) is used

to disable specific types of interrupts during diagnostic testing. Disabling an interrupt

allows a diagnostic to test the associated error bit without generating an interrupt. In

normal operation, all the interrupt enable bits in ERRINTR are set.

3130292827 26252423222120191817 1615141312 11100908 07 06 0504 0302 0100

INTR ON JXDI PE

INTR ON XM!| ARB TO

INTR ON TRANSACTION TIMEOUT

INTR ON COMMAND NO-ACK

INTR ON READ ERROR RESPONSE

INTR ON READ SEQUENCE ERROR

INTR ON REATTEMPT TIMEQUT

INTR ON CORRECTED READ DATA

INTR ON WRITE DATA NO-ACK

INTR ON READ/IDENT DATA NO-ACK

INTR ON WRITE SEQUENCE ERROR

INTR ON PARITY ERROR

INTR ON CORRECTED CONFIRMATION

3= RESERVED
MR_X0889_89

Figure 5-15 Error Interrupt Control Register

Table 5-18 Error Interrupt Control Register

Initial

Bit Name Type State! Description

31:28 - RO - Reserved.

as 0

27 INTR on corrected RW 0 Initialized by operating system. When set, causes the

confirmation XJA to deliver an IPL 17(hex) interrupt to the ICU if

the CC bit is set in the XBER register.

26:24 - RO - Reserved.

as 0

23 INTR on parity RW 0 Initialized by operating system. When set, causes the
error XJA to deliver an IPL 17(hex) interrupt to the ICU if

the PE bit is set in the XBER register.

22 INTR on write R/W 0 Initialized by operating system. When set, causes the
sequence error XJA to deliver an IPL 17(hex) interrupt to the ICU if

the WSE bit is set in the XBER register.

1Reset or power-up

Legend

RO = Read only

R/W = Read/write

DIGITAL INTERNAL USE ONLY

Register Descriptions 5-31

Table 5-19 (Cont.) Error Interrupt Control Register

Initial

Bit Name Type State’ Description

21 INTR on R/W 0 Initialized by operating system. When set, causes the
read/IDENT data XJA to deliver an IPL 17(hex) interrupt to the ICU if
no-ack the RIDNAK bit is set in the XBER register.

20 INTR on write R/W 0 Initialized by operating system. When set, causes the
data no-ack XJA to deliver an IPL 17(hex) interrupt to the ICU if

the WDNAK bit is set in the XBER register.

19 INTR on corrected R/W 0 Initialized by operating system. When set, causes the
read data XJA to deliver an IPL 17(hex) interrupt to the ICU if

the CRD bit is set in the XBER register.

18 INTR on R/W 0 Initialized by operating system. When set, causes the
reattempt timeout XJA to deliver an IPL 17(hex) interrupt to the ICU if

the RETO bit is set in the XBER register.

17 INTR on read RW 0 Initialized by operating system. When set, causes the
sequence error XJA to deliver an IPL 17(hex) interrupt to the ICU if

the RSE bit is set in the XBER register.

16 INTR on read R'W 0 Initialized by operating system. When set, causes the
error response XJA to deliver an IPL 17(hex) interrupt to the ICU if

the RER bit is set in the XBER register.

15 INTR on R/W 0 Initialized by operating system. When set, causes the
command no-ack XJA to deliver an IPL 17(hex) interrupt to the ICU if

the CNAK bit is set in the XBER register.

14 - RO - Reserved.
as 0

13 INTR on R/W 0 Initialized by operating system. When set, causes the
transaction XJA to deliver an IPL 17(hex) interrupt to the ICU if
timeout the TTO bit is set in the XBER register.

12:02 - RO - Reserved.
as 0

01 INTR on JXDI RW 0 Initialized by operating system. When set, causes the
parity error XJA to deliver an IPL 17(hex) interrupt to the ICU if

bit [31] or [30] is set in the ERRS register.

00 INTR on XMI R/W 0 Initialized by operating system. When set, causes the
arbitration

timeout

XJA to deliver an IPL 17(hex) interrupt to the ICU if
bit [22] is set in the ERRS register.

1Reset or power-up

Legend

RO = Read only

R/W = Read/write

DIGITAL INTERNAL USE ONLY

5-32 Register Descriptions

5.3.8 Configuration Register

The configuration (CNF) register is shown in Figure 5-16 and Table 5-20.

313029282726252423222120191817161514131211100808 0706 050403020100

STARTING ADDR MEMORY SIZE XM! 1D

XJA NUMBER

-« RESERVED UPDATE ENABLE

MR_X0890_89

Figure 5-16 Configuration Register

Table 5-20 Configuration Register (CNF)

Initial

Bit Name Type State! Description

31:24 Starting address R/'W 0 Initialized by SPU. Defines bits [33:26] of the address of
the first location of a block of addresses to be recognized

by the XJA for selection as an XMI responder.

Addresses received by the XJA that fall below this

point are no-acked. Allows the system software to

configure the XMI bus connected to this XJA, so that

integer multiples of 64 Mbytes of local XMI memory

can be used by XMI I/O devices.

NOTE

Any memory on the XMI bus is not accessible

by a VAX 9000 system CPU. The system software

is responsible for ensuring the viability of any

configuration that implements memory on the

XMI bus.

23:16 Memory size R/'W 0 Initialized by SPU. Contains the number of 64-Mbyte
memory segments that are available in the system

main memory. Serves as a “number of segments”

field so that XMI transactions received by the XJA,

whose ADDR [33:26] is greater than CNF [23:16], are

no-acked.

15:12 XJA XMI node ID RO XJA Initialized by XJA. Contains the XMI node ID of the
XMI XJA as defined by the physical location of the XJA
node ID in the XMI card cage. Allows the system CPU to

determine the location of the XMI space registers

during normal operation.

11:10 XJA number R/W Undefined Initialized by EWCLA/SPU. Identifies to which physical
JXDI port this XJA is connected. Loaded by the power-

up XJA diagnostic.

09:01 - RO - Reserved.
as 0

00 Update enable RO 2 Enables writing of EEPROMs in XMI devices.

TReset or power-up

2]nitial state is value of XMI update enable as controlled by the console.

Legend

RO = Read only

R/W = Read/write

DIGITAL INTERNAL USE ONLY

Register Descriptions 5-33

5.3.9 XBI ID A Register

The XBI ID A (XBIIDA) register (Figure 5-17 and Table 5-21) is used to translate

address bits [28:25] of a CPU transaction to BI window space, from the BI window

number to the node ID number of the XBI adapter being referenced. Each 4-bit field

contains the XMI node ID of the XBI corresponding to the BI window being referenced.
(See Section 1.5.5.2.) There can be a total of 14 XBIs in a system, each uniquely identified
by its BI window address.

This register, together with XBIIDB, forms a 4-bit wide, 14-location deep, lookup table
that allows the XJA to obtain the BI adapter’s node ID number using the associated Bl
window number.

3183029282726252423222120191817161514131211100908 07 06 05040302 0100

X8I ID7 XBi 1D 6 XBI'ID 8 XB1ID 4 XBl1iD 3 XBHiD 2 XBlID 1 XBi 1D O

MR_Xo0891_89

Figure 5-17 XBI ID A Register

Table 5-21 XBI ID A Register

Initial

Bit Name Type State! Description

31:00 XBIID 7 through R/W 0 Initialized by the service processor. Contains 4-bit XMI
XBI ID 0 in 4-bit node ID of BI adapters XBI 7 through XBI 0.
fields

IReset or power-up

Legend

R/W = Read/write

DIGITAL INTERNAL USE ONLY

5-34 Register Descriptions

5.3.10 XBI ID B Register

The XBI ID B (XBIIDB) register (Figure 5-18 and Table 5-22) is used to translate

address bits [28:25] of a CPU transaction to BI window space, from the BI window

number to the node ID number of the XBI adapter being referenced. Each 4-bit field

contains the XMI node ID of the XBI corresponding to the BI window being referenced.

(See Section 1.5.5.2.) There can be a total of 14 XBIs in a system, each uniquely identified

by its BI window address.

This register, together with XBIIDA, forms a 4-bit wide, 14-location deep, lookup table

that allows the XJA to obtain the BI adapter’s node ID number using the associated BI

window number.

3130292827262524232221201918171615141312 11100908 0706 050403020100

XBIiD 9 X8I ID 8

[= RESERVED XBI ID A(HEX)

XBI ID B(HEX)

XBI 1D C(HEX)

XBi 1D D(HEX)

MR_X0382_89

Figure 5-18 XBI ID B Register

Table 5-22 XBI ID B Register

Initial

Bit Name Type State! Description

31:24 - RO - Reserved.
as 0

23:00 XBI ID D(hex) R/W 0 Initialized by service processor. Contains 4-bit XMI
through XBI ID 8 node ID of BI adapters XBI D(hex) through XBI 8.
in 4-bit fields

TReset or power-up

Legend

RO = Read only

R/W = Read/write

DIGITAL INTERNAL USE ONLY

5.3.11 Error SCB Offset Register

The error SCB (ERRSCB) offset register is shown in Figure 5-19 and described in

Table 5-23.

Register Descriptions 5-35

3180292827262524232221201918171615141312 111009808 07 06 0504 03020100

A b

XJA ERROR SCB OFFSET

e L "

[- RESERVED

Figure 5-19 Error SCB Offset Register

Table 5-23 Error SCB Offset Register

MR_X0893_89

Initial

Bit Name Type State! Description

31:16 - RO - Reserved.
as 0

15:00 XJA error SCB R/W 64(hex) Initialized by operating system. Contains an offset

offset into the system control block that is returned when the
XJA has an IPL 17(hex) error interrupt pending and

a system CPU reads the IDENT7 register. Loaded by
system software at system initialization.

1Reset or power-up

Legend

RO = Read only

R/W = Read/write

DIGITAL INTERNAL USE ONLY

5-36 Register Descriptions

5.3.12 SCB Offset IPL 14(Hex) Register

The SCB offset IPL 14(hex) (IDENT4) register is shown in Figure 5-20 and described in

Table 5-24.

615141312 11100908 07 06 05 04 03 02 01 00

IPL 14(HEX) SCB OFFSET 0l0

EJ- RESERVED
MR_X0804_89

Figure 5-20 SCB Offset IPL 14(Hex) Register

Table 5-24 SCB Offset IPL 14(Hex) Register

Initial

Bit Name Type State! Description

31:16 - RO - Reserved.

as 0

15:00 IPL 14(hex) SCB RO 0 Read access to this register by the system CPU returns

offset an offset into the system control block corresponding
to an IPL 14(hex) interrupt. A read to this register

causes the XJA to initiate an XMI IDENT transaction

at IPL 14(hex). The XJA returns, to the system CPU,

the returned IDENT response from the XMI node that

initiated the original interrupt.

1Reset or power-up

Legend

RO = Read only

DIGITAL INTERNAL USE ONLY

Register Descriptions 5-37

5.3.13 SCB Offset IPL 15(Hex) Register

The SCB offset IPL 15(hex) (IDENTS5) register is shown in Figure 5-21 and described in

Table 5-25.

3130292827262524232221201918171615141312111009808 07 0605040302 0100

IPL 15(HEX) SCB OFFSET oj]0

= RESERVED
MR_X0895_89

Figure 5-21 SCB Offset IPL 15(Hex) Register

Table 5-25 SCB Offset IPL 15(Hex) Register

Initial

Bit Name Type State! Description

31:16 - RO - Reserved.

as 0

15:00 IPL 15(hex) SCB RO 0 Read access to this register by the system CPU returns
offset an offset into the system control block corresponding

to an IPL 15(hex) interrupt. A read to this register

causes the XJA to initiate an XMI IDENT transaction

at IPL 15(hex). The XJA returns, to the system CPU,

the returned IDENT response from the XMI node that

initiated the original interrupt.

1Reset or power-up

Legend

RO = Read only

DIGITAL INTERNAL USE ONLY

5-38 Register Descriptions

5.3.14 SCB Offset IPL 16(Hex) Register

The SCB offset IPL 16(hex) (IDENT®6) register is shown in Figure 5-22 and described in

Table 5-26.

31302928272625242322212019181716 15141312 11100908 07 06 05 04 03 02 0100

F- RESERVED
MR_X0896_89

Figure 5-22 SCB Offset IPL 16(Hex) Register

Table 5-26 SCB Offset IPL 16(Hex) Register

Initial

Bit Name Type State! Description

31:16 ~ RO - Reserved.

as 0

15:00 IPL 16(hex) SCB RO 0 Read access to this register by a system CPU returns

offset an offset into the system control block corresponding

to an IPL 16(hex) interrupt. If the XJA has a pending

IPINTR, a read to this register returns 80(hex) to the

system CPU. If no IPINTRs are pending, a read to

this register causes the XJA to initiate an XMI IDENT

transaction at IPL 16(hex). The XJA returns, to the

system CPU, the IDENT response returned from the

XMI node that initiated the original interrupt.

1Reset or power-up

Legend

RO = Read only

DIGITAL INTERNAL USE ONLY

Register Descriptions 5-39

5.3.15 SCB Offset IPL 17(Hex) Register

The SCB offset IPL 17(hex) (IDENT7) register is shown in Figure 5-23 and described in

Table 5-27.

313029282726252423222120191817161514131211100908 07 06 0504 03 02 0100

IPL 17(HEX) SCB OFFSET 00

EJ= RESERVED
MR_X0897_89

Figure 5-23 SCB Offset IPL 17(Hex) Register

Table 5-27 SCB Offset IPL 17(Hex) Register

Initial

Bit Name Type State! Description

31:16 - RO - Reserved.
as 0

15:00 IPL 17(hex) SCB RO 0 Read access to this register by the system CPU returns

offset an offset into the system control block corresponding
to an IPL 17(hex) interrupt. If the XJA has a pending

error interrupt, a read to this register returns the SCB

offset contained in ERRSCB [15:00] to the system CPU.

If no XJA error interrupt is pending, a read to this

register causes the XJA to initiate an XMI IDENT

transaction at IPL 17(hex). The XJA returns, to the

system CPU, the IDENT response returned from the

XMI node that initiated the original interrupt.

IReset or power-up

Legend

RO = Read only

DIGITAL INTERNAL USE ONLY

Index

A
Acknowledge cycle

JXDI, 2-12, 2-14, 2-19, 2-24, 2-25,

2-30, 2-31, 2-33

TCM, 4-63

TRF, 4-63

XMI, 3-6, 3-10, 3-11, 3-12, 3-13

Acknowledge logic

XCE, 4-30

Acknowledgment cycle

TCM, 4-57, 4-65

Add-on self-test

general description of, 1-24

Add-on self-test register -

See AOST register

Add-on self-test status register

detailed bit description, 5-14

Address cycles

JXDI

CPU read request, 2-23

CPU write request, 2-29

DMA read request, - 2-10

DMA write request, 2-18

Address decode logic

XRC, 4--38

Address field

XMI, 3-10, 3-12

Address space

/O, 1-25 to 1-26

private register, 1-27

system, 1-24

XMI I/0, 1-28

AOST

command buffer, 4-77, 4-80

components, 4-71 to 4-73

control register, 4-75

bit descriptions, 4-75 to 4-76

definition of, 1-8t

detailed description of, 4-71 to 4-81

loopback bit, 4-73

memory map, 4-73

mode bit, 4-73

packet ready flag, 4-79, 4-81

pack ready bit, 4-75

register read transaction, 4-77 to

4-79

AOST (cont’d.)

register write transaction, 4-80 to

4-81

response buffer, 4-75, 4-79, 4-81

AOST register

general description of, 1-T7t

Arbitration

TCM, 4-54

Arbitration timeout error

TCM, 4-63

B
BI window space

XDC transmit logic, 4-62

Buffer empty counter

ICU, 2-12,2-14

XCE, 4-27 _

XJA, 2-9, 2-12, 2-17, 2-19, 4-26

Bus error register

See XBER

C
CBI

definition of, 1-8t

CBI bus parity error

TRF, 4-51

CBI parity error bit

description of, 5-19t

CCARD

description of, 3-2

general description of, 1—4, 1-6

slot, 1-25

XMI, 3-2

CIXCD

See XMI bus, list of devices

CLKB, 4-13

CLKX

XCE, 4-27

CLOCKB, 4-13

Clocks

general description of, 1-10

Clock system

CLKJ

detailed description of, 4-13

function of, 4-10

CLKX

Index 1

2 Index

Clock system

CLKX (cont’'d.)

detailed description of, 4-13 to

4-15

function of, 4-10

XCI_C

detailed description of, 4-11 to

4-12

function of, 4-10, 4-11

CNF register

general description of, 1-T7t

Collision state

XCE, 4-30

Command/address decoder

TRF, 4-57

Command/address no-ack error

TCM, 4-63

Command/decoder

TRF, 4-61

Command field

JXDI

CPU read request, 2-23

CPU read return, 2-25

CPU write request, 2-29

DMA read request, 2-9

DMA read return, 2-13

DMA write request, 2-18

interrupt, 2-33

write complete return, 2-31

XMI, 3-10

Command no-ack bit

description of, 5-9t

Command queue

RCM, 445

Configuration memory size bits

description of, 5-32t

Configuration register

See CNF register

detailed bit description, 5-32 to 5-33

Configuration starting address bits

description of, 5-32t

Configuration update enable bit

description of, 5-32t

Configuration XJA number bits

description of, 5-32t

Configuration XJA XMI node ID bits

description of, 5-32t

Confirmation logic

XRC, 4-33, 4-38, 445, 447

Corrected confirmation bit

description of, 5-6t

Corrected read data

XRC, 443

Corrected read data bit

description of, 5-8t

CPU read data buffer

RRF, 4-38

CPU request overrun error bit

description of, 5-19t

CPU transactions

general description of, 1-16 to 1-20

in XJA

read of XJA private registers, 4-7

CPU transactions

in XJA (cont’d.)

read of XMI registers, 4-6

read of XMI space registers, 4-6

to 4-7

write of XJA private registers, 4-8

write of XMI registers, 4-6

write of XMI space registers, 4-7

on JXDI

definition of, 2-5

interrupt, 2-31

read, 2-19 to 2-26

write, 2-26 to 2-31

to XJA private registers, 1-20 to

1-21

to XMI space registers, 1-21

CPU write complete

XDC receive logic, 4-48

Cycle count

XCE, 4-30

D
Data cycles

JXDI

CPU read return, 2-25

CPU write, 2-30

DMA read return, 2-14

DMA write, 2-18

Data packets

flow, 1-10

Data parity

JXDI, 2-12, 2-14, 2-19, 2-24, 2-25,

2-30, 2-31

DEMNA

See XMI, list of devices

Device register

See XDEV

detailed bit description, 5-3 to 54

Device revision bits

description of, 5-4t

Device type bits

description of, 5—4t

Diagnostic control register

See DIAG register

detailed bit description, 5-24 to 5-27

Diagnostic flip address bit

description of, 5-24t

Diagnostic force confirmation error bit
description of, 5-25t

Diagnostic force parity error bits
description of, 5-27t

Diagnostic force XMI receive buffer busy

bits

description of, 5-26t

Diagnostic local register access bit

description of, 5-24t

Diagnostic longword read select bits

description of, 5-25t

Diagnostic mode bit

description of, 5-24t

Diagnostic read response mode bit

Diagnostic read response mode bit (cont’d.)

description of, 5-25t

DIAG register

general description of, 1-T7t

Disable XMI timeout bit

description of, 5-10t

DMAFADDR register

general description of, 1-7t

DMA failing address register

See DMAFADDR register

detailed bit description, 5-28

DMA failing address [28:00] bits

description of, 5-28t

DMA failing address [38:29] bits

description of, 5-29t

DMA failing address [39] bit

description of, 5-28t

DMA failing command bits

description of, 5-29t

DMA failing command register

See DMAFCMD register

detailed bit description, 5-29

DMA failing length bits

description of, 5-28t

DMA failing mask bits

description of, 5-29t

DMAFCMD register

general description of, 1-7t

DMA read/write C/A buffer

RRF, 4-38

DMA read C/A buffer

RRF, 4-38

DMA transactions

general description of, 1-11 to 1-15

in XJA

read, 4-5

write, 4—6

on JXDI

definition of, 2-5

read, 2-6 to 2-15

write, 2-15 to 2-19

DMA write data buffer

RRF, 4-38

Done logic

XCE, 4-27

DWMBB

See XMI, list of devices

DWMJA

See XMI, list of devices

E
Enable hexword write bit

description of, 5-10t

Enable MORE protocol bit

description of, 5-10t

ERRINTR register

general description of, 1-7t

Error interrupt control register

See ERRINTR register

detailed bit description, 5-30 to 5-31

Error SCB offset register

Index 3

Error SCB offset register (cont’d.)

See ERRSCB register

detailed bit description, 5-35

Error summary bit

description of, 5-6t

Error summary register

See ERRS register

detailed bit description, 5-18 to 5-20

ERRSCB, 4-70

ERRSCB register

general description of, 1-8t

ERRS check

XRC, 4-33

ERRS register

general description of, 1-7t

EXPECTRD

XRC, 4-43

Extended test fail bit

description of, 5-9t

F

FAEMC register

general description of, 1-T7t

Failing address extension register

See XFAER register

detailed bit description, 5-12

TRF, 4-53

Failing address register

See XBER

detailed bit description, 5-11

TRF, 4-53

Failing address [28:00] bits

description of, 5-11t

Failing address [38:29] bits

description of, 5-12t

Failing address [39] bit

description of, 5-11t

Failing command bits

description of, 5-12t

Failing command ID bits

description of, 5-10t

Failing CPU ID bits

description of, 5-20t

Failing length bits

description of, 5-11t

Failing mask bits

description of, 5-12t

Fatal errors
detected by XJA

list of, 4-71

FCMD register

general description of, 1-7t

Force command bit

description of, 5-21t

Force command command bits

description of, 5-21t

Force command length bits

description of, 5-21t

Force command register

See FCMD register

detailed bit description, 5-21 to 5-22

4 Index

Force command XMI address bits

description of, 5-21t

Full system emulation mode control

register

See FAEMC register

detailed bit description, 5-13

|
/O

adapter limitations, 1-5t

I/O channel

general description of, 1-1

ICU

interfaces, 1-2f

physical configuration, 1-5

ICU buffer count error bit

description of, 5-19t

ICU_BUFEMPTD

description of, 2-3t

ICU_CLKJ[02:00]

description of, 2-3t

ICU_CMDAVAIL

description of, 2-3t

ICU_DAT{15:00]

description of, 2-3t

ICU_LOOP

description of, 2-3t

ICU_PAR[01:00]

description of, 2-3t

ICU_XFERACK

description of, 2-3t

ICU_XFERRETRY

description of, 2-3t

IDENTY4 register

general description of, 1-8t

IDENTS register

general description of, 1-8t

IDENTS register

general description of, 1-8t

IDENT7 register

general description of, 1-8t

ID field

JXDI

CPU read request, 2-23

CPU read return, 2-25

CPU write request, 2-29

DMA read request, 2-10

DMA read return, 2-14

DMA status return, 2-15

DMA write request, 2-18

write complete return, 2-31

XMI, 3-5, 3-10, 3-12

ID match logic

XRC, 443

Inconsistent parity error bit

description of, 5-6t

Interface

TCM versus RCM, 4-53

Interprocessor interrupt register

detailed bit description, 5-23

Interprocessor interrupt source bits

Interprocessor interrupt source bits

(cont’d.)

description of, 5-23t

Interprocessor interrupt source register

See IPINTRSRC register

Interrupt destination field

XRC, 447

Interrupts

fatal, 4-71

in XJA

fatal, 4-10

nonfatal, 4-9

XMI-initiated

interprocessor, 4-8 to 4-9

normal, 4-8

write error, 4-9

nonfatal, 4-69 to 4-70

interprocessor, 4-70

normal, 4-69

source, 4—69

XJA-detected, 4-70

on JXDI, 2-31 to 2-33

priority levels

on JXDI, 2-33

XJA

general description of, 1-21 to

1-23

XMI, 3-20 to 3-23

general description of, 1-23

Interrupt transactions

on JXDI

definition of, 2-5

IPINTRSRC register

general description of, 1-7t

J
JXDI

bus cycle time, 24

data envelopes, 2-34

definition of, 1-8t

signal list, 2-2 to 2-3

transfer functions

list of, 2-5

JXDI assembly logic

RRF, 4-39, 448, 449

XRC, 4-44

JXDI bus

cables, 1-1

general description of, 1-1

interfaces, 1-2f

JXDI command/length error bit
description of, 5-19t

JXDI parity error, byte 0, bit

description of, 5-19t

JXDI parity error, byte 1, bit

description of, 5-18t

JXDI receive buffer overrun error bit
description of, 5-19t

K
KDM70

See XMI bus, list of devices

KFMSA

See XMI bus, list of devices

KRESPONSE

RCM, 4-63

L
Length comparator

XCE, 4-30

Length field

JXDI

- DMA read request, 2-9

DMA read return, 2-13

DMA write request, 2-18

XMI, 3-10

M
Mask cycles

JXDI

CPU write request, 2-29

DMA write request, 2-18

Master clock module

See MCM

MCLK, 4-11

MCM

clocks, 2—4

Memory address wraps, 2-10

Multiple JXDI parity error bit

description of, 5-19t

N
Node halt bit

description of, 5-6t

Node reset bit

description of, 5-6t

Node-specific error summary bit

description of, 5-9t

Nonfatal errors

detected by XJA

list of, 4-70

P

Parity checker

TRF, 4-51

XCE, 4-30

XRC, 4-33

Parity error

XCE, 4-30

Parity error bit

description of, 5-6t

Parity generation

TRF, 4-57, 4-62, 4-65

Index 5

Pending interrupts

status, 447

status code, 4-47

Plant code bits

description of, 5-15t

R
RCM

definition of, 1-8t

function of, 4-1

Read/IDENT data no-ack bit

description of, 5-7t

Read/IDENT no-ack error

TCM, 4-57, 4-63

Read error response

XRC, 4-43

Read error response bit

description of, 5-9t

Read error status

JXDI

CPU read return, 2-26

DMA read return, 2-15

Read locked status

JXDI

DMA read return, 2-15

Read sequence error

XRC, 443

Read sequence error bit

description of, 5-8t

Reattempt timeout bit

description of, 5-8t

REG, 4-40

definition of, 1-8t

function of, 4-1

load select logic, 4-68

Registers

XJA private registers, 1-7, 1-27

XMI space registers, 1-Tt

Retry cycle

JXDI, 2-12, 2-14, 2-19, 2-24, 2-25,

2-30, 2-31, 2-33

Retry logic

XCE, 4-27

Retry timeout error

TCM, 4-63,4-65

RRF

buffer status code, 4-38

command/address buffers, 443

definition of, 1-8t

detailed description of, 4-38 to 4-39

function of, 4-1

JXDI assembly logic, 4—43

RRF buffers, 4—40

S
SCB offset IPL 14(hex) register

See IDENT4 register

detailed bit description, 5-36

SCB offset IPL 15(hex) register

6 Index

SCB offset IPL 15(hex) register (cont’d.)

See IDENTS register

detailed bit description, 5-37

SCB offset IPL 16(hex) register

See IDENTS6 register

detailed bit description, 5-38

SCB offset IPL 17(hex) register

See IDENT7 register

detailed bit description, 5-39

SCLKJ, 4-13

SCLKX, 4-13

SCU

physical configuration, 1-5

Select/assembly logic

TRF, 4-57, 4-63

XMI register access, 4-62 to 4-63

Self-test fail bit

description of, 5-10t

Serial number bits

description of, 5-16t

Serial number register

See SERNUM register

SERNUM register

general description of, 1-7¢

SPU_RESET

description of, 2-3t

SPU_XJA_CLKSTOP

description of, 2-3t

T

TCM

acknowledge cycle, 4-58

definition of, 1-8t

function of, 4-1

read/IDENT no-ack error, 4-58

status code, 4--53

transaction priority, 4-54, 4-61

Transaction timeout bit

description of, 5-9t

Transaction timeout error

TCM, 4-63

TRF

assembly select logic, 4-52

buffer select code, 4-54

components, 4-51

data type code, 4-52

definition of, 1-8t

detailed description of, 4-51 to 4-53

function of, 4-1

XMI cycle type code, 4-52

TRF buffer

operation of, 4-54

U
UNLD_CLK

XCE, 4-27

UNLOAD_CLK, 4-13

RRF, 4-39

W
Week of manufacture bits

description of, 5-15t

Write complete transaction, 2-31

in RRF, 4-61

Write data no-ack bit

description of, 5-Tt

Write data no-ack error

TCM, 4-63

Write error bit

description of, 5-6t

Write sequence error

XRC, 445

Write sequence error bit

description of, 5-Tt

X
XBER

XRC, 4-33

XBER register

general description of, 1-7t

XBI

adapter limitations, 1-5t

XBIIDA register

See XBIIDA register

detailed bit description, 5-33

general description of, 1-8t

XBIIDB register

See XBIIDB register

detailed bit description, 5-34

general description of, 1-8t

await counter, 4-26

data packet length code, 4-22

definition of, 1-8t

general description of, 1-4

length counter, 4-26

receive control logic, 4-27 to 4-30

RRF buffer select code, 4-22

start receive logic, 4-30

TEM states, 4-26

transmit conditions

list of, 4-26

transmit control logic, 4-22 to 4-27

transmit state machine, 4-22

XCE transmit entry machine error bit

description of, 5-19t

XClI

definition of, 4-31

XCLOCK, 4-11,4-31

general description of, 14

C

CPU read

detailed description of, 4-58 to

4-63

CPU write

detailed description of, 4-58 to

4-63

XDC (cont’d.)

definition of, 1-8t

DMA read data return

detailed description of, 4-54 to

4-57

general description of, 1-4

IDENT transfer

detailed description of, 4-65

private register access, 4-61

read error response

detailed description of, 4-57 to

4-58

read locked response

detailed description of, 4-57 to

4-58

read register data return

detailed description of, 4-63 to

464

receive logic, 4-33 to 4—49

function of, 4-5

receive packet types

list of, 4-39

transmit logic, 4-49 to 4-65

components, 4-49

function of, 4-5

XMI register access, 4-62 to 4-63

XDC receive logic

packet processing

basic interrupt, 447 to 448

CPU read conditions, 4-43

CPU read return, 4-43 to 445

CPU read status return, 4-43 to

4-45

CPU write, 4-45 to 447

DMA read, 440 to 443

DMA read conditions, 4—40

DMA write, 4-40 to 4-43

DMA write conditions, 4—40

IDENT command, 4-48

IDENT command conditions, 4-48

write error interrupt, 4-47 to

4-48

XMI basic interrupt conditions,

4-47

XMI read, 445 to 4-47

XMI register read conditions,

445

XMI register write conditions,

445

XMI write error interrupt

conditions, 4-47

XDC transmit logic

transaction priority, 4-63

transactions processed, 4-53

alignment multiplexer, 4-19

alignment register, 4-19

byte multiplexer, 4-16, 4-17

CLKJ, 4-19

data length bits, 4-19

definition of, 1-8t

function of, 4-1

Index 7

XDE (cont’d.)

general description of, 1-4

parity checker, 4-17

receive data

alignment of, 4-19 to 4-21

receive data flow, 4-17 to 4-21

SCLK, 4-16

SCLKJ, 4-19

transmit data flow, 4-16 to 4-17

XDEV register

general description of, 1-7t

XFADR register

general description of, 1-7t

XFAER register

general description of, 1-7t

A

chips, 1-3

clocks

list of, 4-10

definition of, 1-8t

functions of, 1-3

general description of, 1-3 to 14

interrupts

See Interrupts, XJA

location of, 1-5

module interfaces, 1-2f

physical configuration, 1-5

register data flow, 4-66 to 4-69

registers

XJA private registers, 1-Tt

XMI space registers, 1-7t

transactions

list of, 4-5

XJA error SCB offset bits

description of, 5-35t

XJA general-purpose register

See XJAGPR register

detailed bit description, 5-13

XJAGPR register

general description of, 1-7t

XJA private registers

address, 5-17

description of, 4-65

function of, 5-2

list of, 4-66t

read, 4-49

data flow, 4-68

write

data flow, 4-68

XJA serial number register

detailed bit description, 5-15 to 5-16

XJA_BUFEMPTD

description of, 2-2t

XJA_CLKX[02:00]

description of, 2-2t

XJA_CMDAVAIL

description of, 2-2t

XJA_DAT[15:00]
description of, 2-2t

XJA_FATALERR

description of, 2-2t

XJA_PAR[01:00]

description of, 2-2t

8 Index

XJA_SPU_STOPPED

description of, 2-2t

XJA XFERACK

description of, 2-2t

XJA_XFERRETRY

description of, 2-2t

XLATCH, 4-31

general description of, 14

XLATCHES

REG, 4-68

XMI arbitration timeout error

TCM, 4-54,4-62

XMI arbitration timeout error bit

description of, 5-20t

XMI bad bit

description of, 5-6t

XMI bus

address mapping, 3-19

arbitration, 1-4, 3-9, 3-11, 3-12

priority, 3-2, 3-4, 3-11

queues, 3-2

card cage

arbitration, 1-6

node ID number, 1-6

card cage slot assignments for, 1-5,

1-6f

CCARD module, 1-5

XJA module, 1-5

XMI adapters, 1-5

command cycle, 3-9

correctable read error, 3-13

definition of, 1-8t

description of, 3-1

function codes, 3-5t

general description of, 1-4

I/O adapter limitations, 1-5t

I/O space, 1-28

ID codes, 3-5 to 3-6

IDENT transactions, 3-22

interfaces, 1-2f

interrupts

See Interrupts, XMI

basic, 3-20 to 3-22

implied vector, 3-22 to 3-23

interprocessor interrupt, 3-23

write error interrupt, 3-23

list of devices, 1-5t

location of adapters, 1-5

node adapters, 14

parity, 3-6
physical configuration, 1-5

read-lock error, 3-14

read-lock transaction, 3-8 to 3-15

read transaction, 3-8 to 3-15

hexword, 3-13

multiple transfers, 3-15

longword, 3-9 to 3-11

octaword, 3-11 to 3-13

quadword, 3-9 to 3-11

signal list, 3-3

traffic suppression, 3-2

write-lock transaction, 3-15 to 3-19

write transaction, 3-15 to 3-19

XMI bus

write transaction (cont’d.)

hexword, 3-19

longword, 3-15 to 3-18

octaword, 3-18

quadword, 3-15 to 3-18

XMI bus error register

detailed bit description, 54 to 5-10

XMI corner

description of, 3-2

detailed description of, 4-31 to 4-32

function of, 4-1

REG, 4-68

XMI device types, 54

XMI failing address register

write

data flow, 4-68

XMI failing command register

write

data flow, 4-69

XMI fault bit

description of, 5-6t

XMI parity error bits

description of, 5-20t

XMI powerfail bit

description of, 5-20t

XMI power-up bit

description of, 5-20t

XMI read

uncorrectable read error, 3-14

XMI space registers

address, 5-3

description of, 4-65

function of, 5-2

list of, 4-66t

read, 4-47

data flow, 4-68

required, 5-3

write, 447

data flow, 4-68

XMI_AC_LO

description of, 3-7

XMI_BAD

description of, 3-7

XMI_CMD_REQ

description of, 3—4

XMI_CNF{02:00]
description of, 3-6

XMI_DATA[63:00]

description of, 3-5

XMI_DC_LO .
description of, 3-7

XMI_DEFAULT

description of, 3-7

XMI_FAULT

description of, 3-7

XMI_FUNCTION[03:00]
description of, 3-5

XMI_GRANT

description of, 34

XMI_HOLD

description of, 34

XMI_ID[05:00]

XMI_ID[05:00] (cont’d.)

description of, 3-5

XMI_NODE[03:00]

description of, 3-7

XMI_PARITY[02:00]
description of, 3-6

XMI_PHASE, 4-31

description of, 3-7

XMI_RESET

description of, 3-7

XMI_RES_REQ

description of, 34

XMI_SUP

description of, 3—4

XMI_TIME, 4-31

description of, 3-7

C

Index 9

command/address cycle type

list of, 4-37

data cycle type

list of, 4-37

decoder, 4-33

definition of, 1-8t

detailed description of, 4-33 to 4-38

force command code, 4-44

function of, 4-1

write length code, 4-37

XRC decoder, 4-43

Y
Year of manufacture bits

description of, 5-15t

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-33
	2-34
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	4-64
	4-65
	4-66
	4-67
	4-68
	4-69
	4-70
	4-71
	4-72
	4-73
	4-74
	4-75
	4-76
	4-77
	4-78
	4-79
	4-80
	4-81
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09

