dliloli{tlal]
KA650 CPU Module
Technical Manual

Order Number EK-KA650-UG.003

KA650 CPU Module
Technical Manual

Order Number EK-KA650-UG.003

digital equipment corporation
maynard, massachusetts

First Edition, December 1987
Second Edition, August 1988
Third Edition, March 1989

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1989 by Digital Equipment Corporation.
All Rights Reserved.

Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation:
DEC MicroVAX II RSX

DECmate MicroVAX 3500 RT

DECUS MicroVAX 3600 UNIBUS
DECwriter PDP VAX

DIBOL P/OS VAXstation
LSI-11 Professional VMS
MASSBUS Q-bus vT
MicroPDP-11 Q22-bus VT100
MicroVAX Rainbow Work Processor
MicroVAX I RSTS

alilgliltlal1 |

FCC NOTICE: The equipment described in this manual generates, uses, and may emit
radio frequency energy. The equipment has been type tested and found to comply with
the limits for 2 Class A computing device pursuant to Subpart J of Part 15 of FCC
Rules, which are designed to provide reasonable protection against such radio frequency
interference when operated in a commercial environment. Operation of this equipment in
a residential area may cause interference, in which case the user at his own expense may
be required to take measures to correct the interference.

Contents

About This Manual xv

1 Overview

1.1 KA650 Central Processor Module. 1-1
12 Clock Functionsciitiitntiiinnnnnneannnn 1-5
13 Central Processing Unit...................con... 1-5
1.4 Floating-Point Accelerator, 1-6
15 Cache MemoOryiiviiiiniiiteerneneeeannennan 1-6
16 MemoryController........... ...t iiinveenana.. 1-6
1.7 MicroVAX System Support Functions 1-7
18 ResidentFirmwarecc0utiiineenncaonsn 1-7
19 Q22-buslInterface...........coiiiiiiiiiininnenennn 1-8
1.10 MS650-AAMemory Modulesccuvnn. 1-8
1.11 MS650-BA Memory Modules 1-8

2 Installation and Configuration

21 InstallingtheKA650t 2-1
22 Configuringthe KA650,

23 KA650Conmectorscovveivennrrenaaaneennns 24
23.1 Console SLU Connector (J1)ccvcvuenn.. 24
2.3.2 Configuration and Display Connector (J2)

2.3.3 Memory Expansion Connector (J3) 2-7
24 H3600-SACPUCoverPanel 2-8
2.5 KAG630CNF ConfigurationBoard 2-9
2.6 Compatible System Enclosures e 2-14

Contents—iii

Contents—iv

3 Architecture

3.1 Central Processor.ccvitiiiietnnnnnnnnnnans 3-1
3.1.1 Processor State, 3-1
3.1.1.1 General Purpose Registers 3-2
3.1.1.2 Processor Status Longword 3-3
3.1.1.3 Internal Processor Registers 34
3.1.2 Data TypPes . . ot ottt ittt e ettt e e 3-8
3.1.3 Instruction Set it 3-9
3.14 Memory Management e e e 3-10
3.1.4.1 Translation Buffer 3-11
3.1.4.2 Memory Management Control Registers 3-11
3.1.5 Exceptions and Interrupts 3-12
3.1.5.1 Interrupts i 3-12
3.1.52 Exceptionst 3-15
3.1.53 Information Saved on a Machine Check Exception ... 3-18
3.1.54 System Control Blockcoviiein.. 3-24
3.1.5.5 Hardware Detected Exrorscc..... 3-26
3.1.5.6 Hardware Halt Procedure 3-27
3.1.6 System Identificationciiie.... 3-29
3.1.7 CPUReferencesvvveiiieit it eeeenneennnn 331
3.1.7.1 Instruction-Stream Read References 3-31
3.1.72 Data-Stream Read References 331
3.1.7.3 Write Referencesc0iiiiienennnn.. 3-32
3.2 Floating-Point Accelerator 3-32
3.2.1 Floating-Point Accelerator Instructions 3-32
3.2.2 Floating-Point Accelerator Data Types............... 3-32
383 Cache MemoOrycuiiuruneeennneneennecnnnnnns 3-33
33.1 Cacheable References oo 3-33
3.3.2 First-Level Cache............ 3-34
3.3.2.1 First-Level Cache Organization 3-34
3.3.2.2 First-Level Cache Address Translation 3-36
3.3.2.3 First-Level Cache Data Block Allocation 3-37
3.3.24 First-Level Cache Behavioron Writes 338
3.3.2.5 Cache Disable Register 3-38
3.3.26 Memory System Error Register 341

3.3.2.7 First-Level Cache Error Detection 3-43

Contents—v

3.3.3 Second-Level Cache 3—43
3.3.3.1 Second-Level Cache Organization 344
3.3.32 Second-Level Cache Address Translation 346
3.3.3.3 Second-Level Cache Data Block Allocation.......... 347
3.3.34 Second-Level Cache Behavior on Writes 348
3.3.35 Cache Control Register 348
3.3.3.6 Second-Level Cache Error Detection 3-50
3.3.8.7 Second-Level Cache as Fast Memory 3-51
34 MainMemorySystem 3-52
34.1 Main Memory Organizationccuuunun... 3-55
3.42 Main Memory Addressingc.cviinarnnn.. 3-55
343 Main Memory Behavior on Writes 3-56
344 Main Memory Error Status Register 3-56
3.4.5 Main Memory Control and Diagnostic Status Register .. 3-60
3.4.6 Main Memory Error Detection and Correction......... 3—62
3.5 ConsoleSerial Linec0itiiinineinnnn. 3-64
3.5.1 Console Registerscoiiiininiinnnnnnn.. 3-64
- 3.5.11 Console Receiver Control/Status Register 3-65
3.5.1.2 Console Receiver Data Buffer.................... 3-66
3.5.1.3 Console Transmitter Control/Status Register 3-67
3.5.14 Console Transmitter Data Buffer 3-69
3.5.2 Break Responsec.uiiiiineinnenennnnnnn 3-69
3.5.3 BaudRateottt it et 3-70
3.54 Console Interrupt Specifications. 3-70
3.6 Time-of-Year Clock and Timersc..ccuo... 3-71
3.6.1 Time-of-Year Clock 3-71
3.6.2 Interval Timerottt it 3-72
3.6.3 Programmable Timers et 3-72
3.6.3.1 Timer Control Registers 3-73
3.6.3.2 Timer Interval Registers 3-75
3.6.3.3 Timer Next Interval Registers 3-75
3.6.34 Timer Interrupt Vector Registers 376
3.7 Boot and Diagnostic Facility 3-76
3.7.1 Boot and Diagnostic Register 377

3.7.2 Diagnostic LED Register 3-79

Contents—vi

3.7.3 ROM Memory. . oo ittt et tieteieienecenoncannns 3-79
3.7.31 ROM Socketoviieie i iiaienan. 3-79
3.7.3.2 ROM AddressSpace.............cviiiueennenn. 3-80
3.7.3.3 Resident Firmware Operation 3-80
3.74 BatteryBacked-UpRAMccieeennn. 3-81
3.7.5 KA650 Initialization.l 3-81
3.7.5.1 Power-Up Initialization 3-82
3.7.52 HardwareReset 3-82
3.7.5.3 /O Bus Initialization 3-82
3.7.54 I/OBus ResetRegister 3-82
3.7.5.5 Processor Initialization 3-82
38 Q22-buslnterface............ ..t iinnenann. 3-83
3.8.1 Q22-bus to Main Memory Address Translation 3-84
3.8.1.1 Q22-bus Map Registers 3-85
3.8.12 Accessing the Q22-bus Map Registers 387
3.8.13 Q22-busMapCache, 3-88
3.8.2 CDAL Bus to Q22-bus Address Translation 3-90
3.8.3 Interprocessor Communication Register.............. 3-90
3.84 Q22-bus Interrupt Handling 3-92
3.8.5 Configuring the Q22-bus Map e 3-92
3.8.5.1 Q22-bus Map Base Address Register 3-93
3.8.6 System Configuration Register..................... 3-93
3.87 DMA System Error Register 3-95
3.8.8 Q22-bus Error Address Register 3-98
3.89 DMA Error Address Register 3-99

3810 ErrorHandlingccititreuiiiannnnnn 3-99

4 KA650 Firmware

4.1 KA650 Firmware Features.................... ... 4-1
4.1.1 Halt Entry, Exit,and Dispatch 4-2
41.1.1 Halt Entry - Saving Processor State 4-2
4112 Halt Exit - Restoring Processor state 4-3
4.1.13 HaltDispatch.......... .o 4-4
4114 ExternalHaltsciviiniinnennn. 4-5

Contents—vii

4.1.2 Power-Up .. oo ittt i e e e 4-5
4121 Initial Power-Up Test. 4-6
4122 Locating a Console Device 4-6
4.1.3 Mode SwitchSettoTest. 4-7
4.14 Mode Switch SettoQuery 4-8
4.1.5 Mode Switch Setto Normal 4-9
4.1.6 LED Codes . oo it ittt i teieeeeiiieeeeeieenaenns 4-10
42 Console Servicecuiieteriiie .. 4-11
4.2.1 Console Control Characters 4-11
422 Console Command Syntax 4-13
423 Console Command Keywordsccuvun.... 4-14
424 Console Command Qualifiers 4-15
4.2.5 Command Address Specifiers 4-15
426 References to Processor Registers and Memory 4-18
4.2.7 Console Commandsccvieiinnennnnnnn 4-19
4271 BOOT . .. i e e e 4-20
4272 CONFIGUREttt ittt ie i eeeeeeeanns 4-22
4.2.7.3 CONTINUE0iiiiiiieiinnnteeenannnnnns 4-23
4274 DEPOSIT it e e e e e 4-24
4.2.75 EXAMINEttt ittt ieinenen, 4-26
4.2.7.6 FIND ... i e et e 4-28
4.2.7.7 5 7 N 4 4-29
4.2.7.8 . 1 5 4-30
4.2.79 INITIALIZEttt ittt ettt eeeeeannn 4-32
42710 MOVE i i et e e 4-33
42711 NEXT ittt ittt iteennaneenan 4-35
42712 REPEAT.........iiiiiitiiiitrneraannneneannn 4-37
42713 SEARCH ...ttt 4-38
42714 SET ... ittt ittt e e 441
42715 SHOW ...ttt ieeaanaannn 444
42716 STARTttt ittt i ieiaeaaenanannn 448
42717 TEST .. it ittt ittt e i e e 449
42718 UNJAM ... ittt iiiitee i tianennnaenns 4-52
42719 X-BinaryloadandUnload 4-52
42720 ! -Comment........uouuiueiunenrnnennnaananann 4-54
428 Conventions for Tables4-5and 4-6................. 4-55

_Contents~viii

4.3 Bootstrapping........... ..ttt 4-58
43.1 Boot Devices.ciiviiiiiii it it it 4-58
432 BootFlags 4-60
4.3.3 Preparing for the BootStrapooveeeenn.... 4-62
434 Primary Bootstrap, VMB, 4-63
4.3.5 Device-Dependent Bootstrap Procedures 4-66
4.3.5.1 Disk and Tape Bootstrap Procedure 4-66
4.3.52 PROM Bootstrap Procedure 4-67
4.3.5.3 Network Bootstrap Procedure 4-68
4354 Network Listening R, 4-69
44 Diagnostics..........c. ittt i e 4-72
441 ErrorReporting, 4-73
442 Diagnostic Interdependencies...................... 4-74
443 AreasmnotCoveredcoiiiiiunnnnnn. 4-75
4.5 Operating System Restart 4-75
4.5.1 Locatingthe RPB, 4-76
4.6 Machine StateonPower-Up............ciiiiiinn.. 4-77
4.6.1 Main Memory Layout and State 4-77
46.1.1 Reserved Main Memoryc.cvuiiinnnnnnnn 4-77
4.6.1.2 PENBitmap........oiiiiiii i iiiiiaannns 4-78
46.1.3 Scatter/Gather Map 4-78
46.14 Contentsof MainMemoryccuu... 4-79
46.2 CMCTLRegisters.......covvieiiienneennnnnnannn 4-79
463 FirstLevelCache...........cciiiiiiinnnnnnnnn 4-79
464 TranslationBuffer 4-80
465 SecondLevelCacheciiinuennn 4-80
46.6 HaltProtectedSpacec.cvvtiiiinnnennn 4-80
4.7 Public Data Structures and Entry Points. 4-80
471 Firmware EPROMLayoutcc.u... 4-80
4.7.2 Call-BackEntry Pointsciivuuvnn.n.. 4-82
4.7.2.1 CPSGETCHAR R4ccitiitiiiiinnnnnnns 4-82
4.722 CPSMSG_OUT_NOLF_R4covviiiinnnnnnnn 4-83

4.7.23 CP$READ_WTH_PRMPT R4 4-84

Contents—ix

4.7.3 SSCRAM Layoutciiiiiinnennnnnnnnnn. 4-85
4.73.1 Public Data Structures......................... 4-85
4.7.3.2 Firmware Stack 4-87
4.7.3.3 DiagnosticState. 4-87
4.7.34 USER Area e e 4-87
48 Error Messagesuvuiemmmnnerannnnnenennns 4-87
4.8.1 Halt Code Messageso iiiiinnennnnnn.. 4-88
4.8.2 Console Error Messageso vvviiinnneneennnnnn 4-89
4.8.3 VMB Error Messageso vvie it iiiininenneennn 4-91

A KAG650 Specifications

Al Physical Specificationsc. i, A-1
A2 [Electrical Specificationsiitieerrernein.. A-1
A.3 Environmental Specifications........................ A-2

B Address Assignments

B.1 General Local Address SpaceMap B-1
B.2 Detailed Local Address Space Map B-2
B3 ExternalIPRs0iiiiiiiiinnnnnn. B-5
B4 Global Q22-bus Address SpaceMap................... B-6

C Q22-bus Specification

C.l Introductioniiiirenernnennnnnennnnnn -1
C.1.1 Master/Slave Relationship c-2
C.2 Q22-bus Signal Assignmentscc0enn.. Cc3
C3 DataTransferBusCyclesccuu.... C-6
C31 BusCycleProtocolciiiiiiiirnnnnnnnn c-7
C32 Device AdAressingcueeiirrneeenneeeanns C-7
C4 Direct MemoOry ACCESS .« oo v v iveneernmerennneennnnns C-17
C41l DMAPIrotocol. .. .uiiiiit ittt iieieeeeeenenannn C-17
C42 BlockMode DMAciiiiininnrnnnnnnn C-18
C42.1 DATBIBusCycle........ciiiiiiiiniiinnnnnnn c-23
C422 DATBOBusCycleciiviiiiiiiiiiininnnnn C-24

C43 DMAGuidelines............. ... i, C-26

Contents—x

Ch5 Interruptscutiiiiinerineeneeenennnannns c-27
Cb51 DevicePriority cv ottt ie i iie it iannennn Cc-28
C.52 InterruptProtocoliiiiiiiennnnnnn. Cc-28
C.5.3 Q22-bus Four-Level Interrupt Configurations Cc-32
C.6 ControlFunctionscc0iiitiiienenennnnn C-34
C6.1 MemoryRefresh............ ... iiiiiiiinnnn. C-34
C62 Haltiiiiiiiiitiiieietieeaanannnn C-34
C.63 Imitialization0iiiiiiiennnnnnnnnnnns C-34
C64 PowerStatusciiiiiiininnnenennnnnnns C35
C65 BDCOKH0iiiiiiiiiiiinonaanananns C-35
C6.6 BPOKH..........o.iiiiiiiiiiiiiieteaanananns C35
C.6.7 Power-Up and Power-Down Protocol C35
C.7 Q22-bus Electrical Characteristics C-36
C.7.1 Signal Level Specifications C-36
C72 LoadDefinitioncuiiiiiiierenennnnnnn. C37
C73 120-0hmQ22-buscciiiiieeennennnnnnnnn C=37
C.74 Bus Drivers N eee et canieatteeenecanaaanennna C-37
C75 BusRecelvers........cuiiiiinninneenenenanannnn C-38
C76 BusTerminationcciiiiinrenennnnnnns C-38
C.77 Bus InterconnectingWiringcccvuuo.. Cc-39
C.7.7.1 Backplane Wiring. C—40
C.7.72 Intrabackplane Bus Wiring C—+40
C.7.73 Powerand Groundciiiiinnnn C40
C.8 System Configurationsicueeeeecnnannnns Cc41
C.81 PowerSupplyloadingciiun.... Cc44
C.9 Module Contact Finger Identification.................. CH45

D Acronyms

Index

Contents—xi

Examples

4-1 Language SelectionMenu 4-8
4-2 Normal Diagnostic Countdown....................... 4-9
4-3 Abnormal Diagnostic Countdown 4-9
44 Console Boot Display with no Default Boot Device 4-10
4-5 DiagnosticRegister Dump 4-73
Figures

1-1 KAG50CPUModule.......cvvitiiennnmeeeennnnnnnn 1-2
1-2 KA650Block Diagramcccivneeiennnnnnn. 1-3
1-3 System Level Block Diagram 14
14 MS650-AA and MS650-BA Memory Modules 1-9
2-1 CPU and Memory Module Placement 2-2
2-2 Cable CONMECtionsovuenirnneennnnennnnnnn 2-3
23 KA650 Pinand LED Orientation 24
24 H3600-SACPUCoverPanel 2-9
2-5 KAG630CNF ConfigurationBoard 2-10
26 KAG630CNF J2 and J3 Pin Orientation 2-10
2-7 KA630CNF J1 and J4 Pin Orientation 2-11
3-1 General Purpose Register Bit Map.................... 3-2
32 PSLBitMap0iiiiiitit it 3-3
3-3 InterruptRegisters o iii.n. 3-15
34 Information Saved on a Machine Check Exception 3-18
3-5 System Control Block Base Register 3-24
36 System Identification Register 329
37 System TypeRegister............. 3-30
3-8 First-Level Cache Organization 3-34
39 First-Level CacheEntry................ ..., 335
3-10 First-Level Cache TagBlock 335
3-11 First-Level CacheDataBlock 3-35
3-12 First-Level Cache Address Translation 3-37
3-13 Cache Disable Register 3-38
3-14 Memory System Error Register 341
3-15 Second-Level Cache Organization 344
3-16 Second-Level CacheEntry, 345

Contents—xii

3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-30
3-31

Second-Level Cache TagBlock 345
Second-Level Cache DataBlock 345
Second-Level Cache Address Translation............... 347
Cache Control Registercvuunn... 348
Format for MEMCSR16cc0iiiininnean.. 3-56
Format for MEMCSR17, 3-60
Console Receiver Control/Status Register 3-65
Console Receiver Data Buffer. 3-66
Console Transmitter Control/Status Register............ 367
Console Transmitter Data Buffer 3-69
Time-of-Year Clockttt i, 3-71
Interval Timer ittt ittt it 3-72
Timer Control Registersiiiienn... 3-73
Timer Interval Register 3-75
Timer Next Interval Register 3-75
Timer Interrupt Vector Register. 3-76
Boot and Diagnostic Register 3-77
Diagnostic LED Registerccuiiiiurnnn... 3-79
Q22-bus to Main Memory Address Translation 3-84
Q22-bus Map Registersc.. ... 3-86
Q22-bus Map Cache Entry...........c..ciiiian.... 3-89
Interprocessor Communication Register. 3-91
Q22-bus Map Base Address Register 3-93
System Configuration Register. 3-94
DMA System Error Register 3-96
Q22-bus Error Address Register 3-98
DMA Error Address Register 3-99
VMBBoot Flags.........ciiiiiiiiiiiinneennnnnnn 4-60
Memory Layout at VMBExit. 465
BootBlock Formatciiiiiiiiniennnnn 4-67
RPB Signature Format 4-76
Memory Layout after Power-Up Diagnostics 4-77
KA650 EPROM Layoutciiiieiinnennanenn. 4-81
KA650 SSCNVRAM Layoutc.cc0ievveeennnnn. 4-85
NVRO . .ottt ittt i ettt ittt et enaaaaas 4-86
NVRL .. ittt ittt it e e e et eeana e 4-86

Contents—xiii

4-10 NVRZ ...ttt ettt e et e 4-87
C-1 DATIBusCyclecvt ittt iiiiinnnnnn. c-9
C2 DATIBusCycleTimingccveieiennnnnn. C-11
C-3 DATOorDATOBBusCycle...............couivvnnn.. C-12
C+4 DATO or DATOBBus Cycle Timing................... C-14
C-5 DATIO or DATIOBBusCycle C-15
C—6 DATIO or DATIOB Bus Cycle Timing C-16
C—7 DMAProtocol...........iiiiiiiii i, C-19
C-8 DMARequest/Grant Timing c-20
C-9 DATBIBusCycle Timingciiiieininnennann c-21
C-10 DATBOBus Cycle Timingocvuuiinenn c-22
C-11 Interrupt Request/Acknowledge Sequence C-29
C-12 Interrupt Protocol Timing C31
C-13 Position-Independent Configuration................... C-33
C-14 Position-Dependent Configuration C-33
C-15 Power-Up and Power-Down Timing C36
C—16 BusLine Terminations...........couiiiieenenneennn C39
C-17 Single-Backplane Configuration C42
C—18 Multiple Backplane Configuration C—43
C-19 Typical Pin Identification System CH45
C-20 Quad-Height Module Contact Finger Identification CH46
C—21 Typical Q22-bus Module Dimensions CcH47
Tables

2-1 Console SLU Connector J1)Pinouts 2-5
2-2 Configuration and Display Connector (J2) Pinouts 2-5
2-3 Memory Expansion Connector (J3) Pinouts 2-7
24 HB3600-SA CPU Cover Panel Features and Controls 2-8
2-5 KAGB30CNF Switch Selections 2-11
26 KAGB30CNF Connector and Switches 2-12
3-1 KA650 Internal Processor Registers................... 3-5
32 CategoryOmeIPRs..........c.ciciiiiiiniennnnnnns 3-7
3-3 Category TWOIPRS. « oo oveeee e e 3-8
34 Interrupts0 ittt 3-13
35 Exceptionscc ittt it 3-17
3—6 System Control Block Format 3-24

Contents—xiv

3-7

3-8

3-9

3-10
3-11
3-12
3-13
3-14
3-15
3-16

LLLTILER

4-9

4-10
4-11
4-12

CEOLELEERETILES

Unmaskable Interrupts that can Causea Halt 3-28
Exceptions that can Causea Halt 3-29
CPU Read Reference Timingc.cccuuunn.. 3-53
CPU Write Reference Timingciiivinn.. 3-53
Q22-bus Interface Read Reference Timing 3-53
Q22-bus Interface Write Reference Timing 3-54
Error Syndromescciiiiiriinennennnnenn 3-58
Console Registerscoiiiiiiiiinennnnnn 3-65
BaudRate Select iiiiiiinnennn. 3-70
Q22-bus Map Registers 3-86
Halt Action Summarycctutiieiinnnnnns 44
LED Codes . .. oo itreeeiiee e aneaenanaecnnonaaannes 4-10
Command, Parameter, and Qualifier Keywords 4-14
Console Symbolic Addresses.cccvvvunn.. 4-16
Console Command Summaryc.covunnnn.. 4-55
Console Qualifier Summaryc.covoon.. 4-57
KA650 Supported Boot Devices 4-59
VMBBootFlags...........0iiiiiiiiiiniiinnnnnn. 4-61
KA650 Network Maintenance Operations Summary 4-70
HALT MESSAZES . .-ttt evevnesrneeneoaeeeneonnnnns 4-88
Console Error Messagescciiiinnnnnenennnns 4-89
VMB Error MeSsagesc.oeereennannesnaennnnns 4-91
VAX Memory Spacec...... e B-1
VAX Input/Output Spacettt B-1
VAX Memory Spacecuviiiiiinnnnninenennnns B-2
VAX Input/Output Spacecouiiiniinennnn. B-3
External IPRsciiiiriniiiinnnnnannnnnn. B-5
Q22-bus Memory Space Mapcciiierineann. B-6
Q22-bus Input/Output Space with BBS7 Asserted B-6
Data and Address Signal Assignments c3
Control Signal Assignments c+4
Power and Ground Signal Assignments C-5
Spare Signal Assignmentsc.. 00 ... C-5
Data Transfer Operations CcC-6
Bus Signals for Data Transfers C-6

BusPinldentifiers........ ...t innnnn.. c47

About This Manual

The KA650 CPU Module Technical Manual documents the functional,
physical, and environmental characteristics of the KA650-AA CPU
module, and includes information on the MS650 memory expansion
modules. The manual also covers the KA650-BA CPU module, designed
for workstation usage. The KA650-BA is functionally equivalent to the
KA650-AA, except that it does not support multiuser VMS and ULTRIX
operating system licenses.

Intended Audience

This document is intended for a design engineer or applications
programmer who is familiar with DIGITAL’s extended LSI-11 bus (Q22-
bus) and the VAX instruction set. The manual should be used along with
the VAX Architecture Reference Manual as a programmer’s reference to
the module.

Organization
The manual is divided into four chapters and four appendixes.

Chapter 1, Overview, introduces the KA650 MicroVAX CPU module and
MS650 memory modules, including module features and specifications.

Chapter 2, Installation and Configuration, describes the installation
and configuration of the KA650 and MS650 modules in Q22-bus
backplanes and system enclosures.

Chapter 3, Architecture, describes the KA650 registers, instruction set,
and memory.

Xxvi About This Manual

Chapter 4, KA650 Firmware, describes the entry/dispatch code, boot
diagnostics, device booting sequence, console program, and console
commands.

Appendix A, KA650 Specifications, describes the physical, electrical,
and environmental specifications for the KA650 CPU module.

Appendix B, Address Assignments, provides a map of VAX memory
space.

Appendix C, Q22-bus Specification, describes the low-end member
of DIGITAL’s bus family. All of DIGITAL’s microcomputers, such as
the MicroVAX I, MicroVAX II, MicroVAX 3500, MicroVAX 3600, and
MicroPDP-11, use the Q22-bus.

Appendix D, Acronyms, lists the acronyms used in this manual.

Conventions

This manual uses the following conventions:

Convention Meaning

<xy> Represents a bit field, a set of lines, or signals,
ranging from x through y. For example, RO <7:4>
indicates bits 7 through 4 in general purpose register

Ro.
[x:y] Represents a range of bytes, from y through x.
Text within a box identifies a key such as the
key. :
Note Provides general information you should be aware of.
Caution Provides information to prevent damage to equipment.

n Boldface small n indicates variables.

About This Manual

Related Documents
You can order the following documents from DIGITAL.:

Xvii

Document Order Number
Microcomputer Interfaces Handbook EB-20175-20
Microcomputers and Memories Handbook EB-18451-20
VAX Architecture Handbook EB-19580-20
VAX Architecture Reference Manual EY-3459E-DP

You can order these documents from:

Digital Equipment Corporation
Accessories and Supplies Group
P.O. Box CS2008

Nashua, NH 03061

Attention: Documentation Products

1

Overview

This chapter provides a brief overview of the KA650 CPU meodule and
MS650 memory modules.

1.1 KA650 Central Processor Module

The KA650 is a quad-height VAX processor module for the Q22-bus, also
known as the extended LSI-11 bus. The KA650-AA is designed for use
in high speed, real-time applications and for multiuser, multitasking
environments. The KA650 incorporates a two-level cache to maximize
performance.

The KA650 CPU module and MS650 memory modules combine to form
a VAX CPU/memory subsystem that uses the Q22-bus to communicate
with mass storage and I/O devices, as shown in Figure 1-3. The KA650
and MS650 modules are mounted in standard Q22-bus backplane slots
that implement the Q22-bus in the AB rows and the CD interconnect in
the CD rows. A single KA650 can support up to four MS650 modules, if
enough Q22-bus/CD backplane slots are available.

The KA650 communicates with the console device through the H3600-SA
CPU cover panel, which also contains configuration switches and an LED
display.

Figure 1-1 shows the KA650 CPU module. Figure 1-2 shows the major
functional blocks of the KA650 CPU module.

1-2 Overview

B

criern
.

e

iy

=
B
S H
3:
=
o4

MA-2045-87

Figure 1-1 KA650 CPU Module

Overview 1-3

Ac162>

{

_._J\ SECOND LEVEL /LJ\—_/L'\SYSTEMSLPPORT
A312>) CaCHE BCDAL<310> SUBSYSTEM (CONSOLEPANEL >

[

AV BCDAL XCVRS

ADDRESS LATCH l
. COAL<319> < Q22-tus GRz-bua
Nals W INTERFACE

1. | cowmorsus

o,

e
<

MAIN MEMORY
INTERCONNECT

CPUAFPA

Figure 1-2 KAG50 Block Diagram

14 Overview

CONSOLE
SERIAL LINE MEMORYDATA
CONSOLE PANEL MSE50 MEMORY
BAUD RATE & N)
CONFIGURATION MS650 MEMORY
SWITCHES
1 DIGIT HEX DISPLAY
TODR CLOCK
BATTERY MS650 MEMORY
KAS50 PROCESSOR
WITH 1 MINMUM
%"EE VEL 4 MAXIMUM
.
MEMORY ADDRESS & CONTROL
Q22-bus
"'-; ; o‘\; 2% ; ’f\; ; ")
DIsSK TAPE ETHERNET COMMUNICATIONS OTHER 1O
CONTROLLERS CONTROLLERS INTERFACES CONTROLLERS DEVICES
MA-X0393-89

Figure 1-3 System Level Block Diagram

Overview 1-5

1.2 Clock Functions

All clock functions are implemented by the CVAX clock chip. The CVAX
clock chip is a 44-pin CERQUAD surface mount chip that contains
approximately 350 transistors, and provides the following functions:

* Generates two MOS clocks for the CPU, the floating-point accelerator,
and the main memory controller.

® Generates three auxiliary clocks for other miscellaneous TTL logic.

* Synchronizes reset signal for the CPU, the floating-point accelerator,
and the main memory controller.

* Synchronizes data ready and data error signals for the CPU, floating
point accelerator, and the main memory controller.

1.3 Central Processing Unit

The central processing unit (CPU) is implemented by the CVAX chip.
The CVAX chip contains approximately 180,000 transistors in an 84-pin
CERQUAD surface mount package. The CPU achieves a 90 ns microcycle
and a 180 ns bus cycle at an operating frequency of 22 MHz. The CVAX
chip supports full VAX memory management and a 4 gigabyte virtual
address space.

The CVAX chip contains all VAX visible general purpose registers (GPRs),
several system registers (MSER, CADR, SCBB), the first-level cache (1
Kbyte), and all memory management hardware including a 28-entry
translation buffer.

The CVAX chip provides the following functions:

® Fetches all VAX instructions.

e Executes 181 VAX instructions.

* Assists in the execution of 21 additional instructions.
* Passes 70 floating-point instructions to the CFPA chip.

The remaining 32 VAX instructions (including H-floating and octaword)
must be emulated in macrocode.

The CVAX chip provides the following subset of the VAX data types:
* Byte

e Word

¢ Longword

16 Overview

¢ Quadword
* Character string
® Variable length bit field

Support for the remaining VAX data types can be provided by macrocode
emulation.

1.4 Floating-Point Accelerator

The floating-point accelerator is implemented by the CFPA chip.

The CFPA chip contains approximately 60,000 transistors in a 68-

pin CERQUAD surface mount package. It executes 70 floating-point
instructions. The CFPA chip receives opcode information from the CVAX
chip, and receives operands directly from memory or from the CVAX chip.
The floating-point result is always returned to the CVAX chip.

1.5 Cache Memory

The KA650 module incorporates a two-level cache to maximize CPU
performance.

The first-level cache is implemented within the CVAX chip. The first-level
cache is a 1 Kbyte, two-way associative, write through cache memory,
with a 90 ns cycle time.

The second-level cache is implemented using 16K by 4-bit static RAMs.
The second-level cache is a 64 Kbyte, direct mapped, write through cache
memory, with a 180 ns cycle time for longword transfers, and 270 ns cycle
time for quadword transfers.

1.6 Memory Controller

The main memory controller is implemented by a VLSI chip called the
CMCTL. The CMCTL contains approximately 25,000 transistors in a
132-pin CERQUAD surface mount package. It supports up to 64 Mbytes
of ECC memory, with a 450 ns cycle time for longword transfers and a
720 ns cycle time for quadword transfers. This memory resides on one
to four MS650 memory modules, depending on the system configuration.
The MS650 modules communicate with the KA650 through the MS650
memory interconnect, which utilizes the CD interconnect and a 50-pin
ribbon cable.

Overview 1-7

1.7 MicroVAX System Support Functions

System support functions are implemented by the system support chip
(SSC). The SSC contains approximately 83,000 transistors in an 84-pin
CERQUAD surface mount package. The SSC provides console and boot
code support functions, operating system support functions, timers, and
many extra features, including the following:

Word-wide ROM unpacking

1 Kbyte battery backed-up RAM
Halt arbitration logic

Console serial line

Interval timer with 10 ms interrupts

VAX standard time-of-year (TODR) clock with support for battery
back-up

IORESET register
Programmable CDAL bus timeout

Two programmable timers similar in function to the VAX standard
interval timer

A register for controlling the diagnostic LEDs

1.8 Resident Firmware

The resident firmware consists of 128 Kbytes of 16-bit wide ROM, located
on two 27512 EPROMs. The firmware gains control when the processor
halts, and contains programs that provide the following services:

Board initialization
Power-up self-testing of the KA650 and MS650 modules

Emulation of a subset of the VAX standard console (automatic/manual
bootstrap, automatic/manual restart, and a simple command language
for examining/altering the state of the processor)

Booting from supported Q22-bus devices
Multilingual capability

1-8 Overview

1.9 Q22-bus Interface

The Q22-bus interface is implemented by the CQBIC chip. The CQBIC
chip contains approximately 40,870 transistors in a 132-pin CERQUAD
surface mount package. It supports up to 16-word, block mode transfers
between a Q22-bus DMA device and main memory, and up to 2-word,
block mode transfers between the CPU and Q22-bus devices. The Q22-bus
interface contains the following:

* A 16-entry map cache for the 8192-entry, main memory-resident
scatter-gather map, used for translating 22-bit Q22-bus addresses into
26-bit main memory addresses

* Interrupt arbitration logic that recognizes Q22-bus interrupt requests
BR7-BR4

¢ Q22-bus termination (240 2)

1.10 MS650-AA Memory Modules

The MS650-AA memory modules are 8 Mbyte, 450 ns, 39-bit wide arrays
(32-bit data and 7-bit ECC) implemented with 256 Kbytes of dynamic
RAMs in zig-zag in-line packages (ZIPs). MS650-AA memory modules are
single, quad-height, Q22-bus modules, as shown in Figure 14.

1.11 MS650-BA Memory Modules

The MS650-BA memory modules are 16 Mbyte, 450 ns, 39-bit wide arrays
(32-bit data and 7-bit ECC) implemented with 1 Mbyte dynamic RAMs

in surface-mount packages. MS650-BA memory modules are single,
quad-height, Q22-bus modules, as shown in Figure 1-4.

Overview 1-9

MS6E50-AA MS650-BA

MA-0578-88

Figure 1-4 MS650-AA and MS650-BA Memory Modules

2

Installation and Configuration

This chapter describes how to install the KA650 in a system. The chapter
discusses the following topics:

L

®

2.1

Installing the KA650
Configuring the KA650
KA650 connectors
CPU cover panel
Configuration board

Compatible system enclosures

Installing the KA650

The KA650 and MS650 modules must be installed in system enclosures
having Q22-bus/CD backplane slots. These modules are not compatible
with Q/Q backplane slots, and therefore should only be installed in
Q22-bus/CD backplane slots.

The KA650 CPU module must be installed in slot 1 of the Q22-bus/CD
backplane (Figure 2—1). MS650 memory modules must be installed

in slots immediately adjacent to the CPU module. Up to four MS650
modules can be installed, occupying slots 2,3,4 and 5 respectively. A
50-pin ribbon cable is used to connect the KA650 CPU module and the
MS650 memory module(s), as shown in Figure 2-2.

2-1

2-2 Installation and Configuration

SLOT 1 oo

sloT2 Q22-bus | INTERCONNECT
SLOT 3 |
SLOT 4 I
SLOT5 |
SLOT6 |
SLOT7 |
SLOT 8 |
sLoT 9 l

SLOT 10 |

SLOT 11

SLOT 12 '

fE———— KA650 CPU

fE———— MS650 NO. 1
f&——— MS650 NO. 2
reE——— MS650 NO. 3

[MS650 NO. 4

Figure 2-1 CPU and Memory Module Placement

MA-X0394.86

Installation and Configuration 2-3

KA650
CPU MODULE

MS650
MEMORY
MODULES

RIBBON CABLE

MA-X0395-89

Figure 2-2 Cable Connections

2—4 Installation and Configuration

2.2 Configuring the KA650
The following parameters must be configured on the KA650:

¢ Power-up mode
¢ Break enable switch
* Console serial line baud rate

These parameters are configured using either the H3600-SA
CPU cover panel, or the KAG630CNF configuration board (for
servicing/troubleshooting and custom enclosures).

2.3 KA650 Connectors

The KA650 uses three connectors (J1, J2, and J3) and four rows of
module fingers (A,B,C, and D) to communicate with the console device,
main memory, and the Q22-bus. Users can configure the KA650 through
the H3600-SA CPU cover panel or the KA630CNF configuration board.
The slot pinouts on the fingers of the KA650 are listed in Appendix C.

The orientation of connectors J1, J2, and J3, and the LED indicators is
shown in Figure 2-3.

9 1 19 1 49 1

.
e oo] |ecosecnsee ‘f °°°f’\ ceses

10 2 20 2 l 8421 50 2
DCOK DIAGNOSTIC
3 52 LED LEDS i)

MR:17280
MA-1068-87

Figure 2-3 KA650 Pin and LED Orientation

2.3.1 Console SLU Connector (J1)

The 10-pin console SLU connector provides the connection between

the KA650 and the console terminal. It is connected to the inside of
the H3600-SA CPU cover panel by a 10-conductor cable, or directly

to connector J3 of the KA630CNF configuration board. A cable from
the outside of the H3600-SA CPU cover panel or J1 of the KA630CNF
provides the external connection to the console terminal. Table 2-1 lists
J1 pinouts.

installation and Configuration 2-5

Table 2-1 Console SLU Connector (J1) Pinouts

Pin Sigmnal Meaning

01 Data terminal ready

02 GND Ground

03 SLU OUT L Console SLU output from the KA650
04 GND Ground

05 GND Ground

06 Key (no pin)

07 SLU IN + Console SLU differential inputs to the
08 SLU IN - KA650

09 GND Ground

10 +12'V Fused +12 volts

2.3.2 Configuration and Display Connector (J2)

The KA650 has no jumper or switch settings to change or set. The module
is configured through switches on an H3600-SA CPU cover panel, or a
KAG630CNF configuration board. The 20-pin configuration and display
connector is connected to the inside of the H3600-SA CPU cover panel

by a 20-conductor cable, or directly to connector J2 of the KA630CNF
configuration board. Table 2-2 lists J2 pinouts.

Table 2-2 Configuration and Display Connector (J2) Pinouts

Pin! Signal Meaning

01 GND Ground

02 GND Ground

03 GND Ground

04 CPU CDO L CPU code <01:00>. This 2-bit code can be configured
05 CPUCD1L only by using switches 7 and 8 on the KA630CNF

configuration board (Figure 2-7).

CPU code <01:00> configuration

00 Normal operation

01 Reserved

10 Reserved

11 Reserved

CPU code <01:00> is read by software from the BDR.

1The KA650 module has 4.7K ohm pull-up resistors for the 8 input signals (pins 4 and 5,
13 through 15, and 17 through 19).

2-6

Installation and Configuration

Table 2-2 (Cont.) Contiguration and Display Connector (J2) Pinouts

Pin'!

Signal

Meaning

06
07
08
09
11

10
12
13
14

15

16
17
18

GND

DSPL 00 L
DSPL 01 L
DSPL 02 L

DSPL 03 L

BTRY VCC
GND

BDGCDOL
BDGCD1L

BRKENB L

GND
CSBR 02 L.
CSBRO1L

If the CPU distribution panel insert is used, no
connections are made to pins 4 and 5. In that case,
signal levels are negated by pull-up resistors on the
KA650.

Ground

Display register bits <03:00>. When asserted each of
these four output signals lights a corresponding LED
on the module.

DSPL <03:00> are asserted (low) by power-up and by
the negation of DCOK when the processor is halted.
They are updated by boot and diagnostic programs
from the BDR.

Battery backup voltage for TODR clock

Ground

Boot and diagnostic code <01:00>. This 2-bit code
indicates power-up mode, and is read by software
from the BDR.

Break enable. This input signal controls the response
to an external halt condition. If BRK ENB is asserted
(low), then the KA650 halts and enters the console
program if any of the following occur:

¢ The program executes a halt instruction in kernel
mode

¢ The console detects a break character
¢ The Q22-bus halt line is asserted

If BRK ENB is negated (high), then the halt line and
break character are ignored and the ROM program
responds to a halt instruction by restarting or
rebooting the system. BRK ENB is read by software
from the BDR.

Ground

Console baud rate <02:00>. These three bits

are configured by using either the baud rate

1The KA650 module has 4.7K ohm pull-up resistors for the 8 input signals (pins 4 and 5,
13 through 15, and 17 through 19).

Installation and Configuration 2-~7

Table 2-2 (Cont.) Configuration and Display Connector (J2) Pinouts
Pin' Signal Meaning

19 CSBR 00 L select switch on the H3600-SA CPU cover panel, or
switches 2, 3, and 4 of the KAG630CNF configuration
board.

20 +5V Fused +5 volts

1The KA650 module has 4.7K ohm pull-up resistors for the 8 input signals (pins 4 and 5,
13 through 15, and 17 through 19).

2.3.3 Memory Expansion Connector (J3)

The 50-pin memory expansion connector provides the interface between
the KA650 and MS650 memory modules installed in slots 2, 3, 4 and 5 of
a Q22-bus backplane containing the CD interconnect. Table 2-3 lists J3
pinouts.

Table 2-3 Memory Expansion Connector (J3) Pinouts

Pin Signal Pin Signal

01 GND 26 D MD10 H
02 D MDS H 27 GND

03 D MD8 H 28 D MD29 H
04 D MD7 H 29 D MD28 H
05 GND 30 D MD27H
06 DMD6 H 31 GND

07 D MD5 H 32 D MD26 H
08 DMD4 H 33 D MD25 H
09 D MD3 H 34 D MD24 H
10 GND 35 D MD23 H
11 DMD2 H 36 GND

12 DMD1H 37 D MD22 H
13 D MDOH 38 D MD21 H
14 D MD1S H 39 D MD20 H
15 GND 40 D MD38 H
16 D MD18 H 41 GND

17 D MD17H 42 D MD37 H
18 D MD16 H 43 D MD36 H

19 D MD15 H 44 D MD35 H

2-8 Installation and Configuration

Table 2-3 (Cont.) Memory Expansion Connector (J3) Pinouts

Pin Signal Pin Signal

20 GND 45 DMD34H
21 DMDM4H 46 GND

22 DMDI1SH 47 DMDS3H
23 DMDI2H 48 DMD32H
24 GND 49 DMD31H
25 DMDIH 50 DMD30H

2.4 H3600-SA CPU Cover Panel

The H3600-SA CPU cover panel is a special I/O panel that is used in
BA213 enclosures. A one-piece ribbon cable on the H3600-SA CPU cover
panel plugs into the console SLU and baud rate connectors on the KA650.
The H3600-SA CPU cover panel fits over backplane slots 1 and 2, covering
both the KA650 CPU module and the first of four possible MS650 memory
modules.

The H3600-SA CPU cover panel (Figure 2—4) includes the features and
controls specified in Table 24.

Table 2-4 H3600-SA CPU Cover Panel Features and Controis
Outside Inside

Modified modular jack (MMJ) Baud rate rotary switch
SLU connector

Power-up mode switch Battery back-up unit (BBU) for TODR clock
Hex LED display List of baud rate switch settings
Break enable switch 30-pin cable connector

Installation and Configuration

POWER-UP MODE

CS

(@) LoOPBACK TEST
o
Qo
o

HALT ENABLE SWITCH
(DOWN = DISABLED

LED DISPLAY —]

SLUCONNECTOR ~

LANGUGE INQUIRY

> NORMAL OPERATION

(FACTORY SETTING)

=2

BAUD RATE
SWITCH

(9600 IS FACTORY
SETTING)

-0
\@G

e

1 BATTERY BACK-UP
UNIT (BBU)

— LIST OF SWITCH SETTINGS
FOR BAUD RATES

(L&—

Figure 2-4 H3600-SA CPU Cover Panel

2.5 KAB30CNF Configuration Board

A KA630CNF configuration board (H3263-00) (Figures 2-5, through
2-7) is provided with each KA650. The KA630CNF plugs directly into
connectors J1 and J2 on the KA650. It allows the user to configure the
KAG650 by setting the 10 switches on SW1 as listed in Table 2-5.

Connector J1 is used to connect a cable to the console SLU. Connector J4
is for a BBU. The J4 pin closest to connector J1 is the positive pin.

2-9

2-10 Installation and Configuration

J3 J2

\ TOP VIEW /

O TITITIT TTTTTTITITTTT |

m | o
J] J4 MRA-14505
SIDE VIEW
RS N noepoanoog,
1

MA-1052.87

Figure 2-5 KAG30CNF Configuration Board

19 1 9 1
cecssescccsel | oo seeee
20 2 10 2
J2 J3
MR-17281
MA.1069.87

Figure 2-6 KAG630CNF J2 and J3 Pin Orientation

9 1

esces

es oo

10 2

3

[]

+ -

J4

Installation and Configuration 2-11

IIHHHIHII

Swi

MR-17282
MA.1070-87

Figure 2-7 KAG30CNF J1 and J4 Pin Orientation

Table 2-5 KAG630CNF Switch Selections

Switch/Setting Mode/Function

1 Halt Mode

Off Disabled

On Enabled

2 3 4 Console Baud Rate

Off Off Off 300

On Off Off 600

Off On Off 1,200

On On Off 2,400

Off Off On 4,800

On Off On 9,600

Off On On 15,200

On On On 38,400

5 6 9 10 Power-Up Mode?

Off Off On Off Normal operation. Transmit line connected.
Receive line connected.

On Ooff On Off Language inquiry mode. Transmit line
connected. Receive line connected.

Off On Off On Loopback test mode (maintenance). Transmit
line connected to receive line and console.

On On On Off Manufacturing use only. Bypasses memory

test.

1Do not use any other settings for switches 5, 6, 9, and 10.

2—-12 Installation and Configuration

Table 2-5 (Cont.) KAG30CNF Switch Selections

Switch/Setting Mode/Function

7 8 CPU Operation Mode
Off Off Normal operation

On Off Reserved

Off On Reserved

On On Reserved

Table 2—6 lists the pins on the KA650 J2 and J1, and the corresponding
KAG630CNF connectors and switches on SW1. Note that connectors J2 and
J3 both have more connectors than there are pins on the corresponding
KA650 connector. The two left and two right side connectors on J2 and J3
of the KA630CNF are unused. Switches 1 through 8 on SW1 set values
that enable or disable halts; and determine CPU operation mode, power-
up mode, and console baud rate. SW1 switches 9 and 10 connect transmit
and receive lines as required for normal operation or loopback testing.

Table 2-6 KAG630CNF Connector and Switches

CNF
CPU J2 CNF J2 SW1
Pin Signal Pin Switch CNF J4 Pin
1
2
1 GND 3
2 GND 4
3 GND 5
4 CPU CDO L 6 7
5 CPUCD1L 7 8
6 GND 8
7 DSPL OO L 9
8 DSPLO1L 10
9 DSPL 02 L 11
10 BTRY VCC 12 1!
11 DSPL 03 L 13
12 GND 14
13 BDGCDO L 15 5

145 V from BBU to TODR clock chip on CPU

Installation and Configuration 2-13

Table 2—6 (Cont.) KAB30CNF Connector and Switches

CNF

CPU J2 CNF J2 SW1
Pin Signal Pin Switch CNF J4 Pin
14 BDGCD1L 16 6
15 BRK ENB L 17 1
16 GND 18
17 CSBR 02 L 19 2
18 CSBR 01 L 20 3
19 CSBR 00 L 21 4
20 +5V 22

23

24

CNF

CPU J1 CNF J3 SW1
Pin Signal Pin Switch CNF J1 Pin

1

2
1 DTR 3
2 GND 4 2,4,5,9
3 SLU OUT L 5 10 3
4 GND 6 2,4,5,9
5 GND 7 2,4,5,9
6 Key (no pin) 8
7 SLU IN + g 7
8 SLU IN - 10 9
9 GND 11 2,4,5,9
10 +12V 12 10

13

14

2-14 installation and Configuration

2.6 Compatible System Enclosures
The KA650 is compatible with the following DIGITAL enclosures:

BA213

The BA213 contains a 4 row by 12 slot backplane, with the Q22-bus
implemented in the A/B rows of slots 1 through 12. The CD interconnect
is implemented in the C/D rows of slots 1 through 12, allowing up to four
memory modules to be used. The BA213 has mounting space for up to
four 13.2 em (5.25 inch) mass storage devices. The BA213 is equipped
with two modular power supplies. Each power supply delivers 7.0 A
(maximum) at +12 Vdc and 33.0 A (maximum) at +5 Vdc. The combined
maximum current at +12 Vdc and +5 Vdc must not exceed 230 W of power
for each supply.

BA123-A

The BA123-A contains a 4 row by 12 slot backplane, with the Q22-bus
implemented in the A/B rows of slots 1 through 12 (and the C/D rows of
slots 5 through 12). The CD interconnect is implemented in the C/D rows
of slots 1 through 4, allowing up to three memory modules to be used.
The BA123-A has mounting space for up to five 13.2 cm (5.25 inches)
mass storage devices. The BA123-A is equipped with a power supply that
includes a master console and two regulators that each provide 36 A at +5
V and 7 A at +12 V. Total power from each regulator must not exceed 230
W.

BA23-A

The BA23-A contains a 4 row by 8 slot backplane, with the Q22-bus
implemented in the A/B rows of slots 1 through 8 (and the C/D rows

of slots 4 through 8). The CD interconnect is implemented in the C/D
rows of slots 1 through 3, allowing up to two memory modules to be
used. The BA23-A has mounting space for up to two 13.2 cm (5.25 inch)
mass storage devices. The BA23-A is equipped with a power supply that
includes a master console and provides 36 A at +5 Vand 7 A at +12 V.
Total power must not exceed 230 W.

The BA23-A is also available in an H9642 cabinet, which provides eight
additional backplane slots and space for two 26.5 cm (10.5 inches) mass
storage devices.

Installation and Configuration 2-15

BA11-S

The BA11-S contains a 4 row by 9 slot backplane, with the Q22-bus
implemented in the A/B rows of slots 1 through 9. The CD interconnect
is implemented in the C/D rows of slots 1 through 9, allowing up to four
memory modules to be used. The BA11-S is equipped with a power supply
that includes a master console and provides 36 A at +5 V and 5 A at +12
V. Total power must not exceed 230 W.

3

Architecture

This chapter describes the KA650 registers, instruction set, and memory.
The chapter covers the following KA650 topics:

¢ Central processor

* Floating-point accelerator

¢ Cache memory

* Main memory system

* Console serial line

* Time-of-year clock and timers
* Boot and diagnostic facility

* Q22-bus interface

3.1 Central Processor

The central processor of the KA650 supports the MicroVAX Chip subset
(plus six additional string instructions) of the VAX instruction set and
data types, and full VAX memory management. It is implemented by a
single VLSI chip called the CVAX.

3.1.1 Processor State

The processor state consists of that portion of the state of a process which
is stored in processor registers rather than in memory. The processor
state is composed of 16 general purpose registers (GPRs), the processor
status longword (PSL), and the internal processor registers (IPRs).

3-1

3-2 Architecture

Nonprivileged software can access the GPRs and the processor status
word (bits <15:00> of the PSL). The IPRs and bits <31:16> of the PSL can
only be accessed by privileged software. The IPRs are explicitly accessible
only by the move to processor register (MTPR) and move from processor
register (MFPR) instructions which can be executed only while running in
kernel mode.

3.1.1.1 General Purpose Registers

The KA650 implements 16 general purpose registers as specified in

the VAX Architecture Reference Manual. These registers are used for
temporary storage, as accumulators, and as base and index registers for
addressing. These registers are denoted R0 through R15. The bits of a
register are numbered from the right <0> through <31> (Figure 3-1).

313028282726252423222120191817161514131211109 8 2 6 5 4 3 2 1 0

ININERNRNRENREREREENRERENRERINE

MA.1100-87

Figure 3-1 General Purpose Register Bit Map

Certain of these registers have been assigned special meaning by the
VAX-11 architecture.

¢ R15 is the program counter (PC). The PC contains the address of the
next instruction byte of the program.

¢ R4 is the stack pointer (SP). The SP contains the address of the top
of the processor defined stack.

e R13 is the frame pointer (FP). The VAX-11 procedure call convention
builds a data structure on the stack called a stack frame. The FP
contains the address of the base of this data structure.

* RI12 is the argument pointer (AP). The VAX-11 procedure call
convention uses a data structure called an argument list. The AP
contains the address of the base of this data structure.

Consult the VAX Architecture Reference Manual for more information on
the operation and use of these registers.

Architecture 3—3

3.1.1.2 Processor Status Longword

The KA650 processor status longword (PSL) is implemented per the VAX
Architecture Reference Manual, which should be consulted for a detailed
description of the operation of this register. The PSL is saved on the stack
when an exception or interrupt occurs and is saved in the process control
block (PCB) on a process context switch. Bits <15:00> may be accessed
by nonprivileged software, while bits <31:16> may only be accessed by
privileged software. Processor initialization sets the PSL to 041F 0000 1¢.
Figure 3-2 shows the processor status longword bit map.

313029282726252423222120 1615 876543210

J]
T
MBZ

FPD
1S

CUR MOD
PRV MOD
mMB2

IPL MBZ TIN{Z|V|C

L,

DV

MR.15778
MA-1055-87

Figure 3-2 PSL Bit Map

Data Bit Definition

<31> Compatibility mode (CM). Reads as zero. Loading a 1 into
this bit is a NOP.

<30> Trace pending (TP)

<29:28> Unused. Must be written as zero.

<27> First part done (FPD)

<26> Interrupt stack (IS)

<25:24> Current mode (CUR)

<23:22> Previous mode (PRV)

<21> Unused. Must be written as zero.

<20:16> Interrupt priority level (IPL)

34 Architecture

Data Bit Definition

<15:8> Unused. Must be written as zero.

<7> Decimal overflow trap enable (DV). Has no effect on KA650
hardware. Can be used by macrocode which emulates VAX
decimal instructions.

<6> Floating underfiow fault enable (FU)

<5> Integer overflow trap enable (IV)

<4> Trace trap enable (T)

<3> Negative condition code (N)

<2> Zero condition code

<1> Overflow condition code (V)

<0> Carry condition code (C)

NOTE

VAX compatibility mode instructions can be emulated by
macrocode, but the emulation software runs in native mode,
so the CM bit is never set.

3.1.1.3 internal Processor Registers

The KA650 internal processor registers (IPRs) can be accessed by using
the MFPR and MTPR privileged instructions. Each IPR falls into one of
the following seven categories:

1. Implemented by KA650 (in the CVAX chip) as specified in the VAX
Architecture Reference Manual.

2. Implemented by KA650 (in the SSC) as specified in the VAX
Architecture Reference Manual.

3. Implemented by KA650 (and all designs that use the CVAX chip)

uniquely.

Architecture 3-5

Implemented by KA650 (and all designs that use the SSC) uniquely.

Not implemented, timed out by the CDAL bus timer (in the SSC) after
4 ps. Read as 0. NOP on write.

6. Access not allowed; accesses result in a reserved operand fault.

7. Accessible, but not fully implemented. Accesses yield unpredictable
results.

Refer to Table 3—1 for a listing of each of the KA650 IPRs, along with its
mnemonic, its access type (read or write) and its category number.

Table 3—1 KAGB50 Internal Processor Registers

Decimal Hex Register Mnemonic Type Category’
0 0] Kernel stack pointer KSp r/w 1
1 1 Executive stack pointer ESP r/w 1
2 2 Supervisor stack pointer SSP r/w 1
3 3 User stack pointer Usp r/w 1
4 4 Interrupt stack pointer ISP riw 1
7:5 7:5 Reserved 5
8 8 PO base register POBR riw 1
9 9 PO length register POLR T/w 1
10 A P1 base register P1BR riw 1
11 B P1 length register P1LR riw 1
12 C System base register SBR riw 1
13 D System length register SLR riw 1
15:14 FE Reserved 5
16 10 Process control block base PCBB riw 1
17 11 System control block base SCBB r/w 1
18 12 Interrupt priority level IPL r/w 1I
19 13 AST level ASTIVL r/w 11
20 14 Software interrupt request SIRR w 1
21 15 Software interrupt SISR riw 11
summary
23:22 17:16 Reserved 5
24 18 Interval clock ICCS riw 31
control/status

25 19 Next interval count NICR w 5
26 1A Interval count ICR T 5

1The I indicates that the register is initialized on power-up and by the negation of DCOK
when the processor is halted.

36 Architecture

Table 3—1 (Cont.) KAG50 Internal Processor Registers

Decimal Hex Register Mnemonic Type Category’

27 1B Time-of-year clock register TODR T/w 2

28 1C Console storage receiver CSRS r/w 71
status

29 1D Console storage receiver CSRD T 71
data

30 1E Console storage transmit CSTS riw 71
status

31 1F Console storage transmit CSTD w 71
data

32 20 Console receiver RXCS riw 41
control/status

33 21 Console receiver data RXDB r 41
buffer

34 22 Console transmit TXCS riw 41
control/status

35 23 Console transmit data TXDB w 41
buffer

36 24 Translation buffer disable TBDR riw 5

37 25 Cache disable CADR r/'w 31

38 26 Machine check error MCESR riw 5
summary

39 27 Memory system error MSER r/w 31

41:40 29:28 Reserved 5

42 2A Console saved PC SAVPC r 3

43 2B Console saved PSL SAVPSL r 3

47:44 2F:2C Reserved 5

48 30 SBI Fault/status SBIFS riw 5

49 31 SBI silo SBIS r 5

50 32 SBI silo comparator SBISC r'w 5

51 33 SBI maintenance SBIMT r/w 5

52 34 SBI error register SBIER r/w 5

53 35 SBI timeout address SBITA T 5
register

54 36 SBI quadword clear SBIQC w 5

55 37 /0 bus reset IORESET w 4

1The I indicates that the register is initialized on power-up and by the negation of DCOK
when the processor is halted.

Architecture 3—7

Table 3—-1 (Cont.) KAG650 Internal Processor Registers

Decimal Hex Register Mnemonic Type Category’
56 38 Memory management MAPEN r/w 1
enable
57 39 TB invalidate all TBIA w 1
58 3A TB invalidate single TBIS w 1
59 3B TB data TBDATA r/w 5
60 3C Microprogram break MBRK r/w 5
61 3D Performance monitor PMR riw 5
enable
62 3E System identification SID T 1
63 3F Translation buffer check TBCHK w 1
64:127 40:7F Reserved 6

1The I indicates that the register is initialized on power-up and by the negation of DCOK
when the processor is halted.

VAX Standard Internal Processor Registers

Internal processor registers (IPRs) that are implemented as specified in
the VAX Architecture Reference Manual are classified as category 1 IPRs.
The VAX Architecture Reference Manual should be consulted for details on
the operation and use of these registers. The category 1 registers listed in
Table 3-2 are also referenced in other sections of this manual.

Table 3-2 Category One IPRs

Number Register Mnemonic Section
12 System base register SBR 3.14.2
13 System length register SLR 3.14.2
16 Process control block base PCBB 3.15
17 System control block base SCBB 3.154
18 Interrupt priority level IPL 3.15.1
20 Software interrupt request SIRR 3.15.1
21 Software interrupt summary SISR 3.15.1
27 Time-of-year clock register TODR 3.6.1
56 Memory management enable MAPEN 3.14.2
57 Translation buffer invalidate TBIA 3.14.2

all

3-8 Architecture

Table 3-2 (Cont.) Category One IPRs

Number Register Mnemonic Section

58 Translation buffer invalidate .TBIS 3.14.2
single

62 System identification SID 3.1.6

63 Translation buffer check TBCHK 3.14.2

Unique Internal Processor Registers

Internal processor registers (IPRs) that are implemented uniquely on

the KA650 (for example, those that are not contained in, or do not fully
conform to the standards in the VAX Architecture Reference Manual)

are classified as category 2 IPRs and are described in detail in this
manual. Refer to the sections listed in Table 3—3 for a description of these

registers.

Table 3-3 Category Two IPRs

Number Register Mnemonic Section
24 Interval clock control/status ICCS 3.6.2
32 Console receiver RXCS 3.5.1.1
control/status »
33 Console receiver data buffer RXDB 3.5.1.2
34 Console transmit TXCS 3.5.1.3
control/status
35 Console transmit data buffer TXDB 3.5.14
37 Cache disable CADR 3.3.2.5
39 Memory system error MSER 3.3.2.6
42 Console saved PC SAVPC 3.1.5
43 Console saved PSL SAVPSL 3.15
55 1T/O bus reset IORESET 3.7.5.1

3.1.2 Data Types
The KA650 CPU supports the following subset of the VAX data types:

. Byte

e Word

¢ Longword

Architecture 3-9

* Quadword
¢ Character string
® Variable length bit field

Support for the remaining VAX data types can be provided through
macrocode emulation.

3.1.3 Instruction Set

The KA650 CPU implements the following subset of the VAX instruction
set types in microcode:

* Integer arithmetic and logical

* Address
* Variable length bit field
¢ Control

e Procedure call
e Miscellaneous
* Queue

* Character string moves (MOVC3, MOVC5, CMPC3! , CMPC5?,
LOCC!, SCANC!, SKPC!, and SPANCY)

¢ Operating system support

* F_floating
¢ G_floating
* D_floating

! These instructions were in the microcode assisted category on the KA630-AA
(MicroVAX II) and therefore had to be emulated.

3—10 Architecture

The KA650 CVAX chip provides special microcode assistance to aid the
macrocode emulation of the following instruction groups:

¢ Character string (except MOVC3, MOVC5, CMPC3!, CMPC51,
LOCC!, SCANC!, SKPC!, and SPANC!)

* Decimal string
e CRC
e EDITPC

The following instruction groups are not implemented, but may be
emulated by macrocode:

¢ Octaword

¢ Compatibility mode instructions

3.1.4 Memory Management

The KA650 implements full VAX memory management as defined in the
VAX Architecture Reference Manual. System space addresses are virtually
mapped through single-level page tables, and process space addresses are
virtually mapped through two-level page tables. See the VAX Architecture
Reference Manual for descriptions of the virtual to physical address
translation process, and the format for VAX page table entries (PTEs).

! These instructions were in the microcode assisted category on the KA630-AA
(MicroVAX II) and therefore had to be emulated.

Architecture 3—11

3.1.4.1 Translation Buffer

To reduce the overhead associated with translating virtual addresses

to physical addresses, the KA650 employs a 28-entry, fully associative,
translation buffer for caching VAX PTEs in modified form. Each entry can
store a modified PTE for translating virtual addresses in either the VAX
process space, or VAX system space. The translation buffer is flushed
whenever memory management is enabled or disabled (for example, by
writes to IPR 56), any page table base or length registers are modified (for
example, by writes to IPRs 8 to 13) and by writing to IPR 57 (TBIA) or
IPR 58 (TBIS).

Each entry is divided into two parts: a 23-bit tag register and a 31-bit
PTE register. The tag register is used to store the virtual page number
(VPN) of the virtual page that the corresponding PTE register maps. The
PTE register stores the 21-bit PFN field, the PTE.V bit, the PTE.M bit
and an 8-bit partially decoded representation of the 4-bit VAX PTE PROT
field, from the corresponding VAX PTE, as well as a translation buffer
valid (TB.V) bit.

During virtual to physical address translation, the contents of the 28 tag
registers are compared with the virtual page number field (bits <31:9>) of
the virtual address of the reference. If there is a match with one of the
tag registers, then a translation buffer hit has occurred, and the contents
of the corresponding PTE register is used for the translation.

If there is no match, the translation buffer does not contain the necessary
VAX PTE information to translate the address of the reference, and

the PTE must be fetched from memory. Upon fetching the PTE, the
translation buffer is updated by replacing the entry that is selected

by the replacement pointer. Since this pointer is moved to the next
sequential translation buffer entry whenever it is pointing to an entry
that is accessed, the replacement algorithm is not last used (NLU).

3.1.4.2 Memory Management Control Registers

There are four IPRs that control the memory management unit (MMU):
IPR 56 (MAPEN), IPR 57 (TBIA), IPR 58 (TBIS), and IPR 63 (TBCHK).

Memory management can be enabled/disabled through IPR 56 (MAPEN).
Writing 0 to this register with a MTPR instruction disables memory
management, and writing a 1 to this register with a MTPR instruction
enables memory management. Writes to this register flush the translation
buffer. To determine whether or not memory management is enabled, IPR
56 is read using the MFPR instruction. Translation buffer entries that
map a particular virtual address can be invalidated by writing the virtual
address to IPR 58 (TBIS) using the MTPR instruction.

3-12 Architecture

NOTE

Whenever software changes a valid page table entry for the
system or current process region, or a system page table entry
that maps any part of the current process page table, all process
pages mapped by the page table entry must be invalidated in the
translation buffer.

The entire translation buffer can be invalidated by writing a 0 to IPR 57
(TBIA) using the MTPR instruction.

The translation buffer can be checked to see if it contains a valid
translation for a particular virtual page by writing a virtual address
within that page to IPR 63 (TBCHK) using the MTPR instruction. If the
translation buffer contains a valid translation for the page, the condition
code V bit (bit <1> of the PSL) is set.

NOTE
The TBIS, TBIA, and TBCHK IPRs are write only. The operation
of a MFPR instruction from any of these registers is undefined.

3.1.5 Exceptions and Interrupts

Both exceptions and interrupts divert execution from the normal flow of
control. An exception is caused by the execution of the current instruction
and is typically handled by the current process (for example, an arithmetic
overflow), while an interrupt is caused by some activity outside the
current process and typically transfers control outside the process (for
example, an interrupt from an external hardware device).

3.1.5.1 Interrupts
Interrupts can be divided into two classes: nonmaskable, and maskable.

Nonmaskable interrupts cause a halt through the hardware halt
procedure which saves the PC, PSL, MAPEN<0> and a halt code in IPRs,
raises the processor IPL to 1F, and then passes control to the resident
firmware. The firmware dispatches the interrupt to the appropriate
service routine based on the halt code and hardware event indicators.
Nonmaskable interrupts cannot be blocked by raising the processor IPL,
but can be blocked by running out of the halt protected address space
(except those nonmaskable interrupts that generate a halt code of 3).
Nonmaskable interrupts with a halt code of 3 cannot be blocked since this
halt code is generated after a hardware reset.

Architecture 3-13

Maskable interrupts cause the PC and PSL to be saved, the processor
IPL to be raised to the priority level of the interrupt (except for Q22-bus
interrupts where the processor IPL is set to 17, independent of the level
at which the interrupt was received) and the interrupt to be dispatched to
the appropriate service routine through the SCB.

The various interrupt conditions for the KA650 are listed in Table 34
along with their associated priority levels and SCB offsets.

Table 34 Interrupts
Priority
Level Interrupt Condition SCB Offset

Nonmaskable BDCOK and BPOK negated then 1
asserted on Q22-bus (power-up)
BDCOK negated then asserted
while BPOK asserted on Q22-bus

(SCR<7> clear)
BDCOK negated then asserted 2
while BPOK asserted on Q22-bus
(SCR<7> set)
BHALT asserted on Q22-bus z
BREAK generated by the console z
device
1F Unused
1E BPOK negated on Q22-bus ocC
1D CDAL bus parity error 60
Q22-bus NXM on a write 60
CDAL bus timeout during DMA 60
Main memory NXM errors 60
Uncorrectable main memory errors 60
1C- 1B Unused
1A Second-level cache tag parity errors 54
Correctable main memory errors 54
19-18 Unused
17 BR7 L asserted Q22-bus vector plus 200 36
16 Interval timer interrupt Co
BR6 L asserted Q22-bus vector plus 200 36
15 BR5 L asserted Q22-bus vector plus 200 ;¢

1These conditions generate a hardware halt procedure with a halt code of 3 (hardware
reset).

2These conditions generate a hardware halt procedure with a halt code of 2 (external halt).

3-14 Architecture

Table 3-4 (Cont.) Interrupts

Priority
Level Interrupt Condition SCB Offset
14 Console terminal F8,Fé6
Programmable timers 78,7C
BR4 L asserted Q22-bus vector plus 200 16
13 through Unused
10
OF through Software interrupt requests 84-BC
01
NOTE

Because the Q22-bus does not allow differentiation between the
four bus grant levels (for example, a level 7 device could respond
to a level 4 bus grant), the KA650 CPU raises the IPL to 17 after
responding to interrupts generated by the assertion of either BR7
L, BR6 L, or BR4 L. The KA650 maintains the IPL at the priority
of the interrupt for all other interrupts.

The interrupt system is controlled by three IPRs: IPR 18, the interrupt
priority level register (IPL), IPR 20, the software interrupt request
register (SIRR), and IPR 21, the software interrupt summary register
(SISR). The IPL is used for loading the processor priority field in the
PSL (bits <20:16>). The SIRR is used for creating software interrupt
requests. The SISR records pending software interrupt requests at levels
1 through 15. The format of these registers is shown in Figure 3-3. Refer
to the VAX Architecture Reference Manual for more information on these
registers.

Architecture 3—-15

31 5 4 [¢]
IGNORED, RETURNS O PSL<20:16>] :IPL
3 4 3 o
IGNORED REQUEST| :SIRR
3 1615 0
PENDING SOFTWARE INTERRUPTS :SISR

FEDCBA98 7654321

MBZ

MR.18779
MA-1056-87

Figure 3-3 Interrupt Registers

3.1.5.2 Exceptions
Exceptions can be divided into three types:

e Trap
e Fault
e Abort

A irap is an exception that occurs at the end of the instruction that caused
the exception. After an instruction traps, the PC saved on the stack is the
address of the next instruction that would have normally been executed
and the instruction can be restarted.

3-16 Architecture

A fault is an exception that occurs during an instruction, and that leaves
the registers and memory in a consistent state such that the elimination
of the fault condition and restarting the instruction gives correct results.
After an instruction faults, the PC saved on the stack points to the
instruction that faulted.

An abort is an exception that occurs during an instruction, leaving the
value of the registers and memory unpredictable, such that the instruction
cannot necessarily be correctly restarted, completed, simulated, or undone.
After an instruction aborts, the PC saved on the stack points to the
instruction that was aborted (which may or may not be the instruction
that caused the abort) and the instruction may or may not be restarted
depending on the class of the exception and the contents of the parameters
that were saved.

Exceptions are grouped into six classes:
® Arithmetic

* Memory management

¢ Operand reference

* Instruction execution

* Tracing

® System failure

A list of exceptions grouped by class is given in Table 3—-5. Exceptions
save the PC and PSL, and in some cases one or more parameters, on the
stack. Most exceptions do not change the IPL of the processor (except
the exceptions in serious system failures class, which set the processor
IPL to 1F) and cause the exception to be dispatched to the appropriate
service routine through the SCB (except for the interrupt stack not
valid exception, and exceptions that occur while an interrupt or another
exception are being serviced, which cause the exception to be dispatched
to the appropriate service routine by the resident firmware).

Architecture 3—-17

The exceptions listed in Table 3-5 (except machine check) are described
in greater detail in the VAX Architecture Reference Manual. The
machine check exception is described in greater detail in Section 3.1.5.3.
Exceptions that can occur while servicing an interrupt or another
exception are listed in Table 3-8 in Section 3.1.5.6.

Table 3-5 Exceptions

Type SCB Offset
Integer overfliow Trap 34
Integer divide-by-zero Trap 34
Subscript range Trap 34
Floating overflow Fault 34
Floating divide-by-zero Fault 34
Floating underflow Fault 34
Memory Management Exceptions
Access control violation Fault 20
Translation not valid Fault 24
Operand Reference Exceptions
Reserved addressing mode Fault 1C
Reserved operand fault Abort 18
Instruction Execution Exceptions
Reserved/privileged instruction Fault 10
Emulated instruction Fault C§, CC
Change mode Trap 40-4C
Breakpoint Fault 2C
Tracing Exception
Trace Fault 28
System Failure Exceptions
Interrupt stack not valid Abort !
Kernel stack not valid Abort 08
Machine check Abort 04
CDAL bus parity errors

First-level cache parity errors

1Dispatched by resident firmware rather than through the SCB.

3-18 Architecture

Table 3—-5 (Cont.) Exceptions

Type SCB Offset

Second-level cache data parity
errors

Q22-bus NXM errors

Q22-bus device parity errors
Q22-bus no grant errors

CDAL bus timeout errors

Main memory NXM errors

Main memory uncorrectable errors

3.1.5.3 Information Saved on a Machine Check Exception

In response to a machine check exception the PSL, PC, four parameters,
and a byte count are pushed onto the stack, as shown in Figure 3—4.

BYTE COUNT :SP

MACHINE CHECK CODE

MOST RECENT VIRTUAL ADDRESS

INTERNAL STATE INFORMATION 1

INTERNAL STATE INFORMATION 2

PC

PSL

MA.1121.87

Figure 3—4 Information Saved on a Machine Check Exception

Figure 3—4 is explained in the following paragraphs.

Byte Count

Byte count <31:0> indicates the number of bytes of information that follow
on the stack (not including the PC and PSL).

Architecture 3—-19

Machine Check Code Parameter

Machine check code <31:0> indicates the type of machine check that
occurred. A list of the possible machine check codes (in hex) and their
associated causes follows:

Floating-point errors indicate the floating-point accelerator (FPA)
chip detected an error while communicating with the CVAX CPU chip
during the execution of a floating-point instruction. The most likely
cause(s) of these types of machine checks are: a problem internal to
the CVAX CPU chip; a problem internal to the FPA; or a problem
with the interconnect between the two chips. Machine checks due to
floating-point errors may be recoverable, depending on the state of
the VAX can’t restart flag (captured in internal state information 2
<15>) and the first part done flag (captured in PSL <27>). If the first
part done flag is set, the error is recoverable. If the first part done
flag is cleared, then the VAX can'’t restart flag must also be cleared
for the error to be recoverable. Otherwise, the error is unrecoverable
and depending on the current mode, either the current process or the
operating system should be terminated. The information pushed onto
the stack by this type of machine check is from the instruction that
caused the machine check.

Hex Code Error Description

1 A protocol error was detected by the FPA chip while
attempting to execute a floating-point instruction.

2 A reserved instruction was detected by the FPA while
attempting to execute a floating-point instruction.

3 An illegal status code was returned by the FPA while

attempting to execute a floating-point instruction.
(CPSTA<1:0>=10)

4 An illegal status code was returned by the FPA while
attempting to execute a floating-point instruction.
(CPSTA<1:0>=01)

Memory management errors indicate the microcode in the CVAX
CPU chip detected an impossible situation while performing functions
associated with memory management. The most likely cause of

this type of a machine check is a problem internal to the CVAX
chip. Machine checks due to memory management errors are
nonrecoverable. depending on the current mode, either the current
process or the operating system should be terminated. The state of
the POBR, POLR, P1BR, P1LR, SBR, and SLR should be logged.

3-20 Architecture

Hex Code Error Description

5 The calculated virtual address for a process PTE was in
the PO space instead of the system space when the CPU
attempted to access a process PTE after a translation buffer
miss.

6 The calculated virtual address space for a process PTE
was in the P1 space instead of the system space when the
CPU attempted to access a process PTE after a translation
buffer miss.

7 The calculated virtual address for a process PTE was in
the PO space instead of the system space when the CPU
attempted to access a process PTE to change the PTE<M>
bit before writing to a previously unmodified page.

8 The calculated virtual address for a process PTE was in
the P1 space instead of the system space when the CPU
attempted to access a process PTE to change the PTE<M>
bit before writing to a previously unmodified page.

¢ Interrupt errors indicate the interrupt controller in the CVAX CPU
requested a hardware interrupt at an unused hardware IPL. The
most likely cause of this type of a machine check is a problem internal
to the CVAX chip. Machine checks due to unused IPL errors are
nonrecoverable. A nonvectored interrupt generated by a serious error
condition (memory error, power fail, or processor halt) has probably
been lost. The operating system should be terminated.

Hex Code Error Description
9 A hardware interrupt was requested at an unused interrupt

priority level (IPL).

® Microcode errors indicate an impossible situation was detected by
the microcode during instruction execution. Note that most erroneous
branches in the CVAX CPU microcode cause random microinstructions
to be executed. The most likely cause of this type of machine check
is a problem internal to the CVAX chip. Machine checks due to
microcode errors are nonrecoverable. Depending on the current
mode, either the current process or the operating system should be
terminated.

Architecture 321

Hex Code Error Description

A An impossible state was detected during a MOVC3 or
MOVCS5 instruction (not move forward, move backward, or
fill).

Read errors indicate an error was detected while the CVAX CPU
was attempting to read from either the first-level cache, the second-
level cache, main memory, or the Q22-bus. The most likely cause of
this type of machine check must be determined from the state of the
MSER, DSER, MEMCSR16, QBEAR, DEAR, and CBTCR. Machine
checks due to read errors may be recoverable, depending on the state
of the VAX can’t restart flag (captured in internal state information 2
<15>) and the first part done flag (captured in PSL <27>). If the first
part done flag is set, the error is recoverable. If the first part done
flag is cleared, then the VAX can’t restart flag must also be cleared
for the error to be recoverable. Otherwise, the error is unrecoverable
and depending on the current mode, either the current process or the
operating system should be terminated. The information pushed onto
the stack by this type of machine check is from the instruction that
caused the machine check.

Hex Code Error Description

80 An error occurred while reading an operand, a process
page table entry during address translation, or on any read
generated as part of an interlocked instruction.

81 An error occurred while reading a system page table entry
(SPTE), during address translation, a process control block
(PCB) entry during a context switch, or a system control
biock (SCB) entry while processing an interrupt.

Write errors indicate an error was detected while the CVAX CPU
was attempting to write to either the first-level cache, the second-
level cache, main memory, or the Q22-bus. The most likely cause of
this type of machine check must be determined from the state of the:
MSER, DSER, MEMCSR16, QBEAR, DEAR, and CBTCR. Machine
checks due to write errors are nonrecoverable because the CPU is
capable of performing many read operations out of the first-level cache
before a write operation completes. For this reason, the information
that is pushed onto the stack by this type of machine check cannot be
guaranteed to be from the instruction that caused the machine check.

3-22 Architecture

Hex Code Error Description

82 An error occurred while writing an operand, or a process
page table entry to change the PTE<M> bit before writing a
previously unmodified page.

83 An error occurred while writing a system page table entry

(SPTE) to change the PTE<M> bit before writing a previously
unmodified page, or a process control block (PCB) entry during
a context switch or during the execution of instructions that
modify any stack pointers stored in the PCB.

Most Recent Virtual Address Parameter

Most recent virtual address <31:0> captures the contents of the virtual
address pointer register at the time of the machine check. If a machine
check other than a machine check 81 occurs on a read operation, this field
represents the virtual address of the location that is being read when the
error occurs, plus four. If machine check 81 occurs, this field represents
the physical address of the location that is being read when the error
occurs, plus four.

If a machine check other than a machine check 83 occurs on a write
operation, this field represents the virtual address of a location that is
being referenced either when the error occurs, or sometime after, plus
four. If a machine check 83 occurs, this field represents the physical
address of the location that was being referenced either when the error
occurs, or sometime after, plus four. In other words, if the machine check
occurs on a write operation, the contents of this field cannot be used for
error recovery.

Internal State Information 1 Parameter

Internal state information 1 is divided into four fields. The contents of
these fields is described as follows:

® <31:24> captures the opcode of the instruction that was being read or
executed at the time of the machine check.

®* <23:16> captures the internal state of the CVAX CPU chip at the
‘ time of the machine check. The four most significant bits are equal
to <1111> and the four least significant bits contain highest priority
software interrupt <3:0>.

Architecture 3—23

<15:8> captures the state of CADR<7:0> at the time of the machine
check. See Section 3.3.2.5 for an interpretation of the contents of this
register.

<T7:0> captures the state of the MSER<7:0> at the time of the machine
check. See Section 3.3.2.6 for an interpretation of the contents of this
register.

Internal State Information 2

Internal state information 2 is divided into five fields. The contents of
these fields is described as follows:

PC

<31:24> captures the internal state of the CVAX CPU chip at the time
of the machine check. This field contains SC register <7:0>.

<23:16> captures the internal state of the CVAX CPU chip at the time
of the machine check. The two most significant bits are equal to 11
(binary) and the six least significant bits contain state flags <5:0>.

<15> captures the state of the VAX can't restart flag at the time of the
machine check.

<14:8> captures the internal state of the CVAX CPU chip at the time
of the machine check. The three most significant bits are equal to
111 (binary) and the four least significant bits contain ALU condition
codes.

<7:0> captures the offset between the virtual address of the start of
the instruction being executed at the time of the machine check (saved
PC) and the virtual address of the location being accessed (PC) at the
time of the machine check.

PC<31:0> captures the virtual address of the start of the instruction being
executed at the time of the machine check.

PSL

PSL<31:0> captures the contents of the PSL at the time of the machine
check.

3-24 Architecture

3.1.5.4 System Control Block

The system control block (SCB) consists of two pages in main memory that
contain the vectors by which interrupts and exceptions are dispatched to
the appropriate service routines. The SCB is pointed to by IPR 17, the
system control block base register (SCBB), represented in Figure 1-5.
The system control block format is presented in Table 1-6.

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

MBZ PHYSICAL LONGWORD ADDRESS OF PCB MBZ :SCBB

MR.15782
MA.1061.87

Figure 3-5 System Control Block Base Register

Table 3-6 System Control Block Format
SCB Interrupt/Exception

Offset Name Type Parameter Notes
00 Unused IRQ passive release on
other VAXes
04 Machine check Abort 4 Parameters depend on
error type
08 Kernel stack not Abort 0 Must be serviced on
valid interrupt stack
ocC Power fail Interrupt 0 IPL is raised to 1E
10 Reserved/privileged Fault 0
instruction
14 Customer reserved Fault 0 XFC instruction
instruction
18 Reserved operand Fault/ (] Not always
abort recoverable
1C Reserved Fault 0
addressing mode
20 Access control Fault 2 Parameters are
violation virtual address, status
code
24 Translation not Fault 2 Parameters are
valid virtual address, status
code

28 Trace pending (TP) Fault 0

Architecture 3-25
Table 3—6 (Cont.) System Control Block Format
SCB Interrupt/Exception
Offset Name Type Parameter Notes
2C Breakpoint Fault 0
instruction
30 Unused Compatibility mode in
other VAXes
34 Arithmetic Trap/fault 1 Parameter is type
code
38:3C Unused
40 CHMK Trap 1 Parameter is sign-
extended operand
word
44 CHME Trap 1 Parameter is sign-
extended operand
word
48 CHMS Trap 1 Parameter is sign-
extended operand
word
4C CHMU Trap 1 Parameter is sign-
extended operand
word
50 Unused
54 Corrected read data Interrupt O IPLis1A(CRD L)
58:5C Unused
60 Memory error Interrupt 0 IPL is 1D (MEMERR
L)
64:6C Unused
78 Programmable Interrupt O IPL is 14
timer 0
7C Programmable Interrupt O IPL is 14
timer 1
80 Unused
84 Software level 1 Interrupt O
88 Software level 2 Interrupt O Ordinarily used for
AST delivery
8C Software level 3 Interrupt 0 Ordinarily used for
process scheduling
90:BC Software levels 4-15 Interrupt 0O
Co Interval timer Interrupt O IPL is 16 INTTIM L)

3-26 Architecture

Table 3-6 (Cont.) System Control Block Format

SCB Interrupt/Exception

Offset Name Type Parameter Notes

C4 Unused

Cs8 Emulation start Fault 10 Same mode exception,
FPD=0; parameters
are opcode, PC,
specifiers

CcC Emulation continue Fault 0 Same mode
exception, FPD=1:
no parameters

D0:DC Unused

E0:EC Reserved for

customer or CSS
use

FO:F4 Unused Console storage
registers on 11/750
and 11/730

F8 Console receiver Interrupt 0 IPL is 14

FC Console transmitter Interrupt 0 IPL is 14

100:1FC Adapter vectors Interrupt O Not implemented by
the KA650

200:3FC Device vectors Interrupt 0 Correspond to Q22-
bus vectors 000:1FC;
KA650 appends the
assertion of bit <9,0>

400:FFC Unused Interrupt 0

3.1.5.5 Hardware Detected Errors
The KA650 is capable of detecting thirteen types of error conditions
during program execution.

¢ CDAL bus parity errors indicated by MSER<6> (on a read) or
MEMCSR16<7> (on a write) being set. (This error cannot be
distinguished if detected during a read reference.)

* First-level cache tag parity errors indicated by MSER<0> being set.
* First-level cache data parity errors indicated by MSER<1> being set.

¢ Second-level cache tag parity errors indicated by CACR<5> being set.

Architecture 3-27

* Second-level cache data parity errors indicated by MSER<6> being
set. (This error cannot be distinguished if detected during a read
reference.)

* Q22-bus NXM errors indicated by DSER<7> being set.

®* Q22-bus no sack errors (no indicator).

® Q22-bus no grant errors indicated by DSER<2> being set.

* Q22-bus device parity errors indicated by DSER<5> being set.

¢ CDAL bus timeout errors indicated by DSER<4> (only on DMA) being
set.

¢ Main memory NXM errors indicated by DSER<0> (only on DMA)
being set.

* Main memory correctable errors indicated by MEMCSR16<29> being
set.

¢ Main memory uncorrectable errors indicated by MEMCSR16<31> and
DSER<4> (only on DMA) being set.

These errors cause either a machine check exception, a memory error
interrupt, or a corrected read data interrupt, depending on the severity of
the error and the reference type that caused the error.

3.1.5.6 Hardware Halt Procedure

The hardware halt procedure is the mechanism by which the hardware
assists the firmware in emulating a processor halt. The hardware halt
procedure saves the current value of the PC in IPR 42 (SAVPC), and

the current value of the PSL, MAPEN«<0>, and a halt code in IPR 43
(SAVPSL). The current stack pointer is saved in the appropriate internal
register. The PSL is set to 041F 0000 ;¢ (IPL=1F, supervisor mode, using
the interrupt stack) and the current stack pointer is loaded from the
interrupt stack pointer. Control is then passed to the resident firmware
at physical address 2004 0000 15 with the state of the CPU as follows:

Register New Contents

SAVPC Saved PC

SAVPSL<31:16, 7:0> Saved PSL<31:16,7:0>

SAVPSL<15> Saved MAPEN<O>

SAVPSL<14> Valid PSL flag (unknown for halt code of 3)

SAVPSL<13:8> Saved restart code

3-28 Architecture

Register New Contents

SP Current interrupt stack
PSL 041F 0000 ¢

PC 2004 0000 16

MAPEN 0

ICCS 0 (for a halt code of 3)
MSER 0 (for a halt code of 3)
CADR 0 (for a halt code of 3, first-level cache is also flushed)
SISR 0 (for a halt code of 3)
ASTLVL 0 (for a halt code of 3)
All else Undefined

The firmware uses the halt code in combination with any hardware event
indicators to dispatch the execution or interrupt that caused the halt

to the appropriate firmware routine (either console emulation, power-
up, reboot, or restart). Table 3—7 and Table 3-8 list the interrupts and
exceptions that can cause halts along with their corresponding halt codes

and event indicators.

Table 3-7 Unmaskable Interrupts that can Cause a Halt

Halt

Code Interrupt Condition

Event Indicators

2 External Halt (CVAX HALTIN pin

asserted)
BHALT asserted on the Q22-bus.
BDCOK negated and asserted on the

DSER<15>
DSER<14>

Q22-bus while BPOK stays asserted
(Q22-bus REBOOT
/RESTART) and SCR<7> is set.

BREAK generated by the console.

RXDB<11>

3 Hardware Reset (CVAX RESET pin

negated)

BDCOK and BPOK negated then
asserted on the Q22-bus (power-up)
BDCOK negated and asserted on the
Q22-bus while BPOK stays asserted
(Q22-bus REBOOT

/RESTART) and SCR<7> is clear.

Architecture 3—29

Table 3-8 Exceptions that can Cause a Halt

Halt
Code Exception Condition
6 Halt instruction executed in kernel mode.

Exceptions While Servicing an Interrupt or Exception

4 Interrupt stack not valid during exception.
5 Machine check during normal exception.

7 SCB vector bits<1:0> = 11.

8 SCB vector bits<1:0> = 10.

A CHMzx executed while on interrupt stack.
B CHMzx executed to the interrupt stack.

10 ACV or TNV during machine check exception.

11 ACV or TNV during kernel stack not valid exception.
12 Machine check during machine check exception.

13 Machine check during kernel stack not valid exception.
19 PSL.<26:24> = 101 during interrupt or exception.

1A PSL<26:24> = 110 during interrupt or exception.

1B PSL<26:24> = 111 during interrupt or exception.

1D PSL<26:24> = 101 during REIL

1E PSL<26:24> = 110 during REI.

1F PSL<26:24> = 111 during REL

3.1.6 System ldentification

The system identification register (SID), IPR 62, is a read-only register
implemented, as specified in the VAX Architecture Reference Manual, in
the CVAX chip. This 32-bit, read-only register is used to identify the
processor type and its microcode revision level (Figure 3—6).

31 2423 8 7 0

l TYPE | ‘RESERVED | MICROCODE REV. I

MA.1103-87

Figure 3-6 System identification Register

k 3-30 Architecture

Data Bit Definition

<31:24> Processor type (TYPE). This field always reads as 10 y,
indicating that the processor is implemented using the
CVAX chip.

<23:8> Reserved for future use.

<7:0> Microcode revision (MICROCODE REV.). This field reflects

the microcode revision level of the CVAX chip.

In order to distinguish between different CPU implementations that

use the same CPU chip, the KA650, as must all VAX processors that
use the CVAX chip, implements a MicroVAX system type register (SYS_
TYPE) at physical address 2004 0004 15. This 32-bit read-only register is
implemented in the KA650 ROM. The format of this register is shown in
Figure 3-7.

3t 2423 1615 8 7 0

L SYS_TYPE I REV LEVEL J SYS-SUB-TYPE (RESERVED I

MA.1102-87

Figure 3-7 System Type Register

Data Bit Definition

<31:24> System type code (SYS_TYPE). This field reads as 01 ;5 for
all single-processor Q22-bus based systems.

<23:16> Revision level (REV LEVEL). This field reflects the revision
level of the KA650 firmware.

<15:8> System subtype code (SYS_SUB_TYPE). This field reads as

01 15 for the KA650.

<7:0> Reserved for future use.

Architecture 3-31

3.1.7 CPU References ,

All references by the CPU can be classified into one of three groups:
* Request instruction-stream read references

* Demand data-stream read references

* Write references

3.1.7.1 Instruction-Stream Read References

The CPU has an instruction prefetcher with a 12-byte (3 longword)
instruction prefetch queue (IPQ) for prefetching program instructions
from either cache or main memory. Whenever there is an empty
longword in the IPQ, and the prefetcher is not halted due to an error, the
instruction prefetcher generates an aligned longword, request instruction-
stream (I-stream) read reference.

3.1.7.2 Data-Stream Read References

Whenever data is immediately needed by the CPU to continue processing,
a demand data-stream (D-stream) read reference is generated. More
specifically, demand D-stream references are generated on operand, page
table entry (PTE), system control block (SCB), and process control block
(PCB) references.

When interlocked instructions, such as branch on bit set and set
interlock (BBSSI) are executed, a demand D-stream read-lock reference
is generated. Since the CPU does not impose any restrictions on data
alignment (other than the aligned operands of the ADAWI and interlocked
queue instructions) and since memory can only be accessed one aligned
longword at a time, all data read references are translated into an
appropriate combination of masked and unmasked, aligned longword
read references.

If the required data is a byte, a word within a longword, or an aligned
longword, then a single, aligned longword, demand D-stream read
reference is generated. If the required data is a word that crosses a
longword boundary, or an unaligned longword, then two successive aligned
longword demand D-stream read references are generated. Data larger
than a longword is divided into a number of successive aligned longword
demand D-stream reads, with no optimization.

3-32 Architecture

3.1.7.3 Write References

‘Whenever data is stored or moved, a write reference is generated. Since
the CPU does not impose any restrictions on data alignment (other than
the aligned operands of the ADAWI and interlocked queue instructions)
and since memory can only be accessed one aligned longword at a time,
all data write references are translated into an appropriate combination
of masked and unmasked aligned longword write references.

If the required data is a byte, a word within a longword, or an aligned
longword, then a single, aligned longword, write reference is generated.
If the required data is a word that crosses a longword boundary, or

an unaligned longword, then two successive aligned longword write
references are generated. Data larger than a longword is divided into a
number of successive aligned longword writes.

3.2 Floating-Point Accelerator

The floating-point accelerator is implemented through a single VLSI chip
called the CFPA.

3.2.1 Floating-Point Accelerator Instructions

The floating-point accelerator processes F_floating, D_floating, and G_
floating format instructions and accelerates the execution of MULL,
DIVL, and EMUL integer instructions.

3.2.2 Floating-Point Accelerator Data Types

The KA650 floating-point accelerator supports byte, word, longword,
quadword, F_floating, D_floating, and G_floating data types. The H_
floating data type is not supported, but may be implemented by macrocode
emulation.

Architecture 3-33

3.3 Cache Memory

To maximize CPU performance, the KA650 incorporates a two-level cache
design. The first-level cache is implemented within the CVAX chip. The
second-level cache is implemented using 16K by 4-bit static RAMs.

3.3.1 Cacheable References

Any reference that can be stored by the first-level cache is called a
cacheable reference. The first-level cache stores CPU read references to
the VAX memory space (bit <29> of the physical address equals 0) only.
It does not store references to the VAX 1I/0 space, or DMA references by
the Q22-bus interface. The type(s) of CPU references that can be stored
(either request instruction stream (I-stream) read references, or demand
data stream (D-stream) read references other than read-lock references) is
determined by the state of cache disable register (CADR) bits <5:4>. The
normal operating mode is for both I-stream and D-stream references to be
stored.

Whenever the CPU generates a noncacheable reference, a single longword
reference of the same type is generated on the CDAL bus.

Whenever the CPU generates a cacheable reference stored in the first-
level cache, no reference is generated on the CDAL bus.

Whenever the CPU generates a cacheable reference not stored in the
first-level cache, a quadword transfer is generated on the CDAL bus. If
the CPU reference is a request I-stream read, then the quadword transfer
consists of two indivisible longword transfers, the first being a request
I-stream read (prefetch), and the second being a request I-stream read
(fill). If the CPU reference is a demand D-stream read, then the quadword
transfer consists of two indivisible longword transfers, the first being a

demand D-stream read, and the second being a request D-stream read
(A).

The second-level cache only stores references on the CDAL bus that are
part of a quadword transfer. Since quadword transfers on the CDAL bus
can only be generated on cacheable references, the second-level cache is
automatically configured to store the same type(s) of references as the
first-level cache.

3-34 Architecture

3.3.2 First-Level Cache

The KA650 includes a 1 Kbyte, two-way associative, write through first-
level cache with a 90 ns cycle time. CPU read references access one
longword at a time, while CPU writes can access one byte at a time.

A single parity bit is generated, stored, and checked for each byte of
data and each tag. The first-level cache can be enabled/disabled by
setting/clearing the appropriate bits in the CADR. The first-level cache is
flushed by any write to the CADR, as long as it is not in diagnostic mode.

3.3.2.1 First-Level Cache Organization

The first-level cache is divided into two independent storage arrays called
set 1 and set 2. Each set contains a 64 row by 22-bit tag array and a

64 row by 72-bit data array. The two sets are organized as shown in
Figure 3-8.

Set 1 Set 2
64 by 22 64 by 72-BIT 64 by 22 64 by 72-BIT
64 ROWS BIT TAG DATA ARRAY BIT TAG DATA ARRAY
ARRAY ARRAY
- CACHE ENTRY
93 27N 0 93 2N 0

MA-1103-87

Figure 3-8 First-Level Cache Organization

Architecture 3-35

A row within a set corresponds to a cache entry, so there are 64 entries
in each set and a total of 128 entries in the entire cache. Each entry
contains a 22-bit tag block and a 72-bit (eight-byte) data block. A cache
entry is organized as shown in Figure 3-9.

93 72 7 0

I TAG BLOCK ‘ DATA BLOCK]

MA-1104-87

Figure 3-8 First-Level Cache Entry

A tag block consists of a parity bit, a valid bit, and a 20-bit tag. A tag
block is organized as shown in Figure 3—10.

19 0
it |
PARITY BIT l

VALID BIT

MA-1105.87

Figure 3—10 First-Level Cache Tag Block

A data block consists of eight bytes of data, each with an associated parity
bit. The total data capacity of the cache is 128 eight-byte blocks, or 1024
bytes. A data block is organized as shown in Figure 3—-11.

~¢—— DATABITS

63 56 S5 48 47 40 39 32 24 23 16 15 7 Q
[pg 37;{BGHBSHMHM||Bzrp[m;p[= |
0

<§&—— PARITY BITS

MA-1110-87

Figure 3-11 First-Level Cache Data Block

3-36 Architecture

3.3.2.2 First-Level Cache Address Translation

Whenever the CPU requires an instruction or data, the contents of the
first-level cache is checked to determine if the referenced location is stored
there. The cache contents is checked by translating the physical address
as follows:

* On noncacheable references, the reference is never stored in the cache,
so a first-level cache miss occurs and a single longword reference is
generated on the CDAL bus.

* On cacheable references, the physical address must be translated
to determine if the contents of the referenced location is resident in
the cache. The cache index field, bits <8:3> of the physical address,
is used to select one of the 64 rows of the cache, with each row
containing a single entry from each set. The cache tag field, bits
<28:9> of the physical address, is then compared to the tag block of
the entry from both sets in the selected row.

If a match occurs with the tag block of one of the set entries, and the
valid bit within the entry is set, the contents of the referenced location

is contained in the cache and a cache hit occurs. On a cache hit, the set
match signals generated by the compare operation select the data block
from the appropriate set. The cache displacement field, bits <2:0> of the
physical address, is used to select the byte(s) within the block. No CDAL
bus transfers are initiated on CPU references that hit the first-level cache.

If no match occurs, then the contents of the referenced location is not
contained in the cache and a cache miss occurs. In this case, the

data must be obtained from either the second-level cache, or the main
memory controller, so a quadword transfer is initiated on the CDAL bus
(Figure 3-12).

Architecture 3—-37

2928 98 32 0
L [CACHE TAG []
L-uo SPACE CACHE INDEX——3
CACHE DISPLACEMENT —»
VALID BIT VALID BIT
¥ SET 1 ¥ SET 2
20 |eaBIT 20 [eaBIT
BIT | DATA BLOCK BIT |DATA BLOCK
TAG TAG
SET | 1MATCH? SET [2maTCH?
4 4

/—

DATA
MA-1106-87

Figure 3-12 First-Level Cache Address Translation

3.3.2.3 First-Level Cache Data Block Allocation

Cacheable references that miss the first-level cache, cause a quadword
read to be initiated on the CDAL bus. When the requested quadword is
supplied by either the second-level cache or the main memory controller,
the requested longword is passed on to the CPU, and a data block is
allocated in the cache to store the entire quadword.

3-38 Architecture

Due to the fact that the cache is two-way associative, there are only two
data blocks (one in each set) that can be allocated to a given quadword.
These two data blocks are determined by the cache index field of the
address of the quadword, which selects a unique row within the cache.
Selection of a data block within the row (for example, set selection) for
storing the new entry is random.

Since the KA650 supports 64 Mbytes (8 M quadwords) of physical
memory, up to 128K quadwords share each row (two data blocks) of the
cache. Contiguous programs larger than 512 bytes or any noncontiguous
programs separated by 512 bytes have a 50 percent chance of overwriting
themselves when cache data blocks are allocated for the first time for
data separated by 512 bytes (one page). After six allocations, there is a 97
percent probability both sets in a row will be filled.

3.3.2.4 First-Level Cache Behavior 6n Writes

On CPU generated write references, the first-level cache is write through.
All CPU write references that hit the first-level cache cause the contents
of the referenced location in main memory to be updated as well as the
copy in the cache.

On DMA write references that hit the first-level cache, the cache entry
containing the copy of the referenced location is invalidated. If the first-
level cache is configured to store only I-stream references, then the entire
first-level cache is also flushed whenever an REI instruction is executed.
(The VAX architecture requires that an REI instruction be executed before
executing instructions out of a page of memory that has been updated.)

3.3.2.5 Cache Disable Register

The cache disable register (CADR), IPR 37, controls the first-level cache,
and is unique to CPU designs that use the CVAX chip (Figure 3—13).

31 876543210

L ° [

s |
S1E
ISE
DSE

ww
DIA

MA.1107-87

Figure 3-13 Cache Disable Register

Architecture 3—-39

Data Bit Definition

<31:8> Unused. Always read as zeros. Writes have no effect.

<7:6> These bits are used to selectively enable or disable each set
within the cache.

<7> S2E. Read/write. When set, set 2 of the cache is enabled.

When cleared, set 2 of the cache is disabled. Cleared on
power-up and by the negation of DCOK when the processor
is halted.

<6> S1E. Read/write. When set, set 1 of the cache is enabled.
When cleared, set 1 of the cache is disabled. Cleared on
power-up and by the negation of DCOK when the processor
is halted.

<5:4> These bits are used to selectively enable or disable stonng
I-stream and D-stream references in the cache.

<5> ISE. Read/write. When set, I-stream, memory space
references are stored in both the first and second-level
caches, if they are enabled. When cleared, I-stream memory
references are not stored in either cache. Cleared on power-
up and by the negation of DCOK when the processor is
halted.

<4> DSE. Read/write. When set, D-stream, memory space
references are stored in both the first and second-level
caches, if they are enabled. When cleared, D-stream
memory references are not stored in either cache. Cleared
on power-up and by the negation of DCOK when the
processor is halted.

NOTE

The first-level cache can be disabled by either disabling both set 1
and set 2 (clearing CADR<7:6>), or by not storing either I-stream
or D-stream references (clearing CADR<5:4>).

For maximum performance, the cache should be configured to store both I
and D-stream references. I-stream only mode suffers from a degradation
in performance from what would normally be expected relative to I and
D-stream mode and D-stream only mode, due to the fact that invalidation
of cache entries due to writes to memory by a DMA device are handled
less efficiently.

340 Architecture

In I-stream only mode, the entire first-level cache is flushed whenever an
REI instruction is executed. The VAX Architecture Reference Manual
states that an REI instruction must be executed before executing
instructions out of a page of memory that has been updated, whereas

in the other two modes of operation, cache entries are invalidated on an
individual basis, only if a DMA write operation results in a cache Ait.

Data Bit Definition
<3:2> Unused. Always read as 1s.
<1l> Write wrong parity (WWDP). Read/write. When set, incorrect

parity is stored in the first-level cache whenever it is
written. When cleared, correct parity is stored in the cache
whenever the cache is written. Cleared on power-up and by
the negation of DCOK when the processor is halted.

<0> Diagnostic mode (DIA). Read/write. When cleared, the cache
is in normal operating mode and writes to the CADR cause
the first-level cache to be flushed, (all valid bits set to the
invalid state) and the first-level cache is configured for
write-through operation. When set, the first-level cache is
in diagnostic mode and writes to the CADR will not cause
the first-level cache to be flushed.

CPU write references with a longword destination (for example, MOVL)
write the data into main memory (if it exists) as well as invalidate

the corresponding cache entry irrespective of whether or not a cache hit
occurred. CPU write references with a quadword destination (for example,
MOVQ) write the data into main memory (if it exists) as well as cause the
second longword of the quadword to be written into the longword of the
cache data array that corresponds to the address of the first longword of
the destination, irrespective of whether or not a cache hit occurred.

The data in the longword of the cache data array that corresponds to the
address of the second longword of the destination remains unaltered. In
addition, errors generated during write references, that would normally
cause a machine check, are ignored (they do not cause a machine check
trap to be generated, or prevent data from being stored in the cache).

Diagnostic mode is intended to allow the first-level cache tag store to
be fully tested without requiring 512 Mbytes of main memory. This
mode makes it possible for the tag block in a particular cache entry to
be written with any pattern by executing a MOVQ instruction with bits
<28:9> of the destination address equal to the desired pattern.

Architecture 3—41

Two MOVQ instructions, one with a quadword aligned destination address
and one with the next longword aligned destination address, are required
to write to both longwords in the data block of a cache entry. Diagnostic
mode does not affect read references. Cleared on power-up and by the
negation of DCOK when the processor is halted.

NOTE

At least one read reference must occur between all write
references made in diagnostic mode. Diagnostic mode should
only be selected when one and only one of the two sets are
enabled. Operation of this mode with both sets enabled or both
sets disabled yields unpredictable results.

3.3.2.6 Memory System Error Register

The memory system error register (MSER), IPR 39, records the occurrence
of first-level cache hits, as well as parity errors on the CDAL bus and in
the first and second-level caches. This register is unique to CPU designs
that use the CVAX chip. MSER<6:4,1:0> are peculiar in the sense that
they remain set until explicitly cleared. Each bit is set on the first
occurrence of the error it logs, and remains set for subsequent occurrences
of that error. The MSER is explicitly cleared through the MTPR MSER
instruction irrespective of the write data (Figure 3—14).

El 876543210

0 [felef []
]

A
—mnd
MCD
McC
AT

TAG

o
-

(=}

MA-1108-87

Figure 3-14 Memory System Error Register

342 Architecture

Data Bit

Definition

<31:8>

<7>

<6>

<5>

<4>

<3:2>

<1>

<0>

Unused. Always read as zero. Writes have no effect.

Hit/miss (HM). Read only. Writes have no effect. Cleared
on all cacheable references that hit the first-level cache. Set
on all cacheable references that miss the first-level cache.
Cleared on power-up and by the negation of DCOK when
the processor halts.

DAL parity error (DAL). Read/write to clear. Set whenever
a CDAL bus or second-level cache data store parity error
is detected. Cleared on power-up and by the negation of
DCOXK when the processor is halted.

Machine check (MCD). DAL parity error. Read/write to
clear. Set whenever a machine check is caused by a CDAL
bus or second-level cache data parity error. These errors
only generate machine checks on demand D-stream read

references. Cleared on power-up and by the negation of
DCOK when the processor halts.

Machine check (MCC). First-level cache parity error.
Read/write to clear. Set whenever a machine check is
caused by a first-level cache parity error in the tag or

data store. These errors only generate machine checks on
demand D-stream read references. Cleared on power-up and
by the negation of DCOK when the processor halts.

Unused. Always read as zero. Writes have no effect.

Data parity error (DAT). Read/write to clear. Set when a
parity error is detected in the data store of the first-level
cache. Cleared on power-up and by the negation of DCOK
when the processor halts.

Tag parity error (TAG). Read/write to clear. Set when a
parity error is detected in the tag store of the first-level
cache. Cleared on power-up and by the negation of DCOK
when the processor halts.

Architecture 3-43

3.3.2.7 First-Level Cache Error Detection

Both the tag and data arrays in the first-level cache are protected by
parity. Each 8-bit byte of data and the 20-bit tag is stored with an
associated parity bit. The valid bit in the tag is not covered by parity.
0Odd data bytes are stored with odd parity and even data bytes are stored
with even parity. The tag is stored with odd parity.

The stored parity is valid only when the valid bit associated with the
first-level cache entry is set. Tag and data parity (on the entire longword)
are checked on read references that hit the first-level cache, while only
tag parity is checked on CPU and DMA write references that hit the
first-level cache.

The action taken following the detection of a first-level cache parity error
depends on the reference type:

¢ During a demand D-stream read reference, the entire first-level cache
is flushed, the CADR is cleared (which disables the first level cache
and causes the second-level cache to ignore all read operations). The
cause of the error is logged in MSER<4,3:0> and a machine check
abort is initiated.

* During a request I-stream read reference, the entire first-level cache
is flushed (unless CADR<0> is set), the cause of the error is logged
in MSER<1:0>, the prefetch is halted, but no machine check abort
occurs, and bcth caches remain enabled.

¢ During a masked or unmasked write reference, the entire first-level
cache is flushed (unless CADR<0> is set), the cause of the error is
logged in MSER<0> (only tag parity is checked on CPU writes that
hit the first-level cache), there is no effect on CPU execution, and both
caches remain enabled.

¢ During a DMA write reference the cause of the error is logged in
MSER<0> (only tag parity is checked on DMA writes that hit the
first-level cache), there is no effect on CPU execution, both caches
remain enabled, and no invalidate operation occurs.

3.3.3 Second-Level Cache

The KA650 also includes a 64 Kbyte, direct mapped, write through,
second-level cache with a 180 ns cycle time for longword transfers and
270 ns cycle time for quadword transfers. CPU read references access one
longword at a time. Cacheable references that miss the first-level cache
can access up to one quadword at a time, while CPU writes can access a
single byte at a time.

3-44 Architecture

A single parity bit is genérated, stored and checked for each tag. The
cache does not generate or check parity on each data byte. The parity bits
stored with each data byte are taken from the CDAL parity lines when a
data block is written or allocated.

On second-level cache hits, these parity bits are placed back on the CDAL
parity lines, so that parity checking on the data bytes is performed by the
CVAX chip. This makes second-level cache data parity errors appear as
CDAL bus parity errors.

The second-level cache can be enabled/disabled by setting/clearing the
appropriate bit in the CACR. The second-level cache can be flushed by
writing any value to each entry in the cache diagnostic space, as long as
it is not in diagnostic mode.

3.3.3.1 Second-Level Cache Organization

The second-level cache, being direct mapped, consists of a single storage
array called set 1. This array contains an 8K row by 12-bit tag array and
an 8K row by 72-bit data array (Figure 3-15).

SET1

8K by 8K by 72- BIT
12.8IT |DATA ARRAY
TAG
ARRAY
8 KBYTE {
ROWS

&—— CACHE ENTRY

\

83 72 N

MA-1117.87

Figure 3-15 Second-Level Cache Organization

Architecture 3-45

A row within the set corresponds to a single cache entry, so there are 8K
entries in the entire cache. Each entry contains a 12-bit tag block and

a 72-bit (eight-byte) data block. A cache entry is organized as shown in
Figure 3-16.

83 7271 °

l TAG BLOCK l DATA BLOCK J

MA-1114.87

Figure 3-16 Second-Level Cache Entry

A tag block consists of a parity bit, a valid bit, and a 10-bit tag. A tag
block is organized as shown in Figure 3-17.

T = |
—

VALID BIT

MA-111387

Figure 3-17 Second-Level Cache Tag Block

A data block consists of eight bytes of data, each with an associated parity
bit. The total data capacity of the cache is 8K eight-byte blocks, or 64
Kbytes. A data block is organized as shown in Figure 3-18.

<&— DATABITS

63 56 55 48 47 40 39 32 24 23 16 15 8

Mo == == o =]

7

~§«—— PARITY BITS

MA-1110-87

Figure 3—-18 Second-Level Cache Data Block

346 Architecture

3.3.3.2 Second-Level Cache Address Translation

Whenever a CPU reference that can be stored in the first-level cache
causes a miss of the first-level cache, a quadword transfer is initiated on
the CDAL bus and the second-level cache is checked to determine if the
contents of the location(s) being addressed is stored there. The cache is
checked by translating the address as follows:

* On noncacheable references, the reference is never stored in the cache,
so a second-level cache miss occurs, the main memory cycle is allowed
to complete and the data is provided by the main memory controller.

® On cacheable references, the physical address must be translated
to determine if the contents of the referenced location(s) is resident
in the cache. In this case, the cache index field, bits <15:3> of the
physical address, is used to select one of the 8K entries (rows) in the
set. The cache tag field, bits <28:16> of the physical address, is then
compared to the tag block of the selected entry. Bits <28:26> of this
field must be zero since the second-level cache is designed to support
a maximum of 64 Mbytes of main memory.

If a match occurs with the tag block of the entry, and the valid bit within
the entry is set, then the contents of the location is contained in the cache
and a second-level cache hit occurs. The cache displacement field, bits
<2:0> of the physical address, is used to select the longword within the
block. Bits <1:0> of this field are ignored since the byte mask signals
are used to select the desired byte(s) within a longword. Main memory
cycles are initiated on all CDAL bus cycles, but they are aborted before
completion on second-level cache hits.

If there is no match, then the contents of the location is not contained
in the second-level cache, a cache miss occurs, the main memory cycle
is allowed to complete, and the data is provided by the main memory
controller (Figure 3—19).

Architecture 347

2928 26 1615 3 2 0

[I | CACHE TAG I]
1/0 SPACE
MBZ . CACHE INDE X —
CACHE DISPLACEMENT —3
VALID BIT
y SETH

10- 64-BIT
BIT |DATA BLOCK
TAG

SET 1 | MATCH ?

DATA

MA-1115.87

Figure 3-19 Second-Level Cache Address Translation

3.3.3.3 Second-Level Cache Data Block Allocation

On cacheable references that miss the first-level cache, a quadword read
is initiated on the CDAL bus. If the requested quadword cannot be found
in the second-level cache, it is provided by the main memory controller.
Both caches allocate a data block for storing the entire quadword, and the
requested longword is passed on to the CPU.

Because the second-level cache is direct mapped, there is one and only one
data block in the cache that can be allocated to a given quadword. This
data block is determined by the cache index field of the physical address
of the quadword, which selects a unique row (data block) within the cache.

348 Architecture

Since the KA650 supports 64 Mbytes (8 M quadwords) of physical
memory, up to 1K quadwords share each data block (row) of the cache.
Contiguous programs larger than 64 Kbytes, or noncontiguous programs
separated by 64 Kbytes overwrite themselves in the cache when cache
data blocks are allocated for memory references separated by 64 Kbytes.

3.3.3.4 Second-Level Cache Behavior on Writes

On CPU-generated write references, the second-level cache is write
through. All CPU write references that hit the second-level cache cause
the contents of the referenced location in main memory to be updated as
well as the copy in the cache.

On DMA write references that hit the cache, the cache entry containing
the copy of the referenced location is invalidated.

3.3.3.5 Cache Control Register

The cache control register (CACR), address 2008 4000 ¢4, controls the
second-level cache and is unique to the KA650. Only the low byte of this
register should be written (Figure 3-20).

3 24 23 876543210
[UNDEFINED l CACHE DIAGNOSTIC FIELD | I | l] 'TW

MA-=X1442-87

Figure 3-20 Cache Control Register

Architecture 3—49

Data Bit

Definition

<31:24>
<23:8>
<7:6>

<5>

<4>

<3:2>

Undefined. Undefined on reads. Writes have no effect.
Cache diagnostic field. Read only.

CVAX cycle speed (CSP). Read only. Writes have no effect.
These bits are used to indicate the speed of the CVAX chip
being used. They are encoded as follows:

<7:6> Speed

00 Reserved for future use
01 Reserved for future use
10 90 ns

11 100 ns

Cache parity error (CPE). Read/write to clear. This bit is set
whenever a cache tag parity error is detected. Cleared by
writing a 1, on power-up and the negation of DCOK when
the processor is halted.

Cache enable (CEN). Read/write. When cleared, all
references miss the cache except those to the cache
diagnostic space and the allocation of cache blocks is
prevented. When set, the configuration of the first-level
cache determines which types of references are stored.
CACR<0> and CACR<5> must be cleared before this bit
can be set. Cleared on power-up and the negation of DCOK
when the processor is halted.

NOTE

Whenever the second-level cache is disabled, it should
be flushed before re-enabling to ensure that data that
may have become stale, while the cache was disabled,
is not utilized.

Unused. Always read as zero. Must be written as zero.

3-50 Architecture

Data Bit

Definition

<1>

<0>

Write wrong parity (WWP). Read/write. When set, the tag
parity bits stored in the tag block are incorrect (inverted),
and the data parity bits stored in the data block are forced
to all 1s whenever the cache data block is written. When
cleared, correct parity is stored in both the tag block and the
data block whenever the cache is written. Tag parity errors
force a second-level cache miss, so the cache has to be read
through the tag diagnostic space to check that parity was
incorrectly written. Cleared on power-up and the negation
of DCOK when the processor is halted.

Diagnostic mode DIA. Read/write. When set, the second-
level cache is disabled, and writes to the cache diagnostic
space set the valid bit for the entry that is written as well
as load the tag field of the physical address into the tag
block of the corresponding second-level cache entry. This
mode allows the second-level cache tag block to be fully
tested. When cleared, CACR<4> determines if the cache

is enabled, and writes to the cache diagnostic space clear
the valid bit for the entry that is written. This mode allows
the second-level cache to be flushed by writing any value to
each entry through the cache diagnostic space. Cleared on
power-up and the negation of DCOK when the processor is
halted.

3.3.3.6 Second-Level Cache Error Detection

Both the tag and data arrays in the second-level cache are protected by
parity. Each 8-bit byte of cache data and the 10-bit tag is stored with an
associated parity bit. Odd data bytes are stored with odd parity and even
data bytes are stored with even parity. The tag is stored with odd parity.
The stored parity is always valid regardless of the state of the valid bit.

Architecture 3-51

Tag parity is checked by the second-level cache logic on CPU read, CPU
write and DMA write references. Tag parity is generated by the second-
level cache logic during the allocation of a cache block.

Data parity is checked on a byte basis by the CVAX chip for CPU read
references that hit the cache. Data parity is taken directly from the
CDAL bus parity lines on CPU write operations that hit the cache and
during the allocation of a cache block.

Upon detecting second-level cache tag parity errors the entire second-level
cache is disabled (CACR<4> is cleared), CACR<5> (second-level cache
parity error) is set, and an interrupt at IPL 1A through vector 54 14 is
generated.

The action taken following the detection of a second-level cache data
parity error is identical to that for CDAL bus parity errors and depends
on the reference type:

¢ During a demand D-stream reference, the first-level cache entry is
invalidated, the cause of the error is logged in MSER<6:5> and a
machine check abort is initiated and the bad data in the second-level
cache remains unaltered.

¢ During a request I-stream reference (prefetch), the row containing
the first-level cache entry is invalidated, the prefetch operation is
aborted, the cause of the error is logged in MSER<6>, but no machine
check is generated and the bad data in the second-level cache remains
unaltered.

® During a request D-stream or I-stream reference (fill), the first-
level cache entry is invalidated, the first-level cache fill operation is
aborted, the cause of the error is logged in MSER<6>, but no machine
check is generated and the bad data in the second-level cache remains
unaltered.

3.3.3.7 Second-Level Cache as Fast Memory

The second-level cache can be accessed as part of main memory for
diagnostic purposes as well as for fast execution of bootstrap or self-
test code. One thousand and twenty four copies of the second-level cache
data array appear starting at the first address in the upper half of VAX
memory space (physical addresses 1000 0000 ;¢ to 13FF FFFF 1¢). This
area is called the cache diagnostic space. Read or write references to this
address range access the second-level cache as high speed (180 ns) RAM.
Read references will not affect the existing tag block for the accessed
cache entry.

3-52 Architecture

When the diagnostic mode bit CACR<0>, is cleared, write references
invalidate any cache entry that is accessed through the cache diagnostic
space. This prevents stale data from accumulating when the cache is used
as high speed RAM.

When the diagnostic mode bit is set, write references set the valid bit in
the tag block and write the tag field of the physical address into the tag of
any entry that is accessed through the cache diagnostic space. This allows
any of the 1024 possible cache tag bit-patterns to be written into the tag
block of any cache entry by writing to one of the 1024 copies of the cache
entry.

Data parity errors that occur while using the second-level cache as high
speed RAM have the same effect as parity errors encountered during the
normal operation of the cache. Tag parity is not checked on access to
cache diagnostic space.

NOTE

To flush the second-level cache, each cache entry must be written
through the cache diagnostic space with the diagnostic mode bit
cleared.

3.4 Main Memory System

The KA650 includes a main memory controller implemented through a
single VLSI chip called the CMCTL. The KA650 main memory controller
communicates with the MS650 memory boards over the MS650 memory
interconnect, which utilizes the CD interconnect for the address and
control lines and a 50-pin, ribbon cable for the data lines. It supports
up to four MS650 memory boards, for a maximum of 64 Mbytes of ECC
memory.

The controller supports synchronous longword read references, and
masked or unmasked synchronous write references generated by the
CPU, as well as synchronous quadword read references generated by
cacheable CPU references that miss the first-level cache. Table 3-9 lists
CPU read reference timing values. Table 3-10 lists CPU write reference
timing values.

Read references are aborted by the second-level cache on second-level
cache hits, and by the Q22-bus interface if they are locked and the KA650
is not the Q22-bus master.

Architecture 3-53

Table 3-9 CPU Read Reference Timing

Data Type Timing (ns)
Longword 450
Quadword 720

First longword 450

Second longword (270
Aborted reference 450
Longword (locked) 990 minimum

Aborted reference 450

Retry (locked) 540

Table 3-10 CPU Write Reference Timing

Data Type Timing (ns)
Longword 180
Longword (masked) 540

The controller also supports asynchronous longword and quadword DMA
read references and masked and unmasked asynchronous longword,
quadword, hexword, and octaword DMA write references from the Q22-
bus interface. Table 3-11 lists Q22-bus interface read reference timing
values. Table 3-12 lists Q22-bus interface write reference timing values.

Table 3-11 Q22-bus Inierface Read Reference Timing

Data Type Timing (ns)
Longword 540 .
Quadword 900
First longword 540
Second longword 360

Longword (locked) 630

3-54 Architecture

Table 3-12 Q22-bus Interface Write Reference Timing

Data Type Timing (ns)
Longword 360
Longword (masked) 630
Quadword 630
First longword 360
Second longword 270
Quadword (masked) 1080
First longword 360
Second longword 720
Hexword 900
First longword 360
Second longword 270
Third longword 270
Hexword (masked) 1350
First longword 360
Second longword 270
Third longword 720
Octaword 1170
First longword 360
Second longword 270
Third longword 270
Fourth longword 270
Octaword (masked) 1620
First longword 360
Second longword 270
Third longword 270

Fourth longword 720

Architecture 3-55

The timing in Table 3-12 assumes no exception conditions are
encountered during the reference. Exception conditions add the following
amount of time if they are encountered during a reference:

Data Type Timing (ns)
Correctable error 0
Uncorrectable error 180 read
Uncorrectable error 90 write
CDAL parity error 90 write
Refresh collision 450

The main memory controller contains 18 registers. Sixteen registers are
used to configure each of the 16 possible banks in main memory. One
register is used to control the operating mode of all memory banks and
one register captures state on main memory errors.

3.4.1 Main Memory Organization

Main memory is logically and physically divided into four boards which
correspond to the four possible MS650 memory expansion modules that
can be attached to a KA650. Each board can contain zero (no memory
module present), or two (MS650-AA present) memory banks. Each bank
contains 1,048,576 (1 M) aligned longwords. Each aligned longword is
divided into four data bytes and is stored with seven ECC check bits,
resulting in a memory array width of 39 bits.

3.4.2 Main Memory Addressing

The KA650 main memory controller is capable of controlling up to 16
banks of RAM, each bank containing 4 Mbytes of storage. Each bank of
main memory has a programmable base address, determined by the state
of bits <25:22> of the main memory configuration register associated with
each bank.

A 4 Mbyte bank is accessed when bit <29> of the physical address is equal
to 0, indicating a VAX memory space read/write reference. Bits <28:26>
of the physical address are equal to zero, indicating a reference within
the range of the main memory controller, and the bank number of the
bank matches bits <25:22> of the physical address. The remainder of the
physical address (bits <21:2>) is used to determine the row and column of
the desired longword within the bank. The byte mask lines are ignored
on read operations, but are used to select the proper byte(s) within a
longword during masked longword write references.

3-56 Architecture

The main memory controller accesses main memory on read/write
references in parallel with the address translation process in the second-
level cache. On CPU read references that hit the second-level cache,
the memory controller reads the longword from main memory, but the
operation is aborted before the data gets placed on the CDAL bus.

3.4.3 Main Memory Behavior on Writes

On unmasked CPU write references, the main memory controller operates
in dump and run mode, terminating the CDAL bus transaction after
latching the data, but before checking CDAL bus parity, calculating the
ECC check bits, and transferring the data to main memory. This allows
main memory to keep up with the second-level cache without impacting
the CPU write performance.

On unmasked DMA write references by the Q22-bus interface: the data
is latched; CDAL bus parity is not checked; the CDAL bus transaction is
terminated; the ECC check bits are calculated; and the data is transferred
to main memory.

On single masked CPU or DMA write references: CDAL bus parity is
checked (for CPU writes only); the referenced longword is read from main
memory; the ECC code checked; the check bits recalculated to account
for the new data byte(s); the CDAL transaction is terminated; and the
longword is rewritten.

On multiple transfer masked DMA writes, each longword write is
acknowledged, then the CDAL transaction is terminated.

3.4.4 Main Memory Error Status Register

The main memory status register MEMCSR16), address 2008 0140 ¢, is
used to capture main memory error data. This register is unique to CPU
designs that use the CMCTL memory controller chip (Figure 3—-21).

31302928 9876 [
| j J L PAGE ADDRESS OF ERROR I 11 SYNDROME]
RDS ERROR I DMA ERROR
RDS HIGH ERROR RATE CDAL BUS ERROR |
CRD ERROR ECC ERROR SYNDROME

MA-1112.87

Figure 3-21 Format for MEMCSR16

Architecture 3-57

Data Bit

Definition

<31>

<30>

<29>

<28:9>

RDS error. Read/write to clear. When set, an uncorrectable
ECC error occurs during a memory read or masked write
reference. Cleared by writing a 1 to it. Writing a 0 has no
effect. Undefined if MEMCSR16<7> (CDAL bus error) is
get. Cleared on power-up and the negation of DCOK when
the processor is halted.

RDS high error rate. Read/write to clear. When set, an
uncorrectable ECC error occurs while the RDS error log
request bit was set, indicating multiple uncorrectable
memory errors. Cleared by writing a 1 to it. Writinga 0
has no effect. Undefined if MEMCSR16<7> (CDAL bus
error) is set. Cleared on power-up and the negation of
DCOK when the processor is halted.

CRD error. Read/write to clear. When set, a correctable
(single bit) error occurs during 2 memory read or masked
write reference. Cleared by writing a 1 to it. Writing a

0 has no effect. Undefined if MEMCSR16<7> (CDAL bus
error) is set. Cleared by writing a 1, on power-up and the
negation of DCOK when the processor is halted.

Page address of error. Read only. This field identifies the
page (512 byte block) containing the location that caused
the memory error. In the event of multiple memory errors,
the types of errors are prioritized and the page address of
the error with the highest priority is captured. Errors with
equal priority do not overwrite previous contents. Writes
have no effect. Cleared on power-up and the negation of
DCOK when the processor is halted.

The types of error conditions follow in order of priority:

¢ CDAL bus parity errors during a CPU write reference,
as logged by the CDAL bus error bit.

¢ Uncorrectable ECC errors during a CPU or DMA read
or masked write reference, as logged by the RDS error
log bit.

¢ Correctable ECC errors during a CPU or DMA read or
masked write reference, as logged by CRD error bit.

3-58 Architecture

Data Bit Definition

<8> DMA error. Read/write to clear. When set, an error occurs
during a DMA read or write reference. Cleared by writing a
1 to it. Writing a O has no effect. Cleared on power-up and
the negation of DCOK when the processor is halted.

<7> CDAL bus error. Read/write to clear. When set, a CDAL
bus parity error occurs on a CPU write reference. Cleared
by writing a 1 to it. Writing a 0 has no effect. Cleared on
power-up and the negation of DCOK when the processor is
halted.

<6:0> Error syndrome. Read only. This field stores the error
syndrome. A nonzero syndrome indicates a detectable
error has occurred. A unique syndrome is generated for
each possible single bit (correctable) error. A list of these
syndromes and their associated single bit errors is given in
Table 3-13. Any nonzero syndrome that is not contained
in Table 3-13 indicates a multiple bit (uncorrectable) error
has occurred. This field handles multiple errors in the same
manner as MEMCSR16<28:9>. Cleared on power-up and
the negation of DCOK when the processor is halted.

Table 3-13 Error Syndromes
Syndrome<6:0> Bit Position in Error

0000000 No error detected

Data bits (0 to 32 decimal)
1011000
0011100
0011010
1011110
0011111
1011011
1011101
0011001
1101000
0101100
0101010

=000 10Uk WNKRO

0

Architecture 3-59

Table 3—-13 (Cont.) Error Syndromes
Syndrome<6:0> Bit Position in Error

1101110 11
0101111 12
1101011 13
1101101 14
0101001 15
1110000 16
0110100 17
0110010 18
1110110 19
0110111 20
1110011 21
1110101 22
0110001 23
0111000 24
1111100 25
1111010 26
0111110 27
1111111 28
0111011 29
0111101 30
1111001 31

Check bits (32 to 38 decimal)

0000001 32
0000010 33
0000100 34
0001000 35
0010000 36
0100000 37
1000000 as
0000111 Result of incorrect check bits written on detection of a CDAL

parity error.

All others Multibit errors

3-60 Architecture

3.4.5 Main Memory Control and Diagnostic Status Register

The main memory control and diagnostic status register (MEMCSR17),
address 2008 (0144 , is used to control the operating mode of the main
memory controller as well as to store diagnostic status information. This
register is unique to CPU designs that use the CMCTL memory controller
chip (Figure 3-22).

31 131211109 8 7 65 43 210

l] ez |]

CRD INTERRUPT ENABLE
FORCE REFRESH REQUEST
ERROR DETECT DISABLE

DIAGNOSTIC CHECK MODE
CHECK BITS

MA.1122-87

Figure 3-22 Format for MEMCSR17

Data Bit Definition
<31:13> Unused. Reads as zero must be written as zero.
<12> CRD interrupt enable. Read/write. When cleared, single-bit

errors are corrected by the ECC logic, but no interrupt is
generated. When set, single-bit errors are corrected by the
ECC logic and they cause an interrupt to be generated at
IPL 1A with a vector of 54 1 . This bit has no effect on the
capturing of error information in MEMCSR16, or on the
reporting of uncorrectable errors. Cleared on power-up and
the negation of DCOK when the processor is halted.

Architecture 3—-61

Data Bit

Definition

<11>

<10>

<9:8>

<7>

Force refresh request. Read/write. When cleared, the
refresh control logic operates in normal mode (refresh every
10.26 ps). When set, one memory refresh operation occurs
immediately after the MEMCSR write reference that set
this bit. Setting this bit provides a mechanism for speeding
up the testing of the refresh logic during manufacturing test
of the controller chip. This bit is cleared by the memory
controller upon completion of the refresh operation. Cleared
on power-up and the negation of DCOK when the processor
is halted.

Memory error detect disable. Read/write. When set,
error detection and correction (ECC) is disabled, so

all memory errors go undetected. When cleared, error
detection, correction, state capture and reporting (through
MEMCSRI1S6) is enabled. Cleared on power-up and the
negation of DCOK when the processor is halted.

Unused. This field reads as zero and must be written as
zero.

Diagnostic check mode. Read/write. When set, the contents
of MEMCSR17<6:0> are written into the seven ECC check
bits of the location (even if a CDAL parity error is detected)
during a memory write reference. When cleared, the seven
check bits calculated by the ECC generation logic are loaded
into the seven ECC check bits of the location during a write
reference and a memory read reference loads the state of

the seven ECC check bits of the location that was read into
MEMCSR17<6:0>. Cleared on power-up and the negation of
DCOK when the processor is halted.

NOTE

Diagnostic check mode is restricted to unmasked
memory write references. No masked write
references are allowed when diagnostic check mode
is enabled.

3-62 Architecture

Data Bit Definition

<6:0> Check bits. Read/write. When the diagnostic check mode
bit is set, these bits are substituted for the check bits
that are generated by the ECC generation logic during
a write reference. When the diagnostic check mode bit
is cleared, memory read references load the state of the
seven ECC check bits of the location that was read into
MEMCSR16<6:0>. Cleared on power-up and the negation of
DCOK when the processor is halted.

3.4.6 Main Memory Error Detection and Correction

The KA650 main memory controller generates CDAL bus parity on CPU
read references, and checks CDAL bus parity on CPU write references.

The actions taken following the detection of a CDAL bus parity error
depend on the type of write reference:

¢ For unmasked CPU write references: incorrect check bits are written
to main memory (potentially masking an as yet undetected memory
error) along with the data; an interrupt is generated at IPL 1D
through vector 60 ;¢ on the next cycle; and MCSR16<7> is set. The
incorrect check bits are determined by calculating the seven correct
check bits, and complementing the three least significant bits.

* For masked CPU write references: incorrect check bits are written
to main memory (potentially masking an as yet undetected memory
error) along with the data, unless an uncorrectable error is detected
during the read part; MEMCSR16<7> is set; and a machine check
abort is initiated. If an uncorrectable error is detected on the
read part, no write operation takes place. The incorrect check bits
are determined by calculating the seven correct check bits, and .
complementing the three least significant bits.

The memory controller protects main memory by using a 32-bit modified
hamming code to encode the 32-bit data longword with seven check bits.
This allows the controller to detect and correct single-bit errors in the
data field and detect single-bit errors in the check bit field and double-bit
errors in the data field. The most likely causes of these errors are failures
in either the memory array or the 50-pin cable.

Architecture 363

Upon detecting a correctable error on a read reference or the read portion
of a masked write reference, the data is corrected (if it is in the data field),
before placing it on the CDAL bus, or back in main memory. An interrupt
is generated at IPL 1A through vector 54 14; bit <29> of MEMCSRI16 is
set; bits <28:9> of MEMCSR16 are loaded with the address of the page
containing the location that caused the error; and bits <6:0> are loaded
with the error syndrome which indicates which bit was in error. If the
error was detected on a DMA reference, MEMCSR16<8> is also set.

NOTE
The corrected data is not rewritten to main memory, so the single
bit error remains there until rewritten by software.

Upon detecting an uncorrectable error, the action depends on the type of
reference being performed:

On a demand read reference: the affected row of the first-level
cache is invalidated; bit <31> of MEMCSRI16 is set; bits <28:9> of
MEMCSRI16 are loaded with the address of the page containing the
location that caused the error; and bits <6:0> are loaded with the
error syndrome which indicates that the error was uncorrectable
and a machine check abort is initiated. If the read is a local-miss,
global- hit read, or a read of the Q22-bus map, MEMCSR16<8> and
DSER<4> are also set, and DEAR<12:0> are loaded with the address
of the page containing the location that caused the error.

On a request read reference: the prefetch or fill cycle is aborted; but
no machine check occurs; bit <31> of MEMCSRI16 is set; bits <28:9>
of MEMCSR16 are loaded with the address of the page containing
the location that caused the error; and bits <6:0> are loaded with the
error syndrome which indicates that the error was uncorrectable.

On the read part of masked write reference: bit <31> of MEMCSR16
is set; bits <28:9> of MEMCSR16 are loaded with the address of the
page containing the location that caused the error; and bits <6:0>
are loaded with the error syndrome which indicates that the error is
uncorrectable and a machine check abort is initiated.

3-64 Architecture

®* On a DMA read reference: bit <31> and bit <8> of MEMCSR16 are
set; bits <28:9> of MEMCSR16 are loaded with the address of the
page containing the location that caused the error; and bits <6:0>
are loaded with the error syndrome which indicates that the error
is uncorrectable. DSER<4> is set; DEAR<12:0> are loaded with the
address of the page containing the location that caused the error;
BDAL<17:16> are asserted on the Q22-bus along with the data to
notify the receiving device (unless it was a map read by the Q22-bus
interface during translation); and an interrupt is generated at IPL 1D
through vector 60 1¢.

* On a DMA masked write reference: bit <31> and bit <8> of
MEMCSRI16 are set; bits <28:9> of MEMCSR16 are loaded with the
address of the page containing the location that caused the error; and
bits <6:0> are loaded with the error syndrome which indicates that
the error is uncorrectable. DSER<4> is set; DEAR<12:0> are loaded
with the address of the page containing the location that caused the
error; IPCR<15> is set to notify the initiating device; and an interrupt
is generated at IPL 1D through vector 60 6.)

3.5 Console Serial Line

The console serial line provides the KA650 processor with a full duplex,
RS-423 EIA, serial line interface, which is also RS-232C compatible. The
only data format supported is 8-bit data with no parity and one stop bit.
The four internal processor registers (IPRs) that control the operation
of the console serial line are a superset of the VAX console serial line
registers described in the VAX Architecture Reference Manual.

3.5.1 Console Registers

There are four registers associated with the console serial line unit. They
are implemented in the SSC and are accessed as IPRs 32 19 to 35 19
(Table 3-14).

Architecture 3—65

Table 3-14 Cansole Registers

IPR

Number Register Name Mnemonic

32 Console receiver RXCS
control/status

33 Console receiver data buffer RXDB

34 Console transmit TXCS
control/status

35 Console transmit data buffer TXDB

3.5.1.1 Console Receiver Control/Status Register

The console receiver control/status register (RXCS), IPR 32, is used to
control and report the status of incoming data on the console serial line
(Figure 3-23).

31 8765 0

[e T

RX DONE
RX IE

MA.1118.87

Figure 3—23 Console Receiver Control/Status Register

Data Bit Definition
<31:8> Unused. Read as zeros. Writes have no effect.
<7> Receiver done (RX DONE). Read only. Writes have no effect.

This bit is set when an entire character has been received
and is ready to be read from the RXDB register. This bit is
automatically cleared when RXDB is read. It is also cleared
on power-up and the negation of DCOK when the processor
is halted.

366 Architecture

Data Bit Definition

<6> Receiver interrupt enable (RX IE). Read/write. When set,
this bit causes an interrupt to be requested at IPL 14
with an SCB offset of F8 if RX done is set. When cleared,
interrupts from the console receiver are disabled. This bit
is cleared on power-up and the negation of DCOK when the
processor is halted.

<5:0> Unused. Read as zeros. Writes have no effect.

3.5.1.2 Console Receiver Data Buffer

The console receiver data buffer (RXDB), IPR 33, is used to buffer
incoming data on the serial line and capture error information
(Figure 3-24).

31 1615141312 1110 8 7 [¢]
l 0 L1 Iof Jofele]]
ERR
OVR ERR
FRM ERR
RCVEBRK |
RECE{VED DATA BITS

MA.1119-87

Figure 3-24 Console Receiver Data Buffer

Data Bit Definition
<31:16> Unused. Always read as zero. Writes have no effect.
<15> Error (ERR). Read only. Writes have no effect. This bit is

set if RBUF <14> or <13> is set. It is clear if these two bits
are clear. This bit cannot generate a program interrupt.
Cleared on power-up and the negation of DCOK when the
processor is halted.

Architecture 3—67

Data Bit

Definition

<14>

<13>

<12>
<11>

<10:8>
<7:0>

Overrun error (OVR ERR). Read only. Writes have no
effect. This bit is set if a previously received character
was not read before being overwritten by the present
character. Cleared by reading the RXDB, on power-up
and the negation of DCOK when the processor is halted.

Framing error (FRM ERR). Read only. Writes have no
effect. This bit is set if the present character did not have a
valid stop bit. Cleared by reading the RXDB, on power-up
and the negation of DCOK when the processor is halted.

NOTE

Error conditions remain present until the next
character is received, at which point, the error bits
are updated.

Unused. Reads as 0. Writes have no effect.

 Received break (RCV BRK). Read only. Writes have no

effect. This bit is set at the end of a received character for
which the serial data input remained in the space condition
for 20 bit times. Cleared by reading the RXDB, on power-up
and the negation of DCOK when the processor is halted.

Unused. Read as 0. Writes have no effect.

Received data bits. Read only. Writes have no effect. These
bits contain the last received character.

3.5.1.3 Console Transmitter Control/Status Register

The console transmitter control/status register (TXCS), internal processor
register 34, is used to control and report the status of outgoing data on
the console serial line (Figure 3-25).

8765 3210

UNUSED, RETURNS 0 I l IOIOIOI IOI I

TX RDY
TXIE
MAINT
XMIT BRK

MA.1120.87

Figure 3-25 Console Transmitter Control/Status Register

3-68 Architecture

Data Bit

Definition

<31:8>

<7>

<6>

<5:3>

<2>

<1l>

<0>

Unused. Read as zeros. Writes have no effect.

Transmitter ready (TX RDY). Read only. Writes have no
effect. This bit is cleared when TXDB is loaded and set
when TXDB can receive another character. This bit is set
on power-up and the negation of DCOK when the processor
is halted.

Transmitter interrupt enable (TX IE). Read/write. When
set, this bit causes an interrupt to be requested at IPL 14
with an SCB offset of FC if TX RDY is set. When cleared,
interrupts from the console receiver are disabled. This bit
is cleared on power-up and the negation of DCOK when the
processor is halted.

Unused. Read as zeros. Writes have no effect.

Maintenance (MAINT). Read/write. This bit is used to
facilitate a maintenance self-test. When MAINT is set, the
external serial input is set to mark and the serial output is
used as the serial input. This bit is cleared on power-up and
the negation of DCOK when the processor is halted.

Unused. Read as zero. Writes have no effect.

Transmit break (XMIT BRK). Read/write. When this bit

is set, the serial output is forced to the space condition
after the character in TXB<7:0> is sent. While XMIT
BRK is set, the transmitter operates normally, but the
output line remains low. Thus, software can transmit
dummy characters to time the break. This bit is cleared on
power-up and the negation of DCOK when the processor is
halted.

Architecture 3—69

3.5.1.4 Console Transmitter Data Bufter

The console transmitter data buffer (TXDB), internal processor register
35, is used to buffer outgoing data on the serial line (Figure 3—26).

31 876543210

MBZ t J

TRANSMITTED DATA BITST

MA.1123.87

Figure 3-26 Console Transmitter Data Buffer

Data Bit Definition

<31:8> Unused. Writes have no effect.

<7:0> Transmitted data bits. Write only. These bits are used to
load the character to be transmitted on the console serial
line.

3.5.2 Break Response

The console serial line unit recognizes a break condition which consists of
20 consecutively received space bits. If the console detects a valid break
condition, the RCV BRK bit is set in the RXDB register. If the break was
the result of 20 consecutively received space bits, the FRM ERR bit is also
set. If halts are enabled (HLT ENB asserted on the 20-pin connector), the
KA650 halts and transfers program control to ROM location 2004 0000
when the RCV BRK bit is set. RCV BRK is cleared by reading RXDB.
Another mark followed by 20 consecutive space bits must be received to
set RCV BRK again.

3-70 Architecture

3.5.3 Baud Rate

The receive and transmit baud rates are always identical and are
controlled by the SSC configuration register bits <14:12>.

The user selects the desired baud rate through the baud rate select
signals (BRS <2:0> L) which are received from an external 8-position
switch through the 20-pin connector mounted at the top of the module.
The KA650 firmware reads this code from boot and diagnostic register bits
<6:4> and loads it into SSC configuration register bits <14:12>. Operating
systems will not cause the baud rate to be transferred. The baud rate is
only set at power-up.

Table 3-15 shows the baud rate select signal voltage levels (H or L), the
corresponding inverted code as read in the boot and diagnostic register
bits <6:4>, and the code that should be loaded into SSC configuration
register bits <14:12>,

Table 3-15 Baud Rate Select

Baud BRS BDR

Rate <2:0> <6:4> SSC «14:12>
300 HHH 000 000

600 HHL 001 001

1200 HLH 010 010

2400 HLL 011 011

4800 LHH 100 100

9600 LHL 101 101

19200 LLH 110 110

38400 LLL 111 1

3.5.4 Console Interrupt Specifications

The console serial line receiver and transmitter both generate interrupts
at IPL 14. The receiver interrupts with a vector of F8 14, while the
transmitter interrupts with a vector of FC 1.

Architecture 3-71

3.6 Time-of-Year Clock and Timers

The KA650 clocks include time-of-year clock (TODR) as defined in the
VAX Architecture Reference Manual, a subset interval clock (subset ICCS),
as defined in the VAX Architecture Reference Manual, and two additional
programmable timers modeled after the VAX standard interval clock.

3.6.1 Time-of-Year Clock

The KA650 time-of-year clock (TODR), internal processor register 27,
forms an unsigned 32-bit binary counter that is driven from a 100 Hz
oscillator. Therefore, the least significant bit of the clock represents

a resolution of 10 ms, with less than 0.0025 percent error. The
register counts only when it contains a nonzero value. This register is
implemented in the SSC (Figure 3-27).

31 o}

TIME OF YEAR SINCE SETTING —l

MA.1124.87

Figure 3-27 Time-of-Year Clock

The time-of-year clock is maintained during power failure by battery
backup circuitry which interfaces, through the external connector, to a
set of batteries which are mounted on the H3600-SA cover (or the CPU
distribution insert). The TODR remains valid for greater than 162 hours
when using the NiCad battery pack (three batteries in series).

The SSC configuration register contains a battery low (BLO) bit which,
if set after initialization, the TODR is cleared, and remains at zero until
software writes a nonzero value into it.

NOTE
After writing a nonzero value into the TODR, software should
clear the BLO bit by writing a 1 to it.

3-72 Architecture

3.6.2 Interval Timer

The KA650 interval timer (ICCS), internal processor register 24, is
implemented according to the VAX Architecture Reference Manual for
subset processors. The interval clock control/status register (ICCS)
is implemented as the standard subset of the standard VAX ICCS
in the CVAX CPU chip, while NICR and ICR are not implemented
(Figure 3-28).

3 765
r MBZ IlEl MBZ

NA=X1 44487

Figure 3-28 Interval Timer

Data Bit Definition
<31:7> Unused. Read as zeros, must be written as zeros.
<6> Interrupt enable (IE). Read/write. This bit enables and

disables the interval timer interrupts. When the bit is set,
an interval timer interrupt is requested every 10 ms with
an error of less than 0.01 percent. When the bit is clear,
interval timer interrupts are disabled. This bit is cleared on

power-up and the negation of DCOK when the processor is
halted.

<5:0> Unused. Read as zeros, must be written as zeros.

Interval timer requests are posted at IPL 16 with a vector of C0. The
interval timer is the highest priority device at this IPL.

3.6.3 Programmable Timers

The KA650 features two programmable timers. Although they are
modeled after the VAX standard interval clock, they are accessed as I/O
space registers (rather than as internal processor registers) and a control
bit has been added which stops the timer upon overflow. If so enabled,
the timers interrupt at IPL 14 upon overflow. The interrupt vectors are
programmable and are set to 78 and 7C by the firmware.

Each timer is composed of four registers: timer n control register, timer
n interval register, timer n next interval register, and timer n interrupt
vector register, where n represents the timer number (0 or 1).

Architecture 373

3.6.3.1 Timer Control Registers

The KA650 has two timer control registers, one for controlling timer 0
(TCRO), and one for controlling timer 1 (TCR1). TCRO is accessible at
address 2014 0100 ;4, and TCR1 is accessible at 2014 0110 15. These
registers are implemented in the SSC (Figure 3-29).

3130 87654

LI

| I MBZ

ERR INTI
IE

MA-1125.87

Figure 3-29 Timer Control Registers

Data Bit Definition

<31> Error (ERR). Read/write to clear. This bit is set whenever
the timer interval register overfiows and INT is already set.
Thus, the ERR indicates a missed overflow. Writing a 1 to
this bit clears it. Cleared on power-up and the negation of
DCOK when the processor is halted.

<30:8> Unused. Read as zeros. Must be written as zeros.

<7> INT. Read/write to clear. This bit is set whenever the timer
interval register overflows. If IE is set when INT is set, an
interrupt is posted at IPL 14. Writing a 1 to this bit clears
it. Cleared on power-up and the negation of DCOK when
the processor is halted.

<6> IE. Read/write. When this bit is set, the timer interrupts at
IPL 14 when the INT bit is set. Cleared on power-up and
the negation of DCOK when the processor is halted.

3-74 Architecture

Data Bit

Definition

<5>

<4>

<3>

<2>

<1l>

<0>

SGL. Read/write. Setting this bit causes the timer interval
register to be incremented by 1 if the run bit is cleared. If
the run bit is set, then writes to the SGL bit are ignored.
This bit always reads as 0. Cleared on power-up and the
negation of DCOK when the processor is halted.

XFR. Read/write. Setting this bit causes the timer next
interval register to be copied into the timer interval register.
This bit is always read as 0. Cleared on power-up and the
negation of DCOK when the processor is halted.

Unused. Read as zeros. Must be written as zeros.

STP. Read/write. This bit determines whether the timer
stops after an overflow when the run bit is set. If the STP
bit is set at overflow, the run bit is cleared by the hardware
at overflow and counting stops. Cleared on power-up and
the negation of DCOK when the processor is halted.

Unused. Read as zeros. Must be written as zeros.

Run. Read/Write. When set, the timer interval register

is incremented once every microsecond. The INT bit is

set when the timer overflows. If the STP bit is set at
overflow, the run bit is cleared by the hardware at overflow
and counting stops. When the run bit is clear, the timer
interval register is not incremented automatically. Cleared
on power-up and the negation of DCOK when the processor
is halted.

Architecture 3-75

3.6.3.2 Timer Interval Registers

The KA650 has two timer interval registers, one for timer 0 (TIR0), and
one for timer 1 (TIR1). TIRO is accessible at address 2014 0104 4, and
TIR1 is accessible at 2014 0114 6.

The timer interval register is a read only register containing the interval
count. When the run bit is 0, writing a 1 increments the register. When
the run bit is 1, the register is incremented once every microsecond. When
the counter overflows, the INT bit is set, and an interrupt is posted at IPL
14 if the IE bit is set. Then, if the run and STP bits are both set, the
run bit is cleared and counting stops. Otherwise, the counter is reloaded.
The maximum delay that can be specified is approximately 1.2 hours.
This register is cleared on power-up and the negation of DCOK when the
processor is halted (Figure 3-30).

3 0

I . TIMER INTERVAL REGISTER l

MA=X1445~-87

Figure 3-30 Timer Interval Register

3.6.3.3 Timer Next Interval Registers

The KA650 has two timer next interval registers, one for timer 0 (TNIRO0),
and one for timer 1 (TNIR1). TNIRO is accessible at address 2014 0108 1¢,
and TNIR1 is accessible at 2014 0118 ;5. These registers are implemented
in the SSC.

This read/write register contains the value which is written into the timer
interval register after overflow, or in response to a 1 written to the XFR
bit. This register is cleared on power-up and the negation of DCOK when
the processor is halted (Figure 3-31).

3 0

L TIMER NEXT INTERVAL REGISTER J

MA=X1446—87

Figure 3-31 Timer Next Interval Register

3-76 Architecture

3.6.3.4 Timer Interrupt Vector Registers

The KA650 has two timer interrupt vector registers, one for timer 0
(TIVRO), and one for timer 1 (TIVR1). TIVRO is accessible at address
2014 010C 14, and TIVRI1 is accessible at 2014 011C ;5. These registers
are implemented in the SSC and are set to 78 and 7C respectively by the
resident firmware.

This read/write register contains the timer’s interrupt vector. Bits
<31:10> and <1:0> are read as 0 and must be written as 0. When
TCRn<6> (IE) and TCRn<7> (INT) transition to 1, an interrupt is posted
at IPL 14. When a timer’s interrupt is acknowledged, the content of the
interrupt vector register is passed to the CPU, and the INT bit is cleared.
Interrupt requests can also be cleared by clearing either the IE or the INT
bit. This register is cleared on power-up and the negation of DCOK when
the processor is halted (Figure 3-32).

3 iC9 2190

[MBZ |INTERRUPT VECTORIMBj

MA-1126-87

Figure 3-32 Timer Interrupt Vector Register

NOTE

Note that both timers interrupt at the same IPL (IPL 14) as the
console serial line unit. When multiple interrupts are pending,
the console serial line has priority over the timers, and timer 0
has priority over timer 1.

3.7 Boot and Diagnostic Facility

The KA650 boot and diagnostic facility features two registers, two 28-pin
ROM sockets containing 128 Kbytes of EPROM, and 1 Kbyte of battery
backed-up RAM. The ROM and battery backed-up RAM may be accessed
through longword, word or byte references.

The KA650 CPU module populates the ROM sockets with 64 Kbytes of 16-
bit ROM (or EPROM). This ROM contains the KA650 resident firmware.
If this ROM is replaced for special applications, the new ROM must
initialize and configure the board, provide halt and console emulation, as
well as provide boot diagnostic functionality.

Architecture 377

3.7.1 Boot and Diagnostic Register

The boot and diagnostic register (BDR) is a byte-wide register located in
the VAX I/O page at physical address 2008 4004 4. It is implemented
uniquely on the KA650. It can be accessed by KA650 software, but not by
external Q22-bus devices. The BDR allows the boot and diagnostic ROM
programs to read various KA650 configuration bits. Only the low byte of
the BDR should be accessed. Bits <31:8> are undefined (Figure 3—33).

3

87 & 43210

| 1]

[UNDEFINED

HLT ENB
BRS CD
CPU CD
B8DG CD

MA=X1441~87

Figure 3-33 Boot and Diagnostic Register

Data Bit Definition
<31:8> Undefined. Should not be read or written.
<7> Halt Enable (HLT ENB). Read only. Writes have no effect.

This bit reflects the state of pin 15 (HLT ENB L) of the
20-pin connector. The assertion of this signal enables

the halting of the CPU upon detection of a console break
condition. On a power-up, the KA650 resident firmware
reads the HLT ENB bit to decide whether to enter the
console emulation program (HLT ENB set) or to boot the
operating system (HLT ENB clear). On the execution of a
halt instruction while in kernel mode, the KA650 resident
firmware reads the HLT ENB bit to decide whether to enter
the console emulation program (HLT ENB set) or to restart
the operating system (HLT ENB clear).

3-78 Architecture

Data Bit Definition

<6:4> Baud rate select (BRS CD) <2:0>. Read only. Writes have
no effect. These three bits originate from pins <19:17>
(BRS<2:0>) of the 20-pin connector. They reflect the setting
of the baud rate select switch on the H3600-SA cover (or on
the CPU distribution insert). These bits are read only on
power-up.
BDR<6:47> Baud Rate
000 300
001 600
010 1200
011 2400
100 4800
101 9600
110 19200
111 38400

<3:2> CPU code (CPU CD) «<1:0>. Read only. Writes have no
effect. These two bits originate from connector pins <5:4>
(CPU CD<1:05).
CPU CD Configuration
<1:0>
00 Normal operation
01 Reserved
10 Reserved
11 Reserved

<1:0> Boot and diagnostic code (BDG CD) <1:0>. Read only.

Writes have no effect. This 2-bit code reflects the status
of configuration and display connector pins <14:13> (BDG
CD«<1:05). The KA650 ROM programs use BDG CD <«1:0>
to determine the power-up mode as follows:

BDG CD Power-Up Mode
<1:0>

00 Run

01 Language inquiry
10 Test

11 Manufacturing

Architecture 3—79

3.7.2 Diagnostic LED Register

The diagnostic LED register (DLEDR), address 2014 0030 ¢, is
implemented in the SSC and contains four read/write bits that control
the external LED display. A 0 in a bit turns on the corresponding LED.
All four bits are cleared on power-up and the negation of DCOK when the
processor is halted to provide a power-up lamp test (Figure 3-34).

3

43210

[MBZ Iospl.]
Figure 3-34 Diagnostic LED Register
Data Bit Definition
<31:4> Unused. Read as zeros. Must be written as zeros.
<3:0> Display (DSPL). Read/write. These four bits update an

external LED display. Writing a O to a bit turns on the
corresponding LED. Writing a 1 to a bit turns off its LED.
The display bits clear (all LEDs are on) on power-up and
the negation of DCOK when the processor halts.

3.7.3 ROM Memory

The KA650 supports up to 128 Kbytes of ROM memory for storing code
for board initialization, VAX standard console emulation, board self-tests,
and boot code. ROM memory may be accessed through byte, word and
longword references. ROM accesses take 1300 ns. ROM is organized as
a 64K by 8-bit array for one 64 Kbyte ROM, as a 32K by 16-bit array for
two 32 Kbyte ROMs, and as a 64K by 16-bit array for two 64 Kbyte ROMs
(ship configuration). CDAL bus parity is neither checked nor generated
on ROM references.

3.7.3.1 ROM Socket

The KA650 provides two ROM sockets which contain two 64K by 8
EPROMs.

3-80 Architecture

3.7.3.2 ROM Address Space

The entire 128 Kbyte boot and diagnostic ROM may be read from either
the 128 Kbyte halt mode ROM space (hex addresses: 2004 0000 ¢
through 2005 FFFF ;¢), or the 128 Kbyte run mode ROM space (hex

 addresses: 2006 0000 ;¢ through 2007 FFFF ;5. Note that the run mode
ROM space reads exactly the same ROM code as the halt mode ROM
space.

Writes to either of these address spaces results in a machine check.

Any I-stream read from the halt mode ROM space places the KA650 in
halt mode. The Q22-bus SRUN signal is deasserted causing the front
panel run light to go out and the CPU is protected from further halts.

Any I-stream read that does not access the halt mode ROM space,
including reads from the run mode ROM space, places the KA650 in
run mode. The Q22-bus SRUN signal is toggled turning on the front
panel run. The CPU can be halted by asserting the Q22-bus BHALT line
or by generating a break condition on the console serial line if BDR<7>
(halt enable) is set.

Writes and D-stream reads to any address space have no effect on run
mode/halt mode status.

3.7.3.3 Resident Firmware Operation
The KA650 CPU module populates the ROM socket with 128 Kbyte of 16-
bit ROM (or EPROM). This ROM contains the KA650 resident firmware

which can be entered by transferring program control to location 2004
0000 6.

Section 3.1.5 lists the various halt conditions which cause the CVAX CPU
to transfer program control to location 2004 0000 ;¢.

When running, the KA650 resident firmware provides the services
expected of a VAX-11 console system. In particular, the following services
are available:

* Automatic restart or bootstrap following processor halts or initial
power-up.

¢ An interactive command language allowing the user to examine and
alter the state of the processor.

* Diagnostic tests executed on power-up that check out the CPU, the
memory system and the Q22-bus map.

* Support of video or hardcopy terminals as the console terminal as well
as support of VCB01-based bit-mapped terminals. ‘

Architecture 3—-81

Power-Up Modes

The boot and diagnostic ROM programs use bits <1:0> of the BDR
(Section 3.7.1) to determine the power-up modes as follows:

Code Mode

00 Run (factory setting). If the console terminal supports the multinational
character set (MCS), the user will be prompted for language only if the
time-of-year clock battery back-up has failed. Full startup diagnostics
are run.

01 Language inquiry. If the console terminal supports MCS, the user will
be prompted for language on every power-up and restart. Full startup
diagnostics are run.

10 Test. ROM programs run wrap-around serial line unit (SLU) tests.

11 Manufacturing. To provide for rapid startup during certain
manufacturing test procedures, the ROM programs omit the power-up
memory diagnostics and set up the memory bit map on the assumption
that all available memory is functional.

3.7.4 Battery Backed-Up RAM

The KA650 contains 1 Kbyte of battery backed-up static RAM for use as
a console scratchpad. The power for the RAM is provided through pins 10
(BTRY VCC) and 12 (GND) of the 20-pin connector.

This RAM supports byte, word and longword references. Read operations
take 700 ns to complete while write operations require 600 ns.

The RAM is organized as a 256 by 32-bit (one longword) array. The array
appears in a 1 Kbyte block of the VAX IO page at addresses 2014 0400
through 2014 O7FF.

This array is not protected by parity, and CDAL bus parity is neither
checked nor generated on reads or writes to this RAM.

3.7.5 KAGB50 Initialization
The VAX architecture defines three kinds of hardware initialization:
e Power-up

* Processor

* I/0O bus

3-82 Architecture

3.7.5.1 Power-Up Initialization

Power-up initialization is the result of the restoration of power and
includes a hardware reset, a processor initialization, an I/O bus
initialization, as well as the initialization of several registers defined
in the VAX Architecture Reference Manual.

3.7.5.2 Hardware Reset

A KA650 hardware reset occurs on power-up and the negation of DCOK
when the processor is halted. A hardware reset initiates the hardware
halt procedure (Section 3.1.5.6) with a halt code of 03. The reset also
initializes some IPRs and most I/O page registers to a known state. Those
IPRs that are affected by a module reset are noted in Section 3.1.1.3. The
effect a hardware reset has on /O space registers is documented in the
description of the register.

3.7.5.3 I/0 Bus Initialization

An I/O bus initialization occurs on power-up, the negation of DCOK when
the processor is halted, or as the result of 2 MTPR to IPR 55 (IORESET)
or console UNJAM command.

3.7.5.4 I/0O Bus Reset Register

The I/0 bus reset register IORESET), internal processor register 55, is
implemented in the SSC. A MTPR of any value to IORESET causes an
1/O bus initialization.

3.7.5.5 Processor Initialization

A processor initialization occurs on power-up, the negation of DCOK when
the processor is halted, as the result of a console INITIALIZE command,
and after a halt caused by an error condition.

In addition to initializing those registers defined in the VAX Architecture
Reference Manual, the KA650 firmware also configures main memory, the
local I/O page, and the Q22-bus map during a processor initialization.

P —_——

ey

Architecture 3—83

3.8 Q22-bus Interface

The KA650 includes a Q22-bus interface implemented through a single
VLSI chip called the CQBIC. It contains a CDAL bus to Q22-bus interface
that supports the following functions:

* A programmable mapping function (scatter-gather map) for
translating 22-bit, Q22-bus addresses into 29-bit CDAL bus addresses,
which allows any page in the Q22-bus memory space to be mapped to
any page in main memory.

* A direct mapping function for translating 29-bit CDAL addresses
in the local Q22-bus address space and local Q22-bus I/O page into
22-bit, Q22-bus addresses.

¢ Masked and unmasked longword reads and writes from the CPU
to the Q22-bus memory and I/O space and the Q22-bus interface
registers. Longword reads and writes of the local Q22-bus memory
space are buffered and translated into 2-word, block mode, transfers
on the Q22-bus. Longword reads and writes of the local Q22-bus I/0
space are buffered and translated into two, single-word transfers on
the Q22-bus.

e Up to 16-word, block mode, writes from the Q22-bus to main memory.
These words are buffered then transferred to main memory using
two asynchronous DMA octaword transfers. For block mode writes of
less than 16 words, the words are buffered and transferred to main
memory using the most efficient combination of octaword, quadword,
and longword asynchronous DMA transfers.

The maximum write bandwidth for block mode references is 3.3
Mbytes per second. Block mode reads of main memory from the Q22-
bus cause the Q22-bus interface to perform an asynchronous DMA
quadword read of main memory and buffer all four words, so that on
block mode reads, the next three words of the block mode read can
be delivered without any additional CDAL bus cycles. The maximum
read bandwidth for Q22-bus block mode references is 2.4 Mbytes per
second. Q22-bus burst mode DMA transfers result in single-word
reads and writes of main memory.

¢ Transfers from the CPU to the local Q22-bus memory space, that
result in the Q22-bus map translating the address back into main
memory (local-miss, global-hit transactions).

The Q22-bus interface contains several registers for Q22-bus control and
configuration, and error reporting.

3-84 Architecture

The interface also contains Q22-bus interrupt arbitration logic that
recognizes Q22-bus interrupt requests BR7-BR4 and translates them
into CPU interrupts at levels 17 to 14.

The Q22-bus interface detects Q22-bus no sack timeouts, Q22-bus
interrupt acknowledge timeouts, Q22-bus nonexistent memory timeouts,
main memory errors on DMA accesses from the Q22-bus and Q22-bus
parity errors.

3.8.1 Q22-bus to Main Memory Address Translation

On DMA references to main memory, the 22-bit, Q22-bus address must be
translated into a 29-bit main memory address. This translation process
is performed by the Q22-bus interface by using the Q22-bus map. This
map contains 8192 mapping registers, (one for each page in the Q22-bus
memory space), each of which can map a page (512 bytes) of the Q22-bus
memory address space into any of the 128K pages in main memory. Since
local I/O space addresses cannot be mapped to Q22-bus pages, the local
I/0O page is inaccessible to devices on the Q22-bus.

Q22-bus addresses are translated to main memory addresses as shown in
Figure 3-35.

31 9 8 o]
[Q22-bus ADDRESS
|
EXTRACT TO SELECT | 1 |
MAP REGISTER
____________ - | |
-
: ! |
| |
! |
| kil 0 I
L -!vl MAPPING REGISTER :
119 o !
i
| : |
| | |
| |
{ ' I
28 98 0

PHYSICAL ADDRESS OF MAIN MEMORY

MA-1145.87

Figure 3-35 Q22-bus to Main Memory Address Translation

Architecture 3-85

At power-up time, the Q22-bus map registers, including the valid bits,
are undefined. External access to main memory is disabled as long as the
interprocessor communication register LM EAE bit is cleared. The Q22-
bus interface monitors each Q22-bus cycle and responds if the following
conditions are met:

* The interprocessor communication register LM EAE bit is set.
* The valid bit of the selected mapping register is set.

* During read operations, the mapping register must map into existent
main memory, or a Q22-bus timeout occurs. (During write operations,
the Q22-bus interface returns Q22-bus BRPLY before checking for
existent local memory. The response depends only on the first two
conditions.)

NOTE ‘
In the case of local-miss, global-hit, the state of the LM EAE bit is
. ignored.

If the map cache does not contain the needed Q22-bus map register, then
the Q22-bus interface performs an asychronous DMA read of the Q22-bus
map register before proceeding with the Q22-bus DMA transfer.

3.8.1.1 Q22-bus Map Registers

The Q22-bus map contains 8192 registers (QMRs) that control the
mapping of Q22-bus addresses into main memory. Each register maps

a page of the Q22-bus memory space into a page of main memory. These
registers are implemented in a 32 Kbyte block of main memory, but are
accessed through the CQBIC chip through a block of addresses in the I/O

page.
The local I/O space address of each register was chosen so that register
address bits <14:2> are identical to Q22-bus address bits <21:9> of the

Q22-bus page which the register maps. Table 3—16 lists the Q22-bus map
registers.

3-86 Architecture

Table 3-16 Q22-bus Map Registers

QMR
Address

Q22-bus Addresses
Mapped (Hex)

Q22-bus Addresses
Mapped (Octal)

2008
8000
2008
8004
2008
8008
2008
800C
2008
8010
2008
8014
2008
8018
2008
801C

2008
FFFO
2008
FFF4
2008
FFF8
2008
FFFC

00 0000 through 00 O1FF
00 0200 through 00 03FF
00 0400 through 00 O5FF
00 0600 through 00 07FF
00 0800 through 00 09FF
00 0A0O through 00 OBFF
00 0CO0 through 00 ODFF

00 OEOO through 00 OFFF

SF F800 through 3F FOFF
3F FA0O through 3F FBFF
3F FCO0 through 3F FDFF

3F FEOO through 3F FFFF

00 000 000 through 00 000 777
00 001 000 through 00 001 777
00 002 000 through 00 002 777
00 003 000 through 00 003 777
00 004 000 through 00 004 777
00 005 000 through 00 005 777
00 006 000 through 00 006 777

00 007 000 through 00 007 777

17 774 000 through 17 774 777
17 775 000 through 17 775 777
17 776 000 through 17 776 777

17 776 000 through 17 777 777

The Q22-bus map registers (QMRs) have the format shown in
Figure 3-36.

Figure 3-36 Q22-bus Map Registers

3130

[Vl MBZ

A28 - A9 I

MA=X) 45087

Architecture 3-87

Data Bit Definition

<31> Valid (V). Read/write. When a Q22-bus map register is
selected by bits <21:9> of the Q22-bus address, the valid
bit determines whether mapping is enabled for that Q22-
bus page. If the valid bit is set, the mapping is enabled,
and Q22-bus addresses within the page controlled by the
register are mapped into the main memory page determined
by bits <28:9>. If the valid bit is clear, the mapping register
is disabled, and the Q22-bus interface does not respond
to addresses within that page. This bit is undefined on
power-up and the negation of DCOK when the processor is

halted.

<30:20> Unused. These bits always read as zero and must be
written as zero.

<19:0> Address bits <28:9>. Read/write. When a Q22-bus map

register is selected by a Q22-bus address, and if that
register’s valid bit is set, then these 20 bits are used as
main memory address bits <28:9>. Q22-bus address bits
<8:0> are used as main memory address bits <8:0>. These
bits are undefined on power-up and the negation of DCOK
when the processor is halted.

3.8.1.2 Accessing the Q22-bus Map Registers

Although the CPU accesses the Q22-bus map registers through aligned,
masked longword references to the local I/O page (addresses 2008 8000
16 through 2008 FFFC ¢), the map actually resides in a 32 Kbyte block
of main memory. The starting address of this block is controlled by the
contents of the Q22-bus map base register. The Q22-bus interface also
contains a 16-entry, fully associative, Q22-bus map cache to reduce the
number of main memory accesses required for address translation.

NOTE

The system software must protect the pages of memory that
contain the Q22-bus map from direct accesses that corrupt the
map or cause the entries in the Q22-bus map cache to become
stale. Either of these conditions results in the incorrect operation
of the mapping function.

When the CPU accesses the Q22-bus map through the local I/O page
addresses, the Q22-bus interface reads or writes the map in main memory.
The Q22-bus interface does not have to gain Q22-bus mastership when
accessing the Q22-bus map. Since these addresses are in the local I/O
space, they are not accessible from the Q22-bus.

3-88 Architecture

On a Q22-bus map read by the CPU, the Q22-bus interface decodes the
local I/O space address (2008 8000 through 2008 FFFC). If the register is
in the Q22-bus map cache, the Q22-bus interface internally resolves any
conflicts between CPU and Q22-bus transactions (if both are attempting to
access the Q22-bus map cache entries at the same time), then return the
data. If the map register is not in the map cache, the Q22-bus interface
forces the CPU to retry, acquire the CDAL bus, perform an asynchronous
DMA read of the map register. On completion of the read, the CPU is
provided with the data when its read operation is retried. A map read by
the CPU does not cause the register that was read to be stored in the map
cache.

On a Q22-bus map write by the CPU, the Q22-bus interface latches the
data, then on the completion of the CPU write, acquires the CDAL bus
and performs an asynchronous DMA write to the map register. If the
map register is in the Q22-bus map cache, then the Cam Valid bit for that
entry will be cleared to prevent the entry from becoming stale. A Q22-bus
map write by the CPU does not update any cached copies of the Q22-bus
map register.

3.8.1.3 Q22-bus Map Cache

To speed up the process of translating Q22-bus address to main memory
addresses, the Q22-bus interface utilizes a fully associative, 16-entry,
Q22-bus map cache, which is implemented in the CQBIC chip.

If a DMA transfer ends on a page boundary, the Q22-bus interface will
prefetch the mapping register required to translate the next page and
load it into the cache, before starting a new DMA transfer. This allows
Q22-bus block mode DMA transfers that cross page boundaries to proceed
without delay. The replacement algorithm for updating the Q22-bus map
cache is FIFQO.

———

Architecture 3-89

The cached copy of the Q22-bus map register is used for the address
translation process. If the required map entry for a Q22-bus address
(as determined by bits <21:9> of the Q22-bus address) is not in the map
cache, then the Q22-bus interface uses the contents of the map base
register to access main memory and retrieve the required entry. After
obtaining the entry from main memory, the valid bit is checked. If it is
set, the entry is stored in the cache and the Q22-bus cycle continues.

The format of a Q22-bus map cache entry is as shown in Figure 3-37.

33 32 20 19 0

lCVl Q22~bus ADR<21:9> l A28 - A9 j

MA—X1451-87

Figure 3-37 Q22-bus Map Cache Entry

Data Bit Definition
<33> Cam Valid. When a mapping register is selected by a Q22-

bus address, the Cam Valid bit determines whether the
cached copy of the mapping register for that address is
valid. If the Cam Valid bit is set, the mapping register is
enabled, and addresses within that page can be mapped.
If the Cam Valid bit is clear, the Q22-bus interface must
read the map in local memory to determine if the mapping
register is enabled. This bit is cleared on power-up, the
negation of DCOK when the processor is halted, by setting
the Q22-bus map cache invalidate all (QMCIA) bit in the
interprocessor communication register, on writes to IPR 55
(IORESET), by a write to the Q22-bus map base register, or
by writing to the QMR that is being cached.

<32:20> QBUS ADR. These bits contain the Q22-bus address bits
<21:9> of the page that this entry maps. This is the content
addressable field of the 16-entry cache for determining if the
map register for a particular Q22-bus address is in the map
cache. These bits are undefined on power-up.

390 Architecture

Data Bit Definition

<13:0> Address bits (A28-A9). When a mapping register is selected
by a Q22-bus address, and if that register’s Cam Valid bit
is set, then these 20 bits are used as main memory address
bits 28 through 8. Q22-bus address bits 8 through 0 are
used as local memory address bits 8 through 0. These bits
are undefined on power-up.

3.8.2 CDAL Bus to Q22-bus Address Translation

CDAL bus addresses within the local Q22-bus I/O space, addresses 2000
0000 ;5 through 2000 1FFF ¢, are translated into Q22-bus I/O space.
addresses by using bits <12:0> of the CDAL address as bits <12:0> of the
Q22-bus address and asserting BBS7. Q22-bus address bits <21:13> are
driven as zeros.

CDAL bus addresses within the local Q22-bus memory space, addresses
3000 0000 1¢ through 303F FFFF ;¢, are translated into Q22-bus memory
space addresses by using bits <21:0> of the CDAL address as bits <21:0>
of the Q22-bus address.

3.8.3 Interprocessor Communication Register

The interprocessor communication register IPCR), address 2000 1F40 4,
is a 16-bit register which resides in the Q22-bus I/O page address space
and can be accessed by any device which can become Q22-bus master
(including the KA650 itself). The IPCR, implemented in the CQBIC chip,
is byte accessible, meaning that a write byte instruction can write to
either the low or high byte without affecting the other byte.

The IPCR also appears at Q22-bus address 17 777 500 (Figure 3-38).

Figure 3-38

DMA QME

Architecture 3-91

151413 987654 10

L] e [T1L] e]

QMCIA

RESERVED

MBZ

RESERVED

LM EAE

RESERVED

MA=X1452~87

Interprocessor Communication Register

Data Bit

Definition

<15>

<14>

<13:9>
<8>
<7T>

<6>

DMA QME. DMA Q22-bus address space memory error.
Read/write to clear. Indicates that an error occurred when
a Q22-bus device was attempting to read main memory.

It sets if DMA system error register bit DSER<4> (main
memory error) sets, or the CDAL bus timer expires. The
main memory error bit indicates that an uncorrectable error
occurred when an external device (or CPU) was accessing
the KA650 local memory.

The CDAL bus timer expiring indicates that the memory
controller did not respond when the Q22-bus interface
initiated a DMA transfer. Cleared by writing a 1 to it, on
power-up by the negation of DCOK when the processor
halts, by writes to IPR 55 (IORESET), and whenever
DSER<4> clears.

Q22-bus invalidate all (QMCIA). Write only. Writing a 1 to
this bit clears the Cam Valid bits in the cached copy of the
map. Always reads as zero. Writing a 0 has no effect.

Unused. Read as zeros. Must be written as zeros.
Reserved for DIGITAL use.
Unused. Read as zero. Must be written as zero.

Reserved for DIGITAL use.

3-92 Architecture

Data Bit Definition

<5> Local memory external access enable (LM EAE). Read/write
when the KA650 is Q22-bus master. Read only when
another device is Q22-bus master. Enables external access
to local memory when set (through the Q22-bus map).
Cleared on power-up and by the negation of DCOK when
the processor halts. '

<4:1> Unused. Read as zeros. Must be written as zeros.
<0> Reserved for DIGITAL use.

3.8.4 Q22-bus Interrupt Handling

The KA650 responds to interrupt requests BR7-4 with the standard Q22-
bus interrupt acknowledge protocol (DIN followed by IAK). The console
serial line unit, the programmable timers, and the interprocessor doorbell
request interrupts at IPL 14 and have priority over all Q22-bus BR4
interrupt requests. After responding to any interrupt request BR7-4, the
CPU sets the processor priority to IPL 17. All BR7-4 interrupt requests
are disabled unless software lowers the interrupt priority level.

Interrupt requests from the KA650 interval timer are handled directly
by the CPU. Interval timer interrupt requests have a higher priority
than BR6 interrupt requests. After responding to an interval timer
interrupt request, the CPU sets the processor priority to IPL 16. Thus,
BRY7 interrupt requests remain enabled.

3.8.5 Configuring the Q22-bus Map

The KA650 implements the Q22-bus map in an 8K longword (32 Kbytes)
block of main memory. This map must be configured by the KA650
firmware during a processor initialization by writing the base address

of the uppermost 32 Kbytes block of good main memory into the Q22-bus
map base register. The base of this map must be located on a 32 Kbyte
boundary.

NOTE

This 32 Kbyte block of main memory must be protected by the
system software. The only access to the map should be through
local I/O page addresses 2008 8000 5 through 2008 FFFC .

Architecture 3—93

3.8.5.1 Q22-bus Map Base Address Register
The Q22-bus map base address register (QBMBR), address 2008 0010 1¢,

controls the main memory location in the 32 Kbyte block of Q22-bus map
registers.

This read/write register is accessed by the CPU on a longword boundary
only. Bits <31:29,14:0> are unused and should be written as zero and
returns to zero when read.

A write to the map base register flushes the Q22-bus map cache by
clearing the Cam Valid bits in all the entries.

The contents of this register are undefined on power-up and the negation
of DCOK when the processor halts. It is not affected by BINIT being
asserted on the Q22-bus (Figure 3-39).

31 29 28 15 14 Q

[0 MAP BASE I MBZ

MA-X1453-87

Figure 3-3% Q22-bus Map Base Address Register

3.8.6 System Configuration Register

The system configuration register (SCR), address 2008 0000 ;¢, contains a
BHALT enable bit and a power ok flag.

The system configuration register (SCR) is longword, word, and byte
accessible. Programmable option fields clear on power-up and by the
negation of DCOK when the processor halts. The format of the SCR
register is shown in Figure 3—40.

3-94 Architecture

31 514131211109 8 7 6 5 4 3 2 1 0

[Tl [[e[= T

|
BHALT ENB

RESERVED

ACTION ON DCOK NEGATION
RESERVED

MUST BE ZERO

MA-X1454~87

Figure 3-40 System Configuration Register

Data Bit Definition
<31:16> Unused. Read as zero. Must be written as zero.
<15> Power ok (POK). Read only. Writes have no effect. Set if

the Q22-bus BPOK signal asserts and clears if it negates.
Cleared on power-up and by the negation of DCOK when
the processor halts.

<14> BHALT enable (BHALT EN). Read/write. Controls the effect
the Q22-bus BHALT signal has on the CPU. When set,
asserting the Q22-bus BHALT signal halts the CPU and
asserts DSER<15>. When cleared, the Q22-bus BHALT
signal has no effect. Cleared on power-up and by the
negation of DCOK when the processor halts.

<13:11> Unused. Read as zero. Must be written as zero.
<10> Reserved for DIGITAL use.

<9:8> Unused. Read as zero. Must be written as zero.

Architecture 3-95

Data Bit Definition

<7> Action on DCOK negation. Read/write. When cleared, the
Q22-bus interface asserts SYSRESET causing a hardware
reset of the board and control to be passed to the resident
firmware through the hardware halt procedure with a halt
code of 3 when DCOK is negated on the Q22-bus. When set,
the Q22-bus interface asserts HALTIN (causing control to
be passed to the resident firmware through the hardware
halt procedure with a halt code of 2) when DCOK is negated
on the Q22-bus. Cleared on power-up and the negation of
DCOK when the processor halts.

<6:4> Unused. Read as zero. Must be written as zero.
<3:1> Reserved for DIGITAL use.
<0> Unused. Read as 0. Must be written as zero.

3.8.7 DMA System Error Register

The DMA system error register (DSER), address 2008 0004 ¢, is one of
three registers associated with Q22-bus interface error reporting. These
registers are located in the local VAX /O address space and can only be
accessed by the local processor.

The DMA system error register is implemented in the CQBIC chip, and,
logs main memory errors on DMA transfers, Q22-bus parity errors, Q22-
bus nonexistent memory errors, and Q22-bus no grant errors.

The Q22-bus error address register contains the address of the page in
Q22-bus space which caused a parity error during an access by the local
processor. The DMA error address register contains the address of the
page in local memory which caused a memory error during an access

by an external device or the processor during a local-miss global-hit
transaction. An access by the local processor which the Q22-bus interface
maps into main memory provides error status to the processor when the
processor does a retry for a read local-miss global-hit, or by an interrupt
in the case of a local-miss global-hit write.

3-96 Architecture

The DSER is a longword, word, or byte accessible read/write register
available to the local processor. The bits in this register are cleared to 0
on power-up by the negation of DCOK when the processor halts, and by
writes to IPR 55 (IORESET). All bits are set to 1 to record the occurrence
of an event. They are cleared by writing a 1. Writing zeros has no effect
(Figure 3—41).

31 1514131211109 8 7 6 5 4 3 2 1 0

[we l]ll wee [ol [1]]o]]

Q22—bus BHALT DETECTED
Q22—-bus DCOK NEGATION DETECTED
Q22—-bus NXM

MUST BE ZERO

Q22-bus PE

MAIN MEMORY ERROR

LOST ERROR BIT

NO GRANT

MUST BE ZERO

DOMA NXM

MA-X1455~87

Figure 341 DMA System Error Register

Data Bit Definition
<31:16> Unused. Read as zero. Must be written as zero.
<15> Q22-bus BHALT detected. Read/write to clear. Sets when

the Q22-bus interface detects that the Q22-bus BHALT line
was asserted and SCR<14> BHALT enable is set. Cleared

by writing a 1, on power-up by the negation of DCOK when
the processor is halted and by writes to IPR 55 (IORESET).

<14> Q22-bus DCOK negation detected. Read/write to clear. Set
when the Q22-bus interface detects the negation of DCOK
on the Q22-bus and SCR<7> (action on DCOK negation) is
set. Cleared by writing a 1, on power-up by the negation
of DCOK when the processor halts and by writes to IPR 55
(IORESET).

<13:8> Unused. Read as zero. Must be written as zero.

Architecture 3-97

Data Bit

Definition

<7>

<6>

<5>

<4>

<3>

<2>

<1>

Master DMA NXM. Read/write to clear. Sets when the
CPU performs a demand Q22-bus read cycle or write cycle
that does not reply after 10 us. Not set during interrupt
acknowledge cycles or request read cycles. Cleared by
writing a 1, on power-up, by the negation of DCOK when
the processor halts and by writes to IPR 55 (IORESET).

Unused. Read as zero. Must be written as zero.

Q22-bus parity error. Read/write to clear. Sets when the
CPU performs a Q22-bus demand read cycle which returns
a parity error. Not set during interrupt acknowledge cycles
or request read cycles. Cleared by writing a 1, on power-up,
by the negation of DCOK when the processor halts and by
writes to IPR 55 (IORESET).

Main memory error. Read/write to clear. Sets if an external
Q22-bus device or local-miss global-hit receives a memory
error while reading local memory. The IPCR<15> reports
the memory error to the external Q22-bus device. Cleared
by writing a 1, on power-up, by the negation of DCOK when
the processor halts and by writes to IPR 55 (IORESET).

Lost error. Read/write to clear. Indicates that an error
address has been lost because of DSER<7,5,4,0> having
been previously set and a subsequent error of either type
occurs that would have normally captured an address and
set either DSER<7,5,4,0> flag. Cleared by writing a 1, on
power-up, by the negation of DCOK when the processor
halts and by writes to IPR 55 (IORESET).

No grant timeout. Read/write to clear. Sets if the Q22-
bus does not return a bus grant within 10 ms of the bus
request from a CPU demand read cycle, or write cycle. Not
set during interrupt acknowledge or request read cycles.
Cleared by writing a 1, on power-up, by the negation of
DCOK when the processor halts and by writes to IPR 55
(IORESET).

Unused. Read as zero. Must be written as zero.

3-98 Architecture

Data Bit Definition

<0> DMA NXM. Read/write to clear. Sets on a DMA transfer to
a nonexistent main memory location. Includes local-miss
global-hit cycles and map accesses to nonexistent memory.
Cleared by writing a 1, on power-up, by the negation of
DCOK when the processor halts and by writes to IPR 55
(IORESET).

3.8.8 Q22-bus Error Address Register

The Q22-bus error address register (QBEAR), address 2008 0008 14, is
a read only, longword accessible register which is implemented in the

CQBIC chip. Its contents are valid only if DSER <5> (Q22-bus parity

error) is set or if DSER<7> (Q22-bus timeout) is set.

Reading this register when DSER<5> and DSER<7> are clear returns
undefined results. Additional Q22-bus parity errors that could have set
DSER<5> or Q22-bus timeout errors that could have caused DSER<7> to
set, cause DSER<3> to set.

The QBEAR contains the address of the page in Q22-bus space which
caused a parity error during an access by the on-board CPU which set
DSER<5> or a master timeout which set DSER<7>.

Q22-bus address bits <21:9> are loaded into QBEAR bits <12:0>. QBEAR
bits <31:13> always read as zeros (Figure 3—42).

31 13 12]

[MBZ l Q22-bus ADDRESS BITS <21:9>]

MA=X1456—87

Figure 342 Q22-bus Error Address Register

NOTE
This is a read only register. If a write is attempted, 2a machine
check generates.

Architecture 3-99

3.8.9 DMA Error Address Register

The DMA error address register (DEAR), address 2008 000C ¢, is a read
only, longword accessible register which is implemented in the CQBIC
chip. It contains valid information only when DSER<4> (main memory
error) is set or when DSER<0> (DMA NXM) is set. Reading this register
when DSER<4> and DSER<0> are clear returns undefined data.

The DEAR contains the map translated address of the page in local
memory which caused a memory error or nonexistent memory error
during an access by an external device or the Q22-bus interface for the
CPU during a local-miss global-hit transaction or Q22-bus map access.

The contents of this register are latched when DSER<4> or DSER<0>
sets. Additional main memory errors or nonexistent memory errors have
no effect on the DEAR until software clears DSER<4> and DSER<0>.

Mapped Q22-bus address bits <28:9> are loaded into DEAR bits <19:0>.
DEAR bits <31:20> always read as zeros (Figure 3—43).

3 2018 0

[MBZ lMAPPED Q22—-bus ADDRESS BITS <28:9> l

MA=X1457—-87

Figure 343 DMA Error Address Register

NOTE
This is a read only register. If a write is attempted, a machine
check generates.

3.8.10 Error Handling
The Q22-bus interface does not generate or check CDAL bus parity.

The Q22-bus interface checks all CPU references to Q22-bus memory and
1/O spaces to ensure that nothing but masked and unmasked longword
accesses are attempted. Any other type of reference causes a machine
check abort to initiate.

The Q22-bus interface maintains several timers to prevent incomplete
accesses from hanging the system indefinitely. These include a 10 ps
nonexistent memory timer for accesses to the Q22-bus memory and I/O
spaces, a 10 ps no sack timer for acknowledgment of Q22-bus DMA
grants, and a 10 ms no grant timer for acquiring the Q22-bus.

3-100 Architecture

If there is a nonexistent memory (NXM) error (10 ps timeout) while
accessing the Q22-bus on a demand read reference: the associated row
in the first-level cache is invalidated; DSER<7> is set; the address of the
Q22-bus page being accessed is captured in QBEAR<12:0>; and a machine
check abort is initiated.

If there is a NXM error on a prefetch read, or an interrupt acknowledge
vector read, then the prefetch or interrupt acknowledge reference aborts
but no information is captured and no machine check occurs.

If there is a NXM error on a masked write reference: DSER<7> sets; the
address of the Q22-bus page being accessed is captured in QBEAR<12:0>;
and an interrupt generates at IPL 1D through vector 60 3.

If the Q22-bus interface does not receive an acknowledgment within 10
us after it has granted the Q22-bus: the grant is withdrawn; no errors
are reported; and the Q22-bus interface waits 500 ns to clear the Q22-bus
grant daisy chain before beginning arbitration again.

If the Q22-bus interface tries to obtain Q22-bus mastership on a CPU
demand read reference and does not obtain it within 10 ms: the
associated row in the first-level cache is invalidated; DSER<2> is set;
and a machine check abort is initiated.

The Q22-bus interface also monitors Q22-bus signals BDAL<17:16> while
reading information over the Q22-bus so that parity errors detected by
the device being read from are recognized.

-If a parity error is detected by another Q22-bus device on a CPU demand
read reference to Q22-bus memory or I/O space: the associated row in
the first-level cache is invalidated; DSER<5> is set; the address of the
Q22-bus page being accessed is captured in QBEAR<12:0>; and a machine
check abort is initiated.

If a parity error is detected by another Q22-bus device on a prefetch
request read by the CPU: the prefetch aborts; the associated row in
the first-level cache is invalidated; DSER<5> is set; and the address of
the Q22-bus page being accessed is captured in QBEAR<12:0> but no
machine check is generated.

The Q22-bus interface also monitors the backplane BPOK signal to detect
power failures. If BPOK negates on the Q22-bus, a power-fail trap is
generated, and the CPU traps through vector 0C 15. The state of the Q22-
bus BPOK signal reads from SCR<15>. The Q22-bus interface continues
to operate after generating the power-fail trap, until DCOK negates.

4

KA650 Firmware

This chapter describes the functional operation of the KA650 firmware.
The firmware is VAX-11 code that resides in ROM on the KA650 module,
and gains control whenever the onboard CPU halts, or more precisely,
performs a processor restart operation. A halt means only that control is
transferred to the firmware. It does not mean that the processor actually
stops executing instructions.

4.1 KAGB50 Firmware Features

The firmware is located in two 64 Kbyte EPROMs on the KA650. The
KA650 firmware provides the following services:

* Diagnostic tests executed both at power-up and by request, which test
all components on the board, and verify the correct operation of the
CPU and memory modules.

* An interactive command language that allows the user to examine
and alter the state of the processor.

¢ Automatic/manual bootstrap or restart of an operating system
following processor halts.

¢ Support of various terminals and devices as the system console.

¢ Multilanguage support for displaying critical system messages and
handling LK201 country specific keyboards.

4—1

4-2 KA650 Firmware

4.1.1 Halt Entry, Exit, and Dispatch

The halt entry code is entered following system halts, resets, or severe
errors. The main purpose of this code is to save the state of the machine
on halt entry, transfer control to the firmware dispatcher, and restore the
state of the machine on exit to program I/O mode.

Naturally, the halt exit code is entered whenever a transition is desired
from halted state to the running state and it performs a restoration of the
saved context prior to the transition. The halt dispatcher determines the
nature of the halt, then transfers control to the appropriate code.

4.1.1.1 Halt Entry - Saving Processor State

The entry code, residing at physical address 2004 0000, is executed
whenever a halt occurs. The processor will halt for a variety of reasons.
The reason for the halt is stored in PR$_SAVPSL<13:8>(RESTART_
CODE), IPR 43. A complete list of the halt reasons and the associated
messages can be found in Table 4-10 in Section 4.8. PR$_SAVPC, IPR 42,
contains the value of the PC when the processor is halted. On a power-up,
PR$_SAVPC is undefined.

One of the first actions the firmware does after a halt is save the current
LED code, then it writes an "E" to the diagnostic LEDs. This action occurs
within several instructions upon entry into the firmware. The intent of
this action is to let the user know that at least some instructions have
been successfully executed. .

The KA650 firmware unconditionally saves the following registers on any
halt:

¢ RO through R15, the general purpose registers

e PR$_SAVPSL, the saved PSL register

¢ PR$_SCBB, the system control block base register

¢ DLEDR, the diagnostic LED register

®» SSCCR, the SSC configuration register

¢ ADxMCH & ADxMSK, the SSC address match and mask registers

NOTE

The SSC programmable timer registers are not saved. In some
cases, such as bootstrap, the timers are used by the firmware and
previous "time" context is lost.

KAB50 Firmware 4-3

Several registers are unconditionally set to predetermined values by the
firmware on any halt, processor initialization or bootstrap. This action
ensures that the firmware itself can run and protects the board from
physical damage.

Registers that fall into this category are:

* SSCCR, the SSC configuration register

e ADxMCH & ADxMSK, the SSC address match and mask registers
e CBTCR, the CDAL bus timeout control register

¢ TIVRx, the SSC timer interrupt vector registers

On every halt entry, the firmware sets the console serial line baud rate
based on the value read from the BDR and extends the halt protection
from 8 Kbyte to 128 Kbyte to include all of the EPROM.

4.1.1.2 Halt Exit - Restoring Processor State

When the firmware exits, it uses the currently defined saved context. This
context is initially determined by what is saved on entry to the firmware,
and may be modified by console commands, or automatic operations such
as an automatic bootstrap on power-up.

When restoring the context, the firmware will flush both caches if enabled,
and invalidate all translation buffer entries through the internal processor
register PR$_TBIA, IPR 57.

In restoring the context, the console pushes the user’s PSL and PC onto
the user’s interrupt stack, then executes an REI from that stack. This
implies that the user’s ISP is valid before the firmware can exit. This is
done automatically on a bootstrap. However, it is suggested that the SP is
set to a valid memory location before issuing the START or CONTINUE
command. Furthermore, the user should validate PR$_SCBB prior to
executing a NEXT command, since the firmware utilizes the trace trap
vector for this function. At power-up, the user ISP is set to 200 (hex) and
PR$_SCBB is undefined.

4—4 KAB50 Firmware

4.1.1.3 Halt Dispatch

The action taken by the firmware on a halt is dependent primarily on the
following information:

* The halt enable switch, BDR<7>(HALT ENABLE)
* The halt action field, CPMBX<1:0>(HALT _ACTION)

¢ The halt code, PR$_SAVPSL<13:8>(RESTART_CODE), in particular
the power-up state

In general, the halt enable switch governs whether external halt
conditions are recognized by the KA650. The halt action field in the
console program mailbox, is a two bit field used by operating systems to
force the firmware to enter the console, restart, or reboot following a halt,
regardless of the setting of the halt enable switch. The halt (or restart)
code is automatically deposited in PR$_SAVPSL on any processor restart
operation. The action taken on a halt is summarized in Table 4-1.

Table 4-1 Halt Action Summary

Halt Halt

Enable Power-Up Action Action

T T x diagnostics, halt

T F 0 halt

F T b diagnostics, bootstrap, halt
F F 0 restart, bootstrap, halt

x F 1 restart, halt

b4 F 2 bootstrap, halt

x F 3 halt

"T" indicates that the condition is true.
"F” indicates that the condition is false.
"x” indicates that the condition is "don’t care".

KAB50 Firmware 4-5

Multiple actions mean that the first action is taken and only if it fails is
the next action taken. Diagnostics are an exception, if diagnostics fail, the
console is entered.

Because the KA650 does not support battery backed up main memory, an
operating system restart operation is not attempted on a power-up.

4.1.1.4 External Halts

Several conditions can trigger an external halt (PR$_
SAVPSL<13:8>(RESTART CODE) = 2), and different actions are taken
depending on the condition.

An external halt can be caused by:

1. Pressing BREAK on the system console terminal, if the break enable
switch is set to enable.

2. Assertion of the BHALT line on the Q22-bus, if the SCR<14>(BHALT_
ENABLE) bit in the CQBIC is set.

3. Negation of DCOK, if the SCR<7>(DCOK_ACT) bit is set.

NOTE

The switch labeled RESTART on some BA213 and BA215 system
enclosures negates DCOK. The negation of DCOK may also be
asserted by the DEQNA sanity timer, or any other Q22-bus module
that chooses to implement the Q22-bus restart/reboot protocol.

4.1.2 Power-Up

On a power-up, the KA650 firmware performs actions that are unique to
this condition. Among these actions are initial power-up tests, locating
and identifying a console device, language query, and the remaining
diagnostics. Certain actions are dependent on the state of the mode
switch on the H3600-SA panel which has three settings: test, query, and
normal. This section describes the sequence of events which occurs on
power-up.

4-6 KA650 Firmware

4.1.2.1 Initial Power-Up Test

The first action performed on power-up is the initial power-up test
(IPT). The purpose of the IPT is to verify that the console private
NVRAM is valid and if invalid to test and initialize the NVRAM.
Prior to checking the NVRAM, the IPT waits for power to stabilize by
monitoring SCR<5>(POK). Once power is stable, the IPT then tests to
see if the backup batteries failed during the power failure by checking
SSCCR<31>(BLO). If the batteries failed, then the IPT will initialize
certain non-volatile data, such as the default boot device, to a known
state. In any case, the IPT then initializes other data structures and
performs a processor initialization. If the the mode switch is set to test,
the IPT then tests the console serial line as described in Section 4.1.3.

NOTE

All IPT failures are considered fatal, and the KA650 will appear
to hang with a value on the LEDs indicating the point of failure.
Refer to Table 4-2 for the meaning of the LEDs.

4.1.2.2 Locating a Console Device

After the IPT has completed successfully, the firmware attempts to locate
a console device and find out what type of device it is. Normally, this is
the device attached to the console serial line. In this case, the firmware
will send out a device attributes escape sequence to the console serial line
to determine the type of terminal attached and the functions it supports.
Terminals that do not respond to the device attributes request correctly
are assumed to be hardcopy devices. If a QDSS device is present, it is

- used as the primary console device.

NOTE '

If a QDSS device is present, it is assumed that the Q22-bus
interface is working. At this point in the firmware the Q22-bus has
not yet been tested. Any faults on Q22-bus devices may prevent
correct operation of the console.

Once a console device has been found, the firmware displays the KA650
banner message, similar to that displayed below.

KA650-A V5.3, VMB 2.7

KA650 Firmware 4-7

The banner message contains the processor name, the version of the
firmware, and the version of VMB. The letter code in the firmware version
indicates whether the firmware is pre-field test ("X"), field test ("T") or an
official release ("V"). The first digit indicates the major release number
and the trailing digit indicates the minor release number.

Next, if the designated console device supports DEC mutlinational
character set (MCS) and either the battery failed during power failure

or the mode switch is set to query, the firmware prompts for the console
language. The firmware first displays the language selection menu shown
in Example 4-1 in Section 4.14. -

After the language query, the firmware invokes the ROM-based
diagnostics, and eventually displays the console prompt.

4.1.3 Mode Switch Set to Test

If the mode switch is set to test, the console serial line external loopback
test is executed at the end of the IPT. The purpose of this test is to verify
that the console serial line connections from the KA650 through the
H3600-SA panel are intact.

NOTE

An external loopback connector should be inserted in the serial
line connector on the H3600-SA panel prior to cycling power to
invoke this test. ‘

During this test, the firmware toggles between two states, active and
passive, each a few seconds long and each displaying a different number
on the LEDs.

During the active state (about 3 seconds long), the LEDs are set to 6.

In this state, the firmware reads the baud rate and mode switch, then
transmits and receives a character sequence. If the mode switch has been
mcved from the test position, the firmware exits the test and continues as
if on a normal power-up.

During the passive state (about 7 seconds long), the LEDs are set to 3.

If at any time the firmware detects an error (parity, framing, overflow, or
no characters), the firmware hangs with a 6 on the LEDs.

4-8 KAB650 Firmware

4.1.4 Mode Switch Set to Query

If the mode switch is set to query (or the firmware detects that the battery
failed during a power loss), the firmware queries the user for a language
which is used for displaying critical system messages.

The language query menu is shown in Example 4-1. If no response is
received within 30 seconds, the language defaults to English (United
States/Canada).

NOTE

This action is only taken if the console device supports DEC MCS.
Any console device that does not support DEC MCS, such as a
VT100, defaults to English (United States/Canada).

After this inquiry, the firmware proceeds as if the mode switch were set to
normal, as described in Section 4.1.5.

1) Dansk

2) Deutsch (Deutschland/Osterreich)
3) Deutsch (Schweiz)

4) English (United Kingdom)

5) English (United States/Canada)
6) Espainol

7) Frangais (Canada)

8) Frangais (France/Belgique)

9) Francails (Suisse)
10) Italiano
11) Nederlands
12) Norsk
13) Portugués
14) Suomi
15) Svenska

(1..15):

Example 4-1 Language Selection Menu

KAB50 Firmware 4-9

4.1.5 Mode Switch Set to Normal

If the mode selected is normal, then the next step in the power-up
sequence is to execute the bulk of ROM-based diagnostics. In addition
to message text, a countdown is displayed to indicate diagnostic test
progress. A successful diagnostic countdown is shown in Example 4-2.

Performing normal system tests.
40..39..38..37..36..35..34..33..32..31.-.30..29..28..27..26..25..
24..23..22..21..20..19..18..17..16..15..14..13..12..11..10..09..
08..07..06..05..04..03.. .

Tests completed.

Example 4-2 Normal Diagnostic Countdown

In the case of diagnostic failures, a diagnostic register dump is performed
similar to that shown in Example 4-3. Depending on the failure, the
remaining diagnostics may execute and the countdown continue. For a
detailed description of the register dump refer to Section 4.4.

Performing normal system tests.
40..39..38..37..36..35..34..

2?34 2 08 FF 00 0000

P1=00000000 P2=00000003 P3=00000031 P4=00000011 P5=00002000
P6=FFFFFFFF P7=00000000 P8=00000000 P9=00000000 P10=2005438F
r0=00114B98 rl1=FFFFFFFF r2=2005D2F0 r3=55555555 xr4=RAAAAAAR
r5=00000000 r6=AAAAARAAA r7=00000000 r8=00000000 ERF=80000180
33..32..31..30..29..28..27..26..25..
24..23..22..21..20..19..18..17..16..15..14..13..12..11..10..09..
08..07..06..05..04..03..

Nermal operation not possible.

Example 4-3 Abnormal Diagnostic Countdown

4-10 KAS650 Firmware

If the diagnostics have successfully completed and halts are enabled, the
firmware displays the console prompt, >>>, and enters console I/O mode.
If the diagnostics have successfully completed and halts are disabled, the
firmware attempts to boot an operating system (Example 4—4).

Loading system software.

No default boot device has been specified.
Devices:

-DUAO (RD54)

-XQA0 (08-00-2B-05-85-02)

Device? [XQAO]:

(BOOT/R5:0 XQAO)

2..
=XQa0

Example 44 Console Boot Display with no Default Boot Device

4.1.6 LED Codes

In addition to the console diagnostic countdown, a hexadecimal value

is displayed by the LEDs on the H3600-SA panel. The same value is
displayed by the four red LEDs on the KA650 module. The purpose of
the LED display is to improve fault isolation, when there is no console
terminal or when the hardware is incapable of communicating with the
console terminal. Table 4-2 lists all LED codes and the associated actions
which are performed at power-up. The LED code is changed before the
corresponding test or action is performed.

Table 4~2 LED Codes

Value Actions

F Initial state on power-up, no code has executed
E Entered ROM, some instructions have executed
D Waiting for power to stabilize (POK)

C SSC and ROM tests
B CPU tests
A FPA tests

KA650 Firmware 4-11

Table 4-2 (Cont.) LED Codes

Actions

[-]
(]

CMCTL tests

Memory tests

CQBIC (Q22-bus) tests

Console loopback tests (optionally QDSS tests)
Board-level cache tests

Miscellaneous tests

Console IO mode

Control passed to VMB

Control passed to secondary bootstrap

Program I/O mode, control passed to operating system

4.2 Console Service

The KA650 is by definition halted, whenever the console program is
running and the triple angle prompt, >>>, is displayed on the console
terminal. When halted, the firmware provides most of the services of a
standard VAX console.

4.2.1 Console Control Characters

In console /O mode, several characters have special meanings.

Return| — ends a command line. No action is taken on a command
until after it is terminated by a carriage return. A null line
terminated by a carriage return is treated as a valid, null command.
No action is taken, and the console re-prompts for input. Carriage
return is echoed as carriage return, line feed.

— when the operator presses the console deletes the
character that the operator previously typed. What appears on the
console terminal depends on whether the terminal is a video terminal
or a hardcopy terminal. For hard copy terminals, when is
pressed, the console echoes with a backslash (\), followed by the
character being deleted. If the operator presses additional | Rubouts,
the additional characters deleted are echoed. When the operator types
a non-rubout character, the console echoes another backslash, followed
by the character typed. The result is to echo the characters deleted,
surrounding them with backslashes.

4-12 KA650 Firmware

For example:
The operator types: EXAMI;E<Rubout><Rubout>NE<Return>
The console echoes: EXAMI;E\E;\NE<Return>

The console sees the command line: EXAMINE<Return>

For video terminals, when is pressed, the previous character
is erased from the screen and the cursor is restored to its previous
position.

The console does not delete characters past the beginning of a
command line. If the operator presses more [Ruboutjs than there

are characters on the line, the extra rubouts are ignored. If a
is pressed on a blank line, it is ignored.

* [Ctl][C] — causes the console to echo AC and to abort processing of a
command. has no effect as part of a binary load data stream.

€] clears S| and reenables output stopped by ol

. — causes the console to throw away transmissions to the

console terminal until the next is entered. is echoed as
AO<CR> when it disables output, but is not echoed when it reenables
output. Qutput is reenabled if the console prints an error message, or
if it prompts for a command from the terminal. Displaying a REPEAT
command does not reenable output. When output is reenabled for
reading a_ command, the console prompt is displayed. Output is also

enabled E].

o — resumes output to the console terminal. Additional Qs
are ignored. [and are not echoed.

.] — stops output to the console terminal until is pressed.
and are not echoed.

. U— the console echoes AU<CR>, and deletes the entire line.

If is pressed on an empty line, it is echoed, and the console
prompts for another command. .

KA650 Firmware 4—13

o [R] — causes the console to echo <CR><LF> followed by the current
command line. This function can be used to improve the readability of
a command line that has been heavily edited. When [Cis pressed
as part of a command line, the console deletes the line as it does with

ff]

e BREAK - If the console is in console I/O mode, BREAK is equivalent
to but is echoed as ~C.

NOTE

If the local console is in program I/O mode and halts are
disabled, BREAK is ignored. If the console is in program /O
mode and halts are enabled, BREAK causes the processor to
halt and enter console /O mode.

Control characters are typed by pressing the character key while holding
down the control key.

If an unrecognized control character (ASCII code less than 32 decimal or
between 128 and 159 decimal) is typed, it is echoed as up arrow followed
by the character with ASCII code 64 greater. For example, BEL (ASCII
code 7) is echoed as ~G, since capital G is ASCII code 7+64=71. When

a control character is deleted with it is echoed the same way.
After echoing the control character, the console processes it like a normal
character. Commands with control characters are invalid, unless they are
part of a commensi, and the console will respond with an error message.

Note that control codes from 128 to 159, the C1 control codes, cannot be
entered by any present DIGITAL terminal. The character with code 7 and
the character with coede 135 will both echo as AG.

4.2.2 Console Command Syntax

The console accepts commands of lengths up to 80 characters. It responds
to longer commands with an error message. The count does not include
rubouts, rubbed out characters, or the terminating carriage return.

Commands may be abbreviated. Abbreviations are formed by dropping
characters from the end of a keyword, as long as the resulting keyword is
still unique. Most commands can be uniquely expressed with their first
character.

Multiple adjacent spaces and tabs are treated as a single space by the
console. Leading and trailing spaces and tabs are ignored. Tabs are
echoed as spaces.

4-14 KA650 Firmware

Command qualifiers can appear after the command keyword, or after any
symbol or number in the command. A qualifier is any contiguous set of
non whitespace characters that is started with a slash (ASCII code 47
decimal).

All numbers (addresses, data, counts) are in hexadecimal. Note, though,
that symbolic register names number the registers in decimal. The
console does not distinguish between upper and lower case either in
numbers or in commands; both are accepted.

4.2.3 Console Command Keywords

The KA650 firmware implements a variant of the VAX SRM console
command set. The only commands defined in the VAX SRM and

not supported by the KA650 are MICROSTEP, LOAD, and @. The
CONFIGURE, HELP, MOVE, SEARCH and SHOW commands have
been added to the command set to facilitate system debugging and access
to system parameters. In general, however, the KA650 console is similar
to other VAX consoles. Table 4-3 lists command and qualifier keywords.

Table 4-3 Command, Parameter, and Qualifier Keywords

Command Keywords

Processor Control Data Transfer Console Control
B*OOT D*EPOSIT CONF+*IGURE
C*ONTINUE E*XAMINE F*IND
H*ALT . M*QOVE R*EPEAT
I*NITIALIZE SEA*RCH SET
N*EXT X SH*OW
S*TART T*EST
U*NJAM !

SET & SHOW Parameter Keywords
BO*OT BF*L(A)G DE*VICE
ET*HERNET H*OST L*ANGUAGE
M*EMORY Q*BUS RIL*V12

U*QSSP VERS*ION

KAB50 Firmware 4-15

Table 4-3 (Cont.) Command, Parameter, and Qualifier Keywords

Qualifier Keywords
Address Space

Data Control Control Command Specific
/B G /IN*STRUCTION
W I /NO*T
/L P /R5: or/
/Q A% /RP*B or /ME*M
/N: M /F*ULL
/S*TEP: g /DU*P or

/MA*INTENANCE
/WR*ONG U*QSSP

/DI*SK or /T*APE

/SE*RVICE

"*" indicates the minimal number of characters that are required to uniquely identify the
keyword.

A complete summary of the console commands is provided in Table 4-5
following the command descriptions in Section 4.2.7.

4.2.4 Console Command Qualifiers

All qualifiers in the console command syntax are global. That is, they may
appear in any place on the command line after the command keyword.

All qualifiers have unique meanings throughout the console, regardless of
the command. For example, the "/B" qualifier always means byte.

A summary of the qualifiers recognized by the KA650 console is provided
in Table 4—6 following the command descriptions in Section 4.2.7.

4.2.5 Command Address Specifiers

Several commands take an address or addresses as arguments. In the
context of the console, an address has two components, the address space,
and the offset into that space. The console supports 6 address spaces:
physical memory (/P qualifier), virtual memory (/V qualifier), general
purpose registers (/G qualifier), internal processor registers (/I qualifier),
protected memory (/U qualifier), and the PSL (/M qualifier).

4-16 KAB50 Firmware

The address space that the console references is inherited from the
previous console reference, unless explicitly specified. The initial address
space reference is PHYSICAL.

The KA650 console supports symbolic references to addresses. A symbolic
reference simultaneously defines the address space for a given symbol.
Table 44 lists the symbolic addresses supported by the console grouped
according to address space.

Table 44 Console Symbolic Addresses
Symbol Address Symbol Address

/G—General Purpose Registers

RO 00 R11 0B
R1 01 R12 oC
R2 02 R13 oD
R3 03 R14 OE
R4 04 R15 OF
R5 05 AP oC
Ré6 06 FP oD
R7 07 SP OE
R8 08 PC OF
R9 09 PSL —

R10 0A

/1 - Internal Processor Registers

PR$_KSP 00 PR$_SISR 15
PR$_ESP 01 PR$_ICCR 18
PR$_SSP 02 PR$_RXCS 20
PR$_USP 03 PR$_RXDB 21
PR$_ISP 04 PR$_TXCS 22
PR$_POBR 08 PR$_TXDB 23
PR$_POLR 09 PR$_TBDR 24
PR$_P1BR 0A PR$_CADR 25
PR$_PILR 0B PR$_MCESR 26
PR$_SBR oC PR$_MSER 27
PR$_SLR oD PR$_SAVPC 2A
PR$_PCBB 10 PR$_SAVPSL 2B

Note: All symbolic values in this table are in hexadecimal.

Table 44 (Cont.) Console Symbolic Addresses

KAB50 Firmware

Symbol Address Symbol Address
/1 - Internal Processor Registers

PR$_SCBB 11 PR$_ 37

IORESET
PR$_IPL 12 PR$_MAPEN 38
PR$_ASTLV 13 PR$_TBIA 39
PR$_SIRR 14 PR$_TBIS 3A
PR$_NICR 19 PR$_SID 3E
PR$_ICR 1A PR$_TBCHK 3F
PR$_TODR 1B

/P - Physical (VAX I/O Space)

QBIO 2000 0000 QBMEM 3000 0000
QBMBR 2008 0010
ROM 2004 0000 CACR 2008 4000
BDR 2008 4004
DSCR 2008 0000 DSER 2008 0004
DMEAR 2008 0008 DSEAR 2008 000C
IPCRO 2000 1F40 IPCR1 2000 1F42
IPCR2 2000 1F44 IPCR3 2000 1F46
SSC_RAM 2014 0400 SSC_CR 2014 0010
SSC_CDAL 2014 0020 SSC_DLEDR 2014 0030
SsC_ 2014 0130 SSC_ 2014 0134
ADOMAT ADOMSK
SSC_ 2014 0140 SSC_ 2014 0144
ADIMAT ADIMSK
SSC_TCRO 2014 0100 SSC_TIRO 2014 0104
SSC_TNIRO 2014 0108 SSC_TIVRO 2014 010C
SSC_TCR1 2014 0110 SSC_TIR1 2014 0114
SSC_TNIR1 2014 0118 SSC_TIVR1 2014 011C
MEMCSRO 2008 0100 MEMCSR1 2008 0104
MEMCSR2 2008 0108 MEMCSR3 2008 010C
MEMCSR4 2008 0110 MEMCSR5 2008 0114
MEMCSR6 2008 0118 MEMCSR7 2008 011C
MEMCSRS 2008 0120 MEMCSR9 2008 0124
MEMCSR10 2008 0128 MEMCSR11 2008 012C

4-18 KAB50 Firmware

Table 44 (Cont.) Console Symbolic Addresses

Symbol Address Symbol Address
/P - Physical (VAX I/O Space)
MEMCSR12 2008 0130 MEMCSR13 2008 0134
MEMCSR14 2008 0138 MEMCSR15 2008 013C
MEMCSR16 2008 0140 MEMCSR17 2008 0144

Any Address Space

" The last location successfully referenced in an EXAMINE or
DEPOSIT command.
The location immediately following the last location successfully
referenced in an EXAMINE or DEPOSIT command. For
references to physical or virtual memory spaces, the location
referenced is the last address, plus the size of the last reference
(1 for byte, 2 for word, 4 for longword, 8 for quadword). For
other address spaces, the address is the last address referenced
plus one.
The location immediately preceding the last location
successfully referenced in an EXAMINE or DEPOSIT command.
For references to physical or virtual memory spaces, the
location referenced is the last address minus the size of
this reference (1 for byte, 2 for word, 4 for longword, 8 for
quadword). For other address spaces, the address is the last
addressed referenced minus one.
"@" The location addressed by the last location successfully
referenced in an EXAMINE or DEPOSIT command.

"

"o

4.2.6 References to Processor Registers and Memory

The KA650 console is implemented by macrocode executing from
EPROM. Actual processor registers cannot be modified by the console
command interpreter. When the console is entered, the console saves
the processor registers in console memory and all command references to
them are directed to the corresponding saved values, not to the registers
themselves.

When the console reenters program I/O mode, the saved registers are
restored and any changes become operative only then. References to
processor memory are handled normally. The binary load and unload
command cannot reference the console memory pages.

KAB50 Firmware 4—19

The following registers are saved by the console, and any direct reference
to these registers will be intercepted by the console and the access will be
to the saved copies:

L]

R0...R15, the general purpose registers

PR$_IPL, the interrupt priority level register
PR$_SCBB, the system control block base register |
PR$_ISP, the interrupt stack pointer

PR$MAPEN, the memory management enable register

The following registers are also saved, yet may be accessed directly
through console commands. Writing values to these registers may make
the console inoperative.

PR$_SAVPC, the halt PC

PR$_SAVPSL, the halt PSL

ADxMCH/ADxMSK, the SSC address decode and match registers
SSCCR, the SSC configuration register

DLEDR, the SSC diagnostic LED register

4.2.7 Console Commands

The following sections define the commands accepted by the console, when
it is in console I/O mode. The following conventions are used to describe
command syntax:

[] denotes command elements that are optional.
{ } denotes a command element.

... denotes a list of command elements.

4-20 KA850 Firmware

4.2.7.1 BOOT
Format :

BOOT [qualifier] [{boot_device}[:]]

Description :

The console initializes the processor and transfers execution to VMB.
VMB attempts to boot the operating system from the specified device

or the default boot device if none is specified. The console qualifies the
bootstrap operation by passing a boot flag to VMB in R5. A more detailed
description of the bootstrap process and how the default bootstrap device
is determined is described in Section 4.3.

In the case where either the qualifiers or the device name is absent, then
the corresponding default value is used. Explicitly stating the boot flags

or the boot device overrides the current default value for the current boot
request, but does not change the corresponding default value in NVRAM.

The default boot device and boot flags may be set in the following three
ways:

1. The operating system may write a default boct device and flags into
the appropriate locations in NVRAM (Section 4.7.3).

2. The user may explicitly set the default boot device and boot flags with
the console SET BOOT and SET BFLAG commands respectively.

3. The console prompts the user for the default boot device, if any of the
following conditions are met:

¢ The power-up mode switch is set to query mode.

° The console detects that the battery failed, and therefore the
contents of NVRAM are no longer valid.

* The console detects that the default boot device has not been
explicitly set by the user. Either a previous device query timed out
and defaulted to ESAQ or neither (1) nor (2) has been performed.
Simply stated, the console will prompt the user on each and every
powerug for a default boot device, until such a request has been
satisfied.

On power-up if no default boot device is specified in NVRAM, the console
issues a list of potential bootable devices and then prompts the user for
a device name. If no device name is entered within 30 seconds, ESAQ is
used. However, ESAOQ does not become the default boot device.

Qualifiers :

KAB50 Firmware 4-21

e /Rb5:{boot_flags} Boot flags is a 32 bit hex value that is passed
to VMB in R5. No interpretation of this value is performed by the
console. Refer to Figure 4-1 for the bit assignments of R5. A default
boot flags longword may be specified using the SET BFLAG command
and displayed with the SHOW BFLAG command.

* /{boot_flags} Equivalent to the form above.

Arguments :

e [{boot_device}]l] The boot device name can be any string, up to
17 characters long. Longer strings cause a VAL TOO BIG error
message to be issued from the console. Otherwise the console makes
no attempt at interpreting or validating the device name. The console
converts the string to all upper case, and passes VMB a string
descriptor to this device name in R0. A defarlt boot device may be
specified using the SET BOOT command and displayed with the
SHOW BOOT command. The factory default device is the Ethernet

port, ESAQ.
Examples :

>>>show boot
DUAO

>>>show bflag

0

>>>b

(BOOT/R5:0 DUAO)

2..
-DUAC

>>>bo xgal
(BOOT/R5:0 XQA0)

2..
=XQA0

>>>boot /10
(BOOT/R5:10 DURAO)

2..
-DUAO
>>>boot /r5:220 xgal
(BOOT/R5:220 XQAO0)

2..
=-XQa0

! Boot using

! Boot using

device.

! Boot using

device.

! Boot using

default boot flags and device.

default boot flags and specified

specified boot flags and default

specified boot flags and device.

4-22 KAB50 Firmware

4.2.7.2 CONFIGURE
Format :

CONFIGURE

Description :

CONFIGURE is similar to the VMS SYSGEN CONFIG utility. This
feature provides information, that is typically available only with a
running operating system, to simplify system configuration.

The CONFIGURE command invokes an interactive mode that permits the
user to enter Q22-bus device names, then generates a table of Q22-bus

I/0 page device CSR addresses and device vectors.
Qualifiers :
None
Arguments :
None
Examples :
>>>config

Enter device configuration, HELP, or EXIT
Device,Number? help

Devices:
LpV1l KXJ11l DLV11J DZQ11
RLV12 TSVOS RXV21 DRV11W
DMV11 DELQA DEQNA DESQA
RRD50 RQC25 KFQSA-DISK TQK50
RV20 KFQSA~-TAPE KMV1l IEQ11
CXaleé CXBlé CXYo08 VCRO1
ILNV21 QPSS DSV11 ADV11C
Kwv11c ADV11D AAV11D VCRBO2
DRQ3B vsval IBQO1 IDV1ia
IDV11D IAV11A IAV11B MIRA
DESNA IGQ11

Numbers:

1 to 255, default is 1
Device,Number? radx3,2
Device,Number? dhvll
Device,Number? qgdss
Device,Number? tgkS50
Device,Number? tgk70
Device,Number? exit

DzZV1l
DRV11B
RQEDX3
TQK70
DHQ11
QVvss
AAV11C
QDSs
IDV11B
ADQ32

DFAOl
DPV11
KDAS0
TUS1E
DHV11
ILNV1l
AXV11C
DRV11lJ
IDV1lcC
DTCO4

KA650 Firmware 4-23

Address/Vector Assignments
-772150/154 RQDX3
-760334/300 RQDX3
-774500/260 TQK50
-760444/304 TQK70
-760500/310 DHV11
-777400/320 QDSS

>>>

4.2.7.3 CONTINUE
Format :

CONTINUE

Description :

The processor begins instruction execution at the address currently
contained in the program counter. Processor initialization is not
performed. The console enters program /O mode. Internally, the continue
command pushes the user’s PC and PSL onto the user’s ISP, and then
executes an REI instruction. This implies that the user’s ISP is pointing
to some valid memory.

Qualifiers :
None
Arguments :
None
Examples :

>>>continue
>>>

4-24 KAB50 Firmware

4.2.7.4 DEPOSIT
Format :

DEPOSIT [qualifier_list] {address} {data} [{data]}...]

Description :

Deposits data into the address specified. If no address space or data size
qualifiers are specified, the defaults are the last address space and data
size used in a DEPQOSIT, EXAMINE, MOVE or SEARCH command. After
processor initialization, the default address space is physical memory,
the default data size is a longword and the default address is zero. If
conflicting address space or data sizes are specified, the console ignores
the command and issues an error message.

Qualifiers :)

e /B — The/cia/ta size is byte.

* /W — The data size is word.

¢ /L — The data size is longword.
¢ /Q — The data size is quadword.

® /G — The address space is the general purpose register set, RO
through R15. The data size is always long.

¢ /I — The address space is internal processor registers (IPRs). These
are the registers only accessible by the MTPR and MFPR instructions.
The data size is always long.

¢ /M — The address space is the processor status longword (PSL).
® /P — The address space is physical memory.

® /V — The address space is virtual memory. All access and protection
checking occur. If the access would not be allowed to a program
running with the current PSL, the console issues an error message.
Virtual space DEPOSITs cause the PTE<M> bit to be set. If memory
mapping is not enabled, virtual addresses are equal to physical
addresses.

®* /U — Access to console private memory is allowed. This qualifier also
disables virtual address protection checks. On virtual address writes,
the PTE<M> bit will not be set if the /U qualifier is present. This
qualifier is not inherited, and must be respecified on each command.

KA650 Firmware 4-25

¢ /N:fcount} — The address is the first of a range. The console
deposits to the first address, then to the specified number of
succeeding addresses. Even if the address is the symbolic address
, the succeeding addresses are at larger addresses. The symbolic
address specifies only the starting address, not the direction of
succession. For repeated references to preceding addresses, use
REPEAT DEPOSIT - <DATA>.

e /STEP:{size} — The number to add to the current address.
Normally this defaults to the data size, but is overridden by the
presence of this qualifier. This qualifier is not inherited.

e /WRONG — The ECC bits for this data forced to a value of 3 (ECC
bits of 3 will always generate a double bit error).

Arguments :

¢ {address} — A long word address that specifies the first location
into which data is deposited. The address can be any legal address
specifier as defined in Section 4.2.5 and Table 4—4.

* {data] — The data to be deposited. If the specified data is larger
than the deposit data size, the console ignores the command and
issues an error response. If the specified data is smaller than the
deposit data size, it is extended on the left with zeros.

e [{data}] — Additional data to be deposited (up to a maximum of 6

values).
Examples :
>>>d/p/b/n:1FF 0 0 ! Clear first 512 bytes of physical memory.
>>>d/v/1/n:3 1234 5 ! Deposit 5 into four longwords starting at

virtual memory address 1234.

>>>d/n:8 RO FFFFFFFF ! Loads GPRs RO through R8 with -1.
>>>d/n:200 - O ! Starting at previous address, clear 513 bytes.
>>>d/1/p/n:10/s:200 0 8 ! Deposit 8 in the first longword of

the first 17 pages in physical memory.
>>>

4-26 KA650 Firmware

4.2.7.5 EXAMINE
Format :

EXAMINE [qualifier_list] [{address}]

Description :

Examines the contents of the memory location or register specified by the
address. If no address is specified, + is assumed. The display line consists
of a single character address specifier, the hexadecimal physical address
to be examined, and the examined data also in hexadecimal.

EXAMINE uses the same qualifiers as DEPOSIT. However, the /WRONG
qualifier will cause examines to ignore ECC errors on reads from
physical memory. Additionally, the examine command supports an
/INSTRUCTION qualifier, which will disassemble the instructions at

the current address.

Qualifiers :

e /B — The data size is byte.

e /W — The data size is word.

* /L — The data size is longword.
°* /Q — The data size is quadword.

* /G — The address space is the general purpose register set, RO
through R15. The data size is always long.

¢ /I — The address space is internal processor registers (IPRs). These
are the registers only accessible by the MTPR and MFPR instructions.
The data size is always long.

® /M — The address space is the processor status longword (PSL).

¢ /P — The address space is physical memory. Note that when virtual
memory is examined, the address space and address in the response
are the translated physical address.

KAB50 Firmware 4-27

IV — The address space is virtual memory. All access and protection
checking occur. If the access would not be allowed to a program
running with the current PSL, the console issues an error message.
If memory mapping is not enabled, virtual addresses are equal to
physical addresses.

/M — The address space and display are the PSL. The data size is
always long.

/U — Access to console private memory is allowed. This qualifier
also disables virtual address protection checks. This qualifier is not
inherited, and must be respecified with each command.

/N:{count} — The address is the first of a range. The console
deposits to the first address, then to the specified number of
succeeding addresses. Even if the address is the symbolic address
(-), the succeeding addresses are at larger addresses. The symbolic
address specifies only the starting address, not the direction of
succession. For repeated references to preceding addresses, use
REPEAT EXAMINE - <DATA>.

/STEP:{size} — The number to add to the current address.
Normally this defaults to the data size, but is overridden by the
presence of this qualifier. This qualifier is not inherited.

/WRONG — ECC errors on this read access to main memory are
ignored.

/INSTRUCTION — Disassemble and display the VAX Macro-32
instruction at the specified address.

Arguments :

[{address}]] — A longword address that specifies the first location
to be examined. The address can be any legal address specifier as
defined in Section 4.2.5 and Table 4—4. If no address is specified, + is
assumed.

4-28 KAB50 Firmware

Examples :

>>>ex pc

G 00000O0OF
>>>ex sp

G 0000000E
>>>ex psl

M 00000000
>>>e/m

M 00000000
>>>e r4/n:5
00000004
00000005
00000006
00000007

FFFFFFFC
00000200
041F0000
C41F0000

00000000
00000000
00000000
00000000
00000008 00000000
00000009 801DS9000
>>>ex pr$_scbb

I 00000011 2004A000
>>>e/p O

P 00000000 00000000
>>>ex /ins 20040000

P 20040000 11 BRB
>>>ex /ins/n:5 20040019

Q000600

P 20040019 DO MOVL
P 20040024 D2 MCOML
P 2004002F D2 MCOML
P 20040036 7D MOVQ
P 2004003D DO MOVL
P 20040044 DB MFPR
>>>e/ins
P 20040048 DB MFPR
>>>
4.2.7.6 FIND
Format :
FIND [qualifier-list]
Description :

! Examine the PC.

! Examine

! Examine

! Examine

! Examine

! Examine

! Examine

! Examine
20040019

the SP.
the PSL.
PSL another way.

R4 through RS.

the SCBB, IPR 17.
local memory O.

lst byte of EPROM.

! Disassemble from branch.

I~#20140000,@#20140000
@#20140030, @#20140502
S~#0E, @#20140030

RO, @#201404B2
I~#201404B2,R1

S~ #23,B"44 (R1)

! Look at

S~$#2B,B~48 (R1)

next instruction.

The console searches main memory starting at address zero for a page-
aligned 128 Kbyte segment of good memory, or a restart parameter block
(RPB). If the segment or block is found, its address plus 512 is left in SP
(R14). If the segment or block is not found, an error message is issued,
and the contents of SP are preserved. If no qualifier is specified, /RPB is

assumed.

Qualifiers :

KAB50 Firmware 4-29

¢ /MEMORY — Search memory for a page aligned block of good
memory, 128 Kbytes in length. The search looks only at memory that
is deemed usable by the bitmap. This command leaves the contents of

memory unchanged.

e /RPB — Search all of physical memory for a restart parameter block.
The search does not use the bitmap to qualify which pages are looked
at. The command leaves the contents of memory unchanged.

Arguments :
None

Examples :

>>>ex sp

G O0O0OOOOE 00000000
>>>find /mem
>>>ex sp

G OO0O0OOOCE 00000200
>>>find /rpb
22C FND ERR 00C00004
>>>

4.2.7.7 HALT
Format :

HALT

Description :

! Check the SP.

! Look for a valid 128Kb.
! Note where it was found.

! Check for valid RPB.
! None to be found here.

This command has no effect and is included for compatibility with other

consoles.

4-30 KA650 Firmware

Qualifiers :
None
Arguments :
None
Examples :

>>>halt ! Pretend to halt.
>>>

4.2.7.8 HELP
Format :

HELP

Description :

This command has been included to help the console operator answer
simple questions about command syntax and usage.

Qualifiers :
None

Arguments :
None

Examples :

>>>help

Following is a brief summary of all the commands supported by the console:

UPPERCASE denotes a keyword that you must type in

| denotes an OR condition

[] denotes optional parameters

<> denotes a field that must be filled in
with a syntactically correct value

’alid qualifiers:
/B /W /L /Q /INSTRUCTION
/G /I /V /P /M
/STEP: /N: /NOT
/WRONG /U

KAB50 Firmware 4-31

Valid commands:
DEPOSIT [<qualifiers>] <address> [<datum> [<datum>]]
EXAMINE ([<qualifiers>] [<address>]
MOVE [<gualifiers>] <address> <address>
SEARCH [<qualifiers>] <address> <pattern> [<mask>]
SET BFL(A)G <boot_flags>
SET BOOT <boot_device>[:]
SET HOST/DUP/UQSSP </DISK | /TAPE> <controller number> [<task>]
SET HOST/DUP/UQSSP <physical CSR_address> [<task>]
SET HOST/MAINTENANCE/UQSSP/SERVICE <controller_pumber>
SET HOST/MAINTENANCE/UQSSP <physical_CSR_address>
SET LANGUAGE <language_number>
SHOW BFL(A)G
SHOW BOOT
SHOW DEVICE
SHOW ETHERNET
SHOW LANGUAGE
SHOW MEMORY |[/FULL]
SHOW RLV12
SHOW QBUS
SHOW UQSSP
SHOW VERSION
HALT
INITIALIZE
UNJAM
CONTINUE
START <address>
REPEAT <command>
X <address> <count>
FIND [/MEMORY | /RPR]
TEST [<test_code> [<parameters>]]
BOOT [/R5:<boot_flags> | /<boot_£lags>] [<boot_device>[:]]
NEXT [count]
CONFIGURE
HELP

>>>

4-32 KA650 Firmware

4.2.7.9 INITIALIZE
Format :

INITIALIZE

Description :

A processor initialization is performed. The following registers are
initialized, as specified in the VAX Architecture Reference Manual.

Register Initialized Value

PSL 041F0000

IPL 1F

ASTIVL 4

SISR 0

ICCS Bits <6> and <0> are clear, the rest are
UNPREDICTABLE

RXCS 4]

TXCS 80

MAPEN o]

CPU cache Disabled, all entries invalid

Instruction buffer Unaffected

Console previous Longword, physical, address 0

reference

TODR Unaffected

Main memory Unaffected

General registers Unaffected

Halt code Unaffected

Bootstrap in progress Unaffected

flag

Internal restart in Unaffected

progress flag

KA650 Firmware 4-33

The KA650 firmware performs the following additional initialization:
* The CDAL bus timer is initialized.

* The address decode and match registers are initialized.

* The programmable timer interrupt vectors are initialized.

¢ The BDR registers are read to determine the baud rate, and then the
SSCCR is configured accordingly.

e All error status bits are cleared.
Qualifiers :
None
Arguments :
None
Examples :

>>>init
>>>

4.2.7.10 MOVE
Format :

MOVE [qualifier-list] {src_address} {dest_address}

Description :

The console copies the block of memory starting at the source address to
a block beginning at the destination address. Typically, this command
is used with the /N: qualifier to transfer large blocks of data. The
destination will correctly reflect the contents of the source, regardless
of the overlap between the source and the data.

The MOVE command actually performs byte, word, longword, and
quadword reads and writes as needed in the process of moving the data.
Moves are only supported for the PHYSICAL and VIRTUAL address
spaces.

4-34 KA650 Firmware

Qualifiers :

/B — The data size is byte.

/W — The data size is word.

/L — The data size is longword.

/Q — The data size is quadword.

/P — The address space is physical memory.

/V — The address space is virtual memory. All access and protection
checking occur. If the access is not allowed to a program running with
the current PSL, the console issues an error message. Virtual space
MOVESs cause the destination PTE<M> bit to be set. If memory
mapping is not enabled, virtual addresses are equal to physical
addresses. :

/U — Access to console private memory is allowed. This qualifier also
disables virtual address protection checks. On virtual address writes,
the PTE<M> bit will not be set if the /U qualifier is present. This
qualifier is not inherited, and must be respecified on each command.

/N:{count}] — The address is the first of a range. The console
deposits to the first address, then to the specified number of
succeeding addresses. Even if the address is the symbolic address
(-), the succeeding addresses are at larger addresses. The symbolic
address specifies only the starting address, not the direction of
succession.

/STEP:{size} — The number to add to the current address.
Normally this defaults to the data size, but is overridden by the
presence of this qualifier. This qualifier is not inherited.

/WRONG — On reads, ECC errors on the access of data in main
memory are ignored. On writes, the ECC bits for this data are forced
to a value of 3.

Arguments :

{src_address} — A longword address that specifies the first location
of the source data to be copied.

{dest_address] — A longword address that specifies the destination
of the first byte of data. These addresses may be any legal address
specifier as defined in Section 4.2.5 and Table 4—4. If no address is
specified, + is assumed.

Examples :

>>>ex /n:4 0
P 00000000
P 00000004
P 00000008
P 0000000C
P 00000C10

00000000
00000000
00000000
00000000
00000000

>>>ex /n:4 200

P 00000200
P 00000204
P 00000208
P 0000020C
P 00000210
>>>move /n:4
>>>ex /n:4 O
00000000
00000004
00000008
0000000C
00000010

vV Wdttgidd

>>

4.2.7.11 NEXT

Format :

58DD0520
585E04C1
OOFF8FEB
5208A8D0
540CA8BDE
200 0

58DD0520
585E04C1
OOFF8FBB
5208A8D0
540CABDE

NEXT {count}

Description :

KA650 Firmware 4-35

! Observe destination.

Observe source data.

Move the data.
Observe the destination.

The NEXT command causes the processor to "step” the specified number
of macro instructions. If no count is specified, "single-step” is assumed.
The console does not however enter spacebar step mode as described in
the VAX Architecture Reference Manual, but rather returns to the console

prompt.

4--36 KAB50 Firmware

The console uses the trace and trace pending bits in the PSL, and the
SCB trace pending vector to implement the NEXT functioni. This creates

the

following restrictions on the usage of the NEXT command:

If memory management is enabled, the NEXT command works if
and only if the first page in SSC RAM is mapped somewhere in SO
(system) space.

The NEXT command, due to the instructions executed in
implementation, does not work where time critical code is being
executed.

The NEXT command elevates the IPL to 31 for long periods of time
(milliseconds) while single stepping over several commands.

Unpredictable results occur if the macro instruction being stepped
over modifies the SCBB, or the trace trap entry. This means that the
NEXT command cannot be used in conjunction with other debuggers.
This also implies that the user should validate PR$_SCCB before
using the NEXT command.

Qualifiers :

None

Arguments :

{count} — A value representing the number of macro instructions to
execute.

Examples :

>>>dep 1000 50D650D4 ! Create a simple program.

>>>dep 1004 125005D1
>>>dep 1008 OOFE1l1lFS

>>>ex /instruction /n:5 1000

! List it.

P 00001000 D4 CLRL RO

P 00001002 Dé INCL RO

P 00001004 D1 CMPL S~#05, R0

P 00001007 12 BNEQ 00001002

P 00001009 1l BRB 00001009

P 0000100B 00 HALT
>>>dep pr$_scbb 200 ! Set up a user SCBEB...
>>>dep pc 1000 ...and the PC.
>>>
>>>n ! Single...

P 00001002 Dé INCL RO
>>>n

P 00001004 D1 CMPL S~#05, RO

>>>n

P

>>>n

P

00001007

00001002

>>>n 5

P
)4
P
P
P

00001004
00001007
00001002
00001004
00001007

>>>n 7

Wddiddd g

>>>n

P
>>>

4.2.7.12 REPEAT

00001002
00001004
00001007
00001002
00001004
00001007
00001009

00001008

Format :

Description :

12

Dé

D1
12
Dé
D1
12

D6
D1
12
D6
D1
12
11

11

BNEQ
INCL

CMPL
BNEQ
INCL
CMPL
BNEQ

INCL
CMPL
BNEQ
INCL
CMPL
BNEQ
BRB

BRB

REPEAT {command}

00001002
RO

S~#05,R0
00001002
RO

S~#05,R0
00001002

RO

S~#05,R0
00001002
RO

S~#05,R0
00001002
00001009

00001009

!

KA650 Firmware 4-37

...or multiple step the
program.

The console repeatedly displays and executes the specified command.

Press [Ctrl][C]

to stop the repeating. Any valid console command can be

specified for the command with the exception of the REPEAT command.
Qualifiers :

None

Arguments :
fcommand} — A valid console command other than REPEAT.

4-38 KAB50 Firmware

Examples :

>>>repeat ex pr$_todr ! Watch the clock.
I 0000001B SAFE78CE
0000001B SAFE78D1
0000001B S5AFE78FD
0000001B SAFE7900
0000001B SAFE7203
0000001B SAFE7807
0000001B 5AFE780Aa
0000001B S5AFE790D
0000001B 5AFE7910
0000001B SAFE793C
0000001B SAFE793F
0000001B S5AFE7942
0000001B SAFE7946
0000001B S5AFE7949
0000001B SAFE794C
O000001B SAFE794F
0000001B 5~C

HHHHHHHHHHAHKHHHH#H

>>>

4.2.7.13 SEARCH
Format :

SEARCH [qualifier_list] {address} {pattern} [{mask}]

Description :

The search command finds all occurrences of a pattern, and reports the
addresses where the pattern was found. If the /NOT qualifier is present,
all addresses where the pattern did not match are reported.

The command accepts an optional mask that indicates don’t care bits. For
example, to ignore bit 0 in the comparison, specify a mask of 1. The mask,
if not present, defaults to 0.

Conceptually, a match condition occurs if the following condition is true:

(pattern AND NOT mask) EQUALS (data AND NOT mask)

where: pattern -- is the target data.
mask -~ is the optional don’t care bitmask (which defaults to 0).
data -~ is the data (byte, word, long, quad) at the current address.

KAB50 Firmware 4-39

The command reports the address if the match condition is true, and
there is no /NOT qualifier, or if the match condition is false and there is a
/NOT qualifier. Stating this in a tabular form:

/NOT Qualifier Match Condition Action
absent true report address
absent false no report
present true no report
present false report address

The address is advanced by the size of the pattern (byte, word, long or
quad), unless overridden by the /STEP qualifier.

Qualifiers :

¢ /B — The data size is byte.

¢ /W — The data size is word.

¢ /L — The data size is longword.
* /Q — The data size is quadword.

¢ /P — The address space is physical memory. Note that when virtual
memory is examined, the address space and address in the response
are the translated physical address.

¢ /V — The address space is virtual memory. All access and protection
checking occur. If the access would not be allowed to a program
running with the current PSL, the console issues an error message.
If memory mapping is not enabled, virtual addresses are equal to
physical addresses.

e /U — Access to console private memory is allowed. This qualifier
also disables virtual address protection checks. This qualifier is not
inherited, and must be respecified with each command.

e /N:{count] — The address is the first of a range. The first access
is to the address specified, then subsequent accesses are made to
succeeding addresses. Even if the address is the symbolic address
(-), the succeeding addresses are at larger addresses. The symbolic
address specifies only the starting address, not the direction of
succession.

440 KA650 Firmware

* /STEP:{size} — The number to add to the current address.
Normally this defaults to the data size, but is overridden by the
presence of this qualifier. This qualifier is not inherited.

e /WRONG — ECC errors on read accesses to main memory are

ignored.

¢ /NOT — Inverts the sense of the match.

Arguments :

e {start_address} — A longword address that specifies the first
location subject to the search. This address can be any legal address
specifier as defined in Section 4.2.5 and Table 4—4. If no address is

specified, + is assumed.

e ({pattern} — The target data.

e [{mask}] — A longword containing the bits in the target which are

to be masked out.
Examples :

>>>dep /p/1/n:1000 O O
>>>
>>>dep 300 12345678
>>>dep 401 12345678
>>>dep 502 87654321
>>>
>>>search /n:1000 /st:1 O 12345678
P 00000300 12345678
P 00000401 12345678
>>>search /n:1000 0 12345678
P 00000300 12345678
>>>search /n:1000 /not 0 O
00000300 12345678
00000400 34567800
00000404 00000012
00000500 43210000
00000504 00008765

Wy gg g

!

Clear some memory.

Deposit some "search" data.

Search for all occurrences...
...0f 12345678 on any byte...
.. .boundary.

Then try on longword...
...boundaries.

Search for all non-zero...
...longwords.

>>>search /n:1000 /st:1 0 1 FFFFFFFE
P 00000502 87654321
P 00000503 00876543
P 00000504 00008765
P 00000505 00000087
>>>search /n:1000 /b 0 12
P 00000303 12
P 00000404 12
>>>search /n:1000 /st:1 /w O FEl1l
>>>
>>>
>>>

4.2.7.14 SET
Format :

SET {parameter} {value}

Description :

KAB50 Firmware 4-41

Search for "odd" longwords...
...on any boundary.

Search for all occurrences...
...of the byte 12.

Search for all words which...
...could be interpreted as...
...a "spin" (10S: brb 10$).
Note, none found.

Sets the indicated console parameter to the indicated value. The following
are console parameters and their acceptable values:

Parameters :

e BFL(A)G — Set the default R5 boot flags. The value must be a

hexadecimal number of up to 8 hex digits.

e BOOT — Set the default boot device. The value must be a valid
device name as specified in Section 4.2.7.1 on the BOOT command.

442 KAB650 Firmware

HOST — Invoke the DUP or MAINTENANCE driver on the
selected node. Only SET HOST /DUP accepts a value parameter.
The hierarchy of the SET HOST qualifiers listed below suggests
the appropriate usage. Each qualifier only supports the additional
qualifiers at levels below it.

/DUP — Use the DUP protocol to examine/modify parameters of a
device on the Q22-bus. The optional value for SET HOST /DUP is a
task name for the selected DUP driver to execute.

NOTE

The KA650 DUP driver only supports SEND DATA
IMMEDIATE messages, and hence those devices which
also support them.

/UQSSP — Select the Q22-bus device using one of the following
three methods.

/DISK n — Specify the disk controller number, where n
is from 0 to 255. (The resulting fixed address for n =0 is
20001468 and the floating rank for n >0 is 26.)

/TAPE n — Specify the tape controller number, where n
is from 0 to 255. (The resulting fixed address for n =0 is
20001940 and the floating rank for n >0 is 30.)

csr_address — Specify the Q22-bus I/O page CSR address
for the device.

/MAINTENANCE — Use the MAINTENANCE protocol to
examine/modify KFQSA EEPROM configuration parameters. Note
that SET HOST /MAINTENANCE does not accept a task value.

/UQSSP —

/SERVICE n — Specify the KFQSA controller number
n of a KFQSA in service mode, where n is from 0 to 3.
(The resulting fixed address of a KFQSA in service mode is
20001910+4*n .)

csr_address — Specify the Q22-bus I/O page CSR address
for the KFQSA.

KAB50 Firmware 4-43

¢ LANGUAGE — Set console language and keyboard type. If the
current console terminal does not support the DIGITAL multinational
character set (MCS), then this command has no effect and the console
remains in English message mode. Acceptable values are 1 through
15 and have the following meaning:

1) Dansk B

2) Deutsch (Deutschland/Osterreich)
3) Deutsch (Schweiz)

4) English (United Kingdom)

5) English (United States/Canada)
6) Espaiiol

7) Frangais (Canada)

8) Francais (France/Belgique)

9) Francais (Suisse)

10) Italiano

11) Nederlands

12) Norsk

13) Portugués

14) Suomi

15) Svenska

Qualifiers :

On a per parameter basis.
Arguments :

None

Examples :

>>>

>>>set bflag 220

>>>

>>>set boot dual

>>>

>>>set host /maint/ugssp 20001468
UQSSP Contreoller (772150)

4-44 KA650 Firmware

Enter SET, CLEAR, SHOW, HELP, EXIT, or QUIT

Node CSR Address Model
0 772150 21
1 760334 21
4 760340 21
5 760344 21
7 mme—— KFQSA —-==—=-
? help

SET <node> /KFQSA
SET <NODE> <CSR_address> <model>
CLEAR <NODE>
SHOW
HELP
EXIT
QUIT
Parameters:
<NODE>
<CSR_address>
<model>
? set 6 /kfgsa
? show
Node CSR Address Model
772150 21
760334 21
760340 21
760344 21
------ KFQSA ==—===-

N Lt & O

? exit

Programming the KFQSA...
>>>

>>>set language 5

>>>

4.2.7.15 SHOW
Format :

SHOW {parameter}

Description :

Displays the console parameter indicated.

set KFQSA DSSI node number
enable a DSSI device
disable a DSSI device

show current configuration
rint this text

program the KFQSA

don’t program the KFQSA

0 to 7
760010 to 777774
21 (disk) or 22 (tape)

KAB50 Firmware 4-45

Parameters :

BFL(A)G — Show the default R5 boot flags.
BOOT — Show the default boot device.
DEVICE — Show a list of all devices in the system.

ETHERNET — Show the hardware Ethernet address for all
Ethernet adapters that can be found. Displays as blank, if no
Ethernet adapter is present.

LANGUAGE — Show the console language and keyboard type.
Refer to the corresponding SET LANGUAGE command for the
meaning.

MEMORY — Show main memory configuration on a board by
board basis. Also report the addresses of bad pages, as defined by the
bitmap.

/FULL Additionally show the normally inaccessible areas of
memory, such as, the PFN bitmap pages, the console scratch
memory pages, and the Q22-bus scatter/gather map pages.

QBUS — Show all Q22-bus I/O addresses that respond to an aligned
word read. For each address, the console displays the address in the
VAX I/O space in hex, the address as it would appear in the Q22-bus
I/O space in octal, and the word data that was read in hex.

This command may take several minutes to complete, so the user
may want to issue a @ to terminate the command. The command
disables the scatter/gather map for the duration of the command.

446 KAB650 Firmware

¢ RLV12 — Show all RL01 and RL0O2 disks which appear on the
Q22-bus.

e UQSSP — Show the status of all disks and tapes that can be found
on the Q22-bus which support the UQSSP protocol. For each such
disk or tape on the Q22-bus, the console displays the controller
number, the controller CSR address, and the boot name and type
of each device connected to the controller. The command does not
indicate the bootability of the device.

The device information is obtained from the media type field of the

MSCP command GET UNIT STATUS. In the case where the node is
not running, or is not capable of running, an MSCP server, then no

device information is displayed.

e VERSION — Show the current version of the firmware.

Qualifiers :

On a per parameter basis.
Arguments :

None
Examples :

>>>

>>>show bflag

00000220

>>>

>>>show boot

DUAO

>>>

>>>show device

UQSSP Disk Controller 0 (772150)
-DUAO (RF30)

UQSSP Disk Controller 1 (760334)
-DUB1 (RF30)

UQSSP Disk Controller 2 (760340)
-DUC4 (RF30)

KAB50 Firmware

UQSSP Disk Controller 3 (760344)
-DUDS (RF30)

Ethernet Adapter
-XQA0 (08-00-2B-0B-82-29)

>>>
>>>show Ethernet
Ethernet Adapter

-XQA0 (08-00-2B-0B-82-29)

>>>

>>>show language

English (United States/Canada)

>>>

>>>show memory

Memory 0O: 00000000 to OO3FFFFF, 4 MBytes, 0O bad pages

Total of 4 MBytes, 0 bad pages, 98 reserved pages
>>>

>>>show memory /full

Memory 0: 00000000 to OO3FFFFF, 4 MBytes, 0 bad pages

Total of 4 MBytes, 0 bad pages, 98 reserved pages

Memory Bitmap
-003F3C00 to O003F3FFF, 2 pages

Conscle Scratch Area
-003F4000 to OO03F7FFF, 32 pages

Qbus Map
-003F8000 to OO3FFFFF, 64 pages

Scan of Bad Pages
>>>

>>>show gbus
Scan of Qbus I/0 Space
-200000DC (760334)
—-200000DE (760336)
—200000E0 (760340}
—-200000E2 (760342)
-200000E4 (760344)
~200000E6 (760346)
-20001468 (772150)
-2000146A (772152)
-20001F40 (777500)

0AA0

ORAQ

0AAO

OAAD
0020 (004) IPCR

0000 (300) RQEDX3/KDAS5C0/RRD50/RQC25/KFQSA-DISK
0000 (304) RQDX3/KDAS50/RRD50/RQC25/KFQSA-DISK
0000 (310) RQDX3/KDA50/RRD50/RQC25/KFQSA-DISK

0000 (154) RQEDX3/KDA50/RRD50/RQC25/KFQSA-DISK

448 KA650 Firmware

Scan of Qbus Memory Space

>>>

>>>show rlvl2

>>>

>>>show ugssp

UQSSP Disk Controller 0 (772150)

-DUAO (RF30)

UQSSP Disk Controller 1 (760334)
-DUB1 (RF30)

UQSSP Disk Controller 2 (760340)
-DUC4 (RF30)

UQSSP Disk Controller 3 (760344)
-DUDS5 (RF30)

>>>

>>>show version
KA650-A V5.3, VMB 2.6
>>>

4.2.7.16 START
Format :

START [{address}]

Description :

The console starts instruction execution at the specified address. If no
address is given, the current PC is used. If memory mapping is enabled,
macro instructions are executed from virtual memory, and the address
is treated as a virtual address. The START command is equivalent to a
DEPOSIT to PC, followed by a CONTINUE. No INITIALIZE is performed.
Qualifiers :

None
Arguments :

* [{address}] — The address at which to begin execution. This is
loaded in the user’s PC.

Examples :

>>>start 1000

KAB50 Firmware 4—49

4.2.7.17 TEST
Format :

TEST [{test_number} [{test_arguments}]]

Description :

The console invokes a diagnestic test program specified by the test
number. If a test number of 0 is specified, the power-up script is executed.
The console accepts an optional list of up to five additional hexadecimal
arguments.

A more detailed explanation of the diagnostics may be found in
Section 4.4.

Qualifiers :
None
Arguments :

¢ {test_number]} — A two digit hexadecimal number specifying the
test to be executed.

* {test_arguments} — Up to five additional test arguments. These
arguments are accepted but no meaning is attached to them by the
console. For the interpretation of these arguments, consult the test
specification for each individual test.

Examples :

>>> ! Execute the power-up diagnostic script

>>> ! Warning...this has the same affect as a power-up!
>>>t 0

40..39..38..37..36..35..34..33..32..31..30..29..28..27..26..25..
24..23..22..21..20..19..18..17..16..15..14..13..12..11..10..09..
08..07..06..05..04..03..

>>>

>>> ! List all of the diagnostic tests.
>>>

>>>t %e

4-50 KA650 Firmware

Test
Address Name Parameters
2004 BEOO De_SCB
C6é 2004 D4D8 SSC_powerup FRF KKK KKK
C7 2004 D5%9A CBTCR timeout *xx
34 2004 D654 ROM logic test *
33 2004 D71C CMCTL_powerup *
32 2004 D764 CMCTL regs MEMCSRO _addr ****xx%xxx
91 2004 D888 CQBIC_powerup ** -
90 2004 D818 CQRBIC regs *
80 2004 D971 CQBIC-memory deddkkkkkhk
60 2004 DESF Console serial start_baud end baud ****xx
61 2004 EIAC Console QVSS mark_not_present ***
62 2004 E254 console QDSS mark_not_present selftest_ r0 selftest_rl ****
63 2004 E4DC QDSS self-test input_csr selftest_r0 selftest_rl **x*xx
51 2004 E642 CFPA Kk Kk %k K
52 2004 E82E Prog timer which_timer wait_time_us ***
53 2004 EAF4 TOY clock repeat_test 250ms_ea Tolerance **¥xx*&x
55 2004 ED55 1Interval timer *
5A 2004 EDCC VAX CMCTL CDAL dont_report memory bad repeat_count *
45 2004 EEDC cache_mem_cgbic start_addr end addr addr_incr ****
46 2004 F1C4 Cachel _diag md addr_incr ok kk kK
9E 2004 F7EE List diags *
81 2004 F814 MSCP-QBUS test IP_csr ***x*xx
82 2004 F9D6 DELQA device num_addxr ***x
Cl 2004 FBBl SSC RAM *
C2 2004 FD78 SSC RAM ALL *
C5 2004 FEE8 SSC regs *
54 2004 FFD9 Virtual mode Fodk ok ek
36 2005 0258 cache2_memory start_addr end_addr addr_incr *¥*k*xx
35 2005 07D8 Cach2_integrty start_ ~addr end addr addr_incr *x¥kkkx
44 2005 OF3C Cache_memory addr_lncr ok Kk Kk K
43 2005 OF95 Cachel_Cache2 addr_incr ***%kkdkkx
41 2005 12C4 Board Reset ek x
42 2005 14B1 Check_for_intrs ***
31 2005 14F4 MEM_Setup_ CSRs *¥¥¥kkkkok
30 2005 1AFC MEM Bitmap *** mark_ Hard_SBEs ***x**
4F 2005 1E71 MEM Data start_add end_add add_incr cont_on_exrr *X***x
4E 2005 2032 MEM Byte start_add end_add add_incr cont_on_err *x*%¥%
4D 2005 214A MEM Address start_add end_add add_incr cont_on_err *¥x**x
4C 2005 22E2 MEM ECC_Error start_add end_add add_incr cont_on_err **x***
4B 2005 2671 MEM Maskd Errs start_add end_add add_incr cont_on_err **x*¥x
42 2005 284B MEM:Correction start_add end_add add_incr cont_on_err ****¥x*
49 2005 2A5E MEM_FDM_Logic *** cont_on_err **¥xxx
48 2005 308C MEM Addr_shrts start_add end_add * cont_on_err patl pat2 ***
47 2005 36C6 MEM Refresh start end incr cont_on_err time_seconds ****¥
40 2005 3855 MEM Count_ Errs First board Last board Soft_errs_allowed ***x
9D 2005 3BB7 Utilities Expnd err_msg get mode init LEDs clr_ps cnt
9C 2005 3CBBR List CPU regs *

KA650 Firmware 4-51

* %k %Kk Kk Kk

9F 2005 4271 Create script

>>>
>>>
>>>
>>>t fe

! Show the diagnostic state.

bitmap=00BF3400,
busmap=00BF8000
return_stack=201406A4

subtest_pc=2004EBBO

timeout=00000001, error=00, de_error=00

de_error_vector=00, severity code=02, total_ error_count=0000
previous error=00000000, 00000000, 00000000, 00000000, 00000000
last_exception_pc=2004EBDA

flags=21FFFD7F, test_flags=20
highest_severity=00

led display=06

console_display=00

save_mchk_code=80, save_prr_flags=000000
parameter_ 1=00000000 2=00000000 3=00000000

length=0C00, checksum=007E

4=00000000 5=00000000

parameter_ 6=00000001 7=00000000 8=2004EBEO 9=00000000 10=20056056
>>>

>>> ! Display the CPU registers.

>>>

>>>t O9¢

TOY =76BA1D75 ICCS =00000000

TCRO =00000000 TIRO =00000000 TNIRO=00000000 TIVRO=00000078

TCR1 =00000001 TIR1l =02BD7871 TNIR1=0000000F TIVR1=0000007C

RXCS =00000000 RXDB =0000000D TXCS =00000000 TXDB =00000030

MSER =00000000 CADR =0000000C

BDR =FFFFFFDO DLEDR=0000000C SSCCR=00D45033 CBTCR=C0000004

SCR =0000CO00 DSER =00000080 QRBEAR=0000000F DEAR =00000000
QBMBR=00000000 IPCRn=0020

MEM_FRU 1 MEMCSR_0=80000015 1=00000015 2=00000015 3=00000015
MEM:?RU 2 MEMCSR_4=80400C16 5=80800016 6=00000016 7=00000016
MEM FRU 3 MEMCSR_8=00000000 9=00000000 10=00000000 11=00000000
MEM FRU 4 MEMCSR12=00000000 13=00000000 14=00000000 15=00000000

MEMCSR16=00000044 17=0000203C

>>>

4-52 KAB50 Firmware

4.2.7.18 UNJAM
Format :

UNJAM

Description :

An 1/O bus reset is performed. This is implemented by writing 1 to IPR
55.

Qualifiers :
None
Arguments :
None
Examples :

>>>unjam
>>>

42719 X - Binary Load and Unload
Format :

X {address} {count} <CR> {line_checksum}
{data} {data_checksum}

Description :

The X command is for use by automatic systems communicating with the
console. It is not intended for use by operators.

The console loads or unloads (that is, writes to memory, or reads from
memory) the specified number of data bytes, starting at the specified
address through the console serial line, regardless of which device is
serving as the system console.

If bit 31 of the count is clear, data is to be received by the console, and
deposited into memory. If bit 31 of the count is set, data is to be read from
memory and sent by the consecle. The remaining bits in the count are a
positive number indicating the number of bytes to load or unload.

KA650 Firmware 4-53

The console accepts the command upon receiving the carriage return.
The next byte the console receives is the command checksum, which is
not echoed. The command checksum is verified by adding all command
characters, including the checksum and separating whitespace, (but

not including the terminating carriage return or rubouts or characters
deleted by rubout), into an 8 bit register initially set to zero. If no errors
occur, the result is zero. If the command checksum is correct, the console
responds with the input prompt and either sends data to the requester or
prepares to receive data. If the command checksum is in error, the console
responds with an error message. The intent is to prevent inadvertent
operator entry into a mode where the console is accepting characters from
the keyboard as data, with no escape mechanism possible.

If the command is a load (bit 31 of the count is clear), the console responds
with the input prompt, then accepts the specified number of bytes of
data for depositing to memory, and an additional byte of received data
checksum. The data is verified by adding all data characters and the
checksum character into an 8 bit register initially set to zero. If the final
contents of the register is non-zero, the data or checksum are in error, and
the console responds with an error message.

If the command is a binary unload (bit 31 of the count is set), the console
responds with the input prompt, followed by the specified number of bytes
of binary data. As each byte is sent, it is added to a checksum register
initially set to zero. At the end of the transmission, the 2's complement of
the low byte of the register is sent.

If the data checksum is incorrect on a load, or if memory errors or line
errors occur during the transmission of data, the entire transmission is
completed, and then the console issues an error message. If an error
occurs during loading, the contents of the memory being loaded are
UNPREDICTABLE.

Echo is suppressed during the receiving of the data string and checksums.

To avoid treating flow control characters from the terminal as valid
command line checksums, all flow control is terminated at the reception
of the carriage return terminating the command line.

It is possible to control the console serial line through the use of the
control characters i sl [O) during a binary unload. It is not
possible during a binary load, as all received characters are valid binary
data.

4-54 KA650 Firmware

Data being loaded with a binary load command must be received by the
console at a rate of at least one byte every 60 seconds. The command
checksum that precedes the data must be received by the console within
60 seconds of the carriage return that terminates the command line. The
data checksum must be received within 60 seconds of the last data byte.
If any of these timing requirements are not met the console aborts the
transmission by issuing an error message and prompting for input.

The entire command, including the checksum, can be sent to the console
as a single burst of characters at the console serial line’s specified
character rate. The console is able to receive at least 4 Kbytes of data
in a single X command.

Qualifiers :
None
Arguments :
None
Examples :

None

4.2.7.20 ! - Comment

Format :
'

Description :

The comment command is used to document command sequences. The
comment character can appear anywhere on the command line. All
characters following the comment character are ignored.

Qualifiers :
None
Arguments :
None
Examples :

>>>! The consocle ignores this line.
>>>

KA650 Firmware 4-55

4.2.8 Conventions for Tables 4-5 and 4-6

Tables Table 4-5 lists a complete summary of the console commands.
Table 4-6 is a summary of the qualifiers recognized by the KA650 console.

The following is a list of conventions used in Tables 4-5 and 4-6:

[]

UPPERCASE denotes the command or qualifier keyword.

{} denotes a mandatory item which must be syntactically correct.
[] denotes an optional item.

! denotes an "or" condition.

boot_flags, count, size, address, & parameters denote hex longword
values.

boot_device denotes a legal boot device name.

csr_address denotes a Q22-bus I/O page CSR address.
controller_number denotes a controller number from 0 to 255.
language_type denotes the language value, from 1 to 15.
command denotes a console command other than REPEAT.
data, pattern, & mask denote hex values of the current size.

test_number denotes hex byte test number.

Table 4~-5 Console Command Summary

Command Qualifiers Argument Other(s)
BOOT /R5:{boot_flags} /{boot_flags} [{boot_device}] —
CONTINUE — — —
DEPOSIT MW/LQ—/GANPM {address} {data}

U [{data}]

/N:{count} /STEP:{size}

/WRONG
EXAMINE MWLRQ—/GAN/PM [{address}] -

48]

/N:{count} /STEP:{size}

/WRONG

/INSTRUCTION

FIND /MEM /RPB — —_

4-56 KAB50 Firmware

Table 4-5 (Cont.) Console Command Summary

Command Qualifiers Argument Other(s)
HALT — — —
HELP —_ —_ —_
INITIALIZE —_ — —_
MOVE BWLIIQ—/NMP/U {src_address} {dest_
- /N:{count} /STEP:{size} address}
/WRONG
NEXT — [{count}] —_
REPEAT —_ {command} —_—
SEARCH MBW/LIQ—/N/P/U {start_address} {pattern}
/N:{count} /STEP:{size} [{mask}]
/WRONG
/NOT
SET —_ {bitmap} —_
BFL(AG
SET BOOT — {device_string} —_
SET HOST /DUP /UQSSP {/DISK ! {controller_ [{task}]
/TAPE } number} [{task}]
/DUP /UQSSP {csr_address}
SET HOST /MAINTENANCE /UQSSP {controller_
/SERVICE number}
/MAINTENANCE /UQSSP {csr_address}
SET —_ {language_type} —
LANGUAGE
SHOW — —_ —
BFLAG
SHOW — — —
BOOT
SHOW —_— — —_
ETHERNET
SHOW — — —
LANGUAGE
SHOW /FULL —_ —_
MEMORY
SHOW -— — -_—
QBUS
SHOW —_ —_ —

RLVi2

KA650 Firmware 4-57

Table 4-5 (Cont.) Console Command Summary

Command

Qualifiers Argument Other(s)

SHOW
UQSSP
SHOW
VERSION
START
TEST
UNJAM
X

{address} —

{test_number} [{parameters}]

{address} {count}

Table 46 Console Qualifier Summary

Data Control

/B Byte, legal for memory references only

W Word, legal for memory references only

/L Longword, the default for GPR and IPR references

Q Quadword, legal for memory references only

/N:{count} Specify number of additional operations

/STEP:{size} Override the default step incrementing size with the value
specified for the current reference

/WRONG Ignore ECC bits on reads. Use an ECC value of 3 on writes

Address Space Control

2 aRI”g

General Purpose Registers

Internal Processor Registers

Virtual memory

Physical memory, both VAX memory and /O spaces
Protected memory (ROMs, SSC RAM, PFN bitmap, and so
on.)

Machine state (PSL)

4-58 KAB50 Firmware

Table 4-6 (Cont.) Console Qualifier Summary

Command Specific

/INSTRUCTION EXAMINE command only. Disassemble the instruction at
address specified.

/NOT SEARCH command only. Invert the sense of the match.

/R5:{boot_flags}, BOOT command only. Specify a function bitmap to pass to

/{boot_flags} VMB through R5. Refer to Figure 41 for a bit description of
R5. Either form of the command is acceptable.

/RPB, /MEM FIND command only. Search for valid RPB or good block of
memory.

/DUP, SET HOST command only. Refer to command description for

/UQSSP, usage.

/DISK, /TAPE,

/MAINTENANCE,

/SERVICE

4.3 Bootstrapping

Bootstrapping is the process of loading and transferring control to

an operating system. The KA650 supports bootstrap of the following
operating systems: VAX/VMS, Ultrix-32, and VAXELN. Additionally, the
KA650 will boot MDM diagnostics and any user application image which
conforms to the boot formats described herein.

On the KA650 a bootstrap occurs whenever a BOOT command is issued at
the console or whenever the processor halts and the conditions specified
in the Table 4-1 for automatic bootstrap are satisfied.

4.3.1 Boot Devices

The KA650 firmware passes the address of a descriptor of the boot device
name to VMB through R0. The device name used for the bootstrap
operation is one of the following:

* XQAO, if no default boot device has been specified

¢ The default boot device specified at initial power-up or through a SET
BOOT command

¢ The boot device name explicitly specified in a BOOT command line

The device name may be any arbitrary character string, with a maximum

KA650 Firmware 4-59

length of 17 characters. Longer strings cause an error message to be
issued to the console. Otherwise the console makes no attempt at
interpreting or validating the device name. The console converts the

string to all upper case, and passes VMB the address of a string descriptor

for the device name in RO.

Table 4—7 correlates the boot device names expected in a BOOT command

with the corresponding supported devices.

Table 4-7 KA650 Supported Boot Devices

Boot Controller
Name! Type Device Type(s)
Disk:
DUecn RQDX3 RD52, RD53, RD54, RX33, RX50
MSCP
KDA50 MSCP RA70, RA80, RA81, RA82, RA90
KFQSA RF30, RF71
MSCP
KLESI RC25
DLen RLV12 RLO1, RLO2
Tape:
MUcn TQK50 MSCP TK50
TQK70 MSCP TK70
KFQSA
MSCP
KLESI TUSILE
Network:
XQcen DEQNA _
DELQA —_
DESQA _

1 Boot device names consist of minimally a two letter device code, followed by a single
character controller letter (A...Z), and terminating in a device unit number (0...65535).
DSSI device names may optionally include a node prefix, consisting of either a node
number (0...7) or a2 node name (a string of up to 8 characters), terminating in a "$".

4-60 KAB50 Firmware

Table 4-7 (Cont.) KA650 Supported Boot Devices

Boot Controller

Name! Type Device Type(s)
PROM:

PRAO MRV1l1 _—

1 Boot device names consist of minimally a two letter device code, followed by a single
character controller letter (A...Z), and terminating in a device unit number (0...65535).
DSSI device names may optionally include a node prefix, consisting of either a node
number (0...7) or a node name (a string of up to 8 characters), terminating in a "$".

NOTE

Table 4-7 presents a definitive list of boot devices which the
KAG650 supports. However, the KA650 will likely boot other devices
which adhere to the MSCP standards.

4.3.2 Boot Flags

The action of VMB is qualified by the value passed to it in R5. R5
contains boot flags that specify conditions of the bootstrap. The firmware
passes to VMB either the R5 value specified in the BOOT command or the
default boot flag value specified with a SET BFLAG command.

Figure 4-1 shows the location of the boot flags used by VMB in the boot
flag longword and Table 48 describes each flag’s function.

31 28 9 8 6 5 4 3 0

RPBSV_TOPSYS RPBSV_HALT —'] 1

RPBPV_SOLICT ————rne—o— I

RPBSV_HEADER
RPB$SV_BOOBPT
RPBSV_DIAG

" RPB$V_BBLOCK
RPBSV_CONV

Figure -1 VMB Boot Flags

KAB50 Firmware 4-61

Table 4-8 VMB Boot Flags

Field Name Description

0 RPB3V_CONV Conversational bootstrap

3 RPB$V_ Secondary bootstrap from bootblock. When this bit

BBLOCK is set, VMB reads logical block number 0 of the
boot device and tests it for conformance with the
bootblock format. If in conformance, the block is
executed to continue the bootstrap. No attempt to
perform a Files-11 bootstrap is made.

4 RPB3$V_DIAG Diagnostic bootstrap. When this bit is set,
the load image requested over the network is
[SYS0.SYSMAINTIDIAGBOOT.EXE.

5 RPB3$V_ Bootstrap breakpoint. If this flag is set, a

BOOBPT breakpoint instruction is executed in VMB and
control is transferred to XDELTA prior to boot.

6 RPB$V_ Image header. If this bit is set, VMB transfers

HEADER control to the address specified by the file’s image
header. If this bit is not set, VMB transfers control
to the first location of the load image.

8 RPB$V_SOLICT File name solicit. When this bit is set, VMB
prompts the operator for the name of the application
image file. A maximum of a 39 character file
specification is permitted.

9 RPB$V_BALT Halt before transfer. When this bit is set, VMB

31:28 RPB$V_
TOPSYS

halts before transferring control to the application
image.

This field can be any value from 0 through F. This
flag changes the top level directory name for the
system disks with multiple operating systems. For
example, if TOPSYS is 1, the top level directory
name is [SYS1...].

462 KAB50 Firmware

4.3.3 Preparing for the Bootstrap

Prior to dispatching to the primary bootstrap (VMB), the firmware
initializes the system to a known state. The initialization sequence is
the following:

1. Check CPMBX<2>(BIP). If it is set, bootstrap fails.

2. If this is an automatic bootstrap, print the message "Loading system
software” on the console terminal.

3. Validate the boot device name. If none exists, supply a list of available
devices and prompt user for a device. If no device is entered within 30
seconds, use XQAO.

4. Write a form of this BOOT request including the active boot flags and
boot device on the console, for example "(BOOT/R5:0 DUAO)".

5. Set CPMBX<2>(BIP).
Initialize the Q22-bus scatter/gather map.
a. Clear IPCR<5>(LMEAE).
b. Perform an UNJAM.

c. If an arbiter, map all vacant Q22-bus pages to the corresponding
page in local memory and validate each entry if that page is good.

d. Perform an INIT.
e. Set IPCR<5>(LMEAE).
Validate the PFN bitmap. If invalid, rebuild it.

Search for a 128 Kbyte contiguous block of good memory as defined by
the PFN bitmap. If 128 Kbyte cannot be found, the bootstrap fails.

KA650 Firmware 4-63

9. Initialize the general purpose registers.

RO = address of descriptor of the boot device name or 0 if none
specified

R2 =length of PFN bitmap in bytes

R3 = address of PFN bitmap

R4 = time of day from PR$_TODR at power-up

R5 = boot flags

R10 = halt PC value

R11 = halt PSL value (without halt code and map enable)
AP = halt code

SP = base of 128 Kbyte good memory block + 512
PC = base of 128 Kbyte good memory block + 512
R1, R6, R7, R8, R9, FP =0

10. Copy the VMB image from EPROM to local memory beginning at the
base of the 128 Kbyte good memory block + 512.

11. Exit from the firmware to memory resident VMB.

On entry to VMB the processor is running at IPL 31 on the interrupt
stack with memory management disabled.

4.3.4 Primary Bootstrap, VMB

Virtual memory boot (VMB) is the primary bootstrap for booting VAX
processors. On the KA650, VMB is resident in the firmware and is copied
into main memory before control is transferred to it. VMB then loads the
secondary bootstrap image and transfers control to it.

NOTE

In certain cases, such as VAXELN, VMB actually loads the
operating system directly. However, for the purpose of this
discussion secondary bootstrap refers to any VMB loadable image.

VMB inherits a well defined environment and is responsible for further
initialization. The following summarizes the operation of VMB:

1. Initialize a two-page SCB on the first page boundary above VMB.
Allocate a three-page stack above the SCB.

Initialize the restart parameter block (RPB).

Initialize the secondary bootstrap argument list.

If not a PROM boot, locate a minimum of 3 consecutive valid QMRs.

AN ST

464 KAB50 Firmware

6. Write "2" to the diagnostic LEDs and display "2.." on the console to
indicate that VMB is searching for the device.

Optionally, solicit from the console a "Bootfile: " name.

Write the name of the boot device from which VMB will attempt to
boot on the console, for example, "-DUAQ".

9. Copy the secondary bootstrap from the boot device into local memory
above the stack. If this fails, the bootstrap fails.

10. Write "1" to the diagnostic LEDs and display "1.." on the console to
indicate that VMB has found the secondary bootstrap image on the
boot device and has loaded the image into local memory.

11. Clear CPMBX<2>(BIP) and CPMBX<3>(RIP).

12. Write "0" to the diagnostic LEDs and display "0.." on the console to
indicate that VMB is now transferring control to the loaded image.

13. Transfer control to the loaded image with the following register
usage:

R5 = transfer address in secondary bootstrap image
R10 = base address of secondary bootstrap memory
R11 = base address of RPB

AP = base address of secondary boot parameter block
SP = current stack pointer

If the bootstrap operation fails, VMB relinquishes control to the console
by halting with a HALT instruction.

NOTE

VMB makes no assumptions about the location of Q22-bus
memory. However, VMB searches through the Q22-bus map
registers (QMRs) for the first QMR marked valid. VMB requires
minimally 3 and maximally 129 contiguous valid maps to complete
a bootstrap operation. If the search exhausts all map registers

or there are fewer than the required number of valid maps, a
bootstrap cannot be performed. It is recommended that a suitable
block of Q22-bus memory address space be available (unmapped
to other devices) for proper operation.

KA650 Firmware 4—65

Below is a sample console display of a successful automatic bootstrap:

Loading system software.

(BOOT/R5:0 DUAO)

2..
-DUAO
1..0..

After a successful bootstrap operation, control is passed to the secondary
bootstrap image with the memory layout as shown in Figure 4-2.

BASE

BASE+512 (SP)

NEXT PAGE
NEXT PAGE+1024
NEXT PAGE+2560

PFN BITMAP

QMR BASE

TOP OF MEMORY

| 1
[] [)
® POTENTIAL "BAD" MEMORY .
[] [)
RPB i
VMB IMAGE 256 PAGES FOR VMB
128 Kbyte BLOCK OF
“GOOD* MEMORY
SCB (TWO PAGES) (PAGE ALIGNED)
STACK (THREE PAGES)
SECONDARY BOOTSTRAP IMAGE
(POTENTIALLY EXCEEDS BLOCK)
® ®
e UNUSED MEMORY °
& []
o |
PFN BITMAP
(ON A PAGE BOUNDARY) UP TO 32 PAGES
-
FIRMWARE "SCRATCH MEMORY"
(BALANCE BETWEEN BITMAP & QMRs)
Q22-BUS SCATTER/GATHER MAP
(ALWAYS ON 32 Kbyte BOUNDARY) 84 PAGES
[] [
e POTENTIAL "BAD" MEMORY .
[] [)
| J
MA-X0047-86

Figure 42 Memory Layout at VMB Exit

466 KA650 Firmware

In the event that an operating system has an extraordinarily large
secondary bootstrap which overflows the 128 Kbytes of good memory,
VMB loads the remainder of the image in memory above the good block.
However, if there are not enough contiguous good pages above the block to
load the remainder of the image, the bootstrap fails.

4.3.5 Device-Dependent Bootstrap Procedures

As mentioned earlier, the KA650 supports bootstrapping from a variety of
boot devices. The following sections describe the various device-dependent
boot procedures.

4.3.5.1 Disk and Tape Bootstrap Procedure

The disk and tape bootstrap supports Files-11 lookup (supporting only
the ODS level 2 file structure) or the boot block mechanism (used in
PROM boot also). Of the standard DEC operating systems VMS and ELN
use the Files-11 bootstrap procedure and Ultrix-32 uses the boot block
mechanism.

VMB first attempts a Files-11 lookup, unless the RPB$V_BBLOCK boot
flag is set. If VMB determines that the designated boot disk is a Files-11
volume, it searches the volume for the designated boot program, usually
[SYS0.SYSEXE]JSYSBOOT.EXE. However, VMB can request a diagnostic
image or prompt the user for an alternate file specification (Section 4.3.2).
If the boot image cannot be found, VMB fails.

If the volume is not a Files-11 volume or the RPB$V_BBLOCK boot flag is
set, the boot block mechanism proceeds as follows:

1. Read logical block 0 of the selected boot device (this is the boot block).

2. Validate that the contents of the boot block conform to the boot block
format (Figure 4-3).

3. Use the boot block to find and read in the secondary bootstrap.
Transfer control to the secondary bootstrap image, just as for a Files-
11 boot.

The format of the boot block must conform to that shown in Figure 4-3.

KA650 Firmware 4-—67

3 24 23 16 15 0

BB+0: 1 N ANY VALUE

LOW LBN HIGH LBN

(THE NEXT SEGMENT IS ALSO USED AS A PROM "SIGNATURE BLOCK.")

31 24 23 16 15 0

BB+ (2*n)+0: CHK K 18 (HEX)
ANY VALUE, MOST LIKELY 0

BB+ (2%n)+8: SIZE IN BLOCKS OF THE IMAGE
BB+ (2%n)+12: LOAD OFFSET
BB+ (2*n)+16: OFFSET INTO IMAGE TO START
BB+ (2*n)+20: SUM OF THE PREVIOUS THREE LONGWORDS

WHERE:

(1) THE 18(HEX) INDICATES THIS IS A VAX INSTRUCTION SET
(2) 18 (HEX) + K = THE ONE'S COMPLEMENT OF CHK

MA-X0055-80

Figure 4-3 Boot Block Format

4.3.5.2 PROM Bootstrap Procedure

The PROM bootstrap uses a variant of the boot block mechanism. VMB
searches through Q22-bus memory on 16 Kbyte boundaries for a valid
PROM signature block, the second segment of the boot block defined in
Figure 4-3.

At each boundary, VMB:
1. Validates the readability of that Q22-bus memory page.
2. If readable, check to see if it contains a valid PROM signature block.

If verification passes, the PROM image will be copied into main memory
and VMB will transfer control to that image at the offset specified in the
PROM bootblock. If not, the next page will be tested.

4-68 KA850 Firmware

NOTE

It is not necessary that the boot image actually reside in PROM.
Any boot image in Q22-bus memory space with a valid signature
block on a 16 Kbyte boundary is a candidate.

The PROM image is copied into main memory in 127 page "chunks" until
the entire PROM is moved. All destination pages beyond the primary 128
Kbyte block are verified to make sure they are marked good in the PFN
bitmap. The PROM must be copied contiguously and if all required pages
cannot fit into the memory immediately following the VMB image, the
boot fails.

4.3.5.3 Network Bootstrap Procedure

Whenever a network bootstrap is selected on a KA650, VMB makes
continuous attempts to boot from the network. VMB uses the DNA
maintenance operations protocol (MOP) as the transport protocol for
network bootstraps and other network operations. Once a network boot
has been invoked, VMB turns on the designated network link and repeats
load attempts, until either a successful boot occurs or it is halted from the
operator console.

The KA650 supports the load of a standard operating system, a diagnostic
image, or a user-designated program through network bootstraps. The
default image is the a standard operating system, however, a user may
select an alternate image by setting either the RPB$V_DIAG bit or the
RPB$V_SOLICT bit in the boot flag longword R5. Note, that the RPB$V_
SOLICT bit has precedence over the RPB$V_DIAG bit. Hence, if both bits
are set, then the solicited file is requested. (Refer to Figure 4—1 for the
usage of these bits.)

NOTE

VMB accepts a maximum of a 39 character file specification

for solicited boots. If the network server is running VMS the
following defaults apply to the file specification: the directory
MOMSLOAD:, and an extension .SYS. Therefore, the 39 character
file specification need only consist of the filename if the default
directory and extension attributes are used.

KAB50 Firmware 4-69:

The KA650 VMB uses the MOP program load sequence for bootstrapping
the module and the MOP "dump/load” protocol type for load related
message exchanges. The MOP message types used in the exchange are
listed in Table 4-9.

VMB, the requester, starts by sending a REQ_PROGRAM message in the
appropriate envelope to the MOP dump/load multicast address. It then
waits for a response in the form of a VOLUNTEER message from another
node on the network, the MOP load server. If a response is received,
then the destination address is changed from the multicast address to
the node address of the server. The same REQ _PROGRAM message is
retransmitted to the server as an acknowledge which initiates the load.

Next, VMB begins sending REQ_MEM_LOAD messages in response to
either:

* MEM_LOAD message, while there is still more to load
e MEM_LOAD_w_XFER, if it is the end of the image

e PARAM_LOAD_w_XFER, if it is the end of the image and operating
system parameters are required

The load number field in the load messages is used to synchronize the
load sequence. At the beginning of the exchange, both the requester and
server initialize the load number. The requester only increments the load
number if a load packet has been successfully received and loaded. This
forms the acknowledge to each exchange. The server will resend a packet
with a specific load number, until it sees a request with the load number
incremented. The final acknowledge is sent by the requester and has a
load number equivalent to the load number of the appropriate LOAD_w_
XFER message + 1.

During the boot sequence if no response is made to the REQ_PROGRAM
message in the current time-out limit, the time-out limit is increased
linearly up to a maximum of about 4 minutes. The initial time-out limit
is 4 seconds.

4.3.5.4 Network Listening

While the KA650 is waiting for a load volunteer during bootstrap, it
listens on the network for other maintenance messages directed to the
node and periodically identifies itself at 8 to 12 minute intervals. In
particular, this listener supplements the MOP functions of the VMB
load requester typically found in bootstrap firmware and supports the
following:

4-70 KA650 Firmware

* A remote console server that generates unsolicited SYSTEM_ID
messages every 8 to 12 minutes and solicited SYSTEM_ID messages
in response to REQUEST _ID messages, as well as, COUNTERS
messages in response to REQ_COUNTERS messages.

* A loopback server that responds to Ethernet LOOPBACK messages by
echoing the message to the requester.

* An IEEE 802.2 responder which replies to both XID and TEST
messages.

During network operation the firmware listens only to MOP "Load/Dump,"
MOP "Remote Console," and Ethernet "Loopback Assistance” messages
protocols directed to the Ethernet physical address of the node. All other
Ethernet protocols are filtered by the network device driver. Additionally,
IEEE 802.3 messages are also processed by the network listener.

The MOP functions and message types which are supported by the KA650
are summarized in the following tables.

Table 4-9 KA650 Network Maintenance Operations Summary
Function Role Transmit Receive

MOP Ethernet and IEEE 802.3 Messages !

Dump Requester —_ e
Server —_ —
Load Requester REQ_ to solicit VOLUNTEER
PROGRAM?
REQ MEM_ to solicit & MEM_LOAD
LOAD ACK
or MEM_LOAD_w_
XFER
or PARAM _IL.OAD_
w_XFER
Server —_ —_
Console Requester —_ _

1 All unsolicited messages are sent in Ethernet (MOP V3) and IEEE 802.2 (MOP V4), until
the MOP version of the server is known. All solicited messages are sent in the format used
for the request. '

2The initial REQ PROGRAM message is sent to the dumpload multicast address. If an
assistance VOLUNTEER message is received, then the responder’s address is used as the

destination to repeat the REQ_PROGRAM message and for all subsequent REQ MEM_
LOAD messages.

KAB50 Firmware 4-71

Table 4-9 (Cont.) KA650 Network Maintenance Operations Summary

Function Role Transmit Receive
MOP Ethernet and IEEE 802.3 Messages
Server SYSTEM_ID® in response REQUEST_ID
to
COUNTERS in response REQ_
to COUNTERS
BOOT
Loopback Requester _— —
Server LOOPED_ in response LOOP_DATA
DATA* to
IEEE 802.2 Messages®
Exchange Requester —_ —_
ID
Server XID_RSP in response XID_CMD
to
Test Requester _— —_
Server TEST_RSP in response TEST CMD
to

1 All unsolicited messages are sent in Ethernet (MOP V3) and IEEE 802.2 (MOP V4), until
the MOP version of the server is known. All solicited messages are sent in the format used
for the request.
3SYSTEM_ID messages are sent out every 8 to 12 minutes to the remote console multicast
address and on receipt of a REQUEST_ID message they are sent to the injtiator.
4LOOPED_DATA messages are sent out in response to LOOP_DATA messages. These
messages are actually in Ethernet LOOP TEST format, not in MOP format, and when sent
in Ethernet frames omit the additional length field (padding is disabled).

SIEEE 802.2 support of XID and TEST is limited to Class 1 operations.

4-72 KA650 Firmware

4.4 Diagnostics

The ROM based diagnostics constitute a major portion of the firmware
on the KA650 and consist of an initial power-up test and a series of
functional component diagnostics. These diagnostics run automatically
on power-up and can be executed interactively as a whole, or as
individual tests using the TEST command (Section 4.2.7.17). This section
summarizes their operation.

The purpose of the ROM based diagnostics is multifaceted:

1. During power-up, the diagnostics determine if enough of the KA650 is
working to allow the console to run.

2. During the manufacturing process, the diagnostics verify that the
board is correctly built.

3. In the field, the diagnostics verify that the board is operational, and
to report all detected errors.

4. The diagnostics allow sophisticated users and Field Service
technicians to run individual diagnostics interactively, with the intent
of isolating errors to the FRU.

To accommodate these requirements, the diagnostics have been designed
as a collection of individual parameterized tests. A data structure, called
a script, and a program, called the diagnostic executive, orchestrate the
running of these tests in the right order with the right parameters.

A script is a data structure that points to various tests. There are several
scripts, one for the field, and several for manufacturing, depending on
where on the manufacturing line the board is. Sophisticated users may
also create their own scripts interactively. Additionally, the script contains
other information as follows:

¢ What parameters need to be passed to the test.

* What is to be displayed, if anything, on the console.
¢ What is to be displayed, if anything, on the LED.

¢ What to do on errors (halt, loop, or continue).

¢ Where the tests may be run from. For example, there are certain
tests that can only be run frem the EPROM. Other tests are position

independent code (PIC), and may be run from EPROM, or main
memory in the interests of execution speed.

KA650 Firmware 4-73

The diagnostic executive interprets scripts to determine what tests are
to be run. There are several built in scripts on the KA650 that are used
for manufacturing, power-up, and Field Service personnel. The diagnostic
executive automatically invokes the correct script based on the current
environment of the KA650. Any script can be explicitly run with the
TEST command from the console terminal.

The diagnostic executive is also responsible for controlling the tests so
errors can be caught and reported to the user. The executive also ensures
that when the tests are run, the machine is left in a consistent and well
defined state.

4.4.1 Error Reporting

Before a console is established, the only error reporting is through the
KA650’s diagnostic LEDs (and any LEDs on other boards). Once a console
has been established, all errors detected by the diagnostics are also
reported by the console. When possible, the diagnostics issue an error
summary on the console. Example 4-5 shows a typical error display.

234 2 08 FF 00 0000 (1)
P1=00000000 P2=00000003 P3=00000031 P4=00000011 P5=00002000 (2)
P6=FFFFFFFF P7=00000000 P8=00000000 P9=00000000 P10=2005438F (3)
r0=00114B98 <r1=FFFFFFFF 2=2005D2F0 r3=55555555 r4=AAAAARARAN (4)
r5=00000000 r6=AAAAARAA r7=00000000 r8=00000000 ERF=80000180 (5)

Example 4-5

Diagnostic Register Dump

The numbers in parenthesis on the right side of Example 4-5 refer to
lines of the display and are not a part of the diagnostic dump. The
information on these lines is summarized as follows:

1. Test summary containing six hexadecimal fields.
a. 734, test identifies the diagnostic test.

b. 2, severity is the level of a test failure, as dictated by the script.
Failure of a severity level 2 test causes the display of this five-line
error printout, and halts an autoboot to console I/O mode. An
error of severity level 1 displays the first line of the error printout,
but does not interrupt an autoboot. Most tests have a severity
level of 2.

4-74 KAB50 Firmware

c. 08, error is a number, that in conjunction with listing files,
isolates to within a few instructions where the diagnostic detected
the error. This field is also called the subtestlog.

d. FF, de_error is a code with which the diagnostic executive signals
the diagnostic’s state and any illegal behavior. This field indicates
a condition that the diagnostic expects on detecting a failure. The
possible codes are:

FF - Normal error exit from diagnostic
FE - Unanticipated interrupt

FD - Interrupt in cleanup routine

FC - Interrupt in interrupt handler

FB - Script requirements not met

FA - No such diagnostic

EF - Unanticipated exception in executive

e. 00, vector is the SCB vector (if non-zero) through which an
unexpected exception or interrupt trapped, when the de_error
field indicates an unexpected exception or interrupt (FE or EF).

f. 0000, count is the number of previous errors that have occurred.

2. P1..P5 are the first five longwords of the diagnostic state. This is
internal information that is used by repair personnel.

3. P6...P10 are the last five longwords of the diagnostic state.
4. RO0..R4 are the first five GPRs at the moment the error was detected.

5. RA5..R8 are additional GPRs and ERF is a diagnostic summary
longword.

4.4.2 Diagnostic Interdependencies

When running tests interactively on an individual basis, users should be
aware that certain tests may be dependent on some state set up from a
previous test. In general, tests should not be run out of order.

KAB50 Firmware 4-75

4.4.3 Areas not Covered

The goal is to achieve the highest possible coverage on the KA650 and the
memory boards. However, the testing of the KA650 while running with
memory management turned on is minimal. Also, due to the way the
firmware is implemented (a polled environment running at IPL 31), the
testing of interrupts is not extensive.

These diagnostics are not intended to be used as system level tests. There
are no tests that completely verify that access to the Q22-bus will work.
Thus, a disk, a controller, the backplane, or portions of the CQBIC may
be faulty, and the diagnostics may not detect the fault. Such a fault may
result later as an inability to boot.

4.5 Operating System Restart

An operating system restart is the process of bringing up the operating
system from a known initialization state following a processor halt. This
procedure is often called restart or warmstart, and should not be confused
with a processor restart which results in firmware entry.

On the KA650 a restart occurs if the conditions specified in Table 4—1 are
satisfied.

To restart a halted operating system, the firmware searches system
memory for the restart parameter block (RPB), a data structure
constructed for this purpose by VMB. If a valid RPB is found, the
firmware passes control to the operating system at an address specified in
the RPB.

The firmware keeps a restart in progress (RIP) flag in CPMBX which it
uses to avoid repeated attempts to restart a failing operating system. An
additional RIP flag is maintained by the operating system in the RPB.

The firmware uses the following algorithm to restart the operating
system:

1. Check CPMBX«<3>(RIP). If it is set, restart fails.

2. Print the message "Restarting system software” on the console
terminal.

3. Set CPMBX<3>(RIP).
Search for a valid RPB. If none is found, restart fails.

5. Check the operating system RPB$L_RSTRTFLG<0>(RIP) flag. If it is
set, restart fails.

4-76 KAB50 Firmware

6. Write "0" on the diagnostic LEDs.
7. Dispatch to the restart address, RPB$L_RESTART, with :

SP = the physical address of the RPB plus 512
AP = the halt code

PSL = 041F 0000

PR$_MAPEN = 0.

If the restart is successful, the operating system must clear
CPMBX<3>(RIP).

If restart fails, the firmware prints "Restart failure" on the system
console.

4.5.1 Locating the RPB

The RPB is a page-aligned control block which can be identified by the
first three longwords. The format of the RPB signature is shown in
Figure 44.

RPB: +00 PHYSICAL ADDRESS OF THE RPB
+04 PHYSICAL ADDRESS OF THE RESTART ROUTINE
+08 CHECKSUM OF FIRST 31 LONGWORDS OF RESTART ROUTINE

MA-X0056-89

Figure 4—4 RPB Signature Format

The firmware uses the following algorithm to find a valid RPB:

1. Search for a page of memory that contains its address in the first
longword. If none is found, the search for a valid RPB has failed.

2. Read the second longword in the page (the physical address of the
restart routine). If it is not a valid physical address, or if it is zero,
return to step 1. The check for zero is necessary to ensure that a page
of zeros does not pass the test for a valid RPB.

3. Calculate the 32 bit twos-complement sum (ignoring overflows) of the
first 31 longwords of the restart routine. If the sum does not match
the third longword of the RPB, return to step 1.

4. A valid RPB has been found.

KA650 Firmware 4-77

4.6 Machine State on Power-Up
This section describes the state of the KA650 after a power-up halt.

The descriptions in this section assume a machine with no errors, that the
machine has just been turned on and that only the power-up diagnostics
have been run. The state of the machine is not defined if individual
diagnostics are run or during any other halts other than a power-up halt
(SAVPSL<13:8>(RESTART_CODE) = 3).

The following sections describe data structures that are guaranteed to be
constant over future versions of the KA650 firmware. Placement and/or
existence of any other structure(s) is not implied.

4.6.1 Main Memory Layout and State

The firmware tests and initializes the main memory on power-up.
Figure 4-5 is a diagram of how main memory is partitioned after
diagnostics.

0

! |

® e

[] e

e AVAILABLE SYSTEM MEMORY °

o (PAGES POTENTIALLY GOOD OR BAD) .

[] []

[] []

PEN BITMAP
PFN BITMAP
(4,8,12,16,20,24,28 OR 32 PAGES
ON NEXT 32 Kbyte BOUNDARY BELOW QMRs)
FIRST "GOOD"

FIRMWARE "SCRATCH MEMORY" 64 Koyte BLOCK
(BALANCE OF PAGES BETWEEN FROM THE TOP

PFN BITMAP & QMRs)

QMR BASE
Q22-BUS SCATTER/GATHER MAP 1
(84 PAGES ALWAYS ON 32 Kbyte BOUNDARY)

[]
e POTENTIAL "BAD" MEMORY

[
P
TOP OF MEMORY L

MA-X0048-80

Figure 4-5 Memory Layout after Power-Up Diagnostics

4.6.1.1 Reserved Main Memory

In order to build the scatter/gather map and the bitmap, the firmware
attempts to find a physically contiguous page aligned 64 Kbyte block of
memory at the highest possible address that has no multiple bit errors.
Single bit errors are tolerated in this section.

4-78 KAB50 Firmware

Of the 64 Kbytes, the upper 32 Kbytes is dedicated to the Q22-bus
scatter/gather map, as shown in Figure 4-5. Of the lower 32 Kbytes,
up to 16 Kbytes at the bottom of the block is allocated to the page frame
number (PFN) bitmap. The size of the PFN bitmap is dependent on the
extent of physical memory, each bit in the bitmap maps one page (512
bytes) of memory. The remainder of the block between the bitmap and
scatter/gather map (minimally 16 Kbytes) is allocated for the firmware.

4.6.1.2 PFN Bitmap

The PFN bitmap is a data structure that indicates which pages in memory
are deemed usable by operating systems. The bitmap is built by the
diagnostics as a side effect of the memory tests on power-up. The bitmap
always starts on a page boundary. The bitmap requires 1 Kbyte for every
4 Mbytes of main memory, hence, an 8 Mbyte system requires 2 Kbytes,
16 Mbyte requires 4 Kbytes, 32 Mbyte requires 8 Kbytes, and a 64 Mbyte
requires 16 Kbytes. The bitmap does not map itself or anything above

it. There may be memory above the bitmap which has both good and bad
pages.

Each bit in the PFN bitmap corresponds to a page in main memory. There
is a one to one correspondence between a page frame number (origin 0)
and a bit index in the bitmap. A one in the bitmap indicates that the
page is good and can be used. A zero indicates that the page is bad and
should not be used. By default, a page is flagged bad, if a multiple bit
error occurs when referencing the page. Single bit errors, regardless of
frequency, will not cause a page to be flagged bad.

The PFN bitmap is protected by a checksum stored in the NVRAM. The
checksum is a simple byte wide, two’s complement checksum. The sum of
all bytes in the bitmap and the bitmap checksum should result in zero.
Operating systems that modify the bitmap are encouraged to update this
checksum to facilitate diagnosis by service personnel.

4.6.1.3 Scatter/Gather Map

On power-up, the scatter/gather map is initialized by the firmware to map
to the first 4 Mbytes of main memory. Main memory pages will not be
mapped if there is a corresponding page in Q22-bus memory, or if the
page is marked bad by the PFN bitmap.

On a processor halt other than power-up, the contents of the
scatter/gather map is undefined, and is dependent on operating system
usage.

KAB50 Firmware 4-79

Operating systems should not move the location of the scatter/gather
map, and should access the map only on aligned longwords through the
local I/O space of 2008 8000 to 2008 FFFC, inclusive. The Q22-bus map
base register, (QMBR) is set up by the firmware to point to this area, and
should not be changed by software.

4.6.1.4 Contents of Main Memory

The contents of main memory are undefined after the diagnostics have
run. Typically, non-zero test patterns will be left in memory.

The diagnostics will scrub all of main memory, so that no power-up
induced errors remain in the memory system. On the KA650 memory
subsystem, the state of the ECC bits and the data bits are undefined

on initial power-up. This can result in single and multiple bit errors if
the locations are read before written because the ECC bits are not in
agreement with their corresponding data bits. An aligned longword write
to every location (done by diagnostics) eliminates all power-up induced
errors.

4.6.2 CMCTL Registers

The KA650 firmware assigns bank numbers to CMCTL registers in
ascending order, without attempting to disable physical banks that
contain errors. High order unused banks are set to zero. Error loggers
should capture the following bits from each MEMCSR register:

e MEMCSR<31> (bank enable bit). As the firmware always assigns
banks in ascending order, knowing which banks are enabled is
sufficient information to derive the bank numbers.

¢ MEMCSR<1:0> (bank usage). This field determines the size of the
banks on the particular memory board.

Additional information should be captured from the MCSR16 and
MCSR17 as needed.

4.6.3 First Level Cache

The first level cache is tested during the power-up diagnostics, flushed
and then turned off. The cache is again turned on by the BOOT and the
INIT command. Otherwise, the state of the first level cache is disabled.

4-80 KAB50 Firmware

4.6.4 Translation Buffer

The CPU translation buffer is tested by diagnostics on power-up, but not
used by the firmware since it runs in physical mode. The translation
buffer can be invalidated by using PR$_TBIA, IPR 57.

.4.6.5 Second Level Cache

The second level cache is tested during the power-up diagnostics, flushed

and then turned off. During a bootstrap, the second level cache is turned

off before invoking VMB but not flushed. The second level cache is turned
off, but not flushed, on an INIT command.

The second level cache should always be flushed before turning it on.

4.6.6 Halt Protected Space

Halt protected space is from 2004 0000 to 2005 FFFF, inclusive, for the
128 Kbytes of firmware on the KA650. The halt unprotected space is from
2006 0000 to 2008 FFFF.

The firmware always runs in halt protected space. When passing control
to the bootstrap, the firmware exits the halt protected space, so if halts
are enabled, and the halt line is asserted, the processor will then halt
before booting.

The SSC decodes both spaces (256 Kbytes). That is, the ROMs appear
twice in the address space. However, the halt protected space is set to 128
Kbytes, the size of the EPROMs.

4.7 Public Data Structures and Entry Points

This section describes public data structures and subroutine entry points
that are public and are guaranteed to be compatible over future versions
of the KA650 firmware.

4.7.1 Firmware EPROM Layout

The KA650 uses two 64 Kbyte EPROMs (128 Kbytes of total EPROM).
Approximately 120 Kbytes of this is used for code, with the remaining
reserved for future expansion and cusiomer usage. There are two copies
of the firmware, one in halt protected space, and one in halt unprotected
space. Both copies are identical.

KAB850 Firmware 4-81

HALT PROTECT HALT UNPROTECT
ADDRESS ADDRESS
2004 0000 BRANCH INSTRUCTION 2006 0000
2004 0006 SYSTEM ID EXTENSION 2006 0006
2004 0008 CP3SGETCHAR_R4 2006 0008
2004 000C CPSMSG_OUT_NOLF_R4 2006 000C
2004 0010 CPSREAD_WITH_PRMPT_R4 2006 0010
2004 0014 RESERVED 2006 0014
2004 001C DEFAULT BOOT DEVICE 2006 0018

DESCRIPTOR POINTER

DEFAULT BOOT FLAGS 2006 001C
POINTER

CONSOLE, DIAGNOSTIC
AND BOOT CODE

EPROM CHECKSUM

RESERVED FOR DIGITAL

2005 F80¢ 4 PAGES RESERVED 2007 F80O
FOR CUSTOMER USE

2005 FFFC 2007 FFFC

MA-X0057-80

Figure 4-6 KA650 EPROM Layout

The first instruction executed on halts is a branch around the system ID
extension (SIE) and the callback entry points. This allows the public data
structures to reside in fixed locations in the EPROM.

The callback area entry points provide a simple interface to the currently
defined console for VMB and secondary bootstraps. This is discussed
further in the next section.

The EPROM checksum is a longword checksum from 2004 0000 to the
checksum inclusive. The diagnostics use this to determine that the
EPROMs can correctly be read.

The memory between the checksum and the 4-page user area at the end of
the EPROMs is reserved for DIGITAL for future expansion of the KA650
firmware. The contents of this area is set to FF.

4-82 KAB50 Firmware

The 4 pages reserved for customer use are at the top of the EPROMs,
and start at address 2005 F800 (halt protected space) or 2007 F800 (halt
unprotected space). These areas are not burned and may be reburned by
OEMs or end users. The area is not tested by the KA650 firmware and is
not included in the checksum.

4.7.2 Call-Back Entry Points

The KA650 firmware provides several entry points that facilitate I/O to
the designated console device. Users of these entry points do not need to
be aware of the console device type, be it a video terminal or workstation.

The primary intent of these routines is to provide a simple console device
to VMB and secondary bootstraps, before operating systems load their
own terminal drivers. '

These are JSB (subroutine as opposed to procedure) entry points located
in fixed locations in the firmware. These locations branch to code that in
turn calls the appropriate routines.

All of the entry points are designed to run at IPL 31 on the interrupt
stack in physical mode. Virtual mode is not supported. Due to internal
firmware architectural restrictions, users are encouraged to only call into
the halt protected entry points. These entry points are listed below.

CP$GET_CHAR_ 2004 0008
Ra .
CP$MSG_OUT_ 2004 000C
NOLF_R4

CP$READ_WTH_ 2004 0010
PRMPT R4

4.7.2.1 CP$GETCHAR_R4

This routine returns the next character entered by the operator in RO.
A timeout interval can be specified. If the timeout interval is zero, no
timeout is generated. If a timeout is specified and if timeout occurs, a
value of 18 (CAN) is returned instead of normal input.

Registers RO, R1, R2, R3, and R4 are modified
are preserved.

KAB50 Firmware 4-83

by this routine, all others

.
r
’

Usage with timeout:

movl #timeout_in_tenths of_ second,r0 ;
jsb @#CPSGET_CHAR R4 ;
cmpb r0, #°x18 ;
beql timeout_handler H

; Input is in RO.

Specify timeout.
Call routine.
Check for timeout.
Branch if timeout.

e

; Usage without timeout:

clrl r0
jsb @#CPSGET_CHAR_R4
; Input is in RO.

AT

Specify no timeout.
Call routine.

’

4.7.2.2 CPSMSG_OUT_NOLF_R4
This routine outputs a message to the console.

either by a message code or a string descriptor.

The message is specified
The routine distinguishes

between message codes and descriptors by requiring that any descriptor
be located outside of the first page of memory. Hence, message codes are

restricted to values between 0 and 511.

Registers RO, R1, R2, R3, and R4 are modified by this routine, all others

are preserved.

Usage with message code:

movzbl #console_message_code, r0
jsb @#CPSMSG_OUT _NOLF_R4

Ne e

Specify message code.
Call routine.

; Usage with a message descriptor (position dependent).

movag 5$,x0 ;
jsb @#CP$SMSG_OUT_NOLF_R4 ;

5%: .ascid /This is a message/ H

Specify address of desc.
Call routine.

Message with descriptor.

484 KA650 Firmware

® - - o —

7

; Usage with a message descriptor (position independent).

pushab 5§ ; Generate message desc.
pushl #10-5 ; on stack.

movl sp, r0 ; Pass desc. addr. in RO.
jsb @#CPSMSG_OUT_NOLF_R4 ; Call routine.

clrg (sp)+ ; Purge desc. from stack.
5%: .ascii /This is a message/ ; Message.

108: ;

4.7.2.3 CP$READ_WTH_PRMPT_R4

This routine outputs a prompt message and then inputs a character string

from the console. When the input is accepted, | Delete], and R
functions are supported.

As with CP$MSG_OUT_NOLF_R4, either a message code or the address
of a string descriptor is passed in RO to specify the prompt string. A value
of zero results in no prompt.

A descriptor of the input string is returned in R0 and R1. RO contains the
length of the string and R1 contains the address. This routine inputs the

string into the console program string buffer and therefore the caller need
not provide an input buffer. Successive calls however destroy the previous
contents of the input buffer.

Registers RO, R1, R2, R3, and R4 are modified by this routine, all others
are preserved.

. - - - -
’

; Usage with a message descriptor (position independent).

pushab 10$
pushl #10-5

Generate prompt desc.
on stack.

Ne Ne Ne N

movl sp, x0 Pass desc. addr. in RO.
jsb @#CPSREAD_WTH PRMPT_R4 Call routine.
clrg {sp)+ ; Purge prompt desc.

; Input desc in RO and Rl.
5%: .ascii /Prompt> / ; Prompt string.

10$:

’

KAB50 Firmware 4-85

4.7.3 SSC RAM Layout

The KA650 firmware uses the 1 Kbyte of battery backed up (BBU) RAM
in the SSC for storage of firmware specific data structures and other
information that must be preserved across power cycles. This nonvolatile
RAM (NVRAM) resides in the SSC chip starting at address 2014 0400.
The NVRAM should not be used by the operating systems except as

shown in Figure 4-7. This NVRAM is not reflected in the bitmap built by
the firmware.

2014 0400 PUBLIC DATA STRUCTURES
(CPMBX, ETC.)

SERVICE VECTORS

FIRMWARE STACK

DIAGNOSTIC STATE

RESERVED FOR

2014 07FC CUSTOMER USE

MA-X0058-80

Figure -7 KAG650 SSC NVRAM Layout

4.7.3.1 Public Data Structures

The following is a list of the public data structures in NVRAM used by
the console.

Fields that are designated as reserved and/or internal use should not be
written, since there is no protection against such corruption.

Console Program Mailbox

The console program mailbox (CPMBX) is a software data structure
located at the beginning of NVRAM (2014 0400). The CPMBX is used to
pass information between the KA650 firmware and diagnostics, VMB, or
an operating system. It consists of three bytes referred to here as NVRO,
NVR1, and NVR2, shown in Figures 4-8 through 4-10.

4-86 KAB50 Firmware

7 6 5 4 3 2 1 0

NVRO LANGUAGE RIP BIP HLT_ACT 2014 0400

MA-X0048-80

Figure 4-8 NVRO

Field Name Description

7:4 LANGUAGE This field specifies the current selected language for
displaying halt and error messages on terminals which

support MCS.
3 RIP If set, a restart attempt is in progress. This flag must be
cleared by the operating system, if the restart succeeds.
2 BIP If set, a bootstrap attempt is in progress. This flag must be
cleared by the operating system if the bootstrap succeeds.
1:0 HLT_ Processor halt action - this field in conjunction with
ACT the conditions specified in Table 4-1 is used to control

the automatic restart/bootstrap procedure. HLT_ACT is
normally written by the operating system.

0 : Restart; if that fails, reboot; if that fails, halt.
1 : Restart; if that fails, halt.
2 : Reboot; if that fails, halt.
3 : Halt.
7 6 5 4 3 2 1 0
NVR1 mMcs | CRT 2014 0401

Figure 4-9 NVR1

KA650 Firmware 487

Field Name Description

2 MCS If set, indicates that the attached terminal supports
multinational character set (MCS). If clear, MCS is not
supported.

1 CRT If set, indicates that the attached terminal is a CRT. If

clear, indicates that the terminal is hardcopy.

7 6 5 4 3 2 1 0

NVR2 KEYBOARD 2014 0402

MA-X0051-89

Figure 410 NVR2

Field Name Description

7:0 KEYBOARD This field indicates the national keyboard variant in use.

4.7.3.2 Firmware Stack

This area contains the stack that is used by all of the firmware, with the
exception of VMB, which has its own built in stack.

4.7.3.3 Diagnostic State

This area is used by the firmware resident diagnostics. This section is not
documented here.

4.7.3.4 USER Area

The KA650 console reserves the last longword (address 2014 07FC) of
the NVRAM for customer use. This location is not tested by the console
firmware. Its value is undefined.

4.8 Error Messages

The error messages issued by the KA650 firmware fall into three
categories: halt code messages, VMB error messages, and console
messages.

4-88 KAB50 Firmware

4.8.1 Halt Code Messages

Except on power-up, which is not treated as an error condition, a message
is issued by the firmware whenever the processor halts.

For example:

2?06 HLT INST
PC = 800050D3

The number preceding the halt message is the halt code. This number
is obtained from SAVPSL<13:8>(RESTART_CODE), IPR 43, which is
written on any CVAX processor restart operation.

Table 4-10 lists messages that may appear on the console terminal when
a system error occurs.

Table 4-10 HALT Messages

Code Message Description

202 EXT HLT External halt, caused by either console BREAK
condition or Q22-bus BHALT L.

03 — Power-up, no halt message is displayed; _03 is not

displayed. However, the presence of the firmware
banner and diagnostic countdown indicates this halt
reason.

204 ISP ERR In attempting to push state onto the interrupt stack
during an interrupt or exception, the processor
discovered that the interrupt stack was mapped NO
ACCESS or NOT VALID.

205 DBL ERR The processor attempted to report a machine check
to the operating system, and a second machine check
occurred.

206 HLT INST The processor executed a HALT instruction in kernel
mode.

207 SCB ERR3 The SCB vector had bits <1:0> equal to 3.

?08 SCB ERR2 The SCB vector had bits <1:0> equal to 2.

?20A CHM FR A change mode instruction was executed when

ISTK PSL<IS> was set.
?0B CHM TO The SCB vector for a change mode had bit <0> set.
ISTK

?20C SCB RD ERR A hard memory error occurred while the processor was
trying to read an exception or interrupt vector.

KA650 Firmware 4-89

Table 4-10 (Cont.) HALT Messages

Code Message Description

?10 MCHK AV An access violation or an invalid translation occurred
during machine check exception processing.

?11 KSP AV An access violation or translation not valid occurred
during processing of a kernel stack not valid exception.

?12 DBL ERR2 Double machine check error. A machine check
occurred while trying to service a machine check.

?13 DBL ERR3 Double machine check error. A machine check
occurred while trying to service a kernel stack not
valid exception.

?19 PSL EXC5?! PSL<26:24> = 5 on interrupt or exception.

?1A PSL EXCe! PSL<26:24> = 6 on interrupt of exception.

?1B PSL EXCT* PSI<26:24> = 7 on interrupt or exception.

?1D PSL REI5! PSL<26:24> = 5 on an REI instruction

?1E PSL REI&! PSL<26:24> = 6 on an REI instruction.

?1F PSL REI7! PSL<26:24> = 7 on an REI instruction.

1For the last six cases, the VAX architecture does not allow execution on the interrupt stack
while in a mode other than kernel. In the first three cases, an interrupt is attempting to
run on the interrupt stack while not in kernel mode. In the last three cases, an REI
instruction is attempting to return to a mode other than kernel and still run on the
interrupt stack.

4.8.2 Console Error Messages

Table 4-11 lists error messages issued in response to a console command
that has error(s).

Table 4-11 Console Error Messages

Code Message Description

2?20 CORRPTN The console program database has been corrupted.

221 ILL REF Tllegal reference. The requested reference would
violate virtual memory protection, the address
is not mapped, the reference is invalid in the
specified address space, or the value is invalid in
the specified destination.

?22 ILL CMD The command string cannot be parsed.

723 INV DGT A number has an invalid digit.

4-980 KA650 Firmware

Table 4—11 (Cont.)

Console Error Messages

Code Message Description

?24 LTL The command was too large for the console to
buffer. The message is issued only after receipt of
the terminating carriage return.

?25 ILL ADR The address specified falls outside the limits of the
address space.

?26 VAL TOO LRG The value specified does not fit in the destination.

227 SW CONF Switch conflict, for example, two different data
sizes are specified for an EXAMINE command.

728 UNK SW The switch is unrecognized.

?29 UNK SYM The symbolic address in an EXAMINE or
DEPOSIT command is unrecognized.

72A CHKSM The command or data checksum of an X command
is incorrect. If the data checksum is incorrect, this
message is issued, and is not abbreviated to Illegal
command.

?2B HLTED The operator entered a HALT command.

?2C FND ERR A FIND command failed either to find the RPB or
128 Kbytes of good memory.

72D TMOUT During an X command, data failed to arrive in the
time expected (60 seconds).

?2E MEM ERR A machine check occurred with a code of 80 (hex)
or 81 (hex), indicating a read or write memory
error.

?22F UNXINT Unexpected interrupt or exception

?30 UNIMPLEMENTED Unimplemented function

731 QUAL NOVAL Qualifier does not take a value

732 QUAL AMBG Ambiguous qualifier

?33 QUAL REQ VAL Qualifier requires a value

?34 QUAL OVERF Too many qualifiers

735 ARG OVERF Too many arguments

736 AMBG CMD Ambiguous command

?37 INSUF ARG Insufficient arguments

KA650 Firmware 4-91

4.8.3 VMB Error Messages
Table 4-12 lists errors issued by VMB.

Table 4-12 VMB Error Messages

Code Message Description

240 NOSUCHDEV No bootable devices found.

241 DEVASSIGN Device is not present.

?42 NOSUCHFILE Program image not found.

243 FILESTRUCT Invalid boot device file structure.

44 BADCHKSUM Bad checksum on header file.

?45 BADFILEHDR Bad file header.

246 BADIRECTORY Bad directory file.

247 FILNOTCNTG Invalid program image format.

?48 ENDOFFILE Premature end of file encountered.

?49 BADFILENAME Bad file name given.

24A BUFFEROVF Program image does not fit in available memory.
?4B CTRLERR Boot device I/O error.

?24C DEVINACT Failed to initialize boot device.

24D DEVOFFLINE Device is offiine.

24E MEMERR Memory initialization error.

?4F SCBINT Unexpected SCB exception or machine check.
?50 SCB2NDINT Unexpected exception after starting program image.
?51 NOROM No valid ROM image found.

?52 NOSUCHNODE No response from load server.

?53 INSFMAPREG Invalid memory configuration.

?54 RETRY No devices bootable, retrying.

A

KAG650 Specifications

This appendix contains the physical, electrical and environmental
specifications for the KA650 CPU module.

A.1 Physical Specifications

The physical specifications for the KA650 are as follows:
Dimension Measurement

Height 10.457 (+0.015/-0.020) inches
Length 8.430 (+0.010/-0.010) inches
Width 0.375 inches maximum (nonconductive)

0.348 inches maximum (conductive)

NOTE
Width, as defined for Digital modules, is the height of components _
above the surface of the module.

A.2 Electrical Specifications

The power requirements for the KA650 CPU module are as follows:

+5V 5% +12V =5%
6.0 A maximum 0.14 A maximum

Typical currents are 10% less than the specified maximum.
The bus loads for the KA650 CPU module are as follows:

e 3.5 acloads

¢ 1.0 dcloads

A-1

A-2 KAB50 Specifications

A.3 Environmental Specifications
The environmental specifications for the KA650 CPU module are as

follows:

Operating Conditions

Temperature

Humidity

Altitude

5°C (41°F) to 60°C (140°F) with a rate of change no greater than
20+2°C (36 +4°F) per hour at sea level. For operation above sea
level, decrease the operating temperature by 1.8°C for each 1000
meters (1°F for each 1000 feet).

0% to 95% noncondensing with a maximum wet bulb temperature
of 32°C (90°F) and a minimum dew point temperature of 2°C
(36°F).

Up to 2,400 meters (8,000 feet) with a rate of change no greater
than 300 meters per minute (1000 feet per minute).

Nonoperating Conditions Less Than 60 Days

Temperature

Humidity
Altitude

-40°C to +66°C (40°F to +151°F) with a rate of change no greater
than 11 +2 °C (20 +4°F) per hour at sea level. For operation above
sea level, decrease the nonoperating temperature by 1.8°C for
each 1000 meters (1°F for each 1000 feet).

Up to 95% noncondensing.

Up to 4,900 meters (16,000 feet) with a rate of change no greater
than 600 meters per minute (2000 feet per minute).

Nonoperating Conditions Greater Than 60 days

Temperature

Humidity

Altitude

+5°C to +60°C (+40°F to +140°F) with a rate of change no greater
than 20 +2°C (36 +4°F) per hour at sea level. For operation above
sea level, decrease the nonoperating temperature by 1.8°C for
each 1000 meters (1°F for each 1000 feet).

10% to 95% noncondensing with a maximum wet bulb
temperature of 32°C (90°F) and a minimum dew point
temperature of 2°C (36°F).

Up to 2,400 meters (8,000 feet) with a rate of change no greater
than 300 meters per minute (1000 feet per minute).

Address Assignments

B.1 General Local Address Space Map
Table B—1 lists the VAX memory space.

Table B-1 VAX Memory Space

Address Range Contents

0000 0000 through 03FF FFFF Local memory space (64 Mbytes)

0400 0000 through O7FF FFFF Reserved memory space (64 Mbytes)

0800 0000 through OBFF FFFF Reserved memory space (64 Mbytes)

0CO00 0000 through OFFF FFFF Reserved memory space (64 Mbytes)

1000 0000 through 13FF FFFF Cache diagnostic space (64 Mbytes)

1400 0000 through 17FF FFFF Reserved cache diagnostic space (64
Mbytes)

1800 0000 through 1BFF FFFF Reserved cache diagnostic space (64
Mbytes)

1C00 0000 through 1FFF FFFF Reserved cache diagnostic space (64
Mbytes)

Table B-2 lists the VAX input/output memory space.

Table B-2 VAX input/Output Space

Address Range Contents
2000 0000 through 2000 1FFF Local Q22-bus /O space (8 Kbytes)
2000 2000 through 2003 FFFF Reserved local I/O space (248 Kbytes)

B—1

B-2 Address Assignments

Table B-2 (Cont.) VAX Input/Output Space

Address Range

Contents

2004 0000 through 2005 FFFF
2006 0000 through 2007 FFFF

2008 0000 through 201F FFFF
2020 0000 through 23FF FFFF
2400 0000 through 27FF FFFF
2800 0000 through 2BFF FFFF
2C08 0000 through 2FFF FFFF
3000 0000 through 303F FFFF
3040 0000 through 33FF FFFF
3400 0000 through 37FF FFFF
3800 0000 through 3BFF FFFF
3C00 0000 through 3FFF FFFF

Local ROM space, halt protected space
(128 Kbytes)

Local ROM space, halt unprotected space
(128 Kbytes)

Local register I/O space (1.5 Mbytes)
Reserved local I/O space (62.5 Mbytes)
Reserved local I/O space (64 Mbytes)
Reserved local I/O space (64 Mbytes)
Reserved local I/O space (64 Mbytes)
Local Q22-bus memory space (4 Mbytes)
Reserved local I/O space (60 Mbytes)
Reserved local 1/O space (64 Mbytes)
Cache tag diagnostic space (64 Mbytes) !
Reserved cache tag diagnostic space (64
Mbytes)

1Not visible during normal operation.

B.2 Detailed Local Address Space Map
Table B—-3 describes the contents of the VAX memory space.

Table B-3 VAX Memory Space

Address Range

Contents

0000 0000 through O3FF FFFF
0400 0000 through OFFF FFFF
1000 0000 through 13FF FFFF
1800 0000 through 1FFF FFFF

Local memory space (up to 64 Mbytes) ?
Reserved memory space

Cache diagnostic space

Reserved cache diagnostic space

1Q22-bus map top 32 Kbytes of main memory

Table B—4 describes the contents of the VAX input/output memory space.

Address Assignments B-3

Table B—4 VAX Input/Output Space

Address Range

Contents

2000 0000 through 2000 1FFF
2000 0000 through 2000 0007
2000 0008 through 2000 O7FF
2000 0800 through 2000 OFFF
2000 1000 through 2000 1F3F
2000 1F40

2000 1F42

2000 1F44

2000 1F46

2000 1F48 through 2000 1FFF

2000 2000 through 2003 FFFF

2004 0000 through 2007 FFFF

2004 0000 through 2005 FFFF
2004 0004
2006 0000 through 2007 FFFF

2008 0000 through 201F FFFF

2008 0000
2008 0004
2008 0008
2008 000C
2008 0010
2008 0014 through 2008 013C
2008 0140
2008 0144

2008 0018 through 2008 3FFF
2008 4000

2008 4004
2008 4008 through 2008 7FFF

Local Q22-bus I/O space

Reserved Q22-bus I/O space

Q22-bus floating address space

User reserved Q22-bus I/O space
Reserved Q22-bus /O space
Interprocessor communication register
{normal operation)

Interprocessor communication register
(reserved)

Interprocessor communication register
(reserved)

Interprocessor communication register
(reserved)

Reserved Q22-bus I/O space

Reserved Local I/O space

Local ROM space

Local ROM protected space

MicroVAX system type register (in ROM)
Local ROM unprotected space

Local Register /O space

DMA system configuration register
DMA system error register
Q22-bus error address register
DMA error address register
Q22-bus map base register
Reserved local register /O space
Main memory error status register
Main memory control/diagnostic status
register

Reserved local register /O space

Cache control register
Boot and diagnostic register
Reserved local register I/O space

B—4 Address Assignments

Table B—4 (Cont.) VAX Input/Output Space

Address Range

Contents

2008 8000 through 2008 FFFF
2009 0000 through 2014 0020

2014 0030
2014 0034 through 2014 0068

2014 006C through 2001 40FF

2014 0100

2014 0104

2014 0108

2014 010C

2014 0110

2014 0114

0118

2014 011C

2014 0120 through 2014 03FF

2014 0400 through 2014 O7FF
2014 0800 through 201F FFFF

2020 0000 through 2FFF FFFF
2000 0000 through 203F FFFF
3040 0000 through 37FF FFFF

3800 0000 through SBFF FFFF !
3C00 0000 through 3FFF FFFF

Q22-bus map registers
Reserved local register I/O space

Diagnostic LED register
Reserved local register /O space

Diagnostic registers

Timer O control register

Timer O interval register

Timer O next interval register
Timer O interrupt vector

Timer 1 control register

Timer 1 interval register

Timer 1 next interval register
Timer 1 interrupt vector
Reserved local register I/O space

Battery backed-up RAM
Reserved local register I/O space

Reserved local I/O space
Local Q22-bus memory space
Reserved local register /O space

Cache tag diagnostic space

Reserved cache tag diagnostic space

INot visible during normal operation

Address Assignments B-5

B.3 External IPRs

Several of the internal processor registers (IPRs) on the KA650 are
implemented in the SSC rather than the CVAX chip. These registers
are referred to as external IPRs, and are listed in Table B-5.

Table B-5 External IPRs

IPR

Number Register Name Abbreviation

27 Time of year register TOY

28 Console storage receiver CSRS?
status

29 Console storage receiver data CSRD !

30 Console storage transmitter CSTS!
status

31 Console storage transmitter CSDB!
data

32 Console receiver RXCS
control/status

33 Console receiver data buffer RXDB

34 Console transmitter TXCS
control/status

35 Console transmitter data TXDB
buffer

55 /O system reset register IORESET

1These registers are not fully implemented. Accesses yield unpredictable results.

B-6 Address Assignments

B.4 Global Q22-bus Address Space Map

The addresses and memory contents of the Q22-bus memory space is as
listed in Table B-6.

Table B-6 Q22-bus Memory Space Map

Address Range Contents

0000 0000 through 1777 7777 Q22-bus memory space (octal)

The contents and addresses of the Q22-bus I/O space with BBS7 asserted
is listed in Table B-7.

Table B-7 Q22-bus Input/Output Space with BBS7 Asserted

Address Range Contents

1776 0000 through 1777 7777 Q22-bus 1/O space (octal)

1776 0000 through 1776 0007 Reserved Q22-bus I/O space

1776 0010 through 1776 3777 Q22-bus floating address space

1776 4000 through 1776 7777 User reserved Q22-bus I/O space

1777 0000 through 1777 7477 Reserved Q22-bus I/O space

1777 7500 Interprocessor communication register
(normal operation)

1777 7502 Interprocessor communication register
(reserved)

1777 7504 Interprocessor communication register
(reserved)

1777 7506 Interprocessor communication register
(reserved)

1777 7510 through 1777 7777 Reserved Q22-bus /O space

C

Q22-bus Specification

C.1 Introduction

The Q22-bus, also known as the extended LSI-11 bus, is the low-end
member of DIGITAL's bus family. All of DIGITAL's microcomputers, such
as the MicroVAX I, MicroVAX II, MicroVAX 3500, MicroVAX 3600, and
MicroPDP-11 use the Q22-bus.

The Q22-bus consists of 42 bidirectional and 2 unidirectional signal lines.
These form the lines along which the processor, memory, and I/O devices
communicate with each other.

Addresses, data, and control information are sent along these signal
lines, some of which contain time-multiplexed information. The lines are
divided as follows:

¢ Sixteen multiplexed data/address lines — BDAL<15:00>
* Two multiplexed address/parity lines — BDAL<17:16>
* Four extended address lines — BDAL<21:18>

e Six data transfer control lines — BBS7, BDIN, BDOUT, BRPLY,
BSYNC, BWTBT

* Six system control lines — BHALT, BREF, BEVNT, BINIT, BDCOK,
BPOK

¢ Ten interrupt control and direct memory access control lines —
BIAKO, BIAKI, BIRQ4, BIRQ5, BIRQ6, BIRQ7, BDMGO, BDMR,
BSACK, BDMGI

In addition, a number of power, ground, and space lines are defined for
the bus. Refer to Table C—1 for a detailed description of these lines.

C-2 Q22-bus Specification

The discussion in this appendix applies to the general 22-bit physical
address capability. All modules used with the KA655 CPU module must
use 22-bit addressing.

Most Q22-bus signals are bidirectional and use terminations for a
negated (high) signal level. Devices connect to these lines by way of
high-impedance bus receivers and open collector drivers. The asserted
state is produced when a bus driver asserts the line low.

Although bidirectional lines are electrically bidirectional (any point
along the line can be driven or received), certain lines are functionally
unidirectional. These lines communicate to or from a bus master (or
signal source), but not both. Interrupt acknowledge (BIAK) and direct
memory access grant (BDMG) signals are physically unidirectional in

a daisy-chain fashion. These signals originate at the processor output
signal pins. Each is received on device input pins (BIAKI or BDMGI)
and is conditionally retransmitted through device output pins (BIAKO
or BDMGO). These signals are received from higher priority devices and
are retransmitted to lower priority devices along the bus, establishing the
position-dependent priority scheme.

C.1.1 Master/Slave Relationship

Communication between devices on the bus is asynchronous. A
master/slave relationship exists throughout each bus transaction. Only
one device has control of the bus at any one time. This controlling device
is termed the bus master, or arbiter. The master device controls the bus
when communicating with another device on the bus, termed the slave.

The bus master (typically the processor or a DMA device) initiates a bus
transaction. The slave device responds by acknowledging the transaction
in progress and by receiving data from, or {ransmitting data to, the bus
master. Q22-bus control signals transmitted or received by the bus master
or bus slave device must complete the sequence according to bus protocol.

The processor controls bus arbitration, that is, which device becomes bus
master at any given time. A typical example of this relationship is a disk
drive, as master, transferring data to memory as slave. Communication
on the Q22-bus is interlocked so that, for certain control signals issued
by the master device, there must be a response from the slave in order to
complete the transfer. It is the master/slave signal protocol that makes
the Q22-bus asynchronous. The asynchronous operation precludes the
need for synchronizing with, and waiting for, clock pulses.

Q22-bus Specification C~3

Since bus cycle completion by the bus master requires response from the
slave device, each bus master must include a timeout error circuit that
aborts the bus cycle if the slave does not respond to the bus transaction
within 10 ps. The actual time before a timeout error occurs must be
longer than the reply time of the slowest peripheral or memory device on

the bus.
C.2 Q22-bus Signal Assignments

Table C-1 lists the data and address signal assignments. Table C-2 lists
the control signal assignments. Table C—3 lists the power and ground
signal assignments. Table C—4 lists the spare signal assignments.

Table C-1 Data and Address Signal Assignments
Data and Address Signal Pin Assignment

BDALO AU2
BDAL1 AV2
BDAL2 BE2
BDAL3 BF2
BDAIA4 BH2
BDALS5 BJ2
BDALS BK2
BDAL? BL2
BDALS BM2
BDAILS BN2
BDAL10 BP2
BDALI11 BR2
BDAL12 BS2
BDAL13 BT2
BDAL14 BU2
BDAL15 BV2
BDAL16 AC1
BDAL17 AD1
BDAL18 BC1
BDAL19 BD1
BDAL20 BE1

BDAL21 BF1

C—4 Q22-bus Specification

Table C-2 Control Signal Assignments

Control Signal Pin Assignment
Data Control

BDOUT AE2
BRPLY AF2
BDIN AH2
BSYNC AJ2
BWTBT AK?2
BBS7 AP2
Interrupt Control

BIRQ7 BP1
BIRQ6 AB1
BIRQ5 AAl
BIRQ4 AL2
BIAKO AN2
BIAKI AM2
DMA Control

BDMR AN1
BSACK BN1
BDMGO AS2
BDMGI AR2
System Control

BHALT AP1
BREF AR1
BEVNT BR1
BINIT AT2
BDCOK BAl
BPOK BB1

Q22-bus Specification C-5

Table C-3 Power and Ground Signal Assignments

Power and Ground Pin Assignment
+5 B (battery) or AS1
+12 B (battery)

+12 B BS1
+5 B AV1
+5 AA2
+5 BA2
+5 BVl
+12 AD2
+12 BD2
+12 AB2
-12 AB2
-12 BB2
GND AC2
GND AJl
GND AM1
GND AT1
GND BC2
GND BJ1
GND BM1
GND BT1

Table C—4 Spare Signal Assignments

Spare Pin Assignment
SSparel AE1l
SSpare3 AH1
SSpare8 BH1
SSpare2 AF1
MSpareA AK1
MSpareB All
MSpareB BK1
MSpareB BL1
PSparel AUl

ASpare2 BU1

C-6 Q22-bus Specification

C.3 Data Transfer Bus Cycles

Data transfer bus cycles, executed by bus master devices, transfer 32-bit
words or 8-bit bytes to or from slave devices. In block mode, multiple
words can be transferred to sequential word addresses, starting from a

single bus address. Data transfer bus cycles are listed and defined in
Table C-5.

Table C-5 Data Transfer Operations

Function (with respect to

Bus Cycle Definition the bus master)

DATI Data word input Read

DATO Data word output Write

DATOB Data byte output Write-byte

DATIO Data word input/output Read-modify-write

DATIOB Data word input/byte Read-modify-write byte
output

DATBI Data block input Read block

DATBO Data block output Write block

The bus signals listed in Table C—6 are used in the data transfer
operations described in Table C-5.

Table C-6 Bus Signals for Data Transfers

Signal Definition Function
BDAIL<21:00> 22 data/address lines BDAL<15:00> L are used
L for word and byte transfers.

BDAL<17:16> L are used for
extended addressing, memory
parity error (16), and memory
parity error enable (17)
functions. BDAI<21:18> L are
used for extended addressing
beyond 256 Kbytes.

BSYNCL Bus cycle control Indicates bus transaction in
progress.

BDIN L Data input indicator Strobe signals

Q22-bus Specification C—7

Table C—6 (Cont.) Bus Signals for Data Transfers

Signal Definition Function
BDOUT L Data output indicator Strobe signals
BRPLY L Slave’s acknowledge of bus Strobe signals
cycle
BWTEBT L Write/byte control Control signals
BBS7 I/O device select Indicates address is in the I/O
page.

Data transfer bus cycles can be reduced to five basic types: DATI,
DATO(B), DATIO(B), DATBI, and DATBO. These transactions occur
between the bus master and one slave device selected during the
addressing part of the bus cycle.

C.3.1 Bus Cycle Protocol

Before initiating a bus cycle, the previous bus transaction must have been
completed (BSYNC L negated) and the device must become bus master.
The bus cycle can be divided into two parts: addressing and data transfer.
During addressing, the bus master outputs the address for the desired
slave device, memory location, or device register. The selected slave
device responds by latching the address bits and holding this condition
for the duration of the bus cycle until BSYNC L becomes negated. During
data transfer the actual data transfer occurs.

C.3.2 Device Addressing

Device addressing of a data transfer bus cycle comprises an address setup
and deskew time, and an address hold and deskew time. During address
setup and deskew time, the bus master does the following operations:

* Asserts BDAL<21:00> L with the desired slave device address bits.
* Asserts BBS7 L if a device in the I/O page is being addressed.
¢ Asserts BWTBT L if the cycle is a DATO(B) or DATBO bus cycle.

C-8 Q22-bus Specification

During this time, the address, BBS7 L, and BWTBT L signals are
asserted at the slave bus receiver for at least 75 ns before BSYNC goes
active. Devices in the I/O page ignore the nine high-order address bits
BDAL<21:13>, and instead, decode BBS7 L along with the 13 low-order
address bits. An active BWIBT L signal during address setup time
indicates that a DATO(B) or DATBO operation follows, while an inactive
BWTBT L indicates a DATI, DATBI, or DATIO(B) operation.

The address hold and deskew time begins after BSYNC L is asserted.

The slave device uses the active BSYNC L bus received output to
clock BDAL address bits, BBS7 L, and BWTBT L into its internal
logic. BDAL<21:00> L, BBS7 L, and BWTBT L remain active for 25
ns minimum after the BSYNC L bus receiver goes active. BSYNC L
remains active for the duration of the bus cycle.

Memory and peripheral devices are addressed similarly, except for the
way the slave device responds to BBS7 L. Addressed peripheral devices
must not decode address bits on BDAL<21:13> L. Addressed peripheral
device can respond to a bus cycle when BBS7 L is asserted (low) during
the addressing of the cycle. When asserted, BBS7 L indicates that the
device address resides in the I/O page (the upper 4K address space).
Memory devices generally do not respond to addresses in the I/O page;
however, some system applications may permit memory to reside in the
I/0 page for use as DMA buffers, read-only memory bootstraps, and
diagnostics.

DATI

The DATI bus cycle, shown in Figure C-1, is a read operation. During
DATI, data is input to the bus master. Data consists of 16-bit word
transfers over the bus. During data transfer of the DATI bus cycle, the

bus master asserts BDIN L 100 ns minimum after BSYNC L is asserted.
The slave device responds to BDIN L active as follows:

¢ Asserts BRPLY L 0 ns minimum (8 ns maximum to avoid bus timeout)
after receiving BDIN L, and 125 ns maximum before BDAL bus driver
data bits are valid.

¢ Asserts BDAL<21:00> L with the addressed data and error
information 0 ns (minimum) after receiving BDIN, and 125 ns
(maximum) after assertion of BRPLY.

Q22-bus Specification C-9

BUS MASTER SLAVE
PROCESSOR OR DEVICE MEMORY OR DEVICE
ADDRESS DEVICE OR MEMORY

ASSERT BDAL <21:00> L WITH
ADDRESS AND

ASSERT BBS7 IF THE ADDRESS
IS IN THE 1/O PAGE

ASSERT BSYNC L

—
— ——
DECODE ADDRESS
STORE DEVICE SELECTED
OPERATION
— -
—
- -
REQUEST DATA
REMOVE THE ADDRESS FROM
BDAL <21:00> L AND
NEGATE BBS7 L
ASSERT BDIN L
— —_
—
INPUT DATA
PLACE DATA ON BDAL < 15:00> L
o ASSERT BRPLY L
p—— -
TERMINATE INPUT TRANSFER
ACCEPT DATA AND RESPOND
BY NEGATING BDIN L
— _—
—
T
TERMINATE BUS CYCLE OPERATION COMPLETED
NEGATE BSYNC L -—— e ——— NEGATE BRPLY L

MR.6028
MA.1074.87

Figure C-1 DATI Bus Cycle

C-10 Q22-bus Specification

When the bus master receives BRPLY L, it does the following:

* Waits at least 200 ns deskew time and then accepts input data
at BDAL<17:00> L bus receivers. BDAL <17:16> L are used for
transmitting parity errors to the master.

¢ Negates BDIN L 200 ns minimum to 2 pus maximum after BRPLY L
goes active.

The slave device responds to BDIN L negation by negating BRPLY L and
removing read data from BDAL bus drivers. BRPLY L must be negated

100 ns maximum prior to removal of read data. The bus master responds
to the negated BRPLY L by negating BSYNC L.

Conditions for the next BSYNC L assertion are as follows:
¢ BSYNC L must remain negated for 200 ns minimum.

¢ BSYNC L must not become asserted within 300 ns of previous BRPLY
L negation.

Figure C—2 shows DATI bus cycle timing.

NOTE

Continuous assertion of BSYNC L retains control of the bus by the
bus master, and the previously addressed slave device remains
selected. This is done for DATIO(B) bus cycles where DATO or
DATOB follows a DATI without BSYNC L negation and a second
device addressing operation. Also, a slow slave device can hold
off data transfers to itself by keeping BRPLY L asserted, which
causes the master to keep BSYNC L asserted.

DATOB

DATOB, shown in Figure C-3, is a write operation. Data is transferred in
32-bit words (DATO) or 8-bit bytes (DATOB) from the bus master to the
slave device. The data transfer output can occur after the addressing part

of a bus cycle when BWTBT L has been asserted by the bus master, or
immediately following an input transfer part of a DATIOB bus cycle.

T/R DAL

T SYNC

T DIN

R RPLY

T BS7

TWTBT

R/T DAL

R SYNC

R DIN

T RPLY

R BS7

RWTBT

(L)

Q22-bus Specification

c-1

T ADDR X 14) x R DATA X {4)

150 ns "]

MINIMUKA"

8 uS MA

XIMUM

100 ns 200 ns __!
I‘MRMMUM [*— MAXIMUM

p—eeee— 200 ns MINIMUM

CLOCK DATA
100 NS MINIMUM et r— pe——— 200 ns MINIMUM 200 ns
/ fe— MINIMUM =

300 NS MINIMUM =t

150 ns

e
MINIMUM — liw- 100 ns MINIMUM

(4)

X
K (4)

TIMING AT MASTER DEVICE

(4]

X rRaoDR X @ 1 TDATA X @

25ns 100 ns MAXIMUM
* MINIMUM [+ 125 s MAXIMUM — i“ 0 ns MINIMUM
4 Ons _ \ /
MINIMUN
o— 75ns je——200 ns MINIMUM 150 ns
MINIMUM \ mimimum]
\ 300 ns MINIMUM ———]

re— 75 ns MINIMUM

(4)

%_l

(£

T {4)
-1 25 ns MINIMUM

K {4)

NOTES:
1. TIMING SHOWN AT MASTER AND SLAVE DEVICE 3. BUS DRIVER QUTPUT AND BUS RECEIVER INPUT
BUS DRIVER INPUTS AND BUS RECEIVER OUTPUTS. SIGNAL NAMES INCLUDE A “B” PREFIX.

TIMING AT SLAVE DEVICE

2. SIGNAL NAME PREFIXES ARE DEFINED BELOW: 4. DON'T CARE CONDITION.
T = BUS DRIVER INPUT
R = BUS RECEIVER OUTPUT

MR.6037
MA.1084.87

Figure C-2 DATI Bus Cycle Timing

C-12 Q22-bus Specification

BUS MASTER SLAVE
{PROCESSOR OR DEVICE) (MEMORY OR DEVICE}

ADDRESS DEVICE/MEMORY
ASSERT BDAL <21:00> L WITH
ADDRESS AND
ASSERT BBS7 L IFADDRESS IS
IN THE 1/0 PAGE
ASSERT BWTBT L (WRITE

CYCLE)
ASSERT BSYNC L —_
—_—
—_—
—_
DECODE ADDRESS
STORE DEVICE SELECTED
- OPERATION
/
/
/
OUTPUT DATA -
REMOVE THE ADDRESS FROM
BDAL <21:00> L AND NEGATE BBS7 L
NEGATE BWTBT L UNLESS DATOB
PLACE DATA ON BDAL < 15:00> L
ASSERT BDOUT L —_— —_
——
—_— — .
TAKE DATA
RECEIVE DATA FROM BDAL
LINES
___— ASSERTBRPLY L
" — -
TERMINATE OUTPUT TRANSFER %~
NEGATE BDOUT L (AND BWTBT L
IF IN A DATOB BUS CYCLE)
REMOVE DATA FROM BDAL <15:00> L____
— —_—
———
OPERATION COMPLETED
NEGATE BRPLY L
— -
—
/ "
P

TERMINATE BUS CYCLE

NEGATE BSYNC L
MR.6029
MA.1081.87

Figure C-3 DATO or DATOB Bus Cycle

Q22-bus Specification C—13

The data transfer part of a DATOB bus cycle comprises a data setup and
deskew time and a data hold and deskew time.

During the data setup and deskew time, the bus master outputs the data
on BDAL<15:00> L at least 100 ns after BSYNC L assertion. BWIBT L
remains negated for the length of the bus cycle. If the transfer is a byte
transfer, BWIBT L remains asserted. If it is the output of a DATIOB,
BWTBT L becomes asserted and lasts the duration of the bus cycle.

During a byte transfer, BDAL<00> L selects the high or low byte. This
occurs in the addressing part of the cycle. If asserted, the high byte
(BDAL<15:08> L) is selected; otherwise, the low byte (BDAL<07:00> L)
is selected. An asserted BDAL 16 L at this time forces a parity error to
be written into memory if the memory is a parity-type memory. BDAL
17 L is not used for write operations. The bus master asserts BDOUT L
at least 100 ns after BDAL and BDWTBT L bus drivers are stable. The
slave device responds by asserting BRPLY L within 10 us to avoid bus
timeout. This completes the data setup and deskew time.

During the data hold and deskew time, the bus master receives BRPLY
L and negates BDOUT L, which must remain asserted for at least 150
ns from the receipt of BRPLY L before being negated by the bus master.
BDAL<17:00> L bus drivers remain asserted for at least 100 ns after
BDOUT L negation. The bus master then negates BDAL inputs.

During this time, the slave device senses BDOUT L negation. The data is
accepted and the slave device negates BRPLY L. The bus master responds
by negating BSYNC L. However, the processor does not negate BSYNC L
for at least 175 ns after negating BDOUT L. This completes the DATOB
bus cycle. Before the next cycle, BSYNC L must remain unasserted for at
least 200 ns. Figure C—4 shows DATOB bus cycle timing.

DATIOB

The protocol for a DATIOB bus cycle is identical to the addressing and
data transfer part of the DATI and DATOB bus cycles, and is shown in
Figure C-5. After addressing the device, a DATI cycle is performed as
explained earlier; however, BSYNC L is not negated. BSYNC L remains
active for an output word or byte transfer (DATOB). The bus master
maintains at least 200 ns between BRPLY L negation during the DATI
cycle and BDOUT L assertion. The cycle is terminated when the bus
master negates BSYNC L, as described for DATOB. Figure C—6 illustrates
DATIOB bus cycle timing.

C—14 Q22-bus Specification

'q— 0 ns MINIMUM

TDAL (4 T ADDR X TDATA X (4
150 ns l._ L_ 100 ns

l"M:MMUﬁ'} 1000 MINIMUN 1 MINIMUM

T SYNC /
8uS 175 ns
"NTAeruﬁ'l MINIMUM

T OOUT /

200 ns MINIMUM——e

150 1 MINIMUM —f L—-

300 ns MINIMUM ———a
R RPLY

-l r_ 100 ns MINIMUM

T BS?7 (4) X X (4}

—o‘ pe— 150 0s MINIMUM

T WTBT (4) \ ASSERTION = BYTE X (4

150 ns 100 { 100 ns
MINIMUM ns MINIMUM MINIMUM

TIMING AT MASTER DEVICE

R DAL (4) X R ADDR X R DATA x (4

| 25 ns MINIMUM —-1 L— 25 ns MINIMUM
R SYNC 4 \ /
- 25 ns MINIMUM 100 ns ManMuM-.LﬁOns MINIMUM-»{
ns
miNimum [
R DOUT N
300 ns MINIMUM ———cts{
-+ 25ns
T RPLY \\
75 ns
—’i MINIMUM
R BS7 (4)(X (a)
25 ns MINIMUM l- — r— 25 ns MINIMUM
RWTBT (4] \Z ASSERTION = BYTE)((4)
N
75 NS “— 25 ns MINIMUM
MINIMUM

TIMING AT SLAVE DEVICE

NOTES:
1. TIMING SHOWN AT MASTER AND SLAVE DEVICE 3.8US DRIVER OUTPUT AND BUS RECEIVER INPUT
BUS DRIVER INPUTS AND BUS RECEIVER QUTPUTS. SIGNAL NAMES INCLUDE A “'B” PREFIX.

2, SIGNAL NAME PREFIXES ARE DEFINED BELOW: 4, DON'T CARE CONDITION.
T = BUS DRIVER INPUT
R = BUS RECEIVER OUTPUT

Figure C4 DATO or DATOB Bus Cycle Timing

MAL1179
MA-1080-87

Q22-bus Specification C—15

BUS MASTER SLAVE
(PROCESSOR OR DEVICE} {MEMORY OR DEVICE)

ADDRESS DEVICE/MEMORY
ASSERT BDAL <21:00> L WITH
ADDRESS
ASSERT BBS7 L IF THE
ADDRESS IS IN THE 1/0 PAGE
ASSERT BSYNC L

T ™™ DECODE ADDRESS
STORE DEVICE SELECTED

OPERATION
- - -
REQUEST DATA
REMOVE THE ADDRESS FROM
BDAL <21:00> L
ASSERT BOIN L ————
™™ INPUT DATA
PLACE DATA ON BDAL < 15:00> L
ASSERT BRPLY L
—— -
TERMINATE INPUT TRANSFER -~
ACCEPT DATA AND RESPOND BY
TERMINATING BDIN L
—_
-——
COMPLETE INPUT TRANSFER
REMOVE DATA
_ NEGATE BRPLY L
// -
OUTPUT DATA “«
PLACE OUTPUT DATA ON BDAL < 15:00 > L
(ASSERT BWTBT L IF AN OUTPUT
BYTE TRANSFER)
ASSERT BDOUT L -
\\\‘
TAKE DATA
RECEIVE DATA FROM BDAL LINES
ASSERT BRPLY L
-
-
TERMINATE.OUTPUT TRANSFER
REMOVE DATA FROM BDAL LINES
NEGATE BDOUT L -
—_—
—
OPERATION COMPLETED
NEGATE BRPLY L
— —
— - - -

TERMINATE BUS CYCLE
NEGATE BSYNC L
(AND BWTBT LIF IN
A DATIOB BUS CYCLE!

MR 6030
MA-1082.87

Figure C-5 DATIO or DATIOB Bus Cycle

C—16 Q22-bus Specification

_.‘ r- 150 ns MINIMUM -| t* 0 ns MINIMUM
RTDAL (4 X TADDR)(14) X R DATA X (4 >.< TDATA X (4

100 ns L—- 0
e R 200 ns MAXIMUM — 100 ns MINIMUM

TSYNC ‘I
100 ns MINIMUM por 150 ns 175 ns

MINIMURT|MINIMUM

le— 200 ns cr__
T bouT MINIMUM _7 h

200 ns

a
o MINIMUM _‘1
/ /
R RPLY

150 ng (SN
MINIMUM—"!

T8S? 3 ><

ta— 100 ns MINIMUM 100 ns MINIMUM—

— r—-
TWTBT {4%‘ {4) x ASSERTION = BYTE x (4}

fe— 150 ns MINIMUM

200 ns
MINIMUM —*

TIMING AT MASTER DEVICE

RT/DAL {4) x R ADD‘RX 4 X T DATA X (4) X R DATA x (4}
|

25ns L—
! MINIMUM I I - 25 ns MINIMUM
RSYNC / - lo— 100ns \ /
MAXIMUM 100 s
ke 75 ns MINIMUM 25 ns MINIMUM r' = MINIMUM
- 125ns 150 ns o
R bouT MAXIMUM D MINIMUM
fe- 150 ns MINIMUM—
R DIN ‘“
I 150 ns 300ns o
* minimum MINIMUM
T RPLY
_.] P—— 75 ns MINIMUM
R BS7 x ><
I
—o‘ ke— 75 ns MINIMUM .1 ke~ 25 nsMINIMUM — r—zsnsmrmmum
R WTBT (4>\ (4 X ASSERTION = BYTE X (4)
—t 25 ns MINIMUM
TIMING AT SLAVE DEVICE
NOTES:
1. TIMING SHOWN AT REQUESTING DEVICE 3. BUS DRIVER OUTPUT AND BUS RECEIVER INPUT
BUS DRIVER INPUTS AND BUS RECEIVER OUTPUTS SIGNAL NAMES INCLUDE A 8" PREFIX.
2.SIGNAL NAME PREFIXES ARE DEFINED BELOW: 4. DON'T CARE CONDITION.

T = BUS DRIVER INPUT
] = BUS RECEIVER OUTPUT

MH 6036
MA.1060.87

Figure C—6 DATIO or DATIOB Bus Cycle Timing

Q22-bus Specification C—17

C.4 Direct Memory Access

The direct memory access (DMA) capability allows direct data transfer
between /O devices and memory. This is useful when using mass storage
devices (for example, disks) that move large blocks of data to and from
memory. A DMA device needs to be supplied with only the starting
address in memory, the starting address in mass storage, the length

of the transfer, and whether the operation is read or write. When this
information is available, the DMA device can transfer data directly to or
from memory. Since most DMA devices must perform data transfers in
rapid succession or lose data, DMA devices are given the highest priority.

DMA is accomplished after the processor (normally bus master) has
passed bus mastership to the highest priority DMA device that is
requesting the bus. The processor arbitrates all requests and grants the
bus to the DMA device electrically closest to it. A DMA device remains
bus master until it relinquishes its mastership. The following control
signals are used during bus arbitration:

¢ BDMGI L DMA grant input

e BDMGO L DMA grant output

e BDMR L DMA request line

¢ BSACKL bus grant acknowledge

C.4.1 DMA Protocol

A DMA transaction can be divided into the following three phases:
* Bus mastership acquisition phase

¢ Data transfer phase

* Bus mastership relinquishment phase

During the bus mastership acquisition phase, a DMA device requests
the bus by asserting BDMR L. The processor arbitrates the request and
initiates the transfer of bus mastership by asserting BDMGO L.

The maximum time between BDMR L assertion and BDMGO L assertion
is DMA latency. This time is processor-dependent. BDMGO L/BDMGI L
is one signal that is daisy-chained through each module in the backplane.

C—-18 Q22-bus Specification

It is driven out of the processor on the BDMGO L pin, enters each module
on the BDMGI L pin, and exits on the BDMGO L pin. This signal passes
through the modules in descending order of priority until it is stopped by
the requesting device. The requesting device blocks the output of BMDGO
L and asserts BSACK L. If BDMR L is continuously asserted, the bus
hangs.

During the data transfer phase, the DMA device continues asserting
BSACK L. The actual data transfer is performed as described earlier.

The DMA device can assert BSYNC L for a data transfer 250 ns minimum
after it received BDMGI L and its BSYNC L bus receiver is negated.

During the bus mastership relinquishment phase, the DMA device gives
up the bus by negating BSACK L. This occurs after completing (or
aborting) the last data transfer cycle (BRPLY L negated). BSACK L
can be negated up to a maximum of 300 ns before negating BSYNC L.

NOTE

If multiple data transfers are performed during this phase,
consideration must be given to the use of the bus for other system
functions, such as memory refresh (if required).

Figure C—7 shows the DMA protocol, and Figure C—8 shows DMA
request/grant timing.

C.4.2 Block Mode DMA

For increased throughput, block mode DMA can be implemented on a
device for use with memories that support this type of transfer. In a block
mode transaction, the starting memory address is asserted, followed by
data for that address, and data for consecutive addresses.

By eliminating the assertion of the address for each data word, the
transfer rate is almost doubled.

There are two types of block mode transfers, DATBI (input) and DATBO
(output). The DATBI bus cycle is described in Section C.4.2.1 and
illustrated in Figure C-9.

The DATBO bus cycle is described in Section C.4.2.2 and illustrated in
Figure C-10.

Figure C-7

KA650 - AA PROCESSOR
MEMORY IS SLAVE

—
—

GRANT BUS CONTROL -
NEAR THE END OF THE &
CURRENT BUS CYCLE
(BRPLY L IS NEGATED)

ASSERT BOMGO L AND — —
INHIBIT NEW PROCESSOR ~
GENERATED BSYNC L FOR

THE DURATION OF THE

DMA OPERATION

~a

—

TERMINATE GRANT -
SEQUENCE il
NEGATE BDMGO L AND
WAIT FOR DMA QPERATION ™

-

TO BE COMPLETED -~

MONITOR TRANSACTION TO
INVALIDATE CACHE IF
CACHE HIT

~
—~

RESUME PROCESSOR —
OPERATION -
~ ENABLE PROCESSOR-
GENERATED BSYNC L
{PROCESSOR IS BUS
MASTER) OR ISSUE
ANOTHER GRANT IF BDMR
L IS ASSERTED

DMA Protocol

Q22-bus Specification

BUS MASTER
CONTROLLER

REQUEST BUS
ASSERT BDMR L

ACKNOWLEDGE BUS
MASTERSHIP
RECEIVE BOMG
WAIT FOR NEGATION OF
BSYNC L AND BRPLY L
ASSERT BSACK L
NEGATE BDMR L

EXECUTE A DMA DATA
TRANSFER
ADDRESS MEMORY AND
TRANSFER UP TO 4 WORDS
OF DATA AS DESCRIBED
FOR DATI. OR DATO BUS
CYCLES
RELEASE THE BUS BY
TERMINATING BSACK L
(NO SOONER THAN
NEGATION OF LAST BRPLY L)
AND BSYNC L

WAIT 4 uS OR UNTIL
ANOTHER FIFO TRANSFER
IS PENDING BEFORE
REQUESTING BUS AGAIN.

w600y
MA.1075.87

C-19

C-20 Q22-bus Specification

T DMR

R DMG

T SACK

R/T SYNC

R/T RPLY

T DAL
(ALSO BS7,
WTBT, REF)

SECOND
REQUEST
—-1 fe— DMA LATENCY
it eyt al el o oyt St day 4 —rTr7
/ VAR R A A A A A) A /7 /7
— L 0 ns MINIMUM
— —
L
250 ns MINIMUNM=——os "-— — l— 300 ns MAXIMUM
250 ns MINIMUM: OnsMIN!MUM—"I —
LT 300 ns MINIMUM /_____\ .
* 0 ns MINIMUM — 100 ns MAXIMUM
0ns MINIMUM
/< ADDR X DATA \
NOTES:
1. TIMING SHOWN AT REQUESTING DEVICE BUS DRIVER 3. BUS DRIVER OUTPUT AND BUS RECEIVER INPUT
INPUTS AND BUS RECEIVER OUTPUTS. SIGNAL NAMES INCLUDE A “8" PREFIX.

2. SIGNAL NAME PREFIXES ARE DEFINED BELOW:
T = BUS DRIVER INPUT
R = BUS RECEIVER QUTPUT

MR.2090
MA-1078.87

Figure C-8 DMA Request/Grant Timing

Q22-bus Specification C-21

T DMR Ons

min [*—
R DMG
T SACK |°O\—
min
R DAL 17 a00R X\ \ \ \ X R paTA XA\ \ |\ X R DATA \
BT 150 ns fe—=#j<—={ 100 ns min
min
SYNC .l 150 ns \
N\ - 10005 ——= e - =
/_Tm 300 ns
T DIN 200 ns L

\

R REF —:-—/L:50 ns max = —— i—so ns max
TBS? / \

AR RRRAR\ AL L LLLRRLRRLRARARRRRRRRNY

TIMING AT MASTER DEVICE
T = BUS DRIVER INPUT
R = BUS RECEIVER OUTPUT

RIT DAL_ALADDR X\\\\ T DATA)&\\W T DATA x

fe— 125 ns max —_— 100 ns max '—-—-
R SYNCJ —_
R DIN
T RPLY

T REF x

R BS? ————/ L
rwrer AL AR TR RRRRRN TR

TIMING AT SLAVE DEVICE :

T = BUS DRIVER INPUT
R = BUS RECEIVER QUTPUT

MA.1088-87

Figure C-9 DATBI Bus Cycle Timing

C-22 Q22-bus Specification

T DMR

R DMG

T SACK

T DAL

R/T SYNC min/
; ; ; \ 100

T DOUT

R RPLY

R REF

TBS7

T WTBT

R DAL

R SYNC

R DOUT

T RPLY

T REF

R BS7

R WTBT

Figure C-10 DATBO Bus Cycle Timing

Ons

—>}min |+

Ons
— MiN fa—

T ADDR X[

T DATA T DATA \

150 ns [100 ns|

ns

“*300 ns
l 100 ns I 100

150 ns
min I

/TN

/

L

UNDEFINED

R =

TIMING AT MASTER DEVICE
T

BUSDRIVER INPUT
BUS RECEIVER QUTPUT

A rapor X R DATA X

R DATA)L

—

‘—'1 ‘0 ns min

/ UNDEFINED

/.

TIMING AT SLAVE DEVICE

T = BUS DRIVER INPUT
R = BUS RECEIVER OUTPUT

MA.1087-87

—

—

" (o] | —

)

Q22-bus Specification C—~23

C.4.2.1 DATBI Bus Cycle

Before a DATBI block mode transfer can occur, the DMA bus master
device must request control of the bus. This occurs under conventional
Q22-bus protocol.

A block mode DATBI transfer is executed as follows:

Address device memory—the address is asserted by the bus master
on TADDR<21:00> along with the negation of TWTBT. The bus master
asserts TSYNC 150 ns minimum after gating the address onto the
bus.

Decode address—the appropriate memory device recognizes that it
must respond to the address on the bus.

Request data—the address is removed by the bus master from
TADDR<21:00> 100 ns minimum after the assertion of TSYNC. The
bus master asserts the first TDIN 100 ns minimum after asserting
TSYNC. The bus master asserts TBS7 50 ns maximum after asserting -
TDIN for the first time. TBS7 remains asserted until 50 ns maximum
after the assertion of TDIN for the last time. In each case, TBS7 can
be asserted or negated as soon as the conditions for asserting TDIN
are met. The assertion of TBS7 indicates the bus master is requesting
another read cycle after the current read cycle.

Send data-the bus slave asserts TRPLY 0 ns minimum (8000 ns
maximum to avoid a bus timeout) after receiving RDIN. The bus slave
asserts TREF concurrent with TRPLY if, and only if, it is a block
mode device which can support another RDIN after the current RDIN.
The bus slave gates TDATA<15:00> onto the bus 0 ns minimum after
receiving RDIN and 125 ns maximum after the assertion of TRPLY.

NOTE
Block mode transfers must not cross 16-word boundaries.

Terminate input transfer—the bus master receives stable
RDATA<15:00> from 200 ns maximum after receiving RRPLY until
20 ns minimum after the negation of RDIN. (The 20 ns minimum
represents total minimum receiver delays for RDIN at the slave and
RDATA<15:00> at the master.) The bus master negates TDIN 200 ns
minimum after receiving RRPLY.

C-24 Q22-bus Specification

Operation completed—the bus slave negates TRPLY 0 ns minimum
after receiving the negation of RDIN. If RBS7 and TREF are both
asserted when TRPLY negates, the bus slave prepares for another
DIN cycle. RBS7 is stable from 125 ns after RDIN is received until
150 ns after TRPLY negates. If TBS7 and RREF were both asserted
when TDIN negated, the bus master asserts TDIN 150 ns minimum
after receiving the negation of RRPLY and continues with the timing
relationship in send data above. RREF is stable from 75 ns after
RRPLY asserts until 20 ns minimum after TDIN negates. (The 0 ns
minimum represents total minimum receiver delays for RDIN at the
slave and RREF at the master.)

NOTE

The bus master must limit itself to not more than eight
transfers unless it monitors RDMR. If it monitors RDMR,
it may perform up to 16 transfers as long as RDMR is not
asserted at the end of the seventh transfer.

Terminate bus cycle—if RBS7 and TREF were not both asserted
when TRPLY negated, the bus slave removes TDATA<15:00> from
the bus 0 ns minimum and 100 ns maximum after negating TRPLY.
If TBS7 and RREF were not both asserted when TDIN negated, the
bus master negates TSYNC 250 ns minimum after receiving the last
assertion of RRPLY and 0 ns minimum after the negation of that
RRPLY.

Release the bus-the DMA bus master negates TSACK 0 ns after
negation of the last RRPLY. The DMA bus master negates TSYNC
300 ns maximum after it negates TSACK. The DMA bus master must
remove RDATA<15:00>, TBS7, and TWTBT from the bus 100 ns
maximum after clearing TSYNC.

At this point the block mode transfer is complete, and the bus arbitration
logic in the CPU enables processor-generated TSYNC or issues another
bus grant (TDMGO) if RDMR is asserted.

C.4.2.2 DATBO Bus Cycle

Before a block mode transfer can occur, the DMA bus master device
must request control of the bus. This occurs under conventional Q22-bus
protocol.

A Block mode DATBO transfer is executed as follows:

Address device memory-the address is asserted by the bus master
on TADDR<21:00> along with the aasertion of TWIBT. The bus
master asserts TSYNC 150 ns minimum after gating the address onto
the bus.

—_—

——

Q22-bus Specification C~-25

Decode address—the appropriate memory device recognizes that it
must respond to the address on the bus.

Send data—the bus master gates TDATA<15:00> along with TWTBT
100 ns minimum after the assertion of TSYNC. TWTBT is negated.
The bus master asserts the first TDOUT 100 ns minimum after gating
TDATA<15:00>.

NOTE
During DATBO cycles, TBS7 is undefined.

Receive data—the bus slave receives stable data on RDATA<15:00>
from 25 ns minimum before receiving RDOUT until 25 ns minimum
after receiving the negation of RDOUT. The bus slave asserts TRPLY
0 ns minimum after receiving RDOUT. The bus slave asserts TREF
concurrent with TRPLY if, and only if, it is a block mode device which
can support another RDOUT after the current RDOUT.

NOTE
Block mode transfers must not cross 16-word boundaries.

Terminate output transfer-the bus master negates TDOUT 150 ns
minimum after receiving RRPLY.

Operation completed-the bus slave negates TRPLY 0 ns minimum
after receiving the negation of RDOUT. If RREF was asserted

when TDOUT negated and if the bus master wants to transfer
another word, the bus master gates the new data on TDATA<15:00>
100 ns minimum after negating TDOUT. RREF is stable from

75 ns maximum after RRPLY asserts until 20 ns minimum after
RDOUT negates. (The 20 ns minimum represents minimum receiver
delays for RDOUT at the slave and RREF at the master). The bus
master asserts TDOUT 100 ns minimum after gating new data on
TDATA<15:00> and 150 ns minimum after receiving the negation of
RRPLY. The cycle continues with the timing relationship in receive
data above.

NOTE

The bus master must limit itself to not more than 8 transfers
unless it monitors RDMR. If it monitors RDMR, it may perform
up to 16 transfers as long as RDMR is not asserted at the end
of the seventh transfer.

C-26 Q22-bus Specification

Terminate bus cycle-if RREF was not asserted when RRPLY
negated or if the bus master has no additional data to transfer, the
bus master removes data on TDATA<15:00> from the bus 100 ns
minimum after negating TDOUT. If RREF was not asserted when
TDOUT negated, the bus master negates TSYNC 275 ns minimum
after receiving the last RRPLY and 0 ns minimum after the negation
of the last RRPLY,

Release the bus-the DMA bus master negates TSACK 0 ns after
negation of the last RRPLY. The DMA bus master negates TSYNC
300 ns maximum after it negates TSACK. The DMA bus master must
remove TDATA, TBS7, and TWTBT from the bus 100 ns maximum
after clearing TSYNC.

At this point the block mode transfer is complete, and the bus arbitration
logic in the CPU enables processor-generated TSYNC or issues another
bus grant (TDMGO) if RDMR is asserted.

C.4.3 DMA Guidelines

Systems with memory refresh over the bus must not include devices
that perform more than one transfer per acquisition.

Bus masters that do not use block mode are limited to four DATI, four
DATO, or two DATIO transfers per acquisition.

Block mode bus masters that do not monitor BDMR are limited to
eight transfers per acquisition.

If BDMR is not asserted after the seventh transfer, block mode bus
masters that do monitor BDMR may continue making transfers
until the bus slave fails to assert BREF, or until they reach the total
maximum of 16 transfers. Otherwise, they stop after eight transfers.

[om—

=

Q22-bus Specification C-27

C.5 Interrupts

The interrupt capability of the Q22-bus allows an I/O device to
temporarily suspend (interrupt) current program execution and divert
processor operation to service the requesting device. The processor inputs
a vector from the device to start the service routine (handler). Like the
device register address, hardware fixes the device vector at locations
within a designated range below location 001000. The vector indicates the
first of a pair of addresses. The processor reads the contents of the first
address, the starting address of the interrupt handler. The contents of the
second address is a new processor status word (PS).

The new PS can raise the interrupt priority level, thereby preventing
lower-level interrupts from breaking into the current interrupt service
routine. Control is returned to the interrupted program when the
interrupt handler is ended. The original interrupted program’s address
(PC) and its associated PS are stored on a stack. The original PC and
PS are restored by a return from interrupt (RTI or RTT) instruction at
the end of the handler. The use of the stack and the Q22-bus interrupt
scheme can allow interrupts to occur within interrupts (nested interrupts),
depending on the PS.

Interrupts can be caused by Q22-bus options or the MicroVAX CPU. Those
interrupts that originate from within the processor are called traps. Traps
are caused by programming errors, hardware errors, special instructions,
and maintenance features.

The following Q22-bus signals are used in interrupt transactions:

Signal Definition

BIRQ4 L Interrupt request priority level 4
BIRQ5 L Interrupt request priority level 5
BIRQ6 L Interrupt request priority level 6
BIRQ7 L Interrupt request priority level 7
BIAKI L Interrupt acknowledge input
BIAKO L Interrupt acknowledge output
BDAL<21:00> Data/address lines

BDIN L Data input strobe

BRPLY L Reply

C-28 Q22-bus Specification

C.5.1 Device Priority
The Q22-bus supports the following two methods of device priority:

¢ Distributed arbitration — priority levels are implemented on the
hardware. When devices of equal priority level request an interrupt,
priority is given to the device electrically closest to the processor.

® Position-defined arbitration — priority is determined solely by
electrical position on the bus. The closer a device is to the processor,
the higher its priority is.

C.5.2 Interrupt Protocol

Interrupt protocol on the Q22-bus has three phases:
¢ Interrupt request

* Interrupt acknowledge and priority arbitration
¢ Interrupt vector transfer phase

The interrupt request phase begins when a device meets its specific
conditions for interrupt requests. For example, the device is ready,
done, or an error occurred. The interrupt enable bit in a device status
register must be set. The device then initiates the interrupt by asserting
the interrupt request line(s). BIRQ4 L is the lowest hardware priority
level and is asserted for all interrupt requests for compatibility with
previous Q22-bus processors. The level at which a device is configured
must also be asserted. A special case exists for level 7 devices that must
also assert level 6. The following list gives the interrupt levels and the
corresponding Q22-bus interrrupt request lines. For an explanation, refer
to Section C.5.3.

Interrupt Level Lines Asserted by Device
4 BIRQ4 L

5 BIRQ4 L, BIRQ5 L

6 BIRQ4 L, BIRQ6 L

7 BIRQ4 L, BIRQ6 L, BIRQ7 L.

Figure C-11 shows the interrupt request/acknowledge sequence.

Q22-bus Specification C~29

PROCESSOR DEVICE

INITIATE REQUEST
— ASSERT BIRQ L

—_— -
—
—
STROBE INTERRUPTS -—
ASSERT BDIN L —
—_—
—_—
—_—
—_
\ RECEIVE BOIN L
STORE “INTERRUPT SENDING”
L IN DEVICE
GRANT REQUEST
PAUSE AND ASSERT BIAKO L
——
—_—
—_
RECEIVE BIAKI L
RECEIVE BIAKI L AND INHIBIT
BIAKO L
PLACE VECTOR ON BDAL < 15:00 > L
ASSERT BRPLY L
N
- EGATE BIRQ L
—
— —
-—
RECEIVE VECTOR AND
TERMINATE REQUEST
INPUT VECTOR ADDRESS
NEGATE BDIN L AND BIAKO L
— —_
—_
COMPLETE VECTOR TRANSFER
REMOVE VECTOR FROM BDAL BUS
- NEGATEBRPLYL
J—
g _
-—

PROCESS THE INTERRUPT
SAVE INTERRUPTED PROGRAM
PC AND PS ON STACK
LOAD NEW PC AND PS FROM
VECTOR ADDRESSED LOCATION
EXECUTE INTERRUPT SERVICE
ROUTINE FOR THE DEVICE

MR.1182
MA-1065.87

Figure C-11 Interrupt Request/Acknowledge Sequence

C-30 Q22-bus Specification

The interrupt request line remains asserted until the request is
acknowledged.

During the interrupt acknowledge and priority arbitration phase, the LSI-
11/23 processor acknowledges interrupts under the following conditions:

¢ The device interrupt priority is higher than the current PS<7:5>.

* The processor has completed instruction execution and no additional
bus cycles are pending.

The processor acknowledges the interrupt request by asserting BDIN L,
and 150 ns minimum later asserting BIAKO L. The device electrically
closest to the processor receives the acknowledge on its BIAKI L bus
receiver.

At this point, the two types of arbitration must be discussed separately.
If the device that receives the acknowledge uses the four-level interrupt
scheme, it reacts as follows:

¢ If not requesting an interrupt, the device asserts BIAKO L and the
acknowledge propagates to the next device on the bus.

¢ If the device is requesting an interrupt, it must check that no higher-
level device is currently requesting an interrupt. This is done by
monitoring higher-level request lines. The table below lists the lines
that need to be monitored by devices at each priority level.

In addition to asserting levels 7 and 4, level 7 devices must drive level
6. This is done to simplify the monitoring and arbitration by level 4
and 5 devices. In this protocol, level 4 and 5 devices need not monitor
level 7 because level 7 devices assert level 6. Level 4 and 5 devices
become aware of a level 7 request because they monitor the level 6
request. This protocol has been optimized for level 4, 5, and 6 devices,
since level 7 devices are very seldom necessary.

Device Priority Level Line(s) Monitored
4 BIRQ5, BIRQ6

5 BIRQ6

6 BIRQ7

7 -

———

~

~

—

[—

Q22-bus Specification C—31

* If no higher-level device is requesting an interrupt, the acknowledge
is blocked by the device. (BIAKO L is not asserted.) Arbitration logic
within the device uses the leading edge of BDIN L to clock a flip-flop
that blocks BIAKO L. Arbitration is won and the interrupt vector
transfer phase begins.

* If a higher-level request line is active, the device disqualifies itself
and asserts BIAKO L to propagate the acknowledge to the next device
along the bus.

Signal timing must be considered carefully when implementing four-level
interrupts (Figure C-12).

INTERRUPT LATENCY

MINUS SERVICE TIME
TIRQ
150 ns MINIMUM—‘; —
R DIN /— / /L
RIAKI / —

TRPLY “J \

125 ns MAXIMUM—‘{ ’Q— t-‘IDO ns MAXIMUM
T DAL (4) x VECTOR X (4}

R SYNC (UNASSERTED)
R BS7 (UNASSERTED)
NOTES
1. TIMING SHOWN AT REQUESTING DEVICE BUS DRIVER 3. BUS DRIVER OUTPUT AND BUS RECEIVER INPUT
INPUTS AND BUS RECEIVER OUTPUTS. SIGNAL NAMES INCLUDE A "8 PREFIX.
2. SIGNAL NAME PREFIXES ARE DEFINED BELOW: 4, DON'T CARE CONDITION,

T = BUS DRIVER INPUT
R = BUS RECEIVER OUTPUT

[PLEITE]
Ma.1076.87

Figure C—12 Interrupt Protocol Timing

C-32 Q22-bus Specification

If a single-level interrupt device receives the acknowledge, it reacts as
follows:

¢ If not requesting an interrupt, the device asserts BIAKO L and the
acknowledge propagates to the next device on the bus.

¢ If the device was requesting an interrupt, the acknowledge is blocked
using the leading edge of BDIN L, and arbitration is won. The
interrupt vector transfer phase begins.

The interrupt vector transfer phase is enabled by BDIN L and BIAKI L.
The device responds by asserting BRPLY L and its BDAL<15:00> L bus
driver inputs with the vector address bits. The BDAL bus driver inputs
must be stable within 125 ns maximum after BRPLY L is asserted. The
processor then inputs the vector address and negates BDIN L and BIAKO
L. The device then negates BRPLY L and 100 ns maximum later removes

the vector address bits. The processor then enters the device’s service
routine.

NOTE

Propagation delay from BIAKI L to BIAKO L must not be greater
than 500 ns per Q22-bus slot. The device must assert BRPLY L
within 10 us maximum after the processor asserts BIAKI L.

C.5.3 Q22-bus Four-Level Interrupt Configurations

If you have high-speed peripherals and desire better software
performance, you can use the four-level interrupt scheme. Both position-
independent and position-dependent configurations can be used with the
four-level interrupt scheme.

Figure C—13 shows the position-independent configuration. This allows
peripheral devices that use the four-level interrupt scheme to be placed
in the backplane in any order. These devices must send out interrupt
requests and monitor higher-level request lines as described. The level 4
request is always asserted from a requesting device regardless of priority.
If two or more devices of equally high priority request an interrupt, the
device physically closest to the processor wins arbitration. Devices that
use the single-level interrupt scheme must be modified, or placed at the
end of the bus, for arbitration to function properly.

Q22-bus Specification C-33

BIAK {INTERRUPT ACKNOWLEDGE) LEVEL4 |giak | LEVEL6E |pjak | LEVELS |gjak | LEVEL7
KAE50 DEVICE DEVICE DEVICE DEVICE
t BIRQ 4 (LEVEL 4 INTERRUPT REQUEST) l l { l

BIRQ S (LEVEL 5 INTERRUPT REQUEST)

BIRQ 6 (LEVEL 6 INTERRUPT REQUEST)
BIRQ 7 (LEVEL 7 INTERRUPT REQUEST)

MR.2838
MA-1066.87

Figure C-13 Position-independent Configuration

Figure C-14 shows the position-dependent configuration. This
configuration is simpler to implement. A constraint is that peripheral
devices must be inserted with the highest priority device located closest
to the processor, and the remaining devices placed in the backplane in
decreasing order of priority (with the lowest priority devices farthest
from the processor). With this configuration, each device has to assert
only its own level and level 4. Monitoring higher-level request lines is
unnecessary. Arbitration is achieved through the physical positioning of
each device on the bus. Single-level interrupt devices on level 4 should be
positioned last on the bus.

kagso |__BIAK UNTERRUPT ACKNOWLEDGE) | LEVEL? |BIAK | LEVELG | BIAK | LEVELS | BIAK | LEVEL4
DEVICE DEVICE DEVICE DEVICE
1 BIRQ 4 (LEVEL 4 INTERRUPT REQUEST) l r l l

BIRQ 5 (LEVEL 5 INTERRUPT REQUEST)

BIRQ 6 (LEVEL 6 INTERRUPT REQUEST)
BIRQ 7 (LEVEL 7 INTERRUPT REQUEST)

MR-2889
MA-1067.87

Figure C-14 Position-Dependent Configuration

C-34 Q22-bus Specification

C.6 Control Functions
The following Q22-bus signals provide control functions:

- Sigmal Definition
BREF L Memory refresh (also block mode DMA)
BHALIT L Processor halt
BINIT L Initialize
BPOK H Power OK

BDCOK H DC power OK

C.6.1 Memory Refresh

If BREF is asserted during the address part of a bus data transfer cycle,
it causes all dynamic MOS memories to be addressed simultaneously. The
sequence of addresses required for refreshing the memories is determined
by the specific requirements for each memory. The complete memory
refresh cycle consists of a series of refresh bus transactions. A new
address is used for each transaction. A complete memory refresh cycle
must be completed within 1 or 2 ms. Multiple data transfers by DMA
devices must be avoided since they could delay memory refresh cycles.
This type of refresh is done only for memories that do not perform on-
board refresh.

C.6.2 Halt

Assertion of BHALT L for at least 25 ns interrupts the processor, which
stops program execution and forces the processor unconditionaily into
console I/O mode.

C.6.3 Initialization

Devices along the bus are initialized when BINIT L is asserted. The
processor can assert BINIT L as a result of executing a reset instruction
as part of a power-up or power-down sequence. BINIT L is asserted for
approximately 10 ps when reset is executed.

e

Q22-bus Specificaton C~-35

C.6.4 Power Status

Power status protocol is controlled by two signals, BPOK H and BDCOK
H. These signals are driven by an external device (usually the power

supply).

C.6.5 BDCOKH

When asserted, this control indicates that dc power has been stable for
at least 3 ms. Once asserted, this line remains asserted until the power
fails. It indicates that only 5 ps of dc power reserve remains.

C.6.6 BPOKH

When asserted, this control indicates there is at least an 8 ms reserve of
dc power, and that BDCOK H has been asserted for at least 70 ms. Once
BPOK has been asserted, it must remain asserted for at least 3 ms. The
negation of this line, the first event in the power-fail sequence, indicates
that power is failing and that only 4 ms of dc power reserve remains.

C.6.7 Power-Up and Power-Down Protocol

Power-up protocol begins when the power supply applies power with
BDCOK H negated. This forces the processor to assert BINIT L. When
the dc voltages are stable, the power supply or other external device
asserts BDCOK H. The processor responds by clearing the PS, floating-
point status register (FPS), and floating-point exception register (FEC).
BINIT L is asserted for 12.6 ns, and then negated for 110 ps. The
processor continues to test for BPOK H until it is asserted. The power
supply asserts BPIK H 70 ms minimum after BDCOK H is asserted. The
processor then performs its power-up sequence. Normal power must be
maintained at least 3 ms before a power-down sequence can begin.

A power-down sequence begins when the power supply negates BPOK
H. When the current instruction is completed, the processor traps to a
power-down routine at location 24. The end of the routine is terminated
with a halt instruction to avoid any possible memory corruption as the dc
voltages decay.

When the processor executes the halt instruction, it tests the BPOK

H signal. If BPOK H is negated, the processor enters the power-up
sequence. It clears internal registers, generates BINIT L, and continues
to check for the assertion of BPOK H. If it is asserted and dc voltages
are still stable, the processor performs the rest of the power-up sequence.
Figure C-15 shows power-up and power-down timing.

C-36 Q22-bus Specification

NOTE

The KA655 does not follow this protocol. Refer to Section 3.7.5 for

a description of KA655 initialization.

— I-—o ns MINIMUM _"! I‘F— 8-204S

™ Y A /
BINIT L 4 \ /
b JESM——.' 3mst/_. 1MSL_
MINIMU MAXIMUM MAXIMUM
8 POKH
70ms 4ms 70ms
= minmom [= Minvov] MINIMUM
BDCOK H r \
5uS
——-I ke— 3 ms MINIMUM NIV r—
DC POWER] _J
POWER-UP NORMAL POWER-DOWN POWER-UP NORMAL
SEQUENCE POWER SEQUENCE SEZQUENCE POWER

NOTE:

ONCE A POWER-DOWN SEQUENCE IS STARTED,
IT MUST BE COMPLETED BEFORE A POWER-UP
SEQUENCE IS STARTED.

Figure C-15 Power-Up and Power-Down Timing

C.7 Q22-bus Electrical Characteristics
The input and output logic levels for Q22-bus signals are given in

Section C.7.1.

C.7.1 Signal Level Specifications

The signal level specifications for the Q22-bus are as follows:

Input Logic Level

1 0.8 Vdc maximum
TTL logical low : ax
TTL logical high 2.0 Vdc minimum
Output Logic Level
TTL logical low '
TTL logical high 0.4 Vdc maximum

2.4 Vdc minimum

MR.6032
MA-1037.87

Q22-bus Specificaton C-37

C.7.2 Load Definition

AC loads make up the maximum capacitance allowed per signal line to
ground. A unit load is defined as 9.35 pF of capacitance. DC loads are
defined as maximum current allowed with a signal line driver asserted or
unasserted. A unit load is defined as 210 pA in the unasserted state.

C.7.3 120-Ohm Q22-bus

The electrical conductors interconnecting the bus device slots are treated
as transmission lines. A uniform transmission line, terminated in

its characteristic impedance, propagates an electrical signal without
reflections. Since bus drivers, receivers, and wiring connected to the
bus have finite resistance and nonzero reactance, the transmission

line impedance is not uniform, and introduces distortions into pulses
propagated along it. Passive components of the Q22-bus (such as wiring,
cabling, and etched signal conductors) are designed to have a nominal
characteristic impedance of 120 ohms.

The maximum length of interconnecting cable, excluding wiring within
the backplane, is limited to 4.88 m (16 feet).

C.7.4 Bus Drivers

Devices driving the 120-ohm Q22-bus must have open collector outputs
and meet the following specifications:

DC Specifications
¢ QOutput low voltage when sinking 70 mA of current is 0.7 V maximum.

* Output high leakage current when connected to 3.8 Vdc is 25 pA (even
if no power is applied, except for BDCOK H and BPOK H).

¢ These conditions must be met at worst-case supply temperature, and
input signal levels.

C-38 Q22-bus Specification

AC Specifications v
¢ Bus driver output pin capacitance load should not exceed 10 pF.
* Propagation delay should not exceed 35 ns.

¢ Skew (difference in propagation time between slowest and fastest
gate) should not exceed 25 ns.

¢ Transition time (from 10% to 90% for positive transition—rise time,
from 90% to 10% for negative transition—fall time) must be no faster
than 10 ns.

C.7.5 Bus Receivers

Devices that receive signals from the 120-ohm Q22-bus must meet the
following requirements:

DC Specifications
¢ Input low voltage maximum is 1.3 V.
e Input high voltage minimum is 1.7 V.

¢ Maximum input current when connected to 3.8 Vdc is 80 pA (even if
no power is applied).

These specifications must be met at worst-case supply voltage,
temperature, and output signal conditions.

AC Specifications
* Bus receiver input pin capacitance load should not exceed 10 pF.
* Propagation delay should not exceed 35 ns.

¢ Skew (difference in propagation time between slowest and fastest
gate) should not exceed 25 ns.

C.7.6 Bus Termination ;

The 120-ohm Q22-bus must be terminated at each end by an appropriate
terminator, as shown in Figure C—16. This is to be done as a voltage
divider with its Thevenin equivalent equal to 120 ohms and 3.4

V (nominal). This type of termination is provided by an REV11-A
refresh/boct/terminator, BDV1I-AA, KPVIii-B, TEV1], or by certain

backplanes and expansion cards.

Q22-bus Specification C-39

+5V +5V
178 Q@ 33082
120 2 250 92
BUS LINE BUS LINE
TERMINATION TERMINATION
383 2 680 Q2

MR 6033
MA-1071-87

Figure C-16 Bus Line Terminations

Each of the several Q22-bus lines (all signals whose mnemonics start
with the letter B) must see an equivalent network with the following
characteristics at each end of the bus:

Bus Termination Characteristic Value

Input impedance 120 ohm +5%, -15%
(with respect to ground)

Open circuit voltage 3.4 Vdec +5%
Capacitance load Not to exceed 30 pF
NOTE

The resistive termination can be provided by the combination

of two modules. (The processor module supplies 220 chms to
ground. This, in parallel with another 220-ochm card, provides 120
ohms.) Both terminators must reside physically within the same
backplane.

C.7.7 Bus Interconnecting Wiring

The following sections give specific information about bus interconnecting
wiring.

C—-40 Q22-bus Specification

C.7.7.1 Backplane Wiring

The wiring that connects all device interface slots on the Q22-bus must
meet the following specifications:

The conductors must be arranged so that each line exhibits a
characteristic impedance of 120 ohms (measured with respect to

AT A P S |
the bus common return).

Crosstalk between any two lines must be no greater than 5%. Note
that worst-case crosstalk is manifested by simultaneously driving all
but one signal line and measuring the effect on the undriven line.

DC resistance of the signal path, as measured between the near-
end terminator and the far-end terminator module (including all
intervening connectors, cables, backplane wiring, and connector-
module etch) must not exceed 20 ohms.

DC resistance of the common return path, as measured between the
near-end terminator and the far-end terminator module (including
all intervening connectors, cables, backplane wiring and connector-
module etch) must not exceed an equivalent of 2 ohms per signal
path. Thus, the composite signal return path dc resistance must not
exceed 2 ohms divided by 40 bus lines, or 50 milliohms. Note that
although this common return path is nominally at ground potential,
the conductance must be part of the bus wiring. The specified

low impedance return path must be provided by the bus wiring as
distinguished from the common system or power ground path.

C.7.7.2 Intrabackplane Bus Wiring

The wiring that connects the bus connector slots within one contiguous
backplane is part of the overall bus transmission line. Owing to
implementation constraints, the neminal characteristic impedance of

120 ohms may not be achievable. Distributed wiring capacitance in excess
of the amount required to achieve the nominal 120-ohm impedance may
not exceed 60 pF per signal line per backplane.

C.7.7.3 Power and Ground

Each bus interface slot has connector pins assigned for the following dc
voltages. The maximum allowable current per pin is 1.5 A. +5 Vdc must
be regulated to 5% with a maximum ripple of 100 mV pp. +12 Vdc must
be regulated to 3% with a maximum ripple of 200 mV pp.

Q22-bus Specification C—41

* +5 Vdc — three pins (4.5 A maximum per bus device slot)
* +12 Vdec — two pins (3.0 A maximum per bus device slot)

* Ground — eight pins (shared by power return and signal return)

NOTE
Power is not bused between backplanes on any interconnecting
bus cables.

C.8 System Configurations
Q22-bus systems can be divided into two types:
* Systems containing one backplane

* Systems containing multiple backplanes

Before configuring any system, three characteristics for each module in
the system must be identified.

* Power consumption — +5 Vdc and +12 Vdc are the current
requirements.

¢ AC bus loading — the amount of capacitance a module presents to a
bus signal line. AC loading is expressed in terms of ac loads, where
one ac load equals 9.35 pF of capacitance.

* DC bus loading—the amount of dc leakage current a module presents
to a bus signal when the line is high (undriven). DC loading is
expressed in terms of dc loads, where one dc load equals 210 pA
(nominal).

Power consumption, ac loading, and dc loading specifications for each
module are included in the Microcomputer Interfaces Handbook.

NOTE

The ac and dc loads and the power consumption of the processor
module, terminator module, and backplane must be included in
determining the total loading of a backplane.

Rules for configuring single-backplane systems are as follows:

¢ When using a processor with 220-chm termination, the bus can
accommodate modules that have up to 20 ac loads before additional
termination is required (Figure C—17). If more than 20 ac loads are
included, the other end of the bus must be terminated with 120 ohms,
and then up to 35 ac loads may be present.

C—42 Q22-bus Specification

* With 120-ohm processor termination, up to 35 ac loads can be used
without additional termination. If 120-chm bus termination is added,
up to 45 ac loads can be configured in the backplane.

* The bus can accommodate modules up to 20 dc loads (total).

® The bus signal lines on the backplane can be up to 35.6 cm (14 inches)
long.

BACKPLANE WIRE .
35.6 CM (14 IN) MAXIMUM

] J
ONE ONE ONE | OPTIONAL
2500 UNIT UNIT UNIT 1209
LOAD LOAD LOAD
+ +
34V — 34V
= 35 AC LOADS -
= 20 DC LOADS =
PROCESSOR TERM

MR.6034
MA.1072-87

Figure C-17 Single-Backplane Configuration

Rules for configuring multiple backplane systems are as follows:

* Figure C-18 shows that up to three backplanes can make up the
system.

* The signal lines on each backplane can be up to 25.4 cm (10 inches)

long.

To

* Each backplane can accommodate modules that have up to 22 ac
loads. Unused ac loads from one backplane may not be added to
another backplane if the second backplane loading exceeds 22 ac
loads. It is desirable to load backplanes equally, or with the highest
ac loads in the first and second backplanes.

BACKPLANE WIRE 1

35.6CM (14in.) MAX
4

Q22-bus Specification

1.
CABLE
L 1
ONE ONE
250 9 UNIT UNIT
LOAD LOAD
+
34V N ~ g
I - 20 AC LOADS MAX
PROCESSOR
i'— BACKPLANE WIRE ___,{
25.4 CM (10 IN) MAX
[() l]]
ONE ONE
UNIT UNIT
LOAD LOAD
CABLE . y _ CABLE
ADDITIONAL 20 AC LOADS MAX
CABLES AND

BACKPLANE l"—

BACKPLANE WIRE !
25.4 CM (10 IN} MAX

{

L] l

ONE ONE
1209 UNIT UNIT
34V LOAD LOAD
CABLE / J
TER Y
ERM 20 AC LOADS MAX

NOTES:

1. TWO CABLES (MAX) 4.88 M (16 FT) (MAX)

TOTAL LENGTH.

2.20DC LOADS TOTAL (MAX).

Figure C-18 Multiple Backplane Configuration

MRA.6035
MA-1073-87

Cc—43

C—44 Q22-bus Specification

* DC loading of all modules in all backplanes cannot exceed 20 loads.

¢ Both ends of the bus must be terminated with 120 ohms. This means
the first and last backplanes must have an impedance of 120 ohms.
To achieve this, each backplane can be lumped together as a single
point. The resistive termination can be provided by a combination of
two modules in the backplane — the processor praviding 220 ohms to
ground in parallel with an expansion paddle card providing 250 ohms
to give the needed 120-ohm termination.

Alternately, a processor with 120-ohm termination would need no
additional termination on the paddle card to attain 120 ohms in the
first box. The 120-ohm termination in the last box can be provided
in two ways: the termination resistors may reside either on the
expansion paddle card, or on a bus termination card (such as the
BDV11).

¢ The cable(s) connecting the first two backplanes is 61 cm (2 feet) or
more in length.

* The cable(s) connecting the second backplane to the third backplane is
122 cm (4 feet) longer or shorter than the cable(s) connecting the first
and second backplanes.

¢ The combined length of both cables cannot exceed 4.88 m (16 feet).

The cables used must have a characteristic impedance of 120 ohms.

C.8.1 Power Supply Loading

Total power requirements for each backplane can be determined by
obtaining the total power requirements for each module in the backplane.
Obtain separate totals for +5 V and +12 V power. Power requirements for
each module are specified in the Microcomputer Interfaces Handbook.

‘When distributing power in multiple backplane systems, do not attempt
to distribute power through the Q22-bus cables. Provide separate,
appropriate power wiring from each power supply to each backplane.
Each power supply should be capable of asserting BPOK H and BDCOK
H signals according to bus protocol; this is required if automatic power-
fail/restart programs are implemented, or if specific peripherals require
an orderly power-down halt sequence. The proper use of BPOK H and
BDCOK H signals is strongly recommended.

Q22-bus Specification C—45

C.9 Module Contact Finger Identification

DIGITAL’s plug-in modules all use the same contact finger (pin)
identification system. A typical pin is shown in Figure C-19.

BE2

MODULE SIDE
SLOT (ROW) IDENTIFIER IDENTIFIER
“SLOT 8" “SIDE 2" (SOLDER
SIDE)
PIN IDENTIFIER
“PIN E"

MR-16553
MA-1054.87

.Figure C—19 Typical Pin Identification System

The Q22-bus is based on the use of quad-height modules that plug into
a 2-slot bus connector. Each slot contains 36 lines (18 lines on both the
component side and the solder side of the circuit board).

Slots, row A, and row B include a numeric identifier for the side of the
module. The component side is designated side 1, the solder side is
designated side 2, as shown in Figure C-20.

Letters ranging from A through V (excluding G, I, O, and Q) identify a
particular pin on a side of a slot. Table C—7 lists and identifies the bus
pins of the quad-height module. A bus pin identifier ending with a 1
is found on the component side of the board, while a bus pin identifier
ending with a 2 is found on the solder side of the board.

The positioning notch between the two rows of pins mates with a
protrusion on the connector block for correct module positioning.

C—46 Q22-bus Specification

nuv,

q%%
e

ROW A

muf.v\@:x
bmr&, m%

ROW B

ROWC

X

SIDE 2

SIDE 1

SOLDER SIDE

asase
prariz el

-Height Module Contact Finger Identification

Figure C-20 Quad

Q22-bus Specification

c47

The dimensions for a typical Q22-bus module are represented in

Figure C-21.
NOTES
—5 10457% 318 DIMENSIONS GIVEN IN INCHES
7072 0% 5.187 2 520~ (QUAD HGT) DIMENSIONS DENOTED BY * ARE FOR
M(SINGLE HGT] {OOUBLE HGT) MAX. USEABLE CIRCUIT AREA
Py 000 ——= UNLESS OTHERWISE SPECIFIED ALL
29 | F—2750 : 128 0 %1 MANDLE HOLES DIMENSIONS ARE 005
) 2 002
2 010~ pam™ 2,000,
v N2V
061 -+ - -+ |- +l-o- —
2010] 180 TYP. T
L
BOTTOM OF FINGERS
8,430% 210 TO TOP OF HANDLE
EXT. LGTH.) 8.942 010 (EXT LGTH)
2312- (EXZI"SgTH) 5502 019 (STD LGTH)
(SINGLE HGT) 2
X T 1= T~ 0
A -| s5062°
083" DOUBLE HGT)e| 10.312°
P {QUAD. HGT)
4930* o 938°
(STD. LGTH) (sm LGTH)
156 Y
2010 ; 5.2 625 TYP. .72:501:7?
4 | 27 T—:L,uzs P ‘ = DOUBLE WIDTH
PRerss XTI [TYL R pu WM TS TG RVONTTUTYRY o WO VTN RHARRAIA 5 AADAE! e COMPONENT LIMIT
563 | ke-CONDUCTIVE -.83¢
1 NONCONDUCTIVE ~ 875
t e ooz -LOSOTYJ uoTYP _?__T_ s
be—2.850 % 010,] 063—s! SINGLE WIDTH
= 010 o CuAXMUM HEIGHT OF . —=] | COMPONENT LiMiIT
s 2pL 2240t SOLDERED COMPONENT be-CONDUCTIVE - 343 1n
8,097 2 010 2P N NONCONDUCTIVE - 375 in

2125 TYP
(17 EQUAL SPACES)

MA-1091-87

Figure C-21 Typical Q22-bus Module Dimensions

Table C-7 Bus Pin identifiers

Bus Pin Signal Definition

AAl BIRQ5 L Interrupt request priority level 5.

AB1 BIRQ6 L Interrupt request priority level 6.

AC1 BDAL16 L Extended address bit during addressing protocol;
memory error data line during data transfer
protocol.

AD1 BDAL17 L Extended address bit during addressing protocol;

memory error logic enable during data transfer
protocol.

C—48 Q22-bus Specification

Table C-7 (Cont.) Bus Pin Identifiers

Bus Pin Signal

Definition

AE1l SSPARE1
(alternate +5B)

AF1 SSPARE2

AH1 SSPARE3
SRUN

AJl GND

AK1 MSPAREA

ALl MSPAREB

AM1 GND

Special spare — not assigned or bused in
DIGITAL’s cable or backplane assemblies.

Available for user comnection. Optionally, this
pin can be used for +5 V battery (+5 B) back-
up power to keep critical circuits alive during
power failures. A jumper is required on Q22-bus
options to open (disconnect) the +5 B circuit in
systems that use this line as

SSPAREL.

Special spare — not assigned or bused in
DIGITAL’s cable or backplane assemblies.
Available for user interconnection. In the
highest priority device slot, the processor can
use this pin for a signal to indicate its run state.

Special spare — not assigned or bused
simultaneously in DIGITALU's cable or backplane
assemblies; available for user interconnection.
An alternate SRUN signal can be connected in
the highest priority set.

Ground — system signal ground and dc return.

Maintenance spare — normally connected
together on the backplane at each option location
(not a bused connection).

Maintenance spare — normally connected
together on the backplane at each option location
(not a bused connection).

Ground — system signal ground and dc return.

Q22-bus Specification C—49

Table C-7 (Cont.) Bus Pin Identifiers

Bus Pin

Signal

Definition

AN1

AP1

AR1

BDMR L

BHALT L

BREF L

DMA request — a device asserts this signal

to request bus mastership. The processor
arbitrates bus mastership between itself and

all DMA devices on the bus. If the processor is
not bus master (it has completed a bus cycle and
BSYNC L is not being asserted by the processor),
it grants bus mastership to the requesting device
by asserting BDMGO L. The device responds by
negating BDMR L and asserting BSACK L.

Processor halt — when BHALT L is asserted
for at least 25 ps, the processor services the
halt interrupt and responds by halting normal
program execution. External interrupts are
ignored but memory refresh interrupts in Q22-
bus operations are enabled if W4 on the M7264
and M7264-YA processor modules is removed
and DMA request/grant sequences are enabled.
The processor executes the ODT microcode, and
the console device operation is invoked.

Memory refresh — asserted by a DMA device.
This signal forces all dynamic MOS memory
units requiring bus refresh signals to be
activated for each BSYNC L/BDIN L bus
transaction. It is also used as a control signal
for block mode DMA.

CAUTION

The user must avoid multiple DMA data
transfers (burst or hot mode) that could
delay refresh operation if using DMA
refresh. Complete refresh cycles must
occur once every 1.6 ms if required.

C-50 Q22-bus Specification

Bus Pin ldentifiers

Definition

Table C-7 (Cont.)

Bus Pin Signal

AS1 +12Bor+5B

AT1 GND

AU1 PSPARE 1

AVl +5B

BA1l BDCOK H

BB1 BPOK H

BC1 SSPARE4
BDAL1S L
(22-bit only)

BD1 SSPARES
BDAL19 L
(22-bit only)

BE1 SSPARES
BDAL20 L

+12 Vdc or +5 V battery back-up power to keep
critical circuits alive during power failures. This
signal is not bused to BS1 in all of DIGITAL’s
backplanes. A jumper is required on all Q22-bus
options to open (disconnect) the backup circuit
from the bus in systems that use this line at the
alternate voltage.

Ground — system signal ground and dc return.

Spare — not assigned. Customer usage not
recommended. Prevents damage when modules
are inserted upside down.

+5 V battery power — secondary +5 V power
connection. Battery power can be used with
certain devices.

DC power OK — a power supply generated
signal that is asserted when the available dc
voltage is sufficient to sustain reliable system
operation.

Power OK — asserted by the power supply 70
ms after BDCOK is negated when ac power
drops below the value required to sustain power
(approximately 75% of nominal). When negated
during processor operation, a power-fail trap
sequence is initiated.

Special spare in the Q22-bus — not assigned.
Bused in 22-bit cable and backplane assemblies.
Available for user interconnection.

CAUTION
These pins may be used by manufacturing
as test points in some options.

In the Q22-bus, these bused address lines are
address lines <21:18>. Currently not used
during data time.

Q22-bus Specification C-51

Table C-7 (Cont.) Bus Pin ldentifiers

Bus Pin Signal Definition
BF1 SSPARE7 In the Q22-bus, these bused address lines are
BDAL21 L address lines <21:18>. Currently not used

during data time.

BH1 SSPARES Special spare — not assigned or bused in
DIGITAL's cable and backplane assemblies.
Available for user interconnection.

BJ1 GND Ground — system signal ground and dc return.

BK1 MSPAREB Maintenance spare — normally connected

BL1 MSPAREB together on the backplane at each option location
(not a bused connection).

BM1 GND Ground — system signal ground and dc return.

BN1 BSACKL This signal is asserted by a DMA device in
response to the processor’'s BDMGO L signal,
indicating that the DMA device is bus master.

BP1 BIRQ7 L Interrupt request priority level 7.

BR1 BEVNTL External event interrupt request — when
asserted, the processor responds by entering
a service routine through vector address 1008. A
typical use of this signal is as a line time clock
(LTC) interrupt.

BS1 +12 B +12 Vdc battery back-up power (not bused to
AS1 in all of DIGITAL’s backplanes).

BT1 GND Ground — system signal ground and dc return.

BU1 PSPARE2 Power spare 2 — not assigned a function and not
recommended for use. If a module is using
-12 V (on pin AB2), and, if the module is
accidentally inserted upside down in the
backplane, -12 Vdc appears on pin BUL

BV1 +5 +5 V power — normal +5 Vdc system power.

AA2 +5 +5 V power — normal +5 Vdc system power.

C-52 Q22-bus Specification

Table C-7 {Cont.) Bus Pin Identifiers
Bus Pin Signal Definition

AB2 -12 -12 V power — -12 Vdc power for (optional)
devices requiring this voltage. Each Q22-
bus module that requires negative voltages
contains an inverter circuit that generates the
required voltage(s). Therefore, -12 V power is
not required with DIGITALs options.

AC2 GND Ground — system signal ground and dc return.
AD2 +12 +12 V power — +12 Vdc system power.
AE2 BDOUTL Data output — when asserted, BDOUT implies

that valid data is available on BDAL<0:15> L
and that an output transfer, with respect to the
bus master device, is taking place. BDOUT L is
deskewed with respect to data on the bus. The
slave device responding to the BDOUT L signal
must assert BRPLY L to complete the transfer.

AF2 BRPLY L Reply — BRPLY L is asserted in response
. to BDIN L or BDOUT L and during IAK
transactions. It is generated by a slave device to
indicate that it has placed its data on the BDAL
bus or that it has accepted output data from the
bus.

AH2 BDIN L Data input — BDIN L is used for two types of
bus operations.

¢ When asserted during BSYNC L time, BDIN
L implies an input transfer with respect
to the current bus master, and requires a
response (BRPLY L). BDIN L is asserted
when the master device is ready to accept
data from the slave device.

e When asserted without BSYNC L, it
indicates that an interrupt operation is
occurring. The master device must deskew
input data from BRPLY L.

Q22-bus Specification C-53

Table C-7 (Cont.) Bus Pin Identifiers

Bus Pin

Signal

Definition

AJ2

AL2

AM2
AN2

BSYNC L

BWTBT L

BIRQ4 L

BIAKI L
BIAKO L

Synchronize — BSYNC L is asserted by the bus
master device to indicate that it has placed an
address on BDAL<0:17> L. The transfer is in
process until BSYNC L is negated.

Write/byte — BWTBT L is used in two ways to
control a bus cycle.

e It is asserted at the leading edge of BSYNC
L to indicate that an output sequence (DATO
or DATOB), rather than an input sequence,
is to follow.

e It is asserted during BDOUT L, in a DATOB
bus cycle, for byte addressing.

Interrupt request priority level 4 — a level 4
device asserts this signal when its interrupt
enable and interrupt request flip-flops are set. If
the PS word bit 7 is 0, the processor responds by
acknowledging the request by asserting BDIN L
and BIAKO L.

Interrupt acknowledge — in accordance with
interrupt protocol, the processor asserts BIAKO
L to acknowledge receipt of an interrupt. The
bus transmits this to BIAKI L of the device
electrically closest to the processor. This device
accepts the interrupt acknowledge under two
conditions.

* The device requested the bus by asserting
BIRQn L (where n=4, 5, 6 or 7)

e The device has the highest priority interrupt
request on the bus at that time.

C-54 Q22-bus Specification

Table C-7 (Cont.) Bus Pin identifiers
Bus Pin Signal Definition

If these conditions are not met, the device
asserts BIAKO L to the next device on the bus.
This process continues in a daisy chain fashion
until the device with the highest interrupt
priority receives the interrupt acknowledge
signal.

AP2 BBS7L Bank 7 select — the bus master asserts this
signal to reference the I/O page (including
that part of the page reserved for nonexistent
memory). The address in BDAL<0:12> L when
BBS7 L is asserted is the address within the VO

page.
AR2 BDMGI L Direct memory access grant — the bus arbitrator
AS2 BDMGO L asserts this signal to grant bus mastership to a

requesting device, according to bus mastership
protocol. The signal is passed in a daisy-chain
from the arbitrator (as BDMGO L) through the
bus to BDMGI L of the next priority device (the
device electrically closest on the bus).

This device accepts the grant only if it requested
to be the bus master (by 2 BDMR L). If

not, the device passes the grant (asserts
BDMGO L) to the next device on the bus. This
process continues until the requesting device
acknowledged the grant.

CAUTION
DMA device transfers must not interfere
with the memory refresh cycle.

AT2 BINIT L Initialize — this signal is used for system reset.
All devices on the bus are to return to a known,
initial state; that is, registers are reset to zero,
and logic is reset to state 0. Exceptions should
be completely documented in programming and
engineering specifications for the device.

PSS,

Q22-bus Specification C-55

Table C-7 (Cont.) Bus Pin Identifiers

Bus Pin Signal Definition
AU2 BDAIOL Data/address lines — these two lines are part
AV2 BDAL1L of the 16-line data/address bus over which

address and data information are communicated.
Address information is first placed on the bus
by the bus master device. The same device then
either receives input data from, or outputs data
to, the addressed slave device or memory over
the same bus lines.

BA2 +5 +5 V power — normal +5 Vdc system power.

BB2 -12 -12 V power (voltage not supplied) — -12 Vdc
power for (optional) devices requiring this
voltage.

BC2 GND Ground — system signal ground and dc return.

BD2 +12 +12 V power — +12 V system power.

BE2 BDAL2 L Data/address lines — these 14 lines are part of

BF2 BDAL3 L the 16-line data/address bus.

BH2 BDAI4 L

BJ2 BDAL5 L

BK2 BDALS L

BL2 BDAL7L

BM2 BDALS8S L

BN2 BDAIS L

BP2 BDAL10 L

BR2 BDALI11 L

BS2 BDAL12 L

BT2 BDAL13 L

BU2 BDAL14 L

BV2 BDAL15 L

D

Acronyms

This appendix lists and defines the acronyms that are most frequently
used in this manual.

ACRONYM DEFINITION

ACV Access control violation

AIE Alarm interrupt enable

ANSI American National Standards Institute
AP Argument pointer

ASTIVL Asynchronous system trap level
BBU Battery back-up unit

BCD Binary coded decimal

BDR Boot and diagnostic register
BM Byte mask

BRS Baud rate select signals

CADR Cache disable register

CMCTL CVAX memory controller chip
CPMBX Console program mailbox
CQBIC CVAX Q22-bus interface chip
CRC Cyclic redundancy check

CSR Control and status register
CSTD Console storage transmit data
CSTS Console storage transmit status
DEAR DMA error address register
DIP Dual in-line package

DM Data mode

DMA Direct memory access

D—2 Acronyms

ACRONYM DEFINITION

DSE Daylight saving enable

EDITPC EDIT packed to character string

EIA Electronic Industries Association
EPRCM Erasable programmabie read-only memory
ERR Error signal

ESP Executive stack pointer

FP Frame pointer

FPA Floating-point accelerator

FPU Floating-point unit

GPR General purpose register

ICCS Interval clock control and status register
ICR Interval count register

IORESET I/O bus reset register

IPCR Interprocessor communication register
IPL Interrupt priority level

IPR Internal processor register

ISp Interrupt stack pointer

KSp Kernel stack pointer

LSI Large scale integration

MAPEN Memory management mapping enable register
MBRK Microprogram break register

MBZ Must be zero

MCESR Machine check error summary register
MCS Multinational character set

MFPR Move from process register

MMU Memory management unit

MOP Maintenance operation protocol

MOS Metal oxide semiconductor

MSER Memory system error register

MTPR Move to process register

NICR Next interval count register

NXM Nonexistent memory

POBR PO base register

P1BR P1 base register

PC Program counter

PCB Process control block

PCBB Process control block base

PIE Periodic interrupt enable

Acronyms

D-3

ACRONYM DEFINITION

POLR PO length register

P1LR P1 length register

PMR Performance monitor enable register
POoPT PO page table

P1PT P1 page table

PROM Programmable read only memory
PSL Processor status longword

PSW Processor status word

PTE Page table entry

QBEAR Q22-bus error address register
RAM Random-access memory

RPB Restart parameter block

RXCS Console receiver control/status register
RXDB Console receiver data buffer

SAVPC Console saved PC register

SAVPSL Console saved PSL register

SBR System base register

ScA System communications architecture
SCB System control block

SCBB System control block base

SID System identification register

SIE System identification extension
SIRR Software interrupt request register
SISR Software interrupt summary register
SLR System length register

SLU Serial line unit

SpP Stack pointer

SPT System page table

SQWE Square-wave enable

SSC System support chip

SSP Supervisor stack pointer

TBCHK Translation buffer check register
TBDATA Translation buffer data

TBDR Translation buffer disable register
TBIA Translation buffer invalidate all
TBIS Translation buffer invalidate single
TNV Translation not valid

TODR Time-of-year register

D—4 Acronyms

ACRONYM DEFINITION

TXCS Console transmit control/status register
TXDB Console transmit data buffer
UIE Update interrupt enable
UIP Update in progress

USP User stack pointer

VLSI Very large scale integration
VPN Virtual page number

VRT Valid RAM and time

VMB Virtual memory bootstrap
XFC Extended function call

ZIp Zig-zag in-line package

Index

A

Abort, 3-17
Accessing the Q22-bus map
registers, 3-88

Backplane wiring, C+41

Battery backed-up RAM, 3-82
Banud rate, 3-71

BDCOKH, C-35

Block mode DMA, C-18

BOOT, 4-21

Boot and diagnostic facility, 3-77
Boot and diagnostic register, 3-78
Boot devices, 4-64

Boot flags, 466

Bootstrapping, 4-64

BPOK H, C-35

Break response, 3-70

Bus cycle protocol, C-7

Bus drivers, C-37

Bus interconnecting wiring, C—40
Bus receivers, C-38

Bus termination, C-39

Cc

Cacheable references, 3-34
Cache control register, 349
Cache disable register, 3-39
Cache memory, 1-6, 3-34
Call-back entry points, 4-90

CDAL bus to Q22-bus address
translation, 3-90

Central processing unit, 14

Central processor, 3-1

Clock functions, 1-4

CMCTL registers, 4-87

Command address specifiers, 4-15

! - Comment, 4-59

Compatible system enclosures, 2-11

Configuration and display connector
J2), 24

CONFIGURE, 4-23

Configuring the KA650, 2-3

Configuring the Q22-bus map, 3-93

Console command keywords, 4-14

Console command qualifiers, 4-15

Console commands, 4-19

Console command syntax, 4-13

Console control characters, 4-11

Console error messages, 4-97

Console interrupt specifications,
3-71

Console program mailbox, 4-93

Console receiver control/status
register, 3-66

Console receiver data buffer, 3—66

Console registers, 3-65

Console serial line, 3-65

Console service, 4-11

Console SLU connector (J1), 2-3

Console transmitter control/status
register, 3-68

Console transmitter data buffer,
3-70

Index—1

Index—2

Contents of Main Memory, 4-87
CONTINUE, 4-24

Control functions, C-34

CPU references, 3-32

D

Data-stream read references, 3-32

Data transfer bus cycles, C-6

Data types, 3-8

DATBI bus cycle, C-23

DATBO bus cycle, C-24

DEPOSIT, 4-25

Detailed local address space map,
B-2

Device addressing, C-7

Device-dependent bootstrap
procedures, 4-73

Device priority, C-28

Diagnostic Interdependencies, 4-82

Diagnostic LED register, 3-80

Diagnostics, 4-79

Dimensions, A-1

Direct memory access, C-17

Disk and tape bootstrap procedure,
4-73

DMA error address register, 3-99

DMA guidelines, C-26

DMA protocol, C-17

DMA system error register, 3-95

E

Electrical specifications, A-1
Environmental specifications, A-2
EPROM layout, 4-88

Error handling, 3-99

Error messages, 4-95
EXAMINE, 4-28

Exceptions, 3-16

Exceptions and interrupts, 3-13
External halts, 4-5

External IPRs, B4

F
Fault, 3-17
FIND, 4-30

Firmware features, 4-1
First-level cache, 3-35

Dirst-level cache address translation,
3-37

First-level cache behavior on writes,
3-39

First-level cache data block
allocation, 3-38

First-level cache error detection,
344

First-level cache organization, 3-35

Floating-point accelerator, 1-6,
3-33

Floating-point accelerator data
types, 3-33

Fleating-point accelerator
instructions, 3-33

Floating-point errors, 3—-20

G

General local address space map,
B-1

General purpose registers, 3-3

Global Q22-bus address space map,
B-5

H

H3600-SA CPU cover panel, 2-6
Halt, C-34

HALT, 4-31

Halt code messages, 4-96

Halt dispatch, 4—4

Halt entry, 4-2

Halt entry, exit and dispatch, 4-2
Halt exit, 4-3

Halt protected space, 4—88
Hardware detected errors, 3-26
Hardware halt procedure, 3-28
Hardware reset, 3-83

HELP, 4-32

/O bus initialization, 3-83

Information saved on a machine
check, 3-19

Initialization, C-34

INITIALIZE, 4-34

Initial power-up test, 4—6

Instruction set, 3-9

Instruction-stream read references,
3-32

Internal processor registers, 3-5

Interprocessor communication
register, 3-91

Interrupt errors, 3-21

Interrupt protocol, C-28

Interrupts, 3-13, C-27

Interval timer, 3-73

Intrabackplane bus wiring, C—<41

K

KA630CNF configuration board,
2-7

KA650 connectors, 2-3

KAG650 initialization, 3-82

L

LED codes, 4-10

Load definition, C-37
Locating a console device, 4—6
Locating the RPB, 4-84

Machine state on power-up, 4—85

Main memory addressing, 3-56

Main memory behavior on writes,
3-57

Main memory control and diagnostic
status register, 3-61

Index—-3

Main memory error detection and
correction, 3-62

Main memory error status register,
3-57

Main memory layout and state,
4-85

Main memory organization, 3-56

Main memory system, 3-53

Memory controller, 1-6

Memory expansion connector (J3),
2-5

Memory management, 3-11

Memory management control
registers, 3-12

Memory management enable
(MAPEN) register, 3-12

Memory management errors, 3-20

Memory refresh, C-34

Memory system error register, 3—42

Microcode errors, 3-21

MicroVAX system support functions,
1-7

Mode switch set to Normal, 4-9

Mode switch set to Query, 4-8

Mode switch set to Test, 4-7

Module contact finger identification,
CcH47

MOVE, 4-35

MS650-AA memory modules, 1-8

MS650-BA memory modules, 1-8

N

Network bootstrap procedure, 4-75

Network listening, 4-76

NEXT, 4-39

Nonoperating conditions greater
than 60 Days, A-2

Nonoperating conditions less than
60 days, A-2

(o)
120-Ohm Q22-bus, C-37

Index—4

Operating conditions, A-2
Operating system restart, 4-83

P

PFN bitmap, 4-86

Physical specifications, A-1

Power status, C-35

Power supply loading, C-46

Power-up, 4-5

Power-up and power-down protocol,
C-35

Power-up initialization, 3—83

Preparing for the bootstrap, 4-68

Primary bootstrap, VMB, 4-69

Processor initialization, 3-883

Processor state, 3-2

Processor status longword, 34

Programmable timers, 3-73

PROM bootstrap procedure, 4—74

Public data structures, 4-93

Public data structures and entry
points, 4-88

Q

Q22-bus electrical characteristics,
C-36

Q22-bus error address register,
3-98

Q22-bus four-level interrupt
configurations, C-32

Q22-bus interface, 1-8, 3-84

Q22-bus interrupt handling, 3-93

Q22-bus map base address register,
3-94

Q22-bus map cache, 3-89

Q22-bus map registers, 3-86

Q22-bus signal assignments, C-3

Q22-bus to main memory address
translation, 3-85

R

Read errors, 3-22

References to processor registers and
memory, 4-18

REPEAT, 441

Reserved main memory, 4-85

Resident firmware, 1-7

Resident firmware operation, 3-81

Restoring processor state, 4-3

ROM address space, 3-81

ROM memory, 3-80

ROM socket, 3-80

S

Saving processor state, 4—2

Scatter/gather map, 4-86

SEARCH, 442

Second-level cache, 3—44

Second-level cache address
translation, 347

Second-level cache as fast memory,

3-52
Second-level cache behavior on
writes, 3-49

Second-level cache data block
allocation, 3-48

Second-level cache error detection,
3-51

Second-level cache organization,
3-45

SET, 4-45

SHOW, 4-48

Signal level specifications, C—-36

START, 4-53

System configuration register, 3-94

System configurations, C—42

System control block, 3-25

System control block base register
(SCBB), 3-25

System identification register (SID),
3-30

System type register (SYS_TYPE),
331

T

TEST, 4-54

Time-of-year clock, 3-72

Time-of-year clock and timers, 3-72

Timer control registers, 3-74

Timer interrupt vector registers,
3-77

Timer interval registers, 3-76

Timer next interval registers, 3-76

Translation buffer, 3-12

Translation buffer check (TBCHK)
register, 3-12

Translation buffer invalidate all
(TBIA) register, 3-12

Translation buffer invalidate single
(TBIS) register, 3-1

Trap, 3-16 .

Index=5

u
UNJAM, 4-57

\")
VMB error messages, 4-99

w

Write errors, 3-22
Write references, 3-32

X
X - Binary Load and Unload, 4-57

KA650 CPU Moduie

Technical Manual
READER’S COMMENTS EK-KA650-UG-003

Your comments and suggestions will help us in our efforts to improve the quality of our publications.

1. How did you use this manual? (Circle your response.)

(a) Installation (c) Maintenance (e) Training
(b) Operation/use (d) Programming (f) Other (Please specify.)

2. Did the manual meet your needs? Yes 0 No OO Why?

3. Please rate the manual on the following categories. (Circle your response.)

Excellent Good Fair Poor Unacceptable
Accuracy 5 4 3 2 1
Clarity 5 4 3 2 1
Completeness 5 4 3 2 1
Table of Contents, Index 5 4 3 2 1
lllustrations, examples 5 4 3 2 1
Overall ease of use 5 4 3 2 1

4. What things did you like most about this manual?

5. What things did you like /east about this ual?

6. Please list and describe any errors you found in the manual.

Page Description/Location of Error
Name Job Title
Street Company
City Department
State/Country Telephone Number
Postal (ZIP) Code Date

THANK YOU FOR YOUR COMMENTS AND SUGGESTIONS.

Please do not use this form to order manuals. Contact your representative at Digital Equipment Corporation
or (in the USA) call our DECdirect™ department at this toll-free number: 800-258-1710.

© 1989 by Digital Equipment Corporation MYo

FOLD HERE AND TAPE. DO NOT STAPLE.

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 33 MAYNARD, MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Educational Services/Quality Assurance
12 Crosby Drive BUO/EOQ8

Bedford, MA 01730-1493

USA

”IIIIII!”IIHIH“!“Illlll“llll“l!llll”lIiIl”

FOLD HERE AND TAPE. DO NOT STAPLE.

No Postage
Necessary
if Mailed in the
United States

— - — ——— — —— — — — — — —— | — — — p— — — —

