
KA650-AA CPU Module

Technical Manual

Order No. EK-KA650-UG-002

digital equipment corporation

maynard, massachusetts

First Edition, December 1987

Second Edition, August 1988

The information in this document is subject to change without notice and should not be

construed as a commitment by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for any errors that may appear in

this document. .

The software, if any, described in this document is furnished under a license and may be used

or copied only in accordance with the terms of such license. No responsibility is assumed for

the use or reliability of software or equipment that is not supplied by Digital Equipment

Corporation or its affiliated companies.

Copyright ©1988 by Digital Equipment Corporation.

All Rights Reserved.

Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation:

DEC MicroVAX 11 RSX

DECmate MicroVAX 3500 RT

DECUS MicroVAX 3600 UNIBUS

DECwriter PDP VAX

DIBOL P/OS VAXstation

LSI-11 Professional VMS

MASSBUS Q-bus VT

MicroPDP-11 Q22-bus VT100

MicroVAX Rainbow Work Processor

MicroVAX 1 RSTS

FCC NOTICE: The equipment described in this manual generates, uses, and may emit radio

frequency energy. The equipment has been type tested and found to comply with the limits

for a Class A computing device pursuant to Subpart J of Part 15 of FCC Rules, which are

designed to provide reasonable protection against such radio frequency interference when

operated in a commercial environment. Operation of this equipment in a residential area

may cause interference, in which case the user at his own expense may be required to take

measures to correct the interference. ‘

Contents

About This Manual XV

Chapter 1 Overview

1.1 KA650-AA Central Processor Module 1

1.2 Clock Functions. 6

1.3 Central Processing Unit., 6

1.4 Floating-Point Accelerator 7

1.5 CacheMemory 7

1.6 Memory Controller 8

1.7 MicroVAX System Support Functions 8

1.8 ResidentFirmware 9

1.9 Q22-busiInterface 9

1.10 MS650-AA Memory Modules 9

1.11 MS650-BA Memory Modules 0., 10

Chapter 2 Installation and Configuration

2.1 Installing the KA650-AA L e 11

2.2 Configuring the KA650-AA 13

2.3 KA650-AA Connectors 13

2.3.1 Console SLU Connector (J1), 13

2.3.2 Configuration and Display Connector (J2) 14

2.3.3 Memory Expansion Connector (J3) 16

2.4 H3600-SA CPU Cover Panel e e e e e 17

2.5 KA630CNF Configuration Board 18

2.6 Compatible System Enclosures 23

iv Contents

Chapter 3 Architecture

3.1 KAG650-AA Central Processor

3.1.1

3.1.1.1

3.1.1.2

3.1.1.3

3.1.2

3.1.3

3.1.4

3.1.4.1

3.1.4.2

3.1.5

3.1.5.1

3.1.5.2

3.1.5.3

3.1.5.4

3.1.5.5

3.1.5.6

3.1.6

3.1.7

3.1.7.7

3.1.7.8

3.1.7.9

Processor State

General Purpose Registers

Processor Status Longword

Internal Processor Registers . . .

Data Types

Instruction Set

Memory Management

Translation Buffer

ooooooooooooooo

ooooooooooooooo

ooooooooooooooo

ooooooooooooooo

ooooooooooooooo

ooooooooooooooo

ooooooooooooooo

Memory Management Control Registers

Exceptions and Interrupts.

Interrupts

Exceptions

ooooooooooooooo

ooooooooooooooo

ooooooooooooooo

Information Saved on a Machine Check Exception
System Control Block

Hardware Detected Errors

Hardware Halt Procedure

System Identification

CPU References

Write References.

3.2 KA650-AA Floating-Point Accelerator .

ooooooooooooooo

ooooooooooooooo

ooooooooooooooo

. [. ® & & o @ e @ & © 6 & e

ooooooooooooooo

ooooooooooooooo

ooooooooooooooo

3.2.1 Floating-Point Accelerator Instructions

3.2.2 Floating-Point Accelerator Data Types

3.3 KA650-AA Cache Memory

3.3.1 Cacheable References

3.3.2 First-Level Cache

3.3.2.1 First-Level Cache Organization

3.3.2.2 First-Level Cache Address Translation

3.3.2.3 First-Level Cache Data Block Allocation.

3324 First-Level Cache Behavior on Writes

3.3.2.5 Cache Disable Register

3.3.2.6 Memory System Error Register

3.3.2.7 First-Level Cache Error Detection
ooooooooooooooo

25

25

26

26

28

32

32

33

33

34

35

35

37

40

46

49

50

52

53

53

53

54

54

54

54

55

55

55

56
57

58

59

59

62

63

3.3.3

3.3.3.1

3.3.3.2

3.3.3.3

3.334

3.3.3.5

3.3.3.6

3.3.3.7

3.4.1

3.4.2

3.4.3

3.44

3.4.5

3.4.6

3.5.1

3.5.1.1

3.5.1.2

3.5.1.3

3.5.14

3.5.2

3.5.3

3.5.4

3.6.1

3.6.2

3.6.3

3.6.3.1

3.6.3.2

3.6.3.3

3.6.3.4

3.7.1

3.7.2

Second-Level Cache .

Contents

oooooooooooooooooooooooo

Second-Level Cache Organization

Second-Level Cache Address Translation

Second-Level Cache Data Block Allocation

Second-Level Cache Behavior on Writes I

Cache Control Register

Second-Level Cache Error Detection.

Second-Level Cache as Fast Memory

3.4 KA650-AA Main Memory System

Main Memory Organization

Main Memory Addressing

Main Memory Behavior on Writes

Main Memory Error Status Register I

Main Memory Control and Diagnostic Status Register . . .

Main Memory Error Detection and Correction

3.5 KA650-AA Console Serial Line

Console Registers . . . oooooooooooooooooooooooo

Console Receiver Control/Status Register.

Console Receiver Data Buffer

Console Transmitter Control/Status Register.

Console Transmitter Data Buffer e

Break Response

Baud Rate

oooooooooooooooooooooooo

........................

Console Interrupt Specifications

3.6 KA650-AA Time of Year Clock and Timers

Time of Year Clock . .

Interval Timer

Programmable Timers

oooooooooooooooooooooooo

oooooooooooooooooooooooo

oooooooooooooooooooooooo

Timer Control Registers,

Timer Interval Registers

Timer Next Interval Registers

Timer Interrupt Vector Registers

3.7 KA650-AA Boot and Diagnostic Facility I

Boot and Diagnostic Register

Diagnostic LED Register

\'

64

65

- 66

67

68

68

70

71

72

74

74

75

75

79

81

83

83

83

84

85

87

87

87

88

88

88

89

920

90

92

93

93

94

94

96

vi Contents

3.7.3

3.7.3.1

3.7.3.2

3.7.3.3

3.7.4

3.7.5

3.7.5.1

3.7.5.2

3.7.5.3

3.7.5.4

3.8

3.8.1

3.8.1.1

3.8.1.2

3.8.1.3

3.8.2

3.8.3

3.8.4

3.8.5

3.8.5.1

3.8.6

3.8.7

3.8.8

3.8.9

3.8.10

ROM Memory

ROM Socket

ROM Address Space

ooooooooooooooo

ooooooooooooooo

ooooooooooooooo

KA650-AA Resident Firmware Operation..

Battery Backed-up RAM.

KA650-AA Initialization

Power-Up Initialization

Hardware Reset

Q22-bus Map Registers

000000

ooooooooooooooo

ooooooooooooooo

ooooooooooooooo

ooooooooooooooo

ooooooooooooooo

ooooooooooooooo

ooooooooooooooo

Accessing the Q22-bus Map Registers

Q22-bus Map Cache ooooooooooooooo

CDAL Bus to Q22-bus Address Translation

Interprocessor Communication Register

Q22-bus Interrupt Handling

Configuring the Q22-bus Map

ooooooooooooooo

ooooooooooooooo

Q22-bus Map Base Address Register.

System Configuration Register . . .

DMA System Error Register

Q22-bus Error Address Register . .

DMA Error Address Register

Error Handling

Chapter 4 Firmware

4.1 KA650-AA Firmware

4.2 Entry/Dispatch Code

Power-Up Processing

Output On Power-Up

LED Codes

Console Patch Panel

External Halts

4.2.1

4.2.2

4.22.1

4.2.2.2

4.2.2.3

4.2.2.4 Determining the Console Device

ooooooooooo

ooooooooooo

ooooooooooooooo

ooooooooooooooo

ooooooooooooooo

ooooooooooooooo

ooooooooooooooo

ooooooooooooooo

ooooooooooooooo

ooooooooooooooo

ooooooooooooooo

ooooooooooooooo

ooooooooooooooo

ooooooooooooooo

97

97

97

98

99

99

99

99

100

100

100

101

103

104

105

106

107

108

108

109

109

110

113

114

115

117

118

120

120

123

125

126

127

Contents vii

4.2.2.5 Language Inquiry 127

4.2.2.6 Keyboard Inquiry e 127

4.3 Console Emulation., 128

4.3.1 Control Characters 128

4.3.2 Command Syntax 130

4.3.3 Command Keywords 130

4.3.4 References to Processor Registers and Memory 131

4.3.5 Console Commands 131

4.3.5.1 Boot 131

4.3.5.2 Continue 132

4.3.5.3 Deposit............ i 132

4.3.5.4 Examine PP 134

4.3.5.5 Find i 135

4.3.5.6 Halt e 135

4.3.5.7 Initialize 0. 135

4.3.5.8 Repeat i, 136

4.3.5.9 Set L, S 137

43510 Show e 138

43511 Start. 138

43512 Test 139

43513 Unjam i 139

43.514 BinarylLoad and Unload 139

43515 Comment 141

44 Bootstrapping o e 141

4.4.1 Supported Boot Devices 141

4.4.2 Bootstrap Operation 142

4.4.2.1 Disk Bootstrap Operation 142

44272 PROM Bootstrap Operation 143

4.4.2.3 Network Bootstrap Operation 144

443 Q22-busMapRegister L. 146

444 VMBDisplays e 146

4.4.5 Memory Layout oL 147

4.4.6 Secondary Bootstrap oo L 147

4.4.6.1 Parameters Passed to the Secondary Bootstrap 148

45 Diagnostics oo 149

4.5.1 ErrorReporting 149

vii Contents

4.6 Restart ooooooo ooooooooooooooooooooooooooooo

4.7 Machine State When Halted

4.7.1 Main Memory Layout and State

4.7.1.1 Reserved Main Memory

4.7.1.2 Scatter-Gather Map

4.7.1.3 BitMap......

4.7.1.4 Contents of Main Memory

4.7.2 First-Level Cache0....

4.7.3 Translation Lookaside Buffer

4.7 .4 Second-Level Cache

4.7.5 Halt Protect Space

4.8 Public Data Structures and Entry Points

4.8.1 Firmware EPROM Layout

- 4.8.2 Call Back Entry Points

4.8.2.1 CP$GETCHAR_R4

4.8.2.2 CP$SMSG_OUT_NOLF_R4....................

4.8.2.3 CP$READ_WTH_PRMPTR4

4.8.3 SSCRAM Layout,

4.8.3.1 Public Data Structures and Console Mailbox (CPMBX) .

4.8.3.2 Firmware Stack

4.8.3.3 Diagnostic State,

4.8.3.4 USER Area

4.9 Error Messages,

4.9.1 Halt Code Messages

4.9.2 Virtual Memory Boot Messages

4.9.3 Console Emulation

Appendix A KA650-AA Specifications

A.1 Physical Specifications

A.2 Electrical Specifications o 0 0oL

A.3 Environmental Specifications

151

153

153

153

154

154

155

155

155

155

156

156

156

157

158

158

159

160

161

163

163

163

164

164

166

167

169

169

170

Contents ix

Appendix B Address Assignments

B.1 General Local Address SpaceMap 171

B.2 Detailed Local Address SpaceMap 172

B.3 External Internal Processor Registers 175

B.4 Global Q22-bus Address SpaceMap 175

Appendix C Q22-bus Specification

C.1 Introduction i, 177

C.1.1 Master/Slave Relationship 178

C.2 Q22-bus Signal Assignments 179

C.3 DataTransferBusCycles. 182

C.3.1 BusCycleProtocol 183

C.3.2 Device Addressing - 184

C.4 Direct Memory Access, 193

C41 DMAProtocol i 193

C4.2 BlockModeDMA 195

C.4.2.1 DATBIBusCycle 198

C.4.2.2 DATBO Bus CycleS 199

C43 DMAGuidelines 201

Ch5 Interrupts......... i 201

C.5.1 DevicePriority oo 202

C.5.2 InterruptProtocol 202

C.5.3 Q22-bus Four-Level Interrupt Configurations 206

C.6 ControlFunctions 207

C.6.1 MemoryRefresh 208

C.6.2 Halt....... e 208

C.6.3 Initialization 000 208

C.6.4 PowerStatus, 208

C.6.5 BDCOKH 208

C6.6 BPOKH........ 208

C.6.7 Power-Up and Power-Down Protocol 209

C.7 Q22-bus Electrical Characteristics 210

C.7.1 Signal Level Specifications 210

C.7.2 Load Definition e e 210

C.7.3 120-Ohm Q22-bus e e, 210

x Contents

C.74

C.7.5

C.7.6

C.7.7

Bus Termination . .

Bus Interconnecting Wiring

C.7.7.1 Backplane Wiring

C.7.7.2 Intrabackplane Bus Wiring

C.7.7.3 Powerand Ground

C.8

C.8.1

C.9

System Configurations

Power Supply Loading [P

Module Contact Finger Identification

Appendix D Acronyms

Index

Examples

4-1 TLanguagePrompt.............................

4-2 Keyboard Interrogation J

4-3 Sample Nonworkstation Screen with Autoboot Enabled .

4-4 Sample Nonworkstation Screen with Halts Enabled

4-5 Sample Workstation Screen with Battery Dead

4-6 Sample Screen with Errors

4-7 ErrorSummary

Figures

1-1 KA650-AACPUModule

1-2 KA650-AA Block Diagram

1-3 System Level Block Diagram e

1-4 MS650-AA and MS650-BA Memory Modules

2-1 CPU and Memory Module Placement

2-2 Cable Connections

2-3 KA®650-AA Pin and LED Orientation

2-4 H3600-SA CPU Cover Panel

2-5 KA630CNF Configuration Board

211

211

N
- I

213

213

213

214

214

218

218

121

121

122

122

122

123

150

10

12

12

13

18

19

2-6

2-7

3-1

3-2

3-4

3-5

3-6

3-7

3-8

3-9

3-10

3-11

3-12

3-13

3-14

3-15

3-16

3-17

3-18

3-19

3-20

3-21

3-22

3-23

3-24

3-25

3-26

3-27

3-28

3-29

3-30

3-31

3-32

3-33

3-34

Contents

KA630CNF]2 and J3 Pin Orientation.

KA630CNF J1 and J4 Pin Orientation.

General Purpose Register BitMap

PSL BitMap

Interrupt Registers . . .

Information Saved on a

ooooooooooooooooooooooooo

Machine Check Exception

System Control Block Base Register

System Identification Register

System Type Register . ooooooooooooooooooooooooo

First-Level Cache Organization

First-Level Cache Entry ooooooooooooooooooooooooo

First-Level Cache Tag Block

First-Level Cache Data Block

First-Level Cache Address Translation

Cache Disable Register

Memory System Error Register . . . e

Second-Level Cache Organization

Second-Level Cache Entry

Second-Level Cache Tag Block

Second-Level Cache Data Block

Second-Level Cache Address Translation

Cache Control Register

Format for MEMCSR16

Format for MEMCSR17

ooooooooooooooooooooooooo

ooooooooooooooooooooooooo

ooooooooooooooooooooooooo

Console Receiver Control/Status Register

Console Receiver Data Buffer

Console Transmitter Control/Status Register

Console Transmitter Data Buffer

Time of Year Clock ..

Interval Timer

Timer Control Registers

Timer Interval Register

ooooooooooooooooooooooooo

ooooooooooooooooooooooo

oooooooooooooooooooooooo

ooooooooooooooooooooooooo

Timer Next Interval Register

Timer Interrupt Vector Register

Boot and Diagnostic Register e

Diagnostic LED Register oooooooooooooooooooooooo

Xi

19

19

26

27

37

40

46

52

52

56

56

56

57

58

59

62

65

65

65

66

67

68

75

79

83

84

86

87

89

89

91

92

93

93

7

9%

xii Contents

3-35

3-36

3-37

3-38

3-39

3-40

3-41

3-42

3-43

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

C-1

C-2

C-3

C-4

C-5

C-6

C-7

C-8

C-9

C-10

C-11

C-12

C-13

C-14

C-15

C-16

C-17

C-18

C-19

Q22-bus to Main Memory Address Translation

Q22-bus Map Registers

Q22-bus Map Cache Entry

oooooooooooooooooo

oooooooooooooooooo

Interprocessor Communication Register

Q22-bus Map Base Address Register

System Configuration Register . .

DMA System Error Register

Q22-bus Error Address Register .

DMA Error Address Register . . .

Firmware Block Diagram

Boot Block Format

Memory Layout

oooooooooooooooooo

oooooooooooooooooo

oooooooooooooooooo

oooooooooooooooooo

oooooooooooooooooo

OOOOOOOOOOOOOOOOOOO

oooooooooooooooooo

Secondary Bootstrap Memory Layout.

Restart Parameter Block Format .

Main Memory Layout

EPROM Memory Layout

SSC RAM Layout

DATIBus Cycle.

DATI Bus Cycle Timing

DATO or DATOB Bus Cycle . . .

oooooooooooooooooo

¢ ¢ e 6 s a @& ® 9 @ & © 6 T & & » °

oooooooooooooooooo

oooooooooooooooooo

oooooooooooooooooo

oooooooooooooooooo

oooooooooooooooooo

DATO or DATOB Bus Cycle Timing

DATIO or DATIOB Bus Cycle . . oooooooooooooooooo

DATIO or DATIOB Bus Cycle Timing

DMA Protocol

DMA Request/Grant Timing

DATBI Bus Cycle Timing

DATBO Bus Cycle Timing

oooooooooooooooooo

oooooooooooooooooo

oooooooooooooooooo

oooooooooooooooooo

Interrupt Request/Acknowledge Sequence

Interrupt Protocol Timing oooooooooooooooooo

Position-Independent Configuration

Position-Dependent Configuration oooooooooooooooooo

Power-Up and Power-Down Timing

Bus Line Terminations

Single-Backplane Configuration .

Multiple Backplane Configuration

Typical Pin Identification System

oooooooooooooooooo

oooooooooooooooooo

000000000000000000

oooooooooooooooo

102

103

105

107

109

109

111

114

114

118

143

147

148

152

153

156

160

185

187

188

190

191

192

194

195

196

197

203

205

206

207

209

212

215

216

218

Contents xiii

C-20 Quad-Height Module Contact Finger Identification 219

C-21 Typical Q22-bus Module Dimensions. 220

Tables

2-1 Console SLU Connector (J1) Pinouts 14

2-2 Configuration and Display Connector (J2) Pinouts 14

2-3 Memory Expansion Connector (J3) Pinouts 16

2-4 H3600-SA CPU Cover Panel Features and Controls 17

2-5 KAG630CNF Switch Selections 20

2-6 KAG630CNF Connector and Switches 21

3-1 KAG650-AA Internal Processor Registers 29

'3-2 CategoryOnelIPRs................ 31

3-3 Category TwoIPRs. 31

3-4 Interrupts e 36

3-5 Exceptions i 39

3-6 System Control Block Format e 46

3-7 Unmaskable Interrupts that Can Cause AHalt. 51

3-8 Exceptions that Can Causea Halt 51

3-9 CPU Read Reference Timing 72

3-10 CPU Write Reference Timing 72

3-11 Q22-bus Interface Read Reference Timing 73

3-12 Q22-bus Interface Write Reference Timing 73

3-13 Error Syndromes 77

3-14 Console Registers 83

3-15 Baud Rate Select, 88

3-16 Q22-bus Map Registers 103

4-1 Actions TakenonaHalt 119

4-2 LED Codes. 124

4-3 Public Data Structure Template. e 161

4-4 Halt Code Messages. e 164

4-5 Virtual Memory Boot Error Messages 166

4-6 Console Emulation Error Messages 167

B-1 VAX MemorySpace........... ... 171

B-2 VAXInput/OutputSpace........................ 172

B-3 VAX Memory Space 172

B-4 VAXInput/OutputSpace........................ 173

xiv Contents

B-5 External Internal Processor Registers 175

B-6 Q22-bus Input/Output Space with BBS7 Asserted 176

C-1 Data and Address Signal Assignments 179

C-2 Control Signal Assignments e 180

C-3 Power and Ground Signal Assignments 181

C-4 Spare Signal Assignments 182

C-5 Data Transfer Operations 182

C-6 Bus Signals for Data Transfers 183

C-7 Bus Pin Identifiers oo oo 221

About This Manual

The KA650-AA CPU Module Technical Manual documents the functional,

physical, and environmental characteristics of the KA650-AA CPU module,

and includes information on the MS650 memory expansion modules. The
manual also covers the KA650-BA CPU module, designed for workstation
usage. The KA650-BA is functionally equivalent to the KA650-AA, except
that it does not support multiuser VMS and ULTRIX operating system

licenses.

This document is intended for a design engineer or applications

programmer who is familiar with Digital’s extended LSI-11 bus (Q22-bus)

and the VAX instruction set. The manual should be used along with the VAX
Architecture Reference Manual as a programmer’s reference to the module.

The manual is divided into four chapters and four appendices.

Chapter 1, Overview, introduces the KA650-AA MicroVAX CPU module

and MS650 memory modules, including module features and specifications.

Chapter 2, Installation and Configuration, describes the installation and
configuration of the KA650-AA and MS650 modules in Q22-bus backplanes
and system enclosures.

Chapter 3, Architecture, describes the KA650-AA registers, instruction set,

and memory.

Chapter 4, Firmware, describes the entry/dispatch code, boot diagnostics,

device booting sequence, console program, and console commands.

Appendix A, KA650-AA Specifications, describes the physical, electrical,
and environmental specifications for the KA650-AA CPU module.

Appendix B, Address Assignments, provides a map of VAX memory space.

Appendix C, Q22-bus Specification, describes the low-end member of

Digital’s bus family. All of Digital’s microcomputers, such as the MicroVAX

I, MicroVAX I, MicroVAX 3500, MicroVAX 3600, and MicroPDP-11, use the
Q22-bus. |

Appendix D, Acronyms, provides a list of the acronyms used in this manual.

XV

xvi About This Manual

Conventions

The following table lists the conventions used in this manual.

Convention Meaning

<Xy > Represents a bit field, a set of lines, or signals,

ranging from x through y. For example, RO <7:4>

indicates bits 7 through 4 in general purpose

register RO.

[x:y] Represents a range of bytes, from y through x.

[Return] A label enclosed in a box represents a key (usually
a control or special character key) on the keyboard

(in this case, the carriage return key).

Note Contains general information.

Caution Contains information to prevent damage to

equipment.

n Boldface small ns indicate variables.

Related Documents

The following documents related to the KA650 CPU are available from
Digital.

Microcomputer Interfaces Handbook EB-20175-20

Microcomputers and Memories Handbook EB-18451-20

VAX Architecture Handbook EB-19580-20

VAX-11 Architecture Reference Manual EK-VAXAR-RM

You can order these documents from:

Digital Equipment Corporatlon

Accessories and Supplies Group

P.O. Box CS2008

Nashua, NH 03061

Attention: Documentation Products

Chapter 1

Overview

This chapter provides a brief overview of the KA650-AA CPU module and
MS650 memory modules.

1.1 KA650-AA Central Processor Module

The KA650-AA is a quad-height VAX processor module for the Q22-bus,
also known as the extended LSI-11 bus. The KA650-AA is designed for
use in high speed, real-time applications and for multiuser, multitasking

environments. The KA650-AA incorporates a two-level cache to maximize
performance.

The KA650-AA CPU module and MS650 memory modules combine to form

a VAX CPU/memory subsystem that uses the Q22-bus to communicate with

mass storage and I/O devices. The KA650-AA and MS650 modules are
mounted in standard Q22-bus backplane slots that implement the Q22-bus
in the AB rows and the CD interconnect in the CD rows. A single KA650-AA
can support up to four MS650 modules, if enough Q22-bus/CD backplane

slots are available.

The KA650-AA communicates with the console device via the H3600-SA
CPU cover panel, which also contains configuration switches and an LED

display.

2 Overview

Figure 1-1 shows the KA650-AA CPU module.

Figure 1-1 KA650-AA CPU Module

Overview 3

Figure 1-2 shows the major functional blocks of the KA650-AA CPU
module.

BOOT AND

DIAGNOSTIC

ROMS

\y SYSTEM SUPPORT

/1 FUNCTIONS

J
2
.
,1

CDA
L<3

1:0
0>

::

A<31:2>H A3L
SECOND LEVEL

‘— > CACHE

. CDAL TO BCDAL

ADDRESS LATCH , BUFFER

N {1
CSDP<3:00> L

A A

CPU AND FPA l { CDPE L N l;
SUBSYSTEM

, 5 CDAL<31:00>H

Q22-bus

INTERFACE

A
B

F
I
N
G
E
R
S

U
MEMORY

CLOCK
CONTROLLER SUBSYSTEM

J3, CD FINGERS

Figure 1-2 KA650-AA Block Diagram

4 Qverview

Figure 1-3 shows the system level block diagram.

H3600

SA COVER%
e

CONSOLE

50-PIN CABLE

Micro VAX LOCAL MEMORY INTERCONNECT (32-bit data + 7-bit ECC)

; L L U {
CPU/FPU

FIRST-LEVEL SECOND-LEVEL

CACHE CACHE

« MS650 MS650 MS650 MS650
5 MEMORY MEMORY MEMORY MEMORY
a MODULE MODULE MODULE MODULE

[I j T
[Ty T

022-bus

MAP

@] [&] Q
e e e — — — e e e e — Wz . - Wiz - - - .0 — '}+ po—, Z-— -| b [G] fi @ +E9 + -

MicroVAX LOCAL MEMORY INTERCONNECT { ADDRESS)

¥ ALL BACKPLANE SLOTSf Q22-bus / CD Y Y

G
N
D

S
R
U
N
}
|

R

Q22-bus (16-BIT DATA , 22 ADDRESS LINES, CONTROL , POWER)

BACKPLANE ee Y Y L

SERIAL

LINE

/ CONTROLLER

I
ANN

AN
3

§ TM H3104

CABLE

CONCENTRATOR

PRINTERREMOTE TERMINAL LOCAL TERMINALS
MR-0186-0029-8

MA-1089-87

Figure 1-3 System Level Block Diagram

Overview 5

| SYSTEMS

NETWORK

INTERFACE Q22-bus

CONTROLLER OPTIONS

BA200 SERIES

ENCLOSURE
| I | | |]

BE
VE

NT
B
P
O
K

B
D
C
O
K

! I t

-] DISK TAPE POWER
S CONTROLLER CONTROLLER SUPPLY

= 2Lt L=y KDAS5(

ol oo wlc|.

—] —~
DCOK —Q—
RESET SWITCH

-,

DISK DRIVE CABLE DISK DRIVE O DISK DRIVE 1 TAPE DRIVE
DISTRIBUTION MR 01860029A

ASSEMBLY MA-1090.87

6 Overview

1.2 Clock Functions

All clock functions are implemented by the CVAX clock chip. The

CVAX clock chip is a 44-pin CERQUAD surface mount chip that contains

approximately 350 transistors, and provides the following functions.

e Generates two MOS clocks for the CPU, the floating-point accelerator,
and the main memory controller.

¢ Generates three auxiliary clocks for other miscellaneous TTL logic.

e Synchronizes reset signal for the CPU, the floating-point accelerator,

and the main memory controller.

e Synchronizes data ready and data error signals for the CPU, floating

point accelerator, and the main memory controller.

1.3 Central Pmcessing Unit
The central processing unit is implemented by the CVAX chip. The CVAX

chip contains approximately 180,000 transistors in an 84-pin CERQUAD

surface mount package. It achieves a 90 ns microcycle and a 180 ns bus

cycle at an operating frequency of 22 MHz. The CVAX chip supports full

VAX memory management and a 4 gigabyte virtual address space.

The CVAX chip contains all VAX visible general purpose registers (GPRs),

several system registers (MSER, CADR, SCBB), the first-level cache (1

Kbyte), and all memory management hardware including a 28-entry

translation buffer.

The CVAX chip provides the following functions.

e Fetches all VAX instructions.

e Executes 181 VAX instructions.

o Assists in the execution of 21 additional instructions.

e Passes 70 floating-point instructions to the CFPA chip.

The remaining 32 VAX instructions (including H-floating and octaword) must

be emulated in macrocode.

Overview 7

The CVAX chip provides the following subset of the VAX data types.

e Byte

e Word

e Longword

e (Quadword

¢ Character string

e Variable length bit field

Supportt for the remaining VAX data types can be provided by macrocode
emulation.

1.4 Floating-Point Accelerator

The floating-point accelerator is implemented by the CFPA chip. The
CFPA chip contains approximately 60,000 transistors in a 68-pin CERQUAD
surface mount package. It executes 70 floating-point instructions. The
CFPA chip receives opcode information from the CVAX chip, and receives
operands directly from memory or from the CVAX chip. The floating-point

result is always returned to the CVAX chip.

1.5 Cache Memory

The KA650-AA module incorporates a two-level cache to maximize CPU
performance.

The first-level cache is implemented within the CVAX chip. The first-level
cache is a 1 Kbyte, two-way associative, write through cache memory, with

a 90 ns cycle time.

The second-level cache is implemented using 16 K by 4-bit static RAMs.
The second-level cache is a 64 Kbyte, direct mapped, write through cache
memory, with a 180 ns cycle time for longword transfers, and 270 ns cycle

time for quadword transfers.

8 Overview

1.6 Memory Controller

The main memory controller is implemented by a VLSI chip called the

CMCTL. The CMCTL contains approximately 25,000 transistors in a 132-

pin CERQUAD surface mount package. It supports up to 64 Mbytes of ECC

memory, with a 450 ns cycle time for longword transfers and a 720 ns cycle

time for quadword transfers. This memory resides on one to four MS650

memory modules, depending on the system configuration. The MS650

modules communicate with the KA650-AA through the MS650 memory

interconnect, which utilizes the CD interconnect and a 50-pin ribbon cable.

pport Functions

System support functions are implemented by the system support chip

(5SC). The SSC chip contains approximately 83,000 transistors in an 84-

pin CERQUAD surface mount package. The SSC provides console and

boot code support functions, operating system support functions, timers,

and many extra features, including the following.

e Word-wide ROM unpacking

e 1 Kbyte battery backed-up RAM

e Halt arbitration logic

* (Console serial line

° Interval timer with 10 ms interrupts

¢ VAX standard time of year (TOY) clock with support for battery back-up

~* IORESET register

® Programmable CDAL bus timeout

* Two programmable timers similar in function to the VAX standard

interval timer

* A register for controlling the diagnostic LEDs

Overview 9

1.8 Resident Firmware

The resident firmware consists of 128 Kbytes of 16 bit-wide ROM, located

on two 27512 EPROMs. The firmware gains control when the processor

halts, and contains programs that provide the following services.

e Board initialization

e Power-up self-testing of the KA650-AA and MS650 modules

e FEmulation of a subset of the VAX standard console (automatic/manual

boostrap, automatic/manual restart, and a simple command language

for examining/altering the state of the processor)

e Booting from supported Q22-bus devices

e Multilingual capability

1.9 Q22-bus Interface

The Q22-bus interface is implemented by the CQBIC chip. The CQBIC chip

contains approximately 40,870 transistors in a 132-pin CERQUAD surface

mount package. It supports up to 16-word, block mode transfers between

a Q22-bus DMA device and main memory, and up to 2-word, block mode

transfers between the CPU and Q22-bus devices. The Q22-bus interface

contains the following. |

e A 16-entry map cache for the 8,192-entry, main memory-resident scatter-

gather map, used for translating 22-bit Q22-bus addresses into 26-bit

main memory addresses

e Interrupt arbitration logic that recognizes Q22-bus interrupt requests

BR7-BR4

e (Q22-bus termination (240 2)

1.10 MS650-AA Memory Modules

The MS650-AA memory modules are 8 Mbyte, 450 ns, 39-bit wide arrays

(32-bit data and 7-bit ECC) implemented with 256 Kbytes of dynamic RAMs

in zig-zag in-line packages (ZIPs). MS650-AA memory modules are single,

quad-height, Q22-bus modules, as shown in Figure 1-4.

10 Overview

1.11 MS650-BA Memory Modules

The MS650-BA memory modules are 16 Mbyte, 450 ns, 39-bit wide arrays
IQ” lait Adaba oun4 7 Llais Epp\ LA, N o wavrl-k T RAlaerbon Alereeoupesso PDAANLA ien
\\)L"Ull Liaiaa a..llu 4 ~“LJLL -LJ\..,\/} LEER .lClllClllcu YViLit 1L .I.V.lU)lLC uy.llall.llk AINALYIO RER

surface-mount packages. MS650-BA memory modules are single, quad-

height, Q22-bus modules, as shownin Figure 1-4.

MS650-BA

MA-D5TB88

Figure 1-4 MS650-AA and MS650-BA Memory Modules

| Chapter 2

Installation and Configuration

This chapter describes how to install the KA650-AA in a system. The chapter

- discusses the following topics.

e Installing the KA650-AA

e Configuring the KA650-AA

o KA650-AA connectors

e (CPU cover panel

* Configuration board

e Compatible system enclosures

2.1 Installing the KA650-AA

The KA650-AA and MS650 modules must be installed in system enclosures

having Q22-bus/CD backplane slots. These modules are not compatible

with Q/Q backplane slots, and therefore should only be installed in Q22-
bus/CD backplane slots. |

The KA650-AA CPU module must be installed in slot 1 of the Q22-bus/CD
backplane. (See Figure 2-1.) MS650 memory modules must be installed
in slots immediately adjacent to the CPU module. Up to four MS650

modules can be installed, occupying slots 2,3,4 and 5 respectively. A 50-pin
ribbon cable is used to connect the KA650-AA CPU module and the MS650

memory module(s), as shown in Figure 2-2.

11

12 Installation and Configuration

A B c D

| [

SLOT 1 Q22-bus INTERCONNECT
SLOT2

SLOT 3

SLOT4

SLOT5

SLOT6

SLOT7

SLOT8

SLOT9

SLOT 10

SLOT11

SLOT 12

ag—K AG50 - AA CPU

Fatt—MS650 NO. 1

l—MS650 NO. 2

-g—MS650 NO. 3

ag—MS650 NO. 4

—

—

w
w
a
s

m
a
m
e

c
o
m
a
e

e
m
m
m

—

e

—

w
e
m

e

-

—
—

MA-1086-87

Figure 2-1 CPU and Memory Module Placement

KAB650 - AA

CPU MODULE

MS650

MEMORY

MODULES

50-PIN

RIBBON CABLE

MA-1085-87

Figure 2-2 Cable Connections

Installation and Configuration 13

2.2 Configuring the KA650-AA

The following parameters must be configured on the KA650-AA.

* Power-up mode

* Break enable switch

¢ (Console serial line baud rate

These parameters are configured using either the H3600-SA CPU cover

panel, or the KA630CNF configuration board (for servicing/troubleshooting

and custom enclosures).

2.3 KA650-AA Connectors

The KA650-AA uses three connectors (J1,]2, and]J3) and four rows of

module fingers (A,B,C, and D) to communicate with the console device,

main memory, and the Q22-bus. Users can configure the KA650-AA

through the H3600-SA CPU cover panel or the KA630CNF configuration

board. The slot pinouts on the fingers of the KA650-AA are listed in

Appendix C.

The orientation of connectors J1,]2 and]3, and the LED indicatorsis shown

in Figure 2-3.

..

SRbH] I R poy [T

10 2 20 2 8421 50 2

DC OK DIAGNOSTIC
J1 J2 LED LEDS J3

MR-17280

MA-1068-87

Figure 2-3 KAB50-AA Pin and LED Orientation

2.3.1 Console SLU Connector (J1)

The 10-pin console SLU connector provides the connection between the

KA650-AA and the console terminal. It is connected to the inside of the

H3600-SA CPU cover panel by a 10-conductor cable, or directly to connector

J3 of the KA630CNF configuration board. A cable from the outside of the

H3600-SA CPU cover panel or J1 of the KA630CNF provides the external

connection to the console terminal. Table 2-1 lists J1 pinouts.

14 Installation and Configuration

Table 2-1 Console SLU Connector (J1) Pinouts

Pin Signal Meaning

01 Data terminal ready

02 GND Ground

03 SLU OUT L Console SLU output from the KA650-AA

04 GND Ground

05 GND Ground

06 Key (no pin)

07 SLU IN + Console SLU differential inputs to the

08 SLU IN - KA650-AA

09 GND Ground

10 +12 V Fused +12 volts

2.3.2 Configuration and D'isplay Connector (J2)
The KA650-AA has no jumper or switch settings to change or set. The

module is configured via switches on an H3600-SA CPU cover panel, or

a KA630CNF configuration board. The 20-pin configuration and display

connector is connected to the inside of the H3600-SA CPU cover panel

by a 20-conductor cable, or directly to connector J2 of the KA630CNF

configuration board. Table 2-2 lists J2 pinouts.

Table 2-2 Configuration and Display Connector (J2) Pinouts

Pin" Signal Meaning

01 GND Ground

02 GND Ground

03 GND Ground

04 CPU CDO L CPU code <01:00>. This 2-bit code can be

05 CPU CD1 L configured only by using switches 7 and 8 on the

KA630CNF configuration board. (See Figure 2-7.)

CPU code <01:00> configuration

00 Normal operation

01 Reserved

"The KA650-AA module has 4.7 k ohm pull-up resistors for the 8 input signals (pins 4 and
5, 13 through 15, and 17 through 19).

Installation and Configuration 15

Table 2-2 (Cont.) Configuration and Display Connector (J2) Pinouts

Pin" Signal Meaning

10 Reserved

11 Reserved

CPU code <01:00> is read by software from the

BDR.

If the CPU distribution panel insert is used, no

connections are made to pins 4 and 5. In that case,

signal levels are negated by pull-up resistors on the

KA650-AA.

06 GND Ground

07 DSPL OO L Display register bits <03:00>. When asserted each

08 DSPLO1L of these four output signals lights a corresponding

09 DSPLO2L LED on the module.

11 DSPLO3 L DSPL <03:00> are asserted (low) by power-up and

by the negation of DCOK when the processor is

halted. They are updated by boot and diagnostic

programs from the BDR.

10 BTRY VCC Battery back-up voltage for TOY clock

12 GND Ground

13 BDG CDO L Boot and diagnostic code <01:00>. This 2-bit code

14 BDG CD1 L indicates power-up mode, and is read by software

from the BDR.

15 BRK ENB L Break enable. This input signal controls the response

to an external halt condition. If BRK ENB is asserted

(low), then the KA650-AA halts and enters the

console program if any of the following occur.

e The program executes a halt instruction in
kernel mode

e The console detects a break character

e The Q22-bus halt line is asserted

If BRK ENB is negated (high), then the halt line and

break character are ignored and the ROM program

responds to a halt instruction by restarting or

rebooting the system. BRK ENB is read by software

from the BDR.

*The KA650-AA module has 4.7 k ohm pull-up resistors for the 8 input signals (pins 4 and
5, 13 through 15, and 17 through 19).

16 Installation and Configuration

Table 2-2 (Cont.) Configuration and Display Connector (J2) Pinouts

*

Pin Signal Meaning

16 GND Ground

17 CSBR 02 L Console baud rate <02:00>. These three bits

18 CSBR 01 L are configured by using either the baud rate

19 - CSBR OO L select switch on the H3600-SA CPU cover panel, or

switches 2, 3, and 4 of the KA630CNF configuration

board.

20 +5V Fused +5 volts

"The KA650-AA module has 4.7 k ohm pull-up resistors for the 8 input signals (pins 4 and
5, 13 through 15, and 17 through 19).

2.3.3 Memory Expansion Connector (J3)

The 50-pin memory expansion connector provides the interface between

the KA650-AA and MS650 memory modules installed in slots 2, 3, 4 and 5

of a Q22-bus backplane containing the CD interconnect. Table 2-3 lists J3

pinouts.

Table 2-3 Memory Expansion Connector (J3) Pinouts

Pin Signal Pin Signal

01 GND 26 D MD10 H

02 D MD9 H 27 GND

03 D MD8 H 28 D MD29 H

04 D MD7 H 29 D MD28 H

05 GND 30 D MD27 H

06 D MDé6 H 31 GND

07 D MD5 H 32 D MD26 H

08 D MD4 H 33 D MD25 H

09 D MD3 H 34 D MD24 H

10 GND 35 D MD23 H

11 D MD2 H 36 GND

12 D MD1 H 37 D MD22 H

13 D MDO H 38 D MD21 H

14 D MD19 H 39 D MD20 H

Installation and Configuration 17

Table 2-3 (Cont.) Memory Expansion Connector (J3) Pinouts

Pin Signal Pin Signal

15 GND 40 D MD38 H

16 D MD18 H a1 GND

17 D MD17 H 42 D MD37 H

18 D MD16 H 43 D MD36 H

19 D MDI5H 44 D MD35 H

20 GND 45 D MD34 H

21 D MD14 H 46 GND

22 D MDI13H 47 D MD33 H

23 D MD12 H 48 D MD32 H

24 GND 49 D MD31H

25 D MD11 H 50 D MD30 H

2.4 H3600-SA CPU Cover Panel

The H3600-SA CPU cover panel is a special I/O panel that is used in BA213

enclosures. A one-piece ribbon cable on the H3600-SA CPU cover panel

plugs into the console SL.U and baud rate connectors on the KA650-AA. The

H3600-SA CPU cover panel fits over backplane slots 1 and 2, covering both

the KA650-AA CPU module and the first of four possible MS650 memory

modules. |

The H3600-SA CPU cover panel (see Figure 2-4) includes the features and

controls specified in Table 2-4.

Table 2-4 H3600-SA CPU Cover Panel Features and Controls

Outside Inside

Modified modular jack (MM]) SLU Baud rate rotary switch

connector

Power-up mode switch Battery back-up unit (BBU) for TOY clock

Hex LED display List of baud rate switch settings

Break enable switch 30-pin cable connector

18 Installation and Configuration

POWER-UP MODE

[é. LANGUGE INQUIRY

—D NORMAL OPERATION

- (FACTORY SETTING)

@ LOOPBACK TEST

HALT ENABLE SWITCH

(DOWN = DISABLED

yemevost

LED DISPLAY]

¢ BAUD RATE

§i_- SWITCH

- fI (9600 1S FACTORY

it SETTING)

SLU CONNECTOR ~

i_ BATTERY BACK-UP

UNIT (BBU)

8 _ LIST OF SWITCH SETTINGS

FOR BAUD RATES

0 =300

L &—
MA.0021-87

Figure 2-4 H3600-SA CPU Cover Panel

2.5 KA630CNF Configuration Board

A KA630CNF configuration board (H3263-00) (see Figure 2-5, Figure 2-6,

and Figure 2-7) is provided with each KA650-AA. The KA630CNF plugs

directly into connectors J1 and]2 on the KA650-AA. It allows the user to

configure the KA650-AA by setting the 10 switches on SW1 as listed in

Table 2-5.

Connector J1 is used to connect a cable to the console SLU. Connector }4

is for a BBU. The J4 pin closest to connector J1 is the positive pin.

Installation and Configuration 19

J3 J2

\ TOP VIEW /

O TTTTTT] TTTTTTTTTT]

NANAA

1T q o

/ / MR-14505
J1 J4

SIDE VIEW

ce’ e J 00pooopooa
7] | 12345678910

-

MR-14506

MA-1052-87

Figure 2-5 KAG30CNF Configuration Board

19 1 9 1

20 2 10 2

J2 ‘ J3

MR-17281

MA-1069-87

Figure 2-6 KA630CNF J2 and J3 Pin Orientation

"""] [0

MR-17282

MA-1070-87

Figure 2-7 KA630CNF J1 and J4 Pin Orientation

20 Installation and Configuration

Table 2-5 KAB830CNF Switch Selections

Switch/Setting Mode/Function

1 Halt Mode

Off Disabled

On Enabled

2 3 4 Console Baud Rate

Off Off Off 300

On Off Off 600

Off On Off 1,200

On On Off 2,400

Off Off On 4,800

On Off On 9,600

Off On On 19,200

On On On 38,400

5 6 9 10 Power-Up Mode"

Off Off On Off Normal operation. Transmit line connected.

Receive line connected.

On Off On Off Language inquiry mode. Transmit line

connected. Receive line connected.

Off On Off On Loopback test mode (maintenance). Transmit

line connected to receive line and console.

On On On Off Manufacturing use only. Bypasses memory test.

7 8 CPU Operation Mode

Off Off Normal operation

On Off Reserved

"Do not use any other settings for switches 5, 6, 9, and 10.

Installation and Configuration 21

Table 2-5 (Cont.) KAG630CNF Switch Selections

Switch/Setting Mode/Function

7 8 CPU Operation Mode

Off On Reserved

On On Reserved

Table 2-6 lists the pins on the KA650-AA J2 and J1, and the corresponding

KA630CNF connectors and switches on SW1. Note that connectors]2 and

J3 both have more connectors than there are pins on the corresponding

KA650-AA connector. The two left and two right side connectors on]2 and

J3 of the KA630CNF are unused. Switches 1 through 8 on SW1 set values

that enable or disable halts; and determine CPU operation mode, power-up

mode, and console baud rate. SW1 switches 9 and 10 connect transmit and

receive lines as required for normal operation or loopback testing.

Table 2-6 KAG630CNF Connector and Switches

CNF SW1

CPU J2 Pin Signal CNF J2 Pin Switch CNF J4 Pin

GND

GND

GND

CPU CDOL

CPUCD1L

GND

DSPL 00 L

DSPL'01 L

DSPL 02 L

BTRY VCC 12 1

O

0

N
N

U

s

W
O
N

e

Y)

W
0

N
N

U

o
l

W
N

e

. f
a
d

o o

) +}5 V from BBU to TOY clock chip on CPU

22 Installation and Configuration

Table 2-6 (Cont.) KAG630CNF Connector and Switches

CNF Sw1

CPU J2 Pin Signal CNF J2 Pin Switch CNF J4 Pin

11 DSPL O3 L 13

12 GND 14

13 BDG CDO L 15 5

14 BDG CD1L 16 6

15 BRK ENB L 17 1

16 GND 18

17 CSBR 02 L 19 2

18 CSBR 01 L 20 3

19 CSBR 00 L 21 4

20 +5V 22

23

24

CNF SwW1

CPU J1 Pin Signal CNF J3 Pin Switch CNF J1 Pin

1

2

1 DTR 3

2 GND 4 2,4,5,9

3 SLU OUT L 5 10 3

4 GND 6 2,4,5 9

5 GND 7 2,4,5,9

6 Key (no pin) 8

7 SLU IN + 9 7

8 SLU IN - 10 9

Installation and Configuration 23

Table 2-6 (Cont.) KAG630CNF Connector and Switches

CNF SW1

CPU J1 Pin Signal CNF J3 Pin Switch CNF 11 Pin

9 "GND 11 2,4,59

10 +12V 12 10

13

14 .

2.6 Compatible System Enclosures

The KA650-AAis compatible with the following Digital enclosures. |

BA213

The BA213 contains a 4 row by 12 slot backplane, with the Q22-bus

implemented in the A/B rows of slots 1 through 12. The CD interconnect

is implemented in the C/D rows of slots 1 through 12, allowing up to four

memory modules to be used. The BA213 has mounting space for up to

four 13.2 ¢m (5.25 inch) mass storage devices. The BA213 is equipped with

two modular power supplies. Each power supply delivers 7.0 A (maximum)

at +12 Vdc and 33.0 A (maximum) at +5 Vdc. The combined maximum

current at +12 Vdc and +5 Vdc must not exceed 230 W of power for each

supply.

BA123-A

The BA123-A contains a 4 row by 12 slot backplane, with the Q22-bus

implemented in the A/B rows of slots 1 through 12 (and the C/D rows of

slots 5 through 12). The CD interconnect is implemented in the C/D rows

of slots 1 through 4, allowing up to three memory modules to be used.

The BA123-A has mounting space for up to five 13.2 cm (5.25 inches) mass

storage devices. The BA123-A is equipped with a power supply that includes

a master console and two regulators that each provide 36 A at +5 Vand 7

A at +12 V. Total power from each regulator must not exceed 230 W.

24 Installation and Configuration

BA23-A

The BA23-A contains a 4 row by 8 slot backplane, with the Q22-bus

implemented in the A/B rows of slots 1 through 8 (and the C/D rows of

slots 4 through 8). The CD interconnect is implemented in the C/D rows

of slots 1 through 3, allowing up to two memory modules to be used. The

BAZ23-A has mounting space for up to two 13.2 ecm (5.25 inch) mass storage

devices. The BA23-A is equipped with a power supply that includes a master

console and provides 36 A at +5 V and 7 A at +12 V. Total power must

not exceed 230 W,

The BA23-A is also available in an H9642 cabinet, which provides eight

additional backplane slots and space for two 26.5 cm (10.5 mches) mass

storage devices.

BA11-S

The BA11-S contains a 4 row by 9 slot backplane, with the Q22-bus

implemented in the A/B rows of slots 1 through 9. The CD interconnect

is implemented in the C/D rows of slots 1 through 9, allowing up to four

memory modules to be used. The BA11-S is equipped with a power supply

that includes a master console and provides 36 A at +5 Vand 5 A at +12

V. Total power must not exceed 230 W. '

Chapter 3

Architecture

This chapter describes the KA650-AA registers, instruction set, and

memory. The chapter covers the following KA650-AA topics.

¢ (Central processor

e Floating-point accelerator

¢ (Cache memory

¢ Main memory system

¢ Console serial line |

e Time of year clock and timers

e Boot and diagnostic facility

e (Q22-bus interface

3.1 KA650-AA Central Processor

The central processor of the KA650-AA supports the MicroVAX Chip subset
(plus six additional string instructions) of the VAX instruction set and data

types, and full VAX memory management. It is implemented by a single
VLSI chip called the CVAX.

3.1.1 Processor State

The processor state consists of that portion of the state of a process which is

stored in processor registers rather than in memory. The processor state is

composed of sixteen general purpose registers (GPRs), the processor status
longword (PSL), and the internal processor registers (IPRs).

Nonprivileged software can access the GPRs and the processor status word
(bits <15:00> of the PSL). The IPRs and bits <31:16> of the PSL can

only be accessed by privileged software. The IPRs are explicitly accessible
only by the move to processor register (MTPR) and move from processor

register (MFPR) instructions which can be executed only while running in

kernel mode.

25

26 Architecture

3.1.1.1 General Purpose Registers

The KA650-AA implements sixteen general purpose registers as specified in

the VAX Architecture Reference Manual. These registers are used for temporary

storage, as accumulators, and as base and index registers for addressing.

These registers are denoted RO through R15. The bits of a register are

numbered from the right <0> through <31> (see Figure 3-1).

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 O

IHIIIHHIHHIHHIHIIH]IIIII
MA-1100-87

Figure 3—-1 General Purpose Register Bit Map

Certain of these registers have been assigned special meaning by the VAX-

11 architecture.

e R15 is the program counter (PC). The PC contams the address of the

next instruction byte of the program.

e R14is the stack pointer (SP). The SP contains the address of the top of

the processor defined stack.

e R13 is the frame pointer (FP). The VAX-11 procedure call convention

builds a data structure on the stack called a sfack frame. The FP contains

the address of the base of this data structure.

e R12is the argument pointer (AP). The VAX-11 procedure call convention

uses a data structure called an argument list. The AP contains the address

of the base of this data structure.

Consult the VAX Architecture Reference Manual for more information on the

operation and use of these registers.

3.1.1.2 Processor Status Longword
The KA650-AA processor status longword (PSL) is implemented per the

VAX Architecture Reference Manual, which should be consulted for a detailed

description of the operation of this register. The PSL is saved on the stack

when an exception or interrupt occurs and is saved in the process control

block (PCB) on a process context switch. Bits <15:00> may be accessed

by nonprivileged software, while bits <31:16> may only be accessed by

privileged software. Processor initialization sets the PSL to 041F 0000 4.

Figure 3-2 shows the processor status longword bit map.

Architecture 27

313029282726252423222120 1615 876543210

iPL MBZ TIN{Z{VIC

CM” l‘l— v
TP FU

MBZ e DV

FPD

IS

CUR MOD

PRV MOD

MBZ

MR-15778

MA-1055-87

Figure 3-2 PSL Bit Map

Data Bit Definition

<31> Compatibility mode (CM). Reads as zero. Loading a 1 into

this bit is a NOP.

<30> Trace pending (TP).

<29:28 > Unused. Must be written as zefo.

<27> First part done (FPD).

<26> Interrupt stack (IS).

<25:24> Current mode (CUR).

<23:22> Previous mode (PRV).

<21> Unused. Must be written as zero.

<20:16> Interrupt priority level (IPL). |

<15:8> Unused. Must be written as zero.

<7> Decimal overflow trap enable (DV). Has no effect on

KA650-AA hardware. Can be used by macrocode which

emulates VAX decimal instructions.

<6> Floating underflow fault enable (FU).

<5> Integer overflow trap enable (IV).

<4> Trace trap enable (T).

28 Architecture

Data Bit Definition

<3> Negative condition code (N).

<2> Zero condition code.

<1> | Overflow condition code (V).

<0> Carry condition code (C).

NOTE: VAX compatibility mode instructions can be emulated by macrocode, but

the emulation software runs in native mode, so the CM bit is never set.

3.1.1.3 Internal Processor Registers

The KA650-AA internal processor registers (IPRs) can be accessed by using

the MFPR and MTPR privileged instructions. Each IPR falls into one of the

following seven categories.

1.

6.

7.

Implemented by KA650-AA (in the CVAX chip) as specified in the VAX
Architecture Reference Manual.

Implemented by KA650-AA (in the SSC chip) as specified in the VAX

Architecture Reference Manual.

Implemented by KA650-AA (and all designs that use the CVAX chip)

uniquely.

Implemented by KA650-AA (and all designs that use the SSC chip)

uniquely.

Not implemented, timed out by the CDAL bus timer (in the SSC chip)

after 4 us. Read as zero. NOP on write.

Access not allowed; accesses result in a reserved operand fault.

Accessible, but not fully implemented. Accesses yield unpredictable
results.

Refer to Table 3-1 for a listing of each of the KA650-AA IPRs, along with its
mnemonic, its access type (read or write) and its category number.

Architecture 29

Table 3-1 KAG650-AA Internal Processor Registers

Decimal Hex Register Mnemonic Type Category

0 0 Kernel stack pointer KSP riw 1

1 1 Executive stack pointer ESP rlw 1

2 2 Supervisor stack pointer sSSP rlw 1

3 3 User stack pointer uspP rlw 1

4 4 Interrupt stack pointer ISP rlw 1

7:5 7:5 Reserved 5

8 8 PO base register POBR rlw 1

9 9 PO length register POLR rlw 1

10 A P1 base register P1BR rlw 1

11 B P1 length register P1LR rlw 1

12 C System base register SBR rlw 1

13 D System length register SLR rlw 1

15:14 F:E Reserved 5

16 10 Process control block base PCBB rlw 1

17 11 System control block base SCBB riw 1

18 12 Interrupt priority level IPL riw 117

19 13 AST level ASTLVL rlw 1T

20 14 Software interrupt request SIRR \4 1

21 15 Software interrupt summary SISR riw 1T
23:22 17:16 Reserved 5

24 18 Interval clock control/status ICCS rlw 31

25 19 Next interval count NICR w 5

26 1A Interval count ICR r 5

27 1B Time of year clock TODR rlw 2

28 1C Console storage receiver status CSRS rlw 71
29 1D Console storage receiver data CSRD r 71
30 1E Console storage transmit status CSTS w71

31 1F Console storage transmit data CSTD 4 71

32 20 Console receiver control/status RXCS w41
33 21 Console receiver data buffer RXDB r 41"
34 22 Console transmit control/status TXCS riw 4T
35 23 Console transmit data buffer TXDB w 41
36 24 Translation buffer disable TBDR rlw 5

37 25 Cache disable CADR r/lw 3T
38 26 Machine check error summary MCESR rlw 5

"The I indicates that the register is initialized on power-up and by the negation of DCOK

when the processor is halted.

30 Architecture

Table 3-1 (Cont.) KAG650-AA Internal Processor Registers

Decimal Hex Register Mnemonic Type Category

39 27 Memory system error MSER riw 31
141:40 29:28 Reserved 5

42 2A Console saved PC SAVPC r 3

43 2B Console saved PSL SAVPSL r 3

47:44 2F:2C Reserved ,, 5

48 30 SBI Fault/status SBIFS rlw 5

49 31 SBI silo SBIS r 5

50 32 SBI silo comparator SBISC rlw 5

51 33 SBI maintenance | SBIMT r/lw 5

52 34 SBI error register SBIER rlw 5

53 35 SBI timeout address register SBITA r 5

54 36 SBI quadword clear SBIQC w 5

55 37 I/O bus reset IORESET w 4

56 38 Memory management enable MAPEN riw 1

57 39 TB invalidate all TBIA w 1

58 3A TB invalidate single TBIS w 1

59 3B TB data | ‘TBDATA r/iw 5

60 3C Microprogram break MBRK rlw 5

61 3D Performance monitor enable PMR r/lw 5

62 3E System identification SID r 1

63 3F Translation buffer check TBCHK w 1

64:127 40:7F Reserved 6

“The I indicates that the register is initialized on power-up and by the negation of DCOK

when the processor is halted.

KA650-AA VAX Standard Internal Processor Registers

Internal processor registers (IPRs) that are implemented as specified in the

VAX Architecture Reference Manual are classified as category 1 IPRs. The VAX

Architecture Reference Manual should be consulted for details on the operation

and use of these registers. The category 1 registers listed in Table 3-2 are

also referenced in other sections of this manual.

Architecture 31

Table 3-2 Category One IPRs

Number Register Mnemonic Section

12 System base register SBR Section 3.1.4.2

13 System length register SLR ~ Section 3.1.4.2

16 Process control block base PCBB Section 3.1.5

17 System control block base SCBB Section 3.1.5.4
18 Interrupt priority level IPL Section 3.1.5.1

20 Software interrupt request SIRR Section 3.1.5.1

21 Software interrupt summary SISR Section 3.1.5.1

27 Time of year clock TODR Section 3.6.1

56 Memory management enable MAPEN Section 3.1.4.2

57 Translation buffer invalidate all TBIA Section 3.1.4.2

58 Translation buffer invalidate single TBIS Section 3.1.4.2

62 System identification SID Section 3.1.6

63 Translation buffer check TBCHK Section 3.1.4.2

KA650-AA Unique Internal Processor Registers

Internal processor registers (IPRs) that are implemented uniquely on the

KA650-AA (for example, those that are not contained in, or do not fully

conform to the standards in the VAX Architecture Reference Manual are

classified as category 2 IPRs and are described in detail in this manual.

Refer to the sections listed in Table 3-3 for a description of these registers.

Table 3-3 Category Two IPRs

Number Register Mnemonic Section

24 Interval clock control/status 1ICCS Section 3.6.2

32 Console receiver control/status RXCS Section 3.5.1.1

33 Console receiver data buffer RXDB Section 3.5.1.2

34 Console transmit control/status TXCS Section 3.5.1.3

35 Console transmit data buffer TXDB Section 3.5.1.4

37 Cache disable CADR Section 3.3.2.5

39 Memory system error MSER Section 3.3.2.6

42 Console saved PC SAVPC Section 3.1.5

43 Console saved PSL SAVPSL Section 3.1.5

55 I/0O bus reset IORESET Section 3.7.5.1

32 Architecture

3.1.2 Data Types

The KA650-AA CPU supports the following subset of the VAX data types.

@

Byte

Word

Longword

Quadword

Character string

Variable length bit field

Support for the remaining VAX data types can be provided via macrocode
emulation.

3.1.3 Instruction Set

The KA650-AA CPU implements the following subset of the VAX instruction

set types in microcode.

Integer arithmetic and logical

Address

Variable length bit field

Control

Procedure call

Miscellaneous

Queue

%*

Character string moves (MOVC3, MOVC5, CMPC3 ~ CMPC5",

LOCC", SCANC”, SKPC", and SPANC")

Operating system support

F_floating

G_floating

D_floating

* These instructions were in the microcode assisted category on the KA630-AA (MicroVAX
11) and therefore had to be emulated.

Architecture 33

The KA650-AA CVAX chip provides special microcode assistance to aid the
macrocode emulation of the following instruction groups.

—n*
o Character string (except MOVC3, MOV(C5, CMPC3, CMPCS,

LOCC"*, SCANC”, SKPC”, and SPANC")

e Decimal string

e CRC

e EDITPC

The following instruction groups are not implemented, but may be emulated

by macrocode. | | |

o (ctaword

e Compatibility mode instructions

3.1.4 Memory Management

The KA650-AA implements full VAX memory management as defined in

the VAX Architecture Reference Manual. System space addresses are virtually

mapped through single-level page tables, and process space addresses are

virtually mapped through two-level page tables. See the VAX Architecture
Reference Manual for descriptions of the virtual to physical address translation

process, and the format for VAX page table entries (PTEs).

3.1.4.1 Translation Buffer

To reduce the overhead associated with translating virtual addresses to

physical addresses, the KA650-AA employs a 28-entry, fully associative,

translation buffer for caching VAX PTEs in modified form. Each entry can
store a modified PTE for translating virtual addresses in either the VAX

process space, or VAX system space. The translation buffer is flushed
whenever memory management is enabled or disabled (for example, by

writes to IPR 56), any page table base or length registers are modified (for

example, by writes to IPRs 8 to 13) and by writing to IPR 57 (TBIA) or IPR
58 (TBIS).

34 Architecture

Each entry is divided into two parts: a 23-bit tag register and a 31-bit PTE

register. The tag register is used to store the virtual page number (VPN)
of the virtual page that the corresponding PTE register maps. The PTE

register stores the 21-bit PFN field, the PTE.V bit, the PTE.M bit and an 8-
bit partially decoded representation of the 4-bit VAX PTE PROT field, from

the corresponding VAX PTE, as well as a translation buffer valid (TB.V) bit.

During virtual to physical address translation, the contents of the 28 tag

registers are compared with the virtual page number field (bits <31:9>) of
the virtual address of the reference. If there is a match with one of the tag

registers, then a translation buffer hit has occurred, and the contents of the
corresponding PTE register is used for the translation.

If there is no match, the translation buffer does not contain the necessary
VAX PTE information to translate the address of the reference, and the

PTE must be fetched from memory. Upon fetching the PTE, the translation

buffer is updated by replacing the entry that is selected by the replacement
pointer. Since this pointer is moved to the next sequential translation buffer

entry whenever it is pointing to an entry that is accessed, the replacement
algorithm is not last used (NLU).

3.1.4.2 Memory Management Control Registers

There are four IPRs that control the memory management unit (MMU): IPR

56 (MAPEN), IPR 57 (TBIA), IPR 58 (TBIS), and IPR 63 (TBCHK).

Memory management can be enabled/disabled via IPR 56 (MAPEN). Writing

0 to this register with a MTPR instruction disables memory management,

and writing a 1 to this register with a MTPR instruction enables memory

management. Writes to this register flush the translation buffer. To

determine whether or not memory management is enabled, IPR 56 is read

using the MFPR instruction. Translation buffer entries that map a particular

virtual address can be invalidated by writing the virtual address to IPR 58

(TBIS) using the MTPR instruction.

NOTE: Whenever software changes a valid page table entry for the system or current

process region, or a system page table entry that maps any part of the current process

page table, all process pages mapped by the page table entry must be invalidated in

the translation buffer.

The entire translation buffer can be invalidated by writing a 0 to IPR 57

(TBIA) using the MTPR instruction.

Architecture 35

The translation buffer can be checked to see if it contains a valid translation

for a particular virtual page by writing a virtual address within that page

to IPR 63 (TBCHK) using the MTPR instruction. If the translation buffer

contains a valid translation for the page, the condition code V bit (bit <1>

of the PSL) is set.

NOTE: The TBIS, TBIA, and TBCHK IPRs are write only. The operation of a

MFPR instruction from any of these registers is undefined.

3.1.5 Exceptions and Interrupts

Both exceptions and interrupts divert execution from the normal flow of

control. An exception is caused by the execution of the current instruction

and is typically handled by the current process (for example, an arithmetic

overflow), while an interrupt is caused by some activity outside the current

process and typically transfers control outside the process (for example, an

interrupt from an external hardware device).

3.1.5.1 Interrupts

Interrupts can be divided into two classes: nonmaskable, and maskable.

Nonmaskable interrupts cause a halt via the hardware halt procedure which

saves the PC, PSL, MAPEN <0 > and a halt code in IPRs, raises the processor

IPL to 1F and then passes control to the resident firmware. The firmware

dispatchesthe interrupt to the appropriate service routine based on the halt

code and hardware event indicators. Nonmaskable interrupts cannot be

blocked by raising the processor IPL, but can be blocked by running out of

the halt protected address space (except those nonmaskable interrupts that

generate a halt code of 3). Nonmaskable interrupts with a halt code of 3

cannot be blocked since this halt code is generated after a hardware reset.

Maskable interrupts cause the PC and PSL to be saved, the processor IPL to

be raised to the priority level of the interrupt (except for Q22-bus interrupts

where the processor IPL is set to 17, independent of the level at which the

interrupt was received and the interrupt to be dispatched to the appropriate

service routine through the SCB.

The various interrupt conditions for the KA650-AA are listed in Table 3-4

along with their associated priority levels and SCB offsets.

L€
)
)

o
)
)

> = O - —
t

[¢)
)]
O o
l

C f
l

D

Table 3-4 Interrupts

Priority Level Interrupt Condition SCB Offset

Nonmaskable = BDCOK and BPOK negated then asserted ”

on Q22-bus (power-up)

BDCOK negated then asserted while BPOK

asserted on Q22-bus (SCR<7> clear)

BDCOK negated then asserted while BPOK

asserted on Q22-bus (SCR<7> set)

BHALT asserted on Q22-bus t

BREAK generated by the console device t

1F Unused

1E BPOK negated on Q22-bus 0C

1D CDAL bus parity error 60

Q22-bus NXM on a write 60

CDAL bus timeout during DMA 60

Main memory NXM errors 60

Uncorrectable main memory errors 60

1C - 1B Unused

1A Second-level cache tag parity errors 54

Correctable main memory errors 54

19 - 18 Unused

17 BR7 L asserted Q22-bus vector plus

200 16

16 Interval timer interrupt CO

BR6 L asserted Q22-bus vector plus

20016

15 BR5 L asserted Q22-bus vector plus

' 200 16

14 Console terminal F8 F6

Programmable timers 78,7C

13 through 10

OF through 01

BR4 L asserted

Unused

Software interrupt requests

Q22-bus vector plus

200 14

84-BC

"These conditions generate a hardware halt procedure with a halt code of 3 (hardware
reset).

tThese conditions generate a hardware halt procedure with a halt code of 2 (external halt).

NOTE: Because the Q22-bus does not allow differentiation between the four bus

grant levels (i.e., a level 7 device could respond to a level 4 bus grant), the KA650-

AA CPU raises the IPL to 17 after responding to interrupts generafted by the assertion

Architecture 37

of either BR7 L, BR6 L, or BR4 L. The KA650-AA maintains the IPL at the priority

of the interrupt for all other interrupts.

The interrupt system is controlled by three IPRs: IPR 18, the interrupt

priority level register (IPL), IPR 20, the software interrupt request register

(SIRR), and IPR 21, the software interrupt summary register (SISR). The IPL

is used for loading the processor priority field in the PSL (bits <20:16>).

The SIRR is used for creating software interrupt requests. The SISR records

pending software interrupt requests at levels 1 through 15. The format of

these registers is shown in Figure 3-3. Refer to the VAX Architecture Reference

Manual for more information on these registers.

31 5 4 0

IGNORED, RETURNS O PSL<20:16>] :IPL

31 4 3 0

IGNORED REQUEST] :SIRR

3 1615 0

PENDING SOFTWARE INTERRUPTS :SISR

FEDCBAS98 7654321

MBZ

MR-15779

MA-1056-87

Figure 3-3 Interrupt Registers

3.1.5.2 Exceptions

Exceptions can be divided into three types.

° Trap

e Fault

e Abort

A trap is an exception that occurs at the end of the instruction that caused

the exception. After an instruction traps, the PC saved on the stack is the

address of the next instruction that would have normally been executed and

the instruction can be restarted.

38 Architecture

A fault is an exception that occurs during an instruction, and that leaves the

registers and memory in a consistent state such that the elimination of the

fault condition and restarting the instruction gives correct results. After an

instruction faults, the PC saved on the stack points to the instruction that

faulted.

An abort is an exception that occurs during an instruction, leaving the value

of the registers and memory unpredictable, such that the instruction cannot

necessarily be correctly restarted, completed, simulated or undone. After

an instruction aborts, the PC saved on the stack points to the instruction

that was aborted (which may or may not be the instruction that caused the

abort) and the instruction may or may not be restarted depending on the

class of the exception and the contents of the parameters that were saved.

Exceptions are grouped into six classes.

* Arithmetic exceptions

® Memory management exceptions

¢ Operand reference exceptions

® Instruction execution exceptions

* Tracing exception

¢ System failure exceptions

A list of exceptions grouped by class is given in Table 3-5. Exceptions

save the PC and PSL, and in some cases one or more parameters, on the

stack. Most exceptions do not change the IPL of the processor (except the

exceptionsin serious system failures class, which set the processor IPL to

1F) and cause the exception to be dispatched to the appropriate service

routine through the SCB (except for the interrupt stack not valid exception,

and exceptions that occur while an interrupt or another exception are being

serviced, which cause the exception to be dispatched to the appropriate

service routine by the resident firmware). The exceptions listed in Table 3-5

(except machine check) are described in greater detail in the Vax Architecture

Reference Manual. The machine check exception is described in greater detail

in Section 3.1.5.3. Exceptions that can occur while servicing an interrupt or

another exception are listed in Table 3-8 in Section 3.1.5.6.

Table 3-5 Exceptions

Architecture 39

Arithmetic Exceptions

Integer overflow

Integer divide-by-zero

Subscript range

Floating overflow

Floating divide-by-zero

Floating underflow

Memory Management Exceptions

Access control violation

Translation not valid

Operand Reference Exceptions

Reserved addressing mode

Reserved operand fault

Instruction Execution Exceptions

Reserved/privileged instruction

Emulated instruction

Change mode

Breakpoint

Tracing Exception

Trace

System Failure Exceptions

Interrupt stack not valid

Kernel stack not valid

Machine check

CDAL bus parity errors

First-level cache parity errors

Type

Trap

Trap

Trap

Fault

Fault

Fault

Fault

Fault

Fault

Abort

Fault

Fault

Trap

Fault

Fault

Abort

Abort

Abort

SCB Offset

34

34

34

34

34

34

20

24

1C

18

10

C8, CC

40-4C

2C

28

08

04

*Dispatched by resident firmware rather than through the SCB.

40 Architecture

Table 3-5 (Cont.) Exceptions

Second-level cache data parity errors

Q22-bus NXM errors

Q22-bus device parity errors

(Q22-bus no grant errors

CDAL bus timeout errors

Main memory NXM errors

Main memory uncotrectable errors

3.1.5.3 Information Saved on a Machine Check Exception

In response to a machine check exception the PSL, PC, four parameters,

and a byte count are pushed onto the stack, as shown in Figure 3-4.

BYTE COUNT : SP

MACHINE CHECK CODE

MOST RECENT VIRTUAL ADDRESS

INTERNAL STATE INFORMATION 1

INTERNAL STATE INFORMATION 2

PC

PSL

MA-1121-87

Figure 3-4 Information Saved on a Machine Check Exception

Architecture 41

Figure 3-4 is explained in the following paragraphs.

Byte Count

Byte count<31:0> —indicates the number of bytes of information that follow

on the stack (not including the PC and PSL). »

Machine Check Code Parameter

Machine check code<31:0>—indicates the type of machine check that

occurred. A list of the possible machine check codes (in hex) and their

associated causes follows.

e Floating-point errors— indicates the floating-point accelerator (FPA) chip

detected an error while communicating with the CVAX CPU chip during

the execution of a floating-point instruction. The most likely cause(s) of

these types of machine checks are a problem internal to the CVAX CPU

chip, a problem internal to the FPA, or a problem with the interconnect

between the two chips. Machine checks due to floating-point errors

may be recoverable, depending on the state of the VAX can’t restart

flag (captured in internal state information 2 <15>) and the first part

done flag (captured in PSL <27>). If the first part done flag is set, the

error is recoverable. If the first part done flag is cleared, then the VAX

can’t restart flag must also be cleared for the error to be recoverable.

Otherwise, the error is unrecoverable and depending on the current

mode, either the current process or the operating system should be

terminated. The information pushed onto the stack by this type of

machine check is from the instruction that caused the machine check.

Hex Code Error Description

1 A protocol error was detected by the FPA chip while

attempting to execute a floating-point instruction.

2 A reserved instruction was detected by the FPA while

attempting to execute a floating-point instruction.

3 An illegal status code was returned by the FPA while

attempting to execute a floating-point instruction.

(CPSTA<1:0>=10)

4 An illegal status code was returned by the FPA while

attempting to execute a floating-point instruction.

(CPSTA<1:0>=01)

42 Architecture

Memory management errors— indicates the microcode in the CVAX

CPU chip detected an impossible situation while performing functions

associated with memory management. The most likely cause of this

type of a machine check is a problem internal to the CVAX chip.

Machine checks due to memory management errors are nonrecoverable.

depending on the current mode, either the current process or the

operating system should be terminated. The state of the POBR, POLR,

P1BR, P1LR, SBR, and SLR should be logged.

Hex Code Error Description

5 The calculated virtual address for a process PTE was in

the PO space instead of the system space when the CPU

attempted to access a process PTE after a translation buffer

miss.

6 The calculated virtual address space for a process PTE

was in the P1 space instead of the system space when the

CPU attempted to access a process PTE after a translation

buffer miss.

7 The calculated virtual address for a process PTE was in

the PO space instead of the system space when the CPU

attempted to access a process PTE to change the PTE<M >

bit before writing to a previously unmodified page.

8 The calculated virtual address for a process PTE was in

the P1 space instead of the system space when the CPU

attempted to access a process PTE to change the PTE<M>

bit before writing to a previously unmodified page.

Interrupt errors—indicates the interrupt controller in the CVAX CPU

requested a hardware interrupt at an unused hardware IPL. The most

likely cause of this type of a machine check is a problem internal

to the CVAX chip. Machine checks due to unused IPL errors are

nonrecoverable. A nonvectored interrupt generated by a serious error

condition (memory error, power fail, or processor halt) has probably

been lost. The operating system should be terminated.

Hex Code Error Description

9 A hardware interrupt was requested at an unused

interrupt priority level (IPL).

Architecture 43

Microcode errors—indicates an impossible situation was detected by

the microcode during instruction execution. Note that most erroneous

branches in the CVAX CPU microcode cause random microinstructions

to be executed. The most likely cause of this type of machine check is a
problem internal to the CVAX chip. Machine checks due to microcode

errors are nonrecoverable. Depending on the current mode, either the
current process or the operating system should be terminated.

Hex Code Error Description

A An impossible state was detected during a MOVC3 or
MOVC5 instruction (not move forward, move backward,

or fill).

Read errors—indicates an error was detected while the CVAX CPU was

attempting to read from either the first-level cache, the second-level

cache, main memory, or the Q22-bus. The most likely cause of this
type of machine check must be determined from the state of the MSER,

DSER, MEMCSR16, QBEAR, DEAR, and CBTCR. Machine checks due
to read errors may be recoverable, depending on the state of the VAX

can’t restart flag (captured in internal state information 2 <15>) and
the first part done flag (captured in PSL <27>). If the first part done

flag is set, the error is recoverable. If the first part done flag is cleared,
then the VAX can’t restart flag must also be cleared for the error to be
recoverable. Otherwise, the error is unrecoverable and depending on

the current mode, either the current process or the operating system

should be terminated. The information pushed onto the stack by this

type of machine check is from the instruction that caused the machine
check.

Hex Code Error Description

80 An error occurred while reading an operand, a process

page table entry during address translation, or on any read

generated as part of an interlocked instruction.

81 An error occurred while reading a system page table entry

(SPTE), during address translation, a process control block

(PCB) entry during a context switch, or a system control

block (SCB) entry while processing an interrupt.

44 Architecture

e Write errors—indicates an error was detected while the CVAX CPU was

attempting to write to either the first-level cache, the second-level cache,

main memory, or the Q22-bus. The most likely cause of this type of

machine check must be determined from the state of the MSER, DSER,

MEMCSR16, QBEAR, DEAR, and CBTCR. Machine checks due to write

errors are nonrecoverable because the CPU is capable of performing

many read operations out of the first-level cache before a write operation

completes. For this reason, the information that is pushed onto the

stack by this type of machine check cannot be guaranteed to be from

the instruction that caused the machine check.

Hex Code Error Description

82 An error occurred while writing an operand, or a process

page table entry to change the PTE<M> bit before writing a

previously unmodified page.

83 An error occurred while writing a system page table entry

(SPTE) to change the PTE<M> bit before writing a previously

unmodified page, or a process control block (PCB) entry during

a context switch or during the execution of instructions that

modify any stack pointers stored in the PCB.

Most Recent Virtual Addresé Parameter

Most recent virtual address<31:0>—captures the contents of the virtual

address pointer register at the time of the machine check. If a machine

check other than a machine check 81 occurred on a read operation, this

field represents the virtual address of the location that was being read when

the error occurred, plus four. If machine check 81 occurred, this field

represents the physical address of the location that was being read when

the error occurred, plus four.

If a machine check other than a machine check 83 occurred on a write

operation, this field represents the virtual address of a location that was

being referenced either when the error occurred, or sometime after the error

occurred, plus four. If a machine check 83 occurred, this field represents

the physical address of the location that was being referenced either when

the error occurred, or sometime after the error occurred, plus four. In other

words, if the machine check occurred on a write operation, the contents of

this field cannot be used for error recovery.

Architecture 45

internal State information 1 Parameter

Internal state information 1 is divided into four fields. The contents of these

fields are described as follows.

<31:24> —captures the opcode of the instruction that was being read or

executed at the time of the machine check.

<23:16> —captures the internal state of the CVAX CPU chip at the time
of the machine check. The four most significant bits are equal to <1111>
and the four least significant bits contain highest priority software interrupt

<3:0>.

<15:8> —captures the state of CADR<7:0> at the time of the machine

check. See Section 3.3.2.5 for an interpretation of the contents of this

register.

<7:0>—captures the state of the MSER<7:0> at the time of the machine

check. See Section 3.3.2.6 for an interpretation of the contents of this

register.

internal State Information 2

Internal state information 2 is divided into five fields. The contents of these

fields is described below.

<31:24> —captures the internal state of the CVAX CPU chip at the time of

the machine check. This field contains SC register <7:0>.

<23:16> —captures the internal state of the CVAX CPU chip‘ at the time of
the machine check. The two most significant bits are equal to 11 (binary)

and the six least significant bits contain state flags <5:0>.

<15> —captures the state of the VAX can’t restart flag at the time of the

machine check.

<14:8> —captures the internal state of the CVAX CPU chip at the time of

the machine check. The three most significant bits are equal to 111 (binary)
and the four least significant bits contain ALU condition codes.

<7:0>—captures the offset between the virtual address of the start of the

instruction being executed at the time of the machine check (saved PC) and

the virtual address of the location being accessed (PC) at the time of the
machine check.

PC

PC <31:0> —captures the virtual address of the start of the instruction being
executed at the time of the machine check.

46 Architecture

PSL

PSL<31:0> —captures the contents of the PSL at the time of the machine

check.

3.1.5.4 System Control Block

The system control block (SCB) consists of two pages in main memory that

contain the vectors by which interrupts and exceptions are dispatched to the

appropriate service routines. The SCB is pointed to by IPR 17, the system

control block base register (SCBB), represented in Figure 3-5.

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

MBZ PHYSICAL LONGWORD ADDRESS OF PCB mMBzZ :SCBB

MR-15782

MA-1061-87

Figure 3-5 System Control Block Base Register

The system control block format is presented in Table 3-6. |

Table 3-6 System Control Block Format

SCB Interrupt/Exception

Offset Name Type Parameter Notes

00 Unused IRQ passive release

on other VAXes

04 Machine check Abort 4 Parameters depend

| on error type

08 Kernel stack not valid Abort 0 Must be serviced on

interrupt stack

0C Power fail Interrupt 0O IPL is raised to 1E

10 Reserved/privileged Fault 0

instruction

14 Customer reserved Fault 0 XFC instruction

instruction

18 Reserved operand Fault/abort 0 Not always

recoverable

1C Reserved addressing Fault 0

mode

20 Access control violation Fault 2 Parameters are

. virtual address,

status code

Table 3-6 (Cont.) System Control Block Format

Architecture 47

SCB Interrupt/Exception

Offset = Name Type Parameter Notes

28 Trace pending (TP) Fault 0

2C Breakpoint instruction Fault 0 |

30 Unused Compatibility mode

in other VAXes

34 Arithmetic Trap/fault 1 Parameter is type

code

38:3C Unused

40 CHMK Trap 1 Parameter is sign-

extended operand

word

44 CHME Trap 1 Parameter is sign-

extended operand

word

48 CHMS Trap 1 Parameter is sign-

extended operand

word

4C CHMU Trap 1 Parameter is sign-

extended operand

word

50 Unused

54 Corrected read data Interrupt O IPL is 1A (CRD L)

58:5C Unused

60 Memory error Interrupt 0 IPL is 1D (MEMERR

L)

64:6C Unused

78 Programmable timer 0 Interrupt 0 IPL is 14

7C Programmable timer 1 Interrupt 0 IPL is 14

30 Unused

84 Software level 1 Interrupt 0

88 Software level 2 Interrupt 0O Ordinarily used for

AST delivery

48 Architecture

Table 3-6 (Cont.) System Control Block Format

SCB Interrupt/Exception

Offset Name Type Parameter Notes

8C Software level 3 Interrupt 0 Ordinarily used for

process scheduling

90:BC Software levels 4-15 Interrupt 0O

Co Interval timer Interrupt 0O IPL is 16 (INTTIM L)

C4 Unused

C8 Emulation start Fault 10 Same mode

exception, FPD =0;

parameters are

opcode, PC,

specifiers

CC Emulation continue Fault 0 Same mode

exception, FPD=1:

no parameters

D0:DC Unused

EO:EC Reserved for customer

or CSS use

FO:F4 Unused Console storage

registers on 11/750

and 11/730

F8 Console receiver Interrupt O IPL is 14

EC Console transmitter Interrupt 0O IPL is 14

100:1FC Adapter vectors Interrupt 0 Not implemented by

the KA650-AA

200:3FC Device vectors Interrupt 0O Correspond to Q22-

bus vectors 000:1FC;

KA650-AA appends

the assertion of bit

<9,0>

400:FFC Unused Interrupt O

~Architecture 49

3.1.5.5 Hardware Detected Errors

The KA650-AA is capable of detecting thirteen types of error conditions

during program execution.

CDAL bus parity errors indicated by MSER<6> (on a read) or

MEMCSR16<7> (on a write) being set.

First-level cache tag parity errors indicated by MSER <0 > being set.

First-level cache data parity errors indicated by MSER<1> being set.

Second-level cache tag parity errors indicated by CACR <5 > being set.

Second-level cache data parity errors indicated by MSER<6> being

set.”

Q22-bus NXM errors indicated by DSER<7> being set.

Q22-bus no sack errors (no indicator).

Q22-bus no grant errors indicated by DSER<2> being set.

Q22-bus device parity errors indicated by DSER< 5> being set.

CDAL bus timeout errors indicated by DSER <4 > (only on DMA) being

set. .

Main memory NXM errors indicated by DSER<0> (only on DMA)

being set.

Main memory correctable errors indicated by MEMCSR16<29> being

set.

Main memory uncorrectable errors indicated by MEMCSR16<31> and

DSER<4> (only on DMA) being set.

These errors cause either a machine check exception, a memory error
interrupt, or a corrected read data interrupt, depending on the severity of

the error and the reference type that caused the error.

" These two types of errors cannot be distinguished if detected during a read reference.

50 Architecture

3.1.5.6 Hardware Halt Procedure

The hardware halt procedure is the mechanism by which the hardware

assists the firmware in emulating a processor halt. The hardware halt

procedure saves the current value of the PC in IPR 42 (SAVPC), and the

current value of the PSL, MAPEN <0 >, and a halt code in IPR 43 (SAVPSL).

The current stack pointer is saved in the appropriate internal register. The

PSL is set to 041F 0000 ¢ (IPL=1F, supervisor mode, using the interrupt

stack) and the current stack pointer is loaded from the interrupt stack

pointer. Control is then passed to the resident firmware at physical address

2004 0000 4¢ with the state of the CPU as follows.

Register New Contents

SAVPC Saved PC

SAVPSL<31:16, 7:0> Saved PSL<31:16,7:0>

SAVPSL<15> Saved MAPEN <0 >

SAVPSL< 14> Valid PSL flag (unknown for halt code of 3)

SAVPSL<13:8> Saved restart code

SP Current interrupt stack

PSL - 041F 0000 1

PC 2004 0000 16

MAPEN 0

ICCS 0 (for a halt code of 3)

MSER 0 (for a halt code of 3)

CADR 0 (for a halt code of 3, first-level cache is also flushed)

SISR 0 (for a halt code of 3)

ASTLVL 0 (for a halt code of 3)

All else Undefined

The firmware uses the halt code in combination with any hardware event

indicators to dispatch the execution or interrupt that caused the halt to the

appropriate firmware routine (either console emulation, power-up, reboot,

or restart). Table 3-7 and Table 3-8 list the interrupts and exceptions

that can cause halts along with their corresponding halt codes and event

indicators.

Architecture 51

Table 3-7 Unmaskable Interrupts that Can Cause A Halt

Halt Code Interrupt Condition Event Indicators

2 External Halt (CVAX HALTIN pin asserted)
BHALT asserted on the Q22-bus. DSER<15>

BDCOK negated and asserted on the Q22-bus DSER< 14>

while BPOK stays asserted (Q22-bus REBOOT

IRESTART) and SCR< 7> is set.

BREAK generated by the console. RXDB<11>

Hardware Reset (CVAX RESET pin negated)

BDCOK and BPOK negated then asserted on

the Q22-bus (power-up)

BDCOK negated and asserted on the Q22-bus

while BPOK stays asserted (Q22-bus REBOOT

IRESTART) and SCR<7> is clear.

Table 3-8 Exceptions that Can Cause a Halt

Halt Code Exception Condition

6 Halt instruction executed in kernel mode.

Exceptions While Servicing an Interrupt or Exception

Interrupt stack not valid during exception.

Machine check during normal exception.

SCB vector bits<1:0> = 11.

SCB vector bits<1:0> = 10.

CHMx executed while on interrupt stack.

CHMXx executed to the interrupt stack.

ACV or TNV during machine check exception.

ACV or TNV during kernel stack not valid exception.

Machine check during machine check exception.

Machine check during kernel stack not valid exception.

PSL<26:24> = 101 during interrupt or exception.

PSL<26:24> = 110 during interrupt or exception.

PSL<26:24> = 111 during interrupt or exception.

PSL<26:24> = 101 during REL

PSL<26:24> = 110 during REI.

PSL<26:24> = 111 during REL

52 Architecture

3.1.6 System ldentification

The system identification register (SID), IPR 62, is a read-only register

implemented, as specified in the VAX Architecture Reference Manual, in the

CVAX chip. This 32-bit, read-only register is used to identify the processor

type and its microcode revision level. See Figure 3-6.

31 2423 8 7 0o

l TYPE I 'RESERVED | I MICROCODE REV.J

MA-1101-87

Figure 3-6 System ldentification Register

Data Bit Definition

<31:24 > Processor type (TYPE). This field always reads as 10 1,
indicating that the processor is implemented using the

CVAX chip.

<23:8> Reserved for future use.

<7:0> Microcode revision (MICROCODE REV.). This field

reflects the microcode revision level of the CVAX chip.

In order to distinguish between different CPU implementations that use the

same CPU chip, the KA650-AA, as must all VAX processors that use the

CVAX chip, implements a MicroVAX system type register (SYS_TYPE) at

physical address 2004 0004 1¢. This 32-bit read-only register is implemented

in the KA650-AA ROM. The format of this register is shown in Figure 3-7.

3 2423 1615 8 7 0

[SYS_TYPE J REV LEVEL 1 SYS-SUB-TYPE l RESERVED]

MA-1102-87

Figure 3-7 System Type Register

Architecture 53

Data Bit Definition

<31:24 > System type code (SYS_TYPE). This field reads as 01 15 for

all single-processor Q22-bus based systems.

<23:16> Revision level (REV LEVEL). This field reflects the revision

level of the KA650-AA firmware.

<15:8> System subtype code (SYS_SUB_TYPE). This field reads as

01 16 for the KA650-AA.

<7:0> Reserved for use by Digital.

3.1.7 CPU References

All references by the CPU can be classified into one of three groups.

* Request instruction-stream read references

e Demand data-stream read references

e Write references

3.1.7.1 Instruction-Stream Read References

The CPU has an instruction prefetcher with a 12-byte (3 longword)

instruction prefetch queue (IPQ) for prefetching program instructions from

either cache or main memory. Whenever there is an empty longword in
the IPQ, and the prefetcher is not halted due to an error, the instruction

prefetcher generates an aligned longword, request instruction-stream (I-

stream) read reference.

3.1.7.2 Data-Stream Read References

Whenever data is immediately needed by the CPU to continue processing,

a demand data-stream (D-stream) read reference is generated. More

specifically, demand D-stream references are generated on operand, page
table entry (PTE), system control block (SCB), and process control block

(PCB) references. | |

When interlocked instructions, such as branch on bit set and set interlock

(BBSSI) are executed, a demand D-stream read-lock reference is generated.

Since the CPU does not impose any restrictions on data alignment (other
than the aligned operands of the ADAWI and interlocked queue instructions)
and since memory can only be accessed one aligned longword at a time,
all data read references are translated into an appropriate combination of
masked and unmasked, aligned longword read references.

54 Architecture

If the required data is a byte, a word within a longword, or an aligned

longword, then a single, aligned longword, demand D-stream read reference

is generated. If the required data is a word that crosses a longword

boundary, or an unaligned longword, then two successive aligned longword

demand D-stream read references are generated. Data larger than a

longword is divided into a number of successive aligned longword demand

D-stream reads, with no optimization.

3.1.7.3 Write References

Whenever data is stored or moved, a write reference is generated. Since

the CPU does not impose any restrictions on data alignment (other than the

aligned operands of the ADAWI and interlocked queue instructions) and

since memory can only be accessed one aligned longword at a time, all data

write references are translated into an appropriate combination of masked

and unmasked aligned longword write references.

If the required data is a byte, a word within a longword, or an aligned

longword, then a single, aligned longword, write reference is generated.
If the required data is a word that crosses a longword boundary, or an

unaligned longword, then two successive aligned longword write references

are generated. Data larger than a longword is divided into a number of

successive aligned longword writes.

3.2 KA650-AA Floating-Point Accelerator

The KA650-AA floating-point accelerator is implemented via a single VLSI

chip called the CFPA.

3.2.1 Floating-Point Accelerator Instructions

The KA650-AA floating-point accelerator processes F_floating, D_floating,
and G_floating format instructions and accelerates the execution of MULL,

DIVL, and EMUL integer instructions.

3.2.2 Floating-Point Accelerator Data Types

The KA650-AA floating-point accelerator supports byte, word, longword,

quadword, F_floating, D_floating, and G_floating data types. The H_

floating data type is not supported, but may be implemented by macrocode

emulation.

Architecture 55

3.3 KA650-AA Cache Memory

To maximize CPU performance, the KA650-AA incorporates a two-level

cache design. The first-level cache is implemented within the CVAX chip.
The second-level cache is implemented using 16 k by 4-bit static RAMs.

3.3.1 Cacheable References

Any reference that can be stored by the first-level cache is called a cacheable

reference. The first-level cache stores CPU read references to the VAX

memory space (bit <29> of the physical address equals 0) only. It does not

store references to the VAX I/O space, or DMA references by the Q22-bus
interface. The type(s) of CPU references that can be stored (either request

instruction stream (I-stream) read references, or demand data stream (D-

stream) read references other than read-lock references) is determined by

the state of cache disable register (CADR) bits <5:4>. The normal operating
mode is for both I-stream and D-stream references to be stored.

Whenever the CPU generates a noncacheable reference, a single longword

reference of the same type is generated on the CDAL bus.

Whenever the CPU generates a cacheable reference that is stored in the

first-level cache, no reference is generated on the CDAL bus.

Whenever the CPU generates a cacheable reference that is not stored in

the first-level cache, a quadword transfer is generated on the CDAL bus. If

the CPU reference was a request I-stream read, then the quadword transfer

consists of two indivisible longword transfers, the first being a request I-

stream read (prefetch), and the second being a request I-stream read (fill). If
the CPU reference was a demand D-stream read, then the quadword transfer

consists of two indivisible longword transfers, the first being a demand D-
stream read, and the second being a request D-stream read (fill).

The second-level cache only stores references on the CDAL bus that are

part of a quadword transfer. Since quadword transfers on the CDAL bus

can only be generated on cacheable references, the second-level cache is
automatically configured to store the same type(s) of references as the first-
level cache.

3.3.2 First-Level Cache

The KA650-AA includes a 1 Kbyte, two-way associative, write through first-

level cache with a 90 ns cycle time. CPU read references access one

longword at a time, while CPU writes can access one byte at a time. A
single parity bit is generated, stored, and checked for each byte of data and

each tag. The first-level cache can be enabled/disabled by setting/clearing

the appropriate bits in the CADR. The first-level cache is flushed by any

write to the CADR, as long as it is not in diagnostic mode.

56 Architecture

3.3.2.1 First-Level Cache Organization

The first-level cache is divided into two independent storage arrays called

set 1 and set 2. Each set contains a 64 row by 22-bit tag array and a 64 row

by 72-bit data array. The two sets are organized as shown in Figure 3-8.

Set 1 Set 2
r—'

64 by 22 64 by 72-BIT 64 by 22 64 by 72-BIT

64 ROWS< BIT TAG DATA ARRAY BIT TAG DATA ARRAY
ARRAY ARRAY

- CACHE ENTRY

— _

93 72 71 0 93 72 71 0

MA-1103-87

Figure 3-8 First-Level Cache Organization

A row within a set corresponds to a cache entry, so there are 64 entries in

each set and a total of 128 entries in the entire cache. Each entry contains

a 22-bit tag block and a 72-bit (eight-byte) data block. A cache entry is

organized as shown in Figure 3-9.

93 72 71 0

TAG BLOCK l DATA BLOCK

MA-1104-87

Figure 3-9 First-Level Cache Entry

A tag block consists of a parity bit, a valid bit, and a 20-bit tag. A tag block .

is organized as shown in Figure 3-10.

19 0

Iplv] TAG]

PARITY BlT]

VALID BIT

MA-1105-87

Figure 3-10 First-Level Cache Tag Block

A data block consists of eight bytes of data, each with an associated parity

bit. The total data capacity of the cache is 128 eight-byte blocks, or 1024

bytes. A data block is organized as shown in Figure 3-11.

Architecture 57

-@—— DATA BITS

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

T & [7] 0 e[o5 [7] 50 [] & Je] = J¢] o1 J¢] =0 |

7 6 5 4 3 2 1 0

-%—— PARITY BITS

MA-1110-87

Figure 3-11 First-Level Cache Data Block

3.3.2.2 First-Level Cache Address Translation

Whenever the CPU requires an instruction or data, the contents of the first-

level cache is checked to determine if the referenced location is stored there.

The cache contents is checked by translating the physical address as follows.

e On noncacheable references, the reference is never stored in the cache,

so a first-level cache miss occurs and a single longword reference is

generated on the CDAL bus.

e On cacheable references, the physical address must be translated to
determine if the contents of the referenced location is resident in the

cache. The cache index field, bits <8:3> of the physical address, is
used to select one of the 64 rows of the cache, with each row containing

a single entry from each set. The cache tag field, bits <28:9> of the

physical address, is then compared to the tag block of the entry from

both sets in the selected row.

If a match occurs with the tag blockof one of the set entries, and the

valid bit within the entry is set, the contents of the referenced location is

contained in the cache and a cache hit occurs. On a cache hit, the set

match signals generated by the compare operation select the data block

from the appropriate set. The cache displacement field, bits <2:0> of the

physical address, is used to select the byte(s) within the block. No CDAL

bus transfers are initiated on CPU references that hit the first-level cache.

If no match occurs, then the contents of the referenced location is not

contained in the cache and a cache miss occurs. In this case, the data
must be obtained from either the second-level cache, or the main memory

controller, so a quadword transfer is initiated on the CDAL bus. See
Figure 3-12.

58 Architecture

2928 9 8 32 0

‘ I CACHE TAG l
{

LI/O SPACE CACHE INDEX—3

CACHE DISPLACEMENT -

VALID BIT VALID BIT

SET 1 * SET 2

20- | 64BIT 20- 164-BIT

BIT | DATABLOCK BIT |DATA BLOCK

TAG TAG

%
SET 1 MATCH ? SET | 2 MATCH?

l—‘s EWan

DATA

MA-1106-87

Figure 3-12 First-Level Cache Address Translation

3.3.2.3 First-Level Cache Data Block Allocation

Cacheable references that miss the first-level cache, cause a quadword

read to be initiated on the CDAL bus. When the requested quadword is

supplied by either the second-level cache or the main memory controller,

the requested longword is passed on to the CPU, and a data block is

allocated in the cache to store the entire quadword.

Due to the fact that the cache is two-way associative, there are only two data

blocks (one in each set) that can be allocated to a given quadword. These

two data blocks are determined by the cache index field of the address of

the quadword, which selects a unique row within the cache. Selection of

a data block within the row (for example, set selection) for storing the new

entry is random.

Architecture 59

Since the KA650-AA supports 64 Mbytes (8 M quadwords) of physical
memory, up to 128 k quadwords share each row (two data blocks) of the

cache. Contiguous programs larger than 512 bytes or any noncontiguous

programs separated by 512 bytes have a 50 percent chance of overwriting

themselves when cache data blocks are allocated for the first time for data
separated by 512 bytes (one page). After six allocations, there is a 97 percent

probability both sets in a row will be filled.

3.3.2.4 First-Level Cache Behavior on Writes
On CPU generated write references, the first-level cache is write through.
All CPU write references that hit the first-level cache cause the contents of

the referenced location in main memory to be updated as well as the copy

in the cache.

On DMA write references that hit the first-level cache, the cache entry
containing the copy of the referenced location is invalidated. If the first-

level cache is configured to store only I-stream references, then the entire

first-level cache is also flushed whenever an REI instruction is executed.
(The VAX architecture requires that an REI instruction be executed before

executing instructions out of a page of memory that has been updated.)

3.3.2.5 Cache Disable Register

The cache disable register (CADR), IPR 37, controls the first-level cache,

and is unique to CPU designs that use the CVAX chip. See Figure 3-13.

31 876543210

l : HiREEE
S

S1E |

ISE

DSE-

ww

DIA

MA-1107-87

Figure 3-13 Cache Disable Register

60 Architecture

Data Bit Definition

<31:8> Unused. Always read as zeros. Writes have no effect.

<7:6> These bits are used to selectively enable or disable each set

within the cache.

<7> S2E. Read/write. When set, set 2 of the cache is enabled.

When cleared, set 2 of the cache is disabled. Cleared

on power-up and by the negation of DCOK when the

processor is halted.

<6> S1E. Read/write. When set, set 1 of the cache is enabled.

When cleared, set 1 of the cache is disabled. Cleared

on power-up and by the negation of DCOK when the
~ processor is halted.

<5:4> These bits are used to selectively enable or disable storing

I-stream and D-stream references in the cache.

<5> ISE. Read/write. When set, I-stream, memory space

references are stored in both the first and second-level

caches, if they are enabled. When cleared, I-stream

memory references are not stored in either cache. Cleared

on power-up and by the negation of DCOK when the

processor is halted.

<4> DSE. Read/write. When set, D-stream, memory space

references are stored in both the first and second-level

caches, if they are enabled. When cleared, D-stream

memory references are not stored in either cache. Cleared

on power-up and by the negation of DCOK when the

processor is halted.

NOTES: The first-level cache can be disabled by either disabling both set 1 and set

2 (clearing CADR<7:6>), or by not storing either I-stream or D-stream references

(clearing CADR<5:4>).

For maximum performance, the cache should be configured to store both I and D-

stream references. I-stream only mode suffers from a degradation in performance from

what would normally be expected relative to I and D-stream mode and D-stream only

mode, due to the fact that invalidation of cache entries due to wriles to memory by

a DMA device are handled less efficiently.

In I-stream only mode, the entire first-level cache is flushed whenever an REI

instruction is executed. The VAX Architecture Reference Manual states that an REI

instruction must be executed before executing instructions out of a page of memory

that has been updated, whereas in the other two modes of operation, cache entries

Architecture 61

are invalidated on an individual basis, only if a DMA write operation results in a

cache hit.

Data Bit Definition

<3:2> Unused. Always read as 1s.

<1> Write wrong parity (WWP). Read/write. When set,

incorrect parity is stored in the first-level cache whenever

it is written. When cleared, correct parity is stored in the

cache whenever the cache is written. Cleared on power-

up and by the negation of DCOK when the processor is

halted.

<0> Diagnostic mode (DIA). Read/write. When cleared, the

~cache is in normal operating mode and writes to the

CADR cause the first-level cache to be flushed, (all valid

bits set to the invalid state) and the first-level cache is

configured for write-through operation. When set, the

first-level cache is in diagnostic mode and writes to the

CADR will not cause the first-level cache to be flushed.

CPU write references with a longword destination (for example, MOVL)

write the data into main memory (if it exists) as well as invalidate the

corresponding cache entry irrespective of whether or not a cache hit

occurred. CPU write references with a quadword destination (for example,

MOVQ) write the data into main memory (if it exists) as well as cause the

second longword of the quadword to be written into the longword of the
cache data array that corresponds to the address of the first longword of the

destination, irrespective of whether or not a cache hit occurred. The data in

the longword of the cache data array that corresponds to the address of the

second longword of the destination remains unaltered. In addition, errors

generated during write references, that would normally cause a machine

check, are ignored (they do not cause a machine check trap to be generated,

or prevent data from being stored in the cache).

Diagnostic mode is intended to allow the first-level cache tag store to be

fully tested without requiring 512 Mbytes of main memory. This mode

makes it possible for the tag block in a particular cache entry to be written

with any pattern by executing a MOVQ instruction with bits <28:9> of the

destination address equal to the desired pattern.

Two MOVQ instructions, one with a quadword aligned destination address

and one with the next longword aligned destination address, are required to

write to both longwords in the data block of a cache entry. Diagnostic mode

does not affect read references. Cleared on power-up and by the negation

of DCOK when the processor is halted.

62 Architecture

NOTES: Af least one read reference must occur between all write references made

in diagnostic mode.

Diagnostic mode should only be selected when one and only one of the two sets are

enabled. Operation of this mode with both sets enabled or both sets disabled yields

unpredictable results.

3.3.2.6 Memory System Error Register

The memory system error register (MSER), IPR 39, records the occurance

of first-level cache hits, as well as parity errors on the CDAL bus and in

the first and second-level caches. This register is unique to CPU designs

that use the CVAX chip. MSER<6:4,1:0> are sticky in the sense that they

remain set until explicitly cleared. Each bit is set on the first occurance of

the error it logs, and remains set for subsequent occurances of that error.

The MSER is explicitly cleared via the MTPR MSER instruction irrespective

of the write data. See Figure 3-14.

K} 876543210

1 lole]]

MA-1108-87

Figure 3-14 Memory System Error Register

Data Bit Definition

<31:8> Unused. Always read as zero. Writes have no effect.

<7> Hit/miss (HM). Read only. Writes have no effect. Cleared

on all cacheable references that hit the first-level cache.

Set on all cacheable references that miss the first-level

cache. Cleared on power-up and by the negation of DCOK

when the processor halts.

<6> DAL parity error (DAL). Read/write to clear. Set whenever

| a CDAL bus or second-level cache data store parity error

is detected. Cleared on power-up and by the negation of

DCOK when the processor is halted.

Architecture 63

Data Bit Definition

<5>

<4>

<3:2>

<1l>

<0>

Machine check (MCD). DAL parity error. Read/write to

clear. Set whenever a machine checkis caused by a CDAL

Bus or second-level cache data parity error. These errors

only generate machine checks on demand D-stream read

references. Cleared on power-up and by the negation of

DCOK when the processor halts.

Machine check (MCC). First-level cache parity error.

Read/write to clear. Set whenever a machine checkis

caused by a first-level cache parity error in the tag or

data store. These errors only generate machine checks on

demand D-stream read references. Cleared on power-up

and by the negation of DCOK when the processor halts.

Unused. Always read as zero. Writes have no effect.

Data parity error (DAT). Read/write to clear. Set when a

parity error is detectedin the data store of the first-level

cache. Cleared on power-up and by the negatlon of DCOK

when the processor halts.

Tag parity error (TAG). Read/write to clear. Set when a

parity error is detected in the tag store of the first-level

cache. Cleared on power-up and by the negation of DCOK

when the processor halts.

3.3.2.7 First-Level Cache Error Detection

Both the tag and data arrays in the first-level cache are protected by parity.

Each 8-bit byte of data and the 20-bit tag is stored with an associated parity

bit. The valid bit in the tag is not covered by parity. Odd data bytes are

stored with odd parity and even data bytes are stored with even parity. The
tag is stored with odd parity.

The stored parity is valid only when the valid bit associated with the first-

level cache entry is set. Tag and data parity (on the entire longword) are

checked on read references that hit the first-level cache, while only tag parity
is checked on CPU and DMA write references that hit the first-level cache.

64 Architecture

The action taken following the detection of a first-level cache parity error

depends on the reference type.

* During a demand D-stream read reference, the entire first-level cache is

flushed, the CADR is cleared (which disables the first level cache and

causes the second-level cache to ignore all read operations.) The cause

of the error is logged in MSER<4,3:0> and a machine check abort is

initiated.

e During a request I-stream read reference, the entire first-level cache is

flushed (unless CADR<0> is set), the cause of the error is logged in

MSER< 1:0 >, the prefetch is halted, but no machine check abort occurs,

and both caches remain enabled.

* During a masked or unmasked write reference, the entire first-level

cache is flushed (unless CADR<0> is set), the cause of the error is

logged in MSER<0> (only tag parity is checked on CPU writes that

hit the first-level cache), there is no effect on CPU execution, and both

caches remain enabled.

e During a DMA write reference the cause of the error is logged in

MSER< 0> (only tag parity is checked on DMA writes that hit the first-

level cache), there is no effect on CPU execution, both caches remain

enabled, and no invalidate operation occurs.

3.3.3 Second-Level Cache

The KA650-AA also includes a 64 Kbyte, direct mapped, write through,

second-level cache with a 180 ns cycle time for longword transfers and

270 ns cycle time for quadword transfers. CPU read references access one

longword at a time. Cacheable references that miss the first-level cache can

access up to one quadword at a time, while CPU writes can access a single

byte at a time.

A single parity bit is generated, stored and checked for each tag. The cache

does not generate or check parity on each data byte. The parity bits stored

with each data byte are taken from the CDAL parity lines when a data block

is written or allocated. |

On second-level cache hits, these parity bits are placed back on the CDAL

parity lines, so that parity checking on the data bytes is performed by the

CVAX chip. This makes second-level cache data parity errors appear as

CDAL bus parity errors.

The second-level cache can be enabled/disabled by setting/clearing the

appropriate bit in the CACR. The second-level cache can be flushed by

writing any value to each entry in the cache diagnostic space, as long as it

is not in diagnostic mode.

Architecture 65

3.3.3.1 Second-Level Cache Organization

The second-level cache, being direct mapped, consists of a single storage
array called set 1. This array contains a 8 k row by 12-bit tag array and a 8

k row by 72-bit data array. See Figure 3-15.

SET1
("

8K by 8K by 72-BIT

12- BIT DATA ARRAY

TAG

ARRAY

8 KBYTE <

ROWS

aff—— CACHE ENTRY

L

83 72 71
MA-1117-87

Figure 3-15 Second-Level Cache Organization

A row within the set corresponds to a single cache entry, so there are 8 K

entries in the entire cache. Each entry contains a 12-bit tag block and a 72-bit

(eight-byte) data block. A cache entry is organized as shown in Figure 3-16.

83 7271 0

i TAG BLOCK ! DATA BLOCK

MA-1114-87

Figure 3-16 Second-Level Cache Entry

A tag block consists of a parity bit, a valid bit, and a 10-bit tag. A tag block

is organized as shown in Figure 3-17.

9 0

l V] TAGE

PARITY BIT_J
VALID BIT

MA-1113.87

Figure 3-17 Second-Level Cache Tag Block

66 Architecture

A data block consists of eight bytes of data, each with an associated parity

bit. The total data capacity of the cache is 8 k eight-byte blocks, or 64 Kbytes.

A data block is organized as shown in Figure 3-18.

<@—— DATA BITS

63 56 55 48 47 40 39 32 3 24 23 16 15 8 7 0

[Pl B7 lPl B6 lPl B5 lP[B4 lPl B3 iPl B2 lPl B1 iP[BO I

7 6 5 4 3 2 1 0

-@€—— PARITY BITS

MA-1110-87

Figure 3-18 Second-Level Cache Data Block

3.3.3.2 Second-Level Cache Address Translation

Whenever a CPU reference that can be stored in the first-level cache causes

a miss of the first-level cache, a quadword transfer is initiated on the CDAL

bus and the second-level cache is checked to determine if the contents of

the location(s) being addressed are stored there. The cache is checked by

translating the address as follows.

* On noncacheable references, the reference is never stored in the cache,

so a second-level cache miss occurs, the main memory cycle is allowed

to complete and the data is provided by the main memory controller.

® On cacheable references, the physical address must be translated to

determine if the contents of the referenced location(s) are resident in the

cache. In this case, the cache index field, bits <15:3> of the physical

address, is used to select one of the 8 k entries (rows) in the set. The

cache tag field, bits <28:16> of the physical address, is then compared

to the tag block of the selected entry. Bits <28:26> of this field must

be zero since the second-level cache is designed to support a maximum

of 64 Mbytes of main memory.

If a match occurs with the tag block of the entry, and the valid bit within the

entry is set, then the contents of the location is contained in the cache and

a second-level cache hit occurs. The cache displacement field, bits <2:0>

of the physical address, is used to select the longword within the block.

Bits <1:0> of this field are ignored since the byte mask signals are used

to select the desired byte(s) within a longword. Main memory cycles are

initiated on all CDAL bus cycles, but they are aborted before completion

on second-level cache hits.

Architecture 67

If there is no match, then the contents of the location is not contained in the

second-level cache, a cache miss occurs, the main memory cycle is allowed

to complete, and the data is provided by the main memory controller. See

Figure 3-19.

2928 26 1615 39 0

l l I CACHE TAG l 1

1/0 SPACE

MBZ CACHE INDEX —=

CACHE DISPLACEMENT —35

VALID BIT

+ SET 1

10~ 64-BIT

BIT |DATA BLOCK

TAG

SET1 | MATCH ?

__:&*__
DATA

MA-1115.87

Figure 3-19 Second-Level Cache Address Transiation

3.3.3.3 Second-Level Cache Data Block Allocation

On cacheable references that miss the first-level cache, a quadword read

is initiated on the CDAL bus. If the requested quadword cannot be found

in the second-level cache, it is provided by the main memory controller,

both caches allocate a data block for storing the entire quadword, and the

requested longword is passed on to the CPU.

Due to the fact that the second-level cache is direct mapped, there is one and

only one data block in the cache that can be allocated to a given quadword.

This data block is determined by the cache index field of the physical

address of the quadword, which selects a unique row (data block) within

the cache.

68 Architecture

Since the KA650-AA supports 64 Mbytes (8 M quadwords) of physical

memory, up to 1 k quadwords share each data block (row) of the cache.

Contiguous programs larger than 64 Kbytes, or noncontiguous programs

separated by 64 Kbytes overwrite themselves in the cache when cache data

blocks are allocated for memory references separated by 64 Kbytes.

3.3.3.4 Second-Level Cache Behavior on Writes

On CPU generated write references, the second-level cache is write through.

All CPU write references that hit the second-level cache cause the contents

of the referenced location in main memory to be updated as well as the

copy in the cache.

On DMA write references that hit the cache, the cache entry containing the

copy of the referenced location is invalidated.

3.3.3.5 Cache Control Register

The cache control register (CACR), address 2008 4000 44, controls the

second-level cache and is unique to the KA650-AA. Only the low byte of

this register should be written. See Figure 3-20.

3 24 23 876543210

UNDEFINED CACHE DIAGNOSTIC FIELD I l I] l l I]

MA—X1442-87

Figure 3-20 Cache Control Register

Architecture 69

Data Bit Definition

<31:24>

<23:8>

<7:6>

<5>

<4>

<3:2>

Undefined. Undefined on reads. Writes have no effect.

Cache diagnostic field. Read only.

CVAX cycle speed (CSP). Read only. Writes have no

effect. These bits are used to indicate the speed of the

CVAX chip being used. They are encoded as follows.

<7:6> Speed

00 Reserved for future use

01 Reserved for future use

10 90 ns

11 100 ns

Cache parity error (CPE). Read/write to clear. This bit is

set whenever a cache tag parity error is detected. Cleared

by writing a 1, on power-up and the negation of DCOK

when the processor is halted.

Cache enable (CEN). Read/write. When cleared, all

references miss the cache except those to the cache

diagnostic space and the allocation of cache blocks is

prevented. When set, the configuration of the first-level

cache determines which types of references are stored.

CACR<0> and CACR<5> must be cleared before this

bit can be set. Cleared on power-up and the negation of

DCOK when the processor is halted.

NOTE: Whenever the second-level cache is disabled, it

should be flushed before re-enabling to insure that data that

may have become stale, while the cache was disabled, is not

utilized.

Unused. Always read as zero. Must be written as zero.

70 ArChitecture

Data Bit Definition

<1> Write wrong parity (WWP). Read/write. When set, the tag
parity bits stored in the tag block are incorrect (inverted),

and the data parity bits stored in the data block are forced

to all 1s whenever the cache data block is written. When

cleared, correct parity is stored in both the tag block and

the data block whenever the cache is written. Tag parity

errors force a second-level cache miss, so the cache has

to be read through the tag diagnostic space to check that

parity was incorrectly written. Cleared on power-up and

the negation of DCOK when the processor is halted.

<0> Diagnostic mode DIA. Read/write. When set, the second-
level cache is disabled, and writes to the cache diagnostic

space set the valid bit for the entry that is written as well

as load the tag field of the physical address into the tag

block of the corresponding second-level cache entry. This
mode allows the second-level cache tag block to be fully

tested. When cleared, CACR<4> determines if the cache

is enabled, and writes to the cache diagnostic space clear

the valid bit for the entry that is written. This mode

allows the second-level cache to be flushed by writing

any value to each entry via the cache diagnostic space.

Cleared on power-up and the negation of DCOK when the

processor is halted. |

3.3.3.6 Second-Level Cache Error Detection

Both the tag and data arrays in the second-level cache are protected by

parity. Each 8-bit byte of cache data and the 10-bit tag is stored with an
associated parity bit. Odd data bytes are stored with odd parity and even
data bytes are stored with even parity. The tag is stored with odd parity.
The stored parity is always valid regardless of the state of the valid bit.

Tag parity is checked by the second-level cache logic on CPU read, CPU

write and DMA write references. Tag parity is generated by the second-level
cache logic during the allocation of a cache block.

Data parity is checked on a byte basis by the CVAX chip for CPU read
references that hit the cache. Data parity is taken directly from the CDAL
bus parity lines on CPU write operations that hit the cache and during the
allocation of a cache block. |

Upon detecting second-level cache tag parity errors the entire second-level

cache is disabled (CACR<4> is cleared), CACR<5> (second-level cache
parity error) is set, and an interrupt at IPL 1A through vector 54 14 is
generated.

Architecture 71

The action taken following the detection of a second-level cache data parity
error is identical to that for CDAL bus parity errors and depends on the
reference type.

® During a demand D-stream reference, the first-level cache entry is
invalidated, the cause of the error is logged in MSER<6:5> and a
machine check abort is initiated and the bad data in the second-level
cache remains unaltered.

® During a request I-stream reference (prefetch), the row containing the
first-level cache entry is invalidated, the prefetch operation is aborted,
the cause of the error is logged in MSER< 6>, but no machine check is
generated and the bad data in the second-level cache remains unaltered.

* During a request D-stream or I-stream reference (fill), the first-level
cache entry is invalidated, the first-level cache fill operation is aborted,
the cause of the error is logged in MSER< 6>, but no machine check is
generated and the bad data in the second-level cache remains unaltered.

3.3.3.7 Second-Level Cache as Fast Memory

The second-level cache can be accessed as part of main memory for
diagnostic purposes as well as for fast execution of bootstrap or self-test
code. One thousand and twenty four copies of the second-level cache data
array appear starting at the first address in the upper half of VAX memory
space (physical addresses 1000 0000 14 to 13FF FFFF {¢). This area is called
the cache diagnostic space. Read or write references to this address range
access the second-level cache as high speed (180 ns) RAM. Read references
will not affect the existing tag block for the accessed cache entry.

When the diagnostic mode bit CACR<0>, is cleared, write references
invalidate any cache entry that is accessed via the cache diagnostic space.
This prevents stale data from accumulating when the cache is used as high
speed RAM.

When the diagnostic mode bit is set, write references set the valid bit in the
tag block and write the tag field of the physical address into the tag of any
entry that is accessed via the cache diagnostic space. This allows any of the
1024 possible cache tag bit-patterns to be written into the tag block of any
cache entry by writing to one of the 1024 copies of the cache entry.

Data parity errors that occur while using the second-level cache as hifih
speed RAM have the same effect as parity errors encountered during the
normal operation of the cache. Tag parity is not checked on access to cache
diagnostic space.

NOTE: To flush the second-level cache, each cache entry must be written via the
cache diagnostic space with the diagnostic mode bit cleared.

72 Architecture

3.4 KA650-AA Main Memory System

The KA650-AA includes a main memory controller implemented via a single
VLSI chip called the CMCTL. The KA650-AA main memory

controller
communicates with the MS650 memory boards over the M

S650 memory

interconnect, which utilizes the CD interconnect for the address and control
lines and a 50-pin, ribbon cable for the data lines. It supports up to four
MS650 memory boards, for a maximum of 64 Mbytes of ECC memory.

The controller supports synchronous longword read references, and masked
or unmasked synchronous write references generated by the CPU,

 as well
as synchronous quadword read references generated by cach

eable CPU
references that miss the first-level cache. Table 3-9 lists CPU read reference
timing values. Table 3_10 lists CPU write reference timing values.

Read references are aborted by the second-level cache on second-level cache
hits, and by the Q22-bus interface if they are locked and the K

A650-AA is
not the Q22-bus master.

Table 3-9 CPU Read Reference Timing

Data Type Timing

Longword 450 ns

Quadword 720 ns

First longword 450 ns

Second longword 270 ns

Aborted reference 450 ns

Longword (locked) 990 ns min

Aborted reference 450 ns

Retry (locked) 540 ns

Table 3-10 CPU Write Reference Timing

Data Type Timing

Longword 180 ns

Longword (masked) 540 ns

The controller also supports asynchronous longword and qua
dword DMA

read references and masked and unmasked asynchronou
s longword,

quadword, hexword, and octaword DMA write references from the Q22-bus
interface. Table 3-11 lists Q22-bus interface read reference

timing values.
Table 3-12 lists Q22-bus interface write reference timing

 values.

Table 3-11 Q22-bus Interface Read Reference Timing

Data Type Timing

Longword 540 ns

Quadword 900 ns

First longword 540 ns

Second longword 360 ns

Longword (locked) 630 ns

Table 3-12 Q22-bus Interface Write Reference Timing

Data Type Timing

Longword 360 ns

Longword (masked) 630 ns

Quadword 630 ns

First longword 360 ns

Second longword 270 ns

Quadword (masked) 1080 ns

First longword 360 ns

Second longword 720 ns

Hexword 900 ns

First longword 360 ns

Second longword 270 ns

Third longword 270 ns

Hexword (masked) 1350 ns

First longword 360 ns

Second longword 270 ns

Third longword 720 ns

Octaword 1170 ns

First longword 360 ns

Second longword 270 ns

Third longword 270 ns

Fourth longword 270 ns

Octaword (masked) 1620

First longword 360 ns

Second longword 270 ns

Third longword 270 ns

Fourth longword 720 ns

Architecture 73

74 Architecture

The timing in Table 3-12 assumes no exception conditions are encountered
during the reference. Exception conditions add the following amount of
time if they are encountered during a reference.

Data Type Timing

Correctable error 0 ns

Uncorrectable error 180 ns read

Uncorrectable error 90 ns write

CDAL parity error 90 ns write

Refresh collision 450 ns

The main memory controller contains eighteen registers. Si
xteen registers

are used to configure each of the sixteen possible banks in
main memory.

One register is used to control the operating mode of all memory banks and
one register captures state on main memory errors. |

3.4.1 Main Memory Organization

Main memory is logically and physically divided into four boa
rds which

correspond to the four possible MS650 memory expansion m
odules that

can be attached to a KA650-AA. FEach board can contain
zero (no memory

module present), or two (MS650-AA present) memory banks.
 Each bank

contains 1,048,576 (1 M) aligned longwords. Each aligned longword is
divided into four data bytes and is stored with seven ECC

check bits,
resulting in a memory array width of 39 bits.

3.4.2 Main Memory Addressing

The KA650-AA main memory controller is capable of controlling
up to 16

banks of RAM, each bank containing 4 Mbytes of storage. Ea
ch bank of

main memory has a programmable base address, determined by the stat
e

of bits <25:22> of the main memory configuration register associated with
each bank. |

A 4Mbyte bank is accessed when bit <29> of the physical address is equal
to 0, indicating a VAX memory space read/write reference. Bits <28:26>
of the physical address are equal to zero, indicating a refer

ence within
the range of the main memory controller, and the bank num

ber of the
bank matches bits <25:22> of the physical address. The remainder of the
physical address (bits <21:2>) are used to determine the ro

w and column
of the desired longword within the bank. The byte mask lines are ignored on
read operations, but are used to select the proper byte(s) within a longword
during masked longword write references.

Architecture 75

The main memory controller accesses main memory on read/write

references in parallel with the address translation process in the second-level

cache. On CPU read references that hit the second-level cache, the memory

controller reads the longword from main memory, but the operation is

aborted before the data gets placed on the CDAL bus.

3.4.3 Main Memory Behavior on Writes

On unmasked CPU write references, the main memory controller operates

in dump and run mode, terminating the CDAL bus transaction after latching

the data, but before checking CDAL bus parity, calculating the ECC check

bits, and transfering the data to main memory. This allows main memory

to keep up with the second-level cache without impacting the CPU write

performance.

On unmasked DMA write references by the Q22-bus interface, the data

is latched, CDAL bus parity is not checked, the CDAL bus transaction is

terminated, the ECC check bits are calculated, and the data is transferred

to main memory.

On single masked CPU or DMA write references, CDAL bus parity is

checked (for CPU writes only), the referenced longword is read from main

memory, the ECC code checked, the check bits recalculated to account for

the new data byte(s), the CDAL transaction is terminated, and the longword

is rewritten.

On multiple transfer masked DMA writes, each longword write is

acknowledged, then the CDAL transaction is terminated.

3.4.4 Main Memory Error Status Register

The main memory status register (MEMCSR16), address 2008 0140 44, is

used to capture main memory error data. This register is unique to CPU

designs that use the CMCTL memory controller chip. See Figure 3-21.

31302928 987 6 0

l l l [PAGE ADDRESS OF ERROR l l l SYNDROME J

RDS ERROR DMA ERROR

RDS HIGH ERROR RATE CDAL BUS ERROR

CRD ERROR ECC ERROR SYNDROME

MA-1112-87

Figure 3-21 Format for MEMCSR16

76 Architecture

Data Bit Definition

<31>

<30>

<29>

<28:9>

RDS error. Read/write to clear. When set, an

uncorrectable ECC error occurred during a memory read

or masked write reference. Cleared by writing a 1 to it.

Writing a 0 has no effect. Undefined if MEMCSR16<7 >

(CDAL bus error) is set. Cleared on power-up and the

negation of DCOK when the processor is halted.

RDS high error rate. Read/write to clear. When set, an

uncorrectable ECC error occurred while the RDS error

log request bit was set, indicating multiple uncorrectable

memory errors. Cleared by writing a 1 to it. Writinga 0

has no effect. Undefined if MEMCSR16<7> (CDAL bus

error) is set. Cleared on power-up and the negation of

DCOK when the processor is halted.

CRD error. Read/write to clear. When set, a correctable

(single bit) error occurred during a memory read or

masked write reference. Cleared by writing a 1 to it.

Writing a 0 has no effect. Undefined if MEMCSR16<7>

(CDAL bus error) is set. Cleared by writing a 1, on power-

up and the negation of DCOK when the processor is

halted.

Page address of error. Read only. This field identifies the

page (512 byte block) containing the location that caused

the memory error. In the event of multiple memory

errors, the types of errors are prioritized and the page

address of the error with the highest priorty is captured.

Errors with equal priority do not overwrite previous

contents. Writes have no effect. Cleared on power-up and

the negation of DCOK when the processor is halted.

The types of error conditions follow in order of priority.

e CDAL bus parity errors during a CPU write reference,
as logged by the CDAL bus error bit.

e Uncorrectable ECC errors during a CPU or DMA read
or masked write reference, as logged by the RDS error

log bit.

e (Correctable ECC errors during a CPU or DMA read or

masked write reference, as logged by CRD error bit.

Architecture 77

Data Bit Definition

<8>

<7>

<6:0>

DMA error. Read/write to clear. When set, an error

occurred during a DMA read or write reference. Cleared

by writing a 1 to it. Writing a 0 has no effect. Cleared on

power-up and the negation of DCOK when the processor

is halted.

CDAL bus error. Read/write to clear. When set, a CDAL

bus parity error occurred on a CPU write reference.

Cleared by writing a 1 to it. Writing a 0 has no effect.
Cleared on power-up and the negation of DCOK when the

processor is halted.

Error syndrome. Read only. This field stores the error

syndrome. A nonzero syndrome indicates a detectable

error has occurred. A unique syndrome is generated for

each possible single bit (correctable) error. A list of these
syndromes and their associated single bit errors is given in

Table 3-13. Any nonzero syndrome that is not contained

in Table 3-13 indicates a multiple bit (uncorrectable)

error has occurred. This field handles multiple errors in

the same manner as MEMCSR16<28:9>. Cleared on

power-up and the negation of DCOK when the processor

is halted.

Table 3-13 lists the error syndromes.

Table 3-13 Error Syndromes

Syndrome <6:0> Bit Position in Error

0000000 No error detected

Data bits (0 to 32 decimal)

1011000

0011100

0011010

1011110

0011111

1011011

1011101

0011001

1101000

0101100

0

O

W
0

N

U
l

W
I
N

=

78 Architecture

Table 3-13 (Cont.) Error Syndromes

Syndrome < 6:0> Bit Position in Error

0101010

1101110

0101111

1101011

1101101

0101001

1110000

0110100

0110010

1110110

- 0110111

1110011

1110101

0110001

0111000

1111100

1111010

0111110

1111111

0111011

0111101

1111001

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Check bits (32 to 38 decimal)

0000001

0000010

0000100

0001000

0010000

0100000

1000000

0000111

All others

32

33

34

35

36

37

38

Result of incorrect check bits written on detection of a CDAL

parity error.

Multibit errors

Architecture 79

3.4.5 Main Memory Control and Diagnostic Status

Register

The main memory control and diagnostic status register (MEMCSR17),

address 2008 0144 , is used to control the operating mode of the main

memory controller as well as to store diagnostic status information. This
register is unique to CPU designs that use the CMCTL memory controller

chip. See Figure 3-22.

1312111098 7 6 5 4 3 2 1 0

[e | |

CRD INTERRUPTENABLE

FORCE REFRESH REQUEST

ERROR DETECT DISABLE

DIAGNOSTIC CHECK MODE

CHECK BITS

MA-1122-87

Figure 3-22 Format for MEMCSR17

Data Bit Definition

<31:13> Unused. Reads as zero must be written as zero.

<12> CRD interrupt enable. Read/write. When cleared, single-

bit errors are corrected by the ECC logic, but no interrupt

is generated. When set, single-bit errors are corrected by

the ECC logic and they cause an interrupt to be generated

at IPL 1A with a vector of 54 15 . This bit has no effect

on the capturing of error information in MEMCSR16,

or on the reporting of uncorrectable errors. Cleared on

power-up and the negation of DCOK when the processor

is halted.

80 Architecture

Data Bit Definition

<11>

<10>

<9:8>

<7>

Force refresh request. Read/write. When cleared, the

refresh control logic operates in normal mode (refresh

every 10.26 us). When set, one memory refresh operation

occurs immediately after the MEMCSR write reference

that set this bit. Setting this bit provides a mechanism

for speeding up the testing of the refresh logic during

manufacturing test of the controller chip. This bit is

cleared by the memory controller upon completion of the

refresh operation. Cleared on power-up and the negation

of DCOK when the processor is halted.

Memory error detect disable. Read/write. When set, error

detection and correction (ECC) is disabled, so all memory

errors go undetected. When cleared, error detection,

correction, state capture and reporting (via MEMCSR16) is

enabled. Cleared on power-up and the negation of DCOK

when the processor is halted.

Unused. This field reads as zero and must be written as

Zero.

Diagnostic check mode. Read/write. When set, the

contents of MEMCSR17<6:0> are written into the

seven ECC check bits of the location (even if a CDAL

- parity error is detected) during a memory write reference.

When cleared, the seven check bits calculated by the ECC

generation logic are loaded into the seven ECC check bits

of the location during a write reference and a memory

read reference loads the state of the seven ECC check bits

of the location that was read into MEMCSR17<6:0>.

Cleared on power-up and the negation of DCOK when the

processor is halted.

NOTE: Diagnostic check mode is restricted to unmasked

memory write references. No masked write references are

allowed when diagnostic check mode is enabled.

Architecture 81

Data Bit Definition

<6:0> Check bits. Read/write. When the diagnostic check mode

bit is set, these bits are substituted for the check bits

that are generated by the ECC generation logic during

a write reference. When the diagnostic check mode bit

is cleared, memory read references load the state of

the seven ECC check bits of the location that was read

into MEMCSR16<6:0>. Cleared on power-up and the

negation of DCOK when the processor is halted.

3.4.6 Main Memory Error Detection and Correction

The KA650-AA main memory controller generates CDAL bus parity on CPU

read references, and checks CDAL bus parity on CPU write references.

The actions taken following the detection of a CDAL bus parity error depend
on the type of write reference.

For unmasked CPU write references, incorrect check bits are written to main

memory (potentially masking an as yet undetected memory error) along with

the data, and, an interrupt is generated at IPL 1D through vector 60 1¢ on the

next cycle and MCSR16<7 > is set. The incorrect check bits are determined

by calculating the seven correct check bits, and complementing the three

least significant bits.

For masked CPU write references, incorrect check bits are written to main

memory (potentially masking an as yet undetected memory error) along

with the data, unless an uncorrectable error is detected during the read

part, MEMCSR16<7> is set, and a machine check abort is initiated. If an

uncorrectable error is detected on the read part, no write operation takes

place. The incorrect check bits are determined by calculating the seven

correct check bits, and complementing the three least significant bits.

The memory controller protects main memory by using a 32-bit modified

hamming code to encode the 32-bit data longword with seven check bits.

This allows the controller to detect and correct single-bit errors in the data

field and detect single-bit errors in the check bit field and double-bit errors

in the data field. The most likely causes of these errors are failures in either

the memory array or the 50-pin cable.

Upon detecting a correctable error on a read reference or the read portion

of a masked write reference, the data is corrected (if it is in the data field),

before placing it on the CDAL bus, or back in main memory, an interrupt

is generated at IPL 1A through vector 54 14, bit <29> of MEMCSRI16 is

set, bits <28:9> of MEMCSR16 are loaded with the address of the page

containing the location that caused the error, and bits <6:0> are loaded

82 Architecture

with the error syndrome which indicates which bit was in error. If the error
was detected on a DMA reference, MEMCSR16<8> is also set.

NOTE: The corrected data is not rewritten to main memory, so the single bit error

remains there until rewritten by software.

Upon detecfing an uncorrectable error, the action depends on the type of
reference being performed.

On a demand read reference, the affected row of the first-level cache is

invalidated, bit <31> of MEMCSRI16 is set, bits <28:9> of MEMCSR16 are

loaded with the address of the page containing the location that caused the

error, and bits <6:0> are loaded with the error syndrome which indicates

that the error was uncorrectable and a machine check abort is initiated. If

the read was a local-miss, global- hit read, or a read of the Q22-bus map,

MEMCSR16<8> and DSER<4 > are also set, and DEAR<12:0> are loaded

with the address of the page containing the location that caused the error.

On a request read reference, the prefetch or fill cycle is aborted, but no

machine check occurs, bit <31> of MEMCSR16 is set, bits <28:9> of

MEMCSR16 are loaded with the address of the page containing the location

that caused the error, and bits <6:0> are loaded with the error syndrome

which indicates that the error was uncorrectable.

On the read part of masked write reference, bit <31> of MEMCSR16 is

set, bits <28:9> of MEMCSRI16 are loaded with the address of the page

containing the location that caused the error, and bits <6:0> are loaded

with the error syndrome which indicates that the error was uncorrectable

and a machine check abort is initiated.

On a DMA read reference, bit <31> and bit <8> of MEMCSRI16 are

set, bits <28:9> of MEMCSR16 are loaded with the address of the page

containing the location that caused the error, and bits <6:0> are loaded

with the error syndrome which indicates that the error was uncorrectable,

DSER<4> is set, DEAR<12:0> are loaded with the address of the page

containing the location that caused the error, BDAL <17:16 > are asserted on

the Q22- bus along with the data to notify the receiving device (unless it was

a map read by the Q22-bus interface during translation), and an interrupt is

generated at IPL 1D through vector 60 4.

On a DMA masked write reference, bit <31> and bit <8> of MEMCSR16

are set, bits <28:9> of MEMCSR16 are loaded with the address of the page

containing the location that caused the error, and bits <6:0> are loaded

with the error syndrome which indicates that the error was uncorrectable,

DSER<4> is set, DEAR<12:0> are loaded with the address of the page

containing the location that caused the error, IPCR<15> is set to notify the

initiating device, and an interrupt is generated at IPL 1D through vector 60

16-

Architecture 83

3.5 KA650-AA Console Serial Line

The console serial line provides the KA650-AA processor with a full duplex,
RS-423 EIA, serial line interface, which is also RS-232C compatible. The

only data format supported is 8-bit data with no parity and one stop bit.
The four internal processor registers (IPRs) that control the operation of the

console serial line are a superset of the VAX console serial line registers
described in the VAX Architecture Reference Manual.

3.5.1 Console Registers

There are four registers associated with the console serial line unit. They
are implemented in the SSC chip and are accessed as IPRs 32 ¢ to 35 qp.
Refer to Table 3-14. |

Table 3-14 Console Registers

IPR Number Register Name Mnemonic

32 Console receiver control/status RXCS

33 Console receiver data buffer RXDB

34 Console transmit control/status TXCS

35 Console transmit data buffer TXDB

3.5.1.1 Console Receiver Control/Status Register

The console receiver control/status register (RXCS), IPR 32, is used to control

and report the status of incoming data on the console serial line. See
Figure 3-23.

31 8765 0

UNUSED, RETURNS0 l] lo[o'olololfl

RX DONEI
RX IE

MA-1118-87

Figure 3-23 Console Receiver Control/Status Register

84 Architecture

Data Bit Definition

<31:8>

<7>

<6>

<5:0>

Unused. Read as zeros. Writes have no effect.

Receiver done (RX DONE). Read only. Writes have no

effect. This bit is set when an entire character has been

received and is ready to be read from the RXDB register.

This bit is automatically cleared when RXDB is read. It is

also cleared on power-up and the negation of DCOK when

the processor is halted.

Receiver interrupt enable (RX IE). Read/write. When set,

this bit causes an interrupt to be requested at IPL 14 with

an SCB offset of F8 if RX done is set. When cleared,

interrupts from the console receiver are disabled. This bit

is cleared on power-up and the negation of DCOK when

the processor is halted.

Unused. Read as zeros. Writes have no effect.

3.5.1.2 Console Receiver Data Buffer

The console receiver data buffer (RXDB), IPR 33, is used to buffer incoming

data on the serial line and capture error information. See Figure 3-24.

31 1615141312 1110 8 7 0

L : [L] o] ool |
ERR

OVR ERR

FRM ERR

RCV BRK

RECEIVED DATA BITS

MA-1118-87

Figure 3-24 Console Receiver Data Buffer

Architecture 85

Data Bit Definition

<31:16>

<15>

<14>

<12>

<11>

<10:8>

<7:0>

Unused. Always read as zero. Writes have no effect.

Error (ERR). Read only. Writes have no effect. This bit

is set if RBUF <14> or <13> is set. It is clear if these

two bits are clear. This bit cannot generate a program

interrupt. Cleared on power-up and the negation of

DCOK when the processor is halted.

Overrun error (OVR ERR). Read only. Writes have no

effect. This bit is set if a previously received character

was not read before being overwritten by the present

character. Cleared by reading the RXDB, on power-up and

the negation of DCOK when the processor is halted.

Framing error (FRM ERR). Read only. Writes have no

effect. This bit is set if the present character did not

have a valid stop bit. Cleared by reading the RXDB, on

power-up and the negation of DCOK when the processor

is halted.

NOTE: Error conditions remain present until the next

character is received, at which point, the error bits are

updated.

Unused. Reads as 0. Writes have no effect.

Received break (RCV BRK). Read only. Writes have no

effect. This bit is set at the end of a received character

for which the serial data input remained in the space

condition for 20 bit times. Cleared by reading the

RXDB, on power-up and the negation of DCOK when

the processor is halted.

Unused. Read as 0. Writes have no effect.

Received data bits. Read only. Writes have no effect.

These bits contain the last received character.

3.5.1.3 Console Transmitter Control/Status Register

The console transmitter control/status register (TXCS), internal processor

register 34, is used to control and report the status of outgoing data on the

console serial line. See Figure 3-25.

86 Architecture

31 8765 3210

TX RDY

TXIE

MAINT

XMIT BRK

MA-1120-87

Figure 3-25 Console Transmitter Control/Status Register

Data Bit Definition

<31:8>

<7>

<6>

<5:3>

<2>

<1>

<0>

Unused. Read as zeros. Writes have no effect.

Transmitter ready (TX RDY). Read only. Writes have no

effect. This bit is cleared when TXDB is loaded and set

when TXDB can receive another character. This bit is

set on power-up and the negation of DCOK when the

processor is halted.

Transmitter interrupt enable (TX IE). Read/write. When

set, this bit causes an interrupt to be requested at IPL 14

with an SCB offset of FC if TX RDY is set. When cleared,

interrupts from the console receiver are disabled. This bit

is cleared on power-up and the negation of DCOK when

the processor is halted.

Unused. Read as zeros. Writes have no effect.

Maintenance (MAINT). Read/write. This bit is used to

facilitate a maintenance self-test. When MAINT is set, the

external serial input is set to mark and the serial output is

used as the serial input. This bit is cleared on power-up

and the negation of DCOK when the processor is halted.

Unused. Read as zero. Writes have no effect.

Transmit break (XMIT BRK). Read/write. When this bit

is set, the serial output is forced to the space condition

after the character in TXB«7:0> is sent. While XMIT

BRK is set, the transmitter operates normally, but the

output line remains low. Thus, software can transmit

dummy characters to time the break. This bit is cleared on

power-up and the negation of DCOK when the processor

is halted. | |

Architecture 87

3.5.1.4 Console Transmitter Data Buffer

The console transmitter data buffer (TXDB), internal processor register 35,

is used to buffer outgoing data on the serial line. See Figure 3-26.

31 876543210

| |
TRANSMITTED DATA BITST

MA-1123-87

Figure 3-26 Console Transmitter Data Buffer

Data Bit Definition

<31:8> Unused. Writes have no effect.

<7:0> Transmitted data bits. Write only. These bits are used to

load the character to be transmitted on the console serial

line.

3.5.2 Break Response

The console serial line unit recognizes a break condition which consists of

20 consecutively received space bits. If the console detects a valid break

condition, the RCV BRK bit is set in the RXDB register. If the break was the

result of 20 consecutively received space bits, the FRM ERR bit is also set. If

- halts are enabled (HLT ENB asserted on the 20-pin connector), the KA650-

AA halts and transfers program control to ROM location 2004 0000 when

the RCV BRK bit is set. RCV BRK is cleared by reading RXDB. Another

mark followed by 20 consecutive space bits must be received to set RCV

BRK again.

3.5.3 Baud Rate

The receive and transmit baud rates are always identical and are controlled

by the SSC configuration register bits <14:12>.

The user selects the desired baud rate through the baud rate select signals

(BRS <2:0> L) which are received from an external 8-position switch via

the 20-pin connector mounted at the top of the module. The KA650-AA

firmware reads this code from boot and diagnostic register bits <6:4> and

loads it into SSC configuration register bits <14:12>. Operating systems

will not cause the baud rate to be transferred. The baud rate is only set at

power-up.

88 Architecture

Table 3-15 shows the baud rate select signal voltage levels (H or L), the

corresponding inverted code as readin the boot and diagnostic register bits

<6:4>, and the code that should be loaded into SSC conflguratlon register

bits <14:12>.

Table 3-15 Baud Rate Select

Baud Rate BRS «<2:0> BDR <6:4> SSC <14:12>

300 HHH 000 000

600 HHL 001 001

1200 HLH 010 010

2400 HLL 011 011

4800 LHH 100 100

9600 LHL 101 101

19200 LLH 110 110

38400 LLL 111 111

3.5.4 Console Interrupt Specifications

The console serial line receiver and transmitter both generate interrupts at

IPL 14. The receiver interrupts with a vector of F8 14, while the transmitter

interrupts with a vector of FC .

3.6 KA650-AA Time of Year Clock and Timers

The KA650-AA clocks include time of year clock (TODR) as defined in the

VAX Architecture Reference Manual, a subset interval clock (subset ICCS),

as defined in the VAX Architecture Reference Manual, and two additional

programmable timers modeled after the VAX standard interval clock.

3.6.1 Time of Year Clock

The KA650-AA time of year clock (TODR), internal processor register 27,

forms an unsigned 32-bit binary counter that is driven from a 100 hz

oscillator, so that the least significant bit of the clock represents a resolution

of 10 ms, with less than 0.0025 percent error. The register counts only when

it contains a nonzero value. This register is implemented in the SSC. See

Figure 3-27.

Architecture 89

N 0

TIME OF YEAR SINCE SETTING]

MA-1124-87

Figure 3-27 Time of Year Clock

The time of year clock is maintained during power failure by battery back-

up circuitry which interfaces, via the external connector, to a set of batteries
which are mounted on the H3600-SA cover (or the CPU distribution insert).
The TODR remains valid for greater than 162 hours when using the NiCad
battery pack (three batteries in series).

The SSC configuration register contains a battery low (BLO) bit which, if set

after initialization, the TODR is cleared, and remains at zero until software
writes a nonzero value into it.

NOTE: After writing a nonzero value into the TODR, software should clear the

BLO bit by writing a 1 to it.

3.6.2 Interval Timer

The KA650-AA interval timer (ICCS), internal processor register 24, is
implemented according to the VAX Architecture Reference Manual for subset
processors. The interval clock control/status register (ICCS) is implemented
as the standard subset of the standard VAX ICCS in the CVAX CPU chip,

while NICR and ICR are not implemented. See Figure 3-28.

31 7 65 0

{ MBZ leI MBZ l

MA~X1444—~87

Figure 3-28 Interval Timer

90 Architecture

Data Bit Definition

<31:7> Unused. Read as zeros, must be written as zeros.

<6> Interrupt enable (IE). Read/write. This bit enables and

disables the interval timer interrupts. When the bit is set,

an interval timer interrupt is requested every 10 ms with

an error of less than 0.01%. When the bit is clear, interval

timer interrupts are disabled. This bit is cleared on power-

up and the negation of DCOK when the processor is

halted.

<5:0> Unused. Read as zeros, must be written as zeros.

Interval timer requests are posted at IPL 16 with a vector of C0. The interval

timer is the highest priority device at this IPL.

3.6.3 Programmable Timers

The KA650-AA features two programmable timers. Although they are

modeled after the VAX standard interval clock, they are accessed as 1/O

space registers (rather than as internal processor registers) and a control

bit has been added which stops the timer upon overflow. If so enabled,

the timers interrupt at IPL 14 upon overflow. The interrupt vectors are

programmable and are set to 78 and 7C by the firmware.

Each timer is composed of four registers: timer n control register, timer n

interval register, timer n next interval register, and timer n interrupt vector

register, where n represents the timer number (0 or 1).

3.6.3.1 Timer Control Registers

The KA650-AA has two timer control registers, one for controlling timer

0 (TCRO), and one for controlling timer 1 (TCR1). TCRO is accessible at

address 2014 0100 14, and TCR1 is accessible at 2014 0110 4. These registers

are implemented in the SSC chip. See Figure 3-29.

3130

Architecture 91

8 7654

il IHIIHH

MA-1125-87

Figure 3-29 Timer Control Registers

Data Bit Definition

<31>

<30:8>

<7>

<6>

<5>

<4>

<3>

Error (ERR). Read/write to clear. This bit is set whenever

the timer interval register overflows and INT is already

set. Thus, the ERR indicates a missed overflow. Writing

a 1 to this bit clears it. Cleared on power-up and the

negation of DCOK when the processor is halted.

Unused. Read as zeros. Must be written as zeros.

INT. Read/write to clear. This bit is set whenever the

timer interval register overflows. If IE is set when INT is

set, an interrupt is posted at IPL 14. Writing a 1 to this bit

clears it. Cleared on power-up and the negation of DCOK

when the processor is halted.

IE. Read/write. When this bit is set, the timer interrupts

at IPL 14 when the INT bit is set. Cleared on power-up

and the negation of DCOK when the processor is halted.

SGL. Read/write. Setting this bit causes the timer interval

register to be incremented by 1 if the run bit is cleared. If

the run bit is set, then writes to the SGL bit are ignored.

This bit always reads as 0. Cleared on power-up and the

negation of DCOK when the processor is halted.

XFR. Read/write. Setting this bit causes the timer next

interval register to be copied into the timer interval

register. This bit is always read as 0. Cleared on power-up

and the negation of DCOK when the processor is halted.

Unused. Read as zeros. Must be written as zeros.

92 Architecture

Data Bit Definition

<2> STP. Read/write. This bit determines whether the timer

stops after an overflow when the run bit is set. If the

STP bit is set at overflow, the run bit is cleared by the

hardware at overflow and counting stops. Cleared on

power-up and the negation of DCOK when the processor

is halted.

<l> Unused. Read as zeros. Must be written as zeros.

<0> Run. Read/Write. When set, the timer interval register

is incremented once every microsecond. The INT bit

is set when the timer overflows. If the STP bit is set

at overflow, the run bit is cleared by the hardware

at overflow and counting stops. When the run bit is

clear, the timer interval register is not incremented

automatically. Cleared on power-up and the negation

of DCOK when the processor is halted.

3.6.3.2 Timer Interval Registers

The KA650-AA has two timer interval registers, one for timer 0 (TIR0), and

one for timer 1 (TIR1). TIRO0 is accessible at address 2014 0104 14, and TIR1

~ is accessible at 2014 0114 .

The timer interval register is a read only register containing the interval

count. When the run bit is 0, writing a 1 increments the register. When the

run bit is 1, the register is incremented once every microsecond. When

the counter overflows, the INT bit is set, and an interrupt is posted at

IPL 14 if the IE bit is set. Then, if the run and STP bits are both set, the

run bit is cleared and counting stops. Otherwise, the counter is reloaded.

The maximum delay that can be specified is approximately 1.2 hours.

This register is cleared on power-up and the negation of DCOK when the

processor is halted. See Figure 3-30.

31 0

[TIMER INTERVAL REGISTER i

MA-X1445—87

Figure 3-30 Timer Interval Register

Architecture 93

3.6.3.3 Timer Next Interval Registers

The KA650-AA has two timer next interval registers, one for timer 0 (TNIRO),

and one for timer 1 (TNIR1). TNIRO is accessible at address 2014 0108 ¢,

and TNIR1 is accessible at 2014 0118 1. These registers are implemented

in the SSC chip.

This read/write register contains the value which is written into the timer

interval register after overflow, or in response to a 1 written to the XFR bit.

This register is cleared on power-up and the negation of DCOK when the

processor is halted. See Figure 3-31.

31 0

| TIMER NEXT INTERVAL REGISTER

MA—-X1446~—~87

Figure 3-31 Timer Next Interval Register

3.6.3.4 Timer Interrupt Vector Registers

The KA650-AA has two timer interrupt vector registers, one for timer 0

(TIVRO0), and one for timer 1 (TIVR1). TIVRO is accessible at address 2014

010C 14, and TIVR1 is accessible at 2014 011C 4. These registers are

implemented in the SSC chip and are set to 78 and 7C respectively by

the resident firmware.

This read/write register contains the timer’s interrupt vector. Bits <31:10>

and <1:0> are read as 0 and must be written as 0. When TCRn<6> (IE)

and TCRn< 7> (INT) transition to 1, an interrupt is posted at IPL 14. When a
timer’s interrupt is acknowledged, the content of the interrupt vector register

is passed to the CPU, and the INT bit is cleared. Interrupt requests can also

be cleared by clearing either the IE or the INT bit. This register is cleared

on power-up and the negation of DCOK when the processor is halted. See

Figure 3-32.

K) 109 210

l MBZ INTERRUPT VECTOR.MBZ]

MA-1126-87

Figure 3-32 Timer Interrupt Vector Register

NOTE: Note that both timers interrupt at the same IPL (IPL 14) as the console

serial line unit. When multiple interrupts are pending, the console serial line has

priority over the timers, and timer 0 has priority over timer 1.

94 Architecture

3.7 KA650-AA Boot and Diagnostic Facility

The KA650-AA boot and diagnostic facility features two registers, two 28-

pin ROM sockets containing 128 Kbytes of EPROM, and 1 Kbyte of battery

backed-up RAM. The ROM and battery backed-up RAM may be accessed

via longword, word or byte references.

The KA650-AA CPU module populates the ROM sockets with 64 Kbytes

- of 16-bit ROM (or EPROM). This ROM contains the KA650-AA resident

firmware. If this ROM is replaced for special applications, the new ROM

must initialize and configure the board, provide halt and console emulation,

as well as provide boot diagnostic functionality.

3.7.1 Boot and Diagnostic Register

The boot and diagnostic register (BDR) is a byte-wide register located in the

VAX I/O page at physical address 2008 4004 1¢. It is implemented uniquely

on the KA650-AA. It can be accessed by KA650-AA software, but not by

external Q22-bus devices. The BDR allows the boot and diagnostic ROM

programs to read various KA650-AA configuration bits. Only the low byte of

the BDR should be accessed. Bits <31:8> are undefined. See Figure 3-33.

3 876 43210

[UNDEFINED l l } []

HLT ENB

BRS CD

CPU CD

BDG CD

MA-—-X1441-87

Figure 3-33 Boot and Diagnostic Register

Architecture 95

Data Bit Definition

<31:8>

<7>

<6:4>

<3:2>

Undefined. Should not be read or written.

Halt Enable (HLT ENB). Read only. Writes have no

effect. This bit reflects the state of pin 15 (HLT ENB

L) of the 20-pin connector. The assertion of this signal

enables the halting of the CPU upon detection of a console

break condition. On a power-up, the KA650-AA resident

firmware reads the HLT ENB bit to decide whether to

enter the console emulation program (HLT ENB set) or

to boot the operating system (HLT ENB clear). On the

execution of a halt instruction while in kernel mode, the

KA650-AA resident firmware reads the HLT ENB bit to

decide whether to enter the console emulation program

(HLT ENB set) or to restart the operating system (HLT

ENB clear).

Baud rate select (BRS CD) <2:0>. Read only. Writes have

no effect. These three bits originate from pins <19:17>

(BRS<2:0>) of the 20-pin connector. They reflect the

setting of the baud rate select switch on the H3600-SA

cover (or on the CPU distribution insert). These bits are

read only on power-up.

BDR < 6:47 > Baud Rate

000 300

001 600

010 - 1200

011 2400

100 4800

101 9600

110 19200

111 38400

CPU code (CPU CD) <1:0>. Read only. Writes have

no effect. These two bits originate from connector pins

<5:4> (CPU CD<1:0>).

96 Architecture

Data Bit Definition

CPU CD <1:0> Configuration

00 Normal operation

01 Reserved

10 Reserved

11 Reserved

<1:0> Boot and diagnostic code (BDG CD) <1:0>. Read only.

Writes have no effect. This 2-bit code reflects the status of

configuration and display connector pins <14:13> (BDG

CD<1:0>). The KA650-AA ROM programs use BDG CD

<1:0> to determine the power-up mode as follows.

BDG CD <1:0> Power-Up Mode

00 Run

01 Language inquiry

10 Test

11 Manufacturing

3.7.2 Diagnostic LED Register

The diagnostic LED register (DLEDR), address 2014 0030 4¢, is implemented

in the SSC chip and contains four read/write bits that control the external

LED display. A 0 in a bit turns on the corresponding LED. All four bits

are cleared on power-up and the negation of DCOK when the processor is

halted to provide a power-up lamp test. See Figure 3-34.

31 43210

MBZ !DSPL]

MA—X1447-87

Figure 3-34 Diagnostic LED Register

Architecture 97

Data Bit Definition

<31:4> Unused. Read as zeros. Must be written as zeros.

<3:.0> Display (DSPL). Read/write. These four bits update an
external LED display. Writing a 0 to a bit turns on the

corresponding LED. Writing a 1 to a bit turns off its LED.

The display bits clear (all LEDs are on) on power-up and

the negation of DCOK when the processor halts.

3.7.3 ROM Memory

The KA650-AA supports up to 128 Kbytes of ROM memory for storing

code for board initialization, VAX standard console emulation, board self-

tests, and boot code. ROM memory may be accessed via byte, word and

longword references. ROM accesses take 1300 ns. ROM is organized as a

64 k by 8-bit array for one 64 Kbyte ROM, as a 32 k by 16-bit array for two
32 Kbyte ROMs, and as a 64 k by 16-bit array for two 64 Kbyte ROMs (ship

configuration). CDAL bus parity is neither checked nor generated on ROM

references. /

3.7.3.1 ROM Socket |

The KA650-AA provides two ROM sockets which contain two 64 k by

EPROMs.

3.7.3.2 ROM Address Space

The entire 128 Kbyte boot and diagnostic ROM may be read from either

the 128 Kbyte halt mode ROM space (hex addresses: 2004 0000 ¢¢ through

2005 FFFF 4;), or the 128 Kbyte run mode ROM space (hex addresses: 2006

0000 14 through 2007 FFFF 14. Note that the run mode ROM space reads
exactly the same ROM code as the halt mode ROM space.

Writes to either of these address spaces results in a machine check.

Any I-stream read from the halt mode ROM space places the KA650-AA in

halt mode. The Q22-bus SRUN signal is deasserted causing the front panel
run light to go out and the CPU is protected from further halts.

Any I-stream read which does not access the halt mode ROM space,

including reads from the run mode ROM space, places the KA650-AA in

run mode. The Q22-bus SRUN signal is toggled causing the front panel

run light to come on and the CPU can be halted by asserting the Q22-bus

BHALT line or by generating a break condition on the console serial line if
BDR<7> (halt enable) is set.

Writes and D-stream reads to any address space have no effect on run

mode/halt mode status.

98 Architecture

3.7.3.3 KA650-AA Resident Firmware Operation

The KA650-AA CPU module populates the ROM socket with 128 Kbyte

of 16-bit ROM (or EPROM). This ROM contains the KA650-AA resident

firmware which can be entered by transferring program control to location

2004 0000 4. |

Section 3.1.5 lists the various halt conditions which cause the CVAX CPU

to transfer program control to location 2004 0000 4.

When running, the KA650-AA resident firmware provides the services

expected of a VAX-11 console system. In particular, the following services

are available.

* Automatic restart or bootstrap following processor halts or initial power-

up.

* Aninteractive command language allowing the user to examine and alter

the state of the processor.

® Diagnostic tests executed on power-up that check out the CPU, the

memory system and the Q22-bus map.

® Support of video or hardcopy terminals as the console terminal as well

as support of VCB01-based bit-mapped terminals.

Power-Up Modes

The boot and diagnostic ROM programs use bits <1:0> of the BDR

(Section 3.7.1) to determine the power-up modes as follows.

Code Mode

00 Run (factory setting). If the console terminal supports the multinational

character set (MCS), the user will be prompted for language only if the

time-of-year clock battery back-up has failed. Full startup diagnostics are

run.

01 Language inquiry. If the console terminal supports MCS, the user will

be prompted for language on every power-up and restart. Full startup

diagnostics are run.

10 Test. ROM programs run wrap-around serial line unit (SLU) tests.

11 Manufacturing. To provide for rapid startup during certain

manufacturing test procedures, the ROM programs omit the power-up

memory diagnostics and set up the memory bit map on the assumption

that all available memory is functional.

Architecture 99

3.7.4 Battery Backed-up RAM

The KA650-AA contains 1 Kbyte of battery backed-up static RAM, for use
as a console scratchpad. The power for the RAM is provided via pins 10

(BTRY VCC) and 12 (GND) of the 20-pin connector.

This RAM supports byte, word and longword references. Read operations

take 700 ns to complete while write operations require 600 ns.

The RAM is organized as a 256 by 32-bit (one longword) array. The array

appears in a 1 Kbyte block of the VAX I/O page at addresses 2014 0400

through 2014 O7FF.

This array is not protected by parity, and CDAL bus parity is neither checked

nor generated on reads or writes to this RAM.

3.7.5 KA650-AA Initialization

The VAX architecture defines three kinds of hardware initialization.

* Power-up initialization

¢ Processor initialization

e J/O bus initialization

3.7.5.1 Power-Up Initialization

Power-up initialization is the result of the restoration of power and includes a

hardware reset, a processor initialization, an I/O bus initialization, as well as

the initialization of several registers defined in the VAX Architecture Reference

Manual.

3.7.5.2 Hardware Reset

A KA650-AA hardware reset occurs on power-up and the negation of DCOK

‘when the processor is halted. A hardware reset causes the hardware halt

procedure (Section 3.1.5.6) to be initiated with a halt code of 03. It also

initializes some IPRs and most I/O page registers to a known state. Those

IPRs that are affected by a module reset are noted in Section 3.1.1.3. The

effect a hardware reset has on 1/O space registers is documented in the

description of the register.

100 Architecture

3.7.5.3 /O Bus Initialization

An I/O bus initialization occurs on power-up, the negation of DCOK when

the processor is halted, or as the result of a MTPR to IPR 55 (IORESET) or

console UNJAM command.

I[/O Bus Reset Register

The I/0O bus reset register (IORESET), internal processor register 55, is

implemented in the SSC chip. A MTPR of any value to IORESET causes an

I/O bus initialization.

3.7.5.4 Processor Initialization

A processor initialization occurs on power-up, the negation of DCOK when

the processor is halted, as the result of a console INITIALIZE command,

and after a halt caused by an error condition.

In addition to initializing those registers defined in the VAX Architecture

Reference Manual, the KA650-AA firmware also configures main memory,

the local I/O page, and the Q22-bus map during a processor initialization.

3.8 KA650-AA Q22-bus Interface

The KA650-AA includes a Q22-bus interface implemented via a single VLSI

chip called the CQBIC. It contains a CDAL bus to Q22-bus interface that

supports the following functions.

e A programmable mapping function (scatter-gather map) for translating

22-bit, Q22-bus addresses into 29-bit CDAL bus addresses that allows

any page in the Q22-bus memory space to be mapped to any page in

main memory.

e A direct mapping function for translating 29-bit CDAL addresses in the

local Q22-bus address space and local Q22-bus I/O page into 22-bit,

Q22-bus addresses.

* Masked and unmasked longword reads and writes from the CPU to the

Q22-bus memory and I/O space and the Q22-bus interface registers.

Longword reads and writes of the local Q22-bus memory space are

buffered and translated into two-word, block mode, transfers on the

Q22-bus. Longword reads and writes of the local Q22-bus I/O space are

buffered and translated into two, single-word transfers on the Q22-bus.

e Up to 16-word, block mode, writes from the Q22-bus to main memory.

These words are buffered then transferred to main memory using two

asynchronous DMA octaword transfers. For block mode writes of less

than sixteen words, the words are buffered and transferred to main

Architecture 101

memory using the most eff1c1ent combination of octa.word quadword,

and longword asynchronous DMA transfers.

The maximum write bandwidth for block mode references is 3.3 Mbytes

per second. Block mode reads of main memory from the Q22-bus cause

the Q22-bus interface to perform an asynchronous DMA quadword read

of main memory and buffer all four words, so that on block mode reads,

the next three words of the block mode read can be delivered without

any additional CDAL bus cycles. The maximum read bandwidth for

Q22-bus block mode references is 2.4 Mbytes per second. Q22-bus

burst mode DMA transfers result in single-word reads and writes of

main memory.

e Transfers from the CPU to the local Q22-bus memory space, that result

in the Q22-bus map translating the address back into main memory

(local-miss, global-hit transactions).

The Q22-bus interface contains several registers for Q22-bus control and

configuration, and error reporting.

The interface also contains Q22-bus interrupt arbitration logic that

recognizes Q22-bus interrupt requests BR7-BR4 and translates them into

CPU interrupts at levels 17 to 14.

The Q22-bus interface detects Q22-bus no sack timeouts, Q22-bus interrupt

acknowledge timeouts, (Q22-bus nonexistent memory timeouts, main

memory errors on DMA accesses from the Q22-bus and Q22-bus parity

errors.

3.8.1 Q22-bus to Main Memory Address Translation

On DMA references to main memory, the 22-bit, Q22-bus address must be

translated into a 29-bit main memory address. This translation process is

performed by the Q22-bus interface by using the Q22-bus map. This map

contains 8192 mapping registers, (one for each page in the Q22-bus memory

space), each of which can map a page (512 bytes) of the Q22-bus memory

address space into any of the 128 k pages in main memory. Since local I/O

space addresses cannot be mapped to Q22-bus pages, the local I/O page is

inaccessible to devices on the Q22-bus.

Q22-bus addresses are translated to main memory addresses as follows.

See Figure 3-35.

102 Architecture

31 9 8 0

I Q22-bus ADDRESS

|

EXTRACT TO SELECT | | |
MAP REGISTER

e e e e J | |-

; ‘ | |
|

| |
| \ |

| , 31 0 l

- — — fl] MAPPING REGISTER :

|19 OI |

| | |

| | |

| | |

| |
28 9 | 8 0

PHYSICAL ADDRESS OF MAIN MEMORY

MA-1145-87

Figure 3-35 Q22-bus to Main Memory Address Translation

At power-up time, the Q22-bus map registers, including the valid bits, are

undefined. External access to main memory is disabled as long as the

interprocessor communication register LM EAE bit is cleared. The Q22-

bus Interface monitors each Q22-bus cycle and responds if the following

conditions are met.

e The interprocessor communication register LM EAE bit is set.

e The valid bit of the selected mapping register is set.

* During read operations, the mapping register must map into existent

main memory, or a Q22-bus timeout occurs. (During write operations,

the Q22-bus interface returns Q22-bus BRPLY before checking for

existent local memory. The response depends only on conditions 1

and 2 above).

NOTE: In the case of local-miss, global-hit, the state of the LM EAE bit is ignored.

If the map cache does not contain the needed Q22-bus map register, then

the Q22-bus interface performs an asychronous DMA read of the Q22-bus

map register before proceeding with the Q22-bus DMA transfer.

Architecture 103

3.8.1.1 Q22-bus Map Registers

The Q22-bus map contains 8192 registers (QMRs) that control the mapping

of Q22-bus addresses into main memory. Each register maps a page of the

Q22-bus memory space into a page of main memory. These registers are

implemented in a 32 Kbyte block of main memory, but are accessed through

the CQBIC chip via a block of addresses in the 1/O page.

The local I/O space address of each register was chosen so that register

address bits <14:2> are identical to Q22-bus address bits <21:9> of the

Q22-bus page which the register maps. Table 3-16 lists the Q22-bus map

registers.

Table 3-16 Q22-bus Map Registers

QMR Q22-bus Addresses Q22-bus Addresses

Address Mapped (Hex) Mapped (Octal)

2008 8000 00 0000 through 00 O1FF 00 000 000 through 00 000 777

2008 8004 00 0200 through 00 O3FF 00 001 000 through 00 001 777

2008 8008 00 0400 through 00 OSFF 00 002 000 through 00 002 777

2008 800C 00 0600 through 00 O7FF 00 003 000 through 00 003 777

2008 8010 00 0800 through 00 09FF 00 004 000 through 00 004 777

2008 8014 00 0OA0O through 00 OBFF 00 005 000 through 00 005 777

2008 8018 00 0C00 through 00 ODFF 00 006 000 through 00 006 777

2008 801C 00 OECO through 00 OFFF 00 007 000 through 00 007 777

2008 FFFO 3F F800 through 3F FIFF 17 774 000 through 17 774 777

2008 FFF4 3F FAQO through 3F FBFF 17 775 000 through 17 775 777

2008 FFF8 3F FCO00 through 3F FDFF 17 776 000 through 17 776 777

2008 FFFC 3F FEOO through 3F FFFF | 17 776 000 through 17 777 777

The Q22-bus map registers (QMRs) have the format shown in Figure 3-36.

31 30 20 19 0

IVl MBZ { A28 — A9

MA—X1450—~87

Figure 3-36 Q22-bus Map Registers

104 Architecture

Data Bit Definition

<31> Valid (V). Read/write. When a Q22-bus map register

is selectedby bits <21:9> of the Q22-bus address, the

valid bit determines whether mapping is enabled for

that Q22-bus page. If the valid bit is set, the mapping is

enabled, and Q22-bus addresses within the page controlled

by the register are mapped into the main memory page

determined by bits <28:9>. If the valid bit is clear, the

mapping register is disabled, and the Q22-bus interface

does not respond to addresses within that page. This bit is

undefined on power-up and the negation of DCOK when

the processor is halted.

<30:20> Unused. These bits always read as zero and must be

written as zero.

<19:0> Address bits <28:9>. Read/write. When a Q22-bus map

register is selected by a Q22-bus address, and if that

register’s valid bit is set, then these 20 bits are used as

main memory address bits <28:9>. Q22-bus address bits

<8:0> are used as main memory address bits <8:0>.

These bits are undefined on power-up and the negation of

DCOK when the processor is halted.

3.8.1.2 Accessing the Q22-bus Map Registers

Although the CPU accesses the Q22-bus map registers via aligned, masked

longword references to the local I/O page (addresses 2008 8000 ¢4 through

2008 FFFC 1), the map actually resides in a 32 Kbyte block of main memory.

The starting address of this block is controlled by the contents of the Q22-

bus map base register. The Q22-bus interface also contains a 16-entry, fully

associative, Q22-bus map cache to reduce the number of main memory

accesses required for address translation.

NOTE: The system software must protect the pages of memory that contain the

Q22-bus map from direct accesses that corrupt the map or cause the entries in

the Q22- bus map cache to become stale. Either of these conditions results in the

incorrect operation of the mapping function.

When the CPU accesses the Q22-bus map through the local I/O page

addresses, the Q22-bus interface reads or writes the map in main memory.

The Q22-bus interface does not have to gain Q22-bus mastership when

accessing the Q22-bus map. Since these addresses are in the local 1/O

space, they are not accessible from the Q22-bus.

Architecture 105

On a Q22-bus map read by the CPU, the Q22-bus interface decodes the local

I/O space address (2008 8000 through 2008 FFFC). If the register is in the

Q22-bus map cache, the Q22-bus interface internally resolves any conflicts

between CPU and Q22-bus transactions (if both are attempting to access the
(Q22-bus map cache entries at the same time), then return the data. If the

map register is not in the map cache, the Q22-bus interface forces the CPU

to retry, acquire the CDAL bus, perform an asynchronous DMA read of the

map register. On completion of the read, the CPU is provided with the data

when its read operation is retried. A map read by the CPU does not cause

the register that was read to be stored in the map cache.

On a Q22-bus map write by the CPU, the Q22-bus interface latches the

data, then on the completion of the CPU write, acquires the CDAL bus

and performs an asynchronous DMA write to the map register. If the map

register is in the Q22-bus map cache, then the CamValid bit for that entry

will be cleared to prevent the entry from becoming stale. A Q22-bus map

write by the CPU does not update any cached copies of the Q22-bus map

register.

3.8.1.3 Q22-bus Map Cache

To speed up the process of translating Q22-bus address to main memory

addresses, the Q22-bus interface utilizes a fully associative, 16-entry, Q22-

bus map cache, which is implemented in the CQBIC chip.

If a DMA transfer ends on a page boundary, the Q22-bus interface prefetchs

the mapping register required to translate the next page and load it into the

cache, before starting a new DMA transfer. This allows Q22-bus block mode

DMA transfers that cross page boundaries to proceed without delay. The

replacement algorithm for updating the Q22-bus map cache is FIFO.

The cached copy of the Q22-bus map register is used for the address

translation process. If the required map entry for a Q22-bus address (as

determined by bits <21:9> of the Q22-bus address) is not in the map cache,

then the Q22-bus interface uses the contents of the map base register to

access main memory and retrieve the required entry. After obtaining the

entry from main memory, the valid bit is checked. If it is set, the entry is

stored in the cache and the Q22-bus cycle continues.

The format of a Q22-bus map cache entry is as shown in Figure 3-37.

33 32 20 19 0

[CV[Q22-bus ADR<21:9> A28 — A9 J

MA-X1451-87

Figure 3-37 Q22-bus Map Cache Entry

106 Architecture

Data Bit Definition

<33>

<32:20>

<19:0>

CamValid. When a mapping register is selected by a Q22-

bus address, the CamValidbit determines whether the

cached copy of the mapping register for that address is

valid. If the CamValid bit is set, the mapping register is

enabled, and addresses within that page can be mapped.

If the CamValid bit is clear, the Q22-bus interface must

read the map in local memory to determine if the mapping

register is enabled. This bit is cleared on power-up, the

negation of DCOK when the processor is halted, by setting

the Q22-bus map cache invalidate all (QMCIA) bit in the

interprocessor communication register, on writes to IPR 55

(IORESET), by a write to the Q22-bus map base register,

or by writing to the QMR that is being cached.

QBUS ADR. These bits contain the Q22-bus address

bits <21:9> of the page that this entry maps. This is

the content addressable field of the 16-entry cache for

determining if the map register for a particular Q22-bus

address is in the map cache. These bits are undefined on

power-up.

Address bits (A28-A9). When a mapping register is selected

by a Q22-bus address, and if that register’'s CamValid bit

is set, then these 20 bits are used as main memory address

bits 28 through 9. Q22-bus address bits 8 through 0 are

used as local memory address bits 8 through 0. These bits

are undefined on power-up.

3.8.2 CDAL Bus to Q22-bus Address Translation

CDAL Bus addresses within the local Q22-bus I/O space, addresses 2000

0000 16 through 2000 1FFF 44, are translated into Q22-bus I/O space

addresses by using bits <12:0> of the CDAL address as bits <12:0> of

the Q22-bus address and asserting BBS7. Q22-bus address bits <21:13>

are driven as zeros.

CDAL bus addresses within the local Q22-bus memory space, addresses

3000 0000 14 through 303F FFFF ¢4, are translated into Q22-bus memory

space addresses by using bits <21:0> of the CDAL address as bits <21:0>

of the Q22-bus address.

Architecture 107

3.8.3 Interprocessor Communication Register

The interprocessor communication register (IPCR), address 2000 1F40 4, is

a 16-bit register which resides in the Q22-bus I/O page address space and

can be accessed by any device which can become Q22-bus master (including

the KA650-AA itself). The IPCR, implemented in the CQBIC chip, is byte

accessible, meaning that a write byte instruction can write to either the low

or high byte without affecting the other byte.

The IPCR also appears at Q22-bus address 17 777 500. See Figure 3-38.

151413 98765 4 10

| | | L] x|
DMA QME!
QMCIA

RESERVED

MBZ

RESERVED

LM EAE

RESERVED

MA—-X1452-87

Figure 3-38 Interprocessor Communication Register

Data Bit Definition

<15>

<14>

<13:9>

DMA QME. DMA Q22-bus address space memory error.

Read/write to clear. Indicates that an error occurred when

a Q22-bus device was attempting to read main memory.

It sets if DMA system error register bit DSER<4> (main

memory error) sets, or the CDAL bus timer expires. The

main memory error bit indicates that an uncorrectable

error occurred when an external device (or CPU) was

accessing the KA650-AA local memory. The CDAL bus

timer expiring indicates that the memory controller did

not respond when the Q22-bus interface initiated a DMA

transfer. Cleared by writing a 1 to it, on power-up by the

negation of DCOK when the processor halts, by writes to

IPR 55 (IORESET), and whenever DSER<4> clears.

Q22-bus invalidate all (QMCIA). Write only. Writing a 1

to this bit clears the CamValid bits in the cached copy of

the map. Always reads as zero. Writing a 0 has no effect.

Unused. Read as zeros. Must be written as zeros.

108 Architecture

Data Bit Definition

<8> Reserved for Digital use.

<7> Unused. Read as zero. Must be written as zero.

<6> Reserved for Digital use.

<5> Local memory external access enable (LM EAE). Read/write

when the KA650-AA is Q22-bus master. Read only when

another device is Q22-bus master. Enables external access

to local memory when set (via the Q22-bus map). Cleared

on power-up and by the negation of DCOK when the

processor halts.

<4:1> Unused. Read as zeros. Must be written as zeros.

<0> Reserved for Digital use.

3.8.4 Q22-bus Interrupt Handling

The KA650-AA responds to interrupt requests BR7-4 with the standard (Q22-

bus interrupt acknowledge protocol (DIN followed by IAK). The console

serial line unit, the programmable timers, and the interprocessor doorbell

request interrupts at IPL 14 and have priority over all Q22-bus BR4 interrupt

requests. After responding to any interrupt request BR7-4, the CPU sets

the processor priority to IPL 17. All BR7-4 interrupt requests are disabled

unless software lowers the interrupt priority level.

Interrupt requests from the KA650-AA interval timer are handled directly by

the CPU. Interval timer interrupt requests have a higher priority than BR6

interrupt requests. After responding to an interval timer interrupt request,

the CPU sets the processor priority to IPL 16. Thus, BR7 interrupt requests

remain enabled.

3.8.5 Configuring the Q22-bus Map

The KA650-AA implements the Q22-bus map in an 8 k longword (32 Kbytes)

block of main memory. This map must be configured by the KA650-AA

firmware during a processor initialization by writing the base address of the

uppermost 32 Kbytes block of good main memory into the Q22-bus map

base register. The base of this map must be located on a 32 Kbyte boundary.

NOTE: This 32 Kbyte block of main memory must be protected by the system

software. The only access to the map should be through local I/O page addresses

2008 8000 1¢ through 2008 FFFC 1.

Architecture 109

3.8.5.1 Q22-bus Map Base Address Register

The Q22-bus map base address register (QBMBR), address 2008 0010 1,

controls the main memory location in the 32 Kbyte block of Q22-bus map

registers.

This Read/write register is accessed by the CPU on a longword boundary

only. Bits <31:29,14:0> are unused and should be written as zero and

returns zero when read.

A write to the map base register flushes the Q22-bus map cache by clearing

the CamValid bits in all the entries.

The contents of this register are undefined on power-up and the negation of

DCOK when the processor halts. Itis not affected by BINIT being asserted

on the Q22-bus. See Figure 3-39.

31 29 28 15 14 0

[o l MAP BASE l MBZ J

Figure 3-39 Q22-bus Map Base Address Register

3.8.6 System Configuration Register

The system configuration register (SCR), address 2008 0000 14, contains a
BHALT enable bit and a power ok flag.

The system configuration register (SCR) is longword, word, and byte

accessible. Programmable option fields clear on power-up and by the

negation of DCOK when the processor halts. The format of the SCR register

is shownin Figure 3-40.

31 15141312111098 7 6 5 4 3 2 1 O

I I N NO I
POK]
BHALT ENB

RESERVED

ACTION ON DCOK NEGATION

RESERVED

MUST BE ZERO

MA—X1454-—-87

Figure 3-40 System Configuration Register

110 Architecture

Data Bit Definition

<31:16>

<15>

<14>

<13:11>

<10>

<9:8>

<7>

<6:4>

<3:1>

<0>

Unused. Read as zero. Must be written as zero.

Power ok (POK). Read only. Writes have no effect. Set if

the Q22-bus BPOK signal asserts and clears if it negates.

Cleared on power-up and by the negation of DCOK when

the processor halts.

BHALT enable (BHALT EN). Read/write. Controls the

effect the Q22-bus BHALT signal has on the CPU. When

set, asserting the Q22-bus BHALT signal halts the CPU

and asserts DSER<15>. When cleared, the Q22-bus

BHALT signal has no effect. Cleared on power-up and by

the negation of DCOK when the processor halts.

Unused. Read as zero. Must be written as zero.

Reserved for Digital use.

Unused. Read as zero. Must be written as zero.

Action on DCOK negation. Read/write. When cleared, the

Q22-bus interface asserts SYSRESET causing a hardware

reset of the board and control to be passed to the resident

firmware via the hardware halt procedure with a halt code

of 3 when DCOK is negated on the Q22-bus. When set,

the Q22-bus interface asserts HALTIN (causing control to

be passed to the resident firmware via the hardware halt

procedure with a halt code of 2) when DCOK is negated

on the Q22-bus. Cleared on power-up and the negation of

DCOK when the processor halts.

Unused. Read as zero. Must be written as zero.

Reserved for Digital use.

Unused. Read as 0. Must be written as zero.

3.8.7 DMA System Error Register

The DMA system error register (DSER), address 2008 0004 ¢, is one of three

registers associated with Q22-bus interface error reporting. These registers

are located in the local VAX I/O address space and can only be accessed by

the local processor.

The DMA system error register is implemented in the CQBIC chip, and,

logs main memory errorson DMA transfers, Q22-bus parity errors, Q22-

bus nonexistent memory errors, and Q22-bus no grant errors.

Architecture 111

The Q22-bus error address register contains the address of the page in
Q22-bus space which caused a parity error during an access by the local

processor. The DMA error address register contains the address of the

page in local memory which caused a memory error during an access by an
external device or the processor during a local-miss global-hit transaction.
An access by the local processor which the Q22-bus interface maps into

main memory provides error status to the processor when the processor
does a retry for a read local-miss global-hit, or by an interrupt in the case
of a local-miss global-hit write.

The DSER is a longword, word, or byte accessable read/write register
available to the local processor. The bits in this register are cleared to 0
on power-up by the negation of DCOK when the processor halts, and by
writes to IPR 55 (IORESET). All bits are set to 1 to record the occurance of
an event. They are cleared by writing a 1. Writing zeros has no effect. See
Figure 3-41.

31 ' 15141312111098 7 6 5 4 3 2 1 O

[e ljll x| o[[]]I
Q22—bus BHALT DETECTED

Q22—bus DCOK NEGATION DETECTED

Q22—bus NXM

MUST BE ZERO

Q22—-bus PE

MAIN MEMORY ERROR

LOST ERROR BIT

NO GRANT

MUST BE ZERO

DMA NXM

MA~—X1455--87

Figure 3—41 DMA System Error Register

112 Architecture

Data Bit Definition

<31:16>

- <15>

<14>

<13:8>

<7>

<6>

<5>

<4>

Unused. Read as zero. Must be written as zero.

Q22-bus BHALT detected. Read/write to clear. Sets when

the Q22-bus interface detects that the Q22-bus BHALT

line was asserted and SCR<14> BHALT enable is set.

Cleared by writing a 1, on power-up by the negation of

DCOK when the processor is halted and by writes to IPR

55 (IORESET).

Q22-bus DCOK negation detected. Read/write to clear.

Set when the Q22-bus interface detects the negation of

DCOK on the Q22-bus and SCR<7> (action on DCOK

negation) is set. Cleared by writing a 1, on power-up by

the negation of DCOK when the processor halts and by

writes to IPR 55 (IORESET).

Unused. Read as zero. Must be written as zero.

Master DMA NXM. Read/write to clear. Sets when the

CPU performs a demand Q22-bus read cycle or write cycle

that does not reply after 10 us. Not set during interrupt

acknowledge cycles or request read cycles. Cleared by

writing a 1, on power-up, by the negation of DCOK when

the processor halts and by writes to IPR 55 (IORESET).

Unused. Read as zero. Must be written as zero.

Q22-bus parity error. Read/write to clear. Sets when the

CPU performs a Q22-bus demand read cycle which returns

a parity error. Not set during interrupt acknowledge cycles

or request read cycles. Cleared by writing a 1, on power-

up, by the negation of DCOK when the processor halts

and by writes to IPR 55 (IORESET).

Main memory error. Read/write to clear. Sets if an

external Q22-bus device or local-miss global-hit receives

a memory error while reading local memory. The

IPCR<15> reports the memory error to the external

Q22-bus device. Cleared by writing a 1, on power-up, by

the negation of DCOK when the processor halts and by

writes to IPR 55 (IORESET).

Architecture 113

Data Bit Definition

<3> Lost error. Read/write to clear. Indicates that an error

address has been lost because of DSER<7,5,4,0> having

been previously set and a subsequent error of either type

occurs that would have normally captured an address and

set either DSER<7,5,4,0> flag. Cleared by writing a 1, on

power-up, by the negation of DCOK when the processor

halts and by writes to IPR 55 (IORESET).

<2> No grant timeout. Read/write to clear. Sets if the Q22-

bus does not return a bus grant within 10 ms of the

bus request from a CPU demand read cycle, or write

cycle. Not set during interrupt acknowledge or request

read cycles. Cleared by writing a 1, on power-up, by the

negation of DCOK when the processor halts and by writes

to IPR 55 (IORESET).

<1> Unused. Read as zero. Must be written as zero.

<0> DMA NXM. Read/write to clear. Sets on a DMA transfer

to a nonexistent main memory location. Includes local-

miss global-hit cycles and map accesses to nonexistent

memory. Cleared by writing a 1, on power-up, by the

negation of DCOK when the processor halts and by writes

to IPR 55 (IORESET).

3.8.8 Q22-bus Error Address Register

The Q22-bus error address register (QBEAR), address 2008 0008 1, is a read

only, longword accessible register which is implemented in the CQBIC chip.

Its contents are valid only if DSER <5> (QQ22-bus parity error) is set or if

DSER<7 > (Q22-bus timeout) is set.

Reading this register when DSER<5> and DSER<7> are clear returns

undefined results. Additional Q22-bus parity errors that could have set

DSER <5> or Q22-bus timeout errors that could have caused DSER<7 > to

set, cause DSER<3> to set.

The QBEAR contains the address of the page in Q22-bus space which caused

a parity error during an access by the on-board CPU which set DSER<5>

or a master timeout which set DSER<7>.

Q22-bus address bits <21:9> are loaded into QBEAR bits <12:0>. QBEAR

bits <31:13> always read as zeros. See Figure 3-42.

114 Architecture

31 13 12 A 0

[MBZ Q22-bus ADDRESS BITS <21:9> }

MA—X1456~-87

Figure 3-42 Q22-bus Error Address Register

NOTE: This is a read only register, if a write is attempted a machine check

generates,

3.8.9 DMA Error Address Register

The DMA error address register (DEAR), address 2008 000C ¢, is a read
only, longword accessible register which is implemented in the CQBIC chip.
It contains valid information only when DSER<4 > (main memory error) is

set or when DSER<0> (DMA NXM) is set. Reading this register when

DSER<4> and DSER<(> are clear returns undefined data.

The DEAR contains the map translated address of the page in local memory

which caused a memory error or nonexistent memory error during an access

by an external device or the Q22-bus interface for the CPU during a local-

miss global-hit transaction or Q22-bus map access.

The contents of this register are latched when DSER<4> or DSER<0>
sets. Additional main memory errors or nonexistent memory errors have

no effect on the DEAR until software clears DSER<4> and DSER<(>.

Mapped Q22-bus address bits <28:9> are loaded into DEAR bits <19:0>.
DEAR bits <31:20> always read as zeros. See Figure 3-43.

31 2019 0

I MBZ MAPPED Q22-bus ADDRESS BITS <28: 9>J

MA—X1457-87

Figure 3-43 DMA Error Address Register

NOTE: This is a read only register, if a write is attempted a machine check

generates.

Architecture 115

3.8.10 Error Handling

The Q22-bus interface does not generate or check CDAL bus parity.

The Q22-bus interface checks all CPU references to Q22-bus memory and

I/O spaces to insure that nothing but masked and unmasked longword

accesses are attempted. Any other type of reference causes a machine check

abort to initiate.

The Q22-bus interface maintains several timers to prevent incomplete

‘accesses from hanging the system indefinitely. These include a 10 us

nonexistent memory timer for accesses to the Q22-bus memory and 1/O

spaces, a 10 us no sack timer for acknowledgement of Q22-bus DMA grants,

and a 10 ms no grant timer for acquiring the Q22-bus.

If there is a nonexistent memory (INXM) error (10 us timeout) while accessing

the Q22-bus on a demand read reference, the associated row in the first-

level cache is invalidated, DSER<7> is set, the address of the Q22-bus

page being accessed is captured in QBEAR<12:0>, and a machine check

abort is initiated. |

If there is a NXM error on a prefetch read, or an interrupt acknowledge

vector read, then the prefetch or interrupt acknowledge reference aborts

but no information is captured and no machine check occurs.

If there is a NXM error on a masked write reference, then DSER<7>

sets, the address of the Q22-bus page being accessed is captured in

QBEAR<12:0>, and an interrupt generates at IPL 1D through vector 60

16-

If the Q22-bus interface does not receive an acknowledgement within 10 us

after it has granted the Q22-bus, then the grant is withdrawn, no errors are

reported, and the Q22-bus interface waits 500 ns to clear the Q22-bus grant

daisy chain before beginning arbitration again.

If the Q22-bus interface tries to obtain Q22-bus mastership on a CPU

demand read reference and does not obtain it within 10 ms, then the

associated row in the first-level cache is invalidated, DSER<2 > is set, and

a machine check abort is initiated.

The Q22-bus interface also monitors Q22-bus signals BDAL<17:16> while

reading information over the Q22-bus so that parity errors detected by the

device being read from are recognized.

If a parity error is detected by another Q22-bus device on a CPU demand

read reference to Q22-bus memory or I/O space, then the associated row

in the first-level cache is invalidated, DSER<5> is set, the address of the

Q22-bus page being accessed is captured in QBEAR<12:0>, and a machine

check abort is initiated.

116 Architecture

If a parity error is detected by another Q22-bus device on a prefetch request

read by the CPU, the prefetch aborts, the associated row in the first-level

cache is invalidated, DSER<5> is set, the address of the Q22-bus page

being accessed is captured in QBEAR<12:0>, but no machine check is

generated.

The Q22-bus interface also monitors the backplane BPOK signal to detect

power failures. If BPOK negates on the Q22-bus, a power-fail trap is

generated, and the CPU traps through vector 0C 4. The state of the Q22-

bus BPOK signal reads from SCR<15>. The Q22-bus interface continues

to operate after generating the power-fail trap, until DCOK negates.

Chapter 4

Firmware

This chapter describes how the firmware on the KA650-AA processor

operates. The chapter also describes public data structures and interfaces

that software developers can use.

4.1 KA650-AA Firmware

The KA650-AA firmware gains control of the processor on a processor halt.
For the KA650-AA, halting means that control transfers to the firmware, not

that the processor actually stops executing instructions.

The firmware is in two 64 Kbyte EPROMS on the KA650-AA. The firmware

address range is in the local I/O space of the KA650-AA. The address range
is from 2004 0000 to 2007 FFFF inclusive.

The following services are performed by the firmware.

e Automatic/manual restarting of an operating system following processor

| halts. (Restart in this context is not the same as restarting, or resetting,

the hardware.) :

e Automatic/manual bootstrapping of an operating system on power-up.

e An interactive command language that allows the user to examine and
alter the state of the processor.

» Diagnostic testing to check that the board was correctly manufactured.

* Diagnostic testing to test all components on the board, and report

detected failures.

e Support of various terminals and devices such as the system console.

e Multilingual support. The firmware can be configured to issue messages

in one of several languages.

117

118 Firmware

The firmware comprises four major functional blocks, as shown in

Figure 4-1. The figure shows the basic the order the code is executed in

when the processor powers up.

ENTRY/DISPATCH

L DIAGNOSTICS I

CONSOLE

EMULATION

I'VMB (BOOTSTRAP)]

MA-1127-87

Figure 4-1 Firmware Block Diagram

NOTE: Numeric data is in hexadecimal unless stated otherwise. Q22-bus addresses

are in octal. Internal processor registers (IPRs) are in hexadecimal. General purpose

registers are in decimal,

Hexadecimal addresses are typically split into two 16-bit words to improve readab’ility |
(for example, 2004 0000 as opposed to 20040000).

4.2 Entry/Dispatch Code

The entry/dispatch code is entered whenever a halt occurs, and therefore

by design must reside at address 2004 0000. The processor may halt for

a variety of reasons, such as a power-up. When the processor halts, the

reason for the halt can be found in SAVPSL <14:8>, which is IPR 43 q.

IPR 42 (SAVPC) also contains the value in the PC when the processor halted.

On a power-up, the contents of SAVPC is undefined.

Section 4.9.1 provides a detailed description of the conditions that cause a

processor halt.

One of the first actions the firmware takes after a halt is to save the current

LED code and then write out an E to the LED. This action occurs within

several instructions after entering them into entry/dispatch code. The intent

of this action is to let the user know that at least several instructions have

been successfully executed. On a functional board, this happens fast enough

to not be visible. |

The main purpose of the entry code is to save the state of the processor,

invoke the dispatch code, and when the dispatch code returns, restore the

processor state. In most cases, the state being restored will be different

from the saved state, due to subroutines invoked by the dispatcher.

Firmware 119

The dispatch code determines what action is to be taken based on the state of

the SAVPSL <14:08> (IPR 43), the halt enable bit, and the processor halt

action (CPMBX <03:00>). Section 4.8.3.1 describes the console mailbox

(CPMBX).

Table 4-1 summarizes the action taken when a halt occurs.

Table 4-1 Actions Taken on a Halt

Halt Enable Power-up Halt? Halt Action Action

T T X Diagnostics, halt

T F 0 Halt

F T X Diagnostics,

bootstrap, hal

F F 0 Restart, bootstrap,

halt

F 1 Restart, halt

F 2 Bootstrap, halt

F 3 Halt

T = condition is true.

F = condition is false.

X = don't care.

Where the table lists multiple actions, the second or third actions occur only

when the first action fails. The exception is diagnostics.

Because the KA650-AA does not support battery backed-up main memory,

a restart operation is not attempted at power-up.

In this context, restart means the searching for a restart parameter block

(RPB), and then transferring control to the code pointed to by the RPB.

The halt action is a 2-bit field used by operating systems to force the

firmware to enter console emulation, restart or reboot following a halt,

regardless of the setting of the halt enable switch.

120 Firmware

4.2.1 Power-Up Processing

On power-up, the entry/dispatch code performs actions that occur only

during the power-up process. Specifically, an initial power-up test (IPT)

is performed that is distinct from the rest of the diagnostics that are run

later on.

The purpose of the IPT is to check that enough of the board is working to

support the correct operation of the firmware. This involves performing

tests on the CPU, doing an EPROM checksum, and performing limited tests

of the firmware’s nonvolatile RAM (NVR).

All IPT failures are considered fatal, and will hang the system. During

the IPT, the LED display changes to reflect what is being tested. See

Section 4.2.2.1 for a list of LED codes.

4.2.2 Qutput On Power-Up

This section describes what the user can expect to see on the LED and

the console terminal when the system is powered up. There are several

variations that can occur, such as if a language inquiry is required, or if

there are detected errors on the board.

The first console terminal output that can be expected is a language prompt,
if the configuration switch is set to language inquiry and/or the firmware

detects that the contents of the battery backed-up RAM are invalid.

If no response is received within 30 seconds, the firmware defaults to the

language prompt. Example 4-1 is a sample of the language prompt.

1) Dansk

2) Deutsch

3) English

4) Espanol

'5) Francais

6) Italiano

(1-11):

Firmware

)} Nederlands

) Norsk

) Portugues

10) Suomi

11) Svenska

O

o

Example 4-1 Language Prompt

121

If the system console is a GPX, the firmware next interrogates the user to find

out which keyboard is present. If there is no response within 30 seconds, the

keyboard and language are set to North American and English respectively.

A sample list of languages for which there are multiple keyboards is shown

in Example 4-2.

FRENCH:

1) CANADA

2) FRANCE/BELGIQUE

3) SUISSE

(1-3):

GERMAN:

1) DEUTSCHLAND/OSTERREICH

2) SCHWEIZ

(1-2):

ENGLISH:

1) UNITED KINGDOM

2) UNITED STATES/CANADA

(1-2):

Example 4-2 Keyboard Interrogation

At this point, the firmware prints out the banner message and any diagnostic

messages, as shown in Examples 4-3, 4-4, 4-5, and 4-6. The firmware

issues a message informing the user that the diagnostics have completed.

122 Firmware

KA650-A V12/0121

PERFORMING NORMAIL SYSTEM TESTS.

30..29..28..27..26..25..24..23..22..21..20..19..18..17..16..15..

14..13..12..11..10..09..08..07..06..05..04..03..

LOADING SYSTEM S5O0FTWARE.

2..

-DUAO

10 oOoo

Example 4-3 Sample Nonworkstation Screen with Autoboot Enabled

KA650-A V12/0121

PERFORMING NORMAL SYSTEM TESTS.

30..29..28..27..26..25..24..23..22..21..20..19..18..17..16..15..
14..13..12..11..10..09..08..07..06..05..04..03..

TESTS COMPLETED.

>>>

Example 4-4 Sample Nonworkstation Screen with Halts Enabled

1) DANSK 7) NEDERLANDS

2) DEUTSCH 8) NORSK

3) ENGLISH 9) PORTUGUES

4) ESPANOL 10) SUOMI

5) FRANCAIS 11) SVENSKA

6) ITALIANO

(1..11): 3

1) UNITED KINGDOM

2) UNITED KINGDOM/CANADA

(1..2): 2

KA650-B v12/0121

PERFORMING NORMAL SYSTEM TESTS.

23..22..21..20..19..18..17,.16..15..14..13..12..11..10..09..08..

070 006. .05. 604. 0030.

TESTS COMPLETED.

>>>

Example 4-5 Sample Workstation Screen with Battery Dead

Firmware 123

KA650-A V12/yyyy

PERFORMING NORMAL SYSTEM TESTS.

4f. .4e..4d..4c..4b..4b..4a..49..48..47..46..45..

?204.44 2 08 FF 00 0001

002F0000 00000000 00000000 OOFF0000 00000000

00000000 00000000 00000000 00000000 00000000

00000000 00010000 55555555 00000080 AAAAAAAA

00000080 O01EF0000 20080144 00010000 20140770

TESTS COMPLETED.

>>>

Example 4-6 Sample Screen with Errors

Finally, after having determined the console device, language, and

keyboard, the firmware prints its announcement.

The letter code in the firmware revison number indicates whether the

firmware is prefield test X, field test T or an official release V.

The yyyy field indicates which version of virtual memory boot (VMB) is

present in the firmware. A typical value for this field is 0121.

4.2.2.1 LED Codes

The purpose of the LED display is to help in fault isolation when there is no

defined console terminal, or the hardware is incapable of communicating

with the console terminal.

The LED display changes before the corresponding test is run.

Table 4-2 lists the LED codes displayed by the firmware. An LED code

indicates which unit is failing (for example, the CPU board or memory video

subsystem). The table lists the diagnostics in the order they run.

124 Firmware

Table 4-2 LED Codes

Console

LED Display Announcement Testing

F N/A ~

E N/A Entered ROM.

C N/A SSC internal tests

7 N/A Waiting for POK.

9 N/A CQBIC

D N/A CVAX

B N/A EPROM checksum

6 N/A Console loopback/VCB02

9 30 CQBIC power-up state

9 29 CQBIC registers

A 28 CMCTL power-up state

A 27 CMCTL registers

A 26 Memory configuration |

A 25 Fast diagnostic mode operation

A 24 Find 64 Kbytes good memory

5 23 Interval timer

5 22 FPA

C - 21 CDAL timeout bits

C 20 First-level cache test

5 19 Second-level cache as RAM

4 18 First-level cache with main memory

4 17 Memory diagnostic

4 16 Memory byte test

4 15 Memory address lines

4 14 ECC error detection

4 13 Masked write cycles

4 12 Single bit ECC correction

4 11 Memory address shorts

4 10 Memory refresh

4 09 First-level cache allocation with
memory

Firmware 125

Table 4-2 (Cont.) LED Codes

Console

LED Display Announcement Testing

8 08 LMGH cycles in Q22-bus space

5 07 Virtual mode

4 06 Memory/second-level cache

interactions

4 05 Cache invalidate test

4 04 Count bad pages.

4 03 Flush and disable caches.

3 > > > Console I/0O mode

4.2.2.2 Console Patch Panel

The console patch panel contains the console baud rate, break enable, and

language inquiry switches. The firmware reads these switches only when

the processor halts, and configures the hardware accordingly. This differs

from the KA630-AA, where the switches are hardwired into the hardware,

and have an immediate effect.

Therefore, changing the baud rate, or any other switch on the panel, will

not take effect until the next power-down/power-up cycle.

Users should be aware that after the firmware gives control to the operating

system, the connection between the panel’s switches and the hardware is

lost, and changing the switches has no effect. Current Digital operating

systems do not read the switches on the panel.

126 Firmware

4.2.2.3 External Halts

There are several conditions that can trigger an external halt
(SAVPSL<14:8> = 2), and different actions are taken depending on the

condition. Basically, an external halt can be caused by any of the following.

* Pressing on the system console terminal. This causes a halt only

when the break enable switch is set to enable. Pressing only halts

the system if the console is a video terminal. Pressing [Breat| on a VCB02
does not halt the system.

e Assertion of the BHALT line on the Q22-bus. The halt is delivered to

the processor if the BHALT ENB bit in the COQBIC is set. The firmware
always enables this bit when giving up control.

e Negation of DC OK. A halt is delivered if the processor is not running

out of halt protected space and the BHALT ENB bit is set. The switch
labeled [Restart] on BA23 and BA123 system enclosures negates DC OK.

DC OK may also be negated by the DEQNA sanity timer, or any other

(Q22-bus module that chooses to implement the Q22-bus restart/reboot

protocol. |

The firmware can take several courses of action, depending on what

generated the external halt.

The action taken by the firmware on a console break or Q22-bus BHALT is

the same. The firmware enters console I/O mode.

In console I/O mode, the KA650-AA cannot detect the negation of DC OK,

so no action is taken. More importantly, however, is that the negation of DC
OK destroys system state, and the firmware is not notified. Users should
not negate DC OK (by pressing the [Restart| switch on BA23 and BA123 system

enclosures) in console I/0O mode.

In program /O mode, the processor receives a halt on the negation of DC

OK. The firmware attempts to bootstrap the system.

Firmware 127

4.2.2.4 Determining the Console Device

After the battery check, the firmware tries to find out where and what is the

system console. Normally, this would be whatever terminal is attached to

the console serial line. In the case of VCB01 and VCBO02 devices, however,

these devices are by definition the system console. VCB02 devices take

priority over VCBO01 devices.

Users should be aware that from a fault tolerance and diagnostic viewpoint,

almost the entire system must be working in order to successfully print out

a character on a VCB01/VCB02 device.

4.2.2.5 Language Inquiry

The language inquiry prompt appears on several occasions.

o If the switch on the console patch panel cutout is set to language inquiry

° [f the firmware detects that the battery has failed and the contents of

the nonvolatile RAM are not valid. This could possibly be due to a

bad battery, or unplugging the connectors from the KA650-AA (which

disconnects the battery power)

If the user does not respond within 30 seconds, the console assumes the

language is English.

In the case of non-VCB01/VCB02 devices, the console sends out a device

attributes escape sequence to determine the kind of terminal and what

functions it supports.

Terminals that do not understand the DEC Multinational Character Set

(MCS) are forced to use the English language. Terminals that do not respond

to the device attributes request correctly are assumed to be hardcopy devices

that do not understand MCS. For example, if the console terminal is a

VT100, the keyboard defaults to the English language.

4.2.2.6 Keyboard Inquiry

On VCBO02/VCBO01 devices, the console also queries for the keyboard type

under the same conditions as the language query, if it is not posmble to

uniquely determine the keyboard type.

If the user does not respond within 30 seconds, the firmware assumes a

United States keyboard.

128 Firmware

4.3 Console Emulation

The system is by definition halted when the firmware is in control of the

KA650-AA. When halted, the KA650-AA emulates a subset of the standard

VAX console through the device that is designated as the system console.

The console prompts the operator for input with the string > > >.

4.3.1 Control Characters

In console I/O mode, several characters have special meanings.

Control characters are typed by pressing the character key while

simultaneously holding down the control key.

®

[Retun]—The carriage return ends a command line. No action is taken

on a command until it is terminated by a carriage return. A null line

terminated by a carriage return is treated as a valid, null command. No

action is taken, and the console reprompts for input. Carriage return is

echoed as carriage return, line feed.

[Rubout]—When the operator types rubout, the console deletes the

character that the operator previously typed. What appears on the

console terminal depends on whether the terminal is a video terminal

or a hardcopy terminal.

For hardcopy terminals: when a rubout is typed, the console echoes with

a backslash (1), followed by the character being deleted. If the operator
types additional rubouts, the additional characters deleted are echoed.

When the operator types a non-rubout character, the console echoes

another backslash, followed by the character typed. The result is to

echo the characters deleted, surrounding them with backslashes.

For example:

The operator types: EXAMI; E [Rubout| [Rubout| NE [Return]

The console echoes; EXAMIE

The console sees the command line:EXAMINE<CR>

For video terminals: when rubout is typed the previous character is erased
from the screen, and the cursor is restored to its previous position.

The console does not delete characters past the beginning of a command

line. If the operator types more rubouts than there are characters on the

line, the extra rubouts are ignored. If a rubout is typed on a blank line,
it is ignored.

Firmware 129

[ul—console echoes "U<CR >, and deletes the entire line. If

is typed on an empty line, it is echoed, and otherwise ignored. The

console prompts for another command.

[Sl— stops output to the console terminal until [cw] [q] is typed.
and [a] are not echoed. [c], [0], and also clear [s].

[a]— resumes output to the console terminal. Additional [a]'s are

ignored. and [cr] [a] are not echoed.

[0]—causes the console to throw away transmissions to the console

terminal until the next o] is entered. [ct1] [o] is echoed as "O<CR>

when it disables output, but is not echoed when it reenables output.

Output is reenabled if the console prints an error message, or if it

prompts for a command from the terminal. Displaying a REPEAT

command does not reenable output. When output is reenabled for

reading a command, the console prompt is displayed. Output is also

enabled by entering program I/O mode, by [ct] [P] and by [cti] [c]. [cm] [o]

clears [ct] [s].

[Rl—causes the console to echo <CR> <LF > followed by the current

command line. This function can be used to improve the readability of

a command line that has been heavily edited.

[c]—causes the console to echo "C and to abort processing of a

command. [cu] [c] has no effect as part of a binary load data stream.

[cti] [c] clears [c] [s], and reenables output stopped by [cti] [0l When [cti]

is typed as part of a command line, the console deletes the line as it

does with [ct] [u].

[ct] [Pl—if in console I/O mode, causes the console to echo P and to

abort processing of a command. If the console is in program I/O mode

and halt is disabled, [P] is passed to the operating system. If the

console is in program I/O mode and halt is not disabled, [ct] [P] causes

the processor to halt and enter console /O mode.

A control character here means a character with an ASCII code less than

32 19 (CO) or between 128 1y and 159 1 (C1). If an unrecognized control

character is typed it is echoed as up arrow followed by the character with

ASCII code 64 greater. For example, BEL (ASCII code 7) is echoed as

"G, since capital G is ASCIl code 7 + 64 = 71. When a control character

is deleted with rubout, it is echoed the same way.

130 Firmware

After echoing the control character, the console processes it like a

normal character. Unless the control character is part of a comment,

the command will be invalid, and the console responds with an error

message. Note that the C1 control codes (128 to 159,) cannot be entered

by any present Digital terminal. The fact that the character with code 7

and the character with code 135 will both echo as "G is not expected to

have any practical consequences. |

4.3.2 Command Syntax

The console accepts commands up to 80 characters long. Longer commands

produce an error message. The count does not include rubouts, rubbed out

characters, or the terminating carriage return.

Commands may be abbreviated. Abbreviations are formed by dropping

characters from the end of a keyword. Most commands may be recognized
from their first character.

Multiple adjacent spaces and tabs are treated as a single space by the

console. Leading and trailing spaces and tabs are ignored.

Command qualifiers can appear after the command keyword, or after any

symbol or number in the command.

All numbers (addresses, data, counts) are in hexadecimal. However,

symbolic register names number the registers in decimal. The console
does not distinguish between uppercase and lowercase in either numbers

or commands. Both are accepted.

4.3.3 Command Keywords

Processor control commands

Boot <device>

Continue

Halt

Initialize

Start <address >

Unjam

Data transfer commands

Examine <address>

Deposit <address> <data>

X < ADDRESS > < count>

Firmware 131

Console control commands

Find

Repeat <command >

Set <parameter> <value>

Show <parameter >

Test

I <comment>

4.3.4 References to Processor Registers and Memory

The KA650-AA console is implemented by macrocode executing from

EPROM. For this reason, the actual processor registers may not be modified

by the command interpreter. When the console is entered, the console saves

the processor registers in console memory and all command references to

them are directed to the corresponding saved values, not to the registers

themselves. When the console reenters program mode, the saved registers

are restored and any changes become operative only then.

References to processor memory are handled normally, except that

references to the console memory pages by Examine and Deposit

commands must be qualified by the /U qualifier. (Access is primarily to

simplify debugging of the console program.) The binary load and unload

command may not reference the console memory pages.

4.3.5 Console Commands

The following sections define the commands accepted by the console when

it is in console I/O mode.

4.3.5.1 Boot

Command Syntax

Boot [/qualifiers] <device >

The console initializes the processor and starts VMB running. (See the

section on system bootstrapping.) VMB boots the operating system from the

specified device. The default bootstrap device is determined as described

in the section on system bootstrapping. The device specification is of the

format ddcu, where dd is a two letter device mnemonic, ¢ is an optional

one digit controller number, and u is a one digit unit number.

Qualifiers

e [R5:<data> - After initializing the processor and before starting VMB,

R5 is loaded with the specified numeric data. This allows a console

user to pass a parameter to VMB. (To remain compatible with previous

processors, /<DATA> also has the same result.)

132 Firmware

4.3.5.2 Continue

Command Syntax

Continue

The processor begins executing instuctions at the address currently

contained in the program counter. Processor initialization is not performed.

The console enters program I/0O mode.

The firmware pushes the PC and PSL onto the user’s stack, and then

executes and REI instruction to start execution. Therefore, the stack pointer
must point to an area that can contain at least two longwords of data.

4.3.5.3 Deposit

Command Syntax

Deposit [/qualifiers] <ADDRESS> <data>

Deposits the data into the address specified. If no address space or data

size qualifiers are specified, the defaults are the last address space and data
size used in a Deposit or Examine command. After processor initialization,

the default address space is physical memory, the default data size is long,

and the default address is zero.

If the specified data is too large to fit in the data size to be deposited, the

firmware ignores the command and issues an error message. If the specified

data is smaller that the data size to be deposited, it is extended on the left
with zeros.

The address may also be one of the following symbolic addresses.

e PSL— the processor status longword. No address space qualifier is

legal. When PSL is examined, the address space is identified as M.

» PC—the program counter (general register 15). The address space is set

to /G.

e SP—the stack pointer (general register 14). The address space is /G.

¢ Rn— general register n. The register number is in decimal. The address

space is /G.

For example:

D R5 1234 is equivalent to D/G 5 1234

D R10 6FF00 is equivalent to D/G A 6FF00

Firmware 133

+ —the location immediately following the last location referenced in

an examine or deposit. For references to physical or virtual memory

spaces, the location referenced is the last address, plus the size of the

last reference (1 for byte, 2 for word, 4 for long). For other address

spaces, the address is the last address referenced, plus one.

- —the location immediately preceding the last location referenced in

an examine or deposit. For references to physical or virtual memory

spaces, the location referenced is the last address minus the size of this

reference (1 for byte, 2 for word, 4 for long). For other address spaces,

the address is the last addressed referenced minus one.

*—the location last referenced in an examine or deposit.

@ —the location addressed by the last location referenced in an examine

or deposit.

Qualifiers

®

/B—the data size is byte.

/W—the data size is word.

[L—the data size is lomgWOrd.

/V—the address space is virtual memory. All access and protection

checking occur. If the access would not be allowed to a program running

with the current PSL, the console issues an error message. Virtual space

deposits cause the PTE<M> bit to be set. If memory mapping is not

enabled, virtual addresses are equal to physical addresses. |

[P—the address space is physical memory.

[I—the address space is internal processor registers. these are the

registers addressed by the MTPR and MFPR instructions.

/G—the address space is the general register set, RO through PC.

/[U—access to the console memory is allowed. This qualifier also

disables virtual address protection checks.

[N:count—the address is the first of a range. The console deposits to

the first address, then to the specified number of succeeding addresses.

Even if the address is the symbolic address -, the succeeding addresses

are at larger addresses. The symbolic address specifies only the starting

address, not the direction of succession. For repeated references to

preceding addresses, use Repeat Deposit - <DATA>.

fwrong—the data written is written with wrong parity. This qualifier is

honored only if the address space is physical memory.

134 Firmware

For example:

D/P/B/N:lFFO 0 Clears the first 512 bytes of physical memory

D/V/L/N:3 1234 5 Deposits 5 into 4 longwords starting at virtual

address 1234.

D/N:8 RO FFFFFFFF Loads general registers RO through R8 with -1.

D/N:200 - 0 Starting at previous address, clear 513 bytes.

If conflicting address space or data sizes are specified, the console ignores

the command and issues an error message. ‘

4.3.5.4 Examine

Command Syntax

Examine [/qualifiers] <address>

Examines the contents of the specified address. If no address is specified,

+ is assumed. The address may also be one of the symbolic addresses

described under the Deposit command.

The same qualifiers may be used on the Examine command as may be
used on the Deposit command. The /wrong qualifier causes the Examine

command to ignore wrong parity on reads from physical memory.

Response:

<tab> <address space identifier> <address> <tab> <data>

The address space identifier can be any (all) of the following.

¢ P—physical memory. When virtual memory is examined, the address

space and address in the response are the translated physical address.

o (G-—general register.

» [—internal processor register.

¢ M-—machine dependent (used only for display of the PSL).

Firmware 135

4.3.5.5 Find

Command Syntax

Find [/qualifier]

The console searches main memory starting at address zero for a page-

aligned 64 Kbyte segment of good memory, or a restart parameter block

(RPB). If the segment or block is found, its address plus 512 is left in

SP. If the segment or block is not found, an error message is issued, and

the contents of SP are unpredictable. If no qualifier is specified, /RPB is

assumed.

Qualifiers:

* /memory—search memory for a page aligned block of good memory, 64
Kbytes in length. The search includes a read/write test of memory and

leaves the contents of memory unpredictable.

e /RPB—search memory for a restart parameter block. See Section 4.6

for the search algorithm. The search leaves the contents of memory

unchanged.

4.3.5.6 Halt

Command Syntax

Halt

This command has no effect and is included for compatibility with other

consoles.

4.3.5.7 Initialize

Command Syntax

Initialize

A processor initialization is performed. The following initialization is

performed.

136 Firmware

PSL

IPL

ASTLVL

SISR

1CCS

RXCS

TXCS

MAPEN

Cache

Instruction buffer

Console previous reference

TODR

Main memory

General registers

Halt code

Bootstrap in progress flag

Internal restart in progress flag

CMCTL registers

SSC address decode registers

4.3.5.8 Repeat

Command Syntax

Repeat <command >

041F 0000 16

4

0

Bits 6 and 0 clear, the rest are

unpredictable

0

80 16

0

Disabled, all entries invalid

Unaffected

Physical address, longword size,

address 0

Unaffected

Unaffected

Unaffected

Unaffected

Unaffected

Unaffected

Reprogrammed

Reprogrammed

The console repeatedly displays and executes the specified command.
The repeating stops when the operator types [cv] [c]. Any valid console
command may be specified for the command with the exception of the
Repeat command.

Response: depends on the command specified.

W ~
{Firmware 1

4.3.5.9 Set

Command Syntax

Set <parameter> <value>

Sets the console parameter to the indicated value. The following console

parameters and their acceptable values are defined.

[Boot] — Set the default boot device. The value must be a valid dev1ce name

as specified for the Boot command.

[BFLG] — Set the default boot flags. The value must be a hexadecimal

number of up to 8 hex digits.

[LNG] — Set the console language. Acceptable values are as follows.

[1.] Danish.

[2.] German.

[3.] English.

[4.] Spanish.

[5.] French.

[6.] Italian.

[7.] Dutch.

[8.] Finnish.

[9.] Norwegian.

[A.] Swedish.

[B.] Portuguese.

If the current console terminal does not support the MCS, then this

command has no effect and the console remains in English message mode.

[KBD] — Set the console keyboard type. Acceptable values are as follows.

[0] United States/Canadian (English) keyboard.

[1] Flemish keyboard.

[2] Canadian (French) keyboard.

[3] Danish keyboard type.

[4] British keyboard.

[5] Finnish keyboard.

[6] Austrian/German keyboard.

[7] Dutch keyboard.

[8] Italian keyboard.

[9] Swiss (French) keyboard.

[A] Swiss (German) keyboard.

[B] Swedish keyboard.

[C] Norwegian keyboard.

[D] Belglan/Flench keyboard.

[E] Spanish keyboard.

.1‘38 Firmware

[F] Portuguese keyboard.

If the current console terminal is not a VCB01 or VCBO02 display terminal,

this command has no effect.

4.3.5.10 Show

Command Syntax:

Show <parameter>

Displays the console parameter indicated. The parameter keyword may not

be abbreviated.

[BOOT]—Shows the default boot device. The display is blank if no default

is set.

[BFLG]—Shows the default boot flags. The display is blank if no default is
set.

[LNG]—Shows the console language. The values displayed are those from
the corresponding SET command.

[KBD]—Shows console keyboard type. The values displayed are those from

the corresponding SET command. The displays is blank if the console is
not a VCBO02 or VCBO1 display.

[ETHER] — Shows hardware Ethernet addresses. The display is blank if no
Ethernet is present.

[IMEM] — Shows total memory size as well as the address of the first block

of 128 Kbytes of contiguous memory and a list of all unavailable pages (zero

entries in bit map).

4.3.5.11 Start

Command Syntax

Start <address>

The console starts instruction execution at the specified address. If no

address is given, the current PC is used. If no qualifier is present,

macroinstruction execution is started. If memory mapping is enabled,

macroinstructions are executed from virtual memory, and the address is

treated as a virtual address. The Start command is equivalent to a Deposit

to PC, followed by a Continue command. No Initialize command is

performed. Note that the stack pointer must point to an area that can contain

at least two longwords of data.

Firmware 139

4.3.5.12 Test

Command Syntax

Test [test_number [test_arguments]]

The console invokes a diagnostic test program denoted by test_number.

Valid test numbers are of the form XX.YY or simply XX, where XX is the

major test code and YY is the minor test code. If only XX is given, all tests

with the major code of XX are executed. If a test number of 0 is given all

tests allowed to be executed from the console terminal are executed.

The console accepts an optional list of up to five additional hexadecimal

digits arguments (test_arguments). These arguments are accepted but no

meaning is attached to them by the console. To interpret these arguments,

consult the diagnostic test specification for each implementation.

4.3.5.13 Unjam

An I/O bus reset is performed. This is implemented by writing a 1 to IPR

55 10-

4.3.5.14 Binary Load and Unload

Command Syntax

X <address> <count> <CR> <«line checksum> <data> <data_

checksum >

The X command is used by automatic systems communicating with the

console. It is not intended for use by operators.

The console loads or unloads (that is, writes to memory, or reads from

memory) the specified number of data bytes, starting at the specified

address through the console serial line, regardless of which device is serving

as the system console.

If bit 31 of the count is clear, data is received by the firmware, and deposited

into memory. If bit 31 of the count is set, data is read from memory and

sent by the firmware. The remaining bits in the count are a positive number

indicating the number of bytes to load or unload.

The firmware accepts the command upon receiving the carriage return.

The next byte the firmware receives is the command checksum, which is

not echoed. The command checksum is checked by adding all command

characters, including the checksum and separating whitespace, (but not

including the terminating carriage return, rubouts, or characters deleted by

rubout), into an 8-bit register initially set to zero. If no errors occur, the

result is zero.

140 Firmware

If the command checksum is correct, the console responds with the input

prompt and either sends data to the requester or prepares to receive data.

If the command checksum is in error, the console responds with an error

message. The intent is to prevent operators from accidentally entering a

mode where the console is accepting characters from the keyboard as data,

with no escape mechanism possible. |

If the command is a load (bit 31 of the count is clear), the firmware responds

with the input prompt, then accepts the specified number of data bytes for

depositing to memory, and an additional byte of received data checksum.

The data is verified by adding all data characters and the checksum character

into an 8-bit register initially set to zero. If the final contents of the register

is non-zero, the data or checksum are incorrect, and the firmware responds

with an error message.

If the command is a binary unload (bit 31 of the count is set), the firmware

responds with the input prompt, followed by the specified number of bytes

of binary data. As each byte is sent it is added to a checksum register

initially set to zero. At the end of the transmission, the 2's complement of

the low byte of the register is sent.

If the data checksum is incorrect on a load, or if memory errors or line errors

occur during the transmission of data, the entire transmission is completed,

and then the console issues an error message. If an error occurs during

loading, the contents of the memory being loaded are unpredictable.

Echo is suppressed during the receiving of the data string and checksumes.

It is possibleto control the console serial line through the use of the control

characters (] [c], [cul] [s], |cn] o], and so on) during a binary unload. It is

not possible during a binary load, as all received characters are valid binary

data.

Data that is loaded with a binary load command must be received by the

firmware at a rate of at least 1 byte every 60 seconds. The command

checksum that precedes the data must be received by the console within

60 seconds of the carriage return that terminates the command line. The

data checksum must be received within sixty seconds of the last data byte.
If any of these timing requirements are not met the firmware aborts the

transmission by issuing an error message and prompting for input.

The entire command, including the checksum, may be sent to the firmware
as a single burst of characters at the console serial lines’s specified character
rate. The firmware is able to receive at least 4 Kbytes of data in a single X

command.

Firmware 141

4.3.5.15 Comment

Command Syntax

*

The comment command is ignored. It is used to annotate console I/O

command sequences.

4.4 Bootstrapping

Boostrapping is the process of finding, loading, and transfering control to

an operating system.

VMB is the primary bootstrap for booting VAX processors. The VMB image

runs in a well defined environment and is responsible for initializing the

Reset Parameter Block (RPB) and secondary bootstrap argument list, and

for finding and reading the secondary bootstrap. VMB then passes control

to the secondary bootstrap image.

VMB allows user to boot the following operating systems on the KA650-AA

CPU: VAX/VMS, Ultrix-32, and VAXELN: and allows users to boot other

operating systems through the PROM boot mechanism.

VMB is resident in the firmware, yet it is transferred into main memory

before it gives control.

4.4.1 Supported Boot Devices

The KA650-AA supports the following boot devices.

Disks

e RQDX3 MSCP disk controller—for RD52, RD53, and RD54 5.25 inch

Winchester disks; and RX50 and RX33 floppy disks

e KDA-50 MSCP disk controller—for RA70 5.25 inch Winchester

disks; RA60, RA81, and RA82 14 inch Winchester disks

Tapes

* TQKS50 tape controller—for a TK50 drive.

e TQKY0 tape controller—for a TK70 drive. VMB supports booting

from TK50 tape cartridges and TK70 tape cartridges.

Network

¢ DEQNA Ethernet controller, revision E or later. VMB boots from

either the first or second DEQNA, XQAO or XQA1.

* DELQA Ethernet controller, running in DEQNA compatibility

mode.

142 Firmware

PROM

e PROM booting, as supported on MicroVAX II

4.4.2 Bootstrap Operation

The BOOT command invokes VMB, which controls the bootstart process.

The firmware attempts to find a contiguous block of 128 Kbytes of good

memory as defined by the bit map. If 128 Kbytes cannot be found, the

bootstrap fails. When this memory is found, the console sets SP to point
to 512 bytes into this area, and the copies the ROM-resident VMB at the

location pointed to by SP. The console then transfers control to VMB, with
the registers set as defined in Section 4.4.6.1.

The VMB bootstrap clears the BIP (boot in progress) and RIP (restart in

progress) bits in the nonvolatile RAM area just after reading the secondary
bootstrap. This is done fairly late in VMB to prevent hardware errors from
causing an infinite loop of reboot attempts. Therefore, VMB restarts are

blocked until after the secondary bootstrap has been loaded.

The VMB bootstrap image allows booting an MSCP disk device, a TMSCP
tape device, a PROM or from the DEQNA communications device over the
Ethernet. VMB supports up to eight disk or tape controllers, and up to two

Ethernet controllers. VMB also supports up to ten units on each of the disk
or tape controllers.

A KA650-AA system can be booted in two different ways. It can be booted
from a specific device, or it can be booted from the first bootable device
that VMB can find via a "sniffer boot”. The order of the sniffer boot search

is for mass storage devices first (removable platters first). If the volume is a
Files-11 disk volume with a secondary bootstrap then the search is stopped
else the boot block mechanism is attempted. If this fails, a boot is attempted

from the next device. Tape bootstraps are attempted after the disks. Finally,

a network bootstrap is attempted.

4.4.2.1 Disk Bootstrap Operation

The bootstrap of disk devices allows a Files-11 lookup (supporting only

the ODS level 2 file structure) or using the boot block mechanism (used

in PROM boot also). The default is a Files-11 lookup for the secondary

bootstrap program [SYS0.SYSEXE]SYSBOOT.EXE. However, VMB can

prompt for an alternate file specification. This mode of bootstrap is intended

for use by VMS and ELN. Ultrix-32M uses the boot block mechanism.

The boot block mechanism proceeds as follows.

e Read logical block 0 of the selected boot device (this is the boot block).

Firmware 143

e Validate that the contents of the boot block conform to the boot block
format. (See below.)

e Use the boot block to find and read in the secondary bootstrap.

¢ Transfer control to the secondary bootstrap image, just as for a Files-11

boot.

The format of the boot block must be as shown in Figure 4-2.

1 N { ANY VALUE

BB+0

LOW LBN HIGH LBN

CHK l K l 18 (HEX)

BB+ (2*n) +0 ANY VALUE, MOST LIKELY 0

BB+ (2*n) +8 SIZE IN BLOCKS OF THE IMAGE USED FOR BOTH

t THE BOOT BLOCK

BB + (2*n) + 12 LOAD OFFSET AND THE ROM SYSTEM

BB + (2*n) + 16 OFFSET INTO IMAGE TO START

BB + (2*n) + 20 SUM OF THE PREVIOUS THREE LWs

MA-1128-87

Figure 4-2 Boot Block Format

where:

the 18 ¢ indicates this is a VAX instruction set.

18 14 + k = the one’s complement of Chk.

4.4.2.2 PROM Bootstrap Operation

The PROM bootstrap uses the boot block mechanism. VMB searches for

the PROM area at address zero of Q22-bus memory. First, VMB will make

sure the corresponding Q22-bus map register (QMR) is marked invalid,

this indicates the presence of a page in Q22-bus memory space. Next,

VMB checks that the first word contains an 18 14 as described in the boot

block mechanism. If these conditions are true then the rest of the boot

block format is verified. If verification passes, the PROM code copies

main memory and executes. Otherwise, the search address increments by

16Kbytes and the search is repeated until all 4 Mbytes of Q22-bus memory

is searched or a PROM boot block is found.

144 Firmware

The PROM code is copied into main memory in 127-page sections until the
entire PROM is moved. All pages used to copy the PROM are checked to

make sure they are marked good in the PFN bit map. The PROM must be

copied contiguously and if all required pages cannot fit into the memory
immediately following the VMB image, then an error message is returned

to the user.

4.4.2.3 Network Bootstrap Operation

The network bootstrap uses the DNA maintenance operations protocol

(MOP) to perform the bootstrap operation. The network bootstrap operation

on the MicroVAX II and KA650-AA have some enhancements over the
network bootstrap on the MicroVAX 1. For example, if the RPBJV_
SOLICT bit is set in RPB$L_BOOTRS5 (to indicate that a file other than
[SYSO.SYSEXE]SYSBOOT.EXE is desired). Then the file specification as

entered at the console passes to the remote system to translate. This
feature allows a maximum of 17 character file specifications. However,

the remote system (if it is running VMS) applies the following default:
MOMSLOAD:.SYS. Therefore, the 17 character file specification need only

consist of the filename if the default directory and extension attributes are

used.

The software ID field of the MOP message contains:

e a request for the standard operating system for this processor,

e the file specification of the file to load if a solicit was requested, or

e the diagnostic system.

The method for selecting the diagnostic is to set the RPB$V_DIAG bit, then

the software ID field is set to -2 to indicate that this is a request for the
diagnostic image. The RPB$V_SOLICT bit has precedence over the RPBSV_
DIAG bit. This means that if both bits are set, then the prompted name

string overrides the -2 software ID code.

The network bootstrap sequence starts by requesting a load from the
multicast destination (called multicast address mode). If a response is

received when in multicast address mode, then the destination address
is changed to that of the node that responded. This new mode is called
physical address mode and the responding node is referred to as the
respondent node. In physical address mode, only messages from the
respondent node are honored.

Firmware 145

During a network bootstrap sequence, transmit messages (in multicast or

physical address mode) are sent a maximum of four times when there is

response to the message. (Transmit errors are considered an exceptional

case and are retried 15 times). If there is no no response after the

four transmit attempts, then the mode is reset to multicast address mode

(regardless of the current mode) and the boot sequence is repeated up to

three times. This gives any node ample opportunity to respond to one of

these requests.

A timeout on a receive request is considered no response to the transmit

request. Timeouts on receives take 30 seconds. Therefore each retransmit

attempt is made at 30 second intervals. There are 4 transmit attempts

made during each boot sequence, and there are 3 boot sequence attempts.

Therefore, there are a total of 12 transmits at 30 second intervals, for a total

of 6 minutes to complete the initial network bootstrap attempt.

If a complete network bootstrap attempt fails, the timeout period is

effectively doubled (up to a maximum of one hour) by setting up a delay

before each transmit attempt and then starting the network bootstrap

operation again. When this happens, a message is sent to the console

terminal indicating that the network bootstrap is retrying with longer timeout

intervals between the boot request messages. This feature allows the

Ethernet boot sequence to continue without using extra Ethernet bandwidth

and without having lots of unrecognized node event log messages appearing

on the load server nodes that do not recognize the KA650-AA system

address.

What the KA650-AA network boot code does is to progressively back off

sending boot messages until a load server node is booted or configured to

- recognize the KA650-AA’s address.

The QNA boot driver provides much of the definition of network

bootstrapping, such as timing out receive operations in 30 seconds. Errors

on receive requests (except timeouts) are retried automatically up to 50 times

by the boot driver. Therefore, only persistent errors or the lack of a receive

response (timeout for example) can complete a receive request. Transmits

are never retried and timeouts on transmit requests (which should never

occur) take 4 seconds. All attempts to retransmit are left to the higher level

protocol. (As stated earlier, there are 16 attempts to transmit each message

on errors.)

146 Firmware

4.4.3 Q22-bus Map Register

VMB makes no requirements about where Q22-bus memory resides. The

VMB bootstrap searches (from the lowest addressed QMR) for the first QMR
marked valid. VMB then uses up to 129 contiguous valid maps to complete

a bootstrap operation. If the search exhausts all map registers or there
are less than the required number of valid maps, a bootstrap cannot be
performed. Therefore, it is recommended that Q22-bus memory (including

VCB01 memory) not be configured to use all of the Q22-bus address space.

The VMB bootstrap uses the first two available QMRs for mapping the

command and response buffer rings. The remaining 127 maps are used

to map data buffers into local memory for reading the secondary bootstrap
image.

4.4.4 VMB Displays

While the VMB code is executing, positive indication of VMB status is

returned in the console LED display and on the console terminal, as follows.

e The value 2 appears on the console terminal and the console LEDs to
indicate that VMB is searching for the bootstrap device, and is about to

begin accessing the Q22-bus.

e The name of the boot device appears on the console terminal. If the

user performs a sniffer boot, the name of each device attempted in the
boot sequence appears.

e The value 1 appears on the console terminal and the console LEDs to

indicate that VMB has found the secondary bootstrap image on the boot

device, and is now reading the image into physical memory.

e The value 0 appears on the console terminal and the console LEDs to
indicate that the VMB image is now transferring control to the secondary
bootstrap. |

For instance, VMB may display the following on the operator console

terminal.

2..

- DUA1

- DUA2

- DUAO

- MUAGO

- XQAQ

1..0..

Firmware 147

4.4.5 Memory Layout

On entry to the VMB code, the firmware program has tested memory, found

a 128 Kbyte area of good memory, and loaded the VMB code (from the

firmware) into the 128 Kbyte area at offset 200 1. Unlike the MicroVAX II,

the KA650-AA Q22-bus map registers residein main memory, even though

they are actually referenced through I/O space addresses. The console

program places the Q22-bus map registers at the very end of memory, and

places a bit map of the good pages of memory immediately before the map

registers. At the start of VMB, memory looks as shown in Figure 4-3.

0 TO BE USED AS RPB, }1 PAGE
——t

200 VMB BOOT CODE
VMB END LABEL | BOOT DRIVER PREAMBLE STARTS AT 200

» 255 PAGES (MAX)
REMAINDER OF 128 KBYTES GOOD

MEMORY TO BE USED FOR SCB,STACK

AND LOADING SECONDARY BOOTSTRAPS

BITMAP

MAP REGISTER PFN BITMAP 4 TO 32 PAGES
TOP OF PHYSICAL .
MEMORY Q-bus MAP REGISTERS 64 PAGES

MA-1129-87

Figure 4-3 Memory Layout

4.4.6 Secondary Bootstrap

After the secondary bootstrap image has been loaded into physical memory

(adjacent to the VMB primary bootstrap plus SCB and stack), control is

passed to the secondary bootstrap with the memory layout as shown in

Figure 4-4.

In the event that an operating system has an extraordinarily large secondary

bootstrap which overflows the 128 Kbyte of tested memory, VMB checks

the memory bit map and halt’s with error code SS$_PARITY (%x1F4) if

any of the overflow pages are marked bad. When control is passed to the

secondary bootstrap, the register contents are as follows.

Register Contents

R5 Transfer address into secondary bootstrap image

R10 Base address of secondary bootstrap

R11 Physical address of base of RPB

AP Physical address of the secondary boot parameter block

SP Current stack pointer (physical address)

PR$_SCBB Physical address of SCB

148 Firmware

0}

200

VMB END LABEL

SCB

+ 400

~ + AOO

HIGH MEMORY

MAP REGISTERS

TOP OF PHYSICAL

MEMORY

RESTART PARAMETER BLOCK

VMB BOOT CODE
> (PR$—SCBB VALUE)

2 PAGES OF SCB (PAGE AFTER END LABEL)

{ PAGE ALIGNED)

AVAILABLE FOR STACK (3 PAGES) p 256 PAGES (MAX)

SECONDARY BOOTSTRAP IMAGE
J—

@ ®

@)

® ®

e ®

® @

@ ®

PFN BITMAP 4 TO 32 PAGES

Q- BUS MAP REGISTERS 64 PAGES

MA-1135-87

Figure 4-4 Secondary Bootstrap Memory Layout

4.4.6.1 Parameters Passed to the Secondary Bootstrap

It is the responsibility of VMB to build the (RPB) and secondary bootstrap

argument list, find the boot device, load the secondary bootstrap from the

boot device, and transfer control to the secondary bootstrap image. On

input to the primary bootstrap (VMB), the processor runs at IPL 31 on the
interrupt stack with memory management disabled. The registers are as
follows.

Register Contents
RO,R1 Boot device name in ASCII or 0 if none specified

R2 - Memory bit map size in byte

R3 Address of memory bit map built by console program

R5 Software boot control flags

R10 Halt PC value

R11 Halt PSL value
AP Halt code

SP 512 bytes past base of 128 Kbytes of good memory

Firmware 149

4.5 Diagnostics

Most of the firmware on the KA650-AA is diagnostics. They have several

purposes.

e During power-up, they determine if enough of the KA650-AA is working

to allow the console to run.

e During the manufacturing process, the diagnostics check that the board

was correctly built.

e In the field, their purpose is to check that the board is operational, and

to report all detected errors.

e To allow field service technicians to run individual diagnostics

interactively, with the intent of isolating errors to the (FRU) field

replaceable unit.

To accomodate all requirements, the diagnostics have been designed as

a collection of individual tests with parameters. A program, called the

diagnostic executive, controls the running of these tests in the right order

with the right parameters.

The firmware diagnostics are run automatically at power-up. The diagnostics

as a whole, or as individual tests, can be rerun interactively by the T

command. When running tests interactively on an individual basis using

the T command, users should be aware that certain tests may be dependent

on some state set up from a previous test.

4.5.1 Error Reporting

Before a console is established, the only error reporting is by way of the

LED codes, and any LEDs on other boards.

Once a console has been established, all errors detected by the diagnostics

are reported by the console.

When possible, the diagnostics issue an error summary on the system

console. Example 4-7 shows a typical error summary.

150 Firmware

204.44 2 08 FF 00 0001 | (1)
002F0000 00000000 00000000 OOFF0000 00000000 (2)

00000000 00000000 00000000 00000000 00000000 (3)

00000000 00010000 55555555 00000080 AAAAAAAA (4)

00000080 01EF0000 20080144 00010000 20140770 (5)

Example 4-7 Error Summary

The numbers in parentheses on the right side of the example indicates lines.

Line 1 contains 6 fields.

The first field, in this case ?704.44, indicates a major code of 4, and a minor
code of 44. The 44 is a test number, that in this case indicates that the
first-level cache has failed to allocate correctly.

The second field, 08, is called the subfest log. The subtest log is a

number, that in conjunction with the code listings, indicates to within a
few instructions where the diagnostic detected the error.

Lines 2 and 3 contain the diagnostic state. This is internal information that
is used by repair personnel.

Lines 4 and 5 contain 10 variables that indicate the state of registers R0 to
R9 inclusive when the error was detected.

When reporting errors, all 5 lines should be recorded.

Firmware 151

4.6 Restart

A restart is when the firmware attempts to start up the operating system

after a halt. This mechanism is often called a warm start, and should not

be confused with the [restart] switch on BA23 and BA123 system enclosures,

or the [Reset] switch on the BA213 system enclosure, which resets the power

supply.

The firmware can restart a halted operating system. To do so, the firmware

searches system memory for the restart parameter block (RPB), a data

structure constructed for this purpose by the operating system. If a valid

RPB is found, the firmware passes control to the operating system at an

address specified in the RPB.

The firmware keeps a restart in progress (RIP) flag in the console mailbox

(CPMBX, Section 4.8.3.1) which it uses to avoid repeated attempts to restart

a failing operating system. An additional restart in progress flag can be

maintained by software in the RPB.

The firmware uses the following algorithm to restart the operating system.

1. Check to see if the restart in progress flag in nonvolatile RAM is set. If

so, restart fails.

2. Print the message “restarting the operating system” on the console

terminal.

3. Set the restart in progress flag.

4. Look for a RPB, left in memory by the operating system. If none is

found, restart fails.

5. Read the software restart in progress flag from bit<0> of the fourth

longword of the RPB. If it is set, restart fails,

Load SP with the physical address of the RPB plus 512.

Load AP with the halt code.

Display 0 in the console LEDs.

e
N

o

Start the processor at the restart address, which is read from the second
longword in the RPB.

162 Firmware

If restart fails, the firmware prints "attempt to restart operating system

failed” on the system console. If restart is successful, the operating system

clears the restart in progress flag in nonvolatile RAM (CPMBX).

The failure is detected when, upon halting, the entry/dispatch code detects

that a restart was in progress.

The restart parameter block is a page-aligned data structure created by the

bootstrap. Figure 4-5 shows the RPB format.

RPB + nn

+ 00 PHYSICAL ADDRESS OF THE RPB

+04 PHYSICAL ADDRESS OF THE RESTART ROUTINE

+ 08 CHECKSUM OF FIRST 31 LONGWORDS OF RESTART ROUTINE

+0C SOFTWARE RESTART IN PROGRESS (BIT 0)

MA-1136-87

Figure 4-5 Restart Parameter Block Format

The firmware uses the following algorithm to find a restart parameter block.

1. Search for a page of memory that contains its address in the first

longword. If none is found, the search for a RPB has failed.

2. Read the second longword in the page (the physical address of the restart

routine). If it is not a valid physical address, or if it is zero, return to

step 1. The check for zero is necessary to ensure that a page of zeros

does not pass the test for a valid RPB.

3. Calculate the 32 bit 2's comple’rfient sum (ignoring overflows) of the first
31 longwords of the restart routine. If the sum does not match the third

longword of the RPB, return to step 1. A valid RPB has been found.

Note that for Q22-bus based MicroVAX processors, the Q22 restart signal

asserted when the button is pressed is not related to the VAX/VMS

restart function. Asserting the Q22 restart signal causes the MicroVAX to

perform a bootstrap.

Firmware 153

4.7 Machine State When Hailted

This section describes the state of the machine after a power up halt.

The following descriptions assume the machine has no errors, only the

power-up diagnostics have been run, and the machine has just been turned

on. The state of the machine is not defined if individual diagnostics are run

or during any other halts other than a power-up halt (SAVPSL<14:8> = 3).

The following sections describe data structures that are guaranteed to be

constant over future versions of the KA650-AA firmware. Placement and/or

existence of any other structure(s) is not implied.

4.7.1 Main Memory Layout and State

Main memory is tested and initialized by the firmware on power-up.

Figure 4-6 shows how main memory is used.

WHERE VMB IS
RLOADED LOW ADDRESSES

REMAINDER OF

MEMORY, GOOD

AND BAD PAGES

BITMAP

SCATTER/GATHER

MAP

POSSIBLE BAD

MEMORY HIGH ADDRESSES

MA-1137-87

Figure 4-6 Main Memory Layout

4.7.1.1 Reserved Main Memory

In order to build the scatter-gather map and the bit map, the firmware

attempts to find a physically contiguous 64 Kbytes section of memory at the

highest possible address that has no multiple bit errors. Single bit errors

are tolerated in this section.

154 Firmware

This algorithm has the side effect of leaving possibly good memory above

the bit map. This memory, due to the placement algorithm, will not have

any contiguous section larger than 64 Kbytes-1. There may also be bad

memory above this section.

While the full 64 Kbytes is used by the diagnostics on power-up, on
machines with less than 64 Mbytes of main memory, the lower 32 Kbytes
that is not used by the bit map is rolled into the remainder of main memory.

4.7.1.2 Scatter-Gather Map

At power-up, the scatter-gather is set by the firmware to map to the first 4

Mbytes of main memory. Main memory pages are not mapped if there is a
corresponding page in Q22-bus memory. |

On a processor halt other than power-up, the contents of the scatter-gather

map is undefined, and depends on the individual operating systems.

Operating systems should not move the location of the scatter-gather map,

and should access the map only on aligned longwords through the local /O

space of 2008 8000 through 2008 FFFC.

The Q22-bus map base register, (2008 0010) is set up by the firmware to

point to this area, and should not be changed by software.

4.7.1.3 Bit Map |

The bit map is a data structure that indicates which pages in memory
are deemed useable by operating systems. The bit map is built by the
diagnostics as a side effect of the memory tests on powerup.

Each bit in the bit map corresponds to a page in main memory. There is a
one to one correspondence between a page frame number (origin 0) and a
bit index in the bit map. A 1 in the bit map indicates that the page may be
used, with a 0 indicating that the page has an error(s). The bit map doesn’t
map itself or the scatter-gather map. There may be memory above the bit

map which has both good and bad pages.

By default, a page is flagged if and only if there are multiple bit errors in

the page. Single bit errors, regardless of frequency, do not flag the page.

The bit map is protected by a checksum stored in the SSC RAM. The
checksum is a simple byte wide, 2’s complement checksum. The sum of

all bytes in the bit map, including the bit map checksum, should have the
lower 8 bits set to 0. Operating systems that map out pages are encouraged
to use this bit map to faciliate diagnosis by service personnel.

Firmware 155

The bit map always starts on a page boundary, and is typically found just

below the scatter-gather map, although future versions of the firmware do

not guarantee this. The bit map takes up 2 Kbytes for every 8 Mbytes of

main memory, so a 64 Mbyte machine will have a 16 Kbyte bit map and an

8 Mbyte machine will have a 2 Kbyte bit map. The location of the bit map

can be found by invoking test FE.

4.7.1.4 Contents of Main Memory

The contents of main memory are undefined after the diagnostics have run.

Typically, nonzero test patterns are left in memory.

The diagnostics scrubs all of main memory so that no power-up induced

errors remain in the memory system. On the KA650-AA memory

subsystem, the state of the ECC bits and the data bits are undefined on

initial power-up. This can result in single and multiple bit errors if the

locations are read before written, as the ECC bits are not in agreement with

their correspsonding data bits. An aligned longword write to every location

(which the diagnostics do) eliminates all power-up induced errors.

- 4.7.2 First-Level Cache

The first-level cache is tested during the power-up diagnostics, flushed, and

then turned off. The first-level cache is again turned off by the Boot and by

the Initialize command. Otherwise, the state of the first-level cache is not

touched.

4.7.3 Translation Lookaside Buffer

The translation lookaside buffer (TLB) is tested by diagnostics on power up,

but not used otherwise, since the firmware runs in physical mode. The TLB
is invalidated by way of IPR 57 prior to executing the REI instruction on the

exit from a halt.

4.7.4 Second-Level Cache

The second-level cache is tested during the power-up diagnostics, flushed,

and then turned off. During a bootstrap, the second-level cache is turned

off before invoking VMB but not flushed. The second level cache is turned

off, but not flushed, on an Initialize command.

The second-level cache should always be flushed before turning it on.

Not flushing the cache before turning it on creates cache/main memory

inconsistencies.

156 Firmware

4.7.5 Halt Protect Space

Halt protect space is 2004 0000 through 2005 FFFF. Halt unprotected space

is 2006 0000 to 2008 FFFF for the 128 Kbytes of code that is currently on the

KA650-AA firmware,

The firmware always runs in halt protect space. When passing control to

the bootstrap, the firmware exits the halt protected space, so if halts are

enabled, and the halt line is asserted, the processor halts before booting.

4.8 Public Data Structures and Entry Points

This section describes data structures and subroutine entry points that are

public and are guaranteed to be constant over future versions of the KA650-

AA firmware. |

4.8.1 Firmware EPROM Layout

The KA650-AA firmware uses two 64 Kbyte EPROMs for a total of 128

Kbytes of EPROM memory. Approximately 70 Kbytes is used for code,

with the remainder reserved for future expansion. There are two copies

of the firmware, one in halt protected space, and one in halt unprotected

space. Both copies are identical. See Figure 4-7.

HALT PROTECT HALT UNPROTECT

ADDRESS ADDRESS

2004 0000 BRANCH INSTRUCTION 2006 0000

2004 0004 SYSTEM 1D EXTENSION 2006 0004

2004 0008 CP$SGETCHAR-R4 2006 0008

2004 000C - | CPSMSG-OUT-NOLF-R4 2006 000C

2004 0010 CP$READ-WTH-PRMPT—R4 2006 0010

CONSOLE, DIAGNOSTIC

AND BOOT CODE

EPROM CHECKSUM

RESERVED

FOUR PAGES RESERVED

FOR CUSTOMER USE MA-1138-87

Figure 4-7 EPROM Memory Layout

Firmware 157

The very first instruction executed on halts is a branch around the system

ID extension (SIE) and the callback entry points. This allows these public

data structures to reside in fixed locations in the ROM.

The system identification extension is an extension of the SID register (IPR

number 62) and is used to further differentiate what hardware configuration

is present. The SID determines which CPU is executed on, and the SIE

determines what board and firmware revision are present.

The SIE breaks down is as follows.

Halt Protect Address Contents

2004 0006 xx (byte). A two digit hex number that reflects the

firmware version.

2004 0007 1 (byte). System code. This is always a 1 for KA650-AAs.

The callback area entry points provide a simple interface to the currently

defined console for VMB and secondary bootstraps. This is documented

further in Section 4.8.2.

The EPROM checksum is a longword checksum from 2004 0000 through the

checksum. The diagnostics use this to determine that the EPROMs can be

read correctly.

The memory between the checksum and the four-page user area at the end

of the EPROMs is reserved by Digital for future expansion of the KA650-AA

firmware. The contents of this area is set to FF.

The four pages reserved for customer use are at the end of the PROMs, and

start at address 2005 F800 (halt protected space) or 2007 F800 (halt enabled

space). These areas are not burned and may be reburned by OEMs or end

users. The area is not tested by the KA650-AA firmware, is not included

in the checksum, and is not recognized by the bootstrap process as a valid

PROM boot.

4.8.2 Call Back Entry Points

The KA650-AA firmware provides several entry points that facilitate I/O to

the designated console device. Users of these entry points do not need to

be aware of the console device type, VT or LA device, VCB01, or VCB(2

device (GPX).

The primary intent of these routines is to provide a simple console device

to VMB and secondary bootstraps, before operating systems load their own

terminal drivers.

158 Firmware

These are JSB (subroutine as opposed to procedure) entry points located in

fixed locations in the firmware. These locations branch to code that in turn

calls the appropriate routines.

All of the entry points are designed to run at IPL 31 on the interrupt stack

in physical mode. Virtual mode is not supported. Due to internal firmware

architectural restrictions, users are encouraged to only call into the halt

protected entry points.

4.8.2.1 CP$GETCHAR_R4

This routine returns the next character entered by the operator in R0. A

timeout interval may be specifed. If the timeout interval is zero, no timeout

is generated. If a timeout is specified and if timeout occurs, a value of X18

(CAN) is returned instead of normal input.

Registers RO,R1,R2,R3 and R4 are modified by this routine, all others are

preserved.

; Usage with timeout:

CP$GET_CHAR_R4 = ~X20040008

movl #timeout_in _tenths of second,r0 ; Specify timeout.

jsb @#CPSGET_CHAR_R4 ; Call routine.

cmpb r0,#"x18 ; Check for timeout.

beql timeout handler ; Branch if timeout.

4 Input is in RO.

SR GO R NS e NN Wi S Y S ech O WONG TN NN WS e W - D

; Usage without timeout:

clrl r0

jsb @#CPSGET_CHAR_R4

Specify no timeout.

Call routine.

Input is in RO.

e

T
M
o

s

4.8.2.2 CPSMSG_OUT_NOLF_R4

This routine outputs a message to the console. The message is specified

either by a message code (0 19 to 255 1p) or a string descriptor. The routine

distinguishes between message codes and descriptors by requiring that any

descriptor be located outside of the first page of memory. All message

codes on the other hand are values between 0 and 511. Message codes are

used primarily for canned messages.

Firmware 159

Registers RO,R1,R2,R3 and R4 are modified by this routine, all others are

preserved.

; Usage with message code:

CPSMSG_OUT_NOLF_R4 = ~X2004000C

movzbl #console_message_code,r0 ; Specify message code.

jsb @#CPSMSG_OUT_NOLF_R4 ; Call routine.

’

; Usage with a message descriptor (position dependent).

movab 10$,r0 Specify addressH

; of description.

4jsb @#CPSMSG_OUT_NOLF_R4 ; Call routine.

55 .ascii /This is a message/ ; Message.

108 . long 105-5% ; Static message

; description

. long 5%

B TSN MY GMD GRS CHNR SN AEN CHWS LTI TN GRED (AN GII GONGY GNGB YU TERG WHR G

; Usage with a message descriptor (position independent).

pushab 103 : Generate message

; description.

pushl #105-58% ; on stack.

movl sp,r0 ; Pass desc. addr. in RO.

jsb. @#CPSMSG_OUT_NOLF_R4 ; Call routine.

4 Purge descriptionclrq (sp)+

. ; from stack.

®

58 .ascii /This is a message/ ; Message.

10§:

4.8.2.3 CPSREAD_WTH_PRMPT_R4

This routine outputs a prompt message and then inputs a character string

from the console. When the input is accepted, Delete, [ct] [u] and [cw] [A]

functions are supported.

As with CPSMSGOUTNOLFRY, either a message code or the address of a

string descriptor is passed in R0 to specify the prompt string. A value of
zero results in no prompt.

160 Firmware

A descriptor of the input string is returned in R0 and R1. RO contains the

length of the string and R1 contains the address. This routine inputs the

string into the console program string buffer and therefore the caller need

not provide an input buffer. Successive calls however destroy the previous

contents of the input buffer. The size of the input buffer is 80 bytes.

Registers R0,R1,R2,R3 and R4 are modified by this routine, all others are
preserved.

®

14

; Usage with a message descriptor (position independent).

clrq (sp)+

»

Purge prompt desc.

Input desc in RO and R1l.

CPSREAD_WTH_PRMPT_R4 = ~X20040010

pushab 10$; Generate prompt desc.

pushl #105-58 ; on stack.

movl sp,r0 : Pass desc. addr. in RO.

jsb @#CPSREAD_WTH_PRMPT_R4 ; Call routine.

;

;

5% .ascii /Prompt> /

4.8.3 SSC RAM Layout

The KA650-AA firmware uses the 256 longwords of nonvolatile RAM on

the SSC chip for storage of firmware specific data structures and other

information that must be preserved across power on/power off cycles. This

RAM resides in the SSC chip starting at address 2014 0400. The RAM

should not be used by the operating systems except as described in the

following sections. This RAM is not reflected in the bit map built by the

firmware. See Figure 4-8. |

PUBLIC DATA

STRUCTURES 2014 0400

NONVOLATILE

AREA

SERVICE

VECTOR

FIRMWARE

STACK

DIAGNOSTIC

STATE

RESERVED FOR

CUSTOMER USE 2014 07FC

MA-1140-87

Figure 4-8 SSC RAM Layout

Firmware 161

4.8.3.1 Public Data Structures and Console Mailbox (CPMBX)

Table 4-3 provides a template of the data structures used in the public area

of SSC RAM, which starts at physical address 2014 0400. The first two bytes

are collectively referred to as the console mailbox. Fields that are designated

as reserved and/or for internal use should not be written to. Note that not

all fields may be written to.

Table 4-3 Public Data Structure Template

Field Field Attributes Type Public Description

HALTACTION Bitfield length 2 r/w Y What to do on halt.

BIP Bitfield length 1 riw Y Bootstrap in progress.

RIP Bitfield length 1 r/w Y Restart in progress.

LANGUAGE Bitfield length 4 r Y Console language

code.

RES Bitfield length 1 - N Internal use only.

CRT Bitfield length 1 r Y Is CRT terminal.

MCS Bitfield length 1 r Y Terminal speaks MCS.

RES Bitfield length 2 - N Internal use only.

VIDEO_DEV Bitfield length 3 s Y Video device class.

KEYBOARD Byte r Y Keyboard code.

BOOT._ Byte dimension 0:7 r/w Y Boot device (in ASCII).

DEVICE

BOOT_FLAGS Longword r/w Y Boot flags.

162 Firmware

The video device class is used to indicate which terminal is the designated

console device.

Value Console Device

0 Serial line

1 VCBO1 (QVSS)

2 VCBO02 (that is, a GPX or QDSS)

4 Reserved

The following values are stored in the keyboard field.

Value Keyboard Field

American

Flemish

Canadian

Danish

British

Finnish

Austrian/German

Dutch

Italian

O

o
o

~N

S
N

G

w

N

-

O

Swiss (French)

e -
] Swiss (German)

Swedish

— N

=

Norwegian

Y w Belgian/French

e
l

o Spanish

15 Portuguese

The following values are stored in the language field.

Firmware 163

Value Langfiage Field

Unknown

Danish

German

English

Spanish

French

Italian

Dutch

Norwegian

O
©

0
0

9

&

U

o
E
m

W

O
N

=

o
o

Portuguese

Y) Finnish

Swedish

_

=
N Reserved

Reserved

- =

W

Reserved

15 Reserved

4.8.3.2 Firmware Stack

This section contains the stack that is used by all of the firmware, with the

exception of VMB, which has its own built-in stack.

4.8.3.3 Diagnostic State
This area is used by the firmware-resident diagnostics. This section is not

documented here.

4.8.3.4 USER Area

The KA650-AA console reserves the last longword (address 2014 07FC) of

the SSC RAM for customer use. This location is not tested by the console

firmware. Its value is undefined.

164 Firmware

4.9 Error Messages

The error messages issued by the KA650-AA firmware fall into three

catgories: halt code, VMB, and console emulation.

Most error messages are abbreviated, to avoid the space requirements of

translating a large number of messages.

4.9.1 Halt Code Messages

Except at power-up, which is not treated as an error condition, messages
are issued by the firmware whenever the processor halts.

For example:

206 HLT INST

PC = 800050D3

The number preceding the halt message is the halt code, and is passed to
the operating system on a restart. This number is obtained from the internal
processor register 2B (SAVPSL <14:8>).

Table 4-4 describes the halt code error messages.

Table 4-4 Halt Code Messages

Number Message Meaning

702 EXT HLT External halt.

704 ISP ERR In an attempt to push state onto the
interrupt stack during an interrupt or

exception, the processor discovered

that the interrupt stack was mapped

no access or not valid.

205 DBL ERR1 Double machine check error. A

machine check occurred while trying

to service a normal exception.

206 - HLT INST Halt instruction executed while in

kernel mode.

207 SCB ERR3 SCB vector bits <1:0> = 3. This is

| an undefined combination of bits.

208 SCB ERR2 SCB vector bits <1:0> = 2. This is
an undefined combination of bits.

Firmware 165

Table 4-4 (Cont.) Halt Code Messages

Number Message Meaning

70A

70B

710

711

712

713

719

?1A

?71B

CHM FR ISTK

CHM TO ISTK

MCHK AV

KSP AV

DBL ERR2

DBL ERR3

PSL EXC5

- PSL EXC6

PSL EXC7

A change mode instruction was

executed while on the interrupt stack.

A change mode instruction was

executed that would result in the

interrupt stack being used.

Access violation or translation not

valid exception during a machine

check.

Access violation or translation not

valid execption during a kernel stack

not valid exception.

Double machine check error. A

machine check occurred while trying

to service a machine check.

Double machine check error. A

machine check occurred while trying

to servicea kernel stack not valid

exception.

For the next six cases, the VAX

architecture does not allow execution

on the interrupt stack while in a mode

other than kernel.

In the first three cases, an interrupt

is attempting to run on the interrupt

stack while not in kernel mode.

PSL<26:24>

exception.

PSL<26:24>

exception.

5 on interrupt or

i 6 on interrupt or

iPSL<26:24> = 7 on interrupt or

exception.

166 Firmware

Table 4-4 (Cont.) Halt Code Messages

Number Message Meaning

In the last three cases, an REI

instruction is attempting to return

to a mode other than kernel and still

run on the interrupt stack.

71D PSL REI5 PSL<26:24> = 5 on an REI
instruction.

?1E PSL REI6 PSL<«<26:24> = 6 on an REI

instruction.

?1F PSL REI7 PSL<«26:24> = 7 on an REI

instruction.

4.9.2 Virtual Memory Boot Messages

Table 4-5 lists the numbers, messages, and meaning of the VMB error

messages. | |

Table 4-5 Virtual Memory Boot Error Messages

Number | Message Meaning

740 NOSUCHDEV No bootable devices found.

741 DEVASSIGN Device is not present.

742 NOSUCHFILE Program image not found.

743 FILESTRUCT Invalid boot device file structure.

744 BADCHKSUM Bad checksum on header file.

745 BADFILEHDR Bad file header.

746 BADIRECTORY Bad directory file.

747 FILNOTCNTG Invalid program image format.

748 ENDOFFILE Premature end of file encountered.

749 BADFILENAME Bad file name given.

Firmware 167

Table 4-5 (Cont.) Virtual Memory Boot Error Messages

Number Message Meaning

74A BUFFEROVEF Program image does not fit in
available memory.

?74B CTRLERR Boot device I/O error.

?4C DEVINACT Failed to initialize boot device.

24D DEVOFFLINE Device is off line. |

?4E MEMERR Memory initialization error.

?4F | SCBINT Unexpected SCB exception or machine

check.

750 SCB2NDINT Unexpect?d exception after starting

program image.

751 NOROM No valid ROM image found.

752 NOSUCHNODE No response from load server.

753 INSFMAPREG Invalid memory configuration.

754 - RETRY No devices bootable, retrying.

4.9.3 Console Emulation |

These error messages are issued in response to a console command that

has error(s). See Table 4-6.

Table 4-6 Console Emulation Error Messages

Number Message Meaning

220 CORRPTN The firmware’s internal database has been

corrupted. The firmware will do a power-up

initialization to rebuild its data base.

721 ILL REF Itlegal reference. The requested reference

would violate virtual memory protection, the

address is not mapped, the address is invalid

in the specified address space, or the value is

invalid in the specified destination.

168 Firmware

Table 4-6 (Cont.) Console Emulation Error Messages

Number Message Meaning

722 ILL CMD lllegal command. The command string can
not be parsed.

723 INV DGT Invalid digit. A non-hex digit was found in a
number,

724 LTL Too many characters in the line. The line

length exceeds the firmware’s internal buffer

of 80 characters. The message is issued only

after the terminating carriage return.

725 ILL ADR The address specified falls outside the limits
of the address space.

726 VAL TOO LRG Value is too large. The value does not fit into
| the destination.

727 SW CONF Conflicting switches, for example when two
data sizes are specified.

728 UNK SW Unknown switch.

729 UNK SYM The symbolic address in an examine or
deposit command is unrecognized.

72A CHKSM The command or data checksum of an X

command is incorrect.

?2B HLTED The operator entered a Halt command.

?72C FND ERR FIND failed. A valid restart parameter block

(RPB) could not be found or a contiguous

section of 128 Kbyte of memory could not be

found. |

72D TTMMOUT During an X command, data failed to arrive
in the time expected (60 seconds).

?2E MEM ERR Parity or other memory error.

?2F UNXINT Unexpected interrupt or exception.

730 UNIMPLEMENTED Unimplemented function.

Appendix A

KAB650-AA Specifications

- This appendix contains the physical, electrical and environmental

specifications for the KA650-AA CPU module.

A.1 Physical Specifications

The physical specifications for the KA650-AA are as follows.

Dimension Measurement

Height 10.457 (+0.015/-0.020) inches

Length 8.430 (+0.010/-0.010) inches

Width 0.375 inches maximum (nonconductive)

0.343 inches maximum (conductive)

NOTE: Width, as defined for Digital modules, is the height of components above

the surface of the module.

A.2 Electrical Specifications

The power requirements for the KA650-AA CPU module are as follows.

+5V :t5°/o +12V +5%

6.0 A maximum 0.14 A maximum

Typical currents are 10% less than the specified maximum.

The bus loads for the KA650-AA CPU module are as follows.

3.5 ac loads

e 1.0 dc loads

169

170 KAB50-AA Specifications

A.3 Environmental Specifications

The’ environmental spec1f1cat10ns for the KA650-AA CPU module are as

follows.

Operating Conditions

‘Temperature

Humidity

Altitude

5°C (41°F) to 60°C (140°F) with a rate of change no greater than

20+2°C (36 +4°F) per hour at sea level. For operation above sea

level, decrease the operating temperature by 1.8°C for each 1000

meters (1°F for each 1000 feet).

0% to 95% noncondensing with a maximum wet bulb temperature'
of 32°C (90°F) and a minimum dew point temperature of 2°C

(36°F).

Up to 2,400 meters (8,000 feet) with a rate of change no greater

than 300 meters per minute (1000 feet per minute).

Nonoperating Conditions Less Than 60 Days

Temperature

Humidity

Altitude

-40°C to +66°C (-40°F to +151°F) with a rate of change no

greater than 11 +2 °C (20 +4°F) per hour at sea level. For

operation above sea level, decrease the nonoperating temperature

by 1.8°C for each 1000 meters (1°F for each 1000 feet).

Up to 95% noncondensing.

Up to 4,900 meters (16,000 feet) with a rate of change no greater

than 600 meters per minute (2000 feet per minute).

Nonoperating Conditions Greater Than 60 days

Temperature

Humidity

Altitude

+5°C to +60°C (+40°F to +140°F) with a rate of change no

greater than 20 +2°C (36 +4°F) per hour at sea level. For

operation above sea level, decrease the nonoperating temperature

by 1.8°C for each 1000 meters (1°F for each 1000 feet).

10% to 95% noncondensing with a maximum wet bulb

temperature of 32°C (90°F) and a minimum dew point

temperature of 2°C (36°F).

Up to 2,400 meters (8,000 feet) with a rate of change no greater

than 300 meters per minute (1000 feet per minute).

Appendix B

Address Assignments

B.1 General Local Address Space Map

Table B-1 lists the VAX memory space.

Table B-1 VAX Memory Space

Address Range Contents

0000 0000 through 03FF FFFF Local memory space (64 Mbytes)

0400 0000 through O7FF FFFF Reserved memory space (64 Mbytes)

0800 0000 through OBFF FFFF Reserved memory space (64 Mbytes)

0C00 0000 through OFFF FFFF Reserved memory space (64 Mbytes)

1000 0000 through 13FF FFFF Cache diagnostic space (64 Mbytes)
1400 0000 through 17FF FFFF Reserved cache diagnostic space (64 Mbytes)

1800 0000 through 1BFF FFFF Reserved cache diagnostic space (64 Mbytes)

1C00 0000 through 1FFF FFFF Reserved cache diagnostic space (64 Mbytes)

171

172 Address Assignments

Table B-2 lists the VAX input/output memory space.

Table B-2 VAX Input/Output Space

Address Range Contents

2000 0000 through 2000 1FFF

2000 2000 through 2003 FFFF

2004 0000 through 2005 FFFF

2006 0000 through 2007 FFFF

2008 0000 through 201F FFFF

2020 0000 through 23FF FFFF

2400 0000 through 27FF FFFF

2800 0000 through 2BFF FFFF

2C08 0000 through 2FFF FFFF

3000 0000 through 303F FFFF

3040 0000 through 33FF FFFF

3400 0000 through 37FF FFFF

3800 0000 through 3BFF FFFF

3C00 0000 through 3FFF FFFF

Local Q22-bus 1/0O space (8 Kbytes)

Reserved local 1/O space (248 Kbytes)

Local ROM space, halt protected space

(128 Kbytes)

Local ROM space, halt unprotected space

(128 Kbytes)

Local register 1/O space (1.5 Mbytes)

Reserved local 1/O space (62.5 Mbytes)

Reserved local 1/O space (64 Mbytes)

Reserved local 1/O space (64 Mbytes)

Reserved local 1/O space (64 Mbytes)

Local Q22-bus memory space (4 Mbytes)

Reserved local 1/0O space (60 Mbytes)

Reserved local 1/0 space (64 Mbytes)

Cache tag diagnostic space (64 Mbytes) :
Reserved cache tag diagnostic space (64

Mbytes)

*Not visible during normal operation,

B.2 Detailed Local Address Space Map

Table B-3 describes the contents of the VAX memory space.

Table B-3 VAX Memory Space

Address Range Contents

0000 0000 through O3FF FFFF

0400 0000 through OFFF FFFF

1000 0000 through 13FF FFFF

1800 0000 through 1FFF FFFF

Local memory space (up to 64 Mbytes) "
Reserved memory space

Cache diagnostic space

Reserved cache diagnostic space

"(022-bus map top 32 Kbytes of main memory

Table B-4 describes the contents of the VAX input/output memory space.

Address Assignments 173

Table B-4 VAX Input/Output Space

Address Range Contents

2000 0000 through 2000 1FFF

2000 0000 through 2000 0007

2000 0008 through 2000 07FF

2000 0800 through 2000 OFFF

2000 1000 through 2000 1F3F

2000 1F40

2000 1F42

2000 1F44

2000 1F46

2000 1F48 through 2000 1FFF

2000 2000 through 2003 FFFF

2004 0000 through 2007 FFFF

2004 0000 through 2005 FFFF

2004 0004

2006 0000 through 2007 FFFF

2008 0000 through 201F FFFF

2008 0000

2008 0004

2008 0008

2008 000C

2008 0010

2008 0014 through 2008 013C

2008 0140

2008 0144

2008 0018 through 2008 3FFF

2008 4000

2008 4004

2008 4008 through 2008 FFFF

Local Q22-bus I/O space

Reserved Q22-bus 1/O space

Q22-bus floating address space

User reserved Q22-bus I/O space

Reserved Q22-bus 1/O space

Interprocessor communication register

(normal operation)

Interprocessor communication register

(reserved)

Interprocessor communication register

(reserved)

Interprocessor communication register

(reserved)

Reserved Q22-bus /O space

Reserved Local 1/O space

Local ROM space

Local ROM protected space

MicroVAX system type register (in ROM)

Local ROM unprotected space

Local Register 1/O space

DMA system configuration register

DMA system error register

Q22-bus error address register

DMA error address register

- Q22-bus map base register

Reserved local register I/O space

Main memory error status register

Main memory control/diagnostic status

register

Reserved local register 1/O space

Cache control register

Boot and diagnostic register

Reserved local register 1/0 space

174 Address Assignments

Table B-4 (Cont.) VAX Input/Output Space

Address Range Contents

2008 8000 through 2008 FFFF

2009 0000 through 2014 0020

2014 0030

2014 0034 through 2014 0068

2014 006C through 2001 40FF

2014 0100

2014 0104

2014 0108

2014 010C

2014 0110

2014 0114

0118

2014 011C

2014 0120 through 2014 03FF

2014 0400 through 2014 07FF

2014 0800 through 201F FFFF

2020 0000 through 2FFF FFFF

3000 0000 through 303F FFFF

3040 0000 through 37FF FFFF

3800 0000 through 3BFF FFFF ~

3C00 0000 through 3FFF FFFF

Q22-bus map registers

Reserved local register 1/O space

Diagnostic LED register

Reserved local register 1/O space

Diagnostic registers

Timer 0 control register

Timer 0O interval register

Timer 0 next interval register

~Timer 0 interrupt vector

Timer 1 control register

Timer 1 interval register

Timer 1 next interval register

Timer 1 interrupt vector

Reserved local register 1/O space

Battery backed-up RAM

Reserved local register 1/O space

Reserved local I/O space

Local Q22-bus memory space

Reserved local register 1/O space

Cache tag diagnostic space

Reserved cache tag diagnostic space

*Not visible during normal operation

Address Assignments 175

B.3 External Internal Processor Registers

Several of the internal processor registers (IPRs) on the KA650-AA are
implemented in the SSC chip rather than the CVAX chip. These registers

are referred to as external internal processor registers, and are listed in
Table B-5.

Table B-5 External Internal Processor Registers

IPR Number Register Name Abbreviation

27 Time of year register TOY

28 Console storage receiver status 'CSRS”
29 Console storage receiver data CSRD *
30 Console storage transmitter status CSTSTM
31 Console storage transmitter data CSDB”

32 Console receiver control/status RXCS

33 Console receiver data bufter RXDB

34 Console transmitter control/status TXCS

35 Console transmitter data buffer TXDB

55 /O system reset register IORESET

"These registers are not fully implemented. Accesses yield unpredictable results.

B.4 Global Q22-bus Address Space Map

The addresses and memory contents of the Q22-bus memory space is as

follows.

Address Range Contents

0000 0000 through 1777 7777 Q22-bus memory space (octal)

176 Address Assignments

Table B-6 Q22-bus Input/Output Space with BBS7 Asserted

Address Range Contents

1776 0000 through 1777 7777 Q22-bus I/O space (octal)

1776 0000 1776 0007

1776 0010 through 1776 3777 Q22-bus floating address space

1776 4000 through 1776 7777 User reserved Q22-bus 1/O space

1777 0000 through 1777 7477 Reserved Q22-bus I/O space

1777 7500 Interprocessor communication register

(normal operation)

1777 7502 Interprocessor communication register

(reserved)

1777 7504 Interprocessor communication register

(reserved)

1777 7506 Interprocessor communication register

~ (reserved)

1777 7510 through 1777 7777 Reserved Q22-bus 1/O space

Appendix C

Q22-bus Specification

C.1 Introduction

The Q22-bus, also known as the extended LSI-11 bus, is the low-end

member of Digital’s bus family. All of Digital’s microcomputers, such as the

MicroVAXI, MicroVAX II, MicroVAX 3500, MicroVAX 3600, and MicroPDP-

11 use the Q22-bus.

The Q22-bus consists of 42 bidirectional and 2 unidirectional signal lines.

These form the lines along which the processor, memory, and I/O devices

communicate with each other.

Addresses, data, and control information are sent along these signal lines,

some of which contain time-multiplexed information. The lines are divided

as follows.

* Sixteen multiplexed data/address lines — BDAL<15:00>

e Two multiplexed address/parity lines — BDAL<17:16>

* Four extended address lines — BDAL<21:18>

e Six data transfer control lines — BBS7, BDIN, BDOUT, BRPLY, BSYNC,

BWTBT

e Six system control lines — BHALT, BREF, BEVNT, BINIT, BDCOK,

BPOK ‘

* Ten interrupt control and direct memory access control lines — BIAKQO,

BIAKI, BIRQ4, BIRQ5, BIRQ6, BIRQ7, BDMGOQO, BDMR, BSACK,

BDMGI

In addition, a number of power, ground, and space lines are defined for the

bus. Refer to Table C-1 for a detailed description of these lines.

The discussion in this appendix applies to the general 22-bit physical

address capability. All modules used with the KA650-AA CPU module

must use 22-bit addressing.

177

178 Q22-bus Specification

Most Q22-bus signals are bidirectional and use terminations for a negated
(high) signal level. Devices connect to these lines by way of high-impedance

bus receivers and open collector drivers. The asserted state is produced
when a bus driver asserts the line low.

Although bidirectional lines are electrically bidirectional (any point along the

line can be driven or received), certain lines are functionally unidirectional.

These lines communicate to or from a bus master (or signal source), but

not both. Interrupt acknowledge (BIAK) and direct memory access grant

(BDMG) signals are physically unidirectional in a daisy-chain fashion. These

signals originate at the processor output signal pins. Each is received on
device input pins (BIAKI or BDMQI) and is conditionally retransmitted via
device output pins (BIAKO or BDMGO). These signals are received from
higher priority devices and are retransmitted to lower priority devices along

the bus, establishing the position-dependent priority scheme.

C.1.1 Master/Slave

Communication between devices on the bus is asynchronous. A
master/slave relationship exists throughout each bus transaction. Only one
device has control of the bus at any one time. This controlling device is
termed the bus master, or arbiter. The master device controls the bus when
communicating with another device on the bus, termed the slave.

Relationship

The bus master (typically the processor or a DMA device) initiates a bus

transaction. The slave device responds by acknowledging the transaction in
progress and by receiving data from, or transmitting data to, the bus master.

Q22-bus control signals transmitted or received by the bus master or bus
slave device must complete the sequence according to bus protocol.

The processor controls bus arbitration, that is, which device becomes bus
master at any given time. A typical example of this relationship is a disk

drive, as master, transferring data to memory as slave. Communication
on the Q22-bus is interlocked so that, for certain control signals issued by
the master device, there must be a response from the slave in order to

complete the transfer. It is the master/slave signal protocol that makes the

Q22-bus asynchronous. The asynchronous operation precludes the need for

synchronizing with, and waiting for, clock pulses.

Since bus cycle completion by the bus master requires response from the

slave device, each bus master must include a timeout error circuit that aborts

the bus cycle if the slave does not respond to the bus transaction within 10
us. The actual time before a timeout error occurs must be longer than the

reply time of the slowest peripheral or memory device on the bus.

Q22-bus Specification 179

C.2 Q22-bus Signal Assignments

Table C-1 lists the data and address signal assignments.

Table C-1 Data and Address Signal Assignments

Data and Address Signal Pin Assignment

BDALO AU?2

BDAL1 AV?2

BDAL?2 BE2

BDAL3 BF2

BDAL4 BH?2

BDALS5 BJ2

BDAL®6 BK?2

BDALY BL2

BDALS BM?2

BDAL9 - BN2

BDAL10 BP2

BDAL11 BR2

BDAL12 BS2

BDAL13 BT?2

BDAL14 BU?2

"BDAL15 BV2

BDAL16 : AC1

BDAL17 AD1

BDAL18 BC1

BDAL19 BD1

BDAL20 BE1

BDAL21 BF1

180 Q22-bus Specification

Table C-2 lists the control signal assignments.

Table C-2 Control Signal Assignments

Control Signal Pin Assignment

Data Control

BDOUT

BRPLY

BDIN

BSYNC

BWTBT

BBS7

Interrupt Control

BIRQ7

BIRQ6

BIRQ5

BIRQ4

BIAKO

BIAKI

DMA Control

BDMR

BSACK

BDMGO

BDMGI

System Control

BHALT

BREF

BEVINT

BINIT

BDCOK

BPOK

AE2

AF2

AH2

AJ2

AK2

AP2

BP'1

AB1

AA1

~AlL2

AN2

AM2

AN1

BN1

AS2

AR2

AP1

AR1

BR1

AT2

BA1l

BB1

Q22-bus Specification 181

Table C-3 lists the power and ground signal assignments.

Table C-3 Power and Ground Signal Assignments

Power and Ground Pin Assignment

+5 B (battery) or AS1

+12 B (battery)

+12 B BS1

+5B - AV1

+5 AA2

+5 BA2

+5 BV1

+12 AD2

+12 BD2

+12 AB2

-12 AB2

-12 BB2

GND AC2

GND AJ1

GND AM1

GND AT1

GND BC2

GND BJ1

GND BM1

GND BT1

Table C-4 lists the spare signal assignments.

182 Q22-bus Specification

Table C-4 Spare Signal Assignments

Spare Pin Assignment

SSparel AE1

SSpare3 AH1

SSpare8 BH1

SSpare2 AF1

MSpareA AK1

MSpareB ALl

MSpareB BK1

MSpareB BL1

PSparel AU1

ASpare?2 BU1

C.3 Data Transfer Bus Cycles

Data transfer bus cycles, executed by bus master devices, transfer 32-bit

words or 8-bit bytes to or from slave devices. In block mode, multiple words

can be transferred to sequential word addresses, starting from a single bus

address. Data transfer bus cycles are listed and defined in Table C-5.

Table C-5 Data Transfer Operations

Function (with respect

Bus Cycle Definition to the bus master)

DATI Data word input Read

DATO Data word output Write

DATOB Data byte output Write-byte

DATIO Data word input/output Read-modify-write

DATIOB Data word input/byte output Read-modify-write

, byte

DATBI Data block input Read block

DATBO Data block output Write block

The bus signals listed in Table C-6 are used in the data transfer operations
described in Table C-5.

Q22-bus Specification 183

Table C-6 Bus Signals for Data Transfers

Signal Definition Function

BDAL<«<21:00> L 22 data/address lines BDAL<15:00> L are

used for word and byte

transfers. BDAL<17:16>

L are used for extended

addressing, memory

parity error (16), and

memory parity error

enable (17) functions.

BDAL<21:18> L are used

for extended addressing

beyond 256 Kbytes.

BSYNC L Bus cycle control Indicates bus transaction
in progress.

BDIN L Data input indicator Strobe signals

BDOUT L Data output indicator Strobe signals

BRPLY L Slave’s acknowledge of bus cycle Strobe signals

BWTBT L Write/byte control Control signals

BBS7 I/O device select Indicates address is in the

I/O page.

Data transfer bus cycles can be reduced to five basic types: DATI, DATO(B),

DATIO(B), DATBI, and DATBO. These transactions occur betweenthe bus

master and one slave device selected during the addressing part of the bus

cycle.

C.3.1 Bus Cycle Protocol

Before initiating a bus cycle, the previous bus transaction must have been

completed (BSYNC L negated) and the device must become bus master.

The bus cycle can be divided into two parts: addressing and data transfer.

During addressing, the bus master outputs the address for the desired slave

device, memory location, or device register. The selected slave device

responds by latching the address bits and holding this condition for the

duration of the bus cycle until BSYNC L becomes negated. During data

transfer the actual data transfer occurs.

184 Q22-bus Specification

C.3.2 Device Addressing

Device addressing of a data transfer bus cycle comprises an address setup

and deskew time, and an address hold and deskew time. During address

setup and deskew time, the bus master does the following operations.

e Asserts BDAL<21:00> L with the desired slave device address bits.

* Asserts BBS7 L if a device in the I/O page is being addressed.

e Asserts BWTBT L if the cycle is a DATO(B) or DATBO bus cycle.

During this time, the address, BBS7 L, and BWTBT L signals are asserted at

the slave bus receiver for at least 75 ns before BSYNC goes active. Devices

in the I/O page ignore the nine high-order address bits BDAL<21:13>, and

instead, decode BBS7 L along with the 13 low-order address bits. An active

BWTBT L signal during address setup time indicates that a DATO(B) or

DATBO operation follows, while an inactive BWTBT L indicates a DATI,

DATBI, or DATIO(B) operation.

The address hold and deskew time begins after BSYNC L is asserted.

The slave device uses the active BSYNC L bus received output to

clock BDAL address bits, BBS7 L, and BWTBT L into its internal logic.

BDAL<21:00> L, BBS7 L, and BWTBT L remain active for 25 ns minimum

after the BSYNC L bus receiver goes active. BSYNC L remains active for

the duration of the bus cycle.

Memory and peripheral devices are addressed similarly, except for the

way the slave device responds to BBS7 L. Addressed peripheral devices

must not decode address bits on BDAL<21:13> L. Addressed peripheral

device can respond to a bus cycle when BBS7 L is asserted (low) during the

addressing of the cycle. When asserted, BBS7 L indicates that the device

address resides in the 1/0 page (the upper 4 k address space). Memory

devices generally do not respond to addresses in the I/O page; however,

some system applications may permit memory to reside in the I/O page for

use as DMA buffers, read-only memory bootstraps, and diagnostics.

Q22-bus Specification 185

DATI

The DATI bus cycle, shown in Figure C-1, is a read operation. During

DATI, data is input to the bus master. Data consists of 16-bit word transfers

over the bus. During data transfer of the DATI bus cycle, the bus master

asserts BDIN L 100 ns minimum after BSYNC L is asserted. The slave

device responds to BDIN L active as follows.

e Asserts BRPLY L 0 ns minimum (8 ns maximum to avoid bus timeout)

after receiving BDIN L, and 125 ns maximum before BDAL bus driver

data bits are valid.

e Asserts BDAL<21:00> L with the addressed data and errdr information
0 ns (minimum) after receiving BDIN, and 125 ns (maximum) after

assertion of BRPLY. |

BUS MASTER SLAVE

PROCESSOR OR DEVICE MEMORY OR DEVICE

ADDRESS DEVICE OR MEMORY

ASSERT BDAL <21:00> L WITH

ADDRESS AND

ASSERT BBS7 IF THE ADDRESS

iSIN THE 1/0 PAGE

ASSERT BSYNC L
\ \

\ \

\

DECODE ADDRESS

STORE DEVICE SELECTED

OPERATION

‘/ /

REQUEST DATA

REMOVE THE ADDRESS FROM

BDAL <21:00> L AND

NEGATE BBS7 L

ASSERT BDIN L \
 \

\

\

INPUT DATA

PLACE DATA ON BDAL < 15:00> L

- - ASSERT BRPLY L

ol

" TERMINATE INPUT TRANSFER

ACCEPT DATA AND RESPOND

BY NEGATING BDIN L

‘ Tr—

TERMINATE BUS CYCLE OPERATION COMPLETED

NEGATE BSYNC L D S — NEGATE BRPLY L

MR-6028

MA-1074-87

Figure C-1 DATI Bus Cycle

186 Q22-bus Specification

When the bus master receives BRPLY L, it does the following.

e Waits at least 200 ns deskew time and then accepts input data at

BDAL<17:00> L bus receivers. BDAL <17:16> L are used for

transmitting parity errors to the master.

e Negates BDIN L 200 ns minimum to 2 us maximum after BRPLY L goes

active.

The slave device responds to BDIN L negation by negating BRPLY L and

removing read data from BDAL bus drivers. BRPLY L must be negated 100

ns maximum prior to removal of read data. The bus master responds to the

negated BRPLY L by negating BSYNC L.

Conditions for the next BSYNC L assertion are as follows.

e BSYNC L must remain negated for 200 ns minimum.

e BSYNC L must not become asserted within 300 ns of previous BRPLY

L negation.

Figure C-2 shows DATI bus cycle timing.

NOTE: Continuous assertion of BSYNC L retains control of the bus by the bus

master, and the previously addressed slave device remains selected. This is done for

DATIO(B) bus cycles where DATO or DATOB follows a DATI without BSYNC L

negation and a second device addressing operation. Also, a slow slave device can

hold off data transfers to itself by keeping BRPLY L asserted, which causes the master

to keep BSYNC L asserted.

Q22-bus Specification 187

T/R DAL (4) T ADDR X (4) X R DATA X (4)

150ns 7| MINIMUM [*TM MAXIMUM

T SYNC MlNlMum 200 ns MINIMUM eBd ivi

CLOCK DATA

100 NS MINIMUM ——s» }g—— 200ns MINIMUM 200 ns

/ 300 ns MINIM UM

R RPLY

150 ns
P

MINIMUM —a io-—'mo ns MINIMUM

TBS7 (4 X (4)

TWTBT (4) /< (4)

TIMING AT MASTER DEVICE

R/T DAL (4) X R ADDR X {4) X T DATA X (4)
l 25 ns 100 ns MAXIMUM> Minmum <— 12505 MAXIMUM — ;"' 0 ns MINIMUM

R SYNC // Ons \
MINIMUM v

5 g 75ns @200 NS MINIMUM 150 ns

MINIMUM MiIMIMUM=

R DIN \

\ r-——-— 300 ns MINIMUM ——4

TRPLY

-o‘ w— 75 ns MINIMUM

RBS? (4) X (4)

g 25 ns MINIMUM

RWTBT (4) /((4)

TIMING AT SLAVE DEVICE

NOTES:

1. TIMING SHOWN AT MASTER AND SLAVE DEVICE 3. BUS DRIVER OUTPUT AND BUS RECEIVER INPUT

BUS DRIVER INPUTS AND BUS RECEIVER OUTPUTS. SIGNAL NAMES INCIL.UDE A “B” PREFIX.

2. SIGNAL NAME PREFIXES ARE DEFINED BELOW: 4. DON'T CARE CONDITION.

T=8US DRIVER INPUT

R =BUS RECEIVER OUTPUT

MR-6037

MA-1084-87

Figure C-2 DATI Bus Cycle Timing

188 Q22-bus Specification

DATOB

DATOB, shown in Figure C-3, is a write operation. Data is transferred in

32-bit words (DATO) or 8-bit bytes (DATOB) from the bus master to the

slave device. The data transfer output can occur after the addressing part

of a bus cycle when BWTBT L has been asserted by the bus master, or

immediately following an input transfer part of a DATIOB bus cycle.

BUS MASTER SLAVE

(PROCESSOR OR DEVICE) (MEMORY OR DEVICE)

ADDRESS DEVICE/MEMORY

ASSERT BDAL <21:00> L WITH

ADDRESS AND

ASSERT BBS7 L IF ADDRESSIS

IN THE 1/0 PAGE

ASSERT BWTBT L (WRITE

CYCLE)

ASSERT BSYNC L —
—— —_—

S——
— —

DECODE ADDRESS

STORE ODEVICE SELECTED

- OPERATION

/
—

-~ -
OUTPUT DATA

REMOVE THE ADDRESS FROM

BDAL <21:00> L AND NEGATE BBS7 L

NEGATE BWTBT L UNLESS DATOB

PLACE DATA ON BDAL < 15:00> L

A RT T

—— —

TAKE DATA

RECEIVE DATA FROM BDAL

LINES

RP_ - ASSERT BRPLY L

TERMINATE OUTPUT TRANSFER

NEGATE BDOUT L (AND BWTBT L

IF IN A DATOB BUS CYCLE)

REMOVE DATA FROM BDAL <15:00> L____
\

 \

\

-~

OPERATION COMPLETED

NEGATE BRPLY L

TERMINATE BUS CYCLE

NEGATE BSYNC L

Figure C-3 DATO or DATOB Bus Cycle

MR-6029

MA-1081-87

Q22-bus Specification 189

The data transfer part of a DATOB bus cycle comprises a data setup and

deskew time and a data hold and deskew time.

During the data setup and deskew time, the bus master outputs the data

on BDAL<15:00> L at least 100 ns after BSYNC L assertion. BWTBT L

remains negated for the length of the bus cycle. If the transfer is a byte

transfer, BWIBT L remains asserted. If it is the output of a DATIOB, BWTBT

'L becomes asserted and lasts the duration of the bus cycle.

During a byte transfer, BDAL<00> L selects the high or low byte. This

occurs in the addressing part of the cycle. If asserted, the high byte

(BDAL<15:08> L) is selected; otherwise, the low byte (BDAL<07:00> L)

is selected. An asserted BDAL 16 L at this time forces a parity error to be

written into memory if the memory is a parity-type memory. BDAL 17 L

is not used for write operations. The bus master asserts BDOUT L at least

100 ns after BDAL and BDWTBT L bus drivers are stable. The slave device

responds by asserting BRPLY L within 10 us to avoid bus timeout. This

completes the data setup and deskew time.

During the data hold and deskew time, the bus master receives BRPLY L and

negates BDOUT L, which must remain asserted for at least 150 ns from the

receipt of BRPLY L before being negated by the bus master. BDAL<17:00>

L bus drivers remain asserted for at least 100 ns after BDOUT L negation.

The bus master then negates BDAL inputs.

During this time, the slave device senses BDOUT L negation. The data is

accepted and the slave device negates BRPLY L. The bus master responds

by negating BSYNC L. However, the processor does not negate BSYNC L

for at least 175 ns after negating BDOUT L. This completes the DATOB bus

cycle. Before the next cycle, BSYNC L must remain unasserted for at least

200 ns. Figure C-4 shows DATOB bus cycle timing. |

190 Q22-bus Specification

ln— 0 ns MINIMUM

(4)T DAL {4) x T ADDR >< T DATA

150 nsINIMU" ;0— 100 ns MINIMUM — o

/

T SYNC
V

e 84S g— 1757 200 ns MINIMUM—
MAXIMUM MINIMUM

TDOUT

150 ns MINIMUM—s] L— 300 ns MINIMUM——>
R RPLY

V
- r_ 100 ns MINIMUM

T BS7 X X (4)

——ol 7 ke— 150 ns MINIMUM

T WTBT {4) / \ ASSERTION = BYTE X (4)

150 ns L- 100 ns MINIMUM —4 100 ns
MINIMUM . MINIMUM

TIMING AT MASTER DEVICE

R DAL (4) x R ADDR X R DATA X (4)

— 25 ns MINIMUM — L~ 25 ns MINIMUM

ka— 25 ns MINIMUM L 100 ns MINIMUM—.LJSO ns MINIMUM-g
75 ns

MINIMUM
R DOUT /

150 ns
L— 300 ns MINIMUM ———»ol25 s ke —*] miniMum r_——

MINIMUM \\\ |T RPLY

75 ns

"“1 MINIMUM

s @ X N @

25 ns MINIMUM lo i lo— 25 ns MINIMUM
RWTBT (4) \/ ASSERTION = BYTE { (4)

7515 —g L— 25 ns MINIMUM
MINIMUM

TIMING AT SLAVE DEVICE

NOTES:

1. TIMING SHOWN AT MASTER AND SLAVE DEVICE 3. BUS DRIVER OUTPUT AND BUS RECEIVER INPUT

BUS DRIVER INPUTS AND BUS RECEIVER OUTPUTS. SIGNAL NAMES INCLUDE A “B” PREFIX.

2. SIGNAL NAME PREFIXES ARE DEFINED BELOW 4, DON'T CARE CONDITION,

T=BUS DRIVER INPUT

R = BUS RECE!VER QUTPUT

MR-1179

MA.1080-87

Figure C-4 DATO or DATOB Bus Cycle Timing

DATIOB

The protocol for a DATIOB bus cycle is identical to the addressing and

data transfer part of the DATI and DATOB bus cycles, and is shown in

Figure C-5. After addressing the device, a DATI cycle is performed as

Q22-bus Specification 191

explained earlier; however, BSYNC L is not negated. BSYNC L remains

active for an output word or byte transfer (DATOB). The bus master

maintains at least 200 ns between BRPLY L negation during the DATI cycle

and BDOUT L assertion. The cycle is terminated when the bus master

negates BSYNC L, as described for DATOB.

SLAVEBUS MASTER

(MEMORY OR DEVICE)(PROCESSOR OR DEVICE)

ADDRESS DEVICE/MEMORY

ASSERT BDAL <21:00> L WITH

ADDRESS

ASSERT BBS7 L IF THE

ADDRESS IS IN THE /O PAGE

ASSERT BSYNC L
s

TRo

~® DECODE ADDRESS
STORE DEVICE SELECTED

OPERATION
o - U — e

REQUEST DATA -
REMOVE THE ADDRESS FROM

BDAL <21:00> L

ASSERT BDIN L —_—

T TM INPUT DATA
PLACE DATA ON BDAL < 15:00> L

ASSERT BRPLY L

TERMINATE INPUT TRANSFER -
ACCEPT DATA AND RESPOND BY

TERMINATING BDIN L

i ‘-*

COMPLETE INPUT TRANSFER

REMOVE DATA

NEGATE BRPLY L

-

a -
OUTPUT DATA

PLACE OUTPUT DATA ON BDAL < 15:00> L

(ASSERT BWTBT L IF AN OUTPUT

BYTE TRANSFER)

ASSERT BDOUT L
\\\

T
TAKE DATA

RECEIVE DATA FROM BDAL LINES

ASSERT BRPLY L

-

o -
TERMINATE OQOUTPUT TRANSFER

REMOVE DATA FROM BDAL LINES

NEGATE BDOUT L
——

eSS P—

g
OPERATION COMPLETED

NEGATE BRPLY L

o -

m— = -
- -

TERMINATE BUS CYCLE

NEGATE BSYNC L

(AND BWTBT L IF IN

A DATIOB BUS CYCLE)

MR 6030

MA.-1082-87

Figure C-5 DATIO or DATIOB Bus Cycle

192 Q22-bus Specification

Figure C-6 illustrates DATIOB bus cycle timing.

‘.I r- 150 ns MINIMUM —-l t* 0 ns MINIMUM

R/T DAL (4) x T ADDO((4) X R DATA X (4))|< T DATA)((4)
100 ns L_ :

_fi 100 ns MINIMUMMINTMUM — — 200 ns MAXIMUM

TSYNC ‘J
100 ns MINIMUM o A’r— *INIMURTT]MINIMUM

l— 200 NS

T DOUT MINIMUM// \ \
: 200 ns

= MINIMUM 'I

T DIN /

200 ns

MINIMUM —&

/ 300 ns
MINIMUM]

R RPLY / \\

150 ns . ‘

MINIMUM

| \
T8S7)(

—»{ e 100 ns MINIMUM | 100 ns MINIMUM— l<—

TWTBT (4>\| (4))(ASSERTION = BYTE X (4)

—4 lg— 150 NS MINIMUM
TIMING AT MASTER DEVICE

RT/DAL (&) (R ADDR)((4))(T DATA X (4) X R DATA X (4)
25 ns ' L——a MINIMUM i | — 25 ns MINIMUM

R SYNC / o e 100ns \ /
. MAXIMUM

100 ns

—»| e 75 ns MINIMUM 25 ns MINIMUM R 1 MINIMUM
—& 125 ns ja— ‘\ 150 ns

R DOUT MAXIMUM / N MINIMUM

ke~ 150 ns MINIMUM—&

R DIN \\\
150 ns . 300ns __g|] »i MINIMUM - // MINIMUM

T RPLY Q : \A
\. \,

—u] j— 75 ns MINIMUM

R BS7 >< X
|

_.‘ le— 75 ns MINIMUM 41 ka— 25 ns MINIMUM — r—zs ns MINIMUM

RWTBT (4>\ (4) ' X ASSERTION = BYTE X (4)

e 25 ns MINIMUM

TIMING AT SLAVE DEVICE

NOTES:

1. TIMING SHOWN AT REQUESTING DEVICE 3. BUS DRIVER OUTPUT AND BUS RECEIVER INPUT

BUS DRIVER INPUTS AND BUS RECEIVER QUTPUTS SIGNAL NAMES INCLUDE A “B” PREFIX.

2. SIGNAL NAME PREFIXES ARE DEFINED BELOW: 4. DON'T CARE CONDITION.

T=8US DRIVER INPUT

R = BUS RECEIVER OQUTPUT

MR 6036

MA-1060-87

Figure C-6 DATIO or DATIOB Bus Cycle Timing

Q22-bus Specification 193

C.4 Direct Memory Access

The direct memory access (DMA) capability allows direct data transfer

between /O devices and memory. This is useful when using mass storage

devices (for example, disks) that move large blocks of data to and from

memory. A DMA device needs to be supplied with only the starting address

in memory, the starting address in mass storage, the length of the transfer,

and whether the operation is read or write. When this information is
available, the DMA device can transfer data directly to or from memory.

Since most DMA devices must perform data transfers in rapid succession

or lose data, DMA devices are given the highest priority.

DMA is accomplished after the processor (normally bus master) has passed

bus mastership to the highest priority DMA device that is requesting the

bus. The processor arbitrates all requests and grants the bus to the DMA

device electrically closest to it. A DMA device remains bus master until it

relinquishes its mastership. The following control signals are used during

bus arbitration.

e BDMGI L DMA grant input

¢ BDMGO L DMA grant output

e BDMR L DMA request line

e BSACK L bus grant acknowledge

C.4.1 DMA Protocol

A DMA transaction can be divided into three phases.

e Bus mastership acquisition phase

o Data transfer phase

* Bus mastership relinquishment phase

During the bus mastership acquisition phase, a DMA device requests the
bus by asserting BDMR L. The processor arbitrates the request and initiates

the transfer of bus mastership by asserting BDMGO L.

The maximum time between BDMR L assertion and BDMGO L assertion is

DMA latency. This time is processor-dependent. BDMGO L/BDMGI L is

one signal that is daisy-chained through each module in the backplane. It

is driven out of the processor on the BDMGO L pin, enters each module

on the BDMGI L pin, and exits on the BDMGO L pin. This signal passes

through the modules in descending order of priority until it is stopped by

the requesting device. The requesting device blocks the output of BMDGO

L and asserts BSACK L. If BDMR L is continuously asserted, the bus hangs.

194 Q22-bus Specification

During the data transfer phase, the DMA device continues asserting BSACK
L. The actual data transfer is performed as described earlier.

The DMA device can assert BSYNC L for a data transfer 250 ns minimum

after it received BDMGI L and its BSYNC L bus receiver is negated.

During the bus mastership relinquishment phase, the DMA device gives up

the bus by negating BSACK L. This occurs after completing (or aborting)

the last data transfer cycle (BRPLY L negated). BSACK L can be negated up
to a maximum of 300 ns before negating BSYNC L.

NOTE: If multiple data transfers are performed during this phase, consideration

must be given to the use of the bus for other system functions, such as memory

refresh (if required).

Figure C-7 shows the DMA protocol, and Figure C-8 shows DMA

request/grant timing.

.KAB50 - AA PROCESSOR BUS MASTER

MEMORY IS SLAVE CONTROLLER

. REQUEST BUS

—— " ASSERT BDMR L
P

GRANT BUS CONTROL - T
NEAR THE END OF THE &—

CURRENT BUS CYCLE

(BRPLY L IS NEGATED),

ASSERT BDMGO L AND ~——

INHIBIT NEW PROCESSOR ~

GENERATED BSYNC L FOR —~ ACKNOWLEDGE BUS

THE DURATION OF THE ~& MASTERSHIP
DMA OPERATION. RECEIVE BDMG

-~ WAIT FOR NEGATION OF

- BSYNC L AND BRPLY L
PR ASSERT BSACK L

TERMINATE GRANT — NEGATE BDMR L
SEQUENCE

NEGATE BDMGO L AND

WAIT FOR DMA OPERATION TM

TO BE COMPLETED T~

MONITOR TRANSACTION TO T —a EXECUTE A DMA DATA
INVALIDATE CACHE IF TRANSFER
CACHE HIT ADDRESS MEMORY AND

, TRANSFER UP TO 4 WORDS
OF DATA AS DESCRIBED

FOR DATI, OR DATO BUS

CYCLES

—— RELEASE THE BUS BY

P TERMINATING BSACK L

— (NO SOONER THAN

RESUME PROCESSOR _ NEGATION OF LAST BRPLY L)

OPERATION - AND BSYNC L.

* ENABLE PROCESSOR-

GENERATED BSYNC L ,

MASTER) OR ISSUE ANOTHER FIFO TRANSFER
ANOTHER GRANT IF BOMR iS PENDING BEFORE

L IS ASSERTED. REQUESTING BUS AGAIN.

MA. 6031

MA-1076-87

Figure C-7 DMA Protocol

Q22-bus Specification 195

SECOND

REQUEST
‘—oi le— DMA LATENCY

e T T T 7 7T7
T DMR VA A Y A S Y A A A /7 L7

bedod 4 f A L4y /A,

s L—OHSM!NIMUM
[e e e

R DMG

T SACK - \

250 nis MINIMUM— r— — la— 300 ns MAXIMUM

RITSYNC NNAN N |
L_. 250 ns MINIMUM 0 ns MiINIMUM e

: *300 ns MINIMUM I :
R/T RPLY \\\\\\ / \

_.l — l: 0 ns MINIMUM — '4—100ns MAXIMUM
0 ns MINIMUM

T DAL /< ADDR X DATA
(ALSO BS7,

WTBT, REF)

NOTES: ,
1. TIMING SHOWN AT REQUESTING DEVICE BUS DRIVER 3. BUS DRIVER OUTPUT AND BUS RECEIVER INPUT

INPUTS AND BUS RECEIVER OUTPUTS. SIGNAL NAMES INCLUDE A “B” PREFIX.

2. SIGNAL NAME PREFIXES ARE DEFINED BELOW:

T =BUS DRIVER iNPUT

R = BUS RECEIVER OUTPUT

MR-3690

MA-1078-87

Figure C-8 DMA Request/Grant Timing

C.4.2 Block Mode DMA

For increased throughput, block mode DMA can be implemented on a

device for use with memories that support this type of transfer. In a block

mode transaction, the starting memory address is asserted, followed by data

for that address, and data for consecutive addresses.

By eliminating the assertion of the address for each data word, the transfer

rate is almost doubled.

There are two types of block mode transfers, DATBI (input) and DATBO

(output). The DATBI bus cycle is described in Section C.4.2.1 and illustrated

in Figure C-9.

196 Q22-bus Specification

T DMR Ons
min

R DMG

T SACK | Op\s.___—
, lmm

RIT 150 ns fe—te—={ 100 ns min

min 150

S\l N
/ Ll : \ 300 ns

200 X_I max
T DIN 2%

R RPLY—W] \ \

N\ _|/ \

\
R REF i — L_SOns max = ——b }1—-50nsmax

T BS7 -t \

A RRRARAN AR LELRRARRRRRRRRRRRRRRAY
TIMING AT MASTER DEVICE

T = BUS DRIVER INPUT

R = BUS RECEIVER OUTPUT

‘ ,< R ADDR T DATA m\\w T DATA \
R/T DAL

— f«— 125 ns max 100 ns max r——

R SYNC J ____

T RPLY \————/ \ \

T REF \—-

R BS7 - [\
wrer A ATVVNV ANNNNNANANMA

TIMING AT SLAVE DEVICE :

T = BUS DRIVER INPUT

R = BUS RECEIVER OUTPUT

MA-1088-87,

Figure C-9 DATBI Bus Cycle Timing

Q22-bus Specification 197

The DATBO bus cycle is described in Section C.4.2.2 and illustrated in

Figure C-10.

Ons

R DMG :)
OnsT SACK — min\-’——

T ADDR T DATA T DATA. hd IN_
150 ns l100 ns[

N\ 22

T DOUT ot Nemmcssned]’ | min . I

max

‘ 100 ne l 100 %300 ns

R RPLY

R REF

T BS7 / UNDEFINED

T WTBT / \
TIMING AT MASTER DEVICE

T = BUSDRIVER INPUT

R = BUS RECEIVER OUTPUT

[r ADDR X R DATA)(R DATA)N
R DAL

R SYNC / ’—"’1 ‘0 ns min

R DOUT

T RPLY

T REF \"'-""""'
/ UNDEFINED \

R BS7

R WTBT '—-/—____—\
TIMING AT SLAVE DEVICE

T = BUS DRIVER INPUT

~ R = BUS RECEIVER OUTPUT

MA-1087-87

Figure C-10 DATBO Bus Cycle Timing

198 Q22-bus Specification

C.4.2.1 DATBI Bus Cycle

Before a DATBI block mode transfer can occur the DMA bus master device

must request control of the bus. This occurs under conventlonal Q22-bus

protocol.

A block mode DATBI transfer is executed as follows.

Address device memory-the address is asserted by the bus master on

TADDR<21:00> along with the negation of TWTBT. The bus master

asserts TSYNC 150 ns minimum after gating the address onto the bus.

Decode address-the appropriate memory device recognizes that it must

respond to the address on the bus.

Request data-the address is removed by the bus master from

TADDR<21:00> 100 ns minimum after the assertion of TSYNC. The

bus master asserts the first TDIN 100 ns minimum after asserting

TSYNC. The bus master asserts TBS7 50 ns maximum after asserting

TDIN for the first time. TBS7 remains asserted until 50 ns maximum

after the assertion of TDII. for the last time. In each case, TBS7 can

be asserted or negated as soon as the conditions for asserting TDIN

are met. The assertion of TBS7 indicates the bus master is requestmg

another read cycle after the current read cycle.

Send data-the bus slave asserts TRPLY 0 ns minimum (8000 ns

maximum to avoid a bus timeout) after receiving RDIN. The bus slave

asserts TREF concurrent with TRPLY if, and only if, it is a block mode

device which can support another RDIN after the current RDIN. The bus

slave gates TDATA <15:00> onto the bus 0 ns minimum after receiving

RDIN and 125 ns maximum after the assertion of TRPLY.

NOTE: Block mode transfers must not cross 16-word boundaries.

Terminate input transfer-the bus master receives

stable RDATA<15:00> from 200 ns maximum after receiving RRPLY

until 20 ns minimum after the negation of RDIN. (The 20 ns minimum

represents total minimum receiver delays for RDIN at the slave and

RDATA <15:00> at the master.) The bus master negates TDIN 200 ns

minimum after receiving RRPLY.

Operation completed-the bus slave negates TRPLY 0 ns minimum after

receiving the negation of RDIN. If RBS7 and TREF are both asserted

when TRPLY negates, the bus slave prepares for another DIN cycle.

RBS7 is stable from 125 ns after RDIN is received until 150 ns after

TRPLY negates. If TBS7 and RREF were both asserted when TDIN

negated, the bus master asserts TDIN 150 ns minimum after receiving

the negation of RRPLY and continues with the timing relationship in

send data above. RREF is stable from 75 ns after RRPLY asserts until 20

Q22-bus Specification 199

ns minimum after TDIN negates. (The 0 ns minimum represents total

minimum receiver delays for RDIN at the slave and RREF at the master.)

NOTE: The bus master must limit itself to not more than eight transfers unless

it monitors RDMR. If it monitors RDMR, it may perform up to 16 transfers as

long as RDMR is not asserted at the end of the seventh transfer.

Terminate bus cycle-if RBS7 and TREF were not both asserted when
TRPLY negated, the bus slave removes TDATA<15:00> from the bus

0 ns minimum and 100 ns maximum after negating TRPLY. If TBS7
and RREF were not both asserted when TDIN negated, the bus master

negates TSYNC 250 ns minimum after receiving the last assertion of

RRPLY and 0 ns minimum after the negation of that RRPLY.

Release the bus-the DMA bus master negates TSACK 0 ns after negation

of the last RRPLY. The DMA bus master negates TSYNC 300 ns

maximum after it negates TSACK. The DMA bus master must remove

RDATA<15:00>, TBS7, and TWTBT from the bus 100 ns maximum

after clearing TSYNC.,

At this point the block mode transfer is complete, and the bus arbitration

logic in the CPU enables processor-generated TSYNC or issues another bus

grant (TDMGO) if RDMR is asserted.

C.4.2.2 DATBO Bus Cycle

Before a block mode transfer can occur, the DMA bus master device

must request control of the bus. This occurs under conventional Q22-bus

protocol.

A Block mode DATBQO transfer is executed as follows.

Address device memory-the address is asserted by the bus master on

TADDR<21:00> along with the aasertion of TWTBT. The bus master

asserts TSYNC 150 ns minimum after gating the address onto the bus.

Decode address-the appropriate memory device recognizes that it must

respond to the address on the bus.

Send data-the bus master gates TDATA<15:00> along with TWTBT

100 ns minimum after the assertion of TSYNC. TWTBT is negated.

The bus master asserts the first TDOUT 100 ns minimum after gating

TDATA<15:00>.

NOTE: During DATBO cycles, TBS57 is undefined.

200 Q22-bus Specification

e Receive data-the bus slave receives stable data on RDATA<15:00>
from 25 ns minimum before receiving RDOUT until 25 ns minimum

after receiving the negation of RDOUT. The bus slave asserts TRPLY

0 ns minimum after receiving RDOUT. The bus slave asserts TREF

concurrent with TRPLY if, and only if, it is a block mode device which

can support another RDOUT after the current RDOUT.

NOTE: Block mode transfers must not cross 16-word boundaries.

- e Terminate Output Transfer-the bus master negates TDOUT 150 ns

minimum after receiving RRPLY.

e Operation Completed-the bus slave negates TRPLY 0 ns minimum after

- receiving the negation of RDOUT. If RREF was asserted when TDOUT

negated and if the bus master wants to transfer another word, the bus

master gates the new data on TDATA<15:00> 100 ns minimum after

negating TDOUT. RREF is stable from 75 ns maximum after RRPLY

asserts until 20 ns minimum after RDOUT negates. (The 20 ns minimum

represents minimum receiver delays for RDOUT at the slave and RREF

at the master). The bus master asserts TDOUT 100 ns minimum

after gating new data on TDATA<15:00> and 150 ns minimum after
receiving the negation of RRPLY. The cycle continues with the timing

relationship in receive data above.

NOTE: The bus master must limit itself to not more than eight transfers unless

it monitors RDMR. If it monitors RDMR, it may perform up to 16 transfers as

long as RDMR is not asserted at the end of the seventh transfer.

e Terminate bus cycle-if RREF was not asserted when RRPLY negated

or if the bus master has no additional data to transfer, the bus master

removes data on TDATA <15:00> from the bus 100 ns minimum after

negating TDOUT. If RREF was not asserted when TDOUT negated, the

bus master negates TSYNC 275 ns minimum after receiving the last
RRPLY and 0 ns minimum after the negation of the last RRPLY,

e Release the bus-the DMA bus master negates TSACK 0 ns after negation
of the last RRPLY. The DMA bus master negates TSYNC 300 ns
maximum after it negates TSACK. The DMA bus master must remove

TDATA, TBS7, and TWTBT from the bus 100 ns maximum after clearing

TSYNC.

At this point the block mode transfer is complete, and the bus arbitration
logic in the CPU enables processor-generated TSYNC or issues another bus

grant (TDMGO) if RDMR is asserted.

Q22-bus Specification 201

C.4.3 DMA Guidelines

o Systems with memory refresh over the bus must not include devices

that perform more than one transfer per acquisition.

¢ Bus masters that do not use block mode are limited to four DATI, four

DATO, or two DATIO transfers per acquisition.

¢ Block mode bus masters that do not monitor BDMR are limited to eight

transfers per acquisition.

e [f BDMR is not asserted after the seventh transfer, block mode bus

masters that do monitor BDMR may continue making transfers until the

bus slave fails to assert BREF, or until they reach the total maximum of

16 transfers. Otherwise, they stop after eight transfers.

C.5 Interrupts

The interrupt capability of the Q22-bus allows an I/O device to temporarily

suspend (interrupt) current program execution and divert processor

operation to service the requesting device. The processor inputs a vector

from the device to start the service routine (handler). Like the device register

address, hardware fixes the device vector at locations within a designated

range below location 001000. The vector indicates the first of a pair of

addresses. The processor reads the contents of the first address, the starting

address of the interrupt handler. The contents of the second address is a

new processor status word (PS).

The new PS can raise the interrupt priority level, thereby preventing lower-

level interrupts from breaking into the current interrupt service routine.

Control is returned to the interrupted program when the interrupt handler is

ended. The original interrupted program’s address (PC) and its associated

PS are stored 'on a stack. The original PC and PS are restored by a return

from interrupt (RTI or RTT) instruction at the end of the handler. The use

of the stack and the Q22-bus interrupt scheme can allow interrupts to occur

within interrupts (nested interrupts), depending on the PS.

Interrupts can be caused by Q22-bus options or the MicroVAX CPU. Those

interrupts that originate from within the processor are called traps. Traps

are caused by programming errors, hardware errors, special instructions,

and maintenance features.

202 Q22-bus Specification -

The following Q22-bus signals are used in interrupt transactions.

~ Signal Definition

BIRQ4 L Interrupt request priority level 4

BIRQS L Interrupt request priority level 5

BIRQ6 L Interrupt request priority level 6

BIRQ7 L Interrupt request priority level 7

BIAKI L Interrupt acknowledge input

BIAKO L Interrupt acknowledge output

BDAL<21:00> Data/address lines

BDIN L Data input strobe

BRPLY L Reply

C.5.1 Device Priority

The Q22-bus supports the following two methods of device priority.

Distributed arbitration — priority levels are implemented on the

hardware. When devices of equal priority level request an interrupt,

priority is given to the device electrically closest to the processor.

e Position-defined arbitration — priority is determined solely by electrical

position on the bus. The closer a device is to the processor, the higher

its priority is. '

C.5.2 Interrupt Protocol

Interrupt protocol on the Q22-bus has three phases.

* Interrupt request

e Interrupt acknowledge and priority arbitration

e Interrupt vector transfer phase

The interrupt request phase begins when a device meets its specific

conditions for interrupt requests. For example, the device is ready, done, or

an error occurred. The interrupt enable bit in a device status register must be

set. The device then initiates the interrupt by asserting the interrupt request
line(s). BIRQ4 L is the lowest hardware priority level and is asserted for all

interrupt requests for compatibility with previous Q22-bus processors. The

level at which a device is configured must also be asserted. A special case

exists for level 7 devices that must also assert level 6. For an explanation,
refer to the Section C.5.3 involving the four-level scheme.

Q22-bus Specification 203

Interrupt Level Lines Asserted by Device

4 BIRQ4 L

5 BIRQ4 L, BIRQ5 L

6 BIRQ4 L, BIRQ6 L

7 BIRQ4 L, BIRQ6 L, BIRQ7 L

Figure C-11 shows the interrupt request/acknowledge sequence.

PROCESSOR DEVICE

INITIATE REQUEST

.— ASSERT BIRQ L
//

/
/

STROBE INTERRUPTS -
ASSERT BDIN L —_

\

\ \

—
N

‘ RECEIVE BDIN L
STORE “INTERRUPT SENDING”

L IN DEVICE

GRANT REQUEST

PAUSE AND ASSERT BIAKO L ——_
—~——

—_—

\ \

Y

RECEIVE BIAKI L

RECEIVE BIAK! L AND INHIBIT

BIAKO L

PLACE VECTOR ON BDAL < 15:00> L

ASSERT BRPLY L

NEGATE BIRQ L

e

RECEIVE VECTOR AND

TERMINATE REQUEST

INPUT VECTOR ADDRESS

NEGATE BDIN L AND BIAKO L
\

\

\ f
\

Y

COMPLETE VECTOR TRANSFER

REMOVE VECTOR FROM BDAL BUS

— NEGATE BRPLY L

/ /

P .

PROCESS THE INTERRUPT

SAVE INTERRUPTED PROGRAM

PC AND PS ON STACK

LOAD NEW PC AND PS FROM

VECTOR ADDRESSED LOCATION

EXECUTE INTERRUPT SERVICE

ROUTINE FOR THE DEVICE

MR-1182

MA-1065-87

Figure C-11 Interrupt Request/Acknowledge Sequence

The interrupt request line remains asserted until the request is

acknowledged.

204 Q22-bus Specification

During the interrupt acknowledge and priority arbitration phase, the LSI-

11/23 processor acknowledges interrupts under the following conditions.

¢ The device interrupt priority is higher than the current PS<7:5>.

e The processor has completed instruction execution and no additional
bus cycles are pending.

The processor acknowledges the interrupt request by asserting BDIN L, and

150 ns minimum later asserting BIAKO L. The device electrically closest to

the processor receives the acknowledge on its BIAKI L bus receiver.

At this point, the two types of arbitration must be discussed separately.

If the device that receives the acknowledge uses the four-level interrupt

scheme, it reacts as follows.

e [If not requesting an interrupt, the device asserts BIAKO L and the

acknowledge propagates to the next device on the bus.

o If the device is requesting an interrupt, it must check that no higher-level

device is currently requesting an interrupt. This is done by monitoring

higher-level request lines. The table below lists the lines that need to

be monitored by devices at each priority level. |

In addition to asserting levels 7 and 4, level 7 devices must drive level 6.

This is done to simplify the monitoring and arbitration by level 4 and 5

devices. In this protocol, level 4 and 5 devices need not monitor level 7

because level 7 devices assert level 6. Level 4 and 5 devices become aware

of a level 7 request because they monitor the level 6 request. This protocol

has been optimized for level 4, 5, and 6 devices, since level 7 devices are

very seldom necessary.

Device Priority Level Line(s) Monitored

4 BIRQS5, BIRQ6

5 . BIRQ6

6 BIRQ7

7 -

e If no higher-level device is requesting an interrupt, the acknowledge is

blocked by the device. (BIAKO L is not asserted.) Arbitration logic

within the device uses the leading edge of BDIN L to clock a flip-flop

that blocks BIAKO L. Arbitration is won and the interrupt vector transfer

phase begins. .

Q22-bus Specification 205

e If a higher-level request line is active, the device disqualifies itself and

asserts BIAKO L to propagate the acknowledge to the next device along
the bus.

Signal timing must be considered carefully when implementing four-level
interrupts. See Figure C-12.

INTERRUPT LATENCY

I MINUS SERVICE TIME

150 ns MIN!MUM-—G’1 -

A

TIRQ

T RPLY \

1125 ns MAXIMUM —] fe— =100 ns MAXIMUM

T DAL (4) X VECTOR X (4)

R SYNC (UNASSERTED)

R BS7 (UNASSERTED)

NOTES:

TIMING SHOWN AT REQUESTING DEVICE BUS DRIVER '3.BUS DRIVER OUTPUT AND BUS RECEIVER INPUT

INPUTS AND BUS RECEIVER OUTPUTS, SIGNAL NAMES INCLUDE A "B PREFIX.

2. SIGNAL NAME PREFIXES ARE DEFINED BELOW: 4. DON'T CARE CONDITION.

T=BUS DRIVER INPUT

R = BUS RECEIVER OUTPUT

MR-1183

MA-1076-87

Figure C-12 Interrupt Protocol Timing

If a single-level interrupt device receives the acknowledge, it reacts as

follows.

e If not requesting an interrupt, the device asserts BIAKO L and the

acknowledge propagates to the next device on the bus.

o If the device was requesting an interrupt, the acknowledge is blocked

using the leading edge of BDIN L, and arbitration is won. The interrupt

vector transfer phase begins.

206 Q22-bus Specification

The interrupt vector transfer phase is enabled by BDIN L and BIAKI L. The

device responds by asserting BRPLY L and its BDAL<15:00> L bus driver

inputs with the vector address bits. The BDAL bus driver inputs must be

stable within 125 ns maximum after BRPLY L is asserted. The processor

then inputs the vector address and negates BDIN L and BIAKO L. The

device then negates BRPLY L and 100 ns maximum later removes the vector

address bits. The processor then enters the device’s service routine.

NOTES: Propagation delay from BIAKI L to BIAKO L must not be greater than

500 ns per Q22-bus slot.

The device must assert BRPLY L within 10 us maximum after the processor asserts

BIAKI L.

C.5.3 Q22-bus Four-Level Interrupt Configurations

If you have high-speed peripherals and desire better software performance,

you can use the four-level interrupt scheme. Both position-independent and

position-dependent configurations can be used with the four-level interrupt

scheme.

Figure C-13 shows the position-independent configuration. This allows

peripheral devices that use the four-level interrupt scheme to be placed in

the backplane in any order. These devices must send out interrupt requests

and monitor higher-level request lines as described. The level 4 request

is always asserted from a requesting device regardless of priority. If two

or more devices of equally high priority request an interrupt, the device

physically closest to the processor wins arbitration. Devices that use the

single-level interrupt scheme must be modified, or placed at the end of the

bus, for arbitration to function properly.

BIAK (INTERRUPT ACKNOWLEDGE) LEVEL4 |giaKk | LEVEL6 |gjak | LEVELS | BIAK LEVEL7
KAB50 ~®1 DEVICE DEVICE ® DEVICE 1 DEVICE

3 &

BIRQ4 (LEVEL4 INTERRUPT REQUEST) l
BIRQ 5 (LEVEL 5 INTERRUPT REQUEST)

BIRQ 6 (LEVEL 6 INTERRUPT REQUEST) 1

BIRQ 7 (LEVEL 7 INTERRUPT REQUEST)

MR-2888

MA-1066-87

Figure C-13 Position-Independent Configuration

Q22-bus Specification 207

Figure C-14 shows the position-dependent configuration. This configuration

is simpler to implement. A constraint is that peripheral devices must be
inserted with the highest priority device located closest to the processor,

and the remaining devices placed in the backplane in decreasing order of
priority (with the lowest priority devices farthest from the processor). With

this configuration, each device has to assert only its own level and level 4.
Monitoring higher-level request lines is unnecessary. Arbitration is achieved
through the physical positioning of each device on the bus. Single-level

interrupt devices on level 4 should be positioned last on the bus.

BIAK (INTERRUPT ACKNOWLEDGE) | LEVEL7 |BIAK| LEVEL6 |BIAK | LEVELS5 | BIAK | LEVELA4
KAB50 1 DEVICE ®1 DEVICE ®1 DEVICE »1 DEVICE

- § 5 l l l l
BIRQ 4 (LEVEL 4 INTERRUPT REQUEST) ¥ ' ¢ K]

BiRQ 5 (LEVEL5 INTERRUPT REQUEST)]

BIRQ 6 (LEVEL6 INTERRUPT REQUEST) 1

BIRQ 7 (LEVEL7 INTERRUPT REQUEST) |

MR-2889

MA-1067-87

Figure C—14 Position-Dependent Configuration

C.6 Control Functions

The following Q22-bus signals provide control functions.

Signal Definition

BREF L Memory refresh (also block mode DMA)

BHALT L Processor halt

BINIT L Initialize

BPOK H Power OK

BDCOK H DC power OK

208 Q22-bus Specification

C.6.1 Memory Refresh

If BREF is asserted during the address part of a bus data transfer cycle, it

causes all dynamic MOS memories to be addressed simultaneously. The

sequence of addresses required for refreshing the memories is determined

by the specific requirements for each memory. The complete memory

refresh cycle consists of a series of refresh bus transactions. A new address

is used for each transaction. A complete memory refresh cycle must be

completed within 1 or 2 ms. Multiple data transfers by DMA devices must

be avoided since they could delay memory refresh cycles. This type of

refreshis done only for memories that do not perform on-board refresh.

C.6.2 Halt

Assertion of BHALT L for at least 25 ns interrupts the processor, which stops

program execution and forces the processor unconditionally into console I/O

mode.

C.6.3 Initialization

Devices along the bus are initialized when BINIT L is asserted. The

processor can assert BINIT L as a result of executing a reset instruction

as part of a power-up or power-down sequence. BINIT L is asserted for

approximately 10 us when reset is executed.

C.6.4 Power Status

Power status protocol is controlled by two signals, BPOK H and BDCOK H.

These signals are driven by an external device (usually the power supply).

C.6.5 BDCOKH

When asserted, this control indicates that dc power has been stable for at

least 3 ms. Once asserted, this line remains asserted until the power fails.

It indicates that only 5 us of dc power reserve remains.

C.6.6 BPOKH

When asserted, this control indicates there is at least an 8 ms reserve of

dc power, and that BDCOK H has been asserted for at least 70 ms. Once

BPOK has been asserted, it must remain asserted for at least 3 ms. The

negation of this line, the first event in the power-fail sequence, indicates

that power is failing and that only 4 ms of dc power reserve remains.

Q22-bus Specification 209

C.6.7 Power-Up and Power-Down Protocol

Power-up protocol begins when the power supply applies power with

BDCOK H negated. This forces the processor to assert BINIT L. When

the dc voltages are stable, the power supply or other external device

asserts BDCOK H. The processor responds by clearing the PS, floating-point

status register (FPS), and floating-point exception register (FEC). BINIT L is

asserted for 12.6 us, and then negated for 110 us. The processor continues

to test for BPOK H until it is asserted. The power supply asserts BPIK H

70 ms minimum after BDCOK H is asserted. The processor then performs

its power-up sequence. Normal power must be maintained at least 3 ms

before a power-down sequence can begin.

A power-down sequence begins when the power supply negates BPOK H.

When the current instruction is completed, the processor traps to a power-

down routine at location 24. The end of the routine is terminated with a

halt instruction to avoid any possible memory corruption as the dc voltages

decay.

When the processor executes the halt instruction, it tests the BPOK H signal.

If BPOK H is negated, the processor enters the power-up sequence. It

clears internal registers, generates BINIT L, and continues to check for the

assertion of BPOK H. If it is asserted and dc voltages are still stable, the

processor performs the rest of the power-up sequence. Figure C-15 shows

power-up and power-down timing.

‘ 8-—o }‘—0 ns MINIMUM l "' 2048

BINIT L \ 1 | \ /

"‘_MIS&SUM_" 3 ms —>f 148 L'
MAXIMUM MAXIMUM

70 ms 4 ms 70ms I .
1 minivum (¢ T MINIMUM) "1 MINIMUM

BDCOK H / \L

— e— 3 ms MINIMUM 5uSg 1 MINIMUM l '

DC POWER] | \J
g

POWER-UP NORMAL POWER-DOWN POWER-UP NORMAL
SEQUENCE 1" powen —T¢—— SEQUENCE —— °T* SEQUENCE POWER

NOTE:

ONCE A POWER-DOWN SEQUENCE IS STARTED,
I'TMUST BE COMPLETED BEFORE A POWER-UP
SEQUENCE IS STARTED.

MR-6032

MA-1077-87

Figure C-15 Power-Up and Power-Down Timing

210 Q22-bus Specification

C.7 Q22-bus Electrical Characteristics

The input and output logic levels for Q22-bus signals are given in

Section C.7.1.

C.7.1 Signal Level Specifications

The signal level specifications' for the Q22-bus are as follows.

Input Logic Level

8 Vdc maximum

0

: 0.
TTL logical low 7 0 Vdc minimum
TTL logical high

Output Logic Level

TTL logical low

TTL logical high 3 Vdc maximum0.

| 2.4 Vdc minimum

C.7.2 Load Definition

AC loads make up the maximum capacitance allowed per signal line to

ground. A unit load is defined as 9.35 pF of capacitance. DC loads are
defined as maximum current allowed with a signal line driver asserted or
unasserted. A unit load is defined as 210 yA in the unasserted state.

C.7.3 120-Ohm Q22-bus

The electrical conductors interconnecting the bus device slots are treated

as transmission lines. A uniform transmission line, terminated in its
characteristic impedance, propagates an electrical signal without reflections.
Since bus drivers, receivers, and wiring connected to the bus have finite

resistance and nonzero reactance, the transmission line impedance is not

uniform, and introduces distortions into pulses propagated along it. Passive
components of the Q22-bus (such as wiring, cabling, and etched signal

conductors) are designed to have a nominal characteristic impedance of
120 ohms.

The maximum length of interconnecting cable, excluding wiring within the

backplane, is limited to 4.88 m (16 feet).

Q22-bus Specification 211

C.7.4 Bus Drivers

Devices driving the 120-ohm Q22-bus must have open collector outputs and
meet the following specifications.

DC Specifications

Output low voltage when sinking 70 mA of current is 0.7 V maximum.

Output high leakage current when connected to 3.8 Vdc is 25 A (even
if no power is applied, except for BDCOK H and BPOK H).

These conditions must be met at worst-case supply temperature, and

input signal levels.

AC Specifications

Bus driver output pin capacitance load should not exceed 10 pF.

Propagation delay should not exceed 35 ns.

Skew (difference in propagation time between slowest and fastest gate)

should not exceed 25 ns.

Transition time (from 10% to 90% for positive transition—rise time, from

90% to 10% for negative transition—fall time) must be no faster than 10

ns.

C.7.5 Bus Receivers

Devices that receive signals from the 120-ohm Q22-bus must meet the

following requirements.

DC Specifications

Input low voltage maximum is 1.3 V.

Input high voltage minimum is 1.7 V.,

Maximum input current when connected to 3.8 Vdc is 80 uA (even if no

power is applied). |

These specifications must be met at worst-case supply voltage, temperature,

and output signal conditions.

AC Specifications

L Bus receiver input pin capacitance load should not exceed 10 pF.

Propagation delay should not exceed 35 ns.

212 Q22-bus Specification

e Skew (difference in propagation time between slowest and fastest gate)

should not exceed 25 ns.

C.7.6 Bus Termination

The 120-ohm Q22-bus must be terminated at each end by an appropriate

terminator, as shown in Figure C-16. This is to be done as a voltage divider

with its Thevenin equivalent equal to 120 ohms and 3.4 V (nominal). This

type of termination is provided by an REV11-A refresh/boot/terminator,

BDV11-AA, KPV11-B, TEV11, or by certain backplanes and expansion

cards.

+5 V BV

178 &1 L 330
120 2 250Q
BUS LINE BUS LINE

TERMINATION TERMINATION

383 680 Q2

1%

MR-6033

MA-1071-87

Figure C-16 Bus Line Terminations

Each of the several Q22-bus lines (all signals whose mnemonics start with the

letter B) must see an equivalent network with the following characteristics

at each end of the bus.

Bus Termination Characteristic Value

Input impedance 120 ohm +5%, -15%

(with respect to ground)

Open circuit voltage 3.4 Vdc +5%

Capacitance load Not to exceed 30 pF

NOTE: The resistive termination can be provided by the combination of two

modules. (The processor module supplies 220 ohms to ground. This, in parallel

with another 220-ohm card, provides 120 ohms.) Both terminators must reside

physically within the same backplane.

Q22-bus Specification 213

C.7.7 Bus Interconnecting Wiring

C.7.7.1 Backplane Wiring

The wiring that connects all device interface slots on the Q22-bus must meet

the following specifications.

e The conductors must be arranged so that each line exhibits a

characteristic impedance of 120 ohms (measured with respect to the

bus common return).

e C(Crosstalk between any two lines must be no greater than 5%. Note that

worst-case crosstalk is manifested by simultaneously driving all but one

signal line and measuring the effect on the undriven line.

e DC resistance of the signal path, as measured between the near-end

terminator and the far-end terminator module (including all intervening

connectors, cables, backplane wiring, and connector-module etch) must

not exceed 20 ohms.

¢ DC resistance of the common return path, as measured between the

near-end terminator and the far-end terminator module (including all

intervening connectors, cables, backplane wiring and connector-module

etch) must not exceed an equivalent of 2 ohms per signal path. Thus,

the composite signal return path dc resistance must not exceed 2 ohms

divided by 40 bus lines, or 50 milliohms. Note that although this

common return path is nominally at ground potential, the conductance

must be part of the bus wiring. The specified low impedance return path

must be provided by the bus wiring as dlqtmgulshed from the common

system or power ground path.

C.7.7.2 Intrabackplane Bus Wiring

The wiring that connects the bus connector slots within one contiguous

backplane is part of the overall bus transmission line. Owing to

implementation constraints, the nominal characteristic impedance of 120

ohms may not be achievable. Distributed wiring capacitance in excess of

the amount required to achieve the nominal 120-ohm impedance may not

exceed 60 pF per signal line per backplane.

214 Q22-bus Specification

C.7.7.3 Power and Ground

Each bus interface slot has connector pins assigned for the following dc
voltages. The maximum allowable current per pin is 1.5 A. +5 Vdc must
be regulated to 5% with a maximum ripple of 100 mV pp. +12 Vdc must
be regulated to 3% with a maximum ripple of 200 mV pp.

e +5 Vdc — three pins (4.5 A maximum per bus device slot)

e +12 Vdc — two pins (3.0 A maximum per bus device slot)

e Ground — eight pins (shared by power return and signal return)

NOTE: Power is not bused between backplanes on any interconnecting bus cables.

C.8 System Configurations

Q22-bus systems can be divided into two types.

e Systems containing one backplane

e Systems containing multiple backplanes

Before configuring any system, three characteristics for each module in the

system must be identified.

e Power consumption — +5 Vdc and +12 Vdc are the current

requirements.

e AC bus loading — the amount of capacitance a module presents to a
bus signal line. AC loading is expressed in terms of ac loads, where
one ac load equals 9.35 pF of capacitance.

e DC bus loading—the amount of dc leakage current a module presents to

a bus signal when the line is high (undriven). DC loading is expressed

in terms of dc loads, where one dc load equals 210 4A (nominal).

Power consumption, ac loading, and dc loading specifications for each

module are included in the Microcomputer Interfaces Handbook.

Q22-bus Specification 215

NOTE: The ac and dc loads and the power consumption of the processor module,

terminator module, and backplane must be included in determining the total loading

of a backplane.

Rules for configuring single-backplane systems are as follows.

e When using a processor with 220-ohm termination, the bus can

accommodate modules that have up to 20 ac loads before additional

termination is required. (See Figure C-17.) If more than 20 ac loads are

included, the other end of the bus must be terminated with 120 ohms,

and then up to 35 ac loads may be present.

¢ With 120-ohm processor termination, up to 35 ac loads can be used
without additional termination. If 120-ohm bus termination is added,

up to 45 ac loads can be configured in the backplane.

¢ The bus can accommodate modules up to 20 dc loads (total).

e The bus signal lines on the backplane can be up to 35.6 cm (14 inches)

long.

L BACKPLANE WIRE |

i 35.6 CM (14 IN) MAXIMUM

[1
8 ONE ONE ONE | OPTIONAL

S 250) UNIT UNIT UNIT :> .

b | LOAD LOAD LOAD o 1209
+ , +

3.4V \ v — 34V

- 35 AC LOADS 1=
= 20 DC LOADS -

PROCESSOR TERM

MR-6034

MA-1072-87

Figure C-17 Single-Backplane Configuration

216 Q22-bus Specification

Rules for configuring multiple backplane systems are as follows.

e Figure C-18 shows that up to three backplanes can make up the system.

F; ' BACKPLANE WIRE %%
35.6 CM (14 in.) MAX

\ § CABLE |

ONE ONE

250 UNIT UNIT
LOAD LOAD

. |

3.4V N — _

__' 20 AC LOADS MAX

PROCESSOR

| BACKPLANE WIRE I

i 25.4 CM (10 IN) MAX

1
1R l

ONE ONE

UNIT UNIT
LOAD LOAD

CABLE N y CABLE

ADDITIONAL 20 AC LOADSMAX
CABLES AND

BACKPLANE L BACKPLANE WIRE

Il 254CM(unN)MAx"“““""{
(¢

]
ONE ONE

120 Q2 UNIT UNIT
3.4V LOAD LOAD

CABLE/ I

TERM
A 4

20 AC LOADS MAX

NOTES:

1. TWO CABLES (MAX) 4.88 M (16 FT) (MAX)

TOTAL LENGTH.

2.20 DC LOADS TOTAL (MAX).
MR-6035%

MA-1073-87

Figure C-18 Multiple Backplane Configuration

Q22-bus Specification 217

The signal lines on each backplane can be up to 25.4 cm (10 inches)

long.

Each backplane can accommodate modules that have up to 22 ac loads.

Unused ac loads from one backplane may not be added to another

backplane if the second backplane loading exceeds 22 ac loads. It is

desirable to load backplanes equally, or with the highest ac loads in the

first and second backplanes.

' DC loading of all modules in all backplanes cannot exceed 20 loads.

Both ends of the bus must be terminated with 120 ohms. This means

the first and last backplanes must have an impedance of 120 ohms.

To achieve this, each backplane can be lumped together as a single

point. The resistive termination can be provided by a combination of

two modules in the backplane - the processor providing 220 ohms to

ground in parallel with an expansion paddle card providing 250 chms

to give the needed 120-ohm termination.

Alternately, a processor with 120-ohm termination would need no

additional termination on the paddle card to attain 120 ohms in the

first box. The 120-ohm termination in the last box can be provided in

two ways: the termination resistors may reside either on the expansion

paddle card, or on a bus termination card (such as the BDV11).

The cable(s) connecting the first two backplanes is (are) 61 cm (2 feet)

or more in length.

The cable(s) connecting the second backplane to the third backplane is

(are) 122 cm (4 feet) longer or shorter than the cable(s) connecting the

first and second backplanes.

The combined length of both cables cannot exceed 4.88 m (16 feet).

The cables used must have a characteristic impedance of 120 ohms.

218 Q22-bus Specification

C.8.1 Power Supply Loading

Total power requirements for each backplane can be determined by

obtaining the total power requirements for each module in the backplane.

Obtain separate totals for +5 V and +12 V power. Power requirements for

each module are specified in the Microcomputer Interfaces Handbook.

When distributing power in multiple backplane systems, do not attempt
to distribute power via the Q22-bus cables. Provide separate, appropriate
power wiring from each power supply to each backplane. Each power

supply should be capable of asserting BPOK H and BDCOK H signals
according to bus protocol; this is required if automatic power-fail/restart
programs are implemented, or if specific peripherals require an orderly

power-down halt sequence. The proper use of BPOK H and BDCOK H

signals is strongly recommended. |

C.9 Module Contact Finger Identification

Digital’s plug-in modules all use the same contact finger (pin) identification
system. A typical pin is shown in Figure C-19.

BE2

MODULE SIDE

SLOT (ROW) IDENTIFIER , IDENTIFIER

“SLOT B” “SIDE 2" (SOLDER
SIDE)

PIN IDENTIFIER

“PIN E”

MR-16553

MA-1054-87

Figure C-19 Typical Pin Identification System

The Q22-bus is based on the use of quad-height modules that plug into
a 2-slot bus connector. Each slot contains 36 lines (18 lines on both the

component side and the solder side of the circuit board).

219Q22-bus Specification

MA-1079-87

b4

'
w0A4

g
2

Q

=
3 B

o < - "
=D

o
>

Pl
“

o
PR

A

R

\

= o — : - L Eo

=23v<ee<o%.PNSS=%,==-ototY-LSAPoeXRAyo=[SSaliA~oS<eTmmeWR
T EY

o e
I //.

SN .
R V/ /0 o= o 00 < o o= AY

YM/oooTTTMoLeoAT5O<=>Be=N - e S oS D AL S oo .

|8

ROW A

ROW B

ROWC

ROW D

The component side is designated side 1, the solder side is

designated side 2, as shown in Figure C-20.

COMPONENT SIDE

Slots, row A, and row B include a numeric identifier for the side of the

module.

Figure C-20 Quad-Height Module Contact Finger Identification

220 Q22-bus Specification

Letters ranging from A through V (excluding G, I, O, and Q) identify a
particular pin on a side of a slot. Table C-7 lists and identifies the bus pins

of the quad-height module. A bus pin identifier ending with a 1 is found

on the component side of the board, while a bus pin identifier ending with

a 2 is found on the solder side of the board.

The positioning notch between the two rows of pins mates with a protrusion

on the connector block for correct module positioning.

The dimensions for a typical Q22-bus module are represented in
Figure C-21.

NOTES:

T 10.457 * Q18 ——rme DIMENSIONS GIVEN IN INCHES

5237+ 018 5.187~ 20— (QUAD HGT) DIMENSIONS DENOTED BY * ARE FOR
e SINGLE ;3%;07 . (DOUBLE HGT) : MAX. USEABLE CIRCUIT AREA

| z 8.000——+ UNLESS OTHERWISE SPECIFIED ALL
& 2RN ~

.

2g | f—2750—= 128 DIA*% HANDLE HOLEs ~ OMENSIONS ARE £.005in
+ 002

+ 010 =] == 2.000 W]

TYP. 4 ¥
L4

I - ¢ < |4 4|~ -¢——T _

+.010 180 TYP.

£ 010 ' BOTTOM OF FINGERS

8.430+ TO TOP OF HANDLE
EXT. LGTH.) 7 438 8.94 1 010 (EXT LGTH.)

. ‘ 50010 (STD. LGTH.
2312 (EXT. LGTH.) 5.50%7 74)

(SQ\IGLE HGT)

O\ +]| + + |+ + o+ +

24 5.062"
.063° (DOUBLE HGT)e 10.312°

£ 010 — (QUAD. HGT) o

4.930% 010 3.938"

(STD. LGTH.) (STD. LGTH)

158 + 8.000 , |
+ 010 5.250 ot | 625 TYP. -72:5;9
v T s e |] DOUBLE WIDTH

569 3999721237353 99% 22 LmaBuBunb a8 sd BOBEEE L3 888808 3852585603 T e aumene - ggmg 82‘%'\“/; Uhafig::

1 {TTTETITTERTALG : ! NONCONDUCTIVE — 875
P k100000 +fle 080 TY_F".J g0 T | N 1 o

~— < gt 010 stoTve Lo L_ MAXIMUM HEIGHT OF rggxgggm e

- - 010 : 2,240 0055 SOLDERED COMPONENT = .
8.097% 0 P H LEADS NONCONDUCTIVE —.375 in

2.125 TYP.

(17 EQUAL SPACES)

MA-1091-87

Figure C-21 Typical Q22-bus Module Dimensions

Table C-7 Bus Pin Identifiers

Q22-bus Specification 221

Bus Pin Signal Definition

AAl

AB1

AC1

AD1

AE1

AF1

AH1

Aj1

AK1

ALl

AM1

BIRQ5 L

BIRQG6 L

BDAL16 L

BDAL17 L

SSPARE1

(alternate +5B)

SSPARE2

SSPARE3

SRUN

GND

MSPAREA

MSPAREB

GND

Interrupt request priority level 5.

Interrupt request priority level 6.

Extended address bit during addressing ‘

protocol; memory error data line during data

transfer protocol.

Extended address bit during addressing

protocol; memory error logic enable during

data transfer protocol.

Special spare — not assigned or bused in

Digital’s cable or backplane assemblies.

Available for user connection. Optionally,

this pin can be used for +5 V battery (+5 B)

back-up power to keep critical circuits alive

during power failures. A jumper is required on

Q22-bus options to open (disconnect) the +5 B

circuit in systems that use this line as

SSPARE1.

Special spare — not assigned or bused in

Digital’s cable or backplane assemblies.

Available for user interconnection. In the

highest priority device slot, the processor can

use this pin for a signal to indicate its run

state.

Special spare — not assigned or bused

simultaneously in Digital’s cable or backplane

assemblies; available for user interconnection.

An alternate SRUN signal can be connected in

the highest priority set. ,

Ground — system signal ground and dc return.

Maintenance spare — normally connected
together on the backplane at each option

location (not a bused connection).

Maintenance spare — normally connected

together on the backplane at each option

location (not a bused connection).

Ground — system signal ground and dc return.

222 Q22-bus Specification

Table C-7 (Cont.) Bus Pin identifiers

Bus Pin Signal Definition

AN1 - BDMR L DMA request — a device asserts this signal
to request bus mastership. The processor

arbitrates bus mastership between itself and

all DMA devices on the bus. If the processor

is not bus master (it has completed a bus cycle

and BSYNC L is not being asserted by the

processor), it grants bus mastership to the

requesting device by asserting BDMGO L.

The device responds by negating BDMRL and

asserting BSACK L. |

AP1 BHALT L Processor halt — when BHALT L is asserted
for at least 25 us, the processor services the

halt interrupt and responds by halting normal

program execution. External interrupts are

ignored but memory refresh interrupts in Q22-

bus operations are enabled if W4 on the M7264

and M7264-YA processor modules is removed

and DMA request/grant sequences are enabled.

The processor executes the ODT microcode,

and the console device operation is invoked.

AR1 BREF L Memory refresh — asserted by a DMA device.
This signal forces all dynamic MOS memory

units requiring bus refresh signals to be

activated for each BSYNC L/BDIN L bus

transaction. It is also used as a control signal

for block mode DMA.

CAUTION: The user must avoid multiple

DMA data transfers (burst or hot mode) that

could delay refresh operation if using DMA

refresh. Complete refresh cycles must occur

once every 1.6 ms if required.

AS1 +12Bor +5B +12 Vdc or +5 V battery back-up power

to keep critical circuits alive during power

failures. This signal is not bused to BS1 in all

of Digital’s backplanes. A jumper is required

on all Q22-bus options to open (disconnect) the

backup circuit from the bus in systems that use

this line at the alternate voltage.

AT1 GND Ground — system signal ground and dc return.

Q22-bus Specification 223

Table C-7 (Cont.) Bus Pin Identifiers

Bus Pin Signal Definition

AU1 PSPARE 1 Spare — not assigned. Customer usage
not recommended. Prevents damage when

modules are inserted upside down.

AVl +5B +5 V battery power — secondary +5 V power
connection. Battery power can be used with

certain devices.

BA1 BDCOK H DC power OK — a power supply generated
signal that is asserted when the available dc

voltage is sufficient to sustain reliable system

operation.

BB1 BPOK H Power OK — asserted by the power supply 70
ms after BDCOK is negated when ac power

drops below the value required to sustain

power (approximately 75% of nominal). When

negated during processor operation, a power-

fail trap sequence is initiated.

BC1 SSPARE4 Special spare in the Q22-bus — not assigned.
BDAL18 L Bused in 22-bit cable and backplane assemblies.

(22-bit only) Available for user interconnection.

BD1 SSPARES

BDAL19 L

(22-bit only) CAUTION: These pins may be used by
manufacturing as test points in some options,

BE1 SSPARE6 In the Q22-bus, these bused address lines are
BDAL20 L address lines <21:18>. Currently not used

during data time.

BF1 SSPARE7 In the Q22-bus, these bused address lines are

BDAL21 L address lines <21:18>. Currently not used

| during data time.

BH1 SSPARES Special spare — not assigned or bused in

Digital’s cable and backplane assemblies.

Available for user interconnection.

Bj1 GND Ground — system signal ground and dc return.

BK1 MSPAREB Maintenance spare — normally connected
BL1 MSPAREB together on the backplane at each option

location (not a bused connection).

224 Q22-bus Specification

Table C-7 (Cont.) Bus Pin ldentifiers

Bus Pin Signal Definition

BM1

BN1

BP1

BR1

BS1

BT1

BU1

BV1

AA2

AB2

AC2

AD?2

GND

BSACK L

BIRQ7 L

BEVNT L

+12B

GND

PSPARE2

+5

+5

GND

+12

Ground — system signal ground and dc return.

This signal is asserted by a DMA device in

response to the processor’s BDMGO L signal,

indicating that the DMA device is bus master.

Interrupt request priority level 7.

External event interrupt request — when

asserted, the processor responds by entering

a service routine via vector address 1008. A

typical use of this signal is as a line time clock

(LTC) interrupt.

+12 Vdc battery back-up power (not bused to

AS1 in all of Digital’s backplanes).

Ground — system signal ground and dc return.

Power spare 2 — not assigned a function and

not recommended for use. If a module is

usin

-12 V (on pin AB2), and, if the module is

accidentally inserted upside down in the

backplane,

-12 Vdc appears on pin BUL.

+5 V power — normal +5 Vdc system power.

+5 V power — normal +5 Vdc system power.

=12 V power — -12 Vdc power for (optional)

devices requiring this voltage. Each Q22-bus

module that requires negative voltages contains

an inverter circuit that generates the required

voltage(s). Therefore, -12 V power is not

required with Digital’s options.

Ground — system signal ground and dc return.

+12 V power — +12 Vdc system power.

Q22-bus Specification 225

Table C-7 (Cont.) Bus Pin Identifiers

Bus Pin Signal Definition

AE2

AF2

AH2

AJ2

BDOUT L

BRPLY L

BDIN L

BSYNC L

Data output — when asserted, BDOUT implies

that valid data is available on BDAL<0:15>

L and that an output transfer, with respect to

the bus master device, is taking place. BDOUT

L is deskewed with respect to data on the bus.

The slave device responding to the BDOUT L

signal must assert BRPLY L to complete the

transfer.

Reply — BRPLY L is asserted in response

to BDIN L or BDOUT L and during IAK

transactions. It is generated by a slave device

to indicate that it has placed its data on the

BDAL bus or that it has accepted output data

from the bus.

Data input — BDIN L is used for two types of

bus operations.

e When asserted during BSYNC L time,

BDIN L implies an input transfer with

respect to the current bus master, and

requires a response (BRPLY L). BDIN L is

asserted when the master device is ready

to accept data from the slave device.

e When asserted without BSYNC L, it

indicates that an interrupt operation is

occurring. The master device must deskew

input data from BRPLY L.

Synchronize — BSYNC L is asserted by the bus

master device to indicate that it has placed an

address on BDAL<0:17> L. The transfer is in

process until BSYNC L is negated.

226 Q22-bus Specification

Table C-7 (Cont.) Bus Pin Identifiers

Bus Pin Signal Definition

AK2 BWTBT L Write/byte — BWTBT L is used in two ways to
control a bus cycle.

e It is asserted at the leading edge of BSYNC

L to indicate that an output sequence

(DATO or DATOB), rather than an input

sequence, is to follow.

e [t is asserted during BDOUT L, in a

DATOB bus cycle, for byte addressing.

AL2 BIRQ4 L Interrupt request priority level 4 — a level 4
device asserts this signal when its interrupt

_enable and interrupt request flip-flops are

set. If the PS word bit 7 is 0, the processor

responds by acknowledging the request by

asserting BDIN L and BIAKO L.

AM2 BIAKI L Interrupt acknowledge — in accordance with

AN2 BIAKO L interrupt protocol, the processor asserts BIAKO
L to acknowledge receipt of an interrupt. The
bus transmits this to BIAKI L of the device

electrically closest to the processor. This device

accepts the interrupt acknowledge under two

conditions.

e The device requested the bus by asserting

BIRQn L (where n= 4, 5, 6 or 7)

e The device has the highest priority

interrupt request on the bus at that time.

If these conditions are not met, the device

asserts BIAKO L to the next device on the bus.

This process continues in a daisy chain fashion

until the device with the highest interrupt

priority receives the interrupt acknowledge

signal.

Q22-bus Specification 227

Table C-7 (Cont.) Bus Pin Identifiers

Bus Pin Signal Definition

AP2

AR2

AS2

AT2

AU2

AV2

BA2

BBS7 L

BDMGI L

BDMGO L

BINIT L

BDALO L

BDAL1 L

+5

Bank 7 select — the bus master asserts this

signal to reference the I/O page (including

that part of the page reserved for nonexistent

memory). The address in BDAL<0:12> L

when BBS7 L is asserted is the address within

the 1/0 page.

Direct memory access grant — the bus

arbitrator asserts this signal to grant bus

mastership to a requesting device, according

to bus mastership protocol. The signal is

passed in a daisy-chain from the arbitrator (as

BDMGO L) through the bus to BDMGI L of

the next priority device (the device electrically

closest on the bus). This device accepts the

grant only if it requested to be the bus master

(by a BDMR L). If not, the device passes the

grant (asserts BDMGO L) to the next device

on the bus. This process continues until the

requesting device acknowledged the grant.

CAUTION: DMA device transfers must not

interfere with the memory refresh cycle.

Initialize — this signal is used for system

reset. All devices on the bus are to return

to a known, initial state; that is, registers

are reset to zero, and logic is reset to state 0.

Exceptions should be completely documented

in programming and engineering specifications

for the device.

Data/address lines — these two lines are

part of the 16-line data/address bus over

which address and data information are

communicated. Address information is first

placed on the bus by the bus master device.

The same device then either receives input

data from, or outputs data to, the addressed

slave device or memory over the same bus

lines.

+5 V power — normal +5 Vdc system power.

228 Q22-bus Specification

Table C-7 (Cont.) Bus Pin lIdentifiers

Bus Pin Signal Definition

BB2 -12 -12 V power (voltage not supplied) — -12 Vdc
power for (optional) devices requiring this

voltage.

BC2 GND Ground — system signal ground and dc return.

BD2 +12 +12 V power — +12 V system power.

BE2 BDAL2 L Data/address lines — these 14 lines are part of

BF2 BDAL3 L the 16-line data/address bus.

BH2 BDAL4 L

BJ2 BDALS L

BK2 BDALS6 L

BL2 BDAL7 L

BM2 BDALS L

BN2 BDAL9 L

BP2 BDAL10O L

BR2 BDAL11 L

BS2 BDAL12 L

BT2 BDAL13 L

BU2 BDAL14 L

BV2 BDAL15 L

Appendix D

Acronyms

This appendix lists and defines the acronyms that are most frequently used

in this manual.

ACRONYM DEFINITION

ACV Access control violation

AlE Alarm interrupt enable

ANSI American National Standards Institute

AP Argument pointer

ASTLVL Asynchronous system trap level

BBU Battery back-up unit

BCD Binary coded decimal

BDR Boot and diagnostic register

BM Byte mask

BRS Baud rate select signals

CADR Cache disable register

CMCTL CVAX memory controller chip

CPMBX Console program mailbox

CQBIC CVAX Q22-bus interface chip

CRC Cyclic redundancy check

CSR Control and status register

CSTD Console storage transmit data

CSTS Console storage transmit status

DEAR DMA error address register

DIP Dual in-line package

DM Data mode

DMA Direct memory access

DSE Daylight saving enable

EDITPC EDIT packed to character string

EIA Electronic Industries Association

EPROM Erasable programmable read-only memory

ERR Error signal

229

230 Acronyms

ACRONYM DEFINITION

ESP Executive stack pointer

FP Frame pointer

FPA Floating-point accelerator

FPU Floating-point unit

GPR General purpose register

ICCS Interval clock control and status register

ICR Interval count register

IORESET 1/0 bus reset register

IPCR Interprocessor communication register

IPL Interrupt priority level

IPR Internal processor register

ISP Interrupt stack pointer

KSP Kernel stack pointer

LSI Large scale integration

MAPEN Memory management mapping enable register

MBRK Microprogram break register

MBZ Must be zero | |

MCESR Machine check error summary register

MCS Multinational character set

MFPR Move from process register

MMU Memory management unit

MOP Maintenance operation protocol

MOS Metal oxide semiconductor

MSER Memory system error register

MTPR Move to process register

NICR Next interval count register

NXM Nonexistent memory

POBR PO base register

P1BR P1 base register

PC Program counter

PCB Process control block

PCBB Process control block base

PIE Periodic interrupt enable

POLR PO length register

P1LR P1 length register

PMR Performance monitor enable register

POPT PO page table

P1PT P’1 page table

Acronyms 231

ACRONYM DEFINITION

PROM Programmable read only memory

PSL Processor status longword |

PSW Processor status word

PTE Page table entry

QBEAR Q22-bus error address register

RAM Random-access memory

RPB Restart parameter block

RXCS Console receiver control/status register

RXDB Console receiver data buffer

SAVPC Console saved PC register

- SAVPSL Console saved PSL register

SBR System base register

SCA System communications architecture

SCB System control block

SCBB System control block base

SID System identification register

SIE System identification extension

SIRR Software interrupt request register

SISR Software interrupt summary register

- SLR System length register

SLU Serial line unit

SP Stack pointer

SPT System page table

SQWE Square-wave enable

SSC System support chip

sSSP Supervisor stack pointer

TBCHK Translation buffer check register

TBDATA Translation buffer data

TBDR Translation buffer disable register

TBIA Translation buffer invalidate all

TBIS Translation buffer invalidate single

TNV Translation not valid

TODR Time of year register

TOY Time-of-year

TXCS Console transmit control/status register

TXDB Console transmit data buffer

UIE Update interrupt enable

UIP Update in progress

232 Acronyms

ACRONYM DEFINITION

USP User stack pointer

VLSI Very large scale integration

VPN Virtual page number

VRT Valid RAM and time

VMB Virtual memory bootstrap

XEC Extended function call

ZIP Zig-zag in-line package

Index

A

abort, 38

Accessing the Q22-bus map registers,

104

B

Backplane wiring, 213

Battery backed-up RAM, 99

Baud rate, 87

BDCOK H, 208

Binary load and unload, 139

Bit map, 154

Block mode DMA, 195

Boot, 131

Boot and diagnostic register, 94

Bootstrap operation, 142

Bootstrapping, 141

BPOK H, 208

Break response, 87

Bus cycle protocol, 183

‘Bus drivers, 211

Bus interconnecting wiring, 213

Bus receivers, 211

Bus termination, 212

C

Cacheable references, 55

Cache control register, 68

Cache disable register, 59

Cache memory, 7

Call back entry points, 157

CDAL bus to Q22-bus address

translation, 106

~ Central processing unit, 6

Clock functions, 6

Command keywords, 130

Command syntax, 130

Comment, 141

- Compatible system enclosures, 23

Configuration and display connector

(J2), 14
Configuring the KA650-AA, 13

Configuring the Q22-bus map, 108

Console commands, 131

Console control characters, 128

Console emulation, 128, 167

Console interrupt specifications, 88

Console patch panel, 125

Console receiver control/status

register, 83

Console receiver data buffer, 84

Console registers, 83

Console SLU connector (J1), 13

Console transmitter control/status

register, 85

Console transmitter data buffer, 87

Contents of main memory, 155

Continue, 132

Control functions, 207

CP$GETCHAR_R4, 158

CP$MSG _OUT_NOLF_R4, 158

CP$READ WTH_PRMPT R4, 159

- CPU references, 53

D

Data-stream read references, 53

Data transfer bus cycles, 182

Data types, 32

DATBI bus cycle, 198

DATBO bus cycle, 199

Deposit, 132

2 Index

Detailed local address space map,

172

Determining the console device, 127

Device addressing, 184

Device priority, 202

Diagnostic LED register, 96

Diagnostics, 149

Diagnostic state, 163

Dimensions, 169

Direct memory access, 193

Disk bootstrap operation, 142

DMA error address register, 114

DMA guidelines, 201

DMA protocol, 193

DMA system error register, 11

E

Electrical specifications, 169

Entry/dispatch code, 118

Environmental specifications, 170

Error handling, 115

- Error messages, 164

Error reporting, 149

Examine, 134 |

Exceptions, 37

Exceptions and interrupts, 35

External halts, 126

External internal processor registers,

175

F

fault, 37, 38

Find, 135

Firmware EPROM layout, 156

Firmware output on power-up, 120

Firmware stack, 163

First-level cache, 55, 155

First-level cache address translation,

57 |

First-level cache behavior on writes,

59

First-level cache data block

allocation, 58

First-level cache error detection, 63

First-level cache organization, 56

Floating-point accelerator, 7

Floating-point accelerator data types,

4

Floating-point accelerator

instructions, 54

Floating-point errors, 41

G

General local address space map, 171

General purpose registers, 26

Global Q22-bus address space map,

175

H

H3600-SA CPU cover panel, 17

Halt, 135, 208

Halt code messages, 164

Halt protect space, 156

Hardware detected errors, 49

Hardware halt procedure, 50

Hardware reset, 99

I/O bus initialization, 100

Information saved on a machine

check, 40

Initialization, 208

Initialize, 135

Instruction set, 32

Instruction-stream read references,

53

Internal processor registers, 28

Interprocessor communication

register, 107

Interrupt errors, 42

Interrupt protocol, 202

Interrupts, 35, 201

Interval timer, 89

Intrabackplane bus wiring, 213

K

KA630CNF configuration board, 18

KA650-AA boot and diagnostic

facility, 94

KA650-AA cache memory, 55

KA650-AA central processor, 25

KA650-AA connectors, 13

KA650-AA console serial line, 83

KA650-AA floating-point accelerator,

54

KA650-AA initialization, 99

KA650-AA main memory system, 72

KA650-AA Q22-bus interface, 100

KA650-AA resident firmware

operation, 98

KA650-AA time of year clock and

timers, 88

Keyboard inquiry, 127

L

Language inquiry, 127

LED codes, 123

Load definition, 210

M

Machine state when halted, 153

Main memory addressing, 74

Main memory behavior on writes,

75

Main memory control and diagnostic

status register, 79

Main memory error detection and

correction, 81

Main memory error status register,

75

Main memory layout and state, 153

Main memory organization, 74

Memory controller, 8

Memory expansion connector (J3), 16

Memory layout, 147

Memory management, 33

Memory management control

registers, 34

Memory management errors, 42

Memory refresh, 208

Memory system error register, 62

Index 3

Microcode errors, 43

MicroVAX system support functions,

Module contact finger identification,

218

MS650-AA memory modules, 9

MS650-BA memory modules, 10

N

Network bootstrap operation, 144

Nonoperating conditions greater

than 60 Days, 170

Nonoperating conditions less than 60

days, 170

O

120-Ohm Q22-bus, 210

Operating conditions, 170

P

Parameters passed to the secondary

bootstrap, 148

Physical specifications, 169

Power status, 208

Power supply loading, 218

Power-up and power-down protocol,

209

Power-up initialization, 99

- Processor initialization, 100

Processor state, 25

Processor status longword, 26

Programmable timers, 90

PROM bootstrap operation, 143

Public data structures and console

mailbox (CPMBX), 161

Public data structures and entry

points, 156

(022-bus electrical characteristics, 210

Q22-bus error address register, 113

Q22-bus four-level interrupt

configurations, 206

4 Index

Q22-bus interface, 9

Q22-bus interrupt handling, 108

Q22-bus map base address register,

109

(Q22-bus map cache, 105

Q22-bus map register, 146

Q22-bus map registers, 103

Q22-bus signal assignments, 179

Q22-bus to main memory address

translation, 101

R

Read errors, 43

References to processor registers and

memory, 131

Repeat, 136

Reserved main memory, 153

Resident firmware, 9

Restart, 151

ROM address space, 97

ROM memory, 97

ROM socket, 97

S

Scatter-gather map, 154

Secondary bootstrap, 147

Second-level cache, 64, 155

Second-level cache address

translation, 66

Second-level cache as fast memory,

71

Second-level cache behavior on

writes, 68

Second-level cache data block

allocation, 67

Second-level cache error detection,

70

Second-level cache organization, 65

Set, 137

Show, 138

Signal level specifications, 210

Special power-up processing, 120

SSC RAM layout, 160

Start, 138

Supported boot devices, 141

System configuration register, 109

System configurations, 214

System control block, 46

System identification, 52

-

Test, 139

Time of year clock, 88

Timer control registers, 90

Timer interrupt vector registers, 93

Timer interval registers, 92

Timer next interval registers, 93

Translation buffer, 33

Translation lookaside buffer, 155

U

Unjam, 139

USER area, 163

V

Virtual memory boot messages, 166

VMB_Displays, 146

W

Write errors, 44

Write references, 54

KA650 CPU Module

Technical Manual

READER'S COMMENTS EK-KA650-UG-002

Your comments and suggestions will help us in our efforts to improve the quality of our publications.

1. How did you use this manual? (Circle your response.)

(a) installation (c) Maintenance (e) Training

(b) Operation/use (d) Programming (f) Other (Please specify.)

2. Did the manual meet your needs? Yes [1 No (O Why?

3. Please rate the manual on the following categories. (Circle your response.)

Excellent Good Fair Poor Unacceptable

Accuracy 5 4 3 2 1

Clarity 5 4 3 2 1

Completeness 5 4 3 2 1

Table of Contents, Index 5 4 3 2 1

lllustrations, examples 5 4 3 2 1

Overall ease of use 5 4 3 2 1

4. What things did you like most about this manual?

5. What things did you like least about this manual?

6. Please list and describe any errors you found in the manual.

Page Description/Location of Error

Name Job Title

Street Company

City Department

State/Country Telephone Number

Postal (ZIP) Code Date

THANK YOU FOR YOUR COMMENTS AND SUGGESTIONS.

Please do not use this form to order manuals. Contact your representative at Digital Equipment Corporation

or (in the USA) call our DECdirectTM department at this toll-free number; 800-258-1710.

© 1988 by Digital Equipment Corporation MYO

FOLD HERE AND TAPE. DO NOT STAPLE.

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 33 MAYNARD, MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION

Educational Services/Quality Assurance

12 Crosby Drive BUO/E08 |

Bedford, MA 01730-1493

USA

FOLD HERE AND TAPE. DO NOT STAPLE.

No Postage

Necessary

if Mailed in the

United States

R

S
O
l

E
—
—
—

N
—
c
—

I

—
—
—
—
—

A
T
—

i

—
—
—

|

—
—

—
—
—
S

D
U

S
—
—
T

W
A

e
w
—
—

WI

OR
TS

C!

O
R
I

T
S
t

WI
RG

SN
E
A

——
"

.
A
W

S
e
m
o
m

o

A
T

WI
GE

EE
S
M
t

p
E
S
R
S
—

e
y

