
EK-KA630-UG-001

KAG630-AA

CPU Module

User’s Guide

Prepared by Educational Semvices

of Digital Equipment Comporation

1st Edition, February 1986

© pigital Equipment Corporation 1986.

A

All Rights Reserved,

The material in this document is for informational purposes and is

subject to change without notice; it should not be construed as a

commitment by Digital Equipment Corporation. Digital Equipment

Corporation assumes no responsibility for any errors that may

appear in this document.

FCC Notice: This equipment generates, uses, and may emit radio

frequency energy. The equipment has been type tested and found to

comply with the limits for a Class A computing device pursuant to

Subpart J of Part 15 of FCC Rules, which are designed to provide
reasonable protection against such radio frequency interference

when operated in a commercial environment. Operation of this
equipment in a residential area may cause interference in which

case the user at his own expense may be required to take measures

to correct the interference.

Printed in U.S.A.

The manuscript for this book was created on a VAX-11/780 system

running WPS-PLUS. The book was produced by Educational Services

Development and Publishing in Marlboro, MA.

Motorola is a registered trademark of Motorola, Inc.

The following are trademarks of Digital Equipment Corporation:

MASSBUS RSTS

DEC OMNIBUS RSX

DECmate 0s/8 RT

DECNET PDP UNIBUS

DECUS PDT VAX

DECwriter P/0S VAXstation

DIBOL Professional VMS

IAS Q-Bus VT

LSI-11 Rainbow Work Processor

CONTENTS

Page

PREFACE

CHAPTER 1 OVERVIEW

INTRODUCTION. cccccoveenosassocscccsoscesccscasosonnca

MicroVAX 78032 MICROPROCESSOR CHIP.sesecsocsosansns

MicroVAX 78132 FRU CHIP..:eeeeeecsccesscssossnnscns

MicroVAX INTERFACE GATE ARRAY....cevecsvescsancsane

LOCAL MEMORY ..ot ocevecvoceoscssoancssssanssosnsenons

64 KBYTE BOOT AND DIAGNOSTIC ROM..csescossscacscone

CONSOLE SERIAL LINE UNIT (SLU)¢eecosccssocsonnsaoscse

Q22-BUS INTERFACE....cccoeeosocscoccccsscsonsascscs

KA630-AA OPERATION MODES..eeecescescascssccassacsns

0 KA630-AA SPECIFICATIONS...cceeececsvessnosavosccansaS
le

e
l

a
l

o

¢

o

o

8

o

s

s

o

@

D
N

W
W
W
W
W
N

-1-

1~

1~

1-

1-

1-

1~

1-

1-

1-W
O

J
A
W
U
L

B

W
K

-

CHAPTER 2 INSTALLATION

INTRODUCTION. ccecooescsccosansascnossscsessnsansoosseeld

KA630~AA CONNECTORS . caveeesescscscscsssscsosnonsassl=

Memory Expansion Connector (Jl)...cseeeecscccoeselm

Configuration and Display Connector (J2)..eeeoeese=

Console SLU Connector (J3)seeeeesescscencacsssaselr

KA630CNF CONFIGURATION BOARD..ceseeesoscscssosanoans

CK-KA630-A CPU DISTRIBUTION PANEL INSERT..c.ceacesas

Time-0f-Year (TOY) CloCk BBU.:uecsssncosssoncnnse

COMPATIBLE SYSTEM ENCLOSURES..esecesscsascssasccssl

R

O
B

W
M
N
N

-

.

e

.

W
N

|
1

=

O
W
O
W
U
U
N
N

N

N
N
O
N
N
D
N
N
D
D
D
N
D
N

. [

I
N
I
]
)
N

-

CHAPTER 3 BOOTING AND CONSOLE PROGRAM INTERFACE

INTRODUCTION. s coosecosesaseensaseonsssescassasoacess3—

POWER-UP...citvetncesssecoscecssosssosassssssasasscssld—

Power-Up Mod€..iceeesessosocecccsosssensososscsesd—

Power Stabilization and ROM CheckSUM....es00se0es3-

Console Program Initialization....iceeesceccecaesal-3

Battery Backup CheCK..ceeeeeescsorsescessnosassessaeald=5

InterProcessor Communication Register

(IPCR) TeSt...veeeeeeeoosesecscsscnsnssssssssneeneld=b
Determining the Console Terminal TyPe€..sesseeesss3=5

.1 Alternate Console Device Hardware
Determination...ccesececcecionesanenceasscsseeeld=5

.2 Console Terminal DeterminationN....eveveessceesea3—6w

w
w

W

W

W
i

W
w
w

[=
)]

[+
 X
))

W

 N
~

W

w
w
H

iii

Contents

. ~
J

e

o

0

o

o

o

o

@

e

¢

s

s

o

s

s

o

o

B

=

b

b

b

b
t

b

H
i
=

=
=

O
O

W
U
S

W
N

-

W
K

~
O

e

o+

e

€

o

@

O
V
 U

B

b

o

B

0

B

b

B

D

D

D
D

D
D

W
N

-

«

e

e

W
W
W
W
W
W
W
W
W
W
i
W
w
w
W
w
i
w
W
w
w
w
W
w
W
w
W
w
W
w
w
w
w
w
w
w
u
w
w
w
w
w
u
w
w
w
w

P
N

 N
N
N
N
Y
N
N
A
U
N
N
V
N
N
N
N
N
N
N
N
A

U

s

W
D

CHAPTER 4

«

&

o

»

M
U

E

D

B
B

B
R
W
N
N
N
D
N-

¢

e

o

o
«

o

@

R

S

R
O

I
N

N
I

-

)

iv

Console Message Language ChecCK....eeeeeoeeceoeees3d—6

ENTRY/DISPATCH..... e

DIAGNOSTICS .t ceeecasenossscacsssesssosasssssssssssee3—8

RESTART . cosececcscssossassssccacsncscsoscasssssscsssses3=8

BOOTSTRAP .cccetevssoccsccosccscessoscsssanssssascssse3=l0

Primary Bootstrap Program (VMB)......eeveeeeveeee3=12

Bootstrap DevicCeS...eeeseeceaccscccecccososonesld=1l3

Bootstrap Command Fl.......cc0itetiecencnnnsseeld=1ld

Booting from Disk....ceevecenesescoconassenessld-ld

Booting from Tape.....cveeeeecesnnsosesscnseseld=1l?

Booting from PROM..::ceeseneonsossesssssosasass3d—1l7

Booting from DEQNA...ceiesseecssocsssassecsass3—l9

Booting an Auxiliary Processor.......cceeeee.,3-19

Secondary Bootstrap Program.......ccceeeeseees0.3-20

CONSOLE I/0 MODE (SYSTEM HALTED) .:ceeeeosssscoooass3=22

Console Control CharacterS..ceeeseccsssesscessesi=22

Console Command SYyNta@X..eceoessossesssnssssssses3—24

References to Processor Registers and Memory....3-24

Console COMMANAS.cssoessosscessoscsssscsnssosaases3—25

Binary Load and Unload (X).seeeceosecscoesseeseald—25

BOOL.cuevoesoseosensessoosscssossassassensosasesecs3—26

Comment (!).eeesecsesscsscsescocsavnsescseonssssald—27

CONtinNUe. . vveesescsvssssnsccanscscscasassscansesi—27

DepoSiticecerseesasscsscscssacsosscnassocnsnseeld—27

EXAMine. . .veesesescsossosessesccscsasnsconsccseead—29

Find.ieeeeeeaoeoeeasssesscssossosssnsssssssoscessssd—30

Initialize.eseeesoosocssaoesansnssssasecncssnseld—3l

Halt.ueeeooeaooasanassonososeasasnscsosassnsssad=3l

REPEAL.evseeaecscssnessassssscsscssssncssoseaes3—3l
StALt.vessecsasssesessanssosonasassnssssncssesld—32

- = I-0

UNJAM.eeeeeeososoaoacasssosnsssssanssssanssnsene3—32

Consocle Errors and Error MeSSa8ge€S.esececesessssse3=32

Halts and Halt MeSSAgeS..csessesccsscsscscocnsseld—32

CONSOLE I/0 MODE (SYSTEM RUNNING).:eeeososeeseassea3=35

ARCHITECTURE

INTRODUCTION .. oeeoeoossvcososssncsssosccssssssacsccs

PROCESSOR STATE..ccevrocccssscssssccscscsoscssncssassce

General Purpose Registers...cccevsceesccescnscsce

Processor Status Longword...cceeeoosscsscccscsns

Processor RegiSterS..seecessescccscocccccsscsanns

INSTRUCTION SET.sceccveccccasssssesssoscooancscsssse

EXCEPTIONS AND INTERRUPTS.ccectocecccccccscscssocne

INterrUPtS. s eaecesocscoccracsccosnssosscsssosnssss

EXCePLiONS. vt eersscessscssccsossctssscssocssssnscs

Machine Check ParameterS..ccecceesecccccoccccsce

Halt ConditionS..ceceeeccccccsccesososnssocsssccnccsse

System Control BloCK...eeeoeoesooeoscaocsosonsased=l
HARDWARE DETECTED ERRORS...eestcesososcsasscscssssd=l2

Nonexistent Memory ErrorS..c.ceesecescacceassecessd—12

Parity Error DetectioN..eeceeceessscesossccoesssd—l3

Interrupt Vector TimeoutS....eceeesecssccsssoeea4-13

NO SAcCk TimMeOUES.eeeceessessscosoasascssssssenesd—ld

o

o

s

o

o

o

[T
-

N

-
G

-

S

S

Y
8

[

]
|

O
W
O
N
A
N
A
N
N
W
H
-

Contents

N

=

N

-

.

W
K
-

[

Y
R

R
R

R

N
N

N
N

N

N

N

(
S

g

R

 R

S

o

.

e

"

e

&

o

9

s

o

2

s

&

s

e
) L

T
S

.

A
UW

N

W
W
W
N
N
D
N
D
N
D
N
D
N
D
N

s
 b
t

b
t

b
t

et

b

b
et

b

e

bt

e

b

b

b

e

et

b
t

b
s

A

WD

WD

AD

WD

WO

O

L0

D

00

00

0

00

0
0
0

0

0

)

O
O

N

N
N
e

P

e

R

O
O
0
Q
O
O

s
¢

¢
o

o
o

=

. N

N

-

T
o
l

o
l

o
l

o
l

e
l

e

D
A
E
D
B
D
W
W
W
W
W
W
W
W
N

e

&

8

&

¢

¢

&

0

0

s

0

0

N

=

LATENCY . veevoeoososossscssnssosssscssssnssanccssassssd=1l4

Interrupt LatenCy..ccsecsceccossosscsossoccscscaceasecd—ld

DMA LatenCY..coesssseacososcsccsescsssacsnssssesscd—ld

SYSTEM IDENTIFICATION REGISTER (SID).ceesessoesecss4d-15

MEMORY MANAGEMENT ... ceeescsacasosssscsssanscccosssd=16

Physical and Virtual Address Space€....sceesec...4-16

Memory Management Control Registers.............4-16

System Space Address Translation.....ececeeeese.4-17

Process Space Address Translation......eceesees.4=-17

PO Region Address TranslationN....scceeeeesceeccd=-17

Pl Region Address Translation....ccceveeceess.4-20

Page Table ENtrIY..ceceesescsconssesossnansnssssead—21

KA630-AA MEMORY SYSTEM..veeeeaesoeasocsossosessesessd=2l

Local Memory Mapping Register Format............4-21

Mapping Register Addresses (2008XXXX Hex).......4-22

Q22-Bus Map OperationN...eceeececssescesacasenserd=23

Memory System RegisterS...cececeseccescsncescosssd=24

Memory System Error Register (20080004 Hex)...4-24

CPU Error Address Register....eveceecccccsscssd=27

DMA Error Address Register....cececesccsccessos4-28

Memory System Operation...cesecescccesecescess..q4-28

KA630~AA BOOT AND DIAGNOSTIC FACILITY...secevses..4-30

Boot and Diagnostic Register....seseesececcesss.4=-30

ROM MEMOTYevssosasossoscsssesscnsscscsassoseecnssd=32

ROM SOCKELS.:iesosresssvssssnsoscossnssocsosscsased=32
ROM AQAresSs SpPaACe..scssescscccsssssscsccsssessd=32

KA630-AA Console Program OperationN..eceeseee..4-33

KAG630-AA TOY CLOCK.uieeovaesaassosccsssensensascssssd=34

Battery Backed-Up Watch Chip....ccveeeecceesess.4-34

Watch Chip RegisterS...ecsceccececccccscsesessecd—34

TOY Data RegisterS..ecececscsescccsccacssseseasd—34

Control and Status Register A....cccesecevses.d4-36

Control and Status Register B...ceseesesessss.4-36

Control and Status Register C...ceecscceccasssd=37

Control and Status Register D.u.eecescsocasssssd-37

RAM MEMOTY.cosooeossocssonccsnsssnsannoseonssesd—38

POWEIr~UPuceeeeesosossossssasssssssasosseassssassed=38
Valid RAM and Time...vesescacscscsssncscessesesd=38

Invalid RAM and Time...eesesessvesaacacasesesssq—38

INTERVAL TIMER. .. ceesecocsssosncsossoscscascscsnessd=d0

Interval Clock Control and Status

Register (ICCS).eevecocsessessvsnssssscnoscsssssd—40

Interval Timer Operation......eceecececccccasesss.q4-40

CONSOLE SLU...vevecvossaosserssoasscsnsscsnsnnsesesd=40

Console Functionality.ieeeoesesccossoscscceesessd=-40

Console REgiSterS...csesessassnssosssscscssessssd—4l

Console Receiver CSR (IPR 32).4.cevccscsncsesnd-41

Console Receiver Data Buffer (IPR 33).........4-41

Console Transmitter CSR (IPR 34)..ceceesescs..4-44

Console Transmitter Data Buffer (IPR 35)......4-45

Break RESPONS@..cesesvcsscascscasssssssnsnsssessd—45

Q22~BUS CONTROL..ceeeececooccccocascssncssasoncsssd=45
Bus Initialize Register (IPR 55).cccccencesessss4-45

Multilevel INterrupPtS..c.cceccesccsocsccccocnonsesd=45

Contents

CHAPTER 5

s

o

8

o

*
«

»

[«
 B
E
N
 I
R

I

W
U

B
N

VE

 I

3

B
W
N
N
D
N
D
N
D
N
D
N
D

D
N

-

. (
]

(S
,
C

N0
,
I
V

O

T
,

 B
V
 R
O

R
C
 R
,

S

APPENDIX A

APPENDIX B

Figure No.

1-1

1-2

1-3

1-4

2-1

2-2

2-3

2-4

2-5

2-6

2-7

3-1

3-2

3-3

3-4

3-5

3-6

3-7

vi

Interprocessor Communications Facility..........4-46

Interprocessor Communication Register.........4-46

Interprocessor Doorbell InterruptS.......e....4-48
MULTIPROCESSOR CONSIDERATIONS.. .ccsossnscccsessossd-48

Auxiliary/Arbiter Differences.....coevsvesvsssses.4-48

Multiprocessor FeatUreS...eeiceesccccssocassessqd-49

KA630-AA Based Multiprocessor Systems...........4-49

PDP-11 Based Multiprocessor SystemS.....c.e.se...4-50

DIAGNOSTICS

INTRODUCTION . eetoesacocncsasoosssoscassssocsssssceasd]

FUNCTIONAL DESCRIPTION...:cecevescecssosscncsaccsacasd]l
IPCR Te@St.ceeoseeaasnosasossasnssocsscsccsaonsscesed=2
Memory Data TeSt...ieeeecsescsossecocsscossvssscssd=2

Memory AdAress TeSt.eseeeceessscoocsosnssssonsoasaned=2
022-Bus Mapping Registers TesSt.....eceeeeeeceesesed3

MicroVAX CPU Chip TeSt..eeessesccscosonsoneneossed3
Software Interrupts and TrapS.cesecececccsceccecssao—d

System Interrupts and Data Paths......ccceveceaes5-

Console TeSt..uiesosesrsocscscasessososnsssossocssesd

Console Program/ROM Diagnostic Interface.........5-

ERROR OUTPUT . ¢ecesvoosonacsssssosnasanssososenoansasd

KAG30~AA LED DISPLAY . .0eevsconcsscsnssossvnsssssaessdTM [o
,
W
=

W

W
U
,
 B
0
-
1

Q22-BUS SPECIFICATION

ACRONYMS

FIGURES

Title Page

KA630-AA (MicroVAX 630) CPU Module.ceceoveeecocaans

MS630 Memory ModuleS..eecesseocccoscssscrosscosccsces

KA630-AA Block Diagram...seceeesceescscesssssccscsns

MicroVAX II System Level Block Diagram.......cceee

KA630-AA Pin and LED Orientation...ccecsescecccece

KAG630CNF Configuration Board...cececeseesccscacscons

KAG630CNF J2 and J3 Pin Orientation.....ccecececcasss

KAG630CNF J1 and J4 Pin Orientation.ccceiecccacccncne

CK-KA630-A Distribution Panel Insert..csccecesccccs

CK~KA630-A Connectors (Front View).....ceveveoesss2-1

CK-KA630-A Connectors (Rear View)...oeoeeeecsessss2-10

Console Memory Map After Initialization............3-4

RPB FOIMAL .o eeeruoeeeossassannssososscsssesosssnsese3=9

BOOED10CK FOIMAEteseseaseessscsonssasssscssonassessld—lbd

PROM Bootstrap Memory Format (Signature Block)....3-18

Extended RPB....ceceosen eoessecscssesrasasssnsscssse3=20

Secondary Bootstrap Argument List.........ccecs.0.3-21

Secondary Bootstrap Memory MapP.....eeeeecececsssss3=2l

“«

e

o

o

o

I
N
N
I
\
)
N
(
}
)
F
—
‘
H
T
H

[

[
|

O
O
A
U

Contents

L} Processor Status Longword (PSL).cceeceocncssscncasesd=3

Interrupt ReGISterS.ccicesceasossccncscoscssosssancsald=T

Machine Check ParametersS,.c...c.scesoccececccsnsece.ld-8

System Control Block Base Register (SCBB).........4-10

System Identification Register (SID)..¢eeececcesscd-15

Virtual AdAresSs SpPaCe..cscecccccoccscssscsasssneasad=lb

Physical Address SpPacC@...cecccesecscoscsssccssessad—1lb
Memory Management (Mapping) Enable Register

(MAPEN) teeevesecacsosssscososssossossosssesssscseessd=l?

h
h
-
h
l
l
l
-
h
b
b
h

D
I

N

W
N

4-9 Translation Buffer Invalidate Single Register
(TBIS).sessssonsnosescsscssccsonsososancsssasnosssssd=l?

4-10 Translation Buffer Invalidate All Register

(TBIA).uceoseossnsecssnssssosnsaonssscscsssanssssnsesd=l?

4-11 System Space Virtual to Physical Address
TranslatioN.ceeceeceesceescescsscoanecsscccacsosessd—18B

4-12 PO Virtual to Physical Address Translation........4-19

4-13 Pl Vvirtual to Physical Address Translation........4-20

4-14 Page Table Entry (PTE)..icceesvacrcocccsecconeesssd=2l

4-15 Mapping RegiSter..cecececeacocsvcoscssscccacsenessd=22
4-16 022-Bus to Local Memory Physical Address

TranslatioN...eevesseseesecscccscscsccccscacansceaesd—24

4-17 Memory System Error Register (MSER)....ccevesoceesd4-25

4-18 CPU Error Address Register (CEAR)...cccecocesesas.q4-27

4-19 DMA Error Address Register (DEAR).cscecssescssesesd—28

4-20 Boot and Diagnostic Register (BDR).cseescscsscoees4-32
4-21 Control and Status Register A (CSR A)..vceseesese.4-36

4-22 Control and Status Register B (CSR B)i.seeecseses.d-36

4-23 Control and Status Register D (CSR D).cesececcossesd—37

4-24 Console Program Mailbox (CPMBX)...ceeececocescsssoa4-38

4-25 Interval Clock Control and Status Register

(ICCS) eueeesesssnacsosssscssossssssasasesescsncssesd—d0

4-26 Console Receiver CSRiuiisveseserencsonsasascccesassd—q2

4-27 Console Receiver Data Buffer...c.ececevaccccecese.4-43

4-28 Console TransMitter CSRi.cieceresosssccscsocnnscessd—44

4-29 Interprocessor Communication Register (IPCR).,.....4-46

TABLES

Table No. Title Page

W
W
W
W
N
N
N
N
N
N
N

)

B
W
N

=
W

W
N

- MS630 Memory Module VariantS.....cceeeecoancscccsns

Electrical SpecificationsS......ccvoecececcecccecsccns

Environmental Specifications.....ceceeceoesccsocccas

Memory Expansion Connector (J1) PinoutS...eecseccesecs

Configuration and Display Connector (J2) Pinouts...

Console SLU Connector (J3) PinoutS,...ececececcocesnece

KA630CNF Switch SelectionS....ceeeecsccaccsscncnnes

KA630CNF Connector and SwitcheS....eeeeceeccccsccese

POWEr—Up MOAEeS..cvcveetsassocasassssssscnsocsecsnccs

Additional Language Selections (VCBOl Only)........

Console Entry Decision Table...cseeeescsonscesancos

VMB Register UsSage....covesecscvacscscceancnancacsel l
u
w
w
w
w
t
r
m
w
o
—
-
»
—
-
b
-
e

N
N

W

~
J
U

W

N

-

|

vii

Contents

[

T
T

A

N

L

V
R

VS

1

O
O

W
N
H
F
N
I
O
O
U
L

viii

VMB Bootstrap Command FlagS....ccecceecsevcessossa3—15
Console Error MeSSageS..seecesccccscasassccecseess3d—33

KA630-AA Halt MeSSAgE@S.ceeccccseccssoecasssossssss3—34
Processor Status Longword Description..............4-2
Processor Register SUMMAIY....ccceecccncccscccsscessd—4
System Control Block Format.....c.cececesesassscssed-10

system Identification Register Format.............4-15

Memory Register FOIMAt...ccoveoescocaccosccsoosssad22

Mapping Register AdAresSSeS.....eeeceecessssoscocsssead-23
Memory System Error Register Format......eeeeoee...4-25

Boot and Diagnostic Register Format....ceceeessso.4-31

Watch Chip RegiSterS..ceesveeecssscecsosoccssansaead=35

Time-of-Year Data Register AddresseS...ecessesessa4=-35

Console Program Mailbox Format....cceeeeceeoescsssd-39

SLU Console RegiSterS.c.cecesescescsccscoscsscscssd=dl

Console Receiver CSR FOrMat...cseseeescsncsassescad—42

Console Receiver Data Buffer Format....c.eoceeeess..c4-43

Console Transmitter CSR FOrmat...ceceeescccccces.d-44

Interprocessor Communication Register Format......4-47

Diagnostic TeStS...eseeoessesessossscccscssssasaneead2

KA630-AA LED InterpretatioN.c.eseceececcccccncocecesd7

PREFACE

This manual is intended for the design engineer or applications

programmer who is familiar with Digital's extended LSI-11 bus

(022-Bus) and the VAX instruction set. This manual is divided into

the following chapters:

1 OVERVIEW -- Introduces the KA630-AA MicroVAX CPU module and

MS630 memory modules, including module features and

specifications.

2 INSTALLATION -- Describes the installation of the KA630-AA and

MS630 modules in Q22-Bus backplanes and system enclosures.

3 BOOTING AND CONSOLE PROGRAM INTERFACE -- Describes the console
program, device booting sequence and console commands.

4 ARCHITECTURE -- Provides a description of KA630-AA registers,

instruction set and memory.

5 DIAGNOSTICS -- Describes the KA630-AA boot diagnostics.

CONVENTIONS

The following chart lists the conventions used in this manual.

Convention Meaning

<mm:nn> Read as "mm through nn," it indicates a bit field

or a set of 1lines or signals. For example,

A <17:00> is the mnemonic device that stands for

address lines 17 through 00.

<CR> A label enclosed by angle brackets represents a key

(usually a control or special character key) on the

keyboard (in this case, the carriage return).

NOTE Contains general information.

CAUTION Contains information to prevent damage to

equipment.

XX Boldface capital Xs indicate variables.

ix

Preface

RELATED DOCUMENTS

The following is a list of related documentation.

Microcomputer Interfaces Handbook

Microcomputers and Memories Handbook

VAX Architecture Handbook

VAX-11 Architecture Reference Manual

You can order these documents from:

Digital Equipment Corporation

Accessories and Supplies Group

P. 0. Box CS2008

Nashua, NH

Attention:

03061

Documentation Products

EB-20175-20

EB-18451-20

EB-19580-20

EK-VAXAR-RM

CHAPTER 1

OVERVIEW

1.1 INTRODUCTION

The KA630-AA (Figure 1-1) is a quad-height VAX processor module
for the (Q22-Bus (extended LSI-11 bus). It is designed for use in

high speed, real-time applications and for multiuser, multitasking
environments. It can be configured as an arbiter or auxiliary CPU.

The major components of the KA630-AA are described in the

following paragraphs.

a1 J2 J3

ROM

LowGATE

BYTEARRAY

ROM

HIGH

BYTE

Figure 1-1 KA630-AA (MicroVAX 630) CPU Module

Overview

1.2 MicrovAX 78032 MICROPROCESSOR CHIP

The MicroVAX 78032 (referred to as the MicroVAX CPU chip in this

manual) is a 32-bit virtual memory microprocessor packaged in a

68-pin ZMOS (double metal NMOS) chip. It requires no special clock

generator or support chips. At its maximum frequency, the MicroVAXx

CPU chip achieves a 200 ns microcycle and a 400 ns I/0 (memory)

cycle. The MicroVAX CPU chip contains a 32-bit extension of the

industry standard microprocessor interface.

The MicrovaX CPU chip includes a VAX compatible, demand-paged

Memory Management Unit (MMU). This MMU provides direct access to

four gigabytes (2**32) of virtual memory and one gigabyte (2**30)

of physical memory. Virtual mapping of system space addresses is

accomplished through single level page tables. Virtual mapping of

process space addresses is accomplished through double level page

tables.

The MicrovVAX CPU chip provides the following subset of the VAX

data types.

Byte

Word

Longword

Quadword

Character string

Variable length bit field

The MicrovAX 78132 Floating Point Unit (FPU) chip (referred to as

the MicrovAX FPU chip 1in this manual) provides support for

F_floating, D_floating and G_floating data types. Support for the

remaining VAX data types can be provided by macrocode emulation.

The MicroVAX CPU chip provides the following subset of the VAX

instruction set.

Integer arithmetic and logical

Address

variable length bit field

Control

Procedure call

Miscellaneous

Queue

Character string moves (MOVC3 and MOVCS)

Operating system support

The MicroVAX CPU chip provides microcode assistance for the

emulation of the remaining VAX instructions: character string,

decimal string, EDIT Packed to Character string (EDITPC) and

Cyclic Redundancy Check (CRC). Support for floating data types and

instructions is provided by the MicroVAX FPU chip (Section 1.3).

Overview

1.3 MicroVAX 78132 FPU CHIP

The MicroVAX FPU chip supports D_floating, F_floating and

G floating data types and instructions, It does not support

Hfloating data types or instructions. H_floating data types can
be provided by macrocode emulation.

1.4 MicroVAX INTERFACE GATE ARRAY

The MicroVAX interface gate array consists of two custom Large

Scale Integration (LSI) chips. The gate array includes the
following features.

) Provides interface between the MicroVAX CPU and FPU chips

and module logic

° Provides signals to the KA630-AA LEDs indicating console

and diagnostic boot state

° Decodes signals from the KA630-AA connector J2 to

determine module characteristics

® Contains a 1local decoder and address latch, for use by

the memory subsystem and other KA630-AA logic elements

1.5 LOCAL MEMORY

The KA630-AA CPU contains 1 Mbyte of on-board local memory, and

supports one or two MS630 memory expansion modules (Figure 1-2)
for a maximum of 9 Mbytes of local memory. The KA630-AA

communicates with MS630 memory modules through the CD interconnect
of a system backplane and through a 50-conductor cable included

with each memory module. MS630 memory modules are available in

three variants (Table 1-1), all populated with 256 K RAM chips.

The KA630-AA provides byte parity generation and checking for all
local memory. The memory mapping procedure is described in

Chapter 4.

1.6 64 KBYTE BOOT AND DIAGNOSTIC ROM

The KA630-AA boot and diagnostic ROM provides power-up

diagnostics, boot programs for standard devices, and a subset of

the VAX console program. The power-up diagnostics, booting

procedure and console program are described in Chapter 3.

1.7 CONSOLE SERIAL LINE UNIT (SLU)

The console SLU, described in Chapter 2, is accessed by the

processor using four VAX Internal Processor Registers (IPRs), and

features externally selectable baud rates. The IPRs are described

in Chapter 4.

Overview

MS630-BA (2 MBYTE) MS630-BB(4 MBYTE)

MS630-AA (1 MBYTE)

Figure 1-2 MS630 Memory Modules

Table 1-1 MS630 Memory Module Variants

Storage Module Module Current at

Variant (Mbytes) Height Number +5 Vdc (Max)

MS630-AA 1 Dual M7607-AA 1.0 A

MS630~-BA 2 Quad M7608-AA 1.3 A

MS630-BB 4 Quad M7608-BA 1.8 A

Overview

1.8 Q22-BUS INTERFACE

The Q22-Bus interface provides the following features.

) Block mode and single transfer Direct Memory Access (DMA)

) 022-Bus 1/0 map, which allows DMA devices to access local

memory through a 4 Mbyte window divided into 8192

independent pages

° Q22-Bus interrupt requests BIRQ7 through 4 (when

configured as an arbiter CPU)

° 240 Q termination

Figure 1-3 1is a block diagram of the KA630-AA. Fiqgure 1-4 is a

system level block diagram.

J1 J2 J3

r 50-PIN CONNECTOR] | LEDs l | 20-PIN CONNEC‘TORJ [uwm cormscroa]

9-15 I

0-15 B
ARRAY 0-15

‘ PARITY l CONSOLE
TRANSCEIVER f =

& MicroVAX -

17} GATE <
2018 S ARRAY 16-21 B 21 o

| < - o[kt & ToYB o [}ON-B0ARD | 8 AN :14-21]0' 2
MEMORY g 5331 022:8Us 21 |

= MAP o
- g g 0-15

iy = ROM

7} © 3
g u [:] e 3

<

w b MicroVAX =]
« LI —Té icm x
8 2 CHIP

& g
2 = pRT-1
w =

H 8
- § MicroVAX

E:] < FPU
g CHIP

s

liEMORY INTERCONNECTI l Q22-BUS INTERFACE J

ROW D AND C OF BACKPLANE ROW B AND A OF BACKPLANE

MR-0186-0001

Figure 1-3 KA630-AA Block Diagram

Overview

CPU REAR I/0

DISTRIBUTION INSERT

CONSOLE

50-PIN CABLE

MicroVAX LOCAL MEMORY INTERCONNECT (32-8IT DATA)

Y U 4

LOCAL
CPU/FPU MEMORY

EXPANSION EXPANSION
MEMORY

ARRAY
]/ 1 MEMORY

ARRAY

Q22-

DR

{a]

r & - - - - - — -
| el

o

|

|

|

i

)

|
LBASK"_LAEE _________________________________

SERIAL

LINE

CONTROLLER
170 DISTRIBUTION

ERT

PRINTER

um0198.0079 B

REMOTE TERMINAL LOCAL TERMINALS

Figure 1-4 MicrovAX II System Level Block Diagram

Overview

NETWORK OTHER
INTERFACE Q22-8US

CONTROLLER OPTIONS

_____________________________________ -

1

N\ !
|

[

N !
1

|

_______________________________ [
g

BPOK, BOCOK,

BEVENT

F N/

|

ALT

1

RESTARTI

ENABLE |
DISK TAPE POWER

| CONTROLLER CONTROLLER SUPPLY
STaRT

READY |

> |
[

E €
g (=]

- OE -

i hRD WRT 0
PRO ROY,

MASS STORAGE SIGNAL

DISTRIBUTION PANEL

AC POWER

DISK DRIVE NO. O DISK DRIVE NO. 1 DISK DRIVE NO. 2

“R0196.0029.4

Figure 1-4 (Cont)

Overview

1.9 KA630-AA OPERATION MODES

When configured as an arbiter CPU, the KA630-AA must be installed

in the first slot of a Q22-Bus backplane containing the CD
interconnect. It arbitrates bus mastership and fields Q22-Bus

interrupt requests BIRQ7 through 4. It also responds to interrupt

requests from its own interval timer, console SLU arnd

interprocessor doorbell. The interprocessor doorbell provides a

means for auxiliary CPUs to request control of the Q22-Bus.

When configured as an auxiliary CPU, the KA630-AA can be installed

in any backplane slot containing the CD interconnect. The arbiter

may be a Q22-Bus PDP-11 CPU or another KA630-AA. The auxiliary

KA630-AA requests bus mastership to access the Q22-Bus. It does

not field Q22-Bus interrupt requests, but can respond to interrupt

requests from its own interval timer, console SLU and

interprocessor doorbell,

1.10 KA630-AA SPECIFICATIONS

The KA630-AA CPU module electrical and environmental

specifications are listed in Tables 1-2 and 1-3, respectively.

Table 1-2 Electrical Specifications

Maximum Currents Q22~Bus Loads

Module

Height +5 vdc +12 vdc AC DC

Quad 6.2 A 0.14 A 2.7 1.0

Table 1-3 Environmental Specifications

Specification Range

Ambient storage temperature -40 to +65°C (-40 to +149°F)

Operating temperature (CPU

mounted in an enclosure):

150 ft/min air flow 5 to 40°C (41 to 1o4gp)
250 ft/min air flow 5 to 50°C (41 to 122°F)

Relative humidity:

Storage 10 to 90% noncondensing, altitude
to 9.1 km (50,000 ft). Derate

maximum temperature by 1°c for each
1000 m (1 ft for each 1000 ft) of

altitude.

Operating 10% to 90% noncondensing

CHAPTER 2

INSTALLATION

2.1 INTRODUCTION

This chapter contains information required to install the KA630-AA

in a system. It describes the following.

KA630-AA connectors

Configuration board

CPU distribution panel

Compatible system enclosures

2.2 KA630-AA CONNECTORS

The KA630-AA communicates with local memory, the console device,

and the 022-Bus through three J connectors and through its four

module fingers. The user can configure the KA630-AA through a CPU

distribution panel insert or a configuration board. The slot

pinouts on the fingers of the KA630-AA are listed in Appendix A.

The KA630-AA has three connectors (Figure 2-1), J1 through J3.

9 1 18 1 49 1

0 2 20 2 I 8421 50 2

DC OK
J3 52 a

LEDs

MR-17280

Figure 2-1 KA630-AA Pin and LED Orientation

Installation

2,2.1 Memory Expansion Connector (J1)

The 50-pin memory expansion connector provides the interface

between the KA630-AA and MS630 memory modules installed in the CD

rows of slots 2 and 3 of a Q22-Bus backplane containing the CD

interconnect. Table 2-1 1lists Jl pinouts. The memory expansion

connector contains the following control, data and ground signals.

[BUFENL <01:00> (2 pins)

e BDIRTL (1 pin)

e PE <03:00> {4 pins)

) MD <31:00> (memory data lines -- 32 pins)

° GND (ground -- 11 pins)

2.2.2 Configuration and Display Connector (J2)
The KA630-AA has no jumper or switch settings to change or set.

Module configuration is done using switches on the CPU
distribution panel insert or the KA630CNF configuration board. The

20-pin configuration and display connector is connected to the

inside of the CPU distribution panel insert by a 20-conductor

cable, or directly to connector J2 of the KA630CNF configuration

board. Table 2-2 lists J2 pinouts.

Table 2-1 Memory Expansion Connector (J1) Pinouts

Pin Mnemonic Pin Mnemonic

01 GND 26 GND

02 MDO 27 PEL3

03 MD1 28 BUFENL 0

04 MD2 29 MD15

05 MD3 30 GND

06 GND 31 GND

07 MD5 32 PEL2

08 MD4 33 MD17

09 MD7 34 MD18

10 MD6 35 MD19

11 MDY 36 MD20

12 MD8 37 MD21

13 GND 38 GND

14 MD10 39 MD23

15 MD11 40 MD22

16 MD12 41 MD25

17 MD13 42 MD24

18 MD14 43 MD27

19 PELO 44 MD26

20 GND 45 GND

21 BDIRTL 46 MD28

22 MD16 47 MD29

23 BUFENL 1 48 MD30

24 PEL1 49 MD31

25 GND 50 GND

Installation

Table 2-2 Configuration and Display Connector (J2) Pinouts?

Pin Mnemonic Meaning

0l GND Ground.

02 GND Ground.

03 GND Ground.

04 CPU CDO L CPU Code <01:00>. This 2-bit code can be

05 CPU CD1 L configured only by using switches 7 and 8 on
the KAG630CNF configuration board. (See Table

2-4.) It determines whether the KA630-AA is
configured as the arbiter or as one of three

auxiliaries.

CPU Code <01:00> Configuration

00 Arbiter

01 Auxiliary 1

10 Auxiliary 2

11 Auxiliary 3

CPU Code <01:00> is read by software from the

BDR.

If the CPU distribution panel insert is used,

no connections are made to pins 4 and 5. In

that case, signal 1levels are negated by

pull-up resistors on the KA630-AA, making it

the arbiter CPU.

06 GND Ground.

07 DSPL 00 L Display Register Bits <03:00>. When asserted

08 DSPL 01 L each of these four output signals lights a

09 DSPL 02 L corresponding LED on the module. DSPL <03:00>

11 DSPL 03 L are asserted (low) by power-up and by the

negation of DC OK. They are updated by boot

and diagnostic programs from the BDR.

10 BTRY VCC Battery backup voltage for TOY clock.

12 GND Ground.

13 BDG CDO L Boot and Diagnostic Code <01:00>. This 2-bit

14 BDG CDl1 L code indicates power-up mode, and is read by

14 BDG CD1 L software from the BDR.

Installation

Table 2-2

(Cont)

Configquration and Display Connector (J2) Pinouts*

Pin Mnemonic Meaning

15

16

17

18

19

20

HLT ENB L

GND

CSBR 02 L

CSBR 01 L

CSBR 00 L

+5 VvV

Halt Enable. This input signal controls the

response to an external halt condition, If HLT

ENB is asserted (low), then the KA630-AA halts

and enters the console program if any of the

following occur.

[The program executes a halt instruction in

kernel mode.

° The console detects a break character.

) The KA630-AA 1is configured as an arbiter

CPU and the Q22-Bus halt line is asserted.

) The KA630-AA is configured as an auxiliary

CPU and the interprocessor communication

register AUX HLT bit is set.

If HLT ENB 1is negated (high), then the halt

line and break character are ignored and the

ROM program responds to a halt instruction by

restarting or rebooting the system. If HLT ENB

is negated and the KA630-AA is configured as

an auxiliary CPU, then the ROM program

responds to assertion of the ICR AUX HLT bit

by rebooting. HLT ENB 1is read by software

from the BDR.

Ground.

Console Baud Rate <02:00>. These three bits

are configured by using either the baud rate

select switch on the CK-KA630-A distribution

panel, or switches 2, 3 and 4 of the KA6 30CNF

configuration board.

Fused +5 volts,

* The KA630-AA module has 10 K pull-up resistors for the 8 input

signals (pins 4 through 5, 13 through 15 and 17 through 19).

Installation

2.2.3 Console SLU Connector (J3)

The 10-pin console SLU connector provides the connection between

the KA630-AA and the console terminal. It is connected to the

inside of the CPU distribution panel by a 1l0-conductor cable, or

directly to connector J3 of the KA630CNF configuration board. A

cable from the outside of the distribution panel or J1 of the

KA630CNF provides the external connection to the console terminal.

Table 2-3 lists J3 pinouts.

Table 2-3 Console SLU Connector (J3) Pinouts

Pin Mnemonic Meaning

01 EIA signal out.

02 GND Ground.

03 SLU OUT L Console SLU output from the KA630-AA.

04 GND Ground.

05 GND Ground.

06 Key (no pin).

07 SLU IN + Console SLU differential inputs to the

08 SLU IN - KA630~-AA.

09 GND Ground.

10 +12 V Fused +12 volts.

2.3 KA630CNF CONFIGURATION BOARD

Q KA630CNF (H3263-00) configuration board (Figures 2-2, 2-3, 2-4)

is provided with each KA630-AA. The KA630CNF plugs directly into

connectors J2 and J3 on the KA630-AA. It allows the user to

configure the KA630-AA by setting the 10 switches on SW1l as listed

in Table 2-4.

Connector Jl 1is used to connect a cable to the console SLU.

Connector J4 is for a Battery Backup Unit (BBU). The J4 pin

closest to connector Jl1 is the positive pin.

Table 2-5 1lists the pins on the KA630-AA J2 and J3, and the

corresponding KA630CNF connectors and switches on SW1l. Note that

connectors J2 and J3 both have more connectors than there are pins

on the corresponding KA630-AA connector. The two left and two

right side connectors on J2 and J3 of the KA630CNF are unused.

Switches 1 through 8 on SWl set values that enable or disable

halts; and determine CPU operation mode, power-up mode, and
console baud rate. SW1 switches 9 and 10 connect transmit and

::::iz;. lines as required for normal operation or loopback

Installation

J3 J2

\ TOP VIEW /

O TITITIT PYTTTTTTTT

LbLb

m |0 o

77J1 J4 MR.-14508

SIDE VIEW

citee J 0000000000
++1 | 12345678910

C

Figure 2-2 KA630CNF Configuration Board

1

9 1 9 1

2 2 12

0 0

2 3

MR-17281

Figure 2-3 KA630CNF J2 and J3 Pin Orientation

- [INEEREEEEER
+ -

4 J4 Swi

MR.17282

Figure 2-4 KA630CNF J1 and J4 Pin Orientation

Installation

Table 2-4 KA630CNF Switch Selections

switch/Setting Mode/Function

1 Halt Mode

off Disabled

on Enabled

2 3 4 Console Baud Rate

off off Off 300

On Off Off 600

Off Oon Off 1,200

On Oon Off 2,400

Off Off On 4,800

Oon Off on 9,600

off Oon on 19,200

Oon On On 38,400

5 6 9 10 Power-Up Mode

Off Off Oon Off Normal operation. Transmit 1line
connected. Receive line connected.

On off on off Language inquiry mode. Transmit line

connected. Receive line connected.

Off Oon Off On Loopback test mode (maintenance).

Transmit line connected to receive

line and console.

On On On off Manufacturing use only. Bypasses

memory test.

Note: Other settings for switches 5, 6, 9 and 10 should not be

used.

7 8 CPU Operation Mode

of f off Arbiter

On Off Auxiliary 1

off On Auxiliary 2

On on Auxiliary 3

Table 2-5 KA630CNF Connector and Switches

CPU CNF CPU CNF

J2 CNF J2 CNF SwWl J4 J3 CNF J3 CNF SWl Jl

Pin Mnemonic Connector Switch Pin | Pin Mnemonic Connector Switch Pin

1 1

2 2

1 GND 3 1 EIA OUT 3

2 GND 4 2 GND 4 2, 4, 5,

3 GND 5 3 SLU OUT L 5 10 3

4 CPU CDO L 6 7 4 GND 6 2, 4, 5,

5 CPU CD1 L 7 8 5 GND 7 2, 4, 5,

6 GND 8 6 Key (no pin) 8

7 DSPL 00 L 9 7 SLU IN + 9 7

8 DSPL 01 L 10 8 SLU IN - 10 9

9 DSPL 02 L 11 9 GND 11 2, 4, 5,

10 BTRY VCC 12 1* 10 +12 V 12 10

11 DSPL 03 L 13 13

12 GND 14 14

13 BDG CDO L~ 15 5

14 BDG CD1 L 16 6

15 HLT ENB L 17 1

16 GND 18

17 CSBR 02 L 19 2

18 CSBR 01 L 20 3

19 CSBR 00 L 21 4

20 +5 V 22

23

24

* +10 V from BBU to TOY clock chip on CPU

u
o
r
i
e
r
I
e
3
I
S
U
I

Installation

2.4 CK-KA630-A CPU DISTRIBUTION PANEL INSERT

when the KA630-AA is installed in a MicroVAX II system, the

CK-KA630-A CPU distribution panel insert (Figures 2-5, 2-6, 2-7)

in the rear I/0 distribution panel is used to select configuration

settings. The KA630-AA can only function as an arbiter when it is

connected to the CK-KA630-A.

The CK-KA630-A is available in two variants: the CK-KA630-AB and

CK-KA630-AF. The difference is in the cable length for the J2 and

J3 cables. The CK-KA630-AB is used in Digital BA23-A and BAl123-A

enclosures. The CK-KA630-AF is used in the H9642 and BAll-S

enclosures.

2.4.1 Time-Of-Year (TOY) Clock BBU

The CK-KA630-A also contains a BBU for the TOY clock chip. The BBU

is 1located on the back of the CK-KA630-A. It consists of three

nickel-cadmium batteries connected in series for a combined

voltage of 3.75 Vdc. The minimum required voltage is 3.6 Vdc. The

BBU provides power for the TOY clock chip when power is not

supplied to the KA630-AA from the system power supply. The BBU

recharges when dc power is applied to the KA630-AA. In addition to

the time-of-year data, the TOY clock contains four Control and

Status Registers (CSRs) and 50 bytes of RAM used by the console

program (described in Chapter 3) to store information required to

restart the processor following a halt. The TOY clock chip and

four CSRs are described in detail in Chapter 4.

MR- 17217

Figure 2-5 CK-KA630-A Distribution Panel Insert

Installation

HALTS ENABLED

HALTS DIiSABLED

- /HEX

DISPLAY

0 NORMAL OPERATION

=/ "
// LANGUAGE INQUIRY MODE
—-»

/
— LOOPBACK TEST MODE

& @/ CONNECTOR
|- FOR consoLE

300 {9 TERMINAL

600 /
1200

2400

4800

%00 (©
19200

38400

OUTSIDE
MR.14503

Figure 2-6 CK-KA630-A Connectors (Front View)

BATTERY

BACKUP
TO CPU UNIT

MODULEJ2

TO CPU

MODULEJ3\

INSIDE MR.14504

Figure 2-7 CK-KA630-A Connectors (Rear View)

Installation

2.5 COMPATIBLE SYSTEM ENCLOSURES

The KA630-AA is compatible with the following Digital enclosures.

BAll-S

BA23-A

BA123-A

The BAll-S contains a 4 row X 9 slot backplane with

22-bit addressing on slots A/B. The C/D rows contain
the CD interconnect. The backplane can contain up to

nine dual~height or nine quad-height modules.

Dimensions are 13.2 X 48.3 X 57.8 cm (5.2 X 19 X 22.7
in). The power supply includes a master console and

provides 36 A at +5 V and 5 A at +12 V.

The BA23-A contains a 4 row X 8 slot 22-bit address

backplane. Slots 1 through 3 provide 22-bit addressing

on the A/B rows and the CD interconnect on the C/D
rows. Slots 4 through 8 provide 22~bit addressing on

both the A/B and C/D rows. Up to 8 quad-height, or 3

quad-height and 10 dual-height modules can be mounted.
The BA23-A has mounting space for 2 13.2 cm (5.25 in)

mass storage devices. The power supply includes a
master console and provides 36 A at +5 V and 7 A at
+12 V.,

The BA23-A is also available in an H9642 cabinet,

which provides 8 additional backplane slots and space

for 2 26.5 cm (10.5 in) mass storage devices.

The BAl123-A contains a 4 row X 12 slot 22-bit address

backplane. Slots 1 through 4 provide 22~bit addressing

on the A/B rows and the CD interconnect on the C/D
rows., Slots 5 through 12 provide 22-bit addressing on

both the A/B and C/D rows. The BAl1l23~A has mounting

space for 5 13.2 cm (5.25 in) mass storage devices.
The power supply includes a master console and 2

regulators that provide 36 A at +5 V and 7 A at +12 V

per regulator. Total power from each regulator must
not exceed 230 W.

CHAPTER 3

BOOTING AND CONSOLE PROGRAM INTERFACE

3.1 INTRODUCTION

This chapter describes the KA630-AA console program and booting

sequence. The console program, in conjunction with the KA630-AA

hardware, gains control whenever the KA630-AA halts. For the

KA630-AA, halting means only that control is transferred to this

program, not that the processor stops executing instructions.

The console program is located in ROM on the KA630-AA. The ROM

address range is located in the KA630-AA local I/0 space. The

console program uses the KA630-AA LEDs and console terminal output

to communicate diagnostic progress and error reports to the user.

In order for the console program to operate, the processor must be

functioning at a level able to execute instructions from the

console program ROM.

The console program provides the following services.

° Automatic restart or bootstrap following processor halts

or initial power-up

[Interactive command language allowing the user to examine

and alter the state of the processor

[) Diagnostic tests executed on power-up that perform checks

on the CPU, memory system and Q22-Bus I/0O map

] Support of a video or hard-copy terminal as the console

terminal

Users are not assumed to speak English. The console program can

output console messages in 11 languages. If there is no language

specified when the system powers up, the console program prompts

the user for a language. The user language is then recorded (CPMBX

<07:04>) in battery backed up RAM on the TOY clock chip. The

preferred language is thus retained when the system is turned Off.

Booting and Console Program Interface

The KA630-AA decodes the ROM addresses so that the same ROM

appears more than once in the address space. The console program

is written in position-independent code so that it can be executed

from any address range. The KA630-AA uses this feature to

selectively enable and disable the external halt circuitry. If the

console program is executing in the first address range (20040000

to 2004FFFF hex), external halt conditions are ignored. If the

console program is executing in the second address range (20050000

to 200S5FFFF hex), external halt conditions are honored, the

console program halts, and immediately starts again (at its

beginning) to process the halt. The console program normally

executes from the first address range, while the diagnostics

software normally executes from the second address range.

A console terminal is not required for operation, but halts should

not be enabled on a system not having a console terminal.

The console program is divided into the following major sections.

Power-up

Entry/dispatch

Diagnostics

Restart

Bootstrap

Console I/0 mode (system halted)

Console I/0 mode (system running)

The console program receives control whenever the processor halts,

which occurs as a result of any of the following conditions.

Power-up

External halt signal

Execution of a halt instruction

Serious system error

When any halt occurs, the processor performs the following.

) Switches to physical addressing

° Saves the Program Counter (PC), Processor Status Longword

(PSL), and Interrupt Stack Pointer (ISP) internally

° Encodes and saves the condition that caused the halt in a

halt code

) Branches to the start of the console program ROM

If the DC OK signal is present, the hex value F is displayed on

the KA630-AA LEDs. Upon entry, the console program outputs the hex
value E to the <console LEDs, 1indicating that at 1least one

instruction has been executed. It then 1loops until Boot and
Diagnostic Register (BDR) bit 15 (PWR OK) is set, indicating that

power is stable.

Booting and Console Program Interface

The console program then checks bits <14:08> in IPR 43, noting if

the halt is a power-up halt. If it is a power-up halt, the console

program begins the power-up sequence described in Section 3.2, If

the halt is the result of a condition other than power-up, control

passes to the entry and dispatch code described in Section 3.3.

3.2 POWER-UP

At power-up, the console initializes the KA630-AA by performing a

variety of operations unique to the power-up process.

3.2.1 Power-Up Mode

At power-up, BDR <10:09> is interpreted as a power-up mode field

(Table 3-1). Several power-up operations are dependent on the

power—-up mode.

Table 3-1 Power-Up Modes

Mode Language Prompt Diagnostics

0 Prompt for language only if Run full diagnostics.

TOY battery backup failed.

1 Prompt for language on every Run full diagnostics.
power-up.

2 Set language to English. Run console terminal
loopback tests.

3 Set language to English. Run abbreviated

‘ diagnostics.

3.2,.2 Power Stabilization and ROM Checksum

The console program outputs the hex value D to the LEDs,

indicating that the power stabilization wait is over. It then

calculates a checksum of the console program ROM and checks it

against the wvalid checksum stored in the ROM itself., If the

computed checksum differs from the stored checksum, the console

Program hangs in a loop. If the checksum is the same, the power-up

code proceeds to the next step.

3.2.3 Console Program Initialization
The next step of the power-up initialization is location and

initialization of the memory needed for the console program
itself, The hex value C is output to the LEDs at the beginning of
this step.

During this step, the console ROM code searches top-down through
available memory for a contiguous block to be used by the console

program for writeable storage. This block consists of two pages
for the console's direct use and additional pages for use to store

‘h bitmap of available memory. The amount of memory allocated to
the bitmap varies according to the amount of memory available.

Booting and Console Program Interface

Following initialization, memory appears as shown in Figure 3-1.

The console program memory is used by the consocle program for its
stack and other data structures.

The bitmap is filled in at a later time with a map of valid memory

pages by the power-up memory diagnostics. This bitmap is passed to

the bootstrap as a map of valid memory. Beginning from the base of

the bitmap, the first bit corresponds to the first page of low

memory, the second bit to the second page, and so on. If the bit

is set, the page is good; if the bit is clear, the page failed the

memory test. The bitmap does not map itself or any other memory

that follows it in the console program.

Since system software is expected to use only pages marked as good

in the bitmap, it 1is not expected to modify the bitmap or the

console program memory. However, the console program memory pages

and the bitmap are checksummed by the console program to guard

against accidental modification by system software.

If the console program cannot locate enough memory for its own use

and for the bitmap, it hangs. Following initialization of its

memory, the console program clears the following Console Program

Mailbox (CPMBX) register bits.

. <01:00> -~ Processor halt action

° 2 -~ "Bootstrap in progress" flag

° 3 -- "Restart in progressTM flag

000000

Low
MEMORY | THIS MEMORY IS NOT TESTED DURING

CONSOLE INITIALIZATION. IT IS TESTED LATER

. 8Y THE POWER-UP MEMORY DIAGNOSTICS.

MEMORY SET BY THE MEMORY DIAGNOSTICS TO MAP

BITMAP ALL GOOD LOW MEMORY.

CONSOLE

MEMORY USED BY THE CONSOLE PROGRAM.

HIGH

MEMORY BAD MEMORY SKIPPED OVER DURING CONSOLE
MEMORY INITIALIZATION.

XX0000

wn 15706

Figure 3-1 Console Memory Map After Initialization

Booting and Console Program Interface

3.2.4 Battery Backup Check

The console program then checks the TOY clock to determine if the

battery backup has failed. If this has happened, time-of-year data

has been lost along with the contents of all the TOY clock RAM. If

the battery backup has failed, the console program performs the

following steps.

° Stops the TOY clock

° Zeros the time and all TOY RAM

° Initializes the four TOY clock CSRs

The operating system must check TOY clock CSR B and determine if

the clock is stopped to know if the TOY clock contains a valid

time. No change is made to the LEDs during this operation.

3.2.5 InterProcessor Communication Register (IPCR) Test
Next, the IPCR 1is tested. The hex value B is output to the LEDs

during this test. The test determines whether the Q22-Bus is
arbitrating properly. If the CPU module is not arbitrating, the

console program hangs at this point.

3.2.6 Determining the Console Terminal Type

3.2.6.1 Alternate Console Device Hardware Determination -- If the

processor is an arbiter, the console program next checks for

the presence of a VCBOl or VCB02 as the console device. If

the KA630-AA is an auxiliary processor, this test is skipped. The

hex value A is output to the LEDs during the test.

VCBO1l and VCB02 alternate console devices are determined by

testing for the presence of the CSR address first at 20001E92 hex

(for VCBO0l), and then at 20001F00 hex (for VCB02). If there is no

response at either 1location, the console program assumes that

alternate console devices are not present and moves to the console

terminal determination code (Section 3.2.6.2).

If a VCB01l or VCB0O2 video subsystem is detected, it is initialized

and a short diagnostic 1is executed. If the initialization and

diagnostics succeed, the console uses the VCBOl or VCB02 as the

console terminal, skips the next step and moves directly to the

console message language check (Section 3.2.7). If either the

initialization or the diagnostic fails, the system hangs at this

point.

Booting and Console Program Interface

3.2.6.2 Console Terminal Determination -- When VCBOl or VCBO2

alternate console devices are not detected, it is assumed that a

normal console terminal is connected to the console port, or that

no terminal is connected. The console program then attempts to

determine the type of terminal connected. This information is used

when in console I/0 mode to govern how command line editing is

performed. The console program sends the console port a device

attribute request escape sequence. If the device responds with a

recognizable response, the terminal 1is <classified as a video

terminal. The terminal must respond in 1 second to the device

query. when there 1is no response or the response 1is not
recognized, the test is repeated twice. If the device still does

not respond or the response is not recognized, the terminal is

classified as a hard-copy terminal, Terminal response is

recognized in either 8- or 7-bit mode.

The information obtained in this procedure 1is also used to

determine if the terminal supports the Digital Multinational

Character Set (MCS). The <console program assumes that all new

terminals (VT200 series and beyond) support MCS. If the terminal

does not support MCS, CPMBX <07:04> is set to 2, selecting English

as the console display language. The value 9 is output to the LEDs

during this test.

3.2.7 Console Message Language Check

The console next outputs the value 8 to the LEDs and then
determines the appropriate 1language to use for all console

messages. The console 1language is stored in CPMBX <07:04>. The
algorithm used to determine the language follows.

1. If power-up mode (Table 3-1) is 2 or 3, set the console

language to English and exit.

2. If power-up mode is 1 and the terminal supports MCS, or

if the value of CPMBX <07:04> is 0, solicit the language

from the user. If the user does not respond within 30

seconds, set the language to English (mode 2) and exit.

Note that when the terminal is queried, if it is not recognized as

one that supports MCS, CPMBX <07:04> is set to 2, forcing English

as the console language. English messages use the 7-bit subset of
MCS. 1If a 1loss of power to the TOY clock chip is detected, the

contents of the TOY RAM are zeroed. This means that step 2 above
causes the wuser to be prompted for language if the terminal
supports the MCS.

3-6

Booting and Console Program Interface

If the console program determines that a VCBOl video display

system is being used as the console, a step in addition to

selecting one of the languages 1is required. The VCBO1l display
system uses the DEC LK20l1 keyboard, which comes in 16 national

variants (Table 3-2). The keyboard variant cannot be determined by
querying the keyboard itself; it must be determined either from

the language selected or by means of an additional menu selection.

If French, German or English is selected, the keyboard variant is
ambiguous and the additional menu 1is displayed. The user is

prompted to specify which national keyboard variant is in use. If

the user does not respond in 30 seconds, the last selection is

assumed.

3.3 ENTRY/DISPATCH

Following the determination of the console language on power-up,

or directly on entry from any other halt condition, the console

dispatches to the appropriate code to service the halt.

To determine what action to take, the console program examines the

halt error code (IPR 43 <14:08>), the halt enable bit (BDR 14),

and the processor halt action (CPMBX <01:00>). It then acts in

accordance with the decision table shown in Table 3-3.

Table 3-2 Additional Language Selections (VCBOl Only)

ROM Language

Selected/

Additional
Selections French German English

1 Canada Germany/Austria United Kingdom

2 France/Belgium Switzerland United States/

Canada

3 Switzerland

Table 3-3 Console Entry Decision Table*

Halt Processor

Enable Power-Up Halt Action

(BDR 14) Halt (CPMBX <01:00>) Functions

T T X Diagnostics, halt.
T F 0 Halt.

F T X Diagnostics, bootstrap, halt.
F F 0 Restart, bootstrap, halt.
X F 1 Restart, halt.
X F 2 Bootstrap, halt.
X F 3 Halt.

*T = true, F = false, X = condition of the bit(s) does not
matter.

Booting and Console Program Interface

If a power-up halt (second column) is true, it is one in which the

halt error code contained in IPR 43 <14:08> equals 3. When the
processor halt action is 1, 2 or 3, the condition of BDR bit 14 is

ignored. wWhen the processor halt action 1is 0, the action is

determined by the condition of HLT ENB (BDR bit 14). Multiple

actions mean that the first action is taken, and if and only if it

fails, the next action is taken. Diagnostics are an exception. If

diagnostics fail, the console program hangs without attempting to

bootstrap the processor. If they succeed, then the next action is
taken.

Note that because the KA630-AA does not support battery backup for

main memory, it examines the halt code and does not attempt to

perform restart operations following power-up.

3.4 DIAGNOSTICS

On power-up, the console outputs the message "performing normal

diagnostic tests of systemTM to the console terminal. The

Entry/Dispatch code dispatches the diagnostics to check the

processor and memory before proceeding. As each test in the

diagnostics is run, it is output to the console terminal, causing

a "countdown" to be displayed on the processor LEDs.

The first diagnostic LED code is 8. Executing the diagnostics

continues the LED countdown. The diagnostic codes are listed in

Chapter 5.

At the conclusion of all tests, the message "Tests successfully

completed” is output to the console terminal. If a diagnostic test

detects a fatal error, an error message is displayed on the

console, along with a summary message indicating that continued

operation is not possible. The console program then hangs there,

leaving the test code on the LEDs. If halts are disabled, the only

way to clear the system is to turn it Off and then On again. If

halts are enabled, the system can be cleared by manually halting
it, causing it to enter console command mode. Additional

information on the diagnostics is located in Chapter 5.

3.5 RESTART

The console can restart a halted operating system. To do so, the

console searches system memory for the Restart Parameter Block
(RPB, Figure 3-2), a page-aligned control block created for this

purpose by the operating system. 1If a valid RPB is found, the

console restarts the operating system at an address specified in
the RPB.

3-8

Booting and Console Program Interface

PHYSICAL ADDRESS OF THE RPB :RPB

PHYSICAL ADDRESS OF THE RESTART ROUTINE

CHECKSUM OF THE FIRST 31 LONGWORDS OF THE RESTART ROUTINE

SOFTWARE RESTART iN PROGRESS FLAG (BIT O}

MRI§787

Figure 3-2 RPB Format

The console uses the following sequence to find an RPB:

1, Searches for a page of memory that contains its address

in the first longword. If none is found, the search for

an RPB fails.

2, Reads the second 1longword in the page (the physical

address of the restart routine). If it is not a valid

physical address, or if it is 0, the console program

returns to step 1. The check for 0 is necessary to ensure

that a page of 0s does not pass the test for a valid RPB.

3. Calculates the 32-bit 2's complement sum (ignoring

overflows) of the first 31 longwords of the restart

routine. If the sum does not match the third longword of

the RPB, the console program returns to step 1. If the

sum does match, a valid RPB exists and has been found.

The same algorithm is used for both arbiter and auxiliary
processors.,

The console keeps a "Restart in progress" flag in CPMBX bit 3,
which it wuses to avoid repeated attempts to restart a failing

operating system. An additional "Restart in progress" flag may be

maintained by software in the RPB.

The console uses the following sequence to restart the operating
system:

1. Checks the "Restart in progress"” flag in CPMBX bit 3, If

it is set, restart fails.

2, Prints the message "Restarting the operating system” on

the console terminal.

3. Sets CPMBX bit 3.

4, Looks for an RPB left in memory by the operating systenm.
If none is found, restart fails.

Booting and Console Program Interface

5. Reads the software "Restart in progress® flag from bit 0

of the fourth longword of the RPB. If it is set, restart

fails.

6. Loads the Stack Pointer (SP) with the address of the RPB

plus 512 bytes.

7. Loads the Argument Pointer (AP) with the halt code (IPR

43 <14:08>).

8. Displays 0 on the console LEDs.

9. Starts the ©processor at the restart address, which is

read from the second longword in the RPB.

If restart fails, the console program prints "Attempt to restart

operating system failed"TM on the console terminal. If the restart

is successful, the operating system must clear CPMBX bit 3.

3.6 BOOTSTRAP

The console program can load and start (bootstrap) an operating

system. To do so, it performs the following steps:

1. Searches for a 64 Kbyte segment of correctly functioning

system memory.

2. Sets SP equal to the base address of the segment plus 512
bytes.

3. Copies the primary bootstrap, called Virtual Memory
Bootstrap (VMB), from the console program ROM to the

segment starting at the location specified by the SP.

4. Branches to the first location in VMB, which then loads

and starts the operating system.

To prevent a situation in which the console program repeatedly

tries and fails to bootstrap the operating system, the console

program maintains a "Bootstrap in progress® flag in CPMBX bit 2.

The console uses the following sequence to bootstrap the operating

system:

1. . Begins at step 4, if the bootstrap is the result of a

console Bootstrap command.

2. Checks the TMBootstrap in progress” flag in CPMBX bit 2.
If it is set, the bootstrap fails.

3. Prints the message "Starting the operating system"TM on the

console terminal.

4. Sets CPMBX bit 1.

Booting and Console Program Interface

Locates a page-aligned, 64 Kbyte segment of good memory.

If such a segment cannot be found, the bootstrap fails.

Initializes the Q22-Bus 1I/0 map. The main function of

this 1initialization 1is to preset the arbiter processor

I/0 map so that all unoccupied pages of the Q22-Bus are

mapped to the corresponding pages in the first 4 Mbytes

of local memory. This 1is a MicroVAX I compatibility

feature, and 1is not done for auxiliary processors. Any

auxiliary Q22-Bus I/0 mapping must be coordinated with

all other processors, so that all auxiliary processor I/0

map registers are marked invalid. The bitmap is rebuilt

during boot, as follows.

a. Turn on IPCR bit 8, the halt flag.

b. Disable the I/0 map by clearing IPCR bit 5.

c. If the KA630-AA is an arbiter processor, do the

following for each I/0 map register:

(1) Set the map register address bits to map the

022-Bus page to the corresponding local memory

page.

(2) If the corresponding Q22-Bus page is unoccupied,

turn on the valid bit.

(3) If the page is occupied, turn off the valid bit.

If the KA630-AA is an auxiliary processor, turn off

the valid bit in all map registers.

d. Enable the I/0 map by setting IPCR bit 5.

e, If the KA630-AA is an auxiliary processor, loop

until IPCR bit 8 is cleared.

(Note that steps a. and e. are present to perform a

secondary function while the Q22-Bus I/0 map is

initialized, namely, to synchronize an auxiliary

processor with its bootstrap host.)

Loads the general registers for VMB as shown in Table

3-4.

Copies VMB from the console ROM to an address 512 bytes

past the base of the good segment.

Invokes VMB, If VMB fails, the bootstrap fails.

Booting and Console Program Interface

Table 3-4 VMB Register Usage

Register Description

RO ASCII device name (from Bootstrap command) or 0

R1 Contents of BDR

R2 Memory bitmap size in bytes

R3 Address of memory bitmap

R4 Unused

RS Software boot control flags

(from Bootstrap command only)

R10 Halt PC value

R11 Halt PSL value

AP Halt code (argument pointer)

Sp 512 bytes past base of 64 Kbytes of good memory

(stack pointer)

If bootstrap fails, the console prints "Attempt to start operating

system failed"TM on the console terminal.

If the bootstrap 1is successful, the operating system must clear

the "Bootstrap" and "Restart in progressTM flags in CPMBX <03:02>,

and clear the LED display by depositing a value of 0 in BDR

<03:00>.

3.6.1 Primary Bootstrap Program (VMB)

VMB is the KA630-AA primary bootstrap. It is executed as the first

part of a two-part system bootstrap operation. VMB contains the

code that executes the following operations.

[Initialization of System Control Block (SCB)

° Initialization of an extended RPB

® Initialization of a Page Frame Number (PFN) bitmap and

the relevant extended RPB fields

) Selection of a bootstrap device

. Performance of a Files-11 ODS2, boot block, ROM, or

down-line load of the secondary bootstrap

Booting and Console Program Interface

The secondary bootstrap continues the bootstrap operation. For

KA630-AA systems, primary bootstrap operations are defined by VMB,
and secondary bootstrap operations are defined by the operating
system being booted.

VMB finds the bootstrap device in one of three ways.

1. If the bootstrap 1is the result of a console Bootstrap

command and a device name is specified in the command,

that device is searched for the secondary bootstrap.

If the bootstrap is not the result of a console Bootstrap

command or if no device name is specified, VMB searches

the following devices, in the order shown.

a. A bootable removable disk

b. A bootable fixed disk

c. TK50 tape unit

d. MRV1l PROM

e, DEQNA, for a down~line bootstrap

If the bootstrap 1is the result of a halt with CPMBX

<01:00> equal to 2, that is, a request from the operating

system to reboot the system, the device used previously

to bootstrap the operating system is used (as well as the

same command flags).

When a VMB attempt fails, the console program halts.

3.6.1.1 Bootstrap Devices -- The following bootstrap devices are

supported by the console program.

RQDX2, RQDX3, KDA, and RC25 MSCP disk controllers. VMB

can boot from any disk unit supported by an MSCP disk

controller. Units supported by RQDX2 and RQDX3 are RX50,

RD51, RDS2 and RD53. Units supported by KDA are RA63 and

RA81. The unit supported by the KLESI is the RC25. The

Bootstrap command designation for these units is DUAO,

DUAl, etc. The first controller must be configured at

Q22-~Bus address 17772150 (octal) and interrupt vector 154

(octal). Additional <controllers are located in floating
CSR and vector space.

DEQNA Ethernet adapter. This controller connects to an

Ethernet cable. The Bootstrap command designation for

this device is XQAO. The controller must be configured at

Q22-Bus address 17774440 (octal) and vector 124 (octal,

for one unit or the first unit).

MRV11 Programmable Read-Only Memory (PROM) board. The

Bootstrap command designation is PRAO.

TMSCP tape controller. The Bootstrap command designation

1s MUAO. The TQKS50 controller must be confiqured at

Q22-Bus address 17774500 (octal).

Booting and Console Program Interface

3.6.1.2 Bootstrap Command Fl -- When a bootstrap is invoked using
the Bootstrap command, the user can specify several Bootstrap
command flags by bit encoding the flags in a flag word specified

with the /R5: qualifier. These command flags are described in

Table 3-5.

3.6.1.3 Booting from Disk -- For VMB to boot using an MSCP disk
controller, the first <controller must be configured at 17772150

(octal) and subsequent controllers must be configured in their

appropriate floating CSRs and vectors. When VMB determines that a
controller is present, it searches for an accessible unit attached
to the controller that has a removable volume. The search is made

in order of increasing unit number (DUAO, DUAl, etc.). If it finds
such a unit with a removable volume, VMB proceeds as described

below. If it finds no such volume, it searches the same controller
again, but this time checking for nonremovable volumes. If by this
time no accessible volume 1is found, it checks for the next
controller and repeats the process. If no more controllers are

found, the disk boot fails.

If an accessible volume is located, VMB then determines if it is a

Files-11 volume. If it 1is, it searches the volume for file

[SYSO.SYSEXE] SYSBOOT.EXE, which contains the secondary bootstrap.

If this file 1is found, VMB loads and executes it (performs a

secondary bootstrap).

If the volume is not a Files-11 volume, VMB then checks logical

block 0 of the volume for a valid bootblock (Figure 3-3). If the

bootblock is a valid bootblock, VMB 1loads and executes the

secondary bootstrap specified in the bootblock. If there is no

valid bootblock present, the search resumes for the next

accessible volume,

Note that the bootstrap process can be altered by Bootstrap

command flags, as described in Table 3-5.

Booting and Console Program Interface

Table 3-5 VMB Bootstrap Command Flags

Bit

Number (s)

value

(Hex) Flag Word Description

00

03

04

06

08

09

<31:28>

00000001

00000008

00000010

00000040

00000100

00000200

X0000000

Conversation

Bootblock

Diagnostic

Header

Solicit

Halt

Topsys

Conversational bootstrap.

Secondary bootstrap from

bootblock. When this bit is

set, VMB reads logical block

number 0 of the boot device

and tests it for conformance

with the bootblock format.

If in conformance, the block

is executed to continue the

bootstrap. No attempt to

perform a Files-1l bootstrap

is made.

Diagnostic bootstrap. Wwhen

this bit is set the

secondary bootstrap is file

{SYS0.SYSMAINT]DIAGBOOT.EXE.

Image header. If this bit is

not set, VMB transfers

control to the first

location of the secondary

bootstrap. If this bit is

set, VMB transfers control

to the address specified by

the file's image header.

File name Solicit. When this

bit is set, VMB prompts the

operator for the name of the

secondary bootstrap file,

Halt before transfer., When

this bit is set, VMB halts

before transferring control

to the secondary bootstrap.

X can be any value from 0

through F (hex). This flag

changes the top level

directory name for system

disks with multiple

operating systems. For

example, if X = 1, the top

level directory name is

[sYS1l....l.

Booting and Console Program Interface

BB +

BB +

BB +

BB +

BB +

BB +

BB +

BB +

BB +

BB +

BB+ O

B8 + 2°N

+0:

+4:

+8:

+12:

+16:

+20:

(2*n) + O:

(2*n) + 1:

(2*n) + 2:

(2*n) + 3:

(2*n) + 4:

(2*n) + 5:

1 N ANY VALUE

LOW LBN HIGH LBN

CHECK BYTE K 0 18 (HEX

ANY VALUE 1 0R 81 0

SIZE IN BLOCKS OF THE IMAGE

LOAD OFFSET FROM DEFAULT LOAD ADDRESS

OFFSET INTO IMAGE TO START EXECUTION

SUM OF PREVIOUS THREE LONGWORDS

MR52TS

Figure 3-3 Bootblock Format

These two bytes can have any value,

This value is the word offset from the start of

the bootblock to the 1identification area

described below.

This byte must be 1.

This longword contains the logical block number

(word swapped) of the secondary image.

This byte defines the expected instruction set.

(18 hex = VAX instruction set.)

This byte defines the expected controller type.

(0 = unknown.)

This byte defines the file structure on the

volume. It may be any value.

This byte must be the 1's complement of the sum

of the previous three bytes.

This byte must be 0.

This byte must be 1 or 81 (hex). This byte

defines the version number of the format

standard and the type of disk. The version is

1; the high bit is 0 for single-sided, 1 for

double-sided volumes.

Booting and Console Program Interface

BB + (2*n) + 6: These two bytes may be any value, but generally
they are 0.

BB + (2*n) + 8: This entry 1is a longword containing the size

{in blocks) of the secondary bootstrap image.

BB + (2*n) + 12: This entry 1is a longword containing a load

offset (usually 0) from the default 1load

address of the secondary bootstrap.

BB + (2*n) + 16: This entry 1is a longword containing the byte
offset into the secondary bootstrap where

execution is to begin.

BB + (2*n) + 20: This entry is a longword containing the sum of
the previous three longwords.

3.6.1.4 Booting from Tape -- If no bootable disk is found, VMB
attempts to bootstrap from a TKS50 tape.

If a TKS0 1is present, VMB determines if a tape is loaded and if

the unit is on-line. If so, VMB rewinds the tape and searches for

the file TAPEBOOT.EXE. (The user may specify an alternative file

name by setting the Solicit bit in the software command register.)

If this file 1is found, VMB loads and executes it. Normally this

file would contain a program to load an operating system from tape
onto a system disk.,.

If a user has both disks and tape and a disk is bootable, to boot

from tape the user must either take all bootable disks off-line,

or explicitly boot the TK50 using the console Bootstrap command.

3.6.1.5 Booting from PROM -- If neither disk nor tape is

bootable, VMB checks for a PROM bootstrap. To locate a PROM

bootstrap, VMB searches the Q22-Bus address range from high to low

addresses by page, looking for readable memory. If the first six

longwords of any such page contain a valid PROM signature block

(Figure 3-4), VMB passes control directly to the bootstrap code in

the PROM. It does not copy the PROM code to local memory for

execution, as it does for all other secondary bootstraps.

Note that while defined as an MRV1l PROM or equivalent bootstrap,

VMB does not actually require that the signature block or the

bootstrap code be in PROM. The signature block or bootstrap code

may be in ROM, nonvolatile RAM, or it could be loaded into another

KA630-AA's RAM and mapped to the Q22-Bus.

Booting and Console Program Interface

RB

RB

RB

RB

RB

RB

RB

RB

RB

RB

RB

RB

+4:

+8:

+12:

+16:

+20:

Figure 3-4

+ 0:

5:

6:

8:

12:

16:

20:

CHECK BYTE ANY VALUE 0 18 (HEX)

ANY VALUE 1 0

SIZE OF PROM IN PAGES

MUST BE ZERO

OFFSET INTO PROM TO START EXECUTION

SUM OF PREVIOUS THREE LONGWORDS

MR 5776

PROM Bootstrap Memory Format (Signature Block)

This byte must be 18 (hex).

This byte must be 0.

This byte may be any value.

This byte must be the 1's complement of the sum

of the previous three bytes.

This byte must be 0.

This byte must be 1.

These two bytes may be any value.

This longword contains the size (in pages) of

the PROM.

This longword must be 0.

This longword contains the byte offset into the

PROM where execution is to begin.

This entry is a longword containing the sum of

the previous three longwords.

Booting and Console Program Interface

3.6.1.6 Booting from DEQNA -- If no other bootstrap device is
found, VMB attempts to bootstrap from the DEQNA Ethernet

controller. In this case, the secondary bootstrap is down-line

loaded from a host on the Ethernet, using DECnet low-level

Maintenance Operation Protocol (MOP) Version 3.0. The DEQNA module

must be configured at 022-Bus address 17774440 (octal).

The down-line load process consists of the following steps:

1. VMB performs local testing of the DEQNA. If the tests

fail, the bootstrap attempt fails and the three LEDs on

the DEQNA are set according to the problem detected. The

LED settings and their interpretations are as follows.

° 3 LEDs on: DEQNA initialization failure

° 2 LEDs on: internal loopback failure

'} 1 LED on: external loopback failure

2. VMB transmits a program request MOP message over the

Ethernet. The message destination is the load assistant

multicast address AB-00-00-01-00-00. The message source

address 1is the DEQNA station address (from DEQNA PROM).
The MOP program type is operating system.

3. VMB waits approximately 30 seconds to receive a response.
If it does not receive a response, it retransmits the

request every 30 seconds for a total of 2 minutes. If a

response is not received in two minutes, the bootstrap

fails.

4. VMB accepts MOP load messages and loads the data into

memory, terminating when the final message is received as

indicated in the MOP message protocol. If the interval

between 1load messages exceeds 30 seconds, VMB restarts

the DEQNA bootstrap at step 2.

3.6.1.7 Booting an Auxiliary Processor -- VMB bootstraps an

auxiliary processor by using the ROM bootstrap protocol. Refer to

the 022-Bus initialization algorithm in Section 3.6.

Note that whenever the console program is entered, it turns off

IPCR bit 8, Steps 1 and 5 ensure that an auxiliary processor loops

until some other processor clears IPCR bit 8. When another

processor -- the bootstrap host, clears IPCR bit 8, the auxiliary

proceeds with the bootstrap. This synchronization gives the

arbiter processor control over the bootstrapping of all auxiliary

processors.

Booting and Console Program Interface

An auxiliary processor cannot directly bootstrap itself from any

of the normal bootstrap devices, so VMB on an auxiliary checks

only for the ROM bootstrap described above. The ROM bootstrap may

be either a block of nonvolatile memory on the Q22-Bus, or the

bootstrap host can construct an equivalent bootstrap in RAM. In

either case, the auxiliary does not proceed with the bootstrap

until the bootstrap host clears IPCR bit 8. The bootstrap host, in

turn, should not clear the auxiliary IPCR bit 8 unless IPCR bit 5

is clear.

3.6.2 Secondary Bootstrap Program

The secondary bootstrap program is invoked as the second part of a

system bootstrap. Following successful execution of the primary

bootstrap, the secondary bootstrap has either been loaded into

memory or located in ROM, It 1is the responsibility of the

secondary bootstrap to complete the bootstrap of the processor.

VMB calls the secondary bootstrap with the processor in the

following state.

) The processor is running in kernel mode on the interrupt

stack at IPL 31 (hex).

° R1l contains the base address of the extended RPB (Figure

3-5) created by VMB.

OFFSET (HEX):

00: ADDRESS OF THE EXTENDED RPB

04: 0

08: 0

0ocC: 0

10: PC AT RESTART/HALY

14: PSL AT RESTART/HALT

18: HALT CODE

1C: VMB INPUT REGISTER RO

20: VMB INPUT REGISTER R1

24: VMB INPUT REGISTER R2

28: VMB INPUT REGISTER R3

2C: VMB INPUT REGISTER R4

30: VMB INPUT REGISTER R5

34: TWO LONGWORDS RESERVED

3C DISK BLOCK ADDRESS OF SECONDARY BOOTSTRAP

40: SIZE OF SECONDARY BOOTSTRAP FILE IN BLOCKS

44: DESCRIPTOR OF PFN BITMAP (TWO LONGWORDS)

a8 NUMBER OF GOOD PHYSICAL PAGES

4ac: RESERVED

50: PRYSICAL CSR ADDRESS OF 800T DEVICE

54 FOUR LONGWORDS RESERVED

68 SECONDARY BOOTSTRAP FILE NAME (40 CHARACTERS)

90 EIGHT LONGWORDS RESERVED

BO SYSTEM CONTROL BLOCK BASE ADDRESS

B 25784

Figure 3-5 Extended RPB

Booting and Console Program Interface

AP contains the address of

argument list (Figure 3-6).

the secondary bootstrap

SP contains the address of the top of the stack plus 4,

which 1is also the address of the beginning of the

secondary bootstrap (Figure 3-7).

System Control Block Base (SCBB, an internal processor

register) contains the address of the SCB created by VMB,

Note that the first four longwords of the VMB-created, extended

RPB would not be recognized as a valid RPB by the console restart
up to the secondary bootstrap or the operating

system itself to complete the RPB if automatic restart is desired.

algorithm, It |is

(AP)+00: 12

(AP)+04: RESERVED

{APYH08: RESERVED

(APY+12: LOWEST VALID PFN

{AP}+16: HIGHEST VALID PFN

{AP)+24: PFN MAP SIZE IN BYTES

{AP}+28: ADDRESS OF PFN BITMAP

{APY+32: RESERVED

(APV+36; RESERVED

(APY+40: PROCESSOR 1D {87772)

(API+44: RESERVED

(AP)+48: RESERVED

15788

Figure 3-6 Secondary Bootstrap Argument List

R1%: EXTENDED RPB BUILT BY VMB

+ 200 (HEX): VMB

+ TBS (HEX): 2-PAGE SCB USED BY VMB .sCBB

+ TBS (HEX): 8-PAGE PFN BITMAP

+ TBS {HEX): 4.-PAGE STACK FOR SECONDARY BOOTSTRAP

+ TBS (HEX): SECONDARY BOOTSTRAP 'SP

+ 10000 (HEX):
Ma15783

Figure 3-7 Secondary Bootstrap Memory Map

Booting and Console Program Interface

3.7 CONSOLE 1/0 MODE (SYSTEM HALTED)
When the KA630-AA is halted, the operator controls the system
through the console terminal using the console command language.
The console terminal is in console I/0 mode. The console prompts
the operator for input with the string >>>,

3.7.1 Console Control Characters

In console I/0 mode, several keys have special functions. Note
that the control characters are typed by pressing the character
key while holding down the Control key (<CTRL>).

° <CR> ~-- The carriage return ends a command line. No

action is taken on a command until after it is terminated
by pressing the Carriage Return key. A null 1line
terminated by a carriage return is treated as a valid,

null command. No action 1is taken, and the console

reprompts for 1input. Carriage return 1is echoed as
carriage return, line feed.

° <Rubout> - Pressing the Rubout key deletes the

previously typed character. What appears on the console

terminal depends on whether the terminal is a video or

hard-copy terminal.

On hard-copy terminals, when <Rubout> is pressed, the

console echoes with a backslash (\), followed by the

character being deleted. If the operator types additional

rub-outs, the additional characters deleted are echoed.

When the operator types a nonrub-out character, the

console echoes another backslash, followed by the

character typed. The result 1is to echo the characters

deleted, surrounding them with backslashes. For example:

The operator types: EXAMI;E <Rubout> <Rubout> NE <CR>

The console echoes: EXAMI;E\E\;\NE <CR>

The console sees the command line: EXAMINE <CR>

On video terminals, when <Rubout> 1is pressed, the

previous character is erased from the screen and the

cursor is restored to its previous position.

The console does not delete characters past the beginning

of a command 1line. If the operator types more rub-outs

than there are characters on the line, the extra rub-outs

are ignored. If a rub-out is typed on a blank line, it is
ignored.

° <CTRL> U -- The console echoes U <CR>, and deletes the

entire line. If <CTRL> U is typed on an empty line, it is
echoed, and otherwise ignored. The console prompts for

another command.

Booting and Console Program Interface

° <CTRL> S§ -~ This stops output to the console terminal

until <CTRL> Q 1is typed. <CTRL> S and <CTRL> Q are not

echoed. <CTRL> C, <CTRL> O, and <Break> also clear <CTRL>

S.

° ¢CTRL> Q -- This resumes output to the console terminal.

Additional <CTRL> Qs are ignored. <CTRL> S and <CTRL> Q

are not echoed.

[} CCTRL> O =-- The console throws away transmissions to the
console terminal until the next <CTRL> O is entered.

¢CTRL> O is echoed as 0 <CR> when it disables output, but

is not echoed when it reenables output. Output Iis

reenabled if the console prints an error message, or if

it prompts for a command from the terminal. Displaying a

Repeat command does not reenable output. When output is

reenabled for reading a command, the console prompt

is displayed. Output is also enabled by entering program

1/0 mode, by <Break> and by <CTRL> C. <CTRL> O clears

<CTRL> S.

® <CTRL> R =-- This causes the console to echo <CR> <LF>

followed by the current command line. This function can

be used to improve the readability of a command line that

has been heavily edited.

® <CTRL> C -- The console echoes C and aborts processing a

command. <CTRL> C has no effect as part of a binary load

data stream. <CTRL> C <clears <CTRL> S, and reenables

output stopped by <CTRL> O. When <CTRL> C is typed as

part of a command line, the console deletes the line as

it does with <CTRL> U.

° <Break> -~ If the console is in console I/0 mode, <Break>

is eguivalent to <CTRL> C, but is not echoed at all. If

the console is in program I/0 mode and halt is disabled,

<Break> is ignored. If the console is in program I/O mode

and halt is not disabled, <Break> causes the processor to

halt and enter console I/0 mode.

If an unrecognized control character is typed, it is echoed as a

caret (") followed by the ASCII code character plus 64. A control

character here, means a character with an ASCII code less than 32

decimal [CO0)], or between 128 and 159 decimal [Cl]. For example,

BEL (ASCII code 7) is echoed as "G, since capital G is ASCII code

7 + 64 = 71. When a control character is deleted by rubout, it is

echoed the same way. After echoing the control character, the
console processes it like a normal character. Unless the control

character is part of a comment, the command is invalid, and the
console responds with an error message.

Booting and Console Program Interface

3.7.2 Console Command Syntax

The console accepts commands up to 80 characters long. Longer
commands are responded to with an error message. The count does
not include rub-outs, rubbed out characters, or the terminating
carriage return.

Commands may be abbreviated. Abbreviations are formed by dropping
characters from the end of a keyword. All commands are recognized
from their first character.

Multiple adjacent spaces and tabs are treated as a single space by

the console. Leading and trailing spaces and tabs are ignored.

Command qualifiers can appear after the command keyword, or after

any symbol or number in the command.

All numbers (addresses, data, counts) are in hexadecimal. (Note,

though, that symbolic register names include decimal digits.) Hex

digits are 0 through 9, and A through F. The console does not

distinguish between upper and lower case either in hex numbers (A

through F) or in commands. Both are accepted.

3.7.3 References to Processor Registers and Memory
The KA630-AA console 1is implemented by macrocode executing from

ROM. For this reason, the actual processor registers cannot be

modified by the command interpreter. When console I/0 mode is

entered, the console saves the processor registers in a scratch

page and all command references to them are directed to the

corresponding scratch page locations, not to the registers

themselves. When the console reenters program mode, the saved

registers are restored and any changes then become operative.

References to processor memory are handled normally except where

noted below,

Generally, a free page on the interrupt stack is used for the

scratch page, so the console does not modify the machine state. If

a free page on the interrupt stack cannot be located, the console

program uses the last valid page in contiguous physical memory and

the original machine state is 1lost. This should occur only on

power-up.

References to the console scratch page by Examine and Deposit

commands must be gqualified by the /U qualifier. Access is

primarily to simplify debugging of the console program. The binary

load and unload commands cannot reference the console scratch

page.

Booting and Console Program Interface

3.7.4 Fonsole Commands

3.7.4.1 Binary Load and Unload (X)

Command Syntax:

X <address> <count> <CR> <checksum>

The X command is for use by automatic systems communicating with
the console. It is not intended for use by operators. The console
loads or unloads (that is, writes to memory, or reads from memory)

the specified number of data bytes, starting at the specified
address.

If bit 31 of the count is clear, data is to be received by the

console, and deposited into memory. If bit 31 of the count is set,
data is to be read from memory and sent by the console. The

remaining bits 1in the count are a positive number indicating the

number of bytes to load or unload.

The console accepts the command upon receiving the carriage

return. The next byte the console receives 1is the command
checksum, which is not echoed. The command checksum is verified by

adding all command characters, including the checksum, (but not

including the terminating carriage return or rub-outs or

characters deleted by rub out), into an 8-bit register initially

set to zero. If no errors occur, the result is zero. If the

command checksum 1is correct, the console responds with the input

prompt and either sends data to the requester or prepares to

receive data. If the command checksum is in error, the console

responds with an error message. The intent 1is to prevent
inadvertent operator entry into a mode where the console is

accepting characters from the keyboard as data, with no escape

sequence possible,

If bit 31 of the count 1is clear (binary load commands), the

console responds with the input prompt, then accepts the specified

number of data bytes for depositing to memory, and an additional

byte of received data checksum. The data is verified by adding all

data characters and the checksum character into an 8-bit register

initially set to =zero. If the final contents of the register is

nonzero, the data or checksum are in error, and the console

responds with an error message.

If bit 31 of the count 1is set (binary unload commands), the

console responds with the input prompt, followed by the specified

number of bytes of binary data. As each byte is sent it is added

to a checksum register initially set to zero. At the end of the

transmission, the 2's complement of the low byte of the register

is sent.

Booting and Console Program Interface

If the data checksum is incorrect on a load, or if memory errors
or 1line errors occur during the transmission of data, the entire
transmission is completed, and then the console issues an error
message. If an error occurs during loading, the contents of the
memory being loaded are unpredictable.

Echo is suppressed during the receiving of the data string and
checksums.

It is ©possible to control the console using the console control

characters (<CTRL> C, <CTRL> S, <CTRL> O, etc.) during binary

unload commands. It is not possible during binary load commands,

as all received characters are valid binary data.

Data being loaded with a binary load command must be received by

the console at a rate of at least one byte per second. The command

checksum that precedes the data must be received by the console

within 10 seconds of the <CR> that terminates the command line.

The data checksum must be received within 10 seconds of the last

data byte. If any of these timing requirements are not met, the

console aborts the transmission by issuing an error message and

prompting for input.

The entire command, including the checksum,may be sent to the

console as a single burst of characters at the console's specified

character rate. The console is able to receive at least 4 Kbytes

of data in a single X command.

3.7.4.2 Boot

Command Syntax:

BOOT [<qualifier list>] [<device>]

The device specification is of the format ddcu, where dd is a
two-letter device mnemonic, ¢ is an optional one-digit controller
number, and u is a one-~digit unit number.

The console initializes the processor and starts VMB running. VMB

boots the operating system from the specified devi?e. The default

bootstrap device is determined as described in Section 3.6.

Qualifier:

° /R5:<data> -- After initializing the processor and befo;e

starting VMB, R5 is loaded with the specified data. This

allows a console user to pass a parameter to VMB. (To
remain compatible with previous processors, /<data> 1s

also recognized and has the same result.)

Booting and Console Program Interface

3.7.4.3 Comment (1))

Command Syntax:

! <comment>

The comment command is ignored. It is used to annotate console I/0

command sequences.

3.7.4.4 Continue

Command Syntax:

CONTINUE

The processor begins instruction execution at the address

currently contained in the program counter, Processor

initialization 1is not performed. The console enters program I/0

mode.

3.7.4.5 Deposit

Command Syntax:

DEPOSIT ([<qualifier list>] <address> <data>

This command deposits the data into the address specified. If no
address space or data size qualifiers are specified, the defaults
are the last address space and data size used in a Deposit or

Examine command. After processor 1initialization, the default

address space is physical memory, the default data size is long,
and the default address is zero.

If the specified data is too large to fit in the data size to be
deposited, the console ignores the command and issues an error
response. If the specified data is smaller than the data size to

be deposited, it is extended on the left with zeros.

The address may also be one of the following symbolic addresses:

® PSL -- The processor status longword. No address space

qualifier is legal. When PSL is examined, the address
space is identified as M (machine dependent).

® PC -- The program counter (general register 15). The

address space is set to /G.

L SP -- The stack pointer (general register 14). The
address space is /G.

3-27

Booting and Console Program Interface

Rn -~ General register n. The register number is in
decimal. The address space is /G. For example:

D R5 1234 is equivalent to D/G 5 1234.

D R10 6FF00 is equivalent to D/G A 6FF00.

+ -- The location immediately following the last location

referenced in an Examine or Deposit command. For
references to physical or virtual memory spaces, the
location referenced is the last address plus the size of
the 1last reference (1 for byte, 2 for word, 4 for
longword). For other address spaces, the address is the

last address referenced plus one.

- —-- The location immediately preceding the last location

referenced in an Examine or Deposit command. For

references to physical or wvirtual memory spaces, the

location referenced is the last address minus the size of

this reference (1 for byte, 2 for word, 4 for longword).

For other address spaces, the address is the last address

referenced minus one.

* —- The 1location 1last referenced 1in an Examine or

Deposit command.

e -- The 1location addressed by the 1last 1location
referenced in an Examine or Deposit command.

Qualifiers:

/B -- The data size is byte.

/W -- The data size is word.

/L -- The data size is longword.

/V -- The address space is virtual memory. All access and

protection <checking occurs. 1If the access would not be

allowed to a program running with the current PSL, the

console issues an error message. Virtual space Deposits

cause PTE bit M to be set. If memory mapping is not

enabled, virtual addresses are equal to physical

addresses.

/P -- The address space is physical memory.

/1 -- The address space is internal processor registers.

These are the registers addressed by the MTPR and MFPR

instructions.

/G -~ The address space is the general register set, RO

through PC.

Booting and Console Program Interface

° /U =~- Access to console program memory is allowed. This

qualifier also disables virtual address protection
checks.

P /N:<count> -- The address is the first of a range. The
console deposits to the first address, then to the
specified number of succeeding addresses. Even if the
address is the symbolic address ‘'-*, the succeeding
addresses are at larger addresses. The symbolic address
specifies only the starting address, not the direction of
succession. For repeated references to preceding
addresses, use Repeat Deposit - <data>.

NOTE

Only memory may be accessed as bytes or
words. General registers, the PSL and

IPRs must be accessed using the longword
reference. This means that the /B and /W
qualifiers may not be used with the /I
and /G qualifiers.

For example:

D/P/B/N:1FF 0 0 Clears the first 512 bytes of physical
memory.

D/V/L/N:3 1234 5 Deposits 5 into four longwords starting
at virtual address 1234,

D/N:8 RO FFFFFFFF Loads general registers RO through RS
with -1,

D/N:200 - © Starting at previous address, clears 513
bytes.

If conflicting address space or data sizes are specified, the
console ignores the command and issues an error response.

3.7.4.6 Examine

Command Syntax:

EXAMINE [<qualifier list>] [<address>]

Examgngs the contents of the specified address. If no address is
specified, '+' is assumed. The address may also be one of the
symbolic addresses described under Section 3.7.4.5, Deposit.

Qualifiers:

The same qualifiers used with Examine may be used with
Deposit,

Booting and Console Program Interface

Response:

<tab> <address space identifier> <address> <tab> <data>

The address space identifier can be:

. P -- Physical memory. Note that when virtual memory is

examined, the address space and address in the response

are the translated physical address.

[} G -- General register.

) I -- Internal processor register,

) M -- Machine dependent address (used only for display of

the PSL).

3.7.4.7 Find

Command Syntax:

FIND {<qualifier 1list>]

The console searches main memory starting at address zero for a
page-aligned, 64 Kbyte segment of good memory, or an RPB., If the

segment or block is found, its address plus 512 bytes is left in

SP. If the segment or block 1is not found an error message is

issued, and the contents of SP are unpredictable. If no qualifier

is specified, /RPB is assumed.

Qualifiers:

° /Memory -- Searches memory for a page-aligned segment of

good memory, 64 Kbytes in length. The search includes a

read/write test of memory and leaves the contents of

memory unpredictable,

° /RPB -- Searches memory for a restart parameter block.

The search leaves the contents of memory unchanged.

Booting and Console Program Interface

3.7.4.8 Initialize

Command Syntax:

INITIALIZE

A processor initialization is performed. The following registers

are set (all values are hexadecimal):

PSL 041F0000

IPL 1F

ASTLVL 4

SISR 0

ICCs 0

RXCS 0

TXCS 80

MAPEN 0
-

All other registers are unpredictable.

The previous console reference defaults (the defaults used to fill

in unsupplied qualifiers for Deposit and Examine commands) are set

to physical address, longword size and address 0.

3.7.4.9 BRalt

Command Syntax:

HALT

The Halt command has no effect; the processor is already halted

when in console I/0 mode.

3.7.4.10 Repeat

Command Syntax:

REPEAT <command>

The console repeatedly displays and executes the specified

command. The repeating 1is stopped by typing <CTRL> C. Any valid

console command may be specified for the command with the

exception of Repeat.

3-31

Booting and Console Program Interface

3.7.4.11 Start

Command Syntax:

START [<address>]

The console starts instruction execution at the specified address.

If no address is given, the current PC is used. If no qualifier is

present, macroinstruction execution is started. If memory mapping

is enabled, macroinstructions are executed from virtual memory.

The Start command is equivalent to a Deposit to PC, followed by a

Continue. No Initialize is performed.

3.7.4.12 Test

Command Syntax:

TEST [<test number>]

The console invokes a diagnostic test program denoted by <test

number>. Valid test numbers are 3 through 7 and B. If no test

number is supplied, no test is performed.

3.7.4.13 Unjam

Command Syntax:

An I/0 bus reset is performed.

3.7.5 Console Errors and Error Messages

Some console commands result in errors. For example, if a memory

error occurs as the result of a console command, the console

responds with an error message. The error messages are listed in

Table 3-6.

3.7.6 Halts and Halt Messages

Whenever the processor halts, the console prints the halt code,

error message, and the hex value contained in the program counter.

For example:

06 HLT INST

PC = 800050D3

The halt code is passed to the operating system on a restart. The

halt messages are listed in Table 3-7.

Booting and Console Program Interface

Table 3-6 Console Error Messages

Ralt

Code Message Explanation

FNF VMB could not find the secondary bootstrap

file.

16 ILL REF The requested reference would violate
virtual memory protection, the address is

not mapped, the reference is invalid in the

specified address space, or the value is

invalid in the specified destination.

17 ILL CMD The command string cannot be parsed.

18 INV DGT A number has an invalid digit.

19 LTL The command was too large for the console
to buffer. The message is fssued only after
the console receives the terminating

carriage return.

1A ILL ADR The address specified falls outside the

limits of the address space.

1B VAL TOO LRG The value specified does not fit in the

destination.

1C SW CONF Switch conflict. For example, two different

data sizes are specified with an Examine

command.

1p UNK SW The switch is unrecognized.

1E UNK SYM The symbolic address in an Examine or

Deposit command is unrecognized.

1F CHKSM The command or data checksum of an X

command is incorrect.

20 HLTED The operator entered a Halt command.

21 FND ERR A Find command failed either to find the

RPB or 64 Kbytes of good memory.

22 TMOUT During an X command, data failed to arrive

in the time expected.

23 MEM ERR Parity error detected.

Booting and Console Program Interface

Table 3-7 KA630~-AA Halt Messages

Halt

Code Message Explanation

02 EXT HLT <Break> was typed on the console, QBINIT or
QBHALT was asserted.

04 ISP ERR In attempting to push state onto the
interrupt stack during an interrupt or

exception, the processor discovered that

the interrupt stack was mapped No Access or

Not Vvalid.

05 DBL ERR The processor attempted to report a machine

check to the operating system, and a second

machine check occurred.

06 HLT INST The processor executed a halt instruction
in kernel mode.

07 SCB ERR3 The vector had bits <01:00> equal to 3.

08 SCB ERR2 The vector had bits <01:00> equal to 2.

OA CHM FR ISTK A change mode instruction was executed when
PSL bit IS was set.

0B CHM TO ISTK The exception vector for a change mode had
bit 0 set.

ocC SCB RD ERR A hard memory error occurred while the
processor was trying to read an exception

or interrupt vector.

10 MCHK AV An access violation or an invalid
translation occurred during machine check

exception processing.

11 KSP AV An access violation or an invalid

translation occurred during processing of

an invalid kernel stack pointer exception.

3-34

Booting and Console Program Interface

3.8 CONSOLE I/0 MODE (SYSTEM RUNNING)
when the processor is not executing instructions from the console
program ROM, it 1is in program I/0 mode, in which all terminal
interaction is handled by the operating system. In program I/0
mode, the console terminal behaves like any other operating system
terminal. If halts are disabled, break is ignored. If halts are
enabled, break causes the processor to halt, that is, to enter
console I/0 mode.

Oon successful power-up, the first 1line of the console display
identifies the processor and version number (XX) of the console
program ROM. The next line explains that the system is performing
normal tests. The countdown sequence assures the user that the
system is progressing through its tests, and documents which tests
are executed. When diagnostics are complete, the console notifies
the user that the tests completed successfully. The "Loading
system software” message indicates the beginning of the bootstrap
sequence. The execution of the bootstrap sequence causes the
remaining digits of the countdown to be displayed. Because
successful completion of a bootstrap occurs in the context of the
operating system bootstrapped, a confirming message indicating
that the system power-up has completed can only be issued by the
bootstrapped operating system.

When fatal problems are detected by the diagnostics, the countdown
sequence is interrupted and a diagnostic message islgisplayed. The
diagnostic message is composed of a gquestion mark, ‘a subtest code
number, and up to three parameters for use by diagnostic
personnel. More than one such error message is possible, but
unlikely. The summary message that follows indicates that the test
failed and that normal operation is not possible. The console
program then hangs.

Catastrophic errors are errors of such severe magnitude that the
program cannot continue. When a catastrophic error is detected,
the program attempts to display an error message on the console
terminal. Following that attempt, the processor goes into an
infinite 1loop at IPL 31 (there is no halt state for MicroVAX). An
example of catastrophic error is when the console program is
unable to locate any working memory.

Booting and Console Program Interface

It is possible to bypass all diagnostic tasks. This may be done by

enabling halts and by manually halting the processor following

power-up or reset, The diagnostics are then halted and the

processor enters console I/0 mode. This option allows a field

service engineer to bypass a failing test and enter console I/0

mode, where the console commands can be used to further diagnose

the problem.

As part of each diagnostic subtest, a test code is displayed on

the console and on the LEDs, making it possible to monitor the

progress of the diagnostics. The two display mechanisms use

unrelated logic, providing a high probability that at least one is
currently operative. If a hard error is detected by a test, a

diagnostic message is displayed on the console. If a catastrophic
error occurs, it may not be ©possible to display a diagnostic

message on the console, but the most recent test code is left on

the LEDs,.

The following significant console features are omitted by the

KA630-AA console program.

[Microstep command -- Not supported by the Microvax CPU

chip.

° Load command -- No console storage device is supported.

. Set command -- No set options are defined.

. Next command -- Not supported by the MicroVAX CPU chip.

) @ command -- No console storage device is supported.

The console supports the Digital MCS. This support extends to

displaying foreign 1language messages with MCS, accepting and

echoing MCS characters, and accepting a device attributes report

(the console queries the terminal to determine if it is a CRT)

using the Cl1 control characters of MCS. However, all console

commands must be entered using the American National Standards

Institute {(ANSI) subset.

If the terminal does not support MCS, the console uses English

message texts.

The console program uses four characters that are national

replacement characters, the caret ("), the backslash (\) and the

right and 1left square brackets ([]). The caret is used by the

console to denote control characters. The backslash is used to

delimit text deletions when editing console input. The square

brackets are used to denote directory specifications when the user

directs the bootstrap to solicit a secondary bootstrap file name.

No provision is made for terminals that replace any of these

characters.

CHAPTER 4

ARCHITECTURE

4.1 INTRODUCTION

This chapter contains a list of the data types, instruction groups

and processor registers implemented by the KA630-AA. Register

structures and formats, as well as MicroVAX memory management, are

also described.

4.2 PROCESSOR STATE

The processor state is stored in processor registers, rather than

in memory. This section describes the processor registers, the

general purpose register set, and the Processor Status Longword

(PSL). Nonprivileged software can access the general purpose

register set and the Processor Status Word (PSW, bits <15:00>

within the PSL). The processor registers and bits <31:16> of the

PSL can only be accessed by privileged software, using the Move To

Processor Register (MTPR) and Move From Processor Register (MFPR)

instructions.

4.2.1 General Purpose Registers 4
There are 16 general purpose registers, R0 through R15. The bits

of a register are numbered from right to left, 0 through 31.

The following registers are defined by the VAX architecture.

° R15 1is the Program Counter (PC). The PC contains the

address of the next instruction byte of the program.

. R14 1is the 8Stack Pointer (SP). The SP contains the

address of the top of the processor-defined stack.

) R13 is the current Frame Pointer (FP). The VAX procedure

call convention builds a data structure on the stack
called a stack frame. The FP contains the address of the

base of the stack frame.

® R12 is the Argument Pointer (AP). The VAX procedure call

convention uses a data structure termed an argument list.

The AP contains the address of the base of this data

structure,

4.2.2 Processor Status Longword
The PSL (Table 4-1, Figure 4-1) determines the execution state of
the processor at any time.

4-1

Architecture

Table 4-1 Processor Status Longword Description

Bit(s) Mnemonic Name/Meaning

31 CM Compatibility Mode.* This bit always reads

as 0. Loading a 1 into this bit has no

effect.

30 TP Trace Pending.

<29:28> Must Be Zero.

27 FPD First Part Done.

26 1s Interrupt Stack.

<25:24> CUR Current Mode,

<23:22> PRV Previous Mode.

21 Must Be Zero.

<20:16> IPL Interrupt Priority Level.

<15:08> Must Be Zero.

07 DV Decimal Overflow Trap Enable. This
read/write bit has no effect on MicroVAax

hardware. It can be used by macrocode that

emulates VAX decimal instructions.

06 FU Floating Underflow Fault Enable.

05 v Integer Overflow Trap Enable.

04 T Trace Trap Enable.

03 N Negative Condition Code.

02 z Zero Condition Code.

01 \' Overflow Condition Code.

00 o Carry Condition Code.

* Note that compatibility mode instructions can be emulated by

macrocode. Since the emulation software runs in native mode, the

CM bit is never actually set.

Architecture

4.2.3

313029282726252423222120 1615 080706050403 020100

1 LI R TT1 LER SR B S

IPL MBZ TIN|Z}V]C

I W I |

TP FPD | CUR

MOD

CM MBZ 1S PRV

MOD

MBZ FU

e 15778

Figure 4-1 Processor Status Longword (PSL)

Processor Registers

The processor registers can be accessed through the MFPR and MTPR

privileged instructions. Each of the processor registers listed in

Table 4-2 falls into one of the following numbered categories.

1. VAX processor registers implemented as described in the

VAX Architecture Reference Manual (EK-VAXAR-RM)}. These
registers are implemented by the MicroVAX CPU chip.

VAX processor registers implemented external to the

MicroVAX CPU chip by the KA630-AA logic.

Processor registers read as 0, no operation (NOP) on

write.

Processor registers implemented by MicroVAX CPU chip

uniquely (that 1is, registers not described in the VAX

Architecture Reference Manual).

Processor register access not allowed. Attempted access

results in reserved operand fault.

Architecture

Table 4-2 Processor Register Summary

Number Register Name Mnemonic Type Category*

0 Kernel Stack Pointer KSP R/W 1

1 Executive Stack Pointer ESP R/W 1}

2 Supervisor Stack Pointer SSP R/W 1

3 User Stack Pointer usp R/W 1

4 Interrupt Stack Pointer ISP R/W 1

) Reserved s

6 Reserved 5

7 Reserved 5

8 P0 Base Register POBR R/W 1

9 PO Length Register POLR R/W 1

10 Pl Base Register P1BR R/W 1

11 Pl Length Register P1LR R/W 1

12 System Base Register SBR R/W 1

13 System Length Register SLR R/W 1

14 Reserved 5

15 Reserved 5

16 Process Control Block Base PCBB R/W 1

17 System Control Block Base SCBB R/W 1

18 Interrupt Priority Level IPL R/W 1R

19 AST Level ASTLVL R/W 1R

20 Software Interrupt Request SIRR W 1

21 Software Interrupt Summary SISR R/W 1R

22 Interprocessor Interrupt IPIR R/W 5

23 CMI Error Register CMIERR R/W 5

24 Interval Clock Control/Status ICCS R/W 4R

25 Next Interval Count Register NICR W 3

26 Interval Count Register ICR R 3

27 TOY Register TODR R/W 3

28 Console Storage Receiver Status CSRS R/W 3

29 Console Storage Receiver Data CSRD R 3

30 Console Storage Transmit Status CSTS R/W 3

31 Console Storage Transmit Data CSTD W 3

32 Console Receiver Control/Status RXCS R/W 2R

33 Console Receiver Data Buffer RXDB R 2R

34 Console Transmit Control/Status TXCS R/W 2R

35 Console Transmit Data Buffer TXDB W 2R

36 Translation Buffer Disable TBDR R/W 3

37 Cache Disable Register CADR R/W 3

38 Machine Check Error Summary MCESR R/W 3

39 Cache Error Register CAER R/W 3
40 Accelerator Control/Status ACCS R/W 5

41 Console Saved ISP SAVISP R/W 4

42 Console Saved PC SAVPC R/W 4
43 Console Saved PSL SAVPSL R/W 4

44 WCS Address WCSA R/W 5

Architecture

Table 4-2 Processor Register Summary (Cont)

Number Register Name Mnemonic Type Category*

45 WCS Data WCSB R/W 5

46 Reserved
5

47 Reserved 5

48 SBI Fault/Status SBIFS R/W 3

49 SBI Silo SBIS R 3

50 SBI Silo Comparator SBISC R/W 3
51 SBI Maintenance SBIMT R/W 3

52 SBI Error Register SBIER R/W 3

53 SBI Timeout Address Register SBITA R 3

54 SBI Quadword Clear SBIQC W 3

55 I/0 Bus Reset JORESET W 2

56 Memory Management Enable MAPEN R/W 1

57 TB Invalidate All TBIA W 1

58 TB Invalidate Single TBIS W 1

59 Translation Buffer Data TBDATA R/W 3

60 Microprogram Break MBRK R/W 3

61 Performance Monitor Enable PMR R/W 3
62 System Identification SID R 1

63 Translation Buffer Check TBCHK W 1

64--127 Reserved 5

* An following the category number indicates that the register

is cleared by power-up and by the negation of DC OK.

4.3 INSTRUCTION SET

The MicroVAX CPU chip implements all instructions in the following
VAX instruction groups.

The

the

MicrovAx CpPU

Integer arithmetic and logical

Address

Variable length bit field

Control

Procedure call

Miscellaneous

Queue

Character string moves {(MOVC3 and MOVCS)

Operating system support

Character string moves (except MOVC3 and MOVCS5)

Decimal string

CRC

BEdit

V chip provides special microcode "hooks” to aid
emulation of the following instruction groups by macrocode.

Architecture

The following instruction groups are implemented by the MicroVAX

FPU chip.

. F_floating

. G_floating

. D _floating

The following instruction groups are not implemented, but may be

emulated by macrocode.

. H floating

. Octaword

. Compatibility mode instructions

4.4 EXCEPTIONS AND INTERRUPTS

Both exceptions and interrupts divert execution from the normal

flow of control. An exception is typically handled by the current

process (for example, an arithmetic overflow), while an interrupt

typically transfers control outside the process (for example, an

interrupt from an external hardware device).

4.4.1 Interrupts

The MicrovVAX architecture specifies 31 interrupt priority levels

(IPLs), as follows.

IPL Condition

Nonmaskable HALT L asserted

1F Unused

1E PWRFL L asserted

19~-1D Unused

18 Unused

17 BIRQ7 L asserted

16 Interval timer interrupt, BIRQ6 L asserted
15 BIRQ5 L asserted

14 Console terminal interrupts, interprocessor

doorbell, or BIRQ4 L asserted

10--13 Unused

01--0F Software interrupt request

The Q22-Bus requests of levels 4 through 7 set IPL equal to 17,
since the (Q22-Bus has only one grant line. The single grant does

not differentiate between the different request levels and grants

the first requesting device it finds. The IPL is set to 14 after a

console terminal or interprocessor doorbell interrupt. It is set

to 16 after an interval timer interrupt.

When the KA630-AA is confiqured as an auxiliary CPU it ignores

BIRQ7 through 4 interrupt requests, but does respond to IPL 14

requests from 1its own console SLU and from its interprocessor

doorbell (in that order of priority). It also responds to

interrupt requests from its own interval timer.

The interrupt system 1is controlled by the IPL register (IPL

corresponds to PSL <20:16>.), the Software Interrupt Request

Register (SIRR), and the Software Interrupt Summary Register

(SISR), all shown in Figure 4-2,

4-6

Architecture

31 0504 00

TYyTr17TrrrrrrrrrryrvTTd LR

IGNORED, RETURNS 0

) S U T T W W U S S U S | 1 L.l

PSL<20:16>] :IPL

kil 0403 00

EEEREEEARREAEREERREREEEREEEBRER
IGNORED REQUEST| :SIRR

Lrr e et e e b

kil 1615 00

Trrrrtri1rrrrqrrryrrr1iV1T T 0T 0T 1T 110
PENDING SOFTWARE INTERRUPTS :SISR

{11 1141ty 41q) \FEDCBIAISET765432)!

MBZ

wn1s779

Figure 4-2 Interrupt Registers

4.4.2 Exceptions

The MicroVAX architecture recognizes six classes of exceptions, as

follows.

Exception Class

Arithmetic trap/fault

Memory management

Operand reference

Instruction execution

Tracing

System failure

Instances

Integer overflow trap

Integer divide by zero trap

Subscript range trap

Floating overflow fault

Floating divide by zero fault

Floating underflow fault

Access control violation fault

Translation not valid fault

Reserved addressing mode fault

Reserved operand fault or abort

Reserved/privileged instr. fault

Emulated instruction fault

Extended function fault

Breakpoint fault

Trace trap

Memory read error abort

Memory write error abort

Kernel stack not valid abort

Interrupt stack not valid abort

Machine check abort

Architecture

4.4.3 Machine Check Parameters
In response to a machine check, the parameters shown in Figure 4-3are pushed onto the stack.

BYTE COUNT {0000000C HEX)

MACHINE CHECK CODE

MOST RECENT VIRTUAL ADDRESS

INTERNAL STATE INFORMATION

PC

PSL

:SP

MR 15781

Figure 4-3 Machine Check Parameters

Machine check code (hex):

Impossible microcode state (FSD)

Impossible microcode state (SSD)
Undefined FPU error code 0

Undefined FPU error code 7
Undefined memory management status (TB miss)
Undefined memory management status (M 0)
Process PTE address in PO space

Process PTE address in

Undefined interrupt ID

Read bus error, VAP is
Read bus error, VAP is

Write bus error, VAP is

Write bus error, VAP is

O
E

W
N

-

L

I
I

T

80

81

82

83

Most recent virtual address:

<31:00> = Current contents of

Internal state information:

<28:24> = Current contents of

<23:20> = Current contents of

<19:16> = Current contents of
14 = Current contents of
<07:00> = PC increment at t

zero if FPD set in

PC: <31:00> = PC at the start

PSL: <31:00> = Current conten

Pl space

code

virtual address

physical address

virtual address

physical address

VAP register

ATDL register

STATE <03:00>

ALU condition codes

VAX restart bit

he time of the exception (reported as

saved PSL)

of the current instructions

ts of PSL

Architecture

4.4.4 Halt Conditions

If the hardware or kernel software environment becomes severely
corrupted, the chip may be unable to continue normal processing.
In this case, the chip passes control to recovery code (the
console program described in Chapter 3) beginning at physical
address 20040000 (hex). The previous state of the machine is
stored in temporary registers that are read as processor registers
using the MFPR instruction. The previous state of the machine is
as follows,

1. IPR 42 contains the saved PC.

2. IPR 43 contains the saved PSL, the saved memory
management (MAPping) ENable bit (MAPEN) and the error
code.

a. IPR console.psl bits <31:16> and <07:00> contain the
saved PSL.

b. IPR console.psl bit 15 contains the saved MAPEN bit.

c. IPR console.psl bits <14:08> contain the error code.

3. IPR 41 contains the previous interrupt stack pointer.

NOTE

There are severe restrictions on using
these saved values, For example, they
must be accessed before executing
instructions that use the registers for
temporary storage.

The halt process sets the state of the chip, as follows.

PSL = 041F0000 (hex)

PC = 20040000 (hex)
MAPEN = 0

ASTLVL = Unchanged (set to 4 by power-up)
SISR = Unchanged (cleared by power-up)

The error codes that indicate the reason for the halt are as
follows,

Error Code Condition

2 Assertion of external hailt
3 Initial power-up
4 Interrupt stack not valigd during exception
5 Machine check during machine check or kernel stack

not valid exception
6 Halt instruction executed in kernel mode
7 SCB vector bits <01:00> = 11
8 SCB vector bits <01:00> = 10
A CHMx executed while on interrupt stack
ig ACV or TNV during machine check exception

ACV or TNV during kernel stack not valid exception

4-9

Architecture

4.4.5 System Control Block

The SCB consists of two pages that contain the vectors for
servicing interrupts and exceptions. The SCB is pointed to by the
SCBB (Figure 4-4). The KA630-AA uses SCB device vector 204 (hex)
for the interprocessor doorbell interrupt. The SCB format is
described in Table 4-3.

31302928272625242322212019181716 15141312 1110090807 06050403 020100

TTI T T T T T T ITTT TT T I T TI T T T T T 7T

MBZ PHYSICAL LONGWORD ADDRESS Of PCB MBZ :sCBe8

T N N NN

Figure 4-4 System Control Block Base Register (SCBB)

Table 4-3 System Control Block Format

Number of

Vector Name Type Parameters Notes

00 Unused

04 Machine Check Abort

08 Kernel Stack Abort 0 Serviced on

Not Valid interrupt

stack, IPL is

raised to 1F

ocC Power Fail Interrupt 0 IPL is raised

to 1E

10 Reserved/ Fault 0

Privileged

Instruction

14 Extended Fault 0 XFC

Instruction instruction

18 Reserved Operand Fault/ 0 Not always

Abort recoverable

1C Reserved Fault 0

Addressing Mode

20 Access Control Fault 2 Parameters are

Violation virtual

address,

status code

Architecture

Table 4-3 System Control Block Format (Cont)

Number of

vector Name Type Parameters Notes

24 Translation Fault 2 Parameters

Not Valid are virtual
address,

status code

28 Trace Pending Fault 0

2C Breakpoint Fault 0
Instruction

30 Unused Compatibility
mode in VAX

34 Arithmetic Trap/ 1 Parameter is
Fault type code

38--3C Unused

40 CHMK Trap 1 Parameter is
operand word

44 CHME Trap 1 Parameter is
operand word

48 CHMS Trap 1 Parameter is
operand word

4C CHMU Trap 1 Parameter is
operand word

50--5C Unused

60--80 Unused

84 Software Level 1 Interrupt O

88 Software Level 2 Interrupt O Ordinarily
used for AST

delivery

8C Software Level 3 1Interrupt O Ordinarily

used for

process

scheduling

90--BC Software Levels Interrupt O
4 through 15

4-11

Architecture

Table 4-3 System Control Block Format (Cont)

Number of
Vector Name Type Parameters Notes

co Interval Timer Interrupt O IPL is 16

(INTTIM L)

c4 Unused

c8 Emulation Start Fault 10 Same mode

exception;

FPD = 0;

parameters are

opcode, PC,

specifiers

cc Emulation Fault 0 Same mode

Continue exception;

FPD = 1; no

parameters

DO--F4 Unused

F8 Console Receive Interrupt O IPL is 14

FC Console Transmit Interrupt O IPL is 14

100-~1FC Adapter Vectors Interrupt O Not used by

KA630-AA

200-~3FC Device Vectors Interrupt O Correspond to

bus vectors

000 ~-- 1FC;

KA630-AA

appends the

assertion of

bit 9

4.5 HARDWARE DETECTED ERRORS

The KA630-AA detects certain error conditions during program

execution, These conditions and the resultant actions are

described below.

4.5.1 Nonexistent Memory Errors

If the processor attempts a read or write to a nonexistent address

in local memory or 1I1/0 space, then a nonexistent memory error

occurs.

If the processor attempts a read or write (by asserting BDIN or

BDOUT) to a device on the Q22-Bus, and if BRPLY is not asserted by

that device within 10 ps, a bus timeout error occurs. This results

in a machine check abort and trap through vector 4.

Architecture

4.5.2 Parity Error Detection

parity errors can be detected during read operations from local

memory address space, Q22-Bus memory address space and Q22-Bus I/0

page address space.

Memory System Error Register (MSER) bit 0 enables parity error

detection for all reads from local memory, whether it is accessed
through local memory address space or through the Q22-Bus memory

address space (through the bus map). MSER bit 0 has no effect on

parity error detection for reads from external Q22-Bus memory or

Q22-Bus devices.

puring read operations from the local memory address space, parity

is checked only for those bytes designated by the processor as

Byte Mask signals (BM, <03:00>). Because the MicroVAX chip must

receive a stable ERRor signal (ERR) at least 150 ns before it

requires stable data, performance considerations dictate that

parity errors occurring during reads from local memory address

space do not cause ERR assertion during the cycle for which the

parity error was detected. Instead, the KA630-AA asserts ERR for

the next cycle, and if that cycle was a prefetch read cycle, for

the cycle after that as well,

When a parity error occurs during a local memory access through

local memory address space, the processor is allowed to complete

that cycle and may execute an instruction that alters the

processor's internal state. However, the processor recognizes a

machine check and traps through vector 4 when it attempts the next

external cycle.

During read operations from Q22-Bus space (including the access of

local memory through the Q22-Bus map), a parity error is detected

if both BDAL bits 17 and 16 are asserted. ERR is then asserted.

When the processor reads local memory from the Q22-Bus memory

space, parity is checked on both bytes of each word accessed, even

if the processor only requested a single byte.

When ERR is asserted, the processor responds as follows.

) For nonprefetch reads, the processor recognizes a machine

check and traps through vector 4.

° For prefetch operations, the processor aborts the

Prefetch cycle and performs a nonprefetch read if an

instruction fetch is required from that location.

4.5.3 Interrupt Vector Timeouts

An interrupt vector timeout occurs when BRPLY L is not asserted by

a device within 10 ps after an interrupt is acknowledged (BIAK L)

by the processor. The ERR is asserted. The processor aborts the
interrupt cycle and continues as though the interrupt request did

not occur.

Architecture

4.5.4 No Sack Timeouts

A No Sack timeout occurs when a device does not assert BSACK L
within 10 us after it has been granted bus mastership (received
BDMG L). The KA630-AA continues as though the DMA request did not
occur.

4.6 LATENCY

4.6.1 Interrupt Latency

Interrupt latency 1is defined as the time between receiving an
interrupt request (BIRQ L) and acknowledging the request (BIAK L).

Interrupt latency can be divided into the following three

segments.

) The 1length of time the processor runs at an interrupt

priority 1level that masks out the interrupt. This time

period is highly software dependent.

° The 1length of time the processor takes to execute the

last instruction after the interrupt.

® The 1length of time it takes the KA630-AA to gain bus

mastership. Because the arbiter KA630-AA is the highest

priority DMA device, this period is equal to the time

required for the previous bus master to finish its data

transfer(s) and relinquish the bus. (This represents a

change from the traditional priority structure where DMA

devices have a higher priority than either CPU fetches or

interrupts.) Eight block mode transfers typically require

about 5 ps. The KA630-AA asserts DMA when it needs the

bus, 1limiting a block mode device to no more than eight

additional transfers. A nonexistent memory timeout

typically requires 10 to 15 ps.

4.6.2 DMA Latency

DMA latency is defined as the time between receiving a DMA request

(BDMR L) and granting the request (BDMG L). This calculation is

made assuming that the DMA request occurs while the CPU has

control of the bus, and that there are no conflicting DMA

requests., The result of this calculation 1is the CPU-induced

latency. The DMA latency seen by any device is a combination of

the CPU-induced 1latency and the latency induced by other DMA

devices,

The CPU-induced DMA latency is the time required to complete the

longest CPU operation that retains control of the bus. The longest

KA630-AA operation that retains control of the bus is a 32-bit

read-lock/write-unlock to non-block-mode memory.

When a CPU that is the lowest priority device relinquishes control

of the bus, it does not regain control of the bus until all DMA

requests have been honored. Thus, two high bandwidth devices could

exchange control of the bus, effectively locking out the CPU until

one of them has completed its set of transfers.

Architecture

The arbiter KA630-AA CPU is the highest priority bus device in the

system. After it has relinquished control of the bus, it can

regain control of the bus during the next bus arbitration.

System level DMA latency calculations must take into account the
fact that the arbiter KA630-AA can request the bus as the highest

priority bus device.

4.7 SYSTEM IDENTIFICATION REGISTER (SID)

The read-only SID (Figure 4-5 and Table 4-4), processor register

62, 1is implemented by the MicroVAX CPU chip. On the KA630-AA, and

on all other processors that use the MicroVAX CPU chip, the SID

always reads 00080000.

The KA630-AA implements a 32-bit System Identification Extension

register (SIE) at physical location 20040004. This 32-bit register

exists within the KA630-AA console program ROM.

3 2423 1514 00

EEEEEERERERRREERRRRRRREREEE

SYSCODE VERSION RESERVED

T IO T 1 T T T 0T 0 T Y O I B Y A

Figure 4-5 System Identification Register (SID)

Table 4-4 System Identification Register Format

Bits Mnemonic Name/Meaning

<31:24> SYSCODE System Code. This field reads as 1 for the
KA630-AA.

<23:16> Version number of console program ROM.

<15:00> Reserved.

Architecture

4.8 MEMORY MANAGEMENT

4.8.1 Physical and virtual Address Space

The virtual address space is four gigabytes (2**32), as shown in

Figure 4-6. The physical address space is one gigabyte (2*#*30), as
shown in Figure 4-7.

4.8.2 Memory Management Control Registers

Memory management 1is controlled by three processor registers:

MAPEN, Translation Buffer Invalidate Single (TBIS), and

Translation Buffer Invalidate All (TBIA). MAPEN contains one bit,

0, as shown in Figure 4-8.

Translation buffer invalidation is controlled by TBIS (Figure 4-9)

and TBIA (Figure 4-10). Writing a wvirtual address into TBIS

invalidates any entry that maps that virtual address. Writing a 0

into TBIA invalidates the entire translation buffer.

00000000

MEMORY

SPACE

1FFFFFFF

20000000

1/0

SPACE

3FFFFFFF

wn.15932

Figure 4-6 Virtual Address Space

00000000 THE PO LENGTH REGISTER (POLR)
SPECIFIESTHE LENGTH OF THAT

PO REGION IN PAGES.
REGION

‘ PO REGION GROWTH DIRECTION
3FFFFFFF

40000000
P1 REGION GROWTH DIRECTION

P

REGION ——| THE P1 LENGTH REGISTER(P1LR)
SPECIFIESTHE LENGTH OF THAT

TFFFFFFF REGIONIN PAGES (2°*21-P1LR}.

80000000 THE SYSTEM LENGTH REGISTER
(SLR) SPECIFIES THE LENGTH

SYSTEM OF THAT REGION IN PAGES.

REGION

l SYSTEM REGION GROWTH DIRECTION
BFFFFFFF

€0000000

RESERVED

REGION

FFFFFFFF

sz

Figure 4-7 Physical Address Space

Architecture

3 020100

llllll—lTTTllllllllilllllllllh"

MBZ m | :mapen

TN

Figure 4-8 Memory Management (Mapping) Enable Register (MAPEN)

3

1 0

5 L O AL O A
VIRTUAL ADDRESS :TBIS

N N N O T T T T (N T T T Y o 0 T O O M e |

Figure 4-9 Translation Buffer Invalidate Single Register (TBIS)

3

1 0

TIT TT I T T T T T T T T I T T T T T T I T T T T T T ITT

MBZ ZTBIA

Lyl be bt elr et

Figure 4-10 Translation Buffer Invalidate All Register (TBIA)

4.8.3 System Space Address Translation

A virtual address with bits <31:30> = 2 is an address in the

system virtual address space. Refer to Figure 4-11.

System virtual address space is mapped by the System Page Table

(sPT), which is defined by the System Base Register (SBR) and the
System Length Register (SLR). The SBR contains the physical

address of the SPT. The SLR contains the size of the SPT in
longwords, that is, the number of Page Table Entries (PTEs). The
PTE addressed by the SBR maps the first page of system virtual
address space, that is, virtual byte address 80000000 (hex).

4.8.4 Process Space Address Translation

A virtual address with bit 31 = 0 is an address in the process

virtual address space. Process space is divided into two equally

sized, separately mapped regions. If virtual address bit 30 = 0,

the address 1is 1in region PO. If virtual address bit 30 = 1, the

address is in region Pl.

4.8.4.1 PO Region Address Translation -- Refer to Figure 4-12.

The PO region of the address space is mapped by the PO Page Table

(POPT), which is defined by the P0 Base Register (POBR) and the PO

Length Register (POLR). The POBR contains the system virtual

address of the POPT. The POLR contains the size of the POPT in

longwords, that is, the number of PTEs. The PTE addressed by the

POBR maps the first page of the PO region of the virtual address

space, that is, virtual byte address 0.

Architecture

33 2

109
1.0

LIS L L L A A O B
MB2 PHYSICAL LONGWORD ADDRESS OF SPT MBZ | :SBR

a3 Lo sl b it g gl

3 22

1 21 0

LIS LS L L L L L A A 0 R O B
MBZ LENGTH OF SPT IN LONGWORDS ‘SLR

NN NS NN

33 2

1.0 9 9 8 0

TT TT T T T3 T T Ty T T 7TT T IT T[TT T T TTTT

2 BYTE
SVA:[SYSTEM VIRTUAL U IO T O T T A I A O D O B A R O

ADDRESS) EXTRACT AND
3 2}2 CHECK LENGTH

1 3f2 2410
TIT T T T T T T[TT T T T T TT T T I T I T T I I 7]

0 0

N T T T O O I O O OO A A

ADD

LS, L L L O L L B O R O

SBR: PHYSICAL BASE ADDRESS OF SPT 0
L et b ee ey ety

YIELDS

LI UL O DL L B L B

PHYSICAL ADDRESS OF PTE 0
LL Lt e g rreappp bty

33 22 FETCH

10 10 0

TTI I TT I T T T T T T TT T T T T T T T T T

PTE: |1 PFN

T U T O A I A O B B O S B B A

CHECK ACCESS THIS ACCESS CHECK

2 IN CURRENT MODE
9 98 0

TPHYSICAL ADDRESS L L L O L L B AL L L B B B L B

OF DATA: Pl e etb

i <593

Figure 4-11 System Space Virtual to Physical

Address Translation

Architecture

3 3 2

1t 0 9 2 10
T TIT 11T TP T T T T T T T T Yy T i iroryd LI

MBZ SYSTEM VIRTUAL LONGWORD ADDRESS OF POPT MBZ | :POBR

L1 S TN (T T N A O 1 O O A O | I

3 22

1 21 0

TT T 1T 11T 111 TT T T T 1T P T T T T 1T T 1T 1T 11717
MBZ LENGTH OF POPT IN LONGWORDS POLR

| I | T T Y S 0 O O 0 B

3 3 2

10 9 9 8 0

TT] T T T T J T T 1T T T 1T 1T T T TT T YT 7T 11T

PVA: [¢] BYTE

(PROCESS VIRTUAL bl N T T I T T T T T A T O O O

ADDRESS) EXTRACT AND
3 212 CHECK LENGTH

1 3i2 2410
TTr T 1T T T T] T T T T I T T T T T TTTTITT T iTrrlT

0 0

N S N T T T S (T T Y A A I A Y O O |

ADD

Tttt 11711711trr T Ty Ty T T

POBR VIRTUAL BASE ADDRESS OF POPT 0
TRU T U U U N U T OO 0 U G 0 OO M B OO

YIELDS

S D 0 O 0
VIRTUAL ADDRESS OF PTE 0

ANO N N U T T U U O I T S W O O O O O

FETCH BY SYSTEMSPACE

TRANSLATION ALGORITHM,

INCLUDING LENGTH AND

33 2 2 KERNEL MODE ACCESS CHECKS.
10 10 0

TTT T TTT T T [T T T T T T T T T T T T T T T 111

PTE: |1 PFN

RI T A (W T 0U A 0 B B W AU€

CHECK ACCESS

PHYSICAL ADDRESS

OF DATA

Figure 4-12

THIS ACCESS CHECK

IN CURRENT MODE

MR 15938

PO Virtual to Physical Address Translation

Architecture

4.8.4.2 Pl Region Address Translation -- Refer to Figure 4-13.

The Pl region of the address space is mapped by the Pl Page Table

(P1PT), which is defined by the Pl Base Register (P1BR) and the Pl
Length Register (PlLR). Because Pl space grows toward smaller
addresses, and because a consistent hardware interpretation of the
base and length registers is desirable, P1BR and PlLR describe the
portion of Pl space that is not accessible. Note that PILR
contains the number of nonexistent PTEs. P1BR contains the virtual
address of what would be the PTE for the first page of Pl, that
is, wvirtual byte address 40000000 (hex). The address in PlBR is

not necessarily a valid physical address, but all the addresses of
PTEs must be valid physical addresses.

1 2 10

L LA L L L L L L L LS B

mBz VIRTUAL LONGWORD ADDRESS OF P1PT MBZ | :P1BR
S8W S U 0 W U(0 O A O O 0 A A O B AR B U O AN O

3 22

1 21 0

TI TT T I T TT T[T T T T TT T TT TT T T T T TTITT

MBZ LENGTH OF P1PT IN LONGWORDS :PILR
Lt g b bp by ey gt p bt

33 2

1.0 9 98 0

LSS L L L L A0 O I S I

PVA: 1 BYTE
(PROCESS VIRTUAL bbb eyttt b el

ADDRESS) EXTRACT AND
3 242 CHECK LENGTH
1 3|2 2] 10

L L L L L 0B L B0 O A L

0 0

pe s byt e sy r el

ADD

TT T T T T T T T T I T T T T T TT T T T T T T T T T 7

P1BR: VIRTUAL BASE ADDRESS OF P1PT 0

Ll b b b rid

YIELDS

TTT T T T TT T T T T YTT T T T T TT T T T TI T 1T 7T

VIRTUAL ADDRESS OF PTE 0

Le Lttt bbbyt

FETCH BY SYSTEMSPACE

TRANSLATION ALGORITHM,

INCLUDING LENGTH AND

33 2 2 KERNELMODE ACCESS CHECKS.
10 10 0

L N O A G I O D N O I O

PTE: |1
PEN

I ST U U S WO S A O A O A B

CHECK ACCESS THIS ACCESS CHECK

2 IN CURRENT MODE
9 9ls 0

LIPHYSICAL ADDRESS TT T T YT T T T T 7T T T T T T T T T[T T 1111

OF DATA j O U O O W S 0 U U T T U T T S O O |
wa 15530

Figure 4-13 Pl Virtual to Physical Address Translation

Architecture

4.8.5 Page Table Entry

The format of a valid PTE is shown in Figure 4-14, where:

v = Valid bit (must be set)

PROT = Protection code

M = Modify bit

OWN = Owner bits

PFN = Page frame number,

I1f bit 31 (the V bit) is clear, the format of the remaining bits

is not examined by the hardware.

33 22222222

10 76543210 0

T \ L L 111 e e e

v| proT |m|ofowN o PFN :PTE
L1 RN RN NN

Figure 4-14 Page Table Entry (PTE)

4.9 KA630-AA MEMORY SYSTEM

The KA630-AA memory system consists of the local memory and a

Q22-Bus map that allows Q22-Bus master devices to access this
local memory. The memory system also includes two registers that
are used primarily for diagnostic purposes. The KA630-AA supports

up to 9 Mbytes of local memory. The KA630-AA typically accesses
this memory directly, through physical addresses 00000000 to

O0FFFFFF. Any Q22-Bus master device, including the KA630-AA, can

access this memory indirectly through the Q22-Bus map. Mapping can

be independently enabled and disabled for each page.

The KA630-AA accesses the (Q22-Bus memory address space through

physical addresses 30000000 to 303FFFFF. It accesses the Q22-Bus

I/0 space through physical addresses 20000000 to 20001FFF.

4.9.1 Local Memory Mapping Register Format

The Q22-Bus map contains 8192 mapping registers. Each of these

mapping registers is a 32-bit longword with the format shown in
Figure 4-15 and Table 4-5, and each one can map a page (512 bytes)

of Q22-Bus space into a selected page of local memory.

Each mapping register is located on a longword boundary and must

be written using longword instructions. Byte and word instructions

can only load these registers with undefined data.

Architecture

33 11

1t 0 5 4 0
TT T T T Trrrrrrrrrr rT T TTT T T T T

Vv A23-A09
lllllllllllllllllllllllllllll

Fiqure 4-15 Mapping Register

Table 4-5 Memory Register PFormat

Bit(s) Mnemonic Name/Meaning

31 v valid. When a mapping register is selected

by a Q22-Bus address, the wvalid bit
determines whether the Q22-Bus map is
enabled for that address. If the valid bit

is set, the map is enabled. If the valid

bit 1is clear, the map is disabled and the

KA630-AA does not respond to that address.

<30:15> Unused. These bits always read as 0.

<14:00> A23--A09 Address bits <23:09>. When a mapping

register 1is selected by a 022-Bus address,

and if that register's valid bit is set,

then these 15 bits are used as local memory

address bits 23 through 9. Q22-Bus address

bits 8 through 0 are used as local memory

address bits 8 through 0.

4.9.2 Mapping Register Addresses (2008XXXX Hex)

The mapping registers (Table 4-6) are located within the local

register space at physical addresses 20088000 through 2008FFFC.

They can only be accessed from the processor.

The physical address of each register was chosen so that register

address bits <14:02> are identical to Q22-Bus address bits <21:09>

of the page they map.

Architecture

Table 4-6 Mapping Register Addresses

Register Q022-Bus Addresses Q22-Bus Addresses

Address Mapped (Hex) Mapped (Octal)

20088000 000000--0001FF 00000000--00000777

20088004 000200--0003FF 00001000--00001777

20088008 000400~--0005FF 00002000--00002777

2008800C 000600--0007FF 00003000--00003777

20088010 000800--0009FF 00004000--00004777

20088014 000A00~--000BFF 00005000--00005777

20088018 000C00--000DFF 00006000--00006777

2008801C 000E00--000FFF 00007000--00007777

2008FFF0 3FF800--3FFOFF 17774000--17774777

2008FFF4 3FFAQ00-~-3FFBFF 17775000--17775777

2008FFF8 3FFC00--3FFDFF 17776000~--17776777

2008FFFC 3FFEQ0--3FFFFF 17776000--17777777

4.9.3 022-Bus Map Operation

At powver-up,

bits, are undefined.

Q22-Bus mapping registers, including the valid
External access to local memory is disabled

as long as the IPCR LM EAE bit is cleared.

After completing the ROM diagnostics that are part of its console

program, an arbiter KA630-AA enables the mapping registers to map

memory space to boot the system, and then setssufficient

the LM EAE bit. When the operating system gains control, it may

either invalidate or reassign various pages, as required.

Upon completion, the ROM programs in an auxiliary KA630-AA clear

all mapping register valid bits, and then set the LM EAE bit.

The (22-Bus map monitors each Q22-Bus cycle and responds if the

following three conditions are met:

1. The IPCR LM EAE bit is set.

2. The valid bit of the selected mapping register is set.

3. For read operations, the mapping register must have

mapped into existent local memory. (During write
operations, the response depends only on conditions 1 and

2 because the KA630-AA returns Q22-Bus BRPLY before

checking for existent local memory.)

Architecture

2

1 98 0

022-BUS ADDRESS LI I B N O N B O B B
8YTE

L1t 01 [1 11 L1t tf1

EXTRACT AND

USE TO SELECT

MAPPING REGISTER

SELECTED MAPPING REGISTER:

33 11

1 0 5 4

LIS L I A N I B e o ¢

\2

Li L vyt by sy by

2

3 9'g 0
LI I A O I I O

PHYSICAL ADDRESS OF LOCAL MEMORY

Ll UL b e

MR-15942

Figure 4-16 Q22-Bus to Local Memory Physical

Address Translation

The translation from Q22-Bus address to local memory physical

address is shown in Figure 4-16.

4.9.4 Memory System Registers

The three registers associated with the memory system are located
in the local register I/O address space and can only be accessed
by the on-board processor. Software uses the MSER to monitor
parity and nonexistent memory errors, and to control parity
generation and checking for the 1local memory. The CPU Error

Address Register (CEAR) contains the address of the page in local

memory that caused a parity error during an access by the on-board

CPU. The DMA Error Address Register (DEAR) contains the address of

the page in 1local memory that caused a parity error during an

access by an external device.

4.9.4.1 Memory System Error Register (20080004 Hex) -- The MSER

(Figure 4-17, Table 4-7) 1is 1located in the local register I/O
address space at physical address 20080004. It can only be
accessed by the on-board processor.

MSER bits <07:05> and 3 indicate the status of machine check traps
through SCB vector 4. MSER bit 4 is set if an external Q22-Bus

device receives a parity error while reading KA630-AA local
memory.

Architecture

1

09876543210

TrTrIT7 1ty Tt T 1T T T T T TTd

[N U T U O T U T T S I Y W |
UNUSED, RETURNS 0 o]

MEM CD?

MEM CDO

CPU NXM

CPU LPE

CPU QPE

CMA QPE

MS LEB

WRW PAR

PAR ENB

MR.15343

Figure 4-17 Memory System Error Register (MSER)

Table 4-7 Memory System Error Register Format

Bit(s) Mnemonic Name/Meaning

<31:10> Unused. Reads as 0.

09 MEM CDl Memory Code <01:00>. When one of the two CPU

08 MEM CDO parity error bits (MSER <06:05>) is set, the
two read-only MEM CD bits are loaded with a

2-bit code indicating the source of the parity

error, as follows.

MEM CD <09:08> Source

00 022-Bus memory or device

01 KA630-AA on-board memory

10 Memory expansion module 1

11 Memory expansion module 2

A second parity error does not update this

code unless software has cleared the CPU

parity error bits. MEM CDl and MEM CDO are

cleared by power-up, by the negation of DC OK,

and by writes to the BIR.

07 CPU NXM CPU Nonexistent Memory Error. This bit is set
by any CPU nonprefetch read or write operation

that references nonexistent memory, causing a

trap through SCB vector 4. writing a 1 to this

bit clears it; writing a 0 to this bit has no

effect. CPU NXM is cleared by power-up, by the

negation of DC OK, and by writes to the BIR.

Architecture

Table 4-7 Memory System Error Register Format (Cont)

Bit(s) Mnemonic Name/Meaning

06

05

04

CPU LPE

CPU QPE

DMA QPE

CPU Local Address Space Parity Error. If
parity error detection is enabled (MSER bit 0
set), then CPU LPE is set by any CPU read
access (prefetch or nonprefetch) to local
memory address space that causes a parity
error. The processor does not receive an error
indication on that cycle. The next MicroVax
cycle 1is aborted, causing a trap through SCB
vector 4. Writing a 1 to this bit clears it;
writing a 0 has no effect. CPU LPE is cleared
by power-up, by the negation of DC OK, and by

writes to the BIR.

Only those memory bytes selected by processor

outputs BM <03:00> can cause a CPU LPE parity

error. Because the fetch that caused the

parity error 1is not aborted, it could be

difficult for software to determine the result
of the error. For this reason, parity errors

that set this bit are generally treated as

fatal errors.

CPU Q22-Bus Address Space Parity Error. CPU

QPE 1is set by any CPU nonprefetch read access

to the Q22-Bus address space that results in a

parity error causing a CPU trap through SCB

vector 4. If the CPU is accessing local memory

through the (22-Bus map, parity detection is

enabled only if MSER bit 0 is set. If the CPU

is accessing the Q22-Bus, parity detection is

enabled or disabled at the external Q22-Bus

memory or device. Writing a 1 to this bit

clears it; writing a 0 to this bit has no

effect. CPU QPE is cleared by power-up, by the

negation of DC OK, and by writes to the BIR.

DMA (Q022-Bus Address Space Parity Error, If

parity error detection is enabled (MSER bit 0

set), then DMA QPE is set by any external read

access to KA630-AA local memory that results

in a parity error. This type of parity error

does not cause the CPU trap through SCB vector

4. (The DMA device typically interrupts with

an error indication.) Writing a 1 to this bit

clears 1it; writing a 0 to this bit has no

effect. DMA QPE is cleared by power-up, by the

negation of DC OK, and by writes to the BIR.

Architecture

Memory System Error Register Format (Cont)

Name/Meaning

Table 4-7

Bit(s) Mnemonic

03 MS LEB

02

01 WRW PAR

00 PAR ENB

Memory System Lost Error Bit. This bit is set

by an operation that sets MSER bit 6 or bit 5

after one or both of those bits has already

been set. Writing a 1 to this bit clears it;

writing a 0 to this bit has no effect. MS LEB

is cleared by power-up, by the negation of

DC OK, and by writes to the BIR.

Unused. Read as Os.

Write Wrong Parity. If this read/write bit is

set, and either the CPU or a DMA device writes

to local memory, then wrong parity is written

into the parity bits of the RAMs, If this bit

is clear, correct parity is written. WRW PAR

is cleared by power-up, by the negation of

DC OK, and by writes to the BIR.

Parity Enable, If this read/write bit is set,

local memory parity error detection is

enabled. If this bit is clear, parity errors

are 1ignored during all CPU and DMA reads from
local memory. PAR ENB is cleared by power-up,

by the negation of DC OK, and by writes to the

BIR.

PAR ENB controls parity detection for all CPU

reads from local memory, including accesses

through the Q22-Bus map. PAR ENB has no effect

on CPU reads from external Q22-Bus memory.

4.9.4.2 CPU Error Address Register -- The CEAR (Figure 4-18) is
located in the 1local register I/0 address space at physical

address 20080008. It can only be accessed by the on-board

processor and contains valid information only when either MSER bit

6 (CPU LPE) or MSER bit 5 (CPU QPE) is set.

31

UNUSED, RETURNS 0 LOCAL MEMORY
ADDRESS BITS <23:09>

MR- 15944

Figure 4-18 CPU Error Address Register (CEAR)

Architecture

The CEAR contains the address of the page in local memory that
caused a parity error during an access by the on-board CPU. The
contents of this register are latched when either MSER bit 6 or

MSER bit 5 is set. Additional local memory parity errors have no
effect on the CEAR until software clears MSER <06:05>.

Local memory address bits <23:09> are loaded into CEAR bits
<14:00>. CEAR bits <31:15> always read as 0.

4.9.4.3 DMA Error Address Register -- The DEAR (Figure 4-19) is
located in the 1local register I/0 address space at physical
address 2008000C. It can only be accessed by the on-board
processor and contains valid information only when MSER bit 4 (DMA
QPE) is set.

The DEAR contains the address of the page in local memory that
caused a parity error during an access by an external device. The

contents of this register are 1latched when MSER bit 4 is set.
Additional 1local memory parity errors have no effect on the DEAR
until software clears MSER bit 4.

Local memory address bits <23:09> are 1loaded into DEAR bits

<14:00>. DEAR bits <31:15> always read as 0.

3 15 14 0

LOCAL MEMORY

UNUSED. RETURNS 0 ADDRESS BITS <23:09>

MR-15945

Figure 4-19 DMA Error Address Register (DEAR)

4.9.5 Memory System Operation

The KA630-AA memory system can perform the following data transfer

and memory refresh cycles.

° MicroVAX accesses local memory directly.

° MicroVAX accesses local memory through Q22-Bus map.

) MicroVvAX accesses on-board registers in the local or

Q022-Bus I/0 address space.

[MicroVAX accesses Q22-Bus memory or registers,

° External (Q22-Bus device accesses local memory through

Q22-Bus map.

° External Q22-Bus device accesses the KA630-AA IPCR in the

Q22-Bus I/0 space.

° KA630-AA performs memory refresh cycle.

Architecture

NOTE

The KA630-AA does not require access to

the memory system when it accesses

internal processor registers (including

those implemented external to the

MicrovAax CPU chip).

Access to the local memory data/address paths and control of the

022-Bus are arbitrated independently. An external device can gain

control of the 022-Bus -and access a KA630-AA register (in the

022-Bus address space) while the MicroVAX CPU chip is accessing
local memory. When an external device accesses KA630-AA local

memory, MicroVAX cycles are not interrupted until the Q22-Bus map

has decoded the local memory address.

When the local memory is between cycles, it continually decodes

the address on the MicroVAX address/data lines. When it receives a

refresh or external device request, it switches off the MicroVAX

address/data lines and monitors the address lines from the refresh

logic or from the Q22-Bus map.

When the local memory is between cycles, the arbitrator for the

local memory responds to requests in the following order of

priority:

1. MicroVAX request

2. External device request

3. Refresh request

When the local memory is completing a cycle, the arbitrator for

the local memory responds to requests in the following order of

priority:

1. External device request

2. Refresh request

3. MicroVAX request

The 1local memory cycle time is 400 ns for all read, write or

refresh cycles.

The MicroVAX must have control of the Q22-Bus before it can carry

out the following actions.

Perform any read-lock cycle

Access local memory through the Q22-Bus map

Access the IPCR or one of the Q22-Bus.map registers

Perform Q22-Bus cycles

On an arbiter KA630-AA, which contains the Q22-Bus arbitrator, the

MicroVAX has control of the Q22-Bus except when the KA630-AA has

granted an external DMA request. An auxiliary KA630-AA can gain
control of the Q22-Bus only by posting a DMA request.

Architecture

The MicroVAX accesses Q22-Bus memory and registers by using the
following Q22-Bus cycles.

° DATa-Out-Byte (DATOB) for 8-bit writes

° DATa-In (DATI) for 16-bit reads (nonlocked)

) DATa-Out (DATO) for 16-bit writes

° DATa Block In (DATBI) for 32-bit reads (nonlocked)

° DATa Block Out (DATBO) for 32-bit writes

) DATI followed by DATO for a 16-bit read-lock followed by

a 16-bit write-unlock

° DATBI followed by DATBO for a 32-bit read-lock followed

by a 32-bit write-unlock

When performing 32-bit reads from non-block-mode memory, two

successive DATI cycles are substituted for the DATBI cycle. When

performing 32-bit writes to non-block-mode memory, the two

successive DATO cycles are substitued for the DATBO cycle. The

same substitutions are made for the 32-bit read-lock followed by a

32-bit write-unlock., In all three cases, the KA630~-AA retains

control of the bus between successive DATI and/or DATO cycles.

When the processor reads a byte from the Q22-Bus, the KA630-AA

performs a DATI cycle with address bit 0 correctly reflecting the

byte address.

4.10 KA630-AA BOOT AND DIAGNOSTIC FACILITY

The KA630-AA boot and diagnostic facility features one 16-bit

register and two 28-pin ROM sockets for 16, 32 or 64 Kbytes of

read-only memory. The ROM memory is located on consecutive word

boundaries and may be accessed through longword, word or byte

references.

The KA630-AA populates each of the two ROM sockets with 32 K X 8

bytes of ROM (or EPROM). These two ROMs contain the 64 Kbyte

console program. If these ROMs are replaced for special

applications, the new ROM must contain some version of the console

program,

4.10.1 Boot and Diagnostic Register

The 16-bit BDR (Table 4-8, Figure 4-20) is located at physical

address 20080000. It can be accessed by KA630-AA software, but not

by external Q22-Bus devices. The BDR allows the boot and

diagnostic ROM programs to read various KA630-AA configuration

bits and to load the 4-bit error display.

Architecture

Table 4-8 Boot and Diagnostic Register Format

Bit(s) Mnemonic Name/Meaning

15 PWR OK

14 HLT ENB

<13:12>

11 CPU CD1

10 CPU CDO

09 BDG CD1

08 BDG CDO

<07:04>

03 DSPL 03

02 DSPL 02

01l DSPL 01
00 DSPL 00

Power OK. This read-only bit is set if the

Q22-Bus BP OK signal is asserted and clear if

BP OK is negated.

Halt Enable. This read-only bit reflects the

status of external connector pin 15. The set

condition of this signal enables the various

external halts. Also, following the execution

of a halt instruction in kernel mode, the

KA630-AA ROM program reads the HLT ENB bit to

decide whether to enter the console program

(HLT ENB set) or to restart the operating

system (HLT ENB clear).

Unused. Always reads as 0.

CPU Code <01:00>, These two read-only bits

originate from connector pins 4 and 5. They

indicate whether the KA630-AA is configured as

the arbiter or as one of the three

auxiliaries, as follows.

CPU CD <11:10> Configuration

00 Arbiter

0l Auxiliary 1

10 Auxiliary 2

11 Auxiliary 3

Boot and Diagnostic Code <01:00>, This 2-bit

read-only code reflects the status of

configuration and display connector pins

<14:13>,

Unused. Always reads as 0.

Display <03:00>. These four write-only bits

update an external LED display. Writing a 1 to

a bit 1lights the corresponding LED; writing a

0 to a bit turns its LED off. The display bits

are set (all LEDs are lit) by power~up and by
the negation of DC OK.

Architecture

i T T 1 T

1 1 1 1 1

PWR OK —]
HLT ENB

CPU CD1

CPU CDO

8DG CD1

BDG CDO

DSPL 03

DSPL 02

DSPL 01

0SPL 0O

MR-15946

Figure 4-20 Boot and Diagnostic Register (BDR)

4.10.2 ROM Memory

4.10.2.1 ROM Sockets =-- The two ROM sockets are compatible with 8,
16 and 32 K X 8 byte ROMs. A machine-inserted jumper selects the
pin 27 input to be either +5 V (for 8 and 16 K parts) or ROM
address bit 14 (for 32 K parts).

The KA630~AA is shipped with 32 K X 8 byte ROMs, and with the
jumper in the address bit 14 position,

4.10.2.2 ROM Address Space -- The entire boot and diagnostic ROM

can be read from either the 64 Kbyte halt mode ROM space or the 64

Kbyte run mode ROM space. Writes to either of these address spaces

result in a nonexistent memory trap.

Any I-Stream read from the halt mode ROM space places the KA630-AA

in halt mode. The front panel Run light is off and the halt input

to the MicroVAX CPU chip is disabled.

Any I-Stream read that does not access the halt mode ROM space,

including reads from the run mode ROM space, places the KA630-AA

in run mode. The front panel Run light is 1lit and the halt input

to the MicroVAX CPU chip is reenabled.

Writes and D-Stream reads to any address space have no effect on

run mode/halt mode status.

Architecture

I-Stream reads include all instruction fetches (except when the

MicrovAX CPU chip retries a fetch following a nonexistent memory

or parity error) and certain character string data fetches (again,

except for those retries that follow an error). All reads that are

not I-Stream reads are D-Stream reads. When running in halt mode,

the ROM programs cannot use character string instructions to fetch

data from outside the halt mode ROM address space.

when in halt mode, the KA630-AA always responds to the full 64

Kbyte halt mode ROM space (hex addresses 20040000 through

2004FFFF). When the KA630-AA contains 16 Kbytes of ROM memory, it

appears four times, once within each 16 Kbytes of halt mode ROM

space. When the KA630-AA contains 32 Kbytes of ROM memory, it

appears twice, once within each 32 Kbytes of ROM space.

When in run mode, the KA630-AA always responds to the full 64

Kbyte run mode ROM space (hex addresses 20050000 through

2005FFFF). When the KA630-AA contains 16 Kbytes of ROM memory, it

appears four times within the run mode ROM space. When the

KA630-AA contains 32 Kbytes of ROM memory, it appears two times

within the ROM memory space. Note that the run mode ROM space

accesses the same ROM code as the halt mode ROM space.

4.10.2.3 KA630-AA Console Program Operation -- The console program

is entered by transferring program control to location 20040000.

There are various halt conditions that cause the MicroVAX to

transfer program control to location 20040000. These conditions

include the kernel mode halt instruction, assertion of the

external halt input to the MicroVax CPU chip, and certain fatal

machine checks. When DC OK has been negated, either at power-up or

by reboot, the combined assertion of DC OK and P OK initiates

program execution at location 20040000.

The KA630-AA console program provides the following services,

[Automatic restart or bootstrap following processor halts

or initial power-up

[Interactive command language allowing the user to examine
and alter the state of the processor

) Diagnostic tests executed on power-up that check the CPU,

the memory system and the Q22-Bus map

] Support of video or hard-copy console terminals, as well

as support of VCBOl-based bitmapped terminals

The KA630-AA console program is described in detail in Chapter 3.

Architecture

4.11 KA630-AA TOY CLOCK

4.11.1 Battery Backed-Up Watch Chip

The KA630-AA contains a Motorola* MC146818 CMOS watch chip and
battery backup circuitry that are connected to three batteries
mounted on the CPU distribution panel through KA630-AA connector
J2. The battery backup for this chip is specified to be greater
than 240 hours when using three nickel~cadmium batteries in
series.

The operating system software must fetch the correct time from
this chip whenever power is restored to the system. If the power
was Off long enough for the battery voltage to go below
specification, or if the battery was temporarily disconnected
while the system power was Off, the time in the watch chip is
undefined. If the operating system detects a cleared Valid RAM and

Time bit (VRT, in watch chip register CSR D), it must prompt the
system operator for the time, and then load this time into the

watch chip.

Although the MicroVAX interval timer interrupts have a resolution

of 10 ms, the watch chip only has a resolution of seconds.

Therefore, the time resolution is as follows.

° While under full power supply -- 10 ms

° After power-down for 1less than 240 hours (while watch

chip is powered by battery) -- 1 second

4.11.2 Watch Chip Registers

The watch chip contains 64 8-bit registers (Table 4-9). Ten of

these registers contain time of day data and 4 are CSRs. The

remaining 50 provide 50 bytes of battery backed-up RAM. They are

addressed from a base address of 200B8000, as described in the

following sections.

Even though the addressing is on word boundaries, the TOY data and

RAM locations are loaded into or read out of the chip a byte at a

time.

4.11.,2.1 TOY Data Registers -- Software reads the TOY data

registers (Table 4-10) only after reading a cleared Update In

Progress bit (UIP, CSR A bit 7) and only when all interrupts are

disabled. (This assures that reading of the registers is not

delayed beyond the time for which they are valid.) When the UIP

bit is clear, the contents of these registers is guaranteed to be

stable for at least 244 us.

Software 1loads the TOY data registers only after setting the SET

bit (SET, CSR B bit 7). After loading the correct time and date

into the TOY data registers, software loads 20 (hex) into CSR A

and then clears SET by loading 6 into CSR B.

* Motorola is a registered trademark of Motorola, Inc.

Architecture

Table 4-9 Watch Chip Registers

Address Offset

Number Function From Base Address Comments

0 Seconds 00 Used on reads only

1 Second alarm 02 Not used

2 Minutes 04 Loaded and read

3 Minute alarm 06 Not used

4 Hours 08 Loaded and read

) Hour alarm OA Not used

6 Day of week ocC Not used

7 Date of month OE Loaded and read

8 Month 10 Loaded and read

9 Year 12 Loaded to produce
28th or 29th day Feb.

(not read by VMS)

10 CSR A 14 Loaded and read

11 CSR B 16 Loaded and read

12 CSR C 18 Not used

13 CSR D 1A Read-only

14 lst byte of RAM 1Cc

. Uses assigned by the

. ROM code

63 50th byte of RAM 7E

Table 4-10 Time-of-Year Data Register Addresses

Decimal Hexadecimal

Address Units Range Range

200B8000 Seconds 0--59 00--3B

200B8004 Minutes 0--59 00--3B

200B8008 Hours 0--23 00--17

200B8BOOE Day of month 1--31 01--1F

200B8010 Month 1--12 01--0C

200B8012 Year 0--99 00--63

Architecture

4.11,2.2 Control and Status Register A -- CSR A (Figure 4-21)
contains the UIP, the divider selection bits (DV <02:00>), and the

rate selection bits (RS <03:00>).

The UIP is a read-only bit that is set when there is an update in

progress within the chip. This bit must be read prior to reading

the time., If the UIP is a 1, an update is in progress and the time

registers are undefined. If the UIP is a 0, there are at least 244

us available prior to the next update cycle. If interrupts are

disabled, the time required to read the 5 time registers does not

exceed 40 pus.

CSR A is undefined after battery power has been lost. Whenever the

operating system software loads the TOY data registers, it must

also 1load 20 (hex) into CSR A. Setting DV <02:00> = 2 sets up the

timer for operation with the 32.768 kHz oscillator. Setting RS

<03:00> = 0 disables the unused interrupt and square wave outputs

from the chip.

CSR A is not affected by the chip going into or out of the normal

BBU mode, as 1long as the battery voltage remains within

specification.

4.11.2.3 Control and Status Register B ~-- CSR B (Figure 4-22)

contains four bits that enable functions not used in the KA630-AA
design, SET, and three bits that control timer format and

operation.

SET is a read-write bit used to enable and disable clock

operation. When written with a 0, the internal time updates occur

every second. When written with a 1, the updates are disabled so

that the program may load the TOY data registers. This bit must be
set prior to setting the time. If the chip is in the middle of an

update, setting this bit aborts the update.

7 6 5 4 3 2 1 0

uip | Ov2 | OV1 [Dvo | RS3 | RS2 | RS1 | RSO

0 () {0 |0 |0 o

i 15847

Figure 4-21 Control and Status Register A (CSR A)

7 6 5 4 3 2 1 0

SET PIE AIE | UIE |SQWE] DM |24/12| DSE

@lo|jofjo|m|n| o

R 15948

Figure 4-22 Control and Status Register B (CSR B)

Architecture

periodic 1Interrupt Enable (PIE), Alarm Interrupt Enable (AIE),

Update ended Interrupt Enable (UIE) and SQuare-Wave Enable (SQWE)

are not used.

pata Mode (DM) is a read-write bit that controls whether the time
and date registers use binary or Binary Coded Decimal (BCD)
formats. This bit is loaded with a 1 to select binary format,

24/12 1is a read-write bit that controls whether the hour register
operates in 24- or l2-hour mode. This bit is loaded with a 1 to

select 24-hour mode.

Daylight Saving Enable (DSE) is a read-write bit that enables or

disables special daylight saving time changes for the last Sunday
in April and the last Sunday in October. This bit is loaded with a
0 to disable this function.

CSR B is undefined after battery power has been lost. Whenever the

operating system software loads the TOY data registers, it must

restart the timer by loading 6 (hex) into CSR B, Loading 6 into
CSR B clears SET, and correctly loads the DM, 24/12 and DSE bits.

CSR B is not affected by the chip going into or out of the normal
BBU mode, as long as the battery voltage remains within
specification.

4.11.2.4 Control and Status Register C -- This register is not
used.

4.11.2.5 Control and Status Register D -- CSR D (Figure 4-23) is a

read-only register that contains the VRT. The remaining seven bits

always read as O0s.

The VRT is read by software, before reading the time registers, to

verify the validity of the time. If the battery voltage goes below

specification while in BBU mode, this bit is reset to 0 by the

hardware sensing circuitry during power-up, indicating that the

time registers are undefined. If the VRT is 0, the time registers

must be updated immediately. VRT is automatically set to 1 when

CSR D 1is read, indicating that the chip contains a valid time

setting.

If battery voltages are removed and then restored during

power-down, KA630-AA logic guarantees that VRT = 0.

7 6 5 4 3 2 1 0

T T T T T T

VRY READAS ZEROS

1 1 | 1 1

MR- 1554y

Figure 4-23 Control and Status Register D (CSR D)

Architecture

4.11.2.6 RAM Memory -- The 50 bytes of RAM memory are used by the

KA630-AA console program to store information required to restart
the machine following a halt. Halts transfer program control to

location 20040000 (hex). One of these RAM locations -- CPMBX, is

used for communication between the operating system and the
console program.

The CPMBX (Figure 4-24, Table 4-11) contains the console message
text language, "Restart in Progress"TM and "Bootstrap in Progress"
flags, and the processor halt action. The CPMBX is TOY register

14, Its address is 200B801C.

15 14 13 12 1 10 038 08 07 06 05 04 03 02 (] 00

) i 1 J L T T 1) 1 T
LNG RIP | BIP HLT

) ! !]] 1) L1] L ACT

MR-0286-0266

Figure 4-24 Console Program Mailbox (CPMBX)

4.11.3 Power-Up

Following a power-up, the KA630-AA console program reads the VRT

bit in CSR D. If this bit is set, the RAM and time data are valid.
If this bit is <c¢lear, RAM and time data are invalid, and the

console program disables the clock by setting CSR B SET.

When the operating system gains control of the machine, it checks

CSR B SET. If that bit is set, the operating system must regquest

the correct time of year from the operator.

4.11.3.1 valid RAM and Time -- If the VRT is set, RAM and time

data are valid. The operating system reads the UIP in CSR A

to assure that an update is not in progress. If this bit is read

as 1, the watch chip is doing an update and the data is invalid

until the update is complete. The maximum time for the update is

1.984 ms.

If the UIP 1is read as 0, the clock registers can be read by the

operating system. The operating system reformats the time into a

32-bit count and loads it into the memory location that contains

the time of day count during system operation.

4.11.3.2 Invalid RAM and Time -- If the VRT is clear, RAM and time

data are invalid. The operating system stops timer operation by

setting CSR B bit 7 (SET), and then requests the time of year from
the operator. After loading the correct time and date into the TOY

data registers, the operating system loads 10 (hex) into CSR A and
then clears SET by loading 6 into CSR B.

The operating system also reformats the time into a 32-bit count,

and loads it into the memory location that contains the time of

day count during system operation.

Architecture

Table 4-11 Console Program Mailbox Format

Bit(s) Mnemonic Name/Meaning

<07:04> LNG Console Message Text Language. This field

controls the output of message texts to the

console terminal. When set to 0, the console

program prompts the user to set the field on

power-up. Other settings are as follows.

Setting National Variant

1 German

2 English

3 Spanish

4 French

5 Italian

6 Danish

7 Dutch

8 Finnish

9 Norwegian

10 Swedish

11 Portuguese

03 RIP If set, a restart attempt is in progress. This

flag must be <cleared by the operating system
when the restart succeeds,

02 BIP If set, a bootstrap attempt is in progress.

This flag must be cleared by the operating

system when the bootstrap succeeds.

<01:00> HLT ACT Processor Halt Action. This field is used to

control the automatic restart/bootstrap

procedure. This mailbox allows operating system

software to override the BDR HLT ENB field.

Both bits are cleared on power-up and when the

console program exits. The bits may be set as

follows.

HLT ACT <01:00> Action

00 Use HLT ENB (BDR <14>) to

determine action.

01 Restart, if that fails, halt.

10 Reboot, if that fails, halt.

11 Halt.

Architecture

4.12 INTERVAL TIMER

The KA630-AA interval timer is contained within the MicroVAX CPU

chip. When it 1is enabled, the interval timer posts an interrupt

request every 10 ms.

4.12.1 Interval Clock Control and Status Register (ICCS)

The ICCS (Figure 4-25) is accessed as IPR 24. ICCS implementation

is unique to the MicroVAX CPU chip and consists of a minimal

interval timer control.

ICCS bit 6 (IE) is a read-write bit that enables and disables the

interval timer interrupts. When this bit is set, an interval timer

interrupt is requested every 10 ms. When ICCS bit 6 is clear,

interval timer interrupts are disabled. ICCS bit 6 is cleared by

power-up and by the negation of DC OK.

4.12.2 Interval Timer Operation

When ICCS bit 6 is set, the interval timer posts an interrupt
request every 10 ms. The interval timer is the highest priority

device at IPL 16 (hex). The interrupt vector for the interval

timer is CO (hex).

3

1 765 0

L L L A A I A I O L TTT 1T

UNUSED, RETURNSO 0000O0O0

§ S T N T A YO Y O T T I | L11 11

INTERRUPT ENABLE (IE)

MR-15950

Figure 4-25 Interval Clock Control and Status Register (ICCS)

4.13 CONSOLE SLU

4.13.1 Console Functionality

The console serial 1line provides the KA630-AA processor with a
full-duplex serial interface for the console terminal. It provides

an RS-423-A EIA interface that is also RS-232-C compatible.

The serial data format of the console SLU contains 8-bit data, no

parity, and one stop bit. The interrupt vectors of the console SLU

are F8 (hex) for the receiver and FC (hex) for the transmitter.

Its IPL is described in Section 4.4.1.

Architecture

The receive and transmit baud rates are always identical and are

determined by the Baud Rate Select signals (BRS <02:00> L), which

are received from an external 8-position switch through a

connector mounted at the top of the module.

The baud rate is selected as follows.

BRSO02 L BRSOl L BRS00 L Baud Rate

300

600

1,200

2,400

4,800

9,600

19,200

38,400[
l

o
l

o
l
 s
~
 -

e
=

[
l

=
~J

=
-
o
l

e
3

-]

sa
ll
t=

 -
1
o
=

 -

i
~

I
qa

it
e

o}

4.13.2 Console Registers

There are four registers (Table 4-12) associated with the console

SLU. They are accessed through IPRs 32 to 35 (decimal).

Table 4-12 SLU Console Registers

Number Mnemonic Register Name

32 RXCS Console Receiver Control/Status

33 RXDB Console Receiver Data Buffer

34 TXCS Console Transmit Control/Status
35 TXDB Console Transmit Data Buffer

4.13.2.1 Console Receiver CSR (IPR 32) -- The contents of the

console receiver CSR are shown in Figure 4-26 and Table 4-13.

4.13.2.2 Console Receiver Data Buffer (IPR 33) -- The contents of

the console receiver data buffer are shown in Figure 4-27 and
Table 4-14.

NOTE

Error conditions remain present until

the next character is received, at which
point the error bits are updated. The

error bits are cleared by power-up and

by the negation of DC OK.

Architecture

3 111

1 210 8765 0

rTr1rrTrrrryrrr T T T TTrrryy i riT
UNUSED. RETURNSO 000 00000

L bt bbbt 11 L1t

RCV ACT

RX DONE

RX IE

15981

Figure 4-26 Console Receiver CSR

Table 4-13 Console Receiver CSR Format

Bit (s) Mnemonic Name/Meaning

<31:12>

11 RCV ACT

<10:08>

07 RX DONE

06 RX IE

<05:00>

Unused. Read as Os.

Receiver Active. This read-only bit is set at

the center of the start bit of the serial

input data, and 1is cleared at the expected

center (per DLART timing) of the stop bit at

the end of the serial data. RX DONE is set

one bit time after RCV ACT clears.

Unused. Read as Os.

Receiver Done. This read-only bit is set when

an entire character has been received and is

ready to be read from the RBUF register. This

bit 1is automatically cleared when RBUF is

read. It is also cleared by power-up, by the

negation of DC OK, and by writes to the BIR.

Receiver 1Interrupt Enable. This read/write

bit is cleared by power-up, by the negation

of DC OK, and by writes to the BIR., If RX

DONE and RX 1IE are both set, a program

interrupt is requested.

Unused. Read as O0s.

Architecture

-

rTrTrrTrryrrrirird LI rvrrTirld

UNUSED. RETURNSO ol loo o

§ 1 T S O W I | 1l 10 1111

ERR

OVR ERR ————

FRM ERR

RCV BRK

RECEIVED DATA BITS

MR.15952

Figure 4-27 Console Receiver Data Buffer

Table 4-14 Console Receiver Data Buffer Format

Bit(s) Mnemonic Name/Meaning

<31:16>

15 ERR

14 OVR ERR

13 FRM ERR

12

11 RCV BRK

<10:08>

<07:00>

Unused. Always read as 0.

Error. This read-only bit is set if RBUF bit

14 or 13 1is set. ERR is clear if these two

bits are <clear. This bit cannot generate a

program interrupt.

Overrun Error. This read-only bit is set if a

previously received character was not read

before being overwritten by the present

character.,

Framing Error. This read-only bit is set if

the present character has no valid stop bit.

Unused. This bit always reads as 0.

Received Break. This read-only bit is set at

the end of a received character for which the

serial data input remained in the space

condition for all 11 bit times. RCV BRK then

remains set until the serial data input

returns to the mark condition. RCV BRK is

also cleared by power-up and by the negation

of DC OK.

Unused. These bits always read as 0.

Received Data Bits. These read-only bits

contain the last received character.

Architecture

4.13.2.3 Console Transmitter CSR (IPR 34) -- The contents of the
console transmitter CSR are shown in Figure 4-28 and Table 4-15.

3

1 8 765 3210
TTTTrTTrTryryr T oeTrT T T T e TrTT LI

| N T 1 S T O U T T T T Y O B | 11

UNUSED. RETURNSO 000 0

TX RDY

TX IE

MAINT

XMIT BRK

MR.15953

Figure 4-28 Console Transmitter CSR

Table 4-15 Console Transmitter CSR Format

Bit(s) Mnemonic Name/Meaning

<31:08>

07 TX RDY

06 TX IE

<05:03>

02 MAINT

01

00 XMIT BRK

Unused. Read as Os.

Transmitter Ready. This read-only bit |is

clear when XBUF is loaded and sets when XBUF

can receive another character. XMT RDY is set

by power-up, by the negation of DC OK, and by

writes to the BIR.

Transmitter Interrupt Enable. This read/write

bit is cleared by power-up, by the negation

of DC OK, and by writes to the BIR. If both

TX RDY and TX IE are set, a program interrupt

is requested.

Unused. Read as Os.

Maintenance. This read/write bit is used to

facilitate a maintenance self-test. When

MAINT 1is set, the external serial input is

disconnected and the serial output is used as

the serial input. This bit is cleared by

power-up, by the negation of DC OK, and by

writes to the BIR.

Unused. Read as 0.

Transmit Break. When this read/write bit is

set, the serial output is forced to the space

condition. XMIT BRK is cleared by power-up,

by the negation of DC OK, and by writes to

the BIR.

Architecture

4.13.2.4 Console Transmitter Data Buffer (IPR 35) -- XBUF bits
¢31:08> are not used. XBUF bits <07:00> are write-only bits used

to load the transmitted character.

4.13.3 Break Response

The KA630-AA console SLU may be configured either to perform a

halt operation or to have no response when a break condition is

received. A halt operation causes the processor to transfer

program control to ROM location 20040000 (hex).

The halt on break option 1is enabled if the connector HLT ENB

signal is asserted.

The DLART recognizes a break condition at the end of a received

character for which the serial data input remained in the space

condition for all 11 bit times. The break recognition line remains

asserted until software reads the RBUF.

4.14 022-BUS CONTROL

4.14.1 Bus Initialize Register (IPR 55)

The BIR is accessed as IPR 55 (decimal). On an arbiter KA630-AA,

writing to this register asserts the Q22-Bus BINIT signal for

10 ps (+ 20%) and clears all on-board register bits that are

specified to clear on writes to the BIR. On an auxiliary KA630-AA,

writing to this register does not assert the Q22-Bus BINIT signal,

but it does clear all on-board register bits specified to clear on

writes to the BIR. For either configuration (arbiter or

auxiliary), this register always reads as 0.

NOTE

An auxiliary KA630-AA module receives

BINIT from the Q22-Bus and uses that

signal to initialize the MicrovVAX CPU

chip, and to clear all internal register

bits that are specified to clear on the
negation of DC OK. Stated another way,

the assertion of the (22-Bus BINIT

signal has the same effect as the

negation of DC OK on auxiliary modules.

4.14.2 Multilevel Interrupts
When the KA630-AA is configured as the arbiter CPU, it responds to

interrupt requests BIRQ7 through 4 with the standard Q22-Bus

interrupt acknowledge protocol (DIN followed by IAK). The console

SLU and the interprocessor doorbell can request interrupts at

BIRQ4 and have priority over all Q22-Bus BIRQ4 interrupt requests.

After responding to any interrupt request BIRQ7 through 4, the

KA630-AA sets the processor priority to IPL 17. All BIRQ7 through

4 1interrupt requests are disabled unless software lowers the

processor priority.

Architecture

When the KA630-AA 1is configured as an auxiliary, it does not
respond to interrupt requests from the Q22-Bus. However, it does
respond to the BIRQ4 interrupt requests from its console SLU and
interprocessor doorbell.

Interrupt requests from the KA630-AA interval timer are handled

internally by the MicroVAX CPU chip. Interval timer interrupt
requests have a higher priority than BIRQ6 interrupt requests.
After responding to an interval timer interrupt request, the
MicrovAX CPU chip sets the processor priority to IPL 16. Thus,
BIRQ7 interrupt requests remain enabled.

4.14.3 Interprocessor Communications Facility

The KA630-AA interprocessor communication facility allows other
processors on the system to request program interrupts from the
KA630-AA without wusing the Q22-Bus interrupt request lines. It

also controls external access to local memory by means of the

Q22-Bus map, and allows other processors to halt an auxiliary

CPU.

4.14.3.1 Interprocessor Communication Register -- The IPCR (Figure

4-29, Table 4-16) resides in the Q22-Bus I/0 page address space

and can be accessed by any device that can become (Q22-Bus master,

including the KA630-AA 1itself. The IPCR 1is byte accessible,

meaning that a write-byte instruction can write to either the low

or high byte without affecting the other byte.

The 1/0 page address of the IPCR varies with the four

configurations of arbiter and auxiliary KA630-AA, as follows.

Hex 32-Bit Octal 22-Bit

Address Address Register

20001F40 17777500 IPCR (Arbiter CPU)

20001F42 17777502 IPCR (Auxiliary 1)

20001F44 17777504 IPCR (Auxiliary 2)

20001F46 17777506 IPCR (Auxiliary 3)

1 1 1 1 1 1

5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

1 1 | IR T 1 Ll T T

0 0 0 0 0 0 0 0 0 0 0

1 1 1 | — 1 1 1 l

DMA QPEAl
AUX HLT

DBIIE

LM EAE

DBI RQ

Figure 4-29 Interprocessor Communication Register (IPCR)

Architecture

Table 4-16 Interprocessor Communication Register Format

Bit(s) Mnemonic Name/Meaning

15 DMA QPE

<14:09>

08 AUX HLT

07

06 DBI IE

05 LM EAE

<04:01>

00 DBI RQ

DMA (022-Bus Address Space Parity Error. This

read-only bit is set if MSER bit 4 (DMA QPE)

is set., The DMA OQPE bit indicates that a

parity error occurred when an external device

(or CPU) was accessing the KA630-AA local

memory.

Unused. Read as O0s.

Auxiliary Halt. On an auxiliary KA630-AA, AUX

HLT is a read/write bit. When set, typically

by the arbiter CPU, it causes the on-board

CPU to transfer program control to the halt

mode ROM code. On an arbiter KA630-AA, AUX

HLT 1is a read-only bit that always reads as

0. It has no effect on arbiter CPU operation.

Unused. Read as 0.

Doorbell Interrupt Enable. This bit, when

set, enables interprocessor doorbell

interrupt requests through IPCR bit 0. When

the on-board CPU is Q22-Bus master, DBI IE is

a read/write bit. When an external device (or

cpU) is bus master, DBI IE is a read-only

bit. DBI IE 1is cleared by power-up, by the

negation of DC OK, and by writes to the BIR.

Local Memory External Access Enable. This

bit, when set, enables external access to

local memory (by means of the Q22-Bus map).

when the on-board CPU is Q022-Bus master, LM

EAE is a read/write bit. When an external

device (or CPU) 1is bus master, LM EAE is a

read-only bit. LM EAE is s cleared by

power-up and by the negation of DC OK.

Unused. Read as Os.

Doorbell Interrupt Request. If TIPCR bit 6

(DBI IE) is set, writing a 1 to DBI RQ sets

DBI RQ, thus requesting a doorbell interrupt.

I1f IPCR bit 6 is clear, writing a 1 to DBI RQ

has no effect. Writing a 0 to DBI RQ has no

effect. DBI RQ is cleared when the CPU grants

the doorbell interrupt request. DBI RQ is

held clear whenever DBI IE is clear.

Architecture

4.14.3.2 Interprocessor Doorbell Interrupts -- If the IPCR DBI IE
bit is set, any 0Q22-Bus master can request an interprocessor

doorbell interrupt by writing a 1 into IPCR bit 0.

The

4.15

4.15.1

When

interprocessor doorbell interrupt vector is 204 (hex). Its
interrupt priority is described in Section 4.4.1.

NOTE

Following an interprocessor doorbell
interrupt, the KA630-AA sets the IPL =
14. The IPL 1is set = 17 for external
Q22-Bus BIRQ4 interrupts.

MULTIPROCESSOR CONSIDERATIONS

Auxiliary/Arbiter Differences

KA630-AA is configured as an auxiliary, its operation
differs from operation as an arbiter in several important areas:

1. The arbiter KA630-AA arbitrates bus mastership per the

Q22-Bus DMA protocol. The arbitration logic is disabled
on an auxiliary KA630-AA.

Both the arbiter and auxiliary KA630-AA request bus

mastership using the (Q22-Bus DMA request protocol, as

follows.

a. They both assert BDMR on the Q22-Bus.

b. The arbiter KA630-AA receives DMGI from its

arbitration logic. The auxiliary receives DMGI from

its Q22-Bus BDMGI pin.

€. Only the auxiliary KA630-AA actually asserts BSACK on

the Q022-Bus.

The arbiter XA630-AA asserts the (022-Bus BINIT signal

when DC OK is negated and when its CPU software writes to

its BIR. The auxiliary KA630-AA never asserts Q22-Bus

BINIT, but receives BINIT and uses it to initialize the

MicrovAX CPU chip and to clear all internal registers

that are specified to clear on the negation of DC OK.

The physical address of the IPCR is different for each of

the four KA630-AA arbiter/auxiliary configurations.

An auxiliary KA630-AA can be halted by setting bit 8 (Aqx

HLT) of its IPCR. On an arbiter KA630-AA, this feature is

disabled and AUX HLT is a read-only bit that always reads

as 0.

Architecture

6. The CPU halts are controlled by the external connector

HLT ENB input. However, the external halts that are

affected differ somewhat for the arbiter and auxiliary

KA630-AA modules.

7. Each arbiter or auxiliary KA630-AA module can field

interrupt requests from its interval timer, from its

console device, and from its interprocessor doorbell,

only the arbiter KA630-AA can field interrupts from

Q22-Bus interrupt request lines BIRQ7 through 4.

8. The arbiter asserts BIAKO to the Q22-Bus when it responds

to a 022-Bus interrupt request, The auxiliary asserts

BIAKO to the (022-Bus when it receives the assertion of

BIAKI from the Q22-Bus.

9. Although both arbiter and auxiliary KA630-AA modules

contain the same TOY clock and battery backup circuitry,

it is assumed that the auxiliary will be configured

without batteries and that its clock will never actually

be enabled.

4.15.2 Multiprocessor Features

The following features have been added to the KA630-AA to allow

its use in multiprocessor systems.

° A 2-bit code, received at the external connector, allows

the KA630-AA module to be configured as the arbiter or as

one of three auxiliaries.

[The IPCR provides a mechanism for interprocessor

interrupts, for enabling and disabling external access to

local memory, and for flagging local memory parity errors

caused by external references. On auxiliary KA630-AA

modules, it also provides a mechanism for halting the

CPU.

4.15.3 KA630-AA Based Multiprocessor Systems

The KA630-AA multiprocessor features were designed for use in a
message passing environment similar to the System Communications

Architecture (SCA) that is currently layered on the CI port

architecture.

Each KA630-AA processor in a system fetches instructions and data

primarily from 1its own 1local memory. The various processors

communicate by way of message queues stored in local memory that

has been mapped to the Q22-Bus address space. Typically, the

processors use the interprocessor doorbell feature to interrupt

each other after placing a message in an empty queue.

Architecture

In most systems, all Q22-Bus devices would be under the direct
control of the arbiter processor, which fields all interrupts.

when a disk controller is under the direct control of the arbiter

CPU, the arbiter must set up the transfer of program and data

information between the corresponding disks and the auxiliary

processors. The auxiliary processor is responsible for setting up

its own Q22-Bus map to point to the local memory space that is a

target of that transfer.

Following a power-up or system restart, the auxiliary CPU runs its

self-test diagnostics, clears the valid bits in its Q22-Bus map

mapping registers, enters halt mode ROM space, and then sets its

own IPCR bits 8 (AUX HLT) and <06:05> (DBI IE and LM EAE). The

arbiter CPU waits for the auxiliary's LM EAE bit to set and then

boots the auxiliary CPU by loading the appropriate programs and

data into the arbiter's own local memory. These programs and data

are mapped to an assigned Q22-Bus address space through the

022-Bus map. The arbiter then clears the auxiliary's AUX HLT bit.

The auxiliary CPU, still in halt mode ROM space, waits for its AUX

HLT bit to clear and then begins auxiliary execution at a

specified location in the Q22-Bus address space (referencing local

memory in the arbiter).

4.15.4 PDP-11 Based Multiprocessor Systems

Up to three auxiliary KA630-AA modules can be added to a KDF11-B

or KDJ11-B based Q22-Bus system. Operation of a PDP-11 based

system is similar to that of a KA630-AA based system. However, the

following issues must be addressed.

° Wwhen a PDP-11 processor is arbiter, its "local” memory is

actually Q22-Bus memory. This appears to present no

special problems. A portion of the Q22-Bus memory address

space must be reserved for mapping the auxiliary KA630-AA

modules' local memory.

° Since the PDP-11 processor does not contain an IPCR, an

external device must be added that allows the auxiliary

KA630-AA modules to interrupt the processor. Since the

KA630-AA console program does not interrupt the arbiter

cpU, the auxiliary KA630-AA modules do not require
modification if this external device is not compatible

with the KA630-AA IPCR.

CHAPTER 5

DIAGNOSTICS

5.1 INTRODUCTION

The diagnostics test the basic functionality of an arbiter
KA630-AA. The KA630-AA diagnostics operate in the following two

modes.

° Power-up mode

° Console I/0 mode

In power-up mode, the diagnostics, in conjunction with the boot

program, test the KA630-AA's ability to load and run a typical
operating system or diagnostic supervisor. Seven diagnostic tests

are performed. They cover CPU functionality, system pathing and

memory. The boot program tests the Q22-Bus interface.

In console I/0 mode, each of the seven tests can be selected using
the Test command. Before each test is executed, its test number is

output by the console program to the LEDs on the KA630-AA and to

the console terminal. This provides an external indication of

testing progress, so that a loss of control may be traced to the

failing test.

The diagnostics are 1located in the console program ROM on the

KA630-AA. They do not test all the functional areas of the
KA630-AA. The areas not tested are as follows.

TOY clock

Bus reset register (IPR 55)

Console saved ISP (IPR 41)

Console saved PC (IPR 42)

Console saved ISL (IPR 43)

ASTLVL register (IPR 19)

DMA related circuitry

Category 3 registers

5.2 FUNCTIONAL DESCRIPTION
The KA630-AA diagnostics include seven tests that are run in a

sequence designed to localize failures. The tests run from 8 to 3

;tist 3 covering two functional areas), and are described in Table

Diagnostics

Table 5-1 Diagnostic Tests

Test Coverage Error Type*

8 IPCR (no interrupts) F

7 Memory data F, H

6 Memory address F

5 Q22-Bus mapping registers (no interrupts), F

MSER and CEAR (no wrong parity)

4 CPU chip c, F

3 Interrupts and traps c, F

TOY

MSER

CEAR

Q22-Bus

Interval timer

Console

* C (Catastrophic) -- The state of KA630-AA is unpredictable.

F (Fatal) -- KA630-AA cannot operate, but console commands can

be used.

H (Hard) -- Memory error.

5.2.1 IPCR Test

This test reads the IPCR. No interrupts are generated. No traps

should occur. An IPCR test checks the interprocessor communication

register and interprocessor doorbell interrupt.

5.2.2 Memory Data Test

This test checks all the memory for shorted and stuck conditions,

and builds a memory bitmap. This bitmap does not include the VMB

map or the console program scratch pages. The memory data test is

executed with PAR ENB set. Therefore, MSER and CEAR are checked

for 0.

A fatal error exists when 64 Kbytes of contiguous memory are not

found within the first 4 Mbytes of local memory.

5.2.3 Memory Address Test

This test checks every cell of the memory to be sure each address

is unique.

Diagnostics

5.2.4 022-Bus Mapping Registers Test
This test checks Q22-Bus mapping registers for shorted and stuck

bits.

5.2.5 MicroVAX CPU Chip Test
This test <checks data paths between the console program ROM and

MicrovaXx CPU chip. Since it is a basic path for the diagnostics,
the test assumes that only the MicroVAX CPU chip can malfunction.

The following checks are performed:

1. Checks general registers and bits <07:04> of PSL for

shorted and stuck bits.

2. Executes a limited set of instructions. This set includes

all instructions in all modes that are necessary to load

software, plus all instructions that are used in the ROM

diagnostic, This forces a functional check of bits

<03:00> of PSL as well.

3. Checks Process Control Block Base (PCBB); kernel,

executive, supervisor, and user stack pointers; and TBIS

for shorted and stuck bits.

4. Checks TBIA for a 0.

5. Checks SBR, POBR, and PCBB bits <01:00> for a 0, <29:02>

for shorted and stuck bits, and <31:30> for a proper

state,

6. Checks SLR, POLR, and PlLR bits <31:22> for a 0, and

€21:00> for shorted and stuck bits.

7. Checks MAPEN bit 0 for 0.

8. Checks P1BR bits <01:00> for 0s, and <31:02> for shorted

and stuck bits.

9. Checks SCBB bits 31, 30, and <08:00> for 0s, and <29:09>

for shorted and stuck bits.

10. Checks the MMU,

11. Checks the FPU.

Diagnostics

5.2.6 Software Interrupts and Traps

This group consists of data path tests between the ROM and
MicroVAX CPU chip. It checks exceptions and software interrupts.

The following algorithm is used:

1. Ensure that SISR is a 0.

2. Walk through SIRR bits <03:00> and check SISR bits
<16:01>.

3. Decrease IPL to 10 (hex) using bits <04:00>, and compare
to PSL bits <20:16>.

4, Drop IPL to 1 (hex) and start responding to the software
interrupts.

5. Increase IPL to lE (hex).

6. Check traps by violating limits of SLR, POLR and P1LR.

7. Drop mode to executive, check PSL bits <25:22> and check
protection trap.

8. Drop mode to supervisor, check PSL bits <25:22> and check

protection trap.

9. Drop mode to wuser, check PSL bits <25:22> and check

protection trap.

5.2.7 System Interrupts and Data Paths

These tests verify system interrupts as well as several processor
board data paths. They check the TOY register, interval timer,
CEAR and MSER.

The following tests are performed:

1. Check BDR bits <13:11> and <07:04> for 0, bit 15 for 1

and bits <03:00> for proper code.

2. Check interval timer.

3. Map two pages of good memory into Q22-Bus map registers.

4, Check CEAR for 0.

S. Check MSER for 0, and set PAR ENB bit 0.

6. Write data into good pages of memory. Read it locally. No

trap should occur.

Diagnostics

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

5.2.7.1

Set WRW bit 1. Write data into good pages.

Read data locally. Since wrong parity was used, the test

traps through vector 4 of the SCB.

Check bits <09:03> of MSER for proper code.

Check bits <14:00> of CEAR for proper error address.

Clear bits <01:00> of MSER.

Write data to memory through Q22-Bus.

Read data from memory locally. No trap should occur.

Read data from memory through Q22-Bus.

Set MSER bits <01:00>, WRW and PAR ENB. Write data

through Q22-Bus.

Read data from memory locally. Since wrong parity was

used, the test traps through vector 4 of the SCB.

Check bits <09:03> of MSER for proper code.

Check bits <14:00> of CEAR for proper error address.

Check bit 15 of IPCR.

Write data to memory through Q22-Bus.

Read data from memory through Q22-Bus. Since wrong parity

was used, the test traps through vector 4 of the SCB.

Check bits <09:03> of MSER for proper code.

Check bits <14:00> of CEAR for proper error address.

Check bit 15 of IPCR.

Write data into nonexistent I/0 register and trap.

Console Test —- The diagnostic sets maintenance bit 2 of
thg console transmitter CSR, and outputs four null characters.

This test checks the following.

Receiver and transmitter interrupts

Receiver Done and Active bits

Receiver buffer Error and Overrun Error flags

Diagnostics

5.2.8 Console Program/ROM Diagnostic Interface

In either power-up or console 1/0 mode, the console program
invokes one test at a time. Each test number is displayed on the
LEDs and the console terminal. No carriage returns are output as
part of the code display, so if all tests complete normally, the
string 8...7...6...5...4...3... 1is seen on the console terminal.
If the diagnostic detects a catastrophic or fatal error, it passes
the status and error number to the console program immediately,
and no further testing is done. If hard (memory) errors are
detected, the diagnostic passes the status and number of bad pages
to the console program only at the end of the test.

At the end of the test, the diagnostic passes status to the
console program. This way Repeat Test (an optional specifier) can
be easily implemented. Before each test, the diagnostic sets the
"Test in Progress" safeguard flag.

NOTE

Test commands may include a read/write

test of memory that leaves memory

contents in an unpredictable state. The
RPB may be 1lost. In this case, the

system must be rebooted to restore the

RPB.

5.3 ERROR OUTPUT

If a diagnostic detects a catastrophic or fatal error, it passes
the status and error number to the console program, and no further

testing is done. Neither text nor error messages are printed by

the diagnostic program. All text and error messages are printed by

the console in the appropriate language.

5.4 KA630-AA LED DISPLAY

There are four red LEDs on the KA630-AA. These four LEDs,

interpreted as a 4-bit hexadecimal digit, are described in Table

5-2. All LED codes are displayed during power-up. A problem is

indicated only if the CPU stops at a particular LED code.

An LED is illuminated if its control bit in the BDR is 1, and is

not illuminated if its control bit is 0.

It 1is possible for privileged code to output to the LEDs when the

processor is in program mode. Because this may cause confusion in

the interpretation of the LEDs, this use of the LEDs is

discouraged.

When executing the power-up sequence, the codes 9 through 0 are

also output to the console terminal.

Diagnostics

Table 5-2 KA630-AA LED Interpretation

Code Activity Exit Criteria

F Electrical power-up. MicroVAX starts execution
from console program ROM.

E Wait for PWR OK. BDR bit 15 set.

D Perform ROM checksum and TOY Test success,

RAM tests,*

o Initialize console program Console memory and bitmap

memory. initialized, registers

saved.

B Run IPCR tests.* Test success.

A Test for and check VCBO1l VCB01l operational or not

video console display, if present.

present.*

9 Perform console port tests and Console terminal type

terminal identification.* determined.

8 Query console language,* Exits power-up

then enter console command automatically, otherwise

mode. exits on console Continue,

Start, Boot or Test

commands.

7 Run memory pattern tests.+ At least 64 Kbytes of

contiguous good memory

found.

6 Run memory address tests.* All address tests passed.

5 Run I/O0 map tests.* Test success.

4 Run CPU tests.* Test success.

3 Run interrupt tests.* Test success.

2 Search for bootstrap device.# Valid bootstrap device

located.

1 Load bootstrap.# Bootstrap successfully

loaded.

0 Program mode. Not applicable.

* Performed only on power-up entry into console program.

+ Performed on power-up entry and on operator-requested bootstrap.

Performed only during bootstrap.

APPENDIX A

022-BUS SPECIFICATION

A.l GENERAL DESCRIPTION

The Q22-Bus, also known as the extended LSI-11 Bus, is the low-end

member of Digital's bus family. All of Digital's microcomputers,

such as the MicrovAX I, Microvax II, and MicroPDP-11, use the

Q22-Bus.

The Q22-Bus consists of 42 bidirectional and 2 unidirectional

signal 1lines. These form the lines along which the processor,

memory, and I/0 devices communicate with each other.

Addresses, data, and control information are sent along these

signal 1lines, some of which contain time-multiplexed information.

The lines are divided as follows.

° Sixteen multiplexed data/address lines —- BDAL<15:00>

) Two multiplexed address/parity lines -- BDAL<17:16>

[Four extended address lines —-- BDAL<21:18>

[Six data transfer «control 1lines -- BBS7, BDIN, BDOUT,

BRPLY, BSYNC, BWTBT

) Six system control 1lines -- BHALT, BREF, BEVNT, BINIT,

BDCOK, BPOK

[Ten interrupt control and direct memory access control

lines -- BIAKO, BIAKI, BIRQ4, BIRQ5, BIRQ6, BIRQ7, BDMGO,

BDMR, BSACK, BDMGI

In addition, a number of power, ground, and space lines are

defined for the bus. Refer to Table A-1 for a detailed description
of these lines.

The discussion in this Appendix applies to the general 22-bit

physical address capability. All modules used with the KA630-A CPU

module must use 22-bit addressing.

Most Q22-Bus signals are bidirectional and use terminations for a

negated (high) signal 1level. Devices connect to these lines via

high-impedance bus receivers and open collector drivers. The
asserted state is produced when a bus driver asserts the line low.

Q22-Bus Specification

Although bidirectional 1lines are electrically bidirectional (any

point along the line can be driven or received), certain lines are

functionally unidirectional. These lines communicate to or from a

bus master (or signal source), but not both. Interrupt acknowledge

(BIAK) and direct memory access grant (BDMG) signals are

physically unidirectional in a daisy-chain fashion. These signals

originate at the processor output signal pins. Each is received on

device input pins (BIAKI or BDMGI) and is conditionally

retransmitted via device output pins (BIAKO or BDMGO). These

signals are received from higher-priority devices and are

retransmitted to lower-priority devices along the bus,

establishing the position-dependent priority scheme.

A.l.1 Master/Slave Relationship

Communication between devices on the bus is asynchronous. A

master/slave relationship exists throughout each bus transaction.

Oonly one device has control of the bus at any one time. This

controlling device 1is termed the bus master, or arbiter. The

master device controls the bus when communicating with another

device on the bus, termed the slave.

The bus master (typically the processor or a DMA device) initiates

a bus transaction. The slave device responds by acknowledging the

transaction in progress and by receiving data from, or

transmitting data to, the bus master. Q22-Bus control signals

transmitted or received by the bus master or bus slave device must

complete the sequence according to bus protocol.

The processor controls bus arbitration, that is, which device

becomes bus master at any given time. A typical example of this

relationship is a disk drive, as master, transferring data to

memory as slave. Communication on the Q22-Bus is interlocked so

that, for certain control signals issued by the master device,

there must be a response from the slave in order to complete the

transfer. It is the master/slave signal protocol that makes the

022-Bus asynchronous. The asynchronous operation precludes the

need for synchronizing with, and waiting for, clock pulses.

Since bus cycle completion by the bus master requires response

from the slave device, each bus master must include a timeout

error circuit that aborts the bus cycle if the slave does not

respond to the bus transaction within 10 ps. The actual time

before a timeout error occurs must be longer than the reply time

of the slowest peripheral or memory device on the bus.

A.2 022-BUS SIGNAL ASSIGNMENTS

Table A-1 1lists the signal assignments for the data/address,

control, power/ground, and spare functions of the Q22-Bus.

Q22-Bus Specification

Table A-1 Signal Assignments

Name Pin Assignment

DATA AND ADDRESS

BDALO AU2

BDAL1 AvV2

BDAL2 BE2

BDAL3 BF2

BDAL4 BH2

BDALS BJ2

BDAL6 BK2

BDAL7 BL2

BDALS BM2

BDALY BN2

BDALI10 BpP2

BDAL11 BR2

BDAL12 BS2

BDAL13 BT2

BDAL14 BU2

BDAL15 BV2

BDAL16 ACl

BDAL17 AD1

BDAL18 BCl

BDAL19 BD1

BDAL20 BE1l

BDAL21 BF1

CONTROL

Data Control

BDOUT AE2

BRPLY AF2

BDIN AH2

BSYNC AJ2

BWTBT AK?2

BBS7 AP2

Interrupt Control

BIRQ7 BP1

BIRQ6 AB1l

BIRQS AAl

BIRQ4 AL2

BIAKO AN2

BIAKI AM2

DMA Control

BDMR AN1

BSACK BN1

BDMGO AS2

BMDGI AR2

Q22-Bus Specification

Table A-1 Signal Assignments (Cont)

Name Pin Assignment

System Control

BHALT APl

BREF AR1

BEVNT BR1

BINIT AT2

BDCOK BAl

BPOK BBl

POWER AND GROUND

+5B (battery) or AS1

+12B (battery)

+12B BS1

+5B AV1

+5 AA2

+5 BA2

+5 BV1

+12 AD2

+12 BD2

+12 AB2

=12 AB2

-12 BB2

GND AC2

GND AJl

GND AM1

GND ATl

GND BC2

GND BJ1

GND BM1

GND BTl

SPARES

SsSparel AE]
SSpare3 AH1

SSpare8 BH1

SSpare2 AF1l

MSpareA AK1l

MSpareB ALl

MSpareB BK1

MSpareB BL1

PSparel AUl

ASpare2 BU1

Q22-Bus Specification

A.3 DATA TRANSFER BUS CYCLES

Data transfer bus cycles are listed and defined in Table A-2.

These bus cycles, executed by bus master devices, transfer 32-bit

words or 8-bit bytes to or from slave devices. In block mode,

multiple words may be transferred to sequential word addresses,

starting from a single bus address. The bus signals listed in
Table A-3 are wused in the data transfer operations described in

Table A-2.

Table A-2 Data Transfer Operations

Bus Cycle Function (with Respect

Mnemonic Description to the Bus Master)

DATI Data word input Read

DATO Data word output Write

DATOB Data byte output Write-byte

DATIO Data word input/output Read-modify-write

DATIOB Data word input/byte output Read-modify-write byte

DATBI Data block input Read block

DATBO Data block output Write block

Table A-3 Bus Signals for Data Transfers

Mnemonic Description Function

BDAL<21:00> L 22 Data/address lines BDALK15:00> L are used for

word and byte transfers.

BDALK17:16> L are used for

extended addressing,

memory parity error (16),

and memory parity error

enable (17), functions.

BDAL<21:18> L are used for

extended addressing beyond

256 Kbytes.

BSYNC L Bus cycle control Indicates bus transaction

in progress.

BDIN L Data input indicator Strobe signals.

BDOUT L Data output indicator Strobe signals.

BRPLY L Slave's acknowledge of Strobe signals.

bus cycle

BWTBT L Write/byte control Control signals.

BBS? I1/0 device select Indicates address 1is in

the I/0 page.

Q22-Bus Specification

Data transfer bus cycles can be reduced to five basic types: DATI,

DATO(B), DATIO(B), DATBI, and DATBO. These transactions occur

between the bus master and one slave device selected during the

addressing portion of the bus cycle.

A.3.1 Bus Cycle Protocol

Before initiating a bus cycle, the previous bus transaction must

have been completed (BSYNC L negated) and the device must become

bus master. The bus cycle can be divided into two parts: an

addressing portion, and a data transfer portion. During the

addressing portion, the bus master outputs the address for the

desired slave device, memory location, or device register. The

selected slave device responds by latching the address bits and

holding this condition for the duration of the bus cycle until

BSYNC L becomes negated. During the data transfer portion, the

actual data transfer occurs.

A.3.2 Device Addressing

The device addressing portion of a data transfer bus cycle

comprises an address setup and deskew time, and an address hold

and deskew time. During the address setup and deskew time, the bus

master does the following.

) Asserts BDAL<21:00> L with the desired slave device

address bits

° Asserts BBS7 L if a device 1in the 1/0 page is being

addressed

° Asserts BWTBT L if the cycle is a DATO(B) or DATBO bus

cycle

During this time, the address, BBS7 L, and BWTBT L signals are

asserted at the slave bus receiver for at least 75 ns before BSYNC

goes active. Devices in the I/0 page ignore the 9 high-order

address bits BDAL<21:13>, and instead, decode BBS7 L along with

the 13 low-order address bits. An active BWTBT L signal during

address setup time indicates that a DATO(B) or DATBO operation

follows, while an inactive BWTBT L indicates a DATI, DATBI, or

DATIO(B) operation.

The address hold and deskew time begins after BSYNC L is asserted.

The slave device uses the active BSYNC L bus received output to

clock BDAL address bits, BBS7 L, and BWTBT L into its internal

logic. BDAL<21:00> L, BBS7 L, and BWTBT L remain active for 25 ns

(minimum) after BSYNC L bus receiver goes active. BSYNC L remains

active for the duration of the bus cycle.

Memory and peripheral devices are addressed similarly, except for

the way the slave device responds to BBS7 L. Addressed peripheral

devices must not decode address bits on BDAL<21:13> L. Addressed

peripheral devices may respond to a bus cycle when BBS7 L is

asserted (low) during the addressing portion of the cycle. When

asserted, BBS7 L indicates that the device address resides in the

Q022-Bus Specification

1/0 page (the upper 4 K address space). Memory devices generally
do not respond to addresses in the I/0 page; however, some system
applications may permit memory to reside in the 1/0 page for use
as DMA buffers, read-only memory bootstraps, diagnostics, etc.

DATI -- The DATI bus cycle, shown in Figure A-1, is a read
operation. During DATI, data 1is input to the bus master. Data
consists of 16-bit word transfers over the bus. During the data
transfer portion of the DATI bus cycle, the bus master asserts
BDIN L 100 ns (minimum) after BSYNC L is asserted. The slave
device responds to BDIN L active as follows.

TM Asserts BRPLY L 0 ns (minimum) (8 ns maximum to avoid bus

timeout) after receiving BDIN L, and 125 ns (maximum)
before BDAL bus driver data bits are valid.

° Asserts BDAL<21L00> L with the addressed data and error
information 0 ns (minimum) after receiving BDIN, and 125
ns (maximum) after assertion of BRPLY.

BUS MASTER SLAVE

{PROCESSOR OR DEVICE} {MEMORY OR DEVICE}

ADDRESS DEVICE MEMORY

* ASSERT BDAL <21:00> L WITH

ADDRESS AND

o ASSERT BBS7 IF THE ADDRESS

1S IN THE 1/0 PAGE

e ASSERT BSYNC L

\
—

DECODE ADDRESS

¢ STORE“DEVICE SELECTED"

OPERATION

,_,——""
”’

/

REQUEST DATA -

* REMOVE THE ADDRESSFROM

BDAL <21:00> L AND

NEGATE BBS7 L

* ASSERT BOIN L _~\~_‘\\\

—_—

INPUT DATA

* PLACE DATA ON BDAL < 15:00> L

-» ASSERT BRPLY L
’~’—__,,.,

,,,

- -
TEAMINATE INPUT TRANSFER

* ACCEPT DATA AND RESPOND

BY NEGATING BDIN L
__‘\‘_\5‘\\\

—

T
TERMINATE BUS CYCLE

OPERATION COMPLETED
¢ NEGATE BSYNC L -— * NEGATE BRPLY L ——

Figure A-1 DATI Bus Cycle

Q22-Bus Specification

When the bus master receives BRPLY L, it does the following.

) Waits at 1least 200 ns deskew time and then accepts input
data at BDAL<17:00> L bus receivers. BDAL <17:16> L are
used for transmitting parity errors to the master.

] Negates BDIN L 200 ns (minimum) to 2 us (maximum) after
BRPLY L goes active,

The slave device responds to BDIN L negation by negating BRPLY L
and removing read data from BDAL bus drivers. BRPLY L must be
negated 100 ns (maximum) prior to removal of read data. The bus
master responds to the negated BRPLY L by negating BSYNC L.

Conditions for the next BSYNC L assertion are as follows.

° BSYNC L must remain negated for 200 ns (minimum).

) BSYNC L must not become asserted within 300 ns of previous
BRPLY L negation.

Figure A-2 shows DATI bus cycle timing.

NOTE

Continuous assertion of BSYNC L retains
control of the bus by the bus master,
and the previously addressed slave
device remains selected. This is done
for DATIO(B) bus cycles where DATO or
DATOB follows a DATI without BSYNC L
negation and a second device addressing
operation. Also, a slow slave device can
hold off data transfers to itself by
keeping BRPLY L asserted, which causes
the master to keep BSYNC L asserted.

DATO(B) ~-- DATO(B), shown in Figure A-3, is a write operation.
Data 1is transferred in 32-bit words (DATO) or 8~bit bytes (DATOB)
from the bus master to the slave device. The data transfer output
can occur after the addressing portion of a bus cycle when BWTBT L
has been asserted by the bus master, or immediately following an
input transfer part of a DATIO(B) bus cycle.

The data transfer portion of a DATO(B) bus cycle comprises a data
setup and deskew time and a data hold and deskew time.

During the data setup and deskew time, the bus master outputs the
data on BDAL<15:00> L at least 100 ns after BSYNC L assertion.
BWTBT L remains negated for the length of the bus cycle. If the
transfer is a byte transfer, BWTBT L remains asserted. If it is
the output of a DATIOB, BWTBT L becomes asserted and lasts the
duration of the bus cycle.

Q22-Bus Specification

T/R DAL 4 T ADDR {4) x R DATA X 141
100 NS 200 NS _‘lL,w NS > MINIMUM[® TM MAXIMUM

TSYNC M'N'MUMy #——————————————200 NS MINIMUM
CLOCK DATA

100 NS MINIMUM — le————200 NS MINIMUM 200 NS

8 uS MAXIMUM le— MiniMUM —o

TDIN /
300 NS MINIMUM————a

R RPLY

150 NS
"‘ MINIMUM ol + ’-—\oo NS MINIMUM

T8S7 (4 x (4)

TWIBT (4 A 4

TIMING AT MASTER DEVICE

R/T DAL 14) R ADDR x (4) X T DATA f {4)

I M 25 NS 100 NS MAXIMUM*~ INIMUM +—125 NS MAXIMUM Fons MINIMUM
RSYNC 4 ons | \ /

MINIMUM

le— 75 NS 4te——200 NS MINIMUM 150 NS

MINIMUM *\ MIMIMUM

i 300 NS MINIMUM ———f

A

R DIN

TRPLY

—-1 fe— 75 NS MINIMUM

RBS7T (4 X (4)

- 25 NS MINIMUM

RWTBT (4) [(E2]

TIMING AT SLAVE DEVICE

NOTES

1. TIMING SHOWN AT MASTER AND SLAVE DEVICE 3. BUS DRIVER OUTPUT AND BUS RECEIVER INPUT

BUS DRIVER INPUTS AND BUS RECEIVER QUTPUTS SIGNAL NAMES INCLUDE A “B” PREFIX.

2 SIGNAL NAME PREFIXES ARE DEFINED BELOW 4. DON'T CARE CONDITION

T = BUS DRIVER INPUT

R = BUS RECE!VER QUTPUT

“A 6037

Figure A-2 DATI Bus Cycle Timing

Q022-Bus Specification

BUS MASTER SLAVE

(PROCESSOR OR DEVICE) (MEMORY OR DEVICE)

ADDRESS DEVICE/MEMORY

ASSERT BDAL <21:00> L WITH

ADDRESS AND

ASSERT BBS7 L IF ADDRESS IS

IN THE 1/0 PAGE

ASSERT BWTBT L (WRITE

CYCLE)

o ASSERT BSYNC L —

—

—

—

DECODE ADDRESS

__—* STORE "DEVICE SELECTED

_— OPERATION

/
—

/

OUTPUT DATA -
¢ REMOVETHE ADDRESS FROM

BDAL <21:00> L AND NEGATE BBS7 L

* NEGATE BWTBT L UNLESS DATOB

* PLACE DATA ON BDAL < 15:00> L

ASSERT 8DOUT L

—_—

—

TAKE DATA

* RECEIVEDATA FROM BDAL

LINES

o —— * ASSERT BRPLY L

"/__,,,_
,,,

TERMINATEOUTPUT TRANSFER

* NEGATE BDOUT L (AND BWTBT L

IF A DATOB BUS CYCLE)

o REMOVE DATA FROM BDAL <15:00> L
\\\._\5\\

—_—

OPERATION COMPLETED

——”-"”__,,- NEGATE BRPLY L

/
/

TERMINATE BUS CYCLE -
« NEGATE BSYNC L

MR- 6029

Figure A-3 DATO or DATOB Bus Cycle

Q22~Bus Specification

During a byte transfer, BDAL<00> L selects the high or low byte.
This occurs while in the addressing portion of the cycle. If
asserted, the high byte (BDAL<15:08> L) is selected; otherwise,
the low byte (BDAL<K07:00> L) is selected. An asserted BDAL 16 L at
this time forces a parity error to be written into memory if the
memory 1is a parity~type memory. BDAL 17 L is not used for write
operations. The bus master asserts BDOUT L at least 100 ns after

BDAL and BDWTBT L bus drivers are stable. The slave device

responds by asserting BRPLY L within 10 us to avoid bus timeout,.
This completes the data setup and deskew time.

During the data hold and deskew time, the bus master receives

BRPLY L and negates BDOUT L, which must remain asserted for at

least 150 ns from the receipt of BRPLY L before being negated by

the bus master. BDAL<17:00> L bus drivers remain asserted for at

least 100 ns after BDOUT L negation. The bus master then negates

BDAL inputs.

During this time, the slave device senses BDOUT L negation. The

data is accepted and the slave device negates BRPLY L. The bus

master responds by negating BSYNC L, However, the processor does

not negate BSYNC L for at least 175 ns after negating BDOUT L.

This completes the DATO(B) bus cycle. Before the next cycle, BSYNC

L must remain wunasserted for at least 200 ns. Figure A~4 shows

DATO(B) bus cycle timing.

DAITO(B) -- The protocol for a DATIO(B) bus cycle is identical to
the addressing and data transfer portions of the DATI and DATO(B)
bus cycles, and is shown in Figure A-5. After addressing the
device, a DATI cycle is performed as explained earlier; however,
BSYNC L is not negated. BSYNC L remains active for an output word
or byte transfer [DATO(B)]. The bus master maintains at least 200

ns between BRPLY L negation during the DATI cycle and BDOUT L
assertion. The cycle 1is terminated when the bus master negates
BSYNC L, as described for DATO(B). Figure A-6 illustrates DATIO (B)

bus cycle timing.

Q22-Bus Specification

r.—O NS MINIMUM

T DAL (41 T ADDR X T DATA X (4)
150 NS L_u)o NSHINIMUM“ ‘-100 NS MINIMUM —01 LN

TSYNC / \ /

84S 175 NS F*—200NS MINIMUM—asI‘E/-\xlmur»_/l.l MINIMUM
T DOUT

150 NS MINIMUM—.i L— 300 NS MINIMUM
R RPLY

- |._ 100 NS MINIMUM

TBS7 (4) X (4}

—.J le—150 NS MINIMUM
TwTBT (4) \ ASSERTION = BYTE 1 (4)

150 NS L_ " 100 NS
MINIMUM 100 NS MINIMUM MINIMUM

TIMING AT MASTER DEVICE

R DAL (4) X R ADW R DATA X (4)

— 25 NS MINIMUM —-1 L—zs NS MINIMUM
R SYNC /

AN
100 NS MINIMUM—’LL‘;O NS MINIMUM

TENS g

MINIMUM
R DOUT

150 NS
MINIMUM [*— 300 NS MINIMUM ——

~#{25 NS
TRPLY

MINIMUM

75 NS

_j MiNiMum

R BS7 (4} x 4)((4)

25 NS MINIMUM L — r—zs NS MINtMUM
RWTBT (4) \ { ASSERTION = BYTE X (4)

TSNS oo g L—zs NS MINIMUM
MINIMUM

TIMING AT SLAVE DEVICE

NOTES

1 TIMING SHOWN AT MASTER AND SLAVE DEVICE

BUS DRIVER INPUTS AND BUS RECEIVER QUTPUTS

2 SIGNAL NAME PREFIXES ARE DEFINED BELOW

T =BUS DRIVER INPUT

R = BUS RECEIVER QUTPUT

Figure A-4 DATO or

A-12

3. BUS DRIVER OUTPUT AND BUS RECEIVER INPUT

SIGNAL NAMES INCLUDE A "B~ PREFIX

4. DON'T CARE CONDITION

[FURTE?Y

DATOB Bus Cycle Timing

Q22-Bus Specification

BUS MASTER SLAVE

(PROCESSOR OR DEVICE) (MEMORY OR DEVICE)

ADDRESS DEVICE/MEMORY

® ASSERT BDAL <21:00> L WITH

ADDRESS

e ASSERT BBS7 L IF THE

ADDRESS IS IN THE 1/0 PAGE

e ASSERT BSYNC L -

~* DECODE ADDRESS
e STORE “DEVICE SELECTED"

_ OPERATION

- -
REQUEST DATA

® REMOVE THE ADDRESS FROM

BDAL <21:00> L

e ASSERTBDINL ——

T INPUT DATA
e PLACE DATA ON BDAL <16:00> L

e ASSERTBRPLY L

TERMINATE INPUT TRANSFER -
e ACCEPT DATA AND RESPOND BY

TERMINATING BDIN L
~——

———

COMPLETE INPUT TRANSFER

e REMOVE DATA

® NEGATE BRPLY L

-~ - - -
OUTPUT DATA

e PLACE OUTPUT DATA ON BDAL <15:00> L

® (ASSERT BWTBT L IF AN OUTPUT

BYTE TRANSFER)

e ASSERT BDOUT L
bY
*

TAKE DATA

e RECEIVE DATA FROM BDAL LINES

e ASSERT BRPLY L

- //
-~ -

TERMINATE OUTPUT TRANSFER

e REMOVE DATA FROM BDAL LINES

e NEGATE BDOUT L
—— — — -

—

OPERATION COMPLETED

® NEGATE BRPLY L

— -

-— -
TERMINATE BUS CYCLE

® NEGATE BSYNC L

(AND BWTBT L IF IN

A DATIOB BUS CYCLE)

MRA-6030

Figure A-5 DATIO or DATIOB Bus Cycle

Q22-Bus Specification

Io—lSONSMINIMUM
IO-ONSMINIMUM

—‘1

RT DAL (4) xTADDR)< (a) X RDATA X (a) X TDATA X (@
100 NS -

L_]MINMUMTMTM e 200 NS MAXIMUM — 100 NS MINIMUM

T SYNC J

100 NS MINIMUM -flli"m’:sa—

[~ 200Ns 200 NS
T pouT MINIMUM MINIMUM —o

N
200 NS

[* minimom

T DIN ’

300 NS/ MINIMUM TM1
R RPLY

150 NS le—

MINIMUM

T8S7 x

—+ }e— 100 NS MINIMUM 100 NS MINIMUM—

ASSERTION = BYTE
T WTBT M%L 4) X (4)

t#— 150 NS MINIMUM

X

TIMING AT MASTER DEVICE

RT/DAL (&) XR ADDRx 4 X ToATA X (4) X R DATA X (@
25 NS L--~ MINIMUM ' ’ — 25 NS MINIMUM

RSYNC / - L_ 100 N§
MAXIMUM

100 NS

l#— 75 NS MINIMUM 25 NS MINIMUM l" 1 miNiMUM

—»{ 125NS 150NS g
R OOUT MAXIMUM R MINIMUM

le-150 NS MINIMUM-]

R DIN \

150 NS 300NS

MINIMUM MINIMUM

T RPLY

—.l — 75 NS MINIMUM

R 8S7 x x

—-‘ fe— 75 NS MINIMUM ‘1 le— 25 NS MINIMUM r—zs NS MINIMUM

RWTBT |4>\ (@) X ASSERTION = BYTE X (4)

~— 25 NS MINIMUM

TIMING AT SLAVE DEVICE

NOTES

1 TIMING SHOWN AT REQUESTING DEVICE

BUS DRIVER INPUTS AND BUS RECEIVER QUTPUTS

2 SIGNAL NAME PREFIXES ARE DEFINED BELOW

T = BUS DRIVER INPUT

R = BUS RECEIVER OUTPUT

Figure A-6 DATIO or

3. BUS DRIVER OUTPUT AND BUS RECEIVER INPUT

SIGNAL NAMES INCLUDE A “B” PREFIX.

4 DON'T CARE CONDITION

MR 6036

DATIOB Bus Cycle Timing

Q22-Bus Specification

A.4 DIRECT MEMORY ACCESS

The direct memory access (DMA) capability allows direct data

transfer between I/0 devices and memory. This is useful when using

mass storage devices (for example, disks) that move large blocks

of data to and from memory. A DMA device needs to know only the

starting address in memory, the starting address in mass storage,

the length of the transfer, and whether the operation is read or

write. When this information is available, the DMA device can

transfer data directly to or from memory. Since most DMA devices

must perform data transfers in rapid succession or lose data, DMA

devices are provided the highest priority.

DMA is accomplished after the processor (normally bus master) has

passed bus mastership to the highest-priority DMA device that is

requesting the bus. The processor arbitrates all requests and

grants the bus to the DMA device electrically closest to it. A DMA

device remains bus master until it relinquishes its mastership.

The following control signals are used during bus arbitration.

BDMGI L DMA grant input

BDMGO L DMA grant output

BDMR L DMA request line

BSACK L Bus grant acknowledge

A.4.1 DMA Protocol

A DMA transaction can be divided into three phases:

1. Bus mastership acquisition phase

2. Data transfer phase

3. Bus mastership relinquishment phase.

During the bus mastership acquisition phase, a DMA device requests

the bus by asserting BDMR L. The processor arbitrates the request

and initiates the transfer of bus mastership by asserting BDMGO L.

The maximum time between BDMR L assertion and BDMGO L assertion is
DMA latency. This time is processor-dependent. BDMGO L/BDMGI L is
one signal that is daisy-chained through each module in the

backplane. It is driven out of the processor on the BDMGO L pin,

enters each module on the BDMGI L pin, and exits on the BDMGO L

pin. This signal passes through the modules in descending order of
priority until it is stopped by the requesting device. The
requesting device blocks the output of BMDGO L and asserts BSACK

L. If BDMR L is continuously asserted, the bus hangs.

During the data transfer phase, the DMA device continues asserting

BSACK L. The actual data transfer is performed as described

earlier.

The DMA device can assert BSYNC L for a data transfer 250 ns

(minimum) after it received BDMGI L and its BSYNC L bus receiver

becomes negated.

Q22-Bus Specification

During the bus mastership relinquishment phase, the DMA device
gives up the bus by negating BSACK L. This occurs after completing
(or aborting) the 1last data transfer cycle (BRPLY L negated).
BSACK L may be negated up to a maximum of 300 ns before negating
BSYNC L. Figure A-7 shows the DMA protocol, and Figure A-8 shows
DMA request/grant timing.

NOTE

If multiple data transfers are performed
during this phase, consideration must be
given to the use of the bus for other
system functions, such as memory refresh

(if required).

KDJ11-A PROCESSOR BUS MASTER

(MEMORY IS SLAVE} {CONTROLLER)

REQUEST BUS

—— " ® ASSERT BDMR L
—

GRANT BUS CONTROL _—

® NEAR THE END OF THE o

CURRENT BUS CYCLE

{BRPLYL IS NEGATED).

ASSERT BOMGO L AND ~— _

INHIBIT NEW PROCESSOR ~

GENERATED BYSNC L FOR ~ ACKNOWLEDGE BUS

THE DURATION OF THE & MASTERSHIP

DMA OPERATION ® RECEIVE BOMG
—~ ®WAIT FOR NEGATION OF

P BSYNC L AND BRPLY L
o ® ASSERT BSACK L

TERMINATE GRANT - © NEGATE BOMR L
SEQUENCE

® NEGATE BDMGO L AND

WAIT FOR DMA QPERATION TM

TO BE COMPLETED T~
~~ —a EXECUTE A DMA DATA

TRANSFER

® ADDRESS MEMORY AND

TRANSFER UP TO 4 WORDS

OF DATA AS DESCRIBED

FOR DATI. OR DATO BUS

CYCLES

.~ ®RELEASETHE BUS BY

P TERMINATING BSACK L

- (NO SOONER THAN
RESUME PROCESSOR _ — NEGATION OF LAST BRPLY L)

OPERATION - AND BSYNC L
® ENABLE PROCESSOR-

GENERATED BSYNCL

(PROCESSOR IS BUS WAIT 4 4S OR UNTIL

MASTER) OR ISSUE ANOTHER FIFO TRANSFER

ANOTHER GRANT IF BDMR 1S PENDING BEFORE

L IS ASSERTED REQUESTING BUS AGAIN.

A 5030

Figure A-7 DMA Protocol

Q22-Bus Specification

SECOND

REQUEST

—-t le— DMa LATENCY

R anbenyant el sty ally ol day Shav iy S Vb airalve
T OMA [A A A A Y Y Y A A A

AR A A| L Lo L yi Lok L

— L—-onswmmum
—_—————

R DMG

T SACK \

—250 NS MINIMUM —e r_

L~ 250 NS MINIMUM: 0NSM|N|MUM—D1 L—

r—300 NS MAXIMUM

e \\\\\'

. \\\\ \—.l\—-. 300 NS MINIMUM

FONS MINIMUM —» r—mo NS MAXIMUM
0 NS MINIMUM

T DAL /< ADDR X7 DATA \
(ALSO 8S7,

WTBT, REF)

NOTES:

1. TIMING SHOWN AT REQUESTING DEVICE BUS DRIVER 3. BUS DRIVER OUTPUT AND BUS RECEIVER INPUT

INPUTS AND BUS RECEIVER QUTPUTS. SIGNAL NAMES INCLUDE A “B" PREFIX.

2. SIGNAL NAME PREFIXES ARE DEFINED BELOW:

T = BUS DRIVER INPUT

R = BUS RECEIVER QUTPUT

Figure A-8 DMA Request/Grant Timing

A.4.2 Block Mode DMA
For increased throughput, block mode DMA may be implemented on a

device for wuse with memories that support this type of transfer.

In a block mode transaction, the starting memory address is

asserted, followed by data for that address, and data for

consecutive addresses.

By eliminating the assertion of the address for each data word,

the transfer rate 1is almost doubled. The DATBI and DATBO bus
cycles are described below.

Q22-Bus Specification

A.4.2.1 DATBI -- The device addressing portion of the cycle is
the same as described earlier for other bus cycles. (See Figure
A-9.) The bus master gates BDAL<21:00>, BBS7, and the negation of
BWTBT onto the bus.

The master asserts the first BDIN 100 ns after BSYNC, and asserts
BBS7 a maximum of 50 ns after asserting BDIN for the first time.
BBS7 1is a request to the slave for a block mode transfer. BBS7
remains asserted wuntil a maximum of 50 ns after the assertion of
BDIN for the last time. BBS7 may be gated as soon as the
conditions for asserting BDIN are met.

The slave asserts BRPLY a minimum of 0 ns (8 ns maximum to avoid
bus timeout) after vreceiving BDIN, It asserts BREF concurrently
with BRPLY if it 1is a block mode device capable of supporting
another BDIN after the current one. The slave gates BDAL<15:00>

onto the bus 0 ns (minimum) after the assertion of BDIN, and 125
ns (maximum) after the assertion of BRPLY.

The master receives the stable data from 200 ns (maximum) after
the assertion of BRPLY until 20 ns (minimum) after the negation of
BDIN. It negates BDIN 200 ns (minimum) after the assertion of

BRPLY.

The slave negates BRPLY 0 ns (minimum) after the negation of BDIN.

If BBS7 and BREF are both asserted when BRPLY is negated, the

slave prepares for another BDIN cycle. BBS7 is stable from 125 ns

after BDIN is asserted until 150 ns after BRPLY is negated. The

master asserts BDIN 150 ns (minimum) after BRPLY is negated, and

the cycle 1is continued as before. (BBS7 remains asserted and the

slave responds to BDIN with BRPLY and BREF.) BREF is stable from

75 ns after BRPLY is asserted until 20 ns (minimum) after BDIN is

negated.

If BBS7 and BREF are not both asserted when BRPLY is negated, the

slave removes the data from the bus 0 ns (minimum) and 100 ns

(maximum) after negating BRPLY. The master negates BSYNC 250 ns

(minimum) after the assertion of the 1last BRPLY, and 0 ns

(minimum) after the negation of that BRPLY.

A.4.2.2 DATBO -- The device addressing portion of the cycle is

the same as shown 1in Fiqure A-10. The bus master gates

BDAL<21:00>, BBS7, and the assertion of BWTBT onto the bus.

A minimum of 100 ns after BSYNC is asserted, data on BDAL<15:00>

and the negated BWTBT are put onto the bus. The master then

asserts BDOUT a minimum of 100 ns after gating the data.

The slave receives stable data and BWTBT from 25 ns (minimum)

before the assertion of BDOUT to 25 ns (minimum) after the

negation of BDOUT. The slave asserts BRPLY 0 ns (minimum) after

receiving BDOUT. It also asserts BREF concurrently with BRPLY if

it is a block mode device capable of supporting another BDOUT

after the current one.

Q22-Bus Specification

SIGNALS AT BUS MASTER

Tas? 1}

R/T DAL T ADDRESS xxxxX | R DATA XXXXX R DATA

150 200° 200°
ja— 0 —o 00—

100

TSYNC 200 1} - B

le—100 - —| 2000° |n-2oo—-
T DIN |] |——300—

alelal s|lag] © (vl |

3 | 6 | l
R RPLY m

R REF

TIMES ARE MIN. EXCEPT WHERE “*” DENOTES MAX.

MR-15966

Figure A-9 DATBI Bus Cycle Timing

SIGNALS AT BUS MASTER

Tos7 AL, —

T DAL ADDRESS DATA DATA I

150+1oo ‘._100__ ._.1

TSYNC | [100+ | r

150 150
o—.I -—150-fl 175—-'-—200—-

T DOUT 1

u It2 t3|t4 t5|t6 3}
R RPLY ha—17
R REF J-_ I I

s
MRA-15967

TIMES ARE MIN. EXCEPT WHERE “*” DENOTES MAX.

Figure A-10 DATBO Bus Cycle Timing

A-19

Q022-Bus Specification

The master negates BDOUT 150 ns (minimum) after the assertion of
BRPLY. If BREF was asserted when BDOUT was negated, and the master
wants to transmit more data in this block mode cycle, the new data
is gated onto the bus 100 ns (minimum) after BDOUT is negated.
BREF is stable from 75 ns (maximum) after BRPLY is asserted until
20 ns (minimum) after BDOUT is negated. The master asserts BDOUT
100 ns (minimum) after gating new data onto the bus and 150 ns
minimum after BRPLY negates. The cycle continues as before.

If BREF was not asserted when BDOUT was negated, or if the bus
master does not want to transmit more data in this cycle, the

master removes data from the bus 100 ns (minimum) after negating

BDOUT. The slave negates BRPLY 0 ns (minimum) after negating

BDOUT. The bus master negates BSYNC 175 ns (minimum) after

negating BDOUT, and 0 ns (minimum) after the negation of BRPLY.

A.4.3 DMA Guidelines

1. Systems with memory refresh over the bus must not include

devices that perform more than one transfer per

acquisition.

2. Bus masters that do not use block mode are limited to four

DATI, four DATO, or two DATIO transfers per acquisition.

3. Block mode bus masters that do not monitor BDMR are

limited to eight transfers per acquisition.

4., If BDMR is not asserted after the seventh transfer, block

mode bus masters that do monitor BDMR may continue making

transfers until the bus slave fails to assert BREF, or

until they reach the total maximum of 16 transfers.

Otherwise, they stop after eight transfers.

A.5 INTERRUPTS

The interrupt capability of the 022-Bus allows an I/0 device to

temporarily suspend (interrupt) current program execution and

divert processor operation to service the requesting device. The

processor inputs a vector from the device to start the service

routine (handler). Like the device register address, hardware

fixes the device vector at locations within a designated range

below location 001000. The vector indicates the first of a pair of

addresses. The processor reads the contents of the first address,

the starting address of the interrupt handler. The contents of the

second address is a new processor status word (PS).

The new PS can raise the interrupt priority 1level, thereby

preventing lower-level interrupts from breaking into the current

interrupt service routine. Control is returned to the interrupted

program when the interrupt handler 1is ended. The original

interrupted program's address (PC) and its associated PS are

stored on a stack. The original PC and PS are restored by a return

from interrupt (RTI or RTT) instruction at the end of the handler.

The use of the stack and the Q22-Bus interrupt scheme can allow

interrupts to occur within interrupts (nested interrupts),

depending on the PS,

A-20

Q22-Bus Specification

Interrupts can be caused by 022-Bus options or the MicroVAX CPU.

Those interrupts that originate from within the processor are

called “traps®TM. Traps are caused by programming errors, hardware

errors, special instructions, and maintenance features.

The following are Q22-Bus signals used in interrupt transactions.

BIRQ4 L Interrupt request priority level 4

BIRQS L Interrupt request priority level 5

BIRQ6 L Interrupt request priority level 6

BIRQ7 L Interrupt request priority level 7

BIAKI L Interrupt acknowledge input

BIAKO L Interrupt acknowledge output

BDAL<21:00> Data/address lines

BDIN L Data input strobe

BRPLY L Reply

A.5.1 Device Priority

The Q22-Bus supports the following two methods of device priority.

1, Distributed Arbitration -- Priority levels are implemented

on the hardware. When devices of equal priority level

request an interrupt, priority 1is given to the device

electrically closest to the processor.

2. Position-Defined Arbitration -~ Priority is determined

solely by electrical position on the bus. The closer a

device is to the processor, the higher its priority is.

A.5.2 Interrupt Protocol

Interrupt protocol on the 022-Bus has three phases: the interrupt

request phase, interrupt acknowledge and priority arbitration

phase, and interrupt vector transfer phase. Figure A-11 shows the

interrupt request/acknowledge sequence.

The interrupt request phase begins when a device meets its

specific conditions for interrupt requests. For example, the

device is ready, done, or an error has occurred. The interrupt

enable bit in a device status register must be set. The device

then initiates the interrupt by asserting the interrupt request

line(s). BIRQ4 L 1is the lowest hardware priority level and is

asserted for all interrupt requests for compatibility with

previous Q22 processors. The level at which a device is configured
must also be asserted. A special case exists for level 7 devices

that must also assert level 6. For an explanation, refer to the
discussion below on arbitration involving the 4-level scheme.

Interrupt Level Lines Asserted by Device

4 BIRQ4 L
S BIRQ4 L, BIRQS L
g BIRQ4 L, BIRQ6 L

BIRQ4 L, BIRQ6 L, BIRQ7 L

Q022-Bus Specification

PROCESSOR DEVICE

INITIATE REQUEST

—— ® ASSERT BIRQ L

//
/ /

STROBE INTERRUPTS -
® ASSERT BDIN L —_—

—_—

—
S——

—_—

‘ RECEIVE BDIN L
® STORE “INTERRUPT SENDING”

l IN DEVICE

GRANT REQUEST

e PAUSE AND ASSERT BIAKO L—

—_—

—_—

—

RECEIVE BIAKI L

® RECEIVE BIAK(I L AND INHIBIT

BIAKOL

® PLACE VECTOR ON BDAL < 15:00> L

e ASSERT BRPLY L

-® NEGATE BIRQ L

— -
/

-
RECEIVE VECTOR AND

TERMINATE REQUEST

e INPUT VECTOR ADDRESS

e NEGATE BDIN L AND BIAKO L

—

—_—

—_—

e

COMPLETEVECTOR TRANSFER

® REMOVE VECTOR FROM BDAL BUS

- -® NEGATEBRPLY L

/

— -
-

PROCESSTHE INTERRUPT

® SAVE INTERRUPTED PROGRAM

PC AND PS ON STACK

® {OAD NEW PC AND PS FROM

VECTOR ADDRESSED LOCATION

® EXECUTE INTERRUPT SERVICE

ROUTINE FOR THE DEVICE

MR-1182

Figure A-11 Interrupt Request/Acknowledge Sequence

022-Bus Specification

The interrupt request line remains asserted until the request is

acknowledged.

puring the interrupt acknowledge and priority arbitration phase,

the LSI-11/23 processor acknowledges interrupts under the

following conditions.

1. The device interrupt priority is higher than the current

PS<7:5>.

2. The processor has completed instruction execution and no

additional bus cycles are pending.

The processor acknowledges the interrupt request by asserting BDIN

L, and 150 ns (minimum) later asserting BIAKO L. The device

electrically closest to the processor receives the acknowledge on

its BIAKI L bus receiver.

At this point, the two types of arbitration must be discussed

separately. If the device that receives the acknowledge uses the

4-level interrupt scheme, it reacts as follows.

1. If not requesting an interrupt, the device asserts BIAKO L

and the acknowledge propagates to the next device on the

bus.

2. If the device 1is requesting an interrupt, it must check

that no higher-level device is currently requesting an

interrupt. This is done by monitoring higher-level request

lines.The table below 1lists the 1lines that need to be

monitored by devices at each priority level.

In addition to asserting 1levels 7 and 4, level 7 devices must

drive level 6. This is done to simplify the monitoring and

arbitration by 1level 4 and 5 devices. In this protocol, level 4

and 5 devices need not monitor level 7 because level 7 devices
assert level 6. Level 4 and 5 devices become aware of a level 7
request because they monitor the level 6 request. This protocol
has been optimized for level 4, 5, and 6 devices, since level 7

devices are very seldom necessary.

Device Priority Level Line(s) Monitored

4 BIRQS5, BIRQ6

5 BIRQ6

g BIRQ7

Q22-Bus Specification

3. If no higher-level device is requesting an interrupt, the

acknowledge 1is blocked by the device. (BIAKO L is not

asserted.) Arbitration 1logic within the device uses the

leading edge of BDIN L to clock a flip~-flop that blocks

BIAKO L. Arbitration 1is won, and the interrupt vector

transfer phase begins.

4. If a higher-level request line 1is active, the device

disqualifies 1itself and asserts BIAKO L to propagate the

acknowledge to the next device along the bus.

Signal timing must be considered carefully when implementing

4-level interrupts. See Figure A-12,

If a single-level interrupt device receives the acknowledge, it

reacts as follows.

1. TIf not requesting an interrupt, the device asserts BIAKO L

and the acknowledge propagates to the next device on the

bus.

INTERRUPT LATENCY

MINUS SERVICE TIME

TIRQ

150 NSMINIMUM—’1 p-—

R 1AKI / —

TRRLY 4.]\

125 NS MAXIMUM —] — f'—mo NS MAXIMUM

T DAL 14)(VECTOR X (4

RSYNC {UNASSERTED)

R BS? {UNASSERTED!

NOTES

1. TIMING SHOWN AT REQUESTING DEVICE BUS DRIVER 3. BUS DRIVER QUTPUT AND BUS”fiECEIVER INPUT

INPUTS AND BUS RECEIVER OUTPUTS SIGNAL NAMES INCLUDE A "8 PREFIX

2. SIGNAL NAME PREFIXES ARE DEFINED BELOW 4. DON'T CARE CONDITION

T = BUS DRIVER INPUT

R = BUS RECEIVER QUTPUT

LRI

Figure A-12 Interrupt Protocol Timing

Q22-Bus Specification

2. If the device was requesting an interrupt, the acknowledge
is blocked using the 1leading edge of BDIN L, and

arbitration 1is won. The interrupt vector transfer phase

begins.

The interrupt vector transfer phase is enabled by BDIN L and BIAKI
L. The device responds by asserting BRPLY L and its BDAL<15:00> L

bus driver inputs with the vector address bits. The BDAL bus

driver inputs must be stable within 125 ns (maximum) after BRPLY L

is asserted. The processor then inputs the vector address and

negates BDIN L and BIAKO L. The device then negates BRPLY L and

100 ns (maximum) later removes the vector address bits. The

processor then enters the device's service routine.

NOTE

Propagation delay from BIAKI L to BIAKO

L must not be greater than 500 ns per

Q22-Bus slot.

The device must assert BRPLY L within 10

us (maximum) after the processor asserts

BIAKI L.

A.5.3 - Q22-Bus 4-Level Interrupt Configurations

If you have high-speed peripherals and desire better software

performance, you can use the 4-level interrupt scheme. Both

position-independent and position-dependent configurations can be

used with the 4-level interrupt scheme.

Figure A-13 shows the position-independent configuration. This

allows peripheral devices that use the 4-level interrupt scheme to

be placed in the backplane in any order. These devices must send

out interrupt requests and monitor higher-level request lines as

described. The level 4 request 1is always asserted from a

requesting device regardless of priority. If two or more devices

of equally high priority request an interrupt, the device

physically closest to the processor wins arbitration. Devices that

use the single-level interrupt scheme must be modified, or placed

at the end of the bus, for arbitration to function properly.

Figure A-14 shows the position-dependent configuration. This
configuration is simpler to implement. A constraint 1is that
peripheral devices must be inserted with the highest~priority
device located closest to the processor, and the remaining devices
placed in the backplane in decreasing order of priority (with the
lowest-priority devices farthest from the processor). With this
configuration, each device has to assert only its own level and
level 4. Monitoring higher-level request lines is unnecessary.
Arbitration is achieved through the physical positioning of each
device on the bus. Single-level interrupt devices on level 4
should be positioned last on the bus.

9
¢
-
¥

BIAK (INTERRUPT ACKNOWLEDGE) LEVEL4 jglak | LEVEL6 |BlaK | LEVELS |gjak | LEVEL7
KDJ11 DEVICE DEVICE *1 DEVICE DEVICE

BIRQ4 (LEVEL4 INTERRUPT REQUEST) Y !)

BIRQ S (LEVEL 5 INTERRUPT REQUEST)

BIRQ 6 (LEVEL 6 INTERRUPT REQUEST)

BIRQ7 (LEVEL7 INTERRUPT REQUEST)]

MR -2888

Figure A-13 Position-Independent Configuration

KD BIAK (INTERRUPT ACKNOWLEDGE) LEVEL7 |BIAK | LEVEL6 | BIAK | LEVELS | BIAK | LEVEL4
DEVICE DEVICE DEVICE DEVICE

BIRQ 4 (LEVEL 4 INTERRUPTREQUEST)

BIRQ 5 (LEVEL 5 INTERRUPT REQUEST)

BIRQ 6 (LEVEL 6 INTERRUPT REQUEST)

BIRQ 7 (LEVEL 7 INTERRUPT REQUEST) A

Figure A-14 Position-Dependent Configuration

MA-2889

u
o
r
3
j
e
o
s
t
j
y
i
o
a
d
s

s
n
g
-
z
z
d

Q22-Bus Specification

A.6 CONTROL FUNCTIONS

The following Q22-Bus signals provide control functions.

BREF L Memory refresh (also block mode DMA)

BHALT L Processor halt

BINIT L Initialize

BPOK H Power OK

BDCOK H DC power OK

A.6.1 Memory Refresh

If BREF 1is asserted during the address portion of a bus data

transfer cycle, it causes all dynamic MOS memories to be addressed

simultaneously. The sequence of addresses required for refreshing
the memories 1is determined by the specific requirements for each
memory. The complete memory refresh cycle consists of a series of

refresh bus transactions. A new address is used for each
transaction. A complete memory refresh cycle must be completed
within 1 or 2 ms. Multiple data transfers by DMA devices must be

avoided since they could delay memory refresh cycles. This type of

refresh is done only for memories that do not perform on-board

refresh.

A.6.2 Halt

Assertion of BHALT L for at least 25 ns interrupts the processor,

which stops program execution and forces the processor

unconditionally into console I/0 mode.

A.6.3 Initialization

Devices along the bus are initialized when BINIT L is asserted.

The processor can assert BINIT L as a result of executing a reset

instruction as part of a power-up or power—-down sequence. BINIT L

is asserted for approximately 10 us when reset is executed.

A.6.4 Power Status

Power status protocol is controlled by two signals, BPOK H and

BDCOK H. These signals are driven by an external device (usually

the power supply).

A.6.5 BDCOK H

When asserted, this indicates that dc power has been stable for at

least 3 ms. Once asserted, this line remains asserted until the

power fails, It 1indicates that only 5 us of dc power reserve

remains.

A.6.6 BPOK H

When asserted, this indicates there is at least an 8 ms reserve of

dc power, and that BDCOK H has been asserted for at least 70 ms.

Once BPOK has been asserted, it must remain asserted for at least

3 ms. The negation of this line, the first event in the power-fail

sequence, indicates that power is failing and that only 4 ms of dc

power reserve remains.

Q22-Bus Specification

A.6.7 Power-Up/Down Protocol

Power-up protocol begins when the power supply applies power with
BDCOK H negated. This forces the processor to assert BINIT L. When
the dc voltages are stable, the power supply or other external
device asserts BDCOK H. The processor responds by clearing the PS,
floating point status register (FPS), and floating point exception
register (FEC). BINIT L is asserted for 12.6 us, and then negated
for 110 ps. The processor continues to test for BPOK H until it is
asserted. The power supply asserts BPIK H 70 ms (minimum) after
BDCOK H is asserted. The processor then performs its power-up
sequence. Normal power must be maintained at least 3.0 ms before a

power-down sequence can begin.

A power-down sequence begins when the power supply negates BPOK H.

When the current instruction is completed, the processor traps to

a power-down routine at location 24. The end of the routine is

terminated with a halt instruction to avoid any possible memory

corruption as the dc voltages decay.

When the processor executes the halt instruction, it tests the

BPOK H signal. If BPOK H is negated, the processor enters the

power—-up sequence. It clears internal registers, generates BINIT

L, and continues to check for the assertion of BPOK H. If it is

asserted and dc voltages are still stable, the processor performs

the rest of the power-up sequence., Figure A-15 shows

power-up/power—-down timing.

- - |‘—ONSMINIMUM —'l I‘— 8-204S

BINIT L __._l! 3Msy \L_—_____[

3Mms o 145
——

MINIMUM | IMAXIMUM MAXIMUM
8 POK H J

70 MS 4MS 70 MS

1 minvom [* MINIMUM 'J MINIMUM

BDCOK H lf

5uS
— IMUM}7 ro—3 MS MINIMU = MiNIMUM r—

POWER UP NORMAL POWER-DOWN POWER UP NORMAL
SEQUENCE POWER SEQUENCE SEQUENCE POWER

DC POWER

NOTE

ONCE A POWER-DOWN SEQUENCE IS STARTED

1T MUST BE COMPLETED BEFORE A POWER UP

SEQUENCE 1S STARTED

“n $012

Figure A-15 Power-Up/Power-Down Timing

Q22-Bus Specification

A.7 Q22-BUS ELECTRICAL CHARACTERISTICS

SIGNAL LEVEL SPECIFICATION

Input Logic Levels:

TTL Logical Low 0.8 Vdc (maximum)
TTL Logical High 2.0 Vdc (minimum)

Output Logic Levels:

TTL Logical Low 0.4 Vvdc (maximum)
TTL Logical High 2.4 Vdc (minimum)

A.7.1 Load Definition
AC loads make up the maximum capacitance allowed per signal line
to ground. A unit load is defined as 9.35 pF of capacitance. DC
loads are defined as maximum current allowed with a signal line
driver asserted or unasserted., A unit load is defined as 210 pA in
the unasserted state.

A.7.2 120-0hm Q22-Bus
The electrical conductors interconnecting the bus device slots are
treated as transmission 1lines, A wuniform transmission line,
terminated in its characteristic impedance, propagates an
electrical signal without reflections. Since bus drivers,
receivers, and wiring connected to the bus have finite resistance
and nonzero reactance, the transmission line impedance is not
uniform, and introduces distortions into pulses propagated along
it. Passive components of the 022-Bus (such as wiring, cabling,
and etched signal conductors) are designed to have a nominal
characteristic impedance of 120 ohms.

The maximum length of interconnecting cable, excluding wiring
within the backplane, is limited to 4.88 m (16 ft).

A.7.3 Bus Drivers
Devices driving the 120-ohm Q22-Bus must have open collector
outputs and meet the following specifications.

DC SPECIFICATIONS

Output 1low voltage when sinking 70 mA of current: 0.7 V
(maximum).

Output high 1leakage current when connected to 3.8 Vdc: 25 uA
(even if no power is applied, except for BDCOK H and BPOK H).

These conditions must be met at worst-case supply temperature,
and input signal levels.

Q22-Bus Specification

AC SPECIFICATIONS

Bus driver output pin capacitance load: Not to exceed 10 pPF.

Propagation delay: Not to exceed 35 ns.

Skew (difference in propagation time between slowest and
fastest gate): Not to exceed 25 ns.

Rise/fall times: Transition time (from 10% to 90% for positive
transition, 90% to 10% for negative transition) must be no
faster than 10 ns.

A.7.4 Bus Receivers

Devices that receive signals from the 120-ohm Q22-Bus must meet
the following requirements.

DC SPECIFICATIONS

Input low voltage (maximum): 1.3 V.

Input high voltage (minimum): 1.7 V.

Maximum input current when connected to 3.8 Vdc: 80 uA (even
if no power is applied).

These specifications must be met at worst-case supply
voltage, temperature, and output signal conditions.

AC SPECIFICATIONS

Bus receiver input pin capacitance load: Not to exceed 10 pF.

Propagation delay: Not to exceed 35 ns.

Skew (difference in propagation time between slowest and
fastest gate): Not to exceed 25 ns.

A.7.5 Bus Termination

The 120-ohm Q22-Bus must be terminated at each end by an
appropriate terminator, as shown in Figure A-16. This is to be
done as a voltage divider with its Thevenin equivalent equal to
120 ohms and 3.4 V (nominal). This type of termination is provided
by an REV11-A refresh/boot/terminator, BDV11-AA, KPV11-B, TEV1l,
or by certain backplanes and expansion cards.

Q22-Bus Specification

5V +5V

178 Q2 3302

1200 250Q2

BUS LINE BUS LINE

TERMINATION TERMINATION

383 Q 680Q
1%

- b MA-8033

Figure A-16 Bus Line Terminations

Each of the several (Q22-Bus lines (all signals whose mnemonics

start with the letter B) must see an equivalent network with the

following characteristics at each end of the bus.

Input impedance 120 ohm +5%, -15%

(with respect to ground)

Open circuit voltage 3.4 Vdc +5%

Capacitance load Not to exceed 30 pF

NOTE

The resistive termination may be

provided by the combination of two

modules. (The processor module supplies

220 ohms to ground. This, in parallel

with another 220-ohm card, provides 120

ohms.) Both terminators must reside

physically within the same backplane.

A.7.6 Bus Interconnecting Wiring

A.7.6,1 Backplane Wiring ~- The wiring that connects all device

irterface slots on the Q022~-bus must meet the following

specifications.

1. The conductors must be arranged so that each line exhibits

a characteristic impedance of 120 ohms (measured with

respect to the bus commen return).

2. Crosstalk between any two lines must be no greater than 5

percent. Note that worst-case crosstalk is manifested by

simultaneously driving all but one signal 1line and

measuring the effect on the undriven line.

Q22-Bus Specification

3. DC resistance of the signal path, as measured between the
near-end terminator and the far-end terminator module
(including all intervening connectors, cables, backplane
wiring, connector-module etch, etc.) must not exceed 20
ohms,

4. DC resistance of the common return path, as measured
between the near-end terminator and the far-end terminator
module (including all intervening connectors, cables,
backplane wiring, connector-module etch, etc.) must not
exceed an equivalent of 2 ohms per signal path. Thus, the
composite signal return path dc resistance must not exceed
2 ohms divided by 40 bus lines, or 50 milliohms. Note that
although this common return path is nominally at ground
potential, the conductance must be part of the bus wiring.
The specified 1low impedance return path must be provided
by the bus wiring as distinguished from the common system
or power ground path.

A.7.6.2 Intra-Backplane Bus Wiring -- The wiring that connects
the bus connector slots within one contiguous backplane is part of
the overall bus transmission 1line. Owing to implementation
constraints, the nominal characteristic impedance of 120 ohms may
not be achievable. Distributed wiring capacitance in excess of the
amount required to achieve the nominal 120-ohm impedance may not
exceed 60 pF per signal line per backplane.

A.7.6.3 Power and Ground -- Each bus interface slot has connector
pins assigned for the following dc voltages. The maximum allowable
current per pin 1is 1.5 A. +5 Vdc must be regulated to 5 percent

with a maximum ripple of 100 mV pp. +12 Vdc must be regulated to 3

percent with a maximum ripple of 200 mV pp.

) +5 Vdc -- Three pins (4.5 A maximum per bus device slot)

° +12 Vdc -- Two pins (3.0 A maximum per bus device slot)

° Ground -- Eight pins (shared by power return and signal

return)

NOTE

Power is not bussed between backplanes

on any interconnecting bus cables.

A.8 SYSTEM CONFIGURATIONS

Q22-Bus systems can be divided into two types:

. Systems containing one backplane

2. Systems containing multiple backplanes

Q22-Bus Specification

Before configuring any system, three characteristics for each

module in the system must be known:

Power

Power consumption - +5 Vdc and +12 Vdc current

requirements.

AC bus loading -- The amount of capacitance a module

presents to a bus signal line. AC loading is expressed in

terms of ac 1loads, where one ac load equals 9.35 pF of

capacitance.

DC bus 1loading -- The amount of dc leakage current a

module presents to a bus signal when the line is high

(undriven). DC loading is expressed in terms of dc loads,

where one dc load equals 210 uA (nominal),

consumption, ac loading, and dc loading specifications for

each module are included in the Microcomputer Interface Handbook.

NOTE

The ac and dc 1loads and the power

consumption of the processor module,

terminator module, and backplane must be

included in determining the total

loading of a backplane.

Rules for configuring single-backplane systems:

1. When using a processor with 220-ohm termination, the bus

can accommodate modules that have up to 20 ac loads

(total) before additional termination is required. (See

Figqure A-17.) If more than 20 ac loads are included, the

other end. of the bus must be terminated with 120 ohms, and

then up to 35 ac loads may be present.

| BACKPLANE WIRE .l

35.6 CM (14 IN) MAXIMUM

{

P 1 1
ONE ONE ONE | OPTIONAL

250 Q UNIT UNIT UNIT 1209
LOAD LOAD LOAD

+ +

34V — —) 34V

- 35 AC LOADS 1~
=

20 DC LOADS -

PROCESSOR TERM

MR-5034

Figure A-17 Single~Backplane Configuration

022-Bus Specification

2. With 120-ohm processor termination, up to 35 ac loads can
be used without additional termination. If 120-ohm bus
termination 1is added, up to 45 ac loads can be configured
in the backplane.

3. The bus can accommodate modules up to 20 dc loads (total).

4. The bus signal lines on the backplane can be up to 35.6 cm
(14 in) long.

Rules for configuring multiple-backplane systems:

1. Figure A-18 shows that up to three backplanes may make up
the system.

2. The signal 1lines on each backplane can be up to 25.4 cm
(10 in) long.

3. Each backplane can accommodate modules that have up to 22

ac loads (total). Unused ac loads from one backplane may

not be added to another backplane if the second backplane

loading will exceed 22 ac loads. It is desirable to load

backplanes equally, or with the highest ac loads in the
first and second backplanes.

4. DC 1loading of all modules in all backplanes cannot exceed

20 loads (total).

5. Both ends of the bus must be terminated with 120 ohms.

This means the first and last backplanes must have an

impedance of 120 ohms. To achieve this, each backplane may

be 1lumped together as a single point. The resistive

termination may be provided by a combination of two

modules in the backplane - the processor providing 220

ohms to ground in parallel with an expansion paddle card

providing 250 ohms to give the needed 120-ohm termination.

Alternately, a processor with 120-ohm termination would

need no additional termination on the paddle card to

attain 120 ohms in the first box. The 120-ohm termination

in the 1last box can be provided in two ways: the

termination resistors may reside either on the expansion

paddle card, or on a bus termination card (such as the

BDV1l).

6. The cable(s) connecting the first two backplanes is (are)

61 cm (2 ft) or more in length.

7. The cable(s) connecting the second backplane to the third

backplane is (are) 122 cm (4 ft) longer or shorter than

the cable(s) connecting the first and second backplanes.~

8. The combined 1length of both cables cannot exceed 4.€8 m

(16 ft).

9. The cables used must have a characteristic impedance of

120 ohms.

Q22-Bus Specification

BACKPLANE WIRE ol|‘_' 35.6CM (18 IN) MAX)
] —{ l CABLE

ONE ONE

250 Q UNIT UNIT

LOAD LOAD

+

34V . — g

20 AC LOADS MAX

PROCESSOR

BACKPLANE WIRE _I|'—— 25.4 CM (10 IN) MAX

[7
ONE ONE

UNIT UNIT

LOAD LOAD

CABLE .
-

, CABLE

ADDITIONAL 20 AC LOADS MAX
CABLES AND

BACKPLANE l BACKPLANE WIRE

25.4 CM {10 IN}) MAX ’ l
(4

|
ONE ONE

1200 UNIT UNIT
34V LOAD LOAD

CABLE/ . J
TERM M

20 AC LOADS MAX

NOTES:

1. TWO CABLES (MAX) 4.88 M (16 FT) (MAX)
TOTAL LENGTH.

2.20 DC LOADS TOTAL (MAX).

MR.6035

Figure A-18 Multiple-Backplane Configuration

Q22-Bus Specification

A.8.1 Power Supply Loading

Total power requirements for each backplane can be determined by

obtaining the total power requirements for each module in the

backplane. Obtain separate totals for +5 V and +12 V power. Power

requirements for each module are specified in the Microcomputer

Interfaces Handbook.

When distributing power in multiple-backplane systems, do not

attempt to distribute power via the 022-Bus cables. Provide

separate, appropriate power wiring from each power supply to each

backplane. Each power supply should be capable of asserting BPOK H

and BDCOK H signals according to bus protocol; this is required if

automatic power-fail/restart programs are implemented, or if

specific peripherals require an orderly power-down halt segquence.

The proper use of BPOK H and BDCOK H signals is strongly

recommended.

A.9 MODULE CONTACT FINGER IDENTIFICATION

Digital's plug-in modules all use the same contact finger (pin)

identification system., A typical pin is shown in Figure A-19,

The 022-Bus is based on the use of quad-height modules that plug

into a 2-slot bus connector. Each slot contains 36 lines (18 lines

on both the component side and the solder side of the circuit

board).

Slots, row A, and row B include a numeric identifier for the side

of the module. The component side is designated side 1, the solder

side is designated side 2, as shown 1in Figure A-20. Letters

ranging from A through V (excluding G, I, 0, and Q) identify a

particular pin on a side of a slot. Table A-4 lists and identifies

the bus pins of the quad-height module. A bus pin identifier

ending with a 1 is found on the component side of the board, while

a bus pin identifier ending with a 2 is found on the solder side

of the board.

The positioning notch between the two rows of pins mates with a

protrusion on the connector block for correct module positioning.

BE2

MODULE SIDE

SLOT (ROW) IDENTIFIER IDENTIFIER

“SLOT B" “SIDE2" (SOLDER

SIDE)

PIN IDENTIFIER

“"PIN E”

MR-16553

Figure A-19 Typical Pin Identification System

Q22-Bus Specification

ROW A

ROW B

ROWC

SIDE 2

SOLDER SIDE
ROW D

COMPONENT S)DE

SIDE 1

MR.5456

Height Module Contact Finger IdentificationQuadFigure A-20

A-37

Q22~-Bus Specification

Table A-4 Bus Pin Identifiers

Bus Pin Mnemonic(s) Description

AAl

ABl

ACl

AD1

AE1l

AF1

AH1

AJl

AK1

ALl

BIRQS L

BIRQ6 L

BDAL16 L

BDAL17 L

SSPARE1l

(alternate +5B)

SSPARE2

SSPARE3

SRUN

GND

MSPAREA

MSPAREB

Interrupt request priority level 5.

Interrupt request priority level 6.

Extended address bit during addressing
protocol; memory error data line during
data transfer protocol.

Extended address bit during addressing
protocol; memory error logic enable
during data transfer protocol.

Special Spare ~-- Not assigned or bussed
in Digital's cable or backplane
assemblies; available for user
connection. Optionally, this pin may be

used for +5 V battery (+5 B) backup

power to keep critical circuits alive

during power failures. A Jumper Iis
required on Q22-Bus options to open
(disconnect) the +5 B circuit in systems
that use this line as SSPARE1.

Special Spare -- Not assigned or bussed
in Digital's cable or backplane
assemblies; available for user

interconnection. In the highest-priority

device slot, the processor may use this

pin for a signal to indicate its RUN

state.

Special Spare -- Not assigned or bussed

simultaneously in Digital's cable or

backplane assemblies; available for user

interconnection. An alternate SRUN

signal may be connected in the

highest-priority set.

Ground -- System signal ground and dc

return.

Maintenance Spare -- Normally connec?ed

together on the backplane at e§ch option

location (not a bussed connection).

Maintenance Spare -- Normally connec?ed

together on the backplane at egch option

location (not a bussed connection).

Q022~Bus Specification

Table A-4 Bus Pin Identifiers (Cont)

Bus Pin Mnemonic(s) Description

AM1

AN1

APl

ARl

GND

BDMR L

BHALT L

BREF L

Ground -- System signal ground and dc

return.

Direct Memory Access (DMA) Reguest -- A

device asserts this signal to request

bus mastership. The processor arbitrates

bus mastership between itself and all

DMA devices on the bus. If the processor

is not bus master (it has completed a

bus cycle and BSYNC L is not being

asserted by the processor), it grants

bus mastership to the requesting device

by asserting BDMGO L. The device

responds by negating BDMR L and

asserting BSACK L.

Processor Halt -- When BHALT L is

asserted for at 1least 25 us, the

processor services the halt interrupt

and responds by halting normal program

execution. External interrupts are

ignored but memory refresh interrupts in

Q22 are enabled if W4 on the M7264 and

M7264~YA processor modules is removed

and DMA request/grant sequences are

enabled. The processor executes the ODT

microcode, and the consocle device

operation is invoked.

Memory Refresh -- Asserted by a DMA

device. This signal forces all dynamic

MOS memory units requiring bus refresh

signals to be activated for each BSYNC

L/BDIN L bus transaction. It is also

used as a control signal for block mode

DMA,

CAUTION:

The wuser must avoid multiple DMA data

transfers (burst or "hot" mode) that

could delay refresh operation if using

DMA refresh. Complete refresh cycles

must occur once every 1.6 ms if

required.

022-Bus Specification

Table A-4 Bus Pin Identifiers (Cont)

Bus Pin Mnemonic(s) Description

AS1

ATl

AUl

AVl

BAl

BBl

BC1

BD1

BE1l

BF1

+12 B or +5 B

GND

PSPARE 1

+5 B

BDCOK H

BPOK H

SSPARE4

BDAL18 L

(22-bit only)

SSPARES

BDAL19 L

(22-bit only)

SSPARES6

BDAL20 L

SSPARE7

BDAL21 L

+12 Vdc or +5 V battery backup power to

keep critical c¢ircuits alive during

power failures. This signal is not

bussed to BSl in all of Digital’'s

backplanes. A jumper is required on all

022-Bus options to open (disconnect) the

backup circuit from the bus in systems

that wuse this 1line at the alternate

voltage.

Ground -- System signal ground and dc

return.

Spare -- Not assigned; customer usage

not recommended. Prevents damage when

modules are inserted upside down.

+5 V Battery Power -- Secondary +5 V

power connection. Battery power can be

used with certain devices.

DC Power OK —-- A power supply-generated

signal that is asserted when the

available dc voltage 1is sufficient to

sustain reliable system operation.

Power OK -- Asserted by the power supply

70 ms after BDCOK is negated when ac

power drops below the value required to

sustain power (approximately 75% of

nominal). When negated during processor

operation, a power-fail trap seguence is

initiated.

Special Spare in the Q22-Bus -- Not

assigned. Bussed in 22-bit cable and

backplane assemblies; available for user

interconnection.

CAUTION:
.

These pins may be used by manufacturing

as test points in some options.

In the Q22-Bus, these bussed address

lines are address lines 521:18>;

currently not used during data time.

In the 022-Bus, these bussed address

lines are address lines <21:18>;

currently not used during data time.

Q22-Bus Specification

Table A-4 Bus Pin Identifiers (Cont)

Bus Pin Mnemonic(s) Description

BH1

BJ1

BK1

BL1

BM1

BN1

BP1

BR1

BS1

BT1

BU1

BV1

AA2

SSPARES

GND

MSPAREB

MSPAREB

GND

BSACK L

BIRQ7 L

BEVNT L

+12 B

GND

PSPARE2

+5

+5

Special Spare -- Not assigned or bussed
in Digital’s cable and backplane
assemblies; available for user
interconnection.

Ground -~ System signal ground and dc
return,

Maintenance Spare -- Normally connected
together on the backplane at each option
location (not a bussed connection).

Ground -- System signal ground and dc
return.

This signal is asserted by a DMA device
in response to the processor's BDMGO L
signal, indicating that the DMA device
is bus master.

Interrupt request priority level 7.

External Event Interrupt Request -- When
asserted, the processor responds by
entering a service routine via vector
address 1008. A typical wuse of this
signal is as a line-time clock
interrupt.

+12 Vdc battery backup power (not bussed
to AS]l in all of Digital's backplanes).

Ground -- System signal ground and dc
return.

Power Spare 2 -~ Not assigned a
function; not recommended for use. If a
module 1is using -12 V (on pin AB2), and
if the module is accidentally inserted
upside down in the backplane, -12 vdc
appears on pin BUl.

+5 V Power -- Normal +5 Vdc system
power,

+5 V Power -- Normal +5 Vdc system
power.

A-41

Q22-Bus Specification

Table A-4 Bus Pin Identifiers (Cont)

Bus Pin Mnemonic(s) Description

AB2

AC2

AD2

AE2

AF2

AH2

-12

GND

+12

BDOUT L

BRPLY L

BDIN L

=12 V Power -- =12 Vdc power for

(optional) devices requiring this

voltage.

NOTE:

Each Q22-Bus module that requires

negative voltages contains an inverter

circuit that generates the required

voltage(s). Therefore, -12 V power is

not required with Digital's options.

Ground -~ System signal ground and dc

return.

+12 V Power -- +12 Vdc system power.

Data Output -~ When asserted, BDOUT

implies that valid data is available on

BDAL<0:15> L and that an output

transfer, with respect to the bus master

device, 1is taking place. BDOUT L is

deskewed with respect to data on the

bus. The slave device responding to the

BDOUT L signal must assert BRPLY L to

complete the transfer.

Reply -- BRPLY L is asserted in response

to BDIN L or BDOUT L and during IAK

transactions. It is generated by a slave

device to indicate that it has placed

its data on the BDAL bus or that it has

accepted output data from the bus.

Data Input -- BDIN L is used for two

types of bus operations:

When asserted during BSYNC L time, BDIN

L implies an input transfer with respect

to the current bus master, and requires

a response (BRPLY L). BDIN L is asserted

when the master device is ready to

accept data from a slave device.

When asserted without BSYNC L, %t

indicates that an interrupt operation is

occurring. The master device must deskew

input data from BRPLY L.

A-42

Q22~-Bus Specification

Table A-4 Bus Pin Identifiers (Cont)

Bus Pin Mnemonic(s) Description

AJ2

AK2

AL2

AM2

AN2

BSYNC L

BWTBT L

BIRQ4 L

BIAKI L

BIAKO L

Synchronize -- BSYNC L is asserted by

the bus master device to indicate that

it has placed an address on BDAL<0:17>
L. The transfer 1is in process until

BSYNC L is negated.

Write/Byte -- BWTBT L 1is used in two
ways to control a bus cycle:

It is asserted at the leading edge of
BSYNC L to indicate that an output

sequence (DATO or DATOB), rather than an

input sequence, is to follow.

It is asserted during BDOUT L, in a
DATOB bus cycle, for byte addressing.

Interrupt Request Priority Level 4 -- A

level 4 device asserts this signal when
its interrupt enable and interrupt
request flips-flops are set. If the PS

word bit 7 is 0, the processor responds
by acknowledging the request by

asserting BDIN L and BIAKO L.

Interrupt Acknowledge ~-- In accordance

with interrupt protocol, the processor
asserts BIAKO L to acknowledge receipt

of an interrupt. The bus transmits this
to BIAKI L of the device electrically

closest to the processor. This device
accepts the interrupt acknowledge under

two conditions: 1.) the device requested
the bus by asserting BIRQXL, and 2.) the
device has the highest-priority
interrupt reguest on the bus at that
time.

If these conditions are not met, the
device asserts BIAKO L to the next
device on the bus. This process

continues in a daisy-chain fashion until
the device with the highest-interrupt
priority receives the interrupt
acknowledge signal.

Q22-Bus Specification

Table A-4 Bus Pin Identifiers (Cont)

Bus Pin Mnemonic(s) Description

AP2

AR2

AS2

AT2

AU2

AV2

BBS7 L

BDMGI L

BDMGO L

BINIT L

BDALO L

BDAL1 L

Bank 7 Select -- The bus master asserts

this signal to reference the I/0 page

(including that portion of the I/O page

reserved for nonexistent memory). The

address in BDAL<0:12> L when BBS7 L is

asserted is the address within the I/0

page.

Direct Memory Access Grant -- The bus

arbitrator asserts this signal to grant

bus mastership to a requesting device,

according to bus mastership protocol.

The signal is passed in a daisy-chain

from the arbitrator (as BDMGO L) through

the bus to BDMGI L of the next priority

device (the device electrically closest

on the bus). This device accepts the

grant only if it requested to be bus

master (by a BDMR L). If not, the device

passes the grant (asserts BDMGO L) to

the next device on the bus. This process

continues until the requesting device

acknowledges the grant.

CAUTION:

DMA device transfers must not interfere

with the memory refresh cycle.

Initialize -~ This signal is used for

system reset, All devices on the bus are

to return to a known, initial state;

that 1is, registers are reset to zero,

and logic is reset to state 0.

Exceptions should be completely

documented in programming and

engineering specifications for the

device.

Data/Address lines -- These two lines

are part of the 16-line data/address bus

over which address and data information

are communicated. Address information is

first placed on the bus by the bus

master device, The same device then

either receives input data from, or

outputs data to, the addressed slave

device or memory over the same bus

lines.

022-Bus Specification

Table A-4 Bus Pin Identifiers (Cont)

Bus Pin Mnemonic(s) Description

BA2 +5 +5 V Power -- Normal +5 Vdc system

power.

BB2 -12 -12 v Power (voltage normally not
supplied) -— -12 vdc power for
(optional) devices requiring this

voltage.

BC2 GND Ground -- System signal ground and dc

return.

BD2 +12 +12 V Power -- +12 V system power.

BE2 BDAL2 L Data/Address Lines -- These 14 lines are
BF2 BDAL3 L part of the 16-line data/address bus.
BH2 BDAL4 L

BJ2 BDALS L

BK2 BDAL6 L

BL2 BDAL7 L

BM2 BDALS L

BN2 BDALY9 L

BP2 BDAL1O L

BR2 BDAL1l L

BS2 BDAL12 L

BT2 BDAL13 L

BU2 BDALl14 L

BV2 BDAL1S L

A-45

APPENDIX B

ACRONYMS

AIE ~- Alarm Interrupt Enable

ANSI - American National Standards Institute

AP -- Argument Pointer

ASTLVL -- Asynchronous System Trap LeVel

BBU -- Battery Backup Unit

BCD ~-- Binary Coded Decimal

BDR -- Boot and Diagnostic Register

BM -~ Byte Mask

BRS -- Baud Rate Select signals

CEAR -~ CPU Error Address Register

CPMBX -- Console Program MailBoX

CRC -- Cyclic Redundancy Check

CSR -- Control and Status Register

DEAR -- DMA Error Address Register

DM -- Data Mode

DMA -- Direct Memory Access

DSE -- Daylight Saving Enable

EDITPC ~- EDIT Packed to Character string

EIA -- Electronic Industries Association

ERR -- ERRor signal

FP -- Frame Pointer

FPU -- Floating Point Unit

Acronyms

ICCS -- Interval Clock Control and Status register

IPCR -~ InterProcessor Communication Register

IPL -- Interrupt Priority Level

IPR -- Internal Processor Register

ISP -- Interrupt Stack Pointer

LSI -- Large Scale Integration

MAPEN -- memory management (MAPping) ENable register

MBZ ~- Must Be Zero

MCS -~ Multinational Character Set

MFPR -- Move From Processor Register

MMU -- Memory Management Unit

MOP -- Maintenance Operation Protocol

MSER -- Memory System Error Register

MTPR -- Move To Processor Register

POBR -- PO (P zero) Base Register

P1BR ~- Pl Base Register

PC -- Program Counter

PIE -- Periodic Interrupt Enable

POLR -- PO (P zero) Length Register

P1LR -- Pl Length Register

POPT -- PO (P zero) Page Table

P1PT -- Pl Page Table

PROM -- Programmable Read-Only Memory

PSL -- Processor Status Longword

PSW -- Processor Status Word

PTE -- Page Table Entry

RPB -- Restart Parameter Block

Acronyms

SBR -- System Base Register

SCA -- System Communications Architectu
re

SCB -- System Control Block

SCBB -- System Control Block Base

SID -- System IDentification register

SIE -- System Identification Extension

SIRR -- Software Interrupt Request Register

SISR -- Software Interrupt Summary Register

SLR -- System Length Register

SLU -- Serial Line Unit

SP -- Stack Pointer

SPT -- System Page Table

SQWE -- SQuare-Wave Enable

TBIA -- Translation Buffer Invalidate All

TBIS -- Translation Buffer Invalidate Single

TOY -- Time-of-Year

UIE -- Update Interrupt Enable

UIP -- Update in Progress bit

VRT -- Valid RAM and Time bit

VMB -- Virtual Memory Bootstrap

INDEX

Address space

halt mode, 4-43

run mode, 4-43

Address translation

PO region, 4-17

Pl region, 4-20

process space, 4-17

Arbiter mode, 1-8, 4-48

Argument pointer (AP), 4-1

Auxiliary mode, 1-8, 4-48

Battery backup unit (BBU), 2-9

console program check of, 3-5

Boot and diagnostic register

(BDR), 4-30

Boot command flags, 3-15

Bootstrap, 3-10, 3-36

auxiliary processor, 3-19

command, 3-14

from DEQNA, 3-19

from disk, 3-14

from PROM, 3-17

from tape, 3-17
order of devices, 3-13

secondary, 3-13, 3-20

sequence, 3-10

supported devices, 3-13

Catastrophic error, 3-35
CD interconnect, 1-3
CK-KA630-A insert, 2~9
@ command, 3-36
Configuration board, 2-5
Connector pinouts

J1, 2-2

J2, 2-3

J3, 2-5

Console commands

e, 3-36

binary load and unload, 3-25%

boot, 3-26

comment, 3-27

continue, 3-27

deposit, 3-27

examine, 3-29

find, 3-30

halt, 3-31

initialize, 3-31

load, 3-26

microstep, 3-36

next, 3-36

repeat, 3-31

set, 3-36

start, 3-32

test, 3-32

unjam, 3-32

Console command syntax, 3-24

Console control characters

break, 3-23

carriage return, 3-22

control C, 3-23

control O, 3-23

control Q, 3-23

control R, 3-23

control U, 3-22

rubout, 3-22

Console error messages, 3-33

Console 1/0 mode, 3-22, 3-35,
5-1

Console languages, 3-6

Console program, 3-1, 4-33

bitmap, 3-4

initialization, 3-3

power-up modes, 3-3

Index-1

Index

Console program mailbox

(CPMBX), 3-4, 3-7, 4-39

Console serial line unit (SLU),

4-40

Console terminal type, 3-5

Control and status register

A, 4-36

B, 4-36

Cc, 4-37

D, 4-37

CPU error address register,

4-27

CPU panel insert, 2-9

Current frame pointer, 4-1

D-stream, 4-32

Data types

supported, 1-2

DMA error address register,

4-28

DMA latency, 4-14

Enclosures

compatible, 2-11

Entry/dispatch, 3-7

Error

catastrophic, 3-35

hardware, 4-12

nonexistent memory, 4-12

parity, 4-12

Error messages, 3-33

Error register

CPU, 4-27

DMA, 4-28

memory, 4-24

Exceptions, 4-16

Gate array, 1-3

Halt, 2-4, 3-1, 3-2, 3-7, 3-22

conditions, 4-9

error codes, 4-9

messages, 3-34

on break, 4-45

Hardware errors, 4-12

HLT ENB, 2-4, 4-31

I-stream, 4-32

Instruction set, 1-2, 4-5

Interprocessor doorbell, 4-6

Interrupt latency, 4-14

Interrupt priority registers,

4-6, 4-7

Interrupt vector timeouts, 4-13

Index-2

Interrupts, 4-6

Interval timer, 4-40, 4-46

J1 connector pinouts, 2-2

J2 connector pinouts, 2-3

J3 connector pinouts, 2-5

KA630-AA CPU module

arbiter mode, 1-8, 4-48

auxiliary mode, 1-8, 4-48

connectors, 2-~1

KA630CNF configuration board,

2-5

Language selections

LK201 keyboard, 3-7

Languages, 3-1

Latency, 4-14

LED error codes

3, 5-7

-

v

i

NLe
-]

~

w
w
t
;
:
u
\
m
m

t

N
N

W
W
U
U
A
O
D
N
N

[=
]

~

w
w
t
i
u
w
w

summary, 5-7

Load command, 3-36

Local memory, 1-3

M7607-AA, 1-3

M7608-AA, 1-3

Machine check parameters, 4-8

Mailbox

See Console program mailbox

Mapping registers, 4-21, 4-22

Memory

data transfer cycle, 4-28

management, 4-16

management control registers,

4-16

operation, 4-28

refresh cycle, 4-28

registers, 4-22, 4-24

Memory management enable

(MAPEN), 4-16

Messages

halt, 3-34

Microstep command, 3-36

Index

MicroVAX 78032 microprocessor

chip, 1-2

MicroVax CPU chip, 1-2

MicroVAX interface gate array,

1-3

MS630 memory, 1-4

Multilevel interrupts, 4-45

Multiprocessing, 4-48

features, 4-49

Multiprocessor based systems

pDP-11, 4-49

Multinational character set

Next command, 3-36

No Sack timeouts, 4-14

Nonexistent memory errors,

4-12

On-board memory, 1-3

PO region address translation,

4-17

Pl regicon address translation,

4-20

Page table entry (PTE), 4-17,

4-21

Parity errors, 4-12

Physical address space, 4-16

Power-up mode, 5-1

Primary bootstrap, 3-12

Process space address

translation, 4-17

Processor registers, 3-24

categories, 4-3

list, 4-4

summary, 4-4

Processor state, 4-1

Processor status longword

(PSL), 4-2

Processor status word (PSW},

4-1

Program counter (PC), 4-1

Q22-Bus, 3-5, 4-21, 4-23

cycle, 4-23

initialize, 3-11

map, 4-23

RAM memory, 4-38

Registers

console, 4-41

control and status A, 4-36

control and status B, 4-36

control and status C, 4-37

control and status D, 4-37

general purpose, 4-1

interprocessor communication,

4-46

mapping, 4-21

memory, 4-24

memory management control,

4-16

memory management enable,

4-16

processor, 4-3

system identification (SID),

4-15

time-of-year, 4-34, 4-35

watch chip, 4-34

Restart, 3-8

Restart parameter block (RPB),

3-8, 3-20

format, 3-9

ROM address space, 4-32

ROM memory, 4-32

Run mode, 4-33

Secondary bootstrap, 3-20

Serial line unit (SLU), 4-40

Set command, 3-36

Specifications

KA630-AA, 1-8

Stack pointer, 4-1

System base register (SBR),

4-17

System control block (SCB),

4-10

. System identification

register (SID), 4-15

System length register (SLR),

4-17

System page table (SPT), 4-17

System space address

translation, 4-17

Index-3

Index

Test

battery backup unit (BBU),

3-5

interprocessor communication

register (IPCR), 3-5

Q22-Bus, 3-5

VCBOl/VCB02, 3-5

Time-of-year (TOY)

BBU, 2-9, 4-34

clock, 3-5, 4-34

registers, 4-35

Timeouts, 4-13

Translation buffer invalidate

all (TBIA), 4-16

Translation buffer invalidate

single (TBIS), 4-1%6

VCBO1/VCB(O2 console

hardware, 3-5

Virtual address space, 4-16

Virtual memory bootstrap (VME),

3-12

registers, 3-12

Index~4

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	A-39
	A-40
	A-41
	A-42
	A-43
	A-44
	A-45
	B-01
	B-02
	B-03
	Index-1
	Index-2
	Index-3
	Index-4

