
Debugging over Ethernet Using
ARM SDT:
An Application Note

Order Number: EC−RB5PA−TE

February 1998

This document describes how to debug applications using the Angel remote
debugger over an Ethernet connection. It also provides a description of how
Angel interacts with the internet protocol (IP) stack and a description of the IP
stack software sources.

Revision/Update Information: This is a new document.

Digital Equipment Corporation
Maynard, Massachusetts
http://www.digital.com/semiconductor

February 1998

While DIGITAL believes the information included in this publication is correct as of the date of

publication, it is subject to change without notice.

Digital Equipment Corporation makes no representations that the use of its products in the manner

described in this publication will not infringe on existing or future patent rights, nor do the

descriptions contained in this publication imply the granting of licenses to make, use, or sell equipment

or software in accordance with the description.

© Digital Equipment Corporation 1998. All rights reserved.

The following are trademarks of Digital Equipment Corporation: DIGITAL, DIGITAL Semiconductor,

and the DIGITAL Logo.

ARM is a registered trademark and StrongARM is a trademark of Advanced RISC Machines Ltd.

DIGITAL Semiconductor is a Digital Equipment Corporation business.

All other trademarks and registered trademarks are the property of their respective owners.

iii

Contents

1. Introduction ..1

2. Getting Started ...1

2.1 Target ...2

2.2 BOOTP ...2

2.3 Host Side ..2

2.4 Troubleshooting ...4

3. Description ..4

3.1 BOOTP Sequence ..4

3.2 Host to Target Connection ..5

4. Limitations and Known Problems...5

4.1 General...5

4.2 EBSA-110...5

4.3 EBSA-285...5

5. Software Description ..6

5.1 How the IP Stack Fits with Angel – Overview..6

5.2 Relationship Between the Source Files..7

5.3 Angel Device Driver ..8

5.4 The Socket Style Interface ..8

5.5 The UDP Layer..9

5.6 The IP layer ...9

5.7 The Ethernet Layer ...9

5.8 Device Driver ...9

6. Additional Information...10

 Support, Products, and Documentation…………………………………………………………..11

iv

Figures

Figure 1 Debug System Block Diagram... 1
Figure 2 ARM Debugger Options Menu.. 2
Figure 3 Debugger Configuration .. 3
Figure 4 Angel Remote Configuration... 3
Figure 5 IP Stack Layout.. 6
Figure 6 Source Calling Structure .. 7

1

1. Introduction

All of the DIGITAL Semiconductor StrongARM evaluation boards support the

Angel remote debugger. This allows a host-based debugger to load and debug

software in the remote target via the Angel Debug Protocol (ADP). ADP is

supported in both serial and Ethernet-based connections. The ADW is the ARM
Debugger for Windows, currently Version 2.11.

To facilitate faster downloads and faster debugging of application software, an

internet protocol (IP) stack has been added to the Angel debugger target for some

StrongARM evaluation boards; for example, EBSA-285 and EBSA-110. See

Figure 1, Debug Block Diagram.

Figure 1 Debug System Block Diagram

For it to resolve its own IP address, the system requires a BOOTP server to be

running on the network to which the target is connected. The user may require

assistance from a system administrator to do this. Beyond this, the differences

between using the ARM debugger over serial and Ethernet should be largely
transparent, other than the faster download speed.

2. Getting Started

To set up the target system for remote debugging via IP will require the following

information:

• The BOOTP server needs to be set up to respond to the MAC address of the

target in order to use the Ethernet connection. The MAC address of an

Ethernet card should be provided on a label on the card itself. In the case of

the EBSA-110, it is on the Angel banner, if the version of Angel installed is

Ethernet aware. The banner may be read by connecting a terminal to COM1 of
the EBSA-110 at 9600 baud, no parity, 8 data bits, 1 stop bit.

• To configure the host debugger, the user will need to know the IP address that

will be assigned to the target system by the BOOTP server. This will be set up

within the BOOTP server.

Host/Target Communications

Host

ADP

Target

ADW Angel

2

2.1 Target
Set up the target hardware (for example, in the case of an EBSA-285, insert the

EBSA-285 into the system slot of a PCI backplane
1
) and the Ethernet card into one

of the remaining slots. Connect the network cable and power up. The target will

now attempt to execute BOOTP, then wait for a connect request from a host (on all

supported communications media).

2.2 BOOTP
The BOOTP server will need to be set up on the same subnet as the target to be

debugged. The user will need to add an entry in the BOOTP table that maps the

IP address to be assigned to the target to the MAC address of the Ethernet device
associated with the target.

It may be useful to attach the target system and power it on, then verify that

BOOTP is functioning correctly. This may be done by checking the details of

BOOTP transactions in the log on the BOOTP server. There should be a record of

the target system in use successfully executing BOOTP.

2.3 Host Side
Some options need to be changed to configure the host side debugger; namely, set
the IP address and select Ethernet as a connection medium.

To do this, select Options | Configure Debugger from the menu bar (see Figure 2,

ARM Debugger Options Menu).

Figure 2 ARM Debugger Options Menu

Next, select Remote_A, which is the remote Angel debugger plug-in, then press the

Configure button (see Figure 3 Debugger Configuration).

1 The EBSA-285 will need to be configured correctly. See the DIGITAL Semiconductor EBSA-285
Evaluation Board Reference Manual, EC-R6M5B-TE.

3

Figure 3 Debugger Configuration

The details of IP address and Ethernet may be entered in the window after

pressing Configure (see Figure 4 Angel Remote Configuration).

Note: Heartbeat is switched on. Heartbeats are a part of the ADP and are used to

detect lost packets.

Figure 4 Angel Remote Configuration

4

Press OK on all of the dialog boxes.

Pressing OK on the Debugger Configuration dialog () will cause the debugger to

attempt a connection over IP. If the target has had time to complete its BOOTP

(about 10-20 seconds), then the debugger should connect. If not, the user may need

to retry.

Using the debugger from this point is the same as using over serial. (See the

Limitations and Known Problems section.)

2.4 Troubleshooting
If the remote debugger cannot establish a connection, try the following:

• Check that the EBSA is powered on and configured.

• Check that there is an Ethernet cable connected to both the host and target

system and the BOOTP server.

• Is there a BOOTP server set up on the network that will respond to the

Ethernet card in your system (that is, is it set up to respond to the MAC

address of the target Ethernet card in use)? Ask the system administrator for

help, if necessary.

• Ensure that the host and target are on the same subnet of the network.

 The target must support the Ethernet card. Currently, the EBSA-285 supports

 21040 and 21140 based Ethernet cards operating over 10BASE-T.

• Check that the EBSA-285 is in the system slot of the EBSA-BPL. For a

description of the EBSA-BPL, see the DIGITAL Semiconductor PCI

Development Backplane User’s Guide, EC-R6M4B-TE.

• Ensure the link light is active on the Ethernet card. If it is not, the card is not

being initialized. This may be because of jumper settings on the EBSA, a

defective lead, or an inactive hub.

3. Description

3.1 BOOTP Sequence
BOOTP is a protocol that was designed to download programs to diskless network

machines but may also be used to determine the IP address of a system. The

target transmits broadcast BOOTP request packets and then listens for replies

from a BOOTP server or times out in the attempt. (It will transmit 4 requests,

approximately 2 seconds apart.) When a valid BOOTP packet is received and

intended for the target, the IP address is copied from it and then is stored in the
target system to use as its own address.

If a valid address is assigned, a connection may be made from the ADW using this

target IP address; otherwise, the IP connection to Angel will not be usable.

During the BOOTP period, approximately 10-20 seconds, it will not be possible to

connect to Angel by any medium.

5

3.2 Host to Target Connection
To initiate a connection, the host sends a UDP packet containing a ‘magic’ word to

the target IP address. This is sent over a known port number, the control port, to

the target from the host.

The target replies with a UDP packet containing the other application port and

debug port numbers to the host. The channel is now considered to be open and is

used like any other medium from the viewpoint of Angel and the user.

4. Limitations and Known Problems

4.1 General
The Ethernet stack will be disabled once a connection has been established using a

medium other than Ethernet. Solution: The target will require a reset to re-
enable Ethernet.

2

If there is a large load on the host system, such as ‘Microsoft findfast’ running

while using the debugger over Ethernet, then a packet may be missed by the host

and cause the debugger to hang. Solution: Try to use the debugger on its own if
possible.

Stepping too rapidly may cause the debugger to hang. The host end of the link

appears to miss a packet being sent from the target. Solution: Wait for the
debugger screen to update after each step.

Beware when debugging programs with large amounts of text output. On some

machines, Windows may struggle to update the windows quickly, and may lose

mouse clicks and key presses.

4.2 EBSA-110
Supports the onboard AM79C961 Ethernet controller only.

4.3 EBSA-285
The EBSA-285 supports only one Ethernet card per backplane. It will use the first

Ethernet card it finds whether or not it is in use by another device. Each slot is

checked for a particular device type, in descending slot number order, before

checking for the next device type in each slot. The process will stop when a card is

found or there are no more known device types.

The device search order is: 21040(*), 21041, 21140(*), 21142, and 21143.

Note: Only (*) device types are currently supported, although Angel will attempt

to set up every device type in this list.

The EBSA-285 supports 21040 and 21140 based devices only.

2 It is possible to connect via serial after Ethernet has been used without requiring a reset.

6

5. Software Description

The following is a description of how the various source modules interact and their
primary functions.

The software was built using the ARM SDT Version 2.11 and the software

supplied with the EBSA board.

For toolkit information, refer to: http://www.arm.com/

For EBSA software, refer to:
http://www.digital.com/semiconductor/strongarm/strongar.htm

5.1 How the IP Stack Fits with Angel – Overview
Access to the top of the Ethernet stack is via a socket style interface (see Section

5.4). At startup, Angel will call the netboot module. It is within this code that the

initialization functions for each module are called along with the BOOTP

sequence. If successful, Angel will then attempt to open three sockets: one for

control, one for application communication, and one for debug information.

However, if netboot fails, then Angel is informed that no device is present
3
.

Figure 5 IP Stack Layout

3 Angel ignores this value; therefore, a workaround is used. The IP stack is accessed only if it is the active
device.

Angel

Angel Device Driver

Socket Interface

UDP Layer

BOOTP

IP Layer

Ethernet Layer

ARP

Hardware Device Driver

Ethernet Hardware

Port (PCI or
ISA)

Network

Shared
Memory

7

The sockets may then be polled via recv/recvfrom functions. The data from

these packets is passed up into Angel.

When a write is requested by Angel, the data is passed into the sendto function,

packaged, and sent down the IP stack layers to the destination host.

The IP stack is not interrupt driven; it is polled. It was determined that there were

no advantages in driving the IP stack by interrupts rather than polling.

The Angel device driver layer contains all the functions Angel knows about

concerning the IP stack.

5.2 Relationship Between the Source Files
The file interaction is shown in Figure 6, Source Calling Structure.

The frame buffers circulate through the stack from top to bottom for writes, and

bottom to top on reads. They are ‘borrowed’ from a central pool in the shared

memory area (see Figure 5) but do not leave the realms of the IP stack. Instead,

their contents are copied to/from buffers passed into the socket layer. The frame

buffers are allocated in an area of memory that is accessible by both the

StrongARM and the Ethernet devices.

Figure 6 Source Calling Structure

ARM_ETHER.C

SOCKET.C

NETBOOT.C

UDP.C

IP.C

ETHERNET.C

EDEVICE.C

DRIVER.C

BOOTP.C

ARP.C

netboot calls all
other modules

F
ra

m
e

 B
u

ff
e

rs

F
ra

m
e

 B
u

ffe
rs

NET_BUFF.C

8

5.3 Angel Device Driver

File: arm_ether.c

Usage: Interacts with socket layer, calls initialization routines for the IP stack,

opens sockets, polls stack for data, and handles copying read/write buffers between

Angel and the stack.

This contains the standard Angel device driver functions. Angel calls

Ethernet_Control with a value of DC_INIT during its initialization phase. It is

at this point that the IP stack is initialized, in file netboot.c, followed by an

attempt to open and bind the three required sockets in Ethernet_init. The

three sockets are called ‘control’, ‘application’, and ‘debug’. Note: All IP stack

operations occur in supervisor mode.

Polling the three sockets occurs in the Angel_EthernetPoll routine, but only if

the stack is correctly initialized and Ethernet is the active medium. When a packet

is found to be waiting and is destined for one of the open sockets, the buffer is

copied from stack buffer to Angel buffer and an Angel callback is queued to handle
the data.

5.4 The Socket Style Interface

File: socket.c

Usage: Partial socket layer implementation.

This is a fraction of the implementation of a full socket layer, implementing only

the functions necessary for the Angel application. These functions and their
limitations include:

• SOCKET – Socket ignores the protocol it is asked to use, assuming UDP only.

• BIND – Bind will attach only a socket to a UDP port. It does a check to see if

the protocol/connection type combination exists. They must be

SOCK_DGRAM/AF_INET for this to function correctly.

• RECVFROM – The stack is polled. Hence, when recvfrom is called, the

lower layers are interrogated for packets before checking the outstanding

packet queue in the socket layer. Any packets claimed are removed from the

queue.

• RECV – This calls recvfrom but ignores the extra data in the address

structure.

• SENDTO – The socket number is checked, then the packet is immediately

dispatched down the stack to the UDP layer, making the assumption that this
is the intended transmission protocol.

The socket layer maintains a list of open sockets, and the ports they are bound to,

allowing it to direct packets to the correct destination ports and sockets. Packets

coming in from the Ethernet are passed into the input function from the layer

below (presently only UDP) and are queued to be read later by recv/recvfrom.

Note: The data packets do not move around, only the pointers to them.

Packets destined for the Ethernet are passed from the layer above into the sendto
function.

9

5.5 The UDP Layer

File: udp.c

Usage: Provides unreliable datagram delivery layer. Directs upstream packets to

the layer attached to a bound port number that is indicated within the packet. In

the Angel case, the three ports that are open will correspond to the three opened

sockets.

The UDP layer maintains a table of open port numbers and the input function

associated with each port number. When a packet is passed into the UDP input

function, it is checked for validity before being sent to the function associated with

the port number in the packet, or discarded if the port is not open.

Before using the UDP layer, a port needs to be opened. There are two methods to

acquire a port number. The first step is to open a ‘well known’ port – in this case,

the layer above provides the port number to the register_known_port function.

The second is to let the UDP layer assign a port number with the create_port
function. This port number is used in the udp_register_port function and is

bound to the function pointer specified in the call.

5.6 The IP Layer

File: ip.c

Usage: Handles IP traffic, sending packets from the network to a function bound

with a registered protocol number (for example, UDP) contained within the

packets. Outgoing packets have IP style addresses resolved to MAC type addresses

in the ARP layer before being sent out.

Protocols are registered using the ip_register_protocol function, using the

protocol number and the function associated with that protocol. Incoming packets

are sent to this bound function.

5.7 The Ethernet Layer

File: ethernet.c

Usage: Passes incoming Ethernet packets to a function bound to the protocol type

contained within the packet. Builds Ethernet type packets for transmission and
then passes them to the device driver.

Packets need to be explicitly read using the ethernet_process_one_packet
function, which checks the device driver for outstanding data frames, via an

abstraction layer, passing any valid incoming data up to the function bound to the

packet’s protocol type. Protocols are registered via the

ethernet_register_protocol function. Writes to the wire require a MAC style

address and destination protocol number.

5.8 Device Driver

Files: <driver>.c (for example: dec21040.c , edevice.c)

Usage: Handles initialization, reading and writing with the physical hardware.

The edevice.c contains an abstraction layer to handle multiple devices and sits

above the device drivers.

10

An Ethernet device is hunted during module initialization. The first recognized

device found is set up during the device initialization call. Its MAC address is

retrieved before setting its CSRs to a condition where it filters MAC addresses as

required and listens to the wire. This involves waking the device, acquiring shared

memory areas for descriptors and frames to reside, setting medium selection

registers, and then handing a setup frame containing the MAC address filter
information.

Interrupts are not enabled so the device needs to be polled regularly to check for

incoming frames.

6. Additional Information

The source files referred to within this document, along with prebuilt images, will

have been included with the EBSA board package supplied by DIGITAL

Semiconductor. Information about building Angel is also contained in the package.

This can be used to migrate the port to a derivative design.

Work is ongoing in this area. Revised versions of source and Angel related files

will be provided to the sales channels and posted on the WWW when available.
Please check the release notes for any new features and supported devices.

11

 Support, Products, and Documentation
If you need technical support, a DIGITAL Semiconductor Product Catalog, or help

deciding which documentation best meets your needs, visit the DIGITAL

Semiconductor World Wide Web Internet site:

http://www.digital.com/semiconductor

You can also contact the DIGITAL Semiconductor Information Line or the

DIGITAL Semiconductor Customer Technology Center for support.

For documentation and general information:
DIGITAL Semiconductor Information Line
United States and Canada: 1–800–332–2717
Outside North America: 1–510–490–4753
Electronic mail address: semiconductor@digital.com

For technical support:
DIGITAL Semiconductor Customer Technology Center
Phone (U.S. and international): 1–978–568–7474
Fax: 1–978–568–6698
Electronic mail address: ctc@hlo.mts.dec.com

 DIGITAL Semiconductor Products
To order the DIGITAL Semiconductor products, contact your local distributor.

Evaluation board kits include a complete design kit, Windows NT installation kit,

and an accessories kit with an evaluation board.

 DIGITAL Semiconductor Documentation
The following table lists some of the available DIGITAL Semiconductor
documentation.

Title Order Number

DIGITAL Semiconductor EBSA-285 Evaluation

Board Reference Manual

EC–R6M5B–TE

DIGITAL Semiconductor SA-110 Microprocessor

Evaluation Board Reference Manual

EC–QU5KA–TE

DIGITAL Semiconductor PCI Development

Backplane User’s Guide

EC–R6M4B–TE

12

Third-Party Documentation
You can order the following third-party documentation directly from the vendor.

Title Vendor

Internetworking with TCP/IP:

principles, Protocols and Architecure

Author: Douglas Comer.

ISBN: 0-13-470188-7

ARM Software Development Toolkit

User Guide

Author: Advanced RISC

Machines Ltd.

Doc Number: ARM DUI 0040C

