Digital Equipment Corporation - Confidential and Proprietary
' For Internal Use Only

Mica Working Design Document
Status Values, Messages,
and Text Formatting

Revision 0.5
29—January—1988

Issued by:
Kris K. Barker

™

TABLE OF CONTENTS

CHAPTER 1 STATUS VALUES, MESSAGES, AND TEXT FORMATTING

.. 1-1
1.1 Introductionot it e e e e e e e 1-1
12 Goals e e e e e e e e e e e e e 1-1
1.3 Terminology o oot i e e e e e e e e e 1-2
14 Status Values i i i e e e e e e e e e e e 1-2

1.4.1 SEVERITY Field (bits <2:0>). ittt it ittt i i e ieeeen 1-3
1.42 MESSAGE_NUMBER Field (bits <15:3>)o, 14
1.4.3 FACILITY_NUMBER Field (bits <27:16>)0, 14
144 Reserved Field (bit28) 14
1.4.5 FACILITY_SPECIFIC Field (bit 29) 14
1.4.6 CUSTOMER_FACILITY Field (bit 30).ttt in .. 14
1.4.7 INHIBIT_ MESSAGE_PRINTING Field (bit 31)c...... 14
1.5 Status Messages vttt it i it i i e e e e e e e e e 1-5
1.5.1 Status Message Format it ittt 1-5
1.52 Message Creationttt it eeeeenennnnens 1-6
1.5.3 Message Compilation ittt 1-6
1.5.4 Obtaining and Formating Status Messagesc00ouieun.en.. 1-6
1.5.5 Obtaining and Displaying Status Messageso vvvvmnnnenenn.. 1-8
1.5.6 Local MeSSages v v v vttt i it ittt e ettt ettt e e 1-8
157 Shared Messages. o v vttt ittt it et it e et et 1-9
1.6 Text M eSSages i vttt ittt et ettt e e e e 1-9
1.6.1 Relationship to Status Messagesttt rnnnneenn. 1-9
1.6.2 Obtaining and Formating Text Messagest v ittt v inenennnn. 1-10
1.7 Message Data Structures ittt et 1-10
171 Message Vectors ittt i i i i e e et e e e e e 1-11
1.7.2 Message Section Descriptor Tables 1-12
1.7.3 Message Section Descriptorsttt it it ittt e 1-12
1.74 Message Sections viii ittt ittt ittt e 1-14
1.8 Status Value to Message Translation0 00t innn.. 1-18
1.8.1 Which Message Sectionsare Searched.ot e... 1-18
1.81.1 Nonlocal Messages v v v v v vttt it vt ettt e ettt ettt tne e, 1-18
1812 Local MeSSages . . . -« o v vt vt vttt it et ittt et ettt e e 1-18
1.8.1.3 Shared Messages v vt ittt it et ettt ettt 1-19
1.8.2 How Message SectionsareSearched00, 1-19
1.8.2.1 Deciding Which Message Section Descriptors to Examine 1-19
1.8.2.2 Examining a Message Section Descriptor 1-19
1.8.2.3 Searchinga Message Sectiont iiuneeeeennn 1-20
1.82.4 Mapping MessageImage Files 1-20

1.8.3 Initialization of Message Vectors and Loading of Message ISDs 1-20

1.9 Internationalization. 0t 121
110 Text Formattingttt e, 1-21
1.10.1 Formatting Directives.ot i e, 1-21
1.10.2 Format Texting ittt ettt e et e e 1-24
11021 Examplesottt e e e e 1-25
111 OpenIssuesot viiii it ittt et et e e e e e 1-25
1.12 Dependenciesottt it 1-26
INDEX
FIGURES
T 11 exechstatus value 1-3
1-2 In-Memory Message Data Structure Organization. 1-11
1-3 exec$message_section_descttt 1-12
14 execeounted_string 1-14
1-5 execdmessage_Section 1-15
1-6 exec$facility name 1-16
1-7 exec$message index table, 1-16
1-8 execdmessage Tecordo vttt e e 1-17
TABLES
1-1 Status Terminology oottt 1-2
1-2 Parameters to exec$get_message 1-7
1-3 Parameters to exec$display_message00\ 1-8
14 Parameters to exec$get_text, 1-10
1-5 Comparison Operationsu i mnemnenn. 1-24
1-6 Parameters to exec$format text, 1-24

iv

Digital Equipment Corporation—Confidential and Proprietary
For Internal Use Only

Revision History

Revision
Date Number Author Summary of Changes
5-NOV-1986 0.1 Kris Barker Original.
11-DEC-1986 0.2 Kris Barker Modifications prior to general review.
14-JAN-1987 0.3 Kris Barker Modifications following general review.
14-JAN-1988 0.4 Kris Barker Convert to SDML format and modify prior to primary review.
20-JAN-1988 0.5 Kris Barker Misc. revisions following primary review.

iv

1.1

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

CHAPTER 1
STATUS VALUES, MESSAGES, AND TEXT FORMATTING

Introduction

Status values pass information regarding the success or failure of a process, thread, or procedure
back to the thread which created or called it. Status values are also used to organize and index
messages that convey information about status values in textural form.

This chapter:

Defines the format of status values.

Describes the mechanisms used to translate status values in text strings.
Describes the organization of messages and message files.

Describes the use of messages and message files for internationalizing text.

Outlines the text formatting support provided on Mica. While such support is an important
part of message access and display, it is general purpose in nature and may be used in any
programming situation where text formatting is required.

1.2 Goals

The primary goal of this implementation is to provide a consistent, easy-to-understand, and easy-to-
use way of organizing definition of and access to status information, message text, or both. Within
this general goal are the following specific goals:

To provide a local message capability which allows message definition and access without the
requirement of facility registration.

To provide a convenient way of separating text from an image that uses it, and to allow the text
to be rewritten in another natural language without affecting the image.

To describe and encourage the use of the message capabilities for all user-displayed text in a
program, not just messages, as a way to internationalize programs more easily.

To provide a text formatting capability that addresses internationalization requirements.

Status Values, Messages, and Text Formatting 1-1

Digital Equipment Corporation - Confidential and Proprietary

For Internal Use Only

1.3 Terminology

Table 1-1 summarizes key terms introduced in this chapter.

Table 1-1: Status Terminology

Term

Definition

Abbreviated condition name
Facility or Facility number
Facility name

Formatting directive

Local message

Message section

Message section descriptor

Message section descriptor table
Message string

Message text

Message vector
Severity

Shared message

Status value

A string of characters that briefly describes a particular condition.
A 12-bit binary value that identifies the facility that produced the status value.
A string of characters that identifies the facility that produced the status value.

A command to the text formatting routine that specifies how a parameter to
that routine is to be formatted.

A message local to a specific program. Local messages do not need to be
registered, as access to them is through a single facility. Local messages are
also used to internationalize message text.

A data structure that contains message text, severity information, abbreviated
condition names, and facility names for the messages of a facility.

A data structure that contains information about a message section. It may
contain a self-relative pointer to the message section itself (direct message
section descriptor) or a self-relative pointer to a filename which contains the
message section (indirect message section descriptor).

A zero-terminated array of message section descriptors (direct or indirect).

A string of characters that describes a particular condition. It may contain
message text, an abbreviated condition name, a severity character, and a
facility name.

A string of characters that:
* describes a particular condition in detail, or

. contains noncondition information displayed to the user.

A table of self-relative offsets, each of which points to a message section
descriptor table.

Either a value or a single character (depending on the context) that describes
the basic success or failure indicated by the condition.

A system-wide message that inherits the facility name from the program that
accesses it. Shared messages are used to provide consistency in message
text across multiple programs. Shared messages also change the message
searching rules; see Section 1.8.2 for a discussion on message searching.

A 32-bit numeric value containing information about the status of a thread,
process, or procedure.

1.4 Status Values

Status values are longword values used to:

* Indicate the exit status of a process
¢ Indicate the exit status of a thread

* Return status from a remote procedure call

* Return status from a procedure or function call (such as a run-time library function)

* Organize local messages, that is, internal messages within a program

1-2 Status Values, Messages, and Text Formatting

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Additionally, values in status value format are used to organize and access nonmessage text local to
a facility.

Throughout this chapter, the term producer is used to indicate the process, thread, or procedure
returning or raising status and the term consumer is used to indicate the process, thread, or procedure
which receives that status.

Status values have the following binary format:
Figure 1-1: exec$status_value

31 30 20 28 27 16 15 3 2 0

I'JCJFIR FACILITY_NUMBER MESSAGE_NUMBER SEVERITY

AG1

exec$status_value : RECORD
severity : integer[0..5] SIZE(BIT,3);
message number : integer([0..8191] SIZE(BIT,13);
facility number : integer[0..4095] SIZE(BIT, 12);
facility specific : BIT;
customer_ facility : bit;
inhibit_message_printing : bit;
LAYOUT
severity;
message_number;
facility_number;
reserved : FILLER(BIT, *):
facility specific POSITION (BIT,29);
customer_ facility;
inhibit_message_printing;
END LAYOUT;
END RECORD;

Mica status values are similar to status values on VAX/VMS. The differences are the inkibit_message_
printing bit (bit 31 on Mica) and the locations of the customer_facility and facility_specific bits (bits
30 and 29, respectively). Moving the customer_facility and facility_specific bits out of the facility_
number and message_number fields effectively doubles the number of facility and message numbers
over that allowed on VAX/VMS.

The sections below describe each field of a status value.

1.4.1 SEVERITY Field (bits <2:0>)

The severity field of a status value indicates the basic success or failure of the producer of the status.

Severity is represented as a binary value in the range 0 to 4 (values in the range of 5 to 7 are reserved
to DIGITAL).

Successful completion is indicated by an odd-valued severity.

Value Meaning Success

1 Success This value indicates successful completion.

3 Information This value indicates successful completion with some associated information for the
consumer.

Even severity values indicate partial or complete failure.

Status Values, Messages, and Text Formatting 1-3

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Value Meaning Failure

0 Warning This value indicates that the producer of the status encountered a nonfatal problem, but
was able to complete processing the request. The status returned warns the consumer
that the result of processing the request may not be what was expected.

2 Error This value indicates that an error occurred, however, the error was not severe enough
to force premature termination of the producer.

4 Fatal This value indicates that a fatal error occurred. Such an error is severe enough that
the producer of the status was forced tfo exit or return prematurely.

142 MESSAGE_NUMBER Field (bits <15:3>)

The message_number field of a status value is used to identifiy which of a set of several possible
conditions this status value represents. The message routines use this value to index into a message
section to obtain the corresponding message text. Message sections are described in Section 1.7.4.

. 1.4.3 FACILITY_NUMBER Field (bits <27:165)

The facility_number field of a status value is used to identify the producer of the status value. With
the exception of the local facility number, each facility must have its own unique facility number.

Status values with the facility number equal to 4095, the local facility number, are called local status
values and allow a facility to define and maintain messages without being concerned about a unique
facility number. Local status values and messages are discussed further in Section 1.5.6.

The facility number 0 is reserved for system-wide status values. The facility name corresponding to
facility number 0 is SYSTEM.

1.4.4 Reserved Field (bit 28)
Bit 28 is reserved to DIGITAL and should be zero (SBZ).

1.4.5 FACILITY_SPECIFIC Field (bit 29)

The facility_specific field is used to indicate that the status value is specific to a single facility.
Status values with this bit clear are used to identify system-wide status codes (for system and shared
messages). Use of this bit for shared messages is described in Section 1.5.7.

146 CUSTOMER_FACILITY Field (bit 30)

The customer_facility field is used to indicate that the number specified in the facility number field
is a customer facility. Status values for DIGITAL facilities have this bit clear.

1.4.7 INHIBIT_MESSAGE_PRINTING Field (bit 31)

The inhibit_message_printing field is used to inhibit display of the message by message output rou-
tines. This bit is set by system routines that display the resulting message, so that the message is
not displayed twice.

1-4 Status Values, Messages, and Text Formatting

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only
1.5 Status Messages

Status messages are text strings used to describe a status value to the user in a natural language.
A complete status message consists of:

* Facility name—A short string of characters indicating the facility to which the status is regis-
tered. '

* Severity—A single letter indication corresponding to the severity of the status:

Field

Value Severity Letter Meaning

1 S Success

3 I Information
0 w Warning

2 E Error

4 F Fatal

* Abbreviated condition name—A short string of characters identifying the status in an abbreviated
manner.

®* Message text—A string of characters describing the status in detail.

1.5.1 Status Message Format

By default, status messages are assembled in the following format:
$FACILITY-S-ACONDNAME, message text

"FACILITY" is the facility name, "S" is the severity, and "ACONDNAME" is the abbreviated condition
name. A user or facility may request that certain parts of a status message be excluded when the
message is assembled. The default message format may be changed with a CLI command (such
as SET MESSAGE for DCL). The logical name MICASMESSAGE_FORMAT is used to convey the
current message format setting between a CLI running on a client system and a program running
on the server.

The message access and display routines use the message format setting along with the following
rules to determine the final format of a status message:

* The leading "%" is present only if the facility, severity, or abbreviated condition name are present
(in other words, if only the message text is requested, no leading "%" will be returned).

* If only the message text is returned, the first character of the text string is converted to upper
case.

* The message display routine exec$display_message supports display of multiple messages. In
this case, the first message formatted is termed the primary message; successive messages are
termed secondary messages. The exec$get_message routine provides an argument that allows
the caller to specify that the message is to be formatted as a secondary message. The format
of the secondary message is the same as that of a primary message except that the "%" sign (if
present) is replaced by a "-" sign. The exec$get_message and exec$display_message routines are
describe in Section 1.5.4 and Section 1.5.5.

Status Values, Messages, and Text Formatting 1-5

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.5.2 Message Creation

Messages are created in text format using a text editor. A file consisting of a collection of facility
names, abbreviated condition names, severity condition values, and message text is called a message
source file. A message source file is processed by the Pillar message compilation facility into a message
object module which is then linked with other object modules to form an image file.

1.5.3 Message Compilation

Message compilation is the process of creating a message object file from a message source file. Mica
provides message compilation capabilities as part of the Pillar compiler.

The message compilation facility provides a way to internationalize messages by allowing the message
text and formatting information to be separated from the image file. The message source file is
compiled twice:

1. The first compilation produces a direct message object module containing the facility names,
severities, abbreviated condition names, and message text. This module is then linked to form a
message image file which is accessed when the message text is required. Note that this message
image file must be linked by itself; resolution of indirect message section descriptors does not
allow multiple direct object modules to be linked together unless they are linked into the program
image. Section 1.8.2.4 discusses how and when these direct message image files are read.

2. The second compilation creates an indirect message object module which is linked with other
program object modules to form the program image file. In this case, the compiler generates
the message object file without the message text itself. Instead, the message section descriptors,
which would normally point to message sections containing message text, contain the specifica-
tion for the corresponding message image file that contains the message text. See Section 1.7
for a discussion of message data structures.

Once a particular message source file is translated into another natural language, the first step
described above is repeated on the translated file. The result is a message image file in another
language that can be accessed by the application without requiring that the application be relinked.
The location of multiple language versions of message files is described in Section 1.9 and in Chapter
33, Layered Products and System Disk.

1.5.4 Obtaining and Formating Status Messages

The exec$get_message routine obtains and formats status messages. The interface to this procedure
is:

‘'PROCEDURE exec$get message (
IN condition_record : execscondition_;ecord;
OUT message_buffer : varying string(*);
IN facility name : string(*) OPTIONAL;
IN format : boolean = true;
IN flags : execSmessage options OPTIONAL;
IN secondary : boolean = false;
OUT argument count : integer OPTIONAL;
OUT user_value : integer OPTIONAL;
) RETURNS status;

Table 1-2 describes the parameters for this procedure.

1-6 Status Values, Messages, and Text Formatting

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Table 1-2: Parameters to exec$get message

Parameter

Description

condition_record

message_buffer
facility_name

format

flags

secondary

argument_count
user_value

Supplies a condition record containing the status value for which a message is to be
returned. Only the message corresponding to the primary condition is returned. For
local messages, the condition record contains the address of the message section
descriptor which points to the message section containing the local message. The
format and content of condition records is presented in Chapter 9, Condition, Exit, and
AST Handling. Message section descriptors and message sections are discussed in
Section 1.7. :

Supplies the address of the buffer in which the message string is returned.

Optionally supplies a facility name which overrides the facility name indicated by the
facility number field of the status value. This parameter is useful when a program
requests translation of a local or shared message and wants to replace the default fa-
cility name with a more meaningful facility name. See Section 1.5.6 and Section 1.5.7
for more information on local and shared messages.

Optionally supplies a Boolean value which, if TRUE, indicates that formatting direc-
tives in the message string are to be interpreted.

Optionally supplies a set of type exec$message_options that indicates which por-
tions of the status message are to be returned. Each element of the set that is
supplied — exec$facility, exec$severity, exec§condition_name, exec$message_
text — indicates that the corresponding field should be included in the formatted status
message. If this argument is not supplied, the default format is used, as specified by
the MICASMESSAGE_FORMAT logical name supplied by the client. The data type
exec$message_options is defined as:

execSmessage options_type : (

exec$severity,

exec$facility,

exec$condition name,

exec$message_ text

)i
exec$message options : SET[exec$message_options_typel;
Optionally supplies a Boolean value which, if true, specifies that the message should
be formatted as a secondary message. By default, the message is formatted as a
primary message.
Optionally returns the number of parameters associated with the message.

Optionally returns the value associated with the message as specified in the mes-
sage source file. The interpretation of this value is the responsibility of the caller of
exec$get_message.

This routine searches the message sections pointed to by both the Image and System Message Vec-
tors to obtain the message string corresponding to the specified status value. See Section 1.7 and
Section 1.8 for more information on the organization of message vectors and message sections and
the mechanisms used to traverse them.

Status Values, Messages, and Text Formatting 1-7

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.5.5 Obtaining and Displaying Status Messages

The exec$display_message routine obtains and displays one or more status messages based on a
specified condition record. The interface to this procedure is:

PROCEDURE exec$display message (
IN condition__record : exec$condition_record;
IN flags : exec$message_ options OPTIONAL;
IN facility name : string(*) OPTIONAL;
IN action_routine : exec$action procedure OPTIONAL;
IN action_parameter : anytype = zero;
) RETURNS status;

Table 1-3 describes the parameters for this procedure.

Table 1-3: Parameters to exec$display message
Parameter Description

condition_record Supplies a condition_record containing the status values to be formatted and output. Unlike
exec$get_message described above, exec$display_message translates status values for
the primary condition and all secondary conditions specified by the condition record.

flags Optionally supplies a set of type exec$message_options that indicates which portions of the
status message are fo be returned. Each element of the set that is supplied — exec$facility,
exec$severity, exec$condition_name, exec$message_text — indicates that the corre-
sponding field should be included in the formatted status messages. If this argument is not
supplied, the default format is used, as specified by the MICASMESSAGE_FORMAT logical
name supplied by the client.
\This method of specifying the message formatting flags makes it impossible, using the
exec$display_message routine, to specify different formatting for each status value in the
specified condition record. This is possible on VAX/VMS.

facility_name Optionally supplies a facility name which overrides the facility name indicated by the facility
number portion for the primary condition.
action_routine Optionally supplies the address of an action routine to be called after each message text line

is formatted but before it is displayed. The two arguments to this routine are the formatted
message string and the action parameter (see below) supplied in the call to exec$display_
message. This routine must return a Boolean value: if TRUE, the message is output by
exec$display_message; if FALSE, it is not.

action_parameter Optionally supplies a value that is passed to the action routine.

This routine searches the message sections pointed to by both the Image and System Message Vec-
tors to obtain the message string corresponding to the specified status value. See Section 1.7 and
Section 1.8 for more information on the organization of message vectors and message sections and
the mechanisms used to traverse them.

1.5.6 Local Messages

Local messages provide programs a way to store message and other text separately from the actual
image file without the normal requirement to register a facility number. Status values whose facility
number is 4095 are used to reference local messages.

The data structures used to organize local message data are the same as those used for nonlocal
messages. Local message section descriptors, however, are specified explicitly—via condition record
or procedure argument—rather than implicitly by their presence in a message section descriptor table
whose address is in a message vector. When exec$get_message or exec$display_message is called to
obtain the text for a local message, the supplied condition record specifies the address of the message
section descriptor to be examined. When exec$get_text is called to obtain the text for a local message,
the message_section_descriptor argument supplies the address of the message section descriptor to
examine,

1-8 Status Values, Messages, and Text Formatting

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Only the specified message section descriptor is examined; if the local message number is not found in
the section pointed to by the message section descriptor, the search fails. This is unlike the nonlocal
message case, where the search continues by examining other message section descriptors.

See Section 1.8 for more information on the mechanisms used to translate status values to status
and text messages.

1.5.7 Shared Messages

Shared messages are used to define status values and message text that can be shared by several
facilities, thus providing a way to guarantee consistency of messages across facilities. These are
different from system messages in that the name of the facility producing the status value is used as
the facility name (as opposed to SYSTEM for system messages). Also, shared status values alter the
default search order during message translation.

Shared status values are defined with a facility code and severity of 0. Within the status value,
the customer_facility and facility_specific bits are clear. To use shared status values, a facility must
merge its own facility code and the status severity with the shared status value. This is done as
follows:

status_value = 'facility__number * 65536 +
shared_status value +
severity

This calculation yields a status value that contains the message code of a shared message, and the
facility number and severity specified by the program producing the status value.

Section 1.8 describes the mechanisms used to translate status values to status and text messages.
Section 1.8.1.3 describes how these mechanisms are affected by shared messages.

1.6 Text Messages

Text messages provide a way to define, organize, and access text that is user-visible and not related
to a condition. This capability is required to provide support for internationalization of text displayed
to users.

1.6.1 Relationship to Status Messages

Definition and organization of text messages is the same as that described for status messages in
Section 1.5 with the following exceptions:

® The routine which accesses and formats text messages only returns the message text, not the
severity, facility, or abbreviated condition name.

¢ Text messages are usually local; that is, the status value used to access them normally has the
facility field equal to the local facility number.

* The routine which accesses and formats text messages does not require that access and parameter
information be supplied in condition record format. This means that programs which use this
functionality to organize user-visible text will not be required to handcraft condition records.

Status Values, Messages, and Text Formatting 1-9

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.6.2 Obtaining and Formating Text Messages

The exec$get_text routine obtains and formats a text message based on a supplied status value and
message section descriptor address. The interface to this procedure is:

PROCEDURE exec$get text (
IN status_value : status;
IN message_section descriptor : exec$message_section_desc;
IN parameters : exec$argument array(*);
OUT message_buffer : varying string(*):
IN format : boolean = true;
OUT argument count : integer OPTIONAL;
OUT user_value : integer OPTIONAL;
} RETURNS status;

Table 14 describes the parameters for this procedure.

Table 1-4: Parameters to exec$get_text
Parameter Description

status_value Supplies a status value used to locate the text message.
message_section_descriptor Supplies the address of the message section descriptor to search.

paramsters Supplies an array of parameters to be formatted into the resultant string. The data
type exec$argument_array is an array of exec$argument_descriptor. The data
type exec$argument_descriptor is defined in Chapter 9, Condition, Exit, and AST

Handling.
message_buffer Supplies the address of the buffer in which the message text string is returned.
format Optionally supplies a Boolean value which, if TRUE, indicates that the message string
is to be formatted; that is, formatting directives are interpreted.
argument_count Optionally returns the number of parameters associated with the message.
user_value Optionally returns the value associated with the message as specified in the message
source file.

1.7 Message Data Structures

The outputs of Mica’s message compilation facility are message object modules. These modules contain
message information in structures called message sections, message section descriptors, and message
section descriptor tables. Once in memory, message information is organized into:

* Message vectors—These structures are tables of pointers, each of which points to a message
section descriptor table.

* Message section descriptor tables—These structures are arrays of message section descriptors.

* Message section descriptors—These structures contain information about message sections in-
cluding message section type (direct or indirect), facility number, a self-relative pointer to the
message section, and, for indirect sections, a self-relative pointer to the name of the file that
contains the actual message text (message file specification).

* Message sections—These structures contain a facility name, facility number and abbreviated
condition names and message text. Message sections are organized by the message compilation
facility so that they can be indexed by message number. Each message section contains the
messages for one facility.

1-10 Status Values, Messages, and Text Formatting

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

The following figure shows how all of these structures are related.

Figure 1-2: In-Memory Message Data Structure Organization

—>
Message Section Descriptor J
Message
Section
Message Section Descriptor
Message Section Descriptor
Message File Specification
Message Section Descriptor o
Zero Message
Section
Message Section Descriptor Table
Message
‘ » Section
->
Message Section Descriptor _* Message File Specification
Message Section Descriptor
_L> Message
‘ Section
Message Section Descriptor
Message Section Descriptor
Message File Specification
NS s
~ ~ Zero
| l Message File Specification
Message Vector Message Section Descriptor Table

FiG2

The following sections describe the format and content of each of these data structures. In all cases,
the data structure are aligned on natural boundaries.

1.7.1 Message Vectors

Within the address space of a given process, there are two message vectors: the System Message
Vector and the Image Message Vector. When status code translation is requested, these two vectors
supply pointers to tables of message section descriptors to be searched.

Status Values, Messages, and Text Formatting 1-11

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.7.2 Message Section Descriptor Tables

A message section descriptor table is a zero-terminated list of message section descriptors. Message
section descriptors are placed in either the message$system_section_descriptor or the message$image._
section_descriptor PSECT. This PSECT is concatenated with like PSECTS from other message object
files by the linker to form a message section descriptor table. An image section that contains message
section descriptor tables will have a flag indicating this in the image section descriptor (ISD).

The terminator of a message section descriptor table is a zero longword. This zero longword resides in
the overlaid message$section_descriptor_table_end PSECT so that only one such entry actually ends
up in the resulting image file. Allowable values for the section_descriptor_type, system, and facility
fields are such that all of these fields being zero is not a valid combination.

1.7.3 Message Section Descriptors

A message section descriptor is a data structure that describes the facility associated with a set of
messages and provides a pointer to the message section where the message text is found. It has the
following binary format: ,

Figure 1-3: exec$message_ section_desc

31 16 15 8 7 0

SECTION_
FACILITY_NUMBER SYSTEM DESCRIPTOR_TYPE

IDENTIFICATION

VERSION

MESSAGE_SECTION_POINTER

MESSAGE_FILENAME_POINTER

FIRST_MESSAGE_SECTION_DESCRIPTOR_POINTER

FiG3

exec$message_section_desc : RECORD
section descriptor type : execSmessage section desc types[..] SIZE (BYTE);
system : boolean;
facility number : exec$facility number;
ident : longword;
version : longword;
message_section pointer : POINTER exec$message_section_pointer;
message filename pointer : POINTER exec$counted string;
first_message_section desc pointer : POINTER exec$message_section desc;
LAYOUT
section_descriptor_type;
system POSITION (BYTE, 1) ;
facility number POSITION (WORD, 1) ;
ident;
version;
message_section pointer;
message_filename_ pointer;
first_message_section desc pointer;
END LAYOUT;
END RECORD;

1-12 Status Values, Messages, and Text Formatting

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

execSmessage_section desc_types : (
exechirect_section_descriptor,
exec$indirect_section descriptor

)
execsfacility_pumber : integer[0..4095] SIZE (WORD) ;

exec$message_section_pointer : POINTER execSmessage_section;

These fields are defined as follows:

section_descriptor_type—This field indicates the type of the message section descriptor:

— execdirect_section_descriptor—This type indicates that the message section is loaded into
memory with the section descriptor. This means that the section descriptor and message
section are part of the program image file. Message section descriptors whose section_
descriptor_type is exec$direct_section_descriptor are referred to as direct message section
descriptors.

— execindirect_section_descriptor—This type indicates that the message section is contained
in a separate message image file. The filename of the separate message image file is
contained in a data structure pointed to by the message_filename_pointer field in the
message section descriptor. Message section descriptors whose section_descriptor_type is
exec$indirect_section_descriptor are referred to as indirect message section descriptors. When
an indirect message section descriptor is first accessed, the corresponding direct message
image file is read into memory in the image’s address space, or mapped, and the message_
section_pointer fields for all message section descriptors which refer to that direct message
image file are set to point to the actual message sections.

system—A boolean value that, when TRUE, indicates that the address of the message section
descriptor table containing the message section descriptor is to be placed in the System Message
Vector rather than the Image Message Vector. To avoid mixing system and nonsystem messages
in the same message source file, a command line qualifier to the message compilation facility is
used to indicate that this byte should be nonzero.

\The intent is that this is for DIGITAL use only. PSECT naming conventions are be used to
handle the case where system and nonsystem section descriptors are linked into the same file.\

facility_number—The facility number associated with the messages in the section pointed to by
this section descriptor. For local messages, this value is the local facility number.

ident—This longword contains a binary identification value used in message section verification.
This value is set by the message compilation facility and is used to verify that this data structure
is actually a message section descriptor.

version—This longword contains a binary version number of the message section. This value is
set by the message compilation facility and provides a way to handle message data structure
changes in future versions.

message_section_pointer—A self-relative pointer to a self-relative pointer to the message section
associated with this message section descriptor. For indirect message section descriptors, this
pointer initially points to a pointer whose value is nil, indicating that the message image file
containing the corresponding direct message section has not been mapped. Once the message
image file is mapped, this pointer is updated to point to the message section.

\This is a pointer (rather than actually placing the message section offset in the structure
itself) so that write access to message section descriptors is not required. Note that due to size
constraints, this extra level of indirection is not shown in Figure 1-2.\

message_filename_pointer—A self-relative pointer to a data structure containing the filename of
the message image file containing the message sections. For direct message section descriptors,
this pointer is nil. This data structure is described in Figure 1—4.

Status Values, Messages, and Text Formatting 1-13

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

* first_message_section_desc_pointer—A self-relative pointer to the first message section descriptor
in the message section descriptor table produced by the message compilation facility. Because
multiple message object modules may be linked together (and, therefore, multiple message sec-
tion descriptor tables may be combined into one) in the image file, this pointer may not point
to the first message section descriptor in the in-memory message section descriptor table. This
pointer provides a way to get to the first section descriptor from the same message source file as
the current section descriptor. It is used when mapping indirect message section descriptors to
resolve all such descriptors which came from the same message source file.

Figure 1-4: exec$counted_string

31 16 15 0
reserved STRING_LENGTH
—~ COUNTED_STRING ~
I 4 ~S

_

FiGs

exec$counted string (string length : integer[0..65535]) : RECORD
CAPTURE string length;
counted_string : string(string length);
LAYOUT
string length;
counted string POSITION (BYTE,4):;
END LAYOUT;
END RECORD;

1.74 Message Sections

Message sections are generated by Mica’s message compilation facility. Each contains messages
defined for one facility. If the message source used to create the message section contains messages
for more than one facility, the message compilation facility creates a separate message section for
each facility.

Message sections always contain full message text. They are placed in normal read-only data PSECTs
(readable, nowrite, noexecute) and contain pointers to the facility name, index table, and language
in which the messages were written.

A message section has the following binary format:

1-14 Status Values, Messages, and Text Formatting

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Figure 1-5: exec$message_section

31 0

IDENTIFICATION

VERSION

SECTION_HEADER_LENGTH

FACILITY_POINTER

INDEX_TABLE_POINTER

LANGUAGE_NAME_POINTER

FIG4

exec$message_section : RECORD
ident : longword;
version : longword;
section_header length : integer;
facility pointer : POINTER exechacility;pame;
index_table pointer : POINTER exec$message_index table;
language_name pointer : POINTER exec$counted string;
LAYOUT
ident;
version;
section _header length;
facility pointer;
index table pointer;
language_name pointer;
END LAYOUT;
END RECORD;

These fields are defined as follows:

® ident—This longword contains a binary identification value used in message section verification.
* version—This longword contains the binary version number of the message section.

* section_header_length—This longword contains the length of the message section header in bytes.

* facility_pointer—A self-relative pointer to a data structure of type exec$facility_name that con-
tains the facility number and name for messages in the section, as shown in Figure 1-6.

* index_table_pointer—A self-relative pointer to the message index table that is used to index the
messages themselves.

* language_name_pointer—A self-relative pointer to a data structure that contains the language
in which this section was written.

\It is TBD just what form will be used to indicate the language. It will most likely be a string;
however, internationalization support may require that language name strings be expressible in
different languages.\

Status Values, Messages, and Text Formatting 1-15

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Figure 1-6: exec$facility_name

31 16 15
FACILITY_NAME_LENGTH FACILITY_NUMBER
'T’N FACILITY_NAME -~
FIGS
exec$facility name (facility name length : integer[0..65535] SIZE(WORD)) : RECORD

CAPTURE facility name_ length;
facility number : execS$facility number;
facility name : string(facility name length);
LAYOUT
facility number;
facility name length;
facility name;
END LAYOUT;
END RECORD;

The message index table is an ordered table containing message numbers and message record pointers

for each record in the section.
The message index table has the following binary format:
Figure 1-7: exec$message index_table

3 16 15 0
reserved MESSAGE_COUNT
MESSAGE_NUMBER MESSAGE_NUMBER
MESSAGE_NUMBER MESSAGE_NUMBER
7~ ~
~S NS
MESSAGE_RECORD_POINTER
MESSAGE_RECORD_POINTER
~ ~
r~~ T d
FIG6
exec$message__index_table (message count : integer [0..8191) SIZE(WORD)) : RECORD

CAPTURE message_count;
message_number : ARRAY[O..message count] OF word;

message_ record pointer : ARRAY[O..message count] OF POINTER exec$message record;

LAYOUT
message_count;
reservedl : FILLER (WORD, *);
message_number POSITION (WORD,2);
reserved2 : FILLER (WORD, *);
message_record pointer;

END LAYOUT;

END RECORD;

1-16 Status Values, Messages, and Text Formatting

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

These fields are defined as follows:

* message_count—The number of messages indexed by this table.

* message_number—An array of message numbers. The message compilation facility generates
this array in increasing message number order.

* message_record_pointer—An array of pointers to message records. Each pointer points to the
message record corresponding to the message number at the same offset in the message_number
array.

A binary search is done on the message_number array to locate a specific message. If found, the
corresponding pointer in the message_record_pointer array is used to access the message record. The
message record contains the message text and abbreviated condition name. Message records have
the following binary format:

Figure 1-8: exec$message_record .

31 16 15 0
ARGUMENT_COUNT RECORD_LENGTH
USER_VALUE
TEXT_LENGTH CONDITION_LENGTH
~y vy
~o ABBREVIATED_CONDITION_NAME ~
L]
1 1
~v
iyt MESSAGE_TEXT ~
| |
Fig7
execSmessage_record (condition length, text length : integer[0..65535] SIZE(WORD)) : RECORD

CAPTURE condition length, text length;
record length : integer[0..65535] SIZE (WORD) ;
argument_count : integer([0..65535] SIZE (WORD);
user_value : execSmessage_user_value;
abbreviated_pondition_name ¢ string(condition length);
message_text : string(text length):;
LAYOUT

record_length;

argument_count;

user_ value;

condition_}ength;

text length;

abbreviated_pondition_pame;

message_text;
END LAYOUT;

END RECORD;

exec$message_user value : longword;
These fields are defined as follows:
* record_length—The length of the message record in bytes.
* argumeni_count—The number of arguments which are to be formatted into the message text.

* user_value—A user-defined longword value specified in the message source file which can be
returned to the caller of exec$get_message or exec$get_text.

* condition_length—The length of the abbreviated condition name string in bytes.

Status Values, Messages, and Text Formatting 1-17

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

* text_length—The length of the message text string in bytes.

* abbreviated_condition_name—The string of characters representing the abbreviated form of the
condition. ’

* message_text—The actual message text itself.

1.8 Status Value to Message Translation

The following sections describe the mechanisms used to translate a status value into a status or text
message. It discusses how message vectors, message section descriptors, and message sections are
searched and how indirect message section descriptors are mapped.

The translation from status value to message involves examining one or more message section descrip-
tors and searching message sections in an attempt to match both the facility_number and message_
number fields in the status value with those in the message section descriptor and message section.

1.8.1 Which Message Sections are Searched

As mentioned above, the status value translation routines, exec$get_message, exec$display_message,
and exec$get_text, will search one or more message sections to obtain the message text associated
with a specified status value. The decision to search a particular message section is based on the
facility_number and facility_specific fields in the status value. These fields indicate whether the
message is local or nonlocal and whether or not it is shared.

This section describes which message sections are searched.

1.8.1.1 Nonlocal Messages
Message searching for nonlocal messages involves examining two sets of message section descriptors:

* Image message section descriptors—These are message section descriptors contained in message
section descriptor tables whose addresses are contained in the Image Message Vector. Such
message section descriptors are part of the executing process’ image file or part of a shareable
image’s image file.

* System message section descriptors—These are message section descriptors contained in message
section descriptor tables whose addresses are contained in the System Message Vector. Such
message section descriptors contain system-wide message information.

A message search routine first examines the image message section descriptors and attempts to
translate the status value. If no match is made, the routine continues by examining the system
message section descriptors. If this search fails, the status value cannot be translated.

1.8.1.2 Local Messages

When a status value translation routine searches for a local message, the search is done on just one
message section. The message section descriptor whose address is contained in the condition record
or passed as a procedure argument indicates the section to search.

1-18 Status Values, Messages, and Text Formatting

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.8.1.3 Shared Messages

When a shared status value translation is requested, the status value translation routines first look
at the facility_specific bit in the status value. If this bit is clear and the facility number is not zero,
the routines know that the status value is for a shared message. The translation from status value
to message string is done in two parts: ‘

1. First, a copy of the status value is made with the facility number set to zero. System message
section descriptors are then examined to locate the section in which the message resides. Note
that this is a different search order from the normal nonshared message case.

2. If the message is found and the facility name has been requested, all image message sections
are searched to resolve the facility name. When a descriptor whose facility number matches that
specified in the original status value is found, the facility name is immediately taken from the
message section.

1.8.2 How Message Sections are Searched

This section describes how message sections are searched.

1.8.21 Deciding Which Message Section Descriptors to Examine

Based on the specified status value, the status value translation routines first determine which
message section descriptors to examine. The following pseudocode describes how this is determined:

if facility indicates local message then
examine message section descriptor specified by condition record or parameter
else
if status value is not shared then
for all message section descriptor tables pointed to by the Image Message Vector
for all message section descriptors in this message section descriptor table
examine message section descriptor
if translation not successful or status value is shared then
for all message section descriptor tables pointed to by the System Message Vector
for all message section descriptors in this message section descriptor table
if status value is shared then
examine message section descriptor with with modified status value
else
examine message section descriptor

1.8.22 Examining a Message Section Descriptor

The following pseudocode describes the steps taken when a message section descriptor is examined:

if facility is local then
if message section descriptor is indirect and not mapped then
map corresponding message image file
search message section for message
else
if facility number matches facility in message section descriptor then
if message section descriptor is indirect and not mapped then
map corresponding message image file
search message section for message

Status Values, Messages, and Text Formatting 1-19

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.8.23 Searching a Message Section

The foliowing pseudocode describes the steps taken when a message section is searched for a message:

if section language matches current language then
search message index table for message number
if message number found then
copy requested portions of message into message string
return message_found
else
return message_not_found
else
return language mismatch

1.8.24 Mapping Message Image Files

The following pseudocode describes the steps taken when a message image file is mapped to resolve
an indirect message section descriptor:

acquire message mapping lock
open message image file specified in indirect message section descriptor
if file is found then :
map file into memory
for all message section descriptors in mapped message image file
calculate offset from indirect message section descriptor
to mapped message section
update offset pointed to by message section pointer field in the
message section descriptor
release message mapping lock
else
release message mapping lock
return file not_found

The first_message_section_desc_pointer field in both the indirect message section descriptor and the
newly mapped direct message section descriptor allows the mapping routine to walk the message
section descriptor table resolving all indirect message section descriptors which refer to the file just
mapped.

The process of mapping a direct message section descriptor must use a lock to prevent another thread
from attempting to map the same message image file.

1.8.3 Initialization of Message Vectors and Loading of Message ISDs

As described in Section 1.8.1.1, the status value translation routines may examine two sets of message
section descriptors when attempting to translate a status value. The Image and System Message
Vectors are used to access these two sets of message section descriptors. The vectors are initially
allocated at image startup by the a routine in the mica$fm_share shareable module. The mica$fm_
share module also contains pointers to the message vectors, the status value translation routines,
the exec$install_message_isd routine, and the message mapping lock used to prohibit race conditions
between threads during message image file mapping. The exec$install_message_isd routine is called
by the image loader whenever an image section descriptor is encountered with the message bit set.
It is this routine that is responsible for installing message section descriptor table addresses in the
message vectors. This routine is also responsible for allocation of larger message vectors should either
vector become full. In this case, a new, larger vector is allocated, the entries from the old vector copied,
the pointer to the vector changed to point to the new vector, and the old vector deallocated.

The exec$install_message_isd routine examines the first message section descriptor entry in the mes-
sage section descriptor table. If the system field indicates a system message section descriptor, the
address of the message section descriptor table is added to the System Message Vector; otherwise it
is added to the Image Message Vector.

1-20 Status Values, Messages, and Text Formatting

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.9 Internationalization

As mentioned previously, indirect message sections provide a way to keep message text separate
from a program that references it, allowing it to be easily internationalized. Indirect message section
descriptors contain the filename of the message image file which contains the corresponding direct
message section descriptors and message sections. When this text is needed, the file containing the
text is mapped, allowingit to be accessed. Mapping message image files is discussed in Section 1.8.2.4.

Message files on Mica are contained in the SYSSMESSAGE subdirectory of a directory tree set up for
each language supported on the system. For example, the message subdirectory containing messages
in English is [SYS$LANGUAGE.SYS$ENGLISH.SYS$MESSAGE].

The logical name MICA$LANGUAGE is used to specify the language tree to use to find message files.
By default, the translation of MICASLANGUAGE is used to build the complete file specification when
the message image file is opened. For example, if the message image filename specified in the indirect
message section descriptor is MY$SMESSAGES and MICA$LANGUAGE translates to SYSSGERMAN,
the complete file specification is:

[SYSSLANGUAGE. SYS$SGERMAN . SYSSMESSAGE]MYSMESSAGES . IMAGE

The organization of the system directories and a list of logical names which point to them is presented
in Chapter 33, Layered Products and System Disk.

1.10 Text Formatting

A text formatting capability is provided with Mica. As stated in Section 1.2, the overall goal is to
provide a text formatting capability that addresses internationalization requirements. More specific
goals for this functionality are:

* To move data type and access information out of the formatting control string, placing it with
the arguments instead

* To provide full parameter positioning and formatting capabilities required for full international-
ization support

The directives provide:
* Formatting information such as width, radix, and fill

* Positioning information that allows parameters to be positioned differently for different natural
languages

* Special formatting requests such as system date and time

* A means of specifying that directives are to be repeated in a controlled fashon

The basic formatting process is to take zero or more parameters and a source string containing
text and formatting directives and produce a resultant string containing the text and parameters
formatted as specified by the directives in the source string.

1.10.1 Formatting Directives

A formatting directive is a string that specifies either how a parameter is to be formatted or what
information is to be placed in the resultant string. Formatting directives are specified in the following
form:

$directive[,directive...]%

In other words, a directive or comma-separated list of directives is enclosed in percent characters (%).

Status Values, Messages, and Text Formatting 1-21

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Following is a list of the formatting directives provided. In these examples, the following syntax
notation is used:

* "N"is used to represent a number that is the number of the parameter to be formatted using
this directive.

* "W"is used to represent a number that specifies the minimum width of the formatting field. If
the formatted parameter requires more than "W" characters, a larger field is used.

* "Z" indicates that a numeric conversion will be done with leading zeros to fill to the specified
width (leading blanks are used to fill by default).

* "N" may be specified in the format "N..M" in which case it refers to parameters "N" through "M"
inclusive.

¢ If only certain bits of the specified parameter(s) are desired, the parameter number may be
followed by:

¢ [xyl—this form indicates that "y" bits starting at bit "x" will be considered.
* [x..y}—this form indicates that bits "x" through "y" will be considered.
¢ [.x}—this form indicates that bits 0 through "x" will be considered.

* [x.}—this form indicates that bits "x" through the most significant bit of the parameter will
be considered.

\This is certainly a poor solution to the problem of extracting bits. Ideally, field names should
be used, however, this method provides a usable way to do this, if necessary.\

To better facilitate use of repeated directives, the formatting routine maintains a special internal pa-
rameter number which may be set, incremented, and decremented. This internal parameter number
is acessed as if it were parameter 0 (zero). Upon entry to the exec$format_text routine, its value is
set to 1. When the internal parameter number (0) is used in a formatting directive, it refers to the
actual parameter whose parameter number is the internal parameter number. For example, if the
directive %left(0)% is specified and the value of the internal parameter is 5, the 5th parameter would
be formatted as a left justified string.

\Note that there are no plans to allow internationalization of the formatting directives themselves.\

* decimal(N:WZ)—the parameter is formatted in decimal. For floating point parameters, the width
may optionally be specified as "W.P" where "P" specifies the precision. The field is zero filled if
"Z" is present. Decimal is the only supported directive for formatting floating point values. For
floating point parameters, the optional brackets used to select certain bits of a parameter are
not allowed. For example:

%$decimal (5:10) %
specifies that the 5th parameter is to be formatted in decimal in a field of width 10.

\There are certain internationalization issues relating to characters used when formatting float-
ing point. Having the desired language kept with the message text (in the message section) and
the language parameter to the exec$format_text routine (see below) is intended to address these
issues. If this is not sufficient, additional parameters may be added to this and other directives.\

* hex(N:WZ)—the parameter is formatted in hexadecimal. The field is zero filled if "Z" is present.
Note that no leading characters indicating hexadecimal formatting are inserted. Example:

%hex(2) %

specifies that the 2nd parameter is to be formatted in hexadecimal in a field just large enough
to hold the entire value.

* octal(N:WZ)—the parameter is formatted in octal. The field is zero filled if "Z" is present. Note
that no leading characters indicating octal formatting are inserted.

1-22 Status Values, Messages, and Text Formatting

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

binary(N:WZ)—the parameter is formatted in binary. The field is zero filled if "Z" is present.
Note that no leading characters indicating binary formatting are inserted.

date(N)—the parameter is formatted in date/time format.
\See the comment above for the "decimal” directive for internationalization issues.\

right(N:W)—the string parameter is formatted in a right-justified field "W" characters wide. If
the string parameter is longer than "W", it is not truncated.

left(N:W)—the string parameter is formatted in a left-justified field "W" characters wide. If the
string parameter is longer than "W", it is not truncated.

object(N)—the parameter is the id of an object whose name is to be translated and inserted into
the resultant string. If no name exists for the object, the id is output in hexadecimal.

”n

plural(N, "singular string”,"plural string”)—this directive is used to control pluralization. If the
value of the specified parameter is 1, "singular string” is inserted into the resultant string;
otherwise "plural string” is inserted.

If only the parameter number is supplied, ™ and "s" are used by default.

system(item/,item...])—insert the specified specified system item(s) into the resultant string at
this location. Supported system items are:

¢ date—current system date

* time—current system time

* date_time—current system date and time

\See the comment above for the "decimal” directive for internationalization issues.\

control(item/[,item...])—insert the specified format control item(s) into the resultant string at this
location. Supported format items are:

* tab—tab character

* new_line—new line indicator

* form_feed—form feed indicator

character(n,c)—insert the character "c" in the resultant string "n" times.

set(N) or set(#n)—set the internal parameter value to the value of parameter "N" or to the numeric

value "n". This is normally used prior to the repeat directive.
increment(n)—increment the internal parameter value by "n". If "n" is not specified, the value 1
is assumed.

decrement(n)—decrement the internal parameter value by "n". If "n" is not specified, the value
1 is assumed.

repeat(N,(directive,...)) or repeat(#n,(directive,...)—repeat the specified list of directives. The
number of times to repeat may be specified by the value of a parameter ("N" form) or by an
absolute number ("#n" form). The repeat directive in conjunction with the internal parameter
value provides a short way to specify output of a list of parameters.

text("string of text”)—output the specified text string. This is useful in conjunction with the
repeat directive.

ifl{op}N,directive,directive) or if({op}#n,directive,directive)—execute the first directive if the oper-
ation specified by {op} is true, otherwise, execute the second directive. Operations compare the
value of a specified parameter ("N" form) or a specified value ("#n" form) with the internal param-
eter value. All numeric values are interpretted as unsigned integers. The following comparison
operations are supported:

Status Values, Messages, and Text Formatting 1-23

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Table 1-5: Comparison Operations
Operation Description

= true if the internal parameter value is equal fo the value of parameter "N" or the value "n"

<> true if the internal parameter value is not equal to the value of parameter "N" or the value "n"

< true if the internal parameter value is less than the value of parameter "N" or the value "n"

> true if the internal parameter value is greater than the value of parameter "N" or the value "n"

<= true if the internal parameter value is less than or equal to the value of parameter "N" or the value "n"

>= true if the internal parameter value is greater than or equal to the value of parameter "N" or the value
"

* Two percent signs (%%) are used to insert a single percent sign at the current position in the
resultant string.

\Are justification directives needed for entities other than strings (that is, numeric values, etc.)? If
so, the direct formats could be enhanced to indicate such justification (use of "R" or "L", for example).
This would eliminate the need for the "right” and "left" directives in favor of a more general "string"
directive.\

1.10.2 Format Texting

The exec$format_text routine provides text formatting support described above. The interface to this
procedure is:

PROCEDURE exec$format text (
IN source_string : string(*);
OUT resultant_ string : varying string(*):;
IN language : string(*) OPTIONAL;
IN parameters : exec$Sargument array(*);
) RETURNS status;

Table 1-6 describes the parameters for this procedure.

Table 1-6: Parameters to exec$format text

Parameter Description

source_string Supplies the source string containing text and formatting directives

resultant_string Returns the resultant formatted string.

language An optional string that supplies a language name to override the current default lan-

guage. Language is used to determine language-dependent formats for parameters
formatted into the message string.

parameters Supplies an array of parameters to be formatted into resultant string. The data
type execPargument_array is an array of exec$argument_descriptor. The data
type execfargument_descriptor is defined in Chapter 9, Condition, Exit, and AST
Handling.

The exec$format_text routine copies text from the source string into the resultant string, formatting
parameters as formatting directives are encountered.

1-24 Status Values, Messages, and Text Formatting

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.10.2.1 Examples

Following are several examples using the formatting capabilities described above. In all cases, En-
glish is assumed to be the current language.

Control string: "Integer divide by zero at PC=%%x%hex(1l)%, PSL=%%x%hex (2)%"
Parameters: %$x4782a7, %x4003a2
Formatted string: "Integer divide by zero at PC=%x4782A7, PSL=%x4003a2"

Control string: "Undefined symbol %$left(l)% referenced in "+
"psect %left (2)%, offset %%x%hex(3)% in module "+
"$left (4)%, file %left (5)%"
Parameters: FROBOTZ, MY$$PSECT, %x4896b, MY MODULE, MY.OBJ
Formatted string: "Undefined symbol FROBOTZ referenced in
psect MYS$SPSECT, offset %x4896B in module
MY MODULE, file MY.OBJ"

Control string: "%decimal(l)% file%plural(l," was","s were")}% deleted"
Parameters: 10

Formatted string: "10 files were deleted"

Parameters: 1

Formatted string: "1 file was deleted"

Control string: "%set (#2), repeat(l, (left(0),increment," +
"if (=1,text (™ "),text (", ")))% deleted™
Parameters: 4, filel.dat, another.file, third.one, last.file
Formatted string: "filel.dat, another.file, third.one, last.file deleted"

Control string: "Current system date and time is %system(date_time) %"
Parameters: none
Formatted string: "Current system date and time is 18-Dec-1986, 08:42.45"

1.11 Open Issues
There are several details which will eventually need further clarification.

Some of the internationalization issues may need further detail.
The mechanism for assigning and tracking facility numbers is TBD.

Multi-threaded server processes running on the compute server require that each server thread
potentially have a different defauit language. The indirect message section descriptor support
could be expanded to allow this by:

— Providing default language overrides to the exec$get_message, exec$display_message, and
exec$get_text routines.

— Allowing message sections in different languages to be chained; that is, a given message
section may point to another message section containing the same messages written in
another language.

Policy for message translation when the message file does not exist in the requested language
(error return vs. fallback to a default language).

Status Values, Messages, and Text Formatting 1-25

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.12 Dependencies

The implementation of the status and message support described in this chapter depends on certain
capabilities provided by other system components. These dependencies are listed below.

¢ Message Compilation Facility
TBS
e Linker
TBS
. Ifnage Activation Mechanism
TBS
¢ Condition Handling Data Structures
TBS
¢ (Client Context Server/Mica Job Controller Logical Name Transfer
TBS

1-26 Status Values, Messages, and Text Formatting

