Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Mica Working. Desi'gn' Document
Record Management Services

Revision 0.3
7—January—1988

Issued by:
Sumanta Chatterjee

™

TABLE OF CONTENTS

CHAPTER 1 RECORD MANAGEMENT SERVICES 1-1
1.1 Introduction i e e e e e e e 1-1
1.1.1 Design Philosophy e 1-1
112 Goals . .. e e e e e e e e e e e 1-2
1.1.3 RMS Functionalityttt 1-2
1.14 Functions Not Available 1-3
1.1.5 Interfaceto Mica File Sytem i 14
1.2 Devices Supported oo it it e e e e e e 1-6
1.2.1 Disk Devicesouuuenunn. e 1-6
1.2.1.1 File Characteristics o i ittt ettt et ettt e e et iee e 1-6
1212 Filename Creation ittt it i it e e e 1-7
1213 File Allocationttt e 1-7
1214 File Sharing ot it ittt e e et e e e et e e e e e e 1-7
1.2.1.5 Reliability Options it ittt ittt e e 1-8
1.2.1.6 Runtime File DigpositionOptions 1-8
1.2.1.7 Record Retrieval Options ittt 1-8
1.2.1.8 Record Insertion Optionsttt it i n. 1-8
122 Magnetic Tape Devices i ittt it 1-8
123 Terminal Devices. ittt it i e e e e e 1-9
124 Mailboxeso i ittt ittt i e e e e e e e e 1-9
1.3 RMS Programming Interface e 1-10
181 Create Servicettt ittt e e e e 1-11
1.3.1.1 File Identificationttt it e 1-12
1.3.1.2 Record Definition i it 1-13
1.3.1.2.1 File Organizationttt 1-13
1.8.122 Record Formatttt 1-13
1.3.1.23 Record Attributes i, 1-14
1.3.1.24 Maximum Record Sizet nnunn.. 1-14
13125 VFCControl Head Size. i iiiiiennnnnn. 1-14
1.3.1.26 Longest Record Length 1-14
1.313 Access Request i e e 1-14
1314 Create Input Options i eee e 1-15
1.3.1.4.1 Allocation Options ittt ittt 1-15
1.3.1.4.2 File Protection Options ittt 1-17
1.3.1.4.3 Filename Creation Optionst ... 1-18
13144 Run-time Access Options. i innn.. 1-19
1.3.1.45 File Characteristicst it 1-19
1.3.1.4.6 Set Expiration DateandTime 1-19
1.3.1.5 FileInformationt 1-19
1.3.1.6 Output File Specification eeinnn.. 1-20
1.3.1.7 Output Quick File Reference 1-20

iv

1318 FileHandle 1-20

1.3.2 Open Service i ittt e e e e e e 1-21
1.3.2.1 File Identificationttt 1-21
1.3.22 Access Request e 1-21
18323 OpenInput Options i e e 1-21
1.3.24 FileInformation 1-22
1325 Resultant File e e 1-22
1.3.2.6 Output Quick File Reference i neenon. 1-22
1.32.7T FileHandle i e 1-22

1.33 Close Servicettt it it e e e e e 1-22
1.3.3.1 File Identification 1-22
1.33.2 Input Options i e 1-22

1.3.3.2.1 Close Disposition OPtionSo von vt e e 1-23
1.3.3.2.2 Close Protection Optionst ittt 1-23

1.3.4 Data Retrieval and Output Services, 1-23

1.36 Get Sequential e 1-24
1.3.5.1 File Identificationttt .. 1-25
1.3.5.2 Record Position i e e e 1-25
1.35.3 UserInput Buffer 1-25
1354 Move Mode. it i e e e 1-25
1355 InputOptions e e e 1-25

136,561 Find Operationttt ittt 1-25
1.3.5.5.2 Record Header Definition 1-25
1.3.56.56.3 BasicTerminal Options. i innenn.. 1-26
13554 KeyReference i i 1-26
1.3.5.5.,56 Record Locking Options uuiuuu... 1-26
1.3.5.56 Indexed File Options iiiinnnenn.. 1-26
1.3.5.6 Current Record Pointer 1-26
1.3.6.7 Next Record Position innennana.. 1-27
1.35.8 ReadData Buffer i, 1-27

136 Get Random by RFA e 1-28

137 Get Random by Key i e 1-28

138 Put Services i e e 1-30

1.39 Put Sequential 1-30
1.3.9.1 File Identificationt 1-30
1.39.2 User Output Buffer 1-30
1.3.9.3 Record Position e 1-30
1394 Input Options e 1-31

1.3.9.4.1 Put Disposition Options, 131
1.3.9.4.2 Record Header Definition 0., 1-31
1.3.9.4.3 BasicTerminal Options. e e e e e 1-31
1.3.95 Current Record Pointer0 uuiuuunneon. 1-32
1.3.9.6 Next Record Position 1-32

1310 Put Key . .. oo e e e e 1-32

1.3.10.1 Relative Record Number ittt i iee s 1-32
1.3.10.2 Input Options et e e e e e e e e e e e 1-32
1.3.10.3 Current Record Pointer. i i e 1-32
1.3.10.4 Next Record Positionttt tan e 1-32
1.3.11 Parse ServiCe v v i vt it it e e e e e e e e e e e e e e e 1-33
1.3.11.1 File Specification oottt ittt it 1-33
1.3.11.2 Parse Oplionsottt ittt ittt et s e e e 1-34
1.3.11.3 Device Characteristics c it ittt it it tnn e eeneeenns e 1-34
1.8.114 Wild Card Context it ittt et it et et e et e e e e et e een 1-34
1.3.11.5 Expanded File Specification 1-34
1.3.11.6 Quick File Referencettt iiitnnmeneneneennnn 1-34
1.8.11.7 File Name Status o v v vttt e it i et ettt e et e e e 1-34
1.3.12 Search Service e e e e e e e e 1-35
1.8.12.1 Wildcard Context e e e e e 1-35
1.3.12.2 File Name Statusttt it it et ettt et e e aae e 1-35
1.3.128 Matched Files ittt it et tee et e e e 1-35
1.3.13 Display Servicet ittt e e e e e e e e e e e 1-36
1.3.13.1 File Identificationttt 1-36
1.3.13.2 Output Optionsttt et e e 1-36
1.3.13.2.1 Allocation Options i 1-36
1.3.18.2.2 Protection Optionst it it it ittt ittt 1-36
1.3.18.2.3 Dateand Time Options i nn.. 1-37
1.3.13.2.4 File Header Characteristics 1-39
1.3.13.3 Quick File Reference 140
1.3.14 Erase ServiCe v vt v vt i it et et e e e et et e e e 140
1.3.14.1 File Specification it e 140
1.3.14.2 Erased File Specification 140
1.3.15 Flush Service ittt it e ettt e ie e 140
1.3.15.1 File Identification it 140
1.3.16 Free and Release Services ittt i ittt et 141
1.3.17 Rewind Servicettt it i it e e e e e e e e 141
1.3.17.1 File Identificationttt 141
1.3.17.2 Key Reference i ittt it e 1-41
1.3.17.8 Next Record Position ittt ittt eneennnan 141
1.3.18 Truncate Servicet ittt ittt it e e e 141
1.3.18.1 FileIdentifier ittt it et ittt e et 141
1.3.19 Update Serviceottt i ittt et et e e e 142
1.3.19.1 File Identificationttt in it ter e aennnnennn 142
1.8.19.2 Record Position ot ittt it it it ettt et e 142
1.3.19.3 UserOutput Buffer i 142
13194 Input Options it i e it e e e 142
'1.3.194.1 Record Header Buffer i, 142
1.3.19.4.2 Record Locking Options., 142
1.3.19.5 Next Record Positionttt inenannn. 142
1.4 Algorithms for File Managemento, 143

14.1 Sample /ORequest Flowttt .. 143

1.4.2 Create ServiCe . . . v v vt i vttt et ettt e ettt 144
143 Open ServiCe . . .« v vv vt ittt et e et e e e e 145
144 CloSE SeIvVICE . . v v vt vttt ittt et e e e 146
1.4.5 Parse SeIviCe o i i it ittt e e e e e e e e e 147
1.4.5.1 Miscellaneous Notes on File Name Parsing 149

1.4.6 Search Service i ittt it it et et i e e e e e 149
1.4.7 Data Retriveal Services i it ittt ittt eennennnns 1-50
148 DataOutput Services. ittt ittt it et e e 1-52
1.4.8.1 Sequential Record Qutput i 1-52

1.4.9 I/Os Through Client Context Server, 1-53
APPENDIX A PRELIMINARY TESTPLANS A-1
APPENDIX B OUTSTANDINGISSUES, B-1

vi

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Revision History

Revision
Date Number Author Summary of Changes
10-Dec-1987 .1 S. Chatterjee Initial Draft
04-Jan-1988 2 S. Chatterjee
1. Major restructure of interface parameters
2. Incorporated comments from the primary re-
] viewers
06-Jan-1988 3 S. Chatterjee

1. Minor editing changes

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

CHAPTER 1
RECORD MANAGEMENT SERVICES

1.1 Introduction

Mica RMS is a set of generalized library routines that assist user programs in processing and man-
aging files and their contents. The interfaces provided by Mica RMS routines are used uniformly to
access files within the defined client-server environment. This document describes the framework for
Mica RMS implementation in the following sections:

» This introduction briefly discusses the design philosophy, lists the goals of the project, states
the functions provided, and lists the VMS RMS functions omitted from Mica RMS. The section
concludes with a short discussion on Mica file service support that is used by RMS.

* The second section defines the functions that are available on each supported device.
¢ The third section describes the Mica RMS programming interfaces.

* The fourth section outlines the overall request flow. Algorithms used in implementing a few
select Mica RMS functions are also included in this section.

* Appendix A cutlines a preliminary plan for testing RMS software.

1.1.1 Design Philosophy

Mica RMS, together with the applications interface architecture (AIA), provides the highest level user
interface in the Mica system. The purpose of Mica RMS is to provide a convenient interface to process
and manage files and their contents. Much of the RMS file processing capabilities are inherited
from the unlerlying infrastructure of the Mica I/O subsystem. However, record-level management is
provided only through RMS. VMS RMS replicates many of the functions that are available through
the I/O subsystem primarily as a user convenience. In Mica, the I/O architecture provides a straight-
forward interface to user-mode processes, thereby eliminating the requirement of replicating many
of the functions at the RMS level. However, user convenience is not forgotton. Thus, for example,
RMS provides ways for users to create or delete files.

Mica RMS services operate in user mode. Many of the design decisions reflect this. A few results of
operating in user mode are listed below:

e RMS is not notified if the user program exits abnormally. As a consequence, the user buffers
allocated by RMS are flushed by exit handlers.

* RMS procedures are directly callable from the user program, without requiring a context switch.
¢ The data structures maintained by RMS for its users can be corrupted by an erring user program.

¢ RMS runs in the user’s process context, within the user’s address space. RMS allocates buffers
for the user by calling a system function. Thus, much of the information maintained by VMS
RMS in the process I/O (PIO) segment are no longer required.

Record Management Services 1-1

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Software is a piece of text that specifies computations. A piece of software that provides nontrivial
functions is best constructed in component pieces that interact with each other by way of well defined
interfaces. The philosophy is to have as general an interface as possible. This guiding principle is
used in designing not only the external interfaces, but also in interactions between various internal
procedures and modules.

1.1.2 Goals
Mica RMS is designed to meet several goals:

Ease of use—This goal is reflected by the user interface design. Mica RMS services are accessed
through procedure calls. Each service procedure has a few (less than a dozen) parameters,
many of which are optional and default to often-used values. The parameters appearing in the
interface are the commonly-used file attributes, the required buffer pointers, and the outputs
from the service. For infrequently used input options, the services provide an input parameter,
which is an item list. One advantage of using an item list is that the options can be enhanced
without affecting the user interface.

Fast response time—The data retrieval services are designed to minimize run-time decision
making.

Device independence—Mica RMS, like VMS RMS, offers device-independent file handling.

Modularity—The RMS implementation supports easy addition of enhancements. easily added.
For example, supporting a new device type or file organization can be done in a fairly straight-
forward manner. Implementation avoids exception code as much as possible.

1.1.3 RMS Functionality

Mica RMS provides user programs with the capability to do the following:

Parse and wildcard file names.

Specify multiple file organizations (sequential, indexed or relative); at FRS, only sequential files
are supported.

Specify multiple record formats (fixed, variable, VFC, stream, streamCR, streamLF, and unde-
fined).

Specify multiple ways to access records (delete, get, put, update, and truncate).

Specify multiple ways to share files and enforce access control to files (shared delete, get, put,
update, nil and user-provided interlocking). At FRS, the available support allows multiple pro-
cesses to read share a single disk file. Also, a file may be shared between a single writer and
mutiple readers. See Section 1.2.1.

Specify multiple device types for record access. At FRS, RMS supports I/Os to disk devices only.
Paths are also provided for conducting I/O to terminal devices connected to the client systems.
See Section 1.2.3.

Specify ways to lock and unlock records. At FRS, there is no support available for record locking.

1-2 Record Management Services

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only
1.1.4 Functions Not Available

This section lists VAX/VMS RMS functions that are either not available at FRS, or have been perma-
nently excluded from Mica RMS. A few of the VAX/VMS RMS functions are excluded permanently as
these functions are easily available through the Mica File system. A few other functions are excluded
permanently as they are available as system services.

The following lists the functions that are not available at FRS, but are planned for future releases:
¢ File organization—Indexed and relative files

¢ File access—Shared write access to disk files

* Record locking—Ways to lock and unlock records

* Transaction logs—dJournal file I/O operations

The rest of this section lists the VAX/VMS RMS functions that are not planned to be included as
Mica RMS functions.

The following VAX/VMS RMS functions are excluded permanently from Mica RMS:
* Asynchronous I/0 operations (Mica RMS supports synchronous I/Os only)

¢ Direct record access to mailboxes or message devices

* Remote file access and task-to-task communication by way of DECnet

* Implicit file spooling

* DECK and EOD checking

® Multiple record streams

¢ File disposition option submit command file on execution of RMS$CLOSE

* Set date and time for file creation, expiration, revision or backup

The I/0O subsystein functions not replicated in Mica RMS are:

e $ENTER

e $EXTEND
* $NXTVOL
¢ $REMOVE
¢ $RENAME
* $SPACE

0ODS2-3 defines the following six date and time values which are maintained as file attributes:
Creation date and time

Expiration date and time

Backup date and time

Revision date and time

Read date and time

o o k0N

Header write date and time

Record Management Services 1-3

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

VMS RMS allows its users to set any of the first four date and time values at file creation time. The
Mica file system automatically sets the creation date and time, and the Mica RMS interface does not
provide an explicit way to set any of these times except the expiration date and time. The user may
examine the date and time values through the Display service.

By default, Mica file system sets and maintains all the date and time values, except the expiration
date and time. However, a user may call exec$request_io with the function code iofc_dfile_write_
attributes to set the date and time values.

A user may influence how items 4 and 5, revision date and time, and read date and time are main-
tained. By default, these items are updated in memory and written out at file close time. The user
can choose to force a disk update, at substaintial performance penalty, on every read or write.

The following system services are not available through Mica RMS:
* SYS$RMSRUNDOWN

 SYS$SETDDIR

e SYS$SETDFPROT

. SWAIT

The undocumented VAX/VMS RMS function $MODFY is not available in Mica RMS.

1.1.5 Interface to Mica File Sytem

The Mica I/O architecture provides a set of services through which user-mode processes access func-
tions provided by the I/O subsystem. The Mica I/O architecture defines function processors through
which specific /O requests are satisfied. RMS accesses disk resident files through function proces-
sors belonging to the disk file function processor (DFFP) class. The specific function processor used
depends upon the volume on which the file resides. For example, FILES-11 function processor pro-
vides access to local Mica volumes, and the distributed file service (DFS) function processor provides
access to nonlocal volumes. However, every function processor of the DFFP interface class provides
the same user interface. RMS accesses the DFFP class function processors uniformly.

A fully specified file name is of the form:

volume name:[directory specification]file name.type; version

n.n

To separate the type and the version fields, either ";" or "." may be used. A function processor accepts
/O requests to one of its volumes through a function processor unit (FPU) that represents the volume.
RMS accesses the I/O subsystem by using the following steps:

1. In order to access the I/O subsystem services, the FPU object ID is required. RMS obtains
the FPU object ID by calling exec$translate_object_name, with the volume name as an input
parameter.

2. RMS calls exec$create_channel to establish an I/O channel to the FPU. A channel is deleted by
calling exec$delete_object_id and specifying the channel’s object ID as the input parameter to the
call.

3. RMS calls exec$get_fpu_information to determine that the channel is assigned to an FPU that
belongs to the supported interface class. This call also provides volume-specific information {(for
example device characteristics).

4. Functions provided by DFFP are obtained by calling execfrequest_io. A caller specifies a DFFP
function code while calling exec$request_io to access a DFFP function. The following DFFP
functions are used:

e Create a file (io$c_dfile_create)
» Specify and read file attributes (io$c_dfile_write_attributes, io$c_dfile_read_attributes)

1-4 Record Management Services

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Allocate storage and deallocate storage (io$c_dfile_allocate_storage, io$c_dfile_deallocate_
storage)

Access and deaccess files (ioc_dfile_access, ioc_dfile_deaccess)

Transfer data (ioc_dfile_read, ioc_dfile_write)

Search for a file (io$c_dfile_search_dir)

Read one or all the entries from a given directory (fo$c_dfile_read_dir_entries)
Enter or remove a directory entry (io$c_dfile_modify_dir_entries)

Delete a file by the file ID (io$c_dfile_delete_by_fid)

Record Management Services 1-5

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.2 Devices Supported

Mica RMS provides device independent file access. Device type is not a file attribute. The mounted
device (the volume) on which the file resides or on which the file is to be created, is derived explicitly
(user specifies it) or implicitly from the user’s environment. The I/O subsystem provides accesses to
the devices by way of function processors. Ideally, higher layer software like RMS is not required
to possess knowledge of device characteristics. However, to prevent certain operations, for example,
creating an indexed file on a magnetic tape device, some knowledge of major device characteristics is
required. Other than that, if the function processors provide uniform interface, many of the device
characteritics are transparent to RMS.

Although RMS is designed to support a variety of devices, its functions are geared towards mass
storage devices, especially random access devices. The following paragraphs describe the range of
RMS functions available on the supported device type.

1.2.1 Disk Devices

The functions that are available on disk devices are discussed in this section. The functions are
classified as:

* File creation time options that define file characteristics

* File creation time options to specify file names

* File creation time options that specify file allocation and position control
* TFile access and file sharing criteria

¢ Reliability options in I/O operations

* Run-time options to specify file disposition

¢ Run-time record retrieval options

¢ Run-time record insertion options

Each of these items is discussed in the following sections.

1.2.1.1 File Characteristics
Files created on disk devices can have the following characteristics:

¢ File organization—Disk file organization can be sequential, indexed or relative. At FRS, only
sequential files can be created.

* Record format—The record format can be fixed length, variable length, variable length with fixed
length control, stream or undefined. The default is variable length.

* Record attributes—All the record options specified by rms$record_attributes are applicable (see
the description of rms$create for record structure definition, Section 1.3.1.2.3). For example,
the user specifies that the records may span block boundaries by setting the rms$blk bit in
rms$record_attribute. The user may set rms$record_options.max_rec_size to specify the maxi-
mum record size.

¢ Date information—This is defined in rms$display. Date information provides date and time
values for file backup, file creation, file expiration, last accessed, last header write and the file
revision. Date and time values are set and maintained by the Mica file system. See Chapter
20, Disk File System Function Processors, for the rules used to set and maintain date and time
values. Through RMS, the user can set the expiration date and time of the file at file creation
time.

¢ File protection—Mica files are protected by way of access control lists. The mechanism and the
interface are TBS.

1-6 Record Management Services

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

¢ Index file characteristics—These are TBS.

1.2.1.2 Filename Creation
At disk file creation time, the following options may be used.

* Create if nonexistent—Creates the file if the file of the same name does not exit in the specified
directory. If the file exists, then the file is opened.

* Maximize version—Creates a disk file with a specified version number or a version number one
greater than a file of the same name in the specified directory.

* Supersede version—Supersedes the file of the same file name, file type, and version number.

¢ Temporary marked for delete—The file is created, without any directory entry. The file is auto-
matically deleted when the file is closed.

¢ Temporary—The file is created without any directory entry. The file is retained after being closed.
However, the file can only be reopened if the file ID is supplied.

1.2.1.3 File Allocation |

At the time a disk file is created, the file space allocation amount, default extension amount and
placement control can be specified by the record rms$create_in_alloc_options. See Section 1.3.1.4.1.
If the allocation option is not used, RMS sets the default extension area to be equivalent to the track
size of the device. Thus, initially the user creates a file with zero allocated size. At the time of the
first output, an area equivalent to the default extension is allocated automatically for the user.

1.2.1.4 File Sharing

The user specifies the way a disk file is to be accessed and the way the file is to be shared with other
users at file open or file creation time. The file access and share rules are set on calls to rms$create
or rms$open, through the input parameter access_request. For more information, see Section 1.3.1.3.
In the initial version, Mica RMS does not accomodate multiple writers to the same file. However, a
single writer may share the file with multiple readers. If a file is accessed for write, then by default,
the file is opened for exclusive use, which prohibits sharing. If, however, the writer wants to allow
readers, then the rms$c_shrget and rms$c_upi need to be set.

If a file is accessed for read only, the default sharing is rms$c_shrget. If the reader wants to allow a
writer, then the rms$c_shrput bit and the rms$c_upi bit need to be set.

A request for access to a file is policed by the file system and not directly by Mica RMS. Whether an
access to a file is allowed or not, is determined by the most current sharing value. For example, a
file currently has 3 readers (A, B, and C) and one writer (X). At this point if another writer (Y) tries
to open the file for write access, the open fails. If, however, X closes the file and then Y tries the open
again, the open succeeds.

A file shared between a writer and multiple readers requires that the buffers written by the writer
are periodically flushed out. It is proposed that Mica RMS forces a flush operation after 'n’ (say 100)
buffers are written. This ensures that the file attribute end-of-file VBN is updated for the reader’s
benefit. Independently, the user may call the Flush service to force an update.

At FRS, Mica RMS does not provide record locking facilities.

Record Management Services 1-7

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.2.1.5 Reliability Options

Reliability options are set at disk file creation or open time. Through the input option item rms$file_
characteristics, the user specifies rms$c_read_check and rms$c_write_check options to ensure that the
data transfers from or to the disk volumes are to be checked by a read-compare operation. Reliability
checks effectively double the amount of disk I/Os performed.

The user may set rms$c_force_write_thru_dates to force update the last read date and time, and the
last write date and time on the file header, on every I/O.

1.2.1.6 Runtime File Disposition Options

Mica RMS provides read-ahead and write-behind buffer management for all sequential files. Mica
RMS provides only synchronous 1/0 operations to its users. Through the input option item rms$run_
time_access, the user can specify the following file disposition options at the time the is file is created
or the file is opened.

* Truncate end-of-file—Indicates that the unused space is to be deallocated at the time the file is
closed.

* Delete on close—Indicates that the file is to be created and a directory entry is made. The file is
deleted automatically when closed.

1.2.1.7 Record Retrieval Options

Records on sequential disk files are accessed sequentially or randomly (by record’s file address).
Records on sequential files with fixed record formats can be accessed randomly by the relative record
position.

By default, locate mode is used for data retrieval operations. The user may optionally set move mode
for record retrieval. See Section 1.3.5.

If the record format is variable length w1th fixed control (VFC), the user can specify the length of the
fixed control portion.

1.2.1.8 Record Insertion Options

For sequential files records are usually inserted at the end of the file. The records to be inserted
cannot be larger than the maximum record size (max_record_size) as defined in the record rms$record_
definition. See Section 1.3.1.2. A record can also be inserted randomly by key in a sequential file with
fixed length records. To insert randomly, the record access mode rms$c_update must be selected.

The truncate_on_put option allows new records to be inserted in a sequential file, in locations other
than at the end of the file. After the record is inserted, the file is truncated immediately after the
inserted record. The end-of-file marker is updated to the new location. To perform this operation,
the user needs to select rms$c_truncate record access mode.

1.2.2 Magnetic Tape Devices
At FRS, I/Os to magnetic tape devices through RMS are not available.

1-8 Record Management Services

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only
1.2.3 Terminal Devices

At FRS, terminal devices are not directly connected to the Glacier (compute server) or the Cheyenne
(data base server) systems. The terminals are connected to client systems and are considered to be
part of the client environment. At FRS, Mica RMS accesses terminals through client context server
(see Chapter 55, VMS Compute Server Support).

To read from a terminal device, the user must specify move_mode and an input buffer to receive the
data. Data read from the client site is copied into the user input buffer. Read ahead and write behind
are automatically turned off for I/Os to terminals.

At FRS, Mica RMS supports a minimal set of terminal options. None of the read verify functions of
terminal drivers are available at FRS. If a file is used for terminal I/O, the file and record attributes
that may be specified are:

¢ File organization is sequential only.
* Record access mode is sequential only.

¢ Terminal options in Get and Put services are listed below. The terminal options are not inter-
preted by Mica RMS, and they are forwarded to the client site. Enforcement of the options are
carried out by the client site terminal driver.

* Cancel CTRL/O—Guarantees that terminal output is not discarded if the operator presses
CTRL/O.

* Uppercase—Changes characters to uppercase on a read from a terminal.

¢ Prompt option—The contents of the prompt buffer are to be used as a prompt for reading
data from a terminal.

¢ Purge type ahead—Eliminates any information that may be in the type-ahead buffer on a
read from a terminal.

* Read no echo—Input data is not echoed on the terminal.

¢ Read no filter—Indicates CTRL/U, CTRL/R and DELETE are not to be considered as control
commands on terminal input.

* Timeout—Specifies the maximum number of seconds to wait between characters being
typed.

1.2.4 Mailboxes
Mailboxes are not supported at FRS.

Record Management Services 1-9

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.3 RMS Programming Interface

The following sections define various Mica RMS services. The services are presented in the following
order:

¢ File creation and other basic services:
— rms$create
— rms$open
— rms$close
— rms$get*
— rms$put*
¢ Filename parse and search services:
— rms$parse
— rms$search
* Other services:
— rms$display
— rms$erase
— rms$flush
— rms$free (not available at FRS)
— rmsé$release (not available at FRS)
— rms$rewind
— rms$truncate

— rms$update

Mica RMS services are provided by a set of user-mode run-time library procedures. The procedures
are designed with the two goals of ease of use and flexibility. The RMS user specifies various file
attributes to suit the requirements of a particular application. There are two categories of file at-
tributes: the ones that are used for file level functions (such as Create and Open) and the ones that
are used for record level functions (such as Get and Put). The attibutes are specified to the Mica
RMS services by parameters. The attributes appear either as explict parameters, or as options in
item lists.

Typically, the file attributes that appear explicitly are:
¢ The required information for the service

* The frequently specified attributes to the service (Usually, these parameters, also have associated
defaults. Thus, if an attribute default has a suitable value, the user need not explicitly specify
the parameter.)

¢ The values that are always returned by the service on successful completion

One set of file attributes is used to statisfy very specific user requirements (placement control of files,
for example). These attributes are expressed as items of item lists. Item lists, as input options and
output options, appear explicitly as parameters. For each service, if necessary, there is a valid list
of input items and output items. Input items are those attributes that the user specfies to RMS, so
that the file or record management is done appropriately. If an attribute appears both as an explicit
parameter, and as an item, RMS uses the value specified in the item. Generally, the design avoids
multiple ways to specify the same file attributes. Output items are those attributes that RMS returns

1-10 Record Management Services

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

to the user. The user has complete flexibility in using the input items and the output items from the
set of available options. Items and item lists are defined below:

t+

'RMS wide definition of an item and item list
I -

positive_integer : INTEGER[O..];

rms$Sitem: RECORD
code: LONGWORD;
buffer length: positive integer;
buffer ptr : POINTER anytype;
return length ptr: POINTER positive integer;
LAYOUT
code;
buffer length;
buffer ptr;
return_length_ptr;
. END LAYOUT; .
END RECORD;

rms$item_list(n:positive_ﬁnteger): RECORD
CAPTURE n;
rms$items: ARRAY [1l..n] OF rms$item;
LAYOUT
n;
£ill 1:filler(longword,*);
rmsSitems;
END LAYOUT;
END RECORD;

Mica RMS does not provide support for multistreaming. However, RMS returns the next record
pointer after every successful data retrieval operation (rms$get*). The user maintains multiple record
positions with multiple next record pointers. As explicit multiple streams are not provided, the VMS
RMS Connect service is no longer necessary.

Mica RMS provides buffer management for its users. The user is not required to specify the number
of blocks or the number of buffers. Read-ahead and write-behind functions are provided.

For each RMS service, the error conditions and the status values are required to be specified. Error
conditions and status values for Mica RMS are not yet specified.

1.3.1 Create Service

The Create service (rms$create) creates files according to the attributes specified in the parame-
ters. If a parameter is not specified, its default value is used. This service implicitly calls the Open
(rms$open) service. The rms$create service does not replicate the Display (rms$display) service func-
tions. However, for user convenience, the service returns, if completed successfully, some information
about the opened file.

The rms$create service returns the file identity, as maintained by the file system. The file_id field is
a part of the quick_file_ref out parameter. The rms$create service also returns a file handle, which
is the file reference maintained by RMS.

The caller checks for successful completion condition returned by the implicit rms$open service by
examining the value returned in the status.

Record Management Services 1-11

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

PROCEDURE rmsS$Screate (
IN file name : string(*) OPTIONAL;
IN default file string : string(*) OPTIONAL;
IN quick file ref in : rms$file ref identifier OPTIONAL;
IN recorq_definition : rms$record_definition OPTIONAL;
IN access_request : rms$file_access_share OPTIONAL;
IN create_input options : POINTER rmsS$item list = NIL;
OUT file information : rms$standard_ﬁile_info OPTIONAL;
OUT output file specification : rms$file reference OPTIONAL;
OUT quick file ref out : rms$file ref identifier OPTIONAL:
OUT file_handle : rms$file handle;
) RETURNS status;
EXTERNAL;

1.3.1.1 File Identification

The caller specifies the file to be created and/or opened by either the file_name parameter or by the
quick_file_ref_in parameter. The file name string cannot contain wildcard characters or a node name.

The parameter file_name is an instance of a valid file name. A file name is a string of characters
from which the primary file specification is derived. The caller provides the default file specifications
through the default_file_string parameter. Mica RMS uses the information contained in the file_name
parameter and, if necessary, the default_file_string parameter to construct a full file specification.

The optional input parameter quick_file_ref in is a record that contains the file ID and the volume
object ID, the two necessary and sufficient information to identify and locate the file, without requir-
ing any further file-name processing. This information is returned as output (quick_file_ref_out) by
several RMS services. If this information is available, (for example, from an earlier call to the Parse
and Search services), the caller returns the quick_file_ref out to rms$create through the input param-
eter quick_file_ref_in. The quick_file_ref out is an output of the rms$parse, rms$search, rms$open as
well as rms$create service.

If quick_file_ref_in is present, and the caller has requested to create the file only if the file is nonex-
istant, then rms$create first tries to access the file by the file ID. RMS uses the volume object ID to
open a channel to the FPU.

The quick_file_ref parameter is a pointer to a record with the following structure:

TYPE
rms$file ref identifier: RECORD
volume object id : execSobject id;
file id : rms$fll file id;
END RECORD;

1+
! file$fll file id is defined by the Mica file system.
! It is reproduced below for easy reference.

-

rms$fll_file id : file$fll file id;

file$fll file id : RECORD
£11 fid num : integer [0..65535] SIZE(word); ! file number 16 low bits
f11 fid seq : integer [0..65535] SIZE(word); ! sequence number

f11 fid rvn : integer [0..255] SIZE (byte); ! relative volume number
£f11_fid nmx : integer [0..255] SIZE(byte); ! file number 8 high bits
LAYQUT

£11_fid num,
£11 fid seq,
£11_fid rvn,
£f11 fid nmx;
END LAYOUT;
END RECORD;

1-12 Record Management Services

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.3.1.2 Record Definition

This record structure is used to specify the following:
¢ File organization

* Record format

* Record attributes

* Maximum record size

* Longest record length

The record structure for record defintion is shown below:

TYPE

rms$record definition: RECORD
file organization : rms$file organization;
reco;a_format : rms$file_;ec3rd_format;
record attribute : rms$record attribute;
max_regord_size : integer[o..§2767];
vfc_control_head_éize : integer[0..255];
longest_record length : integer[0..32767];
version number : integer [1..65535] SIZE (word):

END RECORD;

Each field of rms$record_definition is discussed in the following sections.

1.3.1.2.1 File Organization

The default file organization is sequential. The initial version of Mica RMS supports sequential
organization only.

4

!The following values are used to define file organizations
!

VALUE
rms$c_sequential =
rms$c_relative = 1;
rms$c_indexed = 2;

0;

TYPE
rms$file organization : integer[0..2] SIZE (BYTE);

1.3.1.2.2 Record Format

The default record format is variable length records.

1+

!The following values define the file record format
!

VALUE

rms$c_undefined = 0; undefined

rms$c_fixed = 1; fixed length
rms$q_variable = 2; variable length

rms$c vfc = 3; variable fixed control

rmssc:stream = 4;
rms$c_stream 1f = 5;
rms$c_stream;cr = 6;

stream
lfstream (seq files ONLY)
cr stream (seq files ONLY)

TYPE
rms$file_;ecord_format : integer [0..6] SIZE (byte);

If the VFC format is chosen, the user specifies the fixed control area size by the field vfe_control_
head_size.

Record Management Services 1-13

Digital Equipment Corporation - Confidential and Proprietary

For Internal Use Only

1.3.1.2.3 Record Attributes

The valid input record attrubtes to rms$create are:

¢ BLK-—records are not permitted to cross block boundaries
¢ CR —preced each record with a LF, and follow with CR

¢ FTN—FORTRAN carriage control character

* PRN—oprint file format

1+
!A record attribute type is defined below:
t4+
TYPE
rmsS$Srecord attribute names : (

rms$c_ftn, T FORTRAN carriage control

rms$c_cr, ! preced each rec with CR, follow with LF
rms$c_prn, ! print file format

rms$c_blk ! records do not cross block boundaries

):
rms$record_§ttribute : SET rms$record_attribute_names[..] SIZE (BYTE);

Only rms$c_blk option can be paired with another option. The options rmsc_fin, rmsc_cr, rms$c_
prn cannot be used in any combination. The default value of this field is rms$c_cr.

1.3.1.2.4 Maximum Record Size

This integer value represents, in bytes, the size of all records in a file with fixed length records,
the maximum size of variable length records, the maximum size of the data area for variable with
fixed-control records.

1.3.1.2.5 VFC Control Head Size

This field is used to specify the length of the fixed-control area of a file with VFC record format. The
default value is 2 bytes.

1.3.1.2.6 Longest Record Length

RMS returns through this field the numeric value of the longest record in the file. The field is used
only if the record format is not fixed length.

1.3.1.3 Access Request

This record specifies the desired way the caller wishes to access the file and the way the caller wishes
to share the file with other users. This is an optional input parameter to the rms$create. At file
creation time, the default value of file accessing is put access, and the default value for file sharing is
allowing shared read. Block I/O operations are considered as data retrieval operations, rather than
access modes. Hence, block I/O options are removed from the set of file access options. The access
request record structure is defined below:

TYPE
rms$file_access_pontrol : RECORD
access : rms$file_§ccess;
share : rms$file share;

END RECORD;

1-14 Record Management Services

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

rms$file access_names : (
rms$c_delete, " ! request delete access
rms$c_get, request read access

rms$c_update, request update access
rms$c_truncate request truncate access

)

rms$file access : SET rms$file access names[..] SIZE (BYTE);

!
rms$c_put, ! request write access
!
1

rms$file share names : (
rms$c shrdel ! allow delete access
rms$c_shrget allow get access
.rms$c_shrput, allow put access
rms$c_shrupd, allow update access
rms$c_shrnil, prohibit sharing
rms$c_upi user provided interlocking (allows
Y2 a single writer and multiple readers to seq files)

rms$file_share : SET rms$file share names[..] SIZE (BYTE);

1
!
1
!
1
!

1.3.1.4 Create Input Options

Input options to the rms$create service are passed as items in an item list. The item codes are defined
in rms$create_in_options_item_code. The valid input options to the rms$create are shown below:

1+
!1This enumerated type is used to define the input options item codes

!for Create service.
1

rms$create_in options_item code :(
rmsScreate allocation optlons,
rms$create_protectlon_pptlons,
rmsScreate_filename_preation,
rms$create runtime_access,
rms$create file characteristics,
rmsScreate_set_expiration_date, ! set expiration date and time

):
Each option that can be specified at file creation time is discussed in the following sections.

1.3.1.4.1 Allocation Options

Through the allocation options the RMS user can exercise additional control over file or area space
allocation on disk devices, to optimize performance. In the following description, the terms file and
area are synonymous for sequential and relative files, as these file organizations are limited to a
single area.

If the allocation options are not used, the user file is created as a zero length file. However, at the
time the first Put operation is performed, the file is automatically extended. The default extension
size is equal to the track size of the device, on which the file resides.

The allocation options are defined by the following record:

'+
{The following record describes the valid allocation options
!for input to the Create service.

-
rmsScreate_in file alloc (number of areas: INTEGER[0..254]): RECORD
CAPTURE number of areas;
default_gxtentlon : INTEGER[O..65535}];
block count : ARRAY [O..number of areas] OF integer [1..1073741824];
area position : ARRAY [O..number of areas] OF file$file alloc;
END RECORD;

Record Management Services 1-15

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

'+
!The type file$file alloc are defined by the
!Mica File system. It is copied below for easy reference.

1-

'+

!These enumerated types and record are used to control the allocation of
!disk blocks.

file$alloc_place: (

file$c_place cylinder, tAllocate on specific cylinder.
file$c_place_lblock, !1Allocate on specific logical block.
file$Sc_place_vbn, tAllocate on specific virtual block.
file$c_place rfi tAllocate to related file.

Yz

fileSalloc align: (
file$c_align_cylinder, !Align to cylinder.
file$c_align_onsector tAlign to sector.
)i

v

! Provide data for alignment options.

!~

file$place data (placement: file$alloc place): RECORD
CAPTURE placement;
VARIANTS CASE placement

WHEN file$c place_cylinder THEN !Data for align to cylinder.
crvn: [0..255] SIZE(byte); tRelative Volume Number.
cylinder: integer [0..] SIZE(longword); !{Cylinder number.

WHEN file$c place_lblock THEN 'Data for align to logical block.
lrvn: [0..255] SIZE(byte):; tRelative Volume Number.
lblock num: integer [0..] SIZE(longwoxrd); !Logical Block Number.

WHEN file$c place_ vbn THEN 'Data for align to virtual block.
vblock num: integer [0..] SIZE(longword); 'Virtual Block Number.

WHEN file$c_place_;fi THEN !Data for align to related file.
rfi vbn: integer [0..] SIZE (longword) ; IVBN of related file to align with.
rfi file id: file$f11_file_id; tRelated file FID.

END VARIANTS;
END RECORD;

'+

! This record holds all of the allocation information, and is
! the type passes as the allocation argument to the allocate
! and the create function

file$file alloc: RECORD

hard : boolean; error if can’t alloc. as specified

!
contiguous : boolean; ! contiguous
contiguous best try : boolean; ! contiguous best try
placement : file$alloc_place; ! placement
alignment : fileSalloc _align; t alignment

!

location : POINTER fileS$place_data;
END RECORD;

alignment data

Use of some of the fields of the record rms$create_in_file_alloc are described below:

Default extension—This represents the quantity, in number of blocks, to be added to the file,
when automatic extension is required.

Block count—This indicates the number of blocks to be allocated for each area. For sequential
files only one area is applicable.

1-16 Record Management Services

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

* Area Position—Specifies placement control for each allocated area. The position control fields
are described below:

— The field file$file_alloc.hard indicates that if the requested alignment cannot be done, then
an error is returned. By default, the allocation is performed as near as possible to the
requested alignment.

— The field file$file_alloc.contiguous indicates that the initial allocation extension must use
contiguous blocks only. The allocation fails if the requested number of contiguous blocks is
not available.

— The file$file_alloc.contiguous_best_try indicates that allocation or extension should use con-
tiguous blocks, on a "best effort” basis.

— The file$file_alloc.placement indicates one of the following:
— file$c_place_cylinder—Indicates that allocation is to begin on the specified cylinder.
— file$c_place_lblock—Indicates that allocation is to begin on the specified logical block.

— file$c_place_vbn—Applies to area extension only. This indicates that the area extension
should begin as close to the virtual block number as specified in file$place_data.vblock_
num.

— file$c_place_rfi—Applies to area extension only. This indicates that the area exten-
sion is to start as close as possible to the file identified in the field file$place_data.rfi_
file_id. The extent begins with the virtual block number specified in file$extent_
descriptor.starting_vbn.

— The file$file_alloc.alignment indicates one of the following:
— file$c_align_cylinder—Align on cylinder boundary
— file$c_align_onsector—Align on sector (track) boundary
* The file$place_data provides alignment options. ‘

— The field crvn represents the relative volume number upon which the file is to be allocated.
This field corresponds to the VMS RMS field XAB$W_VOL. The field cylinder represents the
cylinder number on the volume, at which the allocation is to start. This field corresponds
to the VMS RMS field XAB$L_LOC, when in the XAB$B_ALN field, XAB$C_CYL option is
-specified. :

— The field lrvn represents the relative volume number upon which the file is to be allocated.
This field corresponds to the VMS RMS field XAB$W_VOL. The field Iblock_num represents
the logical block number on the volume, at which the allocation is to start. This field
corresponds to the VMS RMS field XAB$L_LOC, when in the XAB$B_ALN field, XAB$C_
LBN option is specified.

1.3.1.4.2 File Protection Options

File protection options are used to specify ownership, accessibility and protection of a file. Presently,
file protection options are not defined, as th Mica file system file protection mechanism is not yet
specified.

Record Management Services 1-17

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.3.1.4.3 Filename Creation Options

The following file-name options may be set while creating a file. A programmer can choose any or all
of the options.

Create If Nonexistent —Opens an already existing file.

Maximize Version Number—Indicates that the version number of the file should be the maximum
of the explicit version number given in the file specification, or one more than the highest version
number for an existing file in the same directory with the same file name and file type. This
option enables the user to create a file with a specific version number.

Supersede—Allows an existing file to be superseded on creation. Existing files can be superseded
by a new file of the same name, type and version. The create_if and max_version options take
precedence over supersede.

Temporary—Indicates that a temporary file is to be created and retained but no directory entry
is made. After the file is closed, the only way to refer to the file is by way of the file ID (provided
through the output record quick_file_ref out.

Temporary marked for delete—Indicates that a temporary file is to be created. The file is auto-
matically deleted when it is closed.

By default, none of the above options is set. The consequences are:

If the file is specified without explicit version number then the file is created, even if a file with
the same name were present in the directory. In this case, the newly created file gets a higher
version number. For example, if a file A.TXT;1 exists, and the user tries to create A.TXT, and
the create if nonexistant flag is not set, the file A TXT;2 is created.

The version number of the created file is not maximized. For example, if a file A.TXT;2 exists,
and the user tries to create a file A. TXT,2 the file creation attempt fails. On the other hand, if

the option maximize version number were set, the same file creation attempt succeeds, and the
file A TXT,;3 is created for the user.

The files are not superseded. If a file with the same name, type and version exists, the file
creation attempt fails.

By default permanent files are created. A directory entry is made for the file, and the file is not
deleted when it is closed.

The filename creation options are specifed below:

'+
!This enumerated type is used to define the options for

tthe create options

1

rms$filename creation options: (
rms$c_create if, ! create if non-existent
rms$c max version, ! maximize version number
rms$c:sup€isede, ! supersede
rms$c_temporary, ! temporary file
rms$c_temp marked del ! temporary marked for delete

)

rms$filename creation : SET rms$filename_greation_pptions[..] SIZE (BYTE) ;

1-18 Record Management Services

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.3.1.4.4 Run-time Access Options

The run-time access options are used to specify file desposition at the time the file is closed. The
runtime access options are defined below:

* Truncate end-of-file—Indicates that the unused space allocated to a file is to be deallocated, when
the file is closed.

¢ Delete on close—Indicates that the file will be deleted when closed.

rms$run_time_access_options : (
rms$c_truncate_eof,
rms$c_delete on_close,

)y
rms$run_time access : SET rms$run_time access options([..] SIZE(byte);

By default, none of the above options is'set. Run-time access options are to be exercised explicitly.

1.3.1.4.5 File Characteristics |
At file creation time, the following reliability oriented file characteristics can be specified:

* Read check—Specifies that transfers from disk volumes are to be checked by read-compare op-
erations. By default, read check is not performed.

* Write check—Specifies that transfers to disk volumes are to be checked by read-compare opera-
tions. By default, write check is not performed.

* Force write through dates—Specifies that the read date and time field, and revision date and
time field are updated on disk, every time the a record is read from or written to the file. By
default, the fields are updated in memory by the Mica file system and written out only at file
close time. Forced write through of date and time causes a severe performance penalty.

rms$file_characteristics_pptions : (
rms$c_read_check,
rms$c_write check,
rms$c_force_write thru dates

)z

rmssfile_characteristics : SET rms$file_pharacteristics_pptions[..] SIZE (byte) ;

1.3.1.4.6 Set Expiration Date and Time

At file creation time, the expiration date and time field can be set. This date and time field is used
only by the file owner. The Display service outputs expiration date and time.

rmsSexpiration_date time : RECORD
expiration date : longword;
expiratioﬂ:time : integer;
END RECORD;

1.3.1.5 File Information

This is an optional output parameter. If the file is opened due to the filename creation option rms$c_
create_if, then RMS returns through this record structure some file related information. The record
is defined below:

rms$standard file info : RECORD
device_;haracteristics : rms$device_¢haracteristics;

record_ structure : rms$file_record_definition;
END RECORD;

Record Management Services 1-19

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

The type rms$file_record_definition is specifed earlier in section Section 1.3.1.2. The device charac-
teristics are defined below:

1+
!This enumerated type define the device characteristics as
!returned by Create and Open
-
rms$device_phar_names s (
directory structured,
file oriented,
foreign,
dev_read check enabled,
dev_write_ check enabled,

random_access, tdisk

seq _block oriented, !magnetic tape

terminal, tterminal

unknown !devices handled indirectly
):

rms$device_pharactéristics: SET~rms$device_char_pames[..] SIZE (WORD) ;

1.3.1.6 Output File Specification

This optional output parameter returns to the user the resultant file specification. If RMS encounters
an error while creating the file, the expanded file specification that was used by the Create service
is returned via this record. The record is specified below. The record is structured to facilitate users
to extract individual fields from the file specification string.

rms$file reference : RECORD
device name offset : integer [0..rms$c_max length] SIZE (word);
device name length : integer [O..rms$c_max_length] SIZE (word);
number:pf_dir_levels : integer [0..32] SIZE(word);
dir name offset : integer [0..rmsSc max length] SIZE (word);
dir:name~length : integer [0..rms$c_max_length] SIZE (word) ;
file name offset : integer [0..rmsSc_max length] SIZE(word);
file name_length : integer [0..rms$c_max_length] SIZE (woxd) ;
extension offset : integer [0..rms$c max length] SIZE(word);
extension length : integer [0..rms$Sc_max length] SIZE(word);
version number : integer [0..rms$Sc max_ length] SIZE(word):;
file specification : varying string(rms$c_max length);

END RECORD;

1.3.1.7 Output Quick File Reference

This optional ocutput parameter provides both the file ID and the volume object ID. The record can
be saved and used later fo access the file through the file’s file ID. See Section 1.3.1.1.

1.3.1.8 File Handle

Mica RMS returns a file_handle after a successful rms$create operation. The user is required to
use file_handle as an input argument for all future file and record operations. The file_handle is a
pointer to a datastructure that is maintained and used only by RMS. The file context datastructure
is a hidden type, and it is not visible to the user.

1+

!This is a declaration for RMS file handle, which points to a

tdata-structure that maintains the file context.

rms$file handle : POINTER rmssfile_pontext;

1-20 Record Management Services

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.3.2 Open Service

The Open (rms$open) service allows an existing file to become available for processing. The procedure
is defined below:

PROCEDURE rmsSopen (
IN file name : string(*) = "" ;
IN default file string : string(*) = "";
IN quick_file ref in : rms$file ref identifier OPTIONAL;
IN access_control : rms$file_§ccess_pontrol;
IN open input options : POINTER rms$item list = NIL;
OUT file information : rms$standard file info OPTIONAL;
OUT resultant_ file : rms$file reference OPTIONAL;
OUT quick_file ref out : rms$file ref identifier OPTIONAL;
OUT file_handle : rms$file handle;
} RETURNS status;

1.3.21 File Identification

The description in Section 1.3.1.1 is also applicable in this context. A file that is to be opened may
be identified by any one of the following ways:

* File name string only
e File name string augmented by a default file name string
¢ File ID and volume object ID

If the file to be opened is identified by the file-name only, then the caller uses the file_name parameter.
In this case, the caller can optionally specify the default file specification string. A file name string
cannot have any embedded wildcard characters or a node name. The file name processing is done by
RMS.

Alternatively, the caller uses the quick_file_ref in parameter to specify the file ID and the volume
object ID. In this case, no further file name processing is required.

1.3.2.2 Access Request

This record specifies the desired way the caller wishes to access the file and the way the caller wishes
to share the file with other users. This is an optional input parameter to the rms$open. At file open
time, the default value of file accessing is put access, and the default value for file sharing is allowing
shared read. See Section 1.3.1.3.

1.3.2.3 Open Input Options

Input options to the rms$open service are passed as items of an item list. The item codes are defined
in rms$open_in_options_item_code. The valid input options to the rms$open are shown below:
1+
'This enumerated type is used to define the input item codes
{ for Open service.
'All items are prefixed "open"
1=
rms$open_in options item code : (
rms$open file characteristics,
rms$open_runtime access,

)z

At file open time, the file characteristics options that can be specified are described in Section 1.3.1.4.5.
The defaults values at file open time are the same as the defaults values at file create time.

At file open time, the run-time access options that can be set are described in Section 1.3.1.4.4. The
defaults values at file open time are the same as the defaults values at file create time.

Record Management Services 1-21

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.3.2.4 File Information

Some file-related information is returned through this optional output parameter. See Section 1.3.1.5.

1.3.2.5 Resultant File

This optional output parameter is used to return the resultant file specification of the opened file.
See Section 1.3.1.6.

1.3.2.6 Output Quick File Reference

The file ID and volume object ID are returned through this optional output parameter. See Sec-
tion 1.3.1.7.

1.3.2.7 File Handle

After a successful open operation, rms$open provides a file handle.

1.3.3 Close Service

The Close (rms$close) service terminates file processing and closes the file. If the file was created
or opened with the option to delete on close, or the option is set in the rms$close service, the file is
deleted as well. If the file is not deleted on close, then buffers that were not yet written are written
out. All the buffers allocated for the file are deallocated. The caller can modify the file protection,
and ownership of the file by specifying the appropriate options fields.

PROCEDURE rmsS$close (
IN OUT file handle : rms$file_handle;
IN in options : POINTER rms$item list = NIL;
} RETURNS status;

1.3.3.1 File Identification

The input parameter file_handle is the file handle that was provided by rms$open service. After
closing the file, RMS clears the file handle.

1.3.3.2 Input Options

The following input options are valid.

'+
! The following items are input to Close.

1~

rms$close in options_item code :(
rms$close_disposition options,
rms$close_protection options

)z

'+
'the datastructures used by the items for Close service

rms$close_desposition : SET rmsSrun time access_options[..] SIZE(byte)};
rms$close_protection : rms$file protection_options;

1-22 Record Management Services

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.3.3.2.1 Close Disposition Options

The following file disposition option can be used at file close time:
* Truncate end of file—See Section 1.3.1.4.4

* Delete on close—See Section 1.3.1.4.4.

1.3.3.2.2 Close Protection Options
Please see Section 1.3.1.4.2. The file protection option that can be set at file close time is TBS.

1.3.4 Data Retrieval and Output Services

Mica RMS data retrieval and output operations are designed to minimize the number of decision
points at run time. There are several retrieval decisions that are based upon static file charateristics.
For example, the file organization does not change. The static class of file attributes are available
to RMS once the caller opens a file. This technique effectively uses available information, while
eliminating further query.

There is another class of file attributes that are generally unpredictable, and occur at the time of data
retrieval. For example, record access mode may be changed (from RFA to sequential), or the retrieval
operation is switched to a data output operation (switch from Get to Put). The implementation
strategy is to consider all the variations and opt for a path of least decision making.

In Mica RMS, data retrieval services are classified according to the type of record access operation.
Thus, there are three different access routines based upon sequential, RFA or key access. Further,
there can be three different kinds of operations, (Get, Put or Find). As for each of the I/O operations
any of the three access modes is permissible, nine possible options are available. Note, Mica RMS
offers only synchronous I/O operations. -

The nine data retrieval options apply to all three types of file organization (sequential, relative or
indexed) and also to the three types of devices (disk, magnetic tape or terminal). Hence, the options
rise to eighty-one. Then there are options on record formats (Fixed, VFC, STM, STMCR, STMLF,
UDF or Variable). This raises the options to five hundred and sixty seven. However, not all of the
options are legal. For example, it does not make sense to do an indexed file operation on a terminal
device.

In addition to the record access options described in the preceding paragraphs, a user may wish to use
blocks of data or just characters for conducting I/O operations. Support for block level and character
level I/O is TBD for Mica RMS.

Much of the above described complexity is transparent to RMS users. For instance, RMS could offer
different procedures to its users, based upon the operation and access methods. The addresses of the
appropriate procedures are contained in the vector rms$retrieval_serv_vec. RMS builds the vector of
RMS data retrieval service routines at file open time, based upon the static file attributes. Thus, the
user can enter a rms$get_sequential access routine, knowing that the device is a disk, and the file
is sequentially organized. Within this rms$get_sequential access routine there are no tests done to
check for the device type, file organization, record format or any other statically known option. Thus,
there are many rms$get_sequential routines; the one being used depends upon the combination of
the file static attributes. The vector of data retrieval and output services may be organized as:

¢ Get sequential
s Put sequential
* Find sequential
¢ Get RFA

¢ Find RFA

Record Management Services 1-23

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

* Get key
* Put key
¢ Find key

The basic difference between the Get and Find services is that the Get service retrieves data, indicates
the length of the record, the record itself and the record file address. On the other hand, the Find
service locates the specified record and returns the record’s file address. Because the Find service is
a subset of Get, the interfaces are merged. In the Get service, a Find option is set to indicate the
Find service. Thus, the number of vector entries is reduced to five entries.

In Mica RMS, data retrieval defaults to locate mode. That is, users need to explicitly specify move
mode. The Get services also returns the next record pointer to the user after every successful Get
operation. This facilitates the user to keep multiple record contexts without requiring multiple
connects. Further, Mica RMS is not required to keep the user’s record contexts.

The address of each data retrieval service applicable to the file is placed in a specific vector slot. Each
of the services may thereafter be accessed by referencing the appropriate vector slot.

The procedure types of the data retrieval routines are individually described below. Each of the
procedure types has a ptype prefix. :

1.3.5 Get Sequential

The Get Sequential (rms$ptype_get_sequential) interface is used to access records sequentially. All
types of file organizations and devices can use this data retrieval mode.

TYPE

rms$ptype get sequential: PROCEDURE (
IN file handle : rms$file handle;
IN record position : POINTER anytype OPTIONAL;
IN user in buffer pointer : POINTER anytype CONFORM;
IN user in buffer length : integer;
IN move mode : boolean = FALSE;
IN in options : POINTER rms$item list = NIL;
ouT current_;ecord~pointer : rmsSrecord file address OPTIONAL;
OUT next record position : POINTER anytype OPTIONAL;
OUT read data buffer pointer : POINTER anytype;
OUT read data length : integer;
)} RETURNS status;

rms$record file address: RECORD
UNION CASE *
WHEN 1 THEN
record descriptor: word data(3);
WHEN 2 Then

record vbn : longword;
record offset : integer [0..65535];
END UNION;
LAYOUT
UNION
OVERLAY
record descriptor ALIGNMENT (WORD) ;
OVERLAY
record vbn ALIGNMENT (WORD);
record_ offset ALIGNMENT (WORD) ;
END UNION;
END LAYOUT;

END RECORD;

The parameters of the procedure rms$get_sequential are described in the following sections.

1-24 Record Management Services

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.3.5.1 File Identification

The caller supplies the file_handle which was provided earlier by rms$open service.

1.3.5.2 Record Position

This optional input parameter is used to identify the record that needs to be retrieved. The user
returns in this field the record that was provided by RMS through the output parameter next_record_
position. If record_position is not provided, then Mica RMS retrieves records in the following steps:

e If the file organization is sequential, then the record stored in the next sequential order, relative
to the last record accessed is returned.

e RMS acti‘on for indexed and relative files are TBS.

1.3.5.3 User input Buffer

The user input buffer is specified by two required input parameters: user_in_buffer_pointer and
user_in_buffer_length. RMS moves the record into this user specified buffer if either the user has
specified move_mode or the record being retrieved, crosses block boundaries (and records crossing
block boundaries is permitted).

1.3.5.4 Move Mode

The user can force records to be moved to a user specified input buffer by setting this input parameter
to TRUE. By default, Mica RMS uses locate mode.

1.3.5.5 Input Options

Following are valid input options for the Get operation:

'+

!This enumerated type is used to define the input options item codes
tfor Get service.

A1l items are prefixed "get"

rms$get_in_options_item_gode = (
rms$get_find operation,
rms$get record header definition,
rms$get_basic terminal optionmns,
rms$get_record locking options,
rms$get _key ref definition,
rms$get index file options

)y

just find the record

for VFC format

for terminals at client site
not used presently

not used presently

not used presently

tem b= tem tem tce sem

1.3.5.5.1 Find Operation

If this option is chosen, then a find operation is done. This option does not require any buffer space
to qualify the option.

1.3.5.5.2 Record Header Definition

This field is used to specify the fixed-control area of a file with VFC record format. The fixed-control
area allows the user to include within the record additional data that may have no direct relationship
to other contents of the record. For example, the fixed-control area may contain line-sequence number
for every record in the file.

Record Management Services 1-25

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.3.5.5.3 Basic Terminal Options
The basic terminal options for reading data from a client site are:
* Uppercase—Changes characters to uppercase on a read from a terminal

* Prompt option—The contents of the prompt buffer are to be used as a prompt for reading data
from a terminal

* Purge type ahead—Eliminates any information that may be in the type-ahead buffer on a read
from a terminal

* Read no echo—Input data is not echoed on the terminal

* Read no filter—Indicates CTRL/U, CTRL/R and DELETE are not to be considered as control
commands on terminal input

* Timeout—Specifies the number of seconds to wait between characters being typed

The basic terminal options for rms$get_sequential and rms$put_sequential are set by the following
record. Note, if prompt option is set, then rms$basic_terminal_options.prompt_buffer contains the
prompt character string. The prompt character string is output to the terminal before the rms$get_
sequential is performed. If the timeout option is set, then rms$basic_terminal_options.timeout_period
contains the delay time in seconds.

t+
!The basic terminal options are set through this record structure
-
rms$basic_terminal_pptions : RECORD
prompt _buffer : longword data(l);
timeout period : integer[0..255] SIZE(byte);
term_pontrol H rms$set_ﬁerminal_gontrol;
END RECORD;

rms$set terminal control names : (
cancel_control o,
upcase_input,
read with prompt,
purge_type ahead,
read no_echo,
read _no_filter,
read with timeout
)i

rms$set_terminal control : SET rms$set terminal control names[..] SIZE(byte):

1.3.5.5.4 Key Reference

The key reference contains a key value for an indexed file. The use and structure is TBS.

1.3.56.5.5 Record Locking Options
Record locking options are not defined presently, and are not available at FRS.

1.3.5.5.6 Indexed File Options

Indexd file options are not defined presently, and are not available at FRS.

1.3.5.6 Current Record Pointer

Upon a successful get_sequential operation, RMS returns the current record’s virtual block number
and the offset. This is an optional output parameter.

1-26 Record Management Services

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.3.5.7 Next Record Position

RMS returns through this optional output parameter information to facilitate retrieval of the next
record (next, relative to the current record). The format for this record is not yet specified.

1.3.5.8 Read Data Buffer

In the default locate mode, RMS sets the output parameter read_data_buffer_pointer to point to the
beginning of the data, retrieved in the call. The output parameter read_data_length specifies the
length of the retrieved data. If move mode is set, then these fields have the same values as user_in_
buffer_pointer and user_in_buffer_length respectively.

[xxxkxx An implementation note #ksskxsion/

The above is an example of get_sequential procedure type. All the sequential read procedures are
based upon this procedure type. The convention is to name the procedures based upon the static
file attributes. The attributes are delimited by an underscore character. Thus, the procedures are
named as: OP_ACC$ORG_DEV_FMT. Where OP is the operation (Get or Put); ACC is the record
access mode (sequential, RFA or key); ORG is the file organization (sequential, relative or indexed);
‘DEV is the device type (disk, mag tape or terminal); FMT is the record format (fixed length, STM,
STMCR, STMLF, UDF, variable length or VFC). Thus, there are procedures that appear as:

PROCEDURE get seg$seq dsk vfec(
file handle,
record position,
user_in buffer pointer,
user_ in buffer length,
move_mode,
in_options,
current record pointer,
next record position,
read data buffer pointer,
read data length
) OF TYPE rmsS$ptype get_ sequential;
EXTERNAL;

The vector that contains the procedure variables is defined as:

rms$retrieval serv_vec: RECORD

get_ sequent ial : rms$ptype_get sequential;
put_sequential : rms$ptype_put_sequential;
get_rfa : rms$ptype get rfa;
get_key : rms$ptype get key;
put_key : rms$ptype put key;

END RECORD;

Once a file is opened, the data retrieval service vector can be initialized. For example:

rms$retrieval serv_vec.get sequential = get seq$seq dsk vfc;

[xx%% End implementation note *skxkrss/

Record Management Services 1-27

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.3.6 Get Random by RFA

Get random by RFA (rms$ptype_get_rfa) access mode is used to retrieve records by directly specifying
the record’s address within the file. The service returns the next_record_position, which may be used
in a subsequent sequential access mode.

TYPE
rms$ptype _get rfa : PROCEDURE (
IN file handle : rms$file handle;
IN current_;ecord_pointer : rms$record file address;
IN user_in buffer pointer : POINTER anytype CONFORM;
IN user in buffer length : integer;
IN move _mode : boolean = FALSE;
IN in_options : POINTER rms$item_list;
OUT next record position : POINTER anytype OPTIONAL;
oUT read_data_buffer_pointer : POINTER anytype;
OUT read data length : integer;
} RETURNS status;

The interface for rms$ptype:-get_rfa is similar to rms$ptype_get_sequential. The major difference
being the use of the parameter current_record_pointer. In this case, current_record_pointer is the
required input parameter, which is used to retrieve the record. Locate mode is the default mode of
access. Based upon the file’s organization, RMS returns a next_record_position, which can be used
as input for subsequent sequential accesses.

The Input Options, in_options, specified for rms$ptype_get_sequential are vaild for rms$ptype_get_rfa,
except for:

¢ Key reference field and index file options are not applicable

¢ Terminal options are not applicable in this mode of access

1.3.7 Get Random by Key

Records may be accessed by specifying a "key" value. For sequential files with fixed records, and
relative files, a relative record number is specified. This mode of data retrieval is most meaningful
for indexed files. For indexed files, the record structure isam_key specifies the key definitions to the
data retrieval service. However, indexed file operations are not specified for Mica RMS presently.
Data retrieval operations on indexed files are not available at FRS.

TYPE
rms$ptype_get key: PROCEDURE (
IN file handle : rms$file handle;
IN relative record number : integer OPTIONAL;
IN isam key : POINTER rms$key definition OPTIONAL;
IN user in buffer pointer : POINTER anytype CONFORM;
IN user_in buffer length : integer;
IN move mode : boolean = FALSE;
IN in options : POINTER rmsS$item list = NIL;
OUT current_record pointer : rms$record file address OPTIONAL;
OUT next record position : POINTER anytype OPTIONAL;
OUT read data buffer pointer : POINTER anytype;
OUT read data_length : integer;
} RETURNS status;

" Most of the parameters of Get Key (rms$ptype_get key) are the same as the parameters and options
defined in the rms$ptype_get_sequential, and are not repeated here. The differences are noted below:

1-28 Record Management Services

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

The interface for rms$ptype_get_key provides explicit parameter for defining the relative record num-
ber (relative_record_number) for sequential or relative files. The optional input parameter relative_
record_number is used for the random access of sequential or relative files. Sequentially organized
files having fixed length records can be retrieved by the relative_record_number value, which in this
case represents the record number (records are numbered in ascending order, starting with number
1).

For indexed sequential file keys are defined by the record pointed by the isam_key. The record
structure rms$key_definition has not yet been specified. The optional input parameter isam_key is
valid only for indexed files.

In this mode of access, terminal options are not valid.

Record Management Services 1-29

Digital Equipment Corporation - Confidential and Proprietary .
For Internal Use Only
1.3.9.4 Input Options
Following are valid input options for rms$put_sequential:
¢ Disposition options—For sequential access, only truncate_on_put option can be set.
* Record header definition—This is defined below.

* Basic terminal options—The options are for the terminals connected to the client.

The Put service (both sequential and keyed) input options item list is defined below:

'+

!This enumerated type is used to define the input options item codes
! for Put service.

'1All items are prefixed "put"

1=

rms$put_seq_item code :(
rms$put_disposition,

rms$put_record header, ! for VFC format
rms$put_basic_terminal, ! for terminals at client site
rms$put_record lock ! not used presently

)

1.3.9.4.1 Put Disposition Options
Through this input item, the user may specify the following data output time file despositions:

¢ Truncate on put—This option specifies that in the sequential record output mode, data may be
palced anywhere in the file. The file is truncated at the point immediately after the output
record. The end-of-file mark is reset to the new position. This option is used only in rms$ptype_
put_sequential type procedures.

* Update if—This option allows the user to overwrite a record in a sequential file that is being
accessed randomly by the relative record number. This option is only used in rms$ptype_put_key
type procedures.

1.3.9.4.2 Record Header Definition

This field is used to specify the fixed-control area of a file with VFC record format. The fixed-control
area allows the user to include within the record additional data that may have no direct relationship
to other contents of the record. RMS writes the contents of the specified buffer to the file as the fixed-
control area portion of the record.

1.3.9.4.3 Basic Terminal Options
The basic options for writing data to a terminal connected to a client system are:

¢ Cancel control/O—Guarantees that terminal output is not discarded if the operator presses
CTRL/O

* Timeout —Specifies the number of seconds to wait between characters being typed
The above options are selected on the record described in Section 1.3.5.5.8. Note, if the timeout option

is selected, the field rms$basic_terminal_options.timeout_period is set to indicate the allowed dealy
in number of seconds.

Record Management Services 1-31

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.3.8 Put Services

The Put (rms$put) service adds a record to the file. The user provides a buffer and the length
indicating the record that is to be added. The records are placed at the end of sequential files. Put
operations on relative and indexed files are not defined presently.

1.3.9 Put Sequential

The rms$put_sequential record access mode service may be used to insert records for sequential,
relative or indexed files.

For sequential files, the rms$put_sequential service inserts records at the end of the file. However,
records can be inserted in locations other than the end-of-file, truncate_on_put is set. When the record
is inserted, the file is automatically truncated to a new end-of-file. The new end-of-file is the position
immediately after the inserted record. If both, the file disposition option truncate_on_put and the file
access mode rms$c_truncate are not set, then records cannot be inserted at locations other than at
the end of the file.

The Put service initializes the internally maintained next record position at the end-of-file. If the
position where the record is to be inserted is not specified, RMS inserts the record as defined in the
next record position. If the next record position is not the end-of-file (for example, in between the two
Put operations, the user has done a random Get, which altered the next record position), then record
output operation fails unless truncate_on_put and the file access mode rms$c_truncate are set.

Record insertion operations on indexed and relative files are not available at FRS.

This generic interface is used to write records. The file organization, the record format, the device
type have been resolved prior to the Put operation. The interface to the service is described below.

TYPE

rms$ptype put sequential: PROCEDURE (
IN file_handle : rms$file handle;
IN data_out_buffer pointer : POINTER anytype;
IN data out buffer length : integer;
IN record position : POINTER anytype OPTIONAL;
IN in options : POINTER rms$item list;
OUT current record pointer : rmssrecord_file_address OPTIONAL;
OUT next record position : POINTER anytype OPTIONAL;
} RETURNS status;

The parameters of the procedure rms$put_sequential are described below.

1.3.9.1 File Identification
The caller supplies the file_handle which was provided earlier by rms$open.

1.3.9.2 User Output Buffer

User specifies the data output buffer through the input parameters data_out_buffer_pointer and data_
out_buffer _length.

1.3.9.3 Record Position

This optional parameter is used to specify a location where the record is to be inserted. If this field
is specified, and the record position is not the same as the end-of-file position, then both, the file
disposition option truncate_on_put, and the file access mode rms$c_truncate must be set. If these are
not set, the record ouput operation fails.

1-30 Record Management Services

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only
1.3.9.5 Current Record Pointer

RMS returns the current record’s file address through this optional output parameter.

1.3.9.6 Next Record Position

This optional output parametér provides a position context for the next record.

1.3.10 Put Key

The Put Key (rms$ptype_put_key) service is used to insert records randomly by relative record number
into sequential files. Operations on indexed and relative files are TBS.

For sequential files records are usually inserted at the end of the file. However, records may be
inserted randomly by relative record number on a disk resident sequential file with fixed length
record format, if the file disposition option update_if is set and the file access mode rms$c_update is
set.

TYPE
rms$ptype_put_key: PROCEDURE (
IN file handle : rms$file_handle;
IN data out buffer pointer : POINTER anytype;
IN data out buffer length : integer;
IN relative_ record number : integer OPTIONAL;
IN in_options : POINTER rms$item lists;
OUT current record pointer : rmsSrecord file address OPTIONAL;
OUT next record position : POINTER anytype OPTIONAL;
} RETURNS status;

The input parameters file_handle, data_out_buffer_pointer and data_out_buffer_length are previously
described in rms$put_sequential. Please see Section 1.3.9.

1.3.10.1 Relative Record Number

This optional input parameter is used if the file organization is sequential or relative. See Sec-
tion 1.3.7 for details.

1.3.10.2 Input Options

The input options are defined in in rms$put_sequential. See Section 1.3.9.4. The following input
options are vaild for rms$ptype_put_key:

* Disposition options—For random access, only update_if option can be set.

¢ Record header definition

1.3.10.3 Current Record Pointer

RMS returns the current record’s file address through this optional output parameter.

1.3.10.4 Next Record Position

This optional cutput parameter provides a position context for the next record.

1-32 Record Management Services

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.3.11 Parse Service

The Parse (rms$parse) service analyzes a file specification and returns an expanded file specification
through the output parameter expanded_file. It processes wildcard characters and stores the context
for subsequent searches. By default, rms$parse also assigns a channel and performs a directory
lookup. The Parse service can be used in one of the following modes:

e Syntax check only—This indicates that the file specification is checked for syntax validity without
requiring any I/O processing to ensure that the device, directory and the file actually exists.

e Device check—This indicates that after doing the work for syntax check, rms$parse checks that
the device exists. RMS also returns the device characteristics, and the volume object ID.

e Tile check—This indicates that after completing device check, RMS checks that the directory
and the file exists. RMS returns the device characteristics, and the volume object ID. If there
were no wildcards, then the file ID is also returned.

The procedure is defined below:

PROCEDURE rms$parse (
IN file name : string(¥);
IN default _file string : string(*) OPTIONAL;
IN related files : POINTER rms$related file list = NIL;
IN parse_pptlon : rmsSparse_option = rms$c file _check;
OUT device_characteristics : rms$dev1ce~characterlst1cs OPTIONAL:
OUT wild card ctx : POINTER anytype OPTIONAL;
OUT expanded file : POINTER rms$file_reference;
OUT quick file ref out : POINTER rms$file ref identifier OPTIONAL;
OUT file name_ sts : rms$file_pame_status;
} RETURNS status; }

1.3.11.1 File Specification

The file name that is to be parsed is specified by the file_name parameter. This is a required input
parameter, and is the primary file specification.

If the primary file spéciﬁcation does not contain all the components of a file specification, then defaults
are applied to fill the missing components. The default file specification string is specified by the input
parameter default_file_string. This is not a required input parameter.

If after applying the default file specification, a full file specification is not achieved, then the related
file specification string is applied to fill in the missing directory, file name and ﬁle type fields. The
related file specification is specified’ by the input parameter related_files. The related_files is a link
list of related file specifications. This is not a required input parameter.

TYPE
rms$related file list : RECORD
related file spec1f1cat10ns : varying string(255);
related file list flink : POINTER rmsSrelated file list;
END RECORD;

Record Management Services 1-33

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

13.11.2 Parse Options

One of the following parse options may be set:
* Syntax check only

* Device check

e File check

The default is to check for the file specification.

TYPE
rms$parse_option : (
rms$c_syntax check,
rms$c_device_ check,
rms$c_file check

y:

1.3.11.3 Device Characteristics

This optional cutput parameter contains the device characteristics. See Section 1.3.1.5 for the de-
scription of the type rms$device_characteristics. RMS returns the device characteristics, if the parse
option rms$c_syntax_check is not set.

1.3.11.4 Wild Card Context

The wild_card_ctx parameter points to a storage area which contains wildcard processing information
for a subsequent rms$search operation.

1.3.11.5 Expanded File Specification

The output of the rms$parse service is primarily the expanded_file parameter. The record is specified
in Section 1.3.1.6.

1.3.11.6 Quick File Reference

This optional output parameter is returned, if the parse option rms$c_file_check is set. If there
were no wildcards in the file specification, then this record contains the file ID, as well as the volume
object ID. This record can be used as an input to rms$open to open the file, without requiring filename
processing.

1.3.11.7 File Name Status

This output parameter file_name_sts indicates status information about the file, as determined by the
rms$parse service. This parameter is used as input to the rms$search service. The record structure
that specifies the type rms$file_name_status, is not yet specified.

1-34 Record Management Services

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.3.12 Search Service

The Search (rms§search) service scans a directory file specified within the wildcard_context area.
The wildcard_context area has been set up by an earlier rms$parse service call. It is assumed that
rms$parse saves the expanded file name within the wildcard context area. The rms$search service
looks for entries that matches the file name, type and version number specified in the wildcard_
context. Matched file entries are returned through the matched_files parameter. The rms$search
service may be used to find a series of file specifications, whose names match a given file specification
with wildcard characters. If there are no wildcard characters, then the file specified is matched.

PROCEDURE rmsS$search(
IN OUT wildcard context : POINTER anytype;
OUT file name status : rms$file name_status;
OUT matched files : POINTER rms$match entries;
} RETURNS status;

1.3.12.1 Wildcard Context

This is a pointer to a context block which was built by rms$parse. The contents of the wildcard
context block is not yet specified. Among other information, the wildcard context block contains the
expanded file string, as well as context information for further search.

The context information for further search specifies the starting point within the specified directory
from which to continue returning matched entries. This context is built by rms$search, if it were
unable to return all the matched entries due to buffer overflow. A buffer overflow implies that the the
buffer allocated to receive the matched entries was not adequate. The caller determines that a buffer
overflow has occured by examining the output parameter file_name_status. In the case, where there
is a buffer overflow, the caller simply reinvokes the rms$search service with the wildcard_context, to
receive the balance matched entries. If so desired by the caller, this mechanism can be used to mimic
the VMS RMS Search service behavior of returning one matched entry per invocation.

1.3.12.2 File Name Status

This output parameter contains:status information about the file that is being matched by the
rms$search service. The information returned by this output parameter has not yet been specified.

1.3.12.3 Matched Files

The output may contain zero, one or many matches. The entries that match the input file specification
are returned in the array pointed by matched_files. If the buffer pointed by matched_files is allocated
by the caller. If the buffer area overflows or no matches are found, rms$search service returns a
suitable indication. The definition of the buffer that contains the matched files is shown below:

rms$match entries (number of entries : INTEGER[1..65535]) : RECORD
CAPTURE number_ of entries;
files : ARRAY [l..number of entries] OF rms$file;

END RECORD;

Record Management Services 1-35

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.3.13 Display Service

The Display (rms$display) service returns various file and record attributes. A file must be open for
access by rms$create or rms$open before rms$display can be invoked. The file and record attributes
for which information is desired may be specified by the various options listed in the outputs item”
list. RMS returns the file ID and the volume object ID, via the quick_file_ref out parameter.

PROCEDURE rms$display (
IN file handle : rms$file handle;
IN outputs : POINTER rmssitem_list;
OUT quick file ref out : POINTER rms$file ref identifier OPTIONAL
} RETURNS status;

1.3.13.1 File Identification
The file is referenced by the file_handle parameter.

1.3.13.2 Output Options

The valid output options are described below. The fields have been defined individually in rms$create.

4
! The output items for the Display service is shown below.

1-

rms$display out options item code :(
rms$display allocation options,
rms$display protection options,
rms$display date time options,
rms$display file header definitions,
rms$display magtape options, 'not defined presently
rms$display _key definitions 'not defined presently
):

1.3.13.2.1 Allocation dptions

The values of the following fields are returned:
¢ Allocation quantity

¢ Default extension quantity

The record structure for displaying the allocation quantities is shown below:
rms$display allocation : RECORD
allocation quantity : integer[0..] SIZE(longword);
default_gxtention : integer[0..65535];
END RECORD;
1.3.13.2.2 Protection Options

‘Please see Section 1.3.1.4.2. The information that is returned by the Display service is TBS.

1-36 Record Management Services

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.3.13.2.3 Date and Time Options

The following date and time values are returned. The data structure for date and time options is
defined below.

e Backup date and time

. Cfeation date and time

¢ Expiration date and time
* Revision date and time

¢ Read date and time

¢ Header write date and time

'+
!This record defines the date and time options.
!This record structure is used as output option item of Display.

rms$date_time options: RECORD
revision number : INTEGER [0..65535] SIZE (WORD) ;
filler 1 : INTEGER [0..65535] SIZE(WORD);
UNION CASE *
WHEN 1 THEN
revision date time: large_integer;

WHEN 2 THEN

revision_date : longword;
revision_time : integer;
END UNION;

UNION CASE *
WHEN 1 THEN
creation date_time: large integer;
WHEN 2 THEN)
creation date
creation_time -
END UNION;

longword;
integer;

UNION CASE *
WHEN 1 THEN
expiration_date_time : large integer;
WHEN 2 THEN
expiration_ date

expiration_time
END UNION;

: longword;
: integer;
UNION CASE *
WHEN 1 THEN
backup_date time : large_ integer;
WHEN 2 THEN
backup_date : longword;
backup time : integer;
END UNION; -

UNION CASE *
WHEN 1 THEN
read date time : large_integer;
WHEN 2 THEN
read_date : longword;
read time : integer}
END UNION;

Record Management Services 1-37

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

UNION CASE *
WHEN 1 THEN
header_write date_time : large_integer;
WHEN 2 THEN
header_write_date : longword;
header write time : integer;
END UNION;

LAYOUT
revision_ number;
filler 1;
UNION
OVERLAY
revision_date_ time ALIGNMENT (LONGWORD) ;
OVERLAY
revision_date;
revision_time;
END UNION;

UNION
OVERLAY .
creation_ﬁate_ﬁime ALIGNMENT (LONGWORD) ;
OVERLAY
creation_date;
creation_time;
END UNION;
UNION
OVERLAY
expiration date time ALIGNMENT (LONGWORD) ;
OVERLAY
expiration_date;
expiration time;
END UNION;

UNION
OVERLAY
backup date_ time ALIGNMENT (LONGWORD) ;
OVERLAY
backup_date;
backup time;
END UNION;

UNION
OVERLAY
read date_time ALIGNMENT (LONGWORD) ;
OVERIAY
read date;
read:ﬁime;
END UNION;

UNION
OVERLAY
header write date time ALIGNMENT (LONGWORD) ;
OVERLAY
header write date;
header write time;
END UNION;

END LAYOUT;
END RECORD;

1-38 Record Management Services

1.3.13.2.4 File Header Characteristics

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

The file header characteristics are returned by the following record structure.

! This record defines the file header characteristics

1

rms$file head characteristics :

RECORD

UNION CASE *
WHEN 1 THEN

file org n rec_format : byte;
raw_: record attributes : byte_data(l);
longest record length : word;

raw_highest virtual block
raw_end of file block :

byte data(4):
byte_data(4);

flrst free | byte : word;
fhe flll 1 : byte data(l);
vfc_header_51ze : byte;
max _record size : woxd;

default extention gty :
fhe fill 2 :
fhe £ill 3 :
vergion_limit :
start_lbn if ctg :

word;
word data(l);
byte data(8);
word;
longword;

WHEN 2 THEN

record attribute ftn
record_attribute cr :

bit;
bit;

record attribute_prn : bit;

record attribute blk :
hlghest virtual block 0 :
highest virtual] “block 2 :
end of file block 0 :
end of file block 2 :

END UNION;
LAYOUT
UNION

bit;
word;
word;
word;
word;

OVERLAY

file_org_n_rec_format ATLIGNMENT (BYTE) POSITION (bit,0):;
raw_record_ attributes ALIGNMENT(BYTE) POSITION (bit,8);
longest record | length ALIGNMENT(BYTE) POSITION (bit,16);

raw_highest virtual block ALIGNMENT (BYTE) POSITION(bit,32);

raw_end_oﬁ_flle_block ALIGNMENT (BYTE) POSITION (bit, 64);
first_free_byte ALIGNMENT (BYTE) POSITION (bit, 96) ;

fhe fill 1 ALIGNMENT (BYTE) POSITION(bit,112);
vfc_header size ALIGNMENT (RYTE) POSITION (bit,120);
max record size ALIGNMENT (BYTE) POSITION (bit,128);
default extention gty ALIGNMENT (BRYTE) POSITION (bit, 144);
fhe flll _2 ATIGNMENT (BYTE) POSITION(bit,160);
fhc_flll_3 ALIGNMENT (BYTE) POSITION(bit,176);
version_limit ALIGNMENT (BYTE) POSITION (bit,240);
start_lbq_if_ctg AT,IGNMENT (BYTE) POSITION (bit,256);

OVERLAY

fhe record filler 1 : FILLER(bit, *);
record_ attribute ftn POSITION(bit, 8);
record_attribute cr POSITION (bit,9);
record_attribute prn POSITION (bit, 10);
record_attribute blk POSITION(bit,11);
fhe record flller _2 : FILLER(bit, *);
hlghest virtual block 0 POSITION (bit,32);
highest virtual block 2 POSITION (bit, 48);
end of file block 0 POSITION(blt 64) ;
end of flle block 2 POSITION (bit,80);

Record Management Services 1-39

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

END UNION;
END LAYOUT;
END RECORD;

1.3.13.3 Quick File Reference

This output parameter contains the file ID of the file, and the volume object ID, on which the file
resides.

1.3.14 Erase Service

The Erase (rms$erase) service deletes a disk file and removes the file’s directory entry as specified in
the path to the file. The file must be closed before it can be deleted. The rms$close service can also
delete a file if the delete on close option was set. The rms$erase service returns the erased file’s fully
qualified file name through erased_file parameter.

PROCEDURE rmsS$Serase (
IN file_name : STRING(*) OPTIONAL;
IN default_ file string : string(*) OPTIONAL;
IN quick file ref in : rms$file ref identifier OPTIONAL;
ouT erased_file : POINTER rms$file_reference OPTIONAL;
} RETURNS status;

1.3.14.1 File Specification

The file that is to be erased maybe specified by the file_name parameter, if the file ID is unknown to
the user. If the file_name does not contain all the components of a file specification, then defaults are
applied to fill the missing components. The default file specification string is specified by the input
parameter default_file_string. This is not a required input parameter.

Alternatively, if the file ID is known, the quick_file_ref in parameter may be used. The use of this
input parameter elimates the need for filename processing in the rms$erase service.
1.3.14.2 Erased File Specification

The erased file’s specification is returned by the optional output parameter erased_file. See Sec-
tion 1.3.1.6 for defintion of the record structure.

1.3.15 Flush Service

The Flush (rms$flush) service writes out all modified I/O buffers and file attributes associated with
the file.

PROCEDURE rms$flush (
IN file_handle : rms$file_handle;
) RETURNS status;

1.3.15.1 File Identification

The user provides the file_handle, which was provided earlier by rms$open service.

1-40 Record Management Services

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.3.16 Free and Release Services

The Free (rms$free) service unlocks all records that were previously locked. The Release (rms$release)
service unlocks the record specified by the contents of the record’s file address. The locking and
unlocking functions are not presently supported, both rms$free and rms$release are unavailable at
FRS.

1.3.17 Rewind Service

The Rewind (rms$rewind) service sets the context of a record stream to the first record in the file.
For sequential and relative files, rms$rewind service establishes the next-record position as the first
record or the record cell in the file, regardless of the access mode. For indexed files, the next-record
position is established at the first record of the current key of reference. The rms$rewind service
performs an implicit Flush service. This operation cannot be performed on terminal devices as well
as those devices that are accessed by way of the client context server.

PROCEDURE rms$rewind(
IN file handle : rms$file handle;
IN key ref : rmsSkey of reference OPTIONAL;
OUT next record position : POINTER anytype OPTIONAL;
} RETURNS status;
1.3.17.1 File ldentification

The user specifies the file by the file_handle parameter.

1.3.17.2 Key Reference

This optional parameter is required for indexed files. The parameter contains a key value.

1.3.17.3 Next Record Position

The reference to the next record i)osition is returned to the caller.

1.3.18 Truncate Service

The Truncate (rms$truncate) service applies to sequential files on disks or magnetic tapes only. The
service deletes the record indicated as the current record, and all following records. The end-of-file
indicator is set at the current record pointer. The rms$truncate service may immediately follow a
successful rms$get, or rms$update. The file being truncated must not be accessed for block I/O.

PROCEDURE rmsS$truncate (

IN file handle : rms$file handle;
)} RETURNS status;

1.3.18.1 File Identifier
The user specifies the file by the file_handle parameter.

Record Management Services 141

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.3.19 Update Service

The Update (rms$update) service modifies an existing record in a file. The record to be updated is
to be retrieved by calling rms$get (with or without the find flag set). The current_record_pointer, as
provided by the rms$get service, may be returned as the record_position. If the record_position is
not supplied, RMS uses the internally maintained record position to update the record. As with the
rms$put service, the user is required to provide a buffer descriptor holding the record that is to be
updated. The user program is required to establish the current-record position before calling this
service.

For sequential files, the record length of the update record cannot be different from the record being
updated.

PROCEDURE rms$update (

IN file handle : rms$file_handle;
IN record position : POINTER anytype OPTIONAL;
IN data out buffer pointer : POINTER anytype:;
IN data_out buffer length : integerx;
IN in options : POINTER rmsS$Sitem list;
OUT next record position : POINTER anytype OPTIONAL;
} RETURNS status;

1.3.19.1 File Identification

The user specifies the file_handle parameter to identify the file.

1.3.19.2 Record Position

The record_position represents the record that is to be updated.

1.3.19.3 User Output Buffer

User specifies the data output buffer through the input parameters data_out_buffer_pointer and data_
out_buffer_length.

1.3.19.4 Input Options

Please see Section 1.3.9.4. The following sections describe the valid input options to the rms$update
service.

1.3.19.4.1 Record Header Buffer
This buffer contains the descriptor of the record (VFC format only) header buffer.

1.3.19.4.2 Record Locking Options

Record locking options are not available at FRS.

1.3.19.5 Next Record Position

RMS returns through this optional output parameter information to facilitate retrieval of the next
record (next, relative to the current record). The format for this record is not yet specified.

1-42 Record Management Services

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.4 Algorithms for File Management

This section outlines a sample I/O request through Mica RMS. The section also includes the major
steps followed by a few of the services specified in the previous section.

1.4.1 Sample I/O Request Flow

1.
2.

10.

1.

An application calls rms$create to create a file MYFILE.TXT.

The rms$create service processes the file name and determines that:

¢ The volume name is MYVOL

* The directory in which the file is to be created is BETA. Directory ID of BETA is 4798,11,0
¢ The file name is MYFILE. TXT

The rms$create service calls exec$translate_object_name with the volume name string MYVOL
as input parameter, to obtain the FPU object ID.

The rms$create service calls exec$create_channel with the FPU object ID as input, to obtain the
channel object ID.

The rms$create service calls exec$request_io with input parameters channel ID, IOSB, function
code io$c_dfile_create, the file name with the complete directory path and the file attribute list,
to obtain the file ID of the file created. At this point, the file has no storage allocated to it.

The caller has specified storage allocation, therefore, the rms$create service calls exec$request_io
with the function code io$c_dfile_allocate_storage to allocate space for MYFILE.TXT.

The rms$create service calls exec$request_io with the function code io$c_dfile_access to open the
file

The rms$create service builds a client context, and returns a file handle to the user. A data
retrieval vector has also been set up for all I/O operations. The vector entries are (for example):

get_seg$seq dsk var
put_seq$seq dsk_var
get_rfa$seq dsk var
get_key$seq _dsk_var
put_key$seq dsk_var

At this point, I/O operations can be done on the file. The user wants to write a record to the file,
and calls rms$put_sequential procedure. Within the RMS procedure, the call is made to put_
seq$seq_dsk_var. The user data is moved into a buffer area. After several user write operations,
the buffer fills up, and is written out.

The put_seq$seq_dsk_var calls the I/O subsystem procedure exec$request_io with the function
code io$c_dfile_write with the input parameters specifying the I/0O channel object ID, IOSB, the
VBN at which to start writing the data, the pointer to the data buffer in memory and the length
of the buffer. The status is checked to see that the operation is successful.

The user closes the file by invoking rms$close service. The rms$close checks that there are
no I/Os outstanding on the file, writes out the dirty buffers, and calls exec$request_io with the
function code iofc_dfile_deaccess to close the file. The rms$close deletes the I/O channel by calling
exec$delete_object_id. The file context area is deallocated, and the pointer to the file context area
is initialized to nul.

Record Management Services 1-43

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

14.2 Create Service

The Create service performs the following significant operations:

1.
2.

Allocates space for maintaining the file context.

Tests if the file organization is sequential. If not sequential, RMS cannot satisfy the request at
FRS, so exits with an appropriate indication.

Processes the file name:

If the argument quick_file_ref in is present, then it performs the following steps:

1. Checks to see if the volume’s object ID has been provided Gf not, then error exit)
2. Checks to see that a file ID has been provided (if not, then error exit)

3. Sets an appropriate status

If the quick_file_ref _in argument is not present, the Create service uses the string passed
as file_name. It calls an internal procedure to processes the file name by applying all name
processing rules. Note, node names or wildcards are not allowed. This returns the file name
in a record structure which can be used directly as an input parameter to the I/0O subsystem.
The file-name processing procedure also provides a status. The status may indicate that the
file is to be opened by way of client call back support routines. That is, if after file name
translation, it is determined through a status value that the access is to be made by way of
client context server routines (clientcs). In this case, rms$create calls clientcs$rms_open in
step 14. The procedure that processes file names also indicates if search lists are present.

If a search list is present, and if the user has set the create if nonexistent option, then the Create
service performs the following steps:

a.

b.

Tries to access the file. If successful, the Create service then sets an indicator that this
Create call is now going to complete like an Open call. What this means is that the file
already exists and RMS treats the call as though the user has called rms$open.

Repeats the above steps until there are no more items in the search list (If the file is not
found, no problem, just continue with Create).

Performs organization-specific checks. Only sequential files are handled at FRS. The basic checks
for a sequential file are:

a. For magnetic tape device (not supported at FRS) the Create service:
1. Checks to ensure that records cannot cross block boundaries flag is set
2. Sets the block size
b. Sets EOF VBN =1 and first free byte (FFB) = 0
c. If the record format is fixed, ensures that the records are not longer than one block size
In order to request the underlying file system or DFS to create a file, the Create service supplies
the following:
a. A channel ID. To obtain a channel ID, the Create service calls the executive service Create

Channel (specifying the volume ID). The volume ID is obtained from the the system service
that translated volume name to volume ID. If the volume is not mounted, it causes an error
and exits the procedure.

Address of a IOSB block.
Target directory entry (which is in the form of file_eniry).

A Write Attribute list. Form this list using the user supplied file attributes. If required, it
uses defaults.

1-44 Record Management Services

10.

11.
12.

13.

14.

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

e. An access control structure.
A directory entry control structure.

g. A conditional create flag. The Create service sets this flag if the user has specified create_if
(see Section 1.3.1.4.3).

Calls exec$request_io (function code = io$c_dfile_create). If this is successful, then it continues.

Performs allocation and placement controls from user specification. If the user has not specified
area allocation quantity, the Create service uses the track size of the device as the intial allocation
quantity. The file area is allocated by calling exec$request_io (function code = io$c_dfile_allocate_
storage). If the call is successful, the file has been created.

Returns information back to the user as per user request. Returns the file_handle.

If the device type is magnetic tape (not supported at FRS), and if rewind on close is requested,
rewinds the tape.

Saves the options that the user has requested to be performed when the file closes.

Sets the suitable data retrieval and output procedures for the file. That is, arm the data retrieval
and output vector with the appropriate procedure variables.

If clientcs$open is called, checks the status return. If successful, returns to the user an appro-
priate status and the file_handle. In this case, arms the data retrieval and output vector with
the appropriate get_sequential and put_sequential procedures.

The Create service sets RMS status.

1.4.3 Open Service

The Open service performs the following significant operations:

1.
2.

Allocates space for maintaining the file context.

Processes the file name:

a. If the argument quick_file_ref in is present, then it performs the following steps:
1. Checks to see if the volume’s object ID has been provided (if not, then error exit)
2. Checks to see that a file ID has been provided (if not, then error exit)
3. Sets an appropriate status

b. If the quick_file_ref_in argument is not present, the Open service uses the string passed as
file_name. It calls an internal procedure to processes the file name by applying all name
processing rules. Note, node names or wildcards are not allowed. The procedure returns
the file name in a record structure which can be used directly as an input parameter to
the I/O subsystem. The file name processing procedure also provides a status. The status
may indicate that the file is to be opened by way of client context server routines. That
is, if after file name translation, it is determined through a status value that the access is
to be made by way of client context server routines (clientcs). In this case, rms$open calls
clientcs$rms_open.

Opens a channel to the volume.

Tries to access the file by calling the exec$request_io (function code = io$dfile_access). The Open
service specifies the access and share constraints as specified by the user. If the I/0 call is
successful, then continues. Otherwise, the Open service checks to see if there is a search list.

Record Management Services 1-45

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

5.

10.
1.

If a search list is present, the Open service gets the next list item and tries to access the file.
The Open service repeats the process until a file is found, or the search list is exhausted. If the
file is not found, the Open service exits unsuccessfully, as the file is not found.

If the file is found, then the file attributes are known.

The Open service performs organization specific chores. Only sequential files are handled at
FRS. For other types of file organizations, the Open service exits with appropriate indication.
For sequential files, the Open service takes the following steps:

a. Sets the end of file at VBN = 1, FFB = 0
b. Saves the options for Close service in the file context area.

c. If the device is a magnetic tape (not available at FRS), performs the magnetic tape specific
checks and set eof postion.

Sets data retrieval and output vector.

Returns the output parameters, as requested by the user.

The Open service sets RMS status.

1.4.4 Close Service

The Close service performs the following significant operations:

1.
2.

® ® N o o ko

Checks to see if the file has any outstanding I/Os in progress (if so, this Close operation fails)

Checks if the operation is to be handled by calling clientcs$close routine (if required, calls
clientcs$close)

Checks the file desposition on close options

If delete-on-close is set, then calls exec$request_io (function_code = io$c_dfile_delete)
Otherwise, the Close service writes out all the dirty buffers

Deaccesses the file by calling exec$request_io (function_code = io$c_dfile_deaccess)
Deassigns the I/0 channel

Deallocates the file context area

Sets a nul value to the file_handle

10. The Close service sets RMS status.

146 Record Management Services

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.4.5 Parse Service

The objective of rms$parse is to form a fully-qualified file specification, which is returned to the caller
by the expanded_file record. The string provided in the file_name field is the primary file specification.
The secondary file specifications are supplied by the defauli_file_string and related_files.

1.
2.

The input file specification is parsed to its constituent elements.

If the file specification contains only a name (without a terminating colon or period). This can
be either a logical name or a file name. If it is a logical name then the following must be true:

a. There must be no other file name elements
b. The name must translate

Assuming the name to be a logical name, the Parse service attempts to translate the logical
name, to obtain an equivalence string.

If the process has an associated client context (it is a bound process), then translation is first at-
tempted at the client site. This is done through the client context server procedure clientcs$rms_
translate_logical_name. If the name translates successfully at the client site, no further attempts
are made to translate the name at the server site. If, however, the name is not translated at the
client site, the name is then translated at the server site. The results of translations obtained
from the client site is not used with the results from the server site. If the translation at the
client site is successful, the equivalence string is reapplied for translation at the client site, until
there are no more translations.

If the process is a free running process, then translation is attempted only at the server site. If
the translation is successful, the equivalence string is reapplied for translation.

If the name cannot be translated then the name is assumed to be a file name. The Parse
service processes the file name further by applying defaults and, if necessary, the related file
specifications to form a fully specified file.

If translation from the client site returns an indication that the file is to be processed by way
of the client context server procedures, then the file name parsing is completed. The file is a
special file that needs to be handled by client context server procedures.

If the file specification has other consitituent parts, then it sequentially checks the following:

a. If a device name is seen then it is set aside for processing after completing parsing of other
consitituent parts. Once remaining elements are parsed, an attempt is made to translate
the device name as a logical name. If the franslation succeeds, the equivalence string is
then parsed, and its elements are merged in or discarded into the original file name string
to form a new string. With the new string, the parsing operation is repeated. If the device
name did not translate successfully, then it is truely a device name.

b. If a directory name is seen (a left square or angle bracket is found) then RMS takes the
following actions:

1. Determines the directory format. The format can be any one of the following formats:
[group,member] format or the following normal formats: [directory_name] format or
[directory_namel.directory_name?2...] format or [.directory_name...] format. The Parse
service identifies the format.

2. If the format is a normal format directory name, checks for [], [.directory_name] or
[-.directory_name]. Presence of any of these implies explicit use of default directory.

3. If there are leading minus signs, repeatedly applies default directory for each minus.
Each minus sign represents one level of directory.

4. If the directory name is null, applies default directory.

Record Management Services 1-47

Digital Equipment Corporation - Confidential and Proprietary
For Iinternal Use Only

10.
1.
12.

13.

C.

5. If there is a root directory specification, processes the file name using the rules for
rooted directory. For example, there cannot be a minus sign, as it is illegal to reference
a directory above the rooted directory.

If there is a name, checks the name for validity in syntax and length (The Parse service
checks for type as well as version).

If after parsing the file name string, there are missing elements of a full file specification, defaults
are applied until either there are no missing elements or no more defaults to be added. The
defaults are applied in the following order:

Program defaults—First, the default file name string (if any) is applied, and then, the related
file name strings (if any) are used. The default file name string can apply to any of the
elements of a full file specification. The parsing and copying is handled in the same manner
as for primary file specification with the exception that duplicate fields do not cause error.
Duplicates are simply discarded. If a logical name is provided by the default file name
string, it is not discarded simply because there is already a device name. The logical name
is translated fully and applied for defaults. However, in this case, the translation must not
yield duplicate fields. If either the file name or file type remains blank, and a related file is
specified, then the related file specification is parsed and the file name and/or the file type
is copied in to form a full file specification.

System defaults—First, the default device name is applied, which is followed by the default
directory name. If the device component of the expanded name is missing, an attempt is
made to obtain the default device name by calling exec$translate_object_name with the name
sys$default_device. The equivalence string obtained from this translation is merged into the
expanded name string just as done for default file name string. This step must yield a
device name. If the directory component of the expanded name is missing, then the default
directory name is copied in. The default directory name is obtained from the process public
display container by translating sys$default_directory.

If after applying the system defaults there is no device name, it is an error, and the Parse
service exits with appropriate status.

At this point the Parse service has an expanded the file name.

Using the device name, obtains the device object ID.

A channel is assigned and the device characteristics are obtained. If the channel assignment
fails, the Parse service exits with error.

For each directory encountered, finds its directory ID. In finding the next directory, the following
steps are taken:

a.

d.

First of all, the base directory is setup. Subsequent subdirectories are appended, in order,
to the base directory. To set the base directory:

1. Copies all the leading nonwild tokens. If all tokens were nonwild, the Parse service
simply finds the directory ID and returns.

2. If the very first pattern token is wild, the base dierectory is the Master File Directory
(MFD).

3. Alternatively, the base directory is the last nonwild name(f any). The Parse service
gets the directory ID of the base directory.

Sets the minimum number of directory levels that needs to be traversed.

Checks if there are any more wildcards left in the pattern string. If not, wildcard processing
is done.

Gets the directory IDs of all the leading nonwild tokens.

14. Performs the various outputs requested by the user. Sets RMS status.

148 Record Management Services

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

15. Deassigns the channel and returns.

16. The Parse service sets RMS status.

1.4.5.1 Miscellaneous Notes on File Name Parsing

* A file name string may not contain any node name or node name delimiter. The file name string
may not contain any imbedded blanks or lower-case alphabetic characters. Quoted strings are
not permitted.

* There may be only one logical/device-name field in a string. The name must be terminated by a

* At most ten logical name translations are done.

¢ The default directory string is maintained in the process public display container. The default
directory is obtained by translating the name sys$default_directory.

* The default device string is maintained in the process public display container. The Parse service
tries to assign a channel to the device. If the device is not mounted, an appropriate error code
is generated. The default device is obtained by translating sys$default_device.

* The default name string should not contain device/logical name.

1.4.6 Search Service

The basic service provided by rms$search is that within a given a directory, it looks for entries
that match the file name, type and version number, specified in the wildcard_context. If there is
a wildcard character embedded in the file specification string, then there is a possiblility of finding
multiple matches. As the Search service returns all the entries that match, applications are no
longer required to call the Search service repeatedly. The matched outputs are placed in a buffer.
If all matched items cannot be placed in the buffer, the Search service returns an indication. The
application may then make another call to the Search service, to obtain the rest of the items. The
Search service performs the following significant steps:

1. Checks if a previous context exists (for example if the Parse service was invoked earlier). If a
context is available it proceeds to the next step, otherwise the Search service exits.

2. Checks to see if in the previous context "no more file" condition was encountered. If so, there is
nothing more to do.

3. Checks to see if there a wildcard within the input file string. If no wildcards are seen, the Search
service gets the file from the input specification. It issues a call to the I/O subsystem with the
function code io$c_dfile_search_dir_tree to locate the file. This search path is now complete.

4. If there is a wildcard, then the Search service issues a call to the I/O subsystem with function
code io$c_dfile_read_dir_entries with the match criteria "all". If a previous context has to be
passed to the I/O subsystem, the Search service passes it via the input parameter firs¢_eniry (for
details see Chapter 20, Disk File System Function Processors).

5. Using the input file specification, the Search service matches all the entries that were returned
by the I/0 subsystem. The matched entries are returned via the output parameter matched_files.

6. The wildcard_context is updated to indicate the state of the search operation. For example, if
the buffer for return entries overflows, the next file context is saved in the wildcard_context.

7. The Search service sets RMS status.

Record Management Services 1-49

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.4.7 Data Retriveal Services

The user accesses records from a sequential file, by calling the following generic services:
* rms$get_sequential

* rms$get_rfa

* rms$get_key

At the time a file is opened, along with others, the following file attributes are known:
* The file organization (at FRS, only sequential files are supported.)
* The record format

* The device type (at FRS only disk files are supported. Terminal devices are supported by way of
callback services.)

Using the above file attributes, Mica RMS sets up an internal data retrieval vector. The vector is
defined by the record rms$retrievdl_serv_vec. See the implementation note in Section 1.3.5. The indi-
vidual items of the data retrieval vector are armed with specific procedure variables. The procedure
variable used depends upon the file attributes listed above. For example, if a file MYFILE has the
file attributes:

file name = myfile.txt

file organization = sequential

record format = variable

device on which the file resides = disk

Then, Mica RMS loads rms$retrieval_serv_vec with the following procedure variables.

rms$retrieva;_serv_yec.get_sequential = get_seq$seq_dsk_var;
rms$retrieval_ serv vec.put_sequential = put seq$seq dsk var;
rms$retrieval serv vec.get rfa = get rfa$seq dsk var;
rms$retrieval serv vec.get key get_key$seq dsk var;
rms$retrieval serv_vec.put key put_key$seq_dsk var;

The user invokes the RMS interface service rms$get_sequential, which is a jacket routine. Inrms$get
sequential the following call is made:

result = rms$retrieval serv_vec.get sequential(
file handle,
record position,
user in buffer pointer,
user_in buffer length,
move mode,
in options,
current record pointer,
next record position,
read data buffer pointer,
read_data_length
):

Note, the call is being made to get_seg$seq_dsk_var procedure, on user’s behalf. If, for example, the
record format of the file were fixed, the procedure called from the jacket routine would have been to
get_seq$seq_dsk_fixed.

For data retrieval operations on sequentially organized disk files, the following procedures are defined:
* For sequential access:

— get_seq$seq_dsk_var

— get_seq$seq_dsk_vfc

— get_seq$seq_dsk_stm

1-50 Record Management Services

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only
— get_seq$seq_dsk_stmer
— get_seq$seq_dsk_stmlf
— get_seq¥seq_dsk_fixed
— get_seq$seq_dsk_udf
For access via the record’s file access:
— get_rfa$seq_dsk_var
— get_rfa$seq_dsk_vfc
— get_rfa$seq_dsk_stm
— get_rfa$seq_dsk_stmer
— get_rfa$seq_dsk_stmlf
— get_rfa$seq_dsk_fized
— get_rfu$seq_dsk_udf
For random access by relative record number:

— get_key$seq_dsk_fixed

For all data retrieval procedures, the first order of business is to determine if the requested record
can be retrieved from the existing buffers. The steps are:

1.

For keyed access, the procedure converts the relative record number to record’s file address. All
RFA procedures check if the offset value is within a block. To locate the record within a block of
a buffer, the following steps are taken:

Checks if the VBN of the record is greater than or equal to the end of file block. If this is not
true (the VBN is within bounds), then:

Gets the current buffer descriptor pointer. If the buffer descriptor is not available, then gets
the next block. If the buffer descriptor is available, checks if the next record position (NRP)
information is available. If the NRP is not available, then skips to next step. If the NRP is
available, checks if the end of the buffer address is less than the NRP. If this is true, then the
procedure skips to next step. Otherwise, the record is available immediately.

To get the next block, the data retrieval procedures takes the following steps:

a. Gets the buffer descriptor address. If buffer descriptor is not available, does a read-ahead.
If the buffer descriptor is available, it continues below.

b. Computes relative VBN.

c. Checks to see if the requested block is available within the buffer. If available, then maps
the block, otherwise releases the current buffer and read ahead.

d. - Once the record offset within the block is determined, it performs checks according to the
record format.

The above steps are common for sequential disk files, for all record formats. All data retrieval
procedures listed above execute the common steps. Having found the record, each specific data
retrieval procedure carries out specific checks depending upon the record format. For example,
prior to returning the pointer to the data, to the user, get_seqg$seq_dsk_stm performs the following
checks:

a. Ignores leading NUL characters.

b. Tries to find a terminator. If a terminator is found, that is the end of the record. If a
terminator is not seen before the end of the buffer, sets an indication.

Record Management Services 1-51

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

c. If the last byte of the old buffer was a CR, and the first byte of the new buffer is a LF, then
the procedure considers that a terminator for the record has been found.

6. Once the record is found, RMS sets the record pointer and the next record position information.
RMS returns other user requested information.

7. 'The data retrieval service sets RMS status.

1.4.8 Data Output Services
Data outputs onto sequential disk files are described by the following procedures:
¢ Ifrecord access mode is sequential:
* get_seq$seq_dsk_var
* get_seq$seq_dsk_uvfc
e get_seq$seq_dsk_stm (for stream, stmcr, stmlf)
e get_seq$seq_dsk_fixed ‘
* For record access by relative record number:
* put key$seq dsk_fixed

1.4.8.1 Sequential Record Output
The common steps for all data output procedures on sequentially organized disk files are listed below:

1. The record position must be at the end of the file. If at EOF, then output continues. Otherwise,
checks if truncate on put option is set. If the option is set, checks if truncate access is also set.
If anyof the two option checks fail, the ocutput cannot be done.

2. The record has to be copied from the user’s buffer to RMS buffer. Using the current record length
RMS computes the number of bytes left in the RMS buffer, and checks to see if the record can
be accomodated within a block. If the option records cannot cross block boundaries were set,
and the computation showed that adding the current record would cause overflow onto the next
block, it causes an exit with error.

3. If everything is correct, then the procedure copies the record, and updates the end of file data.

A few of the typical checks done in the specific procedures are described below.
If the record format is variable or variable with fixed control, the procedure:

¢ Ensures that the records are word aligned

¢ Determines the overhead size, and adds it to the record size

¢ For VFC format only, processes the header for control operations

If the record format is stream, stream related operations are performed. For example, the procedure
sets the default terminators.

On a sequential file, data is usually inserted at the end of the file. However, for a sequential file
with fixed record format, a random record can be modified. Records in such files are numbered in
ascending order, starting with number 1. The user can refer to any relative record number, as long
as it is within the current boundaries of the file (relative record number is less than or equal to the
highest record number in the file). Basically, RMS converts the relative record number to the record’s
file address, and if all other checks (for example, the access permissible) are satisfactory, updates the
record.

1-52 Record Management Services

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.4.9 1/Os Through Client Context Server

If after translating the file name through the clientcs$rms_translate_logical_name an indication is
received that the file is to be processed by way of the client context server routines, then the following
significant steps are taken to establish, conduct and terminate such I/0 sessions:

1.

The file needs to be opened at the client site. Mica RMS procedure rms$open calls the client
context server clientcs$open to initiate a remote procedure call (RPC) call in the client site
procedure clientcs$rms_open, which in turn, calls VMS RMS $OPEN.

If the file is opened successfully, a VMS RMS $CONNECT is done. As Mica RMS user interface
does not have a corresponding procedure, the VMS RMS $CONNECT call is made automatically,
on the user’s behalf, at the client site.

The clientcs$rms_open returns the file_handle and the specified output items. Typically, de-
vice characteristics are requested as output. Note, this file_handle is meaningful only to the
clientcs$rms_open. The outputs are returned back to rmsfopen. The (rms$open) service saves
the information received from the client site, and returns to its caller a file_handle. This file_
handle points to the local file context area. If requested, the device characteristics, as defined in
rms$create, is also returned to the user. A device is identified as a remote terminal if both, the
terminal and unknown bits are set in rms$device_characteristics.

The Read/Write operations are performed by the following Mica RMS procedures:
* To read from the client site, get_seq$seq unknown
e To write to the client site, put_seq$seq_unknown

The above procedures call clientcs$get and clientcs$put respectively. The clientcs$get calls
clientcs$rms_get_seq at the client site. Similarly, clientcs$put calls clientcs$rms_put_seq at the
client site.

Upon receiving a close request, Mica RMS Close service calls clientcs$close to close the file at
the client site. The clientcs$close calls clientcs$rms_close, to make the VMS RMS $CLOSE call
on the file.

If the ﬁie is closed at the client site, Mica RMS Close service deallocates the local file context
and sets a nul value to the file_handle.

Record Management Services 1-53

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

APPENDIX A
PRELIMINARY TEST PLANS

Testing of Mica RMS services is accomplished by the following:

1.

Functional Tests—These tests exercise the various functions of a the RMS services. The tests
validate the functionality of each Mica RMS service. These tests will be developed together with
the RMS modules.

Fault Insertion Tests—These tests exercise the software’s robustness. Ability to handle faulty
inputs is established. Once a module passes the functional tests, fault insertion tests are done
to determine how soundly the software handles such cases.

Regression Tests—These tests are developed as bugs are discovered and fixed in RMS software.
These tests establish that the bug has been removed.

Performance Tests—These tests will be done to show RMS performance. Performance of simple
sequential get and put operations will be initially tested.

Preliminary Test Plans A-1

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

APPENDIX B
OUTSTANDING ISSUES

The following list identifies the issues that are yet to be resolved:
* Item list definition—Mica system-wide definition of an item and item_list are not finalized.

¢ Protection options—The structure through which protection options are specified is not yet de-
fined.

Outstanding Issues B-1

