
K-FPF11-TM-OO1

FPFI]

- Floating-Point

Processor

Technical Manudl

FPF]

Floating-Point

Processor

Technical Manual

Prepared by Educational Services

of

Digital Equipment Corporation

1st Edition, July 1981

Copyright © 1981 by Digital Equipment Corporation

All Rights Reserved

The material in this manual is for informational pur-

poses and is subject to change without notice.

Digital Equipment Corporation assumes no responsi-

bility for any errors which may appear in this manual.

Printed in U.S.A.

This document was set on DIGITAL’s DECset-8000 computerized

typesetting system.

The following are trademarks of Digital Equipment

Corporation.

DIGITAL DECsystem-10 MASSBUS

DEC DECSYSTEM-20 OMNIBUS

PDP DIBOL 0S/8

DECUS EduSysiem "RSTS

UNIBUS VAX RSX

DECLAB VMS IAS

MINC-11

9/83-15

CHAPTER 1

W o
L
o
k

o
W

L

B
I

O
—

CHAPTER 4

4.1

4.2

4.3

4.3.1

4.3.2

4.3.3

4.3.4

4.3.5

4.3.6

4.3.7

4.3.8

4.3.9

4.3.10

4.3.11

4.3.12

4.3.13

4.3.14

CONTENTS

INTRODUCTION

GENERAL ..o e 1-1
FEATURES OF THE FPF11 .cooooiiiiiioieeeeeeeeeeeeeeeeeooo 1-4
ARCHITECTURE ...ttt 1-4
SPECIFICATIONS ... 1-4
RELATED DOCUMENTS ...ttt 1-5

REVIEW OF FLOATING-POINT NUMBERS

INTRODUCTION. ...ttt 2-1
INTEGERS ... 2-1
FLOATING-POINT NUMBERScooooioiiiioer oo 2-1
NORMALIZATION ...ooiieeeeeeeeeeeeeeeeeeeeeeeeeeee 2-2
FLOATING-POINT ADDITION AND SUBTRACTION ..o 2-3
FLOATING-POINT MULTIPLICATION AND DIVISION ..o 2-4

INTRODUCTION ..ottt 3-1
FPF11 INTEGER FORMATS: SHORT AND LONG ..o 3-1
FPF11 FLOATING-POINT FORMATS:

SINGLE-AND DOUBLE-PRECISION ..o 3-1
FPF11 Floating-Point Data Word..............ccooooooomoeeeeoeoooo 3-3

Floating-Point Fraction...................c.......... e 3-5
Floating-Point EXponent..............ccooooovimooeoooeeeeeeeeeeeeoeo 3-6

FPF11 PROGRAM STATUS REGISTERc.oovoooioirmeoeeeeoeoeooo 3-6
PROCESSING OF FLOATING-POINT EXCEPTIONS.....ooovooooooos 3-8

FLOATING-POINT INSTRUCTIONS

FLOATING-POINT ACCUMULATORSooroeeeeoeeeeoeoeeoeeeoo 4-1
INSTRUCTION FORMATSooviimieieaooe e 4-1
INSTRUCTION SET ...ttt 4-4

Arithmetic INStIUCHIONSc.ooiioeiiieeeeoeeeeeeee o 4-11
Floating Modulo INStruction.............o.c.ooioeoeeoeeeooooooeoee 4-11
Load INStIUCHION ...ovouiiiitieiicet e 4-11
StOre INSTIUCHION ...cvoveeeietee eo 4-11
Load Convert Double-to-Floating, Floating-to-Double
INSTrUCHIONS .e.eeoiieiiic e et 4-11
Store Convert Double-to-Floating, Floating-to-Double
Instructionscoooovooiioiooiee etttet e e et e e 4-12
Clear INSTrUCHION.c.ooviiitiiiee e 4-12
Test INSTrUCION.o.oeiiiiii e 4-12
ADSOIULE INSEIUCTION .ovvoeiieiieec e 4-12
Negate INSTruCtion......cocooiiiiiiiii e 4-13
Load Exponent INStructionc.ooeooe oo 4-13
Load Convert Integer-to-Floating Instruction ... 4-14
Store Exponent InStruction................cooocomvooooeooooeeo 4-15
Store Convert Floating-to-Integer InStructiono.ocoov oo 4-17

i

4.3.15

4.3.16

4.3.17

43.18

4.3.19

4.3.20

4.3.21

4.3.22

4.4

CHAPTER 5

o

-

N

=
—
t

L
0

L
9

1
9

L
o

L
o

L

L

W

1
D

L
0

L
D

L
I

L

LW

W

W

L

L

W

W

W
b

—

A
N

B

W
~

W
b

-

CHAPTER 6

CONTENTS (Cont)

Load FPF11’s Program Status (LDFPS) Instruction.........cccoccoocoiiiniinnnnn 4-20

Store FPF11’s Program Status (STFPS) Instructioncocooniniinn 4-20

Store FPF11’s Status (STST) INStructioncccoociviiiiiiiiiiiiiiininneee 4-20

Copy Floating Condition Codes (CFCC) Instructioncocooeiiiiiniiinens 4-21

Set Floating Mode (SETF) Instruction ... 4-21

Set Double Mode (SETD) INStructioncccccoocuiiiviimniriiiiiiiieiiieiee 4-21

Set Integer Mode (SETI) Instruction.........ooooveiininininiininien 4-21

Set Long-Integer Mode (SETL) InStruction ..o 4-21

FPF11 PROGRAMMING EXAMPLES ... 4-21

FUNCTIONAL DESCRIPTION

GENER AL oottte et e e s eare e e eab s e e s e e st 5-1

OVERVIEW oottts e e aaa e e st e sttt 5-1

FPF11 CONTROL AND DATA FLOW DESCRIPTION ... 5-2

Microcontroller: Sequencer and Control Store........ooooieiiiiiiin 5-2

MIB TNt ACE oo e eeieeeeeeeeee e e eeeieeee e e e e e e et eseebtee e s srnne e e e s bss e e e st e e e snieeneeeans 5-5

Receiving Logic (from the CPU) ... 5-5

Transmitting Logic (to the CPU) ..o 5-5

Interface Control and Clock LOZICoviiirrioiiiiiiii s 5-5

Interface Control LOZICooovreieiriiiiiiiiiieie e 5-9

CLOCK LOZIC oot 5-9

DAL INEEITACE cneeeeeeeeeee e e e e eenree e e e et s e e s e e nrrae e e s st e e e s 5-10

TBUS RESOUICES ..veeeeeeeeieieiiiiieeeeeeeeeeeeeaesaeeseeieeieesetrreneeeeaaeaaaaeeesresasanans 5-10

Floating-Point Instruction Register (FPIR) ... 5-10

FD/FL REISTETeeieienieieiiiiiiiiieeene st 5-12

Floating-Point Status (FPS) Register.......ccoooniniii 5-12

Status Flags RegiSter.....cooeviiiiiiiiiiiiiiis 5-12

CONSLANT ROMS ..ote et e sse e e e s 5-12

COUIIET oot ee e e e ee e e e e e e eeeasaeeeeee s msebeeeeeenabbbabaas e s s e e a s absbe e e e e e s st s 5-12

Microprocessor Data Path LOIC......ocovniiiiii 5-12

Address MUltIPIEXETS ...vevveeveeiiiiiiiieiiee e 5-12

Shift Linkage LOZIC....ooeeieiiiiiiii it 5-13

Fast Carry LOZIC. . oveveiereiiieiiiiieieee 5-13

AM?2901 Bipolar MICTOPIOCESSOTcueeuieirenieniriienitsirsieenceiees 5-13

INSPECTION AND INSTALLATION

GENERAL .ottt ettt 6-1

INSPECTION ..otttettt e et 6-1

INSTALLATION PROCEDUREoooiiiiiiiiiei i 6-1

MAINTENANCE

MAINDEC CIFPAA (FPF11, NG 1) 7-1

MAINDEC CJFPBA (FPF11, NO. 2) it 7-1

Figure No. Titie Page

1-1 FPFTT Module (M8188)cuiieiiiieeeoeeeeeeeeeeeeeeeoo 1-2
1-2 FPF11 Floating-Point Processor, Functional Block DIagram .coooeveeeieireeeeea -3
2-1 NOrmMaliZaAtioN ..o 2-3
3-1 Integer Formats.............coccoviiiiioeeeeee 3-2
3-2 Floating-Point Data Formats in Memory........coooooooevooo 3-2
3-3 Floating-Point Data Words in Memory...........cccoovoveveeooo 3-3
3-4 Interpretation of Floating-Point Numbersccocooovooeovooo 3-4
3-5 Unnormalized Floating-Point Fractionccccooooveoi 3-5
3-6 Floating-Point Exponent NOtations..............cocoovvvoeecooo 3-6
3-7 FPF11 Status Register FOrmatcocoooooovevmomoeoooooo 3-6
4-1 Floating-Point Accumulatorsoocooooovoiooeioooeoo 4-1
4-2 FPFIT Instruction FOrmats........o.ooovoviiivioioieoeeoeeoeooo 4-2
4-3 Double-to-Single-Precision Roundingccocoovevveee 4-11
4-4 Single-to-Double-Precision Appendingoccooooooeoooo 4-12
4-5 Shifting an Integer Left Eight Placescocoooomeeeooooo 4-15
4-6 Example of a Normalized Integer..............cccoooovoevoeomo 4-15
4-7 Store Exponent (Example 1)..........oocoovoiooioomoooooo 4-16
4-8 Store Exponent (EXample 2)...........ocovoovovomooooooooooooo 4-16
4-9 Example of a Store Convert Integercococevoevevooooo 4-17
5-1 FPF11/CPU INterface.........coooiueuimiiieiiioooeeeoeeeoeeeooeooo 5-1
5-2 FPF11 Floating-Point Processor, Functional Block Diagramc..c.ccooooviiveeii 5-3
5-3 Microcontroller (Sequencer and Control Store),

Functional Block Diagramc.c.co.ooooovoooiiomoooeooo 5-4
5-4 FPFT1 Control Wordcccooenimiiiiieoeeeeeeeeoeoo 5-6
5-5 MIB Interface, Functional Diagram...........cococoovooeoo 5-8
5-6 Interface Control and Clock Logic, Functional Diagram......cc.occoovviiioveeinen 5-9
5-7 DAL Interface, Functional Diagramcccocooovooeoooo 5-10
5-8 TBus Resources, Functional Diagramooocooovooo 5-11
5-9 Microprocessor Data Path, Functional Diagramooo.ocooovoooio 5-13
5-10 AM?2901 Bipolar MiCrOPIOCESSOTc.oweveeeeeeeeooooooooo 5-14
5-11 RAM Register File Layoutccooomommoeoeooooooo 5-15
6-1 FPF11 Module in Various Configurationscocoooovvoooo 6-2
6-2 FPF11 Cable Layout...........cccocoooioiiiiiioooeoeeooooo 6-3
6-3 FPFI1 Jumper Locationsoo.oououoeioooooeeooooo 6-4

TABLES

Table No. Title Page

3-1 FPF11 Status Register Bit DeSCTiptionscocoovevevovooooooooooooo 3-7
3-2 FPET1 EXCePtion COodes.oovuvuiuiiveviioeeeeeeeeeeeeeeeeeeoeeoeeeeeeee 3-8
4-1 Format of FPF11 INStructions..............ococooooooooooooo o 4-3
4-2 FPF11 INStruction Set...........oooooovivoioioooooooeeeoeee 4-6
4-3 I'and L Formats and Their Floating-Point EQUivalents ... 4-18
5-1 Control Word Bit DeSCriptionscocoooooooeoooeooeooeoeoeoeooo 5-7
6-1 FPFT1 Jumper Configurations...............c.ooooouoerooeooooooeoeooeeeeo 6-4

PREFACE

The FPF11 floating-point processor is an option designed to operate with a PDP-11/23 central process-

ing unit (or other compatible CPU) in executing floating-point arithmetic operations. This manual pro-

vides a detailed technical description of the FPF11 and service information.

Chapter 1 describes the features of the FPF11 and its architecture.

Chapter 2 outlines the fundamentals of floating-point arithmetic.

Chapter 3 describes the three data formats the FPF11 recognizes.

Chapter 4 describes the floating-point instructions the FPF11 uses.

Chapter 5 gives a functional description of the FPF11.

Chapter 6 contains the information necessary to inspect, install, and check out an FPF11 ina

PDP-11/23 or other compatible system.

Chapter 7 describes the diagnostics used to verify the FPF11 is operating properly.

vii

AA/RAR A Ay

INTRODUCTION

1.1 GENERAL

The FPF11 floating-point processor is a hardware option for use with the PDP-11/23 or other FPF11-
compatible central processing unit (CPU). Its function is to execute the entire PDP-11 floating-point
instruction set.

The FPF11 is contained in one quad-height module, M8188 (see Figure 1-1), which becomes an integral
part of the CPU when installed. The module is installed in the backplane slot adjacent to the CPU (for
systems using the PDP-11/23). It connects to the CPU by a ribbon cable that plugs into the socket
designated for the optional floating-point processor chip. The FPF11 does not connect to the system
bus, and therefore, has no affect on bus loading. Figure 1-2 shows the FPF11 signal interface with the

CPU. These signals are discussed in Chapter 5.

The FPFI1’s dedicated high-speed data path increases the execution speed of floating-point instruc-
tions. The 64-bit-wide data path avoids the use of complex arithmetic coding routines that would be
required if a 16-bit CPU were to operate on the 32-bit or 64-bit operands. The FPF11 uses its own
internal clock to speed up the execution of floating-point instructions. This clock is controlled by the
FPF11 microcode and generates variable-length microcycles so that each microword is executed in a
minimum amount of time. In addition, the FPF11’s operation does not depend on the memory manage-
ment unit (MMU) for its scratch-pad registers, as the KEF11-A floating-point option does.

The FPF11 features both single- and double-precision (32- or 64-bit) capability. It uses the same ad-
dressing modes and memory management (when present) as the CPU. Floating-point processor instruc-
tions can reference the floating-point accumulators, the CPU’s general registers, or any location in
memory.

1-1

[-]aIn3i]
v8o)a.flN_H“_fl_593n__—23n__o_Hi

Z3_“__0z3_H“ov3m_903n___€3n__83_Hh0/3

h193m;L3m___803n___Yn__|(B9]_9.3n___863m._
_93vidn___vean:‘€3m”ey]“683O:fiE-H923n__m_BOE!J__5v3n__m=—8.3n___fl_0013L913_L3n__n___ov3n__—vsdn__fi0931013¢
[¢--I_A_REfil-l_g=g(=,iIeLoS0133gza__m_n___813m_m_623n___I63n__m_(53O183m__||||m___”_llumolluH

—:AE_=3w3=2=L_=tA=3w3[d=3k[oim]

1

MAIN MEMORY

i
(SYSTEM BUS 2

=)
N v

TCPU CLK

ceu RESET H FPF11
CSEL L

=
Figure 1-2 FPF11 Floating-Point Processor, Functional Block Diagram

MR-4286

1-3

1.2 FEATURES OF THE FPF11

e Performs medium-speed, floating-point operations

e 17;¢-digit accuracy

e Microprogrammed control store

e Six 64-bit floating-point accumulators

e Error recovery aids

e No affect on system bus loading

e 32-bit (single-precision) and 64-bit (double-precision) data modes

e Addressing modes compatible with existing PDP-11 addressing modes

e Special instructions that improve input/output routines and mathematical subroutines

e Allows execution of in-line code*

e Converts 32- or 64-bit floating-point numbers to 16- or 32-bit integers during store

instructions

e Converts 32-bit floating-point numbers to 64-bit floating-point numbers, and vice versa, dur-

ing load and store instructions

1.3 ARCHITECTURE

The FPF11 contains scratch-pad registers, a floating exception address (FEA) pointer, status and error

registers, and six general-purpose accumulators (AC0-ACS).

Each accumulator is interpreted to be either 32 or 64 bits long, depending on the instruction and the

status of the floating-point processor. For 32-bit instructions, only the leftmost bits are used. The re-

maining bits are unaffected.

The six general-purpose accumulators are used in numeric calculations and interaccumulator data

transfers. The first four registers (ACO-AC3) are also used for all data transfers between the FPF11

and the central processor’s general registers or memory.

1.4 SPECIFICATIONS

Identification M8188

Type Quad-size

Height 26.5 cm (10.5 in)

Length 22.8 cm (8.9 in)

Width 1.27 cm {0.5 in)

* That is, floating-point instructions and other instructions can appear in any sequence desired.

Bus Loads None

Environment

Operating Temperature

Humidity _
—

(
o
)

=
+

Power Consumption

1.5 RELATED DOCUMENTS

59 Cto 50° C (41°
nar~ant

+5.0 Vdec, 5.5 A

n

The following documents supplement the information contained in this manual.

Document Number

AWLNJwWwNILMicrocomputer Interfaces

Microcomputer Processor Handbook

EB-1

EB-158

These documents can be ordered from:

Digital Equipment Corporation

444 Whitney Street

Northboro, MA 01532

Attention:

1-5

Printing and Circulating Services (NR2/M15)

Customer Services Section

CHAPTER 2

REVIEW OF FLOATING-POINT NUMBERS

2.1 INTRODUCTION

This chapter briefly outlines the fundamentals of floating-point arithmetic, providing useful back-
grouna for more advanced topics in later chapters. if you are aiready familiar with floating-point arith-
metic, go directly to Chapter 3 for a discussion of FPF11 data formats.

2.2 INTEGERS

In many cases, data in a computer system is represented by integers. For example, the numbers that
could be represented in a 16-bit machine would range from 0000005 to 1777778 (019 to 65,5361¢). How-
ever, there are problems with integer representation. A number between 1 and 2, for example, could not
be represented. Thus, integer representation imposes an accuracy limitation. Furthermore, numbers
greater than 65,536,¢ also could not be represented. This imposes a range limitation.

These limitations are caused by the stationary position of the radix point (for example, the decimal
point in base 10 notation, the binary point in base 2 notation). An integer’s radix point is omitted in
integer representation since only whole numbers are used. (A defined radix point implies the possibility
of fractions in the numbering scheme.) For this reason, an integer is sometimes called a fixed-point
number.

Integer notation, however, can be modified to overcome the range and accuracy limitations imposed by
a fixed radix point. This is done through the use of floating-point notation.

2.3 FLOATING-POINT NUMBERS

Floating-point numbers, unlike integers, have no position restrictions on their radix points. A popular
type of floating-point representation is called scientific notation. In scientific notation a floating-point
number is represented by some basic value multiplied by the radix raised to some power.

basic

value

//exponent
1,000,000,¢9 = 1. X 109

\
r
a
d
i
x

2-1

There are many ways to represent a number in scientific notation, as shown below.

5120 = 51200. X 1072
= 5120. % 107!

= 512 % 100

= 51.2 x 10!

= 5.12 X 102

= 512 % 103

The convention chosen for representing floating-point numbers with scientific notation in the FPF11

requires the radix point to be always to the left of the most significant digit in the basic value (for

instance, .512 X 103 above). In this way fractions are represented. More examples of scientific nota-

tion are shown below.

Decimal | Scientific Notation

Number

Decimal Octal Binary

64 0.64 X 102 0.1 X 83 0.1 x 27
33 0.33 X 102 041 x 82 0.100001 X 26
1/2 0.5 X 100 0.4 x8Y 0.1 x 20
1/16 0.625 x 1071 0. X 81 0.1 X 273

Note that in each of the examples above, only significant digits are retained in the final result and the

radix point is always to the left of the most significant digit. Establishing the radix point in a number

whose basic value is greater than (or equal to) 1 is accomplished by shifting the number to the right

until the most significant digit is to the right of the radix point. Each right shift causes the exponent to

be incremented by 1. Similarly, establishing the radix point in a number whose basic value is between 1|

and O (that is, a fraction) is accomplished by shifting the number to the left until all leading Os are

eliminated. Each left shift causes the exponent to be decremented by 1.

To summarize, the value of a number remains constant if its exponent is incremented for each right

shift of the basic value and decremented for each left shift. The representation for floating-point frac-

tions is one in which all nonsignificant leading Os have been removed. The process used to obtain this

representation is called normalization and is explained in more detail in Paragraph 2.4.

2.4 NORMALIZATION

In digital computers the number of bits in a fraction is limited. Retention of nonsignificant leading Os

decreases accuracy by taking places that could be filled by significant digits. For this reason, the pro-

cess called normalization is used in the FPF11. Normalization consists of testing a fraction for leading

0s and shifting it left until it is in the form 0.1... . The exponent is accordingly decremented by the

number of places of the fraction is shifted left. This ensures that the normalized number retains equiva-

lence with the original number. Since digits to the right of the binary point are weighted with inverse

powers of 2 (thatis, 1/2, 1/4, 1/8...), the smallest normalized fraction is 0.10000... (1/2), and the larg-

est normalized fraction is 0.11111... . Figure 2-1 shows an unnormalized fraction that must be left-

shifted six places to be normalized. The exponent is decremented by six to maintain equivalence with

the original number.

2-2

EXPONENT FRACTION

NORMALIZED 00 100 011 0. 000 000 1 111 001

NORMALIZED 00 011 101 0. 111 1 001 000 000

DECREASE EXPONENT BY SiX LEFT-SHIFT FRACTION SIX PLACES

MR-5895

Figure 2-1 Normalization

Problem A — Represent the number 751 as a binary normalized floating-point number.

1. Integer conversion.

7510 = 1001011,

2. Convert to floating-point form.

1001011.0 x 20 = 0.1001011 x 27

Fraction = 0.1001011

Exponent = 111

Problem B - Represent the number 0.25;¢ as a binary normalized floating-point number.

1. Integer conversion.

0.2519 = 0.01,

2. Convert to floating-point form.

0.01 x 20 = 0.1 x 2

Fraction = 0.1

Exponent = —1

2.5 FLOATING-POINT ADDITION AND SUBTRACTION

In order to perform floating-point addition and subtraction, the exponents of the two floating-point
numbers involved must be aligned or equal. If they are not aligned, the fraction with the smaller expo-
nent is shifted right until they are. Each shift to the right is accompanied by an incrementation of the
exponent. When the exponents are aligned or equal, the fractions can then be added or subtracted. The
exponent value indicates the number of places the binary point is to be moved to obtain the integer

representation of the number.

2-3

In the example below, the number 7;g is added to the number 40,0 using floating-point representation.

Note that the exponents are first aligned and then the fractions are added; the exponent value dictates

the final location of the binary points.

0.101 000 000 000 000 X 26 = 505 = 40

0.111 000 000 000 000 X 23 = 73 = 70

To align exponents, shift the smaller fraction three places to the right and increment its exponent by

three, then add the two fractions.

0.101 000 000 000 000 X 26 = 503 = 40;o

+0.000 111 000 000 000 X 26 = 73 = Tip

0.101 111 000 000 000 X 26 = 57y = 47y

To find the integer value of the answer, move the binary point six places to the right.

5 7

0 101 111.000 000 000 = 57g = 4710
A

2.6 FLOATING-POINT MULTIPLICATION AND DIVISION

In floating-point multiplication, a fraction is multiplied by another and their exponents are added. In

floating-point division, a fraction is divided by another and their exponents are subtracted. You need

not align the binary points in floating-point multiplication or division.

Example: Multiply 710 by 40j0.

I. 0.1110000X 23 = 7g= Tyo

X0.1010000 X 26 = 505 = 40;0

1110000

0000

11100

110001100000000 X 29 (Result already in normalized form.)

[
\ Move the binary point nine places to the right.

4 3 0

700011000.00000 = 4305 = 280;0
4

l}
)
£

1111000X 24

1010000 X 23

1.01000‘) 1111000 =

1.100000

1010000) 1111000.000000
1010000

101000

101000

0

Exponent: 4 — 3 =1

Result: 1.100000 X 2

Normalized result: .1100000 x 22

normalized fraction normalized exponent

Move the binary point two places to the right.

11.00000 = 35 = 30

.

HAPTER 3ALAN) §
C

DATA FORMATS

3.1 INTRODUCTION

The FPF11 requires its input data (operands) to be formatted in one of four ways: short-integer format
(I), long-integer format (L), single-precision format (F), and double-precision format (D).

Data output from the FPF11 is also formatted, taking the form of:

e FPFI1 status information and FPF11 exception information required by the CPU, or

¢ Data sent to memory (via the CPU) in I, L, F, or D format.

This chapter describes the FPF11 data formats mentioned above. (It 1s assumed you are familiar with
2’s complement notation.)

3.2 FPF11 INTEGER FORMATS: SHORT AND LONG
The short-integer format (I) is 16 bits long, the long-integer format (L) 32 bits long. Data words (oper-
ands) in integer format are represented in 2’s complement notation. In the I and L formats the most
significant bit of the data word is the sign bit. Figure 3-1 shows the integers 5 and —5 in the [and L
formats. Figure 3-2 illustrates the formats in which integers are arranged in memory. Integers sent to
memory must be in one of the formats shown.

Integers received by the FPF11 are arranged and manipulated according to the type of instruction
being executed. Refer to Chapter 4, Paragraphs 4.3.11 and 4.3.12 for descriptions of the ways in which
incoming integers are manipulated during the load exponent and load convert integer-to-floating in-
structions, respectively.

3.3 FPF11 FLOATING-POINT FORMATS: SINGLE- AND DOUBLE-PRECISION
The single-precision format (F) is 32 bits long, the double-precision format (D) 64 bits long. Figure 3-2
shows that the most significant bit is the sign of the fraction (and the floating-point number being repre-
sented). The next 8 bits contain the value of the exponent, expressed in excess 200 notation (see Para-
graph 3.3.1.2). The remaining bits (23 for single-precision, 55 for double-precision) contain the fraction.
The fraction and its associated sign bit are expressed in sign and magnitude notation (see Paragraph
3.3.1.1).

3-1

INTEGER =5
WORD 1

. A \

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

SHORT 0 0 o 0 0

INTEGER (1) 0 0 0 0 0 0 0 0 0 0 5

SIGN BIT

WORD 1 WORD 2
A A

r
b

31 30 ((16 15 14 I 00
1) | R

LONG 0 0] 0 0 0 0 0 0 0 0 0 5
INTEGER (L) ((¢

Y 1]

— e —— SIGNBIT —— —— —— e — ——— ———— — —— — = T

INTEGER =-b
WORD 1

[
N\

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

SHORTINTEGER (1) 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 3

SIGN BIT

WORD 1 WORD 2
A A

— Y N

31 30 {(16 15 14 { (00
YT YT

LONG 1 7 7 7 7 7 1 7 7 7 7 3
INTETEGER (L) ((

IR 1}

SIGN BIT

MR-4273

Figure 3-1 Integer Formats

MEMORY MEMORY

WORD 1 WORD 2
A e

[Yo)

31 30 Ny 23 22 ({ 16 15 ({ 00

SINGLE-PRECISION l 3 R ' ' ! V) ! ! !

FLOATING-POINT (F) S EXP

FORMAT I i G O |] L {(| 1 1
IR 1R IRE

“ —
——

FRACTION

MEMORY MEMORY MEMORY

WORD 1 MEMORY WORD2 WORD 3 WORD 4
A — A _AL

‘e Y ~v ~

63 62 Iy 55 54 T 48 47 T 32 31 ((16 15 ((00

DOUBLE-PRECISION UL b L LR DL L R L ot T
FLOATING-POINT(D} | S EXP

FORMAT 1 S L T] |S€|]
0 | | \ | S | L))4 1 L 1 \ I 1 1 \

\ _J
—

FRACTION

S =SIGN

EXP = EXPONENT IN EXCESS 200 NOTATION (REFER TO PARAGRAPH 3.3.1.2)
SIGN AND MAGN!TUDE FORMATFRACTION = 23- OR 55-BiT FRACTION iN

Figure 3-2 Floating-Point Data Formats in Memory

N

MR 4270

3.3.1 FPF1

Figure 3-3 illustrates the formats in which floating-point numbers are arranged in memory. Floating-
point numbers sent to memory must be in one of the formats shown. Floating-point numbers received by

the FPF11 are arranged as illustrated in Figure 3-4.

The sign bit, exponent bits, and fraction bits in an FPF11 data word have the same values as their
corresponding data word in memory. Note, however, that the FPF11 data word has more bits than its

counterpart in memory. This is so because the FPF11 has provision for generating an overflow bit, a

“hidden” bit.

SINGLE PRECISION FRACTION

15 14 7% 0 15 o

MEMORY | | EXP]]]

/ — — // /\ —_ -

— —— =
— P —— — — —_

6362 56 55_—~" 4039 — ~ — 8. 7 B — _0
INITIALLY LOADED

INTO FPF11 L= FRAC[TION zEROES | |s] EXP J,
)

/

]
63 62\61 39|38 0

FPF11 WORD

IN WORKING AREA || | FRACTION I ZEROES]
OVERFLOW BIT

HIDDEN BIT —— (EXP=0, Bi

MR-4267

a. Single-Precision Format

1514 76 0 15 0 15 0 15 0

mewory [s] exe | | ¢ | l I }
< L 4 - 77\ — — ~L 7‘\ — \/ ~ s _

637 62 56 , 56 40397 " 24237 §T.65~— __0
INITIALLY LOADED [T~ FRACTION | | | s| Exp
INTO FPF11 |]

\ /1] |

\ /

\ /7 ol
\ / F EXP |

FPF11 WORD 63 e2ler S
N woRKING AREA L || FRACTION l ZEROJ
OVERFLOW BIT

HIDDEN BIT— (EXP=0, BIT 62=1)

MR-4268

b. Double-Precision Format

Figure 3-3 Floating-Point Data Words in Memory

3-3

e

SIGN j EXPONENT FRACTION

7 NS Y

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Y

MEMORY o 1 0 0 0 01 1 0|0 0 0 0 0 0 0

NUMBER 32 REPRESENTED

IN SIGN AND MAGNITUDE

FORMAT (NUMBER ASSUMED

SIGN NORMALIZED)

FPF11 | o 1]o0|olo]lo|l1|1]o0 o|1|/ofolo|o|o]|o]o ADDITIONAL I
OPERANDS 1

S 7 65 4 3|2 1 0 63 62 61 60 59 58 57 56 55 210

EXPONENT f FRACTION

HIDDEN

EXPONENT = 206 — 200 = 6 = 2° BIT FRACTION = 1/2 (INSERTION OF HIDDEN BIT)

FLOATING POINT NUMBER =2° X 1/2=32

SIGN _i EXPONENT FRACTION
— N

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEMORY 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0

NUMBER 7/16 REPRESENTED

IN SIGN AND MAGNITUDE

FORMAT (NUMBER ASSUMED

SIGN o ! ‘ ‘ NORMALIZED)

0 HERIEEEEEEERERE

————) ——

1

e
l

FPF11 ol1]1]1]lo]lolo]lo]o AgF'?E';fNNS‘SL

7 6|5 4 3|2 1 0 63 62 61 60 59 58 57 56 55 == =
_ J u J

——

EXPONENT FRACTION

HIDDEN

EXPONENT= 177— 200 = - 1= 2" BIT FRACTION = 1/2+ 1/4+ 1/8= 7/8 (INSERTION OF HIDDEN BIT)

FLOATING POINT NUMBER =2" X 7/8=7/16

MR-4276

Figure 3-4 Interpretation of Floating-Point Numbers

|
8

1 £

1. A fraction, with its associated sign bit, hidden bit, and overflow bit.

2. An exponent.

3.3.i.1 Fioating-Point Fraction — The fraction is expressed in sign and magnitude notation. The fol-

lowing simple example illustrates the idea behind this method of notation.

Integer 2’s Complement

Notation Notation Sign and Magnitude Notation

000010

i OoRuto sign bit \ magnitude

100010

~ HIHO sign bit \magnitude

Only a change of sign bit is required to change the sign of a number in sign and magnitude notation.

Note that a positive number is the same in both notations.

Unnormalized floating-point fractions have a range of approximately 0 through 2, as shown in Figure 3-

5. The FPF11, however, normalizes all unnormalized fractions. That is, the fractions are adjusted so

that there is a 0 to the left of the binary point (bit 63) and a | to the right of the binary noint (bit 62),dian ~aAis Vo a J iiiv

Thus, normalized fractions range in magnitude from 0.1000 to 0.1111 (1/2 to approximately 1).

63 62 61 60 | . 3 2 1 0

)]

SMALLEST

NONZERONUMBER | 0, © 0 0 o| o 0 | 1 |APPROXIMATELY0

{ {

} !

63 62 61 60 ! 4 3 2 1 0

1 !

LARGEST
NONZERO NUMBER | 1o 1 1 1 1 1 1 | 1 | APPROXIMATELY2

. { {
1 |

MR-4277

Figure 3-5 Unnormalized Floating-Point Fraction

The fraction overflow bit (bit 63) is set during certain arithmetic operations. For example, during addi-

tion certain sums will produce an overflow such as 0.1000... 4+ 0.100... , which yields 1.000... . This

result must be normalized, so the FPF11 right-shifts the fraction one place and increases the exponent

by one.

Bit 62 is called the hidden bit. Recall that since fractions are normalized by the FPF11, the bit immedi-

ately to the right of the binary point (bit 62) is always a 1. This bit is dropped when a fraction is sent to

memory and appended when a fraction is received from memory. This procedure allows one extra bit of

significance in floating-point fraction representation.

3-5

3.3.1.2 Floating-Point Exponent — The 8-bit floating-point exponent is expressed in excess 200 nota-

tion. Figure 3-6 illustrates the relationship between exponents in 2’s complement notation and expo-

nents in excess 200 notation. It shows the range of floating-point numbers that can be handled by the

FPF11. For simplicity, a fraction length of only three bits is shown.

2’s Complement Excess 200

(1‘77 Most positive exponent [377 Most positive exponent
b A

Positive Positive

Exponents) Exponents

v . Y .
| 0 Least positive exponent | 200 Least positive exponent

i 3;77 Least negative exponent [177 Least negative exponent
A A

Negative Negative

Exponents) Exponents

i v
| 200 Most negative exponent | O Most negative exponent

Figure 3-6 Floating-Point Exponent Notations

Note that an exponent in excess 200 notation is obtained by simply adding 200 to the exponent in 2’s

complement notation. Thus, 8-bit exponents in excess 200 notation range from 0 to 377 (—200 to

+177). A number with an exponent in excess of —200 is treated by the FPF11 as 0.

The number 0.1, is actually 0.1 X 29, and the exponent is represented as 10,000,000 because 200g
represents an exponent of zero.

3.4 FPF11 PROGRAM STATUS REGISTER

The FPF11 contains a resident program status register that contains the floating-point condition codes

(carry, overflow, zero, and negative) that can be copied into the central processing unit. In other words,

FN, FZ, FV, and FC can be copied into the CPU’s N, Z, V, and C condition codes, respectively. The

program status register also contains three mode bits and additional bits to enable various interrupt

conditions. Figure 3-7 shows the layout of the program status register. Each bit shown in the figure is

described in Table 3-1.

INTERRUPT ENABLES MODE BITS CCNDITION CODES
p A A v A N

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

NOT | NOT NOT
FER | FID usep | USED Fluv| FIU | FIV | FIC FD FL FT |usep FN FZ FV FC

MR.4278

Figure 3-7 FPF11 Status Register Format

1

J=U

Bit Name Function

15

14

13

12

11

i0

T !

FIUV

T
3

-

FIV

FIC

FD

FL

FT

FN, FZ,

FV, FC

This bit indicates an error condition of the FPF11.

Ptet R

disabled; normally clear. Primarily a maintenance feature.

Not used.

Not used.

Floating interrupt on undefined variable — When this bit is set and a —0 is obtain-

ed from memory, an interrupt occurs. If the bit is not set, —0 can be loaded and

stored; however, all arithmetic operations treat it as if it were a +0.

Floating interrupt on underflow — When this bit is set, an underfiow condition

causes a floating underflow interrupt. The result of the operation causing the in-

terrupt is correct except for the exponent, which is off by 400g. If this bit is not set

and underflow occurs, the result is set to O.

Floating interrupt on overflow — When this bit is set, floating overflow causes an

interrupt. The result of the operation causing the interrupt is correct except for

the exponent, which is off by 400g. If this bit is not set, the result of the operation

is the same; however, no interrupt occurs.

Floating interrupt on integer conversion error — When this bit is set and the store

convert floating-to-integer instruction causes FC to be set (indicating a conversion

error), an interrupt occurs. When a conversion occurs, the destination register is

cleared and the source register is untouched. When this bit is reset, the result of

the operation is the same; however, no interrupt occurs.

Double-precision mode bit — When set, this bit specifies double-precision format;

when reset, it specifies single-precision format.

Long precision integer mode bit — This bit is employed during conversion between

integer and floating-point format. If set, double-precision 2’s complement integer

format of 32 bits is specified; if reset, single-precision 2’s complement integer for-

mat of 16 bits is specified.

Truncate bit — When set, this bit causes the result of any floating-point operation

to be truncated rather than rounded.

These bits are the four floating-point condition codes, which can be loaded in the

CPU’s C, V, Z, and N condition codes, respectively. This is accomplished by the

copy floating condition codes (CFCC) instruction. To determine how each instruc-

tion affects the condition codes, refer to Chapter 4, Table 4-1.

3.5 PROCESSING OF FLOATING-POINT EXCEPTIONS

Location 244g is the interrupt vector used to handle all floating-point interrupts. A total of six possible

interrupt exceptions can occur; these are encoded in the FPF11 exception code (FEC) register. The

interrupt exception codes represent an offset into a dispatch table, which routes the program to the

correct error handling routine. (The dispatch table is a function of the software.) The FEC for each

exception is briefly described in Table 3-2.

In addition to the FEC register, the CPU contains a 16-bit floating exception address (FEA) register,

which stores the address of the last floating-point instruction that caused a floating-point exception.

Table 3-2 FPF11 Exception Codes

Exception

Code Definition

2 Floating op code error — The FPF11 causes an interrupt for an erroneous op code.

4 Floating divide by zero — Division by zero causes an interrupt if FID is not set.

6 Floating (or double) integer conversion error.

10 Floating overflow.

12 Floating underflow.

14 Floating undefined variable.

NOTE

The traps for exception codes 6, 10, 12, and 14 can

be enabled in the FPF11 program status register. All

traps are disabled if FID is set.

3-8

CHAPTER 4

FLOATING-POINT INSTRUCTIONS

4.1 FLOATING-POINT ACCUMULATORS

The FPF11 contains six accumulators (ACO-ACS). These accumulators are 64-bit read /write scratch-
. . . Tos

pad memaories u/}fh nandagctruntivae roadouf Eanl—\ arrtirnlatae o~ madleo
LIVO Vwilll 1IUIIIUd LI uUVLIYL IO L.

1t armentach accumulator is inter pr eted as beiflg cither 32 or 64

bits long, depending upon the instruction and the FPF11 status (refer to Chapter 3). If an accumulator
is interpreted as being 64 bits long, 64 bits of data occupy the entire accumulator. If an accumulator is
interpreted as being 32 bits long, 32 bits of data occupy only the leftmost 32 bits of an accumulator, as

shown in Figure 4-1. The remaining bits are irrelevant.

64-BIT ACCUMULATOR

A

" 32.8IT ACCUMULATOR N
Id Y

_

0

1

2
ACCUMULATORS (

4

5

MSB LSB

MR-.4279

Figure 4-1 Floating-Point Accumulators

The floating-point accumulators are used in numeric calculations and interaccumulator data transfers.
Accumulators ACO-AC3 are used for all data transfers between the FPF11 and the CPU or memory.

4.2 INSTRUCTION FORMATS

An FPF11 instruction must be in one of five formats. These formats are summarized in Figure 4-2. The
2-bit AC field (bits 6 and 7) allows selection of scratch-pad accumulators ACO-AC3 only.

If address mode 0 is specified with formats F1 or F2, bits <2:0> are used to select a floating-point
accumulator. Only accumulators AC5-ACO can be specified in mode 0. If AC6 or AC7 is specified in
bits <2:0> in mode 0, the FPF11 traps when floating-point interrupts are enabled (FID = 0). The
FEC will indicate an illegal op code error (exception code 2). Table 4-1 lists the formats of the FPF11
instructions.

4-1

F1

F2

F3

F4

F5

15 12 1 08 07 06 05 00

T 1 | 1 1 T T T T

0C=17g FOC AC FSRC/FDST

L i 1 | | I | 1 .

15 12 11 06 05 00
T [T T T T T T T T

0C =17g FOC FDST

i I I H | i }

15 12 1 08 G7 06 05 00
T T T T T T T T T

OC=17g FOC AC SRC/DST

1 |] |] 1 L 1 1

15 12 11 09 08 06 05 00

i 1 i T T T T T T T

0OC=17g FOC SRC/DST

| 1 1 i 1 L L 1 H .

15 12 IR 00
¥ i { 1 1] T T T T

ocC = 17g FOC

1] !]] i L L I l i 1])

MR-4269

Figure 4-2 FPF11 Instruction Formats

The fields of the various instruction formats listed in Table 4-1 are interpreted as follows.

Mnemonic Description

OC

FOC

SRC

DST

FSRC

FDST

AC

Operation code — All floating-point instructions are designated by a 4-bit op code of 17g.

Floating operation code — The number of bits in this field varies with the format; the code

is used to specify the actual floating-point operation.

Source — A 6-bit source field identical to that in PDP-11/23-11/24 instructions.

Destination — A 6-bit destination field identical to that in PDP-11/23-11/24 instructions.

Floating source — A 6-bit field used only in format F1. This field is identical to SRC

except in mode 0, when it references a floating-point accumulator rather than a CPU

general-purpose register.

Floating destination — A 6-bit field used in formats F1 and F2. This field is identical to

DST except in mode 0, when it references a floating-point accumulator instead of 2 CPU

generai-purpose register.

Accumulator — A 2-bit field used in formats F1 and F3 to specify FPF11 scratch-pad

accumulators ACO-AC3.

Table 4-1 Format of FPFi1 Instructions

Instruction

Format Instruction Mnemonics

F2 ABSOLUTE ABSF FDST

ABSD FDST

Fl1 ADD ADDF FSRC, AC

ADDD FSRC, AC

F2 CLEAR CLRF FDST

CLRD FDST

F1 COMPARE CMPF FSRC, AC

CMPD FSRC, AC

F5 COPY FLOATING CONDITION CODES CFCC

Fl DIVIDE DIVF FSRC, AC

DIVD FSRC, AC

F1 LOAD LDF FSRC, AC

LDD FSRC, AC

F1 LOAD CONVERT LDCFD FSRC, AC

FDCDF FSRC, AC

F3 LOAD CONVERT INTEGER-TO-FLOATING LDCIF SRC, AC

LDCID SRC, AC

LDCLF SRC, AC

LDCLD SRC, AC

F3 LOAD EXPONENT LDEXP SRC, AC

F4 LOAD FPF11’'S PROGRAM STATUS LDFPS SRC

Fli MODULO MODF FSRC, AC

MODD FSRC, AC

F1 MULTIPLY MULF FSRC, AC

MULD FSRC, AC

F2 NEGATE NEGF FDST

NEGD FDST

F5 SET DOUBLE MODE SETD

F5 SET FLOATING MODE SETF

F5 SET INTEGER MODE SETI

F5 SET LONG-INTEGER MODE SETL

4-3

Table 4-1 Format of FPF11 Instructions (Cont)

Instruction

Format Instruction Mnemonics

Fl STORE STF AC, FDST
STD AC, FDST

F1 STORE CONVERT STCFD AC, FDST
STCDF AC, FDST

F3 STORE CONVERT STCFI AC, DST
-~ FLOATING-TO-INTEGER STCFL AC, DST

STCDI AC, DST

STCDL AC, DST

F3 STORE EXPONENT STEXP AC, DST

F4 STORE FPF11’S PROGRAM STATUS STFPS DST

F4 STORE FPF11°’S STATUS STST DST

Fl SUBTRACT SUBF FSRC, AC
SUBD FSRC, AC

F2 TEST TSTF FDST
TSTD FDST

4.3 INSTRUCTION SET

Table 4-2 contains the instruction set of the FPF11. Since some of the symbology may not be familiar, a

brief explanation if it follows. The information in Table 4-2 is expressed in symbolic notation to provide

you with a quick reference to the function of each instruction. The paragraphs following the table sup-

plement its information.

I. A floating-point flip-flop, designated FD, determines whether single- or double-precision

floating-point format is specified. If the flip-flop is cleared, single-precision is specified and

designated by F. If the flip-flop is set, double-precision is specified and designated by D. Ex-

amples are NEGF, NEGD, and SUBD.

NOTE

Only the assembler or compiler differentiates be-

tween NEGF and NEGD or LDCID and LDCLD in-

structions. The floating-point does not differentiate

between the instructions but depends upon the value

of FD and FL as usually controlled by SETD,

SETF, SETC, and SETI instructions (that is,

LDCID — SETI — SETD — LDCLD).

!\
) An integer flip-flop, designated FL, determines whether short-integer or long-integer format

is specified. If the flip-flop is cleared, short-integer format is specified and designated by 1. If

the flip-flop is set, long-integer format is specified and designated by L. Examples are SETI

and SETL.

Several convert instructions use the symbology defined below.

Cirp — Convert long-integer to double-precision floating.

Cpp.iL — Convert double-precision floating to long-integer.

C Ar
-F.D Of 1g or double-floating to single-floating.
D,F—

UPLIM is defined as the largest possible number that can be represented in floating-point

format. This number has an exponent of 377 (in excess 200 notation) and a fraction of all 1s.

Note that the UPLIM depends on the format specified. LOLIM is defined as the smallest

possible number that is not equal to 0. This number has an exponent of 001 and a fraction of

all Os, besides the hidden bit.

The following conventions are used when referring to address locations.

(XXXX) the contents of the location specified by xxxx

ABS (address) absolute value of (address)

EXP (address) exponent of (address) in excess 200 notation

Some of the octal codes listed are in the form of mathematical expressions. These octal codes

can be calculated as shown in the following examples.

Example 1: LDFPS Instruction

Mode 3, register 7 specified (F4 instruction format).

170100 4+ SRC

SRC field is equal to 37.

Basic op code is 170100.

SRC and basic op code are added to yield 170137,

Example 2: LDF Instruction

AC2, mode 2, register 6 specified (F1 instruction format).

172400 + AC * 100 + FSRC

AC =2

2 *100 = 200

172400 + 200 = 172600

FSRC is equal to 26.

172600 + 26 + 172626

AC v 1 means that the accumulator field (bits 6 and 7 in formats F1 and F3) is logically

ORed with O1.

Example:

Accumulator field = bits 6 and 7 = AC2 = 105, AC v 1 = 11.

4-5

Table 4-2 FPF11 Instruction Set

Mnemonics Instruction Description Octal Code

ABSF FDST

ABSD FDST

ADDF FSRC, AC

ADDD FSRC, AC

CLRF FDST

CLRD FDST

CMPF FSRC, AC

CMPD FSRC, AC

CFCC

DIVF FSRC, AC

DIVD FSRC, AC

Absolute

FDST « minus (FDST) if FDST < 0; other-
wise FDST « (FDST)

FC «0

FV <0

FZ « 1 if exp (FDST) = 0; otherwise FZ « 0
FN <0

Floating Add

AC « (AC) + (FSRC) if[AC| + (FSRQ)

< LOLIM; otherwise AC « 0

FC«0

FV «1if| AC|> UPLIM,; otherwise FV «0
FZ « if (AC) = 0; otherwise FZ « 0

FN « 1 if (AC) < 0; otherwise FN « 0

Clear

FDST « 0

FC <0

FV <0

FZ « 1

FN <0

Floating Compare

FC«<~0

FV <0

FZ « 1 if (FSRC) - (AC) = 0; otherwise

FZ «0

FN « 1 if (FSRC) - (AC) < 0; otherwise

FN «0

Copy Floating Condition Codes

C «FC

V«FV

Z ~ FZ

N « FN

Floating Divide

AC « (AC)/(FSRC) if | (AC)/(FSRC)|
2 LOLIM; otherwise AC « 0

FC«~0

FV< 1if|AC|> UPLIM; otherwise FV « 0
FZ « 1 if EXP (AC) = 0; otherwise FZ « 0
FN « 1 if (AC) < 0; otherwise FN 0

1706004+ FDST

F2 Format

172000+ AC*100+FSRC

F1 Format

170400+ FDST

F2 Format

173400+ AC*100+FSRC

F1 Format

170000

F5 Format

174400+ AC*100+FSRC

F1 Format

4-6

Table 4-2 FPF11 Instruction Set (Cont)

Mnemonics Instruction Description Octal Code

LDF FSRC, AC Floating Load 172400+AC*100+FSRC

or AC « (FSRC) F1 Format

LDD FSRC, AC FC«0

FV «0

FZ « 1 if (AC) = 0; otherwise FZ « 0

FN < 1 if (AC) < 0; otherwise FN « 0

LDCDF FSRC, AC Load Convert Double-to-Floating or 177400+AC*100+FSRC

LDCFD FSRC, AC Floating-to-Double F1 Format

LDCIF SRC, AC

LDCID SRC, AC

LDCLF SRC, AD

LDCLD SRC, AC

LDCIF = Single Integer

to Single Float

LDCID = Single Integer

to Double Float

LDCLF = Long Integer

to Single Float

LDCLD = Long Integer

to Double Float

AC « Cgp or Cp,r (FSRC)

FC~0

FV < 1if|AC| > UPLIM; otherwise

FV <0 _

FZ ~ 1 if (AC) = 0; otherwise FZ « 0

FN « 1 if (AC) < 0; otherwise FN « 0

If the current format is single-precision float-

ing-point (FD = 0), the source is assumed to

be a double-precision number and is con-

verted to single-precision. If the floating-trun-

cate bit is set, the number is truncated;

otherwise, it is rounded. If the current format

is double-precision (FD = 1), the source is as-

sumed to be a single-precision number and

loaded left-justified in the AC. The lower half

of the AC is cleared.

Load and Convert from Integer to Floating

AC « CiLrp (SRC)

FC«0

FV <0

FZ « 1 if (AC) = 0; otherwise FZ « 0

FN « 1 if (AC) < 0; otherwise FN « 0

CiLFp specifies conversion from a 2’s com-

plement integer with precision I or L to a

floating-point number of precision F or D. If

integer flip-flop IL = 0, a 16-bit integer (I) is

double specified, and if IL = 1, a 32-bit in-

teger (L) is specified. If floating-point flip-flop

FD = 0, a 32-bit floating-point number (F) is

specified, and if FD = 1, a 64-bit floating-

point number (D) is specified. If a 32-bit in-

teger is specified and addressing mode O or

immediate mode is used, the 16 bits of the

source register are left justified, and the re-

maining 16 bits are zeroed before the con-

version.

F, D-single-precision to

double-precision float-

ing

D, F-double-precision to

single-precision float-

ing

177000+ AC*100+SRC

F3 Format

4-7

Table 4-2 FPF11 Instruction Set (Cont)

Mnemonics Instruction Description Octal Code

LDEXP SRC, AC

LDFPS SRC

MODF FSRC, AC

MODD FSRC, AC

MULF FSRC, AC

MULD FSRC, AC

NEGF FDST

NEGD FDST

Load Exponent

AC SIGN « (AC SIGN)

AC EXP « (SRC) + 200 only if ABS (SRC)

<177

AC FRACTION « (AC FRACTION)

FC«0

FV « 1 if (SRC) > 177; otherwise FV « 0

FZ « 1 if EXP (AC) = 0; otherwise FZ « 0

FN « 1 if (AC) < 0; otherwise FN « 0

Load FPF11’s Program Status Word

FPS « (SRC)

Floating Modulo

AC v 1 « integer part of (AC)*(FSRC)

AC « fractional part of (AC)*(FSRC)

- (AC v 1) if | (AC)*(FSRC)|
2 LOLIM or FIU = 1; otherwise AC « 0

FC «0

FV «1if| AC|> UPLIM; otherwise FV «0

FZ « 1 if (AC) = 0; otherwise FZ « 0

FN « 1 if (AC) < 0; otherwise FN « 0

The product of AC and FSRC is 48 bits in

single-precision floating-point format or 59

bits in double-precision floating-point format.

The integer part of the product

[(AC)*(FSRC)] is found and stored in AC v 1.

The fractional part is then obtained and

stored in AC. Note that multiplication by 10

can be done with zero error, allowing decimal

digits to be stripped off with no loss in preci-

sion.

Floating Multiply

AC «~ (AC)*(FSRC) if | (AC)*(FSRCO) |

2 LOLIM; otherwise AC « 0

FC ~0

FV «1if| AC|> UPLIM,; otherwise FV «0
FZ « 1 if (AC) = 0; otherwise FZ « 0

FN « 1 if (AC) < 0; otherwise FN « 0

Negate

FDST « minus (FDST) if EXP (FDST) # 0;

otherwise FDST « 0

FC«0

FV <0

FZ « 1 if if EXP (FDST) = 0; otherwise

FZ <0

FN « 1 if (FDST) < 0; otherwise FN « 0

176400+ AC*100+SRC

F3 Format

170100+SRC

F4 Format

1714004+AC*100+FSRC

F1 Format

171000+ AC*100+FSRC

F1 Format

170700+ FDST

F2 Format

$
a

1

o
2

ahla A LI1T Y Tawcdenzndd C b (44
auvic =4 Frril HISUULCLUH ODOCL LUl

Mnemonics Instruction Description Octal Code

SETD Set Floating Double Mode 170011

FD « 1 F5 Format

SETF Set Floating Mode 170001

FD <0 F5 Format

SETI Set Integer Mode 170002

FL «0 F5 Format

SETL Set Long-Integer Mode 170012

FL « 1 F5 Format

STF AC, FDST Floating Store 174000+ AC*100+FDST

STD AC, FDST FDST « (AC) F1 Format

FC « FC

FV « FV

FZ « FZ

FN « FN

STCFD AC, FDST Store Convert from Floating-to-Double or 176000+ AC*100+FDST

STCDF AC, FDST Double-to-Floating F1 Format

STCFI AC, DST

STCFL AC, DST

STCDI AC, DST

STCDL AC, DST

FDST « Cg p or Cp g (AC)

FC 0

FV «1if| AC|> UPLIM; otherwise FV « 0
FZ « 1 if (AC) = 0, otherwise FZ « 0

FN « 1 if (AC) < 0; otherwise FN « 0

The STCFD instruction is the opposite of the

LDCDF instruction; thus, if the current for-

mat is single-precision floating-point (FD =

0), the source is assumed to be a single-preci-

sion number and is converted to double-preci-

sion. If the floating truncate bit is set, the

number is truncated; otherwise, it is rounded.

If the current format is double-precision (FD

= 1), the source is assumed to be double-pre-

cision number and loaded left-justified in the

AC. The lower half of the AC is cleared.

Store Convert from Floating-to-Integer

Destination receives converted AC if the re-

sulting integer number can be represented in

16 bits (short integer) or 32 bits (long integer).

Otherwise, destination is zeroed and C-bit is

set.

F, D-single-precision to
. .

dnnh]n._.nrnrwa1 nn nn')f._.
VHUIVT I VWIDIVil livar

ing

D, F-double-precision to

single-precision float-

ing

175400+ AC*100+DST

F3 Format

4-9

Table 4-2 FPF11 Instruction Set (Cont)

Mnemonics Instruction Description Octal Code

STCFI = Single Float to

Single Integer

STCFL = Single Float to

Long Integer

STCDI = Double Float

to Single Integer

STCDL = Double Float

to Long Integer

STEXP AC, DST

STFPS DST

STST DST

SUBF FSRC, AC

SUBD FSRC, AC

TSTF FDST

TSTD FDST

FV <0

FZ « 1 if (DST) = 0; otherwise FZ « 0

FN « 1 if (DST) < 0; otherwise FN « 0

C<FC

V « FV

Z«~FZ

N « FN

When the conversion is to long integer (32

bits) and address mode 0 or immediate mode

is specified, only the most significant 16 bits

are stored in the destination register.

Store Exponent

DST «~ AC EXPONENT - 200g

FC«0

FV <0

FZ « 1 if (DST) = 0; otherwise FZ « 0

FN « 1 if (DST) < 0; otherwise FN « 0

C «FC

V «FV

Z~FZ

N « FN

Store FPF11’s Program Status Word

DST « (FPS)

Store FPF11’s Status

DST « (FEC)

DST + 2 « (FEA) if not mode 0 or not imme-

diate mode

Floating Subtract

AC « (AC) - (FSRC) if | (AC) - (FSRC)|

2 LOLIM; otherwise AC « 0

FC«0

FV « 1 if AC UPLIM; otherwise FV « 0

FZ « 1 if (AC) = 0; otherwise FZ « 0

FN « 1 if (AC) < 0; otherwise FN « 0

Test

Floating

FC <0

FV <0

FZ « 1 if EXP (FDST) = 0; otherwise FZ « 0

FN « 1 if (FDST) < 0; otherwise FN « 0

175000+ C*100+DST

F3 Format

170200+DST

F4 Format

170300+ DST

F4 Format

173000+AC#*100+FSRC

F1 Format

170500+ FDST

F2 Format

4.3.1 Arithmetic Instructions _

The arithmetic instructions (add, subtract, multiply, divide) require one operand in a source (a floating-

point accumulator in mode 0, a memory location otherwise) and one operand in a destination accumula-

tor. The instruction is executed by the FPF11 and the result is stored in the destination accumulator.

The compare instruction also requires one operand in a source and one operand in a destination accu-

mulator. However, the two operands remain in their respective locations after the instruction is exe-

cuted by the FPF11, and there is no transfer of the result.

4.3.2 Floating Modulo Instruction

The floating modulo (MOD) instruction causes the FPF11 to multiply two floating-point operands, sep-

arate the product into integer and fractional parts, and store one or both parts as floating-point num-

bers. The integer portion goes into an odd-numbered accumulator and the fraction goes into an even-

numbered accumulator.

The integer portion of the number, when expressed as a floating-point number, contains an exponent

greater than 201 in excess 200 notation. This means the integer has a decimal value of some number

greater than 1 and less than UPLIM, where UPLIM is the greatest possible number that can be repre-

sented by the FPF11.

The fractional portion of the number, when expressed as a floating-point number, contains an exponent

less than or equal to 201 in excess 200 notation. This means the fraction has a value less than | and

greater than LOLIM, where LOLIM is the smallest possible number that can be represented by the

FPF11.

4.3.3 Load Instruction

The load instruction causes the FPF11 (and the CPU, if not in mode 0) to take an operand from a

source and copy it into a destination accumulator. The source is a floating-point accumulator in mode 0,

a memory location otherwise.

4.3.4 Store Instruction

The store instruction causes the FPF11 (and the CPU, if not in mode 0) to take an operand from a

source accumulator and transfer it to a destination. The destination is a floating-point accumulator in

mode 0, a memory location otherwise.

4.3.5 Load Convert Double-to-Floating, Floating-to-Double Instructions

The load convert double-to-floating (LDCDF) instruction causes the FPF11 to assume that the source

specifies a double-precision floating-point number. The FPF11 then converts that number to single-pre-

cision, and places this result in the destination accumulator. If the floating truncate (FT) status bit is

set, the number is truncated. If the FT bit is not set, the number is rounded by adding a 1 to the single-

precision segment. The MSB of the double-precision segment is a 1 depending on the prior conditions

set up the the FD bit (see Figure 4-3). If the MSB of the double-precision segment is 0, the single-

precision word remains unchanged after rounding.

63 62 L 48 47 o 33 32 31 30 16 15 " o

S 1

SINGLE-PYRECISION DOUBLE-PRECISION
SEGMENT SEGMENT

MR-4280

Figure 4-3 Double-to-Single-Precision Rounding

F
P
S

t

—
—

[
S
—

The load convert floating-to-double (LDCFD) instruction causes the FPF11 to assume that the source

specifies a single-precmon number The FPF11 then converts that number to double-precision by ap-

Note that for both load convert instructions, the number to be converted is originally in the source (a

floating-point accumulator in mode 0, a memory location otherwise) and is transferred to the destina-

tion accumuiator after conversion.

4.3.6 Store Convert Double-to-Floating, Floating-to-Double Instructions

The store convert double-to-floating (STCDF) instruction causes the FPF11 to convert a double-preci-

sion number located in the source accumulator into a single-precision number. The FPF11 then trans-

fers this result to the specified destination. If the floating truncate bit (FT) is set, the floating-point

number is truncated; if the FT bit is not set, the number is rounded. If the MSB (bit 31) of the double-

precision segment of the word is a 1, a 1 is added to the single-precision segment of the word. This

depends on the prior conditions set up by the FD bit (see Figure 4-3); otherwise, the single-precision

segment remains unchanged.

The store convert floating-to-double (STCFD) instruction causes the FPF11 to convert a single-preci-

sion number located in the source accumulator into a double-precision number. The FPF11 then trans-

fers this result to the specified destination. The single-to-double precision is obtained by appending the

number of Os equivalent to the double-precision segment of the word (see Figure 4-4).

63 62 (e 48 47 (o 32 31 ((16 15 {(00

LR] LR I LI B T LIS B B

S ALL Os ALL Os

L {1 | L (1] {4 i L (1
3} 1})i BER

\ A J

Y Y

SINGLE-PRECISION DOUBLE-PRECISION

SEGMENT SEGMENT

MR 4270

Figure 4-4 Single-to-Double-Precision Appending

Note that for both store convert instructions, the number to be converted is originally in the source

accumulator and is transferred to the destination (a floating-point accumulator in mode 0, a memory

location otherwise) after conversion.

4.3.7 Clear Instruction

The clear instruction causes the FPF11 (in mode 0) to clear a floating-point number by setting all bits

to 0.

4.3.8 Test Instruction

The test instruction causes the FPFI1 (in mode 0) to test the sign and exponent of a floating-point

number and update the FPF11 status accordingly. The number tested is obtained from the destination

(a floating-point accumulator in mode 0, a memory location otherwise). The FC and FV bits are

cleared; the FN bit is set only if the destination is negative. The FZ bit is set only if the exponent ofthe

destination is 0. If the FIUV status bit is set, a trap occurs (after the test instruction is executed) when

a —O0 is encountered.

4.3.9 Absolute Instruction

The absolute instruction causes the FPF11 (in mode 0) to take the absolute value of a floating-point

number by forcing its sign bit to 0. If mode O is specified, the sign of the number in the floating-point

destination accumulator is forced to 0. The exponent of the number is tested, and if it is 0, Os are writ-

ten into the accumulator. If the exponent is not 0, the accumulator is unaffected.

4-12

If mode O is not specified, the sign bit of the specified data word in memory is zeroed. This word is then

transferred from memory to a floating-point accumulator. The exponent of this word is tested, and if it

is 0, the entire data word is zeroed and transferred back to memory. If the exponent is not 0, the origi-
nal fraction and exponent are restored to memory.

Absolute and negate instructions are the only instructions that can read and write a memory location.

4.3.10 Negate Instruction

The negate instruction causes the FPF11 (in mode 0) to complement the sign of an operand. If mode 0
is specified, the sign of the number in the floating-point destination accumulator is complemented. The

exponent of the number is tested, and if it is 0, Os are written into the accumulator. If the exponent is

not 0, the accumulator is unaffected.

If mode 0 is not specified, the sign bit of the specified data word in memory is complemented. This

word is then transferred from memory to a floating-point accumulator. The exponent of this word is

tested, and if it is O, the entire data word is zeroed and transferred back to memory. If the exponent is

not 0, the original fraction and exponent are restored to memory.

4.3.11 Load Exponent Instruction

The load exponent instruction causes the FPF11 to load an exponent from the source (a floating-point

accumulator in mode 0, a memory location otherwise) into the exponent field of the destination accu-

mulator. In order to do this the 16-bit, 2’s complement exponent from the source must be converted (by

the FPF11) to an 8-bit number in excess 200 notation. This process is further described below.

Assume that the 16-bit, 2°’s complement exponent is coming from memory. The possible legal range of

16-bit numbers in memory is 000000g to 177777g. On the other hand, there are two possible legal

ranges of exponents in the FPF11.

1. Positive exponents (0g—177g) — When 200g is added to any of these numbers, the sum stays

within the legal 8-bit exponent range (that is, from 200g to 377g).

2. Negative exponents (177601g—1777773) — When 200g is added to any of these numbers, the

sum stays within the legal 8-bit exponent range (that is, from 1g to 177g).

Any number from memory outside these ranges is illegal and will result in either an overflow or an

underflow trap condition.

Notice that all legal positive exponents coming from memory have something in common: their nine

high-order bits are Os. Similarly, all legal negative exponents from memory have their nine high-order

bits equal to 1. Therefore, to detect a legal exponent, only the nine high-order bits need be examined for

all 1s or all Os.

Example 1: LDEXP 000034

0 3 4

Exponent of 34 00000000 00011100

200 + 10000000

| 10011100

2 3 4

Each of the nine high-order bits is 0, so this is a legal positive exponent. The number 234 is sent to

the 8-bit exponent field of the specified accumulator.

Example 2: LDEXP 201

) 0 1

Exponent of 201 00000000 10000001
200 + 0 10000000

1 00000001

overflow

This is an illegal positive exponent. Notice that an overflow occurs when 200 is added to the

exponent.

Example 3: LDEXP 100200

2 0 0

Exponent of 100200 10000000 10000000
200 + 10000000

1 00000000

underflow

This is an illegal negative exponent. Notice that when 200 is added to the exponent, a result is

produced that is more negative than can be expressed by the 8-bit exponent field. Thus, an under-

flow occurs.

Example 4: Special Case — Exponent of 0: LDEXP 177600

Exponent of 177600

11111111 10000000

+ 0 10000000

00000000 | 00000000

This is the one case where the nine high-order bits are all equal, but the exponent is illegal. This is

so because 177600 represents an exponent of 0. This exponent causes an underflow condition to

exist; that is, it is treated as an illegal negative exponent.

4.3.12 Load Convert Integer-to-Floating Instruction

The load convert integer instruction takes a 2’s complement integer from memory and converts it to a

floating-point number in sign and magnitude format. If short-integer mode is specified, the number

from memory is 16 bits and is converted to a 24-bit fraction (single-precision) or a 56-bit fraction

(double-precision), depending on whether floating- or double-precision mode is specified. If long-integer

mode is specified, the number from memory is 32 bits and is converted to a single- or double-precision

number, depending on whether floating- or double-precision mode is specified. The integer is loaded

into bits <<55:40> if short-integer mode is specified or into bits <<55:24> if long-integer mode is speci-

fied. It is then left-shifted eight places so that bit 55 is transferred to bit 63 (see Figure 4-5).

The integer is then assigned an exponent of 217g in short-integer mode. This is the result of adding 200g
to 17g (since the exponent is expressed in excess 200 notation), which represents 15;¢ shifts. This num-

ber of shifts is the maximum number required to normalize a number. If long-integer mode is specified,
the integer is assigned an exponent of 237g, which represents 311¢ shifts.

4-14

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40

0fo0lojojojofojojr|1j1]1|1jojof1|1}1]1]1]lo]|o0|0]1

MR-4271

Figure 4-5 Shifting an Integer Left Eight Places

The FPF11 tests the 2’s complement integer by examining if bit 63 is a positive or negative number. If
it is positive, the number is normalized by left-shifting until bit 63 becomes a 1. If bit 63 is 1 (negative
number), the integer is negative, the sign bit is set, the number is 2’s complemented, and then normal-
ized.

To normalize a number, bit 63 (MSB) of the fraction must be equal to 0 and bit 62 must be made equal
to 1. To do this, the integer is shifted the required number of places to the left and the exponent value is
decreased by the number of places shifted (see Figure 4-6).

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40

0.]0jofjojojolofo|o|o|loflojo]ojo]1|ofjof{o]lololo 0|C

il |
MR.4272

Figure 4-6 Example of a Normalized Integer

EXP = 2lg Shift integer 15 places to the left to normalize it.
—17g8 Bit 59 = 0, bit 58= 1.

200g Decrease the exponent by 15;¢, which equals 17g.

Loading a long integer with an FED = 0 and more than 24 significant digits causes the less significant
digits to be truncated (with some loss of accuracy).

4.3.13 Store Exponent Instruction

The store exponent (STEXP) instruction causes the CPU to access a floating-point number in the
FPFI1, extract the 8-bit exponent field from this number, and subtract a constant of 200 (since the
exponent is expressed in excess 200 notation). The exponent is then stored in the destination as a 16-bit,
2’s complement, right-justified number with the sign of the exponent (bit 07) extended through the
eight high-order bits.

The legal range of exponents is 0 to 377g, expressed in excess 200 notation. This means that the number
stored ranges from —200 to 177 after the constant of 200 has been subtracted. The subtraction of 200
is accomplished by taking the 2’s complement of 200 and adding it to the exponent field.

F
A
N

n

Two examples that illustrate the process follow. One uses an exponent greater than 200, the other an

exponent less than 200.

Example 1: Exponent = 207 (See Figure 4-7.)

Exponent of 207 10000111

2’s complement of 200 +10000000

Result = 7¢ 00000111

/sign bit 7

EXPONENT (8 BITS)
— A

- N\

15 14 13 12 11 10 09 08 07 06 00
T T T T T]

FLOATING-POINT : o | o o | o : : : N

NUMBER IN FPF11 S , 1 F?ACT'OI . 1

SIGN EXTENSION

EXPONENT 5 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

TRANSFERRED
TO MEMORY o | o o] o ol o | o o | o ol olofo 1 1 1

(OR ACCUMULATOR)

Example 2: Exponent = 42

Exponent of 42

2’s complement of 200

Result = -42

\ BIT 7 ISEXTENDED TO
THE 8 HIGH-ORDER BITS.

MR.4281

(See Figure 4-8.)

00100010

+10000000

10100010

4 2sign bit

EXPONENT (8 BITS}

p A \

15 14 13 12 11 10 09 08 07 06 00
1 3 A T T T

FLOATING-POINT

NUMBER IN FPF11 S 0 0 L 0 0 0 1 0 | | FIRACTICIN\J | 1

SIGN EXTENSION

EXPONENT 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

TRANSFERRED

TO MEMORY 1 1 1 1 1 1 1 - 1 1 0 1 0 0 o] 1 0

(OR ACCUMULATOR) [~ AN
BIT 7 ISEXTENDED TO

THE 8 HIGH-ORDER BITS.

MR 4282

Figure 4-8 Store Exponent (Example 2)

4-16

4.3.14 Store Convert Floating-to-Integer Instruction

The store convert floating-to-integer instruction causes the CPU to take a floating-point number and
convert it into an integer for transfer to a destination. The four classes of this instruction are as follows.

1. STCFI - Convert a single-precision, 24-bit fraction to a 16-bit integer (short-integer mode).

2. STCFL - Convert a single-precision, 24-bit fraction to a 32-bit integer (long-integer mode).

3. STCDI - Convert a double-precision, 56-bit fraction to a 16-bit integer (short-integer mode).

4. STCDL - Convert a double-precision, 56-bit fraction to a 32-bit integer (long-integer mode).

The (normalized) floating-point number to be converted is transferred to the floating-point processor

(FPP). The FPP works with the sign bit and either of the following.

1. The 15 MSBs of the fraction for floating-to-integer and double-to-floating conversion.

2. The 31 MSBs of the fraction for double-to-long conversion.

3. The entire fraction for floating-to-long conversion.

The FPP subtracts 201 from the exponent to determine if the floating-point number is a fraction. If the

result of the subtraction is negative, the exponent is less than 201, and the absolute value of the float-

ing-point number is less than 1. When converted to an integer, the value of this number is 0; a con-

version error occurs, the FZ bit is set, and Os are sent to the destination. If the result of the subtraction

is positive (or 0), the exponent is greater than (or equal to) 201, and the floating-point number can be

converted to a nonzero integer (see Figure 4-9).

BEFOREl + ' sl olo|lololololo]ololojo]o|o]o
SHIFTING

AFTER

smrrinel o lolololololojololojofolo]1|ol]o

13 PLACES
R

! ;
MSB

MR-4283

Figure 4-9 Example of a Store Convert Integer

The FPP makes a second test to determine if the floating-point number to be converted is within the

range of numbers that can be represented by a 16-bit integer (1 format) or 32-bit integer (L format).

Consider the range of integers that can be represented in I and L formats and their floating-point equiv-

alents. Refer to Table 4-3.

iy

Table 4-3 1 and 1. Formats and Their Floating-Point Equivalents

I Format Floating-point L Format Floating-point
(16 bits) Equivalent (32 bits) Equivalent

Most Positive 077777 +.1111... x 213 17777777777 | +.1111... x 231
Integer

Least Positive 000001 +.100... x 2! 00000000001 | 4.100... x 2!
Integer

Least Negative 177777 —. 1111 x 216 | 37777777777 | —.1111... X 232
Integer

Most Negative 100000 —.1000... X 216 | 20000000000 | —.100... x 232
Integer

NOTE: MSB of integer = sign of integer.

Thus, the exponent of a positive floating-point number to be converted must be less than 169 (220 in

excess 200 notation) to convert to I format, or 32, (240 in excess 200 notation) to convert to L format.

The exponent of a negative number to be converted must be less than or equal to 16 or 329 to convert

to I or L format, respectively.

The FPP tests whether the floating-point number to be converted is within the range of integers that

can be represented in I or L format by subtracting a constant of 20g (for short integers) or 40g (for long

integers) from the result of the first test. (Result of first test = biased exponent — 2013 — unbiased

exponent — 1.} If the result of the subtraction is positive or 0, the floating-point number is too large to

be represented as an integer; a conversion error occurs and Os are sent to the destination. If the result of

the subtraction is a negative number other than — 1, the floating-point number can be represented as an

integer without causing an overflow condition. If the result of the subtraction is — 1, the exponent of the

floating-point number is either 220 (for short integers) or 240 (for long integers), and conversion pro-

ceeds. However, the floating-point number is within range only if it is negative and its fraction is .100...

(that 1s, if it is the most negative integer; see Table 4-3 above). If, in this case, the number is not the

most negative integer, it will be detected by a third conversion error test after conversion (see below).

To convert the fraction to an integer, the FPP shifts it right a number of places as specified by the

following algorithms.

Short integer:

Number of right shifts = 20g 4+ 201g — biased exponent — 1

Long integer:

Number of right shifts = 40g + 201g — biased exponent — 1

Regardless of the condition of the FT bit, the fractional part of the number is always truncated during

this shifting process.

If the floating-point number is positive, the integer conversion is complete after shifting, and the num-

ber is transferred to the appropriate destination. However, if the floating-point number is negative, the

number must be 2’s complemented before it is sent to its destination.

4-18

After conversion, the FPP performs a third test for a conversion error by comparing the MSB of the

(converted) integer with the sign bit of the original (unconverted) number. If the signs are not the same,

a conversion error has occurred and the FPP traps if the FIC bit is set. This test is performed to detect a

floating-point number with an exponent of 220 (for short integer) or 240 (for long integer) that has not

been converted to the most negative integer.

Example 1: Store Convert Floating-to-Integer (STCFI)

Exponent = 203

Sign=10

Fraction (24 bits) = .100000000000000000000000

15 MSBs of fraction = .100000000000000

203 (excess 200) = 2

Fraction=1/2 Integer to be stored = 1/2 X 2 =4

1. Test 1: Is the number to be converted a fraction?

Exponent: 2033

-201

No 2 Since this result is positive, the given floating-point
number is not a fraction and conversion may pro-

ceed without error.

2. Test 2: Is the floating-point number to be converted within range? (We are working with a

positive short integer.)

Result of Test 1: 2

=20

Yes -16 Indicates that the number to be converted is within
range and can be represented as a 16-bit integer.

No conversion error occurs.

How many right shifts? Use algorithm:

20g + 201g- 203g- 1 = 205 - 33 = 153 = 13y

= 13 right shifts

This example involves a positive number, so conversion is complete after 13 right shifts. If

the number had been negative, the integer would have been 2’s complemented.

3. Test 3: The MSB of the converted integer and the sign bit of the original floating-point

number are compared. Since they are equal, no conversion error occurs.

I \
O

Exponent = 240g

Sign=10

31 MSBs of fraction = .1000000000000000000000000000000

Test i: Is the number to be converted a fraction?

Exponent: 240g

-201

No 373 Since this result is positive, the given floating-point

number is not a fraction, and conversion may pro-

ceed (i.e., no conversion error occurs).

Test 2: Is the floating-point number to be converted within range? (We are working with a
positive iong integer.)

Resuit of Test i: 37

-40

-1 We know the number is out of range by examining

the sign bit (in fact, this number is one greater than

the most positive integer that can be represented).

However, the FPP does not know this yet, and con-

version proceeds without error at this point.

How many right shifts? Use algorithm:

40g + 201g-2403-1 =10

= No right shifts

Converted 32-bit integer = 20000000000

Since the number is positive, conversion is now complete (i.e., no need for 2’s com-
plementing).

Test 3: The most significant bit of the converted integer (which is 1) and the sign bit of the

original floating-point number (which is 0) are compared. Since they are not equal, a con-
version error occurs, which we predicted in Step 2.

4.3.15 Load FPF11’s Program Status (LDFPS) Instruction

The load FPF11’s program status (LDFPS) instruction causes the FPP to transfer 16 bits from the
location specified by the source to the floating-point status (FPS) register. These 16 bits contain status
information the FPF11 uses to enable and disable interrupts, set and clear mode bits, and set condition
codes. (See Paragraph 3.4.)

4.3.16 Store FPF11’s Program Status (STFPS) Instruction

The store FPF11’s program status (STFPS) instruction causes the FPP to transfer the 16 bits of the

FPS register to the specified destination.

4.3.17 Store FPF11’s Status (STST) Instruction

The store FPF11°s status (STST) instruction causes the FPP to read the contents of the floating excep-
tion code (FEC) and floating exception address (FEA) registers when a floating-point exception (error)

occCurs.

4-20

If mode 0 addressing is enabled, only the FEC is sent to the destination accumulator. If mode 0 ad-

dressing is not enabled, the FEC is stored in memory, followed by the FEA. In memory, the FEC data

occupies all 16 bits of its memory location, while the FEA data occupies only the lower 4 bits of its

location.

When an error occurs and the interrupt trap in the CPU is enabled, the CPU traps to interrupt vector

244¢. The user should issue the STST instruction to determine the type of error that has occurred.

NOTE

The STST instruction should be used only after an

error has occurred, since in all other cases the in-

struction contains either irrelevant data or the con-

ditions that occurred after the last error.

4.3.18 Copy Floating Condition Codes (CFCC) Instruction

The copy floating condition codes (CFCC) instruction causes the CPU to copy the four floating condi-

tion codes (FC, FZ, FV, FN) into the CPU condition codes (C, Z, V, N).

4.3.19 Set Floating Mode (SETF) Instruction

The set floating mode (SETF) instruction causes the FPP to clear the FD bit (bit 07 of the FPS regis-

ter) and indicate single-precision operation.

4.3.20 Set Double Mode (SETD) Instruction

The set double mode (SETD) instruction causes the FPP to set the FD bit (bit 07 of the FPS register)

and indicate double-precision operation.

4.3.21 Set Integer Mode (SETI) Instruction

The set integer mode (SETI) instruction causes the FPP to clear the IL bit (bit 06 of the FPS) and

indicate that short-integer mode (16 bits) is specified.

4.3.22 Set Long-Integer Mode (SETL) Instruction

The set long-integer mode (SETL) instruction causes the FPP to set the IL bit (bit 06 of the FPS) and

indicate that long-integer mode (32 bits) is specified.

4.4 FPF11 PROGRAMMING EXAMPLES

What follows are two programming examples that use the FPF11 instruction set. In Example 1, A is

added to B, D is subtracted from C, the quantity (A + B) is multiplied by (C — D), the product of this

multiplication is divided by X, and the result is stored. Example 2 calculates DX3? + CX?2 + BX + A,

which involves a 3-pass loop.

Example 1: [(A + B) *(C — D)] * X

SET F

LDF A,ACO :.LOAD ACO FROM A

ADDF B,ACO :ACO HAS (A + B)

LDF C,ACI :.LOAD AC1 FROM C

SUBF D,ACI :ACI HAS (C — D)

MULF ACI1,ACO :ACO HAS (A + D) * (C — D)

DIVF X,ACO :ACO HAS (A + D) * (C — D)/X

STF ACO.Y .STORE (A + D) *(C — D)/XINY

4-21

J
>
® (
) i

=
N

)

loop 3

ACO=[DX2+CX +B]*X + A

ACO=DX3+CX2+BX+ A

LOOP;

SETF

MOV #3,%0

MOV #D+4,%1

LDF (6)+,ACl

CLRF ACO

ADDF -(4),ACO

MULF AC1,ACO

SOB %0,LOOP

ADDF —(4),ACO

STF ACO.~(6)

4-22

;SET UP LOOP COUNTER

;SET UP POINTER TO COEFFICIENTS

;POP X FROM STACK

;CLEAR OUT ACO

;ADD NEXT COEFFICIENT

;TOPARTIAL RESULT

;:MULTIPLY PARTIAL RESULT BY X

;DO LOOP 3 TIMES

;ADD X TO GET RESULT

:PUSH RESULT ON STACK

CHAPTER 35

FUNCTIONAL DESCRIPTION

5.1 GENERAL

The functions of the FPF11 floating-point processor are presented in this chapter. First examined, in an

overview, is the passing of controls at the interface between the CPU and FPF11. Later a discussion on

the control and data functions within the FPF11 provides a basic understanding of how the FPF11

works.

5.2 OVERVIEW

The CPU contains two internal buses, the microinstruction bus (MIB) and the data/address lines

(DALs) as illustrated in Figure 5-1. The MIB <15:00> is the control bus, which is used to carry the

16-bit CPU microinstructions. The DAL <<15:00> is the data bus, which is used to carry data, ad-

dresses and PDP-11 instructions. The FPF11 is connected to these buses by a ribbon cable.

MAIN MEMORY

(SYSTEM BUS ?

<r MIB j>
TCPU CLK

CPU RESET H FPF11
CSEL L

<'r DAL >

MR-4286

11 /A MMYIT T| P TN e
Figure 5-1 FPF11/CPU lInterface

Tha (D] avarntee PNP_11 ~nade hy anc 1PRB AR NO UAU\.«uL\/O 1 171 711 VUUW U Iwi n r) frr\ nnnnt} LULER lllvlllUl_y

It accomphshes this by executing CPU micro-

instructions. While the CPUis thus mvolved the FPFII monitors the CPU microinstruction flow at its

MIB interface (see Paragraph 5.3.2). When the FPF11 decodes the microinstructions to be an instruc-

tion fetch (IFETCH), it knows the next piece of information on the DAL is a PDP-11 instruction and it

inputs this instruction into its floating-point instruction register (FPIR) in parallel with the CPU. The

CPU uses the next two microcycles to examine the instruction. During this interval, the FPF11 sets up

to process the instruction in case it turns out to be in the floating-point class (contains an op code of

17XXXX).

At the end of the two microcycles, the CPU microinstruction on the MIB tells the FPF11 whether or

not it is in the floating-point class. If it is not, the FPF11 goes back to monitoring the CPU and awaits

the next IFETCH. If it is a floating-point instruction, the CPU passes control to the FPF11, which then

becomes the microinstruction source on the MIB. At this point the FPF11 has control over the CPU.

The FPF11 issues CPU microinstructions to move operands between main memory and the FPF11 as

dictated by the PDP-11 floating-point instruction in the FPIR. The operands are passed on the DAL

data bus.

During those times when no CPU actions are required, the CPU receives a no operation (NOP) micro-

instruction. This occurs while the FPF11 operates on floating-point data. The FPF11 may run at its own

clock rate while the CPU receives NOPs at the CPU’s clock rate. Resynchronization occurs prior to the

returning of control to the CPU, that is, upon successful completion of a PDP-11 floating-point instruc-

tion. Control is passed back to the CPU by entering the CPU’s SERVICE routine. This causes the

FPF11 to return to its monitoring of CPU microinstructions.

If the completion of a floating-point instruction is unsuccessful, control is passed back to the CPU by

entering the CPU’s TRAP HANDLER microroutine. The trap vector associated with floating-point

processor errors (244g) is sent to the CPU on the MIB. The FPF11 then returns to monitoring CPU

microinstructions. The CPU handles the trap as directed by the interrupt service routine at 244g. The

FPF11 stores the error code and address associated with the failing PDP-11 floating-point instruction in

its floating error code (FEC) and floating error address (FEA) registers, respectively. Software may use

this information to recover from the error.

5.3 FPF11 CONTROL AND DATA FLOW DESCRIPTION

Figure 5-2 is a functional diagram of the FPF11. Similar to the CPU, the FPF11 has both a control path

and a data path. The control store outputs form the control path. (The control word is 104 bits wide.)

Data, addresses, and PDP-11 floating-point instructions are passed on the TBus <15:00>, which is the

FPF11 internal bus.

Control functions are performed by the sequencer, the control store, the MIB interface, and the inter-

face control and clock logic. Data handling functions are performed by the DAL interface, TBus re-

sources, and the microprocessor data path.

5.3.1 Microcontroller: Sequencer and Control Store

The sequencer and the control store together form the FPF11 microcontroller, shown in Figure 5-3. The

microcontroller directs all FPF11 activity by conditionally sequencing through the microcode in the

control store.

The sequencer makes the decisions that control microprogram execution. It consists of branch and IR

decode programmable logic arrays (PLAs) and the microprogram counter (MPC) logic. Information

received from the TBus resources, MIB interface, microprocessor data path, interface control and clock

5-2

TO/FROM

CPU
<

MICROCONTROLLER|

(" FPP I I
MIB<15:00> CLK CONTROL

MIB > STOREINTERFACE I MICROPROG 104, |
CONTROLS !

2 3 *mpc<o08:00> 9, l 9 I
7

’ DECODED 2,
MIB INTERFACEl {"MiCROINSTRUCTION I
CONTROL 4 44

13, MPC<08:00> 7

RESET H > I l
SECTOR CLKS 4/

TCPU CLK _JINTERFACE CONTROL 7

AND JAM MPC ZERO H I 29, |
cseL L |cLock LogGic i 7 1

FPP CLK > SEQUENCER

| 10, DATA PATH BUT CONDITIONS
' 7/

2} TBUS RESOURCE

DAL INTERFACE 46 VPATA

CONTROL Epp A

CLK 16,

7

TBUS RESOURCES

FPIR<07:06>,<02:00> 5,
7

DAL<15:00>

DAL

INTERFACETCPU CLK
—

MICROPROCESSOR

DATA PATH

AN

TBUS<15:00><

Figure 5-2 FPFI11 Floating-Point Processor, Functional Block Diagram

MR-4293

v
-
S

TT T T T T T T T T SEQUENCER]SEQUENCER

INSTRUCTION REGISTER, FD/FL REGISTER,

FLOATING-POINT STATUS REGISTER, THE

STATUS FLAGS REGISTER AND COUNTER.

IMICRO» I
FROM CONTROL STORE Zgfififié“fs 2/ 6, BRANCH

| AND NAB<07:00>> 8, | TO SEQUENCER
TBUS RESOURCE 24, | IRDECODE 7 MICROPROGRAM TO TBUS RESOURCES

FROM TBUS RESOURCES #» plas MPC<08:00> 19,| CONTROL|CONTROLS 104/, TO MICROPROCESSOR

I SEE | 77 STORE (CONTROL 7" DATA PATH
NOTE 2 WORD) TO INTERFACE CONTROL

I 14 I AND CLOCK LOGIC
wa
/>

CSNA<08:00> 9, MPC o I
l LOGIC Jé

FROM MIB INTERFACE L TO MIB INTERFACE

FROM MICROPROCESSOR | | BUT CONDITIONS SEE NOTE 1 14, I
DATA PATH 7

FROM TBUS RESOURCES

| JAM MPC ZERO H I
NOTES:

FROM INTERFACE } 1. BUT CONDITIONS ARE COMPOSED OF
CONTROL AND I DECODED MICROINSTRUCTIONS, DATA
CLOCK LOGIC PATH BUT CONDITIONS, AND OUTPUTS

FROM THE FD/FL REGISTER AND

I COUNTER IN THE TBUS RESOURCES.
2. TBUS RESOURCE DATA IS COMPOSED CF

I OUTPUTS FROM THE FLOATING-POINT

-

|

|

|
e — e ————_— e —— - — —

MR-4287

Figure 5-3 Microcontroller (Sequencer and Control Store), Functional Block Diagram

logic, and bits of the previous control word cause the sequencer to output microaddresses on MPC

<08:00>. These microaddresses are sent to the control store to select microinstructions for FPF11

control and to the MIB interface to select CPU microinstructions.

The sequencer uses four types of data:

e Control store next address (CSNA), from the control store. This address gives the sequencer

its base microaddress for the next microword.

e Branch micro test (BUT) conditions, from the microprocessor data path (see Paragraph

5.3.6), counter (see Paragraph 5.3.5.6), FD/FL register (see Paragraph 5.3.5.2), and MIB

interface (see Paragraph 5.3.2). These signals allow the sequencer to modify the CSNA, this

giving the microcontroller its ability to make decisions based on these BUT conditions. The

BUT conditions are individually controlled by the BUT field of the control word so that vari-

ous combinations of conditions can be tested.

e Next address bits (NABs), from the branch and IR decode PLAs. These bits are similar to

the BUT conditions except that the branch and IR decode PLAs are used to test for classes

of conditions; for example, op code type. Further, they provide more flexibility in modifying

the microaddress to the control store.

e JAM MPC ZERO, from the interface control and clock logic. This signal resets the micro-

code to the CPU monitoring sequence in the event of a CPU RESET or a failure to detect

the presence of a PDP-11 floating-point instruction decode.

The control store logic is made up of 13 512 X 8-bit ROMs, which make up the control word (see

Figure 5-4 and Table 5-1). In addition, two more ROMs are used to hold the CPU microinstruction.

Thus, the microcontroller directs the execution of the current PDP-11 floating-point instruction.

5.3.2 MIB Interface

The FPF11 uses the MIB interface to either monitor or control the CPU, as shown in Figure 5-5.

5.3.2.1 Receiving Logic (from the CPU) - While the CPU is executing PDP-11 instructions, this logic

monitors the MIB, waiting to decode the CPU microinstruction associated with IFETCH. This decoded

microinstruction is sent to the sequencer. This logic also decodes the CPU microinstruction, which in-

dicates the start of a PDP-11 floating-point instruction.

5.3.2.2 Transmitting Logic (to the CPU) — While the FPFI11 is executing PDP-11 floating-point in-

structions, the microinstruction ROMs located here are addressed by MPC <08:00> from the sequen-

cer. This causes the microinstruction ROMs to output CPU microinstructions on the MIB <15:00>

and makes the CPU available to the FPF11 for use in accessing main memory.

The direction of information flow out of the MIB interface is controlled by the microcontroller (see

Figure 5-3) and timed by the interface control and clock logic (see Figure 5-6).

5.3.3 Interface Controi and Clock Logic

The interface control and clock logic is responsible for maintaining proper timing between the FPF11

and the CPU, for both data (DAL) and control (MIB). (See Figure 5-6.) This logic provides the CPU

with the signal that allows the FPF11 to be the CPU microinstruction source on the CSEL line (MIB),

and also receives the RESET line from the CPU. In addition, internal FPF11 processing is timed here.

5-5

9
-
¢

119| 118 l 117 |116l115 I114 l 113 ‘112 111 l 110I109 I108 |107 |106 |105 104
CPU CONTROL

XMIB XMIB XMIB XMIB STORE
15 8 7 0

CPUCTL FIELD

(ROM E NO ROM 13 ROM 12 ROM 11
ASSERTEDPOLARITY |—1 Vv JO 1 {1111 vfr 111101 1lo]lololoiololololo

MICRO BIT NO. 103[102 {1011100 (99 | 98 | 97 | 96] 95 [94 |93 |92 |91 {90 {89 |88 87|85 |85|84]|83 8218180

FPF11 CONTROL STORE < 2| % [& |con CON CON HOT HOT |[DALD | FPS1 FPIR | CNTR|CON CNT FPS1
= ROM ROM ROM RATE | RATE ROM= =4

BIT NAME § i =13 CON CON NC HOT FPS2 FDFL FLAGS DAL FPS2
sv| o | g ROM ROM =HOT RATE

FIELD NAME “1a 3 2 1 o0 2 1 0

e CONROM CLK N TDST -l () ’L
FIELD FIELD FIELD

ROM 10 ROM 9 ROM 8 ROM 7 ROM 6

0jojojojojojofojrjtrflojojojof—ftofjr|lvprvfvlalalalapafalaiapafalriatalalalT T717Tq

791787717675 |74 73|72 |71 |70 {69 68|67)66 6564|6362 |61[{60|59]|58|57|56|55]54)563]|52|51|50]|a0]a8a7a6]a5]|aal43]|a2|a1]ao0

B7 B6 BS5 B4 B3 B2 B1 BO |CIN|JLSH R L] F | R EX l EX I EX | EX EX | FR l FR ’ FR ! FR l FR |B B A A
0 {SNG SH ROT INSRT ROT| DST DST ALU SRC SRC| DST DST ALU SRC SRC{ADRS | ADRS|ADRS | ADRS

DBL L 0 1-0 EX EX EX EX FR FR FR FR B A
SH SEL DST ALU ALU SRC DST ALU ALU SRC ADRS ADRS

TSRC 2 1 0]l2 1 0 2 1 o2 v o2 1 0 2 1 ol2 1 ol2 1 o

EX FR - B A————‘, f———SHIFT LINKAGE————mla——EX _glg EXCTL———— la— - FRCTL——————lg— —le— ——FIELD S G DST DST ADRS ADRS

ROM 5 ROM 4 ROM 3 ROM 2 ROM 1

v vy vt gttt oo vl la bl ol la AT AT

39 1381371363534)33 |32(31)30{29]28|27 {2626 |24|23}22{21j20 19181716165 [1afl3]12]11|1w0je]|s]7[e6lslalala]i1]o
| B l A SECT SECT BR2 BRO I BR1 ILDPC Q| TO T1 FAST| >foN FD Z | o [N63 l T6 EZ T6 EN |NA8 NA7 NA6 NA5 NA4 NA3 NA2 NA1 NAO

SEL SEL ENA oH cout| E{s-40 2
B SECT SECT BR3 BR1 BR2 CLR IO =z I CNTRO
SEL SEL ENA FPS [=

=

1 o}l1 0|3 2 1 o0 -
le-B »le-A qn—-SECTOR—-—.n—-————BUM——chUTs’ [—BUT2 —» le—— BUT 1— le—————BUTO o NEXT ADRSFIELD—————
PORT PORT FIELD

BUT

FIELD

NOTE:

(ON TBUS BUT CONDITIONS)

TO=Y8

T1=Y9

T5 = Y61

T6 = Y62

Figure 5-4 FPFI11 Control Word

MR-4289

Table 5-1 Control Word Bit Descriptions

Bits Field Description

00:08 Next Address Provides the base address for the next control word.

09:14 BUTO Enables for branch micro test conditions.

15 Instruction Hold Controls the latching of MPC <08:00> into microinstruction

ROMs at the MIB interface.

16:18 BUT1 Enables for branch micro test conditions.

19 Test JENTRY Controls the test for passing MIB mastership from the base CPU
to the FPF11.

20:22 BUT2 Enables for branch micro test conditions.

23 Hold CSEL Controls the assertion of FPF11 “CSEL” (chip select) to indicate
FPF11 MIB mastership.

24:31 BUT4 Enables for branch micro test conditions.

32:35 Sector Control Enables for the sector clocks.

36:37 A Port Enables for A-port addresses.

38:39 B Port Enables for B-port addresses.

40:42 A Address Selects address for the A port.

43:45 B Address Selects address for the B port.

46:51 Fraction Control Selects the data sourcé and logical function to be performed in
the ALU.

52:54 Fraction Destination Selects the ALU data destination.

55:60 Exponent Control Selects the data source and logical function to be performed in
the ALU.

61:63 Exponent Destination Selects the ALU data destination.

64:70 Shift Linkage Controls for the shift linkage logic.

71 Carry In Control for the carry logic.

72:84 TBus Source Controls for placing information on the TBus.

85:91 TBus Destination Controls for removing information from the TBus.

92:95 Clock Control Controls for the internal clock rate.

96:100 Constant ROM Control Selects the proper constants from the constant ROMs.

i01 Enable Counter Enables the counter to count.

102 B Bank Selects high or low bank of the B-port address at 2901s.

103 Maintenance/Kernel Spare for DIGITAL’s use. (Future microcode BUT condition.)

5-7

8
-
S

TRANSMITTING TO THE CPU

e—— — — R

P :00>FROM SEQUENCER l MPC<08:00 2y MICRO-| 7 MICROINSTRUCTION 16 ,

FROM INTERFACE MIB INTERFACE 2 1 INSTRUCTION 7
CONTROL AND ' % //_ ROMS MIB
CLOCK LOGIC | CONTROL DRIVERS MiB<15:00> TO CPU

1

| / |
-]

RECEIVING FROM THE CPU l

|

| MIB<15:00>) MICRO- I TO SEQUENCER
FROM CPU ”;"I’E%EIVERS MICROINSTRUCTION ‘6// INSTRUCTION | DECODED 3. TO INTERFACE

DECODE 7 TROL AND[Tepu oLk - DECOL MICROINSTRUCTION I CLOCK LoGIC

. e
MR-4284

Figure 5-5 MIB Interface, Functional Diagram

I INTERFACE CONTROL

| FPP CLK CSEL LFROM CLK LOGIC +— ; %! TOCRU
FROM MIB INTERFACE | .DECODED MICROINSTRUCTION UARRSY

FROM CONTROL STORE l MICROPROGRAM CONTROLS 2 ’ g\é)TNETRRFé:\LCE l
- | RESETH JAM MPC ZERO H 70 sEQuENCER

|TcPucik 1

FROM CPU < | I
DAL INTERFACE CONTROL 2,4 TODAL

DAL AND MIB 7] InTERFACE

- INTERFACE | mIB INTERFACE CONTROL 2FROM CONTROL sTORE |- M!CROPROGRAM CONTROLS 3/ | ConNTROL /l_l T[\(I)Thé'ILBF

FROM CLK LOGIC [_Fep oLk) ACE

I CLOCK LOGIC I
TO CONTROL STORETCPU CLK FPP CLK JFROM CPU F HOT CLOCK »] TO TBUS RESOURCES

- 1 MICROPROGRAM CONTROLS 4 LOGIC | TO INTERFACE CONTROL

I 7

FROM CONTROL STORE <4 l l
SECTOR
CLOCK SECTOR CLOCKS 4 sy TOMICROPROCESSOR

L MICROPROGRAM CONTROLS 4 LOGIC /7| DATAPATH
7

MR.4280

Figure 5-6 Interface Control and Clock Logic, Functional Diagram

5.3.3.1 Interface Control Logic - When decoded microinstructions from the MIB interface inform the

interface control logic that a floating-point instruction has been decoded by the CPU, the signal CSEL

L is sent to the CPU to inform it that the FPF11 is taking control. Controls or data entering or leaving

the FPF11 at the MIB interface or DAL interface are timed by signals from this logic. When the CPU

issues 2 RESET or when the test for a floating-point instruction decode from the CPU fails, the FPF11

microcode is reset to the CPU monitoring sequence. This is accomplished by the signal JAM MPC

ZERO H from this logic to the sequencer.

5.3.3.2 Clock Logic - Normally, the FPF11 runs at the speed of the CPU. However, during certain

arithmetic operations, the clock logic generates a faster clock (HOT clock) for timing FPF11 operations

while the MIB interface runs at the speed of the CPU. The clock is controlied by the microcontroller

and is used to run each FPF11 microcycle at its fastest possible rate.

The clock logic is also responsible for resynchronizing the FPF11 with the CPU prior to returning con-

trol to it. In addition, four clocks are generated in the sector clock logic. One of four sectors (sectors 0,

1.2, and 3 CLK L) are selected. A sector is a 16-bit slice of the microprocessor data path (see Para-

graph 5.3.6). Each sector clock causes data to be loaded into a random access memory (RAM), or a Q

register, in its respective sector.

5.3.4 DAL Interface

The DAL interface buffers the information received from the CPU’s DAL and transfers the informa-
tion from the TBus onto the DAL for use by the CPU or storage in main memory. (See Figure 5-7.)
Information received is in the form of operands and a PDP-11 floating-point instruction. Information
passed back to the CPU consists of processed operands and associated addresses and error codes. The
direction of information flow is controlled by the microcontroller and timed by the interface control and
clock logic.

———— —

RECEIVING FROM THE CPU I

|Tcpu cik I
|

FROM CPU

DAL<15:00> DAL TO TBUS RESOURCES

EIVERs | TBUS<15:00> TO MICROPROCESSOR

RECEIV DATA PATH

FROM INTERFACE |DAL INTERFACE

CONTROL AND CONTROL A
CLOCK LOGIC

————— — —— — —

I TRANSMITTING TO THE CPU I

FROM TBUS RESOURCES |L I
FROM MICROPROCESSOR ! TBUS<15:00>

DATA PATH I DAL _

I TRANSMITTERg| PAL<15:00> Tocry
’ Vv

FROM INTERFACE DAI\L]T'%ELRFACfi |
CONTROLAND 0 L,
CLOCK LOGIC | I

e e e o _—

MR-4285

Figure 5-7 DAL Interface, Functional Diagram

5.3.5 TBus Resources

The TBus resources supply the sequencer and the microprocessor data path with information necessary
for data and control processing. (See Figure 5-8.) The TBus resources are five registers, a counter and
pair of constant ROMs. TBus resource data is passed to/from the TBus under the direction of the mi-
crocontroller.

3.3.5.1 Floating-Point Instruction Register (FPIR) — The floating-point instruction register (12 bits)
receives the floating-point instruction from the CPU by way of the TBus and DAL interface. FPIR
<<11:00>, which contain op code, accumulator, source/destination, and floating source/floating desti-
nation information, are sent to the sequencer. The sequencer examines these bits at various times dic-
tated by the microcontroller during the execution of a PDP-11 floating-point instruction.

In addition, FPIR bits <02:00>, part of the source/destination field, and FPIR bits <07:06>, the
accumulator field, go to the address multiplexer in the microprocessor data path. These signals are used
to select the RAM scratch-pad registers in the microprocessor data path. Bits <15:12>, part of the op
code, of the floating-point instruction always contain 1s (op code = 17g) and therefore are not stored.

5-10

PN

TBUS<13:12> ARE READ-ONLY BITS AND RETURN

ZEROS WHEN FPS1 IS READ.

Figure 5-8 TBus Resources, Functional Diagram

w
n

]

—

J MICROPROGRAM CONTROLS TBUS RESOURCESI
FROM CONTROL 16 4 1 FPIR<11:00> 12, .

STORE / FPP CLK FPIROO | 4 i
FROM Cl FPIR ~

FROM CERSGC | [FPIRO] GR7

TBUS<11:00> > FPIR0Z |

I 1y FD H _I
y

o

l — FD/FL |
REGISTER

TBUS<08:07> J FLH j

2,

| T I
FPS1 FLOATING-POINT 7 -~

1 STATUS BITS 4
TBUS<15:04> (SEE NOTE)

2,

| . |
A -

=] . s FPS2

g (TBUS<03:00> l
w L]

:) *»
mF l 1, STATUS FLAGS 3, J

/
7 >4

STATUS

I FLAGS I
TBUS<02:00> REGISTER |

| c/ |
7/

»| CONSTANT

I ROMS

i TBUS<15:00> I

3/
7 CNTR BORROW L

>

I COUNTER |

¢ TBUS<15:08> J‘>

v NOTE:

FPIR<07:06> AND

<02:00> GO TO

MICROPROCESSOR

DATA PATH

L TO SEQUENCER

MR.4291

5.3.5.2 FD/FL Register - The FD/FL register (2 bits) designates whether the mode is single- or
double-precision floating-point format (FD), or single- or double-precision integer format (FL). FD/FL
bits are modified during the execution of certain floating-point instructions.

This register is used as a scratch area for the FD/FL bits so that the original copy, stored in FPS bits
<07:06>, will not be lost. The signals FD H and FL H are sent to the sequencer, which tests them in
order to control microprogram flow. These signals also go to the constant ROMs to enable the output of
the proper constants in single- or double-precision and short- and long-integer operations.

5.3.5.3 Floating-Point Status (FPS) Register — The floating-point status register consists of two seg-
ments, FPS1 and FPS2, which can receive or drive the TBus. Two segments are used so that FPS2 can
be changed without affecting FPS1. The microcontroller tests the bits in FPS1 in order to control mi-
croprogram flow. (The FPS format and bits are described in Chapter 3.)

Floating-point condition codes are loaded into the 4-bit FPS2. These codes reflect the condition of the
last arithmetic operation (that affected condition codes) performed in the microprocessor data path.

5.3.5.4 Status Flags Register - The microcode stores special microcode conditions as status bits in the
status flags register. The microcontroller uses these bits to control microprogram flow. They allow a
limited amount of microcode sharing to occur, similar to subroutining.

5.3.5.5 Constant ROMs - Two 256 X 8-bit constant ROMs contain fixed-value numbers required for
certain floating-point functions. The magnitude of some of the constants depends on whether the float-
ing-point numbers are single- or double-precision and short- or long-integer. This is why, as discussed
earlier, FD/FL signals are used as ROM-gating signals. The ROMs are addressed by the micro-
controller.

As an example, the constants include such items as the number 200g, which must be added to or sub-
tracted from the exponent during arithmetic operations. (Exponents are stored in excess 200 notation.)
The constants are output to the TBus for use in the microprocessor data path.

3.3.5.6 Counter - Data is loaded into the counter from the TBus. The counter is used as a loop counter
for microcode iterations, such as the multiply microroutine. The sequencer uses the output CNTR
BORROW L to control microprogram flow. The counter outputs are also available on the TBus for use
in the microprocessor data path.

5.3.6 Microprocessor Data Path Logic

It is in the microprocessor data path that the floating-point arithmetic operations and data manipu-
lations take place. This logic consists of 16 AM2901 bipolar microprocessors and support circuitry. The
support circuitry consists of fast carry logic, shift linkage logic, and address multiplexers for the
scratch-pad registers. (See Figure 5-9.)

Operands are moved to and from an AM2901 bipolar microprocessor in 16-bit words by way of the
TBus. The microcontroller controls the location of the operands to their designated places in a scratch-
pad register. Once the operands are loaded, they are manipulated by the microcontroller to arrive at
resulting operands. The resulting operands are stored in the scratch-pad register until they are moved
out onto the TBus.

5.3.6.1 Address Multiplexers — It is the function of the address multiplexers (see Figure 5-9) to supply
the A- and B-port addresses to a RAM. The addresses are selected from data input from the FPIR and
A-address/B-address fields of the control word, and controlled by the A-port/B-port fields of the con-
trol word.

5-12

MICROPROCESSOR DATA PATH

MICROPROGRAM

FROM CONTROL STORE | CONTROLS 10/ AMUX<03:097 4, I
FPIR<07:06>; ADDRESS BMUX<03:00> 4%
<02:00> 5 , | MULTIPLEXERS / BUT CONDITIONS 10, | <

FROM TBUS RESOURCES |- ve 71
DATA PATH

£ ROM CONTROL STORE | MicroPROGRAM CONTROLS 26 ,

l
/

FROM INTERFACE . SECTOR CLOCKS
<7,

CONTROL AND

CLOCK LOGIC AM2901
MICROPROGRA

FROM CONTROL STORE g ICROPROGRAM 7 / SHIFT BIPOLAR
r G | SHIFT LINKAGES 8 / MICROPROCESSORSCONTROLS /

LOGIC SHIFT LINKAGES 3 7/

| 7 (FIGURE 5-10) I
| 10
SEQUENCER

l FAST C OUT I

| microPrOGRAM 1
FROM CONTROL STORE I 7

CONTROLS
FAST

CARRY

LOGIC 4

l FAST C OUT
P

CARRY BITS 32 4

L * 7P I G AN G S —— R

TBUS<15:00> v
 o
L

MA-4288

Figure 5-9 Microprocessor Data Path, Functional Diagram

5.3.6.2 Shift Linkage Logic — The shift linkage logic (see Figure 5-9) provides the data path for shift

or rotate operations. It allows special shift operations, as well as the basic shift and rotate functions for

the RAM, and the shift function for the Q register. (The Q register has no rotate function.) The RAM

shift functions include provision for rotating an entire 64-bit input word for initial setup and for in-

serting 1s and Os into the bit stream as required during a rotate or shift operation. A shift function

performed on the Q register also causes a corresponding shift in the RAM. The RAM may be shifted

by itself but the Q register may not. In addition, the shift linkage logic puts the carry bit (FAST C

OUT) in its proper place.

5.3.6.3 Fast Carry Logic — The fast carry logic (see Figure 5-9) provides the FPF11 the ability to do

two levels of carry look-ahead for maximum performance in addition and subtraction. This allows the

FPF11 to function with full 64-bit look-ahead carry generation.

5.3.6.4 AM2901 Bipolar Microprocessor — Operands are moved into the AM2901 bipolar micro-

processor from the TBus and stored in the RAM register file. (See Figure 5-10. Also, see Figure 5-11

for the RAM register file layout.) The RAM register file is the scratch-pad area where the results of

arithmetic and logical operations are temporarily stored. As directed by the microcode, data loaded into

the RAM (see Figure 5-10) may be shifted left or right, or remain unshifted. The dual-port RAM (A-

port, B-port) consists of 16 64-bit words (each of the 16 AM?2901s contains a 16 X 4-bit RAM).

Six of the 64-bit registers are aliocated for the accumulators and are accessible to the programmer by

way of the FPF11 instruction register. Registers 6 and 7 are unused, while registers 10—17 are set aside

for special functions. (Registers 10-17 are accessed only by the microcontroller, with registers 10-14

constituting a working storage area for the FPF11 microcode.) Other sections of the RAM register file

contain a temporary copy of the floating-point status register (FPS TEMP) and the condition codes
(FCCR). In addition, data containing the floating error address (FEA, FEA TEMP), floating error
code (FEC), and special working registers (FWR16, FWR17) are implemented in locations 15, 16, and
17. The contents of the RAM are either read into the arithmetic logic unit (ALU) or passed directly to
the TBus under microprogram control.

The ALU is the data path component that performs the arithmetic/ logical operation under command
of the microcode. ALU output data may be routed to the Q register or RAM, or may be multiplexed
with the RAM output. The ALU function control fields in the microword (EX CTL, FR CTL - refer to
Table 5-1) determine the data source and arithmetic or logical function to be performed. The ALU
destination field (EX DST, FR DST - refer to Table 5-1) determines which of the indicated registers is
to receive the data or if the data is to be output on the TBus.

The Q register is used during multiply and divide operations to store multiplier or product operators. Its
contents may be shifted left or right, or remain unshifted. The register may route data to the ALU or
recelve input from it.

AM2901 BIPOLAR MICROPROCESSOE'

I 1
I ?QTT Q SHIFT I

| = ! lRAM

REGISTER Q REG

I FILE |

| | I—1 v 4

I MUX e !

| ! |
I ALU

I |

TBUS<15:00>

MR-4292

Figure 5-10 AM2901 Bipolar Microprocessor

5-14

WORKING REGISTER

17 FWR 17 // FEA FPS TEMP

16 FWR 16 § FEA TEMP FCCR

15 FEC

14 ZEROES EFsRCo E14

13 ZEROES EaC o F13

12 FSRC (WORKING) s E

11 AC (WORKING) s| E

10€ FSRC (UNROTATED,AS FROM MEMORY) s[

7 77
; 5
5[E AC5 (UNROTATED,AS FROM MEMORY)

e AC4 s| E

3]e AC3 s|

20 e AC2 s| E

1lE AC1 s| €

ole ACO s| E

2901 CLOCK
SECT ECT 2 SECT 1 ECT 32901 €10 s SECT O SEC

86 B5 B4 B3 B2 B1 BO B7

TBUS [~ T

15 1 15BIT POSITIONS 0 0115 0 CORRESPONDING

63 56|55 40| 39 24|23 8|7 ol SLICE
POSITION (Y NO)

REGISTER F-REG E-REG

DEFINITIONS
X-REG

MR 4274

Figure 5-11 RAM Register File Layout

i
1

w
h

CHAPTER 6

INSPECTION AND INSTALLATION

6.1 GENERAL

This chapter contains information needed to inspect and install an FPF11 floating-point processor op-

tion used in a system containing a PDP-11/23 or other compatible central processing unit.

6.2 INSPECTION

The FPF11 option consists of one quad module (M8188) and a ribbon cable. Remove the module from

its shipping carton and inspect it for loose components or cracks in the etch. Inspect the cable for loose

connections. '

NOTE

Return damaged goods to Digital Equipment Corpo-

ration, Material Repair Center (MRC), 36 Cabot

Road, Woburn, MA, 01801.

6.3 INSTALLATION PROCEDURE

The following is a general installation procedure for adding an FPFI11 to a PDP-11/23 or other com-

patible system. The FPF11 is installed in the backplane slot as illustrated in Figures 6-1 and 6-2. It

connects to the CPU by a cable that plugs into the floating-point chip socket on the CPU. Refer to the

Microcomputer Processor Handbook (EB-15836-18/80) for special requirements.

1. Before installing the FPF11, run system diagnostics to verify that the system receiving the

option is working properly.

2. Turn the power off and reconfigure the system. Refer to Figures 6-1 and 6-2.

WARNING

To prevent damage to components, use the special

handling procedures for MOS devices when per-

forming the following steps.

3. If present, remove the floating-point processor chip from the CPU module. Refer to Figure 6-

2 for its location.

4. To ensure proper bus grant continuity, configure the jumpers as indicated in Table 6-1. Refer

to Figure 6-3 for the locations of the jumpers on the FPF11.

Insert the Berg connector on the ribbon cable into J1 of the FPFI1 medule.

N

A

p
o
v
—

ju
?

w
2
e je
v]

=
+

- o Z 0o o
o

o
0

) o =) = -
,

= S < ja
v]

'e
)

ja
v]

o
o
- n
,
o =

_
—

N o o k-
fl

P
t

o

r
Q o
t
- o A —

a) PDP-11/23 system — slot 2 (adjacent to CPU)

b) PDP-11/24 system — slot 7

¢} MINC and DECLAB-11/MNC - slot 2 (adjacent to CPU)

7. Fold the ribbon cable as shown in Figure 6-2 for the above systems. (For instaliation in sys-

tems other than the above, refer to the documentation supplied with those systems.)

8. Insert the 40-pin DIP plug of the ribbon cable into the floating-point socket on the CPU.

Note the position of pin 1 in Figure 6-2.

NOTE

Check for possible power supply overload before re-

storing power. The FPF11 module draws 4 A to 6 A.

9. Turn the power on and run the FPF11 diagnostics to verify proper operation. Refer to Chap-

ter 7, Maintenance, for diagnostic information.

10. Run DEC-X11 to verify the entire system (including the FPF11) is operating properly.

SLOTA | SLOTB | SLOTC | SLOTD

ROW 1 CPU

ROW 2 FPF11 V8188

ROW 3 OPTION 3 OPTION 4

ROW 4 OPTION 6 OPTION 5

VIEW IS FROM MODULE SIDE OGF CONNECTORS

a. PDP-11/23 System

SLOTA | SLOTB ! SLOTC | SLOTD

1 cPU

2 MEMORY OR MAP MODULE

3 MEMORY

4 MEMORY

5 MEMORY

6 MEMORY

7 FPF11 « M8188

* INSERT FPF11 MODULE NEXT TO

THE LAST MEMORY MODULE

b. PDP-11/24 System

33 3128252219 161310 7 6 5 4 3 N -

M
8
0
1
2

M
8
1
8
8

C
P
U

B
D
V
1
1
A
A

F
P
F
1
1

c. MINC and DECLAB-11/MNC Systems

MR.-6525

Figure 6-1 FPF11 Module in Various Configurations

6-2

RED STRIPE

MR-6527

a. PDP-11/23 System

RED STRIPE

PIN 1 OF E4

CPU MODULE

MR.-6526

b. PDP-11/24 System

e Lavout
1

|

o
0

NO

o—oW10 SPARE

o——oW9 P J1
CLOCK JUMPER ALWAYS INSTALLED

o——oW6

MAINTENANCE ONLY — JUMPER ALWAYS INSTALLED

W12 w8

W11 w7 Wh W4 W3 o—o0.
o—0 0——o0 0———00——0 o—o

m] iR
MR-6528

Figure 6-3 FPFI11 Jumper Locations

Table 6-1 FPF11 Jumper Configurations

W1 W2 W3 W4 W5 W6 W7 W8 W9 WI0 W11 WIi2

Unibus R R 1 R R 1 I 1 I R I I

QBus I I R 1 | I R R I 1 R R

NOTE: R = Jumper removed, I = Jumper installed.

CHAPTER 7

MAINTENANCE

7.1 FFP11 DIAGNOSTICS

Two diagnostics are available to validate and diagnose the FPF11 option. The CPU tests should be run

prior to running floating-point diagnostics if there is any doubt about the CPU. Successful running of

CPU tests does not rule out the possibility that a failure may cause only floating-point instructions to

fail. The two FPF11 diagnostics are listed below. These diagnostics must be run in the order listed be-

cause each test requires that the one preceding it was faultless. Otherwise, you may not identify cor-

rectly a failed microstep and the location of its cause.

7.1.1 MAINDEC CJFPAA (FPF11, No. 1)

This diagnostic tests the following floating-point instructions.

LDFPS

STFPS

CFCC

SETF, SETD, SETI. and SETL

STST

LDF and LDD (all source modes)

STD (mode 0 and 1)

ADDF, ADDD, and SUBD (most conditions)

CMPD and CMPF

DIVD and DIVF

MULD and MULF

MODD and MODF

7.1.2 MAINDEC CJFPBA (FPF11, No. 2)

This diagnostic tests the following floating-point instructions.

STF and STD (all modes)

STCFD and STCDF

CLRD and CLRF

NEGF and NEGD

ABSF and ABSD

TSTF and TSTD

NEGF, ABSF, and TSTF (all source modes)

LDFBS (all source modes)

LDCIF, LDCLF, LDCID, and LDCLD

LDEXP

TFPS (all destination modes)

STCFL, STCFI, STCDL, and STCDI

STEXP

STST

7-1

FPF11 Floating-Point Processor Reader’s Comment
Technical Manual

EK-FPF11-TM-001

Your comments and suggestions will help us in our continuous effort to improve the quality and usefulness of o

publications.

What is your general reaction to this manual? In your judgment is it complete, accurate, well organized, we

written, etc.? Is it easy to use?

What features are most useful?

What faults or errors have you found in the manual?

Does this manual satisfy the need you think it was intended to satisfy?

Does it satisfy your needs? Why?

O Please send me the current copy of the Technical Documentation Catalog, which contains information «

the remainder of DIGITAL'’s technical documentation.

Name Street

Title City

Company State/Country

Department Zip

Additional copies of this document are available from:

Digital Equipment Corporation

444 Whitney Street

Northboro, MA 01532

Attention: Printing and Circulating Service (NR2/M15)

Customer Services Section

Do Not Tear — Fold Here and Staple

Eflgfluan | " " l No Postage
Necessary

if Mailed in the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD, MA.

POSTAGE WILL BE PAID BY ADDRESSEE

Digital Equipment Corporation

Educational Services Development and Publishing

200 Forest Street (MR1-2/T17)

Marlboro, MA 01752

Digital Equipment Corporation-BedfordMA 01730

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	6-01
	6-02
	6-03
	6-04
	7-01
	replyA
	replyB
	xBack

