
FP11-A

floating-point processor

user’'s guide

dlifgliltiall

EK-FP11A-UG-001

FP11-A

floating-point processor

user’'s guide

digital equipment corporation « maynard, massachusetts

Ist Edition, May 1978

Copyright © 1978 by Digital Equipment Corporation

The material in this manual is for informational

purposes and is subject to change without notice.

Digital Equipment Corporation assumes no respon-

sibility for any errors which may appear in this

manual.

Printed in U.S.A.

This document was set on DIGITAL’s DECset-8000

computerized typesetting system.

The following are trademarks of Digital Equipment

Corporation, Maynard, Massachusetts:

DEC DECtape PDP

DECCOMM DECUS RSTS

DECsystem-10 DIGITAL TYPESET-8

DECSYSTEM-20 MASSBUS TYPESET-11

UNIBUS

5/82-14

CHAPTER 1

1.1

1.2

1.2.1

1.2.2

1.3

1.4

1.5

CHAPTER 2

2.1

2.2

2.2.1

2.2.2

2.3

2.3.1

2.3.2

CHAPTER 3

3.1

3.2

3.3

3.4

3.5

3.6

CHAPTER 4

4.1

4.2

4.3

4.3.1

4.3.1.1

4.3.1.2

4.4

4.5

CONTENTS

Page

INTRODUCTION

GENERA L...ote et e e e e et e et e et e e e e aanans 1-1

FE AT U RES L.te e e e e aa e 1-1

Floating-Point Instruction Set Features...........cc.cccoevvvieiiiiiiiiniiine, 1-1

FPILI-A FeatUrIescoviiiiiiiiiiii e e e e e ea e 1-2

ARCHITECTURE... .oe et e e e e e ees 1-2

PHYSICAL DESCRIPTION ..oe 1-2

RELATED DOCUMENTATION ...t 1-3

INSTALLATION AND CHECKOUT

SCOPE ..o et 2-1

FP11-A FLOATING-POINT PROCESSOR INSTALLATIONc..oeeiinnn. 2-1

FP11-A Add-On Installation Procedure.............ccocoviiiiiiiiiiiiiiineeee, 2-1

137N B A - 7). PSRN 2-4

FPII-AU UPGRADEKIT ... 2-7

FP11-AU Power Components Installation.................ccooeiiiiiiniiiiii e, 2-7

FP11-AU Logic Installationccooiiiiiiiiiii e, 2-9

REVIEW OF FLOATING-POINT NUMBERS

INTRODUGCTION ..o et e e e et e e s e eaans 3-1

INTEGERS ... ettte e e e e e et e s b eeenas 3-1

FLOATING-POINT NUMBERS ..., 3-1

NORMALIZATION ..ottte e e et eaa 3-2

FLOATING-POINT ADDITION AND SUBTRACTION......cc.ooovvviiiieiiininnnnn. 3-3

FLOATING-POINT MULTIPLICATION AND DIVISION.......cccccoviiiinn. 3-4

DATA FORMATS

INTRODUGTION ..oet e e e e s e eanes 4-1

FPII-AINTEGER FORMATS ..o 4-1

FP11-A FLOATING-POINT FORMATS. ... 4-1

FP11-A Floating-Point Data Wordcccoooiiiiiiiiii 4-1

Floating-Point Fraction.........cccccoviuviiiiiiiiiiiie, 4-5

Floating-Point EXponentcoooiiiiiiiiiiiiiin e 4-6

FP11-A PROGRAM STATUS REGISTER ..., 4-7

PROCESSING OF FLOATING-POINT EXCEPTIONS ..o, 4-8

il

CHAPTER 5§

5.1

5.2

5.3

5.3.1

5.3.2

533

534

5.3.5

5.3.6

5.3.7

5.3.8

5.3.9

5.3.10

5.3.11

5.3.12

5.3.13

5.3.14

5.3.15

5.3.16

5.3.17

5.3.18

5.3.19

5.3.20

5.3.21

5.3.22

5.4

CHAPTER 6

6.1

6.2

6.2.1

6.2.2

6.2.3

6.2.4

6.2.5

6.2.6

6.2.6.1

6.2.6.2

6.2.7

6.3

6.4

6.5

6.6

CONTENTS (Cont)

Page

FLOATING-POINT INSTRUCTIONS

FLOATING-POINT ACCUMULATOR S ...t 5-1

INSTRUCTION FORM A T S oote e 5-1

INST RUGCT ION SET ooettt erae e 5-4

ATIthMEtIC INSITUCTIONS. .. cuieeieieii ee r e e 5-10

Floating-Modulo InStruction..........ccoiiiiiiiii e 5-11

| e Y: 1o B § o 18 o) Uetd To) o DOP PR R TP RPRRN 5-11

N110)(0 B111 8 40 o4 Lo} s DUP ORI 5-11

Load Convert (Double-to-Floating, Floating-to-Double) Instructions........ 5-11

Store Convert (Double-to-Floating, Floating-to-Double) Instructions........ 5-12

Clear INSIUCHION ...uiieiiieii ete e e e e e e aeeaanaa 5-12

Test INSTIUCHION ..uviiiiiii ee e e e eaes 5-12

Absolute INStrUCtIONuiiiiiiici e 5-12

Negate INStrUCLION.......cooiiiiiii ee e 5-13

Load Exponent INStruCtion...........cocooviiiiiiiiiiiiiiceeeeeeee, 5-13

Load Convert Integer-to-Floating Instruction................ccoccoviiiiiiniiinnnenn.n, 5-14

Store Exponent InStrucCtion..........ccooovviiiiiiiiiii e 5-15

Store Convert Floating-to-Integer Instruction................ccoooeviiiiiiniincennnnee, 5-16

Load FP11’s Program Statusccooiiiiiiiiiiiiiiir et 5-20

Store FP11’s Program Status ..o, 5-20

StOre FPL17s Status.. ..oe e 5-20

Copy Floating Condition Codesc.cevvveiiiiiiriiiiiiiieciiine e e 5-20

Set F1oating MoOde.......coovuniiiiiiiii e 5-20

Set Double Mode........oovniiiiii e 5-20

Set INtEEr MOE .. .oviiieiiiiii e 5-20

Set Long-Integer Mode..........oviiiniiiniii e 5-20

FP11-A PROGRAMMING EXAMPLES ..., 5-21

PROCESSOR ORGANIZATION

INTRODUCGTION ..ottte e s e e e et s e e e e s e e e ebeeanes 6-1

MICROPROCESSOR DESCRIPTION ...t 6-2

Microprocessor Organizationceeuuueieeriuieeeriinieeiiieeeriie 6-5

Arithmetic/Logical Operationsuuuuviiiiiiiiiiiiiiiiiiiiiie 6-5

R A otaa e aa e 6-8

Arithmetic Logic Unit (ALU) ..o, 6-9

(O B 27411 () PO PP 6-10

Source Operands and ALU Functionsccccoooeiiiii. 6-10

Logical and Arithmetic Functions..............ccccooeiiiinni, 6-10

Logical Functions for G, P, C,44,and OVR ..., 6-10

Summary of Pin Definitions...........oooiiviiiiiiiiiiiiii i, 6-10

INSTRUCTION STATUS REGISTERS AND DECODE..............cooiiinin, 6-10

TRI-STATE TRANSCEIVERS AND BUFFERcccooiiiiiii, 6-10

BRANCH LOGIC AND TRI-STATE CONTROLcccoiiiiiiiin, 6-10

CONSTANTS, BYTE AND SECTOR CONTROL, SHIFT CONTROL........ 6-14

v

CHAPTER 7

7.1

7.2

7.2.1

7.2.2

7.2.3

1.3

7.4

1.5

APPENDIX A

Figure No.

-1

-1

-2

-1

-1

-2S

b
W

N
N

—

4-3

4-4

4-5

4-6

5-1

5.2

5-3

5-4

5-5

5-6

5-7

5-8

5-9

6-1

6-2

6-3

6-4

6-5

7-1

CONTENTS (Cont)

Page

MAINTENANCE

INTRODUGCGTION ...et e et e et e et s e e s e e aan e eanes 7-1

FPLI1-A DIAGNOSTICS ...s e e 7-1

MAINDEC DFEFFPAA ...e e 7-1

MAINDEC DFEFFPBA eteaa s 7-1

MAINDEC DFEFFPCA. ...te s 7-2

KY11-LBPROGRAMMER’SCONSOLE ..., 7-2

FPI1I-A FLOW DIAGRAMS e 7-2

EXTENDER BOARD ..ot 7-3

OPTION POWER SPECIFICATIONS

FIGURES

Title Page

KD11-EA/FP11-A Signal Interfaceccooooeiiiiiiiiiiiiiiiiiccee e, 1-2

Maintenance Cable Installation..............coooiiiiiiiiiiii e 2-5

Backplane JUMPETS ...c.ouiiiniiiiiiice s 2-6

INOTMAIZAIONcouiii ete e et e e e e eaaaaes 3-3

INtEZEr FOIMALS ...te et e e e e e et et en e b s eanenes 4-2

Floating-Point Data FOrmats.............ccoooiviiiiiiiiiii e 4-2

Floating-Point Data WoOrds..........ccoouiiiiiiiiiiiii e 4-3

Interpretation of Floating-Point Numbers.............cccooeiiiiiiiiiiiiiinicecceceeein 4-4

Unnormalized Floating-Point Fractionccooiviiiiiiiiiiiiiieee, 4-5

FP11-A Status Register Format.............ccooooiiiiiii e 4-7

Floating-Point ACCUMUIAtOTSoiiiiiiiiiii e 5-1

INStruction FOIMALSiiiiiiiiiiii ee e 5-2

Double-to-Single Precision Rounding............covivviviiiiiiiiiiiiiiiiiiiececeeeeee 5-11

Single-to-Double Precision Appending..........ccoeevivviviiiiiieiiiiniiiiiieceeeeeeeeeei 5-12

Integer Left-Shift EXampleooooiiiiiiiiiii e, 5-14

Normalized Integer Example..........cooooiiiiiiiiiiiii e, 5-15

Store Exponent EXample NO.L.......cooiviiiiiiiiii e 5-15

Store Exponent EXample NO. 2. ..o, 5-16

Store Convert Integer Example.........ooooiiiiiiiiiiiie, 5-17

KDII-EA/FPILI-A Data FIOW ...t 6-1

Simplified FP11-A Block Dia@ramooeiiiiiiiiiiiiiiiiiiiiieeee eeaas 6-2

Microprocessor (AM2901) Block Diagram.............cooeivvviiiiiiiiiiiiiiiiieeeeeeeiin, 6-3

RAM ReEgIStEr USAEciviiiiiiiieiiiiii ettte e e 6-8

AM290] Pin COoNNECIONSccvuniiiiieiiiiieiiiee ettt eeee e e eaaaes 6-14

Display InfOormation.........ccooiiiiiiiiii i 7-3

TABLES

Title Page

FPI1-A Status RegIStercuuiiiiiiiiiiiiiii e e e 4-7

FP11-A EXCeption Codescuvuiiiiiiiiiiiiiieee e e et e e 4-9

Format of FP11-A INStrUCtiONSccovviiiiiiieii e 5-3

FPI1-A INStTUCHION SEL....uuiiiiiiiiiii ie e e eeaaaee 5-5

ALU Source Operand Contest.........oooovuiiiiiiiiiiiiiiiiiiiecceere e 6-5

ALU FUunction Controlcoiiiiiiiiiiie e e e e e e 6-6

ALU Destination Controlooeviiiiiiiiiii e 6-7

Source Operand and ALU Function MatriXocooeiiviiiiiiinin e, 6-9

ALU Logic Mode FUNCHIONSoiiniiiiiiiieiii et e e e s e eees 6-11

ALU Arithmetic Mode FUNCHIONSc.iiniiiiiiiiic e 6-12

Logic Equations for ALU FUunctionsc.ccoiiiiiiiiiiiiiiinnciiee, 6-12

P, G, Cn14 OVR FUNCtions ..., 6-13

PDP-11 Family Models and Options Power Requirements...................ccceeeeeeennnn. A-1

PDP-11 Family Options Power Requirementscccceevvveiiiveiiineeiinnriinneeineennns A-3

Vi

CHAPTER 1

INTRODUCTION

1.1 GENERAL

The FP11-A Floating-Point Processor is a hardware option that enables the PDP-11/34A central

processor to execute floating-point arithmetic operations. The FP11-A performs all floating-point

arithmetic operations and converts data between integer and floating-point formats. Floating-point

representation permits a greater range of number values than is possible with the conventional integer

mode. Thus, the FP11-A option provides a speedier alternative to the use of software floating-point

routines, and system speed is increased without complex arithmetic coding routines that consume

valuable CPU time. The FP11-A features both single- and double-precision (32- or 64-bit) capability

and floating-point modes.

The FP11-A is an integral part of the central processor. It operates using similar address modes, and

the same memory management facilities as the central processor. Floating-point processor instructions

can reference the floating-point accumulators, the central processor’s general registers, or any location

in memory.

1.2 FEATURES

The following paragraphs summarize the features of the PDP-11/34A floating-point instruction set

and the FPI11-A.

1.2.1 Floating-Point Instruction Set Features

e 32-bit (single-precision) and 64-bit (double-precision) data modes

e Addressing modes compatible with existing PDP-11 addressing modes

e Special instructions that can improve input/output routines and mathematical subroutines

e Allows execution of in-line code (i.e., floating-point instructions and other instructions can

appear in any sequence desired)

e Multiple accumulators for ease of data handling

e Can convert 32- or 64-bit floating-point numbers to 16- or 32-bit integers during the Store class

of instructions

e Can convert 32-bit floating-point numbers to 64-bit floating-point numbers and vice-versa

during the Load or Store class of instructions.

1-1

1.2.2 FP11-A Features

Performs medium-speed, floating-point operations on single- and double-precision data

e Has 17 (decimal) digit accuracy

e Contains its own microprogrammed control store

e Contains six 64-bit floating-point accumulators

e Contains error recovery aids

1.3 ARCHITECTURE

The FP11-A contains scratchpad registers, a floating exception address pointer (FEA), status and

error registers, and six general-purpose accumulators (AC0-ACY5).

Each accumulator is interpreted to be 32 or 64 bits long depending on the instruction and the status of

the floating-point processor. For 32-bit instructions, only the left-most bits are used. The remaining

bits are unaffected.

The six general-purpose accumulators are used in numeric calculations and interaccumulator data

transfers. The first four registers (AC0-AC3) are also used for all data transfers between the FP11-A

and the central processor’s general registers or memory.

1.4 PHYSICAL DESCRIPTION

The FP11-A consists of a single hex board [M8267 for the PDP-11/34A (KD11-EA)] and modifica-

tions to the M7265 and M7266 boards used in the PDP-11/34 central processor. (The modified boards

are designated M8265 and M8266, and the modified processor is designated as the KD11-EA). Figure

1-1 shows the basic signal paths between the central processor and the FP11-A. The bidirectional data

bus transfers instructions and data between the processors. An expanded control store in the KD11-

EA accommodates floating-point requirements.

KD11-EA

< INSTRUCTIONS /DATA >
PDP FP11-A

11/34 FLOATING

CENTRAL 10 MICRO PROGRAM ADDRESS LINES POINT
PROCESSOR PROCCESSOR

M8265

M8266 CLOCK

(KD11-EA) M8267

INITIALIZE

11-5259

Figure 1-1 KDI11-EA/FP11-A Signal Interface

1-2

1.5 RELATED DOCUMENTATION

The following documents supplement this user’s guide on the FP11-A Floating-Point Processor.

Manual Document Number

BA11-K Mounting Box Manual EK-BA11K-MM

BA11-L Mounting Box Manual EK-BA11L-MM

DL11-W Maintenance Manual EK-DL11W-MM

KD11-E Processor Manual (PDP-11/34) EK-KDI11E-TM

M9301 Bootstrap Terminator Maintenance Manual EK-M9301-MM

MM11-C/CP Core Memory Manual EK-MMI11B-TM

MM11-D/DP Core Memory Manual EK-MM11D-TM

MSI11-E-J MOS Memory Maintenance Manual EK-MSI11E-MM

PDP-11 Peripherals Handbook EP-PDP11-HB

PDP-11/04, 34, 45, 55 Processors Handbook EP-PDP11/04-HB

PDP-11/34 Processor Handbook EP-11034-HB

KD 11-EA Processor Manual (PDP-11/34A) EK-KD1EA-MM

1-3

CHAPTER 2

INSTALLATION AND CHECKOUT

2.1 SCOPE

This chapter provides the information necessary for unpacking, inspection, installation, and checkout

of the FP11-A and FP11-AU Floating-Point Processors.

2.2 FP11-A FLOATING-POINT PROCESSOR INSTALLATION

The FP11-A Floating-Point Processor option for the PDP-11/34A CPU consists of the following

parts:

L
- M8267 - Floating-point module

H8821 - 20-pin over-the-top connector

54-12416 - 10-pin over-the-top connector

W9042 - Bus extender module

Prior to the installation of the FP11-A option, the +5 Vdc current available to the PDP-11/34A CPU

backplane must be calculated. The following procedure is designed to help you calculate +5 Vdc

current drain and system configuration.

2.2.1 FP11-A Add-On Installation Procedure

l. Verify system integrity by running the following diagnostics in the order given.

PDP-11/34 CPU Test DFKAA

Traps Test (at least Rev. C) DFKAB

EIS Test FDKAC

0-124K memory exerciser DZQMC

Is CPU a PDP-11/34A? (See serial name tag.)

Yes No

An FP11-A cannot be installed on a PDP-11/34. To upgrade a PDP-11/34 to

use an FP11-A, an FP11-AU kit must be used. Refer to Paragraph 2.3.

v
Is CPU box 26.7cm (10.5 in)?

Yes No

l Refer to Paragraph 2.2.2, BA11-L Box.

Calculate +5 Vdc current drain in the CPU backplane. Calculate +5 Vdc current drain for

all other backplanes in box (Figure 2-1).

2-1

10.

Is the total current drain (all backplanes) greater than 57 A? (Does not include M8267

current.)

No Yes

Is expander box available with room and current?

Yes No

l Refer to step 17.

Refer to step 6.

Y
Is the battery backup (BBU) option present?

No Yes

All jumpers must be out of all backplanes in box. Refer to Figure 2-2 and step

Do backplane jumpers check as follows?

CPU backplane (DD11-PK).

+5VBto +5 V jumper In

+15VBto +15 V jumper In See Figure 2-2.

~15VBto-15V jumper In

Refer to step 8.

All other backplanes in box (DD11-DK, CK).

+5VBto +5 V jumper Out

+15 VB to +15V jumper In See Figure 2-2.

~-15 VB to -15 V jumper In

Refer to step 9.

Is slot 3 open in CPU backplane?

Yes No

Is cache (M 8268) in slot 37

No Yes

Cache is placed in slot 3 only if FP is not present. When FP is

added, cache is moved to slot 5. Slots 4A and B are reserved for

M9301/M9312 (Figure 2-1). Remove the over-the-top (OTT) con-

nectors and move cache module (M8268) to slot 5. H8822 (OTT) is

necessary to complete the installation (Figure 2-1). Refer to step

‘ 10.

Refer to step 10.

Y
Is the MOS memory installed in any backplane other than the CPU backplane?

No Yes

Add 0.5 A at +5 Vdc for each MOS board not installed in the CPU backplane

(CPU box only) to the current drain total for the CPU backplane calculated in

step 4.

‘ Refer to step 11.

2-2

11.

12.

13.

14.

15.

16.

17.

Is the CPU backplane current drain less than 25 A at +5 Vdc?

Yes

'

No

The devices must be moved from the CPU backplane to some other backplane

in the box in order to vacate slot 3 and to reduce the current drain at +5 Vdc to

25 A or less. This must be done without overloading the second +5 Vdc regu-

lator in the box.

Is reconfiguring within the box possible?

Yes No

Can the devices be moved to an expander box without overloading

the expander box?

No Yes

Reconfigure the system until the current in the CPU

backplane is less than 25 A at +5 Vdc.

Y Refer to step 17.

Reconfigure within the box until the CPU backplane current drain at +5 Vdc is

less than 25 A.

Refer to step 12.

Install the FP11-A module (M8267) in slot 3 of the CPU backplane.

Is KY11-LB (M7859) present?

No

v

Yes

Remove the two 10-pin maintenance cables, if necessary, from the CPU

(MB8266) and install them in the FP module (M8267) as shown in Figure 2-1.

Refer to step 14.

Install the two over-the-top (OTT) connectors as shown in Figure 2-1. Use H8822 if the

cache and FP are both present.

Turn power on and run the following diagnostics in the order given.

PDP-11/34

PDP-11/34

PDP-11/34

PDP-11/34

PDP-11/34

PDP-11/34

End

CPU Test

Traps Test

EIS Test

FPP Diagnostic

FPP Diagnostic

FPP Diagnostic

At least Rev. C

Part 1

Part 2

Part 3

DFKAA

DFKAB

DFKAC

DFFPA

DFFPB

DFFPC

When it is impossible to reconfigure the box to accommodate the FP11-A (M8267) without

overloading the +5 V regulator, one alternative is to move some devices to an expander box.

If an expander box is not present on the system, then there are two ways to proceed.

a. Remove some number of devices from the box to compensate for the 7 A at +5 Vdc

used by the FP11-A, and leave these devices out of the system.

b. Postpone installation until an expansion box can be added to the system.

Refer to step 16.

2-3

2.2.2 BAIl1-L Box

18. Calculate the current drain at +5 Vdc for the backplane (DD11-PK) (Table 2-1 and Figure

2-1).

19. Is slot 3 open in the backplane?

Yes No

Is the cache (M 8268) in slot 3?

No Yes

Remove the over-the-top (OTT) connectors and move the cache

module (M8268) to slot 5. An H8822 OTT is necessary to complete

installation (Figure 2-1).

‘} Refer to step 20.

Refer to step 20.

\/

20. Is the power supply an H777-AA, AB, BB (25 A version)?

Yes No

The power supply must then be an H777-CA, CB, DA, DB (32 A version).

Is the total current drain at +5 Vdc less than 25 A (without M8267)?

Yes No

The devices must be moved from the CPU box to an expansion

box in order to vacate slot 3, if necessary, and to reduce the current

drain at +5 Vdc to 25 A or less. This must be done without over-

loading the expander box power supply.

Is the expander box available with enough room and power?

Yes No

Refer to step 17.

L Refer to step 12.
‘ w

21. Is the total current drain at +5 Vdc less than 18 A (without M8267)?

Yes No

The devices must be moved from the CPU box to an expansion box in order to

vacate slot 3, if necessary, and to reduce the current drain at +5 Vdc to 18 A or

less. This must be done without overloading the expander box power supply.

Is the expander box available with enough room and power?

Yes No

Refer to step 17.

Reconfigure the system until the CPU box current drain at +5 Vdc is less than

18 A.

Refer to step 12.
v

22. Refer to step 12.

2-4

SLOT NO. 1 (M8266)

SLOT NO. 2 (8265)

SLOT NO. 3 (M8267)

RED STRIPE

7012214-2D
RED STRIPE

7011411-1D

MA-1449

Maintenance Cable InstallationFigure 2-1

2-5

SEE VIEW A

+15V JUMPER -15V JUMPER

N \

\\I

o

0
0

y4

+5V JUMPER

)

o O

(oY e)

PIN AO1A1 15

+58

5
NOTE

1. JUMPERS SHOWN ARE AC LO

-15 TO -158 LTC

+15 TO +158B

+8 TO +5B O
(00) +202. USE #20 INSULATED -

BUS WIRE FOR JUMPERS
e

+5

O O

VIEWA

Figure 2-2 Backplane Jumpers

2-6

2.3 FP11-AU UPGRADE KIT

The FP11-AU upgrade kit contains power supply components necessary to increase the +35 Vdc cur-

rent levels available from the 26.7 cm (10.5 in) mounting box. The purpose of the upgrade kit is to

provide a method by which PDP-11/34 CPUs can use the floating-point (FP11-A) option. Since the

FP11-A is an option for the PDP-11/34A CPU, additional hardware is required to upgrade the PDP-

11/34 models to include the floating-point option. The following parts are required.

M8265 - Data path module

M8267 - FP module

M8266 - Control module

H7441 - Regulator module

H8821 - 20-pin over-the-top connector

54-12416 - 10-pin over-the-top connector

W9042 - Bus extender module

54-10834YA - Power distribution boardX
A
N
E

W
=

The tools required are:

1. Phillips screwdriver (medium and large)

2. Slot screwdriver (large)

3. 90 degree offset Phillips screwdriver.

2.3.1 FP11-AU Power Components Installation

CAUTION

Turn off computer system and disconnect it from

power source before performing installation pro-

cedure.

1. Slide BA11-K mounting box out of the cabinet assembly to the limits of the chassis slides.

2. Release and remove mounting box top cover to gain access to H765 power supply assembly.

3. Loosen and remove cable clamp that secures the cables that are routed across the top of the

power supply.

4. Loosen and remove power supply cover.

5. Rotate the mounting box in such a manner that the bottom of the mounting box faces away

from the cabinet (box rotated 90 degrees).

6. Loosen and remove mounting box bottom cover to gain access to the power distribution

board located between the power supply and the backplane.

CAUTION

Do not remove the hinge screws (one on each side)

located at the junction of the power supply and the

module enclosure near the top side of the mounting

box.

7. Remove four flat-head screws (no washers) located approximately 10 cm (4 in) from the

bottom of the mounting box and at the junction of the power supply and the module enclo-

sure assembly. The power supply can now be swiveled away from the module enclosure.

2-17

10.

1.

12.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Locate the H744 +5 Vdc regulator assembly. This regulator is the second module from the

right when viewing the bottom of the mounting box from the wire-wrap side of the back-

plane.

Locate and remove the two mounting screws and washers located just to the left of the H744

Mate-N-Lok connector. There will be a green safety wire secured by one of these screws.

NOTE

A 90 degree offset Phillips-head screwdriver is re-

quired to remove these screws and attached hard-

ware.

Locate and remove the last retaining screw and washer located on the back of the power

supply and to the left of the H744 decal.

Release and remove the H744 Mate-N-Lok connector.

Remove the H744 regulator by sliding it out through the top of the power supply assembly.

(Note that the mounting box may have to be rotated to accomplish removal.)

Replace the H744 regulator with the H7441 regulator (included in the upgrade kit).

Replace mounting hardware removed in steps 9 and 10. Do not connect the H7441 Mate-N-

Lok connector at this time.

Release and remove the three Mate-N-Lok connectors connecting the remaining regulators

to the power distribution board assembly:

Locate and remove the black ground wire soldered to the power distribution board (located

near J16). Remove this ground wire from the power supply and the module enclosure assem-

bly.

Remove the +5 V and ground fastons from the power distribution board (located near J14).

Release and disconnect Mate-N-Lok connector from J8 on the power distribution board.

Locate and remove four flat-head screws securing the power distribution board to the mod-

ule enclosure assembly. These screws are located (two on each side) 5 cm (2 in) from the

bottom of the mounting box and near the junction of the power supply and the module

enclosure.

NOTE

The removal of these four screws will allow the re-

moval of the power distribution panel which in turn

will allow removal of all backplane Mate-N-Lok

connectors.

Release and disconnect all backplane Mate-N-Lok connectors.

Release and disconnect two Mate-N-Lok connectors connecting the power distribution
board to the power supply.

Remove the power distribution board.

2-8

23. Replace the power distribution board with the new 5410834-YA power distribution board

(included in upgrade Kkit).

24. Reverse procedure (steps 22-14 and steps 7-1) to install the new power distribution board

and to return system to normal.

2.3.2 FP11-AU Logic Installation

Refer to Paragraph 2.2.1 and calculate +5 Vdc current drain and system configuration.

2-9

CHAPTER 3

REVIEW OF FLOATING-POINT NUMBERS

3.1 INTRODUCTION

This chapter briefly outlines some fundamentals of floating-point arithmetic. It provides useful back-

ground for more advanced topics in later chapters. The reader already familiar with floating-point

numbers and arithmetic may skip this chapter and continue to Chapter 4 for a discussion of FP11-A

data formats.

3.2 INTEGERS

All data within a computer system can be represented in integer form. The numbers that can be

represented in a 16-bit machine range in magnitude from 000000g to 177777g (or from 0;g to 65,53610).

However, this presents problems with integer representation. A number between 1 and 2 (for example)

or numbers greater than 65,5369 can not be represented. Thus, integer representation imposes an

accuracy and a range limitation.

These limitations are imposed by the stationary position of the radix point (e.g., the decimal point in

base 10 notation or the binary point in base 2 notation). An integer’s radix point is usually omitted in

integer representation because it always marks the integer’s least significant place. That is, there are

never any digits to the right of an integer’s radix point. For this reason, an integer is sometimes called a

fixed-point number.

Integer notation, however, can be modified to overcome the range and accuracy limitations imposed

by the fixed radix point. This is accomplished through the use of floating-point notation.

3.3 FLOATING-POINT NUMBERS

Floating-point numbers, unlike integers, have no position restrictions imposed on their radix points. A

popular type of floating-point representation is called scientific notation. With scientific notation, a

floating-point number is represented by some basic value multiplied by the radix raised to some power.

Example

Basic

value

Exponent

1,000,000i0 = 1. X 106/
\Radix

3-1

There are many ways to represent the same number in scientific notation, as shown in the example

below.

512. = 51200. X 10-2

= 5120. X 10-!

= 512. X 100

= 51.2 X 10!

= 5.12 X 102

= 512X 103

The convention chosen for representing floating-point numbers with scientific notation in the FP11-A

requires the radix point to always be to the left of the most significant digit in the basic value (e.g., .512

X 103 in the above example). This modified basic value is called a fraction.

More examples of scientific notation are shown below.

Decimal Decimal Octal Binary

No. Scient. No. Scient. No. Scient. No.

64 0.64 X 102 0.1 X 83 0.1 X 27

33 0.33 X 102 0.41 X 82 0.100001 X 26

1/2 0.5 X100 0.4 X 80 0.1 X 20

1/16 0.625 X 10-1 0.4 X 81 0.1 X 23

Note that in each of the examples above, only significant digits are retained in the final result and the

radix point is always (by convention) to the left of the most significant digit. Establishing the radix

point in a number whose basic value 1s greater than or equal to 1 is accomplished by shifting the

number to the right until the most significant digit is to the right of the radix point. Each right shift

causes the exponent to be incremented by 1. Similarly, establishing the radix point in a number whose

basic value is between 1 and O (i.e., a fraction) is accomplished by shifting the number to the left until

all leading Os are eliminated. Each left shift causes the exponent to be decremented by 1.

To summarize, the value of the number remains constant if its exponent 1s incremented for each right

shift of the basic value and decremented for each left shift. The representation for floating-point

fractions in the FP11-A is one in which all nonsignificant leading Os have been removed. The process

used to obtain this representation is called normalization, which is explained in more detail in Para-

graph 3.4.

3.4 NORMALIZATION

In digital computers, the number ofbits in a fraction is limited. Retention of nonsignificant leading Os

decreases accuracy by taking places that could be filled by significant digits. For this reason, a process

called normalization is used in the FP11-A. The normalization process consists of testing the fraction

for leading Os and left-shifting it until it is in the form 0.1 The exponent is accordingly decre-

mented by the number of left shifts of the fraction. This ensures that the normalized number retains

equivalence with the original number. Since digits to the right of the binary point are weighted with

inverse powers of 2 (i.e., 1/2, 1/4, 1/8 . ..), the smallest normalized fraction is 1/2 (0.10000 . . .). The

largest normalized fraction is 0.11111 Figure 3-1 shows an unnormalized fraction that must be

left-shifted six places to be normalized. The exponent is decremented by six to maintain equivalence
with the original number.

3-2

EXPONENT FRACTION

UNNORMALIZED 00 100 O O. 000 000 111 m 001

NORMALIZED 00 o1 101 0. AR LAR 001 000 000

DECREASE EXPONENT BY SIX LEFT SHIFT FRACTION SIX PLACES

MA-0285

Figure 3-1 Normalization

Problem A - Represent the number 75;¢ as a binary normalized floating-point number.

1. Integer conversion

7510 = 1001011,

2. Convert to floating-point form

1001011.0 X 20 = 0.1001011 X 27

Fraction =0.1001011

Exponent = 111

Problem B - Represent the number 0.25,9 as a binary normalized floating-point number.

1. Integer conversion

0.2510 = 0.01,

2. Convert to floating-point form

0.01 X 20 = 0.1 X 2-1

Fraction = 0.1

Exponent = -1

3.5 FLOATING-POINT ADDITION AND SUBTRACTION

In order to perform floating-point addition or subtraction, the exponents of the two floating-point

numbers involved must be aligned or equal. If they are not aligned, the fraction with the smaller

exponent is shifted right until they are. Each shift to the right is accompanied by an incrementation of

the associated exponent. When the exponents are aligned or equal, the fractions can then be added or

subtracted. The exponent value indicates the number of places the binary point is to be moved to

obtain the integer representation of the number.

In the example below, the number 7;gis added to the number 40, using floating-point representation.

Note that the exponents are first aligned and then the fractions are added; the exponent value dictates

the final location of the binary points.

+0.101 000 000 000 000 X 26 50g = 4049

+0.111 000 000 000 000 X 26 18 = Ti0

3-3

1. To align exponents, shift the fraction with the smaller exponent three places to the right and

increment the exponent by 3, and then add the two fractions.

+0.101 000 000 000 000 X 26 = 505 = 40;o

+0.000 111 000 000 000 X 26 = 73 = 710

+0.101 111 000 000 000 X 26 = 574 = 479

2. To find the integer value of the answer, move the binary point six places to the right.

5 7

A,

0.101 111,000 000 000
S

3.6 FLOATING-POINT MULTIPLICATION AND DIVISION

In floating-point multiplication, the fractions are multiplied and the exponents are added. For float-

ing-point division, the fractions are divided and the exponents are subtracted.

There is no requirement to align the binary point in floating-point multiplication or division.

Example:

1. 0.1110000X 23 = T7g= T7q0

X0.1010000 X 26 = 505 = 40

111

0000

11100

.10001100000000 X 29 (Result already in normalized form.)

2. Move the binary point nine places to the right.

4 3 0

100017000,00000 = 4305 = 2801
\

Example:

Divide 1510 by 510.

1. .1111000 X 24

.1010000X 23

1.010000) .1111000 =

1.100000

1010000) 1111000.000000
1010000

101000

101000

0

3-4

Exponent: 4 -3 = 1

Result: 1.100000 X 2

Normalized Result: .1100000 X 22\

Normalizedfl' Normalized Exponent
Move binary point two places to the right.

.11,00000 = 35 = 39

_4

3-5

CHAPTER 4

DATA FORMATS

4.1 INTRODUCTION

The FP11-A requires its input data (operands) to be formatted. Formatting allows the FP11-A to

process operands in a meaningful way and produce correct results. There are four different formats for

operands input to the FP11-A: short-integer format (I), long-integer format (L), single-precision for-

mat (F), and double-precision format (D).

Output data from the FP11-A is also formatted. This output data is in the form of:

I. FPI1I1-A status information and FP11-A exception information required by the CPU

2. Data sent to memory (via the CPU), which must be in I, L, F, or D format.

This chapter describes the FP11-A data formats. It is assumed that the reader is familiar with 2’s

complement notation.

4.2 FP11-A INTEGER FORMATS

There are two integer formats, short (I) and long (L). The short-integer format is 16 bits long and the

iong-integer format is 32 bits long. Data words (operands) in integer format are represented in 2’s

complement notation. In both I and L formats, the most significant bit of the data word is the sign bit.

Figure 4-1 shows the integers 5 and -5 in both I and L formats.

Figure 4-2 illustrates the formats in which integers are arranged in memory. Integers sent to memory

must be in one of these formats. Integers received by the FP11-A are arranged and manipulated

according to the type of instruction being executed. Refer to Paragraphs 5.3.11 and 5.3.12 for descrip-

tions of the ways in which incoming integers are manipulated during the load exponent and load

convert integer-to-floating instructions, respectively.

4.3 FP11-A FLOATING-POINT FORMATS

There are two floating-point formats, single-precision (F) and double-precision (D). The single-precision

format 1s 32 bits long and the double-precision format is 64 bits long. Figure 4-2 shows that the most

significant bit is the sign of the fraction (and the floating-point number being represented). The next 8

bits contain the value of the exponent, expressed in excess 200 notation (Paragraph 4.3.1.2). The

remaining bits (23 for single-precision, 55 for double-precision) contain the fraction. The fraction and

its associated sign bit are expressed in sign and magnitude notation (Paragraph 4.3.1.1).

4.3.1 FP11-A Floating-Point Data Word

Figure 4-3 illustrates the formats in which floating-point numbers are arranged in memory. Floating-

point numbers sent to memory must be in one of these formats. Floating-point numbers received by

the FP11-A are arranged as illustrated in Figure 4-4.

4-1

INTEGER =5

je——— WORD1 ——*

SHORT INTEGER(I) 15 14 0

oO|lOoO|O|OY{O0O]S5

SIGN BIT

l¢—— WORD1 —— lf— WORD 2 —=i

LONG INTEGERI(L) 31 30 16 15 14 0

o) 0 0 0 O O 0] o) 0 0] o) o}

— =— = = — SIGN BIT =— =— — —_—— e — ————

SHORT INTEGER(I)

TINTEGER:--5
fpp——— WORD 1 ———=i

15 14 0

7 77| 7|73

SIGN BIT

j——— WORD1 — = l————WORD 2 —=

LONG INTEGER(L) 31 30 16 15 14 0

1|77 |7 7|7 1| 77| 7173

Tfi 11-3732
SIGN BIT

Figure 4-1 Integer Formats

. MEMORY MEMORY

[WORD 1 ma N WORD 2 -

31 30 23 22 16 15 0

SINGLE-PRECISION

FLOATING-POINT(F) | s EXP

FORMAT

- _J

FRACTION

. MEMORY MEMORY MEMORY MEMORY

e WORD 1 - |—~WORD 2+ |+~WORD 3+ |+ WORD 4 —

63 62 55 54 48 47 ((32 31 ((16 15 ((O

DOUBLE-PRECISION IR =) 7))

FLOATING-POINT(D) |S EXP

FORMAT (((—

- Y T)) — ‘)_‘j
FRACTION

S = Sign

EXP = Exponent in excess 200 notation (refer to paragraph 3.3.1.2.),

Fraction = 23 or 55 bit fraction in sign and magnitude

format.

Figure 4-2 Floating-Point Data Formats

MA-0280

FRACTION

N

15 14 76 o 15 A
—

MEMORY [S [EXP : [I I

e ——

INITIALLY LOADED e = — —8 7 ¢ — 0
I EX

\

\

\
/

\ — |
\

——

\ \ = /\ \

—

EXP]

63 62\61 39|38 0
FP11-A WORD

IN WORKING AREA l T] FRACTION ZEROES 1

OVERFLOW BIT

HIDDEN BIT (EXP#0, BIT 62=1)

11-5254

a. Single Precision

15 14 7 6 0 15 0 15 0 15 0

MEMORY ljl EXP ! l F] L] L j []
I

637 62 56 , 55 40139/ 24 2377 8 26~ — __ 0
INITIALLY LOADED

INTO FP11A LE FRACTION T I l S EXP

| /" |
[B |

\ / [7 Ol
\) [EXP]

63 62| 61 7.6 0
FP11-A WORD

F ZEIN WORKING AREA LJ 1 RACTION ROESJ_
OVERFLOW BIT

HIDDEN BIT (EXP#0, BIT 62=1)

11-5255

b. Double Precision

Figure 4-3 Floating-Point Data Words

4-3

SIGN ——‘ EXPONENT FRACTION

r
o N —_—N

Y4 \

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEMORY 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 NUMBER 32 REPRESENTED

IN SIGN AND MAGNITUDE

FORMAT (NUMBER ASSUMED

NORMALIZED)

SIGN

P11 | o 1lololofjol1]|1]o0 ol 1lo]ofofo]o|o]o ADDITIONAL |
OPERANDS]

S 7 6|5 4 3[2 1 0 63 62 61 60 5 58 57 56 55 210

T ~

EXPONENT f FRACTION
HIDDEN

EXPONENT = 206 — 200 = 6 = 2° BIT FRACTION = 1/2 (INSERTION OF HIDDEN BIT)

FLOATING POINT NUMBER = 2° X 1/2 = 32

eN

SIGN ——] EXPONENT FRACTION
~ e N

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEMORY 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0

NUMBER 7/16 REPRESENTED

IN SIGN AND MAGNITUDE

FORMAT (NUMBER ASSUMED

NORMALIZED)

SIGN

0 o[1| v v 1|1 |FP11 o|la|l1|1|lofofo]o]o ANy

7 6|5 4 3|2 1 o 63 62 61 60 59 58 57 656 55 210
|\ _J | J

~N ~

EXPONENT ? FRACTION
HIDDEN

EXPONENT=177 —200=-1= 2" BIT FRACTION = 1/2+ 1/4+ 1/8= 7/8 (INSERTION OF HIDDEN BIT)

FLOATING POINT NUMBER =2 X 7/8 = 7/16

MA-1448

Figure 4-4 Interpretation of Floating-Point Numbers

The sign bit, exponent bits, and fraction bits in the FP11-A data word have the same values as the data
word in memory. Note, however, that the FP11-A data word has more bits than its counterpart in

memory. This is because the FP11-A has provisions for generating an overflow bit and a *“hidden” bit.

For purposes of discussion, the FP11-A data word can be thought of as being divided into two major

parts:

. A fraction, with its associated sign bit, hidden bit, and overflow bit.

2. An exponent.

4.3.1.1 Floating-Point Fraction - The fraction is expressed in sign and magnitude notation. The fol-

lowing simple example illustrates the idea behind sign and magnitude notation.

2’s Complement

Notation Sign and Magnitude Notation

+2 000010 000010

Sign <M agnitude

-2 111110 100010 |

Sign X Magnitude

Only a change of sign bit is required to change the sign of a number in sign and magnitude notation.

Note that a positive number is the same in both notations.

Unnormalized floating-point fractions have a range from approximately 0 through 2 as shown in
Figure 4-5. The FP11-A, however, normalizes all unnormalized fractions. That is, the fractions are

adjusted such that there i1s a 0 to the left of the binary point (bit 63) and a 1 to the right of the binary

point (bit 62). Thus, normalized fractions range in magnitude from 0.1000...t00.1111 or from 1/2 to

approximately 1.

63 62 61 60 [¢ 3 2 1 0

))]

SMALLEST

NON-ZERO NUMBER 0. 0 0 0 0 0 0 1 APPROXIMATELYO

| (

)]

63 62 61 60 (] 3 2 1 0

), !

LARGEST

NON-ZERO NUMBER 1 . 1 1 1 1 1 1 1 APPROXIMATELY 2 -

{ (

l |3

MA-1447

Figure 4-5 Unnormalized Floating-Point Fraction

4-5

The fraction overflow bit (bit 63) is set during certain arithmetic operations. For example, during

addition, certain sums will produce an overflow such as 0.1000 . .. + 0.100 . . . which yields 1.000

This result must be normalized, so the FP11-A right-shifts the fraction one place and increases the

exponent by one.

Bit 62 is called the hidden bit. Recall that since fractions are normalized by the FP11-A, the bit

immediately to the right of the binary point (bit 62) is always a 1. This bit is dropped when a fraction is

sent to memory and appended when a fraction is received from memory. This procedure allows one

extra bit of significance in floating-point fraction representation.

4.3.1.2 Floating-Point Exponent — The 8-bit floating-point exponent is expressed 1n excess 200 nota-

tion. The chart below illustrates the relationship between exponents in 2’s complement notation and

exponents in excess 200 notation. |

2’s Complement Excess 200

" 177 Most positive exponent r 377 Most positive exponent

Positive Positive

Exponents < Exponents fi

.0 Least positive exponent \ 200 Least positive exponent

" 377 Least negative exponent r 177 Least negative exponent

Negzlltive Negative

Exponents T Exponents 1

|

L 200 Most negative exponent 0 Most negative exponent

Note that an exponent in excess 200 notation is obtained by simply adding 200 to the exponent in 2’s

complement notation. Thus, 8-bit exponents in excess 200 notation range from 0 to 377 (or from -200
to +177). A number with an exponent of -200 is treated by the FP11-A as 0.

For example, the number 0.1, is actually 0.1 X 20, and the exponent is represented as 10 000 000

because 2005 represents an exponent of zero. Figure 3-5 illustrates the range of floating-point numbers
that can be handled by the FP11-A. For simplicity, a fraction length of only three bits is shown.

4-6

4.4 FP11-A PROGRAM STATUS REGISTER

The FP11-A contains a resident program status register that contains the floating-point condition

codes (carry, overflow, zero, and negative) that can be copied into the central processor. In other

words, FN, FZ, FV, and FC can be copied into the CPU’s N, Z, V, and C condition codes, respec-

tively. The program status register also contains 3 mode bits and additional bits to enable various

interrupt conditions. Figure 4-6 shows the layout of the program status register. Each bit shown in the

figure is described in Table 4-1.

NOTE

The FP11-A has no Unibus addresses. All FP11-A

registers are accessed by floating-point instructions

only.

INTERRUPT ENABLES MODE BITS CONDITION CODES

r - ~N7 — ~ —

15 14 13 12 1" 10 9 8 7 6 5 q 3 2 1 0]

i J l [[l I I i
FER NOT FIUV FIV FO FT FN FvV

USED

FID NOT FIU FIC FL NOT FZ FC

USED USED

MA-1432

Figure 4-6 FPI11-A Status Register Format

Table 4-1 FP11-A Status Register

Bit Name Function

15 FER This bit indicates an error condition of the FP11-A.

14 FID Floating Interrupt Disable — All interrupts by the FP11-A are disabled

when this bit is on. Primarily for maintenance use. Normally clear.

13 Not Used

12 Not Used

11 FIUV Floating Interrupt on Undefined Variable - When this bit is set and a

-0 1s obtained from memory, an interrupt occurs. If the bit is not set, -0

can be loaded and stored; however, any arithmetic operation treats it as

if it were a positive 0.

10 FIU Floating Interrupt on Underflow — When this bit is set, an underflow

condition causes a floating underflow interrupt. The result of the oper-

ation causing the interrupt is correct except for the exponent, which is

off by 400;. If the FIU is not set and underflow occurs, the result is set

to zero.

Table 4-1 FP11-A Status Register (Cont)

Bit Name Function

3-0

FIV

FIC

FD

FL

FT

Not Used

FN,FZ, FV,

and FC

Floating Interrupt on Overflow — When this bit is set, floating overflow

causes an interrupt. The result of the operation causing the interrupt is

correct except for the exponent, which is off by 400g. If the FIV bit is

not set, the result of the operation is the same; the only difference is that

the interrupt does not occur.

Floating Interrupt on Integer Conversion Error - When this bit is set

and the store convert floating-to-integer instruction causes FC to be set

(indicating a conversion error), an interrupt occurs. When a conversion

occurs, the destination register is cleared and the source register is un-

touched. When FIC is reset, the result of the operation is the same;

however, no interrupt occurs.

Double-Precision Mode Bit - This bit, when set, specifies double-preci-

sion format and, when reset, specifies single-precision format.

Long-Precision Integer Mode Bit - This bit is employed during con-

version between integer and floating-point format. If set, double-preci-

sion 2’s complement integer format of 32 bits is specified; if reset,

single-precision 2’s complement integer format of 16 bits is specified.

Truncate Bit - This bit, when set, causes the result of any floating-point

operation to be truncated rather than rounded.

These bits are the four floating-point condition codes, which can be

loaded in the CPU’s N, Z, V, and C condition codes, respectively. This

is accomplished by the copy floating condition codes (CFCC) instruc-

tion. To determine how each instruction affects the condition codes,

refer to Table 5-1.

4.5 PROCESSING OF FLOATING-POINT EXCEPTIONS

Location 244 is the interrupt vector used to handle all floating-point interrupts. A total of six possible
interrupts can occur. These possible interrupt exceptions are encoded in the FP11-A exception code
(FEC) register. The interrupt exception codes represent an offset into a dispatch table, which routes
the program to the right error handling routine. The dispatch table is a function of the software. The
FEC for each exception is briefly described in Table 4-2.

Refer to the PDP-11/04, 34, 45, 45 Processor Handbook for further details concerning FP11-A excep-
tions.

In addition to the FEC register, the CPU contains a 16-bit floating exception address (FEA) rc?gister,

which stores the address of the last floating-point instruction that caused a floating-point exception.

4-8

Table 4-2 FP11-A Exception Codes

FP11-A

Exception

Code Definition

2 Floating Op Code Error - The FP11-A causes an interrupt

for an erroneous op code

4 Floating Divide by Zero - Division by zero causes an inter-

rupt if FID is not set

6 Floating (or Double) Integer Conversion Error

10 Floating Overflow

12 Floating Underflow

14 Floating Undefined Variable

NOTE

The traps for exception codes 6, 10, 12, and 14, can

be enabled in the FP11-A program status register.

All traps are disabled if FID is set.

4-9

CHAPTER 5§

FLOATING-POINT INSTRUCTIONS

5.1 FLOATING-POINT ACCUMULATORS

The FP11-A contains six general-purpose accumulators (AC0-ACS5). These accumulators are 64-bit

read /write scratchpad memories with non-destructive readout.

Each accumulator is interpreted as being either 32 or 64 bits long, depending on the instruction and the

FP11-A status (Chapter 4). If an accumulator is interpreted as being 64 bits long, 64 bits of data

occupy the entire accumulator. If an accumulator is interpreted as being 32 bits long, 32 bits of data

occupy only the left-most 32 bits of an accumulator as shown in Figure 5-1.

The floating-point accumulators are used in numeric calculations and interaccumulator data transfers.

ACO-AC3 are used for all data transfers between the FP11-A and the CPU or memory.

64 BIT ACCUMULATOR

A

32 BIT ACCUMULATOR h
e——

[Y
/

0

1

2
ACCUMULATORS< .

4

5

.

MSB LSB

MA-0277

Figure 5-1 Floating-Point Accumulators

5.2 INSTRUCTION FORMATS

An FP11-A instruction must be in one of five formats. These formats are summarized in Figure 5-2.

The 2-bit AC field (bits 6 and 7) allows selection of scratchpad accumulators 0 through 3 only.

If address mode 0 is specified with formats F1 or F2, bits 2-0 are used to select a floating-point

accumulator. Only accumulators 5-0 can be specified in mode 0. If 6 or 7 is specified in bits 2-0 in

mode 0, the FP11-A traps if floating-point interrupts are enabled (FID = 0). The FEC will indicate an

illegal op code error (exception code 2).

5-1

12 1 87 6 5 0

F 1 oC = 17 FOC AC FSRC/FDST

15 12 11 6 5 0

F2 oc =17 FOC FDST

15 12 11 8 7 65 0

F3 0C = 17 FoOC AC SRC/DST

15 12 11 6 5 0

Fa oC = 17 FoOC SRC/DST

15 12 11 0

F5 0C=17 FOC

11-3730

Figure 5-2 Instruction Formats

The fields of the various instruction formats (as summarized in Table 5-1) are interpreted as follows.

Mnemonic

OC

FOC

SRC

DST

FSRC

FDST

AC

Description

Operation Code - All floating-point instructions are designated by a 4-bit op

code of 17g.

Floating Operating Code - The number of bits in this field varies with the
format; the code is used to specify the actual floating-point operation.

Source - A 6-bit source field identical to that in the PDP-11 instruction.

Destination — A 6-bit destination field identical to that in a PDP-11 instruc-

tion.

Floating Source - A 6-bit field used only in format F1. It is identical to SRC,

except in mode 0 when it references a floating-point accumulator rather than

a CPU general register.

Floating Destination - A 6-bit field used in formats F1 and F2. It is identical

to DST, except in mode 0 when it references a floating-point accumulator

instead of a CPU general register.

Accumulator - A 2-bit field used in formats F1 and F3 to specify FP11-A

scratchpad accumulators 0-3.

Table 5-1 Format of FP11-A Instructions

Instruction

Format Instruction Mnemonic

F2 ABSOLUTE ABSF FDST
ABSD FDST

Fl ADD ADDF FSRC, AC

ADD FSRC, AC

F2 CLEAR CLRF FDST

CLRD FDST

F4 COMPARE CMPF FSRC, AC

CMPD FSRC, AC

F5 COPY FLOATING CONDITION CODES CFCC

Fl DIVIDE DIVF FSRC, AC

DIVD FSRC, AC

Fl LOAD LDF FSRC, AC

LDD FSRC, AC

Fl LOAD CONVERT LDCFD FSRC, AC

FDCDF FSRC, AC

F3 LOAD CONVERT INTEGER LDCIF SRC, AC

LDCID SRC, AC

LDCLF SRC, AC

LDCLD SRC, AC

F3 LOAD EXPONENT LDEXPSRC, AC

F4 LOAD FP11’'S PROGRAM STATUS LDFPS SRC

Fl MODULO MODF FSRC, AC

MODD FSRC, AC

Fl MULTIPLY MULF FSRC, AC

MULD FSRC, AC

F2 NEGATE NEGF FDST

NEGD FDST

FS SET DOUBLE MODE SETD

FS SET FLOATING MODE SETF

FS5 SET INTEGER MODE SETI

F5 SET LONG INTEGER MODE SETL

Fl STORE STF AC, FDST

STD AC, FDST

F1 STORE CONVERT STCFD AC, FDST

STCDF AC, FDST

F3 STORE CONVERT STCFI AC, DST

FLOATING TO INTEGER STCFL AC, DST

STCDI AC, DST

STCDL AC, DST

F3 STORE EXPONENT STEXP AC, DST

F4 STORE FPI1I’S PROGRAM STATUS STFPS DST

F4 STORE FP11’'SSTATUS STST DST

Fl SUBTRACT SUBF FSRC, AC

SUBD FSRC, AC

F2 TEST TSTF FDST

TSTD FDST

5-3

5.3 INSTRUCTION SET

Table 5-2 contains the instruction set of the FP11-A. Some of the symbology may not be familiar.

Therefore, a brief description follows.

l. A floating-point flip-flop, designated FD, determines whether single- or double-precision

floating-point format is specified. If the flip-flop is cleared, single-precision is specified and

is designated by F. If the flip-flop is set, double-precision is specified and is designated by D.

Examples are NEGF, NEGD, and SUBD.

NOTE

Only the assembler or compiler differentiates be-

tween NEGF and NEGD or LDCID or LDCLD in-

structions. The Floating-point does not differentiate

between the instructions but depends upon the value

of FD and FL as usually controlled by SETD,

SETF, SETC, and SETI instructions (i.e., LDCID

- SETI - SETD - LDCLD).

An integer flip-flop, designated FL, determines whether short-integer or long-integer format

is specified. If the flip-flop is cleared, short-integer format is specified and is designated by I.

If the flip-flop is set, long-integer format is specified and is designated by L. Examples are

SETI and SETL.

Several convert-type instructions use the symbology defined below.

CiLrp - Convert integer to floating

CepL - Convert floating to integer

Cgp or Cp g - Convert single-floating to double-floating or convert double-floating to

single-floating

UPLIM is defined as the largest possible number that can be represented in floating-point

format. This number has an exponent of 377 (excess 200 notation) and a fraction of all Is.

Note the UPLIM is dependent on the format specified. LOLIM is defined as the smallest

possible number that is not identically 0. This number has an exponent of 001 and a fraction

of all Os except for the hidden bit.

The following conventions are used when referring to address locations.

(xxxx) = the contents of the location specified by xxxx

ABS (address) = absolute value of (address)

EXP (address) = exponent of (address) in excess 200 notation

Some of the octal codes listed in Table 5-2 are in the form of mathematical expressions.

These octal codes can be calculated as shown in the following examples.

Example 1: LDFPS Instruction

Mode 3, register 7 specified (F instruction format)

170100 + SRC

SRC field is equal to 37

Basic op code is 170100

SRC and basic op code are added to yield 170137.

5-4

Example 2: LDF Instruction

AC2, mode 2, and register 6 specified (F1 instruction format).

172400 + C * 100 + FSRC

AC =2

2 * 100 = 200

172400 + 200 = 172600

FSRC is equal to 26

172600 + 26 + 172626

7. AC v | means that the accumulator field (bits 6 and 7 in formats F1 and F3) is logically

ORed with O1.

Example:

Accumulator field = bits 6 and 7 = AC2 = 10. ACv 1l = 11.

The information in Table 5-2 is expressed in symbolic notation to provide the reader with a quick

reference to the function of each instruction. The following paragraphs supplement the information in

Table 5-2.

Table 5-2 FP11-A Instruction Set

Mnemonic Instruction Description Octal Code

ABSF FDST Absolute 170600+ FDST

ABSD FDST FDST « minus (FDST) if FDST < 0; other- F2 Format

wise FDST « (FDST)

FC « 0

FV «0

FZ « 1 if exp (FDST) = 0; otherwise FZ « 0

FN <0

ADDF FSRC, AC Floating Add 172000+A C*100+FSRC

ADDD FSRC, AC AC « (AC) + (FSRQ) if |[AC| + (FSRCQO) F1 Format

< LOLIM; otherwise AC « 0

FC «0

FV « 1if| AC|> UPLIM; otherwise FV « 0

FZ « if (AC) = 0; otherwise FZ « 0

FN « 1 if (AC) < 0; otherwise FN « 0

CLRF FDST Clear 170400+ FDST

CLRD FDST FDST «0 F2 Format

FC «0

FV «0

FZ « 1

FN <0

5-35

Table 5-2 FP11-A Instruction (Cont)

Mnemonic Instruction Description Octal Code

CMPF FSRC, AC

CMPD FSRC, AC

CFCC

DIVF FSRC, AC

DIVD FSRC, AC

LDF FSRC, AC

or

LDD FSRC, AC

LDCDF FSRC, AC

LDCFD FSRC, AC

Floating Compare

FC 0

FV «0

FZ « 1 if (FSRC) - (AC) = 0; otherwise

FZ <0

FN « 1 if (FSRC) - (AC) < 0; otherwise

FN <0

Copy Floating Condition Codes

C « FC

V<FV

Z ~ FZ

N « FN

Floating Divide

AC « (AC)/(FSRCQ) if | (AC)/(FSRQO)|

=2 LOLIM; otherwise AC « 0

FC <0

FV < 1if|AC|> UPLIM; otherwise FV 0

FZ « | if EXP (AC) = 0; otherwise FZ « 0

FN « 1 if (AC) < 0; otherwise FN « 0

Floating Load

AC « (FSRO)

FC «0

FV «0

FZ « 1 if (AC) = 0; otherwise FZ « 0

FN « 1 if (AC) < 0; otherwise FN « 0

Load Convert Double-to-Floating or

Floating-to-Double

AC « Cgp or Cp g (FSRC)

FC <0

FV « 1 if | AC| > UPLIM; otherwise

FV <0

FZ « 1 if (AC) = 0; otherwise FZ « 0

FN « 1 if (AC) < 0; otherwise FN « 0

If the current format is single-precision float-

ing-point (FD = 0), the source i1s assumed to

be a double-precision number and is con-

verted to single-precision. If the floating-trun-

cate bit is set, the number is truncated;

otherwise, it is rounded. If the current format

is double-precision (FD = 1), the source is as-

sumed to be a single-precision number and

loaded left-justified in the AC. The lower half

of the AC is cleared.

173400+ AC*100+FSRC

F1 Format

170000

FS5 Format

174400+A C*100+FSRC

F1 Format

172400+AC*100+FSRC

F1 Format

177400+ AC*100+ FSRC

F1 Format

F, D-single-precision to

double-precision float-

ing

D, F-double-precision to

single-precision float-

ing

5-6

Table 5-2 FP11-A Instruction (Cont)

Mnemonic Instruction Description Octal Code

LDCIF SRC, AC Load and Convert from Integer to Floating | 177000+AC*100+SRC

LDCID SRC, AC AC « CyL rp (SRC) F3 Format

LDCLF SRC, AD FC~0

LDCLD SRC, AC FV <0

o FZ « 1 if (AC) = 0; otherwise FZ « 0

LD'CH.: = Single Integer FN « 1 if (AC) < 0; otherwise FN « 0
to Single Float C . : :

> o L ED specifies conversion from a 2’s com-
LDCID = Single Integer : : : .

to Double Float plement integer with precision I or L to a

_ floating-point number of precision F or D. If
LDCLF = Long Integer | . : - e :

: integer flip-flop IL = 0, a 16-bit integer (1) is
to Single Float : : _ N

= double specified, and if IL = 1, a 32-bit in-
LDCLD = Long Integer : £ ¢ : flin-fl

to Double Float teger (L) is specified. I.floatlpg-pomt ip-flop

FD = 0, a 32-bit floating-point number (F) is

specified, and if FD = 1, a 64-bit floating-

point number (D) is specified. If a 32-bit in-

teger is specified and addressing mode O or

immediate mode is used, the 16 bits of the

source register are left justified, and the re-

maining 16 bits are zeroed before the con-

version.

LDEXP SRC, AC Load Exponent 1764004+A C*100+SRC

AC SIGN « (AC SIGN) F3 Format

AC EXP « (SRC) + 200 only if ABS (SRCO)

<177

AC FRACTION « (AC FRACTION)

FC <0

FV « 11f (SRC) > 177; otherwise FV « 0

FZ « 1 if EXP (AC) = 0; otherwise FZ « 0

FN « 1 if (AC) < 0; otherwise FN « 0

LDFPS SRC Load FP11-A’s Program Status Word 170100+ SRC

FPS « (SRCO) F4 Format

MODF FSRC, AC Floating Modulo 171400+ AC*100+FSRC

MODD FSRC, AC AC v |1 « integer part of (AC)*(FSRCQC) F1 Format

AC « fractional part of (AC)*(FSRC)

- (AC v 1) if [(AC)*(FSRO)|

2 LOLIM or FIU = 1; otherwise AC « 0

FC <0

FV « 1if| AC|> UPLIM; otherwise FV « 0

FZ « 1 if (AC) = 0; otherwise FZ « 0

FN « 1 if (AC) < 0; otherwise FN « 0

The product of AC and FSRC is 48 bits in

single-precision floating-point format or 59

bits in double-precision floating-point format.

The integer part of the product

[(AC)*(FSRC)] is found and stored in AC v 1.

The fractional part is then obtained and

stored in AC. Note that multiplication by 10

can be done with zero error, allowing decimal

digits to be stripped off with no loss in preci-

sion.

5-7

Table 5-2 FP11-A Instruction (Cont)

Mnemonic Instruction Description Octal Code

MULF FSRC, AC Floating Multiply 171000+ AC*100FSRC

MULD FSRC, AC AC « (AC)*(FSRC) if | (AC)*(FSRCQO)| F1 Format

=2 LOLIM; otherwise AC « 0

FC «<0

FV < 1if| AC|=> UPLIM; otherwise FV «0

FZ « 1 if (AC) = 0; otherwise FZ « 0

FN « 1 if (AC) < 0; otherwise FN « 0

NEGF FDST Negate 170700+ FDST

NEGD FDST FDST « minus (FDST) if EXP (FDST) # 0; F2 Format

otherwise FDST « 0

FC <0

FV <0

FZ « 1 if if EXP (FDST) = 0; otherwise FZ

-0

FN « | if (FDST) < 0; otherwise FN « 0

SETD Set Floating Double Mode 170011

FD « 1 F5 Format

SETF Set Floating Mode 170001

FD <0 F5 Format

SETI Set Integer Mode 170002

FL <0 F5 Format

SETL Set Long-Integer Mode 170012

FL <1 F5 Format

STF AC, FDST Floating Store 174000+ AC*100+ FDST

STD AC, FDST FDST « (AC) F1 Format

FC « FC

FV « FV

FZ « FZ

FN « FN

5-8

Table 5-2 FP11-A Instruction (Cont)

Mnemonic Instruction Description Octal Code

STCFD AC, FDST Store Convert from Floating-to-Double or | 176000+ AC*100+FDST

STCDF AC, FDST Double-to-Floating F1 Format

STCFI AC, DST

STCFL AC, DST

STCDI AC, DST

STCDL AC, DST

STCFI = Single Float to

Single Integer

STCFL = Single Float to

Long Integer

STCDI = Double Float

to Single Integer

STCDL = Double Float

to Long Integer

FDST « CF,D or CD,F (AC)

FC «0

FV « 1 if| AC |2 UPLIM; otherwise FV « 0

FZ « 1 if (AC) = 0; otherwise FZ « 0

FN « | if (AC) < 0; otherwise FN « 0

The STCFD instruction is the opposite of the

LDCDF instruction; thus, if the current for-

mat 1s single-precision floating-point (FD =

0), the source is assumed to be a single-preci-

sion number and is converted to double-preci-

sion. If the floating truncate bit is set, the

number is truncated; otherwise, it 1s rounded.

If the current format is double-precision (FD

= 1), the source is assumed to be double-pre-

cision number and loaded left-justified in the

AC. The lower half of the AC is cleared.

Store Convert from Floating-to-Integer

Destination receives converted AC if the re-

sulting integer number can be represented in

16 bits (short integer) or 32 bits (long integer).

Otherwise, destination is zeroed and C-bit is

set.

FV <0

FZ « 1 if (DST) = 0; otherwise FZ « 0

FN « 1 if (DST) < 0; otherwise FN « 0

C « FC

V «FV

/Z —~ FZ

N « FN

When the conversion is to long integer (32

bits) and address mode 0 or immediate mode

is specified, only the most significant 16 bits

are stored in the destination register.

F, D-single-precision to

double-precision float-

ing

D, F-double-precision to

single-precision float-

ing

175400+A C*100+DST

F3 Format

5-9

Table 5-2 FP11-A Instruction (Cont)

Mnemonic Instruction Description Octal Code

STEXP AC, DST

STFPS DST

STST DST

SUBF FSRC, AC

SUBD FSRC, AC

TSTF FDST

TSTD FDST

Store Exponent

DST « AC EXPONENT - 200g

FC «0

FV <0

FZ « 1 if (DST) = 0; otherwise FZ « 0

FN « 1 if (DST) < 0; otherwise FN « 0

C «FC

V «FV

Z « FZ

N « FN

Store FP11-A’s Program Status Word

DST « (FPS)

Store FP11-A’s Status

DST « (FEO)

DST + 2 « (FEA) if not mode 0 or not imme-

diate mode

Floating Subtract

AC « (AC) - (FSRQ) if | (AC) - (FSRQ)|

2 LOLIM; otherwise AC « 0

FC <0

FV « 1 if AC UPLIM; otherwise FV « 0

FZ « 1 if (AC) = 0; otherwise FZ « 0

FN « 1 if (AC) < 0; otherwise FN « 0

Test

Floating

FC <0

FV <0

FZ « 1 if EXP (FDST) = 0; otherwise FZ « 0

FN « 1 if (FDST) < 0; otherwise FN « 0

175000+ C*100+DST

F3 Format

170200+ DST

F4 Format

170300+ DST

F4 Format

173000+AC*100+FSRC

F1 Format

170500+ FDST

F2 Format

5.3.1 Arithmetic Instructions

The arithmetic instructions (Add, Subtract, Multiply, Divide) require one operand in a source (a

floating-point accumulator in mode 0, a memory location otherwise) and one operand in a destination

accumulator. The instruction is executed by the FP11-A and the result is stored in the destination

accumulator.

The Compare instruction also requires one operand in a source and one operand in a destin.atio.n

accumulator. However, the two operands remain in their respective locations after the instruction 1s

executed by the FP11-A, and there is no transfer of the result.

5-10

5.3.2 Floating-Modulo Instruction

The Floating-Modulo (MOD) instruction causes the FP11-A to multiply two floating-point operands,

separate the product into integer and fractional parts, and store one or both parts as floating-point

numbers. The whole-number portion goes into an odd-numbered accumulator and the fraction goes

into an even-numbered accumulator.

The whole-number portion of the number, when expressed as a floating-point number, contains an

exponent greater than 201 in excess 200 notation, which means that the whole number has a decimal

value of some number greater than one and less than UPLIM, where UPLIM is the greatest possible

number that can be represented by the FP11-A.

The fractional portion of the number, when expressed as a floating-point number, contains an expo-

nent less than or equal to 201 in excess 200 notation. This means that the fraction has a value less than

one and greater than LOLIM, where LOLIM is the smallest possible number that can be represented

by the FP11-A.

5.3.3 Load Instruction

The Load instruction causes the FP11-A to take an operand from a source and copy it into a destina-

tion accumulator. The source is a floating-point accumulator in mode 0 and a memory location other-

wise.

5.3.4 Store Instruction

The Store instruction causes the FP11-A to take an operand from a source accumulator and transfer it

to a destination. This destination is a floating-point accumulator in mode 0 and a memory location

otherwise.

5.3.5 Load Convert (Double-to-Floating, Floating-to-Double) Instructions

The Load Convert Double-to-Floating (LDCDF) instruction causes the FP11-A to assume that the

source specifies a double-precision floating-point number. The FP11-A then converts that number to

single-precision, and places this result in the destination accumulator. If the floating-truncate (FT)

status bit is set, the number is truncated. If the FT bit is not set, the number is rounded by adding a 1 to

the single-precision segment if the MSB of the double-precision segment is a 1 depending on the prior

conditions set up by the FD bit (Figure 5-3). If the MSB of the double-precision segment is 0, the

single-precision word remains unchanged after rounding.

6362 48 47 333 313 16 15 0

S 1

SINGLE PRECISION DOUBLE PRECISION

SEGMENT SEGMENT
MA-0288

Figure 5-3 Double-to-Single Precision Rounding

The Load Convert Floating-to-Double (LDCFD) instruction causes the FP11-A to assume that the

source specifies a single-precision number. The FP11-A then converts that number to double-precision

by appending 32 zeros to the single-precision word, and places this result in the destination accumula-

tor.

Note that for both Load Convert instructions, the number to be converted is originally in the source (a

floating-point accumulator in mode 0, a memory location otherwise) and is transferred to the destina-

tion accumulator after conversion.

5-11

5.3.6 Store Convert (Double-to-Floating, Floating-to-Double) Instructions

The Store Convert Double-to-Floating (STCDF) instruction causes the FP11-A to convert a double-

precision number located in the source accumulator to a single-precision number. The FP11-A then

transfers this result to the specified destination. If the floating-truncate (FT) bit is set, the floating-

point number is truncated. If the FT bit is not set, the number is rounded. If the MSB (bit 31) of the

double-precision segment of the word is a 1, 1 is added to the single-precision segment of the word,

depending on the prior conditions set up by the FD bit (Figure 5-3); otherwise, the single-precision

segment remains unchanged.

The Store Convert Floating-to-Double (STCFD) instruction causes the FP11-A to convert a single-

precision number located in the source accumulator to a double-precision number. The FP11-A then

transfers this result to the specified destination. The single-to-double precision is obtained by append-

ing zeros equivalent to the double-precision segment of the word (Figure 5-4).

Note that for both Store Convert instructions, the number to be converted is originally in the source

accumulator and is transferred to the destination (a floating-point accumulator in mode 0, a memory

location otherwise) after conversion.

63 62 48 a7 32 31 R 16 15 - o)

S ALL O'S ALL O'S

4 —~— J — — J

SINGLE PRECISION DOUBLE PRECISION

SEGMENT SEGMENT

11-3728

Figure 5-4 Single-to-Doubie Precision Appending

5.3.7 Clear Instruction

The Clear instruction causes the FP11-A to clear a floating-point number by setting all its bits to 0.

5.3.8 Test Instruction

The Test instruction causes the FP11-A to test the sign and exponent of a floating-point number and

update the FP11-A status accordingly. The number tested is obtained from the destination (a floating-

point accumulator in mode 0, a memory location otherwise). The FC and FV bits are cleared. The FN
bit is set only if the destination is negative. The FZ bit is set only if the exponent of the destination is

zero. If the FIUV status bit is set, a trap occurs (after the test instruction is executed) if a minus zero is

encountered.

5.3.9 Absolute Instruction

The Absolute instruction causes the FP11-A to take the absolute value of a floating-point number by
forcing its sign bit to 0. If mode 0 is specified, the sign of the number in the floating-point destination

accumulator is forced to 0. The exponent of the number is tested, and if it is 0, zeros are written into
the accumulator. If the exponent is non-zero, the accumulator is unaffected.

If mode O is not specified, the sign bit of the specified data word in memory is zeroed. The exponent of
this word is tested, and if it is O, the entire data word in memory is zeroed. If the exponent is non-zero,
the integer exponent is restored to memory.

Absolute and Negate instructions are the only instructions that can read and write a memory location.

5.3.10 Negate Instruction

The Negate instruction causes the CPU (or the FP11-A, in mode 0) to complement the sign of an

operand. If mode 0 is specified, the sign of the number in the floating-point destination accumulator 1s

complemented. The exponent of the number is tested, and if it is 0, zeros are written into the accumula-

tor. If the exponent is non-zero, the accumulator is unaffected.

If mode O is not specified, the sign bit of the specified data word in memory is complemented. This

word is then transferred from memory to a floating-point accumulator. The exponent of this word is

tested, and if it is 0, the entire data word is zeroed and transferred back to memory. If the exponent is

non-zero, the original fraction and exponent are restored to memory.

5.3.11 Load Exponent Instruction

The Load Exponent instruction causes the floating-point processor (FPP) to load an exponent from

the source (a floating-point accumulator in mode 0, a memory location otherwise) into the exponent

field of the destination accumulator. In order to do this, the 16-bit, 2’s complement exponent from the

source must be converted to an 8-bit number in excess 200 notation. This process is described further

below.

Assume that the 16-bit, 2’s complement exponent is coming from memory. The possible legal range of

16-bit numbers in memory is from 000000 to 177777g. On the other hand, the possible legal range of

exponents in the FP11-A falls into two classes.

1. Positive exponents (0 through 177) - When 200 is added to any of these numbers, the sum

stays within the legal 8-bit exponent field (i.e., from 200 through 377).

2. Negative exponents (177601 through 177777) - When 200 is added to any of these numbers,

the sum stays within the legal 8-bit exponent field (i.e., from 1 through 177).

Notice that all legal positive exponents coming from memory have something in common: their 9 high-

order bits are all Os. Similarly, all legal negative exponents from memory have their 9 high-order bits

equal to 1. Therefore, to detect a legal exponent, only the 9 high-order bits need be examined for all 1s

or all Os.

Any number from memory outside these ranges is illegal and will result in either an overflow or an

underflow trap condition.

Example 1: LDEXP 000034

Exponent of 34 00000000 00011100

200 + 10000000

10011100
2 3 4

The upper 9 bits all equal 0, so this is a legal positive exponent. The number 234 is sent to the 8-bit

exponent field of the specified accumulator.

Example 2: LDEXP 201

2 0 1

r A~
Exponent of 201 00000000 10000001

200 + 0 10000000

1 00000001
/

Overflow

This is an illegal positive exponent. Notice that when 200 is added to the exponent, an overflow

OCCurs.

5-13

Example 3: LDEXP 100200

2 0 0
A. P eey

Exponent of 100200 10000000 10000000
200 + 10000000

PR 00000000

Underflow

This 1s an 1llegal negative exponent. Notice that when 200 is added to the exponent, a result is

produced that is more negative than can be expressed by the 8-bit exponent field. Thus, an under-

flow occurs.

Example 4: Special Case - Exponent of 0: LDEXP 177600

Exponent of 177600 11111111 10000000

+ 0 10000000

00000000 00000000

This is the one case where the 9 high-order bits are all equal, but the exponent is illegal. This is

because 177600 represents an exponent of 0. This exponent causes an underflow condition to

exist; that is, it 1s treated as an illegal negative exponent.

5.3.12 Load Convert Integer-to-Floating Instruction

The Load Convert Integer instruction takes a 2’s complement integer from memory and converts it to

a floating-point number in sign and magnitude format. If short-integer mode is specified, the number

from memory is 16 bits and is converted to a 24-bit fraction (single-precision) or a 56-bit fraction

(double-precision), depending on whether floating or double mode is specified. If long-integer mode is

specified, the number from memory is 32 bits and is converted to a single- or double-precision number,

depending on whether floating or double mode is specified. The integer is loaded into bits 55-40 if

short integer is specified or into bits 55-24 if long integer is specified. It is then left-shifted eight places

so that bit 55 is transferred to bit 63 (Figure 5-5).

63 62 61 60 59 58 57 656 55 54 53 b2 51 50 49 48 47 46 45 44 43 42 M 40

1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1) 0 0 0 0 0 0 o

11-5307

Figure 5-5 Integer Left-Shift Example

The integer is then assigned an exponent of 217g short integer. This is the result of adding 200g (since

the exponent is expressed in excess 200 notation) to 17g which represents 151¢ shifts. This number of

shifts is the maximum number required to normalize a number. If long-integer mode is specified, the
integer is assigned an exponent of 237g which represents 31;¢ shifts.

5-14

The 2’s complement integer is tested by examination of bit 63 to see if it is a positive or negative

number. The number is then normalized by left-shifting until bit 63 becomes a 1. If bit 63 1s 1 (negative

number), the integer 1s negative, the sign bit is set, the number is 2’s complemented, and then normal-

ized.

To normalize a number, bit 63 (MSB) of the fraction must be equal to 0 and bit 62 must be made equal

to 1. To do this, the integer is shifted the required number of places to the left and the exponent value is

decreased by the number of places shifted (Figure 5-6).

EXP= 2174 Shift integer 15 places to the left to normalize.

-17¢ Bit 59 =0, bit 58 = 1

200g Decrease exponent by 15,9 which is 17g.

When loading a long integer with an FD = 0, if the long integer contains more than 24 significant

digits, then less significant digits will be truncated with some loss of accuracy.

63 62 61 60 59 58 57 5656 55 54 53 52 51 50 49 48 47 46 45 44 43 42 4 40

o,| ©O o) 0 0 0 0 0 0 0 0) 0 0] 0 1 0 0 0 0 0 0 0 0

X]
11-5308

Figure 5-6 Normalized Integer Example

5.3.13 Store Exponent Instruction

The Store Exponent (STEXP) instruction causes the CPU to access a floating-point number in the

FP11-A, extract the 8-bit exponent field from this number, and subtract a constant of 200 (since the

exponent is expressed in excess 200 notation). The exponent is then stored in the destination as a 16-

bit, 2’s complement, right-justified number with the sign of the exponent (bit 07) extended through the

8 high-order bits.

The legal range of exponents is from 0 to 377, expressed in excess 200 notation. This means that the

number stored ranges from -200 to 177 after the constant of 200 has been subtracted. The subtraction

of 200 is accomplished by taking the 2’s complement of 200 and adding it to the exponent field (Figures

5-7 and 5-8).

16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FLOATING POINT EXPONENT (8 BITS)
S FRACTIONNUMBERIN FP11-A 1 0 0 0 0 1 1 1

SIGN EXTENSION

EXPONENT

TRANSFERRED

TO MEMORY o o o o0 o 0 0 © 0]

(OR ACCUMULATOR) A
15 14 13 12 11 10 Sfifi 5 4 3 2 1 0

BIT 7 IS EXTENDED TO

THE 8 HIGH ORDER BITS.

MA-1433

0 0 0 0 1 1 1

Figure 5-7 Store Exponent Example No. |

5-15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FLOATING-POINT EXPONENT(8 BITS)

NUMBERINFP11-Al S | 0 o0 1 o o0 o0 1 0 FRACTION

SIGN EXTENSION

EXPONENT

TRANSFERRED

TO MEMORY 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 0

(OR ACCUMULATOR) \ L
15141312111098\6543210

BIT 7 IS EXTENDED TO

THE 8 HIGH ORDER BITS.

MA-1430

Figure 5-8 Store Exponent Example No. 2

Two examples that illustrate the process follow: one using an exponent greater than 200 and the next

using an exponent less than 200.

Example 1: Exponent = 207

Exponent of 207 10000111

2’s Complement of 200 + 10000000

Result =7 00000111

Sign Bit 7

Example 2: Exponent = 42

Exponent of 42 00100010

2’s Complement of 200 + 10000000

Result = -42 10100010

eSign Bit

5.3.14 Store Convert Floating-to-Integer Instruction

The Store Convert Floating-to-Integer instruction causes the FPP to take a floating-point number and

convert it to an integer for transfer to a destination.

The four classes of this instruction are as follows.

1 STCFI - Convert single-precision, 24-bit fraction to a 16-bit integer (short-integer mode).

2. STCFL - Convert single-precision, 24-bit fraction to a 32-bit integer (long-integer mode).

3. STCDI - Convert double-precision, 56-bit fraction to a 16-bit integer (short-integer mode).

4. STCDL - Convert double-precision, 56-bit fraction to a 32-bit integer (long-integer mode).

5-16

The (normalized) floating-point number to be converted is transferred to the FPP. The FPP works

with the sign bit and one of the following.

1. The 15 MSBs of the fraction for Floating-to-Integer and Double-to-Floating conversion

2. The 31 MSBs of the fraction for Double-to-Long conversion

3. The entire fraction for Floating-to-Long conversion.

The FPP subtracts 201 from the exponent to determine if the floating-point number is a fraction. If the

result of the subtraction is negative, the exponent is less than 201, and the absolute value of the

floating-point number is less than 1. When converted to an integer, the value of this number is 0; a

conversion error occurs, the FZ bit is set, and Os are sent to the destination. If the result of the

subtraction is positive (or zero), it indicates that the exponent is greater than (or equal to) 201, and the

floating-point number can be converted to a non-zero integer (Figure 4-9).

BEFORE
1 0 0 0] 0 0 0 0 0 0

SHIFTING 0 0 0 0 0 0

AFTER

SHIFTING] O 0 0 0 0 0 0] O 0 0 0 0 0 1 0 0

13 PLACES

MSB

MA-0287

Figure 5-9 Store Convert Integer Example

A second test is made by the FPP to determine if the floating-point number to be converted is within

the range of numbers that can be represented by a 16-bit integer (I-format) or 32-bit integer (L-

format).

Consider the range of integers that can be represented in I and L formats and their floating-point

equivalents.

I-Format Floating-Point L-Format Floating-Point

(16 bits) Equivalent (32 bits) Equivalent

Most Positive 077777 +.1111...%x 215 V7777777777 +.1111...x 231

Integer

Least Positive 000001 +.100...Xx 2! 00000000001 +.100...% 2!

Integer

Least Negative 177777 —.1111...x 216 37777777777 —.1111...%x 232

Integer

Most Negative 100000 —.1000...x 216 20000000000 —.100...X 232

Integer

NOTE

MSB of integer = sign of integer.

5-17

Thus, the exponent of a positive floating-point number to be converted must be less than 16y (220 in

excess 200 notation) to convert to I-format or 323 (240 in excess 200 notation) to convert to L-format.

The exponent of a negative number to be converted must be less than or equal to 161y or 329 to

convert to I- or L-formats, respectively.

The FPP tests whether the floating-point number to be converted is within the range of integers that

can be represented in I-or L-format by subtracting a constant of 20g (for short integers) or 40g (for long

integers) from the result of the first test (result of first test = biased exponent - 201g = unbiased

exponent - 1). If the result of the subtraction is positive or 0, it indicates that the floating-point number

Is too large to be represented as an integer. In that case, a conversion error occurs and Os are sent to the

destination. If the result of the subtraction is a negative number other than -1, the floating-point

number can be represented as an integer without causing an overflow condition. If the result of the

subtraction is -1, the exponent of the floating-point number is either 220 (short) or 240 (long), and

converson proceeds. However, the floating-point number 1s within range only ifits sign is negative and

its fraction 1s .100 . . . (i.e., if it 1s the most negative integer; see table above). If, in this case, the number

1S not the most negative integer, it will be detected by a third conversion error test (see below) after

conversion.

To convert the fraction to an integer, the FPP shifts it right a number of places as specified by the

following algorithms.

Short integer: No. of right shifts = 20g + 201g ~ biased exponent - 1

Long integer: No. of right shifts = 40g + 201g - biased exponent - 1

Regardless of the condition of the FT bit, the fractional part of the number is always truncated during

this shifting process.

If the floating-point number is positive, the integer conversion is complete after shifting, and the

number is transferred to the appropriate destination. If, however, the floating-point number is nega-

tive, the integer must be 2’s complemented before being sent to its destination.

After conversion, the FPP performs a third test for a conversion error by comparing the MSB of the

(converted) integer with the sign bit of the original (unconverted) number. If these signs are not equal,

there has been a conversion error and the FPP traps if the FIC bit is set. This test is performed to detect

a floating-point number with an exponent of 220 (short) or 240 (long) that has not been converted to

the most negative integer.

Example 1: Store Convert Floating-to-Integer (STCFI)

Exponent = 203

Sign=10

Fraction (24 bits) = .100000000000000000000000

15 MSBs of fraction = .100000000000000

203 (excess 200) = 2

Fraction=1/2 Integer to be stored = 1/2 X2 =4

1. Test 1: Is the number to be converted a fraction?

Exponent: 2033

-201

No 2 Since this result is positive, the given floating-point

number is not a fraction and conversion may pro-

ceed without error.

5-18

2. Test 2: Is the floating-point number to be converted within range? (We are working with a

positive short integer.)

Result of Test 1: 2

=20

Yes -16 Indicates that the number to be converted is within

range and can be represented as a 16-bit integer.

No conversion error occurs.

How many right shifts? Use algorithm:

20g + 201g- 2033 -1 = 20g- 35 = 158 = 139

= 13 right shifts

This example involves a positive number, so conversion is complete after 13 right shifts. If

the number had been negative, the integer would have been 2’s complemented.

3. Test 3: The MSB of the converted integer and the sign bit of the original floating-point

number are compared. Since they are equal, no conversion error occurs.

Example 2: Store Convert Floating-to-Integer (STCDL)

Exponent = 240g

Sign=10

31 MSBs of fraction = .1000000000000000000000000000000

1. Test 1: Is the number to be converted a fraction?

Exponent: 240¢

-201

No 37g Since this result is positive, the given floating-point

number is not a fraction, and conversion may pro-

ceed (1.e., no conversion error occurs).

2. Test 2: Is the floating-point number to be converted within range? (We are working with a

positive long integer.)

Result of Test 1; 37

-40

-1 We know the number is out of range by examining

the sign bit (in fact, this number is one greater than

the most positive integer that can be represented).

However, the FPP does not know this yet, and con-

version proceeds without error at this point.

How many right shifts? Use algorithm:

40 + 201g-240g-1 =0

= No right shifts

Converted 32-bit integer = 20000000000g

Since the number is positive, conversion is now complete (i.e., no need for 2’s com-

plementing).

5-19

3. Test 3: The most significant bit of the converted integer (which is 1) and the sign bit of the

original floating-point number (which is 0) are compared. Since they are not equal, a con-

version error occurs, which we predicted in Step 2.

5.3.15 Load FP11’s Program Status

This'instru.ction causes the FPP to transfer 16 bits from the location specified by the source to the
floating-point status (FPS) register. These 16 bits contain status information for use by the FP11-A in
order to enable and disable interrupts, set and clear mode bits, and set condition codes (Paragraph

4.4).

5.3.16 Store FP11’s Program Status

This instruction causes the FPP to transfer the 16 bits of the FPS register to the specified destination.

5.3.17 Store FP11’s Status

The Store FPI11’s Status (STST) instruction causes the FPP to read the contents of the floating excep-

tion code (FEC) and floating exception address (FEA) registers when a floating-point exception (error)

occurs.

[f mode O addressing is enabled, only the FEC is sent to the destination accumulator. If mode 0

addressing is not enabled, the FEC is stored in memory followed by the FEA. In memory, the FEA

data occupies all 16 bits of its memory location, while the FEC data occupies only the lower 4 bits of its

location.

When an error occurs and the interrupt trap in the CPU is enabled, the CPU traps to interrupt vector

244 and issues the STST instruction to determine the type of error.

NOTE

The STST instruction should be used only after an

error has occurred, since in all other cases the in-

struction contains irrelevant data or contains the

conditions that occurred after the last error.

5.3.18 Copy Floating Condition Codes

The Copy Floating Condition Codes (CFCC) instruction causes the FPP to copy the four floating

condition codes (FC, FZ, FV, FN) into the CPU condition codes (C, Z, V, N).

5.3.19 Set Floating Mode

The Set Floating Mode (SETF) instruction causes the FPP to clear the FD bit (bit 07 of the FPS

register) and indicate single-precision operation.

5.3.20 Set Double Mode

The Set Double Mode (SETD) instruction causes the FPP to set the FD bit (bit 07 of the FPS register)

and indicate double-precision operation.

5.3.21 Set Integer Mode

The Set Integer Mode (SETI) instruction causes the FPP to clear the IL bit (bit 06 of the FPS) and

indicate that short-integer mode (16 bits) is specified.

5.3.22 Set Long-Integer Mode

The Set Long-Integer Mode (SETL) instruction causes the FPP to set the IL bit (bit 06 of the FPS) and
indicate that long-integer mode (32 bits) is specified.

5-20

5.4 FP11-A PROGRAMMING EXAMPLES | . .

This paragraph contains two pregramming examples using the FP11-A instruction set. In example 1,

A is added to B, D is subtracted from C, the quantity (A + B) is multiplied by (C - D), the product of

this multiplication is divided by X, and the result is stored. Example 2 calculates DX3 + CX2 + BX +

A, which involves a 3-pass loop.

Example 1: [(A + B) * (C - D)]/X

SET F

LDF A ACO :LOAD ACOFROM A

ADDF B,ACO :ACOHAS (A + B)

LDF C,ACI :.LOAD AC1 FROM C

SUBF D,ACI :AC1 HAS (C - D)

MULF ACI1,ACO :ACOHAS (A + D)*C -D)

DIVF X,AC0 :ACOHAS (A + D)*(C - D)/X

STF ACOY ;STORE(A + D)*(C-D)/XINY

Example 2: DX3 + CX2 + BX + A

Loop 2
A

r N\

ACO=[(D*X+C)*X+B]*X+A
Ns

Loop 1
A\

~

Loop 3

ACO = [DX2+ CX +B]*X + A

ACO = DX? + CX? + BX + A

SET F

MOV #3,%0 :SET UP LOOP COUNTER

MOV #D+4,%1 ;SET UP POINTER TO COEFFICIENTS

LDF (6)+,ACl ;POP X FROM STACK

CLRF ACO ;CLEAR OUT ACO

LOOP; ADDF -(4),ACO0 ;ADD NEXT COEFFICIENT

;TOPARTIAL RESULT

MULF AC1,ACO ;MULTIPLY PARTIAL RESULT BY X

SOB %0,LOOP ;DO LOOP 3 TIMES

ADDF -(4),AC0 :ADD X TO GET RESULT

STF ACO,—(6) :.PUSH RESULT ON STACK

5-21

CHAPTER 6

PROCESSOR ORGANIZATION

6.1 INTRODUCTION

The FP11-A Floating-Point Processor connects to the KD11-EA central processor via a tri-state bus

(Figure 6-1). This interface allows addressing of floating-point memory utilizing the memory manage-

ment option.

SERV BR PFAIL

BR PF PEND

‘MPC (10)

TRI STATE AMUX

(D11EA FLOATING

M8265 LOAD IR POINT

M8266 MODULE

M8267

PROC CLOCK

PROC INIT

(16) (16)

AMUX0-AMUX15
TRISTATE BUS

UNIBUS

11-5250

Figure 6-1 KDI1-EA/FPI11-A Data Flow

The CPU software must initiate floating-point operation and originate addresses and data since con-

trol of the FP11-A resides in the CPU.

6-1

The FP11-A depends on the CPU to fetch instructions and data from memory in order to initiate

floating-point operations. If the instruction is not a floating-point instruction, it is ignored by the

FP11-A. If the decoded instruction is a floating-point instruction (i.e., contains an op code of

17XXXX), the FP11-A causes the CPU to branch to the FP11-A ROM (read-only memory) micro-

states associated with floating-point instructions.

The simplified block diagram illustrated in Figure 6-2 shows the major functions of the FP11-A.

FP11-A

FP11-A

16-BIT

2-BIT INSTRUCTION
STATUS REG REG

s
IR DECODE

AM2901

BRANCH

(BUT)
FP11-A

CONTROL

- BRANCH

- CONSTANTS

- BYTE

- SECTOR

- SHIFT

- CLOCKS

- A, B PORT MUX

|

.

l
A MUX

TRI-STATE

NG
L~

TRISTATE

7

N 16-BIT

TRISTATE BUFFER

TE
EE

E—
—

zC
EA
EE

G
R
S

f
l
_
—
_
—
—
—
-
—
—
—
_
—
_
_

11-5248

Figure 6-2 Simplified FP11-A Block Diagram

6.2 MICROPROCESSOR DESCRIPTION

The principal data manipulation element in the floating-point processor is the AM2901 micro-
processor (Figure 6-3). The basic microprocessor is 4 bits wide and 16 of these units are cascaded to
make up a 16 by 64-bit word for the FP11-A. A general discussion of the microprocessor followed by a

description of its integration into the overall floating-point processor is given in the following para-

graphs.

RAMo

LO/RI

A WORD

ADDRESS

CLOCK

DIRECT

DATA

INPUTS

THREE

STATE

A: —<B: (ADDRESS 3-IN 3N f— 3N : 3IN A

As RAM ,-—-<Ba MUX MUX MUX MUX
Ao A1 A2 As WE EN Bo B1 B2 B3 l T l,

L Do D: D: Ds

| g A LATCH g B LATCH cP Q REGISTER Q EN

Ao Al A2 As Bo B: B2 Ba

L Qo Qs Q: Qs

Dl:>
D'z>

D‘«|>

Do\>

] 1
2N b 28n - 2n 4 2. 3.IN 3-IN : 3-IN 3-IN < ALU —— 1o

mux F— mux 1 mux 1 mux MuXx MUX MuXx MuXx SOURCE
T T l OPERAND —

DECODE
H l2

ALU Ro R R2 Rs So S S2 Ss a

l« >—{ FUNCTION > S
DECODE ARITHMETIC LOGIC UNIT (ALU)

e r'—< Cn+a

Fo Fi] Fs3 OVR

2-IN 2-IN 2-IN 2-IN (0/C)

MUX MUX MUX MUX

Yo Y1 Y2 YsOE

CONTROL >_<{>

N , RAM;
r N\ RO/LI

L] 3-IN 3.-IN }—d 3N }— 3.N <~
——1 Mux Mux P— wTMMux P— wMux

Do D D D Qo [Ao D— ' ’) LO/RI D= <]
16 BIT BY 4 BIT 2-PORT RAM

8 WORDDY

Qa

ROY/LI

ALV

DESTINATION '-——< I

DECODE

11-56267

Figure 6-3 Microprocessor (AM2901)

Block Diagram

6.2.1 Microprocessor Organization

As shown in Figure 6-3, the major components of the microprocessor are the RAM, the arithmetic

logic unit (ALU), and the Q-register.

Information contained in any of the 16 64-bit words of the RAM may be read from the A-port as

controlled by the 4-bit A-word address (Ag-A3) field. Similarly, data in any of the 16 words of the

RAM as defined by the B-address (Byp~B3) field input may be simultaneously read from the B-port of

the RAM. It is also possible to apply the same address code to both the A and B select fields, in which

case the identical file data will appear at both the RAM A-port and B-port simultaneously.

New data is always written into the file word specified by the B-address field of the RAM. The RAM

data input field is driven by a 3-input multiplexer which permits shifting of the ALU output. The 3-

input multiplexer allows data to be shifted right 1 bit position, left 1 bit position, or not shifted in

either direction.

6.2.2 Arithmetic/Logical Operations

The arithmetic logic unit (ALU) is capable of performing three arithmetic and five logical operations

on the two 4-bit input words Rg-R3 and Sog~S3. The R-input field to the ALU receives its input from a

2-input multiplexer while S receives its signals from a 3-input multiplexer. The 2- and 3-input multi-

plexers both have an inhibit capability. This is the equivalent of an *“O” source operand.

If the five data inputs to the ALU are combined into pairs, 10 combinations of registers are possible,

1.e., AB, DA, AQ, 0A, 0B, BQ, BD, D0, DQ, and 0Q, as illustrated in Table 6-1. The microprocessor

uses eight of these operand pairs. Selection of the ALU source operand pairs is accomplished by the

microinstruction inputs 10, 11, and 12.

Table 6-1 ALU Source Operand Contest

ALU Source

Microcode Operands

Octal

L, | I, | I Code RS

L L|{ L 0 Al Q

L]l L] H] A | B

L | H| L 2 O] Q

L| H| H 3 O] B

H| L| L 4 O] A

H| L | H 5 DI A

H| H] L 6 D| Q

H|{ H] H 7 D| O

The direct-data (D) source-operand input port is used to insert all data into the working registers

inside the 2901 microprocessor. The D-input can also be used by the ALU to modify any of the

internal data files of the RAM via the F outputs of the ALU.

The Q-register is a separate 4-bit register intended primarily for multiplication and division routines.

This register can also be used as an accumulator or buffer register for certain applications.

6-5

The ALU performs three arithmetic and five logical functions as directed by the three control bits 13,

14, and I5 (Table 6-2).

Table 6-2 ALU Function Control

Microcode

Octal ALU

I | 1, | I; Code Function Symbol

L {L|L 0 R Plus S R+ S

L L H] S Minus R S - R

L | HJ|L R R Minus S R -S

L {H|H 3 R ORS RV S

H|L (L 4 R AND S RAS

H|L |H 5 R AND S RAS

H|HI]|L 6 REXORS R S

H|H|H 7 R EXNOR S R ¥ S

ALU output data may be routed to one of eight possible destinations as defined by control bits 16, 7,

and I8. ALU output data may be a data output from the device or it may be stored in the RAM or the

Q-register.

The data output of the microprocessor uses a 2:1 multiplexer whose inputs are the A-port of the RAM

or the ALU outputs (F). Selection of these outputs is controlled by bits 16, 17, and I8 of the micro-

instruction control input (Table 6-3). Note that the left- and right-shift functions in Table 6-3 are re-

versed for the FPI11-A application.

The FP11-A uses 16 AM2901 units connected in cascade with 3 levels of look-ahead carry logic. This

configuration results in a 64-bit word. Carry generate (G), and carry propagate (P), are unit outputs

for use with a look-ahead carry generator. Carry out (C,+4) is also generated by the microprocessor

and is available as an output carry flag in a status register. C,, and C,+4 are both active high.

Three additional outputs are generated by the ALU. These are F3, F = 0, and overflow (OVR). F3

represents the most significant bit (sign) of the ALU and can be used to determine positive or negative

results without enabling the 3-state outputs or while enabling the A-port to output. F3 is non-inverted

with respect to the sign bit output Y3. F = 0 output is used for zero detect and is an open-collector

output that can be wire ORed between microprocessor slices. F = 0 is high when all F outputs are low.

OVR is a flag indicating an arithmetic operation exceeds the available range and is high when the

overflow condition exists, i.e., when C,, and C,+4 are not of the same polarity.

Inputs to the RAM are via a 3-input multiplexer. The multiplexer allows input data to be entered into

the RAM in three modes:

e Shifted left one place

e Shifted right one place

e Unshifted.

The shifting is accomplished by two ports: RAM-LO/RI and RAM-RO/LI. Both ports consist of a

buffer driver with a tri-state output and an input to the multiplexer. In the shift-up (X2) mode, the RO

buffer is enabled and the RI multiplexer input is enabled. In the shift-down (-2) mode, the LO buffer

and LI input are enabled. In the no-shift mode, both the LO and RO buffers are in the high-impedance

state and the multiplexer inputs are not selected. The microinstruction control bits I¢, I7, and Ig oper-

ate the shifter as shown in Table 6-3.

Table 6-3 ALU Destination Control

RAM Q-Register RAM Q

Microcode Function Function Shifter Shifter

Octal Y RAM, |RAM, Q, Q;

I |1, | I, |Code Shift Load Shift Load | Output | LO/RI|LI/RO | LO/RI|LI/RO

L |[L |L 0 —_ — None ALU F X X X X

(F,)

L L [H] — — — — F X X X X

L |H |L 2 None ALU — —_ A X X X X

(F,)

L H | H 3 None ALU — — F X X X X

(F,)

H | L L 4 Left ALU Left Q-Reg F F, IN, Q, IN,

(Down) | (F;,) [(Down) |(Q;,)

H|L |H 5 Left ALU — — F F, IN; Q, X

(Down) | (F.,)

H|H L 6 Right | ALU Right | Q-Reg F IN, F, IN, Q;

(Up) [(F,_) (Up) (Q,_,)

H|H|H 7 Right | ALU — — F IN, F, X Q;

(Up) | (F,_,)

X = Don’t care. Electrically, the shift pinis a TTL input internally connected to a three state output which

1s in the high impedence state.

The Q-register is also driven from a 3-input multiplexer. In the no-shift mode, the multiplexer enters

ALU data into the Q-register. Operation for the shift-up or shift-down modes is the same as for the

RAM as indicated in Table 6-3.

The RAM, Q-register, and the A and B data latches are controlled by the clock input. When enabled,

data latches are also controlled by the clock input and data is clocked into the Q-register on the

positive-going transition of the clock. When the clock input is high, the A and B data latches are open

and will pass any data thatis present at the RAM outputs. When the clockis low, the latches are closed

and will retain the last data entered. If the RAM-ENis enabled, new datais entered into the RAM file

(word) defined by the B-address field when the clock input is low.

6.2.3 RAM

The FP11-A RAM register usage is shown in Figure 6-4. This unit, located in the microprocessor, is

the scratchpad area where the results of arithmetic and logical operations are temporarily stored. The

contents of the RAM are read into the ALU under control of the FP11-A microcode. It consists of 16

64-bit words (each of the 16 microprocessors (AM2901) contains a 16- X 4-bit RAM).

17 FPS

16
FCCR

15 FEC

- HR

- w

11-5300

Figure 6-4 RAM Register Usage

6-8

Six of the 64-bit registers are allocated for the accumulators and are accessible to the programmer via

the FP11-A instruction register. Registers 6 and 7 are unused while registers 10-17 are set aside for

special functions. Registers 10-17 are accessed only by the control ROM. Registers 10-14 constitute a

working storage area for the FP11-A microcode. Other functions included are the floating-point status

register, condition codes, and exception codes.

6.2.4 Arithmetic Logic Unit (ALU)

The ALU is the data path component that actually performs the arithmetic/logical operation under

command of the microcode (Table 6-4). R-inputs are fed in via a 2-input multiplexer whose inputs are

the direct data (D) inputs and the output of the A-port of the RAM. The S-inputs include the A- and

B-ports of the RAM and the Q-register outputs.

Table 6-4 Source Operand and ALU Function Matrix

I,,, Octal 0 1 2 3 4 5 6 7

ALU

Source

I, , ,Octal A.Q A.B 0Q |OB [0OA [DA D.Q DO

ALU

Function

C =L A+Q A+B Q B A D+A D+Q D

0 R Plus S

C. =H A+Q+1 | A+B+1 | Q+1 | B+1 | A+1 | D+A+1 | D+Q+1 | D+1

C. =L Q-A-1 | B-A-1 | Q-1 |B1 | A1l |A-D-1 |Q-D-1 | -D-I
] S Minus R

C. =H Q-A B-A Q B A A-D Q-D -D

C. =L A-Q-1 | A-B-1 | -Q-1| -B-1 | -A-1 | D-A-1 | D-Q-1 | D-1
R R Minus S

C,.=H A-Q A-B -Q B “A D-A D-Q D

3 RORS AVQ AV B Q B A D-A DVQ D

4 R AND S ANAQ AAB 0 0 0 DAA DAQ 0

5 R AND S ANQ A/\B Q B A DAA DAQ 0

6 R EX-OR S AVQ AVB Q B A D VA D¥Q D

7 REX-NOR S | AVQ AVB Q B A DA DVQ D

+ = Plus; - = Minus; V=0OR,A = AND:¥ =EX OR

6-9

ALU output data (F) may be routed to the Q-register or RAM, or may be multiplexed with the A-port

output data from the RAM as Y-Y3. The ALU function decode determines the arithmetic or logical

function to be performed, while the ALU destination decode determines which of the indicated regis-

ters the data is routed to or whether it will be a data output of the device itself.

The ALU source operand decode performs the actual register selection. All three of these functions are

controlled by bits 10-I8 of the control word.

6.2.5 Q-Register

The Q-register is used primarily during multiply and divide operations to store multiplier or product

operators. Its contents may be shifted left or right or remain unshifted and the register may route data

to the ALU or receive input from that device.

6.2.6 Source Operands and ALU Functions

This paragraph summarizes the arithmetic and logic functions performed by the ALU and presents

ALU logic and arithmetic functions in separate tabulations.

6.2.6.1 Logical and Arithmetic Functions - The ALU performs five logical and three arithmetic func-

tions on eight source operand pairs. ALU logic functions and appropriate control bit values (I0-15) are

shown in Table 6-5. The carry input (Cp), has no effect in logic mode but does affect operations in

arithmetic mode (Table 6-6). Both carry-in LOW (C, = 0) and carry-in HIGH (C, = 1) are defined.

6.2.6.2 Logical Functions for G, P, Cy4+4, and OVR - The four signals, G, P, Cp44, and OVR, as

described in Paragraph 6.2 are designed to indicate carry and overflow conditions when the micro-

processor is in the add or subtract mode. Table 6-7 indicates the logic equations for these four signals

for each of the eight ALU functions. The R- and S-inputs are the two inputs selected according to

Table 6-8.

6.2.7 Summary of Pin Definitions

The AM2901 pin definitions are summarized in Table 6-7. Pin assignments for the AM2901:40-pin
dual in-line package are shown in Figure 6-5.

6.3 INSTRUCTION STATUS REGISTERS AND DECODE

The FP11-A contains a 12-bit instruction register and two flip-flop’s that are bits of the status registers

(FD:FL). The possible FP11-A instruction formats are presented in Chapter 2. One bit of the status

register (FD) specifies double- or single-precision format and the other (FL) designates single- or

double-precision integer format. The outputs of these registers are fed to the floating-point instruction

decode register which consists of two 512- X 4-bit ROMS. The ROM outputs then generate micro-

processor control (MPC) outputs to control the microprogram.

6.4 TRI-STATE TRANSCEIVERS AND BUFFER

The 8097 tri-state status gales are arranged as tri-state transceivers to communicate between the

AMUX bus (KDI11-EA) and the T-bus (FP11-A), which are 16-bit tri-state buses.

74S173s, which are tri-state flip-flops, are used to buffer Unibus data being passed to the AM2901s.

6.5 BRANCH LOGIC AND TRI-STATE CONTROL

This logic is controlled by condition code and T-bus branch ROMs in the FP11-A. Branch (BUT) bits

are routed to the ROMs whose outputs condition a group of gates. These gates are enabled by the

various branch conditions that may arise during floating-point operations and direct (point) the micro-

program counter to the appropriate code in the microprogram to service the branch function. The

BUT conditions include the condition codes, exponent negative, exponent zero, carry, overflow, and

T-bus bits 0, 1, 5, 6, 8,9, 10, 11, and 14. These functions include items such as fraction Z-bit, fraction

negative, bus request, and the like.

Table 6-5 ALU Logic Mode Functions

Octal

| PR PRI Group Function

40 ANQ

4 1 AANB

45 AND DAA

46 DAQ

30 AVQ

31 AVB

35 OR DVA

36 DVQ

60 AVQ

6 1 AVB

65 EX OR DVA

6 6 DYQ

70 AVQ
7 1 AVB

75 EX NOR DVA

76 DV

72 Q

73 B

74 Invert A

77 D

6 2 Q

6 3 B

6 4 Pass A

6 7 D

32 Q

33 B

34 Pass A

37 D

42 0

4 3 §)

4 4 “Zero”’ 0

47 0

50 ANQ

51 ANB

55 Mask DAA

56 DAQ

6-11

Table 6-6 ALU Arithmetic Mode Functions

Octal C, =0 (Low) C, =1 (High)

Ic.5,.15,0 Group Function Group Function

00 A+Q A+Q+1

01 ADD A+B ADD plus A+B+1

05 D+A one D+A+1

06 D+Q D+Q+1

02 Q Q+1

03 PASS B Increment B+1

04 A A+l

07 D D+1

12 Q-1 Q

1 3 Decrement B-1 Pass B

1 4 A-1 A

27 D-1 D

22 -Q-1 —-Q

23 1’s Comp. -B-1 2’s Comp. -B

24 -A-1 (Negate) -A

17 -D-1 -D

10 Q-A-1 Q-A

| Subtract B-A-1 Subtract B-A

15 (1’s Comp.) A-D-1 (2’s Comp.) A-D

16 Q-D-1 Q-D

20 A-Q-1 A-Q

21 A-B-1 A-B

25 D-A-1 D-A

26 D-Q-1 D-Q

Table 6-7 Logic Equations for ALU Functions

Definitions (+ =OR)

P, =R,+ S,

P, =R, +S,

P, =R, +S,

P,=R, +S,

C, =G, +P,G, +P,P,G, + P,P,P,G, + P,P,P, P,C,

Q
@

a
Q

=

i
n

5 I

o

R

R050

19}

252

G; = R3S,

C, =G, +P,G, +P,P,G, +P,P,P,C_

6-12

10w%_uhw_wfl__mp_UA_AW%MWVMW_N_M&%M_%&"didfdd+'O+DN+O|D+D+ingoSAY|L
-suonuryapul'y10j_.manusgnsSQESeawrg>SAY9
-suonturgaput'y1oj_w.~.AININSgNsng‘suonenboG\/YskdwegMOSviS

D+D+1D+TH4EnD+0+194Iyity"D+'D+D+oMO']SV|v
D+%4'd%dd"D+°d'd%dtd°d'd%dtdMOSAY|¢

-suonturyoput'1oj_..m.NSNSIng‘suornenba§4+¥ysedwegS-3C
-suonrutyopur'y10_w~.AINISQNSg‘suonenba§4YySseaweg-A-S|

O")"D'did+DM+D+D’d'didtdS+d|0
dAO"nduondun,y|£+5)suotpungYAO"""Ndo48991qey

6-13

OVR Ch+a G Ds LO/R1

HHDDDHHHHDHHHDDHHHHH

Am2901

UUUUUUUUUUUUUUUUUUUU
I RAM: RAMo VCC F=0 lo l2 cp O3 Bo

RO/LI LO/RI RO/LI

NOTE: PIN 1 1S MARNEDB FOR ORJIENTATION.
11-5247

Figure 6-5 AM?2901 Pin Connections

6.6 CONSTANTS, BYTE AND SECTOR CONTROL, SHIFT CONTROL

The constant ROMs contain the fixed-value numbers required for certain floating-point functions.
The magnitude of some of the constants depends on whether the floating-point numbers are single- or

double-precisionend short or long integer. Thus, FD and FL are used as ROM-gating signals for
proper constant selection.

The BYTE control lines enable AM2901 outputs onto the T-bus by 8-bit bytes. Any high-byte/low-
byte combination may be enabled.

Sector control is used to independently select one of four 16-bit sectors of the AM2901. Each sector

clock clocks four AM?2901 slices (16 bits) which are used internally to load the RAM or Q-register.

Shift and rotate signals are generated to operate the input multiplexers to the RAM and Q-registers of

the AM2901. These registers may be left and right shifted and controls are provided for injection of 1s

or Os into the bit stream as shifts are carried out.

6-14

CHAPTER 7

MAINTENANCE

7.1 INTRODUCTION

This chapter describes some of the maintenance tools and techniques available for maintenance of the

FP11-A floating-point option. Descriptions of the diagnostics, programmer’s console, display fea-

tures, and documentation aids are also included.

7.2 FP11-A DIAGNOSTICS

Three diagnostics are available to validate and diagnose the FP11-A. However, since the KD11-EA

data path is used extensively on floating-point instructions, CPU tests should be run prior to running

floating-point diagnostics if there is any doubt about the CPU. Successful running of CPU tests does

not rule out the possibility that a KD11-EA failure may cause only floating-point instructions to fail.

The three FP11-A diagnostics are listed below with a short description of each. The diagnostics should

be run in the same order as they are listed because succeeding diagnostics have been run successfully.

Otherwise, faulty diagnosis of the failed micro-step and where the problem is located may result.

7.2.1 MAINDEC DFFPAA

This diagnostic tests the following floating-point instructions.

LDFPS

STFPS

CFCC

SETF, SETD, SETI, and SETL

STST

LDF and LDD (all source modes)

STD (mode 0 and 1)

ADDF, ADDD, and SUBD (most conditions)

7.2.2 MAINDEC DFFPBA

This diagnostic tests the following floating-point instructions.

ADDF, ADDD, and SUBD (all conditions not listed in DFFPAA)

CMPD and CMPF

DIVD and DIVF

MULD and MULF

MODD and MODF

This diagnostic also makes use of a special testing module (M8267-TA), which allows the diagnostic to

check the ability of the floating-point to abort an ADD, SUB, MVC, DIV, or MOD instruction if an

interrupt request occurs during the initial portion of one of these instructions. The extra hardware

tested using the special test module is minimal and it is expected to be used only during manufacturing

for more complete testing. The diagnostic automatically checks for the test module, and only if pre-

sent, performs the special instruction abort test. A message at the beginning of the program indicates

the presence of the test module and its use by the diagnostic. If the module is not present, no message is

generated.

7-1

7.2.3 MAINDEC DFFPCA

This diagnostic tests the following floating-point instructions.

STF and STD (all modes)

STCFD and STCDF

CLRD and CLRF

NEGF and NEGD

ABSF and ABSD

TSTF and TSTD

NEGF, ABSF, and TSTF (all source modes)

LDFBS (all source modes)

LDCIF, LDCLF, LDCID, and LDCLD

LDEXP

STFPS (all destination modes)

STCFL, STCFI, STCDL, and STCDI

STEXP

STST

7.3 KY11-LB PROGRAMMER’S CONSOLE

Normal console and maintenance features provided by the KY11-LB programmer’s console to debug

and diagnose the KD11-EA processor are directly extendable in use to the FP11-A floating-point

option. These features include the normal console functions of examining and depositing into memory

and general registers, single-instruction stepping, the console maintenance features of single micro-

instruction stepping, and displaying MPC lines, Unibus data, and Unibus address lines.

The KY11-LB displays the additional MPC line (MPC 09 L) if the proper cable connections between

the KY11-LB and FP11-A modules are made. Thus, single micro-stepping the machine through float-

ing-point micro-code is possible.

A change in the KD11-EA processor from the KD11-E processor enables the AMUX lines onto the

Unibus data lines in the manual clock mode. (KY11-LB maintenance cables are attached, the console

is in MAINT mode, and the HLT/SS key has been depressed.) The AMUX to Unibus drivers are not

enabled, however, if the current micro-step is a DATI, at which time some other device (memory, I/0)
will be driving the Unibus data lines. Since the console can display the Unibus data lines (EXAM key

in MAINT mode), the AMUX lines are being indirectly displayed most of the time. This new feature 1s

directly extendable to the FP11-A in that the AMUX lines are the data path link between the KD11-

EA and the FP11-A. At any micro-step, the AMUX lines may be displayed and while running floating-

point micro-code, the T-bus lines of the FP11-A are defaulted onto the AMUX lines. This means that

if the AMUX lines are not specifically being used in a floating-point micro-instruction, the T-bus will

be enabled onto the AMUX, allowing the T-bus to be displayed. Also, whenever the T-bus is not being

explicitly used, 2 bytes of the 64-bit data path are enabled onto the T-bus. The actual source of the data

on the AMUX lines at any micro-step may be determined from the FP11-A flow diagrams. Refer to

the KYI1-LB Programmer’s Console Maintenance Manual for more information on the use and oper-

ation of the KY11-LB for maintenance. Refer to the FP11-A print set for information regarding the

proper installation of the FP11-A and KY11-B.

7.4 FP11-A FLOW DIAGRAMS

Each micro-step in the FP11-A flow diagrams denotes what will be displayed on the Unibus data lines

when the manual clock is enabled. This information is given just below the dotted line in each block.

The information may be a constant (such as 100000) or may be defined in a general way such as

Q(B7:B0), which indicates that bytes 7 and O of the Q-register will be displayed. Refer to Figure 7-1.

7-2

1457 l 8-L
F12 —~ SR1 (F12)

E12 — ZERO

——————— JUMP/8-M

D — ZERO: F12 (B6)

|
DISPLAY INFORMATION

11-5641

Figure 7-1 Display Information

7.5 EXTENDER BOARD

A special extender board (W9042) and two extender cables are included with the FP11-A module on a

hex extender module. The FP11-A print set shows the correct methods of using the W9042 extender

board and the included cables.

7-3

APPENDIX A

OPTION POWER SPECIFICATIONS

Table A-1 PDP-11 Family Models and Options Power Requirements

Current Needed (Amperes) AC Line Current

Model/Option Description +5 V(CPU) | +5 V (Options)| -15V| +20V | -5V | +15V | (Amperes)

H765 Power Supply

(115/230 Vac)

Regulator Units *x

15 V Regulator Power line monitor 4,

(5411086)

11/05-S KD11-B 8.0 0.25 0.05

MM11-U 5.4 4.4 0.51

3 SPC 6.0

2 M930s 2.5

Total Amperes 16.6 0.25 | 44 0.51 | 0.05 5.0

11/35-S KD11-A 10.5

KE11-F 2.0

KE11-E 3.0

KJ11-A (optional) 0.5

KT11-D 2.5

KWI11-L 0.5

SPC 2.0

MO9g&1 1.25

MF11-U (16K) 6.1

M930 1.25

Total Amperes 21. 8.6 4.4 0.51 6.0

MF11-U/MM11-U* 16K sense

(Active) core memory 6.1 4.4 0.51 2.2

(Standby) (double SU) 5.4 0.56 041

MF11-UP/MM11-UP 16K sense

(Active) core with parity 7.3 4.4 0.51 2.3

(Standby) (double SU) 5.4 0.56 0.41 0.8

MFI11-L (MM11-L) 8K core

(Active) memory 34 6.0 1.8

(Standby) (double SU) 1.7 0.5 0.3

MF11-LP (MM11-LP) 8K parity

(Active) core memory 4.9 6.0 2.

(Standby) (double SU) 1.7 0.5 0.3

*Noninterleaved.

**Refer to appropriate appendix for regulator unit output current.

A-2

Table A-1 PDP-11 Family Models and Options Power Requirements (Cont)

Model/Option Description

Current Needed (Amperes)

+5 V (CPU) +5 V (Options) -15V +20V +15V

AC Line Current

(Amperes)

MM11-S

PDP-11/04

PDP-11/34A

PDP-11/34A

FP11A

MMI11-CP

MMI11-DP

MM11-WP

(Active)

(Standby)

MM11-YP

(Active)

(Standby)

Same as MM11-L

except in SU

configuration (1 SU)

KDI11-D

M9301

M9302

Memory:

See individual

memory listings.

DL11-W (optional)

M7850 (optional)

KYI1I1-LA

KY11-LB (optional)

KDII-EA

M9301

M9302

Memory:

See individual

memory listings.

DL11-W (optional)

M7850

KY11-LA

KY11-LB (optional)

M8267

8K core

memory

16K core

memory

32K parity

core memory

(double SU)

32K parity

core memory

5.0

2.0

1.2

2.0

1.0

0.1

3.0

11.5

2.0

1.2

2.0

1.0

0.1

3.0

Same as

MF11-L

7.0

3.0

3.0

6.1

5.5

5.0

5.0

0.15

0.06

0.15

0.06

3.5

4.0

3.4

0.6

3.5

0.6

0.2

0.5

0.74

0.64

0.4

0.4

0.05

0.05

7.0

9.0

9.0

2.1

0.8

2.0

0.8

A-3

Table A-1 PDP-11 Family Models and Options Power Requirements (Cont)

Current Needed (Amperes) AC Line Current

Model/Option Description +5 V(CPU) | +5 V (Options) [-15V | +20V | -5V | +15V (Amperes)

MS11-EP 4K MOS 1.5 (+5) 0.1 0.34

MUD memory 0.5 (+5B)***

MS11-FP 8K MOS 1.5 (+5) 0.1 0.36

MUD memory 0.5 (+5B)***

MSI11-JP 16K MOS 1.5 (+9) 0.1 0.4

MUD memory 0.5 (+5B)***

M7850 Parity control for 1.0

MUD memories

***Current from +5 Vb rail if Battery Backup Option is used. If there islno Battery Backup Option, then 2.0 A is drawn trom +5 V.

Table A-2 PDP-11 Family Options Power Requirements

AC Line
Power Current Needed (Amperes)* Current

Option Mounting Code Description Harness +5V | -15V [|-SV |+I5V (Amperes)

AA11-D 1 SU D/A converter subsystem 7009562 3.0 0.3

AR-11 SPC ADC and DACs N/A 5.0 0.5

BA614 (AA11-D) D/A converter 3.0 0.3

BM792-Y SPC Bootstrap loader 0.3 0.3

CDI11-A/B 1 SU 1000 cpm, 80-col. 7010117 2.5 0.25

card reader controller

CDI11-E 1 SU 1200 cpm, 80-col. 7010117 2.5 0.25

card reader controller

CM11 SPC 200 cpm, 80-col. 1.5 0.15

card reader controller

*+20 V not used in this configuration.

A-4

Table A-2 PDP-11 Family Options Power Requirements (Cont)

AC Line
Power Current Needed (Amperes)* Current

Option Mounting Code Description Harness +5V | -1§V |5V |+I§V (Amperes

CR11 SPC 300 cpm, 80-col. 1.5 0.15

card reader controller

DA11-DB 1 SU Unibus link 4.0 0.4

DA11-F 1 SU Unibus window 7010117 5.0 0.5

DB11-AT 1 SU Bus repeater 7009562 3.2 0.31

DC11-A 1 SU Dual clock and system unit 7010117 0.2 0.02

DC11-DA (DCI11-A) Full duplex module set 2.0 0.2 0.2 0.2

DDI11-B 1 SU Peripheral mounting panel 7010117

DHI11-AA DLB SU Prog. async 16-line multiplexer 7010118 8.4 0.42 0.9

DHI11-AD DLB SU @ Modern control 7010118 10.8 0.665 0.4 1.33

DJI11-A 1 SU Async 16-line MUX 7010117 4.7 0.25 0.25 0.6

DJ11-AC 1 SU Async 16-line MUX 1.0 0.25

DLI11 SPC Async interface 1.8 15 016 0.21

DMI11-B (DHI11) 16-line modem control (DHI11) 2.4 0.24

DNI11-A 1 SU Auto calling system unit 7009562 2.6 2.5

DP11-D 1 SU Half/full duplex sync interface 7009562 2.56 0.07 0.0+« 0.28

DP11-C (DP11-D) Data/sync register extender 0.77 0.08

DPI11-K (DP11-D) Internal DP11 clock 0.18 0.02

DQ11-D 0.62

DQI11-D 1 SU Full/half duplex sync interface 7010117 6.0 0.07 0.04 0.62

*+20 V not used in this configuration.

T When installing a DB11-A bus repeater in a BA11-K 10.5 Inch Mounting Box, the AC LO and DC LO wires must be removed from the harnesses of all the options

(located in the same box) after the DB11-A.

Table A-2 PDP-11 Family Options Power Requirements (Cont)

Power Current Needed (Amperes)* éfr:::let

Option Mounting Code Description Harness +5V -15V -5V |+15V (Amperes)

DQI11-E 1 SU Full/half duplex sync interface 7010117 6.0 0.07 0.04 0.62

DFCI11-A (DU/DP CLOCK) Level converter clock recovery 0.4 0.02 0.02 0.05

DQI11-K (DQ11-D/A) Crystal clock 0.05 0.012

DRI11-B SPC General purpose DMA 7009562 3.3 0.32

DR11-C 1 SU General purpose digital interface 1.5 0.15

DRI11-K SPC Digital I/O N/A 0.15 0.6

DUI1-D SPC Full/half duplex 2.2 2.5 0.05 0.27

DUI1I-EA SPC Sync prog. interface 2.6 0.20 0.07 0.33

DVII DBL SU Sync MUX 13.5 .083 0.435 0.5

KGI11-A SPC Comm. arith unit 1.2 0.12

KWI11-L (CPU) Line clock 0.¢ 0.08

KW11-P SPC Prog. line clock 1.0 0.1

LC11-A SPC LA30 control 1.5 0.15

LP11-R SPC 1200 LPM printer 1.0 0.1

LP11-S SPC 900 LPM printer 1.0 0.1

LP11-W SPC 240 LPM printer 1.5 0.15

LP11-V SPC 300 LPM printer 1.5 0.15

LSI1-A SPC 60 LPM printer 1.5 0.15

LVII-B SPC Electrostatic printer, 500 LPM 1.5 0.15

MR11-DB 2 SPC Bootstrap

*+20 V not used in this configuration.

A-6

Table A-2 PDP-11 Family Options Power Requirements (Cont)

p Current Needed (Amperes)* AC Line
ower Current

Option Mounting Code Description Harness 5V]| IS5V | -5V | +ISV (Amperes)

PCl11 SPC Papertape 1.5 0.15

PR11 SPC Papertape (reader)

RHI11 DBL SU 1.9 0.19

RK11-D SU Disk and control 7010115 8.0 0.8

TAlI-A SPC Dual cassette interface

VTI11 SU Graphic processor 6.5 | 100. 0.8

VRI11-A SPC Pushbutton box 4. 0.4

*+20 V not used in this configuration.

A-7

FP11-A FLOATING-POINT PROCESSOR Reader’s Comments
USER’S GUIDE

EK-FP11A-UG-001

Your comments and suggestions will help us in our continuous effort to improve the quality and usefulness of our

publications.

What is your general reaction to this manual? In your judgment is it complete, accurate, well organized, well

written, etc.? Is it easy to use?

What features are most useful?

What faults or errors have you found in the manual?

Does this manual satisfy the need you think it was intended to satisfy?

Does it satisfy your needs? Why?

O Please send me the current copy of the Technical Documentation Catalog, which contains information on

the remainder of DIGITAL’s technical documentation.

Name Street

Title City

Company State/Country

Department Zip

Additional copies of this document are available from:

Digital Equipment Corporation

444 Whitney Street

Northboro, Ma 01532

Attention: Communications Services (NR2/M15)

Customer Services Section

Order No. EK-FPI1A-UG-001

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Digital Equipment Corporation

Technical Documentation Department

Maynard, Massachusetts 01754

dlifgliltiall
digital equipment corporation

Printed in U.S.A.

