PDP-8 Family

Commonly Used

Utility Routines

(Dumps, Verifier, Duplicator,

Conversion and Printing Routines)

For additional copies, order NO. DEC-8I-RZPA-D from the
Program Library, Digital Equipment Corporation, Maynard,
Mass, 01754.

PDP-8

LIBRARY

First Bdition. Tanuarv 1971

This volume is a collection
of manuals printed 1965-1970.

Copyright @ 1971 by

Digital Equipment Corporation

The following are trademarks of Digital

Equipment Corporation, Maynard, Mass.

DEC PDP COMPUTERLAB
FLIPCHIP FOCAL UNIBUS
DIGITAL OMNIBU

PREFACE

This document is a collection of proven routines for
the PDP-8 family of computers. These routines in themselves
are useful to many programmers and are all illustrative of
assembly language programming techniques. The user is advised
to first investigate the sections on assembly language pro-

gramming in Programming Languages and Introduction to Pro-

gramming 1970.

Chapter
Chapter

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

Chapter

Chapter

Chapter
Chapter
Chapter
Chapter
Chapter

Chapter

10

11

12

13

14

15

16

[¢e]

l._l

CONTENTS

RIM Loader

Binary Loader
(33-ASR, High-Speed Reader)

RIM Punch
(33-ASR, High-Speed Punch)

Binary Punch
(33-ASR, High-Speed Punch)

Octal Memory Dump
(33-ASR, High-Speed Punch)

Teletype I/0 Subroutines
(33-ASR)

Master Tape Duplicator/Verifier
(High-Speed Reader/Punch)

Incremental Plotter Subroutine
(Type 350 Control and Plotter)

Decimal to Binary Conversion and Input
(Single Precision, Signed or Unsigned,
33-ASR)

Decimal to Binary Conversion and Input
(Double Precision, Signed or Unsigned,
33-ASR)

BCD to Binary Conversion, Single Precision
(33-ASR)

BCD to Binary Conversion, Double Precision
(33-ASR)

Unsigned Decimal Integer Print, Single
Precision (33-ASR)

Signed Decimal Integer Print, Single
Precision (33-ASR)

Unsigned Decimal Integer Print, Double
Precision (33-ASR)

Signed Decimal Integer Print, Double
Precision (33-ASR)

Binary to BCD Conversion

10-1

12-1

13-1

14-1

Formerly
DEC-08-LRAA-D

CHAPTER 1
RIM LOADER

1.1 ABSTRACT

reading and storing into core information contained in Read-In--
Mode coded tapes via the 33-ASR perforated tape reader or high speed

perforated tape reader.

1.2 REQUIREMENTS

The RIM Loader requires 17 (218) core locations and is used

10
with any PDP-8 family computer with a 33-ASR TeletypeC:). A high

speed perforated tape reader is optional.

1.3 USAGE

1.3.1 Loading
To place the RIM Loader into memory via the console switches,

proceed as follows:

a. Set 7756 in the switch register (SR).
b. Press LOAD ADDress.
c. Set the first instruction (6032 for 33-ASR).
d. Press DEPosit.

Set the next instruction (6031 for 33-ASR).
f. Press DEPosit.

g. Repeat steps e. and f. until all instructions have been
deposited.

1.3.2 Start-up/Entry

a. Place the perforated tape which must be in RIM format in

perforated-tape reader.

®PDP,- Progr

rog
the Digital

+
oy
(D

E

med Da

a t
Equipment Corporation.

(gkeletype is a trademark of the Teletype Corporation.

b. Make sure the reader is set to LINE.

c. Place the starting address (7756) in the switch register.
d. Press the LOAD ADDress key.

e. Press the START key.

f. If the 33-ASR version is used, move the reader control
to START.

There are no error stops in this routine.

1.4 DESCRIPTION

This is a basic routine that alternately assembles an address
from two successive characters on tape, then assembles data contained
in the next two characters and stores this data at the associated

address.

Because a tape in RIM format is twice as long as a comparable
tape in binary format, it is suggested that the RIM Loader only be
used to load the Binary Loader. After this, the Binary Loader should
be used.

Any tapes to be read by this program must be in Read-In-Mode
coded format.

Leader tape for RIM format tapes should be about two feet of
leader-trailer codes; i.e., any code with channel 8 punched,
preferably code 200. (Depress ALT MODE, CTRL, and @ keys simultaneously
to punch 200 leader trailer.)

Characters representing the absolute, machine language program
are arranged in an alternating pattern of address, contents, address,
contents, etc. Addresses have channel 7 punched, channel 8 not

punched. Contents have no punch in channel 7 or 8.

Trailer tape should be the same as leader tape.

1.5 EXAMPLE OF READ-IN-MODE CODED FORMAT

Tape Channel
87 654 S 321

10 000

01 Al
00 A3

00 D1
00 D3

000

A2
Ad

D2
D4

Channels 8 and 7 Indicate

Leader code is always found first.

Absolute octal Address of data in next
two characters.

Octal Data to be stored at preceding
address.

This pattern repeats in similar four character groups until

10 000

000

the concluding Trailer Code is
encountered.

Note that a 3-bit group (a single octal character) is designated

by the notation Al above.

The 1 in this notation indicates that this

particular octal character is used as the most significant three bits
in specifying the absolute address into which following data is
deposited. Correspondingly, A2, A3, and A4 designate successively
less significant octal characters in the absolute address.

The remarks above apply equally to data as specified by the

notation D1, D2, D3,

1.6

PROGRAM LISTING

1.6.1 33-ASR Version
Abs Octal
Addr. Contents Instruction
7756, 6032 BEG, KCC
7757. 6031 KSF
7760, 5357 JMP .-1
7761, 6036 KRB
7762, 7106 CLL RTL
7763, 7006 RTL
7764, 7510 SPA
7765, 5357 JMP BEG+1
7766, 7006 RTL
7767, 6031 KSF
7770, 5367 JMp .-1
7771, 6034 KRS
7772, 7420 SNL
7773, 3776 DCA I TEMP
7774, 3376 DCA TEMP
7775, 5356 JMP BEG
7776, 0 TEMP, 0
77717, JMP start of 0

BIN loader
1.6.2 High-speed Version
Abs Octal
Addr. Contents Instruction
7756 6014 BEG, RCF
7757 6011 RSF
7760 5357 JMP .-1
7761 6016 RCC
7762 7106 CLL RTL
7763 7006 RTL
7764 7510 SPA
7765 5374 JMP TEMP-2
7766 7006 RTL
7767 6011 RSF
7770 5367 JMP .-1
7771 6016 RCC
7772 7420 SNL
7773 3776 DCA I TEMP
7774 3376 DCA TEMP
7775 5357 JMP BEG+1
7776 /) TEMP, o]
7777

Comments

/clear AC and flag
/skip if flag = 1
/looking for char
/read buffer

/ch8 in ACO
/checking for leader
/found leader
/OK,ch7 in link

/read, do not clear
/checking for address
/store contents
/store address

/next word

/temp storage

Comments

- /clear flag and fetch char.

/skip if flag = 1

/wait for fetching to be done
/put char.in AC; fetch another
/rotate channel 8 to

/bit @ of AC

/was it set (leader-trailer)?
/yes - leader trailer

/no - rotate channel 7 to link
/character fetched yet?

/no - wait for it

/yes - add it to AC; fetch
/another

/is 12-bit word in AC an
/address?

/no - store in last stored
/address

/yes - store new address

/get next word

/temporary storage

/start of binary loader

1.7 OTHER POSSIBLE RIM LOADERS
Variations of the RIM Loader may prove useful in special cases
where, due to circumstances, RIM must be located in a different

section of core.

On the other hand, the equipment involved may make it necessary
to use a variation of RIM tailored specifically to a particular situa-
tion. As an example of this, consider a special-purpose PDP-8 system

used for text editing. In

------- o =9 12 L) 131 a w2

this system; no 33-ASR's are used. In-
stead, several typewriters which use a different code (including
provision for upper and lower case) are time-shared with respect to

input and output with a central PDP-8.

Please consult the Applied Programming Department at Digital
Equipment Corporation for details of other RIM Loaders currently

available or for assistance in special cases.

1.8 USE OF PDP-8 SYSTEM PROGRAMS
Certain system programs, such as the DECtape Library System
(DEC-08-SUCO) , require that the RIM Loader be used precisely as

listed in section 1l.6.

1.9 USING THE RIM LOADER WITH EXTENDED MEMORY

The RIM Loader as described in section 1.6 can run in any
memory field provided that it is loaded into memory following a
slightly different procedure than that described in 1.3.1l. The
Instruction Field register and the Data Field register must both be
set to N (a number from 0 to 7) where N indicates the memory field
in which the RIM Loader is to be placed. This is easily done.

a. Set the DATA FIELD extension of the switch register to N.

b. Set the INSTRUCTION FIELD extension of the switch register
to N.

c. Follow procedure in steps a through g in section 1.3.1.

Formerly
DEC-08-LBAA-D
CHAPTER 2
BINARY LOADER
2.1 ABSTRACT
The Binary Loader is a short routine for reading and storing informa-

tion contained in binary-coded tapes, using the 33-ASR reader or the
High-Speed Reader.

The Binary Loader accepts tapes prepared with the PAL III, PAL-D,
PAL8, or MACRO-8 assemblers. Diagnostic messages may be included on
tapes produced when using either PAL or MACRO. The Binary Loader ignores

all diagnostic messages.

2.2 REQUIREMENTS

This program occupies 9410 (1368) core locations.

The Binary Loader can be used with a system consisting of the
PDP-8 and a 33-ASR Teletype only. On the other hand, the same program
operates with systems including the High-Speed Tape Reader and/or the
Memory Extension Control. This loader is compatible with the 552
DECtape Library System and the TCOl DECtape Library System.

2.3 LOADING PROCEDURES
The Binary Loader is brought into memory by the RIM or Read-In-
Mode Loader. This requires that the Binary Loader tape itself be in

RIM format. See Introduction to Programming and Chapter 1 for dis-

cussions of the RIM Loader and RIM format.

NOTE: Memory Extension users; refer to Special Requirements
section.
Proceed as follows:

a. Load the RIM Loader for the type of reader which is to load
the Binary Loader.

b. Place the Binary Loader tape in the reader.
c. Make sure that the reader is on-line.

d. Place the starting address of the RIM Loader (7756) in
the SWITCH REGISTER.

e. Press the LOAD ADDRESS key.
f. Press the START key.

g. If the 33-ASR is the chosen reader, move the READER CONTROL
switch to the START position.

2-1

2.3.1 Switch Setting

NOTE: Memory Extension users see "Special Requirements”
section.

2.4 USING THE PROGRAM

a. Place the tape to be loaded (which must be in binary format)
in either the 33-ASR Tape Reader or the High-Speed Reader,
with leader-trailer under the read head. When using the
33-ASR, make sure the reader is on-line. When using the
High-Speed reader, make sure the reader is on.

b. Place the starting address of the Binary Loader (7777) in the
SWITCH REGISTER.

c. Press LOAD ADDRESS key.

When using the High-Speed Reader, change the SWITCH REGISTER
to 3777 (bit 0 = 0). Omit this step if using the 33-ASR.

d. Press console START key.

When using the 33-ASR, move the READER CONTROL switch to
START.

2.5 ERRORS
When any of the PDP-8 assemblers is used to produce a binary tape,
a checksum is automatically punched at the end of the binary tape. The

checksum is the sum of all data on the tape including the origin word.

To be more specific, it is the sum of all data contained on tape
that will enter the accumulator (AC) in bit positions 4 through 11 from,
for example, the 33-ASR Reader buffer. The sum is accumulated charac-

ter by character and not word by word. Overflow (a carry out of the

most-significant bit position of the AC) is ignored both when calculat-
ing a checksum (which is done by the assembler used) and when the

Binary Loader accumulates a checksum while loading a tape.

If the checksum accumulated while using the Binary Loader does
not agree with the last two characters on the tape (i.e., the checksum
on the tape calculated and placed there by the assembler), an error

has occurred.

When the computer halts, the display lights will be static, the
memory buffer (MB) will contain 7402, and the contents of the AC will

be unequal to zero if a checksum error has occurred.

Restart the computer after the tape has been repositioned by
pressing the CONTINUE key.

2.6 DETAILS OF OPERATION AND STORAGE
This program furnishes the basic means by which the contents of

binary-coded tapes are loaded into core.

The heart of the program is a short subroutine (tagged BEGG) which

operates in outline as follows:

The incoming character is tested to see if it is a "rubout" (all

eight tape channels punched).

If this is the case, all subsequent information coming from the

reader is ignored until another rubout is detected.

This is the mechanism by which assembler diagnostic messages are
detected. They are preceded and followed by a single rubout char-
acter. Within a diagnostic message, in contrast to the rules concerning
the balance of the binary tape, any character is valid except, of course,
a single rubout character which would prematurely conclude the
diagnostic message. Note that two consecutive rubouts within a diagnostic

message would, in effect, be ignored.
Next the character is tested to see if it is leader or field setting.

These tests are listed in the order in which they are performed.
If none of the actions indicated have occurred upon exit from the BEGG
subroutine, the character is part of the origin address, contains part
of a data word, or is a part of the checksum, and the appropriate

course is followed by the main routine.
2.7 SPECIAL REQUIREMENTS OR FORMATS
2.7.1 External Format
Tapes to be read by this program must be in binary-coded format

and have about 1 foot of leader-trailer code (any code with channel 8

punched; preferably code 200).

2-3

The first two characters represent the address (origin) into which
the first command on the next portion of the tape will be placed.

Successive commands are placed in memory at addresses:
origin+l,origin+2,...,origin+n.

The initial character of the origin has no punch in channel 8,
while channel 7 is punched. The second character designating the origin

has no punches in either channel 8 or 7.

A concluding 2-character group representing the checksum has no

punches present in channels 8 or 7.
Trailer tape is similar to leader.

Reference to Program Listing indicates that after the BEGG sub-
routine tests to see if the character just read was leader/trailer,
a test is made to determine whether the character is a "field setting."
This is a reference to the fact that the assemblers produce tapes on

which characters of the form

11 XXX 000
indicate the memory field into which the following data is to be
loaded. 1If, for example XXX were 101, all data following the field

designator should be loaded into memory field five. Unlike origins and

other data, field settings are not included in the checksum.
2.7.2 Example of Binary Loader Format

Tape Channel Channels 8 and Program Notes

87 654 S 321 7 Indicate 7 Proper

10 000 . 000 Leader No

01 000 . 010 Origin No In octal the origin 0200.
00 000 . 000 Loading will start at 0200.
00 111 . 010 Contents of 200 Yes The command 7200 or CLA.

00 000 . 00O

00 011 . 010 Contents of 201 Yes The command 3276 or
00 111 . 110 : DCA 7 076.

Example of Binary Loader Format (Cont.)

Tape Channel Channels 8 and Program Notes

87 654 s 321 7 Indicate Proper)

00 111 . 100 Contents of 202 Yes The command 7402 or HLT.
00 000 . 010

00 000 . 100 Checksum No The program determines

00 010 . 010 that these two characters

are the checksum since
trailer follows.

10 000 . 000 Trailer No

The octal checksum in this example is 0422. Note that
this is the following sum:

102 Origin

000

072 First word
000

032 Second word
076

074 Third word
002

422

2.7.3 Memory Extension Usage

It is recommended that the Binary Loader exist in field 0. This
ensures a permanent program lining around location 7754 and 7755 which
are used for TCOl DECtape. The loader can exist in any field, though
caution must be taken not to use location 7754 and 7755 in field 0 (this
applies only to DECtape users). Also, when the proper field is chosen
it should be noted that the RIM Loader must already be in that field.

Binary Loader Loading Procedure for Extended Memory Users

a. Place the Binary Loader tape in the reader.

b. Place the proper FIELD in the INSTRUCTION FIELD REGISTER
when putting the starting address of the RIM Loader (7756)
in the SWITCH REGISTER.

c. Press the LOAD ADDRESS key.
d. Press the START key.

e. Start the reader. 33-ASR: press READER CONTROL to start.
High-Speed Reader: should already be ready to start.

2-5

Cperation and Usage for Extended Memory Users

A.

d.

Place the tape to be loaded (tape must be in binary
format) in the reader. When using the 33-ASR, make

sure reader is on-line. When using the High-Speed Reader,
make sure reader is on and tape is positioned with
leader/trailer over read head.

In the DATA FIELD register place the field in which the
program is to be loaded. 1In the INSTRUCTION FIELD
register place the field that the Binary Loader is in.

Press LOAD ADDRESS key.

When using the High-Speed Reader, change the SWITCH
REGISTER TO 3777 (bit 0 = 0). Omit this step if using
the 33-ASR.

Press console START key.

Starting Program

After program has been successfully loaded, place starting
address of program in SWITCH REGISTER. Place the field
where program exists in the FIELD INSTRUCTION REGISTER.

Press LOAD ADDRESS key.

Press START key.

2-6

2.8

7612
7613
7614
7615
7616

7626
7627
7630
7631
7632
7633
7634
7635
7636
7637
7640
7641
7642
7643
7644
7645
7646
7647
7650

7651
7652
7653
7654
7655
7656
7657
7660
7661
7662
7663

7664

7665
7666
7667
7670
7671
7672

PROGRAM LISTING

0000
0000
0000
0000
0000

0000
3212
4260
1300
7750
5237
2212
7040
5227
1212
7640
5230
1214
0274
1341
7510
2226
7750
5626

1214
0256
1257
3213
5230
0070
6201
0000
0000
6031
5262

cnas

(S AVES] e
3214
1214
5660
6011
5270
6016

/COPYRIGH T
/MAYNARDS

/BINARY AND DECTAPE LOADERS FOR

/555 CONTROL

*7612
SWITCH,
MEMTEM,
CHAR,
CHKSUM,
ORIGIN,

*7626

(@NeNeNeNo)

/EXTRACT ERRORS, FIELD, L/T
0

BEGG,

FMASK,
CHANGE,
READ

LOR,

HIR,

DCA
JMS
TAD
SPA
JMP
ISZ

- CMA

JMP
TAD
SZA
JMP
TAD
AND
TAD
SPA
ISz
SPA
JMP

TAD
AND
TAD
DCA
JMP
70
CDF
0

0
KSF
JMP
KRB
DCA
TAD
JMP
RSF
JMP
RRB

SWITCH
READ
M376
SNA CLA
.+4
SWITCH

BEGG+1
SWITCH
CLA
BEGG+2
CHAR
MASK
M200

BEGG
SNA CLA
I BEGG

CHAR
FMASK
CHANGE
MEMTEM
BEGG+2

CHAR
CHAR
I READ

RFC

DIGITAL EQJIP9ENT CORPORATION
MASSACHJSZITS

/SET SWITCH

/GET A CHARACTER

/TEST FOR 377

/NO

/YES: COMPLEMENT SWITCH

/NOT 377

/IS SWITCH SET?

/YES; IGNORE

/NO; TEST FOR CODE
/TYPES

/DATA OR ORIGIN
/DATA, ORIGIN, or L/T

/FIELD SETTING

/CONTINUE INPUT

/WAIT FOR FLAG

7673
7674

7675
7676
7677
7700
7701
7702
7703
7704
7705
7706
7707
7710
7711
7712
7713
7714

7715
7716
7717
7720
7721
7722
7723
7724
7725
7726
7727
7730

7731
7732
7733
7734
7735

7736
7737
7740
7741
7742

7743
7744
7745
7746
7747
7750
7751
7752

5265
0300

4343
7041
1215
7402
6032
6014
6214
1257
3213
7604
7700
1353
1352
3261
4226
5313

3215
1213
3336
1214
3376
4260
3355
4226
5275
4343
7420
5336

3216
1376
1355
1215
5315

0000

3616
2216
7600
5332

0000
1376
7106
7006
7006
1355
5743
5262

MASK,
/TRAILER CODE SEEN
BEND,

M376,
BEGIN,

GO,

CHEX,

MEMFLD,

M200,

ASSEMB,

LORI,

JMP LOR+3
300

JMS ASSEMB
CIA

TAD CHKSUM
HLT

KCC

RFC

RDF

TAD CHANGE
DCA MEMTEM
CLA OSR
SMA CLA
TAD HIRI
TAD LORI
DCA READ+1
JMS BEGG
JMp .-1

DCA CHKSUM
TAD MEMTEM
DCA MEMFLD
TAD CHAR
DCA WORD1
JMS READ
DCA WORDZ2
JMS BEGG
JMP BEND
JMS ASSEMB
SNL

JMP MEMFLD

DCA ORIGIN
TAD WORD1
TAD WORD2
TAD CHKSUM
JMP GO

0

DCA I ORIGIN
ISZ ORIGIN
7600

JMP CHEX

0

TAD WORD1
CLL RTL

RTL

RTL

TAD WORD2
JMP I ASSEMB
JMP LOR

/SAVE FIELD INSTRUCTION

/IGNORE LEADER

/LOOK AHEAD
/TRAILER, END

7753
7754

7755

7777

ASSEMB
BEGG
BEGIN
BEND
CHANGE
CHAR
CHEX
CHKSUM
FMASK
GO

HIR
HIRI
LOR
LORI
MASK
MEMFLD
MEMTEM
M200
M376
ORIGIN
READ
SWITCH
WORD1
WORD2

0006
0000

0000

5301

7743
7626
7701
7675
7657
7614
7732
7615
7656
7715
7670
7753
7662
7752
7674
7736
7613
7741
7700
7616
7660
7612
7776
7755

HIRT, HIR-LOR
WORD1=7776
WORD2Z, 0
*7777
JMP BEGIN

2-9

Formerly
DEC—OS—PMPO—D

CHAPTER 3

RIM PUNCH

3.1 ABSTRACT

The RIM Punch program provides a means of punching information
contained in selected blocks of core memory as RIM-coded tape via the
33-ASR Perforated Tape Punch or 75E High Speed Punch. The punch pro-

gram may occupy either low or high memory depending on the version used.

3.2 REQUIREMENTS

The RIM Punch program will run on any PDP-8 family computer
with a 33-ASR (Teletype) or 75E (high-speed) punch.

This program requires 6110 (758) memory locations.

Program tapes are as follows:

33-ASR Version High-speed Punch Version
Low Memory Binary DEC-08-PMP1-PB Low Memory Binary DEC-08-PMP4-PB
Low Source DEC-08-PMP1-PA Low Source DEC-08-PMP4-PA
High Memory Binary DEC-08-PMP2-PB High Memory Binary DEC-08-PMP3-PB
High Source DEC-08-PMP2-PA High Source DEC-08-PMP3-PA

3.3 LOADING PROCEDURES

This routine is loaded using the Binary Loader. See Introduction

to Programming or Programming Languages for a complete description of

the Binary Loader. (This routine cannot be called as a subroutine.)
3.4 USING THE PROGRAM
The SWITCH REGISTER is used to enter the initial and final address

of each block of core memory to be punched.

a. Make sure 33-ASR or 75E punch is on.

b. Set the starting address 0041 (or 7441 if using the high-
memory version) into the SWITCH REGISTER and press the
LOAD ADDRESS key. Next press the START key.

c. The computer halts. Set the initial address of the block
to be punched into the SWITCH REGISTER and press the
CONTINUE key.

d. The computer halts. Set the final address of the block
to be punched into SWITCH REGISTER and press the CONTINUE
key.

Note that the final address must be larger than the initial
address.

e. A block of leader (code 200) tape is punched followed
by the selected block of data in RIM format.

f. The computer halts. Steps (c) and (d) can now be repeated
to punch as many blocks of data as desired. To terminate
the tape, proceed as described in (g) below.

g. Set the terminating address 0074 (7474) into the SWITCH
REGISTER and press the LOAD ADDRESS key. Next press the
START key and a block of trailer tape is punched,

3.5 DETAILS OF OPERATION AND STORAGE
Reference to section 1.7, Flow Chart, will illustrate the follow-

ing discussion.

After entry, a short subroutine is entered to punch a block of
leader. Next the initial address is picked up and the six most
significant bits are rotated right, masked out, added to 0100 (in
order to punch channel 7), and punched. The least-significant six

bits of the address are next masked out and punched.

A similar process is followed to punch the data associated with
the corresponding address except 0100 is not added before the first
character is punched.

This process is repeated until the final address is reached; then
the computer halts at the starting address. If more blocks of data

are to be punched, this is done as explained in step (f) above.

The routine is entered at a different address to punch the final

trailer.

3.6 EXTERNAL DATA
See Chapter 4 of Introduction to Programming for a description

of RIM paper tape format.

3.7 FLOW CHART

LEADER DATA BLOCK ENTRY TRAILER ENTRY

PUNCH TRAILER

BEG HALT

LOAD
INITIAL ADDRESS

HALT

LOAD
FINAL ADDRESS

PUNCH LEADER

y
PADD LOAD ADDRESS

SHIFT RIGHT 6

ADD CHANNEL 7

PUNCH

LOAD RIGHT HALF
ADDRESS

PUNCH

PCON LOAD CONTENTS

SHIFT RIGHT 6

PUNCH

LOAD RIGHT HALF
CONTENTS

PUNCH

BLOCK
PROCESSED

NO

INCREMENT
ADDRESS

2

(o]
.~

7441
7442
7443
T444
7445
7446
1447
7459
7451
7452
7453
7454
7455
7456
7457
7460
7461
7462
7463

7464
7465
7466
74567
7470
7471
7472
7473
7474
7475
7476
74717
7539
7501
7502
7503
7504
7595
7526
7597
7510
7511
7512
7513

TNTVAMATIRYE T T NemraT o~
e N

7492
7634
3322
7492
71694
3323
4276
1322
4336
1326
4314
1322
2325
4314
1722
43956
4314
1722
0325

4314
1322
7241
1323
7659
5275
2322
5259
4276
5241
n000
1327
3324
1333
4314
2324
5301
5676
ppoe
7312
7312
78012
2325
5796

/CPYRToeAT

1271

/DEC-0B~PMP2-PA
/RIM PUNCH 33~-ASx HIGH MEMORY

*7441

BEG» HLT
LAS
DCA
HLT
LAS
DCA
JMS

PADD, TAD
J¥S
TAD
JmSs
TAD
AND
JMS

PCON, TAD
JMSs
JiMs
1AD
AND

JMS
TAD
Cla
TAD
SNA
JMP
I1sZ
JnpP
J4S
JMP
LTS» 9]
TAD
nca
MORE> TAD
JMS
I1sz
JMP
JMP
SHFT» 4]
RTR
RTR
RTR
AND

JMP 1 SHFT

IA

FA
LTS
IaA
SHFT
CH7
PUN
Ia
SLé
PUN
I IA
SHFT
PUN
1 IA
SLé6

PUN
IA

FA

cLA
e+ 4
IA

PADD
LTS
BEG

M101
CTR
C200
PUN
CTR
MORE
I LTS

SL6

DIGIFAL
ZARYNA LD MASSACH S5l s

DAJI2HENT CO<PoxAaTllon

ZENTRY FOR LEADER DATA

/SET INITIAL ADDRESS

/SET FINAL ADDRESS

/G0 TO L/T SUBROUTINE
/PUNCH ADDRESS

/PUNCH CONTENTS

/TEST FOR END

/ENTRY FOR L/T

/L/T SUBROUTINE

/MORE L-T CODES

/SHIFT RIGHT

BLOCK

7514
7515
7516
7517
7528
7521

7522
7523

7524

7525

7526
75217
7530

2041
po42
0043
2044
2045
0046
o047
Po50
0251
2852
PB53
2954
P0SS
0056
0B57
o060
2061
pp62
@86 3
D064
2865
0066
0e67
2070
P71
0o72
Pa73
0874
@075

P02
6246
6941

5316
72089
5714
0089
0o09
25153
Ba17
2100
1677
0200

1402
7604
3122
7402
7604
3123
4976
1122
4106
1126
4114
1122
2125
4114
1522
4106
4114
1522
g12s
4114
1122
7041
1123
7650
5075
2122
5050
4076
5041

PUN»

1A,
FAs
CTRs
SL6»
CHT»
M191,
Cc209,

/COPYRIGHT

/I3 YNARD S

1971

DIGITAL

4ASSACHUSETTS

/DIGITAL-8-4-U~-RIM
/RIM PUNCH 33 LOW MEMORY

*41
BEG»

PADD.»

PCON»

HLT
LAS
DCA
HLT
LAS
DCA
JMS
TAD
JMS
TAD
JMS
TAD
AND
JMS
TAD
JMS
JMS
TAD
AND
JMS
TAD
CIA
TAD
SNA
JMP
152
JMp
JMS
JMP

FA
LTS
Ia
SHFT
CH7
PUN
IA
SLé
PUN
I IA
SHFT
PUN
1 1A
SLé6
PUN
1A

FA
CLA
ot4
1A
PADD
LTS
BEG

/PUNCH SUBROUTINE

LAJIPHENT CORPORATION

/ENTRY FOR LEADER DATA BLOCK

/SET INITIAL ADDRESS

/SET FINAL ADDRESS

/G0 TO L/T SUBROUTINE

/PUNCH ADDRESS

/PUNCH CONTENTS

/TEST FOR END

/ENTRY FOR L/T

po76
o077
2100
P1a1
ploa
pi03
2104
9105
P106
2107
9110
P11l
plie
P113
2114
p115
2116
P117
p120
g1zl
plaez
P123
124
p125
pl26
p127
2130

7441

7442
7443
1444
7445
71446
7447
7459
7451
7452
7453
7454
7455
7456
7457
T460
7461
7462
7463
7464

P00
1127
3124
1130
4114
2iz4
5191
5476
po0o
7012
7812
7012
p12s
5506
0000
6046
6041
5116
7200
5514
vooo
PO
o000
o717
D160
76717
p200

7482
71634
33e2
1402
71604
3323
42176
1322
4306
1324
4314
1322
A325
4314
1722
4306
4314
1722
325
4314

LTS, 1] /L/T SUBROUTINE
TAD M101
DCA CTR
MORE» TAD C200
JMS PUN
1SZ CTR
JMP MORE /MORE L-T CODES
JIP I LTS
SHF T, 2 /SHIFT RIGHT
RTR
RTR
RTR
AND SL6
JMP I SHFT
PUN»] /PUNCH SUBROUTINE
TLS
TSF
JMP -1
CLAa
. JMP I PUN
1A, 2
Fa, 2
CTR» 2
SL6, 77
CH7.» 100
M1@1, -101
C200., 200

/COPYRIGHT 1971 ODIGITAL ZUIPMENT CIRPIRATIIN
/MAYNARD, MASSACHJSZTTS
/DIGITAL-8-4-U=~RIM
/RIM PUNCH 75 HIGH MEMORY
%7441
BEG» HLT /ENTRY FOR LEADER DATA BLOCK
LAS /SET INITIAL ADDRESS
DcA IA
HLT
LAS /SET FINAL ADDRESS
DCA FA
JMS LTS /GO TO L/T SUBROUTINE
PADD > TAD IA /PUNCH ADDRESS
JMS SHFT
TAD CH7
JMS PUN
TAD 1A
AND SL6
JMS PUN
PCON» TAD I IA /PUNCH CONTENTS
JMS SHFT
JMS PUN
TAD I IA
AND SL6
JMS PUN

3-6

7465
7466
7467
7470
7471
7472
7473
7474
7475
7476
7477
750
7501
7502
7503
7504
7565
7506
7507
7510
7511
7512
7513
7514
7515
7516
7517
7520
7521
7522

7523
7524

7525
7526
7527
7530

aa41
Py 42
A0 43
2044
PB45
QB46
aoar
o506
2851
aps52

1322
1841
1323
7650
5275
2322
5253
4276
5241
2002
1327
3324
1339
4314
2324
5301
5676
2392
7612
70212
7812
7325
5796
0oP20
6226
6021
5316
7200
5714
2230

0290
2020

8877
72100
76717
peoa

7402
1604
3122
7492
7604
3123
4076
11e2
4106
1126

LTS,

MORE»

SHFT,

PUN»

1A
FA>
CTR>»
SLés
CH7»
M131.,
c20a.,

SCOPYRIGHT
/MAYNAR DS

TAD IA

TAD FA

SNA CLA
JMP e+ 4
I5Z 1A

JMP PADD
JMS LTS
JMP BEG

TAD M101

DCA CIR
TAD C2gg
JMS PUN
[SZ CTR
JMP MORE
JMP I LTS

AND SL6
JMP I SHFT

JMP I PUN

1371

/DIGITAL=-8=-4-U=RIM

/RIM PUNCH 75 LOW

%41
BEGS

PADD.»

HLT
LAS
DCA
HLT
LAS
DCA
JMS
TAD
JMS
TAD

Ia

Fa
LTS
IA
SHFT
CH7

/TEST FOR END

/EN

IRY FOR L/T7

/L/T SUBROUTINE

/MORE L-T CODES

/SH

DIGITAL
MASSACAJSETTS

MEMORY

3-7

IFT RIGHT

/PUNCH SUBROUTINE

EIJIPAENT CORPIRATION

/ENTRY FOR LEADER DATA BLOCK
/SET INITIAL ADDRESS
/SET FINAL ADDRESS

/G0 TO L/T SUBROUTINE
/PUNCH ADDRESS

2053
2054
0955
B256
2057
6069
0261
9062
B063
2064
0M65
0066
2067
0070
2071
2072
0073
2074
2075
2076
BT
2109
2101
v102
2103
2104
2105
0106
3197
2110
2111
112
9113
2114
P115
2116
0117
8128
g121
2122
P123
2124
p12s
2126
n127
@130

4114
1122
p125
4114
1522
4106
4114
1522
2125
4114
1122
7941
1123
7650
5075
2122
50508
4076
5841
0ABe
r127
3124
1130
4114
2124
5101
5476
1535301
79212
7812
7012
@125
5586
av0o
6026
6921
51156
7280
5514
2009
Q008

2000
a7

2103
7677
Q209

PCON»

LTS,

MORE»

SHF T,

PUN

)
FA,
CTR»
SL6s
CH7,
M1@1.,
C299d,

JMS
TAD
AND
JMS
TAD
JMS
JmMs
TAD
AND
JMS
TAD
CiAa
TAD
SNA
JMp
152
JMP
JMS
JMP

TAD
DCA
TAD
JMS
I1S8Z
JMP
JMP

RTR
RTR
RTR
AND
JMP

PLS
PSF
JMP
CLA
JMP

2
77
100

-101

200

PUN
Ia
SLs
PUN
I IA
SHFT
PUN
I IA
SLé
PUN
IA

FA

CcLA
o+ 4
Ia

PADD
LTS
BEG

M121
CTR
€260
PUN
CTR
MORE
I LTS

SLé
I SHFT

I PUN

/PUNCH CONTENTS

/TEST FOR END

ZENTRY FOR L/T

/L/T SUBROUTINE

/MORE L/T CODES

/SHIFT RIGHT

/PUNCH SUBROUTINE

Formerly
DEC-08-YXYA-D

CHAPTER 4

BINARY PUNCH

(Binary Core Dump to High-speed or

Teletype Punch)

4.1 ABSTRACT
This program provides a means of punching information con-
tained in selected blocks of core memory as binary-coded paper tape

using the high-speed or Teletype punch.

4,2 REQUIREMENTS
This program occupies 7510 (1138) core memory locations.

The Binary Punch program runs on the basic pPDP-8, 8/S, 8/I, 8/L,
or 8/E with standard 33-ASR Teletype or standard high-speed punch.

Program tapes are as follows:

33-ASR Binary DEC-08-YX1A-PB
33-ASR Source DEC-08-YX1A-PA
High-speed Binary DEC-08-YX2A-PB
High-speed Source DEC-08-YX2A-PA

4.3 LOADING PROCEDURES

This program is loaded by means of the Binary Loader. See

Introduction to Programming or Programming Languages for a complete
discussson of the Binary Loader and its use. (This program

cannot be called as a subroutine.)

The SWITCH REGISTER is used to enter initial and final addresses
of blocks to be punched as well as the number of blocks to be punched.

This program is used in the following manner:

a. Assuming the program is in memory as listed in 4.7, place
the starting address 7465 in the SWITCH REGISTER and press
the LOAD ADDRESS key.

b. Press the START key. Leader tape is punched and the computer
halts. Set the number of blocks to be punched into the
SWITCH REGISTER and press the CONTINUE key.

c. The computer halts. Set the initial address of the block
to be punched into the SWITCH REGISTER and press the CONTINUE
key.

d. The computer halts. Set the final address of the block to
be punched into the SWITCH REGISTER and press the CONTINUE
key.

e. Note that the final address must be greater than the initial
address.

f. The indicated block of data is punched. 1If only one block
has been called for, the trailer tape is punched and the
computer halts. If more than one block has been called for,
the computer halts at step (a) waiting for a new initial
address, The second block is punched following completion
of steps (c) and (d), etc.

4.4 METHOD
This is a basic program used to produce tapes acceptable by the
Binary Loader.

With each punched block of data, an initial address (into which
that data is to be loaded) is punched as the first two characters.
Following the initial address, each 2-character group represents the
binary contents of a computer word. At the end of each block, a 2-

character checksum is punched.

Reference to Section 4.6, Flow Chart, will illustrate the com-
putational approach. Basically data is picked up from memory, the
most significant half shifted right and punched, and the least

significant half masked out and punched.

A similar process is followed with respect to the initial address

and the checksum,which is accumulated character by character as a

block)is punched.

™NAMA
DAL A

See Chapter 4 of Introduction to Programming for a complete

discussion of tape format.

4.6 FLOW CHART
Note +ha+ in +hie Aiamram ~iralac ranvrac
- e - -t ok de b \ﬁ-l—\d.v-l—“.t\k A T R S P -l-\—r’d-\.lh-’
.
tion, not connectives.
START
cLA CLL
BPUN INITIALIZE
JMs PLOT
@ PUNCH LE ADER
HLT ENTER NUMBER
bCA NB OF BLOCKS
NXBL HLT ENTER BLOCK
sTL IA AND FA
PUNL JMS BINP
PUNCH 2
CHARACTERS
INCREMENT CUSM
TAD 1A
TAD FA
<0 20
TAD T IA
cLL

JMP PUNL

ant anmhyAlrtFana 1id+a 13 o
Ll DU IL VUL LLIIT uciL i o
TAD CKSM
JNS BiNP
PUNCH
CHECKSUM

JMS PLOT

PUNCH
TRAILER

4,/ PRUGRAM LidLiNG
A listing of this program with BPUN located at 7465 is as

follows:
ZCOPYRIGHT 19271 DIGITAL E3JIPYAENT CORPIRATION
/MAYNARDs AASSACH JSSTTS
/BIN PUNCH HIGH SPEED PUNCH (PC03, PP&I» PP8L)
*XT465
7465 7300 BPUN > CLA CLL
T466 6026 PLS /INITIAL PUNCH
7467 3366 DCA CKSM /CLEAR CHECK-SUM
7470 4330 JMS PLOT /G0 PUNCH LEADEK CODES
7471 7402 HLT /SET SWITCHES=NUMBER OF
BLOCKS
7472 7604 LAS
7473 7041 clA
7474 3367 DCA NB /STOKE MINUS NUMBER OF
BLOCKS
7475 7402 NXBL» HLT /SET SWITCHES=INITIAL ADDRESS
OF BLOCK
7476 7604 LAS
7477 3370 DCA 1A
7500 7402 HLT /SET SWITCHES=F INAL ADDKESS
OF BLOCK
7501 7604 LAS
7502 7001 IAC
7503 3371 DCA FA
7504 1370 TAD 1A
7505 7120 STL /TO PUNCH IA AS ORIGIN
7506 4341 PUNL JMS BINP /GO PUNCH WOKD AS TWO LINES
OF TAPE
7507 1370 TAD IA
7510 1041 CIA
7511 1371 TAD FA /AC=FA-1IA
7512 7650 SNA CLA /WAS IT LAST WORD OF BLOCK?
7513 5320 JMP <45 /1T WAS THE LAST WORD
7514 1770 TAD 11IA /GET WORD TO PUNCH
7515 7100 CLL /NOT AN ORIGIN
7516 2370 I1SZ 1IA /JUST INDEX 1A
7517 5306 JMP PUNL
7520 2367 ISz NB /1S THERE ANOTHEK BLOCK?
7521 5275 JMP NXBL /HANDLE NEXT BLOCK
7522 1366 TAD CKSM
7523 7100 CLL
7524 4341 JMS BINP /G0 PUNCH CHECK SUM
7525 4330 JMS PLOT /GO PUNCH TRAILEK CODES
7526 T402 HLT /DONE
7527 5265 JMP BPUN
7530 Q000 PLOT, @
7531 7300 CLA CLL :
7532 1372 TAD M212 /TO PUNCH 212 OCTAL LEADEK

TRAILER CODES

7533 3373 DCA CTRI1

7534 1374 TAD C200 /LEADER TKAILEK CODE

7535 4361 JMS PUN /PUNCH C (AC)

7536 2373 1Sz CTRI1 /ANOTHER L-T CODE OR NOT?

7537 5335 JMP < -2 /GO PUNCH ANOTHER

7548 5730 JMP 1 PLOT /EXIT

7541 0000 BINP, 2

7542 3375 - DCA TEMI

7543 1375 TAD TEMI

7544 7912 RTR

7545 7012 RTR

7546 7012 RTR

7547 8376 AND SL 7 /FIRST TWO OCTAL DIGITS IN
AC 5-11

7550 4361 JMS PUN JPUNCH C (AC)

7551 1366 TAD CKSM

7552 3366 DCA CKSM

7553 1375 TAD TEMI

7554 03717 AND SL6 /LAST TWO OCTAL DIGITS IN
AC 6-11

7555 4361 JMS PUN /JPUNCH C (AC)

7556 1366 TAD CKSM

7557 3366 DCA CKSM

7560 5741 JVP I BINP /EXIT

7561 POOO PUN, 0 /RGUTINE TO PUNCH C (AC)

7562 6021 PSF /AND EXIT WITH C (AC)

7563 5362 JVP . -1 /UNALTEKED

7564 6026 PLS /PUNCH IT

7565 5761 JuP 1 PUN ZEXIT

7566 p00N CKSM» @

7567 800 NB 2

7570 0000 1A, 0

7571 pan0 FAS 0

7572 7566 M212, -212

7573 0000 CTRI o

7574 0200 ceon, 200

7575 2000 TEM1» 0

7576 0177 SL7, 177

7577 077 SL6s 77

4.8 33-ASR TELETYPE PUNCH PROGRAM

To use this program with the 33-ASR Teletype, make the following
changes:

7466 6844 TLS ZINITIAL PUNCH
7562 604l TSF /AND EXRIT WITH C (AC)
7564 6E 46 TLS /PUNCH IT

Formerly
DEC-08-YPPA-D

CHAPTER 5
OCTAL MEMORY DUMP

(Octal Core Dump to Paper Tape)
5.1 ABSTRACT
This program enables the user to dump, in octal, any or all
data in any memory field to either the Teletype or high-speed paper
tape punch. During dumping the absolute address of each location
being dumped is held in the accumulator. When dumping is completed
output devices and memory fields can be changed to dump another

section of memory.

5.2 REQUIREMENTS

This program requires one core page; initially 7400-7577.

The Octal Memory Dump program runs on any PDP-8 family computer
with at least 4K words of core, a 33-ASR Teletype and/or high-speed
paper tape punch.

No additional software is required. The program leaves the

BIN and RIM Loaders untouched. The program tapes are as follows:

Binary DEC-08-YPPA-PB
Source DEC-08-YPPA-PA

5.3 USAGE

The program is supplied in ASCII format on punched paper tape,
and can be assembled by any 4K PDP-8 assembler (i.e., PAL III,
MACRO-8, or PAL-D). The origin of this program (7400) can be changed
with the PDP-8 Symbolic Editor in order to dump locations 7400-7577.

(See the appropriate assembler section of Programming Languages for

assembly instructions.)

5.3.1 Loading
The program is loaded into core with the Binary Loader (see

Introduction to Programming or Programming Languages for loading

procedures) and can be loaded into any available memory field.

5-1

5.3.2 Operating Procedures
The SWITCH REGISTER on the PDP-8 console is used to control the
program; all options are determined by the position of bit 0. The

program can be interrupted by depressing the STOP switch.
With Octal Memory Dump program in core:

a. Set the SWITCH REGISTER to the starting address (7400) and
the INSTRUCTION FIELD to the field containing the Octal
Dump. Set DATA FIELD to the field containing the code to
be dumped. Press the LOAD ADDRESS key.

b. Set SWITCH REGISTER bit @ to 1 for a core dump to the
Teletype punch, or to § when dumping via the high-speed
paper tape punch.

c. Press the START switch. The computer halts.

d. Set the SWITCH REGISTER to the starting address of the
section of core to be dumped.

e. Press the CONTINUE switch. The computer halts.

f. Set the SWITCH REGISTER to the final core address of the
section of core to be dumped.

g. Press the CONTINUE switch; dumping commences and stops
after dumping the contents of the final core address
specified in step (f) above.

Another dump can be performed at this time by continuing at
step (a) when the output device or data field is to change. Other-

wise, continue at step (d).
The program halts after each dump.
The preceding operations are illustrated in Figure 5-1.

5.4 INPUT/OUTPUT ‘

The program contains its own Teletype and high-speed punch
output, and there are no external I/O handlers used. SWITCH REGISTER
bit 0 determines the output device.

5.5 FUNCTIONAL DESCRIPTION
The program is written in the PAL III language. Four routines
are used in the program:

Ioad BIN Loader
and Press STOP

ﬂ_____J Set Start Starting Address and
_ “lAddress In SR|” T T T T T 7 Data Field of
~ Octal Memory Dump

¥
[Press 10AD aDD|

High-Speed Which Teletype
L \Punch?/
[set sk Bit g = g] | set sr Bit g = 1]
— Press START [¢-

| Computer Halts]

-
Set Start Address
of Dump In SR
v

|Press cowr|

[Computer Halts]
v

Set Ending Address
of Dump In SR

[Press cowr|

Specified Memory Is
Being Dumped

¥
[Dumping Stops]

Finished

Figure 5-1 Operating Procedures

a. The TOCT routine causes a number to be formatted for a
typeout or punchout.

b. The TCR routine outputs a carriage return-line feed.
c. The TSP routine outputs a space.

d. The TCHAR routine is the output routine for both the
Teletype and the high-speed punch.

The main routine begins with the initialization of variables, and
the two address arguments are picked up from the switch register. Two
carriage return-line feeds are performed, followed by the. starting

address and several spaces. A loop is then entered to type the contents

of eight memory locations (if eight remain). If more data remains

to be output, a JMP to LP@2 repeats the process. If during this loop

the routine finds that it has processed the last memory location, the

loop exits, a carriage return line feed is performed, a JMP to LP@J is

executed, and the program halts.

See the program listing that follows for more precise information.

5.6 PROGRAM LISTING

/ OCTAL MENMORY DUMP PEROGRAM

/ CCPYRKIGHT 1969

/ DIGITAL EQUIPMENT CORF.

/ MAYNAED, MASS.

/TO OPERATE:

/ LOAD ADDEESS 74@0@ IN SE

/ TC CHOSE OUTPUT DEVICE:

/ SET BIT #=¢ FOR H. S. PUNCH OUTPUT OR

/ SET BIT @=1 FOR TTY OUTFUT THEN PRESS START

/ SET STARTING ADDEESS AND DATA FIELD IN SE -PRESS C

ONTINUE

/ SET ENDING ADLCRESS AND DATA FIELD IN SR -PRESS CON
TINUE

*T420

7420 T76@4 DUNP, CLA OSE /EXAMINE SEKE FOE OUTPUT DEVICE
7421 7700 SMa CLA
7422 1265 TAaD C10
7423 1270 TAD C7420
7404 3325 DCA SKPZ /STORE A '"SKP'" IN SKPZ IF H. S. PU
NCH OUTPRUT
7425 T4@2 LPCZQ@s HLT /STOF. ENTER DUNMP STARTING ADLEFSS

T4RE 7604 LAS

7427 32€1 DCA ADLKk

7410 7402 HLT /STOP. ENTER DUMP ENDING ADLRESS

7411 7624 LA&S

412 7040 CMA

7413 1261 TAD ADDR

7414 3262 DCA INDEX /CCUNTER FOR NUM¥ OF LOCS TG RF DUM

PED

7415 43l2 JMS TCE /TYPE CR-LFS

7416 4312 LPC1, JMS TCER

7417 1261 TAD ADDE

7420 4272 JMS TOCT /0UTPUT STARTING ADDRESS IN OCTAL
7421 4320 JMS TSP /0UTPUT 3 SPACES

T422 4320 JMS TSP

7423 432¢ LFR2es JMS TSP

7424 1661 TAD 1 ALDFE /GET CONTENTS OF LOC

7425 4272 JMS TOCT /TYPE OUT CCNTENTS

7426 2262 152 INDEX /DONE DUMPING?

7427 T410 SKP

7430 5247 JMP 0UT /YES. EXIT

7431 2261 1SZ ADDE /NO« KICK ADLCEKRESS UPF

7432 126l TAD ADDE /HAVE WE OUTPUT 8 LOCS ON A LINE?

7433 0263 AND C3

7434 7640 Sza CLA

7435 5223 JMP LPC2 /NO. SPACE OVER ONE AND GET NEXT

7436 126l TAD ADDF

7437 Qe64u AND C7 -

7442 7640 SZA CLA

7441 5222 JMP LPO2-1

7442 1261 TAD ADLE

7443 Q266 AND C177

T444 7640 SzA CLA

7445 5216 JMP LPZ1 /0UTPUT CR/LF THEN NEW ADDRESS

7446 5E15 JMP LP@1-1

7447 4312 QUT» JMS TCR /0U0TPUT CR/LF

1450 1267 TAD C2l4

T451 4324 JMS TCHAR /0UTPUT A FORM FEED

74%2 1271 TAD ME0 /THEN OUTPUT 20 BLANKS OF TRAILFF

7453 3262 DCA INDEX

7454 4324 JMS TCHAR

7455 2262 1SZ INDEX

7456 5254 JMP -2

7457 1261 TAD ADCR /LEAVE WITH FINAL ADDRESS IV AC

T46C 5205 JMP LPQO /G0 TO HALT FOR POSSIRLE RESTART

/ VARIABLES AND CONSTANTS

T4€1 Gra@ ADDR.» ? /LCC OF STARTING ADDRESS TO BE DUM
PED

T4€2 DOC® INDEX» %) /COUNTEE FOR NUMBEER OF LOCS TO BE
DUMFEL

5-5

T4€63
T46 4
7465
T466
7467
T470
7471
UT

7472
7473
T4T7 4
7475
7476
T477
7500
7501
7502
7503
7504
7505
7506
7507
7510
7511

7512
7513
7514
7515
7516
7517

7520
7521
7522
7523

0ews3
veeT
pe1o
v177
pela
7400
7760

Deeo
7104
3344
1352
3345
1344
7006
T0C4
3344
1344
Dees
1351
4324
2345
52717
5672

oCC0
1347
4324
1346
4324
5712

4)03aY0|
1350
4324
5720

C3»
C7-
Cl@,
Cl177>»
Cal4s
CT1400,
M20 s

/ OCTAL

TOCT.

LPO3,

10
177
214
TAQQ

-0
<

TYPEOUT ROUTINE

)
CLL RAL /ROTATE
DCA WORD '
TAD M4

DCA NDX

TAD WORD

RTL

RAL

DCA WORD

TAD WORD

AND C7

TAD C260

JMS TCHAFR

1SZ NDX

JMF LP@3

JYP I TOCT

/MASK VALUES

/FORM FEEL
/USED TO FORM SKP COMMAND
/COUNTER FOR NUM OF BLANKS TO OUTP

ADDRESS 1 LEFT

/SET NUMBEE OF DIGITS PEF WORLD

/ROTATE WORD 3 LFEFT

/MASK BITS 9-11

/ACD 26@ FOR OUTPUT
/0UTPUT DIGIT

/DONE FOUR?

/NO. PICK UF ANOTHEER DIGIT
/YES. RETURN

/ ROUTINE TO OUTPUT A CARRIAGE RETURN/LINE FEED

TCER>

]

TAD C2l15
JMS TCHAR
TAD Cglz2
JMS TCHAR
JMP I TCR

/0UTPUT A C. R.

/0UTPUT A L+ Fo

/ ROUTINE TO OUTPUT A SPACE

TSP,

]

TAD C240
JMS TCHAR
JMP I TSP

/QUTPUT A SPACE

7524
7525

7526
7527
7530
7531

7532
7533
7534
7535
7536
7537
7540
7541
7542
7543

7544

7545
7546
7547
7550
7551
7552

415301
7020

5335
6026
7200
1261

epel
5332
5342
6QLe
7200
1261
64l
5340
7200
5724

4358030

2000
palea
pals
paua
0z60
7774

/ ROUTINE TO OUTFUT A CHAKACTEER ON TTY OR He. Se PUNCH

TCHAR.
SKPZ >

TCHI1.

TCHE,

2
NOF

JMP
PLS
CLa
TAD

PSF
JMF
JMP
TL S
CLA
TAD
TSF
JMP
CLA
JMP

/ VARIAELES

WORD.

N DX »
cale.
C215>»
C24G,
C260-
M4,

2

0

212
215
240
260

/CHANGED TO A "SKP" IF H. S. OUTPU

TCH1 /0THERWISE GO TO TTY OUTPUT

ADDR /KEEP ADDRESS IN AC WHILE PUNCHING
=1

TCHZ

/TTY OUTPUT ROUTINE
ADDE
-1
I TCHAR
AND CONSTANTS
/STORAGE FOR DIGIT TO BE FORMATTED

/COUNTER FOR NUM OF DIGITS OUTPUT
/CODE FOR LINE FEED

/ " CARRIAGE RETURN
/""" SPACE
/ " ' FORMATTING DIGITS

/NUMBER OF DIGITS PER WORD

CHAPTER 6
TELETYPE I/0O SUBROUTINES

6.1 ABSTRACT

The routines described in this chapter are illustrative of the
procedures to be followed in creating I/O routines to be used with
the ASR-33 Teletype. The user is advised to peruse these routines
prior to writing I/O routines tailored for his particular needs.
Subroutines are provided which perform input and output of character
strings and single alphanumeric characters. These routines are
illustrative and by no means exhaustive of routines to handle the
ASR-33 Teletype.

6.2 REQUIREMENTS

The routines as supplied require 124 (1748) core locations.

10

The Teletype I/0 Subroutines run on any PDP-8 family computer
with an ASR-33 Teletype console. The program is distributed as an
ASCII tape as follows:

DEC-08-FIKA-PA
6.3 USAGE

6.3.1 Assembly

The routines as supplied will be automatically assembled onto
the first available core page. There is no $ character at the end
of the tape; although a PAUSE statement is present to allow for the

later loading of additional programs, if any.
This collection of subroutines can be assembled with PAL IIT,
PAL-D, PAL8, or MACRO-8. (If using the tape with TSS/8, remove the

PAUSE statement from the end of the tape.)

If the routines are to be assembled separately (without a user

program), they will assemble at location 200. In this case, the

6-1

user should append a separate tape with a $ character to the end

of the Teletype I/0 Subroutines tape before assembly.

If the routines are to be assembled with a user program (such

as the example program in section 6.6), the Teletype I/0 Subroutines

tape should be loaded after the user program and the whole

followed by a tape with a $ character.

In this case,

the I/0 sub-

routines will fit on the first available free core page and will

not overlay the user program.

(Tapes can be loaded after the I/0

routines if allowance is made for the length of the routines or by

assigning a specific address to the beginning of the I/O routines.)

6.3.2

Calling Sequence

The calling sequence for the Subroutines is designed so that

the user can easily incorporate messages into his program. The

user inserts a series of JMS instructions to the I/0O routines

followed by the address of the message to be transmitted.

The subroutines the user is likely to call are as follows:

Subroutine

TYPX

TLSX

KREAD

Calling Sequence

PurEose

Prints a message. Message is ENTRY,
coded by programmer if using

PAL III, or set in a labeled

TEXT pseudo-op statement if

using PAL-D, PALS8, or MACRO-8.

Prints a single character, used
by TYPX to print message, charac-
ter by character. Subroutine is
entered with character to be
printed in AC bits 6 to 11.

Inputs a message. KREAD accepts ENTRY,
8-bit ASCII and does not convert

to 6-bit ASCII, therefore TYPX

cannot directly cause a message

read by KREAD to be printed,

although a simple routine to do

so can be written by the user.
Remember, the size of the input

buffer must include the carriage
return character.

JMS TYPX

POINTER /ADDR OF
/MESSAGE

/EXIT IS TO

/ENTRY+2 WITH

/AC CLEAR

JMS TLSX
/CHAR IN AC
/BITS 6 TO 11

JMS KREAD
POINTER /ADDR OF
/INPUT BUFFER
/-SIZE OF
/INPUT BUFFER
/EXIT IS TO ENTRY+3
/WITH AC CLEAR

/ZERO PLACED AT
/BUFFER END

-LENGTH

Subroutine Purpose Calling Sequence

KRBX Inputs single character from ENTRY, JMS KRBX
Teletype, exits with charac- /EXIT IS TO
ter read in the AC. /ENTRY+1 WITH

/CHAR READ IN AC

B, which deletes the last
character in the input buffer when the RUBOUT key is typed. This
routine is not necessary to Teletype I/0 but allows for erasing
of typing mistakes and also performs echoing. If the user rubs
out characters past the beginning of the input buffer, a

carriage return/line feed is performed as a warning.

6.4 RESTRICTIONS
The user program must initialize the telieprinter flag before

calling these subroutines. Initialization is performed as follows:

CLA /SET AC TO ZERO, GOOD PRACTICE
TLS /INITIALIZE TELETYPE

The routines can only be called from the memory field in which
they reside.

The following characters have special meaning to the output

subroutines:
6-bit value Character Purpose
00 @ Marks the end of a message; supplied via
the TEXT pseudo-op when using PAL-D,
PAL8, or MACRO-8. Must be supplied by
user if using PAL III.
37 < Causes a carriage return-line feed to be

output to the Teletype.

The following characters have special meaning to the input

subroutine:

8-bit value Character Purpose

212 LINE FEED Ignored on input.
000 null Ignored on input.
377 RUBOUT Deletes the previous character typed,

echoes a backslash after the first
RUBOUT typed and a closing back-
slash after the first non-RUBOUT
character typed.

215 RUBOUT Echoes a carriage return/line feed
and exits from the input subroutine
to the user program (calling
program) .

On input buffer overflow while reading characters into the
Teletype buffer, characters echo as "bell" (the bell within the
Teletype rings). All characters other than RETURN and RUBOUT

are lost if typed while "bell" is being rung as a warning.

6.5 DESCRIPTION

Table 6.1 shows the ASCII values of the characters which can
be used with the supplied Teletype I/O Subroutines. When using
PAL III, the user must code these ASCII values at the location
referenced by the output routine. The PAL III assembler reads
the ASCII codes directly as octal numbers.

PAL-D, PAL8, and MACRO-8 can use the TEXT pseudo-op to
directly format alphanumeric characters into ASCII code. The TEXT
pseudo-op puts the desired message into 6-bit ASCII format; the
routines convert the 6-bit ASCII to the printable 8-bit ASCII and
then output the message.

If the user were outputting the message HELLO, it would be

done as follows, where MESG is the location given for the message:

PAL III PAL-D, MACRO-8, or PALS

MESG, 1¢g5 /HE MESG, TEXT/HELLO/
1414 /LL
17¢¢ /O END OF
/MESSAGE CODE

TABLE 6.1

6-BIT ASCII CHARACTER SET FOR INPUT WHEN USING THE
PAL III ASSEMBLER, 8-BIT ASCII FORMAT IS ALSO SHOWN FOR

COMPLETENESS.

6-BIT 8-BIT 6-BIT 8-BIT

Character Value Value Character Value Value
A 01 301 ! 41 241
B 02 302 " 42 242
C 03 303 # 43 243
D 04 304 S 44 244
E 05 305 % 45 245
F 06 306 & 46 246
G 07 307 ! 47 247
H 10 310 (50 250
I 11 311) 51 251
J 12 312 * 52 252
K 13 313 + 53 253
L 14 314 ' 54, 254
M 15 315 - 55 255
N 16 316 . 56 256
0 17 317 / 57 257
P 20 320 : 72 272
Q 21 321 : 73 273
R 22 322 < 74 274
S 23 323 = 75 275
T 24 324 : > 76 276
U 25 325 ? 77 277
v 25 326 @ 00 300
W 27 327 [33 333
X 30 330 34 334
Y 31 331] 35 335
Z 32 332 4 36 336
0 60 260 < 37 337
1 61 261 leader tape 200
2 62 262 LINE FEED 212
3 63 263 RETURN 215
4 64 264 SPACE 40 240
5 65 265 RUBOUT 377
6 66 266 blank 000
7 67 267 BELL 207
8 70 270 TAB 211
9 71 271 FORM 214

The same results are achieved in both cases. The TEXT pseudo-
op performs all of the necessary operations in the case of PAL-D,
PAL8, and MACRO-8 which the programmer must perform if using

PAL TII.

The input routines echo characters typed at the keyboard,
accept 8-bit ASCII characters (as they come from the Teletype
keyboard) for internal storage, and allow character editing via
the RUBOUT key. Once the RETURN key is typed, no further input
is accepted from the keyboard until the next time such input is

requested by the calling program.

Additional information on these routines and their usage can
be found by reading through the listing (section 6.7) and by
reading Chapter 5 in Introduction to Programming, 1970.

6.6 EXAMPLE PROGRAM

The following example program was assembled with the Tele-
type I/0 Subroutines as shown in section 6.7 (PROGRAM LISTING) .
The demonstration program was loaded prior to the I/O routines.
If no program had preceded the I/O routines they would, of
course, have started at location 200 (instead of location 400).

The output of the demonstration program is shown below:

FPLEASE TYPE YOUR NAME
HERMAN

IT IS A PLEASURE TO MEET YOU, HERMAN

The computer causes

PLEASE TYPE YOUR NAME

and a carriage return/line feed to be output. The user types
his name on the keyboard, enters it with the RETURN key, and

the computer then prints a carriage return/line feed followed by

IT IS A PLEASURE TO MEET YOU, HERMAN

The program as input to the Assembler (PAL-D in this case),

looks as follows:

/DEMONSTRATION OF TTY I1/0 SUBROUTINES

/
*200 /ADDRESS OF START OF PROGRAM
START» TLS /INITIALIZE TELEPRINTER FLAG
JMS TYPX /PRINT A MESSAGE
MESG1 /"PLEASE TYPE YOUR NAME"
JMS KREAD /READ IN REPLY
INAREA /UP TO 16 CHAR» 1 PER WORD
-20 /BEGINNING IN INAREA
JMS TYPX /PRINT SECOND MESSAGE
MESG2 /"IT IS A PLEASURE TO MEET YOU, *
TAD (INAREA-1 /SET AUTOINDEX REGISTER 1@ TO
DCA 1@ /ADDRESS WHERE NAME IS STORED(-1)
LOOP, CLAa CLL /BEGIN PRINTING THE NAME
TAD I 10 /GET A CHARACTER
SNA /TEST FOR ZERO
JMP DONE /1F ZERO, ALL DONE--QUIT
JMS TLSX 7ELSE PRINT A CHARACTER
JMP LOOP
DONE.» HLT
JMP START /1T IS A GOOD PRACTICE TO PUT

/A JMP TO SOMEWHERE AFTER THE
/HLT AT THE END OF A PROGRAM
/IN CASE SOMEONE INADVERTANTLY
/HITS "CONTINUE".

MESGl, TEXT /+~PLEASE TYPE YOUR NAME«~/

MESG2, TEXT /«IT IS A PLEASURE TO MEET YOU, /

INAREA, 0O /INPUT AREA FOR NAME

The demonstration program assembled with PAL-D looks as
follows:

/DEMONSTRATION OF TTY I1/0 SUBROUTINES

/

®200 /ADDRESS OF START OF PROGRAM
@200 6046 START, TLS ZINITIALIZE TELEPRINTER FLAG
pepl 4771 JUS TYPX /PRINT A MESSAGE
pepe pe22 MESG1 /"PLEASE TYPE YOUR NAME"
0283 4716 JMS KREAD /READ IN REPLY
0204 0256 INAREA /UP TO 16 CHAR» 1 PER WORD
P285 17760 -20 /BEGINNING IN INAREA
0206 41717 JMS TYPX /PRINT SECOND MESSAGE
P27 0236 MESG2 /"IT IS A PLEASURE TO MEET YOU.
g2190 1375 TAD (INAREA-1 /SET AUTOINDEX REGISTER 10 TO

p211
p212
9213
9214
2215
P216
p217
p229
pa21

gaz2
9223
p224
g225
p226
p227
9230
9231
p232
2233
p234
9235

p236
0237
2240
p241
0242
2243
0244
0245
p246
0247
2250
p251
p252
9253
0254
2255
2256

3010
7300
1410
7450
5220
4774
5212
7402
5200

3720
1405
@123
2540
2431
2905
4031
1725
2240
1601
1585
3700

3711
2449
1123
4001
4020
1405
0123
2522
0540
2417
40615
0585
2440
3117
2554
40080
fulal)

LOOP,

DONE,

MESG1»
LE
AS
E
TY
PE
Y
0u
R
NA
ME
-/

MESG2,»
T
Is
A
P
LE
AS
UR
E
TO
M
EE
T
YO
Us
/
INAREA,

DCA
CLA
TAD
SNA
JMP
JMS
JMP
HLT
JMP

19
CLL
I 10

DONE
TLSX
LOOP

START

TEXT /+P

TEXT /+1

2

/ADDRESS WHERE NAME IS STORED(-1)
/BEGIN PRINTING THE NAME

/GET A CHARACTER

/TEST FOR ZERO

/1F ZERO», ALL DONE--QUIT

/ELSE PRINT A CHARACTER

/IT IS A GOOD PRACTICE TO PUT
/A JMP TO SOMEWHERE AFTER THE
/HLT AT THE END OF A PROGRAM
/IN CASE SOMEONE INADVERTANTLY
/ZHITS "CONTINUE".

/INPUT AREA FOR NAME

6.7 PROGRAM LISTING

As explained in section 6.6, this listing of the I/0 routines
was made following the example program shown in that section.
These routines can start at any address if the user changes the
starting address or will start at the beginning of the first free

page after any programs loaded previously.

/BASIC TELETYPE I/0 SUBROUTINES

/REVISION: 18-JAN-71 /GWB
/COPYRIGHT 1971 DIGITAL EQUIPMENT CORPORATION
/ MAYNARD» MASSACHUSETTS @1754

/THESE SUBROUTINES ILLUSTRATE TYPICAL METHODS OF USING THE

/STANDARD TELETYPE TO INPUT AND OUTPUT ALPHANUMERIC DATA
/0N A PDP-8 FAMILY COMPUTER.

/ -=-NOTES--

/ (1) THE USER PROGRAM MUST INITIALIZE THE TELE-
/ PRINTER FLAG BEFORE CALLING THESE SUBROUTINES.
/ (2) THESE ROUTINES MAY ONLY BE CALLED FROM

/ THE FIELD IN WHICH THEY RESIDE.

/0RIGIN TO NEW PAGE

ke=1 177+1

/SUBROUTINE TO TYPE MESSAGES.
/THIS SUBROUTINE PRINTS A MESSAGE TO BE STORED IN STRIPPED

/S5IX-BIT ASCII» TWC CHARACTERS PER WORD. THIS FORMAT

/CAN BE EASILY GENERATED BY USING THE "TEXT' PSEUDO-0OP IN
/PROGRAMS ASSEMBLED BY PALD» PAL8s OR MACRO-8.

/ENTRY> JMS TYPX
/ POINTER (ADDRESS OF MESSAGE)
ZEXIT IS TO ENTRY+2 WITH THE AC CLEAR.

P400
9401
p4ap2
P43
p4ao4a

2405
B4B6
040817
pal1e
pall
pal2
2413

pala
B415

416

0417
B420
paz21
paz2
D423
paz24
B425
B426
p4a27
P430

P431
2432
2433
8434
P435

aJulo)i)
7300
1600
3216
2200

1616
7012
7012
7012
4217
1616
2216

4217
5285

Do0o

000D
0236
7450
5600
1237
7440
5231
1240
4244
1241

7510
1242

1243

4244
5617

/

--NOTE-~-

/THE FOLLOWING CHARACTERS HAVE SPECIAL MEANINGS:
/VALUE CHARACTER

/ 09

/

/ 37

/

TYPX» 7]
CLA CLL
TAaD 1
DCA
152

TYPX1l, TAD I
RTR
RTR
RTR
JMS
TAD 1
1SZ
JMS
JMP

TYPNT, O

9]

TYPX
TYPNT
TYPX

TYPNT

TYPY
TYPNT
TYPNT

TYPY
TYPX1

COMMENTS
MARKS THE END OF MESSAGE, THE TEXT

PSEUDO=-0P INSERTS THIS CHARACTER.
CAUSES A CARRIAGE RETURN/LINE FEED

TO BE OUTPUT.

/GET POINTER
/AND SAVE IT LOCALLY

/GET LEFT HAND CHARACTER
/THIS CAN BE CHANGED TO A
/BYTE SWAP ON THE PDP-8E!

/CONVERT AND TYPE
/GET RIGHT HAND CHARACTER
/MOVE POINTER TO NEXT WORD

/CONVERT AND TYPE
/CONTINUE UNTIL DONE.

/POINTER TO STRING

/THIS SUBROUTINE IS CALLED BY "TYPX'" (AND "KRBX"!)-=-
/ENTER WITH THE CHARACTER TO TYPE IN AC6-11:

/ (1) TESTS FOR TERMINATOR (9@)
/ (2) TESTS FOR CR-~LF (37) CHARACTER
/ (3) CONVERTS CHARACTER TO 8-BIT ASCII AND TYPES IT
TYPY» (%]

AND TK77 /MASK OFF CHARACTER

SNA /TEST FOR TERMINATOR

JMP 1 TYPX /EXIT IF TERMINATOR

TAD TKM37

SZA /TEST FOR CR-LF

JMP TYPY1 /NOT A 37

TAD TK215 /TYPE A -CR-

JMS - TLSX :

TAD TKM 125 /CONVERTS TO A -LF=- (212)
TYPYl, SPA /TEST RANGE

TAD TK100 /RANGE IS 301-336

TAD TK237 /RANGE IS 240-277

JMS TLSX /TYPE CHARACTER

JMP I TYPY

2436
P437
P44
P44l
p4a42
0443

Da4q4
p4a45s
2446
va47
0450
P4as51

p452
P453
2454
2455
P456

Bo77
7741
g215
7653
2100
8237

u3161%]
6241
5245
6046
7200
S644

00e0
6031
5253
6036
5652

TKT77» 77 /MASK FOR AC6-11

TKM37, =37 /TEST FOR CR-LF CHARACTER
TK215, 215 /7ASCII VALUE OF -CR-

TKM125, =~-125 /THIS PLUS 337 = 212 -LF-
TK100, 100 /CONVERT TO RANGE 301-336
TK237, 237 /CONVERT TO RANGE 248-277

/TELETYPE OUTPUT SUBROUTINE.

/ENTER WITH CHARACTER IN THE AC.

/ -=NQTE--

/THE TELETYPE FLAG MUST BE INITIALIZED
/BEFORE CALLING THIS SUBROUTINE!

TLSX» 1]
TSF
JMP =1 /WAIT FOR TELETYPE READY
TLS
CLA
JMP 1 TLSX

/TELETYPE INPUT SUBROUTINE.
/EXIT WITH CHARACTER READ IN THE AC.

KRBX» 2
KSF
JMP o=1 /WAIT FOR CHARACTER
KRB '
JMP I KRBX

/TELETYPE INPUT SUBROUTINE.

/THIS SUBROUTINE DEMONSTRATES HOW TO INPUT

/ALPHANUMERIC CHARACTERS FROM THE TELETYPE. IT READS
/THE CHARACTERS INTO A BUFFERs ECHOES CHARACTERS TYPED.,
/AND PERFORMS MINOR EDITING:

(1) CHARACTERS NULL(20@ AND @@@) AND LINE FEED

ARE DELETED ON INPUT.

(2> CHARACTER RUBOUT (377) DELETES THE PREVIOUS
CHARACTER TYPED. IT ECHOES AS A BACKSLASH FOLLOWED

NN NN

BY THE CHARACTER DELETED (MULTIPLE RUBOUTS DC NOT

ECHO BACKSLASH AFTER THE FIRST: A NON~RUBOUT CHAR-

NN

/ ACTER CAUSES A "CLOSING" BACKSLASH TO BE PRINTED) .

ey

CHARACTER CARRIAGE RETURN TERMINATES INPUT. IT

/THE

/ECHOES AS A CARRIAGE RETURN FOLLOWED BY A LINE FEED.

-

0457
P460
2461
v462
p463
@464
0465

0466
pae7
0470
paT1

g472
2473

2474
B475
o476
o477
0580
9501

psp2
9583
2504

2585
2506
@507
P510
@511

0000
7300
1657
2257
3216
1657
3200

4252
3616
1360
3345

1616
2345

7650
5745
2345
1745
T440
5272

4345
2200
5312

1356
4244
7240
1200
5265

/ENTRY> JMS KREAD

/ POINTER (ADDRESS OF INPUT BUFFER)

/ -LENGTH (MINUS SIZE OF INPUT BUFFER)
ZEXIT 1S TO ENTRY+23; ON EXIT:

/ (1) AC IS CLEAR.

/ (2) A TERMINATING WORD OF ZERO IS PLACED IN THE

/ INPUT BUFFER (THE CARRIAGE RETURN IS NOT ENTERRED
/ IN THE BUFFER).

/ -=NOTE-~-

/0N BUFFER OVERFLOWs CHARACTERS WILL BE ECHOED AS "BELL"
/TO INFORM USER THAT BUFFER IS FULL. ALL CHARACTERS»

/0THER THAN CARRIAGE RETURN AND RUBOUT, ARE LOST.
/THIS SUBROUTINE IS WRITTEN TO CO-RESIDE WITH THE TELETYPE

/0UTPUT SUBROUTINES "TYPY' AND '"'TLSX".

KREAD, 9
CLA CLL
TAD 1 KREAD /GET ADDRESS OF BUFFER
I15Z KREAD
pca KRPNT /SET UP POINTER
TAD 1 KREAD /GET SIZE OF BUFFER
DCa KRCNT /SET UP COUNTER
KRB1, JMS KRBX /GET CHARACTER
DCA I KRPNT /SAVE CHARACTER
TAD KRTAB /LOAD POINTER TO TABLE
Dca KRBKS /INTO TEMP. STORAGE
/ENTER SCANNING LOOP.
KRB3» TAD 1 KRPNT /ADD IN CURRENT CHARACTER
152 KRBKS /ADVANCE INDEX TO JMP WORD
SNA CLA
JMP 1 KRBKS /CALL SPECIAL ROUTINE
152 KRBKS /GO ON TO NEXT ENTRY
TAD 1 KRBKS /GET TABLE ENTRY
SZA /ZERO MARKS END OF TABLE
JMP KRB3 /CONTINUE SCAN

/NORMAL CHARACTER ROUTINE--

/CHECK FOR BUFFER OVERFLOW, ECHO CHARACTERs AND
/RETURN TO FETCH NEXT CHARACTER.

JMS KRBKS /ECHO BACKSLASH IF NEEDED
157 KRCNT /TEST FOR BUFFER OVERFLOW
JMP KRB6 /NORMAL ROUTE

/BUFFER OVERFLOW!
TAD TK207 /ECHO "BELL"

KRB5S» JMS TLSX
CLAa CMA /DECREMENT CHAR COUNTER
TAD KRCNT
JMP KRB1=-1 /RETURN TO GET NEXT CHAR

6-12

@512
P513
2514
P515

@516
05117
2528
psSal
ps22
p523
@524
9525
2526
2527
8530
8531
8532

9533
2534
P535

p536

2537

2540
0541
9542

[7,15¥.%¢]
[220 10 2%

2544

1616
2216
4244
5266

7240
4345
2355
1657
7041
1200
7650
5333
7240
1216
3216
1616
5306

1243
4217
4345

5266

4345

1243
4217
3616
2257
5657

KRB6» TAD
152
JMS

JMP

I

KRPNT
KRPNT
TLSX
KRB1

/RUBOUT ROUTINE--
/THIS ROUTINE IS CALLED WHEN A RUBOUT 1S TYPED: IT DELETES

/THE LAST CHARACTER IN THE BUFFER,
/AND DOES SOME FANCY ECHOING.

CLA
JMS
152
TAD
Cia
TAD
SNA
JMP
cLAa
TAD
DCA
TAD
JMP

KRUB,

/ECHO CR-LF-BACKSLASH

cMA

CLa

cMA

KRBKS
KRFLAG
KREAD

KRCNT
KRUB!
KRPNT
KRPNT

KRPNT
KRB5

/0F THE INPUT BUFFER.

KRUBl1s TAD
JMS

JMS

JMP

/CARRIAGE RETURN ROUTINE--

TK237
TYPY
KRBKS

KRB1

/GET CHARACTER

/ADVANCE BUFFER POINTER
/ECHO CHARACTER

/RETURN TO GET NEXT CHAR

RESET THE POINTERS,
/REVERSE RUBOUT FLAG TEST
/EHCO BACKSLASH IF NEEDED
/SET RUBOUT FLAG

/CHECK FOR "EMPTY" BUFFER
/BY COMPARING COUNTERS
/NO RUBOUT PAST BEGINNING
/DECREMENT BUFFER POINTER

/GET CHARACTER TO ECHO

ON ATTEMPT TO RUBOUT PAST THE START

/LO0OKS LIKE A *"+"!
/FORCES A CR-LF
/ALWAYS FORCES A BACKSLASH

/THIS ROUTINE IS CALLED WHEN A CARRIAGE RETURN IS TYPED:

/ECHOES CR~LF, DEPOSITS © IN INPUT BUFFER,

KRCR» JMS
TAD
JMS
DCA
152
JMP

I

I

KRBKS

TK237
TYPY

KRPNT
KREAD
KREAD

AND EXITSe
/ECHO BACKSLASH IF NEEDED.

/LOOKS LIKE A "«'!
/FORCES A CR-LF
/STORE ZERO IN BUFFER
7SET T0 EXIT ADDRESS

/AND EXITe

2545
P546
2547
9550
p551
@552
2553
0554

@555

P556
8557

0568

P56 1
@562
9563
9564
P565
9566
B567
@570
P571
@572

00800
1355
7640
1357
7440
4244
3355
5745

000

p207
2334

0560

5266
7600
5266
7566
5266
7563
5337
7401
5316
12130Y%

/THIS SUBROUTINE ECHOES BACKSLASH WHEN KRFLAG IS NON-ZERO

/NOTE~-~- LOCATION

KRBKS. ©
TAD KRFLAG
Sza CLA
TAD TK334
SZA
JMS TLSX
DCa KRFLAG

JMP 1 KRBKS

KRFLAG, @

"KRBKS'" IS ALSO USED AS A TEMPORARY

/GET FLAG

/BACKSLASH CHARACTER
/TYPE A BACKSLASH

/CLEAR FLAG

/EXIT

/SET TO +1 IF A RUBOUT WAS

/LAST CHARs OTHERWISE Q.

/SAVE A COUPLE LOCATIONS BY USING TYPX AND TYPNT.

KRPNT=TYPNT
KRCNT=TYPX

TK287, 207
TK334, 334

/POINTER TO INPUT BUFFER
/MINUS NO. OF WORDS LEFT
/7BELL IS ASCII 287

/BACKSLASH IS ASCII 334

/SPECIAL CHARACTER TABLE--
/ENTRIES IN THIS TABLE ARE TWO WORDS LONG:

/ (WORD 1)
/ (WORD 2)

-VALUE OF CHARACTER
JMP TO PROPER ROUTINE

/THE TABLE IS TERMINATED BY AN ENTRY OF Q.

KRTAB> «

JMP KRBl
-200s
JMP KRBl
-2123
JMP KRB
~-215;3
JMP KRCR
-3717;
JMP KRUB
2

PAUSE

/NULL -- IGNORE
/NULL =-- IGNORE

/LINE FEED -- IGNORE
/CARRIAGE RETURN =-- EXIT

/RUBOUT =-- DELETE CHARACTER
/DENOTES END OF TABLE.

Formerly
Digital-8-16-S

CHAPTER 7

MASTER TAPE DUPLICATOR/VERIFIER

7.1 ABSTRACT
This program duplicates and verifies 8-channel paper tapes using

a PDP-8 family computer with high-speed reader and high-speed punch.

The program uses the program interrupt and allows both the reader and
the punch to operate at maximum speed.

The program accumulates two types of checksums while reading and
punching: 1) the number of nonzero characters on the tape, and 2) the

sum of characters on the tape (both are taken modulo 4096).

When duplicating, the program compares the checksums at the end
of the tape with the checksums accumulated by the read routine. If
these differ, a reader error has occurred and a message is printed.
Tapes are verified by reading them and comparing accumulated checksums
with those at the end of the tape. Only master tapes produced by the
program can be duplicated. The master tape has the two checksums

punched at the end.

7.2 REQUIREMENTS
The program uses all of memory, except for the last page, as a
buffer.

The Master Tape Duplicator program runs on any PDP-8 family
computer with high-speed reader and high-speed punch. The program

tapes are as follows:

Binary DIGITAL-8-16-S-BIN
Source DIGITAL-8-16-S—-ASC

7.3 USAGE

7.3.1 Loading

The program is loaded with the Binary Loader (see Introduction

7-1

to Programming or Programming Languages for details).

7.3.2 To Produce a Master Tape

A tape is read and duplicated by the punch. When the tape has
run out of the reader, the accumulated checksums are punched. The
tape that has been punched is the master tape used for duplication.
It should be compared against the original to ensure that the tape was

read correctly.

7.3.3 To Duplicate the Master Tape

The master tape that has been produced (see 7.3.2) is reproduced
by the punch. Checksums are accumulated by the read routine and are
compared with the checksums at the end of the tape. Checksums are
punched and are used for verification (see 7.3.4). 1If the master tape
is short enough to fit into the buffer, the program will notify the
operator that more copies can be made without rereading the master.

Blank tape is punched between copies.

7.3.4 Verify Duplication
Similar to duplication, but no punching takes place. Tapes are
read and the accumulated checksums are compared against the checksums

punched at the end.

7.4 OPERATION PROCEDURES

a. Set the SWITCH REGISTER to 200.

b. Press the LOAD ADDRESS key; press the START key; the
program halts.

Cc. Set SWITCH REGISTER for the mode of operation as follows:

Bit 0 = 1 Make master tape
Bit 1 =1 Duplicate master tape
Bit 2 = 1 Verify duplication

d. Place tape in reader starting on blank tape (all modes of
operation must be started with blank leader tape in the
reader) .

e. Turn reader on. Turn punch on.
f. Press the CONTINUE key.

g. The program prints a message when the operation has been
completed and then halts.

7-2

h. Proceed from step (c) unless multiple copies are being
made.

7.5 DESCRIPTION

This program uses the program interrupt to keep the reader and
the punch running at full speed. The reader fills a buffer and the
punch punches from it. Checksums are accumulated by both the reader

and the punch routines.

7.6 NOTE ON EXTRA BL
The Master Tape Duplicator does not check for extra blank frames
in the duplicate tape. A future version of this program will perform
such a check. Until this version is released, users with tape
Digital-8-16-S having difficulty with binary tapes which load and
verify properly but do not run properly should order tape and document
number 5-10 from the DECUS Program Library. The document is called
Paper Tape Reader Tester. It is a program for the PDP-5, but will run
on the PDP-8 and should be used as a second verifying operation.
Programs which are too long for the space left in core should be

broken into two or more shorter tapes for this operation.

7-3

7.

7

A2l
ang2
@223
0B 4

016
217
220
go21
naz22
pa23
PB24
naes
np26
217
VA30
9231
an3e
2833
2a34
DA35
B236
3037

PROGRAM TLISTING

5820
n632
600
4615

2000
2203
6311
7410
5431
6221
7410
5434
4567
2080
5440
5191745
6014
5027
naag
6026
7230
58217

JCOPYRIGHT 1271 DIGITAL E3 I 48NT CORPORATION
/AAYNARD s MASSACHUSZITS

/TAPE DUPLICATOR FOR PDP-5/8

/ -DEC-1/15/65

/SINGLE BUFFERING-READ AND PUNCH UTILIZING
/PROGRAM INTERRUPT

/COMPUTE A CHARACTER COUNT AND CHECKSUM
/FOR EACH TAPE-COMPARE WITH CHECKS AT

/END OF TAPE

/CHECKS ARE ALSO COMPUTED DURING PUNCHING
/AND COMPARED

/THREE MODES OF OPERATION:

/Be SWITCH @ ON-MAKE MASTER TAPE

/Be SWITCH 1 ON-DUPLICATE MASTER TAPE

/Ce SWITCH 2 ON-VERIFY DUPLICATION

/DURING DUPLICATION, THE PROGRAM WILL NOTIFY
/THE OPERATOR WHETHER OR NOT MORE COPIES
/CAN BE MADE WITHOUT RE-READING THE
/MASTER

/DEFINITIONS OF INTERRUPT LOCATIONS:

/FOR THE PDP-83 INTER=Q

/FOR THE PDP-53 INTER=1

/PAGE 1
INTER=@
*INTER+1
JMP HNDL /HANDLE INTERRUPT
NPNT» DPRT
El, TES1
E2, TES?2
*¥16
NDXR» % /AUTO-INDEX REGISTER
NDXP» 2 /AUTO-INDEX REGISTER
HNDL RSF
SKP
JMP I READ /7753 CAUSED INTERRUPT
PSF
SKP
JMP I PNC /75A PUNCH CAUSED INTERRUPT
JMS I CRLF /EXTRANEOUS-CLEAR FLAGS
DSMS, ION /ENABLE INTERRUPT
JMP I INTER /RETURN
READS %] /CALLED AS A
RFC /SUBROUTINE TO PROVIDE
JMP DSMS /RETURN ADDRESS
PNC» 4] /CALLED AS SUBROUTINE
PLS /PROVIDES RETURN
CLA
JMP DSMS

AB4aB 1417 PNCH» TAD I NDXP /GET NEXT CHARACTER

P41 7512 SPA ZIF IT IS 7777, IT

pB42 5579 JMP I PDUN /1S END OF TEXT

P@43 3143 DCA HLD2

2044 1143 TAD HLD2

R4S T440 SZA

2046 2145 ISZ ZROP /COUNT NON-ZERO CHARACTERS
po41 7299 NOP /MODULO 4896

aas5a 1147 TAD CHKP . /ACCUMULATE SUM MODULO 4296
8651 3147 DCA CHKP

P352 1143 TAD HLD2

2853 4034 JMS PNC

P854 5940 JMP PNCH /GO0 GET NEXT

2@a55 60812 RD1, "RB /READ 750 BUFFER

2856 3142 DCA HLD1 /SAVE IT

@57 5185 RST1» JMP FRST /0F "TSCND'™ OR "THRD"
P68 1142 TAD HLDI1

261 7440 SZA

AP62 2144 I1SZ ZROKR /COUNT MODULO 4096

2663 TA00 NOP

PA64 1146 TAD CHKR /ACCUMULATE SUM

BB6S 3146 DCA CHKR

D356 1160 TAD TIME /RESET END-OR-TAPE TIMER
@as7 3157 DCA TIMR

AT 7419 RST2, SKP

2871 5155 JHP VY

an7e 1142 TAD HLD1 /GET CHARACTER

BWAT3 3416 DCA I NDXR /PUT IN BUFFER

aaT4 2163 I1SZ RONT /1S BUFFER FULL?

BATS 7410 SKP /NO

gnTe 5571 JMP T FuL /YES

AaT7 4231 JM5 READ /FETCH NEXT CHAKACTER
130 ~164 ISZ STRT /DELAY START OF PUNCHING
Aatar 5955 JMP RD1

2132 7249 CLA CMA

3103 3175 DCA SCON

B1324 5949 JMP PNCH /START PUNCHING

2185 1142 FRST» TAD HLD1 /TEST TO SEE IF

0126 1161 TAD TST1 /CHARACTER IS FIRST

B137 1649 SZA CLA /IN CHECK=-SUM IDENTIFIER
A1186 5050 JMP RST1+1 /IF IT IS-SET SWITCH
2111 1153 TAD TRY2 /TO TEST FOR SECOND

#112 3657 DCA RSTI1 /CHARACTER NEXT

2113 5860 JMP RST1+1

P114 1142 SCND» TAD HLDI1 /CHECK FOR SECOND CHARACTER
w115 1162 TAD TST2 ZIDENTIFIER - IF FOUND
@116 7649 SZA CLA /TEST FOR THIRD NEXT
8ii7 5iZ23 JMP e+ 4 /IF NOT» RESET FOR FIRST
21283 1154 TAD TRY3

8121 3057 DCA RSTI1

122 5260 JMP RST1+1

2123
D124
nizs
p126
21217

n130
2131

2132
2133
A134
B135
213%
0137

2149
71141

2142
7143
2144
D145
K146
2147
7150
2151

g152
2153
2154
2155
156
8157
2164
2161

B162

7163
A164
2165
a166
2167
0170
2171
a1172
g173
2174
A175
a176
2177

1152
5121
1142
1161

7649
5123
72403
3416
4541

3151

4541
3159
5540
P393
nS65S
2000
200
009
wopo
3030
2020
BAR
2009
5195
5114
5125
4031
5055
P0a0
NBAD
7526

7653

Q090
2220
1009
1410
2345
va28
2320
20177
2002
BBoY
nAne
a377
nage

THRD»

GET1,
HLD1,
HLD2,
ZROR>
ZROP»
CHKR»
CHKP»
MZRO»
MCHK »
TRY 1,
TRYZ2»
TRY 3,
VY s

TIMRS
TIME,
TST1,

T5T2,

RCNT,
STRT,»
NOPT»
SKIP»
CRLF
PDUN,
FUL S
BITh,
DCON»
VCNT>»
SCON,
C377-
TWO>»

TAD TRY1
JMP +-3
TAD HLD1
TAD T5T1
SZA CLA
JMP =5
CLA CMaA
DCA I NDXR
JMS I GET1
DCA MCHK
JMS I GET1
bDCA MZRO
JMP I «.#+1
SWT1

GET

[SSERERS S ES BRI O I

JMP FRST
JMP SCND
JMP THRD
JMS READ
JMP RD1
4]

]

71526

7653

2

(9]
NOP
SKAP
CFLG

BF UL
28717

B377
nao2

/TEST FOR THIRD CHARACTER
/1IN IDENTIFIEKR - IF FOUND

/READ CHECKS FROM TAPE
/1F NOT - RESET FOR FIRST

/SET END=-OF PUNCH FLAG
/MEASURED CHECK~-SUM

/MEASURED ZERO-COUNT

/GET 12-BIT WORD

/#0F NON=-ZERO READ
/#0F NON=-ZERO PUNCHED
/CHECK SUM - READ
/CHECK SUM - PUNCH
/#0F NON-ZERO MEASURED
/CHECK SUM - MEASURED

/WHEN VERIFYING-DON' START
/PUNCHING

/72'S COMPLEMENT 1ST AND
/THIKRD IDENTIFIRER

/TW0O'S COMPLEMENT OF 2ND
/ZINENTIFIER

/START OF PUNCHING FLAG

D202
a20e1
#2082
2283
P94
2285

(ADA £
KO

0297
2210
neatl

AD1D

[S X0y Wy =4

0213
2214
215
2216
p217
9220
0221
nz2ez
7223
7224
0225
2226
nee7
h238
#e31
pe3e
2233
2234
n235
8236
3237
0249
2241
p242
@243
N244
A245
D244
P47
3250
a251
A252
#4253
2254
n2s55
A256
7257

ADLA

R =R eR ¥

72832
3174
72890
3144
3145
3146

21 47
[e N

3173
6a12

6022
7040

P

3175
1152
30857
1166
3079
1166
3303
1341
3164
71402
71604
1904
7439
5258
1024
7438
7402
T804
7639
5241
12482
5224
1165
3393
1165
3679
1342
3336
5261
1209
1343
3336
3174
5261
1209
1344

3336
3174

*200

L.OOP>»

LOP1,

CRTE,

DUP»

CLA
DCA
CLA
DCA
DCA
DCA

nrA
[FAVY o

DCA
RRB
PCF

[0 I Y

DCA
TAD
DCA
TAD
DCA
TAD
DCA
TAD
DCA
HLT
CLA
RAL
SZL
JMpP
KAL
SZL
JMP
RAL
SZL
JMP
CMA
JMpP
TAD
DCA
TAD
DCA
TAD
pCA
JMP
CLA
TAD
DCA
neAa
JMP
CLA
TAD
DCA
DCA

Z VCONT

ZROR
ZROP
Z CHKR

7 D
L v

DCON

SCON
Z TRY1
Z RSTI1
Z SKIP
Z RSTZ2
Z SKIP
SWT1
DLAY
Z STRT

OS8R

CRTE

bup

CLA
«+3

LOP1
NOPT
SET1

Z NOPT
RST2
VRPT
CONR
GO

CRPT
CONR

Z VCNT
GO

DUPT
CONR
Z VCNT

7-7

/RESET VERIFY COUNT
/RESET PUNCH,»READER
/COMPUTED CHECKS

/RESET BUFFER OVER FLAG
/CLEAR HARDWARE FLAGS

/RESET START PUNCH FLAG
/SET PROGRAM SWITCHES

/SET START OF PUNCHING DELAY

/BIT 9=1, CREATE MASTER

/BIT 1=1, DUPLICATE

/BIT 2=1, VERIFY
/ERROR SET CCACY=T7777

/NO PUNCHING - DON'T
ZWAIT FOR PUNCH '

/7DON'T START PUNCHING

/SET-UP RETURN FOR END

/SET-UP RETURN FOR END

/SET-UP RETURN FOR END

B261
n262
9263
B264
V265
B266
22617
p210
p271
pa1e
0273
P274
B275
02746
@211
N300
2301
0392
9303
B304
9385
p30a6
2307
B319
A311
A312
313
h314
2315
@316
8317
0328
2321
9322
0323
n324
9325
p326
a327
2330
@331
7332
8333
D334
B335
2336
9337
D349
B341
n342

4345
1337
3016
1337
3011
1340
3163
1333
3809
11640
3157
4331
5855
2157
5276
3200
7249
3416
7410
5736
1336
3179
1175
1100
5315
2000
12909
5313
1334
3929
5182
7240
3416
2173
1335
3179
5307
1341
3164
3175
6022
5262
2276
312
3326
533530
1263
1274
1760
P422

GO

SAT,

SWT1,»

BFUL

FILL.

SA,
SA1l,
RET»
CONR>
BUF»
OVR»
DLAY,
VRPT,

JMS CFLG
TAD BUF
DCA NDXR
TAD BUF
DCA NDXP
TAD OVR
DCA RCNT
TAD 5A

DCA INTER
TAD Z TIME
DCA TIMR
JMS READ
JMP Z RD1
ISZ Z TIMR
JMP e-1
I0OF

CLA CMA
DCA I Z NDXR
SKP

JMP I CONR
TAD CONK
DCA PDUN
TAD Z SCON
SMA CLA

JMP <+ 4
I ON

cLa

JMP e=1

TAD 5A1

DCA INTER
JMP Z FRST-3
CLA CMA
DCA I Z NDXR
1Sz Z DCON
TAD RET
DCA Z PDUN
JMP BFUL=-11
TAD DLAY
DCA STRT
DCA Z SCON
PCF

JMP GO+ 1
SAT

BFUL-6

FILL

%)

X=1

Xx+21p

1769

VRFY

/CLEAR FLAGS

/SET-UP BUFFER
/POINTERS FOR

/READ AND PUNCH

/SET BUFFER=-FULL COUNT
ZINITIALIZE INTERRUPT

/SET END-OF=-TAPE TIMEK
/START READING

/END-OF~-TAPE

/SET END-OF-PUNCHING FLAG
/0R NOP FOR VERIFY

/SET RETURN FOR PUNCH DONE

/DID WE START PUNCHING?

/NO -
/YES - WAIT FOR PUNCHING

/START PUNCHING

/BUFFER-FULL
/SET=-UP END-OF-PUNCHING FLAG

/'FILL?

ZENTER WHEN BUFFER
/0VERFLOWED AND HAS

/BEEN PUNCHED

/STAKT OF BUFFER
/BUFFER-FULL COUNT
/DELAY START OF PUNCHING
/DONE POINTERS

4343
B344
3345
D346
0347
B350
7351
»352
©353
n354
@355
A356
357
A360
2361
2362
B#363

2489
a401
2442
2403
A4D 4
2405
B406
A4A7
D417
2411

e EEs)

vigic
2413
D414
3415
D416
8417
7429
n421
2422
3423
Ga24
3425
D424
na21
G437
1431
D432
A4303
2434
3435

fa3éa

D40 4
D4a4s
0092
6042
6972
6772
6502
6732
7320
7812
6722
1024
6702
6652
6534
6032
5745

2174

4483
53561
5351
4474
5345
4314
1327
38949
1325
4934
1326
48334
1325
4034
1146
1176
4231
1144
1177
4231
4314
1335
4734
5733
17 IR0
3143
1143
7412
7412
7212

CRPT»
DUPT»

CFLG,

PAJSE
* 400
VRFY»

(@]
py
17}
-
.

SIX»

CLA CLL CML
RTR
6722
RAL
6702
6652
6534
ACC
JMpP I CFLG

ISZ Z VCNT
JMS I E1
JMP VER
JMP VOK
JMS I E2
JMP MER
JMS BLNK
TAD HERE
DCA INTER
TaD T1

JMS Z PNC
TAD T2
JMS PNC
TAD T1

JMS PNC
TAD CHKR
TAD C377
JMS SIX
TAD 2 Zx0K
TAD Z TuO
JMS SIX
JMS RLAK
TAD AD1
JiS T PoNT
JMP I LOP
)

DCA 7 HLD?Z2
TAD HLD2
RTr

KT R

RTR

/CLEAR FLAGS
/TELEPRINTER

/LIGHT PEN

/MICRO TAPE

/PLOTTER

/DI SABLE ERF FLAG (57A)

/SET CLACY=28080

/DI SABLE WCO FLAG (57A)
/SET CCAC)Y=4000

/DI SABLE TCR FLAG (57A)
/LINE-PRINTER FLAG

/138 ADC FLAG
/KEY=-BOARD (AND AQC)

/COMPUTED VS MEASURED CHECKS
/VERIFY ERROR

/VERIFY OK

/COMPUTED VS PUNCHED

/MEMORY ERROR

/SET INTERRUPT POINTER
/PUNCH CHECK SUM
/IDENTIFIER CODES

/BIT PATTERN ISt
/710191019

/210181081

/717101019

/PUNCH CHECKS

/ALTER CHECKS

/PUNCH BLANK TAPE

/PUNCH NiMBER IN AC

2T N DT NMIAIS A Iaa AT
Ly TYLANAHANRT [AL o]

D437
2440
Ba41
D442
n443

Bas4
2445

Ba46
n4a47

459
B451
@452
72453
h454

2455

D456
D457
2469
B451
Ba62
2463
D464
Bas65
D4a6s

Bast

0410
nati
D472
2473
2474
2475
8476
A4aTT

ns5aa
0591
nsae
9533
25724
525
8536
A5917
B512
2511
as512
2513

2172
4934
1143
2172
4934
5631
4493

5347
4404

5345
1327
39292
1325
4234

1145

4231
1144
4231
4314
1173
7640
5356
1324
1649

5395

1336
4734
7402
76974
7241
3324
1332
3178

1369
3017
3145
3147
5247
2324
7410
5356
1337
4734
71672
53328

DUPL »

GO1,

TST4»

AND
JMS5
TAD
AND

JMS 7

JMP
JMS

JMP
JMS

JMP
TAD
DCA
TAD
JMS

TAD

JmMSs
TAD
JMS
JMS
TAD
SZA
JMP
TAD
SZA

JMp

TAD
JMS
HLT
CLA
cMA
DCA
TAD
DCA

TAD
DCA
DCA
DCA
JMP
1527
SKP
JMP
TAD
JMS
HLT
JMP

Z BITH
Z PNC
Z HLD2
Z BIT6
Z PNC
I SIX
I Z E1

RER
I Zz E2

MER
HERE
INTER
T1

Z PNC

Z CHKR

SIX

Z ZROR
SIX
BLNK

Z DCON
cLA
DOK
DCNT
cLa

TST4

AD2
I PRNT

OSR
IAC
DCNT
HERK1
Z PDUN

BF

Z NDXP

£ ZROP

Z CHKP

Z PNCH
DCNT

DOXK
AD3
I PRNT
CLA
T5T4-5

/COMPARE COMPUTED VS
/MEASHRED CHFRCKS

/READER ERROR
/COMPARE COMPUTED VS
/PUNCHED CHFCKS
/MEMORY ERROR

/PUNCH THIRD IDENTIFILER
/READER STOPPED WHEN THIRD
/ZIDENTIFIFER

/7HAS BEEN FOUND, IE IT IS
/NIT IN THFE BJFFER

/PUNCH BLANK TAPE

/BUFFER OVERLAP-NO MORE DLipr.

/STARTED MULTIPLE
/DUPLICATION??

/ZMULTIPLE DUPLICATION HAS
/STAXTED

/READ NUMBER FROM SR

/SET RETURN FOR PUNCHING
/DONE

/RESET BUFFER POINTER

/RESET PUNCH-COMPUTED CHECKS

/START PUNCHING
/ARE WE DONE YET?

/YES
/NO

/HALT
IMAKE NEXT COPY

8514
@515
2516
As17
3528

mT
oo i

#3522
2523
n524
aAs28

Vil 2

2526
7527
9530
7531
7532
%533
0534
#9535
0536
2537
2549
2541
8542
3543
2544
P545
9546
8547
2550
8551
#9552
9553
7554
9555
9556
8557
2560
9561
9562
%563
8564
3565

0566
B567
2579
B571
as72
573
3574
2575
4576
A577

2000
1323
3157
4334
21517

[~e 3 Wy |
R

5714
7608
2090
A252
2125
530
7200
5339
D447
gea2
B673
2741
B751
1087
1317
1326
1836
1345
1954
1342
5354
1343
5354
1174
4482
1348
4734
5733
1341
5354
1963
1174
4492
1344
5354
nanna

4931
@12
7196
7966
1256
3142
4931
5912
1142
5755

BLNK»

MCNT»
DCNT»
T1s
T2>»
HEKE

HER1»
LOP»
PRNT»
AD1»
AD?Z2,
AD3»
AD4»
ADS,
ADS >
AD7»
ADS»
MER»

RER>

VOK»

DOK »

BF,
VERS

%)

TAD
DCA
JMS
ISz

TaA >
WJUIE

JMP
1609
@
gese
B125
HERE
CLA
JMP
GO1
LOOP
PRIN
TAB1
TAB2
TAB3
TAB4
TABS
TABS
TAB7
TABS
TAD
JMP
TAD
JMP
TAD
JMS
TAD
JMS
JMP
TAD
JMpP
X=1
TAD
JMS
TAD
JMP
%)

JMS
RRB
CLL
RTL
KTL
DCA
JMS
KRB
TAD
JMP

MCNT
Z TIMR
Z PNC
Z TIMR

L =D
L

I BLNK

+1

=1

AD6
VOK+3
AD7
VOK+3
Z VCNT
I NPNT
AD4

I PRNT
I LOP
ADS
VOK+3

Z VCNT

I Z NPNT
ADS
VOK+3

Z READ
RTL

HLD1
READ

NN

Z HLD1
I GET

/SUBROUTINE TO PUNCH
/BLANAK TAPE

/MASTER CREATED
/PRINT TABLE
/PRINT TABLE
/VERIFY OK

/7DUP OK

/MEMORY ERROR
/READER ERROR
/VERIFY ERROR

/VERIFY OK

/DUPLICATION OK

/VERIFY OK

/ROUTINE TO READ 2-6 BIT
/CHARACTFERS

2600

601
62
2673
D64
n6as
696
607
2618
2611
Bs12
9613
2614
Ar15

D616
26117
2620
n621
ns22
p623
n624
A625
D626
26217
9633
9631
D632

2633
P634
N635
P636

A6317
2643
B641
R642
A643
D644
a645
2646
B647
2650
D651
p652
P653
A654
7655
D656
657
F6617
A6k 1

ADBY

7200
1144
7341
1158
7640
5639
1146
1341
1151
7650
2289
5630
AN3aA

7200
1145
7041

1144
7640
5615
1146
1041

1147
7652
2215
5615
2000

3143
3142
1264
3e7z2

1263
3245
7410
3143
7120
1143
7422
7436
2142
7430
5242
712008
1142
1271
4325
3142
2245
2272
5244

L 7 PN
OO

TES1,

TES?2:

DPRrTs

XYZs

1%

CLA
TAD
CMA
TAD
SZA
JMP
TAD
CMA
TAD
SNA
| ENY4
JMP

CLA
TAD
CMA
TAD
SZA
JMP
TAD
CMA
TAD
SNA
IsZ
JMP
]

DCA
DCA
TAD
DCA

TAD
DCA
SKP

DCA.

CLL
TAD
TAD
SZL
152
SZL
JMP
cLA
TAD
TAD
JMS
DCA
157
I52
JMp

Z ZROK
IAaC

Z MLRO
cLA

I TES]
Z CHKR
IAC

Z MCHX
cLA
TESI

I TESH

Z ZROP
I1AaC

Z ZROR
CLA

I TES?
Z CHKR
IAC

7 CHKP
CLA
TES?2

I TES?2

Z HLD?2
Z HLD1
CNTR
CNT

ADCR
XYZ+3

Z HLD?2

Z HLD?2
CON

Z HLD]1
XYZ

Z HLD1
C26@
TYPE

Z HLD1
XYZ+3
CNT
XYZ+2

/COMPARE READER COMPUTED
/7S5UMS

/TO MEASURFED SUMS
/IF EQUAL, RETURN TO CALL+ 2

/OTHERWISE RETURN TD CALL+ 1

/COMPARE PUNCH COMPUTED
/5UMS

/TO READER COMPUTED SUMS

/IF EQUAL, RETURN TO CALL*+?2
/OTHERWISE RETURN TO CALL+]

/CONVERT BINARY WORD IN AC

/TO 4 DIGIT UNSIGNED DECIMAL
/NUMBER AND TYPE IT

/ZIDENTICAL TO ROUTINE IN
/LI BRARY

B662 5632

@663 7422
p664 1774
0665 6030
P666 1634
B667T 1766
2670 1171
A671 0269
2672 3000
0673 0000
7674 3143
9675 1543
2676 7450
2677 5320
STRING

2799 1012
7191 1012
@782 1012
p163 4310
784 1543
A735 4310
#7906 2143
8107 5275
0719 0000
A711 9172
712 1334
2713 7519
#3714 1335
9715 1336
9716 4325
717 5710
p720 1337
9721 4325
@722 1340
P723 4325
@724 5673
2725 QGO0
0726 6046
p727 6041
9730 5327
B731 6342
2732 7299
p733 5725
@734 1749
0735 0100
A736 0240
0737 9215
740 @212
#8741 1521
9142 2324

2743 9522

ADDE»
CNTR>»
CON,»

C260,
CNT»
PRIN,

GPRT»

CR»

TYPES

Mad,

C1GA .

L F

c2u0,
CAR>
LFs
TAB1.,

JMP
TAD
1774
6330
71634
77166
7177
neen
2

@
DCA
TAD
SNA
JMP

RTR
RTR
RTR
JMS
TAD
JMS
187
JMP
%)

AND
TAD
SPA
TAD
TAD
JMS
JMP
TAD
JMS
TAD
JMS
JMP
15

TLS
TSF
JMP
TCF
cLA
JMP

1749
2100

i b ¥rxs

D242
2215
pe12
15921
2324
7522

[DPRT
CON

4 HLD2
I HLD2

CK

GPRT

I Z HLD2
GPRT

Z HLD2
PRIN+2

Z BIT6
M4d

C128
c282
TYPE

I GPRT
CAR
TYPE
L¥
TYPE

I PRIN

I TYPE

/ROUTINE TO PKRINT A STRING
/0F PACKED ASCII CHARACTER

Tl a & -x—u\nu&t‘.l\s

/ENTER WITH S.A« OF STRING

/IN AC: EXIT ON 9 ELEMENT
/IN STRING

/AFTER TYPING CR-LF

/THIS ROUTINE CONVERTS
/76BIT TO ASCII

/TYPE CR-LF

/TYPE CHARACTER IN AC

/PRINT TABLES

nTa4
D745
146
aA147
2753
2751

27152
8753
B754
2755
2756
D157
ni6od
Bn761

2762
2763
A764
2765
2166
37567
2773
27171

A172
w173
2174
37175
D176
D771
1800
1201

12a2
1283
1394
1235
1226
1487
1810
1911

1912
1213
1914
1915
1316
1817
1922
1921

1922
1823
1924
125

40943
2235
2124
8504
DD
2305
2440
2327
1124
23190
2523
402 4
1749
1625
1592
ps22
4917
2649
2317
2911
3523
4024
1749
p205
4915
2134
540
2pe2
2523
2349
0317
1624
1116
2505
2351530
2022
7523
2341
B317
1624
11146
25@5
Daaa
4040
2605
2211
w631
4017
1340
aAnAd

TAB2.,

TARZ,

4903
2295
124
A5 4
Ny
2345
2442
2327
1124
313
n523
4024
1749
1625
1502
2522
49117
642
2317
2911
#2523
4924
1749
3205
4915
B1924
2547
2n22
»w523
2340
a317
1624
1116
2525
Y1030
2n22
“523
2340
A317
1624
1116
2585
5103707
4340
2605
2211
2631
40117
1340
2000

1826
1927
1233
1231
1932
1133
1334
1835
1434
1237
1949
1241
inae
1343
1844
1945
17246
1844
1959
1351
1052
1953
1254
1355
1856
1857
1363
1361
1262
1363
1264

D425
2314
1193
D124
1117
15643
1713
2083
1585
1517
2231
4935
2222
1722
aana
2285
2134
1522
4085
2222
17107
B229
4340
2635
2211
#631
43235
2222
1722
Ba22
Bo3e

TABS,

TART,

TABS,

Xs

A425
2014
1183
2124
1117
1649
1713
2009
1585
1517
2231
4805
2222
1722
2000
2295
D124
84522
4Ba5
2222
1722
8230
4340
2685
2211
P631
4005
2222
1722
BAd22
B

7-15

/START OF BUFFER

Formerly
DIGITAL-8-12-U

CHAPTER 8

INCREMENTAL PLOTTER SUBROUTINE

8.1 ABSTRACT

The Incremental Plotter Subroutine moves the pen of a type
350 plotter to a new position along the best straight line. The

pen can be raised or lowered during the motion.
8.2 REQUIREMENTS

The subroutine requires one memory page of storage (12810

or 2008 words). The routine works on any PDP-8 family computer

equipped with a type 350 Plotter Control and Plotter.

The routine is distributed as an ASCII source tape as fol-

lows:
Digital-8-12-U-ASCII
8.3 TUSAGE
8.3.1 Loading and Assembly
The source tape as supplied has no origin setting and ends

with a PAUSE statement. This tape can be assembled with a user

program (which supplies an origin setting) or assembled by itself

a2 = il H

(if a dellar sign [$] is supplied at the end of the tape).

The tape can be assembled with any of the PDP-8 family as-

8.3.2 Calling Seguence

The plotter routine is called by executing a JMS PLOTX.

The contents of the accumulator specify the operation of the

subroutine as follows:

c(ac) = -1
C(aAC) =0
C(AC) =1

The location registers internal to the
subroutine are reset to zero and the
pen is raised. Control returns to the
instruction following the calling JMS
instruction.

The pen is lowered (if it was up) and
is moved to the new located as described
below.

The pen is raised (if it was down) and
is moved to the new location as described
below.

The two locations following the calling JMS instruction

contain, respectively, the new X coordinate and the new Y co-

ordinate in steps (these values must be less than 4096). The

pen is moved from the previous location to the new location

along the best straight line with the pen up or down depending

upon the contents of the accumulator when the subroutine is

called. Control returns to the instruction following the Y co-

ordinate.

8.3.3 Examples

Initialization of Plotter:

CLA CMA
JMS I PLOT
return

PLOT,PLOTX

/AC = -1, INITIALIZE ROUTINE AND PEN UP
/JUMP TO PLOTX ROUTINE, PAGE INDEPENDENT
/CONTROL RETURNS TO THIS ADDRESS

/CONTAINS ADDRESS OF PLOTX ROUTINE

Plot with Pen Down:

CLA /AC = 0, PEN DOWN
JMS I PLOT
X coordinate /MUST BE IN RANGE -4096<X<4096
Y coordinate /-4096<Y<4096
return

.

PLOT, PLOTX

Plot with Pen Up:

CLA IAC /JAC = 1, PEN UP
JMS I PLOT

X coordinate /=4096<X<4096

Y coordinate /=-4096<Y<4096
return

PLOT, PLOTX

8.4 DESCRIPTION

The routine has two registers which contain the location of
the last position plotted. When the subroutine is entered, the
accumulator is tested to determine if initialization is being
performed; if so the location registers are set to zero, the pen
raised, and the subroutine exits. If the routine is not being
initialized, the subroutine compares the current pen position (up
or down) with the requested one and raises or lowers the pen if
appropriate. The new X and Y coordinates are retrieved from the
two locations following the calling JMS and placed in the location
registers. The X and Y difference between the current location
and the desired location are computed and compared. The subroutine
selects motion commands depending upon the quadrant of the new
location compared to the old. The possible motions are now parallel
to either the X-axis (drum motion) or the Y-axis (pen motion) or
a combined motion. The subroutine determines which of these motions

to use, and when the new location is reached, it exits.

2200
2201
8202
22083
0204
2205
0206
2207
2210
2211
2212
2213
2214
2215
B216
0217
2220
2221
222
0223
2224
225
2226

The X and Y coordinates are specified in numbers of steps.

Increasing X corresponds to lowering the drum. Increasing Y cor-

responds to moving the pen left.

The subroutine is limited by the speed of the plotter. The

minor subroutine, PLOTWT can be replaced, if necessary, by a

routine making use of the program interrupt.

8.5 PROGRAM LISTING

pe00
7518
52280
1361
7112
7710
5227
7628
5214
3361
6504
5216
2361
6524
4370
5227
7200
6504
3361
3362
3363
4370
56080

/COPYXRIGHT 1971 DIGITAL EQUIPMENT COXPIXATIIN
ZHAYNARD > MASSACH SIS
/DIGITAL 8~-12-U

/PLOT SUBROUTINE
/CALLING SEQUENCE

/ C(AC)=-1; INITIALIZE
/ C(AC)= @3 PLOT WITH PEN DOWN
/ C(AC)= 13 PLOT WITH PEN UP
/ JMS PLOTX
/ X CO-ORDINATE (IN STEPS) (RETURN IF AC==-1)
/ Y CO-ORDINATE (IN STEPS)
PLOTX, 2
SPA /MOVE THE PEN?
JMP PLOTA /NO: CONTINUE
TAD PLOTPN /ADD PEN STATUS
CLL RTR
SPA CLA /ANY CHANGE?
JMP PLOT1 /NO: CONTINUE
SNL CLA
JMP . +4 /LOWER THE PEN
DCA PLOTPN /RAISE THE PEN
PLPU
JMP . +3
I1S2 PLOTPN /LOWER THE PEN
PLPD
JMS PLOTWT /WALIT FOR FLAG
JMP PLOTY /CONTINUE
PLOTA, CLA
PLPU /RAISE THE PEN
DCA PLOTPN
DCA PLOTNX /@ TO X CO~-ORDINATE
DCA PLOTNY /@ TO Y CO~ORDINATE
JMS PLOTWT

JMP 1 PLOTX

8227
2230
2231
0232
2233
0234
2235
2236
0237
2240
2241
0242
2243
2244
@245
0246
0247
0250
0251
2252
2253
2254
8255
2256
0257
2260
2261
0262
2263
0264
0265
2266
0267
0270
9271
2272
2273
8274

8275
276
8277
p300
2301
@302
0303
0304
2305
2306

1362
7141
1600
7420
7041
3364
70084
3367
1600
3362
2200
1363
7141
1600
7420
7041
3365
1367
7¢04
3367
1680
3363
2200
1364
7141
1365
7620
5275
1364
3366
1365
3364
1366
3365
7081
8367
1342
5300

1367
7110
1345
3366
1766
3340
1367
1350
3367
1767

/DIGITAL 8-12-U
/PAGE 2
/PICK UP ARGUMENTS

PLOT1, TAD PLOTNX /FETCH PREVIOUS X CO~ORDINATE
ClIA CLL
TAD I PLOTX /FORM NX=NPX
SNL /LB NX<NPX
CIA
DCA PLOTDX /ABSOLUTE VALUE QF DIFFERENCE
RAL
DCA PLOTMY /SAVE SIGN BIT
TAD I PLOTX /SET NEMW
DCA PLOTNX /PREVIOUS X
I1SZ PLOTX /INCREMENT POINTER
TAD PLOTNY /JFETCH PREVIOUS Y CO-ORDINATE
CIA CLL
TAD I PLOTX /FORM NY=NPY
SNL /<=@: NPYNY
CIA
DCA PLOTDY /ABSOLUTE VALUE OF DIFFERENCE
TAD PLOTMYV /SAVE SIGN BIT
RAL /BIT 10(1)s DRUM-DOWN(POSITIVE)
DCA PLOTMV /BIT 11(1)=PEN-LEFT (POSITIVE)
TAD 1 PLOTX /SET NEW
DCA PLOTNY /PREVIOUS Y
ISZ PLOTX /INCREMENT POINTER
TAD PLOTDX
cla CLL
TAD PLOTDY
SNL CLA /L=@: DELTA Y < DELTA X
JMP PLOTZ2
TAD PLOTDX /REVERSE NUMBERS
DCA PLOTNA
TAD PLOTDY
DCA PLOTDX
TAD PLOTNA
DCA PLOTDY
1AC /SET MAJOR MOTION
AND PLOTMV /INSTRUCTION
TAD PLOTT1
JMP . +4

/DIGITAL 8-12-U
/PAGE 3

pPLOT2, TAD PLOTMV
CLL RAR
TAD PLOTT2
DCA PLOTNA
TAD I PLOTNA
DCA PLOTA4
TAD PLOTMV /SET COMBINED MOTION
TAD PLOTT3
DCA PLOTMV
TAD I PLOTMYV

2307 3331 DCA PLOTOB
2319 1364 TAD PLOTDX
2311 7110 CLL RAR
8312 3366 DCA PLOTNA
313 1364 TAD PLOTOX
@314 7040 CMa

8315 3367 DCA PLOTMV

2316 2367 PLOT3, [SZ2 PLOTMY
0317 7410 SKP
@328 5600 JMP 1 PLOTX /ALL DONE

2321 1366 TAD PLOTNA

2322 1365 TAD PLOTDY

2323 3366 DCA PLOTNA

0324 1366 TAD PLOTNA

2325 7140 CMA CLL

2326 1364 TAD PLOTDX

2327 7630 SEL CLA

2330 5340 JMP PLOT4 /SINGLE MOTION
2331 @002 PLOTDB,) /COMBINED MOTION
2332 1364 TAD PLOTDX

2333 7041 CIA

0334 1366 TAD PLOTNA

0335 3366 DCA PLOTNA

0336 4379 JMS PLOTHWT

0337 5316 JMP PLOT3

@34p 02000 PLOT4, 2

8341 5336 JMP -3

0342 @343 PLOTT1, !

2343 6511 PLPR © /PEN-RIGHT
2344 6521 PLPL /PEN~LEFTY
@345 @346 PLOTT2, 1

8346 6512 PLDU /DRUM-UP
8347 6514 PLDD /DRUM-DOWN
@359 @351 PLOTTS3, 1

351 6513 PLDU PLPR /UP-RIGHT
8352 6523 PLUD PLPL /UP~LEFT
0353 6515 PLDD PLPR /DOWN-RIGHT
@354 4355 JMS . +1 /DOWN=-LEFT

@355 0000 B

2356 6514 PLDD

2357 6521 PLPL

@368 5755 JMP T -3

/DIGITAL B8-12-U
/PAGE 4

2361 P0@8 PLOTPN,
0362 0PRP PLOTNX,
2363 ©@UP@ PLOTNY,
2364 @0PPB PLOTDX,
8365 @g@@ PLOTDY,
8366 2028 PLOTNA,
6367 @028 PLOTMV,

[RN RS B IS R RS

2370
8371
8372
@373
0374

PLOTA
PLOTDB
PLOTDX
PLOTODY
PLOTMV
PLOTNA
PLOTNX
PLOTNY
PLOTPN
PLOTT1
PLOTT2
PLOTT3
PLOTWT
PLOTX
PLOT1
PLOT2
PLOT3
PLOT4

0878 PLOTWT,)
6501 PLSF

5371 JMP -1

6502 PLCF

5770 JMP 1 PLOTWT

02280
331
0364
P365
2367
2366
2362
0363
p361
P342
8345
p350
3370
p208
@227
0275
B316
2340

PAUSE

/WAIT FOR DONE FLAG
/NOT YET

/CLEAR FLAG

/EXIT

Formerly
Digital-8-28-U-Sym

CHAPTER 9

DECIMAL TO BINARY CONVERSION AND INPUT

(Single Precision, Signed or Unsigned, 33-ASR)

9.1 ABSTRACT
This routine accepts a string of up to four decimal digits (single
precision for the PDP-8) from the Teletype keyboard and converts it to

the corresponding 2's complement binary number.

The string can contain as legal characters a sign (+,-, or space)
and the digits from 0 - 9. If the first legal character is not a
sign, the conversion is unsigned. A back arrow («) at any point in
the string erases the current string and allows the operator to reenter
the correct value. Any character after the first, other than another
digit or back arrow, causes the conversion to terminate and is found in
location SISAVE within the subroutine.

9.2 REQUIREMENTS
This subroutine requires 74lO (1128) core locations and runs on
any standard PDP-8 family computer with a 33-ASR Teletype console.

Program tape is labelled Single Precision Decimal Input,

Digital-8-28-U-ASCII

9.3 USAGE

9.3.1 Loading

The symbolic tape provided can be assembled with the user's main
program by PAL III, MACRO-8, or PAL-D. The symbolic tape has neither an
origin setting nor a terminating "$", but does have a PAUSE pseudo-

instruction at the end.

9.3.2 Calling Seguence
The subroutine is called by an effective JMS to location SICONV.
Return is to the location immediately following the calling JMS with

the binary number in the accumulator.

9-1

9.4 ERRORS IN USAGE

If a sign (+, -, or space) precedes the string of decimal
digits, the maximum decimal number correctly accepted is
2047 (2ll - 1). The sign, if any, must appear first. If a sign
does not precede the string of decimal digits, the maximum decimal
12 1). If either of these

maxima is exceeded, the results are unspecified.

number correctly accepted is 4095 (2

9.5 RESTRICTIONS

‘The status of the AC and link is not preserved.
This subroutine should not be used when the interrupt is on.

The magnitude restrictions on numbers are described in

Section 9.4.

9.6 DESCRIPTION

This subroutine converts to the binary equivalent a signed or
unsigned string of decimal numbers read from the console keyboard
of the PDP-8. 1If a minus sign is specified, the results are in
2's complement negative form. The first character is examined and,
if it is a sign (+, -, or space), a switch is set to provide the
correct sign for the conversion. Regardless, a switch is set after
the first character to terminate conversion if a character other than
a decimal digit or rubout appears. If a back arrow appears at any
time, the conversion is reinitialized and the subroutine waits for

the correct entry.

The last four bits of the ASCII code for each of the decimal
digits are identical to the standard 8-4-2-1 BCD code. Thus, the
BCD digit is extracted from the 8-bit code by the AND instruction
with a "mask" of 178. When the first BCD digit comes in, it is
added to a cleared location (SJHOLD) in memory and stored back in
that location. When the next legal character comes in, location
SJHOLD is multiplied by 10, then added to the BCD code of the

character and returned to location STORE. This sequence holds

true for a decimal number of any arbitrary length.

9.7 EXAMPLE

Since the PDP-8 can add and shift easily, the multiplication
by 10 can be accomplished in three instructions. Since a shift left
is equivalent to a multiplication by 2, a double shift left is

equivalent to a multiplication by 4. Assume that the number currently

T 2 = A~y o

in STORE is 5, and the new code just coming in is the number 1 stored
in HOLD. The program sequence to perform the multiplication and

storage is as follows:

Instruction

Seqguence Comments Contents of AC
CLA
TAD STORE /Load C(STORE) into AC 000 000 000 101
CLL RTL /Multiply C(STORE) by 4 000 000 010 100
TAD STORE /Add STORE giving C(STORE) by 5 000 000 011 001
CLL RAL /Multiply by 2 giving C(STORE) by 10 000 000 110 010
TAD HOLD /Add in the next number 000 000 110 011
DCA STORE /Store back into STORE and return

to wait for next character 000 000 000 000
The number residing in location STORE is 00638 or 005110.
If the next number to come in were "9", using the same sequence
and conditions, the result would be 001 000 000 111, the binary

equivalent of 519.

9.8 SCALING
This subroutine assumes an integral decimal number (signed or
unsigned) and yields an integral binary equivalent (signed or unsigned

respectively) .
9.9 FORMAT

9.9.1 Input

The input string may or may not contain a sign (+, -, or space).

9-3

Any character other than a sign, 0 - 9, or back arrow causes the

subroutine to terminate, as does a sign in any but the first position.

9.9.2 Core Data

The terminating character is found in location SISAVE.

9.9.3 Output

Spacing, tabulation, carriage return, etc., are not provided
for in this subroutine. See Chapter 6 which contains short subroutines

for those purposes.

FLCW CHART

FIRST
CHARACTER

NO

oD

NEGATIVE
2

FORM 2'S
COMPLEMENT

4
NUMBER IN AC

'
(o

)

2 y
INITIALIZE & ZERO
YES ASSEMBLY
LOCATIONS
YES ©
ERASE NUMBER WAIT FOR
INPUT FROM
4 KEYBOARD
<"IlllilllI'> YES A
BACKARROW
NO 2
YES
LESS
THAN 260
¢NO ?
FIRST CHARACTER SET SiGN
IS A TERMINATOR INDICATOR
TO NEGATIVE
GREATER
THAN 271
2
NUMBER NO

MULTIPLY PARTIALLY
ASSEMBLED
NUMBER BY 10

‘

ADD INCOMING
DECIMAL DIGIT

R

Lt PROGRAM LI1S5'UTLNG ~ . . - ;
’ JCOPYRIGHT 1971 DIGITAL TIJIPMENT CORPORATION

/MAYNARD, 4A3SACHUSEITTS
/SINGLE PRECISION DECIMAL INPUT FROM KEYBOARD
/CALLING SEQUENCE: JMS SICONV

/ACC IGNORED, RETURN WITH BINARY WORD IN ACC

g202 ©0B8 SICONV.,]

p2v1 73060 CLA CLL

p2ge 1273 TAD SISET1 +1 /INITIALIZE PROGRAM SWITCHES

p2B3 3232 DCA SICTRL

P24 1273 TAD SISET1 +1

p2B5 3224 DCA SIXSW1

0206 3310 DCA SIHOLD

9207 3311 DCA SINEG1 /CLEAR NEGATIVE SWITCH

0218 5257 JMP SINPUT

211 3307 SIPROC, DCA SISAVE

o212 1307 TAD SISAVE /STORE AND THE PROCESS
/CHARACTER

213 1301 TAD SIRBUT

P214 7459 SNA /IS IT A "BACK-ARROW"
/CIE. ERASE) KEY

0215 5201 JMP SICONV +1 /YES, REINITIALIZE

p216 1302 TAD SIM260

0217 7510 SPA /IS IT LESS THAN 260
/(IE. "")

B228 5232 JMP SICTRL /YES. TRANSFER TO SEE WHAT
/CHAR. IT IS

@221 1303 TAD SIM271

p222 7740 SMA SZA CLA /1S IT GREATER THAN 271
/CIEs "9")?

p223 5232 JMP SICTRL /YES> TRANSFER TO SEE WHAT
/CHAR. IT IS

0224 7308 SIXSW1., CLA CLL /NO, FIRST CHARACTER WAS A
/DECIMAL DIGIT

p225 1231 TAD .+4 /CLOSE SWITCH TO GO TO

0226 3224 DCA .-2 /"SINMBR" NEXT

p227 1777 TAD SINMBR -1 /SET SWITCH TO SENSE
/TERMINATING CHAR.

v23B 3232 DCA SICTRL

P231 5246 JMP SINMBR

p232 7300 SICTRL.» CLA CLL /CONTINUE CHECKING

0233 1307 TAD SI SAVE

P234 1304 TAD SIMSPC

P235 7450 SNA /IS IT A SPACE?

236 5273 JMP SISET1 +1 /YES, SET SWITCH TO SENSE
/TERMINATING CHAR.

0237 1305 TAD SIMPLS

D240 7450 SNA /IS IT A "PLUS"?

2241 5273 JMP SISET1 +1 /YES, SET SW TO SENSE
/TERMINATING CHAR.

D242 1306 TAD SIMMNS

2243 7650 SNA CLA /IS IT A MINUS?

@244 5273 JMP SISETI1 /YES»> SET NEGATIVE XSWITCH

/BND TERM. SWITCH

9-6

0245

0246

p247

MO T A
[y sy)

0251
P252

0253
2254

2255
B256
9257
2260
0261
p262
P263

p264
P265
V266

0267
0279
p271

p272
9273
2274
P275

P76
p2717

2300
2301
0302

9303

0304
0305

0306
0307

9310
P311

5264

1310

7106

12147

iAo

1004
3310

13@7
2309

1319
3310
6031
5257
6036
6046
5211

7300
1311
7010

1310
7430
7241

5608
2311
73992
1777

3232
5257

o117
7441
0251

17767

7540
7765

7776
10)01080]

4)0)0}4;
0eoo

JMP SIEND

SINMBR> TAD SIHOLD

CLL
TAD
RAL
DCA
TAD
AND

RTL
SIHOLD

SIHOLD
SISAVE
SIMASK

TAD
DCA
KSF
JMP
KRB
TLS
JMP

SIHOLD
SIHOLD
SINPUT>
-1

SIPROC

/TERMINATING ROUTINE

SIEND, CLA CLL
TAD SINEGI
RAR

TAD
SZL
tMAa

SIHOLD

IAC

JMP
15Z
CLA
TAD

I SICONV
SINEG1
CLL
SINMBR -1

SISET1-

bca
JMP

SICTRL
SINPUT

/CONSTANTS AND VARIABLES
SIMASK.> 17

SIRBUT» - 337

SIM260.» 57

SIM271., -11

-240
-13

SIMSPC,»
SIMPLS,

SIMMNS, -2

SISAVE,
SIHOLD.»
SINEG!»
PAUSE

(SIS

/NO, IT WAS A TERMINATING
/CHARACTER

/MULTIPLY CURRENT ASSEM-
/BLED NUMBER BY 10

/PICK UP CURRENT DIGIT
/MASK OFF THE HIGH ORDER
/BIT

/ADD TO ASSEMBLED
/STORE BACK IN

NUMBER
SIHOLD

/INPUT ROUTINE

/PUT NEGATIVE SWITCH INTO
/LINK

/1S THE LINK
/YES, NUMBER
/COMPLEMENT
/RETURN.
/SET NEGATIVE SWITCH

l'lll?

NEGATIVE.

/CLOSE SW TO TRANSFER TO
/TERM.

/CODE FOR ERASE

/NUMBER USED TO GENERATE
/CODE "'268"

/NUMBER USED TO GENERATE
/CODE "271"

/CODE FOR SPACE

/NUMBER USED TO GENERATE
/CODE "253" (+)

/NUMBER USED TO GENERATE
/CODE "255" (-)

/STORAGE LOCATIONS

Formerly

Digital-8-29-U-Sym

CHAPTER 10
DECIMAL TO BINARY CONVERSION
AND INPUT

(Double Precision, Signed or Unsigned, 33-ASR)

10.1 ABSTRACT
This routine accepts and echoes a string of up to eight decimal
digits (double-precision for the PDP-8) from the Teletype keyboard

and converts it to the corresponding two's complement binary number.

The string may contain as legal characters a sign (+, -, or space)
and the digits 0 - 9. If the first legal character is not a sign, the
conversion is unsigned. A "back-arrow" (<) at any point in the
string erases the current string and allows the operator to re-enter
the value. Termination of input is accomplished by typing one illegal
character which will then be found in location DIDSAV within the sub-

routine.

10.2 REQUIREMENTS
This subroutine requires llO10 (1568) core locations and runs on
any standard PDP-8 family computer with a 33-ASR Teletype console. The

paper tape is labelled Double Precision Decimal to Binary Conversion,

Digital-8-29-U-ASCII

10.3 USAGE

10.3.1 Loading

The symbolic tape provided can be assembled with the user's
main program with PAL III, MACRO-8, or PAL-D. There is neither
origin setting nor terminating "$" on the symbolic tape, but a

PAUSE pseudo-instruction is the last line on the tape.

10-1

10.3.2 Calling Sequence

The subroutine is called by an effective JMS to location DICONV.
The location immediately following the JMS instruction contains the
address of the location where the high-order portion of the number is
to be stored. (It is assumed that the low-order portion of the number
is in the location immediately following the high-order portion.)
Return is to the second location following the calling JMS with the AC

clear. For example:

JMS DICONV
ADDR
HLT

ADDR, g

g

10.4 ERRORS IN USAGE

If the string of decimal digits is preceded by a sign (+, -, or
space), the maximum decimal number that is correctly accepted is
16777215 (224 -1).

If neither of these maxima is exceeded, the results are

unspecified.

10.5 RESTRICTIONS
The status of AC and link is not preserved.

This subroutine should not be used with the interrupt on.
The magnitude restrictions on numbers is described in section 10.4

10.6 DESCRIPTION

The discussion, example, and scaling information about the
conversion are given in Chapter 9. The only difference is that the
multiplications by "4" and "2" are performed by the arithmetic shifts
as described in the section on Arithmetic Shift Subroutines in the
PDP-8 Math Routines writeup, DEC-08-FFAD-D.

Information on technigques used in this program can also be

found in Chapter 9 of this document.

10-2

10.7 FORMAT

10.7.1 Input Data
The input string may or may not contain a sign (+, -, or space).
Any character other than a sign, 0 - 9, or rubout causes the subroutine

to terminate as does a sign in any but the first position.

10.7.2 Core Data

The high-order portion of the binary equivalent of the number
is found in the location specified by the address following the JMS.
The low-order portion is found in the next successive location. This
is the format compatible with the double-precision, fixed point
arithmetic subroutines. The terminating character is found in location
DiDSAV.

10.7.3 Output Data
Spacing, tabulation, carriage return, etc., are not provided
for in this subroutine. See Chapter 6 which contains short sub-

routines for such purposes.

This subroutine is input limited at a maximum of 10 cps.

10-3

10.8

FLOW CHART

FIRST CHARACTER
1S A TERMINATING
CHARACTER

y

COMPLEMENT THE
DOUBLE-PRECISION
NUMBER

1S
EGATIVE SWITCH
SET

THIS IS A
TERMINATING
CHARACTER

4

STORE RESULT IN
ADDRESS SPECIFIED BY
THE CALLING SEQUENCE]

{ EXIT)

‘ ENTRY)

ERROR MADE
OPERATOR WISHES TO
ERASE NUMBER

3

PICK UP INCOMING
CHARACTER

INITIALIZE PROGRAM
SWITCHES AND ZERG
LOCATIONS FOR HOLDIN
PARTIALLY-ASSEMBLED,
DOUBLE-PRECISION NO.

PICK UP ADDRESS FROM|
CALLING SEQUENCE FOR]
STORING DOUBLE —
PRECISION NUMBER

y

WAIT FOR CHARACTER
FROM KEYBOARD
OR READER

SAVE INCOMING
CHARACTER IN
" DI psau”

FIRST CHARACTER
WAS A DECIMAL DIGIT
SET SWITCH #1

LESS
THAN 260
?

GREATER
THAN 271
?

1S
switcH %
SET

LSET NEGATIVE swncn]

A

10-4

A

SET
CONTROL
SWITCH

SET
CONTROL
SWITCH

PICK UP PARTIALLY-
ASSEMBLED, DOUBLE-
PRECISION NUMBER

MULTIPLY BY FOUR
(IE DOUBLE SHIFT
LEFT TWICE)

ADD THE PARTIALLY —
ASSEMBLED, DOUBLE —
PRECISION NUMBER

MULTIPLY BY TWO
(IE DOUBLE SHIFT
LEFT ONCE)

ADD THE INCOMING
DECIMAL DIGIT
TO THE RESULT

STORE SUM AS THE NEW
PARTIALLY-ASSEMBLED,

DOUBLE -PRECISION 'NO.

10.9

g2p0
pa2o1
0202
22083
o204
p2p5
0206

0207
gale

gatll
gale
p213
g214
0215
B216
@217
pe2e
g2l
paz2
223

paz4
pa2s

ve26

ga27
0230
0231
pa232

0233
@234
@235
V236
2237
pean
vaal

ge4a2
2243
vea4

PROGRAM LISTING

Voo
7300
1324
3235
1324
3227
1600

3351
3352

3353
3347
5275
3350
1350
1341
7450
5201
1342
7510
5235

1343
T740

5235

7300
1234
3227
1250

3235
5251
7200
1350
1344
7450
5324

1345
7450
5324

/CIPYRIGHT 1971 DIGITAL ZQJIPMENT CORPORATION
/MAYNARDS YMASSACHUSETTS
/DOUBLE PRECISION DECIMAL-TO-BINARY CONVERSION AND INPUT

/CALLING SEQUENCE: /AC IGNORED
/ JMS DICONV /SUBROUTINE CALLED
/ ADDRES /ADRESS TO STORE HIGH-ORDER WORD
/ /L0W -ORDER WORD IN ADDRESS+1
DICONV., 0
CLA CLL /INITIALIZE PROGRAM SWITCHES
TAD DISET1+1
DCA DICTRL
TAD DISET1+1
DCA DIXSW!
TAD I DICONV /PICK UP ADDRESS TO STORE
/HIGH~ORDER WORD
DCA DIGET
DCA DIHIHD /CLEAR LOCATIONS USED TO HOLD
/INCOMING
DCA DILOHD /NUMBER
DCA DINEG! /CLEAR NEGATIVE SWITCH
JMP DIIN
DIPROC, DCA DIDSAV /STORE CHARACTER
TAD DIDSAV
TAD DIRBUT
SNA /1S IT A "BACK-ARROW"(IE. ERASE) KEY?
JMP DICONV+1 /YESs REINITIALIZE
TAD DIM260
SPA /IS IT LESS THAN 260 (IE. "@'")?
JMP DICTRL /YES, TRANSFER TO SEE WHAT
/CHARACTER IT IS
TAD DIM271
SMA SZA CLA /1S IT GREATER THAN 271 (IE. "9")7
JMP DICTRL /YES>, TRANSFER TO SEE WHAT

/CHARACTER IT IS
DIXSWls CLA CLL /NO, FIRST CHARACTER WAS A DECIMAL DIGIT
TAD .+4 /CLOSE SWITCH TO GO TO "DINMBR" NEXT

DCA .-2

TAD DINMBR-1 /SET SWITCH TO SENSE TERMINATING
/CHARACTER

DCA DICTRL

JMP DINMBR

DICTRL, CLA /CONTINUE CHECKING TO DETERMINE CHAR.

TAD DIDSAV

TAD DIMSPC

SNA /IS IT A "SPACE"?

JMP DISETIi+1 /Y¥YES, SET SWITCH TGO SENSE TERM.
/CHARACTER

TAD DIMPLS

SNA /1S IT A "PLUS"?

JMP DISET1+1 /YES, SET SWITCH TO SENSE TERM.
/CHARACTER

10-5

0245
0246
0247

0250
0251

g252
0253
p254
0255
0256
0as57
2260
0261
pee62
D263
0264
0265
0266
0267
0270
paTl
vaia
@273
0274

@275
@276
0277
0300
0301

@302
2303
0304
0305
0306
0307
0310
8311
p312
0313

D314
@315
B316
0317

@320
p321
p322
2323

5302
1353

3354
1352
3355
4330
4330
1353
1354
3353
7004
1352
1355
3352
4330
1350
0340
1353
3353
7430
2352

6031
5275
6036
6046
5214

7200
1347
7110
1352
7430
T840
3751
1353
7430
7141

7430
2751
7000
2351

3751
2200
5600
2347

TAD
SNA
JMP

JMP
DINMBR»> TAD

DCA
TAD
DCA
JMS
JMS
TAD
TAD
DCA
RAL
TAD
TAD
DCA
JMS
TAD
AND
TAD
DCA
SzZL

152

DIMMNS
CLA /IS
DISETI

DIEND
DILOHD

DIXTM1
DIHIHD
DIXTM2
DIDSPL
DIDSPL
DILOHD
DIXTM1
DILOHD

DIHIHD
DIXTM2
DIHIHD
DIDSPL
DIDSAV
DIXMSK
DILOHD
DILOHD

iT

”MINUSI'?
/YES,SET NEGATIVE SWITCH AND TERM.
/SWITCH
/NO> IT WAS A TERMINATING CHARACTER

/STORE ASSEMBLED NUMBER
/TEMPORARILY

/MULTIPLY CURRENT BY '"1g"

/PICK UP CURRENT DIGIT
/MASK OFF HIGH-ORDER BITS
/ADD REMAINDER TO CURRENT NUMBER

/DID IT OVERFLOW?

DIHIHD

/INPUT ROUTINE

DIIN> KSF
JMP
KRB
TLS
JMP

=1

DIPROC

/TERMINATING ROUTINE

DIEND, CLA
TAD
CLL
TAD
SZL
cMA
DCA
TAD
SZL
CLL

SZL
152
NOP
152

DCA
15z
JMP
DISETLs ISZ

DINEGI1

/YES, CORRECT HIGH-ORDER WORD

/PICK UP NEGATIVE NUMBER

RAR /PUT IT INTO LINK. (1" IF NEGATIVE)

DIHIHD

/PICK UP HIGH ORDER PORTION

/1S LINK "1"?
S, NUMBER NEGATIVE. COMPLEMENT IT

/YE
I DIGET
DILOHD

/STORE IT
/PICK UP LOW-ORDER PORTION

/1S5 LINK "1"7?

CMA IAC

/YES, TWO'S COMP.IT. IF OVERFLOW,
/LINK=1

/1S LINK '"1"?

I DIGET

/INDEX HIGH-ORDER PRTION

/TAKES CARE WHEN HIGH-ORDER PORTION =0

DIGET

I DIGET
DICONV
I DICON
DINEG!

v

10-6

/INDEX POINTER FOR LOW-ORDER
/PORTION

/STORE LOW-ORDER POTION OF NUMBER
/INDEX FOR CORRECT RETURN

/RETURN

/SET NEGATIVE SWITCH

@324 7300 CLA CLL /CLOSE SWITCH TO TRANSFER TO TERMINATION

9325 1250 TAD DINMBR-1
326 3235 DCA DICTRL
@327 5275 JMP DIIN /JUMP TO WAIT FOR NEXT CHARACTER

DOUBLE PRECISION LEFT SHIFT (X2)
IDSPL. 0

331 1353 TAD DILOHD

[SS]
W
[#0]
Q
=
[N
(SN
Q
[wAN

@332 171064 CLL RAL
@333 3353 DCA DILOHD
@334 1352 TAD DIHIHD
@335 7004 RAL
9336 3352 DCA DIHIHD
©337 5730 JMP 1 DIDSPL
/CONSTANTS AND VARIABLES
P340 Q017 DIXMSK, 17 /MASK FOR LAST FOUR BITS
341 7441 DIRBUT, -337 /CODE FOR ERASE
@342 Q@57 DIM26@, 57 /NUMBER USED TO GENERATE CODE "26@"
0343 7767 DIM271, -11 /NUMBER USED TO GENERATE CODE "271"
@344 7540 DIMSPC, -240 /CODE FOR SPACE
345 7765 DIMPLS, -13 /NUMBER USED TO GENERATE CODE ''253" (+)
0346 7776 DIMMNS, -2 /NUMBER USED TO GENERATE CODE "255" (-)

0347 Q000 DINEG1.,
9350 006G DIDSAV,
@351 0000 DIGET.

352 @0@® DIHIHD.,
@353 @002 DILOHD.
@354 Q@00 DIXTMI1,
0355 0Vo® DIXTM2,

/STORAGE LOCATIONS

SIS IS BN EN RN

10-7

Formerly
Digital-8-10-U-Sym

CHAPTER 11
BCD TO BINARY CONVERSION, SINGLE PRECISION

(Binary Coded Decimal to Binary Conversion Subroutine)

11.1 ABSTRACT

L ale b ks
LoUuuvuc

"
L

~
i<

£ mTra 3
LOL

i
coded-decimal numbers to their equivalent binary value. Conversion

is accomplished by "radix deflation".

11.2 REQUIREMENTS
This subroutine requires 23lO (278) memory locations and runs
on any standard PDP-8 family computer with a 33-ASR Teletype console.

The source paper tape is labeled BCD to Binary Conversion,
Digital-8-10-U-ASCII.

11.3 USAGE

11.3.1 Loading

Load the subroutine with the Binary or RIM Loader, as described

in either Introduction to Programming or Programming Languages.

11.3.2 Calling Sequence
Call with the number to be converted in the AC. Return will be
to the location following the calling JMS with the result in the AC.

11.4 DESCRIPTION

The method used is that of "radix deflation". Upon entry, the
BCD number may be considered to be in the following form:
2
(a) D, 16" + D; 16 + D,

What is desired is the number in the form:

2
(b) D2 10 + Dl 10 + DO

11-1

The PDP-8 can shift (rotate) and add. A right shift is equivalent to
a division by a power of two. An appropriate series of shifts,
additions, and subtractions is used to convert the number from the
form of (a) to that of (b).

11.5 EXAMPLE
Consider the BCD number

0101 0001 1001
representing the decimal number 519.
First the whole number is stored and then brought back into the
AC. Next, the four most significant bits are masked out. At this
point, the accumulator contains 16x16xA or
0101 0000 0000
A shift to the right of one bit yields

0010 1000 0000

This number is stored and then brought back to the AC, shifted right

two bits, and the stored value added as follows:

0000 1010 0000
0010 1000 0000

0011 0010 0000

Now the original number is added to this result

0011 0010 0000
0101 0001 1001

1000 0011 1001

and the most significant eight bits masked out as

1000 0011 0000

11-2

This is stored, brought back and shifted right once, and the stored
value added.

0100 0001 1000
1000 0011 0000

1100 0100 1000

Next the result of this addition is shifted right two places dividing
the number by four as follows:

0011 0001 0010

negated and the original number added

1100 1110 1110
0101 0001 1001

0010 0000 0111

This result represents in binary 512 plus 4 plus 2 plus 1 or 519,
the original number.

11.6 SCALING
This subroutine assumes an integral BCD number and yields an

integral binary equivalent.

11.7 PROGRAM LISTING
A listing of the subroutine with BCDBIN located at 0200 is

D and D

given below. To simplify mnemonics Dys Dy 0
’

have been replaced
respectively with A, B, and C.

11-3

/CO2(RTIGHT 19711 DIGlial, =aJdirdaNt UaRrdxall N
/MAYNARD s MASSACHUSEZTTS

/BINARY-CODED-DECIMAL TO BINARY COMVERSTON SUBROUTINE
*263

p263 @0@@® BCDBIN, 0

p264 3314 DCA TEMPH /STORE INPUT
p265 1314 TAD TEMPH

g266 @311 AND LDIGIT

gee7 7112 CLL RTR

g279 3313 DCA COUNT

2271 1313 TAD COUNT

pgeT72 1010 RAR

273 1313 TAD COUNT

geT4 7241 CMA IAC

g275 1314 TAD TEMPH /160 H + 16 M + L
p276 3314 DCA TEMPH

@277 1314 TAD TEMPH

(7 ICERIRIN Y B AND MDIGIT

2301 7112 CLL RTR

p3g2 3313 DCA COUNT

@373 41 TAD COUNT

P304 7010 RAR

P35 131 TAD COUNT /600 H + 6 M
2506 7041 CMA IAC

307 1314 TAD TEMPH

P31V 5663 JMP I BCDBIN /EXIT

p311 7400 LDIGIT. 7400
p312 7760 MDIGIT, 7760
¥313 @@y COUNT, @
2314 0000 TEMPH. @

11.8 REFERENCES

11.8.1 DECUS Programs

See DECUSOPE January 1965, article entitled "Accelerated Radix
Deflation on the PDP-7 and PDP-8".

11.8.2 ACKNOWLEDGMENTS

Mr. Donald V. Weaver, Consultant, of New York City, who first
described the algorithm used by this subroutine in reference 11.8.1
has granted his kind permission to include this subroutine in the
PDP-8 library so that a detailed description may be available.

11-4

CHAPTER 12

BCD TO BINARY CONVERSION, DOUBLE PRECISION

(Rinary Coded Decimal to Binary Conversion ¢

12.1 ABSTRACT
This subroutine converts a 6-digit BCD number to its equivalent

binary value in two computer words.

12.2 REQUIREMENTS

This subroutine requires 89 (1318) memory locations and runs

on any standard PDP-8 with a 33-igR Teletype console. The source tape

is labeled Double Precision BCD to Binary Conversion,
Digital-8-11-U-ASCII

12.3 USAGE

12.3.1 Loading
The subroutine is loaded with the Binary Loader. The symbolic
code is either assembled with the user program or separately with the

proper origin setting.

12.3.2 Calling Sequence

This subroutine is called with an effective JMS DOUBLE followed
by the address of the high-order word of the double-precision BCD
number. Control is returned to the following location with the high-
order part of the result in C(AC) and with the low-order part of the
result in C(LOW) .

12.4 DESCRIPTION
Upon entry, the BCD number is in the form:

2

2
(16 Dl + 16D2 + D3),(16 Dy + 16D5 + D6)

(each digit is 4 bits, 24 = 16)

12-1

Using the single precision BCD to binary subroutine, this is
reduced to:

2 2

(10 Dl + lOD2 + D3);(10 D, + 10D_. + D6)

4 5

The high order part of the BCD word is effectively multiplied
by 1000 (=8(128 - 3)) and the low-order part is added, giving

5 4 3 2
10 D, + 10 D, + 10 Dy + 10 D, + lOD5 + Dg.
See Chapter 11.
12.5 EXAMPLES
GO, JMS I X
HIGH
HLT
X, DOUBLE
HIGH, 1001 1001 1001 1 999,999
LOW, 1001 1001 1001

If this program were started at GO, the C(AC) at the halt would

be 03648 and C(LOW) would be 10778, i.e., 03641077, = 999,999

8 10°

12.6 PROGRAM LISTING

/COPYRIGHT 1971 DIGITAL EJIJIPMENT CIRPORATIOIN
/MAYNARDS> MASSACHUSETTS
/DIGITAL g-11-U-5YM

/DOUBLE PRECISION BCD TO BINARY CONVERSION
/CALLING ZEZGUENCE:

/ JMS DOUBLE

/ ADDRESS OF HIGH ORDER ARGUMENT

/ RETURN: CC(ACY=HIGH ORDER PART

/ C(LOW> = LOW ORDER PART

/ALSO CONTAINS SINGLE PRECISION BCD TO BINARY
/CALLING SEQUENCE:

/ CC(ACY = 3 BCD CHARACTERS
/ JMS BCDBIN
/ RETURN: ANSWER IN CCAD)

12-2

0200
B201
2202
0203
p204
v205
va2oe
peor
0210

AO1 1
o il

pa1z
p213
D214

ZD1 5
v L J

2216
0217
0220
pe21
peze
7223
p224
0225
p226
p227
0230
0231
232
0233
0234
2235
0236
2237
0240

p241
Ao ND

waad

0243
P244
@245
0246
0247
0250
2251
p252
2253
0254
9255
P256
0257
0260
0261
2262
7263
0264
0265
22656
0267
2270

8000
1300
1600
3271
2200
1671
4275
3272
2271

1471
10771

4275
3271
1272

7119

LA S

7012
7012
3275
1275
8327
3274
1275
7010
09325
3273
1272
7104
1272
7141
1273
3273
71420
71040
1274

3274
1274

1

1106
1904
0326
3274
1273
7106
1004
3273
1273
1204
0324
1274
3274
1273
0326
7100
1271
3273
1274
7430
7001
5600

DOUBLES

)

CLA
TAD
DCA
152
TAD
JMS
DCA
ISz

T AT
I 1%

JMS
DCA

TAD
CL)

Visie

RTR
RAR
DCA
TAD
AND
DCA
TAD
RAR
AND
DCA
TAD
CLL
TAD
CIA
TAD
DCA
SNL
cMA
TAD
DCA
TAD
CLL
RAL
AND
DCA
TAD
CLL
RAL
DCA
TAD
RAL
AND
TAD
DCA
TAD
AND
CLL
TAD
DCA
TAD
SZL
IAC
JMP

CLL

I DOUBLE

LOW!1
DOUBLE
I LOWI1
BCDBIN
HIGH1
LOW1

T I NI
1 LLUWI

BCDBIN
LOW1

HIGH1
RTR

A A

BCDBIN
BCDBIN
K177
HIGH
BCDBIN

K7600
LOW
HIGH1
RAL
HIGH1
CLL
LOW -
LOW

HIGH
HIGH

HIGH

RTL

KT1770
HIGH
LOW
RTL

LOwW
LOW

K7
HIGH
HIGH
LOW
K7770

LOW1
LOW
HIGH

I DOUBLE

12-3

/FETCH ADDRESS

7/ STORE

/INCREMENT RETURN
/FETCH HIGH ORDER
/CONVERT IT

7/ STORE

/INCREMENT POINTER

NLl NRNER

CH LOW ORDER
VERT IT
/STORE IT

/MULTIPLY HIGH ORDER
/PART BY 128

/MULTIPLY HIGH ORDER
/BY THREE
/FORM 128*HIGH-3*HI GH

/125%xHI GH
/NOW MULTIPLY BY 8

/MASK 9 BITS

/3 BITS

/9 BITS

/ADD LOW ORDER PART

A S Ay

/STORE LOW ORDER PART

/CARRY

271
pa2i2
9273
0274

p275
p276
p277
0300
0301
0302
0303
0304
P305
2306
0307
0319
0311
0312
%313
P314
0315
8316
w317
n320
B321
p3z22
0323
B324
0325
0326
B327
P330¢

20090
0Ro0
booo
oo

o920
3274
1274
0330
7112
3273
1273
7010
1273
1041
1274
3274
1274
8323
7112
3273
1273
010
1273
7841
1274
5675
7760
2001
7600
7770
177
71400

LOW1.
HIGHT1>
LOW>
HIGH>»

/SINGLE
BCDBIN,

K7760,
K7>

K7600->
KT7770>
K177
K7400 s

(SIS RSN

PRECISION CONVERSION

%)
DCA
TAD
AND
CLL
DCA
TAD
RAR
TAD
CIA
TAD
DCA
TAD
AND
CLL
DCA
TAD
RAR
TAD
CIA
TAD
JMP
7760
7
1600
1770
177
1400

HIGH
HIGH
KT7400
RTR
LOW
LOW

LOW

HIGH
HIGH
HIGH
KT7760
RTR
LOW
LOW

LOW

HIGH

I BCDBIN

12-4

/LEFT DIGIT

Formerly

CHAPTER 13

UNSIGNED DECIMAL INTEGER PRINT

OTTT AT TATT

13.1 ABSTRACT
This subroutine permits the printing of the contents of a computer

word as a 4-digit, positive, decimal integer.

13.2 REQUIREMENTS

This subroutine requires 38 (468) core locations and runs on

10
any standard PDP-8 family computer with a 33-ASR Teletype console. The

paper tape provided is labeled Unsigned Decimal Print Subroutine,

Digital-8-22-ASCII
13.3 USAGE

13.3.1 Loading
The subroutine can be placed in core by use of the Binary Loader.

See Introduction to Programming or Programming Languages for full

details. The symbolic tape provided is either assembled with the

user program or separately with the proper origin setting.

13.3.2 Calling Sequence

The subroutine is called by the usual JMS instruction with the
number to be printed in the AC. Return to the location following that
of the calling JMS.

13.4 DESCRIPTION
This is a basic subroutine used to obtain decimal output corres-

~ + A~
L

A T Am PR "n a atar ~
J. 1< _b}-LU_’J-alll h-lc-l-a C i

words 3 -
WUl \J.D J.=11 JllclllUJ-_Y ° il A Ol aJ.\jll.L-

forward manner. First the binary equivalent of 1000 is subtracted
from the original number until a negative result is obtained. A count
is kept of the number of subtractions necessary to accomplish this,

thus yielding the most significant decimal digit. This process is

13-1

repeated, using the proper power of ten, to give the three remaining

decimal digits.

13.5 METHOD
This method of binary to binary-coded-decimal conversion is
compact and easily understood, if not sophisticated. The latter con-

sideration is of little consequence, since the subroutine is output

limited.

13.6 OUTPUT DATA FORMAT
Output is in the form of four consecutive decimal digits. No

sign is printed. Spacing, tabulation, carriage return, etc. are not

provided in this subroutine.

13.7 PROGRAM LISTING

/COPYRIGHT 1971 DIGITAL EJJIPYENT CORPIRATION
/MAYNARDS, MASSACHJSETTS
/DIGITAL 8-22-U
/UNSIGNED DECIMAL PRINT
/CALL WITH NUMBER TO BE TYPED IN CCAC)
/RETURN TO LOCATION FOLLOWING THE JMS
0200 PBOOG DECPRT,]

@281 3243 DCA VALUE /SAVE INPUT

202 3244 DCA DIGIT /CLEAR

203 1235 TAD CNTRZA

0284 3245 DCA CNTRZB /SET COUNTER TO FOUR:
0205 1234 TAD ADDRZA

@26 3213 DCA ARROW /SET TABLE POINTER
2207 7410 SKP

0210 3243 DCA VALUE /SAVE

211 7100 CLL

D212 1243 TAD VALUE

9213 1236 ARROW, TAD TENPWR /SUBTRACT POWER OF TEN
8214 7430 SZL

P215 2244 1SZ DIGIT /DEVELOP BCD DIGIT
@216 7430 SZL

0217 5210 JMP ARROW-3 /LOOP

v220 1200 CLA /HAVE BCD DIGIT

B221 1244 TAD DIGIT /GET DIGIT

ne222 1242 TAD K269 /MAKE IT ASCII

2223 6041 TSF /0R TAD DIGIT

9224 5223 JMP -1 / JMS TDIGITC(SEE 8-19-U)
0225 6046 TLS /TYPE DIGIT

D226 7200 CLA

13-2

pazT
0230
0231
7232
2233
0234
0235
2236
0237
0240
2241
n242
p243
D244
0245

3244
2213
2245
5212
5608
1236
1774
6030
71634
7766
7777
0260
000
0000
19)0)080]

ADDRZA
CNTRZA>
TENPWR>

K260,
VALUE»
DIGIT,
CNTRZB>»

DCA DIGIT
ISZ ARROW
ISZ CNTRZB
JMP ARROW-1
JuP I DECPRT
TAD TENPWR
-4

-1758

-0144

-on12

-9001

260

]

]

9]

13-3

/CLEAR

/UPDATE POINTER
/DONE ALL FOUR?
/NO: CONTINUE
/YES: EXIT

/0ONE THOUSAND
/0NE HUNDRED
/TEN
/0NE

Formerly
Digital-8-23-U-Sym

CHAPTER 14

SIGNED DECIMAL INTEGER PRINT
SUBROUTINE, SINGLE PRECISION

14.1 ABSTRACT

This subroutine permits printing the contents of a computer word
is a "1", the remaining bits represent a negative integer in two's
complement form; if bit 0 equals "0", the remaining bits represent
a positive integer. If the number is negative, a minus sign is

printed; if positive, a space.

14.2 REQUIREMENTS
This subroutine requires 5110 (638) core locations and runs on
any standard PDP-8 family computer with a 33-ASR Teletype console.
The program is provided on a source tape labeled Signed Decimal Print,
Single Precision,
Digital-8-23-U-ASCII
14.3 TUSAGE

14.3.1 Loading

The symbolic tape provided is compatible with the PAL III, MACRO-8,
or PAL-D assemblers. It can be assembled with the user's program or
separately with the proper origin setting. Neither origin setting

nor "$" terminating character exists on the symbolic tape provided.

14.2.1 Calling Sequence

The subroutine is called by an effective "JMS SSPRNT" with the
number to be printed in the AC. The return is to the location follow-
ing that of the calling JMS. The contents of neither the AC nor the

link are preserved, and return is with both active registers clear.

14.4 DESCRIPTION

This is a basic subroutine to obtain signed decimal output
(integer format) corresponding to binary words in memory stored in
two's complement form. First, the number is sensed to determine if

it is positive or negative. If positive, a space is printed. If
14-1

negative, a minus sign is printed and the number complemented to form

the absolute value in two's complement.
followed as in the unsigned printout described in Chapter 13.

14.5 OUTPUT DATA
Output is in
by either a space
etc.

return, are

which contains details on subroutines for such purposes.

Then,

the same algorithm is

the form of four consecutive decimal digits preceded

or minus sign.

not provided in this subroutine.

Spacing, tabulation, carriage

routine is output limited at 10 cps by the 33-ASR.

14.6

ENTRY
L CLEAR LINK l

FLOW CHART

IS

THE NUMBER

NEGATIVE
?

NO

SET LINK TO"1"
FORM
ABSOLUTE VALUE |

[STORE NUMBER szsq

y

INITIALIZE COUNTERS,
POINTERS AND DIGIT
STORAGE REGISTER

!

LOAD CODE
FOR "SPACE"
INTO AC

IS
LINK SET TO
1

?

NO

See Chapter 6,
This sub-

LMODIFY CODE TO"="]

]

LTYPE ouT CHARACTER]

PICK UP
CURRENT POWER
OF TEN

[INDEX

DIGIT

|

14-2

[

YES

y

SUBTRACT CURRENT
POWER OF TEN
FROM NUMBER

DIDIT
UNDERFLOW
?

LOAD GENERATED
DIGIT INTO AC
TYPE IT OUT

HAVE
4 DIGITS
BEEN TYPED
?

SUBROUTINE
FINISHED

INDEX INSTRUCTION
TO GET NEXT
POWER OF TEN

5

14.7 PROGRAM LISTING

0200
pegl
paoe
8203
2204
8205
0206
0227
2210

pell
peia
0213
ga2l4

@215
g216
0217
0220
0221
p22
0223
p224
2225
0226
Ba27
D230
B231

Ba3e
2233
2234

2235
0236
2237
0240
0241
g242
0243
v244

o000
7100
7510
7061
3253
3251
1250
3252
1244

3217
1246
7430
1247

4235
1253
1254
7510
5225
2251
3253
5216
7200
1251
4235
3251
2217

2252
5216
5600

2000
1245
6046
6041
5240
7300
5635
1254

/COPYRIGHT 1971
/MAYNARD, MASSACHUSETIS

DIGI AL EJJIPMENT CORPIRAIIIN

/BINARY TO DECIMAL CONVERSION AND TYPEOUT
/SINGLE PRECISION
/CALLING SEQUENCE:
/ JMS SSPRNT /SUBROUTINE CALL
/RETURN. AC AND L CLEAR

SSPRNTs 0
CLL
SPA
CML
DCA
DCA
TAD
DCA
TAD

DCA
TAD
SZL
TAD

JMS
SSXYZ, TAD
TAD
SPA
JMP
ISZ
DCA
JMP
CLA
TAD
JMS
DCA
152

152
JMP
JMP

/AC CONTAINS BINARY WORD

/1S IS POSITIVE?

CMA IAC
SSVAL
SSBOX
SSCNTR
SSCNT
SSADDR

SSXYZ+1
SSPLUS

/NO> SET LINK,FORM ABSOLUTE VALUE
/STORE NUMBER AWAY

/SET DIGIT LOCATION TO ZERO
/INITIALIZE OUTPUT COUNTER TO '4"

/INITALIZE INSTRUCTION TO GET
/FIRST 10

/GET CODE TO TYPE A "PLUS"

/1S THE NUMBER NEGATIVE?

SSMNS

SSOuUT
SSVAL
SSCON

/YES, CHANGE CCDE TF TYPE A
/""MINUS"

/TYPE IT OUT

/PICK UP NUMBER

/SUBTRACT CURRENT POWER OF 10

/1S THE RESULT NEGATIVE?

«+4 /YES,

SSBOX
SSVAL
SSXYZ

SSBOX
SSOUT
SSBOX
SSXYz+1

SSCNT
SSXYZ
I SSPRNT

/TYPEOUT ROUTINE

SSOUT, @
TAD
TLS
TSF
JMP
CLA
JMP

SSADDRs TAD

SSTwWO

-1

CLL

I SSOuT
SSCON

14-3

INDEXING IS FINISHED

/NO, INDEX THE DIGIT LOCATION
/STORE REMAINDER IN SSVAL
/CONTINUE SUBTRACTING

/PICK UP THE DIGIT NUMBER
/TYPE IT OUT

/SET DIGIT COUNTER TO ''g@g"
/INDEX INSTRUCTION TO GET
/POWER OF 10

/JHAVE WE TYPED "4" DIGITS
/NO, CONTINUE

/YES, RETURN

/INSTRUCTION TO PICK UP FIRST
/POWER OF 19

@245
246
oe4a7
0250
@251
p252
@253

0254
0255
@256
@257

0260
7760
0015
7774
Q000
P0Y0
0000

6030
7634
7766
7777

SSTWO.,
SSPLUS.,
SSMNS,
SSCNTR>»
SSBOX.
SSCNTs
SSVAL.,
/TABLE
SSCON.

260

/BASIC CODE FOR DIGITAL OUTPUT
/NUMBER USED TO GENERATE '"SPACE"
/NUMBER USED TO GENERATE "MINUS"
/COUNT OF '"4" DIGITS

/STORAGE REGISTERS

OF POWERS OF 10

6030
7634
7766
7777

/-1000
/-100
/=10
/=1

14-4

Formerly

Digital-8-24-U-Sym

CHAPTER 15

UNSIGNED DECIMAL INTEGER PRINT
SUBROUTINE, DOUBLE PRECISION

15.1 ABSTRACT

This subroutine permits printing a double-precision integer stored
in the usual convention for double-precision numbers*. The one excep-
tion is that all 24 bits are interpreted as magnitude bits (i.e.,
the bit "0" of the high-order word is not a sign bit). The printout

is in the form of an eight-digit, positive, decimal integer.

15.2 REQUIREMENTS
This subroutine requires 73lo (1118) locations and runs on any
standard PDP-8 family computer with a 33-ASR Teletype console.

The source tape is labeled Unsigned Decimal Print, Double
Precision,
Digital-8-24-U-ASCII

15.3 VUSAGE

15.3.1 Loading

The symbolic tape provided can be assembled with PAL III, MACRO-8,
or PAL-D. It can be assembled with the user program or separately
with the proper origin setting. Neither origin setting nor "e"
terminating character exists on the tape; the tape does have a PAUSE

statement on the end.

15.3.2 Calling Sequence
This subroutine is called by an effective JMS UDPRNT. The

location immediately following the calling JMS contains the address

*For details on storage of double-precision numbers, see the Math
Routines writeup available from the PDP-8 Program Library, section
on Double Precision Signed Multiply Routine.

15-1

of the high-order portion of the double-precision integer stored in

the usual double-precision format.

15.4 DESCRIPTION

This is basic double-precision subroutine used to obtain
decimal output corresponding to double-precision binary words.
First, the binary equivalent of 10,000,000 is subtracted from the
original number until under-flow occurs. A count is kept of the
number of subtractions necessary to accomplish this, thus yielding
the most significant decimal digit. Then this digit is added to 2608
and printed on the 33-ASR through the AC. This process is repeated

using the proper power of ten to give the seven remaining digits.

The numbers are interpreted and printed as integers.

See Chapter 13 for a discussion of the techniques used.

15.5 FORMAT

15.5.1 Core Data

The double-precision integers are stored in the usual double-
precision format, with the exception that bit "0" of the high-order
word is interpreted as part of the number not a sign bit.

15.5.2 Output Data

Output is in the form of eight consecutive decimal digits. No
sign is printed. Spacing, tabulatio~, carriage return, etc., are
not provided for in this subroutine. See Chapter 6 which contains

details on short subroutines for such purposes.

This subroutine is output limited at 10 cps by the 33-ASR.

15-2

15.6 FLOW CHART

(ENTRY ’

y

PICK UP ADDRESS OF
HIGH CRDER WORD FROM
CALLING SEQUENCE

i

PICK UP DOUBLE
PRECISION NUMBER FOR
USE IN SUBROUTINE

y
INITIALIZE COUNTERS,
POINTERS AND STORAGE
REGISTERS

PICK UP CURRENT
POWER OF TEN FOR
USE IN SUBTRACTION

INDEX DIGIT

PERFORM DOUBLE
PRECISION SUBTRACT
FROM NUMBER

DIDIT

YES
UNDERFLOW

?

STORE REMAINING
PORTION OF DOUBLE
PRECISION NUMBER

i

PICK UP
GENERATED DIGIT
TYPE IT OUT

HAVE

NO

INDEX TQ PICK UP
NEXT POWER OF TEN.

PUT DIGIT COUNT
TO ZERO

A

8 DIGITS BEEN
TYPED OUT

?

YES

SUBROUTINE
FINISHED

EXIT

15-3

15.7

PROGRAM LISTING

0222
0291
0222

B223
0204

0205
p236
02917
0210
p211
B212
0213
B214
0215

B216

0217
0220
p221
paz22
0223
0224

p225
B2256
02217
8239
0231
0232
0233
2234
B235

0236

0290
71309
1639

3267
1667

3251
2267
1667
32562
1255
3260
1256
3279
2299

1672

2272
3263
1670
2272
3264
7102

1264
1262
32565
7204
1263
12561
7429
5242
2265

3261

ZCAPYRIGHT
/MAYNARDS

1271 DIGITAL
MASSACHUSET I3

LG AIPMENT COxPIRATION

/UNSIGNED DECIMAL PRINT, DOUBLE PRECISION
/CALLING SEQUEINCE: JMS UDPRNT /SUBROUTINE CALLED
/ HI ADDR /ADDRESS OF HIGH ORDER
, /WNORD
RETURN

UDPRNT, 9]
CLA CLL
I UDPRNT

DCA UDGET
I UDGET

DCA UDHI GH

UDGET

I UDGET

DCA UDLOW

UDLOOP
DCA UDCNT
TAD UDADDR
DCA UDPTR
ISZ UDPRNT

UDARND» TAD I UDPTR
I1SZ UDPTR
DCA UDHSUB
TAD I UDPTR
I1SZ UDPTR
DCA UDLSUB

Unbo - CLL

TAD UDLSUB

TAD UDLOW

DCA UDTEML

RAL

TAD UDHSUB

TAD UDHIGH

SNL

JMP UDOUT

I SZ UDBOX

DCA UDHIGH

15-4

/RETURN WITH AC AND
/CLEAR -

/PICK UP ADDRESS OF
/HIGH-0RDER WORD

/7PICK UP BOTH WORDS FOR
/USE IN SUBRNUTINE

/INITIALIZE DIGIT COUNTER
JFOR ""g"
/INITIALIZE TO
/POWERS NF TEN
/INDEX LINKAGE FOR CORRECT
/RETURN

/PICK UP CURRENT

/POWER NF TEN FNR

/USE IN SUBTRACTION

TABLE OF

/DOUBLE PRECISION
/SUBTRACTINN

/DID IT UNDERFLOW?

/NO> COUNT IS DONE

/YES> COUNT NOT DONE YET.
/INDEX DIGIT
/DEPOSIT REMAINING
/0F WORD

PORTIONS

0237
0249
p241

0242
0243
D244
0245
p245
D247
p259
9251
2252
P253
2254

9255
3256

2257
2269
p261
0262
D263
0264
0265
D265
0267
0272
p211
pa2T12
2273
D274
0275
0276
22717
9320
0391
2302
0333
D304
D305
0326
0337
2310

1266
3262
5224

7200
1265
1257
6346
6241
5246
73920
3265
22560
5216
5600

1770
2271

p260
nooo
0020
VY20
14151430
0300

)11

0022
oD
2020
3166
4603
7413
6729
7747
4540
71775
4369
1177
60830
17177
7634
1177
7766
1177
1777

UubouT»

UDLOOP»
UDADDR>

UDTWO»
UDCNT>»
UDHIGH »
UDLOW>»
UDHSUB >
UDL SUS3>»
UDBOX»
UDTEML »
UDGET >
UDPTR>
UDCON1»

PAUSE

TAD
DCA
JuP

CLA
TAD
TAD
TLS
TS%¥
JMP
CLA
DCA
15Z
JMP
JMP

-10
unco

(o))
Q

QRN

3166
4600
7413
6720
71747
4540
7775
4360
7777
6030
77177
1634
17177
17656
171717
77717

UDTEML
UDLOW
ubbo

UDBOX

UDTWO

-1
CLL
UDBOX
UDCNT
UDARAND

I UDPRNT

N1

15-5

/G0 BACK AND SUBTRACT
/AGAIN

/T M7 TID DT
/s rLrun Uur no

(a4
~
/ADD '"2608" TO
/TYPE IT OUT

ZINITIALIZE DIGIT TO "2"
/HAVE WE TYPED "8 DIGITS
/N0, DETERMINE NEXT DIGIT
/YES, SUBROUTINE DONE.
/RETURN

/COUNT OF "'8' DIGITS
/INITIAL ADDRESS OF
/POWERS OF TEN
/ICODE FOR DIGITS
/STORAGE LOCATIONS

/POWERS OF TEN
/-10,000,000
/-1,000,0800
/-109, 000
/-10,000
/-1,0820

/=108

/-10

/-1

Formerly
Digital-8-25-U-Sym

CHAPTER 16

SIGNED DECIMAL INTEGER PRINT

SUBROUTINE, DOUBLE PRECISION

[
(o))
[
g

o8]
wn

This subroutine permits printing the contents of two consecu-
tive computer words as one signed double-precision two's complement
number. If bit 0 of the high order word is a "1", the remaining
23 bits represent a negative integer in two's complement form; if
bit 0 equals "0", the remaining bits represent a positive integer.
If the number is negative, a minus sign is printed; if positive, a

space.

16.2 REQUIREMENTS
This subroutine requires 86lo (1268) core locations and runs on

any standard PDP-8 family computer with a 33-ASR Teletype console.

The source tape supplied is labeled Signed Decimal Print Double
Precision,
Digital-8-25-U-ASCII

16.3 USAGE

16.3.1 Loading

The symbolic tape provided is compatible with PAL III, MACRO-8,
and PAL-D assemblers. It can be assembled with the user's program
or separately with the proper origin setting. Neither origin setting
nor "$" terminating character exists on the symbolic tape provided,

but a PAUSE pseudo-instruction is the last line on tape.

16.3.2 Calling Sequence

The subroutine is called by an effective JMS SDPRNT. The
location immediately following the calling JMS contains the address
of the high-order portion of the signed, double-precision integer

which is stored in the usual double-precision format. For example:

l6-1

JMS SDPRNT
ADDR
HLT
ADDR, 7123
4567

16.4 DESCRIPTION

This is a basic subroutine to obtain signed decimal output corres-
ponding to a double-precision binary word storage in two consecutive
locations in memory. First, the binary number is sensed to determine
if it is positive or negative. If positive, a space is printed. If
negative, a minus sign is printed, and the number complemented to form
the absolute value. Then the same algorithm is followed as in the

unsigned double-precision printout described in Chapter 15.
The numbers are interpreted and printed as integers.
16.5 FORMAT

16.5.1 Core Data
The double precision integers are stored in the usual signed, double-
precision format (see the Double Precision Signed Multiply section of the

Math Routines writeup, available from the PDP-8 Program Library.

16.5.2 Output Data

Output is in the form of seven consecutive decimal digits preceded
by either a space or a minus sign. Spacing, tabulation, carriage
return, etc., are not provided in this subroutine. See Chapter 6 which
contains details on subroutines for such purposes. If the user wishes
to print a "+" sign instead of a space, he can change the contents of
location SDPLUS from "-15" to "-2".

This subroutine is output limited at 10 cps by the 33-ASR.

l6-2

16.6

FLOW CHART

< ENTRY)

\

PICK UP ADDRESS OF
HIGH — ORDER WORD

PICK UP DOUBLE
PRECISION NUMBER FOR
USE IN SUBROUTINE

INITIALIZE COUNTERS
AND POINTERS

PICK UP CURRENT
POWER OF TEN

INDEX DIGIT

YES

PERFORM DOUBLE
PRECISION SUBTRACT
FROM NUMBER

DID IT
UNDERFLOW

2
i

NO

STORE REMAINING
PORTION OF DOUBLE
PRECISION NUMBER

PICK UP
GENERATED DIGIT

TYPE IT OUT

[
RAvVL

7 DIGITS BEEN

INDEX TO

PICK UP

NEXT POWER OF TEN.
PUT DIGIT COUNT
TO ZERO

NO

TYPED OUT
?

Y

SUBROUTINE
FINISHED

16-3

l6.7

0200
0201
gega

D203
0204
02vs
2206
0207
9210
o211l
pela
pa13
pal4

0215
pale
0217
0220
pael
paez
2223
vez4
2225
pa2ze6

o227
2230
231

Ba3ie
0233
0234
0235
236
0237
249
0241
gz42
0243
gaa4y
@245
246
a4a17
0250

PROGRAM LISTING
ZCAPYRIGHT

0000
7300
1600

3307
1707
7700
1276
1277
4264
1707
7510
70 60
3301

23017
1707
7430
7141
T430
2301
3302
1273
3300
1274

3310
2200
1710

2310
3303
1710
2310
3304
71080
1304
1302
3306
7004
1303
1301
7510
5255
2305

/MAYNARD,

1971 DIGITAL E£3JI2YMENT CORPORATION

MASSACHJSETTS

%

i

/S1GNED DECIMAL PRINT, DOUBLE PRECISION

/CALLING SEQUENCE:

/
/
SDPRNT>

SDARND.

SDDO,

JMS SDPRNT /SUBROUTINE CALLED

HIADDR /ADDRESS OF HIGH ORDER WORD
RETURN /RETURN WITH AC AND L CLEAR

]
cLA
TAD

DCA
TAD
SMA
TAD
TAD
JMS
TAD
SPA
cMA
DCA

15z
TAD
SZL
cMA
SZL
152
DCA
TAD
DCA
TAD

DCa
ISZ
TAD

15z
DCA
TAD
152
DCA
CLL
TAD
TAD
DCA
RAL
TAD
TAD
SPA
JMP
152

CLL
I SDPRNT /PICK UP ADDRESS OF
/7HIGH-ORDER WORD
SDGET
I SDGET /PICK UP HIGH-ORER WORD
CLA /IS IT NEGATIVE?
SDPLUS /NO, GENERATE CODE FOR SPACE
SDMNS /YES, GENERATE CODE FOR "MINUS"
SDTYPE /TYPE IT OUT
I SDGET /PICK UP HIGH-ORDER WORD AGAIN

/1S IT POSITIVE?
CML. /NO, COMPLEMENT IT. SET LINK

SDHIGH /STORE POSITIVE WORD FOR USE IN
/SUBROUTINE
SDGET
I SDGET /PICK UP LOW-ORDER WORD
/1S LINK SET?
CLL IAC /YES, FORM TWO'S COMPLEMENT
/DID AC OVERFLOW FROM "IAC"?
SDHIGH /YES> CORRECT HIGH-ORDER WORD
SDLOW /STORE POSITIVE LOW-ORDER WORD
SDLOOP /INITIALIZE DIGIT COUNTER TO "7
SDCNT
SDADDR /INITIALIZE POINTER TO TABLE OF
/POWERS OF TEN
SDPTR
SDPRNT /INDEX LINKAGE FOR CORRECT RETURN
I SDPTR /PICK UP POWER OF TEN FOR USE IN
/SUBTRACT
SDPTR
SDHSUB
I SDPTR
SDPTR
SDLSUB
/DOUBLE PRECISION SUBTRACTION
SDLSUB
SDLOW
SDTEML
SDHSUB
SDHIGH
/DID IT UNDERFLOW?
SDOUT /NO> COUNT IS DONE
SDBOX /YES, COUNT NOT DONE. INDEX DIGIT

16-4

0251

gasa

0253

pas4a
@255

0256
8257
D260
gee6l
pae62
0263
g264
0265
0266
0pe67
pe7e
paTl
para
0273
paTa
0275
PaTé
02717
0300
0301
0302
2303
P304
@305
0306
03017
0310
@311
0312
¥313
0314
0315
0316
0317
0320
p32l
@322
0323
0324
B325
0326

3321

1306

3302
5237
7200
1305
4264
3305
2300
5231
5600
1415100
1275
6046
6041
5267
7300
5664
7771
0311
V260
7763
7775
0o0oo
914)0)0;
4501030
u)u1040]
PO00

10)Y0]
3000

L300

14)0)0Y0;
PeCo
7413
6700
7747
4540
7775
4360
7777
6030
YNNG
7634
7777
7766
7777
7777

SDTYPE.

SDLOOP>
SDADDR>
SDTWO
SDPLUS.
SDMN S »
SDCNT>
SDHIGH.
SDLOW.
SDHSUB.
SDLSUB.»
SDBOX.
SDTEML.,
SDGET >
SDPTR.
SDCONL »

DCA SDHIGH /DEPOSIT REMAINING HIGH-ORDER
/PORTION

TAD SDTEML /RESTORE REMAINING LOW-ORDER
/7PORTION

DCA SDLOW

JMP SDDO /GO BACK AND SUBTRACT AGAIN

CLA

TAD SDBOX /PICK UP RESULTING DIGIT

JMS SDTYPE /TYPE IT OUT

DCA SDBOX /INITIALIZE DIGIT TO "@g"

1SZ SDCNT /JHAVE WE TYPED "7" DIGITS

JMP SDARND /NO, DETERMINE NEXT DIGIT

JMP I SDPRNT /YES> SUBROUTINE DONE. RETURN

] /TYPEOUT ROUTINE

TAD SDTwWO

TLS

TSF

JMP -1

CLa CLL

JMP I SDTYPE

-7 /COUNT OF SEVEN DIGITS

SDCONL /INITAL ADDRESS OF POWERS OF TEN

260 /BASIC CODE FOR DIGITS

-15 /"SPACE". TO TYPE "+",REPLACE BY '"-2"

-3 /'"™INUS™

2 /STORAGE LOCATIONS

0

]

0

)

0

@

]

@

7413 /TABLE OF POWERS OF TEN

6700 /-1,000,000

INEN /-100,000

4540

7775 /-10,000

4360

7777 /=1,000

6030

7777 /=100

7634

7777 /-10

7766

7777 /-1

77T

16-5

Formerly

Digital-8-14-U-Sym

CHAPTER 17

BINARY TO BCD CONVERSION

(Binary to Binary Coded Decimal Conversion)

17.1 ABSTRACT
This subroutine provides the basic means of converting binary
data to binary-coded-decimal (BCD) data for printing, magnetic tape

recording, etc.

17.2 REQUIREMENTS

This subroutine uses 33lO (418) storage locations and runs on
any standard PDP-8 family computer with a 33-ASR Teletype console.
The source tape provided is labeled Binary to Binary Coded Decimal
Conversion,

Digital-8-14-U-ASCII

17.3 CALLING SEQUENCE

The subroutine is called by the JMS instruction. When called, the

binary number to be converted must be in the accumulator (AC).

The subroutine returns to the instruction immediately following
the calling JMS with the BCD result in the AC.

17.4 DESCRIPTION

Reference to the Flow Chart (Figure 17.1) illustrates this dis-

cussion.

On input the binary number is stored, a pointer is initialized,
the link is cleared, and a counter to control the number of passes
through the computation loop proper is properly set.

The loop is now entered, and is repeated eight times.

The binary equivalents of 800, 400, 200, 100, 80, 40, 20, and 10

are subtracted successively from the original binary number.

17-1

After each subtraction, a test on the link is made. If the result
of the test shows the link to be 0, the next lower equivalent is
subtracted from the same quantity after the contents of the links (0)
are shifted into the developing BCD number (Location NUMBER) .

If the subtraction leaves a negative link, the contents of the
accumulator replace the binary representation currently being processed
after the contents of the link (1) have been shifted into the growing
BCD number.

After eight passes through the basic loop, the developed BCD
representation is shifted left four bits and the "residual" least

significant digit is added before exit.

17.5 EXAMPLE

As an example consider the conversion of the binary equivalent
of 512 decimal:

Link Addition

001 000 000 00O
110 011 100 000 -800
0 111 011 100 000

001 000 000 000
111 001 110 000 -400
1 000 001 110 00O

000 001 110 00O
111 110 001 000 -200
0 111 111 111 00O

000 001 110 00O
111 110 011 100 -100
1 000 000 001 100

Notice that the remainder is the binary representation of 12
decimal. Writing the link bits in the order they are developed gives

0101 the BCD character denoting 5.

17.6 SCALING

The original binary number must be no larger than 999 (decimal)
which is equivalent to 1747 (octal). The binary point is assumed to
be at the extreme right end of the word (to the right of bit position

11) and the decimal point is also so positioned.

17-2

In other words, this subroutine converts binary integers to BCD
integers.

Note that the subroutine is designed for positive input only!

ENTER

!

DATA — INPUT

(CONTROL) - POINTER

cLL

(COUNT)»AC

y

(AC) -»»NUMBER

TAD INPUT

POINTER TAD TABLE

SZL

(L)=0 (L)=1

(AC) - INPUT

PE—

CLA
y
TAD NUMBER
CLL RTL
RAL
CLL RTL
ISZ POINTER
TAD INPUT
JMP T BCO
SNL RETURN
{L)=0 (L=

JMP POINTER.=2

Figure 17.1 FLOW CHART

17-3

L/./ FPRUGRAM LLISTING
A listing of the program with BCD located in 0200 appears as follows:

ZCOPYRIGHT 1271 DIGITAL EJJIPMEINT CORPORATION
ZAAYNARD, MASSACHJ3EITS

/BINARY TO BCD CONVERSION 3/6/65-HB~DEC

/ENTER WITH BINARY NUMBER (<999C10))

/IN ACCUMULATOR: EXIT WITH THREE CHARACTER
/BCD NUMBER IN ACCUMULATOR

/AC B-35 AC 4-7; AC 8-11 WILL CONTAIN

/THE BCD CHARACTER ON EXIT

/WEIGHTING: AC -3 1009
/ AC 4-7 10
/- AC 8-11 1
/STORAGE 33(18) REGISTERS

/TIME=216.0~235.2 MICRO-SECONDS PDP-8
/ZLF INPUT >999 (10> PESULT IS UNSPECIFIED

V220 B2¢3 BCD., 14
B221 3226 DCA INPUT /STORE BINARY
202 1225 TAD CONTRL /SET UP TABLE
0223 3210 DCA POINTR /POINTERS
234 17100 CLL
p235 1230 TAD COUNT /SET BIT 7=15 8RAL'S
P25 3227 DCA NUMBER /JWILL PUT IT IN LINK
297 1226 TAD INPUT
210 1231 POINTR, TAD TABLE /0R TABLE+1, TABLE+2, ETC.
0211 7432 SZL /IF C(L>=1, INPUT>-TABLE
P212 3226 DCA INPUT /IF S0: INPUT=INPUT+TABLE
213 7200 CLA
214 1227 TAD NUMBER
0215 7004 RAL /PUT THIS BIT IN ANSWER
v216 2210 ISZ POINTR /UPDATE TABLE POINTER
@217 7422 SNL /IF LINK=1, ALL DONE
0228 5296 JMP POINTR-2
p221 7106 CLL RTL /CONVERTED 2 BCD
p222 7005 RTL /CHARACTERS
@223 1226 TAD INPUT /SHIFT LEFT AND ADD
0224 5690 JMP I BCD /THE THIRD
@225 1231 CONTRL> TAD TABLE
p226 QVAY INPUT., 4]
227 0VBYY NUMBER.]
0239 0228 COUNT, 8o20
0231 6340 TABLE, - 1440 /-800C10)
0232 7160 -0529 /=400
0233 7470 -0310 /=200
D234 7634 -0144 /=100
@235 7660 -0120 /~-80
0236 7730 -0059 /=40
@237 1754 -0024 /=22
249 7766 -p212 /=10

/EXAMPLE: INPUT 2726 (8)

/ QUTPUT 0100/0111/70000 = 470 (1@

17-4

Formerly
Digital-8-15-U-Sym

CHAPTER 18

BINARY TO BCD CONVERSION (4-DIGIT)

(Binary to Binary Coded Decimal Conversion, 4-Digit)

18.1 ABSTRACT

This subroutine extends the method used in Chapter 17 so that
binary integers from 0 to 4095 contained in a single computer word
may be converted to four binary-coded-decimal characters packed in

two computer words.

18.2 REQUIREMENTS

This subroutine uses 53 (658) storage locations and runs on any

standard PDP-8 family computég with 33-ASR Teletype Console. The
source tape provided is labeled Binary to Binary-Coded-Decimal Conver-
sion (Four Digit),
Digital-8-15-U~ASCII
18.3 CALLING SEQUENCE
This subroutine is called by the JMS instruction with the binary

number to be converted in the accumulator (AC).

This subroutine returns to the location immediately following
that containing the calling JMS. The format of the result is discussed
below.

18.4 DESCRIPTION

This program is essentially Digital-8-14-U-ASCII (described in
Chapter 17) extended to allow for integers in the range of 1000 to
4095.

18.5 CORE DATA

Results appear in core as:

Word ONE Word TWO
06012..5678..11 012..5678..11
0 000 10(00(000O00O [6 0{0 1 0 0‘0 Oll 000

BA BA BA BA

18-1

The decimal coding for 2048 is illustrated.

18.6 IBM COMPATIBILITY
Note that bits 0, 1 and 6, 7 are set so that they can be regarded
as zone B and zone A bits required for IBM BCD mode compatible 6-bit

numerical characters.

In this mode of recording, the character 1010 is used for zero
instead of code 0000 which this subroutine produces. Therefore, to
use this routine in conjunction with IBM-compatible mag tape recording,
it is necessary to write a short auxiliary routine to make this sub-

stitution.

It may also be necessary to generate the even parity required by

such recording if this is not accomplished in the tape control hardware.

18.7 PROGRAM LISTING

ZCO2YRIGHT 1371 DIGITAL ZJAJILMEINT CORPIRATION
/MAYNARDS MASSACHUSETTS

/BINARY TO BCD CONVERSION 3/7/65-HB-DEC

/ENTER WITH BINARY NUMBER IN ACCUMULATOR

ZEXIT WITH 4 SIX-BIT BCD CHARACTERS

/PACKED TWO TO A WORD IN REGISTERS

/0NE AND TWO OR IN A BUFFER.

/USED FOR WRITING MAG-TAPE IN BCD FORMAT

/IN ADDITION TO BCD PARITY

/0UTPUT FORMAT:

/ ONE 2-1 A>B BITS

/ ONE 2-5 1020 DECADE

/ ONE 6-7 A>B BITS

/ ONE 8-11 122 DECADE

/ TWO ©0-1 A»B BITS

/ TWO 2-5 19 DECADE

/ TWO 6-7 A>B BITS

/ TWO 8-11 1 DECADE
/STORAGE =53 (10> REGISTERS

/TIME 324.8-350+4 MICRO-SECONDS PDP-8

18-2

0209
0201
0292
0293
n2a4
0205
0205
0207
D210
9211
p212
9213
v214
0215
2216
0217
0220
221
pez2
0223
p224
9225
0226
0221
0239
9231
p232
0233
2234

0235
p236
P237
0240

g241
p242
2243
P244
@245
246
0247

AT A
o oW

g251

BO29D
3223
1225
3240
1226
4234
7106
4234
1232
3239
1227
4234
7106
1006
7006
1223
1233
3231
5600
0o
©0ooY
1252
1910
40D
0oa2
Do20
0o
15301085,
DoBY

7100
3224
1223
1252

7430
3223
71209
1224
7804
2240
71430

S h
LSO OuU=

5236

BCD»

INPUT>
NUMBER»
CONTRL»
COUNT 1>
COUNT?2,
ONE»

TWO»

BITS1.»
BITS2,
STEP»

POINTR>

DCA INPUT
TAD CONTRL
DCA POINTR
TAD COUNTI
JMS STEP
CLL RTL
JMS STEP
TAD BITSI
DCA ONE
TAD COUNTZ2
JMS STEP
CLL RTL
RTL

RTL

TAD INPUT
TAD BITS2
DCA TWO
JMP I BCD
2

2

TAD TABLE
19010

2402

[SSEECV IS NS BN

DCA NUMBER
TAD INPUT
TAD TABLE

SZL

DCA INPUT
CLA

TAD NUMBER
RAL

I1SZ POINTR
SZL

MP T ST
[l

[RN N1 L

P
i

T
JMP POINTR-2

18-3

/STORE BINARY
/SET UP TABLE
/POINTER

/SET COUNT
/CONVERT

/CONVERT NEXT

/A>B BIT PATTERNS

/0R DCA I AUTO C18-17>
/SET-UP COUNT

/LEAST SIGNIFICANT BITS
/7A>B BIT PATTERMS

/0R DCA I AUTO (10-17)
/EXIT

/0R ANY BIT PATTERN
/0R ANY BIT PATTERN
/ACTUAL CONVERSION
/SUBROUTINE

/0R TABLE+1, TABLE+2, ETCe.

/ IF C(LY=15 INPUT>-TABLE
/IF SO: INPUT=INPUT+TABLE

/ROTATES WILL BRING
/COUNT BIT INTO LINK

/STEP DONE

gas2
9253
0254
0255
v256
P257
2260
0261
B262
0263
B264

0140
4060
6030
6340
7160
7470
71634
1660
1730
7754
77656

T

/
/
/

ABLE.,

EXAMPLE:

-7649
-3720
-1750
- 1440
-0620
-9310
-0144
-Q0120
-0250
-0024
-0012
INPUT
OUTPUT:

1777
ONE
WO

18-4

/-48¢2 C10?

8
o 0100/ 00 0B00

20

11/ 00 2101

=4095 (19

HOW TO OBTAIN SOFTWARE INFORMATION

SOFTWARE NEWSLETTERS, MAILING LIST

The Software Communications Group, located at corporate headquarters in

Maynard, publishes newsletters and Software Performance Summaries (SPS)
for the various Digital products. Newsletters are published monthly.
and contain announcements of new and revised software, programming
notes, software problems and solutions, and documentation corrections.
Software Performance Summaries are a collection of existing problems
and solutions for a given software system, and are published periodi-
cally. For information on the distribution of these documents and how
to get on the software newsletter mailing list, write to:

Software Communications
P. 0. Box F A
Maynard, Massachusetts 01754

SOFTWARE PROBLEMS

Questions or problems relating to Digital's software should be reported
to a Software Support Specialist. A specialist is located in each
Digital Sales Office in the United States. In Europe, software problem
reporting centers are in the following cities.

Reading, England Milan, Italy

Paris, France Solna, Sweden

The Hague, Holland Geneva, Switzerland
Tel Aviv, Israel Munich, West Germany

Software Problem Report (SPR) forms are available from the specialists
or from the Software Distribution Centers cited below.

PROGRAMS AND MANUALS

Software and manuals should be ordered by title and order number. In
the United States, send orders to the nearest distribution center.

Digital Equipment Corporation Digital Equipment Corporation
Software Distribution Center Software Distribution Center

146 Main Street 1400 Terra Bella

Maynard, Massachusetts 01754 Mountain View, California 94043

Outside of the United States, orders should be directed to the nearest
Digital Field Sales Office or representative.

USERS SOCIETY

DECUS, Digital Equipment Computer Users Society, maintains a user ex-

change center for user-written programs and technical application in-

formation. A catalog of existing programs is available. The society

publishes a periodical, DECUSCOPE, and holds technical seminars in the
United States, Canada, Europe, and Australia. For information on the

society and membership application forms, write to:

DECUS DECUS

Digital Equipment Corporation Digital Equipment, S.A.
146 Main Street 81 Route de 1l'Aire
Maynard, Massachusetts 01754 1211 Geneva 26

Switzerland

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with scftware should be repcrted on a Software
Problem Repcrt (SPR) form (see the HOW TO OBTAIN
SOFTWARE INFORMATION page) .

Did you find errors in this manual? 1If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer

User with little programming experience

[:] Occasional programmer (experienced)
E] Student programmer

|_] Non-programmer interested in computer concepts and capabilities
Name Date
Organization
Street
City State Zip Code
or
Country

If you do not require a written reply, please check here. []

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS -~
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P. 0. Box F
‘Maynard, Massachusetts 01754

	001
	002
	003
	004
	005
	006
	01-01
	01-02
	01-03
	01-04
	01-05
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	04-01
	04-02
	04-03
	04-04
	04-05
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	11-01
	11-02
	11-03
	11-04
	12-01
	12-02
	12-03
	12-04
	13-01
	13-02
	13-03
	14-01
	14-02
	14-03
	14-04
	15-01
	15-02
	15-03
	15-04
	15-05
	16-01
	16-02
	16-03
	16-04
	16-05
	17-01
	17-02
	17-03
	17-04
	18-01
	18-02
	18-03
	18-04
	replyA
	replyB
	replyC

