-

" » more than 30 OQO installed worldwnde

FPPS-A
MAINTENANCE MANUAL

dilgitall

EK-FPP8A-MM-001

FPP8-A
maintenance manual

digital equipment corporation - maynard, massachusetts

First Edition, September 1976

The material in this manual is for informational
purposes and is subject to change without notice.

Digital Equipment Corporation assumes no respon-
sibility for any errors which may appear in this
manual.

Printed in U.S.A.

This document was set on DIGITAL’s DECset-8000
computerized typesetting system.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC DECtape PDP
DECCOMM DECUS RSTS
DECsystem-10 DIGITAL TYPESET-8
DECSYSTEM-20 MASSBUS TYPESET-11
UNIBUS

9/76~14

CHAPTER 1

1.1
1.2
1.3
1.4
1.4.1
1.4.2
1.4.3
1.44
1.5

CHAPTER 2

2.1

2.2

2.3
2.3.1
2.3.1.1
2.3.1.2
2.3.1.3
2.3.2

CHAPTER 3

3.1
3.2
33
3.3.1
3.3.2
3.3.3
334

CHAPTER 4

4.1

4.2

4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
42.8
429
4.3

CONTENTS

INTRODUCTION

GENERAL e e e e
FPP/CPU INTERACTION it e i it s
FPP CALCULATING MODES e e
FLOATING POINT CONCEPTS e i e d e et e
Float o e e e e e e e e e e e e e e
Fix (or Integerize) e
Normalize o e e e e e e e e e e e
Align e
REFERENCES e e e e e e e e e

INSTRUCTION SET AND ADDRESSING

FPP REGISTERS e e e e e e e s e e
FPP8-A IOT INSTRUCTIONS e e e e e e e
FPP8-A OPERATING INSTRUCTIONS
Data Reference Instructions and Formats
Single Word Direct Reference

Double Word Direct Reference

Single Word Indirect Reference

Special Instructions and Formats

FPP8-A FIRMWARE

GENERAL o e e e e e
FLOW DIAGRAM e e e e e e e e e e e
CONTROL ROM PATTERN SPECIFICATION AND SOURCE CODE
‘GETAPT Firmware v o v e e i e e e e e e e e e e e
FPADD Firmware o v v e i e i e e e e e e e e e
FPMUL Firmware o o v o v e e e e e e e i e e e e e
FPDIV Firmware o o e e e e e e e e e e e e e e

FPP8-A LOGIC

FPP8-A BLOCK DIAGRAM it
CONTROL LOGIC e s e s s e e e
IOT Decoding Logic i i
Status and Command Register Logic
Control ROM Logic e
UPC/SP Register Logic o v v v v i e e e e
MPC Gating Control Logic
Register Flags Logic v
Clock Logic v i i i i e e e e e e e
Instruction Dispatch Logic
Exit Test Logico
DATAPATHLOGIC e i e d s s e e e

iii

4.3.1
4.3.1.1
4.3.1.2
43.1.3
4.3.14
43.2
433
43.3.1
4.3.3.2
434
4.3.5
4.3.6
4.3.7

APPENDIX A
APPENDIX B

APPENDIX C

Figure No.

2-1
3-1
32
33
34
35
3-6
3-7
38
39
4-1
4-2
4-3
44
4-5
4-6
47
4-8
49

CONTENTS (Cont)

Page
ALUBInputs e 4-45
BFile 4-45
DB Register Logic, 4-49
FIR Logic @ @ i i i i i it s i 4-52
Constant Generator 4-56
ALUAInputs s 4-59
AlLUand Shift Gates 4-59
ALU Logic e e e 4-63
Shift Gates 4-67
Shift Logic e 4-70
Multiply/Divide Logic e e e e e e e 4-72
DataBreak Logic 4-75
Lockout Logic @ @ i e 4-80
FPP8-A FIRMWARE SYNTAX
FPP8-A — FPP12-A DIFFERENCES
IC DESCRIPTIONS
ILLUSTRATIONS
Title Page
Data Reference Formats 29
FPP8-A Instruction Flow Diagram 3-3
Example, Control ROM Pattern Specification 3-5
Example, Control ROM Source Code 3-6
‘GETAPT Firmware o i it i et e e e e e e e e 3-8
FPADD Firmware e 3-10
FPMUL Firmware ¢ e e e e e e e e e e e e e e 3-20
FACN Times Operand Fraction 3-26
FACM TIMES Operand Fraction 3-28
FPDIV Firmware o e e e e e e e e 3-31
Block Diagram, Control Logic 4-1
Block Diagram, Data Path Logic 4-2
IOT Decoding Logic (A) i i i i e i e 4-9
IOT Decoding Logic (B) @ i i v i e i i i it e e 4-10
Status and Command Register Logic 4-12
Control ROM Logic e i e e e 4-13
uPC/SP Register Logic e 4-15
MPC Gating Control Logic, 4-17
OBUS Flags i i e e s e e e e e e e e 4-19

iv

Figure No.

4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-23
4-24
4-25
4-26
4-27
4-28
429
4-30
4-31
4-32
4-33
4-34
4-35
4-36

Table No.

1-1
2-1
22
2-3
24
2-5
4-1
42
4-3
44
4-5

ILLUSTRATIONS (Cont)

Title Page
Register Flags (SC,FAC) e e, 4-20
Register Flags (TEMP, SCRATCH) 421
Clock Logic @ e e e e e 4-26
Start-Up Timing e e e 4-29
FCLATiming« e e e e e e e 4-30
Instruction Dispatch 1 Logic 4-32
Instruction Dispatch 2 Logic 4-37
Exit Test Logic o 442
Timing, FPHLT EXIT i et e e 4-43
BFile RAMLogic i ittt 4-46
BFile Control Signals, 4-47
DB Register Logic e e 4-50
DB Register Control Signals 4-51
FIR Logic e e e e e e e e e e e e e e e e 4-53
Constant Generator e 4-57
AFile RAMLogic @ @ @ i e e e e e e 4-60
AFile Control Signals 4-61
ALU Logic e e e e e e e 4-64
ALUControlROMs e e e 4-65
Shift Gates e e e e e e e e e e 4-69
Shift Gate ControlROMs it 4-70
Shift Logic e e e e e 4-71
Multiply/Divide Logic 4-73
Data Break Logic, Omnibus Control 4-76
Timing, Data Break Control Signals 4-77
Data Break Logic, FPPControl 4-78
Lockout Logic e 4-81

TABLES

Title Page
FPP8-A Calculating Modes and Data Formats 1-1
FPP Registers i i e e e e e e e e e e e e 2-1
FPP8-A IOT Instructions 2-5
FPP8-A Maintenance IOT Instructions 2-7
FPP8-A Data Reference Instructions 2-8
FPP8-A Special Instructions 2-11
ALOC(0:4) LFunctions i i i i ittt ie e e 4-4
BRLOC (0:4) LFunctions &« v v i i e i e e e e e e 4-5
BWLOC (0:2) LFunctions i i i it e .. 4-6
ARITH(O:3)HFunctions v i i i i it e i i e e e 4-6
PROMSs E55/E56 Input/Output Tables 4-11

Table No.

4-6
4-7

4-8

4-9

4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
421
422
423

TABLES (Cont)
Title

Registers Flags (SC, FAC)« i v,
Register Flags (TEMP, SCRATCH)
Clock Timing SOUrCes« . o o v v v it e e et e e e
PROM E43 Input/Output Signals
FPLAI/O Signals it e e
PROM E53 Input/Output Signals, E53 Enabled for INSTDISP2L
PROM ES57 Input/Output Signals, E57 Enabled for INSTDISP3L
PROM E4 Input/Qutput Signals
TEMP Register Selection
PROM E88 Input/Output Signals (PROM Enabled Permanently)
PROM E65 Input/Output Signals (enabled when ‘ENABLE FIR L’ is low)

PROM E94/E96 Input/Output Signals
A Address (0:4) LFunctions oo
PROM E77 Input/Output Signals (PROM Enabled Permanently)
PROM E78 Input/Output Signals (PROM Enabled Permanently)
PROM E75 Input/Output Signals
Multiply/Divide Conditional Operations
Data Break Logic, FPP Control Signals

-

L()(’;/Q,/}C/{ :
/ 776 /"//O

CHAPTER 1
INTRODUCTION

1.1 GENERAL

The FPP8-A is a processor that performs arithmetic calculations with floating-point numbers. It is
compatible with the FPP12-A instruction set and will run OS8 FORTRAN IV without program modi-
fication; with minor program changes, the FPP8-A will run FORTRAN IV at higher speeds.

The FPP8-A consists of two interconnected, hex-size, printed-circuit modules that plug into the
Omnibus of a PDP-8/A computer (hereafter, the terms “FPP” and “PDP-8” will be used instead of
the full designations). There are no connections from the FPP to external devices, and the FPP derives
all of its power from the Omnibus. When the PDP-8 is turned on, the FPP remains inactive until
started by IOT instructions issued by the Central Processing Unit (CPU). Once started, the FPP
retrieves instructions and operands from the PDP-8 memory by data breaks; many data manipulations
and arithmetic calculations are then carried out independently of the CPU and at a higher speed than
is possible with CPU timing. The FPP continues to run until halted by an IOT instruction or an FPP
instruction, until it encounters numbers that are too large or too small to handle, or until the PDP-8 is
halted.

1.2 FPP/CPU INTERACTION

The FPP and the CPU operate in parallel in the data break system. Two modes of parallel operation
are possible. In the Interleaved mode, which is automatically entered when power is turned on, the
FPP can use a maximum of every other memory cycle; this permits the PDP-8 to run at no less than 50
percent of normal speed. In the Lockout mode, which is selected by an IOT instruction, the FPP can
use consecutive memory cycles, as long as no interrupt requests are made by peripheral devices. If such
a request is made, the FPP automatically goes to the Interleaved mode; when the interrupt request has
been serviced, the FPP returns to the Lockout mode.

1.3 FPP CALCULATING MODES
The FPP can perform calculations in any one of three modes, namely, Floating Point (FP), Double
Precision (DP), and Extended Precision (EP). The format of the data used in each of the calculating

modes is also unique; both the modes and their respective formats are listed and explained in Table 1-
1.

Table 1-1 FPP8-A Calculating Modes and Data Formats

Calculating Mode Description

Floating Point (FP) Floating-point calculations are carried out with numbers having
a 12-bit, signed, 2’s-complement exponent and a 24-bit, signed,
2’s-complement fraction. Fraction calculations are made on a
36-bit word, and the result is rounded off to 24 bits at the end of
the arithmetic operation. The FPP automatically enters this
mode when power is turned on, when either the CAF or FPICL
IOT instruction is issued, or when the INIT key is pushed.

1-1

Table 1-1

FPP8-A Calculating Modes and Data Formats (Cont)

Calculating Mode

Description

Floating Point (FP)
(Cont)

Double Precision (DP)

Extended Precision (EP)

Data used in FP calculations is stored in the PDP-8 memory in
this way: The exponent is stored in the memory location pointed
to by the FPP instruction; the most-significant word (MSW) of
the fraction is stored in the memory location immediately fol-
lowing the exponent; the least-significant word (LSW) of the
fraction is stored in the memory location immediately following
the MSW.

Fixed-point calculations are carried out with numbers having a
24-bit, signed, 2’s-complement fraction. This mode is the same
as the FP mode, except that the exponent is ignored and treated
as if it were zero.

Data used in DP calculations is stored in the PDP-8 memory in
one of two ways, depending on the addressing mode used. For
base page (12-bit direct) addressing the MSW of the fraction is
stored in the memory location immediately following the loca-
tion pointed to by the instruction; the LSW is stored in the next
consecutive memory location. For other modes of addressing,
the MSW is stored in the memory location pointed to by the
instruction; the LSW is stored in the next consecutive memory
location.

Floating-point calculations are carried out with numbers having
a 12-bit, signed, 2’s-complement exponent and a 60-bit, signed,
2’s-complement fraction. Calculations are carried to 60 bits
with no round-off.

Data used in EP calculations is stored similarly to that of the FP
mode; however, three additional locations are needed, with the
LSW being stored in the fifth location following the exponent.

1.4 FLOATING POINT CONCEPTS
Various manipulations relating to floating-point arithmetic can be performed by the FPP logic. These
are briefly described to familiarize the reader with basic concepts. The following descriptions are based

on the FP calculating mode.

1.4.1 Float

When a number is floated, it is converted from its integer form to a fractional floating-point format.
To float an integer, one places the number of significant bits of the calculating mode in the exponent
(27; significant bits plus the sign bit), moves the binary point to reflect the value of the exponent, and
then shifts the fraction left until the leading zeros are eliminated, decrementing the exponent with each
shift. For example: To float the integer 125, write down the whole number

1010.0;

then, write down 27; as the exponent

000 000 010 111;

1-2

move the binary point to reflect the exponent
0.00 000 000 000 000 000 001 010;

now shift the fraction left until the leading zeros are eliminated, decrementing the exponent with each
shift

000 000 000 100 0.10 100 000 000 000 000 000 000.
The floating-point number is +.101 X 24, the equivalent of 1010 (12s).

1.4.2 Fix (or Integerize)

Fixing a number is the reverse process of floating. To fix a number one changes the exponent to 27;
and then shifts the fraction right a number of times equal to the difference between 275 and the original
exponent. Thus, to fix the number arrived at by the previous float, which was (in octal notation)

0004 2400 0000;
make the exponent 275 and shift the fraction right 23 places. The result is
000 000 010 111 0.00 000 000 000 000 000 001 010.
To obtain the integer, move the binary point to reflect the exponent, thereby obtaining
1010.0.

If the exponent is greater than 27, the floating-point number is too large to fix; the FPP uses the JAL
instruction to check the possibility of fixing fractions.

1.4.3 Normalize

A non-zero floating-point number is normalized by shifting the fraction to the left until non-significant
leading zeros are eliminated; each shift is accompanied by a subtraction from the exponent. The num-
ber is normalized when the first two bits are different (i.e., 0.1 or 1.0) or when only the first two bits of
the fraction are ones (i.e., the number is 6000s). In DP mode, numbers are not normalized.

1.4.4 Align

Certain operations, such as addition and subtraction, require that numbers be aligned. For example, if
'two numbers are to be added, their exponents must be equal; if the exponents differ, the numbers must
be aligned. That is, the exponent of the smaller number must be increased until it equals that of the
larger number; each increase of the exponent must be accompanied by a right-shift of the smaller
number’s fraction.

1.5 REFERENCES

Normalization and alignment are discussed more fully and details concerning floating-point arithmetic
are presented in the publication 8/A4 Series Minicomputer Handbook, 1976-1977, available from DIG-
ITAL. Other publications that contain instructive information about the FPP and its relationship to
the PDP-§ are:

FPP8-A Diagnostic,c MAINDEC-08-DJFPA

FPP8-A Instruction Test and Data Exerciser, MAINDEC-08-DJFPB
PDP-8/E, 8/F, and 8/M Maintenance Manual

PDP-8/A Miniprocessor User’s Manual.

ac o

1-3

2.1 FPP REGISTERS

CHAPTER 2
INSTRUCTION SET AND ADDRESSING

The FPP logic includes many data registers. Some registers are separate entities, while others occupy
space in two high-speed, multiport RAMs that are part of the FPP’s Data Path logic. Moreover, some
registers are involved only with actual data calculations, while others are also instrumental in setting
up and maintaining communication between the FPP and the PDP-8 CPU. These latter registers,
which are mentioned frequently in the IOT and FPP instruction lists, are listed and described in Table

2-1.

Table 2-1 FPP Registers

Register

Function

APTP (Active Parameter
Table Pointer)

The 15-bit APTP register in the Data Path logic is loaded with
the PDP-8 memory address of the Active Parameter Table
(APT) by IOT instructions (FPCOM and FPST). The APT con-
sists of a block of 2, 8, or 11 consecutive memory locations that
contain the following information (if the FPCOM instruction
has directed a fast start (FS), only locations 1 and 2 are loaded
into the FPP hardware; if a normal start is programmed, the
information in either the first 8 locations (DP or FP mode) or
all 11 locations (EP mode) are obtained by the FPP).

Sequence of
Memory Locations Contents of Location

1 Field Bits
Bits 0-2 = operand address field
Bits 3-5 = Base register field
Bits 6-8 = Index register address field
Bits 9-11 = FPC field

2 FPC (Floating Program Counter) 12 low-
order bits

3 Index register address — 12 low-order bits

4 Base register — 12 low-order bits

2-1

Table 2-1 FPP Registers (Cont)

Register Function
APTP Sequence of
(Cont) Memory Locations Contents of Location
5 Operand address — 12 low-order bits (this

word is ignored upon FPP start-up, but
is filled upon FPP exit).

6 FAC exponent

7 FAC bits 0-11

8 FAC bits 12-23

9 FAC bits 24-35*
10 FAC bits 36-47*
11 FAC bits 48-59*

*EP mode only

FPC (Floating Program Counter)

Command

The 15-bit FPC register in the Data Path logic keeps track of the
memory location of the FPP instructions. The register is
initially loaded from the APT with the address of the MSW of
the first instruction to be fetched. Each time an instruction word
is fetched, the contents of the FPC are incremented (strictly
speaking, only the MSW of a 24-bit instruction is fetched; the
LSW is picked up by a memory-read operation).

The 12-bit Command register in: the Control logic is loaded
from the PDP-8 Accumulator (AC) register by the FPCOM
instruction. The register holds the following information.

Bit Logic Level

Position | (1=high) Information
0 0 Select FP mode
1 Select DP mode
1 0 If exponent underflow occurs, make
result of calculation = 0 and continue.
1 If exponent underflow occurs, exit.
2 0 Normal addressing

2-2

Table 2-1 FPP Registers (Cont)

Register

Function

Command
(Cont)

Bit
Position

Logic Level
" (1=high)

Information

“4:7

9:11)

1

=1111

#1111

Forbid access to 4K memory fields
other than the one occupied by the
last location of the APT. If bits (4:7)
=1111 (FS), the field bits will remain
equal to the APT field bits when the
FPC was obtained. Otherwise, the
field bits will remain equal to the APT
field when FAC bits 12-23 were ob-
tained. In actual practice the APT is
located where it does not cross a field
boundary; hence, setting bit 2 forces
all FPP operands and instructions to
be in the same field as the APT.
Attempts to cross field boundaries
will then produce wrap-around within
the APT field.

Disable FPP interrupt.
Enable FPP interrupt.

Obtain and restore only the FPC on
entry and exit. All other FPP registers
retain their previous values. The 9
most-significant field bits of the APT
are ignored on entry and cleared upon
exit. This mode of operation provides
an extremely fast (2 cycle) start and
exit, but sacrifices generality.

Obtain entire APT upon startup
except for operand address. Restore
entire APT upon exit, including
operand address.

Interleaved operation

Lockout operation

Most-significant 3 bits of APT pointer.

NOTE

Upon application of power, the APT pointer

is undefined.

2-3

Table 2-1 FPP Registers (Cont)

Register

Function

Status The 12-bit Status register in the Control logic monitors some
significant aspects of FPP operation; the contents of the regis-
ter, which can be transferred to the PDP-8 AC register by the
FPRST or FPIST instruction, represent the following
information.

Bit Logic Level
Position | (1=high) Information
0 0 FP or EP mode
1 DP mode
1 1 Trap instruction caused exit
2 1 FPHLT instruction caused exit
3 1 Attempted divide by zero caused exit.
FAC not altered
4 1 Fraction overflow in DP mode caused
exit
5 1 Exponent overflow caused exit
6 1 Exponent underflow has occurred.
Exit on underflow is optional
7 1 FADDM or FMULM instruction
8 0 Interleaved operation
1 Lockout operation
9 1 EP mode
10 1 FPP is currently paused.
11 1 FPP is currently in run state
Field This is a 15-bit register located in the Data Path logic that is

used only during initialization for temporary storage of the
APTP field address. Do not confuse this register with the field
bits contained in location 1 of the APT.

2-4

Table 2-1 FPP Registers (Cont)

Register

Function

FAC (Floating
Accumulator)

OPADD (Operand
Address)

BR (Base)

XO (Index)

The FAC register has a function similar to the PDP-8 AC regis-
ter; it can be loaded, stored, and tested, and arithmetic can be
performed on its contents (FPP calculations take place in a
scratchpad area and the results are stored in the FAC). The
FAC occupies space in one of the Data Path random access
memories (RAMs) and can comprise 2 (DP mode), 3 (FP
mode), or 6 (EP mode) data locations.

The 15-bit OPADD register in the Data Path logic holds the
PDP-8 address of the instruction operand. At startup, the regis-
ter is loaded with the contents of the FPC; thereafter, it is
loaded during all data reference and trap instructions. At the
conclusion of address decoding of a data reference instruction,
OPADD contains the address of bits 12-23 of the operand
fraction.

The 15-bit BR register in the Data Path logic is loaded from the
APT during initialization. The address loaded into the register
represents the base address, i.e., the origin for relative address
calculations, and can be changed at any time with the SETB
instruction.

The 15-bit XO register in the Data Path logic is loaded from the
APT during initialization. The address loaded into the register,
which may be changed at any time with the SETX instruction,
defines the location of the first of eight index registers. These
registers may be loaded, retrieved, and used in address calcu-
lations and are located in PDP-8 memory.

2.2 FPP8-A 10T INSTRUCTIONS

The PDP-8 IOT instructions relating to the FPP8-A are listed and described in Table 2-2. Table 2-3
lists and describes IOT instructions that are available for maintenance. All IOT instructions require
one memory cycle. The FPP8-A uses device codes 55 and 56.

Table 2-2 FPPS8-A 10T Instructions

Octal Code Mpnemonic Description
6551 FPINT Skip if the FPP8-A flag is set.
6552 FPICL Produces same results as issuing initialize on the Omnibus.

Initialize the FPP - clear flag, enable interleaved operation,
stop the FPP, enable FP mode, clear all Status register flags.
The APT pointer is not changed.

2-5

Table 2-2

FPP8-A 10T Instructions (Cont)

Octal Code

Mnemonic

Description

6553

6554

6555

6556

6557

6567

FPCOM

FPHLT

FPST

FPRST

FPIST

FPEP

If the FPP is not in a run state and the flag is not set, the FPP
Command register is loaded with the contents of the PDP-8
AC. The AC is not changed by this IOT. If the FPP is in a run
state or if the FPP flag is set, the FPCOM instruction is
ignored.

Force the FPP to exit, dump its status in the APT, set the
forced-exit bit in the Status register, and set the FPP flag at
the end of the current instruction. The following special fea-
tures apply:

1. If FPHLT is issued prior to FPST, the FPP will single-
step. FPHLT must be issued after FPIST (or FPICL) and
before FPST for each instruction the FPP is to single-step.

2. If the FPP is currently in pause (result of FPAUSE
instruction), the FPC will be decremented at exit.

3. If FPHLT and FEXIT occur at virtually the same time
(causing a common exit), the status bit indicating forced exit
(bit 2) will be cleared.

If the FPP is not running and the FPP flag is not set, the
contents of the AC are loaded into the 12 least-significant bits
(LSBs) of the APTP register and the FPP is started. If the
FPP is in the run state but paused, the FPST instruction will
cause the FPP to continue. If the FPST instruction causes the
FPP to start or continue, the next PDP-8 instruction is
skipped. Unless the above conditions are met, the FPST
instruction has no effect on the FPP and the PDP-8 skip does
not occur.

Read (jam transfer) the FPP Status register into the PDP-8
AC. The FPRST IOT may be issued at any time.

Skip if the FPP flag is set. If the skip occurs, read the FPP
Status register into the PDP-8 AC, clear the status bits and
the FPP flag.

Select EP mode if ACO = 1 and the FPP is not in the run
state. Then clear the AC. This command must be issued after
the FPCOM (6553) 10T if EP mode is desired.

2-6

Table 2-3 FPP8-A Maintenance IOT Instructions

Octal Code

Mnemonic

Description

6550

6560
6561

6562
6563

6564

6565

6566
6567

FFST

FMODE

FMRB

FMRP

FMDO

FPEP

Start maintenance firmware. Forces a jump to uPC address
17. This address, in turn, contains an unconditional jump to
uPC address 1700, the actual beginning of the maintenance
firmware.

Not used.

Enter Maintenance mode. This enabling instruction must be
issued to cause the FPP to disable its internal free-running
clock, and to cause the FPP to respond to IOT 6565. Mainte-
nance mode is cleared by FPICL, FPIST (if the skip occurs),
CAF and the initialize key. Entering Maintenance mode and
issuing FPP instructions causes the FPP to function in an
internal single-step mode. If the uPC is below 1000, the FPP
will execute a data break for every FM DO instruction issued.
Because of the way data breaks are synchronized on the
Omnibus, this data break occurs after the memory cycle fol-
lowing the IOT, i.e., there is a one-memory-cycle delay
between FMDO and the FPP data break. For uPC addresses
of 1000 or higher, the FPP executes one microstep for every
FMDO IOT. The FPP is clocked at the trailing edge of TP3
of the FMDO IOT. Instructions that require possible modifi-
cation of index registers will not work properly in mainte-
nance mode (JNX, LDX, ADDX, and indexed addressing).

Not used.

Read Data buffer into AC (JAM transfer). This instruction
may be executed in either Maintenance or Normal mode, but
will result in erroneous information if the uPC is above 1000
and the FPP is in Normal mode.

Read uPC into AC (JAM transfer). This instruction may be
issued in either mode, but will cause erroneous information
to be read into bits 4-11 if the uPC is above 1000 and the FPP
is in Normal mode.

Execute one step if in Maintenance mode. This instruction is
ignored if not in Maintenance mode. See FMODE IOT
above.

Not used.

See description in Table 2-2.

2-7

2.3 FPP8-A OPERATING INSTRUCTIONS

There are two basic classes of floating-point instructions: data reference instructions and special
instructions. Data reference instructions perform arithmetic operations on specified data and transfer
data between memory and the FAC. Special instructions cause jumps, branches, Index register modifi-
cations, pointer moves, manipulations of the FAC, and various housekeeping movements (e.g., align-
ment and normalization).

2.3.1 Data Reference Instructions and Formats

The 12 data reference instructions are listed in Table 2-4, along with a description of each. The oper-
ation carried out by each instruction is noted in the Operation column. For example, the FLDA
instruction causes the operand (i.e., the contents, “C,” of the effective address, *“Y”’) to be loaded into
the FAC. Each of the instructions, except LEA and LEAI, can use any one of three modes to specify
the effective address. The format of these modes is illustrated in Figure 2-1. Bits 0, 1, and 2 (which
represent the op code) identify the instruction, while bits 3 and 4 identify the mode of addressing. The
remaining bits of each instruction determine the operand address, as described by the equations below
each format. For example, the operand address for the single word, direct reference format is derived
by multiplying bits 5 through 11 by 3 and adding the result to the 7 (or 8, since the product might
overflow) LSBs of the base address.

Table 2-4 FPP8-A Data Reference Instructions

Mnemonics Op Code Description

FLDA 0

Operation

C(Y)=>FAC

The contents of the effective address are loaded into the FAC. If the mode is DP
or FP, bits 24-59 of the FAC fraction are not used.

FADD 1
FSUB

C(Y)+HC(FAC)»FAC
C(FAC)-C(Y)—»FAC

The contents of the effective address are added to or subtracted from the contents
of the FAC. In DP mode, no alignment or normalization occurs. The 24 bits from
memory are combined with bits 0-23 of the FAC.

1o

In FP or EP mode, the two words are aligned by right-shifting the fraction with the
lesser exponent until the two exponents are the same. In FP mode bits shifted out
of bit 23 are shifted into bits 24--35. Bits shifted out of bit 35 (FP) or bit 59 (EP)
are lost. The two fractions are then added or subtracted, using either the 24 MSB
(FP) or all 60 bits (EP). The result is normalized. In FP mode the result is then
rounded. If either argument is zero, or if its exponent is of such a value that align-
ment will shift the fraction completely out of its register, no shifting occurs. Under
these circumstances, the FAC is either cleared or loaded with the contents of the
effective address.

FDIV
FMUL 4

w

C(FAC)/C(Y)~FAC
C(FAO)*C(Y)~FAC

The old FAC is the multiplier or dividend: the contents of the effective location are
the multiplicand or divisor. For multiply, the 36 (FP or DP) or 72 (EP) MSB of the
product are computed. For divide, the division is carried to 26 or 61 bits. Lesser
bits of product, or the division remainder are lost. In DP mode, the result is rounded
to 24 bits. In FP mode, the result is normalized and then rounded to 24 bits. In EP
mode, the result is normalized and truncated to 60 bits. For division in FP and EP
modes, a preliminary test is made to ensure that the divisor is a normalized number.
If the divisor is not normalized, it is first normalized before proceeding with the
divide. This operation eliminates the possibility of divide overflow.

FADDM
FMULM

FSTA

IMUL
IMULI

LEA
LEAI

(=)}

C(YHC(FACO)»Y
C(FAO)*C(Y)=Y

C(FAO)~Y

C(FAC)*C(Y)=FAC

Y-FAC

The calculation described above under FADD or FMUL occurs, except that the FAC
is not changed. The result of the computation is stored at the effective address.

The contents of the FAC are stored at the effective address. The FAC is not changed.

Available in DP mode only. The contents of the effective address are multiplied by
the contents of the FAC, using the rules for integer arithmetic. (The binary point is
to the right of bit 23.) The result is loaded into the FAC. A continuous test of over-
flow is maintained. If overflow occurs, the 24 bits in the FAC are the 24 LSB of the
answer, but an unknown number of MSB have been lost.

Available in FP and EP modes only. The effective address (not its contents) is loaded
into bits 9—23 of the FAC. FAC bits 0—8 are cleared. The mode is then changed to
DP.

OP CODE OFFSET
A
———— () 1 r ™\
0 1 2 3 4 5 6 7 8 91 101{ 11

Y = BASE ADDRESS + 3* OFFSET

A. SINGLE-WORD, DIRECT REFERENCE

OP CODE XR FIELD BITS OF ADDRESS
—A—] 0 + r A N —A n)
0 1 2131415 6 | 7 819 (10]11

12 LSBs OF ADDRESS
A

1211314 (15| 16] 171819202122} 23

IF XR=0, Y=15-BIT ADDRESS AS GIVEN. THE CONTENTS OF
INDEX REGISTER 0 ARE INCREMENTED IF BIT 5 IS LOGIC 1,
BUT ARE NOT USED AS PART OF THE ADDRESS CALCULATION.

IF XR#0, Y=ADDRESS + M*C (XR), WHERE M=2 (DP), 3 (FP),
OR 6 (EP). IF BIT 5 IS LOGIC 1, THE CONTENTS OF THE
ADDRESSED INDEX REGISTER ARE INCREMENTED BEFORE USE.

B. DOUBLE-WORD, DIRECT REFERENCE

OP CODE XR OFFSET
f'—_% 1 1 + A N A)
0 1 2 3 4 15 6 | 7 8 911011

IF XR=0, Y=BITS 21-35 OF THE TRIPLE WORD LOCATED AT THE
BASE ADDRESS + 3* OFFSET. IF BIT 5 IS LOGIC 1, THE CONTENTS
OF INDEX REGISTER 0 ARE INCREMENTED, BUT ARE NOT USED
AS PART OF THE ADDRESS CALCULATION.

IF XR+#0, Y=BITS 21--35 OF THE TRIPLE WORD LOCATED AT THE
BASE ADDRESS + 3* OFFSET + M*C (XR), WHERE M=2, 3,0R 6. IF
BIT 5 IS LOGIC 1, THE CONTENTS OF THE ADDRESSED INDEX
REGISTER ARE INCREMENTED BEFORE USE.

C. SINGLE-WORD, INDIRECT REFERENCE

Figure 2-1 Data Reference Formats

2-9

2.3.1.1 Single Word Direct Reference - The single word, direct reference format is employed when the
operand is stored on the base page, which consists of a block of 384 12-bit locations. The origin of the
base page is determined by the base address, which can be changed at any time; thus, the base page can
encompass a block of locations anywhere in memory. The base address is contained in the BR, which
is initially set from the APT and which can be changed with the SETB (Set Base Register) instruction.
Data on the base page is stored in the FP format; i.e., the operand consists of three 12-bit words,
namely, the 12-bit exponent followed by the 24-bit fraction. Consequently, 128 operands are available
on the base page. The relative address of any operand exponent can be specified by multiplying the
seven offset bits by 3. When this quantity is added to the base address, the location of the operand
exponent is completely identified.

2.3.1.2 Double Word Direct Reference - The double word, direct reference format allows one to
specify the 15-bit absolute address of an operand. In addition, this format permits address indexing,
which simplifies programming techniques like loop counting and manipulation of push-down stacks.

Address indexing is accomplished by using the contents of an Index register to modify the 15-bit
' absolute address specified by the data reference instruction. There are eight consecutive 12-bit loca-
tions in the PDP-8 memory that are designated as FPP Index registers. The address, XO, of the first of
these registers is provided initially by the APT, but can be changed by the special SETX instruction
whenever necessary.

Bits 6, 7, and 8 (XR bits) of the double word, direct reference instruction identify Index registers O
through 7 in octal notation. If Index register 0 is designated, no indexing is to be performed. Instead,
the operand absolute address is given by bits 9-23 of the instruction, and the contents of Index register
0 may or may not be incremented. However, if an Index register other than 0 is specified, the 15-bit
absolute address is modified by the contents of the selected Index register; note that the contents of the
register may or may not be incremented before the operand address is calculated.

2.3.1.3 Single Word Indirect Reference - Indexing is also permitted by the single word, indirect refer-
ence instruction. Once again, bits 6, 7, and 8 identify the Index register that will be used in an address
modification. However, in this case, the address is specified indirectly, using the base address as the
point of reference. As before, bit 5 of the instruction determines if the contents of the Index register are
incremented.

2.3.2 Special Instructions and Formats
The FPP special instructions are listed in Table 2-5, along with a description of each function.

2-10

Table 2-5 FPP8-A Special Instructions

Mnemonic OP Code

LTR o 1 2 3 4 5 6 7 8 9 10 11
1 0 1 0 0 O COND X X X

Function
Load Truth — If the condition is met, +1 (2000 0000 in DP mode) is loaded into
the FAC. If the condition is not met, the FAC is cleared.

Conditions:
Octal Meaning

0 FAC fraction =0

1 FAC fraction greater than or equal 0

2 FAC fraction less than or equal 0

3 Always

4 FAC fraction not equal 0

5 FAC fraction less than 0

6 FAC fraction greater than 0

7 FAC exponent greater than 27 (octal)
Mnemonic OP Code
TRAP 3, 0 1 2 3 4 5 6 7 8 9 10 11
TRAP 4 (3o0r4) 0 0 X X X X MSB

12 13 14 15 16 17 18 19 20 21 22 23
LSB of Address

Trapped Instructions — The instruction trap status bit is set, and the FPP exits.
The 15-bit address is placed in the APT.

Mnemonic OP Code
INX 0 1 2 3 4 5 6 7 8 9 10 11
0 1 0 0 0 + XR MSB
12713 14 15 16 17 18 19 20 21 22 23
LSB of Address
Function

Jump if Index Register is non-zero — The specified Index register is incremented if
bit 5 =1. If the (incremented) Index register is not 0, bits 9—23 are loaded into the
FPC, causing a jump.

Mnemonic OP Code
JSR 0 1 2 3 4 5 6 7 8 9 10 11
0o 0 1 0 o0 1 o0 1 1 MSB

12 13 14 15 16 17 18 19 20 21 22 23
LSB of Address

Function

Jump and Save Return — A ‘JA’ to the current value of the FPC is constructed and
stored in core memory locations BR+1 and BR+2. (1030+FPC field is stored in
BR+1; 12 LSB of FPC is stored in BR+2.) Instruction bits 9—23 are then loaded
into the FPC. This instruction is one of two ways to call a subroutine. Return
from the subroutine is made by either doing a JA to BR+1, or by doing an FLDA
base 0 followed by a JAC. The latter method is slightly slower, but much more
general.

2-11

Table 2-5 FPP8-A Special Instructions (Cont)

Mnemonic OP Code
JSA 0 1 2 3 4 5 6 7 8 9 10 11
0 0 1 0o 0 1 o 1 0 MSB
12 13 14 15 16 17 18 19 20 21 22 23
LSB of Address
Function

Jump and Save at Address — A ‘JA’ to the current value of the FPC is constructed
and stored in core memory at the address specified by bits 9—23 of the instruction.
The FPC is then changed to equal 2+bits 9—23 of the instruction. This is the
second method for calling a subroutine, and stores the return in two memory
locations at the top of the subroutine. Return is accomplished by an unconditional
jump to the subroutine entry point.

Mnemonic OP Code
SETB 0 1 2 3 4 5 6 7 8 9 10 11
0 0 1 0 0 1 0 0 1 MSB
12 13 14 15 16 17 18 19 20 21 22 23
LSB of Address
Function

Set Base Register — Bits 9—23 are loaded into the BR.

Mnemonic OP Code
SETX 0 1 2 3 4 5 6 7 8 9 10 11
0 0 1 0O 0 1 0 0 0 MSB

12 13 14 15 16 17 18 19 20 21 22 23
LSB of Address

Function
Set Index Register Pointer — Bits 9—23 are loaded into X0.

Mnemonic OP Code
BRANCH 0 1 2 3 4 5 6 7 8 9 10 11
INSTRUCTIONS 0 0 1 0o 0 0 COND MSB
12 13 14 15 16 17 18 19 20 21 22 23
LSB of Address
Function

Branch Instructions — If condition is met, bits 9—23 are loaded into the FPC,
causing a jump to that address.

Conditions:
Octal Meaning
JEQ 0 If FAC fraction =0
JGE 1 If FAC fraction greater than or equal O
JLE 2 If FAC fraction less than or equal O
JA 3 Always
JNE 4 If FAC fraction not equal O
JLT 5 If FAC fraction less than O
JGT 6 If FAC fraction greater than 0
JAL 7 If FAC exponent greater than 27 (octal). This con-

dition signifies that the FAC contains a number too
large to be fixed in 24 bits.

2-12

Table 2-5 FPP8-A Special Instructions (Cont)

Mnemonic OP Code
ADDX 0o 1 2 3 4 5 6 7 8 9 10 11
0O 0 0O o0 o 1 0o o0 1 XR
12 13 14 15 16 17 18 19 20 21 22 23
Data
Function

Add to Index Register — Bits 12—23 are added to the contents of the Index
register specified by bits 9—11.

Mnemonic OP Code
LDX 0 1 2 3 4 5 6 7 8 9 10 11
O 0 0O o0 o 1 0O 0 O XR
12 13 14 15 16 17 18 19 20 21 22 23
Data
Function

Load Index Register — Bits 12—23 are loaded into the Index register specified by
bits 9—11.

Mnemonic OP Code

ALN 0 1 2 3 4 S 6 7 8 9 10 11
o 0 0 o o o0 o0 O 1 XR

Function

In FP and EP mode, the fraction of the FAC is shifted until the FAC exponent
equals the contents of the index register specified by bits 9—11. If bits 9—11
of the instruction are zero, the fraction of the FAC is shifted until the FAC
exponent equals 27 octal (23 decimal).

In DP mode, an arithmetic shift is performed on the FAC. The number of shifts
is equal to the value of the contents of the Index register specified by bits 9-11.
The sign of the Index register indicates the direction of shift; a positive sign causes
a shift toward the LSB. If the shift is toward the least significant bit, vacated bits
are filled with FACO. If the shift is toward the most significant bit, vacated bits
are filled with zeros. If bits 9—11 of the instruction are zero, a 23-bit right shift
of the FAC is performed.

Mnemonic OP Code

ATX 0 1 2 3 4 5 6 7 8 9 10 11
0 o 0 O 0O 0 1 o0 XR

Function

FAC to Index Register — If the mode is FP or EP, the contents of the FAC are
fixed (i.e., shifted until the exponent = 27 octal) ATX does not test to see if fixing
is possible. If the mode is DP, the contents of the FAC are already fixed, so this
portion is omitted. Bits 12—23 of the result are then loaded into the Index
register specified by bits 9—11. The FAC is not changed by the ATX instruction.

2-13

Table 2-5 FPP8-A Special Instructions (Cont)

Mnemonic OP Code

XTA 0o 1 2 3 4 5 6 7 8 9 10 11
o 0 0 0O O 0 o0 1 1 XR

Function

Index Register to FAC — The contents of the Index register specified by bits
9—11 are loaded into FAC 12—-23. FAC 0-11 is loaded with the contents of
FAC 12.

FAC 24-59 are cleared, 27 octal is then loaded into the FAC exponent. If the
mode is FP or EP, the FAC is then normalized. (The normalizing operation is
omitted in DP mode.)

Mnemonic OP Code Function

NOP 004X No Operation — None, other than a 1-cycle delay
in the program. This is the only instruction which
will always remain a NOP despite future expansion.

STARTE 005X Start Extended-Precision Mode — The FPP enters
EP mode. If the FPP was previously in a mode
other than EP, FAC 2459 are cleared.

FEXIT 0000 Exit Floating-Point — The contents of the FPP
registers are dumped onto the active parameter
table, the FPP is stopped, and the FPP flag is set.

FPAUSE 0001 Pause — Suspend FPP operations without updating
the APT. 10T FPST will cause the FPP to continue.

FCLA 0002 Clear the FPP Accumulator — Make the FAC fraction
zero. If the calculating mode is FP or EP, make the
FAC exponent zero, also.

FNEG 0003 Complement the FPP Accumulator — The FAC
fraction is replaced by its 2’s complement.

FNORM 0004 Normalize — If the FAC fraction is non-zero, and if
the FPP mode is FP or EP, the FAC fraction is

shifted toward the MSB until the two MSBs are
different from each other or until the FAC fraction
equals 6000 0000. The FAC exponent is decremented
by one for each position shifted. If the FAC fraction
is 0, or if the mode is DP, no operation is performed.

STARTF 0005 Enter 24-Bit Floating Point Mode — The FPP enters
FP mode. If issued in EP mode, the FAC is rounded
to 24 bits.

STARTD 0006 Enter Double-Precision Mode — The FPP enters DP

mode. Ifissued in EP mode, the FAC is chopped to
24 bits. The FAC exponent is ignored, but not
modified.

JAC 0007 Jump Per FAC — FAC bits 923 are loaded into the
FPC.

2-14

CHAPTER 3
FPP8-A FIRMWARE

3.1 GENERAL

The FPP8-A is a processor that performs arithmetic operations using floating-point arithmetic. Any
logic operations that the FPP may carry out are performed as a secondary role to the primary function
of arithmetic calculation. Whatever the operation may be, it is initiated by IOT instructions issued by
the PDP-8 CPU. The IOT instructions specify what the FPP is to do, how it is to do it, what it should
do when finished, and, most importantly, where it can find the data that it is to work with.

When all the necessary initializing information has been provided, the FPP is started. It begins by
fetching its first instruction from PDP-8 memory via the PDP-8 data break system. This instruction
could be one that merely directs the FPP to load one of its registers, for example, an operation that can
be carried out in a few steps, or it could be one that directs the FPP to perform a division calculation,
an operation that requires many steps before a result is obtained. In either case, the FPP logic proceeds
through a sequence of actions that depends on the fetched instruction. This sequence is programmed
by an internal (to the FPP) read-only memory (ROM) called the Control ROM.

Every location in the Control ROM contains information that causes a particular operation to occur
in the FPP logic; instructions are carried out by stringing together these locations in a specific
sequence. The starting point for the sequence is always determined during initialization by the IOT
instructions, which cause the address of the starting Control ROM location to be loaded into a Micro
Program Counter (uPC). The uPC then accesses that location, and the information stored therein
causes some FPP operation to take place. The stored information includes the address of the next
Control ROM location in the sequence. This next address is loaded into the #PC and new information,
including the next address in the sequence, is accessed and acted on. Thus, the sequence is self-perpetu-
ating. When all the steps required by the instruction being performed have been completed, the FPP
makes an exit test; that is, should it end the sequence or continue it? If the exit test directs that the
sequence end, the FPP stops with a specific address in the uPC and raises its interrupt request flag. The
sequence can be restarted only by an IOT instruction. On the other hand, if the exit test does not call
for a halt, the FPP continues to access locations, fetching the next FPP instruction from the PDP-8
memory and following a sequence determined by that instruction.

The sequence of FPP operations can be characterized by firmware, that body of information that is
neither software nor hardware, but which provides firm, formalized descriptions of the FPP oper-
ations. This firmware consists of a general flow diagram, a Control ROM pattern specification, and a
Control ROM source code. All of these firmware examples will be discussed in detail in the following
sections.

3-1

3.2 FLOW DIAGRAM

Figure 3-1 shows a flow diagram that illustrates the general sequence of Control ROM locations that
oceurs for each FPP instruction. A sequence begins when address 0020 is loaded into the uPC register,
i.e., when an instruction is fetched. Fetch can occur in one of three ways: If the FPP has just been
started by the FPCOM and FPST instructions, the APT contents will be loaded into the appropriate
registers, and the first FPP instruction will be fetched from the memory location specified by the FPC
register contents; if the FPP is paused in the RUN state, the FPST instruction will cause it to continue
by fetching a new instruction; or, if an instruction has just been concluded, the fetch can result after an
exit test is made.

When the instruction has been fetched it is applied to decoding circuits in the Control logic. uPC
address 0023 causes a characteristic address to be generated; this address is then loaded into the uPC
and the logic operations peculiar to the decoded instruction are started. For example, if the special
* instruction SETX is decoded, uPC address 0023 is replaced by 0034. A sequence of steps, beginning
with 0034, is carried out, and when the SETX operations have concluded an exit test is made. If an exit
is not directed, a new instruction is fetched and decoded, and address 0023 dispatches a new address to
the uPC.

If a Data Reference instruction is fetched, an address calculation must be performed to determine the
PDP-8 memory address of the data. Instruction Dispatch 1 causes the appropriate Control ROM
location to be accessed. When the operand memory address has been calculated, Instruction Dispatch
2 transfers control to a data-handling routine. For example, if an FLDA instruction is decoded, con-
trol is transferred to Control ROM location 0200, which begins an operation that loads the data into
the FAC register. However, if the Data Reference instruction is one that requires an arithmetic calcu-
lation, as opposed to one that merely transfers data (like FLDA or LEA), control passes to one of the
two preliminary arithmetic routines, GETN and GETARG. Then, the final instruction dispatch is
performed and the uPC is loaded with the first address of the appropriate arithmetic routine.

All instruction operations conclude with an exit test. If an exit has been directed by some logic condi-
tion, the APT is stored in memory. Then, the uPC is loaded with address 0001, the interrupt request
flag is raised, and the FPP halts until serviced by the PDP-8.

3.3 CONTROL ROM PATTERN SPECIFICATION AND SOURCE CODE

The Control ROM is comprised of 31 1024-bit PROMs that are arranged to provide a total of 1400
(76810) 44-bit word locations. Each 44-bit word consists of a number of individual control words,
ranging in length from 1 bit to 10 bits. These control words determine how the FPP logic is manipu-
lated to carry out the operations specified by the FPP instructions.

A complete pattern specification for the Control ROM is contained in the FPP8-A print set. This
specification lists each uPC address (“uPC Address” and “Control ROM location” are synonomous),
the names of the individual control signals, and the state of all signals for each address. Figure 3-2
represents a portion of the specification for information. The functions of each Control ROM address
are listed in the Control ROM source code, which is also included in the print set. A portion of this
document is reproduced in Figure 3-3. This example describes the Data Path and Control operations
for the uPC addresses shown in Figure 3-2. (The pattern specification and the source code are here-
inafter referred to, jointly, as “the firmware.”)

One can solve the intricacies of the FPP logic by applying the information given in the pattern specifi-
cation and the source code to the logic diagrams. However, one cannot make use of the source code
without first understanding its somewhat complex language syntax. This syntax is described fully in
Appendix A; study it before continuing with this description.

3-2

4PC=300 CONTINUE
(START)—a “GETAPT”
{FIELD,FPC)
4PC=20
PC=107 “FETCH"
uPC=23
INSTRDISPI ["]
- - -— -_— -
HPC=102 HPC=112 #PC=130 _ pPC=14 _
DIR ADDR 24-817 INDIRECT . ;c decT | “spg."r?? HPC=40 KPC=50 BRANCH :::_c':“-m upC=72
i DIRE LpX" “shn X TA
(DP) INC X0 INDEX TRUE (NOT X0)
uPC=100 uPC=110 LPC=132 ADDRESS
VR ADDR 24817 uPC=114 INDIRECT CcALC. ' #PC=36 uPC=44 uPC=60 4PC=26 4PC=1030
(NOT DP) INDEX 24BIT ING X0 “SETB” “ADDX" “JSR” “INX” ALN (X0)
- -— -— -— -
141 157
4PC=100, 102, 140 OR 156
“INSTR DISP 2
FSUB ALL OTHER FLDA FSTA LEA
LPC=240 3?230
“GETARG”
“STORE"
4PC=260 4PC=200 uPC=256
“GETN" “LOAD" LEA"
'I 3
4PC=1027 OR 1037
“INSTR DISP 3"
HPC=1401 uPC=1403
FADD “EDIV™
4PC=1400 4uPC=1402 uPC=1404
“DPADD" “EMUL” “IMUL”
08-1745
Figure 3-1 FPP8-A Instruction Flow Diagram

(Sheet 1 of 2)

uPC=23

INSTR. DISP. 1
1#PC=1016 uPC=1014 1PC=1004 1PC=1010 4wPC=1020 ;F:::gf: LPC=1000
LTR (1) “JAC” “FNEG" “STARTF” “STARTE” I “EXSTRT"
uPC=1040 uwPC=1026 uPC=1006 ©PC=1002 1PC=1012 uPC=2 uPC=74 ;;T:::H
- e ” "” ang Z . v “TRAP"
ATX LTR (0) FNORM FCLA STARTD FPAUSE N i
\ NO
EXIT 1
EXTEST VES
NO
uPC=1000
YES
STORE STORE
FPC, FIELD ENTIRE
wPC=157 / ONLY APT uPC=324
uPC=1
FLAG
08-1746
Figure 3-1 FPP8-A Instruction Flow Diagram

(Sheet 2 of 2)

3-4

AAAA BBBB BCCC CCDD DEFH JJKL MMMM MNPP PPPP PPPP RRRR

HHHH XXXX XHHH HHXX XHHH HHHH HHHH LHHH HHHH HHLL HHHH
HHHH XXXX XHHH HHXX XHHH HHHH HHHH LHHH HHHH HHHL HHHH
HHHH XXXX XHHH HHXX XHHH HHHH HHHH LHHH HHHH HHLH HHHH
HHHH HHLL HHHH HHHH HHHL LLHL HHHH LHHH HHHH HHHH HLLL
HHHH XXXX XHHH HHXX XHHH HHHH HHHH LHHH HHHL HHHH HLLL
HHLH HHLL HLLH HLXX XHLH HHHH HHHH LHHH HHHH HHHH HLLL
HHHH HHLH HLLH HHXX XHLH HHHH HHHH LHHH LLHH HHHH HLLL
HHHH HHHH HHHL HHXX XHLH HHHL HHHH LHLH HHHH HHHH HLLL
HHHH XXXX XHHH HHXX XHHH HHHH HHHH LHLL LLHH HHHH HLLL
HHHH HHHH HHHH HLXX XHLH HHHL HHHH HHHH HHHH HHHH HLLL
HHHH XXXX XHHH HHXX XHHH LLHH HHLL LHHH HHHH HHHH HLHH
HHHH HHHL LHHH HLXX XHLH HHHL HHHH HHHH HHHH HHHH LLLH
HHHH XXXX XHHH HHXX XHHH HHHH HHHH HHHH HHHH HHHH HLLL
HHHH XXXX XHHH HHXX XHHH LLHH HHLL LHHH HHHH HHHH HLHH

H=HIGH, L=LOW, X=“DON’T CARE”

(XIS ENCODED IN ROM AS L)

COLUMN SIGNALS DRIVEN (TO J1)

>

CRESDTmOoOOw

CB5 ARITHOH — CB5 ARITH 3 H
(INVERTED)

CBS ALOCOL —-CB5 ALOC4 L

CB5 BRLOCO L — CB5 BRLOC 4 L

CB5 BWLOCO L — CB5 BWLOC 2 L

CBS CARRY BIT L

CBS WRITE A H (INVERTED)

CBS WRITE B H (INVERTED)

CB6 DBCTRL1 L —-CB6 DBCTRL2L

CB6 EXTEND H (INVERTED)

CB6 READ A H (INVERTED)

COLUMN SIGNALS DRIVEN (USED INTERNALLY)

M

N
P
R

CB6 UPCTRLO L — CB6 UPCTRL 4 L

CB6 B SELL

CB6UP2INL - CB6UPI1INL

(USED ON DWG. CB4 TO CONTROL PULSE
GATING AND TO GENERATE CB4 BRK RQ H

Figure 3-2 Example, Control ROM Pattern Specification

3-5

[a—

13

16

17

10
11
12

/ADDRS NEXT DATA PATH OPERATION TIME CTRL FUNCTION

*0

HALTED, NO OPERATION TS3 GO TO, HLTD1 (3)
FLAG, NO OPERATION TS3 GO TO, FLAG (1)
PAUSED, NO OPERATION TS3 GO TO, PAUSED (2)
*3

/“DB:=MD” IN THE NEXT LINE IS A KLUDGE. THE DB IS REALLY LOADED
/FROM THE DATA LINES OF THE OMNIBUS (THIS STEP ONLY)
HLTDI, DB:=MD; TEMP:=FIELD T4 GO TO, HALTED (0)

LOLTELTELTELLT T TYOT AREA L[/ 11T
/FPST AND CONTINUE CONDITION

*6

FCONT, ~ NO OPERATION T4 GO TO, FETCH (20)
/FPCOM

*7

FPCOM, FIELD:=[R3R] DB T4 GO TO, HALTED (0)
/EPST AND START CONDITION

*13

FPST, APTP:=TEMP(I:3), DB T4 GO TO, GETAPT (300)

/FPHLT IOT GIVEN WHILE FPP IS PAUSED. BACK UP FPC, EXIT.

*16

FPHLT, FPC:=FPC[+] M1 T4 GO TO, EXSTRT (1000)
/JUMP TO MAINTENANCE PROGRAM

*17

MAINT, NO OPERATION T4 GO TO, MAINT1 (1700)

[J1111111111111111]]]/DATABREAKAREA//[[[[]]I1]1]1111111]]

/SUBROUTINE — GET SECOND HALF OF 24-BIT INSTRUCTION

*4

INST24, FPC:=FPC[+]K1 T4 BKCMD:=0
DB:=MD BTI RETURN

/SUBROUTINE — GET WORD AT NEXT OPADD, BUMP OPADD

*10
NEXTOP, BKMA, OPADD:=OPADD[+]K]1 T3
NXTOP1, NO OPERATION T4 BKCMD:=0

DB:=MD BT1 RETURN

Figure 3-3 Example, Control ROM Source Code

3-6

3.3.1 ‘GETAPT’ Firmware

The FPP flow diagram, illustrated in Figure 3-1, begins at START and then passes to a block entitled
GETAPT. This block represents the transfer of the APT from PDP-8 memory to the appropriate FPP
registers. The firmware describing this transfer operation will be explained in detail so as to provide
some insight not only to the firmware but also to the FPP logic. The firmware for the GETAPT
routine is shown in Figure 3-4 (this is not the entire APT firmware; only the part dealing with a Fast
Start is shown). Certain Data Path pattern specification signals are called out in the figure; the signifi-
cance of these call-outs will be explained.

The GETAPT routine is started when address 300 is clocked into the uPC register (Paragraph 4.2.7,
Clock Logic, describes the initialization procedure that precedes GETAPT). Signals asserted by the
Control ROM during address 300 both direct the Data Path to read the contents of the APTP register
and send them to the BK MA register, and cause the break control logic in the Data Path to begin data
break operations. The Control ROM signals (except those pertaining to the data break control logic)
are loaded into Pipe-line registers in the Data Path at T3 time, and the uPC address is changed to 301.
The Pipe-line registers and a number of PROMs driven by the register outputs, produce signals that
gate the APTP register contents to the BKMA /BKEM A register (these contents are the address of the
first word of the APT, which contains field address information). Meanwhile, the data break control
logic is both carrying out a priority test to determine if an FPP data break can be started, and pre-
paring to assert Omnibus data break signals that can cause a memory read to take place (the control
statement ' BKCMD:=4" means that signals BKCMD (0:2) L are asserted in a combination that will
produce a memory-read data break transfer). At T4 time the uPC address is changed to 302 and, if the
FPP has priority, which we assume it has, the APT pointer address is loaded into the
BKMA /BKEMA register and the Omnibus data break control signals are asserted. Thus, a PDP-8
data break takes place with a memory read at the address specified by the contents of the APTP
register. Note that a one-step delay has occurred between the Data Path statement and its fulfillment -
an important point to understand and remember. In the rest of the discussion, this delay will be
implied by describing the Data Path statement in this manner: the APTP is sent to the BKMA. When
reading such a statement, keep in mind the fact that the destination, the BKMA in this example, is not
loaded until one step later in the firmware.

The Control ROM is now in location 302, during which the MD is sent to the DB. The Control tests its
Command register to see if a Fast Start (FS) has been programmed. We assume that it has; hence,
Control loads address 317 into the uPC register at BT1 time. Meanwhile, the information in the
addressed memory location has been read from memory and strobed onto the MD lines; the informa-
tion settles on the bus between BT1 time and T2 time. Consequently, the information read from
memory during the data break is loaded into the DB at T2 time, while the Control is obtaining the
contents of uPC address 317.

During address 317, the DB is sent to TEMA, a 15-bit register in the Data Path’s A-file (TEM A is now
temporarily holding field address information). At T2 time, Control jumps to the uPC address of the
subroutine APTI1. Location 321 adds 1 (K1) to the contents of the APTP register and sends the
incremented address back to the APTP, to TEMPI1, a B-file register, and to the BKMA/BKEMA.
This address is the memory address of the second word of the APT. This second word contains the
low-order address bits of the first FPP instruction to be fetched, and will be loaded into the Data Path
FPC register. The field address of the first FPP instruction was located in bits 9-11 of the first word in
the APT. Hence, this field address is now located in TEMA.

During uPC address 322, the TEMA register is rotated right three places and sent to the TEMP
register and back to TEMA,; the field address of the first FPP instruction is now located in bits (1:3) of
both TEMA and TEMP. The data break operations cause word two of the APT to be gated onto the
MD lines (BKCMD:=4). The MD is sent to the DB during address 323, and TEMPI is sent to the
OPADD register (the latter operation has significance only if the entire APT is being picked up and the
operating mode is EP).

3-7

/GET ACTIVE PARAMETER TABLE

*300
300 GETAPT, BKMA:=APTP T3
301 NO OPERATION T4 BKCMD:=4
302 DB:=MD BT1 IF FS, APT2 (317)
/FAST START — FS=1. GET FPC ONLY, THEN GO TO FETCH
317 APT2, TEMA:=DB T2 SUB, APT1 (321)
321 APTI, BKMA, TEMP1, APTP:=APTP[+] K1 T3
322 APTIB, TEMP, TEMA:=[R3R] TEMA T4 BKCMD:=4
323 DB:=MD; OPADD:=TEMPI BTI RETURN
320 TEMP7, FPC:=TEMP(1:3), DB T2 GO TO, FETCH2 (107)
107 FETCH2, BKMA, OPADD:=TEMP7 T3 GO TO, FETCH1 (21)
21 FETCH1, :=FACE[EXPSIZE]M30 T4 BKCMD:=7
22 FPC:=FPC[+]K1; DB:=MD BT1
23 TEMP:=FIR(9:11) T2 INSTR DISP 1|
UPC
ADDR AAAA BBBB BCCC CCDD DEFH JJKL MMMM MNPP PPPP PPPP RRRR
300, HHHH HHLH HHHH HHXX XHHH HHHL HHHH HHHH HHHH HHHH LLLH
301, HHHH XXXX XHHH HHXX XHHH HHHH HHHH HHHH HHHH HLHH HLLL
302, HHHH XXXX XHHH HHXX XHHH LLHH HLHL LHHH LLHH LLLL HLHH
317, HHHH HHLH LLLH HLXX XHLH HHHH HHLH LHHH LLHL HHHL HLHL
321, HHHH HHLH HHHH HLHH LHLL HHHL HHHH HHHH HHHH HHHH LLLH
322, HHLH HHLH LHHH HHHH HHLL HHHL HHHH HHHH HHHH HLHH HLLL
323, HHHH HHHL LLHH HLXX XHLH LLHH HHLL LHHH HHHH HHHH HLHH
320, HHHH HHHH HLLH HHLL LHLL HHHH HHHH LHHH HLHH HLLL HLHL

107,
21,
22,
23,

HHHH HHHL LLHL LLXX XHLH HHHH HHHH LHHH HHHL HHHL LLLH
LHLH HLHH HHLL LLXX XHHH HHHL HHHH HHHH HHHH HLLL HLLL
HHHH HHHH HHHH HLXX XHLH LLHL HHHH HHHH HHHH HHHH HLHH
HHHH|XXXX X[LLH LHHH HlleLL\HHH’ HHHL HHHH HHHH HHHH|HLHL
v d =

~

WRITE A
READAL T

WRITEBL

BRLOC (0:4) L
BWLOC (0:2) L

ARITH (0:3) H
ALOC (0:4

BKCMD (0:2) L

Figure 3-4 ‘GETAPT’ Firmware

3-8

At BT1 time Control returns to address 320. TEMP bits (1:3) (the field address) and the DB contents
(the low-order address) are sent to the FPC register and to TEMP7. Now the complete memory
address of the first FPP instruction is in the FPC register (as well as in TEMP7), and Control jumps to
uPC address 107, to begin the fetch of the first FPP instruction. During address 107 the memory
address of the instruction is sent to the BKMA and data break operations begin.

The Data Path operations during uPC address 21 are concerned with a test that can be made on
floating-point numbers by the JAL instruction. These operations are described in detail in Paragraph
4.2.8, Instruction Dispatch Logic. Meanwhile, the Data Break control logic is preparing to assert
break control signals (BKCMD:=7 and BKCMD: =4 are identical with respect to data break control
signals), which it does at T4 time (we again assume that the FPP has priority). The FPP instruction in
the addressed memory location is placed on the MD lines and sent to the MB as well as to the
instruction decoding logic. During uPC address 22, the address in the FPC register is incremented. The
register now contains the address of either the next instruction to be fetched or the operand that is to
be retrieved.

If a Fast Start had not been programmed, the entire APT would have been picked up just as were the
first two locations. For example, location 3 of the APT contains the base address 12 LSBs. The field
bits of the base address are located in bit positions 9, 10, and 11 of TEMA after TEMA is rotated
during the pick-up of the FPC field bits. Thus, another rotation of TEM A permits the base address
field bits to be sent to TEMP (1:3). Then, the field bits in TEMP (1:3) and the 12 LSBs in the DB can be
sent to the BR register.

During an exit from FPP operation, the APT is updated by an exit routine. If a Fast Start was carried
out at the beginning of operations, a fast exit (FASTX) is effected, during which the FPC and its field
bits are stored in locations 1 and 2 of the APT.

The pattern specification signals that are called out in Figure 3-4 manipulate the Data Path. For
example, during uPC address 300, the APTP register must be read. This register is located in the A-file,
which is controlled by Control ROM signals ALOC (0:4) L. The state of these signals during address
300 is HHLHH. If we refer to Table 4-1, we can see that the APTP is indeed selected for reading
(READ A L is also asserted during address 300). Table 4-1, along with Tables 4-2, 4-3, and 4-4, is
discussed in relation to the FPP block diagram description. If one reads the block diagram description
and then returns to Figure 3-4 and attempts to relate the Control ROM signals to the Data Path
operations, one can acquire some understanding of how the FPP works.

For another example, consider uPC address 321, during which the APTP is incremented. Constants
are located in the Constant generator, which is controlled by the BRLOC (0:4) L signals. Table 4-2
shows that the constant 1 is applied to the B input of the ALU during address 321. Table 4-1 shows
that the APTP register is applied to the A input of the ALU. The ARITH signals determine what
happens to the two ALU inputs. The pattern specification indicates the state of the Control ROM
signals at the output of the ROM. Some of these signals, including the ARITH signals, are inverted
before being applied to the Data Path; hence, the levels indicated in Figure 3-4 should be inverted.
That is, the ARITH bits for uPC address 321 are shown as HHHH in Figure 3-4. Invert these to LLLL
and you have the correct condition at the interconnecting cable. Thus, Table 4-4 indicates that the A
and B inputs of the ALU (plus a carry in, if such is applicable) are added and the result is placed on the
OBUS. The addition result is sent back to the APTP and to TEMP1. Table 4-1 shows that the APTP
will be written (WRITE A L is asserted), while Table 4-3 shows that TEMP1 will also be written.

One can also see something of what is happening in the Control by examining Figure 3-4. During
address 302, for example, the Control tests the Command register to see if a Fast Start was program-
med. If it was, a jump address is loaded into the uPC register. This address is provided by the Control
ROM, itself, and is represented by the "P’ bits in address 302, viz., H HLL HHL LLL (0317).

39

3.3.2 FPADD Firmware
Other examples that illustrate the relation of firmware and logic appear in this and the following two
sections. These examples describe the operations involved in arithmetic calculations performed by the

FPP.

Figure 3-5 lists the firmware pertaining to an addition carried out in the FP mode. The FADD instruc-
tion has been fetched and decoded, and the effective address of the operand has been determined (it is
assumed that at some earlier time the FAC has been loaded with one of the numbers in question). The
firmware in Figure 3-5 begins at Instruction Dispatch 2. The second number, the operand, will be
retrieved from memory and placed in TEMP registers. Then, both the operand and the number in the
FAC are tested for zero fractions (if either number has a zero fraction, the addition is shortened
considerably). Following this test, the logic determines which exponent is smaller and checks to ensure
that the difference in exponents is not so large as to make alignment impossible (if alignment is impos-
sible, the smaller number is treated as though it were zero). Alignment is carried out by right-shifting
the fraction of the number having the smaller exponent. Then, the two fractions are added, and the
result is normalized and rounded off. Finally, the result is placed in the FAC and an exit test is made.
The steps detailed by the firmware will be explained by a running commentary; this commentary lists
the uPC addresses appearing in the firmware and, where necessary, amplifies the Data Path and Con-
trol statements relating to each address. The commentary follows.

/GET ARGUMENT, PLACE FRACTION IN TEMP1=TEMPS, AND EXPONENT
/(1F USED) IN TEMP6, TEMP}, BKMa ALREADY CONTAIN ADORESS OF
/ARGUMENT AT ENTRY, USEu BY FADD, FADOM, FMuL, FMULM, IMUL AND FDIlv,

*249
249 GETARG, QPADD:sTEMP] T4 BKCMDI=D
24y DBi=MD] TEMP3I3sm(y] BTY IF DP, GET! (243)
242 TEMP6EaDB T2 SuB, NEXTOP (18}

/SUBROUTINE~=GET WORD AT NEXT OPADD, BUMP OPADD

10
10 NEXTOP, BKMA, OPADD:a30PALD{+]IK] T3
11 NXTOPS, NO OPERATION T4 BKCMD3my
12 0Bi=MD 8T1 RETURN
243 GET1, TEMPL:a0B T2 SuB, NEX1OP (18)
244 TEMP2:aDB T2 1F NOT EP, ARITH (1037)

/ARITHMETIC DISPATCH

1637 ARLTH, NO OPERATION FREE INSTR 01SP 3

1401 Fapo, DB, TEWMP7:sFACE FREE G0 TO, FPLUS (1422)
1777777 /FLOATING POINT Aub//z/72//77717
/FIRSY TEST FOR ZERU ARGWMENT,

1422 FPLUS, D8, SCI3TEMP7 FREEw IF TEMPZERO, FALOLL (1453)

1423 DB, SCRATCHESETEHPT FREE+ SuB, FIos (1333)
/8UBROUTINE==MOVE FAC FRACTION TO SCRATCH,

1333 FT0S, DB, TEMPIx=FACM FREEw

1334 FT081, 0B, SCRATCHMIsTENP FREE+ IF NOT EP, FTUS3 (13486)

1348 FT0S3, DB, SCRATCHP:=({d] FREEe GO TO, FTOS2 (1344)

1344 FT082, DB, TEMPI®FACN FREE®

1345 DB, SCRATCHNISTEMP FREE® RETURN

1424 08B, TEMP7, SC:mSL{MINUS)TEMPE FREEw IF FACZERO, FADL® (1455)
/NOW FIND SMALLER EXPONENT, TEST FUR OVERSHIFT,

1425 NO OPERATION FREE®

1420 NO OPERATION FREE* IF OVFLO, FADD1 (1457)

1427 ND OPERATION FREE» IF EXPFL, FPLUS1 (1462)

1432 DB, SCis(MINUSITLMP? FREEw

1431 OB:aSC [MINUSIM3Y FREE» IF NOT EP, FPLUS2 (1433)

1433 FPLUS2, NO GPERATION FREEw

1434 NO OPERATION FREEw IF SGN, FAUVLIA (146@)

1435 DB, TEMP6:3FACE FREEw SuB, EST (1314)
/SUBROUTINE==EXCHANGE SCWATCH AND TEMP FRACTIUNS,

1314 EST, DB, TEMPI®SCRATCHM FREE®

1315 DB, SCRATCHMIsTENPY FREEw

1316 0B, TEMPiZI=1EMP FREEw IF NOT EP, EST1 (1330)

1830 E3T1, 08, TEMPIsSCRATCHM FREE®

1831 DB, SUWATCHN:I=TENP2 FREEw

1832 DB, TEMP2:aTEMP FREE* RETURN

Figure 3-5 FPADD Firmware (Sheet 1 of 2)

3-10

/ALIGN NUMBERS, SMALLER NUMBER IS IN SCRATCH/ 3C CONTAINS EXP DIFF,
/DIFFERENCE IN EXPONENTS I§ SHMALL ENOUGH THAT A NON=ZERO
/NUMBER WILL BE IN SCRATCH AFTER THE SHIFT,

1436 FADD4, NO OPERATION FREEw SUB, SHR (1269)

/SUBROUTINE==8HIFT SCRATCH RIGHT PER SC, USE WORD MOVE IF POSSIBLE,
/8C CONTAINS 2'S COMPLEMENT OF wUMBER OF SHIFTS ON ENTRY, & AT EXIT

1262 SnR, DB, SctuSC FREEe

1264 SAR1B, 0B, SCi1eSC1R8ITIKL4 FREEs

1262 NO OPERATION FREEe IF EXPFL, SHRiA (1264)

1264 SHR1As; NO OPERATION FREE+« IF EXPFL, RaM (1320)

1300 RwM, DB, TEMP3IsSSCRATCHN FREE+ IF NOT EP, KwMi (13i0)

1319 RWMY, 08, SCRATCHPIsTENP FREEw

1311 DB, TEMP:3SCRATCHM FREEw

1312 DB, SCRATCHNISTENP FREEw

1313 D8, SCRATCH™1u [SIGN]SCRATCHM FREEw GO TO, SMRiB (1261)

1261 SHR1B, DB, SCteSC(12BIT)K14 FREEw

1262 NO OPERATION FREEw IF EXPFL, SHRiIA (1264)

1264 SHK1A, NO OPERATION FREEw IF EXPFL, RWM (1300)

1265 0B, SCI3SC[12BITIMi4 FREEw

1266 SHKR 1, DB, SCaSC[12BITIK]L FREE®

1267 DBy SCRATCHM3: [SHR]SCRATCHM FREEw

1272 DB, SCRATCHN:= [SMR) (EXT)SCRATCHN FREE® IF &P, SnAR2 (1273)

1274 DB, SCRATCHP:a{SHR) [EXTISCRATCHP FREE« IF EXPFL, SHR1 (1266)

1272 NO OPERATION FREE® RETURN

1437 Fa, DB, SCRATCHSISSCRATCHS [12BIT)TEMPS FREE« IF NOT EP, kB (1407)
/START FP ADO,

1467 Fa, DB, SCRATCHNI3SCWATCHM([12BIT)TEMP2 FREEe GO TO, FADD7 (1443)

1443 FADD7?, 08, SCRATCHMI=sSCKATCHM([328IT] [EXTITEMP1 FREEw

1444 DB, SC3aTEMPS FREEw

1448 NO OPERATION FREEw IF OVFLO, FADUZ2 (1470)
/NORMALIZE RESULT,

1446 FADDB, NO OPERATION FREEw SuB, NMI (117/)

/SUBROUTINE~-«NORMALIZE SCRATCH, DECREMENT SC ONCE FOR EACH SHIFT,
/USE WORD MOVE, WHEv POSSIBLE, YO SAVE TIME,

/ROUND OFF IF NOT IN EP MQDE, DB IS LOADED AT FIRST FIVE STEPS FOR
/BETTER VISIBILITY OF UN~NORMALIZED ANSWER,

1177 NMI, DBImSCRATCHM FREEw IF 0P, RND (1240)

1200 DB1mSCRATCHN FREEw IF TEMPZERD, RND (1244)

1204 NMI1, DBt xSCRATCHP FREEw IF MOVE OK, NMI4 (12153)

1213 NMIQ, 08, SCt1aSC(12B8ITIM14 FREE®

1216 DB, TEMPRWSCRATCHYN FREEw

1217 08, SCRATCH4I=TEARP FREE TEST QVFLO

1220 PB, TEMP3sSCRATCHP FREEw

1224 08y SCRATCHHEWTEMP FREE® IF NOT EP, NMIS (1231)

1234 NMIS, VB, SCRATCHPI=z{0) FREE GO TO, NMII (1201)

1201 NMIg, DB :aSCRATCHP FREEe IF MOVE 0K, NMId4 (1215)

1202 0B aSCRATCHR FREE* IF NORMED, NMI6 (1237)

1203 DB:aSCRATCHS FREEw IF NOT EP, NMI3 (1232)

1232 NMLY, 08, SCRATCAPI={Sril)SCRATCHP FREEw IF NORMED, NMI3A (1238)

1233 DB, SCRATCHNZ=[SHL) [EXT)SCRATCHN FREE« TEST OVFLO

1234 DB, SCRATCHmBe[Srl) [EXT) SCRATCHHM FREEw

1235 0B, SCi1aSC{12BITIM} FREEw GO TO, NMI3 (1252)

1232 NMIJ3, 98, SCRATCHPI={SrL]SCRATCHP FREEw IF NORMED, NMI3A (1236)

1236 NMI3&, 0B, SCRATCHP:=[SHR] [(EXT)SCRATCHP FREEe TEST OVFLU

1237 NMI6, NO OPERATION FREE« IF FORBIUDEN, NMIB (125@)

124¢ RND, NO OPERATION FREEw IF EP, NMI7 (1247)

124} NO OPERATION FREEw [F TEMPSGN, RNO1 (1254)

1242 0B :mSCRATCHP (12BITIK3777+1¢ FREE®

1243 RND2, DB, SCRATCHYIsSCKRATCHH[1281T1 LEXT) FREEw

1244 DBy SCRATCHNI=SCRATCHIIIL{28IT) (EXT) FREEw IF TEMPZERO, KNu4 (1259)

1245 0B, SCRATCHP:=(Q) FREE* IF OP, NMI7 (1247)

1246 NC UPERATION FREE* IF FORBIDDEN, OVREC (149%)

1247 NMI7, NO OPERATION FREE® RETURN

1447 Fapp9, DB, TEMP71aSC FREEw IF N2SET, FADU1lo (1451%)
/STORE IN EITHER MEMQRY uR FAC, DEPENDING ON UP COUE,

1451 FaDD1@, DB, SCRATCHE!3TENP7 FREEw IF MEM, DEPUS (353)

1452 DB, FACEISTEMP7 FREE® GO TO, STOF (1347)

L0170 00047770777777777/MUNE SCRATCH TO FAC AN EXIT/////7771177747
1347 STOF, DB, TEHPIRSCRATCHM FREE®

1350 STOF1, 0B, FACH:sSTEMP FREE® IF NOT EP, STOF2 (1357)
1857 STOF2, D8, TEMP:sSCRATCHM FREEw IF TEMPZERU, STUFS (1361)
1364 DB, FACN:STEMP FREEw EXTEST

/FLOATING=POINT INSTRUCTION FETCH

*2¢
20 FETCH, BKMAizFPC T3

Figure 3-5 FPADD Firmware (Sheet 2 of 2)

3-11

pPC Address

Comment

240

241

242

10

11

243

10, 11,
12

244

1401

1422

The address of the operand exponent is sent to the File A OPADD register; the
address is placed on the Omnibus MA lines and a Read data break is started.

The operand exponent is sent to the DB register; the File B TEMP3 register is
cleared in preparation for fraction alignment.

The operand exponent is sent to TEMP6; control is transferred to the
NEXTOP subroutine.

The address in the OPA DD register is incremented and sent to both the BKMA
register and the OPADD register. A Read data break is started.

The address of the 12 most-significant bits (M SBs) of the operand fraction is
placed on the MA lines.

The MSW of the operand fraction is sent to the DB; control is returned to
GET]I.

The MSW of the fraction is sent to TEMP1, which is examined to determine if
the MSW is zero; this information is sent to the Register Flags logic for sub-
sequent testing. Control is transferred to NEXTOP.

The OPADD register is bumped; the 12 LSBs of the operand fraction (the
LSW) are sent to the DB; control is returned to address 244.

The LSW of the fraction is sent to TEMP2, which is examined to determine if
the LSW is zero; this information is sent to the Register Flags logic for sub-
sequent testing. If both the MSW and the LSW are zero, the Register Flags
logic asserts the TEMP ZERO H signal at clock time of address 1037. Control
is transferred to ARITH, address 1037 and, in turn, to FADD, address 1401;
free-running clock timing begins; register flags reflect the state of TEMPI
through TEMPS.

At this point the operand is stored in the TEMP registers thusly:

Exponent stored in TEMP6
Fraction MSW stored in TEMPI1
Fraction LSW stored in TEMP2

The exponent of the number in the FAC is sent to TEMP7 and to the DB (the
DB is loaded merely for visibility during single-stepping; since this is the case
throughout the remaining firmware, the DB will be ignored in the rest of the
commentary). Control is transferred to 1422.

The FAC exponent is sent to the SC register; the uPC Gating Control logic tests
the TEMP ZERO flag, which reflects the state of TEMP1 and TEMP2, i.e., the
state of the operand fraction. Remember that there is a one-step delay in the
fulfillment of a Data Path statement. Similarly, registers in the Register Flags
logic are loaded after a 1-step delay. Consequently, register flags can be tested
no earlier than 2 steps after the Data Path statement that involves the register.

3-12

uPC Address

Comments

1422 (Cont)

1423
1333,
1334
1346

1344,
1345

1424

This is why address 1422 is testing TEMP registers, rather than SCRATCH
registers as the asterisk in the Timing statement would seem to indicate. If the
TEMP ZERO H signal is high, indicating a zero fraction in the operand, the
answer is simply the number in the FAC. In the example being considered,
TEMP ZERO H is not asserted (the Register Flags logic is discussed in Para-
graph 4.2.6).

The FAC exponent is sent to SCRATCHE; control is transferred to the FTOS
subroutine.

The MSW of the FAC fraction is sent to SCRATCHM; control passes to 1346.

SCRATCHP is zeroed in preparation for fraction alignment; control jumps to
1344,

The LSW of the FAC fraction is sent to SCRATCHN; control returns to 1424,

At this point the number originally loaded into the FAC (referred to hereafter
as “the FAC number,” or “the FAC exponent,” etc...) is stored in the
SCRATCH registers thusly:

Exponent stored in SCRATCHE (and SC)
Fraction MSW stored in SCRATCHM
Fraction LSW stored in SCRATCHN

The FAC ZERO flag is tested. When the FLDA instruction loaded the FAC
prior to issuance of the FADD instruction, the state of FACM and FACN was
recorded in the Register Flags logic; this information is retained until new data
is written into the FAC. If the FAC ZERO L signal is asserted, indicating a
zero fraction in the FAC, the answer is simply the number in the SCRATCH.
In this example, FAC ZERO L is not asserted.

At this point, numbers are assigned to the operand and the FAC so as to more
easily illustrate the procedures that follow. Hence, the following normalized
octal numbers are assigned:

Exponent MSW MSW
Operand 0003 5001 0003
FAC 0020 2010 2111

Now, the operand exponent is subtracted from the FAC exponent (2’s com-
plement subtract); the result is sent to the SC register and to TEMP7.

SC (FACE) 000 000 010 000
TEMP6 (2’s complement of OPE) 111 111 111 101
Exponent Difference (FAC is larger) 000 000 001 101

3-13

uPC Address

Comments

1425

1426

1427

1430

1431

1434

1435

The difference in the exponents, 15s, is loaded into both SC and TEMP7. The
state of the SC sign bit is loaded into the Register Flags logic; the positive sign
bit causes the EXPFL H signal (which will be tested two steps hence) to be
negated.

If the two numbers being added were grossly different, i.e., if one had a large
positive exponent and the other had a large negative exponent, the subtraction
in 1424 could produce an overflow (the OVFLO H signal would be asserted). In
that case, the very small number is discarded, the remaining number is norma-
lized, if necessary, and stored in the FAC. The exponents in this example do not
produce an overflow.

The negated EXPFL H signal indicates that the FAC exponent is larger than
the operand exponent. This means that, because all shifting operations are car-
ried out in the SCRATCH, the operand fraction, which must be shifted during
alignment, is to be transferred to the SCRATCH. If the operand had been
larger, EXPFL H would have been asserted by the Register Flags logic,
indicating that the smaller number was already in the SCRATCH.

The 2’s complement of the difference in the exponents is sent to the SC to
control the shifting operation during alignment.

The difference in the exponents is tested for overshift. Overshift is the condition
that exists when the fraction of the smaller number must be right-shifted more
than 24 times to achieve alignment. If the fraction is shifted exactly 24 times,
the MSB of the fraction ends up in the MSB of the guard-bit word
(SCRATCHP for an FP addition or subtraction) and can affect the result when
round-off is carried out. However, more than 24 shifts produces a situation
wherein the fraction of the smaller number has no effect at all on the calcu-
lation result. Consequently, the smaller number is discarded when an overshift
condition exists (overshift exists in the EP mode when the fraction must be
shifted more than 59 times).

If the overshift condition were present, the subtraction in this step would cause
SIGN H to be asserted by Register Flags (the signal would be asserted when the
subtraction result is placed on the OBUS). When this signal is tested 2 steps
hence, control would jump to 1460. There, steps would be taken to normalize
the fraction of the larger exponent (FACE). In the present example the sub-
traction produces the following:

SC (2’s complement of exponent difference) 111 111 111 011
2’s complement of M30 000 000 011 000
000 000 001 011

SIGN H is tested; control passes to 1435.

FACE is sent to TEMP6. Control is transferred to subroutine EST.

3-14

uPC Address

Comments

1314-
1332

1436

1260

1261

1262
1264
1300-
1312

1313

1261

1262
1264

1265

The smaller fraction is the operand. It must be right-shifted. However, the
operand fraction is in TEMP! and TEMP2 and must be placed in the
SCRATCH in order to be shifted. This subroutine swaps TEMP1/2 and
SCRATCHM/N.

Control jumps to 1260.

The SC (containing the 2’s complement of the exponent difference) is sent to
the SC, so as to test the sign bit. This test, which occurs two steps hence, checks
to see if the SC is zero, indicating no difference between the exponents. If there
is any difference in the two exponents, the 2’s complement of the difference
must have logic 1 in the MSB. Only no difference can cause the EXPFL H
signal to be low. If this were the case, control would return to 1437 for the
FPADD operation.

145 (12,0) is added to the SC. Two steps from now the EXPFL flag will be
tested. If the EXPFL H signal is then high, indicating more than 12 shifts are to
be made, control will jump to 1300 (word move). If the exponent difference is
exactly 12, 12 separate shifts are carried out. (Had there been zero difference in
the exponents, the 145 added in this step would be subtracted in step 1263 - not
shown - before control returned to 1437.)

There is a difference in the exponents, so EXPFL H is high; go to 1264.

More than 12 shifts must be made, so EXPFL H is high; go to 1300 for word
move.

SCRATCHN is sent to SCRATCHP, and SCRATCHM is sent to
SCRATCHN.

The sign bit of the fraction is examined. If the sign is 0, the ALU output is
0000g; if the sign is 1, the ALU output is 7777s. The SCRATCH contents before
and after word move are:

SCRATCHM SCRATCHN SCRATCHP

Before 1300: 101 000 000 001 000 000 000 011 000 000 000 000
After 1313: 111 111 111 111 101 000 000 001 000 000 000 011
The SC contains 7777,.

145 is again added to the SC, producing 0013s; this is a check to see if another
word move can be made (this would be possible only in the EP mode).

EXPFL H is still high from the previous 1264 operation.
The addition in 1261 causes EXPFL H to go low.

The 145 added to the SC in 1261 to check for a possible word move must be
subtracted; thus, 77775 is returned to the SC.

3-15

uPC Address

Comments

1266

1267

1270

1271

1437
1467

1443

1444

One is added to the SC, producing 0000s.

SCRATCHM is shifted right once. The Shift logic causes the MSB of
SCRATCHM to be returned to the same position (i.e., the sign bit is retained),
while loading the LSB into the SLINK flip-flop.

SCRATCHN is shifted right once. The asserted EXTEND H signal causes the
content of the SLINK flip-flop to be shifted into the MSB of SCRATCHN; the
LSB of SCRATCHN is loaded into SLINK.

SCRATCHP is shifted right once. The asserted EXTEND H signal causes the
content of the SLINK flip-flop to be shifted into the MSB of SCRATCHP; the
LSB of SCRATCHP is loaded into SLINK. The addition of step 1266 causes
EXPFL H to go low, indicating that the required number of shifts has been
carried out. Control returns to 1437 with the SCRATCH and TEMP1/2 con-

taining the following numbers:

SCRATCHM SCRATCHN SCRATCHP
111 111 111 111 110 100 000 000 100 000 000 001
TEMP1 TEMP2
010 000 001 000 010 001 001 001

Go to 1467 (the Data Path operation is of significance only in EP mode).
Add SCRATCHN and TEMP2.
110 100 000 000

010 001 001 001
1 000 101 001 001

The carry from this addition is loaded into the CLINK flip-flop in the Shift
logic.

Add SCRATCHM and TEMPI. The asserted EXTEND H signal causes the
content of the CLINK flip-flop to be applied as a carry-in.

111 111111 111
010 000 001 000

1

1 010 000 001 000

The exponent of the answer is sent to the SC.

3-16

uPC Address

Comments

1445

If the addition produced an overflow, control jumps to an overflow recovery
subroutine. In this example, overflow does not occur and the result is a nor-
malized number, viz:

SCRATCHM SCRATCHN SCRATCHP
010 000 001 000 000 101 001 001 100 000 000 001

Control passes to the normalization subroutine.

The numbers chosen to illustrate the FP addition produced a normalized result. The normalizing
subroutine can be more fully described if we assume that the addition produced an unnormalized
answer. Therefore, suppose that the number in the SCRATCH after the operations in 1467 and 1443

182

SCRATCHM SCRATCHN SCRATCHP
000 000 000 000 001 100 100 001 101 001 111 000

The FAC exponent in the SC is still 0020.

1200

1201

1215

If the results of the 12-bit additions carried out in 1467 and 1443 were zero, the
TEMP ZERO H signal would have been asserted by the Register Flags logic.
Zero is considered to be a normalized number; thus, control would pass to the
round-off process. This is not the case, so continue.

Each of the 13 MSBs of the SCRATCH is zero; hence, the Register Flags logic
asserted the MOVE OK H signal when SCRATCHM and SCRATCHN were
loaded (the same signal would be asserted if each of the 13 MSBs was one). This
means that a word move can be carried out. Checking 13 bits, rather than only
the 12 MSBs, ensures that the fraction sign bit remains unchanged after the
word move. Go to 1215 for the start of the word move.

Since the fraction is to be shifted left 12 places (145), the value of the exponent
must be reduced by 12,0. If the exponent is a large negative value, subtracting
12 from it could result in a number too small to be represented in 12 bits, i.e., an
underflow could result. Such an event must be recorded; thus, an overflow test
is made in 1217. In the present example no such problem arises, as shown in the
subtraction.

SC (FACE) 000 000 010 000
M14 111 111 110 100
000 000 000 100

3-17

uPC Address

Comments

1216-
1231

1201

1202

1203

1232

1233

1234

1235

1232

The word move is carried out, leaving this result:

SCRATCHM SCRATCHN SCRATCHP
001 100 100 001 101 001 111 000 000 000 000 000

Go to 1201.

Another word move is not possible. This step is significant only in the EP
mode.

If the two MSBs in SCRATCHM were different (the definition of a normalized
number), the Register Flags logic would have asserted the NORMED H signal.
Thus, the normalization process would have been completed. This is not the
case, so proceed.

Go to 1232.

SCRATCHEP is shifted left once (the firmware does not know that SCRATCHP
was zeroed in 1231; one can arrive here without going to 1231). The Shift logic
causes a zero to be shifted into bit 15 of SCRATCHP; the MSB of SCRATCHP
is loaded into the SLINK register. The test for NORMED H is inapplicable at
this time.

SCRATCHN is shifted left once. Because the EXTEND H signal is asserted,
the content of SLINK is shifted into bit 15 of SCRATCHN, while bit 4 of
SCRATCHN is loaded into SLINK. The overflow test is inapplicable at this
time.

SCRATCHM is shifted left once. EXTEND H is asserted; therefore, bit 4 of
SCRATCHN, which was in SLINK, is shifted into bit 15 of SCRATCHM. Bit
4 of SCRATCHM is loaded into SLINK, but this has no significance. The
SCRATCH is now in this form:

SCRATCHM SCRATCHN SCRATCHP
011 001 000 011 010 011 110 000 000 000 000 000

The value of the exponent is reduced by one to reflect the left shift just com-
pleted. Since this subtraction could cause an exponent underflow, an overflow
test will be made two steps hence. The new exponent value, 0003, is sent to the
SC. Go to 1232.

SCRATCHP is shifted left once. SCRATCHM is examined and found to be
normalized (NORMED H is now asserted). Control goes to 1236.

3-18

uPC Address

Comments

1236

1237

1240
1241

1242

1243
1244

1245

1246

1447

SCRATCHP is shifted right to restore its content to that which existed before
1232. The subtraction of 1235 is tested for overflow, which has not occurred.

SCRATCHM and SCRATCHN are examined to determine if the normalized
result in 1234 is 4000 0000, which it is not. If such a result was obtained, the
Register Flags logic would have asserted the FORBIDDEN H signal. The
result would then be converted to 6000 0000 by shifting SCRATCHM right
once; the exponent would be increased by one to reflect the shift.

Continue

SCRATCHM is examined to determine the sign of the fraction. Because the
sign is positive, TEMP SGN H is not asserted and control passes to 1242,

The first step in the round-off process is taken, i.e., the number 4000 is added to
SCRATCHP. If the fractional value of SCRATCHP is 1/2, or more, the addi-
tion produces a carry, which is propagated to SCRATCHN (step 1243) and,
perhaps, to SCRATCHM (step 1244). (In this example there is no carry.)

If the fraction before round-off had been negative, the TEMP SGN H signal
would have been asserted and the test in 1241 would have caused control to
jump to 1254. This step adds 3777 to SCRATCHP. If the fractional value of
SCRATCHP is greater than 1/2, the addition produces a carry, which, again, is
propagated to SCRATCHN and perhaps to SCRATCHM; this causes the
negative fraction to be rounded down, as opposed to the rounding-up of a .
positive fraction.

Propagate the carry from 1242, if appropriate.

Propagate the carry from 1243, if appropriate. TEMP ZERO test is
inapplicable here.

Zero SCRATCHP.

If the normalized result, before round-off, had been 3777 7777, and step 1242
has produced a carry, the round-off process would have generated 4000 0000.
Hence, FORBIDDEN H would have been asserted, and the test in this step
would transfer control to 1405. There, 4000 0000 would be converted to 2000
0000 and the exponent would be increased by one. Continue.

The exponent of the answer is sent to TEMP7. The NZ SET H signal is tested.
When an exponent underflow occurs, the action taken by the FPP at the end of
the calculation is programmed by the FPCOM instruction. The FPP can be
directed to exit or to continue after setting the calculation result to zero.

If the NZ SET H signal is low, a non-trapped underflow has occurred; control
passes to 1450, which causes the calculation result to be set to zero and stored in
the FAC. However, if the NZ SET H signal is high, either there was no under-
flow, as in this example, or a trap of the underflow was directed by the FPCOM
instruction. Control jumps to 1451.

3-19

uPC Address

Comments

1451

1452

1347-
1360

The exponent of the answer is sent to SCRATCHE. If the TO MEM H signal is
high, indicating the result is to be transferred to memory (used by FMULM
and FADDM), control jumps to 353. The answer in this example is to be placed
in the FAC, so control passes to 1452.

The exponent of the answer is sent to FACE. Control jumps to 1347.

The fraction is sent to FACM and FACN; an exit test is made. Since neither
underflow nor overflow has occurred, control jumps to 20, and a new instruc-
tion is fetched.

3.3.3 FPMUL FIRMWARE

Figure 3-6 lists the firmware pertaining to a multiply operation carried out in the FP mode. The
FMUL instruction has been fetched and decoded, and the effective address of the operand has been
determined (it is assumed that at some earlier time the FAC has been loaded with one of the numbers
in question). The firmware in Figure 3-6 begins at Instruction Dispatch 2. The second number, the
operand, will be retrieved from memory and placed in TEMP registers. Then, both numbers are tested
for zero fractions (if either has a zero fraction, a zero result is stored in the FAC). After this test, the
multiplication begins. When the result has been obtained, it is normalized, rounded off, and placed in
the FAC. Finally, the exit test is made. The steps detailed by the firmware are explained in the follow-
ing commentary. Operations that have already been described in the FPADD firmware, e.g., the pick-
up of the operand fraction, are considered only to whatever extent they differ.

240
24)
242
10
11
12
243
v
12

R44

1037

1402

1472
1473
1474

111t
1112
1116

1475

1532
153

1556
1557

1933

1556
1557

GETARG, OQPADD3IsTEMPYL T4 BKCMD I ®a
DB1aMD} TEMP3im(u]) BTy IF DP, GETY1 (e243)
TEMP6:21)B T2 SuB, NEXTOP (10)
NEXTOP, BKMa, OPADD:sOPALD [+)K] T3
NXTOP1, NO OPERATIOY T4 BKCMD1®Q
DBiamMD BTy RETURN
GET1, TEMPLliaDB T2 Sub, NEXTOP (10)
NEXTOP, BKMA, URPADD:=20PAUD (+}N1 13
NXTOPL, NO OPERATION T4 BKCMDI=D
0B:aMD BTY RETURN
TEMPR:a0D8 T2 IF NOT EP, ARITH (1037)
/ARITHMETIC UISPATCH
ARITH, NO OPERATIOw FREE INSTR VISP &
FHUL, DB, TEMP7:sFACE FREEe GU TO, FTIMES (1472)

144/¢777/FLOATING A4D FINED POINT FRACTIONAL MULTIPLY///////117
/JMULTIPLY 15 DIRECT MULT QF SIGVED 2'S COMPLEMENT NUMBERS, WITH
/A4 CORRECTION FOR NiGATIVE MULTIPLIER, ENTER wITH TEMP FLAGS
/SET, CHECK FOR ZERJ FACTPR, EXTEND SIGN OF TEMP1 INTO TEMP,

FTIMES, DB, TEMAI®TEMPY FREE* IF TEMPZERO, FADDYA (1450)
DB, TEMPI®[SIGNITEMA FREE® IF FACZERO, FADD9A (1450)
DBy 8C3aTEMP7 FREE* SuB, CLRS (1111)
/SUBRUUTINE==CLEAR SCRATLH FRACTION, ALL MODES
CLRS, DB, SCRATCHn:=() FREEw
CLRS2; DB, SCRATCH4ts[Q) FREE* IF NOT EP, CLRS1 (1116)
CLRS1, DB, SCRATCHPis([d) FREE* RETURN
/MULTIPLY FRACTIONS
NO OPERATION FREE* IF NOT EP, FMULA (1532)
FMUL4, DBIsFACN FREE%# PRESET BIT COUNT
SCRATCHP18SCRATCHP [MDS) TEMP2 FREE« CSUB, MUL3A (1556)
MUL3A, SCRATCHNI®SCRATCHN [MDS) [EXT) TEMPY FREE®
SCRATCHMIESCRATCHM (MDS) [EXT) TEMP FREEw RETURN
SCRATCHPI®SCRATCHP (MDS) TEMP2 FREE+« CSUB, MUL3A (153%6)
MUL3A, SCRATCHNISSCRATCHN [MDS) (EXTITEMPY FREEw
SCRATCHMSSSCRATCHM (MDS) (EXT]I TEMP FREE® RETURN

Figure 3-6 FPMUL Firmware (Sheet 1 of 3)

3-20

1536

155%
1556
1557

1536
1555
1556
1557
1538
1555
1556
1557
1536
155%
1536
1557
1536
1555
1556
1557

MUL3A,

MUL3A,

MUl 3A,

MUL 34,

MUL3A,

MUL3A,

MUL3A,

MUL3A,

MUL A,

MUL3A,

R2MA,

R2M,

MUL4A,
MUL3A,

MULaA,
MUl 34,

MUL A,
MUL 34,

MuL 44,
MUL3A,

MUL4A,
MUL3A,

MULdA,
MUL3A,

SCRATCHP38SCRATCHP [MDS] TEMP2

SCRATCHNSsSCRATCHN (MDS) [EXTITENPL
SCRATCHM3®SCRATCHM (MDS) (EXTI TEMP

SCRATCHPI#SCRATCHP [MDS] TEMP2
SCRATCHNI®SCRATCHN (MDS) [EXT] TEMPY
SCRATCHMISSCRATCHM [MDS]) [EXTI TEMP
SCRATCHP 1sSCRATCHP (MDS] TEMPR

SCRATCHNSSSCRATCHN (MDS] (EXT) TEMPY
SCRATCHME=SCRATCHM [MGS) LEXT) TEMP

SCRATCHP :8SCRATCNP [MDS) TEMP2

SCKATCHNISSCRATCHN [MDS) FEXT) TEMP)
SCRATCHME®SCRATCHM (MDS] (EXT) TEMP

SCRATCHP :8SCRATCHP [MDS]TEMP2

SCRATCHNISSCRATCHN (MDS) [EXTI TEMPY
SCRATCHM:®SCRATCHM [MDS) (EXT) TEMP

SCRATCHP :®SCRATCHP [MDS) TEMP2

SCRATCHN3ZSCRATCAN (MDS) [EXT) TEMP Y
SCRATCHMIBSCRATCHM [MDS) [EXTITEMP

SCRATCHP $BSCRATCHP [(MDS] TEMP2

SCRATCHN$®SCRATCHN (MDS] [EXT)TEMPL
SCRATCHM:®SCRATCHM (MDS) [EXTITEMP

SCRATCHP3wSCRATCHP [MDS] TEMP2

SCKRATCHNS®SCRATCHN (MDS] (EXT) TEMPL
SCRATCHMEIBSCRATCHM [(MDS) (EXT) TEMP

SCRATCHP 18SCRATCHP [MDS) TEMP2

SCRATCHN3®SCRATCHN (MDS] [EXTITEMPY
SCRATCHMI®SCRATCHM (MDS] [EXT] TEMP

SCRATCHPE=SCRATCHP [MDS) TEMP2

SCRATCHNE®SCRATCHN [MDS] [EXT) TEMPY
SCRATCHM:®8CRATCHM [MDS] [EXTITEMP

08, TEMP73sSCRATCHN

0By SCRATCHRISTENP?
DBy TEMP7taSCRATCHM
0B, SCRATCHPISTENP?
DB, SCRATCHMImSCRATCHH (SHR] [EXT)

DB, TEMP?, SCRATCHMI=[SIGN)SCRATCHM

DB, SCRATCHNIWTENP7

OB3wFACM
SCRATCHR$m8CRATCHR (MDS)

SCRATCHP$uSCRATCHP (MDB] (EXT) TEMP2
SCRATCHNIRSCRATCHN (MD8] [EXT] TEMPY
SCRATCHM3®SCRATCHM (MD8) [EXT] TEMP

SCRATCHR{8SCRATCNHR [MDS]

SCHRATCHP :m3CRATCHP [ADS) (EXT) TEMPZ
SCRATCHY:®SCRATCHN (MDS] (EXT) TEMPL
SCRATCHM:8SCRATCHM [4DS) [EXT) TEMP

SCRATCHR s ®SCHATCHR (MDS]

SCRATCHP :=SCRATCHP [(MDS] [EXT) TEMP2
SCRATCHNIBSCRATCHMN [MDS] (EXT)I TEMPY
SCHRATCHMISSCRATCHM (MDS] (EXTITEMP

SCRATCHR:ESCRATCHR (MD§)

SCRATCHP 3 #SCHATCHP [MDS] [EXT)TEMPR
SCRATCHN3I®SCRATCHN [MDS] (EXTITEMPY
SCRATCHH:SSCRATCAM[MDS) [EXT) TEMP

SCHATCHR:I®SCRATCHR [MDS)

SCRATCHP ¢ #SCRATCHP (MDS] (EXT) TEMP2
SCRATCHN3®SCRATCHN (MD8] [EXT) TEMPY
SCRATCHM38SCRATCAHM [MDS) (EXTI TEMP

SCRATCHR$8SCRATCHR (MDS)

SCRATCHP $8SCRATCHP [(MDS) [EXT) TEMP2

SCRATCHNISSCRATCHN (MDS) LEXTI TEMPY
SCRATCHM3®SCRATCHM (MDS) (EXTI TEMP

Figure 3-6 FPMUL Firmware (Sheet 2 of 3)

3-21

FREEw

FREEY
FREEw

FREEe
FREEw
FREEe
FREE®

FREEw
FREEw

FREE®

FREEw
FREEw

FREE+

FREEw
FREE®

FREEw

FREE#
FREEw

FREEw

FREEw
FREEw

FREEw

FREEw
FREEw

FREEw

FREEw
FREEw

FREEw

FREE
FREEw

FREEw

FREEw
FREEw
FREE#
FREEw
FREEw
FREEw

FREEw
FREEe

FREEw
FREEZw
FREEw

FREEw

FREEw
FREEw
FREE«

FREEw
FREEw
FREEw
FREEw
FREE
FREEw
FREEw
FREEw
FREEw
FREEw
FREEw
FREEw
FREEe
FREEe

FREEw
FREEw

CSUB, MUL3A

RETURN

C8uB, MUL3A

RETURN

CsuB, MuL3a

RETURN

CsuB, MULSA

RETURN

CSUB, MUL3A

RETURN

CSud, MUL3A

RETURN

CsuB, MUL3A

RETURN

CSuB, MUL3A

RETURN

CSuUB, MULJA

RETURN

CSuB, MUL3A

RETURN

(1556)

(1556)

(15%6)

(1536)

(15%6)

(1556)

(15%6)

(1556)

(1556)

(1538)

8uB, R2MA (1125)

PRESET BIT COUNT

RETURN

CSUB, MUL4A

RETURN

CSus, MULaA

RETURN

CSub, MUL4A

RETURN

CSUB, MUL4A

RETURN

CsSuB, MUL4A

RETURN

CSUB, MUL4A

RETURN

(1593)

(1599%)

(1555)

(1595)

(1555)

(1555)

1536

1558
1556
1537

1538

15338
1556
1557

1536

1555
1656
15%7

1536

15069
1556
1557

1536

1555
1536
15%7

1536

1559
1556
1587
1537

1514

1522

1528
1526
1527

1923

1525
1526
1527

1524

1513

1177
120¢
1201
1e@e

1237
124¢
1241

1254

1243
1244
1245
1246
1247

1516
1517
152¢
1521

1447
1451
1452

1347
13590

1357
1360

MUL4A,
HUL3A,

MUL4A,
MUL3A,

MUL4A,
MUL3A,

MUL4A,
MUL3Ay

MUL4A,
MUL3A,

MUL4A,
MUL3A,

SCRATCHR :sSCRATCHR [MDS)

SCRATCHP3®SCRATCHP (MOS) [EXT) TEMP2
SCRATCHN:SSCRATCHN [MDS) (EXT) TEMPI
SCRATCHMI®SCRATCHM (MDS] [EXTI TEMP

SCRATCHR3SSCRATCHR (MDS]

SCRATCHPI=SCRATCHP {MDS) (EXT) TEMP2
SCRATCHNI®SCRATCHN (MDS) (EXT)ITEMPS
SCRATCHMi®SCRATCHM [MDS) [(EXT) TEMP

SCRATCHRISSCRATCHR CMDS)

SCRATCHP3®SCRATCNP (MDS) (EXT) TEMP2
SCRATCHN3®SCRATCHN [MD8) [EXT} TEMPL
SCRATCHM3IS®SCRATCHM[MDS) [EXT) TEMP

SCRATCHRmSCRATCHR (MDS)

SCRATCHPINSCRATCHP [MD8) [EXT) TEMP2
SCRATCHNI®SCRATCAN [MDS) [EXT) TEMPY
SCRATCHMIASCRATCHM [MDS) (EXT) TEMP

SCRATCHRISSCRATCHR [MDS)

SCRATCHP1®SCRATCHP [MDS] (EXT) TEMPR
SCRATCHN3aSCRATCHN {MDS] {EXTITEMPY
SCRATCHM3®SCRATCHM [MDS] (EXT) TEMP

SCRATCHR:SSLRATCHR [MDS)

SCRATCHPISSCRATCHP [MDS) [EXT] TEMP2
SCRATCHNSBSCRATCAN [MDS) [EXT) TEMPL
SCRATCHMISSCRATCHM [MDS] [EXT)TENP
NO OPERATION

FREEw CSuB, MUL4A (1555)
FREEe

FREE»

FREE® RETURN

FREEw CSUB, MUL4A (1555)
FREEe

FREEw

FREEe RETURN

FREEs C5UB, MUL4A (1555)
FREEw

FREEw

FREE® RETURN

FREEY CSUB, MUL4A (15353)
FREEe

FREEe

FREE+x RETURN

FREEY CSUB, MUL4A (15355)

FREEe

FREEw

FREEw RETURN

FREEe CSUB, MUL4A (1555)

FREEw

FREEe

FREEw RETURN

FREE» GO YO, FMULZ2 (1514)

/1F MULTIPLIER 18 NEGATIVE, A CORRECTION IS REQUIRED,

FrmUL2, NO OPERATION FREE« IF FACSGN, FMULG6 (1522)
/CORRECTION FOR NEGATIVE MULTIPLIER==SUBTRACT 2+MULTIPLICAND
FMULG, 0B, SCRATCHSI®SCHATCHS [MINUS)ITEMPS FREEw SuB, N (152%)
Ny DB, SCRATCHR3ISSCHATCHR[MINUS] [EXTITENPA FREEv IF EP, M (153¥)
DB, SCRATCHNI=SCKATCHH [MINUS]TEMP2 FREEw
Py DBy SCRATCHMIsSCRATCHM(1INUS] [EXTITEMP1 FREE* RETURN
DB, SCRATCHS:3SCRATCHS (MINUS]ITEMPS FREE+ Sub, N (152%)
Ny DB, SCRATCHR3aSCRATCHRIMINUSI [EXTITEMP4 FREE« IF EP, M (133v)
DB, SCRATCHN3IoSCRATCHN([MINUS) TEMPZ FREE®
P 0B, SCRATCHMESSCHATEHM [MINUS) (EXTITEMPL FREE® RETURN
NO OPERATION FREEw GO To, R (1519)

/NURMALIZE (IF NOT OP), ROUND OFF RESULT IF NOT

RI
NM T,

NMIY,

NM16,
RKND

RND1L,

RrRyb2,

NH17,

/ADD EXPONENTS,

FMULS,

FADD9,

/STORE IN EITHER MEMORY OR FAC,

NO GPEKATION

DB:mSCRATCH™
DBs=xSCRATCHN
DB:=SCRATCHP
DB:mSCRATCHR

NO UPERATION
ND OPERATION
NO OPERATION

DB:=SCRATCHP [12BITIK3777

DB, SCNATCHNEBSCRATCHN{{2BIT) (EXT]
DB, SCRATCH4I=SCRATCHM[12BIT] (EXT)
DB, SCRATCHPEz (@)

NO OPERATION

NO OPERATION

DB, SCI=sSC[12BIT)TEMPH
NO UPERATION
NO GPERATION
NO OPERATION

D8, TEMP73sSC

FADU1O, DB, SCRATCHEISTEMPY

STOF,
sTOFy,

STOF2,

DB, FACEIWTEMP?7

DB, TEMPI=SCRATCHM
D8, FACMISTEMP

0B, TEMPIsSSCRATCHN
08, FACNISTEMP

TEST FOR EXPOMENT OVERFLOW,

DEPENDING ON QP

EP MODE.
FREE+ SUB, NMI (1177)

FREEw IF DP, RND (1249)

FREEw 1IF TEMPIERO, RND (1249¢)
FREE+ IF MOVE UK, NMI4 (121%)
FREE+* IF NORMED, MM16 (1237)

FREEw IF FORBIDDEN, NMIB (1250)
FREEw IF EP, NM17 (1247)
FREE+® IF TeMPSGN, RND1 (12%4)

FREEw G0 TO, RND2 (1243)

FREEw

FREE« IF TEMPZERO, RND4 (1255)
FREEw IF UP, NMI7 (1247)

FREEw 1F FORBIDDEN, OVREC (14@%5)

FREEw RETURN

FREEw

FREEw IF OP, OPADU} (1420)
FREEw TEST UVFLO

FREEw GO TO, FADDY (1447)
FREE* IF NZSET, FADDi® (143}1)

CO0E,
FREEw 1F MEM, DEPOS (353)

FREE® Gu TO, STOF (1347)

FREEw

FREEw 1F 3T EP, STOF2 (1357)
FREEw IF TEMPLZERQ, STOF3 (1361)
FREEw EXTEST

Figure 3-6 FPMUL Firmware (Sheet 3 of 3)

3-22

uPC Address

Comment

(The following floating-point numbers have been chosen to illustrate the multiplication technique:

FACE FACM FACN
0016 4001 6114

OPE FRACTION MSW FRACTION LSW
0020 3102 1111)

To
1037

1402

1472

1473

1474

1111~

1116

1532

At this point the operand is stored in the TEMP register thusly:
Exponent stored in TEMP6
Fraction MSW stored in TEMP1
Fraction LSW stored in TEMP2

The FAC exponent is sent to TEMP7. Control jumps to 1472.

The MSW of the operand fraction is sent to TEM A. The operand fraction is
tested; if the fraction were zero, control would jump to 1450, which causes zero

to be stored as an answer.

The sign of the operand fraction is examined; since the sign is 0, 00005 is sent to

TEMP. The FAC fraction is tested for zero contents.

The FAC exponent is sent to the SC. Control jumps to CLRS subroutine, 1111.

SCRATCHM, SCRATCHN, and SCRATCHP are cleared in preparation for

the multiplication.

Here are the two fractions, aligned as they would be if one were preparing to

multiply them by hand:

MSw LSw

op 011 001 000 010 001 001 001 001
FAC 100 000 000 001 110 001 001 100

3-23

uPC Address

Comments

1532 (Cont)

1533

1556

1557

The FAC is the multiplier, the operand is the multiplicand. The entire operand
both MSW and LSW, will be multiplied, first, by the LSW of the FAC and,
second, by the MSW of the FAC. In effect, the partial product of the second
multiplication is shifted left one word position and added to the partial product
of the first multiplication. The 12 LSBs of the answer are dropped off and the
remaining 36 bits are rounded off to produce the final 24-bit result. The logic
implements the multiplication in this way: Each bit of the FAC is examined by
the Shift logic; if a bit is logic 1, the multiplicand is added to the existing partial
product and the result is shifted left once, but if a bit is logic 0, the existing
partial product is merely shifted left once; the 36 bits of the product of the FAC
LSW and the operand are shifted right two word positions, dropping off the 12
LSBs, which are irrelevant after carries and shifts have been propagated to the
24 MSBs: the 24 M SBs of this first multiplication are used as the initial partial
products for the multiplication of the operand by the FAC MSW; when the
second multiplication is finished, the 36-bit result is rounded off to the 24
MSBs.

The first step in the multiplication is to load the multipllier LSW (FACN) into
the DB register, as the firmware states. The bit counter in the uP Register logic
is preset to a count of -12, permitting 12 successive calls to a subroutine (the
first call takes place in step 1533).

DBO (the MSB of the multiplier) is examined by the Shift logic. Since the bit is
logic 1, SCRATCHP and TEMP2 (OP LSW) are added; the sum is shifted left
once in the shift gates and sent to SCRATCHP. The initial contents of
SCRATCHP, i.e., the initial partial product, were 0000s; hence, this first partial
product is merely the multiplicand, itself. The DB is rotated left one place so as
to make the second MSB available for examination. Control jumps to sub-
routine MUL3A, 1556.

Because the EXTEND H signal is asserted, DB11 is examined by the Shift logic
(this is the same bit that controlled events in step 1533; here, it is being consid-
ered in relation to the operand MSW and, thus, the entire multiplicand has
been manipulated as directed by the first bit of the multiplier). The bit is 1;
hence, SCRATCHN (initially zero) and TEMP 1 (OP MSW) are added, the
result is shifted left once and held in SCRATCHN. The DB is not changed.

Once again, DBI1 is inspected. TEMP and SCRATCHM are added, and the
result is shifted left once and held in SCRATCHM. This operation must be
included to hold the bits shifted left from step 1556, as well as any carries that
might have occurred. TEMP is 0000; at the beginning because the operand is a
positive fraction. Had the fraction been negative, 77775 would have been placed
in the TEMP so as to extend the sign bit throughout the multiplication process.

3-24

#PC Address

Comments

1557 (Cont)

1534~
1127

1130

1131

1132

1535

1536

The preceding three steps are tabulated in Figure 3-7. Pass 1 shows the result
after the operand has been manipulated in response to the MSB of the multi-
plier. When RETURN is encountered in step 1557 of Pass 1, control returns to
1533, rather than 1534, as would be the case had the bit counter not been preset
in step 1532 (the bit counter is incremented during each pass). Thus, the oper-
ations in 1533, 1556, and 1557 are performed again in Pass 2; however, the
second MSB of the multiplier now controls the manipulation of the multi-
plicand. These three steps are followed 12 times in all. At the end of Pass 12, the
bit counter has been returned to zero, permitting control to return to step 1534.
The octal number in the SCRATCH is:

SCRATCHM SCRATCHN SCRATCHP
4636 5263 1530

SCRATCHM and SCRATCHN are moved two words to the right. Now we
have:

SCRATCHM SCRATCHN SCRATCHP SCRATCHR
4636 5263 4636 5263

The bit counter is again preset to -12.

If the operand fraction had been a negative number, the final left shift in Pass
12 could have shifted logic 1 into SLINK (a positive fraction will always have a
zero shifted into SLINK by the last left shift). This step retrieves such a bit by
asserting the EXTEND H signal and shifting SCRATCHM right once.

The sign of SCRATCHM is examined. If a logic 1 had been retrieved from
SLINK, 7777s would be sent to SCRATCHM and TEMP7. In this example
00005 is sent to both.

TEMP7 (0000s) is sent to SCRATCHN. The number in the SCRATCH is:

SCRATCHM SCRATCHN SCRATCHP SCRATCHR
0000 0000 4636 5263

The multiplier MSW (FACM) is sent to the DB register preparatory to multi-
plying the operand by FACM.

The bit counter was set to —12 in step 1127; hence, the present step, along with
subroutine MULA4A, will be performed 12 times. At the end of 12 passes
SCRATCHR will contain 00003, all its information having been shifted left into
SCRATCHP.

3-25

9Tt

DB CONTENTS (START)
AFTER ROTATION

SCRATCHP (START)
TEMP2

ALU OUTPUT

CARRY OUT (CLINK)
MSB SHIFT IN

LSB SHIFT OUT (SLINK)
SCRATCHP (END)

SCRATCHN (START)
TEMP1

CARRY IN

ALU OUTPUT

CARRY OUT (CLINK)
MSB SHIFT IN

LSB SHIFT OUT (SLINK)
SCRATCHN (END)

SCRATCHM (START)
TEMP

CARRY IN

ALU OUTPUT

CARRY OUT (CLINK)
MSB SHIFT IN

LSB SHIFT OUT (SLINK)
SCRATCHM (END)

PASS 1

110001 001 100
100 010 011 001

000 000 000 000
001 001 001 001
001 001 001 001
0

0

0

010010010010

000 000 000 000

011 001 000 010
0

011 001 000 010

0

0

0

110 010 000 100

000 000 000 000

000 000 000 000
0

000 000 000 000

0

0

0

000 000 000 000

PASS 2

100 010011 001
000 100110011

010010010010
001 001 001 001
011 011 011 011
0
0
0
110110110110

110 010 000 100

011 001 000 010
0

001 011 000 110

1

0

0

010110001 100

000 000 000 000

000 000 000 000
1

000 000 000 001

0

0

0

000 000 000 010

000100110011
001 001 100 110

110110110110
001 001 001 001
110110110110
0
0
1
101 101 101 101

010110 001 100

011 001 000 010
0

010110 001 100

0

1

0

101 100 011 001

000 000 000 010

000 000 000 000
0

000 000 000 010

0

0

0

000 000 000 100

PASS 11

001 100010011
011 000100110

110011 010110
001 001 001 001
110011 010110
0
0
1
100 110 101 100

101 010 101 100

011 001 000 010
0

101 010 101 100

0

1

1

010101 011 001

001 001 100 111

000 000 000 000
0

001 001 100111

0

1

0

010011 001 111

Figure 3-7 FACN Times Operand Fraction

PASS 12

011 000100110
110 001 001 100

100110101 100
001 001 001 001
100110 101 100
0
0
1
001 101 011 000

010101 011 001

011 001 000 010
0

010 101 011 001

0

1

0

101 010 110 011

010011 001 111

000 000 000 000
0

010011 001 111

0

0

0

100110011 110

OCTAL RESULT
IN SCRATCH

1530

5263

4636

uPC Address

Comments

1555~
1557

1537
1514

1522

1525
1526

SCRATCHM, SCRATCHN, and SCRATCHP are manipulated as directed by
each DB bit. Figure 3-8 tabulates Passes 1, 2, 11, and 12 for information. The
SCRATCH now contains:

SCRATCHM SCRATCHN SCRATCHP SCRATCHR

3103 4153 7505 0000

Go to 1514

The FAC is tested to determine its sign. In this example the sign is negative;
thus, the FAC SIGN H signal is asserted and control jumps to 1522.

When the multiplier is negative, a correction must be made to the number
presently in the SCRATCH. Consider the following multiplication, for
example:

A 0111
B 1011
0111
0111
C 01110
D 1001101

The multiplier, line B, is a negative number. If it were a positive number, the
partial product in line C would be zero and the answer would be 10101. The
difference in the two answers is 2-times the multiplicand (rather than 1-times
the multiplicand, which might seem to be the case - refer to The Logic of Com-
puter Arithmetic by Ivan Flores, or a similar work, for discussion of the pecu-
liarities of 2’s-complement arithmetic); thus, 2-times the multiplicand must be
subtracted from the answer in line D to obtain the correct result. The same type
of correction must be applied to the number in the SCRATCH; this is done
beginning with step 1525.

The SCRATCHS operation has no significance in this example. Go to 1525.
SCRATCHR is 00005 for the FP multiply. Continue.

Subtract TEMP2 from SCRATCHN. Logic 1 is loaded into CLINK.
SCRATCHN 100 001 101 011

TEMP2 (2’s Complement) 110 110 110 111
1 011 000 100 010

3-27

8-t

DB CONTENTS (START)
AFTER ROTATION

SCRATCHR (START)
ALU OUTPUT

MSB SHIFT IN

LSB SHIFT OUT (SLINK)
SCRATCHR (END)

SCRATCHP (START)
TEMP2

ALU OUTPUT

CARRY OUT (CLINK)
MSB SHIFT IN

LSB SHIFT OUT (SLINK)
SCRATCHP (END)

SCRATCHN (START)
TEMP1

CARRY IN

ALU OUTPUT

CARRY OUT (CLINK)
MSB SHIFT IN

LSB SHIFT OUT (SLINK)
SCRATCHN (END)

SCRATCHM (START)
TEMP

CARRY IN

ALU OUTPUT

CARRY OUT (CLINK)
MSB SHIFT IN

LSB SHIFT OUT (SLINK)
SCRATCHM (END)

PASS 1

100 000 000 001
000 000 000 011

101 010 110011
101 010110011
0
1
010101 100110

100110011 110
001 001 001 001
101111100111
0
1
1
011111001 111

000 000 000 000
011 001 000 010
0
011 001 000 010
0
1
0
110 010 000 101

000 000 000 000
000 000 000 000
0
000 000 000 000
0
0
0
000 000 000 000

000 000 000 011
000 000 000 110

010101100110
010101 100110
0
0
101 011 001 100

011111001 111
001 001 001 001
011111001111
0
0
0
111 110011 110

110010 000 101
011 001 000 010
0
110010000 101
0
0
1
100 100 001 010

000 000 000 000
000 000 000 000
0
000 000 000 000
0
1
0
000 000 000 001

— — — PASS 11

011 000 000 000
110 000 000 000

110 000 000 000
110 000 000 000
0
1
100 000 000 000

111 010 101 100
001 001 001 001
111 010101 100
0
1
1
110101 011 001

101011 111 001
011 001 000 010
0
101 011 111 001
0
1
1
010111110011

000 110 010 000
000 000 000 000
0
000 110 010 000
0
1
0
001 100 100 001

Figure 3-8 FACM Times Operand Fraction

PASS 12

110 000 000 000
100 000 000 001

100 000 000 0600
100 000 000 000
0
1
000 000 000 000

110101 011 001
001 001 001 001
111 110100010
0
1
1
111 101 000 101

010111 110011
011 001 000 010
0
110000 110 101
0
1
1
100 001 101 011

001 100 100 001
000 000 000 000
0
001 100 100 001
0
1
0
011 001 000011

OCTAL RESULT
IN SCRATCH

0000

7505

4153

3103

uPC Address Comments

1527 Subtract TEMP1 from SCRATCHM. Since EXTEND H is asserted, the con-
tents of CLINK are applied to the carry input of the ALU. Note that only the
I’s complement of TEMPI is taken; the 2’s complement has already been
applied to the 12 LSBs.

SCRATCHM 011 001 000 011
TEMP1 (1’s Complement) 100 110 111 101
Carry In 1

1 000 000 000 001

1523 Not applicable, go to 1525.
1525 00003 to SCRATCHR.
1526 SCRATCHN 011 000 100 010
TEMP2 (2’s Complement) 110 110 110 111
1 001 111 011 001
1527 SCRATCHM 000 000 000 001
TEMP2 (1’s Complement) 100 110 111 101
Carry In 1
100 110 111 111
1524 - The number now in the SCRATCH is:

SCRATCHM SCRATCHN SCRATCHP SCRATCHR

4677 1731 7505 0000

Go to 1515.
1515 Go to 1177.
1177- The SCRATCH is already normalized, so the round-off process begins at step
1241 1254.
1254~ The number is negative, so 3777 is added to SCRATCHP. The resulting carry
1247 is added to SCRATCHN, and SCRATCHP is zeroed. The number now in the

SCRATCH is:

SCRATCHM SCRATCHN SCRATCHP SCRATCHR
4677 1732 0000 0000

3-29

uPC Address Comments

1516 The two exponents (FACE in SC, OPE in TEMP6) are added to test for over-
flow. None occurs in this example. The sum, 00363, is held in the SC.

1447 The SC is sent to TEMP7. Because there was no overflow, control jumps to
1451,

1451- The result of the multiplication is stored in the FAC. Thus, we have:

1360

FACE FACM FACN
0036 4677 1732

An exit test causes control to jump to FETCH, location 0020.

3.3.4 FPDIV Firmware

While multiplication involves a sequence of additions and shifts, or shifts alone, division entails repeat-
ed subtraction and shifts. Implementation of division requires an examination of the divisor in relation
to the dividend or partial remainder. A quotient bit is assumed and verified by reduction, i.e., a
subtraction of the divisor from the dividend or partial remainder. If the reduction produces a result
having the same sign as the partial remainder, the assumed quotient bit is correct; however, if a sign
change occurs, the quotient bit is incorrect. If incorrect, the bit is discarded, the partial remainder is
restored to its pre-reduction condition, a new assumption is made, and another reduction is attempted.

This process of bit assumption, reduction, and possible restoration is time-consuming. Several meth-
ods are available for increasing the speed of division. One method involves non-restoration of the
partial remainder; this is the method that is implemented by the FPP logic; specifically, the FPP
performs a non-restoring divide of a signed divisor and a positive dividend. The logic compares the
signs of both the divisor and the quotient bit determined by the previous reduction; the comparison
determines whether the divisor is subtracted from the dividend or added to the dividend. The com-
plement of the sign bit of the reduction is then retained as the quotient bit.

Figure 3-9 shows part of the firmware of a division carried out in the FP mode. The firmware begins at
the FDIV pointer address, 1403, and includes preliminary steps leading up to the reduction and shift-
ing operations. The firmware proceeds through the generation of the quotient MSW and LSW. The
remainder of the division process, much of which has been detailed in preceding examples, is left to the
reader’s ingenuity. The portion of the firmware that is illustrated is described briefly in the following
commentary.

3-30

1403

1562
1563
1564
1570
1574
1333
1334
1346

1344
1345

1572
1573
1574
1632

1664
1665

1632

1664
1665

1632

1664
1665

1632

1664
1663

1632

1664
1665

1632

1064
16695

1632

1064
1065

1632

1664
1665

1632

1664
1665

1632

1064
1665

1632

1664
1065

1632

1664
1665
1633
1634

1664
1665

Fulv, DBi=[SHL)FACM FREE GO 7O, FAuQ (1562)

/////77/7//FLOATING AND FIXED POINT DXVIODE///////1777

/SHIFT LINK HOLDS FAC SIUN AT ENTRY, CHECK FIRSY FOR ZERO DIVISOR
/(SET DIVZERO FLAG AND EXIT)s IF IN FP OR EP MODE, MAKE SURE
/0IVISOR NORMED==IF NOT, DO IT; THEN CHECK FOR ZERO DIVIDEND C(ANS
/ALREADY IN FA()s XOR FRACTION SIGNS AND MAKE SIGN OF TEMA

/EQUAL TO SIGN OF RESULT, SETTING DBsi AT "FQuoi*

/FORCES CORRECT FIRST DIVIOE OPERATION, SINCE HARDWARE

/EXAMINES DB1i TO DETERMINE WHAT YO DO, THE ODIVIOE IS A NON=
/RESTORING DIVIDE OF A SIGNED DIVISUR AND A POSITIVE DIVIDEND,

Faug, 08, TEMAI®([SHR) [EXT) FREE IF TEMPZERO, FOIVO® (1632)

DB, SCRATCHPI= (D) FREE IF DP, FQUU2 (1d78)

08, SCRATCHT:=[0]) FREE IF NORMEOD, FQUO2 (1579)
Fuuo2, OB, TEMP:sFACE FREEw 1F FACZERO, CLRFAC (1@%5@)

OB, SCISTEMP FREEw SuB, FT0S (1333)
/SUBROUTINE==MOYVE FAC FRACTION TO SCRATCH,
F108, D8, TEMPI®FACM FREE®
FT081, 0B, SCRATCHMEIETEMNP FREEw IF NOT EP, FTDSS (1346)
FT083, DB, SCRATCHP:s (M) FREE* GO TO, FT0S2 (1344)
FT082, DB, TEMP;sFACN FREEw

0B, SCRATCHNESTENP FREE® RETURN

0B, TEHP7:aTEMPY FREEw IF FACSGN, FDIVL (1624)
FUv0l, DB, TEMAISTEMA[1RQBITITENPY FREE« PRESET BLT COUNT

DB:aKy FREE* IF NOT EP, FUDIV1Q (1632)
/U0 24<BIT DIVIDE
FOIVi@, SCRATCHPIsSCRATCHP [MDS) TEMPI FREEe CSuB, DIV3A (1664)
DIV3A, SCRATCHNI®SCRATCHN(HMDS) (EXTITEMP2 FREEw

SCRATCHMI®SCRATCHM [MDLST) LEXT) TEMPY FREEe RETURN
FOIVIO, SCRATCHPI@SCRATCHP (MDS) TEMPS FREE+ C5UB, DIVdA (1664)
DIVSA; SCRATCH~NI®SCRATCHN[MDS] [EXT)TEMPR FREEe

SCRATCHHI®SCRATCHM [MDLST) (EXT)I TEMPY FREEw KRETURN
Fulvin, SCRATCHP:=SCRATCHP [MDS) TENPY FREE* Csud, LIV3A (1664)
OIV3A, SCRATCHNISSCRATCHN(MDS) [EXTITEMP2 FREE«

SCRATCHMIBSLRATCHM [MDLSTY [EXTITENPY FREEw RETURN
Fulviv, SCRATCHPI®SCRATCAP [14DS) TEMPY FREE® CsuB, DIvsA (1604)
DIV3A, SCRATCHNSSSCRATCHN{MDS) [EXT)TEMP2 FREE®

SCKATCHMESSCRATCHM [MOLSTY LEXT) TEMPY FREE® RETURN
FOIVin, SCRATCHP33SCRATCHP [MDS] TEMPI FREE* CsSu8, D1v3a (1664)
DIVSA, SCRATCHNS®SCRATCHN(MDS] (EXT)TEMPR FREEw

SCRATCMMIESCRATCHM [MDLST) LEXT) TEMPY FREEes RETURN
FOIVLA, SCRATCHP:®SCRATCHP [MDR) TEMPY FREE® CSuB, DIv3A (1004)
DIV3A, SCRATCHN:SSCRATCHN[MDS] [EXT)TEMP2 FREE®

SCRATCHMI®SCRATCHM(MDLST) LEXTITEMPL FREEw RETURN
FUlvie, SCRATCHP:=SCRATCHP [MDS] TEMP3 FREES Csus, LIV3A (1604)
OIV3A, SCRATCHWNISSCRATCHN [DS) [EXT)TEMPR FREEw

SCRATCHM:®SCRATCHM [MDLST]I (EXTITEMPL FREEw RETURN
FUlvin, SCRATCHP:sSCNATCHP {MDS]TEMPI FREE» CSuB, 0IV3a (1604)
DIVSA, SCRATCHNEI=SCKATCHM(MDS) (EXTITEMPR FREEw

SCRATCHMISSCRATCHMIMOLST) [EXTITEHNPL . FREEe RETURN
FOIVI®, SCRATCHPISSCKATCHP (MDS] TEMP3 FREEw CsuB, DIvV3a (1604)
DIV3A, SCRATCHNIZSCRATCHN [MDS) [EXTITEMPR FREEw

SCRATCHHISSCRATCHM (MDL8T) [EXTITEMPY FREEw RETURN
FUIVi@, SCRATCHP:mSCRATCHP [MDS) TEMPY FREEv CSUB, DIV3IA (1604)
DIV3A, SCRATCHN:®SCRATCHN(MDS) (EXT)TEMP2 FREE®

SCRATCHMHIZSCRATCHM(MDLSTY [EXT) TEMPY FREEw# RETURN
FOIVivW, SCRATCHP:SSCRATCHP [MDS) TEMPJ FREEe CSuB, DIV3IA (1664)
DIV3A, SCRATCHNIESCRATCHN(MDS) {EXT)ITEMP2 FREEw

SCRATCHM3®SCRATCHM [MDL, ST (EXTITEMP] FREEw RETURN
FOIvie, SCRATCHP:ISSCRATCHP [MDS]) TEMPY FREEw Csus, LIV3A (1664)
DIV3A, SCRATCHNISSCRATCHN([MDS) [EXTITEMPR2 FREEw

SCRATCHM3I®SCRATCHM (MDLST) [EXTITENPY FREEw RETURN

MQM3EDB FREE+ PRESET B1T COUNT

SCRATCHP ISSCRATCHP (MDS] TEMPJ FREEe CsuB, 0IV3A (1884)
DIV3A, SCRATCHNI®=SCRATCHN (MDS) (EXTITEMP2 FREEw

SCRATCHMISSCRATCHM [MDLST) (EXTITEMPL FREEw RETURN

Figure 3-9 FPDIV Firmware (Sheet 1 of 2)

3-31

1634

1664
16653

1634

1064
1665

1634
1664
1665
1034

1064
1665

1634

1064
1665

1634

1664
1665

1634

1664
1665

1034

1664
1665

1634

1664
1663

1634

1664
16635

1634

1664
1665

1633

DIV3A,

DIV3A,

OIvaa,

DIV3A,

0IV3a,

DIV3A,

0Iv3a,

0IVaa,

DIV3aA,

DIV3A,

OIV3ay

SCRATCHP §sSCRATCHP [MDS) TEMPY

SCRATCHN:®SCRATCHN [MDS) [EXT) TEMP2
SCRATCHMI®SCRATCHM [MOLST] [EXTITEMPL

SCRATCHP $sSCRATCHP [MDS) TEMPY

SCRATCHNISSCRATCAN(MDS) LEXTI TEMP2
SCRATCHMEaSCRATCAMIMDLST) LEXTI TEMPL

SCRATCHP:mSCRATCHP [MDS) TENPD

SCRATCHN3aSCRATCHN [MDS) {EXTITEMPR
SCRATCHMSSSCRATCAM[MOLST) (EXT)ITEMPY

SCRATCHP :288CRATCAP (MDS] TEMPI

SCRATCHNI®SCRATCHN[MDS) {EXTITEMP2
SCRATCHM:8SCRATCHM[MOLST] [EXTITEMPL

SCRATCHP $8SCHATCHP [MOSI TEMPD

SCRATCHNISSCRATCHN (MDS) (EXT) TEMP2
SCRATCHMIBSCRATCHM [MOLST] [EXTI TEMP)

SCRATCHP i sSCRATCHP [MDS] TEMP3

SCRATCHNISSCRATCANIMOS) (EXT) TEMP2
SCRATCHM:wSCRATCAM{MDLST) [EXTITEMPY

SCRATCHP :8SCRATCHP (4DS) TEMPD

SCRATCHNEISSCRATCHNIMDS) (EXT) TEMP2
SCRATCHMIASCRATCHM{MOLSTI [EXT) TEMPY

SCHATCHP ;aSCRATCNP [MDS) TEMPI

SCRATCHN:SSCRATCHN(MDS) (EXT) TEMPR
SCRATCHMB®SCRATCHM (MDLST] {EXTITEMPL

SCRATCHP 18SCRATCHP [(MDSITEMP3

SCRATCHNSWSCRATCHN (MDS) [EXTITEMPR
SCRATCHMISSCRATCHM (MDLST] [EXTITENPY

SCRATCHP $aSCRATCHP (MDS]I TEMPS

SCRATCHN 1wSCRATCHN (MDS) (EXT) TEMP2
SCRATCHMIZSCRATCAMIMDLST) (EXT)TEMPY

SCRATCHP ISSCRATCHP [MDS) TEMRY

SCRATCHNISSCRATCHN (MDS) LEXT) TEMP2
SCRATCHHI®SCRATCHM(MDLST) (EXT) TEMPY

MGN3=DB

FREEw

FREEW
FREE®

FREE®

FREEw
FREEw

FREEw

FREEw
FREEw

FREE®

FREE®
FREEw

FREEe

FREEw
FREEw

FREEw

FREEw
FREEw

FREEw

FREE®
FREEw

FREEw

FREEw
FREEw

FREEw

FREEw
FREEw

FREEw

FREE«
FREEw

FREEw

FREE®
FREEw

FREEw

CsSus, DIV3a

RETURN
CSuB, DIV3A

RETURN
csus, DIV3IA

RETURN

CsuB, DIvsa

RETURN

CsuB, DIV3A

RETURN

CsuB, DIV3A

RETURN

CsSuB, DIv3a

RETURN
Csus, DIV3A

RETURN

CSuB, DIV3a

RETURN
CSUB, DIV3A

RETURN

CsuB, DIV3A

RETURN

Figure 3-9 FPDIV Firmware (Sheet 2 of 2)

3-32

(1664)

(1664)

(16064)

(1604)

(1604)

(1564)

(1664)

(1664)

(1604)

(1604)

(1664)

uPC Address

Comment

1403
1562

1563,
1564

1564
1570

1571

1333,
1334

1346

1344,
1345

1572

1573

1574

1632-
1665

1633

1634-
1665

1635

Shift FACM left, send to the DB. FAC sign is loaded into SLINK. Go to 1562.
Shift right content of SLINK into bit 4, send to TEMA (put FAC sign into bit 4
of TEMA). Check operand fraction; if 0, go to FDIVO, which sets DIVO flag in
Exit Test logic and exits.

0 to SCRATCHP and SCRATCHT.

Assume divisor is normalized; go to 1570.

FAC exponent to TEMP. Check to see if FAC fraction is 0; if so, the answer (0)
is already in the FAC. (In that case, clear FAC and exit test.)

FAC exponent to SC. Go to sub 1333.

FACM to SCRATCHM; go to 1346.

0 to SCRATCHP; go to 1344.

FACN to SCRATCHN; return to 1572.

Operand MSW to TEMP7. Check FAC sign, if negative, go to 1624 (1624
complements the SCRATCH so that the dividend is always positive).

Add TEMA (FAC sign is in bit 4, Os in bits 5-15) and operand MSW; send
result to TEMA and DB (effectively XORing fraction signs; carry, if any, is
lost). Preset bit counter.

0001 to DB. Forces a correct first divide operation.

First 12 reduction/shifting operations.

Move quotient MSW to MQM.

Second 12 reduction/shifting operations.

Move quotient LSW to MQN

3-33

CHAPTER 4
FPP8-A LOGIC

4.1 FPP8-A BLOCK DIAGRAM

The FPP logic is contained on two printed circuit boards - the Control logic board (M8410) and the

Data Path logic board (M8411). A block diagram of the Control logic is shown in Figure 4-1, while a
similar diagram for the Data Path logic can be seen in Figure 4-2.

FROM TO FILE CLOCK
DATA PATH DATA PATH pPC CLOCK
[__~ [
REGISTER
FLAG
N PULSE
GATING
1 FREE-RUNNING
CLOCK
MUX CONTROL ROM
sP
STATUS
pPC
GATING
L CONTROL b PC
D
COMMAN MUX
10T FPP
INSTRUCTION INSTRUCTION
DECODE DECODE
' T OMNIBUS
DATA LINES MD LINES DATA LINES MD LINES TIMING PULSES
08 -1747

Figure 4-1

Block Diagram, Control Logic

4-1

(44

TO CONTROL BOARD
(REGISTER FLAGS)

I

DATA CONDITIONS
OBUS LINES
SHIFT
PIPE - LINE LOGIC
REGISTER LOGIC
(FLIP-FLOPS,ROMS)
IFT GATES
(ARITH{ B:3)H) S £
ALU
ARITH (8:3) H
¢ (83 H) BIN AIN
FROM [3
CONTROL CONSTANT —* GATES [
—
BOARD GENERATOR
LOGIC
FROM
TiE oS CONTROL BRD
(ALOC(:4)L) 32 15-BIT
WORDS [‘
(BRLoc(qu)L) 8 f;"-é}g;igs BREAK BKEMA
BWLOC(@:2)L WORDS CONTROL BKMA
MUX
FIR GATES
DB
MUX
FILE CLOCK L ————T f 1
DATA BREAK
AND IOT — ™ MUX
CONTROL
SIGNALS T ?
v]
MD LINES DATA LINES cPU cPU
DATA BREAK CONTROL SIGNALS MA,EMA LINES
CONTROL SIGNALS 081748

Figure 4-2 Block Diagram, Data Path Logic

One of the Control logic functions is IOT decoding. The decoding process uses and produces the
familiar PDP-8 1/O control signals (I/O PAUSE L, TP3 H, CO L, SKIP L, etc....). The FPCOM IOT
instruction loads the Command register and part of the Status register with information that selects
various FPP operating features. The Status register also monitors some significant operating charac-
teristics, and the stored information concerning these characteristics can be tested by both the uPC
Gating Control logic and the FPRST IOT instruction.

The Control board includes logic that provides a clock for the entire FPP. The uPC CLOCK signal is
utilized by the Control logic; it generates, in turn, the FILE CLOCK signal that is used by the Data
Path logic.

The central element in the Control logic is the Control ROM. This element generates signals that direct
operations in both the Data Path logic and the Control logic. Control ROM locations are accessed by
the uPC register, which is supplied with address information from a number of sources. One of these
sources is the Control ROM itself, which provides a jump address when control is to be transferred to
a subroutine (if a jump address is not provided by the ROM or by one of the other sources, the uPC
address is merely incremented to the next consecutive address). Another source is the SP register; when
control is to be transferred to a subroutine and then returned, the return address is saved in the SP and
gated to the uPC at the end of subroutine operations. Finally, when FPP instructions are decoded, the
decoding logic forces the uPC address to the routine dictated by the instruction.

The source that is selected to provide the address of the next Control ROM location depends on the
operation being directed by the present Control ROM location. The present location generates signals
that regulate the uPC Gating Control; this logic then examines its inputs and gates the uPC register
sources in such a way that the appropriate address is supplied to the uPC. For example, if the present
location directs a jump to a subroutine, with return, the uPC Gating Control causes the return address
to be saved in the SP, places the uPC in the parallel-load mode, and multiplexes the jump address
contained in the present location to the uPC. Or, consider the Register Flags logic for a moment. The
FPP logical sequence periodically checks the data being manipulated and follows a course of action
that reflects some data condition, which has been temporarily stored in the Register Flags logic. The
present location might direct a conditional address jump based on the state of a selected register flag.
The uPC Gating Control logic looks at the signal representing the register flag; if the stated condition
is positive, the uPC receives the jump address contained in the present location, but if the condition is
negative, the uPC is kept in the counting mode and the uPC address is merely incremented.

Conditional jumps are also carried out based on the contents of the Status and Command registers.
For instance, the FPP logical sequence depends heavily on what calculating mode was programmed -
DP, FP, or EP. Thus, the DP and EP status flags are often checked during operations to determine
whether or not an address jump should be carried out.

Each Control ROM location generates signals that are applied to the logic on the Data Path board
(Figure 4-2). Except for three signals that are put to use in the Break Control logic, all the Control
board signals are applied to the Pipe-line register logic, which consists of a number of flip-flops and
ROMs. This logic provides gating and control signals necessary for the Data Path manipulations. The
signals shown in the Pipe-line register logic block are generated by the Control ROM. It is these
signals, primarily, that are responsible for manipulating the Data Path elements with which they are
associated. The ARITH (0:3) H signals are responsible for controlling the ALU and gating the Shift
Gates; they do so by generating, in turn, a number of signals in the Pipe-line register logic (these latter
signals are not indicated in the block diagram). The ALOC (0:4) L signals are applied, indirectly, to the
A-file and select registers for reading and writing* (the signals shown are inputs to the Pipe-line regis-
ter;their names change at the output). The BRLOC (0:4) L and BWLOC (0:2) L signals select B-file
registers for reading and writing; the BRLOC (0:4) L signals select the DB register, the FIR register, or

*‘Reading’ is defined as gating the contents of the selected source to the appropriate ALU input; ‘writing’ is
defined as gating the OBUS contents to the selected register.

4-3

the Constant generator for reading. Tables 4-1, 4-2, and 4-3 relate the ALOC (0:4) L, BRLOC (0:4) L,
and BWLOC (0:2) L signals, respectively, to the sources selected for reading and writing. Table 4-4
lists the ARITH (0:3) H signals and describes the operation carried out by the ALU and the Shift
Gates for each set of signals. (M ore information concerning Data Path signals can be found in drawing
D-CS-M8411-0-1 of the FPP8-A Print Set.)

Table 4-1 ALOC (0:4) L Functions

ALOC (0:4) L

Sources Selected for Reading or Writing*

1

2

3

(Source gated to A input of ALU or loaded from OBUS)

' o S G O S T S on on il el onl ol ol el i« f o sl a s fa ofifasfianiia riesansiiasiiaila s lesiia sile sl I =]

unl e e S S o el e« s oo afasfan e niiasiian]l ol el ol ol el ol ol el = ol = > = =l e s B olla e e sl s

ol ol e o = »fi= = f =o e s anll ol el e« sl e sl o e ol el el ol e« vl ao o sl ol ol el ol ol = =l = ol o lia &

ol ae el ol g os la il ool e e ool ol o= e ol ol o= sl el o= B =Rl i« =l = = ol ol ol !

gaie >l e eol quie el g« vl el ool o= ol = ol e« > e« ol el = -l o« ol o= ol ol = ol ol = ol o« o e = o I A

FPC
X0

BR

OPADD

APTP

TEMA

FIELD

NOT USED
FACE (EXPONENT)
FACM [FRACTION (0:11)]
FACN [(12:23)]
FACP [(24:35)]
FACR [(36:47)]
FACS [(48:59)]
NOT USED

SC

SCRATCHE
SCRATCHM
SCRATCHN
SCRATCHP
SCRATCHR
SCRATCHS
SCRATCHT
NOT USED
MQE

MQM

MQN

MQP

MQR

MQS

NOT USED
NOT USED

*READ A H must be asserted for reading.
WRITE A H must be asserted for writing.

4-4

Table 4-2 BRLOC (0:4) L Functions

BRLOC (0:4) L

Sources Selected for Reading

mejarfuciicsfiariiesiiesfasijarfasiiasiasiiasiiasiiaoiie vl ol ool anll anll o

il el el o o i i g e = === ol a sl a sl siieslias il enlll onlll enlll onll o

(il aall el w o ofasiasiia ol ool eall enll el i sl s lia o el ol el sl = o

anil aniiesiasl ol eaiie sifa ol ol enlieofia ol il el = ol « ol ol el o lle ol o)

el oni ol i« o e« ol o= o = o gl ol e« -l ol = ol = ol o

0 |1 213 (|4 (Contents gated to B input of ALU-0 goes to (1:3) unless otherwise noted)
L{H|H|H]|H TEMP

L{H|H|H/|L TEMP1

L|H|H{L |H TEMP2

L{H|(H|{L|L TEMP3

L{H|L|HIH TEMP4

LIH{L|HI|L TEMPS5

L{H|L}|L |H TEMP6

L|H|L|L/|L TEMP7

L|L |H{H/|H Bits (1:3) of TEMP to (1:3), DB to (4:15)
L|{L|H|H]|L 0to (1:3), DB to (4:15)

L|{L |H|L |H If FIR 4=0, Bits (9:11) of FIR to (13:15), 0 to (4:12)

If FIR 4=1, Bits (5:11) of FIR to (9:15), 0 to (4:12)
Bits (6:8) of FIR to (13:15), 0 to (4:12)
NOT USED

NOT USED

Bits (1:3) of A input to (13:15)

Bits (1:3) of A input to (13:15), 103 to (4:12)
CONSTANT (0)

CONSTANT (1)

CONSTANT (2)

CONSTANT (3)

CONSTANT (-1)

CONSTANT (-2)

CONSTANT (-27)

CONSTANT (-73)

Bits (1:3) of TEMP to (1:3), 0 to (4:15)
CONSTANT (14)

CONSTANT (~14)

CONSTANT (-5)

CONSTANT (-6)

CONSTANT (2000)

CONSTANT (4000)

CONSTANT (-30)

4-5

Table 4-3 BWLOC (0:2) L Functions

BWLOC (0:2) L

Sources Selected For Writing*

011 2 (OBUS contents loaded into selected register)
H|H | H TEMP

H|{H]J]L TEMP1

H|L|H TEMP2

H|L]|L TEMP3

LIHI|H TEMP4

LIH]|L TEMPS

L|LI|H TEMP6

L{L{L TEMP7

*WRITE B H must be asserted.

Table 4-4 ARITH (0:3) H Functions

ARITHO H | ARITH1 H [ARITH2 H | ARITH3 H Function Carried Out in Data Path Logic
L L L L A + B+ CARRY (15 bits) to OBUS.
L L L H (A +B + CARRY) * 2 to OBUS (2*B).
L L H L (A + B + CARRY) Logically right-rotated 3 places to OBUS.
L L H H (3 * B+ CARRY) (15 bits) to OBUS (3*B).
L H L L (3 * B+ CARRY) * 2 to OBUS (6*B).
L H L H A+ B+ CARRY (12 bits) to OBUS.
L H H L 0 to OBUS (15 bits).
L H H H A sign to OBUS (0000 or 7777).
H L L L B to OBUS (12 bits).
H L L H A + B+ CARRY (12 bits) to OBUS (A-B).
H L H L Exponent Size (12 bits).
H L H H Overflow recovery (Complement of sign to SGN L, shift right)
H H L L (A + B + CARRY) * 2 + Shift Bit (12 bits) to OBUS.
H H L H (A + B + CARRY) ~ 2 + Shift Bit (12 bits) to OBUS.
H H H L Divide Final.
H H H H MUL/DIV Step.

4-6

Since the purpose of the Data Path logic is data manipulation, the ALU and the Shift Gates are of
primary importance, for it is these elements that carry out the maneuvers required for both data
calculation and data circulation. However, the data, itself, must first be supplied to the logic before
any other operations can be started. The task of transferring data to the FPP from the PDP-8 CPU,
and in the reverse direction as well, is carried out by the DB register. The DB can receive data from any
one of three sources. Two of these sources (Omnibus DATA and MD lines) are involved with data
input (to the FPP), while the third source (FPP OBUS lines) is related to data output.

The Omnibus DATA lines provide input information for the DB during initialization, when the APT
pointer address is loaded into the DB for transfer to the APTP register. During all other input trans-
fers, the information is taken from the Omnibus MD lines. This information can be strictly data that is
to be used in calculations or it can be an FPP instruction. If the information is data, i.e., an operand, it
is loaded into the DB register and multiplexed to the B inputs of the ALU. The ALU and the Shift
Gates then place the data on the OBUS, and it is loaded into the selected file register. If the informa-
tion is an FPP instruction, the procedure is somewhat different. Certain bits of the first 12-bit word of
the instruction are loaded into the FIR register (the second word of the instruction, if applicable, is
loaded into only the DB). This operation permits either the field bits of a double-word instruction to
be saved, or the offset of a single-word instruction to be added to the base address. The FIR output
and the DB output, which together specify a 15-bit operand address, can then be placed on the OBUS
and gated to the A-file OPADD register and to the BKMA /BKEM A registers. The address is placed
on the Omnibus MA and EMA lines, and a data break is requested. When the request is granted, the
operand is placed on the MD lines by the CPU and loaded into the MB register.

Since the DB register contents can be gated onto the Omnibus DATA lines, the data in any file register
or the results of any calculation carried out in the FPP can be sent to the PDP-8 CPU. The reason
might be storage, as in the FMULM instruction, for example, or it might be for visibility during
maintenance operations.

When the data required by an FPP instruction has been specified, the ALU and the Shift Gates can be
put to work to carry out the necessary operations. The ALU performs direct addition and subtraction
(2’s complement) with the quantities on its A and B inputs; multiplication and division are effected
with the aid of the Shift logic. See Table 4-4 for a list of the available operations.

The *3 Gates shown at the ALU inputs are used during address decoding to account for the fact that
operands are of various word lengths, depending on the operating mode. For example, in the FP
mode, operands comprise three data words; hence, an operand address must be multiplied by 3 to
obtain the next operand address. This multiplication is accomplished as follows: The *3 Gates gate the
address on the ALU B inputs to the ALU A inputs, while at the same time shifting the address left one
place, i.e., bit 15 of the B input, for example, is gated to bit 14 of the A input, and so on (this operation
multiplies the binary number by 2); then, the A and B inputs are added, i.e., the address is added to 2-
times the address. If the mode is EP, the operand address must be multiplied by 6. This multiplication
begins as just described. Then, the ALU output, which is 3-times the B-input address, is shifted left one
place in the Shift Gates, resulting in the desired multiplication.

4.2 CONTROL LOGIC

Detailed descriptions of the significant portions of the logic on the Control board appear in Para-
graphs 4.2.1 through 4.2.9.

4-7

4.2.1 10T Decoding Logic

The IOT Decoding logic is shown in Figures 4-3 and 4-4. Figure 4-3 illustrates that part of the logic
that decodes the Omnibus MD bits. The comparator, E12, decodes MD bits (0:8) [I/O PAUSE L is
asserted if MD (0:2) L is 65] and generates the FPIOT L signal when device codes 555 or 565 are
detected. PROMs E55 and E56 decode the MD (9:11) L signals to generate the specific IOT instruction
signals. The PROM inputs are related to the IOT instructions by Table 4-5.

Figure 4-4 shows the PROM output signals that are generated in response to the IOT instructions.
Table 4-5 relates the PROM input/output signals (in the “INPUT SIGNAL LOW” column, the logic
levels of the MD bits are listed; these must be inverted to get the levels actually applied to the PROM
inputs). PROM ES56 can be enabled when the FPP is running. Among the operations that can be
initiated by E56 are maintenance and exit. Unlike E56, ESS is enabled only when the FPP is not busy,
i.e., when BUSY H is negated. In such a situation, the uPC register contains address 0, 1, 2, or 3.

When the FPPis turned on but has not yet been started, the Control ROM location alternates between
0 and 3 (see Paragraph 4.2.7 for details concerning FPP initialization). Each location contains the
jump address of the other. That is, when address 0 is in the uPC, the Control ROM location points to
address 3. At clock pulse time, address 3 is loaded into the uPC. Now the Control ROM location
points to address 0, which is loaded into the uPC by the next clock pulse.

IOT instructions are decoded during the time that address 0 is held in the uPC. Assume, for example,
that FPST is issued. E55 asserts «uP8IN L and uP9IN L. The Control ROM points to address 3, i.e., the
ROM asserts uP10IN L and gP11IN L. Thus, at clock-pulse time, address 17s is loaded into the uPC
register and the FPP firmware jumps to the maintenance program. If FPCOM had been issued,
instead, address 7 would be loaded at clock time, the APT pointer field bits would be sent to the
FIELD register, and the uPC would return to address 0. FPCOM is followed by the FPST instruction
when initialization is being carried out. Address 134 is forced into the uPC, the APT pointer address is
sent to the APT register, and the FPP jumps to the GETAPT routine.

If the FPP had been operating and was returned to the “paused” condition (uPC address 2), it could be
restarted with the FPST instruction, which forces address 6 into the uPC register. Should the FPHLT
instruction be issued while the FPP is paused, address 165 is forced into the uPC, the FPC is decre-
mented, and an exit is carried out.

4.2.2 Status and Command Register Logic

Figure 4-5 illustrates the Status and Command Register logic. The Command register, E8, is loaded
from the DATA (1:8) L lines when the FPCOM instruction is decoded. Bit 0 of the Status register, E3
and E4, is also loaded by FPCOM, this bit representing the FPP’s calculating mode (FP or DP).

The Status register holds not only FP/DP information, but also information provided by the Exit Test
logic (refer to Paragraph 4.2.9), the EP mode bit (loaded by the FPEP instruction), and the Trap
instruction bit. The Status information can be read by both the FPIST and FPRST instructions, the
former clearing the Status register after gating the information onto the DATA lines.

If the FMRP instruction is issued, the uPC register address is gated onto the DATA lines. The infor-
mation is valid in maintenance mode and in normal mode provided the FPP is not free-running.

4.2.3 Control ROM Logic

The Control ROM was referred to in Chapter 3 in relation to the FPP firmware. The logic is illustrated
in Figure 4-6. The complete Control ROM array consists of 31 1024-bit PROMs arranged to provide a
total of 768 (14005) 44-bit word locations. Word locations are addressed by the outputs of the uPC
register, represented by the uPC (2:11) H signals. For clarity, Figure 4-6 shows only a portion of the
array; i.e., 8 PROMs are missing from each row.

4-8

MD3 L

MD4 L

Q1 81

— D1

B2

+3v

D2

MD5 L

Q| B3

D3

MD6 L

Q| B4

D4

MD7 L

MD8 L

I/0
PAUSE L

CB6 BUSY H

CB4 uPC11 H

CB4 uPC10 H

CB4 RESET L J

CB84 BTP2 H

B85

D5

B

B6

D6

E12

8136

6-BIT
COMPARATOR

ouT

sSTB

+5v

—4 >O— INTERNAL I/0 L

CB1 FP IOT L
20

£
= T-ca4 BTP3 H
CB1 B PAUSE L
D ~®
CB1SYNCED xPC11 H
P/0 E27 E55 PROM E56 PROM
cs1__| M7 p
A% mrmp manTH A% pemb
02 R2(M|— A3 Ms(ip a3 M5
Mamp Ma() o
D1 R1 (1) A2 m3mp A2 M3t o
M2(1) p M2
— At A1
)74 RZ (1} M1 P M1 p
— A Mo(1) b — AQ Mg p
CLR CLK ENB ENB
OODE 558
DEVICE CODES
L BUSY 1 * 55 856
NOT
ASSERTED

MD9O L

MD10 L

MD11 L —Q

Figure 4-3

4-9

IOT Decoding Logic (A)

9 E9)}
—q
—a \
Lo
- \ E51 CB1 FPEP L
e \
J

Ol-¥

cB4

ES5 PROM

M7 (1)
A4 M5 (1)
A3 M4 (1)
A2 M3 (1)
A1 M2 (1)
AD M1(1)

M@a(1)

Figure 4-4 10T Decoding Logic (B)

c1 L
RESET L ‘L 1
cB4 CB4 pPC

COL BTP3H]~ CB1 MAINT L CLOCK L —C @
MAINT. FORCE
FrEP L = R ExIT
o 1P CB1MAINT H D 1
cB2 _q—/
SKIP L FEXH
CB1 uP8 IN L
CBIPPO IN L
CBYFPIST L W+ 3V
FMODE L FPHLT L
CB1FPCOM L
£56 PROM

P~ Mz (1) P

o— M6(1) P-

b M5(1) o———

o— M4(1) P

b M3(1) p-

P M2(1) p QD

o——— M1(1) jo— T

MB(1) o 9>

CBIFEXIT L

CBIFEXITH

CB1 FMDO L

CB1FMRP L
CBIDBINIOT H

CB1 FPRST L
CB1FPICL H

08 -1750

Table 4-5 PROMs E55/ES6 Input/Output Tables

ES5S (Enabled if 655X IOT is issued when FPP is not Busy)

Input Input Signal Low Output Signal Asserted
Code } uPCIOH | wPC11H | MDOL | MDIOL| MDIIL [COL/CIL|puPSINL | uP9INL | FPICLH | FPISTL | FPCOM L | SKIP L | IOT Instruction Decoded
0 X X X X FFST (uPC=17)
3 X X X X X X FPCOM (uPC=7)
5 X X X X X X FPST (START, uPC=13)
11 X X X FPINT
17 X X X X X X X X FPIST
24 X X X X FPHLT (uPC=16)
25 X X X X X FPST (CONTINUE, uPC=6)
E56 (Enabled when FPP 10T is Decoded)
Input Input Signal Low Output Signal Asserted 10T Instruction
Code {MAINTH | MDS8L | MDO9L | MDIOL | MDI1IL |COL/Ct L |[FMDOL | FMODEL | FPHLTL | FMRP L |DBINIOTH |FPRSTL | FPICLH Decoded
1 X X FMODE
3 X X X X FMRB
4 X X X FMRP
5 X X X -
12 X X X FPICL
14 X X X FPHLT
16 X X X X X FPRST
23 X X X X X FMRB (MAINT)
24 X X X X FMRP (MAINT)
25 X X X X FMDO (MAINT)
32 X X X X FPICL (MAINT)
34 X X X X FPHLT (MAINT)
36 X X X X X X FPRST (MAINT)

CB1FPRST L
CBIFPIST L

CB4 BTP3

¢

FPCOM L —ol>

FPEP L~c{>—

DATA (0:3) L DATA (4:7) L DATA (8:11)
CB1FMRP L —O s S - | . .
CBI B PAUSE L ——0
o Q o) o) Q o)
fo) fo ts fo ty ty t3 fo y s t5
ds, Lgs, L—4gs,
E1 E21 E65
8234 8234 8234
L g
L o SO —O So C SO
—O
Bob Ag By Ay By A, Bz As Bo Ao By Ay By A, By Az Bo Ap By Ay By, A, By Ag
B) cBa cB4 cBa cBa cB4 cBa cB4 cBa cB4
#PC2H | wPC3H uPCAH | wPC5H | wPC6H | pPCTH uPCBH | uPCOH 2PCITH
cB3
_ TO MEM H
CB4uPCIO H
— CB6 BUSY H
CB2 BUSY L N
CB1 SYNCED uPCII H J
on |Trap :H CB2 DP |CB2 EXP |CB2 EXP CB2 ZTRAP H
CB2OPH |CBZEPH |TRAPI |CB2 FEXH DIV@ H |OVFLOH [OVFLOH |UNDFLO H co2 CB2 FSH €B2 PROT H
LOCKOUT H
Rot1) R Ra(1) R3(1) Rowm Rin Ra(1) Ram B4 CLR Rsiy Ram R Ray Ry Rom
H CLR CLR CLR
CR H
CB4 RESET L E3 E14 ES
8613 8613 7415174
84 .PC CLOCK L CLK CLK CLK
Do Go Dy Gy Dp Gp D3 G3 Do Go D) G Dp Gy D3 G3 Dg Dgq D3 Do Dy Do
T i i T T T il
l ~ i
3y Y (SEE EXIT TEST LOGIC)
4> (SEE EXIT TEST LOGIC)
—)
LOW WHEN TRAP
INSTRUCTION ISSUED
(uPC=761
DATA O L—
—Of —‘—C{ >°— CB4 BTP3 H— \
) e o T |
DATA 8L TAlaL DATASL DATA 1L
ctR | on| Gn | Re@n) $0 | $1 | Fn DATA (4:T)L DATA 2L
L0 HE | Lo | Wi Lo Lo &
LO LO | LO | LO HI LO | An
Lo X HI | NOCHANGE LO | HI | Bn
HI x | x | Lo* HE | AI

*ASYNCHRONOUS TRANSITION

Figure 4-5 Status and Command Register Logic

4-12

}INT RQST L

wPCAaH

u PC5H

p PCG6H

wPC7H

wPC8 H

pPC9OH

u PCIOH

u PCIIH

uPC2 H@IOOO SEL L

HPC3 H—ED4OO SEL L

E69

!

7

7
1

[

vy

ﬁ]’?

1

[¢]

4 > ARITH O H
—4} ARITH 1 H
-—c{>—— ARITH 2 H
—<{>— ARITH 3 H
E78 £120
A7
a6 Dajpo
AS
" D3+
A3 -
A2 b2
Al
[o]] o3
— A0
ME! ME2
ABS @-377L I T
_ E79 €121
o
oum
o
8-377 SELL i T
E77 E119
o
TIMING P
SIGNALS b |
.-

——o

sielslslolojvle

4-13

wP8IN L
wPIIN L
wPIOIN L
wPUINL

BKCMD O L

BKCMD t L

BKCMD 2L

Figure 4-6 Control ROM Logic

Each row of PROMs furnishes 256 word locations. The rows are addressed by the uPC (2:3) H signals.
Locations within each row are selected by the uPC (4:11) H signals. The relationship between uPC
addresses and the enabled PROMs is given below.

MPC Addresses uPC2 H uPC3 H PROMs Enabled

0-3774 LO LO Bottom row (E77—E119) and E69
100013774 HI LO Middle row (E79—E121) and E69
1400—-17774 HI HI Top row (E78—E120) and E69

Note that PROM EG69 is enabled for all addresses. This PROM supplies timing signals that are used in
the Clock logic; the timing signals are utilized only for uPC address 0-377. In the free-running area
(addresses of 1000 and above), E69 is enabled but its outputs are irrelevant.

4.2.4 uPC/SP Register Logic
Figure 4-7 shows the uPC/SP Register logic. The uPC register (E68, E67, and E71) addresses the
Control ROM locations. The register is supplied with address information from the SP register or
from the wPIN (2:11) L lines; the latter source carries a jump address from the Control ROM or from
the Instruction Dispatch logic.

The uPC register has two operating modes, namely, count and parallel-load. If the LOAD uPC L
signal has been asserted by the uPC Gating Control logic, the register is parallel-loaded with the
address information on the PCL lines. If LOAD uPC L is not asserted, the register is in the count mode
and its contents are incremented at clock-pulse time.

The address information that appears on the PCL lines is either a jump address or a return address. A
jump address is placed on the uPIN lines when an FPP instruction is decoded, when one of a number
of possible tests on the data being manipulated proves to be true, when a new FPP instruction is to be
fetched, or when control is to pass to a subroutine, with or without return to the departure point. In
each of these instances, the multiplexers pass the jump address information to the uPC register and the
asserted LOAD uPC L signal enables the address to be loaded by uPC CLOCK L.

When the information in the Control ROM present location directs that control jump from the present
address to a subroutine and then return, the return address is saved in the SP register. When the
subroutine has been completed, the uPC Gating Control logic asserts the RETURN L signal, thereby
gating the return address from the SP register to the uPC register inputs. The return-address-save is
accomplished by the logic that includes the COUNT SP flip-flop. For example, assume that the
present location is uPC address 00503, and it calls for a jump to address 0060s, with return. The signals
[uPCTRL (0:4) L] asserted by the Control ROM cause the uPC Gating Control logic to assert the SUB
L signal, which, in turn, asserts INCR SP L and LOAD SP L. The uPC CLOCK L pulse of address
0050 both loads address 0050 into the SP register and sets the COUNT SP flip-flop. The same pulse
loads address 0060 into the uPC register. Then, the uPC CLOCK L pulse of address 0060 both
increments the SP register and, because SUB L is now negated, clears the COUNT SP flip-flop. The
last address in the subroutine will generate signals that cause RETURN L to be asserted; thus, address
0051 will be loaded into the uPC register and control will resume the main routine at that point.

4-14

CB4 RESET L
CB4 u PC CLOCK L

CB3 LOADu PC L

CB3 RETURN L

CB4SP(2:3)H

CB4 SP (4:7)H

CB4 SP(8:11)H

CB3 LOAD SPL

CB3 COUNT SPH

R3(1) R2(1) Ri(1) RO(1) CRY EN co CRY EN co CRY EN
Lq LD cas ES8 Py
\ sPD-3 qLD sP4-7 —duo c o
CNTEN LN -
A 7415161 CNTEN) CNTEN 5,523.11 COUNT
CLK L — A SP -
CLK CLK 0D 1
CLR
D3 D2 D1 DO ————QCLR ————CLR
2
CB4u PC(2:3)H CBA uPC (4:7) H CB4 uPC (8:11) H CB3 SUBL
CB3'INCR SP L
CB3 CSUB L
L EN
}CNT EN E68 —d Lo ———duo
. E67 E71
p#PCO-3 1 N
7408 161 CNTEN uPC4-7 [] CNTEN uPCB-11]
CLK : cLK : CLK
—qCLR D3 D2 D1 Do CLR ——qCLR
co R3(1) R2(1) R2(1) RO(1)
= CRY EN|—
—dLp
CNTEN E25
7415161
CB3 PCL (2:3) H CB3 PCL (4°7) H CB3 PCL (8:11)H CLK
CLR D3 D2 DI DO
FO F1 F2 F3 +3v
s1 £54 £62 E66
l: MUX 9-3 _[_ MUX 4-7 .[_ MUX 8-11 CB2 LOAD BIT COUNT L =
8266 8266 8266
L dse I L 4 8266
B0 A? BI Al_B2 A2 B3 A3
O ’ o2] (? I o} SO S1 Fn
CB4 SP(4:7)H] CBASP(8:ANH | T o) to| &
Lo HI Bn
CB4 SP(2:3)H

CRBu PIN (2:3)L

CBELPIN (4:7) L

CB6 uPIN (8:11)L

HI LO { An
HI [HI | HI

08-1753

Figure 4-7 uPC/SP Register Logic

4-15

During multiply and divide operations, it is necessary to have certain functions carried out repetitively;
that is, a subroutine is called 12 times in succession before the main routine is allowed to resume. In
this circumstance counter E25 is activated. At some time prior to the subroutine call, the uPC Gating
Control logic asserts the LOAD BIT COUNT L signal; the next clock pulse loads E25 with a starting
count of 0100,. When the subroutine is called, by address 0070, for example, the CSUB L signal is
asserted and the uPC CLOCK L signal both loads the SP register with 0070 and increments counter
E25. At the end of the subroutine, control returns to 0070; again, CSUB L is asserted, the SP is loaded,
and E25 is incremented. This happens 12 times in succession. On the 12th assertion of CSUB L, E25 is
incremented to a count of 0000 and generates a carry out that enables NAND gate E6. Hence, INCR
SP L is asserted and the SP register is incremented by the clock pulse that occurs during the first
address of the subroutine (the 12th occurrence of this address). When the subroutine finishes its 12th
pass, control returns to address 0071 and the main routine resumes.

4.2.5 uPC Gating Control Logic

The uPC Gating Control logic is shown in Figure 4-8; its primary function is to control the loading of
the uPC register. The logic includes two multiplexers, E42 and E61, and two decoders, E15 and E10, all
of which are controlled by the uPCTRL (0:4) L signals. The two multiplexers cause LOAD pPC L to
be asserted if a selected test condition is true. The two decoders also assert LOAD uPC L, but, with
one exception, no conditions are attached to the assertion.

During an FPP operation various courses of action can be carried out by the logic, depending on the
condition of the data at a selected moment. For example, after the addition of two floating-point
numbers, the result must be normalized. However, if a test of the resulting data shows that it is already
normalized, the normalization routine can be skipped, saving a great deal of time. To carry out such a
test, the Control ROM asserts the signals necessary to load the data into a specific register. The
condition of the data is reflected by the state of a flag, NORMED H in the case of a normalization test.
To check the state of the flag, a subsequent Control ROM location asserts the uPCTRL (0:4) L signals
so as to select input DO of multiplexer E42 for testing; in addition, this location provides an address to
which control jumps should the data be normalized. If the data is normalized, NORMED H is
asserted; thus, LOAD uPC L is asserted, and the jump address is loaded into the uPC register.

All the signals that can be selected by the two multiplexers are listed following this paragraph; included
is a brief description of the meaning of each signal. More detailed information concerning most of
these signals can be found in the Register Flags logic.

Signal Meaning (When Asserted)

NORMED H The tested data is normalized.

MOVE OK H The tested data is such that an entire 12-bit word can be shifted (the 13 MSBs
of the word are all 0 or all 1).

OVFLO H An overflow condition has occurred during a calculation.

ZIN H A JNX instruction is being carried out; the contents of the addressed index
register are 0.

FS H A Fast Start has been programmed.

EP H The EP calculating mode has been programmed (or, the EP mode has not

been programmed).

DP H The DP mode has been programmed.

4-16

CB7 NORMED H Do E42
D1 T4LS151
CB7 MOVE OK H MUX

DP8 OVFLO H D2

D3
DP1 ZIN H 1
cB2 FS H D4 |
CB2 EPH | :{>—‘ D5

D6

CB3 LOAD uPC L

CB2 DPH D7
STB $2 S1_Se

- 7

CB7 SIGN H e E61
CB7 FORBIDDEN H SR
CB7 TEMP SGN H D2
CB7 TEMP ZERO H D3 .
CB7 FAC ZERO L 4[> D4 L_ b-
CB7 FAC SIGN H D5
CB2 NZ SETH D6
CB3 TO MEM H o7
lst8 s2 s1 sp

7

CB3 SEL 30 L
E32
E113 El5 7 NOJUMPL |
7415139 741542
DCDR FEP
FAO o D3
F5[—CB3 INST DISPIL CB3INST DISP 1H
CBE uPCTRL 0L —B1 Fa1p- b2 F4[D—CB3 INST DISP 2L
CB6 uPCTRL 1L —A1 FA2 b D1 F 30— CB3 INST DISP 3L
FA3D — oo F2jp—CB3 suB L 7418139 741542 7415151
F1p—CB3 CSUBL
B1 A1 ouT Lo S2 S1
F@—CB3 RETURN L D3 | b2 | D1 | DO | OUTLO so | sTB F1
L0 | Lo FAO L0 | LO| LO| LO FO X X X HI LO
LO | HI FA1 LO | LO| Lo | HiI F1 Lo| o| o| o Do
E10 F7pP—TRAPI BIT
741542 . Hl Lo FA2 LO LO HI LO F2 LO LO Hi Lo D1
p3 DCDR H | A FA3 LO [Lo| HI | Wi F3 to| W | o Lo D2
F5P—DIVOBIT (g7 EXPFL H— o |
CB6 uPCTRL 2 L D2 FaD—CB2 TEST OVERFLOW L LO [H | LO | LO Fa H Lo D3
CB6 wPCTRL3 L W] £3b LO [HI | LO | i F5 H | o] o] to D4
H | L
CB6 uPCTRL 4L 0o F 2p—STARTD, STARTE INST LO |H | HL | O | F6 O| W | Lo | D5
Lo Hi HI HI Hi L
F 1P—CB2 LOAD BIT COUNT L HI F7 0 Lo D6
FO[O—CB2 FETCH NEXTL HE | HE | H | o D7
08-1754

Figure 4-8 uPC Gating Control Logic

4-17

Signal Meaning (When Asserted)

SIGN H The sign of the tested data is negative.

FORBIDDEN H A calculation has produced the result 4000 0000 (DP or FP mode; if EP, 36
additional 0s).

TEMP SGN H The sign of the tested data is negative.

TEMP ZERO H The tested data is 0.

FAC ZERO L The data in the FAC fraction is 0.

FAC SIGN H The sign of the data in the FAC is negative.

NZ SET H Exponent underflow has not occurred, or a trap of a possible underflow has

been programmed.
TO MEM H The calculation result is to be transferred to memory.

Decoders E15 and E10 can assert the LOAD uPC L signal, thereby causing an unconditional jump to
an address provided by the Control ROM, by the Instruction Dispatch logic, by the SP register, or by
the Exit Test logic. Decoder E15 generates three output signals (at 0, f1, and f2) that are used in the
uPC/SP register logic; three other output signals (at f3, f4, and f5) are used in the Instruction Dispatch
logic. When any of these six signals is asserted, output f7 is high; hence, NAND gate E32 is enabled
and LOAD uPC L is asserted. For example; assume that the Control ROM location directs E15 to
assert INST DISP 1 L. This means that the Instruction Dispatch logic will decode an FPP instruction
and place an appropriate address on the uPIN lines (refer to the uPC/SP register logic). The asserted
LOAD uPC signal will enable the address to be loaded into the uPC register, and the first ROM
location of the FPP instruction will be addressed.

When the uPC address is to be incremented to the next consecutive address, f7 of decoder E15 is
asserted. NO JUMP L keeps LOAD uPC L negated, and the uPC register is placed in the count mode.

Decoder E10 can also assert LOAD uPC L. When the Control ROM location directs an FPP instruc-
tion fetch, output f0 is enabled; LOAD uPC L permits an address provided by the Exit Test logic to be
loaded into the uPC register. Output f6 permits testing of the EXPFL flag; if the flag is set, indicating
that the sign of the SC register is negative (refer to the Register Flags logic), the jump address provided
by the ROM location is loaded in the uPC. The remaining outputs of E10 are applied to the Status
register, the Exit Test logic, or the uPC/SP register logic, and do not directly affect LOAD uPC L.

4.2.6 Register Flags Logic

The FPP logic periodically checks the data being manipulated and follows a course of action that
reflects the condition of the data. For example, during floating-point addition, the logic tests the
fraction of both numbers. If either fraction is zero, many steps normally performed during an addition
can be dispensed with.

The data is checked as it is placed on the OBUS (4:15) L lines. The logic shown in Figure 4-9 contin-
ually monitors the OBUS lines and generates six output signals that identify certain characteristics of
the data word. These signals, except OVFLO H, are applied to the Register Flags logic, shown in
Figures 4-10 and 4-11. The Register Flags logic records the characteristics of any data word that is
being written into registers TEMP1 through TEMP5, SCRATCHM through SCRATCHS, FACM
through FACS, or the SC, and generates an output signal that can be tested later.

4-18

61y

bP7

bP7

DPT

DP6

OP7

DP7

DP7

DP7

DPé

DP7

DP&

DP6

DP&

DPE
DP4

OBUS 15 L AOD

B! E41
bl 8136

oBUS 8 L

B3 ouT

D3
B4

0BUS 13 L

0BUS 6 L

DS

86

OBUS 11 L

Ho

pe STB

DP4 ZEROS L (ASSERTED IF OBUS{5:15>L HIGH)

DP4 ONES L (ASSERTED IF OBUS<5:15>L LOW)

BUT NOT BOTH, IS LOW)

OBUS 14 L

OBUS 12 L

OBUS 10 L

D3 ouT

OBUS 7 L

OBUS 9 L

OBUS 5 L

OBUS 4 L

[: — >°
D4
BS ’D—DIM NMD H (ASSERTED IF OBUS 4 L OR OBUS 5L,

DP4 SGN L (ASSERTED IF OBUS 4 L LOW)

DP4 EXSGN H (ASSERTED IF OBUS 4 L IS LOW
WITH NO OVERFLOW OR IF OBUS 4 L
IS HIGH WITH AN OVERFLOW)

DP6 OVERFLOW L

hd
4\/ 7458174

ALU @ L

P/0 E92
)0 D4 R4 (1)

ALU 4 L

\
)D—,_- CLR CLK
7

AL A4 L

—4 >——DP8 OVFLO H

DP1 B INITIALIZE L
DP1 FILE CLOCK L

08-1755

Figure 4-9 OBUS Flags

CB7 FACZERO L

CB2 EPH

CB7 FAC SIGN H

CB4 RESET L 4> CBT7 EXPFL H

CB4 u PC CLOCK L
ICLR[RE() RI(1) R2(1) R31) CLR[RoM) RN R2(1)
DM8613 EB9 DM86I3 £99
CLK CLK
DO GO DI G1 D2 G2 D3 G3 D® GO D! G D2 G2
\T L4 T (‘r (]
B2 FB2 D3 Fé
74424
745139 b2 ggo FS5P
E113 D Fap
—laz —{D0 F3p
F2 -
o
ENB2 Fo
A Y
CB7 SIGN H
lcLR[R@(1) R2(1) R3(1) R4(1) RSI1) cLr[RO(1) R5(1)
|
CLK 74LSI74 EB2 LK 74LS174 E95
DP_DI__D2 D3 D4 D5 Do D5
e of - - - .} -
< S -— o~ ”n <
w Q Q 194 [&] (&)
e & 6 9 o o
= |] 4 =]
[\4 << =4 << << <
e 8 88 3 o
g & 8 5 8 8
DP4 SGNL DP4 ZEROS L DP4 EXSGN H
745139 7442A
ENB2 B2 | A2 | ouTLO D3| b2 | p1| DO | oOUTLO
H - | - - L L L L FO
L L L FBO L L L H F1
L L H FB1 L L H L F2
L H | L FB2 L L H H F3
L H H FB3 L H L L F4
L H | L H F5
L H H L F6
L H | n H F7

08-1756

Figure 4-10 Register Flags (SC, FAC)

4-20

Consider Figure 4-10. The logic represented here records certain features of the data words that are
written into the SC register or into the FAC register. The desired register is identified by the ALOC
(0:4) L signals when WRITE A H is asserted. Decoder E90 then asserts an output signal that enables
the particular characteristic of the data word to be retained in gated flip-flop E89 or E99. Table 4-6
relates the ALOC (0:4) L signals, the selected register and the meaning of the output signals generated.
For example, when a data word is being written into the SC register, the ALOC (0:4) L signals cause
decoder E90 to assert its fO output. This enables the state of the EXSGN H signal (which characterizes
the sign of the SC data word) to be loaded into flip-flop E99. The resulting EXPFL H signal can then
be tested by the uPC Gating Control logic and, if true, causes a jump address to be loaded into the
uPC. Or, if data is written into FACM, for instance, decoder E90 asserts its f6 output. The state of the
sign bit, represented by SGN L, causes E99 to assert or negate FAC SIGN H. Thus, the sign of the
FAC can be checked whenever necessary. One can also check to see if the FAC is all zeros by writing
into FACM and FACN (for DP or EP) or FACM through FACS (for EP); the FAC ZERO L signal
will be asserted if the FAC is, indeed, zero.

Now look at Figure 4-11. This logic records features of the data written into TEMP and SCRATCH
registers. Table 4-7 relates the selected registers and the meaning of the output signals generated.
Shown below is a portion of the firmware that includes a number of tests made on the flags listed in
Table 4-7.

1227 DB, SCRATCHS : = TEMP FREE*

1230 DB, SCRATCHT : = [0] FREE* GO TO, NMI1 (1201)

1231 NMIS5, DB, SCRATCHP : = [0] FREE* GO TO, NMI1 (1201)

1232 NMI3, DB, SCRATCHP : = [SHL]SCRATCHP FREE* IF NORMED, NMI3A (1236)
1233 DB, SCRATCHN: = [SHL]} [EXT] SCRATCHN FREE* TEST OVFLO

1234 DB, SCRATCHM: = [SHL] [EXT]SCRATCHM FREE*

1235 DB, SC: =SC[12BIT]IM1 FREE* GO TO, NMI3 (1232)

1236 NMI3A, DB, SCRATCHP : = [SHR] [EXT]SCRATCHP FREE* TEST OVFLO

1237 NMIe6, NO OPERATION FREE* IF FORBIDDEN, NMIS8 (1250)
1240 RND, NO OPERATION FREE* IF EP, NMI7 (1247)

1241 NO OPERATION FREE* IF TEMPSGN, RND1 (1254)
1242 DB: = SCRATCHP[12BIT]K3777+1 FREE*

1243 RND2, DB, SCRATCHN: = SCRATCHN{12BIT] [EXT] FREE*

1244 DB, SCRATCHM: = SCRATCHM[12BIT] [EXT] FREE* IF TEMPZERO, RND4 (1255)
1245 DB, SCRATCHP : = [0} FREE* IF DP, NMI7 (1247)

1246 NO OPERATION FREE* IF FORBIDDEN, OVREC (1405)
1247 NMI7, NO OPERATION FREE* RETURN

1250 NMIS, DB, SC: =SC[12BIT]KIl FREE*

1251 DB, SCRATCHM: = [SHR]SCRATCHM FREE*

1252 NO OPERATION FREE* TEST OVFLO

1253 NO OPERATION FREE* RETURN

1254 RNDI1, DB: = SCRATCHP[12BIT]K3777 FREE* GO TO, RND2 (1243)

1255 RND4, DB, SCRATCHP : = {0] FREE* IF DP, NMI7 (1247)

1256 NO OPERATION FREE* IF TEMPZERO, NMI7 (1247)
1257 NO OPERATION FREE* GO TO, NM11 (1201)

4-22

Table 4-6 Registers Flags (SC, FAC)

WRITEAH | ALOCOL | ALOCI L | ALOC2L | ALOC3 L | ALOC4L | E90 OUT LOW | FILE A ADDRESS | ADDRESS ASSIGNMENT Output Signals Possible

H H L L L L fo 17 SC EXPFL H is asserted if the sign of the
SC is negative and no overflow occurs,
or if the sign is positive and an overflow
occurs.

L H L £2 15 FACS [FAC (48:59)] FACZERO L is asserted if ZEROS L is
L H H £3 14 FACR [FAC (36:47)] true and SGN L is false for each register
) (FACM and FACN for DP and FP modes,
H L L f4 13 FACP [FAC (24:35)] FACM through FACS for EP mode).
H L H £5 12 FACN [FAC (12:23)] CACSIGN Lifthe sion of
t t
H H L £6 1 FACM [FAC (0:11)] 18 asseriec 1 the Sign o

FACM is true (SGN L is low for FACM).

4-23

Table 4-7 Register Flags (TEMP, SCRATCH)

WRITE A H

WRITEBH

B SEL L

ALOC (0:4)L

BWLOC (0:2) L

E117 OUT LO

File A Address

File B Address

Output Signals Possible

X

H

P X

LHHHL
LHHLH
LHHLL
LHLHH
LHLHL

HHL
HLH
HLL
LHH
LHL

P X

f6
f5
f4
f3
2
f6
f5
f4
3
£2

>4 KK 4 XK

21 (SCRATCHM)
22 (SCRATCHN)
23 (SCRATCHP)
24 (SCRATCHR)
25 (SCRATCHS)

1 (TEMP1)
2 (TEMP2)
3 (TEMP3)
4 (TEMP4)
5 (TEMPS)

e RoRaRe

TEMP ZERO H

TEMP SGN H

FORBIDDEN H

NORMED H

MOVE OK H

Used to check for zero fraction in
TEMP1 and TEMP2 or SCRATCHM
and SCRATCHN (DP and FP modes),
and TEMP1 through TEMPS or
SCRATCHM through SCRATCHS
(EP mode); asserted if SGN L is
negated and ZEROS L is asserted.

Used to check the sign of the fraction
in TEMP1 or SCRATCHM; asserted
if SGN L is asserted.

Used to check for the forbidden result
4000 0000 in TEMPI1 and TEMP?2 or
SCRATCHM and SCRATCHN (DP
and FP modes), and TEMP1 through
TEMPS or SCRATCHM through
SCRATCHS (EP mode); asserted if
SGN L is asserted for TEMP1/
SCRATCHM, SGN L is negated for
remaining TEMP/SCRATCH, and
ZEROS L is asserted for all
TEMP/SCRATCH.

Used to check for normalized number;
asserted if TEMP ZERO H is asserted
(0 is a normalized number), or if
NMD H is asserted for TEMP1/
SCRATCHM.

Used to check for possibility that an

entire word can be shifted during

normalization or alignment; asserted

if
ZEROS L asserted for
TEMP1/SCRATCHM, and
SGN L negated for
TEMP1/SCRATCHM, and
SGN L negated for
TEMP2/SCRATCHN

or
ONES L asserted for
TEMP1/SCRATCHM, and
SGN L asserted for
TEMP1/SCRATCHM, and
SGN L asserted for
TEMP2/SCRATCHN.

X = Don’t Care

4-24

Remember that a test comes at least two steps after the data is loaded into the register in question. For
example, the FORBIDDEN test in step 1246 is testing the data loaded into SCRATCHM and
SCRATCHN in steps 1244 and 1243, respectively (the asterisk in the timing statement indicates that
SCRATCH registers, rather than TEMP registers, are being checked).

4.2.7 Clock Logic

The FPP8-A operates within the PDP-8 I/O transfer scheme; i.e., it uses programmed-I/O data trans-
fers, program interrupts, and data break transfers to accomplish its tasks. Consequently, FPP timing
must be synchronized with PDP-8 timing. On the other hand, the FPP is capable of faster, independent
operation, as when it is performing a series of calculations in response to an initial FPP instruction.
Thus, two methods of timing FPP operations are used: PDP-8 timing pulses (TP1 H through TP4 H)
control operations for all Control ROM addresses below 10005 (i.e., in the IOT and data break area);
and, an FPP free-running clock controls operations for addresses above, and including, 1000s (the
terms “Control ROM address” and “uPC address’ are synonomous and both are used throughout).

The Clock logic, shown in Figure 4-12, generates the uPC CLOCK L timing signal, which is used in the
Control logic, and the FILE CLOCK L timing signal, which is used in the Data Path logic. Each of
these signals is derived from TICK H, which is the output of the 8-to-1 multiplexer, ES9. The outputs
of another multiplexer, E38, control the source of TICK H. Basically, there are two sources, viz., the
free-running clock and the PDP-8 timing pulses. The free-running clock is used as the source when the
Control ROM address is 10005 or above, i.e., when uPC2 H is high. When this signal is asserted, E38
gates its Bn inputs (except B3) to the control inputs of E59. The Bn inputs, except B3, are taken, in
turn, from another multiplexer, E33. If the FPP is not in the maintenance mode (i.e., if MAINT H is
low), E33 gates its An inputs (except A3) to the Bn inputs of E38. Assume, for the moment, that the
RE SYNC H signal is low; thus, the Bn inputs of E38 exhibit the following logic levels: B0 is high; B1 is
high; B2 is low; and, B3 is high. The first three levels are inverted and applied to control inputs S2, S1,
and SO, respectively, of E5S9 (output f3 of E38 has significance only in the data break area of addresses);
input D1, which is taken from monostable-multivibrator (MV) ES0, the free-running clock, is selected
as the source of TICK H.

On the other hand, if the ROM address is below 1000, a timing pulse is selected as the source of TICK
H. Because the specific pulse selected depends on the particular ROM address, the ROM takes part in
the selection process. Thus, when uPC2 H is low E38 gates its An inputs (except A3) to the control
inputs of E59; the An inputs (except A3) are taken directly from PROM E69, which is part of the
Control ROM and which provides outputs in response to address 0-377;. If, for example, the address
is one that directs Control operations to take place at TP2 time, the An inputs of E38 exhibit the
following logic levels: AO is low; Al is high; and A2 is low (ignore A3 at present). These levels are
inverted and applied to control inputs S2, S1, and SO, respectively, of E59; input D5, which reflects the
state of the TP2 H signal, is selected as the source of TICK H. Any Control ROM address that directs
an operation to take place at TP2 H time, has T2 listed in its timing statement (i.e., the entry under
“Time”) in the firmware. Similarly, operations taking place at TP1 H, TP3 H, or TP4 H time have
BT1, T3, or T4, respectively, listed in the firmware (BT1 merely states that an FPP data break must be
in progress). Table 4-8 relates Control ROM addresses to the selected input of multiplexer ES9,
describing the addresses below 10005 (except 0, 1, and 2) in terms of the timing statement.

As Table 4-8 indicates, addresses 0, 1, and 2 use TP2 H and TP3 H to generate a TICK H pulse that is
somewhat different from that generated for other addresses. Figure 4-13 illustrates some Control
signals during the FPP initialization procedure and shows how TICK H is generated during address 0.
Assume that the uPC has recently been cleared (either by the FPICL IOT instruction or by the
Omnibus INITIALIZE H signal). Until the initializing instructions, FPCOM and FPST, are issued,
the uPC address will alternate between 0 and 3. The TICK H signal will be generated by TP2 H and
TP3 H during address 0, and by TP4 H during address 3.

4-25

1
CB1 MAINT H 2 3 9 1
CB1FMDO L g E4C 10 721018\8 ; e
cy2 9 STB
TPGH———:@M £ I a '____.__..___|
10
Ea7 3 5 5 1743708 cgaupccLock L P/0 MB4N
6 D6 F1 E6 A 1
73892 | cg4gTe3 “os 15 [V l
CH2 7 JEat H Py |
TP3 H 151p4 74S151 b s DPY I
1 1
) oy ©°° o fcBd TickH % - FILE CLOCK L
cB2 BUSY L
10 754&8/8 2oz oot 7 l
MUX Py |
3
—= D1 6 12
4 Fo p— * I I
0o 14
+3v
S2 St so - L_______J
4 9 10 [N 22
8640 .
E41 L
CE2 4 Vv
TP2 H— 7384\ 3 4
Ji 5 JE4T 7408)6 _|
51 €64
26 12
DP3 FP BREAK H ° [raoa\ 1!
13 e6a
" T3N3 2330042
2 CB4 wPC1tH AO
TPt H (] 12 €47 D4 p———
CB4 uPCIOH —— Al E69
= PROM
CB4 uPC 9 H——A2 256x4
i
CB4 uPC 8 H ———] A3
10 4 CB4 uPC 7 H a4
9 2 5 " —
+3v 2l 1 o L& CB4 uPC 6 H——1 A5 0z
8 H
7474 P 7474 P .
£aa | Eaa | CB4 uPC 5 H —— A6
FRICK p2— FRACK D1 p—
C'CDa %_ CB4 uPC 4 H ——{ A7
(8 ME1 ME2
Tu 1
—’1 T‘——150ns =
A I Y
—| —100ns cios iR1S cior gR14
56Pf S5.11K 27Pf § 5.11K CB1 MAINT L —
—
14|15 6 |7
1 113 9 5
" a 10 12
74123 = 74123 P—
E50 E50
150nsooi |OOn;D.5_
4 12 STB S0 An Bn Fn o
T 3 Tn 74157 74L8158
+3Vv L L - L H
L L "= H L
L H | - L H
— RE SYNC H Ji
R32 _
470 3d 5 rarsr i 18], 74518 | V‘B | t " H H t
*sv N 14 £33 13 E38 43|12 7Y CB4 BRK RQ H
——Q A3 +3v—083 745151
cB! FMDO L %'2 10482 I PP
ot " s o 2|2 stB | s2|s1{sojoo | o1 [p2 [D3 [Da [Ds | D6 [D7 | F1 [crLock
d a2z f2o o2 SOURCE
—{6 b | —-—————(5 Of L L L L L/H - - - - - - -
- LH | TS3
cB3 PcL2H—2 1 5 6 b 7 o npe
3 7402 7404 24 At 1 o— Yo [:1] L L |L|H |- LH| - - - - - - L/H | FREE
CB3 LOAD uPC L—— E30 E35
360 L 8 . L Livft |- | - tum|- - - | - - | /H |syncep T2
to— L - - _ - _ _ -
3y o 2dng to b 3ola0 L {H|H LM L/H | NONE
STB SO STB SO L HolL L |- - - - lwmt - |- - | um |BT
B T1 T|5 Tv L HiL W |- - - - - LH | - - LW | T2
| uPC2 H L Hi{H|L |- - - [- LH |- [uwn |13
T CB1 MAINT H L HIH|H |- - - - . - - LH { LM |Ta
08-1758

Figure 4-12 Clock Logic

4-26

Table 4-8 Clock Timing Sources

Control ROM Address

Selected E59 Input

Remarks

Below 10004
0,1,and 2

Addresses having BT1
in timing statement

Addresses having T2
in timing statement

Addresses having T3
in timing statement

Addresses having T4
in timing statement

10004 and above

10004 and above

Selected 10004-and-above
addresses when going back
below 10005.

DO

D4

D5

D6

D7

D1

D6

D2

Starting address is set by IOT
Decoding logic at TP2 time;
loaded into uPC at TP3 time.

Using TP1 H.

Using TP2 H.

Using TP3 H. Used in both
normal mode and when
single-stepping in maintenance
mode (MAINT H asserted).

Using TP4 H.

Using free-running clock. (Also
used when carrying out mainte-
nance firmware as long as
MAINT H is not asserted.)

Using TP3 H. Used when single-
stepping in maintenance mode
(MAINT H is asserted).

Using TP2 H to generate
TICK H.

4-27

The initializing procedure begins when a PDP-8 TAD instruction loads the AC register with the infor-
mation listed under the FPCOM instruction (bits 9-11 represent the field address of the APT pointer).
The FPCOM instruction follows the TAD instruction (if not, the AC register must not change until
FPCOM is issued), causing the AC contents to be loaded into the FPP Command register (bits 0-8)
and the FPP DB register (all 12 DB bits are loaded, although only bits (9:11) will later be used). When
FPCOM is issued the IOT decoding logic asserts uP9 IN L. Since address 0 has already asserted both
uP10 IN L and pP11 IN L, address 7 is loaded into the uPC by the same TICK H pulse that loads the
DB register. At the next TP4 H pulse, the uPC reverts to address 0 and the field bits are transferred
from the DB register to the FIELD register. Another TAD instruction follows (not necessarily imme-
diately after FPCOM) and loads the AC with the relative address bits of the APT pointer. This address
is transferred to the DB register, from there, along with the field address, to the APTP register, and,
finally, to the BKMA register. Figure 4-13 describes graphically how this is accomplished.

Note that when the uPC address becomes 300; the BRK RQ H signal is asserted. Each address below
10005 that directs the Data Path logic to load its BRKMA register, also causes the BRK RQ H signal to
be asserted (address 3005 directs that the BKMA register be loaded, address 3015 provides the pulse
that actually loads the register). Then, the data break system acknowledges the request at TP3 H time,
negating BRK RQ H, and begins a priority check; if the FPP has priority, the BKRMA is loaded at TP4
H time of the following address. When address 3005 (or any address having T3 in its timing statement)
is loaded into the uPC, output D4 of PROM E69 goes low (Figure 4-12). When the FPP is not in the
maintenance mode (i.e., MAINT H is low), the input at A3 of E33 causes BRK RQ H to be asserted at
output f3 of E38. At the following TP3 H time the break request is acknowledged and TICK H is
generated. Certain addresses below 10005 can be used in the maintenance mode. In such circumstances
multiplexer E33 selects its Bn, rather than An, inputs, and the BRK RQ H signal is asserted as a result
of a low input at Bn of E33. This low is provided by the FMDO L signal, which is asserted when the
FMDO instruction is decoded.

When the FPP has retrieved the APT it begins executing FPP instructions at the address specified by
the FPC. Figure 4-14 shows the Clock logic timing as it appears during an assumed sequence of
operations that begins with the fetch of the FCLA instruction (Clear the FAC). A portion of the
firmware is shown below. This relates to the uPC addresses in Figure 4-14 and is included for
reference.

20, HHHH HHHH HHHH HHXX XHHH HHHL HHHH HHHH HHHH HHHH LLLH
21, LHLH HLHH HHLL LLXX XHHH HHHL HHHH HHHH HHHH HLLL HLLL
22, HHHH HHHH HHHH HLXX XHLH LLHL HHHH HHHH HHHH HHHH HLHH
23, HHHH XXXX XLLH LHHH HHHL HHHH HHHL HHHH HHHH HHHH HLHL

1002, HHHH XXXX XHHH HHXX XHHH HHHH HHHH LLLH HHLH LHHH
1050, HLLH HLHH LHHH HHXX XHLH LHHH HLHH HLLH HHLH LLHL
1055, HLLH HLHL HHHH HHXX XHLH LHHH LLLL LLHH HHHH HHHH
72, HHHH HHHH LLLH LHHH HHHL HHHL HHLH LHHH LHHL LLHL LLLH

4-28

6V

TP3H

wPC ADDRESS

FPIOT L

uPBINL

prPOINL

LOAD pPC L

BRK RQ H

BUSY H

7] [L7] L7

|
I
3| 0

300

30t

I FPCOM l I

_.__‘_____‘ -4 4 4 -

r

LOAD AC REGISTER
WITH FPCOM BITS
(AC9 —11 REPRESENTS
APT POINTER FIELD
BITS)

APT POINTER
FIELD BITS TO

z
|
1
\
|
|
I
|
I
[
!
I
|
|
|
i
l
|
Il
I
I
|
!
|
|| FPP DB REGISTER
|
|
!

FIELD | LOAD AC REGISTER
| miTs TO| WITH12 LEAST-SIGNIFICANT
FPP FIELD B8ITS OF APT POINTER

I

|

\

|

|

REGISTER! |
,l L |
I

I

Figure 4-13 Start-Up Timing

12 APT POINTER
BITS TO DB
REGISTER,

FIELD REGISTER

TO TEMP REGISTER

DB AND TEMP
TO APTP
REGISTER

08-1759

/

/

;

Figure 4-14 FCLA Timing

4-30

*20

20 FETCH, BKMA: = FPC T3
21 FETCH1, :=FACE[EXPSIZE]IM30 T4 BKCMD: =7
22 FPC:=FPC[+]K1; DB: =MD BT1
23 TEMP: =FIR(9:11) T2 INSTR DISP 1
*1002
/CLEAR FAC
1002 FCLA, NO OPERATION FREE* GO TO, CLRFAC (1050)
*1050
1050 CLRFAC, DB,FACM:=[0] FREE* IF DP, CLRF1 (1055)
1055 CLRFI, DB, FACN: =[0] FREE* EXTEST
/XTA
*72
72 XTA, BKMA, TEMP: =X0[+]FIR(9:11) T3 SUB, GETXR (235)

The timing shows that a previously requested data break has been granted (FP BREAK H is high).
The FCLA instruction is placed on the MD lines during TS2 L of the FPP’s data break cycle. The
instruction is decoded by the Control’s PLA and address 1002 is loaded into the uPC by the TICK H
pulse generated at TP2 H time. The same TICK H pulse causes the uPC2 H signal to go high, remov-
ing the ground from the ‘“‘clear” input (pin 3) of MV E50 (Figure 4-12), and from the clear input of
both E44 flip-flops, FRICK and FRACK. The RE SYNC H signal is low at this time; consequently,
ES0 begins to run free. Furthermore, the low RE SYNC H signal results in multiplexer E59 selecting
the free-running clock output as the source of TICK H. This source remains selected as long as RE
SYNC H remains low.

During address 1050, the FPP tests to determine the operating mode; the timing assumes DP. In
address 1055s, an exit test is made. The next uPC address will be either 1000; (if an exit is to be made)
or 0020s (if a new instruction is to be fetched). The example assumes that a new instruction is to be
fetched; hence, the next address to be placed in the uPC is 0020z, which uses Omnibus timing pulses to
generate TICK H pulses. Whenever control of the timing of FPP operations is to pass from the free-
running clock to the Omnibus timing pulses, a resynchronization takes place. This procedure begins
when the PCL 2 H signal goes low, an event that occurs each time an address below 10005 is about to
be loaded into the uPC, as is the case illustrated by the timing (if an exit were to be made in this
example, rather than a new fetch, the PCL 2 H signal would return high in a matter of nanoseconds;
thus, the third 100NS (1) H pulse would generate a TICK H pulse that would cause 10005 to be loaded
into the uPC). When PCL 2 H goes low, the RE SYNC H signal goes high. This action, first, changes
the control inputs of multiplexer ES9, so that the free-running clock is removed as the source of TICK
H pulses and, second, ensures that the clock will stop running after one more cycle of oper-
ation.Multiplexer E59 now selects input D2 to be the source. This source generates a TICK H pulse at
TP2 H time if the FRACK flip-flop is set. As the timing shows, FRICK is set when MV E50 stops and
FRACK is set by the following TP1 H pulse. At the next TP2 H pulse, the FPP operations are
resynchronized with the Omnibus timing and a new instruction fetch operation begins.

4.2.8 Instruction Dispatch Logic
When FPP instructions are fetched they are decoded by the Instruction Dispatch logic. The logic
generates uPC input signals that force the appropriate Control ROM location to be addressed.

Figure 4-15 shows the Instruction Dispatch 1 logic. Instruction Dispatch 1 is the primary level of
instruction decoding; it decodes the Special instructions and points to the address calculation address-
es for the Data Reference instructions. The part of the firmware that deals with instruction fetch and
Instruction Dispatch 1 is included below for reference.

4-31

CB6 wPCTRL 1 L ——
CB6 uPCTRL ® L ——

CB6 uPCTRL 2 L

745139
EN3
Al

O——«——{D3

D2

7]

CB6& uPCTRL 3 L

7442
E15

F5

it

CB6 wPCTRL 4 L

MD10 L ——
MDY L —
MD8 L —
MD7 L ——
MD6 L —
MD5 L —

MD4 L —

MD2 L —
MD1 L —

MDO L —

DP3 FP
BREAK H

>
1 >
i,
>
1 >
1>

hd

CB3 INST DISP 1 L

CB3 INST DISP 1 H

E20
2 ceLa
B2 DP H R FO|— CB6 wP10 IN L
CBT SIGN H 12 F1lcoe LPs INL
CB7 FAC SIGNH 13 F2l—ces upe INL
CB7 FAC ZERO L 14 s S
15 F4|—cB6 uP6 IN L
6
g F51—CB6 wP5 IN L
17 F6 CB6 uP2 IN L
18 fr
CB2 START EX H
19
110
1
112
113
CB3 EXSTRT L
741174
P/O E48
B3 F
—{05 RS(—crop n
CB4 uPC CLOCK L
CLR CLK
CB4 RESET L
E£34
E43 mrnp
e]
aa MIN———CB6 uP2 IN L
L M5(1)fo——|—CB6 uP6 IN L
a3 MAlo———CBE kPT IN L
M3(1)lo———CB6 P8 IN L
A2 M2(Njo———CB6 uP9 IN L
Al M1(1)fo———CB6 wP10 IN L
Mo (njo
A enp
08-1761

Figure 4-15 Instruction Dispatch 1 Logic

4-32

*20

20 FETCH, BKMA:=FPC T3
21 FETCH]1, : =FACE[EXPSIZE]M30 T4 BKCMD: =7
22 FPC: =FPC[+]K1; DB:=MD BT1
23 TEMP: =FIR(9:11) T2 INSTR DISP 1
/INSTRUCTION DISPATCH 1 DISPATCHES MICRO PC AS FOLLOWS:
/ INSTRUCTION ADDRESS INSTRUCTION ADDRESS
/ SETX 34 SETB 36
/ LDX 40 ADDX 44
/ JSA 50 JSR 60
/ BRANCH (TRUE) 14 BRANCH (FALSE) 24 AND EXTEST
/ TRAP 74 INX 26
/ ALN (NOT XRO0) 70 ALN (XRO0) 1030
/ XTA 72 ATX 1040
/ LTR(0) 1026 LTR(1) 1016
/ JAC 1014 FNORM 1006
/ FNEG 1004 FCLA 1002
/ FPAUSE 2 FEXIT 1000
/ STARTF 1010 STARTD 1012
/ STARTE 1020
/ ALL UNDEFINED EXTEST

/ALL DATA REFERENCE INSTRUCTIONS (LEA, LEAI, FLDA, FADD, FSUB, FDIV,
/EMUL, FADDM, FSTA, AND FMULM) DO ONE OF THE FOLLOWING ADDRESS CALC:

/ ADDRESS MODE LABEL ADDRESS
/ 12 BIT DIRECT (NOT DP) DIRFP 100

/ 12 BIT DIRECT (DP) DIRDP 102

/ 24 BIT, NO INCR, NO INDEX NINC24 114

/ 24 BIT, INCR, NO INDEX INC24 112

/ 24 BIT, INDEXED X24 110

/ 12 BIT INDIRECT, NO INCR, NO INDEX INDIR 134

/ 12 BIT INDIRECT, INCR, NO INDEX INCIND 132

/ 12 BIT INDIRECT, INDEXED XIND 130

////IN ADDITION, GATING IN MAJOR REGISTERS CAUSES THE FOLLOWING:
/1111//INSTRUCTION OPERATION
/11/////DIRECT 12-BIT ADDRESSING TEMP: =3*FIR(5:11)
{111]//[INDIRECT ADDRESSING (ALSO LEAI) TEMP: =3*FIR(9:11)
////]///ALL OTHER INSTRUCTIONS, 24-BIT

1111111 ADDRESSING MODE TEMP: = [R3R]FIR(9:11)

At BT1 time, when Control ROM location 23; is addressed, control signals uPCTRL (0:4) L cause
INST DISP 1 L to be asserted by decoder E15 (Figure 4-15). When the FPP instruction is placed on the
MD lines early in TS2, selected MD (0:11) L signals are gated to the decoding elements, E20 and E43.
If the FPP instruction has MD (0:7) L negated, NAND gate E34 enables PROM E43 to decode MD
(8:11) L. The uPC is dispatched by E43 as indicated in Table 4-9.

When the FEXIT instruction is dispatched, Control ROM address 1000s begins the exit sequence. The
APT is stored and the FPP halts in address 1 with the interrupt flag raised. The FSTOP H signal,
which is asserted when FEXIT is dispatched, ensures that the FEX H flag in the Exit Test logic is
cleared; thus, FEXIT is recorded as being the reason for the exit operation.

4-33

Table 4-9 PROM E43 Input/Output Signals

ve-v

PROM Input Signal Low Qutput Signal Asserted Low Control
Code A4 A3 A2 Al A0 uP_ IN L ROM
(GND)|(MDS8 L) |(MD9 L)|(MDIOL) | MDI1L)[|12| 6| 7 | 8 | 9] 10| M7(1)| |Address | FPP Instruction
0 X X X X X X| XX 0070 ALN (XR=7)
1 X X X X X1 XX 0070 ALN (XR=6)
2 X X X X X XX 0070 ALN (XR=5)
3 X X X Xl X| X 0070 ALN (XR=4)
4 X X X X X|] X X 0070 ALN (XR=3)
5 X X X X| XX 0070 ALN (XR=2)
6 X X X X X | X 0070 ALN (XR=1)
7 X X X X | X 1030 ALN (XR=0)
10 X X X X X X X 1014 JAC
11 X X X X X X 1012 STARTD
12 X X X X X 1010 STARTF
13 X X X Xl X 1006 FNORM
14 X X X X X 1004 FNEG
15 X X X X 1002 FCLA
16 X X X 0002 FPAUSE
17 X X X 1000 FEXIT

All other Instruction Dispatch 1 operations are initiated by E20, a Field Programmable Logic Array
(FPLA). Table 4-10 relates the input and output signals of the FPLA and indicates how each instruc-
tion dispatches the uPC.

Each of the Branch instructions causes a jump to a designated uPC address if the condition specified in
the instruction is met. The stated condition always involves the contents of the FAC; the three signals
FAC ZERO L, FAC SIGN H, and SIGN H allow the FPLA to test the FAC contents to determine if
the condition is met. If the condition is satisfied, uPC address 145 is dispatched; the table entry in the
right column states that the branch condition is true and notes what the condition is. For example, in
the first entry of the branch instructions, the jump is made because the tested condition (FAC must be
zero) is true. If the condition is not met, a different address is dispatched; then the right-column entry
states that the branch condition is false and why. For example, in the first branch-false entry, the jump
is not made because the tested condition (FAC must be zero) is false, the FAC being not equal to zero.

A branch-false condition can dispatch one of two uPC addresses. During branch-false, the FPLA
asserts the EXSTRT L signal along with uP7 IN L and uP9 IN L. During normal operation, the
EXSTRT L signal is ignored, uPC address 24; is dispatched, and a new FPP instruction is fetched.
However, if the single-cycle mode of operation has been programmed (FPHLT is issued prior to
FPST), the FPHLT instruction has caused the Exit Test logic to assert START EX H. Consequently,
uPC address 1024 is dispatched and an exit operation is started at the end of the branch instruction. If
EXSTRT L were not asserted, the exit would occur at the end of the instruction following the branch
instruction; thus, two FPP instructions, rather than just one, would have been performed.

Two of the table entries test the SIGN H signal. These entries deal with the JAL instruction, which
tests a floating-point number to determine if the fraction can be fixed, i.e., converted to an integer.
Should the fraction exponent be greater than 27;, the number cannot be fixed. During the fetch of any
FPP instruction, the FAC exponent is examined by the ALU. xPC address 215 causes the FAC expo-
nent and -305 to be gated to the ALU. If the sign of the exponent is positive, the exponent and -30g are
added in the ALU. Should the exponent be greater than 27, the addition produces a result that leaves
OBUS 4 L high. Thus, SGN L is high and SIGN H is low. If the instruction that has been fetched is
JAL, the negated SIGN H signal causes a branch true operation to be carried out. But, when the
exponent is less than 27, or is negative [in this case 77775 is placed on the OBUS (4:15) L lines], SIGN
H is asserted, causing a branch-false condition.

Figure 4-16 shows the Instruction Dispatch 2 and 3 logic. Instruction Dispatch 2 (related firmware
shown below) decodes the FLDA, FSTA, and LEA Data Reference instructions, and points to prelim-
inary arithmetic routines that must be carried out prior to Instruction Dispatch 3, which dispatches the
purely arithmetic Data Reference instructions.

/DIRECT ADDRESS CALCULATION

*100

100 DIRFP, BKMA, TEMPI1: =TEMP[+]BR; DB: =0 T3 INSTR DISP 2
/DP CALCULATION ADDS 1 BECAUSE BASE PAGE ALWAYS CONTAINS 3-WORD ARG.
*102

102 DIRDP, BKMA, TEMP1:=TEMP[+]BR+1; DB: =0 T3 INSTR DISP 2

4-35

Table 4-10 FPLA 1/O Signals

Outputs Asserted Low
(no entry indicates the output
Input Signal Logic Level is disconnected for the related
(no entry implies ‘don’t care’) input conditions) FPP Instruction Represented by Input Signals
Le I Iy I, It Iy 1, I, I, I F¢ Fs F, F, F, F

-
°©
oo
2
ri
N

I13 Il2

L INX
- SETX
L

SETB

LDX

- ADDX

- JSA

JSR

ATX

XTA

- TRAP

TRAP

DIRFP—Direct Base Page ADDR (not DP)
DIRDP—Direct Base Page ADDR (DP)

24-Bit ADDR

24-Bit ADDR (LEA or IMUL)

Increment XRO (24-Bit or Indirect ADDR)
Increment XRO (24-Bit or Indirect, LEA or IMUL)
Do Not INCR (24-Bit or Indirect ADDR)

Do Not INCR (24-Bit or Indirect ADDR—LEA, IMUL)
Indirect ADDR

Indirect ADDR (LEAI or IMULI)

L LTR (““OR” ED with Branch)

- BRANCH TRUE-FAC=0

- BRANCH TRUE-FAC>=0

- BRANCH TRUE—-FAC<=0

- BRANCH TRUE-ALWAYS

- BRANCH TRUE-FAC<>0

- BRANCH TRUE-FAC<O0

- BRANCH TRUE—-FAC>0

BRANCH TRUE-SIGN H Negated (JAL Test)
- BRANCH FALSE—-FAC<>0

- BRANCH FALSE-FAC<O0

- BRANCH FALSE-FAC>0

- BRANCH FALSE—FAC=0

- BRANCH FALSE—-FAC>=0

- BRANCH FALSE-FAC<0

- BRANCH FALSE—SIGN H Asserted (JAL Test)

1
i
|
1
N o
==

U el ol all e

-

DM e e e
- e R
el sl el iR RN
U e« ol e« ol e« ol g« ol

I

I

i

]

L s e e rljasfi=aiiesiiasiiasiiesiiasiias
(==l qaerfiasiiasiasiiasiiaciiasiianll o
i
|
|
U ol ol onll onll enll en i ol ol
el el ol N ol
U ol ol el
b=
|

R iR E el

]

I

I

I

[

I

I
oo

I

=

T |
[
|
[
|
|

I
|
]
=

==

DT e e
|
e
o T m

}

|

I

i

i
|
ol clclololalclolioiol!
I
1

]
1
1
I
|
|
I
=

L o S TS oo T N o B O B |

|
o

I

I

= o
]
1
]
|
|

=
I
I
i
I
I
I
I
L ol ol onl anlt onlll ol el unl BN on i onll antll el el el enlll el

1
asgucjiariariiarfaviiariiaciarfasiiariiariiesiiasiiasiiasiiasl el eliacll eulie sl ullaslieslia siicviia s fac e olia sl viiasiiaaliaclian
I =

=>jiasfiasfarfiasfaciiacfariiesfasfiasiicriaxienienliariia sl e~ <= < s ol A« sl rfie e sl cofiasfiaslia slife sl ar il o)
I
I
I
|
eofjasfasfasiariiesfiarferfiacfiaciiesfasiiasfasiiasiiesfiasfusiicsfesiicsiicslesiicsfiarfcsasfiariiasiasiiasiicrlacliesliasliaslies
I
I

]
@siiasiiasiiasiiasiiasiiasiiariicsiicviiasiieriiaciiasiicsiic vl ol BN ol B oo B BN o BN
slololicliclalioliolalielalal el ol ol ale il
asliasfiasfiarfiasfiariiasfiasiiaslasliosiiasiiasiiasiie siia =l
(qull ol el ulle o e olle sl ol el quileoiiasiia slie s B |
(qnll qalli=>S B o« =l ol ol ol sl il el el vl
quilfa sl anlia slla il anlia sl wa i« ol e ol i« ol |

ml
e ol B B o e o I
i [}
[}]
(i el el el ol all ol
1
1
I
(qnll sl aull el el gul g
i
(el el ol el el el el ol anl sl call el cull wa Bl
[}

4-36

745139
EN3
CB6 LPCTRL 1L —] A1
CB3 INST DISP 1 H
CB6 wPCTRL @ L —— B1
FA3 7442
ENBI E15
T D3 s o—0[>—
= INST DISP 2 L
CB6 uPCTRL 2 L D2 fa o
CB6 wPCTRL 3 L o1 b INST DISP 3L
CB6 uPCTRL 4 L D@
MD@ L ——0O CB2 DPH
__ raLsira E5Twzan p
D4 Ad
MDI L ——0 R4 () M6 (1) Jo
D3 A3
. I P R3(1) — a2
Mp2 L ——o — Dt R2(1) Al
M2 () p-
—Of D@ - A0
l— R1(1) Mi(1) o
MD3 L ——d = Mg (1) o
CLR CLK ENB
° T |
L———— B4 RESET L
€53
M7(1) p-
A4 M6 (1) -
A3 M5(1) P
DP3 FP BREAK H~Do— Ma b
o A2
M3 p
MD4 L ——O A1 Mz2(1) p
— AQ M1(1) o
Mo (1) o
CB4 uPC CLOCK L44>—~) ETNB
745139 7442
B1 | A1 | OUTLO D3 | D2 | D1] DO | OUTLO
10| Lo FAD o|to| o] to| ro
Lo | i FA1 0| 0| Lo| wi F1
HI | LO | FA2 o | o | m | Lo F2
HL | HI FA3 o | Lo v | F3
o | | o] o] ra
o |H | Lo| i F5
o |m | m| o] e
o | m | | A 7

Figure 4-16 Instruction Dispatch 2 Logic

4-37

CB6 uP3INL

CB6 uP2 INL
CB6 uP4 IN L
CB6 uP6 IN L
CB6 wP7 IN L
CB6 uP8 IN L
CB6 uP9 IN L
CB6 wP10 IN L
CB6 P INL

08-1762

/ * * *® * * * % /
/INSTRUCTION DISPATCH 2 DISPATCHES MICRO PC AS FOLLOWS: /
/ INSTRUCTION LABEL ADDRESS /
/ LEA, LEAI (FP AND EP MODES) LEAB 256 /
/ FLDA LOAD 200 /
/ FSTA (NOT DP) STOREF 220 /
/ FSTA (DP) STORED 224 /
/ FSUB GETN 260 /
/ FADD, FADDM, FMUL, FMULM, FDIV GETARG 240 /
/ IMUL (SAME OP CODE AS LEA, LEAI /

BUT DP MODE) GETARG 240 /
/ NO OTHER INSTRUCTIONS USE THIS DISPATCH /

Data Reference instructions specify both the address of data and the operation to be performed on the
data. The Instruction Dispatch 1 logic decodes the instruction and causes the FPP to calculate the
address of the data. During this primary level of instruction decoding, that part of the instruction that
specifies the operation to be performed on the data must be retained, since the instruction is fetched
only once. Then, during either Instruction Dispatch 2 or Instruction Dispatch 3 the appropriate oper-
ation can be carried out.

Figure 4-16 includes flip-flop E48. During the primary decoding operation the INST DISP 1 H signal
enables E48 to be clocked. The information represented by the MD (0:4) L signals, which identifies the
operation that will ultimately be performed on the data, is loaded into FA8.

After the data address has been calculated, the INST DISP 2 L signal is asserted. This signal enables
PROM E53 to decode the 5 MSBs of the instruction and dispatch the uPC to the appropriate address.
Table 4-11 relates the input and output signals for E53 and includes the FPP instruction associated
with each PROM code.

If the Data Reference instruction is FLDA, FSTA, or LEA, an exit test is made after Instruction
Dispatch 2. The remaining Data Reference instructions go through the final decoding level initiated by
Instruction Dispatch 3 (firmware shown below). The INST DISP 3 L signal enables PROM E57 to
decode the 5 MSBs of the instruction and dispatch the proper uPC address. Table 4-12 relates the input
and output signals for E57 and includes the FPP instruction associated with each PROM code.

/ARITHMETIC DISPATCH
1037 ARITH. NO OPERATION FREE INSTR DISP 3
/ % * % * * * * *
J/INSTRUCTION DISPATCH 3 DISPATCHES ARITHMETIC
/ INSTRUCTIONS AS FOLLOWS:
/ INSTRUCTION LABEL ADDRESS
/ FADD, FADDM (DP MODE) DPADD 1400
/ FADD, FADDM (NOT DP) FADD 1401
/ FMUL, FMULM FMUL 1402
/ FDIV FDIV 1403
/ IMUL IMUL 1404

4-38

6ty

Table 4-11 PROM ES3 Input/Output Signals
ES53 Enabled for INST DISP 2 L

PROM Input Signal Low Qutput Signal Asserted Control
Code A4 A3 A2 Al AO uP_ IN L ROM
(DPH) | MD3 L &MD4 L HIGH) | (MDOL)|(MD1 L)](MD2L) 416 7| 81]9]|10]11 | Address | FPP Instruction

0 X X X X X XX X X] X 0256 LEAI

1 X X X X X| X X X]| X 0256 LEA
10 X X X X X1 X 0240 FMULM
11 X X X X X 0220 FSTA
12 X X X X X 0240 FADDM
13 X X Xl X 0240 FMUL
14 X X X Xl X 0240 FDIV
15 X X X1 X]|X 0260 FSUB
16 X X X| X 0240 FADD
17 X X 0200 FLDA
20 X X X X X X 0240 IMULI
21 X X X X1 X 0240 IMUL
30 X X X X1 X 0240 FMULM
31 X X X X X 0224 FSTA
32 X X X} X 0240 FADDM
33 X X] X 0240 FMUL
34 X X X| X 0240 FDIV
35 X X| XX 0260 FSUB
36 X X| X 0240 FADD
37 X 0200 FLDA

ov-v

Table 4-12 PROM ES7 Input/Output Signals

ES7 Enabled for INST DISP 3 L

Input Signal Low Output Signal Asserted | Control

PROM ™24 A3 A2 Al A0 wP_INL ROM

Code (DPH) | MD3L &MD4 LHIGH) | (MDOL){(MD1L)|{(MD2L)|{| 2 | 3 | 9| 10| 11 | Address | FPP Instruction
10 X X X X X1 X X 1402 FMULM
12 X X X X | X X 1401 FADDM
13 X X XX X 1402 FMUL
14 X X X XX X| X 1403 FDIV
15 X X X| X X 1401 FSUB
16 X X X | X X 1401 FADD
20 X X X X X1 X | X 1404 IMULI
21 X X X XXX 1404 IMUL
30 X X X X | X X 1402 FMULM
32 X X X | X 1400 FADDM
33 X X| X X 1402 FMUL
34 X X X| X X| X 1403 FDIV
35 X XX 1400 FSUB
36 X XX 1400 FADD

4.2.9 Exit Test Logic

At the completion of every operation the FPP logic makes a test to determine if a new instruction
should be fetched or if an exit should be carried out immediately. If a new instruction is fetched, it
might be an FEXIT instruction; thus, the sequence of FPP operations would end, although under
controlled conditions. However, if the test calls for an immediate exit, it could be for one of three basic
reasons, viz., because the IOT instruction FPHLT was issued by the CPU, because the FPP calcu-
lations resulted in overflow or underflow, or because a divide-by-zero operation was detected. These
events occur without FPP-instruction control and in a random fashion, and it is important that a
means be provided for determining why an exit takes place. The Exit Test logic not only decides
whether or not to exit but also records the reason for an exit. The logic is illustrated in Figure 4-17.

At the end of every FPP operation or calculation, the FETCH NEXT L signal is asserted by the uPC
Gating Control logic. If an immediate exit is called for, the START EX H signal is asserted at the
output of NOR gate E94. Thus, uP2 IN L is asserted, address 1000s is loaded into the xPC by the next
clock pulse, and the exit sequence is carried out. Should the START EX H signal be low, uP7 INL is
asserted, instead. Hence, address 20s is loaded into the uPC and a new instruction (which might be
FEXIT) is fetched.

The START EX H signal can be asserted by the outputs of the Status register, gated flip-flops E14 and
E3. The output of E3, FEX H, is asserted whenever the PDP-8 CPU issues an FPHLT instruction. At
TP3 time of such an instruction, the FORCE EXIT flip-flop is dc set. The flip-flop output signals cause
FEX H to be asserted at the next occurring uPC CLOCK L pulse, as illustrated in Figure 4-18. The
next uPC CLOCK L pulse clears the FORCE EXIT flip-flop, and the resulting high input at the gate
(G3) of E3 keeps FEX H asserted until the exit test is made (NAND gate E40 can be enabled only by
the FPP FEXIT instruction). Then, FEX H can be negated by the RESET L signal or by the FPIST
IOT instruction.

Another way of negating the FEX H signal is by the FEXIT instruction. When this instruction is
fetched, the Instruction Dispatch 1 logic (Figure 4-15) asserts uP2 IN L and F STOP H. The exit
sequence is carried out and the FPP halts with the uPC address equal to 1. Therefore, AND gate E36 is
enabled, as is NAND gate E40 (F STOP H stays high until RESET L is asserted or until another FPP
instruction is fetched). Now, the gate of E3 is low, allowing the low at D3 to be transferred to R3(1) at
clock time. This procedure ensures that, should FPHLT and FEXIT occur at approximately the same
time, causing a common exit, the recorded reason will be FEXIT rather than FPHLT.

The outputs from E14 of the Status register likewise assert START EX H. The DIVO H signal goes
high when address 1630s is loaded into the uPC. This address indicates that the FPP logic has detected
a zero divisor during a divide calculation. The other three outputs of E14 indicate overflow or under-
flow conditions that might develop during arithmetic calculations. The DP OVFLO H signal is
asserted during DP-mode calculations and indicates that the calculation has resulted in either an
overflow, i.e., the result is too large or small to be contained in a 24-bit word, or the forbidden number
4000 0000s. The EXP OVFLO H and EXP UNDFLO H signals are asserted during FP-mode and EP-
mode calculations and indicate that the calculation has resulted in a number having an exponent too
large or too small to be contained in a 12-bit word.

The three overflow indications are produced in response to outputs from PROM E4, a 1024-bit
PROM organized to provide 256 4-bit data locations. Table 4-13 lists the PROM input codes, showing
the state of the PROM input signals and relating these inputs to the actions carried out by gated flip-
flop E14.

4-41

(SET DIVIDE-BY-ZEROQ)

CB6 uPTINL

CB6 uP2 INL

(uPC=1630)
DIV@H
8613 r
Ea El4 | ‘ E28
CB3 INST DISPIL a7 PROM +3v—lpg ROW 90———— [
c82 DP H———] A6 04 P Gg DP OVFLOW H
CB2 TEST OVERFLOW L ———| AS D1 RI
TART
DP8(CB3) OVFLO H—— A4 03 p———doe1 E70 E9a)oBES Ex H
EXP OVFLOH E28
CB7 FORBIODEN H ———| A3 b2 I —
CB7 SIGN H ———] A2 p2lo—"t———dcz R20 CB3 EXSTRT L
A1 b3 EXP UNDFLO H
b CB2 FETCH NEXT L
A D1 63 Ly
ME! ME2 CLK CLR E52
—
> B “CB2 NZ SETH
= O >
8613
b3 PO E3 CB4 RESET L
CB3 F STOP H —_ R3() | CB2 FEX H a
o ‘ o 63
Y —
€82 BUSY L £36 CLK CLR B4 4PC CLOCKL—{C @ CBIFEXITL
CBt SYNCED uPC11 H —]
: CB4 .PC CLOCK L FORCE
CB1 FPIST L —OD—- ExIT
CB4 BTP3 H o1 CBIFEXIT H
T
CB4 RESET L
CB1 FPCOM L GD
7415174
— P/OEB
D@ R@(1) CB2 Z TRAP H
DATA {1 L —Q J
CLK CLR
CB4 CLRCRH Dor
8613
CB1 FPHLT L J\{> Dn | Gn Rn (1)
cB4 BTP3 H— HL L LO L HI
Lo| Lo | Lo
X | HI | STATE THAT
EXISTED BEFORE
CLOCK PULSE

Figure 4-17 Exit Test Logic

4-42

08-1763

-~
L.

FPIST L
((_((
FPHLT L | .l L2
BTP3 H d | (0 (
LR 122
1¢ ((
)} L]

FEXIT L D

gﬂ
g
)

PC
cLodk L
{((L
FEX H " H \l
({(
START EX H M e L

({(’
FETCH NEXT L M 9 I]
=

zP2 IN L

#PC=1000
(EXSTRT)
08-1764

Figure 4-18 Timing, FPHLT EXIT

4-43

Table 4-13 PROM E4 Input/Output Signals

PROM Input TEST
Code INSTDISP1L | DPH |OVFLOL | OVFLO H | FORBIDDEN H |SIGN H | EXPOVFLOH | EXPUNDFLOH | D4 D3 D2 DI Action Taken by E14
220 HI LO LO HI LO LO LO LO HI HI HI LO | SET EXP UNDFLO H
222 HI LO LO HI LO LO HI LO LO HI LO HI | CLR EXP OVFLOH
224 HI LO LO HI LO HI LO LO HI HI LO HI | SET EXPOVFLOH
225 HI LO LO HI LO HI LO HI LO HI HI LO | CLR EXPUNDFLOH
234 HI LO LO HI HI HI LO LO HI HI LO HI | SETEXPOVFLOH
235 HI LO LO HI HI HI LO HI LO HI HI LO | CLR EXPUNDFLOH
310 HI HI LO LO HI LO LO LO HI 1LO HI HI | SET DP OVFLO H (FORBIDDEN H)
314 HI HI LO LO HI HI LO LO HI LO HI HI | SET DP OVFLO H (FORBIDDEN H)
320 HI HI LO HI LO LO LO LO HI LO HI HI | SET DPOVFLO H (OVFLO H)
324 HI HI LO HI LO HI LO LO HI LO HI HI | SET DP OVFLO H (OVFLO H)
334 HI HI LO HI HI HI LO LO HI LO HI HI | SET DP OVFLO H (FORBIDDEN H)
000-177 LO - - - - - - - LO LO LO LO | CLR OVFLO & UNDFLO
All Others - - - - - - - - LO HI HI HI | NOCHANGE

4-44

Note, in the logic, that EXP UNDFLO H can assert START EX H only if the ZTRAP H signal is
asserted. If ZTRAP H is low, a calculation that results in exponent underflow is stored as a zero result.
In such a situation no exit is performed, and a new instruction is fetched. However, the EXP
UNDFLO H flag, which would be cleared by either the FPIST instruction or the FPICL instruction
after an exit operation (the latter generates RESET L), remains set. Hence, the signal INST DISP1 L,
asserted when an instruction is fetched, causes the PROM to generate the signals needed to clear all the
overflow flags.

4.3 DATA PATH LOGIC

Detailed descriptions of the significant portions of the logic on the Data Path board appear in Para-
graphs 4.3.1 through 4.3.7.

4.3.1 ALU B Inputs

4.3.1.1 B File - The B inputs of the ALU are taken from a variety of sources; one source is the B file,
a read-and-write memory that provides storage for eight 15-bit data words. The B file RAM is illus-
trated in Figure 4-19, while Figure 4-20 shows the logic that generates the RAM control signals. The B
file is comprised of four 82S112 ICs (organized in 8 words of 4-bits each); these are arranged to provide
eight 15-bit data locations. These locations are assigned to the eight temporary registers, TEMP and
TEMPI through TEMP7, and can be written into and read from; however, if both a read and a write
are directed by the same data path statement, the location being read must be different from the
location being written.

When a B file is to be used in an operation, it is identified by the B RD (2:4) L signals or the B WRT
(0:2) L signals (Table 4-14). If a read operation is directed, the BRD MSB L and B RD LSB L signals
are asserted (Table 4-15 shows the input/output signals for PROM ES88). The 15-bit data word held in
the selected register is applied to the ALU on the AL B (1:15) L lines. The sign bit of the data word is
made available as the TEMP SIGN L signal, which is used to manipulate the ALU during multiply
and divide calculations. Sometimes only the B RD MSB L signal is asserted during a read operation;
then, only the three MSBs of the data word are read from the temporary location. Such is the case, for
example, when the field bits of the APT pointer are transferred from the TEMP register to the APTP
register during FPP initialization.

Even when only a write operation is directed by the data path statement, the B file goes through the
read mode; however, since neither the B RD MSB L signal nor the B RD LSB L signal is asserted, the
Bn outputs of the file remain negated. When the mode switches from read to write, the data is written
and the outputs remain high.

Both a read and a write can be performed during the same data path statement. For example, the
statement for uPC address 1475 is

TEMP1:=BR[+] TEMP+1

4-45

DPS FILE CLOCK H
DP8 BWRT ENABLE L LJ

1D

+3v———d Do
DP6 OBUS | L ———¢f D,
DP6 0BUS 2L ————0| D2
DP6 OBUS 3 L———0Q| D4

82s112
E93

Bo
By
Bz
B3

DP6 OBUS 4 L —Q
DP6 OBUS 5 L —O

DP6 OBUS 6 L —O
DP6 OBUS 7 L —O

o

O— DP5 AL Bi L
O—-DP5 AL B2 L
O— DP5 AL B3 L

DP8 BWRT SEL O L

E67

Ao

Bo
B1
B2
Bz

——DPS5 TEMP SIGN L
DP6& OBUS 8 L —O
DP6 OBUS 9 L —O

DP6 0BUS 10 L —Q

DP6 OBUS 11 L—0
O— DP5 AL B4 L
O— DP5 AL B5 L
O— DPS AL B6 L
0— DPS AL B7 L

E8S

DP6 0BUS 12 L —Q
DP6& OBUS 13 L—0O
DP6 OBUS 14 L—O
DP6 OBUS 15 L —Of
O— DP5 AL B8 L
O— DP5 AL B9 L
O— DP5 AL B10 L
O—— DP5 AL Bi1 L

O— DP5 AL B12 L
lo—DP5 AL BI3 L
O— DP5 AL 814 L
O——DP5 AL B15 L

DP8 BWRT SEL 1 L

DP8 BWRT SEL 2 L

DP8 BRD SEL 2 L
DP8 BRD SEL 3 L

DP8 BRD SEL 4 L

DP2 BRD MSB L

DP2 BRD LSBL

825112
FILE CLOCK H BWRT ENABLE L MODE BE | A0 Bn
Lo X HI HI
Lo X Lo DATA
READ DATA
Hi HI H HI
HI HI Lo DATA
HI Lo HI | DATA HI
HI Lo WRITE | L© fv‘:""ﬁm ZATA
ADDRESS

4-46

Figure 4-19 B File RAM Logic

08-1765

CB85 BRLOC 4L

CB5 BR LOC 3L

CB5 BR LOC 2L

CB5 BR LOC 1L

CB5 BR LOC oL

DP1 B INITALIZE L

DP1 FILE CLOCK L

CBS BW LOC 2L
CB5 BWLOC 1L

CB5 BW LOC oL

CBS5 WRITE B H

—\ 745174
R Eo8 BRD SEL 4L
—o 04 Ra(n|DE8BROSELAL
20
o~ b3 R3(1)-2B8 BRD SEL 3L
25
b2 Re(1)DB8BRD SEL 2L
37
—O D1
30
hY)
CLR _CLK
<{\/DPs FILE CLOCK H
J{,- 745174
E99
13
15 b2 Ra(1) | P8 BWRT SEL 2L
23
D1 Ri(q)|DP8BWRT SELIL
21
S 0 Ro(1) |CP8BWRT SELOL
A CLR _CLK
T [
23135M 745174
E8S8 E76
M@(1)jo— DP8 DB TO ALU L
Lgae M1(1) p— Dps FIR<6:8>SELECT L
L——ga1 M2(2)p—DP8FIR LSB L D4 Ra(1)|DP2BROMSBL
L daz wms3(1)DPBBROLSIGL b3 Ra(1)|2P2BROLSBL
L das mampDPBBROMSIGL
L———————das M5(1)P
Me(1)o
M7(1)
ENB CLR CLK
2 o
J1 bl
745174
E87
36
O D1 R1(1)

CLR CLK

DP8 BWRT ENABLE L

Figure 4-20 B File Control Signals

4-47

08-1766

8v-v

Table 4-14 TEMP Register Selection

BRDSEL2L |BRDSEL3L | BRDSEL 4L ,
BWRT SELOL |BWRTSEL 1 L |B WRT SEL 2 L | TEMP Register Selected

HI HI HI TEMP

HI HI LO TEMP1

HI LO HI TEMP2

HI LO LO TEMP3

LO HI HI TEMP4

LO HI LO TEMP5

LO LO HI TEMP6

LO LO LO TEMP7

Table 4-15 PROM ES88 Input/Output Signals
(PROM Enabled Permanently)

Input Signal Low

Output Signal Asserted

PROM Address | BRLOCOL | 1L |2L| 3L | 4L |[DBTOALUL | FIR(6:8) SELECTL | FIRLSBL |BRD LSIGL |BRDMSIGL

4 X X X X X

5 X X X X

6 X X X X

7 X X X X
10 X XX |X X X
11 X XX X X
12 X X X X X
13 X X X X
14 X X | X X X
15 X X X X
16 X X X X
17 X X X
27 X X

Location 147; produces the Control ROM output signal logic levels that select TEMP for reading and
TEMPI1 for writing, and that cause B RD MSB L, B RD LSB L, and B WRT ENABLE L to be

asserted. These logic levels are:

BRLOC OL 1L 2L 3L 4L
LO HI HI HI HI

BWLOC OL IL 2L
HI HI LO;

WRITE B H
HI

The read-and-write operation is carried out as outlined in the following diagram, which uses FILE
CLOCK H to delineate intervals.

Ta BT1 T2

uPC=147 pPC =150 —» pPC = 151 ——DJ
PIPE-LINE REGISTERS —#
LOADED WITH LOCATION
147 DIRECTIONS

FILE CLOCK H I I I I J_—I__

lf&——— READB ——re WRITE —»
FILE 8

TEMP CONTENTS DATA WRIT-
PLACEDON AL B TEN IN
<1:15> L LINES, TEMPR 1,

ADDED,ETC. ..., DATA ON AL

GATED TO O BUS. B <115>L
LINES STILL,
CONTENTS
OF TEMP

08 -1783

4.3.1.2 DB Register Logic — The DB register is the data interface between the FPP and the PDP-8
CPU or memory. The register and the logic directly related to it are illustrated in Figure 4-21; Figure 4-
22 shows the logic that generates the register control signals.

4-49

DATA OL DATA 3L DATA 4 L DATA 7 L DATA 8 L DATA 11 L
oP3DBTOBUSIH — 44— o — ¢ - - - =~
DP3 D8 TOBUS 2 H - -
v a0 AO A
: 80 FOP—DP2,5 AL B4 L s FOp— DP2.5 AL BSL H 0 FOp— DP2,5 AL B12L
I | \ 80) ,I—Bo |
: : | ! = :
| 8234 i \ | ! |
) E51 ' | Eo3 ! | |
! ! | ! H £52 i
] ! 4) i :
fas i L1 a3 i a3 !
F3 DP2,5AL B7 L F3-+-DP2,5 ALB!1 L F3p-L pP2,5 AL B15 L
_}:_9350 st _L_Bsso st FIR N 18350 g
DP1DBO H DP4 DB3H DP1 DB4 H DP1 DB7 H DP1 DBBH DP1DB11H = T o = o 5T
[1
—— +3v +3V (H1)
DP8 DB TO ALU L
RO(1) R3(1) RO(1) R3(I)_] RO(1) R3{1)
DSR DSL | L—] DSR DSL DSR DSL DP8 DB BIT H
7415194
DP8 ZERO DB L CLR E26 SO — E35 sot— — E44 SO
DP1 FiLE CLOCK L cLK St st s1l-
DO I_ |_
DP8 DB RT EN H
DP8 DB LFT ENH
FO F3
sTB sT8 ST8
= 74L.5158
E7 E16 E36
DP8 ALU TO DBEN H SO so SO
A0 BO A3 B3
T 7415194 8234
I
&OBUS4L _____ —_——— == - - = - = = - - - - - - - == - - - = 0BUSISL S0 S1 MODE S0 S1 Fn
HI H B8n
4 E3 I PARALLEL LOAD LO Lo Bn
HI | LO | RIGHTSHIFT HI LO | An
L sTB raLsiss =E_-—o sT8 .:E—O sTB LO | HI | LEFTSHIFT Lo | HI | Bn
) E6 E15 L0 | LO | HOLD
DP3MAC (1) H HE [HE | H
SO SO s0
DP3 PRIORITY
TEST L 80 A0
|
7418158
S0 sT8B An Bn Fn
= Hl - - HI
CB1FP 10T L L 0 | Lo w | - |
= LO Lo HI - LO
HI Lo - LO a1}
DATA MD DATA MD
oL oL 1L ML H | Lo - |Hw jo
08-17€7
Figure 4-21 DB Register Logic

4-50

-

MEMORY WRITE

CB1 DB IN IOT H (FMRB)
DP1 G PAUSE H

TS2 L—O

4 o0

Y

>

DP3 DB TO BUS2H

MEMORY WRITE

ADM

REFER TO DATA BREAK |
LOGIC SECTION 4,3.6

CB6 DB CTRL2 L

CB6 DB CTRL | L—

DP1 B INITIALIZE L—j

DP1{ FILE CLOCK L

CB5 BRLOC (0:4) L

B
DP6 ALU4A L c1

OPt DB11 H

DP1 DB@ H

DP8 ENABLE DB BIT H

74LS174
P/O E87
D3 R3(1)
D2 R2(1)
CLR CLK

Do

DP5 FILE
CLOCK H

— AQ

PROM
E88
M@ (1)
Al |
1
A2
t
A3 :
A4 M7 (1)
(SEE TABLE 4-15)
ENB

1
1

CONT®@, 1

7415253 Fi
B1 P/0 E68

A1l

S1 S@

4-51

OP8 MULTOP H

M7 (1}, PROM E75
(SEE FIGURE 4-32)

DP8 DB TO ALU L

_iD'—DP3 DB TOBUS 1 H

DP8 ALU TO DB ENH

b—DPB ZERO DB L

iD—DPB DB RT ENH
@DPS DB LFT ENH

Figure 4-22 DB Register Control Signals

7418253
s1 S0 Fn
LO LO | An
LO HI Bn
Hi Lo Cn
HI HI Dn
DP8 DB BIT H
DBCTRL1L DB CTRL2 L TO DB
H1 Hi NO OP
1] LO 0-—-DB
LO HI ALU —~ DB
LO Lo MD — DB
08-1768

The DB register, itself, is a 74L.S194 bidirectional shift register. The modes available are notated in the
table in Figure 4-21 (the right-shift mode is not used). The DB can be parallel-loaded from a number of
sources, depending on the state of the Control ROM’s DB CTRL (1:2) L signals (refer to the function
table in Figure 4-22 that relates these signals to the DB source). If the ALU is to be loaded into the DB,
the register is placed in the parallel-load mode (DB CTRLI L is asserted, causing both DB RT EN H
and DB LFT EN H to go high), and ALU TO DB EN H is asserted; this gates the ALU information
from the OBUS (4:15) L lines to the DB inputs for loading at clock time. If, instead of OBUS data, the
information on either the MD or DATA lines is to be placed in the DB register, the ALU TO DB EN
H signal is negated. The DATA lines are a DB source during FPP initialization when the APT pointer
address is to be transferred to the APTP register; at all other times the DATA line information is gated
through the first tier of multiplexers (E9, E6, and E15) only during priority checking (the information
is not loaded into the DB during this procedure - see Figure 4-33). The MD lines are the DB source
when an operand or an FPP instruction is to be placed in the register. If the FPP has priority, a data
break cycle is started and the MD information is gated to the DB.

Input data from the MD or DATA lines is gated through three data selectors (ES1, E52, and E53) by
the DB TO ALU L signal. The data is applied to the B inputs of the ALU via the DP2,5 AL B (4:15) L
lines, gated onto the OBUS, and loaded into the applicable file register. Conversely, DB output data is
placed on the DATA lines by the DB TO BUS (1:2) H signals, which can be asserted during data break
operations or by the FMRB IOT instruction.

The DB register can be left-shifted if DB LFT EN H is asserted and DB RT EN H is negated. This is
possible only during multiply and divide operations when PROM E75 causes DB LFT EN H to go
high. If the operation is a multiply, DBO is rotated into DB11. If the operation is a divide, a quotient
bit (represented by the ALU4 L signal) is shifted into the DB11.

4.3.1.3 FIR Logic - Another source for the B inputs of the ALU is the FIR logic, which is used
during address calculations. The logic is illustrated in Figure 4-23. Shown below is the portion of the
FPP firmware that relates to an instruction fetch; refer to this while reading what follows.

*20
20 FETCH, BKMA:=FPC T3
21 FETCH1, :=FACE[EXPSIZEIM30 T4 BKCMD: =7
22 FPC:=FPC[+]K1; DB:=MD BTl
23 TEMP:=FIR(9:11) T2 INSTR DISP 1

When an FPP instruction is being fetched it is gated to the DB register from the MD lines and loaded
at T2 time (T2 of Control ROM address 23s). Since the ENABLE FIR L signal is low (having been
asserted at the preceding BT 1 time), the FIR register, E43 and E45 in Figure 4-23, is loaded just after
the DB. Not only is the DB register loaded at T2 time, but also hex flip-flop E76 is clocked, causing its
R2(1) output to go low (FIR LSB L is asserted by PROM E88 during uPC address 23; - refer to Table
4-15). Thus, the An inputs of multiplexer E49 are selected, and FIR bits (9:11) are gated onto the AL B
(13:15) L lines (for the moment, ignore output F3).

At this point the data path statement TEMP:=FIR (9:11) is modified by the FPP instruction that has
been loaded into the DB. If the instruction is Special or Double-Word Data Reference, the signals on
the AL B (13:15) L lines are gated through the ALU to the shift gates. There, the signals are rotated
right three places and placed on the OBUS (1:3) lines. At T3 time TEMP is loaded, as described by the
statement TEMP:=[R3R] FIR (9:11). This modification of the data path statement by the instruction
enables the Data Path logic to retain the field bits of the address contained in the instruction.

4-52

AO M2(1} |———— DP8 X3 L

Al M3(1)|—————— DP8 LSB SHIFT SEL1H
PROM .
DP1 DB2 H A2 E65 Ma(1)|—————— DP8 LSB SHIFT SELOH
DP1 DB H A3 M5(1) |————— DP8 MSB SHIFT SEL 1 H
DP1DBO H A4 M6 (1) ————— DP8 MSB SHIFT SELOH
ENB
DP1 DB3 H%
DP1DB4 H DADO ROU1 FaR2,
|
1 1 AO
DP1 DB5 H D 7a75 Ri(1) " 1so FOp———— DP2,5 AL B9 L
£45 . Al
DP1 DB6 H D2 R2(1
Ap——— A
FIR4-7 181 gp3a DP2,5 AL BIO L
E54
DP1 DB7 H D3 R3(1) A2 F2o——— ——DP2,5 AL BIl L
ENBI ENB2 —1B2
L_(,{>__F—_/ a2 F3b———— DP 2,5 AL B12L
1 X} st
FIR8H) T T
DP1 DB8 H DO RO(1) | +3v
7475 FIR 9H
DPt DB9 H o1 %% run l A0
FIRB-11 FIR1O 1 "lao FOlo DP2,5 AL B13 L
|
Al
DP1 DBIO H D2 R2(1) g234 Fb DP2,5 AL B14 L
FIR11H — 81
| £49
DP1 DB H D3 R3(1) A2 Fobo DP2.5 AL B15 L
ENB1,2 —B2
] A3
DPB ENABLE FIR L F3p—
—83
S0 St
DP1 B INITIALIZE L I 1 T
DP1 FILE CLOCK L [IV
E72
8234
DP3 FP FETCH H o 1P
AO Fo S0 St F_n
J__—‘BO Lo Lo Bn
— At
a1 8234 F1b HI LO n
E52 Lo | HI | Bn
— A2 F2l0— H | H | W
B2
DP8 FIR —143 F3p—
LS8 L D2 rR2(1) p———-—— 83
745174 SO Si
DP8 FIR <6:8> P/0 9
SELECT L DI E76 Ri{1)
DB8 DB
TO ALU L DO RO(1) P—
CLR CLK
08-1769

Figure 4-23 FIR Logic

4-53

The decision to rotate the FIR bits is made by PROM E65 in the FIR logic. This PROM monitors the
five MSBs of the DB register and generates the outputs that modify the address 23; data path state-
ment. Table 4-16 shows the input/output signal relationship for the PROM. Note that an R3R oper-
ation (rotate right 3 places) is carried out for all Special instructions [except LTR, where bits (9:11) are
immaterial] and for all Double-Word Data Reference instructions. For many of the Special instruc-
tions the operation is superfluous and is performed only in the interest of limiting the number of
decisions that the logic must make. Shown below is that part of the firmware that relates to the JSA
instruction, a Special instruction that does require the R3R operation.

/ISA
*50
50 JSA, BKMA: =FPC T3 SUB, INST24 (4)
51 OPADD:=TEMP(1:3), DB T2
52 BKMA:=OPADD; DB:=0 T3
53 DB:=1030!FPC(1:3) T4 BKCMD: =1
54 DB:=FPC BT1
55 BKMA, OPADD:=OPADD[+]Kl T3
56 TEMP:=OPADD[+]K1 T4 BKCMD: =1
57 FPC:=TEMP BT1 EXTEST
/SUBROUTINE—GET SECOND HALF OF 24-BIT INSTRUCTION
*4
4 INST24, FPC:=FPC[+]KI T4 BKCMD: =0
5 DB:=MD BT1 RETURN

If the JSA instruction were dispatched, for example, the field bits of the address specified in the
instruction would be loaded in TEMP (1:3) at T3 time of address 50s. Then, after the 12 LSBs of the
address had been read from memory and loaded into the DB, both the DB contents and TEMP (1:3)
would be loaded into OPADD at T3 time.

If, instead of JSA, a Single-Word, Indirect Reference instruction were fetched, a different modification
of the data path statement would be carried out. Once again, the FIR logic would gate FIR bits (9:11)
onto the AL B (13:15) L lines. Now, however, PROM E65 asserts the X3 L signal. The resulting
operation causes the offset specified by the instruction to be multiplied by 3 and placed in TEMP.
TEMP is then added to the base address to specify the indirect address of the instruction operand. The
firmware portion shown below relates to the dispatch of a Single-Word, Indirect Reference
instruction.

/ENTER HERE FOR NON-INCREMENTED, NON-INDEXED INDIRECT ADDRESS CALC.
//TEMP CONTAINS 3*FIR(9:11) AT ENTRY

*134
134 INDIR. BKMA, TEMP!:=TEMP[+] BR+1 T3
135 OPADD:=TEMP1 T4 BKCMD:=0
136 DB:=MD BT1

4-54

Table 4-16 PROM E65 Input/Output Signals
(enabled when ‘ENABLE FIR L’ is low)

PROM Output Signal Asserted
Input Input Signal Low LSB SHFT | LSB SHFT | MSB SHFT |MSB SHFT
Code [DBOH|DB1H|{DB2H|DB3H|DB4H SEL1H SELOH SEL1H SELOH |X3L |Result Applicable FPP Instruction
0 X X X X X R3R ADDX, LDX, ALN, ATX, XTA, NOP,
STARTE, FEXIT, FPAUSE, FCLA, FNEG,
FNORM, STARTF, STARTD, JAC
1 X X X X X X X X X X3 FLDA (Single-Word, Direct Ref)
2 X X X X R3R FLDA (Double-Word)
3 X X X X X X X X X3 FLDA (Single-Word, Indirect Ref)
4 X X X X R3R BRANCH, SETX, SETB, JSA,JSR
5 X X X X X X X X X3 FADD (Single-Word, Direct Ref)
6 X X X R3R FADD (Double-Word)
7 X X X X X X X X3 FADD (Single-Word, Indirect Ref)
10 X X X X R3R INX
11 X X X X X X X X X3 FSUB (Single-Word, Direct Ref)
12 | X X X R3R FSUB (Double-Word)
13 X X X X X X X X3 FSUB (Single-Word, Indirect Ref}
14 X X X R3R TRAP Instruction
15 X X X X X X | X X3 FDIV (Single-Word, Direct Ref)
16 X X R3R FDIV (Double-Word)
17 X X X X X X X3 FDIV (Single-Word, Indirect Ref)
20 X X X X R3R TRAP Instruction
21 X X X X X X X X X3 FMUL (Single-Word, Direct Ref)
22 X X X R3R FMUL (Double-Word)
23 X X X X X X X X3 FMUL (Single-Word, Indirect Ref)
24 X X X X X X X LTR
25 X X X X X X X X3 FADDM (Single-Word, Direct Ref)
26 X X R3R FADDM (Double-Word)
27 X X X X X X X3 FADDM (Single-Word, Indirect Ref)
30 X X X R3R LEA
31 X X X X X X X X3 FSTA (Single-Word, Direct Ref)
32 X X R3R FSTA (Double-Word)
33 X X X X X X X3 FSTA (Single-Word, Indirect Ref)
34 X X X X X X X X3 LEAI
35 X X X X X X X3 FMULM (Single-Word, Direct Ref)
36 X R3R FMULM (Double-Word)
37 X X X X X X3 FMULM (Single-Word, Indirect Ref)

4-55

A Single-Word, Direct Reference instruction also causes the FIR logic to assert the X3 L signal.
Furthermore, such an instruction causes output F3 of multiplexer E49 to go low (only single-word,
direct referencing has instruction bit 3 low and instruction bit 4 high). Hence, multiplexer E54 selects
its An inputs, and FIR bits (5:11) are gated onto the AL B (9:15) L lines. The resulting operation
causes the instruction offset to be multiplied by 3 and placed in TEMP. When TEMP is added to the
base address, the operand absolute address is completely identified. The firmware entries that follow
relate to the direct address calculation, location 100 applying to FP mode and location 102 applying to
DP mode.

/DIRECT ADDRESS CALCULATION

*100

100 DIRFP, BKMA, TEMP1:=TEMP[+]BR; DB:=0 T3 INSTR DISP 2
/DP CALCULATION ADDS | BECAUSE BASE PAGE ALWAYS CONTAINS 3-WORD ARG.
*102

102 DIRDP, BKMA, TEMP1:=TEMP[+] BR+1; DB:=0 T3 INSTR DISP 2

If the operand address specified by the FPP instruction is to be modified by the contents of an Index
register, bits 6, 7, and 8 of the instruction will contain an octal number from 1 to 7 (Single-Word,
Direct Address instructions are not indexed). After FIR bits (9:11) have been manipulated and the
result stored in TEMP, FIR bits (6:8) are added to the contents of the X0 register at the start of the
address calculation, as illustrated in the firmware entry that follows.

/INDEXED INDIRECT ADDRESS CALCULATION
//TEMP HOLDS 3*FIR(9:11) AT ENTRY.
*130
130 XIND. BKMA:=X0[+] FIR(6:8) T3 GO TO, XIND1 (147)

Control ROM address 1305 causes PROM E88 (Table 4-15) to assert thz FIR (6:8) SELECT L signal;
hence, multiplexer E52 gates FIR (6:8) onto the AL B (13:15) L lines and to the ALU.

4.3.1.4 Constant Generator - The Constant generator, illustrated in Figure 4-24, includes two
PROMs, E94 and E96. The PROMs are controlled by the B RD SEL (0:4) L signals and provide inputs
for the B lines of the ALU. Table 4-17 relates the input/output signals for the PROMs and lists the
applicable constants.

PROM addresses 0 and 1 are used to carry out three specific FPP operations. Address 0 is involved in
the firmware entry

DB:=1030!FPC(1:3),

which is part of the JSA and JSR firmware routines. During the decoding of each of these instructions,
a JA (unconditional jump) to the current value of the FPC is constructed and stored in core memory.
The MSB of this JA instruction is 103X, where X represents the field bits of the current value of the
FPC. The FPC is read from the A file and placed on the AL A (1:15) L lines. The constant generator
logic shifts the FPC field bits [AL A (1:3) L] onto the AL B (13:15) L lines and places 0103 on the AL B
(1:12) L lines. The ALU then gates its B inputs to the shift gates and the constructed MSB of the JA
instruction is sent to the DB register for transfer to memory.

4-56

DP8BRD SEL4 L

DP8BRD SEL3 L

OP8 BRD SEL2 L

DPB8BRD SEL1 L

DPBBRD SELO L

DP4 AL A3 L —

DP4 AL A2 L —
| p—

DP4 AL A1

PROM
E94 MB(®) Jp—————— DP5 AL B7 L
M1(0) Jo—————— DP5 AL B6 L

M2(g) p————— DP5 AL BSL
M3(@)jo—————— DP5 AL B4 L
M4(g)jo—— DP5 AL B3 L
M5(9) O———— DP5 AL B2 L
M6(@) o———————— DP5 AL B1 L
D1s4

DP5

DP5

DP5

DP5S
DPS

DP5

—O| AQ
—d a1
d a2
o A3
o A4
Eng M7(6) p———
PROM
E9e MB@) o—
L—q Ag o
_c c
o
9 o
L— 9 o-
— o—
z
8097
L qgo01 E89 pzip
g D2 0z2 p——
——————dpo3 pz3 p————
DIS4 DISS

OP5

AL BISL

OP5 AL B4 L

AL BI3 L
AL B12 L
AL B L
AL BIOL
AL B9 L
AL B8 L

8097

T

1

Di1s4

DIS2

Dn

DZn

Lo

LO

LO

Lo

LO

LO

Hi

HI

HI

Lo

HiZ

Figure 4-24 Constant Generator

4-57

08-1770

Table 4-17 PROM E94/E96 Input/Output Signals

Input Signal Low Output Signal Asserted
(BRDSEL _L) (DPSALB_L
PROM Address 0|1 2 13{4 [DIS4}|1 | 2 {3 |4|5|6 |7 |8]9{10|11 112 |13 |14 |15 Constant
0 XX XXX X X X | X 0103X, where X is determined
by ALA(1:3)L
1 X1 X XX X 0000X, where X is determined
by AL A (1:3)L
20 X [X | X X X X[XX X1 XXX X| X X -30
21 XX | X X1 X[XXX XXX XXX 3777
22 X 1 X X X 2000
23 X | X X X1 X1 X1 XXX XX XX {X X -6
24 X X| X XXX XXX XXX XXX X1X -5
25 X X X X1 X X1 XXX X]X] XX X -14
26 X X X | X 14
30 X[X| X X X[X X XXX} X]| X X X -73
31 XX XX XX X XXX X} X X X =27
32 X X X X X[X X1 XXX X X{XIX|X]X -2
33 X X X[X[XX XXX X X{X[X]|X]|X]|X -1
34 X1 X X1X 3
35 X X 2
36 X X 1
37 0

4-58

PROM address 1 is used during either of the following operations:

DB:=FPC(1:3);
DB, FACM:=FACM(1:3).

The first operation occurs during a Fast Exit, when only the FPC and the APT field locations are
filled; the second occurs during an LEA instruction, when only the field bits of the effective address
must be loaded into the FAC.

43.2 ALU A Inputs

The A inputs of the ALU are taken from the A-file, a write-while-read memory that provides storage
for 15-bit data words. The A-file is illustrated partially in Figure 4-25; the signals that control the file
are generated by the logic shown in Figure 4-26. The file is comprised of eight 82S21 ICs (for clarity,
three are not shown). Each IC is organized so as to permit storage of 32 2-bit words; thus, eight units
enable 32 15-bit words to be stored by the file (bit MO of E100 is not used). The 32 file locations are
assigned to specific operating registers and can be written into and read from; however, if both a read
and a write are directed by the same data path statement, the source and the destination must be the
same.

When an a file is to be used in an operation, it is identified by the A ADDRESS (0:4) L signals (Table
4-18 relates these signals to the A-file registers). The 15-bit word stored in the selected register is
applied to the ALU on the AL A (1:15) L lines. Conversely, the 15-bit word to be stored in the selected
location is applied to the A-file on the OBUS (1:15) L lines.

4.3.3 ALU and Shift Gates

The ALU and the Shift Gates jointly manipulate data as directed by the Control ROM ARITH (0:3) H
signals. The ARITH signals are shown below in relation to the function carried out in the ALU/Shift
Gates.

AR:)TH AR:TH AR;TH AR:I;TH FUNCTION
(L L L L A+B+CARRY (15 BITS) TO OBUS
ADDRESS L L L H (A+B+CARRY) *2 TO OBUS (2*B)
CALCULATION =4 L L H L (A+B+CARRY) LOGICALLY RIGHT ROTATED 3 PL. TO OBUS
(15-BIT L L H H (3*B+CARRY) (15 BITS) TO OBUS (3*B)
ARITHMETIC) oL H L L (3*B+CARRY) *2 TO OBUS (6*B)
? L H L H A+B+CARRY (12 BITS) TO OBUS
L H H L 0 TO OBUS (15 BITS)
L H H H A SIGN (0000 OR 7777) TO OBUS
DATA H L L L B TO OBUS (12 BITS)
MANIPULATION H L L H A+B+CARRY (12 BITS) TO OBUS (A-B)
(12-BIT .{ H L H L EXP SIZE '
ARITHMETIC) H L H H OVFLO RECOVERY (COMPLEMENT OF SIGN-SGN, SHIFT RT)
H H L L (A+B+CARRY) *2+SHIFT BITX (12 BITS) TO OBUS
H H L H (A+B+CARRY) *+ 2+SHIFT BITX (12 BITS) TO OBUS
H H H L DIV FINAL
H H H H MUL/DIV STEP

t A READ MUST BE DISABLED

x SHIFT BIT IF EXTEND IS H; SIGN BIT IF EXTEND IS L AND RIGHT SHIFT; 0 IF EXTEND IS L AND LEFT SHIFT
EXTEND = LOW: CARRY BIT TO ALU, ZERO OR SIGN TO VACATED BIT POSITION

EXTEND = HIGH: CARRY FROM LAST OPERATION TO ALU, SHIFTED BIT FROM LAST OPERATION TO VACATED BIT

4-59

e

2 2
wDO
T 33:3 wbo DP7 0BUS 12 L ?J:)
= 1 1
—O| CONT 7 o CONT 7
5 MO{0) f— s MO(0) P— DP4 AL A12L
wD1 wD1
DP6 OBUST L MD DP7 OBUS 13 L “ﬁl:)
13 82s 21 13 82521
*1“ A0 E100 Em— oY E105
— 241 2 Y
11 1
— 1T olA2 9 — Vo A2 9
100l a3 M1(0) p— DP4 AL A1 L 10 a3 M1(0) o— DP4 AL A13 L
—2daa 44 aa
CE LATCH CE LATCH
5 Te 5 Te
2 2
WD
DP6 OBUS 2 L 3D 0 DP7 OBUS 14 L 3D wDo
Lo conT 7 1o conT 7
15 MO(0) o—DP4 AL A2L 15 MO (0) Jo— DP4 AL A14 L
14 wD1
DP6 0BUS 3L . DP7 OBUS 15 L g:)wm e
13 13
AO E101 =4 A0 E107
2o At 12 4 a1
M gaz 5 Hga2 .
M1(0)p—DP 4 AL A3 L
10 a3 3 104 A3 M1(0) lo— DP4 AL A15L
;4—0 A4 —40 Ad
CE LATCH CE LATCH
5 Ts 5 Te
2
DP6 OBUS4 L ?j:) wbo
DP1 FILE CLOCK L T cont 7 DP8 A READ ENABLE L
15 MO(O) o— DP4 AL A4 L
DP 6 0BUSS L “ﬂ:) WDt
13 82521 82521
A0 E102
12 A CE | CONT A WRT ENABLE L LATCH MODE QUTPUTS
LD X X X LO OUTPUT DATA FROM LAST ADDRESSED
104 a3 MI(O) Fg_ DP4 AL A5 L HOLD WORD WHEN CE = 1 (HI)
4 Lo X X HI READAND | DISABLED LOGIC 1
A4 WRITE
CE LATCH DISABLED
5 Tf HI HI X READ DATA STORED IN ADDRESSED WORD
DP8 A WRT ENABLE L T HI LO HI READ DATA STORED IN ADDRESSED WORD
DP8 A ADDRESS 4 L
DPB A ADDRESS 3 L \\ HI Lo Lo Lo vgmre DATA riRAcT)ZHinL_\:vg:gNAI\?[T)gEOSSED
DP8 A ADDRESS 2 L Y ATA WHEN
DP8 A ADDRESS 1 L \ HI LO Lo HI WRITE DATA BEING WRITTEN INTO MEMORY
DP8 A ADDRESS O L { DATA

Figure 4-25 A File RAM Logic

4-60

08-1771

T74LS174
£108 .
CB5 ALOC4L —D5 R5(1) DP8 A ADDRESS 4 L-
CB5 ALOC3 L ———D4 R4(1) ——— DP8 A ADDRESS3 L
CB5 AlLOC2L ——D3 R3(1)}———— DP8 A ADDRESS 2 L
CB5 AlLOC1T L —D2 R2(1)|——— DP8 A ADDRESS1 L
CB5 A LOCOL —D1 R1(1) |——— DP8 A ADDRESS-® L
CLR CLK
DP1BINITIALIZE L—-—T
DP1 FILE CLOCK L
74L8174
P70 E87
CB5 WRITE A H— DO RO(1) —D°~DPB A WRT ENABLE L
CLR CLK
g |

r— DP8 A READ ENABLE L
Lo 4

1

i

+ 3V ——O 7418112

J

—qo

CB6 READ A H
08-1772

Figure 4-26 A File Control Signals

As noted, both 12- and 15-bit arithmetic can be carried out. 15-bit arithmetic is necessary during
address calculation, since instruction and operand memory addresses include the field bits, which are
designated as the address MSB to differentiate them from the relative address bits, or LSB. 12-bit
arithmetic deals with operands and data derived from operand manipulations; only 12 bits of data are
involved and, thus, only an LSB is considered in calculations.

During 15-bit arithmetic, both the MSB and the LSB of the ALU are placed in the same arithmetic
mode; likewise, both the MSB and the LSB of the Shift Gates are placed in the same shifting mode.
Hence, relevant information is gated onto all 15 OBUS lines. For 12-bit arithmetic, the LSB of the
ALU is put in the necessary arithmetic or logic mode, while the MSB is kept in the logic mode. During
12-bit addition (i.e., when the arithmetic function [12 BIT] is included in the Data Path statement), the
mode of the MSB permits these bits to be used for overflow detection. Nevertheless, in both this and
other 12-bit arithmetic operations, the ALU MSB contents are irrelevant where the OBUS is con-
cerned. This is so because in 12-bit arithmetic the MSB of the Shift Gates is kept in 2 mode that always
gates zeros onto OBUS (1:3) L. Consequently, only the LSB of the Shift Gates places relevant informa-
tion on the OBUS.

4-61

Table 4-18 A Address (0:4) L Functions

A Address (0:4) L Sources Selected for Reading or Writing*

1 12 1{3 (Source gated to A input of ALU or loaded from OBUS)

FPC
X0

BR

OPADD

APTP

TEMA

FIELD

NOT USED
FACE (EXPONENT)
FACM [FRACTION (0:11)]
FACN [(12:23)]
FACP [(24:35)]
FACR [(36:47)]
FACS [(48:59)]
NOT USED

SC

SCRATCHE
SCRATCHM
SCRATCHN
SCRATCHP
SCRATCHR
SCRATCHS
SCRATCHT
NOT USED
MQE

MQM

MQN

MQP

MQR

MQS

NOT USED
NOT USED

ol ol ol ol ol ol o F ol ol o o ol ol ol ol ol olic sl -l e ol olie olie o lia <ol el olle i< -l - =
ol ol ol ol ol all af gl -l ReHeolcofia-Na- Nl ol ol ol ol ol ol ol i« -l vl e e sl ol < i - e o
el ol ol l ol ol ol oli--fe-Ne-H ol ol ol ol el il ole- N ol ol ol =l sfe-Nes
ol i< ofiecll ol e olie ol oulll qullf«clfas l ol i« ol el ool qulie ol e sl o qule oflle el o e o« ol e - o
ol vl =l ol N -l o< B ol -l =N ol N ol Nl ol Nl - all--Ral--Tol--Nal- - IS

*READ A H must be asserted for reading.
WRITE A H must be asserted for writing.

4-62

Recall that the firmware (source code) describes a 15-bit add by including the arithmetic function [+]
in the Data Path statement. The ARITH (0:3) H signals select this operation, all four signals being
negated (refer to the first entry in the table that appears earlier in this section). Although a 15-bit add is
characterized by this combination of the ARITH signals, the occurrence of this combination does not
necessarily identify a 15-bit addition. For example; the Data Path statement of uPC address 1435 reads

DB, TEMP6:= FACE.

The ARITH (0:3) H signals are negated during this address, but this operation is correctly termed a
“move,” rather than an add (one might consider this an add of FACE and 0). Furthermore, this move
involves only 12 relevant bits, i.e., the LSB; at some point in the particular routine that this address is
part of, the MSB is made zero so that the OBUS (1:3) L signals are negated.

Similar reasoning can apply to other combinations of the ARITH (0:3) H signals. Do not try to
generalize Data Path operations from the ALU/Shift Gates control signals.

4.3.3.1 ALU Logic - The ALU logic is illustrated in Figure 4-27. The ALU, itself, is composed of
four 74LS181 ALUs and performs binary arithmetic operations on two 15-bit words (data calculations
are carried out with the 12 LSBs, while address calculations use all 15 bit positions). The various
arithmetic and logic operations are selected by five control signals - ALU M L (ALU M15 L is used
for the MSB) and ALU SO L through ALU S3 L. These control signals are generated by the PROMs
shown in Figure 4-28. PROM E75 is used during multiply and divide operations and its use is
described in detail in Paragraph 4.3.5. Table 4-19 gives the input/output signal relationship for PROM
E77 and states the ALU operation that takes place for each combination of input signals. PROM input
codes 0-4 and 20-24 are related to 15-bit arithmetic. When 15-bit arithmetic is considered, the func-
tions carried out in the ALU for codes 0-4 are repeated, respectively, for codes 20-24. Code 0 corre-
sponds to the first entry in the table of Paragraph 4.3.3, code 1 corresponds to the second entry of that
table, and so on. Both the MSB and the LSB are in the same mode when these codes are generated (the
MSB mode is controlled by ALU M15 L, which is asserted by PROM E78 - refer to Table 4-20).

The rest of the input codes are related to 12-bit arithmetic and correspond to the 12-bit arithmetic
entries in the table of Paragraph 4.3.3. During this arithmetic, the MSB is placed in the logic mode by
the negated ALU M15 L signal. Generally, codes 5-17 and 25-37 result in the same functions; how-
ever, codes 7 and 27 produce two different results, as do codes 12 and 32. Such differences result from
tests of the AL A4 L signal; codes 7 and 27 are involved in the [SIGN] operation, while 12 and 32 relate
to the [EXPSIZE] operation (refer to Paragraph 4.2.8 for a discussion of the latter).

The ALU logic includes two 8097 hex buffers, although for clarity, only part of one - E50 - is shownin
the figure. These buffers form the X3 Gates, which are used during address decoding operations and
which are described in Paragraph 4.1.

The ALU logic also includes a Look-Ahead Carry Generator, E82. This unit permits high-speed prop-
agation of carries by anticipating a carry across the four binary ALU ICs. A carry is propagated to
both the ALU and the carry generator by multiplexer E84, and originates in either the Control ROM
location (if CARRY IN H is asserted) or in the Shift logic (if CLINK H is asserted). That is: The
Control ROM location sometimes adds 1 to a quantity during address calculations by asserting the
CARRY BIT L signal, which generates CARRY IN H; during subtraction operations, which the ALU
performs in 1’s-complement arithmetic, the ARITH signals generate CARRY IN H so as to produce
2’s complement subtraction of the ALU inputs; during operations when the Control ROM asserts
EXTEND H, the contents of the CLINK flip-flop in the Shift logic provide a carry input (refer to
Paragraph 4.3.5 for details).

4-63

|
1 [
DP6 OVERFLOW L COUTZ COUTY COUTX
0 E82
74182- 1 CIN
E86
ALUO L P2 G2 P1 Gl PO G@ o 5
P8
P/0 E84 SO myLTOPH
74157
sTBP—
BO AO =
DP6 ALU<1:3> L DP6 ALU <4:7>L DP7 ALU <8:11> L DP7 ALU <12:15)L
TT | | | ‘I \ ! N 7 DP8 CARRY IN H
F3 F2 Fi FO
—9 CINf—
Lo L o
o— DP8 ALU M15 L o—— o 7415181 Mp——— DP8 ALUM L
E81 " E66 EB3 £95
P———— S— SOp——— DP8 ALU SOL
- A— p——— s1p—— DP8 ALU SI L
P SOE— o————————— S2p——— DP8 ALU S2 L
83 B2 B! BO A3 A2 Al A0 P B3 B2 B8 BO A3 A2 Al A0 |B3 B2 Bt BO A3 A2 Al A0f —83 B2 B BO A3 A2 Al A0 P——DPBALU S3L
T?Vcr oo O o o o O ovoT VO?TOOTO VT?Q nooT
DP2,5ALB <4:7> L DP2,5 DP 2,5
ALB (81 L ALB12:155L
—]
8097
—qD1 E50 Dz1p
—r—9qD2 DZ2Pp—
qD3 DZ3p—
o|D4 Dz4
DIS4 D]
s
(U (SR —. N — DPBX3 L — - ' _ [S)
DP5 ALB(1:3> L DP4 ALA 3> L DP5 ALB(4:75L DP4 ALA (47> L DP5 ALB (8:1DL DP4 ALA(B: 11> L DP5 ALB(12:155L DP4 ALA {12:15>L
7415181
M=1L
M=H ARITHMETIC FUNCTIONS
$3 S2 S1 SO | LOGIC FUNCTONS (NO CARRY) {CARRY)
L L L L F=A F = AMINUS 1 F=A
L L L H F=AB F = AB MINUS 1 F=AB
L L H L F = A+B F = ABMINUS 1 F=AB
L L H H F=1 F = -1 (2's COMP) F=0
L H L L F = A*B F = APLUS (A+B) F = A PLUS (A+B) PLUS 1
L H L H F=B F = AB PLUS (A+B) F = AB PLUS (A+B) PLUS 1
L H H L F = AGB F=AMINUSBMINUS 1 | F=AMINUSB
L H H H F=A+B F=A+B F = (A+B) PLUS 1
H L L L F=AB F = A PLUS (A+B) F = APLUS (A+B) PLUS 1
H L L H F = A®B F=APLUSB F=APLUSBPLUS 1
H L H L F=8B F = AB PLUS (A+B) F = AB PLUS (A+B) PLUS 1
74157 H L H H F=A+B F=A+B F = (A+B) PLUS 1
ste | so | Fo H H L L F=0_ F=APLUSA F=APLUSAPLUS 1
T o H H L H F=AB F=ABPLUS A F=ABPLUS APLUS 1
L H H H L F = AB F=ABPLUS A F=ABPLUS APLUS 1
H BO H H H H F=A F=A F=APLUS 1
L=L0,+=0R
H=HI, ®= EXCLUSIVE OR

Figure 4-27 ALU Logic

4-64

08-1773

S9v

74L8174
E92
CB5 CARRY BIT L ——{ D5 R5(1)
DP6& OVERFLOW L — D4 R4(1)
PROM E77 DP8 CARRY IN H
CBS5 ARITH3 H —— D3 R3(1) }— DP4 AL A4 L A4 M7(1)
CB5 ARITH2 H —] D2 R2(1) Mé) o
A3 M5(1) o DP8 X3 L
CBS ARITHT H —— D1 R1(1) *
M4 1) o DP8 ALU ML
CB5 ARITH@ H —{ D@ RG(1) A2 M3(1) P DP8 ALU S3 L
CLR CLK A1 M2(1) o DP8 ALU S2 L
M1 (1) - DP8 ALU S1 L
AO MO (1) o DP8 ALU SOL
ENB
PROM E75
DP8 DB LFT EN
A4 M7 (1) p
0P8 a3 Me(1) -
MULTOP H M5(1) jo-
DP8 DB A2 M4 (1) p—
BIT 1H
M3 op—
oP5 | a9
TEMP SIGN L m2(1) p——————
DP8 ENABLE | mmp—
DBBITH ad
Mo(1)
ENB
Jo- T MUL /DIV L

*¥ALU ML CONTROLS ALU <4:15>,
ALU M15 L CONTROLS ALU <1:3>,AND
IS GENERATED BY PROM E78 (SEE
FIGURE 4-30).

08-1774

Figure 4-28 ALU Control ROMs

Table 4-19 PROM E77 Input/Output Signals

(PROM Enabled Permanently)

PROM
Input Input Signal Low Output Signals Asserted ALU Output
Code |DP4 AL A4 L |ARITHOH | ARITH1 H| ARITH2H | ARITH3H |[ALUM L{ALUS3L | ALUS2L |ALUSIL |ALUSOL | X3L |CARRY IN H | Logic Operation | Arithmetic Operation
0 X X X X X X X X A+B
1 X X X X X X X A+B
2 X X X X X X X A+B
3 X X X X X X X A+B (B multiplied by 3)
4 X X X X X X X X A+B (B multiplied by 3)
5 X X X X X X A+B
6 X X X X X 0 (HI OUT)
7 X X X X 1 (LOOUT)
10 X X X X X X B
11 X X X X X X X A-B
12 X X X X X 1
13 X X A
14 X X X X X X A+B
15 X X X X X A+B
16 X X X A+l
17 X X A+l
20 X X X X X X X A+B
21 X X X X X X A+B
22 X X X X X X A+B
23 X X X X X X A+B (B multiplied by 3)
24 X X X X X X X A+B (B multiplied by 3)
25 X X X X X A+B
26 X X X X 0
27 X X X 0
30 X X X X X B
31 X X X X X X A-B
32 X X X X X A+B
33 X A
34 X X X X X A+B
35 X X X X A+B
36 X X A+l
37 X A+l

4-66

During the course of an arithmetic calculation, a number can be encountered that is either too small or
too large to be represented by a 12-bit word. Either an underflow condition or an overflow condition
results; both conditions are detected by XOR gate E79 and NAND gate E86. An overflow results when
two positive numbers are added to produce a number greater than 3777s. Because both numbers are
positive, ALUO L is high (during a 12-bit add the MSB (E81) is placed in an Exclusive-OR mode to
facilitate overflow detection; thus, if B3 or A3, but not both, is low, ALUO L is low); also, since AL A4
L is high, one input of E79 is high; if an overflow has occurred, ALU4 L is asserted, and E79 is
enabled. Hence, OVERFLOW L is generated by E86. An underflow occurs when two negative num-
bers produce a result that exceeds 40005 (37775, for example). As before ALUO L is high (1 + 1 = 0);
however, ALU4 L is now high, while AL A4 L is low. Once again OVERFLOW L is asserted by E86.

4.3.3.2 Shift Gates — The Shift Gates are shown in Figure 4-29. Each unit is a 74LS253 multiplexer.
The multiplexers are controlled by the shift signals so that the shifting operations indicated in the
function table can be effected. Each multiplexer has four inputs. Generally, each input is supplied with
a signal from one ALU output. Depending on the state of the control signals, any one of four ALU
outputs can be gated onto a specific OBUS line. For example, OBUS4 L can carry the output from
ALU4 L (no shift), the output from ALUS L (shift left one), the output from ALUI L (shift right
three), or an output from the Shift logic (shift right one). Multiplexers E57 and ES9-E64 are controlled
by the shift signals designated LSB SHFT SELO,1 H. These multiplexers are used for both 12- and 15-
bit arithmetic. Multiplexers E74 and ES58, controlled by the MSB SHFT SELO,1 H signals, are used
only during 15-bit arithmetic.

The shift select signals are generated by PROM E78, illustrated in Figure 4-30 (PROM E65 is dis-
cussed in the FIR logic, Section 4.3.1.3). Table 4-20 gives the input/output signal relationship for E78
and states the shifting operations that result. The first 5 entries in the table apply to 15-bit arithmetic,
the rest to 12-bit arithmetic.

PROM Input Codes 0 and 3 result in no shift of the inputs, i.e., the ALU (1:15) L signals are gated
onto the OBUS (1:15) L lines, respectively. This happens for addition and for move operations. The
code 3 addition involves only the ALU B inputs, which are multiplied by 3 (X3 L is asserted by PROM
E77) during the ALU operation. The shift-left that occurs during codes 1 and 4 produces a multi-
plication by 2 of the ALU (1:15) L information. During code 4 the X3 Gates are enabled, multiplying
the B inputs by 3; thus, 6-times the ALU B inputs are gated to the OBUS lines. During a 15-bit left
shift, the ALU L bit is lost and 0 is gated onto the OBUS15 L line (+3 V is applied to the BO input of
multiplexer E64 by the Shift logic). The last 15-bit manipulation is the shift-right three that occurs
during the R3R operation. This is an end-around shift that is used to move field bits into position
during pick-up and storage of the APT.

Input codes 5-17 deal with 12-bit arithmetic. Note that the MSB multiplexers are always in the shift-
right one mode. Since the Cn inputs of these multiplexers are tied to +3 V, zeros are gated onto OBUS
(1:3) L. Codes 5-12 are used during 12-bit addition and no shifts of the LSB are involved. Code 13 is
used to recover the sign bit after an overflow has occurred during a data calculation. The OVF
RECOVER H signal causes the complement of the ALU4 L signal to be gated to input C1 of multi-
plexer E57 and placed on the OBUS4 L line (the complement is identified as the SHFBK L signal,
which is generated in the Shift logic). Thus, a FORBIDDEN result, for example, is converted from
40004 to 20005 by the OVFREC routine.

Codes 14 and 15 deal with left shift (SHL) and right shift (SHR) operations, respectively. During a
SHL operation, the Shift logic provides either logic 0 or the content of the SLINK flip-flop at input B0
of E64. During a SHR operation, the Shift logic provides either the sign bit (the state of ALU4 L) or
the content of SLINK at Cl of E57. Codes 16 and 17 deal with the MDS and MDLST operations;
these manipulations are described in Paragraph 4.3.5

4-67

Table 4-20 PROM E78 Input/Output Signals

(PROM Enabled Permanently)

PROM Input Signal Low Output Signal Asserted
Input LSB SHFT | LSB SHFT | MSB SHFT | MSB SHFT . .
Code |GND | ARITHOH | ARITH1 H (ARITH2H | ARITH3H| SEL1H SELOH | SEL1H SELOH OVF RECOVER H | ALUMISL Shift Operation
0 X X X X X X X X X X NO SHIFT
1 X X X X X X X SHIFT LEFT 1
2 X X X X X SHIFT RIGHT 3
3 X X X X X X X X NO SHIFT
4 X X X X X X X SHIFT LEFT 1
5 X X X X X X LSB - NO SHIFT
MSB - SHIFT RIGHT 1
6 X X X X X X SAME AS 5
7 X X X X X SAME AS §
10 X X X X X X X SAME AS 5
11 X X X X X X SAME AS 5
12 X X X X X X SAME AS 5
13 X X X X X SHIFT RIGHT 1
14 X X X X X LSB - SHIFT LEFT 1
MSB - SHIFT RIGHT 1
15 X X X X SHIFT RIGHT 1
16 X X X X LSB - SHIFT LEFT 1
MSB - SHIFT RIGHT 1
17 X X X SAME AS 16

4-68

DP6 12-BIT CARRY H

DP8 MSB SHFT SEL 1 H
DP8 MSB SHFT SEL @ H

DP8 LSB SHFT SEL @H————
DP8 LSB SHFT SEL 1 H

DP7 SHF BIT L

DP6 0BUS 1 L DP6 0BUS<2:3> L | DP6 0BUS 4 L DP6 0BUS <5:6> L DP6 OBUS 7L DP7 OBUS 8L DP7 0BUS < 9:10>L DP7 OBUS < 11:12 L DP7 0BUS < 13:14 L DP7 0BUS 15 L
7o F il Fo F1 o Fi) Rl Fo Fi 0 Fi Fo Fi Fo Fi Fo Fi
sof— so == - - - = 0
$1— st | - | - - s1p—
E74 €58 E57 £59 £60 E6! E62 £63 €64
CONT®, 1 L olconTo, 1 — 9 L o L o | o - L dconTo, 1
po 0 B2 A0 D1 Gt B1 A1| |00 Co BO AD DI CiI BI A1 D1 1 B Al co AD D@ CP BO AB DI Ci Bi A
1 [J7777% oTooo?i? 0O R ooo?oooT o0 O Too (?T Lo o0 oo?TT o 00 OTQT
+3v
oP8
CLINK
H
£82
couTz
DP7 SHFBK L
DP8 SLINK L
(DP8 SLINK L OR +3V)
DP6 ALU 1L DP6 ALUZL DP6 ALU 3 L DP6 ALU4L DP6ALUSL DPEALUGL DP6ALUTL OP7ALUBL DP7TALU 9L DP7 ALUIOL DP7 ALU 1L DP7 ALU12L DP7 ALUI3 L DP7 ALU14 L DP7 ALU 15 L
N J - J
Y Vo
NOTE: MULTIPLEXERS ARE 74LS253
0 0BUS
SHFT SELOH SHFTSEL1H Fn MSB LSB
Lo Lo An | ALUSHIFTED RIGHT3 | ALUSHIFTED RIGHT 3
LO Hi Bn ALUSHIFTED LEFT 1 ALUSHIFTED LEFT 1
Ht LO Cn 0 ALU SHIFTED RIGHT 1
HI HI Dn ALU, NO SHIFT ALU, NO SHIFT

08—1775

Figure 4-29 Shift Gates

4-69

PROM
‘ E65
D:: DB? : :: M6 (1)
gm ggz H A2 Ms (1)
om s h At M4a(1)
OP1 D s M3(1)
OP1DB4 H —A M2 (1) DP8 X3 L
ENB
DP8 ENABLE FIR L
P/O E92 PROM
TaLsiTa as ET DP8 ALU MI5 L
M5 (1) -
CBS ARITH@ H bg RE() 22 M4 (1) DP8 OVF RECOVER H
CBS ARITH 1 H D1 RY{1) M3 (1) DP8 MSB SHFT SEL® H
CB5 ARITH 2 H D2 R2(1) Mo M2 (1) DP8 MSB SHFT SEL1 H
A
CBS ARITH 3 H D3 R3{1) ME(1) DP8 LSB SHFT SEL® H
R oLk Eng MO (1) DP8 LSB SHFT SEL1 H

DP1BINITIALIZE L ————T
DPIFILE CLOCK L ——M8M8M ™

08-1776

Figure 4-30 Shift Gate Control ROMs

Half of multiplexer E74 is devoted to carry manipulations. In 12-bit arithmetic a carry out of the ALU
is represented by the signal from COUTZ of the carry generator. This signal is gated through E74,
becoming the 12-BIT CARRY H signal that is stored in the CLINK flip-flop of the Shift logic. This
stored carry can then be used as a carry-in during subsequent calculations. During 15-bit arithmetic
carry-in signals for the ALU are generated only by the CARRY IN H signal (Figure 4-28); the output
of CLINK is gated back to its input, forming a closed loop during 15-bit calculations.

4.3.4 Shift Logic

The logic shown in Figure 4-31 is an essential ingredient during 12-bit shifting operations. The logic
includes three of the shift gates, E57, E64, and E74, the SLINK and CLINK flip-flops (E87), and
multiplexer E84. Bits shifted out of a word during a left or right shift are temporarily stored in the
SLINK flip-flop; the stored bit can then be shifted into the MSB position or the LSB position of the
next word to be shifted. Moreover, carries that are generated during 12-bit additions are temporarily

stored in the logic’s CLINK flip-flop, from where they can be propagated to the LSB position of the
next-more-significant word.

During a SHR operation, the sign of the word being shifted is retained, while the LSB of the word is
shifted into the MSB position of the next word to the right. For example: The firmware extract shown
below directs a right-shift of the three MSWs of the SCRATCH register;

1267 DB, SCRATCHM:=[SHR]SCRATCHM FREE*
1270 DB, SCRATCHN:=[SHR][EXT]SCRATCHN FREE* IF EP, SHR2 (1273)

1271 DB, SCRATCHP: =[SHR][EXT]SCRATCHP FREE* IF EXPFL, SHR1 (1266)
1272 NO OPERATION FREE* RETURN

4-70

1LV

DP6 ALU 4L L —oloy CONTO/!
L —dc1 F1Jo— DP6 0BUS 4 L
DP6 ALU 5 L ———0IB1
DP6 ALU | L —— a1
74L5253
ES?
St se
DP8 LSB SHFT SEL @ H——]
DP8 LSB SHFT SEL | H——m8m
74157
= g2 E84
o1 CoNTB/T Pv;tosg; +3v—-da2 Fe
DP7 SHF BIT L INK
DP7 ALU 15 L olct Filo D5 Rs(1)}-2F8 SLINK L —dB1 DP7 SHF BK L
DP6 ALU 4 L —O|B1 —OlA1 Fi
DP8 CLINK H
oat —] o4 R4(1) B0
74LS253 TOC IN, ALU &
E64 DP8 CARRY IN H A0 FOI | 0OK-AHEAD CARRY GEN
DP7 ALU 15 L dpo CLR CLK STB SO
[*]
DP7 ALU 14 L dco FOIO—DP7 0BUS 15 L i
80 DP8 OVF RECOVER H
DP7 ALU 12 L —O A2 s1 50
/
DP8 LSB SHFT SEL @ H
745174
DP8 LSB SHFT SEL 1 H AL
CB6 EXTEND H 7418253
= DP8 MULTOP H
T Do RO (1) S1 S0 Fn SHIFT
DP6 ALU 1 L D1 LO Lo An RIGHT 3
+3V Cc1 LO HI Bn LEFT 1
— CLR CLK HI LO Cn RIGHT 1
DPE ALU 2 L Bl F1Jo—— DP6 OBUS 1 L o
[n | NONE
DP7 ALUIZL At DP1 B INITIALIZE L.T
745253
E74 DP1 FILE CLOCK L
Do 74157
LOOK -~ AHEAD DP6 12 BIT CARRY H
CARRY GEN co FO S0 | An | Bn | Fn
OUTPUT
B@ HI — LO LO
—AQ s 50 HI HI
Lo LO - LO
HI - HI
DP8 MSB SHFT SEL O H
DP8 MSB SHFT SEL 1 H
0o8-1777

Figure 4-31

Shift Logic

First, while SCRATCHM is shifted right one position, its sign bit is retained and its LSBis loaded into
the SLINK flip-flop; then, while SCRATCHN is shifted right one position, the bit in SLINK is loaded
into the MSB position of SCRATCHN and its LSB is loaded into SLINK; finally, SCRATCHP is
shifted, the SLINK bit being loaded into the MSB position and the LSB being loaded into SLINK.

To accomplish these operations, the logic begins by moving SCRATCHM onto the ALU (4:15) L
lines. Both ALU4 L and ALUI1S5 L are examined at the input of the Shift logic multiplexer E64.
ALUI15 L is gated to the data input (DS5) of the SLINK flip-flop, while ALU4 L, the sign bit, is applied
through an Exclusive-OR gate to the A1 input of multiplexer E84. During address 1267, the MULTOP
H signal is low; hence, E84 gates A1, which represents the sign of SCRATCHM, to multiplexer E57;
ES7 then gates the sign signal onto OBUS4 L. Meanwhile, the rest of the Shift Gates have gated bits 4
through 14 of SCRATCHM onto OBUS (5:15) L, respectively; thus, SCRATCHM has been shifted
right once, but its original sign is retained. At the next clock pulse, that of address 1270, the shifted
information is loaded back into SCRATCHM and bit 15 is loaded into SLINK.

At the same clock pulse time, SCRATCHN is gated to the ALU (4:15) L lines. Once again ALUIS L is
gated to the data input of SLINK, to be loaded eventually by the clock pulse of address 1271. Because
the EXTEND H signal is now asserted by the Control ROM, MULTOP H goes high; E84 selects the
output of SLINK and gates it to E57, where it is placed on the OBUS4 L line. The rest of the shift gates
place bits 4 through 14 of SCRATCHN onto OBUS (5:15) L; hence, SCRATCHN has been shifted
right once, its MSB position being filled with the original LSB of SCRATCHM. The SCRATCHP
shift is handled the same way as SCRATCHN. Since this is the last step of this FP-mode shifting
operation, any bits loaded into SLINK from SCRATCHP are lost.

The manipulations carried out while shifting left are similar to those just described, but in the reverse
direction, of course. First, the LSW is shifted; i.e., bit 4 is gated to SLINK, bits 5 through 15 are gated
to OBUS (4:14) L, respectively, and zero is gated onto OBUS15 L (MULTOP H is low for the LSW
shift, so E84 gates +3 V to E64, B0). Then, the next-more-significant word is shifted, its LSB being
filled with the SLINK content and its MSB being loaded into SLINK for transfer to the next-more-
significant word.

4.3.5 Multiply/Divide Logic

Figure 4-32 illustrates the logic that is used primarily during multiplication and division. The logic
monitors a number of signals that characterize multiply and divide operations and manipulates the
ALU and the DB register accordingly.

When an FPP instruction is fetched, flip-flop E72B is loaded with a bit (DBO H) that identifies the
instruction as FMUL or FDIV (DBO H is asserted if the instruction is FMUL, but negated if the
instruction is FDIV). The resulting ENABLE DB BIT H signal is applied to both multiplexer E68 and
PROM E75. These two elements examine their input signals and manipulate both the ALU and the
DB register according to the conditional inputs. Table 4-21 gives the input/output signal relationship
for PROM E75, while Table 4-22 relates the various signal conditions to the results achieved in the
ALU and in the DB register.

For example: PROM input code 11 represents a divide operation (ENABLE DB BIT H is high) with
MDLST specified by the ARITH3 H signal; the PROM examines the sign of both the data word in the
selected TEMP register (TEMP SIGN L) and the DB11 bit (DB11 H is gated to DB BIT1 H by E68
during a divide operation); since the two logic levels are different, the B input of the ALU is subtracted
from the A input; the complement of the sign of the result (ALU4 L) is gated through E68 and to the
DB register shift-left input (DB BIT H); the PROM asserts DB LFT EN H so that the DB BIT H
signal is shifted into DB11 at clock pulse time; at the same time the Shift Gates are shifted left once.

4-72

F

DP6 ALU4 L———-————-[: D1 CONT®,1
ci
£68
DP1 DB H Bl 74,9253 FIf————DP8 DB BITH
At
— 0o
—co
{80 FO DP8 DB BIT 1 H
A
DP8 ENABLE DB BIT H st se
DP8 ENABLE FIR L c ob— AQ M@(1) p— DP8 ALU S@ L
DP5 PROM
E728B TEMP —1—] A1 E75 M1()p— DPBALU SIL
SIGN L
D 1p— — A2 M2(1) o— DP8 ALU S2 L
r i
DP8 MULTOP H A3 M3(1) p— DP8 ALU S3 L
DBt DBAH CB5 ARITH3H ———— A4 M4(1)
DP8 CARRY IN H
M7(1)
DP1 FILE CLOCKL ——C @ ENB
E72A DP8DB LFT ENH
DP3FP FETCH H D 1P —
— CB5 ARITH (@:2) H DP8 MUL/DIV L
08-1778
JaLs253 SIGNAL FUNCTION
o T so | m DBO H ENABLEDBBITH | MULTOPH DBBIT1H DBBITH FUNCTION
HI Lo Lo DBOH DBOH MULT-ROTATE DB
LO LO A
o h n HI Lo HI DB11 H DB11H MULT EXT—NO SHIFT OF DB
Hi LO Cn Lo HI LO DB11H ALU4 L DIV
HI HI Dn
Lo HI HI DB11H ALUAL | DIVEXT

Figure 4-32 Multiply/Divide Logic

4-73

Table 4-21 PROM E75 Input/Output Signals

ALU
Input Input Signal Low Output Signal Asserted Arithmetic
Code | ARITH3H|MULTOPH | DBBIT1H | TEMPSIGNL | ENABLEDBBITH | ALUSOL | ALUSIL [ALUS2L | ALUS3L | CARRYINH | DB LFT EN H | Operation
11 X X X X X X A-B
13 X X X X X A+B
15 X X X X X A+B
17 X X X X A-B
20 X X X X X A
21 X X X X X X A-B
22 X X X X A
23 X X X X A+B
24 X X X X X X A+B
25 X X X X A+B
26 X X X X X A+B
27 X X X X A-B
30 X X X A
31 X X X X A-B
32 X X A
33 X X X A+B
34 X X X X A+B
35 X X X A+B
36 X X X A+B
37 X X A-B
Table 4-22 Multiply/Divide Conditional Operations
Multiply (MDS) Divide (MDS and MDLST¥*)
EXTEND H Asserted EXTEND H Negated EXTEND H Asserted or Negated
DB11 H Asserted | DB11 H Negated DBO0 H Asserted DBO H Negated MDS MDLST

A+B—>Shift Gates
Shift Left Once

A—>Shift Gates
Shift Left Once

A+B—>Shift Gates
Shift Left Once

A—>Shift Gates
Shift Left Once

TEMP SIGN L and DB11 H

TEMP SIGN L and DB11 H

Same Logic Level

Different Logic Level

Same Logic Level

Different Logic Level

DB11—-DBI11 DB11-DBI11 DBO->DBl11 DB0—DBI11 A+B->Shift Gates A-B—Shift Gates A+B—Shift Gates A-B—Shift Gates
(No Rotation) (No Rotation) (Rotate DB Once) (Rotate DB Once) Shift Left Once Shift Left Once Shift Left Once Shift Left Once
5 ALU4 L—>DBI1 ALU4 L->DBI1

*MDS: ARITH (0:3) H ASSERTED
MDLST: ARITH (0:2) H ASSERTED, ARITH 3 H NEGATED

4-74

Note that the EXTEND H signal is irrelevant to the logic in Figure 4-32 (MULTOP H and EXTEND
H are synonomous — the firmware identifies the condition of the signals being asserted as [EXT]);
however, the signal still has relevance when the Shift logic is considered.

4.3.6 Data Break Logic

The FPP uses data breaks to fetch instructions, to read data from memory, and to store data in
memory. A data break operation is initiated by many Control ROM locations within the data break
area, i.e., the area represented by uPC addresses below 4005 (except addresses 0-3, 6,7, 13,and 17).

The Data Break logic is divided into two sections for descriptive purposes. The first, shown in Figure
4-33, generates signals that, more or less, simply enable the FPP to control the PDP-8 CPU; the
second, shown in Figure 4-35, generates signals that, generally, describe the type of data break and
where in memory it is to take place.

The Omnibus Control logic, Figure 4-33, initiates the data break, assumes control of CPU gating, and
performs a priority check; Figure 4034 relates the significant data break control signals. When a data
break is required by the operation being carried out, the Control ROM generates an output that causes
the Clock logic to assert BRK RQ H. Providing certain conditions are met, BRK RQ H asserts the
Omnibus signals that allow the FPP direct access to the PDP-8 memory.

There are, essentially, two questions that the logic considers when the BRK RQ H signal is asserted: If
the present timing cycle is a Data Break cycle (being used by the FPP), has the FPP been programmed
so that it can use the next timing cycle as well?; is any higher priority device requesting a data break at
the same time as the FPP? The first question, if appropriate, is answered at TP3 time, when flip-flop
E47 is clocked. If the FPP can use consecutive memory cycles for data break transfers, the ALLOW B-
B BREAKS L signal will be asserted (refer to Paragraph 4.3.7) and output R5(1) will go high at TP3
time. If the present cycle is not a Data Break cycle, the MAC flip-flop is in its clear state and the
question is irrelevant; thus, R5 (1) goes high at TP3 time after BRK RQ H is asserted. Output R4(1)
also goes high at this time, as does R3(1); the latter output generates the NEW BRK signal, while the
former output is NANDed with the output from R5(1). This NAND operation begins the prior-
ity, check procedure that answers question two.

All data break devices place their priorities on the DATA bus (i.e., they assert the DATA line assigned
to them) during TS4 L: e.g., the FPP asserts DATAI11 L. If a higher priority device is requesting a data
break at the same time as the FPP, its DATA line is asserted. For example, if the device assigned
priority 10 requests a data break, it asserts DATA10 L during TS4 L. Output F2 of multiplexer E15
goes low, inhibiting NAND gate E8. Thus, the PRIORITY OK L signal remains negated, and the FPP
must wait at least one timing cycle before it can begin a break. However, if no higher priority device is
present, PRIORITY OK L is asserted and the MAC flip-flop is set at TP4 time.

When the MAC flip-flop is set, MAC(0) H goes low and the logic in Figure 4-35 is enabled. MAC(0) H
is applied to decoder E28 and to the BKMA /BKEMA registers. The latter registers are loaded from
the OBUS with the data break address at TP4 H time, providing NEW BRK is asserted. The negated
MAC(0) H signal then gates the address onto the EMA and MA lines.

Decoder E28 decodes, basically, the BKCMD (0:2) L signals asserted by the Control ROM. Table 4-23
relates the BRCMD (0:2) L signals, the output of decoder E28, and the resulting data break operation.

4-75

3V~
!qo 8 0
2l e E ?5838(; BH2 MA, MS LOAD CONT L
[7a7a & '
TPy 024 Mt 0D
384 °\3 1] . s
5/E39 c o
= 13
! 13 L2
8881 74L5158
12| £30 BREAK CYCLE L oA
AR1 E19 BO
DATA D L ——d 0 Fo l
2 A
DP1 9 &% | 2,)]
v 8881 CV1 Ms, IR
PRIORITY OK L——éo"—MO\Z 0 | of 15 3| 8)o— n IR L i |
—o E18/ 7474 pS ! [o
Tpa p S92 3 E24 5 J1 | |
5 4|74s11\6 3 FMACM 3 5 % DP3 FP |
74S00\ 6 5| E23 J v [| BREAK H —of |
4o E86 DU1 E14 B2
3 4 ! DATA 10 L——F——0 a2 F2
DP1 B INITIALIZ -
i —O 7415158
DV1 E14 B3 E15
DATA 11 L o F3
—A3
CB1FP IOT L STB S
3 7
O —
DP1 ALLOW 10 72220 8 DP3 MAC (1) H L
B-B BREAKS L O p—— —
E47 15 13 —MAC (2) H
RS() 74500)0_L_o7404,8 8
ra(n)i2 12| €46 E69 8881 \0 BE2 BRK IN
91 E33 PROG L
19 1
R3(1) NEW BRK 1
6 I 8881 12 CUI_ cPMaA
D2 R2(1)}— 12] E33 DISABLE L
4 5 DP1 FILE 3
D1 R1(1)P—
2 crock L 5]7410)& DP3_ PRIORITY
> RotIr 4 e TEST L 7418158
CLR CLK 2 o\ st8B | so | Fn
P W NERE
J L L An
Ji DP3 BTP3 H cP2 4 5 p L N
w»l TS4 L“os [6a0\3 6|58,
'8 E48 /
CB4 BRK RQH . L
CH2 7
MJ TP3 H 384 \2
) 6/ E39
08-1779

Figure 4-33 Data Break Logic, Omnibus Control

4-76

LLY

TP1 H l I

TP2 H

TP3 H

TP4 H

TS4 L

BRK RQ H

NEW BRK

BRK IN PROG L

CPMA DISABLE L

DATA i1 L

PRIORITY TEST L

PRIORITY OK L

MAC (1) H

FP BREAK H

MS,IRDISABLE L

BREAK CYCLE L

MA,MS LOAD CONT L

—

Figure 4-34 Timing, Data Break Control Signals

08-1780

TS2 L—q
—__L—q

1/0 PAUSE L —9
CB1 FP 10T L ——O

DP2 FIRS5 H

MAC(Q) H

DP1 B INITIALIZE H

NEW BRK~D¢

CB6 BKCMD O L
CB6 BKCMD 1 L
CB6 BKCMD 2 L

CB2 PROT H

4-78

DP3 MAC(1) H

L E30
> |

BREAK DATA CONT L

cB1 DB

IN

IOT H (FMRB)

DP1 G PAUSE H L_

DP3DB TOBUS 1 H

D
U
opa DB TO BUS 2 H

[

U U

Y

b b

)

& &

)

o
R2(1 R ROG

oot M RI ROAN
CONT
CLK 8T10
CLR E£29
DATA
ENA

o £33 DATA 11 L
—0)
03 F7lo—
Felo
74LS42A Fslo-
D2 DECODER r4lo
p1 E28 g3lp
F2
00
fib EN MD DIR L
FO
°> DP8 DB RT EN H— E23 } DP3 FP FETCH H
DP3 MAC(1) H—
74LS42A
EMA2 L MA11 L D3 | D2 | D1 | DO | OUTLO
EMA1 L MA1D L o o| o| o Fo
EMA® L Lo| Lol Lo wi F1
(MAO: 7> L) --- MAS L
A MAS L o| o] W | Lo F2
R2(1) R1(1) RO(M) R3(1) R2(1) R1(1) R@(1) rojrog A =
OD ouT - — —OD ouT || of o Fa
—o CONT CONT o | w | o] w F5
ELK 8T10 — — — — — |- — —{cLK 8T10 o | w | W Lo F6
CLR BKEMA — = — — — |- — —CLR BKMA 8-11 Lo| W | AI| A F7
E22 E31
9)DATA — — — — — |9)DATA
ENA ENA
O D3 D2 D1 DO D3 D2 DI DO 8110

—

T ouT DATA Dn Rn (1)
oBUS 12 L CONT ENA
0BUS 13 L LO Lo Lo LO

OBUS 1 L
0BUS 2 L --(0BUSCAI>LY- - (L o o R
OBUS 3 L 0BUS 15 L Lo HI X | NOCHANGE

08-1781

Figure 4-35 Data Break Logic, FPP Control

Table 4-23 Data Break Logic, FPP Control Signals

MAC(0O)H BKCMDOL | BKCMD 1 L | BKCMD 2 L | DECODER OUT LO Signal Asserted Result

LO LO LO LO fo MD DIR L, BREAK DATA Instruction Fetch — Read,
CONT L, FP FETCH H (if DATA to FIR
DB RT EN H and MAC (1)
H are asserted)

LO LO LO HI f1 — —

LO LO HI LO f2 DB to BUS 1, 2 H (During Write (PROT BIT IGNORED);
TS2) ~ Used for APT Get and Put

LO LO HI HI f3 MD DIR L, BREAK DATA Read (PROT BIT IGNORED);
CONTL Used for APT Get and Put

LO HI LO LO f4 DB to BUS 1, 2 H (During ADM (if PROT =1, BKEMA
TS2), BREAK DATA not Loaded)
CONTL

LO HI LO HI f5 DATA 11 L (During TS2 if Increment (If PROT = 1, BKEMA
FIRS5 is HI), BREAK DATA not Loaded)
CONT L

LO HI HI LO f6 DB to BUS 1, 2 H (During Write (If PROT = 1, BKEMA not
TS2) Loaded)

LO HI HI HI £7 MD DIR L, BREAK DATA Read (If PROT = 1, BKEMA not

CONT L

Loaded)

4-79

4.3.7 Lockout Logic

The logic in Figure 4-36 enables the FPP to use the Lockout mode. The logic monitors the MD lines to
detect the IOT instructions that are involved with the CPU interrupt system. If the active interrupt
system is turned off (SKON or IOF is issued), the INT ON flip-flop is cleared; this holds the INT SER
flip-flop in the clear state and the FPP operates in the Lockout mode uninterrupted, providing the
Lockout bit is set. However, if the interrupt system is turned on by ION or RTF, the INT ON flip-flop
is set. If an INT RQST L is generated in the system, the INT SER flip-flop is set and the FPP goes to
the Interleaved mode. At the conclusion of interrupt servicing, the ION or RTF instruction, which re-
enables the interrupt system, also clears the INT SER flip-flop in the FPP. The INT ON flip-flop
remains set, and the FPP automatically resumes operation in Lockout mode.

4-80

18-

INITIALIZE H ‘D

BTP3 H

MD9 L

MD10 L

MD11 L

MD8 L

MD7 L

MD6 L

MDS L

MD4 L

MD3 L

|

¥
i

%

U

-

SK?N
IOF H
) K 0 A— + 5V
— INT
ON cB2
ION J 1 LOCKOUT H
+
RTF H l L
I K o
—d INT
d JSER1
INT
RQST L S
10T MNEMONIC OCTAL DESIG
SKON 6000
ION 6001
I0F 6002
RTF 6005

A

|
ddbddb bbbl bl bl

I/0 PAUSE L

Figure 4-36 Lockout Logic

ALLOW B-B
BREAKS L

0B -1782

APPENDIX A
FPP8-A FIRMWARE SYNTAX

TH1S IS THE FORMAT QF THk FPP SOURCE CODE:

ABSOLUTE LABEL DATA PATH TIMING CONTROL
AUDRESS (MNEMONIC) STATEMENT STATEMENT STATEMEMT

1, ABSOLUTE ADDRESS
AN ASTERISK AS THE FIRST CHaRACTER ANMOUNCES AN ABSOLUTE ADDRESS SETTING.
THE REMAINDER OF Twe LINE MuST THEN BE &N OCTAL AUDRESS,

2, COMMENTS
A SLASH AS THE FIRST CHARACTER ON A LINE ANNOUNCES TWAT THE LINE IS A COMMENT,

3o LaBEL
NﬁEHUNxC ADLRESS LABELS ARE SIX LHARACTERS OR LSS In LENGTH, CUNTAIN

ONLY &=Z anNy k=9, anD ARE TERMINATED wITH A COMMA«TAE PAIR,
4y DATa PATH STATEMENT
DATA PaTH STATEMENTS ARE OF THE FOLLOwWING FORMZ
NU CPERATION
U
UESTINATION $=SUURCE [ARITHMETIC FUNCTION) SUURCE«1; OESTINATION:®SUURCE

StVERAL DESTIMATIONS MAY AE USED, WHERE LOGICALLY REASONABLE=~EACH UESTINATION
1S SEPARATED FROM ThE NEXT B5Y A LOMMAWSPACE PAIR. oY CONVENTION, [HRE FIKST
SUURCE I8 THE FILE a SJYJURCE; THE SECOND ONE (AFTER THE ARITHMETIC FUNCTIUN)

IS THE FILE b OR CONSTANT, TrE +) IS QPTIONAL==IT FURCES A CARKY INTO

THE alus 1F TWO ANITHMETIC STATLMENTS APPEAR ON THE SAME LINE,

THEY MySysi

1o 2t LOGICALLY JON<CONFLICTIMG

2y Pk SEPAWATEUD BY a SEMICOLUN=SPACE PalR

GENERALLY, THt SECUND STATE4ENT (IF USED) WILL AR EITRER UBISMD

OR Oniale],

BKMA 1S ALwaYS UNE UF TME DESTINATINNG EVERY TIME THERE
IS a4 T3 IN THE TIMING STATEMENT, ANM A ARCMD3I= MUST bE [N THE CUNTROL
STATEMENT FOR EVERY Ta (EXCEPT FuR ADURESSES 3, b, 7, 13, 15 ANU 17),

A LIST OF THE A SOURCES ARE:
FrC
Xxv
o
GPARD
aAPTP
TEMA
FleLy
FaCE
FACM
FACN
FACP
FaCK
rACS

sC
SCRATCHE
SCRATCHM
SCRATCHN
SCRATCHP
SCRATCHR
SCRATCHS
SCRATCHT
MuM

MaN

MaP

MuR

Mu$

IF FILE A IS USED BOTH a5 A SOURCE AND a DESTINATION, THE SAME SOURCE AND
DESTINATIUN IS USEp,

A-1

THE FILE © SUURCES ARES

] (IMPLIEG IF NOTHING IS SPECIFIED)

3 , (PLUS 1)

Ke

K3

K14

K21040

K3777

My (MINUS 1)

ne

M3

mo

~14

M27

mIe

M73

TckP<113>,0 (ThE FIELD RITS FROM TEMPJ % [~ THE 12 LSB)

FIke9311> OR FIw<S:ii> (THE FIR BITS aRk BITS FROW THE INSTRUCTION
WGRU wHICH ARE S4VEP IN LATCHES IN Tme 0ATA PATH, THE CROICE
BETweEnw FIRe9:11> AMNL FIK«5311> IS MADE B8Y AN EXTRA BIT
ALSU LATCHED IN THE DaT4 PATH, WHILR RECORUS THE STATE CF BITS
3 AND 4 OF THE I4STRUGTION wORD, THLSE 1wU BITS MUST BE ¢ AND 1
RESPECTIVELY IN uRDER T3 GET FIR<S5:11>)

urs (FIELD BITS = W)

TeMP<lid>,0n (SavE AS ABAVE, EXCEPT THaT Trk 3 MSB ANE FILLEU
WITH THE FIckD B1TS FROD TENP)

FIk<638> (RIGRTeJIUSTIFIE Jmwl €, IN THE LSB)

TEMP (THESE LIGAT LUCATINAS 4RE Tde NHLY wRITABLE OMES IN FILE 8)

TEMPL

TerrP2

TeMPa

TeMPd

TecM¥d

TekPo

TerP?

sl:cz THERE ARE ONLY EIGHT sRITAuLE LOCATIONS IN FILE B, THE WRITE LUCATIONS
ARE?

TEMP

TEMPL

TEMP2

TEMP3

TEMP4

TEMPS

TEMPO

TeEMP?

WRITING MUST HE TO 4 DIFFERENT FLILE FROY THE ONE BEINu READ,

TEMP3=TEMP6 ARE USED TO HOLD THE NPERANJ FETCHED FROM MEMORY,

TEMPS HOLUS THE EXPONENT; TEMPL nOLDS THE MS8 OF THE FRACTION] AND LESSER BITS

OF FRACTIUN ARE STORED IN TEMP2-d RESPECTIVELY, THUS MOST OF THE WURD MOVES, ETC
TAKE PLACE VIA TEMP OR TEMP7,

THERE 1S A SPECIAL OPERATION THAT INVULVES BOTH 4 aNw 8, AND A SPECIAL ARITHMETIC
OPERATION,

1udviFPC<1:3>
THE FPC FIELD BITS AE PLACED ON THE (84 OF TRE 8 INPUT TO THE ALU., 143¢ IS OReD
WITH TMF FPC FIELD 6178, THE ALy IS PLACED IN A "B UnLY" NODE (SO THAT THE FPC
IS NOT ApDuBD TO THE wORD ON THE n INPUTS),

AS STATED ABOVE, THE ARITHMETIC FUNCTIO+ IS ENCLUSED IN SUUARE BRACKETS, ANU USED
AS A DELIMITER BETWLEN THE A AND B INPUT FUNCTIONS,

15«BIT (AUURESS CALLULATION) FUNLTIONS

FUNCTION DESURIPTLON
182} 15=g17 Aub
(2#] 15 31T auD FOLL 44ED BY LEFT sMIFT, @ IS SnIFTEY I~Tu TnE

LSB; THE MSk IS LOST,.

(3] THE CONTZNTS (F THE R LEG OF ThE ADDER ARE GATED 0OnTO
THE A LEG OF TWE ADODER (SHIFTED LEFT ONE PLACE).
THE APDER IS PLACED IN THE 15~BIT aDO MUDE,

(L] 4 CIMBINATINN OF 2+ AND 3

{R3IR) THE & ANu B LEGS OF THE AUDER ARE aDUED (15-BIT ARITHMETIC)
4ND THE RESULT ROTATEU 3 PLACES RIGHT, THIS
FUNCTIQw IS GENERALLY USED FOR MUVING FIELY BLTS
INTD POSITIUN,

Le=uIT FUNCTIONS (USED FOR DATA mMANIPULSTION)

FUNCTION DESCRIPTLON

[12417) THE 3 1ISn ARE ALA#AYS ZERJ, THE 12 LSB ARE ADDEUL TOGETHEK,
THE ®Sz OF TWE aLU Awn PLACEJU IN A SPECIAL MUDE
20 ThaT TuIs PART OF Twk aLU MAY gE USED FUK
UVERFLU« DETECTIUN,

(93] (1AY 3t W3ED Iw EITHER 12 OK 15 gIT MODE,) ALL BITS

4RE LK,

[31GNI THE S1GN OF TuE g2=nlT wIKD U THE A LEG OF THE ALU
1S EXAMInED, IF THE SIGN 8IT I3 2, THE OUTPUT
WF Thy ALU WILL BE ZeRJ, IF THWe SIGN 3IT IS 1,
THE QUTPUT uF THE ALu #ILL BE 7777,

(HIvUS) A = b, TWO'S CIMPLEMENT SUBTRACT, 12 817Ts,

lexPSIze) THE SIGA OF & I> EXAMINED, 1+ THE SIGN OF A [S NELATIVE,
THE ALY QuUTPUY IS 7777, 1IF THE SIGN
wF A I8 PUSITIVE, THE CONTENTS UF o ARE ADDED
0 A,

luveRreCl OVERFLUw RECQVERY, THE ALU (5 PLACEU IN "1281T" MOUE, THE
WITPYT IF THE ALY IS SAIFTED RIGHT, THE CUOMPLEMENT
uF THe SIGN IS5 SHIFTEw INTO THE SI1GN POSITION,

[E1L1%] 12 91T LeFT SHIFT, ¢ 1S SHIFTED LwTO THE VACATEY BIT,

[ELTS] 12 317 RIGHT SHIFT, THE SIGN BIT IS SHIFTEVU INTU THE
VACATED BIT PCSITION,

(ACLST) LIKE MUS DESCRIJED BELOw, EXCEPT TwAT TmE RESULTING
WUQTIENT 81T IS8 SHIFTED INTO THE DATA BUFFER,
USEN ONLY IN THE DIVIDE OPERATION,

(Mos) MULYIPLY~DIVIOE STEP, A BIT IS SAVED IN THE MAJUR
EGISTEIS TO DISTINGUSH BETWEEN MULTIPLY ANV
WIVIDE, THIS BIT IS SAVED AT THE SAME TIME
THE FIR ©8ITS ARE LATCHED,

IF THE OPERATION 1S HULTIPLYS
IF TWE EXT BIT (DESCRIBED LATER) IS NOT
ASSERTED, THE MSB OF THE 08 (DBY) IS EXAMINED.
IF THIS BIT 1S ZEKD, THE CUNTENTS OF THE A
LEG OF THE ALU ARE GATED YO THE SHIFT GATES,
aND SHIFTED LEFT, IF THE MSB OF THE DB IS 1,
4N ADO OF A AND b OCCURS dEFQRE THE SHIFT,
IN EITHER CASE, THE D6 IS ROTATED LEFT ONFE PLACE,

LF THE EXT BIT 1S ASSERTED, THE Samt OPERATIUN
45 DEGCRIBEN aBOVE TAKES PLACE, EXCEPT TraT
THE CONDITIUNAL ADD IS5 CONTROLLED &Y 0Bi1.

N0 ROTATING OF THE Om UCCJRS,

IF THE OPcRATION IS OIVIUE:
THE SIG4 OF THE WORD IN TEMP1=TEMPD 15 EXAMINED.
UB11 18 ALSO EXAMINEU, IF THESE Twl BITS ARE
THE SAME, A IS ADDED TO B, IF THESE TwO BlTS
aRE DIFFERENT, 8 IS SUoTRACTED FRQM A, ThE
RESLLT 1S SHIFTEU LEFT ONE PLACE, IF THE STEP
1S MOLST, RATHER THAN MDS, THE SIGN OF THE RESULT
IS ALSO SHIFTED INTO THE OB,

A SPECIAL BIT, CALLEO EXT IS USEw TO CONTROL THE CARRY AND SHIFT LINK IN
12=B1T OPERATIONS, IF EXT IS NEGATED, THE NPERATIONS OESCRIBED ABQ0VE OCCUR,.
IF EXT IS ASSERTED, THE UPERATINN PERFORHED IS SIMILAR TO THAT DESCRIBED Asuve
EXCEPT:
1o THE CARRY ASSERT IS IuNOREN=«THE CARRY LINK IS USED INSTEAD.
2, IF THE OPERATION IS A 12=8IT SHIFTING OPERATION OF SUME SORT,
THE SHIFT LINK I> USED TO FILL THE VACATED BIT POSITION AND
THE BIT WHICH WOuLD NUKYALLY BE LOST IS LOADED INTC THE
SHIFT LINK, THE SHIFT LINK IS WOT CHANGED IF NU SHIFT
15 PERFORMED,

THE EXT BIT ALSO MAS SPECIAL SIGNIFICANCE In THE MDS OPERATION, SEE
UESCRIPTIUN ABOVE,

5, TIMING STATEMENTS
THE FOLLUWING TIMING STATEMENTS wILL BE FOUND IN THE LISTINGS
783 LEADING EDGE OF CLOCK PULSE COINCIDES WITHW LEADING EDGE

OF UMNIBUS SIGNAL TP2M? TRAILING EDGE CUINCIDES wlTw
LEADING EDGE 0OF OMNIBUS SIGNAL TP3H,

BT} FPP DaTa BREAK AND OMHISUS SIGNAL TP}
T2 OMNIBUS SIGVAL TP2H
TS OMNIBUS SIGNAL TrIH
T4 OMNIBUS SIGNAL TP4H

FREE FREE=RUNNING CLOLK IN THE FPP
FREE® FREE=RUNNING CLOCK IN THE FPP

THE USE OF FREE AND FREEv I8 A LITTLE BIT OF A KLUDGE, ORDINARILY, THE ¢
FUNCTIQN WOULD BE IN A SEPARATE FIELD, HONEVER, THIS CONVENTION WAS EMPLOYED

T0 KEEP THE WIDTH OF THE LISTING WITHIN BOUNDS, THE « BIT CONTROLS THE FILLING
OF A SET OF FLAGS WHICH REFLECT THE STATE OF EITHER TEMPLeTEMP3 (IF THE * [S NOT
PRESENT) OR SCRATCHM=SCRATCHS (IF THE # IS PRESENT), THE

¢ I8 NEVER PRESENT UNLESS THE FREE=RUNNING CLOCK I8 ON, MHENCE AT THE START OF
ALL ARITHMETIC OPERATIONS, THE MUVABLE PLAGS REFLECT THE STATE OF TEMPi=3,

THUS THE FPP CAN TEST FOR ZERQ OPERANDS, ETC, AS SOUN A3 THESE INITIAL TESTS

ARE LOMPLETE, AND BEFORE SCRATCH IS LOADED, THE FREE« TIMING STATEMENT
APPEARS, FOR THE REMAINOER OF THE OPLRATION, THE MOVEABLE FLAGD REFLECT Tnt
STATE oF ThE SCRATCH FILES BECAUME OF THb CONTINUED PRESENCE OF Tre v,

6, CONTRUL STATEMENT

THE CONTROL STATEMENT GOVERNS INTERNAL ~UUSEKEEPING UPERATIONS WITHIN THc FPP,
THE PRIMARY USE OF CONTROL STATEMENTS IS TO GUVERN JunPS, SUBROUTINE CALLS ANv
CONDITIONAL BRANCHES UF THE MICRu PC, SOME SECONDARY FUNCTIUNS==SETTING OF
VARIOUS 1TSS IN THe STATUS 40RD, ETC, ARE 4.S0 DUNE BY CONTROL STATEMENTS,

STATEMENT EFFECT

NONE THE MICRuU PC IS INCREMENTED

BKCMDga SAME A8 4BOVE, EXCEPT BITS y=11 OF MICRU P IN ARE LUADED
{NTO THE BKCMD REGISTER OF THE MAJOR REGISTER
uREAK CHUNTOL., THE LOAUING OF ThE BKCMD REGISTER
MAPPE4S AUTUMATICALLY BECAUSE A DATA pRrAK
wAS REWJESTED.

6uU 10, THIS IS 4N UNCONDITIONAL JUMP OF THE MILRQ PC., THE

INSTR D1SP

INSTR DISP 2

INSTR DISP 3

5UB,

csus,

RETURN

nICRO P IN pITS ARE LUADED INTO THE MICKU PC,

FIRST INSTRUCTIIN QDISPATCH, TrHE MICRO P IN BITS ARE
UETERHIVED BY THE VANIOUS FAC FLAGS AND THE
INSTRUCTION WORD ON THE D LINES OF THE OMNIBUS.
SEE SHEET 3 OF K=CS=rddlu=a=9 FOR MORE
COMPLETE DETAILS.

SECUND InSTRUCTION DISPATCH, USED BY DATA REFERENCE
INSTRUCTIONS, THIS UISPATCH DIRECTS THE CONTHOL
TP THE FLDA, FSTA, GETARG OR GETN ROUTINE,
UEPENDING ON THE CURKENT INSTRUCTION, SEE
SHEET § OF %=(8=M8410=0-9,

THIS INSTRUCTZIOu DISPATCH I8 USED BY INSTRUCTIONS wHILM
USED FITHER ThE GETARG OR GETN ROJTINE AT
INSTR DISP 2, INSTR OISP 3 DIRECTS THE CONTRUL
10 THE 4PPROPRIATE ARITHMETIC RUUTINE, SEE
YHEET 12 OF K~C5~M841¥=2«9 FOR DETAILS.

THE CURRENT STATE OF THE MIGCRO PC IS SAVED IN TwHE SP
WEGISTER, THE MICRO P IN BITS ARE LOADEU INTO
THE MICRO PC, A FLIP=FLOP (COUNT SP) 1S ALSO
SET, SO THAY TWE SP IS INCREMENTED AT THE NEXT
HICRO PC CLUCK, THIS METHOO OF CALLING SUBROUTINES
PLACES THO IMPORTANT RESTRICTIONS On THE CONTROL
CODE=~ALL SUBROUTINES MUST BE AT LEAST 2
INSTRUCTIONS LONG, AND ONLY UNE LEVEL OF
SUBROUTINING IS PERMITTED,

LIKE "SUu," EXCEPT THAT "COUNT SP" IS SET ONLY IF THE
BI7 COUVTER CONTAINS 4LL 1'S, ANOTHER CONTROL
STATEHENT (PRESET BIT COUNT) L0ADS =12 INTO
THE BIT COUNTER, HENCE CSUB ALLO#S 12 SUCESSIVE
CALLS T2 A SUBROUTINt BEFORE PRUCEEDING TO
THE NEXT INSTRUCTION IN THE CALLING PROGRAM,

RETURN FnOM SUBROUTINE (EITHER TYPE), THE CONTENTS
UF SP ARE LOADED INTU THE MICRO PC.

CONDITIONAL BRANCHES=«IN ALL CASLS, MICRO P IN IS LUADED INTO THE
MICRO FC IF THE CONDITION 1S MET, IF TWE CONDITIUN IS NOT MET, THE MICRO PC
ADVANCES TO THME NEXT INSTRUCTION IN SEQUENCE,

STATEMENT

BRANCH If

IF OP,
1F EP,
1F NOT EP,

IF F8,

1F ZIN,

IF OVFL,

IF MOVE 0X,

IF NORMED,

IF TO MEM,
IF FACSGN,
If FACZERQD,

1F TEMPZERO,

CALCULATING MODE IS DP (24=81T FIXED POINT)
CALCULATING MODE IS EP (FLOATING POINT, 69 8IT FRACTION)

CALCULATING MODE IS EITHER 24 BIT FIXED POINT OR FLOATING
FOINT WITH 24=81IT FRACTION,

THE BIT IN THE COMMAND REGISTER INDICATING A 2=wuRD
ACTIVE PARAMETER TABLE 1S SET,

THE BIT (N Thi “AJOR REGISTERS INDICATING A 2ERC wURD
uN THE "D LINES IS SET,

THE ARITHMETIC OJPERATION TWO STEPS BACK IN THE LISTING
PRONUCED AN OVERFLOW

THE FIRST 13 alTS OF THE WORD IN SCRATCHM«SCRATCHN ARE
4LL 178 OR ALL P'5, (I,E., BRANCH IF SCKATCH
HAY BE VORMALIZED BY DOING WORD MQVES,)

THE WORD IN SGR4TCHM, ETC, 15 NURMALIZED, (BITS @ AND 1
ARE NOT EQUAL, OR THt ENTIRE WORD IN SCRATCH
1S ZERD,) NOTES THIS TEST DOES NOT CHECK FOR
SCRATCH = 6000 000, SEE "FORBIDOEN" BELOw.

CURRENT ANSTRUCTION IS FADDM OR FMULM,
B8IT 2 UF FACM 15 1 (IE, FAC IS NEGATIVE)

ENTIRE FAC FRACTION IS ZERO, NOTER IF NOT IN EP
HODE, HARDWARE IGNURES FACP, FACR AND FACS,

THE TEMP FLAG IVOICATING ZeRO IS SET, NOTE: THE TEMP
FLABS ARE MUVEAHLE, anb LOOK AT TEMP1=5 OR
SCRATCH DEPENDING ON THE FREE/FREEw STATEMENT
LN THE TIMING FIELD,

A-4

IF TEMPSGN,

1F FORBIDOEN,

1F 8GN,

IF EXPFL,

1F NISET,

THE TEMP FLAG INDICATING A NEGATIVE FRACTION 1S SET,
THE NOTE ABOVE APPLIES,

SCRATCHM=SCRATC'IN (DR SCRATCHMeSCRATCHS) =4000 2Y68. CALCULATIONS
THAT RESULT IN 6082 2000 NORMALIZE ONE STEP TOO
MANY, TEST FOR THE FURBIDDEN NUMBER wITH THIS
oRANCH TEST, AND THEN SHIFT THE SCRATCH AREA
KRIGHT QNE PLACE.

THE SIGN OF THE ARITHMETIC OFCRATION TWO STEPS BACK IN
THE LISTING WAS NEGATIVE,

TEST THE STATE IF THE EXPONENT FLAG, BRANCH IF IT IS
SET, (THE EXPONENT FLAG REFLECTS THE STATE
UF THE SC REGISTER, IV IS SET IF THE LAST OPLRATION
LOADING THE SC PRODUCED EITHMER A NEGATIVE RESULT
UR A POSITIVE RESULT AND AN OVERFLOWN, OTHERWISE
IT IS CLEARED,)

THE EXPONENT UNDERFLOW FLAG IS CLEARED, OR THE
ZTRAP BIT OF THE COMMAND REGISTER IS SET,

MISCELLANEQUS CONTROL OPERATIONS

STATEMENT

emew

OPERATION

SET TRAP]
SET DIve

TEST OVFL

ExTER (DP OR FP

PRESET BIT COUNT

EXTEST

SET THE TRAPI FLAG IN THE STATUS REGISTER
SET TAE wIVA FLAG IN THE STATuS REGISTEK

TEST OVERFLOW, THIS OPERATIUN TESTS THt ARITHMETIC QPERATION
TWO STEPS BACK IN THe LISTING,
DP: SET THE LPUVF FLAG
NOT DP3 IF SGN IS =, COMPLEMENT
EXPOVF, IF SGN IS ¢, COMPLEMENT
UNDFLO

OR EP) MuUDE

MICRO P IN {@ A%D MICRO P IN 11 ARE LOAUDED INTO THE OP
AND EP FLNP=FLORS, CAUSING A CHANGE IN CALCULATING
MO0E,

ull ta oIT 11 NEW MUDE

9 ? FP

v 1 o

1 ") EP

1 1 ILLEGAL==NOT USED,

THE BIT LOUNTER DESCRIBED IN THE CSUd OPERATION IS PRESET
TO =12 (1'S COMPLEMENT),

IF NONE UF THE CONDJITIONS DESCRIBED BELUW IS MET, GO
TO FETCH (MICRO PC = 20)
IF ANY CONDITION IS MET, GO TO EXSTRT (MICRC PC
. 1007).
CONDITIONS:
FORCED EXIT FLAL SET
DIVe FLAG SET
DPOVF FLAG SET
EXPOVF FLAG SET
JUNOFLO FLAG SEY, AND ZTRAP
COMMAND BIT ALSO SET,

THE FPPB=aA [S A

APPENDIX B
FPP8-A - FPP12-A DIFFERENCES

CODE=COMPATIBLE FPP WHICH PLUGS INTO THE OMNIBUS,

1T wILL KUN FPP12=A FORTRAN IV W1THOUT “GOIFICATION,

A, PHYSICAL DIFFERENCES

FPPL2mAS

FPPB=AL

| CABINET, COMTAINING POWER SUPPLY AND 6
MOUNTING PANELS OF LOGIC, Tht FPP12=A REQUIRES KA=8E
AND KD=Ar IN URJER TO RUN ON AN OMNIBUS=TYPE

HACAINE, PDWEK CONSUMPTION IS 250 WATTS, PLUS The
PNWER REWUIREN 3Y THE KA AND KD,

2 HEX MOUULES WHICH PLUG INTO THE OMNIBUS,

A SINGLE INTERCINNECTING CABLE BETWEEN THE
FPP3ea MUDULES USES STANUARD HERG 50=PIN
HEAUERS. OMNIBJS POWER REQUIRED IS +5 VOLTS

AT 8,8 AMPERES (44 WATTS), N KD=BE OR KA=BE IS
REQUIRED; NN GOYNECTIONS TO EXTERNAL PEXIPHERALS
ARE MADE FROM THE FPPB-A MODULES,

B, INSTRUCTION SET OIFFERENCES

1, FPPBaa IS AVAILABLE IN NNE FLAVOR ONLY==THE 6¢mB8IT

2, ALL

EXTENDED PRECISIUN MOUE IS BUILT IN,

UNDEFINED INSTRULTINNG EXECUTE NO OPERATION IN THE
FPPB=A, MOST UNuEFINED FPP12A INSTRUCTIONS EXECUTE NO OPERATION,
BUT SOME ARE NOT TESTED,

3. MAINTENENCE IOTS 4RE DIFFERENT,

4, THE

v

. COMM

"LOCKOYT" BIT, BIT 8 OF THE COMMAND REGISTER, ALLOWS
THE FPPB8=A COMPLLTE ACCESS TO THE BREAK SYSTEM WHEN IT
I8 SETa (THE FPP12-A CAN TAKE BREAKS AT A MAXIMUM RATE
QF ONE BREAK EVEXY OTHER MEMORY CYCLE,) THE FPP8eA

IS DESIGNED SO THAT IT CAN KEEP THE BREAK

SYSTEM TIED UP FETCHING INSTRUCTIONS, OPERANDS, ETC,
IF THE LOCKOUT BIT IS SET, THE FPPBeA wILL RELINQUISH
THE BUS ONLY WHEN IT NEEDS TO DO SOME ARITHMETIC WORK
BEYOND HERE ADDRtSS CALCULATIONS, WHENEVER THE FPP8=A
DISCERNS AN INTERRUPT SERVICE IS BEING PERFORMED BY
THE POP8=A, IT TEMPORARILY OISABLES THE {OCKQUT

MODE AND RUNS AT HALF SPEED UNTIL THE NEXT IQGN
INSTRUCTION IS GIVEN,

AND REGISTER BIT> 4, 5, 6 AND 7 WORK DIFFERENTLY IN THE
FPPB=A, IN THE FPP{2=A, THESE BITS CUNTROL STORING OF
OPERAND ADDRESS, X@, BR AND FAC RESPECTIVELY UPUN EXIT,
IN THE FPPBeA, THESE RITS ARE TESTED AS A UNIT, IF ALL
FOUR BITS AME 1, THE FPP8=A GOES TQ A "FAST ENTRY AND
EXIT" HODE, WHERE IT PICKS UP AND STURES ONLY THE

FPC QN ENTRY AND EXIT, ANY OTHER COMBINATION OF BITS
CAUSES THE FPPB=a TO PICK UP AND RESTORE THE ENTIRE
APT,

CAUTION: THIS Wilk WORX ON

FORTRAN IV, THERE YAY 3E SOME OTHER PEOPLE wHO HAVE
WHITTEN THEIR OWN PROGRAMS WHERE THEY USE A SHORTER,

BUT NOT THE SHORTEST, APT, IF S0, TheY MAY BE IN
TROUBLE, NUTE, HOWEVER, THAT THE FAC IS AT THE END OF
THE APT, HENCE THE OHLY PENPLE WHO COULD POSSIBLY 8E

IN TROUBLE ARE THOSE WHO USE THE FOLLONING CONFIGURATION
OF BITS IN THE CUMMAND REGISTER}

BIT 7=1) BIT 4387 BITS 5 AND 6 ANYTHING, (LO
HOT SAVE THE FAC, BUT SAVE OPERAND
4DDRESS AND PERHAPS X@ AND/OR BR)

BITS 7 anD 4mi; BIT 6md) BIT 5 ANYTHING. (DO
NOT SAVE THE FAC OR UPERAND ADORESS,
wUT SAVE BR AND PERHAPS X4d,)

BITS 7, 4 AND 6m33j BIT 599, (00 NOT SAVE FacC,
UPERAND ADDRESS OR BASE REGISTER, BUT
9AVE THE INDEX REGISTER POINTER,)

OR WHO STORE CONSTANTS IN OTHERWISE UNUSED LOCATIONS IN THE
APT,

B-1

6o ALL EXECUTION TIMES ARE OIFFERENT,
IN GENERAL, LOADS AND STORES ARE CONSIDERABLY FASTER
IN THE FPP8=A} AUDS, SUBS AND SHORT MULTIPLIES ARE SLIGHTLY
SLOWER] 6@=8]IT MULTIPLIES AND DIVIDES ARE
5% SLOMER IN THE FPPR=4, WITH THME LOCKOUT BIT SET,
FORTRAN IV RUNS AT ABOUT THE SAME SPEED A8 IT DID ON
THE FPP12A,

7. THE FPPL2=A MAS 4 GUARD BITS WHEN IT I8 RUN IN FP OR
DP MODE, THE FPPBwA HAS 12 GUARD BITS, BOTH FPPS
USE NO GUARL BITS IN EXTENDED PRECISION (89-81T) MODE,

8. THREE OF THE 5 TRAP INSTRUCTIONS ARE REPLACED BY NEw
COMMANDS, TWAP3 AND TRaP4 REMAIN AS IN THE FPP12-A,

OP CODE: 141 @ew CCC v2e

MNEMUNIC: LTR

OPERATION: LOAD TRIITH, CCC (THE CONDITIONW) IS
DEFINED [N THE SAME WAY AS FOR BRANCH INSTRUL=-
TIONS, JE, CCC329 MgANS 0u IT IF FaCs=0, ETC,
IF CONDITION IS HET, LUAU FAC wITH A FLOATING
1,2, (In DOP MODE, FAC IS LOAUED WITH 20¢¢ 200¢.)
IF CONDITION I8 NOT MET, CLEAR FaC,

OP CODE: 119 0@+ XR HS3
ADDRESS LSO

MNEMONIC: LEA OR IMUL (OEPENDING ON nODE)

OPERATION: IN FP OR EP MODE, LOAD EFFECTIVE ADORESS,
00 AN ADURESS CALCULATION, A4S THOUGH THIS WERE
A 24=BIT DIREGY DATA REFERENCEL INSTRUCIUN, THEN
DUMP THE RESULTING ADDRESS INTO BITS 9=23 OF THE
FAC AND CHANGE TO OP MODE.

AN DP MIDE, FETCH OPERAND AND PERFORM

A SIGNED INTEGER MULTIPLY ON THE CUNTENTS OF THE
FAC, LEAVING THE RESULT IN THE FaC,

OP CODE: 111 89+ XR OFFSET

MNEMONIC: LEAI Ok IMULI CDEPENDING ON MDDE)

OPERATION: IN FF QR EP MODE, L0AD EFFECTIVE ADURESS
INDJRECT, DO A SINGLE WORD INDIRECT ADURESS
CALCULATION, PLACE THE ADDRESS INTO FACY=23, AND
CHANGE Tu DP MODE,

IN DP MJIDE, FETCH OPERAND, CALCULATING
THE ADDRESS USING THE INDIRELT ADDRESSING RULE,
FETCH OPERAND, AND PERFORM A SIGNED INTEGER
MULTIPLY BETWEEY THE OPERAND AND THE FAL,
THE RESULTS OF THE MULTIPLY ARE LEFT IN THE FaC,

9, ABSOLUTELY NO ATTEMPT IS BEING MADE TO HAVE THE FPPbeA
RUN ON & DWeBE, INDEED, THERE ARE FUNDAMENTAL REASONS
WHY THE FPPBA CAN NEVER RUN ON THE EXTERNAL PDP=8
1/0 BUS~=THE INTERRELATIONSHIP BETWEEN FPP AND
OMNIBUS TIMING SIGNALS, AND THE RELIANCE ON THE
OMNIBUS ADD=TO~MEMORY 0ATA BREAK FEATURE.

19, OPADD BEHAVES SLIGHMTLY DIFFERENTLY, IT IS UNAFFECTED BY
JNX AND BRANCH INSTRUCTIONS,

11, THE FPP{2~A WAS BELF~INCONSISTENT IN THAT FPICL DID NOT CHANGE
THE STATE OF THE FPP FRQOM DP TO FP, BUT DID CHANGE IT FRUM EP
TO FP, THE FPPB=A WILL ALWAYS RETURN TO FP MODE ON AN FPICL,
FPIST OR CAf 10T,

APPENDIX C
IC DESCRIPTIONS

This appendix describes the ICs listed below. The “S” in an IC designation indicates Schottky-
clamped, TTL logic, while an “L” indicates a low-power device. Any such devices are functionally
identical to TTL alone; for example, the 74LS151 and the 74151 are identical, and the two designations
might be used in the same piece of literature.

741542
7475
8T10
8136
82521
8234
8266
8613
7418139
74LS151
7418157
74LS158
74LS161
74LS181
74LS182
74LS194
7418253
82S112
FPLA (14X48X8)

C-1

7442 4 LINE TO 1 LINE DECODER
These BCD-to-decimal decoders consist of eight inverters and ten 4-input NAND gates. The inverters
are connected in pairs to make BCD input data available for decoding by the NAND gates.

n
fg o——)
g 10
9
7 p—
12 7
(——D3 fe P—
6
7442 f5 P— | pecimAL
BAET Pt tq p=— [OUTPUT
BCD 4
INPUTY fa P)
— D1 fo o—
2
fy P—
15 1
L— DO fo o-__J
GND= PIN 08
1c-7442
7442
TRUTH TABLE
BCD Decimal
Input Output
D3 D2 D1 DO f0 1 f2 £3 f4 f5 16 17 18 9
0 0 0 0 0 1 1 1 1 1 1 1 1 1
0 0 0 1 1 0 1 1 1 1 1 1 1 1
0 0 1 0 1 1 0 1 1 1 1 1 1 1
0 0 1 1 1 1 1 0 1 1 1 1 1 1
0 1 0 0 1 1 1 1 (1} 1 1 1 1 1
0 1 0 1 1 1 1 1 1 0 1 1 1 1
0 1 1 0 1 1 1 1 1 1 0 1 1 1
0 1 1 1 1 1 1 1 1 1 1 0 1 1
1 0 0 0 1 1 1 1 1 1 1 1 0 1
1 0 0 1 1 1 1 1 1 1 1 1 1 0
1 0 1 0 1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 0 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

7475 4-BIT BISTABLE LATCH

The 7475 latches are used for temporary storage of binary information. Information present at a data
(D) input is transferred to the R output when the clock is high, and the R output will follow the data
input as long as the clock remains high. When the clock goes low, the information present at the data
input at the time of the transition is retained at the R output until the clock is permitted to go high.
Input ENBI is the clock input for data inputs DO and D1. ENB2 is the clock input for data inputs D2
and D3.

7475
2 16
Do RO(1) DN RN (1) cLock
1 INPUTS OUTPUTS INPUTS
RO(D) [——
3 15 Lo ? ? RO
D1 R1(1) ENB1
0 0
14
R1(0) —— o1 1 1 R1
0 0
1oz mram 2 D2 . X R2
" ENB2
“loz rz 2
R3(0) | 8
ENBI ENB2
13 a
VCC PIN 5
GND PIN 12
NOTE

1. RN {0O) Outputs = inverted RN { 1) outputs.
2. ENB1 and ENB2 clock on negative going edge.

1C-7475

C-3

8T10 QUAD, D-TYPE, BUS FLIP-FLOP

The 8T 10 outputs present a high impedance to the bus when disabled and active drive when enabled.
When both the inputs and outputs are enabled, the output follows the data input when clocked; if the
input is disabled, while the output is enabled, the output remains in the state it exhibited before the
clock pulse.

DATA
ENA

L >
EDO _} 0o “a

RG(1)

R1(1)

CP _
D1 8

D2 3 R2(2)

b3 o R3(1)

-
A A

ouT o

CONT
CLR 15 Vee = (16)
Gnd=(8)

LOGIC DIAGRAM

Dn DATA ENA OUT CONT Rn {1}

LO Hi HI LO

HI HI HI HI

X Lo HI -~ PREVIOUS
OUTPUT

X X LO HI-Z

TRUTH TABLE
Ic-8T10

C-4

8136 6-BIT, UNIFIED-BUS COMPARATOR

The 8136 compares two binary words (from 2 to 6 bits in length) and indicates matching bit-for-bit of
the two words. Inputs for one word are TTL, while those of the second word are high impedance
receivers driven by a terminated data bus. The transfer of information to the output occurs as long as
the STB input is logic 0. Inputs may be changed while the STB input is at the logic 1 level without
affecting the state of the output.

—— OUT

Vee = (16)
GND:(8)

ST8

R=H1-Z BUS RECEIVER
IC-8136

C-5

82521 64-BIT, WRITE-WHILE-READ RAM

The 82821 IC is organized in 32 words of 2 bits each. _Words are selected through a 5-input decoder
when the read-write enable input, CE, is a logic 1 (hi). W0 and W1 are the write inputs for bit 0 and bit
I of the word selected. CONT is the write control input. When WX and CONT are both at logic 0,
data on the 10 and I1 data lines are written into the addressed word. The read function is enabled when
either WX or CONT is at logic 1.

An internal latch on the chip provides the write-while-read capability. When the latch control line,
LATCH, is logic 1 and data is being read from the 82521, the latch is effectively bypassed. The data at
the output will be that of the addressed word. When LATCH goes from a logic 1 to a logic 0, the
outputs are latched and remain latched regardless of the state of any other address or control line.
When LATCH goes from 0 to I, the outputs unlatch and the outputs become that of the present

address word.

18
I(s)

Wﬂ CONT It W,

(2) I (1) (14) (15)

(13) AD

(12) a1

BIT & BIT 1

Y

(10) A3

(4) A4

ailr:
U

¥

(5) CE

L dddde

02 —Q
wWD@
03 —0O
01 ——— QG CONT
M@ (3) p—— 07
15 —=O
WD1
14 —9 82s21
13 —Q AD
12 —Q A1
M1(0) O——— 09

1{f —————q A2
10 ——q A3

04 — Qg A4

CE LATCH
05 06
TRUTH TABLE

CE | CONT Wo | W, | LATCH MODE OUTPUTS
X X X X 0 Output Hold Data from last addressed word when CE = “1""
0 X X X 1 Read & Write Disabled Disabled logic 1"

1 1 X X X Read Data stored in addressed word

1 0 1 1 X Read Data stored in addressed word

1 0 0 0 0 Write Data Data from last word address when LATCH went

from “1” to “0"’

(6) LATCH
VCC = (16)
GND = (8) (7) (9)

() = DENOTES PIN NUMBERS

C-6

M@ (D)

(=]

o

o

-

Write Data

Data being written into memory

1 0 [} 1 X Write Data into Bit 0 Only If LATCH = 0: Data from last word address when
LATCH went from “1" to 0"
1 0 1 1] X Write Data into Bit 1 Only If LATCH = 1: Data being written into the selected

bit location and stored in other addressed location

IC-82S21

8234 2-INPUT 4-BIT MULTIPLEXER

The 8234 is a 2-input, 4-bit multiplexer designed for general-purpose data-selection applications. The
8234 features inverting data paths.

14

s |2 np
— A3

1"
T B2 t2k 12
—1 A2
@5 | B 8234 0a
06 fip—
— Al
02
o |0 rep
— AQ
S1 SO

?07 ?09

t
B
A
B
1

GND= PIN 8
VCC = PIN {6

1C-8234

C-7

8266 2-INPUT, 4-BIT MULTIPLEXER

The 8266 is a 2-input, 4-bit multiplexer. Input selection is controlled by the SO and S1 select lines.

53 8 b
13 3
A3 —12
1"
24 >
12
pp 10
B! > 4>
4
F1
6
A1
-
1 5 _fp
AB
5o —2 GD

7 0} Vee =(16)
S1 O Gnd =(8)

LOGIC DIAGRAM

S0 S1 Fn
LO LO Bn
LO HI Bn
HI Lo An
HI HI HI

TRUTH TABLE

IC-8266

C-8

8613 QUAD, GATED D FLIP-FLOP

‘The 8613 is a positive-edge-triggered, quad, gated D flip-flop with direct clear and gated inputs. The
gate, if set to a logical 1 level, will inhibit data entry from the data input.

RESET

Q Rn (1)
f‘é]

CLK —Dc

LOGIC DIAGRAM (ONE FLIP FLOP)

vee G3 D3 R3(1) G2 D2 R2(1) CLR

15 14 13 12 1N 10 9
Dn| Gn | CLR Rn (1)
H | Lo| Lo HI
Lo| Lo| Lo Lo
X | Hl | LO NO CHANGE
X X | H Lo 1 2 3 4 5 6 7 8
TRUTH TABLE CLK D@ G® RO(1) Gt DI Ri(1) GND
PIN LOCATOR
IC-8613

C9

74LS139 DUAL, 2-LINE TO 4-LINE DECODER/DEMULTIPLEXER

The 74LS139 is a dual, 2-line to 4-line decoder/demultiplexer.

ENB1 !

Al

B1

1
ENB2 3

14
A2

13
B2

FAQ

FA1

FA2

a[>
>

FA3

n

FBO

EREREE

=

FB1

-

FB2

e
>

I

TEFPYFTTY

FB3
Vee = (16)
Gnd=(8)

ENABLE SELECT OUTPUT

ENB1 81 Al FAQ FA1 FA2 FA3
HI X X HI Hi HI HI
LO Lo Lo LO HI HI HI
LO LO HI al) LO HI Hi
Lo 1] Lo Hi HI Lo HI
LO HI HI Ht Hi HI LO

FUNCTION TABLE
(SAME FOR OTHER HALF)

C-10

1C-74LS139

'74L.S151 8-INPUT, DATA SELECTOR/MULTIPLEXER
The 74LS151 is designed to be used in high-speed data routing applications. The element selects one of

8 data inputs as directed by the binary address inputs and provides both true and complementary data
when the strobe input goes low.

74151 TRUTH TABLE

Inputs Outputs

s2| s1 | so|(stB| Do | D1 |(D2| D3| Da|D5| D6 | D7 | f1 | o
x| x| x| 1 x | x| x| x| x| x| x| x| o 1
o] o 0 o | o X | x| x| x| x| x| x| o 1
o] o | o 0 1 x| x| x| x| x| x| x| 0
o o 1 0 X | o X | x| x| x{ x| x| o 1
of o 1 o | x [1 X | x| x| x| x| x| 1 0
0 1] o 0 x| x| o x| x| x| x| x1|o 1
0 1 o| o | x| x| 1 x| x| x| x| x| 0
0 1 1 0 X | x| x| o x| x| x| x| o 1
0 1 1 0 X | x | x| 1 X | x| x| x| 1 0
1 0 0 0 X | x| x| x| o x| x| x| o 1
1 o | o () X | x| x| x| x| x| x| 1 0
1 0 1 0 X | x| x| x| x]|o x| x| o 1
1 o 1 0 X | x [x| x! x| X | x| 1 0
1 1 0 0 X | x| x| x| x| x| o |x]|o 1
1 1 0 o X | x | x| x| x| x| x | 1 0
1 1 1 0 X | x | x| x| x| x| x|o ()} 1
1 1 1 0 x | x | x| x| x{x| x| 1 0

When used to indicate an input, X = irrelevant.

J’7

STB

12
— D7
13

14
—os

74151

—D3

—D2 fop——o

—1D1

s2 s1 so
lo [0 |n

IC-745)

C-11

74L.S157/74LS158 QUAD 2-INPUT DATA SELECTORS/MULTIPLEXERS

The 74LS157 and 74LS158 are quadruple 2-input data selectors/multiplexers. The 74L.S158 features
inverting data paths.

AQ 2

3 *-ro
BO
Al 5

. LAy
B1
A2 1

0 S ¢
B2
A3 14

1

3 2 k3

B3
1
so‘{>o—‘———>o—

STB 15 Vee =(16)
Gnd=(8)

LOGIC DIAGRAM (SHOWN FOR 74LS5157)

Fn

STB S0 An Bn 7418157 7415158
HI X X X LO HI
LO Lo LO X Lo Hi
LO LO HI X HI LO
LO HI X LO LO HI
LO HI X HI Hi LO

TRUTH TABLE

IC - T4LS157

C-12

74LS161 4-BIT BINARY COUNTER

The 74LS161 is a synchronous, presettable, 4-bit binary counter. It has an internal carry look-ahead
that enables totally synchronous high-speed counting. All counting flip-flops are triggered simulta-
neously from a common clock buffer, counting on the positive-going edge of the clock input.

All counters are synchronously presettable to either state. When the LD line is low, the next rising edge

of the clock transfers into the counting register data present on the Dn lines.

The clear function is asynchronous and a low on the CLR line sets all outputs low regardless of the

state of the clock or of any other input.

9
LD 4{>

10

DDIJ QA RO (1)
-0
CLOCK
K
08 =) T
_:)Oﬁ J QB 13 rim)
9 CLOCK
|
- I I K
4 T
D1
cLr - ::De
CLK2—<DO— Do——'
—
Jac 12 gem
)CLOCK
: K
p2 -2) T
—DD_l J QD)
'es
7
) cLOCK
[CNT K
EN
. i
CRY EN L
\ 15
) co

Vee=(16)
GND=(8)

C-13

IC-741L5161

74181 4-BIT ARITHMETIC LOGIC UNIT, ACTIVE HIGH DATA
The 74181 performs up to 16 arithmetic and 16 logic functions. Arithmetic operations are selected by
four function-select lines (SO, S1, S2, and S3) with a low-level voltage at the mode control input (M),
and a low-level carry input. Logical operations are selected by the same four function-select lines
except that the mode control input (M) must be high to disable the carry input.

Subtraction is accomplished by 1’s complement addition where the 1’s complement of the subtrahend
is generated internally. The resultant output is A-B-1, which requires an end-around or forced carry to

provide A-B.
OUTPUTS
74181 P -
TABLE OF LOGIC FUNCTIONS COMPARATOR GECNAERRRAYTE
Function Select Output Function CARRY
S3 S2 S1 SO Negative Logic Positive Logic CARRY PROPAGATE
— 14 16 17 15
L L L L f=A f=A
L L L H t =AB f=A+B -
L L H L | t=A+B f =AB A=B COUT G
L L H H f = Logical 1 f= Ifgica! 0 18
L H L L t =A+B f =AB (—— B3 15 -
L H L H| =B f=8 19 1 a3 63—
L H H L f =AWB f =A®B
L H H H f=A+B f=AB 20
H L L L f =AB f=A+8B =< 1g2 "
H L L H | f=A®B f=A®B 21 f2 b—
Al 4 ‘o WORD re 7 FUNCTION
= - 4
H L H H f=A+B f AB. INPUTS 22 181 AR
H H L L f = Logical 0 f = Logl_cal1 =< 18 10
H H L H | f=AB f=A+B 23 1 F—
H H H L f =AB f=A+B —1 A1
H H H H f=A f=A o1
— ——80 09
With mode control (M) high: C, irrelevant 02 (0
For positive logic: logical 1 = high voltage L—1AO J
logical 0 = low voltage
For negative logic: logical 1 = low voltage
logical 0 = high voltage S3 S2 St SO M CIN
03 [04 |05 |06 |08 |07
MODE
CARR VCC=PIN 24
Y H
INPUT GND =PIN 12
—
FUNCTION
SELECT
INPUTS
1C- 74181
74181

TABLE OF ARITHMETIC OPERATIONS

Function Select Output Function
S3 S2 S1] Low Levels Active High Levels Active
L L L L f=A minus 1 f=A
L L L H f=AB minus 1 f=A+B
L L H L f = AB minus 1 f=A+B
L L H H f = minus 1 (2's complement) f = minus 1 (2's complement)
L H L L f=A plus [A +B] f = A plus AB
L H L H | f=ABplus [A + B] f=[A +BI plus AB
L H H L f = A minus B minus 1 f = A minus B minus 1
L H H H |f=A+B f = AB minus 1
H L L L f=A plus [A +B] f= A plus AB
H L L H f=ApilusB f=AplusB
H L H L f=AB plus [A + B] f=[A +B] plus AB
H L H H f=A+B f=AB minus 1
H H L L f=Aplus At f=Aplus At
H H L H f=AB plus A f=[A+B] plusA
H H H L f=AB plus A f=[A +B] plus A
H H H H f=A f=A minus 1

With mode control (M) and C;,, low
1 Each bit is shifted to the next more significant position.

C-14

74182 LOOK-AHEAD CARRY GENERATOR

The 74182 Look-Ahead Carry Generator, when used with the 74181 ALU, provides carry look-ahead
capability for up to n-bit words. Each 74182 generates the look-ahead (anticipated carry) across a
group of four ALUs and, in addition, other carry look-ahead circuits may be employed to anticipate
carry across sections of four look-ahead packages up to n-bits.

Carry inputs and outputs of the 74181 ALU are in their true form, and the carry propagate (POUT)
and carry generate (GOUT) are in negated form.

PIN DESIGNATIONS

Designation Pin No. Function
G0,G1,G2,G3 3,1,14,5 ACTIVE-LOW CARRY GENERATE INPUTS
PO,P1,P2,P3 4,2,15,6 ACTIVE-LOW CARRY PROPAGATE INPUTS
CIN 13 CARRY INPUT
COUTX, COUTY,CouTZ 12,11,9 CARRY OUTPUTS
GOUT 10 ACTIVE-LOW CARRY GENERATE OUTPUT
POUT 7 ACTIVE-LOW CARRY PROPAGATE OUTPUT
Vee 16 SUPPLY VOLTAGE
GND 8 GROUND
|1o I 07 Loe
GOUT POUT couTZ
74182 74182
G3 P3 G2 P2
05 06 14 15
l\ i J’I 2
COUTY COUTX
13
74182 —O|CIN 74182
G1 P1 GO PO
(o)} 02 IOS 04
VCC= PIN 16
GND= PIN 08
IC-74182

C-15

741.S194 4-BIT BIDIRECTIONAL SHIFT REGISTER
The 74LS194 is a 4-bit bidirectional shift register.

In the parallel-load mode, data is loaded into the associated flip-flop and appears at the outputs after
the positive transition of the clock input. During loading, serial data flow is inhibited. Shift right is
accomplished synchronously with the rising edge of the clock pulse when SO is high and S1 is low.
Serial data for this mode is entered at the shift-right data input (DSR). When SO0 is low and S1 is high,
data shifts left synchronously and new data is entered at the shift-left serial input (DSL). Clocking of
the flip-flops is inhibited when both mode-control inputs are low.

PARALLEL OUTPUTS
A

ROM) R R2(1) R3(1)
Tis M4 P13 T2
—>s ol f>Hs osf F‘CD—S acl— IP>s ol
—OJ CLOCK ——J CLOCK —OI CLOCK — CLOCK
R R R R
CLEAR CLEAR CLEAR CLEAR

oo ta>o i i i i

— p— — -
10 l
s«or0(>
MODE ;Dc
CON;I'ROL 4
soo—cv
9
20 3 4l 54 64 7
DSR DO D1 D2 D3 DSL
Vec=(16) PARALLEL INPUTS
GND=(8)

LOGIC DIAGRAM

MODE CONTROL
S1 SO
PARALLEL LOAD H H
SHIFT RIGHT (IN THE DIRECTION Qp TOWARD Qp) L H
SHIFT LEFT (IN THE DIRECTION Qp TOWARD Qp) H L
INHIBIT CLOCK (DO NOTHING) L L

IC-74L8194

C-16

74LS253 DUAL, 4-LINE TO 1-LINE DATA SELECTOR

The 7418253 is a dual, 4-line to 1-line data selector /multiplexer.

{>

>_
)_)
B
O
-
D

CONT® Lﬁ
(AQ 6
BD 5
DATA J
INPUTS
co 4 []
0o 3
\
s1 2 :::>c
CONTROL [:
INPUTS
sg 14 :::>x: c{:::>
(a1 10
Bt 1
DATA
INPUTS a
c1 12
D1 13
o
15 |
CONT 1 :{::>>

LOGIC DIAGRAM

S1 SO An Bn Cn Dn CONTn Fn
X X X X X X HI 4
LO | LO LO| X X X Lo LO
Lo LO | HI X X X LO HI
LO HI X LO | X X LO LO
Lo HI X Hi X X LO al]
HI Lo| x X Lo | X LO LO
HI LO [X X HI X LO HI
HI HI X X X Lo LO LO
HI HI X X X HI Lo Hi

X = DON'T CARE

Z = HI IMPEDANCE

TRUTH TABLE

C-17

7 Fo)

> OUTPUTS

Vee=(16)
Gnd=(8)

IC -74L5253

82S112 32-BIT, MULTIPORT MEMORY

The 82S112 IC is a TTL, 32-bit, multiport memory organized in 8 words of 4 bits each. Stored data is
addressed through 2 independent sets of 3-input decoders, and read out when the corresponding out-
put enable line is low. Two separate word locations can, therefore, be read at the same time by
enabling both the A and B output drivers. In addition, data can be read and written at the same time
by utilizing the *“A” address to specify the location of the word to be written, and the “B” address to
specify the word to be read.

DATA INPUT LINES

DO DI D2 D4
WRITE R/W —Of DATA INPUT | AE (OUTPUT ENABLE)
CONTROL LINES | R/W — REGISTER
” a0
'A' DECODER AR 1 L EMORY L A
ADDRESS LINES 4 AA1—] aopRess A OUTPUTS
(READ/WRITE) DECODER 8x4 — A2
AA2 — MEMORY
ARRAY — A3
g BO
'8' DECODER BA® =1 \iemoRy | &
ADDRESS LINES{ BA1—] ApDRESS B OUTPUTS
(READ ONLY) —— B2
A2 —| DECODER
— B3
Vee = (24)
Gnd = (12) BE (OUTPUT ENABLE)
R/W 23 AQ 8
Rw — —4 M LEVEL OUT.
_30 Do A2 10
—2 gt Azl
828112
—22 402
21 13
—<go4 B0 p——
s1bl4—
AE p2pi—
17 = 16
—1T o 8E B3ple—
AA2 AA1 AAQ BAZ BA1 BAD

A P

LOGIC REPRESENTATION

FUNCTION TABLE

DATA IS WRITTEN INTO WORD ADDRESSED BY 'A' DECODER WHEN
R/W IS LO AND R/W IS HI. HIGH LEVEL IN APPEARS AS HIGH

OUTPUTS
R/W R/W AE | BE MODE A B
Lo X HI | HI | ouTPuTs HI HI
DISABLED
Lo X HI | Lo | READ HI DATA
LO X Lo | HI | READ DATA HI
LO X Lo | Lo | ReaD DATA DATA
HI HI HI | HI | READ HI HI
HI HI HI | LO | READ HI DATA
HI HI LO | HI | READ DATA HI
HI HI LO | LO | READ DATA DATA
HI Lo HE | HU | wRITE HI HI
HI Lo HI | LO | WRITE HI DATA B
ADDRESS
HI Lo LO | HI | WRITE DATA BEING Hi
WRITTEN
HI LO Lo | Lo | wRITE DATA BEING DATAB
WRITTEN ADDRESS
IC-82s112

FPLA

The FPLA (Field Programmable Logic Array) is a logic element designed to produce a sum of product
terms at its outputs. The device has 14 inputs and 8 outputs. It can have as many as 48 product terms,
each term having as many as 14 variables; each output provides a sum of selected product terms. The
FPLA is functionally equivalent to a collection of AND gates which may be ORed at any of its
outputs. Since some functions are more easily represented in their inverted form, the output level is
also programmable to either a high or low active level.

Figure ICFPLA shows a logic diagram, the logic representation, and a truth table of the FPP8-A

01
02
03
04
05
06
07
08
09

249888

39
40
a1
42
43

45
46
47

FPLA.
TRUTH TABLE
INPUTS OUTPUTS

113 112 111 110 109 108 107 106 105 104 103 102 101 100 | FO7 FO6 FO5 FO4 FO3 FO2 FO1 FOO
H L HHH - - — — — — — _— H - - - - L - 1
H H L HH L HH H H - L L L
H H L H H L H H L H ~ L L L
H H H HH L HH H H L - — -
H H H H H L H H L H L - - L
H H L HHULHB L H H L - =
H H L H H L H L L H L L - -
H H H H H H H L H H L - - -
H H HHHHH L L H L L L -
H L L HH - — = H L L L L
L HHHH - - - — - — - T n - - - L L L L -

- - H L - - - - - - - L W - - L - - - - -
- - - H L - - = - - - - H"H ~# - - L - - - - L 21
- - - L A - - - T T TA T - .t i? o1 — i?]
L L HHH - - - — — - - H - - L - - L - - 12 23 — 12
- - — L - L HHH - - — - H - - L - — L - L 13 o 12 — 13 o
L L H H L HHH - - - - Hn - - L - L - L 14 0——] 14 — | F1
- - - L - H H H H - - —- - H - - L - L L - 15 O0—— ——o 15 —— F2
L L H H H H H H - - - — ~n — - L - — L [- 16 o—3—} INPUT [PRODUCT TERM ARRAY 16 14X48X8 F3
— T ———————1 — T —— 7 0_2—’ BUFFERS [~ 1344 PROGRAMMABLE 17 FPLA L
L L L H H - - — = - - - - L -t L - - 18 o—— — f'é?:gg? 18 —— F5
A T W A A - — — - ——% T ——— 19 00— — OUTPUT ACTIVE 19 ——— F6
e v e wwen B T = .
~ H L HHH®HHL - L - - H |= [m o 10 — ELEMENTSL m
— H L H HHHL H - H - — H - - - - - L L - ne 1" — (8x1) 12

113 0——— — 13

— H L H H HHL L - - - - +# - - - - - . L =
— H L HHH L HHUH - - - H - - - - - L L -
— H L H H H L HL - H - - H - - - - - L L - v
— H L H H H L L HHL - - H - - - - L L - T
— H L HHHLLL - — L - H - - - - - i 1 -
ZH L HHHAHHHAHHBE- - - H|]L - - - - || %—o F6
— H L H H HHHL - H - - H L - - - L L - — —— O F1
— H L HHHUH L HUHL - - H L - - - L - L - SUMMING ARRAY |—] %o F2
T H L HHHAL CH L - - - [T - - -t -1 384 PROGRAMMABLE t ouTPUT —7©F3
~ H L H H H L HL - L - - H L - - - - E'(‘g'\)"f‘;“g;s BUFFERS s ©°Ff¢
— H L H H HL L H - H - - n L - - - L - L - [| e ©F5
- H L H H'H L L L - - H - H L - - T -1 - Ve = (24) | ["20 :f__i
H H L HH L L - - - - ~- - H L - - - - - - = GND = (12)
H HHHHTLL - — — - - - H L - - - - -
H H H H H L H L H L - - - -
H H H HHH L L H L - - - -
L H L H H L — - H L - - - -
H H H H H H L H H L - - - -
H H H H HH L H H - - L - -
H =HIGH, L = LOW, *~' = DON'T CARE, IF INPUT, OR NOT CONNECTED, IF OUTPUT

C-19

CUT OUT ON DOTTED LINE

FPP8-A Maintenance Manual ,
EK-FPP8A-MM-001 Reader’s Comments

Your comments and suggestions will help us in our continuous effort to improve the quality and usefulness of

our publications.

What is your general reaction to this manual? In your judgment is it complete, accurate, well organized, well
written, etc.? Is it easy to use?

What features are most useful?

What faults do you find with the manual?

Does this manual satisfy the need you think it was intended to satisfy?

Does it satisfy your needs? Why?

Would you please indicate any factual errors you have found.

Please describe your position.

Name : Organization

Street - _ Department

City State Zip or Country

FIRST CLASS
PERMIT NO. 33

MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Digital Equipment Corporation
Technical Documentation Department
146 Main Street

Maynard, Massachusetts 01754

printed in U.S.A.

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	4-64
	4-65
	4-66
	4-67
	4-68
	4-69
	4-70
	4-71
	4-72
	4-73
	4-74
	4-75
	4-76
	4-77
	4-78
	4-79
	4-80
	4-81
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	replyA
	replyB
	xBack

